Loading...
Specifications RECEIVED / 3 ?1(? St,. / "7ci7t-, CT ENGINEERING MAY 1 2 2016 Structural Engineers 2 180 Nickerson Street Suite 302 Seattle, WA 98109 INC. 206.285.4512 (V) 208.285.0618 (F) CITY OF TGAR D BUILDING DIVISION #15238 Structural Calculations River Terrace co PIRG," NG," Plan 5 ,�� �-�G so •' • , 4 . Fri Elevation A REG�iNkTigard, OR , 22 \9\<$2 T GR�F Design Criteria: 2012 IBC (ORSC, OSSC) 09/14/2015 ASCE 7-10 Wind Speed: 120(ULT); 93(ASD); Kzt=1 .0 Seismic: Ss=0.972, S1 =0.423, SDC=D Roof Snow Load = 25 psf Site Class = D, Bearing = 2000 psf Client: Polygon Northwest Company 109 East 13th Street, Suite 200 Vancouver, WA 98660-3229 Ph: 360.695.7700 Fax: 360.693.4442 Architect: Milbrandt Architects 25 Central Way, Suite 210 Kirkland, WA 98033 Ph: 425.454.7130 Fax: 425.646.0945 CT ENGINEERING 180 Nickerson St. INC Suite 302 Seattle,WA 98109 (206)285-4512(V) (206)285-0618(F) Polygon Northwest Company Multiple locations in Tigard,OR DESIGN SUMMARY: The proposed project is to be single-family homes. We understand that these homes are to be constructed in multiple locations throughout Tigard, Oregon. Design parameters are as noted below: The structures are two-story wood-framed. Roof framing is primarily with pre-manufactured pitched chord wood trusses. Upper floor framing is primarily with pre-manufactured parallel chord wood trusses. Floor framing over crawlspace is primarily pre-manufactured wood joists. The foundations are to be conventional spread footings. Wind design is based on the ASCE 7-10 MWFRS(Envelope Procedure)for 120 mph ultimate wind speed, exposure category B, and with a Kzt value of 1.00. Lateral design is based on the ASCE 7-10"equivalent lateral force" procedure with Ss equal to or less than 1.10 and S1 equal to or less than 0.50 and with soil classification"D". Plywood or OSB shearwalls are the primary lateral force resisting system (R=6.5). . Foundations have been sized for Class 4 soils as defined in IBC 1806.2. Codes considered; 2012 IBC, and currently adopted ORSC and OSSC. SHEET TITLE: DEAD LOAD SUMMARY CT PROJECT#: CT# ROOF Roofing- 3.5 psf Roofing-future 0.0 psf 5/8"plywood (O.S.B.) 2.2 psf Trusses at 24"o.c. 4.0;psf Insulation 1.0 psf (1)5/8"gypsum ceiling 2.8�;psf Misc./Meeh. 1".5'psf ROOF DEAD LOAD 15.0 PSF FLOOR floor finish 4.0 psf NO gypsum concrete 0.0 psf 3/4"plywood (O.S.B.) 2.7 psf joist at 12" 2.5 psf Insulation' 1.0 psf (1) 1/2"gypsum ceiling 2.2 psf Misc. X2.6 psf FLOOR DEAD LOAD 15.0 PSF (2)2:8 HDR (2)2x8 HDR (2 2x8 H R (a 2x8 HJR (2,2x8 HER • A 1ZB 1 RB.2 RB-3 RB.4 RB.S z z 1~\ 2 AILi; I� irill 1 I - - - \ _ , I \ - / I . x • x un / 1. \ d z It'A la 3 ---- CO -to 0 Ill ~N ,--__—___—N co 3.._ o Q x Ilicq K ti N = Tu, � N l a 0 IN I _\____wil :.::::::"g Ii <. . . . . :.: ...5.... . .. _.. ....:. ................. ...... ................. . . .............. .:: .... '.77-,. t :: -•;•. . . ........... . ................. ................ ................ ............... ................ ................ ................ CC II ...... ::::4.... .......... 3 N lJ... ...... .............; 'i� is a : ::� 4;:ki : ::0::::t::::::2 :::•:::. ;. ::•; 2)2148 2148 HD (2)28 H D- I s c[1:11: E{g : : ? i'i 'a�s• _fi��.ii'-:"`iii. iiuifii?tiiuii}Fy?S�r ci 04 : GT.214 �■111111\ 'RB,11 R.73.1./1RB.13 ! .I RB.10 IIRD.10 I , PLAN 5A PLAN 5A Roof Framing Plan 0 1/4"=1.-0" CT# 14051 2014.05.09 1/4" = 1'-0" (11x17) 0 0 1.Ta 1.Tb 1.Tc - v O o >< 81 ., II 1 II A- 1FiJ ro t� E -° RC II Ir —4 r il II W C II H DI...- -----\ mm imm L I N 4ei II h ... . 41:10 I 0 8 19 St 4.Td not used this ele a ion PLAN 5A PLAN 5A Top Floor Shear Plan © 1/4"= v-0" CT# 14051 2014.05.09 1/4" = 1'-o" (11x17) 0 WI War o 0 14 STHD14 1.Ma 4x10 HDR 1.Mb 3.5x9 GLB HDR 1.MC 4x10 HDR 4x10 HDR 4x10 HDR 1.M• =1 =_= =C===IC-==:77-.f. 1p.1 \7 r B.2 B 3 ��_B 4 B.3cr II I o II- \'_ r, ; 1 1 --s J-=-. UI I I }' _4 i F -ED _1 'U £ ' —tel 1 K •a O 1 1 11 1 , ^ 3.5x Iy IG BEAM FB 3.5x14 B BEAM FBL 3.5x9 3LB HDR 1 ,,,- --1]: -- - -1^- _ ^ -I/ET::: --- l �i - 1 J�`10 I I B.11 II B. c£ Y I "/ \\___ I. / \ - 4J tr®R 4 1 HDR _ \ N `z .. '. -:��7= ,. ,..., ..._�. 1 \STAIR / - � STHD14 .ij Il STW$14---�tI., .. t I \FRAMING/ 1 N I 'II-=___-I` S _ THC STHD14 1 3-\ / N =r== --- P4 i. \ / 1 1 Ni 1 1 I; /\ I / \ P4 -i Ii / \ 1- / \ SiHD14 \ ( / \.. �) STHD14 L-^� 1 I3.5. BIG BEAM FB 5.5x18 l,6 HDR r , --Qrr..-1.-4rrc asa r-, -- s-.r.-a .� .� B.13 II B. 1 Qo-- w z „4. 1 II It II assab mem Imo essom it 1 1 I 1 I d' H 1 x L ---- - ----_ _-----.� il N N W 4 . II R I 7( ? '- 58.1 © L`_ x �'n 2.-HDR J 0 c W -, ii 74 5.125x12iQL3HDR _-_.' ; ' 8 1 l l (2)2x8 HDR (2)2x6 HDR 2)2x8 ADR ® R 7c dm �`M. IIIIIIIMMIIIMIIIIINKAWS1 - 14i- STHD14 STHD14 , F� ...'v; STHD14 B.15 STHD14 , f P3/ I/O 2x8 HD' 1 2x LEDGER 2x LEDGER 1 - m - i .1•Me 1 t 41110 4.Mc & 4.Md not used this elevation B.17 0 9MONO TRUSSES 51 %V @ 24"O.C. 0 P LAN 5A PLAN 5A Main Floor Shear/Top Floor Framing 1/4"=1'-0" CT# 14051 2014.05.09 1/4" = 1'-0" (11x17) ' 40'-0" (((, r 43" 4.-0" Yr/ T.O.S. 3 112"CONC.SLAB o -0'-71x2' „# 143._3-1 T.O.S. STHD14 STHD14 t2 ti157 r I 1>J ` ter _-� .......... .............. . 1.' SYS.T.EM'T.O.ALLOW...':::.'.'.':.':.'.'.':.'.'.'.'. ..CFL4tvL�SPACE.':.•.'..'.'.: :..'.':.'.'::.':........ ...........�..'...'.'.':.'.'::.':..'.':::'.':':::':.'.I. ..... ........ W/.2#4 EACHWAYTYP .............. .............. .............. .............. .............. ........................... ................�,. ...... BEARItd�19A 'ABQVF.-.-.-. ............. .... ......,n-.-.......-.-.-.-.-.-.--.. . .... .............. �-•� :1.75'.WIDE LVL TO.MATO I JOIST.::'..I.\ .... ........... ............ .. .. .. .. ........ . '.'.':..'.'.:..':.'.':.'.'.'.'.'.'.':.'.'.:.'.':::.':.':.'..'..'. DEPTH ABOu 'PONY.WAL S:::.....::::!. .............................. ........................ ..... ......................................... ................. ........... —,� I WH I STHD14 t STHD14 .,.......�.�.'.�.-:.:'.�.:-.�.'.'.'.'.'..'.'K.':':.'::.'.':...................... ...,. UT.O.S. ....... ... 0 x 0x10"FI....v..l............. . C .. I•"""' .'30'x20'x10'.FTG'... 1.75"�WIDE LVLTO •TCH:.j. ....... ........ 20'-6" Kir 31/2"CONC.SLAB SLAB SLOPES 3 1/2" £4 -1'-01/2" FROM BACK TO APRON I':.'•'.'•'.'....'.'. :.r' VERIFY GARAGE SLAB HEIGHT ...'.':.'.......'.'.':: ':.'!.'.. I :.'.':........... ......... ......::.'!. WITH GRADING PLAN .............. ...16.:....:. ........... IT:7 ................. .............. ............. ........................ .. ................. .............. ............. ................... ...... . ................................ ............. ................... ....... :..::.-.:. . 1�. T•• I WALL'-_____ - , ,31/2"CONC.SLAB ' _,:I• STHD14 1••s 1/2" 18 STHD14 , , SLOPED DOWN 1 ^ S6.1 I I 1/4 :12 II . t 24)-1-(-F-:37-) C P3/1 0 P3 I i i STHD14 STHD14 56.1 I L----\,,,- J 1 II m 411) 16 e SIM. S6.1 2'-1" 16'-3' 2'-2" T-10" 11'-8" 0 PLAN 5A PLAN 5A 1/4Foundation Plan 1/4"=1'-0" CT# 14051 2014.05.P09 " = 1'-0" (11x17) CT Engineering Project Title: 180 Nickerson,Suite 302 Engineer: Project ID: Seattle,WA 98109 Project Descr: (206)285 4512 Fax: (206)285 0618 Printed:6 MAR 2014 9:18AM z E�s,; • c 3„o a s« s za s y '_^ p w-a�¢ `r F g ra m� E L1114051T SiErigr114y0517 1`Et6 5; M' Itipme r-,,r Bea,1�1s"*` . `- hili iatMli rm ,, NAM ENEi.CA ), 19.43-"„2,014 Build$6141,23 UVr614't23•af Lic.#:KW-06002997 • ;Licensee:c.t.engineering Description PLAN 5.A Roof Trusses _Mm [Woo d`Beam Design GT a1 1�r £ F '" Calculations per 2012 NDS,IBC 2012,CBC 2013,ASCE 7 10 BEAM Size: 4x12,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Douglas Fir-Larch Wood Grade: No.2 Fb-Tension 750.0 psi Fc-Prll 700.0 psi Fv 170.0 psi Ebend-xx 1,300.0 ksi Density 32.210 pcf Fb-Compr 750.0 psi Fc-Perp 625.0 psi Ft 475.0 psi Eminbend-xx 470.0 ksi Applied Loads Unif Load: D=0.0150, S=0.0250 k/ft,Trib=3.0 ft Design Summary Max fb/Fb Ratio = 6.765. 