Loading...
Specifications (11) I STRUCTURAL CALCULATIONS FOR I RIVER TERRACE EAST � I APARTMENTS _'' , ) f I 1 2 FLEX- DOWNHIL (WEST HILLS DEVELOPMENT, IN , ,, , , �- Jr/t '", 4- 1 1 2/90 - 1 OFFICE E COPY I FEBRUARY 15, 2017 JOB NUMBER: 16-T 100 eur,/ , 00,,,,p. //,.. 1., 1/4;gib. T 1III � ` i FROELICH ENGINEERS g I * * * LIMITATIONS * * * ENGINEER WAS RETAINED IN A LIMITED CAPACITY FOR THIS PROJECT. DESIGN IS BASED UPON INFORMATION PROVIDED BY THE CLIENT, WHO IS SOLELY RESPONSIBLE FOR ACCURACY OF SAME. NO RESPONSIBILITY AND/OR LIABILITY IS ASSUMED BY,OR IS TO BE ASSIGNED TO THE ENGINEER I' FOR ITEMS BEYOND THAT SHOWN ON THESE SHEETS. A Main Office I 6969 SW Hampton St. A Central Oregon Portland,Oregon 97223 503-624-7005 745 NW Mt.Washington Dr.#205 Bend,Oregon 97701 www.froelich-engineers.com 541-383-1828 I IPage 2 of 126 1 Client: West Hills Development 4 Project: River Terrace East Proj.if: 16-T100 I ,A Date: 2/15/2017 By: TSP FROELICH ENGINEERS' Project Design Criteria Project Description New tite.storY multi family apartment buildings' Gang-nailed wood roof trusses. Wood Framed Floor. Ls 4W-framed wood sheathed wood walls. .Slab on Grade IConventional Foundations Project Location I P orfland.OR 45548*N 122„84"W Average Elevation-350 ft(approximate) I General Building Department. Building Official: Phone Number i Building Code(s):2012 International Building Cede(IBC) 2014 Oregon Structural Specialty Code(OSSC) ASCE7-10 Roof Live Load: Ground Snow Load- 15 psf(Snow Load Analysis for Oregon 2007) _ . Minimum Roof Snow Load- 25 psf (Snow Load Analysis for Oregon 2007) Snow Importance Factor(Is)= 1.00 Deflection Criteria- L/240 : . Floor Live Loads: vi Residential Live Load- 40 psf (IBC Table 1607.1) Corridor Live Load- 100 psf (IBC Table 1607.1) I Wind Load: Basic(3-Second Gust)Wind Speed- 120 mph(OSSC Figure 1609) Exposure.,- B Wind Importance Factor(1y), 1.00 iSeismic Load: Occupancy Category- Il (IBC Table 16045) Seismic Importance Factor(IL)- L00 I Site Class- D • Mapped Spectral Acceleration Values(Ss)- 0.985 g Mapped Spectral Acceleration Values(Si)- 0.36 g Design Spectral Response Parameter (S155)= 0.726 g I Design Spectral Response Parameter(S15)- 0.403 g Seismic Design Category= D Response Modification Coefficient(R)- 6.5 Light-framed walls sheathed with wood panels Shear Walls(Bearing Wall System) ISoils Data: Allowable Bearing Pressure= 2500 psf* Exterior Footing Depth= 18 inches* I Page 3 of 126 I 4 Client: West Hills Development Project: River Terrace East II Proj.#: 16-TWO Bate: 2/15/2017 111 By: YSP FROELICH z.0 HYD.,CR.# Dead Load Calculations Roof Dead Load Top Chord of Truss Component Weights Actual(psf) Comments Framing 4 Roof Trusses Roof sheathing 2 5/8"shth Roofing(Asphalt Shingles) 3 Misc. 1 Total 10.0 `psi Bottom Chord of Truss Component Weights Actual(psi) Comments Mechanical 1.5 111 Ceiling 2,8 (1)5/8"gyp Batt Insulation 1.5 Sprinklers 1 Misc. 1.2' Tol*i.= 8.0 psf 4psf added for Seismic Base Shear Total Roof Dead Load= 18.0 psf Cale,`, Floor Dead Load g Component Weights Actual(psf) Comments Framing 3 Joist Framing Sheathing 3 7/8"shth Floor Covering 11 1.25"Floor Topping(Gyperete 105 lbs/ft3) Mechanical i Ceiling 5,6 (2)5/8"gyp Sprinklers rin 1 Sprinklers 1 Oisc. 1,a Total"a 27.0 'paf 8psf added for Seismic Base Shear Cale. Corridor Floor Dead Load Component Weights Actual(psf) Comments Framing 2 Joist Framing Sheathing 3 7/8"shth Floor Covering A 13 1.5"Floor Topping(Concrete 150 lbs/ft3) _ Mechanical 1 Ceiling 5.6 (2)5/8"gyp Flooring0 Sprinklers 1 Misc. 1.4 Total,'> 27.0 psf Exterior Wall Dead Load Component Weights Actual(psf) Comments Framing 1.5 Sheathing 1.5 1/2"shth interior Gyp Finish 2.8 5/8"gyp Insulation 1,5 Siding 23 Fiber Cement Siding Ivfisc. 4 0,4 Total= 10 'psi Interior Wall/Partition Wall Dead Load Component Weights Actual(psi) Comments Framing 1.7 2x6 A 16'o.c, Interior Gyp Finish 5.6 4 5/8"gyp each side Insulation 0.5 Fiberglass Batt Insulation as occurs Misc. 0„2 EH Total” 8 gsfII I Page 4 of 126 4 Client: West Hills Development Project: River Terrace East Prof.#: 16-TI 00 Date: 2/15/2017 By: YSP FROELICH ENO 1 NE E R S I Fiat Roof Snow Load Calculation: Based on the following Codes: 2012 OSSC ASCE 7-10 Snow Load Analysis for Oregon 3rd ed.December 2007 ' Maximum Elevation: 450 ft Ground Snow Load(P9)= 15 psf Determined from Snow Load Analaysis for Oregon(3rd ed.December 2007) Terrian Category= B(Partial Exposed) per ASCE 7-05 Table 7-2 Snow Exposure Factor(Cs)= 1.0 per ASCE 7-05 Table 7-2 Thermal Factor(Cf)= 1.0 per ASCE 7-05 Table 7-3 Importance Factor(I)= 1.0 per ASCE 7-05 Table 7-4 Flat Roof Snow Load(Pr)= 10.5 psf Pt=0.7*Ce*CI*!*P9 Where p9 s 20 psf(pt Min)= 15 Where p9>20 psf(pf Min)= 10.5 Use(pt)= 15 psf Use(pf)= 25 psf per 2012 OSSC 1608.1 I i I I I I I a 1111111 MIMI iiii moo ism aus.77,iiiiimp,„01iNcill_ )(11111:7,1 IILIM gill 1111111 1111 NM 'MN NS SIMI INS 3X I co1 SIMI O t 4211ilti NOP to Xi ' ^: lair �' 3 A ..,.,� --------�„ -,t i® rimmarieimailii acs ,oma.—_._.,a..+m+ ,.tial, .._..�=._..�--.a�.+r+�«1 4 ll � t($ LAINNisonni 1 Wilrillillinilliiii �� [4p�= A '4%.. \IDF" ifilir:Wellill w s.,w W hY ''s t.�'�`'^ s ,s 4 '.. ,�,esr.w'y '}:., ,'} . ..a.._ w�'..:::::,,:,..,%--,.-y •"`' �''''' ` J d �_ ..*:•3 ..,,,,l a�'y v. lq) ' " ` r '. r fi� ' .0..ik r. 1:. .; 'u ' '' ;• i, '`,y't{ ' .'.`..✓. ' iii ,t sh vi � :::::::::::::::,„:„.....:0„:„.„...............„,...„ �� ` ., 'fib, . ssx. :` 3 Cw .:C.:,.,..:‘,...,....,:.%,!•:-,. r,r .�.v....... $1 .Q Yw-.O r i+ a'`'�5 1,..,.._ AM 1 4 VP 1 � ii ,mom.,,�: y { 1 sisec.., c #4taf f f 1 1:Ll.iii Will ovil a 191'Y III: ; t Ai ir....:*;:n::*•:.t.,.•••f$,$:,,..., i I it t.it 11 '417 1 # s,.ss w�4wM � {n,� is g ,r��sl, r p I 4010$1,• w4`^� •�.s°'k w,�+s¢^•wqt,�ti�]'0.�a pl. 1 prs t.$ 0,11 �� ¢�, •,{ k A- °, y� `,wrti `. w,.ss..s' t l" .- .r: «" 1 '�,.'*. w.'•.w.y �'s'�`'.ja 4".x'.4 ct; V 'k` ` ay. 'r w°''�°, s �� - as"{'�.x,�u,?'�.''�O'� '`' '�s''w e "'w 411111111.111 §..,,,,,.......:.;w ( .,. m5- w ....�. -- w $ .q w.r�wr ara I"Wmalli 3X C M,,CW CLIENT;, I6969 SW Hampton St. Page 6 of i ,l: 1 Portland Oregon 97223 ? 503-624-7005 PROJECT: C 745 NW Mt Washington Dr.#205 NUMBER: ��. Bend,Oregon 97703 541-383-1828 FROELICH E ' c€ DATE: ENGINEERS/ 12303 Airport Way,Suite 200 Broomfield,Colorado 80021 BY,. www.froelich-engineers.com 720-560-2269 C F,e4 AAA Ai Gt. Des i G+c/'o RoOF DEAD IZA 0 s 13 Ps r USE Pia - Aitiviluic 7. ctss22.c.4 "C c I '00 1 DER,ER, it-uss R ( Fog. EACXtOI OAJL,y) "SPAN sao '_a " T-. Lor k1 } ) .x12.4 Pc'e I I {A . 7 DL s 1 dao It pAIv 1 ``--c DL f 12‘ i"L .'A; O L. x f Soo' I , 1O Pe 13 5L-Z 1445O ID Lx 50 sik S . E Ma O i e CLIENT: 4 6969 SW Hampton St. Page 7 of 126EE 1 Portland,Oregon 97223 6...)::: 503-624-7005 PROJECT: fr --r -":, .....el 745 NW Mt,Washington Dr.#205NUMBER: I Bend,Oregon 97703 541-383-1828 F R O E L I C H ;2303 A�rpo�f DATE; EN GINEERSd Way,Suite 200 Broomfield,Colorado 80021 wts w.froetich-engineerssam 720-560-2269 BY: s 3 6.P toJ t C..12 SL f z, ,o,tk l Ls (,1(1)k1S}s ��a PG-r pc Faco R Gt Z) —1111 moo F HLrz -s . 1 R 14) "SPAN s3-°~ (4f: 1 , , ... (F-E.em... Cxciz..060e.T&uss) C!. Z-° I L (ta`. (31.� (2.5) s. 7.5o I ' • PA x b.-ate PLP I oZ. PC 1II I iPage 8 of 126 COMPANY '..PROJECT 111 WO f" d r I<s Aug;23,2016 15:41 RH1,wwG SOFTWARE FOR WOOD DESIGN Design Check Calculation Sheet WoodWorks Sizer 10.42 Loads: toad...... Type Distribution Pat- Location 'ft;; Magnitude -(snit Lava3 Leafern Start End e:6. dDead £a Partial I. Ub TA 617 3.21 721.411 00,0 Pit... Load2 snow Partial 001 0.00 $.2; 275.0 215,8 plf 10003 Dead Point2..50 600 lbs 1.caud4 Inns. P00441 2,00 710 lbs Se f-`e:34M.. :Dead 11:.1 1100, _...... 6.0 :Jd11 Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): R } _..-. „ 1. I III : ;:::I 662 109 914 TnisI 1101' Bestial: _.. _. 1623 CapacJiy I Beam 1:62 Support 1302 1523 A, </Lea 179i Beam 1.40 Su pp::rt. 0.511 1.00. Load comb 142 0,90. III ,c .)tt 14 74 1+ `d 0.54 0.74. CO 1.00- Q 74. Cl 00 1.60- CO support 2_11 1.00. o.; ,s r,t. F.'25 1-11.. 625>III : Lumber-soft D.Fir•L No.2,4x8(3-1/2"x7-1/4") Supports All Timber-soft Beam,D Pir-L No 2 Total length 3'-1.,3";volume=0.5 cult„ Lateral support:top=at supports,bottom=at supports; Analysis vs.Allowable Stress and Deflection using NDS 2012;• Ili000000200. Anft1i6dt Value -6,66i46- Vn300 11016 AtiA yys *t0len;+ys v a 11 F ' 201 pal tvslx' .57 eending•,; ti - 560 Fb = 1335 psi ,.t_0' e 0.42 Dead ) f.l.`n 6,01 L?999 Live befl`n 0.01 a, eLI095 0.10= 1.13360 1:n 0,07 Pd.;.. ,efl'n0.01..*++1.d44C v c.:5 x 12240 .:sat 0'..14 • Additional Data: FACTORS: 15 p.;CD CM Cr Cl. 01, Cie Cr Cfnt Cj. C: ICS 66' 120 1.15 1.00 1.00 - 1.07 00 1.07 2 E10'4 9017 1.15 1.36 1.00 0.595 ...300 1,04 1.00 1.00 1.03 - 2 Fop' 620 - 1.00 1.00 - - - 1.,00 1.00 - - 1.6 m 7.00 5.00 - - - - 1.00 .00 - 2 Emir,' 0.52 nd.�'lion 1,00 1.30 - - - - 1.06 _.bb - 2 i CRITICAL LOAD COMBINATIONS: Shear LC ii1 - D+S V s 1606. design 1304 lbs 3 nu LC 02 @r° M= 1402 lb.-ft Deflection: LC 42 a D4 (live) IC 02 .. 1010 (total} w Wawled -1mpa it n) e 1c=-(cncentrae �^e_`hq td Es earthquake dive � - sake All c listed in the Tn lyo.; eatpaE loadn tnns: R.>t:p, 10 t IBC 2012 CALCUTA IOO ..kS L fl tt ET 17ie(6Ab-1772 ive deflection = Deflection from 1 , -de I 1.4 ds Jlive, wind, snow,,) Tota. Deflection 1.53(De 3 Load Deflentino1 4 Live iced Deflection. L014,04l stability f417 Su 3'-0.63" Le =6'-3.50" RFS.= 6.68 I Design Notes: 1.Woodworks analysis and design are in accordance with the ICC International Building Code(IBC 2012),the National Design Specification(NDS 2012),and NDS Design Supplement.. 2.Please verify that the default deflection limits are appropriate for your application. 3..Sawn lumber bending members shalt be laterally supported according to the provisions of NOS Clause 4;4.1. I I I Page 9 of 126 I COMPANY PROJECT 111 ( %%fOoIS/\/o'r{\S Aug, ..23.201615:42 RH2aawb ii SOFTWARE FOR WOOD DESIGN Design Check Calculation Sheet Blur 10.42 Loads: Load Type Dist batman Pat. Loceti ;ft; Magnitude :Unit tees Start Start Sod Load/ Dad 'f 1. It 0"205.5 < c..... Load2 8now Pull UDL 275.0 paf Self-weavht Dead Fu__ UDL 0.:.0 Did III Maximum Reactions(Ibs),Bearing Capacities(Ibs)and Bearing Lengths(in): t6-1 - III sir Unfettered: 6 9 Snow 6 Dead 629 5 C $ 40 :Factored. ,. 1410. Total 1470 Dearing: '.v .> _. Capacity t47" Beam 30 1627 Support 1627 ASewn 1.00 10.90 ,00 Support. 0.90' #2 Load co r;,c #2 0'67.. Length 0.67 0.67. Kin reo'd 0.07 0.67. ,,b 1.00 1 00 • CO ca,, 00 Cb 1.00 port 1.11 _.. L22 . Ftp aap .525 _... _.. Lumber-soft,D.Fir-L,No.2,4x8(3-112"x7-114") _._ Supports: g-Timber-svft Beam, NO2 __.. TottallIenglh.8'•1.3'volume=1.1 1.11 cut; Lateral support top=at supports,bottom=at supports: Afafysis vs.Allowable Stress and Deflection uatno NDS 20121 CrAter.t'en. Maty#la Yataio Dell<11,. Statue drkt; Anslye0*/L9eel n -Oscar i05= 60. fel = Ii? cc: iv/TV! a BLB1 Bending(i1 f6= 863 b -1733 pal fcl Fn`*• 0.66 Dead Oat_'0 0.041 99 Live Dct:'n 0.05 <L/599 0.20 - 1/360 in 0.23 •Octa_ 000i':.. -0,.10= W731..... 0,341 _.......'.,22:0 to 0..33 _.. Additional Data: FACTORS: F.B tt ICT CM CG CL CE Cfu Crfrt Ci en 2,9 180 1.13 1.00 1.0 1.00 1.00 1.00 2 Pb'+ 900 1.15 1.00 3.00 1.997 1,300 1.00 1.00 1.00 1.00 c fit 1.00 1.00 1,6 edilio0. 1.00 1.60 - - - 1.00 1.00 - 2 III grin` 0.56 million 1..00 1.00 _ 1.00 1.00 - CRITICAL LOAD COMBINATIONS: Shear : LC 62 -G V= 1457, V detign = 1..51 lba cera ng . LC Y2 - 0.3 M= 2200 lbs-ft Deflection: LC 62 - 0-11 tl velIII LC 62 = 01-0 Rotel? L`dead L=live 5=avow W=win_0=impact Lr=roof live Lo.concentrated Rsearthquake All Le's are listed in the Analysis output toad combl.nations: ASCE,,7-10 / IBC 2012 CALCULATIONS: flection: le t' f: El efi. e0G fr DeDe e- deflection - Deflection from all non-dead load (live, wind, a. Total. flection'- 1.5110-end Load Deflection? o :ave Load Deflection. Lateral si'.nbLl:ty 01: Lo= 6'-0.69" Le-11`-0.19" 190 9.11 111 Design Notes: 1,WoodWorks analysis and design are In accordance with the ICC International Building Code(IBC 2012),the National Design Specification(NOS 2012).and NOS Design Supplement. 2.Please verify that the default deflection limits are appropriate for your appiicabor, 3.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 44,1.. _....... I I 1 • I 1 fl!Virile Office CLIENT: 6969 SW Hampton St. Portland,Oregon 97223 PA Page 10 of 126-E ! 503-624-7005 PROJECT: Li C'oerro..:Oregon 745 NW Mt.Washington Dr.#205 NUMBER: Bend,Oregon 97703 541-383-1828 fl Pen c,'telt€^c DATE: FROELICH w 12303 Airport Way,Suite 200 E N l3 I N E E R 5 b Broomfield,Colorado 80021 wwve.finetith-engineexs.corn 720-560-2269 BY: 1 04130VJ HDA' ''=-c i ' 4,,....--.ci x IT i f 5: 1\ i- e. Po Pa .._ �• I11 -P+= 9..-C1 ' ' tic u,'e t I I I I x I Page 11 of 126 1 I Client: 4 Project: Project#: I Date: /,:: . n By: FROELICH I ENG IN EERSI WIND FORCE CALCULATION-C&C Walls ASCE 7-10 SECTION 30.6,30.7(Third Printing) Design Wind Loads on Components and Cladding-Walls Basic Wind Speeds Input I 3 Second Gust Vas= 120 mph Exposure Category= B Wind Directionality Factor Kd= 0.85 Table 26.6-1 (page 194) Mean Height of Roof,h= 40 ft Topteranitic Effects Input Hill Height H= 0 ft Table 26.8-1 (page 196) Length of 1/2 hill height Lh= 1000 ft Table 26.8-1 (page 196) Dist.From Crest to Bldg.x= 100 ft Table 26.8-1 (page 196) Height Above Local Grade z= 15 ft Table 26.8-1 (page 196) Horizontal Attenuation Factor m= 1.5 Table 26.8-1 (page 196) Height Attenuation Factor g= 3 Table 26.8-1 (page 196) Shape Factor K1/(HILh)= 1.3 Table 26.8-1 (page 196) Output-Topographic Multipliers K1 = 0.00 K2= 0.93 K3 = 0.96 Topographic Factor ict= 1.00 Terrain Exposure Constants I nominal height of boundary zg= 1200 Table 26.9-1 (page 199) 3-s gust exponent a= 7.00 Table 26.9-1 (page 199) I I I I I 111 Page 12 of 126 Pressure Coefficients Input IVelocity Pressure Exposure Coefficients Kb (see below) Table 30.3-1 (page 259) Height(ft) Kb qh(psf) Velocity 15 0.70 22.0 Pressure 20 0.70 22.0 Output qz 25 0.70 22.0 30 0.70 22.0 40 0.76 23.8 500.81 25.4 60 0.85 26.8 70 0.89 28.0 80 0.93 29.1 90 0.96 30.0 100 0.99 31.0 120 1.04 32.6 h = 40 0.76 23.8 qh External Pressure Coefficients(GCp)-Use Figure 30.4-1 for h <60 ft,30.6-1 for h>60 ft GCi,i=+1- 0.18 Table 26.11-1 (page 201) Pressure Coefficients on Exterior Surfaces of Walls Zone Ce Zone 4 (+) 0.90 Figure 30.4-1 for h<=60(page 277) Zone 5 (+) 0.90 Figure 30.6-1 for h>60(page 290) Zone 4(-) -0.90 Zone 5 (-) -1.80 Calculate Wind Pressure,tr,per Equation 30,4.1 or 30.64, using q Exterior Face of Surface Zone p(psf)` Zone 4 (+) 25.74 with Positive Internal Pressure Zone 5 (+) 25.74 with Positive Internal Pressure Zone 4(-) -25,74 with Negative Internal Pressure Zone 5 (-) -47.19 with Negative Internal Pressure 1 I I I I Page 13 of 126 III COMPANY PROJECT , l 1. WoodWorks 1 SOFTWARE 60R W000 DESIGN Dec,13,2016 09:39 Beamt m Design Check Calculation Sheet , 111 Sizer 1042 ,, Woodworks , Loads: Load Type Distribution Fat Location tl Magnitude Unit • tern _tH3... end Start End - Ill Loadl Wind Full OEM. ' ' 7/.0 sT/ Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): sM1" ' 17 s° III tin x tore,: _...... _ Dean 327 Wind ;2 Factored:Q; ,... 196III Total 196; Bearing: Capacity 2266:'. Beam 2266'.Support2266'. 22oS Anal/Des Las 0.09 Beam 0.09' 0.09 Support 0.09 #2 /I Load comb:': #2 G.502 Length 0.50 • Min req'd O.50• 0.1.00 50 Cl., 1.00. 00 Cb min CO - Cb support 1.00 .00 F ir sup _ 625 "skre 1nrnt beeiioo renetta Wing used:l Z"166'end aunts Lumber-soft,D.Fir-L,No.2,4x8(3-112"x7-114") Supports:All-Timber-soft Beam,D.Fir-L No2 Total length:9'-1.0";volume=1.6 cu,ft. Lateral support top=at supports,bottom=at supports;Oblique angle:90.0 deg; Analysis vs.Allowable Stress and Deflection using NDS 2012: Crtrertde ,Anslysia VaLOS Design Value Unit: ;Anal its/Design Shear ,.. x-x fv 0 ,,.01 1-rp i 3.'v,03 c' fv = 11 , j Rend rgi d s-x Cb 0 6.a ,.t121 kis-ft b'rb0.00 y-y fb 310 E 1966 lop-fl lb/So' .10 Lead Defi _ negligible +7.: Live bell -. 0.16 1/692 0.45 1/240 in 1/240 in ('.31 9 111 'rota], Def l.'r: (1.16' W ;.J x132 '.D,iS - , Additional Data: FACTORS: F/E(psi)CD CMFIE(psi)C Ct CL Clu Cr Cfrt 1i Co LC?# III Fvy' 180 1.60 1.00 1.00 1.00 1.00 - 2 Thy' 900 1.60 1.00 1-00 x00 1.300 1.05 1.0a 1.00 1.00 2 Fop' 625 100 1.00:. - 1.00 1.00 - 1.6 million 100 1,00 _- 2 E' 1.6 0.58 million 1.00 1.00 1.00 1.00 - CRITICAL LOAD COMBINATIONS: Shear • LC #2 = 6D+.6W, V = 1145, V design = 182 lbs Bendingl1): LC 62 = 60+.6W, M " 441 lbs-ft Deflection: LC -62 = ,.GW {lice) C #2 .:: _ i-.6W (total) D dead L li _ Elsnow W=wind I=i-pact Lr=roof live Lc=concentreted E-=earthgcake All LC are listed in Sr. the Aoalysis output Loadcombinations: ASCE -il I IBC 2012 CALCULATIONS: III Deflection: ill = 178e06 lb-i.2 Ely 61.4e06 it "Live" deflection Deflection from all non dead loads r :ve. clod, sn=Ow_.) Total Deflection " 1.50;Dead Load Deflection, t Live Load Deflection. Lateral stability i+1: la.1 = 9'-0.50 -c = 16 -7,63 3 3.61 loll.. Design Notes: III 1.WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2012),the Nation)Design Specification(NDS 2012),and NDS Design Supplement. 2.Please verify that the default deflection limits are appropriate for your application. 3,Sawn lumber bending members shall be laterally supported according to the provisions of NOS Clause 4.4,1, I I I I 0 Ma Dace CLIENT: 6969 SW Hampton St. PAGE Portland,Oregon 97223 Page 14 of 126 503-624-7005 PROJECT: I '- 0 c nt;;xi Oregon FCJOn 745 NW Mt.Washington Dr.#205 NUMBER; Bend,Oregon 97703 541-383-1828 FROELICH ❑Derive~ c DATE: E N G I N E E R S a 12303 Airport Way,Suite 200 Broomfield,Colorado 80021 veww. aehclrsa taeeTs.c°n' 720-560-2269 BY: ROOF 8641‘4, SP' x'kJ ._.. . L. 7- ) a.5).- 175. 0 F I I I 1 I 1 I I Page 15 of 126 III :.: 1111 1111... 1111.. 1111 COMPANY PROJECT 1111. 1111 _. I11 ,.. 'Feb,it,207411:30 RBtwwb• 60-F4 WARE 4,02 WO(€lx Lf0tGN Design Check Calculation Sheet WoodWortrs Sizer 10.42 Loads: Load Type Dlstribbtion,P Lonat t• Magnitude `Unit umcn $'4a-'r -Si .. td rt. MO 777a, wear 1111... Euil @, L ,.:406.04 p2f Load2 Snow Fall 1,131 t f , 1b5110 r..iv. i VDT: a, 111 1 1111 Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths{in) 1 " t 6»: a .S ir't 1111.. 1111 1111... 1111 1111-... Dana FOS 1'406III :.t. Snow z',{ 1111. 1111.. 1111 1111.. 000..0 xeric 1111._. 1111 939 Total '11.)..... _.- 1111 1111 1111. __-. 1111. 1111 __ 11111111 real ty 1111 1064 seam 'I 1211 Support I t 1!37 Anal/Des .eh r?aam O,ah. PAS III support '.' 0,74'. 44 :ad comb 4:[ d'$lta 112 1:•natb t 41' 0.Sa7w. Min 001'd 00 Cb 1 1.00 09 1,0@ Cb 1 11'- 7..1 E r'; .para 1.11 1111. 225 •frog tug Uneaten•_-: .tenth seeing use&142`12 2112 supports Lumber-soft,D.Fir-1 No.2,4x10(3-1/2"0-1/4") Supports All.Timber soh Beam,DFir-L Ne 2 Total length:6'•1,01,volume=1A Cut; Lateral support top=at supports,bottom=at supports; 1111.- 1111... Analysis vs.Allowable Stress and Deflection acing NOS 20124 t rit0F04 ia1 3 a, Ea1.sap 1)eoorOs 4taluo 1201# 4+YA ya:a{${+Pal 11 ,if r i ps_ 1vf4 ' m 11 6> -110.tr.t 46 cr' - I:27 p::,.. 4o/t.si w. ii 30 Vend L f0201 9,e:, Live Ueli'm 11201 51499 0,20 = Li340 to - 0.07 Tot.nt. D.t_'O 4,413 <L1290 ' 1/240 .#tt 0-10.. Additional Data: 06c.4000: 4,114,11)041) CM Ct CL CF C'': Cr Cir'.. CI Cn LC4 100 1.10 1.00 1.00e1 00 1.00 1.0'1 FG'-. 900 1.15 .00 ,0,1 900 1.200 '.„01 1•,50 1,00 1.00 Pap' £20 7 12110 .. - 1,00 1.00 :Iliac 1,00 1_00 - x e - 1,00 1,01' 2 6,. 0.59 million 1.00 1.03 CRITICAL LOAD COMBINATIONS; SS : SC # - 17+3 V= 333, V ce ig” . I) It, 9400104(0)1LC # - D+3, M- 140' lbs-'Lt Deflection:.LL' #2 = 5+0 tlival LC 4, = 011 ltotc11 e-.L-Iive 0.0,000 w w:,,) ,. rcc __oof live Lcconcentrate3 E-earthquake Ll are 1 at 0r the Ar/ 1 s mu14.0. Load comba,ations, A0,71 7-10 f 10c, 2012 , CALCULATIONS: Deflection: 01 3159o06 1. delle t .., Deflection fro_._ non-dead load ;live, mind: ani,«.,3 r v•✓- .. Tafel '1e'leo 1 = 1.`.0IDea9 Load Derlectionl 0 L.v= Load 0211010.len..:. Lr eza7. siabL iry 1+1. Le- 61-0.50- Ile e ,2'-1.94^ 92 .. 10,50 Design Notes: 1.,WoedWorks analysis and design are in accordance with the ICC International Budding Code(IBC 2012),the National Design Specification(NOS 2012),and NDS Design Supplement, 2,Please verify that the default detleoion limits are appropriate for your application.. 3,Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause a 41. 1111 1111 1111. 1111 1111. _ . I 1 1 I 3X lam/ I DX N t �' O L, ottoik, VIP i co NV MI a. 11111 WI , d i V' XI V' i atrae 4 Aar 0 , Aire, r . ,,,,i4 I all, IEW 7 :'... aIIIIIIIMITrafljM 1.11111111= ISMINI1111111 1111111“11111,11* 'Pre I.. w ��s r ,— . r ILci t ii ' ' '41' ' -,-"-*----*Notkair:4"..r i -,-,''''. c''' ir--- ��: i _ fas —_... 1111 MI it% Nil , � , , , i" 1 .� i wi . ,,, , to Ii, / --..- _ 5-i It, V [ li g 4 � 1 . i IIJII I .- .Is r- �«...-' ff ' qi mF �z L ; "' __I*. 11•••• 4W111011011191111111.1 a '- *,..., ....Ci L 4 .. , vux3 11111 — 1111111 all — — 111111 11111 — — 11111 11111 (0 Moir Oce CLIENT:4 PAGE1 69b9 5W Hampton St. Page 17 of 126 Porfiland,Oregon 97223 PROJECT: 503-624-7005 w 0 Cen :.:,Oregon 745 NW Mt.Washington Or.#205 NUMBER: _, Bend.Oregon 97703 � _' 541-383-1828 . � ... FROELICH 0Do e-Off c DATE: t N E it s 12303 Airport Way,Suite 200 Broomfield,Colorado 80021 BY: wwwtrocisch-engnters.com 720-560-2269 111 gam' p FgA licxtofe AmAJG,; I c4DeAsoo ' 1,--1144(16 -1v L�aA fl � I Fl vete. 3,.0%'67T-s: rsc ! Z —a ii pA I' FAA/ r 153 — ; p A t --.. .cov- cli or III I I I I I i E MEMBERPage 18 of 126 F REPORT 3rd Floor,Span 12=0" PASSED 1 piece(s) 11 7/8" TSI® 110 0 24" OC I Overall Length: 12'7" I ' q 2 All locations are measured from the outside face of left support(or left cantilever end).All dimensions are horizontal. Design Results Actual 0 Location Allowed Result LDF Load;Combination(Pattern} System:Floor Member Reaction(lbs) 829 @ 2 1/2' 1041(2.25") Passed(80%) 1.00 1.0 D+1.0 L(All Spans) Member Type:Joist i .Shear(lbs) 804 @ 3 1/2' 1560 . Passed(52%) 1.00 1.0 D+1.0 L(Ali Spans) Building Use:Residential Moment(FC-lbs) 2479 @ 6'3 11/2' 3160 Passed(78%) 1.00 1.0 D+1.0 L(All Spans) Building Code:IBC 2012 °.Live Load Defl.(in) 0.133 @ 6'3 1/2", 0.304 Passed(L/999+) -- , 1.0 D+1.0 L(All Spans) " Design Methodology:ASD ,Total Load Defl.(in) 0.223 @ 6'3 1/2" , 0.608 Passed(L/654) -- 1.0 D+1.0 L(All Spans) ,T7-Pro'"Rating 58 45 Passed — -- - ,_ ._ Deflection criteria:LL(1/480)and TL(1,1240). •Bracing(Lu):All compression edges(top and bottom)must be braced at 3'1 1/2"o/c unless detailed otherwise.Proper attachment and positioning of lateral bracing is required to achieve member stability. •A structural analysis of the deck has not been performed. •Deflection analysis is based on composite action with a single layer of 7/8",1"Panel(32"Span Rating)that is glued and nailed down. •Additional considerations for the TJ-Pro'"Rating include;1/2"Gypsum ceiling. Bearing Length Loads to Supports(Lbs) SUPPO Total Available Required Dead F Total 1-Stud wall-SPF 3.50" 2.25" 1.75" 340 503 843 1 1/4"Rim Board 2-Stud wall SPF 3.50" 2.25" 1.75" 340 503 843 1 1/4"Rim Board •Rim Board Is assumed to carryall loads applied directly above iC bypassing the member being designed. Dead Floor Lire Loads Location(Side) Spacing (0.90) (1.00) Comments 1-Uniform(PSF) 0 to 12'7" 24" 27.0 40,0 Residential-Living Areas Weyerhaeuser Plotes l SUS7:AIN.?$L_F0RE5•RY i:'JITIATE J'c I Weyerhaeuser warrants that the sizing of its products wilt be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software.Refer to current Weyerhaeuser literature for installation details. (www.woodbywy.com)Accessories(Rim Board,Blocking Panels and Squash Blocks)are not designed by this software.Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction.The designer of record,builder or framer is responsible to assure that this calculation is compatible with the overall project Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable Sforestry standards.Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical report ESR-1153 and ESR-1387 and/or tested In accordance with applicable ASTM standards. For current code evaluation reports refer to http://www.woodbywy.com/services/s_CodeReports.aspx. [The product application,input design loads,dimensions and support information have been provided by Forte Software Operator I I I I Forte Software Operator Job Notes 8/24/2016 9:00:10 AM 1 '`ashar Serraf Pour Forte v5.1,Design Engine:V6,5.1.1 Froelich Engineers (503)924-6311 Joists.4te ysarraf@froelich-enginsers corn Page 1 of 1 Page 19 of 126 PASSED MEMBER REPORT 3rd Floor,Span 15'4" 1 piece(s) 11 7/8"T)I®210 @ 24" OC Overall Length: 15'7" I 0 g] AU locations are measured from the outside face of left support(or left cantilever end)All dimensions are horizontal 0or Acquit�;Lata1%" Allowed Result � -: tDF t+aad,Combmtdoa( ) System:Floor Design Results ' � Member Type:bist Member Reaction(lbs) 1030 @ 2 1/2" 1134(2.25") Passed(91%) 1.00 1.0 D+1.0 L(All Spans) Buildingemr Use:Residential Shear(lbs) 1005 @ 3 1/2" 1655 Passed(61%) 1.00 1.0' D+1.0 L(All Spans) Moment(Ft-lbs) 3853 @ 7'9 1/2" 3795 Passed(102%) 1.00 1.0 D+1.0 L(All Spans) Building Code:IBC 2012 Live Load Defl.(in) , 0.265 @ 7'9 1/2" 0.379 Passed(1/686) 1.0 D+1.0 L(Ali Spans) Design Methodology:ASD Total Load Defl.(in) 0.444 @ 7'9 1/2" 0.758 Passed(L/410) -- 1.0 0+1.0 L(All Spans) T3-Pro'"Rating SO 45 Passed -- •Deflection criteria:LL(1./480)and TL(U240). •Bracing(Lu):All compression edges(top and bottom)must be braced at 3'3"o/c unless detailed otherwise.Proper attachment and positioning of lateral bracing is required to achieve member stability. •A structural analysis of the deck has not been performed. •Deflection analysis is based on composite action with a single layer of 7/8",1"Panel(32"Span Rating)that is glued and nailed down. •Additional considerations for the T3-Pro'"Rating include:1/2"Gypsum ceiling. Bearing length toads too Supports(lbs,) SUppOttS Total Available Required Dead Total Ati sordes 1-Stud wall-SPF 3.50" 2.25" 1.85" 421 623 1044 1 1/4"Rim Board 3.50" 2.25 1.85" [ 421 623 1044 1 1/4"Rim Board 2 Stud wall-SPF _ . .-._»..__ •Rim Board is assumed to carry all loads applied directly above it,bypassing the member being designed. 1l Dead Floor Live Loads Location(Side) Spacing (0.90) (1.00) Comments . Residential-Living 1-Uniform(PSF) 0 to 15'7" 24" 27.0 40.0 Are4s Weyerhaeuser Notes ., 0 SUSTAINABLE FoRESTRV INITIATIVE Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software.Refer to current Weyerhaeuser literature for installation details, (www.woodbywy.com)Accessories(Rim Board,Blocking Panels and Squash Blocks)are not designed by this software.Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction.The designer of record,builder or framer is responsible to assure that this calculation is compatible with the overall project.Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards.Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports refer to http://www.woodbywy.com/services/s_CodeReports.aspx. The product application,input design loads,dimensions and support information have been provided by Forte Software Operator I I I I ., _ 8/24/2016 9:00:19 Forte Software Operator Job Notes I Forte v5.1,Design Engine:0 19 AM Yashar Sarref Pour Joists.4te Froelich Engineers (503)924-6311 Page 1 of 1 ysarrat froelichengineers.corn I MEMBER REPORT 3rd Floor, Span 18'-6" Page 20 of 126 rMM F E P PASSED 1 piece(s) 11 7/8" T3I® 360 @ 19.2" OC 111 Overall Length: 19' 1" I 4 -, J I18'6" 13 IAll locations are measured from the outside face of left support(or left cantilever end).AII dimensions are horizontal. IDesign Results Actual 0 Location Allowed Result CDF toad:Combination(Pattern) . System:Floor !Member Reaction(lbs) 1012 @ 2 1/2" 1202(2.25") Passed(84%) 1.00 1.0 D+1.0Alt Spans)lbs � L( p ) Member Type:Joist Shear ( ) 992 @ 3 1/2" 1705 Passed(58%) 1.00 1.0 D+1.0 L(All Spans) Building Use:Residential Moment(Ft-lbs) 4669 @ 9'6 1/2" 6180 Passed(76%) 1.00 1.0 D+1.0 L(All Spans) Building Code:IBC 2012 Live Load Defl.(in) 0.382 0 9'6 1/2" 0.467 Passed(LJ586) -- 1.0 D+1.0 L(All Spans) Design Methodology:ASD Total Load Defi.(in) 0.640 @ 9'6 1/2" 0.933 Passed(L1350) -- 1.0 D+1.0 1(All Spans) TJ-Pro''Rating 48 45 Passed • Deflection criteria:LL(U480)and TL(L/240). -- - •Bracing(Lu):All compression edges(top and bottom)must be braced at 3'9 1/2"o/c unless detailed otherwise.Proper attachment and positioning of lateral bracing is required to achieve member stability. •A structural analysis of the deck has not been performed. •Deflection analysis is based on composite action with a single layer of 7/8",1"Panel(32"Span Rating)that is glued and nailed down. •Additional considerations for the TJ-Prot"Rating include:1/2"Gypsum ceiling. Bearing Length Loads to Supports(lbs) Supports Total Available Requited Dead Figur Total AcCelsOtitte 1-Stud wall-SPF 3.50" 2.25" 1.75" 412 611 1023 1 1/4"Rim Board 2-Stud wall-SPF a 3.50" 2.25" 1.75" 412 611 1023 1 114"Rim Board �____ directly above t, e . ' to carry all loads applied directly above it,bypassing the member being designed. Rim Board is assumed ad e beFloor Liv Loads ocation(Side) Spacing (0, - . ents 1-Uniform(PSF) 0 to 19'1" 19.2" 27.0 40.0 Residential-Living Are. Wa Notes I Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software.Refer to current Weyerhaeuser literature for installation details. (www.woodbywy.com)Accessories(Rim Board,Blocking Panels and Squash Blocks)are not designed by this software.Use of this software is not intended to !circumvent the need for a design professional as determined by the authority having jurisdiction.The designer of record,builder or framer is responsible to assure that this calculation is compatible with the overall project.Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable .forestry standards.Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1367 and/or tested lin accordance with applicable ASTM standards. For current code evaluation reports refer to http://www.woodbywy.corn/services/s_CodeReports.aspx. The product application,input design loads,dimensions and support information have been provided by Forte Software Operator I I I I Forte Software Operator Job Notes 8/24/2016 9:00:25 AM I Yashar Sarrat Pour Forte v5.1,Design Engine:V6.5 Froelich Er•g:leers g g' .1.1 (503)924-6311 Joists.4te ysarraf©froei ich-eng freers.corn Done1 nf1 Page 21 of 126 PASSED I 411 F I . MEMBER REPORT 3rd Floor,Span 6-0"(Corridor Joists) 1 piece(s) 2 x 6 Douglas Fir-Larch No.2 0 16" QC Overall Length:5'7" I 5' 4 a o All locations are measured from the outside face of left support(or left cantilever end).All dimensions are horizontal. Design Results Actual 6 Location ' Allowed Result LDF.`Load:Combination(Pattern) System:Floor ti Member Reaction(lbs) 455 @ 2 1[2" 1434(2.25") Passed(32%) -- 1.0 D+1.0 L(All Spans) Member Type:Joist Shear(Ibs? Use:Residential 346 @ 9" 990 Passed(35%) 1.00 1.0 D+1.0 L(All Spans) Building Moment(Ft-lbs) 565 @ 2'9 1/2" 848 Passed(67%) 1.00 1.0 0+1.0 l(All Spans) Building Code:IBC 2012 Live load-Deft.(in) 0.064 @2'9 1/2" 0.129 Passed(L/965) — 1.0 0+1.0 L(All Spans) Design Methodology:ASO Total Load Deft.(in) 0.082 @ 2'9 1/2" 0.258 Passed(L/760) _- 1.0 0+1.0 L(All Spans) TJ-Pro'"Rating N/A , N/A _.. -- W", •Deflection criteria:LL(L1480)and TL(./240). •Bracing(Lu):All compression edges(top and bottom)must be braced at 5'4 1/2"o/c unless detailed otherwise.Proper attachment and positioning of lateral bracing is required to achieve member stability. •A 15%increase in the moment capacity has been added to account for repetitive member usage. •Applicable calculations are based on NDS. •No composite action between deck and joist was considered in analysis. Bearing Length Loads to Supports(lbs). SuppOfis Total Available .Required Dead ' Floor Total ' Accessories I Lire 1-Stud wall-SPF 3.50" 2.25" 1.50" 101 372 473 1 1/4"Rim Board 2-Stud wall-SPF •Ri3.50' 2.25" 1.50" 101 372 473 1 1/4"Rim Board R.i »...._ __ • m Board is assumed to carry all loads applied directly above it,bypassing the member being designed. Dead Floor Live Loads Location(Side) Sparing (0.90) (1.00) Comments 1-Uniform(PSF) 0 to 5'7" 16" 27,0 100.0AreAS Residential-Living I Weyerhaeuser Notes - 0 SUSTAINABLE FORESTRY IN T:ATIVE Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software.Refer to current Weyerhaeuser literature for installation details. (www.woodbywy.com)Accessories(Rim Board,Blocking Panels and Squash Blocks)are riot designed by this software.Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction.The designer of record,builder or framer is responsible to assure that this calculation is compatible with the overall project.Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards.Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASPM standards. For current code evaluation reports refer to htip://www.woodbywy.com/services/s_CodeReports.aspx. The product application,input design loads,dimensions and support information have been provided by Forte Software Operator I I I I Forte Software Operator Job Notes8/24/2016 9:00:31 AM _" Forte v5.1,Design Engine:V6.5.1.1 Yashar Sarraf Pour Joists.4te Froelich Engineers (503)924-6311 ysarraf@froelich-engineers corn Pane 1 of 1 I 40 F R E MEMBER REPORT 3rd Floor,Span 6-0"(Deck Joists) Page 22 of 126 PASSED 1 piece(s) 2 x 6 Hem-Fir No. 2@ 16" OC Overall Length:6'7" 6'I I i .,t � E o All locations are measured from the outside face of left support(or left cantilever end).All dimensions are horizontal. I Design Results Actual 0 Location Miewed Result LDF Lead:CombRtaitan(Patten) ' System:Floor Member Reaction(lbs) 285 @ 2 1/2" 1367(2.25") Passed(21%) -- 1.0 D+1.0 1(All Spans) Member Type:Joist Shear(lbs) 227 @ 4 825 Passed(28%) 1.00 1.0 D+1.0 l(All Spans) Building Use:Residential tMoment(Ft lbs) 425 @ 3 3 1j2' 801 Passed(53%) 1.00' 1.0 Q+1.0 L.(All Spans) Building Code:IBC 2012 1 Live Load Defl.(in) 0.064 @ 3'3 1/2" 0.154 Passed(1/999+ -- 1.0 D+1.0 l(All Spans) Design Methodology:ASD Total Load Deft.(in) 0.108 @ 3'3 1/2" 0.308 Passed(1/688) — 1.0- D+1.0 L(All Spans) TJ-Pror'"Rating N/A N/A - — • Deflection criteria:LL(L/480)and TL(1/240). •Bracing(Lu):All compression edges(top and bottom)must be braced at 6'4 1/2"o/c unless detailed otherwise.Proper attachment and positioning of lateral bracing is required to achieve member stability. •A 15%increase in the moment capacity has been added to account for repetitive member usage. Applicable calculations are based on NDS. •No composite action between deck and joist was considered in analysis. Bearing Length Loads to Suppo l gas) supports Total Available Required Dead U° Total Accessades ,1-Stud wall-SPF 3.50" 2.25" 1.50' 119 176 295 1 1/4'Rim Board 2-Stud wall-SPF3.50"__ 2.25" 1 50 119 176 295 1 1/4"Rim Board •Rim Board is assumed to carry all loads applied directly above it,bypassing the member being designed. • Dead ., Floor live _ Loads Location(Side) Spadng I, (0.90) (1.00) Comments 111 1-Uniform(PSF) 0 to 6'7" 16" 27.0 40.0 Residential-Living Ams Weyerhaeuser Notes SUSTAINABLE FORESTRY NITIATiVE I 'Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. M SUSTAINABLE Weyerhaeuser expressly disclaims any other warranties related to the software.Refer to current Weyerhaeuser literature for installation details. '(www•woodbywy.com)Accessories(Rim Board,Blocking Panels and Squash Blocks)are not designed by this software.Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction.The designer or record,builder or framer is responsible to assure that this calculation is compatible with the overall project.Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards.Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1387 and/or tested 1 in accordance with applicable ASTM standards. For current code evaluation reports refer to http://www.woodbywy,cont/seMces/s_CodeReports.aspx. The product application,input design loads,dimensions and support information have been provided by Forte Software Operator I I I I Forte Software Operator Job Notes 8/24/2016 9:00:37 AM I TasharSarraf Pour Forte v5;1, Design Engine:V6.5.1.1 Froelich Engineers (`O ',824-6311 Joists.4te ysarraf©froei i ch-e ngi:7eers,corn Pare 1 of 1 " 0 Main Off:ce CLIENT: [7)6[1ais,.N„....ylicrioton St. PAGE / Portland,Oregon 97223 Page 23 of 126 503-624-7005 PROJECT: 745 NW Mt.Washington Dr#205 Bend,Oregon 97703 NUMBER: I 541-383-1828 FROELICH DATE: ....., ... 12303 Airport Way,Suite 200 ENGINEERSA Broomfield,Colorado 80021 www.froetich-engirteersxorn 720-560-2269 BY: R .3O it'LCOR. SEAMS: . , I I I , ; . _ . , 3F82/: SPA Ai i 1,4 0 / I DL s Q14 )(2.7.. ) s 320 ?LP i)(440 ) ir 560. -11-F I . . 3 F e.a,: , , f ...• , , I SPAAi r 5-0DLS . . .." ( . ) r 7°) 95 I (3...51)(too ) X" 350 PLF - , . I 3F a I 4/; ' I,, I)L X CS)CZ:* ) ..C. 'SS 1 PLF i ... PAAi s 176-0 . . I DL$ is,I PI-P III 1: 0 I , . I Page 24 of 126 COMPANY PROJECT I i . %4óo Aug,24,2010 09.11 3FEI1.wwb 3CCETWARf fOR WOOD QFSPi;A' Design Check Calculation Sheet WoodWorks Stier 10.42 Loads: YLoaa Type.. 4>s r:nutiorPat Locaiiao ;it" Magnitude Obit .taac2 Lrcu 'need Paeb.1, Full E23. -r `;a=L End 3Start End 409.0 . ,If 41a 9elt eioht Omad. FUll '197. 9.6 ni" Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in) i t 1v-3,r i- 1 tip tinca.,to.c<i. _ ..... _ 10,.8"i i Deed - 104 . Live 24724 d•4 Factored: Total 4108 •,u <,: 1121. 4199 Beam 4108 44116 44.99. Ies dol r comb , 9.000 Beam ..00 00 ioad n R-42 0:94 1-' luc Length 1.40 42. Min rey'd 0,0:' 1-8: Cb 1.00, 0 Qt.Flo 10 101 Ca support 1.111 11 Pap i G a 111 (IF, Glulam-Unbal.,West Species,24F-1.8E WS,3-1(2"x11-718" 8 laminations,3.172 maximum width, Supports:All-Timber-soft Beam,DFir-L Not Total length:10'-3,T,volume e 3 D Cu.,tt; Lateral support:top=full,bottom=at supports; Analysts vs.Allowable Stress and Deflection using NOS 2012 Cfltetl6t One1M51.5 18',,, Veloo 0,5 4tairet4P4400411 ee nrt Ni, ,. r1 Dead L 1 P bi Ft'. " "64.4 Shea. E" fI 3 U94� Live Def.1.4 0.130f.1.40a+ L!a ' 034 e 1.. .I 0.34 Total Oef.'a w0.27-"... 1r800. Iii,fit.w. 1.'200 .tri 0.53 Additional Data: ACTORS: f £ `1 - Cs CCl,, 099 Notes f4 80 :2^df -v' 260 1.00 1.00 t 7^., 00 0 0 'I-b'+ 2400 1.00 j 0 1.60 1.000 1.000 1.00 1.00 1,00 1.00 2 1,8 million :1.00 0,00 ' . ; co -,.. - :miny' 0.80 million -1.00 1.00 a. - -. 1.00 «.. - 2 CRITICAL LOAD COMBINATIONS: J&a c^ 1 .-. 2+ a 1261 *,n 1111 d5mirg 6 9 ., 1 4115.:1-it1 _e v 0xi, L a o Lc 1 0+1. 11.dead L.live 5 4...and 1.1.4act Lx e L .a£ li _ ..ntrated i' artbquake A.:__ 1.0's ate listed in the Analysis o put Load r io00, ASCE 7-10 , 186 _012' CALCULATIONS: Deflection: t4 lb rso .," ivdeflection n Defiec,inn fromn f1 bd loads 13 «-2 CUA ;.a Total Deflection . 0.11 < _a;: ,ec.,cuLive L-ad Deflection. Design Notes: 1-:Wo0dWodts analysis and design are in accordance with the ICC International Building Code(IBC 2012),the National Design Specification(NDS 2012),end NDS Design Supplement,.. 2.Please verify that the default deflection limits are appropriate for your application; 3.Glulam design values are for materials conforming to ANS;117-2010 and manufactured in accordance with ANSI A190„1.2007 4 GLULAM:bed=actual breadth x actual depth„ 5.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3,3 3 8,GLULAM:bearing length based on smaller or Fcp(tension),Fcp(comp`n)... I I a I Page 25 of 126 COMPANY PROJECT -.. %VoodWorks _Aug,24.Me 2912 3F32:pub SOFTWARE FOR WOOS)DASSGN Design Check Calculation Sheet waseadetws leo Loads: vy f 9 3. AAA f .b3C 9:3 ae AA A, r H& ,3 Maximum Reactions fibs),Beating Capacities fibs)and Bearing Lengths(in) 1 95, 030 3 ',AAA.AAAA % - re 31,of r£ 959 4953 =5, G!(sbami l :4441,Woes[Species,a U-'4.1.WS,3-t r tt1 Jt **oft At-44Kor.PN4 awn,G i1r4.Ra2 320034 sopped PNYMA WRNS. 10.0paNN Analysis vs.Allowable Stress and Deflection w.(aNcslou Additional Data: 26y Cil„ k L AD -0MO N , :933,V .. 535 hl _ f _re - 45x5 re CALCULATIONS. Fee 459.e nrn• ...3.. sd L.,51 Def3a3,3,r -art Design Notes: WoodN.MwM land droN+y+ash s;rwifow*with the ICC kalreas alDukang Cuee 5EC 20(2}.C.NtlioM Dee46nEPs.4500444,DS20'23.11,W NCS Ower OPPMmaH 2.Please vasty Rs(Ilse delatel defeetion Resta dem la lass wSecaten. 3 CAIRN,Amps values ss tor match*s0n3Mmeg1i0M43111740,0 anstAan4SChro4 N Secadan en3n ANSI A140.1-200? 4 GLULA -NAAS Nao0en wealaapth 3 Outran IN q PRAWNS e C6dx JNY 3Rctts✓XxtdAPO CM:55359 @-:GLULAM.hawing WO (30003 Fcp,'wngrt) 1 1 1 IPage 26 of 126 COMPANY PROJECT i 000.% As Si w dw ill WoodWorks®8 WF2WARE FOR woos oesrcx Aug.24,2016 09:13 3FB3.wwb ill Design Check Calculation Sheet Woodworks Sizer 10.42 Loads: Load Type D stribu rcat- Locatimn fftl. Magnitude Unit te u..,. _ En nt Gond_ ad'" Dead rS..J.+L ... P.5! Load2 Live x,:11 UAL 356,fd piE Self-weight. Dead 'Full Lai Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): }} ' 5`-1' $ I -1 5, .5- 111 Lrnfactorec: Dead 253 Live 890 253 Factored: 890 Total 1143 _.. __. Bearing: _.. 1143 111 Capacity -. Beam 1143. 1143 Support 1266 Anal/Des i266. Beam 1.00,. Support 0.90,'. 0.0.90 52 Load comb 92 92 Length 0.52 Nsn q`d 0.52 0.52 II/ CL 1.000.52. Hist 0.f)^'. 1.00. Citsupport .11 1.00 F.: Fcr` ur« 625 . Y�-1 25. Lumber-soft,D.Fir-L,No.1,4x6(3-1i2"x5-112") Supports:All-Timber-soft Seam,D.Fir-L Not Total length:5'-1.0";volume=0.7 cult:; Lateral s:pport:top=full,bottom=at supports: Analysis vs.Allowable Stress and Deflection using NOS 2012 CPsterign Analysis Value Design = - F;„ 10.., Shear _v ." 72 ry - 180 fell-e' = 0.47III ... Bending(-i fb efbt'Fc' 0,75 972 Flo' = 1300 al Dead Defl'n 0.02 ..<L/999 Live Ue01' 0„06 a L/979 0,17 - L/360 n 0,.37 Total Dei:7'n .09 =,: L/686 0.25 = L/240 «^... 0.35 Additional Data: I FACTORS: F/R Ipss)CD CM Ct CL CF f.`a Cr Cirt Ci c.'i ,.C6 Fe' 1.00 1.00 1.00 1.00 1.00 2 Fb'* 180 1.0 1000 1.00 1.00 1.00 1.000 1..300 1.00 1.00 1.00 1.00 2 Fop' 625 - 1.00 1.00 - - 1.00 ':1.01 .. - F,' 1.7 million 1.00 1.00 - - - 1.00 1.0') 2 CRITICAL LOAD COMBINATIONS: i Shear : LC 92 _ D+L, ». 11 34, V design = 918 lbs riding(+): IC 92 = D'i.., v 1430 lb. rft Deflection: a 42 + t l+v. .0 92 - (total; Lt-dead 1 1;.ve 0- snow W-wind 1..impact Lr- 0 sF 1.1r _n. ._entratcd F'::canthquaae All 1C are listed in the Analysis <ri.,..,...t d dominations: ASCE 0 .f I 2012 CAt CLILATIONS Deflection: t. 62 5e0 i Live tion = Deflect1on from all non-dead Icadswind, sn'sw„,: To::al. Deflection - 1.i/,L.ead Lad Leris t .,r.:.) r Live Load Deflect1on. Design Notes: 111 1.WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2012),the National Design Specification(NDS 2012),and NDS Design Supplement 2.Please verify that the default deflection limits are appropriate for your application_ 3.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. I I I Page 27 of 126 I ,. COMPANY PROJECT . ... • . ., WoodWorks® iii , ..,.. ... SOFTWAitE FOE w000 DESIGN Sep 9,201610:51 3FE34,,,,mb '.. Design Check Calculation Sheet WoodWorks Sizer 10,42 Loads: .Load Type -Distribution Pat- rata lotMagnitude Unit tern Start ETAd Start End : -Loadl :Dead 'Fell 001 - 01.,,0 p16 Load2 Live Full UDL 120..0 pif Self-weiahr bead FF11 EEL 11.1 pit' Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): f III .. .., ' Unfactored:7 , Dead , 820 520 Live - III 701 Factored: Total 1221 1721 , Esurieq, Capacily fear) 1221 1221 Support 2608 2004 Anal/Des Beam 1..00 1.00 Support 0.41 0,47 Load comb 49 82 Lr-01-th 1.08, 1.08 Min req'd 1,00 5.08 Cb 1-00 Cb min 1.08 1.00 Cb support 121.1.' 1-11 Op cup , -82.5.,, 625 Lumber-soft,Hem-Fir,No.2,4x12(3-1/2"x11-114") 111 Supports:All-Timber-soft Beam,Cf Fir-L No.2 Total length:11.-8.2";volume=3.2 tuft.; Lateral support top=full,bottom=at supports, Analysis vs.Allowable Stress and Deflection using NOS 20121 I 1:ritnrIon Analysis Value Design Value Unit AnaiysisiDesign -Shear • iv - 38 120 T.,,,.1 fv/8"v' Bendingor lb = 511 El,' = 748 pnl fb/Fb' = 0.76 Dead Defi'n 0,07 = <1/999 , Live Defl'n 0,09 = <1.2999 0.39 = 0/300 - tn 0,25 Total Defl'n 0.20 = 11698 0,58 - L/240 lF 0.35 ill - Additional Data: FACTORS: F/E(psi)CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 150 1.00 1.00 1.00 - - - 1.00 0.50 1.00 2 Fb., 850 1.00 1.00 1.00 1.000 1,100 1.00 1.00 1.00 0.80 - 2 III Pc ' 405 - 1.00 1.00 - - - 1.00 1.00 - e E' 1.3 million 1.00 1.00 - - - 1.00 0.95 - 2 i Fain' 0.47 million 1.00 1.00 - - - - 1.00 0.95 - 2 CRITICAL LOAD COMBINATIONS: Shear : LC #2 = D+1, V = 1212, V design = 1006 lbs III Bendingt-,1: LC 42 = 13,,1,, M = 3511 lbs-ft Deflection: LC #2 = DiL (live( LC 42 - 04-1, (Loral) Ii dead L=live S=snew C-wind 1.impact It root live Lc-concentrated F-earthquake All LC's are listed ii the Analysis output Load combinations: ASCE 7-10 / IBC 2012 CALCULATIONS III Deflection: El = 540e06 lb-in2 "Live' deflection - Deflection from all non-'dead loads (live, wind, snow-0 ) Total Deflection = 1.50(Dead Load Deflection) r Live Load Deflection. Design Notes: 1 WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2012),the National Design Specification(NDS 2012),and NDS Design Supplement 2.Please verify that the default deflection limits are appropriate for your application. 3,Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4,4,8 111 III III Page 28 of 126 COMPANY PROJECT / ... ., . : , . : -_.g -, ,,.- , WoodWorks® , . . . aC)119(6E Wit WOOL)riE'Srcv Feb,9,2017 09:39 3FB5.wwb Design Check Calculation Sheet WoodWorks Sizer 10,42 Loads: Load -'• Type Distr buti-on'paL-I Loca ion 1/LI.,- Magnitude Unit C' Tarr: Start Sod atart Sad : oact'` 'bead Full SIL " 61.0 tilt Load2 Live Full JUL 120._0 p.lf Self-weigh Dead ;ul.1; ,I0 E.3 pLf IIIMaximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in) f 13'-24 } I 13'42" . ':Cntactoreoh C Live i Dead 192 .� 92 Factord: -'92 Total 1380 X Dear i.ng: r 1330 Capacity 1 Bam 380 ' Opo t 48 :360 ling.nal/Des 19tH Beam 1.00 Support !t_47. 00. Load comb #" 0.647 0' c# iz 1-22,.. #2 Mt req'd 1.22 1 '2 Oh 1.00 1 22 ma. t CU 1 00 support1.11 1.000 S' F P. 625 162 625. _... . 5. 111 Lumber-soft,Hem-Fir,No.2,4x12(3-112"x11-114") Supports:All-Timber-soft Beam,D.Fir-L No.2 Total length:13'-2,4';volume=3,5 cu.;ft,; Lateral support top=full,bottom=at supports; ' Analysis vs.Allowable Stress and Deflection using NDS 2012 Criterion 'Analysis Value ,Design Value Unit -Anal ie/Do q. Shear l 9 Rending(*) fb : 729 ..psi /v/i'v' 4. _ .. Eli' _. 793 P=1 :k,l Fb' - 0.98 Lead Ce r;.'n O,i?. = <I+999 III blve Drt n • 0,16 = <0/999 0..44 t/360 :n .36 Tot Def i 0,,3 L/479 0.66 ;,-/240 i_,, ...50 Additional Data: FACTORS: F/E(psi)CD CM Ct CL CF C:fu Cr Ctrt Cl Cn LC6 E. 150 1.00 1.00 1'.00 - 1,00 0.80 1.00 2 k'b`* 850 i.U'i 1.00 1.00 000 1.100 1.00 1.00 1 fi+J 0,00 2 Fop' 405 1.00 1:.00 1 00 1 n0 E. 1.3 million 1.00 1.00 1,00 0.95 -2 Ernin' 0.47 million 1.00 1,00 - -. - 1,00 0,95 2 CRITICAL LOAD COMBINATIONS: Shear LC 62 - D--)L, -- 1370 V design - 1163 I.bs £send ug;--1.'; L 52 = Li .^S - 4 67 ib: /t Deflection: LC 12 - D+1. (live) LC #2 = 13- (total) 1-dead ['li.v ow 16-w r _ T,impact Le=roof live 7,c°-concentrated L"earthquake All Le's are listed in the Analysis output Load combinations; ASCE 7-.0 / .18C 2012 111 CALCULATIONS: Deflection; E ::Ti 540e06 It ln2 "Live" deflection = Def.lect'.ior, from all non-dead roadssve, wind, snow...) Total Deflection _..5U/Deead Load Deflections • Live LoadDefiection. Design Notes: 1,WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2012),the National Design Specification(NDS 2012),and NDS Design Supplement, 2.Please verify that the default deflection limits are appropriate for your application. 3.,Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4,4,1.. I t 111 . CLIENT: 24 .m.,Office PAGE f 6969 SW Hampton St. Page 29 of 126 Portland,Oregon 97223 503-624-7005 PROJECT: y [1 Cera'of Ore;on n 745 NW Mt.Washington Dr.#205 NUMBER: I Bend,Oregon 97703 541-383-1828 F R O E L I C H El Denier Office DATE: 12303 Airport Way,Suite 200 ENGIEER 5 E Broomfield,Colorado 80021 €roeTih-Nen ineere,COm 720-560-2269 BY: I FN1 } SPA++ : 3'a"' DLs ( (2. L.L .� (1 S') {40) $ 600 ALF i} I i. I I I I I1 I I III Page 30 of 126 COMPANY PROJECT III A ' y orod\if ,,;F r 1<✓ Aug 24,2018 08:23 3FH1,,uwb a`orrwARF 0538 000J5D PP9)G04 I Design Check Calculation Sheet WoodWorks Sizer 1042 Loads: toad _ Type Distribution Fat L.CAti.ft l,ft1 Magnitude Snit I/ a_e_a Load2 _ Dead Live ,e +«ig*t .«a: dere. Starr. End vastn ul VOL Full VOL niL flit: #4 p1.0 Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in);:Veadr I 1111 , Line 9]c 64 :act ,d: q.'.6 T<,at I.�t"1 Canunity supper; : 1746 'r R^. 5L s16 1.00 pc.r; 90 Load co pig; J.3;, Lenet o„72 0.72 *tin ce:q`d V.'2 0.72 :G 1.00 _. 1,00 Cb nun 1.00 .:b oz1 l ' t r:, `':'4 Z <S l 11 025 Lumbsr•sof,D.Fir-L,No.2,4x8(3.112"x7-114") Supports:t All ng•Timber-soft Beam,=0,Fir-L No.2 i . Total length:3°•1;4";volume=0,5 ct,.,ftM: Lateral support:top=at supports°bottom=at supports; Analysis vs.Allowable Stress and Deflection ultimo NOS 2012: FXxtet1,Ge 'Acsatg�sio VaL,ue ;53055411 Volvo f)r.l. aatol Yeia ac !Inert' - f✓e.. 54 10+ a. Yet tot -0.30 III navi t hl fb�. 463 f 1-c s. t FL' 7, 0 ,t. Lard CC 1 r 0,00..<Lf9 3 L l', 0,0) tr.L/599 t 1/160 E,h- tate.. L'oLi'r '1 0l.e. L„7-} a 0,,l0 „.<'t do '0_AO 4 Additional Data: €Lv'' 150lpsi 1.01,CO t.1 CLI1 Cf.. C40 n 1=$ P.'.,, 9r' 10 1.44 1 . 0 9911 dC 1,00 i - 1 F-6'' £2. $ 0 1.0n g 9^ 1 .,E million 1.09 1,00 _5..31, A,-�v 2 Emir' 0,58 milli:, ;,1.00 1,00 - - -9,0; 1,00 - CRITICAL LOAD COMBINATIONS: - - r ; LC 02 = 0+k, V= 1517, V desie.a= 906 16, Bendingit, LC 52 L+_ M 1183 lbs t zle r LC 02 0.1 1_ LC 5 . Oil. itotell. 0-"dead J.Lice. „r Wcwind Tcidpact 'of E -oon Ali t ase lxcsod in the Analytic output. Lead om3>.naticna; 010'7-19 / 001.2 CALCULATIONS: 11/ a tx .l 8 1 "LiV deflect,”' l t anon-dead f e wind, iew- So.ai Oefleotion= 1.50iDoad Load Deflection; m Load Deflection, 1 ,:e... l 14-.1., y , :, , ..,•5 I u ! Design Notes: 1,WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2012),the National Design Specification(NOS 2012),and NOS Design Supplement. i 2 Please verify that the default deflection limits are appropriate for your application.. 3.Sawn lumber bending members shall be laterally supported aocording to the provisions of NOS Clause 44.1. I I I ("''''\• '...-, Q...-' gft T4,17 Itat:',14, I 1 ..... 111 fil". s., Irzgit • ... ......a.. .s deb AIX sts....... 1 110000 NIIIIIIIIIIrialliii 1 illi lOISIS 9 01111111111iagi i amonl al Ai I ih, ice L.1_3.., e 7 till _,/.,4 , , t I' ------"-- A ' Ant,• , / 9 missii . t , ntt, 1, 1 .ofi 14 , 1,,rs, III .t 1E11 4; C3 Ank 2 L*11 1!......x.,., , 101 ICV .4, , <,..b• Ittc? illir . . A all smota 1 111111111lialiallillM.. =,11.11111111111111 arillwill, a,„„,,,, INIII I Aft' B - smillit nil. , L c) Iit. ..t... ... 0 _, ,.vla l' - 2 11221 4".* r71 VONINIONNIMMIMMila---fin a a t. ..".' ........"' - ...................................*.m.a...a, to .................., "1111111111121111111 2 :i c ' * Min 111111:it, -11-6 4, f . IOW s MIMI PS 4V I il ; 41% IIIInr 1 41 gpliral XIV OA ta7 1 rAth i 1 nr, f 1 #1 I nP IC3 tgPBIIIIIIIIIIra I ' 1 i fill= —witimixiic -4,14i,,,, !!!ranswir 4 ' rn .s :MIMI VOW . IT . t 9 1 tioninsimm 1 u ' ,..rnons inmost* 1 l 1 ! sown . ,. ist"tistt IMMX.* i 1 l'O'IZZVA14 air.- 111111111111, , 0', ( 413), tsott- WWI 1 t' VP i IIIII1 ' I AM Ants ! i 01,411111 1 It 1 It t rav . 1 1 ' t alIMISIO '<i«* . , r...«..- - taimmon ilammu51111.111111« .,_ _, _ ......4, i ..,•31,), i I:3 I fl tV 1 1 1 i,....qk ma .1 oTr?..1. str taa ink ---1 __— __.........." r CI 4.,,*:i 'sj ifah 0 'CV It20'AT ...-'"------"----" ''''-•"' ----- , . .77.=.....-...1.......„...7,- --------'- - * An, L . --- C ID 8 , )(A 1 4 2.. ple.4. _ r)otiorNA.,2,Itt (XB'si (XE) 2 ig •••"' /e ,,Q4 c.c fell Mill 1010 IIIII III. ilia all soil sill alit slip gill Mil aim III. 1111 IMMO gin 11111 I 0 Mno; O1oe CLIENT: 6969 SW Hampton St. PAGE Portland,Oregon 97223 Page 32 of 126 503-624-7005 PROJECT: 0 Ce i°0-exon 745 NW Mt.Washington Dr.#205 NUMBER: �-' Bend,Oregon 97703 541-383-1828 FRQELICH „7DenverOffice DATE: ENG 1 N E E R fi 3 12303 Airport Way,Suite 200 Broomfield,Colorado 80021 %ww:Eroelich-engineers.cnm 720-560-2269 BY: Z ► 4 FIZAA41,444. i { I I in III I I I I 4 ]Man Office CLIENT: ((^q�aacc 6969 SW Hampton St. Page 33 of Tzti�E f Portland,Oregon 97223 503-624-7005 PROJECT: er tl )r Vic,= 745 NW Mt.Washington Dr.#205 NUMBER: #?ill Bend,Oregon 97703 541-383-1828 FROELICH ..�� ienvenrOti: DATE: 12303 Airport Way,Suite 200 ENG 1 N E E R S d Broomfield,Colorado 80021 www.froelich-engineers.co n 720-560-2269 BY tY 4t.,.%1,'c i 43 I>Ls 2- PF Ir j•,,,�.s /00 d. 2fI r W SpA a -d s 2ao c, .s4-.4.2.,,r- '4`r�r,4 car .,- 2' itoo -: f DLA- Li 0 &cPP : 5jr•7_. L.� oo' PC.�`= `spAN t.. _.., d PsF r .x1tx I .spA,A.1 r is C) I r L4r (3')(2O) s60r F j, c3ca•} moo . L-F,. Pgti.Ai -°'rtm e.... 3 CI- 9 ( ( )odvs fi r; i - 1 L x 2 co*` L L r 'L'a 00"* "DLs t 00 I IPage 34 of 126 :COMPANY PROJECT.... 00 "" r l(s Sep,13,2016 15:06 j Stair Stringer-3rd Floor.emb SOFTTVV.5RE FOR WOOD 011509' 111 Design Check Calculation Sheet Woodworks Siler 10,42 Loads: -Load % Ti'Pe TGA tiih-a._onfat Location ,£t] Magnitude Unit terr, Start End Start. End :eadY 'cad Live 5,611 11.. F40.1 plf ::aad2 v 1 011,. 200,C plf Self wn3 hc._ Read Fell 111. 5.9 _t:df_... ' Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in); I i Dead 223- Live 808 223- 808 I Factored: = 1J31- Bear g' .:.3: 09Ul.a '61 Capacity 'c 761 Beam 1711 Support 1523.. .523 line Fes .011 Ream tl G ca post 0. Load carrh 002 e 9 as Length 0.S0, 1 as Mir. req'' 0.500.. 