Loading...
Specifications (67) j dk\c \k -W)\--A-0 MACKENZIE . -.11( DESIGN DRIVEN I CLIENT FOCUSED July 12, 2016 City of Tigard Attention: Dan Nelson Senior Plans Examiner 13125 SW Hall Boulevard Tigard,OR 97223 Re: BFit—Pacific Corporate Center T.I.—15575 SW Sequoia Pkwy Structural Analysis Narrative Project Number 2160170.00 Dear Mr. Nelson: The purpose of this letter is to describe the findings of the structural analysis completed for the existing building located at 15575 SW Sequoia Parkway in Tigard, Oregon, and the proposed upgrades to the structure to address change in use. The existing building is an office building that is potentially being repurposed as a BFit fitness club. While BFit will not be occupying the entire footprint of the building, the primary occupancy of the building would have an occupancy load of greater than 300.As such,the building would shift from Risk Category II to Risk Category III as defined in Table 1604.5 of the Oregon Structural Specialty Code(OSSC). While it is not clear if BFit members are considered "public" or"private," an analysis of the structural systems has been performed in accordance with Section 3408.4 of the OSSC. Section 3401.6 of the OSSC, allows for Alternative Compliance in accordance with the latest revision of the Oregon Statewide Alternative Method 08-05 and subsequently the ASCE 41 (Seismic Rehabilitation of Existing Structures).The Basic Performance Objective was determined to be BSE- 1N and Target Building Performance Level of "Life Safety." The spectral response acceleration parameter, Sxs equals 0.718. The conclusion of the analysis is that much of the building meets the requirements of ASCE 41. Below are recommendations for a partial upgrade to the existing building: 1. The exterior wall out-of-plane anchorage detailing does not meet the above mentioned design standard. It is suggested that strapping would need to be upgraded at 4'-0"o.c.around the perimeter of the building. 2. The existing internal concrete moment frames at Grid Lines 5, 8, 11 are not sufficient in resisting seismic lateral loads. In particular,the beam-column joints would need to be retrofitted with steel plates/brackets on each side of the beam-column connection,two(2) plates per connection and six(6)connections in total. 3. Drag strut elements would need to be added in the north/south direction at reentrant corners; to the north at Grid Lines B—D and to the south at Grid Lines J—L.The drag strut elements would extend 1 bay(approximately 25 ft) into the building at each location,six(6) locations in total. 4. Strapping would need to be added at all wood ledger joints along the east and west elevations in order to create continuous diaphragm chords at the perimeter of the roof diaphragm. M503.224.9560 • F 503.228.1285 • VV MCKNZE.COM • RiverEast Center,1515 SE Water Avenue,#100,Portland,OR 97214 ARCHITECTUR'E • INTERIORS • STRUCTURAL ENGINEERING • CIVI_ENGINEERING • LAND USE PLANNING • TRANSPOF 'Is'N F.,r I,, .,.. • ,,CRAPE ,U i!Ir. .....i. ■ ortland,Oregon • Vancouver,Washington • Seattle,Washgton H:\Projects\216017000\6_Final\LTR-City of Tigard-Structural Analysis-160712.docx City of Tigard BFit—Pacific Corporate Center T.I.—15575 SW Sequoia Pkwy Project Number 2160170.00 July 12, 2016 Page 2 It is requested that the above items be reviewed in order to confirm that the approach is acceptable. Once confirmed, we would commence with the design and detailing of the seismic upgrades. Please do not hesitate to call (503) 224-9560 or email JMcDowell@mcknze.com with any questions regarding the above o endations. Sincere , I Jo•, cDowell,SE, PE P cipal I Director of Structural Engineering Enclosure:Structural Calculations c: Mike Reuter—Mackenzie M • H:\Projects\216017000\6_Final\LTR-City of Tigard-Structural Analysis-160712.docx MACKENZIE . DESIGN DRIVEN I CLIENT FOCUSED ..i \ , , OneGON V ;,,,,, .„4 tk te i4, t), i :a � LETT74RE-Taii2.1_ LI ikd STRUCTURAL CALCULATIONS - PRELIMINARY SEISMIC EVALUATION TABLE OF CONTENTS Project 01 Loading and General 01.1 — 01.7 B-Fit Pacific Corporate Center 02 Concrete Moment Frames 02.1 — 02.15 Client B-Fit 03 Roof Diaphragm 03.1 — 03.8 Date July 13,2016 Project Number 2160170.00 MACKENZIE Since 1960 rvi ® RiverEast Center 11515 SW Water Ave,Suite 100,Portland,OR 97214 PO Box 14310,Portland,OR 972931 1503.224.9560 1 www.mcknze.com L ---, _s L-77 -z49/41 P.0 SC - e--,f-1 f-=7",-,-.I'/V 3 / -t /-6,--7,7-.7 C e--/ - 74/of• l( ' 1:f/i """145 ' F ,.--,-' e",--4-4,9--;•-••,-^E, •`-/ /..i., /..,,- C-eZ75.,#e r••,,,.. t (---c... ,,,, , •;-,-/,..y.,,E- xi-,..,„,.e.r.„."--,t...... ..r.;",,-...-,1,, C r; i 4-r- • ..,,...r i,,;,,,,- r c •-•1 lait `---..".-. •‘1.-71 47,/.-..,,,,,,7- /7/ j, r,e-^er•6.'0-, ,2-0- 7 4:1 4,-r i/e4,,c-,•,•-?.... c",--, ,,,,,, ),a--, c I --t-, v1)L.--)1,), 7 .9. 0(74 e) • C---,0 f7.•• •;r•-, .,. ..) ',. ..." ..5 e 40- LI/ 2.--e (---/r- •-rir"--,:vtr. (-,-, 7-, MPortland,OR Architecture . Interiors , Planning . Engineering Date -.-' /2 2 / ,. (--_, 503 224 9560 Vancouver,WA B-FIT CORPORATE CENTER T.I. Job# .c-/ /(- "-- 3E0 695 7879 JOB#2160170.00 Seattle,WA Sht of Sheet 01.1 www.mcknze.com ?cc;/39 99')' tIACI< ENZIE . .2016 MAL LL7IE AL VIGLITS PESFLLvf L ,-7( Sc,-,,ic ST i c- 1V7 i_! "/ . ____ „ .1 ,t1 t„,.. a _ I. . '. /. •c-- ,,t. 7 ,.,, (-,, .1 C.,-.,J.7-7-)-/-7 722e--... 7, •:,- 2,* T- 0 $ 0 Si- _ .0 I, 47; .11;e; 4 , (0 1,,,;--- -a.4 5 tura Z --, 11 17e-, 51/ 7 P :;tro ki 1/,I, Q IN NI /O / 7 /4 1.-.•:-x r ,A 1 41-1 t-,),t , Ile'.2,-- l'-'," (/00 7‘.?5)[ ilS71:1 \ 1 /.2, ,,....'"'/(ic0/.4 '26 ( )( i '' . 1'.'"''''4./) / \ – 4 -- 1 [ i i ,-t —— i 1 s-(2 / 1. / b-4, (,.//5/ =_ _ t-v'ot C e t. ,,,4---t t , -'''' c. ec— t'S cr cv i''''.= $i 1 ) (,f )(/o ) 4 (2) ( "--/ / L /4' .c .' 7 1 .)