Loading...
Report (12) SUBMITTAL COVER SHEETlfil ( Carleton Hart Architecture, P.C. CONSTRUCTION 04/14/2020 Received Date: 4/14/2020 This review is for general conformance with plans and specifications only.Any deviations from same not clearly noted Project Name: Red Rock Creek Commons by the subcontactor/supplier have not been reviewed.Review shall not constitute a complete check or detailed dimensions or Attention: Kayla Zander count or serve to relieve the subcontractor/supplier of contractual responsibility for any error or deviation from Architect: Carleton Hart Architecture contract requirements. RE l v ••,E a V E I DATE 4/14/2020 Submittal #: 08 41 13-1.3 PROJECT# 285 APR 2 3 2020 Spec Section #: 08 41 13 SPEC.SECTION# 08 41 13 TIGARD Lisa Li Project Engineer Description: Deferred Alumunum St�o1 *pj Lipe,REVIEWED BY Revised Drawings g Subcontractor: Ambrose Glass H Reviewed n Reviewed w/Comments ❑ Rejected ❑ Revise&Resubmit Architect- Shop Drawings have been revised. PICK UP REDLINES ON DETAILS AS el INDICATED BELOW. CARLETON HART ARCHITECTURE P.C. ❑ NO EXCEPTION TAKEN HARDWARE NOT REVIEWED UNDER THIS © MAKE CORRECTIONS NOTED O SUBMITTAL. N. ❑ REVISE AND RESUBMIT -CHA ❑ REJECTED OFFICE ciky„lipROVED El FOR INFORMATION ONLY This review is for general conformance with design concept only. f K Any deviation from plans or specifications not clearly noted by the QC contractor has not been reviewed. Review shall not constitute a complete check of all detailed dimensions or count or serve to relieve 1V\ the contractor of contractual responsibility for any error or deviation from contract requirements. BY mo.faul DATE 4/17/2020 8 o �� ✓` - CARLETON HART ARCHITECTURE, P.C. 1 83fL 200 PO TLSW 10TH AVENUE 503 PORTLAND,OR 97205 503-243-2252 J 0 AppROvE� c...., e Transmitted: I-71 Procore n Hand Deliver n Email El Other I .L L Li t.UI LIUI IJ Red Rock Creek Commons RICE- Curtain Wall Calculations ENGINEERING 105 School Creek Trail I Luxemburg,WI 54217 (P)920.617.1042 I (F)920.617.1100 Project Location: Prepared for: Tigard,Oregon Prime Architectural Drafting- PLAINFIELD, IL REI Project#R19-10-394 11/14/2019 Design Criteria: 1. Wind Load per(structural notes and ASCE 7-10); 24 PSF Corner Zone and 19 PSF Typical Zone 2. Aluminum mullions shall be alloy(6063-T6)or better. Members designed per the Aluminum Association,"Specifications for Aluminum Structures". Aluminum break metal shall be alloy 5052-H32 or better. 3. Deflection to be per(AAMA TIR-A11-15)for main span members normal to building face. Deflection in plane of wall for dead load of glass limited to 1/8"or 25%of glass bite. 4. Steel anchor plates,clip angles,reinforcement channels and bars to be minimum ASTM A-36 steel. 5. Concrete anchors shall be a threading cutting type anchor with the size,embed depth and spacing as per the calculations.Anchors shall be installed per the manufacturer's specifications.Use Hilti.See manufacturer's ICC evaluation report of special inspection requirements. 6. Concrete strength is assumed to be 4000 psi, normal weight. 7. Design of material separation to prevent reaction between dissimilar materials not designed by Rice Engineering Inc. 8. Perimeter Silicone is assumed to be Dow 795(+/-50%),or better.Installed exactly per manufacturer's recommendations. 9. Wood Screws shall conform to ANSI/ASME Standard B18.6.1-1981,minimum bending yield strengths of Fby=70 ksi, Lag Screws shall conform to ANSI/ASME Standard B18.6.1-1981,minimum bending yield strengths of Fby=45 ksi, 10. Wood is assumed to be Spruce-Pine-Fir,SG=0.42 ]1. Use Full Bearing Shims with dimensions as called out in calculations. Digitally signed by Gustave Schmoll Gustave Schmoll Date: 2019.11.14 13:07:24-06'00' -ers Design Approval Stamp: Disclaimer: ��� PROF.c This Certification is limited to the structural design of <t Sd, structural components of this Curtain Wall system. cb *G 1 N It does NOT include responsibility for: 91522PE • Structural design of hardware,glass lites,gaskets,and sealants. • Design of material separation to prevent reaction between dissimilar materials. OREGON • Design of air and water infiltration prevention. Expires:6/30/20 • The manufacture,assembly,or installation of the system. \, • Quantities of materials or dimensional accuracy of drawings 8/- Sc�y�O 11/14/2019 Cover Page 1 of 2 Red Rock Creek Commons RICE,- - ' - Curtain Wall Calculations ENGINEERING 105 School Creek Trail I Luxemburg,WI 54217 (P)920.617.1042 I (F)920.617.1100 Project Location: Prepared for: Tigard,Oregon Prime Architectural Drafting- PLAINFIELD, IL REI Project#R19-10-394 11/14/2019 Page: Description: Date: Revision: 201 Elevation 11/8/19 CO-COC Design Loading 11/8/19 Cl Seismic Drift Check 11/8/19 1-1A Horizontal Design 11/8/19 2-2A Vertical Design 11/8/19 3-3A Horizontal Design 11/8/19 4-4A Vertical Design 11/8/19 5-5A Vertical Design 11/8/19 Al Anchor Design 11/8/19 A2-A2E Anchor Design 11/8/19 A2-A3G Anchor Design 11/8/19 A4 Anchor Design 11/8/19 A5 Anchor Design 11/8/19 S1-S2 F1-F2 Li F{n in Design Approval Stamp: Disclaimer: g�R�D PRope This Certification is limited to the structural design of \5� G 1 N E F Szo structural components of this Curtain Wall system. A522P sr It does NOT include responsibility for: E • Structural design of hardware,glass lites,gaskets,and sealants. • Design of material separation to prevent reaction between dissimilar materials. OREGON • Design of air and water infiltration prevention. Expires:6/30/20 • The manufacture,assembly,or installation of the system. cG ON' • Quantities of materials or dimensional accuracy of drawings sT44 L , SC0 11/14/2019 Cover Page 2 of 2 li n �o 13 re• T.T ROUGH OPENINGA r FRAME i g r-4- AIM ra T.T � 0 >ig Z IIm FRAME x 3c s&x �D = iII 5 �41 r 84% rII D l`fi • aN$:;, 6 T;am®• I It NM -A ; 1IO AD 114 ! 1) fil-IPT nNoyqrm n>® m: 1 m • ay 9'O �� En - ROUGH OPENNG 1.1 r$ T•T m ^� z FRAME sa'xi OLO rr.... y a0 'x: +'K•g3 " 11111112V " yi ESQ z r ifs0) _ ;�m:4Dl@�i_i 0 r " i r. NM 4 4 A 11.07 a) K0 — yD �1() r ! ; Z I U 0Cr) " ' © 4 x Erb _ ICjD oi-ti � Y ® to r co NO Z m " x Vim o Tm _ �/ ROUGH OPENING 1 A (^ -' OP y En ROUGH OPENING ii EL•i ....- ROUGH N egg q6 n' lira OPENING e r FRAME + ; m R� �5< FRAME + L iw Q: ?1. T-0. _ r I[yr. �i.>,, G DOOR OPENNG D1.0 Z J4 nK Y .AT+ S DOOR OPENING ow , © isi 1, Li 0 r, i 1 _ 0 i O U� r4 ®®2 1 o.i f it 0 WI bFal 0 C:4 ill o NE) :0 g A 40 1 1 l' " 1-41) a , 1 gas �0 3 m CD ii 1 1, CD 4 - @ @ IN 0 ' - DDDRaPENN(i ow r s,41xi r DOOROPENPKi DLO 1011. s.P3,- +36' FRAME 'x: s•+'i4: AC FRAME Iy PP p ROUGH°FENNO 4_� VW ROUGH OPEN'IG ' N m RED ROCK CREEK COMMONS AMBROSE AD 0 . c = , HMO SW 68TH PARKWAYILI TIGARD,OR 97223 G A S S RIME .. Wind Design ASCEJSEI 7-10 Detail Ref. Sheet No: Design Loading Input Variables: CO Building height(Roof) h:=4&ft 1 Enclosed Building .I Maimum Unit Height z:=46•ft —J I Risk Category III ', Building Width Li:= 200•ft —J Building Length L2:= 200•ft I Exposure B Id Wind velocity V:= 120.mph from figure26.5-1A, 1 26.5 JB,26.5 JC I Roof Slope> 10 Degrees :! Topographic Factor Kzt:= 1.0 J i— 6C0ft< ii 90ft(Fx( t on nr1r In 6.2) P EWA Long-Span Length Provision Calculations — Directionality Factor Kd:=0.85 from table 26.6-1 EWATable Roofslope reduction Kg= 1 figure30.4-1,nob 5 "L(in)" "TIN (in)" Exposure Category E="B" 84 39 Risk Category R= 3 hum table 1.5-1 120 60 VebctyP ressu re Exposure Coef. Kzr= 0.79 from table 30.3-1 240 30 Veb ctyP ressu re Biome Cod. Kzh240 12 =0.79 from table 30.3-1 ASD Conversion Factor �r:= 0.fi 24 3 36 48 Corner Zone Dimension a= 18.4•ft 48 60 Velocity Pressures — - VebctyPressure(roof heist) qh:=Coef Kzr.Kzr Kd•(V)2=24.71.psf VebctyPressure(urithegli) qz:=Coef KzhrKztKd•(V)2=24.71.psf Coe terressureCoef -CZ -------_------_-_. ( ) GCp1 =-1.4 Note: coefficients from figures 30.4-1 or Ext Pressure Coef.(+CZ) GCp2= 1 figure 30.6-1 Ext Pressure Coef.(-TYP) GCp3=-1.1 Ext Pressure Coef.(+TYP) GCp4= 1 Int Pressure Coef. GCpi1= 0.18 Note:Internal pressure coefficients from table 26.11-1 Int Pressure Coef. GCpi2=-0.18 Allowable Loads(ASD) Ultimate Loads(LRFD) P4.czneg (1,w Pczneg=-23.42•psf Comer Zone Pczneg=-39.04 psf P,Fczpos:='FwPczpos= 17.49.psf Comer Zone Pczpos=29.16-psf No Impact Requirements P`.typneg 4'w Ptypneg=-18.98 psf Typc N Zone Ptypneg=-31.63.psf P4'tyPPos (Fw Ptyppos= 17.49•psf Typical Zone Ptyppos=29.16.psf RICE 105 School Creek Trail Project Description: Job No: 19-10-394 1. Luxemburg,WI 54217 Engineer: GLS Sheet No: CO ENGINEERING Phone:(920)617-1042 Fax:(920)617-1100 Red Rocks Date: 11/8/19 Rev: Template: REI-MC-6300.A www.rice-inc.com Chk By: Date: Detail Ref. Sheet No: Design Loading CO "L(in)"' "TW(in)" "EWA (ft^2)" "CZ (psf)" "Typ (psf)" 84 39 22.75 "(-21.6, +16.6)" "(-18, +16.6)" 120 60 50 "(-19.8, +15.7)" "(-17.1, +15.7)" 240 30 133.33 "(-17.5, +14.5)" "(-16, +14.5)" 240 12 133.33 "(-17.5, +14.5)" "(-16, +14.5)" 24 3 1.33 "(-23.4, +17.5)" "(-19, +17.5)" 36 48 12 "(-23, +17.3)" "(-18.8, +17.3)" 48 60 20 "(-21.8, +16.7)" "(-18.2, +16.7)" D ICE 105 School Creek Trail Project Description: Job No: 19-10-394 L�l Luxemburg,WI 54217 Engineer: GLS Sheet No: CO A ENGINEERING Phone:(920)617-1042 Fax:(920)617-1100 Red Rocks Date: 11/8/19 Rev: www.rice-inc.com Template: REI-MC-6300.A .com Chk By: Date: Seismic Design ASCE/SEI 7-10 Design Loading Detail Ref. Sheet No: CO B Input Variable: apEL:= 1.0 amplification factor(component);Table135-1-1 I Risk Category Ill 2LI table1.5-1 RpEL:=2.5 response modification factor(component);Table 13.5-1 , Results ASD .� apCON 1.25 amplification factor(anchorage);Table 13_5.1 ( Seismic Design Category D .� RpCON 1.0 response modification factor(anchorage);Table 13_5-1-1 Sips:=0.72 design spectral response acceleration,short section 11.4.4 k=30•ft component height with respect to the base 1=30-ft average roof height with respect to the base Wp:= 1Gpsf weight of component SEASCE.= 1.5 overstiength factor for concrete anchorage(Table 135-1) Calculations: S=0.7 ASD conversion factor Ip=1 component importance factor,sec.13.1.3 0.4a EL•Sps•W pR p �h�� fp1:= pEL . 1 + 2• J=3.46•psf component force Ip 0.4.apCON•SDS.W z fp2 RpCON p 1 + 2• h��= 10.80•psf anchor force Ip fpmin:=0.35-Sips.Ip•Wp=2.52.psf fPmax = 1.6•Sips I p W p= 11.52•psf fhmax:= 0.2.SpS•Wp= 1.44.psf Results: METHOD="ASD" fp1=2.42•psf component force fp2=7.56.psf anchorage force Eh=1.01•psf vertical force Method="LRFD" fp2 SEASCE fpst:= t'S = 16.2.psf concrete anchorage force D ICE 105 School Creek Trail Project Description: Job No: 19-10-394 l�L C. Luxemburg,WI 54217 Engineer: GLS Sheet No: CO B ENGINEERING Phone:(920)617-1042 Fax:(920)617-1100 Red Rocks Date: 11/8/19 Rev: www.rice-inc.com Template: REI-MC-6300.A .com Chk By: Date: building height = 46' BASIC WIND SPEED(3 SECOND GUST): 120 MPH ULT. WIND EXPOSURE: B SEISMIC IMPORTANCE FACTOR le: 1.0 SITE CLASS: D SDS= 0.726 SD1 = 0.446 SEISMIC DESIGN CATEGORY: D BASIC SEISMIC-FORCE-RESISTING SYSTEM: LIGHT FRAMED WOOD SHEATHED SHEARWALLS(R=6.5) ANALYSIS PROCEDURE USED: EQUIVALENT LATERAL FORCE METHOD CAST-IN-PLACE CONCRETE: MIX DESIGN:PREPARE DESIGN MIXES FOR EACH TYPE OF CONCRETE.PROPORTION MIXES BY EITHER LABORATORY TRIAL BATCH OR FIELD EXPERIENCE METHODS,USING MATERIALS TO BE EMPLOYED ON THE WORK FOR EACH CLASS OF CONCRETE REQUIRED. FURNISH CERTIFIED REPORTS OF EACH PROPOSED MIX FOR EACH TYPE OF WORK OF THIS SECTION. THE CONTRACTOR SHALL SUBMIT CONCRETE MIX DESIGNS,ALONG WITH TEST DATA AS REQUIRED,A MINIMUM OF TWO WEEKS PRIOR TO PLACING CONCRETE. ADMIXTURES: AIR ENTRAINING AGENT IN ACCORDANCE WITH ASTM C260 AND WATER-REDUCING ADMIXTURE CONFORMING TO ASTM 494,USED IN STRICT ACCORDANCE WITH THE MANUFACTURER'S RECOMMENDATIONS,MAY BE INCORPORATED IN CONCRETE DESIGN MIXES. AN AIR-ENTRAINING AGENT CONFORMING TO ASTM C260 SHALL BE USED IN CONCRETE MIXES FOR EXTERIOR HORIZONTAL SURFACES EXPOSED TO WEATHER. THE AMOUNT OF ENTRAINED AIR SHALL BE 5%-7%BY VOLUME. FLY ASH SHALL CONFORM TO ASTM C 618 AND SHALL BE LIMITED TO A 15%MAXIMUM BY CEMENT WEIGHT. CONCRETE WORK SHALL CONFORM TO ACI 301. CONCRETE STRENGTHS SHALL BE VERIFIED BY STANDARD 28-DAY CYLINDER TESTS PER ASTM C39,AND SHALL BE AS FOLLOWS: FOOTINGS: fc=3,000 PSI AT 28 DAYS. (MINIMUM CEMENT CONTENT=470 LBS) WALLS/COLUMNS: fc=4,000 PSI AT 28 DAYS. (MINIMUM CEMENT CONTENT=470 LBS) SLABS ON GROUND: fc=3,500 PSI AT 28 DAYS. (MINIMUM CEMENT CONTENT=494 LBS) ABSOLUTE WATER/CEMENT RATIO BY WEIGHT: fc=3000 PSI(0.52 NON-AIR ENTRAINED,0.46 AIR ENTRAINED) fc=3500 PSI(0.48 NON-AIR ENTRAINED,0.45 AIR ENTRAINED) SAMPLES FOR STRENGTH TESTS OF EACH CLASS OF CONCRETE PLACED EACH DAY SHALL BE TAKEN NOT LESS THAN ONCE A DAY,OR NOT LESS THAN ONCE FOR EACH 150 CUBIC YARDS OF CONCRETE,OR NOT LESS THAN ONCE FOR EACH 5,000 SQUARE FEET OF SURFACE AREA FOR SLABS OR WALLS. SLEEVES,OPENINGS,CONDUIT,AND OTHER EMBEDDED ITEMS NOT SHOWN ON THE STRUCTURAL DRAWINGS SHALL BE APPROVED BY THE STRUCTURAL ENGINEER BEFORE POURING. CONDUITS EMBEDDED IN SLABS SHALL NOT BE LARGER THAN ONE THIRD OF THE THICKNESS OF THE SLAB AND SHALL NOT BE SPACED CLOSER THAN THREE DIAMETERS ON CENTER. PROVIDE 3/4"CHAMFERS ON ALL EXPOSED CONCRETE EDGES UNLESS NOTED OTHERWISE. Input Variables: Detail Ref. Sheet No: Seisic Drift building allowable seismic drift, C 1 0%:=0.01 (ASCE7/10 Chapter 12Table 1212-1) hp:=85in the height of the rectangular glass by:=65 in the width of the rectangular glass c1:=0.42•in clearance between the vertical glass edge and the frame c2:=0.25•in clearance between the horizontal glass edge and the frame Calculations: hp.c2 Dclear 2•c1- 1 + c— = 1.49•in bp•c1 Dp:=hp. %=0.85-in 1.25•Dp= 1.06•in Results: Int:= "DRIFT OK" if Dclear i 1.25•Dp ="DRIFT OK" "GLASS WILL FAIL" otherwise Int="DRIFT OK" System can handle 0.01 x h for seismic drift. Verify w/Engineer of Record. RICE D 105 School Creek Trail Project Description: Job No: 19-10-394 1111 L Luxemburg,WI 54217 Engineer: GLS Sheet No: Cl ENGINEERING Phone:(920)617-1042 Fax:(920)617-1100 Red Rocks Date: 11/8/19 Rev: ^""`" Template: REI-MC-6330 "� com inc. Chk By: Date: Input Variables: Detail Ref. Sheet No: WL:= 24.psf wind design pressure Horizontal Design 01 &= 57.in tributarywidth lam= 101.in member length Deflection Criteria Select beam loading(WL) Lb:= 65•in member unbraced length I AAMA Specification J I Uniform -1 CJ:= 0.25.in optional caulk joint width &= 1 in tributarywidth 2(=1 if NA) Select beam loading(DL) Setting Block Locations H:= 25.5 in glass height I Simple Span ., I 9in From Glass Ends J DL:= 6.67 psf glass weight PVert:= Olbf point load from vertical mullion Select caulk joint Horizontal over an operable unit T PvertDL:= 01bf point load from vertical mullion I NONE i Section Properties 1/4x4 bar Sectioni := "451501 mod" Section2 :_ "NONE" Section3 := "NONE" Section4 :_ "NONE" (Aluminum Continuous) (Aluminum Continuous) (Aluminum Continuous) (Steel REIN.) lx1 =2.95 in4 Ix2=0•in4 lx3 a 0•in4 1x4= 1.33•in4 ly1 =0.62 in4 ly2=0•in4 ly3aO.in4 ly4=0•in4 Sx1 = 1.31•in 3 Sx2 a 1•in 3 Sx3= 1•in 3 Sx4 a 0.67•in Syl a 0.59•in 3 Sy2 a 1•in 3 Sy3 a 1•in 3 Syq= 1 in 3 J1 a 0.0031 in4 J2=tin4 J3 a 1•in4 Eq.a 29000000•psi El a 10100000•psi E2 a 10100000•psi E3 a 10100000•psi Wrein =O.—Ibf in di =4.5.in d2=1.in d3= 1•in 6063-T6 Closed J I NONE I.1 I NONE .J 1 36 KSI Steel J Calculations 4 Wind Load Diagram Ixtot=6.77 in lytot=0.62 in4 Ixalum =2.95 in4 lyalum =0.62 in4 i 11n`1 rAA L #12 SCREWS @ 12"O.C.AND AT EA.END R. R1 t 1 1-1 j"X 4"STEEL BAR REINFORCEMENT ufir ©' Dead Load Diagram P P F1======1=== Results: } Use Die Shown L I (6063-T6 or Better) w/Setting Blocks @ 9"from ends Rymax Rymax As Shown D ICE 105 School Creek Trail Project Description: Job No: 19-10-394 1111 Luxemburg,WI 54217 Engineer: GLS Sheet No: 01 ENGINEERING Phone:(920)617-1042 Fax:(920)617-1100 Red Rocks Date: 11/8/19 Rev: www•rice inc.com Template: REI-MC-6150.A Chk By: Date: Detail Ref. Sheet No: Horizontal Design Statics Analysis o1 A Statics(Wind Load): Deflection Check(Wind Load) wl =9.5 pli w2="NONE"•pli w3="NONE"•pli Rl =479.751bf pxallow1 =0.577 in exact Deflection OK R2="NONE" =0.33 Criteria="AAMA Specification" pxallowl Axed=0.19in Mxmax= 12113.69in•Ibf Statics(Dead Load): Deflection Check(Dead Load) P=59.65Ibf 0.125•in act Rymax=59.651bf yallowl= Y =0.87 p 0.1082in Int yallow1 Deflection OK yact= pw="DEFLECTION OK" Mymax=536.83in•Ibr Stress Results 2015 Aluminum Design Manual Section 1 = "451501 mod" Section 1 Stress OK Mall ="6063-T6 Closed" fxb1 =4030 psi fybl=910.psi fxbl fybl =0.73 Fxbl= 5880psi Fyb1= 19700psi Fxb1 Fyb1 2015 Aluminum Design Manual Section2="NONE" No Section 2 Mat2="NONE" fxb2=0 fyb2=0•psi fxb2 + fyb2 =0 Fxb2= 1 psi Fyb2=0 psi Fxb2 Fyb2 2015 Aluminum Design Manual Section3= "NONE" No Section 3 Mat3="NONE" fxb3=0 fyb3=0.psi fxb3 + fyb3 _0 Fxb3= 1 psi Fyb3=0 psi Fxb3 Fyb3 MSC Steel Construction Manual,13th Edition Section4="NONE" Fy4=36000 fxb4= 10200 psi fyb4=0.psi fxb4 fyb4 Fxb4=21600 psi Fyb4=21600 psi Fxb4 + Fyb4 —0.47 RICE 105 School Creek Trail Project Description: Job No: 19-10-394 Luxemburg,WI 54217 Engineer: GLS Sheet No: 01 A ENGINEERING Phone:(920)617-1042 Fax:(920)617-1100 Red Rocks Date: 11/8/19 Rev: '"^'^"rice inc Template: REI-MC-6150.A .com Chk By: Date: Input Variables:_ _ Detail Ref. Sheet No: Vertical Design WL:=24 psf wind design pressure 02 hii= 31•in tributarywidth Deflection Criteria Select caulk joint Select beam loading Acji= 1 in tributary width 2(=1 if NA) ,L=85 in first span length I AAMA Specification .I I Dow 795 . I Uniform .I L2:= 1 in second span length(=1 if NA) Lb:=85.in member unbraced length CJ:=0.25.in optional caulk joint width Section Properties Section4 :_ "NONE" (Steel REIN.) Section1 :_ "451cg001" Section2 :_ "NONE" Section3 := "NONE" Ix4v=0•in4 (Aluminum Continuous) (Akimmum Continuous) (Aluminum Continuous) 4. 4 4 lygv=O.in4 Ix1 =2.7•in 0.85 Ix2=0•in Ixg=0•in 4 4 4 Sx4v=0.in3 ly1 a 0.44•in ly2= 1 in ly3= 1 in 3 3 1 3 Sy4v=0•in 3 Sx1 =1.2•in •0.85 Sx2= 1•in Sx3= in E4=29000000•psi Sy1 =0.361•in 3 Sy2= 1•in 3 Sy3=1•in 3 Lrein =0•in J1 =0.003•in4 J2= 1 in4 J3= 1•in4 ❑ Corner 84=90deg El =10100000•psi E2=10100000•psi E3= 10100000-psi x4= tin d1 =4.5•in d2 a 1•in d3 a 1•in Y4a1in I6063-T6 Closed .J I NONE .j I NONE . I NONE .( Calculations Ixtot=2.3in4 Ixalum=2.3in4 Wind Load Diagram jI - _. I 5 45ITCW01 ` �N R1 —% 1 i [ Wi • Statics: i idi •tiN • w1 =5.17•pli 0 rr. w2="NONE".pli 0 I w3="NONE"•pli L j R1 =219.58 Ibf / 8. •� 2' D.L.O. 0 R2="NONE" Ye' FRAME HEIGHT 0 R3="NONE" 0 ROUGH OPENING Axact=0.15 in 0 Mxmax =4666.15 in•Ibf 0 Mxmaxalum =0in.lbf 0 R1 ' 1 Results: Use Dies Shown ( 6063-T6 ) As Shown D ICE 105 School Creek Trail Project Description: Job No: 19-10-394 111 l.l: Luxemburg,WI 54217 Engineer: GLS Sheet No: 02 ENGINEERING Phone:(920)617-1042 Fax:(920)617-1100 Red Rocks Date: 11/8/19 Rev: www.rice-inc.com Template: REI-MC-6101.A Chk By: Date: Detail Ref. Sheet No: Statics: Vertical Design 02 A w1 =5.17.pli w2="NONE"•pli w3="NONE"•pli R1 =2201bf R2="NONE" R3="NONE" Axact=0.152 in Mxmax =4666 in•Ibf Deflection Check ASSUME: Dow 795 Silicone or equal xallow1=0.28G in Deflection OK Axact=0.152.in ACriteria="AAMA Specification" Axact =0.54 Axallow1 Stress Results 2015 Aluminum Design Manual Sectionl ="451cg001" Section 1 Stress OK Mat1 ="6063-T6 Closed" fxbl=4575psi fxbl -0.96 Fxbl=4786 psi Fxb 1 2015 Aluminum Design Manual Section2="NONE" No Section 2 Mat2="NONE" fxb2=0 fxb2 =0.00 Fxb2= 1 Psi Fxb2 2015 Aluminum Design Manual Section 3= "NONE" No Section 3 Mat3="NONE" fxb3=0 fxb3 =0.00 Fxb3= 1 psi Fxb3 MSC Steel Construction Manual,13th Edition Section4="NONE" No Section 4 fxb4=0 fxb4 Fxb4= Opsi =0.00 Fxb4 RICE 105 School Creek Trail Project Description: Job No: 19-10-394 L�l C. Luxemburg,WI 54217 Engineer: GLS Sheet No: 02 A ENGINEERING Phone:(920)617-1042 Fax:(920)617-1100 Red Rocks Date: 11/8/19 Rev: Template: REI-MC-6101.A """'"!•rice-inc.com Chk By: Date: Input Variables: Detail Ref. Sheet No: WL:=24-psf wind design pressure Horizontal Design 03 hA:=57 in tributary width tL.=48 in member length Deflection Criteria r I Select beam loading(WL) Lb:=48•in member unbraced length I AAMA Specification -j Uniform _II CJ:=0.25 in optional caulk joint widthAcA —t := 1 in trtbutarywidth 2(=1 if NA) Select beam loading(DL) Setting Block Locations H:=25.5in glass height DL:=6.67psf glass weight I Simple Span .1 I 1/4 Points II Pvert 01bf point load from vertical mullion Select caulk joint Horizontal over an operable unit P PvertDL:=01bf point load from vertical mullion I NONE J-I Section Properties Section1 := "451501 mod" Section2 := "NONE" Section3 = "NONE" Sectionq := "NONE" (Aluminum Continuous) (Aluminum Continuous) (Aluminum Continuous) (Steel REIN.) 1x1 E 2.95 ina Ix2 E 0 ln4 lx3 E 0 ina 1x4 E 0'in4 ly1 E 0.62 in ly2 E O in4 ly3=0•in4 lyq E 0-in 4 Sx1 E 1.31 ina Sx2 E 1 ina Sx3 E 1 ina Ski E 0.67 ina Siy =0.59 in3 Sy2=1 ina Sy3 E 1 ina So e 0•in3 J1 E 0.0031 •in4 J2 E 1-in4 J3 E 1 in4 Eq E 29000000 psi El E 10100000 psi E2 E 10100000 psi E3-a 10100000lbf Sipsi Wrein E 0 in di E 4.5 in d2 E 1-in d3 E 1 in 6063-T6 Closed 2:1I NONE I NONE .J I NONE .1 Calculations a Wind Load Diagram Ixtot=2.95 in lytot=0.62 in4 lxalum=2.95 in4 lyalum=0.62 in4 j W1 A L I „ :. `, 3 Dead Load Diagram P P 1---E Results: Use Die Shown =13=17 (6063-T6 or Better) L w/Setting Blocks @ 1/4 Points Rymax Rymax As Shown RICED 105 School Creek Trail Project Description: Job No: 19-10-394 l�l li Luxemburg,WI 54217 Engineer: GLS Sheet No: 03 ENGINEERING Phone:(920)617-1042 Fax:(920)617-1100 Red Rocks Date: 11/8/19 Rev: www.rice-inc.com Template: REI-MC-6150.A .com Chk By: Date: Detail Ref. Sheet No: Horizontal Design Statics Analysis 03 A Statics(Wind Load): Deflection Check(Wind Load) w1 =9.5 pli w2="NONE"•pli w3="NONE"•pli R1 =228 lbf Oxallowl=0.274 in I Oxact Deflection OK R2="NONE" =0.08 OCriteria="AAMA Specification" Oxallow1 Axact=0.02 in Mxmax =2736 in•lbf Statics(Dead Loath: Deflection Check(Dead Load) P=28.35 Ibf 28.35 Ibf Dyallow1=0.125 in Dyact =0.11 Rymax= Deflection OK Dyact=0.0143 in Int pw="DEFLECTION OK" DYallow1 Mymax =340.17 in•lbf Stress Results 2015 Aluminum Desigt Manual Section 1 ="451501 mod" Section 1 Stress OK Mat1 ="6063-T6 Closed" fxbl=2089 psi fybl=577 psi fxbl fybl + =0.29 Fxb1=7962 psi Fyb1 =19700 psi Fxb1 Fyb1 2015 Aluminum Design Manual Section2="NONE" Matt="NONE" No Section 2 fxb2=0 fyb2=0•psi fxb2 fyb2 Fxb2=1 psi Fyb2=0 psi Fxb2 + Fyb2 —0 2015 Aluminum Desigi Manual Section3="NONE" Mat3="NONE" No Section 3 fxb3=0 fyb3=0 psi fxb3 + fyb3 =0 Fxb3=1 psi Fyb3=0 psi Fxb3 Fyb3 D TC1 105 School Creek Trail Project Description: Job No: 19-10-394 Lll 1. Luxemburg,WI 54217 Engineer: GLS Sheet No: 03 A ENGINEERING Phone:(920)617-1042 Fax:(920)617-1100 Red Rocks Date: 11/8/19 Rev: www.rice-inc.com REI-MC-6150.A •rice inc.com Chk By: Date: Input Variables_ _ Detail Ref. Sheet No: Vertical Design WL:= 24-psf wind design pressure 04 A:= 15•in tributary width := 26in tributary width 2(=1 if NA) Deflection Criteria Select caulk joint Select beam loading 85 in first span length I AAMA Specification .1 I NONE .J I Trap Trap II L2:= 1 in second span length(=1 if NA) Lb:=44in memberunbracedlength CJ:= 0.25 in optional caulkjointwidth Section Properties Section,' := "NONE" (Steel REIN.) Sectioni := "451cg001" Section2 := "NONE" Section3 := "NONE" I x4v=O in4 (Aluminum Continuous) (Aluminum Continuous) (Aluminum Continuous) 4 4 4 4 ly4v=0 in lxi =2.7 in 0.85 Ix2=O.in Ix3=O in 4 4 4 Sx4v E 0 in 3 ly1 =0.44 in ly2=1 in ly3=1 in Sx1 =1.2.in 3 0.85 Sx2= 1 in 3 Sx3=1 in 3 Sy4v=0 in 3 E4=29000000 psi Sy1 =0.361 in 3 Sy2=1 in 3 Sy3=1 in 3 Lrein =0 in J1 =0.003 in4 J2=1 in4 J3=1 in4 ❑ Corner E1 =10100000'psi E2= 10100000'psi E3=10100000 'psi 04=90deg di E 4.5.in d2= 1 in d3= tin x4=tin y4= 1in I6063-T6 Closed .i I NONE .J I NONE .1 1 NONE .1 Calculations Ixtot=2.3 in4 Ixalum =2.3 in4 Wind Load Diagram 451TCG001 R� C a gri Statics: • w1 =2.5 pli • • w2=4.33.pli W • W w3="NONE"'phi L 2 % 1 Ri =215.33 lbf R2=290.42 lbf 0 R3="NONE" ILO. 2' Axact=0.18 in 0 Mxmax =5589.38 in-lbf 0 Results: Mxmaxalum =0in•Ibf 0 A R1 • Use Dies Shown (6063-T6 or Better) As Shown RICE105 School Creek Trail Project Description: Job No: 19-10-394 LPL Luxemburg,WI 54217 Engineer: GLS Sheet No: 04 ENGINEERING Phone:(920)617-1042 Fax:(920)617-1100 Red Rocks Date: 11/8/19 Rev: Template: REI-MC-61 01.A www.rice-inc.com Chk By: Date: Detail Ref. Sheet No: Statics: Vertical Design 04 A w1 =2.50 pli w2=4.33 pli w3="NONE" pli Ri =2151bf R2=290 lbf R3="NONE" Axact=0.178in Mxmax=5589 in•Ibf Deflection Check Axallow1 =0.486•in Deflection OK Axact=0.178 in Criteria="AAMA Specification" Axact =0.37 Axallow1 Stress Results 2015 Aluminum Desigi Manual Section ="451cg001" Section 1 Stress OK Mat1 ="6063-T6 Closed" fxbl =5480 psi fxbl -0.59 Fxbl=9245psi Fxb1 2015 Aluminum Desigi Manual Section 2="NONE" No Section 2 Mat2="NONE" fxb2=0 fxb2 -0.00 Fxb2=1 psi Fxb2 2015 Aluminum Design Manual Section3="NONE" No Section 3 Mat3="NONE" fxb3=0 fxb3 -0.00 Fxb3= 1 psi Fxb3 AISC Steel Construction Manual,13th Edition Section4="NONE" No Section 4 fxb4=0 fxb4 Fxb4=0 psi =0.00 Fxb4 D ICE 105 School Creek Trail Project Description: Job No: 19 10 394 111 Luxemburg,WI 54217 Engineer. GLS Sheet No: 04 A ENGINEERING Phone:(920)617-1042 Fax:(920)617-1100 Red Rocks Date: 11/8/19 Rev: www.rice-inc.com Template: REI-MC-6101.A .com Chk By: Date: Input Variables:_ _ Detail Ref. Sheet No: Vertical Design WL:= 24 psf wind design pressure 05 := 54 in tributarywidth Deflection Criteria Select caulk joint Select beam loading &:= 26 in tributarywidth 2(=1 if NA) 85 in first span length I AAMA Specification .i I NONE .I I Trap-Trap .J L2:= 1 in second span length(=1 if NA) Lb:= 85in member unbraced length CJ:= 0.25 in optional caulk joint width Section Properties Sectionq :_ "NONE" (Steel REIN.) Section1 :_ "451501" Section2 := "NONE" Section3 := "NONE" I O.in x4v= 4 (Aluminum Continuous) (Aluminum Continuous) (Aluminum Continuous) 4 Ixl =2.98 in4 1 Ix2=0-in 4 Ix3=0 in4 Iy4v=0 in 4 4 4 Sx4v=0.in3 lyl =0.81'in ly2=1 in ly3=1 in 3 3 3 Soy=0.in3 Sx1 =1.32.in .1 Sx2=1in Sx3=1in 3 3 3 E4=29000000 •psi Sy1 =0.6 in Sy2=1 in Sy3=1 in Lrein =0 in J1 =1.075 in4 J2=1 in4 J3=1 in4 ❑ Corner 94=90deg El =10100000 'psi E2=10100000-psi E3=10100000'psi x4= lin di a 4.5 in d2= 1 in d3= 1 in Y4=1in I6063-T6 Closed _III NONE ., I NONE II I NONE Calculations Ixtot=2.98 in4 Ixalum =2.98 in4 451501 Wind Load Diagram • 411].1 R1 C I ii i Statics: • .. wl =9 pli 0 w2=4.33 pli W 0 W w3="NONE" pli L 2 % 1 [ix • Ri =267.33 Ibf 0 R2=566.67 Ibf 3/32 0 R3="NONE" 0 Oxact=0.18 in 0 Mxmax =7179.44 in•Ibf Mxmaxalum =0in•lbf I • A Results: Ri t Use Dies Shown (6063-T6 or Better) As Shown D ICE 105 School Creek Trail Project Description: Job No: 19-10-394 111 l� Luxemburg,WI 54217 Engineer: GLS Sheet No: 05 ENGINEERING Phone:(920)617-1042 Fax:(920)617-1100 Red Rocks Date: 11/8/19 Rev: www.rice-inc.com REI-MC-6101.A .rice inc.com Chk By: Date: Detail Ref. Sheet No: Statics: Vertical Design 05 A wi =9.00 pli w2=4.33 pli w3="NONE" pli Ri =267 lbf R2=5671bf R3="NONE" Axact=0.177in Mxmax=7179in•Ibf Deflection Check Oxallow1 =0.486 in Deflection OK oxact=0.177 in Criteria="AAMA Specification" exact =0.36 Axallowl Stress Results 2015 Aluminum Design Manual Sections ="451501" Section 1 Stress OK Mat1 ="6063-T6 Closed" fxbs=5439psi fxb1 =0.40 Fxbl= 13485 psi Fxb1 2015 Aluminum Design Manual Section2="NONE" No Section 2 Mat2="NONE" fxb2=0 fxb2 =0.00 Fxb2=1 psi Fxb2 2015 Aluminum Design Manual Section3="NONE" No Section 3 Mat3="NONE" fxb3=0 fxb3 =0.00 Fxb3=1 psi Fxb3 AISC Steel Construction Manual,13th Edition Section4="NONE" No Section 4 fxb4=0 fxb4 Fxb4=0psi =0.00 Fxb4 RICE 105 School Creek Trail Project Description: Job No: 19-10-394 l\l Luxemburg,WI 54217 Engineer: GLS Sheet No: 05 A ENGINEERING Phone:(920)617-1042 Fax:(920)617-1100 Red Rocks Date: 11/8/19 Rev: Template: REI-MC-6101.A www•rice-inc.com Chk By: Date: Detail Ref. Sheet No: 85in 65in Head Anchor RWI:= 24psf• 2 • 2 •2=460.42 Ibf Al 6 fb1 := RWI.1.6in• = 18416.67 psi receptor (0.1 in) •24in check Fbi := 20000 psi fb1 =0.92 Fb1 V1:= RWI=460.42 Ibf head anchor at 1/301 1.6 in T1 := RWI• =577.78 Ibf 1.5 in-0.85 Tall1 1951bf Valli 183Ibf ( Vi 12+ Ti 12_0 94 screw check Vall1.4) (TaII1 .4) \• 4.51 add Oft anemia.I 451Nr672 lit 01:1 yN om.awo _ RDi ATE RAWIN f(ITH D j/�� 105 School Creek Trail Project Description: Job No: 19-10-394 Lll l� Luxemburg,WI 54217 Engineer: GLS Sheet No: Al ENGINEERING Phone:(920)617-1042 Fax:(920)617-1100 Red Rocks Date: 11/8/19 Rev: www.rice-inc.com Template: Chk By: Date: Sill Anchor Detail Ref. Sheet No: A2 85in 65in RINI:= 24psf• 2 • - •2=460.42 lbf Rwl V1:_ 0.6 =767.36 lbf Rwl 1.37in screw check Ti =824.54 Ibf 0.6 1.5in•0.85 on following sheets V.I.0.6-tin fb2:= =50024.05 psi (0.25 in)3..098175.2.3 Fb2:= 92000 psi.0.75 =69000 psi fb2 =0.72 Fb2 IiiiRa ++ I N ATE D MMNOW: VilitX F.-IF., I Q J 0 2 ;,"HILT!HUS-EZ SCREW BOLT+@ 12"O.C. O a AND AT EACH END. d w I © ' MIN.EMBED: 1 " (f MIN,EDGE: 1 " O = LL u 2 IV _ ., � J451`P126 � \ ��f II o fl -p a lo o 1; RICE 105 School Creek Trail Project Description: Job No: 19-10-394 Luxemburg,WI 54217 Engineer: GLS Sheet No: A2 ENGINEERING Phone:(920)617-1042 Fax:(920)617-1100 Red Rocks Date: 11/8/19 Rev: www.rice-inc.com Template: Chk By: Date: DEWALT DEWALT Design Assist Ver. 1.4.1.0 Page 1 sheet a2 ENGINEERED BY-?OWers Nov 11 2019 1. Project Information Company: Project Engineer: gusatve schmoll Address: 105 school creek trail luxemburg wi 54217 Phone: M: 920-617-1071 Email: gusgrice-inc.com Project Name: Untitled Project Address: Untitled Notes: 2.Selected Anchor Information Selected Anchor: Screw-Bolt+ Brand: DEWALT 061 Material: 1/4"0 Low Carbon Steel Embedment: lief 1.94 in hnom 2.5 in Approval: ICC-ES ESR-3889 Issued I Revision: Nov,2018 - Drill Method: Hammer Drilled 3.Design Principles Design Method: AC1 318-14 Load Combinations: Section 5.3 User Defined Loads 4.Base Material Information Concrete: Type Cracked Normal Weight Concrete Strength 4000 psi Reinforcement: Edge Reinforcement None or<#4 Rebar Spacing Tension No(Condition B) Shear No(Condition B) Controls Breakout Tension False Shear False Base Plate: Sizing Thickness 0.25 in Length 24 in Width 3 in Standoff None Height 0 in Strength 36000 psi Profile: None Input data and results must he checked for agreement with the existing conditions,the standards and guidelines and must be checked for plausibility DEWALT DEWALT Design Assist Ver. 1.4.1.0 Page 2 ENGINEERED BY owers- sheet a2 Nov l 1 2019 ometric Conditions a z a a i1111) 5 5 /\0.25 halm 4.000 in Crain 1.500 in c, . 6.100 n smin 1.500 io 6.Summary Results Tension Loading Design Proof Demand (lb) Capacity (lb) Utilization Status Critical Steel Strength 275.00 2948.00 0.093 OK Concrete Breakout Strength 824.00 3324.00 0.248 OK Pullout Strength 275.00 1059.00 0.260 OK Controls Shear Loading Design Proof Demand (lb) Capacity (lb) Utilization Status Critical Steel Strength 259.00 1224.00 0.212 OK Concrete Breakout Strength 777.00 1287.00 0.604 OK Controls Pryout Strength 777.00 3580.00 0.217 OK 7.Warnings and Remarks 11111111111111.11 ]4D ANCHOR DESIGN CRITERIA IS SATISFIED t The results of the calculations carried out by means of the DDA Software are based essentially on the data you put in.Therefore, you bear the sole responsibility for the absence of errors,the completeness and the relevance of the data to be put in by you. Moreover,you bear sole responsibility for having the results of the calculation checked and cleared by an design professional/engineer,particularly with regard to compliance with applicable standards,norms and permits,prior to using them for your specific project.The DDA Software serves only as an aid to interpret standards,norms and permits without any guarantee as to the absence of errors,the correctness and the relevance of the results or suitability for a specific application. Input data and results must be checked for agreement with the existing conditions,the standards and guidelines and must be checked for plausibility DEWALT Design Assist Ver.1.4.1.0 Page 3 DEWALT sheet a2 ENGINEERED BY ?OWerS Nov 11 2019 8.Load Conditions Design Loads/Actions Z Nu 824 lb Vux 777 lb Vuy 0 lb 4 N„ Y Muz 0 in-lb Mux 0 in-lb Muy 0 in-lb �� mW W Consider Load Reversal X Direction 0% Y Direction 0% MW le- _ . 71_.�X h-c eli Max.concrete compressive strain: 0.000 % Anchor Eccentricity Max.concrete compressive stress: 0.000 psi ex 0 in ey 0 in Resulting anchor forces/Load distribution Anchor Tension Load (lb) Shear Load (lb) Component Shear Load (lb) Anchor Coordinates (in) Shear X Shear Y X Y 1 274.67 259.0 259.0 0.0 0.000 0.000 2 274.67 259.0 259.0 0.0 0.000 5.000 3 274.67 259.0 259.0 0.0 0.000 -5.000 Input data and results must be checked for agreement with the existing conditions,the standards and guidelines and must be checked for plausibility D EWA LT DEWALT Design Assist Ver. 1.4.1.0 Page a3 ENGINEERED BY'?OWers- Nov 11 2019 1. Project Information Company: Project Engineer: gusatve schmoll Address: 105 school creek trail luxemburg wi 54217 Phone: M: 920-617-1071 Email: gus@rice-inc.com Project Name: Untitled Project Address: Untitled Notes: 2. Selected Anchor Information Selected Anchor: Screw-Bolt+ Brand: DEWALT Material: 1/4"0 Low Carbon Steel Embedment: het' 1.94 in hnom 2.5 in Approval: ICC-ES ESR-3889 Issued I Revision: Nov,2018 - Drill Method: Hammer Drilled 3.Design Principles Design Method: ACI 318-14 Load Combinations: Section 5.3 User Defined Loads 4. Base Material Information Concrete: Type Cracked Normal Weight Concrete Strength 4000 psi Reinforcement: Edge Reinforcement None or<#4 Rebar Spacing Tension No(Condition B) Shear No(Condition B) Controls Breakout Tension False Shear False Base Plate: Sizing Thickness 0.25 in Length 4 in Width 3 in Standoff None Height 0 in Strength 36000 psi Profile: None Input data and results must be checked for agreement with the existing conditions,the standards and guidelines and must be checked for plausibility DEWALT Design Assist Ver. 1.4.1.0 Page 1 DEWALT sheet a2 ENGINEERED BY r?OWErS- Nov 11 2019 Product Comparison r' W igillir Anchor Image Anchor Name Screw-Bolt+ KH-EZ Anchor Material Screw Anchor Screw Anchor Approval ICC-ES ESR-3889 ICC-ES ESR-3027 Issued Nov,2018 Dec,2017 Diameter(in) 0.25 0.25 Embedment,hnom(in) 2.5 2.5 Hmin(in) 4 4.125 Cmin(in) 1.5 1.5 Smin(in) 1.5 1.5 Utilization Tension 25.970% 0 28.710% • Shear 60.390% • 60.390% Q Combination 71.970% Q 74.250" 0 lzoa 900 - ; 900 600 600 300 — 1 300 DEWALT Hilti® DEWALT Hilti® Screw-Bolt+ KH-EZ Screw-Bolt+ KH-EZ Factored Tension Loads Factored Shear Loads Pullout Strength Pullout Strength Concrete Breakout Concrete Breakout Strength Strength 1059.000 lb 958.000 lb 1287.000 lb 1287.000 lb Input data and results must be checked for agreement with the existing conditions,the standards and guidelines and must be checked for plausibility Hilti®is a registered trademark of Hilti Aktiengesellschaft("Hilti AG") Sill Anchor Detail Ref. Sheet No: A3 7ft RwI 24psf• 2 •65in 455 Ibf Rwl V1:= =758.33 Ibf 0.6 1"SCREW BOLT+ MIN.EMBED: 2 451501 MIN.EDGE: 2 4" STEEL CHANNEL,TIGHT FIT 209008 -- - 3�32" 5" D.L.O. 2" DOOR OPENING RICE 105 School Creek Trail Project Description: Job No: 19-10-394 �l Luxemburg,WI 54217 Engineer: GLS Sheet No: A3 ENGINEERING Phone:(920)617-1042 Fax:(920)617-1100 Red Rocks Date: 11019 Rev: www.rice-inc.com Template: Chk By: Date: POWERS Design Assist Ver. 1.4.1.0 Page 1 DEWALT a3 ENGINEERED BY'?OWers" Nov 11 2019 Product Comparison Anchor Image 110111.40114141 - 1: ., w Anchor Name KH-EZ Screw-Bolt+ Anchor Material Carbon Stccl Mcditun Carbon Stccl Mcdium Approval ICC-ES ESR-3027 ICC-ES ESR-3889 Issued December,2017 November,2018 Diameter(in) 0.250 0.250 Emebedment,hef(in) 1.92 1.94 hmin 4.125 4.000 cmin 1.500 1.500 smin 1.500 1.500 Utilization Tension 0.000% 0 0.000% Q Shear 82.534% O 82.534% 0 Combination 82.534% O 82.534% Q mitt, 'ng • c or 'apacities 0.5 • — 1000 - 11 0.4 800 - 0.3 - 600 - 0.2 -- 400 - 0.1 200 0 KH-EZ Screw-Bolt+ KH-EZ Screw-Bolt+ Factored Tension Loads Factored Shear Loads Pullout Strength Pullout Strength Concrete Breakout Concrete Breakout Strength Strength 0.000 lb 0.000 lb 921.000 lb 921.000 lb Input data and results must be checked for agreement with the existing conditions,the standards and guidelines and must be checked for plausibility Hilti®is a registered trademark of Hilti Aktiengesellschaft("Hilti AG") DEWA LT DEWALT Design Assist Ver. 1.4.1.0 Page 1 a3 ENGINEERED BY'?OWerS Nov 11 2019 1. Project Information Company: Project Engineer: gusatve schmoll Address: 105 school creek trail luxemburg wi 54217 Phone: M: 920-617-1071 Email: gus@rice-inc.com Project Name: Untitled Project Address: Untitled Notes: 2. Selected Anchor Information rg, Selected Anchor: KH-EZ Brand: Hilti® a-; -_ti - . .