Loading...
Specifications (12) 1/ (4().17 ave 1 f /( S‘v 7,41 ( RECEIVED S1ructuraI APR 10 2017 CITY OF TIGARI) BUILDING DIVISION L. oncepts Engineering 1815 Wright Ave La Verne, Ga. 91750 Tel:909-596-1351 Fax:909-596-7186 Project Name : DAWN FOODS Project Number : Q-113016-5LV Date : 12/02/16 111;47 ::/:‘1/44-2:°:::::::41e614111111 ?' ��G�N � "ca s'�GoN Street Address: 14140 SW 72ND AVE fit, �'' 71,2P City/State : TIGARD, OR 97224 -1410LHAs9Ps � Scope of Work : STORAGE RACK ex DEC 0 2 2016 Stru'cturaj Concepts Engineering 1200 N. Jefferson Ste Ste F Anaheim CA 92807 Tel: 714.632.7330 Fax: 714.632.7763 BY: ENHAO Project: DAWN FOODS Project#: Q-113016-5LV TABLE OF CONTENTS Title Page 1 Table of Contents 2 Design Data and Definition of Components 3 Critical Configuration 4 Seismic Loads 5 to 6 Column 7 Beam and Connector 8 to 9 Bracing 10 -Anchors 11 Base Plate 12 Slab on Grade 13 Other Configurations 14 • DAWN FOODS TYPE 1 Page of (3 12/1/2016 Structural Concepts ;-- Engineering 1200 N. Jefferson Ste, Ste F Anaheim. CA 92807 Tel: 714.632.7330 Fax: 714.632 7763 By: ENHAO Project: DAWN FOODS Project#: 0-113016-5LV Design Data 1)The analyses herein conforms to the requirements of the: 2015 IBC&2012 IBC Section 2209 2013 CBC Section 2209A ANSI Mif 16.1-2012 Specie"cations for the Design of Industrial Steel Storage Racks 2012 RMI Rack Design Manual" ASCE 7-10,section 15.5.3 2)Transverse braced frame steel conforms to ASTM A570,Gr.55,with minimum strength,Fy=55 ksi Longitudinal frame beam and connector steel conforms to ASTM A570,Gr.55,with minimum yield,Fy=55 ksi All other steel conforms to ASTM A36,Gr.36 with minimum yield,Fy=36 ksi 3)Anchor bolts shall be provided by installer per ICC reference on plans and calculations herein. 4)All welds shall conform to AWS procedures,utilizing E70xx electrodes or similar.All such welds shall be performed in shop,with no field welding allowed other than those supervised by a licensed deputy inspector. 5)The existing slab on grade is 5"thick with minimum 4000 psi compressive strength.Allowable Soil bearing capacity is 1000 psf. The design of the existing stab is by others. - 6)Load combinations for rack components correspond to 2012 RMI Section 2.1 for ASD level load criteria Definition of Components A Column 1 /7—I Beam if� 1 : Horizontal Brace Beam to Column Connector Diagonal _AlBrace Frame Height Beam Product Spacing Base Plate and LI'1 Anchors Panel LengBeamthII I Height LFrame 4 Front View: Down Aisle Death (Longitudinal) Frame Section A: Cross Aisle (Transverse) Frame DAWN FOODS TYPE 1 Page 3 of t) 12/1/2016 Str tura) oncepts Engineering 1200 N. Jefferson Ste, Ste F Anaheim, CA 92807 Tel: 714.632.7330 Fax: 714.632.7763 By: ENHAO Project: DAWN FOODS Project#: 0-113016-5LV Configuration&Summary:TYPE 1 SELECTIVE RACK N - T **RA CK COLUMNREAC770N5 36" ASD LOADS 66" t / AXIAL DL= 113/b 54" N AXIAL LL= 7,800/b SEISMICAXIAL Ps=+/- 7,958 lb 240" 240" BASE MOMENT= 8,000 in-lb 66" 54" 36" t 1 66" " / N 4., N 3 64. 