Loading...
Specifications -?-3VCa-O\CA-- C( 125\ Q3. -ANk) F-1FravFn• AUG 19 2019 CITY OF &JUNG- DR./IS/ON Structural Engineering Design COO Project Nome :Nome : PACIFIC STAR COMMUNICATIONS co) PROF-6. GIN 619 Project Number : LV-002819-1414/ (4- 62618PE Dote : 07/12/19 . OR ON •,5"$ '44047ECf ikt5 Street Address: 7245 SW DURHAM RD, BLDG K, STE #108 ksOIA0 City/State : PORTLAND, OR 97224 07/16/2019 EXPIRES: 06-30-2020 • - Scope of Work : STORAGE RACK Mingqiao Zhu, PE/P.Eng 1428 N Shevlin Court TEL:909.5.96.1351 FAX 909.59g:7180 Sewickley, PA 15143 Structural Engineering & Design Inc. 1815 Wright Ave La Verne, CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: N.V Eng:Mqz. Project: PACSTAR SHELVING Project#: LV-062819-14 TABLE OF CONTENTS Title Page 1 Table of Contents 2 Design Data and Definition of Components 3 Critical Configuration 4 Seismic Loads 5 to 6 Column 7 Beam and Connector 8 to 9 Bracing 10 Anchors 11 Base Plate 12 Slab on Grade 13 Other Configurations 14 42 D Page / of IS 7/2/2_01 9 Structural Engineering & Design Inc. 1815 Wright Ave La Verne, CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: N.V Eng.Mgz. Project: PACSTAR SHELVING Project#: LV-062819-14 Design Data • 1)The analyses herein conforms to the requirements of the: 2012 IBC Section 2209 2016 CBC Section 2209A ANSI NH 16.1-2012 Specifications for the Design of Industrial Steel Storage Racks'2012 RMI Rack Design Manual" ASCE 7-10,section 15.5.3 2)Transverse braced frame steel conforms to ASTM A570, Gr.50,with minimum strength, Fy=50 ksi Longitudinal frame beam and connector steel conforms to ASTM A570,Gr.50,with minimum yield, Fy=50 ksi All other steel conforms to ASTM A36,Gr. 36 with minimum yield, Fy= 36 ksi 3)Anchor bolts shall be provided by installer per ICC reference on plans and calculations herein. 4)All welds shall conform to AWS procedures,utilizing E70xx electrodes or similar.All such welds shall be performed in shop,with no field welding allowed other than those supervised by a licensed deputy inspector. 5)The existing slab on grade is 6"thick with minimum 2500 psi compressive strength.Allowable Soil bearing capacity is 1000 psf. The design of the existing slab is by others. 6)Load combinations for rack components correspond to 2012 RMI Section 2.1 for ASD level load criteria Definition of Components A Cob= kirBeam Stemma I .74 /7".— &ace Beam to' 1,:17,41 thnnecta r arse - C It fi Hetht . . . . m = Spacing Ease gate and Anci•cos 9 —3 4 liatfi r Beam- p Lergth j_ wir 11--I e_ T1/ Depth Front View Down ; t f Lon lit u ,b, Frame �r A: ti (Transverse }Frame 42 D Page 3 of 15 7/2/2019 Structural 'Engineering & Design Inc. 1815 Wright Ave La Verne.CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: N.V Eng:Mqz. Project: PACSTAR SHELVING Project#: LV-062819-14 Configuration&Summary:42"D TYPE 1 \ T **RACK COLUMN REACTIONS ASD LOADS 64" 42 AXIAL DL= 113/b `.. AXIAL LL= 3,000/b 54" SEISMIC AXIAL Ps=+/- 3,132 lb 192" BASE MOMENT= 8,000 in-lb 64" 192" r 36" 64" 36,E 96" -i 42" Seismic Criteria #Bm Lvls Frame Depth Frame Height #Diagonals Beam Length Frame Type Ss=0.962, Fa=1.115 3 42 in 192.0 in 4 96 in Single Row Component Description STRESS Column Fy=50 ksi SPCRK FH-20/3x3x14ga P=3113 Ib,M=11032 in-lb 0.51-OK Column&Backer None None None N/A Beam Fy=50 ksi Kingmore 5"x2.5"x16ga Lu=96 in Capacity: 5895 lb/pr 0.34-OK Beam Connector Fy=50 ksi Lvl 1: 3 pin OK Mconn=7680 in-lb Mcap=12691 in-lb 0.61-OK Brace-Horizontal Fy=50 ksi Tube 1-1/2x1x16ga 0.11-OK Brace-Diagonal Fy=50 ksi Tube 1-1/2x1x16ga 0.23-OK Base Plate Fy=36 ksi 8x5x0.375 Fixity=8000 in-lb 0.61-OK Anchor 2 per Base 0.5"x 3.25"Embed HILTI KWIKBOLT TZ ESR 1917 Inspection Reqd(Net Seismic Uplift=1526 Ib) 0.383-OK Slab&Soil 6"thk x 2500 psi slab on grade. 