Loading...
Report (104) 02/22/2018 �'" ) FEB 2 2 2018 6u h of To:City of Tigard Fire CITY OrlIGARD O S &Iz LONG N'G DIVISION ? 3 300 Re:Western Materials Please see below for the fire sprinkler information and commodity description for the pallet racking installation permit request for Western Materials new location at 7301 SW Kable Ln,Portland OR 97224: Fire sprinkler info: No. Of Sprinklers- @1 remote Hos. Density-.40 GPM/SQ Ft Designed Area of Discharge-2000 SQ Ft Water Flow Rate-897.52GPM Residual Pressure at riser-69.6 PSI Commodities: The client will be storing Class 1 non-encapsulated residential construction materials such as decorative rock,siding, powdered stucco,stone work,etc. RECEIVE SEIZMt'C�� FEB 2 2 2018 MATERIAL HANDLING ENGINEERING (CITY OF�(/ TIG/A`gRlApD,s`dp �rRT 4M6 0'1 R11YlL•I�:9M Y 1 S l O.O B SPECIAL PRODUCTS CONVEYORS STORAGE RACKS OTHER SERVICES SHELVING TANK SUPPORTS TALL SUPPORTS SELECTIVE SEISMIC ANALYSIS METAL SHUTTLES MACHINERY HEADER STEEL DRIVE-IN PERMIT ACQUISITION METALIWOOD VCAROUSELS SORT PLATFORMS PUSH BACK EGRESS PLANS MOVABLE RASHEDDGS GONDOLAS VRC SHEDS PICK MODULES FLOW RACK STATE APPROVALS LOCKERS MODULAR OFFICES MEZZANINES ROOF VERIFICATION CANTILEVER PRODUCT TESTING CATWALKS FENCES FOOTINGS Licensed in 50 States � �4� ` Analysis of Storage Racks r Western Materials 7301 SM Kable Lane#100,Portland,OR 361009 Job No. 18-0414 ,:7 + ' ,°;C M:. - r ",,,•.,-.'' ',,-,,,'..' t a.. -,,,1 .K' ,'°, , +. i s,,-1`-°3a1 �,.-�? $ ,. t:_!`.1„.: ,'v ro x� ma„,'4y^r ik= . ' 3 ( � vtt.,.k, as Sds`.4,-,,,,44.--,,,,,"v ... r «� a iw' "#&& Cic+..cu$i�3'3`a+x. c3«�+' ` r: x `ate r�' ,' Approved by: *R ''''1":4,.:,,,.?..,,, ' Sal E.Fateen,P.E. ,,,,,,,,;,,:°;,;„„,-,,,*- 1�}1 = 2/21/2018 . c 00 PROpes *StNEs w0 i``' 16243 i< OREGON sqte. 01, ' E. F P 1130 E.Cypress St * Covina,CA 91724 * (909)869-0989 PROJECT: Western Materials SEIZMI C�1 FOR: Total Handling Solutio _-- J INC _1 ADDRESS: 7301 SM Kable Lane C Portland,OR MATERIAL HANDLING ENGINEERING SHEET#: 1 EST.1985 CALCULATED BY: banjarjian DATE: 2/21/2018 TEL:(909)869-0989 PROJECT#: 20180202 12 1130 E.CYPRESS ST,COVINA,CA 91724 — Table of Contents Parameters 2 Components and Specifications 3 Loads and Distributions 6 Basic Load Combinations 7 Longitudinal Analysis 8 Column&Backer Analysis 9 Beam Analysis 11 Beam to Column Analysis 14 Bracing Analysis 15 Anchor Analysis 17 Overturning Analysis 20 Baseplate Analysis 21 Slab and Soil Analysis 22 Scope: This storage system analysis is intended to determine its compliance with appropriate building codes with respect to static and seismic forces. The storage racks are prefabricated and are to be field assembled only,with no field welding. PROJECT: Western Materials SEIZMIC 1 FOR: Total Handling Solutio INC J ADDRESS: 7301 SM Kable Lane Portland,OR SHEET#: 2 MATERIAL HANDLING ENGINEERING CALCULATED BY: banjarjian EST.1985 DATE: 2/21/2018 TEL(909)869-0989 PROJECT#: 20180202 12 1130 E.CYPRESS ST,COVINA,CA 91724 — The storage racks consist of several bays,interconnected in one or both directions,with the columns of the vertical frames being comon between adjacent bays.This analysis will focus on a tributary bay to be analyzed in both the longitudinal and transverse direction. Stability in the longitudinal direction is maintained by the beam to column moment resisting connections,while bracing acts in the transverse direction. 5 iV 6 ', V-A -.. - — 4 CONCEPTUAL DRAWING Some components may not be used or may vary TRIBUTARYAREA Legend 1.Column 2.Base Plate 3.Anchors 4.Bracing 5.Beam TRANSVERSE 6.Connector LONGITUDINAL NOTE:ACTUAL CONFIGURATION SHOWN ON COMPONENTS&SPECIFICATIONS SHEET PROJECT: Western Materials SEI ZMI C FOR: Total Handling Solutio -------------- • ADDRESS: 7301 SM Kable Lane INC Portland,OR SHEET#: 3 MATERIAL HANDLING ENGINEERING CALCULATED BY: banjarjian EST.lass DATE: 2/21/2018 TEL:(909)869.0989 PROJECT#: 20180202 12 1130 E.CYPRESS ST.COVINA,CA 91724 COMPONENTS AND SPECIFICATIONS Configuration 1:TYPE 44X96 IM 1.2 Analysis per section 2208 of the 2014 OSSC SS=0.97 F =1.1 l 1= 1 V "g=134 lbs.I-oPs,a,;c =4000 lbs. Levels:2 Panels:3 Sf 1=0.42 y= 1.58 SDC=D I Tra„x=489 lbs. P = 1978 lbs. Load per Level 3900 lbs 74'• 86" 192" 61" 3900 lbs 76" 51" 96" 44,• ----1. FRONT VIEW SIDE VIEW FRAME BEAM CONNECTOR COLUMN 4.5 x 2.75-0.063(45E) 4 Tab 2"cc Connector(IM) 3 x 3-0.105(077 F) Steel=55 ksi Max Static Cap.