96" -f f 44" - ISeismic I5 Criteria #Bm Lvls iFrame Depth Frame Height #Diagonals Beam Length 96 Ss=0.973,Fa=1.111 3 44 in 240.0 in ow I in III Frame Type Single Row I Component Description Column Fy=55 ksi SPCRK FH a 30/3x3x12 STRESS Column&Backer g P=7913 lb,M=25138 in-lb Q.92_OK None None None Beam Fy=55 ksi SPACERAK SB506C 5"x2.75"x0.06" N/A Beam ConnectorLu=96 in I Capacity:63781b/pr 0,82.OK Fy=55 ksi Lvl 1:3 pin OK I Mconn=15062 in-lb Mcap=17768 in-lb Brace-Horizontal Fy=55 ksi Sperack 1-1/2x1-1/4x14ga 0.85-OK Brace Diagonal 55 ksi 0.32-OK �'= Sperack 1-1/2x1-1/4x14ga 0.64-OK Base Plate Fy=36 ksi 8x8x3/8 Anchor � Fixity=8000 in-lb 0.81-OK 4 per Base 03"x 3.25"Embed HILTI KWIKBOLT TZ ESR 1917 Inspection Reqd(Net Seismic Uplift=3920 Ib) 0.675-OK Slab&Soil 5"thk x 4000 psi slab on grade. 1000 psf Soil Bearing Pressure Level I Load** 0.9-OK Story Force I Story Force I Column I Column ( Conn. Beam Per Level Beam Spcg Brace I Transv Longit. Axial Moment Moment Connector 1 5,200 lb 66.0 in 36.0 in 321 lb 175 lb 7,913 lb 25,138 "# 15,062 "# 3 pin OK 2 5,200 lb 66.0 in 36.0 in 641 lb 351 lb 5,275 lb 14,466 "# 9,302 "# 3 pin OK 3 5,200 lb 66.0 in 54.0 in 962 lb 526 lb 2,638 lb 8,679 "# 4,239 "# 3 pin OK 54.0 in 36.0 in **Load defined as product weight per pair of beams Total: 1,924 lb 1,052 lb Notes I NOTE SLAB REQUIREMENT USE 3 STD SPACERS FOR DOUBLE ROW DAWN FOODS TYPE 1 Page I+ of 13 12/1/2016 0tructurai Concepts Engineering 1200 N. Jefferson Ste, Ste F Anaheim, CA 92807 Tel: 714.632.7330 Fax: 714.632.7763 By: ENHAO Project: DAWN FOODS Project#: Q-113016-5LV Seismic Forces Configuration:TYPE 1 SELECTIVE RACK Lateral analysis is performed with regard to the requirement of the 2015 IBC A 2012 INC Section 2209,2012 RMI ANSI MH 16.1-2012 Sec 2.6 @ ASCE 7-10 sec 15.5.3 Transverse(Cross Aisle)Seismic Load Ss= 0.973 . Vt. S1= 0.421 V= Cs*Ip*Ws=Cs*Ip*(0.67*P*PrP+D - - Csl= Sds/R Fa= 1.111 Fv= 1.579 = 0.1802 Cs-max*Ip= 0.1802 Sds=2/3*Ss*Fa= 0.721 Cs2= 0.044*Sds Vmin= 0.015 Sd1=2/3*Sl*FV= 0.443 = 0.0317 Eff Base Shear=Cs= 0.1802 Cs3= 0.5*S1/R * * Transverse Elevation Ca=0.4*2/3*Ss*Fa= 0.2883 Ws= (0.67 PLRF1 PL)+DL(RMI 2.6.2) (Transverse,Braced Frame Dir.)R= 4,0 = 0.0526 = 10,677 lb Ip= 1.0 Cs-max= 0.1802 Vtransv=Vt= 0.1802*(225 lb+ 10452 lb Base Shear Coeff=Cs= 0.1802 Etr I ) PRF1= 1.0 ansverse= 1,924 lb Pallet Height=hp= 56.0 in L'mitStates Level Transverse seismic shear per upright DL per Beam Lvl= 75 lb Level PRODUCT LOAD P P*0.67*PRF1 DL hi wi*hi 1 5,200 lb 3,484 lb 75 lb 66 in 234,894Fl Fi30,146-# 2 5,200 lb 3,484 lb 75 lb 132 in 320.741lb 30 102,608-# f 3 469,788 641.31b 5,200 lb 3,484 lb 75 lb 198 in 704,682 962.0 lb 217,412-# sum: P=15600 lb 10,452 lb 225 lb W=10677 lb 1,409,364 1,924 lb Longitudinal(Downaisle)Seismic Load 2=350,166 Similarly for longitudinal seismic loads,using R=6.0 Ws= (0.67*PLRF2*P)+DL 2s1=Sd1 P i /(T*R)*0.67= 0.0985Rte- F ��) j _j = 10,677 lb (Longitudinal,Unbraced Dir.)R= 6,0 Cs2= 0.0317 Cs=Cs-max*Ip= 0.0985 ,af l" T= 0.75 sec "1 Cs3= 0.0351 Vlong= 0.0985*(225 lb+ 10452 Ib) F7 ft p Cs-max= 0.0985 