1000 psf Soil Bearing Pressure 0.26-OK Level Load** Story Force Story Force Column Column Conn. Beam Per Level Beam Spcg _ Brace _ Transv Longit. Axial _ Moment Moment Connector 1 2,000 lb 64.0 in 36.0 in 127 lb 104 lb 3,113 lb 11,032 "# 7,680 "# 3 pin OK 2 2,000 lb 64.0 in 36.0 in 253 lb 208 lb 2,075 lb 8,320 "# 5,566 "# 3 pin OK 3 2,000 lb 64.0 in 54.0 in 380 lb 312 lb 1,038 lb 4,992 "# 2,654 "# 3 pin OK 42.0 in (**Load defined as product weight per pair of beams Total: 759 lb 624 lb Notes 42 D Page ti of 15 7/2/2019 Structural • Engineering & Design Inc. 1815 Wricaht Ave La Verne. CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: N.V Eng:Mgz. Project: PACSTAR SHELVING Project#: LV-062819-14 Seismic Forces Configuration: 42"D TYPE 1 Lateral analysis is performed with regard to the requirements of the 2012 RMI ANSI MN 16.1-2012 Sec 2.6&ASCE 7-10 sec 15.5.3 Ss= 0.962 Transverse(Cross Aisle)Seismic Load S1= 0.418 V= Cs*Ip*Ws=Cs*Ip*(0.67*P*Prf+D) V Fa= 1.115 Csl= Sds/R Fv= 1.582 = 0.1788 Cs-max* Ip= 0.1788 Sds=2/3*Ss*Fa= 0.715 Cs2= 0.044*Sds Vmin= 0.015 Sd1=2/3*Sl*Fv= 0.441 = 0.0315 Eff Base Shear=Cs= 0.1788 Transverse Elevation Ca=0.4*2/3*Ss*Fa= 0.2860 Cs3= 0.5*S1/R Ws= (0.67*PLRFi* PL)+DL(RMI 2.6.2) (Transverse,Braced Frame Dir.)R= 4.0 = 0.0523 = 4,245 lb Ip= 1.0 Cs-max= 0.1788 Vtransv=Vt= 0.1788*(225 lb+4020 lb) PRF1= 1.0 Base Shear Coeff=Cs= 0.1788 Etransverse= 759 lb Pallet Height=hp= 48.0 in Limit States Level Transverse seismic shear per upright DL per Beam Lvl= 75 lb Level PRODUCT LOAD P P*0.67*PRF1 DL hi wi*hi Fi Fi*(hi+hp/2) 1 2,000 lb 1,340 lb 75 lb 64 in 90,560 126.5 lb 11,132-# 2 2,000 lb 1,340 lb 75 lb 128 in 181,120 253.0 lb 38,456-# 3 2,000 lb 1,340 lb 75 lb 192 in 271,680 379.5 lb 81,972-# sum: P=6000 lb 4,020 lb 225 lb W=4245 lb 543,360 759 lb 2=131,560 Longitudinal(Downaisle)Seismic Load Similarly for longitudinal seismic loads,using R=6.0 Ws= (0.67* PLRF2* P) + DL PRF2= 1.0 Csl=Sd1 T*R = 0.1470F""9 L 1 J 1,, { /( ) = 4,245 lb (Longitudinal,Unbraced Dir.)R= 6.0 Cs2= 0.0315 Cs=Cs-max*Ip= 0.1470 T= 0.50 sec Cs3= 0.0348 Vlong= 0.147 * (225 lb+4020 lb) 1 --:•1 F ;;Lir l 1 1 Cs-max= 0.1470 Elongitudinal= 624 lb Limit States Level Longit seismic shear per upright Level PRODUC LOAD P P*0.67*PRF2 DL hi wi*hi Fi Front View 1 2,000 lb 1,340 lb 75 lb 64 in 90,560 104.0 lb 2 2,000 lb 1,340 lb 75 lb 128 in 181,120 208.0 lb 3 2,000 lb 1,340 lb 75 lb 192 in 271,680 312.0 lb sum: 4,020 lb 225 lb W=4245 lb 543,360 624 lb I 42 D Page of r5 7/2/20 le Structural 'Engineering & Design Inc. 1815 Wright Ave La Verne. CA 91750 Tel: 909.596.1351 Fax:909.596.7186 By: N.V Eng:Mgz. Project: PACSTAR SHELVING Project#: LV-062819-14 • Downaisle Seismic Loads Configuration:42"D TYPE 1 Determine the story moments by applying portal analysis.The base plate is assumed to provide partial fixity. Seismic Story Forces Typical frame made Vlong= 624 lb Tributary area oftwoi Iumns Vcol=Vlong/2= 312 lb of rack Frame F1= 104 lbi I4 . Typical Frame made F2= 208 lb . F3= 312 lb Fr'�7 ��TT^7� .