• Material: 1/4"0 Medium Carbon Steel Embedment: hef 1.92 in hnotn 2.5 in Approval: ICC-ES ESR-3027 Issued I Revision: Dec,2017 Jun,2018 Drill Method: Hammer Drilled 3.Design Principles Design Method: ACI 318-14 Load Combinations: Section 5.3 User Defined Loads 4. Base Material Information Concrete: Type Cracked Normal Weight Concrete Strength 4000 psi Reinforcement: Edge Reinforcement None or<#4 Rebar Spacing Tension No(Condition B) Shear No(Condition B) Controls Breakout Tension False Shear False Base Plate: Sizing Thickness 0.25 in Length 4 in Width 3 in Standoff None Height 0 in Strength 36000 psi Profile: None Input data and results must be checked for agreement with the existing conditions,the standards and guidelines and must be checked for plausibility Hiltie is a registered trademark of Hilti Aktiengesellschaft("Hilti AG") DEWALT Design Assist Ver.1.4.1.0 Page 2 DEWALT a3 ENGINEERED BY ?owers Nov 11 2019 5. Geometric Conditions z /° °° a ' 2. � 111rrr��� hmin . min4125 in c 1.500 in ac c ��ll in I.5I)(I in 6.Stgnmary Insults Tension Loading Design Proof Demand (lb) Capacity (lb) Utilization Status Critical Steel Strength 0.00 0.00 0.000 OK Controls Concrete Breakout Strength 0.00 0.00 0.000 OK Shear Loading Design Proof Demand (lb) Capacity (lb) Utilization Status Critical Steel Strength 760.00 930.00 0.817 OK Concrete Breakout Strength 760.00 921.00 0.825 OK Controls Pryout Strength 760.00 1796.00 0.423 OK 7.Warnings and Remarks ANCHOR DESIGN CRITERIA IS SATISFIED CD • The results of the calculations carried out by means of the DDA Software are based essentially on the data you put in.Therefore, you bear the sole responsibility for the absence of errors,the completeness and the relevance of the data to be put in by you. Moreover,you bear sole responsibility for having the results of the calculation checked and cleared by an design professional/engineer,particularly with regard to compliance with applicable standards,norms and permits,prior to using them for your specific project.The DDA Software serves only as an aid to interpret standards,norms and permits without any guarantee as to the absence of errors,the correctness and the relevance of the results or suitability for a specific application. • Hilti®is a registered trademark of Hilti Aktiengesellschaft("Hilti AG"). The Hilti®products shown in this software are displayed solely for comparative advertising purposes. Hilti AG has not reviewed,approved,or endorsed the use of the Hilti® products or trademarks in this software and is in no way affiliated with Licensor. The DDA Software uses only publicly available Hilti®product data in calculations associated with those Hilti®products. Input data and results must be checked for agreement with the existing conditions,the standards and guidelines and must be checked for plausibility Hilti®is a registered trademark of Hilti Aktiengesellschaft("Hilti AG") DEWALT Design Assist Ver. 1.4.1.0 Page 3 DEWALT a3 ENGINEERED BY•TOWerS Nov I 12019 8. Load Conditions II Mak Design Loads/Actions Z Nu 0 lb Vux 760 lb Vuy 0 lb 4 N Y Muz 0 in-lb Mux 0 in-lb Muy 0 in-lb 15uMw �r �v Consider Load Reversal X Direction 0% Y Direction 0% —,m I , IG i Mw.`�,, V,� X 9. Load Distribution Max.concrete compressive strain: 0.000 "'. Anchor Eccentricity Max.concrete compressive stress: 0.000 psi ex 0 in ey 0 in Resulting anchor forces/Load distribution Anchor Tension Load (Ib) Shear Load (lb) Component Shear Load (Ib) Anchor Coordinates (in) Shear X Shear Y X Y 1 0.00 760.0 760.0 0.0 0.000 0.000 Input data and results must be checked for agreement with the existing conditions,the standards and guidelines and must be checked for plausibility Hilti®is a registered trademark of Hilti Aktiengesellschaft("Hilti AG") D EWA LT DEWALT Design Assist Ver.1.4.1.0 Page 1 a3 ENGINEERED BY110WerS Nov 11 2019 1. Project Information Company: Project Engineer: gusatve schmoll Address: 105 school creek trail luxemburg wi 54217 Phone: M:920-617-1071 Email: gus@rice-inc.com Project Name: Untitled Project Address: Untitled Notes: 2.Selected Anchor Information Selected Anchor: Screw-Bolt+ Brand: DEWALT •' Material: Embedment: hef 1.92 in hnom 2.5 in Approval: ICC-ES ESR-3889 Issued I Revision: Nov,2018 - Drill Method: Hammer Drilled 3.Design Principles Design Method: ACI 318-14 Load Combinations: Section 5.3 User Defined Loads 4.Base Material Information Concrete: Type Cracked Normal Weight Concrete Strength 4000 psi Reinforcement: Edge Reinforcement None or<#4 Rebar Spacing Tension No(Condition B) Shear No(Condition B) Controls Breakout Tension False Shear False Base Plate: Sizing Thickness 0.25 in Length 4 in Width 3 in Standoff None Height 0 in Strength 36000 psi Profile: None Input data and results must be checked for agreement with the existing conditions,the standards and guidelines and must be checked for plausibility • D EWALT DEWALT Design Assist Ver. 1.4.1.0 Page 2 a3 ENGINEERED BY ?owers Nov 11 2019 5. Geometric Conditions z /0 0° 0 110 Y 8 ' to* 10 i hm1, 4.000 n emir, 1.500 in c 6.100 in smin 1.500 in 6.Summary Results Tension Loading Design Proof Demand (lb) Capacity (lb) Utilization Status Critical Steel Strength 0.00 0.00 0.000 OK Controls Concrete Breakout Strength 0.00 0.00 0.000 OK Shear Loading Design Proof Demand (lb) Capacity (lb) Utilization Status Critical Steel Strength 760.00 1224.00 0.621 OK Concrete Breakout Strength 760.00 921.00 0.825 OK Controls Pryout Strength 760.00 1810.00 0.420 OK 7.Warnings and Remarks ANCHOR DESIGN CRITERIA IS NOT SATISFIED 0 • The results of the calculations carried out by means of the DDA Software are based essentially on the data you put in.Therefore, you bear the sole responsibility for the absence of errors,the completeness and the relevance of the data to be put in by you. Moreover,you bear sole responsibility for having the results of the calculation checked and cleared by an design professional/engineer,particularly with regard to compliance with applicable standards,norms and permits,prior to using them for your specific project.The DDA Software serves only as an aid to interpret standards,norms and permits without any guarantee as to the absence of errors,the correctness and the relevance of the results or suitability for a specific application. Input data and results must be checked for agreement with the existing conditions,the standards and guidelines and must be checked for plausibility DEWALT Design Assist Ver. 1.4.1.0 Page 3 DEWALT a3 ENGINEERED BY lowers Nov 11 2019 8. Load Conditions • Design Loads/Actions Z Nu 0 lb Vux 760 lb Vuy 0 lb 4 N� Y Muz 0 in-lb Mux 0 in-lb Muy 0 in-lb �Mw 1114 Consider Load Reversal X Direction 0% Y Direction 0% M 9.Load DifiFib i• . ., ,.,.,. Max.concrete compressive strain: 0.000 % Anchor Eccentricity Max.concrete compressive stress: 0.000 psi ex 0 in ey 0 in Resulting anchor forces/Load distribution Anchor Tension Load (lb) Shear Load (lb) Component Shear Load (lb) Anchor Coordinates(in) Shear X Shear Y X Y 1 0.00 760.0 760.0 0.0 0.000 0.000 Input data and results must be checked for agreement with the existing conditions,the standards and guidelines and must be checked for plausibility i s1:= 18in Detail Ref. Sheet No: Jamb Anchor A4 104 in Rw1:= 24psf• 2 •s1=156 lbf V 1:= Rwl= 1561bf 1.5in T1 := V1• = 156 Ibf 1.5in Tall1 270Ibf Vall1 2141bf 2 Ti 2 L j � Valli + Ta 11 � =0.87 b1dt M. • FULL BEARING SHIM 1"WOOD SCREWS AT 16"O.C.AND AT EACH END t 2"PENETRATION _ 5 MIN.EDGE: 1" 45fTCGWt WPO FE; _ 1 - _ < , , I 2" D.L.O. RICE 105 School Creek Trail Project Description: Job No: 19-10-394 1. Luxemburg,WI 54217 Engineer: GLS Sheet No: A4 ENGINEERING Phone:(920)617-1042 - Fax:(920)617-1100 Red Rocks Date: 11/8/19 Rev: www.rice-inc.com Template: Chk By: Date: Jamb Anchor Detail Ref. Sheet No: A5 s1 :- 12in 104in RNA:-24psf- 2 -si- 104 lbf Vi :-Rwi- 1041bf 1.375in 1.45-0.09in'1 1 Ti :-V1. - 1431bf Tpullover .27- 1.0.25in•.09in•25000psi'—- 148.5lbf tin 0.25in / 3 Taw 2701bf Valli :-2141bf COORDtN' " a.IAW:N W1;�.,....:'. 2 ( t2 � r . i 1 -0.52 FULL BEARING SHIM 451501 4"WOOD SCREWS AT 12"O.C.AND AT EACH END I 2"PENETRATION MIN.EDGE: 1" lIj A 156* „p„„-7( I I %2" 1..* I J - - D ICE 105 School Creek Trail Project Description: Job No: 19 10 394 1�11 Luxemburg,WI 54217 Engineer: GLS Sheet No: A5 ENGINEERING Phone:(920)617-1042 Fax:(920)617-1100 Red Rocks Date: 11/8/19 Rev: www.rice-inc.com Template: Chk By: Date: er Prepared by: REI Inc page 1/4 Date : 11-08-2019 / 14:10:52 ShaPe Desigfl ls,"" . . Approved by: Multi protect .' �.• Note: i my i-•,ccuu Ilcrr_ed to rJr_e r rguueer u1 q E F L_ E Project 451-501 451-501 MOD 451CG001 '451-019 451-019 MOD Width +2.5 in +2.in +2. in +2.in +2.in Height +4.5 in +4.5 in +4.5 in +4.5 in +4.5 in Area +1.319 inA2 +1.107 inA2 +1.075 inA2 +1.315 inA2 +1.105 inA2 Transf.Area +1.32 inA2 +1.107 inA2 +1.075 inA2 +1.315 inA2 +1.105 inA2 Mass/L +0.375 lb/in +0.314 Pb!in +0.305 lb/in +0.374 lb/in +0.314 Pb!in Xc +0.in +0.in +0.in +0. in +0.in Yc +0. in +0.in +0.in +0.in +0.in Torsion&Shear J(Torsion) +1.075 inA4 +0.003 in"4 +0.003 inA4 +1.154 inA4 +0.003 inA4 Cw(Warping) +1.375 in"6 +5.511 inA6 +2.638 inA6 +1.424 in"6 +5.464 in"6 Xs(Shear) +0.666 in -1.322 in +0.713 in +0.699 in -1.319 in Ys(Shear) -0.009 in +0. in +0.028 in +0.in +0.001 in Ax +0.484 inA2 +0.476 inA2 +0.578 inA2 +0.484 inA2 +0.476 inA2 Kx +0.367 +0.43 +0.538 +0.368 +0.431 Ay +0.484 inA2 +0.476 inA2 +0.579 inA2 +0.484 inA2 +0.476 inA2 Ky +0.367 +0.43 +0.538 +0.368 +0.431 Centroid Axes lx +2.986 inA4 +2.958 inA4 +2.713 inA4 +3.116 inA4 +2.957 inA4 ly +0.814 inM +0.602 In"4 +0.446 in"4 +0.764 inA4 +0.601 inA4 Ixy -0.014 inA4 +0. inA4 +0.008 inA4 +0.inA4 +0. inA4 to +3.799 inA4 +3.561 inA4 +3.159 in"4 +3.88 inA4 +3.558 inA4 rx +1.504 in +1.635 in +1.589 in +1.539 in +1.636 in ry +0.785 in +0.738 in +0.644 in +0.762 in +0.737 in ro +1.697 in +1,794 in +1.714 in +1.718 in +1.795 in Y top +2.26 in +2.25 in +2.265 in +2.25 in +2.25 in Y bot +2.24 in +2.25 in +2.235 in +2.25 in +2.25 in Sx top +1.321 inA3 +1.315 inA3 +1.198 inA3 +1.385 inA3 +1.314 inA3 Sx bot +1.333 inA3 +1.315 inA3 +1.214 inA3 +1.385 inA3 +1.314 inA3 X right +1.342 in +1.015 in +0.769 in +0.944 in +1.017 in X left +1.158 in +0.985 in +1.231 in +1.056 in +0.983 in Sy right +0.606 in"3 +0.593 inA3 +0.58 inA3 +0.809 in"3 +0.591 inA3 Sy left +0.703 inA3 +0.612 inA3 +0.363 inA3 +0.724 inA3 +0.611 inA3 Zpx +1.716 inA3 +1.659 inA3 +1.526 inA3 +1.796 inA3 +1.657 inA3 Zpy +0.932 in"3 +0.715 inA3 +0.603 inA3 +0.892 in"3 +0.713 in"3 Max Mx +79277.lb.in +78888.lb.in +71855.lb.in +83102.lb.in +78857.Ib.in Max My +36367.lb.in +35604.lb.in +21755.lb.in +43428.lb.in +35450.lb.in Mpx +102970.lb.in +99507.Ib.in +91568.lb.in +107730.lb.in +99416.Ib.in Mpy +55920.lb.in +42881.lb.in +36202.lb.in +53504.Ib.in +42778.lb.in SFx +1.299 +1.261 +1.274 +1.296 +1.261 SFy +1.538 +1.204 +1.664 +1.232 +1.207 (J «CaO'C 0�[ Tr _Tcort. C oO - SAS Prepared by: REI Inc page Sin Date 11-08-2019 / 14:10:53 SbapeDesigIieIh Approved by: Multi project V2018.1 . 0 MechaTock 'vchnologies Inc 2019 PP Note: This Product is licenced to : Rice Engineering l 'Project 451CG002 451-CG-001A+451-CG- Width +0.58 in +2.in Height +3.59 in +4.5 in Area +0.448 inA2 +1.804 inA2 Transf.Area +0.448 inA2 +1.804 inA2 Mass/L +0.127 lb/in +0.512 lb/in Xc +0.in +0.in Yc +0.in +0.in Torsion&Shear J(Torsion) +0.001 inA4 +0.888 inA4 Cw(Warping) +0.017 inA6 +2.816 inA6 Xs(Shear) -0.344 in +0.313 in Ys(Shear) +0.in +0.011 in Ax +0.19 inA2 +1.026 inA2 Kx +0.423 +0.569 Ay +0.19 inA2 +1.026 inA2 Ky +0.423 +0.569 Centroid Axes lx +0.526 inA4 +4.514 inA4 ly +0.019 inA4 +0.843 inA4 Ixy +0.inA4 -0.003 inA4 to +0.546 in^4 +5.357 inA4 rx +1.084 in +1.582 in ry +0.208 in +0.683 in ro +1.104 in +1.723 in Y top +1.795 in +2.259 in Y bot +1.795 in +2.241 in Sx top +0.293 inA3 +1.998 inA3 Sx bot +0.293 inA3 +2.014 inA3 X right +0.263 in +0.954 in X left +0.317 in +1.046 in Sy right +0.074 inA3 +0.884 inA3 Sy left +0.061 inA3 +0.806 inA3 Zpx +0.435 inA3 +2.56 inA3 Zpy +0.083 inA3 +1.081 inA3 Max Mx +17589.Ib.in +119900.lb.in Max My +3665.5 lb.in +48333.lb.in Mpx +26105.lb.in +153630.Ib.in Mpy +5003.6 lb.in +64875.lb.in SFx +1.484 +1.281 SFy +1.365 +1.342 Dowel Type Fastener Capacity(NDS 2012) Detail Ref. Sheet No: Fastener Values Vpos:= 251 Ibf Vneg := 251 Ibf F 1 Spruce Pine-Fir .I G=0.42 Tpos 1816 Ibf Tneg := 1816•Ibf p:= 1.5 penetration,in tshim 0 mapmum thickness of shim,in #12 Woodscrew Cut Threads .I CD:= 1.6 load duration factor,103.2 Irn := p thickness of main member,in CM:= 1.0 wet service factor,103.3 Is:= 0.1 thickness of side member,n Ct:= 1.0 temperature factor,10.34 I6063-T6 Hole Cg:= 1.0 group action factor,103.6 Fyb=80000 bending yield strength,psi. CA:= 1.0 geometryfactor,11.5.1 D=0.216 unthreaded shank diameter of screw,in. Ceg:= 1.0 end grain factor,11.52 Dr=0.17 root diameter of screw Cdi:= 1.0 diaphragm factor,11.5.3 39000 Fes=31000 bearing strength,psi 0:= 90 angle of Shear load to grain,degree G=0.42 Material ="Spruce Pine-Fir" lealculations 0 Fern lm KD:= 2.2 if Dr<_0.17 =2.21 Ke:= 1 +0.25•90 =1.25 Re:= Fes Is Rt:= l =15 es s otherwise I 10Dr +0.5 if 0.17 <Dr50.25 1Re +2,Re2(1 +Rt+Rt2\1 +Rt2 .Re3-Re-(1 +Rt) k1:= 1 +Re =0.66 0 otherwise Rd1 := J4.0.KO KD if Dr<_0.25 =2.21 2-Fyb•(1 +2 Re)-Dr2 =0.57 if 0.25 <Dr 51 otherwise k2:_-1 + 2�1 +Re) + 3•Fem•lm 2 Rd2:= KD if Dr 5 0.25 =2.21 2.(1 +Re) 2 Fyb(2 +Re)Dr2 3.6 Ke if 0.25 <Dr 51 otherwise k3:=-1 + + Re 2 Rd3:= KD if Dr<0.25 =2.21 3 Fem•is 3.2•Ke if 0.25 <Dr<_ 1 otherwise Drlm•Fern pr is Fes k1 Drls•Fes k2Drlm•Fern Zlm:= Rd1 =390.46 ZIs:= Rd1 =239.86 ZII:= Rd2 =157.51 Zlllm 1 +2 =183.17 Re�•Rd3 k3 Dr ls.Fern Dr2 . 12 Fem•Fyb Zllls l2 +Re) Rd3 - 121.86 ZIV:=Rd3 13 1 +Re) =168.33 Z1 := min(Zlm,ZIs,Zll,ZIIIm,ZIIIs,ZIV)=121.86 V Rpos J Tpos2 +Vpos2= 1833.26 Ibf Rneg J Tneg 2 +Vneg 2= 1833.26 lbf W1=108.59 ( -1� ( -1� apos:= atan Tpos•Vpos i=82.13 deg aneg:= atan Tneg•Vneg i=82.13 de Results Z':= Z1•CD CM•Ct-Cg•CA•Ceg Cdi•lbf =195 lbf Allowable Shear W':= W 1•CD•CM Ct•Ceg•Pten•lbf =183 Ibf Allowable Tension Fastener="Woodscrew" Predrill="Predrill Not Required" w.Z' Rpos Penetration="Verify Blocking Thickness" Zapos =183.68 lbf Intpos:_ =9.98 W (cos(apos))2 +Z'(sin(apos))2 Zapos Material="Spruce Pine-Fir" W'Z' Rneg := Zaneg2 2 =183.68 Ibf Intneg:_ =9.98 W'(cos(aneg)� +Z'(sin(aneg)) Zaneg D RICE 105 School Creek Trail Project Description: Job No: 19-10-394 l�L l.l: Luxemburg,WI 54217 Engineer: GLS Sheet No: F1 ENGINEERING Phone:(920)617-1042 Fax:(920)617-1100 Red Rocks Date: 11/8/19 Rev: Template: REI-MC-7602 www.rice-inc.com Chk By: Date: Dowel Type Fastener Capacity(NDS 2012) Vpos:=251•Ibf Vneg=251 Ibf ISpruce Pine-Fir . G=0.42 Tpos= 1816 Ibf Tneg:= 1816-Ibf p:=2 penetration,in tshim 0 maximum thickness of shim,in #14 Woodscrew Cut Threads CD:=1.6 load duration factor,10.3.2 Im:=p thickness of main member,in CM:= 1.0 vet service factor,103.3 Is 0.1 thickness of side member,n Ct:= 1.0 temperature factor,10.34 6063-T6 Hole y I C9:= 1.0 group action factor,103.6 Fyb=70000 bending yield strength,psi. CA:=1.0 geometry factor,11.5.1 D=0.242 unthreaded shank diameter of screw,in. Ceg:= 1.0 end grain factor,11.52 Dr=0.2 root diameter of screw Cdi:=1.0 diaphragm factor,11.5.3 39000 Fes=31000 bearing strength,psi B:=90 angle of Shear load to grain,degree G=0.42 Material="Spruce Pine-Fir" alculations 0 Fern Im KD:= 2.2 if Dr<-0.17 =2.46 Kg:=1 +0.25-90 = 1.25 Re:= =0.11 Rt:= =20 Fes Is otherwise 2 2� 2 3 10Dr+0.5 if 0.17<Dr<_0.25 Re+2Re 1 +Rt+Rt )+Rt �Re -ReII1 +Rt k1 :_ =0.87 0 otherwise 1 +Re l Rd1 := KD if Dr<0.25 =2.46 I 2 Fyb•(1 +2 Re).Dr2 4.0 Ky if 0.25<Dr s 1 otherwise k2:=-1 +1 2-(1 +Re)+ 2 =0.54 3 Fem•lm Rd2:= KD if Dr 5 0.25 =2.46 2.(1 +Re) 2 Fyb-(2+Re)Dr 2 3.6 Ky if 0.25<Dr<- 1 otherwise k3:_-1 + I + J Re1 Fem•Is2 Rd3:= KD if Dr<-0.25 =2.46 3.2 Kd if 0.25<Dr<_ 1 otherwise Drim.Fern Drls-Fes k1 Dr Is-Fes k2 Drlm•Fem ZIm:= Rd1 =536.09 Zls:= Rd1 =246.99 ZI1:= Rd2 =215.45 ZIIIm= �1 +2Re�•Rd3 =238.95 k3•Drls Fem -133.78 ZIV:= Dr2 12 Fem.Fyb =185.85 Zllls= -+Re)•Rd3 Rd3 � 3�11 +Re) Z1 :=min(Zlm,ZIs,Z11,Z111m.Z111s,ZIV)=133.78 I T 2+V 2=1833.261bf R T 2+V 2=1833.261bf Roos V pos posneg q neg neg Wi = 121.66 apOS:=atan(Tpos Vpos 1)=82.13-deg aneg:=atan(Tneg Vneg-1)=82.13-deg Results Z'=Z1 CD CM Ct.Cg CP•Ceg.Cdi-lbf=2141bf AlowableShear W':=W1 CD CM'Ct Ceg Pten•lbf=2701bf Allowable Tension Fastener="Woodscrew" Predrill="Predrill Not Required" Zpos R Penetration="Verify Blocking Thickness" Zapos 22 =268.49lbf Intpos:= =6.83 W'�cos(apos)) +Z'.(sin(apos)) Zapos Material="Spruce Pine-Fir" Rneg Zaneg= 2 Z 2 =268.49Ibf Intneg:_ =6.83 +Z'�sin�aneg�� ne9 W•(cos(aneg�� D (E 105 School Creek Trail Project Description: Job No: 19-10-394 LPL Luxemburg,WI 54217 Engineer: GLS Sheet No: F2 ENGINEERING Phone:(920)617-1042 Fax:(920)617-1100 Red Rocks Date: 11/8/19 Rev: www.rice-inc.com REI-MC-7602 .rice inc.com Chk By: Date: I .G f— L,(UdIIIILdlIVII WI II IJIdIICI <KAWNEER Date: 11/7/2019 Customer: BCB GENERAL CONTRACTING INC DBA AMBROSE 20310 SE TICKLE CREEK RD BORING OR, 97009 RE: Red Rock Creek Commons To Whom It May Concern: This letter is to confirm that BCB GENERAL CONTRACTING INC DBA AMBROSE, is a Kawneer customer. (BCB GENERAL CONTRACTING INC DBA AMBROSE has purchased architectural products and systems from Kawneer and has been a customer since 1/29/2018 ). Fabrication and installation instructions for Kawneer systems are available to Kawneer customers. Installation and fabrication training classes are available to the employees of Kawneer customers. Kawneer is not an installer and does not approve or certify its customers or any other parties as installers and does not approve or certify installations. It is the customer's responsibility to ensure the Kawneer products and systems are fabricated and installed properly by customer's employees or subcontractors in accordance with Kawneer s published installation instructions. Refer to Kawneer Standard Warranty Terms and Conditions of sale for details. Kawneer Company, Inc. disclaims all liabilities for, and is not responsible or liable for any damages or costs that may result from improper installation of its products. Kawneer Company, Inc. Ad Andy Nag Director, Customer Operations Page 1 of 1 l l tntertek 2696 95438-154 Total Quality.Assured. INC .KAWNEER COMPANY/ REpoR.0 SCOPE OF WORK AAMA 501 TESTING ON: TRIFABTM VERSAGLAZETM 451/451T FRAMING [SS/C OG-SU/IG SEALANT&GASKET SILL FLASHING] REPORT NUMBER H8251.07-550-47 R2 TEST DATE(S) 05/01/18 - 05/23/18 ISSUE DATE REVISION DATE 11/30/18 02/19/19 PAGES 17 DOCUMENT CONTROL NUMBER ATI 00506 (07/24/17) RT-R-AMER-Test-2809 © 2017 INTERTEK t1tc? ( 1701 Westfork Drive,Suite 106 Lithia Springs,Georgia 30122 Total Quality.Assured. Telephone: 770-941-6916 Facsimile: 717-764-4129 www.intertek.com/building TEST REPORT FOR KAWNEER Report No.: H8251.07-550-47 R2 Date: 02/19/18 RFPORT Isct IFn TO KAWNEER COMPANY, INC. 555 Guthridge Court Norcross, GA 30092 SCOPE Intertek Building & Construction (B&C) was contracted by Kawneer (Norcross, GA) to perform testing in accordance with AAMA 501-15 - Methods of Test for Exterior Walls on their TrifabTM VersaGlazeTM 451/451T Framing System [SS/C OG-SU/IG Sealant & Gasket Sill Flashing]. Results obtained are tested values and were secured by using the designated test method(s). Testing was conducted at Kawneer test facility in Norcross, GA. This report does not constitute certification of this product nor an opinion or endorsement by this laboratory. crcrir N SUMMARY OF TEST RESULTS TITLE RESULTS Design Pressure ±1676 Pa (±35.00 psf) Air Infiltration 0.15 L/s/m2 (0.03 cfm/ft2) Water Penetration Resistance Test Pressure 500 Pa (10.44 psf) For INTERTEK B&C: COMPLETED BY: Ryan K. Hedgepeth, E.I.T. REVIEWED BY: Ian McKenzie TITLE: Project Engineer TITLE: Regional Manager SIGNATURE: SIGNATURE: �,,, . � 1/4/ DATE: 02/19/19 DATE: 02/19/19 RKH:JAB This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement.Intertek assumes no liability to any party, other than to the Client in accordance with the agreement,for any loss,expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material,product or service must first be approved in writing by Intertek.The observations and test results in this report are relevant only to the sample(s)tested.This report by itself does not imply that the material,product,or service is or has ever been under an Intertek certification program. Version:07/24/17 Page 2 of 17 RT-R-AMER-Test-2809 In tertc k 1701 Westfork Drive,Suite 106 Lithia Springs,Georgia 30122 Total Quality.Assured. Telephone: 770-941-6916 Facsimile: 717-764-4129 www.intertek.com/building TEST REPORT FOR KAWNEER Report No.: H8251.07-550-47 R2 Date:02/19/18 GFr'Tlnrtl / TEST METHOD(S) The specimens were evaluated in accordance with the following: AAMA 501-15,Methods of Test for Exterior Walls AAMA 501.4-09, Recommended Static Testing Method for Evaluating Curtain Wall and Storefront Systems Subjected to Seismic and Wind Induced Interstory Drift AAM 501.5-07, Test Method of Thermal Cycling of Exterior Walls ASTM E283-04(2012), Standard Test Method for Determining Rate of Air Leakage Through Exterior Windows, Curtain Walls, and Doors Under Specified Pressure Differences Across the Specimen ASTM E330/E330M-14, Standard Test Method for Structural Performance of Exterior Windows, Doors,Skylights and Curtain Walls by Uniform Static Air Pressure Difference ASTM E331-00(2016), Standard Test Method for Water Penetration of Exterior Windows, Skylights, Doors, and Curtain Walls by Uniform Static Air Pressure Difference ASTM E547-00(2016), Standard Test Method for Water Penetration of Exterior Windows, Skylights, Doors, and Curtain Walls by Cyclic Static Air Pressure Difference SFC'TION 1 MATERIAL SOURCE/INSTALLATION Test specimen was provided by the client. Representative samples of the test specimen(s) will be retained by Intertek B&C for a minimum of two years from the test completion date. The specimen was installed into a 2x12 double wood buck. The rough opening allowed for 3/8" shim space. The interior and exterior perimeter of the unit was sealed with sealant. Installation of the tested product was performed by the client. LOCATION ANCHOR DESCRIPTION ANCHOR LOCATION Head #12 x 2-3/4" FH Wood Screw SS 6" from each vertical member Jambs #12 x 2-3/4" FH Wood Screw SS 6" from each horizontal member Sill #12 x 2" FH Wood Screw SS 6" from each vertical member Version:07/24/17 Page 3 of 17 RT-R-AMER-Test-2809 to tertek 1701 Westfork Drive,Suite 106 Lithia Springs,Georgia 30122 Total Quality.Assured. Telephone: 770-941-6916 Facsimile: 717-764-4129 www.intertek.com/building TEST REPORT FOR KAWNEER Report No.: H8251.07-550-47 R2 Date: 02/19/18 t-rr'T!r%!%! LIST OF OFFICIAL OBSERVERS NAME COMPANY Chris Stephens The Kawneer Company, Inc. Matt Souerwine The Kawneer Company, Inc. Ryan Hedgepeth Intertek B&C SECTION TEST SPECIMEN DESCRIPTION Product Type: Storefront Series/Model: TrifabTM VersaGlazeTM 451/451T Framing System [SS/C OG-SU/IG Sealant &Gasket Sill Flashing] Product Size(s): Test Specimen #7 OVERALL AREA: WIDTH HEIGHT 1111 5.9 m2 (64.0 ft2) millimeters inches millimeters inches Overall Size 2438 96 2438 96 Frame Construction: FRAME MEMBER MATERIAL DESCRIPTION Head (Outside glazed) Aluminum Thermally broken aluminum alloy (Part#451TCG001) Head (Inside glazed) Aluminum Thermally broken aluminum alloy (Part#451TCG003) Horizontal Aluminum Thermally broken aluminum alloy (Part#451TCG011) Sill Aluminum Thermally broken aluminum alloy (Part#451TCG014) Jambs Aluminum Thermally broken aluminum alloy (Part#451TCG001) Mullion Aluminum Thermally broken aluminum alloy (Part#451TCG001) JOINERY DETAIL oilTYPE All Corners Mechanical Butted and mechanically fastened with two (2) #12 x 1-1/8" pan head screws. Sealant applied over joints. Reinforcement: No reinforcement was utilized. Version:07/24/17 Page 4 of 17 RT-R-AMER-Test-2809 to torte k 1701 Westfork Drive,Suite 106 Lithia Springs,Georgia 30122 Total Quality.Assured. Telephone: 770-941-6916 Facsimile: 717-764-4129 www.intertek.com/building TEST REPORT FOR KAWNEER Report No.: H8251.07-550-47 R2 Date: 02/19/18 Weatherstripping: No weatherstripping was utilized. Glazing: No conclusions of any kind regarding the adequacy or inadequacy of the glass in any glazed test specimen(s)can be made. GLASS SPACER TYPE INTERIOR LITE EXTERIOR LITE GLAZING METHOD TYPE 1/2" Single „ Interior/Exterior: Wedge 1 IG Sealed Aluminum 1/4 Tempered 1/4 Tempered gasket(Part#027074) LOCATION QUANTITY DAYLIGHT OPENING GLASS BITE millimeters inches All lites 4 1143 x 1143 45 x 45 3/8 Drainage: DRAINAGE METHOD SIZE QUANTITY LOCATION Weepholes 5/16"dia. 4 2 per DLO at 1/4 points on sill Hardware: No hardware was utilized. Version:07/24/17 Page 5 of 17 RT-R-AMER-Test-2809 in tertek 1701 Westfork Drive,Suite 106 Lithia Springs,Georgia 30122 Total Quality.Assured. Telephone: 770-941-6916 Facsimile: 717-764-4129 www.intertek.com/building TEST REPORT FOR KAWNEER Report No.: H8251.07-550-47 R2 Date: 02/19/18 cFrrinN TEST RESULTS The temperature during testing was 23°C (74°F). The results are tabulated as follows: TITLE OF TEST RESULTS ALLOWED NOTE Preload at 50% of positive design wind pressure per ASTM E330 Air Leakage, Infiltration per ASTM E283 0.15 L/s/m2 0.30 L/s/m2 at 75 Pa (1.57 psf) (0.03 cfm/ft2) (0.06 cfm/ft2) max. 1,2 Air Leakage, Exfiltration per ASTM E283 <0.05 L/s/m2 0.30 L/s/m2 at 75 Pa (1.57 psf) (<0.01 cfm/ft2) (0.06 cfm/ft2) max. 1 Water Penetration, per ASTM E547 and ASTM E331 No leakage per AAMA at S00 Pa (10.44 psf) No leakage 501.1 Section 6.7 Seismic Racking, per AAMA 501.4 No glass breakage No glass breakage at 1.0%x L(+/- 0.96") Air Leakage, Infiltration per ASTM E283 0.15 L/s/m2 0.30 L/s/m2 at 75 Pa (1.57 psf) (0.03 cfm/ft2) (0.06 cfm/ft2) max. 1 Water Penetration, per ASTM E331 No leakage per AAMA at 500 Pa (10.44 psf) No leakage 501.1 Section 6.7 Thermal Cycling, per AAMA 501.5 Completed 5/5/18. See Chart 1 for Data six cycles from 0°F to 180°F Air Leakage, Infiltration per ASTM E283 0.15 L/s/m2 0.30 L/s/m2 at 75 Pa (1.57 psf) (0.03 cfm/ft2) (0.06 cfm/ft2) max. 1 Water Penetration, per ASTM E331 No leakage per AAMA at 500 Pa (10.44 psf) No leakage 501.1 Section 6.7 Uniform Load Deflection, per ASTM E330 Deflections taken at mullion +1676 Pa (+35.00 psf) 11 mm (0.43") 14 mm (0.55") max. -1676 Pa (-35.00 psf) 10 mm (0.41") 14 mm (0.55") max. 3,4 Version:07/24/17 Page 6 of 17 RT-R-AMER-Test-2809 to tort?k 1701 Westfork Drive,Suite 106 Lithia Springs,Georgia 30122 Total Quality.Assured. Telephone: 770-941-6916 Facsimile: 717-764-4129 www.intertek.com/building TEST REPORT FOR KAWNEER Report No.: H8251.07-550-47 R2 Date: 02/19/18 TITLE OF TEST RESULTS ALLOWED NOTE Uniform Load Deflection, per ASTM E330 Deflections taken at horizontal divider +1676 Pa (+35.00 psf) 1.3 mm (0.05") 6.5 mm (0.26") max. -1676 Pa (-35.00 psf) 0.3 mm (0.01") 6.5 mm (0.26") max. 3,4 Air Leakage, Infiltration per ASTM E283 0.15 L/s/m2 0.30 L/s/m2 at 75 Pa (1.57 psf) (0.03 cfm/ft2) (0.06 cfm/ft2) max. 1 Water Penetration, per ASTM E331 Less than 15 mL No leakage per AAMA at 500 Pa (10.44 psf) (1/2 oz.) - Pass 501.1 Section 6.7 Interior perimeter seal was applied on 5/16/18 Air Leakage, Infiltration per ASTM E283 0.05 L/s/m2 0.30 L/s/m2 at 75 Pa (1.57 psf) (0.01 cfm/ft2) (0.06 cfm/ft2) max. 1 Air Leakage, Infiltration per ASTM E283 0.20 L/s/m2 0.30 L/s/m2 at 300 Pa (6.24 psf) (0.04 cfm/ft2) (0.06 cfm/ft2) max. 1 Air Leakage, Exfiltration per ASTM E283 0.10 L/s/m2 0.30 L/s/m2 at 75 Pa (1.57 psf) (0.02 cfm/ft2) (0.06 cfm/ft2) max. 1 Air Leakage, Exfiltration per ASTM E283 0.15 L/s/m2 0.30 L/s/m2 at 300 Pa (6.24 psf) (0.03 cfm/ft2) (0.06 cfm/ft2) max. 1 Water Penetration, per ASTM E331 at 500 Pa (10.44 No leakage per AAMA psf) No leakage 501.1 Section 6.7 Uniform Load Structural, per ASTM E330 Permanent set taken at mullion +2514 Pa (+52.50 psf) <0.3 mm (<0.01") 4.9 mm (0.19") max. -2514 Pa (-52.50 psf) <0.3 mm (<0.01") 4.9 mm (0.19") max. 3,4 Uniform Load Structural, per ASTM E330 Permanent set taken at horizontal divider +2514 Pa (+52.50 psf) <0.3 mm (<0.01") 2.3 mm (0.09") max. -2514 Pa (-52.50 psf) <0.3 mm (<0.01") 2.3 mm (0.09") max. 3,4 Version:07/24/17 Page 7 of 17 RT-R-AMER-Test-2809 1tIr'Ic? k 1701 Westfork Drive,Suite 106 Lithia Springs,Georgia 30122 Total Quality.Assured. Telephone: 770-941-6916 Facsimile: 717-764-4129 www.intertek.com/building TEST REPORT FOR KAWNEER Report No.: H8251.07-550-47 R2 Date:02/19/18 S Fr T'r?nl 10 CHART(S) Chart 1 Thermal Cyclic Data (Performed in Accordance with AAMA 501.5) 250 --�—PV 1 200 ff ` ` -4-TH1 —1—SP1 150 0 -i—PV3 .1.) 100 —TH3 ra 50 --�-SP3 MON1 ~ - I _ — —MON2 0 .• �� I ` .000 sot' 5.. ` 30000 — —MON 3 -50 Y r —IP— -100 Time(s) fMON7 Version:07/24/17 Page 9 of 17 RT-R-AMER-Test-2809 111 tt1t ?k 1701 Westfork Drive,Suite 106 Lithia Springs,Georgia 30122 Total Quality.Assured. Telephone: 770-941-6916 Facsimile: 717-764-4129 www.intertek.com/building TEST REPORT FOR KAWNEER Report No.: H8251.07-550-47 R2 Date: 02/19/18 Seismic Racking, per AAMA 501.4 at 1.5%x L(+/- 1.44") No glass breakage No glass breakage Note 1: The tested specimen meets (or exceeds) the performance levels specified in AAMA/WDMA/CSA 101/1.5.2/A440 for air leakage resistance. Note 2: Test Date 05/01/18/Time: 10:26 AM (Air Note Only) Note 3: Loads were held for 30 seconds. Note 4: Tape and film were not used to seal against air leakage during structural testing. ALTERATIONS Alteration#1: Date-05/09/18 Cause for alteration—Failed water penetration Remedial action taken—Resealed perimeter Alteration#2: Date-05/09/18 Cause for alteration—Failed water penetration Remedial action taken—Resealed perimeter SECTION 9 CONCLUSION The specimen tested successfully met the performance requirements for AAMA 501-15. The 451T model was tested and is reported herein. The non-thermal model 451, is also grouped herein, but was not tested. The only difference between the two models is the thermal break in the extrusions. Version:07/24/17 Page 8 of 17 RT-R-AMER-Test-2809 to t?rt?k 1701 Westfork Drive,Suite 106 Lithia Springs,Georgia 30122 Total Quality.Assured. Telephone: 770-941-6916 Facsimile: 717-764-4129 www.intertek.com/building TEST REPORT FOR KAWNEER Report No.: H8251.07-550-47 R2 Date: 02/19/18 ccrTtrmi 11 DOCUMENTATION STATEMENT Intertek-ATI will service this report until 05/23/22. Test records that are retained such as detailed drawings, data sheets, representative samples of test specimens, or other pertinent project documentation will be retained by Intertek-ATI until this date. This report does not constitute certification of this product nor an opinion or endorsement by this laboratory. It is the exclusive property of the client so named herein and relates only to the specimen(s) tested. This report may not be reproduced, except in full, without the written approval of Intertek-ATI. Version:07/24/17 Page 10 of 17 RT-R-AMER-Test-2809 Ln tcrt.k 1701 Westfork Drive,Suite 106 Lithia Springs,Georgia 30122 Total Quality.Assured. Telephone: 770-941-6916 Facsimile: 717-764-4129 www.intertek.com/building TEST REPORT FOR KAWNEER Report No.: H8251.07-550-47 R2 Date: 02/19/18 PHOTOGRAPHS Pi POIlliftorier." 00 74.,.... ....• _.._,... , _ ,, b: . . , _., „,,,, . .._, ‘ _, ... . ,!, Photo No. 1 Unit during uniform static load ii K. —7 . IItJd A . NI w v _ i*,-,4 ' , . , . , , ,,„. . ..„ , „ ,-,s,L k --.... . 1.L• i Photo No. 2 Unit during air infiltration Version:07/24/17 Page 11 of 17 RT-R-AMER-Test-2809 in tote k 1701 Westfork Drive,Suite 106 Lithia Springs,Georgia 30122 Total Quality.Assured. Telephone: 770-941-6916 Facsimile: 717-764-4129 www.intertek.com/building TEST REPORT FOR KAWNEER Report No.: H8251.07-550-47 R2 Date: 02/19/18 • Y * Y{ j 5 ¢.1+... Photo No.3 Unit during thermal cycling Version:07/24/17 Page 12 of 17 RT-R-AMER-Test-2809 Intertek 1701 Westfork Drive,Suite 106 Lithia Springs,Georgia 30122 Total Quality.Assured. Telephone: 770-941-6916 Facsimile: 717-764-4129 www.intertek.com/building TEST REPORT FOR KAWNEER Report No.: H8251.07-550-47 R2 Date: 02/19/18 SECTION 13 DRAWINGS The test specimen drawings have been reviewed by Intertek B&C and are representative of the test specimen(s) reported herein. Test specimen construction was verified by Intertek B&C per the drawings included in this report. Any deviations are documented herein or on the drawings. Note: Complete drawings packet on file with lntertek B&C. Version:07/24/17 Page 13 of 17 RT-R-AMER-Test-2809 to torte k 1701 Westfork Drive,Suite 106 Lithia Springs,Georgia 30122 Total Quality.Assured. Telephone: 770-941-6916 Facsimile: 717-764-4129 www.intertek.com/building TEST REPORT FOR KAWNEER Report No.: H8251.07-550-47 R2 Date: 02/19/18 SECTION , REVISION LOG REVISION# DATE PAGES REVISION 0 11/30/18 N/A Original Report Issue 1 01/23/19 1,2 4,8 Series/Model Information Updated 2 02/19/19 8 Revised conclusion statement Version:07/24/17 Page 17 of 17 RT-R-AMER-Test-2809 1 .2 H - I est Reports <KAWNEER TEST REPORT TRANSMITTAL Date Generated: 11/7/2019 Project Name: Red Rock Creek Commons Project Location: Tigard Oregon Company: BCB GENERAL CONTRACTING INC DBA AMBROSE Requested By: Tim Sullvan Attached,please fmd Kawneer's standard test reports for project submittals. These reports have been witnessed and prepared by an independent testing agency and adhere to industry guidelines and recommendations. These tests are performed for customers, general contractors, architects, specifiers and building owners to compare performance characteristics of various products by all manufacturers. These test reports are generic in nature. The configurations and size of the tested specimens are dictated by industry standards and may not reflect the exact building requirements or conditions for the particular project. By providing a copy of this or these test reports, Kawneer Company, Inc. does not imply or guarantee that this or these products will achieve the same performance levels as recorded in this or these test reports when installed in a building or project. These performance levels were achieved in a laboratory setting under optimum conditions and are not representative of project conditions and may not be repeatable in the field. If field testing is required, it is encouraged that it be done as early as possible and is conducted per AAMA 502-08,or AAMA 503-08. Please reference Note below from these AAMA documents when performing field tests. Note: The default pressures used for water penetration resistance tests conducted in the field are not the same as the laboratory test pressure to allow for field conditions and test methods that vary from the laboratory test conditions and test methods. These conditions are primarily related to the ambient environmental conditions and the installation. The product performance is based on laboratory testing performed under controlled laboratory conditions. The temperature, wind, and barometric pressure conditions during a field test will typically vary from the standard laboratory conditions. The field installations also influence the product performance. Products tested in the laboratory are typically installed near-perfect for plumb, level, and square within a precision opening. Field test specimens,although installed within acceptable industry tolerances, are rarely perfectly plumb, level and square. Shipping, handling,acts of subsequent trades,aging and other environmental conditions all may have an adverse effect upon the performance of the installed specimen. A 113 reduction of the test pressure for field testing is specified as a reasonable adjustment for the differences between a laboratory test environment and a field test environment. Kawneer Company, Inc. Andy Nag Director, Customer Operations Page 1 of 1 95438-55 1080 American Test Lab of South Florida 6795 N. W. 17 Avenue Ft. Lauderdale, Florida 33309 (954)-973-0808 Fax (954) 973-0823 ATL Certification# 95-0522.01 Date: 5/10/96 ATL Report # 0205.03-96 Test Dates: 2/5 - 2/7/96 DC Note #ATL 96006 REVISED: 2/20/97 Test Requested By: James M. Evans, Kawneer Company, Inc., 7468 Highway 54, PO Box 516, Jonesboro, Georgia, 30236, Phone (770) 478-8841, Fax (770) 603-4558 Description of Product Being Tested: Product: Kawneer "350" Medium Stile entrance door, 3-0 x 7-0 with one point lock. Overall Size: 39-5/8"x 86" Design Loads: + 60 psf and - 65 psf- no water and non impact glass Door Leaf Size: 35-13/16"x 83-3/16" Daylight Opening of Glass: One lite - 27-5/8"x 71-7/8" General Description: A 3-0 x 7-0 outswing glazed aluminum swing door with 3 offset pivots in an aluminum (6063-T5) frame with an aluminum threshold. The head and jambs consisted of a, 4-1/2" deep x 1-3/4" face, tubular aluminum extrusion with jambs running thru. The head fastened to jambs with one extruded aluminum shear clip and (4) #10 x 1-1/2" pan head SMS and (2) #10 x 1/2"flat head SMS. The aluminum threshold was 4" deep x 1/2" high and was fastened to the jambs with (5) #12-24 x 3/8" flat head screws, each side. The door consisted of tubular aluminum extrusions, stiles (3-1/2" face x 1-3/4" deep x .120") running thru, top (3- 1/2"face x 1-3/4" deep x .115") and bottom (6-1/2" face x 1-3/4" deep x .118") rails fastened to stile with (2) 1/4-20 x 3/4"pan head screws thru rails and stiles into (2) 1" x 1" x .188" backup plates each corner. Also at each corner approx. 