Loading...
Specifications (25) „QC, 030L4 \ \usAAN,\ STRUCTURAL, CALCULATIONS FOR RIVER TERRACE EAST CONDOMINIUMS CED 12 FLEX- UPHILL u� 0 2018 BUILD!,'��Qf9l:�17� (POLYGON NORTHWEST) ,,c CTUp� Cicp 'Raa f ,�GINE 15472 OFF ICE COP Y ' '-� • ” • , )r- REVISION X4,2 MARCH 8,2018 JOB NUMBER: 17-T 174 f abb. FROELICH ENGINEERS ?, * * LIMITATIONS * * * ENGINEER WAS RETAINED IN A LIMITED CAPACITY FOR THIS PROJECT. DESIGN IS BASED UPON INFORMATION PROVIDED BY THE CLIENT, WHO IS SOLELY RESPONSIBLE FOR ACCURACY OF SAME. NO RESPONSIBILITY AND/OR LIABILITY IS ASSUMED BY,OR IS TO BE ASSIGNED TO THE ENGINEER FOR ITEMS BEYOND THAT SHOWN ON THESE SHEETS. A Main Office A Central Oregon 17700 SW Upper Boones Ferry Rd#115 745 NW Mt.Washington Dr.#205 Portland,Oregon 97224 Bend,Oregon 97701 503-624-7005 www.froelich-engineers.com 541-383-1828 is Page 1 of 126 , 6 FROELICH ENGINEERS ; Scope of Work Client: West Hills Development Project: River Terrace East Project Number: 16-T100 Date: February 15, 2017 By: YSP Scope of Work: Froelich Consulting Engineers, Inc. (FCE) has provided full structural lateral and gravity design of the project per the 2012 International Building Code (IBC). Froelich Consulting Engineers, Inc. has provided details only to the areas pertaining to our design. Froelich Consulting Engineers, Inc. did not design or review the details for the entire project. Project Description: This new three-story multi-family apartment building wood sheathed wood framed wall structure is constructed with gang-nailed wood roof trusses, wood framed floors, with slab on grade main floor. Conventional foundations (concrete continuous footings and stem walls and spread footings) are used for building support. A Main Office FROELICH ENGINEERS A Central Oregon 6969 SW Hampton St. 745 NW Mt.Washington Dr.#205 Portland,Oregon 97223 Bend,Oregon 97701 503-624-7005 www.froelich-engineers.com 541-383-1828 Page 2 of 126 Client: West hills DeYeJopment Project: River 'er;a_e East Proj.tt: 16-T100 Date: 2;15/2017 By: TSP FROELICH e ilQIN '..CiSC Project Design Criteria Project Description New three-story multi-family apartment buildings, Gang-nailed wood roof trusses. Wood Framed Floor- Lighl-framed wood sheathed wood wails. Slab on Grade Conventional Foundations Project Location Portland,OR 4Z538'N 122.84'W Average Elevation=350 fl(approximate) General Building Department: Building Official: Phone Number: Building Code(s):2012 International Building Code',IBC) 2014 Oregon Structural Specialty Code(OSSC) ASCE 7-10 Roof Live Load: Ground Snow Load= 15 psf(Snow Load Analysis for Oregon 2007) Minimum Roof Snow Load= 25 psf (Snow Load Analysis for Oregon 2007) Snow Importance Factor(Is)= L00 Deflection Criteria— L/240 Floor Live Loads: Residential Live Load= 40 psf (IBC Table 1607.1) Corridor Live Load= 100 psf (IBC Table 1607.1) Wind Load: Basic(3-Second Gust)Wind Speed= 120 mph(OSSC Figure 1609) Exposure= B Wind Importance Factor(Iw)= 1.00 Seismic Load: Occupancy Category-_ 11 (IBC Table 1604.5) Seismic Importance Factor(Is) 1.00 Site Class= D * Mapped Spectral Acceleration Values(Ss)= 0.985 g Mapped Spectral Acceleration Values(Si)= 0.36 g Design Spectral Response Parameter (S05) 0:726 g Design Spectral Response Parameter(So,)= 0.403 g Seismic Design Category= D Response Modification Coefficient(R)— 6,5 Light-framed walls Sheathed with wood panels Shear Wails(Bearing Wall System) Soils Data: Allowable Bearing Pressure 2500 psf Exterior Footing Depth= 18 inches' Page 3 of 126 Client: Nest 1 hits Development Project: River'Ferrece Proj.5: 16:1100 Date: 2/15/2017 By: YSP FROELICH ENGINEERS 1 Dead Load Calculations Roof Dead Load Top Chord of Truss Component Weights Act nal(psl) Comments Framing, 4 Roof Tnissefi Roof sheathing 2 5/8"shth Rooting(Asphalt Shingles) 3 Misc, 1 Total10.0 pst' Bottom Chord of Truss Component Weights Actual(psi)! Comments Mechanical 1.5 Celine 2,8 (1)5/8"u Bali Insulation 1.5 Swink(ors 1 Mise, 1.2 Total. 8.1) psi 4psf added for Seismic Base Shear Total Roof Dead Load= 18.0 psi Calc Floor Dead Load Component Weights JActual(psf)( Comments . . Framint' 3 Joist Framing Sheathing 3 7/8"shth Floor Covering 11 1,25"Floor Topnilt(Gv.percic 105 Ihs/(13) Mechanical 1 Ceilin`t 5.6 (21 5/8"sive Flooring Sprinklers 1 Misc. 1.4 Total= 27.0 rpsf 8psiadded for Seismic Base Shear Cale, Corridor Floor Dead Load Componeat Weights J Actual(psi)( Comments Framing 2 Joist Framing Sheathing 3 7/8"shth Floor Covering 13 1.5"Floor Topping(Concrete ISO lhs/ii3) Mechanical Ceiling 5.6 12)5/8"gyp Flooring 0 Sprinklers 1 Misc. 1.4 Total= 27,0 psi Exterior Wall Dead Load Component Weights Actual(rsf)I Comments Fronting 1,5 Sheathing 1.5 1/2"shth Interior Gyp Finish 2,8 5/8"gyp Insulation 1.5 Siding 2,3 Fiber Cement Siding Misc. 0,4 Total= 10 psi' Interior Wall/Partition Wall Dead Load Component Weights fActual(psf) Comments Framing L7 2x6 I.16"o.c. Interior Gyp Finish 5.6 5/8"gyp each side Insulation 0.5 Fiberglass Batt Insulation as occurs Misc. 0.2 •I'olal:; 8 psi Page 4 of 126 4y% Client: West Fulls Devc(op reeet Project: River Terrace East Proj.#: 16-T100 c, Date: 2115/201 By: YSP FROELICH ENGIN E E R S 1 Flat Roof Snow Toad Calculation: Based on the following Codes: 2012 OSSC ASCE 7-10 Snow Load Analysis for Oregon 3rd ed.December 2007 Maximum Elevation: 450 ft Ground Snow Load(P9)= 15 psf Determined from Snow Load Analaysis for Oregon(3rd ed.December 2007) Terrian Category= B(Partial Exposed) per ASCE 7-05 Table 7-2 Snow Exposure Factor(C0)= 1.0 per ASCE 7-05 Table 7-2 Thermal Factor(CI)= 1.0 per ASCE 7-05 Table 7-3 Importance Factor(I)= 1.0 per ASCE 7-05 Table 7-4 Flat Roof Snow Load(pr)= 10.5 psf Pf=0.7*Ce*Ct*I*P9 Where p9 s 20 psf(Pr Min)= 15 Where p9>20 psf(pf Min)= 10.5 Use(pr)= 15 psf Use(pf)= 25 psf per 2012 OSSC 1608.1 1.90em r/. .....—.-/ /° =sf — y 7c./ 27 '13)C co , :VX) C\I I , .- ..- 0 LO • Yas. ,'.J.1\ 11:3)•. • • (7) kl'.1• 11 7) (1) • • • l---67 fr, % . , c3) -____-___ `.---, / , co , : 4,?, 471s, innUMlri --- n_ . , — ...., -.......- ., s , i ...,° _ .., , .... . , t , r ; I , ........ . 1,....—..—__.:- ' ' . _ , ...,, • ... . \'' 1- ''.•*.At.- <" Mi-t.:"Vit,:I:;AVI'*V-;itS t ,,,, ----- 10titz?,:'„,''‘.•,,,- ,.', ----- - -- - 1 't.-ttt-t-to-;,..sy.:.-WAA,.`-t,i-mzeAk / .A ---E7,-- L ' '...,U-'%•;', .,'*-4,,itri*:•".' 'fg t .: . W•-'3. /' ',..„tift, .. . , ._,.. _...../ „. "1_,...... 4 -,,- ,.2i:ix 4% ''• , Atiqe. 1 ,. `c. l „.4%,,,::.• ..,, .....,:k!,. ..,,„ ,... .......,....,,.,,, .!..:.I i•:.••.%"::,,i...,1,::::.:r.:ii*C.:%.1.. ..t....,li..7:..,;,'.,. ''''''..., ..'. i ' " 41-' •-'2.-S.:I-I;.- t \• •• , s • A '4:I. .‘" i`r •''•':.,•!;.: r.'1 I%4:•?,.•I1'..I I•'•'' I's.,'\ i ' fi‘.•:....,••A,,,, N,,,i-i-• 1• '' se 1 I1 'I irrtiN s . . .. ''''-.1 •1 .. ...,I%•.• .'1••0...4...4.+.1f.: •, i I I 'II .{ —k.,";""/ AK. • „,„,,- L, .1., ,. ... ,,,i '' *Z.}e i'Z:k,V:....'4;1%4 '•• i ..tC.%..8, 1•: ' t ' . ' I — • - ',.;,-••••14:,***.v, .--- ,, P : il4,......, . ,,..,„.„...,. ....,„ ........... , it:,,,,,_ ,,,, , Pi H -J ...• ., i k T•'•'"" 4 IIIMMilliik , ,'. 1 .......... ..-.5,, i 4":, II,,...," — ',.", i ") ".-* —' -;'-'' (;::i\ i -q.5,.", .,,1—-i.:.-,1 ., _,1„.„.. . d • tv2 ••••••-.'•4„ •I I'l:'41. I I 11 / s ;'.' I r'''''‘ ...., ,..S•sa I rs , • ,•. .:‘11' • ,.......1I '.. • \ s I 1 1 ''' • r p ttt 1 ' X.;:‘,..„ 'et...,-tt.,,,,Vt:'• -- , :' 4 f.y.-1:t,./"?.e.-t*r.,,:;?:;:, -- - . t., , t- -'p /, = li .,..„.,i ;.:,,,,,,,,,,,,,,,,,-x..„ . ,s,wktt, , „, t' --.,--t-,-e:.4;; • •,•.:•;;;;SX• ; 'i ..; 0 / %,„:‘,s'"<„•;%.,'...$ `.;;;,,...4,,,et.,,,...1, , ;'..;; ,, W4k::' •' vi;9•071k,%C,0•:4";, •< / . , ../. , .., ‘::' •,,.':';A:44.'..N..., .A-. ...,t•$„ ? ;•' r''' V '''.•'.' ...C"P°,,"<„‹,":,,,R '',..' .i At:..,N.,- : .1"€?,4„, ,44 ./\-1' ,."" ;- .... t 41-sitts•:,..: 1 -)cfti ttee.Y. / ,:lif>LL....„ , .,... ,..,...,„::,,ma"%. **'.4(.: 11' 4"\:.* 11 I Pc 4. f:•:>.1.*' 1--......— _— I.'. ..., /1,-4' ........—. / ..-, #111"1111411r. -,w4.. ^...........=--.4=zommult pi . . .-- 1 ,4. - 1 L "4;\., v, ...,,„„,, Air 4 as ....-- as 2.... I •IT 0 -v. , .s.---- )_9 • ' CLIENT: 6,:;59 SW-1,-..---,p-sr,S- . A0P:.‘,-cno.Cxe-,,:,-.•,7223 Page 6 of 126 5:3-624-7C05 PROJECT: . , . , A , ,..: ',,Z-, 745 NV:NA'Vics---ig-,-,n:-.,r NUMBER: ,.20:.-.,, ,:tert;.,.,C1:•--,,,c:-.;771.,:=, ,,, 541.-383-182B .', • ' ;,:,;: ,,,,,,cii;-,:- DATE: 123C3 Airpc rf E ',€ 1; I ;-'.; E Broornfie;d,Co oiodo 5002- ,v,,''''.,1',-`'. 720-560-2269 BY: i ea4f if:' /.1----;Z4&Li AJ G C)e'S 1St A); Roof C)6 AL) goo ; 1 ! use 1"./z.,..gs.._ Aft4A.loc- moissa,...,,,, Cc ro., REA cTt o AS CaAity) i . / i' A - '+- , 41t- Si_ x 50 RGt21 -- . p.A,,,..) DL , i2,4 PF ..- >‘..._,‘ 175 i'''''' RA; ,g... 2...,(2:) (23) ,,‘ 5c pim f ° c 1 7 eat 1,1.-C I — D L 4 (1‘ )(\''S -1 -L-Zo 0 . tit c _; i5ca CLIENT: >2: Page 7 of 126 t?;:3 PROJECT: a .• ,. /1.5 Nv:fJt NUMBER FROELICHDA,FE: 1:<-',03 Air ENGINEERSi E3r..:OrielC; . , 720 568-2269 BY Cvt. j CZ: *X ( NtZ ) 6 sg 5-(2,) (25) r: 2,6004 Dias. 0,GAIS) V3.0 F&CeP,A. Gt, s. (so)(zs) r 5"0 i3o01*: 9 L 6 00* R00 F He ' • R.1.4 •* ,PA x -0 DL 1,:c5 r zoo Pc" Str((iliqz.5) -c 15 PI-1'- P (S) ) c Rkzt. : DL (oki PLP Vot ( ) s. 200 Lr ((L') (Z5) /Z5 Page 8 of 126 COMPANY PROJECT works° a,;23.20151541 RI-11 rrr'k Design Check Calculation Sheet Page 9 of 126 COMPANY PROJECT %VoWit odWorks Aug 23,20173 15.12 R112...ireo ;7::77,eht veiri-77 or Design Check Calculation Sheet Vroomryciks IQ 42 Loads: — LL 77777 ' 73.1, 27Fi.0 ------- Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in); itar Dea,1 520 av8m 1.1"/E nnzEpoEE 62.7 1,00 1.0E 20eprn, 0.e0 E.90 42 ce,r, •(,7 1.Uu cai ,,pp,,t Lumber-soft,D.Fir-L.,No.2.4x8(3-1/2"x7-1i4") Supports M-Timber-soft Beam,D Pict No 2 Total length:0%1 X;volume-ii 1.1 co tt; Lateral support:tope at supports.bottom,al supports; Analysis vs.Allowable Stress and Deflection using NOS 2012 r yr 2,,,In E,Cier An01,4.".4/0.W.Eln 1:.172 2e' , flEn r E.S5E Lie, Eefl'E 0.E2 - elr922 2.1E r ri2E0 Er. TE,11 nenl'n E.IE 7, 7. 2,12, In Additional Data: FA" CF • ,f3,, 1 - 2 - k (R3TICALUDAEICOM$MAT Imm,1y, C: . , 22n, Det1lernrru4 LE n2 e LC V 7, 0,5 AIL LE'E Ere liEE2En rr thE ..Eraly5Lr EurpnE Lea,1 enenEnatreer, 7-1E 202 2012 CALCULAIKENS' EelnrE.1rn, El r Enve. d7nlertiEr . nef.,.-yr .- frnm t12 soy-,leed wEEn, snEw..1 20101 Enfinction r 2.,20,EnaE 2nEE 2,21secleE. Live. Lned D.EleerEen. LELe2,71 . 0r-,E.F07 e e 0.11 Design Notes: 1 WoodWorks analysis and design are M accordance with the ICC international Building Code(rt3C 2012).the National Design Specification(NDS 2012).and NDS Design Supplement. 2 Please verify that He default deflection limits are appropriate for your application, 3.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4 4 1 U j Ma CLIENT: CLIENT: / ' 6969, S7 f:.Trf.Yron S-. - ' /'',•$ei:i P(xticlra C;;,..-,g5--.C7223 503-521-7005 ", PROJECT: Page 10 of 126 • '' NW Mt \.',iosi----.gt -U.#20:-.: NUMBER: Bend.Oregor,97/-03 541-383-1828 FROELICH Dix,--,a"ice DATE: 12303 Airporl Wcly,Si....;i';,e-. 200 ENGINEERSi Broonteld,Coorodo 80021 720-560-2269 BY. ,,,Lipoi /-10/1 7-770,C PC .-.., i I ps F ( i 4 •0....C 1 X 7 I I , - . 1 ' -.--..,1 ) tt..,e,._. Ne...,xr-1- i----'0, A•e --o 1-- . : ) 1 — -.' , „«. iml 1\4.9t el ,...... .......i,, 7 „m..0 L,4:,,,-:, Aj . 1 I i 1 ,,e-t --,—,.,---, i '.. . , ! • Page 11 of 126 • Client: Project: � Project#: Date By: FROELICH ENGIN E E R SI WIND FORCE CALCULATION- C&C Walls ASCE 7-10 SECTION 30.6,30.7 (Third Printing) Design Wind Loads on Components and Cladding- Walls Basic Wind Speeds Input 3 Second Gust Vas= 120 mph Exposure Category= 13 Wind Directionality Factor Kd= 0.85 Table 26.6-1 (page 194) Mean Height of Roof,h= 40 ft Topographic Effects Input Hill Height H= 0 ft Table 26.8-1 (page 196) Length of 1/2 hill height Lh= 1000 ft Table 26.8-1 (page 196) Dist. From Crest to Bldg. x= 100 ft Table 26.8-1 (page 196) Height Above Local Grade z= 15 ft Table 26.8-1 (page 196) Horizontal Attenuation Factor m= 1.5 Table 26.8-1 (page 196) Height Attenuation Factor g= 3 Table 26.8-1 (page 196) Shape Factor K1/(H/Lh)= 1.3 Table 26.8-1 (page 196) Output-Topographic Multipliers K1 = 0.00 K2= 0.93 K3= 0.96 Topographic Factor Ict= 1.00 Terrain Exposure Constants nominal height of boundary zg= 1200 Table 26.9-1 (page 199) 3-s gust exponent a= 7.00 Table 26.9-1 (page 199) Page 12 of 126 , Pressure Coefficients Input Velocity Pressure Exposure Coefficients Kb (see below) Table 30.3-1 (page 259) Height(ft) Kb qb(psf) Velocity 15 0.70 22.0 Pressure 20 0.70 22.0 Output qz 25 0.70 22.0 30 0.70 22.0 40 0.76 23.8 50 0.81 25.4 60 0.85 26.8 70 0.89 28.0 80 0.93 29.1 90 0.96 30.0 100 0.99 31.0 120 1.04 32.6 I h 40 0.76 23.8 9h I External Pressure Coefficients (GC ) Use Figure 30.4-1 for h<60ft,30.6-I for h>60 ft GCp1_+/- 0.18 Table 26.11-1 (page 201) Pressure Coefficients on Exterior Surfaces of Walls Zone (" CP Zone 4(+) 0.90 Figure 30.4-1 for h<=60 (page 277) Zone 5 (+) 0.90 Figure 30.6-1 for h>60(page 290) Zone 4 (-) -0.90 Zone 5 (-) -1.80 Calculate Wind Pressure,p,per Equation 30.4-1 or 30.6.1,►tying tit, Exterior Face of Surface Zone p(psf) Zone 4 (+) 25.74 with Positive Internal Pressure Zone 5 (+ ) 25.74 with Positive Internal Pressure Zone 4 (-) -25.74 with Negative Internal Pressure Zone 5 (-) -47.19 with Negative Internal Pressure Page 13 of 126 • , COMPANY PROJECT iNON 111 Wood Works® iraw"020o oevc, Dec 13,2016 09:39 Beem1 Design Check Calculation Sheet WoodWorks Sizer 10 42 Loads: Type D10110butluct Pat- Lunation [ft, Mayuitude tern Star End Start Fed limndl "diod Full 17031- o.: Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in) : _ 0n:0kt:to-fedi Duad WSnd 321 327 Faciored: Tefk.k 19f 136 Seas:fag: • Beam 2266 2266 20,ppn4t 2286 2206 Adal/Dca Beam 0.09 a.09 Snenort 0.09 0.09 1,0,4M comb 42 42 Leaqte 0,50* B.50' Min fecCd 0.50* CO 1.00 1.00 CM min 1.00 1.00 07-0 :support 1,00 1,00 Fce sup 825 820 -minimum bearing tengih setting used:112"for end supports Lumber-soft,D.Fir-L,No.2,4)(8(3-112"x7-114") Supports:All-Timber-soft Beam,D Fir-L No 2 Total length:9-1.0";volume=1 6 cu B; Lateral support:top=at supports,bottom=at supports;Oblique angle:90.0 deg; Analysis vs.Allowable Stress and Deflection using NDS 2012: 'Crltei*IMM Value 24050nn Am4.1.yks/310ac. almuar A-% fv . 0 Fv" - 266 kips v.-y fv 21 Ey' = 288 psi iv/EI' - 0,04 Bendin90*l k-x Oh " 0 . 1631 kip-ft 1b/FF' '-v 01 = 358 EP' - 1966. kip-ft loll ' De0d. Befi'n t1ve Defi'n 0.1.6 " 0/092 0,45 1/240 in Total 0nflln 0-16 = 1/690 5,45 - 4a/240 in 0.3U Additional Data: EACTCRS: F/EipmilCD CM Cc CL CP Cfu Cr COO: Ci cm 1C0 Evy' 180 1,60 1.00 L,00 - 1.00 3.00 •• Fey' 000 1.60 1,00 1,00 1.000 1.300 1,05 1,00 4,00 1,07 - Fcp' 625 - 1,00 1.00 - - 1.00 1.00 - 1.0 million 1.01 1.00 - 1.00 1,00 •• Em1n' 0.58 million 1,00 1,00 - - - 1.0D 1.00 - CRiTICAL LOAD COMBINATIONS: Sheac : LC 02 -- .61+.60, V . 195, V design = 182 lbs pentamgod: LC 02 " M . 441 lbo-ft Deflection: LC k2 = :live) LC 42 ,ks (totall 0-dead Lulice B.setuf D.impact Lri-roof live Lc.conceatrated E-earthquake PCI LC'a are 'Anted In the Analysis output Load Bomblnationa: 111511 7-10 / IBC 2:12 CALCULATIONS: Deflectima: ET = 118e08 11-In2 Ely 41.4e08 ve' deflection - Deflection from all non-dead 'loads Ciivo, wind, e0n.1 Toted Deflection = 1,50Wfrad Load Deflection) , Live Load Deflection, Lateral ntahility lfn - 9 -0,50* Le 16 -7,103" RB = 3,65 Design Notes: 1 MiocdWorks analysis and design are in accordance with the ICC International Building Code(IBC 2012),the National Design Specification(NOS 2012),and NDS Design Supplement 2 Please verify that the default deflection limits are appropriate for your application. 3 Sawn lumber bending members shall be laterally supported according to the provisions of NOS Clause 4.4 1 St. CLIENT'. Page 14 of 126 . .= PROJECT: AO' - .44 Dr.#20 is-sitjt,,,,BF. FROELICHDATE: 'Noy,Suile 200 ENGINEERS4 Cc.->iora,...a..)80021 BY: Or" rc e e ) Page 15 of 126 t y, COMPANY PROJECT od 1 -:12kWirth ® Wo r ks RE'.rt.. • Design Check Calculation Sheet WON.I'WOAS Sih,10"42 Loads: Maximum Reactions(Ibs),Bearing Capacities(Ibs)and Bearing Lengths(in): • far r. +s • fi 1#'1 r;G't`::k7 J e J:tt tall r trsecr la"€a amort r.,pports ,.••m•-�, Lumber-soft,D.Fir•L,No.2,4x10(3-112"x°-134") Supports.All-Timber-salt Beam,.n=Ir-L No.2 rola;l4OOth.5'-1 1k,volume_3 4 ca 11 Lateral support;lop=at supports.nutter.,al supports. Analysis vs.Allowable Stress and Deflection using Nos 2012 •.2R Additional Data: CRiTt /CreLI//C))+.':JM N. O\o. <L_ _ Design Notes: 1.WoC-a1Wrrks ara€ysis and design:are in.aa.^,aroance with:he iCli international Cuiiciaa Cade(19C 2012).tae Naiianal Design.Seeeifi:tu er,(.RECO 2012),are NOS Design Supplement. 2.Please verityThal ilia default dellen len limns are appropeate for your applicatirn, 3.Sawn umbar Lending membars shay Sr laterally supported aaraatiag le The previslans at NDS Clause 4.4 1 e2 f,XA.• ....." i -' ..,,, ). , 13'0,,, „,, -`It, 1 / , ..,..At. jo. „T.,” AAA,- AN 1'7.\ -1 .—L4 -M•V , '.."•121, ' 4' • 1-...,,,,,, LJ , -......= ___, 2.. .: WA) . ;;‘,...4 ... ' - IIIIIIIII u6, , _........____ 1 ,..,..—).... , • .,,, \•.w / 1 ! • . ' ''..Z7: i . . iu., d r / /4 i / , ,.. /i '''''' ..,,,''''''''''''' 41 1rt ..=. 1:t E1/ i et,,i••e.,7-,.,:2„,„",..,._,',,...1„,.,. ‘..., ... • ' I i ,....--..., :: i I 1 .0. ; c ,--- ' — , O. H ,,,,,..i.:,,d li i / , .,, i.., II1 1 I -,',,,,,,,A , '-:1..,.,.,,,,,,,:. 1'111111111111111111111111111111111 ,...., i ;, , ,,,,..cmer.,,,,,,,,,,,,,,,.......,,,,,e.. ..,.... 5, , ,,,, \ 1 ',...... 1 ' , , ' 4 ,...,”` :I I N $ ""* ( '71>i 1 r: :.1 1 „ -__,_„„, - i . -; '----1 -.7 --------, --NB ,,,, , i,,,:./..,... . ,„.... ; . - '',' ,.---.. ''1. ..` ,.. , I , ,,N i.1 , i / 4— ... ''',7‘, ' , ,, I 't : ././7,‘ ' -I ) ! A .." ,-....." 1 Ilit'll ! I e 1,,,,, ' l il / I '' 'e'/ ., I Ale/ 2 ....'"''''' Ell if I1: / „0, ''''''' .., ir"rd? *,, ,, f ,, ,I: 1 ' ,1 .// t A tflelte?eAte. 't ' lIeee e I ---f l'e '''.----rt I1 7 --"—f' -----,---- - ,...., .... ..,.../„.,„i . ci .......„, __ , / ....,.,....,„, , i i ki ; . ;.1 ., (".", .e -r I : 1 , .,..., / I / 4- F ...,.,_..,Lia-i- i ,, : / '" V / 12 ,, I. I . / ' /V „ ,,, , /.4 ,` ,trz .('''''' I r--- i , I ---,,.'Y' i[ I iir ' =-- -.----=amwmi . i / ,,, 7 ,. ... 1 ' :1 t I ' ... , _ , 1 ....., ' ar h --------1 . .„ '‘O / ,...-., . 0 4 t t w, 1111111NPE : Nz, , -,,,!-- lomminon - • ....------m i ,„..---, i r"- 'itlll-LIII— ---J : i- pp .......„ 0 . , , 1 . .,:_,sii.,:i' Lt._.............._.........., i .,• iXAI / ..• . • .• .4.... : . , --*----'--'''''''''—'' -----—--- \' ', '• ,,XD: s--...,•'" ... • TM ( ': '.`-;,-, CLIENT: ,_ J �� Page 17 of 126 e, 503-:',2, 7.: A :„r, PROJECT: F b ' J t n Cr NUMBER: FROELICH ' 1 >—)s— ‘----- DA ENGINEERS ; 11 f) A , r Voy � 1, -LC(a Br0'3 .:.-. i o!c r'1t1 ,8002} 720--;.;60-23.t9 BY a , i Aj t, ; e I 7 S Jr;SPA Ai $4 ' -- F, 1-22- Roseburg . 2'19pI lot I&lun 20(7.3.0.5 &taut-Engine 2017.I.0.4 aai.as D &xnc I5 2 Member Data )escription: Member Type:Joist Application:Floor Top Lateral Bracing:Continuous Bottom Lateral Bracing:None Standard Load: Moisture Condition:Dry Building Code:IBC/IRC _ive Load: 40 PSF Deflection Criteria: L/480 live,L/240 total )ead Load: 65 PSF Deck Connection:Glued&Nailed Filename:Beam1 • rt / 4 4 011 4 0 / / 7 0 0 22 8 0 3earings and Reactions Input Min Gravity Gravity Location Type Material Length Required Reaction Uplift I 0' 0.000" Wall Not Checked 3.500" 1.500" 104# -126# 4' 4.000" Wall Not Checked 3.500" 1.500" 1404# - 3 15' 8.000" Wall Not Checked 3.500" 1.500" 1474# - I 22' 8.000" Wall Not Checked 3.500" 1.500" 337# - Vlaxdmum Load Case Reactions Ise1 fa TFlYi9 int foods(a ite loads)to caryin5 mambas Live Dead -118#(-88p1f) -8#(-6p1f) 552#(414p1f) 853#(639p11) 565#(424p1f) 909#(682p1f) 163#(122pif) 174#(130plf) )esign spans 4'1.375" 11'4.000" 6'9.375" Product: 1.5 RigidLam LVL 1-3/4 x 11-7/8 16.0"O.C. PASSES DESIGN CHECKS Design assumes continuous lateral bracing along the top chord. Design assumes no lateral bracing along the bottom chord. 411owable Stress Design Actual . Allowable Capacity Location ceding 'ositive Moment 1019.'# 8031:# 12% 10' Even Spans D+L Jegative Moment 1329.'# 8031.'# 16% 15.67' Adjacent 2 D+L Jegative Unbrcd 1292.'# 5156.'# 25% 15.67' Adjacent 1 D+L Shear 665.# 3048.# 21% 15.1' Adjacent 2 D+L ,lax.Reaction 1474.# 3899.# 37% 15.67' Adjacent 2 D+L 7L Deflection 0.0488" 0.5667" 0999+ 10' Even Spans D+L _L Deflection 0.0211" 0.2833" U999+ 10' Even Spans L ;ontrol:Max.Readion DOLs:Live=100%Snow=115%Roof=125%Wind=160°/ Design assumes a repetitive member use increase in bending stress:4% SIMPSON "pada taros ae tra Gnats d their respective was Kami L.Henderson EWP Manager cmymgt(C)ens ay Smosal Strang-Me Cany Ire.AU.RIGHTS RESERVED. Pacific Lumber&Truss svg s defined as vlten the mamba,flea jo<],beim a gide,shawl m itis deiird mets writeatledigi&tate fa tract;,Lowing Cmitias,ad Sms ist l m itis stet.The desk))mist he re.enel ty a 4tified Beaverton.Oreoon F 1-22 2:5l pi Roseburg Iof i13cunEnginc'_(11 Z 1.11.4 nu;cds Un.dxru 1562 Vlember Data )escription: Member Type:Joist Application:Floor Top Lateral Bracing:Continuous Bottom Lateral Bracing:None Standard Load: Moisture Condition:Dry Building Code:IBC/IRC _ive Load: 40 PSF Deflection Criteria: L/480 live,L/240 total )ead Load: 27 PSF Deck Connection:Glued&Nailed Filename:Beam1 19 6 0 19 6 0 3earings and Reactions Input Min Gravity Gravity Location Type Material Length Required Reaction Uplift I 0' 0.000" Wall Not Checked N/A 1.750" 658# - 19' 6.000" Wall Not Checked N/A 1.750" 658# -- Ulaximum Load Case Reactions Ised fa eglyirg pot lark(a Ire kr)to caryny mentas Live Dead 393#(393p1f) 265#(265p1f) ! 393#(393p1f) 265#(265p1f) )esign spans 19'7.750" Product: 11 7/8" RFPI-400 12.0" O.C. PASSES DESIGN CHECKS Minimum 1.75"bearing required at bearing#1 Minimum 1.75"bearing required at bearing#2 Design assumes continuous lateral bracing along the top chord. Design assumes no lateral bracing along the bottom chord. Lateral support is required at each bearing. 411owable Stress Design Actual Allowable Capacity Location Loading 'ositive Moment 3232.'# 4315.'# 74% 9.75' Total Load D+L ;hear 658.# 1480.# 44% 0' Total Load D+L fL Deflection 0.6290" 0.9823" U374 9.75' Total Load D+L .L Deflection 0.3755" 0.4911" 11627 9.75' Total Load L ;ontrol:LL Deflection DOLS Live=100/Snow=115%Roof=125%Wind=160% SIMPSON AI pnld'cines ae trabnaks d ther repecti:e av as Kami L.Henderson EWP Manager ' Ccgnicf i(C)an bl Sown StrogTe Comply Inc.ALL RIGHTS RESERVED. Pacific Lumber&Truss soig is defiled as What tfementa,flog joist,two a grc$shwvr mtlis laAgmetes a}i�e oileia fo Lark,1-aa CudIa and�s 1stedartHisci .The desk',must to aQ�ifiai Beaverton.Oreaon A 1-22- - Roseburg 2:4jp1 I of R nt2(1173.11.5 1 lc:o»Engi tc 2017.1.0.4 t�ti:d.�U ni ask:I5F'_ Vlember Data )escription: Member Type:Joist Application:Floor Top Lateral Bracing:Continuous Bottom Lateral Bracing:None Standard Load: Moisture Condition:Dry Building Code:IBC/IRC _ive Load: 40 PSF Deflection Criteria: L/480 live,L/240 total )ead Load: 27 PSF Deck Connection:Glued&Nailed Filename:Beam1 T r / 17 9 0 / 17 9 0 3earings and Reactions Input Min Gravity Gravity Location Type Material Length Required Reaction Uplift I 0' 0.000" Wall Not Checked N/A 1.750" 799# — 17' 9.000" Wall Not Checked N/A 1.750" 799# -- Maximum Load Case Reactions 1�fa of t e,3 pat k (a tie•)to coryig menhas Live Dead 477#(358p1f) 322#(2420) 477#(358p1f) 3224/(2420f) )esign spans 17'10.750" Product: 11 7/8" RFPI-400 16.0"O.C. PASSES DESIGN CHECKS Minimum 1.75"bearing required at bearing#1 Minimum 1.75"bearing required at bearing#2 Design assumes continuous lateral bracing along the top chord. Design assumes no lateral bracing along the bottom chord. Lateral support is required at each bearing. knowable Stress Design Actual Allowable Capacity Location Loacing 'ositive Moment 3576.'# 4315.'# 82% 8.87' Total Load D+L Shear 799.# 1480.# 54% 0' Total Load D+L EL Deflection 0.5684" 0.8948" L/377 8.87 Total Load D+L L Deflection 0.3393" 0.4474" L/632 8.87' Total Load L :ontrol:Pos.Moment Des:Live=100%Snow=115%Roof=125%Wind=160% SIMPSON p. anesaet,ajenaksdtfareyatveoes Kami L.Henderson EWP Manager cq t1(C)MI6(y Smrso,erox}Te CmtIay Irk al RIGHTS RESERVED. Pacific Lumber&Truss songs&dial as W,a,the menhe,fIca) t,bean agrd�J'oa,a,ths&gong meds micaledeig,alieiafa Lack,teeing Ca�ios,ad [staimtho sheet The ig,met be reviewedb/aot�fiai Beaverton.Oregon B I-22- ' Roseburg2:46pi I of t., 2017 3(1.5 tRaunEngloc 2017 I 0.4 Ulember Data )escription: Member Type:Joist Application:Floor Top Lateral Bracing:Continuous Bottom Lateral Bracing:None Standard Load: Moisture Condition:Dry Building Code:IBC/IRC _ive Load: 40 PSF Deflection Criteria: L/480 live,L/240 total )ead Load: 27 PSF Deck Connection:Glued&Nailed Filename:Beaml 1520 Q1 / 15 2 0 3earings and Reactions Input Min Gravity Gravity Location Type Material Length Required Reaction Uplift 0' 0.000" Wall Not Checked N/A 1.750" 821# - ? 15 2.000" Wall Not Checked N/A 1.750" 821# - Naximum Load Case Reactions lset tv Miyig rr l lc.%(e ie log%)to caryig mantas Live Dead 490#(306p1f) 331#(207p1f) 490#(306p1f) 331#(207p1t) )esign spans 15'3.750" Product: 11 7/8" RFPI-400 19.2"O.C. PASSES DESIGN CHECKS Minimum 1.75"bearing required at bearing#1 Minimum 1.75"bearing required at bearing#2 Design assumes continuous lateral bracing along the top chord. Design assumes no lateral bracing along the bottom chord. Lateral support is required at each bearing. 4llowable Stress Design Actual Allowable Capacity Location Loading 'ositive Moment 3142.'# 4315.'# 72% 7.58' Total Load D+L Shear 821.# 1480.