------ columns I 5 • -11 ' •v _i_l_. ,11 IL i Toy View Front View 5ide View Seismic Story Moments Conceptual System COL Mbase-max= 8,000 in-lb <===Default capacity hi-ef= hl -beam clip height/2 Mbase-v= (Vcol*hleff)/2 = 61 in Vcol = 9,516 in-lb <===Moment going to base ��IF Mbase-eff= Minimum of Mbase-max and Mbase-v h2 = 8,000 in-lb M 1-1= [Vcol* hleff]-Mbase-eff M 2-2= [Vcol-(F1)/2] *h2 = (312 lb*61 in)-8000 in-lb = [312 lb- 104 lb]*64 in/2 �-�i� = 11,032 in-lb = 8,320 in-lb h1 - Mseis= (Mupper+Mlower)/2 Beam to Column Mseis(1-1)= (11032 in-lb+8320 in-lb)/2 Mseis(2-2)= (8320 in-lb+4992 in-lb)/2 Elevation = 9,676 in-lb = 6,656 in-lb rho= 1.0000 Summary of Forces LEVEL hi Axial Load Column Moment** Mseismic** Mend-fixity Mconn** Beam Connector 1 64 in 3,113 lb 11,032 in-lb 9,676 in-lb 1,296 in-lb 7,680 in-lb 3 pin OK 2 64 in 2,075 lb 8,320 in-lb 6,656 in-lb 1,296 in-lb 5,566 in-lb 3 pin OK 3 64 in 1,038 lb 4,992 in-lb 2,496 in-lb 1,296 in-lb 2,654 in-lb 3 pin OK I Mconn= (Mseismic+ Mend-fixity)*0.70*rho Mconn-allow(3 Pin)= 12,691 in-lb **all moments based on limit states level loading 42 0 Page C of Lc 7/2/2019 Structural • Engineering & Design Inc. 1815 Wright Ave La Verne. CA 91750 Tel:909.596.1351 Fax: 909.596.7186 By: N.V Eng:Mgz. Project: PACSTAR SHELVING Project#: LV-062819-14 Column(Longitudinal Loads) Configuration:42" D TYPE 1 Section Properties Section: SPCRK FH-20/3x3x14ga a 3.000 in d Aeff= 0.643 in^2 Iy= 0.749 in^4 Kx= 1.7 _ X Ix= 1.130 in^4 Sy= 0.493 in^3 Lx= 61.5 in Sx = 0.753 in^3 ry= 1.080 in Ky= 1.0 y'_.i-.-y, J 3.000 in rx= 1.326 in Fy= 50 ksi Ly= 36.0 in 10.075•in S2f= 1.67 Cmx= 0.85 Cb= 1.0 Ili_ X E= 29,500 ksi _p 0.75 in Loads Considers loads at level 1 COLUMN DL= 112 lb Critical load cases are:RMI Sec 2.1 COLUMN PL= 3,000 lb Load Case 5::(1+0.105*Sds)D+0.75*(1.4+0.14Sds)*B*P+0.75*(0.7*rho*E)<=1.0,ASD Method Mcol= 11,032 in-lb axial load coeff.• 0.78755985*P seismic moment coeff: 0.5625*Mcol Sds= 0.7151 Load Case 6::(1+0.14*Sds)D+(0.85+0.14Sds)*B*P+(0.7*rho*E)<=1.0,ASD Method 1+0.105*Sds= 1.0751 axial load coeff: 0.66508 seismic moment coeff: 0.7*Mcol 1.4+0.14Sds= 1.5001 By analysis,Load case 6 governs utilizing loads as such 1+0.14Sds= 1.1001 0.85+0.14*Sds= 0.9501 Axial Load=Pax= 1.100114*112 lb+0.950114*0.7*3000 lb Moment=Mx= 0.7*rho*Mcol 8= 0.7000 = 2,118 lb = 0.7* 11032 in-lb rho= 1.0000 = 7,722 in-lb Axial Analysis KxLx/rx= 1.7*61.5"/1.326" KyLy/ry= 1*36"/1.08" Fe > Fy/2 = 78.8 = 33.3 Fn= Fy(1-Fy/4Fe) = 50 ksi*[1-50 ksi/(4*46.8 ksi)] Fe= n^2E/(KL/r)max^2 Fy/2= 25.0 ksi = 36.7 ksi = 46.8ksi Pa= Pn/S2c Pn= Aeff*Fn Qc= 1.92 = 23569 lb/1.92 = 23,569 lb = 12,276 lb P/Pa= 0.17 > 0.15 Bending Analysis Check: Pax/Pa + (Cmx*Mx)/(Max*px) 5 1.0 P/Pao+ Mx/Max<_ 1.0 Pno= Ae*Fy Pao= Pno/Qc Myield=My= Sx*Fy = 0.643 in^2*50000 psi = 32150lb/1.92 = 0.753 in^3*50000 psi = 32,150 lb = 16,745 lb = 37,650 in-lb Max= My/S2f Pcr= n^2EI/(KL)max^2 = 37650 in-lb/1.67 = n^2*29500 ksi/(1.7*61.5 in)^2 = 22,545 in-lb = 30,099 lb px= {1/[1-(S2c*P/Pcr)]}^-1 = {1/[1-(1.92*2118 lb/30099 1b)]}^-1 = 0.86 Combined Stresses (2118 lb/12276 Ib) +(0.85*7722 in-lb)/(22545 in-Ib*0.86) = 0.51 < 1.0, OK (EQ C5-1) (2118 lb/16745 Ib) +(7722 in-lb/22545 in-Ib) = 0.47 < 1.0,OK (EQ C5-2) **For comparison, total column stress computed for load case 5 is: 46.0% q loads 2483.089126 lb Axial and M= 5791 in-lb 42 D Page .7_of 15 7/2/20 I9 1 Structural Engineering & Design Inc. 1815 Wright Ave La Verne. CA 