-i.. le-4- ---- / r cz 4 Z CS, 7 Cort-'7 Portland,OR 503 224 9560 560 E 95 7879 Seattle,WA Architecture - Interiors - Planning - Engineering De /// B-FIT CORPORATE CENTER T.I. JOB#2160170.00 /2 I 1 Vancouver,WA Job It r ' (:- oi'.;'...2 www.mcknze.com 206 7/9 999',, 1\1 is,C l< ENZIE . Sht of Sheet 01.2 D2016 MA(KE,IIIE Alt k fk,Il PP EGVED 6/28/2016 Design Maps Detailed Report usGs Design Maps Detailed Report ASCE 41-13 Retrofit Standard, BSE-1N (45.40701°N, 122.74707°W) Site Class D - "Stiff Soil", Risk Category I/II/III Section 2.4.1 — General Procedure for Hazard Due to Ground Shaking Provided as a reference for Equation (2-4) and Equation (2-5), respectively: From Section 2.4.1.1 SS,BSE-2N = 0.967 g From Section 2.4.1.1 S1,BSE-2N = 0.420 g Section 2.4.1.6 — Adjustment for Site Class The authority having jurisdiction (not the USGS), site-specific geotechnical data, and/or the default has classified the site as Site Class D, based on the site soil properties in accordance with Section 2.4.1.6.1. SITE SOIL Soil shear wave Standard penetration Soil undrained shear CLASS PROFILE velocity, vs, (ft/s) resistance, N strength,s , (psf) NAME A Hard rock vs > 5,000 N/A N/A B Rock 2,500 < vs <_ 5,000 N/A N/A C Very dense 1,200 < vs _< 2,500 N > 50 >2,000 psf soil and soft rock D Stiff soil 600 <_ vs < 1,200 15 5 N <_ 50 1,000 to 2,000 psf profile E Stiff soil vs < 600 N < 15 <1,000 psf profile Any profile with more than 10 ft of soil having the characteristics: 1. Plasticity index PI > 20, 2. Moisture content w >_ 40%, and 3. Undrained shear strength s < 500 psf F — Any profile containing soils having one or more of the following characteristics: 1. Soils vulnerable to potential failure or collapse under seismic loading such as liquefiable soils, quick and highly sensitive clays, collapsible weakly cemented soils. 2. Peats and/or highly organic clays (H > 10 feet of peat and/or highly organic clay where H = thickness of soil) 3. Very high plasticity clays (H > 25 feet with plasticity index PI > 75) 4. Very thick soft/medium stiff clays (H > 120 feet) For SI: 1ft/s =0.3048 m/s 11b/ft2 = 0.0479 kN/m2 B-FIT CORPORATE CENTER T.I. JOB#2160170.00 Sheet 01.4 http://ehp2-earthquake.wr.usgs.gov/designmaps/us/report.php?tem plate=mini mal&latitude=45.40701415829785&1ongitude=-122.74707325625089&siteclass=3&.. 1/4 6/28/2016 Design Maps Detailed Report Table 2-3. Values of Fa as a Function of Site Class and Mapped Short-Period Spectral Response Acceleration Ss Site Mapped Spectral Acceleration at Short-Period SS Class S5 <_ 0.25 S5 = 0.50 S5 = 0.75 S5 = 1.00 S5 >_ 1.25 A 0.8 0.8 0.8 0.8 0.8 B 1.0 1.0 1.0 1.0 1.0 C 1.2 1.2 1.1 1.0 1.0 D 1.6 1.4 1.2 1.1 1.0 E 2.5 1.7 1.2 0.9 0.9 F Site-specific geotechnical and dynamic site response analyses shall be performed Note: Use straight-line interpolation for intermediate values of Ss For Site Class = D and Ss = 0.967 g, Fa = 1.113 Table 2-4. Values of F, as a Function of Site Class and Mapped Spectral Response Acceleration at 1 s Period S1 Site Mapped Spectral Acceleration at 1 s Period S, Class Sl <_ 0.10 S1 = 0.20 S, = 0.30 S1 = 0.40 S, 0.50 A 0.8 0.8 0.8 0.8 0.8 B 1.0 1.0 1.0 1.0 1.0 C 1.7 1.6 1.5 1.4 1.3 D 2.4 2.0 1.8 1.6 1.5 E 3.5 3.2 2.8 2.4 2.4 F Site-specific geotechnical and dynamic site response analyses shall be performed Note: Use straight-line interpolation for intermediate values of S1 For Site Class = D and S, = 0.420 g, F„ = 1.580 B-FIT CORPORATE CENTER T.I. JOB#2160170.00 Sheet 01.5 http://ehp2-earthquake.wr.usgs.gov/designm aps/us/report.php?tem plate=m i ni m al&latitulle=45.40701415829785&longitude=-122.74707325625089&siteclass=3&... 2/4 6/28/2016 Design Maps Detailed Report Provided as a reference for Sxs,BSE-2N = FaSS,BSE-2N = 1.113 x 0.967 g = 1.077 g Equation (2-4): Provided as a reference for Sx1,BSE-2N = FVS1,BSE-2N = 1.580 x 0.420 g = 0.663 g Equation (2-5): Equation (2-4): Sxs,BSE-1N = % x SXS,BSE-2N — 2A x 1.077 g = 0.718 g Equation (2-5): Sx1,BSE-1N = % x SX1,BSE-2N = 2/3x 0.663 g = 0.442 g Section 2.4.1.7.1 — General Horizontal Response Spectrum Figure 2-1. General Horizontal Response Spectrum it<T K:'To: Srs. (i, 5x /B =0.718 - `'" s =.. T`:T,s•: Ts<T: m w c I 0 u 5.x0/81=0.442 -- q Y ' C a 0.45x;=0.287 a � I Y a y I I r I 1 I TO=0.123 Ts=0.616 1.000 Period,T(sec) B-FIT CORPORATE CENTER T.I. JOB#2160170.00 Sheet 01.6 http://ehp2-earthquake.wr.usgs.gov/designmaps/us/report.php?tem plate=minimal&latitude=45.40701415829785&longitude=-122.74707325625089&siteclass=3&.. 3/4 6/28/2016 Design Maps Detailed Report Section 2.4.1.7.2 — General Vertical Response Spectrum The General Vertical Response Spectrum is determined by multiplying the General Horizontal Response Spectrum by 2/3. 2S0 361=0.479 - i m C � 0 d • 2S31/313,=0.295 -+ - GC 0 0 o 0.85x,/3=0.191 'm a a I i I i 1 T 0.123 Ts=0.616 1.000 Period,T(sec) B-FIT CORPORATE CENTER T.I. JOB#2160170.00 Sheet 01.7 http://ehp2-earthquake.wr.usgs.gov/designmaps/us/report.php?tem plate=minimal&latitude=45.40701415829785&longitude=-122.74707325625089&siteclass=3&.. 4/4 :..- s,.1 1. _______L: I-----1 0 _t 10 — — —..,- 7 / VL (Tesiapo S il LI"-,t C id)re r ( c ,./ LS p V 7 6., 62 2 z C , 1! d,P0(g -77.61-,€..„..-e ir.fe: .4 1 v•/Fe'...c 14f,"7 /7,.`r.i i Sr i..,4,, I SI .5.-;-',/7.4, )71' r 0,`'l 0 -------2 C/ (17 ? /„/ Sxs, Ce2,,e. - 1r) 7/....- z:/, "4/e 2 q../.. , ,1 v ().. ) ( e ), eV ) ....,,,> 17.,-- "1 <ir. C 4,-.., e 7.:1—, By Portland,OR M 503.224 9560 Vancouver,WA 360 695 7879 ' Seattle,WA Architecture . Interiors . Planning . Engineering Date B-FIT CORPORATE CENTER T.I. JOB#2160170.00 Job# (---1/7 / ? 2 / (;- C 0 I 7 3.,s, Sheet 02.1 www.mcknze.com 2(.)0/499993 IA AC l< E 14 Z I E . Sht. of (62016 NA/.(YrNZIE Ail RIC.1.,. Ffifti,E1, „„ ,- --0- ._ ) .:::.• ,, .— ---- ,,....17-C-t".o.--) i„s. '<" '"i e .c.. c.--- ---2,1*--,,2'..--4 t- -,7-74--_7---e-.---= _____ ? •-.--e e. -1 11 a c 4 -,--`-, 0 g ne---, 41-. I r 7 V -;.- 3 9'p, p- le -7 k .-.„ k , ,,, ,....,. ,, '70, "ie4.1-re f:ri3 ? „ ; 1/1, ,,, 2 ss,—”,)/ 1 le- )4- --fr Qv z. _c-1/.! -fr ,1,- i ---- 6' tf-2 i 3 C??, 6' - - I I i r"-?417-- CI.-- (7, .,,-,;-:,../ f77.-;;--i,--47.-lhlPortland,OR 1; Seattle,WA Architecture ' Interiors ' Planning ' Engineering Date ( B-FIT CORPORATE CENTER T.I. / z , Vancouver,WA Job# = /):...--,.. .,-. 60 69 78/9 JOB#2160170.00 -). Sheet 02.2 www.mcknze.com 206 70999 3 MACI< ENZIE . Sht oi C,2016 Mrcrit,ii At kl'HIS kkttNVtf, c"F0--- C,- C(-',-,e- , qi- , 1 ---„, t 1 1 1 A Is (2- . k ?Of ' 91' tli 0 fl'47:1— ti-Fe)g.7-, 1).SE t-10.0.-.4-t,.."‘,•-• e. 6a,,,v...,,i-;,r rr:-..7,---) I / 37,1'7 eezt-fr,--,,-,-) 7-42 -7c--, By / •'''' e: Portland,OR M 5()3 224 9560 Vancouver,WA 560 6957879 i* Seattle,WA Architecture . Interiors . Planning , Engineering Date B-FIT CORPORATE CENTER T.I. JOB#2160170.00 4,,./ _-,7,7/,'",6-, Job II /i Sheet 02.3 www.mcknze.com 206'49 999'., MACI< ENZI Sht of @2016 M,(ttr./ t Au R1<aliTS RISERVAD }4 AT 10"O.C. EACH WAY r T'i,".' � 7", , ,,,"- "'t:.,-,-/ . SA %IiI r 1 C ,ore, j,j< i. s- aw,. awj a►.T i� + S W �._r gum ;> y(� nr> (' ,' E S r\ TIES AT 3'O.C. °` eo`�� 2, i.a_.;_ b iv '�—J3 TIES AT 5'O.G "-} 3 TIES AT 3'O.GVSLAB , r- JF fG (\ IL 2'I% iv 33'-4" lo 2'-Y C FTG. C PANEL 0 SHEAR WALL (101 N. ►i P.T.4 x 10 TOP Q W/3/4'0 IIIt_ W..