1 fb:Actual: 4,720.15 psi at 22.000 ft in Span#1 D(0.045%6(0.0750) Fb:Allowable: 697.70 psi + Load Comb: +D+S+H 44.0 ft. 4x12 Max fv/FvRatio= 0.568: 1 fv:Actual: 96.55 psi at 0.000 ft in Span#1 Fv:Allowable: 170.00 psi Load Comb: +D+S+H Max Deflections Max Reactions (k) D L Lr S w E H Downward L+Lr+S 11.778 in Downward Total 18.845 in Left Support 0.99 1.65 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.99 1.65 Live Load Defl Ratio 44 <360 Total Defl Ratio 28 <180 WoodBealin DesigrF GT a2 e rrx . - ° t 44 �_o- a ;„P 5;, vz7 .. ,. � Calculations per 2012 ND5,316C 2012,CBC,2013 et 10 BEAM Size: 4x12,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Douglas Fir-Larch Wood Grade: No.2 Fb-Tension 750.0 psi Fc-Pr!! 700.0 psi Fv 170.0 psi Ebend-xx 1,300.0 ksi Density 32.210 pcf Fb-Compr 750.0 psi Fc-Perp 625.0 psi Ft 475.0 psi Eminbend-xx 470.0 ksi Applied Loads Unif Load: D=0.0150, S=0.0250 k/ft,Trib=3.0 ft Design Summary Max fb/Fb Ratio = 6.765 1 fb:Actual: 4,720.15 psi at 22.000 ft in Span#1 D(0.0450'S(0.0750) Fb:Allowable: 697.70 psi t • + Load Comb: +D+S+H 44.0 ft. 4x12 Max fv/FvRatio= 0.568: 1 fv:Actual: 96.55 psi at 0.000 ft in Span#1 Fv:Allowable: 170.00 psi Load Comb: +D+S+H Max Deflections Max Reactions (k) D L Lr S W E I1 Downward L+Lr+S 11.778 in Downward Total 18.845 in Left Support 0.99 1.65 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.99 1.65 Live Load Defl Ratio 44 <360 Total Defl Ratio 28 <180 1N'ood`Bealm Design GT a3 -; , 1 �a 1 ' 4P P Vie -q.realcuiationsimi2012WIDSIBC2012 CBC52013 ►{ CE710 BEAM Size: 4x12,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Douglas Fir-Larch Wood Grade: No.2 Fb-Tension 750.0 psi Fc-Prll 700.0 psi Fv 170.0 psi Ebend-xx 1,300.0 ksi Density 32.210 pcf Fb-Compr 750.0 psi Fc-Perp 625.0 psi Ft 475.0 psi Eminbend-xx 470.0 ksi Applied Loads Unif Load: D=0.0150, S=0.0250 k/ft,0.0 ft to 6.0 ft,Trib=2.0 ft Unif Load: D=0.0150, S=0.0250 k/ft,6.0 to 20.0 ft,Trib=17.50 ft Point: D=0.990, S=1.650 k @ 6.0 ft Design Summary Max fb/Fb Ratio = 8.264. 1 .+n D(0 2625)5(0.4375) fb:Actual: 6,075.59 psi at 9.667 ft in Span#1 0 030 s a oso i • t + Fb:Allowable: 735.18 psi qq Load Comb: +D+S+H Max fv/FvRatio= 1.475: 1 • 20.0rt 4x12 fv:Actual: 250.69 psi at 19.067 ft in Span#1 Fv:Allowable: 170.00 psi Load Comb: +D+S+H Max Deflections Max Reactions (k) D L Lr S w E H Downward L+Lr+S 3.106 in Downward Total 4.970 in Left Support 2.13 3.55 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 2.71 4.52 Live Load Defl Ratio 77 <360 Total Defl Ratio 48<180 CT Engineering Project Title: 180 Nickerson,Suite 302 Engineer: Project ID: Seattle,WA 98109 Project Descr: (206)285 4512 Fax: (206)285 0618 Printed:6 MAR 2014.9:18AM Multlpte Sllnpie Beam4'54 ulld6 4 11Engr1er61 123 k., _..�r._.. s, .r,' „ ,'�BENE CALC INC 'f983-2014 u'it„6;14423,Ve014.1•23 4. Lic.#'•KW-06002997 Licensee:c.t.engineering Wood Beam Design :7-at a4 s r2,:CBC 2013,ASCE 7-10.. Calculations per 2012 NOS IBC 201Z BEAM Size: 4x12,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Douglas Fir-Larch Wood Grade: No.2 Fb-Tension 750.0 psi Fc-PrIl 700.0 psi Fv 170.0 psi Ebend-xx 1,300.0 ksi Density 32.210 pcf Fb-Compr 750.0 psi Fc-Perp 625.0 psi Ft 475.0 psi Eminbend-xx 470.0 ksi Applied Loads Unif Load: D=0.0150, S=0.0250 k/ft,0.0 ft to 5.50 ft,Trib=17.50 ft Unif Load: D=0.0150, S=0.0250 k/ft,5.50 to 11.50 ft,Trib=2.0 ft Point: D=0.990, S=1.650 k @ 5.50 ft Design Summary 1,41MC Max fb/Fb Ratio = 3.016; 1 D 0.2625 S 0.4375 0(0 030)S(o 050) • fb:Actual: 2,239.39 psi at 5.482 ft in Span#1 � � �� Fb:Allowable: 742.56 psi Load Comb: +D+S+H � Max fv/FvRatio= 0.849: 1 A fv:Actual: 144.30 psi at 0.000 ft in Span#1 Fv:Allowable: 170.00 psi 11.50 ft, 4x12 Load Comb: +D+S+H Max Deflections Max Reactions (k) D L Lr S W E H Downward L+Lr+S 0.337 in Downward Total 0.540 in Left Support 1.66 2.77 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.95 1.59 Live Load Defl Ratio 409 >360 Total Defl Ratio 255>180 CT Engineering Project Title: Project ID: 180 Nickerson,Suite 302 Engineer: Seattle,WA 98109 Project Descr: (206)285 4512 Fax: (206)285 0618 Printed 5 MAR 20145:00PM irifigs ,` ,,,; . .;.,• c .._ ,W ,,a1 Ma r 7;:lrAnigi ;it,Air V i."`: linig'f l ijfig�40541T . 6:061405,7.i�LC6_. , w is E . s^ 1 � ' 5C I CALF,INQOP83 014 00. 610.:40§.:Mg§.44 414 �Lic. KW " �v t.." Licensee:c.t.engineering Lic.#.KW-0.6002997 . : Description PLAN 5.A1 Top Floor Framing s 4_ z ` aU raPE "'"`hWZIEE ,,..5 VREg` Calculations per2012 NDS IBC.2012,GBc!2013,TASCE7 10-a BEAM Size: 4x10,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Douglas Fir-Larch Wood Grade: No.2 Fb-Tension 900.0 psi Fc-Pr!' 1,350.0 psi Fv 180.0 psi Ebend-xx 1,600.0 ksi Density 32.210 pcf Fb-Compr 900.0 psi Fc-Perp 625.0 psi Ft 575.0 psi Eminbend-xx 580.0 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=10.250 ft Unif Load: D=0.0150, S=0.0250 k/ft,0.0 to 2.670 ft,Trib=3.0 ft Unif Load: D=0.0150, S=0.0250 k/ft,2.670 to 4.250 ft,Trib=23.0 ft Unif Load: D=0.010 k/ft,Trib=8.0 ft Point: D=0.990, S=1.650 k @ 2.670 ft Design SummaryD 0.04 o o���ra ,i Max fb/Fb Ratio = 0.795. 1101 fb:Actual: 983.60 psi at 2.663 ft in Span#1 , � Fb:Allowable: 1,237.45 psi , ..,: 3Y . y Load Comb: +D+0.750L+0.750S+H • Max fv/FvRatio= 0.588: 1 A A fv:Actual: 121.63 psi at 3.485 ft in Span#1 4.250 n,4x10 Fv:Allowable: 207.00 psi Load Comb: +D+0.750L+0.750S+H Max Deflections Max Reactions (k) D L Lr S W E H Downward L+Lr+S 0.024 in Downward Total 0.038 in Left Support 1.05 0.87 0.92 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 1.60 0.87 1.84 Live Load Defl Ratio 2120 >360 Total Deft Ratio 1333 >180 Wood BeamDeslgn B 2 (� ii. '� '', is � *4 DO' K -�.,0 kq 4% - r a4-; Ca1C111att911S Pg 202 ND$,IBg7g1 ,CBCM2013,,ASCE47 10 BEAM Size: 3.125x9,GLB, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: DF/DF Wood Grade: 24F-V4 Fb-Tension 2400 psi Fc-PrIl 1650 psi Fv 265 psi Ebend-xx 1800 ksi Density 32.21 pct Fb-Compr 1850 psi Fc-Perp 650 psi Ft 1100 psi Eminbend-xx 930 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=10.250 ft Unif Load: D=0.0150, S=0.0250 k/ft,2.670 to 6.50 ft,Trib=23.0 ft Unif Load: D=0.010 k/ft,Trib=8.0 ft Point: D=0.560, S=0.9350 k @ 3.250 ft Design Summary tib gsms,o,rs� Max fb/Fb Ratio = 0.792. 1 + * oc4,54o t.ia fb:Actual: 2,168.64 psi at 3.250 ft in Span#1 � � � � 7 i Fb:Allowable: 2,738.45 psi _-,- .„. . : .%. Load Comb: +D+0.750L+0.750S+H li Max fv/FvRatio= 0.615: 1 A A fv:Actual: 187.53 psi at 5.763 ft in Span#1 6.50 ft,3.125x9 Fv:Allowable: 304.75 psi Load Comb: +D+0.750L+0.750S+H Max Deflections Max Reactions (k) D L Lr S W E H Downward L+Lr+S 0.119 in Downward Total 0.189 in Left Support 1.43 1.33 1.12 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 1.97 1.33 2.02 Live Load Defl Ratio 654>360 Total Defl Ratio 412 >180 Wood�B'eam�Deslg�n� ��B 3 ��' 'tlixkq,. L" 4� T$ Y 3 Y "'"a `01 ,.: a °, `�„ i ,;i;':,35 .r.F.(f4aNIT ;,,TA ' <4 y.E `Cage atie I:q 2012 NRS`,IBC 291?,,CBC`2013,ASCE 7,10 BEAM Size: 4x10,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Douglas Fir-Larch Wood Grade: No.2 Fb-Tension 900.0 psi Fc-Pr!! 1,350.0 psi Fv 180.0 psi Ebend-xx 1,600.0 ksi Density 32.210 pcf Fb-Compr 900.0 psi Fc-Perp 625.0 psi Ft 575.0 psi Eminbend-xx 580.0 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=10.250 ft Unif Load: D=0.0150, S=0.0250 k/ft,1.50 to 4.250 ft,Trib=23.0 ft Unif Load: D=0.010 k/ft,Trib=8.0 ft Point: 0=0.560, S=0.9350 k @ 1.50 ft CT Engineering Project Title: 180 Nickerson,Suite 302 Engineer: Project ID: Seattle,WA 98109 Project Descr: (206)285 4512 Fax: (206)285 0618 Printed:5 MAR 2014,5:00PM Multile"Sim `ie rBeam F� (11140s1T 1tE0 t' s'1 1 E23 P p, ENERCALG INC,198 2014.8uiId 6 141 23V erfi14 t 23,E Lic.# KW-06002997 Licensee:c.t.engineering; Design Summary . ,:m... Max fb/Fb Ratio = 0.681• 1 * •D(..1.,' a . 4P 5*331 fb:Actual: 842.88 psi at 1.941 ft in Span#1 Fb:Allowable: 1,237.45 psi P Q1.' Load Comb: +D+0.750L+0.7505+H Max fv/FvRatio= 0.502: 1 A A fv:Actual: 103.92 psi at 0.000 ft in Span#1 Fv:Allowable: 207.00 psi 4.250 ft,4x10 Load Comb: +D+0.750L+0.750S+H Max Deflections Max Reactions (k) D L Lr S W E H Downward L+Lr+S 0.023 in Downward Total 0.036 in Left Support 1.17 0.87 1.12 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 1.34 0.87 1.40 Live Load Defl Ratio 2242 >360 Total Defl Ratio 1411 >180 Wood Beam Design B.4 :_, ' Calculations per 2012 NDS,IBC 2012,CBC 2013,ASCE 7 90 BEAM Size 4x10,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Douglas Fir-Larch Wood Grade: No.2 Fb-Tension 900.0 psi Fc-Pill 1,350.0 psi Fv 180.0 psi Ebend-xx 1,600.0 ksi Density 32.210 pcf Fb-Compr 900.0 psi Fc-Perp 625.0 psi Ft 575.0 psi Eminbend-xx 580.0 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=10.250 ft Unif Load: D=0.0150, S=0.0250 k/ft,Trib=23.0 ft Unif Load: D=0.010 k/ft,Trib=8.0 ft Design Summary •Max fb/Fb Ratio = 0.578. 