Elongitudinal= ` F � - 1,0521b Limit Stater Level seismic shear per upright Level PRODUC LOAD P P*0.67*PRF2 DL hi wi*hi Fi Front View 1 5,200 lb 3,484 lb 75 lb 66 in 234,894I 350 2 5,200 lb 3,484 lb 75 lb 132 in 469,788 .7 lb 3 5,200 lb 3,484 lb 75 lb 198 in 704,682 326.7 lb 526.0 lb sum: 10,452 lb 225 lb W=10677 lb 1,409,364 1,052 lb I DAWN FOODS TYPE 1 Page of iv3 12/1/2016 Structural Concepts - "- Engineering 1200 N. Jefferson Ste, Ste F Anaheim, CA 92 807 Tel: 714.632.7330 Fax: 714.632.7763 By: ENHAO Project: DAWN FOODS Project#: 0-113016-5LV Downaisle Seismic Loads Configuration:TYPE 1 SELECTIVE RACK Determine the story moments by applying portal analysis.The base plate is assumed to provide partial fixity. Seismic Story Forces Typical frame made Vlong= 1,052 lb TriSutaryarea oftwomlumns Vcol=Vlong/2= 526 lb of rack fame' F1= 175 lb 4 rni t F2= 351 Ib i I ;>` Typical Frame made F3= 526 lb -°- lift , oftwso columns Ell 17-- 1 Ell LiiF ill [II eam - D �� -�-� _, ME Too View 96" ' Front View 5ide View Seismic Story Moments Conceptual System COI Mbase-max= 8,000 in-lb <===Default capacity hl-eff= hi-beam clip height/2 Mbase-v= (Vcol*hieff)/2 = 63 in = 16,569 in-lb <===Moment going to base Vcol �..�l� Mbase-eff= Minimum of Mbase-max and Mbase-v '' = 8,000 in-lb h2 M 1-1= [Vcol*hleff]-Mbase-eff M 2-2= [Vcol-(F1)/2]*h2 -4 = (526 lb*63 in)-8000 in-lb = [526 lb- 175.4 lb]*66 in/2 immilm,m „m.--=.1 = 25,138 in-lb = 14,466 in-lb hi jhieff _I` I r Mseis= (Mupper+Mlower)/2 Beam to Column Elevation Mseis(1-1)= (25138 in-lb+ 14466 in-lb)/2 Mseis(2-2)= (14466 in-lb+8679 in-lb)/2 = 19,802 in-lb = 11,572 in-lb I rho= 1.0000 Summary of Forces LEVEL hi Axial Load Column Moment** Mseismic** Mend fixity Mconn** 1 66 in 7,913 lb 25,138 in-lb 19,802 in-lb 1,716 in-lb 15,062 in-lb Beam Connector 2 66 in 5,275 lb 14,466 in-lb 11,572 in-lb 1,716 in-lb 9,302 in-lb 3 pin OK 3 66 in 2,638 lb 8,679 in-lb 4,340 in-lb 1,716 in-lb 4,239 in-lb 3 pin OK 3 pin OK Mconn= (Mseismic+Mend-fixity)*0.70*rho Mconn-allow(3 Pin)= 17,768 in-lb **all moments based on limit states level loading DAWN FOODS TYPE 1 Page 6 of (3 12/7/2016 Structural Concepts Engineering 1200 N. Jefferson Ste, Ste F Anaheim, CA 92807 Tel: 714.632.7330 Fax: 714.632.7763 By: ENHAO Project: DAWN FOODS Project#: Q-113016-5LV Column(Longitudinal Loads) Configuration:TYPE 1 SELECTIVE RACK Section Properties Section: SPCRK FH-30/3x3x12ga . 3.000 in e Aeff= 0.880 in^2 Iy= 1.000 in^4 Kx= 1.7 x Ix= 1.520 in^4 Sy= 0.659 inA3 Lx= 63.5 in Sx= 1.010 inA3 ry= 1.064 in Ky= 1.0 J - - rx= 1.312 in Fy= 55 ksi Ly= 36.0 in Y (-"-"Y 3.000 in S2f= 1.67 Cmx= 0.85 Cb= 1.0 10.105 I • E= 29,500 ksi R p X0.75 in Loads Considers loads at level 1 COLUMN DL= 112 lb Critical load cases are:RMI Sec 2.1 COLUMN PL= 7,800 lb Load Case 5::(1+0.105*Sds)D+0.75*(1.4+0.145ds)*B*P+0,75*(0.7*rho*E)<=1.0,ASD Method Mcol= 25,138 in-lb axial load coeff 0.78797145*P -- seismic moment coeff 0.5625*Mco/ Sds= 0.7207 Load Case 6::(1+0.104*Sds)D+(0.85+0.145ds)*B*P+(0.7*rho*E)<=1.0,ASO Method 1+0.105*Sds= 1.0757 axial load weft:- 0.66563 seismicmoment coeff.