Loading...
Plans (23) SEIZMI INC MATERIAL HANDLING ENGINEERING EST.1905 SPECIAL PRODUCTS CONVEYORS STORAGE RACKS OTHER SERVICES SHELVING SPECIAL PRODUCTS TANK SUPPORTS TALL SUPPORTS SELECTIVE SEISMIC ANALYSIS METAL SHUTTLES MACHINERY HEADER STEEL DRIVE-IN PERMIT AQUISITION METAL/WOOD VLM VRC RACK BLDGS ROBOTIC PLATFORMS PUSH BACK EGRESS PLANS MOVABLE CAROUSELS SHEDS PICK MODULES FLOW RACK STATE APPROVALS GONDOLAS FENCING SYSTEMS WORK PLATFORMS ROOF VERIFICATION CANTILEVER PRODUCT TESTING LOCKERS MODULAR OFFICES FOOTINGS TITLE 24 CATWALKS MINI-LOAD SYSTEMS Licensed in 50 States RECEIVED NOV 12 2019 CITY OF TIGARD BUILDING DIVISION Analysis of Storage Racks for Biamp 8005 SW Hunziker St.,Tigard, OR Job No. 19-3033 CITY OF TIGARD REVIE ED FOR CODE COMPLI CE Approved: ] OTC: [ Perin' - Suite#: PROFF6:5i y; Date: j )-10 tf I re; 661 N4E1 1:411 t7A�� io"� �G� Di9i[aliy x•77 E FAI 4 p„ Fa Date. 1019.11 Al EXPIRES 12-31-2019 11.00,:15,:15 1130 E.Cypress St * Covina,CA 91724 * (909)869-0989 PROJECT: Biamp SEIZMIC FOR: Northwest Handling Sys ADDRESS: 8005 SW Hunziker S Tigard,OR SHEET#: 1 MATERIAL HANDLING ENGINEERING CALCULATED BY: tchang EST.1965 DATE: 11/7/2019 TEL:(909)869-0989 PN: 20191021 24 1130 E.CYPRESS ST,COVINA,CA 91724 Table of Contents Parameters 2 Components and Specifications 3 Loads and Distributions 4 Basic Load Combinations 7 Longitudinal Analysis 8 Column&Backer Analysis 9 Beam Analysis 11 Beam to Column Analysis 14 Bracing Analysis 15 Anchor Analysis 17 Overturning Analysis 20 Baseplate Analysis 21 Slab and Soil Analysis 23 Scope: This storage system analysis is intended to determine its compliance with appropriate building codes with respect to static and seismic forces. The storage racks are prefabricated and are to be field assembled only,with no field welding. PROJECT: Biamp SEIZMIC FOR: Northwest Handling Sys ADDRESS: 8005 SW Hunziker S �N� Tigard,OR �^� SHEET#: 2 MATERIAL HANDLING ENGINEERING CALCULATED BY: tchang EST sas DATE: 11/7/2019 TEL:(909)869-0989 PN: 20191021_24 1130 E.CYPRESS ST,COVINA,CA 91724 The storage racks consist of several bays,interconnected in one or both directions,with the columns of the vertical frames being comon between adjacent bays.This analysis will focus on a tributary bay to be analyzed in both the longitudinal and transverse direction. Stability in the longitudinal direction is maintained by the beam to column moment resisting connections,while bracing acts in the transverse direction. �, .-.f� ___„.-2,-- .fir S • II ' ':''':',, ,,,,,,,, 1,,,,,,<:::5_7; - ''''-'-',,'----,-„,-... -::.----------''-/-72---"--; N S% ie t l I \ r~�/ h' . 4 . -�- !; 2 3 CONCEPTUAL DRAWING Some components may not be used or may vary TRIBUTARY AREA Legend 1.Column 2.Base Plate 3.Anchors ME 4.Bracing 5.Beam TRANSVERSE 6.Connector ` LONGITUDINAL NOTE:ACTUAL CONFIGURATION SHOWN ON COMPONENTS&SPECIFICATIONS SHEET PROJECT: Biamp SEIZMIC FOR: Northwest Handling Sys ADDRESS: 8005 SW Hunziker S Tigard,OR SHEET#: 3 MATERIAL HANDLING ENGINEERING CALCULATED BY: tchang EST.1985 DATE: 11/7/2019 TEL:(909)869-0989 PN: 20191021 24 1130 E.CYPRESS ST,COVINA,CA 91724 COMPONENTS AND SPECIFICATIONS Configuration 1:Selective Rack L 1.7 Analysis per section 2209 of the 2014 OSSC S,=0.98 F =1.11 1= 1 V x=543 lbs. P "„. =8200 lbs. Levels:4 Panels:5 Load per Level S1=0.42= 1.58 SDC=D I”.«s 2029 lbs. PSs,",,,=6506 lbs. 4000 lbs 60" 4000 lbs 54 60" N 240" N S 4000 lbs —4 60" 4000 lbs 36" sl‘ 60" 3`I6" 12,E 96" 44" FRONT VIEW SIDE VIEW FRAME BEAM CONNECTOR COLUMN 4.13 x 2.5-.060(SSB416M) 3 Pin 2"cc Connector 3 x 3-.075(LM20) Steel=55 ksi Max Static Cap.