=6374 lb. Stress=29% Steel=55000 psi Stress=62% Stress=35%(level 1) Max stress=29%(level 1) HORIZONTAL BRACE Max stress=62%(level I) 1.5 x 1.25—0.060 LC Stress=13%(panel 1) DIAGONAL BRACE 1.5 x 1.25-0.060 LC Stress=34%(panel 1) Base Plate Slab&Soil Anchors Steel=36000 psi Slab=6"x 3500 psi Hilti Kwik Bolt TZ(KB-TZ) ESR-1917 8 in.x 8 in.x 0.375 in. 2 anchors/plate Sub Grade Reaction=50 pci 0.5 in.x 3.25 in.Min.Embed. Moment=2479 in-lb. Stress=5% Slab Bending Stress= 12%(S) Pullout Capacity= 1658 lbs. Shear Capacity=1913 lbs. Anchor stress=12% backer is up to 72". Seizmic Analyzer version 20180215 ®Copyright 1991-2016 Seizmic Inc.All rights reserved --�� PROJECT: Western Materials SEIZMIC . FOR: Total Handling Solutio ADDRESS: 7301 SM Kable Lane Portland,OR MATERIAL HANDLING ENGINEERING SHEET#: 4 EST.1985 CALCULATED BY: banjarjian DATE: 2/21/2018 TEL:(909)869-0989 PROJECT#: 20180202 12 1130 E.CYPRESS ST,COVINA,CA 91724 — COMPONENTS AND SPECIFICATIONS Configuration 2:TYPE 36X120 IM 1.2 Analysis per section 2208 of the 2014 OSSC S =0.97 F =1.11 1=l V�„A= 172 lbs. PS1a7« =5150 lbs. Levels:3 Panels:3 d ao�LewdSi=0.42 1,= 1.58 SDC=D I renes=631 lbs. P:1�,1n17C=2331 lbs. I.naOlbs - -- - 4 66” 74" 5000 lbs 192" 62" 51" 5000 lbs 51" 60" 120" 36" -4 FRONT VIEW SIDE VIEW FRAME BEAM CONNECTOR COLUMN 5 x 2.75-0.063(50E) 4 Tab 2"cc Connector(IM) 3 x 3-0.075(070 F) Steel=55 ksi Max Static Cap.=5998 lb. Stress=38% Steel=55000 psi Stress=84% Stress=55%(level I) Max stress=38%(level 1) HORIZONTAL BRACE Max stress=84%(level I) 1.5x1.25-0.060 LC Stress=12%(panel 1) DIAGONAL BRACE 1.5 x 1.25-0.060 LC Stress=47%(panel 1) Base Plate Slab&Soil Anchors Steel=36000 psi Slab=6"x 3500 psi Hilti Kwik Bolt TZ(KB-TZ) ESR-1917 7.75 in.x 5 in.x 0.375 in. 2 anchors/plate Sub Grade Reaction=50 pci 0.5 in.x 3.25 in.Min.Embed. Moment=2494 in-lb. Stress=9% Slab Bending Stress= 16%(S) Pullout Capacity=1553 lbs. Shear Capacity=1913 lbs. Anchor stress= 12% Seizmic Analyzer version 20180215 Co Copyright 1991-2016 Seizmic Inc.All rights reserved PROJECT: Western Materials SEIZMIC I FOR: Total Handling Solutio ` ADDRESS: 7301 SM Kable Lane INC Portland,OR /` SHEET#: 5 MATERIAL HANDLING ENGINEERING CALCULATED BY: banjarjian EST.1985 DATE: 2/21/2018 TEL:(909)869-0989 PROJECT#: 20180202 12 1130 E.CYPRESS ST,COVINA,CA 91724 — COMPONENTS AND SPECIFICATIONS Configuration 3:TYPE 36X144 IM 1.2 Analysis per section 2208 of the 2014 OSSC Ss=0.97 F,=1.11 I=1 Ifn"�= 143 lbs. P. =4250 lbs. Levels:3 Panels:3 lczd I ww, S1=0.42 P= 1.58 SDC=D I rm+�,=522 lbs. P,v;,m,c= 1928 lbs. 01bs - • %.,...t- Lc xi_- 66" 74" S-- 4100 lbs —S • 192" 62" I\ 51" S-- 4100 lbs • 51" 60" I 9' N. N. 144" 'F , _ 36" —4 FRONT VIEW SIDE VIEW FRAME BEAM CONNECTOR COLUMN 5 x 2.75-0.063(50E) 4 Tab 2"cc Connector(IM) 3 x 3-0.075(070 F) Steel=55 ksi Max Static Cap.