91750 Tel: 909.596.1351 Fax: 909,596 7186 By: N.V Eng:Mgz. Project: PACSTAR SHELVING Project#: LV-062819-14 • BEAM Configuration: 42"0 TYPE 1 DETERMINE ALLOWABLE MOMENT CAPACITY 2.50 in • � 4 A)Check compression flange for local buckling(B2.1) 1.63 in 3 W= c-2*t-2*r = 1.625 in-2*0.059 in-2*0.059 in �- = 1.389 in w/t= 23.54 1.625 in 1=lambda= [1.052/(k)A0.5]*(w/t) * (Fy/E)A0.5 Eq. B2.1-4 = [1.052/(4)A0.5]*23.54*(50/29500)A0.5 5.000 in = 0.51 < 0.673, Flange is fully effective Eq. B2.1-1 0.059 in B)check web for local buckling per section b2.3 fl(comp)= Fy*(y3/y2)= 46.53 ksi �����MW f2(tension)= Fy*(yl/y2)= 93.59 ksi Y= f2/f1 Eq. B2.3-5 Beam= Kincimore 5"x2.5"x16ga = -2.011 Ix= 2.517 inA4 k= 4+ 2*(1-Y)A3 + 2*(1-Y) Eq. B2.3-4 Sx= 0.962 inA3 = 64.62 Ycg= 3.300 in flat depth=w= y1+y3 t= 0.059 in = 4.764 in w/t= 80.74576271 OK Bend Radius=r= 0.059 in 1=lambda= [1.052/(k)A0.5]*(w/t)*(fl/E)A0.5 Fy=Fyv= 50.00 ksi = [1.052/(64.62)A0.5] *4.764* (46.53/29500)A0.5 Fu=Fuv= 65.00 ksi = 0.42 < 0.673 E= 29500 ksi be=w= 4.764 in b2= be/2 Eq B2.3-2 top flange=b= 1.625 in bl= be(3-Y) = 2.38 in bottom flange= 2.500 in = 0.951 Web depth= 5.Pnn'^ bl+b2= 3.331 in > 1.582 in,Web is fully effective `- FY Determine effect of cold working on steel yield point(Fya) per section A7.2 comp) Fya= C*Fyc+ (1-C)*Fy (EQ A7.2-1) I -�- Lcorner=Lc= (p/2)*(r+t/2) 0.139 in C= 2*Lc/(Lf+2*Lc) y2 Lflange-top=Lf= 1.389 in = 0.167 in Ys m= 0.192*(Fu/Fy)-0.068 (EQ A7.2-4) depth = 0.1820 Bc= 3.69*(Fu/Fy)-0.819*(Fu/Fy)A2- 1.79 (EQ A7.2-3) A 1 = 1.623 since fu/Fv= 1.30 > 1.2 OK Yeg yl and r/t= 1 < 7 0K then Fyc= Bc* Fy/(R/t)Am (EQ A7.2-2) -. rz(ts� e° °°) = 81.150 ksi Thus, Fya-top= 55.20 ksi (tension stress at top) Fya-bottom= Fya*Ycg/(depth-Ycg) yl= Ycg-t-r= 3.182 in = 107.14 ksi (tension stress at bottom) y2= depth-Ycg= 1.700 in Check allowable tension stress for bottom flange y3= y2-t-r= 1.582 in Lflange-bot=Lfb= Lbottom-2*r*-2*t = 2.264 in Cbottom=Cb= 2*Lc/(Lfb+2*Lc) = 0.109 Fy-bottom=Fyb= Cb*Fyc+ (1-Cb)*Fyf = 53.41 ksi • Fya= (Fya-top)*(Fyb/Fya-bottom) = 27.51 ksi if F= 0.95 Then F*Mn=F*Fya*Sx= 25.14 in-k Structural Engineering & Design Inc. 1815 Wright Ave La Verne. CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: N.V Eng:Mqz. Project: PACSTAR SHELVING Project* LV-062819-14 BEAM Configuration:42"D TYPE 1 RMI Section 5.2, PT II Section Beam= Kingmore 5"x2.5"xl6ga Ix=Ib= 2.517 in^4 Sx= 0.962 in^3 2.50 in t= 0.059 in E= 29500 ksi 1.63 in Fy=Fyv= 50 ksi F= 300.0 Fu=Fuv= 65 ksi L= 96 in 2 r I Fya= 55.2 ksi Beam Level= 1 1.625 in P=Product Load= 2,000 lb/pair D=Dead Load= 75 lb/pair 5.000 in 1.Check Bending Stress Allowable Loads 0.059 in Mcenter=F*Mn= W*L*W*Rm/8 litritAmod W=LRFD Load Factor= 1.2*D+ 1.4*P+1.4* 0.125 *P ��" RMI2.2,item 8 FOR DL=2%of PL, W= 1.599 Rm= 1 [(2*F*L)/(6*E*Ib+3*F*L)] : lllllllllllllllllllllllllllllllll Illllllllllj II 1 - (2*300*96 in)/[(6*29500 ksi*2.517 in^3)+(3*300*96 in)] = 0.892 if F= 0.95 Then F*Mn=F*Fya*Sx= 50.44 in-k Thus,allowable load i'WillII per beam pair=W= F*Mn*8*(#of beams)/(L*Rm*W) Beam = 50.44 in-k*8*2/(96in* 0.892* 1.599) Length = 5,895 lb/pair allowable load based on bending stress _ Mend= W*L*(1-Rm)/8 _ (5895 lb/2)*96 in*(1-0.892)/8 = 3,820 in-lb ©5895 lb max allowable load = 1,296 in-lb @ 2000 lb imposed product load 2.Check Deflection Stress Allowable Loads Dmax= Dss*Rd Rd= 1 -(4*F*L)/(5*F*L+ 10*E*Ib) Allowable Deflection= L/180 = 1 -(4*300*96 in)/[(5*300*96 in)+(10*29500 ksi*2.517 in^4)] = 0.870 in = 0.533 in if Dmax= L/180 Based on 1/180 Deflection Criteria Deflection at imposed Load= 0.181 in and Dss= 5*W*LA3/(384*E*Ib) L/180= 5*W*LA3*Rd/(384*E*Ib*#of beams) solving for W yields, W= 384*E*I*2/(180*5*LA2*Rd) = 384*2.517 in^4*2/[180*5*(96 in)^2*0.87) = 7,902 lb/pair allowable load based on deflection limits Thus,based on the least capacity of item 1 and 2 above: Allowable load= 5,895 lb/pair Imposed Product Load= 2,000 lb/pair Beam Stress= 0.34 Beam at Level 1 7- Structural Engineering & Design Inc. 1815 Wright Ave I a Verne CA 91750 Tel- 909 596 1351 Fax- 909 596 7186 By: N.V Eng:Mgz. Project: PACSTAR SHELVING Project#: LV-062819-14 3 Pin Beam to Column Connection 42" D TYPE 1 I he beam end moments shown herein show the result of the maximum induced fixed end monents torm seismic+static loads and the code mandated minimum value of 1.5%(DL+PL) Mconn max= (Mseismic+ Mend-fixity)"0.709Rho O P1 = 7,680 in-lb Load at level 1 rho= 1:0000' O P2 111. z., o P3 1/1 12" Connector Type= 3 Pin Shear Capacity of Pin Pin Diam= 0.44 in Fy= 50,000 psi Ashear= (0.438 in)^2* Pi/4 = 0.1507 in^2 Pshear= 0.4* Fy*Ashear = 0.4*50000 psi*0.1507in^2 = 3,014 lb Bearing Capacity of Pin tcol= 0.075 in Fu= 65,000 psi Omega= 2.22 a= 2.22 Pbearing= alpha* Fu*dram *tcol/Omega = 2.22* 65000 psi*0.438 in* 0.075 in/2.22 = 2,135 lb < 3014 lb Moment Capacity of Bracket Edge Distance=E= 1.00 in Pin Spacing= 2.0 in Fy= 50,000 psi C= P1+P2+P3 tclip= 0.18 in Sclip= 0.127 in^3 = P1+P1*(2.5"/4.5")+P1*(0.5"/4.5") = 1.667* P1 Mcap= Sclip* Fbending C*d= Mcap= 1.667 d= E/2 = 0.127 in^3*0.66*Fy = 0.50 in = 4,191 in-lb Pclip= Mcap/(1.667*d) = 4191 in-lb/(1.667*0.5 in) Thus, P1= 2,135 lb = 5,028 lb Mconn-allow= [P1*4.5"+P1*(2.5"/4.5")*2.5"+P1*(0.5"/4.5")*0.51 = 2135 LB*[4.5"+(2.5"/4.5")*2.5"+(0.5"/4.5")*0.5"] = 12,691 in-lb > Mconn max, OK 42 D Page of 5 7/2/2019 i Structural - Engineering & Design Inc. 1815 Wright Ave La Verne, CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: N.V Eng:Mqz. Project: PACSTAR SHELVING Project#: LV-062819-14 Transverse Brace Configuration:42" D TYPE 1 Section Properties Diagonal Member= Tube 1-1/2xlx16ga Horizontal Member= Tube 1-1/2xlx16ga Area= 0.262 in^2 Area= 0.262 in^2 2.250 in _{e r min= 0.477 in r min= 0.477 in L 2.250 m Fy= 55,000 psi K= 1.0 FY= 55,000 psi ��� II i.000 In K= 1.0 S2c= 1.92 / 0.000 in A1.000 0.060 in In Frame Dimensions Bottom Panel Height=H= 54.0 in Clear Depth=D-B*2= 36.0 in Frame Depth=D= 42.0 in X Brace= NO Column Width=B= 3.0 in rho= 1.00 Diagonal Member 0 I'Load Case 6::(1+1 1- : * 0.85+0.14Sds)*B*P+[0.7*rho*EJ<=L0,ASD Method D --.1Vtransverse= 759 lb Vb '11111611.1 Vb=Vtransv*0.7*rho= 759 lb* 0.7* 1 (kl/r)= (k* Ldiag)/r min = 531 1b = (1 x 60 in/0.477 in) Ldiag= [(D-B*2)^2 + (H-6")^2]^1/2 = 125.8 in ll = 60.0 in Fe= pi^2*E/(kl/r)^2H Pmax= V*(Ldiag/D)*0.75 = 18,398 psi = 569 Ib axial load on diagonal brace member Since Fe<Fy/2, 3"t tYP Pn= AREA*Fn Fn= Fe = 0.262 in^2* 18398 psi = 18,398 psi B = 4,820 lb Typical Panel Configuration Pallow= Pn/Q Check End Weld = 4820 lb/1.92 Lweld= 3.0 in = 2,511 lb Fu= 65 ksi tmin= 0.060 in Pn/Pallow= 0.23 <= 1.0 OK Weld Capacity= 0.75*tmin* L* Fu/2.5 = 3,510 lb OK Horizontal brace Vb=Vtransv*0.7*rho= 531 lb (kl/r)= (k* Lhoriz)/r min Fe= pi^2*E/(kl/r)^2 Fy/2= 27,500 psi = (1 x 42 in)/0.477 in = 37,512 psi = 88.1 in Since