• 0.7*Mco/ 1.4+0.14Sds= 1.5009 By analysis,Load case 6 governs utilizing loads as such 1+0.14Sds= 1.1009 0.85+0.14*Sds= 0.9509 Axial Load=Pax= 1.100898*112 lb+0.950898*0.7*7800 m Moment=Mx= 0.7*rho*Mcol 6= 0.7000 = 5,315 lb = 0.7* 25138 in-lb rho= 1.0000 Axial Analysis = 17,597 in-lb KxLx/rx= 1.7*63.5"/1.312" KyLy/ry= 1*36"/1.064" Fe > Fy/2 = 82.3 = 33.8 Fn= Fy(1-Fy/4Fe) = 55 ksi*[1-55 ksi/(4*43 ksi)] Fe= n^2EJ(KL/r)max^2 Fy/2= 27.5 ksi = 37.4 ksi = 43.Oksi Pa= Pn/Qc Pn= Aeff*Fn S.-2c= 1.92 = 32926 lb/1.92 = 32,926 lb = 17,149 lb P/Pa= 0.31 > 0.15 Bending Analysis Check: Pax/Pa+(Cmx*Mx)/(Max*px)< 1.0 P/Pao+Mx/Max 5 1.0 Pno= Ae*Fy Pao= Pno/S2c Myield=My= Sx*Fy = 0.88 inA2*55000 psi = 48400lb/1.92 = 1.01 inA3*55000 psi = 48,400 lb = 25,208 lb = 55,550 in-lb Max= My/Qf Pcr= n^2EI/(KL)max^2 = 55550 in-lb/1.67 = n^2*29500 ksi/(1.7*63.5 in)A2 = 33,263 in-lb = 37,977 lb px= {1/[1-(Qc*P/Pcr)j}^-1 = {1/[1-(1.92*5315 lb/37977 lb)j}^-1 = 0.73 Combined Stresses (5315 lb/17149 Ib)+(0.85*17597 in-lb)/(33263 in-lb*0.73)= 0.92 < 1.0,OK (EQ C5-1) (5315 lb/25208 lb)+(17597 in-lb/33263 in-lb)= 0.74 < 1.0,OK (EQ C5-2) **For comparison,total column stress computed for load case 5 is: 86.0% 7g loads 6266.652742 lb Axial and M= 13197 in-lb DAWN FOODS TYPE 1 Page -1 of / 3 12/1/2016 Str tura) -once is `- ngineering 1200 N.Jefferson Ste,Ste F Anaheim,CA 92807 Tel:714.632.7330 Fax:714.632.7763 By: ENHAO ZHANG Project: DAWN FOODS Project#:q-113016-5Lv BEAM Configuration:TYPE 1 SELECTIVE RACK DE I tRMINE ALLOWABLE MOMENT CAPACITY 2.75 in A)Check compression flange for local buckling(B2.1) 1.75 in 3 w= c-2*t-2*r = 1.75 in-2*0.06 in-2*0.06 in r-" i f = 1.510 in ______________ w/t= 25.17 1.625 in 1=lambda= [1.052/(k)A0.5]*(w/t)*(Fy/E)A0.5 Eq.B2.1-4 : = [1.052/(4)^0.5] *25.17*(55/29500)^0.5 5.000 in ' = 0.572 < 0.673,Flange is fully effective Eq.B2.1-1 I 0.060 in B)check web for local buckling per section b2.3 fl(comp)= Fy*(y3/y2)= 51.12 ksi _+ arrli f2(tension)= Fy*(y1/y2)= 102.88 ksi Y= f2/f1 Eq. B2.3-5 Beam= SPACERAK S$506C 5"x2.7.5"xO.O6" = -2.013 Ix= 2.688 in^4 k= 4+2*(1-Y)A3+2*(1-Y) Eq.B2.3-4 Sx= 1.037 inA3 = 64.73 Ycg= 3.300 in flat depth=w= y1+y3 t= 0.060 in = 4.760 in w/t= 79.33333333 OK Bend Radius=r= 0.060 in l=lambda= [1.052/(k)A0.5] *(w/t)*(fl/E)A0.5 Fy=Fyv= 55.00 ksi = [1.052/(64.73)A0.5]*4.76*(51.12/29500)^0.5 Fu=Fuv= 65.00 ksi = 0.432 <0.673 E= 29500 ksi be=w= 4.760 in b2= be/2 Eq B2.3-2 top flange=b= 1.750 in b1= be(3-Y) = 2.38 in bottom flange= 2.750 in = 0.95 Web depth= 5.0(in i- b1+b2= 3.330 in > 1.58 in,Web is fully effective _ y Determine effect of cold working on steel yield point(Fva)per section A7.2 ft(comp) Fya= C*Fyc+(1-C)*Fy (EQ A7.2-1) f�- - - Lcorner=Lc= (p/2)*(r+t/2) 0.141 in C= 2*Lc/(Lf+2*Lc) qz Lflange-top=Lf= 1.510 in = 0.157 in 1 y3 m= 0.192*(Fu/Fy)-0.068 (EQ A7.2-4) depth = 0.1590 Bc= 3.69*(Fu/Fy)-0.819*(Fu/Fy)A2- 1.79 (EQ A7.2-3) t = 1.427 I since fu/Fv= 1.18 < 1.2 Ycg y' and r/t= 1 < 7 OK then Fyc= Bc*Fy/(R/t)Am (EQ A7.2-2) -. t2(te l°°) = 78.485 ksi `� Thus, Fya-top= 58.70 ksi (tension stress at top) Fya-bottom= Fya*Ycg/(depth-Ycg) yl= Ycg-t-r= 3.180 in = 113.94 ksi (tension stress at bottom) y2= depth-Ycg= 1.700 in Check allowable tension stress for bottom flange y3= y2-t-r= 1.580 in Lflange-bot=Lfb= Lbottom-2*r*-2*t = 2.510 in Cbottom=Cb= 2*Lc/(Lfb+2*Lc) = 0.101 Fy-bottom=Fyb= Cb*Fyc+(1-Cb)*Fyf = 57.37 ksi Fya= (Fya-top)*(Fyb/Fya-bottom) = 29.56 ksi if F= 0.95 Then F*Mn=F*Fya*Sx= 29.11 in-k Strurai once is am.' n 9ineerin 9 1200 N.Jefferson Ste,Ste F Anaheim,CA 92807 Tel:714.632.7330 Fax:714.632.7763 By: ENHAO ZHANG Project:DAWN FOODS Project#:Q-113016-5LV BEAM Configuration:TYPE 1 SELECTIVE RACK RMI Section 5.2,PT II Section Beam= SPACERAK SB506C 5"x2.75"x0.06" Ix=Ib= 2.688 inA4 2.75 in Sx= 1.037 inA3 -- - -- t= 0.060 in _ ...— _�, E= 29500 ksi 1.75 in Fy=Fyv= 55 ksi F= 150.0 Fu=Fuv= 65 ksi L= 96 in i Fya= 58.7 ksi Beam Level= 1 1 1.625 in P=Product Load= 5,200 lb/pair D=Dead Load= 75 lb/pair 5.000 in —'1 1.Check Bending Stress Allowable Loads 0.060 in Mcenter=F*Mn= W*L*W*Rm/8 ��....: W=LRFD Load Factor= 1.2*D+ 1.4*P+1.4*(0.125)*P RMI 2,2,item 8 s FOR DL=2%of PL, W= 1.599 Rm= 1- [(2*F*L)/(6*E*Ib+3*F*L)] _ irlaMill DII(lllflllllllllllllllll(Ilillllllllllllllllillllllllll 1-(2*150*96 in)/[(6*29500 ksi*2.6884 inA3}+(3*150*96 in)] = 0.945 if F= 0.95 Then F*Mn=F*Fya*Sx= 57.82 in-k Thus,allowable load t= 1 – it per beam pair=W= F*Mn*8*(#of beams)/(L*Rm*W) Beam = 57.82 in-k*8*2/(96in*0.945*1.599) Length = 6,378 lb/pair allowable load based on bending stress Mend= W*L*(1-Rm)/8 = (637816/2)*96 in*(1-0.945)/8 = 2,105 in-lb @ 6378 lb max allowable load = 1,716 in-tb ©5200 lb imposed product load 2.Check Deflection Stress Allowable Loads Dmax= Dss*Rd Rd= 1-(4*F*L)/(5*F*L+ 10*E*Ib) Allowable Deflection= L/180 = 1-(4*150*96 in)/{(5*150*96 in)+(10*29500 ksi*2.6884 inA4)] = 0.533 in = 0.933 in Deflection at imposed Load= 0.435 in if Dmax= L/180 Based on 4/180 Deflection Criteria and Dss= 5*W*LA3/(384*E*Ib) L/180= 5*W*LA3*Rd/(384*E*Ib*#of beams) solving for W yields, W= 384*E*I*2/(180*5*LA2*Rd) = 384*2.6884 inA4*2/[180*5*(96 in)A2*0.933) = 7,871 lb/pair allowable load based on deflection limits Thus,based on the least capacity of item 1 and 2 above: Allowable load= 6,378 lb/pair Imposed Product Load= 5,200 lb/pair Beam Stress= 0.82 Beam at Level 1 nni noPri nn 1200 N. Jefferson Ste, Ste F Anaheim, CA 92807 Tel: 714.632.7330 Fax: 714.632.7763 By: ENHAO Project:DAWN FOODS Project#: Q-113016-5LV 3 Pin Beam to Column Connection TYPE 1 SELECTIVE RACK I he beam end moments shown herein show the result of the maximum induced fixed end monents form seismic+static loads and the code mandated minimum value of 1.5%(DL+PL) Mconn max= (Mseismic+ Mend-fixity)*0.70*Rho IF `. rl 't „" = 15,062 in-Ib Load at level 1 I rho= 1.0000 I 1: z•• C r 1/2^ Connector Type= 3 Pin Shear Capacity of Pin Pin Diam= 0.44 in Fy= 55,000 psi Ashear= (0.438 in)A2*Pi/4 = 0.1507 inA2 Pshear= 0.4*Fy*Ashear = 0.4*55000 psi*0.1507inA2 = 3,315 lb - Bearing Capacity of Pin tcol= 0.105 in Fu= 65,000 psi Omega= 2.22 a= 2.22 Pbearing= alpha*Fu*diam*tcol/Omega = 2.22*65000 psi *0.438 in*0.105 in/2.22 = 2,989 lb < 3315 lb Moment Capacity of Bracket Edge Distance=E= 1.00 in Pin Spacing= 2.0 in Fy= 55,000 psi C= P1+P2+P3 tclip= 0.18 in = P1+P1*(2.5"/4.5")+P1*(0.5"/4.5") Sclip= 0.127 inA 3 = 1.667*P1 Mcap= Sclip*Fbending C*d= Mcap= 1.667 d= E/2 = 0.127 inA3*0.66*Fy = 4,610 in-lb = 0.50 in Pclip= Mcap/(1.667*d) = 4610.1 in-lb/(1.667*0.5 in) Thus,P1= 2,989 lb = 5,531 lb Mconn-allow= [P1*4.5"+P1*(2.574.5"}*2.5"+P1*(0.5"/4.5")*0.5"] = 2989 LB*[4.5"+(2.5"/4.5")*2.5"+(0.5"/4.5")*0.51 = 17,768 in-lb > Mconn max, OK DAWN FOODS TYPE 13 Page9 of 7 12/1/2016 �7tructural Concepts Engineering 1200 N. Jefferson Ste, Ste F Anaheim, CA 92807 Tel: 714.632.7330 Fax: 714.632.7763 By: ENHAO Project: DAWN FOODS Project#: Q-113016-5LV Transverse Brace Configuration:TYPE 1 SELECTIVE RACK Section Properties Diagonal Member= Sperack 1-1/2x1-1/4x14ga Horizontal Member= Sperack 1-1/2x1-1/4x14ga Area= 0.292 in^2 1.500 in Area= 0.292 in^2 r min= 0.430 in r min= 0.430 in F, 1.500 in Fy= 55,000 psi Fy= 55,000 psi K= 1.0 � �" S2c= 1.92 0.075 in / 1.250 in K= L0 0.075 in 250 in Frame Dimensions Bottom Panel Height=H= 54.0 in Clear Depth=D-B*2= 38.0 in Frame Depth=D= 44.0 in X Brace= NO Column Width=B= 3.0 in rho= 1.00 Diagonal Member 0 I Load Case 6::(1+ iO4 Sd SS+0.14Sds)*B*P+10.7*rho*EJ<=1.0,ASD Method 4f Vtransverse= 1,924 lb Vb IMAM. Vb=Vtransv*0.7*rho= 1924 lb*0.7*1 (ki/r)= (k*Ldiag)/r min = 1,347 lb = (1 x 61.2 in/0.43 in) Ldiag= [(D-B*2)^2+(H-6")^2]^1/2 = 142.3 in Ldiag = 61.2 in Fe= pi^2*E/(kl/r)^2 Pmax= V*(Ldiag/D) *0.75 = 14,378 psi Pmax = 1,405 ib axial load on diagonal brace member Since fe</ '2, 3 Np Pn= AREA*Fn Fn= Fe = 0.292 in^2*14378 psi = 14,378 psi B +i' = 4,198 lb Typical Panel Confiourabon Fallow= Pn/S2 Check End Weld = 4198 Ib/1.92 Lweld= 2.5 in = 2,187 Ib Fu= 65 ksi tmin= 0.075 in Pn/Pallow= 0.64 <=1.0 OK Weld Capacity= 0.75*tmin*L*Fu/2.5 = 3,656 lb OK Horizontal brace Vb=Vtransv*0.7*rho= 1,347 lb (kl/r)= (k*Lhoriz)/r min Fe= pi^2*E/(kl/r)^2 Fy/2= 27,500 psi = (1 x 44 in)/0.43 in = 27,821 psi = 102.3 in Since Fe>Fy/2,Fn=Fy*(1-fy/4fe) Pn= AREA*Fn Pallow= Pn/S2c = 27,817 psi = 0.292in^2*27817 psi = 8123 lb/1.92 ==== 8,123 lb = 4,231 lb Pn/Pallow= 0.32 <=1.0 OK DAWN FOODS TYPE 1 Page (0 of (3 12/1/2016 Structural Concepts Engineering 1200 N. Jefferson Ste, Ste F Anaheim, CA 92807 Tel: 714.632.7330 Fax: 714.632.7763 • By: ENHAO Project: DAWN FOODS Project#: 4-113016-SLV Single Row Frame Overturning Configuration:TYPE 1 SELECTIVE RACK Loads Critical Load case(s): 1)RMI Sec 2.2,item 7: (0.9-0.2Sds)D+(0.9-0.20Sds)*B*Papp-E*rho hp + _ r 4 Sds= 0.7207 V Vtrans=V=E=Qe= 1,924 lb (0.9-0.2Sds)= 0.7559 p1. DEAD LOAD PER UPRIGHT=D= 225 lb (0.9-0.2Sds)= 0.7559 PRODUCT LOAD PER UPRIGHT=P= 15,600 lb B= 1.0000 H h Papp=P*0.67= 10,452 lb rho= 1.0000 Wst LC1=Wsti=(0.75586*D+0.75586*Papp*1)= 8,070 lb Frame Depth=Df= 44.0 in T Product Load Top Level,Ptop= 5,200 lb