=4338 lb. Stress=40% Steel=55000 psi Stress=96% Stress=44%(level 1) Max stress=40%(level 1) HORIZONTAL BRACE Max stress=96%(level 1) 1.5x1.25-0.060 LC Stress= 10%(panel 1) DIAGONAL BRACE 1.5 x 1.25-0.060 LC Stress=39%(panel 1) Base Plate Slab&Soil Anchors Steel=36000 psi Slab=6"x 3500 psi Hilti Kwik Bolt TZ(KB-TZ) ESR-1917 7.75 in.x 5 in.x 0.375 in. 2 anchors/plate Sub Grade Reaction=50 pei 0.5 in.x 3.25 in.Min.Embed. Moment=2073 in-lb. Stress=8% Slab Bending Stress= 13%(S) Pullout Capacity=1553 lbs. Shear Capacity=1913 lbs. Anchor stress= 10% Seizmic Analyzer version 20180215 ©Copyright 1991-2016 Seizmic Inc.All rights reserved PROJECT: Western Materials SEIZMIG�� FOR: Total Handling Solutio ADDRESS: 7301 SM Kable Lane Portland,OR SHEET#: 6 MATERIAL HANDLING ENGINEERING CALCULATED BY: banjarjian EST.1985 DATE: 2/21/2018 T9)869-0989 PROJECT#: 20180202 12 1130 E.CYPRESS ST,COVINA,CA 91724 Loads and Distribution: TYPE 36X120 ELn Fn Determines seismic base shear per Section 2.6 of the RMI&Section 2208,of the 2014 OSSC. #of Levels: ELSarm F5 3 SDC: D Rw(L): 6 v SIMI Pallets Wide: 2 Wpl: 10000 lbs Rw(T): 4 EL Fa Pallets Deep: 1 Wdl: 300 lbs Fa: 1.113 EL F3 Pallet Load: 2500 lbs Total frame load: 10300 lbs Ss: 0.967 EL2 ..��. F2 Ie: i EL1 Fl Fv: 1.58 SI:0.42 T1: 1.5 Tt:0.5 Base Shear: V renod = (C •J •((0.67• W1,L)+ Wm))•0.75.0.67 Per RMI 2012 2.6.2 Longitudinal: Yta a = (0.049. 1 •((0.67. 10000 lbs)+300 lbs))•0.75.0.67 = 172 lbs Transverse: bT,nn, _ (0.179. 1 •((0.67. 10000 lbs)+300 lbs))•0.75•0.67 = 631 lbs WH, Longitudinal Transverse Level h, wy wxhx f u'z w'h f,. 1 60 5,100 306,000 55.58 5,100 306,000 203.89 2 122 5,100 622,200 113.01 5,100 622,200 414.58 3 188 100 18,800 3.41 100 18,800 12.53 172 lbs 631 lbs PROJECT: Western Materials SEIZMIC FOR: Total Handling Solutio ADDRESS: 7301 SM Kahle Lane Portland,OR SHEET#: 7 MATERIAL HANDLING ENGINEERING CALCULATED BY: banjarjian EST.1985 DATE: 2/21/2018 TEL:(909)869-0989 PROJECT#: 20180202 12 1130 E.CYPRESS ST,COVINA,CA 91724 BASIC LOAD COMBINATIONS TYPE 36X120 2014 OSSC& RMI/ANSI MH 16.1 GT = 631 lbs Y; = 172 lbs Sd,. = .718 PL=Product Load*0.5=5,000 lbs DL=Dead Load/2=150 lbs EL=Seismic Load=3,602 lbs Basic Load Combinations 1:DL = 300/2= 150 lbs 2:DL+PL+LL+(Lr or SL or RL) = 150+5,000+ = 5,150 lbs 3a:(0.6•DL)+(0.75 0.6 PLapp)-(0.75•WL) = (0.6. 150)-(0.75.0.6.3350)-(0.75.0) = 1,598 lbs 3b:((0.6-(0.11 •Sds))•DL+(0.75 (0.6-(0.14•Sds))•PLapp)-(0.75•0.67•EL) =((0.6-(0.11 •0.718))• 150+(0.75•(0.6-(0.14.0.718))•3,350)-(0.75•0.67•3,602)_-477 lbs 4a:DL+(0.75•PL)+LL+(Lr or SL or RL)+(0.75.CIA) = 150+(0.75•511100)+0+0 = 3,900 lbs 4b:(1 +(0.11 •Sds))•DL+(0.75•(I +(0.14 Sds)•PL)+(0.75 0.67•EL) = 1 +(0.11 •0.718))• 150+(0.75•(1+(0.14.0.718)•5000)+(0.75.0.67.3,602)=6,099 lbs 5:DL+LL+(0.5.(SL or RL))+(0.88 PL)+IL = 150+(0.5•(0)+(0.88.5,000)+ 1,250 = 5,800 lbs PROJECT: WesternMaterials SEIZMI FOR; Total Handling Solutio 1NG ADDRESS: 7301 SM Kable Lane Portland,OR SHEET#: 8 MATERIAL HANDLING ENGINEERING CALCULATED BY: banjarjian EST.1885 DATE: 2/21/2018 TEL:(909) 89 PROJECT#: 20180202 12 1130 E.CYPRESS ST,.COV COVINA,CA 91724 _ LONGITUDINAL ANALYSIS TYPE 36X120 This analysis is based on the Portal Method,with the point of contra flexure of the columns assumed at mid-height between beams,except for the lowest portion,where the base plate provides only partial fixity and the contra flexure is assumed to occur closer to the base(or at the base for pinned condition,where the base plate cannot carry moment). AIConnR = �1ConnL = Meonn Mn-n Muco. In MCnnn - ((A upper+n1Lower)/2)+Mads r M5-5 4'<, b,= g l#of columns = 86 lbs / M�, °�� r 11.111111.1111.111,Fs / aim M4-4 Maze = 2494 in-lbs ,�' f4 mc.-"R II M3-3 / F3 Arlaurr, = (Wow•k)-!l/iBa„ ��f M2-2 , (86 lbs x 58 in)-2494 in-lbs=2494 in-lbs M1-1 prAmFt Mts. M base ��►•�I E 6 5ab ////////1////!rill FRONT ELEVATION Levels hi fi Axial Load Moment Beam End Conn Moment Moment 1 60 28 5,150 2,494 5,106 7,255 2 62 57 2,600 1,805 5,106 6,036 3 66 2 50 56 80 108 PROJECT: Western Materials SEIZMIC . -I FOR: Total Handling Solutio 1NC j ADDRESS: 7301 SM Kahle Lane Portland,OR SHEET#: 9 MATERIAL HANDLING ENGINEERING CALCULATED BY: banjarjian EST.1985 DATE: 2/21/2018 TEL:(909)869-0989 PROJECT#: 20180202 12 1130 E.CYPRESS ST,COVINA,CA 91724 COLUMN ANALYSIS TYPE 36X120(Level 1 ) Analyzed per RMI,AISI 2007(LRFD)and the 2014 OSSC. 3x3-0.075 Section Subject to Torsional or Flexural-Torsion Buckling SECTION PROPERTIES (Section 04.1.2) Depth 3 in. K •L./R. = 1.2.58/1.26 = 55.15 Width 3 in. ky•L,l Rs = 1 .51/1.12 = 45.69 t 0.075 in. KL l R = 55.15 Radius 0.125 in. mas Area 0.743 in^2 J.