0.00' Cb 1.09' d, 011 Cl:mix 1.09 1.:90 . Cb support 20 1 Gv Ci' no G55 1.08 '1In tun ky ft 1800lg tram'112'darend» 1 526 Lumber n-ply,D.Fir-L,No.2,2x6,3-ply(4-112"x5-012") / Supports.All-2 bei-soft Beam,D Fir L Not Total length:10'-0,2";volume=1.7 cult.;Pitch:6912; Lateral supporttop=full,bottom=at supports;Repetitive factor.applied where permitted(refer to online help), Analysis vs.Allowable Stress and Deflection xe y Nos 2012 ecloerzon 'Anal yeluVelum. .trealgo Valor, 12,515 Ana1 yeletf l<n 'i Rhear 9 rt; 007 Y91 � 205+ a '.f0,5 « 0' . 26' Il,d 7 f_'n t. -<L1950 palrt' s 0 bl ' Live �l f 'n 0.27 L/425 0.32 1/300 „55 1oteL.herr'n:, .. =:: 1130,1 0,•LC e. Ln45 -r. 0,89 Additional Data: FACTORS: FIE(psi)CD CM CL CF _ ICC - fu tw o 1.00 « cry 1.00 1.51 1.55 1.00 2 f+s`+ 900. 1.00 l 00 09 1.009 1.309 1.00 1.11 00 1.05 Pon' 625 5.100 Z 00 1,00 1-G0 E' ,6 ills.. "....40 5,:CC 1. of 1.02; 2 CRITICAL OAD COMSINATIONS; shear : LC 52 Di-L, V= e54, ti:160:_gn = 761 lOa Rending;+,: LC 02 = G+L, M = 2062. les-ft. I Deflection: LC Del.,52 (live 15q 62 DI. t [ 1l lode 1 S W0smind I.repaor 1,00toof le--:::r.:...:.a.:... E.earthquake All ore Itat<aa in the Ahalysia output Lord combinations: 51011 7-10/ toe 2012 CALCULATIONS: Deflection: El= 3e05 lb-in2lply ' 33. Livc deflect:on = Deflection from all non-dead icada (live, 'ed III Total Deflectign 0. 1-5011Stad Load 1etlection, rive Load Deflection. Bearing: Allowable bearing at an angle f'thsta calculated far each support as per 80 3,11.3 Design Notes: 1...Woodworks analysis and design are in accordance with the ICC international Building Code(IBC 2012),the National Design Specification(NDS 2012),and NDS Design Supplement, 2,Please verity that the default deflection limits am appmprlate for your application, !. 31; .Sawn lumber bending members shall be laterally supported aording to She provisions of 1405 Clause 4,4.;1,. ”4,BUILT-UP BEAMS It is assumed that each ply Is a single continuous member(that is,no bust joints are present)fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded:::Where beams are side-leaded,special fastening details may be required 5.SLOPED BEAMS:level bearing is required for all sloped beams, I I I Page 35 of 126 1 COMPANY...... PROJECT -Ss.13,2D16151f:Stair Sirarpet.2rk EbbraYab %%'oorks i SOFTWARE FOR Wool)UES'IGN Design Check Calculation Sheet vwneWewswesw Loads: 4 a 1r F ,.,:---.3P.442 , ' y 4 ,, Maximum Reactions(ibs),Bearing Capacities(ibs)and Bearing Lengths fin); 14$6" I I • e,Is eS1,T ITotal u ae:. Hccapa Y 111 ,' 5 Ana: 2 ,, t A' 912 1 aywr 1, A.>t' 421/ 'lin+tlMr�+'6seMn9uA#-AftM£areflYupPvia W Siaaeal%Ur egpTirkMeal tie supporting nartber _.. Lumber may,D.Fir-L,No.2,2x6.3-ply(4112"z6-V2"i 341641646 A1-Tiatemaa6 Beam,D.P6•.Not car6116 PUN LAROMe f 14Pa Mk :NAMPAP,Rap..u: MOos APP66116666 p6 641.4 AMR bora hrv;: I WARNING'Mamba Mapo e,N 15 i Roca*mph at 160 MI Analysts vs.Allowable Stress and Deflection w,etmsaolx a ai`, rta Pi Y za41r { a -44x,s..x•.38. , s I,:;r Fs,,a.. Gw, x .tan +.,4 _.. .xH Additional Data: ,,..;., ,-.,.;r,:-ir. _,; .way W. _, .. 411DT£PAL 3c4.,C.,mb A cat ., - ,, ee taT NOS a Design Notes: r WeorM/Cfkefleelfftegeend design are n,Wcrrdanoenah We ICC IKemAN4rr BmaTq ewe(MO 2014 IM Nataoare DesAfre sPxw,;NOS 2011E,and ADS D yea sta,pr.ta[ .-Nevem aedy LhW,lire deeWua dNiecim NEM an WPepriTe Ia your aptG64s a 3.Continuous or Cartl4Wmetl Bwer:NDS CAM.42,50 rami'i Mat Panna1MROMENNAttattbe e14Tatadtothe mudlc Ya,f 2,4,8,485 Td to Me Na Mptn or 6al*Tebeand Aber Warty 4,STN:MANN baring memberea66 be Menti WPPafes mamba;ROA REAMAkt4 NDS CAsme 4,4.1 5:.BUILT4aP BEAMS a a WaTtned Mit Wath Ns*.rapt,eatira5Aa mortar ghat T,no Tt,pvte are praaee.)Noleneo 4 Khat mom*at W a^Y SWARRAGA Ws.teeeeplh AM INA sada Of b equryl44Tded.Wham Marna are NzMANded.WARM Marenim ARAN nary be ra¢xeC 6 SLOPED REAMS WAV be6r Ag et mrluienad'ar as Sasted beam I 1 I I I IPage 36 of 126 COMPANY PROJECT i "Oki WoodWorks® sov'rwARE Toe wc'on nrwo', Sep,13,2016 15:12 Landing Joists,wwb Design Check Calculation Sheet WoodWorks Sizer 10,42 Loads: Load Type Distribution Pat Location I£'l Magnitude Unit /I ter. Start End Start End L143a#I Dead Full Area ,tern, 20:60116,,0.0 "psf i,e+ad2 Live Full Area 130.00816.0 } psf Sell Dead Full MI, 2.6 p1£ * Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in) r8-1.1" I Ln£actored, Dead 89 99 406 ^actored: 406 , Total 445 _.... Bearing: _._. 495 ' Capacity Joist 4'15 Support 619 495 Anal/Des619".'. Joist 1,00 Support 0.80 1,00 i Load comb 02 0 9.80 Length „l hi /fin req'd 0.1,3 Cb 0 0. Cb min 1_00 1.00 Cb support 1.00 .25 Fep sup 62b ... ....... 162' III Lumber-soft,D.Fir-L,No.2,2x8(1-112"x7-114") Supports:Ai'•Timber-soft Beam,D,Fir-L Not I Floor oist spaced at 16,0"arc;Total length:6'-1,1';volume=0,5 cult.; Lateral support:top=full,bottom"at supports Repetitive factor:applied where permitted(refer to online help); Analysis vs.Allowable Stress and Deflection using NDS 2012. Criterion Ana Valueflee nn Value I n.i 'Anal s(s r' si Shear ,e 54 -.v{ - 180 psi 1v/B0 = 0.30. I 9endinr(+) - fo = 613 Dead -fln 0.0 <I/990 Ib' _ 1242 psi lb/'"U' 1.55 Live _eft n 0.01 <L/999 20 7,/380 3:n 26 Total Defl'rt 0.,01 <1,/099 0,30 _...L1240 i 0,23 Additional Data: FACTORS: F/ElpsifC0 CM Ct CL CO Cfu Cr Cfrt Cl Cit LCIl 180 1.00 1.00 1.00 3.00 1.00 1.00 2 III b'+ 90. 1.00 1,00 1.00 1.000 1.200 1.00 1.15 1,00 1.,00 Fep' 62 - 1.00 100 1,00 1..00 ,« - E' 1.6 million 1..00 1.00 - 1.00 1.08 - 2 Emir' 0.58 million 1,00 1,00 - - 1.00 1.00 - n i CRITICAL LOAD COMBINATIONS: :ea . LC #2 - 0+1, v 491, V design 390 lbs ?end rq _ ): LC, 02 .: Dli,, H = 742 lbs-ft Deflection: 1C #2 0+1 ii v , LC #2 = fin , (total) 0=dead L:'l.ir,e S-snow W.wind I==impact Lr.roof live Lc==concentrate,1 E"earthquake III All L are listed in the Analysis output mai oeoinati : ASCE- 7 1C f BC 2012 CALCULATIONS' Deflection: ..I 16.2e.00 lb-:n2 "Live" deflection = Deflection from all non-dead loads ;live wind, snow:., Total Deflection, = 1.50(Dead Load Deflection) t Live .Load Deflection. i Design Notes: 1,WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2012),the National Design Specificatian(NDS 2012),and NDS Design Supplement. 2.,Please verify that the default deflection limits are appropriate for your application, 3 Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4 4,1, 111 I I Page 37of126 _.. COMPANY PROJECT a.°111111 1414 111 WdW i kC® Sep,13.70/815 t6 BsEr.M Landis,.:C SOIrr,ARf cOk WOOD DtSICW Design Check Calculation Sheet 111 Loads: eW - ,xp. 'cc ;.: tsar c &,,,,,,.,,,,,§€c€, 9c+9e 'xf* max, '- 7,00: 70.4 "Si" :7>,..%- 4,,,,,, 3-,s R-": .,waxOS3 kal.MSa ...t 0/7' .t. ry144 it.. 34454 104, 01 4. 44 €iio 14 r2 i.4.44443 iw•,. .... ,X. 4..44 34.4 O4144 Ms , PrOrMA 47.4,3 bb Sib .: Maximum Reactions(lbs),SearingCapacities(Ibe)and 4 a3 gra¢ t-',77, p ( Searing Lengths(in) i 1D.57 t I wter I 30,301 4k 5 e a,-41-... ,...,,' C,S, i -45: ,,r s 6lnlem-Unt el.,West Species,24F-1.5E WS,11/2"xi t-T/a^ 8 Wm/0 w s.3-117 msnsa l w✓i.D. Supports:AS•TirilwroR Sewn D;F8Ci NO2 Toad WO.13-57;ws4 313 tuft, Laden'suppolops full, full: Analysis vs.Allowable Stress and Deflection 440gi we sou: C 444LsoI 4 V.., 7 t , a 4a rv+ aa.. "- a, .ter' 4..,7,70,1, 1,Z k. t b 47 +y44 S 3 3-x 0'. ti xR 4?, s;. .. 3-..n'.^,t F ,.>o.x;-g,i-�r- Additional Data: CRITICAL LOAD COMBINATIONS 'k des '1 t, E. . = .,;:: .7,7,77.E16,..71,77,0 I Design Notes: 1.,wwevvolm areyr eW d reran worsdenea WLhlha ICC Ir5stnoSons Bosky Cods(/SC 2012).WI NsaaWOatign SpesCSwills'4803 207ZS,SSA NOS L3.03 5u9pb5878 2 Air serifs Bis[0e dNata d ll 455 fowls ars iossooSsis Tor our appiarwn a GSA=demon values ore for moderw;u!fo88415 tc'ANSI 111-2010 stdnenbhc4:uW 595558w884 wSh ANSI 91801-2007 4.OLULAM:NN•actus dawh xactual depth 5 Godes:Owns ora 5e Wer*wows4708457045,99455550080505.84843322 S„OLUtAM:9/48048445 irwD3 onrnW.54 Fcp;Urwon7.FsPillosofiol _ __... I I I I I 3X . 8X e� Eq. law Clc. .. / (D4 fkiii 4 .1 L,.a._J EEICV szt int I Ira O Itir CO r �k i 1 Ali 1 t 100 al �1 E callaal t 1 WIN it / 11 1 1' I I I I ( 811 MCP 7ii _ a1 "`t 1 asm t w is:, "11511 I o Vie; �- c 1 mmr III r is 6."...A.. . ,:,,,,,, ras r . '3 ii ; a T • . ' 4. fr ,,,,-,-/ l'.•r �r —u�ss.M. 1��; Ten . W • 1113r ,id, s F�,� . e 1 € e 6 .P „...1. -a1�iT ' a 4 ii 7 $ :I, ir ,t.-.-.), ,,4 1 { T tatii . I 0,r 8 4.§ • an1- .. .s 1 fifilitillki Nsi 0 ci) i sn � cat .. a --4,a111111 iii.P.ii0iiiiiiii4—:''ilii .' — _ ... I.. .•re =0'. –foraillill' C:33 ~ 1 , acs 30aiaa 1210. Illek a x — N r I r M MI N Mr — NIB MIM Mill MIN 4 ,Mo n Office CLIENT: 6969 SW Hampton St. Page 39 ofE / Portland Oregon 97223 503-624-7005 PROJECT: g a 3? C t'c I ==9aorl 745 NW Mt.Washington Dr.#205 NUMBER: '' Bend.Oregon 97703 541-383-1828 FROELICH EDeer Office DATE ENGINEERS! 12303 Airport Way,Suite 200 Broomfield,Colorado 80021 BY: w,,cw. lich-engineers,com 720-560-2269 ST PzR FRA lt&tAd FF-c c 4. Live to A O or qa Ps k A(L Dex40 Lo,D s 12. PSF ILac) !t)F I o a Ls Zi.P F 111.111111.1111.1111 ___ itif.. 4 - II Fa(A200-4, GO AU- ABov6) I7 III I I1 1 I 1 I MEMBER REPORT 1st Foo' 1F Page 40 of 126 iiii F R T Jt PASSED 1 piece(s) 11 7/8" TM® 560 0 16" OC IOverall Length: 15'3" I II 14'6" E 0 All locations are measured from the outside face of left support(or left cantilever end)All dimensions are horizontal. Design Results Actual 6 Location Allowed° Rewit ' ,LOF 'toads CombinationtP tierti SystemI :Floor Member Reaction(lbs) 1367 @ 15'1/2 1396(2.25") Passed(98%) 1.00 1.0 D+1.0 L(All Spans) Member Type:Joist Shear(lbs) 1350 @ 14'11 1/2" ? 2050 Passed(66%) 1.00 1.0 D+1.0 L(All Spans) Building Use:Residential a I Moment(Ft-lbs) 6572 @ 9' 9500 Passed(69%) 1.00 1.0 D+1.0 L(All Spans) Building Code:IBC 2012 Live Load Deft.(in) 0.180 @ 7'10 1/2" 0.367 Passed(L/980) — 1.0 D+1.0 L(All Spans) Design Methodology:ASD Total Load Defl.(in) 0.394 @ 7'11 0.733 Passed(L1446) ' -• 1.0 D+1.0 L(Ail Spans) I TJ-Pro'"Rating , 64 t 45 Passed — -- • Deflection criteria:LL(11480)and TL(t/240). •Bracing(Lu):All compression edges(top and bottom)must be braced at 6'o/c unless detailed otherwise.Proper attachment and positioning of lateral bracing is required to achieve member stability. •A structural analysis of the deck has not been performed. I •Deflection analysis is based on composite action with a single layer of 7/8",1"Panel(37"Span Rating)that is glued and nailed clown. •Additional considerations for the TJ-Pro'"Rating include:1/2"Gypsum ceiling;- •ride Mit Loadsm i>otts(Itis); . :. m .. $�� Total Available Required " ; Dead F� Tom /tat�ttprCatl 1-Stud wall-OF 5.50" 4.25" 1.75" 594 587 1181 1 1/4"Rim Board 2-Stud wall-DF 3.50" 2.25" 2.14" i 723 653 1376 1 1/4"Rim Board I •Rim Board is assumed to carry all loads applied directly above it,bypassing the member being designed. Dead Floor Hive Loads "-" Location(Side) Spacing (Allo (1.00) Comments I1 Urnfo m(PSF) 0 W 15'3" ib 27.0 40,0 Residential-Living Ares 2-Point(PLF) 9' 16" 576.0 320.0 Ott ..-„ ,,,, I Weyef�iser Notes " ' '" - " 0 SUSTAINABLE FORESTRY INITIATIVE Weyerhaeuser warrants that the sizing of its products wilt be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software.Refer to current Weyerhaeuser literature for installation details. (www.woodbywy.com)Accessories(Rim Board,Blocking Panels and Squash Blocks)are not designed by this software.Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction.The designer of record,builder or framer Is responsible to I assure that this calculation Is compatible with the overall project.Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards.Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1387 and/or tested lin accordance with applicable ASTM standards. For current code evaluation reports refer to http://www.woodbywy.com/seMces/s_CodeReports.aspx. /The product application,input design loads,dimensions and support information have been provided by Forte Software Operator I I I I Forte Software Operator Job Notes 8/24/2016 10:35:29 AM I Yashar Sarraf Pour Froelich Engineers Forte v5.1,Design Engine:V6.5.1.1 (503)924-6311 JoistsAte ys arraf@froeiich-engineers,Tom Paae 1 of 1 4 5-, : ---,', ,, 6969 SW Hampton St. Page 41 of 126 i Portland,Oregon 97223 CLIENT: PAGE. 503-624-7005 PROJECT: 745 NW Mt.Washington Dr.#205 NUMBER t Bend,Oregon 97703 541-383-1828 FROELICH DATE: 12303 Air ort Way,Suite 200 ENCrI NEERS& Colorado 80021 1111 www,froelich-engineers.com 720-560-2269 BY: 1A I ST Cloole. 86AMS. li P e. l CS) // { Fe-of-b. Ca et..Hc..s At3c i 6 -%, GtT ` At bLT CBI)(15)(11 ) r 1t3(:)<> C7L: 1.2. g"? Jr iZoo L L r (Z) ( IS 00).r 1 6so '4 I IF f32. . l ,r PA - DL. ( 3)('?.4) 'a1 t--''ix # , h o Ft..F 1 0L' (2 )t1S).1. )2.0 4. 12-o-t lz.)(Z4} I ir 120 t (.3 IPc rr LOAa @" += rzo,kk. l F e1 �L_ 5$racy 1k 1- 0 0 51--'r 40oo E I ,PAAJ s Zo`_o Jr 1 Re41,ut, 'i OA F*.c*or -t(( )(,Z.,..1 ) -w I,S30 PL,F 1,10. ( I S I* ISI-t 6 f)(440 ) !r15/ ) ..s• 1 0/0 f)L,F 2 4.o.`'. I [1 Mar ')",-o 6969 SW' Hampton St. PAGE Portland,Oregon 97223 CLIENT: Page 42 of 126 503-624-7005 PROJECT: 745 NW Mt Washington Dr.#205 NUMBER: Bend,Oregon 97703 • ,•. 541-383-1828 FROELICH EGIS1 I NNkER ' 1 i.),.;.,),, ;C'tr-, 12303 Airport Way,Suite 200 Broomfield,Colorado 80021 DATE: www.froehch-engineemcom 720-560-2269 BY: / • = Fel_ iif.IFB ) •F1'AAI 1-' x o 't I - 0oT LOAD AT 2-o ( OM Fle- sc>0 1 00 i ic I ;. i , = e aii #ii ILL s 2.fo o II q co , -r 1-6 9 co 1 , I .. 1 .0 I LA.)i •• , t DL s 12.o LL - ( 13't 13/ ,..p. 2. ) (‘-(0) s vitzo PLF , I F es /-6 : II SPAAI s 7-0 12)L• (141)CIS)t ilo-,C.L-11)(7-7) 1Z4 t(L/5(13.)i-)2,0 t 1 -1- (t-ti.)(2-7.) Arr 950 Pri-F If L z -it CI-tr a it Z3(too)-I-(1 A % kf) Lc(o) s' ‘oZo PLC 1 sLx• (141) (2.$) .1. -S5c.:1, F7-F- 11 I ET-1: I *A 'srAA., r 14 -0 ( u1/4.) i i: fz:),1 i...x 12.o -I.(15.)(27)ii- I i P r- . L. PL-F , / .... I SPAAi S 17-- ,(:) , / (2) '5,1-$(2 )(14r)"412,64t- (31)(Z-701`120 ( ) (z)7) t12.0 -11.- Is q 0 PLF ii , .... ,.....50 Patir- S,1—, ;. e CLIENT: I 4 E ,,,,,-,,-O 6969 SW Hampton St. Portland,Oregon 97223 Page 43 of 12PAC6`'E { 503-624 7005 PROJECT: ,. ,, . : ii c....--ro745 NW Mt.Washington Dr.#205 NUMBER: 1 ''°_- Bend,Oregon 97703 541-383-1828 FROELICH DATE: ENGINEERS 12303 Airport Way,Suite 200 Broomfield,Colorado 80021 BY: wYtwJToeiiidr-eng neers.com 720-560-2269 I C � _O I* 120 .I. (6/)(2-1) 0 g(,c PLS` I L Ar (3)( ;.1)( (0 ) s *Z o PLF z5)..1- J5oPcr iz i )Ls 3( �® 66s s..00 LLs "? il ao' 6/1.--c 1 goy . SL-s• Ms,* I f� 9 F 61oII r•: SPAh1 s )'-4/ d W : DL (zt)(.t$ ) - 1 -t ( 1') {2 }tt2-0 -r( 1')ta.7) III Fo TCoar� ,3 -tzo t C 1 ..(z: ) S Lilro Pc.F ik r t t 6Qr556x.3 s ` , -3 c.L.: )( i ) (uo) s 12 .o PiF Lt..s )t3?C�t ( b ) c�y� 1 O r 12-4- PLF Ctw % qt:* PLF i 3 .. tt . PAN r v-0 " `rZa+�t 1 C31 ti F�C)trN1- L AT t _b X1_ I0 37ob S LC1 o E Q s 30v I ❑Main Office CLIENT; 6969 SW Hampton St. PAGE j Portland,Oregon 97223 Page 44 of 126 503-624-7005 PROJECT: Li Central Oregon 745 NW Mt.Washington Dr.#205 NUMBER: Bend,Oregon 97703 541-383-1828 I F R O E L I C H Li Denver( cte DATE: E N C3 I N E E R s a 12303 Airport Way,Suite 200 Broomfield,Colorado 80021 wwwQ froelich-engineers oan 720-560-2269 BY, cJoo � / i f &} f� + o. �.....x .. jf" "� � Cts}-. (I) (eta s 1o20 IF 1 A o ` .- 0sI6 g I 3L 5 25- s I I I A I I Page 45 of 126 1 __. COMPANY PROJECT Wood Works {f23713332 303 t42-7 C383 2:8 Zi.,4 Design Check Calculation Sheet WesoM1lAxla SW 1P 42 Loads: a 1,a..•, gra I'. ,ub zx, , 'ate", I.I. ....I,... .7 ,0 a� 9 'f '" ' R $•.,a a' 283 I 33- "3,8234 4*77 '2a. .9` 4 5 r. 34;x3: 1.--,- .,... $#.w: ,.w, __,_. "fz'.y Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): tors.• i RAE. a, AW 1044 ,$ 333 734 23311 7:::,:,, 393 1 Sb 3 4U e 322 .833430seesittebbbliereettebefeteedelbs**teeedeebeeeeleesetbetsialediettebeteded MrWMx'I node."On:k1tl9t1AY#R4fa beaten..bid beetebbiedeunan bee Blaw for edemas demob shown hem,On.id 731 fictx.See 4(1Biy99 ttT..lS Or modem from credal load tambV3MeM:>. "-- Olulam-Bal.,West Species,244-1,eE WS,6-tit"x7-112" 5 anunenns,5-17 a eamxn bide, Swporta;M-T n[aioO Sean,0701 No.2 latmN auppad::DP'Pul,bottom=05 ra;mte, Assaiyels vs.Allowable Stress and Deflection gape NOS 2012': ill 7,n on Additional Data: I ft7` At,WAD CCMSI03.100 ..1 e I A'' .- l .n r .^.e t 4 "L d aa 3 az..n3I/. Design Notes: t woodwo ks raerrs and daidA ere In moon3eacerets ibe ICC iWeWe NWEatidev Code SSC 2053,IA.0056002 0spn 55.03.20500(NOT 20(2),ede N95 Oedge 0475000503 2 Nape wiry eat the delme 620765;:505 knee are 5845.3834310f yoke edebba de 3 Olken deayn velum rmbraa con'00,0057 to 052031 T20380M mandfactured00 acosteande 8410 ANS(418C 1-2007 I 4.0redes web eq.,bendo205 poly a dn e:op end txeoedges of ilk w Dan 5550$ 0041 rmmrn e crenoed Nr conend'be beans.:. 5.OIULAM abbe!0.eddebedet x ad, begat 0.G.Atln Stem ate be Mtrae,,ecdpmled Ysuding to Ste previewed b'ND Ceira333> 7 5000M A 'beedo+et504r based an sweet 04 50 4.1.0,..F*-'G4'�0*54i"T5 8.Toa7(0000 dleec2600*0520 teen^-98,1420ereexl1 553 odeant00 U.00+13e3 deeme,'..Cani,Nw'00003(1005 do fWadvert Row I I I I II/ Page 46 of 126 COMPANY PROJECT .• , •. . . , Feb_10,2017 10:44 1F132,wwb ... . 1171>14200 104 WO(Iii 1..*4W.I. I Design Check Calculation Sheet WoodWorks SI2er 10A2 Loads: Type it1tetributlon'PAtir Location 1041 Magnitude Vntt III 44,443 OnAW! 3.Wada 1,44447 U44#S !Snow Dead Live feta Start End -Staff End. !'tattta3 UAL w* 049 /4,01 -El 0' 3L.23 p.61 . 9ntttn1 UDL No 0.10 10,00 120,0 120;0 pi( 904.01. ,Paint Wo 3.04 No 3.46 5800 4700 340e 1its 4.44446 Dead Peale, No 14.00 5840 Its itstad6 Live r05-34,9 No 14.08 4100 lb. . Lowe, lead 0416341 001,, No 14.08 22.08 500.0 560.0 plif 1nsalfitf /444diS Live Snow LaAd12. . foow tart:tat UDL No 14.08 22.08 244,0 240,0 'pSi Paint POlat No 3.06 2000 i los Welt-wwidAt ,Dead >ran vol. ' :: 14,:a :::: ::: Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(In): I _._ . . ...... .. 2i-" I antaitttiirriti' Dead 3519 !...1. 10801 3313 Live 2591 7053 1476 07700 1721 3750 194 04030644i ,ot , • - 004,44,4 675 Capacity Beam € 1971° 6756 19752 8 459 4509 Support 6939 18510 5124 Anal/De. Beam 1,00 0,96. 1.00 III Support Load cosh 43 43 42 Length 0.57 1,49 5.15 4-40 Min redid 1.8f, 5,..1S.. 5,49 Cl 1-00 .1.0n 1.07 0,97 .g,g Ch min 1.00 1.07 i. ) C0 support 1,17 1,07 1.07 4...op 1045 525 627, 625'1400441, . ' aoirott WNW',laftef oed bY.ft+Pol.attOd 161001.01 tee SOPPertmg" MOtabikt Gluiam-Bal.,West Species,24F-1.8E WS,5-1/2"x15" 10 laminations,5.112"maximum width, Supports:All-Timber-soft Beam,D,Fir-L No.2 Total length:2Z-1.0';volume=127 cial„; I • Lateral support:top=full,bottom=at supporta Analysis vs.Allowable Stress and Deflection wing NOS 2012: ' Croterion Analisis Value Datige VAtiOV 11017 Ano1Taia/totaiqd 4:ear Ey. 221 ty' . 265 p,i '''',.V' . D.64 111 '! Bending(+3 , lib-1039 80. .-- 2400 poi 71100'w 4.43 De Bendingi-i 10 = 1333 tic' -2350 01/775' m 0,57 Dead Den's 0,07 -4.1/599 psi L've 0911" 0‘04 =<0/939 0.31= L/360 on 0.11 twf1in. ' 5.14,- L,931 , 4.51Jon 5 . 200041 - 00041 0.36 Additional Data: IIIi FACTORS, F/C4sai)CD CO It CL CV C:.. Co Clot Notes CasCer 00.4 Fe Ct.+ 265 1.00 1.00 1.00 - - - 1.01 1.00 1.00 2 2400 1.00 1-pc 1.11 1,110 1.300 Lop 1.01 1-00 1.00 - 2400 1.00 1.00 0.07 0,979 1.0-30 " 44 0.10 1.00 0.00 - 1 650 - 1.0C 1.0C - - 2 Eh.- Fop' F.' 1.8 million 1.00 1.00 - - - 1.00 - .. 2 nminy' 0.45 md1licn 1.00 1.06 - - 1,11 7 CRITICAL LOAD COMBINATIONS: 11/ Shear : LC 82 - OIL, V= 121/4, V design- 12174 lbs Bendiog,,+iii LC 42 . Col, M= 17454 10s-ft Bendins(-- ; DC 82 0 041., .91- 22913 Ins-f, Deflection: LC 42 . C.J: Wive! LC 42 ,,, D,1, (tstali 40dead 1, 1 00 2-077,00>W.wind iiiimpoor Lrairoof live Lc=cousentrated 6.earthcoate All LC'1 ore 11017701 in the Analysis output Load III combinatoou.: AND 1-10 / :81 2012 CALCULATIONS: n Deflectio : 81 0' 2704e06 16-1n2 "lb ,,' deflection - Deflection from.11 nsn-dead Inad4 r11.., wind, 0000,,.>Total. Deflect:1ov - 1.54Wea7 Load Deflection) + Live toed Deflection, Lateral stability t..); Lu 0 11' Le . 218,147 66 = 11.36 Design Notes: 111 1,WoodWorks analysis and design are in accordance with the ICC international Building Code(IBC 2012),the National Design Specification(NDS 2012(,5001 7400 Design Supplement, 2,Please verify that the default defiedion limas are appropriate for your application, 3 Giulam design values are for materials conforming to ANSI 117-2010 and manufactured ir accordance with ANSI A190.1-2007 4,Grades with equal bending capacity in the top and bottom edges of the beam cross-secbor are recommended for continuous beams, 5 GLULAM:bxd=actual breadth,actual depth: 6.(Slalom Beams shall be laterally supported according to the provisions of NOS Clause 3,33. 7(3LULAM,bearing length based on smaller of Fcp(tension).Fcp(compn), I 1 Page 47 of 126 1 COMPANY PROJECT I d ., Aug 24,201814:36 1FB3:wvb SOFTWARE FOR WODO 3041CM ii Design Check Calculation Sheet inigkknoissa s0mr tO,42 Loads, -Load TO. st uric.?at a .,000000n 1111 Magnitude Jn:.t tern, 9T;ott. APO Start d Lad1 sad Full 1101, 2330.11 p S Load2 Live Bull DLL 1093.0 plE .,,1'-a•.1.0;: Read znL1 4LL , 39.5 P1= Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in):. 21'-02- - -1 ....... . _ i __. Oniac 1 Factored: a 4382 n 1 70357 1344 'total 2513+.. ' 25131 'bearing: Copaco ly 26160 B 5751 251ti S7;i: An al Des D 0.96 b.il5 1 .00 82 Load comb. a2 .:. 2 .er.4vh 5 6.10 : e.Lit, .- 3 6.1h.. : 1 r .. .00 ;1 )` I 00 lb 7III ^L 1 'r:t 1.00 675 2" sop ' 6_ii .2.), moimam t>o tome goirenbed ar the.meaonld valoo.ouppioAlanwotAlf, Giulam-Unbal.,West Species,24F-1.8E WS,6.314"x25-112" , 17 laminations,6-3/4'maximum width, Supports:All-Timber-soft Beam,D Fir-L Not Total length:21,0,2";volume=25,1 cult.;: Lateral support:top=full,bottom=full; - lulu.. Analysis vs.Allowable Stress and Deflection wfbtp NOS 2012: 1 0,1Cn-'. Al i Valga 005,40 `9180448 11018. AtrAllealaBeet 9 Lafrv- , c,63 Shear s c3 TO e pis nendingii) 00 - 2113 Pu' ,2170 pot fb,:b, * 0.9'1 :mad f 'n 0,32 = 1`757 Live 0r.1:.'i 0,:25 - L:451 0.50 - L/360 in 0.3'7 Teta)- .)_fl'n 0,71 1..331.. .1.01 :::lulu 1.'/40 v..i.o' .. 11.72.... • _lulu lulu. lulu. lulu lulu Additional Data: FACTORS: e/FlpsilCD CM It CL CV Clio Cr Cfrt Notes CrI4Cer LC8 i Be' 265 1.00 1.00 3.,00 - - 1.21 7.00 1.00 2 1'b'). 2400 1.00 1.30 x4.,00 1.000 0.904 1.00 1.00 1.00 1.00 - 2 Pop' 050 -- 1.00 4.00 - - - 1.00 A 0' 1.8 million 1.00 1..00 - - - 5,01 - < 2 Eminy 0.85 million 1.00 1.00 - - 0.00 - - 2 GRIT CAL LOAD COMBINATIONS Sheet 11 l7 a Deid V 25119, V design - 19231 lbs Oend:ng, LC 02 : 0:1, M- 120785 ins-ft Deflection: 1.0 92 -. 0i:. !live) LC 02 = OrL i1ot.a11 - O=dead L=live 5=slaw ohwl.nd 2=i.mpact 1:roroc'.live Lc-concentrated a"earthquake A1.. LC e listed in the An lyssa output Load cab a ASCE 1.0 / 101 2012 CALCULATIONS: Deflection: FT . 16150005 1b-1x.2 ve. deflection= Del - n.: from ail ,coo-dead loads ilsve, mind, .--.a.} '10-_al. let1eu_40,, 1.50!-sad Load Deflection) Live Load _eflcuuan. lulu.. lulu. lulu. lulu _.. _. Design Notes: I 1,.Woodworks ysts and design are in accordance with the ICC International Building Code(IBC 2012),the National Design Specification(NDS 2012),and NDS Design Supplement. 2.Please verify that the default deflection limits are appropriate for your application. 3:Gilliam design values are for materials conforming to ANSI 117-2010 and manufactured in accordance with ANSI A1901-2007 4..GLULAM:bed=actual breadth x actual depth,. 5:..Giulam Beams shall be laterally supported according to the provisions of NOS Clause 3,3,3,. 6 GLULAM:bearing length based on smaller of Fcppension),Fcp(comp'n). I lulu lulu.. ._lulu. lulu lulu lulu. .. '- lulu. lulu.. lulu. lulu. lulu. I I I 1 Page 48 of 126 IIICOMPANY PROJECT I %Vood\iVorks ' Aug..24,201e 1440 1F84 rept SOFTW&AE FOR WOOD DESIGN I Design Check Calculation Sheet WaoA oY.Shoe 1042 Loads: I `-sZ a-zs isoy Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(In)' I SRO' T I �� »1 1:; & M1^^.mp 'gmerautlgtigsrMw[dw ..MMPs appgyr, .:: OfWam-Unbai.,West Species,24F-1.BE WS,5-11Yk21" - :> 14 Refoutona,5-1,2"medmurn MI5 Supports'Al-17.4.44.5rn,D.F0-t Not Totaiamp:542 t".roOWea 75cu4,: Law 4oPPwt:top=of ao,Jos•.bttera hit. iAnalysis vs.Allowable Stress angd Deflection**ft NOS 2012; Additional Data: ,. G ;.R7TICAI E CC COOK FT CD o, J t S Design Notes: 1..Wood...ono.*and door aae n atm»a wan 1r ICC INatoAbrot Bui*og Coda CSC 2002).the Nano,N Dwign Spm R*1w(NOS 2014 god NCS Cosign SittpNntera 2 P1 ,..ify that I.default hor ctue arrrteoa approSooe fa row aPMoaSot 1 2..Skim 6frogn...aro tooteeNNoonlmnes to ANSI 1172010 and rwa arRsed to socaWn:e win 05.93 019.1-2007 4.GWLMIbele 0000 5.1.50 ora i Oetdh.. 5..Oei10 Bola 18 001 he Merawy at.;&xe a!aaotaing to It erras.ot0 of NCB C4151..3 33.. E.GLUW,t bowing lonfl.n 1044 an amwer of Fopparmonj Fop(aanp'n) 1 I I I Page 49 of 126 1 COMPANY PROJECT - _... 117 111 'Aug,24,2016 1441 1FB5;wwD i SOFTW.400 FOR WOOD DiSiGN Design Check Calculation Sheet I Wood Works Sizer 10.42 Loads: 'Load Type nt:s iri..fn Dian zo= t.Stou I ta86i.re?is l:nst III Sad as Dead - 11D-, 4-2b ti pl/ oad2 Live Full UCL 90 0 plf 9e.f 096•.92.'.!1. Dead. €'al,l 1191, ,g1E Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in) 7I I I 1 u.facloFet.... ...3999 'Dead 3999 3999 Live 3967 Factored796= Tc '95U Tot Bearing; d . ., Cap i 795E Beam 9965: 8961 Support 5401 Anal/Des ' Beam 1.O1 1.O0.0C9 Support 0.04 42 I ? Load crib 02' 3.SD Length -3.,:. 3.50 Minc'eG'd 3^ ]. 1.00 Cb 1:.06. 1.00 Cb rain 3 00 1 02 8' Cn, support 1.11'' 525 Glutam-Unbat.,West Species,24F-1.8E WS,3-1!2"x11-718" 8 laminations,3.112'maximum width, • Supports:All-Timber-Soft Beam,D,Fir-L No.2 Total length:7-1,0';volume= 2.0 cult; Lateral support:top=full,bottom=td supports; Analysis vs.Allowable Stress and Deflection using NOS 20121 f 1:rsta'r00n: 'Ascxlyara Vitae lieo1 s value 01031 RnsLyai0FDesil "EA, .0a Tv ps;. _i. 0.628 34eaz _35 v n endiogitl ft . 2892 Fh. . 2430 psi fbfFb' - 0.79 DealL 1 r 0.06-V <1,[999 0 Di D 1 n 0.06 <1,o 4 L/360 an 0.27 TOrai De612n 0,15. 01551 29._4 = L%2AM an _ 0.45 Additional Data: FACTOR: P3070,0100 "*r Ct. CL CL Cfu Cr Cfrt Notes Cn-Cvr LC# 260 1.00 1.00 3-;001 00 1.00 1.00 2 69+ 2400 00 4,200 & 4 1.000 1.000 1x00 1.00 1,00 1.00 2 Fop' 650 19 1 00 1,90 - - E' 1,0 million 3.00 4200 - - 1,00 - - 2 6miny' 0.85 million 1.00 1200 = l.'O0 .- - 2 CRITICAL LOAD COMBINATIONS Shear : LC 42 - De - 7639, V design= 9080 lb+ Bending 4+i= LC 53 - 3+0, Pi- 1287' ...e-ft Deflection: LC 42 999 D+L ilive9 LC N2 L`=-d ad L-live 50 tic 0W=wi,d - ra G Lriiroof lite Lo=concentrated F=esct?rqoaxe All i.0 are liered i, She6nakysis output Load comm.-nation ASCE,7-10 : 0193.1 2012 CALCULATIONS: Deflection: El = 979+05 10-16,2 •'Live" deflection Deflection frac:all non-dead loads t:.b e. wino. snow:.-; Total Deflection - I.50 0cad load Deflection) ♦ Live Load Deflection. Design Notes: 1..WoodWores ana,ysls and design are in accordance with the ICC International Building Code(IBC 2012),the National Design Specification(NDS 2012),and NDS Design Supplement. 2.Please verify that the default deflection limits are appropriate for your application,: 3,Glulam design values are for materials conforming to ANSI 117-2010 and manufactured in accordance with ANSI M90.1-2007 4.GLULAM:hod=actual breadth x actual depth.: 5.