=5218 lb. Stress=41% Steel=55000 psi Stress=78% Stress=81%(level I) Max stress=41%(level 1) HORIZONTAL BRACE Max stress=78%(level 1) 1.5 x 1.25-.075 Stress=53%(panel 1) DIAGONAL BRACE 1.5 x 1.25-.075 Stress=85%(panel 3) Base Plate Slab&Soil Anchors Steel=36000 psi * Slab=6"x 4000 psi Hilti Kwik Bolt TZ(KB-TZ) ESR-1417 8 x 5 x 0.375 in. 4 anchors/plate Sub Grade Reaction=50 pci 0.5 in.x 3.625 in.Embed. Moment=6568 in-lb. Stress=19% Slab Bending Stress=28%(S) Pullout Capacity= 1519 lbs. Shear Capacity=2678 lbs. Anchor stress=47% Seizmic Analyzer version 20191107 ©Copyright 1991-2018 Seizmic Inc.All rights reserved �._ PROJECT: Biamp -SEIZMIC -' FOR: Northwest Handling Sys ADDRESS: 8005 SW Hunziker S INC Tigard,OR SHEET#: 4 MATERIAL HANDLING ENGINEERING CALCULATED BY: tchang EST.1985 DATE: 11/7/2019 TEL:(909)869-0989 PN: 20191021 24 1130 E.CYPRESS ST,COVINA,CA 91724 - Loads and Distributions: Selective Rack Determines seismic base shear per Section 2.6 of the RMI&Section 2209.of the 2014 OSSC El n 1 1 Fn #of Levels: 4 SDC: D RL: 6 Ss: 0.98 Pallets Wide: 2 WPL: 16000 R,: 4 Si: 0.42 F5 mil Pallets Deep: 1 WDL: 400 lbs Fa: 1.11 Ip: 1 EtL F4 Pallet Load: 2000 Fv: 1.58 Ti: 1.5 EL3 F3 Total Frame Load: 16400 lbs EL2 F2 SDS=2/3 S,•Fp= 0.73 S =2/3•S1•Fv= 0.44 Et, • F1 DI W,=0.67•W,L+WDL= 11120lbs Seismic Shear per RMI 2012 2.6.3: Longitudinal Transverse Vbngt =C •Ip•W, =SDI/(TL•RL)•IP•W, =0.44/(1.5.6)•1.11120=543.64 lbs V,,„.need not be greater than: Vt„,,need not be greater than: Vlona =Cs•I •W, V n,i =C,•IP•W, =SD,/RL•I,•W, =SDS/RT.•IP•Ws =0.73/6.1.11120=1352.93 lbs =0.73/4-1•11120=2029.4 lbs If S,>=0.6,then V,og shall not be less than: If S,>=0.6,then V„.shall not be less than: Viong3 -C,•IP•W, Vtrenx2 =Cs•Ip•W, =0.5•S,/RL•I,•Ws =0.5 S,/RT•I,•W, =0.5 0.42/6.1.11120=389.2 lbs =0.5 0.42/4.1 11120=583.8 lbs V, shall not be less than: Vt..shall not be less than: Vtong4 =C,•IP•W, Vtrnns3 =C,•Ip•W, =Max[0.044 SDS,0.03]•I,,•W, =Max[0.044•SD„0.5•St/R1.,0.03]•I,,•W, =Max[0.03,0.03,0.03]•1•11120=389.2 lbs =Max[0.03,0.05,0.03]•1•11120=583.8 lbs Since: 543.64<= 1352.93 Since. &543.64>=389.2 2029.4>=583.8 &543.64>=389.2 &2029.4>=583.8 V, =543 lbs V„n,=2029 lbs PROJECT: Biamp SEIZMIC FOR: Northwest Handling Sys ADDRESS: 8005 SW Hunziker S Tigard,OR SHEET#: 5 MATERIAL HANDLING ENGINEERING CALCULATED BY: tchang EST.1985 DATE: 11/7/2019 TEL:(909)869-0989 PN: 20191021 24 1130 E.CYPRESS ST,COVINA,CA 91724 — Loads and Distributions: Selective Rack(Page 2) WH f,=V EW.H,. Longitudinal Transverse Level hx w w h,, f w w h,, f 1 60 2050 123000 54.3 2050 123000 202.9 2 120 2050 246000 108.6 2050 246000 405.8 3 180 2050 369000 162.9 2050 369000 608.7 4 240 2050 492000 217.2 2050 492000 811.6 PROJECT: Biamp SEIZMIC � FOR: Northwest Handling Sys ADDRESS: 8005 SW Hunziker S 1N Tigard,OR SHEET#: 6 MATERIAL HANDLING ENGINEERING CALCULATED BY: tchang EST 1985 DATE: 11/7/2019 TEL:(909)869-0989 PN: 20191021 24 1130 E.CYPRESS ST,COVINA,CA 91724 Fundamental Period of Vibration(Longitudinal) Per FEMA 460 Appendix A-Development of An Analytical Model for the Displacement Based Seismic Design of Storage Racks in Their Down Aisle Direction T = 2Ti EIYLL=1 Wp[hpi2 N ( k k )4_ N �A-7) ``g kbb(k9) Where: #of levels 4 W1, =the weight of the ith pallet supported by the storage rack min.#of bays 3 h9 =the elevation of the center of gravity of the ith pallet Nb 80111111.111 with respect to the base of the storage rack MIME 300 kip-in/rad g =the acceleration of gravity 111111111 2930 kip-in/rad N, =the number of loaded levels 11111111 143 kip-in/rad kCe 575 kip-in/rad k =the rotational stiffness of the connector 16 1.59 in° k, =the flexural rotational stiffness of the beam-end MIMI 96 in kb =the rotational stiffness of the base plate k� =the flexural rotational stiffness of the base upright-end 240 in E 29500 ksi N, =the number of beam-to-upright connections Mill Nb =the number of base plate connections ®ME 87Pin 4 kip 6EI, 2 MOEN 4 kip kb„= L © 207 in 4 kip 4 268 in 4 kip 4E1 ke= EI kb= H L =the clear span of the beams H =the clear height of the upright Ib =the moment of inertia about the bending axis of each beam I„ =the moment of inertia of each base upright E =the Young's modulus of the beams Calculated T= 3.6 Since the calculated T is greater than 1.5,the more conservative value of 1.5 is used in the calculations SEIZMI�1 PROJECT: Biamp FOR: Northwest Handling Sys IN ADDRESS: 8005 SW