° = 0.x2+r2+x2)172 AreaNet 0.59 in^2 = (1.262-421.122+-2.852)172 = 3.31 in. (Eq C3.1.2.1-7) 1x 1.1 s4 in^4 Sx 0.789 in^3 (3 = 1-(x0/1-0)2 = 1 -(-2.85/3.31)2 = 0.26 Sx net 0.647 in'`3 (Eq C4.1.2-3) Rx 1.262 in. Fc1 = f12E/(KL I r).2 = 3.142.29500/55.152 = 95.739 ksi Iy 0.926 in^4 (Eq C4.1.1-1) SY 0.538 in^3 F•, = (1/2I3)((aex+ar)-((aex+02-(4Iaex0 1/2) Ry 1.116 in. J 0.001 in^4 = (1 /(2.0.26)((95.74+53.26_)-((95.74+53.26)2 (Eq C4.1.2-1) Cw 2.395 in'6 , -(4.0.26.95.74.53.26))11222) = 36.537 ksi Jx 3.126 in. where: Xo -2.853 in. aeA = f12E/(K�Lz I R)2 Kx 1.2 = 3.14 29500/55.152 = 95.739 ksi (Eq C3.1.2-11) Lx 58 in. a, = 1 I Ar02(GJ+(fl2ECw)/(K,L,)2) Ky 1 = 1/0.74.3.31261300.0.0014 Ly 51 in. +(3.142.29500.2.39)/(0.8.51)2) = 53.257 ksi (Eq C3.1.2-9) Kt 0.8 Fyv 55 ksi F, = Min(Fe1.Fe2)=36.537 ksi Fuv 65 ksi Q 0.9 Pn = Aefi Fr, G 11300 ksi A, = (F1./F„)112 = (55/36.537)112 = 1.227 (Eq C4.1-1) E 29500 ksi , (Eq C4.1-4) Cmx 0.85 Since A,.<1.5, Fn = (0.658^(k2))•F1, = 29.291 ksi Cs -I (Eq C4.1-2) Cb 1 Thus P = 16,307 lbs Ctf 1 Pa = P,•(R. = 13,861 lbs Phib 0.9 Phic 0.85 PROJECT: Western Materials SEIZMIG 7--z''-1 FOR: Total Handling Solutio ADDRESS: 7301 SM Kable Lane INC Portland,OR SHEET#: 10 MATERIAL HANDLING ENGINEERING CALCULATED BY: banjarjian EST.1985 DATE: 2/21/2018 TEL:(909)869.0989 PROJECT#: 20180202_12 1130 E.CYPRESS ST,COVINA,CA 91724 COLUMN ANALYSIS TYPE 36X120(Level 1 ) Analyzed per RMI,AISI 2007(LRFD)and the 2014 OSSC. 3 x 3-0.075 Lateral-Torsional Buckling Strength[Resistance](Section C3.I.2) SECTION PROPERTIES Pao = ?,,,p, = 30,620.0.85 = 26,027 lbs. Depth 3 in. Width 3 in. Where P„•, = A,F, = 0.56.55 = 30,620 lbs. t 0.075 in. Radius 0.125 in. Al, = Al, = ScF, = •SminFc (Eq C3.1.2.1-1) Area 0.743 in^2 AreaNet 0.59 in^2 F,, = Chr„A(a,,33,0112/Si.= 222.82 ksi Ix 1.184 in""4 Sx 0.789 in^3 F,, = C Ao J+C,(j2+r„2.(Qe/13X))1/2)/(GYPS`) = 77.44 ksi (Eq C3.1.2.1-4) Sx net 0.647 in^3 F, = (C fl2Edl.)� I(S,(K L)2 = 394.11 ksi Rx 1.262 in. b , y (Eq C3.1.2.1-10) Iv 0.926 in"4 F,,,,„ = 77.44 ksi (Eq C3.1.2.1.l4) Sy 0.538 in^3 Ry 1.116 in. Since,0.56F,,<F<2.78F, J 0.001 in^4 F„ = (10/9)F,(1 -(10F,/(36F3,)) = 49.1 ksi (Eq C3.1.2.1-2) Cw 2.395 in"6 Jx 3.126 in. reduced F,.en.= 1 -((1 -Q)l 2)•(F.I F,r•F, = 46.9 ksi Xo -2.853 in. M„x = 30,354 in-lbs Mm, = 25,218 in-lbs Mc = M„m1„ Kx 1.2 Lx 58 in. Acgl = 27,318 in-lbs M,n,c = 22,696 in-lbs Ky 1 z z = (Eq C5.2.2-6) Ly 51 in. PI, = fl EIX l(KxLx) 71,163 Ibs Kt 0.8 PEy = f12Ely l(K,L,,)2 = 103,689 lbs (Eq C5.2.2-7) Fyv 55 ksi Fuv 65 ksi Q 0.9 ax = (1 -(c),P/Pa)) = 0.94 (Eq C5.2.2-4) G 11300 ksi a}. = (1 -(cp,P l P„).)) E 29500 ksi= 0.96 (Eq C5.2.2-5) Cmx 0.85 F = (1.2+0.2S,,)•D+(0.85+0.2S,3)•P P„,„pptied = 5167 lbs Cs _1 M„ = Mx/(0.67.0.75) = 4963 in-lbs (Eq C5.2.2-2) Cb 1 Ctf Phib 0.9 Pu st = (1.2•D)+(1.4•P) = 7180 lbs (Eq C5.2.2-1) Phic 0.85 Pustl P = 7180/13861=0.52 Static Stress=51% Since,P„/P„>0.15 Stressl=P„IP +M /(4qM +M./(c ,M,) ((5167/13,861)+(49 ,.) 63 /27,318)+(1122,696)) = 55% Stress2=P, lP„+C Ml( Mar)+C,tM,/(cn,a,) ((5167/26,027)+(0."'5.496 127,318.0.931q,M 8))+(x.85. 1 /22,696• 0.958))) = 36% ColumnStress=Max(Stressl,Stress2,Static) = 55% PROJECT: Western Materials SEIZMIC 1 FOR; Total Handling Solutio �''� ADDRESS: 7301 SM Kable Lane Portland,OR SHEET#: 11 MATERIAL HANDLING ENGINEERING CALCULATED BY: banjarjian EST.1985 DATE: 2/21/2018 TEL:(909)869-0989 PROJECT#: 20180202 12 1130 E.CYPRESS ST,COVINA,CA 91724 - BEAM ANALYSIS TYPE 36X120 Determine allowable bending moment per AISI Check compression flange for local buckling(B2.1) 71 Effective width w=C-2t-2r = 1.75-(2.0.063)-(2.0.062) = 1.5 in. wit = 1.5/0.063 = 23.81 A = (1.052/k1n)•(w/t)•(F/E)1/2 = (1.052/2)•23.81 •(55/29500)1/2 = 0.54 A , A<=0.673:Flange is fully effective. Check web for local buckling(B2.3) ,,(comp) = .