# 55% 0' Total Load D+L L Deflection 0.3714" 0.7656" L/494 7.58' Total Load D+L I.Deflection 0.2218" 0.3828" 1/828 7.58' Total Load L :ontrol:Pos.Moment DOLS Liv=100%,Snow=115%Roof=125%Wind=160% SIMPSON4"a1idranesaetrakrnaksdtterrapet,eames Kami L.Henderson EWP Manager Dwight(C) 16 1p rçoo ra .Te Car ,lr I1 RIGHTS RERVFD. Pacific Lumber&Truss ,ssirgk&bed as Wim the menta,the idst,teal)ogrc$51ommttis&avg mks TrkEtle ctsig, em teteak,Lrn6g Gmitias,ad$ms istefmttis suet.The 6,69'mtat kereeimejty aµdRiel Beaverton.Oregon f E1. �ft REPORT 3rd Floor, Span 5'-0"(Corridor Joists) PASSED 1 piece(s) 2 x 6 Hem-Fir No. 2 @ 16" OC • Overall Length:5'7" + • + � e 5' a o All locations are measured from the outside face of left support(or left cantilever end).All dimensions are horizontal. Design Results Actual @ Location Allowed Result LDF Load:Combination(Pattern) System:Floor Member Reaction(lbs) 455 @ 2 1/2" 1367(2.25") Passed(33%) -- 1.0 D+ 1.0 L(All Spans) Member Type:Joist Shear(lbs) 346 @ 9" 825 Passed(42%) 1.00 1.0 D+1.0 L(All Spans) Building Use:Residential Moment(Ft-lbs) 565 @ 2'9 1/2" 801 Passed(71%) 1.00 1.0 D+1.0 L(All Spans) Building Code:IBC 2012 Live Load Defl.(in) 0.079 @ 2'9 1/2" 0.129 Passed(L/784) -- 1.0 D+1.0 L(All Spans) Design Methodology:ASD Total Load Defl.(in) 0.100 @ 2'9 1/2" 0.258 Passed(L/617) -- 1.0 D+1.0 L(All Spans) T3-Pro""Rating N/A N/A -- -- -- • Deflection criteria:LL(L/480)and TL(L/240). •Top Edge Bracing(Lu):Top compression edge must be braced at 5'5"o/c unless detailed otherwise. •Bottom Edge Bracing(Lu):Bottom compression edge must be braced at 5'5"o/c unless detailed otherwise. •A 15%increase in the moment capacity has been added to account for repetitive member usage. •Applicable calculations are based on NDS. • No composite action between deck and joist was considered in analysis. Bearing Length Loads to Supports(lbs) Supports Floor Total Available Required Dead Total Accessories Live 1-Stud wall-SPF 3.50" 2.25" 1.50" 101 372 473 1 1/4"Rim Board 2-Stud wall-SPF 3.50" 2.25" 1.50" 101 372 473 1 1/4"Rim Board •Rim Board is assumed to carry all loads applied directly above it,bypassing the member being designed. Dead Floor Live Loads Location(Side) Spacing' (0.90) ` (1.00) Comments 1-Uniform(PSF) 0 to 5'7" 16" 27.0 100.0 Residential-Living Areas Weyerhaeuser Notes i SUSTAINABLE FORESTRY INITIATIVE Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software.Refer to current Weyerhaeuser literature for installation details. (www.woodbywy.com)Accessories(Rim Board,Blocking Panels and Squash Blocks)are not designed by this software.Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction.The designer of record,builder or framer is responsible to assure that this calculation is compatible with the overall project.Productsmanufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards.Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports refer to http://www.woodbywy.com/services/s_CodeReports.aspx. The product application,input design loads,dimensions and support information have been provided by Forte Software Operator 84:0( Forte Setts.3.e Operator Job Notes �?•`31Lt}i "43 PM Forte v5.2. Design Engine'V6,6.0 14 CiJOIStS.4re ,visa-t,,,c,rn4grcaEi::..r.,3y:n,t.... .corn Pago 1 of 1 • Page 22 of 126 _ MEMBER REPORT 3rd Floor, Spar?6'-0"(Deck Joists) PASSED ,21 31 piece(s) 2 x 6 Hem-Fir No. 2@ 16" OC Overall _enatit;6' 7` 6' J J All locations are measured from the outside face of left support(or left cantilever end).All dimensions are horizontal. Design Results Actual 0 Location Allowed Result LDF Load:Combination(Pattern) System:Floor Member Reaction(lbs) 285 @ 2 1/2" 1367(2.25") Passed(21%) -- 1.0 D+1.0 L(All Spans) Member Type:Joist Shear(lbs) 227 @ 9" 825 Passed(28%) 1.00 1.0 D+ 1.0 L(All Spans) Building Use:Residential Moment(Ft-lbs) 425 @ 3'3 1/2" 801 Passed(53%) 1.00 1.0 D 4-1.0 L(All Spans) l Building Code:IBC 2012 ,Live Load Defl.(in) 0.064 @ 3'3 1/2" 0.154 Passed(U999+) -• 1.0 D+ 1.0 L(All Spans) Design Methodology:ASO Total Load Deft(in) 0.108@ 3 3 1/2" 0.308 Passed(1/688) -- 1.0 D+1.0 L(All Spans) i TJ-Pro' Rating r N/A N/A - - -- , • Deflection criteria:11(1/480)and TL(tJ240). • Bracing(Lu):All compression edges(top and bottom)must be braced at 6'4 1/2"o/c unless detailed otherwise.Proper attachment and positioning of lateral bracing is required to achieve member stability. •A 15%increase in the moment capacity has been added to account for repetitive member usage. •Applicable calculations are based on NDS. • No composite action between deck and joist was considered In analysis. Bearing Length Loads to Supports(lbs) Supports Floor Total JAvailable Required Dead Total Accessories Lore 1-Stud wall-SPF 3.50" 2.25" 1.50" 119 176 295 1 1/4"Rim Board 2-Stud wall-5PF 3,50" 1 2.25" 1.50" 119 176 I 295 1,1 1/4 Rim Board i •Rim Board is assumed to carry all loads applied directly above it,bypassing the member being designed. Dead Floor Live 1 Loads Location(side) Spacing (0.90) (1.00) Comments 1-Uniform(PSF) 0 to 6'7" 16" 27.0 40.0 Residential-Living i Areas I Weyerhaeuser Notes i' usta ..€u F0,-.:,,..3 r , Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software.Refer to current Weyerhaeuser literature for installation details. (www.woodbywy.com)Accessories(Rim Board,Blocking Panels and Squash Blocks)are not designed by this software.Use of this software is not intended to circumvent the reed for a design professional as determined by the authority having jursdicton.The designer of record,builder or framer is responsible to assure that this calculation is compatible with the overall project.Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable `forestry standards.Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1387 and/or tested :in accordance with applicable ASTM standards. For current code evaluation reports refer to http://www.woodbmy.corn/services/s_CodeReports.aspx. The product application,input design loads,dimensions and support information have been provided by Forte Software Operator I Forte Software Operator Job Notes 8/24/2016 9:00:37 AM r akar Sausf Pour Forte v5.1,Design Engine:V6 5.1 1 Frohlich Fngineers JOists.4te 1 (503)924-6311 CLIENT: Page 23 of 126 c,. :l. ., : ,),)- ' 50,--3...&:,::--7t,: , FE'14R,, i NE:1PROJECT: NUMBER 1:11H, i 8,8:::,., :l.,,. :1,, ; , ,,,,,,,, DATE: , BY spAN r to - o DLs- (a )(2:"'n c 25 ?LF t L ( ( i 0 ) s (-Igo PP 3F 432/: i ,... / FLF 3F133/ ' FAA/r 5 o DL. ( 5) C2'7) v 95 (....1-s(3.,51)((°° ) r 3 ,'5— F B 4/: Ft? ', ,,,,"•-,,, F-135/' •&PAAJ ° Di_s LL-1120 Pla*47 1 1 Page 24 of 126 COMPANY PROJECT o orks, „..,,„,„ o dW ® Aug <#.`s L"..09:11 :B''nwc Design Check Calculation Sheet 'itriodsVorss Siper 10.42 Loads: . Maximum Reactions(Ibs),Bearing Capacities(Ibs)and Bearing Lengths(in) __. 101_3 r ._.-,m_ �._._�. 3 l 1 ;..gyp.._.,.. ....,._..,, .. --.-.. ....._»_®.mm-rv..`.-,._.-- .__.....«, n...n.._„e ,..„7 8' 111,4 4.0,9 41209 41041 Glulam-Unbat„West Species,24F-1.8E WS,3-1/2"x11-7/8" 0 laminations:3.7122'maximum width, Supports At-Timber-sort Bears,O.Fir-L No 2 Total length:1o'-3.7-:volume= 3 0 cu it., Lateral support:top=fail,bottom.at supports: Analysis vs.Allowable Stress and Deflection uainp NOS 2012: . „_ 9:,,,A ., Dr9A1,1A. 'r lot 12149.4: Suit1 »- s. E '1,114 :.. au 190 0.39 Additional Data: 650 L3;'C+ CRITICAL t'1A '.J7raA1loiSS: C,a..'-CLS A i iONS: e €Tec '40. _, ...,_ , 1 ..,a-a _..,...-u,r 1_ri 1.-0449 Sot,-e .-. Design Notes; 1.Woodworks analysis and design are in accordance with the ICC International Buik:ing Code(lBC 2012).the National Design Specification(NOS 2012),and NOS Design Supplement. 2.Please verify that the default deflection limits are appropriate for your application. 3.Glutam design values are for materials conforming to ANSI 117.2010 and manufactured in accordance with ANSI A130.1.2007 4 GLULAM:bad=actual breadth x actual depth. 5.Gluiarn Beams shall be laterally supported according to the provisions of NOS Clause 3.5.3. 0..GLULAM:bearing length based on smaller of Fcp(lension),Fcp(ccmp:n), Page 25 of 126 • _ __--- COMPANY PROJECT '74 r WoodWorks® Design Check Calculation Sheet Loads: • • Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in).: • • • • • jF I V, .77 • Glutern11nnat..West SPOOR*,24F-1.8E WS.3-t/2"xt1-7te" t Fs.:alC:' ,31i:esseevesws fiN;gxxt,.f -Tv/t4.4R,MY 534.44,0."44.PA 2 Total IM oet...4 7":4-.4,45/4 t• i'c+:;i Analysis vs.Allowable Stress and Deflection»w,4rc(.420l1; Additional Data: 0/4:13C/MA tt1R 0 00NMNNAt r%-S5 .. Design Notes: 1w 4'd[MC Neese MCI 00"0GC'4a00 ReS'AiRARCS3%553C2C/3),aha?raumai O005BPX. :x5(NOS 00125,:AR,N00 04440 SEwp44R4Rt 7 PM..m:'y CWF Crs 6cfs.4/AAP+•cor 4raz are 0,174705 YS.'344444:44% 3 O1.A3n delsovr VNuw me!r4A44nw.s otATTAA-M4 d3 AN 17./3/t m FWNJSR-:'C21 A#:Cam YM ANSI At SO 1.2007 4,CATEIAM Cal"555551.45055*.43/.41. },.. 5 0080555Bir,C 44.4 be wove%4.00/44,41 sP:a«t't AA(Pe rrUN 0 b^t NO0 000 00..1 1 S.^:_IOLANt Pea"YS*KAT Sae:rrr 0er.ar c501105sv'+i. 55.00-551,; • Page 26 of 126 COMPANY PROJECT 0od orks® Aug 24,2016 09:13 3FB3 vnab Design Check Calculation Sheet Wood Works Sizer 10.42 Loads: Lead 1:11la odni2 Live . gi.11 041 a.1 Ocli-weilhh .sad 2011 4nna..> Maximum Reactions(lbs), Bearing Capacities(lbs)and Bearing Lengths(in) �__ , 5•_1� 54;5.. 0e:ad 253 25D Lava 897 240 Tatil 1143 1143 Capacity 5asm 11143 ''j Supp=art 1266 Anal/lies 1244 Beam 1.40 1.00 L13spp;r` 0,90 90 o:a.r a rli '2 2 Length .12 Min ...>.o' 52 D.52 Cb 1.40 11 1.40 1.44 CP support1.11 - - -co sup 625 425 • Lumber-soft,D.Fir-L,No.1,4x6(3-112"x5-112") Supports'All-Timber-soft Bearn,D.Fir-L No.2 Total length:5-1.0",volume=0 7 cuff.. Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress and Deflection using NOS 2012 CrtV.erLsh :en'v 7s s Value Dhsimn Gc :6e:d_ngfia - 972 . . _... DO;nd Doll' <1.1999 Live Defl'n 0.06 = L/979 0.l7 - .,3 Total Defl'n 0.99 0/430 : 2.: . , Additional Data: FACTORS; bps ?✓ Ct CL .. , Fa' 19': 0 ... _ ... .. 1.01 :._2 b' . 1044 1.00 1..Dc ... 'e;. 25 - 1.00 1.99 - - 1.00 1,00 - E' 1.7 million ') , 1 . CRITICAL LOAD COMBINATIONS Shear LC 67 V . 1121, V des,.ah _ 2l2 Tea Be:n i t; - DaL, = __ Deflection:.'=,on: 42 = ." LC 62 ._ 0.::de2:1 ,. _loo 5:.-ansa :4 ,3,....: - _-_ _..._.., .._.. .- ,.. .;x .key ,.1.1. LO r o... _ Load C,:mbl ru r.s:A.'� :::V'..3'0 CALCULATIONS. Sefle:]i:ior.: 10I = 62.he06 Design Notes: 1 WocdWorks analysis and design are in accordance with the ICC International Building Code(IBC 2012),the National Design Specification(NOS 2012),and NDS Design Supplement 2.Please verify that the default deflection limits are appropriate for your application 3.Sawn lumber bending members shall be laterally supported according to the provisions of NOS Clause 4 41 Page 27 of 126 COMPANY PROJECT WoodWorks® Sep 9,2016 10.51 3FB4 wivb Design Check Calculation Sheet WoodWorks Sizer 10.42 Loads: Lead TY'S fatd, End Loadl p, Lea:42 „2n.0 pl! 'S1,1; - Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): 11-8 2" Detactered: Dead h20 EI'e Live 701 nel Factoted: Teta:, 1221 1221 BearIhg: Capacnty Beam 1221 I221 Ileppott 2000 24D0 Anal/De5 Beam 1,00 1.0* Suppet, f,42 0,4n Load 'cab 12 42 Lemgth 1,06 Min reg','1 1 12 1.02 Cb 1.00 I-00 mim 1,00 1-00 Oh ouppott 1.11 1,11 Ede 920 021 62E Lumber-soft,Hem-Fir,No.2,4x12(3-1/2"x11-1/4") Supports:All-Timber-soft Beam,D.Fir-L No 2 Total length:11l-8 2";volume=3.2 cu.ft; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress and Deflection using NDS 2012: Crizer:.on AZAlys4 '141ee De4ieh 7aIna '24hIt Shea:: Bonding( - 1,71 thiSo' Dead Defl'n LiVe Defl'm 0.O9 .(L/ - ,1.25 Totai DefI'm 'd.5E,' 7 L[1i0 Additional Data: FACTORS: Fift(phiCe CM Ct CL Cfe 02Cfra Cn 1C4 Fs' 15C I-0B 1,00 a, o - 10 - 453 1.110 1,11 1.00 1.004; I.10e 1,IJ 1.0n - Fcp. 405 1,01 1,00 - 1-0I1 1.3 million 1. 0 2 Lisic 0.47 million 1,00 1-02 CRITICAL LOAD COMBINATIONS: LC 42 D,I, = 1212, V eemn'2m - i204 Ihn Bendi,I'“n): LC 02 D,L, M - 2E] tea-ft Deflection: LC 12 L41, 1.,ive) LC 112 ttenal, e=dead L=live S=amow 1=1anaamt Lt=cc:': Lc-con,,:entfaned E-emrthquake AIL LC's 3::"Q IL5t ,1 in tde 2hnelyala dethh Lead oombnmatienh: ASCE 7-10 ! 201? CALCULATIONS DafIectien; EL - 46106 Im-am2 4,''''' etl mom-ti,n,1 Imada 'Llna, dimn. nmmn,m,L TotaI eefle:::t1->h an eeflmnalen Lnad eofIact,.nn, Design Notes: 1 WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2012),the National Design Specification(NM 2012),and NOS Design Supplement 2.Please verify that the default defection limits are appropriate for your application 3 Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 44.1 " Page 28 of 126 • COMPANY PROJECT a Wo r ks®t „. .... ,�� WO Feb 9,2017 09-39 3FB5,wwb Design Check Calculation Sheet 'vVoodVYori s Sizer 10 42 Loads: p; • Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in) I --- yl ) i t}' 13'-12" ..... .iii; T:' .,,, :-,,,:::,-3,.,,..":.:- Lumber-soft,Hem-Fir,No.2,4x12(3-1/2"x11-1/4") Supports:All-Timber-soft Beam,D.Fir-L No 2 Total length:13'-2 4":volume=3.6 cult; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress and Deflection using NDS 2012: :.r: s Va."'pie JY.a i,ti. Va a uo _2 f ...f.." t= ; 93: 9.4:1 -- L 9, ri :.':s c Additional Data: i.cc'' ei_ nc _ CTICAL LOAD COMBINATIONS. -. - :. _ - ..D.I a� ct r 0 44> 43, CALCULATIONS. DeT1.ectio[; e1)"') r® ny -, _ Design Notes: 1 WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2012),the National Design Specification(NDS 2012),and NDS Design Supplement. 2 Please verify that the default deflection limits are appropriate for your application. 3 Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1 •, , CLIENT 69 --;SA/ .1 Oro,. Page 29 of 126 PROJECT - • c •,,, r , ,•-3 r NUMBER ,Ccfr' :7,41 3c; 182,7; FROELICH —IL s'n'e DATE NEE 123C3 Atroor 3t. 2u0 E. SINRS# Bnornt,sla,Co oracio 80021 720-5a0-22o9 BY: HOE : 1-41 • • pA.eq, 12) 1, ) (21 ) r (-405 LLPLF —4 ( ) (4o) s ‘,00 PU Page 30 of 126 COMPANY PROJECT f yt t f.� WOod\/\/orks Aug 24,23313-3ae-23 337H1"wb Design Check Calculation Sheet womuirms s,,zer 10 42 Loads: ,33.7343 3,3.3333 33337.3-,37133 ,. W3 i Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): 3•or n 33343. 33_ -33_ (J 3413333333 4.3,7 144473 u34374 „,3333g773 33,7 2 i=2 311.33 4,3333'33333 7,72. d :A 3,33... 33733 3,3333 3313 333.333437377 1.3 4 3333. 3?7, 433,7 33349 Lumber-soft,D.Fir-L,No.2,4x8(3-1/2"x7-1/4") Soppcds All-T rr:;r,r-sdfl Bearn.0 Fir-L No 2 Total length_3'-1 d";volume=0.5 CO,0,; La•era?support:top=3t se darts,hottem=al supports; Analysis vs.Allowable Stress and Deflection using NOS 2012: dehenesee .5-nutysle sue pe Design ;sending b 334333 3333,:. l. :. Additional Data: c333 3,333,3 3,33333 e m a3773 .in 3333 3333 CRITICAL LOAD COMS'NATIONS: i.°3ir 773 333-3.73 337, 337-3777731 3,713.3m 33347,33737 3.433377,e4 sc_ 3,33333,733373333443734 ,7733333:n 77 hl.:; 33333 3333. 13:3 M 333:3437D33,43,3:33,34: 43,943333 7-3333 3:933: 7.33133 T.1A,tCDLA uP3, 33e33.37 oei,433 3333 Liv337337.7.33.33733 33.33,. tea: x, -... 33333333.3. 39,43,333 3333, :: .� 333373 ., _- ..r,.� .o:. 2433. -3333 33,33. 3333 2333., Design Notes: 3333. 3333 3333.. 3333 3333. 3333. 3333_ 3333... 3333... 3333.. 3333 3333.. 1 WoodWorks analysis and design are in accontance with the ICC InternaticvOl Building 00.10E;D 2012)•the National Design Specification(NOS 22012).and NOS Design Supplement. 2 Please verify that the default deflection limits are appropriate for your application. 3 Sawn lumber bending members shall be laterally supported according to the provisions of NDS^,lapse 4 4.1 ....11............................________420,k (Th r A) ,..,4 .7.feva. 7- I(41 11460 C) 1.‘ I ---------------- IP i :I - ,..--- ....,....... IWM I $ 0 159)A .{ • c 'V -1 , ) ' I 1, 115S)) I w ... I 4, , , $ ! ) 1 1.--- € 1 .0............. r'22'------- - a ll , „..23 - - ,,. —- amitihmemimiwis , amilmmamr, ir,::: ...i Li - ” I, J 1 === ...,1 I • i . '..., 1 t I ....3 i 1 1 ••, ..,...,.. ,,,., .*•••• ,.'t I ...... .,........L.1 ; i 1 k 1 I i 3 i •, ,,,,, r ....._ ____-az_____= , 1 , , I 24 .. 1 __ _, _ 1 ..„...„ S), ,1) i CO ..... I 0 6-cto ro ,X8 \-.., 6(6 2!..14) re.,00,1e iCRAPAIAJC. • > '....LIL-1,11. 4 , . _ ,.' .,!:,.;",., A. -'6C'TA Ho,npn S-[. 97223 5[03.-.324-Yak [ ! -[[,-,,[,.,—.,'2r!...-[[or, PROJECT: Page 32 of 126 745 NV../M .t [Nosrlincl to-Cr#.205, [41!..,-.---i[2' NUMBER: : , .............. [.[,[[,-,L4 Olc,gon 97703 541-35[3-1 828 FROELICH 11 ------'-'''''''• DATE i 2303 Airpor Way,Suit0 0 2C ENOINEERSg B!.00rnfieid,Colorado 80021 720-363-2269 BY 2 4 c, .........., ......"NiGt. : ..• .• ' See 3AO -........ ....,e- -eiitmAi C)ES)6A) 1 • . . .,.,.... .„„...„_„.. . .. . , ,... .. .. .„ ,_ ._......„. . ,... .... .. . . .. ., , ... . . . .„ „„. „. ':. ,-CY'7'7" CLIENT, . ' ,-'$1,'",,- ''' ,1, :::i.,:z,,, A 6969 SW Hc:nn.;)-on 31 Pcr`iong Oregon*7223 503-622,-7035 r-- .1.,_,0tr.'i'll 745 NW MT Washnvor Dr. 2G5 PROJECT: NUMBER: Page 33 01 126 '''.'• Bend.010,COn 97703 541-333-:323 FROELICH 7-1 Dsn'ier C''''''''' DATE. 12303.Airoort Wcy Su.te 200 ENGINEERSA Broornfiel.d,Cderado 8G021 floetich olgineeN.c1,111 720-560-2269 BY: 8.644,,AAs: 1' ,D 3 fekr,i:: 4 ....... ..--t Li- '‘'.. c51,_LI V ) 7-) c'i,,-i CC' - A 13av 6 -3 Fl (F)2.0/... ct-r 0,, eoc, ) D L% • . L(_ x is oc=1, . I)(2.5)(I 2. ) r -2-ct 0 0 t i 21: a 27: ' 1:3',11•Ai r li ,rti DL. (35( 1-*) i L L 0.(31) (go ) ..r lac PLF , 1 0 to I Li i e i e : r I- x (I)(:11) (440) 5- ‘, G 0 P'4z%Air to A C) e ffitriaom. 1F-a k*) LL -eZ4-304 S 1--= 2....c.o o* /- r IF:1 A Al x- Zo -o E)L,s- 1 2-0-1-Qt )(2:4-) .1. 1?...o PLF ,, 1111,.. — 6969 SW pt Hamon St -, :..-...lregon- CrOaon 97223 GHENT Page 34 of 126 .„ ,- 503-.624-7005 PRO,.i ECT. tvit:Viashinatar,s'r ' Bend.Oregon 9770-3 541-383-1828 FROELICH ri D--:-.----0'-, DATE: 12303 Airport Way,Suite 200 ENGINEERS ; Broomheld,Colorado 80021 ,,,-,,,Crociidl-engineers.com 720..560-2269 BY. ' ''F ,AAJ: V 0 ..- rol,t.r-i- LoAD AT 2 -0 ( rito AA 2.F CI! 4,1r:SZ) DE' icicr, 4+ 92.00 s 1.ez,, boar3 I-1- 21:: B57. FAA)s''-e> —0 WI : DL, 12_0 t (III) (z7)-1. izo -it-( = sc„, ii=1....t= 0, LL s \‘31-r5) U-k 0 )% 4-2.,c) PF S P.A AS S-7.'''''(71 -s- 'Ti C) PLF (too ) (i '...t I"kl,') Lc-co) 1 t-- r (141) (2.50 .s• -SS° P i ar S-T 1: A Nril 1....,•D- i CO, : * (2)1_x 12,0 +(IS)(27) I- Izo ,,s" -4-` c) PLF L Ls I I (15 -1- 1 ) „i--1110 R-F LL,- ( ')(4 0 ) 2.) s acl 0 pcp- ' 1--- (.2-1) ( ?-5) -4'”50 PL'F _I • C LIE NT: 6Q69 SW Hamp toSt n Page 35 of 126 A-,,,,:,,,..,:y, 5,,,,:-;•,cl,I;J2r1,447(03c.r,,.,g 0 n 97223 PROJECT: <,:- k•:..•',.','.. .,,,...:', ,__j (.11..,—,]:.-,:;! '-..••..r,..,,,j,-,,- NW mt.Washington L #205 NUM8ER: Bend,Oregon 97703 541-383-1828 FROELIC --1 1=11 12' ''''':''(Dt'''ce DATE: 12303 Airpo,i Way,Suite 200 ENGINEERSA Broomfield,Colorado 80021 N's,J ro e I id)-e nginv e N.o.,rn 720-56C-2269 BY. !•'IF B9 .., • . PAN. c CY'' ...0 Coalr. / i Lr ( 2 ) (61)(440 ) ,s 410 PLF .., 1 .... f i ..., A:r Z --6. Ek. ria'c) A 1F a`B, ) : r0 vur lo AD g 41 _o (re6AAIrci.32 , ..... DL 464c'c) 41: DL x 2/300 Ma 1550 * I--1- $ I 5oC) 5.1-,-C 1750. t SL% L(c 1 2F al0 • 1, i i /• SPAAJ S " —0 DL (.1.f)(ii) .-t. 12-0 i ( 1/) (z 7 ) -02-0 --1-(1,1)(-2...7..1 pow-Qv tA)Ac)& 0)32 ) = -3-'3c.5 e(- -- ..,,,‘ 1, _ vie t 1 6Q s.(,..c-locc,1,, ...i % i wc›o ' a-3 et- II -14 L LS ( 2)( 11) ( (-40) $ -' o Pe.-F Cit:((.0),(c )((4)(,)(Ltz-..?-:)12-5714)1-roicier)%t : 0.. 5 Ls (2-f)( Z-5 ) 5" 5 O 11-F 0 L._ r i 2--1- por- Lt._ 0 4o PLir- t 3 - U 1 ... • PA Ai r 6 —c) Air tezA CJ AT • SL.- 3(30* • • • • eq s 53c,0* • ,• CLIENT: POf nd, ,57223 Page 36 of 126 5-03-624--700 PROJECT: -;10 ' 745 \-Vos-hing!on ,s205 N um BER: : 97703 541--383-11:23 FROELICH DATE: 12303 Afrporr way,,Sitce 200 ENGINEERS ; er0OrilneiCi 80021 BY: 720-56G-2269 . .„„ riS)2„, ,PAey 12) L t- (e1)(2.7)4. Go t(.991 2-4) I to t(clite e )(3 ) ) T (3)0 (to ) 1o2 lo2.0 ict-F 1f-0' A 0 L;-2--,e Ce, U/3 ' Z7)„L-r(155 ( 41 )11<g) Vs„ * 75L.s. (i51)cc() (25),g /500 „ . Page 37 of 126 —_` _µ COMPANY PRO_CAT , ,t.. 0, r ks ,,,,....„„,„ „a+,,,,,,t Design Check Calculation Sheet iatz-'.rias 1 0.12 Loads: Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): j.�.�...-._..,..... _ _.. ._ li 1I > ,,,,z4„ ;:149. • •"dam x<s lH•km34•606.'s .,Ve°4e9N . LHOV"."''''@"r M.3.4i.mi1c300ro0X*1141t4U*1.4 kt Ird19t0Yt.",.k.dU:dTn9`k(t-1,4, of 04x.3.Mt In,r.,. N:4..tn tA10.16, r. 74ie?.:me Af$,,,,c.+,,,U,.e.,,,,,F:ixi4:nk%k41,4a1,„‘„,,,,,b,,,,,,,,, Glular-Bal.,West Species,24F-1.8E WS.5-112"x7-112" s s>^3-.u;«rk.s_vr [ aw. matt, ,..: .:Aa,Tree.sri Bea,?32. No 3 7d01 ,pt,.1,T;:.+a E7122u R. :,i.vdo ,,,:(;W 17A 7,at.47(”15: Analysis vs.Allowable Stress and Deflection yaiju23 NOS nu: 3 � aat'Itiition a:Data: _. • . Design Notes: 1313;«me«±0..v aNsee+.0 r30e�:saoantxx:e with in.3c int sates.0010107 corse deiC 2711).0000110224 X03 1)04000300772712700100002043130723134100*)"g. :0173, D.* P lease.a0"9 0001Ihe tbh'.q tMlx.G1iX3'w^�<a,121300014021:'.w W'Y'Atq'$cMK+ll 3.00000 dedy:3 reams ate{.rimer a rwnt..p to ANS;1174010erml tranttaddied in.400700xa Mil 003747070)17!A7 4 Grams :.xr,airs banding r. ncMm the tor and cash:edge,et the 00n4 11x032 tea imomener..s rr.004 000:;x.9 eemaa 0030.034.n.a acs sxcaxn00047342 012 8 Gedv010.0200 Mad 02*210117*410721*)megati1300 am{as.00%.of NOS Claro4333 73077 V ik:i 139 ie10A 7.ed vn armee.ofaggeenv,o),030300 eNd. 310 cr0cal 0.00010•akin teeMalM.9emo..Peng(lm*MT9 ber-x..s1?J`deleebn 7.000*+H de...ime h .-.,....04 1 desg.. Page 38 of 126 COMPANY PROJECT .1 AC IN A At241 Design Check Calculation Sheet .,o 033Wc*s Sizer 1042 Loads: 3 9999 ....,.t :,,,,a. F,.'a, .$..: r—' .; tb- 1.97302. '7379. 2,373 ..792:., 104.19 779 4.49 Ins .3135 4,3 ..J_f:i:: 'SCfc ! is '-; ,) 7.939 77+.90 00 r.t:S 4,1. 9141,- 14,0 _4.9,31: :019:44 pl£; ,3007734 +91 U01. k. .1:' ,'ll 1 txA L449012 944,4 70+0, 00 9,904 249'3 « ; ..p,1,' 0,7473 7x1.4 uol, 13- .7 pit Maximum Reactions(Ibs),Bearing Capacities(Ibs)and Bearing Lengths(in) -....._.._,., __. �,.._- »........_ 22._12„ B ki.. X 11' 2 D:: .) 4 t: 3-3397.77•90: -.. _..1-9t0.7. 10791:1) ,. 3.305 9,7,77197t, 9999 9999. 9999. '.,p ::7 <;nrr .. 3305 77upp,_t ,.t.. 407;4% 3477 2,90 ' 1'm; .t. ..;40 701, fl3 02 2,4:et, f440 740 i.C' 3.99 .4t? c,; 13.... 3..09 t' o , 4.45 fr45 'M'aa main 140,0744 41111,r,0v4mb44 Ity ahz:.€4433rre4 o94111 01 1h4 sugge iii34 m4)141441 Glulam-Bal.,West Species,24F-1.8E WS,5-1/2"x25" 10!arn naaiwns.5.1/2-maximum width, Supports'.Ali-Timber soft Beam.0.63.7 No 2 Total length:22'-1.:2";volume= 12:7 can.; • Lateral support:loft=full,DOttem=at supp0:45. Analysis vs.Allowable Stress and Deflection ueirtg NOB 2012: taxa .. 40 v'' ;.<u. 4s I ttxtlt. 704,)YR3 It.tt4:',:,t4v 6: 60 ., ter,Yt' ;7 L : F. 23:0 73.9,7 r .. �.. .....n 3479 )1.):': - 1.12, 9..1" Additional Data: 7:47 ;). 4,44 .: a ., _y 9999 ,., 049' _ .- d 7.00 2 tx` - -.3 - - - 3. :0 _ ;. ]. :^ ,.:i ,39,37 :- ?d- 0.979 7.- .01 1>9r , 000' .,: : 1,040 1,410 „ _. .. -- • iny .. 03.4 .. - CRITICAL t.773 0004,4314.0.nC.14,: • 04 : .. S31 27' 41,•37 a ..+ 9.04-4±;;04 I `0 15010 03 0,;44, i - -...-_- e +.0 0.0,0,-0<00+,0 -0 011 L < k 'ye 4 3 _ Le. 42.74.0'iLAT+?;1. • 'e e '00-4.41 040 4.:'."4.4, 979_ 731_9,___ .-.,_.._.t ,. _ 11-,. Design Notes: I WcddWorks analysts and design are in accordance with the ICC international Buiid!ng Code(IBC 2012),the National Design Specification(NCS 2412),and NOS Design Ouppiemend. 2 Please verify that the default dei!erti01€041315 are appropriate for your apft 90009. 3 Gluten design values are for maleriafs conforming to ANSI 117.2010 and manufactured in accordance with ANSI Al EC 1-2037 4 Grades;Milt equal eending capacity in the:Op and bottom edges of the beam creseseaian are recommended for continuous teams. O.GLIILAM:bxd=aeluat ereaclh x actual depth, 6,Glelanl Beams shall ee laterally supported according€a the provisions of NOS Clause 3.3,3, 7 GLt3€AM:bearing length based on smaller of Fcptlenssioe(.Fe.p(e0mp'n)< • Page 39 of 126 COMPANY I PROJECT 1 zap'111 WO 12� y,„„,„ „,„„ iFeb 112C 1211 2iiti3yissb Design Check Calculation Sheet 42 Loads: UpT4 42434 343,2 133, 273Lax1 4434 4223,14 , 443.,3 22,5 Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in); : �.-..,—. _ .. .�......�,.a,:. w.20.g5• ..ala. �>..... _ I L>s 24'•42" 91:22 ?SRF Tot i. :..3 17020 y74, 3c 5ti1 3q 11442. pp, l? t. ✓:r 0 - ut , .�: .Sig Y.P 4,23 d. fi tip til PP 337, Mnh:ro _ _... - -1110,400 awartr,40110.;2{l2,,,if r•'t oy tha roquirrd waSti et the soppoiting mitt bar, Glulam-Unbal„West Species,24F-1.8E WS,6.314"x21" 14 laminations.6-301"maximum width, Su8P4t1s:All-Timbens0'1 Bea-:o,D.Fir-L NJ 2 Total length'20-8,Si;volume= 20;4 00 01 Lateral 009000'lap=full,094041=full; Analysis vs.Allowable Stress and Deflection using NOS 2092: .<.., < :ix,o:.5 Y (y',r; ,1�+:.- Rn:v,z - eipn psi) ra Additional Data: itacToitc cv olio Co cf 4,33,1.443 L‘7,4 - .. I.{; 1.0C _.t, FL' ..'i 4,.., 0.923 1.00 1.11b 1,90 1.110 2 CRITICAL LCA`)CiiM90'l?T'tt'tlO. itenil lit liC =z - 1 1 e 1 s3 el .. 23424 -ra ,:.a_, - too E. __x.. 511�0', CA.i.CU A'V)N$: Deflo,o,23,424 E2 3377,30 ..J. '8400.1 Design Notes: • t WoodWKrks analysis and design are 0n accordance with int ICC International Building Code(IBC 2012).the National Design Specification(NDS 2012).and NDS Design Supplement... 2.Please verily that the default deflection limits are appropriate for your appficalion. 3,G€ulam design values are for materials conforming to ANSI 117.2010 and tnanufaCIured in,accordance with ANSI A190,1-2007 4 GLULAM:hod=;Kiva(hreadth x actual depth 5.0101am Beams shall be laterally suppontut according f0 the Crovisians of NDS Clause 3.3-3:: 6 GLULAM:bearing length basad on smaller of Fog(tension),Foolcompn). Page 40 of 126 COMPANY PROJECT Y3 5 k s 4J 0 0 d Wo I Feb i 2077•2:13I 2FH.},www Design Check Calculation Sheet WooftWorfcs Stzer 10 42 Loads: 10.372 Live ..,.. .rei t1:t; a8. 2317 001, if Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): E Ee, -. 10.. 23111 '.17 e cz0 r;,., 7:901 15015 1,159 000,9 150111 3ug>pn 70 15415 u1108s Sw"7. 1332m O.se Su[+p0<0. 1.00 .10 c.ud ,-..n01 If2 -.. !.C 1 Length 4.3' z c,37• >s ae at, 08 1.00 Cb support 1.08 to-p err 625 4410/784M.M7,27703!Ifq Cooiojyf gnvm eett by me requited redo:of me sF,esmn mL'35'?£x'X 32' Glutam-Unisai.,West Species,24F-1.SE WS,5-112"x48.112" 1 i laminations,5-112"maximum width, Supports:All-Timber-soft Beam,D.Ffr-L No 2 Total l00gth:8'-6..0-;volume= 5„4 cu,8; Lateral support:top=at supports,bottom=full; Analysis vs.Allowable Stress and Deflection using NOS 2012: :xinn M3110.14 a_ue I ... Bending h.? 1573 • 1370 nerd poll:0 0,04 a. 011994 - .... Ue`l"e 0.04=.w 07,1,439 0.37 - 0. 