Loading...
Specifications (20) Calculations for : NUANCE SYSTEMS PORTLAND , OR 07/24/2019 Loading: 4000 # load levels 3 pallet levels @ 70, 114 , 158 Seismic per IBC 2012 100% Utilization Sds = 0 . 715 Sdl = 0 . 441 I = 1 . 00 96 " Load Beams Uprights : 42 " wide C 3 . 000x 3 . 000x 0 . 075 Columns C 1 . 500x 1 . 500x 0 . 075 Braces 5 . 00x 8 . 00x 0 . 375 Base Plates with 2- 0 . 500in x 3 . 25in Embed Anchor/Column 3 . 75x 2 . 750x 0 . 060 Load beams w/ 3-Pin Connector by : Ben Riehl Registered Engineer OR# 11949 CT a` 11949 41' 4.3r- // 10%-c. RAE ! AXP. DATE: 12/76;0 1 .; ASCE 7 Hazards Report ASCE/SEI 7-10 • 45.39939 Latit • ude• Standard: 122 7508 - • I I Longitude: Address: Rd Risk Category: D-Stiff ' Soilft(NAVD 88) Durham Class: 7236 SW Soil Elevation: 163.8 Portland, Oregon 97224 • ---,-;,: ',,,:....;•'..- : . '.,, .:4"•-: *-** -••i.:: -i'l; * °,)• ;.; .,- , , , *;•*'''',4 ° ''' .*.--* * :: . - - - - • -,....i. ,., : - ,...7,-- g , . ...„. ---:--..: '*, -,:-- - i: -., -. : - * * ,N,11,1•7,t; . ., . . .., - • • , .• "....!:•-4,k" ' . - .' *. • ;' ilia*: -.-1,. .,;; ' ' i tv,.1..,. -''.ti • • i .4....,,, , -Airs 'cWed Jul 24 2019 Page 1 of 3 3 Ar..e4harardtoo,or-I net Seismic Site Soil Class: D -Stiff Soil Results: Ss : 0.962 Sos : 0.715 S1 : 0.418 Sol : 0.441 Fa : 1.115 TL : 16 Fy : 1.582 PGA : 0.421 SMS : 1.073 PGA M : 0.454 SMI : 0.662 FPGA 1.079 le 1 Seismic Design Category D MCER Response Spectrum Design Response Spectrum S Sa(g)vs T(s) Sa(g)vs T(s) Data Accessed: Wed Jul 24 2019 Date Source: USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5_2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-10 Ch. 21 are available from USGS. ntt)s:./awe rhazsrdtoo;orT ne Page 2 of 3 Wed Jul 24 2019 u Cold Formed Channel Depth 3 . 000 in Fy = 55 ksi Flange 3 .000 in Lip 0.750 in Thickness 0.0750 in COLUMN SECTION R 0.1000 in Blank = 9.96 in wt = 2 .5 plf A = 0.747 in2 Ix = 1.191 in4 Sx = 0.794 in3 Rx = 1.263 in Iy = 0. 935 in4 Sy = 0.544 in3 Ry = 1. 119 in a 2 .6500 Web w/t 35.3333 a bar 2 .9250 Flg w/t 35.3333 b 2 .6500 x bar 1.2423 b bar 2 .9250 m 1.6690 c 0.5750 x0 -2 .9114 c bar 0.7125 J 0.0014 u 0.2160 x web 1.2798 gamma 1.0000 x lip 1.7202 R' 0.1375 h/t 38 .0000 Section Removing: 0.640 inch slot 0.75 inches each side of center on web 0.375 inch hole 0.87 inches from web in each flange A- = 0. 152 in2 A' = 0 .595 in2 x bar = 1.478 in I'x = 1.014 in4 S'x= 0.676 in3 R'x= 1. 