Hunziker S Tigard,OR SHEET#: 7 MATERIAL HANDLING ENGINEERING CALCULATED BY: tchang EST 1985 DATE: 11/7/2019 TEL:(909)869-0989 PN: 20191021 24 1130 E.CYPRESS ST,COVINA,CA 91724 LRFD Basic Load Combinations: Selective Rack 2014 OSSC&RMI/ANSI MH 16.1 V Trans=2,029 lbs MTrno. =EfTro,•h,=365,220 in-lbs R =0.7 V Long=543 lbs ET=, =M1.a00/frame depth=8,300 lbs R = 1.0(Uplift combination only) P =Product Load/2=8,000 lbs p = 1 D =Dead Load•0.5=200 lbs SDS =.73 L=Live Load=0 lbs S=Snow Load=0 lbs R=Rain Load=0 lbs Lr=Live Roof Load=0 lbs W=Wind Load=0 lbs Basic Load Combinations 1.Dead Load = 1.4D+ 1.2P =(1.4 200)+(1.2.8,000)=9,880 lbs 2.Gravity Load = 1.2D+ 1.4P+ 1.6L+0.5(L,orSorR) =(1.2.200)+(1.4.8,000)+(1.6.0)+(0.5.0)=11,440 lbs 3.Snow/Rain = 1.2D+0.85P+(0.5L or 0.5W)+ 1.6(L,or S or R) =(1.2.200)+(0.85.8,000)+(0.5.0)+(1.6.0)=7,040 lbs 4.Wind Load = 1.2D+0.85P+0.5L+ 1.0W+0.5(L,or S or R) =(1.2.200)+(0.85.8,000)+(0.5.0)+(1.0 0)+(0.5.0)=7,040 lbs 5A.Seismic Load (Transverse)=(1.2+0.2SD5)D+(1.2+0.2SD5)RP+0.5L+pET„a +0.2S =(1.2+0.2•.73)•200+(1.2+0.2•.73)•0.7.8,000+0.5.0+ 1.8,300+0.2.0=16,107lbs 5B.Seismic Load (Longitudinal)=(1.2+0.2SDS)D+(1.2+0.2SD5)(3P+0.5L+pELons+0.2S =(1.2+0.2•.73)•200+(1.2+0.2•.73)•0.7.8,000+0.5.0+ 1.0+0.2.0=7,806lbs 6.Wind Uplift =0.9D+0.9P,pp+ 1.0W =0.9.200+0.9.8,000+ 1.0.0=180 lbs 7.Seismic Uplift =(0.9-0.2SU5)D+(0.9-0.2SDs)PPOPP-pET,nns =(0.9-0.2•.73)•200+(0.9-0.2•.73)•1.8,000- 1•8,300=-2,117lbs For a single beam,D=32 lbs P=2,000 lbs I=250 lbs See Base Plate tension Analysis for Over-Strength factor application. 8.Product/Live/Impact = 1.2D+ 1.6L+0.5(SorR)+ 1.4P+ 1.4I (1.2.32)+(1.6.0)+(0.5.0)+(1.4.2,000)+(1.4 250)=3,188 lbs ASD Load Combinations for Slab Analysis 1. (1 +0.105S'Ds)D+0.75((1.4+0.14SD5)13P+0.7pE) =(1 +0.105•.73)•200+0.75((l.4+0.14•.73)•0.7.8,000+0.7.1 8,300)=10,882 lbs 2. (1 +0.14SD5)D+(0.85+0.14SD5)1P+0.7pE _(1 +0.14.73)•200+(0.85+0.14•.73)•0.7.8,000+0.7.1.8,300=11,363 lbs 3. D+P =200+8,000=8,200 lbs �..._ PROJECT: Biamp SEIZMIC ; , ' FOR: Northwest Handling Sys ADDRESS: 8005 SW Hunziker S IN ' Tigard,OR SHEET#: 8 MATERIAL HANDLING ENGINEERING CALCULATED BY: tchang EST 1985 DATE: 11/7/2019 TEL:(909)869-0989 PN: 20191021_24 1130 E.CYPRESS ST,COVINA,CA 91724 Longitudinal Analysis: Selective Rack This analysis is based on the Portal Method,with the point of contra flexure of the columns assumed at mid-height between beams,except for the lowest portion,where the base plate provides only partial fixity and the contra flexure is assumed to occur closer to the base(or at the base of pinned condition,where the base plate cannot carry moment). nn w Mn-n Fn MfonnR— MConnL=MConnAT _ MConn= ((MUpper+MLower)/2)+Mfinds M o „�„ M5-5 mow 5 Vcn,= VLnnS/#of columns=272 lbs 1111111111 ) M4-4 'r'"AlIllr Manx= 6568 51,„:11\ s in-lbs P4 , 11 Am M3-3 1\4L..,— ((Ve0 h;)-1\49„,c. rte, ` \-----� '� h3 F3 ' (272 lbs 58 in.) 6568 in-lbs=9208 in-lbs �� N41-2 2 Miss M 1 1 , h2 h1 M base FRONT ELEVATION Levels h, f Axial Load Moment Beam End Connector Moment Moment 1 60 27 8,200 9,208 3,820 13,028 2 60 54 6,150 9,208 3,820 13,028 3 60 81 4,100 9,208 3,820 13,028 4 60 109 2,050 9,208 3,820 8,424 PROJECT: Biamp SEIZMIC FOR: Northwest Handling Sys ADDRESS: 8005 SW Hunziker S 114,f__________<-) Tigard,OR SHEET#: 9 MATERIAL HANDLING ENGINEERING CALCULATED BY: tchang EST.1985 DATE: 11/7/2019 TEL:(909)869-0989 PN: 20191021 24 1130 E.CYPRESS ST,COVINA,CA 91724 - COLUMN ANALYSIS: Selective Rack(Level 1 ) . Analyzed per RMI,AISI 2012(LRFD)and the 2014 OSSC. Section subject to torsional or flexural-torsion buckling(Section C4.1.2) IC-Lx/Rx = 1.7-58/ 1.26 =78.24 Ky•L/Ry = 1.36/1.115 =32.29 KL/R ax =78.24 r =0.2+r2+X212 (Eq.C3.1.2.1- 3x3-.075 7) SECTION PROPERTIES =(1.262+ 1.1152+-2.8382)12=3.299 in. Depth 3 in. Width 3 in. 3 =I -(Xo/ro)2 (Eq C4.1.2-3) t 0.074 in. = 1 -(-2.838/3.299)2=0.26 Radius 0.125 in. F, =172E/(KL/r),,,aa 2 (Eq C4.1.1-1) Area 0.737 in.2 AreaNet 0.631 in.2 =3.142.29500/78.242=47.561 ksi In 1.17 in.' F, =(1/2/3)((x0 +v)2-(-Vans))'') (Eq