•(y3/y2) = 55*2.49/2.61 = 52.37 ksi ,,(tension) = F,•(V1 l y2) = 55*2.26/2.61 = 47.62 ksi 5 x 2.75-0.063 = -(f/,,) = -(47.62/52.37) = -0.91 Top flange width C= 1.75 in. Bottom width B= 2.75 in. Buckling coefficient k=4+2•(1 -1103+2•(1 -LV) Web depth A= 5.0 in. =4+2(1 --0.91)3+2(1--0.91) = 21.74 Beam thickness t= 0.063 in. Flat Depth w=yl +y3=2.26+2.49 = 4.75 Radius r= 0.062 in Fy= 55 w/t = 4.75/0.063 = 75.4 wit<200:OK Fu= 65 A = (1.052/k"2)•(w/t)•(f/E)1/2 = (1.052/2)•75.397•(5237/29500)1/2 = Yl = 2.26 0.72 Y2= 2.61 Y3= 2.49 b1 =w•(3-LP) = 5•(3--0.91) = 18.57 Ycg= 2.39 b2=w/2=2.38 lx= 2.91 Sx= 1.11 bl +b2= 18.57+ 18.57 = 20.94 Web is fully effective E= 29500 Determine effect of cold working on steel yield point(FYA)per section A7.2 FBeam F= 360 Beam Length L= 120 Corner cross-sectional area Lc=(fl/2)•(r•+t/2) = (f1/2)•(0.062+0.063/2) = 0.147 L = effective width=1.5 C = 2•41Ll.+2•LC = 2.0.147/1.5+2•L, = 0.1638 ni = 0.192•(F/F,)-0.068 = 0.192•(65/55)-0.068 = 0.1589 B.. = 3.69•(F„/FJ-0.819•(F„/F)2- 1.79 = 3.69•(65155)-0.819•(65/55)2- 1.79 = 1.43 Fu/Fy=65/55 = 1 <1.2 r/t=0.062/0.063 = 0.984 <=7=OK Fy = B,•F,l(r/ty° = I.43.55/(0.984r = 79 = C•F.,+(1 -C)•F, = 0.164.79+(1 -0.164)•55 = 59 F.ea.bonom = F„,,,op• 1 cg l(A-1',g) = 59.2.39/(5.0-2.39) = 54 PROJECT: Western Materials SEIZMIC FOR: Total Handling Solutio ADDRESS: 7301 SM Kahle Lane INC Portland,OR SHEET#: 12 MATERIAL HANDLING ENGINEERING CALCULATED BY: banjarjian EST.1985 DATE: 2/21/2018 TEL;(909)869.0989 PROJECT#: 20180202 12 1130 a CYPRESS ST,COVINA,CA 91724 - BEAM ANALYSIS TYPE 36X120 Check Allowable Tension Stress for Bottom Flange C LAange-ha! = B-(2•r)-(2•1) = 2.75-(2•0.062)-(2.0.063) = 2.5 Chouam = 2•Lc I(LIrange-bol+2•L,) = 2.0.147/(2.5+2.0.147) = 0.105 F.y-honour = Chunom•F +(1 -Chonarn)•F ( 0.105)•. = 0.105.79+ 1 - 55 = 57.49 yc A Fla = Fa"mp = 58.88 ksi Determine Allowable Capacity For Beam Pair(Per Section 5.2 of the RMI,PT II) Check Bending Capacity 5x2.75-0.063 *enter = (p•M = W•L•C2•Rm/8 Top flange width C= 1.75 in. 0 = LRFD Load Factor = (1.2•DL+1.4•PL+1.4.0.125•PL)IPL Bottom width B= 2.75 in. Web depth A= 5.0 in. For DL=2%of FL: Beam thickness t= 0.063 in. C2 = 1.2.0.02+ 1.4+1.4.0.125 = 1.6 Radius r= 0.062 in. Fy= 55 Rm = I -((2•F•L)I(6•E•Ix+3 F•L)) Fu= 65 = 1 -((2•360. 120)/(6.29500.2.91 +3•360. 120)) = 0.87 Yl = 2.26 cp•Mn = cp•F •Sx. = 62.29 in-kip Y2= 2.61 Y3= 2.49 W = cp•Mn•8•(#of Beams)/(L•An•C)) _ (62.29 8.2)/(120.0.87. 1.6) Ycg= 2.39 = 5998 lbs/pair Ix= 2.91 Sx= 1.11 Check Deflection Capacity E= 29500 FBeam F= 360 `i aix = As•R!1 Beam Length L= 120 D ar = L 1180 Rd = 1 -(4 F•L)1(5•F•L+10•E•I) = 1 -(4.360. 120)/(5•360• 120+10.29500 2.91) = 0.84 = (5• W•L3)/(384•E•lx) L 1180 = (5• W•L3•Rd)/(384•E•Ix•(#of Beams)) W = (384•E•Ix•2)I(180.5 L2•Rd) _ (384•29500.2.91 •2)/(180.5• 1202 0.84)• 1000 = 6062lbs/pair SEIZMICPROJECT: Western Materials � FOR: Total Handling Solutio ADDRESS: 7301 SM Kable Lane Portland,OR SHEET#: 13 MATERIAL HANDLING ENGINEERING CALCULATED BY: banjarjian EST.1966 DATE: 2/21/2018 TEL:(909)869-0989 PROJECT#: 20180202_12 1130 E,CYPRESS ST,COVINA,CA 91724 Allowable and Actual Bending Moment at Each Level ild,9nnc=Win/8 Al —TV nitnw.srnric /2/8 Msome=Meromr Moums_cers,,c=Sx'Fh Level M lm;c Mallow crane Mse,.,n c diifnttow.setsmtc Result 1 38,220 44,985 3,628 44,985 Pass 2 38,220 44,985 3,018 44,985 Pass 3 720 44,985 54 44,985 Pass ..�. PROJECT: Western Materials SEIZMIC FOR: Total Handling Solutio ADDRESS: 7301 SM Kable Lane Portland,OR -� SHEET#: 14 MATERIAL HANDLING ENGINEERING CALCULATED BY: banjarjian EST.1985 DATE: 2/21/2018 TEL(909)869-0959 PROJECT#: 20180202 12 1130 E.CYPRESS ST,COVINA,CA 91724 BEAM TO COLUMN ANALYSIS TYPE 36X120 1.Shear Capacity of Tab I illy at Tab Diameter d-0.59 in. F, = 55000 psi = d2•n /4 = 0.081 in.2 I ?she.. = 0.4•F.