305 in I'y = 0.743 in4 S'y= 0.476 in3 R'y= 1.117 in Cold Formed Channel Depth 1.500 in Fy = 55 ksi Flange 1.500 in Lip 0.000 in Thickness 0.0750 in BRACE SECTION R 0.1000 in Blank = 4.23 in wt = 1.1 plf A = 0.317 in2 Ix = 0.125 in4 Sx = 0.166 in3 Rx = 0 . 627 in ly = 0. 075 in4 Sy = 0. 079 in3 Ry = 0 .487 in a 1.1500 Web w/t 15.3333 a bar 1.4250 Flg w/t 17.6667 b 1.3250 x bar 0.5060 b bar 1.4625 m 0.6531 c 0.0000 x0 -1.1592 c bar 0.0000 J 0.0006 u 0.2160 x web 0 .5435 gamma 0.0000 x lip 0. 9565 R' 0.1375 h/t 18.0000 Cold Formed Section HEIGHT OF BEAM 3 .750 INCHES MAT'L THICKNESS 0.060 INCHES INSIDE RADIUS 0 .100 INCHES LOAD BEAM WIDTH 2 .750 INCHES STEEL YIELD 55.0 KSI STEP 1.625 INCHES HIGH 1.000 INCHES WIDE ABOUT THE HORIZONTAL AXIS ABOUT THE VERTIC L Y LY LY2 Ii X LX LONG SIDE 3 .4300 1.8750 6.4313 12 .0586 3 . 3628 0.0300 0.1029 TOP 1.4300 3 .7200 5. 3196 19.7889 0.0000 0.8750 1.2513 STEP SIDE 1.3650 2 . 9075 3 . 9687 11.5391 0.2119 1.7200 2 .3478 STEP BOTT 0.7400 2 . 0950 1.5503 3.2479 0.0000 2.2200 1.6428 SHORT SID 1.8050 1.0625 1. 9178 2 . 0377 0.4901 2 .7200 4.9096 BOTTOM 2 .4300 0. 0300 0.0729 0.0022 0.0000 1.3750 3.3413 CORNERS 0 .2042 3 .6728 0 .7500 2 .7545 0.0003 0.0772 0.0158 2 0.2042 3 .6728 0.7500 2.7545 0.0003 1.6728 0.3416 3 0 .2042 2.1422 0.4375 0.9371 0.0003 1.7972 0.3670 4 0.2042 2 .0478 0 .4182 0.8563 0. 0003 2.6728 0.5458 5 0.2042 0.0772 0. 0158 0.0012 0. 0003 2.6728 0.5458 6 0.2042 0.0772 0.0158 0.0012 0 . 0003 0.0772 0. 0158 TOTALS 12.4252 23 .3800 21.6477 55.9793 4 .0668 17.9100 15.4273 AREA = 0 .746 IN2 CENTER GRAVITY = 1.742 INCHES TO BASE 1.242 INCHES TO LONG SIDE Ix = 1.340 IN4 Iy = 0.792 IN4 Sx = 0.667 IN3 Sy = 0.525 IN3 Rx = 1.341 IN Ry = 1.031 IN BEAM END CONNECTOR COLUMN MATERIAL THICKNESS = 0 . 075 IN LOAD BEAM DEPTH = 3 . 75 IN TOP OF BEAM TO TOP OF CONN= 0.000 IN WELD @ BTM OF BEAM = 0. 000 IN LOAD = 4000 LBS PER PAIR CONNECTOR VERTICAL LOAD = 1000 LBS EACH RIVETS 3 RIVETS @ 2 " oc 0.4375 " DIA A502-2 1st @ 1 "BELOW TOP OF CONNECTOR AREA = 0.150 IN2 EACH Fv = 22. 0 KSI Vcap = 3 .307 KIPS EACH RIVET BEARING Fb = 65.0 KSI BRG CAP= 2 . 133 KIPS EACH RIVET TOTAL RIVET VERTICAL CAPACITY = 6.398 KIPS 16%.- CONNECTOR 6%CONNECTOR 6 " LONG CONNECTOR ANGLE Fy = 50 KSI 1.625 " x 3 " x 0.1875 " THICK S = 0.131 IN3 Mcap = 3 .924 K-IN 3 . 924 K-IN RIVET MOMENT RESULTANT @ 1.3 IN FROM BTM OF CONN M = PL L = 0. 95 IN Pmax = Mcap/L = 4.130 KIPS RIVET LOAD DIST MOMENT P1 2 .844 3 .700 10 .522 RIVET OK P2 1.307 1.700 2.221 P3 0.000 0.000 0.000 P4 0 .000 0.000 0.000 TOTAL 4 .150 12.743 CONNECTOR OK WELDS 0.125 " x 3.750 " FILLET WELD UP OUTSIDE 0.125 " x 2.125 " FILLET WELD UP INSIDE 0.125 " x 1.625 " FILLET WELD UP STEP SIDE 0 " x 1.000 " FILLET WELD STEP BOTTOM 0 " x 2.750 " FILLET WELD ACROSS BOTTOM 0 " x 1.750 " FILLET WELD ACROSS TOP USE EFFECTIVE 0.06 " -THICK WELD L = 7.50 IN A = 0.450 IN2 S = 0.281 IN3 Fv = 26. 0 KSI Mcap = 7 .31 K-IN 7.31 K-IN • In Upright Plane Seismic Load Distribution • per 2012 IBC Sds = 0 .715 1. 00 Allowable Stress Increase I = 1. 00 R = 4 . 0 V = (Sds/R) *I*P1* .67 Weight 60 # per level frame weight Columns @ 42 " Levels Load WiHi Fi FiHi Column: (inches) (#) (k-in) (#) (k-in) C 3 . 000x 3 .000x 0.075 158 4060 641 674 107 114 4060 463 486 55 70 4060 284 299 21 KLx = 70 in 0 0 0 0 0 KLy = 43 in 0 0 0 0 0 A = 0.595 in 0 0 0 0 0 Pcap = 14764 lbs 12180 1389 1459 183 Column 49% Stress Max column load = 10445 # Min column load = -884 # Uplift Overturning ( .6- . 11Sds)DL+(0.6- .14Sds) .75PLapp-1. 02EL -2888 # MIN (1+0.11Sds)DL+ (1+0. 14Sds) .75PL+ .51EL = 7269 # MAX REQUIRED HOLD DOWN = -2888 # Anchors: 1 T = 2888 # 2 0.5 in dia HILTI TZ 3 .25 inches embed in 3500psi concrete Tcap = 3314 # 87% Stressed V = 766 # per leg Vcap = 5103 # = 15% Stressed COMBINED = 102% Stressed OK Braces: Brace height = 43 " Prars. s rid3-li AO ti Length = 60 " P = 1566 # Use : C 1.500x 1.500x 0. 075 A = 0.317 in L/r = 124 Pcap = 3159 # 50% 9 In Upright Plane ' Seismic Load Distribution TOP LOAD ONLY per 2012 IBC Sds = 0.715 1.00 Allowable Stress Increase I = 1. 00 R = 4 .0 V = (Sds/R) *I*Pl Weight 60 # per level frame weight Columns @ 42 " Levels Load WiHi Fi FiHi Column: (inches) (#) (k-in) (#) (k-in) C 3 .000x 3 . 000x 0 . 075 158 4060 641 735 116 114 60 7 8 1 70 60 4 5 0 KLx = 70 in 0 0 0 0 0 KLy = 43 in 0 0 0 0 0 A = 0 .595 in 0 0 0 0 0 Pcap = 14764 lbs ---- ---- ---- ---- 4180 653 748 117 Column 33% Stress Max column load = 4884 # Min column load = -913 # Uplift Overturning ( .6- .11Sds)DL+ (0.6- .14Sds) .75PLapp-1.02EL -2106 # MIN (1+0.11Sds)DL+ (1+0.14Sds) .75PL+ .51EL = 4891 # MAX REQUIRED HOLD DOWN = -2106 # Anchors: 1 T = 2106 # 2 0.5 in dia HILTI TZ 3 .25 inches embed in 3500psi concrete Tcap = 3314 # 64% Stressed V = 374 # per leg Vcap = 5103 # = 7% Stressed COMBINED = 71% Stressed OK Braces: Brace height = 43 " Brace width = 42 " Length = 60 " P = 802 # Use : C 1.500x 1.500x 0.075 A = 0.317 in L/r = 124 Pcap = 3159 # 25% 07 PAGE 1 'MSU STRESS-11 VERSION 9/89 --- DATE: 07/24/;9 --- TIME OF DAY: 22 :37:43 'INPUT DATA LISTING TO FOLLOW: Structure Storage Rack in Load Beam Plane 3 Levels Type Plane Frame Number of Joints 14 Number of Supports 8 Number of Members 15 Number of Loadings 1 Joint Coordinates 1 0. 