4 '..rv1 Ge67.'n n_70-, L'.F; __ r: Additional Data: EA010013< 010:ps It CO CM C0 cv 01,. ,r - 265 .00 0{t .. 0o - - 2400 1,00 .00 .00 1.30 FOp' SOO - Y 00 1.00 1.&<<<OSlod 1 70077:y1 0.83 millirnt } -. ., .. _. CRITICAL LOAD COMESJAT'0N5- ..._S030,61. A,0 02 L-. y rd:oq: 1 H - 1 _.... e 1 1 1,3 02 ,/ 177 02 0=' co'.: <O'-dead -,Live nr.;w:-, n., 11 Al a:. 1.st.a 1r: A;;;1; _ Lund r.::e: ., e+,.=Ce. F 250.1< 1▪.1 CALCULATIONS, `1900_3.,• _ 3203.35 "1/53:3 i 1:1.80 t . - E1<0 e _..r: t10,723+ Tocc1 De tilitotti<. 1001e:0 1,20 • _ 1.8.84.1 s1:xk,il z .. 4. ..-. - - 15 Design Notes: 1,Weo tWorks analysis and design are in accardeoce with the ICC International 50:114ing Code(IBC 20121;the National Design Spectloaiton(N00 20121,and NDS 005000 Suprioment. 2.Please verify that the default deflection limits are appropriate for your application. 3.Ghulam design values am for materials conforming to ANSI 117-2010 and manufactured in acconlance with ANSI A19.1-2007 4.GLUtAM:bed=actual breadth x actual depth. 5.Cloture Beams shall be laterally supported according to the provisions or ND5 Cause 33 3. S,GLULAM:bearing length based on smaller or Fop(€enstoo),Fcp(comp'n). Page 41 of 126 '—y �� COMPANY PROJECT ,, l' 1 W. 1 Wood\/\Iorks® :„.„- Feb,1 f,20�7 12:12 2F135 wwb Design Check Calculation Sheet A.ticdWeits Sizer 13 42 Loads: F,aad x. v'ni'.,. a T. I 11 Maximum Reactions fibs),Bearing Capacities(lbs)and Bearing Lengths(in) s-3.7 _ ®- '-- S'-t o' nl ud: Ooad 9517 1171 2290 t,ive210^ _- _ _.. ,ocored. C:.6? 'icctal c5'% _. . Capes:ry, n.,ar:, 5167 191. riunno66 6740 Tara1:ilea I.')'J Beal 01' 1.1) 9,9: ez ..mo 8z i..a2 10 Min 1.64_ ,1 .ac Min .ccg`:1 4.14 1 t.11 :D Mit: 1.00 C' LD0 ; au0 ozc: 1.Y7 . y Glulam-Unbal.,West Species,24F-1.8E WS,5-112"x8" 6 laminations,5-1/2'maximum width, Supports:AU-Timber-soft Seam,O.fir-L No TOM length:8'-3:7";volume= 2,9 Putt; Lateral support:top"full,bottom=at supports; Analysis vs.Allowable Stress and Deflection using NOS 2012 E' 1 eo:ob A aIy Lo;./H (/03/]', 6.1.1. iT„ t `.4$�- ;,.helot l ' 4.:4h 3ard6ry11I 16 Zi14 1.' - .. ... Dead 0011' 11 . 1,1667 L F.::1.': 0.12 2 0,25 .. i;165 .,, S: Additional Data: PAC70503 tfEipstt CD 74 1 0l .n. 2460 t 1,00 i.00 _., _ _.. , Fop' "B50 - 1,60 l..:;t: _ _ .. -. _ , t ;:y' J.00 million t _1.00 - .. CRITICAL LOAD COMBINATIONS: 6.^. 02 -- > V - _ _.,. 9h......9h...... � _ e •Banding.1): a2 1• M- •,u __, .,_ letleot 4,c, 111 42 - 6.40 t(0,.. Al:. ~ .re _ ,$. in A t us4 co....V na[:;on... A C': .4 , 1-', 2. 12 CALCULATi01S: Deflection, It -- 614:07 1 40601 lc• bort 1,59“,..., to .:..:._ x Design Notes: 1..woodWodts analysis and design are in accordance vitt:the ICC International Building Code(IBC 2012),the National Design Specification(NCS 2012),and NOS Design Supplement.. 2,Please venfy that the default deflectionmit lis are approprale for your application 3.Gluiarr.dasign vatues are for matedals conforrning to ANSI 117.2013 and manufactured in aacerdarce with ANSI A190.1.2007 4,GLUCAN:hod=actual breadth x actual depth, S:.010(300 Beams shah be laterally supported according to the provisions of NDS Clause 3 3.3. O.GLULAM:bearing length based on smaller of fep(len<_ion),t`cp(cmnp'n). • Page 42 of 126 COMPANY PROJECT 1i' r) 0 WI'114 d Wo I a, r,: .,,e, iS,2017 12:16 ZFE;.xnh Design Check Calculation Sheet W0110I:Wnrks Siler 10 42 Loads: It.- ,r, , lr Full W155 1,0.11 r1. 1.6 Maximum Reactions(Ibs),Bearing Capacities(Ibs)and Bearing Lengths(in): 1 1 << T.. 7' 3, ," 2;t 2856 1 m,d: so ",.;.Lai £044. _. `, v4 2:i.9 5044 ._ :'1 (i0 0. 1.05d 00.0G0 41 9.1 ab2.66 1.66 r1.01 Eb nt 1.r: .. f:2: .t,t Glulam-lJnbal.,West Species,24F-1,85 WS,3-1/2"x11-718" S laminations,3-li2"maximum wrdtn, Supports:Alt-Timber-soft Seam,O Fir-L.No 2 Total length:7-11.3";volume= 2.3 cu It; Lateral support:Sop=full,bottom=at supports; Analysis vs.Allowable Stress and Deflection using NOS 2012: Cx2ne:mon An4Igaav Vaai.nrx ilcaigr sal<a 4,10:, ,12! y<,<f 10,, < .. i> -- 'e&S 01 :;;iii -- 1305 +t' -2000 psi rk:E'b' _ .,_, D, 0. - <1./On+ Id r 0.07 _<L/f49 0,26= til n 40 6,26 Tot2i. 0,4E1. I 0.14 1.1543 0,3:1 - 0l 10 In 0.14 Additional Data: 131.100' 00 Cts El CL CV .. ., e5. ;4 En. 2113 1.,00 1-05 1,00 - - ;IV 00 :' 1. Pf>': .00 1.00 1.00 1.00 1.000 1.400 1.0<) 1- ( Frp' 001 - 1..00 1.00 .. _. - ,0i, -,. E. i <i Ilion 1.00 :.00 _ E'nl 7 0.05 11ion 1.00 1.00 ...... CRITICAL LOADCOMBINATIONS: 1::, Lc: 42 - 0'1, 54 f 5'S9, tV,ic.ig, - 3901 ..,- f11 15 02 - -'1s, a- 10720 t"a -ee D,-t _ .,, , 1._ 03 .)-,.7.5i1,,S) iliVel CC 43 = 0,,:151L.5 tto4o1.) rr,,;l_ f ,. -- _ lmodo.l+owind 1:-<n 0.t Lr-;.,>x,' rive t2. ._,.txated 4_c1q::4.4r rill. 1.C'3 :1t,f, It=,ted <0 100 Arat_vsis o*..t0nt i,o.,,i :-,3nai003...,,s: 16CE: 7..111 r €:ec 23)1.0: CALGULA''10NS: 023' ','''<' El = 6dlk,06 1k,-i0l •satilec a Oe'lvct3.or, limml a124. oa k--d )v:1<L 2, .,,....z..i ., t C ,.0,1 .., 1.50Oc+d 12262 L fldction) + 14v0 Lnnd ).-.61n Design Notes: 1 WaodWorks analysis and design are in aCcanlan0e with the ICC International Building Code(IBC 2012),the National Design Specification(NOS 2012).and NOS Design Supplement.. 2.Please verity that the default detection limits are appropriate for your apps?cation. 3 Guiana des,gn values are for materials conforming to ANSI 117-2010 and manufactured in accordance wain ANSI A130.1.2007 4:GLULAM:bad actual breadth x actual depth. 5 Glulam Beams snag be laterally supported acccn}ing to the provisions of NOS Clause 3.3.3. S.GLULAMi bearing length based on smaller of Fcp(tensfon),Fcp(comp'n), Page 43 of 126 COMPANY PROJECT ,�?� 6 s . 0 0 Wo r k s rain 11,2017 12:r zf'B w n Design Check Calculation Sheet WoodWclks Sizes 10,42 Loads: rd 1.29 1122n enanl 4,4209,125 01241 -lt _t r i Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): } l De 74'-.:a un tn,n'i: 0' - >azi. (inert 5421 5421 L 41:12I I 49 Tetal 1J346 71 }TLlb y 19356 216 00149,424 40926 .r,' eoppnr4 0.'47 Lead ,mace, e22.1 ,c'(h 2.49 'd 2. Gb 1.60 '_'b min 1,00 Glulam-Unbal.,West Species,24F-1.8E WS,5-112"X15" to laminations,5.112'maximum width, Supports:Ad-Timber-000 Beam,D Fir-t-No 2 'fetal length:14'5.6";volume= 6.3 cu ft,; Latera:support:top=full,bottom=at suppartS; Analysis vs.Allowable Stress and Deflection using NDS 2012: ry E ri%Ir'.�.,, a'(a;£a Value A - tis -�o�"H.-+-+5 E J'.ur 3" J .. y .x E. `-'<rs,^ .0. 1.8-4 E. 20. - ,,, - C.-f`-.`b (I,' 0,1: 0.23 ' 56 9.57 .. .71 t ,r:1:'o 0.00.- .2.. .,.,. ,. £r: .5..._. Additional Data: FA TORS, :1:a i: ,:t .. . ::E f.)t.n C .x . F✓' 265 ..00 1 - Eo'- 2400 1.00 1.00 1,00 1.004 0,009 1,21 1,91 1,e9 i.n, E i Foo` 651 _,- 1,G 1.:' .. 0: .1.1 million 1,1J ., ... .. Fr ine` 4.55:nillioo , _,.. 4 CRSTICAL LOAD COMB6MAT€ONO: Shear .,, !..; 02 - 9c 3 921 _.. Pc-,i1:.3 t.1 c02 _ .... 50:'..02 05,001 LC 12 _ is): :1400, LC iii: - DEL Etetal1 C=dead L`:`.r ann,-br d 55-,a4.04, L4-4.499. ., _. 459,250a9,544- 011 LC:a ted 450:traly1X ,.:irat:one: 510."1-5.0 . 190 29).1 CALCULATIONS. eal i.::a:ir*n: TU - '<44o59 1.- 'Live" dt1dc. , De4 lean .. . 9. Design Notes: I Woodworks analysis and design are in accordance with gut ECC international Building Code(IBC 2012).the National Design Specification(NDS 2012),and NOS Design Supplement 2.Please verify that the default datiection limits are appropriate for your application_ 3.Glulam design values are for materials contonnirg to ANSI 117.2010 and manufactured in accordance with ANSI A1901-2007 4 GLU(AM:bid=actual breadth x actual depth. 5 Gktlam Beams shall be laterally supported according to the provisions of NOS Clause 3.3.3. 6,GLULAM:bearing length based on smatter of Fsg(tensfon),Fcp(eomp'n). • Page 44 of 126 COMPANY PROJECT 1-4 °. woo Worksd sit 11,2017 12:18 2!EN.wt; E Design Check Calculation Sheet I WeodWu'Ls Beef10 47 Loads: :Thow id, nett ahr Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): S --- ,",M... 7-3 7' I i i r --,.-- _. ._.,.... ...«.._.,. -.....,..r_.....m- a1 17.1 9" { 2. 1477III 42a 1 In :2.:^t,, 4244 1 ilii fl dT 1.0/ ,94 1 •'1' 1.013. 1,2d Gtr 3: . 131= 11.Of: ;:t, sr11>33 1,11 1.11 1321, Giulam-Unbal,West Species,24F-1.8E WS,3-1/2'x11-718" 8 laminations,3-1/2'maximum width. Suopo:is:Ad-Timbenson Beam,0 Fir i.No 2 Total'engih:12'-3.7';volume= 3.8 cu tt.; Lateral support:top- toil,bottom=al supports; Analysis vs.Allowable Stress and Deflection using NOS 2012: /'.>t ..32n Anr.Iys:.s ;n VaI.. L':r>I:: )Raul t., ;..Iv �I _ n,1:+y ft, -9 10Sti 4.3 y.I l-a.I1.` 0 - LIL90 Q.tl' 11- '742 C. - l,u,.1. 0.:':r ,c✓0!., 1-'-'5. .. .. Additional Data: ,::,, - - 1,,,,E4,....,,i) Cr3 co . _ .. 22> it} 1.0(i 1.00 - 6't>' 1t40., , nt1 1.00 1.00 13.3.12 1.,),x, 1..0 0 1.00 - .. rzzs' L>S9 - 1.00 1.00 .- .. l.cid _ -. .8 mill1.0 1.00 1.033 .. - 1 .. . 1�r,:i:,.;' 0.65 1-.1 ' 11 on 1.00 1.:113 „ - 1, . CRR i'CAL 1 OAC)COMBINAT€ON&: . 10 I2 > .. s._.. ...a 10,,,,1 e. 1,7 02 Jt.1 - 127 , N:f 1001.i.<:�,; Lr' 42 .. i10-, ,..e; t,( 332 11f1, . 11=t1.>c. i...I.i V.: 3,000 0-,, ...o3' e ......t; .-...::.a.''Kr: ,.11. s';'o ate 1i 0.d - . 01>0 Y __ 3_,333,.. ter.. _ x;r E.�::* CALC :o />.i.na1.00>'.>>: ?SC. 'i.-Ie s 2312 xULA'CONS: 'nflr,_:k_>oxe.0E: r' �: Belled i 7,,> p>.:-Ion an - ,. : T.Lai lI fl.ecei_. 1,'LOItead Load „ .;.:... t.>a,! i'i.fl.idadi.. Design Notes: I.WoudWarka analysis and design are in accordance with the ICC international Building Code(BC 2012),the National Design Specification(NOS 2012),and NOS Desitin Supplement 2.Pease verify that the default deflection limits are appropriate for your application.. 3 Glulatn design values are for materials conforming to ANSI 117-2018 and manufactured in accordance with ANSI A150.1-2007 4 GUANO:bad=actual breadth x actual depth, 5..Giulam Beams shalt be laterally supported according 10 rho provisions of NOS Clause 3.3.3. 6.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(complr). Page 45 of 126 • COMPANY PROJECT ' v i \> z� Design Check Calculation Sheet Loads: Maximum Reactions fibs),Bearing Capacities(lbs)and Bearing Lengths(in): .._ ...._.___`._ �._,....�,. __........_ ., Glutam-Unbal.,West Species,24F-1.aE WS,5-1!2•'x15" to Wniatoos,St?RWIAan 10.10, Supports:All-Tomboy aol Bmn,n t 4-1 No 2 Total ier4tt:Bt,1 wtkxne=37 call; Lateral supped.tops 404,014100-111.41,ntta; Analysis vs.Allowable Stress and Deflection 2012: 1, n• Add'td:1ti., DA"L>, ass Design Notes: �.�1.c' t Wor#YJu�s+ani 0101 4ep�1 are h x0+rettoc0 0Yh 00011 the(CC Irrern a skstm Cods(IeC 20124,os IOokonN Uaaign Rower000(0414 201:1.001 NCS Ordgn 3:4{ttma+e 2 20.4 toots rod rot 01o112011444;01 inti tat,XPVWXe toot Wt. 441114). 3 Os.ftstorsortv 004011010400100442 (1.20411.1010.1ad4ede5 a011040Y3 wfib ANSI A`S()`,.2331 4 GLv11101 hx6=av2ui ivn0Qh x.ae:;xtl Qetril S GYAgndame+shalt LeortratBs soppNted'xresdAy:c are 4e '.&Osla 0441113 C:sos.33.3. 3 0i(A Air!10'n(}401944 Ww3,1 as trnal.1041CptenS 04.012(120 44 • Page 46 of 126 _— COMPANY PROJECT '.3.� Feb 1 i (jtli 2.23 23010 We(: Design Check Calculation Sheet Woodiverhs Sizer 10 42 Loads: • adadl 1.74e p9-9acada 177.7 pat plt 999aheueke a4774 7.11 -19094 tooa11 99,590,47e :4.17 7a2474 Ina 1250917 Ba99997,99-7 Mei,. 11.1.9 54 l,ea } Loa49 aerie ho,mleLev - .19 Loaell Bae, :1,16 410 les ^_i:eht Mooe 4411 sr;. Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(In) _... 14'.1.0- enfaateradt evad 10191 Live 4274 144443 3 Sadv 759 set thgto<h =2213i Metal 7919 010 sealing, :age cape.. av Beam 0917 6103 49999.9 9079 700 A Bea-, 1.3 1-011 Seppora 0,99 0.97 Load ome Ie m3:r:' p Mao oeq'd 2.?:: .' 131 (13 .4i Cl,,..... i.. CO sup^5o9 ?.97 1,00 1.07 GIulam-Unbal.,West Species,24F-1.8E WS,3-112"x11-7l8" II/ordinations,5-112'maximum Width, Supports:All-Timber•son Beam,0 Fir-L Not Total length:14'-3.9';volume= 8,5 cult; Lateral support top=lull,beliom=at supports; Analysis vs.Allowable Stress and Deflection using NDS 2012 eandin041 t5 , 1474 77: . 2404 a< Ben; >, m a Total Juf:_'n i3 Additional Data.FACTORB: a4941poa..11101 414 1.4 91 79 044 Cr 04.7 4:44,9 .14°Ce9 add 1.00 2 _D'- 100 1.90 I.30 1.49 1.0. 9 BBC 1.497 9 C'n 1.e Foley' 0311ad,lion 1.79 1.70 _ CRITICAL LOAD COMOIOAT:00W Shea.. 4 t9.9, a4adae 4794 la1.949 cn^ spy; t _ 043312.03.0.: LC 9., ., 04.74974e5,B1 LC . Yds d f 9,-.9,59,97retee Lead <:J.srxt .i. _ 1.y CALCULATi0NS: Vetle09..9,9, 6179,94 eat-1,41.149 ,_.„_, 19910.91 1901. 4.791,0 1.447 19951 909 47,97; a 11, 17,49 tatIoda,17, Design Notes: 1.WoodWarks analysis and design ora in accordance with the ICC international Building Code(I50 2012),the National Design Specification(NOS 2012),and NCS Design Supplemer:l. 2 Please verify that the default deneclion limits ere appropriate ter your application. 3,Glulam design values are ter materials conforming to ANSI 117-2010 and manufacturer in accordance with ANSI A100.1.2007 4:.GLULAM:bed=actual breadth x actual depth, 5.Giulane Beams shall be laterally supported according 1d the provisions of 1405 Clause 3.3.3. 6 GLULAM:bearing length based on smaller of Fcpflension),Fcp(comp'n). Page 47 of 126 _ - - I ______ • I COMPANY PROJECT ..-IT:i4giku, I ,%1,'""„4„. •,s,, 1.'• ....,' ',,a, ivy I „, (1.0 t ? --•,--$ t. 0 Art, „ri,d 1 i 4 6,1 Wily up 0 r K c ,..„ 1 t Feb 11,2017 12:24 2FBI 0 wwb Iktg2P' ,i,5env131f.11>0 4?0t,F3il,,,;:, i Design Check Calculation Sheet Wou4IN0030 S3304s10 42 Loads: 1sa, ,152, :3.: 53133 43:2 Lecation 1611 0.:Is:3,0e 0,31 k.0 14,501 1AO V15 303/12 1sev eon 311 120.0 slf 4,0410 1/1.1.1. "5'3 .50.0 1-21st 0.10 12000 11., 0.10 -120 ihs 1,5,16 es3Ft 1,1.10 -12000 11,2 Isox317 1,,,,, inlat 1.1e 111000 100 3.10 1000 r,H,,,: 14,10 .1.300 1:50 3so412 20:0: 14.10 400 32.011 Siv 25.s0 13.18 440 11,3 3o1f-ovi11511. 0,..,-.6 1-50 I 004, 12,0 p11 Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): t- ...„..,„......... t iss=2,-,cas21=1121,--SC, •' , -- 1:L31 i.14 4 14.o,y :32e4eeolo:14 Dco.: sesv 4600 131ye 1:5, 1443 13330,004v3:0 512, 52:!t r.,t ...,ci: • ii: ;EI: 017 .:10300020: , 3:30444F3ty 6100 233NA.333: 6200 Se,: 1..10 1.101 1.1.:stert 11,91 Le0o sAsk. S2 4if 2 1.00,13: 2.19 01., se:2, 2.15 1,71 03,, 1.00 1.00 Ce sys 1.00 1.00 1.02 3,4, ..... 1.213 Gittlatn-Unbal.,West Species,24F-1.8E WS,5-1/2"x11-7/fr 6 laminations,5-142'maximum'width, Suppons:AR-Timber-soil Beam,CI,Fipt No 2 • Total WO:14.-3 91;volume= 65 co ft; Lateral support:for full,bottom.at suprxots; Analysis vs.Allowable Stress and Deflection using WS 2012: c,ri.uriue =no tysie vafue lia,,tun Va1310 Unit Analyeis/Devion ASear tv- 152 6:2' s 202 p2: 0en31411, 133 40 - 1431 vss 00./4:6' . 0.60 0e3d Den's 0,29 . 1/227 1.1ve Sef130: 0.13 s 31.5499 0.47 s 0/360 so 0.28 325341 neft;= :TO', , 3,3100 0,s1 s 1,/240 ,, 0.60 . Additional Data: CACTORS: P/C:2041,1V cm CS CL CV Cf. Cr C1s0 0013eI Co'Cvs 1,4211 Fv' 244 1.00 1.00 1,00 - - - 1.00 1.00 1.00 2 0134 2100 A.24 E.24 ,..00 3.001' 0.001 1.00 1.00 1,00 4,00 - 2 Fc ' 0130 • 1,41 1.00 - 1.11 si3111os 1.00 1.00 - _ . 5 Emiay' 0.02 m11l3.2e 1_00 1.00 - - • _ 5 CRITICAL LOAD CO013NA110010: Sheer : 1/1 42 4. 23s, ,.,- 50703 131 31,3331.00.3 4110 10v 11033.014:11433 Lc 04 - 031., .0, -34 10949 1103-11 Dellec1313.0: ;A: n :, .'n{1:,..5,...7Ei Si1vo) /.4:.: 05 s 13.241452'.31,1 (total} 11.0de3.0 1./ive 1031new 1.141-,13.4: 1.41.pact 1.6e400f live Lcs0oneestc0ted 43:0-1.14.1hqueke A11 0CV0 400 11.11.ed is the Anolysie cotpot: Lead sev333.13s5.1Ass: ASCE 1-10 / 110C 2012 CALCULATIONS: D,11 :154,53 :11 s4 130204 A 0-i.,32 vtavv- 33,.> A.33 - 34,31130401.0v 40.3v 3311 002•1104,1 1034dv 1111e, u:ind, il..,,,,.I TOC al se-r.lest i,r1 - 1.V 030000 1.35003 2-011e1.1:1on1 3- Li,: Load 0.4f14,303.0013. Design Notes: 1 WooreNolks analysis and design am in accordance with the ICC International Building Code OBC 2012),the National CesIgn Specification(NOS 2012),and NDS Design Supplement 2.Please verify Mat the default defleotam iirnits are apptoprlate for your application. 3 Glulam design values are for materials conforming to ANSI 117-2010 and manufactured in accordance with ANS,A100 1-2007 4.GLULANI:bad=aolual braarith x actual depth 5 Glulam Beams shall he lateially supported according to the provisions of NOS Clause 3.13, 5.GUAM!:bearing length hosed on smeller of Fcogension),Fcgoomploy. • • Page 48 of 126 .. COMPANY f*RJJGCF �...._..__ ...-........._..__,.._............�_.,i oo S Design Check Calculation Sheet to Loads: Maximum Rdectiem9 jlbs);Eleering-Gegatitles-{lbs)end$ea ng-4oengths din?- :r.35- • • i� { Glulein-Unbal.,West Species,24F-1.8E WS.3-112"xt1-7/e" Tor*d+S5 2-3 51..24* 96:09 e 044 NI,teeteme a4.44.4 Analysis vs.Allowable Stress and Deflection. N 2012: /41.111,t/14211.4.I Dal rA Design Notes: .0h.tift0.4 NYiA'.::n end:MAN aeen nevi--Ne su mit,tAa101C leteereimeal e:42100 L'r,(042 20131'{N Me. froe D A . 44444 S C 2J:j.a'A aa,to S4ipbew'1 2?Wu w.v,(y T#the:h v#.4.24.344'..4'4'4 a(h'.(yui 43.Giaa0144.4.4:m e44( 0431:4v 4.eareesq W ANS{11712010 iced crar.444.1"xi.044404 444:114SICit 10.1007 114111AM:.4 s 4410,41 bxadh ttKUSN de{fts 6.Sheen;Det.{4N1 Ce Were.u.0324rtied.444400 le 4e per.2t M NDS GM e.R.3 6.0,uLAM:4eanmg.044 abedm 0444 of 11443044 e.0,114'(040.4). Page 49 of 126 COMPANY PROJECT g i" f�s �. ;; Nar 13:201 d:55 2F812 D Design Check Calculation Sheet LNor_aWorks Sizer 10.42 Loads: - t- L dt d Seed u5v pit d.) 6 �1F.1 0,5 pl4 . d5 ,now Ful l: 44 - 17.1 , Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in)t } 1T-ti tr-------. . .._ �..,1 f...ad 41124 4716 t 9601, Live 56011746 Snow I 0,73i Factored: .1,,:i:35Total 10336 950 i;iteam 103360+69 AnSupport :0516 ailues .(t0 beam 1..06 0.3`r St,ppnr_t ? ?i' 97 Load co.S 02 i..42 Leo5oh 2.,Lt`i .'19 4M1 1.6') p.i)t; Ohn 55 1 iib min 1..5"v 1.u0 C5 s opt. ._ .j`• ,<.,•.+.1,, ~622 Glulam-Unbal.,West Species,24F-1.6E WS,5-112"x13-112" 9 laminations,5-132"maximum wkfih, Supports:All-Timber-soft Beam,D Fir-1.No 2 Total length:10-11.13%volume= 5.7 cu ft,; Lateral support top=full,bottom=at supports; Analysis vs.Allowable Stress and Deflection., ,,v NOS 2012: re xic>n Analvsls glee De4144. Volum 14 a. n)9; Shear flu 151 9542 H. 2 1 p• ue :q4+) £b -205' ti' - 2400 ps1 1.44(7.96' v 0.96 load Def11n 0-14 Lf93e Save Du`.1'n 0.1E - L/021 049. ,_ 60 4, 0.14 14,0 M,:'.,r1 0.36 - 7.131' :.54 v 6t240 11. 0,69 Additional Data: 0ACTOR9: F/E4p9i1CD '34 33.. Cc CV .12,1 Fut*. C- 0 LOUFe' 265 ,0.) 00 1.00 - ., .. .00 1..09 2 Sb'-' 2400 1,00 1.90 1.1', 1.3:0 1.000 :.00 1.90 14U, ...•.t - 2 Feb' 650 - 1.0,: 1.00 _ _ _ - 1,00 _ .. 3, 3.5 million. 1.50 1,)f) - .. - ;.,.)r, - 3 Finlay' 0.95 millxa' :.7:1 1.04 _ _ .. .<pti ,- .3 CRITICAL LOAD COMBIRA1302$ ,Shea:. 12 - 314E V -. 10174, V M951q. 7957 iba Eeadingi+i: LC 42 - Sal., C- 26666 15:,�-fi3 " Dek:eio,1. tib L4..7511.45)� o) VLC 03 - 10.,o E ) 1total1 0-dead i 3.-1:L ...ON 14.oi,4 1,'xmta:L Er-roof ;...ve Le..... .`... t. oo£45.;unke All 1.2'0 ire listed in the Ooa1_70iu 67150% tions: ASCE 7-10 ; __C 2:112 . CALCULATIONS: Def1ectiont 01 ,42033,900 1•-:. -' "1.1d4fi ,.tion u . 1 e ;rall n 1 d-ad loads (live. .) ;now_) °'oral. Be£.e.tson- 1.2U I..'..r. !mini 13,016,1, 1 + fd•..w I.,.-,.' .,e.,:.'1,,,,,.ion. Design Notes: i.WoodWorks analysis- mai design are in accordance with the ICC international Building Code(IBC 2012),the National Design Specification(NDS 2012),and NDS Design Supplement. 2.Please verify that the default delecl cn limits are appropriate for your appOcalien. 3.Glutam design values sit for materials conforming to ANSI 117-2010 and manufactured in accurdence with ANSI A100.1.2007 4.GLULAM:bad=edual broaden x atOual depth:. 5 Glutam Beams shed be laterally supported according Io the provisions of NDS Clause 3.3.3. 6.GLULAM:bearing length based on smaller of Fop/tension),Pcp(comgn;. . . CLIENT: • -,...,,,,,,,, PROJECT: Page 50 of 126 ,, t445i.:•.--„ 7451\"°' Th ''''''''''';'.;' ''''-': '2')6 NUMBER: 5,11-3.":'•:', 1 .:72':. FROELICHr-ju----,,---- DATE: IL Air p•-_,i1'N.::, :,:,„i:.,,..C,I ENGINEERS 3,.^.),..-,nfiCk.i.0,:.•!,:,''.''.,,-. 'Ci.i.'21 725 560-226Q BY: r i 1Fitlog, i4D,z, 's : f---- .! 1 F 1-1 I, • 7 . 7 ' f LL, CT tica*/-4 /: '5PAAJ 'r 1 - 0 i r 1- .L. s-0 9)(,,, 1'3) -t 1-to -.(c1 .)( 2-4)t 1?-tni 2.0 , , , LC- a- ( 3'--t 1 i,, t)k....k°° )1- 10. --r ' )((449-r IZ ,I....* ((Li 5 (2.9) 35c ! Lf 1 , Pc? zi...,0 11--e0AA i LL s (-1000• /F/41) bt-% 1050F' t...4_,A- i 2., 2_0 f"L"C-- 51_0- 350 1 Page 51 of 126 • COMPANY PROJECT -- ��— bdVVoo rks® P.u..2A,iutsl4s; 1FFtt,� Design Check Calculation Sheet MeeWorks Sizer 10,42 Loads: loodL A, pOt Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in) 3'-2.2" —.,.�. ...,..,,a„...,..... _ ...y: ItI• • ;TA. 3Ve 1.214 422 1002 team P3M6 1396 5,,,ppt-pt 1001 1,00 12h1 .13 `tin Tit Lumber•eoft,D,Fir-L,No.2,4x8(3-112"x7-114") Supports:Alt-Timber-soft Beam.D.Fir-L No 2 Total length:3'-22';volume=0.b cu.ft.; Lateral support:top=et supports,bottom=at supports: Analysis vs.Allowable Stress and Deflection using NOS 2012: ctr1tertort AtivIvtOtt rr: 7111 1119'17`111 qn 2e f 11 i e y.•• .k'..3.=.A.i 3.: ._ Additional Data: r01 0R3: rIM C;: C;':.. <:t T- :: '1:. 004 114 - - 1.tO 1.; ▪tr9t6 .. _.. - ._ 2 Ami i1.. -... CRITICAL LOAD COMOINA DONS:;: saenc t£ 1.,49 B aro,. 01O; 9L -_ dead L01n.ve S=s-.ow _." , =carcii,vase All '_is'eu: Load 11,0¢.1.1: T9'.'i: . ..- -... t,.._ CALCULATIONS: "Lion" da_1eatZc: x :;e__-:__._r _ .i.ed :.oa ,, :_4u„) 2rn,L l-x...n:ot:< , r, 1.:0,tnat lttn Ltt,t, LtaO .;f-::. ,.....>:;. Design Notes: 1.WoodWorhs analysis and design are in accordance with the ICC International Budding Code(IBC 2012).the National Design Specification(NOS 2012),and NDS Cosign Supplement, 2:Please verlt'y 1801 the default deflection limns are appropriate for your application. 3 Sawn lumber bending members shall be laterally supported according to Ile provisions of NDS Clause 441.. Page 52 of 126 _......,..,,.,...,__.....W._...... COMPANY PROJECT inblett %VoodVVorks® Design Check Calculation Sheet Loads: • • Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in) Giulam-UnbaL,West Species,24F-t,SE WS,5-1/2"x7-112- 5 -12'x7-1125 ter;rriorre.5-1?remor:rn slab SwordsAl-Tsnt,-rn Barn,0 F:1.No 2 Tett/loft,544',,marts s Ia Lateral sopped-tops a Poppets.bMtwn=et Analysis vs.Allowable Stress and Deflection etinq NOS 2012: 1 -f Design Notes: PeopeePottot ea ys,y del d,-Ado 04 le axa.Sxax wed the ICC feettesetoest&ikirne Code tin OOtZ.Us Ncir,f1(}zmJgn Sp§ eas(NCS:er 1)add 50 ^aCgn So nasi 0.Ph.0,to est es oeto,,ceSalrwl se,ore oPpasara typtiestion 3 Gkkanr 2rPole.Cete,wwx3 to ANSI 11)4010vM man. ,-,5to r:o..waze wQf ARS:AMAS 1..:.07 4 GLIAJedi:tout3 axu't broad-x actool 0403 5. Geetett tIoeos et-fie 4ereettsoeoedr,.s,,,g to t`t,tentosme of NOS(smut 333 C GLELAM o,Repel's.)mus NonArri%Woodall,ropteotopY).. Page 53 of 126 COMPANY PROJECT • 11 ll .4 WO o d. Wo r k,s 4 4 Aug 21,2t1141 11447 1H-13,44M •---,•—• — Design Check Calculation Sheet wc.cdWorks Sizer 10.42 Loads: L-L_____:a.i.s,: :,,,..,,,,,y, ,..,..,..... 1.,,,,,..,..,,.,, i-.,-,.: ,..f,,,,,,.;,,,,,, :•,., ,...04 1.4.0. 4,11 111.,1, ... — .„. ,...1. 0.,.' . 4 ..p,4 .. Maximum Reactions(Ibs),Bearing Capacities(Ibs)and Bearing Lengths(in): -t- —1 ..,..,. ,_ 1 C2,-,-,7--T ....._..._,..........„_ , r,-' 01 3-4tr 04.4 2004 -74.4...44.44 3219 a/444,4. "Y.,- • ,1,, "al 19 1.11 ;.71 ci- l im 4.4. Yoo Sot Lumber-soft,D.Fir-L,No.2,4x8(3-1/2"x7-114 ) Supports:All-Timber-soft Beam,D.Fir-L No.2 Tole!tength:3,3.4";volume=0.4 Cu hc lateral support lop=at 5,oports.bottom=at supports; Analysis vs.Allowable Stress and Deflection using NOS 2012: 44.4.44.,408 ,48'ta1'y54-4 74421, 1'14,444r, ,41410.4 Uhl o A4s01eiLsil2.4.41414 ".1,9 ,,, 217994 4,.. 4,,, ..;'',,,,,: t. .,2...a Additional Data: 4/0.1 M444: r14: 0.11.1212 1114 Ct. CL. or C-4, ...- .44.. ci. Co 11,1:a 21' 1.04 4.11 1.32 - _ ,,e..,-,, 0'4 900 1,90 1.00 2000 0,450' 1,200 4.10 1.04 1-20 4-ool .424-,. ty I..2:.3.1 1 to. 1,04 5-1'44 F441..' 0,54 850:21>8 1.11' 1420 - Cr/inf.:AL LOAD CONIBINATLONS; :'ll? 4, 0,1. V 4' 1:06, V.4'4 Lg. 4, 20:14 .2 D3 1.12 42 ... 041, 11-4" 231.1 54 41 1.fia.4.1,'.4.;: 141 42 4' 04.'1 10.4 ' ',.. ''''58o, 9' 4T..,..p :4.1: 1-,4' ...; I.i..4 1,......e.........,i 11..4440100.2. 471 1.18109 1.1 ',h. 4.41.1..yai. 4'4444.4 !..4.1 ',...0,2144'...r'., 421,241 -,',-1.) .1 1100 2.1122 110:'-',142:243: 42020.4.... 4, 1.'.0L'........1 11,.a9 0.21.,..ni,,, + .;:1 ye i.,-,,,.) ),i:.1,V,,.... Design Notes: 1 WoodWerks analysts and deskm are in accordance with the ICC International Building Code(IBC 2012),Me National Cosign Sae-ea:fir-Mien(NOS 2012),and NOS Design Supplement. 2 Please verify that the default deflection limits are appropriate for your application. 3 Sawn Ito-neer bending members shall be laterally supported aocording lo the provisions of NOS Clause 4 4.1 • ,1- < CLIENT: Page 54 of 126 ,7,A 503 05 PROJECT: �`; ) n P Irgion , 205 NUMBER:;t ..O re,,.rte Q/703 03 FROELICH DATE .23 A r' 5—to U ENGINEERS Broomfield, lo c C'c.,50:)2) .720-560-226Q BY. Psi . .`. ( 2-c° -14 f " ' ._ ': } r - c 36,, - 2.° ' F �A AAl- Z. < i\ r I { r � 04 S 3 ) co - 300 T � CoA . 1 L/ - ., a Y ,S' 4400 L L . e,,3 • COMPANY PROJECT W°° 41 °r9 Feb.15.2018 16:32 Stair Stringer 3rd Floocwwb S-.-Si-1 of:4�f.'4i'/1>f)?ih5/f.4 Design Check Calculation Sheet WoodWorks Sizer 11.1 Loads: Load Type loca_looIf_i Magnitude -r= S-art End Loacl Dead Tull Uri. 40.0 plf t.oad2 Live Full T1. 