1 ' r0.0f r fb:Actual: 715.19 psi at 2.125 ft in Span#1 .. _,,... { Fb:Allowable: 1,237.45 psi �� �R ,�<,-1 ;,:, 1,,9 Load Comb: +D+0.750L+0.7505+H 4 Max fv/FvRatio= 0.401: 1 A A fv:Actual: 83.02 psi at 3.485 ft in Span#1 Fv:Allowable: 207.00 psi 42500.4n10 Load Comb: +D+0.750L+0.750S+H Max Deflections Max Reactions (k) D L Lr S W E H Downward L+Lr+S 0.020 in Downward Total 0.031 in Left Support 1.23 0.87 1.22 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 1.23 0.87 1.22 Live Load Defl Ratio 2591 >360 Total Defl Ratio 1632>180 Wood Beam Deslgn B 5. ` (Typ) f �,3.. e 5 ,,,';Calculations per=•••.2012 NDS,'IBC 2012,CBG 2013,ASCE?10: BEAM Size: 2-2x8,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Hem Fir Wood Grade: No.2 Fb-Tension 850.0 psi Fc-Pill 1,300.0 psi Fv 150.0 psi Ebend-xx 1,300.0 ksi Density 27.70 pcf Fb-Compr 850.0 psi Fc-Perp 405.0 psi Ft 525.0 psi Eminbend-xx 470.0 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=1.0 ft Unif Load: D=0.0150, S=0.0250 k/ft,Trib=5.0 ft Unif Load: D=0.010 k/ft,Trib=8.0 ft Design Summary Max fb/Fb Ratio = 0.109 1 '`1��; fb:Actual: 127.33 psi at 1.375 ft in Span#1 _, ' Fb:Allowable: 1,169.59 psi Load Comb: +D+S+H 4 6 Max fv/FvRatio= 0.092: 1 A A fv:Actual: 15.85 psi at 0.000 ft in Span#1 Fv:Allowable: 172.50 psi 17500.tae Load Comb: +D+S+H Max Deflections Max Reactions (k) D t. is S w E H Downward L+Lr+S 0.002 in Downward Total 0.003 in Left Support 0.23 0.06 0.17 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.23 0.06 0.17 Live Load Defl Ratio 19147>360 Total Defl Ratio 9430>180 CT Engineering Project Title: 180 Nickerson,Suite 302 Engineer: Project ID: Seattle,WA 98109 Project Descr: (206)285 4512 Fax: (206)285 0618 Printed:5 MAR 2014 5:00PM _iVti - Z -ate .. *OW,_*. r pm,: 11-4 a x o� � . tF�le=Q19iosi 11arolosiT itek. Multip a-ounp; e� ea � p ., a.i. ERC„:„ 91_,A1.441,44.14,..§4.,3t4,41 er6141 23;,)x. Lic.#:KW-06002997 Licensee:c.t.engineering .'k 0od .. � Bm DgB ni �` fwagexax .EWsLOC „ r .0aonsd „12NS,IBC20 _C.c 213 ....SCE 7 1 BEAM Size: 2-2x8,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Hem Fir Wood Grade: No.2 Fb-Tension 850.0 psi Fc-PrIl 1,300.0 psi Fv 150.0 psi Ebend-xx 1,300.0 ksi Density 27.70 pcf Fb-Compr 850.0 psi Fc-Perp 405.0 psi Ft 525.0 psi Eminbend-xx 470.0 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=1.0 ft Unif Load: D=0.0150, S=0.0250 k/ft,Trib=5.0 ft Unif Load: D=0.010 k/ft,Trib=8.0 ft Desiqn Summary Max fb/Fb Ratio = 0.520. 1 -' . fb:Actual: 606.14 psi at 3.000 ft in Span#1 Fb:Allowable: 1,165.07 psi Load Comb: +D+S+H 411 4 Max fv/FvRatio= 0.283: 1 A A fv:Actual: 48.83 psi at 5.400 ft in Span#1 Fv:Allowable: 172.50 psi 5.011 2.2:8 Load Comb: +D+S+H Max Deflections Max Reactions (k) D L Lr S W E H Downward L+Lr+S 0.039 in Downward Total 0.079 in Left Support 0.51 0.12 0.38 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.51 0.12 0.38 Live Load Defl Ratio 1843>360 Total Defl Ratio 908>180 WoodBeam Design B 7 g ; , �€ V Calcul tons 13 2012 NDS,,It3C 2012 BC 2013,ASCE 7j10 BEAM Size: 2-2x8,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Hem Fir Wood Grade: No.2 Fb-Tension 850.0 psi Fc-PrIl 1,300.0 psi Fv 150.0 psi Ebend-xx 1,300.0 ksi Density 27.70 pcf Fb-Compr 850.0 psi Fc-Perp 405.0 psi Ft 525.0 psi Eminbend-xx 470.0 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=1.0 ft Unif Load: D=0.0150, S=0.0250 k/ft,Trib=5.0 ft Unif Load: D=0.010 k/ft,Trib=8.0 ft Design Summary ���_,.VI:C.,-,.,.�,•,� Max fb/Fb Ratio = 0.292 1 'i-J fb:Actual: 340.95 psi at 2.250 ft in Span#1 Fb:Allowable: 1,167.23 psi Load Comb: +D+S+H Max fv/FvRatio= 0.195: 1 A A fv:Actual: 33.57 psi at 0.000 ft in Span#1 4.5011.2-26Fv:Allowable: 172.50 psi Load Comb: +D+S+H Max Deflections Max Reactions (k) D L Lr S w E H Downward L+Lr+S 0.012 in Downward Total 0.025 in Left Support 0.38 0.09 0.28 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.38 0.09 0.28 Live Load Defl Ratio 4369 >360 Total Defl Ratio 2152 >180 ;INoodBeam pesagn, -6.-6----- , , r , ,sA s s . ayr� , s' �`' per 207 DS,18G 2012;z,CBC„2013 ASCE 7 10 Cralculations 2 N BEAM Size: 4x10,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Douglas Fir-Larch Wood Grade: No.2 Fb-Tension 900.0 psi Fc-Pr!! 1,350.0 psi Fv 180.0 psi Ebend-xx 1,600.0 ksi Density 32.210 pcf Fb-Compr 900.0 psi Fc-Perp 625.0 psi Ft 575.0 psi Eminbend-xx 580.0 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=14.750 ft Design Summary0 0.2213 1 0.590 Max fb/Fb Ratio = 0.277; 1 fb:Actual: 298.66 psi at 1.750 ft in Span#1 Fb:Allowable: 1,077.23 psi ° Load Comb: +D+L+H = = Max fv/FvRatio= 0.205: 1 fv:Actual:• 36.84 psi at 2.730 ft in Span#1 3.s0 R axis Fv:Allowable: 180.00 psi Load Comb: +D+L+H Max Deflections Max Reactions (k) D L Lr S w E H Downward L+Lr+S 0.005 in Downward Total 0.007 in Left Support 0.39 1.03 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.39 1.03 Live Load Defl Ratio 7745 >360 Total Defl Ratio 5633>180 CT Engineering Project Title: 180 Nickerson,Suite 302 Engineer: Project ID: Seattle,WA 98109 Project Descr: (206)285 4512 Fax: (206)285 0618 Printed:5 MAR 2014 5 00PM Multiple Simple Beam . uild6 4 11EngVer61 1 23 >� »,,Y._. �<,�r� ENERGALC.,INE`�983;201'4 Bu17d 6'�4 1.�3,VQf fi 141 2,3 . Lic.#:-KW-06002997 Licensee:c.t.engineering- Wood Beam Design; B.9 Calcela s per 2012;NDS IBC 2012 CBC 2013`ASCE 7-10 4 BEAM Size: 4x10,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Douglas Fir-Larch Wood Grade: No.2 Fb-Tension 900.0 psi Fc-Prll 1,350.0 psi Fv 180.0 psi Ebend-xx 1,600.0 ksi Density 32.210 pcf Fb-Compr 900.0 psi Fc-Perp 625.0 psi Ft 575.0 psi Eminbend-xx 580.0 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=14.750 ft Design Summary Max fb/Fb Ratio = 0,277. 1 02213 Lo.S=o fb:Actual: 298.66 psi at 1.750 ft in Span#1 � = Fb:Allowable: 1,077.23 psi Load Comb: +D+L+H 411i • Max fv/FvRatio= 0.205: 1 A A fv:Actual: 36.84 psi at 2.730 ft in Span#1 Fv:Allowable: 180.00 psi 3.500.40-10 Load Comb: +D+L+H Max Deflections Max Reactions (k) D L Lr S W E H Downward L+Lr+S 0.005 in Downward Total 0.007 in Left Support 0.39 1.03 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.39 1.03 Live Load Defl Ratio 7745 >360 Total Deft Ratio 5633 >180 od WoBeam Design ''. Calculations per 2012 NDS IBC2012 CBC 2013,ASCE 7-1,0' BEAM Size: 1.75x14,TimberStrand,Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: iLevel Truss Joist Wood Grade: TimberStrand LSL 1.55E Fb-Tension 2,325.0 psi Fc-Pal 2,050.0 psi Fv 310.0 psi Ebend-xx 1,550.0 ksi Density 32.210 pcf Fb-Compr 2,325.0 psi Fc-Perp 800.0 psi Ft 1,070.0 psi Eminbend-xx 787.82 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=14.750 ft Desiqn Summary D 02213 L 0.590 Max fb/Fb Ratio = 0,372. 1 fb:Actual: 766.31 psi at 3.000 ft in Span#1 Fb:Allowable: 2,062A0 psi Load Comb: +D+L+H Max fv/FvRatio= 0.295: 1 A A• fv:Actual: 91.39 psi at 4.840 ft in Span#1 Fv:Allowable: 310.00 psi 6.011 1.75x14 Load Comb: +D+L+H Max Deflections Max Reactions (k) D L Lr S WE H Downward L+Lr+S 0.028 in Downward Total 0.038 in Left Support 0.66 1.77 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.66 1.77 Live Load Deft Ratio 2581 >360 Total Defl Ratio 1877>180 .._. _. ..__. _...__ _._ .'r.<_..,. ,'w, Calculations a 2012 NDS IBC 2012 CBC 2013 ASCE 710:: BEAM Size: 1.75x14,TimberStrand, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: iLevel Truss Joist Wood Grade:TimberStrand LSL 1.55E Fb-Tension 2,325.0 psi Fc-Prll 2,050.0 psi Fv 310.0 psi Ebend-xx 1,550.0 ksi Density 32.210 pcf Fb-Compr 2,325.0 psi Fc-Perp 800.0 psi Ft 1,070.0 psi Eminbend-xx 787.82 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=14.750 ft Design Summary D 02213 L 0.090 Max fb/Fb Ratio = 0.198. 