-..11H1511-�`� A.B. AT 4'-0'O.C.CONT. b (4)/B DO NOT SPLICE N. (2)#5 AT EMBED SEE DDETAIL 1 0.4 ATT 10 O.C.EACH WAY (4)10(2 EACH FACE)TOP AND BOTTOM DO NOT SPLICE b .. 1 I/2', f 1/2"., 0 SHEAR WALL Q , 1/2--1'-O" 2'-f- 1 1/2'c/ s" / yy�� 7 ry ... Kins • • • , (B)/7 ice. 5 .. 7,-, N . IZU /3 TIES FOR SPACING SEE DETAIL 2/A7 �� ,�. BOTTOM P .-__'.- , v op z, 73 CONCRETE COLUMN REINFORCING 4 `—s (.2..s---)(..) Al)SHEAR WALL 1 1/2'-1'-0' Kio -- By _._M _.. Portland,OR Architecture - Interiors ' Planning ' Engineering Dale 503.224.9560 Vancouver,WA B-FIT CORPORATE CENTER T.I. Job e 360.695.779 JOB#2160170.00 E. Seattle,WA MAC 1{ E N Z I E Shi of Sheet 02.4 www.mcknze.com 206 2i2016 1"1l.CKEN2IE. Alt 1.6111,RESEPVE6 B FIT- PACIFIC CORPORATE CTR -T.I. (JOB# 2160170.00) Table 10-9. Numerical Acceptance Criteria for Linear Procedures-Reinforced Concrete Columns m-Factors" Performance Level Component Type Primary Secondary Conditions 10 LS CP LS CP Condition i5 AP` = o.D5y7 P=b's = 0.0073 50.1 (20.006) 2 C 2.5 7 3 4 5 20.6 20.006 1.25 1.8 1.9 1.9 2 50.1 50.002 2 2 2.6 2.6 3 20.6 50.002 1.1 1.1 1.1 1.2 1.4 Condition ii' P A, V °_ 10.93 ABI. P=b„s b„.dVT 50.1 20.006 53 0.25) 2 2.5 3 4 5 <.sal ) U 2 ( 2 2.5 4 5 20.6 20.006 53(0.25) 1.25 1.8 1.9 1.9 2 20.6 20.006 26(0.5) 1.25 1.5 1.6 1.6 1.8 50.1 50.0005 53(0.25) 1.2 1.3 1.4 1.4 1.6 50.1 50.0005 26(0.5) 1 1 1.1 1.1 1.2 20.6 50.0005 53(0.25) 1 I 1.1 1.1 1.2 20.6 50.0005 26(0.5) 1 1 1 1 1 Condition WI' P ` A. A,r P=b„s 50.1 20.006 1 1 1 4 5 20.6 20.006 1 1 1 1.6 1.8 50.1 50.002 1 1 1 1.1 1.2 20.6 50.002 1 1 1 1 1 Condition iv.Columns controlled by inadequate development or splicing along the clear height' P ` _ A, A, I, P b„s 50.1 20.006 1 1 1 4 5 20.6 20.006 1 1 1 1.6 1.8 50.1 50.002 1 1 1 1.1 1.2 20.6 50.002 1 1 l 1 I NOTE: I,'is in lb/in.'(MPa)units. "Values between those listed in the table should be determined by linear interpolation. 'Refer to Section 10.4.2.2.2 for definition of conditions i,ii,and iii.Columns are considered to be controlled by inadequate development or splices where the calculated steel stress at the splice exceeds the steel stress specified by Eq.(10-2).Where more than one of conditions i,ii,iii,and iv occurs for a given com- ponent,use the minimum appropriate numerical value from the table. `Where P>0.7ABI,',the m-factor should be taken as unity for all performance levels unless the column has transverse reinforcement consisting of hoops with 135-degree hooks spaced at 5 d/3 and the strength provided by the hoops(V,)is at least 3/4 of the design shear.P is the design axial force in the member. Alternatively,axial loads determined based on a limit-state analysis can be used. °V is the design shear force calculated using limit-state analysis procedures in accordance with Section 10.4.2.4.1. Beams and columns shall be modeled using concentrated be permitted where verified by experiments. The overall load- or distributed plastic hinge models.Other models whose behav- deformation relation shall be established so that maximum resis- ior represents the behavior of reinforced concrete beam and tance is consistent with the design strength specifications of column components subjected to seismic loading shall be per- Sections 10.3.2 and 10.4.2.3. mined.The beam and column model shall be capable of repre- For beams and columns, the generalized deformation in Fig. senting inelastic response along the component length, except 10-1 is plastic hinge rotation.For beam-column joints,the gen- where it is shown by equilibrium that yielding is restricted to the eralized deformation is shear strain. Values of the generalized component ends. Where nonlinear response is expected in a deformation at points B,C,and D shall be derived from experi- mode other than flexure, the model shall be established to rep- ments or rational analyses and shall take into account the interac- resent such effects. tions among flexure,axial load,and shear. Monotonic load-deformation relations shall be established Columns not controlled by inadequate splices,condition i,ii, according to the generalized load-deformation relation shown or iii in Table 10-8,shall be classified based on y,per Eq.(10-3), in Fig. 10-1, with the exception that different relations shall using expected material properties,the plastic shear demand on B-FIT CORPORATE CENTER T.I. 194 JOB#2160170.00 ShuSTANDARD t1 82.5 B FIT- PACIFIC CORPORATE CTR -T.I. (JOB#2160170.00) Table 10-13. Numerical Acceptance Criteria for Linear Procedures-Reinforced Concrete Beams m-Factors' Performance Level Component Type Primary Secondary Conditions 10 LS CP LS CP Condition i.Beams controlled by flexure* -1-3---12:= -p'- O Transverse reinforcement` V le° ro.g3 Pw bw,d 500 C 53(0.25) 3 6 7 6 10 50.0 C 26(0.5) 2 3 4 3 5 20.5 C 53(0.25) 2 3 4 3 5 20.5 C 26(0.5) 2 2 3 2 4 50.0 NC 53(0.25) 2 3 � 4 3 5 C 50.0 NC c26(0.3I) 1.25 1.25 �/ 3 2 4 20.5 NC 53(0.25) 2 3 3 3 4 20.5 NC 26(0.5) 1.25 2 2 2 3 Condition ii.Beams controlled by shear" Stirrup spacing 5 d/2 1.25 1.5 1.75 3 4 Stirrup spacing>d/2 1.25 1.5 1.75 2 3 Condition iii.Beams controlled by inadequate development or splicing along the span° Stirrup spacing 5 d/2 1.25 1.5 1.75 3 4 Stirrup spacing>d/2 1.25 1.5 1.75 2 3 Condition iv.Beams controlled by inadequate embedment into beam-column joint" 2 C) 3 3 4 NOTE: f'in lb/in.'(MPa)units. "Values between those listed in the table should be determined by linear interpolation. *Where more than one of conditions i,ii,iii,and iv occurs for a given component,use the minimum appropriate numerical value from the table. r"C"and"NC"arc abbreviations for conforming and nonconforming transverse reinforcement.Transverse reinforcement is conforming if,within the flexural plastic hinge region,hoops are spaced at 5 d/3,and if,for components of moderate and high ductility demand,the strength provided by the hoops(V,)is at least 3/4 of the design shear.Otherwise,the transverse reinforcement is considered nonconforming. dV is the design shear force calculated using limit-state analysis procedures in accordance with Section 10.4.2.4.1. 