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3.. III 6.GLULAM:beating length based on smaller of Fcp(tension),Fcp(comp'n).,. I 1 I IIPage 50 of 126 COMPANY PROJECT --' g 1 w %Vóod\,Vorks Aug,24,201814:41 1FBO.wwb SOFIWARt FON W000 OTSIGN Design Check Calculation Sheet WoodWarks Sizer 10.42 Loads: `Lead =gee:::: Distribution fat- at o Loc __.. r (.t y 9 iLud Walt c rn® Sr End tart d Load: kt44d: Fu VOL §6 6 p1Y... Lo d2 1100 :Ful L L 1020 0 pi0- ,aad3 Snaw Ful.. 1101. 350.0 pif Self-weIgh1 O.K0a 83413,.l•II. 4:.5 R1..f... Maximum Reactions fibs),Bearing Capacities(lbs)and Bearing Lengths(in): , i 7.-0.0. I aroct<,,ed: Dead 3521 Live 3950. 3621 Snow __2 3820 a ,:Fa . 1321 Total 7499 Bearing: 7999 Capacity Boor : '1499: Support 7984 : 7444: Arsli Cos 7964::: Beam con 00 Support0,94 1 94 L d 43 C.9h Length 3.30 31 M. reg'd J-:tlJ ._4 Oh '1..00 ::98 CO:nun - 1.00 1:'.01 Cb support 1.11 t.00`. Fee_op 421, 82!:Glulam-Unbal.,West Species,24F-1.8E WS,3.112"x11-718" 8 laminations.3.112"maximum width, Suppois:AU-Timber-soft Beam,D.Fir-L Not Total length:7.-8,8";volume= 2.2 cud,:.. _.._ Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress and Deflection using NDS 2012: diateMeit..... deakysis V.de. -leai,70 Value I trot0 M4.A esa181 000pn 11,00c o 11's .w _. 1 pp - 40., pro Ic 'r1r' _. 0.80 DeadDe 1 n 0,07 o<L/499 : I I 0.07 w 1,7999 0.29 = L/300 in �,e6 Mtal 1__1 r, 0.344 m 1/493 0_33= ,S4240 ie 8_44 Additional Data: FACTORS: F/E(psinCO CM Ct CL CV Cf. Cr Cfrt Notes Cn'Cvr LC# F.' 265 ..00 1.08 1,08 1,75 OG 1.00 2 to'+ 2400 -00 1.00 00 ...GOO 1'{ 'S .00 1.00 , 1.00 Fop' 658 00. 00 ,11.41 ..a,...lion 1.00' 00 1,.00 Eevny' 0.05 edllioe 1.01, 1.00 1,00 - 3 rCRITICAL LOAD COMBINATIONS Shear : LC #2 =nal, V= 7200, V nloo.ign = 40.70 Ilan andlrg('l: LC 42 _011, n= 13095 lbs-ft i .Deflection: IC 43# - 0 75 L.:S (live) LC 0-4.75(1.,S) t D-d- d Irclive S- N-:t S Ir roof live La=ccecentrated 5-earthquake I.(Colisted the Analysis output. Lord 04s inat1ohe. A.00S 7.:.0 , IBC 2012 CALCULATIONS: nem.ect ion: SI 479,1(4 lb-i.n0 "Live" deflection = Deflection .from all non-dead leads (Live., wi.,oi, sncor.) lit r 1 t13 ... 1 .'1 end ^:ted I 1 t.,r L:.Ve. 1 Dc ....to`o. Design Notes: I WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2012),the National Design Specification(NDS 2012),and NDS Design Supplement, 2;.Please verify mat the default deflection limits are appropriate for your application. 3.Glulam design values ere for materials conforming to ANSI 117-2010 and manufactured in accordance wilt'ANSI A190.1-2007 III 4.Gbxd actual breadth actual depth,. 8.Gtulem lutam Beams shall be laterally supported according to the provisions at NDS Clause 3.3:3. b.GLULAM:bearing length based on smaller of Fcp(tension),Fop(comp'n), I Page 51 of 126 COMPANY PROJECT ._.. rksFeb,10,2017 1814 IFB7.wwb SOFTWARE EON WOOD i.7E5461i Design Check Calculation Sheet I WandWorks Sizer 10,42 Loads: Load '-Y98 Dist rib,t_on: ? Location iffl. Magnitude rfttif. tom Start End Statt EndT aadl meati 'T: '10L �" 122.5' pit Load2 ;.lve ,;1µ 001. 1025.0 gib Fclf.,ut Lubt Casa Full mal, 24.6 Ott Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in) t4'-g,4 I I 1 ... _.... :247 anftoned: r Dead 3247 7517 >- e 7577 Factored: 16624' Total 15924 ; Bearing: ._,,. Capacity I Beam 17220 7 ND Support 1.290 Anal/Des S.00 Beam 1.00. 0.s7: Support 0.97. e2':. Load comb : f2. 4€,71: Mingrh 4 71 06 4=q'< '1 TO t 00 Cb 1.00 1.00 Cb min i 00 5,07 Cb support t.D'H h'1^-p...s:, 525 ". Glutanm UnbaL,Mist Species,24F-1.0 WS,5412"x21" 14 hapinithOrte,s,urmeximumwidth, 4,p04s:Aft.,Timber-sC1t1 ritD.F LNo,2 Tullf kngt9L 14'44":volume*I CI ett ,: Lateral support:top=full,bottom=at supports; -.... : Analysis vs.Allowable Stress and Deflection using NOS 2012: ch i terion A.41yYoi Yalu,•.DAP LqP :Ya ue Unit. Asa,qD€xi0r 91nnts {v= l`,;, Ov = 26CrOJOV rs Rending, fb = 1750 F :1345 psi _ ,£":4 -.« 0.15 Dead 0 1:1,.7 ,16 999 Live Dell's 9.1.3 t 59g 0.49 5 1.136.0 in 0.2' Tenal OeTi''. 0.3:7 = 11470. 8.72 m 1/240 in 0, 1. Additional Data: I FACTORS :_psi,CD CM Ct CL CO Cfi. Cr Cfr. Notes Cn.Cirt 1,041 265 1,00 1,00 1.0') - - _ - 1,00 1,00 1,00 2 FW. 2400 1.00 1.00 1.00 1.000 0.575 1.00 1.00 1.00 1.00 - 2 scp' 650 - 1.00 1.00 .. E' 1.8 :Waller 1,00 1.09 - :,rainy' 0.85 million 1.00 1,00 - - - - 1.00 - - 2 '. CR)TiCAL LOAD COMBINATIONS: Shear : LC 92 =D+L, i'= 16363, V design= 11952 lbs Bending:47: LC #2 - PnS, M= 58947 lbs-ft Deflection: LC 62 = 0+1, Ellen: LC 82 = Dal. :total: D=dead L=1ive ii=soom W=wind 1= act l=roof live Lc=eoncer:trated E=earthquake All LC are listed n.the Analysis output combinations:tACE 1.0 BC 2012 CALCULATIONS: ONS. Deflection: EI= 7640e06 1b o2 "l.x.ve. deflection- Deflection from a.ll ron-dead loads ;live, wind, anew_„) Total Deflection. 1.5C{L`ead Load Deflection: • Live Load 0etlect_on, Design Notes: i::WoodWorks analysis and design are in accordance with the ICC International Balding Code(IBC 2012),the National Design Specification(NDS 2012),and NDS Design Supplement, I 2.,Please verity chat the default deflection limits are appropriate for your application,. 3.Glutam design values are for materials conforming to ANSI 117-2010 and manufactured In accordance with ANSI A190.1-2007 4.,GLULAM:bed=actual breadth x actual depth.:: 5,Glulam Beams shall be laterally supported acconling tc the provisions of NOS Clause 3.3.3. 8,GLULAM:bearing length based on smaller of Fcppension),Fcp(comp'n) I I I IPage 52 of 126 COMPANY PROJECT _... w W rf\✓ Aug,24.201814:44 1F88wwb ..SOFTWARE FOR WOOD RESIGN Design Check Calculation Sheet woodworks sizer 10:42 Loads: Loc Type Distribution Pat- Location 0Lt3:7 Magnitude 'Unit tern St.''''' End "St-4-rt Pd'd 'ie of ',Dead n Dat y1£ Lo dF .'e Ful. JDL 60J p15 Lead Snow ..1_ JDL 50,0. plf .30e1f-wci:7ht Dead naa '0112,, 15,0: PLL Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in) III 12-3S . 12'-,F Ontaotoredr .. ' Dad 4024 _.. 401# L 211 2212 F'.i, tore307 Metal 6237 52071 ca patty Dem 01137 I 0 1t t 4400 6237 AE ITh::i Ei06 S3 t+GIY c06 ' :an broad comb #2 0,67 42 Length 1.74 - 1 7 '.Kin req`O 1.74 1.04 74 t Len T :rapport 1,07 1..125 Glulam-Unbal.,West Species,24F-1.8E WS,5-112"x11-7/8" I0 laminations,5-1/2'maximum width, Supports:All-Timber-soft Beam,0-Fir-L Nat Total length:1203,5';volume= S0 ou„ft„. Lateral support:tope full.bottom=al supports; Analysis vs.Allowable Stress and Deflection wing NDS 2012 III Ce tibztfa0 Ahalyaia r lv.e Jeolco value it An a2Yxa.u/Deu#rn, Oneat ry - '1 p.mtvIY's' a .0.44 ) 2e i i t .3 1 ePb' 400 C..,,o 0,72 l_� 3 ll.�n 27 Li. -fl`r, 0.13 = 0351 0,40 L...n{, 0,32 Total Dell.`n, 0,44 3. .1006. 051 = 1' 49. 04.i9 Additional Data: FACTORS: P/Eip.ei)CD CM Ct Cl. Fv' CaCa,s Ott t- Cott:C- LCN 21 1,CO 1 1C 1 :700 1,0 £ .s 1.00 Eb'- 2456 .00 1 00 1, 0 7:1700 1.000 1.00 1.00 1..000 1 � 2. rap' 550 - 1.00 1.00 - - 1,6 .lion 1.00 1,00 - - 1,00 2 Ewiny' • 0.02 million 1.05 1,00 - - CRITICAL LOAD COMBINATIONS. he. I .1 12 .L - 6114, V design. - 5096 lbs +enol g .i' LC e +1 M 18017 1ns-ft Defle t1 LC 112 D=L (lime) LC 52 Dci (tota.i D=deao L=live S-nrow 41-wind 1-3mpect L0=soaf live Lc-concentrated E.earthqoake 811 Lc's are listed in the Analysis output Load combinations, ASCE 7-10 / (CC 2012 ' CALCULATIONS: Deflection: ET rr 1301e0 b 2 v dt ler1.r -- Jofllecti.n f c i. J c;i Eliot, L 1 w., Total Deflection s. -.....OrD od Load Deflection' -. Lav- Lad D f eo 10n. Design Notes: 1.WoodWorks analysis and assign are in accordance with the ICC International Building Code(150 2012),the National Design Specification(NOS 2012),and NDS Design Supplement I 2.Please verify that lee default deflection limits are appropriate for your application, '3,;Glutam design values are for materials conforming to ANSI 117-2010 and manufactured in accordance w)ih ANSI A190,1-2007 4,GLULAM:bxd=actual breadth x actual depth, 5,Giuiam Beams shall be laterally supposed according to the provisions of NDS Clause 3.;3:.3, tS,GLULAM:bearing length based on smaller of Fcp(tenslon),Ecp(comp`n). I I I 1 Page 53 of 126 III COMPANY PROJECT d %Vood' Vo r k s Feb.la:2C17:CSO IMP*tse ,fan WARY i.OR WOOD DFSIGti Design Check Calculation Sheet I WoodYNAN Sae 1T 42 Loads: °...ga4 a95 $,,, Ls r£ P ES,,}' ,, wA dx',R'FAe'.3 r. ;.mel ,.',E,.ia a,ai Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): sot t 1 II I CI ell* E.. `4"..34 , .., ate � � 1 GmNem-Unbal.,West Species,24F-1.SE WS,S-1/Px1S" 10 eeS•NYtAA*TYNeaer. teepee 1A wat-tiEre4Renr.volumeo 0Notb, tr/usiw0ndb topaht Weonvs FA REPOIMC.. , Analysis vs.Allowable Stress and Deflection Nos 2012 fi " , , .,,,_.. w, ..aka .,_x,,.- ,Ar, „_i Additional Data: Nr£ ri A ,CADCONIC: 51044 n-y r- a 3- :....e_. .,..._ e. E._ ALa S fB �� CA CULATIONS I • Ht t.c- L fe -rd,sr.,.,:t Total ref'.cc.,on Y.::..,.=ea.,nay...fr.t i ._.e ...e<cl:r,.' Design Notes: t WotdWttke241006.1InM deeAS-1 atm 95w*d#Kfwtitu£C,...oiuivl 8,eees Coea;iBCFS12),the Nwon&DPIP7 SFAOM.‘",os 2Ce21 004 055 Onp,:S '4 2 Mims*verily(AN.dafaud Se0000on Fobs r t ..F...,.., I 3 Cdwtrn dew»ksM W o r Mattla � £s rorrn0 MANS 1 2CiC am bbmbl k 4 in 40000000 MI5 ANS1 A1931-20674..GLULAM tta4c:W W.,'Fa+aa ecAM&Mb S.:Gaxan Seam RAS oa let.*s,RrFr+ledee0orsinre table 400. %o NDS CN,ve333 6 GLUi.1Nt t.,W wan h&ead or*emir of FcplleniNN,Fcp(a.y^n) I I I I IPage 54 of 126 COMPANY PROJECT III . • . v I I1 •voodWo r k S Feb,10,2017 13-14 1FB10.vmb 5.01-1.11.A RE FOR 440108 13E£1.6,14 Design Check Calculation Sheet WoodWorks Sizer 10.42 Loads: . _ Load Type Distribution Pat- Location 1ft) Magnitude 'Unit I toadl , Load3 ter. S7.4.r.t. rad 6tPrt End Dead Varela-1 801 0.24 3.24 080.0 401.0 rtt Load2 Live Partial UDL 0.24 3.24 130.0 130.0 ,plf Snow Perri& UM, 0.24 3.24 50.0 50.0 plf Load4 Dead Partial UDL 11.24 14.24 480.8 480.0 rdf Load5 Live Partiai UDL 11.24 14.24 130.0 130.0 plf , , 0oad6 Snow ?atrial 111, 11.24 14.24 50.0 50.0 oil aelf ...,.1q.p.t. :::Ldt°°°h° Point0.24 16500 los , '1-.';',1' Load9 Load10 Earthquake Point Earthquake Point Earthquake Point 1 44 14.24 11.24 Full 121. -- -16500 -00500 16506 _ 5..5 its 115s inn Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): I f 1447* *Air UnfActer*at, Dead 1439 1516 Live 386 392 Snow do.. , 6Artg4galre 1174 -7174 Fedtbdad4 . Uplift 46t5 111)01t1 . 6521 151 1424 Iheak1Agt ' , CariimiLv aoam 6521 1424 Support 6942 2046 ra-"Pas acam Stade.t 1,00 0.94 1.00 6,44 Load comb 46 43 Length 2.81 0.85 Min req1d 2,47 0.85 • III (10 (2.,min 1.00 1.00 Cb napport 1,11 f.MO lard 1125, 1.06 1.80 1.11 , 625 Giulam-Unbal.,West Species,24F-1.8E WS,3-1/2"x11-7/8" IIIa laminations,3-1/2"maximum width, Supports:AP-Timber-soft Beam,0,Fir-1.No2 Total length:1447";volume= 4,1 cu.f); Lateral support-top=full,bottom=at suppons; Analysis vs.Allowable Stress and Deflection mine Nog 2012 C, 00A3alysi0 Vaive -D- 0, Va, 1105,0 '205102y058/11e00595,, 24,, , )c's 213 po. - 474 pox ' 4,614v1 .. 4.04 0bod,b4141 fb. 3200 Ma' - 3540 pal Dead Defl'n 0,09.41/944 Live 0.'1< ,, 0.15 4.<1,7900 0,42 - 0/3.0 . ..,..n ' 10/701 . 0,84 0.31 . Total Detts'n 0,20. 1./5914 0.11 e L/240 , ,n 1.40 , , Additional Data: FACTORS: F/Elpsi1C0 CM, 10. Cal Fe' 1 Fop' 265 1.60 4.00 1.00 . Cl Cfu Cr Cfrt Antes Cn-Cer. LEO - 4.. - 1.00 1-00 1.00 6 40e 2400 1.60 1,00 1,00 1.000 1.900 1.00 1.00 1.00 1.00 4 650 - 1,10 1.00 , - 6 0' 1.4 million 1..00 1.80 . - 4 - 4,00 - 6 Eminy' 0.05 mill3on 1.00 1.00 . - 0 CRITICAL LOAD COMBINATIONS' 1 Shear : LC 88 = 1,.70, V= 8044, V design- 7517 lbs pendingt,), 00 00 = 6+.76, M- 22212 lbs-rt Defleollon: LC 16 e D5,70 Cloon, LC ol . 65,IE (total) 8-1)ead 1.-rive 0-snow 1-wind 1a1mpact treroaf live Lo4noncentrated E-earthquake All LC's are listed in tne Analysio 0011101 Load combinations, ASCE 7-10 / Inc 2012 CALCULATKAS: Defloction: ET . 479,406 lb in2 'lit'." deflection a Defloction Lid.all non-deao loads :live. wind, anow.„) Total Deflection. 1. 11 0.'d Load Deflection; 4 Live Load Deflection. Design Notes; 1,WoodWorks analysis and design are in accordance with the ICC Intemationai Building Code OBC 2012),the National Design Specification(1405 2012),and NOS Design Supplement 111 2 Piease verify Mal the default deflection limits are appropriate for your application, 3 Glulam design values are for materials conforming is ANSI 117-2010 and manufactured in accordance with ANSI A100,1-2007 4,GLULAM:bxd=actual breadth x actual depth a Gliflam Beams shall be laterally supported according to the provisions 01 1405 Clause 333 O,GLULAM:bearing length based en amettarral Pcprponslon),Fcp(complb. I I I Page 55 of 126 COMPANY... PROJECT 0001 4411 Feb ta.sott 1323 iFEti, a 'P1P7WA Pi WA`W0K_,0 fJWGN Design Check Calculation Sheet Ear leo Loads: t: /p fW Maximum Rere (ttu}c saft.eg Cep.,41`1Mt gbq.1,1d tf+"Ap1,L'Cgtls`Or)• 3.3 a I I c. t Gtulamdinbat.,West Species,24F-1.8E WS,3-1/2"x11 MI" DENOMEEN-N 3-4,2”swim.NMalh, $oppafs As-YYMMMPt Bean,D Fc-l.Na 2 Tata*NOP:7.38'.Woo- 4.tiau.G.; t.cen0'wood lop.Al.NONA,a aveppate Analyals vs Allowable Stress and Deflection Nae Sou: 1, wt1 Additional Data: CRIT:CAL CALCULATIONS • '. .'_..••..,�. £J• -,.... Design Notes: 1 Woo8Vpna TAP and JANDA asn s Ymnaa NAP MIN ICC 3rma!w1&nsd'u4 Cods 052012j,he AMMAN Deign 5484?w:n OIDS20i2i,nd NDS FAMEPNEAAM 2 Moms writ)AM Bit APNEA 6.4•A+0N MAN are bppaprete ENE NSII ammAm orE SGYtvnds6pl valibb ae fo,NF6EDstmcanfaimm to ANS 1117-2012aHI yonmfedurem00040041400046 ANSI A190,1-2°01 4 SkiI_Mk6%d=04 AMNObrevet,xe[tu Depth 5 DL?JtW nod NADA W 0004+4Med amoormfm3 Im Ewe stmEAsteammiNDS Cisme 3]3, S.GW:AAA.6s1:s11 kVA Dosed on NM6Noi FGnjlenacn;.FeA(aapPnF1 1 t 111 Page 56 of 126 _. COMPANY PROJECT III 001 ill 0 f R>v./ Nov..18,201818:55 1F812,wwb .SOFTWARE FOR WOOD 0601479/ Design Check Calculation Sheet woixiwovisixor 10.42 Loads: Load .. ync Distribution Pat- 'Location MI Magnitude Unit Entn Etas`. End Start End 1:e3d1 1Y2 Jw "f int O 74 1_D. 150 • t Point 5..74 1500 Ito Load) Lead fall llJG ,50.0 PIP l,oaa4 :ve kl SIGs. 1020.D pit Load5 Srow r.11 001 175.0 pig S.lf welant Mead. 0v11 nom. 1'.:l p11.. Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in) 10,-11,9 111 Dead 4735 ` 5601 4756 ' Snow 167E; 5002 5602 Total 10316 _...,.. 17:5 1 Bearing: Ls a01 y :0:thn '.336 Support 1.0616 Anal/Des iC6fi9 Beam 2.00 0.9't ioa.,. Load Support , 0.57 . Length .:$.gs2 ro reg'd 'd k9 2 1 Cb �, )0 2. 1 Cb ran r7 Cl support 1.01 F^D 106 625 .21 :O7 III Giulam-Unbal.,West Species,24F-1.8E WS,5-132"x13-112" 9 laminations,5-112•maximum width, Supports:All-Timber-soft Beam,D Fir-L Not Total length:10'-11;8';volume= 5.7 cu,fi; -Lateral support:lop=full,bottom=at supports; Analysis vs.Allowable Stress and Deflection,e. Nos 2012: e. Critelann... ASrtiy affi 9vel,ao 711750? 'alas $Oo£ 'Ann11Inta-AD&SY' 'Stant EnW 101 : Fv` -265 psi Y*fkvro " ns;1.. Hand gf 1 fu.'2059 ht: t: 240: 10: . lpbe w:. 0,56 bend r f:.i.'r 0.14 < I./930 ldvn G ll'> 6,16 0 1/021 4.36 1/3.,y) ,t, 0.40 I -Tbtal 5011',^ 0.30 a L/355 0.54 u ./ 4E rn _ 0,10 Additional Data: FACTORS: " >-001}(.; 4:.M Cc CL CV .0 Cs C1 Notes Cn-Cur LC7 Fp' 265 00 1.00 1..10 - 1-.O0 1._00 1..005 rots 2400 1.00 1.00 1,00 1.000 1 000 1.00 1.00 3-,01 1.00 - 2 I 0'P 157 rJ 1,00 - �.. 11 0 0' -1. 1.00 I.00 3:OEt 3 i:..o y ,t,HS million 1.00 i..Cr 3 CRITICAL LOAD COMBINATIONS. .She 10 ac - 011. v- 00074, v design = 7347 lbs Heeding;-): LC 42 : 0,1, M a 25166 4.14,-ft e:fle,,o,on: LC as =D+.'15 iL+g1 (love) LC 83 = D+,751L450 (total) -dead 12.--live S=sncw iq=mind 1-iapa r-roof live Le=conC.eotrated F-earthquake All LC' s ate listed in the Analysis output I•a combination:" ASCE. 7.10 / 130 2012 CALCULATIONS: Deflection; P1 " 2030e06 lb-io2 "Live"deflection=Deflectior. from all non-dead loads illve, wind, v.,) :l.e Total. Deflection . 1.50(Dead Load Oe. ,t:o-) + Live Load t)ef:l.ectlon. o Design Notes: 1,.WoodWorks analysis and design are In accordance with the ICC International Building Code(IBC 2012),the National Design Specification(NDS 2012),and NDS Design Supplement, 2 Please verify that the default deflection limits are appropriate for your application, 3,.Giufam design values are for materials conforming to ANSI 117'2010 and manufactured in accordance with ANSI A190,1-2007 4,GLULAM:bxd=actual breadth x actual depth, 5,Glulam Beams shall be laterally supported according to the provisions of NDS Clause 33;3:: I B.GLULAM:bearing length based on amadero)F ),Fcp(comp'n), _ _.... 1 I J Main Ofc_. CLIENT: AGE 1 6969 SW Hampton St. Page 57 of 126 Portland,Oregon 97223 503-624-7005 PROJECT: „: 745 NW Mt.Washington Dr.#205 NUMBER: , Bend,Oregon 97703 541-383-1828 FR O E L I C H :11 123n,Q ce DATE: 12303 Airport Way,Suite 200 I E N ,I.N E E R s a Broomfield,Colorado 80021 x ww�v.frc:elixh-engirWers.cc�m 720-560-2269 BY:' I sT Fjooie _NDR.'S 1 IFK4 : �- 'S PAh1 s _ ° ° flL 1201 (23 it 12-o t(7 f)(2.7)t l , 't (3 )(2-7-) s'$Zo PL F r rPLF LL (4 1,7 t s ) (L o.).c..615c) f I;PNzr .5 PAN Ir. 3 — ° I1 ? 'L$4 y ( t' ) I tz.0 (44(24)x. 120- (4f)(2.7 12.o (46,)C2-7} : 4a50 Pi-F C.C.:( 3f-t 3-41. � -1' %i1 .1. 5')(`4o).r1 ll I LL. s (-100o * S:›Lis 10 SO Ft,F SL0- 35c I I 1 IPage 58 of 126 COMPANY PROJECT I %Vood\,VorkS® Aug,24,201814:57: 1FH1,wwb .SOFTWARE Frig WOOD JEW ON I Design Check Calculation Sheet Woodworks Sizer 1042 Loads: Load Ty,e... PIer.6I.#1a4t.29rx Patw. Location Ittt Magnitude Unit 111 !¢SAA Start End 9 ,1 z f:aCY Ysead .;1,1.1 J 1 il9L aStar� (pi Lo 2 Live FO 1 UPI. 650,: S=1f s.�lg, Fee:-i _4u,.,. :Ie1L 4.0 p 1 Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in) I ir i :: ::' r °2 314 C82 Total 239E:: ... _. Hearing: 2_3G Capacity n Beam 2396.' nIII l/Son B 26E3 2�9ei An 1 les m JD Support 65's ro:t C 9G, 00 aad coir: ill :t.FJ::... Length 1.10 02 Min retl'd 1.1.0 1.10 1. Co 1,00 : Ai: COn 1.00 1 0(' CoI1 pport: 3.11 1,00 'op sap. €23- 1. ', 02 Lumber-soft,D.Fir-L,No.2,4x8(3-1!2"x1-1/4") I Supports:All-Timber-soft Beam,D,Fir-t.Nat Total length:3.2.2';volume=08 cult; Lateral support tope at supports,bottom=at supports; Analysis vs.Allowable Stress and Deflection„sing NOS 2012: Ceitaztmr Analysis Value Design value I..Unit 7Anal IDesi n III ..Shear fv a3 "'. :° . `v# _ 'San po) : ?.r/Fv't - 0.44 Deadingf+i000 bet'1'-. ftJ1 =<1./399 Pb' 1165psi fbl£4' = 0."J 0 . Live Cetl'n 0.01 = < !999 0.10 = Lr360 in 0.06 Total. Ceti'''. 0,02 ,<� 999 0.16-- L/2#0 le 0.14 Additional Data: I FACTORS F/E(ps )CD cm Ct CL GE u Cr Clot Cl C LCR E=' 1..00 1.0;1 100 7 Pelf. 00 1.00 1,00 1-.00 0.996 1.300 _.00 100 1.00 1,00 2 £-p 190 1.r0 -.$ pL 1.10 029 100 1,001.i10 1.00 - - 1.6 million 4,00 I:OO 1.00 1.00 Fmin' 0.56 million 1.00 1.00 -. . 1.0)) 1..00 2 RiT1CAL LOAD COMBINATIONS. Sheen LC a - O+ 1109 V design = 1349 lns111 .... nd� gf LC F D.,, v, "99 t £ Deflection: LC a2 _ =,t 6 * (total) D.dei L 1 ve S=snow g.. 3 I a t Sr' - l live Lcncencertre teti F-eoxth01)1:1/ Al]. e listed in the alysis output: Loatt combinations: ASCE 7-10 I IB:. 2012 CALCULATIONS: III Deflection: _1 170r00 elb-152 "Live" : D '1 tottm ell non-dead loads (lipe. wind, snow-: -al Deflection 1,50(Dead ipad Deflection) + Live Load Deflection. .Laiptel stability +I. i l'-.1.13" Le -E 44` RB 72 Design Notes: 1,:WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2012),the National Design Specification(NDS 2012),and NDS Design Supplement, 1 2,Please verify that the default deflection limits are appropriate for your application, 3 Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4,4.1. I I I Page 59 of 126 I _.... (COMPANY 11K16IDECT:. 000 Wood Works I gi5,3q 1F6met SOFTWARE O0a2 WOOD DESIGN Design Check Calculation Sheet Loads: - .a r- ,,,H. z0. E ,t.: 044 4i. a .1 ,� ; a nom, “so a Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in); I I -.. _ 1 xtr I Y% 1.0:3 L 6760. ...nal r. e 9% 4444 1.,e4 1.:01 1<00 ^2„,,,..q,, 1::01. Glulam-Unbal.,West Species,24F-1.SE WS,1-1/2•x7-1/2" 5 ebetelibbble,`:l?'awarnire wtlh, S m:At.T neatmA Bern:856-L t o2 Tote loopy Y-44.wurte• ,Ocu R.: Lwwsi 308'-oi 80PPiwe,iababee A di%'Pa30 I Am***vs.Allowable Stress and Deflection it,ysoaton: , 686 Additional Data: r, 5555 CRITICAL 5.0400680640.00366 1111 D-oe L v2 1 t.....,:?,t .xte. ,ted_ ,,,oaAe he AndlyZIE,,CPU, 1 'Design Notes: I. Y M"tool taree 6688, C aortanEGaft#AMant?t,OwrtaONNIEI +,S +'.i NGSrNwpn3y0p�ta- $Pixss*0iewtffS668waa6Mt sbMea06 WSW 3 8j623 59602 srOat ElW1t0AMataR566AtiO11 7.416,0 8716 .$ AN3Aiag,14W 4 GLU.1U?;684 4 sci W bn eah.8 92686 dem, $..Oaae-,seam she*be lNwete 84390866400666401848000260033'lathe peabbeem A O 60kM:bowing eosin based an weedier be fbegtmnibb.Fcp4:444o40, __... I I I I IPage 60 of 126 COMPANY PROJECT 000. . Ilk W W I 11 Aug„24,2018 14:57 1FFO.ivivb SOFTWARF FOR WOOD DINGO I Design Check Calculation Sheet nnedvnnomovt0A2 Loads: Load Type DiatrIbution ?at- Location (ft] Magnitude Unit 111 tern Start Cod Start End loadl .brad '21IW ,a 0110. 1 .0 pi. Load) Live 11.11. 1191, 1220.0 pif Load) Snow Full UFL 350.0 illSelf-weight Dead Full LOT, 01.0 pif Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(In):" I i 3L3,4" i • I I . . „, •, 341/* III defirittoceet Scud 1734 1734 Live 2014 2004 Snow 575 575 Factored: Total .10.101 37211 Bearing: , I capacity Beam 17701 Support Anal/Das 4134 3730 4139 Beam 1.011 t.50 Support 0.90 0,90 Load mate4 412 If 2 I 1etwin 0.71 ?11,1b.tt m:8'5 1.71 CP tattt 1.00 1.00 Clt at/P1112rt 1.11 i.71 ' 7. ., - . '2,.g!. 1.11 rq,..amp 625 . . _ - S.25 I Lumber-soft,D.Fir-L,No.2,4x8(3-1/2"x7-1/4") Supports:All-Timber-soft Beam,D.Fir-L No.2 Total length:3-34";volume=011 Girl.; Lateral support lop=el supports,bottom=at supports; Analysis vs.Allowable Stress and Deflection Wog NDS 2012: I BrilAr.tam malyitie Beide l*Rallign -Value limit AnalimiptDeatIn Binear Sendin0(+1 1!.. Ilg Z: I!!! 4 ',;t--' Dead Defl.0 0,51 .t.. <L/999 , ivira1 - B.61 FE/FE' . 0.94 Live Defl`n 0,02 e <1/999 0.10 . L/300 In 0.14 Total Patio 0.53 .<1./889 0.10- L. as:.. 5.22 I Additional Data: FACTORS: FIE(psi)CD CM Ct it of Cfu Cr Cfrt CI Cn LCW Ow' Fn.: 100 1,00 1.00 1.00 - - - - 1.00 1.00 1.00 2 950 1.50 1.00 1.00 5.990 1.300 1.00 1.00 1.00 1.00 - 2 Fop' 023 - 1-50 I.,.,3 - - - - 1.00 1.00 - E1 1.5 million 1.00 1.00 - . tt. 1.50 1.50 - 2 Emin" 0.58 rdllion 1.00 1.00 ", - - - 1.00 1.00 , 2 III CRITICAL LOAD COMBINATIONS: Shear : LC 02 3. D.1., V. 3570, V deavin = 2039 lbs Bendle0t+1 1 LC 02 3.DI-L, M 3 2915 lbs-ft Veflectioot LC II? . 5,-I, Ilivei LC 62 = 5.1 ftoralt 1--dead 1...L1vw 0.8now 0-wind ?..impact Lr.roof live Ln.concentiated E3earthquake All LC.i are list,d in the Analysis output I Idad 000hina0i008: ASCE 7-10 / IBC 0012 CALCULATIONS: Deflection; El = 170e06 lb-lo) "Live"deflection- Deflection from all non-dead loads UAW', Mihg, 1010m_1 Total Deflection tt 1,50tDead Load Deflection) 3 Live Load Deflection. ,..118 ?..1. 81a0iii/Y 701: tu. 1.-1.64" LI::: 6f-5.55" 110- t.70 Design Notes: 1,tAroodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2012), he National Design Specification(NDS 2012),and NDS Design Supplement. 2.Please verify that the default deflection limits are appropriate for your application. 3.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 44 1, I I I Main Otic PAGE / CLIENT: 6969 SW Hampton St. Page 61 of 16 Portland,Oregon 47223 PROJECT: 503-624-7005 745 NW Mt.Washington Dr.#205 NUMBER: Bend,Oregon 97703 541-383-1828 FROELICH ❑D nv}rot c<. DATE 12303 Airport Way,Suite 200 E N Ci I N E E R S 1 Broomfield,Colorado 80021 ww s,&oelich-eng neers,com 720.560-2269 BY: 111 r I I 4 I I I I I I I 6969 SW Hampton St. �' PAGE Portland,Oregon 97223 503-624-7005 PROJECT: Page 62 of 126 Central Oregon 745 NW Mt.Washington Dr.#205 NUMBER: 1 II *4110111 Bend,Oregon 97701 n u 541-383-1828 FROELICH DDerrerGrace DATE: E N 6 I N E E R s t 12303 Airport Way,Sarre 200 Broomfield,Colorado 80021 w�+w.iroelich-engineers.com 720-560-2269 BY: tLu4..4_, He-ratp-11 Cc,LuxtA/ 04 WAGC, I W.Air> C<UA D q z_s- ©.002-56 A ka. A kT r~ k 1 IC v Z I VS I2z r"N,, kZs cy ' : 2-2. 6 7 kers / I ,,1 s 0 55 Iz ILOAD ON -Ac -t C.oCvr.hrvs I I IUS r (Z) A 3 S e A &ten O F Co(,uAA A/ I r I I I Pogo 63 of 126 1 COMPANY PROJECT ifl Wo a i-OFTWAFF FOO WQOA DEPCN July 23,2014 05:07 Columnl Design Check Calculation Sheet Sizer 2004a LOADS (lbs, psf,or pit) Load Type Distribution Magnitude • Location (ft] Pat- . Start End Start End tern Load1 TWind Full UJL 4:8.0 No MAXIMUM REACTIONS (lbs). il 2 oR T Dead 648 Live 648' 648 Total. 648 Glulam-Balanced,West Species, 24F-1.8E WS, 5-1!2x7-1!2" Self Weight of 9.5 plf automatically included in loads; Pinned base;Loadface=width(b); Ke x Lb: 1.00 x 0:00=0.00[ft];Ke x Ld: 1.00 x 27.00=27.00[ft];Lateral support:top=Lb, bottom=Lb; Load combinations:ICC-IBC: Analysis vs. Allowable Stress(psi)and Deflection (in)using NDS 2001 celteri n A,na yeis. value DesiAn Value Analy$islbesign Shear dv = 24.: FV .384 vlev' 0.06 Bending(+j fb = 1018 Fb' = 3840 fb/Fb' = 0.27 Axial fc - 6 Fr' - 389 fc/Fc' = 0.02 Axial Bearing fc = 6 Fc* 1440 fc/Fck =; 0.00 Combined tax 8.. compression + s-..de load bending) Eq.3.9-3. = 0.27 . Live Defl'n 1.65 = L/196 1.80 = L/180 ,. 0.92. 11 Total` D fl'n 1.65 = _ 8/196 1.80 * L/180 0.92 ADDITIONAL DATA: FACTORS: F CD CM Ct CLICP CV Cru Cr Cfrt Notes L' * Fb'+ 2400 1.60 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 2 Fv' 240 1.60 1,00 1.00 - 1.00 1.00 2 FC' 1600 0.90 1..00 1.00 0.270 - - - 1.Q0 - II Fc'comb 1500 1.60 0.155 E' 1.8 million 1.F00 1.00 - 1.00 - 2- - 1 Fc* 1600 0.90 1.00 1.00 - 1.00 - Bending(+) : LC# 2 = .6D+W, H - 4374 lbs-ft Shear LC# 2 = .6D+W, V = 648, V design = 648 lbs II Deflection: LC# 2 = 6D+W EI= 348e06 lb-in2Li(Ne Load Deflection. Total Deflection = l 00)Dead Load Deflection) + Axial : LC# 1 = D only, F - 256 lbs Combined , LC# 2 6D- + (1 - fc FcE) = 0.98 II (D=dead L=-Live S-snow W=wired 1=impact C--construction CLd=conce:traced) (All LC's are listed in the Analysis output) DESIGN NOTES: deflection limits are appropriateII 1. Please verify that the default for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. I II I I IPage 64 of 126 Ilii 00 WOr S . COMPANY PROJECT 1141 4 SOFTWARE FOR WOOD DESIGN I . June 16, 2003 10:53 (2)2x6 Cripple Stud.wwc I Design Check Calculation Sheet WoodWorks Sizer 10.42 Loads: II Load Type ...Distribution Pat- Location [ft] Magnitude Unit tern Start End Start End Loadl Dead Axial (Ecc. = 0.00") 4000 lbs II Load2 Snow Axial (Eec. = 0.00") 7000 lbs Self-weight Dead Axial 35 lbs Lateral Reactions (lbs): I f 9' 03 N p 0' A 9' Lumber n-ply, D.Fir-L, Stud, 2x6, 2-ply (3"x5-1/2") Support: Non-wood 1 Total length: 9'; volume= 1.0 cu.ft.; Pinned base; Load face=width(b); Built-up fastener: nails; Ke x Lb: 1.0 x 0.0=0.0[ft]; Ke x Ld: 1.0 x 9.0 = 9.0[ft]; I Analysis vs. Allowable Stress and Deflection using NDS 2012: Criterion Analysis Value Design Value Unit AnalysisjDesign--- Axial fc = 669 Fe' = 710 psi fc/Fc' = 0.94 Axial Bearing fc - 669 kc* = 977 psi fc/Fc* = 0.68 111 Additional Data: FACTORS: F/E(psi)CD CM Ct CL/CF CF Cfu Cr Cfrt Ci LC# I Fe' 850 1. . . - _ 1.00 1.00 2 Fe* 850 1.1515 11.0000 11.0000 0.726 1.000- 1.000 1.00 1.00 2 CRITICAL LOAD COMBINATIONS: Axial : LC #2 = DTS, P = 11035 lbs Kf = 1.00 I D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake All LC's are listed in the Analysis output Load combinations: ICBO-UBC Design Notes: 1. WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2012), the National Design Specification (NDS 2012), and NDS Design Supplement. I 2. Please verify that the default deflection limits are appropriate for your application. 