C4.1.2-1) Sx 0.78 in.3 =(1 /(2.0.26)((47.561 + 106.323)-(47.561 + 106.323)2 Sx,,0, 0.722 in.3 -(4.0.26.47.561.106.323))"2)=34.923 ksi R0 1.26 in. Iy 0.916 in.4 where: S, 0.532 in.3 ax =I7-E/(Ka.L./Rx)2 (Eq C3.1.2-11) R, 1.115 in. =3.142.29500/78.242=47.561 ksi J 0.001 in.4 a =1/A,,2(GJ+(rI2EC)/(K,L,)2) (Eq C3.1.2-9) CH, 2.387 in.6 Jx 3.114 in. = 1 /0.737-3.2992(11300-0.001 x„ -2.838 in. +(3.142.29500.2.387)/(0.8.36)2)= 106.323 ksi Kx 1.7 Lx 58 in. F =Min(F„F,2)=34.923 ksi K, I P =AeT.F (Eq C4.1-1) L, 36 in. 7v, =(F./F)'2=(55/34.923)12= 1.255 (Eq C4.1-4) K, 0.8 Fy 55 ksi Since k< 1.5: Fu 65 ksi F =(0.658^(ka 2))•Fy=28.45 (Eq C4.1-2) Q 0.9 Thus: G 11300 ksi E 29500 ksi P = 16954 lbs c,n_x 0.85 P =14411 lbs c, -1 Cb I C,p 1 Phib 0.9 _ Phi. 0.85 ' PROJECT: Biamp SEIZMIC FOR: Northwest Handling Sys INC 1 ADDRESS: 8005 SW Hunziker S Tigard,OR �- SHEET#: 10 MATERIAL HANDLING ENGINEERING CALCULATED BY: tchang EST.1985 DATE: 11/7/2019 TEL:(909)869-0989 PN: 20191021 24 1130 E.CYPRESS ST,COVINA,CA 91724 COLUMN ANALYSIS: Selective Rack(Level 1 ) Analyzedper RM1,AISI 2012(LRFD)and the 2014 OSSC. Lateral-torsional buckling strength[Resistance](Section C3.1.2) P„ =P„„Or=27860 lbs 3 x 3-.075 Where: SECTION PROPERTIES Depth 3 in. P„ =A,F=0.596-55=32777lbs Width 3 in. t 0.074 in. M =M.=S,F,=S,,,,„F, (Eq C3.1.2.1-1) Radius 0.125 in. 1e =CbrA(6y6)'2/S5=221.573ksi Area 0.737 in.' .F. CAa,(j+C,(j2+o2(cr,/a ))12)/(C,FS)=122.162 ksi (Eq 3.1.2.1-4) AreaNet 0.631 in.' I„ 1.17 in.4 F =(C,172Ed0/(SAL)2=791.132 ksi (Eq 3.1.2.1-10) Sx 0.78 in.' F„,,. =122.162 ksi S,,V,, 0.722 in.' Since:0.56F<2.78F R. 1.26 in. F =(10/9)Fy(1 -(10Fy/36F))=53.5 ksi (Eq C3.1.2.1-2) Iy 0.916 in.4 S 0.532 in.' Reduced F,„„=1 -((1 -Q)/2)•(F/F)Q•F=50.9 ksi Ry 1.115 in. M,=36749 in-lbs M„,=27063 in-lbs M. =M .„ J 0.001 in.4 M„„0,, =33074 in-lbs M,,,Ø,,=24357 in-lbs C,,, 2.387 in.b PF, =II2EI/(ISL)2=35039 lbs (Eq C5.2.2-6) .1, 3.114 in. PE,, =n2E7/ac,/02=205694lbs X„ -2.838 in. (Eq C5.2.2-7) K. 1.7 a =(1 -(0P/P„))=0.8 (EgC5.2.2-4) Lx 58in. a =(1 -(0,P/P,,,))=0.966 (Eq C5.2.2-5) Ky I PN„, = 16,107 lbs P,„„g=7,806 lbs Ly 36 in. M =M=9197 in-lbs (Eq C5.2.2-2) K 0.8 Pus, =(1.2•D)+(1.4•P)=11440lbs Fy 55ksi F„ 65 ksi P,_s,/P =11440/14411 =0.79 Static Stress=79% Q 0.9 Since: P,/p,>=0.15 G 11300 ksi E 29500 ksi Stressl =P,/P +M/(ObM,)+M/(.,,M3) (Eq C5.2.2-2) Cu 0.85 =((7,806/ 14411)+(9197/33074)+(1 /24357))=81% C _I Stress2 =P,/P„ +C,,„,,M/((bM,a)+C,M /(0bM,,ay) (Eq C5.2.2-1) Cb 1 =(7,806/27860)+(0.85.9197/33074.0.8))+(0.85.1 /24357.0.966)))=56% C,5 1 Stress3 P,/P„„= 16,107/27860=56% Phib 0.9 Phi 0.85 Column Stress=Max(Stressl,Stress2,Stress3,Static)=81% PROJECT: Biamp SEIZMIC FOR: Northwest Handling Sys ADDRESS: 8005 SW Hunziker S Tigard,OR _ SHEET#: 11 MATERIAL HANDLING ENGINEERING CALCULATED BY: tchang EST.,sas DATE: 11/7/2019 TEL:(909)869-0989 PN: 20191021 24 1130 E.CYPRESS ST,COVINA,CA 91724 BEAM ANALYSIS Selective Rack • Determine allowable bending moment per AISI Check compression flange for local buckling(B2.1) Effective width w=C-2t-2r = 1.625-(2•0.06)-(2•0.125) = 1.26 in. �,• B / wit = 1.255/0.06 = 20.99 A- C 7v = (1.052/k112)•(w/t)•(F,l E)112 = (1.052/2)•20.993 •(55/29500)1/2 = 0.48 `-•-`' '`' <=0.673: Flange is fully effective. • C t Check web for local buckling(B2.3) f1(comp) = F,•(y3/y2) = 55* 1.99/2.18 = 50.34 ksi fz(tension) = Fy•(y,l y,) = 55* 1.76/2.18 = 44.43 ksi - `I' = -(1.21f,) = -(44.43/50.34) = -0.88 Buckling coefficient k=4+2•(1 -'P)3+2•(1-'P) =4+2(1 --0.88)3+2(1 --0.88) = 21.11 Flat Depth w=y l +y3= 1.76+ 1.99 = 3.755 4.13 x 2.5-.060 Top flange width C= 1.625 in. w/t = 3.755/0.06 = 62.8 w/t<200:OK Bottom width B= 2.5 in. = (1.052/ku2).(wit).(f/E)1/2 = (1.052/2)•62.799•(50.34/29500)u2 = Web depth A= 4.125 in. 0.59 Beam thickness t= 0.06 in. Radius r= 0.125 in. bl =w•(3-619 = 4•(3--0.88) = 14.58 Fy= 55 b2=w/2=1.88 Fu= 70 Y1= 1.76 bl +b2= 14.58+ 14.58 = 16.46 Web is fully effective Y2= 2.18 Determine effect of cold working on steel yield point(FYA)per section A7.2 Y3= 1.99 YCorner cross-sectional area Lc=(FI/2)•(r+t/2) Ix== 1.95 Ix= 1.59 = (I1/2)•(0.125+0.06/2) = 0.243 Sx= 0.73 Lf = effective width=1.255 E= 29500 C = 2•L,l Lf+2•L, = 2•0.243/ 1.255+2•Lc = 0.2793 FBeam F= 300 Beam Length L= 96 m = 0.192•(F„l Fy)-0.068 = 0.192•(70/55)-0.068 = 0.1764 Br = 3.69•(F/F.)