1 fb:Actual: 431.05 psi at 2.250 ft in Span#1 Fb:Allowable: 2,180.79 psi Load Comb: +D+L+H : • Max fv/FvRatio= 0.175: 1 A fv:Actual: 54.39 psi at 0.000 ft in Span#1 Fv:Allowable: 310.00 psi 4.509,1.75,14 Load Comb: +D+L+H Max Deflections Max Reactions (k) D L Lr S W E H Downward L+Lr+S 0.009 in Downward Total 0.012 in Left Support 0.50 1.33 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.50 1.33 Live Load Defl Ratio 6120>360 Total Defl Ratio 4451 >180 CT Engineering Project Title: Engineer: Project ID: 180 Nickerson,Suite 302 En 9 Seattle,WA 98109 Project Descr: (206)285 4512 Fax: 5 MAR 2014.5:00PM (206)285 0618 Printed: �* �F'te`"=Qlt T i�ng1119051T t EC���- M Ifinnle` Slim �+� Beam E a r sir ,06 R , 31 .E..,��+auz,�._„raa, ��.r y..rpzk zr>�x�sHs�.�t��' s`. ,��=:� �C� «s'�"s�€$�¢��a .,���r�?:�k� "��:�.�fi�a .az��EI� R,C�ILC,I�C79$3-207� u�ilr1.6.?��itt23.�/eri�4`i�3;ti it Lic.#:KW-06002997 Licensee c.t.engineering, Nolid Beam Design �B 12p `' x p, * * ..�.,� ,,v ¢” Fxr, VM ;a379 - , L° $� !"�o', �a4 Calyeu alai tions per 2012 NDS IBC.�2012,CBC 2013,rASCE 710' BEAM Size: 3.125x9,GLB, Fully Unbraced OR 3.125X10.5 Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: DF/DF Wood Grade: 24F-V4 Fb-Tension 2,400.0 psi Fc-Pill 1,650.0 psi Fv 265.0 psi Ebend-xx 1,800.0 ksi Density 32.210 pcf 1 Fb-Compr 1,850.0 psi Fc-Perp 650.0 psi Ft 1,100.0 psi Eminbend-xx 930.0 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=14.0 ft Design Summary ID 0.210 L 0.560 Max fb/Fb Ratio = 0.736. 1 fb:Actual: 1,752.18 psi at 4.000 ft in Span#1 ':,,,"::,,,,,,,i�a � ..:,.:,:::,',„'--.:::,,..-i:, ,,.,' g € ,�� � Fb:Allowable: 2,379.75 psi k,',- -�,-_ m •�- ' "� Load Comb: +D+L+H IIII ill Max fv/FvRatio= 0.504: 1 A A fv:Actual: 133.60 psi at 0.000 ft in Span#1 8.0 ft3.125x9 Fv:Allowable: 265.00 psi Load Comb: +D+L+H Max Deflections Max Reactions (k) D L Lr S w E H Downward L+Lr+S 0.152 in Downward Total 0.209 in Left Support 0.84 2.24 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.84 2.24 Live Load Defl Ratio 632 >360 Total Defl Ratio 459>180 CT Engineering Project Title: 180 Nickerson,Suite 302 Engineer: Project ID: Seattle,WA 98109 Project Descr: (206)285 4512 Fax: (206)285 0618 Multiple Simple Beam > Q►4aPr��o WA 2014 acs . .,l . ....,p .,, ,.� F_. ,,: .." ENEt2CALC 1NC,1983-2014';Bu1d6,1412,3 Ver¢14'1.23•`F Lic.#:KW-06002997 Licensee:c.t.engineering Description : PLAN 5.Ak Top Floor Framing, Cont. Wood Beam Design 6 13 .._ _.._ a __. o_.___ ,,, Calculations per 2012 NDS IBC2012;CBC 2013,40-62E-7-16', BEAM Size: 3.5x14,TimberStrand, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: iLevel Truss Joist Wood Grade:TimberStrand LSL 1.55E Fb-Tension 2,325.0 psi Fc-Prll 2,050.0 psi Fv 310.0 psi Ebend-xx 1,550.0 ksi Density 32.210 pcf Fb-Compr 2,325.0 psi Fc-Perp 800.0 psi Ft 1,070.0 psi Eminbend-xx 787.82 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=8.0 ft Unif Load: D=0.0150, L=0.10 k/ft,Trib=5.0 ft Design Summary Bib g thni8i Max fb/Fb Ratio = 0.422. 1 fb:Actual: 962.10 psi at 4.250 ft in Span#1 Fb:Allowable: 2,280.40 psi Load Comb: +D+L+H . . Max fv/FvRatio= 0.310: 1 A A fv:Actual: 95.96 psi at 7.338 ft in Span#1 Fv:Allowable: 310.00 psi 8.50 ft,3.5x14 Load Comb: +D+L+H Max Deflections Max Reactions (k) L Lr S W E H Downward L+Lr+S 0.078 in Downward Total 0.097 in Left Support 0.83 3.49 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.83 3.49 Live Load Dell Ratio 1306 >360 Total Defl Ratio 1055 >180 WOOd BeamDeSlgO B 14 Calculatloris per2012 NDS IBC 2012 CBC 2013 ASCE 7-10' BEAM Size 5.125x18,GLB, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: DF/DF Wood Grade: 24F-V4 Fb-Tension 2,400.0 psi Fc-Prll 1,650.0 psi Fv 265.0 psi Ebend-xx 1,800.0 ksi Density 32.210 pcf Fb-Compr 1,850.0 psi Fc-Perp 650.0 psi Ft 1,100.0 psi Eminbend-xx 930.0 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=12.0 ft Design Summary Max fb/Fb Ratio = 0.634. 1 D 0.180 L 0.480 fb:Actual: 1,466.89 psi at 10.125 ft in Span#1 �.,..,....__, Fb:Allowable: 2,313.03 psi Load Comb: +D+L+H Max fv/FvRatio= 0.350: 1 • 20.2501k 5.125x18 fv:Actual: 92.72 psi at 18.765 ft in Span#1 Fv:Allowable: 265.00 psi Load Comb: +D+L+H Max Deflections Max Reactions (k) D L Lr S W E H Downward L+Lr+S 0.407 in Downward Total 0.560 in Left Support 1.82 4.86 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 1.82 4.86 Live Load Defl Ratio 596>360 Total Defl Ratio 433>180 Wood Beam Design B 15 k BEAM Size: 2-2x8,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Hem Fir Wood Grade: No.2 Fb-Tension 850.0 psi Fc-Fri' 1,300.0 psi Fv 150.0 psi Ebend-xx 1,300.0 ksi Density 27.70 pcf Fb-Compr 850.0 psi Fc-Perp 405.0 psi Ft 525.0 psi Eminbend-xx 470.0 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=9.50 ft Design Summary D 0.1425 0.380 Max fb/Fb Ratio = 0.264. 1 fb:Actual: 268.39 psi at 1.500 ft in Span#1 Fb:Allowable: 1,017.19 psi Load Comb: +D+L+H • 41 Max fv/FvRatio= 0.216: 1 A A fv:Actual: 32.43 psi at 2.400 ft in Span#1 Fv:Allowable: 150.00 psi 3.05.2-a8 Load Comb: +D+L+H Max Deflections Max Reactions (k) D L Lr S W E H Downward L+Lr+S 0.006 in Downward Total 0.008 in Left Support 0.21 0.57 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.21 0.57 Live Load Defl Ratio 6403>360 Total Defl Ratio 4657 >180 CT Engineering Project Title: Engineer: Project ID: 180 Nickerson,Suite 302 En 9 Seattle,WA 98109 Project Descr: (206)285 4512 Fax: 285 0618 Printed:252014,928AM (206) N ;, � :,"� aoat + 4r649111111' :� ; ea a ,2 r,` 11, .. X iciAlK11nt fi6nK14,U5fT 1 R M'' '''e itri Be�aim� r: X4 y(e 11 �1 Z^"" , ;(.� e at341?ALC idil19 01 6010,,11,14"13 Ver , i;( ^ Lic.#:KW-06002997 Licensee,•c.t.engineering Wooed Beam Deslg�` B 16 44 -P„ � -r e i k , ' „ grd try 'V I . Caiculattons pe 20'12 NDS IBC 2012;CPC 2013,ASCE:10 j BEAM Size: 5.125x12,GLB, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: DF/DF Wood Grade: 24F-V4 Fb-Tension 2,400.0 psi Fc-Pill 1,650.0 psi Fv 265.0 psi Ebend-xx 1,800.0 ksi Density 32.210 pcf Fb-Compr 1,850.0 psi Fc-Perp 650.0 psi Ft 1,100.0 psi Eminbend-xx 930.0 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=9.50 ft Unif Load: D=0.0150, S=0.0250 k/ft,Trib=2.0 ft Design Summary Max fb/Fb Ratio = 0.771. 1 814 ' T1b fb:Actual: 1,834.37 psi. at 8.250 ft in Span#1 -. - .,:,::',-,,••:,-„V;,,,--,,':2:,7-•.: 7,,,,, , , , Fb:Allowable: 2,379.23 psi �,. _ �k_. , . ..,a y- ���.u Load Comb: +D+L+H r �. a a,._�.,Max - � fv/FvRatio= 0.369: 1 A 16.50 ft, 5.125x12 fv:Actual: 97.83 psi at 0.000 ft in Span#1 Fv:Allowable: 265.00 psi Load Comb: +D+L+H Max Deflections Max Reactions (k) D L Lr s W E H Downward L+Lr+S 0.543 in Downward Total 0.760 in Left Support 1.42 3.14 0.41 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 1.42 3.14 0.41 Live Load Defl Ratio 364>360 Total Deli Ratio 260>180 dBwB 18 -� ; CE7 10WOOeamDesl .. i, x,- ?,.,; y �_ k . . .� 7 " , , � � �a� s rs " A � s n CwactratsRPer202DS BC202CC23AS ;_« BEAM Size: 2-2x8,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Hem Fir Wood Grade: No.2 Fb-Tension 850.0 psi Fc-Pill 1,300.0 psi Fv 150.0 psi Ebend-xx 1,300.0 ksi Density 27.70 pcf Fb-Compr 850.0 psi Fc-Perp 405.0 psi Ft 525.0 psi Eminbend-xx 470.0 ksi Applied Loads Unif Load: D=0.0150, S=0.0250 k/ft,Trib=4.0 ft Design Summary 0 0010 Max fb/Fb Ratio = 0.272. 1 fb:Actual: 276.24 psi at 2.750 ft in Span#1y mom,nx , meq,x _ Fb:Allowable: 1,014.63 psi Load Comb: +D+S+H A Max fv/FvRatio= 0.159: 1 fv:Actual:• 23.87 psi at 0.000 ft in Span#1 5.50 n,2-2x8 Fv:Allowable: 150.00 psi Load Comb: +D+5+H Max Deflections Max Reactions (k) 2 L Lr S W E H Downward L+Lr+S 0.017 in Downward Total 0.027 in Left Support 0.17 0.28 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.17 0.28 Live Load Defl Ratio 3949>360 Total Deli Ratio 2468>180 CT Engineering Project Title: 180 Nickerson,Suite 302 Engineer: Project ID: Seattle,WA 98109 Project Descr: (206)285 4512 Fax: (206)285 0618 Primed:6 MAR 2074,921AM Multiple Simple Beam � D114051T 1iEn 140s1T 1 EC6 i ; E�1ERCALC,,INC 1983-2014 Build614123Ver6•141.23,r' Lic.