3. BUILT-UP COLUMNS: nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. i I I I Page 65 of 126 1 COMPANY PROJECT WoodWorks® SOFTWARE MR WUOU DESIGN June 16, 2003 10:52 (1)2x6 Cripple Stud.wwc Design Check Calculation Sheet WoodWorks Sizer 10.42 Loads: Load Type Distribution Pat- Location [ft] Magnitude Unit tern Start End Start End Loadl Dead Axial (Ecc. _ 0.00") 2000 lbs Load2 Snow Axial (Ecc. = 0.00") 350010 lbs lbs Self-weight Dead Axial Lateral Reactions (lbs): o N m 0` 9 Lumber n-ply, D.Fir-L, Stud, 2x6, 1-ply (1-1/2"x5-1/2") II Support: Non-wood Total length: 9'; volume= 0.5 cu.ft.; Pinned base; Load face=width(b); Ke x Lb: 1.0 x 0.0=0.0[ft]; Ke x Ld: 1.0 x 9.0= 9.0 [ft]; 11 Analysis vs. Allowable Stress and Deflection using NDS 2012 : Criterion Analysis Value Design Value Unit Analysis/Design II Axial = fc 669 Fc' = 710 psi `,c/Fc' _, 0.94 ._. Axial Bearing fc = 669 Fc* = 977 psi fc/Fc* 0. 68 Additional Data: 11 FACTORS: F/E(psi)CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 850 1.15 1.00 1.00 0.726 1.000 - - 1.00 1.00 2 Fc* 850 1.15 1.00 1.00 - 1.000 - - 1.00 1.00 211 11 CRITICAL LOAD COMBINATIONS: Axial LC #2 = D+S, P = 5518 lbs D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake All LC's are listed in the Analysis output II Load combinations: ICBO-UBC Design Notes: 1. WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2012), the National Design Specification (NDS 2012), and NDS Design Supplement. 2. Please verify that the default deflection limits are appropriate for your application. 3. BUILT-UP COLUMNS: nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. I I I iPage 66 of 126 - I ifl WoodWorks COMPANY PROJECT SOI IWAkt WA°WOOD IIkSIGN II June 16, 2003 10:53 4x6 Cripple Stud.wwc I Design Check Calculation Sheet WoodWorks Sizer 10.42 Loads: IILoad Type ~Distribution Pat- Location [ft] Magnitude Unit tern Start End Start End Load1 Dead Axial (Ecc. = 0.00") 7000 lbs 11 Load2 Snow Axial (Ecc. = 0.00") 10000 lbs Self-weight Dead Axial 41 lbs Lateral Reactions (lbs): I 9' 0o M0, o Nv I m .. 0' A 9' I Lumber Post, D.Fir-L, No.2, 4x6 - (3-1/2 x5 1/2 ) Support: Non-wood II Total length: 9'; volume= 1.2 cu.ft.; Pinned base; Load face=width(b); Ke x Lb: 1.0 x 0.0= 0.0[ft]; Ke x Ld: 1.0 x 9.0 = 9.0[ft]; Analysis vs. Allowable Stress and Deflection using NDS 2012 : IICriterion Analysis Value Design Value Unit Analysis/Design Axial fc = 885 Fc' =- 976 psi fc/Fc' = 0.91 Axial Bearing fc = 885 Fc* = 1708 psi , = 0.52 IAdditional Data: FACTORS: F/E(psi)CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1350 1.15 1.00 1.00 0.572 1.100 - - 1.00 1.00 2 Fc* 1350 1.15 1.00 1.00 - 1.100 - - 1 .00 1.00 2 CRITICAL LOAD COMBINATIONS: Axial : LC #2 = D+S, P = 17041 lbs D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake All LC's are listed in the Analysis output I Load combinations: ICBO-UBC IDesign Notes: 1. WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2012), the National Design Specification (NDS 2012), and NDS Design Supplement. 2. Please verify that the default deflection limits are appropriate for your application. I I I Page 67 of 126 I COMPANY PROJECT WoodWorks® SOFTW4RF FOR WOOD DFSIG:V Nov. 18, 2016 16:39 4x8 Cripple Stud.wwc II Design Check Calculation Sheet WoodWorks Sizer 10.42 Loads. Load Type Distribution Pat- Location [ft] Magnitude UnitII tern Start End Start End Load1 Dead Axial (Ecc. = 0.00") 11400 lbs Self-weight Dead Axial 54 lbs II Lateral Reactions (lbs): III coo m 0" 9'' 1 Lumber Post, D.Fir-L, No.2, 4x8 (3-112"x7-1/4") 11 Support: Non-wood Total length: 9'; volume= 1.6 cu.ft.; Pinned base; Load face=width(b); Ke x Lb: 1.0 x 9.0=9.0[ft];Ke x Ld: 1.0 x 0.0=0.0[ft]; I Analysis vs. Allowable Stress and Deflection using NDS 2012 : il Criterion Analysis Value Design Value Unit Analysis/Design Axial fc = 451 Fc' = 451 psi fc/Fc' = 1.00 Axial Bearing fc = 451 Fc* = 1276 psi. fc/Fc* = 0.35 Additional Data: 11 FACTORS: F/E(psi)CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1350 0.90 1.00 1.00 0.354 1.050 - - 1.00 1.00 1 Fc* 1350 0.90 1.00 1.00 - 1.050 - - 1.00 1.00 1 CRITICAL LOAD COMBINATIONS: 11 Axial : LC #1 = D only, P = 11454 lbs D=dead L=live S=snow W=wind I--impact Lr-roof live Lc=concentrated E=earthquake All LC's are listed in the Analysis output IILoad combinations: ICBO-UBC Design Notes: 1. WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2012), the National Design Specification (NDS 2012), and NDS Design Supplement. 2. Please verify that the default deflection limits are appropriate for your application. I 1 I IPage 68 of 126 COMPANY PROJECT II a Woodworks® SOFTWARE FOR W0001)F5&N II June 16.....20 3 0 11:02 6x6 Cripple Stud.wwc II Design Check Calculation Sheet WoodWorks Sizer 10.42 Loads: ' Load II Type Distribution Pat- Location [ft] Magnitude Unit tern Start End Start End Load1 Dead Axial (Ecc. = 0.00") 9000 lbs Load2 Snow Axial (Ecc. = 0.00") 14000 lbs Lateral Reactions (lbs): I 03 —I 0 lo I 0' A 9' Timber-soft, D.Fir-L, No.1, 6x6 (5-112"x5-1/2") Support: Non-wood Total length: 9'; volume= 1.9 cu.ft.; Post and timber; IPinned base; Load face=width(b); Ke x Lb: 1.0 x 0.0= 0.0[ft]; Ke x Ld: 1.0 x 9.0= 9.0 [ft]; Analysis vs. Allowable Stress and Deflection using NDS 2012: Criterion Analysis Value Design Value Unit Analysis/Design Axial fc = 760 Fc' = 823 psi fc/Fc' = 0. 92 Axial B GrinGTfc = 760 Fc* 1150 psi fc/Fc* = 0. 66 11 Additional Data: FACTORS: F/E(psi)CD CM Ct CL CP / CF Cfu Cr Cfrt Ci LC# Fc' 1000 1.15 1.00 1.00 0.715 1.000 - - 1.00 1.00 2 11 Fc* 1000 1.15 1. 00 1.00 CRITICAL LOAD COMBINATIONS: - 1.000 - - 1.00 1.00 2 Axial : LC #2 = D+S, P = 23000 lbs D=dead L=live S=snow W=wind 1=impact Lr=roof live Lc=concentrated E=earthquake All LC's are listed in the Analysis output II; Load combinations: ICBO-UBC Design Notes: II1. WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2012), the National Design Specification (NDS 2012), and NDS Design Supplement. 2. Please verify that the default deflection limits are appropriate for your application. I I I Page 69 of 126 I COMPANY PROJECT 1140 1 ssil I WoodWorks sorto'AR{ram WOOF'F'OGti ,....... Nov. 18, 2016 16:41 6x8 Cripple Stud.wwc Design Check Calculation Sheet WoodWorks Sizer 10.42 Loads: Load Type Distribution Pat- Location [ft; Magnitude Unit tern Start End Start End Loadl "Dead Axial (Ecc. =; 0.00")) 32000 lbs Lateral Reactions lbs): 11 y l 9' II cn 0' WII Timber-soft, D.Fir-L, No.1, 6x8 (5-1/2"x7-1/4") Support: Non-wood Total length: 9'; volume=2.5 cu.ft.; Post and timber; Pinned base; Load face=width(b); Ke x Lb: 1.0 x 0.0= 0.0 [ft]; Ke x Ld: 1.0 x 9.0=9.0 [ft]; I Analysis vs. Allowable Stress and Deflection using NOS 2012 Criterion Analysis Value Design Value Unit Analysis/Design Axialfc = 803 Fc' = 804 psi fc/Fc' = 1.00 II Axial Bearing fc = 803 Fc* = 900 psi fc/Fc* = 0.89* *Column requires a bearing plate at top as per NDS .l0.1. - Additional Data: 11 FACTORS: F/E(psi)CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1000 0.90 1.00 1.00 0.893 1.000 - - 1.00 1.00 1 11 Fc* 1000 0.90 1.00 1.00 - 1.000 - - 1.00 1.00 1 CRITICAL LOAD COMBINATIONS: Axial : LC #1 = D only, P = 32000 lbs D=dead L=live S=snow W=wind I=impact Lr=roof live Lc-concentrated E=earthquake All LC's are listed in the Analysis output 11 Load combinations: ICBO-UBC Design Notes: 1. WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2012), the National Design Specification (NDS 2012), and NDS Design Supplement. 2. Please verify that the default deflection limits are appropriate for your application. I I I II Page 70 of 126 I 111141 COMPANY PROJECT Wood W SUH WARP f QR WOOD d.1MCA 1 Feb. 10,2011 17:00 5 1-8x6 glu-lam.wwc Design Check Calculation Sheet I WoodWorks Sizer 10.42 Loads: Load Type Distribution Pat- Location [ft] Magnitude Unit I tern Start End Start End Loadl Dead Axial (Enc. = 0.00") 25000 lbs Self-weight Dead Axial 80 lbs IILateral Reactions (lbs): 9' I co m o .8 0' A 1 9' Glulam-Balanced,West Species, 24F-1.8E WS,5-1/8"x7-1/2" I 5 laminations,5-1/8"maximum width, Support: Non-wood Total length:9';volume= 2.4 cu.ft.; Pinned base; Load face=width(b); Ke x Lb: 1.0 x 9.0=9.0[ft]; Ke x Ld: 1.0 x 9.0=9.0[ft]; II, Analysis vs. Allowable Stress and Deflection using NDS 2012 : Criterion Analysis Value Design Value Unit Analysis/Design Axial fc = 652 Fc' 1140 psi fc/Fc' = 0.57 Axial Bearing fc = 652 Fc* 1440 psi fc/Fc* = 0.45 Additional Data: 11 FACTORS: F/E(psi)CD CM Ct GL/CP CV Cfu Cr Cfrt Notes LC# Fc' 1600 0.90 1.00 1.00 0.792 - - 1.00 - 1 Fc* 1600 0.90 1.00 1 .00 - - 1.00 - 1 CRITICAL LOAD COMBINATIONS: I Axial : LC #1 = D only, P = 25080 lbs D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake All LC's are listed in the Analysis output Load combinations: ICC-IBC IDesign Notes: 1.WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2012),the National Design Specification(NDS 2012),and NDS Design Supplement. I 2. Please verify that the default deflection limits are appropriate for your application. 3. Glulam design values are for materials conforming to ANSI 117-2010 and manufactured in accordance with ANSI A190.1-2007 4. GLULAM: bxd=actual breadth x actual depth. I I I Page 71 of 126 COMPANY PROJECT A ft I 1 WoodWorks® sof1t.....4.GN Feb.10,2017 18:19 5 1-2x7 1-2 glu-lam.wwc a Design Check Calculation Sheet 1111 WoodWorks Sizer 10,42 Loads': Load Type Distribution Pat- Location Ift$ Magnitude Unit tern Starr End Start End Loadl Dead Axial (ICC. = 1.25'i 2:3000 lbs 111 Self-weiaht Dead Axial . . R5 lbs Lateral Reactions(lbs): 3° 1. . 1 , . .. co -1 m t) o 171 , . a a Unfactored: Dead 383 -383 Factored: R->L 383 Load comb 91 III L->R 363 Load corMo 81 „ #1 Glulam-Balanced,West Species,24F-1.8E WS,5-1/2"x7-1/2" 5 laminations,5-1/2"maximum width, Support:Non-wood Total length:9';volume= 2,6 cult; Pinned base;Load face=width(b);Ke x Lb:1 0 x 9,0=90[ft];Ke x Ld:1,0 x 0.0=0.0[ft]; Analysis vs.Allowable Stress and Deflection using NDS 2012 ill Criterion AnalVsis value pesAln vaiuo trait Aniavi.siciesl.p. Shear fv - 14 018' . 238 ps1 ' ' ...„.,740. . 0,06 Bending(.) lb = 802 Fb' - 2148 psi fb/Fb' = 0,37 Axial fc - 002 Fc. = 1203 psi fc/Fc. Combined (veal + eccentric mgment) Eq.15.4-3 , 0.02 III Axial Bearing IC . 002 Fe. . 1440 psi fr/rc* - 9.66 Dead Defl'n 0,09 - <L1999 Live Defi'm . negligible Total Defi'm 0.11 - 1/610 0.60 a 1/190 IA 0.22 Additional Data: FACTORS: 1'/E(psi)CD CM CL CL/CP CV CII Cr Cfrt Notes LC# Iv' 265 0.90 1.00 1.00 » - 1.00 1.00 1 104 2400 0.90 1.00 1.00 0.994 1.000 1.10 1.00 1.00 1.00 1 Fc' 1600 0.90 1.00 1,00 0.835 - - - 1,00 - 1 E' 1.8 million 1.00 1.00 - 1 Fain' 0.95 million 1.00 1.00 - - - - 1,00 - 1 Eminy' 0,85 million 1.00 1.00 - - 1.00 - 1 III F ' 1600 0.90 1.00 1.00 a - » - 1.00 - 1 CRITICAL LOAD COMBINATIONS: Shear 1. LC ill = D only, V = 393, V design = 363 lbs Bending(+): LC #1 = D only, M - 3444 lbs-ft Deflection: TC #1 = D only ftotall Axial : LC 81 = D only, P = 33085 lbs II/ Eq.15.4-3 : LC 81 - D only Fb'= 2148 FcE=43925620 Pxe/S-fc(8xe/d) 802 D=dead L=live S=snow W=wind 1=impact Lr=roof live Lc.concentrated E=earthguake All LC's are listed In the Analysis output II/ Load combinations: ICC-LBC CALCULATIONS- beflection: ET . 348e06 lb-in2 .Live. deflection . Deflection from all non-deed loads (live, wind, snow-) Total Deflection - 1.50Dead Load Deflection) t Live Load neftectiort. Lateral stability (i): Lu - 9' Lc - 16'-6.75. 013 - 7.C2 III Design Notes: 1,WoodVVorks analysis and design are in accordance with the ICC International Building Code(18C 2012),the National Design Specification(NDS 2012),and NDS Design Supplement 2.Please verify that the default deflection limits are appropriate for your application 3 Glulam design values are for materials conforming to ANSI 117-2010 and manufactured in accordance with ANSI A190.1-2007 4.GLULAM:bxd=actual breadth x actual depth, 5,Axial load eccentricity applied in direction of load face only,It is the designers responsibility to check for effect of eccentricity in the other direction, I I I IPage 72 of 126 COMPANY PROJECT Wood W00 ata/IwA Rd FUN WOOL,neaiov Feb,10,2017 18:19 5 1-8x8 glu-lam:wwc Design Check Calculation Sheet WoodWorks Sizer 1,142 Loads: Load ' Type Distr/but ori Pat- (ft)- Magnitude Unit Axial ....... Loadl tern, Stare End - Start Lnd 'tread Self-weight Dead Axial 'En-. = 1.00"'T 25000 lbs 6E lbs Lateral Reactions(lbs): . CD o Cr111 A 9' Unfantored:' _. Dead '. 23 Factored: _. _.. .. -232 R >L Load comb 232 ;.->R 232 #1 Load„comb- #1 #1 Glulam-Balanced,West Species,24F-1.8E WS,5-112"x6" W 4 laminations,5-112"maximum width, Support:Non-wood Total length:9';volume= 2.1 cult,: Pinned base;Load face=width(b);Ke x Lb:1D x 9A=90[ft];Ka x Ld:1.0 x 0.0=0.0[ft]; Analysis vs.Allowable Stress and Deflection using Nos 2012 ':.. C.rutntlon #ot 1yEit tjalaia Deslp,Ta Value 1.Unit anal .s/a/Design .14b0ar _ >v._ 11. Fe +� Rending(ii tb = 759 Ob' 150 pain bilA/rb. ,- 0,35 Axial _ 1203 pal _c/Sc' = 0.33 fa: 7 ) k - 1203 psi ..c'i'-'c 0.6' Combined fax,al 4 eccentric aamerat,t Eq.15.4-3 = 0..75 Axial. Bearing Sc 760 Sc' - 1440 pal fc/t"c 0.:53 Dead Dcf 0 I a1../999 • .. _Live. Def 1'n ;egli ga.b.l 0 Total 00f 1.4n 0,26 v ;0./665 0.60 w, 1,/160 ] in 0.26 Additional Data: FACTORS: F/E ipsi7 CD CM CCCL/CP CV Of e Cr Cf rt Notes LC# 55' 265 0.90 1.00 1.00 - 1.00 1.00 1 lb's 2400 0.90 1..00 1.00 0.995 1.000 1.00 1. UU 1„00 1.00 1 Sc' 1600 0.90 .1.00 1.00 0.635 - - 1,00 1 5' 1.8 million 1.00 1,00 - 1,00 111 , Ervin' 0.95 Hill 1.00 1,00 - 1 1, 00 - 1. Eminy' 0.85 million %. u` 2.00 - - _. 0 .. Pc. 1600 0.90 10 1.010I 1.03 CRITICAL LOAD COMBINATIONS: Shear I LC #I = D only, V ... 232, V design = 232 lbs Bending(+): LC #1 = 7 only, = 2066 lbs-ft Defection #: = D only (`total) III Axial _.0 #i only, F = 25063 lbs Eq,15.4-3 41 = 0 only Fb' 2150 FCE=28112400 Pxe/S=fc(6xe/d)== 759 D=dead L-live S==snow 14=wind 1-impact Ie- roof live Lc=eoncen_rated E=earthquake All LC's are listed in the Analysis output III Load combinations: ICC-IBC CALCULATIONS Deflection: ET . 176e06 -b n2 "Live" deflection = Deflection from all non-dead .lade (live, wind, o10 TotalDeflection _ 1.50iDead Load Deflection) a Live Load Deflection. Lateral stability c+): L:;. :.: 9' Le = 1.6'-6.75" RB =- 6.26 III Design Notes: 1 WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2012),the National Design Specification(NDS 2012),and NDS Design Supplement 2.,Please verify that the default deflection limits are appropriate for your application, 3.Glulam design values are for materials conforming to ANSI 117-2010 and manufactured in accordance with ANSI A190,1-2007 4 GLULAM:bxd=actual breadth x actual depth, I5.Axial load eccentricity applied in direction of load face only II is the designers responsibility to check for effect of eccentricity in the other direction. I I 1 Page 73 of 126 111 COMPANY PROJECT Iii WoodWorks® sorrx,xr Pox WOOD nIIICA Feb,.10,2017 18:19 5 1-8x6 glu-lam:wwc Design Check Calculation Sheet orks Sizer 10A2 1 WoodW Loads: Load Type Distribution Pat- Location [fti Magnitude Unit tern Start End Start Snn lbS l5ead Axial (Sec. 0.50.) 33000 lbs Loadl 61 lbs Self weight Dead Axial. • Lateral Reactions(lbs): 8. 8I> $ a• Jr a torod c 172 Dead '.77 Fac(.S 172 LoaIII d e k > 1 load. comb 1.->R 172. 111Lead_4L'mh_ 61,. - Giulam-Balanced,West Species,24F-1.8E WS,5-112"x6" 4 laminations,5-112"maximum width, Support:Non-wood Total length:8';volume= 18 cu.ft,; Pinned base;Load face=width(b);Ke x Lb:1.0 x 8,0=8.0Ift);Ke x Ld:1.0 x 0,0=0,0 IN; Analysis vs.Allowable Stress and Deflection using NOS 20121 Crit:crion Anu1 aaa-Value lieslgn Value unit :maiyaislDealgn . Shear i"v . 0 Fail iii 236 psi fvfFv, - •0i ' icnding(+). fb = 100 Fb 2151 psi Lb/F. 0.24 '. Axial n0e 1279 Dal -g 1,.4 8;,+ combined (Ax 61 " eccentric m,ts�rikl .70 Axial. baring t .10 Fc _. 1.440 psi .:ciFG 1 1/1 Dead Defl'n 0,05 ' <1/999 Live Della negligible 0.15 Total ;6A1O'n 0.04 - ,‹149991./ 1d999 0.53 ; 190 in _.. . - Additional Data: .:c:# 1 FACTORS: l/E(psi)CD 'M CL Cl/%P CV flu Cr ,*rt Doles ... - 1.00 1.00 i. to",. 2000 0,90 1.00 1.00 0,996 1.000 1.00 1.00 1.00 1_00 1Fo' 1000 0,00 1.00 1,00 0.666 - - i.G0 I E' E: 1.8 pillion 1,00 1,30 - - - 1.00 - I_ 1.00 - 1 Emin' 0.9', million 1.01 1.00 - - - - 1 Eeiny' 0.65 million 1.00 1.00 - - - - 1.00 '.. Fc` 1600 0.90 1.00 1,00 - - 1.00 1 CRITICAL LOAD COMBINATIONS: 172, V design 7?. lbs Shear 1.0 111 0 only, . B ng t+ LC 01 C only, ^1 = 1375 lbs-ft III Deflection: LC Il D only (total ) . Ax aLC #1 ' U only, P = 33061 lbs Ea.15.4- LC ill = D only Fb' 2151 F .E=20112400 Pxe/S=fc6xeld1= 500 rr 4 D=dead L live S=snow W=wind i=impact Lr==roof live Lc=concentrated E=earth uake All. IC's are listed in the Analysis output Load combinations ICC-IBC CALCULATIONS, III Deflection: ET - 1.78e06 lb ir,2 "Lice"E deflection ction Deflection from all. non-dead loads (live, wind, snow..:) Total t: al. Deflection -- 1._0(Dead Load Deflection) " Lave d Deflection. Lateral 'era i_. .stability {'(: La - 8' Le = 14,..8.53° R3 = 6.92__.. Design Notes: Supplement. 11 1:WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2012),the National Design Spec cation(NDS 2012),and NDS Design 2.Please verify that the default deflection limits are appropriate for your application, 3.Glulam design values are for materials conforming to ANSI 117-2010 and manufactured in accordance with ANSI A190,1-2007 4 GLULAM:bxd=actual breadth x actual depth._ I l I of 126 Page 74 Grain,Pc(160) oral's!to t) 12 P- se18114 Simpson Strong-Tie ssion Capacityd Plate 11 srliiiti Capacities I Sim— comPre psON 10 Post Copeci 0) SIM --1:..rie Illar#111,r1„01111 ,, Pc 8 franb--- b Parallel to Grain, AA. _ • Douglas-Fir-Larch PlateHeight(It, , 1_1.'1 - .)....../ r Dougla Compression l Tea , --" 245 '':;46.35-1:44. ,iiintions,,,1111=11 :::,,,•-`4:-'. ' 92''''xia arp Comp Nominal 18. .,,.: ;)•170 :,.'-,--, '--:°'/i'',.:,, ,,,,„..,,,,„„„ ' ,t -;,:i5714;*fr-, Compression • Loads fo 7 9, 4::f''.', :=,:: tr1003GGiii,11..ar 40:,,,,,,,,,;11-653551 11/1 16 Allowable Parent, 8 3170 25',, '.1J,-,....-, ' 4 101; "14, ::-i ,,,18,0745''''' '(32„,,,",?,!'"'A6741.i$5t1-It 11 ti.i'r;75 - 'ii)-1'64t54, 6 I Post LumberGrade Pei ',-.-", ,),2,., ,. -;);-;,' 'f iO3;151 ',.4;'1,..2-4;\A , .,i2ei7 '''''il-:,,:fb4--51:: 1.,itTit,:7'1 , 32800 ,..._ 5285340 4 6320 :::,,;:-.. ),)33 ..., -..,,,,;,„1.09-.4;:.,).:'-'--:;5-,Af 4,4,8-6,5,554,ti......-41196.1.ii? „,1947,,,,; • Framing Size *2 5464„, 7395 750a / ,,,:1•,,,;,,, ,,,,c,, t,,,;,3236.. .4 448385i,,,i.,1gly,4,, 7,,4•334.5g 4,?2,4i5.1::f„,,,76511)5' 8 2x4 #24, -'" '.!‘A' 6 9510 ', , , ,5,,,025'2,--xs,-" iv ', 735'i 2768•6'v `4 *• S ,*4°' I 3x4,4 -:1-- '-55 11540 ''''''' ''''-i':-1*--"-'ff00,4,616,-''. 04,,7•;;;', '''25,.,,,"-6•:: '',7'10035Z*, ,,,;,$6414T ' 2-214' " ,„' ' -030-' 15090 7:71-ri,,,,-.kg;'**50.-.''',12050 '.4 4,22 h'',,,,, ".-3,w541709554/4' 2 „,,L4x fit'*. ,„ - [419080- "'„,i1Z947-.f ta.,1,8.7.3 . ',,40e4:-:4( 07m: 342.isiss io ;.'-- .„,, ..: =-2ov_. .--- IC ., 588015090 „.4.,:.897017•;,"f41,627-'--i!:':','13-46.5*t'',fur?, ',.”' 1 737'.. ,#457 P (160) 4x8 2 5 ,5',!, t'-,..'St' I 1 4Nt, _ ,......4.x6 f,.;.-.....' 45°155 ';,14-9155''-,, 7'.i.-',„3;,,,- , 11i85 1407Q -,,i ,-- Grain,•c 2 _ i to_ I-- ' _ 4ifo #2 80.9156 k:-.1..4,426!'i4128,82! i v9-551,„,, -0415 Parallel -t 01) 12 Capacity 'feign - 12x6 ''I1203014 ',"••' v8.9405:,'-i;2..i5r::.1.5:---, --f-,'"25-'2 I Cap Plate 11 alipaHr Compression Top ComPre Nominal T 10 anim ..;,,-,;:i I 2-xx96 #2#2 154759 . -2,2(65t1',4,i-12("' Wil ' inch 4x6 , #2#1257801890 '''''34' 00) 9, !ORM P 0 L.- M -.: to Grain, - ,8,,,, , ,,, ..„- I . 6w- do -36-bi6x6 ,,,, Parallel 1 of„) 12 ,,, ,,,: ;-„,"r ., 6x8 f 1 rn Pine Capacity late Hai°11 ' • ''' '''''; ' Southern Compression al ToPP tr-50 '''•;'' - '''':. ,5 for Comp Nominal 10 4.;; ;21.; ,.......7.1 J. 0 otes Loads 9 1660 ;:'," ,'-‘ ''',:-,'': '3 ' I See-f° tn CompressionPerp to 8 2270 '.:''L:-4 '4' '''' ' I-'''..'; ,11.,',171?-44- ,,, 4408,P5;24'.: Allowable Lumber Grain,. ,.,., , ,.• ', T724 ,.,,,,T, 1',!...4--' ' , ,11591;/t Allow e 4 , : ,, -.;:c---, ..-""724''' -4-:.i755'1' ,,/A520 , IA-T47,7-it.; 2 Post size1 Grad 4945 ,,:,,,,, ;,,,,, ,. • ,,,,15 ‘ -: : :-.;-77- ,..la „ ,fili ;J,,i,,i,..),:15,, ,-,„ 1:73-a5"..;i:;, 1791:i I Framing 2x4 ##2 : ,,,i ',,. I `:::,„,,,C _ :,,,,,,:i„8-,a.,., : ,/,,,..,,,, , :,..,;.,.:::4;.1.,,i,,,,t,,,,,,,,,03,--?:1-(15, ,,,,!.%23,,,; 6593.507,,:: 28105061 , 3x4 .--t- 42 ea.!, .u,,i4 liwiy- ' .;•-ci.ii-:. , 47!.I7 . 'i4,4:.,--17---- --'2-,-4,1 k'',;.' 54,,,,,,'"livr I:.,32180 I 2 ,,--2.2x4 ' 899 ,...,_,,. -•};-0 )738:1,,),,,, ,, 6d,':1„,;;;•,, :' 11;765 4, ---7-,/,-: ,!-29,,-5-7 .ii—575, I #2 108757''''''4;,-- -4'%:(4- 3:;14' ''" il ::1;f:' ; '-1. 560; 1:' i1 i43,°,3,-16!'. ''' 38 I 4-locn 6 ;„„_;4,, 16/90 /,,,3154. ',1 ',,/,[ - i54(1,,,, ' :16150; 15655,45111!----- , p:71-611- / Wa II :ti:g Trni----iy 4660 <ia.r51.6,i F---11:.;i7-5 ,', ',185947,- :',A724,5(()):;' 11.---- 4x iii I - 10 I 42 777r0 .4112..:,.,;:,..)." 1'-i15C.',4;„, ',)8534,9',,,; --,•23...k4 paro'Heino)(ft.) 1122, 6 #2 532 ,,-1' 0* ', A270 2, .2568v ' 2x i .2 10875 24-;.153 ,,,, ,•,-;,2,, 0,-•,• solaibaPlIp Plate i 1175 ---liTi'i-I 3x6 , ---:-" ,, ,,,, „„cA , compre Nominal 10 15,0 - wi. 2 6,„,,,),,,----ii fg8? 21495" 15 ,k ''521 2- x I 17090 2913---- 5 9 ,,, 1905 26.! 3095 .ch 4.X6a 121 iijO--' -- • (100) 40* 3175 —31°6 0 ,..-ntiii:Pc 8 ,-- '''''23 54,:4, 166" ' 3680 398 6i-ilvr;11 3-2xv !,' Parallel to•••• '2930 -,,,,,,38•- ...- .0 8310 6x6 /1 )(11- 12 x" 7511- 4440 47* ,A085 e-Fir ocifY Heigh 305 - ,•74805,- #f 4-6 , 710 6310 ''",'"" ,--ex-8 Spruce-Pine-Fir sion Sze Top Plate 11 1 2170 '5869 ,- et 94555- 15 -5725,0' 4*41-45 I 1- ' for Sp Compression Nominal T- 10 1540 ,15 `;!'• "0 ',10,19* 76 . -,- ''.545, --4 9770 -4:- ads --;-07_ 2570 26- '-%%-884 el 4i4 55-- °-,Y617`''*-- '',,•9-, 0-- '''- footnotes Compression r....---Lc) 'p to 9 , 718;0--- 3085 3040 r7,1378350 "--- ,9359 •''' 412,50', 1149.H,5-1195.451' I See ...owable iomba/ 1 Ppecraiin, --,,ng 5:,:,', t ,322.746°5 ', .6'20-ri;5-70 46253595 1 53291195 /'-:-141;e9b ''' 'ill:411205;,.:/021.0,3.55r? 'kr- 2-127:;5' ''''' ' Post F!/ tie 4495: ,,, 44' 65 4515 ,A1609 * A .-5,4 '',-,,,,n7i,"' Gra 2230. : 4' 5 ,s245 ,," 5545 61 , k 625- ', 4192094.. -0,1241.!,,., 4134,31'' log Size #142-4- 372'' )- '654,0- :, ,'745 :2' 7395. k, 62Sq' , -,1150-0,' 728795 ,, c3gLA--- 1 From 4---. ii*2 1465 -- .641' , - ',.' „„ , 6035?, -8769 , .,;k9,44,40;1,, ,a,g ,L''''' a 2 x 1 # ::;,"' i 205 ,. '9320 ,- .199?, -*-,,, 1,,,,,s60 -' .10515-..'' --,,1 -1-0„,.-: ,,,,,,,Ni‘-'' 3x4 #114 1 5 6 ,1085 • ,„, 6885 luki 0 k" , ,,,1,70",,, TrI,835 ., . 2x-4 411#2 1 669 kk 1 A5:k.' "lz 1475 1207 , 'w15, ,,, . , - 2--4 1 ,,,,i2 8925 -,77-ckk, ,kk-,1k' un.- ,,,,,,t.p,,,,, i 4.1nc0 4x:4 1 -,i,2 3505 -: 1292;-, ,4 13770r,66D 4- ,,,24-l4;i '' I i Wal' 3-22x4 i 717#Tr 5845 p,'1S'.11-1* --.7;45_'..1 4-2x6 ,1102 7015 - 2z4:2; ,,,,, k — #1/#2 10520 -4,,-,,,$'1'4 3x68 1 1/#2 i 14025 2x ,, pi- 3/5 I 6-Inch 1-:2x6 ' #1/42 wall -7x6 - - 4,.. I _ See footnotes I nex,torsitAchnic wi nnri_nonstri,rlinn-nnn al-nategimst-c8Dael-rties I ,intgirmnArtn" . revninrewl I httn„ilw"'"' fr 11/18/2016 Post Capacities I Simpson Strong-Tie Page 75 of 126 Post Allowable Compression Loads for Hem-Fir — Lumber Perp to Compression Capacity Parallel to Grain,Pe(100) Compression Capacity Parallel to Grain,P (160) Framing Grain, Nominal Top Plate HAM(ft.) SIMPSON P Plate Hel,h#(tt.} Size Grade P01 9 10 ~_ — 10 #2 2125 '7263M 2 352511 2880 23951210 745 Stumm-Tie 1770 1465 1230 2x4 �-� � 2115 1730 3x4 #2 3545 2020 ,® ,1.r.,_ ri • •fi'i-Tri i 'cam" 3540 2925 2460 4-010h •._.-2-2x4 _. .:.._.�2, x ...4255- 2 1 4230 3460 2875 - i Wal 4x4 � 4960 I 5� ",� 4935 4035 3355 2830 4125 3415 2870 t° • " 5� .)eat g�" Int 6380 71190,1 6340 5185 4310 3635 :02301 446535" 5305 4390 3690 X10970 7075 5855 4920 _.. 8505 10525 8455 6915 3 5750 4850 >; �. ,, ��� �� �413.5r -1;,580 2x6 #2 3340 x:7950; 6800 = 945 506 .. l, 2 3x6 #2 5570 : ��.0 1 47 t r� �� " t 5640 , i i 0 9 6-Inch `fi ; .2 - - X6165 WaPI 2.2x6 �„� 6685 5 it � �'i37 �4= 11,810 �1p 3t?� 11a�25� '167 3-2x6 10025 2385 y ' 0645'; X77115 .S1 I x.31,90 e » 504'423205 1 1»1 7 ti #2 13365 3 05x. ,22 i "3620.` 5 362e, = = 5 -4.16326 : 4-2x6 ��.. See footnotes Post Tension Load Tables Post Tension Loads for Douglas-Fir-Larch Allowable Tension Lumber Pt, (160) Framing Salt Diameter(in.) Size Grade 0 Glx % ' 1 2x4 #2 7245 6080 5820 5305 5045 3x4 #2 12075 10135 9705 8840 8410 2-2x4 #2 _.._14490 12160 11645 10610 10094 1 4-Inch 4X4 #2 16905 14190 13585 12375 11775 Wall 3-2x4 #2 21735 18240 17465 15915 15135 4x6 #2 23025 19325 18500 16855 16035 4x8 #2 28015 23510 22510 20510 19510 4x10 #2 32765 27500 26330 23990 22815 2x6 #2 9865 8860 8635 8185 7960 3x6 #2 16445 14765 14390 13640 13270 2-2x6 #2 19735 17715 17265 16370 15920 6-Inch 4x6 #2 23025 20670 20145 19100 18575 Wall 3-2x6 #2 29600 26575 25900 24555 23885 6x6 #1 32670 29330 28585 27100 26360 6x8 #1 44550 39995 38980 36955 35945 See footnotes i I I I httrw.•I/wuiw etrnnntia rnminrnrit irteirrnnartnrc/wruvi-r.nnatn rtinn-rnnn rtnreRxhniral-nntachxxt-ranacities 4/5 I 11/18/2016 Post Capacities I Simpson Strong-Tie Post Tension Loads for Southern Pine Page 76 of 126 Allowable Tension Lumber SIMPSON Framing Pt, (160) Bolt Diameter(in.) streengerie Size Grade A tt�ttos://www.stronot'je.comn Search » ro29-4e .-42 5 Cl 4760 4555 4150 3950 3x4 #2 9450 7930 7595 6920 6580 2-2x4 #2 11340 9520 9115 8305 7900 4-Inch 4x4 #2 13230 11105 05 10630 9685 9215 Wall - _ I 3-2x4 #2 17010 14275 13670 12455 11845 4x6 #2 18480 15510 14850 13530 12870 4x8 #2 22330 18740 17945 16350 15550 4x10 #2 24605 20650 19770 1801517135 2x6 #2 7920 7110 693E 6570 6390 3x6 #2 132001 11850 11550 10950 10650 2-2x6 #2 15840 14220 13860 13140 12780 W. 6-Inch 4x6 #2 18480 6590 16170 .15330 I Wall 14910 3-2x6 #2 23760 21330 20790 19710 19170 6x6 #1 43560 39105 38115 36135 35145 6x8 #1 59400 53325 51975 49275 47925 See footnotes Post Tension Loads for Spruce-Pine-Fir I Lumber Allowable Tension Framing Pt,(160) Size Grade Bait Diameter(in.) 0 ' spa 1 2x4 #1/#2 5670 4760 4555 4150 3950 3x4 #1/#2 9450 7930 7595 6920 6580 4-inch 2-2x4 #1/#2 11340 9520 9115 8305 7900 Wall 4x4 #1/#2 13230 11105 10630 9685 9215 3-2x4 #1/#2 17010 14275 13670 12455 11845 4-2x4 #1/#2 22680 19035 18225 16605 15795 2x6 #1/#2 7720 6930 , 6755 6405 6230 3x6 #1/#2 12870 11555 11260 10675 10385 6-Inch 2-2x6 #1/#2 15445 13865 13515 12810 12460 I Wall . 