-0.819•(F/F.)2- 1.79 = 3.69•(70/55)-0.819•(70/55)2-1.79 = 1.58 Fu/Fy=70/55 = l >=1.2=OK r/t=0.125/0.06 = 2.09 <=7=OK Fy, = B.•F l(r 1 t)^' = 1.58•55/(2.09)" = 76 = C•F,,+(1-C)•F, = 0.279.76+(1 -0.279)•55 = 61 • F,p-donoro = Fya_top• Yg l(A- YR) = 61 • 1.95/(4.125-1.95) = 54 • PROJECT: Biamp SEIZMIC FOR: Northwest Handling Sys ADDRESS: 8005 SW Hunziker S INC Tigard,OR SHEET#: 12 MATERIAL HANDLING ENGINEERING CALCULATED BY: tchang EST 1985 DATE: 11/7/2019 TEL:(909)869-0989 PN: 20191021_24 1130 E.CYPRESS ST,COVINA,CA 91724 BEAM ANALYSIS Selective Rack Check Allowable Tension Stress for Bottom Flange Lf,„„xe_b<„ = B-(2•r)-(2•t) = 2.5-(2.0.125)-(2.0.06) = 2.13 Cb„„,„, = 2•LQ I(LJ,„„Se-b„,+2•L) = 2•0.243/(2.13+2•0.243) = 0.186 — Fv-b<s„om = Cbo„om•Fc+(1 -Cbowm)•F = 0.186.76+(1 -0.186)•55 = 58.96 ` ` Fy„ = atop = 60.95 ksi D A „ — . Determine Allowable Capacity For Beam Pair(Per Section 5.2 of the RMI,PT II) Check Bending Capacity ---.-.-. ... � Mce eY = 4•M„ = W•L•S2•R„,18 S2 = LRFD Load Factor = (1.2•DL+1.4•PL+ 1.4.0.125•PL)IPL For DL=2%of PL: S2 4.13x2.5-.060 = 1.2.0.02+ 1.4+ 1.4.0.125 = 1.6 Top flange width C= 1.625 in. R. = 1 -((2•F•L)l(6•E•J+3•F•L)) Bottom width B= 2.5 in. = 1 -((2•300•96)/(6•29500• 1.59+3 •300•96)) = 0.84 Web depth A= 4.125 in. •M„ = •F„•S. = 42.22 in-kip Beam thickness t= 0.06 in. Radius r= 0.125 in. W = •M„•8•(#of Beams)/(L•R.•S2) = (42.22.8•2)/(96•0.84. 1.6) Fy= 55 = 5218 lbs/pair Fu= 70 Yl = 1.76 Y2= 2.18 Check Deflection Capacity Y3= 1.99 A„ = Ass•Rd Ycg= 1.95 A = L/ 180 lx= 1.59 Sx= 0.73 Rd = 1 -(4•F•L)I(5•F•L+ 10•E•I) E= 29500 = 1 -(4.300.96)/(5•300•96+ 10.29500. 1.59) = 0.81 FBeam F= 300 As, = (5 • W•L3)l(384•E•I) Beam Length L= 96 LI 180 = (5• W•L3•Rd)I(384•E•I•(#ofBeams)) W = (384•E•I.2)/(180.5•L2•Rd) = (384•29500. 1.59.2)/(180•5•962•0.81)• 1000 = 5346 lbs/pair PROJECT: Biamp SEIZMIC FOR: Northwest Handling Sys ADDRESS: 8005 SW Hunziker S INC Tigard,OR SHEET#: 13 MATERIAL HANDLING ENGINEERING CALCULATED BY: tchang Es1 1985 DATE: 11/7/2019 TEL:(909)869-0989 PN' 20191021 24 1130 E.CYPRESS ST,COVINA,CA 91724 Allowable and Actual Bending Moment at Each Level Msarr=W /8 114 =W '12 I 8 Mcomic bcann Level M1.ru«1 Muuow.v,al,c M eismie M„„„„,,,„„,,, Result 1 24,576 31,308 5,841 31,308 Pass 2 24,576 31,308 4,359 31,308 Pass 3 24,576 31,308 2,727 31,308 Pass 4 24,576 31,308 1,910 31,308 Pass PROJECT: Biamp SEIZMIC FOR: Northwest Handling Sys x ADDRESS: 8005 SW Hunziker S INC Tigard,OR SHEET#: 14 MATERIAL HANDLING ENGINEERING CALCULATED BY: tchang EST 1985 DATE: 11/7/2019 TEL:(909)869-0989 PN: 20191021 24 1130 E.CYPRESS ST,COVINA,CA 91724 Beam to Column Analysis: Selective Rack 1.Shear Strength of Pin P1III 4' Pin Diameter=0.438 in. F.= F.,=54000 psi AISI Table E3.4-1 Ab= d2•11/4=0.15in. P.= Ab•F„=8136.39 lbs AIS1 Table E3.4-1 IF Pshcer= 4P„=0.75•P.=6102 lbs r 2.Bearing Strength of Pin Column Thickness t =0.07 in. Since d/t,<l0 C=3 m�= 1.0 F�= 65000 psi Pn= C•m1•d•t •Fn=6320.34 lbs AISI E3.3.1 -1 P �F= qPn=0.75.6320.34=4740 lbs 3.Moment Strength of Bracket Edge Dist.=1 in. Taw= 0.179 in. SCIi,= 0.127 in.' wt.= Sc-F5=6985 in-lbs AISI C3.1.1 -1 MStrngt5= 01\4„=0.9•M„=0.9 Soh.,•F5=6286.5 in-lbs C= 1.67 d= Edge Dist./2=0.5 in. Mstr.gt= c d Pa , Pap= Mstren55/(c•d)=7542 lbs Minimum Value of Pl Governs P,= Min(Pshe,,,P9 ,8,Pa)=4740 lbs MCO,n_A„ow= (P,•4.5)+(P,•(2.5/4.5)•2.5)+(P,•(0.5/4.5)-0.5)=28176.67 in-lbs PROJECT: Biamp SEIZMIC �' FOR: Northwest Handling Sys ADDRESS: 8005 SW Hunziker S 1NG Tigard,OR SHEET#: 15 MATERIAL HANDLING ENGINEERING CALCULATED BY: tchang EST.1985 DATE: 11/7/2019 TEL:(909)869-0989 PN: 20191021 24 1130 E.CYPRESS ST,COVINA,CA 91724 - BRACE ANALYSIS Selective Rack(Panel 3) Analyzed per RMI.AISI 2012(LRFD)and the 2014 OSSC. Section subject to torsional or flexural-torsion buckling(Section C4.1.2) Kr Lx/R =0.61 /0.614 =99.28 K•L/R = 1.61 /0.404 =151.1 KL/R = 151.1 (Eq.C3.1.2.1- 1.5 x 1.25-.075 =(ry2+r 2+X02)'% 7) SECTION PROPERTIES =(0.6142+0.4042+-0.9172)1-2= 1.175 in. Depth 1.5 in. Width 1.25 in. R =I -(Xo/ro)' (Eq C4.1.2-3) t 0.075 in. = 1 -(_0.917/l.175)20.391 Radius 0.112 in. F, =TEE/(KL/r), 2 (Eq C4.1.1-1) Area 0.279 in.' =3.142.29500/ 151.12=12.752 ksi AreaNet 0.279 in.' lx 0.105 in.4 F2 =(1/2(3)((6.