•A111enr = 0.4.55000 psi•0.081 in.2 = 1788 lbs 2.Bearing Capacity of Tab I Column thickness t=0.075 in. F, = 65000 psi 1 r 1 • 0 = 2.22 a = 2.22 Pae„r;„s = a•F•d•t l 0 = 2.22.65000•.59.0.07512.22 = 28761bs 3.Moment Capacity of Bracket Edge Dist. = 1 in. Tap=0.179 in. =0.127 in3 Meaacir}. = S 1ip Phe1as=0.127 in3-0.66-F = 4610.1 in-lbs Meap1C1n, = C•d = 1.667•P1 •d d = Edge Dist./2 = 0.5 in. Pcrp = t6C11./(1.667•d) = 4610.1/(1.667.0.5) = 42801bs Minimum Value of P1 Governs P1 = Min(Pshe„.,PBearing,Pad = 1788 lbs Mr»„-Ail aw = (Pi •6.5)+(P1•(4.516.5)•4.5)+(P1•(2.516.5)•2.5)+(P1-(0.5/6.5)• 0.55 = 18980.31 in-lbs PROJECT: Western Materials SEIZMIC--- 11 FOR: Total Handling Solutio- � ' ADDRESS: 7301 SM Kahle Lane Portland,OR SHEET#: 15 MATERIAL HANDLING ENGINEERING CALCULATED BY: banjarjian. EST.1985 DATE: 2/21/2018 TEL:(909)869.0989 PROJECT#: 20180202 12 1130 E.CYPRESS 5T,COVINA,CA 91724 - BRACE ANALYSIS TYPE 36X120 (Panel 1) Analyzed per RMI,AISI 2007(LRFD)and the 2014 OSSC. 1.5 It 1.25-0.060 LC Section Subject to Torsional or Flexural-Torsion Buckling SECTION PROPERTIES (Section C4.1.2) Depth 1.5 in. K,•L /R = I •54/0.61 = 88.95 Width 1.25 in. A' •L}11? = 1 •54/0.46 = 117.24 t 0.06 in. KL/R = 117.24 Radius 0.09 in. "°° Area 0.258 in^2 r = (rx2+r 2+02)1'2 AreaNet 0.258 in^2 _ (0.612+0.4622+-1.152)1/2 = 1.38 in. (Eq C3.1.2.1-7) lx 0.0951n'4 Sx 0.127 in^3 (3 = 1 -(x0/r0)2 = I -(-1.15/1.38)2 = 0.3 Sx net 0.127 in^3 (Eq 04.1.2-3) Rx 0.607 in. Fel = fl2E/(KL 1 r)n= 2 = 3.142.29500/117.242 = 21.183 ksi Iy 0.055 in^4 (Eq C4.1.1-1) Sy 0.075 in^3 F2 = (1 /20)((a,+a)-((aex+02-(4f3aQxa012) Ry 0.461 in. J 0 in^4 _ (1 /(2.0.3)((36.8+13.8)-((36.8+13.8)2 (Eq C4.1.2-1) Cw 0.034 in^6 -(4.0.3 •36.8. 13.8))112) = 10.73 ksi Jx 1.304 in. where: Xo -1.154 in. (Tex = Il2E/(KLx/R.)2 Kx 1 = 3.142.29500/117.242 = 36.801 ksi (Eq C3.1.2-11) Lx 54 in. a, = 1 /Ar,2(GJ+(f12ECa)l(K,L,)2) Ky 1 = 1/0.26. 1.3822(11300.0.0003 Ly 54 in. +(3.142.29500.0.03)/(0.8.54)2) = 13.804 ksi Kt 0.8 (Eq C3.1.2-9) Fyv 36 ksi F, = Min(Fe 1,Fe2)=10.73 ksi Fuv 42 ksi Q I Pn = `9efl•Fir G 11300 ksi A, _ (F,1 F)112 = (36/10.73)1/22 = 1.832 (Eq C4.1-1) F E 29500 ksi Since Ac>=1.5, F„ _ (0.877/(Ac2))•F,, = 9.41 (Eq C4.1-4) Cmx 0.85 Cs -1 Thus (Eq C4.1-3) Cb 1 P„= 2,430 lbs Ctf 1 PQ = P„•(1 = 2,0651bs Phib 0.9 Phic 0.85 PROJECT: Western Materials SEIZMIC FOR: Total Handling Solutio 1N I ADDRESS: 7301 SM Kable Lane Portland,OR SHEET#: 16 MATERIAL HANDLING ENGINEERING CALCULATED BY: banjarjian EST.t985 DATE: 2/21/2018 TEL:(909)869.0989 PROJECT#: 20180202 12 1130 E.CYPRESS ST,COVINA,CA 91724 BRACE ANALYSIS TYPE 36X120 (Panel 1) Analyzed per RMI,AIS1 2007(LRFD)and the 2014 OSSC. 1.5 x 1.25-0.060 LC Lateral-Torsional Buckling Strength[Resistance](Section C3.1.2) SECTION PROPERTIES Pao = P,,,,q = 9,295.0.85 = 7,901 lbs. Depth 1.5 in. Width 1.25 in. Where P,n, = A,F, = 0.26.36 = 9,295 lbs. t 0.06 in. Radius 0.09 in. Mc = Mn = SA = SmuF Area 0.258 in^2 (Eq C3.1.2.1-1) AreaNet 0.258 in^2 F, = C r 4(6 cr)'"/5. = 63.41 ksi � d J et' r ,1 lx 0.095 in^4 F = C,At3,x(J+C,.(j2+ro2(0,l c1,))112)/( C,FSr) = 18.79 ksi Sx o. in^3 (Eq C3.1.2.1-4) Ss net o.1127 27 in^3 F, = (Cbfl2Edl,c)/(S,(K,Ly)2 = 64.68 ksi Rx 0.607 in. (Eq C3.1.2.1-10) Iy 0.055 in^4 F„,„„ = 18.79 ksi Sy 0.075 in^3 (Eq C3.1.2.1-14) Ry 0.461 M. Since,F<=0.56Ft, .1 0 in^4 F. = F, = 18.79 ksi (Eq C3.1.2.1-3) Cw 0.034 in^6 reduced F o-= 1 -((I -0)/2)•(F I FyY2•F = 18.8 ksi Jx 1.304 in. Xo -1.154 in. Mm = 2,386 in-lbs .tmn, = 1,414 in-lbs M. = Man„, Kx 1 Lx 54 in. M„x% = 2,147 in-lbs Aln,,% = 1,272 in-lbs Ky 1 P,. = f12E4/(K ,x)2 = 9,505 lbs (Eq C5.2.2-6) Ly 54 in. Kt 0.8 Fy = f12El,,l(KLt,)2 = 5,472 lbs (Eq C5.2.2-7) Fyv 36 ksi Fuv 42 ksi Max Pa = 2,430 lbs Q 1 G 11300 ksi I Trans = 631 lbs E 29500 ksi In _ Cmx 0.85 L,,,„g = ((L-6)2+(D-2B)) 54.08 in. Cs -1 Cb 1 6 vlag = (1 Trans.Lmag)l D = 1137.69 lbs. Cif 1 Brace Stress= VD,ng/Pa = 47% Phib 0.9 Phic 0.85 - PROJECT: Western Materials - - -SE_-IIZMI' M FOR: Total Handling Solutio