3-2x6 #1/#2 23165 20795 20270 19215 18690 4-2x6 #1/#2 28315 25420 24775 23490 22845 See footnotes I I httos://www.stronotie.com/products/connectors/wood-construction-connectors/technical-notes/Dost-capacities 5/5 Page 77 of 126 r 4 Ii Client•. West Hills Development Project: RiverTerrace East ,...... Prot 0: 16-TW0 Date: 1'1118/2016 •• '"°:Ai By: YSP • FROELICH ENCi1NEER8, Cont. Spread Footing Design At Building Ext. Wall (II to joist) Loading Criteria Foundation Results Roof DL(Psf) 18 Dead Load(plf) 832 Roof Si(osf) 25 Ftg Dead Load(plf) 435 Floor DL(psf) 27 Live Load(pif) 320 Floor LL(psf) 40 Snow Load(plf) 300 Wall DL(psf) 10 IBC Eq.16-9(plf) 1587 I Concrete Wt,(pct) 145 IBC Eq.16-10(plf) 1567 IBC Eq.16-11(plf) 4 1732 Tributarff Areas Total bearing(psf) 866 Roof Trib(ft) 12 Allowable brg(psi) 2500I Floor trib(ft) 8 Footing OK Wall height(ft) 40 Stemwall ht.(ft) 1:5 Stud'Wall Loadings Results Stemwall width(in.) 8 Dead Load(pl1) 832 Footing width(in) 24 Live Load(plf) 320 1 Footing depth(in) 12 Snow Load( if) 300 Cont. Spread Footing Design At Building'Ext.Wall (I_to joist) I Loading Criteria Foundation Results Roof DL(psf) 18 Dead Load(plf) 1057 Roof SL(psf) 25 Ftg Dead Load(plf) 4351 Floor DL(psf) 27 Live Load(plf) 840 Floor LL(psf) 40. Snow Load Colt) 2332125 Wall DL(psf) 10 18C Eq.16-9(plf) Concrete Wt(Pot) 145 IBC Est 16-10(plf) 1617 IBC Eq.16-11(plf) 4 2216- Tributary Areas Total bearing(psf) 1166. Roof rib(ft) 5: Allowable brg(psf) 2500 -Floor trib(ft) 21 Footing OK Wall height(ft) _ 40 Stemwall ht.(ft) 1,5 Stud Wail Loadings Results Stemwall width(in.) ! 8y Dead Load(pifi 1057 Footlng width(in.) 24 Live Load(plf) 840 Footing depth(in.) 12 Snow Load(plf) 125 1 Cont. Spread Footing Design At Int. Brg Wall - 1st Floor Loadlncg Criteria Foundation Results 11 Roof DL(psf) 18 Dead Load(pit) 1651 Roof SL(psi) 25 Ftg Dead Load(plf) 290 Floor DL(psi) 27 Live Load(pif) 1800 ` Floor LL(psf) 40 Snow Load(pit) 50 1 Wall DL(psi) 10 IBC Eq.16-9{p8) 3741 Concrete Wt.(poi) 145 IBC Eq.16-10 ) 1991 IBC Eq.16-11(pit) 3329E Tributary Areas Total bearing(psi) 1871 1 Roof`Tib(it) 2 Allowable brg(psi) 2500. -Floor trib(ft) 45 Footing OK Wall height(ft) 40 Stemwall ht,(ft) 0 Stud Walt Loadings Results Stemwall width(in.) 8 Dead Load(plf) 1651 I Footing width(in.) 24 Live Load(plf) 1800 Footing depth(in) 12 Snow Load(plf) 50 1 I I Page 78 of 126 ICont. Spread p dF oot>rtg Design At Int.Bre Wall - 2nd Floor Loading Criteria Foundation Results I Roof DL(psf) 18 Dead Load(plf) 1146 Roof SL(psf) 25 Fig Dead Load(plf) 290 Floor DL(psf) 27 Live Load(pt) 1200 Floor LL(psf) 40 Snow Load(pit) 50 Wall DL(psf) 10 IBC Eq.16-9(plf) 2636 II Concrete Wt.(pct) 145 IBC Eq.16-10(Pit) 1486 IBC Eq,16-11(Pif) 2374 Tributary Areas Total bearing(psi) 1318 Roof Trb(ft) 2 Allowable brg(psf) 2500 I Floor trib(ft) 30 1 Doting K Wall height(ft) 30 Stemwall ht.(ft) 0 Stud Wail LoadingsResults Stemwall width(in.) 0 Dead Load(pit) 1146 I Footing width(in.) 24 Live Load(plf) 1200 Footing depth(in.) 12 Snow Load(pit) 50 I I I 1 I 1 I • I I I I 1 I Page 79 of 126 I I Cont. Spread Footing Design At Party Wall Loading Criteria Foundation Results Roof DL(psf) 18 Dead Load(Alf) m 1516 ERoof SL(psf) 26 Ft9 Dead Load:(ptf) 290 Floor DL(psf) f 21 Live Load(pif) 1600 Floor LL(psf) 40 Snow Load(pif) 50' Wall DL(psf) 10 IBC Eq.16-9(plf) 3406 Concrete'Wt.(pcf) 145 'IBC Eq.16-10(pit) 1856 IBC q.16-11(pit) 3044. 'Tributary Areas Total bearing(pat) 1703 Roof lrib(ft) 2 Allowable brg(psf) 2500 Floor tab(ft) 40 Footing OK Wait height(ft) 40, Stemwall ht.(ft) 0 Stud Wall Loadings Results Stemwall width(in.) 0 Dead Load(p11) 1516 Footing width(in.) 24 Live Load(pif) 1600 Footing depth(in.) 12 Snow Load(pit) 50 Cont. Spread Footing Design At Corridor Wall I Loading Criteria Foundation Results Roof DL(psf)- 18 Dead Load(pif), 1345 Roof SL(psi) 25, Ftg Dead Load(pit) 290 Floor DL(psf) 55 Live Load(pif) 900 ii Floor LL(psf) 100 Snow Load(plf). 625 • Wall DL(psf) 10 IBC Eq.16-9(pif) 2535 c 145 `IHC Eq.16-10(pif) 2260 Concrete Wt(p f) IBC Eq.16-11'(p11) 2779 Tributary Areas Total bearing(psi) 1389 I Roof lab(ft) 25 Allowable brg(psi) 2500 Floor trib(ft) 9 Footing OK. Wall height(ft) 40 a Stemwall ht.(ft) 0 'Stud Wall Loadings Results Stemwall width(in.). 8 'Dead Load(pif) 1345 III Footing width(in.) 24 Live Load(pif) 900 Footing depth(in.) 121. Snow Load(ptf) 625 I 11 I 1 I I I I I M MI IN NM O NM S 11111 N - 4111 M OM MB S M O MI 4111 FROELICH CONSULTING ENGINEERS INC., Client: Project: Project#: By: Footings Footing Size I Maximum Allowable Required Required Dimensions Used Dimensions Footing Bearing Load(Pt.) clan'�oW Area W(f) a L(ft) W(ft) LO ft Dn � Weight Pressure g 18"x cont x10" 3500 2500 - 1.40 1.18 1.18 1.5 1 - ,.,"- -2458 , - 24"x cont x 10" 14000 2500 5.60 2.37 2.37 2 3 10 58 750 2458 36"x cant x 10" 27000 2500 10.80 3.29 3.29 3 4' 10 758 24 - 10 1500 2375 2'-6"x 2'-6"x 10" 15500 2500 6.20 2.49 2.49 2.5 2.667- 10 833V 2450 3'-0"x 3'-0"x 12" 21000 2500 8.40 2.90 2.90 3 3 12 1350 2483 3'-6"x 3'-6"x 12" 27000 2500 10.80 3.29 3.29 3.5 3.333 12 1750 2465 4'-0"x 4'-0"x 12" 37000 2500 r 14.80 3.85- 3.85 4 4 12 2400 2463 4'-6"x 4'-6"x 12" 52000 2500 20.80 4.561 4.56 4,5 5 12 3375 2461 Required Area: _(p t/ga1ow)a.s to Bearing Pressure =(Prot+WRg)/(W*L) =(Ptot+Wag)/(W*L*3.1415/4) -o w co CD CO 0 0 N a) Client: Project: 44011* Proj.#: Date: • . By: FROELICH ENGINEERS )! ASCE 7-05 Earthquake Load Cs Factor Importance Factor(Seismic) I = 1.0 Basic Seismic Force Resisting System Light Framed Wood Shear Wall R= 6.5 Design Spectral ` Response Acceleration Seismic Design Coefficient Development Latitude Longitude_ Soy I S01 Category Cs 1 45.559 1 -122.853 [ 0.726 I 0.403 I D I" 0.1117 -Information in table was obtained from USGS website -Conservatively design all structures in all developments for the Cs design value specified below Controlling Cs Value 0.1117 I Use Cs =0.12 for Design in all Developments I Equations, [ Cs= Sps"`1/R 1Response Coefficient I -o w eQ m CO 0 IMO SO MIN 1111111 INS MIS OM MIR 811111, lilt SIN VIII UM Ill Olt IOW III, IND 1 Client: Project: River Terrace Project#: 16-TlOO Date: 11/18/2016 B y: YSP FROELICH EN GI N EERSA WIND FORCE CALCULATION-MWFRS Side-Side Event. ASCE 7-10 SECTION 27-2 METHOD 2-ANALYTICAL PROCEDURE Bask Wind Speeds Input 3 Second Gust Vas= 120 mph Wind Directionality Factor Kd= 0.85 Table 26.6-1 Page 82 of 126 Wind Importance Factor IW= 1.00 Wind Exposure Category= B Building Parameters Horizontal Dimension of Bldg B= 54 ft Measured Normal to wind direction Horizontal Dimension of Bldg L= 146 ft Measured Parallel to wind direction Mean Roof Height h = 40 fl Highest Roof Level hi,= 40 ft Approximate Fundamental Period Ta= 0.32 sec Eq. 12.8-7 Output-Fundamental Frequency f= 3.1 Hz> 1 Hz Therefore Rigid Topograd.ic Effects Input Hill Height H= 0 ft Figure 26.8-1 Length of 1/2 hill height Li,= 1 ft Figure 26.8-1 Dist. From Crest to Bldg.x= 0 ft Figure 26.8-1 Height Above Local Grade z= 0 ft Figure 26.8-1 Horizontal Attenuation Factor m= 1 Figure 26.8-1 Height Attenuation Factor g= 1 Figure 26.8-1 Shape Factor Kl l(H/Lh)= 1 Figure 26.8-1 Output-Topographic Multipliers K1 = 0.00 K2= 1.00 K3 = 1.00 Topographic Factor K = 1.00 I I I Page 83 of 126 is Gust Effects Input Integral Length Scale Factor f = 320 ft Table 26.9-1 Integral Lena&Scale nominal height of boundary zg= 1200 Table 26.9-1 3-s gust exponent a= 7.00 Table 26.9-1 Turbulence Intensity Factor c= 0.30 Table 26.9-1 1 Power Law Exponent e = 0.33 Table 26.9-1 Minimum Height zinhi= 30 ft Table 26.9-1 Integral Length Scale of Turbulence LZ= 310 ft Output-Background Response Factor Q= 0.88 Intensity of Turbulence IZ= 0.30 Gust Effect Factor G= 0.85 Pressure Coefficients Input Length to Width Ratio LB= 2.70 111 Height to Length Ratio h/L= 0.27 Roof Pitch= 9 : 12 = 36.87 deg Velocity Pressure Exposure Coefficients Kh (see below) Table 27.3-1 External Pressure Coefficients CP (see below) Figure 27.4-1 Direction C Height(ft) Kh ch(psf) Velocity I P Windward 0.8 15 0.57 18.0 Pressure Leeward -0.27 20 0.62 19.6 Output qZ Roof Windward 0.40 25 0.67 20.8 Roof Leeward -0.6 30 0.70 22.0 40 0.76 23.8 50 0.81 25.4 60 0.85 26.8 70 0.89 28.0 80 0.93 29.1 90 0.96 30.0 100 0.99 31.0 120 1.04 32.6 h= 40 0.76 23.8 qh hparapet= 0 0.57 18.0 qh1 1 I I I I iPage 84 of 126 Design Wind Pressures p (nsfi-GCpt=(-) 16 psf(8psf for roof)min per 27.1.5 Internal Pressure Coefficient GCp,= -0.18 Figure 26.11-1 Wall Roof I Horizontal Effects Horiz. Direction- Windward Leeward Roof WW Roof LW WW+LW RWW+RLW Height 15 16.6 -1.2 17.8 . 1 ft 20 17.6 -1.2 18.8 25 18.5 -1.2 19.7 30 19.3 -1.2 20.5 I40 20.6 -1.2 21.8 50 21.6 -1.2 22.8 60 22.6 -1.2 23.8 70 23.4 -1.2 24.6 80 24.1 -1.2 25.3 90 24.8 -1.2 26.0 100 25.4 -1.2 26.6 120 26.6 -1.2 27.8 40 20.6 -1.2 7.5 -4.7 21.8 12.20 Parapet 0 27.0 -18.0 45.0 Design Load Case 1 Controls-By Inspection Parapet Loading per ASCE7-10 27.4.5 IDesign Wind Pressures p (psi)-GC =( -) 16 psf(8psf for roof)min per 27.1.5 Internal Pressure Coefficient GCp;= 0.18 Figure 26.11-1 Wall Roof I Horizontal Effects Horiz. Direction- Windward Leeward Roof WW Roof LW WW+LW RWW+RLW Height 15 8.0 -9.8 17.8 I ft 20 9.1 -9.8 18.8 25 9.9 -9.8 19.7 30 10.7 -9.8 20.5 40 12.0 -9.8 21.8 50 13.0 -9.8 22.8 60 14.0 -9.8 23.8 70 14.8 -9.8 24.6 I 80 15.5 -9.8 25.3 90 16.2 -9.8 26.0 100 16.8 -9.8 26.6 I120 18.0 -9.8 27.8 40 12.0 -9.8 2.3 -9.9 21.8 12.20 Parapet 0 27.0 -18.0 45.0 I Design Load Case 1 Controls -By Inspection Parapet Loading per ASCE7-10 27.4.5 I Design WindPressures(ASD) p ( sf)-GC/4=(--i 16 psf(8psf for roof)min per 27.1.5 I 0.6W per 2.4.1 Internal Pressure Coefficient GCp;= -0.18 Figure 26.11-1 Wall Roof Horizontal Effects Horiz. IDirection- 1 Windward I Leeward I Roof WW l Roof LW I WW+LWI RWW+RLW 1 I Page 85 of 126 Height 15 9.9 -0.7 10.7 I ft 20 10.6 -0.7 11.3 25 11.1 -0.7 11.8 30 11.6 -0.7 12.3 40 12.3 -0.7 13.1 50 13.0 -0.7 13.7 60 13.5 -0.7 14.3 70' 14.0 -0.7 14.7 80 14.5 -0.7 15.2 90 14.9 -0.7 15.6 100 15.3 -0.7 16.0 120 15.9 -0.7 16.7 40 12.3 -0.7 4.5 -2.8 13.1 7.32 Parapet 0 16.2 -10.8 27.0 Design Load Case 1 Controls-By Inspection Parapet Loading per ASCE7-10 27.4.5 Design Wind Pressures(ASV) 0 (psf-GC I=(+) 16 psf(8psf for roof)min per 27.1.5 0.6W per 2.4.1 Internal Pressure Coefficient GCp,= 0.18 Figure 26.11-1 Wall Roof Horizontal Effects Horiz. Direction- Windward Leeward Roof WW Roof LW WW+LW RWW+RLW Height 15 4.8 -5.9 10.7 ft 20 5.4 -5.9 11.3 25 6.0 -5.9 11.8 30 6.4 -5.9 12.3 40 7.2 -5.9 13.1 50 7.8 -5.9 13.7 1 60 8.4 -5.9 14.3 70 8.9 -5.9 14.7 80 9.3 -5.9 15.2 90 9.7 -5.9 15.6 100 10.1 -5.9 16.0 120 10.8 -5.9 16.7 40 7.2 -5.9 1.4 -5.9 13.1 7.32 Parapet 0 16.2 -10.8 27.0 Design Load Case 1 Controls-By Inspection Parapet Loading per ASCE7-10 27.4.5 I I I 1 I iPage 86 of 126 IClient: 4 Project: River Terrace IProject#: 16-T100 Date: 11/16/2016 By: YSP I FROELICH ......... ENGINEERS a I WIND FORCE CALCULATION-MWFRS Front-Back Event ASCE 7-10 SECTION 27-2 1 METHOD 2 -ANALYTICAL PROCEDURE IBasic Wind Speeds Input 3 Second Gust Vas= 122 mph Wind Directionality Factor Ka= 0.85 Table 26.6-1 1: Wind Importance Factor Iµ,= 1.00 Wind Exposure Category= B Building Parameters, Horizontal Dimension of Bldg B= 146 ft Measured Normal to wind direction Horizontal Dimension of Bldg L= 54 ft Measured Parallel to wind direction IMean Roof Height h= 40 ft Highest Roof Level ht,= 40 ft Approximate Fundamental Period Ta= 0.32 sec Eq. 12.8-7 IOutput-Fundamental Frequency f= 3.1 Hz> 1 Hz Therefore Rigid I Topographic Effects Input Hill Height H= 0 ft Figure 26.8-1 Length of 1/2 hill height Lh= 1 ft Figure 26.8-1 I Dist. From Crest to Bldg.x= 0 ft Figure 26.8-1 Height Above Local Grade z= 0 ft Figure 26.8-1 Horizontal Attenuation Factor m= 1 Figure 26.8-1 I Height Attenuation Factor g= 1 Figure 26.8-1 Shape Factor K1/(H/Lh)= 1 Figure 26.8-1 Output-Topographic Multipliers K1 = 0.00 I K2= 1.00 K3= 1.00 ITopographic Factor Kzt= 1.00 I I I Page 87 of 126 M Gust Effects Input Integral Length Scale Factor I= 320 ft Table 26.9-1. Integral Length Scale I nominal height of boundary zg= 1200 Table 26.9-1 3-s gust exponent a= 7.00 Table 26.9-1 Turbulence Intensity Factor c= 0.30 Table 26.9-1 1 Power Law Exponent E = 0.33 Table 26.9-1 Minimum Height;min= 30 ft Table 26.9-1 Integral Length Scale of Turbulence LZ= 310 ft Output-Background Response Factor Q= 0.83 Intensity of Turbulence IZ= 0.30 1 Gust Effect Factor G= 0.82 Pressure Coefficients Input Length to Width Ratio L/B= 0.37 Height to Length Ratio h/L= 0.74 Roof Pitch= 10 : 12 = 39.81 deg Velocity Pressure Exposure Coefficients Kh (see below) Table 27.3-1 External Pressure Coefficients CP (see below) Figure 27.4-1 Direction C Height(ft) Kh qZ(psf) Velocity I P Windward 0.8 15 0.57 18.6 Pressure Leeward -0.50 20 0.62 20.2 Output q2 Roof Windward -0.20 25 0.67 21.5 Roof Leeward -0.6 30 0.70 22.7 40 0.76 24.6 50 0.81 26.3 60 0.85 27.7 70 0.89 28.9 80 0.93 30.0 90 0.96 31.1 100 0.99 32.0 120 1.04 33.7 h= 40 0.76 24.6 qh hparapet= 0 0.57 18.6 qhI I 1 I 1 I IPage 88of126 Il esien Wind Pressures s - GC =f- 16 psf(8psf for roof)min per 27.1.5 Internal Pressure Coefficient GCp;= -0.18 Figure 26.11-1 Walt Roof I Horizontal Effects Horiz._ Direction- Windward Leeward Roof WW Roof LW WW+LW RWW+RLW Height 15 16.7 -5.7 22.4 I ft 20 17.8 -5.7 23.5 25 , 18.6 -5.7 24.3 30; 19.4 -5.7 25.1 I 40 20.7 -5.7 26.4 50 21.7 -5.7 27.5 60 22.7 -5.7 28.4 I 70 23.5 -5.7 29.2 80 24.2 -5.7 29.9 90 24.9 -5.7 30.6 I 100 25.5 -5.7 31.2 120 26.7 -5.7 32.4 40 20.7 -5.7 0.2 -5.0 26.4 8.00 I Parapet 0. 27.9 -18.6 46.5 Design Load Case 1 Controls-By Inspection Parapet Loading per ASCE7-10 27.4.5 I Desixn Wind Pressures P (1)-Gepi=(+} 16 psfroo 8 sf for ( P �min per 27.1.5 Internal Pressure Coefficient GCp;= 0.18 Figure 26.11-1 Wall Roof I Horizontal Effects Horiz. Direction- Windward Leeward Roof WW Roof LW WW+LW RWW+RLW Height 15 7.8 -14.6 22.4 I ft 20 8.9 -14.6 -14.6 23.5 25 ' 9.8 24.3 30 10.5 -14.6 25.1 40 11.8 -14.6 26.4 50 12.9 -14.6 27.5 60 13.8 -14.6 28.4 70 14.6 -14.6 29.2 I 80 15.4 -14.6 29.9 90 16.0 -14.6 30.6 100 16.7 -14.6 31.2 I120 17.8 -14.6 32.4 40 11.8 -14.6 -5.4 -10.6 26.4 8.00 Parapet 0 27.9 -18.6 46.5 I Design Load Case 1 Controls-By Inspection Parapet Loading per ASCE7-10 27.4.5 I Design Wind Pressures(ASD) .p (psf}-GCr=(} 16 psf(8psf for roof)min per 27.1.5 0.6W per 2.4.1 I Internal Pressure Coefficient GCp;= -0.18 Figure 26.11-1 Wall Roof Horizontal Effects Horiz. Direction- ( Windward I Leeward I Roof WW ( Roof LW WW+LWI RWW+RLW I Page 89 of 126 1 Height 15 10.0 -3.4 13.4 I ft 20 10.7 -3.4 14.1 25 11.2 -3.4 14.6 30 11.6 -3.4 15.1 40 12.4 -3.4 15.8 50 13.0 -3.4 16.5 60 13.6 -3.4 17.0 III 70 14.1 -3.4 17.5 80 14.5 -3.4 18.0 90 14.9 -3.4 18.4 111 100 15.3 -3.4 18.7 120 16.0 -3.4 19.4 40 12.4 -3.4 0.1 -3.0 15.8 4.80 Parapet 0 16.8 -11.2 27.9 Design Load Case 1 Controls-By Inspection Parapet Loading per ASCE7-10 27.4.5 Design Wind Pressures(ASD) 0 (psf)-.GC, =(+1' 16 psf(8psf for roof)min per 27.1.5 0.6W per 2.4.1 I Internal Pressure Coefficient GC/A= 0.18 Figure 26.11-1. Wall Roof Horizontal Effects Horiz. Direction- Windward Leeward Roof WW Roof LW WW+LW RWW+RLW Height 15 4.7 -8.7 13.4 ft 20 5.3 -8.7 14.1 25 5.9 -8.7 14.6 30 6.3 -8.7 15.1 40 7.1 -8.7 15.8 50 7.7 -8.7 16.5III 60 8.3 -8.7 17.0 70 8.8 -8.7 17.5 80 9.2 -8.7 18.0 90 9.6 -8.7 18.4 100 10.0 -8.7 18.7 120 10.7 -8.7 19.4 40 7.1 -8.7 -3.3 -6.4 15.8 4.80 Parapet 0 16.8 -11.2 27.9 Design Load Case 1 Controls-By Inspection Parapet Loading per ASCE7-10 27.4.5 I I I I I Page 90 of 126 COMPANY PROJECT , I 441, I ` r al\ Feb.,8,201711:13 Front Back Event-Beam Coneept,wwb SOFTWARE FOR WOOD DESIGN Design Check Calculation Sheet Woodworks Sizer 10.42 Loads: ' Load Type Distribution Pat-' Location [ft] Magnitude Unit I tern Stark F,- Starr. and LearnBead. Felt UM, eo tun If Maximum Reactions(lbs),Bearing Capacities(ibs)and Bearing Lengths(In): y4.�"'r 80'-1,5• _. y,r 1111 , it 4, ° �' irnfectored: r I Z t 5 �+'t 1+ Dead 16 Factored: S D 50 ".>4, 19 Total 16 �,{q� Bearing: 14 cap rty {6 _. , Beam 691 1209 .�.a*� Support 781. Q 691 Anal/Des 7B1 E:+ 42. 44. 791 Beam 0.02 ��//ff,, 3s+.a-co 0.02 0.04 - 0.02 84r#comb 01 0.06 a.{ 0.02 Length 0.50+ 01 'r"4 i� 91 Min rn u'd 0.50+ 0.50"0. +ativa ' .. 0.50+ Cb 1.00 01575 'a 0.50+ Cb min 1.00 1.75 + v 1.a0.. Cb we$poc 1.18 1.18 8 1.00 i Fry um 625 "' 1.18 �altm iti*InetthEigiWak irrforCMsup}bnaandlirteetntermrs a` _ 625 ` /40 Giutam Unbal.,West Species,24F-1.8E WS,2-1/9"x6" 4 laminations,2-1/8'maximum width, Supports All-Timber-soft Beam,D,Fir-L No,2 Total length:ad' volume= 7_t mutt;., Lateral support:lop=at sap supports,bottom=at supports; WARNING:Member length exceeds typical stock length 0080.0[ft1 Anafysis vs.Allowable Stress and Deflection wing Nos 2012 Err-bet/0n Anal ib Value' n a i V.i.Iw91 s .. ,14 ,'ktflflyefDe-s3Ste :Bends iv 3 1,,/ = 236 psi £v/vl!v 0.01 .. Bending(+I lb= 129 ft' - 803 psi fb/Fb' - 0.15 Bondi ny(-) fb= 190 Fb' 771 psi fb/ES''"s 0.25 Dead De£1'n 0,47 =<1/999 Live Oef1'1) negligible _. Total.Dell', 0.71-= 0,/710 2.10 s 1/240 IA ., 4.34 Additional Data: FACTORS: F/Elpsi)CD CM Ct CL CV Cfu Cr Cfrt Notes Cn+Cvr LCa Fv' 265 0.90 1.00 1.00 ,, - . 1.00 1.00 1.00 1 Fb'4 2400 0.90 1.00 1.00 0.372 1.000 1.081: 1.00 1.00 1.00 1 Fb'- 1450 0.90 1.00 1.00 0.591 1.000 1.00 1.00 1.00 1.00 - 1 Fop' 650 - 1.00 I.00 1.00 i R. 1.0 million 1.00 1.00 1.00 - 1 Fminy' 0.85 million 1.00 1.00 1.00 1 CRITICAL LOAD COMBINATIONS: Shear : LC 111 = D only, V- 26, V design= 25 lbs Rending(+): LC al = D only, M= 132 lbs-ft Bending(-): LC k1 - D only, M= 202 lbs-it Deflection: LC Al = 0 only (total) D=dead L=1ive S=snow W=wind I-impact Lr=roof live Lc=concentrated E"earthquake All LC's are listed in the Analysis output Load combinations: ASCE 7-10 / 1BC 2012 CALCULATIONS: Deflection: EI= 68.8e06 lb-int "Liven deflection = Deflection from all nondeadloads (live, wind, snow,,,,) Total Deflection.= 1.50(Dead Load Deflection) +Live Load Deflection. Lateral stability (+): Lu= 42.-0.50. Le=77.-4.25. RB = 35.12 Lateral tabil.ty (-i Lu = 42.-0,50. Le=77.-4.25. RB 35.12 Design Notes: 1„WoodWorks analysis and design are In accordance with the ICC International Building Code(IBC 2012),the National Design Specification(NDS 2012),and NDS Design Supplement.. 2.Please verify that the default deflection limits are appropriate for your application.: 3.Giulam design values are for materials conforming to ANSI 117.2010 and manufactured in accordance with ANSI A1B0.1-2007 4.Grades with egUel bending capacity in the top and bottom edges or the beam cross-section are recommended for continuous beams, S.GLULAM.bed=actual breadth x actual depth, 8.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3,32.. 7,GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n),...... -_ I 1 I I Page 91 of 126 I COMPANY PROJECT wwff ■... r �W ':r■1S Feb. .wtv 5.201711:13'Side Side Event-Beam Conceptb ■ SOFTWARE FOR WOOD DESIGN Design Check Calculation Sheet WoodWorks sizer 10,42 Loads: Load Type Distriboti+%n. t t- Location [ft) M 9 itideW51,11t :tern 20*01 11ni Start End Lnxdtbrad ForU UM xa S-0 pis _ _.... Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in) I • 1, 25.-05' " 58 15" Gln: .^.torted:=. 17 17 10 Dead 70 Factored: _... 17 17 10 Total 17 .x, Bearing: 691 Capacity 71 1209 1209 Bean 1. 181 201 701 Support 781 0.01... .Anal/Des .01 0,01 Beam 0.01 .01 0,01 0.01... '.. Support co 0.01 Al 01 51 Load comb 01. G 50* 0.50* 0.50' Lingle - 0.50' 0.50* 0.50' 0,50• '. Min req'd 01500 1.75 1.75 1.00: 1.00 Cb 1.00 1.75 1.75'. 1.:00 CO sup 1.10 1.16 1.10 CO support 1.18. 62.5 PP 1125„ 620_ Frig „poop 625 _... ognarty<, -.:. aehk+g m@0.%i12'tar+Nt4ifa N;L 1f ierflae( 1# Glulam-Unbal.,West Species,24F-1.SE WS,2-Ile"xe" 4 laminations,2.118-maximum width, Supports:All-Timber-sot Beam,D.Fir-L Not Total up longto:5=a2 pp ports,eb= 4.9 sup Lateral support:top=at supports,bottom=at supports; Analysis vs.Allowable Stress and Deflection using NDS 2012 2 i tr:itex166 Aaa1yys4O Vatue 16191001 v#ts1A -:3r,it hnal04iaiOeS-1 o heat iv2 tv 2.16 psi v/£v' - 0.01 Bending(*) iib- 40 Pb' 1292 psi fb/ib' = 0.04 Bending(-) tb- 51 re -:.096 pal eb/Fb' - 0.05 Dead Den's, 0.07 <L/999 Lae D flirt negligible 0..48 Total Watt,. - q...10 ,L/9.99... 1.;25 1.1245 in _.... Additional Data: FACTORS: F/I:Ipsi1C0 CM Ct CL CV Cfu Cr Cfrt Notes Cn.Cyr LCs- W 265 0.90 1,00 1=00 -. ::; 1.00 1.00 1.00 lb's 2400 0.90 1-00 1.00 0.590 1,000 1.00 1.00 1.00 1.00 Fkr'- 1450 0.90 8.50 100 0.041 1.000 1.00 1.00 1.00 1.00 Pap' 650 - 1.01) 1..00 - - 1,G0 1/ .». 2' 1.6 million 1.00 1..,00 - 1.00 lasioy' 0.85 rdllion 1.00 1,00 .. CRITICAL LOAD COMBINATIONS 'Tai .: LC#1 = only, V= 15, v design 14 lbs Sendiogr+11 IC Al - D only, M= 51 lbs-ft Bending(-): LC #1. - r only, M= 61 lbs-ft Deflection: LI#I =D only -tot:a11 0-dead L=live S=snow W.wi.nd I=impact Lr=zoof live. Lc=coocentzated E=eartbquake All LC'a are listed in the Analysis output_ ' Load combinations: ASCE 7-10 / _BC 2012 CALCULATIONS` Deflection: El= 68.0n06 lb :n2 "Live" deflection= Deflection from all nor.-dead loads i.,'ze, wind, snow.,,) Total Deflection= 1.50tCead Load Deflection) +Live Load Deflection_ Latera: stability fes):. Lu-20'-0.50" Le= 46'-0.94" AB= 27.10 Latera'_ stability (-): 10= 25'-0.50" Le 46'-0.94' 0..0= 27.10 __. Design Notes: 1.WoodWorks analysis end design are in accordance with the ICC international Building Code(IBC 2012),the National Design Specificslion(NOS 2012),and NDS Design Supplement. 2 Please verify that the default deflection limits are appropriate for your application, 3.Giulam design values are for materials conforming to ANSI 117-2010 and manufactured In accordance with ANSI Al001.2007 4,Grades with equal bending capacity in the top and bottom edges of the beam cross-section are recommended for continuous beams,. 5.GLULAM:bxd=actual breadth x actual depth. 6.Giulam Beams shall be laterally supported according to the provisions of NOS Clause 3..3,3. 7..GLULAM:bearing length based on smaller of Fcp(tenslcn).Fcp(comp'n). 1 I I I 111 Page 92 of 126 Client: Arbor Project: River Terrace- 12 Plex DH Project#: 16-T100 Date: Feb-17 N. By: YSP , FROELICH EN tNEERs. Lateral Design - Wood Walls Shear Walls SEISMIC: Site Classification: D Occupancy Category: II Occupancy Importance Factor I= 1.0 System Over-strength Factor Light Frame Walls with Shear Panels I W_ 1 3.0 ,Response Modifiaction Coefficient Light Frame Walls with Shear Panels j R= 1 6.5 MCE Short Period Pectal Response accel.: Ss= 1.088 MCE 1-second period spectral response accel.: S1 = 0.590 5%damped short period spectral response accel.: SDs= 0.726 5%damped 1-second period spectral response accel.: Sol = 0.500 Seismic Design Category(ASCE Table 11.6-1 & 11.6-2): D' Seimic Response Coefficient(ASCE 7-05) EQ 12.8-2 Cs=SDs/(R/I) ICs= 0.112 Controls Eq 12.8-3(max)-in addition to sections 12.8.2, 12.8.2.1, Table 12.8-1 Cs=SD1/(T(R/I)) Ta=Cthn" Te= 0.365 Ct= 0.02 Cu= 1.4 from table 12.8-1 hn= 48 T= 0.511 )er 12.8.2 x= 0.75 Cs= 0.211 Eq 12.8-5(min) Cs=0.01 Cs= 0.010 Eq 12.8-5(min) Cs=0.044SDsI Cs= 0.032 Cs= 0.112 Allowable Stress Design: 0.7E Cs= 0.078 I Page 93 of 126 Seismic Dead Loads I Note: Dead Load includes 10psf for interior walls/partitions diaph area Dead Load I Int.Wall Trib Wall Int.Wall Wall vv—t1 Ext.Udall ?SQ T Fatal DL 1 Level (ftL(fl hei ht(ft). Wt sf) s L(ft) I DELI10 PSF I lbs Roof ' 4150 18 300 5 10 10 300 2160 106860 4d'Floor 4150 27 300 10 10 10 300 2160 174210 3t4Floor 4150 27 300 10 10 10 300 2160 174210 2n°`Floor 3000 27 200 10 10 10 200 1080 122080 Total= 577360 Seismic Base Shear(Working stress Design) V=Cs(DL) V= 45141 lbs Vertical Distribuition I Level IWeight Height I Wt*Ht - "7"T/howl V iv,=(Wt(Ht)/Total)*V Roof _.106860 40 4274400 0.301 45141 13583 =V., 4m Floor 174210 30 5226300 0.368 45141 16607 =V4tn "f Floor W 3174210 20 3484200 0.245 45141 11072 =V3rd 2""Floor 122080 10 1220800 0.086 45141 3879 =V2nd Total= �1420571ra 1.000 I Vrf= 13583 lbs Van= 16607 lbs (Allowable Stress Design Loads) Van'= 11072 lbs Vend= 3879 lbs 45141 Diaphragm Loads Level I wpx(lbs) V,Os) 1:E Vi Obs) Ew.(lbs) Fpx=((DOS)/(/wj))*wpx , Roof 106860 ` 13583 13583 106860 13583 =F0, 4n`Floor 174210 16607 30190 281070 18712 =F4tn 3`3 Floor 174210 11072 41261 455280 15788 =F3,d 2`" Floor 122080 3879 45141 577360 9545 =F2nd Min Diaphragm Loads SDS= 0.726 Fpm,n 0.2*Sos*wpx*I*0.7 Level (Fpmfn Roof 10861 V,f= 13583 lbs 4th Floor 17707 1/4,h= 18712 lbs V 3 Floor 17707 3rd= 17707 lbs I 2"4 Floor 12408 Vend= 12408 lbs (Allowable Stress Design Loads) I I I I I I Page 94 of 126 41 Client: Arbor Project: River Terrace- 12 Plex DH Project#: 16-T100 Date: 2/8/17 x. . By: YSP I FROELICH ENGIN£ERS I I SEISMIC LOAD Story Distribution: Areas: Roof: 13583 lbs Roof: 4146 sq ft II 4th: 16607 lbs 4th: 4146 sq ft 3rd: 11072 lbs 3rd: 4146 sq ft 2nd: 3879 lbs 2nd: 3000 sq ft WIND LOAD I Story Distribution: !Level [Windward 'Leeward° Total Front-Back Event I Roof: 109 36 145 4th: 114 38, 152 Redundancy Factor,p 3rd: 107 36 142 ' 2nd: 100 33 133 I Side-Side Event Event Per ASCE7-10, p= 1.0 because of large amount of shearwalls and Roof: 110 37- 146 because no wall takes more than 33%of the story shear. 4th: 96 32 128 I 3rd: 88 29 117 2nd:, 81_ 27 108. Front/Back Event SEISMIC WIND Trib Area Load Trib Width Windward Leeward Combined? Load Design Load Load Typ'. LEVEL I GRID (sq ft) (lbs) (ft) (lbs) _ (lbs) (YIN) (lbs) (lbs) I Roof AA ' 830 - 2719 16 1740 580 Y 2320 2719 S AC 2590 8485 50 5438 1813 Y 7250 8485 S AE 726 2378 14 1523 - 508 V 2030 2378 S i 4th AA 830 , 3325 16 1824 608 Y 2432 3325 S AC 2590 10375 50 5700 1900 Y 7600 10375 ' S AE 726 2908 14 1596 532 Y 2128 2908 S I 3rd - AA 830 2216 16 ' 1704 568 Y 2272 2272 S AC 2590 6916 50 5325 , 1775 Y 7100 7100 S IAE 726 • 1939 14 1491 497 Y,_ 1988 1988 S 2nd.. AA 600 776 16 1596 532 Y 2128 776 S I AC 1875 2425 50 4988 1663 Y 6650 2425 S AE 525 679 14 1397 466 Y 1862 679 S Side/Side Event . SEISMIC WIND Trib Area ` Load Trib Width Windward Leeward Combined? Load Design Load'Load Typ LEVEL GRID w % (lbs) %(551) (tbs) (lbs) (YIN) (lbs) (Ibs) Roof 11 16 2173 ` 15 903 301 Y 1205 2173 S I 12 34 4618 35 2108 703 Y 2811 4618 S 7 13 34 4618 35 2108 703 Y 2811 4618 S 14 16 2173 15 903 301 Y - 1205- 2173 S 4th 11 16 2657 15 792 264 Y 1056 Pag6 7°t 1 26 S 12 34 5646 35 1848 616 Y 2464 5646 S 13 34 5646 35 1848 616 Y 2464 5646 S 14 16 2657 15 792 264 Y 1056 2657 S 3rd 11 16 1771 15 724 241 Y 965 ^ 1771 S 12 34 3764 35 1689 563 Y 2252 3764 S 13 34 3764 35 1689 563 Y 2252 3764 S 14 • 16 1771 15 724 241 Y 965 1771 S 2nd 11 16 621 15 668 223 N 668 668 W 12 34 1319 35 1559 520 N 1559 1559 W 13 34 1319 35 1559 520 N 1559 1559 W 14 16 621 15 668 223 N 668 668 W 1 I 1 1 I 1 1 1 I 1 1 1 I I SOO I MINI V I I N I IIIII V I 1 1111111 MI AI M MSIB MI 41 Client: Arbor Project: River Terrace-12 Plex 011'1,. tl I;_-f•4-1'3-!'T, L: - G-Lon.Ch of individual.e»dl Nt Project#: 16-T100 G:t Total length of wail along gtidliac Date' 8-Feb 1.4.Lcatzb of momc»r:Ann.n Calf fit &arrant � , 1110 null length) By: YSP iii a Wall Height.fltx to roof S4iaHe$htof.,allttrt-ftrl ifs..