Htop-IvI=H= 198.0 in I • DL/LA= 75 lb #Levels= 3 I� Df � Seismic Ovt based on E,E(Fi*hi)= 350,166 in-lb #Anchors/Base= 4 height/depth ratio= 4.5 in hp= 56.0 in SIDE ELEVATION A)Fully Loaded Rack h=H+hp/2= 226.0 in Load case 1: Movt= E(Fi*hi)*E*rho Mst= Wstl *Df/2 T= (Movt-Mst)/Df = 350,166 in-lb = 8070 lb*44 in/2 = (350166 in-lb-177540 in-lb)/44 in = 177,540 in-lb = 3,923 lb Net Uplift per Column Net Seismic Uplift= 3,923 lb Strength Level 8)Top Level Loaded Only Load case 1: 0 V1=Vtop= Cs*Ip*Ptop>=350 lb for H/D>6.0 Movt= [V1*h +V2*H/2]*0.7*rho = 0.1802*5200 lb = 151,049 in-lb = 937 lb T= (Movt-Mst)/Df Vleff= 937 lb Critical Level= 3 = (151049 in-lb-90212 in-lb)/44 in V2=V0L= Cs*Ip*D Cs*Ip= 0.1802 = 1,383 lb Net Uplift per Column = 41 lb Mst= (0.75586*D+0.75586*Ptop*1)*44 in/2 = 90,212 in-lb Net Seismic Uplift= 1,383 lb Strength Level - Anchor Check(4)0.5"x 3.25"Embed HILTI KWIKBOLT TZ anchor(s)per base plate. Special inspection is required per ESR 1917. Pullout Capacity=Tcap= 1,588 lb L.A.City Jurisdiction? NO Tcap*Phi= 1,588 lb Shear Capacity=Vcap= 1,258 lb Phi= 1 Vcap*Phi= 1,258 lb Fully Loaded: (980 lb/1588 Ib)A1+(240 lb/1258 Ib)A1 = 0.81 <= 1.2 OK Top Level Loaded: (345 lb/1588 Ib)A1 +(117 lb/1258 Ib)A1 = 0.31 <= 1.2 OK DAWN FOODS TYPE 1 Page l of l 3 12/1/2016 Structural Concepts Engineering 1200 N. Jefferson Ste, Ste F Anaheim, CA 92807 Tel: 714.632.7330 Fax: 714.632.7763 By: ENHAO Project: DAWN FOODS Project#: Q-113016-5LV Base Plate Configuration:TYPE 1 SELECTIVE RACK Section 4 a Baseplate= 8x8x3/8 Eff Width=W= 8.00 in a= 3.00 in111 Mb Eff Depth=D= 8.00 in Anchor c.c. =2*a=d= 6.00 in laimmimmo Column Width=b= 3.00 in N=#Anchor/Base= 4 s111 I b I L I Column Depth=dc= 3.00 in Fy= 36,000 psi w L= 2.50 in Plate Thickness=t= 0.375 in Downaisle Elevation Down Aisle Loads Load Case 5::(1+0.105*Sds)D+0.751(L4+0.14Sds)*B*P#0.75*[0.7*rho*E/<=1.0,ASD Method COLUMN DL= 113 lb Axial=P= 1.0756735* 112.5 lb+0.75* (1.500898*0.7*7800 Ib) COLUMN PL= 7,800 lb = 6,267 lb Base Moment= 8,000 in-lb Mb= Base Moment*0.75*0.7*rho 1+0.105*Sds= 1.0757 = 8000 in-lb*0.75*0.7*rho 1.4+0.14Sds= 1.5009 = 4,200 in-lb Eff( B= 0.7000 Axial Load P= 6,267 lb Mbase=Mb= 4,200 in-lb Effe Axial stress=fa= P/A=P/(D*W) Ml= wLA2/2=fa*LA2/2 = 98 psi = 306 in-lb Moment Stress=fb= MIS=6*Mb/[(D*BA2] Moment Stress=fb2= 2*fb*L/W = 49.2 psi = 30.8 psi Moment Stress=fbl = fb-fb2 M2= fb1*LA2)/2 1 = 18.5 psi = 58 in-lb M3= (1/2)*fb2*L*(2/3)*L=(1/3)*fb2*LA2 Mtotal= M1+M2+M3 = 64 in-lb = 428 in-lb/in S-plate= (1)(t"2)/6 Fb= 0.75*Fy = 0.023 inA3/in = 27,000 psi fb/Fb= Mtotal/[(S-plate)(Fb)] Pp= 0.7*F'c 0.68 OK = 2,800 psi OK Tanchor= (Mb-(PLapp*0.75*0.46)(a))/[(d)*N/2] Tallow= 1,588 lb OK = -1,668 lb No Tension Cross Aisle Loads Cruralhadcase RM1Sc21,'tram 4.