# KW-06002997 Licensee,c.t.engineering Description : PLAN 5.Ak Crawlspace Framing Wood Beam Design CB 1 Calculations per 2012 NDS IBC 2012,CBC 2013,ASCE,7-10`� BEAM Size: 4x10,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Douglas Fir-Larch Wood Grade: No.2 Fb-Tension 900.0 psi Fc-PrIl 1,350.0 psi Fv 180.0 psi Ebend-xx 1,600.0 ksi Density 32.210 pcf Fb-Compr 900.0 psi Fc-Perp 625.0 psi Ft 575.0 psi Eminbend-xx 580.0 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=9.50 ft Design Summary D(014251 L(0.380) Mfbx ActFb ual al Ratio - 0.823.88 28 psi tat 3.750 ft in Span#1 ' � � - Fb:Allowable: 1,073.71si � Load Comb: +D+L+H p • Max fv/FvRatio= 0.403: 1 A fv:Actual: 72.63 psi at 0.000 ft in Span#1 Fv:Allowable: 180.00 psi 7.50r,4x10 Load Comb: +D+L+H Max Deflections Max Reactions (k) D L Lr S WE H Downward L+Lr+S 0.074 in Downward Total 0.101 in Left Support 0.53 1.43 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.53 1.43 Live Load Defl Ratio 1222 >360 Total Defl Ratio 888>180 • TJI JOISTS and RAFTERS • Code Code Code Suggest Suggest .Suggest Lplck Dick _Lplck j LOA._ __.._. L 2_________ L ma L deft i L def.._ .__ Joist b d Spate LL DL M max V max EI L tb L fv l TL240 L LL360 L max TL deft. ; LL deft:•_ L TL360 L LL480 L max TL deft.TL dell LL de8.; dell. .^Tsize&grade width JI� depth(in)_._M.1 SP58(psf) (tt:lbs) (ps8 (P58 (tt) (ft.) (ft1 (tt1 1_..__.._._211._.:.1!,� fit..) ._.(1t (fL) (.nJ ratio __Lin_L.._r_a o-- _...._ 112._.-•-1.401.+08 14. 2.11.1.. 9.5"TJI 110 1.75._�..-9.5,_•19_2 40_•_•_15 2380 1220 1.40E+OS 14.71 27.73•_•_15.23 14.80-,_,•_1471 0.6610:48 . _._.._._13.31 13.45 13.31: 0.44 360•_•._0.321 495 ,_ .1_ 9.5�Tdl 110 1.75 __•_,9.5 16 _•40�•_75�••_2380 1220 1.40E+08 16.11 33.27 16.19 15.73 15.73 0.721 0.52 14.14__• 14.29 14:14 0.47 360 0.341 495 15.57 0 52 360 0.384 495 9.5"TJI 110 1.75 9.5 12 40 15 2380 1220 1.40E+08 18 61 _• 44.36 17.82 17.31 17.31 0.791 0.58_•_-_15.57 15.73 .1...1.1.1 110 16.77 0 56 360 0.411 495 9.5"TJI 1.75 ^_•9.5 9.6 40 15 2380 1220 1 40E+08 20 80 55 45 19.19 18.64 18:64 0_851 0.62 16.77 16;94 � 11.11 -....__ 1-t-,- :14._ 9.5"TJI 110 1.751 9.5 19.2 40 10 2500 1220 1.57E+08 15.81 30.50 16.34 15.37 16.37 0.641 0.51 14.27 13.97 13.97 0.44 384 0.351 480 9.5"TJI 110 1.75• 9.5', '16 , 40., ,10 2500:1220 1.57E+08'.'17.32 -36.60 - 17.36' ,16.34;-,.18.34 0.68' •. 0.54;1 ::15.17, 14:84,-,,,,,,14 84; ''0A6• 384,' 0.37 480 9.5"TJI 110 1.75 9.5 12 40 10 2500 12201 1.57E+08 20.00 48.80 19.11 17.98 17.98 0.751 _._ 0.60_.._- 16.69 16.34 16.34 0.51 384 0 41 480 9.5"TJI 110 1 75 9.5 9.6 40 10 2500 12201 1.57E+08 22.36 61.00 20.58 19.37 19.37 rt-0.811_ 0.65 17.98 17.60 17:60 0.55 384 0.441 480 .._... ......_ _.__ 11.1.1-. -_- _--- -• •--- .._-- ---•-- 9.5"TJI 210 2.0625. 9.5 19.2 40 101 3000 1330 1.87E+06 _17.32 33.25 17.32 16.301, 16.300 68': 0.54 15.13 14.81 14 81 0.46 384 0 37 480 '•9:5"TJI 210 ',2.0625-- 9.5+ 16°; 40 r 10 -1 3000 •1330 `1.87E+06 `.18.97 .'39.90 ,.18A0-; 17.32 : 17.32. ' -'0.72 0.58• 16:08 -;.15:74„,, „15"74 0 49' 384 '0.31' 480 9.5"TJI 210 2.0625 9.5 12 40 101_ 3000 1330187E+08 21.91 53.20 20.26 19.06 19.06 0.71^ 0.64 1 _ 17.70 17.32 17.32 ..9.,§1...._214_9,41,1__4....82 9.5"TJI 210 2.0625 9.5 9.6 40 10 3000 13.30 1.87E+08 24.49 66.50 IN 20.53 20.53 0.861_ 0.681 19.06 18.66 18:66 0.58 384 0.471 480 111 _ 9.5"TJI 230 2.3125 9.5 19.2 .,..._40 10 3330 1330 2.06E+08 18,25 33.25 17.89 16 83 16 83 0.701 0.56 15.63 15.29 1529 0.481 384 0.38' 480 915"TJI 230 2.3125"';. 9.5; ::11';1:::40, 10 -;°=;3330-G1330'2.06E+08 `;:'19.99 :39;90 ,19.01",:.'-'17.89.::;• 17.89.] ',0.75:,,• 0.60I; 18.60. ;-1625 �-1 , 6.25, 480 ;0.51;.., ,, 384' ':0.41 - 9.5"TJI 230 2.3125 9.5 12 40 10 3330 1330 2.06E+08 23.08 53.20 20.92 19.69 19.69 0.82: 0.66 18.28 17.89 17.89 0.56 384 0.45 480 9.5''TJI 230 2.3125 9.5 9.6 40 10'- 3330 1330) 2.06E+08 25.81 66.50 22.54 21.21 21.21 0.88! 0.71 19.69 19 27 19.27 0.60 384 0.481_ 480 11.8775"TJI 110 1.75. 11.875 19.2 40 10 3160 1560 2.67E+08 17.78 39.00., 19.50 18.35 _17.78 0.671 ...0.54 17.04 16.67 1667 0 52 384 0.421480 ,,11.825�TJ1110r: '175:,-- 11.875K 16:-,:40:.'."-- 49 62.40 22.81= ,19.50., 19.4T 0.81;- � 0.65 18;10 17:72 --1772 055 384 ;<044 480- ,40 10 : 3180 1560' 2.67E+08 19 47 -_,46:80- 20.72 11.875 TJI 110 1.75 11.875 12 40 10 3160 1560 2.67E+08 22. _•_ 21.46 21.46 0.891 0.72 19.93 19 50 19.50 0.61 384 0 49 480 .__.._ 11.875"TJI 110 1.75 11.875 9.6 40 10 3160 1560 2^67E+08 25.14 78.00 24.57 2312 23.12 0.961 0.77 21.46 21.01 :21.01;0.66 384 •_0.534 480 1.111 __.._ 11.875"TJI 210 2.0625 11.875 19.2 40 10 3795 1655 3.15E+08 19.48 41.38 20 61 19.39 19.39 0.811 0.65 18.00 ,17.62,44,,,17,!;,. _0,55 384 0 44 480 0.89;,,.' 19,13„•- 18 72 11:875"TJb210';, 2.0625 11 875; ,,,16 ,,40 '-10 !;'3795, 1655: �115E+01,,"..'21.34,•.49:65 21.40 ;20.61:� -.,20.81:' :•'0.86= -N,%,1.,1111,,72:,-.,,O.59 364 �,_0 47 • 480 11.875"TJI 210 2.0625 11.875 12 40 10 3795 1655 3.15E+08 24.64 66.20 24.10 22.68 22.68 0.951 0.761 21.05 20.61 2 .61 0.64_384. 0 52 480 11.875"TJI 210 2.0625 11.875 9.6 40 10 3795 1655 3.15E+08 27.55 62.75 25.96 24.43 24.43 1.021 0.81 22.68 22.20 22.20 0.69 384 0.55: 480 's 11.875"TJI 230 2.3125 11.875 19.2 40 10 4215 1655 3.47E+08 20.53 41.38 21.28 20.03 20.03 0.831 0.67 18.5918.20 18.20 0.57 384 0 451 480 ;11.875 T.11 230 `.2.3125'' 11.875: 16 -''',40:','„, 10'. ;;4215 ;'1655-3.47E+08"'22.49 •49.65, :22.62.;-21.28` 21.281: 0;89; 0.71. , 19:76, 19.34 �19,34„ :0:60 384, 048 .480 11.875"TJ1230 2.3125 11.875 12 40 10 4215 1655! 3.47E+08 25.97 66.20 24.89 23.42 23.42 0.981 0.78 21.74 21.28 21.28 0.67 384 0.53; 480 11.875'"TJI 230. 2.3125 _11.875 9.66 40 10 4215-1655 3.47E+08 29.03 82_75._26.81 _25.23 26.23 tot _.0.84 -__••__23.42 22.93 :.. 22.93. ..92i 384 0.574 480 11.875"RFPI 400 2.0625 11.875 19.2 40 10 4315 1480 3.30E+08 , 20.77 37.00 20.93 19.69 19.69 0.821 0.66 18.28 17.89 _17.89, 0.56 384 0.451., 480 11.875"RFPI:400,.` 2.0625; '11.875!. . :16 ,40 10 4315•; 1480! •3.30E+08 -'%22.76 4440 s:`22.24,' 20.93r ;20.93'1' - 0.87' - '0.70 - -- `19:43 ----%19.01 19,01- 0;59 384 0.48 480 _. 11.875"RFPI 400 2.0625 11.875 12 40 10 4315 1480 3.30E+08 26.28 59.20 24.48 23.03 23.03 0.961 0.77 21.38 20.93 20.93 0.65 38.4.. 0.52 480_ 11.875"RFPI 400 2.0625 11.875 9.6 40 10 4315 1480 3.30E+08 29.38 74.00 26.37 24.81 24.81 1.031 0.83 23.03 22.54 22.64 0.70r 384 0.56 480 Page 1 D+L+S , CT#14051-4015.2 Twin Creek I LOAD CASE (12-12) (BASED ON ANSI/AFBPA NDS-199 SEE SECTION: 2.3.1 2.3.1 2.3.1 3.7.1 3.7.1 Ke 1.00 Design Buckling Factor D+L+S - c 0.80(Constant)> Section 3.7.1.5 Cr KcE 0,30(Constant)> Section 3.7.1.5 Cr(Fb) Cr(Fc) 1997 NDS Cb (Vales) > Section 2.3.10 Bending Comp. Size Size Rep. Cd(Fb) Cb Cd(Fc) Eq.3.7-1 NDS 3.9.2 Maz.Wa9 duration duration factor factor use Stud Grade Width Depth Spacing Height Laid Vert.Load Hor.Loa <.1.0 Load @ Plats Cd(Fb)Cd(Fc) Cf Cf Cr Fb Fc perp Fc E Fb' Fe perp'' Fc• Fee Fe lc IelF'c fb fol in. in. In. 6. pit psi pif (Fb) (Fc) psi psi psi psi psi psi psi psi psi psi psi Fb"(1-fc/Fce) H-F Stud 1.5 3.5 16 7.7083 26.4 1730 0.9916 1993.4 1.00 1.15 1.1 1.05 1.15 675 405 800 1,200,000 854 508 966 515,42 441.22 439.37 1.00 0.00 0,000 H-F Stud 1.5 3.5 16 9 30.9 1340 0.9966 1993.4 1.00 1.15 1.1 1.05 1.15 675 405 800 1,200,000 854 506 966 378.09 340.90 340.32 1.00 0.00 0.000 H-F Stud 1.5 3,5 12 9 30.9 1785 0.9947 2857.8 1.00 1.15 1.1 1.05 1.15 675 405 800 1,200,000 854 506 966 378.09 340.90 340.00 1.00 0.00 0.000 H-F Stud 1.5 3,5 18 625 28.3 1550 0.9921 1993.4 1.00 1.15 1.1 1.05 1.15 675 405 800 1,200,000 854 506 966 449.95 395.22 393.65 1.00 0.00 0.000 H-F Stud 1.5 3.5 12 825 28.3 2070 0.9953 2657.8 1.00 1.15 1.1 1.05 1.15 675 405 800 1,200,000 854 508 966 449.95 395.22 394.29 1.00 0.00 0.000 H-F Stud 1.5 3.5 8 8.25 28.3 3100 0.9921 3988.7 1.00 1.15 1.1 1.05 1.15 875 405 800 1,200,000 854 506 966 449.95 395.22 393.85 1.00 0.00 0.000 SPF Stud 1,5 3.5 16 7.7083 26.4 1695 0.9952 2091.8 1.00 1.15 1.1 1.05 1.15 675 425 725 1,200,000 854 531 875.438 515.42 431.52 430.48 1.00 0.00 0.000 SPF Stud 1.5 3.5 16 9 30.9 1320 0.9944 2091.8 1.00 1.15 1.1 1.05 1.15 675 425 725 1,200,000 854 531 875.438 378.09 336.17 335.24 1,00 0.00 0.000 SPF Stud 1.5 3.5 12 9 30.9 1760 0.9944 2789.1 1.00 1.15 1.1 1.05 1.15 675 425 725 1,200,000 854 531 875.438 376.09 336.17 335.24 1.00 0.00 0.000 SPF Stud 1.5 3,5 16 825 28.3 1525 0.9957 2091.8 1.00 1.15 1.1 1.05 1.15 675 425 725 1,200,000 854 531 875.438 449.95 388.13 