(l-r!thrf.ta-?3 I�;a3)»l"-f1t>1,iii-11 '),Y3(lu h?-1)-�f 11.1)Ix F R O E L I C H h# Height of wall flr2-11r3 Lt h.'-lloight of wall fir l-f r2 E.N GIN E E R S I VW r l3cr'i»071tal'iita^c All;flidl:'#e{2Vyg toot . V4 fiortoitimtiatrrtoatielatettnd'sgte- 4tu :{;"Yihe) .�r )._t3(lot. V2zttf}j' Shear Walls & Holdowns _ fitrriz,af fforeetit r€dlitaf# ;x� Lr 4th t'2 tiar;.�otttal t&tce at jp iall:xa from 2'$ s'=t araC shear in null rr rt r r-DL)-( L' Roof to 4 Floor d sift 0,6RR nb xRoofDL).irrr b Wal .nth xFtoorDL)fir I Roof DL: 18 psf \i6 Overturning moment t two e;1 per wall IS1 L,. itrathad at. vo lowea w=all Seismic ...M (U.6-.1-134 Rsrib x Roi..IDL) (jlrrtb>Ff"vllTtL)-.(Frrtb r FionrDL)1 Floor DL: 27 psf Mu.r Overcoming moment nit mi upped wall is Wall DL: 10 psf trot rtack-d or dors.not rmst Ra.thV1 trio.Ftrib-Roof,wall,and floorttr-err Ifs -.Sb Stud Spacing: 16 inches oc tributary arca,used for calculating dead load 7t= Ln r., Mr-Resisting moment due to dead load l'u:..Tension if walls not sxacked tIa Ten f oasiou if walls stocked trod f:r ((R..,v s.Poo/I3L 1 f erh ftl x4f3L)-lFr;r8 Ftxr�ll } inSlud agar s; t< 11• S 2 CS.'C9xrtptraattxet at ends,if walls stacked Senna:-:CT ..... !1 0.,14SA(Rtr;h:ii6o/7L).,orinty x w atiDL)...(FYrth a FtoorDL)1t Wail L Lt La hd1 V,f v Mu Rtnb Wtttb Fvfb Mr Cs Tu Comments Holdowns Shearwall Controlling Grid , (ib) Nailing Event Front/Back Event AA 17 17 17 9 2719 160 24472 8 9 0 16851 1611 448 6/12 S AC 23 69 23 9 8485 123 ' 25455 8 9 0 30845 1279 -234 -- 6/12 S AE 13 29 13 9 2378 82 9596 8 9 0 9854 910 -20 --- 6/12 S Side/Side Event 11 3 18.53 9 a 2173 176 3172 12 9 0 686 1282 828 -- 6/12 S 3.5 18.5. 3.5 9 2173 151 3700 12 9 0 - 934 ' 1282 790 --- 6/12 S 4 18.5 4 9 2173 132 4229 12 "'9 0 1220 1282 752 --- 6/12 S 12 36 36 36 9 4618 128 41563 12 9 0 98819 1379 -1590 --- 6/12 S 13 15 58 159 4618 80 10749 12 9 0 17156 941 -427 — 6/12 S V 14 3 18.5 3 9 2173 176 3172 12 9 0; 686 1282 828 — 6/12 S 3.5 18.5 ',3.5' 9 2173 151 3700 12 9 0 934 1282 790 --- 6/12 S 4 18.5 4 9 2173 132 4229 12 9 0 1220 1282 752 --_ 6/12 S Seismic 6/12 4/12 3/12 (2)4/12 (2)3/12 240 350 450 700 900 psf so to CD Wind 6/12 4/12 3/12 (2)4/12 (2)3/12 co . 335 490 630 980 1260 psf o N 0) Client: Arbor Arbor ,,..kof .r•4 4 r:,.^1'2' If Project: River Terrace-12 Plex s: . uisgis of iwiividual stall „-'1111 Project#: 16-T100 i-Total length Of watt aton$gridt - bre ., 0 is territth of mouera 4110 ta wah,ir Date: 8-Feb .aseitiiiii sow wall length, ss 4,,, , ,..., . By: YSP Kr.Wall Height first to roof I o heipbt of wall flr3 flr t liv„rpfr'irri-hi...ir,r..hi.. -it)ri-l1;l-h2-:..••-V 1,3-10..-VI-V2(h2ji, Le ' •.' •••Height of omit flr2..fir3 FR()ELICH .2.14eivht of+mill tlrffirii• II',ftoir ronriii foine at eltdhnt front roof ENGINEERSI '4,--horizontal twal ee traidlore from 4'"fly ,11., •••tr,.f•,'•o. -!'.4(1•4 P-/...,, r:!(41,-- .1.t tiorLonial force at griiitine from:i'fti Shear Walls & Holdowns '2 o Hort.ontal fore 4!yodlore frola 2"fir y Lr' ',.•hart&Iwo in wait frwd ;3fr ,..•• D,61(i?t,lb /RoofDL )-( ii' ,ICIIIDL 3-,f I'l,lb /FlourDi )1 4th ------- Floor to 3rd Floor -f,_°vernal-mot moment otten ripper all in titetrani above lower svall IL' 0 6-.14..-;,...*Rant ..RuoilIL )-,ifti it, drailDL )4-i F trrb /FloorDl. )1-- tu-01'111UrnitlEt IIMentalt When upper wall is Roof DI.: 18 psf Ot r‘facked to does not eroat Floor DL: 27 psf hi*Wtrib.Flout-..Roof',nil and floor Tv Mr Outgun'area.used for calculation dead kYad Z17 L Wall DL: 10 psf r-Resisting moment doe to dead load fa e.Tension if walls not stacked Mt .. 'I, Stud Spacing: 16 inches oc ::5.-Tension if walls slacked fr,.i.. c, —- - t Rr,,6 =Ro.V1,,L 1--Or.,,,,', .w,iipi. ,-,,Fv.th s,,)00,r1L '11 .i..:. 1: ii,sr-Srlad spacing if 5 ? ss.Compression at ends,if waits stacked &wow i Cs=------.......—;I-0.34 SsAiittriii ,ii0O3C)L i-I,rrmb ,WatibL 3- i Ftrit, •FIoorDL 11 Wall L Lt La h., n4 V14 V4 v Ms Mu 1Idb Wtrib Ftrib Mr Cs Tu Ts Comments Noldowns Shearwall-Controlling Grid (ft) (ft) (ft) (ft) (11) (Ibs) (lbs) (plf) , (iblt) (1b*ft) (ft) (ft) (ft) (Ib.ft) (lbs) , (Ibs) (lbs) Nailing ,Event . . Front/Beek Event AA 17 17 17 9 9 2719 3325 356 81585 54394 8 18 12 46684 5275 455 2064 MST37 3/12 S AC 23 69 23 9 9 8485 10375 273 1 84862 56579 8 18 6 64063 4047 i -325 904 MST37 4/12 S ' AE 13 29 13 9 9 2378 2908 182 31990 21328 8 18 12 27288 2937 -458 362 — 6/12 S _ Side/Side Event 11 3 18,5 3 9 9 2173 2657 392 10574 7050 12 18 4 1130 3895 1973 2802 MST37 3/12 5 3.5 18.5 3.5 9 9 2173 2657 336 12336 8225 12 18 4 1538 3895 1910 2701' MST37 4/12 S 4 18.5 4 9 9 2173 2657 294 14098 . 9400 12 18 4 2009 3895 1848 2600 MST37 ' 4/12 S 12 36 36 36 9 9 4618 5646 285 138562 92381 12 18 4 162760 4219 -1955 -3545 -- 4/12 °S 13 15 58 15 9 9 4618 5646 177 35835 23892 12 18 4 28257 2759 -291 -718 -- , 6/12 S 14 3 18.5 3 9 9 2173 2657 392 10574 7050 12 18 4 1130 3895 1973 2802 MST37 3/12 S ' 3.5 18.5 3.5 9 9 2173 2657 336 12336 8225 12 18 4 1538 3895 1910 2701 MST37 4/12 $ 4 18.5 4 9 9 2173 2657 294 14098 9400 12 18 4 2009 3895 1848 2600- MST37 4/12 TS i . ._ Seismic 6/12 4/12 3/12 (2)4/12 (2)3/12 240 350 450 700 900 psf • Wind 6/12 4/12 3/12 (2)4/12 (2)3/12 335 490 630 980 1260 psf id 0) (0 CD (O --.1 o a) 11111 MINI OBI Inn Nal 111111 MINI INS SIN INS MI VIII MIS NIS 111111 MI INN NIP 11111 11111 11111 NMI M 111111 1 1 a NI n 1 1 MN 11111 111111 all 1 111111 alai Client: Arbor Project:4 River Terrace-12 Plex D ::.,...,„8t i>fi„,t,„taat+.a;t ,v:(_.r..'4.'r 4 1::),:La e, Project II: 16-T100 :::::hitt)' iaeruall;ilatgxtit4irt, Date: 8-Feb 3.Length ttYefotttatt.11131at',Salalf" Ear;tan X11 iR$8b By: YSP .tcall�t rerog 4''.Helldal ofwull et x114 d1: r,Jsh,I•114 . ..k;_ 3j-144 rd-le-Le 2)-a".014--tom•-E}�F'rh'_tjz.'" FROELICH 444404 t,; Lr I..1114,1,, of',011 1tr..tL 2 ENGINEER S I 44{.14 rtztWsl fort t at gtilliar fritet t t , ',Eli tizcn,tall°-fig aC r j444fiL°'ends* .I/oma r ,.01mr 4 t,-I"O r: .;i) ° Shear Walls & Holdowns =1.„n7man4fano,tgridt'surfrrs=x3=t:l YY-rice om41 force at rttine ill ti 'Ai' 3rd door To 2nd Floor tem tm shear ire wall x#.rtu ._It' 0.6[(F€trth 1'7<;f is id(� t Folli .,) ';kr.: P0,.i[?.1IL 911 Oc erraeana n,1111.:1t btu wive.:teal)ix ROOF DL; 1$ psf kai1a1»0.*irn� °all aaii0110 •111 a(b.1�.-.14',4f 4;r!U•.01000.11'1,In W oa. 00D!.1 tr'inf)1_ )]1,. Floor DL: 27 gf iu=C>rer7tautc,E...eent"het.a}per orali is p no‘stacked or dc.?.,s ta,:s esi Wall DL: 10 psf Au*,"tot a trit Roof %aiL and quo' 4hr•.tri t1,S..Mfr: "lofty a.Ya u:rec fcr:alculati ,.dead toed . 7s•". . Stud Spacing: 16 inches oc .9Y-Resi ragmr..mentduetodead!+aid Pa=Ter. on if tralis atot ata...-ked l4: S a&'=Trnurnsitg''¢IS stacked "f-,^':rt.0 1:..-.1 ::It Rrrrb>_Rocyrif..)-ar! t3T1aa:`.�DL 1_{_Falx,rim-Di,'d L'dad 4%14targ s..Cott y ty( n at eds,it:,21110'tza:ed a 4{' z .�_�::[ -- —11-G lJ Ss,(;iL:r;tr :;(.:JL a+.ia.:. *ta'cr 1.;./... .ki,rw,-;.�irDl fl Wall L Lt La hi, h4 h3 V,( V4 V3. 1 v Ms ( mu . Rtnb Wtdb Fmb Mr Cs Tu Ts f Comments Holdowns Shearwall Controlling Grid (ft) (ft) (ft) (ft) (ft) (ft) (lbs) (lbs.) (ibs) (pit) (1b•ft) (ft) (ft) 1(ft) (Ib'ft) 1 (lbs) fibs) )lbs) ' ront/Back Event Nailing fert�dt M 17 17 17 9 9 9 2719 3325 2272 489 '162471-74842 8 29 X24' 77918 10352 -181 4974 hth(2)Sides HDQ8 4/12 S AC 23 69 23 9 9 9 8485 10375 7100 376 169027 77879 8 27 24 139989 8129 -2700 1263 MS137 3/12 S { AE r 13 29 13 9 W 9 9 2378 2908 1988 251 63709 29349, 8 27 24 44722 5681 -1183 V 1460 HTT51MST37 6)12 S 'Side/Side Event 11 3 115 3 9 9 - 9 2173 2657` 1771 535 20992- 9635 12 27 8_ 1574 7513 2687 5489 'Shth(2)Sides MSTC48133 4/12 S 3.5 18.5 3215 9 9 9 2173 2657 1771 459 24491 11241 12 27 8 2143 7513 2599 5300 Shth(2)Sides MSTC66B3 4/12 S 4 18.5 4 9 9 9 2173 2657 1771 401 27990 12847 12, 27 8 2799 7513 2512 5112 MSTC66B3 3/12 S 12 36 36 36 9 9 9 4618' 5646 3764 390 275086 126260 12, 27' 8 226702 8157 -2790 1344 MST37 3/12 S 13 15 58 15 9 - 9 9 4618 5646 3764 242 71143 32653 12 278 39358 5258 -447 2119 MS137, 4/12 S 14 3 18.5 3 ' 9 9 9 2173 2657 1771 535 20992 9635 12 27. 8 1574 7513 2687 6473 Shth(2)Sides HDQ8 4/12 S 3.5 18.5 3.5 9 9 9 2173 2657 1771 459 24491 11241 12 27 8 2143 7513 2599 6385 Shth(2)Sides HDQ8 4/12 S 4 18.5 4- 9 9 9 2173 2657' 1771 401 27990, 12847 12 27 8 2799 ` 7513 2512 6298 HDQ8 3/12 S Seismic 6/12 4/12 3/12 2)4/1:2)3/12 240 350 450 700 900 psf Wind 6/12 4/12 3/12 2)4/1"2)3/12 335 490 630 980 1260 psf -0 11) co co CO Co • 0 1-‘..) 0) Client: Arbor (S'Yf z.) Project: River Terrace-12 Plex DH =Leckrat Project#: 16-T100 Tool tryirch o 66;111 al,rass s/ndlinc Lerecyls of'moment/emir;..111 ft 4.6- Date: 8-Feb thx=wnit lens0h) By: ySp 46 W;x11 Heigh; tn to;ai , esi4,41 11,3.0,4 Ifs ?,f?lir - -3)- 4) 11- -1 ,(Fsigtis di 6 ail 2:10.41e.; FROELICH Firisshe nf svA11 SU 44142 cNo a tt 'd r:i;01, HOS,,V11.311 prsdItne fiocc;4-Or t Shear Walls & Holdowns Porirrsitcd ass p441.in,ft4ex, tle `..:'==Rad s6410;1 ismer re 94610er 66.6ns 6 4.Unit sth,se to udn irincf'1.0 o k R/111( R041)1..)- firib,WOMDL) ornib Fioorig. 2nd Floor To Foundation ,I11,1dARZ 6/10.0.).:Vth.ta "3. 1.44ded.;166 las,s 5s6 pane -(0 h-.14 So,[(Roth Roo(DI. )•tIrt,as•trotiDL )- ?rd.) +-- Roof DL: 18 psf lit 4.1.6ds naIl ii 2 Floor DL: 27 psf4441.444.vott •a,NV616 Fersts rend 1166, Wall DL: 10 Pe .itutuy a..046,d tor calredgmnp dew(frost Stud Spacing: 16 inches oc .tu.$01.1t4 ..at do so don!load as not stdaredrr, -,6• (46 6',56 F 6-41, 4641149A;:i4If 6 „ sr*Commssion 6ts End, f 64405 se.ks41 —11^ o. 4R'.° „ - It cf Wa:,DL Tiom Wall L Lt La hd h4 h3 h2 Vrt 7 V4 V3 V2 v Ms Mu Rtsb WitiblEib Mr Cs Tu 1 TsComments tHoldowns Shearwall Controlling 4' Grid _ (ft) (ft) (ft) Aft) (ft) (ft) ((bs) (lbs) (lbs) (We) (pit) ((eft) (left) (ft) Oh (ft) Obit) Ms) (lbs) I (Ws) Nailing Event Front/8868 Event AA 14 14 13.5 9 9 9 9 0 0 0 776 55 6953 6983 8 36 36 72087' 1601 -4823 -4823 — 6/12 S AC 23 69 22.5 9 9 9 9 8485 10375 7100 2425 411 262833 85152 6 36 36, 194561 12765 -4863 3034 HTT5 3/12 S AE 13 29 12,5 . 9 9 9 9 2378 2908 1988 679 274 99056 32088 9 36 37 64051 9042 -2557 2800 11115 4/12 $ Side/Side Event 31 2 14.8 1,5 9 9 9 7 2173 2657 1771 668 ,,, 863 25348 6900 12 34 12 871- 11545- 4016 9504 Shth(2)Sides ,H008 3/12 S 35 14.8 3 9 9 9 9 2173 2657 1771 668 634 47810 15526 12 36 12 2747 16598 4260 9560 Shth(2)Sides HDQ8 4/12 S 10 14.8 9.5 9 9 9 9 2173 2657 1771 668 493 136600_44360 12 36 12 22426 15040 2309 7421 Shth(2)Sides HDQ8 4/12 S 32 7.5 44 7 9 9 9 9 4618 5648 3764 1559 354 73195 23914 12, 36 12 12615 11117 1614 8654 HDQ8 3/12 6' 33 5 50 4.5 9 9 9 9 4618 5646 3764 1559 312 42941 14029 12 ,36 12 5607 10203 1812 8296 , HDQ8 4/12 S IC (0 0 C) IIIII1 MIS MI 11111 an all 411. 111111 .1111 Page 100 of 126 Client: Arbor Project: River Terrace-12 Plex DH Project#: 16-T100 Date: 2/8 gig By: YSP FROELICH ENGINEERS i Diaphragm Design LOADS Front-Back Side-Side Level Seismic I Wind I Design Load I Seis/Wind Seismic I Wind I Design Load I SeislWind Roof 46 145 145 S 206 134 206 S 4th Floor 59 116 116 S 284 114 284 S 3rd Floor 42 56 56 S 268 85 268 S SHEAR& NAILING Level I Grids I Wr;b(ft) J V(lbs) 11-diaphragm (ft) n (plf) l Nails f Spacing Blocking Front Back Event Roof AA-AC 40 5800 66 88 8d 6/12 no I 4th AC-AE 40 5800 66 88 8d 6/12 no AA-AC 40 4640 66 70 10d 6/12 no AC-AE 40 4640 66 70 10d 6/12 no 3rd AA-AC 40 2231 66 34 10d 6/12 no AC-AE 40 2231 66 34 10d 6112 no Side-Side Event Roof Grid 11-12 35 7203 150 48 8d 6/12 no 4th Grid 11-13 35 9923 150 66 10d 6/12 no 3rd Grid 11-14 35 9390 150 63 10d 6/12 no 1 1 I 1 I I I Page 101 of 126 I Chord Ties(Dbl Top Plate Splice) Level IGrid IL(ft) !Depth (ft) Ws/w(plf) 1T=W*L2i(8*D) # 16d nails [or Strap Front-Back Event Roof AA-AC 40 66' 145 439 3 MST27 AC-AE 40 66 145 439 3 MST27 4th AA-AC 40 30 116 773 5 MST27 AC-AE 40 30 116 773 5 MST27 3rd AA-AC 40 30 56 372 2 MST27 AC-AE 40 30 56 372 2 MST27 Side-Side Event Roof Grid 11-12 35 80 206 394 2 LSTA 12 4th Grid 11-12 35 80 284 543 ` 3 LSTA 12 3rd Grid 11-12 35 80 268 514 3 LSTA 12 Use (14) 16d nails at all double top plate splices or a Simpson MST27 strap. I 1 I I I 1 1 I i I 1 . 1 iPage 102 of 126 I Client: I 44 Project: Proj.#: Date: I By: FROELICH EN 61N EERSI II ACI 318-05 Appendix D - Tension Failures (Page 1 of 3) Anchor description: 5/8"ASTM A36 Threaded Rod for Simpson HTT16/HTT22 l HTT4/HTT5 I1 Number of Anchors Si = 0 in. (see Fig 0.625 Inch Diameter s2= 0 RD.52.1) 8 Inch Embed I2500 psi Concrete Footing Noesign= 5.250 (kips)Allowable Design Tension I 0.3 -General Requirements (ACI 318-02 Section D.3.3.3) Are seismic loads induced into the anchor? Y SF = 0.75 I D.4-General Requirements for Anchor Strength (ACi 318-02 Section D.4.4) Strength reduction factor ID for anchors using load combinations from ACI 318-05 section 9.2 Will anchor be governed by brittle steel failure? N Anchor CD= 0.75 Brittle failure: 0.65 (brittle defined by tensile test elongation less than 14%) Ductile failure: 0.75 Is rebar present around anchor to resist blowout? N Reinforcing U = 0.70 If rebar is present around anchor: 0.75 IOtherwise, 0.70 Summa CONn Wind ONn Seismic Summary From Below ON, SW= 1.0 SF= 0.75 ON$= 9.83 9.83 7.37 ips NNsb= 19.01 19.01 14.26 kips ONvn= 121.71 121.71 91.28 kips I ON sb= 198.14 198.14 148.60 kips" �Nab9= 198.14 198.14 148.60 kips Minimum MN„= I 9.83 I 9.83 7.37 kips I Converting To Allowable Stress Design Wind Seismic I Conversion Factor 1.4 1.4 mNrviowaeia' 7.02 5.27 kips II Ndesipn < •NAliowable 5.250 < 5.27 Therefore, Anchor Design OK I . I Page 103 of 126 I I Client: Project: Proj.#: ii4 Date: By. FROELICH £N Gl IV E ERS I ACI 318-05 Appendix D - Tension Failures Cont. (Page 2 of 3) 1 Tension Design Calculations 0.5.1 -Steel Strength for Anchor in Tension do(Anchor Diameter) = 0.625 inches I n = 1 #of anchors nt= 11 Number of Threads per inch A38= 0.23 in.2-(effective cross-sectional area of anchor) luta= 58.00 ksi- (tensile strength of anchor material(not the yield strength) not exceed 1.9fy or 125 ksi) Nsa= 13.11 ksi-(Eqn_ 0-3) Anchor = 0.75 I 1 Y sa = nAse✓ u to ON„= 9.83 kips O.5.2-Concrete Breakout Strength of Anchor in Tension Si = 0 inches(see Fig. RD.5.2.1) I S2 = 0 inches (see Fig. RD.5.2.1) An,(for single anchor) = 576 in.2(see Figure RD.5.2.1) An,(for group anchor)= 782 in.2 (see Figure RD.5.2.1) ANao(for single anchor) = 576 in.2(see Figure RD.5.2.1) AN„ (for group anchor)= 576 in.2(see Figure RD.5.2.1) Pec N = 1 Eqn. 0-9 (Anchors not Eccentrically Loaded, 41. = 1.0) Il `jea,N= 1.000 Eqn. 0-10&0-11 4)c.N= 1 (1.25 for cast anchors. 1.4 for post-installed) Section D.5.2.6II k,= 24 (24 for cast anchors, 17 for post-installed) Section D.5.2.2 fc= 2500 psi 1.5"her= 12 hef= 8 inches 0.7+0,3(cr„i„11.5h8r) = 1.000 1 Cmin= 12 in -distance to closest edge of concrete ,v 0, = k I f f c h r' Nb= 27.15 kips-(Eqn. D-7) Ncb= 27.15 kips-(Eqn. 0-4) A�sr N = 0.00 kips-(Eqn. 0-5) NT ._ Y'ec,NV ed„Nil: cp,.\'Nb Reinforcing tt)= 0.70 ,vco tpN,t,s= 19.01 kips I I I iPage 104 of 126 I Client: I 4 Project: Proj.it: ,At4 Date: ,...1 1 FROELICH By ENG I a k ERS I I ACI 318-05 Appendix 0 - Tension Failures Cont. (Page 3 of 3) Ip5.3-Simile Anchor Pullout-headed or embedded nut I Use Plate Washer? Plate Washer Width = Y 3 inches Nut diameter= 0.985 inches I Nut or Plate Washer Bearing Area= 9.000 in2 Abrg = 8.693 in2-bearing area of embedded anchors head or nut 141c P = 1 For an anchor located in an area of concrete where not cracking at I service loads is anticipated, otherwise use 1.0 value(ACI 318-05 Section 0.5.3.6) Ins Np= 1 #of anchors 17 3 87 (kips) Eqn. D-15 fNp ----4rg8fc Np,= 173.87 (kips) Eqn. D-14 N .N- I Reinforcing ct)= (11)Np,= 0.70 121.71 kips Pr! p c,P I D9.4-Anchor side-faced blowout-Headed Anchor (Required only if anchor is near an edge where cal <0.4h7, I Anchor is not close to Edge of Concrete. Analysis below NOT Required. Ca2= 5 distance to perp edge of concrete from anchor Oat = 12 in -distance to closest edge of concrete I N st,= Factored Nst,= 283.05 (kips) Eqn. D-15 100.25 Reinforcing cd= 0.70 I0 N.b 198.14 kips N s b = I 6 0 C a 1 V Abrg .,,I f C S= 0 in -spacing of outer anchors in group I Nabg= Reinforcing0= 283.05 (kips) Eqn. D-16 0.70 Nsbg = (1 + s \ N sb oN,bg r-' 198.14 kips I I I Page 105 of 126 $, I al 7(f� _Iti Client: C(�j�[ Project: 1 ROEIKEl Proj.#: CONSULTING Date: By: ENGKERS,INC ACI 31$-05 Appendix D - Tension Failures (Page 1 of 3) 1 Anchor description: 718"ASTM A36 Threaded Rod for Simpson HDQ8 1 Number of Anchors s,= 0 in. (see Fig 0.875 inch Diameter s2= 0 RD.5.2 1) 8 Inch Embed 2500 psi Concrete Footing Noesign = 9.230 (kips)Allowable Design Tension D.3 -General Requirements(ACI 318-02 Section D.3.3.3) 1 Are seismic loads induced into the anchor? Y SF= 0.75 D.4-General Requirements for Anchor Strength (ACI 318-02 Section 0.4.4) Strength reduction factor tD for anchors using load combinations from ACI 318-05 section 9.2 Will anchor be governed by brittle steel failure? N Anchor @= 0.75 Brittle failure: 0.65 (brittle defined by tensile test elongation less than 14%) Ductile failure: 0.75 Is rebar present around anchor to resist blowout? N Reinforcing 4)= 0.70 if rebar is present around anchor: 0.75 Otherwise, 0-70 Summa oNn Wind WNn Seismic Summary From Below OM, Sw= 1.0 SF= 0.75 ON.= 20.09 20.09 15.06 kips 1-WN,,t,= 25.87 25.87 . 19.40 kips 1 CON pn= 117.59 117.59 88.19 kips c)N$b= 227.21 227.21 170.41 kips cDN$b9= 227.21 227.21 170.41 kips 1 Minimum 4)Nr,= 20.09 20.09 15.06 kips Converting To Allowable Stress Design Wind Seismic Conversion Factor 1.4 1.4 CONAllowable= 14.35 10.76 kips Ndeslyn < 4)NAllowable 9.230 < 10.76 1 Therefore, Anchor Design OK I I iPage 106 of 126 I Client " ', Project: FkoalChl Proj.#: ENGIEERS,INC I ACI 318-05 Appendix D - Tension Failures Cont. (Page 2 of PP3) I Tension Design Calculations I05.1 -Sleet Strength for Anchor in Tension do(Anchor Diameter)= 0.875 inches n = 1 #of anchors Int= 9 Number of Threads per inch Ase= 0.48 in.2-(effective cross-sectional area of anchor) I feta= 58.00 ksi-(tensile strength of anchor material (not the yield strength) not exceed 1.9fy or 125 ksi) Nsa= 26.78 ksi-(Eqn. D-3) I Anchor 4) = 0.75 sa = Yr se,tDN$,= 20.09 kips ,52-Concrete Breakout Strength of Anchor to 'ension ID si = 0 inches (see Fig. RD.5.2.1) s2= 0 inches (see Fig. RD.5.2.1) IAn,(for single anchor) = 784 in.2(see Figure RD.5.2.1) A„c(for group anchor)= NA in.2(see Figure RD.5.2.1) AN,(for single anchor)= 576 in.2 (see Figure RD.5.2.1) IANca (for group anchor)= 576 in.2(see Figure RD 5.2.1) gjec,N= 1 Eqn. D-9 (Anchors not Eccentrically Loaded, 4., = 1.0) I 4 ed.N — 4'c N = 1.000 Eqn. D-10&D-11 1 (1.25 for cast anchors, 1.4 for post-installed) Section D.5.2.6 Ica= 24 (24 for cast anchors, 17 for post-installed) Section D.5.2.2 I = h 2500 psi 1.5`her= 12 he= 8 inches Q.7+Q.3(Gmin/1.5he,)= 1.050 c,T,;,= 14 in -distance to closest edge of concrete N .15 I k—_ ; h" Nb= 27.15 kips-(Eqn. -7) f er t Nob= 36.96 kips-(Eqn. D-4) it c Nebo= 0.00 kips-(Eqn. D-5) _cbg ec,N ed,ti 1 cp,N b A I Reinforcing 4)= 0.70r 1 c QNcbg= 25.87 kips I I Page 107 of 126 I I • - Client Fl E Project: FROE.IC Proj.AE: (ONSUlliNG Date: By: ENGNEERS, lIC I ACI 318-05 Appendix D - Tension Failures Cont. (Page 3 of 3) i p5.3-Slagle Anchor Pullout-headed or embedded nut Use Plate Washer? Y I Plate Washer Width = 3 inches Nut diameter= 1.438 inches Nut or Plate Washer Bearing Area = 9.000 in2 Abrg = 8.399 in2-bearing area of embedded anchors head or nut y1c P = 1 For an anchor located in an area of concrete where not cracking at service loads is anticipated, otherwise use 1.0 value(ACI 318-05 Section D.5.3.6) n = 1 #of anchors I Ni, = 167.98 (kips) Eqn. D-15 p pg .. NPR= 167.98 (kips) Eqn. 0-14 Nim ,_- j\i�,w-,t� P Reinforcing = 0.70 0Npn= 117.59 kips D5.4-Anchor side-faced blowout-Headed Anchor I (Required only if anchor is near an edge where cg. < 0.4he) Anchor is not close to Edge of Concrete. Analysis below NOT Required. I Ca2= 14 distance to perp edge of concrete from anchor Cal = 14 in -distance to closest edge of concrete I Nsb= 324.59 (kips) Eqn. D-15 Factored Nsb= 162.29 Reinforcing = 0.70 ' •Nsb= 227.21 kips N sb — 160 C a l VA brg C1 s= 0 in -spacing of outer anchors in group Nsbg= 324.59 (kips) Eqn. D-16 f 1 Reinforcing = 0.70N _ + Sr ONsbg= 227.21 kips sbg l 6Cai 1 ss I I I Page108of 126 I II -2■ Client 1IProject: FROLIIC1! Proj,i1: ONSOI]1P4G Date: By: E EERS,1MC IACI 318-05 Appendix D - Tension Failures (Page 1 of 3) I Anchor description: 1"ASTM A36 Threaded Rod for Simpson HhDQ11 I HHDQ14/HD14A FHDU11 /HDU14 1 Number of Anchors sI = 0 in. (see Fig 1.000 Inch Diameter s2= 0 RD.5.2.1) I 12 inch Embed 2500 psi Concrete Footing NDesign= 13.710 (kips)Allowable Design Tension ID.3- General Requirements(ACI 318-02 Section D.3.3.3) Are seismic loads induced into the anchor? Y SF= 0.75 ID.4 -General Requirements for Anchor Strength (ACI 318-02 Section 13.4.4) Strength reduction factor D for anchors using load combinations from ACI 318-05 section 9.2 Will anchor be governed by brittle steel failure? N Anchor Q = 0.75 I Brittle failure: 0.65 (brittle defined by(ensile test elongation less than 14%) Ductile failure: 0.75 Is rebar present around anchor to resist blowout? N Reinforcing 4 = 0.70 I If rebar is present around anchor: 0.75 Otherwise, 0.70 ISummary CM Wind a)Nn SeismicII ,' Summary From Below 4►Nn Sw=1.0 SF=0/5 oN$= 26.35 26.35 19.76 kips 4xNb,= 29.64 29.64 2223 kips I SON ,• 115.01 115.01 86.26 kips ON = 288.91 288.91 216.68 ' kips rtiNsbg - 288.91 288.91 216.68 kips I Minimum N 19T „= 26.35 26.35 .76 'kips Converting To Allowable Stress Design I Wind Seismic Conversion Factor1.4 1.4 ONAtiowabie= 18.82 14.12 kips 1 Ndasign < ONAlm esbie 13.710 < 14.12 ITherefore, Anchor Digen OK I Page 109 of 126 I II !vier Client: (' Project: FkOEI H Pn) >o: CONSOLING Byte: I Eh NEER',INC i Failures Cont. (Page 2 of 3) 1 ACI 318-05 Appendix D - Tension Fail Tension Design CalculationsI 115.1 -Steel strength for Anchor in Tension do(Anchor Diameter)= 1.000 inches n 1 #of anchors i nt= 8 Number of Threads per inch ASO= 0.61 in.2-(effective cross-sectional area of anchor) lute = 58.00 ksi- (tensile strength of anchor material (not the yield strength) not exceed 1.9fy or 125 ksi) Ns,= 35.13 ksi-(Eqn. D-3) Anchor cp = 0.75 1\` sir = fAse✓ alta RNs,= 26.35 kips - I D5.2-Concrete Breakout strength of Anchor in Tension I S, = 0 inches(see Fig. RD.5.2.1) S2= 0 inches (see Fig. RD.5.2.1) Anc(for single anchor) = 1100 in.2(see Figure RD.5.2.1) I A„c(for group anchor) = NA in.2(see Figure RD.5.2.1) Nyco (for single anchor)= 1296 in.2(see Figure RD.5.2.1) ANco (for group anchor) = 1296 in.2(see Figure RD.5.2.1) y,sc,N= 1 Eqn. D-9 (Anchors not Eccentrically Loaded, Wt =1.0) 4'9d,N= 1.000 Eqn. D-10&D-11 I 4'a,N= 1 (1.25 for cast anchors, 1.4 for post-installed) Section D.5.2.6 kc= 24 (24 for cast anchors, 17 for post-installed) Section D.5,2.2 fc= 2500 psi 1.5*he= 18 ham= 12 inches 0.7+0.3(cm;n/l.5het) = 1.000 Cmin 18 in -distance to closest edge of concrete IN = kr , h I s Nb= 49.88 kips-(Eqn. D-7) NCB = 42.34 kips-(Eqn. D-4) `�;yc Nie ,eco 0.00 kips-(Eqn. 0-5) Nchg = ec,tb' ed,NVicp,NNh Reinforcing �►= 0.70 II SeNcbg= 29.64 kips I I IPage 110 of 126 I f -off' Client: - », Project: �k E l �H pro;.#: LNU��HU Date: ey: ENGEEER ZINC I I ACI 318-05 Appendix D - Tension Failures Cont. (Page 3 of 3) D5.3 -Single Anchor Pullout-headed or embedded nut 1 Use Plate Washer? Y Plate Washer Width= 3 inches Nut diameter= 1.625 inches I Nut or Plate Washer Bearing Area = 9.000 in2 Abrg = 8.22 int-bearing area of embedded anchors head or nut I 4'�.p = I For an anchor located in an area of concrete where no cracking at service loads is anticipated$ otherwise use 1.0 value(ACI 318-05 Section D.5.3.6) In= 1 #of anchors Np= 164.30 (kips) Eqn. D-15 1...,:„ ..,4„,g8fc I NFA = 164.30 (kips) Eqn. D-14 A pH =N tg Reinforcing cp = 0.70 I ONp„= 115.01 kips I135.4-Anchor side faced blowout-Headed Anchor (Required only if anchor is near an edge where cal < 0.4heq I Anchor is not close to Edge of Concrete. Analysis below NOT Required. cat= 5 distance to perp edge of concrete from anchor ca, = 18 in -distance to closest edge of concrete INab= 412.73 (kips) Eqn. D-15 Factored Nab= 412.73 I Reinforcing (A= 0.70 01451,- 288.91 kips Nsb = 160 c al j A bro .NITTI S= 0 in -spacing of outer anchors in group I NU,/= 412.73 (kips) Eqn. 0-16 f , Reinforcing to= 0.70 N _ 1 + S N Q1Nabg = 288.91 kips sng 6C sb I \ at 1 1 I Page 111of126 I Title Block Line 1 Title: Job# You can changes this area Dsgnr: I using the'Settings"menu item Project Desc.: and then using the'Printing& Project Notes Title Block'selection. Title BlockLineBsp=a:i3 WARM,9 si~at: _ _.,.... _ .__ _. .-._ _._-.,- ...Fae:P.++1i5-iliawtlTi33nharss , Cantilevered Retaining Walll�.l�lc.ttztll» 11.ti1p8.Y „11?OQ9 Lic.#:KW- 6002304 Licensee:FROELICH CONSULTING ENGINEERS Description 4'-0Wall Criteria »„ Soil Data Calculations per ACI 318-08,ACI 530.08,IBC 2009, ._ _ - CBC 2010,ASCE 7-05 Retained Height = 4.00 ft Allow Soil Bearing = 2,500.0 psf Wall height above soil = 0.00 ft Equivalent Fluid Pressure Method Slope Behind Wail = 0.00 1 Heel Active Pressure = 35.0 pet Height of Soil over Toe = 6.00 in Toe Active Pressure = 30.0 psff ft Water height over heel = 0.0 ft Passive Pressure = 330.0 psfIft Vertical component of active Soil Density,Heel = 110.00 pcf I Lateral soil pressure options: Soil Density,Toe = 0 00 pcf NOT USED far Soil Pressure. Friction Cceff otwn Ftg&Soil = 1500 NOT USED for Sliding Resistance. Soli height to ignore NOT USED for Overturning Resistance. for passive pressure = 0 CO in Surcharge Loads Lateral Load Applied to Stem Adjacent Footing Load SSuAe Over Heel - _50'0 psf Lateral Load = 20.0 plf Adjacent Footing Load = 0.0 lbs Used ResistSliding&Overturning ,..Height to Top = 4.00 ft Footing Width = 0.00 ft Surcharge Over Toe = 0.0 psf ...Height to Bottom = 00 ft Eccentricity = 0.00 in Used for S &OVerturrfir v_. Wall to Ftg CL Dist 0.00 ft Axial Load Applied to Stem Footing Type Line Load _._.,..___, .. _ -. Base AbovelBelow Soil ft Axial Dead Load = 500.0 lbs at Back of Wall 0,0I Axial Live Load = 0.0 psf 0.0 lbs Wind on Exposed Stem = Poisson's Ratio = 0.300 Axial Load Eccentricity = 0.0 in Desir Summary Stem Construction Stem _ruction Top OK » ... em Wall Stability Ratios ^__ Design Height Above Ftg ._ ;ft= y 0.00 Overturning = 2.43 OK Wail Material Above lir = Concrete Sliding = 2.25 OK Thickness in= 6 00 (Vertical Component NOT Used) Rebar Size = # 4 Total Bearing Load = 1,948 lbs Rebar Spacing in= 12.00 I ...resultant ecc. _ 0,22 in Rebar Placed at = Edge Design Data .w. __ _ , _ ,,,,, Soil Pressure @Toe = 1,515 psf OK fb/FB 4-fa/Fa = 0.270 Soil Pressure @ Heel = 0 psf OK Total Force @ Section lbs= 623.8 1 Allowable, 2,500 psf Moment .Actual ft-I= 960.0 Soil Pressure Less Thal AllowableMoment.