•(1H11L5doJOL+(1i-0.145OS)K'41.755EL'v.75e 10,ASO Method Check uplift load on Baseplate Check uplift forces on baseplate with 2 or more anchors per RMI 7.2.2. Pstatic= 6,267 lb When the base plate configuration consists of two anchor bolts located on either side .f the column and a net uplift force exists,the minimum base plate thickness Movt*0.75*0.7*rho= 183,837 in-lb Pseismic= Movt/Frame Depth hall be determined based on a design bending moment in the plate equal Frame Depth= 44.0 in = 4,178 lb o the uplift force on one anchor times 1/2 the distance from P=Pstatic+Pseismic= 10,445 lb e centerline of the anchor to the nearest edge of the rack column" b=Column Depth= 3.00 in T c i L=Base Plate Depth-Col Depth= 2.50 in Ta Mu Ta .m1111t tel; fa= P/A=P/(D*W) M= wLA2/2=fa*LA2/2 I b 1 -` = 163 psi = 510 in-lb/in Elevation Uplift per Column= 3,920 lb Sbase/in= (1)(t"2)/6 Fbase= 0.75*Fy Qty Anchor per BP= 4 = 0.023 inA3/in = 27,000 psi Net Tension per anchor=Ta= 980 lb c= 2.50 in fb/Fb= M/[(S-plate)(Fb)] Mu=Moment on Baseplate due to uplift=Ta*c/2 0.81 OK = 1,225 in-lb Splate= 0.188 inA3 fb Fb *0.75= 0.181 OK DAWN FOODS TYPE 1 Page tZof t,� 12/1/2016 Structural Concepts engineering 1200 N. Jefferson Ste, Ste F Anaheim, CA 92807 Tel: 714.632.7330 Fax: 714.632.7763 By: ENHAO Project: DAWN FOODS Project#: Q-113016-5LV Slab on Grade Configuration:TYPE 1 SELECTIVE RACK P � slab a Concrete r a-_ I fc= 4,000 psi ".mm D I b e tslab=t= 5.0 in 1 I I ' �- ; Cross teff= 5.0 in IIIIIllIIIIIIIIIIIIIIIlIIIIIIlIlIIIIIIIIIuIIIIIIIIIIIIIIHIIIIIIIIIIIIIIIIIIIIIII -----c --- Aisle phi=o= 0.6 .- x -sl Soil I4 f c y 4 B 1. fsoil= 1,000 psf • Down Aisle Movt= 245,116 in-lb SLAB ELEVATION Frame depth= 44.0 in Baseplate Plan View Sds= 0.721 Base Plate 0.2*Sds= 0.144 Effec.Baseplate width=B= 8.00 in width=a= 3.00 in 1=0.600 Effec.Baseplate Depth=D= 8.00 in depth=b= 3.00 in 0=B/D= 1.000 midway dist face of column to edge of plate=c= 5.50 in F'cA0.5= 63.20 psi Column Loads midway dist face of column to edge of plate=e= 5.50 in DEAD LOAD=D= 113 lb per column Load Case 1) (1.2+0.2Sds)D+(1.2+0.2Sds)*B*P+rho*E RMI SEC 2.2 EQTN S unfactored ASO load = 1.34414* 113 lb+ 1.34414*0.7*7800 lb+ 1*5570 lb PRODUCT LOAD=P= 7,800 lb per column = 13,061 lb unfactored ASD load Load Case 2) (0.9-0.2Sds)D+(0.9-0.2Sds)*B*Papp+rho*E RMI SEC 2.2 EQTN 7 Papp= 5,226 lb per column = 0.75586* 113 lb+0.75586*0.7*5226 lb+ 1*5570 lb P-seismic=E= (Movt/Frame depth) = 8,420 lb = 5,570 lb per column Load Case 3) 1.2*D+1.4*P RMI SEC 2.2 EQTN 1,2 unfactored Limit State load = 1.2*113 lb+1.4*7800 lb B= 0.7000 = 11,055 lb rho= 1.0000 Load Case 4) 1.2*D+1.0*P+ 1.0E ACI 318-nSec 9.2.,Eqb,9-5 Sds= 0.7207 = 13,506 lb 1.2+0.2*Sds= 1.3441 Effective Column Load=Pu= 13,506 lb per column 0.9-0.20Sds= 0.7559 Puncture Apunct= [(c+t)+(e+t)]*2*t = 210.0 inA2 Fpunctl= [(4/3+8/(3*p)]*x*(F'cA0.5) fv/Fv= Pu/(Apunct*Fpunct) = 151.7 psi = 0.638 < 1 OK Fpunct2= 2.66*X*(F'cA0.5) = 100.9 psi Fpunct eff= 100.9 psi Slab Bending Pse=DL+PL+E= 13,506 lb ' Asoil= (Pse*144)/(fsoil) L= (Asoil)A0.5 y= (c*e)A0.5 +2*t = 1,945 inA2 = 44.10 in = 15.5 in x= (L-y)/2 M= w*xA2/2 S-slab= 1*teffA2/6 = 14.3 in = (fsoil*x^2)/(144*2) = 4.17 inA3 Fb= 5*(phi)*(fc)A0.5 = 710.1 in-lb fb/Fb= M/(S-slab*Fb) = 189.74 psi = 0.898 < 1,OK DAWN FOODS TYPE 1 Paget 3 of[ 12/1/2016