387.30 1.00 0.00 0.000 SPF Stud 1.5 3,5 12 8.25 28.3 2030 0.9925 2789.1 1.00 1.15 1.1 1.05 1.15 675 425 725 1,200,000 854 531 875.438 449.95 388.13 388.87 1.00 0.00 0.000 SPF Stud 1.5 3.5 8 8.25 28.3 3050 0.9957 .4183.8 1.00 1.15 1.1 1.05 1.15 875 425 725 1.200,000 854 531 875.438 449.95 388.13 387.30 1.00 0.00 0.000 H-F#2 1.5 5.5 16 7.7083 16.8 3132 0.2408 3132.4 1.00 1.15 1.3 1.10 1.15 850 405 1300 1,300,000 1,271 508 1644.5 1378.83 1031.58 506.18 0.49 0.00 0.000 H-F#2 1.5 5.5 18 9 19.6 3132 0.3852 3132.4 1.00 1.15 1.3 1.10 1.15 850 405 1300 1,300,000 1,271 506 1844.5 1011.45 837.57 508.18 0.60 0.00 0.000 H-F#2 1.5 5.5 16 8.25 18.0 3132 0.2858 3132.4 1.00 1.15 1.3 1.10 1,15 850 405 1300 1,300,000 1,271 506 1644.5 1203.70 946.77 506.18 0.53 0.00 0.000 SPF#2 1.5 5.5 16 7.7083 18.8 3287 0.2737 3287.1 1.00 1.15 1.3 1.10 1.15 875 425 1150 1.400,000 1,308 531 1454.75 1484.69 1015.45 531.23 0.52 0.00 0.000 SPF#2 1.5 5.5 16 9 19.6 3287 0.3905 3287.1 1.00 1.15 1.3 1.10 1.15 875 425 1150 1,400,000 1.308 531 1454.75 1089.25 850.18 531.23 0.62 0.00 0.000 SPF#2 1.5 5.5 18 8.25 18.0 3287 0.3158 3287.1 1.00 1.15 1.3 1.10 1.15 875 425 1150 1,400,000 1,308 531 1454.75 1296.30 945.38 531.23 0.56 0.00 0.000 SPF Stud 1.5 3.5 16 14.57 50.0 545 0 0.9913 2091.8 1.00 1.15 1.1 1.05 1.15 675 425 725 1,200,000 854 531 875.438 144.26 139.02 138.41 1.00 0.00 0.000 SPF#2 1.5 5.5 16 19 41.5 1450 0 0.9917 3287.1 1.00 1.15 1.3 1.10 1.15 875 425 1150 1,400,000 1.308 531 1454.75 244.40 235.32 234.34 1.00 0.00 0.000 H-F#2 1.5 5.5 16 19 41.5 1360 0 0.9989 3132.4 1.00 1.15 1.3 1.10 1.15 850 40S 1300 1,300,000 1.271 506 1644.5 226.84 220.14 219.60 1.00 0.00 0.000 Page 1 D+L+W CT#14051-4016.2 Twin Creak I LOAD CASE (12-13) (BASED ON ANSIIAFBPA NDS-1997) SEE SECTION: 2.3.1 2.3.1 2.3.1 3.7.1 3.7.1 Ke 1.00 Design Buckling_Factor D+L+W c 0.80(Constant)> Section 3.7.1.5 Cr Cf(Pb) Cf(Fc) 1997 NDS KcECb 0.30(Constant)> Section 3.7.1.50Bending Comp. Size Size Rap. Cd(Fb) Cb Cd(Fc) Eq.3.7-1 Cb (Vedas) > Section 2.3.10 NOS 3.9.2 Max.WaB duration duration factor factor use Stud Grade Width Depth Spadng Height Le/d Vert.Load Hor.Load o-1.0 Load @ Plate Cd(Pb)Cd(Fc) Cff Cf Cr Pb Fe perp Fe Feb' Fc prp' FcFeeFc f cIUP c rot Fb'-(1l-fUFce) / In. In. In. ft. pit psf pt (F) (Fe) psipsi psipsiP psipsipsiPs psiP ti-F Stud 1.5 3.5 16 7.7083 28.4 1075 9.71 0.9951 1993.4 1.60 1.00 1.1 1.05 1.15 875 405 800 1,200.000 1,366 506 840 515.42 427.08 273.02 0.64 376.78 0.586 H-F Stud 1.5 3.5 16 9 30.9 755 8.48 0.9942 1993.4 1.60 1.00 1.1 1.05 1.15 675 405 800 1,200,000 1,368 506 840 378.09 333.99 191.75 0.57 447.52 0.665 H-F Stud 1.5 3.5 12 9 30.9 1140 8.46 0.9998 2657.8 1.60 1.00 1.1 1.05 1.15 675 405 800 1,200,000 1,366 506 840 378.09 333.99 217.14 0.65 335.84 0.577 H-F Stud 1.5 3.5 16 825 28.3 970 8.13 0.9943 1993.4 1.60 1.00 1.1 1.05 1.15 675 405 800 1.200,000 1,366 508 840 449.95 384.87 246.35 0.64 361.37 0.585 H-F Stud 1.5 3.5 12 8.25 28.3 1425 8.13 0.9974 2657.8 1.60 1.00 1.1 1.05 1.15 675 405 800 1,200,000 1,366 506 840 449.95 384.87 271.43 0.71 271.03 0.500 H-F Stud 1.5 3.5 8 825 28.3 2355 8.13 0.9981 3986.7 1.60 1.00 1.1 1.05 1.15 875 405 800 1.200.000 1,368 506 840 449.95 384.87 299.05 0.78 180.69 0.394 SPF Stud 1.5 3.5 16 7.7083 26.4 1060 9.71 0.9971 2091.8 1.60 1.00 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 761.25 515.42 415.53 269.21 0.65 376.78 0.577 SPF Stud 1.5 3.5 18 9 30.9 700 8.46 0.9115 2091.8 1.60 1.00 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 761.25 378.09 328.30 177.78 0.54 447.52 0.618 SPF Stud 1.5 3.5 12 9 30.9 1125 8.46 0.9931 2789.1 1.60 1.00 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 761.25 378.09 328.30 214.29 0.65 335.64 0.567 SPF Stud 1.5 3.5 16 8.25 28.3 960 8.13 0.9970 2091.8 1.60 1.00 1.1 1.05 1.15 675 425 725 1,200.000 1,366 531 761.25 449.95 378.35 243.81 0.65 361.37 0.577 SPF Stud 1.5 3.5 12 8.25 28.3 1405 8.13 0.9952 2789.1 1.60 1.00 1.1 1.05 1.15 675 425 725 1,200.000 1,366 531 76125 449.95 376.35 267.62 0.71 271.03 0.490 SPF Stud 1.5 3.5 8 8.25 28.3 2320 8.13 0.9958 4183.6 1.80 1.00 1.1 1.05 1.15 875 425 725 1.200,000 1.366 531 781.25 449.95 376.35 294.60 0.78 180.89 0.383 H-F#2 1.5 5.5 16 7.7083 18.8 3132 9.71 0.3909 3132.4 1.60 1.00 1.3 1.10 1.15 850 405 1300 1,300,000 2,033 506 1430 1378.83 969.91 506.18 0.52 152.58 0.119 H-F#2 1.5 5.5 16 9 19.8 3132 8.48 0.5743 3132.4 1.60 1.00 1.3 1.10 1.15 850 405 1300 1,300.000 2,033 506 1430 1011.45 804.50 506.18 0.63 181.23 0.178 H-F#2 1.5 5.5 16 8.25 18.0 3132 8.13 0.4411 3132.4 1.60 1.00 1.3 1.10 1.15 850 405 1300 1,300,000 2,033 506 1430 1203.70 899.13 506.18 0.56 148.34 0.124 SPF#2 1.5 5.5 16 7.7083 16.8 3287 9.71 0.4327 3287.1 1.80 1.00 1.3 1.10 1.15 875 425 1150 1,400,000 2,093 531 1285 1484.89 940.30 531.23 0.56 152.58 0.114 ,000 2,093 531 1265 1089.25 806.08 531.23 0.66 181.23 0.19 SPF#2 1.5 5.5 16 8.25 18.0 3287 8.13 0.4790 3287.1 1.80 1. 1 1.00 1.10 1.15 875 425 1150 1,4 1.3 1.10 1.15 875 425 1150 00,000 2,093 531 1265 1296.30 884.69 531.23 0.60 146.34 0.118 SPF Stud 1.5 3.5 16 14.57 50.0 70 8.46 0.9957 2091.8 1.60 1.00 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 761.25 144.26 138.14 17.78 0.13 444##4 0.979 SPF#2 1.5 5.5 16 19 41.5 660 9.71 0.9941 3287.1 1.60 1.00 1.3 1.10 1.15 875 425 1150 1.400,000 2.093 531 1265 244.40 233.80 0.46 927.02 0.786 06.67 H-F#2 1.5 5.5 16 19 41.5 800 9.71 0.9921 3132.4 1.80 1.00 1.3 1.10 1.15 850 405 1300 1,300 000 2,033 508 1430 226.94 219.02 198 97 0.44 927.02 0.796 Page 2 D+L+W+.SS CT#14051-4015.2 Twin Creek I LOAD CASE I (12-14) I (BASED ON ANSI/AFBPA NDS-1997) SEE SECTION: 2.3.1 2.3.1 2.3.1 3.7.1 3.7.1 Ke 1.00 Design Buckling Factor D+L+W+Sl2 e 0.80(Constant)> Section 3.7.1.5 Cr KeE 0.30(Constant)> Section 3.7.1.5 Cf(Fb) Cf(Fe) 1997 NOS Cb (Varies > Section 2.3.10 Bending Camp. Size Size Rep. Cd(Fb) Cb Cd(Fc) Eq.3.7-1 NDS 3.9.2 Max.Wall duration duration factor factor use Stud Grade 1Mdth Depth Spadng Height Le/d Vert.Load Hor.Load <.1.0 Load CI Plate Cd(Fb)Cd(Fe) Ct Ct Cr Fb Fc perp Fc E Fb' Fe perp' Fc' Fce re lc le/F'e lb m/ in. In. In. ft. pit psf plf (Fb) (Fe) psi psi psi psi psi psi psi psi psi psi psi Fb'•(1-fc/Fce) H-F Stud 1.5 3.5 18 7.7083 26.4 1095 9.71 0.9962 1993.4 1.60 1.15 1.1 1.05 1.15 675 405 800 1,200,000 1,366 506 966 515.42 441.22 278.10 0.63 376.78 0.599 H-F Stud 1.5 3.5 16 9 30.9 765 8.46 0.9986 1993.4 1.60 1.15 1.1 1.05 1.15 675 405 800 1,200,000 1,366 506 966 378.09 340.90 194.29 0.57 447.52 0.674 H-F Stud 1.5 3.5 12 9 30.9 1150 8.46 0.9969 2657.8 1.60 1.15 1.1 1.05 1.15 675 405 800 1,200.000 1,366 506 966 378.09 340.90 219.05 0.64 335.64 0.584 H-F Stud 1.5 3.5 16 8.25 28.3 985 8.13 0.9983 1993.4 1.60 1.15 1.1 1.05 1.15 675 405 800 1,200,000 1,366 506 968 449.95 395.22 250.16 0.63 361.37 0.598 H-F Stud 1.5 3.5 12 8.25 28.3 1445 8.13 0.9959 2657.8 1.60 1.15 1.1 1.05 1.15 675 405 800 1,200,000 1,366 506 966 449.95 395.22 275.24 0.70 271.03 0.511 H-F Stud 1.5 3.5 8 8.25 28.3 2390 8.13 0.9980 3988.7 1.60 1.15 1.1 1.05 1.15 675 405 800 1.200,000 1.366 506 966 449.95 395.22 303.49 0.77 180.69 0.406 SPF Stud 1.5 3.5 16 7.7083 26.4 1080 9.71 0.9935 2091.8 1.60 1.15 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 875.438 515.42 431.52 274.29 0.64 376.78 0.589 SPF Stud 1.5 3.5 16 9 30.9 760 8.46 0.9988 2091.8 1.80 1.15 1.1 t.05 1.15 675 425 725 1200,000 1,366 531 875.436 378.09 338.17 193.02 0.57 447.52 0.669 SPF Stud 1.5 3.5 12 9 30.9 1140 8.46 0.9944 2789.1 1.60 1.15 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 875.438 378.09 336.17 217.14 0.65 335.64 0.577 SPF Stud 1.5 3.5 16 8.25 28.3 975 8.13 0.9952 2091.8 1.60 1.15 1.1 1.05 1.15 675 425 725 1.200,000 1,366 531 875.438 449.95 388.13 247.62 0.64 381.37 0.588 SPF Stud 1.5 3.5 12 8.25 28.3 1430 8.13 0.9952 2789.1 1.60 1.15 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 875.438 449.95 388.13 272.38 0.70 271.03 0.503 SPF Stud 1.5 3.5 8 8.25 28.3 2360 8.13 0.9922 4183.8 1.60 1.15 1.1 1.05 1.15 675 425 725 1.200,000 1,366 531 875.438 449.95 388.13 299.68 0.77 180.89 0.396 H-F#2 1.5 5.5 16 7.7083 16.8 3132 9.71 0.3593 3132.4 1.80 1.15 1.3 1.10 1.15 850 405 1300 1,300,000 2,033 506 1644.5 1378.83 1031.56 506.18 0.49 152.58 0.119 H-F#2 1.5 