t-- ADDRESS: 7301 SM Kahle Lane , �'� Portland,OR �! SHEET#: 17 MATERIAL HANDLING ENGINEERING CALCULATED BY: banjarjian EST.1985 DATE: 2/21/2018 TEL(909)869-0989 PROJECT#: 20180202_12 1130 E.CYPRESS ST,COVINA.CA 91724 POST-INSTALLED ANCHOR ANALYSIS PER ACI 318-11 APPENDIX D Configuration 2 TYPE 36X120 Assumed cracked concrete application Anchor Type 1/2"dia,3.25"hef,6"min.slab ICC Report Number ESR-1917 1.5•h,. = 4.875 in. Slab Thickness(ha) =6.000 in. Ca, = 12 useCaia,,j = 4.875 in. Min.Slab Thickness(limn) =6 in. Cat = 12 useCa,adj = 4.875 in. Concrete Strength(f) = 3500 in. Diameter(da) = 0.5 in. 3•h,. = 9.75 in. Nominal Embedment(hm,m) = 3.5 in. Effective Embedment(h,,,) = 3.25 in. S, = 5 in. uses,,,,j = 5 in. Number of Anchors(r:) =2 S, = 0 in. useS2 a1 = 0 in. e'N =0 el' =0 cal si 1.5hef From ICC ESR Report �a�rit��r ANc AF, =0.101 sq.in. 1.5het fula = 106000 psi Srntn =2.375 in. S2 II ♦ ♦ Cmm =2.375 in. Cat Cnc =7.5 in. Nv`P =4915 in. Avc V ha 1 - .- f 1.-4 4,-.-1.-..-1 1.5cai si 1.5cai Eprrsm,, Adj.Strength ASD Value 1.4 Tension Capacity=2898 lbs 0.75 2174 lbs 1553 lbs Shear Capacity= 3571 lbs 0.75 2678 lbs 1913 lbs PROJECT: Western Materials S�EIZMI � FOR: Total Handling Solutio ADDRESS: 7301 SM Kable Lane INC Portland,OR SHEET#: 18 MATERIAL HANDLING ENGINEERING CALCULATED BY: banjarjian EST.1955 DATE: 2/21/2018 TEL:1909)869.0989 PROJECT#: 20180202_12 1130 E.CYPRESS ST•COVINA,CA 91724 ANCHOR ANALYSIS - TENSION STRENGTH Configuration 2 TYPE 36X120 Steel Strength 17.4.1 tp= 0.75 17.3.3.ai tpNsa = grtel f,,,„ = 0.75•2 0.101 • 106000 = 16,059 lbs 17.4.1.2 Concrete Breakout Strength tpVag 17.4.2 tp= 0.65 17.3.3 b i ANc = (C„,„dj+"51,ndj+1.Sh )-(C„,,,,j+S2.4+1.5h,f) = 143.813 sq.in. ANQ„ = 9/i = 95.063 sq.in. Check if AN„,>AN, ANN l AN,„ = 1.513 17.4.2.4 �ec,N = 1 WcdN — 1 17.4.2.5 �c.N = 1 17.4.2.6 k, = 17 17.4.2.2 A„ = 1 Nb = k 2„(f)0.5(her)1 5 = 5,893 lbs 17.4.2.2 d 17.4.2.7 ��ep N = r1,�..// 11I �/ `1"cbg = `I'�ANcIANc„)(4)„.NXPed,N)(4iC,N)(4) N)(Nb) 17.4.2.1 0.65•(143.813/95.063)• 1 • 1 • 1 • 1 •5893 = 5,795 lbs Pullout Strength qV, 17.4.3 tp= 0.65 17.4.2 1-PCP = 1 17.4.3.6 tp'Vp„ = P,,N,,.e,xJ/2500)°•5 = 7,560 lbs 17.4.3.1. Steel Strength(tp',) = 16,059 lbs Embedment Strength-Concrete Breakout Strength(q)Vcbg) = 5,795 lbs Embedment Strength-Pullout Strength(9V1„,) = 7,560 lbs PROJECT: Western Materials SEIZMI � FOR: Total Handling Solutio ADDRESS: 7301 SM Kable Lane l INC Portland,OR SHEET#: 19 MATERIAL HANDLING ENGINEERING CALCULATED BY: banjarjian EST.1885 DATE: 2/21/2018 TEL:(909)869.0989 PROJECT#: 20180202 12 1130 E.CYPRESS ST,COVINA,CA 91724 ANCHOR ANALYSIS - SHEAR STRENGTH Configuration 2 TYPE 36X120 Steel Strength ca YSp = 5495/Anchor --per report 17.5.1 = 0.65 17.3.3.Condition a ii = (IN• 1'Sc, = 0.65.2.5495 = 7,144 lbs 17.5.I.2a Concrete Breakout Strength`MV g 17.5.2 = 0.7 17.3.3 Condition b i A I c = (1.5c+S,ad,+1.5Cai)ha = 246 sq.in. AVco = 3C11ha = 216 sq.in. Check ifAIre0>AY'c A1cIAieo = 1.139 11)cc.ti• = 1 17.5.2.5 1�1edG = 0.9 17.5.2.6 4�c1, = 1 17.5.2.7 LPhT' = 1.732 17.5.2.8 el = 0.5 in. 17.5.2.2 le = 0.5 in. 17.2.6 /1a = 1 The smaller of 7('e I da)0Z(da)0�••5�1aU�)° ra/1.5 and 9Ac,(r)°.5c�1.5 = 13,983 lbs 17.5.2.2 a, 17.5.2.2 b `Y''chg I'�A /Alt'co)(1�CCPI(4)ca.1 �c.E)0"'")(Vb) 17.5.2.1 0.7•(246/216)• 1 •0.9. 1 • 1.732. 13,983 = 17,377 lbs Pryout Strength(p17,pg 17.5.3 (p= 0.7 17.3.3 Condition b K p = 2 17.5.3.1 Nog = 8,915 lbs = C( cpNcbg = 0.7 2 8915 = 12,481 lbs Steel Strength((pr.,,,) = 7,144 lbs Embedment Strength-Concrete Breakout Strength(tpG',bg) = 17,377 lbs Embedment Strength-Pryout Strength(W cj,g) = 12,481 lbs PROJECT: Western Materials SEIZMI`C FOR: Total Handling Solutio ADDRESS: 7301 SM Kahle Lane t� ING i Portland,OR SHEET#: 20 MATERIAL HANDLING ENGINEERING CALCULATED BY: banjarlian EST.1985 DATE: 2/21/2018 TEL:(909)869.0989 PROJECT#: 20180202_12 1130 E.CYPRESS ST,COVINA,CA 91724 OVERTURNING ANALYSIS