1"weld, 2 per corner at top and bottom of rail at intersection of stile. Doors glazed with 3/16"tempered, with extruded aluminum glazing bead with gasket on interior and exterior. � �L 1 Z` emonw U04:St3-55 1080 ATL REPORT#0205.03-96 Anchorage: Description: Quantity Location #12 x 3"flat head 13 5 at each jamb at 6", 18-7/16", 20", SS SMS 16-1/2", 18-7/16"on hinge side and 6", 18-7/16", 19-3/4", 17", 18-3/8"on lockside and 3 at head at 3", 15", 15". #12 x 1-3/4"flat head 3 at threshold at 5", 13", 13". zinc plated SMS Hardware: Description Quantity Location Offset pivots 3 1 at top and bottom of door and 1 mid- span Cam lock cylinder 1 50-5/16"from bottom of door Adams Rite 1850A 1 MS lock Weather-stripping: Description Quantity Location Vinyl bulb type with PVC fin 17' head and jambs Aluminum weatherseal with 3' bottom rail interior (black EPDM) flexible sweep Aluminum glazing 33'-2" interior and exterior perimeter of glass bead with gasket kr:Vi(iCt 2 95438-55 1080 ATL REPORT#0205.03-96 AIR INFILTRATION Air Infiltration Tests were conducted in accordance with ASTM E283 and DCBCCD PA 202-94 Specimen Al - air at 1.57 psf = .88 CFM/FT, allowable = 1.25 Specimen B 1 - air at 1.57 psf = .17 CFM/FT, allowable = 1.25 Specimen C - air at 1.57 psf = .19 CFM/FT, allowable = 1.25 STATIC AIR PRESSURE TESTS Static Tests were conducted in accordance with ASTM E 330 and DCBCCD PA 202-94 Design Loads - + 60 psf and - 65 psf Specimens Al, B1, C Range of test actual load psf average max def Positive loads for 30 seconds 1/2 Test 45 Design 60.0 Test 90 .041" Perm. set after test load at bottom of door lockside .033" Allowable set .336" Negative Loads for 30 seconds actual load psf average max def 1/2 Test 48.8 Design 65.0 Test 97.5 1.28" Perm. set after test load at bottom of door lockside .199" Allowable set .336" FORCED ENTRY TESTS Forced Entry Tests were conducted in accordance with SFBC 3603.2 (b) 5 and DCBCCDPA 202-94 300 #Load at lock Specimens Size Time Result Al, Bl, C 3'0" - 7'0" 2 minutes Passed NOTE: All doors operable before and after all tests. Lock cover plate on stile was widened by 1/8" to prevent lock from binding after test loads and forced entry tests. 3 6 1 95438-55 1080 ATL REPORT #0205.03-96 2 mill polyethylene film was used on the static and cycle tests and it is the opinion of the undersigned that they had no influence on the results of these tests. Observers: Gerard Sullivan, P.E. Bob Hanke, Randy Tinnerman, Andy Sarakinis - American Test Lab Tony Sivore - American Test Lab Don Evans - Kawneer Company Kenneth Young, Hugh Gaston - Kawneer Company Robert Fisher -R.E. Fisher& Assoc. Dade County Witness: Luis Casademunt Tony yore, D,rector American Test Lab of South Florida ,6 All Tests Certified and Witnessed by: Enginee Seal & Signature Gerard B. Sullivan Sullivan& Assoc. E.B. #3863 PO Box 770031 Coral Springs, Fla. 33077 State of Florida: Registered Engineer P.E. #28404 Disclaimer: This test report was prepared by An of South Florida, for the exclusive use of the above named client. The results are for that particular specimen tested and does not imply the quality of similar or identical product manufactured or installed from specifications identical to the tested product. An of South Florida is a testing lab and does not guarantee or warranty any product tested or installed. 4 A 1831 95438-89 ETL, Architectural Testing NFRC U-FACTOR, SHGC,VT, & CONDENSATION RESISTANCE COMPUTER SIMULATION REPORT Rendered to: KAWNEER COMPANY,INC. SERIES/MODEL: 190 Door 350 Tuffline Door/350 Heavy Wall Door/350 Door 500 Tuffline Door/500 Heavy Wall Door/500 Door Report Number: A7332.04-116-45 Report Date: 02/24/11 130 Derry Court York, PA 17406-8405 phone: 717-764-7700 fax: 717-764-4129 www.archtest.com A 1831 95438-89 Architectural Testing NFRC U-FACTOR, SHGC,VT, & CONDENSATION RESISTANCE COMPUTER SIMULATION REPORT Rendered to: KAWNEER COMPANY, INC. 555 Guthridge Court Norcross, Georgia 30092 Report Number: A7332.04-116-45 Simulation Date: 02/24/11 Report Date: 02/24/11 Project Summary: Architectural Testing, Inc. was contracted to perform U-Factor, Solar Heat Gain Coefficient, Visible Transmittance, and Condensation Resistance* computer simulations in accordance with the National Fenestration Rating Council (NFRC). The products were evaluated in full compliance with NFRC requirements to the standards listed below. *NFRC's Condensation Resistance rating is NOT equivalent to a Condensation Resistance Factor(CRF) determined in accordance with AAMA 1503. Standards: NFRC 100-2010: Procedure for Determining Fenestration Product U-Factors NFRC 200-2010: Procedure for Determining Fenestration Product Solar Heat Gain Coefficient and Visible Transmittance at Normal Incidence NFRC 500-2010: Procedure for Determining Fenestration Product Condensation Resistance Values Software: Frame and Edge Modeling: THERM 6.3.19 Center-of-Glass Modeling: WINDOW 6.3.9 Total Product Calculations: WINDOW 6.3.9 Spectral Data Library: 18.0 Simulations Specimen Description: Series/Model: 190 Door 350 Tuffline Door/350 Heavy Wall Door/350 Door 500 Tuffline Door/500 Heavy Wall Door/500 Door Type: Swinging Door, Single Leaf Entrance Door Frame Material: AL Aluminum(Non-thermally broken) Sash Material: AL Aluminum(Non-thermally broken) Standard Size: 960mm x 2090mm 130 Derry Court York, PA 17406-8405 phone: 717-764-7700 fax: 717-764-4129 www.archtest.com A 1831 95438-89 A7332.04-116-45 Architectural Testing Page2of12 Technical Interpretations: None Modeling Assumptions: 1) To prevent air infiltration, tape was applied to all interior sash crack locations. 2) The 350 Tuffline was grouped with the 350 Door and 350 Heavy Wall and the 500 Tuffline was grouped with the 500 Door and 500 Heavy Wall per CMA approved groupings 3) The 190 Door was simulated with the 10" sill sash, validation option used the 3-7/8" sill sash Specialty Products Table: The specialty products method allow the manufacturer to determine the overall product SHGC and VT for any glazing option. The center of glass SHGC and/or VT must be determined using WINDOW 5.2. The method gives overall product SHGC and VT indexed on center of glass properties. All values used in the calculations are truncated to six decimal place precision. 190 Door: No Dividers Dividers< 1 Dividers> 1 SHGCO 0.037329 0.040090 0.042637 SHGC1 0.624293 0.542582 0.467169 VTO 0.000000 0.000000 0.000000 VT1 0.586964 0.502492 0.424532 350 Tuffline Door: No Dividers Dividers< 1 Dividers> 1 SHGCO 0.043372 0.045975 0.048364 SHGC1 0.562946 0.485908 0.418505 VTO 0.000000 0.000000 0.000000 VT1 0.519574 0.439933 0.366803 500 Tuffline Door: No Dividers Dividers< 1 Dividers> 1 SHGCO 0.049272 0.051694 0.053904 SHGC1 0.495088 0.428210 0.379775 VTO 0.000000 0.000000 0.000000 VT1 0.445816 0.371698 0.304092 SHGC= SHGCO+SHGCc (SHGC1 - SHGCO) VT=VTO+VTc(VT1 -VTO) Validation Matrix: The following products are part of a validation matrix. Only one is required for validation testing. Product Line Report Number None - . 1831 95438-89 A7332.04-116-45 Architectural Testing Page 3 of 12 Spacer Option Description Sealant Spacer Type Primary Secondary Desiccant Aluminum Spacer Butyl Rubber Butyl Rubber Yes Standard Super Spacer Butyl Rubber None No Grid Option Description Grid Size Grid Type Grid Pattern None - - Reinforcement Option Description Location Material None - Gas Filling Technique Description Fill Type Method 84.5%Xenon Single probe timed 76.1%Argon Single probe timed 85.8%Argon Single probe timed 83%Argon Single probe timed 88.7%Argon Single probe timed 87.4%Argon Single probe timed 65%Argon Single probe timed 74.7%Argon Single probe timed 60.8%Argon Single probe timed 62.4%Argon Single probe timed 86%Argon Single probe timed 81.7%Xenon Single probe timed 94.6%Xenon Evacuated chamber 76.9%Krypton Single probe timed 71.6%Xenon Single probe timed 76.5%Krypton Single probe timed 66.7%Xenon Single probe timed 82.2%Xenon Single probe timed Edge-of-Glass Construction Interior Condition EPDM gasket between frame and glass Exterior Condition EPDM gasket between frame and glass 1831 9 438 89 A7332.04-116-45 Architectural Testing Page4of12 Weatherstripping Type Quantity Location EPDM flap gasket 1 row Bottom sash rail Vinyl bulb gasket 1 row Top frame rail and jamb stiles Frame/Sash Materials Finish Interior Painted Aluminum Exterior Painted Aluminum 1831 A 95438-89 A7332.04-116-45 Architectural Testing Page 5 of 12 NFRC 100/200/500 Summary Sheet 190 Door rr N rn er ^ Q� u u .571 v eN v •+M v ... a y A E. :12 E. �, 3 w , d H a, c. a. C7 aa el . (4) XI6 a FC CI U-Factor Solar Heat Gain Coefficient(SHGC) Visible Transmittance(VT) Condensation Grids(None/<1./>=1) Grids(None/<1/>=1) Resistance 1 COG=0.4735(C1r/C1r) 0.225 0.500 0.225 AIR CL Al-D N U-Factor 0.78 SHGC(N) 0.45 VT(N) 0.46 CR 18 2 COG=0.4400 0.222 0.500 0.225 XEN84.48 CL Al-D N U-Factor' 0.76 SHGC(N) 0.44 VT(N) 0.43 CR ..18 3 COG=0.4200 0.222 0.500 0.225 ARG76.1 0.652(#2) GY AI-D N U-Factor 0.75 SHGC(N) 0.19 VT(N) 0.14 CR 18 4 COG=0.4000 0.220 0.500 0.225 ARG85.82999 0.566(#2) GY Al-D N U-Factor 0.74 SHGC(N) 0.19 VT(N) 0.12 CR 18 5 COG=0.3800 0.226 0.500 0.225 I ARG83.03 0.471(#2) OT Al-D N U-Factor 0.73 SHGC(N) 0.14 VT(N) 0.09 CR 18-. 6 COG=0.3600 0.220 0.500 0.225 ARG88.65 0.395(#2) GY Al-D N U-Factor 0.72' SHGC(N) 0.12: VT(N) - 0.04 CR 18 7 COG=0.3400 0.232 0.500 0.225 ARG87.41 0.318(#2) GY Al-DJ N U-Factor 0.71 SHGC(N). 0.31 VT(N) 0 33 .' CR.',, ; 18 8 COG=0.3200 0.223 0.500 0.225 ARG64.98 0.215(#2) CL Al-D N U-Factor 0.70 SHGC(N) 0.40 VT(N) 0.43 CR 18;:. 9 COG=0.3000 0.233 0.500 0.225 I ARG74.7 0.166(#2) CL Al-D N U-Factor 0.69 SHGC(N) 0.30: VIM) 0.31 CR 18 10 COG=0.2800 0.223 0.500 0.225 ARG60.78 0.087(#2) CL Al-D N U-Factor 0.68. SHGC(N) 0:36': VT(N) ;, , 0.45 CR 18 A 1831 9583 89 �‘"Ike._ A7332.04-I 16-45 Architectural Testing Page 6of12 NFRC 100/200/500 Summary Sheet 190 Door C�7 . G� trl G� N �,,� ��' R '� "C :TA V1 d S. F 1 3 3 H 3 H w V MI = a 0 a c = Z Ck a E 03 •c c4 t� C7 a. a� t� a F 0 U-Factor Solar Heat Gain Coefficient(SHGC) Visible Transmittance(VT) Condensation Grids(None/<1/x1) Grids(None!<1/>=1) Resistance 11 COG=0.2600 0.223 0,500 0.225 ARG62.43 0.035(#2) CL Al-D N U-Factor 0.67 SHGC(N) 0.26 VT(N) 0.41 CR .18 12 COG=0.2400 0.223 0.500 0.223 IARG86.02 0.035(#2)/0.035(#3) CL Al-D N U-Factor 0.66 SHGC(N) 0.25 VT(N) 0.37 CR 18 13 COG=0.2200 0.223 0.500 0.223 I XEN81.67 0.018(#2)/0.018(#3) CL Al-D N U-Factor 0.65 SHGC(N) . 0.19 VT(N) 0.31 `. CR 18 14 COG=0.2000 0.223 0.500 0.223 I XEN94.6 0.018(#2)/0.018(#3) CL Al-D N U-Factor 0.64 SHGC(N) 0.19 VT(N) 0.31 CR 18 15 COG=0,1800 0.223 10.250 0.003 0.250 10.221 KRY76 87AIR 0.0180/2)/0.76(#3)/O.a(#4)/0.028(#5)I CL Al-D N U-Factor 0.63 SHGC(N) 0.18 VT.(N) 0.26 CR 18 16 COG=0.1600 0.223 0.250 0.003 0.250 0.223 I XEN71s9AIR 0.018(#2)/0.76(#3)/0.11(#4)/0.018(#5) CL Al-D N U-Factor 0.61 SHGC(N) 0.18 VT(N) 0 27, - CR 18' 17 COG=0.1400 0.223 0.250 0.003 0.250 0.223 KRY76.46 0.01s(#2)/a.76(#3)/0.11(44)/0.01805) CL Al-D N U-Factor 0.60 SHGC(N) 0.17 VT(N) 0.27 rCR 18 18 COG=0.1200 0.223 0.250 0.003 0.250 0.2231 XEN66.67 0.018(#2)/0.76(43)/O.11(#4)10.01a(#5) CL AI-D N U-Factor 0.59 SHGC(N) 0.17 . • VT(N):' 0:27. CR. 18 19 COG=0.1000 0.223 0.250 0.003 0.250 0.223 XEN82.15 0.01802)/0.7603)/0.1/(#4)/0.018(45)1 CL AI-D N U-Factor 0.58 SHGC(N) •.. 0.17 VT(N) ;0 27 . CR 18;' A 1831 95438-89 / Iffk_ A7332.04-116-45 Architectural Testing Page 7of12 NFRC 100/200/500 Summary Sheet 350 Tuffline Door/350 Heavy Wall Door/350 Door ,. N M c 0 0 40 y d ea ell C "'"� C N C t7 0 w V Al,15 2 2 2 d a a C c. C a C o. 3 g R •c 4 C7 4 C7 w c� a C7 , F� rn C7 U-Factor Solar Heat Gain Coefficient(SHGC) ; Visible Transmittance(VT). . .Condensation Grids(None/<1/>=1) Grids(None/<1/>=1) Resistance 20 COG=0.4735(Clr/Clr) 0.225 0.500 0.225 AIR CL Al-D N U-Factor 0.83 SHGC(N) 0.41. VT(N) 0.41 CR _16-. 21 COG=0.4400 0.222 0.500 0.225 XEN84.48 CL Al-D N U-Factor 0.81 SHGC(N) 0.40 VT(N) 0.38 CR 16 22 COG=0.4200 0.222 0.500 0.225 ARG76.1 0.652(#2) GY Al-D N U-Factor 0.81 SHGC(N) 0.18 VT(N) 0.12 CR 16 23 COG=0.4000 0.220 0.500 0.225 IARG85.82999 0.566(#2) GY Al-D N U-Factor 0.80 SHGC(N) 0.18 VT(N) 0.11' CR 16 24 COG=0.3800 0.226 0.500 0.225 ARG83.03 0.471(#2) OT Al-DI N U-Factor 0.79. SHGC(N). • 0.14 VT(N) 0.08 CR 16 25 COG=0.3600 0.220 0.500 0.225 ARG88.65 0.395(42) GY Al-D N U-Factor 0.78 SHGC(N). 0.12 VT(N) .0.04 CR 16 26 COG=0.3400 0.232 0.500 0.225 ARG87.41 0.318(#2) GY Al-D N U-Factor 0.77 :-SHGC(N) 0.28 VT(N) 0.29 i CR 16. 27 COG=0.3200 0.223 0.500 0.225 ARG64.98 0.215(#2) CL Al-D N U-Factor 0.76 SHGC(N) 0.36 VT(N): 0.38 • CR 17: 28 COG=0.3000 0.233 0.50010.225 I ARG74.7 0.166(42) CL Al-D N U-Factor. 0.75 SHGC(N) 0.27; VT(N) 0.28 CR 17 29 COG=0.2800 0.223 0.500 0.225 ARG60.78 0.087(#2) CL Al-D N U.-Factor. 0.74 SHGC(N) 0.33•_> VT(N) 0.40: : CR 17 A 1831 9543 89 __81k_ A7332.04-116-45 Architectural Testing Page 8 of 12 NFRC 100/200/500 Summary Sheet 350 Tuffline Door/350 Heavy Wall Door/350 Door r+ eV M 'er e v, m . rq y a '-i* C ell C en q to u e •. u = Ch e g H F .. H w d CS .CI = a c aq Q. 0 G. 3 c .w t7 : _ 4 c a. 7 4 H l U-Factor Solar Heat Gain Coefficient(SHGC) Visible Transmittance(VT) Condensation Grids(None/<1/xl) Grids(None/<1/x1) Resistance- 30 COG=0.2600 0.223 0.500 0.225 ARG62.43 0.035(#2) CL Al-D N U-Factor 0.73 SHGC(N) 0.24 VT(N) 0.36 CR 17 31 COG=0.2400 0.223 0.500 0.223 ARG86.02 0.035(#2)/0.035(#3) CL Al-D N U-Factor 0.72 SHGC(N) 0.23 VT(N) 0.33 CR 17 32 COG=0.2200 0.223 0.500 0.223 XEN81.67 0.018(#2)/0.018(#3) CL Al-D N U-Factor 0.71 SHGC(N) 0.18 VT(N) 0.27 CR 17 33 COG=0.2000 0.223 0.500 0.223 XEN94.6 0.018(#2)/0.018(#3) CL AI-D N U-Factor 0.70 SHGC(N) 0.18 VT(N) 0.27 CR 17 34 COG=0.1800 0.223 0.250 0.003 0.250 0.221 KRY76.87A1R 0.01802)/0.76(#3)/0.11(#4)/0.028(#5) CL Al-D N U-Factor 0.69 SHGC(N) 0.17 VT(N) 0.23 CR.. 17:;? 35 COG=0.1600 0.223 0.250 0.003 0.250 0.223 IXEN71.59AIR 0.018(#2)/0.76(#3)/0.11(#4)/0.ol8(#5) CL Al-D N U-Factor % 0.68 SHGC(N) 0.17 VT(N) 0.24 CR 17 36 COG=0.1400 0.223 0.250 0.003 0.250 0.223 KRY76.46 a.o1s(#2)/0.76(#3)/0.11(#4)/0.018(#s) CL Al-DI N U-Factor 0.68 SHGC(N) 0.16 VT(N) 0.24. CR 17 37 COG=0.1200 0.223 0.250 10.003 0.250 0.223 XEN66.67 0.018(#2)/0.76(#3)/0.11(#4)/0.018(#s) CL A l-D I N U-Factor 0.67 SHGC(N) 0.16: VT(N) 0.24 CR • 17 ., 38 COG=0.1000 0.223 0.250 0.003 0.250 0.223 XEN82.15 o.oi son)/0.76(#3)/0.11(#4)io.ots(#s) CL AI-D N U-Factor 0.66. SHGC(N) 016` VT(N) 0.24 CR 17 A 1831 95438-89 A7332.04-116-45 Architectural Testing Page 9of12 NFRC 100/200/500 Summary Sheet 500 Tuffline Door/500 Heavy Wall Door/500 Door +--- N M e! co co co .n y u 1 .tea .9 .a 1u 4.o c g 3 H 3 H 3 H - w" d E~ b C7 a c7 w C7 a 6 a Fy cA 0 U-Factor Solar Heat Gain Coefficient(SHGC) Visible Transmittance(VT) Condensation Grids(None/<1/>=1) Grids(None/<1/>=1) Resistance 39 COG=0.4735(Clr/Clr) 0.225 0.500 0.225 AIR CL Al-DI N U-Factor 0.87. SHGC(N) 0.36 VT(N) 0.35 CR 16 40 COG=0.4400 0.222 0.500 0.225 XEN84.48 CL Al-D N U-Factor 0.85 SHGC(N) 0.35 VT(N) 0.33 CR 16 41 COG=0.4200 0.222 0.500 0.225 ARG76.1 0.652(#2) GY Al-D N U-Factor 0.84 SHGC(N) 0.17 VT(N) 0.11 CR 16 42 COG=0.4000 0.220 0.500 0.225 I ARG85.82999 0.566(#2) GY Al-D N U-Factor 0.84 SHGC(N) 0.17 VT(N) 0.09 CR '16 43 COG=0.3800 0.226 0.500 0.225 ARG83.03 0.471(#2) OT Al-D N U-Factor 0.83 SHGC(N) 0.13 VT(N) 0.07` CR 16 44 COG=0.3600 0.220 0.500 0.225 ARG88.65 0.395(#2) GY Al-D N U-Factor 0.82 SHGC(N) 0.11 VT(N)-,. 0.03 CR 16 ... 45 COG=0.3400 0.232 0.500 0.225 ARG87.41 0.318(#2) GY Al-D N U-Factor. 0.81 SHGC(N) 0.26 VT(N) 0.25 CR 16 46 COG=0.3200 0.223 0.50010.225 ARG64.98 0.215(#2) CL AI-D N U-Factor 0.81 SHGC(N). 0.32 VT 0.33 CR 16 47 COG=0.3000 0.233 0.500 0.225 ARG74.7 0.166(#2) CL Al-D N U-Factor 0.80 SHGC(N) 0.25 VT(N) 0.24 CR 16 48 COG=0.2800 0.223 0.500 0.225 ARG60.78 0.087(#2) CL Al-D N U-Factor 0.79 SHGC(N): 0.29,. VT(N) 0.34, CR 16. A 1831 95438-89 4fdA7332.04-116-45 Architectural Testing Page 10of12 NFRC 100/200/500 Summary Sheet 500 Tuffline Door/500 Heavy Wall Door/500 Door *-� N en ^ V a a N a M . V A ate+ V -.is O e) A EE-, a H 3 F a H w d R C.a a a eet a v O a C7 a C7 a CI a 0 a H ci C7 Solar Heat Gain Coefficient(SHGC) Visible Transmittance(VT) Condensation U-Factor Grids(None/<1/x1) Grids(None/<1/> 1) Resistance 49 COG=0.2600 0.223 0.500 0.225 ARG62.43 0.035(#2) CL Al-D N U-Factor 0.78 SHGC(N) 0.22 VT(N) 0.31 CR 16 50 COG=0.2400 0.223 0.500 0.223 ARG86.02 0.035(#2)/0.035(#3) CL Al-D N U-Factor 0.77 SHGC(N) 0.21 VT(N) 0.28 CR 16,',,. 51 COG=0.2200 0.223 0.500 0.223 XEN81.67 0.018(#2)/0.018(#3) CL Al-DI N U-Factor 0.77 SHGC(N) 0.16 VT(N) 0.23 CR 16 52 COG=0.2000 0.223 0.500 0.223 XEN94.6 0.018(#2)/0.018(#3) CL Al-D N U-Factor 0.76 SHGC(N). 0.16 VT(N) 0.23 CR 16 ' 53 COG=0.1800 0.223 0.250 0.003 0.250 0.221 KRY76.87AIR 0.018(#2)/0.76(#3)/0.11(#4)/0.028(#5) CL A l-D N U-Factor 0.75. SHGC(N) 0.16 VT(N) • 0.20 CR 16 54 COG=0.1600 0.223 0.250 0.003 0.250 0.223 XEN71.59A1R 0.018(#2)/0.76(03)/0.11(#4)/0.018(#5) CL A 1-D N U-Factor 0.74 SHGC(N) 0.16 VT(N) 0.20 CR 16 55 COG=0.1400 0.223 0.250 0.003 0.250 0.223 KRY76.46 0.018(#2)/0.76(#3)/0.11(#4)/0.018(#5) CL Al-D N U-Factor 0.73 SHGC(N) 0.15 VT(N) 0.20 R 16-' 56 COG=0.1200 0.223 0.25010.003 0.250 0.223 I IXEN66.67 o.018(#2)/o.76(#3)/0.11(#4)/o.ols(#5) CL Al-D N U-Factor 0.73 SHGC(N) 0.15 VT(N) 0.20 CR 16 57 COG=0.1000 0.223 0.250 0.003 0.250 0.223 XEN82.15 0.018(#2)/0.76(#3)/0.1I(#4)/O.018(#5) CL A 1-D N U-Factor 0.72 SHGC(N) 0.15 VT(N) 0.20 CR 16 A 1831 95438-89 A7332.04-116-45 Architectural Testing Page 11 of 12 The Condensation Resistance results obtained from this procedure are for controlled laboratory conditions and do not include the effects of air movement through the specimen, solar radiation, and the thermal bridging that may occur due to the specific design and construction of the fenestration system opening. Ratings values included in this report are for submittals to an NFRC-licensed IA and are not meant to be used directly for labeling purposes. Only those values identified on a valid Certification Authorization Report (CAR) by an NFRC accredited Inspection Agency (IA) are to be used for labeling purposes. The ratings values were rounded in accordance to NFRC 601, NFRC Unit and Measurement Policy. Architectural Testing, Inc. is an NFRC accredited simulation laboratory and all simulations were conducted in full compliance with NFRC approved procedures and specifications. The NFRC procedure requires that the computational results be verified through actual test results. Detailed drawings, simulation data files, a copy of this report, or other pertinent project documentation will be retained by Architectural Testing,Inc. for a period of four years from the original test date. At the end of this retention period, such materials shall be discarded without notice and the service life of this report will expire. Results obtained are simulated values and were secured by using the designated test methods. This report does not constitute certification of this product nor an opinion or endorsement by this laboratory. It is the exclusive property of the client so named herein and relates only to the product simulated. This report may not be reproduced, except in full, without the written approval of Architectural Testing, Inc. For ARCHITECTURAL TESTING, INC.: SIMULATED BY: REVIEWED BY: MP%9Rrd by:Kevin Louder 51wind tre WMnLlhib.ur Kevin S. Louder Kristen L. Livelsberger Project Engineer Senior Simulation Technician S imulator-In-Responsible-Charge KSL:ks1 A7332.04-116-45 Attachments(pages): This report is complete only when all attachments listed are included. Appendix A:Drawings and Bills of Material(54) A 1831 95438-89 A7332.04-116-45 Architectural Testing Page 12 of 12 Revision Log- Rev. # Date Page(s) Revision(s) .01 RO 2/24/2011 All Original Report Issue This report produced from controlled document template ATI 00037,Revised 08/31/2009. . 1831 95438-89 Architectural Testing All drawings and Bills of Material used to simulate this product are enclosed in this Appendix • Appendix A A7332.04-116-45 4111, 2282 Architectural Testing 95438-112 TEST REPORT Report No.: D7635.04-550-47 Rendered to: KAWNEER COMPANY, INC. Norcross, Georgia PRODUCT TYPE: Storefront SERIES/MODEL: 451T (Center-Set) Standard Sill SPECIFICATION: AAMA 501-05 Methods of Tests for Exterior Walls CAN/CSA A440-00, Windows, prepared by the Canadian Standards Association. Evaluation to the prescriptive requirements was not performed. Title of Test Summary of Results Rating Air Tightness 0.20 (m3/h)/m (0.04 cfm/ft) Fixed Water Tightness 400 Pa (8.35 psf) B4 500 Pa (10.44 psf) B5* Wind Load Resistance 1680 Pa (±35.08 psf) C2 *Achieved with interior perimeter seal Reference must be made to Report No. D7635.04-550-47, dated 6/24/14 for complete test specimen description and detailed test results. Test Report No.: D7635.04-550-47 Report Date: 06/24/14 Page 1 of 7 Architectural Testing 1.0 Report Issued To: Kawneer Company Inc. 555 Guthridge Court Norcross, Georgia 30092 2.0 Test Laboratory: Architectural Testing, Inc. 1701 Westfork Drive, Suite 106 Lithia Springs, Georgia 30122 770-941-6916 3.0 Project Summary: 3.1 Product Type: Storefront 3.2 Series/Model: 451T (Center-Set) Standard Sill 3.3 Compliance Statement: Results obtained are tested values and were secured by using the designated test methods. The specimen tested successfully met the performance requirements for AAMA 501 and the following CSA ratings: Fixed, B4/B5, and C2. 3.4 Test Dates: 05/30/2014- 06/04/2014 3.5 Test Location: Kawneer Company Inc. test facility in Norcross, Georgia. Calibration of test equipment was performed by Architectural Testing in accordance with AAMA 205-01 "In-Plant Testing Guidelines for Manufacturers and Independent Laboratories". 3.6 Test Sample Source: The test specimen was provided by the client. Representative samples of the test specimen will be retained by Architectural Testing for a minimum of four years from the test completion date. 3.7 Drawing Reference: The test specimen drawings have been reviewed by Architectural Testing and are representative of the test specimen reported herein. Test specimen construction was verified by Architectural Testing per the drawings located in Appendix C. Any deviations are documented herein or on the drawings. 3.8 List of Official Observers: Name Company Mike Mitchell Kawneer Company Inc. Matt Sourewine Kawneer Company Inc. Jose Colon Architectural Testing, Inc. Ryan Hedgepeth Architectural Testing, Inc. www.archtest.com . Test Report No.: D7635.04-550-47 Report Date: 06/24/14 Page 2 of 7 Architectural Testing 4.0 Test Specification(s): AAMA 501-05, Methods of Tests for Exterior Walls AAMA 501.5-07, Test Method of Thermal Cycling of Exterior Walls ASTM E 283-04, Test Method for Determining Rate of Airflow Through Exterior Windows, Curtain Walls and Doors Under Specified Pressure Differences Across the Specimen. ASTM E 330-14, Test Method for Structural Performance of Exterior Windows, Curtain Walls and Doors by Uniform Static Air Pressure Difference. ASTM E 331-00, Test Method for Water Penetration of Exterior Windows, Curtain Walls and Doors by Uniform Static Air Pressure Difference. ASTM E 547-00, Test Method for Water Penetration of Exterior Windows, Curtain Walls and Doors by Cyclic Static Air Pressure Difference. CAN/CSA A440-00, Windows, prepared by the Canadian Standards Association. Evaluation to the prescriptive requirements was not performed. NFRC 400-2014, Procedure for Determining Fenestration Product Air Leakage 5.0 Test Specimen Description: 5.1 Product Sizes: Crack Length: Width Height 18.2 m (59.8 ft) millimeters inches millimeters inches Overall size 2438 96 2438 96 www.archtest.com . Test Report No.: D7635.04-550-47 Report Date: 06/24/14 Page 3 of 7 Architectural Testing 5.0 Test Specimen Description: (Continued) 5.2 Frame Construction: Frame Member Material Description Head Aluminum Extruded,thermally broken aluminum alloy (Part# 451TCG003) alloy Mullion/Jamb/Sill Aluminum Extruded, thermally broken aluminum alloy (Part# 451TCG001) alloy Horizontal Aluminum Extruded, thermally broken aluminum alloy (Part#451TCG001) alloy Sill Flashing Aluminum Extruded,thermally broken aluminum alloy (Part# 451T037) alloy Joinery Type Detail Butted and Butted and mechanically fastened using All corners mechanically #12 x 1-1/8" pan head fastener fastened 5.3 Weatherstripping: No weatherstripping was utilized. 5.4 Glazing: Glass Interior Exterior Type Spacer Type Lite Lite Glazing Method Utilizes EPDM Gasket (Part# 1" IG 1/2" 1/4" 1/4" 027074) on both interior and aluminum annealed annealed exterior. Glazed side utilizes glass stop (Part#451CG004) Location Quantity Daylight Opening Glass Bite millimeters inches Fixed lite 4 1143 x 1138 45 x 44-13/16 3/8" 5.5 Drainage: Drainage Method Size Quantity Location Weephole 1/4" 4 Quarter-points on frame sill www.archtest.com �. Test Report No.: D7635.04-550-47 Report Date: 06/24/14 Page 4 of 7 Architectural Testing 5.0 Test Specimen Description: (Continued) 5.6 Hardware: No hardware was utilized. 5.7 Reinforcement: No reinforcement was utilized. 6.0 Installation: The specimen was installed into a 2x12 double wood buck. The rough opening allowed for a 3/8" shim space. The exterior perimeter of the window was sealed with sealant. Later in testing the interior and exterior were sealed with sealant-see test results. Location Anchor Description Anchor Location Head #12 x 3" fastener, min. 1-1/2" 6" from edges and vertical embedment mullion and 18" on center Jamb #12 x 3" fastener, min. 1-1/2" 6" from edges and intermediate embedment mullion Sub-sill #12 x 2" fastener 6" from edges and 12" on center www.archtest.corn .► Test Report No.: D7635.04-550-47 Report Date: 06/24/14 Page 5 of 7 Architectural Testing 7.0 Test Results: The temperature during testing was 23°C (74°F). The results are tabulated as follows: Title of Test Results Allowed Rating Note Air Infiltration, per ASTM E 283/NFRC 400 0.2 L/s/m2 0.3 L/s/m2 at 75 Pa (1.6 psf) (0.04 cfm/ft2) (0.06 cfm/ft2) max. Fixed Air Exfiltration, 0.2 L/s/m2 0.3 L/s/m2 per ASTM E 283 (0.04 cfm/ft2) / (0.06 cfm/ft2) max. / at 75 Pa (1.6 psf) 0.23 m3/h/m 0.25 m3/h/m (0.041 cfm/ft) max. (0.045 cfm/ft) max. Fixed 1 Water Tightness, per ASTM E 331 and ASTM E547 at 400 Pa (8.35 psf) Pass No leakage B4 Uniform Load Deflection, per ASTM E 330 taken at intermediate mullion +1680 Pa (+35.08 psf) 10.1 mm (0.40") 13.9 mm (0.54") -1680 Pa (-35.08 psf) 10.9 mm (0.43") 13.9 mm (0.54") C2 2,3 Uniform Load Deflection, per ASTM E 330 taken at intermediate horizontal +1680 Pa (+35.08 psf) 0.25 mm (0.01") 6.6 mm (0.25") -1680 Pa (-35.08 psf) 0.76 mm (0.03") 6.6 mm (0.25") C2 2,3 Water Tightness, per ASTM E 331 at 500 Pa (10.44 psf) Pass No leakage B5 Thermal Cycling, Per AAMA 501.5 Unit cycled between 0 and 180 4 Air Infiltration, per ASTM E 283 0.2 L/s/m2 0.3 L/s/m2 at 75 Pa (1.6 psf) (0.04 cfm/ft2) (0.06 cfm/ft2) max. Water Tightness, Pass No leakage B4 per ASTM E 331 at 400 Pa (8.35 psf) www.archtest.com ATest Report No.: D7635.04-550-47 "k. Report Date: 06/24/14 Page 6 of 7 Architectural Testing 7.0 Test Results: (Continued) Title of Test Results Allowed Rating Note Interior of perimeter was sealed and testing resumed Air Infiltration, per ASTM E 283/NFRC 400 0.1 L/s/m2 0.3 L/s/m2 at 75 Pa (1.6 psf) (0.01 cfm/ft2) (0.06 cfm/ft2) max. Fixed Air Infiltration, per ASTM E 283 0.1 L/s/m2 0.3 L/s/m2 at 300 Pa (6.2 psf) (0.01 cfm/ft2) (0.06 cfm/ft2) max. Air Exfiltration, 0.1 L/s/m2 0.3 L/s/m2 per ASTM E 283 (0.01 cfm/ft2)/ (0.06 cfm/ft2) max. / at 75 Pa (1.6 psf) 0.01 m3/h/m 0.25 m3/h/m (0.001 cfm/ft) max. (0.045 cfm/ft) max. Fixed 1 Air Exfiltration, 0.1 L/s/m2 0.3 L/s/m2 per ASTM E 283 (0.01 cfm/ft2)/ (0.06 cfm/ft2) max. / at 300 Pa (6.2 psf) 0.01 m3/h/m 0.25 m3/h/m (0.001 cfm/ft) max. (0.045 cfm/ft) max. 1 Water Tightness, per ASTM E 331 at 500 Pa (10.44 psf) Pass No leakage B5 Uniform Load Structural, per ASTM E 330 taken at intermediate mullion +2510 Pa (+52.5 psf) 0.2 mm (0.01") 4.8 mm (0.19") -2510 Pa (-52.5 psf) 0.2 mm (0.01") 4.8 mm (0.19") C2 2,3 Uniform Load Structural, per ASTM E 330 taken at intermediate horizontal +2510 Pa (+52.5 psf) 0.2 mm (0.01") 2.2 mm (0.08") -2510 Pa (-52.5 psf) 0.2 mm (0.01") 2.2 mm (0.08") C2 2,3 Note 1: Results shown as per unit area (L/s/m2) and as per crack length (m3/h/m) Note 2: Loads were held for 10 seconds. Note 3: Tape and film were not used to seal against air leakage during structural testing. Note 4: Unit subjected to six thermal cycles per AAMA 501.5, between 82°C(180 °F) and -18°C(0 °F). www.archtest.com Test Report No.: D7635.04-550-47 Report Date: 06/24/14 Page 7 of 7 Architectural Testing The service life of this report will expire on the stated Test Record Retention End Date of 06/04/2018, at which time such materials as drawings, data sheets, samples of test specimens, copies of this report, and any other pertinent project documentation, shall be discarded without notice. If test specimen contains glazing, no conclusions of any kind regarding the adequacy or inadequacy of the glass in any glazed test specimen(s) can be made. This report does not constitute certification of this product nor an opinion or endorsement by this laboratory. It is the exclusive property of the client so named herein and relates only to the specimen(s) tested. This report may not be reproduced, except in full, without the written approval of Architectural Testing, Inc. For ARCHITECTURAL TESTING, Inc. A • Digitally Signed by:Ryan K Hedgepeth Digitally Signed by:Joee E.Colon Ryan K. Hedgepeth, E.I.T. Jose E. Colon Project Engineer Director- Regional Operations RKH:jab Attachments (pages): This report is complete only when all attachments listed are included. Appendix-A: Alteration Addendum(1) Appendix-B: Photographs(2) Appendix-C: Drawings (3)Complete drawings packet on file with Architectural Testing,Inc. This report produced from controlled document template ATI 00510,issued 04/26/11. www.archtest.com 1 .2 I-- CJualilications for Installer <KAWNEER Date: 11/7/2019 Customer: BCB GENERAL CONTRACTING INC DBA AMBROSE 20310 SE TICKLE CREEK RD BORING OR, 97009 RE: Red Rock Creek Commons To Whom It May Concern: This letter is to confirm that BCB GENERAL CONTRACTING INC DBA AMBROSE, is a Kawneer customer. (BCB GENERAL CONTRACTING INC DBA AMBROSE has purchased architectural products and systems from Kawneer and has been a customer since 1/29/2018 ). Fabrication and installation instructions for Kawneer systems are available to Kawneer customers. Installation and fabrication training classes are available to the employees of Kawneer customers. Kawneer is not an installer and does not approve or certify its customers or any other parties as installers and does not approve or certify installations. It is the customer's responsibility to ensure the Kawneer products and systems are fabricated and installed properly by customer's employees or subcontractors in accordance with Kawneer's published installation instructions. Refer to Kawneer Standard Warranty Terms and Conditions of sale for details. Kawneer Company, Inc. disclaims all liabilities for, and is not responsible or liable for any damages or costs that may result from improper installation of its products. Kawneer Company, Inc. di— Andy Nag Director, Customer Operations Page 1 of 1 <KAWNEER TEST REPORT TRANSMITTAL Date Generated: 11/7/2019 Project Name: Red Rock Creek Commons Project Location: Tigard Oregon Company: BCB GENERAL CONTRACTING INC DBA AMBROSE Requested By: Tim Sullvan Attached,please find Kawneer's standard test reports for project submittals. These reports have been witnessed and prepared by an independent testing agency and adhere to industry guidelines and recommendations. These tests are performed for customers, general contractors, architects, specifiers and building owners to compare performance characteristics of various products by all manufacturers. These test reports are generic in nature. The configurations and size of the tested specimens are dictated by industry standards and may not reflect the exact building requirements or conditions for the particular project. By providing a copy of this or these test reports,Kawneer Company, Inc. does not imply or guarantee that this or these products will achieve the same performance levels as recorded in this or these test reports when installed in a building or project. These performance levels were achieved in a laboratory setting under optimum conditions and are not representative of project conditions and may not be repeatable in the field. If field testing is required, it is encouraged that it be done as early as possible and is conducted per AAMA 502-08, or AAMA 503-08. Please reference Note below from these AAMA documents when performing field tests. Note: The default pressures used for water