- +0)2-(0(7.0))9 (Eq C4.1.2-1) Sx 0.141 in' =(1 1(2.0.391)((29.537+ 17.715)-(29.537+ 17.715)2 Sx,y 0.141 in.' -(4.0.391.29.537.17.715))''2)=12.333 ksi R 0.614 in. 1 0.046 in.4 where: Sy 0.056 in.' ac.„ =I7=E/(K.L,./R)2 (Eq C3.1.2-11) Ry 0.404 in. =3.142.29500/99.282=29.537 ksi J 0.001 in.4 v, =1/Ar,2(GJ+(H2EC)/(KL)) (Eq C3.1.2-9) Cw 0.015 in.b Jx 1.183 in. =1 /0.279.1.1752(11300.0.001 X. -0.917 in. +(3.142.29500.0.015)/(0.8.61)2)=17.715 ksi Kx 0 Lx 61 in. P =Min(P,,P,)=12.333 ksi 1 P =Ara•F, (Eq C4.1-1) Ly 61 in. � _(F/F)"2=(36/ 12.333)'-'2= 1.709 (Eq C4.1-4) K, 0.8 Since) >= 1.5: Fy 36 ksi P =(0.877/xe2)•F=10.816 F42ksi (Eq C4.1-3) Q 1 Thus: G 11300 ksi P =3018 lbs E 29500 ksi Cmx 0.85 P =2565 lbs C -1 Cb 1 C,f 1 Phi, 0.9 Phi, 0.85 PROJECT: Biamp SEIZMIC FOR: Northwest Handling Sys ADDRESS: 8005 SW Hunziker S Tigard,OR SHEET#: 16 MATERIAL HANDLING ENGINEERING CALCULATED BY: tchang EST.1985 DATE: 11/7/2019 TEL:(909)869-0989 PN: 20191021 24 1130 E.CYPRESS ST,COVINA,CA 91724 BRACE ANALYSIS Selective Rack(Panel 3) Analyzed per RMI.AISI 2012(LRFD)and the 2014()SSC. Lateral-torsional buckling strength[Resistance](Section C3.1.2) Po =Pq�=8540 lbs 1.5 x 1.25-.075 Where: SECTION PROPERTIES Depth 1.5 in. P„ =AF;=0.279.36=10047 lbs Width 1.25 in. 0.075 in. = =SF=S,n;nF (Eq C3.1.2.1-1) Radius 0.112 in. F =C6 0A(cr y6)'2/Sf=53.413 ksi Area 0.279 in.' F =C,,40;„,(/+Cs(j2+1-02(a,/6,))'2)/(C,FS)=18.174 ksi (Eq 3.1.2.1-4) AreaNet 0.279 in.2 Ix 0.105 in.4 F =(CCn2Eck,)/(S,(Ic,L,)2=38.009 ksi (Eq 3.1.2.1-10) g, 0.141 in' F.min = 18.174 ksi S,Net 0.141 in.' Since:F<=0.56F. R, 0.614 in. =F,=18.174 ksi (Eq C3.1.2.1-3) IY 0.046 in.4 Sy 0.056 in.' Reduced F,„.=1 -((1 -Q)/2)•(F/F)° 1=18.2 ksi RY 0.404 M. NI =2557 in-lbs My=1013 in-lbs M.=Nl .n 0.001 in.4 M,Ob =2301 in-lbs KA=912 in-lbs C,,, 0.015 in.b PE, =n2EI/(I,L)2=8247 lbs (Eq C5.2.2-6) ], 1.183 in. X. -0.917 in. P, =n2EI/ =3560 lbs (Eq C5.2.2-7) Kx 0 Ln 61 in. Pa =3018 lbs Vias =13521bs L, 61in. K, 0.8 Low =((L-6)'+(D-2B)2)"2=61.22in. Fr 36 ksi VD;ag =(VT LD )/D=2179 lbs Fn 42 ksi Brace Stress= V,,,5/P=85% Q 1 G 11300 ksi E 29500 ksi C,,,x 0.85 C, -1 Cb 1 C,f 1 Phi,, 0.9 Phi, 0.85 PROJECT: Biamp Northwest SEIZMIC FOR: NHandling Sys ADDRESS: 8005 SW Hunziker S INC Tigard,OR SHEET#: 17 MATERIAL HANDLING ENGINEERING CALCULATED BY: tchang EST 1985 DATE: 11/7/2019 TEL:(909)869-0989 PN: 20191021_24 1130 E.CYPRESS ST,COVINA,CA 91724 POST-INSTALLED ANCHOR ANALYSIS PER ACI 318-14,CHAPTER 17 Configuration 1 Selective Rack Assumed cracked concrete ajplication Anchor Type 1/2"dia,3.25"hef,6"min.slab ICC Report Number ESR-1917 1.5.hef =4.875 in. Slab Thickness(h) =6 in. Ca =12 useCa ,,, =4.875 in. Min. Slab Thickness(h) =6 in. Caz =12 useC =4.875 in. Concrete Strength(f) =4000 ksi Diameter(da) =0.5 in. 3.hef =9.75 in. Nominal Embedment(hada,) =3.625 in. Effective Embedment(h01) =Hef S, =5 in. Use S,ad; =5 in. Number of Anchors(n) =4 S, =3 in. Use Sz =3 in. e'N =0 e'V =0 From ICC ESR Report cal Si 1.5hef A,. =0.101 sq.in. I rs�---I ANc 1.5hef f a" = 106000 psi SSr„,„ =2.375 in. s z t t cat Cm a =2.375 in. V Cae =7.5 in. Avc , �,� - r =4915 in. haf IMEN '�����I 1.5Ca1 sj 1.5Cat Adj. Strength Tension Capacity=2025 lbs 0.75 1519 lbs Shear Capacity=3571 lbs 0.75 2678 lbs PROJECT: Biamp SEiZMI� FOR: Northwest Handling Sys ADDRESS: 8005 SW Hunziker S � 1N� Tigard,OR SHEET#: 18 MATERIAL HANDLING ENGINEERING CALCULATED BY: tchang EST.1985 DATE: 11/7/2019 TEL:(909)869-0989 PN: 20191021 24 1130 E.CYPRESS ST,COVINA,CA 91724 ANCHOR ANALYSIS-TENSION