2. Posttensioning existing beams, columns, or joints using 5. Changing the building system to reduce demands on the external posttensioning reinforcement.Posttensioned rein- existing elements. Examples include addition of supple- forcement should be unbonded within a distance equal to mentary seismic-force-resisting elements,such as walls or twice the effective depth from sections where inelastic buttresses, seismic isolation, and mass reduction (FEMA action is expected. Anchorages should be located away 547 Chapter 24);and from regions where inelastic action is anticipated and 6. Changing the frame element to a shear wall, infilled should be designed with consideration of possible force frame, or braced frame element by adding new material. variations from seismic forces; Connections between new and existing materials should be 3. Modifying the element by selective material removal from designed to transfer the anticipated forces based on the the existing element.Examples include(a)where nonstruc- design-load combinations. Where the existing concrete tura)components interfere with the frame,eliminating this frame columns and beams act as boundary components and interference by removing or separating the nonstructural collectors for the new shear wall or braced frame, these component from the frame; (b) weakening from concrete should be checked for adequacy,considering strength,rein- removal or severing longitudinal reinforcement to change forcement development, and deformability. Diaphragms, the response from a nonductile to a more ductile mode,for including ties and collectors, should be evaluated and if example, weakening beams to promote formation of a necessary, rehabilitated to ensure a complete load path to strong-column, weak-beam system; and (c) segmenting the new shear wall or braced frame element (FEMA 547 walls to change stiffness and strength; Sections 12.4.1 and 12.4.2). 4. Improving deficient existing reinforcement details.Removal of cover concrete to modify existing reinforcement details 10.4.3 Posttensioned Concrete Beam-Column Moment should avoid damage to core concrete and the bond between Frames existing reinforcement and core concrete.New cover con- crete should be designed and constructed to achieve fully 10.4.3.1 General The analytical model for a posttensioned composite action with the existing materials (FEMA 547 concrete beam-column frame element shall be established Sections 12.4.4, 12.4.5, and 12.4.6); as specified in Section 10.4.2.1 for reinforced concrete beam- B-FIT CORPORATE CENTER T.I. Seismic Evaluation and Retrofit of Existing Buildings JOB#2160170.00 Sheet 0i B FIT- PACIFIC CORPORATE CTR T.I. (JOB# 2160170.00) Table 10-14. Numerical Acceptance Criteria for Linear Procedures-Reinforced Concrete Beam-Column Joints m-Factors' Performance Level Component Type Primary Secondary Conditions 10 LS CP LS CP Condition i.Interior joints(for classification of joints,refer to Fig. 10-3) P b Transverse reinforcement` V d A,f V„ 50.1 C 51.2 1 I 3 4 50.l C 221.5 1 1 2 3 220.4 C 51.2 1 I 3 4 20.4 C 21.5 1 1 2 3 50.1 NC 51.2 1 1 2 3 50.1 NC 21.5 1 1 2 3 20.4 NC 51.2 1 1 2 3 20.4 NC 21.5 I I 2 3 Condition ii.Other joints(for classification of joints,refer to Fig. 10-3) P e Transverse reinforcement` V d A„f,' V 50.1 C <1.2 1 I 3 4 50.1 C 21.5 1 I 2 3 20.4 C <1.2 1 1 3 4 20.4 C 21.5 1 1 2 3 50.1 NC 551.2 I 1 2 3 50.1 NC 21.5 1 I 2 3 20.4 NC 51.2 1 1 1.5 2 20.4 NC 21.5 I I 1.5 2 'Values between those listed in the table should be determined by linear interpolation. 5P is the design axial force on the column above the joint calculated using limit-state analysis procedures in accordance with Section 10.4.2.4.AR is the gross cross-sectional area of the joint. `V is the design shear force and V is the shear strength for the joint.The design shear force and shear strength should be calculated according to Section 10.4.2.4.1 and Section 10.4.2.3,respectively. d"C"and"NC"are abbreviations for conforming and nonconforming transverse reinforcement,respectively.Transverse reinforcement is conforming it'hoops arc spaced at<h,/2 within the joint.Otherwise,the transverse reinforcement is considered nonconforming. column moment frames. In addition to potential failure modes 10.4.3.2 Stiffness of Posttensioned Concrete Beam-Column described in Section 10.4.2.1,the analysis model shall consider Moment Frames potential failure of tendon anchorages. 10.4.3.2.1 Linear Static and Dynamic Procedures Beams shall The analysis procedures described in Chapter 7 apply to be modeled considering flexural and shear stiffnesses,including frames cond tions�th posttensioned beams satisfying the following the effect of the slab acting as a flange in monolithic and com- posite construction.Columns shall he modeled considering flex- 1. The average prestress f,,,.calculated for an area equal to the ural, shear, and axial stiffnesses. Refer to Section 10.3.1.2 for product of the shortest and the perpendicular cross-sectional effective stiffness computations. Refer to Section 10.4.2.2.1 for dimensions of the beam does not exceed the greater of modeling of joint stiffness. 750Ib/in.'(5 MPa)or f.'/12 at locations of nonlinear action; 10.4.3.2.2 Nonlinear Static Procedure Nonlinear load-deformation 2. Prestressing tendons do not provide more than one-quarter relations shall comply with Section 10.3.1.2 and reinforced con- of the strength at the joint face for both positive and nega- tive moments;and trete frame requirements of Section 10.4.2.2.2. 3. Anchorages for tendons are demonstrated to have performed Values of the generalized deformation at points B, C, and D in Fig. 10-1 shall be derived either from experiments or from satisfactorily for seismic forces in compliance with AC1318 approved rational analyses, considering the interactions among requirements. These anchorages should occur outside flexure, axial load, and shear.Alternatively,where the general hinging areas or joints,except in existing components where experimental evidence demonstrates that the connection ized deformation is taken as rotation in the flexural plastic hinge zone and the three conditions of Section 10.4.3.1 are satisfied, meets the Performance Objectives under design loadings. beam plastic hinge rotation capacities shall be permitted to be as Alternative procedures shall be used where these conditions defined in Table 10-7.Columns and joints should be modeled as are not satisfied. described in Section 10.4.2.2. B-FIT CORPORATE CENTER T.I. 200 JOB#2160170.00 STANDAR gh%tya2.7 ,:. .1- rrie c ,,,. -j ,. ( L, 4 17',' :?„,,-- / C7c ( , . )., - ,,, 7s- 2 . -5-:4/ -1 , „I. 47,„ -- (-2 it i i '22 k ----:,.....--,' 7 f r (- 7 , --- - i4.) /o-e ,, fei.,‘,./),.. 1,, ,,,e2,,, (-2.) (&. i ) , __.________- 2 ) .--- — ' (0• 41 3 C ;.,,,,,G,--4-,1•,:-7":7:‘ ,7.7.-7 .... -..- ..--.> 1'7 .0.001. fi ,1 (q)/0-iiiI;) 4 2 7,,-,:',....`i_,,• t I ; fe' Z 6-00 ce,`.? 