penetration resistance tests conducted in the field are not the same as the laboratory test pressure to allow for field conditions and test methods that vary from the laboratory test conditions and test methods. These conditions are primarily related to the ambient environmental conditions and the installation. The product performance is based on laboratory testing performed under controlled laboratory conditions. The temperature, wind, and barometric pressure conditions during a field test will typically vary from the standard laboratory conditions. The field installations also influence the product performance. Products tested in the laboratory are typically installed near-perfect for plumb, level,and square within a precision opening. Field test specimens, although installed within acceptable industry tolerances, are rarely perfectly plumb, level and square. Shipping,handling,acts of subsequent trades,aging and other environmental conditions all may have an adverse effect upon the performance of the installed specimen. A 113 reduction of the test pressure for field testing is specified as a reasonable adjustment for the differences between a laboratory test environment and a field test environment. Kawneer Company, Inc. <44 -- Andy Nag Director, Customer Operations Page 1 of 1 FC KAWNEER AN ARCONIC COMPAl LIMITED WARRANTY AND REMEDY ANODIZED FINISHES This is to certify that Kawneer Company, Inc. (hereinafter "Kawneer") hereby warrants to its customers and all subsequent purchasers and owners of the project incorporating Kawneer products (hereinafter"Customer(s)"), subject to every term, condition and limitation stated herein, that the anodized finishes applied to the aluminum material (hereinafter "Metal") on the project identified as: Job Name: Your Job Name Here Order(s) #: 99999999 for a period of two (2) years for Class II finishes and five (5) years for Class I finishes from the date of substantial completion of the project, provided however, that the Limited Warranty shall begin in no event later than six (6) months from the date of shipment by Kawneer for the start of the warranty period hereunder. • Will not change color more than five (5) DEcmc as determined per AAMA 611. • Will not crack, blister, check or peel. THIS LIMITED WARRANTY WILL NOT APPLY TO OR COVER, AND KAWNEER HEREBY DISCLAIMS ALL LIABILITY FOR ANY OF THE FOLLOWING: • defects caused by depreciation or normal wear or other occurrences beyond Kawneer's control; • damage to the finish occasioned by moisture or other contamination detrimental to the finish because of improper storage of the finished Metal prior to installation; • water damage due to condensation caused by improper repackaging of the finished Metal prior to installation; • damage to the finished Metal caused by handling, shipping and/or installation, or by use of the Metal with any parts, gaskets, glazing materials, components or sealants of other manufacturers used with Kawneer products, or any lack of performance of Kawneer products attributable to such items; • damage due to finished Metal caused by exposure to caustic or acidic materials; • any particular application or selection of the Metal for any particular project or design; • any application of the anodized finish on any Metal that is also hardware; and • any product which has been subject to abuse, alterations, modification, neglect, misuse, abnormal use, accident, fire, war, flood, falling objects, external forces, earthquakes, acts of God, or to which parts not supplied by Kawneer have been added. A systematic maintenance program must be instituted by the purchaser or user to prevent the build-up of deposits on the anodized surface such as dirt and salt. The surface must be cleaned at least annually in accordance with AAMA 609 & 610 so as to prevent the accumulation of these harmful deposits. More frequent cleaning may be reasonably required in some geographical environments such as heavy industrialized or coastal areas. A FAILURE TO INSTITUTE AND REASONABLY EVIDENCE A SYSTEMATIC MAINTENANCE PROGRAM AS DESCRIBED ABOVE WILL VOID THIS WARRANTY. Page 1 of 3 WTY300EN EC 97914-019 KAWNEER All decisions regarding the existence of defects in material and workmanship and the occurrence of any of the matters described in the preceding paragraphs or affecting this Limited Warranty shall be made by Kawneer and shall be final and binding upon the parties. The sole and exclusive remedy with respect to this Limited Warranty or with respect to any other claim relating to defects or any other condition or use of the products supplied by Kawneer, however caused, and whether such claim is based upon warranty, contract, negligence, strict liability or any other theory, is limited to, at Kawneer's sole discretion, replacement or refinishing of the defective Metal or repayment by Kawneer of the purchase price paid to it. Refinishing of the defective Metal shall be performed by using standard finishing practices and materials as selected by Kawneer. Kawneer reserves the right to approve any contract for refinishing of defective Metal. The warranty on any refinished and/or replacement coated Metal shall continue for the remainder of the original warranty period. At no time does this warranty confer upon the claiming party or any other party the right to proceed with repair, replacement or restoration, without written notice and agreement by a duly authorized officer of Kawneer. Any such work undertaken by the claiming party or any other party shall be for the claiming party's own account and shall result in this warranty becoming null and void. IN NO EVENT SHALL KAWNEER BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES OF ANY KIND, INCLUDING BUT NOT LIMITED TO LOSS OF USE, LOSS OF PROFITS OR GOOD WILL, OR OTHER COMMERCIAL LOSS OR INJURY. Claims under this Limited Warranty must be made to Kawneer in writing within sixty (60) days after discovery of the defective finished Metal. Failure of the claiming party to notify Kawneer within such period shall automatically relieve Kawneer of any and all responsibility and/or liability. Kawneer must be given a reasonable opportunity to inspect the finished Metal claimed to be defective. In the event of a claim under the warranty, Customer shall furnish proof of the date of substantial completion and shall demonstrate that the failure of the product was due to a breach of the warranty stated herein. This Limited Warranty will apply only to Metal which is supplied by Kawneer and used within North America (United States, including Hawaii, and Canada) unless Kawneer agrees otherwise in writing. No terms or conditions other than those stated herein, and no agreement or understanding, oral or written, in any way purporting to modify this Limited Warranty shall be binding on Kawneer unless made in writing and signed by a duly authorized officer of Kawneer. Page 2 of 3 WTY300EN EC 97914-019 KAWNEER AN ARCONIC COMPANY All notices given under or pursuant to this Limited Warranty shall be in writing and sent by registered mail, postage paid, return receipt requested, to the party to whom such notices are to be given, as follows: (a) Kawneer: Kawneer Company, Inc. Attn: Diana Perreiah 555 Guthridge Court Norcross, GA 30092 (b) Customer: Your Company Name Your Street Address Anytown, USA 99999-0000 All such notices as set forth above shall be considered served when received. Customer's agreement to and acceptance of this warranty shall be indicated by signing and returning a copy of this document to Kawneer. Kawneer Company, Inc. Diana B. Perreiah 14 / 0 /7(&-- - President, Arconic Building and Construction Systems Date Issued: 01/01/2015 Accepted By: Customer: By: Signature: Title: Date Signed: Page 3 of 3 WTY300EN EC 97914-019 Architect- 10 year finish warranty has been < KAWNEER confirmed by Kawneer LIMITED WARRANTY AND REMEDY PAINTED FINISHES This is to certify that Kawneer Company, Inc. (hereinafter "Kawneer") hereby warrants to its customers and all subsequent purchasers and owners of the project incorporating Kawneer products (hereinafter "Customer(s)") subject to every term, condition and limitation stated herein, that the painted finishes applied to the aluminum material (hereinafter "Metal") on the project identified as: Job Name: Your Job Name Here Order(s) #: 99999999 shall comply with the scope of this Limited Warranty, during the period of time from substantial completion of the project as set forth in the table below, provided however, that the Limited Warranty shall begin in no event later than six (6) months from the date of shipment by Kawneer for the start of the warranty period hereunder. Kawneer warrants that the finish: Paint Type 70% Fluoropolymer Will not chalk more Will not change color Will not crack, check or (Standard Warranty ten (10) than that more than five (5) peel in such a way as years) ' represented by a Hunter A E units as to adversely affect the No. 8 rating for determined by appearance of the colors or No. 6 for ASTM D 2244 Metal and result in whites, when ("Excessive Color damage to the Metal measured in Change").* accordance with the standard procedures specified in ASTM D 4214, Test Method A ("Excessive Chalking"); 50% Fluoropolymer Will not chalk more Will not change color Will not crack, check or (Standard Warranty five (5) than that more than seven (7) peel in such a way as years)2 represented by a Hunter A E units as to adversely affect the No. 6 when determined by appearance of the measured in ASTM D 2244 Metal and result in accordance with the ("Excessive Color damage to the Metal standard Change").* procedures specified in ASTM D 4214, Test Method A ("Excessive Chalking"); Powder Paint Will not chalk more Will not change color Will not crack, check or (Standard Warranty five (5) than that more than five (5) peel in such a way as years)3 represented by a Hunter A E units as to adversely affect the No. 8 rating when determined by appearance of the measured in ASTM D 2244 Metal and result in accordance with the ("Excessive Color damage to the Metal standard Change").• procedures Page 1 of 4 WTY400EN EC 97914-019 VC KAWNEER AN APCONK COMPANY specified in ASTM D 4214, Test Method A ("Excessive Chalking"); Metallic/mica flake colors are not color measurable and are not subject to the Excessive Color Change warranty set forth above, or any other color change warranty.express or implied. ' Maximum Extended Warranty is twenty(20)years for 70%Fluoropolymer Paint 2 Maximum Extended Warranty is ten(10)years for 50% Fluoropolymer Paint 3 Maximum Extended Warranty is ten (10)years for Powder Paint THIS LIMITED WARRANTY WILL NOT APPLY TO OR COVER, AND KAWNEER HEREBY DISCLAIMS ALL LIABILITY FOR THE FOLLOWING: • damage to the finish occasioned by moisture or other contamination detrimental to the finish because of improper storage of the finished Metal prior to installation; • failure to properly protect the installed finished Metal during the construction process; • water damage due to condensation caused by improper repackaging of the finished Metal prior to installation; • damage including but not limited to scratches and abrasions to the finished Metal caused by use, handling, shipping and/or installation, or by utilization of the Metal with any parts, gaskets, glazing materials, components or sealants of other manufacturers used with Kawneer products or any lack of performance of Kawneer products attributable to such items; • damage to finished Metal caused by exposure to caustic agents, acidic agents, or harmful fumes or other destructive and/or foreign materials; • damage due to improper maintenance e.g. the use of chemical cleaning agents, or applicators; • corrosion of the Metal due to aggressive atmospheres including exposure to salt spray and/or salt mist; • any particular application or selection of the Metal for any particular project or design; • any product which has been subject to abuse, alteration, modification, neglect, misuse, abnormal use, accident, fire or other casualty or physical damage, war, flood, falling objects, external forces, earthquakes, acts of God, or to which parts not supplied by Kawneer have been added, and/or • any defects caused by depreciation or normal wear or other occurrences beyond Kawneer's control. A systematic maintenance program must be instituted by the Customer or user to prevent the build-up of dirt and salt deposits on the painted surface. The surface must be cleaned at least annually in accordance with AAMA 609 & 610 so as to prevent the accumulation of harmful deposits. More frequent cleaning is required in heavy industrialized environments or coastal environments. Coastal environments where salt spray or salt fog is present can be very detrimental to metal especially where the paint coating has been scratched or damaged. In coastal environments where metal is exposed to salt spray or salt fog or in heavy industrial environments, the metal surface must be cleaned at least once quarterly in accordance with AAMA 609 & 610 to prevent the accumulation of harmful deposits. A FAILURE TO INSTITUTE AND REASONABLY EVIDENCE A SYSTEMATIC MAINTENANCE PROGRAM AS DESCRIBED ABOVE WILL VOID THIS WARRANTY. Kawneer is not responsible for chalking or for fading or color changes that are less than the Excessive Chalking or Excessive Color Change referenced and warranted above. Normal weathering, such as the damaging effects of sunlight and exposure to the elements, such as Page 2 of 4 WTY400EN EC 97914-019 KAWNEER COMPANY extremes of weather and atmosphere, may cause any colored surface to fade, chalk, or become soiled or stained. These changes may not be uniform if the surfaces are not equally exposed to the sun and elements. The degree to which normal weathering occurs will vary depending on the air quality, the building's location and many other factors over which Kawneer has no control. Metallic/mica flake colors are not color measurable and are not subject to the Excessive Color Change warranty set forth above, or any other color change warranty, express or implied. All decisions regarding the existence of defects in material and workmanship and the occurrence of any of the matters described in the preceding paragraphs or affecting this Limited Warranty shall be made by Kawneer and shall be final and binding upon the parties. The sole and exclusive remedy with respect to this Limited Warranty or with respect to any other claim relating to defects or any other condition or use of the products supplied by Kawneer, however caused, and whether such claim is based upon warranty, contract, negligence, strict liability or any other theory, is limited to, at Kawneer's sole discretion, replacement or refinishing of the defective Metal or repayment by Kawneer of the purchase price paid to it. Refinishing of the defective Metal shall be performed by using standard finishing practices and materials as selected by Kawneer. Kawneer reserves the right to approve any contract for refinishing of defective Metal. The warranty on any refinished, and/or replacement Metal shall continue for the remainder of the original warranty period. At no time does this warranty confer upon the claiming party or any other party the right to proceed with repair, replacement or restoration, without written notice and agreement by a duly authorized officer of Kawneer. Any such work undertaken by the claiming party or any other party shall be for the claiming party's own account and shall result in this warranty becoming null and void. IN NO EVENT SHALL KAWNEER BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES OF ANY KIND, INCLUDING BUT NOT LIMITED TO LOSS OF USE, LOSS OF PROFITS OR GOOD WILL, OR OTHER COMMERCIAL LOSS OR INJURY. Claims under this Limited Warranty must be made to Kawneer in writing within sixty (60) days after discovery of the defective finished Metal. Failure of the claiming party to notify Kawneer within such period shall automatically relieve Kawneer of any and all responsibility and/or liability. Kawneer must be given a reasonable opportunity to inspect the finished Metal claimed to be defective. In the event of a claim under the warranty, Customer shall furnish proof of the date of substantial completion and shall demonstrate that the failure of the product was due to a breach of the warranty stated herein. This Limited Warranty will apply only to Metal which is supplied by Kawneer and used within North America (United States, including Hawaii, and Canada) unless Kawneer agrees otherwise in writing. No terms or conditions other than those stated herein, and no agreement or understanding, oral or written, in any way purporting to modify this Limited Warranty shall be binding on Kawneer unless made in writing and signed by a duly authorized officer of Kawneer. Page 3 of 4 WTY400EN EC 97914-019 KAWNEER All notices given under or pursuant to this Limited Warranty shall be in writing and sent by registered mail, postage paid, return receipt requested, to the party to whom such notices is to be given, as follows: (a) Kawneer: Kawneer Company, Inc. Attn: Diana Perreiah 555 Guthridge Court Norcross GA 30092 (b) Customer: Your Company Name Your Street Address Anytown, USA 99999-0000 All such notices as set forth above shall be considered served when received. Customer's agreement to and acceptance of this warranty shall be indicated by signing and returning a copy of this document to Kawneer. Kawneer Company, Inc. Diana B. Perreiah f /7LCL'' President, Arconic Building and Construction Systems Date Issued: 01/01/2015 Accepted By: Customer: By: Signature: Title: Date Signed: Page 4 of 4 WTY400EN EC 97914-019 5005 LBJ Freeway Suite 1050 Dallas,TX 75244 Oldcastle BuildingEnvelo e � 1-866-Oldcastle(653-2278) A CRH LO."'PA4V obe.com OLDCASTLE BUILDINGENVELOPE® STANDARD TEN-YEAR LIMITED GLASS WARRANTY Oldcastle BuildingEnvelope®'s("Oldcastle")Ten-year Limited Warranty("Limited Warranty")' applies to the following products set forth below for a period of ten(10)years from the date of manufacture: 1. INSULATING GLASS(DUAL SEAL UNIT)LIMITED WARRANTY.The Insulating Glass(Dual Seal Unit) shall be free of defective materials or workmanship, which result in visible fogging or moisture residue formation on internal glass surfaces due to failure of the insulating glass seal under normal conditions. 2. LAMINATED GLASS LIMITED WARRANTY. The standard two-ply Laminated Glass shall be free of defective materials or workmanship, which result in delamination under normal conditions,excluding glass- polycarbonate laminates. 3. CERAMIC FRIT SPANDREL,FRIT SILK-SCREENED,AND DIGITALLY PRINTED INK GLASS LIMITED WARRANTY. Ceramic Frit Spandrel,Frit Silk-Screened,and Digitally Printed Ink Glass shall be free of defective materials or workmanship, which result in visible peeling or cracking of the ceramic materials under normal conditions. 4. HIGH-PERFORMANCE COATINGS LIMITED WARRANTY. Oldcastle warrants to facilitate a resolution of valid claims for defective materials or workmanship against the glass manufacturer who applied the high- performance coating,which result in peeling or cracking of the high-performance coating when glazed as a component of a dual seal insulating glass unit with the coating oriented to the interior airspace wider normal conditions. 5. HEAT-TREATED GLASS LIMITED WARRANTY. Heat-Treated Glass (tempered and heat-strengthened) shall meet the requirements of ASTM C 1048 under normal conditions. Heat-soaked tempered glass is covered under a separate express limited warranty and is excluded from this Limited Warranty. A separate Heat-Soaked Tempered Glass Warranty is offered when heat-soak testing is requested prior to the fabrication of the glass. The Additional Terms and Conditions contained on the following pages are hereby expressly incorporated into Oldcastle's Limited Warranty. OBE 10-year Products Warranty 2019-02-11(002).docx Page 1 of 2 ADDITIONAL TERMS AND CONDITIONS INCORPORATED INTO OLDCASTLE BUILDINGENVELOPE®,INC.'S STANDARD TEN-YEAR LIMITED GLASS WARRANTY If,within ten(10)years from the date of manufacture,any glass provided to Purchaser breaches the Limited Warranty relating to the products listed above,Oldcastle,shall either(a)furnish the purchaser with a replacement product,F.O.B.the Oldcastle plant supplying the replacement,or (b)refund the original purchase price which the purchaser paid for the failed product.If Oldcastle elects to supply a replacement,the Limited Warranties shall extend only for the balance of the original Limited Warranty period of the failed product.Oldcastle shall have the sole right to determine whether such glass shall be replaced. SUBMITTING A CLAIM Every claim for breach of this Limited Warranty shall be void unless: (1)it is provided to Oldcastle in writing and dated by post-mark or electronically within thirty(30)business days of the date the defect was discovered or should have reasonably been discovered,(2)it includes copies of the applicable invoices or sales orders,(3)Oldcastle is given a reasonable opportunity to inspect the alleged defective glass and its installation at the site,and(4)it is received by Oldcastle within ten(10)years from the date of manufacture. All claims shall be directed to the operating location which sold(invoiced)the product suspected of being defective. EXCLUSIONS Oldcastle expressly disclaims responsibility for,and Oldcastle's Limited Warranty does not cover,the following:(i)any damage to any product caused by,or results from,improper installation,including any installation not performed in a good and workmanlike manner in accordance with industry standards and the Glass Association of North America(GANA)Glazing Manual,NGA/GANA Proper Procedures for Cleaning Architectural Glass Products bulletin,and other NGA/GANA documents,applicable shop drawings,ordinances and safety codes;(ii)improper cleaning and maintenance;(iii)storage in other than a good and workmanlike manner;(iv)abuse;(v)damage or breakage caused by persons other than employees or agents of Oldcastle while being handled,installed,shipped,glazed or used;(vi)damage or breaks,including scratches, occurring during construction or cleaning;(vii)damage or breakage caused by improper building design or construction;thermal breakage;(viii) building or foundation movement;(ix)use upon the product of any cleansing or treating agents;(x)any metal,plastic,or other scraping tools; (xi)atmospheric pollutants or contaminants,or runoff;(xii)leachate from building components;(xiii)use of the product with incompatible glazing or other materials;(xiv)or use of the product for purposes not considered suitable therefore by the glass industry or,in its sole discretion, by Oldcastle.No warranty is provided in respect of any damage to or failure caused by any of the foregoing. Oldcastle provides no warranty for any product shipped outside the United States and Canada, THE WARRANTIES IN THIS LIMITED WARRANTY ARE THE ONLY WARRANTIES APPLICABLE TO THE PRODUCTS IDENTIFIED ABOVE.THERE ARE NO OTHER WARRANTIES,REPRESENTATIONS,OR CONDITIONS OF ANY KIND,EXPRESS OR IMPLIED,STATUTORY OR OTHERWISE,WITH RESPECT TO THE PRODUCTS SUPPLIED BY OLDCASTLE,INCLUDING BUT NOT LIMITED TO,ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.ALL SUCH WARRANTIES ARE HEREBY SPECIFICALLY DISCLAIMED,AND OLDCASTLE SHALL HAVE NO LIABLITY THEREFORE, NOTWITHSTANDING(1)OLDCASTLE'S ACTUAL KNOWLEDGE OF ANY INTENDED USE OF THE PRODUCTS,OR(2)ANY ADVICE OR REPRESENTATION THAT MAY HAVE BEEN RENDERED BY OLDCASTLE CONCERNING THE DESIGN, MANUFACTURE,FABRICATION,SALE USE,INSTALLATION,OR PROVISION OF THE PRODUCTS. IN NO EVENT SHALL OLDCASTLE BE RESPONSIBLE FOR ANY COSTS,EXPENSES,OR DAMAGES RELATED TO REPLACING NONCONFORMING OR DEFECTIVE PRODUCTS(INCLUDING,BUT NOT LIMITED TO,LABOR,MATERIAL,OTHER EXPENSES OR DAMAGES INCLUDING CONSEQUENTIAL,SPECIAL,INDIRECT,OR OTHER DAMAGES OR COSTS),OTHER THAN AS SPECIFIED IN THIS PARAGRAPH.OLDCASTLE RESERVES THE RIGHT TO INSPECT ANY PRODUCT THAT IS ALLEGED TO BE DEFECTIVE. This Limited Warranty is extended to the purchaser of the product only and any claim hereunder must be made solely by the purchaser.This Limited Warranty is not transferable without Oldcastle's prior written consent,which may be withheld entirely in its discretion,and any attempted assignment without such prior written consent shall void this Limited Warranty. OBE 10-year Products Warranty 2019-02-11(002).docx Page 2 of 2 MARCH, 2019 190/350/500 Standard Entrances 3 EC 97911-201 INDEX Architect: Note 2.3 Enterence Door Hardware will be submitted under 08 71 00 with the door hardware package by another vendor. PICTORIAL VIEW 5 Sm ° DOOR TYPES/SECT. DIMENSIONS 6 c c E ay ° CONSTRUCTION DETAILS 7,8 3 ° m STANDARD ENTRANCE PACKAGES 10, 11 -Y ENTRANCE OFFERINGS 12, 13 v �� T APPLICATION CRITERIA 13 = yd PUSH PULL HARDWARE 14 3 3 L PANELINETM/PANELINETM MEL EXIT DEVICE 15, 16 a= 8 y AUTO SHOWROOM DOOR 17, 18 n u„ c INTERMEDIATE RAILS 19 To no INFILL OPTIONS 19 ACCESSORIES 19 ibi HANDICAP ACCESSIBLE ITEMS 20 BOTTOM RAILS 21 THERMAL CHARTS 22-40 i S 5 3 c Metric(SI)conversion figures are included throughout these details for reference.Numbers in parentheses a d ( )are millimeters unless otherwise noted. sm 2. a E g The following metric(SI)units are found in these details: a m— meter ^$ a cm centimeter a ° mm— millimeter n y s—second m � Pa— pascal MPa— megapascal kawneer corn ADMA010EN < KAW N E E R 4 190/350/500 Standard Entrances 22222, 2019 BLANK PA GE EC 97911-201 7,242 C,, \.gk I2 } 12 ƒ)f \0 °. mi )# 0 188 ft¥2 k� \ {//C 2igi a k§_\ ) ! % k \ \\ _ \ £ �~ / {$ = \ �7 } | < KAWNEER mMAa±N kawneer.corn MARCH, 2019 190/350/500 Standard Entrances 5 EC 97911-201 PICTORIAL VIEW / 4. Cam. O ...1 C N ' U 45 it 'l 5 c N 'C O U 1.) a 3 amE Scy z'_ #1 MECHANICAL FASTENING is accomplished a i.6• S by attaching a 5/16"(7.9)thick extruded aluminum a. y Li channel clip to the vertical stile with 1/4"-20 heat „ a o d strengthened bolts and 3/16"thick steel nut plates 3 A for a high strength welding base for attachment t c c,Z' horizontal member. a v� o n n c3i° c 2.°� a a m o d j v a c 5.S c 5 3 U 2 o E I Qj N U N L §N J N 2 N - O qi) D v #2 SIGMA'DEEP PENETRATION PLUG WELDS are made top and bottom after the horizontal ►� is properly positioned over the channel clip to 5. , help provide the strongest door corner joint z currently available. i .'a 5 a a >� A i /L\ O N C y.— � 13$ a > a E o n `o U v 3 d DUAL MOMENT WELDED CORNER CONSTRUCTION S Qyi e N Y [ c #3 SIGMA*FILLET WELDS along both top and An arc welding process known as Shielded Inert Gas Metal Arc(SIGMA) bottom webs of the rail extrusion complete the or also known as Metal Inert Gas(MIG). welded corner construction. kawneercom ADMA01 OEN < KAWNEER AN ARCOMC COMPANY 6 190/350/500 Standard Entrances MARCH, 2019 DOOR TYPES/SECTION DIMENSIONS EC 97911-201 Additional information and CAD details are available at www.kawneer.com 190 NARROW STILE 350 MEDIUM STILE 500 WIDE STILE 1 W 2 1 STANDARD 1 STANDARD 1 2 0 0 0 0 LOCATIONS LOCATIONS a x ¢ ¢ o m O mW (LW m u c P ill 2° 21= 2 �'O i v72 U K fn A c E 33 . j U Z U- 00 o D c ATTACHMENT ATTACHMENT STANDARD O u~i O¢ O m rn • EXIT DEVICE L)-, U-, C3� v c o III UHU II! : �'' 2 > L p)t �.i.2 r �L BOTTOM BOTTOM• ♦ • " L OF DOOR OF DOOR c cco 00= Fj • • ♦ cc a c vvoc V N _ V 4t7 f • O 1 J m L I N 1.,-, 1-23/32" rill (43.8) '1 P' TYPICAL • ~ ~ -� • : i ag N N N-V0 Np�v' 2 n m ; 0 I m d �c Ec • O > n O v U p a c v1 41 Y 3 c E 5 Z E SINGLE ACTING SINGLE ACTING SINGLE ACTING Z a I 5`.0' I (88.9) I t 11270: I Y c C 1111e, Nat DOUBLE ACTING DOUBLE ACTING DOUBLE ACTING < KAW N E E R 4DMA010EN kawneeccom AN ARCON.COMPANY MARCH, 2019 190/350/500 Standard Entrances 7 EC 97911-201 CONSTRUCTION DETAILS Additional information and CAD details are available at www.kawneer.com NOTE: 1.SERIES 190 NARROW STILE DOORS ARE DETAILED,MEDIUM STILE 350 DOORS AND WIDE STILE 500 DOORS ALSO MAY BE USED. 2.TRIFABTu VG 450 CENTER,I1-3/4"X 4-1/2"t44.5 X 114.3)FRAMING IS DETAILED WITH THE DOORS FOR REFERENCE.OTHER KAWNEER FRAMING SERIES OR CURTAIN WALL SYSTEMS MAY BE USED. REFER TO THE CATALOG INDEX FOR THE APPROPRIATE DETAIL SECTION. 0 9 9 o m • d a ` E 7 7 6 10 6— 10 mm2 I I I 5 v'A 3 mm, a 2 d 1— —2 —3 4— —5 1 II 3 4-- ---5 U L Q a/ Litii J • s, 2,;W 11 cti rmadfi 8 8 8 8 j3g m - vD 3 U N j O . I 450019 450019 I To a � J m= . OE _ o Ill -4..t. M I. 01 li Nm n i 2 r 1 PAIR OF DOUBLE ACTING DOORS 3 I I 450501 450501 i U ]vI � 'r 2 ll 1 lit l _I 4DE:1) I r r 5 5. 1 PAIR OF SINGLE ACTING DOORS 3 5 'O 450501 450501 i T I 450019 450019 I I 3 3 E "pi& A V VW - , 01 m ,s N ..E c I I sr, lai ,.V T a a r r r 4 g c° 4 5 4 5 v z d DOUBLE ACTING DOOR SINGLE ACTING DOOR I 450033 INSERT cc 6 kawneer.com ADMA01 OEN < KAW NEE R 8 190/350/500 Standard Entrances MARCH, 2019 CONSTRUCTION DETAILS EC 97911-201 Additional information and CAD details are available at www.kawneer.com DOUBLE ACTING DOORS 450012 III K 'Y 9 0 C N � � O 10 450022 N c E I 67 GLASS STOPS — o,m rn [•1—_ - •7 zg c_ 450081 450081 w m g m D 450500 450500 c c; o TRAY TRAY 'a'y m MIT 10 7 °Q, m mE ate• E § ErEx rn,0 Nt g N N >V O N13, mao a m= - m E u ; � ammo 4^ mhzimik N U U C U C C C comTga 8 8 8 E,o a c o v O c 5 c c a OPTIONAL OPTIONAL OPTIONAL c m u E BOTTOM RAIL BOTTOM RAIL BOTTOM RAIL y 1 WEATHERING I WEATHERING I WEATHERING ; m-an / Jm- agoomiliiiii 069143 069141 069143 OVERHEAD CLOSER FLOOR CLOSER OVERHEAD CLOSER X•Mlm_ _�., SINGLE ACTING DOORS —...•y COC WITH SINGLE 450012 450012 ACTING OFFSET ARM d III II. E 9 9 3 450022 +� asoo22 8 GLASS STOPS GLASS STOPS i 450502 450502 450079 450079 8 c 0 10 7 - , 041045 1 041045 O 10 7 8 NI §'-a. v. N;r ' r W N r o; 0 F. Eza agimpromi A & Za c :9: C 8 8 8 8 k C m C OPTIONAL OPTIONAL OPTIONAL OPTIONAL y g C BOTTOM RAIL BOTTOM RAIL BOTTOM RAIL BOTTOM RAIL WEATHERING WEATHERING WEATHERING I WEATHERING 7 069139 069139 069139 069139 OVERHEAD CLOSER OVERHEAD CLOSER OVERHEAD CLOSER OVERHEAD CLOSER ,C KAWNEER ADMA010EN kawneer.com AN APCONIC COMPANY MARCH, 2019 190/350/500 Standard Entrances 9 EC 97911-201 BLANK PAGE 0 V 0 W a E Tarn o c 3 U D a m . 7 C O u Y m a 3 NO J N U " rn agi - >m v a 0 n a p J 0 2L 33 =- rnr '-�gn O N.8 N ?v.; j-Cg° E Q C N � LEFT BLANK INTENTIONALLY 7 J S T y 3 EE '2 > > j 7 : E v_.' $ I. m $ o S L 3 m Y Cc kawneercom ADMAO1 OEN FC KAW N E E R 10 190/350/500 Standard Entrances MARCH, 2019 STANDARD ENTRANCE PACKAGES EC 97911-201 Additional information and CAD details are available at www.kawneer.com TrifabTM VG 450 center door frames shown, TrifabTM VG 451 center door frames similar. DIMENSIONS ARE NOMINAL 111111rk‘ SINGLE ACTING DOORS ,1 IN/7 1 , ,, O ,0 • TN'oi A ` _N O y �3132" 111/8" �" F o(2.0 (3.2) (2.4) ;m rn • DOOR OPENING WIDTH(DOW) • -2W `o Y E 2)T 3/8" OVERALL FRAME WIDTH(OFW) • 318" a;m'2 (9.5)• • • •(9.5) ., $t MASONRY OPENING WIDTH(MOW) G m.S En • • W> m 'c y o a > > o • N 0.III O 4 1 tilt c 3 r z-c ap�2 4W U TRANSOM JAMBS Xli o ; E 9 9 o c a 3 c E • 0 ,o 8 u ! d a 3/8" OVERALL FRAME WIDTH(OFW) I 3i8" i c-2 c (9.5) (OFW) 1 (9.5) d_ a MASONRY OPENING WIDTH(MOW) 1-3/4" 1 FRAME SIGHTLINE(FSL) FRAME SIGHTLINE(FSL) + 1 3J4 1 1.44.5) 1 I (44.5) 0. o CONTINUOUS HINGE JAMB , -:.Ili v 4 ii 1- A' 0 o pO°'N 5/16" '- 3/32" a (7.9) (2.4) DOOR OPENING WIDTH(DOW) S c 3i8"•• OVERALL FRAME WIDTH(OFW) • •3/8" 0 (9.5) •(9.5) 8 • MASONRY OPENING WIDTH(MOW) • STANDARD SIZES(TRIFABTM 400&TRIFABT"'VG 450 CENTER FRAMES) -g ® c WITH AND WITHOUT TRANSOM ° 'o n Door Opening Dimension(DOW) Overall Frame Dimension(OFW) Masonry Opening Dimension(MOW) c'E c 3'0" (914) 3'3-1/2" (1,003) 3'4-1/4" (1,022) g t 3'6" (1,067) 3'9-1/2" (1,156) 3'10-1/4" (1,175) z a E 6'0" (1,829) 6'3-3/4" (1,924) 6'4-1/4" (1,937) m o C STANDARD SIZES(TRIFABTM VG 451 CENTER FRAMES) N 2 WITH AND WITHOUT TRANSOM 3 : Y Door Opening Dimension(DOW) Overall Frame Dimension (OFW) Masonry Opening Dimension(MOW) Y c 3'0" (914) 3'4" (1,016) 3'4-3/4" (1,035) 3'6" (1,067) 3'10" (1,168) 3'10-3/4" (1,187) 6'0" (1,829) 6'4" (1,930) 6'4-3/4" (1,949) WITH AND WITHOUT TRANSOM OFW= DOW+2 FSL MOW=OFW+3/4" Note:Dimensions shown above reflect Al Price Book standard stock door frame height with transom at 10'3-1/2"(3,137). < KAW N E E R ADMA010EN kawneer.com 004 ARGON,COMPANY MARCH, 2019 190/350/500 Standard Entrances 11 EC 97911-201 STANDARD ENTRANCE PACKAGES Additional information and CAD details are available at www.kawneer.com Do' • M, • to��—��W ill o .'''N C N — C) y o y E T O 2_ F- J N I U R 0 3 I ?; O I u2m 0 o 7 j 3 fn i m o z 7:O N pp a a 3 L a, 450022 Z'$' • - ii GLASS STOPS ..; • t!����i1 •W // y v W Z o > > O V N 2 J J � 71 O` ui O a cc I U. LL o 2, l'&7 r Cr CL pp N = U AaI =W U C Z 2 C J a Z 4 0od Tjao O W LU U _ "t r J = y 0 N r � 2E = o 1 LT_ ID m = < > /1 y y W (� ~ O _ I 2 !All I I Op O Z I H I- LLI Z < o(7 o W O 1a. = I 0 -J Z Z Z Q 2 Z o W w 0 0 0 0 I ~ ,~ O I 3. D v _L S I to M 1 } • • • c'ir\ \ \\ \ \ \ (V N • • • \ \ \ \\ \ \ J O 'a 5 ' STANDARD SIZES(TRIFABT"'400&TRIFABT'^VG 450 CENTER FRAMES) 5 WITHOUT TRANSOM D a Z Door Opening Dimension(DOH) Overall Frame Dimension(OFH) Masonry Opening Dimension(MOH) 3 m o 7'0" (2,134) 7'1-3/4" (2,178) 7'2-1/8" (2,188) N 7'0" (2,134) 7'1-3/4" (2,178) 7'2-1/8" (2,188) TE ` 7'0" (2,134) 7' 1-3/4" (2,178) 7'2-1/8" (2,188) v 1; c STANDARD SIZES(TRIFABTM VG 451 CENTER FRAMES) E WITHOUT TRANSOM 10 u Door Opening Dimension(DOH) Overall Frame Dimension(OFH) Masonry Opening Dimension(MOH) i R i 7'0" (2,134) 7'2" (2,184) 7'2-3/8" (2,194) s 8 Y 7'0" (2,134) 7'2" (2,184) 7'2-3/8" (2,194) 22 © 7'0" (2,134) 7' 2" (2,184) 7'2-3/8" (2,194) WITHOUT TRANSOM OFH=DOH+FSL MOH=OFH+3/8" WITH TRANSOM OFH=DOH+TH MOH=OFH+3/8" Note: Dimensions shown above reflect Al Price Book standard stock door frame height with transom at 10'3-1/2"(3,137). kawneer corn ADMA010EN IFC KAW N E E R 4N ANCONIC COMPANY 12 190/350/500 Standard Entrances MARCH, 2019 ENTRANCE OFFERINGS EC 97911-201 STANDARD OPTIONAL Doors Narrow stile 190 doors prepared for attachment hardware. Medium stile 350 br wide stile 500. Door Sizes Std. Standard sizes shown on pages 10 and 11. Any size up to 4'-0"x 8'-0"(1,219 x 2,438). Glass Stops Beveled glass stops for 1/4"(6.4)or 3/16"(4.0)infill. Square glass stops for 3/16"(4.0)or 1/4"(6.4)infill. Also 1"(25.4)stops. Door Frames TrifabTM 400-1-3/4"x 4"(44.5 x 101.6)for single glazing. Any Kawneer framing system suitable for door frames may be selected, Trifabl"'VG 450 Center-1-3/4"x 4-1/2"(44.5 x 114.3)for single but manufactured per order. glazing or TrifabT"VG 451 Center-2"x 4-1/2"(50.8 x 114.3)for o double glazing. ` 1_ )N Push-Pulls Single Acting: Architects Classic Hardware CO-9 Pull and Single Acting: Architects Classic Hardware N 5 CP-II Push Bar. CO-12 and CP-II push bar. N E o c Architects Classic Hardware CO-9 Pull and CP Architects Classic Hardware 0 m Push Bar. CO-12 and CP push bar. �Y m Architects Classic Hardware o,; W CO-9/CO-9 Pulls. $ wit Architects Classic Hardware o, 0 CO-12/CO-12 Pulls. R Double Acting: Architects Classic Hardware CP Push Bars. Double Acting: Architects Classic Hardware g,$ CO-9/CO-9 Pulls. W o.o Architects Classic Hardware CO-12/CO-12 Pulls. d.t CL Door Closers Single Acting: Norton 1601 adjustable or 1601 BF adjustable Single Acting: LCN 4040 surface closer with or without 2 v=E surface closer with back-check and with or adjustable hold-open. m $ ac c 3 $ without adjustable hold-open. a$c c LCN 2010,2030 or 5010 concealed overhead 3 c Standard concealed overhead closer with closers with or without hold-open. m single acting offset arm. ;75 ,1 LCN 1260 adjustable surface closer. 