200.0 pin Self-weight Dead 7',11 "Zit. 5.1 oil Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): 7-9.5' Snfactored: Dead 212 212 Live 783 83 Factored: Total 995 995 Bearing: 'theta 520 - 520 Capacity Beam 1169 1169 Support 1523 7523 Des ratio Beam 0.85 0.85 Support 0.65 0.65 Load comb 92 #2 Length 0.50* 0,50* Min req'd 0.50* 0.50* Cb 1.00 1.00 Cb min 1.00 1.00 Cb support 1.08 1.08 rep scp 625 625 'Minimum bearing length setting used:112"for end supports Lumber n-ply,Hem-Fir,No.2,2x6,3-ply(4-1/2"x5-1/2") Supports:All-Timber-soft Beam,D.Fir-L No.2 Total length:9'-8.64";Clear span:9'-3.77";volume=1.7 cu.ft.;Pitch:8/12 Lateral support:lope full,bottom=at supports;Repetitive factor applied where permitted(refer to online help); Analysis vs.Allowable Stress and Deflection„sing NOS 2015: Criterion , Analysis Value resign Value 9nit Analysis/lesion Shear fv = 45 - 150 psi fo/Fv' - 0.30 Bending)+) fb- 1020 -b' = 1271 psi fb/Fb' = 0.80 Live Defl'n 0.30 - L/380 0.21 - L/360 in 0.95 Total Defl'n 0.42 = L/270 0.47 = 1./740 in 0.89 Additional Data: FACTCRS: F/ElpsulCD CM CI, CL Cr Cf., Cr Cfrt Ci Cn LCD Ey' 150 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 Fb'+ 850 1..00 1.00 1.00 1.000 1.200 1.00 1.15 1.00 1.00 - 2 Fcp' 405 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.3 million 1.00 1.00 - - - - 1.00 1.00 - 2 CRITICAL LOAD COMBINATIONS: Shear LC 62 = DOI, V max = 824, V design - 739 lbs Bending)+l: LC 62 = D+L, M= 1929 lbs-ft Deflection: LC 62 = D+L (live) LC 412 = D+L (total) D=dead L-live S=snow W=wind I-impact Lr=root live Lc-concentrated F=earthguake All TX's are listed in the Analysis output Load combinations: ASCE 7-10 / IBC 2015 CALCULATIONS: Deflection: EI - 27.0e06 lb-in2/ply "Live" deflection = Deflection from all non-dead loads (live, wind, snow...I Total Deflection = 1.50(Dead Load Deflect]on) + Live toad Deflection. Bearing: Allowable bearing at an angle F'the.a calculated for each support as per NDS 3.10.3 Design Notes: 1.WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2015),the National Design Specification(NDS 2015),and NDS Design Supplement. 2.Please verify that the default deflection limits are appropriate for your application. 3.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 4.BUILT-UP BEAMS:it is assumed that each ply is a single continuous member(that is,no butt joints are present)fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded.Where beams are side-loaded,special fastening details may be required. 5.SLOPED BEAMS:level bearing is required for all sloped beams. COMPANY PROJECT % /'à od Wo t I(S Feb.15.2018 16:30 Star Stringer 2nd Floor.wwb Design Check Calculation Sheet WoodWorks Sizer 11.1 Loads: Load Type Fist rib.!_io- = Location [ft1 Maggi ni- :ern `-art End Load/ Ceac ='a11 SII. No Start End O.0plf Loao2 I.i ve --411 211. No 200.0 plf Self-weigh: Read .-oll _Fl. .co 5.1 plf Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): 1G'-1.29" Unfactored: Dead 181 512 181 Live 670 1890 670 Factored: Total 852 2402 Bearing: 852 F.-theta 520 520 Capacity 520 Beam 1169 2720 Support 1523 2402 1169 Des ratio 1523 Ream a 0.73 0.88 0.73 Support 0.56 1.00 0.56 Load comb 92 92 92 Length 0.50* 7.79 0.50' Min re4'd 0.50' 0.79** 0.50' Cb 1.00 1.48 1.00 Co min 1.00 1.48 1.00 Cb support 1.08 1.08 1.08 p Foe s 625 625 625 'Minimum bearing length setting used:1/2"for end supports "Minimum bearing length governed by the required width of the supporting member. Lumber n-ply,Hem-Fir,No.2,2x6,3-ply(4-1l2"x5.1/2") Supports:All-Timber-soft Beam,D.Fir-L No.2 • Total length:19'-8.57";Clear span:9'-7.38',9'-7.38";volume=3.4 cu.ft.;Pitch:8/12 Lateral support:top=full,bottom=at all supports;Repetitive factor:applied where permitted(refer to online help); WARNING:Member length exceeds typical stock length of 18.0[ft) Analysis vs.Allowable Stress and Deflection„eingNDS 2015: Criterion Analysis Value resign Value Unit Analysis/Design Shear er =- 59 - - 150 psi fv/Fv' = 0.40 Benci.ng(+1 fb = 613 Fb' = 1271 psi fib/Fb' - 0.48 Bending1-) lb = 1090 Fb' = 1271 psi fb/Fla. = 0.86 Live Defl'n 0.14 1./828 0.32 = L/260 in 0,43 Total Cefl'n 0.20= 1./588 0.48- L/240 in 0.41 Additional Data: FACTORS: F/FlpsilCC CM Ct Cl, CF Cf'a Cr Cfrt Ci Cn I.C9 F-✓' 150 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 F6'+ 850 1.00 1.00 1.00 1.000 1.300 1.00 1.15 1.00 1.00 - 2 Fb'- 850 1.00 1.00 1.00 1.000 1.300 1.00 1.15 1.00 1.00 - 2 Fop' 405 - 1.00 1.00 - - - - 1.00 1.00 - - E. 1.3 million 1.00 1.00 - - - - 1.00 1.00 - 2 CRITICAL LOAD COMBINATIONS: Shear : LC 92 - Vol. V max = 1065, V design - 978 lbs Bending/+): LC k2 = DVI,, M= 1159 lbs-tt Bending(-) LC 62 -Pol., M- 2061 lbs-ft Deflection: LC 92 = Dot. (live) IC 82 - c+l. (total) D=dead L-live S-snow 9=wino i=impar_ Lr-roof live Lc-concentrated B-earthquake All LC's are listed in t he Analysis output Load combinations: ASCE. 7-10 / I.-BC 2015 CALCULATIONS: Deflection: FI - 27.0e05 lb-int/ply "Live deflection _ reflectionfrom all non-dead loads (live, ow-..1 Total. Deflection= 1./0(Dead Load Reflection) + Live Load Deflection. Rearing: Allowable bearing a_ an angle E t-eta calculated for each support asperIBDS 3.10.3 Design Notes: 1.WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2015),the National Design Specification(NDS 2015),and NDS Design Supplement. 2.Please verify that the default deflection limits are appropriate for your application. 3.Continuous or Cantilevered Beams:NDS Clause 4.2.5.5 requires that normal grading provisions be extended to the middle 2/3 of 2 span beams and to the full length of cantilevers and other spans. 4.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 5.BUILT-UP BEAMS:it is assumed that each ply is a single continuous member(that is,no butt joints are present)fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded.Where beams are side-loaded,special fastening details may be required. 6.SLOPED BEAMS:level bearing is required for all sloped beams. COMPANY PROJECT „,, " ,:, WoodWorks® �' Feb.15,2018 16:30 Landing Joists.wwb Design Check Calculation Sheet Wood Works Sizer 11.1 Loads: Load Type Distribution Pat- Location [ft] Magnitude Unit tern Start End Start End Loadl Dead Full Area 20.00(16.0") psf Load2 Live Full Area 100.00(16.0") psf Self-weight Dead Full UDL 2.2 plf Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): I 6'-1.64" 1 6'-0.82" Un factored: Dead 89 89 Live 409 409 Factored: Total 498 498 Bearing: Capacity 498 Joist 498 Support 960 960 Des ratio 1.00 Joist 1.00 Support 0.52 0.52 Load comb #2 #2 0.82 Length0.82 0.82 Min req'd 0.82 Cb 1.00 1.00 Cb min 1.00 1.00 Cb support 1.25 . 1.25625 Fcp sup 625 Lumber-soft,Hem-Fir,No.2,2x8(1-1/2"x7-1/4") Supports:All-Timber-soft Beam,D.Fir-L No.2 Floor joist spaced at 16.0"c/c;Total length:6-1.64";Clear span:6';volume=0.5 cu.ft. Lateral support:top=full,bottom=at supports;Repetitive factor:applied where permitted(refer to online help); Analysis vs.Allowable Stress and Deflection using NDS 2015: Criterion Analysis Value Design Value Unit Analysis/Design Shear fv = 54 Fv' = 150 psi fv/Fv' = 0.36 Bending(*) fb = 682 Fb' = 1173 psi fb/Fb' = 0.58 Live Defl'n 0.07 = <L/999 0.20 = L/360 in 0.32 Total Defl'n 0.09 = L/836 0.30 = L/240 in 0.29 Additional Data: FACTORS: F/E(psi)CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 150 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 1.000 1.200 1.00 1.15 1.00 1.00 - 2 Fcp' 405 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.3 million 1.00 1.00 - - - 1.00 1.00 - 2 Emin' 0.47 million 1.00 1.00 - - - - 1.00 1.00 - 2 CRITICAL LOAD COMBINATIONS: Shear : LC #2 = D+L, V max = 492, V design = 389 lbs Bending(+): LC #2 - D+L, M = 747 lbs-ft Deflection: LC #2 = D+L (live) LC #2 - D+L (total) D=dead L=live S=snow n=wind I=impact Lr=roof live Lc=concentrated E=earthquake All LC's are listed in the Analysis output Load combinations: ASCE 7-10 / IBC 2015 CALCULATIONS: Deflection: EI = 61.9e06 lb-in2 "Live" deflection - Deflection from all non-dead loads (live, wind, snow...) Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. Design Notes: 1.Woodworks analysis and design are in accordance with the ICC International Building Code(IBC 2015),the National Design Specification(NDS 2015),and NDS Design Supplement. 2.Please verify that the default deflection limits are appropriate for your application. 3.Sawn lumber bending members shall be laterally supported according to the provisions of NOS Clause 4.4.1. COMPANY PROJECT • r iz- ® E %%'O 0 d lr Y V ' \S Jan.31,2018 14-38 Stringer Cross Beam.wwb „ *F 344-i i.3'i Off 1610d1Ai E.f^f:7.',. Design Check Calculation Sheet WoodWorks Sizer 11.1 Loads: load Type Distribution Pat- Location Iftt Magni_ice i_ act Dead t tern 00-6^r=.ne S012t ... rb_ load? Live ?pint 0.64 1690 lb. Cead Point 2.14 512 16 load) Live _ 2.14 1890 lbs I.oad5 lead point 3.64 512 lbs Loacr Live Point _ _7.64 1890 lbs - Self-weight Dead Full. VOL 7.7 elf Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): 1 %! 4,1.65" :nf actored: '84 Live Dead 784 282= i.ive 2835 Factored: 3619 5519 Bearing: Capacity =.679 3am 619 Support 4007 4007 Des ratio .00 1.00 0.90 S'e opocort mb #2 0.90 #2 Lout 1.55 Lind re t.65 1.65 Min req'd 1.00 1.00 CO 1.00 . Cb m 1.00 1 00 .11 Fop u CO support 1.21 0 625 676 Lumber-soft,D.Fir-L,No.2,4x10(3-112"x9-1/4") Supports:All-Timber-soft Beam,D.Fir-L No.2 Total length:4'-3.31";Clear span:4';volume=1.0 cu.ft. Lateral support,top=full,bottom=at supports; Analysis vs.Allowable Stress and Deflection using NDS 2015: Criterion Analysis Value Design valueOn''rt Analysis/Design': Shear eve = 128 Fv. = 180 1st tv*/Fv' = 0--1 Bnding(+1 fb= 930 Tb' = 1080 psi fb/F15' = 0.56 Live Defl'n 0.02 = 00/999 0.14 = L/360 in 0.17 Total lefl'n 0.03 = <L/999 0.21 = L/240 in 0.1.6 'The effect of point loads within a distance a of the support has been included as per NDS 3.4.3.1 Additional Data: FACTORS: F/E(psilCD CM Ct CL CF COa Cr Cfrt Ci Cn I.Cf 180 1..00 1.00 1.00 - - - - 1.00 1.00 I.00 Fb'+ 900 1.00 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E. 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 CRITICAL LOAD COMBINATIONS: Shear : LC #2 =0+12, V max = 3619, V design= = 2769 lbs tending(+): LC %2 =D+L, M = 3868 lbs-ft reflection: LC #2 = D+L (live) LC #2 = D+L (total) D-dead L=live S=snow W-wind I=impact Lr=roof live Lc=concentrated E-earthcua.e All LC's are listed in the Analysis output Load combinations: ASCE 7-10 / IBC 2015 CALCULATIONS: Deflection: EI = 369e06 lb-in2 "Live" deflection = Deflection from all non-dead loads (live, snow, Total Deflections - 1.50(Dead Load Deflecton) + Live Load Deflection Design Notes: 1.WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2015),the National Design Specification(NDS 2015),and NDS Design Supplement. 2.Please verify that the default deflection limits are appropriate for your application. 3.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. '7(X'N''Ci `.J I v 1 f 0 I f f 1 � . -__- - ' L f 1 I 1 € i J J L__ L I J i 7 f f 1 fI 1 li , f t 14 1 I ,:£ i 1 fI 1 r k 1 I f I� 1 1 'i r 1f , r i 1 I 14 i I 1 € i Si _ f I$ f f : I y. yii r — s 23' 1.'* • t NI•EE —•-i :../ 0 'i .... L.= 1 1 # c . ----- ---_, I., „.............L , _ , , #24 z a ',,.,,:• Nwu..n. -„s,.v.-.vr�.n.. rwwx. - �� - .dI .,e _ ..... n. n r_1 I r ......_ o o Sur e5 D �°a AQ. k o " Page 60 of 126 FROELICH LAft Iii '.: ENG ! N E E R e _ .. „ .w 6Y. r '. G r ; 150 , ', iti ora ;e_. .r c 4' . (.0-c 4/ rct .' ,� c.) p„,,,....„,,3 -l°- .1 c .. 1 fSSA,Ai 5 t C 4-4. __ :7..,,,,, . :=_—_Fr.i. _ s,,,,,_c t i__,, � ...� �� Ic,,,,i_ 2. _ .�_. .� - c 1 3/4"X11 7/8" LVL Si- @ 16" ocjoists a . } . Fcr c , .. mak' m ' Co "r Z. S eXs 2 .; ilk rAt . 1 2-15- Roseburg 7:39pr I.of ;Ream 2017.305 rRcamh:neine 2017.1.0.4 aterials Database 1562 Member Data )escription: Member Type: Joist Application: Floor Top Lateral Bracing: Continuous Bottom Lateral Bracing: Continuous Standard Load: Moisture Condition: Dry Building Code: IBC/IRC _ive Load: 40 PSF Deflection Criteria: L/480 live, L/240 total )ead Load: 60 PSF Deck Connection: Nailed Filename: Beam 1 Aember has been designed for a concentrated live load of 1500 lbs distributed over a 2' 6.00"square area / 4 0 0 ` 10 0 0 ` 3 0 0 17 0 0 3earings and Reactions Input Min Gravity Gravity Location Type Material Length Required Reaction Uplift I 4' 0.000" Wall HF Plate(405psi) 3.500" 2.589" 1835# -- 14' 0.000" Wall HF Plate(405psi) 3.500" 2.384" 1690# -- 1 17' 0.000" Wall HF Plate(405psi) 3.500" 1.500" 310# -500# Vlaximum Load Case Reactions Ised for applying point loads(or line loads)to carrying members Live Dead 487#(365p1f) 729#(547p1f) 586#(439p1f) 699#(525plf) -187#(-140plf) -85#(-64p1f) )esign spans 4' 0.000"(left cant) 10' 0.000" 2' 9.375" Product: 1.5 RigidLam LVL 1-3/4 x 11-7/8 16.0" O.C. PASSES DESIGN CHECKS Design assumes continuous lateral bracing along the top chord. Design assumes continuous lateral bracing along the bottom chord. Review gravity uplift reaction force of 501Ibs at bearing 3 and ensure that the structure can resist appropriately. JIowable Stress Design Actual Allowable Capacity Location Loading 2ositive Moment 1578.'# 8031.'# 19% 9' Span 2 CLLmd Jegative Moment 2840.'# 8031.'# 35% 4' Span 1 CLLmd shear 1144.# 3048.# 37% 13.99' Span 2 CLLs2 v1ax.Reaction 1835.# 2746.# 66% 4' Span 1 CLLmd ('L Deflection 0.0564" 0.5000" U999+ 8.5' Span 2 CLLmd L Deflection -0.0441" 0.2500" U999+ 7.5' Span 1 CLLId IL Defl.,Lt. 0.1632" 0.4000" 2U588 0' Span 1 CLLmd L Defl.,Lt. 0.1565" 0.2000" 2U613 0' Span 1 CLLId ;ontrol: LL Defl.,Lt. DOLs: Live=100% Snow=115%" Roof=125% Wind=160% Design assumes a repetitive member use increase in bending stress: 4% SIMPSON All product names are trademarks of their respective owners ray° g Copyright(C)2016 by Simpson Strong-Tie Company Inc.ALL RIGHTS RESERVED. fi 'rising is defined as when the member,floor joi9,beam or girder,shown on this drawing meets applicable design criteria for Loads,Loading Conditions,and Spans listed on this sheet.The • Page 62 of 126 COMPANY PROJECT od () rks'-'Design Check Calculation Sheet Loads: Maximum Reactions(ibs),Bearing Capacities(lbs)and Bearing Lengths(in): Lumber-sof:.0.3.rL Ne.,2:4210 l2_112:.se_1f41 .. lac,4 Analysts vs.Allowable Stress and Deflection using ND3 20121 Design Notes; ivO,ldWoixs:rra3XS;a^v32C8J'.5)2 Ii)ann dC ui a.:=::.ire S'5.Si_*v.,_ t,'.:'..: e ,.. .. 2. _ ;s::, iYr.a:.a ,,.2:212)ar ii N.7,13.'O2$ -_uppiemto,t. 2 Please tiessr,niat tea 22)2,15 daffec.3icni.in52s Fire 2$2 i)$a - •523' ` 3 Sawa Iunlear 3erd n rnmIltleM 25521 5�4.'i'si-tpJy t„pV05)'V .” 3 ..�"Y.asi= „.i.V:.: '�..,VI'.5 5`. Mcir,OfticE, CLIENT: • 6969 SW Harrpton St. Page 63 of 126 Portland.Oregon 97223 50343..24-7005 PROJECT: Li 745 NW Mf.V,,ashingion Dr.#205 NUMBER: Bend.Oregon 97703 . 54L3531828 FROELICH rftc DATE: ENGINEERS )2303 Airport Way,Suite 200 I Broomfield,Colorado 80021 720-560-2269 BY: • i••••' FCX)77/k) at .• • .• ,• • • t.),269 SW.riarn',afor;Sr. . Partin .Oregon 97223 503-624-7C05 PROJECT: Page 64 of 126 0(rag.),, .7:e0r 745 NW Mf.,,,ky3hingt:n Dr 42C5 NUMBER: • Bend.Oregon 97701 541-3B,?,1326 FROELICH r ENGNEERS & no3 Airport Wov Sulle 20 I rooriieid, www.froefich-eitgi!wers,..onl 720-560-2266 v."-.4 Co t4 0 AJ JAL1/% • tAI A I •4 0 4 E) c i? 0 c..K) G 127.- -7 1-‹ z.41- 5- 0 15 + 71.0 ON &A c C.4:;,Cu PLF (1) e EA EAM F UMAi • Page 65 of 126 1 COMPANY PROJECT .1 .',':rtet WO o d Wo WoodWorks 1 July 23, 2014 5:07 j Column1 Design Check Calculation Sheet Sizer 2004a LOADS (tbs,psf, or pif) : Load Tyne j Di.s'!:‘,:• ?1.1:.:ion'T Magni tad. _.._.. .__a ifc.l . Irarr En. 3 .ad End tern uC1ad 1 ,:.., o I MAXIMUM REACTIONS (lbs): 0' 27' '' 646 Total. i 648 Glulam-Balanced, West Species, 24F-1.8E WS, 5-112x7-112" Self Weight of 9.5 plf automatically included in loads; Pinned base; Loadface=width(b); Ke x Lb: 1.00 x 0.00=0.00[ftl; Ke x Ld: 1 00 x 27.00=27.00[ft1, Lateral support: top=Lb, bottom=Lb; Load combinations: ICC-IBC; Analysis vs. Allowable Stress (psi)g and Deflection (in) using NOS 2001 : Criterion terion l3'.:?.i .7 :. = f¢ '@' o"r. {Aha f + ,/oes *xn Shear ' 24 :+�'`�' ✓94 eV/Fs" .. 0.04 Ax .... Et Y U.03 Combined .9_ 3 09 .. .'..g! 8.Q_.1 ... . Live (h �. 1 .. .__ ' i, ,11 0-92 Total Defl'n 3 i ---- ADDITIONAL DATA: FACTORS: E CP Ohl' Ot CL/CD CV Ofd Cr CErt Notes f l-b'+ 2400 1.60 i ._ , , I .000 1.000 ?. ... 1,05 1 .00 1.63 .t' 243 1. 0 .. .00 1.00 2 EC.' 16211; 0.00 _ _,v 0.22C _. .- - 1,00 E'c'corb 1.6(.0 _.b, ... ..... 3.105 ,- - 2 E' 1._ :`F. . 1 on 1.i1u 1.0C _ - - - 1,rn 29* 16 M -. - 1.0; . Bend7.ng(+) . 7, 4 7 Shear - .6D,-w, . = 648, = 445 Lbs , 46e06 ib-in2 Total Deflection ;- 1.001Deat Loan , .tl rOIUO. + Live Load Getlec._!.an_ _3 2 Y. :b Axial ;..'...� 1 '- :. -:::11 7, F :_ .':6 .::�5 Combined 2 ' (D=dead L--?re W.: --wiod i=iitipact _ co st ur)tOL'9rt OLd co . ..;'__r_ _3, (All L_.°5 s.-e lited in tnn Analysis c .) DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI!AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. • • .-% COMPANY PROJECT ' '. 1 WoodWorks® .,„, Feb. 15, 2018 10:00 9' (1) 2x6 HF2 (3300).wwc Design Check Calculation Sheet WoodWorks Sizer 11.1 Loads: Load Type Distribution Location [ft] Magnitude Unit _ Start End Start End Loadl Dead Axial (Ecc. = 0.00") 3300 lbs Self-weight Dead Axial 15 lbs Lateral Reactions (lbs): 9' 7 co H w o m -a 0' A 9' Un factored: Dead Factored: L->R Load comb #1 #1 Lumber n-ply, Hem-Fir, No.2, 2x6, 1-ply (1-1/2"x5-1/2") Support: Lumber-soft Sill plate, Hem-Fir No.2; Bearing length=column width; continuous lower support Total length: 9'; Clear span: 8'-10.5"; volume=0.5 cu.ft. Pinned base; Load face=width(b); Ke x Lb: 1.0 x 0.0=0.0[ft]; Ke x Ld: 1.0 x 9.0=9.0[ft]; Analysis vs. Allowable Stress and Deflection using NDS 2015 : Criterion Analysis Value Design Value Unit Analysis/Design Axial fc = 402 Fc' = 771 psi fc/Fc' = 0.52 Axial Bearing fc = 402 Fc* = 1287 psi fc/Fc* = 0.31 Support Bearing fcp = 402 Fcp = 405 psi fcp/Fcp = 0. 99 Additional Data: FACTORS: F/E(psi)CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 0.90 1.00 1.00 0.599 1.100 - - 1.00 1.00 1 Fc* 1300 0.90 1.00 1.00 - 1.100 - - 1.00 1.00 1 Fcp sup 405 - 1.00 1.00 - - - - 1.00 1.00 1 CRITICAL LOAD COMBINATIONS: Axial : LC #1 = D only, P = 3315 lbs Support : LC #1 = D only; R = 3315 lbs, Cap = 3341, Lb = 1 .50", Cb = 1.00 D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake All LC's are listed in the Analysis output Load combinations: ASCE 7-10 / IBC 2015 Design Notes: 1. WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2015),the National Design Specification (NDS 2015), and NDS Design Supplement. 2. Please verify that the default deflection limits are appropriate for your application. 3. BUILT-UP COLUMNS: nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. • COMPANY PROJECT Wood Works® ,f1 r v2££OR za OOP,Of;,),;4 Feb. 15, 2018 10:00 9'(2)2x6 HF2 (6500).wwc Design Check Calculation Sheet WoodWorks Sizer 11.1 Loads: Load Type Distribution Location [ft] Magnitude Unit . Start End Start End Loadl Dead Axial (Ecc. = 0.00") 6500 lbs Self-weight Dead Axial 31 lbs Lateral Reactions (lbs): I 9 I w -t N D -°O CD CD L 0' 9' Un factored: Dead Factored: L->R Load comb #1 #1 Lumber n-ply, Hem-Fir, No.2, 2x6, 2-ply (3"x5-1/2") Support: Lumber-soft Sill plate, Hem-Fir No.2; Bearing length=column width;continuous lower support Total length: 9'; Clear span: 8'-9.0"; volume= 1.0 cu.ft. Pinned base; Load face=width(b); Built-up fastener: nails; Ke x Lb: 1.0 x 0.0=0.0[ft]; Ke x Ld: 1.0 x 9.0=9.0[ft]; Repetitive factor: applied where permitted (refer to online help); Analysis vs. Allowable Stress and Deflection using NDS 2015 : Criterion Analysis Value Design Value Unit Analysis/Design Axial fc = 396 Fc' = 771 psi fc/Fc' = 0.51 Axial Bearing fc = 396 Fc* = 1287psi fc/Fc* = 0.31 Support Bearing fcp = 396 Fcp = 405 psi fcp/Fcp = 0.98 Additional Data: FACTORS: F/E(psi)CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 0.90 1.00 1.00 0.599 1.100 - - 1.00 1.00 1 Fc* 1300 0.90 1.00 1.00 - 1.100 - - 1.00 1.00 1 Fcp sup 405 - 1.00 1.00 - - - - 1.00 1.00 1 CRITICAL LOAD COMBINATIONS: Axial : LC #1 = D only, P = 6531 lbs Kf = 1.00 Support : LC #1 = D only; R = 6531 lbs, Cap = 6682, Lb = 3.00", Cb = 1.00 D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake All LC's are listed in the Analysis output Load combinations: ASCE 7-10 / IBC 2015 Design Notes: 1.WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2015),the National Design Specification (NDS 2015), and NDS Design Supplement. 2. Please verify that the default deflection limits are appropriate for your application. 3. BUILT-UP COLUMNS: nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. • ` COMPANY PROJECT Wood Works ;' ,,,,...,,,,,.. Feb. 15, 2018 10:01 9'4x6 HF2 (7500).wwc Design Check Calculation Sheet WoodWorks Sizer 11.1 Loads: . Load Type. Distribution Location [ft] Magnitude _ Unit Start End Start End Loadl Dead Axial (Ecc. = 0.00") 7500 lbs Self-weight Dead Axial 36 lbs Lateral Reactions (lbs): CO oC ID D - 17CD Cr 9' Un factored: Dead Factored: L->R Load comb #1 #1 Lumber Post, Hem-Fir, No.2, 4x6 (3-1/2"x5-1/2") Support: Lumber-soft Sill plate, Hem-Fir No.2; Bearing length=column width; continuous lower support Total length: 9'; Clear span: 8'-8.5";volume= 1.2 cu.ft. Pinned base; Load face=width(b); Ke x Lb: 1.0 x 0.0=0.0[ft]; Ke x Ld: 1.0 x 9.0=9.0 [ft]; Analysis vs. Allowable Stress and Deflection using NDS 2015: Criterion Analysis Value Design Value Unit Analysis/Design Axial fc = 391 Fc' = 771 psi fc/Fc' = 0.51 Axial Bearing fc = 391 Fc* = 1287 psi fc/Fc* = 0.30 Support Bearing fcp = 391 Fcp = 405 psi fcp/Fcp = 0. 97 Additional Data: FACTORS: F/E(psi)CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 0.90 1.00 1.00 0.599 1.100 - - 1.00 1.00 1 Fc* 1300 0.90 1.00 1.00 - 1 .100 - - 1.00 1.00 . 1 Fcp sup 405 - 1.00 1.00 - - - - 1.00 1.00 1 CRITICAL LOAD COMBINATIONS: Axial : LC #1 = D only, P = 7536 lbs Support : LC #1 = D only; R = 7536 lbs, Cap = 7796, Lb = 3.50", Cb = 1.00 D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake All LC's are listed in the Analysis output Load combinations: ASCE 7-10 / IBC 2015 Design Notes: 1.WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2015),the National Design Specification (NDS 2015), and NDS Design Supplement. 2. Please verify that the default deflection limits are appropriate for your application. COMPANY PROJECT OFFIll AtWoo arks��' W Feb. 15, 2018 10:02 9'4x8 HF2 (9000).wwc Design Check Calculation Sheet WoodWorks Sizer 11.1 Loads: Load Type Distribution Location [ft] Magnitude Unit Start End Start End Loadl Dead Axial (Ecc. = 0.00") 9000 lbs Self-weight Dead Axial 47 lbs Lateral Reactions (lbs): I 9 t 0 -I °' D CD Cr 9' Unfactored: Dead Factored: L->R Load comb #1 #1 Lumber Post, Hem-Fir, No.2, 4x8 (3-1/2"x7-1/4") Support: Lumber-soft Sill plate, Hem-Fir No.2; Bearing length=column width; continuous lower support Total length: 9'; Clear span: 8'-8.5";volume= 1.6 cu.ft. Pinned base; Load face=width(b); Ke x Lb: 1.0 x 9.0= 9.0[ft]; Ke x Ld: 1.0 x 0.0=0.0 [ft]; Analysis vs. Allowable Stress and Deflection using NDS 2015: Criterion Analysis Value Design Value Unit Analysis/Design Axial fc = 357 Fc' = 373 psi fc/Fc' = 0. 96 Axial Bearing fc = 357 Fc* = 1228 psi fc/Fc* = 0.29 Support Bearing fcp = 357 Fcp = 405 psi fcp/Fcp = 0.88 Additional Data: FACTORS: F/E(psi)CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 0.90 1.00 1.00 0.304 1.050 - - 1.00 1.00 1 Fc* 1300 0.90 1.00 1.00 - 1.050 - - 1.00 1.00 1 Fcp sup 405 - 1.00 1.00 - - - - 1.00 1.00 1 CRITICAL LOAD COMBINATIONS: Axial : LC #1 = D only, P = 9047 lbs Support : LC #1 = D only; R = 9047 lbs, Cap = 10277, Lb = 3.50", Cb = 1.00 D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake All LC's are listed in the Analysis output Load combinations: ASCE 7-10 / IBC 2015 Design Notes: 1.WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2015),the National Design Specification (NDS 2015), and NDS Design Supplement. 2. Please verify that the default deflection limits are appropriate for your application. COMPANY PROJECT Wood Works`' Feb. 15, 2018 10:02 9' 6x6 HF2 (13000).wwc Design Check Calculation Sheet WoodWorks Sizer 11.1 Loads: Load Type Distribution Location [ft] Magnitude Unit Start End Start End Loadl Dead Axial (Ecc. = 0.00") 12000 lbs Self-weight Dead Axial 56 lbs Lateral Reactions (lbs): 9' -_ W P -1 m A 9• Unfactored: Dead Factored: L->R Load comb #1 #1 Timber-soft, Hem-Fir, No.2, 6x6 (5-1/2"x5-1/2") Support: Lumber-soft Sill plate, Hem-Fir No.2; Bearing length =column width; continuous lower support Total length:9'; Clear span: 8'-6.5"; volume= 1.9 cu.ft.; Post and timber Pinned base; Load face=width(b); Ke x Lb: 1.0 x 0.0= 0.0 [ft]; Ke x Ld: 1.0 x 9.0=9.0 [ft]; Analysis vs. Allowable Stress and Deflection using NDS 2015 : Criterion Analysis Value Design Value Unit Analysis/Design Axial fc = 399 Fc' = 430 psi fc/Fc' = 0. 93 Axial Bearing fc = 399 Fc* = 517 psi fc/Fc* = 0.77* Support Bearing fcp = 399 Fcp = 405 psi fcp/Fcp = 0.98 *Column requires a bearing plate at top as per NDS 3.10.1.3 Additional Data: FACTORS: F/E(psi)CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 575 0.90 1.00 1.00 0.831 1.000 - - 1.00 1 .00 1 Fc* 575 0.90 1 .00 1.00 - 1.000 - - 1.00 1.00 1 Fcp sup 405 - 1.00 1.00 - - - - 1.00 1.00 1 CRITICAL LOAD COMBINATIONS: Axial : LC #1 = D only, P = 12056 lbs Support : LC #1 = D only; R = 12056 lbs, Cap = 12251, Lb = 5.50", Cb = 1.00 D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake All LC's are listed in the Analysis output Load combinations: ASCE 7-10 / IBC 2015 Design Notes: 1.WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2015),the National Design Specification(NDS 2015), and NDS Design Supplement. 2. Please verify that the default deflection limits are appropriate for your application. SM, COMPANY PROJECT WoodWorks® Feb. 19, 2018 15:29 9' 6x8 HF2 (16000).wwc Design Check Calculation Sheet Wood Works Sizer 11.1 Loads: Load Type Distribution Location [ft] Magnitude Unit Start End Start End Loadl Dead Axial (Ecc. = 0.00") • 16000 lbs Self-weight Dead Axial 74 lbs Lateral Reactions (lbs): t 9 t W —I v d '0 co CD A 0' 9' Unfactored: Dead Factored: L->R Load comb #1 #1 Timber-soft, Hem-Fir, No.2, 6x8 (5-1/2"x7-1/4") Support: Lumber-soft Sill plate, Hem-Fir No.2; Bearing length=column width; continuous lower support Total length:9'; Clear span: 8'-6.5";volume= 2.5 cu.ft.; Post and timber Pinned base; Load face=width(b); Ke x Lb: 1.0 x 0.0=0.0 [ft]; Ke x Ld: 1.0 x 9.0=9.0[ft]; Analysis vs. Allowable Stress and Deflection using NDS 2015 : Criterion Analysis Value Design Value Unit Analysis/Design Axial fc = 403 Fc' = 473 psi fc/Fc' = 0.85 Axial Bearing fc = 403 Fc* = 517 psi fc/Fc* = 0.78* Support Bearin fcp = 403 Fcp = 405 psi fcp/Fcp = 1.00 *Column requires a bearing plate at top as per NDS 3.10.1.3 Additional Data: FACTORS: F/E(psi)CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 575 0.90 1.00 1.00 0.914 1.000 - - 1.00 1.00 1 Fc* 575 0.90 1.00 1.00 - 1.000 - - 1.00 1.00 1 Fcp sup 405 - 1.00 1.00 - - - - 1.00 1.00 1 CRITICAL LOAD COMBINATIONS: Axial : LC #1 = D only, P = 16074 lbs Support : LC #1 = D only; R = 16074 lbs, Cap = 16149, Lb = 5.50", Cb = 1.00 D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake All LC's are listed in the Analysis output Load combinations: ASCE 7-10 / IBC 2015 Design Notes: 1.WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2015),the National Design Specification (NDS 2015), and NDS Design Supplement. 