17/71(,4/I , • 4 ' 1 7/ e-f e 4,,: ''''' 7„71- BY M Portland,OR 503 224 9560 N Seattle,WA Architecture - Interiors - Planning - Engineering Date / B-FIT CORPORATE CENTER T.I. Job JOB#2160170.00 t(r/ Vancouver,WA 360 695 78/9 Sheet 02.8 www.mcknze.com ?OE 749 999' MACKENZIE . Sht of q)2 01b MACKENZIE Alt kIKKII1S RESEREFE, / / -A/7.---"---A--/- , , (7,--.., • .1'/ -=-- (/5"0) / . / —;27 , / /, -.'- ' r / 1 L-v- , 5 k :: / ....-- (71 ,:-.._- ; 7,.:,..,„ ) -_,...- / 5/, S 6 cc,—,,e 1 „ '/- v".1 (, (7 r, 3c, '---) (,1(7 - /, I c5 , 7fff .1•15-7*--/Jr) .,--- 1.77,'9.f7e \-') 7 6. I Y i_ .. 'le)... (e),/? C.:- -.) V --- r —1 I i H H Li to' c---, “ '2 -7 so., , -1' I ' -,- i c„,,,,,- ,...;-„-,„e,e ,--,--, r-^ , t "'`'- -' -1: e'"i:-,/? 2,..,1„ By Portland,OR 503 224 9560 Vancouver,WA 3C0 695 7879 M k Seattle,WA Architecture . Interiors ' Planning . Engineering B-FIT CORPORATE CENTER T.I. Job# JOB#2160170.00 Date ', i " 40.--Z-',,,6, ----- Sheet 02.9 www.mcknze.com 20( 749 )99., IvIACI< ENZIE , Sht of t2016 MtcrcEr,/if Au f, Gu' 3 TIES 0 8'O.C, WITH (3)TIES O TOP XX Irk All 5 1/8'x 13 1/2' COLLECTOR JOIST NV Ur IV U-LAM BEAM SEE PLAN TAP < �� IR., 64)W/SiDEH00Km 11111111W TOP&BOTTOM ®e. , ....T.:3,:::-. 1 TIES 0 3"O.C. 1 r/3 TIES O ii ,- , 3'-0', 4 f3 TIES O 6" O.C. 3'-0`r r.,..-2-2'-1" o" 6" O.C.1'-1 f" ��. � "'-/3 TIES 0 8'O.C. G e :11 /3 TIES O 3'O.C. (< 3 TIES O 3"O.C. TP rk CZ -J _---OT /FTb I N I t FTG. t FTG.AT t PANEL LEG t PANEL JOINT MM. 0 PANEL REINFORCING r. a a 1/8'=1'-0' j of NAT 1'-0'O.G AT CENTERLINE OF PANEL M {4)/5 0 SECTION AT TOP - #4AT -0'0.C. AT CENTERLINE OF PANEL E.W. /3 TIES AT I'-0'O.C. U d (6)/6,(3)EACH FACE CONT. /2" 4 "eP 1 i/2' STANDARD HOOK TOP AND BOTTOM 1 1/2"a_. a._ CL BARS AT END PILASTER (CONTINUOUS THRU OTHER PILASTERS) 'v DO NOT SPLICE /3 TIES FOR SPACING SEE < DETAIL 1/A7.START TIES a 2'FROM COLUMN 1-U.> .„------------ (8)/6O AT PANEL LEG - MON OSECTION AT HEAD • • 1,711,!11111111 O � 03 TIES FOR SPAONG - // SEE DETAIL 1/A7 BOTTOM O Ade 25/W' \ 256' CLR. UR. • < IIliiii::.iuiuiillil X 1.-4. OPANEL LEG 0 CONCRETE HEADER REINFORCING < r 1 1/2'-1'-0' 4, M Portland,OR Architecture • Interiors ^ Planning ' Engineering Dale j, ; 50attle,9560 Vancouver,WA 3GG 695.7£379 B-FIT CORPORATE CENTER T.I. Job k_ . "4 c}? JOB#2160170.00 Ett Seattle,WA I A C I< E N Z I E . ShL o1 Sheet 02.10 www.mcknze.com 206149.9993 +2016 MAc%F1t21E. Au Fuuws IFSlkvec (6.,C ,‘ V/-IT 1/f/( ,...0'. 7„,,,-,f i i ' c,e-1, , ,,„,./[ --,#-,,ri* ;::,17,f.:21-'t**• •• •••••*' '•1......Z i-;''„: I/"*- 471 .. Z *1 ,„ (-I,, „ „ „ ' „: „ •, I .4 (7 -1,-,-,-- '7,9,Et," )Q*-.,,,, c ,..Zo..4,.,,,,-.s — 1-,4151£ to- g P /74 0 i /7,- --_ --- ( - - -- /2, ( /.-S- 7 7... K--- Y: I `2,-, -7..„ -t 71- a., ,r_c. —> I in/ , - ) 2 4?47 7, —II r--4"1 / __ ______. --=--- 0-0 z-.f (7„_."--.6./t4.41)(t.,/, fri) *A-\ ( 4. ( ?V 191.4,1r 06 ,)( 3 f,- — li -1. \ — (R-,,,y!::: e%.. 7 Y.**40 i - -- ----- ----- — .', : =-2 , 1 _ 14b) I f 1 -1 8 71 -8 7 0 I'S-on Y )_. MPortland,OR 503 224 9550 Vancouver,WA Seattle,WA Architecture " Interiors . Planning - Engineering Date '-'77 /'// B-FIT CORPORATE CENTER T.I. JOB#2160170.00 Job# e// 6Cu95/5/9 sht. of Sheet 02.11 www.mcknze.com 205/49 9993 IMACI< EIJZIE ,2016 tvt/crEhz, At, RIGHTS RESEI“/LL. (' )( (17 Cli 1 ' (7 ( r- /7 (2 4/a/ j"0. ..4 (-- 26', --,- 7) — — - — P....,.... '", 'T7-1K) I , J7 - b01 1 ',/ ^ I/ ,..., No)(/ (-, - 7 t By M Portland,OR 503 224 9560 Vancouver,WA -‘.",f;`)6q5 7870 a Architecture . Interiors - Planning . Engineering B-FIT CORPORATE CENTER T.I. JOB#2160170.00 Seattle,WA Date ---) , Job If 4 ,--0 Sheet 02.12 www.mcknze.com 206/49 q90'., MACKEKIZIE of St-h 2 01 6 M“<triziE A,t R uVilS RESER;t0 B FIT- PACIFIC CORPORATE CTR -T.I. (JOB# 2160170.00) Table 10-9. Numerical Acceptance Criteria for Linear Procedures-Reinforced Concrete Columns arFactors' EXTERIOR SHEAR WALL Performance Level Component Type Primary Secondary Conditions 10 LS CP LS CP Condition i" ---, =0.028 P= - = 0.0046 C2.33.> A50.1 C20.0062 2.5 3 4 5 20.6 20.006 1.25 1.8 1.9 1.9 2 C 50.1 7 (50.002 2 2 2.6 2.6 3 20.6 50.002 1.1 1.1 1.2 1.2 1.4 Condition iih V d Alf: p=b.s b„.d f = 3.21 X2.46 Q. C.---* 53(0.2 2 3 4 s 0. 2 41510 2.5 4 S 20.6 20.006 53(0.25) 1.25 1.8 1.9 1.9 2 20.6 20.006 26(0.5) 1.25 1.5 1.6 1.6 1.8 50.1 50.0005 53(0.25) 1.2 1.3 1.4 1.4 1.6 50.1 50.0005 26(0.5) l 1 1.1 1.1 1.2 20.6 50.0005 53(0.25) 1 1 1.1 1.1 1.2 20.6 50.0005 26(0.5) I 1 1 1 1 Condition iiie P ' _ A, kr p b„s a � 50.1 20.006 I I 1 4 5 20.6 20.006 1 1 1 1.6 1.8 50.1 50.002 I I I 1.1 1.2 20.6 50.002 I 1 1 1 1 Condition iv.Columns controlled by inadequate development or splicing along the clear height' P ' _ A, A,f p b„s 50.1 20.006 1 1 1 4 5 20.6 20.006 1 1 1 1.6 1.8 50.1 50.002 1 1 I 1.1 1.2 20.6 50.002 1 1 1 1 1 NOTE: f is in Ib/in.2(MPa)units. 'Values between those listed in the table should be determined by linear interpolation. `Refer to Section 10.4.2.2.2 for definition of conditions i,ii,and iii.Columns are considered to be controlled by inadequate development or splices where the calculated steel stress at the splice exceeds the steel stress specified by Eq.(10-2).Where more than one of conditions i,ii,iii,and iv occurs for a given com- ponent,use the minimum appropriate numerical value from the table. `Where P>0.7A,f',the m-factor should be taken as unity for all performance levels unless the column has transverse reinforcement consisting of hoops with 135-degree hooks spaced at 5(113 and the strength provided by the hoops(V,)is at least 3/4 of the design shear.P is the design axial force in the member. Alternatively,axial loads determined based on a limit-state analysis can be used. dV is the design shear force calculated using limit-state analysis procedures in accordance with Section 10.4.2.4.1. Beams and columns shall be modeled using concentrated be permitted where verified by experiments.The overall load- or distributed plastic hinge models.Other models whose behav- deformation relation shall be established so that maximum resis- ior represents the behavior of reinforced concrete beam and tance is consistent with the design strength specifications of column components subjected to seismic loading shall be per- Sections 10.3.2 and 10.4.2.3. mitred.The beam and column model shall be capable of repre- For beams and columns, the generalized deformation in Fig. senting inelastic response along the component length, except 10-1 is plastic hinge rotation.For beam-column joints,the gen- where it is shown by equilibrium that yielding is restricted to the eralized deformation is shear strain. Values of the generalized component ends. Where nonlinear response is expected in a deformation at points B,C,and D shall be derived from experi- mode other than flexure, the model shall be established to rep- ments or rational analyses and shall take into account the interac- resent such effects. tions among flexure,axial load,and shear. Monotonic load-deformation relations shall be established Columns not controlled by inadequate splices,condition i, ii, according to the generalized load-deformation relation shown or iii in Table 10-8,shall be classified based on Vo per Eq.