3 1=t g J Egg Norton 8100 surface closer with a 50%spring power adjustment(for opening forces of less than 8 pounds).Closer is available with standard back-checks and with or without the hold-open feature. International single acting concealed overhead closer. Falcon SC 60 Surface closer. Double Acting: Standard concealed overhead closer with 90 Double Acting: International overhead concealed closer. degree or 105 degree hold-open or without hold open. For heavy traffic&high wind applications,a supplemental door stop is recommended. Hinging Single Acting: Kawneer top and bottom offset pivots(or) Kawneer top and bottom 4 1/2"x 4"(114.3 x 101.6)ball bearing butt hinge with non- removable pin(NRP)(or)Kawneer continuous gear hinge. `s Double Acting: Kawneer bottom center pivots for use with Double Acting: Kawneer top center(walking beam)pivot for concealed overhead closer. use with floor closers. Intermediate Single Acting: Kawneer intermediate offset pivot(or)Kawneer Single Acting: Rixson M-19 or IVES#7215-INT intermediate Pivots/Butts 4-1/2"x 4"(114.3 x 101.6)ball bearing butt offset pivot. hinge with non-removable pin(NRP). c E c Power Transfers Single Acting: Kawneer EL intermediate offset pivot(or) t P.Kawneer EL 4 1/2"x 4"(114.3 x 101.6)ball .0 E bearing butt hinge with wire transfer(or)EPT s; (Electric Power Transfer). ;8 c Z a c Power Supply SP-1000X Power Supply: For use with PanelineTM EL exit devices. NP1 Power Supply:For use with Kawneer 1686 MEL and ° c For use with Falcon EL 1690 and EL 1790 exit devices. 1786 MEL exit devices only. m m �N SP-2000 Power Supply: For use with PanelineTm MEL exit devices. Y c Locks- Adams-Rite MS 1850A deadlock with two 1-5/32"(29.4)diameter 5 Adams-Rite#4510 latch lock. Active Leaf pin cylinders. Adams-Rite#1850A-500 short throw deadlock. Adams-Rite#1850A-505 hookbolt lock. Adams-Rite#4015 two-point Lock. Adams-Rite#4085 three-point Lock. Adams-Rite#4089 exit indicator. Kawneer cylinder guard. Kawneer thumbturn(in lieu of cylinder). VI KAW N E E R ADMA010EN kawneer.com AN ARCONIC COMPANY MARCH, 2019 190/350/500 Standard Entrances 13 EC 97911-201 ENTRANCE OFFERINGS/APPLICATION CRITERIA STANDARD OPTIONAL Locks- One pair of Kawneer flush bolts in the ControllerT"'is a 3-point locking system consisting of a two point locking device in the Inactive Leaf inactive leaf of a pair of doors. inactive leaf in lieu of flush bolts,working in conjunction with the MS 1850A deadlock in the active leaf.This combination provides for greater security than possible with flush bolts and complies with the life safety considerations of building codes which prohibit the use of flush bolts. Thresholds A 1/2"x 4"(12.7 x 101.6)aluminum mill A 1/2"x 6-3/4"(12.7 x 171.5)aluminum mill finish threshold. finish threshold. Weathering Single Weathering system in the door Bottom Door Sweep 3 2 Acting: and frame consisting of a dense, a g£ bulb polymeric material,which a d CD remains resilient and retains v its weathering ability under m' temperature extremes.(The a;m system is complete with an 5, -3 optional EPDM blade gasket 3 a A sweep strip applied to the v 3 n bottom door rail with concealed m T g,, fasteners). a Double Pile cloth weathering in the door 11 5N Acting: and frame. G n o L y 3 3 fi Exit Device Kawneer 1686 Concealed Rod Exit Device Kawneer 1686 MEL Concealed Rod Exit Device electric modification is available. c tv,z, with or without a mortised type cylinder. Kawneer 1786 MEL Rim Exit Device electric modification is available. $3 8 C Kawneer 1686 CD Concealed Rod Exit Device available with cylinder dogging. 2 1.4 a Kawneer 1786 Rim Exit Device is a rim Kawneer 1786 CD Rim Exit Device available with cylinder dogging. , 2 o d type exit device with or without a rim type o cylinder.Pairs of doors require a Kawneer Kawneer 1686 Lever Handle is available for the Kawneer 1686 concealed rod exit device. RM-86 removable mullion. Kawneer 1786 Lever Handle is available for the Kawneer 1786 rim type exit device. 3 Falcon 1690 Concealed Rod Exit Device with or without a mortised type cylinder. v iv y Tr Falcon 1790 Rim Exit Device is a rim type exit device with or without a rim type cylinder. a „ c Paneline exit device is a concealed rod yp yp y 2�2 exit device applicable to single or pairs Falcon EL 1690 electric modification is also available. of doors.It features an activating panel Falcon EL 1790 electric modification is also available contained within the door cross rail. Paneline"'MEL electric modification is also available. Falcon 1990 is a concealed rod exit device with or without a rim type cylinder. Falcon 2090 is a rim type exit device with or without a rim type cylinder.Pairs of doors require a removable aluminum mullion.RM-70 with the Falcon 2090 exit device. Exit Device Pulls: Optional Exit Device Pulls: Architects Classic CO-9 Pull with Kawneer Architects Classic CO-12 Pull with Kawneer 1686 and 1786 exit devices. 1686 and 1786 exit devices. v Architects Classic CPN Pull for PanelineTM and PanelineT"'MEL exit devices. D v t n g 2 5 5. APPLICATION CRITERIA As indicated on Page 10,the standard sizes of swing doors are 3'-0"x 7'-0"(914.4 x 2,133.6)or 3'-6"x 7'-0"(1,067 x 2,134)for single doors and 6'-0"x 7'-0"(1,828.8 x 2,133.6)for pairs of doors.When these sizes are exceeded the following criteria should be administered. o 1. Larger doors should not be subject to heavy traffic or 2) strong prevailing wind conditions. s a 2. Larger doors should use a door closer with a good back a m check action. 3E METERS E N 3. When a door exceeds 9'-0"(2,743.2)in height,a cross 5 1 1. A=NARROW STILE 190 v. rail or push bar is recommended to reinforce the vertical stiles. -3.5 11 B=MEDIUM STILE 350 8 E 4. When an offset hung door exceeds 7'-6"(2,286.0)in � OR o g height,an intermediate butt or offset pivot should be used. 10 `` _3 rn v w 9 ` w WIDE STILE 500 v "" 5. Tall doors should be prevented from racking by proper B w 's 8 y utilization of hardware,including door closers,door holders 8 —2.5 2 2 _ © and door stops. A 7 —2 MAXIMUM DOOR HEIGHT NOTE: FOR PANELINETM MEL=8'-0" SOME OF THESE CRITERIAARE OF A SUBJECTIVE 1 2 3 4 5 NATURE,CONTACT YOUR FACTORY REPRESENTATIVE FEET FOR APPLICATION ASSISTANCE. MAXIMUM SIZE DOOR LEAFS GLAZED WITH 1/4"(6.4)GLASS kawneer.com ADMA010EN < KAW N E E R 14 190/350/500 Standard Entrances MARCH, 2019 PUSH-PULL HARDWARE EC 97911-201 49 ] REFER TO HARDWARE SECTION FOR COMPLETE HARDWARE INFORMATION. R -IEWJ1/EE ERlir. ' ARCHITECTS CLASSIC (PUSH PULL SETS) a5 = a I R SINGLE ACTING DOORS USE A PULL HANDLE AND PUSH BAR AS STANDARD ;: DOUBLE ACTING DOORS USE CP PUSH BARS BACK TO BACK AS STANDARD. 0 c= �.m o rs A ` E rn8 I 3 � igm 1 ; o .Y 2 CP-IMP-II* CP/CP 1] 9 R )3 t m`> CO-9/CP CO-9/CP-II CO-9/CO-9 >o 0 CO-12ICP CO-12/CP-II CO-12/CO-12 m°'" m n�¢ 8 3 U 1 ARCHITECTS CLASSIC (COMPONENTS) 2 r aii :__ M U .. . U C fi ° @� GQ 12" 3c0a 9" (304.8) ag (22B.6) = U a 0 d. M @ N 4 L J m t Q CO-9 PULL CO-12 PULL CP-II*PUSH BAR CP PUSH BAR *CP-II PUSH BAR IS NOT TO BE USED FOR BACK TO BACK MOUNTING ON D/A DOORS. EXIT DEVICES EXIT DEVICES AND PULLS KAWNEER PANELINET"J PANELINETM MEL u a fi y 12" L ,;,-§ / 9° (304.8) ikki12 o (228.6) 8 w �C" 13. O 8. CO-9 PULL CO-12 PULL RIM LATCH CONCEALED ROD r ,,/// a Falcon 2090 Falcon 1990 1d/ o ` C1;13US LISTED ! Ii CPN PULL ON �.% .EXTERIOR OF DOOR r CONCEALED ROD RIM LATCH Falcon 1690 Falcon 1790 R Falcon EL 1690 Falcon EL 1790 v c z I C US LISTED _ ` ,..10/4".00/ 1 trio c EXTERIOR VIEW OF 190 DOOR(350/500 SIMILAR) 10.11---- • -CPN PULL AND OPTIONAL CYLINDER GUARD SHOWN. CONCEALED ROD RIM LATCH LEVER HANDLE SEE PAGE 15 AND 16 FOR COMPLETE Kawneer 1686 Kawneer 1786 Kawneer 1686 PANELINET"INFORMATION Kawneer 1686 MEL Kawneer 1786 MEL Kawneer 1786 Kawneer 1686 CD Kawneer 1786 CD I< KAW N E E R ADMA010EN kawneer COM PA ARCONOC COMPANY MARCH, 2019 190/350/500 Standard Entrances 15 EC 97911-201 PANELINETm / PANELINET"' MEL EXIT DEVICE The Panelinerv'concealed rod exit device for 190, 350 and 500 doors will accommodate variations in stile width and door width as shown in the following illustrations. Sidelites adjacent to PanelineTM equipped doors not requiring exit devices may be fitted with fixed panels as detailed below to match the general appearance of the PanelineTA/cross rail. C 0US LISTED The Optional PanelineTA9 MEL device is designed for electrified access control and is compatible with most key pad and card reader systems. See Hardware Section for complete description of PanelinerM hardware, including finish of units. o PanelinelM uses mortise cylinder in lieu of the normal rim-type. 8.2 Dummy Panelinerm units are not for use with any type of lock. 8 ` E JNTERIOR ELEVATIONS 23/32' 1s/8" • s�,. 5$2 NOTE:Sidelites must be stop glazed above and below rail. 1 )438) (34.9) zmm ?lib.Y I • OM. T T m n°E SEE ' • .' t NOTE a mill m i a o a° y'? no n m i m.g E 1 'O q - �o 335 _ -- . 2 3* r '� '— ai15M' 1� 00 V /6 3 ° C . 1 , 22j °a — 1 2 3' D m a y 3'2"5c° �3 0` °, SEE IMO WO E NOTE im U J O d y • m y m 3i d'° • I Immo J m C m � r 36-1/8" ACTIVE DOOR SIDELITE *VESTIBULE DOOR CROSSRAIL _ (917.6) SIDELITE CROSSRAIL (Without Exit Device or Lock) WITH EXIT DEVICE TO BOTTOM CROSSRAIL WITH FIXED OF DOOR AND CPN PULL HANDLE PANEL LOCK STILE TRIM FILLER WIDTH VARIES WITH STILE WIDTH DOGGING LOCK ? PUSH �/ /(TYPICAL) PANELINETM MEL COMPONENTS 5 D D ior 3 190 DOOR rii° (155.6) DOOR OPENING WIDTH 11111 5 4'-0"(1.219.2)MAX.-2'-9 9/32"(845.3)MIN. S 3'-0"(914.6)ADA MIN.2PIVOT STILE TRIM FILLER WIDTH c I VARIES WITH DOOR WIDTH D g \ POWER TRANSFER POWER TRANSFER 5 INTERMEDIATE BUTT HINGE INTERMEDIATE OFFSET PIVOT 3 PUSH 0 D -- - c 'o_ p r 2 o N 350 DOOR O 5-7/8" 8 a E (149.2) DOOR OPENING WIDTH S a_u c • 4'-0"(1,219.2)MAX.-2'-10 13/32"(873.9)MIN. $ E 3'-0"(914.6)ADA MIN. > 0 n E n O U L 3 U Y 0 L c © -„ - . PUSH o fr''''''•% 5a/8" 500 DOOR I 1 (149.2)� DOOR OPENING WIDTH ELECTRIC POWER TRANSFER SP-2000 POWER SUPPLY 4'-0"(1,219.2)MAX.-2'-11 29/32"(912.0)MIN. • (EPT) 3'-0"(914.6)ADA MIN. kawneer.com ADMA010EN P< KAW NE ER 16 190/350/500 Standard Entrances MARCH, 2019 PANELINETM EXIT DEVICE EC 97911-201 Sidelites adjacent to PanelineTM equipped doors not requiring exit devices may be fitted with fixed panels as detailed below to match the general appearance of the PanelineTA°cross rail. See Hardware Section for complete description of PanelineTM hardware,including finish of units. PanelineTM uses mortise cylinder in lieu of the normal rim-type. Dummy PanelineTTM units should not use any type of lock. 1 1-23/32" 1-3/8" 17/32" o (43.8) (3`1-9) 13.5) o m INTERIOR ELEVATION o NOTE:Sidelites must be stop glazed above and below rail. . I„E • =..., o g c 1 o`1 7�� [AI m c o SEE NOTE �� c Y d QI).3 y�v .� C US LISTED $ z _ o,`>� c > � 1 tom `sue 2 Egg - S o _.. „ ,00 OO` N c PUSH PUSH • VUT A 5/ 3 --1 or3* -1 or3' L2 =m�c acLy U UWO O " € aQ SEE NOTE + _F l S3 $c 1 j o � r I C U m V INACTIVE DOOR ACTIVE DOOR SIDELITE CROSS R77,- 36-1/8"(917.6) SIDELITE CROSS RAIL `c t c *ALTERNATE EXIT DEVICE v TO BTM CROSS RAIL WITH J — a ALTERNATE CROSSRAIL FOR VESTIBULE DOORS OF DOOR (Without Exit Device or Lock) AND PULL (FIXED LOCATION) FIXED PANEL 4' LOCK STILE TRIM FILLER WIDTH VARIES WITH STILE WIDTH /DOGGING LOCK PUSH PUSH . (TYPICAL) "g E v t 190 DOOR 3 S DOOR OPENING• WIDTH • o 8'-0"(2438.4)MAX.-5'-7 1/4-(1,708.2)MIN. S 6'-0"(1,828.8)ADA MIN. n PIVOT STILE TRIM FILLER WIDTH CPN PULL ON t VARIES WITH DOOR WIDTH EXTERIOR OF DOOR 1 PUSH PUSH . 8 d Ft -g • E 'c 350 DOOR a'� ° o DOOR OPENING WIDTH • .?• E S • 8'-0"(2,438.4)MAX.-5'-9 5/16"(1,761.0)MIN. I -..2.. 'c n'C' "(1 R R Ft)ene um m d E n EXTERIOR VIEW OF 190 DOOR(350-500 SIMILAR) d° WITH CPN PULL AND STANDARD CYLINDER GUARD L SHOWN 3 g Y Y c C o PUSH PUSH . 500 DOOR DOOR OPENING WIDTH • 8'-0"(2,438.4)MAX.-6'-0"(1,828.8)MIN. 6'-0"(1,828.8)ADA MIN. ,C KAW N E E R ADMA010EN kawneer.com MARCH, 2019 190/350/500 Standard Entrances 19 EC 97911-201 INTERMEDIATE RAILS, INFILL OPTIONS AND ACCESSORIES Additional information and CAD details are available at www.kawneer.com I HORIZONTAL/VERTICAL CROSS RAILS -..' } CROSS RAIL (Optional) A la ?N 8 2 r. $ m 200055 m N ' r c„`, N m a a. v E M m -an o 5 o c 200056 i- IM N o 2.N 200054 ' c , ? o-4 m 3 (D C” (O N -N 21 2 3 200057 �- N_ c -Y 1i r ..'a3 INFILL v 3 L 200058 3/16"(4.3)&1/4"(6.4) o a BEVEL 4- SQUARE i asyw m iia n a o m ���� GLASS �/r_A� GLASS o p'S f STOPS _F J , STOPS 200053 200059 33 N' l N I -�_ tz: C O M n M d 2 2 g n STANDARD OPTIONAL 200039 with 249235 n co od '=) 0 a Q c E INFILL OPTIONS 2,;Z"' ,i m y° n g m °� @ 5/16"(7.9)&3/8"(9.5) 7/16"(11.1)&1/2"(12.7) 9/16"(14.3)&5/8"(15.9) 11/16"(17.5)&3/4"(19.0) 15/16"(23.8)&1"(25.4) 1 1 LL 1.4 1l-1 rll�al rl�al Mi Mal ACCESSORY ITEMS THRESHOLDS - APPLICATION U I = i 069139 N Li 1/2" ---�1 1" FOR SINGLE ACTING DOOR 069177 (12.7) I(25.4)� -, 4" 4 APPLIED e 038365 ter"--- T (101.6) a j SHOP FINGER s Ili-- -'_,1 1 PROTECTOR �- 3 III II 3 I FOR CENTER HUNG 069143 N N __JI IL==_-, __a . CONCEALED CLOSER ~.�� � 5 4 (101.61 v T� c 3 E * v J } N :p T g APPLIED STOP FOR 039345 • N 1.' I I SINGLE ACTING DOOR a o iom "v U 069154 1• 1/2" Y rf r--, I a.. APPLIED I f(12.7) I it S DOOR I 11 OPTIONAL n STOPI II BOTTOM RAIL 069141 N N 2 E © 1kli,__ r ' --1 I 11 WEATHERING FOR CENTER HUNG - III 11 1-,-— FLOOR CLOSERSdellIMMIIIIIIIIIIII I 1 6-3/4" j� 111 �I T� I T (171.5) T JJLL___J __4 U c:r1c ur--iS *SOME BUILDING CODES LIMIT THRESHOLD HEIGHT TO 1/2"(12.7)MAX. kawneer.com ADMA010EN < KAW N E E R 20 190/350/500 Standard Entrances MARCH, 2019 HANDICAP ACCESSIBLE ITEMS EC 97911-201 PUSH-PULLS B 9*i i LB885Y } kfa Yi a4P i :YL^9'I!'I 4' i O ltl:?tgl�e'.� � •uiiiidi U C No t9 C irdjF:... y� N D C O c • rn' � 3r Description Architects Classic CO-12 Pull BF3 Push Shield with symbol = z Door with or without Door cross rail Application >a exit device (omit w/exit device) m 2 y y a a s 7 T.m Length/Size 12"OC Pull attachment 15-7/8"x 7-7/8"(403.2 x 200.0) 8 ` 1/8"(3.2)Thick w c a U Height Location 44-5/16"from Top Mounting Hole a to Btm.of Door ▪ o •c Total Projection 3-1/4"(82.6) 1/8"(3.2) a 6° E U N U m H Material/Finish See Hardware Section Black Plastic Pebble Finish Note:The symbol of access is an adhesive backed decal applied to the surface of the optional cross rail.Letters and symbols on plastic push shield are engraved and filled with white epoxy enamel. E E C C d Q�Q11 O C O a O 2i C C O 01 C 8 C m ▪ u O > n E E C > £ c • c O C- C C C 3 C y c a < KAW N E E R ADMA010EN kawneer.com AN ARCOMC COMPANY MARCH, 2019 190/350/500 Standard Entrances 21 EC 97911-201 BOTTOM RAILS Additional information and CAD details are available at www.kawneer.com STANDARD BOTTOM RAILS Rail heights shown may be used on 190,350,and 500 doors. NOTE: See Page 19 for available Horizontal Intermediate Members. o . 350 500 C<0 N O �O.N T R • •Nig p 3mm 190 ?3a Yd il LII D j E. n OD m T1111 OgS p • • !, V j J a m o 2 v o c i 2 3 E 9 ° y N V 1111 OPTIONAL BOTTOM RAILS v Rail heights shown may be used on 190,350,and 500 doors. .6''�` ~.1 1~ Custom heights available. U v t 2 .. a. 1 t i o 5 J . ? U 71 J 7 SE 7> N O O aE j . No -o 11 x ' � m a�$ E No CL o 1m 0 U o o y O, N gi C b N H - L CY <V N n-- kawneer.com ADMA010EN ,C KAW N E E R 22 190/350/500 Standard Entrances MARCH, 2019 THERMAL CHARTS EC 97911-201 Generic Project Specific U-factor Example Calculation (Percent of Glass will vary on specific products depending on sitelines) I31.562" (801.7) 1 (D.L.0.) • • o / N _ _ r G U V 7 N.J. A Meo= � ron0 O u"J m' E _ O y _ rnN m \ 2 N \ c .7. N Q!p. • t • 7 3 L N C 41, 3'3-1/2" T c>m (1,003.3) TT E y m m a, a (F.W.) m o w c N a o 'v m m a Example Glass U-Factor = 0.28 Btu/hr•ft2 • °F a 3 m a= C L 28B � Total Daylight Opening = 31.562"x 77.062" = 16.89 ft2 . t, E `010oa c a a c Total Projected Area = 3' 3-1/2 x 7' 1-3/4" = 23.52 ft2 a 3 o E y U i U u, v Percent of Glass = (Total Daylight Opening =Total Projected Area)100 3° :i = (16.89 = 23.52)100 = 72% J °' System U-factor vs Percent of Glass Area -0.90 0.85 -0.80 0 6 E d - 0.75 c A L, , -0.70 3 - § 0 ..... 0.65 c a COG .■�� - ~0.60 2 U-factor 1 17 �� _ •. " 'L w 3 ' 0.48 (2.73) , - �'- ` • 0.55 m o 0.46 (2.61)•. i -�� y/ •. L° 0.44 (2.50) .. �I A1 r, _ �^ ,•N,� 0.42 (2.39) - �� _ • 0.50 = y co 0.38 (2.16) - n d 0.36 (2.05) - ! �.n546 c 5 0.34 (1.93) •• 9 m 0.32 (1.82) ,, .• o E e 0.30 (1.71) 0.40 0 �` 0.28 (1.59) • � ••: cE 0.26 (1.48) ' 0.24 (1.37) , - •• •0.35 2t t 0.22 (1.25) ' m$ c 0.20 (1.14) 2 a c 1 0.30 do c% Z' a 0.25 Ri i 38 c C , 0.20 85 80 75 I 70 65 60 Percent of Glass Area N r. Based on 72% glass and center of glass (COG) U-factor of 0.28 System U-factor is equal to 0.46 Btu/hr•ft2 • °F ,C KAW N E E R ADMA010EN kawneer.corn AN ARCOMC COWAN, MARCH, 2019 190/350/500 Standard Entrances 23 EC 97911-201 THERMAL CHARTS 190 (SINGLE DOOR) System U-factor vs Percent of Glass Area 0.90 - n• E a a"i al0.85 o c J 9'N -'L N 3 m O) I Y ri •. T m a 3 /' ,/' 0.80 „ N D J A v 3r '" T u• C• p U l 8 y 5oa• g COG " / , ti I -a• m y 0.46(2.61) - e c m c 0.44(2.50) �- - N t A - 0.42(2.39) - - m 0.40(2.27) /' -" /'" / 0.60 L 0.38(2.16) •�� 0 0.36(2.05) V 0.34(1.93) - - 0.32(1.82) /, /' /' 0.55 6 0.30(1.71) -• • ./ _ E 0.28(1.59) - w 6 0.26(1.48) - , "/ - to / s 0.50 >v 0.24(1.37) Cl) R. 0.22(1.25) - 0.20(1.14) 3 0.18(1.02) - / -'" .- 0.4E J- 0.16(0.91) 5. 0.14(0.80) - s 0.12(0.68) V 4C 5 0.10(0.57) 'a 3 - a ✓ 3,5 3 E > > N O - Jl g O _ C Dy r . . C?C $ E 75 70 ._ =, __ 50 $ o n o` U B N Percent of Glass = Vision Area/Total Area E Y (Total Daylight Opening / Projected Area) a Notes for System U-Factor, SHGC and VT charts: For glass values that are not listed, linear interpolation is permitted. Glass properties are based on center of glass values(winter conditions)and are obtained from your glass supplier. kawneercom ADMA01OEN ,C KAWNEER AN ARCONIC COMPANY 24 190/350/500 Standard Entrances MARCH, 2019 THERMAL CHARTS EC 97911-201 190 (SINGLE DOOR) System Solar Heat Gain Coefficient (SHGC) vs Percent of Vision Area 0 ' , O 0.75 74 g m N O � COG 0.70 �m o, SHGC �_._ 0.65 v n.� � mm 0.7C 0.55 dam m 0.65 __ 0.50 V a O.6C 0.55 '---� ---------- 0.45 5 Z m rn>_ > 0 ----- �---+_ 0.40 (n 0.45 - = 0.35 a a� g5 0.30 CI i a.o E0 35 -----•------ ++0 30r 0.25 � �2 0.25 -�i 0.20 (/) t t020u_ c 0.15 . 0.15 m c 0.10 i 0.10 a a c 0.05 = 0.05 .53oE - 0.00 `, =m "a. 75 70 5F 50 55 50 a m J N 2 R Vision Area / Total Area (%) System Visible Transmittance (VT) vs Percent of Vision Area C N 0.75 3 d U 0.70 0 COG _- - - 0.65 i:3 VT 0.60 0 0.75 .c 0.55 3 0.75 0 0.65 050 m 0.60 EiT -i.. - 0.40 0.50 ---------- o 0.45 r035 � v 0.4C. -.on-_---- ----------.Y: 0.30 VJ aE S > n 0.35 0.3C - _- CO c 7 0.2551 0 20 d- 0.2C ___�_�a -. _______________ N [ ._____ 0 15 z a c 0.1, _ O C-. 0.1C 0 10 N d 5- a 0.05 0.05 N 3[ - 0.00 Y2 75 70 65 50 55 50 Vision Area 1 Total Area (%) < KAW N E E R ADMA010EN aawneer.com aN 4RCUNit COMiANv MARCH, 2019 190/350/500 Standard Entrances 25 EC 97911-201 THERMAL PERFORMANCE MATRIX (NFRC SIZE) Thermal Transmittance 1 (BTU/hr•ft 2 • °F) 190 (SINGLE DOOR) Glass U-Factor 3 Overall U-Factor' 0.48 0.78 0.46 0.77 7. 0.44 0.76 . N '` 0.42 0.75 0.vj C E N � 0.40 0.74 0- , NOTE: For glass values that are not listed, linear 1 Is 0.38 0.73 o interpolation is permitted. o Y E 0.36 0.72 �, 0.34 0.71 1. U-Factors are determined in accordance with NFRC 100. v 5 r 2. SHGC and VT values are determined in accordance with 0.32 0.70 NFRC 200. f,z5 0 0.30 0.69 3. Glass properties are based on center of glass values and m 2 N 0.28 0.68 are obtained from your glass supplier. in ° v 4. Overall U-Factor, SHGC, and VT Matricies are based on 0.26 0.67 the standard NFRC specimen size of 960 mm wide by 8 0.24 0.66 2,090 mm high (37-3/4"by 82-3/8"). C 0.22 0.65 '-'3 a o 3 II 0.20 0.65 �..=_gym ' 3 a E ▪ m aE� N 0.18 0.63 i�I a 0.16 0.61 0.14 0.60 0.12 0.59 0.10 0.58 i D v v SHGC Matrix 2 Visible Transmittance 2 3 Glass SHGC 3 Overall SHGC ° Glass VT 3 Overall VT° 0.75 0.48 0.75 0.44 a5. 0.70 0.45 0.70 0.41 2 0.65 0.42 0.65 0.38 0.60 0.39 0.60 0.35 s 0.55 0.36 0.55 0.32 a 0.50 0.33 0.50 0.29 s 1 0.45 0.30 0.45 0.26 ?. › N O ' 0.40 0.27 0.40 0.23 13 a 0.35 0.24 0.35 0.21 IL'�l' o 0.30 0.21 0.30 0.18 ✓H 0.25 0.18 0.25 0.15 • 0 0.20 0.15 0.20 0.12 0.15 0.13 0.15 0.09 1 0.10 0.10 0.10 0.06 0.05 0.07 0.05 0.03 kawneer.com ADMA010EN ,C KAW N E E R .ur,<ov¢r,,uvnn 26 190/350/500 Standard Entrances MARCH, 2019 THERMAL CHARTS EC 97911-201 190 (PAIR OF DOORS) System U-factor vs Percent of Glass Area 0.9C 0 C O �6 O • N b 0.85 m E OD m al o C O D.N a C p -� c 3 Y iA m Q L 5 C m c > 9 imi COG ~ 0 oo $a U-factor a D o` 0.46(2.61) W c d t 0.44(2.50) COJ m r 0.42(2.39) /' f` /" /'• s 0.60 .... 0.40(2.27) r` o 0.38(2.16) 0 0.36(2.05) ' ' 4- 0.34(1.93) /'" /'" /.• /'. i .4'"'• 0.55 6 0.30(1.71) • Q? r 0.28(1.59) m 0.26(1.48) / /' r i 0.50 A 0.24(1.37) t -0.22(1.25) - U 0.20(1.14) J• D,4[ 2 0.18(1.02) , ga 0.16(0.91) o 0.14(0.80) t 3 0.12(0.68) ' C'.40 o 0.10(0.57) a .. . c 0 W 0.35 UE o> 0 F . a C N U > C75 - I 11 � � � � � � cc � � � � SO 65 F J 0 E a o w O L Percent of Glass = Vision Area/Total Area a a (Total Daylight Opening / Projected Area) Yis Notes for System U-Factor, SHGC and VT charts: For glass values that are not listed, linear interpolation is permitted. Glass properties are based on center of glass values(winter conditions)and are obtained from your glass supplier. <KAW N E E R ADMA010EN kawneer.com AN AXCONC COMPANY MARCH, 2019 190/350/500 Standard Entrances 27 EC 97911-201 THERMAL CHARTS 190 (PAIR OF DOORS) System Solar Heat Gain Coefficient (SHGC) vs Percent of Vision Area cm '$ 0.75 V 15 ,2 a e COG .- - 0.70 ac SHGC 0.65 v m m 238 0.75 0.60 Yjc- cc 070 0.55 j 0.75 1� � . p.50 �/ .< 0.60 mommommi r� p.45 }� 0.55 v 0.501.141 ="III- 0.40 (n v u a 5 ' � 0.45 0.35 v g a, m 040 _•__-_•--•_- im;t 0.35 3 3 o.3D -- 0 25 rn A aeuy 0.25 ., 0.20 0 020 '-� � a 0.15 a19d 0.15 ____ 5�o 2 oio Mam c g.�oE 0.05 0.05 - N U CC9N 0.00 D C N 75 70 55 50 J N-2 N Vision Area / Total Area (%) System Visible Transmittance (VT) vs Percent of Vision Area v L v D 0.75 3 0.70 5 COG 0.65 s VT 0.60 0.55 3 0.75 v 0 65 _ 0.50 a 0.60 -...__-_ - _ 0.45 ; 3 0.55 _ - __ - O.aO n 0.50 - - E 7, - 0.35 vc 0.45 rn __-_- -� 0.30 >, a 0.35 -- 0.25 V J 0.30 a 025 0.20 }$ E ------------- n 0 20 --- 0.15 n c� 0.15 -..- r 0.10 0.10 0.05 Dv _ �i 0.05 z °'cc 0 75 70 rg 55 50 Vision Area / Total Area (%) kawneer.com ADMA010EN ,C KAW N E E R 28 190/350/500 Standard Entrances MARCH, 2019 THERMAL PERFORMANCE MATRIX (NFRC SIZE) EC 97911-201 Thermal Transmittance ' (BTUlhr • ft ` • 'F) 190 (PAIR OF DOORS) Glass U-Factor ' Overall U-Factor° 0.47 0.73 0.46 0.72 0.44 0.71 a N 0.42 0.70 Nm ° " � (0 0.40 0.69 @ - �v � 0.38 0.68 NOTE: For glass values that are not listed, linear d t s' va interpolation is permitted. 0.36 0.67 m m � 0.34 0.66 1. U-Factors are determined in accordance with NFRC 100. v 2. SHGC and VT values are determined in accordance with .3 0.32 0.64 NFRC 200. 0.30 0.63 3. Glass properties are based on center of glass values and o 0.28 0.62 are obtained from your glass supplier. !o s 4. Overall U-Factor, SHGC. and VT Matricies are based on a ti 0.26 0.61 the standard NFRC specimen size of 1,920 mm wide by 24 0.24 0.60 2,090 mm high (75-1/2" by 82-3/8"). N t g U II [[C .8 C 0.22 0.59 `° ra a 1 E' a 0.20 0.58 �II 5 a 9 g c a a 3 o c 0.18 0.56 C " U N C N @ o T 0.16 0.55 3� 'a J F,2 t 0.14 0.54 0.12 0.53 0.10 0.52 II E E N d SHGC Matrix 2 Visible Transmittance 2 L Glass SHGC 3 Overall SHGC 4 Glass VT 3 Overall VT d 0.75 0.50 0.75 0.47 `s 0.70 0.47 0.70 0.44 a 0 L 0.65 0.44 0.65 0.41 3 0.60 0.41 0.60 0.38 3 0.55 0.38 0.55 0.35 p 0.50 0.35 0.50 0.31 It 0.45 0.31 0.45 0.28 s 0.40 0.28 0.40 0.25 c E y a 0.35 0.25 0.35 0.22 u,II = n E 0.30 0.22 0.30 0.19 o N 0.25 0.19 0.25 0.16 - " c N 3 3 U Y 0.20 0.16 0.20 0.13 x C c 0.15 0.13 0.15 0.09 0.10 0.09 0.10 0.06 0.05 0.06 0.05 0.03 < KAW N E E R ADMA010EN <awgeer core AN ARCONIC COWANY MARCH, 2019 190/350/500 Standard Entrances 29 EC 97911-201 THERMAL CHARTS 350 (SINGLE DOOR) System U-factor vs Percent of Glass Area I.ee - 1 o m 4 C E m - c a" $'a' 0.95 .c N c U mm m J m - ? 3 S a m m -Y m v d o .-' /' 0.90 v L ' z° ,„ ! 0.85 o a n as m M; '�.`s °' COG ."" "" ' ' " � 0.75 t o c. y U-factor ,, 312 .48(2.73) F- 0.44(2.50) CO 0.42(2.39) f ,� ,e'� 0.70 L 0.40(2.27) - 0 r 0.38(2.16) , V 0.36(2.05) - 0.34(1.93) -- , 1' /' :. `_ 6 0.32(1.82) " - 0.30(1.71) E u 0.26(1.48) . /' . 0.60 0.24(1.37) U.)Li0.22(1.25) �" - 0.20(1.14) • - 5 0.18(1.02) /,• 0.55 0.16(0.91) 3. 0.14(0.80) . 2 0.12(0.68) - 3 0.10(0.57) ' - 0.50 u 5 - a 3 D T.: 0.45 4 m w7 3 2 >e N g V - C v 8 E 65 60 55 -l= 40 c o n O U y 3 Percent of Glass = Vision Area/Total Area 2 (Total Daylight Opening / Projected Area) Notes for System U-Factor,SHGC and VT charts: For glass values that are not listed, linear interpolation is permitted. Glass properties are based on center of glass values(winter conditions)and are obtained from your glass supplier. kawneer.com ADMA010EN ,C KAW N E E R AN ANCON$C COMPANY 30 190/350/500 Standard Entrances MARCH, 2019 THERMAL CHARTS EC 97911-201 350 (SINGLE DOOR) System Solar Heat Gain Coefficient (SHGC) vs Percent of Vision Area C N O � 0.75 V6I R N c 0.70 m C O.0 0.65 a rn COG 0.60 m 38 d SHGC 0.55 m x U va 0.7D --- 0.50 0 m 3-. 0.65 - am - - _ - 0.45 = c>m 0.60 -------- 0.40 E o a 0.55 _______ -� c a o y 0.35 E ooyl e m -o a m= DA5 ---- 0.30 +-' o m t 0.40 `> 0.35 _ __ r 025 �. � �` cn It 0.25 _..-a - 0.20 w ' c -0-a U c C C U 0.29 0.15 3 a 0.10 0.10 f 8 15 c 0.05 J 005 .0302 % , ro @ -y 65 60 = • 40 m - N R Vision Area / Total Area (%) System Visible Transmittance (VT1 vs Percent of Vision Area E i c 3 0.75 8 0.70 c `o 0.65 a COG 0.60 °� VT 0.55 ` 5 0.75 _ - 0.50 1 0.70 045 0.65 c 0.65 --------------------- CD--- ---- 0.40 m 0.35 II : . 0.35 -- ----^- - D.20 I I R 0.30 $ 0.25 -- - c 020 --------------- -- 0 15 > a c ------------- h O c 0.15 - 0 10 v Z a 0.10 - y 0.05 _ ti 0.05 ; U • . 0.00 Y c C 65 60 5c 45 40 Vision Area / Total Area (%) ,C KAW N E E R ADMA010EN kawneer.com MARCH, 2019 190/350/500 Standard Entrances 31 EC 97911-201 THERMAL PERFORMANCE MATRIX (NFRC SIZE) Thermal Transmittance 1 (BTU/hr• ft 2 • °F) 350 (SINGLE DOOR) Glass U-Factor 3 Overall U-Factor 4 0.48 0.83 0.46 0.82 a 0.44 0.81 `s= 0.42 0.81 .. a y 0.40 0.80 v 0.38 0.79 NOTE: For glass values that are not listed, linear 1 o interpolation is permitted. n 2 g 0.36 0.78 aE 0.34 0.77 1. U-Factors are determined in accordance with NFRC 100. v 3 t 2. SHGC and VT values are determined in accordance with f �' 0.32 0.76 ,, NFRC 200. 0 0.30 0.75 3. Glass properties are based on center of glass values and g-am n 4 m 028 0.74 are obtained from your glass supplier. v= g 4. Overall U-Factor, SHGC, and VT Matricies are based on 3 a '5 0.26 0.73 the standard NFRC specimen size of 960 mm wide by 0.24 0.72 2,090 mm high (37-3/4"by 82-3/8"). U O 9 co =O N Sao 0.22 0.71 '-8OC 3,`oe 0.20 0.70 n 0.18 0.69 n ,pt m wtg 0.16 0.68 0.14 0.68 0.12 0.67 0.10 0.66 ai D U v SHGC Matrix 2 Visible Transmittance 2 Glass SHGC 3 Overall SHGC 4 Glass VT 3 Overall VT 4 0.75 0.43 0.75 0.39 3. 0.70 0.41 0.70 0.36 3 0.65 0.38 0.65 0.34 ii 0.60 0.36 0.60 0.31 3 0.55 0.33 0.55 0.29 e, 0.50 0.30 0.50 0.26 N 0.45 0.28 0.45 0.23 T E 0.40 0.25 0.40 0.21 I U T a E 0.35 0.23 0.35 0.18 0.30 0.20 0.30 0.16 N 3 0.25 0.17 0.25 0.13 C QM © 0.20 0.15 0.20 0.10 0.15 0.12 0.15 0.08 0.10 0.10 0.10 0.05 0.05 0.07 0.05 0.03 kawneer.com ADMA010EN VC KAW N E EryR 32 190/350/500 Standard Entrances MARCH, 2019 THERMAL CHARTS EC 97911-201 350 (PAIR OF DOORS) System U-factor vs Percent of Glass Area too 0 o �'C• � U . = E 0.95 a'w rn _ o c D N 9 C O c 3 A m ro � 0.90 y N 4 a A y r - rm E.U Q D l0 fp 4' TN�O_I? COG /. ��' /-' ,� 0�c = §-° c U-factor d R ,1" I— J N C t C 0.47(2.67) - 0.44(2.50) % / / .-' .." 0.70 1-. o.a2{2.3s) O 0.40(2.27) - .) •0.38(2.16) r 4- 0.36(2.05) i s I/ i " s . 0.65 D 0.34(1.93) - - 0.32(1.82) - E .4+ • N 0.28(1.59) r/.' /." '„ E 0.26(1.48) ' 7 0..- (/) a 0.24(1.37) °' 0.22(1.25) 3 U 0.20(1.14) • p i' 0.55 0.18(1.02) 5 0.16(0.91) _ c n 0.14(0.80) r 2 0.12(0.68) - 3 0.10(0.57) -/.. 0.50 0 C c 8 m 0.45 rnt 6 E 'r. o> T - o FE , 0.40 t ,, 40 zn c �o c Percent of Glass = Vision Area/Total Area c 3 3 (Total Daylight Opening / Projected Area) Ya c Notes for System U-Factor, SHGC and VT charts: For glass values that are not listed, linear interpolation is permitted. Glass properties are based on center of glass values (winter conditions)and are obtained from your glass supplier. ,C KAW N E E R ADMA010EN kawneer.com MARCH, 2019 190/350/500 Standard Entrances 33 EC 97911-201 THERMAL CHARTS 350 (PAIR OF DOORS) System Solar Heat Gain Coefficient (SHGC) vs Percent of Vision Area e . �m . 075 3 2 v �`, E 0.70 v - 0.65 • It 2• `• o COG 0.60 .a Y g SHGC 0.55 T j v g 0.75 0.50 (.) r. zt 0.70 ' m 0.65 0.45 m 0.55 0.40 0 U a --- _ 0.35 'v ° 0.45 0.50 y o �m`mr 0.40 _ - =z 00.30 -- i c 'o,5, 0.35 - '--- ----- - t 5 m c6 0.30 ;► o ti n'o 8 s 0.25 0.20 u 2• 9 a 0.20 - ..� 0.15 2ao 0.15 34 o c 0 10 0.10 �3 `o m 0.05 0.05 3 m g o 421 0.00 i TiN 1 65 60 == 6045 40 � d 5 Vision Area / Total Area (%) v System Visible Transmittance (VT) vs Percent of Vision Area D D 3 0.75 a a 0.70 0.65 5. ______-_.. 0.60 COG r. VT 0.55 ' - - 0.50 a 0.75 1 0.45 5 0.65 --'---•------- 0.60 u 0.55 --------- - 0.35 Cv m 0.50 ----^- ++ m N 0.45 ----'------ _ 0 30 U Y c 0.30 -____ $ E 0.25 . 0.20 v o m 0.15 . 0.10 S N c 0.10 - ___� g 3 0.05 - 005 22 OO - . - 0.00 65 60 55 50 45 40 Vision Area / Total Area (%) kawneer.com AOMA010EN C KAW N E E R 34 190/350/500 Standard Entrances MARCH, 2019 THERMAL PERFORMANCE MATRIX (NFRC SIZE) EC 97911-201 Thermal Transmittance 1 (BTU/hr • ft ` • °F) 350 (PAIR OF DOORS) Glass U-Factor ' Overall U-Factor' 0.47 0.79 0.46 0.78 0.44 0.77 a C V, 0.42 0.76 • °" D m N ° � 0.40 0.75 m v a, 0.38 0 74 NOTE: For glass values that are not listed, linear D � v1 interpolation is permitted. 0.36 0.73 E3 @ Y 2? 0.34 0_72 1. U-Factors are determined in accordance with NFRC 100. fill 2. SHGC and VT values are determined in accordance with 3 2 0.32 0.71 2 r NFRC 200. 0° C N 0.30 0.70 3. Glass properties are based on center of glass values and a 0.28 0.69 are obtained from your glass supplier. g g,til w 4. Overall U-Factor, SHGC: and VT Matricies are based on a 0.26 0.68 the standard NFRC specimen size of 1,920 mm wide by ; 4 0.24 0.67 2,090 mm high (75-1/2" by 82-3/8"). 2 o_L b U 2 C 0.22 0.66 CC82 161°ga m 2 n° 0.20 0.65 n'▪ c 3 `o v 0.18 0.64 � 6v c R 0.16 0.63 c 3 � "c m c J 1t� R 0.14 062 0.12 0.61 0.10 0.60 a d E m m SHGC Matrix 2 Visible Transmittance 2 aS Glass SHGC ' Overall SHGC Glass VT ' Overall VT 0.75 0.46 0.75 0.42 0 0 0.70 0.43 0.70 0.39 0.65 0.40 0.65 0.36 3 oz 0.60 0.37 0.60 0.34 0.55 0.35 0.55 0.31 0 U 0.50 0.32 0.50 0.28 It 0.45 0.29 0.45 0.25 5 E 2 > ° 0.40 0.26 0.40 0.22 z 0.35 0.23 0.35 0.20 L U C > Q y 0.30 0.21 0.30 0.17 s 0.25 0.18 0.25 0.14 y 8 3 V Y 0.20 0.15 0.20 0.11 1E 0.15 0.12 0.15 0.08 0.10 0.09 0.10 0.06 0.05 0.07 0.05 0.03 < KAW N E ER ADMA010EN kawneer.com A.\ANIVNt.l'OM?ANY MARCH, 2019 190/350/500 Standard Entrances 35 EC 97911-201 THERMAL CHARTS 500 (SINGLE DOOR) System U-factor vs Percent of Glass Area 1.DC - 8.0 V C 0 - m E 0.95 a o o, o= O 3 0� 2 _ = 'a e2y - tm 0.90 r m o v _ D 3 L c 2>T E. Vi 2.5 O TV N O n a G N • p/� 2 r Q E• pp ✓' :Ai al-2 '� 'I +�+ J-8`o = COG .r'' �' +' . ' ,i'�+ ,✓'+ ++ - 0-75 3• o E U-factor LL^ 5. 3 a=i t m 0.46(2.61) -• ✓ - --, ✓+ 0.70 I— In - 0.40(2.27) - L. 0.38(2.16) - I + • - 0 0.36(2.05) ✓- •' ! i ✓'� ✓' 0.65 C.) li- - 0.32(1.82) - 0.30(1.71) - 0.28(1.59) ✓' ,. +J 0.60 E 0.26(1.48) - w 0.24(1.37) y I 0.22(1.25) _ >+ 0.20(1.14) .,.=c Cl) • 0.18(1.02) ' '� , v 0.16(0.91) - 0.14(0.80) - 5 0.12(0.68) _ _C 3 0.10(0.57) _ 5 3'a C 43 3 5 _ D - "▪'' 0.40 v= m 2 m N - 0 7 E - C 'C Vs T 1 1 I I 1 1 1 I 1 1 I 1 1 1 1 I 1 1 1 I 0.35 � C t E 6. 60 3_ 40 a v z d Percent of Glass = Vision Area/Total Area m i 1.13 t3, (Total Daylight Opening / Projected Area) Notes for System U-Factor, SHGC and VT charts: For glass values that are not listed, linear interpolation is permitted. Glass properties are based on center of glass values(winter conditions)and are obtained from your glass supplier. kawneer.com ADMA010EN < KAW N E E R 36 190/350/500 Standard Entrances MARCH, 2019 THERMAL CHARTS EC 97911-201 500 (SINGLE DOOR) System Solar Heat Gain Coefficient (SHGC) vs Percent of Vision Area 0 t9 C N O 0.75 N m 0.70 _00o, O O c 0.65 2 a.� COG _ 0.60 2 3 0 SHGC 0.55 co m -75 -- . ..- 0 50 0 y a,U 0.70 d 3 t 0.65 -- - 0.45 i 2•g rnm 0.55 0 40 (/) c a� a 0.50 �. 0.35 E goo 0 0.30 -8o�15 0.40 0.35 0 ; = 0.25 0.30 ��`2 m = - 0 20 Cl) m 3 c2i v 0.25 -. _ - w o,-, c U C 020 ------'�� 0.15 c_ = C 0.15 `6 19 o a 0.10 , 010 D-o o c 0.05 0.05 n'3oa p �'- fC U , . . . . . . . . . . . . . . . 0.00 c0 a, J. ,r 65 60 55 50 45 40 ; -E -Jaa,,ra Vision Area I Total Area (%) System Visible Transmittance (VT) vs Percent of Vision Area 3 E i v c m 3 0.75 m 0.70 c ' 0.65 a 060 COG 0-55 VT c 0.50 0.75 ° 0.70 0.45 tm 65 0.55 ^--- 0.40 E c 0 . 00°,1 0.45 >+ o o. 0.40 -� 0 25 t 0.35 _ d 0.30 $ 0.25 - 0.20 0.15 0.15 010 ,_2 c: `a 0.05 '�• 0 05 a.m c . - 0.00 3 Y 65 60 55 50 45 40 Y c C Vision Area I Total Area (%) < KAW N E E R ADMA010EN kawneer.com MARCH, 2019 190/350/500 Standard Entrances 37 EC 97911-201 THERMAL PERFORMANCE MATRIX (NFRC SIZE) Thermal Transmittance 1 (BTU/hr•ft 2 • °F) 500 (SINGLE DOOR) Glass U-Factor 3 Overall U-Factor 4 0.48 0.87 0.46 0.86 0.44 0.85 C _° ° UN 0.42 0.84 Tv m 0.40 0.84 -'o NOTE: For glass values that are not listed, linear 0.38 0.83 3 o interpolation is permitted. a Y 0.36 0.82 n m E 0.34 0.81 1. U-Factors are determined in accordance with NFRC 100. 3• = 2. SHGC and VT values are determined in accordance with r E. 0.32 0.81 NFRC 200. v it 0 0.30 0.80 3. Glass properties are based on center of glass values and Tr g`2 0 28 0 79 are obtained from your glass supplier. • ° ° 4. Overall U-Factor, SHGC, and VT Matricies are based on 0_ m% 0.26 0.78 the standard NFRC specimen size of 960 mm wide by vrgz 8 0.24 0.77 2,090 mm high (37-3/4"by 82 3/8"). s2 13 0.22 0.77 0.20 0.76 '• ° E 10 R 0.18 0.75 0.16 0.74 0] y . J d t N 0.14 0.73 0.12 0.73 0.10 0.72 v v ✓ SHGC Matrix 2 Visible Transmittance 2 Glass SHGC 3 Overall SHGC ° Glass VT 3 Overall VT 4 0.75 0.38 0.75 0.33 5. 5 0.70 0.36 0.70 0.31 2 0.65 0.34 0.65 0.29 0.60 0.32 0.60 0.27 0.55 0.29 0.55 0.25 T 0.50 0.27 0.50 0.22 55 o N 0.45 0.25 0.45 0.20 T 0.40 0.23 0.40 0.18 U Ual 1 E 0.35 0.21 0.35 0.16 v '4o 0.30 0.18 0.30 0.13 Y y ; 0.25 0.16 0.25 0.11 0 0.20 0.14 0.20 0.09 0.15 0.12 0.15 0.07 0.10 0.09 0.10 0.04 0.05 0.07 0.05 0.02 kawneer.com ADMA010EN -C KAW N E E R 38 190/350/500 Standard Entrances MARCH, 2019 THERMAL CHARTS EC 97911-201 500 (PAIR OF DOORS) System U-factor vs Percent of Glass Area 1.00 - ai - iji C W 0.95 y E 82 . mo c3o . Y m � 0.90 2 m a a Erg, p5 u n o �' �' 'I' ,f' ,f' O.OV 1^. N U U C o W 2 O S si ' COG s E . mU-factor J N Q CO 0.47(2.67) 0 0.44(2.50) - y 0.42(2.39) V W 0.38(2.16) - ,/" . •' - - - 0.65 n 0.36(2.05) C 0.34(1.93) G 0.32(1.82) a)i+ • 0.30(1.71) - E c 0.26(1.48) - t 0.24(1.37) ; 0.22(1.25) • - .6 0.20(1.14) 0.18(1.02) - n 5 0.16(0.91) - t 0.14(0.80) . 7 ; 0.12(0.68) 0.50 co- 0.10(0.57) o, C c . 8 . m 0.45 0 WI`` O j n • o _ c E o 9 0.40 Na c 65 60 c. 50 45 40 z`o c 2424 o Percent of Glass = Vision Area/Total Area m W (Total Daylight Opening / Projected Area) Y 1 I Notes for System U-Factor, SHGC and VT charts: For glass values that are not listed, linear interpolation is permitted. Glass properties are based on center of glass values(winter conditions)and are obtained from your glass supplier. < KAW N E E R ADMA010EN kawneer.com MARCH, 2019 190/350/500 Standard Entrances 39 EC 97911-201 THERMAL CHARTS 500 (PAIR OF DOORS) System Solar Heat Gain Coefficient (SHGC) vs Percent of Vision Area 0 C e A $ 0.75 JO C m a,a a 0.65 0 COG - 0.60 aid SHGC 0.55 _>,3 0.75 ��`m 0.70 0.50 V 3•N L z 0.65 � 0.45 T a.. 0.60 0.40 Cl) 0.55MllM �� E.2er i��� 0.50 -- - E 0 0.35 a� 045 u a1 -� 0.30 g� gL 0.40 0 35 --- ------ 0.25 A y c� 0.30 8� c 0.25 =I 0.20 Cl) ?