-.: dual tale ft-I= 3,559.5 ACI F d Toe = 1,818 psf 13.25 ACI Factored at5 Heel = 0 psf Shear....Actual psi= Footing Shear @ Toe = 0 6 psi OK Shear.....Allowable psi= 671 Footing Shear @ Heel = 10.4 psi OK Wall Weight psf= 750 Allowable = 75.0 psi Rebar Depth 'd' in= 4.25 SlidingCalcs (Vertical Component NOT Used) Lap splice if above in= 12.40 1 Lap splice if below in= 8.40 Lateral Sliding Force = 597.0 lbs Hook embed into footing to= 8,40 less 100%Passive Force = • 371.3 lbs Concrete Data _ _. .. less 100%Friction Force = - 976.8 lbs t c psi= 2,000.0 Added Force Req'd = 0.0 lbs OK Fy psi= 60,000.0 .. for 1.5'1 Stability = 0.0 lbs OK Load Factors -_.,..,-. .,.-..•..---------_.._..._-- Dead Load 1.200 Live Load 1.600 Earth,H 1.600 Wind,W 1,600 Seismic,E 1.000 I I I I Title Block Line 1 Title: Page 1Jou f 126 You can changes this area Dsgnr. I using the'Settings'menu item Project Desc;n and then using the'Printing& Project Notes Title Block'selection. Title Block Line 6 „_ ._. Pn ,awazt + m fire:PtPt} ,st1 t.Tt16arass . Cantilevered Retaining Wail at u 1 f1. is tt ro .11.t04 9 Lic.#: KW-06002304 Licensee:FROELICH CONSULTING ENGINEERS Description: 4'-0'Wa Footing Dimensions&Strengths Footing Design Results Toe Width = 0.75 ft Toe Heel Heel Width = ....2.00._ Factored Pressure = 1,818 0 psf I Total Footing Width2.75 12.00Mu'.Upward i 462 0 ft-lb Footing Thickness in Mu`:Downward 69 887 ft-lb Key Width = 0.00 in Mu_ Design = 392 887 ft-lb Key Depth = 0.00 in Actual 1-Way Shear 0.63 10.37 psi ' Key Distance from Toe = 0.00 ft 2,5t]0psi Fy = 60 000 psi Allow 1-Way Shear = 7 75 SO psi Toe Reinforcing Heel Reinforcing = #7�'!18 6.f1 in Fc = _ . = #6 16.00 in Fooling Concrete uersity = 150.00 pcf Key Reinforcing = None Speed Min.As% = 0 0018 Other Acceptable Sizes&Spacings 1 Cover @ Top 2.00 @ Btm.= 3.00 in Toe Not req'd,Mu<S"Fr Heel: Not req'd,Mu c S*Fr Keys No key defined Summary of Overturning&Resisting Forces&Moments OVERTURNING,.... ...RESISTING Force Distance Moment Force Distance Moment ItemI .lbs. ft ft.-lb „ . ,,,lbs ft ft1,b F Heel Active Pressure = 437 5 1 7 729.2 Soil Over Heel 660 0 2,:00 1,320.0 Surcharge over Heel = 79.5 2.50 198.9 Sloped Soil Over Heel = Toe Active Pressure = Surcharge Over Heel = 75.0 2.00 150.0 I Surcharge Over Toe = Adjacent Footing Load = Adjacent Footing Load Axial Dead Load on Stem = 500.0 1 00 500.0 Added Lateral Load - 80 0 3.00 240.0 Adjacent Live Load on Stem = Load©Stem Above Soil = Soil Over Toe = 0.38 1 Surcharge Over Toe Stem Weight(s) = = 300.0 1 00 300.0 - -.. -... Earth @ Stem Transitions = Total = 597.0 O.T.M. = 1,168.0 Footing Weight = 442.5 1.38 567 2 I Residing/Overturning Ratio = 2.43 Key Weight Vertical Loads user!for Soil Pressure= 1,947.5 lbs Vert.Component = Total= 1;947.5 lbs R.M.= 2.837.2 *.,440 Live load NOT included in total diSolayed,or used for overturning resistance,but is included for soil pressure calculation, 1 I I I I I 1 Page 113of126 $ Job: Title Block Line 1 Title Title: You can changes this area Dsgne Project Desc., Iusing the'Settings'menu item and Men using the'Printing& Project Notes: Title Block'selection, a,red.as u a azta + Title Mock Line 6 `_ "" s"`+�a ,` - - _ Fits P:52i1i 1Joti't1."t;1'T3- C Cantilevered Rat�l�nin Wall tt f - 1, � te,00,We-11AM Licensee:FROELICH CONSULTING ENGINEERS tic. :KW-06002304 Description': 5.-0.Wall So Data ` Calculations per ACI 318.08, ACI 530.08,IBC 2009, Criteria _ ,.., -••- ,- .,,. CBC 2010,ASCE 7-05 Retained Height = 6.00 ft Allow Soil Beann5 = 2,500.0 psf Wall height above soil = 0.00 ft Equivalent Fluid Pressure Method Slope Behind Wall = 0.00:1 Heel Active Pressure = 35.0 psffft Height of Soil over Toe = 6.00 in Toe Active Pressure 330 0 psf`ft Water height over heel 0-0 ft Passive Pressure - I V�com�tofa�ve Soil Density:Heel -= 110.00 pcf Lata soil reoptlons: Soil Density Toe = 0.00 pcf NOT USED fer Soli Pressure. Friction Coeff bl`Nn Ftg&Soil = 0 50X1 NOT USED for Sliding Resistance. I NOT USED for Overturning Resistance, Soil height to gore for passive pressure 0,00 in Surcharge Loads Lateral Load Applied to Stem Adjacent Footing Load lateral Load - 30.0 pif Adjacent Footing Load = 0,0 lbs S Over 0 psf ...Hei ht to Top = 8.00 ft Footing Width 0.00 ft t�r it Over T e Overturningg 0.00 ft Eccentricity e 0.00 in SUrottarge _ (1<€}psf ...Height to Bottom = 0.00 ft (.1e4 for t; &ovve t4raitt ; Wok to Ftg GL Dist Footing Type Line Load Axlal Load Applied to Stem Base Above/Below Sola = sf0.0 ft Axial Dead Load _ 500.0 lbs at Bacic of Wail = Axial Live Load 0.11 lbs Wind on Exposed Stena , 0 0 pPoisson's Ratio0.300 Axial Load Eccentricity = 0.0 it .„�... _...�..�_,� Top Stem .. Stem Construction Clesi rf Summary _ Stern 3K, Wall Stability Ratios Design Height Above Ftg ft= 0.00 Overturning = 2.37 OK Wall Material Abcve'Ht' = Concrete Sliding = 1.78 OK Thickness 8000 (Vertical Component NOT Used) Rebar Size = # 5 Total Swig Load = 3,35 lbs I Rebar Spacing it= 12.00 ...resultant eco. = 8.81 ie Rabar Placed at = Edge Soil Pressure @ Toe = 1,767 psf OK fbiFB+fa1Fa =. 0.377 Soil Pressure @ Heel 0- psf OK Total Force @ Section lbs= 1.334 71 Allowable 2,500 psfMoment....Actual ft 1= 3:013 2 Soli Pressure Less Than Allowable Moment....dual_Allowable fel= 3,013A7 ACI Factored @ Toe 2,121 psf Shear.....Actual psi= 19.8 ACI Factored @Heel = 0 psf Shear Allowable Iasi= 671 i FootingShear a©Toe e 5.1 psi OlE � '<.. ''!tial(Weight psf= 10t7�0 Footing St ear @ Heel = 21.5 psi OK Reber eightepth 'd' inpsf = 0 0 Allowable - 75.0 psi Lap splice if above in= 12.00 Sliding Cabs (Vertical Component NOT Used) Lap splice if below in= 5.00 Lateral.Sliding Force 1,148.9 lbs Hook embed into footing in= 6.00 less 100%Passive Force = - 371.3 lbs �- Concrete Data _-_ _,�.., .... __.__-w,.. less 100%Friction Force = - 1,678.0 lbs fc psi= 2,000.0 Added Force Red - 0,0 lbs OK Fy psi= 60,000.0 ....for 1.5:1 Stability = 0,0 lbs OK Load Factors - ---- - Dead Load 1,200 Live Load 1.600 Earth,H 1.600 Wind,W 1,600 Seismic,E 1.000 I I I ITitle Block line 1 Title: Page Jtb6#f 126 You can changes this area Dsgnn I using the'Settings'menu item Project Desa.: and then using the'Printing& Project Notes Title 8lode selection. 6 Pnraea 13 MAR 3013.1.60PM I Cantilevered R tainlr Wall F :t ti mita r ; - Etieeoele IN IIt 1gt1 tt.1O$, tt14,Q9 Lic.#:f #1-0600230 Licensee:FROELI H CONSULTING ENGINEERS Description: 6-0'Wan Footing Dimensions&Strengt s Footing Design Results Toe Width 1.00 ft , Toe Ifeei Heel Width = 3.00 Factored Pressure = 2,121 0 csf I Total Footing Width 4 00 1Mu' Upward 967 0 't-lb Footing Thickness 2 ;n Mu' Downward 123 2,864 ft-lb Key Width 000 in Mu: Design _ 844 2,864 ft-lb Key Width e 0,00 in Actual 1-Way Shear 5.07 21.53 psi I Key Distance from Toe 0.00 ft Allow 1-Way Shear - 75,04 75.00 psi Toe Reinforcing = #7 16.tln Pc = 2,501# Fy = 60,000;psi Heel Reinforcing = #6 16,000 in Footing Concrete i- city - 15040;pcf Key Reinforcing = Nene.Spc.ii Min.As% = 0.0018 ether Acceptable Sizes&Spacings 1 Cover @ Top 2,00 @ Btm.= 3.00 in Tod lldi Mu<S«Fr Ham; 11,75 in,#5@ 1825 in,#6@ 25.75 ir,#7@ 35,25 in,#8@ 46.25 in,#9@ 4 Ker Noisy defined Summary of Overturning&Resisting Forces&Moments _OVERTURNING ..RESISTING Force Distance Moment Force Distance Moment Item, ..._ lbs ft ft 1b.. _ lbs ft ft-lb , IHeel Active Pressure = ?.57 5 2.33 2.000 8 Soil Over Heal = 1,540,0 2,83 4,363.3 Surcharge over Heel = 111.4 3.50 389.8 Sloped Soil Over Keel = Toe Active Pressure = Surcharge Over Heel = 116.7 2.83 330.6 I Surcharge Over Toe = Adjacent Footing Load = Axial Dead Load on Adjacent Footing Load Stern = 500.0 1.33 6a"6.7 Added Lateral Load 180.0 4 00 720.0 'Axial Live Load on Stem Load @ Stem Above Soil = Soil Over Tce = 0.50 I Surcharge Over Toe = Stem Weights} = 600.0 1.33 800.0 Earth CG Stem Transitions Total = 1:148.9 O.T.M. = 3,110.6 Footing Weight - 600,0 2.30 1,200.0 ' Resisting/Overturning Ratio = 2.37 Key Weight = Vertical Loads used for Soil Pressure= 3,356.7 lbs Vert.Component = Total= 3,356.7 lbs R.M.= 7,360.6 'Axial live load NOT included in total displayed,or used for overturning resistance,but is included tor soil pressure aculation. I I I I I I Page 115 of 126 i Title Block Line 1 Title: You can changes this area Dsgnr: Desc.: using the'Settings'menu item and then using the'Printing& I Project Notes Title Block'selection. Prima*MAR ani L 1:tnt Tire n Line : _- __ ti 39 t? FROELICHCJN01i,SCONttittOG V 6.11 09 Cantilevered Retalnil = Watt >acAxtw, ciai�,�t.tov�slt.fao� Licensee ERS i .# KW-tl6tlfl23tI4 Description: 8'-'Wall _ m,." Soil Data. ». „ w" "" - Calculations per ACI 31608, ACI 530.08,IBC 2009, Criteria - CBC 2010,ASCE 7.05 Retained Height - = 2,500.0 psf a.aa ft Allow Soil Bearing Wall height above soil = 0.00 ft Equivalent Fluid Pressure Method 1 Slope Behind Wall = 0.00:1 Heel Active Pressure = 35.0 psftft Height of Soil over Toe = 6.00 in Toe Active Pressure = 30,0 psfift Water height over heel = 0.0 ft Passive Pressure = 330.0 psf/ft Vertical component of active Soil Density,Heel = 113.00 poi Lateral soil pressure options: Soil Density,Toe = 0.00 pot I NOT USED for Soil Pressure Friction Coeff otwn Ftg&Soil = 0.500 NOT USED for Sliding Resistance. Soil height,to ignore NOT USED for Overturning Resistance, for passive pressure = 0.00 in I.._, .,., _M_ ._ Surcharge Loads Lateral Load Applied to Stem Adjacent Footing Load - 50,{# f Lateral Load = 40.0 plf Adjacent Footing Load = 0.0 lbs _ ..Height to Top = 8.00 ft Footing Width 0.00 ft Sused o fest r &Overturning _ E�ntncit = 0 00 in 5u a Chief Toe = 0.0 psf Haight to Bottom - 0.00 ft y = Used & Wail to Fig CL Dist 0.00 ft x Footing Type Line Load Axial Load Applied to Stem Base AbovefBelow Soil psf = 0.0 ft Axial Dead Load = 500.0 lbs at Sack of Wail Axial Live Load .. 0.0 lbs Wind on Exposed Stem = 0.0 pPoisson's Ratio = 0.300 Axial Load Eccentricity = 0.0 in a Stem Construction Top stem._ _ _ .._.. Desl $Unitriar _... ,:....m,,... w . . ._ . a„_. ` Siam OK Wall Stahl*Ratios Design Height Above Ftg ft= 0.00 , Overturning = 2.55 OK Wall Material Above'He = Concrete Sliding = •:1.59 OK Thickness in 6,00 (Vertical Component NOT Used) Rebar Size = # 5 Total Bearing Load = 5,225 lbs Rebar Spacing in= 6.00 .,.resultant ecc. = 9.94 in Rebar Placed at = Edge Design Data o asp .. w�__._ .�... Soil Pressure @ Tae = 1,809 psf OK fb1FB+falFa = Soil Pressure @ Heel = 91 psf OK Total Force @ Section lbs= 2,309 6 1 Allowable = 2,500 pet Moment...Actual ft-t= 6,872.2 Soil Pressure Less Than Allowable Moment._Allowable ft-I= 14,711.7 ACI Factored a@ Toe = 2,171 psf Shear Actual psi= 33.7 ACI Factored @,Heel = 109 psf I 13.opsi OK Shear.., Ailowable psi= 67.1 Footing Shear @Toe = Wall Weight = 100.0 Footing Shear @.Heel = 38.5 psi OK Depth 'a' psfin= 0 0 Allowable = 75.0 psi ReLap splice if above in= 12,22 Sliding Calcs (Vertical Component NOT Used) Lap splice if below in= 6.00 Lateral Sliding Force = 1,880.7 lbs Hook embed into fcotng in= 6.00 I less 100%Passive Force = • 371.3 lbs Concrete Data - -- -- . "» less 100%Friction Force = 2,610.0 lbs to psi= 2,000.0 Added Force Req'd = 0.0 lbs OK Fy psi= 60,000.0 ....for 1.5:1 Stability = 0.0 lbs OK I Load Factors Dead Load 1.200 Live Load 1.600 1 Earth,H 1.600 Wind,W 1.600 Seismic,E 1.000 I I I Page 9 126 Title Block Line 1 Title: Job# I You can changes this area Dsgnr, using the'Settings"menu item Project Desc_: and then using the'Printing& Project Notes: Title Block"selection. Fine Block I Pined.t3 MAP tiMi LSOPM Cantilevered Retaining Wall seamtt *mil 1130,a4rerl.fl!R.il9 Lic.#: KW-06002304 Licensee:FROELIC I CONSULTING ENGINEERS Description: 8.-0'Wall Footing Dimensions&Strengths Footing Design Results Toe Width = 1 50 ft Toe steel I Heel Width 4 00._ Factored Pressure _ 2,171 109 psf Total Footing Width 5.50 Mu' Upward 2,231 0 ft-lb Footing Thickness = 12.00 in Mu`-Downward = 277 0 ft-lb Key Width = 0.00 in Mu: Design = 1.954 6,872 ft-ib I Key Depth 0.00 in Actual 1!Way'Shear = 13 62 38.48 psi Key Distance from Toe = 0.00 ft Allow 1-Way Shear = 75.00 75.00 psi Toe Reinforcing = #7 16.00 in Fc= 2,500 i' Fy = 60,000 psi Heel Reinforcing = #6 P 15. in Footing Concrete tensity = 150.00 pcf Key Reinforcing = None Sped' I Min.As% 0.0013 2.00 @Bim.= 3.00 in Other Acceptable Sizes&Spacings Cover Top Toe' Not rerfd,Mu<S•Fr Heel. #44 11 GO in,#5@ 172.5 in,#6eL 24 25 in,#7@ 33.00 in, t 43.50 in,49iia 4 Key' No key defined I w Summary of &Overturning&Resisting Forces Moments OVERTURNING.,... RESISTING.... Force Distance Moment --RESISTING....Distance. Moment I itembs ft ft-lb . _. _ lbs ft fl to Hey Active Pressure = 1.417.5 3 00 4,252,5 Sail Over Heel 2:933.3 3.83 11,244.4 Surcharge over Hee' = 143.2 450 644.3 Sloped Scil Over Heei Toe Active Pressure = Surcharge Over Heel _ 165 7 3.83 638.9 I Surcharge Over Toe = Adjacent FooUog Load Adjacent Footing Lead Axial Dead Load on Stern = 500,0 1.83 916.7 Added Lateral Load = 320.0 5.00 1,600.; 'Axial Live Load on Stern I Load @ Stem Above Soil = Soil Over Toe4.75 Surcharge Over Toe Stem Weight(s) 800:0 1.83 1,466.7 Earth©Stem Transitions = Total = 1,880.7 O.T.M. = 6,496.8 Footing Weight a 825.0 2.75 2,268.8 I ResistinglOverturning Ratio = 2.55 Key Weight Vertical Loads used for Soil Pressure= 5,225.0 lbs vert.Component Total= 5,225.0 lbs RM.= 15,535.4 I 'Axial live load NOT included in total displayed,or used for overturning resistance,but is included for soil pressure calculation, I I I I I 1 Page 117 of 126 I i..i.jf,(m,..-..., CUENT: PAr:.f - 6969 SW Hampton St Portand,Oregon 97223 111 503.624-7005 PROJECT . . .. , _ ..1,....., NUMBER: 745 NW Mt Washington Di,#205 Bend Oregon 97701 541.363-1525 FROELICH ENGINEERS ! R et KA,m et r ;4 - -- e# I -# 1 — \J c) a tx. 54,0fif AL"....--- 44ieeerrot I I , '- * "46 it . ....,i7 •itacit:ie = 5s-efir ct, efroff; p oc4i,,,re - 3 3. Di,/ I iii•-4/04040f 14.--' 47a)/elf A ' .3 oe*Pie,z 4$.4.- • R.P . =' 02 5-049/0 I Ra i I I e:rppi y Si4 re-401*c a fp 42,3 x %hurt- I , 4 v 4 Cori z I DL:-- coopil / ..i too,11 , 5ePt.of x0,3 g` I Ice sf ilor-it 10 - i 70,$.4` . 46 I 1 . I 1 . , 1111111111111111 I Page 118 of 126 I 6969 SW liompton St Portland.Oregon 97223 CLIEf',4T. iii„ 503-624-7005 PROJECT; 1 / , I ....4.., 1 ilk. -yNUMBER: .- — 145 NW Mt Washington Dr.8205 Bend.Oregon 97701 SA1,383-1828 DATE: rROEL1CH ENGINEERSI ,, ,N,Ii,th.,1,/,L 13,/8 T, BY: 1 f? 't 1044e ii 0"4 avettozoce 5650 , ... I e.64:5e tP '`'. I01,„,=. Sloil. I „ 140 W_ Si.e rat 4t rtig 1111 in I ;i da r t:Vat 1 350 I ill bt...-- ?op 4 pea'sive ft- Z": /Per ,I 46;4 I ....,, .• ... Br. ", ,$x 251)0 . •sssts,,,t- EQ ,t-6)c I. -= 5p It *1------ 1 i I I iD Lr 5V7/10.4. I P. -1 td E - A*r rt I A.- $ i e) 1 1 I1 11.1111111 I Froelich Engineers Project Title: Page 119 of 126 I 4 4 Engineer: Project ID 444 Project Descr: 1 FROELICH pfr'08 2.ALL zota 'Pita .�. . ,....,M� 1A' PNe=��1ig1Pkl+�fi19�I9C�A�1St�^� 6 ' Cantilevered Retaining Wall ENERCALC,INC.1983-2014,6uid:8.14.L-18,deri.14.&18 Lic.let:Int-06002304 Licensee:FROELICH CONSULTING ENGINEERS Description: Garage Ret Wall-No Seismic Calculation Criteria Soil Data s per ACI 31 6-11, ACI 53011,IBC 2012, CBC 2013,ASCE 7.10 .._Retained Height = 11.50ft.... Allow Soil Bearing = 2,500.0 psf Wall height above soil = 0.00 ft Equivalent Fluid Pressure Method Slope Behind Wall = 0.00:1 Heel Active Pressure = 35.0 psf/ftI Height of Soil over Toe = 12.00 in Toe Active Pressure = 30.0 psftft Water height over heel = 0.0 ft Passive Pressure = 330.0 psflft Vertical component of active Soil Density,Heel = 110.00 pcf I Lateral soil pressure options: Soil Density,Toe = 110.00 pcf NOT USED for Soil Pressure. Friction Coeff btwn Ftg&Soil = 0.500 NOT USED for Sliding Resistance. Soil height to ignore NOT USED for Overturning Resistance. for passive pressure = 12,00 in Lateral Load Applied to Stem Adjacent FootingLoad Surcharge Loads ppieac ,..... �. . a_.._ _.. ._�. .... . if Surcharge Over Heel = 0.0 psfLateral Load 70.0 P Adjacent Footing Load = 0.0 lbs Used To Resist Sliding&Overturning ...Height to Top = 10.00 ft Footing Width = 0.00 ft Surcharge Over Toe = 0.0 psf ...Height to Bottom = 0,00 ft Eccentricity = 0.00 in Used for Sliding&Overturning Wall to Ftg CL Dist = 0.00 ft FootingType Line Load Axial Load Applied to Stem yp ...... _, Base Above/Below Soil Axial Dead Load = 500.0 lbs at Back of Wall = 0.0 ft Wind on Exposed Stem - 0.0 psf Axial Live Load = 1,100.0 lbsPoisson's Ratio = 0.300 Axial Load Eccentricity = 0.0 in Design Summary Stem Construction Top Stem 2nd I,,, Stem OK item QK Wall Stability Ratios Design Height Above Ftg ft= 2.00 0.00 Overturning . = 2,73 OK Wall Material Above"Ht" = Concrete Concrete Sliding = 1.59 OK Thickness in=- 8.00 8,00 Slab Resists All Sliding! Rebar Size = # 5 # 6 I Total Bearing Load = 10,739 lbs Rebar Spacing to= 6.00 6.00 -resultant ecc. = 12.27 In Rebar Placed at = Edge Edge Design Data ._.. _ �,..._. Soil Pressure @ Toe = 2,372 psf OK fb/FB+fa/Fa = 0.658 0.938 Soil Pressure @ Heel = 313 psf OK1 Total Force @ Section lbs= 3,087.0 4,379.0 Allowable = 2,500 psf Moment., Actuai ft-I= 10,242.2 17,686.8 soil Pressure Less Than Allowable Moment Allowable ft•I= 15,562.2 18,848.3 ACI Factored @ Toe 2,388 psf ACI Factored @ Heel = 388 psf Shear Actual psi= 46.1 71.1 Shear Allowable psi= 82.2 82.2 I Footing Shear @ Toe = 22.3 psi OK Footing Shear @ Heel = 52.5 psi OK Wall Weight psf= 100.0 100.0 Allowable = 82.2 psi Rebar Depth 'd' in= 6.19 5.63 SlidingCaics Slab Resists All Sliding i Lap splice if above in= 14.06 24,05 1 g• Lap splice if below in= 14.06 10.64 Lateral Sliding Force = 3,500.5 lbs Hook embed into footing in= 14.06 10.64 less 100%Passive Force = - 733.3 lbs less 100%Friction Force = • 4,819.6 lbs fc psi= 3,000.0 3,000, Added Force Req'd = 0.0 lbs OK Fy psi= 60,000.0 60,000.0 .,..for 1.5:1 Stability = 0.0 lbs OK Load Factors Dead Load 1.200 1 Live Load 1.600 Earth,H 1.600 Wind,W 1.600 Seismic,E 1.000 1 I I I 4 Froelich Engineers Project Title: Page 120 of 126 Engineer: Project ID; Project Descr: iFROELICH N01Nc cR8> Pn:d 2C 1/4:3'20'470'4 x,.;?7AP; - „ .. , - ,. ,__Cc'1 , i»IUseraUsott iDja+8 114 T03f BaM- T fRC i E�4 I Lic.n '��'V@� i�£ 31 t1 119 � � ENERCALC,INC.1883.2014,IBuild:6.14.8AG,Vec6.14.8.16 # KW-06002304 Licensee:FROELICH CONSULTING ENGINEERS Description: Garage Ret Wall-No Seismic , IFooting Dimensions&Strengths Footing Design Results Toe Width 2.50 ft Toe Heel Heel Width = 5.50 Factored Pressure = 2,944 388 psf I Total Footing Width - 8.00 Mu':Upward = 8,367 0 ftIb Footing Thickness 16.00 in Mu':Downward _ 1,163 0 ft-lb Mu: Design 7,204 17,687 ft-lb Key Width = 0.00 in Actual 1-Way Shear = 22.31 52.45 psi Key Depth = 0.00 in Allow 1-Way Shear = 82.16 82.16 psi I Key Distance from Toe = 0.00 ft Toe Reinforcing = #6©6.00 in fc = 3,000 ► Fy = 60,000 psi Heel Reinforcing = #6 @ 12.00 in Footing Concrete Density = 150.00 pcf Key Reinforcing = None Spec'd Min.As% = 0.0018 Other Acceptable Sizes&Spacings Cover @ Top 2.00 @ 8tm.= 3.00 in Toe: #4@ 9.00 in,#5@ 14,00 in,#6@ 19.75 in,#7@ 26.75 in,#8@ 35.25 in,#9@ 44 Heel: #4@ 6.25 in,#5@ 9.50 in,#6@ 13.50 in,#7@ 18.25 in,#8©24.00 in,#9@ 30. Key: No key defined Summary of Overturning&Resisting Forces&Moments OVERTURNING ..,;,RESISTING Force Distance Moment Force Distance Moment I Item ft _ ft Ib lbs ft ftIb Heel Active Pressure - 2,882.2 4.28 12,329.2 Soil Over Heel _ 6,114.2 5.58 34,137.4 Surcharge over Heel = Sloped Soil Over Heel = Toe Active Pressure = -81.7 0,78 -63.5 Surcharge Over Heel = I Surcharge Over Toe = Adjacent Footing Load = Adjacent Footing Load = Axial Dead Load on Stem = 500,0 2.83 1,416.7 Added Lateral Load = 700.0 6.33 4,433.3 *Axial Live Load on Stem = 1,100.0 2.83 3,116.7 I Load @ Stem Above Soil = Soil Over Toe _ 275.0 1.25 343,8 Surcharge Over Toe Stem Weight(s) = 1,150.0 2,83 3,258.3 Earth @ Stem Transitions =- Total Total = 3,500.5 O.T.M 16,699.0 Footing Weight = 1,600.0 4.00 6,400.0 I Resisting/Overturning Ratio = 2.73 Key Weight Vertical Loads used for Soil Pressure= 10,739.2 lbs Vert.Component - Total= 9,639.2 lbs R.M.= 45,556.2 I *Axial live load NOT included in total displayed or used for overturning resistance,but is included for soil pressure calculation. I I I I I I Page 121 of 126 I I I I 8.1nConcwf#5@6.inofc . , .1 3/4" • 9'-6" • 11'-6" 11'-6" f; ' E A k 3ri4'e 6.in Conc vv/#6 41 6,in 0/c I 9 �y.� 2" ;tiding Restraint * s 1 +t " @Toe I t Designer select; t (��1�2[ horiz,rein ..04 2-6" 1 5'-6" jo. .Meet 6'-oe i ae, x , -. _.,„,. ..«««<... .�.,-.tee. ,..,..<�...... ,,. I I I I III Page 122 of 126 I I I IDL=500.,LL=1100.#, Ecc=0.in T I I I =" ITL#,ps. I , , , , , I 'tiding Restraint II Pp=733.33# 312.75psf 3500.5# I 2372.psf I I 1 di Froelich Engineers Project Title: Page 123 of 126 Engineer. Project ID: Project Descr. FROELICH I £NOINCEa6_t.. TrirteC,20,jG2314.354Am C i tale r dRetainingWall 144P1 iuAt -114 ENERO L INc. 2111+4,Build:6.14,8.18,Ver.6.14.8.16 LIc.# . KW-06002304 Licensee:FROELICH CONSULTING ENGINEERS Description: Garage Ret Wall-W/Seismic Criteria Soil Data Calculations per ACI 318-11, ACI 530-11,IBC 2012, „,„._,„ ... .__„ ,,,,,,, ,,..__..._. .,,., .,. ... .. CBC 2013,ASCE 7.10 Retained Height = 11.50 ft Allow Soil Bearing = 3,330.0 psf Wall height above soil = 0.00 ft Equivalent Fluid Pressure Method Slope Behind Wall = 0.00:1 Heel Active Pressure = 35.0 psffft I Height of Soil over Toe = 12.00 in Toe Active Pressure = 30.0 psf/ft Water height over heel = 0.0 ft Passive Pressure = 330.0 psf/ft Vertical component of active Soil Density,Heel = 110.00 pcf I Lateral soil pressure options: Soil Density,Toe = 110.00 pcf NOT USED for Soil Pressure. Friction Coeff btwn Ftg&Soil = 0.500 NOT USED for Sliding Resistance. NOT USED for Overturning Resistance. Soil height to ignore for passive pressure = 12.00 in SurchargeI Loads Lateral Load Applied to Stem Adjacent Footing Load Surcharge Over Heel = 0.0 psf Lateral Load = 85.0 plf Adjacent Footing Load = 0.0 lbs Used To Resist Sling&Overturning ...Height to Top = 10.00 ft Footing Width 0.00 ft Surcharge Over Toe = 0.0 psf ...Height to Bottom = 0.00 ft Eccentricity = 0.00 in I Used for Sliding&Overturning Wall to Ftg CL Dist = 0.00 ft Axial Load Applied to Stem Footing Type Line Load __. RP, ,...;„,,...___ Axial Dead Load = 500:0 lbs Base Back of WalliSoil _ 0,0 ft Axial Live Load = 0.0 lbs Wind on Exposed Stem = 0.0 psf is atio = I Axial Load Eccentricity = 0.01n Poisson's Ratio0.300 Design Summary .. ,,. Stem Construction Top stem 2nd - ... Stem OK Stem OK Wall Stability Ratios Design Height Above Ftg ft= 2.00 0.001 Overturning = 2.58 OK Wali Material Above"Ht" = Concrete Concrete Sliding = 1,52 OK Thickness in= 8.00 8.00 Slab Resists All Sliding! Rebar Size = # 5 # 6 I Total Bearing Load = 9,639 lbs Rebar Spacing in= 6.00 6.00 ,..resultant ecc. = 13.26 in Rebar Placed at = Edge Edge Design Data Soil Pressure @ Toe = 2,203 psf OK fb/FB+fa/Fa = 0.704 0.578 Soil Pressure @ Heel = 207 psf OK Total Force @ Section lbs= 3,207.0 4,529.0 I Allowable 7.7. 3,330 psi MomentActual ft-i= 10,722.2 18,436.$ Soil Pressure Less Than Allowable ACI Factored @ Toe = 2,644 psf Moment Allowable ft-1= 15,222.0 18,848,3 ACI Factored @ Heel = 248 psf Shear Actual psi= 48.7 74.7 I Footing Shear©Toe = 19,5 psi OK Shear Allowable psi= 75.0 82.2 Footing Shear @ Heel _ 52,5 psi OK Wall Weight psf= 100.0 100.0 Allowable - 82.2 psi Rebar Depth 'd' in= 6.19 5.63 Sliding Coles Slab Resists All Sliding I Lap splice if above in= 16.48 25.07 I Lateral Sliding Force = 3,650.5 lbs Lap splice if below in= 16.48 4.03 less 100%Passive Force = - 733.3 lbs Hook embed into footing in= 16.48 4.03 less 100%Friction Force = - 4,818,8 lbs Concrete Data ._ Added Force Req'd = 0.0 lbs OK psi= 0,000.a 3 000.0 F y psi= 60,000.0 60,000.0 I ....for 1.5: 1 Stability = 0.0 lbs OK Load Factors Dead Load 1.200 Live Load 1.600 I Earth,H 1.600 Wind,W 1,600 Seismic,E 1.000 I I I III / Froelich Engineers Project Title: Page 1 4, Engineer: ?io?gcliB,: 44, Project Descr: IFROELICH e w a,N_____ P:r e:'2�AUG 2014,3.5441 Canff�a reef Retaining Wail -A . , 44 1 �tvIs -1 I Et ERCALC,INC.1983-2014,Build:6,t a 1B,Ver.614 8.18 ii002304 Licensee.FRC? t_tCH CONSULTING ENGINEERS Description: Garage Ret Wall-W/Seismic Footing Dimensions&Strengths ' Footing Design Results Toe Width = 2.50 ft ToeHeel Heel Width 5;50, Factored Pressure = 2,644 248 psf Total Footing Width = 8.00 Mu':Upward = 7,482 0 ft-lb I Footing Thickness in Mu':Downward _ 1,163 6,320 0 ft-lb Key Width 0.00 in Mu: Design 18,437 ftIb Key Depth 0.00 in Actual 1-Way Shear = 19.54 52.45 psi Key Distance from Toe 0.00 ftn 000p Allow 1-Way Shear = 82.16 82.16 psi ,Il fc = 3, ' Fy = 60,000 psi Heel Reinforcing = #6 @ 12,00 in Footing Concrete Density Toe Reinforcing = #6 @ 6.00 in 150.00 pcf Key Reinforcing = None Spec'd Min.As% = 0-0018 Other Acceptable Sizes&Spacings I Cover @ Top 2.00 @ Btm,= 3.00 in Toe: #4@ 9.00 in,#5@ 14.00 in,#6@ 19.75 in,#7©26.75 in,#8@ 35.25 in,#9@ 44 Heel: #4@ 6.00 in,#5@ 9.25 in,#6@ 13.00 in,#7@ 17.50 in,#8@ 23.00 in,#9@ 29. Key: No key defined ry Summa of Overturning&Resisting Forces&Moments ,....OVERTURNING .,...RESISTING Force Distance Moment Force Distance Moment Item lbs.. ft.__ ftlb lbs f't' ft Ib Heel Active Pressure = 2,882.2 4.28 12;329.2 Soil Over Heel -...._ 6,114.2 5.58 .._. 34,137,4 Surcharge over Heel Sloped Soil Over Heel Toe Active Pressure = -81.7 0,78 -63.5 Surcharge Over Heel = I Surcharge Over Toe = Adjacent Footing Load = Adjacent Footing Load Axial Dead Load on Stem = 500.0 2,83 1,415:7 Added Lateral Load = 850.0 6.33 5,383.3 'Axial Live Load on Stem = Load @ Stem Above Soil = Soil Over Toe = 275.0 1,25 343.8 I Surcharge Over Toe = Stem Weight(s) 1,150.0 2.83 3,258.3 Earth @ Stem Transitions = Total = 3,650.5 O.T.M. = 17,649.0 Footing Weight = 1,600.0 4.00 6,400.0 I Resisting/Overturning Ratio = 2.58 Key Weight Vertical Loads used for Soil Pressure= 9,639.2 lbs Vert.Component = Total= 9,639.2 lbs R.M.= 45,556.2 *Axial live load NOT included in total displayed,or used for overturning resistance,but is included for sail pressure calculation. I I I I I Page 125 of 126 1 1 I 8.1n Conc w/#5 CO 6.1n o/c I lb z1 i 1 3/4" II £, 9'-6" li 1 r 11'-6" 11'-6" I I Bin Conc w/#6©6.in o/c ' I I s= 13 I :6' 2'.0" 1_d"! _. -P'. `Y'' ;" rill 21/2" " -,/ : ' 2 I iiiding Restraint — it �r 1'-4" III #6@6.in ©Toe I Designer select 2'-6" 5'-6" #601 1?tloriz.rami,-+if _.. o- I @ Heel I I I I rPage 126 of 126 I I I IDL=500.,LL=0.#, Ecc=0.in T I I I i I 85. 1 I 1 1 I 1r. !ding Restraint I Pp=733.33# 205.5psf 3650.5# I2203.3psf I I I