2. Please verify that the default deflection limits are appropriate for your application. Page 72 of 126 ! COMPANY PROJECT WoodWorks Feb. 10, 2011 17:00 5 1-8x6 glu-lam.wwc Design Check Calculation Sheet WoodWorks Sizer 10.42 Loads: - Load Type DistributioncLocation ( t MagnitudeUnit tern Start End Start End Loadl Dead Axial _ (Ecc. = 0.00") 25000 lbs Self-weight Dead Axial 80 lbs Lateral Reactions (lbs): 9 w C. m 0` 9' Glutam-Balanced, West Species, 24F-1.8E WS, 5-1/8"x7-112" 5 laminations, 5-1/8" maximum width, Support: Non-wood Total length:9'; volume = 2.4 cu.ft.; Pinned base; Load face=width(b); Ke x Lb: 1.0 x 9.0=9.0[ft]; Ke x Ld: 1.0 x 9.0=9.0[ft]; Analysis vs. Allowable Stress and Deflection using NDS 2012 : Criterion Analysis Value Design Value Unit. Analysis/De sign Axial fc = 652 1-'•u' 1140 psi fc/Fc' = 0,5/ Axial Bearing fc 652 Fc~ - 144n oai fc/Fc* 0.45 Additional Data: FACTORS: F/E(psi)CD CM Ct CL/CF CV tin Cr Cfrt Notes LC# Fc' 1600 0.90 1.00 1.00 0.792 - - - 1.00 - 1 Fc* 1600 0.90 1.00 1.00 - - - - 1.00 - 1 CRITICAL LOAD COMBINATIONS: Axial : LC #1 = D only, P = 25080 lbs D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake All LC's are listed in the Analysis output Load combinations: ICC-IBC Design Notes: 1.WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2012),the National Design Specification (NDS 2012),and NDS Design Supplement. 2. Please verify that the default deflection limits are appropriate for your application. 3. Glulam design values are for materials conforming to ANSI 117-2010 and manufactured in accordance with ANSI Al 90.1-2007 4. GLULAM: bxd= actual breadth x actual depth. Page 73 of 126 COMPANY PROJECT iiie ' 4 Works® Feb.¶0 2017 :8.19 5 .-2x7 1.2 glu lam wwc Design Check Calculation Sheet WocoWorks Sizer 10.42 Loads: :1 Stan f End loarli Dead rx2.i! <.. Self-weight Lead - Axial -!.a Lateral Reactions(lbs): tt w 0' g' gad 363 Load comb R1 Load cemb 01. 41 Glulam-Balanced,West Species,24F-1.8E WS,5-112"x7-112" 5 laminations,5-172"maximum width, Support:Non-wood Total length:9;volume= 2,6 cu.ft.; Pinned base:Load face=width(b);Ke x Lb:1,0 x 9.0=9.0[ft];Ke x Ld:1.0 x 0,0=0.0[ftj; Analysis vs.Allowable Stress and Deflection using NDS 2012: • C. i be an Anal yraI rt Vcige. Ded 0 17•_a e Cr','1.L AnalyatafLoaign .eA tv ,, 3.4 Fe -- 23.1 .06 11 i '.ng . 6022 n" 2: 1x131 r .> .'.;'.. Cort,,1ft&:I ;cot:.a1 - e'.4e1~_4. 0 e:7:1 Sc' _ .3+,A i.tel ring Sc 1.4:0 f_,Dc, . :...... Dead Def 'a IL:)!x = (1-1951P: Li vb Def 14n eg .ft Tt at. Aut../ 0 13 = 0/910 *0) ..- 3,11fir, 0,32 Additional Data: . __ .. CM Ct Fe' 265 0 1.00 y _ _ _ '1 110'0 24+ .90 0i 70 0.664 ,..: a Xc' ,( 0.90 1.00 - - - 0 - Q: 4' �I.. :;n 1. - 5 - Eo..n' 0.911 milk 00 m .- - Em ny' .a5 .mill 00 - _- - - 0:. 0,90 LOC 1.00 -. .,. _..... ¢. CRITICAL LOAD COMBINATiONS: Baoding .Ld 01 = D only, N - 3444 .....c. Deflection: CC k_ _ D only i." _ Axial : 1,0 61 _ 0 oaly, - 33030 _S_ Eq.15.4.-3 . LC 91 only r:b'- 2146 Cc'=-1392;623 Io 602 All 22's are kite the .._., ., .... Load combinations: I 1SC CALCULATIONS: Def: ES _: 348e35 lb-in2 'Live" `lectt.ass Deflection from a ,.a:0 yr anew.... Total Deflection.ion - 1,50Dead Load Deflection: _ ....,. .,.-. i,atl - 9' 3'_ 2 ' 'i3i i21'iilit:i' ( ,.:v. - .,r c _. .." Sc "''. � -.. Design Notes: 1.WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2012),the National Design Specification(NOS 2012),and NOS Design Supplement 2 Please verify that the default deflection limits are appropriate for your application. 3.Glulam design values are for materials conforming to ANSI 117-2010 and manufactured in accordance with ANSI A190 1-2007 4 GLULAM:bxd=actual breadth x actual depth 5 Axial load eccentricity applied in direction of load face only It is the designers responsibility to check for effect of eccentricity in the other direction, Page 74 of 126 COMPANY PROJECT •" (\/ i,f<i ,„, „.„ ,,,,,,,,_ .,„,,,...,,,,, _ _-. Feb 10,2317 18:19 5`.-axe 31u-iam wry,: I Design Check Calculation Sheet WoodWorks Sizer 10.42 Loads: I ! . Lateral Reactions(lbs): _® __ 9 __ �__ e m____ __ m m • o m a Z. 9. tinf cads= -232 au 2,e ad ed e --» 232 Load comb 4 5l. Giulam-Balanced,West Species,24F-1.8E WS,5-112"x6" 4 laminations,5-112"maximum width, Support Non-wood Total length:8';volume= 2.1 cu ft.: Pinned base;Load face=width(b);Ke x Lb:1.0 x 9,0=9.0[ftj;Ke x Ld.1,0 x 90=0.0(ft]; Analysis vs.Allowable Stress and Deflection using NDS 2o12: . .,:e70..knalvdix 'Id ,. ., Ax./4:`ytpp31.:?d f C Li'�t' 1$ d: „1 _ 2.3.4 .=i` j'Ff-.PV Axial „. .., = 12a3 pai - 43 Cemb i nad ,,,,xx A ice, ,, ,00-1,:L .. oy,..., 0. 1,184 1, 130. i 9..28Additional Data: FACTORS, 110 1pni)0J -. C0 :170 .- Cfrt. ;:3, Pub 247 6.90 1.. ,. -. .« - xb' . 2499 3. On 1.nO 9.9951.00. 1.00 1,90 1.30 1.00 Pc' 1609 1'. 0 1,00 1,01 .,035 - - 1 7. .min' million - 1,d9 - ._ - 1, Emirey' 0.85 tc:.:tiro- 1,00 1.00 - - ,. - 1 19900 0,90 1,90 < _ 4, r. CRITICAL LOAD COMBINATIONS: ,. 3 , bs Deflection: C'. 3,:Y aI.• fa �909 ...'. t-<,,.,.3 . . 2". 8-44,-24 .4490 9x ze>'.c u89 All T,C are l3';_cd _ .0 S , ,.,> muipt, Lead ,::."i F :':99--I32 1 CALCULATIONS: " L. . r q: 2 "Live' de1ebt!..bn - Del4bction from all non-dead loads Ciive, wind, anow..i ria Load Deflectien, Lateral s lsi.__._ La _ ,_ 16'=4";,L5' :.9 " 9,21' Design Notes: 1 WoodWorks analysis and design are in accordance with the ICC International Building Code(1BC 2012),the National Design Specification(NDS 2012),and NDS Design Supplement 2.Please verify that the default deflection limits are appropriate for your application. 3 Glulam design values are for materials conforming to ANSI 117-2010 and manufactured in accordance with ANSI A1901-2007 4.GLULANI:bad=actual breadth x actual depth. 5 Axial load eccentricity applied in direction of load face only It is the designers responsibility to check for effect of eccentricity in the other direction. Page 75 of 126 COMPANY PROJECT 1. doo Works® Feb 10,2017 18:19 5 1-8x6 glu-lam wwc Design Check Calculation Sheet WoodWorks Sizer 10 42 Loads: 1,,.,__. Pam -- ede Yptt 5tatt End Start Fne caul ,,,t .-._ _ :: lbs Lateral Reactions(lbs): cu ('1 o• 8' s,, Deed 172 -112 17' ▪;:;ad cemb 01 Lo1,1 10b . 01. Glulam-Balanced,West Species,24F-1.8E WS,5-112"x6" 4 laminations,5-1/2"maximum width, Support:Non-wood Total length:8';volume= 1 8 cu.ft.; Pinned base;Load face=width(b);Ke x Lb:1.0 x 8.0=8 0[ft];Ke x Ld:LO x 0.0=0 0[ft); Analysis vs.Allowable Stress and Deflection using NDS 2012: Zana r,,:..:. value Oticign Value _ &he▪ at Sz S iv' 234 =4' 01r 1 , - . 21 - 9011 PO' 4, 1270 pal eo ni9.1. .x :F_1 - and p a. Rxt19 1002 Pr4, -,.: (eel ..._ .. Liao F9.11'0 oFaligibla retal Liett1t. 0.0e " <7./999 d.S1, .... Li!110 ...,. .t-.,. Additional Data: FACTOR,. :'7ct .-_'JP CV CL9 1. - .. _ - 1.00 I.ao 'p",. 00 0,519,1 1.0.) a.ao 1.7f; t 0.90 _ .,___` - .„ 1.':i: �. E' ._ Emil,' - _ 1_ _. . :r;,.a - .. - „1.00 _. emley' 0.05 9)(711loe 1.0a 1.a0 1900 9,1,0 1.00o: ^- 1.30 • CRITICAL-LOAD COMBINATIONS: Shear LC 41 -_ - = 172 V design _ 12 l-.,. Pendiog,t): LC 0791y, 12.7o lbs-ft .- Axial .. € -- lbs Kg.15.0-71 LC 01 - cely 1117P9 2132 D-'d:..9 1..6.1 - .< r f live to=concent.7-ated ,_ Aki Load�co'±binat_1rs: lee-1Pe CALCULATIONS. Deflection: :ET_ ::: 17134711: . 'Live" deflect-109 all nen-dead loads40, Lateral stability 3 ., Lo - ` Le - _4 -a. R? _.. Design Notes: 1 WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2012),the National Design Specification(NDS 2012),and NDS Design Supplement. 2 Please verify that the default deflection limits are appropriate for your application. 3.Glulam design values are for materials conforming to ANSI 117-2010 and manufactured in accordance with ANSI A190 1-2007 4.GLULAM:bxd=actual breadth x actual depth, 11/18/2016 Post Capacities Simpson Strong-Tie Post Allowable Compression Loads for Douglas Fir Larch Page 76 of 126 Lumber per to Compression Capacity Parallel to Grain,Pc(100) CGmpression Capacity Parallel to Grain,Pc(160) P Framing Grade Grain, Nominal Top Plate Height(It.ti it Plate Height(tt) Sue Pc t- ' 9 10 11 12 8 10 11 12 r 4 2a0 317", 'i..4 S � }x4 �47u 523 i 5573 ``{https!)�u� .�rStronc7riO.COni ) s , i t 856 6340 6685 ; i i �, tat E2 4[#7u ..,._.,7395 7800 i , Fa 1,2 1 030 t 11540 ".'12215 4x8 - 15860 15090 16035 4x10 r2 23235 19080 1 203_65 1" , ; 2x0 '2 i 555 8970 1 •t r — 11030 i -- 4cb z2 1. 8595. 14945 �3 3 4 _ _18385 1 a t -. r7,77 i „,:j.,,,,'=-- ,4•1;:,(,1 -1 -- 6 IrCn . .2 1 6 +r� 10315 17935 , 1 t 225(71‘,61:5-7,1-----7,f' 460 1 [[ q 7 � p t � : £f� } 3 ii f Wall 4x0 a`2 12030 '8-925 . 1 25735 3 r f)11 3 2xb 12 15470 260r0S ,77,7—i u. .: I 33090 I ,•::'::'.:;'''''''':.; 1 314.E w't€ 610 i 1 1 13905 _2,x280 t 342 5 1 ' 6Y3 x1.__.. {.. 25;82 .. _34450 _�. __ t.. 4671.5 .._�... _....___ �` < See footnotes Post Allowable Compression Loads for Southern Pine Lumber, perp to Compression Capacity Parallel to Grain Pc (100', i0)} Compression Capacity Parailol to Grain PC(160) Framing Grain, Nominal Top Plate Height(tt.) Nominal TopPlate tieigtrt(It.) P Size Grade r C $ 9 10 11 12 3 9 10 11 17 2x.1 12 2960 it ''..; ; ' 3x4 1 4945 2 2x' ,2 5935 ::'-. 7:.. : 4.17 t, 1 s 82 6920 f 1 d'. k+1 ;i 3 2x4 v•2 8900 *' qq F • :----rT7T-',::_f...--:=4,.----'-' ,x1,•1 �'2 i 10875 ,<..a'.r � .. _ t 4x!3 '2 19335 , 1= 2 1n290 i 2x0 a r 41360 c_ .3a) r2 � 77111 �;�r� µ • �,6 , i � t j �;z i� �� �/ 2xb �2 � °320 1� � '' '� Y�.9 r r t 5 (r n 1 � • 4x6 1087b 320 a 9 , ' c 3xf l 2., . tr3G90 2� 20270...� 1 3 l 3, i Vital , t 21495 18635 ° 17260 X751 30025 26820 23595 20610 17975 3 2x6 -^-3595,,„„1„„,— °10 ' 1 '` �5 29315 27640 25680 ( 23540 I 21 3#5 40340 36575 32180 i 28106 24515 " See footnotes Post Allowable Compression Loads for Spruce-Pine-Fir Lumber Perp to Compression Capacity Parallel to Grain...��(100) Compr sst0n Capactty Paratlet kti Grain Pc(1601 Framing Grain. Nominal Top Plate Height(ft) Nominal"Tsp Plate Height(II.} Size &rad> 121231-0 _. Grain. 8 .a,,. 9 10 it 12 8 9 10 11 12 2x4 =f 22313 2775 2250 y 18„0 1510 1300 2930 2340 1915 10 a a 5 .<4 � 3120 ' 4625 3745 3380 2o10 . 21/4 4865 ' 3895 r 3175 2630 ' 212.'3.f0 4.',15!, incn %2x1 2 4405 5545 4495 i 36% 30Pb 2605 5865 1 4675 3805 3155 4. 2655 ,',,,i1 4'{f 41I 0205 6470 5245 7310 3590 3140 6340: -5455 ! 10 9725_. 4195 3-2�4 2 6695 8320 6745 , i1 5510 1325.. .. 3910 8795 7015 5710 t 4730 3980 4 2x4 17.g2 8925 11095... t 7395 6165 5215 11730 9355 310 0310 i 5310 .__ 2xb f1, x 3605 7745 86a8-990".. 6(33.x, t 52aS 4.i 457- 9600 34x5 o77i , = 5725 4885 6-in�r 3x6 11/T2 ; 5845 12 05 "11475 10 - .8760 t�7625 16040 11425 ; 112805 954r11-8145 .o . Wall r 210 °1' 701512935 13770 12070 14—( 10515 i .9150 19200 16110 13540 11450 1 gr 7# 3 2x6 11,x 10520 , 'f t { 1 _ • �f 7r� 4�, , 4 2x6 ' 11/ c i 14025 X970 `" t t t t� See footnotes 3 hftrse./(+usAnni efrnnntic re-1m/nrruii tntc/rnnna^.tnrc/wr d-r.nnstru,ction-connectors/technical-notes/Dost-caoaci ties 11/18/2016 Post Capacities j Simpson Strong-Tie Page 77 of 126 Post Allowable Compression Loads for Hem-Fir Lumber Perp to Compression Capacity Parallel to Grain.Pc(100) Compression Capacity Parallel to Grain,Pc(160} Framing , Size Grade Grain, Nominal Top Plate Height(it) SIMPSON p Plate Helght(!1'), Pc 8 9 10 1t 12 8 , '10 11 12 1. 2x4 f'2 2125 26° 2,115 1730 1,435 1210 274 .4. 1 1/70 1 16o 12.0 3x4 i'2 3545 4385 3525 880 2395 ; 2927 45c^, v '(1#11! s!)�a.\' t trorxftie0 1)4 4 I �, i 2 z " ,7;_} '1115') r 52b0 4230 3463 z8,`z 2425 5485 I 4355 1 i,,40 '4.,2.,. 2460 i)al i 4x" #'2 4960 3 6140 1 4935 r 4035 3355 ,,._. 2830 6400 5035 i 4125 3410 2870 "i ,` 0380 1 „�8� - 6340 5185 4310_ _ 3635 8'3£1' IT 65'�a i 5,?05 4380 3680 4 2�w 550 _y 10525 8455 ' b915 I 57„0 t 4850 109 0 ; 8715 1 7075 5853 1 4920 r 2x6 #2 3340 7950 j6880 59G5µ 5065 1 '4365 9385 ' 7735 i f425 _i,,,, ,,_____[ 4580 3x6 42 5570 13250 , ,11470 9840 8440 •:7270 15640 I 12890 10710 , _8995 7635 6-tn`h L 2 2x6 42 6685 1T900 T 13765 1 11810 °10130 8725' 18785 [ 15470 12850 10 90 9165'- t"lall [to45 l 17"715 '13495. t5O 0 2-815;.:4, t f r ( 19275 1;1 5 134 46 ,1 3 2xfi 12 1 trJ25 355 4-9x6 1 #2 13365 31805 27525 ( 23620 20211745,5 l 1 ,,,..;,,',„,., ' .?:57t;1 _„_ 15435 'j -1-832,-,, 1 See footnotes Post Tension Loac Taoles • Post Tension Loads for Douglas-Fir-Larch ' Allowable Tension Lumber „ -. „a„ ...ww a�, ---- - . -- . -- ._ ----------- Pt, (160) Framing Bolt Diameter(in.) Size Grade ,_--o__ . -- �1r2... ..s 7 T-------/-5 �a 7 l 2x4 j #2 7245 60805820 � 5305 , 5045 3x4I #2 12075 10135„ 9705 i 8840 = 8410 �, . . ..... i „.... . «.._ ,. � . ......_ . .4444.„. :_ �.�...�. . _... 2-2x4 1 #2 14490 F 12160 11645 10610 10090 4-Inch 4x4 ' 16905 14190 13585 1 12375 11775 Wall 3-2x4 il #2 21735 18240 I 17465 , 15915 15135 4x6 1 I--------#2 23025 19325 18500 16855 11603.5._. 4x8 i #2 28015 23510 22510 1 20510 19510 4x10 #2 32765 27500 23990 22815 26330 , 2x6 #2 9865 8860 8635 8185µrt 7960 3x6 I #216445 14765 14390 1 13640 13270 , 2.2x6 #2 19735 17715 17265 16370 L 15920 6-Inch Wall 4x6 #2 23025 1 20670 20145 19100 ; 18575 1 ���. . 3-2x6 02 2960026575 25900 24555 23885 1 1 6x6 #1 32670 29330 28585 j 27100 26360 6x8 01 44550_x_39995 38980 36955 , 35945 See footnotes 11/18/2016 Post Capacities I Simpson Strong-Tie Post Tension Loads for Southern Pine Page 78 of 126 Allowable Tension Lumber SIMPSON Pt, (160) . , .g gr,i .1 " Boll Diameter(in.) ,wvt2,-efig--;:4;:goisi, 1 Size i Gr : (https://www.stronatjeoorn/). . I T 7/8 ; 4 /i:,..i-: i ...1 A 4,;;;, 1 3x4 1 #2 .1,?,,I 530.: -4' _ I 2-2x4 ;I: #2 . I 1,. ..'1 , ".-;520 1 9115 1 8305 1 P:IIII.I0 1 4-Inch i 4x4 - #2 1:32_:',]'..] ! ', 11]:,F3 I 10030 j 9085. I 9214r-, Wall 3-2x4 1 #2 1 70 J,j4 1 1 4 27.5 I 1 3670 I 1 24 5 Ii j 11 84!) I I I J I 4x6 - $2 18130 i 15510 ; 1 4 P i', I 1 3530 J j 1i -4 ..41,. ; - 4x8 #2 ..., i74.5 1 I 4x1 0 I #2 I 2x6 - #2 7:Ttl. I' I 71 10 I 6930 tnio J'5,045 t J , 3x6 #2 -r,,,,,,r;.,:,(-: 1 -1 -,8.--,!':e i 11550 1- 109543 1 10650 i 1-2-2x6 1 #2 1 5 8.,,I,I3 I 14220 1 1 38 I3 0 ' 13 I 40 f. 1 2780 J 4x6 • #2 18:1'-'io:, 1 1 i-.."":,5'-..m 1 1.61 'JI'n , I 5,1j.,50 1 1 401 0 J l Wall —, ' — " -1 3-2x6 , #2 2","'l'-'0"; 1 2 1 3.3,3 I 20790 i 1 971 0 i 1 9i 1 6x6 i #1 43560 I' 39105 i 38115 1 36135 ' 35145 1 i 6x8 1 #1 59400 1 53325 1 51975 1 49275 1 47925 1 .... ___,,,,, ..,i See footnotes Post Tension Loads for Spruce-Pine-Fir i . g Allowable Tension Lumber Pt, (160) Framing! — - - - — --------- - — i Bolt Diameter(in.) — - -, - - —Size 1 Grade „u. g i1 1 ' 1 , , : 1 /2 1 % h,' -, 2x4 i #1/#2 5670 1 4760 ] 4555 1 4150 1 3950 '"x4 ' #1/#2 9450 1 7930 i 7595 ,I 6920 I 6580 4-Inch . 2-2x4 1 #1/#2 11340 I 9520 1 9115 ' 8305 1 7900 Wall 4x4 1 $1/$2 13230 1 11105 i 10630 9685 j 9215 3-2x4 ' #1/#2 17010 1 14275 1 13670 T 12455 1 11845 g 4-2x4 . $1/$2 226S01 19035 1 18225 : 16605 1 15795 ., 1 2x6 $1/$2 7720 :: 6930 1 6755 1 6405 6230 3x6 #1/, -# g2 12870 11555 :11260 10675 , 103851 1 i i 6-Inch ,_._. : 2-2x61 #1/#2 154 45 T 138 651 1 35 1 5 12810 1 12460 i Wall ': , - 3-2x6 #1 02 2.O1 ii:s o07,95 1 -2-077:0 Tic702'1 5 j 185,90 ; Li ' 0 I 2'4402784-8s 1 713...J, 1 0, ....,, j 0 ...,, ..., See footnotes itim-iivttww g trnrotiA rnmirrndi tolgtononAntnrs/wonci-nwsfrt Intiort-connalorsitechnical-nottlsioost-capacities ' CIii ot: West Hills Development PI-ojece River Terrace East Pioj.5: 6-TIED A Dat.. 3/6/2018 rCr.' ti‘: Ysp FROELICH E N G INE E R S i Cont. Spread Footing Design At Building Ext. Wall (II to joist) Loading Criteria Foundation Results Roof DL(psf) 18 Dead Load(plf) 832 Roof SL(psf) 25 Ftg Dead Load(plf) 435 Floor DL(psf) 27 Live Load(plf) 320 Floor LL(psf) 40 Snow Load(plf) 300 Wall DL(psf) 10 IBC Eq.16-9(plf) 1587 Concrete Wt.(pcf) 145 IBC Eq.16-10(plf) 1567 IBC Eq.16-11 (plf) 1732 Tributary Areas Total bearing(psf) 866 Roof Trib(ft) 12 Allowable brg(psf) 2500 Floor trib(ft) 8 Footing OK Wall height(ft) 40 Stemwall ht.(ft) 1.5 Stud Wall Loadings Results Stemwall width(in.) 8 Dead Load(plf) 832 Footing width(in.) 24 Live Load(plf) 320 Footing depth(in.) 12 Snow Load(plf) 300 Cont. Spread Footing Design At Building Ext. Wall (I_to joist) Loading Criteria Foundation Results Roof DL(psf) 18 Dead Load(plf) 1138 Roof SL(psf) 25 Ftg Dead Load(plf) 435 Floor DL(psf) 27 Live Load(plf) 960 Floor LL(psf) 40 Snow Load(plf) 125 Wall DL(psf) 10 IBC Eq.16-9(plf) 2533 Concrete Wt.(pcf) 145 IBC Eq.16-10(plf) 1698 IBC Eq.16-11 (plf) 2387 Tributary Areas Total bearing(psf) 1267 Roof Trib(ft) 5 Allowable brg(psf) 2500 Floor trib(ft) 24 Footing OK Wall height(ft) 40 Stemwall ht.(ft) 1.5 Stud Wall Loadings Results Stemwall width(in.) 8 Dead Load(plf) 1138 Footing width(in.) 24 Live Load(plf) 960 2098 < 2 5 0 0 p l f = 2 X 6@ 16 Footing depth(in.) 12 Snow Load(plf) 125 Cont. Spread Footing Design At Int. Brg Wall - Basement Loading Criteria Foundation Results Roof DL(psf) 18 Dead Load(plf) 1795 Roof SL(psf) 25 Ftg Dead Load(plf) 290 Floor DL(psf) 27 Live Load(plf) 1800 Floor LL(psf) 40 Snow Load(plf) 250 Wall DL(psf) 10 IBC Eq.16-9(plf) 3885 Concrete Wt.(pcf) 145 IBC Eq.16-10(plf) 2335 IBC Eq.16-11 (plf) 3623 3 5 9 5*10/8 (increase f o r Tributary Areas Total bearing(psf) 1943 db 1 span joists) = 4494 Roof Trib(ft) 10 Allowable brg(psf) 2500 Floor trib(ft) 45 Footing OK Wall height(ft) 40 Stemwall ht.(ft) 0 Stud Wall Loadings Results Stemwall width(in.) 8 Dead Load(plf) 1795 Footing width(in.) 24 Live Load(plf) 1800 Footing depth(in.) 12 Snow Load(plf) 250 4494 < 5000 p 1 f = (2) 2X6@16 . I Cont. Spread Footing Design At Int. Brg Wall - 1st Floor Loading Criteria Foundation Results Roof DL(psf) 18 Dead Load(plf) 1390 Roof SL(psf) 25 Ftg Dead Load(plf) 290 Floor DL(psf) 27 Live Load(plf) 1200 Floor LL(psf) 40 Snow Load(plf) 250 Wall DL(psf) 10 IBC Eq.16-9(plf) 2880 2590*10/8 (increase for Concrete Wt.(pcf) 145 IBC Eq.16-10(plf) 1930 db l span njoists) = 3238 IBC Eq.16-11 (plf) 2768 p Tributary Areas Total bearing(psf) 1440 Roof Trib(ft) 10 Allowable brg(psf) 2500 Floor trib(ft) 30 Footing OK Wall height(ft) 40 Stemwall ht.(ft) 0 Stud Wall Loadings Results Stemwall width(in.) 8 Dead Load(plf) 1390 Footing width(in.) 24 Live Load(plf) 1200 3238 < 5000 p 1 f = (2) 2X6@16 Footing depth(in.) 12 Snow Load(plf) 250 Cont. Spread Footing Design At Int. Brg Wall - 2nd Floor Loading Criteria Foundation Results Roof DL(psf) 18 Dead Load(plf) 885 Roof SL(psf) 25 Ftg Dead Load(plf) 290 Floor DL(psf) 27 Live Load(plf) 600 Floor LL(psf) 40 Snow Load(plf) 250 Wall DL(psf) 10 IBC Eq.16-9(plf) 1775 15 2 3*10/8 (increase f o r Concrete Wt.(pcf) 145 IBC Eq.16-10(plf) 1425 db 1 joists) = 1903 IBC Eq.16-11 (plf) 1813span Tributary Areas Total bearing(psf) 906 Roof Trib(ft) 10 Allowable brg(psf) 2500 Floor Crib(ft) 15 Footing OK Wall height(ft) 30 Stemwall ht.(ft) 0 Stud Wall Loadings Results Stemwall width(in.) 0 Dead Load(plf) 885 1903 < 2500 p l f = 2X6@16 Footing width(in.) 24 Live Load(plf) 600 2500 p 1 f = (2) 2 X 4 @ 16 Footing depth(in.) 12 Snow Load(plf) 250 Cont. Spread Footing Design At Party Wall Loading Criteria Foundation Results Roof DL(psf) 18 Dead Load(plf) 1030 Roof SL(psf) 25 Ftg Dead Load(plf) 290 Floor DL(psf) 27 Live Load(plf) 880 Floor LL(psf) 40 Snow Load(plf) 50 Wall DL(psf) 10 IBC Eq.16-9(plf) 2200 Concrete Wt.(pcf) 145 IBC Eq.16-10(plf) 1370 1910*10/8 (increase f o r IBCEq.16-11(plf) 2018 dbl span joists) = 2388 Tributary Areas Total bearing(psf) 1100 Roof Trib(ft) 2 Allowable brg(psf) 2500 Floor Crib(ft) 22 Footing OK Wall height(ft) 40 Stemwall ht.(ft) 0 Stud Wall Loadings Results Stemwall width(in.) 0 Dead Load(plf) 1030 2388 < 2500 p l f = db 1 2X4@16 Footing width(in.) 24 Live Load(plf) 880 Footing depth(in.) 12 Snow Load(plf) 50 Cont. Spread Footing Design At Corridor Wall Loading Criteria Foundation Results Roof DL(psf) 18 Dead Load(plf) 1345 Roof SL(psf) 25 Ftg Dead Load(plf) 290 Floor DL(psf) 55 Live Load(plf) 900 Floor LL(psf) 100 Snow Load(plf) 625 Walt DL(psf) 10 IBC Eq.16-9(plf) 2535 Concrete Wt.(pcf) 145 IBC Eq.16-10(plf) 2260 IBC Eq.16-11(plf) 2779 Tributary Areas Total bearing(psf) 1389 Roof Trib(ft) 25 Allowable brg(psf) 2500 Floor trib(ft) 9 Footing OK Wall height(ft) 40 Stemwall ht.(ft) 0 Stud Wall Loadings Results Stemwall width(in.) 8 Dead Load(plf) 1345 Footing width(in.) 24 Live Load(plf) 900 2489 < 2500 p 1 f = 2X6@16 Footing depth(in.) 12 Snow Load(plf) 625 COMPANY PROJECT 60 WoodWorks Feb.15.2018 14:04 Ext HF 9ft 2x6 at 16(2500plf TL 35psf W).wwc Design Check Calculation Sheet WoodWorks Sizer 11.1 Loads: Load Type Distribution Location [ft] Magnitude Unit Start End Start End Max Axial Load Dead Axial UDL (Ecc. = 0.00") 2500 plf Lateral Wind Full Area 35.00(16.0") psf Self-weight Dead Axial UDL 12 elf Lateral Reactions(lbs): s' 03 O 0' 9' Un factored: Dead Wind 210 210 Factored: L->R 126 126 Load comb #2 #2 Ext Wall Stud Lumber Stud,Hem-Fir,No.2,2x6(1-112"x5-1/2") Support:Lumber Stud Bottom plate,Hem-Fir No.2;Bearing length=stud thickness;continuous lower support Spaced at 16.0"c/c;Total length:9';Clear span:8'-10.5";volume=0.5 cu.ft. Pinned base;Load face=width(b);Ke x Lb:1.0 x 0.0=0.0[ft);Ke x Ld:1.0 x 9.0=9.0[ft);Repetitive factor:applied where permitted(refer to online help); Analysis vs.Allowable Stress and Deflection using NDS 2015: Criterion Analysis Value Design Value Unit Analysis/Design Shear fv = 23 Fe' = 240 psi fv/Fv' = 0.10 Bending(+) fb = 450 Fb' = 2033 psi fb/Fb' - 0.22 Axial fc = 406 Fc' = 771 psi fc/Fc' = 0.53 Axial Bearing fc = 406 Fc* = 1287 psi fc/Fc* = 0.32 Support Bearin% fcp = 406 Fcp = 405 psi fcp/Fcp - 1.00 Combined (axial compression - side load bending) Eq.3.9-3 = 0.58 Live Defl'n 0.15 = L/706 0.90 - L/120 in 0.17 Total Defl'n 0.15 = L/706 0.90 = L/120 in 0.17 Additional Data: FACTORS: F/E(psi)CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fe' 150 1.60 1.00 1.00 - - - - 1.00 1.00 2 Fb'+ 850 1.60 1.00 1.00 1.000 1.300 1.00 1.15 1.00 1.00 2 Fc' 1300 0.90 1.00 1.00 0.599 1.100 - - 1.00 1.00 1 Fc'comb 1300 1.60 - - 0.389 - - - - - 3 E' 1.3 million 1.00 1.00 - - - - 1.00 1.00 2 Emin' 0.47 million 1.00 1.00 - - - - 1.00 1.00 2 Fc* 1300 0.90 1.00 1.00 - 1.100 - - 1.00 1.00 1 Fcp sup 405 - 1.00 1.00 - - - - 1.00 1.00 1 CRITICAL LOAD COMBINATIONS: Shear : LC #2 = .6D+.6W, V max = 126, V design - 126 lbs Bending(+): LC #2 = .60+.65, M = 284 lbs-ft Deflection: LC #2 = .6D+.6W (live) LC #2 = .6D+.6W (total) Axial : LC #1 = D only, P = 3349 lbs Combined : LC #3 = D+.6W; (1 - fc/FcE) = 0.59 Support : LC #1 = D only; R = 3349 lbs, Cap = 3341, Lb = 1.50", Cb = 1.00 D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake All LC's are listed in the Analysis output Load combinations: ASCE 7-10 / IBC 2015 CALCULATIONS: Deflection: EI = 27.0e06 lb-int "Live" deflection - Deflection from all non-dead loads (live, wind, snow...) Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. Design Notes: 1.WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2015),the National Design Specification(NDS 2015),and NDS Design Supplement. 2.Please verify that the default deflection limits are appropriate for your application. COMPANY PROJECT Ar- WoodWorks® sx,t�,f yf)_lsrrztr Feb.15,2018 14:05 int HF 911 2x4 at 12(1700pif TL 5ps1 W)wwc Design Check Calculation Sheet WoodWorks Sizer 11.1 Loads: Load Type Distribution Location ft] Magnitude Unit Start End Start End Max Axial Load Dead Axial UDL (Ecc. = 0.00") 1700 plf Lateral Wind Full Area 5.00(12.0") psf Self-weight Dead Axial UDI, 10 plf Lateral Reactions(lbs): 9 I co 0' 9' Un factored: Dead Wind 23 23 Factored: L->R 14 14 Load comb #2 #2 • Int Wall Stud • Lumber Stud,Hem-Fir,No.2,2x4(1-112"x3-1/2") Support:Lumber Stud Bottom plate,Hem-Fir No.2;Bearing length=stud thickness;continuous lower support Spaced at 12.0"c/c;Total length:9';Clear span:S'-10.5";volume=0,3 cu.ft. Pinned base;Load face=width(b);Ke x Lb:1.0 x 0.0=0.0[ft);Ke x Ld:1.0 x 9.0=9.0[ft];Repetitive factor:applied where permitted(refer to online help); Analysis vs.Allowable Stress and Deflection using NDS 2015: Criterion Analysis Value Design Value Unit Analysis/Design Shear fv = 4 Fv' = 240 psi fv/Fv' = 0.02 Bending(+) fb = 119 Fb' = 2346 psi fb/Fb' = 0.05 Axial fc = 326 Fc' = 376 psi fc/Fc' = 0.87 Axial Bearing fc = 326 Fc* = 1345 psi fc/Fc* = 0.24 Support Bearing fcp = 326 Fcp = 405 psi fcp/Fcp = 0.80 Combined (aria]. compression side load bendi:g) Eq.3.9-3 = 0.95 Live Defl'n 0.06 = <1/999 0.90 = L/120 in 0.07 Total Defl'n 0.06 = <1/999 0.90 = L/120 in 0.07 Additional Data: FACTORS: F/E(psi)CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fv' 150 1.60 1.00 1.00 - - - - 1.00 1.00 2 Fb'+ 850 1.60 1.00 1.00 1.000 1.500 1.00 1.15 1.00 1.00 2 Fc' 1300 0.90 1.00 1.00 0.280 1.150 - - 1.00 1.00 1 Fc'comb 1300 1.60 - - 0.163 - - - - - 3 E. 1.3 million 1.00 1.00 - - - - 1.00 1.00 2 Emin' 0.47 million 1.00 1.00 - - - - 1.00 1.00 2 Fc* 1300 0.90 1.00 1.00 - 1.150 - - 1.00 1.00 1 Fcp sup 405 - 1.00 1.00 - - - - 1.00 1.00 1 CRITICAL LOAD COMBINATIONS: Shear : LC #2 = .60+.65, V max = 14, V design = 14 lbs Bending(+): LC #2 = .60+.6W, M = 30 lbs-ft Deflection: LC #2 = .6D+.6W (live) LC #2 = .6D+.6W (total) Axial : LC #1 = D only, P = 1710 lbs Combined : LC #3 = D+.6W; (1 - fc/FcE) = 0.20 Support : LC #1 = D only; R = 1710 lbs, Cap = 2126, Lb = 1.50", Cb = 1.00 D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake All LC's are listed in the Analysis output Load combinations: ASCE 7-10 / IBC 2015 CALCULATIONS: Deflection: EL = 6.97e06 lb-in2 "Live" deflection = Deflection from all non-dead loads (live, wind, snow...) Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. Design Notes: 1.WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2015),the National Design Specification(NOS 2015),and NDS Design Supplement. 2.Please verify that the default deflection limits are appropriate for your application. • COMPANY PROJECT 2901111, N od WoodWorks) � _cr,r-nsctat.r €:fir>, ,,,., Feb.15,2018 15:49 Int HF 9ft 2s4 at 16(1250p11 TL 5psf W).wwc Design Check Calculation Sheet • WoodWorks Sizer 11.1 Loads: Load Type Distribution Location (ft] Magnitude Unit Start End Start End Max Axial Load Dead Axial UDL (Ecc. = 0.00") 1250 plf Lateral 'Wind Full Area 5.00(16.0") psf Self-weight Dead Axial UDh 7 plf Lateral Reactions(lbs): 0D o 0 s• Unfactored: Dead Wind 30 30 Factored: L->R 18 18 Load comb #2 #2 Int Wall Stud Lumber Stud,Hem-Fir,No.2,2x4(1-112"x3-112") Support:Lumber Stud Bottom plate,Hem-Fir No.2;Bearing length=stud thickness;continuous lower support Spaced at 16.0"c/c;Total length:9';Clear span:8•-10.5";volume=0.3 cu.ft. Pinned base;Load face=width(b);Ke x Lb:1.0 x 0.0=0.0[ft];Ke x Ld:1.0 x 9.0=9.0(ft];Repetitive factor:applied where permitted(refer to online help); Analysis vs.Allowable Stress and Deflection using NDS 2015: Criterion Analysis Value Design Value Unit Analysis/Design Shear fv = 5 Fe' = 240 psi fv/Fv' = 0.02 Bending(+) fb = 159 Fb' = 2346 psi fb/Fb' = 0.07 Axial fc = 319 Fc' = 376 psi fc/Fc' = 0.85 Axial Bearing fc - 319 Fc* = 1345 psi fc/Fc* = 0.24 Support Bearing fcp = 319 Fcp = 405 psi fcp/Fcp = 0.79 Combined (axial compression - side load bendimg) Eq.3.9-3 = 0.99 Live Defl'n 0.08 = <L/999 0.90 = L/120 in 0.09 Total Defl'n 0.08 - <1.,/999 0.90 = L/120 in 0.09 Additional Data: FACTORS: F/E(psi)CD CM CI CL/CP CF Cfu Cr Cfrt Ci LC# Fv' 150 1.60 1.00 1.00 - - - - 1.00 1.00 2 Fb'+ 850 1.60 1.00 1.00 1.000 1.500 1.00 1.15 1.00 1.00 2 Fc' 1300 0.90 1.00 1.00 0.280 1.150 - - 1.00 1.00 1 Fc'comb 1300 1.60 - - 0.163 - - - - - 3 E' 1.3 million 1.00 1-00 - - - - 1.00 1.00 2 Ervin' 0.47 million 1.00 1.00 - - - - 1.00 1.00 2 Fc* 1300 0.90 1.00 1.00 - 1.150 - - 1.00 1.00 1 Fcp sup 405 - 1.00 1.00 - - - - 1.00 1.00 1 CRITICAL LOAD COMBINATIONS: Shear LC #2 = .60+.6W, V max - 18, V design = 18 lbs Bending(+): LC #2 = .6D+.6W, M = 91 lbs-ft Deflection: LC #2 = .6D+.6W (live) LC #2 = .6D+.6W (total) Axial LC #1 = D only, P - 1676 lbs Combined LC #3 = D+ 6W; (1 - fc/FcE) = 0.21 Support LC #1 = D only; R = 1676 lbs, Cap = 2126, Lb = 1.50", Cb = 1.00 D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake All LC's are listed in the Analysis output Load combinations: ASCE 7-10 / IBC 2015 CALCULATIONS: Deflection: EI = 6.97e06 lb-in2 "Live" deflection = Deflection from all non-dead loads (live, wind, snow...) Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. Design Notes: 1.WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2015),the National Design Specification(NDS 2015),and NDS Design Supplement. 2.Please verify that the default deflection limits are appropriate for your application. COMPANY PROJECT ir. o d,�, , WO „..„. ua E DU'Ux;N Feb.15,2018 14:15 Int HF 90 2x6 at 12(330001 TL 5psi W).wwc Design Check Calculation Sheet WoodWorks Sizer 11.1 Loads: Load Type Distribution Location [ft] Magnitude Unit Start End Start End Max Axial Load Dead Axial UDL (Ecc. = 0.00") 3300 plf Lateral Wind Full Area 5.00(12.0") psf Self-weight Dead Axial UDL 15 plf Lateral Reactions(lbs): 9 CD o' A 9, Un factored: Dead Wind 23 23 Factored: L->R 14 14 Load comb #2 #2 Ext Wall Stud Lumber Stud,Hem-Fir,No.2,2x6(1-1/2"x5-1/2") Support:Lumber Stud Bottom plate,Hem-Fir No.2;Bearing length=stud thickness;continuous lower support Spaced at 12.0"c/c;Total length:9';Clear span:8'-10.5";volume=0.5 cu.ft. Pinned base;Load face=widlh(b);Ke x Lb:1.0 x 0.0=0.0[ft];Ke x Ld:1.0 x 9.0=9.0[ft);Repetitive factor:applied where permitted(refer to online help); Analysis vs.Allowable Stress and Deflection using NDS 2015: Criterion Analysis Value Design Value Unit Analysis/Design Shear fv = 2 Fv' = 240 psi fv/Fv' = 0.01 Bending(+) fi = 48 Fb' = 2033 psi fb/Fb' = 0.02 Axial fc - 402 Fc' = 771 psi fc/Fc' = 0.52 Axial Bearing fc = 402 Fc* = 1287 psi fc/Fc", = 0.31 Support Bearing fcp = 402 Fcp = 405 psi fcp/Fcp = 0.99 Combined (axial compression side load bendigg) Eq.3.9-3 = 0.24 Live Defl'n 0.02 - <1/999 0.90 = L/120 in 0.02 Total Defl'n 0.02 = <L/999 0.90 = 1/120 in 0.02 Additional Data: FACTORS: F/E(psi)CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fv' 150 1.60 1.00 1.00 - - - - 1.00 1.00 2 Fb'+ 850 1.60 1.00 1.00 1.000 1.300 1.00 1.15 1.00 1.00 2 Fc' 1300 0.90 1.00 1.00 0.599 1.100 - - 1.00 1.00 1 Fc'comb 1300 1.60 - - 0.389 - - - - - 3 E' 1.3 million 1.00 1.00 - - - - 1.00 1.00 2 Emin' 0.47 million 1.00 1.00 - - - - 1.00 1.00 2 Fc` 1300 0.90 1.00 1.00 - 1.100 - - 1.00 1.00 1 Fcp sup 405 - 1.00 1.00 - - - 1.00 1.00 1 CRITICAL LOAD COMBINATIONS; Shear : LC #2 = .6D+.6W, V max = 14, V design = 14 lbs Bending(+): LC 82 = .6D+.6W, M = 30 lbs-ft Deflection: LC #2 = .6D+.6W (live) LC #2 = .6D+.6'A (total) Axial : LC #1 = D only, P = 3315 lbs Combined : LC #3 - D+.6W; (1 - fc/FCE) = 0.60 Support : LC #1 = D only; R = 3315 lbs, Cap = 3341, Lb = 1.50", Cb = 1.00 D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake All LC's are listed in the Analysis output Load combinations: ASCE 7-10 / IBC 2015 CALCULATIONS: Deflection: EI = 27.0e06 lb-int "Live" deflection - Deflection from all non-dead loads (live, wind, snow...) Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. Design Notes: 1.WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2015),the National Design Specification(NDS 2015),and NDS Design Supplement. 2.Please verify that the default deflection limits are appropriate for your application. FROELICH CONSULTING ENGINEERS INC., Client: Project: Project#: By: Footings Maximum Allowable Required Required Dimensions Used Dimensions Footing Bearing Footing Size clamp, (Prot) Area W(ft) L(ft) W(ft) , L(ft) D(in) Weight Pressure 18" x cont x10" 3500 2500 1.40 1.18 1.18_ 1.5 .1 10 188 2458 24"x cont x 10" 14000 2500 5.60 2.37 2.37 2 3 10 750 2458 36"x cont x 10" 27000 2500 10.80 3.29 3.29 3 4 10 1500 2375 2'-6" x 2'-6" x 10" 15500 2500 6.20 2.49 2.49 2.5 2.667 10 833 2450 3'-0"x 3'-0"x 12" 21000 2500 8.40 2.90 2.90 3 3 12 1350 2483 3'-6" x 3'-6"x 12" 27000 2500 10.80 3.29 3.29 3.5 3.333 12 1750 2465 4'-0"x 4'-0"x 12" 37000 2500 14.80' 3.85 3.85 4 4 12 2400 2463 4'-6" x 4'-6"x 12" 52000 2500 20.80 4.56 4.56 4.5 5 12 3375 2461 E Required Area: =(Pcot!gsil9ow)°'5 Bearing Pressure =(Ptot+WR6)/(W*L) =(Ptot+Web)/(W*L*3.1415/4) -o w CD CD CO N 0 N 0) Client: Project: Proj.#: Date: By: FROELICH ENGINEERS d ASCE 7-05 Earthquake Load Cs Factor Importance Factor(Seismic) I = 1.0 Basic Seismic Force Resisting System Light Framed Wood Shear Wall R= 6.5 besign Spectral ' Response Acceleration Seismic Design Coefficient Development Latitude Longitude Sos SDI Category Cs 45.559 -122.853 0.726 0.403 D 0.1117 - Information in table was obtained from USGS website Conservatively design all structures in all developments for the Cs design value specified below Controlling Cs Value: 0.1117 Use Cs =0.12 for Design in all Developments Equations: s= Ds* R •esponse oe'iclent 'D W O N • Page 84 of 126 Client: Project: River Terrace Project#: 16-T100 46 Date: 11/18/2016 E By: YSP FROELICH E N G t N E E R S l WIND FORCE CALCULATION-MWFRS Side-Side Event ASCE 7-10 SECTION 27-2 METHOD 2 -ANALYTICAL PROCEDURE Basic Wind Speeds Input 3 Second Gust Vas= 120 mph Wind Directionality Factor Kd= 0.85 Table 26.6-1 Wind Importance Factor Iw= 1.00 Wind Exposure Category= B Building Parameters Horizontal Dimension of Bldg B= 54 ft Measured Normal to wind direction Horizontal Dimension of Bldg L= 146 ft Measured Parallel to wind direction Mean Roof Height h= 40 ft Highest Roof Level hi,= 40 ft Approximate Fundamental Period Ta= 0.32 sec Eq. 12.8-7 Output - Fundamental Frequency f= 3.1 Hz> 1 Hz Therefore Rigid Topographic Effects Input Hill Height H= 0 ft Figure 26.8-1 Length of 1/2 hill height Lh= 1 ft Figure 26.8-1 Dist. From Crest to Bldg. x= 0 ft Figure 26.8-1 Height Above Local Grade z= 0 ft Figure 26.8-1 Horizontal Attenuation Factor m= 1 Figure 26.8-1 Height Attenuation Factor g= 1 Figure 26.8-1 Shape Factor K1/(1-1/Lh)= 1 Figure 26.8-1 Output- Topographic Multipliers K1 = 0.00 K2= 1.00 K3 = 1.00 Topographic Factor Krt= 1.00 Page 85 of 126 Gust Effects Input Integral Length Scale Factor = 320 ft Table 26.9-1 Integral Length Scale nominal height of boundary zg= 1200 Table 26.9-1 3-s gust exponent a= 7.00 Table 26.9-1 Turbulence Intensity Factor c= 0.30 Table 26.9-1 Power Law Exponent e = 0.33- Table 26.9-1 Minimum Height zm;n= 30 ft Table 26.9-1 Integral Length Scale of Turbulence LZ= 310 ft Output-Background Response Factor Q= 0.88 Intensity of Turbulence IZ= 0.30 Gust Effect Factor G= 0.85 Pressure Coefficients Input Length to Width Ratio L/B= 2.70 Height to Length Ratio h/L= 0.27 Roof Pitch = 9 12 = 36.87 deg Velocity Pressure Exposure Coefficients Kh (see below) Table 27.3-1 External Pressure Coefficients Cp (see below) Figure 27.4-1 Direction Cp Height(ft) Kh qZ(psf) Velocity Windward 0.8 15 0.57 18.0 Pressure Leeward -0.27 20 0.62 19.6 Output q, Roof Windward 0.40 25 0.67 20.8 Roof Leeward -0.6 30 0.70 22.0 40 0.76 23.8 50 0.81 25.4 60 0.85 26.8 70 0.89 28.0 80 0.93 29.1 90 0.96 30.0 100 0.99 31.0 120 1.04 32.6 h= 40 0.76 23.8 qh hparapet= 0 0.57 18.0 qh Page 86 of 126 Design Wind Pressures p (psi) - ( Co= (-) 16 psf(8psf for roof) mm per 27.1.5 Internal Pressure Coefficient GCp;= -0.18 Figure 26.11-1 Wall Roof Horizontal Effects Horiz. Direction - Windward Leeward Roof WW Roof LW WW+LW RWW+RLW Height 15 16.6 -1.2 17.8 ft 20 17.6 -1.2 18.8 25 18.5 -1.2 19.7 30 19.3 -1.2 20.5 40 20.6 -1.2 21.8 50 21.6 -1.2 22.8 60 22.6 -1.2 23.8 70 23.4 -1.2 24.6 80 24.1 -1.2 25.3 90 24.8 -1.2 • 26.0 100 25.4 -1.2 26.6 120 26.6 -1.2 27.8 40 20.6 -1.2 7.5 -4.7 21.8 12.20 Parapet 0 27.0 -18.0 45.0 Design Load Case 1 Controls - By Inspection Parapet Loading per ASCE7-10 27.4.5 Design Wind Pressures p (Ds!-CCp;=(+) 16 psf(8psf for roof)min per 27.1.5 Internal Pressure Coefficient GCp; = 0.18 Figure 26.11-1 Wall Roof Horizontal Effects Horiz. Direction- Windward Leeward Roof WW Roof LW WW+LW RWW+RLW Height 15 8.0 -9.8 17.8 ft 20 9.1 -9.8 18.8 25 9.9 -9.8 19.7 30 10.7 -9.8 20.5 40 12.0 -9.8 21.8 50 13.0 -9.8 22.8 60 14.0 -9.8 23.8 70 14.8 -9.8 24.6 80 15.5 -9.8 25.3 90 16.2 -9.8 26.0 100 16.8 -9.8 26.6 120 18.0 -9.8 27.8 40 12.0 -9.8 2.3 -9.9 21.8 12.20 Parapet 0 27.0 -18.0 45.0 Design Load Case 1 Controls- By Inspection Parapet Loading per ASCE7-10 27.4.5 Design Wind Pressures (ASD) p (psi)- Geo= (-1 16 psf(8psf for roof)min per 27.1.5 0.6W per 2.4.1 Internal Pressure Coefficient GCp; = -0.18 Figure 26.11-1 Wall Roof Horizontal Effects Horiz. Direction- I Windward I Leeward ( Roof WW I Roof LW I WW+LWj RWW+RLW Page 87 of 126 Height 15 9.9 -0.7 10.7 ft 20 10.6 -0.7 11.3 25 11.1 -0.7 11.8 30 11.6 -0.7 12.3 40 12.3 -0.7 13.1 50 13.0 -0.7 13.7 60 13.5 -0.7 14.3 70 14.0 -0.7 14.7 80 14.5 -0.7 15.2 90 14.9 -0.7 15.6 100 15.3 -0.7 16.0 120 15.9 -0.7 16.7 40 12.3 -0.7 4.5 -2.8 13.1 7.32 Parapet 0 16.2 -10.8 27.0 Design Load Case 1 Controls-By Inspection Parapet Loading per ASCE7-10 27.4.5 Design Wind Pressures(ASD) p (psi)-GCS;_(+) 16 psf(8psf for roof)min per 27.1.5 0.6W per 2.4.1 Internal Pressure Coefficient GCp,= 0.18 Figure 26.11-1 Wall Roof Horizontal Effects Horiz. Direction - Windward Leeward Roof WW Roof LW WW+LW RWW+RLW Height 15 4.8 -5.9 10.7 ft 20 5.4 -5.9 11.3 25 6.0 -5.9 11.8 30 6.4 -5.9 12.3 40 7.2 -5.9 13.1 50 7.8 -5.9 13.7 60 8.4 -5.9 14.3 70 8.9 -5.9 14.7 80 9.3 -5.9 15.2 90 9.7 -5.9 15.6 100 10.1 -5.9 16.0 120 10.8 -5.9 16.7 40 7.2 -5.9 1.4 -5.9 13.1 7.32 Parapet 0 16.2 -10.8 27.0 Design Load Case 1 Controls- By Inspection Parapet Loading per ASCE7-10 27.4.5 • Page 88 of 126 Client: Project: River Terrace Project#: 16-T100 Date: I1/16/2016 By: YSP FRO.ELICH ENG ] N E E R S 1 WIND FORCE CALCULATION- MWFRS Front-Back Event ASCE 7-10 SECTION 27-2 METHOD 2 -ANALYTICAL PROCEDURE Basic Wind Speeds Input 3 Second Gust V3,= 122 mph Wind Directionality Factor Kd= 0.85 Table 26.6-1 Wind Importance Factor 1 = 1.00 Wind Exposure Category= B Building Parameters Horizontal Dimension of Bldg B = 146 ft Measured Normal to wind direction Horizontal Dimension of Bldg L = 54 ft Measured Parallel to wind direction Mean Roof Height h = 40 ft Highest Roof Level lin = 40 ft Approximate Fundamental Period Ta= 0.32 sec Eq. 12.8-7 Output-Fundamental Frequency f= 3.1 Hz> 1 Hz Therefore Rigid Topographic Effects Input Hill Height H= 0 ft Figure 26.8-1 Length of 1/2 hill height Lb = 1 ft Figure 26.8-1 Dist. From Crest to Bldg.x= 0 ft Figure 26.8-1 Height Above Local Grade z= 0 ft Figure 26.8-1 Horizontal Attenuation Factor m= 1 Figure 26.8-1 Height Attenuation Factor g= 1 Figure 26.8-1 Shape Factor K1/(H/Lh)= 1 Figure 26.8-1 Output-Topographic Multipliers Kt = 0.00 K2= 1.00 K3= 1.00 Topographic Factor Kn= 1.00 • Page 89 of 126 Gust Effects Input Integral Length Scale Factor+ = 320 ft Table 26.9-1 Integral Length Scale nominal height of boundary zg= 1200 Table 26.9-1 3-s gust exponent a= 7.00 Table 26.9-1 Turbulence Intensity Factor c= 0.30 Table 26.9-1 • Power Law Exponent E = 0.33 Table 26.9-1 Minimum Height zm;n= 30 ft Table 26.9-1 Integral Length Scale of Turbulence L1= 310 ft Output-Background Response Factor Q= 0.83 Intensity of Turbulence IZ= 0.30 Gust Effect Factor G= 0.82 Pressure Coefficients Input Length to Width Ratio L/B= 0.37 Height to Length Ratio hfL= 0.74 Roof Pitch = 10 : 12 = 39.81 deg Velocity Pressure Exposure Coefficients Kh (see below) Table 27.3-1 External Pressure Coefficients Cp (see below) Figure 27.4-1 Direction Cp Height(ft) Kh qZ(psf) Velocity Windward 0.8 15 0.57 18.6 Pressure Leeward -0.50 20 0.62 20.2 Output qZ Roof Windward -0.20 25 0.67 21.5 Roof Leeward -0.6 30 0.70 22.7 40 0.76 24.6 50 0.81 26.3 60 0.85 27.7 70 0.89 28.9 80 0.93 30.0 90 0.96 31.1 100 0.99 32.0 120 1.04 33.7 h 40 0.76 24.6 qh hparapet= 0 0.57 18.6 qh o . Page 90 of 126 Design Wind Pressures p (psf - GC_„= (-) 16 psf(8psf for roof) min per 27.1.5 Internal Pressure Coefficient GCP, = -0.18 Figure 26.11-1 Wall Roof Horizontal Effects Horiz. Direction - Windward Leeward Roof WW Roof LW WW+L,W RWW+RLW Height 15 16.7 -5.7 22.4 ft 20 17.8 -5.7 23.5 25 18.6 -5.7 24.3 30 19.4 -5.7 25.1 40 20.7 -5.7 26.4 50 21.7 -5.7 27.5 60 22.7 -5.7 28.4 70 23.5 -5.7 29.2 80 24.2 -5.7 29.9 90 24.9 -5.7 30.6 100 25.5 -5.7 31.2 120 26.7 -5.7 32.4 40 20.7 -5.7 0.2 -5.0 26.4 8.00 Parapet 0 27.9 -18.6 46.5 Design Load Case 1 Controls By Inspection Parapet Loading per ASCE7-10 27.4.5 Design Wind Pressures p (psf)- t Cp;=(+) 16 psf(8psf for roof)min per 27.1.5 Internal Pressure Coefficient GCP,= 0.18 Figure 26.11-1 Wall Roof Horizontal Effects Horiz. Direction - Windward Leeward Roof WW Roof LW WW+LW RWW+RLW Height 15 7.8 -14.6 22.4 ft 20 8.9 -14.6 23.5 25 9.8 -14.6 24.3 30 10.5 -14.6 25.1 40 11.8 -14.6 26.4 50 12.9 -14.6 27.5 60 13.8 -14.6 28.4 70 14.6 -14.6 29.2 80 15.4 -14.6 29.9 90 16.0 -14.6 30.6 100 16.7 -14.6 31.2 120 17.8 -14.6 32.4 40 11.8 -14.6 -5.4 -10.6 26.4 8.00 Parapet 0 27.9 -18.6 46.5 Design Load Case 1 Controls -By Inspection Parapet Loading per ASCE7-10 27.4.5 Design Wind Pressures (ASD) p (psf)- GC1,;=(-) 16 psf(8psf for roof)min per 27.1.5 0.6W per 2.4.1 Internal Pressure Coefficient GCP; _ -0.18 Figure 26.11-1 Wall Roof Horizontal Effects Horiz, Direction- 1 Windward 1 Leeward I Roof WW I Roof LW 1 WW+LWJ RWW+RLW I Page 91 of 126 Height 15 10.0 -3.4 13.4 ft 20 10.7 -3.4 14.1 25 11.2 -3:4 14.6 30 11.6 -3.4 15.1 40 12.4 -3.4 15.8 50 13.0 -3.4 16.5 60 13.6 -3.4 17.0 70 14.1 -3.4 17.5 80 14.5 -3.4 18.0 90 14.9 -3.4 18.4 100 15.3 -3.4 18.7 120 16.0 -3.4 19.4 40 12.4 -3.4 0.1 -3.0 15.8 4.80 Parapet 0 16.8 -11.2 27.9 Design Load Case 1 Controls- By Inspection Parapet Loading per ASCE7-10 27.4.5 Desin Wind Pressures (ASI)) p (psf)-GCS,;=(-I-) 16 psf(8psf for roof)min per 27.1.5 0.6W per 2.4.1 Internal Pressure Coefficient GCp,= 0.18 Figure 26.11-1 Wall Roof Horizontal Effects Horiz. Direction - Windward Leeward Roof WW Roof LW WW+LW RWW+RLW Height 15 4.7 -8.7 13.4 ft 20 5.3 -8.7 14.1 25 5.9 -8.7 14.6 30 6.3 -8.7 15.1 40 7.1 -8.7 15.8 50 7.7 -8.7 16.5 60 8.3 -8.7 17.0 70 8.8 -8.7 17.5 80 9.2 -8.7 18.0 90 9.6 -8.7 18.4 100 10.0 -8.7 18.7 120 10.7 -8.7 19.4 40 7.1 -8.7 -3.3 -6.4 15.8 4.80 Parapet 0 16.8 -11.2 27.9 Design Load Case 1 Controls - By Inspection Parapet Loading per ASCE7-10 27.4.5 Page 92 01 126 COMPANY PROJECT 1 ' 1 :',''''4 WO 0. \No r ks' Feb 5.2017 11:13 Ffcrtt Back Eve:f1-Beam Ccnctp;mut, Design Check Calculation Sheet WsodWoOrs Sizer 10,42 Loads: _ 1,:, 1 _re 9.at . _n, 1 f � , 49.5 _.. Maximum Reactions(Ibs),Bearing Capacities(Ibs)and Bearing Lengths(in): y II 1 0 py Daad 1.e .€ t "I.. p - ° i - I ., Nfty .s 5 0 1 3¢ 02 0-94 'i �' 'r. 0.02 ." 3 l V. Ni di Lesoth 9.504 .5 Kin ten1n .) n ° PP '. 9.59' 0,50- jjt# ° 0 F Z' ' i a 1.99 CA n CO aspen, 1,19 1.18 i.19 Cep est 925t Alm5 -+ f ' smum bearing lentil u3@d yr trod s'�ppons and 112`its:interior submits \ t Glulam-UnbaL,West Species,24F-1.8E WS.2-1/8"x6 4 laminations,2-118"maximum wklth, Supports:Ail-Timber-soft Beam,D Fir-L No.2 Total length:80`-1.5";volume= 7.1 co ft.; Laleral support:top=at supports,bottom=at supports; WARNING:Member length exceeds typical stock length of 00.0(n) •Analysis vs.Allowable Stress and Deflection using NDs 2012: ,;4I''.033 -2rs1i"Yui.s 1O5Urx :::,,.1.1.-44, `3a..,e, ,..,. 20:33 , Ben lel:-) 13:-«'' 199 ', :<;i. Dead P-tl' '1.47 .,1'4It'p9 1,,,, De:1', eslinielx estsi t=ci'a 0.71 =- i.1719 .1.1.:. 1,1 -r. ,.-. Additional Data: FACTORS: FIE 1p :CO op cc r.. 10 _... .. t,c': 255 0.99 1.119 1.00 051. 2400 <;-26 1.00 1..00 0.1'12 1.000 1.00 1.00 - 1 Yb' 1400 -).90 1.00 1.00 0.5°3.1. 1.000 1,00 I- , ) 1 - I. i ,p. 050 .. 1..29 1.09 . E. 1.8 million 1.06 1.00 l_-finy7.85 million 1.00 1.07 -- - CRITICAL LOAD COMBINATIONS: sane C : 10. f11 anly, V- 26, V de=ign ,.5 .1 F:s e,3r.<Ila¢<:): I,C 111 only. :4 132 lbs. ft Bending(-). or a. - .1 01::13. M'- 20'2 11,3ft uellaorion: 3..0 al -^D only Ito eat D-Bead Ialzvc s"snnw Wewind 1"1vP,Ct Lt �p t . live f,..',..,,mrtt..a-, r.;:It;iar,Q 2•.11 e listed in the Analysis output ':.Bad c<xnt: nac,ocs: ASCE 7.10 f ISO.20.12 CAL CULA7'ON5: Deflection: 811 u 0e.8e40 le-101.1 "Live.<ietinctior.= Deflection teen all non-dead leads (I.0", <<2''f, s t>t rutel. Dct/eat'_eu "1.5DIDead t.ua U Deflection) 33 love road.Deflect .otetai. s sbi.lity ('>): La- 42'-0.1'')" Par=7`f'-4.25" RP. _ --12 Lateral s.:ak;.:t.ity 1-), 1.0-42'-x..50" 1.-v= 7?'-4,2.i" E3- 15.12 Design Notes: 1..WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2012),the National Design Specification(NOS 2012),and NDS Design Supplement-. 2.Please verify that the default deflection limits are appropriate for your application. 3.Miriam design values are for materials conforming to ANSI 117-2010 and manufactured in accordance with ANSI A190,1-2007 4 Grades with equal bending capacity In the top and bottom edges of the beam cross-section are recommended for continuous beams. 5.GLULAM:b d=actual breadth x actual depth, 6 Gtulam Beams shall be laterally supported according to the provisions of NDS Clause 3 1 7,GLULAM:bearing length based on ema'alerof For.fiermiont Fcp(comp'n). Page 93 of 126 -`. ,. � _ COMPANY PROSECT_ - _ n 'ffi \�r�s„ Feb 5,2017 11:13 Side Side Event-Beam Concept tomb Design Check Calculation Sheet WcodWcrks Shat 110 42 Loads: Loan Type, 01_7001.5.1...7a Y cd ,...,. rad .,eae :leas 1 -'_.4.. ' eff Maximum Reactions(Ibs),Bearing Capacities(Ibs)and Bearing Lengths(in): - ., ,., . __ 55.-2..,..•,...... - ...� � -....... ...-......_m ._...w..u.,..,...,.._. i 1 4 25'-0.5' 30'-Y 55,1.5- e:id IC§ ri .. 10 'Dotal 10 11 17 1:0 :apac1 Cy ay, Beam 591 12::9 1203 .:., :a 'tat .. ,... 71 Aao1/00, : tleem 0.01 11.01. .01 0.01 anpoort 0.01 • 0. 0.02 O,J1 comIvan b -;1 'et 41 41 Lngth 3.SO, 0,50' 0,50• .50- Min reg', .50• ^.;0' 0.50^ .'S0' CO. 1.00 1.74 1.72 1..n(9 Cr 1.00 1.'5 1.00 Cb min 1.00 1..7.13 1.10 1..0 1.1d EcE,sen 02<`n t:2 : M415 mttm baati g 10113113 453503 used 172.'Wend supports and la-iw,efcnas 10990ra Glulam-Unbal.,West Species,24F-1.8E WS,2-1/B"xS" 4 laminations,2-1/8"maximum width, Suppods:All-Timber-sell Beam,D.Fr-L No.2 Total length:55,2.0%volume= 4.9 colt.; Lateral support:fop=at supports,bottom=at supports; Analysis vs.Allowable Stress and Deflection using NDS 2012: 1'nnl.cn AA41y*;l.a Volae. 0:910, i ..xc 13s.>,',.,,,.0:,x:»tx. S ltddr - 2 " !. „ gy 9 5“ fb .. 00 Fb1 o 12 (9 F':: 01 'Pad Oonl'u 0.01 /915• Do_l:l'n o:l::. ._ Y Total Oefl'n 0.10- al,D5110 1_.5 .. _d0 .a 11.0e - Additional Data: 1,A::2029. nDffipaliD7 CM C4 Ci: cV 2a5 ._ YI 1.00 1.00 - ^' .. .d' 5.53 245f1 5.0r, 1.0:, 1..00 93 )u .t_ ,J. _OC .- 20 0.97 1.00 0.041 1.0110 1.aff 1.00 1..00 1.00 . 1 Ebp1 5511 - 1.00 1.011 .. 1.. .. ' 0.1 1.0 r- ?.i.ior: .95 19.0e - .' 1.30 - ; .army' 0.5`i nu.11ioe 1.00 1.00 _ ... _ 1..0 _ CRITICAL LOAD COMBINATIONS: 5110.00 41 - 0 only, V- � < • . 0 ., 1., 11m flaniagt`t: C 41. - 11 only, N 1 15:.0t. 110100199 i-1' 4.2 tfiiy, M = 64 10, 2t 'telleOti;:o; 41 - only (total.) 0-dead L.live. S-anow W"rind l"iac'acr ,r=:,,1 1155 tm-crucentv.ind Dieirinquake All 1.C. listed .in ore Analys a 01^.90. Lied c mbiaac1.ons: ASCE 7-10 / 752 2017 CALCULATIONS: Deflection, ET = 99.0,00 lb-in2 ^Live' defleenian=Deflection from all non-ne5n i.,:.:..3. !115", -:o0::.4 Deflection. 1.501Dead LoadDnfiectiani • ;) Load ..i1a: b'',. La stability =25'-0.501' Le 45'-0.94" 41, .. Lat5rol arability _ Lu 251-0.50" Le=40'-0,54^ Re 21,10 Design Notes: I.Wood Works analysts and design are in accordance with the ICC International Budding Code(IBC 2012),the National Design Specification(NDS 2012),and NDS Design Supplement 2 Please verify that the default deflection limits are appropriate for your application. 3 Glulam design values are for materials conforming to ANSI 117-2010 and manufactured in accordance with ANSI A100.1-2007 4.Grades with equal bending capacity to the top and bottom edges of the beam cross-section are recommended for continuous beams, 5.GLULAM:bed=actual breadth to actual depth. 8..()Sulam Beams shall be laterally supported according to the provisions of NDS Clause 3:.3.3. 7.GLULAM:beating length based on smaller of Fcp(tension),Fcp(comp'n). Page 94 of 126 Client: Arbor Project: River Terrace- 12 Plex UH Project#: 16-T100 ,, Date: Feb-17 By: YSP FROELICH Lateral Design - Wood Walls Shear Walls SEISMIC: Site Classification: D Occupancy Category: II Occupancy Importance Factor I I = 1.0 System Over-strength Factor: Light Frame Walls with Shear Panels W= 3.0 Response Modifiaction Coefficient: Light Frame Walls with Shear Panels I R= I 6.5 MCE Short Period Pectal Response accel.: Ss= 1.088 MCE 1-second period spectral response accel.: Si = 0.590 5%damped short period spectral response accel.: Sos= 0.726 5%damped 1-second period spectral response accel.: SD1 = 0.500 Seismic Design Category(ASCE Table 11.6-1 &11.6-2): D Seimic Response Coefficient(ASCE 7-05) EQ 12.8-2 Cs=Sos/(R/I) Cs= 0.112 Controls Eq 12.8-3(max)-in addition to sections 12.8.2, 12.8.2.1, Table 12.8-1 Cs=SD1/(T(R/I)) Ta=Cth„" Ta= 0.365 C1= 0.02 C„= 1.4 from table 12.8-1 h„= 48 T= 0.511 )er12.8.2 x= 0.75 Cs= 0.211 Eq 12.8-5(min) Cs=0.01 Cs= 0.010 Eq 12.8-5(min) Cs=0.044Sosl Cs= 0.032 Cs= 0.112 Allowable Stress Design: 0.7E Cs= 0.078 Page 95 of 126 Seismic Dead Loads Note: Dead Load includes 10psf for interior walls/partitions Level diaphZarea Dead Load Int.Wail Trib Wall Int.Wall Wall Wt Ext. Wall DECK SQ FT Total DL (ft ) (psf) L(ft) height(ft) Wt(psf) (psf) L(ft) 10 PSF (lbs) Roof 4150 18 300 5 10 10 300 2160 106860 4`h Floor 4150 27 300 10 10 10 300 2160 174210 3fO Floor 4150 27 300 10 10 10 300 2160 174210 2naFloor 3000 27 200 10 10 10 • 200 1080 122080' Total= 577360 Seismic Base Shear(Working stress Design) V=Cs(DL) V= 45141 lbs Vertical Distribuition Level Weight Height Wt*Ht V Vi=(Wt(Ht)ITotal)*V Roof 106860 40 4274400 0.301 45141 13583 = 4`n Floor 174210 30 5226300 0.368 45141 16607 =V4th 3r°Floor 174210 20 3484200 0.245 45141 11072 =V3rd 21s Floor 122080 10 1220800 0.086 45141 V 3879 =V2nd Total= 14205700 1.000 V, = 13583 lbs Vath= 16607 lbs (Allowable Stress Design Loads) V3rd= 11072 lbs V2nd= 3879 lbs 45141 Diaphragm Loads Level wpX(lbs) V;fibs) I V;(lbs) (lbs) 1 FPX=((IV;)/(>w1))'wpX Roof 106860 13583 13583 106860 13583 =Frf 4"'Floor 174210 16607 30190 281070 18712 =F4th 3f0 Floor 174210 11072 41261 455280 15788 =F3rd 2n°Floor 122080 3879 45141 577360 9545 Fend Min Diaphragm Loads Sps= 0.726 Fpmin=0.2*Sps*wpX*I*0.7 Level Ppmin Roof 10861 V,f= 13583 lbs 4th Floor 17707 V4th= 18712 lbs 31"Floor 17707 V3rd= 17707 lbs 2' Floor 12408 V2nd= 12408 lbs (Allowable Stress Design Loads) • Page 96 of 126 Client: Arbor Project: River Terrace - 12 Plex UH Project#: 16-T100 ' Date: 2/8/17 ,S; By: YSP FROELICI- E N G f N E E R S S SEISMIC LOAD Story Distribution° Areas: - Roof: 13583 lbs Roof: 4146 sq ft 4th: 16607 lbs 4th: 4146 sq ft 3rd: 11072 lbs 3rd: ' 4146 sq ft 2nd: 3879 lbs 2nd: 3000 sq ft WIND LOAD Story Distribution: Level Windward 'Leeward Total Front-Back Event Roof: 109 36 145 4th: 114 38 152 Redundancy Factor, p 3rd: 107 36 142 4 2nd: 100 33 133 Side-Side Event Event Per ASCE7-10, p= 1.0 because of large amount of shearwalls and Roof: 110 37 146 because no wall takes more than 33% of the story shear. 