(10-3), in Fig. 10-1, with the exception that different relations shall using expected material properties,the plastic shear demand on B-FIT CORPORATE CENTER T.I. 194 JOB#2160170.00 STANDA tees uz.13 B FIT- PACIFIC CORPORATE CTR -T.I. (1OB#2160170.00) Table 10-13. Numerical Acceptance Criteria for Linear Procedures-Reinforced Concrete Beams n►Fectors' EXTERIOR SHEAR WALL Performance Level Component Type Primary Secondary Conditions to LS CP LS CP Condition i.Beams controlled by flexure' p-p'-O Transverse reinforcement' V "- 9.70 prpi., b,dJ 50.0 C 53(0.25) 3 6 7 6 10 550.0 C o6(0.5) 2 3 4 3 5 o0.5 C 53(0.25) 2 3 4 3 5 >_0.5 C 26(0.5) 2 2 3 2 4 50.0 NC 53 0.25) 2 3 4 3 5 50.0 7 NC 41MED') 1.25 ( 2 ) 3 2 4 ?0.5 NC 53(0.25) 2 3 3 3 4 >_(1.5 NC >_6(0.5) 1.25 2 2 2 3 Condition ii.Beams controlled by shear" Stirrup spacing 5 d/2 1.25 1.5 1.75 3 4 Stirrup spacing>d/2 1.25 1.5 1.75 2 3 Condition iii.Beams controlled by inadequate development or splicing along the span' Stirrup spacing 5 d/2 1.25 1.5 1.75 3 4 Stirrup spacing>d/2 1.25 1.5 1.75 2 3 Condition iv.Beams controlled by inadequate embedment into beam-column joint' 2 C 2 ,) 3 3 4 NOTE: f'in lb/in.2(MPa)units. 'Values between those listed in the table should be determined by linear interpolation. 'Where more than one of conditions i,ii,iii,and iv occurs for a given component,use the minimum appropriate numerical value from the table. "'C"and"NC"are abbreviations for conforming and nonconforming transverse reinforcement.Transverse reinforcement is conforming if,within the flexural plastic hinge region,hoops are spaced at S d/3,and if,for components of moderate and high ductility demand,the strength provided by the hoops(V,)is at least 3/4 of the design shear.Otherwise,the transverse reinforcement is considered nonconforming. °V is the design shear force calculated using limit-state analysis procedures in accordance with Section 10.4.2.4.1. 2. Posttensioning existing beams, columns, or joints using 5. Changing the building system to reduce demands on the external posttensioning reinforcement.Posttensioned rein- existing elements. Examples include addition of supple- forcement should be unbonded within a distance equal to mentary seismic-force-resisting elements,such as walls or twice the effective depth from sections where inelastic buttresses, seismic isolation, and mass reduction (FEMA action is expected. Anchorages should be located away 547 Chapter 24);and from regions where inelastic action is anticipated and 6. Changing the frame element to a shear wall, infilled should be designed with consideration of possible force frame, or braced frame element by adding new material. variations from seismic forces; Connections between new and existing materials should be 3. Modifying the element by selective material removal from designed to transfer the anticipated forces based on the the existing element.Examples include(a)where nonstruc- design-load combinations. Where the existing concrete tural components interfere with the frame,eliminating this frame columns and beams act as boundary components and interference by removing or separating the nonstructural collectors for the new shear wall or braced frame, these component from the frame; (b) weakening from concrete should be checked for adequacy,considering strength,rein- removal or severing longitudinal reinforcement to change forcement development, and deformability. Diaphragms, the response from a nonductile to a more ductile mode,for including ties and collectors, should be evaluated and if example, weakening beams to promote formation of a necessary,rehabilitated to ensure a complete load path to strong-column, weak-beam system; and (c) segmenting the new shear wall or braced frame element(FEMA 547 walls to change stiffness and strength; Sections 12.4.1 and 12.4.2). 4. Improving deficient existing reinforcement details.Removal of cover concrete to modify existing reinforcement details 10.4.3 Posttensioned Concrete Beam-Column Moment should avoid damage to core concrete and the bond between Frames existing reinforcement and core concrete.New cover con- crete should be designed and constructed to achieve fully 10.4.3.1 General The analytical model for a posttensioned composite action with the existing materials (FEMA 547 concrete beam-column frame element shall be established Sections 12.4.4, 12.4.5,and 12.4.6); as specified in Section 10.4.2.1 for reinforced concrete beam- B-FIT CORPORATE CENTER T.I. Seismic Evaluation and Retrofit of Existing Buildings JOB#2160170.00 Sheet 021.cia B FIT - PACIFIC CORPORATE CTR - T.I. (JOB# 2160170.00) Table 10-14. Numerical Acceptance Criteria for Linear Procedures-Reinforced Concrete Beam-Column Joints m-Factors• EXTERIOR SHEAR WALL Performance Level Component Type Primary Secondary Conditions 10 LS CP LS CP Condition i.Interior joints(for classification of joints,refer to Fig. 10-3) P " Transverse reinforcement' V" Ai.f' V 50.1 C 51.2 1 1 3 4 50.1 C 21.5 1 I 2 3 20.4 C 51.2 1 1 3 4 20.4 C 21.5 I 1 2 3 50.1 NC 51.2 I I 2 3 50.1 NC 21.5 I 1 2 3 20.4 NC 51.2 1 1 2 3 20.4 NC 21.5 1 1 2 3 Condition ii.Other joints(for classification of joints,refer to Fig. 10-3) P b Transverse reinforcement' V r A,f,' V„ 50.1 C <_l.2 1 1 3 4 50.1 C 21.5 1 1 2 3 20.4 C 51.2 1 1 3 4 20.4 C 21.5 I l 2 3 50.1 NC 51.2 1 1 2 3 50.1 NC 21.5 1 I 2 3 20.4 NC 51.2 I 1 1.5 2 20.4 NC 21.5 1 1 1.5 2 "Values between those listed in the table should be determined by linear interpolation. 5P is the design axial force on the column above the joint calculated using limit-state analysis procedures in accordance with Section 10.4.2.4.A„is the gross cross-sectional area of the joint. 'V is the design shear force and V„is the shear strength for the joint.The design shear force and shear strength should be calculated according to Section 10.4.2.4.1 and Section 10.4.2.3,respectively. 