� oa 0.20 015 0.15 o n g 0.10 - -__ 0.10 ° m 2 m 2-o o 2 i 5 1 005 0.05 2m s�dy 0.00 C m m a 65 60 55 50 45 40 J N r N Vision Area / Total Area (%) U System Visible Transmittance (VT) vs Percent of Vision Area U U 11 . 0.75 2 0.70 0.65 5. 3 COG : 0.60 i VT : 0.55 '0 0.75 : 0.50 0.70 >- `� : 0.45 ; 0.65 11) A 20.50 ------- -- `- - _ 0 30 0 0.45 - 0.40 ------ 0.25 (/) a ----- ----- - '_'E 035 u - --------_ -- 0.20 n$ ma 0.25 `- ------ a 0.20 r - v �' 0.15 F-�-- -- : 0.10 - L" c 0.10 r 0.05 $ � 005 Y r� 0.00 2 2 ® 65 60 55 50 1., 40 Vision Area / Total Area (%) kawneer.com ADMA010EN < KAW N E E R AN ARCOMC COMPANY 40 190/350/500 Standard Entrances MARCH, 2019 THERMAL PERFORMANCE MATRIX (NFRC SIZE) EC 97911-201 Thermal Transmittance ' (BTU/hr • ft • °F) 500 (PAIR OF DOORS) Glass U-Factor ' Overall U-Factor`' 0.47 0.82 0.46 0.82 0.44 0.81 0 0.42 0.80 °'° N U"al 0.40 N �iC 0.40 0.79 m m m 0.38 0.78 NOTE: For glass values that are not listed, linear interpolation is permitted. ' ° ° 0.36 0.77 -83b- 2 Y � 0.34 0.77 1. U-Factors are determined in accordance with NFRC 100. m 2. SHGC and VT values are determined in accordance with 3 2 0.32 0.76 = z= NFRC 200. 0.30 0.75 3. Glass properties are based on center of glass values and o 0.28 0.74 are obtained from your glass supplier. m o s 4. Overall U-Factor, SHGC, and VT Matricies are based on a 2 E 0.26 0.73 the standard NFRC specimen size of 1,920 mm wide by >;a4 2,090 mm high (75-1/2" by 82-3/8"). 1 t o 0.24 0.72 ° ' C C E _ 0.22 0.71 " "g 2'3 a= 0.20 0.70 ° _ c a 2.1 `o_ 0.18 0.70 =� R 0.16 0.69 J N-E R 0.14 0.68 0.12 0.67 0.10 0.66 D N ,t 4) N SHGC Matrix 2 Visible Transmittance 2 L Glass SHGC ' Overall SHGC ' Glass VT Overall VT ` 0.75 0.41 0.75 0.36 s 0.70 0.38 0.70 0.34 ° L 0.65 0.36 0.65 0.32 3 0.60 0.34 0.60 0.29 m 0.55 0.31 0.55 0.27 0 U 0.50 0.29 0.50 0.24co- E " 0.45 0.26 0.45 0.22 0 0 0.40 0.24 0.40 0.19 g'E y U 0.35 0.21 0.35 0.17 > $ - 0.30 0.19 0.30 0.15 8 o c T Q 0.25 0.17 0.25 0.12 °' c y 0.20 0.14 0.20 0.10 N c= 0.15 0.12 0.15 0.07 0.10 0.09 0.10 0.05 0.05 0.07 0.05 0.02 < KAW N E E R ADMA010EN AN A0.CONIC CONPANv '-1'::1 L'(:';J 1 MAY, 2019 TrifabTM VG 451/451T Framing System EC 97911-205 FEATURES Features • lrifabTM VG 451/451T is 4-1/2" (114.3) deep with a 2" (50.8) sightline • Front, Center, Back or Multi-Plane glass applications • Flush glazed from either the inside or outside • Screw Spline, Shear Block, Stick or Type-B fabrication • SSG / Weatherseal option 51184 • IsoLockTM lanced and debridged thermal break option with TrifabTM VG 451 T 2c g P 5 To • Infill options up to 1-1/8" (28.6) thickness a o a • PermanodicTM anodized finishes in seven choices U UU - T�a = • Painted finishes in standard and custom choices R o N =� d J C Ts O ,p g§tgU g Optional Features 3 . . , 5.= . • Acoustical rating per AAMA 1801 and ASTM E 1425 • Project specific U-factors (See Thermal Charts) 2:rig ya o • Integrates with VersoleilTM SunShade Outrigger System and Horizontal Single Blade System • Profit$MakerTM Plus die sets available Product Applications • Storefront, Ribbon Window or Punched Openings • Single-span • Integrated entrance framing allowing Kawneer standard entrances or other specialty entrances to be incorporated • Kawneer windows or GLASSventTM Windows for Storefront Framing are easily incorporated C Ja O t0 oC OCI~C m U y C O O } a C � mE L U � U m a c y 00 C,N O ryry B For specific product applications, consult your Kawneer representative. kawneer.com ADMC040EN ,C KAWNEER 2 TnfabTM VG 451/451T Framing System MAY, 2019 BLANK PAGE EC 97911 205 $ 2 (\� =2{} ) 1{ /)/\ 2§2 : ME \\\1 \81 //\ %]$ • 2 $ ; \{}} ) ! ! % sag ) $ ? a ?II' c < KAWNEER ADMC040EN kavoneer.com MAY, 2019 TrifabTM VG 451/451T Framing System 3 EC 97911-205 INDEX v- 3 PICTORIAL VIEWS 5-9 CENTER 11-21 U• i`y O '" a" CENTER (LARGE MISSLE IMPACT) 22-24 U � y ]1 Ct' m 11• 5n FRONT 25-39 - 3 �'H vsoa BACK 41-47 ]j U MULTI-PLANE 49-55 j'C AIR/VAPOR BARRIER TIE-IN OPTION 56 G N N 3 O� cN CHARTS (WIND LOAD, DEADLOAD, END REACTION &THERMAL) .... 57-97 213 2 m o E o,o c JT 5 ] y C O • lU ▪ aY L E C C O C O a J O C_ 3 O O 0) pC U m Metric(SI)conversion figures are included throughout these details for reference.Numbers in parentheses d ( )are millimeters unless otherwise noted. U E O � m E Q The following metric(SI )units are found in these details: o m— meter 21 U z a m cm—centimeter H 3 mm— millimeter s-second o Pa— pascal MPa—megapascal kawneer.com ADMC040EN FC KAW N E E R 4 TrifabTM VG 4511451T Framing System MAY, 2019 BLANK PAGE EC 97911-205 a d.N c Z En 5 N C C O U Oa J j 2 2 E aaoZ !IIm J a r c m u 3 a 0 o 0 c Cp c c c @ Q 1 c ;a v°o o c 0 .9 8mm N Y wC t R m a c N=E rn u c 1 m c rt U N C m y D c c s m R J QY L V m E a c m m U O a O t O S c m c c m m u E o oc 0 p a i IIc � Y d m a cc < KAW N E E R ADMC040EN kawneer.com MAY, 2019 TrifabTM VG 451/451T Framing System 5 EC 97911-205 PICTORIAL VIEW(CENTER) The split vertical in the Screw Spline system allows a frame to be The Shear Block system of fabrication allows a frame to be pre- installed from unitized assemblies.Screws are driven through the back of assembled as a single unit. Horizontals are attached to the verticals the verticals into splines extruded in the horizontal framing members. with shear blocks. The Individual units are then snapped together to form a complete frame. SCREW SPLINE SHEAR BLOCK ASSEMBLY ASSEMBLY -o MULLION \\ MULLION U Z2 \�„ t„ SNAP-IN FILLER �. '� SHEAR BLOCK v o- d \ I� �!, SPLINE SCREWS ` `�� `�/ d ► B �1 •10 rI.�j 2 n24' HEAD - 02 v m m a - 39-y _- HEAD ll U r j 3 co U / ` ► H `i� ► �. �� GLASS STOP a o m \for,�, GLASS STOP `�. •. ;d \ ` \ = SHEAR BLOCK e N N ► I AF `c t INTERMEDIATE v a... INTERMEDIATE 2 E m HORIZONTAL `HORIZONTAL 2O)CpC \ i ..\ `. 9—U ' a W c m \ �\ `. I `' w L O \�I \4I • ` •. \ "z c 0. -2 \ \1 ` \ GLASS STOP a c S E \ GLASS STOP \ �1 \ ``SILL SILL /FLASHING SILL ` ` FLASHINGSILL �. lr SHEAR BLOCK `, t ESTICK The Stick system allows on-site construction. Head and sill receptors i ASSEMBLY are fastened to the surround.Vertical mullions are then installed in mthese receptors and are held in place by snap-in inserts. Intermediate horizontal members are attached to the verticals with shear blocks. E Flashing is not required. 0 c a1114'1411-- ► \ S o S c MULLION - , c HEAD RECEPTOR o, ,I,r .��, 8 ' ,r` HEAD INSERT c c ; 4 GLASS STOP c E c Qi SHEAR BLOCK NOTE: o > p����4• If the end reaction of the mullion(mullion spacing(ft.) in a m ` INTERMEDIATE times height(ft.)times specified wind load(psf)divided y E E HORIZONTAL - ; by two)is more than 500 lbs.,the optional mullion m o m \ anchors must be used.(See page 14) 2 a m S :IL') ��, 13- 8 "S -1411 iiis , 2 ` GLASS STOP c OO SILL INSERT SILL RECEPTOR kawneercom ADMC040EN -C KAW N E E R 6 TrifabTM VG 4511451T Framing System MAY, 2019 PICTORIAL VIEW (FRONT) EC 97911-205 The split vertical in the Screw Spline system allows a frame to be The Shear Block system of fabrication allows a frame to be pre- installed from unitized assemblies.Screws are driven through the back of assembled as a single unit.Horizontals are attached to the verticals the verticals into splines extruded in the horizontal framing members. with shear blocks. The Individual units are then snapped together to form a complete frame. SCREW SPLINE SHEAR BLOCK ASSEMBLY ASSEMBLY =ro, \ MULLION MULLION Y > fi SNAP-IN FILLER \ m m ° •�;, SHEAR BLOCK .a c (� .. SPLINE SCREWS 01 c a°z Ali ,, I I - HEAD c 3 's'o T, HEAD �` ` v m u c m u' Y c 15 p� c \ G N O ji ` ` E3aE �� , GLASS STOP GLASS STOP u R m c SHEAR BLOCK $c _u 1 INTERMEDIATE r ` INTERMEDIATE d m 2 ca HORIZONTAL HORIZONTAL c 2 c E '4 ,!` ,..s.44 FLAT FILLER '\ I i \ FLAT FILLER �r m c c 3 \ \ GLASS STOP �!y\ GLASS STOP Y t i� \ SILL ` �yy` SILL �'\\ SILL ` SILL FLASHING \�' FLASHING -`I SHEAR BLOCK4Ir .! i The Stick system allows on-site construction.Head and sill receptors E STICK are fastened to the surround.Vertical mullions are then installed in ASSEMBLY these receptors and are held in place by snap in inserts. Intermediate -:',':1":-...,,,,,,T'''-,,,, horizontal members are attached to the verticals with shear blocks. Flashing is not required. c O g t HEAD RECEPTOR � ice\ MULLION 0 \ m \\ ry ►� . HEAD INSERT 0„, . 4� GLASS STOP m a, NOTE: 5 d SHEAR BLOCK If the end reaction of the mullion(mullion spacing(ft.) 2 � c times height(ft.)times specified wind load(psf)divided INTERMEDIATE m 15 E £ \ HORIZONTAL by two)is more than 500 lbs.,the optional mullion ✓ anchors must be used.(See page 34) Z Q. 8 3 ado o I GLASS STOP mga 2 c c iliSILL INSERT \_ SILL \\� fr., RECEPTOR < KAW N E E R AOMC040EN kawneer.CORM AN ANCONC COMPANY 0 MAY, 2019 TrifabTM VG 451/451T Framing System 7 EC 97911-205 PICTORIAL VIEW(FRONT) The Stick system allows on-site construction. Head and sill receptors are fastened to the surround.Vertical mullions are then installed in these receptors and are held in place by snap-in inserts. Intermediate horizontal members are attached to the verticals with shear blocks.Flashing is not required. STICK STICK ASSEMBLY ASSEMBLY v ; a, (SSG) (WEATHERSEAL) a J V O N U J O a C J 6O a, o tU N a - 3 J'N U.s oC J j U U U t ao a o %O y - `n N n-0,`o = HEAD HEAD T 5 c H RECEPTOR WEATHERSEAL RECEPTOR m vd� SSG 'III 0 MULLION �t D ., c E �,! HEAD INSERT J n ` ram` > HEAD INSERT T u O 1 '5 m c m --� -SSG MULLION 111 L w o' SHEAR BLOCK 'm v o ��' -.,10 ♦�i —�SHEAR BLOCK c ` INTERMEDIATE a INTERMEDIATE c \\ HORIZONTAL a t `\ HORIZONTAL \\ 1 \ \ 4 GLASS STOP \` •O� GLASS STOP COVER 4` COVER SILL INSERT SILL INSERT SILL \ ` RECEPTOR E41041 1 RECEPTOR G ` ` 1 aci c 3 d U O C O a J E. E. 3 a NOTE: If the end reaction of the mullion(mullion spacing(ft.) co times height(ft.)times specified wind load(psf)divided 3 by two)is more than 500 lbs.,the optional mullion m anchors must be used.(See page 34) 5 E c o go >: c E o o. c . c O m b g 6 n d Z Y e6 V O N 2 C O kawneer.com ADMC040EN ,C KAW N E E R 8 TrifabTM VG 4511451T Framing System MAY, 2019 PICTORIAL VIEW (FRONT) EC 97911-205 The TYPE-B punched opening fabrication allows a frame to be pre-assembled and installed as a single unit.Screws are driven through the back of the head and sill members into splines extruded in the vertical framing members. Intermediate horizontals are attached to the verticals with shear blocks. TYPE-B ASSEMBLY TYPE-B ASSEMBLY �� PUNCHED OPENING PUNCHED OPENING 7� (CAPTURED) (SSG) m � \ pa.N MULLION c 3 HEAD COPE\\ i SSG MULLION f� C a r 3 z-pc N U g C ..,,..1 NM* HEAD 'I ►. \ HEAD E `•1 �r\ I "'8,W uz '",1 I GLASS STOP `� GLASS STOP v u m c SHEAR BLOCK ' �ti�.--SHEAR BLOCK o c `� R V @ tl .2 2 C L 4 N INTERMEDIATE INTERMEDIATE 'c I \ HORIZONTAL HORIZONTAL m \ N 2m .1 D L N C • I1 i, �I� j '* �`a�u�� a \ GLASS STOP I + GLASS STOP W o m a SSG COVER J aY L ' SItJ SILL �, ...� 4, rr D TYPE-B ASSEMBLY g PUNCHED OPENING \ (WEATHERSEAL) i 111111110„ SSG MULLION c WEATHERSEAL W II. �� HEAD o 11 1t+ '�I GLASS STOP m o > ` SHEAR BLOCK n -: In E S 0.INTERMEDIATE $ HORIZONTAL 2.3. n 1IIIIIN m d r\ S 110 ,� W e \� GLASS STOP 3 m Z Y C � ,... •. 41 5SG COVER SILL < KAWNEER ADMC040EN kawneer corn MAY, 2019 TrifabTM VG 451/451T Framing System 9 EC 97911-205 PICTORIAL VIEW(BACK) The split vertical in the Screw Spline system allows a frame to be The Shear Block system of fabrication allows a frame to be pre- installed from unitized assemblies.Screws are driven through the back of assembled as a single unit.Horizontals are attached to the verticals with the verticals into splines extruded in the horizontal framing members. shear blocks. The Individual units are then snapped together to form a complete frame. SCREW SPLINE SHEAR BLOCK ASSEMBLY ASSEMBLY N \ 13,3 \ MULLION °c�1 o \ \ MULLION u t o ' � FLAT FILLER � 3 i c= l" I. ` ► SHEAR BLOCK i a o a � ''I��il SPLINE SCREWS I®'I11\ P amp_ ' `- - 3 z"N T.s c o 11 r� �- 711 HEAD >j II Ll' HEAD: :., ,, GLASS STOP\ 1.1 `.,, v 8 `� GLASS STOP 3 H N `, ISHEAR BLOCK mv iv=' �,,;��11I INTERMEDIATE Rc E INTERMEDIATE ili i HORIZONTAL HORIZONTALnao5 H rn \ 'ram:::5ToP I'N+� i ,Va �� 404 � �. \. I I), m \ \ \\ GLASS STOP ► FLAT \' o Q Y L ` � FLAT FILLER SILL � SILL \iilk mil... �:� SILL �:,; SILL \ `i FLASHING i FLASHING ® � . al ►, �r1.- SHEAR BLOCK \I `F-- g \ STICK The Stick system allows on-site construction.Head and sill receptors \i„.,.:`� ASSEMBLY are fastened to the surround.Vertical mullions are then installed in these receptors and are held in place by snap-in inserts. Intermediate horizontal members are attached to the verticals with shear blocks. \ Flashing is not required. \Q. ► HEAD `o MULLION RECEPTOR I► --..„,„.:111P .off 1 HEAD INSERT m rn,: m g �- . GLASS STOP f5 E g �+'� OTE: E a S f SHEAR BLOCK If the end reaction of the mullion(mullion spacing(ft.) E a �Q! times height(ft.)times specified wind load(psf)divided 2; § ` � II q; INTERMEDIATE by two)is more than 500 lbs.,the optional mullion m$ m \ \� ., HORIZONTAL i a \. anchors must be used. m o g b�� Y ` 4 1 V © GLASS STOP SILL RECEPTOR 1 SILL INSERT kawneer.com ADMC040EN ,C KAW N E E R 10 TrifabTM VG 451/451 T Framing System MAY, 2019 BLANK PAGE EC 97911-205 > C C r 01 0-Tit O 7 O C '0 a02 C C y OD C c @ @a C F @ O as o E c c u c a a'I a c c u v R c c R m M$n Q 4 C Ca E @ ,,8 E C R C R 9 U d C a y a � a J$`a Y. E E @ @ 0 c m L @ V O C O a 0 C c 0 W 0 w 8 m C C @ N O > L p � 5 0 c C Z a 113 z y y m a C 0 Y c C ,C KAW N E E R ADMC044EN kawneer corn MAY, 2019 TrifabTM VG 451/451T Framing System 11 EC 97911-205 INDEX(CENTER) BASIC FRAMING DETAILS 12-13 133 MISCELLANEOUS FRAMING 14-15 _ m O v=$ CORNERS 16 3 O Ct+ n R m CURVING & TRIM DETAILS 17 2 a a- ENTRANCE FRAMING 18 U U U 2 W o y ENTRANCE FRAMING (OPEN BACK) 19 Thom GLASSventTM WINDOW for STOREFRONT FRAMING 20 n .Fia 3 8 d , 8225TL THERMAL WINDOW DETAILS 21 "m y LARGE MISSLE IMPACT 22-24 a o m o o c E - m o T,C C tC N O N j w'O• o O e n t Czt ; I aY.c 0 E a' o I 0 3 8 `o c a 00 3 c 0 m C 0, tg m it c � m U y C O oy L a c g'E a 5 0 N$ U m w o. c m Z' U o Y c OO kawneer.com ADMC040EN ,C KAW N E E R 12 TrifabTM VG 4511451 T Framing System MAY, 2019 BASIC FRAMING DETAILS (CENTER- Outside Glazed) EC 97911-205 Additional information and CAD details are available at www.kawneer.com 1 I I .-4****\\\ 4— 5— m 11.2 � m 2 N �5 c V O i aao2 mm.r IIRIM :r c 3 . y 3 w=me NUMBERS IN BRACKETS ARE _2 d �.. g ELEVATION IS NUMBER KEYED TO DETAILS THERMALLY BROKEN MEMBERS m= G N 2 c : ;aE SCREW SPLINE SHEAR BLOCK STICK c.2 c a 3.1 =v a = R m tl. R. =—a m_ ++ 2" 23"Z�a 451CG001 45100001 451C0001 I {50.8) 1 451C0001 451C0005 o w c E [451TCG001] [451TCG001] NN [451TCG0011 I TYPICAL I rcGO 01] [451TCG005J °p m" c 0 0 451CG005 ° "• c m c a U U (451TCGODS] cL " _ F- a �� `c N V` C -. 6 m u a ll [I l m c J O Y L I 4 5 4 5 4 5 JAMB VERTICAL JAMB VERTICAL JAMB VERTICAL • E 1 ao 1 1 < c c HEAD N g HEAD HEAD N >0 L u L • V 7 y 451CG004 451CG003 451CG004 451CG003 • 451CG004 451CGQ08 0 (451 TCGOID3] [451 TCGD03] c 4-1i2" T (451TCG008] ii T 5" (114.3) . a TYPICAL (127.0) 'o L 3 C O I 451 CG065 .EI [451TCG0651 . 2 2 2 0 U HORIZONTAL HORIZONTAL HORIZONTAL m m ' -E i 451CG004 451CG011 451CG004 451C0011 _ m 451 CG004 451 CG066 (451TCG0111 451TCG011 I'a , ( ] (451TCG066J E.o C m 451CG014 451CG014 m a.. F �,/1 [451TCG014] ') [451TC0014] 451C0007 451V0106 a FI 'Y 1� • 1' m ?T (451TC00071 [451TVG1061 r 5 a .�►/1 4►,11� ___ - m w c U C 3 3 i. . 3 e� ifrop„iliar Y c G SILL 451VG037 SILL 451VG037 ?_:-- j451TVG037' j451TVG037J• SILL N DNS 1l11� r �t �..I LII�----��[0 111 � 01/1 LIh— —___ `HP Sill Flashing shown with optional gasket. `HP Sill Flashing shown with optional gasket. < KAWNEER ADMC040EN kawneer.com AN ANCONIC COMPANY MAY, 2019 TrifabTM VG 451/451T Framing System 13 EC 97911-205 BASIC FRAMING DETAILS (CENTER - Inside Glazed) Additional information and CAD details are available at www.kawneer.com 1 i t 4— 5— n_ P of v >c c i6 y_8� U o 2 ] U 0 t I � 71:C=2:).1%*N... U Q C . U 6 2 v Ti a 3 z•;6I I NUMBERS IN BRACKETS ARE 20F, ago 2 ELEVATION IS NUMBER KEYED TO DETAILS THERMALLY BROKEN MEMBERS ga >D 0 S T 2 m SCREW SPLINE SHEAR BLOCK STICK ] U N3 C 0 N v a) `0 a)5 y 2 m o E 451C0001 451CG001 451CG001 (50.8) • 451CG001 451CG005 o g,,8 E. [451TCG0011 [451TCG001] w o [451TC0001] TYPICAL [451TCG001] [451TCG005] '_ mcT7 O 451CG005 ? rn U U !( l451TcG005] y o o -- i yi 8 ?„-' r., z'-: si ', ___ t%JCLY t u 4 5 - 4 5 4 5 JAMB VERTICAL JAMB VERTICAL JAMB VERTICAL 8 ,o E 0 �' 8 v 1 00 1 1 �� �� HEAD HEAD HEAD 8 • 451C0003 451CG004 451CG003 45100004 [451TCG0031 [451TCG003] 451C0008 451CG004 T 4-1/2" [451TCG008] a r (114.3) T }I 5" }I o TYPICAL (127.0) c 3 c 0 'm 451CG065 o [451TCG065] 8 2 2 HORIZONTAL HORIZONTAL 2 l �t .: HORIZONTAL U C x 451CG011 451CG004 451CG011 451CG004 i a [451TCG011] [451TCG066] [451TCG011[ 451CG004 5 U m > m 2 451CG014 451CG014 0 m y [451TCG014] [451TCG0141 451VG106 451CG007 3 3 m rr [451TCG106] [451TC0007] c 3r.., 3 �I►/13 d SILL 1VG037 SILL 451VG037 rs SILL 1451TVG037J' — 1451TVG037i N HP Sill Flashing shown with optional gasket. *HP Sill Flashing shown with optional gasket. kawneer.com ADMC040EN VsC r rAVV N E E R 14 TrifabTM VG 4511451T Framing System MAY, 2019 MISCELLANEOUS FRAMING (CENTER) EC 97911-205 Additional information and CAD details are available at www.kawneer.com 451CG112 451CG010 451CG540 451CG010A 451CG540 451CG010A 451CG540 [451TCG112] 451CG005A 1451TCG010] [451TCG540] [451TCG010A] l451TCG540] 14511'CG010AI [451TCG540] ■ t ®,� 451CG002 V T ri► .1(451TCG002] �, v o m �� �1 _ 1� �1 1� `o u a V 0 7 iii If m 0 O i 450110 400110 o c c i��1 STEEL L STEEL n roroL° - REINFORCING REINFORCING c 3 °n mc,c C' 1 2-114' y m TUBULAR EXPANSION TUBULAR TUBULAR a ° 5 (57.2) MULLION MULLION EXPANSION MULLION EXPANSION MULLION $a g c SPLIT MULLION WITH OPTIONAL STEEL w)B WI STEEL >$a g o c c m'�° ay m a dc ou m N a s m u it- L__i Ell v7 0 d 1 C R i7 E ro O u C m2 5'n 451VG029 451VG030 a r L 451087 L. 451520 '5= c c �� � 450026 T.,� 451T026 �� �� n w c 1El] NSSE a a �$Y= 1/4"(6.4)INFILL 5/8"(15.9)INFILL SNAP-IN THERMAL SNAP-IN SNAP-IN SNAP-IN ADAPTOR SNAP-IN ADAPTOR FLAT FILLER FLAT FILLER FLAT POCKET DOOR STOP FILLER Lil 115J 451TCG002 451TCG028 E m m L c S SHALLOW POCKET DEEP POCKET i 0 c THERMAL POCKET FILLERS n 0 S C Wc 0 451 VG006 co 450 VG006 a P IrP lii, •. m V i CC., t I' J g m S., o >o L Ec v':` 451CG362 m- i MULLION ANCHOR v 8 • Z n 8 NOTE: v If the end reaction of the mullion(mullion spacing(ft.)times da height(ft)times specified wind load(psf),divided by two)is 3 o more than 500 LBS.,the optional mullion anchor must be 450VG106 451 VG106IC c used.Consult Application Engineering. OPTIONAL LIGHTWEIGHT OPTIONAL UNEQUAL LEG NOTE: CAN RECEPTORS CAN RECEPTORS Mullion Anchor not used with Lightwieght Receptor. < KAWNEER ADMC040E N kawneer.corn AA 4PC0lNC COMPANY MAY, 2019 TrifabTM VG 451/451T Framing System 15 EC 97911-205 MISCELLANEOUS FRAMING (CENTER) Additional information and CAD details are available at www.kawneer.com 451 VG570 451 VG570 [451 TVG570] [451 TVG570] J 451 VG374 Q v N N 451VG573'__- CLIP i >5 451 VG572 it lilt ,`l ` \� I - n 3 5-1/2" TYPICAL 2)'-m g (139.7) g-E i3 N STANDARD HEAVY WEIGHT 1-)9 s HEAD HEAD -_"`m o ,`n COMPENSATING RECEPTOR COMPENSATING RECEPTOR v a o 3 (EXTERIOR INSTALLED) (EXTERIOR INSTALLED) m a 451VG570 3 (ti [451TVG570] a,c t A 451VG571 .. n m" 451TVG571 --C:=J n7 E , - m o ?2 g.5 2 U N Th 3 „O, O J N IV g it V a' ' N 3 —i 1flF ---- ONE813 PIECE 1 (7, HEAD 451VG572 COMPENSATING RECEPTOR JAMB COMPENSATING RECEPTOR (EXTERIOR INSTALLED) 7, E 00 .1 ; v 1 i - c • i m imp 451027 I} 8 2" 4-1/2" I g (50.8) t (114.3) g E [ a 451CG004 451CG004 g TO EN _ 451 CG035 c Z h 451027 j Film11, � I i 1r I451TCG035] N r 450029 U U .� a 1.. NM r t� L____- 'c 450028 CO 7 ` 8 v 450027 .1_ %A- 43 ! iilem,i ,w o v 2 " 450109 _ � 450037 E a ' 450031 450031 11 451CG004 mE 1 • \ \ \ \ \ \ \ G ' *NARROW *NARROW SIDELITE BASE 4-1/2"(114.3)x 4-1/2"(114.3) m a. ., SIDELITE BASE SIDELITE BASE HORIZONTAL m- Z^ Y m R m 4' N SIDELITE BASES ARE NON-THERMAL APPLICATIONS *NARROW SIDELITE BASES REQUIRE THE USE OF NON-THERMAL 2-PIECE VERTICALS ONLY. NOTE:SIDELITE BASES SHOWN ARE FOR USE WITH SCREW SPLINE AND SHEAR BLOCK SYSTEMS ONLY. kawneeccom ADMC040EN ,C KAY S N E E R 16 TrifabTM VG 451/451T Framing System MAY, 2019 CORNERS (CENTER) EC 97911-205 Additional information and CAD details are available at www.kawneer.com 450017 450017 a r m •-M N C 7.- 2 J 31oE 060119 450017 a3 o c£ l l • va02 I c-" 451CG015 m m �r c 3 a 4-1/2" [451TCG015] a a (114.3)TYP. TWO PIECE ONE POCKET o c 4-1/2"X 4-1/2"TUBE NO POCKET CORNER CORNER 0 0 3 E c w o aio a E 0 c c 451CG015 451CG015 451CG016 0' 2 d [451TCG015] [451TCG015] [451TCG016] v$ m o A W a v _L,a). R at 2 O c O c E %W 8 E 4 N 90 G C= N a a 39 3L O 3 aY 2 1flFL035 451CG015 451CG035 (451 TCG035] [451TCG015] [451 TCG035j TWO POCKET THREE POCKET TWO POCKET CORNER POST 90°CORNER 90°CORNER 451CG034 451TCG034 452CG034 451CG016 (452TCG034] [451TCG016] 452CG028 , Cli C [452TCG028j [454522TCG0283G028 e k it___. iri z 451CG028 451CG028 451TCG028 451TCG028 ' 0 cc 410 0 .0 n 451 CG016 8 [451TCG016] 135°CORNER 135°CORNER t FOUR POCKET (NON-THERMAL) (THERMAL) 135°CORNER 3 co 90°CORNER 5 m 0 0 U 451CG071 451CG071 m 451CG010 451CG010 °c'c [451TCG071) [451TCG071] m m [451TCG010] [451TCG010] c E 451CG541 451CG541 0 [451TCG5411 [451TCG541] P. > c Eo. i °'E c It 8.8 C za 8 N O C S Z i 8 N a BRAKE METAL 451CG541 451CG541 ; FILLERS [451TCG541] [451TCG541] yc c' 155°TO 180°PIVOT MULLION 155°TO 180°PIVOT MULLION VARIABLE DEGREE (OUTSIDE CORNER) (INSIDE CORNER) BRAKE METAL CORNER <KAWNEER ADMC040EN kawncer.com AN APCONC COMPANY MAY, 2019 TrifabTM VG 451/451T Framing System 17 EC 97911-205 CURVING &TRIM DETAILS Additional information and CAD details are available at www.kawneer.com •1 �UaJ N a a m � • 175186 175188 5.; - Z c 175187 3 co S g 4-1/2" n u a 43 TYPICAL J O Cif- 2 I - 3 Al 2 1D.`a ai . CURVING DETAILS ; -4O J p:ll , = (Center Plane Only) 2 175186 S H, 175191 T;o „ 3 vmd2 i J g y yg.. l I d I 12 0 2 g c E o.,8 p ?,Nam O N J= {C l0 j d 2' . �a o 7 Y. d n N � 3 c -2• m 3 nY t 1r l-_-.-ISL1 tyr1!/ 1 1, I, ' 1 er 1 1 ',_ ..J >t i Seal over Stool Trim fasteners to prevent BRAKE METAL water infiltration. 451VG150 FILLERS E tr.;;r--- STOOL TRIM [451TVG150] d g. -i ii' '-_1J::V =' 069271 'i _ ;c, g STOOL TRIM CLIP 'I I' 5 WITH HIGH PERFORMANCE 't - n�'-`'-_ 0 ` FLASHING 3 e BRAKE METAL I ADAPTOR AT HORIZONTAL CO E. m O1'' BRAKE METAL m Seal over Stool Trim 5>E g fasteners to prevent FILLERS o o a water infiltration. r====__1 c E a U • c ,i \ i 451VG150 iD W Y• __ --- _.,,. ! ifs LI) [451TVG1501 ill m m V 069271 gi__.r `=-'i U N ,< 4 r 2 © STOOL TRIM CLIP y FOR STICK ASSEMBLY BRAKE METAL ADAPTOR AT VERTICAL kawneer.corn ADMC040EN ,C KAWNEER 18 TrifabTM VG 4511451T Framing System MAY, 2019 ENTRANCE FRAMING (CENTER) EC 97911-205 Additional information and CAD details are available at www.kawneer.com TrifabTM VG 451 FRAMING INCORPORATING KAWNEERTM "190" DOORS. DOOR FRAMING NON-THERMAL ONLY NOTE: OTHER TYPES OF KAWNEER DOORS MAY BE USED WITH THIS FRAMING SYSTEM. SEE ENTRANCE DETAILS FOR ADDITIONAL INFORMATION. 6 7 ' a 3 451026 451026 _ I c 1 INSERT INSERT > I Ytm.- 6_ —7 10 m� Os { I ...__.� a . c i Z m.m t C 3 = u Cr) rn� € 4— —5 8— —a 450110 '$.W c STEEL 'U 3 c (AS REQUIRED) r v 3 c rn g"8 451501 or 451019 451501 or 451019 5 f0 MULLION MULLION on'E I' - C C 3 3 TRANSOM JAMBS °'•3 2 R Transom area for both double or single acting doors with o g d R ELEVATIONS ARE NUMBER KEYED TO DETAILS glass surround. Jambs above transom bar are routed l 6 L2.1 out to accept glass holding insert with or without steel o R reinforcing. 5 g,g C it C R .5 r c a ti o `c wil... //I T/1 tlll 7. a • m, R°'i R J D 8 0 1' co-) 1 N 451502 451081 n Y r 450500 I 451CG001 • 451CG001 II i 4-1/2• . 10 10 I. (114.3) TYPICAL TRANSOM HEAD ' IIIMIIIIIIi 450022 450022 SINGLE ACTING DOUBLE ACTING a STOPS STOPS HEADER HEADER E v I'!r=�1t, 451081 e U 2 2 451501 451501 c 451502 450500 .5 7 L• I '7 _� I - o _ _ v 3 IIP lam/ ni - -4ni k7,' 1 r TRANSOM BAR U 5 (50 8) SINGLE ACTING 4 1 4 DOORJAMBS oa.,,.,. ` L `d 0 4,,,, 1 BOTTOM RAIL A d� P to 451019 o a 3 3 r m m a Optional `3 3' i Bottom Rail Sweep 01 lat ���C x cinn t I Z I -Bib- 069139 069143 / • • SINGLE ACTING DOUBLE ACTING 8 DOUBLE ACTING 9 DOOR JAMBS Pr< KAWNEER ADMC040EN kawneer.com All ARCONIC COMPANY MAY, 2019 TrifabTM VG 451/451 T Framing System 1 9 EC 97911-205 ENTRANCE FRAMING (CENTER-Open Back) Additional information and CAD details are available at www.kawneer.com TrifabTM VG 451 FRAMING INCORPORATING KAWNEERTM "190" DOORS. DOOR FRAMING NON-THERMAL ONLY NOTE: OTHER TYPES OF KAWNEER DOORS MAY BE USED WITH THIS FRAMING SYSTEM. r SEE ENTRANCE DETAILS FOR ADDITIONAL INFORMATION. 6 7 U u >a- of 1 451C0028 451026 451026 45106002 4 y d$ _ [451TCG028] INSERT INSERT [451TCG002] 6 o d 6— _7 10 POCKET INSERTt ip POCKET INSERT � nt gf :1 * 2 aoZ - 3 0 N 1 rg 1 4— --5 8— —9 a. U U U 450110 STEEL T c (AS REQUIRED) n w 451599 or 451064 451599 or 451064 >v°`o § MULLION MULLION O c c N "3 2 " 3 3 TRANSOM JAMBS 3 2 m N 7,N N I - I Transom area for both double or single acting doors with T n v d ELEVATIONS ARE NUMBER KEYED TO DETAILS glass surround. Jambs above transom bar are routed out to R 2 o , accept glass holding insert with or without steel reinforcing. ONCE D 0 3 C I " O 'H 10 L N 1.5 N O " d V inai 117 [Ill 117 3 3"o a 2 t 1 .1 U 1 451502 451081 N' 450500 illi451CG001 451CG001 M 4-1/2" (114.3) t NI 10 10 IITYPICAL TRANSOM HEAD 450022 450022 SINGLE ACTING DOUBLE ACTING E „ - STOPS STOPS HEADER HEADER m — c lhag . m N 451599 451599 c��" 451081 oo c $g O . 2 2 0r 0F0- 8 451502 450500 'sr L• a a I _ _ �1 5 II S lC m III a 1 r TRANSOM BAR IIIII! 411A E. � r C 4 SINGLE ACTING 5 o > DOOR JAMBS c NOTE: Sidelite mullions must be oriented to provide at least E one (1)deep vertical pocket per lite to facilitate glazing. s 6 ° BOTTOM RAIL a$ U m� 3 3 451064 451064 it, .5 Optional 450126 450126 lir! R Bottom Rail Sweep 069139 7,717777 ,/1J / / J T \ 69143 ill SINGLE ACTING DOUBLE ACTING ~ DOUBLE ACTING I"'I 8 DOOR JAMBS 9 kawneer.com ADMC040EN ,C KAW N E E R 40 Tnfa bTM VG 451/451T Framing System MAY, 2019 BLANK PAGE EC 97911-205 k\z. ?k\ {\g lGGC F®f ; �${| /ff ' /w 2 Pc; \\\k ! ] % 111 i ;( kk C. rsC KAWNEER AMC#OEN __gym MAY, 2019 TrifabTM VG 451/451T Framing System 41 EC 97911-205 INDEX(BACK) BASIC FRAMING DETAILS 42-43 U ; MISCELLANEOUS FRAMING 44-45 "�o ' CORNERS 46 E O$L C 2 n.2� ENTRANCE FRAMING 47 o A � ny s CQ a 7 E U U T c o = O O N `a N j C C N s C N � N U d P. N c E -va80, 2 8 J U y J d N C 3 i22 N 0 O C C C a, U U O O S O C 3 O S O1 O N C m 01�: 55 U C O > O a C E n c g o w 9 U m o y Z a C 0 3 r Y m N V C C © kawneer.com ADMC040EN ,C KAW NEE R 48 TnfabT© VG 451/451T Framing System MAY, 2019 BLANK PAGE EC 97911-205 2 § , . ,!£i §f®/ ) 0 \\{) Z§) C E• /§$§ ! 8g \\\\ 77, # {)\ % \ • , |▪-2± it I }k F. VC KAWNEER ADMCoEN kawneercom MAY, 2019 TrifabTM VG 451/451T Framing System 57 EC 97911-205 INDEX (CHARTS) WIND LOAD CHARTS (CENTER) v'3 TF VG 451 (Non-Thermal) 58-62 Jg L° JOi TF VG 451T (Thermal) 63-66 rai WIND LOAD CHARTS (FRONT or BACK) T C z °§ TF VG 451 (Non-Thermal) 67-70 L U T o 0 TF VG 451T (Thermal) 71-73 WIND LOAD CHARTS (FRONT or BACK) v ° ° TF VG 451/451T (SSG Mullions) 74 J U WIND LOAD CHARTS (MULTI PLANE) J �c E TF VG 451 (Non-Thermal) 75 L to O� TF VG 451T (Thermal) 76 Dv WIND LOAD CHARTS (ENTRANCE FRAMING) J aY 2 TF VG 451/451T 77-78 DEADLOAD CHARTS TF VG 451/451T 79-80 END REACTION CHARTS 81 ° THERMAL CHARTS ° EXAMPLE CALCULATION 82 TF VG 451 (CENTER — Non-Thermal) 83-85 TF VG 451T (CENTER — Thermal) 86-88 TF VG 451T (FRONT — Thermal) 89-91 TF VG 451T (BACK — Thermal) 92-94 TF VG 451T with Steel (CENTER) 95-97 ° U N OI`; C t f0 y EE ci N O > t a E a =U p d ° m > a m d a 3 N � � 3 U O y C kawneer.con, ADMC040EN ,C KAW N E E R 58 TrifabTM VG 4511451T Framing System MAY, 2019 WIND LOAD/DEADLOAD CHARTS EC 97911-205 WIND LOAD CHARTS Mullions are designed for deflection limitations in accordance with AAMA TIR-A11 of L/175 up to 13'-6" and L/240 +1/4" above 13'-6". These curves are for mullions WITH HORIZONTALS and are based on engineering calculations for stress m and deflection.Allowable wind load stress for ALUMINUM 15,152 psi (104 MPa), STEEL 30,000 psi (207 MPa). Charted ' curves, in all cases are for the limiting value. Wind load charts contained herein are based upon nominal wind load ; > utilized in allowable stress design. A conversion from Load Resistance Factor Design (LRFD) is provided. To convert o ultimate wind loads to nominal loads, multiply ultimate wind loads by a factor of 0.6 per ASCE/SEI 7.A 4/3 increase in 1? g s a.s2 allowable stress has not been used to develop these curves. For special situations not covered by these curves, contact !III. your Kawneer representative for additional information. , m � C 'or ,oj 41 8 U C If the end reaction of the mullion [mullion spacing (ft.)times height (ft.) times specified wind load (psf)divided by two] sE=W o a;is more than 500 lbs., the optional Heavyweight Compensating Receptor Face/Reinforcing Clip (Screw Spline/Shear O C C Block systems)or Mullion Anchors (Stick system) must be used. Consult Application Engineering. (Mullion Anchor not h 3 c Y ) Y ) pp 9 g R used with Standard Receptor.) s W W N r fC M1 o g E c 6 3 C O C ,r a C ,C DEADLOAD CHARTS N f 3 U c 4 y 'J Horizontal or deadload limitations are based upon 1/8" (3.2), maximum allowable deflection at the center of an g Y t intermediate horizontal member. The accompanying charts are calculated for 1" (25.4) thick insulating glass or 1/4" (6.4) thick glass supported on two setting blocks placed at the loading points shown. NOTE: Charts are for THERMAL and NON-THERMAL members. a m v c m d u 0 O c O L c 0 0 C, C c 0 V m � N N O > O n .g E a N O r 3 V Y c < KAW N E E R ADMC040EN kawneer.corn MAY, 2019 TrifabTM VG 451 Framing System 59 EC 97911-205 WIND LOAD CHARTS (CENTER) Non-Thermal CHARTS Allowable Stress LRFD Ultimate Design Load Design Load WITH HORIZONTALS A= 15 PSF(720) 25 PSF(1200) WITHOUT HORIZONTALS WIDTH IN METERS B= 20 PSF(960) 33 PSF(1580) WIDTH IN METERS 0.5 1 1.5 2 C= 25 PSF(1200) 42 PSF(2000) 0.5 1 1.5 2 15 . ` I —4 5 D= 30 PSF(1440) 50 PSF(2400) 15 , \I\ 1 I —4.5 E= 40 PSF(1920) 67 PSF(3200) v 14 14 u 3 13 —4 13 —4 m a (n co 2W H 12 0' F- 12 0' Sway W —3.5 w w —3.5 W W w E Q LL 11 W LL 11 w 2ooy. Z Z A a m= 10 —3 Z 10 3 Z y HI A H 3 B \\N yc a E 9 �B 2 U' 9 —D = y�8o = 8 ` 'C2.Sw = 8 Wr.agoy 7 \ D 2 72 il'2 �--F2T—E:5 va`o 6 6 =, O co vm;g 5 — 1.5 451CG001 5 — 1.5 "- '° 451CG002 `` '<u)- 4 4 5m52 1 2 3 4 5 6 7 8 1=3.237(134.73 x 104) 1 2 3 4 5 6 7 8 c E WIDTH IN FEET S=1.490(24.42 x 103) WIDTH IN FEET A m 8 C aA c m 3 2 O 88 J V N n 3 0 3� QY=" WITH HORIZONTALS WITHOUT HORIZONTALS WIDTH IN METERS WIDTH IN METERS 0.5 1 1.5 2 0.5 1 1.5 2 15 I I 1 I —4.5 15 I I t I —4.5 14 14 13 —4 13 —4 1- 12 tY 1- 12 co g w —3.51- w —3.5F- E L.L. 11 W LL 11 w E C 10 —3 Z Z 10 A3 Z 2 W g2.5 0 w D2.5 0 °_ I 8 C W = 8 E 7 w I 2 a 6 E2 451CG012 6 —2 3 451 CG002 5 � 1.5 5 ..- 1.5 9. 4 1=3.137(130.57x104) S=1.445(23.68 x 103) 4 o'� 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 9 WIDTH IN FEET WIDTH IN FEET m az g d c o o t c E a G U O t $ m Yc m.5 5 Z 1Foi o 0 3 u f[C QN kawneer.com ADMC040EN < KAWNEER 60 TrifabTM VG 451 Framing System MAY, 2019 WIND LOAD CHARTS (CENTER) Non-Thermal EC 97911-205 WITH HORIZONTALS Allowable Stress LRFD Ultimate WITHOUT HORIZONTALS WIDTH IN METERS Design Load Design Load WIDTH IN METERS A= 15 PSF(720) 25 PSF(1200) 0.5 1 1.5 2 B= 20 PSF(960) 33 PSF(1580) 0.5 1 1.5 2 15 I II I -4.5 C= 25 PSF(1200) 42 PSF(2000) 15 ( --4.5 14 D= 30 PSF(1440) 50 PSF(2400) 14 13 -4 E= 40 PSF(1920) 67 PSF(3200) 13 -4. r m I- 12 H 12 A 0' d w A3.5 w g3.5 W LL 11 W LL 11 w Y m H 10 C3 Z H 10 D3 z ° ° t N I 9 D 2 I 9 E 2 m a,`o_2 c m To 12 L W 8 E2.5 0 - W 8 -2.5 0 = 3 = 0 2 W I W N o2 c y m c 7 I 7 = v t $ '! -2 -2 mo� a 6 6 o,cac c�o 451CG013 E 3 a 5 +- 1.5 5 - 1.5 d°`o 451CG002 0 c c 4 4 0,3.2 R 1 2 3 4 5 6 7 8 I=5.907(245.86x104) 1 2 3 4 5 6 7 8 0§dR WIDTH IN FEET S=2.675(43.84 x 103) WIDTH IN FEET aco d =R WITH HORIZONTALS WITHOUT HORIZONTALS = E N O,tJ C WIDTH IN METERS WIDTH IN METERS .; U L y c 0.5 1 1.5 2 0.5 1 1.5 2 .2 15 `fi d 15 -4.5 -4.5 -3 t 14 14 J aY.c 13 -4 13 4 W 12 w W 12 w LL 11 3.5 W tWi 11 -3.5 W Z 2 Z A 2 H 10 `3 Z H 10 3 Z I B CO 9 A 2 CO 9 -C I w B250 W D2.5 0 2 8 C W 2 8 �E w D 2 2 -o 7 7 2 -2 � 6 451CG112 6 5 1.5 451CG002 5 -- 1.5 3 4 I=3.346(139.27 x 104) 4 3 1 2 3 4 5 6 7 8 S= 1.535(25.15 x 103) 1 2 3 4 5 6 7 8 2 WIDTH IN FEET WIDTH IN FEET a 5 0 WITH HORIZONTALS WITHOUT HORIZONTALS 3 c WIDTH IN METERS WIDTH IN METERS 5 0.5 1 1.5(( 2 0.5 1 1.5 2 15 1 I -4.5 15 I ` \ c°, 4.5 rn`; 14 14 A `m`m 13 A4 13 - `4 0 0 H 12 B cn t°. H 12 mE a w g3.5 w W �C3.5 W y1; < LL 11 C W LL 11 D W N 8 c Z 10 �D3 Z Z 10 E3 az I H �E Z mo I I- m- U` 9 2 C7 9 2 .g F,, a W 8 • -2.5 CO W 8 -2.5 0 `3 € 7 I 451CG112 2 7 =ai 2 ` -2 451CG002 -2 6 with 450110 STEEL 6 5 1.5 IA=3.346(139.27 x 104) 5 1.5 4 SA= 1.535(25.15 x 103) 4 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 WIDTH IN FEET Is= 1.935(80.54 x 104) WIDTH IN FEET SS=0.938(15.37 x 103) <KAW N E E R ADMC040EN kawneer.com MAY, 2019 TrifabTM VG 451 Framing System 61 EC 97911-205 WIND LOAD CHARTS (CENTER) Non-Thermal WITH HORIZONTALS Allowable Stress LRFD Ultimate WITHOUT HORIZONTALS WIDTH IN METERS Design Load Design Load WIDTH IN METERS A= 15 PSF(720) 25 PSF(1200) 0.5 1 1.5 2 B= 20 PSF(960) 33 PSF(1580) 0.5 1 1.5 2 15 I i I -4.5 C= 25 PSF(1200) 42 PSF(2000) 15I i I -4.5 14 D= 30 PSF(1440) 50 PSF(2400) 14 13 _4 E= 40 PSF(1920) 67 PSF(3200) 13 -4 Cl)cn v 3 H 12 W I- 12 W z� W -3.5 W W[11 -3.5 v >" W 11 W 11 W m W [ N� o 2 Z 2 aa� Z 10 -3 Z 10 Al Z n N p� i a Q D � 9 ` A = 9 `B = o m a - 3c.y W_ 2.50 W_ _ 2.5CO acaa 8 `\C S 8 � - E III A c'i-t, d 2 7 D 7 -2 TCD 6 E 6 2' b v� av `o 5 " - ` 1.5 451CG005 5 3 C_ C N � i° 4 4 1ci °-i N'! 1 2 3 4 5 6 7 8 I =2.907(120.99 x 104) 1 2 3 4 5 6 7 8 ..2 WIDTH IN FEET S= 1.292(21.17 x 103) WIDTH IN FEET A m= 4-,A m P.2 t•do E WITH HORIZONTALS WITHOUT HORIZONTALS A-6,. C ''1 0. WIDTH IN METERS WIDTH IN METERS J.L W rm 2:$ 6 0.5 1 1.5 2 0.5 1 1.5 2 'n � c3 15 I I I -4.5 15 ' 11I -4.5 a J aY L 14 14 13 -4 13 -4 ILI 12 12 W -3.5 H W -3.5 � W 11 LU W 11 L Z Z 1- 10 -3 Z 10 A3 Z I B O 9 A 2 0 9 C 2 W -132.5 0 w -1)2.5 0 I 8 2 8 C W E W 0 2 I E 7 ��D2 7 -2 O 6 E 451 CG005A 6 C m 5 - 1.5 I=3.016(125.53 x 104) 5 .-- 1.5 ig 4 S= 1.340(21.96 x 103) 4 g 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 a WIDTH IN FEET WIDTH IN FEET 5 0 WITH HORIZONTALS WITHOUT HORIZONTALS e WIDTH IN METERS WIDTH IN METERS 1 8 0.5 1 1.5 2 0.5 1 1.5 2 3 15 I. v I -4.5 15 I. � I --4.5 rn� \ A m a 14 14 A 9 > > 13 A4 13 `4 E n c (n = B Cl) re a I- 12 0' I- 12 CL =u o W 83.5 H W p3.5 H N 1 W 11 C W U- 11 W aZ a Z 10 �3 Z 10 E3 Z I� , ad CO 9 E 2 t 9 2 1 i 0 2 8 -2.5 W = 8 -2.5 W 7 2 7 2 -2 -2 6 451CG005A 6 5 - 1.5 with 450110 STEEL 5 1.5 4 IA=3.016(125.53x104) 4 1 2 3 4 5 6 7 8 SA= 1.340(21.96 x 103) 1 2 3 4 5 6 7 8 WIDTH IN FEET Is= 1.935(80.54 x 104) WIDTH IN FEET SS=0.938(15.37 x 103) kawneer.com ADMC040EN < • N E E R 62 TrifabTM VG 451 Framing System MAY, 2019 WIND LOAD CHARTS (CENTER) Non-Thermal EC 97911-205 WITH HORIZONTALS Allowable Stress LRFD Ultimate WITHOUT HORIZONTALS WIDTH IN METERS Design Load Design Load WIDTH IN METERS A= 15 PSF(720) 25 PSF(1200) 0.5 1 1.5 2 B= 20 PSF(960) 33 PSF(1580) 0.5 1 1.5 2 15 I ( I -4.8 C= 25 PSF(1200) 42 PSF(2000) 15 t I I -4.8 14 D= 30 PSF(1440) 50 PSF(2400) 14 13 -q E= 40 PSF(1920) 67 PSF(3200) 13 -4.5 � m H 12 H 12 \\N\t': 0 "3 m W -3.5 W W .5 W M. z it LL 11 w lwi 11 A w Y -r' 10 A Z 10 B o a H -3 Z H �3 Z N � Ns _ I 5o U C 2 C7 E I amp= 9 9 -cnoz W 2.5U` 2 W -2.5V` c3 =I = 8 w = 8 W �c�c 7 E I 7 _ 4 t $ `v -2 -2 r�a� c c `I' v o ` 3 n a 5 -- 1.5 451CG001A 5 _ -- 15 vo 451CG002 6 E occfi 4 4 m i.o « 1 2 3 4 5 6 7 8 I=4.507(187.59 x 104) 1 2 3 4 5 6 7 8 g �d R WIDTH IN FEET S=2.053(33.64 x 10') WIDTH IN FEET 3 @ " C C R `' m y. WITH HORIZONTALS WITHOUT HORIZONTALS a N E a08@ WIDTH IN METERS WIDTH IN METERS 22 =o R 5, m 7. 