STRENGTH Configuration 1 Selective Rack Steel Strength 17.4.1 =0.75 17.3.3.a i �N =4nA,f,„=0.75 4 0.101.106000=32,1181bs 17.4.1.2 Concrete Breakout Strength 4Ne55 17.4.2 =0.65 17.3.3 c ii Category 1-B AN =(Ca,ad +S,.ad,+ 1.5hej•(Co,„+S2.ad}+ 1.5h,1)= 188.063 sq.in. AN o=9he,2=95.063 sq.in. Check if ANco>=ANc ANc/AN«= 1.978 ‘11u;.N=1 17.4.2.4 Y'd N=1 17.4.2.5 Yc.N=1 17.4.2.6 K =17 k = 1 Nb=KA(f)05(her)'5=6299 lbs 17.4.2.2 d cp.N= 1 17.4.2.7 ONebg— (ANc/ANcn)(W N)(eAN)( CN)(�egN)�"'b) 17.4.2.1 0.65 (188.063/95.063)•1.1.1.1 6299=8,100 lbs Pullout Strength 4)N, 17.4.3 0 .65 17.3.3 c ii Category 1-B 1Pcp=1 17.4.3.6 ON,=4'PcpNpo,(f/2500)05=16,164 lbs 17.4.3.1 Steel Strength(4N,,)=32,118 lbs • Embedment Strength-Concrete Breakout Strength(4N0,g)=8,100 lbs Embedment Strength-Pullout Strength(ON)=16,164 lbs r_____----- . s...,,_.___. SEIZMIC PROJECT: BiampFOR: Northwest Handling Sys ADDRESS: 8005 SW Hunziker S LL__ 1N� ' Tigard,OR SHEET#: 19 MATERIAL HANDLING ENGINEERING CALCULATED BY: tchang EST.1985 DATE: 11/7/2019 TEL:(909)869-0989 PN: 20191021 24 1130 E.CYPRESS ST,COVINA,CA 91724 - ANCHOR ANALYSIS-SHEAR STRENGTH Configuration 1 Selective Rack . Steel Strength 4)V. Vsa 5,495/Anchor--per report 17.5.1 0=0.65 17.3.3.Condition a ii OV.=on•Vsa=0.65.4.5,495=14,287lbs 17.5.1.2a Concrete Breakout Strength 41VCbS 17.5.2 4)=0.7 17.3.3 ci-B Ava=(1.5C,,+S,ad,+1.5Ca,)ha=246 sq.in. A5.,=3Ca,ha=216 sq.in. Check if A,,00>=Ay, AvJAvca= 1.139 1P„v=1 17.5.2.5 'Fedv=0.9 17.5.2.6 ,Pc v=1 17.5.2.7 ‘1'hv=1.732 17.5.2.8 da=0.5in. 17.5.2.2 L,=1 in. 17.2.6 d . 7v = 1 The smaller of 7(La/do)°2(da)°5),a(f)°5cal'5 and 9k(f)°Scalls=14,948 lbs 17.5.2.2 a, 17.5.2.2 b (IVobg=4)(Avo/Av0a)('1'.v)(`1.J,v)(5Pcv)(`Pb,v)(Vb) 17.5.2.1 0.7•(246/216)•1.0.9.1.1.732.14,948=37,154 lbs Pryout Strength 41V0P8 17.5.3 0=0.7 17.3.3 Ci-B K05=2 17.5.3.1 NOBS=12,462 lbs 41V FB=4)K01,Nkb,=0.7.2.12,462=17,447 lbs • Steel Strength(4Vaa)= 14,287 lbs Embedment Strength-Concrete Breakout Strength(4)V099)=37,154 lbs Embedment Strength-Pryout Strength(4V055)=17,447 lbs PROJECT: Biamp SEIZMI FOR: Northwest Handling Sys ADDRESS: 8005 SW Hunziker S L� 1N Tigard,OR ��-. SHEET#: 20 MATERIAL HANDLING ENGINEERING CALCULATED BY: tchang EST 1985 DATE: 11/7/2019 TEL:(909)869-0989 PN: 20191021_24 1130 E.CYPRESS ST,COVINA,CA 91724 OVERTURNING ANALYSIS Configuration) Selective Rack Per RMI Sec 2.6.9 and ASCE7-10.Sec 15.5.3.6.Weight of rack with all levels loaded to 67%capacity.&with only top level loaded FULLY LOADED W, =16,000 lbs Wd,=400 lbs !Bow F Wr 67%= 16,000-0.67= 10,720 lbs ui �a F 6 oural V V,„5=(1.0.1825.1•((0.67.10,720)+400))=1,383 lbs11111111111111, Mov,=V7ra„,•Ht= 1,383.207=286,281 in-lbs F4 ms,=((W5, 0.67)+Wd,)•d Factor F9 =((16,000 0.67)+400)•44 0.5=244,640 in-lbs =1•(M -Mst)/d=(286,281 -244,640)/44=946 lbs F2 { Mir F1 = 1•(M„,,+M,t)/d=(286,281 +244,640)/44=12,066 lbs j 1 MuxUuxn P uplift CROSS AISLE ELEVATION TOP SHELF LOADED Shear=803 lbs M =VT.,•Ht=803•(240+((60- 10)/2))=212,795 in-lbs M.=(1+Wd,)•d=(4,000+400)•(44.0.5)=96,800 in-lbs PUPS=1.(M„U,-M )/d=(212,795-96,800)/44=2,636 lbs ANCHORS No.of Anchors(#Anchors):4 Pull Out Capacity per Anchor(TA„„„,): 1,519 lbs Shear Capacity per Anchor:2,678 lbs COMBINED STRESS Fully Loaded =((946/4)l 1,519)+((1,383/8)/2,678) =0.22 Top Shelf Loaded =((2,636/4)/1,519)+((803/8)/2,678) =0.471 • Seismic Uplift =(2,118/4)/1,519 =0.349 Critical(LC#7B) PROJECT: Biamp SEIZMIC FOR: Northwest Handling Sys ADDRESS: 8005 SW Hunziker S Tigard,OR SHEET#: 21 MATERIAL HANDLING ENGINEERING CALCULATED BY: tchang EST.1965 DATE: 11/7/2019 TEL:(909)869-0989 PN: 20191021 24 1130 E.CYPRESS ST,COVINA,CA 91724 — Base Plate Analysis: Selective Rack The base plate will be analyzed with the rectangular stress resulting from the vertical load P,combined with the triangular stresses resulting from the moment Mb(if any).Three criteria are used in determining Mb: 1.Moment capacity of the base plate 2.Moment capacity of the anchor bolts 3.V,.,•h/2(full fixity) Mb is the smallest value obtained from these three criteria. F9=36000 psi Pio,=8237 lbs MBa =6568 in-lbs P/A=P,/(D•B)=8237/(5.8)=206 psi fb=MBaSf/(D•B2/6)=6568/(5.82/6)= 123.15 psi %` b 1 .