Fe>Fy/2, Fn=Fy*(1-fy/4fe) Pn= AREA*Fn Pallow= Pn/S2c = 34,840 psi = 0.262in^2*34840 psi = 9128 lb/1.92 = 9,128 lb = 4,754 lb Pn/Pallow= 0.11 <= 1.0 OK 42 0 Page lb of /5 7/2/2019 Structural - Engineering & Design Inc. 1815 Wright Ave La Verne. CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: N.V Eng:Mqz. Project: PACSTAR SHELVING Project#: LV-062819-14 - Single Row Frame Overturning Configuration: 42" D TYPE 1 Loads Critical Load case(s): t ' 1) RMI Sec 2.2, item 7: (0.9-0.2Sds)D+ (0.9-0.20Sds)*B*Papp-E*rho hp I : :; • i . Sds= 0.7151 v Vtrans=V=E=Qe= 759 lb (0.9-0.2Sds)= 0.7570 DEAD LOAD PER UPRIGHT=D= 225 lb (0.9-0.2Sds)= 0.7570 PRODUCT LOAD PER UPRIGHT=P= 6,000 lb B='`1.0000 H h Papp=P*0.67= 4,020 lb rho= 1.0000 Wst LC1=Wst1=(0.75698*D+0.75698*Papp*1)= 3,213 lb Frame Depth=Df= 42.0 in T Product Load Top Level, Ptop= 2,000 lb Htop-Iv1=H= 192.0 in I DL/Lvl= 75 lb # Levels= 3 I t Df 1 Seismic Ovt based on E,E(Fi*hi)= 131,560 in-lb #Anchors/Base= 2 height/depth ratio= 4.6 in hp= 48.0 in SIDE ELEVATION A)Fully Loaded Rack h=H+hp/2= 216.0 in Load case 1: Movt= E(Fi*hi)*E*rho Mst= Wstl * Df/2 T= (Movt-Mst)/Df = 131,560 in-lb = 3213 lb*42 in/2 = (131560 in-lb-67473 in-Ib)/42 in = 67,473 in-lb = 1,526 lb Net Uplift p per Column Net Seismic Uplift= 1,526 lb B)Top Level Loaded Only Load case 1: 0 V1=Vtop= Cs* Ip* Ptop >= 350 lb for H/D >6.0 Movt= [V1*h+V2*H/2]*0.7*rho = 0.1788*2000 lb = 56,773 in-lb = 358 lb T= (Movt-Mst)/Df Vleff= 358 lb Critical Level= 3 = (56773 in-lb-35370 in-lb)/42 in V2=VDL= Cs*Ip*D Cs*Ip= 0.1788 = 510 lb Net Uplift per Column = 40 lb Mst= (0.75698*D+0.75698*Ptop*1)*42 in/2 = 35,370 in-lb Net Seismic Uplift= 510 lb Anchor Check(2)0.5"x 3.25"Embed HILTI KWIKBOLT TZ anchor(s)per base plate. Special inspection is required per ESR 1917. Pullout Capacity=Tcap= 1,961 lb L.A. City Jurisdiction? NO Tcap*Phi= 1,961 lb Shear Capacity=Vcap= 2,517 lb Phi= 1 Vcap*Phi= 2,517 lb Fully Loaded: (763 lb/19611b)^1 + (189 Ib/2517 lb)^1 = 0.46 <= 1.2 OK Top Level Loaded: (255 lb/1961 Ib)^1 + (89 Ib/2517 Ib)^1 = 0.17 <= 1.2 OK 42 D Page ( T of I5 7/2/2019 Structural Engineering & Design Inc. 1815 Wright Ave La Verne. CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: N.V Eng:Mqz. Project: PACSTAR SHELVING Project#: LV-062819-14 Base Plate Configuration:42"D TYPE 1 Section *-- a ---o. P Baseplate= 8x5x0.375 �, Eff Width=W = 8.00 in a = 3.00 in �' Mb Eff Depth=D = 5.00 in Anchor c.c. =2*a=d = 6.00 in mlmmmmmNmColumn Width=b = 3.00 in N=#Anchor/Base= 2 po Column Depth=dc= 3.00 in F I b 14- LA y= 36,000 psi L = 2.50 in ! w -i Plate Thickness=t= 0.375 in Downaisle Elevation Down Aisle Loads Load Case 5::(1+0.105*Sds)D+0.75*f(1.4+0.145ds)*B*P+0.75*f0.7*rho*EJ<=1.0,ASD Method COLUMN DL= 113 lb Axial=P= 1.0750855* 112.5 lb+0.75* (1.500114*0.7* 3000 lb) COLUMN PL= 3,000 lb = 2,484 lb Base Moment= 8,000 in-lb Mb= Base Moment*0.75*0.7*rho 1+0.105*Sds= 1.0751 = 8000 in-lb* 0.75*0.7*rho 1.4+0.14Sds 1.5001 = 4,200 in-lb Eff( B= 0.7000 Axial Load P= 2,484 lb Mbase=Mb = 4,200 in-lb Effe Axial stress=fa = P/A= P/(D*W) M1= wL^2/2=fa*L^2/2 = 62 psi = 194 in-lb Moment Stress=fb = M/S=6*Mb/[(D*B^2] Moment Stress=fb2 = 2*fb* L/W = 78.8 psi = 49.2 psi Moment Stress=fbl = fb-fb2 M2= fb1*L^2)/2 F = 29.5 psi = 92 in-lb M3 = (1/2)*fb2*L*(2/3)*L= (1/3)*fb2*LA2 Mtotal = M1+M2+M3 = 103 in-lb = 389 in-lb/in S-plate = (1)(t^2)/6 Fb= 0.75*Fy = 0.023 in^3/in = 27,000 psi fb/Fb = Mtotal/[(S-plate)(Fb)] F'p= 0.7*F'c = 0.61 OK = 1,750 psi OK Tanchor= (Mb-(PLapp*0.75*0.46)(a))/[(d)*N/2] Tallow= 1,961 lb OK = -907 lb No Tension Cross Aisle Loads C/tica/load case RMISec 21,item 4:(1+0.115ds)DL+(1+0.145D5)PL`0.75+EL*0.75<=1.O,ASO Method Check uplift load on Baseplate Check uplift forces on baseplate with 2 or more anchors per RMI 7.2.2. Pstatic= 2,484 lb When the base plate configuration consists of two anchor bolts located on either side .f the column and a net uplift force exists,the minimum base plate thickness Movt*0.75*0.7*rho= 69,069 in-lb PseismiC= Movt/Frame Depth .hall be determined based on a design bending moment in the plate equal Frame Depth= 42.0 in = 1,645 lb o the uplift force on one anchor times 1/2 the distance from P=Pstatic+Pseismic= 4,128 lb he centerline of the anchor to the nearest edge of the rack column" b=Column Depth= 3.00 inI T c * L=Base Plate Depth-Col Depth= 2.50 in Ta MuIII a .mall fa= P/A= P/(D*W) M= wL^2/2=fa*L^2/2 I .'m I b I ' = 103 psi = 323 in-lb/in Elevation Uplift per Column= 1,526 lb Sbase/in= (1)(t^2)/6 Fbase= 0.75*Fy Qty Anchor per BP= 2 = 0.023 in^3/in = 27,000 psi Net Tension per anchor=Ta= 763 lb c= 2.50 in fb/Fb= M/[(S-plate)(Fb)] Mu=Moment on Baseplate due to uplift= Ta*c/2 0.51 OK = 954 in-lb • Splate= 0.117 in^3 fb Fb *0.75= 0.226 OK 42 D Page l of 5 7/2/2019 Structural En 'in g eermg & Design Inc. 1815 Wright Ave La Verne, CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: N.V Eng:Mqz. Project: PACSTAR SHELVING Project#: LV-062819-14 Slab on Grade Configuration: 42"D TYPE 1 ° :slae . . a Concrete a I r fc= 2,500 psi slab t I t I • - s ab=t- 6.0 in • Cross • teff= 6.0 in X -► 1*- c - c Aisle phi=f = 0-6 ' y Soil 4 L . Bfsoil= 1,000 psf Down Aisle Mout= 92,092 in Ib SLAB ELEVATION Baseplate Plan View Frame depth= 42.0 in Base Plate Sds= 0.715 Effec.Baseplate width=B= 8,00 in 0.2*Sds= 0.143 width=a= 3.00 in Effec.Baseplate Depth=D= 5.00 in 4=0.600 depth=b= 3.00 in midway dist face of column to edge of plate=c= 5.50 in R-6/D= 50.00 F Column Loads 'c^0.5= 50.00 psi midway dist face of column to edge of plate=e= 4.00 in DEAD LOAD=D= 113 lb per column Load Case 1) (1.2+0.2Sds)D+(1.2+0.25ds)*B*P+rho*E RMI SEC 2.2 EQTN 5 unfactored ASD load = 1.34302* 113 lb+ 1.34302*0.7*3000 lb+ 1 *2192 lb PRODUCT LOAD=P= 3,000 lb per column = 5,164 lb unfactored ASD load Load Case 2) (0.9-0.2Sds)D+ (0.9 0.2Sds)*B*Papp+ rho*E RMI SEC 2.2 EQTN 7 Papp= 2,010 lb per column = 0.75698* 113 lb+0.75698*0.7* 2010 lb+ 1 * 2192 lb P-seismic=E= (Movt/Frame depth) = 3,343 lb = 2,192 lb per column Load Case 3) 1.2*D + 1.4*P unfactored Limit State load RMI SEC 2.2 EQTN 1,2 = 1.2*113 lb+ 1.4*3000 lb B= 0`7000 = 4,335 lb rho= ',1.0000 Load Case 4) 1.2*D+ 1.0*P+ 1.0E ACI 318-11 Sec 9.21,Eqm 9-5 Sds= 0.7151 = 5,328 lb 1.2+ 0.2*Sds= 1.3430 Effective Column Load=Pu= 5,328 lb per column 0. 9-0.20Sds= 0.7570 Puncture Apunct= [(c+t)+(e+t)]*2*t = 258.0 in^2 Fpunctl= [(4/3 +8/(3*0)] * *(F'c^0.5) fv/Fv= Pu/(Apunct*Fpunct) = 90. psi = 0.259 < 1 OK Fpunct2= 2.66*A,*(F'c^0.5) = 79.8 psi Fpunct eff= 79.8 psi Slab Bending Pse=DL+PL+E= 5,328 lb Asoil= (Pse*144)/(fsoil) L= (Asoil)^0.5 = 767 inA2 = 27.69 in Y= 1c*7)^0.5 + 2*t L- = 16.7 in x= ( Y)/2 M= w*x^2/2 S-slab= 1*teff^2/6 = 5.5 in = (fsoil*x^2)/(144*2) = 6.0 in^3 Fb= 5*(phi)*(fc)^0.5 = 105.1 in-lb fb/Fb= M/(S-slab*Fb) = 150. psi = 0.117 < 1,OK 42 D Pageof F �� (s 7/2/2019 Structural