0.5 1 1.5 2 0.5 1 1.5 2 2 N 0 a 15 I I 1 `:" 15 -4.5 -4.5 � a_ 2 i 14 14 3$ �° a li Ia.' r 13 4 13 -4 co � H 12 (X H 12 2 W -3.5 W -3.5 H W 11 W 11 - A W Z A 2 Z 2 I- I 10 3 Z H 10 �3 Z C9 9 C 2 t7 9 D 2 W 8 _ p2.5 (9 w 8 E2.5 C9 2 W 2 LU 7 E 2 7 I .2 -2 -2 o 6 451CG010 6 5 - 1.5 451CG540 5 -- 1.5 4 I=4.301 (179.02 x 104) 4 1 2 3 4 5 6 7 8 S= 1.889(30.96 x 10') 1 2 3 4 5 6 7 8 = WIDTH IN FEET WIDTH IN FEET o 5 0 WITH HORIZONTALS WITHOUT HORIZONTALS 3 WIDTH IN METERS WIDTH IN METERS 5 ta 0.5 1 1.5 2 0.5 1 1.5 2 15 -4.5 15V.5 o 14 `' mc 13 -4 13 2 > s (n �nH 12 IY H 12L EW -3.5 H W .5 F $SW 11 'AWW 11W2 2 a10 y�3 ZT H. 10 Z 8 2 9 _ C I- 2 D H z 0D 2 0E I m y a w 8 -2.5 C CO8 - 2.5 03O" 2 E W I W c Y 7 2 7 = -2 -2 6 - 451CG010A 6 ' 5 - - 1.5 451CG540 5 - 1.5 4 I =5.083(211.57 x 104) 4 1 2 3 4 5 6 7 8 S =2.247(36.82x103) 1 2 3 4 5 6 7 8 WIDTH IN FEET WIDTH IN FEET < KAWNEER ADMC040EN kawneer.com MAY, 2019 TrifabTM VG 451T Framing System 63 EC 97911-205 WIND LOAD CHARTS (CENTER)Thermal WITH HORIZONTALS Allowable Stress LRFD Ultimate WITHOUT HORIZONTALS WIDTH IN METERS Design Load Design Load WIDTH IN METERS A= 15 PSF(720) 25 PSF(1200) 0.5 1 1.5 2 B= 20 PSF(960) 33 PSF(1580) 0.5 1 1.5 2 15 I I I -4.5 C= 25 PSF(1200) 42 PSF(2000) 15I ` ' -4.5 14 D= 30 PSF(1440) 50 PSF(2400) 14 m a 13 -4 E= 40 PSF(1920) 67 PSF(3200) 13 -4 8 12 cn 12 U) ; g c W -3.5 W W 3.5 W 2 u 6 `o w 11 w 11 I- YU n0 w 10 w L.L 10 w j0 � Z -3 2 Z -3 2 3 Z 2 nor• H g Z H 9 A I I `B a 3 g y C7 8 =°`2.5 S CO 8 2.5 2 2cCc W B ° 'Ii U' v TiE 7 ` C = I 7 E2 W Ti `-2 C O Tcoc D °a r, 6 451TCG001 6 ;i-8"5 . 5 c N E1 5 WIND LOAD CHARTS ARE BASED ON 5 1.5 3 -o 4 COMPOSITE PROPERTIES WHICH ARE 4 8 8 II N@ 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 3 2CALCULATED IN ACCORDANCE WITH r S.2 WIDTH IN FEET AAMA TIR-A8 AND AAMA 505 WIDTH IN FEET D a,"•C 2 0-6' E WITH HORIZONTALS WITHOUT HORIZONTALS C p,U co PO.5 WIDTH IN METERS WIDTH IN METERS '.-0 0.5 1 1.5 2 0.5 1 1.5 2 Ts n� g3 15 I I 1 I -4.5 15 I I i I -4.5 o 3 v J aY. 14 14 13 -4 13 -4 12 cn 12 L , o I- -3.5 ar I- -3.5 WHW11 W11 L_ w lL w 10 -3Zt0 -3 2 Z g \ Z - 9 z 0 8 A2.5 2 0 8 -132.5 = w_ B 0 w D 0 E 7Ei C = 7 E 2 0 6 2 451TCG012 6 2 m D 5 - 1.5 WIND LOAD CHARTS ARE BASED ON 5 - 1.5 E COMPOSITE PROPERTIES WHICH ARE ° 4 1 2 3 4 5 6 7 8 CALCULATED IN ACCORDANCE WITH 4 1 2 3 4 5 6 7 8 ° WIDTH IN FEET AAMA TIR-A8 AND AAMA 505 WIDTH IN FEET a 5 0 WITH HORIZONTALS WITHOUT HORIZONTALS c 2 WIDTH IN METERS WIDTH IN METERS 0 0.5 1 1.5 2 0.5 1 1.5 2 8 15 1 I _.4.5 15 1 I -4.5 rn` cm m 14 14 L U B> c 13 -4 13 -4 o c G. $ Tr_22 E a 12 12 mB m w -3.5 w w A3.5 w 11 11 m o LL 10 A3 W LL 10 g3 W m- Z B Z Z �� Z t� ,o 9 Z 9 D Z m) o l=^^ pp N- 2.5 f- I E2.5 F- l0(p N V o C� 8 �C c OO LLJ C Ur L1J O = 7 D W 1 7o W_ 6 -2 = 451TCG013 6 _ 2 5 E1.5 WIND LOAD CHARTS ARE BASED ON 5 1.5 4 COMPOSITE PROPERTIES WHICH ARE 4 1 2 3 4 5 6 7 8 CALCULATED IN ACCORDANCE WITH 1 2 3 4 5 6 7 8 WIDTH IN FEET AAMA TIR-A8 AND AAMA 505 WIDTH IN FEET kawneer.com ADMC040EN ,C KAW N E E R 64 TrifabTM VG 451T Framing System MAY, 2019 WIND LOAD CHARTS (CENTER)Thermal EC 97911-205 WITH HORIZONTALS Allowable Stress LRFD Ultimate WITHOUT HORIZONTALS WIDTH IN METERS Design Load Design Load WIDTH IN METERS A= 15 PSF(720) 25 PSF(1200) 0.5 1 1.5 2 B= 20 PSF(960) 33 PSF(1580) 0.5 1 1.5 2 15 I I I -4.8 C= 25 PSF(1200) 42 PSF(2000) 15 /\ II _45 14 D= 30 PSF(1440) 50 PSF(2400) 14 13 -4 E= 40 PSF(1920) 67 PSF(3200) 13 -4 r o 12 12 ,��,'33 W 11 -3.5 W - 11 -3.5 W m T. U- W lL W Y i,8-i Z 10 -3 2 Z 10 _3 g ? o a Z A Z �2 `C = 9 �A = 9 g m�mz �_ 2.5 = 0 2.5 = 3 W 8 g _U` W 8 �D C7 v�+�Gcc I 7 C W I 7 E W ° c 2 S 8a o2 -2 dog8L a C 6 6 Ego ` 3 a a 5 1.5 451TCG112 5 1.5 >a o E o c c v 0 3 R 4 WIND LOAD CHARTS ARE BASED ON 4 ' go 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 a°i- R COMPOSITE PROPERTIES WHICH ARE WIDTH IN FEET WIDTH IN FEET ..2 R CALCULATED IN ACCORDANCE WITH m v. `s WITH HORIZONTALS AAMA TIR-AS AND AAMA 505 WITHOUT HORIZONTALS 288 E R g V E WIDTH IN METERS WIDTH IN METERS F 2 2 R v n w c 0.5 1 1.5 2 0.5 1 1.5 2 . 7,',,, 15 IN I I -4,5 15 I\ 1�-4.5 bc3 14 \\\ 14 D 3T 0 13 -4 13 -4 UJ B U7 1--- 12 A (IH 12 CC W -3.5 W W -3.5 W UWi 11 W LWi2 431 . t 1 W Z 10 - 3 Z Z 10 C3 Z 1- H D - I 9 • B I- I 9 H w -8 2.5 0 w .8 E2.5 0 I C 7 = 7 I $ 6 D2 451TCG112 6 -2li with 450110 STEEL m 5 - E1.5 5 - 1.5 c WIND LOAD CHARTS ARE BASED ON g 4 1 2 3 4 5 6 7 8 COMPOSITE PROPERTIES WHICH ARE 4 1 2 3 4 5 6 7 8 2 WIDTH IN FEET CALCULATED IN ACCORDANCE WITH WIDTH IN FEET AAMA TIR-A8 AND AAMA 505 5 WITH HORIZONTALS WITHOUT HORIZONTALS 3 WIDTH IN METERS WIDTH IN METERS 0.5 1 1.5 2 0.5 1 1.5 2 ° 15 I I -4.5 15 I I I -45 CO., 14 14 cm m 13 -4 13 -4 01 c n 12 u7 12 cn �'a_ I W -3.5 w H -3.5 w Ez W 11 H W 11 HLLI ii, a Z t0 -3 2 ? 10 `3 2 H `o H Z H A Z ,_ z y \\\ = 9 A H I 9 -B H %,, a w 8 a 0 w 8 D2.5 0 = W I E W x c 7 C2 = 451TCG005 7 -2 2 6 D WIND LOAD CHARTS ARE BASED ON 6 5 E1.5 COMPOSITE PROPERTIES WHICH ARE 5 1.5 4 CALCULATED IN ACCORDANCE WITH 4 1 2 3 4 5 6 7 8 AAMA TIR-A8 AND AAMA 505 1 2 3 4 5 6 7 8 WIDTH IN FEET WIDTH IN FEET < KAWNEER ADMC040EN kawneer.corn MAY, 2019 TrifabTM VG 451T Framing System 65 EC 97911-205 WIND LOAD CHARTS (CENTER)Thermal WITH HORIZONTALS Allowable Stress LRFD Ultimate WITHOUT HORIZONTALS WIDTH IN METERS Design Load Design Load WIDTH IN METERS A= 15 PSF(720) 25 PSF(1200) 0.5 1 1.5 2 B= 20 PSF(960) 33 PSF(1580) 0.5 1 1.5 2 15 .`\ I45— C= 25 PSF(1200) 42 PSF(2000) 15 I I —4.5 1q D= 30 PSF(1440) 50 PSF(2400) 14 x 13 _q E= 40 PSF(1920) 67 PSF(3200) 13 4 m a I: 12 A 12 B c W —3.5 W W �3.5 W >m W 11 i- W 11 }- � ny LL W W C W Si 8- z 10 3 2 z 10 3 2 1 2 c 2aoy. H 9 B Z 9 Z - 3 �H C_0 8 2.5 2 C� 8 —P2.5 2 3 j 15f o W C _U` W U` c N I W 2 E U o 0 7 2 2 7 —2 2 aCv C D a; 6 451TCG113 6 1! o 5° 8 1.5 WIND LOAD CHARTS ARE BASED ON 5 1.5 ago ° v m;g 4 COMPOSITE PROPERTIES WHICH ARE 4 3 j v 3 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 E m H WIDTH IN FEET CALCULATED IN ACCORDANCE WITH WIDTH IN FEET v E I s ti AAMA TIR-A8 AND AAMA 505 v"'o ? 1 n y'c E � rE c a 8 2 T2°Cm i `V o J II• : N ✓• C 1 J�a n V 8 E m m 0 C m m� 8 ° C g a E C 3 C 0 i'o 9 rn c 8 m c c m y 5 E c o > — ° c I ;5. y o o 0 m� Z c o. y3 3 N Y I, W 3 V ry 4 C Q kawneer.com ADMC040EN ,C KAW N E E R 66 TrifabTM VG 451T Framing System MAY, 2019 WIND LOAD CHARTS (CENTER)Thermal EC 97911-205 WITH HORIZONTALS Allowable Stress LRFD Ultimate WITHOUT HORIZONTALS WIDTH IN METERS Design Load Design Load WIDTH IN METERS A= 15 PSF(720) 25 PSF(1200) 0.5 1 1.5 2 B= 20 PSF(960) 33 PSF(1580) 0.5 1 1.5 2 15 I { I -4.5 C= _ 25 PSF(1200) 42 PSF(2000) 15 I I I -4.5 14 - D= 30 PSF(1440) 50 PSF(2400) 14 13 -4 E= 40 PSF(1920) 67 PSF(3200) 13 '-4 ; 12 co 12 u> t I I- 3.5 0' 1- -3.5 CC = r m uW.W 11 I- w 11 w Y I.I. W Li A W a m `c Z 10 • A3 Z 10 tr�3 2 v o a = 9 B Z = 9 �C Z 0-2 cn (7 2.5 = C �2.5 = `6 O E t 8 8 ;,3 0,a W C W `E ym c = 7 W = 7 - W -o'g8a D 2 = -2 I dam_ . 6 • 6 m c g 8 451TCG001A E 3 5 E 1.5 5 - - - - - � 1.5 g" 4 WIND LOAD CHARTS ARE BASED ON 4 o 3 a R 1 2 3 4 5 6 7 8 COMPOSITE PROPERTIES WHICH ARE 1 2 3 4 5 6 7 8 8 m R WIDTH IN FEET CALCULATED IN ACCORDANCE WITH WIDTH IN FEET " m AAMA TIR-A8 AND AAMA 505 • 6 L N 2 Q i WITH HORIZONTALS WITHOUT HORIZONTALS 2 `g m y 0'n WIDTH IN METERS WIDTH IN METERS ` 0 R .5• w c 0.5 1 1.5 2 0.5 1 1.5 2 3ev° 15 I I -4.5 15 I I -4.5 y° c3 c 14 14 ,5.2 13 -4 13 -4 12 co 12 F- -3.5 CC 21-- -3.5 cc w 11 w W 11 .A W W I- w f- Z 10 A3 Z 10 B3 2 H 9 B Z I- 9 C Z 2 D CO• 8 p2.5 = 0 8 E2.5 = = 7 `�E w 451TCG540 = 7 w g -2 I 451TCG010 -2 I 2 6 6 V WIND LOAD CHARTS ARE BASED ON m 5 - 1.5 COMPOSITE PROPERTIES WHICH ARE 5 1.5 3 4 CALCULATED IN ACCORDANCE WITH 4 8 1 2 3 4 5 6 7 8 AAMA TI R-A8 AND AAMA 505 1 2 3 4 5 6 7 8 2 WIDTH IN FEET WIDTH IN FEET 0 WITH HORIZONTALS WITHOUT HORIZONTALS 3 WIDTH IN METERS WIDTH IN METERS W 0.5 1 1.5 2 0.5 1 1.5 2 c 15 \NI,. .:4515 I 1 I -4.5m14 m 134 13 -4 LIE„..6.. (i,.:::: 12cn 12 �W3.5 W W 3.5 W1111 A B Z 10 �J Z 10 �3 1- 9 Z F- 9 D z m@ CD 8 2'5 = C=7 8 ;E2.5 = % 8 c' W E 0W 0 Y c C = 7 W 451TCG540 = 7 W -2 = -2 I 451TCG010A 6 6 WIND LOAD CHARTS ARE BASED ON 5 1.5 5 COMPOSITE PROPERTIES WHICH ARE 1.5 4 CALCULATED IN ACCORDANCE WITH 4 1 2 3 4 5 6 7 8 AAMA TIR-A8 AND AAMA 505 1 2 3 4 5 6 7 8 WIDTH IN FEET WIDTH IN FEET < KAW N E E R ADMC040EN kawneeccom MAY, 2019 TrifabTM VG 451 Framing System 67 EC 97911-205 WIND LOAD CHARTS (FRONT/BACK) Non-Thermal WITH HORIZONTALS Allowable Stress LRFD Ultimate WITHOUT HORIZONTALS WIDTH IN METERS Design Load Design Load WIDTH IN METERS A= 15 PSF(720) 25 PSF(1200) 0.5 1 1.5 2 B= 20 PSF(960) 33 PSF(1580) 0.5 1 1.5 2 15 I i I 4.8 C= 25 PSF(1200) 42 PSF(2000) 15 + ` f -4.5 14 D= 30 PSF(1440) 50 PSF(2400) 14 13 -4 E= 40 PSF(1920) 67 PSF(3200) 13 -4 m 12 v7 12 co co F- -3.5 Ir F- -3.5 a w 11 F W 11 I- 5#221 y LL W LL A W n-vj 0 d Z 10 3 U Z 10 -�3 co �t 2c'2Z. I- 9 A Z F- 9 C Z any C7 C2.5 x CO 8 -12.5 = n c 0 Ti 8 D 0 W n � 0 C 7 2 = 7 -2 = LI Ta C rp 6 6 � O >aa `o ; 5 1.5 451VG012 5 --- 1.5 • H 451VG026 3 ..?, 1° 4 4 1 2 3 4 5 6 7 8 1=3.346(139.27x104) „ 1 2 3 4 5 6 7 8 �2 A WIDTH IN FEET S=1.447(23.71 x 103) WIDTH IN FEET U m %0-� n n 8 F, WITH HORIZONTALS WITHOUT HORIZONTALS '_-'8 0c.m WIDTH IN METERS WIDTH IN METERS L o,7,,N 3 y$ d 0.5 1 1.5 2 0.5 1 1.5tt 2 o`� 3 15 -4.5 15 1 -4.5 B g v J aY t 14 14 13 �'4 13 -4 12 0 12 A � A W 11 3.5 w W 11 83.5 w U. G uj Z 10 g3 Z 10 D3 2 I- D - F- E Z I 9 i- I 9 r 0 8 E2.5 = 451VG012 0g -2.5 I g = w 451 VG026 = W • m -2 2 with 1"x 2-1/4"STEEL BAR 7 -2 = 0 6 6 - c IA=3.346(139.27 x 10°) 5 + 1.5 SA= 1.447(23.71 x 103) 5 - 1.5 d s 4 I =0.949(39.50 x 104) 4 c 1 2 3 4 5 6 7 8 s 1 2 3 4 5 6 7 8 WIDTH IN FEET S5=0.844(13.83 x 103) WIDTH IN FEET a S 2 C 3 WITH HORIZONTALS WITHOUT HORIZONTALS WIDTH IN METERS WIDTH IN METERS co 0.5 1 1.5`` 2 0.5 1 1.5 2 8 15 I I I -4.5 15 I 1 I -4.8 a.. RZ • 14 14 5 2 2 00 �:. 13 -4 13 -4 §=a = E a 12 (n 12 (n mg 0 I- -3.5 Cf F- -3.5 Ct 5. 8 w1 11 w W 11 w 82 y W F- w H L a m U- W U. W S 1 Z 10 -3 Z 10 ` -A3 (Ti m Y F' 9 A Z 1- 9 �"^`�,B Z m" m = F- = C F- 8 N CO -132.5 = CO --P2.5 = 1i' o W 8 1C C w 8 E 0 I D 111 I 7 lU 2 2 -2 = 451 VG005 6 5 - 1.5 5 •• 1.5 I=3.001 (124.91 x 104) 41 2 3 4 5 6 7 8 S= 1.323(21.68x103) 41 2 3 4 5 6 7 8 WIDTH IN FEET WIDTH IN FEET kawneer.corn ADMC040EN ,C KAW N E E R 68 TrifabTM VG 451 Framing System MAY, 2019 WIND LOAD CHARTS (FRONT/BACK) Non-Thermal EC 97911-205 WITH HORIZONTALS Allowable Stress LRFD Ultimate WITHOUT HORIZONTALS WIDTH IN METERS Design Load Design Load WIDTH IN METERS A= 15 PSF(720) 25 PSF(1200) 0.5 1 1.5 2 B= 20 PSF(960) 33 PSF(1580) 0.5 1 1.5 2 15 ` I ,_4.5 C= 25 PSF(1200) 42 PSF(2000) 15 -4.5 14 D= 30 PSF(1440) 50 PSF(2400) 14 13 -4 E= 40 PSF(1920) 67 PSF(3200) 13 4 r m H 12 H 12 A oil W A3.5 W 0-1 gI5 W W 11 H lL 11 -1/4„............ .... H Y > m LL W LL W }9 8.4 Z 10 • g3 % z 103 ° a N g f H C Z H E Z 'E_' 2 9 D I- / 2 9 H 0ao2 O co R A 2 Ej 8 E2.5 8 -2.5 maoa I W 2 EL o"ira c 7 2 2 7 -2 2 L a ,`.1' 6 6 In Fa 451VG005 E g a 5 1.5 with 1"x 2-1/4"STEEL BAR 5 - 1.5 ;$o o C c cm3 o d 4 1 2 3 4 5 6 7 8 IA=3.001 (124.91 x 104) 4 1 2 3 4 5 6 7 8 i In WIDTH IN FEET SA= 1.323(21.68 x 103) WIDTH IN FEET >. R m - Iu= Is=0.949(39.50 x 104) .Egli g° WITH HORIZONTALS SS=0.844(13.83 x 103) WITHOUT HORIZONTALS 2 o e WIDTH IN METERS WIDTH IN METERS =�o & U r NN�C 0.5 1 1.5 2 0.5 1 1.5 2 N.O°C 15 ( I -4.5 15 I I -4.5 y# c 8 3 14 14 J Q.YL 13 r4 13 -4 12 • to 12 'A cn W 11 _ A3.5 W W 11 I- ''...........---g3.5 w Li. W LL C W Z 10 �g3 2 Z 10 3 2 = 9 U Z = g E z- CO 2.5 = CO -.-2.5 = w 8 - - 0 2 W I W m 7 -2 2 7 _2 = 8 6 - - 451VG014 6 a c m 5 . 1.5 I=5.604(233.25 x 104) 5 4.- 1.5 3 4 S=2.397(39.28 x 10') 4 0 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 WIDTH IN FEET WIDTH IN FEET 8 0 WITH HORIZONTALS WITHOUT HORIZONTALS 3 WIDTH IN METERS WIDTH IN METERS 9 0.5 1 1.5 2 0.5 1 1.5 2 15 I I -4.5 15 I I -4.5 08 14 14 C r L m 13 -4 13 A4 g o -` A t n ` 12 w 12 g =E I W 11 g3.5 W � � � W 11 vC3.5 W �. LL 11 C W z 10 `E W 2 $ Z D3 2 Z E3 m H 9Z H 9 z 2 s I 2 8 E2.5 = I 8 -2.5 = 11 € w (7 al Y CD c t- 2 7 W 451VG014 2 7 W 6 _2 I with 1"x 2"STEEL BAR 6 _2 I 5 - 1.5 I=5.604(233.25 x 104) 5 1.5 S=2.397(39.28 x 10') 4 4 1 2 3 4 5 6 7 8 I4=0.667(27.26x104) 1 2 3 4 5 6 7 8 WIDTH IN FEET SS=0.667(10.93 x 10') WIDTH IN FEET < KAW N E E R ADMC040EN kawneer.com Sy stem 2019 TrifabTM VG 451 FramingS stem 69 EC 97911-205 WIND LOAD CHARTS (FRONT/BACK) Non-Thermal WITH HORIZONTALS Allowable Stress LRFD Ultimate WITHOUT HORIZONTALS WIDTH IN METERS Design Load Design Load WIDTH IN METERS A= 15 PSF(720) 25 PSF(1200) 0.5 1 1.5 2 B= 20 PSF(960) 33 PSF(1580) 0.5 1 1.5 2 15 I ` I -4.5 C= 25 PSF(1200) 42 PSF(2000) 15 I i I -4.5 14 D= 30 PSF(1440) 50 PSF(2400) 14 - r 13 -4 E= 40 PSF(1920) 67 PSF(3200) 13 -4 m a 3 rn 12 CC H co 12 CC z= -3.5 -3.5 n>m w 11 IW- W 11 H � a`m `o lL W U- W Duo° Z 10 w n u -3 Z 10 A3 2 >aoy. 2 9 A H = 9 g -o A 0 = 0 C 5 3 0,H 8 2.5 8 ip2.5 c c W W �� v'm c Pi I W I E W ' °= m 7 D = 7 = u-o = o E2 -2 T=-. = 6 6 ;a r, 451VG134 D a`o E 5 - 1.5 5 1.5 a"o_ " I=2.930(121.96x104) n ; 3 4 4 � cmd�_� 1 2 3 4 5 6 7 8 S= 1.290(21.13x103) 1 2 3 4 5 6 7 8 =d 3 E WIDTH IN FEET WIDTH IN FEET =t U N� ?, • o E WITH HORIZONTALS WITHOUT HORIZONTALS if„8 2 '_-'o=., WIDTH IN METERS WIDTH IN METERS L N e, y§ 0 0.5 1 1.5 2 0.5 1 1.5 2 n 5 $ ; 15 I I --4.5 15 I I -4.5 sg32 3 ay t 14 14 13 -4 13 -4 12 - PI 12 A W w 3.5 w w -3.5 w � 11 A W w 11 g W Z 10 83 2 Z 10 C3 .- C Z - Z = 9 I 9 E F- 0 �2.5 F- 0 C7 451 VG134 w 8 - -2.5 1 w 8 C7 E = 7 2 W with 1"x 2-1/4"STEEL BAR = 7 -2 =_ Y 6 IA=2.930(121.96x104) 6 - 5 -- 1.5 SA= 1.290(21.13 x 103) 5 - + 1.5 4 I =0.949(39.50 x 104) 4 = 1 2 3 4 5 6 7 8 Ss=0.844(13.83 x 103) 1 2 3 4 5 6 7 8 g WIDTH IN FEET WIDTH IN FEET s 0 3 WITH HORIZONTALS WITHOUT HORIZONTALS _ 2 9 WIDTH IN METERS WIDTH IN METERS 0.5 1 1.5 2 0.5 1 1.5 2 8 15 I I I -4.5 15 \\\N ...N„:,.....................,1 I --4.5 c°c „ �, 14 146E28 -. - 13 -4a = cE n 12 12 :1-1-I mB W -3.5 w W3.511 ` 11 0. W 10 A W W 10g m o m Z -3 2 Z 3 z Y F- y g Z F- 9 D Z $ I C E- I E F- u N C7 8 2.5 2 C� 8 - -2.5 = rc OO W U` W �_ I 7 E W = 7 W -2 = 451VG010 -2 1 6 451 VG540 6 5 - 1.5 5 - - 1.5 I=4.418(183.89 x 104) 4 1 2 3 4 5 6 7 8 S= 1.831 (30.00 x 103) 4 1 2 3 4 5 6 7 8 WIDTH IN FEET WIDTH IN FEET kawneer.com ADMC040EN -C KAW N E ER 70 TrifabTM VG 451 Framing System MAY, 2019 WIND LOAD CHARTS (FRONT/BACK) Non-Thermal EC 97911-205 WITH HORIZONTALS Allowable Stress LRFD Ultimate WITHOUT HORIZONTALS Design Load Design Load WIDTH IN METERS A= 15 PSF(720) 25 PSF(1200) WIDTH IN METERS 0.5 1 1.5 2 B= 20 PSF(960) 33 PSF(1580) 0.5 1 1.5 2 15 '‘.__..4 I I —4.5 C= 25 PSF(1200) 42 PSF(2000) 15 i I —4.5 14 D= 30 PSF(1440) 50 PSF(2400) 14 13 —4 E= 40 PSF(1920) 67 PSF(3200) 13 4 m a :II3 12 12 ; rn w 11 .A3.5 W W 11 , ___A,., W m�° m 8 " m m `t Z 10 3 Z 10 p3 m o 2 C E- 9 \p z I— 9 E Z �mm 8 —2.5 = I 8 —2.52 c3 CD W E 0 W U_' m0:, = E I 7 IL1 I 7 W v . `,' a 6 -2 6 —2 I 2� ' c c 11.1 v. 451VG010A 5 1.5 451VG009 5 -- , 1.5 >g-6E o c c v 4 4 0,3.2 1 2 3 4 5 6 7 8 I =5.076(211.27 x 104) 1 2 3 4 5 6 7 8 a8IE WIDTH IN FEET S=2.133(34.95 x 103) WIDTH IN FEET 8 4 d vm"R a , re a c m o E VT; W N C R 4 V N C :2 f, C 2 -m a rt oat 0 J 0. .G a a, E a, m v c m a, Om U O 3 O I c 0 al c c 0 U m E >m c E c o o t E o :? E c L U 'at a a cc,o`a c m P Z Y 0 a 2E3 r Y C C < KAWNEER ADMC040EN kawneer.com MAY, 2019 TrifabTM VG 451T Framing System 71 EC 97911-205 WIND LOAD CHARTS (FRONT/BACK)Thermal WITH HORIZONTALS Allowable Stress LRFD Ultimate WITHOUT HORIZONTALS Design Load Design Load WIDTH IN METERS A= 15 PSF(720) 25 PSF(1200) WIDTH IN METERS 0.5 1 1.5 2 B= 20 PSF(960) 33 PSF(1580) 0.5 1 1.5 2 15 I. I ` I -4.5 C= 25 PSF(1200) 42 PSF(2000) 15 I 1 I - -4.5 14 D= 30 PSF(1440) 50 PSF(2400) 14 r 13 -q E= 40 PSF(1920) 67 PSF(3200) 13 -4 m 32 t 12 12cn - zc -3.5 -3.5 'W I- 11 w W 11 w y1Ow Iwi 10 W 10 A W U G� i$ gt Z -3 Z 3 252y 9 A Z g B Z 73 a3rn3 U' 8 --(2.5 S 0= 8 -J2.5 2 ^'mo 11J C C� W `�E v�? o 2 7 D2 = I 7 -2 2 Tca c o E• 8. 6 E 6 451TVG012 v 5 1.5 451 VG026 5 - 1.5 c c 2 7;O ,p " 4 1 2 3 4 5 6 7 8 WIND LOAD CHARTS ARE BASED ON 4 1 2 3 4 5 6 7 8 s d= WIDTH IN FEET COMPOSITE PROPERTIES WHICH ARE WIDTH IN FEET v d CALCULATED IN ACCORDANCE WITH 2 = E WITH HORIZONTALS AAMA TIR-A8 AND AAMA 505 WITHOUT HORIZONTALS �a A T,o C ="m°c m WIDTH IN METERS WIDTH IN METERS 7.5 N m y a ° 0.5 1 1.5 2 0.5 1 1.5 2 v iid1 15 I\\.....,..............„: I I -45 15 � I � -4.5 J _1 3 14 14 %\ 13 4 13 -4 W WW 11A3 5 ~ n w 11 B3.5 1- Z 10 g3 2 z 10 =p3 2 Z - Z = 9 C I- = 9 E 1- - 8 p2.5 w 8 -2.5 2 2 7 w 451TVG012 I 7 w_ -2 = 451VG026 '-2 E 6 E with 1"x 2-1/4"STEEL BAR 6 m 5 ` 1.5 WIND LOAD CHARTS ARE BASED ON 5 1.5 0 4 COMPOSITE PROPERTIES WHICH ARE 4 1 2 3 4 5 6 7 8 CALCULATED IN ACCORDANCE WITH 1 2 3 4 5 6 7 8 i a WIDTH IN FEET AAMA TIR-A8 AND AAMA 505 WIDTH IN FEET 5 1 s WITH HORIZONTALS WITHOUT HORIZONTALS 3 co WIDTH IN METERS WIDTH IN METERS s 9 15 I -4.5 15 0.5 1 1.5 2 0.5 1 1.5 2 m I I I -4.5 a, cm m 14 14 " E ,i 9 I: T 13 -4 13 -4 c • n 6 12 12 c LS o w -3.5 W W -3.5 W mB m tali 11 W tWi 11 W m o i Z 10 -3 Z 10 3 CL m Z A Z $ R Y I- F od 2 9 'A H 2 9 B H • 0 2.5 2 C7 8 -b2.5 0 [ c o0 LT, 8 = C w 2 E w 7 p2 = 7 -2 2 6 '"E 451TVG005 6 5 1.5 WIND LOAD CHARTS ARE BASED ON 5 -z 1.5 4 COMPOSITE PROPERTIES WHICH ARE 4 1 2 3 4 5 6 7 8 CALCULATED IN ACCORDANCE WITH 1 2 3 4 5 6 7 8 WIDTH IN FEET AAMA TIR-A8 AND AAMA 505 WIDTH IN FEET kawneer.com ADMC040EN ,C KAW N E E R 72 TrifabTM VG 451T Framing System MAY, 2019 WIND LOAD CHARTS (FRONT/BACK)Thermal EC 97911-205 WITH HORIZONTALS Allowable Stress LRFD Ultimate WITHOUT HORIZONTALS Design Load Design Load WIDTH IN METERS A= 15 PSF(720) 25 PSF(1200) WIDTH IN METERS 0.5 1 1.5 2 B= 20 PSF(960) 33 PSF(1580) 0.5 1 1.5 2 15kiss : -4 5C= 25 PSF(1200) 42 PSF(2000) 15 , ` 1 -4.5 D= 30 PSF(1440) 50 PSF(2400) 14 13r 4 E= 40 PSF(1920) 67 PSF(3200) 13 -4 4. H12 -3.5 12 A3.5 ; �1 11 A W W 11 W Y >m , W F- W B F- 9,m e Z 10 W Z 10 W ° ' u z 3 D3 �� �� 2 9 C '2 2 9 Em�0 8 �D2.5 = U8 -2.5 !II- g 3 vc cW U_' W 'mc= 7 W = 7 v � g `E2 = -2 �00 6 451TVG014 6 =`°8 3 n a 5 • - 1.5 5 - 1.5 ;°.85 o c c v 4 WIND LOAD CHARTS ARE BASED ON 4 c 3 t 1 2 3 4 5 6 7 8 COMPOSITE PROPERTIES WHICH ARE 1 2 3 4 5 6 7 8 0 d $ WIDTH IN FEET CALCULATED IN ACCORDANCE WITH WIDTH IN FEET 5 t R 432 AAMA TIR-A8 AND AAMA 505 -2 2 R WITH HORIZONTALS WITHOUT HORIZONTALS i t 8 c WIDTH IN METERS WIDTH IN METERS m"2'`A 9-5 Cc. 0.5 1 1.5 2 0.5 1 1.5 2 a "a s c m 15 -4.5 15 -4.5 H c 3 3 0 3 14 14 gY r 13 - 4 13 r4 12 W 12 - - 0Dw 3.5 w w -3.5 wW 11 - F- uJ 11 - F- u- W u_ W Z 10 3 2Z 10 3A Z - Z ~ 9 \\N....N.,: ~ 9 •B I- w 8 B2.5 0 al 8 p2.5 0 = C w I E w m 7 p2 = 451TVG134 7 -2 = 2 6 E 6 a WIND LOAD CHARTS ARE BASED ON 5 5 1.5 COMPOSITE PROPERTIES WHICH ARE 5 1.5 3 4 CALCULATED IN ACCORDANCE WITH 4 0 1 2 3 4 5 6 7 8 AAMA TIR-A8 AND AAMA 505 1 2 3 4 5 6 7 8 E WIDTH IN FEET WIDTH IN FEET a 5 0 WITH HORIZONTALS WITHOUT HORIZONTALS 3 WIDTH IN METERS WIDTH IN METERS .2 0.5 1 1.5 2 0.5 1 1.5 2 15 1 I -4.5 15 1 I -4.5 m 14 14 m m c 13 - -4 13 -4 om -` 0 12 I!: 12 •A c E i w 3.5 w w -3.5 w �1; i W 11 A Lu W 11 B t t8 a Z 10 B3 2 I z 10 C3 2`on E \ Z b Z n 2 9 - C ~ 2 9 E F- t my w 8 125 0 451TVG134 w 8 -2.5 0 ii I 7 D w with 1"x 2-1/4"STEEL BAR I 11Y 2 _ i 7 2 2 �- 6 E WIND LOAD CHARTS ARE BASED ON 6 5 • 1.5 COMPOSITE PROPERTIES WHICH ARE 5 1.5 CALCULATED IN ACCORDANCE WITH 4 1 2 3 4 5 6 7 8 AAMA TIR-A8 AND AAMA 505 4 1 2 3 4 5 6 7 8 WIDTH IN FEET WIDTH IN FEET < KAW N E E R ADMC040EN kawneer.com MAY, 2019 TrifabTM VG 451T Framing System 73 EC 97911-205 WIND LOAD CHARTS (FRONT/BACK)Thermal WITH HORIZONTALS Allowable Stress LRFD Ultimate WITHOUT HORIZONTALS Design Load Design Load WIDTH IN METERS A= 15 PSF(720) 25 PSF(1200) WIDTH IN METERS 0.5 1 1.5 2 B= 20 PSF(960) 33 PSF(1580) 0.5 1 1.5 2 15 . I ( I —4.5 C= 25 PSF(1200) 42 PSF(2000) 15 I 1 I —4.5 14 D= 30 PSF(1440) 50 PSF(2400) 14 x 13 —4 E= 40 PSF(1920) 67 PSF(3200) 13 —4 m El 12 12 I 1— —3.5 w I— —3.5 ct N m `o w 11 H W 11 A H 5�od o tL 10 A w 10 B w g L Z 3 Z C3 2 o.o y, I— 9 B z F ° = CII 9 D Z - 3me ( 8 �D2.5 = C7 8 2.5 2 v o i� ul tL 0 v c'i2 I 7 E W I 7 vr, o —2 = —2 = TcZc = W a 6 6 451TVG540 v-8'6 = 5 — 1.5 451TVG010 5 1.5 c c 2 a Ti C co 11- " 4 1 2 3 4 5 6 7 8 WIND LOAD CHARTS ARE BASED ON 4 1 2 3 4 5 6 7 8 r.b CD WIDTH IN FEET COMPOSITE PROPERTIES WHICH ARE WIDTH IN FEET 2$=m CALCULATED IN ACCORDANCE WITH 2$a E WITH HORIZONTALS AAMA TIR-A8 AND AAMA 505 WITHOUT HORIZONTALS p,o II a a °_ WIDTH IN METERS WIDTH IN METERS 7.c .15 3 U y a E 0.5 1 1.5 2 0.5 1 1.5 2 ay� d i_ $ @ 15 II ` 1 —4.5 15 -1 I I —4.5 v 4. aY t 14 pm 14 13 —4 13 —4 12 co 12 co W 11 —3.5 W W 11 A3.5 w w A F— w B wF Z 10 63 g Lil Z 10 .aS3 m C Z I �_ D z (-D 8 --P2.5 = N- 0 8 E2.5 = 8 = 7 E w 451TVG540 0 i 7 w W ai E 6 —2 = 451TVG010A 6 —2 = 2 5 1 5 WIND LOAD CHARTS ARE BASED ON 5 1.5 COMPOSITE PROPERTIES WHICH ARE g 4 1 2 3 4 5 6 7 8 CALCULATED IN ACCORDANCE WITH 4 1 2 3 a 5 6 7 8 a. WIDTH IN FEET AAMA TIR-A8 AND AAMA 505 WIDTH IN FEET 3 0 s 3 c 2 is i cz c m a= Em g c o 8 >: n c a,E E 5 8 U o . 2 a m m o m Z` Y t QQQ mi N C C OO kawneer.com ADMC040EN -C KAW N E E R 74 TrifabTM VG 451/451T Framing System MAY, 2019 WIND LOAD CHARTS (FRONT/BACK) SSG Mullions EC 97911-205 WITH HORIZONTALS Allowable Stress LRFD Ultimate WITHOUT HORIZONTALS WIDTH IN METERS Design Load Design Load WIDTH IN METERS A= 15 PSF(720) 25 PSF(1200) 0.5 1 1.5 2 B= 20 PSF(960) 33 PSF(1580) 0.5 1 1.5 2 15 I I ` I —4.5 C= 25 PSF(1200) 42 PSF(2000) 15 I I I I —4.5 14 D= 30 PSF(1440) 50 PSF(2400) 14 13 . —4 E= 40 PSF(1920) 67 PSF(3200) 13 —4 v 12 ul 12 d 3 W 11 —3.5 W 111111 H I- 11 • — 3.5 w m> 11 W .. LL W YH`m `c Z 10 —3 .. .. Z 10 - — 3 2 d 2 o a Z - Z 3° c� 19 - - r 19 A H `mm W L 0 8 —2.5 2 ! ( 8 2 5 1 c 3 J.F.W 0 11B (9 .w c 2'c I 7 A W_ 1 7 C W v� 8v a 6 '- 2 451SSG005 6 `E D—2 c ;En 8 c E D I=1.527(63.55x104) ; 5 �- 1.5 5 .- 1.5 8015E S= 1.057(17.32 x 103) occ 4 4 c'32a 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 m R WIDTH IN FEET WIDTH IN FEET 8 a t R m m-• a rt WITH HORIZONTALS WITHOUT HORIZONTALS 0 N £ 2 Q,8 2 WIDTH IN METERS WIDTH IN METERS m 8= c N c 0.5 1 1.5. 2 0.5 1 1.5 2 2 NI a 1 15 I I —4.5 15 I 1 I —4.5 N $ 3 o c 14 14 ��axL 13 —4 13 . —4 12 —3.5 12 —3.5 EC W 11 FW W 11 • I- Z 10 \\: _A3 Z 10 - -`A3 H 9 `` Z F 9 B C7 \`�B2 5 = 0 E D,C2.5 = = 8 E D C 0 451SSG005 i 8 w 7 -2 I with 1"x 2"STEEL BAR 7 —2 = E v 6 IA=1.527(63.55 x 104) 6 `C 5 — 1.5 SA= 1.057(17.32 x 103) 5 . 1.5 3 4 I =0.667(27.76 x 104) 4 21 2 3 4 5 6 7 8 S =0.667(10.93 x 103) 1 2 3 4 5 6 7 8 WIDTH IN FEET s WIDTH IN FEET 5 0 S 3 c 0 J a O u d En-a' A m .9.i o .0 g 6 c E , 2 £ Z n v a 6 � y y m a 3 m o Y C V < KAW N E E R ADMC040EN kawneeccom MAY, 2019 TrifabTM VG 451 Framing System 75 EC 97911-205 WIND LOAD CHARTS (MULTI-PLANE) Non-Thermal WITH HORIZONTALS Allowable Stress LRFD Ultimate WITHOUT HORIZONTALS WIDTH IN METERS Design Load Design Load WIDTH IN METERS A= 15 PSF(720) 25 PSF(1200) 0.5 1 1.5 2 B= 20 PSF(960) 33 PSF(1580) 0.5 1 1.5 2 15 I ( I _4.5 C= 25 PSF(1200) 42 PSF(2000) 15 -4.5 14 D= 30 PSF(1440) 50 PSF(2400) 14 x 13 -4 E= 40 PSF(1920) 67 PSF(3200) 13 -4 m - 2 g F- 12 -3.5 Et F- 12 -3.5 IY w 11 f- Li' 17 H ,- y .o,, a N W w A W z 10 3 M z 10 �3 2 Qo� r- 9 A z 9 C z ` I 0 �82.5 2 U ~_D2.5 2 Tc 8 C 8 o w _ yrco: '� = 7 D W = 7 W sago --E2 = -2 = n o$E 6 6 451VG001 .8 15 = 5 - 1.5 451CG002 5 -- 1.5 ] c C 2 ,' O vg��,p 4 I=3.485(145.05x104) 4 a y m 1 2 3 4 5 6 7 8 WIDTH IN FEET S=1.539(25.22 x 103) 1 2 WIDTH IN FEET? 8 „5 d" 'v y�c 2:2c E WITH HORIZONTALS WITHOUT HORIZONTALS a o,o c a 0.@ WIDTH IN METERS WIDTH IN METERS 2.t . . a 0.5 1 1.5 2 0.5 1 1.5 2 c Tian 15 I ` I -4.5 15 I 1 I -4.5 ;-a is 3 K2 2 14 14 13 -4 13 -4 12 12 0 WI- -3.5 w WI- -3.5 w w 11 F- w 11 F- w W LL A w Z 10 3 Z Z 10 ��B3 Z A C 2 9 B I-- = 9 '��D I- 8 C0 2.5 w 8 �E2.5 w _ 2 I D W I LE7 _S2 I 7 -2 x 6 451 VG052 6 451 CG028 3 5 - 1.5 5 -- 1.5 4 I=3.470(144.43x104) 4 = 1 2 3 4 5 6 7 8 S= 1.515(24.83 x 103) 1 2 3 4 5 6 7 8 o WIDTH IN FEET WIDTH IN FEET 5 0 WITH HORIZONTALS WITHOUT HORIZONTALS C o WIDTH IN METERS WIDTH IN METERS 0 1' 0.5 1 1. 5 2 0.5 1 1.5 2 u 15& o,5 14 5E c 13 -g a12o o wW - .5w wF- W 11 F- 8. m wwW w 10z F2F- = ` rW0 W 8 � 50= E W D2 I 7 -2 S 6 E 451 VG069 6 - 1.5 451VG069 5 5 - 1,5 4 I=3.362(139.94 x 104) 4 1 2 3 4 5 6 7 8 S= 1.180(19.34 x 103) 1 2 3 4 5 6 7 8 WIDTH IN FEET WIDTH IN FEET kawneer corn ADMC040EN Pr( KAW NE ER 76 TrifabTM VG 451T Framing System MAY, 2019 WIND LOAD CHARTS (MULTI-PLANE) Thermal EC 97911-205 WITH HORIZONTALS Allowable Stress LRFD Ultimate WITHOUT HORIZONTALS Design Load Design Load WIDTH IN METERS A= 15 PSF(720) 25 PSF(1200) WIDTH IN METERS 0.5 1 1.5 2 B= 20 PSF(960) 33 PSF(1580) 0.5 1 1.5 2 15 I ` ' -4.5 C= 25 PSF(1200) 42 PSF(2000) 15I I I -4.5 14 D= 30 PSF(1440) 50 PSF(2400) 14 _ 13 -4 E= 40 PSF(1920) 67 PSF(3200) 13 -4 ; m 12 12 d 3 i - HW - WWH WI- - W W 10 WnoI- Z c,a.225I C7 8 �2.5 =(7 lL E (0 7 '0 W ae_ 2 7 W ��� a 6 -2 6 -2 i �� 6c E 451TVG001 3 5 - 1.5 5 -- 1.5 � `o � 4 WIND LOAD CHARTS ARE BASED ON 4 ='"3° R 1 2 3 4 5 6 7 8 COMPOSITE PROPERTIES WHICH ARE 1 2 3 4 5 6 7 8 -ISo m c WIDTH IN FEET CALCULATED IN ACCORDANCE WITH WIDTH IN FEET 2 t-5AAMA TIR-A8 AND AAMA 505 m"" a WITH HORIZONTALS WITHOUT HORIZONTALS T 15- E WIDTH IN METERS WIDTH IN METERS ._2 g'.5 21,-co,5 0.5 1 1.5 2 0.5 1 1.5 2 .ii 8 8 15 I I I -4.5 15 1 I I -45 2# c3 z 14 - 14 J o_ r 13 -4 13 -4 12 Cn 12 I- -3.5 H -3.5 W 11 N W 11 H w W LL W 2 10 \\\\\ -3 2 Z 10 3 Z Z 2 9 A F 19 - B w 8 \ 82.5 451TVG052 w 8 2.5 2 \�C W 2 E 7 D2 I WIND LOAD CHARTS ARE BASED ON 7 -2 2 6 6 COMPOSITE PROPERTIES WHICH ARE 6 a 5 E1.5 CALCULATED IN ACCORDANCE WITH 5 1 5 AAMA TIR-A8 AND AAMA 505 4 4 0 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 c WIDTH IN FEET WIDTH IN FEET a s 0 WITH HORIZONTALS WITHOUT HORIZONTALS 3 WIDTH IN METERS WIDTH IN METERS W 0.5 1 1.5 2 0.5 1 1.5 2 15 I I I I -4.5 15 I 1 I -4.5 m 0,.: 14 • 14 `m iP � E 13 -4 13 \\-\\,. .............:4 0 o12 CC � 12 °CL EW - 3.5 W W 3.5 W 1 g.W 11 F- W 11i-LL W 1W m� 1 Z 10 -3 2 Z 10 • A3 1 va F q Z 111 I- B Z m = g z 5 1- = 9 C H y a w 8 g2.5 C7 451TVG069 w 8 2.5 0 € 2 7 C W 451TVG069 I 7 `�E = = c D2 -2 6 WIND LOAD CHARTS ARE BASED ON 6 E COMPOSITE PROPERTIES WHICH ARE 5 ` 1.5 CALCULATED IN ACCORDANCE WITH 5 ` 1.5 4 AAMA TIR-A8 AND AAMA 505 4 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 WIDTH IN FEET WIDTH IN FEET < KAW N E E R ADMC040EN kawneencom AN A9C UNIC CUYA4+ MAY, 2019 TrifabTM VG 451/451T Framing System 77 EC 97911-205 WIND LOAD CHARTS (ENTRANCES) Non-Thermal WITH HORIZONTALS Allowable Stress LRFD Ultimate WITHOUT HORIZONTALS WIDTH IN METERS Design Load Design Load WIDTH IN METERS A= 15 PSF(720) 25 PSF(1200) 1 1.5 2 B= 20 PSF(960) 33 PSF(1580) 1 1.5 2 15 , 1 ( I I C= 25 PSF(1200) 42 PSF(2000) 15 I 1 14 D= 30 PSF(1440) 50 PSF(2400) 14 x 13 —4 E= 40 PSF(1920) 67 PSF(3200) 73 —4 m g: w R. 12 —3..5 w w 12 3.5 W g ' E� w 11 I— w 11 i n g Ott z 10 —3 2 Z 10 A'3 2 }$ c- A Z B Z a 2o, 9 9 2 I— 2 �� --- '5 f, U_' —g1 2.5 2 0_ C 2.5 I -�'c me W 8 C C� r W 8 �.. U D. I D W I E W n�? o 7 E2 = 7 —2 = agate 6 6 v o a a, 451501 451019 .00 = 5 —1.5 5 1.5 3 c c 5 T .00" 4 I=3.116(129.7x104) 4 3$�,i 1 2 3 4 5 6 7 8 S=1.385(22.7x103) 1 2 3 4 5 6 7 8 3°H H WIDTH IN FEET WIDTH IN FEET - c t 'n a+�d- y X E ? g o= E WITH HORIZONTALS WITHOUT HORIZONTALS u rn o c i '=o ?.i WIDTH IN METERS WIDTH IN METERS L N o) yam$' `0 1 1.5 2 1 1.5 2 u 3 iu o3 15 I 15 a n 2 14 14 13 A4 13 %.—BAc4.5 12co F- 83.5 C I- 12 w 11 F w 11 D IW- Z 111 10 -3 2 111 Z 10 E3 9 E Z — Z I—• 9 I 8 —2.5 i CI 7 8 --2.5 I Cu. 0w 0 I 7 = I 7 _ 5 —2 --2 m 6 6 451501 451019 5 --1.5 with 450110 STEEL 5 - —1.5 U 4 4 1 2 3 4 5 6 7 8 IA=3.116(129.70x104) 1 2 3 4 5 6 7 8 a WIDTH IN FEET SA=1.385(22.70 x 103) WIDTH IN FEET i; I = 1.935(80.54 x 104) WITH HORIZONTALS Ss=0.938(15.37 x 103) WITHOUT HORIZONTALS c WIDTH IN METERS WIDTH IN METERS C O1 I 1.5 2 1 1.5 2 3 15 15 I t rn`; `% m 14 14 5 5 2 2 o' x 13 —4 13- 2 cPE a 12 cA 12N55c°� W —3.5 w W \\............. :43.5 w 11 11 `m W E- a m III W L� A W m° Z 10— A3 Z 10 3 Y I- 9 F 9 • B Z T 2 B H 2 C_6 F- }3 ry C9 8 2.5 2 CO 8 _ 2.5 = © I D W 2 E W 7 -_E2 I 7 —2 2 6 451599 451064 6 5 —1.5 451CG002 451CG002 5 —1.5 4 4 1 2 3 4 5 6 7 8 I=3.565(148.39 x 10') 1 2 3 4 5 6 7 8 WIDTH IN FEET S= 1.622(26.58 x 103) WIDTH IN FEET kawneer.com ADMC040EN ,C KAW N E E R 78 TrifabTM VG 451/451T Framing System MAY, 2019 WIND LOAD CHARTS (ENTRANCES) Non-Thermal EC 97911-205 WITH HORIZONTALS Allowable Stress LRFD Ultimate WITHOUT HORIZONTALS WIDTH IN METERS Design Load Design Load WIDTH IN METERS A= 15 PSF(720) 25 PSF(1200) 1 1.5 2 B= 20 PSF(960) 33 PSF(1580) 1 1.5 2 15 C= 25 PSF(1200) 42 PSF(2000) 15 14 D= 30 PSF(1440) 50 PSF(2400) 14 `\ ,: 13 Aq E= 40 PSF(1920) 67 PSF(3200)1\\.%1 13 A a �B4 m 12 B 12 C u) w 3 w11 C3.5 W will 11 D3.5 W m>� . LL D w w E w ouaa Z 10 3 Z 10 . 3 m o E Z Z S'o8� = 9 I- 2 9 1- c 6O1 C0 -2.5 = 0 -2.5 2 c 3 .r w 8 o LI 8 c3 ov 7 w II 2IW 7 w at $ v _2 = _2 2 y o t a mC 6 451599 451064 6 0`a 3 c c a 2 v 451CG002 451CG002 1.5 E 4 with 450110 STEEL 4 o,3.c R o 1 2 3 4 5 6 7 8 I=3.565(148.39 x 10°) 1 2 3 4 5 6 7 8 0 d R WIDTH IN FEET S= 1.622(26.58 x 103) WIDTH IN FEET 2.2R °,a,-' a WITH HORIZONTALS IS= 1.935(80.54 x 104) WITHOUT HORIZONTALS 2-0N 2 l` SS=0.938(15.37x103) m58E WIDTH IN METERS WIDTH IN METERS 2 m oc a O-5 N 1 1.5 2 1 1.5 2 Fay9 Cc 15 s I t I 15 •4 I I cm u m a m s c 3 14 14 3 a. 2 13 4 13 4 12 (I) 12 - CO 1- 3.5 F- 3.5 Cf W 11 1w- W 11 H tL w ti �� w Z 10 -3 2 z 10 A3 9 A ? '�- I- 9 B Z 0 B2.5 2 =U C2.5 2 w 8 C 0 CO 8 t`.E (5 = 7 D w = 7 • - w .2 ~E2 2 -2 = m 6 451VG019 6 0 L 5 - 1.5 I=3.124(130.03x104) • - 1.5 4 S= 1.333(21.84 x 103) 4 o 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 c WIDTH IN FEET WIDTH IN FEET 5 0 WITH HORIZONTALS WITHOUT HORIZONTALS 1 c WIDTH IN METERS WIDTH IN METERS 2 9 1 1.5 2 1 1.5 2 cn 15 I ` I 15 I I I m 14 Y 14 `m m 13 -4 %// 13 -4 o ..: 12 cn 12 A u) .'▪E 2 F- 3.5 H -3.5 X 2 w 11 A w4 w 11 B w Z 10 �-3 g 10 C3 mn C Z I- 9 - D Z F- 9 E Z m` Y � 08 E2.5 = 8 -2.5 2 3 a' c w 0w 02 C I 7 - w 451VG019 1 7 w 6 -2 = with 1"x 2-1/4"STEEL BAR 6 -2 2 5 - - -1.5 IA=3.124(130.03 x 104) 5 -1.5 4 S 4 1 2 3 4 5 6 7 8 IS=0.949(39.50x104) 1 2 3 4 5 6 7 8 WIDTH IN FEET SS=0.844(13.83 x 103) WIDTH IN FEET ,C KAW N E E R ADMC040EN kawneer.com MAY, 2019 TrifabTM VG 451/451T Framing System 79 EC 97911-205 DEADLOAD CHARTS Horizontal or deadload limitations are based upon 1/8"(3.2)maximum allowable deflection at the center of an intermediate horizontal member.The accompanying charts are calculated for 1"(25.4)thick insulating glass supported on two setting blocks at the loading points shown. NOTE:Charts are for THERMAL and NON-THERMAL members. A=(1/4 POINT LOADING) ' B=(1/6 POINT LOADING) v 3 C=(1/8 POINT LOADING) -- z5 c_ p . o L WIDTH IN METERS WIDTH IN METERS 2a2D 1 1.5 2 1 1.5 2 o .3m a - 3 = , 11 I I - fiLijk] IEI 11 T o c3'c m c 3g § fe 10 —3 10 —3 320.52 7.T7 a g 9 451CG011 451CG003 9 " av —P5 451CG002 —25 v$`o H 8 0_ F- 8 0: j FCN W W W W B02 u_ —2 IW LL —2 W 3WyN z 6 w..E. EZ 6 rgL� z z am- � = 5 �-1.5 = 5 •-1.5 H i-0o- 4rucE 0 I U _ I q N3 E = 4 0 451CG011A 451CG003A W 4 0 ' 2�5 3 1 = 451CG002 1 3 —1 W I 35.0 2 2 it'll 1 B'5 7.5 Y tffil:::1Z1 'A 'B A 0 0 1 2 3 4 5 6 7 8 :1 1 1 2 3 4 5 6 7 8 WIDTH IN FEET 451TCG011 451TCG003 WIDTH IN FEET 451CG002 3 E CD o WIDTH IN METERS WIDTH IN METERS 3 1 1.5 2 1 1.5 2 $ 11 I I I 11 I I 0 ` 10 —3 10 _3 `o c a 9 9 5rrt:1 S 8 —2.5 8 —2.5 cn 3 WCC 2 7 W [rnril W 7 W a Z 6 —2 2 451VG011 451VG111 Z 6 —2 2 5 — - 1.5 a) = I- I 5 1.5 I-3 1— o,.: 0 4 C I 04 cm • W 0 { W o> c I 3 B �1 w = 3 C --1 W o I I c B v t 0 2 A —.5 2 A —.5 z m 1 451TVG011 451TVG111 1 ob 0 0 m= 0 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 m i WIDTH IN FEET WIDTH IN FEET ' b N kawneer.com ADMC040EN < KAW N E E R I�, 80 TrifabTM VG 451/451 T Framing System MAY, 2019 DEADLOAD CHARTS EC 97911-205 Horizontal or deadload limitations are based upon 1/8"(3.2)maximum allowable deflection at the center of an intermediate horizontal member.The accompanying charts are calculated for 1"(25.4)thick insulating glass supported on two setting blocks at the loading points shown. NOTE:Charts are for THERMAL and NON-THERMAL members. A=(1/4 POINT LOADING) B=(1/6 POINT LOADING) WIDTH IN METERS C=(1/8 POINT LOADING) d 3 1 1.5 2 Y>A I 11 II a I c o o 2-a J 10 _3 02-oo c_z 9 ngi c 3 J - —2.5 rnc m- c c 8 N 5 § c F- x LUza w 7 —2 H 451SSG111 pFg ,, LLw n a z 6 2 EgzE v I.- 5 �1.5 Z rn3oR 0 4 = ii c d a W C -1 _ I 3 � rR _ 2 ^ 2 -smcs B —.5 ;C,8C A 1 A 451TSSG111 2 A g.5 U m C 0 J 1 2 3 4 5 6 7 8 a 0 y WIDTH IN FEET ' .. N U m a J C T �a r Height limitations for transom glass over a doorway are based upon a 1/16"(1.6)maximum allowable deflection at the center of a transom bar. The accompanying charts are calculated for 1"(25.4)thick insulating glass supported on two setting blocks placed at the loading points shown. a 0 A=(1/4 POINT LOADING) E V B=(1/6 POINT LOADING) C=(1/8 POINT LOADING) WIDTH IN METERS WIDTH IN METERS 8 0 1 1.5 2 1 1.5 2 ; 11 I I 11 c a 5 0 10 _3 10 _3 3 9 - 9 0 8 —2.5 u) 8 2.5 co o H CC H E c W 7 W W 7 W —2 H w —2 !- 0 u_ W 6 6 W m ? 450500 ? E H 5 - 1.5 Z TRAY 1- 5 —1.5 Z o> = H • • = I- ..a.2 c W 4 I gli W 4 0I c E E = 3 `1 = 451502 451081 = 3 —1 = $ 2 C SINGLE ACTING DOUBLE ACTING 2 8 8 B.5 T-BAR T-BAR —.5 fig m- Y 1 • A 1 C $3 a 0 0 A 3 c 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 x c c WIDTH IN FEET WIDTH IN FEET < KAW N E E R ADMC040EN kawneer.com MAY, 2019 TrifabTM VG 451/451T Framing System 81 EC 97911-205 END REACTION CHARTS For each application,end reactions MUST be checked.These charts are used to verify that the end reactions at the head and sill receptors are 500 lbs.(2224N)or less and will meet the specified wind load. A=15 PSF (720 Pa) B=20 PSF (960 Pa) C=25 PSF (1200 Pa) a D=30 PSF (1440 Pa) ->,z WITH HORIZONTALS E=40 PSF (1920 Pa) WITHOUT HORIZONTALS a >c w`yS 5; 8 d WIDTH IN METERS WIDTH IN METERS _2 o .5 1 1.5 2 451VG006 .5 1 1.5 2 A °:, 15 I 15 TC . 14 g'C$ y 14 I '5-58 13 43.5 13 .r4 coo N......:: 3 at 12 12 c A 3cy — _3.5 T 3 o m 11 11 ii< 451VG106 3�Ny 10 —3 c �- I 10 B3 cr w w w w vd ; w 9 f- w 9 C I- 2�cG Z 8 —62.5 z 8 D2.5 $ 2 Z z TNON I— 7 = 7 E 'F m m 0 B2 2 0 —2 I z 'w$ o W 6 0 451TVG006 W 6 - --- 0y� m I W I I W °g 2 '' 5 1.5 i 5 —1.5 I ;"0 12 11 aiY°t 4 C' m 4 3 E1 3 —1 2 —.5 2 —.5 1 1 451TVG106 01 2 3 4 5 6 7 8 ` 01 2 3 4 5 6 7 8 WIDTH IN FEET WIDTH IN FEET 5 E 0 ...r7...T i 451 SSG006 1 3 8 s at k n. o n1 L 3 C 4b1SSG106 E r7 0 c 0 u N a,; 5 E U C 2 o Y 1' rna C E 451TSSG006 J C'5 v U m � m a c ail mO Z Y m N cc 3 U 8 N 4511SSG106 500Ibs.Max.End Reaction kawneer.com ADMC040EN PrC KAW N E E R 82 TrifabTM VG 451/451T Framing System MAY, 2019 THERMAL CHARTS EC 97911-205 Generic Project Specific U-factor Example Calculation (Percent of Glass will vary on specific products depending on sitelines) 15'-8" f 1 1 2 7, v O :1: 3 mr I Y ,- "a y a s • , o a L n o z 3 m m W L = 'V.- •d Wc = v; 8v Hg C�N �� >2 o u Example Glass U-factor= 0.42 Btu/hr.ft2.