5.5 16 9 19.6 3132 8.46 0.5437 3132.4 1.60 1.15 1.3 1.10 1.15 850 405 1300 1,300,000 2.033 506 1644.5 1011.45 837.57 506.18 0.80 181.23 0.178 H-F#2 1.5 5.5 16 8.25 18.0 3132 8.13 0.4100 3132.4 1.60 1.15 1.3 1.10 1.15 850 405 1300 1,300,000 2,033 506 1644.5 1203.70 946.77 506.18 0.53 146.34 0.124 SPF#2 1.5 5.5 16 7.7083 16.8 3287 9.71 0.3872 3287.1 1.60 1.15 1.3 1.10 1.15 875 425 1150 1,400,000 2,093 531 1454.75 1484.89 1015.45 531.23 0.52 152.58 0.114 SPF#2 1.5 5.5 16 9 19.6 3287 8.46 0.5595 3287.1 1.60 1.15 1.3 1.10 1.15 875 425 1150 1,400,000 2,093 531 1454.75 1089.25 850.16 531.23 0.62 181.23 0.169 SPF#2 1.5 5.5 16 8.25 18.0 3287 8.13 0.4342 3287.1 1.60 1.15 1.3 1.10 1.15 875 425 1150 1,400,000 2,093 531 1454.75 1296.30 945.38 531.23 0.56 146.34 0.118 SPF Stud 1.5 3.5 16 14.57 50.0 70 8.46 0.9955 2091.8 1.60 1.15 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 875.438 144.26 139.02 17.78 0.13###### 0.979 SPF#2 1.5 5.5 16 19 41.5 660 9.71 0.9914 3287.1 1.60 1.15 1.3 1.10 1.15 875 425 1150 1,400,000 2.093 531 1454.75 244.40 235.32 106.67 0.45 927.02 0.786 H-F#2 1.5 5.5 16 19 41.5 600 9.71 0.9901 3132.4 1.60 1.15 1.3 1.10 1.15 850 405 1300 1,300,000 2,033 506 1644.5 228.94 220.14 96.97 0.44 927.02 0.796 Page 3 DrL*Sr.5W CT#14051-4015.2 Twtn Creek I LOAD CASE I (12-15) I (BASED ON ANSI/AFSPA NDS-1997) SEE SECTION: 2.3.1 2.3.1 2.3.1 3.7.1 3.7.1 Ke 1.00 Design Buckling_Factor D+L+S+W/2 c 0.80(Constant)> Section on 3.7.1.5 Cl(Fb) Cf(Fe) 1997 NDS KeE 0.30(Constant)> Section 3.7.1.5 Cd(Pb) Cb Cd(Fe) Eq.3.7-1 Cb (Varies). > Section 2.3.10 Bending Comp. Size Size Rep. NDS 3.9.2 Maz.Wat duration duration factor factor use Stud Grade Width Depth Spacing Height,Le/d Vert.Load Hor.Load <.1.0 Load 0 Plate Cd(Fb)Cd(Fc) Cf Cf Cr Fb Fe perp Fc E Fb' Fc perp' Fc• Fce Pc Ic 1c/Pc fb tb/ In. In. In. ft. pit psf pit (Fb) (Fe) psi psi psi psi psi psi psi psi psi psi psi Fb"(1-1c/Fce) H-F Stud 1.5 3.5 16 7.7083 26.4 1335 4.855 0.9935 1993.4 1.60 1.15 1.1 1.05 1.15 675 405 800 1,200,000 1,366 508 966 515.42 441.22 339.05 0.77 188.39 0.403 H-F Stud 1.5 3.5 16 9 30.9 970 4.23 0.9923 1993.4 1.60 1.15 1.1 1.05 1.15 675 405 800 1,200,000 1,366 506 966 378.09 340.90 246.35 0.72 223.78 0.470 H-F Stud 1.5 3.5 12 9 30.9 1380 4.23 0.9976 2657.8 1.60 1.15 1.1 1.05 1.15 675 405 800 1,200,000 1,366 506 966 378.09 340.90 262.86 0.77 167.82 0.403 H-F Stud 1.5 3.5 16 825 28.3 1195 4.065 0.9960 1993.4 1.60 1.15 1.1 1.05 1.15 675 405 800 1,200,000 1,366 506 966 449.95 395.22 303.49 0.77 180.69 #406 H-F Stud 1.5 3.5 12 8.25 28.3 1680 4.065 0.9990 2657.8 1.60 1.15 1.1 1.05 1.15 675 405 800 1,200,000 1,366 506 966 449.95 395.22 320.00 0.81 135.51 0.343 H-F Stud 1.5 3.5 8 8.25 28.3 2685 4.065 0.9999 3986.7 1.60 1.15 1.1 1.05 1.15 675 405 800 1,200.000 1.366 506 966 449.95 395.22 338.41 0.88 90.34 0.267 SPF Stud 1.5 3.5 16 7.7083 26.4 1315 4.855 0.9907 2091.8 1.60 1.15 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 875.438 515.42 431.52 333.97 0.77 188.39 0.392 SPF Stud 1.5 3.5 16 9 30.9 965 4.23 0.9970 2091.8 1.60 1.15 1.1 1.05 1.15 675 425 725 1.200,000 1.366 531 875.438 378.09 336.17 245.06 0.73 223.78 0.466 SPF Stud 1.5 3.5 12 9 30.9 1370 4.23 0.9990 2789.1 1.60 1.15 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 875.438 378.09 336.17 260.95 0.78 167.82 0.396 Sep Stud 1.5 3.5 16 825 28.3 1180 4.065 0.9922 2091.8 1.60 1.15 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 875.438 449.95 388.13 299.68 0.77 180.69 0.396 SPF Stud 1.5 3.5 12 8.25 28.3 1660 4.065 0.9973 2769.1 1.60 1.15 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 875.438 449.95 388.13 316.19 0.81 135.51 0.334 SPF Stud 1.5 3.5 8 8.25 28.3 2630 4.065 0.9969 4183.8 1.60 1.15 1.1 1.05 1.15 675 425 725 1.200.000 1,368 531 875.438 449.95 388.13 333.97 0.86 90.34 0.257 H-F#2 1.5 5.5 16 7.7083 16.8 3132 4.855 0.3001 3132.4 1.60 1.15 1.3 1.10 1.15 850 405 1300 1,300,000 2,033 506 1644.5 1378.83 1031.58 506.18 0.49 76.29 0.059 H-F#2 1.5 5.5 16 9 19.6 3132 4.23 0.4544 3132.4 1.60 1.15 1.3 1.10 1.15 850 405 1300 1,300,000 2,033 506 1844.5 1011.45 837.57 506.18 0.60 90.61 0.089 H-F#2 1.5 5.5 16 8.25 18.0 3132 4.085 0.3479 3132.4 1.60 1.15 1.3 1.10 1.15 850 405 1300 1,300,000 2,033 506 1644.5 1203.70 946.77 506.18 0.53 73.17 0.062 SPF#2 1.5 5.5 16 7.7083 16.8 3287 4.855 0.3304 3287.1 1.60 1.15 13 1.10 1.15 875 425 1150 1.400,000 2,093 531 1454.75 1484.89 1015.45 531.23 0.52 78.29 0.057 1 0.085 SSPF#2 1.5 5.5 16 9 19.6 3287 4.23 0.4750 3287.1 1.60 1.15 1.3 1.10 1.15 875 425 1150 1,400,000 2,093 531 1454.75 1089.25 850.16 531.23 0.62 PF#2 1.5 5.5 16 8.25 18.0 3287 4.085 0.3750 3287.1 1.60 1.15 1.3 1.10 1.15 875 425 1150 1,400 000 2,093 531 1454.75 1296.30 945.38 531.23 0.56 73.17 0.059 ' SPF Stud 1.5 3.5 16 14.57 50.0 255 4.23 0.9959 2091.8 1.60 1.15 1.1 1.05 1.15 675 425 725 1200,000 1,366 531 875.438 144.26 139.02 64.76 0.47 586.43 0.778 1454.75 H-F#2 1.5 5.5 16 19 41.5 865 4.855 0.9970 3132.4 1.60 1.15 1.3 1.10 1.15 850 405 1300 1,300,000 2,033 506 1644.5 226.94 220.14 139.80 0.64 463.51 0.594 Page 4 D+L+S+.7E CT814051-4015.2 Twin Creek i LOAD CASE I (12-16) i (BASED ON ANSI/AFBPA NDS-1987) SEE SECTION: 2.3.1 2.3.1 2.3.1 3.7.1 3.7.1 Ke 1.00 Design Buckling Fedor D+L+StE/1.4 , c 0.80(Constant)> Section 3.7.1.5 Cr KeE 0.30(Constant)> Section 3.7.1.5 Cf(Fb) Cf(Fc) 1997 NDS Cb (Vades) > Section 2.3.10 Bending Comp. Size Size Rep. Cd(Fb) Cb Cd(Fc) Eq.3.7-1 NDS 3.9.2 Maz.Wall duration duration factor factor use Stud Grade tMdth Depth Spadng Height Laid Vert.Load Hor.Load 0 1.0 Load @ Plate Cd(Pb)Cd(Fc) Cf Cf Cr Fb - - Fc perp Fc E Fb' Fe perp' Fc• Fee Pc fc Ic/F'c fb ib/ In. In. In. 0. plf psf plf (Fb) (Fc) psi psi psi psi psi psi psi psi _ psi psi psi Fb'•(1-fdFco) H-F Stud 1.5 3.5 16 7.7083 26.4 1415 3.57 0.9983 1993.4 1.60 1.15 1.1 1.05 1.15 675 405 800 1,200,000 1,366 506 966 515.42 441.22 359.37 0.81 138.53 0.335 H-F Stud 1.5 3.5 16 9 30.9 1010 3.57 0.9960 1993.4 1.60 1.15 1.1 1.05 1.15 675 405 800 '1.200,000 1,368 506 966 378.09 340.90 256.51 0.75 188.85 0.430 H-F Stud 1.5 3.5 12 8 30.9 1420 3.57 0.9937 2657.8 1.60 1.15 1.1 1.05 1.15 675 405 800 1,200,000 1,366 506 966 378.09 340.90 270.48 0.79 141.63 0.364 H-F Stud 1.5 3.5 16 825 28.3 1225 3.57 0.9961 1993.4 1.60 1.15 1.1 1.05 1.15 675 405 800 1,200,000 1,366 506 966 449.95 395.22 311.11 0.79 158.68 0.376 H-F Stud 1.5 3.5 12 8.25 28.3 1710 3.57 0.9947 2657.8 1.60 1.15 1.1 1.05 1.15 675 405 800 1,200.000 1,366 506 966 449.95 395.22 325.71 0.82 119.01 0.315 H-F Stud 1.5 3.5 8 8.25 28.3 2700 3.57 0.9988 3986.7 1.60 1.15 1.1 1.05 1.15 675 405 800 1200.000 1,366 506 966 449.95 39522 342.86 0.87 79.34 0.244 SPF Stud 1.5 3.5 16 7.7083 26.4 1395 3.57 0.9984 2091.8 1.60 1.15 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 875.438 515.42 431.52 354.29 0.82 138.53 0.324 SPF Stud 1.5 3.5 18 9 30.9 1000 3.57 0.9918 2091.8 1.60 1.15 1.1 1.05 1.15 875 425 725 1,200,000 1,366 531 875.438 378.09 336.17 253.97 0.76 188.85 0.421 SPF Stud 1.5 3.5 12 9 30.9 1410 3.57 0.9962 2789.1 1.60 1.15 1.1 1.05 1.15 675 425 725 1,200.000 1,366 531 875.438 378.09 336.17 268,57 0.80 141.63 0.358 SPF Stud 1.5 3.5 16 8.25 28.3 1210 3.57 0.9932 2091.8 1.60 1.15 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 875.438 449.95 388.13 307.30 0.79 158.68 0.366 SPF Stud 1.5 3.5 12 8.25 28.3 1690 3.57 0.9940 2789.1 1.60 1.15 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 875.438 449.95 388.13 321.90 0.83 119.01 0.306 SPF Stud 1.5 3.5 8 8.25 28.3 2670 3.57 0.9987 4183.6 1.60 1.15 1.1 1.05 1.15 675 425 725 1,200.000 1,366 531 875.438 449.95 388.13 339.05 0.87 79.34 0.238 H-F#2 1.5 5.5 16 7.7083 16.8 3132 3.57 0.2844 3132.4 1.60 1.15 1.3 1.10 1.15 850 405 1300 1,300,000 2,033 506 1644.5 1378.83 1031.58 506.18 0.49 56.10 0.044 H-F 02 1.5 5.5 16 9 19.8 3132 3.57 0.4405 3132.4 1.80 1.15 1.3 1.10 1.15 850 405 1300 1,300,000 2,033 506 1844.5 1011.45 837.57 506.18 0.80 76.47 0.075 H-F#2 1.5 5.5 16 8.25 18.0 3132 3.57 0.3404 3132.4 1.60 1.15 1.3 1.10 1.15 850 405 1300 1,300.000 2,033 506 1844.5 1203.70 946.77 508.18 0.53 6426 0.055 SPF#2 1.5 5.5 16 7.7083 16.8 3287 3.57 0.3154 3287.1 1.60 1.15 1.3 1.10 1.15 875 425 1150 1.400,000 2,093 531 1454.75 1484.89 1015.45 531.23 0.52 56.10 0.042 SPF#2 1.5 5.5 16 9 19.6 3287 3.57 0.4618 3287.1 1.60 1.15 1.3 1.10 1.15 875 425 1150 1,400,000 2,093 531 1454.75 1089.25 850.16 531.23 0.62 76.47 0.071 SPF#2 1.5 5.5 16 8.25 18.0 3287 3.57 0.3678 3287.1 1.60 1.15 1.3 1.10 1.15 875 425 1150 1,400,000 2,093 531 1454.75 1296.30 945.38 531.23 0.56 64.26 0.052 SPF Stud 1.5 3.5 16 14.57 50.0 285 3.57 0.9981 2091.8 1.80 1.15 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 875.438 144.26 139.02 72.38 0.52 494.93 0.727 SPF#2 1.5 5.5 16 19 41.5 1020 3.57 0.9910 3287.1 1.80 1.15 1.3 1.10 1.15 875 425 1150 1.400,000 2.093 531 1454.75 244.40 235.32 164.85 0.70 340.83 0.500 H-F#2 1.5 5.5 18 19 41.5 945 3.57 0.9939 3132.4 1.60 1.15 1.3 1.10 1.15 850 405 1300 1,300,000 2,033 506 1844.5 226.94 220.14 152.73 0.69 340.83 0.513 Page 5 180 Nickerson St • CTE N G I N E E R I N G • Sutte 302 _ 1 N C. • Seattle,WA ` J '+' �7 Q 98109 Project: I L 6 •i[ e t ]- Date: (206)285-4512 Client: N Si �/J(4 41 4—'10 Lie Le9.