0 70.0 S 2 0 .0 114 .0 S 3 7 11 14 3 0. 0 158.0 S 4 49.5 0.0 S 5 49.5 70 .0 2 6 10 13 6 49.5 114 .0 7 49.5 158.0 8 148 .5 0.0 S 1 5 9 12 9 148.5 70.0 10 148.5 114 .0 11 148 .5 158.0 4 8 12 198 .0 70.0 S 13 198. 0 114.0 S 14 198.0 158.0 S Joint Releases 4 Moment Z 8 Moment Z • 1 Force X Moment Z 2 Force X Moment Z 3 Force X Moment Z 12 Force X Moment Z 13 Force X Moment Z 14 Force X Moment Z Member Incidences 1 1 5 2 2 6 3 3 7 4 4 5 5 5 6 6 6 7 7 8 9 8 9 10 9 10 11 10 5 9 11 9 12 32 6 10 13 10 13 14 7 11 15 11 14 Member Properties 1 Thru 3 Prismatic Ax 0. 746 Ay 0 .522 Iz 1. 340 / 0 PAGE 2 MSU STRESS-11 VERSION 9/89 --- DATE: 07/24/; 9 --- TIME OF DAY: 22 :37:43 4 Thru 9 Prismatic Ax 0 .595 Ay 0.298 Iz 1.014 10 Thru 15 Prismatic Ax 0.746 Ay 0. 522 Iz 1.340 Constants E 29000. All G 12000 . All Tabulate All Loading Dead + Live + Seismic Joint Loads 5 Force Y -2 .03 6 Force Y -2 .03 7 Force Y -2 .03 9 Force Y -2 .03 10 Force Y -2 .03 11 Force Y -2 .03 5 Force X 0 .041 6 Force X 0 . 066 7 Force X 0. 092 9 Force X 0.041 10 Force X 0 .066 11 Force X 0 .092 Solve PROBLEM CORRECTLY SPECIFIED, EXECUTION TO PROCEED Seismic Analysis per 2012 IBC wi di widi2 fi fidi in 4060 1 . 0175 4203 82 83.4 41 82 4060 1.1629 5490 132 153 .5 66 132 4060 1.2282 6124 184 226.0 92 184 0 0 . 0000 0 0 0.0 0 0 0 0 .0000 0 0 0.0 0 0 0 0 .0000 0 0 0.0 0 0 12180 15818 398 462 .9 397 = 32 .2 ft/sec2 T = 1.8685 sec I = 1.00 Cs = 0. 0394 or 0.1192 Sdl = 0 .441 Cs min = 0 . 071533 P -= 6 Cs = 0 . 0715 V = (Cs*I* .67) *W* .67 V = 0. 0479 W* .67 397 zi 100% � I PAGE 3 'MSU STRESS-11 VERSION 9/89 --- DATE: 07/24/; 9 --- TIME OF DAY: 22:37:43 • Structure Storage Rack in Load Beam Plane 3 Levels -------------------------- Loading Dead + Live + Seismic MEMBER FORCES MEMBER JOINT AXIAL FORCE SHEAR FORCE MOMENT 1 1 0.000 -0. 145 0. 00 5 0.000 0. 145 -7.19 2 2 0.000 -0. 037 0. 00 2 6 0.000 0.037 -1.84 3 3 0 .000 -0. 002 0.00 3 7 0.000 0.002 -0 .11 4 4 6.023 0.196 0.00 4 5 -6.023 -0.196 13 .75 5 5 4 . 010 0.134 1.56 5 6 -4 . 010 -0. 134 4 .34 6 6 2 . 006 0.055 0.78 6 7 -2 .006 -0.055 1.63 7 8 6.023 0.202 0. 00 7 9 -6.023 -0.202 14 . 11. 8 9 4 . 010 0.182 2.62 8 10 -4 . 010 -0.182 5.38 9 10 2 .006 0.129 2 .19 9 11 -2.006 -0.129 3 .50 10 5 -0. 021 -0.162 -8 .12 10 9 0. 021 0.162 -7 11 9 0. 000 -0. 178 -8.83 101,4-, 61:10444 11 12 0.000 0.178 0.00 12 6 -0.013 -0.064 -3 .28 "' 12 10 0.013 0.064 -3.07 13 10 0.000 -0.091 -4.50 13 13 0.000 0.091 0. 00 14 7 0. 037 0 . 026 1.52 14 11 0. 037 0 . 026 -1.04 15 11 0.000 0.050 2.45 15 14 0.000 0.050 0. 