'C"and"NC"are abbreviations for conforming and nonconforming transverse reinforcement,respectively.Transverse reinforcement is conforming if hoops are spaced at 511,12 within the joint.Otherwise,the transverse reinforcement is considered nonconforming. column moment frames. In addition to potential failure modes 10.4.3.2 Stiffness of Posttensioned Concrete Beam-Column described in Section 10.4.2.1,the analysis model shall consider Moment Frames potential failure of tendon anchorages. 10.4.3.2.1 Linear Static and Dynamic Procedures Beams shall The analysis procedures described in Chapter 7 apply to be modeled considering flexural and shear stiffnesses,including frames o lith posttensioned beams satisfying the following the effect of the slab acting as a flange in monolithic and com- posite construction.Columns shall be modeled considering flex- 1. The average prestress/pc calculated for an area equal to the ural, shear, and axial stiffnesses. Refer to Section 10.3.1.2 for product of the shortest and the perpendicular cross-sectional effective stiffness computations.Refer to Section 10.4.2.2.1 for dimensions of the beam does not exceed the greater of modeling of joint stiffness. 750 lb/in.2(5 MPa)or.012 at locations of nonlinear action; 10.4.3.2.2 Nonlinear Static Procedure Nonlinear load-deformation 2. Prestressing tendons do not provide more than one-quarter relations shall comply with Section 10.3.1.2 and reinforced con- of the strength at the joint face for both positive and nega- Crete frame requirements of Section 10.4.2.2.2. tive moments;and Values of the generalized deformation at points B, C, and D 3. Anchorages for tendons are demonstrated to have performed in Fig. 10-1 shall be derived either from experiments or from satisfactorily for seismic forces in compliance with ACI 318 approved rational analyses,considering the interactions among requirements. These anchorages should occur outside flexure, axial load, and shear.Alternatively, where the general- hingi ng areas or joints.except in existing components where ized deformation is taken as rotation in the flexural plastic hinge experimental evidence demonstrates that the connection zone and the three conditions of Section 10.4.3.1 are satisfied, meets the Performance Objectives under design loadings. beam plastic hinge rotation capacities shall be permitted to be as Alternative procedures shall be used where these conditions defined in Table 10-7.Columns and joints should be modeled as are not satisfied. described in Section 10.4.2.2. B-FIT CORPORATE CENTER T.I. 200 JOB#2160170.00 STANDA ie'4eif b3.15 //,1::,---.,-----14- ---- \ T/ .01 91,--c‘", -- tio02(/1,t7 ) — // 0 f- /,f :,) (,-. , 1 L,,,,/, -.‘e•4/ -. — ' , ' j ,-:- /4"-.4..."-,A" 0,2:--/.47, t c/...,': •,,,, „---•'......,,, t.,/:7--• ;..7:f )C,P2.-- —I-- 1 ''' „ --- , I 1 I 0 I' 1 ..—. i I, 1 — _ — — — • I l = 1O 4) I ,,10, ,52 144 - ::_. ____ IV f '7 —, fr-).-7 ill '7 Er 61 1 b 4CP• 7-= & --.= ---- F,.._,---> 1- ,- c, •,- 1//,. 4 it. ,, U 7 ( 3 ('''•)-''' ) = 1e,4,. q-- le or? -.)u .z /6,4, 9 --2, /-:-- , )7--->-,, ,e c M Portland,OR 50'3 224 9560 Vancouver,WA B-FIT CORPORATE CENTER T.I. 360 69')7879 n Seattle,WA Architecture . Interiors . Planning . Engineering JOB#2160170.00 Date (;;,./ Job# :2 i(--c-I::,•ze, Sheet 03.1 www.mcknze.com 206 749 9993 tolACI< EKIZIE "' oi m .16 Mu.m4tq Au RtGHTS icFSFRyFt, e G.. , ,-"-/17/=/"/"- '1 ,e-' 77--2--i ----j-1---Le",--- (:. e"...--7•.: ,,:e c-e , ,.:54-....-• 7-> ,-:714 e'-r,:c--:''''''.-'7,-- •4,-- r,',77:1"rz;,-.-' 5 -1 .7 . i ,› a...1'7 /-1 . 9.-;.1-,-,, -,:' 0(., ''' •':'-.r: /. 6 b'- /' ' , k i 1 X ‘74t s.,,,--(7r,..-e--,hi I ,... ....-- i e._fl,e p rracf_7,7,-(,!•,.4" / re7k)4 S 0? 1..)/ rn117,-/• (7 , s /7 -,-r-$4 r- Or (4'4/ 14-F,) ) /75-7 Pe-`7 C14 i,,,-7--+-..•c•-, , l .6%,, ',-';••,irr,..._ f:.r.-1-,,.11- I ----= 1-7 k- 06 4 7 (- )(i)( ‘,,,,c,rL ,-;) :- 2,8e k L r-: > i2 c_,T, = I, k, p flety, f7 1,,afhi(e-,a-a-, , S ..._ ....__ .. _ 7?- Fri- /4 , 0,--i 70-,------,--4- ,.-..-:,--7.--c-- - 7-- MPortland,OR 50',224 9560 Vancouver,WA 6f-s79 111 Architecture - Interiors • Planning • Engineering B-FIT CORPORATE CENTER T.I. 350 95 7 JOB#2160170.00 Seattle,WA Date Job kr (;-;-•,._-' ;r:, /1, e3 Sheet 03.2 www.MCknze.com 20r 7i5 -i i MACI< EKIZIE Sht oi (c)2016 MACX11,21k AIL RI0,15 Ft,CPJEC t /1 ,''''' I I->: /J( ,1 1 :-;:/. "::;, -..?- f -4- 12."4- tr71/...( -`",,,,--r-r c le: ---t7. Ce>L47 /1 fr--,--7 - '3 0 ( 'VG '-': 1,.. ' 4" 27 (....,.5., ) trAli.giz-3 i , k (C) I-I/6e...(,t2z _ 1 ),s (,:,;-#')(Act-104,7) ./., Jo' Ft ' 1 I 17-4,10,6.e--, ii.,. .) , F1'; t/(44, 51`:k„0.Aff) 2— 1-ft 5-7 s cf..„ 1. 3 ---, F"---1 ' :-- (3-7s)(/, )(7, ) =--- ',. i Yie)I t. r"-t* )( '3- -0(:`,.',3> -----> 04-6. •-•,- -1.-4',7-..?' ik- 1 "4'2 ee S i',-/-4--014 e: C/4-t ia., .05e k > 0._)r),- =i/,b 4, 14 ------ --> is'4w 7 r ,, --,._-- ;12'P:r 1-2",61— •/---;,6 ,--,,,--;.-...e,v,- -• I - 7,-V% By M Portland,OR Architecture . Interiors Planning . Engineering Date ..41 7':117"4-- 503.224 9560 Vancouver,WA B-FIT CORPORATE CENTER T.I. Job it -S 7 i:-. 360 695 7879 JOB#2160170.00 Sheet 03.3 E. Seattle,WA kA AC l< E 1\1 2 I E . r 2 0 1 6MA(,FNZIE :fit k,G1-11S PLSERVtD www.mcknze.com 206 749 999 1 , .,,r-1-.'cr Si•-././i e,,e-- if}Se i 1 I --744 0 1 i (,?1,,,V --- 1-/1 A. ‘, k I ; -.11-ef."---, A":",-5.77,---i---'-:, C.,::7--i r r-4‘-'6-7,-;0...,• ",,F1P7,42-'..-df....-t--"---$-- ; ' i - ';7 1--‘,9 L -*.-17 '.--,, 1-` •• :- ,- - As . r e,---‘ -—.-1 ›eY trePeee (4:2 ,e-, , ,--,...‘, r...7-,r.T.„, .„-' t„.„,,,-/ /77 7 :" 1 710, tft,_ &cc k ?. (.c2 --) 1(74, 1 /-'-C -k) /-1-1.f 1 Y. ?- a 6//4- 4.1":7z, IF/if 1i: t c 2e. -3 , ,,,r7- 7 ? ::-. -5-0 e0 C.0,734,IAA',7-- 7-o e-r:-7---'p, rof7S-zo,1._ kir.. 4rP'V"X IQ L e- r. .-- e It i - (.:T.--°--- 91 ) 7 . 2 7\ il '(1) -=-. /0, /14' tit FP) , , , :-et- /.,-,--7 k Ot p (L()(i)(),,9,6,/0-) - LIZ,/ 14 >°- k),...)i--/ z — f I., et'"-sr (1)?e. 4 64,Port? r 1, 7 By ,52e. "e M Portland,OR 0 i 224 9560 Vancouver,WA M Seattle,WA Architecture - Interiors - Planning - Engineering Date B-FIT CORPORATE CENTER T.I. Job 1.1 :,-/4 560 095 78/9 JOB#2160170.00 Sheet 03.4 www.mcknze.com 206 749 9997 MACKEI•IZIE . s' 01 Cc.,2016 IVIACFEN7I1- Att ktGH1S faStRVED 1 !