4th: 96 32 128 3rd: 88 29 117 2nd: 81 27 108' Front/Back Event SEISMIC WIND Trib Area Load Trib Width Windward Leeward Combined? Load Design Load Load Typ LEVEL GRID (sq ft) (lbs) (ft) (lbs) _ (lbs) (YIN) (lbs) (lbs) Roof AA 830 2719 16 1740 580 Y 2320 2719 S AC 2590 8485 50 5438 1813 Y 7250 8485 S AE 726 2378 14 1523 508 Y 2030 2378 S 4th AA 830 3325 16 1824 608 Y 2432 3325 S AC 2590 10375 50 5700 1900 Y 7600 10375 S AE 726 2908 14 1596 532 Y 2128 2908 S 3rd AA 830 - 2216 - 16 1704 568 Y 2272 2272 S AC 2590 6916 50 5325 1775 Y 7100 7100 S AE 726 1939 14 1491 497 Y 1988 1988 S 2nd AA 600 776 16 1596 532 Y 2128 776 S AC 1875 2425 50 4988 1663 Y 6650 2425 S AE 525 679 14 1397 466 Y 1862 679 S Side/Side Event SEISMIC WIND Trib Area Load Trib Width Windward Leeward Combined? Load Design Load Load Typ LEVEL GRID % (lbs) % (55') (lbs) - (lbs) (YIN) (lbs) (lbs) Roof 11 16 2173 15 903 301 Y 1205 2173 S 12 34 4618 35 2108 703 Y 2811 4618 S 13 34 4618 35 2108 703 Y 2811 4618 S 14 16 2173 15 903 301 Y 1205 2173 S • Page 97 of 126 4th 11 16 2657 15 792 264 Y 1056 2657 S 12 34 5646 35 1848 616 Y 2464 5646 S 13 34 5646 35 1848 616 Y 2464 5646 S 14 16 2657 15 792 264 Y 1056 2657 S 3rd 11 16 1771 15 724 241 Y 965 1771 S 12 34 3764 35 1689 563 Y 2252 3764 S 13 34 3764 35 1689 563 Y 2252 3764 S 14 16 1771 15 724 241 Y 965 1771 S 2nd 11 16 621 15 668 223 N 668 668 W 12 34 1319 35 1559 520 N 1559 1559 W 13 34 1319 35 1559 520 N 1559 1559 W 14 16 621 15 668 223 N 668 668 W Client: Arbor • Project: River Terrace- 12PlexUH `'=(vrf'V4-V3 v2)/Lr Lengm ofindi idual w=all Project#: 16-T100 �t=Total length of wall alone gridline 0Date: 8-Feb La-Length of moment toxo in wall(if .different than wall length) ,1 By: YSP le-..Wall Height lits to roof (. t4 Height of wall tlr3•flr+ Ifs :iVrAhrj+irl+Itis+112+3)+1'4(/11+164-1124-2)4-1":Kfza+a2-1)--f.2('r_') . F R O E L I C H 13=Height of wall flr2•fir3 ' 12=Height of wall tlrl-ilr2 E N G INE E R S€ 1 rf-Horizontal force,at gridline from roof L "4==Horizontal force at gridline frau Ort'flr Mi =[V1-1.(110 j-I'4(hi)*V3(10-e V 2001 x� Lr Shear Walls & Holdowns V3 Hotizontalforceatgridlinefron. 3�"tir V2=Horizontal force at gridline from rd fir r Roof to 4th Floor e Y nit shear ih wall hind:rtfr--Cr.6[(Rtrib x Roof7)L)--(l"crib x irc/(L)1.)+(Frr•ih x F1oorDL t i- Roof DL: 18psf Nis-Overturning moment when upper wail is stacked above lower wall Seismic:111•=(0.6 145';s)[(Rtt ib x Roo/Z)L-)4.(11'1;1 b x II'r;l'L)L ) ( rril 5 Fit Floor DL: 27 psf sin-Overturning moment when upper wall is Wall DL: 10 psf act$tacked or does cot exist a r b.Wait,.Drib-Roof, a'l,and floor Mu-Mr !-:lir Stud Spacing: 16 inches OC /binary arta used for calculation dead loadDr='--La ., _ L -- Mr=':Resisting mcmiont due to dead load ru=Tension it walls not stacked Af: S 7 s Tension if walls stacked Wind :C"=. t — [(Rtsib x RogfV,) ',Irtrib tl'rr?�L? (ftrlb •1 .),D/,;_I 5-St mi spacims tis S;2. Co Cunipiessionatends.ifwalls sitrckcd Srivatic :C'u --. t1-0 1S:.)(Rr'ihr_RoojDL)-irt',-oxitilii)j :Fr.,b>.I L.: 12 Wall L Lt La hrf Vrf v Mu Rtrib Wtrib Ftrib Mr Cs Tu Comments Holdowns Shearwall Controlling Grid (ft) (ft) (ft) (ft) _ (Ib) (p If) (Ib*ft) (ft) (ft) (ft) (Ib*ft) (lbs) (Ib) Nailing Event Front/Back Event AA 17 17 17 9 2719 160 24472 8 9 0 16851 1611 448 --- 6/12 S AC 23 69 23 9 8485 123 25455 8 9 0 30845 1279 -234 --- 6/12 S AE 13 29 13 9 2378 82 9596 8 9 0 9854 910 -20 --- 6/12 S Side/Side Event • 11 3 18.5 3 9 2173 176 3172 12 9 0 686 1282 828 --- 6/12 S 3.5 18.5 3.5 9 2173 151 3700 12 9 0 934 1282 790 --- 6/12 S 4 18.5 4 9 2173 132 4229 12 9 0 1220 1282 752 --- • 6/12 S 12 36 36 36 9 4618 128 41563 12 9 0 98819 1379 -1590 --- 6/12 S 13 15 58 15 9 4618 80 10749 12 9 0 17156 941 -427 --- 6/12 S 14 3 18.5 3 9 2173 176 3172 12 9 0 686 1282 828 --- 6/12 S 3.5 18.5 3.5 9 2173 151 3700 12 9 0 934 1282 790 --- 6/12 S 4 18.5 4 9 2173 132 4229 12 9 0 1220 1282 752 --- 6/12 S Seismic 6/12 4/12 3/12 (2)4/12 (2)3/12 240 350 450 700 900 psi' Wind 6/12 4/12 3/12 (2)4/12 (2)3/12 335 490 630 980 1260 psf Client: Arbor Project: River Terrace-12 Flex _(Vi!-s'4-1 3-V2i Li Leueth of individual.wall Project#: 16-T100 t=Total length of wall along midline J. ,� a=Length of moment arm in.wall(if ,_.,k Date: 8-Feb tiffcrem than stall lar gth) „ YSP irf=Wall Height firs to roofL By: tis=[f r/tle(alsa:lz Th2+;)–V frl i /t_+2l-1 (1r+1I2-114.r2(712,-)1,'— t4=1leight of wall fli3-rix+fLr F R O E L I C H -0._-Height of wall fit 0r? Hciglitcfwallthi fill-0r? rt=Horizontal force at gridline front roof L ENGINEER 5 3 4=H.otizortal force at midline from45,Gr .lhr=(t;f(;ti)al 4(;t:)si".i(t])=P;(hi)j'L Shear Walls & Holdowns3=Honzoi.tal force at gridline from 3 fir =Horizontal fame at gridline from 6r wind Mr=0.6[(Roribx Row/DL)*(ilErtbxIrctlfDL -(Ftrib:r:Floc?DL L 4th rd littitaheavnwatl ) �� Floor to 3 Floor is=Overturning moment when upper wall i /_-` Roof DL: 18 psf .tacked above lower wall Sefanic :Mr=(0.6–.14 S:)[(Ririb x Roo1Dt )+(Wur'ib x(Fai1DL 1+(Firib x Poor )1 .1u=Overturning moment when upper wall is Floor DL: 27 psf sot stacked or does not exist Wall DL: 10 psf •rob,Wtrib.Ftrib=Roof,wall,and floor Tu Mu–:61r Ts Ms–Mt rib otaty area,used for calculating dead load La L Stud Spacing: 16 inches oc •br=Resisting moment due to dead load u.=Tension if.calls not stacked :5:`2 s=Tension ifw•alisstacked Wind:C:_ Lr1 l2 [(RtrfbxRoofDL)+(1freibxWalUDL)s(Fred,aF,ioorDL)1 .=Stud spacing Ms Si 2. s=Compression atends,ifwalls stacked Seismic:Cs= Ls 12 1 ((1+0.14Sa)1(Rrriba R.ooJDL)a(11`tribaWalIDL)=(FPrit,xflow-DL 11 Wall L Lt La ha h4 V,1 V4 V Ms Mu Rtdb Wfrib Ftrib Mr Cs Tu Ts Comments Holdowns Shearwall Controlling Grid (ft) (ft) (ft) (ft) (ft) (lbs) (lbs) (plf) (Ib'ft) (Ib'ft) (ft) _ (ft) (ft) (Ib*ft) (lbs) (lbs) (lbs) Nailing Event Front/Back Event AA 17 17 17 9 9 2719 3325 356 81585 54394 8 18 12 46664 5275 455 2054 MST37 3/12 S AC 23 69 23 9 9 8485 10375 273 84862 56579 8 18 6 64063 4047 -325 904 MST37 4/12 S AE 13 29 13 9 9 2378 2908 182 31990 21328 8 18 12 27288 2937 -458 362 --- 6/12 S Side/Side Event 11 3 18.5 3 9 9 2173 2657 392 10574 7050 12 18 4 1130 3895 1973 2802 MST48 3/12 S 3.5 18.5 3.5 9 9 2173 2657 336 12336 8225 12 18 4 1538 3895 1910 2701 MST48 4/12 S 4 18.5 4 9 9 2173 2657 294 14098 9400 12 18 4 2009 3895 1848 2600 MST48 4/12 S 12 36 36 36 9 9 4618 5646 285 138562 92381 12 18 4 162760 4219 -1955 -3545 --- 4/12 S 13 15 58 15 9 9 4618 5646 177 35835 23892 12 18 4 28257 2759 -291 -718 --- 6/12 S 14 3 18.5 3 9 9 2173 2657 392 10574 7050 12 18 4 1130 3895 1973 2802 MST48 3/12 S 3.5 18.5 3.5 9 9 2173 2657 336 12336 8225 12 18 4 1538 3895 1910 2701 MST48 4/12 S 4 18.5 4 9 9 2173 2657 294 14098 9400 12 18 4 2009 3895 1848 2600 MST48 4/12 S Seismic 6/12 4/12 3/12 (2)4/12 (2)3/12 240 350 450 700 900 psf Wind 6/12 4/12 3/12 (2)4/12 (2)3/12 335 490 630 980 1260 psf Client: Arbor • Project: River Terrace-12 Plex UH r= r'4-,' :r t(Lt L ngth of in 4nvdual nli Project#: 16-T100 „t=Totaal teng di of t all aion itin line 4 La Length of m ment ann in v<all(il Date: 8-Feb different th an walllength./ By: YSP id' Walt Height t ix to roof 14Heiht f wt rrifh4 p ;- h22 Ms=lir%v7r4 hat =7) V.khd+/i3+ 2 ) 1 s1$4h2+17"1.'37'2)'xL FROELICH ,,:,=H Igftofwal 1112-213 Lt 12-Height of wall firl.41t2 ENGINEERS d 'rf=Hor_ontal force at g tialine from roof V4 Horizontal force atgndlmefrom 4"tit Ma [ltftiii)z 4thi).•I'31. ):h 2 hIi (iL Shear Walls & Holdowns �3 Horizontal force atgridl:nefrom 3'fir Lr vz=Horizontal force at eridlne from 2"tlr 3rd Fl TO 2nd FiOor Unit shear in wall trim/:Alt=06I(Rtrilr x RoofDL)=(lr rilb oil ri//DL)+(halt x kloorDL l��* NIS Overturning moment uh�t upper scall is - Roof DL: 18 psf =tacked above lower wall Seismic:Mr=(O.6-.14 5o)(Rtrib a RoofDL)-t(ll'rritr a l%rillD }-(FtrrLix"L ).1 Le Mu=Oxertuniue moment when upper wall is FloorDL - Floor DL: 27 psf of stacked or does not exist Wall DL: 10 psf Rtrib,Wttib,Ftrib=Roof,wall.and floorc-Me Mss-b1 ributary area;used for eatcuiat Mgg dead load T°-tiTs= La Stud Spacing: 16 inches oc Mr=Resisting moment due Illdead load Tu."Tension if walls not stacked Aid S,"2 Ts=Tension if nails stacked l+ird:C= L_ + -- [l Jfn-w x RoofDL I a(Il'rrib x WailDL It ti-arib x FloorDI,)] =Stud spacing Ms S r 2 ."s=Compression at ends,if walls stacked Seismic:Cs= L * 1—(i+O.l4Sc)[(Rirft RoofDL1-,artrib a lFai!DL)=tFtrib x F`verDL)] Wall L Lt La ha 114 113 Va V4 V3 v Ms Mu Rirlb Whit, Ffrib Mr Cs Tu Ts Comments Holdowns Shearwall Controlling Grid (ft) (tt) (ft) (ft) (ft) (It) (lbs) (lbs) (lbs) (plf) (Ib'ft) (Ib'fl) (it) (ft) (ft) (Ib'ft) (lbs) (lbs) (lbs) Nailing Event Front/Back Event AA 17 17 17 9 9 9 2719 3325 2272 489 162471 74842 8 29 24 77918 10352 -181 4974 Shth(2)Sides HDQ8 4/12 S — AC 23 69 23 9 9 9 8485 10375 7100 376 169027 77879 8 27 24 139989 8129 -2700 1263 MST37 3/12 S AE 13 29 13 9 9 9 2378 2908 1988 251 63709 29349 8 27 24_44722 5681 -1183 1460 HTT5/MST37 6/12 S Side/Side Event 11 2 14.8 2 9 9 6 2173 2657 1771 671 14867 5371 12 24 8 670 7927 2351 5152 Shth(2)Sides HDQ8 4/12 S 3.5 14.8 3.5 9 9 9 2173 2657 1771 575 30717 14099 12 27 8 2143 9292 3416 6117 Shth(2)Sides HDQ8 4/12 S 5 14.8 5 9 9 9 2173 2657 1771 448 43882 20141 12 27 8 4373 9292 3154 5753 HDQ8 3/12 S 12 36 36 36 9 9 9 4618 5646 3764 390 275086 126260 12 27 8 226702 8157 -2790 1344 MST37 3/12 S 13 15 58 15 9 9 9 4618 5646 3764 242 71143 32653 12 27 8 39358 5258 -447 2119 MST37 4/12 S 14 3 18.5 3 9 9 9 2173 2657 1771 535 20992 9635 12 27 8 1574 7513 2687 6473 Shth(2)Sides (2)MST48 4/12 S 3.5 18.5 3.5 9 9 9 2173 2657 1771 459 24491 11241 12 27 8 2143 7513 2599 6385 Shth(2)Sides (2)MST48 4/12 S 4 18.5 4 9 9 9 2173 2657 1771 401 27990 12847 12 27 8 2799 7513 2512 6298 (2)MST48 3/12 S Seismic 6/12 4/12 3/12 2)4/1.2)3/12 240 350 450 700 900 psf Wind 6/12 4/12 3/12 2)4/1:2)3/12 335 490 630 980 1260 psf Client: Arbor 4 ,.ilrf-V4-I'3-V 2) La Project: River Terrace-12 Flex UH „-.Lo„,,i,of ir,dis„(„at„all :# 16-T100 Project t=Total length of wall along gridline 1,•',, ' Date: 8-Feb . a=Length of moment arm in wall tit lifferent than wall length) By: YSP .rf=Wall Height(Ira to roof L 4=Height of wall 110-flr4 Ms.[VrAhrl+14-,034-1,2 03)s I.1.04-rh3+1,2-,2)+V3(113 f/12,11+V2(1,2 Ls t3=Height of wall flr241r3 FROELICH ,2=Height ot'wall fli-l-fh2 ENGINEERS1 'a=Horizontal Nee at gridline from root' - L Mo (fifth('i-+Vayrii+I'a( V 2(hi)]x— '4=Horizontal force at gritiline from 4°fir 11: Shear Walls & Holdowns '3 Hmizonial force at gridline from 3'fir '2=Horizontal force at gridline from 2fir t L' '=Unit shear in wall Wind:Mr=0.6[(Rmil,x RoojDL)+(WailsxlraliDL i-(Firth w FloolDL)1— 2nd Floor To Foundation is=Overturning moment when upper wall is . L' -tacked above lower wall Seismic:Mr=(0.6-.14Sx 4(R/rib x RoolDL)+Ortrib xlValiDL),(Drib x FloorDL)1— Roof DL: 18 psf 2 ía overturning moment when upper Wail in Floor DL: 27 psf ot stacked or does not exist ll DL: 10 psf •trib,NVIrib,Ftrib=Roof,wall,and floor Tu.Ms-Mr Ta Ms—Mr Wa ibutaarea,used for calculating dead load La L Stud Spacity ng: 16 inches oc to=Resisting moment due to dead load u=Tell$1011 if walls apt stacked Hs S i 2 rs, Wind:C= +—v Ririb,RoopL),(Wtrib xlVelliDL)+(Ffrito x FloorDL)1 s=Tension if walls stacked L 12 =Stud spacing Ms Si' =Compression at ends,if walls stacked Seismic:Cs=—-I----:(14-0.14.3.4/firth x RooPJL)-t-(Wails xll'ADL)-o-(Forth,,Floor-MA' L 12 Wall L Lt La hff h4 h3 h2 Vrf V4 V3 V2 V Ms Mu Rtrib Wtrib Finn Mr Cs Tu Ts Comments Holdowns Shearwall Controlling Grid (ft) (ft) ((t) (ft) (ft) , (ft) (ft) (Ibs) (lbs) (Ibs) (lbs) (plf) (Ibit) (1b*ft) (ft) (ft) (ft) (113*ft) (14s) (Ibs) (Ibs) Nailing Event Front/Back Event AA 14 14 13.5 9 9 9 9 0 0 0 776 55 6983 6983 8 36 36 72087 1601 -4823 -4823 --- 6/12 S AC 23 69 22.5 9 9 9 9 8485 10375 7100 2425 411 262833 85152 8 36 36 194561 12765 -4863 3034 HTT5 3/12 S AE 13 29 12.5 9 9 9 9 2378 2908 1988 679 274 99058 32088 9 36 37 64051 9042 -2557 2800 HTT5 4/12 S Side/Side Event 32 7.5 44 7 9 9 9 9 4618 5646 3764 1559 354 73195 23914 12 36 12 12615 11117 1614 8654 HD12 3/12 S 33 5 50 4.5 9 9 9 9 4618 5646 3764 1559 312 42941 14029 12 36 12 5607 10203 1872 8296 HD12 4/12 S 31 3 18.5 2.5 9 9 9 9 2173 2657 1771 668 589 32673 10610 12 36 12 2018 13730 3437 8589 Shth(2)Sides HD12 4/12 S 3.5 18.5 3 9 9 9 9 2173 2657 1771 668 505 38119 12379 12 36 12 2747 13367 3211 9327 Shth(2)Sides HD12 4/12 S 4 18.5 3.5 9 9 9 9 2173 2657 1771 668 442 43564 14147 12 36 12 3588 13108 3017 8770 HD12 3/12 S _ — Page 102 of 126 Client: P. Project: 411(2 Proj.H: Date: By: FROELICH ENC37N EERSI ACI 318-05 Appendix D - Tension Failures (Page 1 of 3) Anchor description: 5/8"ASTM A36 Threaded Rod for Simpson HTT16 / HTT22 I HTT4 1HTT5 1 Number of Anchors s1 = 0 in. (see Fig 0.625 Inch Diameter s2 = 0 RD,5.2.1) 8 Inch Embed 2500 psi Concrete Footing NDosign= 5.250 (kips)Allowable Design Tension 0.3 -General Requirements (ACI 318-02 Section D.3.3.3) Are seismic loads induced into the anchor? Y SF = 0.75 D.4 -General Requirements for Anchor Strength (ACI 318-02 Section D.4.4) Strength reduction factor N for anchors using load combinations from ACI 318-05 section 9 2 Will anchor be governed by brittle steel failure? N Anchor (1)= 0.75 Brittle failure: 0.65 (brittle defined by tensile test elongation less than 14%) Ductile failure: 0.75 Is rebar present around anchor to resist blowout? N Reinforcing CG= 0.70 If rebar is present around anchor: 0.75 Otherwise, 0.70 Summa ONn wind 1)Nn Seismic Summary From Below ON„ Sw= 1.0 SF = 0.75 tDNs= 9.83 9.83 7.37 kips Ncb = 19.01 19.01 14.26 ct)hiv,= 121.71 121,71 91.28 kips ONsb- 198.14 198.14 148.60 kips ilMsbo= 198.14 {{ 198.14 148.60 kips Minimum TDN°= 9,83 1 9.83 7.37 kips Converting To Allowable Stress Design Wind Seismic Conversion Factor 1.4 1.4 ONAilowable= 7.02 5.27 kips Ndasign ONAlloweble 5.250 < 5.27 Therefore, Anchor Design OK Page 103 of 126 Client: Project: Proj.#: a Date: By: FROELICH ENG) EERSS ACI 318-05 Appendix D - Tension Failures Cont. (Page 2 of 3) Tension Design Calculations 0.5.1 -Steel Strencfth for Anchor in Tension do (Anchor Diameter; = 0,625 inches n = 1 #of anchors nt= 11 Number of Threads per inch AS,, = 0.23 in.2-(effective cross-sectional area of anchor) feta= 58.00 ksi- (tensile strength of anchor material(not the yield strength) not exceed 1.9fy or 125 ksi) N;a= 13.11 ksi-(Eqn. D-3) Anchor rU = 0.75 - c:z = "Asefa ta 4314„ = 9.83 kips D.5.2-Concrete Breakout Strength of Anchor in Tension 51 = 0 inches (see Fig. RD.5,2.1) S2 = 0 inches (see Fig. RD,5.2.1) A„,(for single anchor) = 576 in.2(see Figure RD.5.2.1) A„G(for group anchor) _ 782 in.2 (see Figure RD.5.2.1) Alt„(for single anchor) = 576 in.?(see Figure RD.5.2.1) AN„(for group anchor) = 576 in 2(see Figure RD.5.2.1) +.i,eC ,N= I Eqn. D-9 (Anchors not Eccentrically Loaded, 4', = 1.0) 4jed.N = 1.000 Eqn. 0-10 & D-11 41c.N = 1 (1.25 for cast anchors. 1.4 for post-installed) Section D.5.2.6 k,= 24 (24 for cast anchors, 17 for post-installed) Section D.5.2.2 rc= 2500 psi 1.5"hei= 12 he= 8 inches 0.7+0.3(cm,d1.5het) = 1.000 cm;r,= 12 in -distance to closest edge of concrete A'..w I C 1 t.� t '' Nb = 27.15 kips - (Eqn. 0-7) • Y N„^ 27.15 kips -(Eqn. 0-4) A A . Ar N - 0.00 kips-(Eqn. D-5) �V oho a Y ec,Ntif ed,;v it'Icp b Reinforcing 4) = 0.70 f ``'o ONcog a 19.01 kips Page 104 of 126 Client: Project: Proj.i#: 7111 ofr Date: By: FROELICH ENGIfiEEMISI ACI 318-05 Appendix D - Tension Failures Cont. (Page 3 of 3) D5.3 -Single Anchor Pullout - headed or embedded nut Use Plate Washer? Plate Washer Width = 3 inches Nut diameter= 0.985 inches Nut or Plate Washer Bearing Area = 9.000 in2 Aorg = 8 693 in2- bearing area of embedded anchors head or nut 4JcpI For an anchor located in an area of concrete where not cracking at service loads is anticipated, otherwise use 1.0 value (ACI 318-05 Section D.5.3.6) n= 1 #of anchors N, 8 jc 173 87 (kips)Eqn. D-15 Np,= 173 87 (kips) Eqn. D-14 INibc, Reinforcing (1) = 070 = 121.71 kips D5.4 -Anchor side-faced blowout-Headed Anchor (Required only if anchor is near an edge where cal < 0Aher. Anchor is not close to Edge of Concrete. Analysis below NOT Required. Ca2 = 5 distance to perp edge of concrete from anchor Cal = 12 in -distance to closest edge of concrete = 283 05 (kips) Eqn. D-15 Factored Nst, = 100 25 Reinforcing cl) = 0.70 198.14 kips A' 3b = 160 cal VA brg f S 0 in -spacing of outer anchors in group Nsbg 283.05 (kips) Eqn. D-16 Reinforcing (3) = 0.70sg 1 + SAi 4n4,1,1= 198.14 kips 6 s6 °01 Page 105 of 126 Client: i it Project: 110111C11 Proj.N: CONSULTING Date: By: ACI 318-05 Appendix D - Tension Failures (Page 1 of 3) Anchor description: 718" ASTM A36 Threaded Rod for Simpson HDQ8 1 Number of Anchors s, = 0 in. (see Fig 0.875 Inch Diameter s2 = 0 RD.5 2 1) 8 Inch Embed 2500 psi Concrete Footing Noesign = 9.230 (kips) Allowable Design Tension D.3 -General Requirements (ACI 318-02 Section D.3.3.3) Are seismic loads induced into the anchor? Y SF= 0.75 D.4 -General Requirements for Anchor Strength (ACI 318-02 Section 0.4.4) Strength reduction factor 0 for anchors using load combinations from ACI 318-05 section 9 2 Will anchor be governed by brittle steel failure? N Anchor 4= 0.75 Brittle failure: 0.65 (brittle defined by tensile test elongation less than 14%) Ductile failure: 0.75 Is rebar present around anchor to resist blowout? N Reinforcing fi= 0.70 If rebar is present around anchor: 0.75 Otherwise, 0.7 0 Summa ONn Wind ONn Seismic ,Summary From Below _ cDN„ Sw= 1.0 Sr= 0.75 1)1s,iS= 20.09 - 20.09 15.06 kips , TNcb_ 25.87 25.87 19.40 kips a)tVQ„= 117.59 117.59 88.19 kips . q)N$b= 227.21 227.21 170.41 kips cAhlaeg= 227.21 227.21 170.41 kips Minimum ON,- 20.09 20.09 15.06 kips Converting To Allowable Stress Design Wind Seismic Conversion Factor 1.4 1.4 ONAtwwabfo= 14.35 10.76 kips Ndesign < ONAllowabte 9.230 < 10.76 Therefore, Anchor Design OK • Page 106 of 126 1 � � � Client: low, Project: OOEfG > Date: ENGI1EERS,INC ACI 318-05 Appendix D - Tension Failures Cont. (Page 2 of 3) Tension Design Calculations D.6.1 -Steel Strength for Anchor in Tension do (Anchor Diameter) = 0.875 inches n = 1 #ofanchors nt= 9 Number of Threads per inch Asa= G.46 in.2- (effective cross-sectional area of anchor) f,;.a = 58.00 ksi-(tensile strength of anchor material (not the yield strength) not exceed 1.9f1 or 125 ksi) N„= 26.78 ksi - (Eqn. D-3) Anchor 0 = 0.75 �N 20.09 kis srz ____ �E se utasa' p 0.5.2 - Concrete Breakout Strength of Anchor In Tension s, = 0 inches (see Fig. RD.5.2.1) sZ = 0 inches (see Fig. RD.5.2.1) An,(for single anchor) = 784 in.2(see Figure RD.5.2.1) An,(for group anchor) = NA in.2 (see Figure RD.5.2.1) 4,0 (for single anchor) = 576 in.2 (see Figure RD.5.2.1) ANS (for group anchor)= 576 in.2 (see Figure RD.5.2.1) 4jec.Ni = 1 Eqn. D-9 (Anchors not Eccentrically Loaded, 4), = 1 0) 4jed,td= 1.000 Eqn. D-10 &. 0-11 4jc,N,= 1 (1.25 for cast anchors, 1.4 for post-installed) Section D.5.2.6 k,= 24 (24 for cast anchors, 17 for post-installed) Section 0.5.2.2 fc= 2500 psi 1.5"hef= 12 ha.= 8 inches 0.7+0.3(cn,,i1.5haf) = 1.050 cab = 14 in -distance to closest edge of concrete 'iv i�r` : 4J 7r: h t5 Nb= 27 15 kips- (Eqn. 0-7) Ncb = 36.96 kips - (Eqn. 0-4) =j N b9 = 0.00 kips (Eqn. D-5) cbg cc, {Yed,NVcp,V' b Reinforcing 0 = 0.70 t` .Al 0N,bg= 25,87 kips Page 107 of 126 r a as Client: Praject: E ROEi :11-i Proj.i': OSU[ P e�$tz: Sv: E GI4EER INC AC1 318-05 Appendix D -Tension Failures Cont. (Page 3 of 3) D5.3 -Sin•fe Anchor Pullout - headed or embedded nut Use Plate Washer? Y Plate Washer Width = 3 inches Nut diameter= 1.438 inches Nut or Plate Washer Bearing Area = 9.300 in` Abrg= 8.399 in` -bearing area of embedded anchors head or nut 4,V n = 1 For an anchor located in an area of concrete where not cracking at service loads is anticipated, otherwise use 1.0 value (ACI 318-05 Section D.5.3.6) 1 #of anchors N¢ = 167.98 (kips) Eqn. iJ 15 Np = _.r?' _.- Npr = 167 93 (kips) Eqn. 0-14 1V,,., .._Plow,,p li Reinforcing IP = 0.70 EDN,,„= 11739 kips D5.4-Anchor side-faced blowout-Headed Anchor (Required only if anchor is near an edge where ca. <0,4h.,; Anchor is not close to Edge of Concrete, Analysis below NOT Required. Gat = 14 distance to perp edge of concrete from anchor Cat = 14 in -distance to closest edge of concrete Nsb= 324.59 (kips) Eqn. 0-15 Factored N9b = 162.29 Reinforcing Q = 0.70 ilr.)N = 227.21 kips Nth = 160 al r r r f'c a= 0 in -spacing of outer anchors in group N - 324.59 (kips) Eqn. 0-16 Reinforcing cD = 0,70 No -- 1 + s, oNg�= 227.21 kips 6ca l Page 10E3 of 128 Client: Project: ooNFROFEICH Yroj.#: � Byte: ENGI4EERS,INC r AC[ 318-05 Appendix R - Tension Failures (Page 1 of 3) 1" ASTM A36 Threaded Rod for Simpson HhDQ11 l HHDQ14 t HD14A IHDU11 Anchor description: IHDU14 1 Number of Anchors Si = 0 in. (see Fig 1.000 Inch Diameter S2 = 0 RD.5.2.1) 12 Inch Embed 2500 psi Concrete Footing Np„lyn = 13310 (kips)Allowable Design Tension 0.3 - General Requirements (ACI318-02Section D.3.3.3) Are seismic loads induced into the anchor? Y SF= 0.75 D.4 -General Requirements for Anchor Strength (ACI 318-02 Section 0.4.4) Strength reduction factor cA for anchors using load combinations from ACI 318-05 section 9.2 Will anchor be governed by brittle steel failure? N Anchor sb = 0.75 Brittle failure: 0.65 (brittle defined by tensile test elongation less than 14%) Ductile failure: 0.75 Is rebar present around anchor to resist blowout? N Reinforcing tp = 0.70 if rebar is present around anchor: 0.75 Otherwise, 0.70 Summa ON,wind ONn Seismic Summaryprom Below (1)N, Sw= 1.0 SF= 0.75 (1)Ns_ . _ 26.35 26.35 19.76 cl3N,b = 29.64 29.64 22.23 kips t)Non= 115.01 115.01 86.26 kips tANsb = 288.91 288.91 216.68 kips CONsb9 288.91 288.91 216.68 kips -Minimum 'PN = 26.35 I 26.35 I 19.76 kips Converting To Allowable Stress Design Wind Seismic Conversion Factor 1.4 1.4 CDNAttowaete= 18.82 14.12 kips N d es ign ONAltowabie 13.710 < 14.12 Therefore, Anchor Design OK • Page 109 of 126 are Client: ei!.I ProjeiE: FROEIICFI Proj.k: CONSO TING Cate: By: ENGKERS INC ACI 318-05 Appendix D - Tension Failures Cont. (Page 2 of 3) Tension Design Calculations D.5.1 -Steel Strength for Anchor in Tension d3(Anchor Diameter) = 1.000 inches n= 1 #of anchors fit= 8 Number of Threads per inch A5e= 0.61 in.2- (effective cross-sectional area of anchor) f,ty = 58.00 Ksi - (tensile strength of anchor material (not the yield strength) not exceed 1.9 Y or 125 N„ = 35.13 ksi -(Eqn. D-3) Anchor 01 = Q.75so = 12Ase J zi to ON„= 26.35 kips D.5.2 - Concrete Breakout Strength of Anchor in Tension s, = 0 inches(see Fig. RD.5.2.1) 32= 0 inches(see Fig. RD.5.2.1) A„(for single anchor)= 1100 in.2 (see Figure RD.5.2.1) A„(for group anchor) = NA in.2 (see Figure RD.5.2.1) ANce (for single anchor) = 1296 in.2 (see Figure RD.5.2.1) ANco (for group anchor) = 1296 in.2 (see Figure RD.5.2.1) y),c N = 1 Eqn. D-9 (Anchors not Eccentrically Loaded, 4)1 = 1.0) ysnd,N= 1.000 Eqn. 0-10 &D-11 N 1 (1.25 for cast anchors, 1.4 for post-installed) Section D.5.2.6 k,= 24 (24 for cast anchors, 17 for post-installed) Section D.5.2.2 fc= 2500 psi 1.5"het= 18 hef 12 inches 0.7+0.3(crn,n/1.5het) = 1.000 cam _ 18 in-distance to closest edge of concrete iy.b = ..°.. it I N = 49.88 kips -(Eqn. D-7) ly = 42.34 kips - (Eqn D-4) As, cb A( j ' N, 0,00 kips - (Eqn. D-5) ��i chg z ,.L ed,;rtf'rcp.,ti h s' Reinforcing W= 0.70 ``Piro ONGeg= 29.64 kips Page 110 of 126 • a Project: rfr FROEUCH Proj. Date- • (ONSOITING By: ENGINEERS INC ACI 318-05 Appendix D - Tension Failures Cont. (Page 3 of 3) 05.3 - Single Anchor Pullout- headed or embedded nut Use Plate Washer? Plate Washer Width= 3 inches Nut diameter= 1.625 inches Nut or Plate Washer Bearing Area = 9.000 in2 Abrg = 8.22 in2-bearing area of erribeddec anchors head or nut = I For an anchor located in an area of concrete where no cracking at service loads is ent:cipated, otheroise use 1.0 value(ACI 318-05 Section D.5.3.6) fl 1 #of anchors Np= 164.30 (kips) Eqn. 0-15 c Np, = 164.30 (kips) Eqn. 0-14 N til-1 Reinforcing 4> = 0.70 cl)Npo= 115.01 kips 05.4 -Anchor side-faced blowout-Headed Anchor (Required only if anchor is near an edge where cv < 0.4heo Anchor is not close to Edge of Concrete Analysis below NOT Required. Ca2= 5 distance to perp edge of concrete from anchor C a 1 18 in -distance to closest edge of concrete N3 = 412.73 (kips) Eqn D-15 Factored N$b = 412.73 Reinforcing 4) = 0.70 A r 288.91 kips iv 56 = 160 cal ..\171-b711 f c oN3b s 0 in -spacing of outer anchors in group Nog= 412.73 (kips) Eqn. D-16 s Reinforcing 4> = 0.70 N = I 4. N 0N,b9 = 288.91 kips 6cal SO • Page 1 1 1 of 126 Title Fiock Lin ' Tr iLe : Joe `. Line i W 'r: You can char.oes this area sg;; Proi using the Setb-3 menu item left M...., and then using tete fP,Inting& Pec.ject No..,.. Title Block'selecllon. Title ck Line 5 a trx ,7 rr nSldA4.a .3 t,'ittrrr,sin.xfirlpG o r slcr' a,'a Cantilevered Retaining "Wall a ncx e,= 154,3alt,Ealt3.1f.ta. ?-ki .11,(0. LICAriK �e'g i 3$f . xi s, iw ti*..�.`'.,..s ° .w.'I, '',%--.:Gt.FROEUCNCO U MUG ptt EERS ' Description : 4 0'tali Criteria Soil Data Cafcutatians perAC{31a-Oa,AC1530-08,IBC 2009, CBC 2010,ASCE 745 Retained Height = 400 ft Allow Soil Searing = 2,560 0 psi Wall height above soil = 0.00 ft Equivalent Fluid Pressure Method Slope Behind War0.20 t Heel Active Pressure = stir:ps"f r Active Pressure _ 53 5,dill. Height of���.t3`+�f Toe = G ,S it Toe A J'/ Water height,over heel is 0.0 ft Passive Pressure = 330 0 ostift Vertical component of active Soil Density,Heel = 113 COcot Lateral soilfo_. 'e,options: Soil Density. Toe - _fifi Ti' NOT USED fiat f.:•;011 Pressure. F,ctirr Cce'f or'rr:`_J ac Sets -, 0 520 NOT dS.D for Sliding Resistance. Soil height to ignore, NOT USEDfor Overturning K Stance. for passive pressure = 0 CO-n Surcharge Loads Lateral Load Applied to StereAdjacent Footing Load ,LateralLoad = 20 al' S r<.y Over Heel 50 0 CST Adjacent Footing Load 0.6 lbs Used 3 s Resist Sliding&O.e.!.rnsrg He ght to Top = 1 r 'Footing lido _ 0.00 ft _ 3,u`c ergje Over} ice 0 Psi': _.Height to Bottom m 5 05 if Eccentricity w e G ty 0.00 in Usedfor Slidi{ n g. Wall to tg ✓L Dia 000 ft ... '�:le 9 i u Line Load Axial Load Applied to Stem Ease A elBelrx�v Soil 50L 0 bs Beck0.0 ft Axial Dead goad = ,,, ..s at of Wall j} Wind on Exposed Stem .- 0:J us A�€ta,Live Loin = .� �� Poisson's s P,atc — 0 300 Axial Load Eccentricity = 0,0 in Orr:a in ti Stem Construction Top Stem Wail Stability Ratios Design Height Above Ftq CC vv-r turni fg = 2.43 OK Wats Material Above'Ht' = Concrete. 'Sliding = 2.25 OK Thickness in= 8 CC (Vertical C ,p, et NOT'Used) Reber Size _ 4 Total,e.a r c L-ec l a45 lbs Reber Spacing r= 121,6 ..resultant ccc = 6 22 in Reber Paced at = Edge Design Data ,... Soil"ressu E y )Toe = 1,515 par OK ib/FS+f)Fa _ 0.270 Soil Pressure,(a Heel = 0 oaf OK Total Force @ Section lbs= 523.8 Allowable2,000 psi Moment ..Actual b.