00 APPLIED JOINT LOADS, FREE JOINTS • • ( '. MSU NT STRESS-FORCEii VERSION FORCE 9/89 Y--- DATE:MOMENT 07/24/;9 --- TIME OF DAY: 22:37:43PAGE 4 JOIX Z 5 0.041 -2 .030 0.00 • 6 0.066 -2 .030 0 . 00 7 0.092 -2 .030 0 . 00 9 0.041 -2 .030 0 .00 10 0 .066 -2 . 030 0.00 11 0 .092 -2 . 030 0.00 REACTIONS,APPLIED LOADS SUPPORT JOINTS JOINT FORCE X FORCE Y MOMENT Z 1 0 .000 -0.145 0.00 2 0 .000 -0 .037 0.00 3 0.000 -0 .002 0.00 4 -0.196 6. 023 0.00 8 -0 .202 6.023 0.00 12 0.000 0 .178 0 .00 13 0.000 0.091 0.00 14 0.000 0 .050 0.00 FREE JOINT DISPLACEMENTS JOINT X-DISPLACEMENT Y-DISPLACEMENT ROTATION 5 1.0175 -0.0244 -0.0036 6 1.1629 -0.0347 -0.0015 7 1.2282 -0.0398 -0.0009 9 1.0176 -0 .0244 -0.0033 10 1.1629 -0.0347 -0.0012 11 1.2281 -0.0398 -0.0002 SUPPORT JOINT DISPLACEMENTS JOINT X-DISPLACEMENT Y-DISPLACEMENT ROTATION 1 1.0175 0.0000 0.0010 2 - 1.1629 0 .0000 -0.0003 3 1.2282 - 0 .0000 0. 0008 4 0.0000 0 .0000 -0.0199 8 0.0000 0.0000 -0.0201 12 1.0176 0.0000 0.0023 13 1.1629 0 .0000 0.0016 14 1.2281 0 .0000 0 .0013 Beam-Column Check C 3 .000x 3 .000x 0. 075 Fy = 55 ksi A = 0 .595 in2 Sx = 0 .676 in3 • Rx = 1.305 in Ry = 1. 117 in kx = 1. 00 ky = 1.00 Stress Factor 1. 000 Point P M Lx Ly Pcap Mcap Ratio 9 6.1 14 .1 70.0 43. 0 14 .76 22 .30 97% 10 4.1 5.4 44 .0 43 . 0 15.89 22 .30 50% 11 2. 1 3 .5 44 .0 43 . 0 15.89 22 . 30 29% 0 0.0 0 .0 70.0 43. 0 14 . 76 22 .30 0% 0 0. 0 0 . 0 70 .0 43.0 14 .76 22 . 30 0% 0 0. 0 0 . 0 70 .0 43.0 14 .76 22 .30 0% Load Beam Check 3.75x 2.750x 0.060 Fy = 55 ksi A = 0.746 in2 E = 29, 500 E3 ksi Sx = 0.667 in3 Ix = 1.340 in4 Length = 96 inches Pallet Load 4000 lbs • Assume 0 .5 pallet load on each beam M= PL/10= 19.20 k-in fb = 28 .77 ksi Fb = 33 ksi 87% Mcap = 22. 02 k-in 29.36 k-in with 1/3 increase Defl = 0.47 in = L/ 206 w/ 25% added to one pallet load M = .19 PL = 18.24 k-in 83% Base Plate Design •_ Column Load 7 .8 kips Allowable Soil 1500 psf basic Assume Footing 27 .4 in square on side Soil Pressure 1500 psf Bending: Assume the concrete slab works as a beam that is fixed against rotation at the end of the base plate and is free to deflect at the extreme edge of the assumed footing, but not free to rotate. Mmax = w1^2/3 Use 5 "square base plate w = 10 .4 psi 1 = 8.21 in Load factor = 1.67 M = 391 #-in 6 in thick slab f' c = 3500 psi s = 6 .00 in3 fb = 65 psi Fb = 5 (phi) (f' c" .5) = 192 psi OK ! . - Shear : Beam fv = 24 psi Fv = 101 psi OK ! ! Punching fv = 42 psi Fv = 201 psi OK ! ! Base Plate Bending Use 0.375 thick 1 = 1.5 in w = 313 psi psi= 15040 psi Fb = 37500 OK ! !