°F 2 3.52 i Id▪ � y u� _ = m ay. Total Daylight Opening = 3(5' x 7') + 3(5' x 2') = 135ft2 m a m OI 8 C Total Projected Area = (Total Daylight Opening +Total Area of Framing System) i'2 j a = 15'-8" x 9'-6" = 148.83ft2 a 5° _ 2w.o `c c�`m mod a �c 3 Percent of Glass = (Total Daylight Opening +Total Projected Area) io o a aY = (135 + 148.83)100 = 91% System U-factor vs Percent of Glass Area 0.80 -0.75 0.70 U. o ` m . •� r w 0.65 Z. os0 COG • I- U-factor -�► � • 0.55 CO 0.46 - � _ 0�0p.49 V 0.44 0.42 � T0.45 '� co 0.40 �� = 0.38 " ' - ' - ' - n 0.36 � , � , � ' � . � - 0.40 E rt 0.34 � • � ' - G� ; 0.32 ' . - ++ o 0.30 ' . -. ' 0.35 j a - - , rn 0.28 0.26 ' - �g 0.24 _ 0.30 z a d 0.22 • ' _ 0.20 / - P. 0.25 r Y _ m H a 3 m 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 If I I 0.20 " C. to rn 03 03 o^to Percent of Glass cz Based on 91% glass and center of glass (COG) U-factor of 0.42 System U-factor is equal to 0.49 Btu/hr x ft2 x°F ,C KAW N E E R AOMC040EN kawneer.corn MAY, 2019 TrifabTM VG 451 Framing System 83 EC 97911-205 THERMAL CHARTS TrifabTM VG 451 (CENTER — Non-Thermal) System U-factor vs Percent of Glass Area _ 0.90 z? - 1g'a .o I • Q = I l c v o?b I / . '' .t 0.80I - 3 • / G • •• ••I / '• J g I • / �. 0.75=� 2 I •• , / / I LL� . =Tm / / - � 0.70 wI ay I/ / / •I v�S I / 9CC2 • I I I II L../ • - ! - 0.65 E.vgia COG • I • / I /(1;H U-factor / I / • - I I / 03sd• _ •• I . .0 - 0.60 m_ ) 2 / II ' /' I / II -, �om ' I / ' I I. I • • II _- 0.55 0'' 2�m 0.48 / / I I - *'' s gNay 0.46 / � _- 0.50 w0.44 I / ' / ill mm 0.42I I ' ' I . I I - a 0.40 •• I / - - � / / - 0.45 E ax 2 0.38 • / / / 0.36 / I ' - �-0.34 • I "• -. 0.32 I I' 0.40 U) 0.30 ' I .. - �' 0.28 I - 0.26 I 0.35 •0.24 I 0.22 ' 0.30 0.20 ` 3 I I I I I I I I I I I I 1 1 1 1 1 1 I I 0.25 m a) 0) co co N. N. 0 c m Percent of Glass = Vision Area/Total Area m (Total Daylight Opening / Projected Area) `s a 0 G Notes for System U-Factor, SHGC and VT charts: E. For glass values that are not listed, linear interpolation is permitted. Glass properties are based on center of glass values and are obtained from your glass supplier. 8 m H =: C 8'E a 5 m o 9 U �a r' `r Y m w m A N c m c OO kawneer.com ADMC040EN -C KAW N E E R 84 TrifabTM VG 451 Framing System MAY, 2019 THERMAL CHARTS EC 97911-205 TrifabTM VG 451 (CENTER - Non-Thermal) System Solar Heat Gain Coefficient (SHGC) vs Percent of Vision Area COG SHGC :0.90 0.90 - =0.85 d 0.85 _0.80 Y ,a 0.80 w 0.75 Duna 0.70 222' 0.70 Ev7. 0.65 0 ; g 0.60 0 11I . co E 0.50 d IlL J 0.40 - •• - .. - r0.40 A -R -0.35 0NcE - •• _ .. _ •• ._ - .. _0.30 a" ° "a0.30 0.25 - .. _ .. _ .. _ �0.25 a =� = N 9 _ G 0.20 •. � 0.20 o 0. -0.15 3 'EL 2 1 1 1 1 1 1 • , T III r-' I I , 1 , , I , -0.10 La rn co co N. N Vision Area / Total Area (%) System Visible Transmittance (VT) vs Percent of Vision Area COG VT 0.90 C 0.90 - -i0.85 ; 0.85 d,_- .. - 0.80 0.80 = 0.75 a 0.75► . 5 0.70 r 0.70 0.65 0 0.65 - - = 0.60 0.60 - - 0.55 °_ V 0.55- . - _ 0,.: 0.50 W 0.50 = " > E d 0.45 , ° o t 0.45 a N 'E _ • -0.40 v F 0.40 - .. - .. _ .• - .. - $ r` 0.35- .. _ .. _ •. - ., _ .. _ .. 0.35 " E 0.30 " - .. _ .. _ _- • -c0.30 • v� - .. _ .. - 0.25 iN 0.20 =0.20 Y c C _ .. � 0.15 I , , I I , , -, , I I - , I , I -1 I I , -0.1 0 Lc) rn co co N. N Vision Area / Total Area (%) ,` KAW N E E R ADMC040EN kawneer.com ...nPCJW.COM I.Nti MAY. 2019 TrifabTM VG 451 Framing System 85 EC 97911-205 THERMAL PERFORMANCE MATRIX Thermal Transmittance 1 (BTU/hr • ft ' • 'F) TrifabTM VG 451 Glass U-Factor Overall U-Factor'' (CENTER - Non-Thermal) 0.48 0.63 0.46 0.61 0.44 0.60 v 3 0.42 0.58 m 0.40 0.57 ' ° NOTE: For glass values that are not listed, linear 30 0.38 0.55 '° ''L interpolation is permitted. , n 2 Z. a 0.36 0.53 - 3 ' y Mo 1. U-Factors are determined in accordance with NFRC 100. a 0.34 0.52 v 3;, d 2. SHGC and VT values are determined in accordance with ;,W,o ,, 0.32 0.50 NFRC 200. - ; a E 0.30 0.49 3. Glass properties are based on center of glass values and U O 7 J C T 3 A 0.28 0.47 are obtained from your glass supplier. 4. Overall U-Factor, SHGC, and VT Matricies are based on 3 F2 " 0.26 0.45 the standard NFRC specimen size of 2,000 mm wide by U y .22,000 mm high (78-3/4" by 78-3/4"). aNCE E 0.24 0.44 2 = 0.22 0.42 L m g 0.20 0.41 y� o UO3l a '`El Y L ° E E d m SHGC Matrix 2 Visible Transmittance 2 g Glass SHGC ' Overall SHGC ' Glass VT ' Overall VT ' 0.90 0.80 0.90 0.79 8. 0.85 0.76 0.85 0.75 _ 3 0.80 0.71 0.80 0.71 0.75 0.67 0.75 0.66 0.70 0.63 0.70 0.62 0.65 0.58 0.65 0.57 0.60 0.64 0.60 0.53 O T g'E n 0.55 0.49 0.55 0.49 U c O 0.50 0.45 0.50 0.44 0.45 0.41 0.45 0.40 N 0.40 0.36 0.40 0.35 0 0.35 0.32 0.35 0.31 0.30 0.27 0.30 0.26 0.25 0.23 0.25 0.22 0.20 0.18 0.20 0.18 kavrneer cum ADMC040EN < F SAW N E E AN ARCONeC COMPANY 86 TrifabTM VG 451T Framing System MAY, 2019 THERMAL CHARTS EC 97911-205 TrifabTM VG 451T (CENTER - Thermal) System U-factor vs Percent of Glass Area 0.70 N N 3D_ cz� 2 i m O il m N r ay j O ° •1 c E 0.65 o D a a 2 ca = u °,c�c D 8 v �' 0.60 °,c D c c N ° c ; a't D°° o c c a m$oa -- 0.55 8m23v T N R w C=. COG • Cm OE • U-factor • C LL R 0.48(2.73) • 0.50 N h 0.46(2.61) • `�dR L y 3 c 3 0.44 (2.50) • � x 2 0.42(2.39) • 0.45 H m 0.40(2.27) • L • 0.38(2.16) • • j f' - -- 0.40 as 0.36(2.05) 0.34 (1.93) • • 0.32(1.82) y r'• 0.35 2E 0.30(1.71) N 0.28(1.59) • t 0.26(1.48) - Y 0.30 0.24(1.37) a 0.22(1.25) o 0.20(1.14) 0.25 3 0 0.18(1.02) r 0.16(0.91) ° m 0.14(0.80) • 0.20 u c 0.12(0.68) t 0 o 0.10(0.57) m E t s S c '4� 95 90 85 80 75 70 .15 m o m Z i Percent of Glass = Vision Area/Total Area m F.U C (Total Daylight Opening / Projected Area) Y= c Notes for System U-Factor, SHGC and VT charts: For glass values that are not listed, linear interpolation is permitted. Glass properties are based on center of glass values and are obtained from your glass supplier. < KAW N E E R ADMC040EN kawneercom MAY, 2019 TrifabTM VG 451T Framing System 87 EC 97911-205 THERMAL CHARTS TrifabTM VG 451T (CENTER - Thermal) System Solar Heat Gain Coefficient (SHGC) vs Percent of Vision Area COG v 3 SHGC 0.75 -,,,0 0.75 - =0.70 e �4 ° 0.70 0.65 j U a 0.65 3 2 c- 0.60 2aoy. 0.60 - - 0.55 V - s =-a 0.55 ................ 0.50 (7 n m = °0 0.50 . -.. 0.45 = 0 40 o° ° 0.40a°° . -- ...................:---------__ = 0.35 - - 35 H ' 0.30 in ---c 0.25 >' 8 3 W y 0.25 . --.-.-.-�................ N _.2 " 0.20 - . 0.20 v a).. - °n'112m _ �oE 0.15 0.15 °�" = 0.10 . 0.10 T O N c` " 0.05 • 0.05 3 U m ..8 ° 0.00 N 2 3 95 90 85 80 75 70 nY Vision Area / Total Area (%) E System Visible Transmittance (VT) vs Percent of Vision Area ° m COG R VT 0.75 0.75 - 0.70 E. 0.70 -- - - 0.65 L 0.65 ........ 0.60 0.60 °Li3 0.55 0.55 .. . 0.50 8 0.45 0 0.50 .................------------- ..... 0.40 •--•- - 0.40 E 0.35 in a 0.30 --- ................--4 0.30 >' s� E 0.25 -- - ....-. . 0.25 Cl) _ g m 0.20 - = 0.20 o N t i 0.15 f0.15 mr Y 0.10 - 0.10 U `° 0.05 0.05 U N , 95 90 85 80 75 70 Vision Area / Total Area (%) kawneer.com ADMC040EN IC KAW N E E R 88 TrifabTM VG 451T Framing System MAY, 2019 THERMAL PERFORMANCE MATRIX EC 97911-205 Thermal Transmittance 1 (BTU/hr • ft 2 • °F) TrifabTM VG 451 T Glass U-Factor 3 Overall U-Factor 4 (CENTER - Thermal) 0.48 0.54 0.46 0.52 0.44 0.51 0.42 0.49 • _ 0.40 0.48 3 tp4= Li 0.38 0.46 NOTE: For glass values that are not listed, linear d= o interpolation is permitted. '8 "_ 0.36 0.44 `a�� = N g L C 3 J'V 0.34 0.43 1. U-Factors are determined in accordance with NFRC 100. .N` € 2. SHGC and VT values are determined in accordance with v 0.32 0.41 NFRC 200. 0.30 0.40 3. Glass properties are based on center of glass values and d o• a E oo c c 0.28 0.38 are obtained from your glass supplier. 0,•3 o R8 4. Overall U-Factor, SHGC, and VT Matricies are based on D g d 0.26 0.36 the standard NFRC specimen size of 2,000 mm wide by 8 e` d 2,000 mm high (78-3/4"by 78-3/4"). =t.R wm_ a 0.24 0.35 • g E 0.22 0.33 °°' m2o5 0.20 0.32 211; a'm� `c 0.18 0.29 3 a y� c 0.16 0.28 .J a.Y L 0.14 0.26 0.12 0.25 0.10 0.23 2 E m m SHGC Matrix 2 Visible Transmittance 2 L Glass SHGC 3 Overall SHGC ° Glass VT 3 Overall VT 4 0.75 0.67 0.75 0.66 0 0.70 0.62 0.70 0.61 0 t 0.65 0.58 0.65 0.57 -3 . 0.60 0.53 0.60 0.53 0.55 0.49 0.55 0.48 0 U 0.50 0.45 0.50 0.44 0 0.45 0.40 0.45 0.39 0 e 0.40 0.36 0.40 0.35 m E 0.35 0.32 0.35 0.31 E. J 0.30 0.27 0.30 0.26 m a 0.25 0.23 0.25 0.22 m N a C N U c 0.20 0.18 0.20 0.18 2t Z 0.15 0.14 0.15 0.13 0.10 0.10 0.10 0.09 0.05 0.05 0.05 0.04 < KAW N E E R ADMC040EN kawneer com nN 4Pf.ONi['I;OMYANY MAY, 2019 TrifabTM VG 451T Framing System 89 EC 97911-205 THERMAL CHARTS TrifabTM VG 451T (FRONT - Thermal) System U-factor vs Percent of Glass Area a v - 0.75 - zm O V >a C �y J U y J C^_' - 0.70 J a 2 2 a W - Ti la T C T C Y U N U N U JU 0.65 - W U y i 3 a j J CCc C y A S G U V N N iTzt as o 3 W C E .� rn LL 0.55 0 Tm = N COG N = U N ° U-factor J N • L 0.48(2.73) r• 0.50 9aYt 0.46(2.61) • • - H 0.44 (2.50) CO 0.42(2.39) 0.45 C 46 0.40(2.27) v 0.38(2.16) •• ' 0.36(2.05) 0.40 0.34(1.93) d $ 0.32 (1.82) • >, 0.30(1.71) - 0.35 Cl) 3 0.28(1.59) U 0.26 (1.48) . 0.24 (1.37) s • 0.30 5 0.22(1.25) 0 0.20(1.14) 0.25 0.18(1.02) 0.16(0.91) • ' ea) IP 0.14 (0.80) • 0.20 5 E C 0 m c b C 0.12(0.68) E E 0.10(0.57) z a 0 95 90 85 80 75 7700.15 i .5 Percent of Glass = Vision Area/Total Area i N (Total Daylight Opening / Projected Area) Notes for System U-Factor, SHGC and VT charts: For glass values that are not listed, linear interpolation is permitted. Glass properties are based on center of glass values and are obtained from your glass supplier. kawneer.com ADMC040EN ,C KAW N E E R 90 TrifabTM VG 451T Framing System MAY, 2019 THERMAL CHARTS EC 97911-205 TrifabTM VG 451T (FRONT - Thermal) System Solar Heat Gain Coefficient (SHGC) vs Percent of Vision Area COG rt SHGC 0.75 ' gl 0.75 - 0.75 0.70 YNv � : 0.65 m;§ -• O NL 0.65 j O = 0.60 Soz 0.60 ...... t 0.55 0.50 8 �_€ 0.50 -8 $ a 00.45 .45 2 --0.40 � ;aF 0.35 0.35 01 = rn;oR 0.30 - 0.30 +-' 0.25 0.25 C . t R 0.20 0.20 ` ° a N��R 0.15 , 0.15 -0 C E 3 = 0.10 . 0.10 " °^= RI R V-g ,, C 0.05 . 0.05 2„. � . . . . . . 0.00 = R y 3 c 3 95 90 85 80 75 70 3 o f R O t Vision Area / Total Area (%) System Visible Transmittance (VT) vs Percent of Vision Area 1 m m COG _ VT 0.75 0.75 - 0.70 g 0.70 i:... i--i----E :::::::1: ::: ii ..• 0. 0.65 ...... t 0.60 0.45 E 0.35 0.35 ---••- m �. 0.30 In °o 0.25 N m E r() 0.20 0.20 d i 0.15 - 1 0.15 @ 0.10 0.10 °z 0.05 -- - 0.05 m y m cc.. . . . 0.00 Y c 95 90 85 80 75 70 Vision Area / Total Area (%) <KAW N E E R ADMC040EN kawneer.com A:V ARCONC COMVAN MAY, 2019 TrifabTM VG 451T Framing System 91 EC 97911-205 THERMAL PERFORMANCE MATRIX Thermal Transmittance 1 (BTU/hr• ft 2 • °F) TrifabTM VG 451 T Glass U-Factor ' Overall U-Factor4 (FRONT - Thermal) 0.48 0.56 0.46 0.54 0.44 0.52 a v 3 0.42 0.51 0 � v '- o- 0.40 0.49 "' °a" NOTE: For glass values that are not listed, linear 41 N L� 0.38 0.48 o interpolation is permitted. ° i� `ra 0.36 0.46 T`m o 1. U-Factors are determined in accordance with NFRC 100. ro a 0.34 0.44 v 8 2 2. SHGC and VT values are determined in accordance with a 5 a 0.32 0.43F. NFRC 200. v F c; 0.30 0.41 3. Glass properties are based on center of glass values and T 3° 0.28 0.40 are obtained from your glass supplier. iy 2 4. Overall U-Factor, SHGC, and VT Matricies are based on � 0.26 0.38 the standard NFRC specimen size of 2,000 mm wide by r�y� v ° v 0.24 0.36 2,000 mm high (78-3/4" by 78-3/4"). °g,(' F 0.22 0.35 0.20 0.33 ; c `i 0.18 0.31 ;a3� J QYL 0.16 0.29 0.14 0.28 0.12 0.26 0.10 0.24 0 E SHGC Matrix 2 Visible Transmittance 2 Glass SHGC ' Overall SHGC ' Glass VT Overall VT 0 0 0.75 0.67 0.75 0.66 8. 0.70 0.63 0.70 0.61 3 0.65 0.59 0.65 0.57 Fs 0.60 0.54 0.60 0.53 0.55 0.50 0.55 0.48 U Ft 0.50 0.45 0.50 0.44 a ; s 0.45 0.41 0.45 0.39 E a 0.40 0.37 0.40 0.35 '2 U O 0.35 0.32 0.35 0.31 n a°'i i 0.30 0.28 0.30 0.26 t 0.25 0.23 0.25 0.22 3 N 0.20 0.19 0.20 0.18 0.15 0.15 0.15 0.13 0.10 0.10 0.10 0.09 0.05 0.06 0.05 0.04 kawneercom ADMC040EN ,C KAW NEER AN 4RCONiC COMPANY 92 TrifabTM VG 451T Framing System MAY, 2019 THERMAL CHARTS EC 97911-205 TrifabTM VG 451T (BACK — Thermal) System U-factor vs Percent of Glass Area m 0.70 13 . c 2.m A uy 'aUi`Oa 4 j O C t 0.65 aao2 Ig. Sc rnt C8 a ru U �' r' 0.60 °D`a c`E v°= o c c 0.55 c L COG a c E ^ -° °�c U-factor • • LL m • O 2'mga 0.48(2.73) /' 0.50 "'.+ _ o s , E3 0.44 (2.50) al L 0.42 (2.39) • • 0'45 03 0.40(2.27) O 0.38(2.16) • j 0.36(2.05) 0.40 scl 0.34 (1.93) 0.32 (1.82) 0 0.30 (1.71) 0.35 N 0.28 (1.59) N 0.26 (1.48) 0.30 0.24 (1.37) 0. 0.22 (1.25) 0.20 (1.14) a 0.25 W 0.18 (1.02) c • 0.16 (0.91) 0.14 (0.80) , - - 0.20 U C . to n °fE 0.10 (0.57) • $z tz z a 0.15 8 95 90 85 80 75 70 v z y Percent of Glass = Vision Area/Total Area 11 (Total Daylight Opening / Projected Area) Y Notes for System U-Factor, SHGC and VT charts: For glass values that are not listed, linear interpolation is permitted. Glass properties are based on center of glass values and are obtained from your glass supplier. < KAWNEER ADMC040EN kawneer-corn MAY, 2019 TrifabTM VG 451T Framing System 93 EC 97911-205 THERMAL CHARTS TrifabTM VG 451T (BACK - Thermal) System Solar Heat Gain Coefficient (SHGC) vs Percent of Vision Area v3 COG ° SHGC It" hi 0.75 070 ' .. -• ......--�__ .............. 0.50 U " ° " 0.45 iql 0.45 = - 0.40 - 0.40 3 a372 0.35 0.35 Lim` 0.30 N c „ 0.30 0.25 0.25 >,WI g�oE 0.20 1 -0.20 T N 2 0.15 0.15 l0 C '=Ntm 0.10 i0.10 j y O O 0.05 0.05 vvuai � 0.00 3 8 Y 2 95 90 85 80 75 70 Vision Area / Total Area (%) ° N E i 0 m m System Visible Transmittance (VT) vs Percent of Vision Area U .7 O C O COG s VT 0.75 ° 0. - 0.70 1 d II o °C. agEs� ` 0.25 N ,. ao 0.20 0.20 N � 0.15 - i 0.15 r o 0.10 : 0.10 0.05 i 0.05 . . ' 0.00 95 90 85 80 75 70 Vision Area / Total Area (%) kawneer.com AOMC040EN �� KAW N E E R 94 TrifabTM VG 451T Framing System MAY, 2019 THERMAL PERFORMANCE MATRIX EC 97911-205 Thermal Transmittance 1 (BTUlhr•ft 2 • °F) TrifabTM VG 451 T Glass U-Factor 3 Overall U-Factor 4 (BACK - Thermal) 0.48 0.54 0.46 0.53 0.44 0.51 r v 0.42 0.50 d 3 FE 0.40 0.48 i Y u `m G 0.38 0.46 NOTE: For glass values that are not listed, linear a ° jO ° interpolation is permitted. q a o L 0.36 0.45 `-` c 35'v 0.34 0.43 1. U-Factors are determined in accordance with NFRC 100. W 2 2. SHGC and VT values are determined in accordance with 0.32 0.42 NFRC 200. E-D 'm=g = � W 0.30 0.40 3. Glass properties are based on center of glass values and g a E � 0.28 0.38 are obtained from your glass supplier. ;' v mi s R 4. Overall U-Factor, SHGC, and VT Matricies are based on IY E 0.26 0.37 the standard NFRC specimen size of 2,000 mm wide by 13 m 24 0.24 0.35 2,000 mm high(78-314" by 78-3/4"). $c t 0.22 0.34 '° m s E m N ' c m E5 c n rt 0.20 0.32 r52! .c. sc 0.18 0.30 q1 i' 3 0.16 0.28 J$a Y.0 0.14 0.26 0.12 0.25 0.10 0.23 E i SHGC Matrix 2 Visible Transmittance 2 Glass SHGC 3 Overall SHGC ' Glass VT 3 Overall VT' 0.75 0.67 0.75 0.66 0.70 0.62 0.70 0.61 ° 0.65 0.58 0.65 0.57 3 cs 0.60 0.54 0.60 0.53 ti 0.55 0.49 0.55 0.48 # . g 0.50 0.45 0.50 0.44 g 0.45 0.41 0.45 0.39 0; t 0.40 0.36 0.40 0.35 ` a E 1 CD 0.35 0.32 0.35 0.31 �' aa 0.30 0.27 0.30 0.26 N a �` Z Y 0.25 0.23 0.25 0.22 m 'a 0.20 0.19 0.20 0.18 3 U c Y 0.15 0.14 0.15 0.13 0.10 0.10 0.10 0.09 0.05 0.05 0.05 0.04 < KAW N E E R ADMC040EN kawneeccom MAY, 2019 TrifabTM VG 451T Framing System 95 EC 97911-205 THERMAL CHARTS TrifabTM VG 451T with Steel (CENTER) System U-factor vs Percent of Glass Area 090 a, N _ 1) 3 - rn - C c ; ` OHN `,U 5 U are JU 1 C L 1 2 QOZ. _ o m m a 0.80 3 r o . - U U 3 V2 T 2 U N 0.75 hfl 'O i i ! � " 0.70 � • 3 �a E - LL m c jy U L 4 y 0O U I 3 p%v L nY t co COG �- �• r' ,- - 0 55 yi 0.46(2.61) s" i' / 0.50 n 0.44(2.50) - E 0 0.42(2.39) •• - _ y 0.40(2.27) ,- - - i' -' 0.45 y gi c 0.38(2.16) • ''• _ 3 0.36(2.05) ' ' _ li � �' J40 5 0.34(1.93) • - c ° 0.32(1.82) n c c 0.28(1.59) 'm 0.26(1.48) • 0.24(1.37) _ JO 0.22(1.25) - o `m d 0.20(1.14) _ 5 > 5 _..- 0.25 - O T - a aE 2 _ U mg m 0.20 ? a ` 95 90 __ H 75 70 Vs Y 1,3 R 05 Percent of Glass = Vision Area/Total Area 2 o (Total Daylight Opening / Projected Area) Notes for System U-Factor, SHGC and VT charts: For glass values that are not listed, linear interpolation is permitted. Glass properties are based on center of glass values and are obtained from your glass supplier. kawneer.com ADMC040EN ,C KAW N E E R 96 TrifabTM VG 451T Framing System MAY, 2019 THERMAL CHARTS EC 97911-205 TrifabTM VG 451T with Steel (CENTER) System Solar Heat Gain Coefficient (SHGC) vs Percent of Vision Area COG SHGC 0 75 v 075 0.70 III' 065-__________ 0-60 0.55 V - 0.50 ('- I I I u 050 -- - I o '_ " 0.45 `--ri 0.45 ,^ m c 8 •--- -'-- - 0.40 a n E 0.40 � E aE o c ---------- - ----- -s 0.35 occ � 0.35 0.30 0 -------- i 0.30 y $`�m R �1 uA m v 0.25 - -` _ 0.25 c c.� m•- 0.20 • 1 020 IV 0.15 - 015 @o,§ Er of N O n 0.10 -' -- -_ -'- 0.10 L W C 0.05 4 '- = 0.05 `�^ c 2 u E 11 95 �0 85 80 75 70 38. 2 r t Vision Area / Total Area (%) System Visible Transmittance (VT) vs Percent of Vision Area E v v COG mc VT 0.75 v u 0.75 0.70 C 0.70 j --IT-------- 0.55 ° _ -- 0.50 0.50 0.45 045 "'-'-^ _ _ V 0.40 0.40 ___-^----' rn.� 0.35 d 035 --•-------' t m 0.30 0.30 $2 - o ; - rna o _� 0.25 025 -"----- E c 0.20 0.20 'In $ 015 _ 0.15 m o 0.10 ; 0 10 ° Z 0.05 -_. -- : am 3 d c 0.00 Yc € 95 90 _ 80 75 70 Vision Area / Total Area (%) < KAW N E E R ADMC040EN kawneer.com MAY, 2019 TrifabTM VG 451T Framing System 97 EC 97911-205 THERMAL PERFORMANCE MATRIX Thermal Transmittance 1 (BTU/hr•tt 2 • °F) TrifabTM VG 451 T Glass U-Factor 3 Overall U-Factor 4 with Steel (CENTER) 0.48 0.59 0.46 0.57 a 0.44 0.55 v 3 0.42 0.54 O j p W 0.40 0.52 0 v ' m 0.38 0.51 NOTE: For glass values that are not listed, linear o interpolation is permitted. 0.36 0.49 7i 7.N v z▪ `= a 0.34 0.48 1. U-Factors are determined in accordance with NFRC 100. v a 8 d 2. SHGC and VT values are determined in accordance with .7203 c a 2 0.32 0.46 NFRC 200. O m v o; 0.30 0.44 3. Glass properties are based on center of glass values and ° m 03gig .28 0.43 are obtained from your glass supplier. n S'. m 4. Overall U-Factor, SHGC, and VT Matricies are based on 3 N N H 0.26 0.41 the standard NFRC specimen size of 2,000 mm wide by ',I 0.24 0.40 2,000 mm high(78-3/4"by 78-3/4"). D c E s▪ = 0.22 0.38 0.20 0.37 ? y Pi c 0 c 3 OP E E m m o a. SHGC Matrix 2 Visible Transmittance 2 _ Glass SHGC 3 Overall SHGC 4 Glass VT 3 Overall VT 4 s 0.75 0.66 0.75 0.65 0.70 0.62 0.70 0.61 3 0.65 0.58 0.65 0.57 1 0.60 0.53 0.60 0.52 s 0.55 0.49 0.55 0.48 0.50 0.45 0.50 0.44 a 5 = 0.45 0.40 0.45 0.39 a ` OE n 0.40 0.36 0.40 0.35 5 0.35 0.32 0.35 0.31 8 I 0.30 0.27 0.30 0.26 a 06 0.25 0.23 0.25 0.22 C l i © 0.20 0.19 0.20 0.17 0.15 0.14 0.15 0.13 0.10 0.10 0.10 0.09 0.05 0.05 0.05 0.04 kawneer.com ADMC040EN ,C KAW N E E R 98 TrifabTM VG 451T Framing System MAY, 2019 BLANK PAGE EC 97911-205 m V 3 c Z.rn Y �y v y c O 0 N 6 2 C L 1D O O 2 C 0 L C 3 N A Co E H r U v U C_ 0 O C C c E 0 v0 c - v c .2a T U N C 0 C R e0 V m L '" y0y c O O E rn 0 O n C W C R 5 L N C U 1]N V C % g 118. 2 V N E C C m t m U O 00 'C C S0 rn C c 0 U m C Ll0 U E O > O t a C O1E 2 L 0 C 8� 2 O 4 y N IX 3 v c Y c ,C KAW N E E R ADMC040EN kawneer.com 2.4 Glazing Customer: Ambrose Glass ARCHITECTURAL GUIDE SPECIFICATION Project: Red Rock Creek Commons SECTION 08 81 00 GLASS GLAZING Note to Specifiers: The specifications below are suggested as desirable inclusions in glass and glazing specifications(section 08 81 00). but are not intended to be complete.An appropriate and qualified Architect or Engineer must verify suitability of a particular product for use in a particular application as well as review final specifications. Oldcastle BuildingEnvelope®assumes no responsibility or liability for the information included or not included in these specifications. PRODUCTS ?lppmr-ed(lsss Fabricator Oldcastle BuildingEnvelope® (ass Description FLOAT GLASS 1. USA-Annealed float glass shall comply with ASTM C1036.Type I,Class 1 (clear).Class 2(tinted). Quality-Q3.Canada-Annealed float glass shall comply with CAN/CGSB-12.3-M.Quality-Glazing. USA-Heat-strengthened float glass shall comply with ASTM C1048,Type I,Class 1 (clear).Class 2 ted),Quality 03. Kind HS.Canada- Heat-strengthened float glass shall comply with CAN/ SB 1Type 2 Heat-$t G �Float Glass. USA L reel float gl 048,Type I,Class 1 (clear),Class 2(tinted), ality Q3. Kind FT.Canada-Tempered float glass shall comply with CAN/CGSB-12.1-M,Type 2- Tempered Glass, Class B-Float Glass. 4. USA-Laminated glass to comply with ASTM C1172.Canada-Laminated glass to comply with CAN/ CGSB-12.1-M.Type 1-Laminated Glass.Class B-Float Glass. 5.Glass shall be annealed,heat-strengthened or tempered as required by codes,or as required to meet thermal stress and wind loads. Sealed Insulating Glass(IG) GENERAL Vision Glass(Vertical) 1. IG units consist of glass lites separated by a dehydrated airspace that is hermetically dual sealed with a primary seal of polyisobutylene(PIB)and a secondary seal of silicone or an organic sealant depending on the application. 2. USA- Insulating glass units are certified through the Insulating Glass Certification Council(IGCC)to ASTM E2190.Canada-Insulating Glass units are certified through the Insulating Glass Manufacturers Alliance(IGMA)to either the IGMAC certification program to CAN/CGSB-12.8. or through the IGMA program to ASTM E2190. IG VISION UNIT PERFORMANCE CHARACTERISTICS 1. Exterior Lite 1/4'Guardian SunGuard®SuperNeutral®68 on Clear Low-E#2 2.Interior Lite 1/4'Clear 3.1/2'Cavity 1/2 inch(90%Argon Fill) 4. Performance Characteristics Thermal Optical Winter U-factor/U-value: 0.25 Visible Light Transmittance: 67% Summer U-factor/U-value: 0.22 Visible Light Reflectance(outside): 11% Solar Heat Gain Coefficient: 0.37 Visible Light Reflectance(inside): 12% Shading Coefficient: 0.43 Total Solar Transmittance: 32% Relative Heat Gain(Btu/hr-ft2): 88 Total Solar Reflectance(outside): 32% Light to Solar Gain: 1.81 Ultraviolet Transmittance: 30% Contact Oldcastk BuildingEnvelope*at 866-Oldcastle(653-2278)for samples or additional information concerning performance.strength.deflection.thermal stress or application guidelines.GlasSelect®calculates center of glass performance data using the Lawrence Berkeley National Laboratory(LBNL)Window 7.4 program(version 7.4.8.0)with Environmental Conditions set at NFRC 100-2010-Gas Library ID#1(Air)is used for Insulating Glass units with air.Gas Library ID#9(10%As/90%Argon)is used for Insulating Glass units with argon.Monolithic glass data is from the following sources:1.LBNL International Glazing Database(IGDB)version 53.0:2.Vendor supplied spectral data files.Laminated glass data is from the following sources:1.LBNL International Glazing Database(IGDB)version 53.0:2.LBNL Optics 6(version 6.0 Maintenance Pack 1):3.Vendor supplied spectral data files:4.Vendor supplied data.5.Based on vendor testing.clear acid-etched glass performance data is estimated using regular clear glass of equivalent thickness.Thermal values are In Imperial units. 0 Oldcastle 3uildingEnvelope CERTIFICATIONS FOR GLASS THICKNESS, QUALITY AND TYPES 1. Primary Float Annealed Glass as supplied by Oldcastle BuildingEnvelope® meets the quality requirements of ASTM C1036, Standard Specification for Flat Glass, for Type 1, Class 1 (Clear), Class 2 (Tinted), Heat- Absorbing and Light-Reducing, Quality Q3 Glazing. Suppliers to Oldcastle BuildingEnvelope- include include PPG, Guardian and Pilkington. Canada: Primary Float Annealed Glass sold in Canada meets CANICGSB-12.3-M, Quality-Glazing. 2. Heat-Treated Glass as supplied by Oldcastle BuildingEnvelope®, meets the quality and strength requirements of ASTM C1048, Standard Specification for Heat-Strengthened and Fully Tempered Flat Glass, for Condition A , Quality Q3, and Kind FT (fully tempered) or Kind HS (heat-strengthened). Canada: Fully Tempered Glass sold in Canada meets CANICGSB-12.1-M, Type 2-Tempered Glass, Class B-Float Glass. Canada: Heat-Strengthened Glass sold in Canada meets CAN/CGSB-12.9-M, Type 2-Heat- Strengthened Glass, Class A-Float Glass. 3. Safety Glass, laminated glass with an 0.030" or thicker interlayer, or tempered glass supplied by Oldcastle BuildingEnvelope® meets the safety criteria of CPSC 16 CFR 1201 (Categories I & II) and ANSI Z97.1 (Class A and B), and is certified by the Safety Glazing Certification Council (SGCC). Heat-Strengthened glass is not safety glass. Canada: Fully Tempered Glass sold in Canada meets CANICGSB-12.1-M, Type 2-Tempered Glass, Class B-Float Glass. Canada: Laminated Glass sold in Canada meets CANICGSB-12.1-M. Type 1-Laminated Glass, Class B-Float Glass. 4. Low-E & Reflective Coated Glass as supplied by Oldcastle BuildingEnvelope meets the quality requirements of ASTM C1376, Standard Specification for Pyrolytic and Vacuum Deposition Coatings on Flat Glass 5. Laminated Glass as supplied by Oldcastle BuildingEnvelope® meets the quality requirements of ASTM C1172, Standard Specification for Laminated Architectural Flat Glass. Canada: Laminated Glass sold in Canada Meets CANICGSB-12.1-M, Type 1-Laminated Glass, Class B-Float Glass. 6. Spandrel: Oldcastle BuildingEnvelope® offers two types of spandrel glass: ceramic enamel frit and silicone paint. 1. Ceramic enamel frit spandrel glass meets the ASTM C1048, Standard Specification for Heat- Strengthened and Fully Tempered Flat Glass, for either Condition B, Kind FT (fully tempered) or Kind HS (heat-strengthened). The specified color is fused onto, and made an integral part of the glass surface during the heat-treating process. 2. OPACI-COAT-300' elastomeric coating spandrel glass meets the ASTM C1048 specification, Kind FT (fully tempered)or Kind HS (heat-strengthened)as specified. Canada: Spandrel Glass sold in Canada meets CAN/CGSB-12.9-M, Type 1 - Tempered Glass or Type 2 - Heat-Strengthened Glass, Class A- Float Glass, Style 1 - Ceramic Coated or Style 3 -Organic Coated. 7. Insulating Glass Units as supplied by Oldcastle BuildingEnvelope' will consist of two or more lites of glass, separated by a dehydrated airspace, and dual-sealed with a polyisobutylene (PIB) primary sealant and a secondary sealant. These units are tested in accordance with ASTM E2190 Standard Specification for Insulating Glass Unit Performance and Evaluation, and meet all guidelines and requirements for the IGCC®/IGMA®certification program. Canada: Insulating glass units sold in Canada meet all guidelines and requirements for the IGCC®IIGMA® certification program. OBE Glass Product Certifications 2013-11-25 -Cfir GUARDIAN PERFORMANCE April 17,2018 HARTUNG GLASS By Casillas.Erika ,....,. . CALCULATOR ecasillas@hartung-glass.com " Transmittance Reflectance U-Value Solar Glass 1 Glass 2 Shading Gain Heat Make-up Name Make-up & & Visible Solar Coefficle Coefficie Icon Coating Coating Visible(tv Solar(re%) Winter Night Summer Day nt(sc) %) (BtufhrtNf) (Bturtvft F) nt Pv%out pv%in Pe%out (SHGC) Solarban ®60 Clear 1/4"SLBN 60/114" (IGDB) glass CLEAR • •• on Clear USA 70 33 11 13 28 0.29 0.27 0.45 0.39 glass (IGDB) USA (IGDB) Calculation Standard:NFRC 2010 1/4"SLBN 60/1/4"CLEAR Outdoors GLASS 1 Clear glass USA(IGDB) #1 ---- Thickness=1/4"=6mm #2 Solarban®60(IGDB) GAP 1 100%Air, 1/2"=12.7 mm Clear glass USA(IGDB) #3--- GLASS 2 Thickness=1/4"=6mm #4— Total Unit(Nominal)=1 in/24.7 mm Slope=90° Window Height=1 meter Estimated Nominal Glazing Weight:5.75 lb/ft' Indoors Important Notes The performance values shown above represent NOMINAL VALUES for the center of glass with no spacer system or framing. Slight variations may occur due to manufacturing tolerances, point of manufacture, and type of instrumentation used to measure the optical properties. For configurations that include non-specular(diffuse)components, performance results cannot be verified and should only be used as a general indication of performance. For configurations which include ceramic frit coating,the actual values may vary significantly based upon the thickness and composition of the frit. For configurations with coatings laminated facing the PVB, there may be a noticeable color change. Guardian recommends a full size mock-up be approved. Calculations and terms in this report are based on NFRC 2010. Please note that the THERMAL STRESS GUIDELINE is only a rough reference to the thermal safety of a glazing. Other factors such as the size of glass areas, shapes and patterns, glass thickness,glass damaged during shipping, handling or installation, orientation of the building, exterior shading,overhangs/fins that reduce wind speed, and areas with high daily temperature fluctuations can all increase the probability of thermal breakage. The results shown are not for any specific glazing installation and do not constitute a warranty against glass breakage. Explanation of Terms % Transmittance Visible or Light Transmittance(Tv%)is the percentage of visible light at normal incidence(90°to surface)that is transmitted by the glass. % Ultraviolet(UV)Transmittance(tuv%)is the percentage of ultraviolet light at normal incidence directly transmitted by the glass. Ultraviolet Light is defined as radiant energy from the sun having a wavelength range of 300 nm to 380 nm. % Solar Energy Direct Transmittance (te%) is the percentage of solar energy at normal incidence directly transmitted by the glass. Solar Energy is the radiant energy from the sun having a wavelength range of 300 nm to 2500 nm. % Reflectance Visible Outdoors or Light Reflectance Out(pv% out) is the percentage of visible light at normal incidence directly reflected by the glass back outdoors. % Reflectance Visible Indoors or Light Reflectance In(pv% in) is the percentage of visible light at normal incidence directly reflected by the glass back indoors. Page 1 of 2 V f3LA55'AN PERFORMANCE HARTUNG ...�.,.w..�,. CALCULATOR "Alt ONG:;.15J'HMIS:M2b % Solar Energy Reflected Outdoors or Solar Direct Reflectance Out(pe % out) is the percentage of solar energy at normal incidence directly reflected by the glass back outdoors. % Solar Energy Reflected Indoors or Solar Direct Reflectance In(pa% in) is the percentage of solar energy at normal incidence directly reflected by the glass back indoors. Absorptance (ae%) (Solar, Visible or UV)is defined as a process in which a range of radiation is retained by a substance and converted into heat energy. The creation of heat energy also causes the substance to emit its own radiation. U-Factor or U-Value (UG) is the air-to-air thermal conductance of 39" high glazing and associated air films. US Standard units are Btu/hr.ft2.F. and SI /Metric units are W/m2K. Winter night values are 12.3 mph wind at-0.4°F outdoors and 69.8°F still indoor air. Summer values are 0 sun, 6.15 mph wind at 89.6°F outdoors and 75.2°F still indoor air. Relative Heat Gain(RHG)is the total net heat gain to the indoors due to both the air-to-air thermal conductance and the solar heat gain. Imperial units are Btu/hr.ft2. RHG= [(Summer U-Value)(89.6°F-75.2°F) + (Shading Coefficient)(200 Btu/hr-ft2)]. Metric units are W/m2. RHG =[(Summer U-Value)(32°C -24°C) +(Shading Coef.)(631 W/m2)J Shading Coefficient(SC)is the fraction of solar heat,direct(300 to 2500 nm)plus indirect(5 to 40 um),transferred indoors through the glass. For reference, 1/8" (3.1 mm) clear glass has a value of 1.00 (SC is an older term being replaced by the SHGC). Solar Heat Gain Coefficient(SHGC) is the fraction of solar energy incident on the glazing that is transferred indoors both directly and indirectly through the glazing. The direct gain portion equals the direct solar transmittance,while the indirect is the fraction of the solar energy absorbed to the energy reradiated and convected indoors. No heat gain from warmer outdoor air is included. SHGC = (Direct Solar Trans) + {((Indirect Solar Heat Gain) - (Summer U-Value)(89.6°F-75.2°F)]/(248.209 Btu/hr-ft2)} Light-to-Solar Gain (LSG) is the ratio of visible light gain to solar gain. LSG=(Visible Transmittance) /(SHGC) Color Rendering Index in transmission, D65(Ra)is the change in color of an object as a result of the light being transmitted by the glass. Weighted Sound Reduction Index (Rw) is a single-number quantity which characterizes the airborne sound insulation of a material or building element over a range of frequencies. Sound Transmission Class(STC) is a single-number quantity which characterizes the airborne sound insulation of a material or building element over a range of frequencies. Disclaimer This performance analysis is provided for the limited purpose of assisting the user in evaluating the performance of the glass products identified on this report. Spectral data for products manufactured by Guardian reflect nominal values derived from typical production samples. Spectral data for products not manufactured by Guardian were derived from the LBNL International Glazing Database and hi.:ve not been independently verified by Guardian. The values calculated by this tool are generated according to established engineering practices and applicable calculation standards. Many factors may affect glass performance, including glass size, building orientation, shading,wind speed,type of installation, and others. The applicability and results of the analysis are directly related to user inputs and any changes in actual conditions can have a significant effect on the results. It is possible to create many different glazing types and glass make-ups using this tool. Guardian makes no guarantee that any glazing modeled by the tool is available from Guardian or any other manufacturer. The user has the responsibility to check with the manufacturer regarding availability of any glass type or make-up. While Guardian has made a good faith effort to verify the reliability of this tool, it may contain unknown programming errors that could result in incorrect results. The user assumes all risk relating to the results provided by the tool and is solely responsible for selection of appropriate products for the user's application. GUARDIAN MAKES NO EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH RESPECT TO THE PERFORMANCE CALCULATOR. THERE ARE NO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE PERFORMANCE CALCULATOR AND NO WARRANTY SHALL BE IMPLIED BY OPERATION OF LAW OR OTHERWISE. IN NO EVENT SHALL GUARDIAN BE LIABLE FOR DIRECT, INDIRECT, SPECIAL, CONSEQUENTIAL OR INCIDENTAL DAMAGES OF ANY KIND RELATING TO OR RESULTING FROM USE OF THE PERFORMANCE CALCULATOR. Program Version:4.1.0.6416 Database Version: 20180413 Page 2 of 2 pec rem° Standard Colors • A . 1- - C` 1FTif Colors shown are approximate and may not reflect the shade precisely. Different lighting conditions can influence color appearance,for truer color please view in daylight.Colors are not stocked in all available package types. Minimum order quantities will apply for custom colors and alternative packaging. For more information,please contact Tremco Customer Service. CLEAR PRECAST WHITE ANODIZED ALUMINUM IVORY GRAY OFF WHITE LIMESTONE SANDSTONE BUFF ADOBE TAN CHAMPAGNE ALUMINUM STONE ■ LIGHT BRONZE RUSTIC BRICK CHARCOAL BRONZE DARK BRONZE BLACK WHITE o • ^ - _ ,, , � Ek "4 > r ko > m � � © , ; = 2piii1111411 > - & IT "S NJ ƒ \ £ � ° ° ° / 3 \ 5 =1liq 1 \ j ) / � - NJ- s 0 0 COr - q ^ ^ c nrgLn / - \ 3 3 } � E -C o - ] \ ; a ) ? ® > ® n \ ok / § \2L0 "2 « _ > ' � = o ! _ > 3- » 7 § ƒ M e § E -o / 32 - 1 # & m / 99 ] / ® ) a) / ; � m - 3 > & n COI 2 .... / C � -. f CD 8 CS tilb ] F CI za \ Clib / . ■ NJ A 7 NJ , hil / k q j - r. \ m , IND / ® 2 ƒ i $ 3a: o > , 3 ■ > 2o io. % \ - - c Go C 0 CO ° ; C en / \ § ) " °-z o / G)�} k 2 § 7 t \ \ § § 03 a �_ / } / � ■ LIM q R 7 eat , Ili 0 CO CD <. . . _ % 0 / ., Pail = 0 00 00 ■ 112 COj \ ig - C) U § \ / o CD t $ § / � IIM rw � c