-!= 860.0 Soil Pressure Less'Ina twable a A r 1, 1 V et Moment....Allowable ft = 59.5 ACI ac; d @ Tee = D ~hear,,. Actual pa:= 3,2 ACI Factored c@ Heel = 0 psf neer...,,.Allowable Psi= 67 Footing Shear a Toe 0 5 psi O lttall'J4'�Weight c�a= 75 6 Footing Shear p„Heel a 1'..4 psi CK Allowable = 75.0 psi Rebar Depth 'c' in= 4.25 Lap splice if above in= 12.00 Sliding Cabs (Vertical Co nponent MOT Used) Lap splice if below in= C,40 Lateral Sliding Force _ 597,0 lbs gook embed into footing in= 3,40 less 100%Passive Force = - 371.3 lbs Concrete Data less 100%Friction 978.8 b5fo psi Jr: 2,006.0 Added Force Redid _ 0 0 lbs OK Fy Dsi= 60,000.0 ., for 1.5:1 'Stability = 0.0 lbs OK Load Factors Dead Load 1.200 Live Load 1.800 Earth,H 1.6650 Wired,Ai 1.605 Seismic,E 1.000 I • Title Bloc re i Page 112„oft 126 Jou You can changes this area =sgrir ['sing the"Settings'menu item Pr i ct"es: and then using the'Printing Title61uck"selectionl: l 3. ;,. .. Title ick bre s.:„ ,i i3 I 1( 3C i{'iii�y 11 F'r .2fllia;...tl,Tt731A.6 Pe.i tis3.= irll' '>y. uta 3'cra, ,$e:'tsro :' g ESERs..AC�,v.:19,1X!i. i.$.11.10.N.VeriIt11..3 a a AT i � ,:, , �., LIce see:: L U� a`Klll�060423i1�t t �"`. r�, �; . �aM� ^ �� .a^� �, <'^ x. ." ?.,t'sF� ��, i7i .� �' • +�$u NO 4.GIN 5 -r:`r Description: 4 T"`['ball Footing Dimensions&Strengths Footing Design Results toe Width = 0 75`t Toe _ .gel .e: - ars,. t+tF.,.,Width .....�:(:�__ Fat:f,is:.:j Yres-SG;F = 1,818 ;? ,,:.. Total Footing Width2.70 !:' iJ'? ani 452 0 rt-lb Footing i tl i 8 ness -= 12 50 in M .t ir'3 W1tr 1 o 887iltilici Mit_ :)e igr: 392] 883'ft b , Key Width -- 0-00 in Actual ;1, t W Shear - 0 53 10 37 psi }` l Depth 0u0 41 Mi,} 1-,418,/Sriear - =t1;0 75 00 psi Key Di.;taf tarn rce - il.r.7O d7 e 15 00 in r: " 2,i500 psi F) n 80,000 P`i: H9 i..l ;n rt :@ t 5 0 in Fcot og:2on ref s Density 150.00'F ct ley t: +r i.,._,ng ii, Iti one Spa a Min As= 01)01 Cover Top 2.00 3 attn. _,.I in c J is If rte, b 7,.:< Fr K`..?e! Na v ef defined Summar'of Overturning&Resisting Forces& Moments OVERTURNING..... ,...,RESISTING Force Distance Moment Force Distance Moment item it,s ft it-in bst ft-ib Heel Acti-,e Presser s 437 w . 57 29 2 Soil O.er Heel - :50 0 2 05 1 370 s Surcharge over Heat _ 79.5 2 0 l OS 3 Siopeo Soil ,.+:e. Hee Too Active Pressure = Surcharge Otter Heel tti 12 0 2 00 ttli0 0 Surcharge Over Toe - Adjacent Footing load it:, Adjcent Footing toad in Axial Dead Load on Stern _ :'55'.0 I 01) 000,0 Arden Lateral Load - 80 0 1;0 24r,0 `;Pial Live Load on Sten Load n Stern Aoove Sail = Soil Over foe ,3`t Surcharge Over'`oe Stern Weigr: a 31)5 0 1 00 300.0 Earth(o).Stern .rens' Total 59T 0 4.t_,M. = 11580 , 412 t=�t]titt�Weight�i M 5 1-38 582 ResistingiOverfurning Ratio = 2.43 Key Wegnt Vertical Loads used for Soil Pressure= 1 947.5 Ins 'tet`.Component = Total= 1.937.5 lig R.'S1.= 2 837.2 . "Ive load;N T rdudea:n tote-dtsplayea.oru d friroverturning 7.151v3rce W.t ISTK,Itirlet for 8_n pressure oarcotation,. • Page 1 13 of 126 Title Block Line 1 Title: V r: You can changes this area Dsgnr: Dose.. using Ute'Settings'menu item and then using the'Printing& ProivctN'ot.s Title Block°selection. <1::,1. ;�; Title Block the 6 .... r'i f t yy_ r M f f s i t 2J Y'Ja -.ac • Cantilevered y3yAytj�$Il ���vjjeQ�ppeyyd)�/��Re$2tt Retaining V'V i��I! fig. �+{� ¢. .. .� .rt .1933 11 B.i .:.1t 00 l,v.a't 10.06 ucYj�`s�'. MF 1801 2304 s a '3 ";S &4 Al•i'�d.i9F"":ta a�' <a. s y 4F". c` tt`iit `s.r46 : n-Ilia 1°±,"N '; _tieetaftt FRO_ C/� C NSU(, Description: 0'-0'Wag Criteria Soil Data Calculations per ACV 318.48, AC1530.08,IBC 2009, COC 2010,ASCE 745 Retained Height = o r ,l w Sail Pei 2.500 0 est Wall height above soil - t Equivalent Eiu,U Preseura t et. y1 - Slope BehindBehindWall - "' et" 'ia J,`' = 35 6 osfit-s n ToeActive ..ns.1� = 30 0 csf3t Height of Soil over Toe _ ,� r; Water rteight over noel = 0.. Passive Pr Vertical component of active Smi Density . ?o = 110 00 pef Lateral soil pressure options. Seil Density T:s - 0 CO pef NOT USED for Soil Pressure..;re `rr rt;Oce.i citwr.. ._ = t v 00 NOT USED for Slicing° s s tlyt j sr ,. NOT USED tar Overturning 0 7.7`. ry," u. a r , _sS.s. V, L Surcharge Loads Lateral Load Applied to Stem Adjacent Footing Load f Load - 0 0 C f Adjacent Footing Load 33 its Sur!`tlarrge0 Resist Heel 3D U Psi rt Used Sliding&t1d!:.r:..r:i"l Height, 6..0 ft Footing Width ., 0,00 it +r3 0'ft EC ent. citya cc t'. Surcharge Over Toe id S; f _.`�flt i = - U for Sting& verthrning Wail to Fig CL Dist 1 ,t Footing Type r Vert Load Applied to Stem Base Acove e o'w Sc i Axial Dead Load _ at Sack cf','en0 , it Axial Live Load = 3 )its 'P1 nd r-i_.rp;s.nStern _ 0.0}sr Poisson's Ratio 3 ^t: Axial Load Eccentricity = 0 t ... Cess n SummaryStem Top..Top Stem . _ .._ _33.33... _. 33.33. Stem OK Wall Stability Ratios Design Haight Above Ftg ft= 030 Overturning - 9.37 OK 'Nall Ma ar a Aceve`t-.0 Concrete Sliding = 17. ..,r., ,. ,..n ;s it= X600 (Vericaf Component NOT Used) Saber Size Total Bearing Lead - 3,357the S� pacing 12f0 ~ 3 1 in Scor .ac .., Edge _resultant eco. � = W. Resign Data Soli f*�essure(Toe oe - 17i petJai 'tom ni; fraiF 3«133 4.311 soil Pressure er Hee4 = 0 pe' 3K Total Force.11) Sector: hs= 1,334 7 Allowable = L5U0 e, p Moment..r 3.6.' l= 3 313 Soil Pressure fisc Than Allowably fylt f"'t .1.. '�l�f ace 'i-1 7,9-93 i t'Ci Factored @ Toe = 2 121 psf yl as ..i, bet= 19 ACI Factored @ Heel = U psf Steer ct ua t'2 bcsiet= S71 Footing Shear c7i Toe - 5.1 c5: OK. Wail*eight ;,p 1 Fooling Shear Hee = ` - psi 3i. Rebar Depth 'd' in= 6.19 0 Allowable = u psi Lap e if?bele n= 19.00 Sliding Caics ('Je*ticai Component NOT Used) _, splice is beiow in= ti rU{3 Lateral Sliding Force __ 1.148 9 ibe Ho,ak embed into footing fn Ir. 6.06 less 100%Passive Force = . 371 Sibs Concrete Data less 100%Friction Force 1,675.3 psi= 2,000.0 Added Fore;hell a U U lbs OK =: psi= 66,000 O .. .for 1 r i 1 Stability = ci U lis OK.. Load Factors _.... rn Dead Load 1 230 4 Live Load 1.800 Earth,H 1.603 Wind;W 1,500 Seismic,E 1.000 • P 1V of 126 Mk,.Bieck Line , mitle age t)r°e You can changes this area Dscmr. using the'Set';ings`menu item Pr 1j=ct'es°. and then using the'Print ng& Projectb3..,, ies -File luck'selection, Ti's >Line 6f u z r°' - ._._ r,'' F' p lieu t ,Ill 'fir i r s1. t 1T-,r. jry1 1z r5'tarn r F-6 Canttlavere Retaining all EUEROAL 1. .n Yens, ,�,;,�,.E3�3-�� 3��i8.lf 7DflQ 3f40.sa Liodnii i lit r t x i'Ai i:SLP. k'47 ri `3:!_ * < r .i'r 4t:r..f "' W.;;e`iLkiltitettFROM C ;C ONSULTINGENGINEEERS Description: 6'.0"viaii Footing Dimensions &Strengths Footing Design Results Toe Width - 1.60 : Toe r?ee Heel d id f F:a^er e Pressuie _ 2,121 0 Total Footing Width o = 0 psi' Footing Thickness _. 12 00 in Mu Downward - 123 2,564 tab M'.... Design gn = 54d [ 6.4 Pt-ib Key Width 0 ui Mc'vat jJjJa'i Shear - 5 07 21 53 psi Key Depth = A' 1 p Shear = !'5 CO 75 30 psi :�i 1-Way Key Distance frc-m ire - s = . Toe Rei:turdrit�t'' 4 f{::l 15.00 Ir to F j sF ei i' no = l+5 15.00 casing C} :e#� >,�,., is ,t Key Reno ..ng = None Spool Min.As %. t n-,"n f aL=Sizes&Sca to s Cover C)Too 2 00 g ;r.nr,= J 3 .n :`,e: Not�yy;, r„Mu<N"Fr _ ., rgrp,11 75 in,;58 18.2v i "L0•'ili 4 f:?35 in s`I`:;: 16 25 in r i0 4 Key to key defined Summary of Overturning&Resisting Forces&Moments _.,.OvE r~?`URSUNG... ....RESISTING Force Distance Moment Force Distance Moment item -dh 'cs ft it-Ib Heel Active Pressure = 35-1 5 2 3-3 2.4 G 8 Soil Over Heel a i 54'6 2.83 4:363 3 Surcharge'eetor Heel a 11 I 4 .3 33 569..5 Stoped Soil Over Rise; = Toe Active Pressure - Surcharge Over feel - 2 33 330 6 Surcharge Over ;se - Adjacent Footing Load = Adjacent r=ooting Load - Axial Dena Load on Ster5 = ::, .i 1 33 566 7 Added Lateral Load - 183.3 4.30 320.0 t.V al Live Load on Stem = Load @,Stem Above S it - Soil Over Ice = i Su Surcharge Over Toe - Stem'Weight_s) _ 600 1.33 60.0 Earth w Stem i:eras trona Total - I 143 9 Ot.t.M. - 3010 6 Footing Weight = 60;J 2.00 1,200,0 Resisting/Overturning Ratio - 2.37 Key Weight Medical Loads used for Scti Pressure= 3.356 7 vort.Component Total= 3 358 7 lbs R.M.= 7 360.6 `Axtet live;cad MOO included in;tchal 143ared or usedor derturninc resistance,but ince to-for-Z1'7,1 cress:.t r, cnl tan Page 115 of 126 Title E3loc1/4 Lie 1 Title: You can changes this area Dsgnr Desv.: using the'v'cttings`menu,tern ' and then using Lho'Printing& Project"lotus Title Block'selection. Title Btock Line p_,, nFS€J MAR- . =?.i „_ 'i3 Foll t' 3 :L i C e Gk r¢ r4y atr , afiC , £a • Cantilevered Retaining Wall . r,•+'� # , • a,2.1.C.,l„ -01r 4dsnit10 9, .6.111l)..3 Lit:ft:KliV460O23044ro, ,,4„..t § o .:'iw,. rp4 ` �wi:. * ".Y„k xc",ein,« kzi# i!* Vi1l41k x ! . .OC Y,CONSUL NG:Et8GlVEERS ?.. Description: 0'-3*Well Criteria Soil DataCalculations pr ACI ma, AC1530 08,IBC 2449, CBC 2010,ASCE T-05 Retained Height = 6.30 ft Allow Soil Bearing = 2, ,0.0 ps` Wall height above soil = (`.n�v.^.ft Equivalent Fluid Pressure Method � Slope Behind Wail = 0.30:1 Heel Ac five Pressure = 35.0 p.sf'ft Height of Soil over rob = 6.00 in Toe Active Pressure = 30.0 ps:,rt lt Water heightheightover heel = 0.( ft :'a S:'ia = 33 Pressure 0 t7SfJ.. Vertical component of active Soli Ihet s•,i,Hae' 110 00 x Lateral soil pressure options: Soli Density,Th -- LCO trxtf NOT US-EC:1'3r US-C:1'3 .oil Press re Coef :awnErg S Sou = 0.C.5 NOT USED for Sliding Resistance 4 ecet n Soy t #s^ t r a aro NOT L for Overturning R• ce. tor pals _„=.se.,.. = .,.,in Surcharge LoadsLateral Load Applied to Stem Adjacent Footing Load Lateral ,ad _ -ai s_<rre , eel 50,11)os{ dl cent 1=ertrg Load 0.0 lb s Used "3 Raa �ic�1 �&Overturning Height to i C 8.00 ft F©cun ;WVidt' 0 00 ft Surcharge i cr Try.: = 0 1 Of Height to Bottom -- 00 it = ,:Ertr:Cl`f - 0.00 in Used SIdg&Overturning ;al to Fig CL Dist = 0:00 ft n Axial Load Applied to Stem Footing Ti `ine Load case Above/Below Soil Axial Dead Load 5300 its at Back of Weit T 0.0 ft Ax' Live Load0.0 lbs ins or:Exposed 5... : _ unpss Poisson's Ratio = 0.300 Axial Load Eccentricity = 0 5 in .___ Stern Design Sym Yd Stem Construction ,.,. _ . Stn L Wall Stability Ratios Design Height Above Ftg ft= 0.05 Overturri,n 2,55 OK Wall ' a eda;moble';t = Concrete Sliding = 1.59 OK Thickness ,n= .0'r (Vertical C mponent NOT Used) Reber Size 4 Total Bearing ing Load .= 5,225 lbs Reber Spacing in= 6.00 _resultant etc. = 9.94 in Rover Placed at = Edge Design Data - ._.. ._.._ - Soli Pressure ct ,rtP 1:609 pet OK FB •a' a - 0.467 Soil Presse, .1 = 9j1�1 psi OK Total Force a Section: its= 2,33093 5 SSV AltowaoEe L, of `Ofoment. Y d t • ft`I= 6,872,2 Sou Pressure Less Than Allowat;+e atinEr;, r:icSable ft-1= 13,711.7 Ave Factored'Toe = 2.171 psf A ;Factored Heel 109 psf Shean..•z051.= 33 f .,. Allowable -.1 Footing Shear @ Toe = 13.5 psi OK Yalllllielgot Psj- 130.1 Footing Shear r Heel - 38.5 psi OK Reber Dept 'd' id= 6.18 Allowable = 75.0 psi Lap splice if alive in= 12.22 Sliding Gales (Vertical Component NOT Used) Lap splice if below in= 5.00 Lateral Sliding Force 1,580,7 lbs Hopik embed into foot'na In= 6.00 less 100%Passive Force = - 371.3 its Concrete Data ___ less 100%Friciot Force = . 2,61.2.5 as ,; psi= 2:01)0.0 Added Force Req'd = 0.0 its OK Fif c.,51-_ 60,000.0 ..,.for 1.5 1 Stability 0.0 las OK Load Factors Dead Load 1.200 Live Load 1 500 Earth,H 1 600 Wind.IN 1 600 Seismic,E 1.000 I , Page 116 of 126 Tilde.Beck Line 1 Tills : Job 6 You Call changes this area Dsgrr: Prolect iDesc: usi(g Me'Settings"menu item loci then using the'Printing& iTitreect!dotes, , Tiiie Block'section, Titff $0,...Lie 0„,...____......, ;: ;,20 1 IA:lit fLit113,, .,ii3'6:iiti:*-i-4;,i6"j0j -i,:ei:i.i'Lica.i.c&-A-rie•-_,;47_.e.c9 1, Cantilevered Retaining 1Nall El'al.CALC,INC.11;0-M11,EV146,11.1(109,Ver9.1i.10.09 : . LidlittSittratg123041!"41ici. 414:690-AKUtt470. :0440000:051fAltillitMArtiOng f!:0103430tfRiPEL'-:....C4PNSUti.. c V'0'i r Description: 8-0'Wail .., . .. Footing Dimensions&Strengths Footing Design Results ., , ____....._....... .. ... Toe i',iicith - 1 SO ft T,D ___ ,,,,•,_ Hee( Heel Width -., ....„... 4.0... FOtared Pres-sore ,-- 2171 139 psi Fetal Fooling Width .. 5 60 !At -Upward - 2.231 0 114b Fooling Trtickriss 4 12,00 in Mu Downward e. 277 0 ft-lb Mu Design 1 354 6,372 ft-ib Key thidtli = 6 00 in Actual 14.1,lay .-1tsisar - Tli 92 38 48 psi Key Dopin = 3 00 in Aiiksi,,v 1-Way Stiesir , 'in(KJ 75 06 psi KO DisienJe irorn 70e 7: - 2500:si ny = ,,,,.el Ptieirisi-cmc ricx:And no 6-Density = 138.00 cid Key Reir foromg = 'ione 6.imuid Min ititi ti,..,, - 0 00 18 Omer Ado:eclat-4e;Sizes 81 Spemmijci coiKii g Top 2.08 ,t§Buy!,.., 3.60 in Toe: 'list ttexltd,Mo 11 C624 23 ir!,47,-6 333r in ti-8@t 4:3 Zfi E-1 itkii,4 Key: No key itkifined Summary of Overturning&Resisting Forces& Moments ....OVERTURN1190.,„. .....RESISTING...... Force Distance Moment Force Distance Moment Itemb....1 flip us it ..,. flab , ,.. Heel Aciii:e Pressure ,i•:: 1.417 5 330 3,262.5 •iiz. ; .-..) F Hee ,..,. 2 933.3 38:3 11.244.4 S:roriarge e4et He = 148.'2 a 50 ,14,•1 3 Sloped Sdi 3. - ice Acti4e Pressure, 4 3,.:n:1age DieF Heel = 183 7 .333 638 9 SiJnorterge Over Toe = 4.:.:1i,,W.:er, Fenno coed Adjacent aiding Load 4 ,"-.X.31 Cead LOaq on Stem -4 5006 1 83 91137 Added Latersi Load32i,4- . „ o 731 i 5-li3 3 *Axial Live Wad nn 53e(T-. Load g Stem Above Soil 4 Sxsil iDver Toe -,- 3 75 S:Jrsherge Over foe Stem cAaeightl.3) -..= 5003 153 1,466.1 Eartn§Stem Transitions Total - 1,886.7 O.T.M. = 8,496 8 F-st c ling'Iiieignt. .7. 325.0 2 75 2,268.8 Resisting/Overturning Ratio = 2.55 Key ieleigt Vertical Loads used for Soil Pressure= 5,225 0 its 167 Corppnent -- Total= 5:2251 lbs R.M.= 15,5354 '.00m1 ii,,,e'cad NOT;nduded in total displayed,or used for overturning rs3tance.but.is r-iciuded for soil pressure.catsulation. • Page 117 of 126 t i kx, CL,EtiT tf,gc.`,'7 S'41 Hompt-x,st ,... ' ,e,.... R•Xtt'"?3,(YegO,'"-7223 603-624-7005 PROJECT ,..,..:, ' --i.'tt"e(T, • .., ,, :.,..,,,- NUMBER' 745 NW Ntt VictsttintgItun Cr t.2(15 vax,- e.'" Benet Ornon 97701 o's DATE 541-3K-132e :ROELICH ENGINEERSI BY. ,,,t l .,A 1 1 ,04c---- 4+Cee4it 1 i f 1,: ?-4-0,i1 „,. p .' I at ;:,;•: ley ex 4%5-- - 1 4 i ilvdji efpply ‘44 re...44tif.e• 43-0. te2,3,X 4.V It o ri z DL 1(00 p if 53>t5f xa.3 . I ce s f I-)6 r 2. , *- 4 7e3i, ; nt---- c---- 4, 1--- -_—_— .......-- 4,,, Page 118 of 120 CLIENT �as, Po?i� 2S.. '* ' t NUMBER: -,'3•1',,k-' 28 DATE. :PC)ELICH ENGIl',1 EERSI BY: u i1/4•10 p � f� , ay;! rre ,�t = , „ .._ p'.$5` woe z c ..� .,-` oM .,'- — �,v0a c i L _ _� L- ? _, _t,“,.. , ... , . T , , ,., ...,,,, ,,,. , zit or. ,,,,,,,,,.''''M' 4'1 0:;9/0/1 be- a 3 I mc)714 sr§ grids Ji.r77. I ,* • 4, Froelich Project Title:Engineer: Project Descr: Page 119 of 126 Project ID: FROELICH t:ie rS' r firs tsii1135 1t IV:- § VMSCRE # 6 I Cantilevered Rita€Hing all � Description: .1 t.S G,* 1IT' ���5. ;0,� �Garage Ret WSeismic, Criteria Soil Data Calculations per ACI 318-11, AC!530-11,IBC 2012, CBC 2013,ASCE 7-10 . Retained Height = 11.50 ft Allow Soil Bearing = 2,500.0 est Wail height above soil - 3 00 it Equivalent Fluid Pressure Method Slope Behind Wall - 0.00 . 1 Heel Active Pressure = 35.0 psfift Height of Soil over Toe = 12 00 in Toe Active Pressure = 33.0 psfiff. Water height over heel - 0 0 3 Passive Pressure - 330.0 asfift Vertical component of active Soil Density,Heel = 110.00 pcf Lateral soil pressure options Scil Density;Toe - 110.00 poi NOT USED for Soil Pressure, Friction Coeff bry n Fig&Soil = 0,500 NOT USED for Sliding Resistance is I eioli to ignore NOT USED for Overturning Resistance:. for passive pressure - 12 00 in Surcharge Loads Lateral Load Applied to Steal..- Adjacent Footing Load Surcharge Over Heel = . a p'r Lateral Load = 70.0 pif Adjacent Footing Load = 0.0 lbs 00 ft n Used To Resist Sliding&Overturning ...Height to Top = 10.30 ft Footing - u Surcharge Over Toe = 0.0 psi ..Height to Bottom = 0.00 ft Eccentricity -- 0.00 in Used for Sliding&Overturning Wall to Ftg CL Dist = 0.00 ft Axial Load Applied to Stem Footing Type Line Load Base Above/Beicw Soil 0.0 ft Axial Dead Load = 500.0 iris at Back of'Nall Axial Live Load = 1,100,0 itis Wind on Exposed Stem .• 0.0 psf a;;isson's Ratio - 0.300 Axial Load Eccentricity = 0.0 i^. Design Summary Stem Construction Top Sten 2nd „tern.CsK _i,3'o OK Wall Stability Ratios Design Height Above Ag ft- 2.00 0.00 Overturning - 2 73 OK Wall Material Above"Ht" = Concrete Concrete Sliding _ 1.59 OK Thickness in= 8.010 8.00 Slab Resists All Sliding' Rebar Size = # 5 # 6 Total Bearing Load = 10.739 les Rebar Spacing in= 6.00 6.00 ...resultant ecc. = 12.27 in Rebar Placed at = Edge Edge Design Data Soil Pressure @ Toe = 2,372 psi OK fib/FB+fa1Fa = 0.058 0.930 Soil Pressure @ Heel = 31:. psi OK Total Force @ Section lbs= 3,087.0 4,370.0 Allowable = 2,500 ref Moment....Actual ft-l= 10,242.2 17,686.8 Soil Pressure.Less 4 13n Mow-:3b1,.., A ACI Factored @ Toe - 2,944 psf Moment.....Allowable fta= 15,562.2 18;848.3 ACI Factored @ Heel 388psi Shear ,Actual psi= 46.1 71.1 Shear Allowable psi= 82.2 82.2 Footing Shear @ Toe - 22.3 psi OKJ , Footing Shear @ Heel 52.5 psi OK Wail Weight psi= 100.0 100.0 Allowable = 89.2 psi Rebar Depth 'd' in= 610 5,63 SlidingCMGs Slab Resists All Sliding i Lap splice if above in= 14.06 21.05 Lap splice if below in = 14 06 10.64 Lateral Sliding Force _. 3,5.00.5 lbs Hook embed into footing in= 14.06 10.64 less 100%Passive Force = - 733.3 lbs Concrete Data less 100%Friction Force - • 4610.8 lbs Pc psi= 3,000.0 3;000.0 Added Force Reed = 0.0 lbs OK Fy psi= 60;000.0 60,000.0 ....for 1.5:1 Stability - 0.0 lbs OK Load Factors Dead Load 1,200 Live Load 1.600 Earth,i-, 1,600 Wind,W 1.600 Seismic,E 1.000 Froe Engineers Prot Title: Page 120 of 126 1 'l En .neer. Rrclec.lD: '� Project Desc, FROELICH c<� aRetaining WallRte c:1Lt ersT,f g,11 r a Is.t<6.71 1 CE m-sccA.,pmisci s,.l EG•S C• *r ENERCAL ,INC.1?83 014,Buik1:6.14.8,1G Vero,14.8.1B Description: Garage Rei 014 No r_I,InIL' Footing Dimensions &Strengths Footing Design Results Toe Width = 2.50 ft Toe Heel Heel Width - 3.50 Factored Pressure = 2 944 388 psf Total Footing Width - 5 00 Mu':Upward = 8,367 0 ft-lb Footing Thickness - 16.00 in Mu':Downward = 1,163 0 ft-lb Key Width 00 i„ MLI: Design - 7,204 17,687 ft-lb Ke Depth Actual 1 W = 22.:31 V p ., 1(`3 in 1-Way Shear 7 ~:2.45 psi Key Distance from Toe - 00 n Allow;1-Way Shear = 8116 82.16 psi rv . Toe Reinforcing #6 r 6.00 in .�000 psi Fy 0 r0 psi Heel Reinforcing #c a 12,00 in Footing Concrete Density 0 oaf Key Reinforcing = None Specd r_ Other Acceptable Sizes Ex Spacings ^ ir: Cover u Top 2.00 " .00 n Toe. #4 n3 9.00 in,#5@ 14.00 in,#6§19.%5 in,#7@ 26.75 in,#80,'35.25 in,#9@ 44 Heel: #4@ 6,25 in,#55 9.50 in #6@ 13.50 in,#74 18.25 in #8110 24.00 in.#9@ 30. Key: No key defined Summary of Overturning &Resisting Forces &Moments OVERTURNING Force Distance Moment .,..,RESISTING Force Distance Moment Item ,ho F f'ib lbs ft Heel Active Pressure = 2:882.2 4.23 12.329.2 Soil Over Heel 0 11 a 2 5 58 Ib Surcharge over Heel 34,137,4 Sloped Soil Over Heel - Toe Active Pressure -81 7 0.78 -63.5 Surcharge Over Heel = Surcharge Over Toe Adjacent Footing Load - Adjacert Footing Load - Axial Dead Load on Stem - 500.0 2.83 1,416.7 Added Lateral Load - 700 0 6.33 4,433.3 1 Axial Live Load an Stem = 1400.0 2.83 3,116,7 Load @ Stem Above Soil = Soil Over Toe = 275.0 1.25 343.8 Surcharge Over Toe - Stem Weights) = 1,150.0 2 83 3,253.3 Total = Earth @ Stem Transitions = J.500.5 O.T.M. - 16,699.0 Footing'Weight - 1,600.0 4.00 6,400.0 ResistingiOverturning Ratio = 2.73 Key Weight Vertical Loads used for Soil Pressure= 10,739.2 lbs Verb Component - Total- 9,639.2 lbs RM.?, 45,556.2 "Axial live io:ad NOT included in total displayed,or used for overturning resistance,but is included far soil pressure calculation. Page 121 of 126 8JnConcwi#5Q6.in01c .-__ .----, 4°' • ` 1 314" •i: * a #- 11'-6"' 11'-6" 0 I 0I, i y; &in Conc wi#6 @ 6.in o;c 14 s i f � �� 1 2 1,2" 2" 1'-0" 1,:,'• „ ,- x s V Aiding Restraint * 1a4k t- #6@6.in @Toe Designer select 2` " 5._6' li6@l2s10 horiz.reinf,; -.w 1 @ Heel 8'-6" o*'. Page 122 of 126 DL= 500.. I_I_= "9 r}U 7: Ecc=0 io r • • !a Ips { A SEEE i � d � e � >Y §r S p P TW": S' g Idng Restraint PP .3.33" ,fit x •' , a 1`' € r€ 3500. ��` £ �> 5# • .$.. ga. 2372.psf r♦ ``� Froelich Engineers ?r , 't Title: Page 123 of 126 Engineer. Prosect ILS. . l Project Descr. F R 0ELICH CNO NEER S Cantilevered Retaining Wail ° "1, ,`,5ta, ,,i4aA14 1t3�-Sz-ET''S`cA tcCR1 : ..,'..01:0,44.... .:.0....,.111M40. NEAtV,1" 1393-2014,euJS fi B fu,Vrr61 49to » _ r ... M 4 e" ".'. . . .'.E -as Description: Garage Ret Wall-Wi Seismic Criteria Soil Data Calculations per AC1 319-11, AC1 530-11,IBC 2012, Retained Height = .50 ft Allow Soil Searing = 3,330.0 psf CBC 2613,ASCE 7-10 {f Wall height above soil = 0.00 ft Equivalent`iuid Pressure Method Slope Behind Wail - 0.00:1 Heel Active Pressure - 35.0 psfift Height of Soil over Toe = 12.00 in Tce Active Pressure - 30.0 psfift Water height over heel = 0 0 ft Passive e Pressure = 330.0 psf(ft Vertical component of active Soli D ,;-'tf,He& = 110 00 pcf Lateral soil pressure options: 00 pcf Soil Density,Toe 110.00 NOT USED far Soil Pressure. Frio; Coen't; Fig&Soil - 0.500 NOT USED for SlidinResistance NOT USED for Overturning Resistance. Sail height: , ere for passive pressure - 12,00 in Surcharge Loads Lateral Load Applied to Stem Adjacent Footing Load Surcharge Over Heel = 0.0 ost` Lateral = 85.0 psf Adjacent Footing Load = 0.0 lbs Used lo Resist Sliding&Overturning .Height to Top = 10,00 ft Footing Width = 0.00 ft Surcharge Over Toe = 0,0 psi He'aht to Bottom = 0.00 ft Eccentricity = 0.00 in Used for Sliding&Overturning Wall to Ftg CL Dist e 0.00 ft Axial Load Applied to Stem Footing Type eine Load Axial Dead Load = 500.0 lbs Base aAbCk eflWall Sal Axial Lire Load - 0.01bs Wind on Elxf;osc Stern _ 0.0 psf at Bach of Wall 0.0 ft Axial Load Eccentricity = 0.0 in Poisson's Ratio 0.3f10 Design Summary Stem Construction Tap Stem 2nd Steri OK Stem 0< Wall Stability Ratios Design Height Above Ftg ft= 2.00 0.00 Overturning 2.58 OK W .1 t r: i Above Ht'° = Concrete Concrete Sliding - 1.52 OK Thickness to 8.00 8.00 Slab Resists All Sliding I Rehar Size 4 5 # 6 Total Searing Load = 9,639 lbs Rebar Spicing in= 6.00 6.00 ...resultant ecc. - 13.26 in Rebar Placed at = Edge Edge Design Data Soil Pressure if@ Toe - 2,203 psi OK fo;TB+`atFa = 0.704 0.978 Soil Pressure @ Heel - 237 psf OK - ,, Allowable 3,330 psf oto Force Section lbs 3,207.0 4,529.0 Moment,. Sail Pressure Less Tran Allowable l:ent.,..Actuai f1-1 10,7 22.2 18,436;8 AOI Factored Toe = 2,644 psi `;1cme t.....Al'ewable f- = 15,222.0 18,818.3 ACI Factored @ Heel = 248 psf Shear Actual psi= 48.7 74.7 Footing Shear a Toe = 19.5 psi OK Shear Allowable psi= 75.0 82.2 Footing Shear;u Heel = 52.5 psi OK +•a= yveignt psf= 100.0 100,0 Allowable = 82.2 psi Rebar Depth 'd' in= 6.19 5.e3 Sliding Calcs Slab Resists All Sliding I Lap splice if above in = 16.48 25.07 i_ap spice if below in = 10.48 4.03 Lateral Sliding Force = 3,650 5 lbs ;nr 4 less 100%Passive Force = - 733:3 lbs ^embed into foaling in 16 8 3 less 100%Friction Force = - 4.819.5 lbs Concrete Data Added Force Rer1'd - 0.0 ;cs OK 'c Psi= 2,500.0 3,000.3 Fy psi:It 60,000.0 610,000.0 ...for 1.5: 1 Stability - 0.0 lbs OK Load Factors Dead Load 1.200 Live Load 1.800 Earth,H 1,600 Wind,W 1.600 Seismic,E 1.000 Froelich Sag'„eers Project :itie' Page 124 of 126 Enclin eer Pr. e ,' i'loject D FROELICH z:N t'3:N Kt.NS Cantilevered Retaining Wall Vie_cl i er' . 1 -1 3E ligrq , ,::r t EC sEf `vC INC. 9832z14,Euf$d:6.14.8.16,Ver5,14,816 i' , r'.t rr ' 1°, A ,., `k2 ... . k .'. UC T•V 1.1=.,U' EFT 0 NOW Description: Garage Rat Wall•W>Seismic Footing Dimensions&Strengths Footing Design Results Toe Width = 2.50 ft Toe - Heel Heel Width = 5.50 Factored Pressure = 2,644 248 psf Total Footing Width c 00 Mu'.Upward '7,482 0 ft-ib Footing Thickness = 16.03 in Mu':Downward = 1,163 0 ft-ib Mu: Design = 6,320 18.437 ft-lb Key Width 4 0.00"' Actual 1'Way Sher = 19.54 52.45 psi Key Depth = 0.00 in ;a :.;ll: 1-'r"ay Shear =- 32.16 82,16 psi Key Distance from Toe - 0.00 k Toe Reinforcing = #6 0 6.00 in rc = 3,000 psi Fy = 60,000 0 si Heel Reinforcing -: It 6 3 12.00 a Footing Concrete Density = 150 00 pcf Key Reinforcing = None Spec'd Min.As% T (,0013 Other Acceptable Sizes&Spacings Col. r ,To 2,00 Btr — aft; in Toe: 44(d. 9.0`1 in,450_ 14.00 in,#6@ 19..75 n #. n;2;.',5 a.f:8: 5 i 35 2n,49#_.;4 Heel' #44 0''6.00 in.M.5@9,25 in,#6@ 13,01 #7(a)17.50;n,:48@ 23.00 in, 3 29 Key: No key defined Summary of Overturning&Resisting Forces& Moments OVERTURNING..... .,...RESISTING Force Distance Moment Force Distance Moment Item los ft ft-lb lbs ft ft-lb Heel Active Pressure = 2,882.2 4.28 12:329 2 Soil Over Heel = 6,114.2 .)5...J8 u ..34,13t7 .4 Surcharge over Heel Sloped Soil Over Heel = Toe Active Pressure = -81,7 0 78 -63.5 Surcharge Over Heel = Surcharge Over Toe = Adjacent Footing Load = Adjacent Footing Load = Axial Dead Load on Stem = 500.0 2 33 1,416.7 Added Lateral Load = 850.0 6 33 5:383.3 'Axial Live Load en Stern = Load ft)Stem Above Soil = Soil Over Toe = 275.3 1 25 343.8 Surcharge Over Toe = Sten Weight(s) = 1.156.3 2.83 3,253,3 Earth 5 Stern Transitions = Total = 3,650.5 O.T.M. = 17,649 0 Footing Weight = 1,600.0 4.00 6;400,0 Resisting/Overturning Ratio = 2,58 Key Weight = Vertical Loads used for Soil Pressure= 9,639.2 lbs Vert,Component = Total= 9,639.2 lbs R.M.= 45.556,2 'Axa i live load NOT included in total displayed;or used for overturning resistance,but is included for soil pressure calculation. •. Page 125 of 126 8.in Cone wl r45 @,6.in olc • • Rf -4/ 314' • • • • 9'=6" • • 11-6" 11'-6" • • • 8.in Coro wI#6 Q Sin olc 4 „". ',12" 2%0" 1'-04 2" • 1if • V 1 Hiding Restraint * 1 1%.4`" • #6n A @Toe Designer seler, 26 t 17 reinf, 5°-6" @ Heel O." Page 126 of 126 s6>> LL=0 . Ece=O,in K a • J � ;ding Restraint Pp=?33.33# 3650.5# e,�d Ps 2203 3psf