�✓ © O 12 K TA.,s-z r/e,n'-z' TA 1w-s • © TA.in-s ADD DRAG ELEMENT @ Tro+o'2 REENTRANT CORNERS,TYP /� ---e_ '.:"�. © T/B 1a•-2.girit& TAI.19,-2. v O — I I v . O _ OIG I I1 O q 0 1".6 --6, 1?). II © I © — 14I I�TAI1Y-nG II — CV 0 14 - 6�. ''� ' I I — 0 Gir_ 1r , T/L lr-6' 0 0 ► i, VW&I I — T/6 v-a• res 16•-1 TA+r-.3- ri 0 0 0 O Til/T-6• T,1e-1?T/6 1T-3• T/L 17-6• T :17-3' T/6 16'-10. T/B,r-r T/L 1T-6• NAILING / STRAPPING PLAN A. PLYWOOD NAILING TYPICAL 1.)10d 0 6'O.C. O EDGES OF SHEET 2.)IOd O 12'O.C. 0 INTERIOR OF SHEETS B. DOUBLE ROW 10d 0 4'O.C. 0 OLULAM BEAMS W/IN 8'-0'OF O.S. WALL• TYPICAL AT GLULAM BEAMS C. (1)SIMPSON ST8236 O LEDGER O PANEL JOINTS 0 NORTH AND SOUTH WALLS(9/Ae) 0. SIMPSON MT720B O 6'-0'O.C. TO SUBPURUNS TYP. O EAST AND WEST WALLS(13/A6), (1)ROW OF NAILS AT SUBPURUN E. SIMPSON MTT20B TO PURLINS TYP. 0 ALL NORTH AND SOUTH WALLS(108/A6) F.HINGE CONN. TYP. (4/AB) G. SIMPSON SA36 PURUN TO PURUN, GRIDS 2, 4, 6, 7, 9, 11 (5/A6) H.PURLIN TO CONC. SHEAR WALL- SIMPSON ISTA21 EACH PURUN EACH SIDE OF WALL(8/A6) J r. , Aa 4- JO - .3 A7 4 A7,5 7 K. DOUB ROW 10d O 6'O.C. STAGGERED AL• FULL LENGTH OF GRIDS 5&8. W46 f;?v 7.' 2 /9 r t 11 ?-5— -r,- 9t-,s1::,- (1/ 3 t .....-r-2 /T,7..3•e) ` ..5-7, 1 1L piny 3 110V-1 I `- �r � L } 17a! r r7 ez..) 0/"/i P'i.2e:;; /!..!'` cam. l ,:--5--%n!'-, _.•.x' 7!.ry By �lr _ M Portland,OR Architecture ' Interiors • Planning • Engineering Da1� „� 7c' //b 503,224.9560 / / Vancouver,WA B-FIT CORPORATE CENTER T.I. Job It '- l 4//p 0 360.695 7879 JOB#2160170.00 Seattle,WA Sheet 03.5 www.mcknze.com 206 749 9993 M AC I< E I Z I E . Slit oI 02016 MAC,,,, A„ k<.,15 PFSEL•,16 C-2 fee57 ,..f., r . , /o : " --• )/1•<- :i,-! —. ),91=. ,_ 1 ,/?)/..,,7-- , 7 , ,,,,,„-, ti i 1-/1 1) r-- -?,7,.H 4-2, , i 0., ?/fs• xr'' 1, 3 (/ , /6)-4,0(0- ?i R)(*2)(1)(/.. 3)(.I i ___7 , ,-)- - 1/ 7 Z a,z... ie.„ % to, -.7- b 7 f A 1 1 '3 z 1..7z .. / E. , -i 7 i7r-i't- ; r, e :- ---,I:7;-e-•••-7,,,,2:-;..., .. , f•!r I By M Portland,OR 50 224 9560 Vancouver,WA a Seattle,WA Architecture- Interiors . Planning - Engineering B-FIT CORPORATE CENTER T.I. Job a JOB#2160170.00 Date r 36r)695 7879 Sheet 03.6 www.mcknze.com 20c/49 909,3 MACI< E1sIZIE . Sht al b 201 6 Mt:,ir.iit Att RIC,FITS RE,,fRvED EDCE/CONC W, 10111 FIRER CANT g ri t,- MTT28B AT 6'-0"O.C.16TH P11>wo; (1)ROW NAILS AT SULTPURLIN ALT: L '1), SIMPSON L7T19 AT(-O•O.C. • To t6' I V41714 3/4-0 17W RAMSET ate. TRL/BOLT WITH SPECIAL INSPECTION --------..--_,,----_ --- ---_ 4.31111111111 2 x 8 SUBPURUN P.T.4 x 6 LEDGER 16TH 3/4•DIAMETER P.8 AT 4L0•O.C. O STRAP AT SUBPURLIN/WALL CONN. 1 172•4/1*-0• 4 / z ,,,/,....e.--,20 ' ) 1 0,1.} :- 122 ( c, _C, ,-1,---",--r4-t. fr. „,. / f7 Ifril 77- Z- 5 1 1.-7.1 1 17/1 C tt,...1 7',.2.CA5G'IP 1, 7 r7j4 r , e/2-V).. t:\ - t-'11:‘1 T' 7 ( 1 i 7-1" r‘ro ":1 (/'117 n / i .1- -) 7...- (I-1 3co ) /- - ' / ',::' ? ------- )4 . 1( Ot 6 : (1,r)( ',n) m, (-- ); 7 4'? r ,...---- ---- „,----'—, i-,,6 - -, - '• '"n7e --, BY M Portland,OR 503 224 9560 Vancouver,WA Seattle,WA Architecture . Interiors . Planning . Engineering B-FIT CORPORATE CENTER T.I. Job JOB#2160170.00 Date le 360 695 7879 of Sheet 03.7 www.mcknze.com 206 749 9993 tslIACIKEI\IZIE sht 02016 MACK(.1,211 Au 116141`,PVEERVIM Anchor Systems Specifications for Simpson Strong-Tied'Connectors SI M PSON HOLDOWN & ADHESIVE ALLOWABLE LOADS GUIDE Strasng-Tie The tables on page 12 through 14 allow you to compare the allowable loads of our holdowns to allowable loads for adhesive solutions and threaded rod. How to use these tables: • Any holdown using a given anchor bolt diameter may be used with any adhesive solution of the same diameter threaded rod. • The allowable load for the system is the lowest of the allowable load of the holdown,the adhesive condition allowable load and the threaded rod allowable load. • Linear interpolation may only be used between fc 2000 and 4000 adhesive allowable loads.Linear interpolation shall not be used for embedment or edge distance. • The Critical Edge Distance(Ccr)is the edge distance needed to achieve the full adhesive allowable load listed in the No Minimum Edges table.Any side with less than Cc,distance from the center of the rod to the edge of the concrete Is an Edge Condition.Common edge distances larger than Ccr are not listed since they are not Edge Conditions. • Solutions listed"with 1,6 stress increase"are based on tested limits with a VS stress increase.These values may only be used in conjuction with the Alternate Basic Load Tables found in Section 1605.3.2 of the IBC and Section 1612.3.2 of the UBC.Refer to the Steel Stress Increase discusion in the beginning of our current Wood Construction Connectors catalog for further explanation. LTT, MU, HTT Tension Ties Ell Product available in finishes that otter additional corrosion protection.(Use HOG listeners with MAX.'or BDG connectors) Fasteners Loads Allowable Tension Loads Model Thickness DF/SP(Nat) SPF/HF(lbs) No. (in) (In) Anchor Bolts Nails Bolts (133) (133) (160) Qty. Dia. Nags ItMt Hee BM_ Nails Halls LTT19 1% 34. 34 8-16d Sinkers — — 1205 — 1350 — 1085 1305 11120B 1/ 34e 1/2%or% 10-16d 2 / 1750 1220 1750 1460 1675 1750 111131 1% 14 55 18-10dx114 — — 2195 2310' 1985 2310 HTT16 1% Me % 18-16d — — 3480 — 4175 — 3080 3695 HTT22 1% '4. % 32-16d Sinkers — — 5250 — 5260 — 4670 5250 MTT288 1/ % %or% 24-16d 4 Ye 4455 2151 4455 _ .2725' 4140 4455 19— fi4rrZ&(.� Pi.s.eo.0r/NdeO /+J '2-crr1 --a. .5,ii..?s'lir✓rI- 1.-•)/ /477.8 Anchor Required Fasteners AMMO.Tendon Lads OFIJS1YP(1 i ) Allowable Tension Loads SPF/HF(133/160) Model (C) (80 Bolt Dla Stud Machine Bolts Woed MemberTh t}n). �,' Wood Member Thickness(in) (le) Qty. Dia. 1% 2 214 $ 314 " .-614 1/ 2 2/ 3 3/ 514 HD2A 134e % % 2 % 1555 2055 2565 2775 2775 2760 1320 1740 2165 2570 2565 2550 H05A 231. / % 2 % 1870 2485 3095 3705 4010 3980 1585 2110 2625 3130 3645 3680 d HD6A 234e 54e Tib 2 34 2275 E980 3685 4405 5105 5510 1870_ 2470 3065 3680 4280 5020 HDBA 234. 34. % 3 r/e 32.20 'x4350 5415 6465. 7460 7910 ' 2710_ 3655 4530 5480 6350 7330 HD10A 231e . 34 4 r4 3945 5540 6935 8310 ;9540. '9900 3275 4600 5745 7045 8160 9195 9 44 HD14A 231. % 1 4 1 — — — — 11080 13380 — — — — 9495 12485 HD15 234e 3% 114 5 1 — — — — _ — 15305_ — — — — — 13810 c N Z Anchor Bolt Required Fasteners Allowable Tension Load(lbs) E Model SO Dia. Required Post Size MVP SPF/HF No. (In) (In) (In) ori Type Minimum o (133/160) (133/160) H HDU2 1% 1% % 6 SDS1/2x214 2-2x 2625 2260 HDU4 1% 1% % 10 SDS1/2x214 2-2x 4190 3600 W HDU5 1% 1% % 14 SDS14x214 2-2x 5430 4670 it HDC5/22 — 1 % 12 SDS14x214 2-2x4 4870 4215 i HDC5/4 — 1 54 12 SDS14x214 4x4 4870 4215 PHD2 1% 1% % 10 SDSY4x3 2-2x 3610 3375 P1105 1% 1% 14 14 SDSY4x3 2-2x 4685 4380 HDC10/22 — 1 Til 24 SDS14x214 2-2x4 9665 8425 HDC10/4 — 1 % 24 SDS14x211 4x4 9665 8425 HDO8 1% 2% 1e 20 SDS14x3 2-2x 8325 7210 HDU8 1% 1% r 20 SDS14x21 2-2x 8350 7180 PHD6 1% 1% r 18 SDS14x3 2-2x 5860 5480 HDU11 1% 1% 1 30 SDSY.x2Y 2-2x 11275 9695 HHDQ11 1/ 1 1 li4FIT CORPakiftENTERCORP T i 2-2x 11445 9615 12 HHD014 1/ 1 1 30 JOR#SJ '%00 2-2x 14700 12350 - Sheet 03.8