` b t b 171 fb,=fb•(2•b,/B)= 123.15•(2.2.5/8)=76.97 psi fb,=fb-fb2= 123.15-76.97=46.18 psi M6=wb,2/2=(b,2/2)•(fa+fb,+0.67•fb2) 1 1 1 1 1 =(2.52/2)•(206+46.18+0.67.76.97)=948.18 in-lbs SBase=(B•t2)/6=0.19sq.in. - ,t s FBOrn=0.75•F9=27,000 psi fb/Fb=Mb/(SB.,,•FBaj=948.18/(0.19.27,000)=0.19 AEI - Ib 1 pp, Plate width B= 8 in. Base Plate Tension analysis per ACI318-14 17.2.3.4.3(b),ductile yield of base plate Plate depth D= 5 in. Plate thickness t= 0.38 in. L„=(Sn-b)/2=0in. Column width b= 3 in. Ld=(Sy-b)/2=0in. Column depth d= 3 in. Moment Arm(L)=Max(L,,,,Ld)=0 in. bl = 2.5 in. Maa h� =TTom,/2•L=O in-lbs S,= 5 in. S=D•t2/6=Oin3 Sy= 3 M. Mba p a =S•F9=0 in-lbs TTotal= 0 lbs. �Mba p a =0.9•Ma=0 in-lbs 0 in. �Mbaseplate Maa�ho�,Base plate will yield first. Since the base plate will yield before anchor getting full tension capacity,over-strength factor is not applicable. PROJECT: Biamp SEIZMI�' FOR: Northwest Handling Sys ADDRESS: 8005 SW Hunziker S 1N� Tigard,OR SHEET#: 22 MATERIAL HANDLING ENGINEERING CALCULATED BY: tchang EST.1985 DATE: 11/7/2019 TEL:(909)869-0989 PN: 20191021_24 1130 E.CYPRESS ST,COVINA,CA 91724 Equation for Maximum Considered Earthquake Base Rotation Per RMI 2012 Commentary 2.6.4 kc+kbe 1-1 W pih'Pi( kckbe ) a,-the first iteration of the second order amplification term a = computed using WP;from section 2.6.4 of the Commentary S kbkce kc+kbe (Nc+Nb( kckbe)( kb+kce) Where: #of levels 4 WP; =the weight of the ith pallet supported by the storage rack min.#of bays 3 N. 48 hp; =the elevation of the center of gravity of the ith pallet N, 8 with respect to the base of the storage rack k0 300 kip-in/rad NL =the number of loaded levels kb, 2930 kip-in/rad k =the rotational stiffness of the connector kb 143 kip-in/rad kCe 575 kip-in/rad k, =the flexural rotational stiffness of the beam-end 1, 1.59 in4 kb =the rotational stiffness of the base plate L 96 in kr =the flexural rotational stiffness of the base upright-end 1, 1.17 in4 N0 =the number of beam-to-upright connections H 240 in E 29500 ksi Nb =the number of base plate connections Level hp, W� 6EI 4EI EI 1 87 in 4 kip kb = b k. = kb= L H H 2 147in 4kip 3 207 in 4 kip L =the clear span of the beams 4 268 in 4 kip H =the clear height of the upright 1, =the moment of inertia about the bending axis of each beam I =the moment of inertia of each base upright E =the Young's modulus of the beams as=1.32 Per RMI 2012 7.1.3 Cd(1+aS)Mb C4=the deflection amplification factor per section 2.6.6 b = M9=the base moment from analysis kb 09 0.58 Per RMI 2012 2.6.6, in unbraced direction,seismic separation for rack structure is 0.05 Ica,.Therefore tan0,nax 0.5 0..=2.862 rad 09 ok Maximum moment in base plate • Mmax if one anchor,then 0 OR(#of anchors/2)*anchor pull out capacity*spacing of anchor(Sx) M.„„=15,190 kip-in > Mb OK PROJECT: Biamp SEIZMIC `' FOR: Northwest Handling Sys ADDRESS: 8005 SW Hunziker S 1N� Tigard,OR SHEET#: 23 MATERIAL HANDLING ENGINEERING CALCULATED BY: tchang ES' 1985 DATE: 11/7/2019 TEL:(909)869-0989 PN: 20191021 24 1130 E.CYPRESS ST,COVINA,CA 91724 SLAB AND SOIL ANALYSIS(LRFD) Pax =Gravity_Load(see Basic Load Combinations)= 16,107 lbs Base Plate f =7.5•(fp=474 psi Width B 8 in. d,req'd =(P„,./(4).1.72 ((Ks•r,/e)•104+3.6)•f))112=2.854 in. Depth W 5 in. b =(e„•d,req'd3/(12 (1 -µ2).1())"=19.444 in. b,req'd = 1.5•b=29 in. P = 1.72[(k;•r,/e5)•10'+3.6]•f,•t2=118,619lbs Frame P =0•Pa=71,171 lbs Frame depth d 44 in. P„ax/P =0.23 SLAB AND SOIL ANALYSIS(ASD) Concrete P„,„„ =MAX(ASD Load Combo 1,ASD Load Combo 2,ASD Load Combo 3) Thickness t 6 in. =11,363 lbs fc 4,000 psi 0.6 f =7.5•(f)'a=474psi Sz 3 P = 1.72[(k,'r,/e5)•104+3.6]•f,•t2=118,619lbsX 1 d,req'd =(Psa,,/(4.1.72.4K,-r,/e)•104+3.6)•f))1/2=2.854 in. k, 50 b =(e5•d,req'd3/(12 (1 -11.2)•k5))”= 19.444 in. r 3.16 b,req'd = 1.5'b=29 in. e 3,604,997 • P =Pa/S2=39,540 lbs P,ar/P =0.29