TYPE 36X120 ANALYSIS OF OVERTURNING WILL BE BASED ON SECTION 2209&1613 OF THE 2014 OSSC FULLY LOADED vv i /I F r Total Shear = 631 lbs } mow Al„,, = 1',.,,„s,•Ht = 631 • 133 = 83923 in-lbs 314 F6 air1�111111v M„ = F(Wpi+War)•d=(10000+300) 36 = 185400 in-lbs F5 P„pt,f = 1 (M -M,)/d = (83,923- 185,400)/36 = -2,818 lbs IMF li Fd (P„pio`=0) = no uplift F3 PMaxD„un = 1 '(A4,4+Mm)/d = (83,923+185,400)/36 = 7481 lbs02 SI F2 I TOP SHELF LOADED { � FI Shear = 27 lbs P uplift Al c, = t;„p•Ht = 27•(188+((66-10)/2)) = 5832 in-lbs CROSS AISLE ELEVATION = X(Wpt+Wat)•d=(0+300)•36 = 5400 in-lbs P„pi+n = 1 •(1110„-Al.„)l d = (5,832-5,400)/36 = 12 lbs ANCHORS No.of Anchors:2 Pull Out Capacity: 1553 lbs Shear Capacity 1913 lbs COMBINED STRESS Fully Loaded = ((0/2)/1553)+((631 /4))! 1913) = 0.08 Top Shelf Loaded = ((12/2)/1553)+((27/41)/1913) = 0.01 Seismic UpLift Critical(LC#3) _ ((476/2)/1553)/1.2 = 0.13 PROJECT: Western Materials SEIZMIC-�'� FOR: Total Handling Solutio ADDRESS: 7301 SM Kable Lane Portland,OR C SHEET#: 21 MATERIAL HANDLING ENGINEERING CALCULATED BY: banjarjian EST 1985 DATE: 2/21/2018 TEL:(909)869-0989 PROJECT#: 20180202_12 1130 E.CYPRESS ST,COVINA,CA 91724 BASE PLATE ANALYSIS TYPE 36X120 The base plate will be analyzed with the rectangular stress resulting from the vertical load P,combined with the triangular stresses resulting from the moment Mb(if any).Three criteria are using in determining Mb: 1.Moment capacity of the base plate 2.Moment capacity of the anchor bolts 3.Vcol*h/2(full fixity) Mb is the smallest value obtained from these three criteria. Fy, = 36000 psi P��r = 5150 lbs m„„„ = 2494 in-lbs P/A=Pm 1(D•B) = 5150 lbs/(7.75.5) = 132.9 psi fb = Mme,,,l(D•B2/6) = 2494/(5•7.752/6) = 49.83 psi f b1 b 4' bi fbz =fb'(2•b1/B) = 49.83•(2.2.38/7.75) = 30.54 psi / B fbr =f-fbz = 49.83-30-54 psi = 19.29 psi 111b = 1vb,212 = (b,2/2)•(fn+f,+0.67•fbz) 1 I 1 11 I 1111 _ (2.382/2)•(132.9+19.29+0.67.30.54) = 486.65 in-lbs See = (B•t222)16 = 0.18 sq.in. - fi2 Fa�s = 0.75•F. = 27000 psi fb l Fb == hfb (/ Slease•Flease) (0.18 )486.65/' .27000 0.1 pry Plate width B 7.75 in. Plate depth D 5 in. Plate thickness t 0.375 in. Column width b 3 M. bl 2.375 in. PROJECT: Western Materials FOR: Total Handling Solutio SEIZMIC ADDRESS: 7301 SM Kable Lane Portland,OR SHEET#: 22 MATERIAL HANDLING ENGINEERING CALCULATED BY: banjarjian EST.1985 DATE: 2/21/2018 TEL:(909)869-0989 PROJECT#: 20180202_12 1130 E.CYPRESS ST,COVINA,CA 91724 TYPE 36X120 SLAB AND SOIL ANALYSIS(LRFD) Ps.,n„ = 5150 lbs P .m;� = 2331 lbs Air, = 83923 in-lbs = (1.2+0.2•S,)•DL+(0.85+0.2•Sm)•PL+1.0•EL = 8,772 lbs = 7.5•(01/2 = 444 psi Base Plate d,req'd = (P l(()• 1.72•((kS•r1/eG)• 104+3.6)•fr'))11'2 = 2.172 in. Width B 7.75 in. b = (e,•d,req'd3/(12•(1 -p2)•ks))"4 = 15.578 in. Depth W 5 in. b,req'd = 1.5•b = 23 in. Frame P„ = 1.72[(k,.•r1/ed• 104+3.6].4'.t2 Frame depth d 36 in. = 1.72[(50.3.11/3372165)• 104+3.6]•444•(6)2 = 111587 lbs Concrete P. _ (p•Pn = 0.6. 111587 = 66952 lbs Thickness t 6 in. Pm.x I Pa = 0.13 fc 3500 psi 0.6 3 � 1 SLAB AND SOIL ANALYSIS(ASD) ks 50 r1 3.11 Pmax = MAX(ASD Load Combo 2,ASD Load Combo 4b)=6098 lbs e. 3372165 f' = 7.5•(f)112 = 444 psi Soil P„ = 1.72[(k,•r1/ea)• 104+3.6] f, •t2f . 1000 psf snr! = 1.72[(50.3.1 1 /3372165)• 104+3.6]•444•(6)2 = 111587 lbs d,req'd = (P„,„.,l((P• 1,72•((kr•r,l ed• 104+3.6)•j;'))1/2 = 2.172 in. b = (e„•d,req`d3l(12•(1 -p2)•ks))"4 = 15.578in. b,req'd = 1.5• b = 23 in. Pa = P„/C) = 111587/3 = 37195.54 Pma<l Pp = 0.16 BNOI W/313 719tH TA.N0191, IiH�f091 �' E1me0 11019 30.0111a ws+ - r - - MM9t3YLL ,a i3 - Y91Y39 99 NNMOO O1WYi9 NOUWOOWN001W3N3pr 7 "7SOdtlMJN3KYOINh..•1 30Yd9110•. G� 949 _. NON.O➢MN00 ypyO�NOp(9) IYOWl ,-1+i, .,,,,T,. ... - ,,,,,.,,.,„ ,,, , .... ____, a 5 g 3 i • J _ -_ - N1N•ro0la`�_.- NNII'1001C/7 NOLL03NNOONWI11000130+/tlB'1901dLL b'R '+^INB'IYNOlMIOM1YIN02WON k,) aON0NM�6IF 31MUSSYS WS 3/01.1391194991 v4. A e 42� eg