Engineering & Design Inc. 1815 Wright Ave La Verne. CA 91750 Tel: 909.596.1351 Fax:909.596.7186 By: N.V Eng:Mqz. Project: PACSTAR SHELVING Project#: LV-062819-14 Configuration&Summary:42"D TYPE 2 N. T k **RACK COLUMN REACTIONS 64" 42" ASD LOADS AXIAL DL= 113/b AXIAL LL= 3,000/b 54" SEISMICAXIAL Ps=+/- 3,132/b 192" BASE MOMENT= 8,000 in/b 64" 192" \ 36" 64" 36" \ I 144" .4 1- 42" -f Seismic Criteria #Bm Lvls Frame Depth Frame Height #Diagonals Beam Length Frame T e I Ss=0.962, Fa=1.115 { 3 E 42 in I 192.0 in f 4 Row 144 in Single 1 Component Description STRESS Column Fy=50 ksi SPCRK FH-20/3x3x14ga P=3113 Ib, M=11032 in-lb 0.51-OK Column&Backer None None None Beam Fy=50 ksi Kingmore 5.5"x2.5"xl6ga Lu=144 in I Capacity:4587 lb/pr 0.44-OK Beam Connector Fy=50 ksi Lvl 1: 3 pin OK Mconn=8336 in-lb Brace-Horizontal I Mcap=12691 in-lb 0.66 OK Fy=50 ksi Tube 1-1/2x1x16ga 0.12-OK Brace-Diagonal Fy=50 ksi Tube 1-1/2x1x16ga Base Plate Fy=36 ksi 8x5x0.375 0.61-OK Fixity=8000 in-lb 0.61-OK Anchor 2 per Base 0.5"x 3.25"Embed HILTI KWIKBOLT 17 ESR 1917 Inspection Reqd(Net Seismic Uplift=1526 Ib) 0.383-OK Slab&Soil 6"thk x 2500 psi slab on grade. 1000 psf Soil Bearing Pressure Level I Load** � 0.26-OK Iry I Sto Force StoryForce Column Column Conn. Beam Per Level Beam Spcg Brace Transv Longit. I Axial I Moment I Moment Connector 1 2,000 lb 64.0 in 36.0 in 127 lb 104 lb 3,113 lb 11,032 "# 8,336 "# 3 pin OK 2 2,000 lb 64.0 in 36.0 in 253 lb 208 lb 2,075 lb 8,320 "# 6,222 "# 3 pin OK 3 2,000 lb 64.0 in 54.0 in 380 lb 312 lb 1,038 lb 4,992 "# 3,310 "# 3 pin OK 42.0 in I**Load defined as product weight per pair of beams Total: 759 lb 624 lb Notes 42 0 TYPE 2 Page I ti of is 7/2/20 19 Structural Engineering & Design Inc. 1815 Wriaht Ave La Verne, CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: N.V Eng:Mqz. Project: PACSTAR SHELVING • Project#: LV-062819-14 Configuration&Summary:42" D TYPE 3 \ T **RACK COLUMN REACTIONS 64" 42" ASD LOADS AXIAL DL= 113/b AXIAL LL= 3,000/b 54" / SEISMIC AXIAL Ps=+/- 3,132/b 192" BASE MOMENT= 8,000 in-lb 64" 192" 36" 64 36" I 120" -I T 42" ---- 1 I I Seismic Criteria I #Bm LvlsFrame Depth Frame Height #Diagonals Beam Length Frame Type Ss=0.962, Fa=1.115 3 ( 42 in I 192.0 in I I I Single RowI 4 120 in Component Description Column Fy=50 ksi SPCRK FH 20 3x3x14 a STRESS / 9 P=3113 Ib, M=11032 in-lb 0.51-OK Column&Backer None None None N/A Beam Fy=50 ksi Kingmore 5.5"x2.5"xl6ga Lu=120 in I Capacity: 5503 lb/pr 0.36-OK Beam Connector Fy=50 ksi Lvl 1: 3 pin OKI in-lb I Mconn=7886 Mcap=12691 in Ib 0.62-0K Brace-Horizontal Fy=50 ksi Tube 1-1/2x1xl6ga 0.12-OK Brace-Diagonal Fy=50 ksi Tube 1-1/2xlx16ga 0.23-OK Base Plate Fy=36 ksi 8x5x0.375 I Fixity=8000 in-lb 0.61-OK Anchor 2 per Base 0.5"x 3.25"Embed HILTI KWIKBOLT TZ ESR 1917 Inspection Reqd(Net Seismic Uplift=1526 Ib) 0.383-OK Slab&Soil 6"thk x 2500 psi slab on grade. 1000 psf Soil Bearing Pressure Level I Load** 0.26-OK P Story Force Story Force Column Column Conn. Beam er Level Beam Spcg Brace I Transv I Longit. I Axial I Moment Moment Connector 1 2,000 lb 64.0 in 36.0 in 127 lb 104 lb 3,113 lb 11,032 "# 7,886 "# 3 pin OK 2 2,000 lb 64.0 in 36.0 in 253 lb 208 lb 2,075 lb 8,320 "# 5,772 "# 3 pin OK 3 2,000 lb 64.0 in 54.0 in 380 lb 312 lb 1,038 lb 4,992 "# 2,860 "# 3 pin OK 42.0 in **Load defined as product weight per pair of beams Total: 759 lb 624 lb Notes 1 42 0 TYPE 3 Page 15 of 7/2/20 19