- • Page Number: (2 6)285-0618 .: :: �i; it t J ' . c4G7 Lt °1�R- — I l � Z ; . .•caw 6)p k ' I L/ 3 /A, '_, 5 j ._ 1 ii,.. I } M s r 1 lute .. .... ,i,. 1 `` . • lzS , t ,Y i t 5 g „,' , 1 ” •, '',' , • i'llH, '''• ', ...' 1 1. 13131T 1—SIR. i i ; i 1,.7 e,..4)—.-1-,.(:.11 "V-09— "‘-•.'"!••••--: , 12 y • • • 3 S ��� t s1 .. �t��.. •$ � £ k _• is • f • 3 • 1 { k.. - 3 f , Y F £ .. Z. 4 1 ?alb`, ,.1.. 5- t1s3_. r,. '{•_ ._+ t t,,... . , � y d � i I- # i k —r—t-1,--11 Y 1 I 5 : ; F 1 � S 4 . • . - < •: '. :: , ( i I i 5 6 ': ! .mow , 3 3 -. , .. < , Y �.•�_.S , a f : errI 4 ry i , 1 ' .l, ,,,%k K } r >: � t a 3 ettet, < k , _ W , , i_ 1t? :. .. ... s_ • 1t,G 15• X. _ 1 . , f3< Iu a4 fF? . , , , - Structural Engineers • _ 180 Nckerson St. / CT ENGINEERING" Suite 302 / .a r" Seattle,WA 96109 / / Project *-----ng."' --Z.:. - 4.--a--i.` ' , -Date: ,— , (206)285-4512 PAX: Client: Page Number: (206)2854518 . 133EL : ZPM) P5r a_6) . 05ov ttl-i?ic, )r'. Kodv (3 /2, (I.5)--/ ) ft - 2q ei41/4is W-kia.,- Tx 1 otvi goo on+ kopt> 0 ....-5z21 gliZagiAt . . 43- _ 4 4. *, • 0 sca ..: . p-.:.-_ 5..., .7.& lo fWE1 ,. 14P- 1" 4 ........ .c..., 35 ‘..... ! i .. . . . . • 0 sifivrc' 19.P. K2.: ..- .... 16 e I - 1 36 r Structural Engineers Page 1 of 1 Design Maps Summary Report zusGs Design Maps Summary Report User-Specified Input Building Code Reference Document 2012 International Building Code (which utilizes USGS hazard data available in 2008) Site Coordinates 45.43123°N, 122.77149°W Site Soil Classification Site Class D -"Stiff Soil" Risk Category I/II/III . i .,'.°#fir 2mi • "r� .= t ,t � . L .P P1k tet- s -s ,tea ��� *,�r �g 4�4 + :.+ �3 a%� • .� 1.41„,,,„•T,,,4-:.„,,-,.: . E � -� . � y� j� 1 c , # ,..,,,3 ,. „. �"` , a .,.:,,,,v,„,„ �� {§�3, , ,i , R0 k4 "any 1.t -. r o t'�.� ! $ `a. , t .0 Nx s� sa $ f t s k a tea , ` ri, t ,: sp''�� 5 ;Ac „' x, ;.,,.„4,1„.„4.:., : 4.14E., !,p s 1 '� � cM .. ,- r 04,63 G' �w3 ,,,;,,,,,.4.A'''' a' '"�{e .,^' i €.„ r u n,n Io a1'4,1% is a ie + it";n a 1i1! itwaukie a..a"i" • ...ao*. J� : x,. 5.�.'P�`i. t f .,,} , • a ,:'w,a c' ar� �'Ar . FF � .,%t� k „w1,Zt M Ort, �a 37S KY J �� ,x k b. {sxf ^ss .a' .w q ..a: s�„ «�• a t 3 'i ..✓.c. f a y 5` w & h�� i `,�,+r»i� y...s.-.�.,C ^'g-M' �C}.-''" *'w y '"3' E.t"" � .� F Lake`'iO'Ywego da�«"x^^4..Y ) g 3 ;ria 3 yam; ` �- e++s� lti1 C;R 'f �'..JCL�O°tis qS .�' � ct = � adi' 'S a R *.+ � Y i +sa, mss' "y # b y 4 fii ..C�` az o & ¢ vvr �x s iv rt. a ar .a''"" o-. G ®, „�, f i �4�, , ., 4 ,i eµ,,,,,t{�ol'_'Y" f�I tr....,.L.,,,,,,,,,7A,i,y,iit. 4 : F ye a� a aapclesi �.fp3 `"'} ® 3 + �t-,....,,....,` 4.-*"---;;;:i7.',!,mn...,. <,.,«.,..„etr.. .:a� MapQ t � UESt'I E.,.a>1.10.1 ,m.a,, A . ..,.�.w ...x,.,.,v„.„,. ,,,.,.,.: . Mra,,...,,,.r,,,.-xa« m ....._ - i. _. ,,.,.w ,. USGS-Provided Output S5 = 0.972 g SMS = 1.080 g S°5 = 0.720 g Si = 0.423 g SMI = 0.667 g SOI = 0.445 g For information on how the SS and Si.values above have been calculated from probabilistic(risk-targeted)and deterministic ground motions in the direction of maximum horizontal response, please return to the application and select the"2009 NEHRP"building code reference document. MCEa Response Spectrum Design Response Spectrum 0.88 1.70 0.00 0.07 0.72 0.89 0.54 . 0.77 0.56 S 0.40 S (1.56 v a QSS ,ta r�A 0 40 0.44 0.32 0:33 0.24 0.22 0.7s 0.11 0.08 0.00 0.00 0.00 0.70 0.40 0.60 0.20 1.00 1.20 1.40 1.40 L00 2.00 0.00 0.20 0.40 0.80 0.80 1.00 1.20 1.40 1.80 1.20 2.00 Period,T(s.c) Period,T(sec) Although this information is a product of the U.S.Geological Survey,we provide no warranty,expressed or implied,as to the accuracy of the data contained therein.This tool is not a substitute for technical subject-matter knowledge. http://ehp2-earthquake.wr.usgs.gov/designmaps/us/summary.php?template=minimal&latit... 9/14/2015 2012 IBC SEISMIC OVERVIEW SHEET TITLE: 2012 IBC SEISMIC OVERVIEW CT PROJECT#: CT#14189:Plan 5A Step# 2012 IBC ASCE 7-10 1. RISK CATEGORY TYPE=II Table 1604.5 Table 1.5-1 OCCUPANCY CATEGORY 2. IMPORTANCE FACTOR IE= 1.00 Section 1613.1 ->ASCE Table 1.5-2 3. Site Class-Per Geo. Engr. S.C.= D Section 1613.3.5 Section 11.4.2/Ch.20 Table 1613.3.3(2) Table 20.3-1 4. 0.2 Sec. Spectral Response Ss= 0.97 Figure 1613.3.1(1) Figure 22-1 5. 1.0 Sec. Spectral Response S,= 0.43 Figure 1613.3.1(2) Figure 22-2 Latitude=.Varies N Longitude= Varies W N/A (Or by ZIP code) (Or by ZIP code) htt0://earthquake.usgs.gov/research/hazm aps/ http://earthouake.usqs.aovidesicinmaps/us/aoplication.ohp 6. Site Coefficient(short period) Fa= 1.11 Figure 1613.3.3(1) Table 11.4-1 7. Site Coefficient(1.0 second) Fv= 1.58 Figure 1613.3.3(2) Table 11.4-2 SMs=Fa`Ss SMS= 1.08 EQ 16-37 EQ 11.4-1 SMi=F„"`Si SM1= 0.68 EQ 16-38 EQ 11.4-2 Sos=2/3*SMs Sos= 0.72 EQ 16-39 EQ 11.4-3 SDI=2/3 SMi Spy= 0.45 EQ 16-40 EQ 11.4-4 8. Seismic Design Category 0.2s SDCs= D Table 1613.3.5(1) Table 11.6-1 9. Seismic Design Category 1.0s SDC, =D Table 1613.3.5(2) Table 11.6-2 10. Seismic Design Category SDC= D Max. Max. .._..._................. .._......._...... 11. Wood structural panels --- --- N/A Table 12.2-1 12. Response Modification Coef. R= 6.5 N/A Table 12.2-1 13. Overstrength Factor C0= 3.0 N/A Table 12.2-1 14. Deflection Amplification Factor CD= 4.0 N/A Table 12.2-1 15. Plan Structural Irregularities No N/A Table 12.3-1 16. Vertical Structural Irregularities --- No N/A Table 12.3-2 17. Permitted Procedure Equiv. Lateral Force --- Table 12.6-1 Page 1 2012 IBC EQUIV.LAT.FORCE SHEET TITLE: 2012 IBC EQUIVALENT LATERAL FORCE PROCEDURE PER ASCE 7-10 CT PROJECT#: CT#14189:Plan 5A Sos= 0.72 h„ = 18.00 (ft) SDt= 0,45 x= 0.75 ASCE 7(Table 12.8-2) R= 6.5 Ct 0.020 ASCE 7(Table 12.8-2) IE= 1.0 T= 0.175 ASCE 7(EQ 12.8-7) Si= 0.43 k= 1 ASCE 7(Section 12.8.3) Ti_ 6 ASCE 7(Section 11.4.5:Figure 22-15) Cs=Sos/(R/AE) 0.110 W ASCE 7(EQ 12.8-2) Cs=Sol/(T*(R/IE)) (for T<TI) 0.399 W ASCE 7(EQ 12.8-3)(MAX.) Cs=(SOI*TY,)/(TZ*(R/IE)) (for T>TL) 0.000 W ASCE 7(EQ 12.8-4)(MAX.) Cs=0.01 0.010 W ASCE 7(EQ 12.8-5)(MIN.) Cs=(0.5 St)/(R/IE) 0.033 W ASCE 7(EQ 12.8-6)(MIN.if SI>0.6g) CONTROLLING DESIGN BASE SHEAR= 0.110 W VERTICAL DISTRIBUTION OF SEISMIC FORCES PER ASCE 7-10 SECTION 12.8.3 (EQ 12.8-11) (EQ 12.8-12) C,x= DIAPHR. Story Elevation Height AREA DL w, w; *h;k wX *hxk DESIGN SUM LEVEL Height (ft) h; (ft) (sqft) (ksf) (kips) (kips) Ew, *h jk Vi DESIGN Vi Roof: "` --- 18.001 18.00 1666 ,' 0.022 36.652 659.7 0.58 3.79 3.79 2nd ° 8.00 - 10:00 10.00 1712" 0.028' 47.936 479.4 0.42 2.75 6.54 1st(base);; 10.00 0:00; SUM= 84.6 1139.1 1.00 6.54 E=V= 9.34 (LRFD) o.rE= 6.54(ASD) DIAPHRAGM FORCES PER ASCE 7-10 SECTION 12.10.1.1 (EQ 12.10-1) Design F = DIAPHR. F, E F; w; E w, Fp,,= EF;'ww,, 0.4*Sos'IE*wp 0.2*Sos*IE*wP LEVEL (kips) (kips) (kips) (kips) (kips) Ew, FPz Max. F, Min. Roof 3.79 3.79 36.7 36.7 5.26 3.79 10.52 5.26 2nd 2.75 6.54 47.9 84.6 6.88 3.71 13.76 6.88 1st(base) 0.00 0.00 0.0 84.6 0.00 0.00 0.00 0.00 Page 2 ASCE 7-10 WIND Part2 SHEET TITLE: MAIN WIND FORCE RESISTING SYSTEM USING LOADS FROM ASCE 7-10 CHAPTER 28,PART 2 CT PROJECT#: CT#14189:Plan 5A N-S E-W F-B SS 2012 IBC ASCE 7-10 Ridge Elevation(ft)= 30.00 30.00,ft. Roof Plate Ht.= 18.00 18.00 Roof Mean Ht.= 24.00 24.00 ft. - - Building Width= 40.0 48.0'::ft. Vuit. Wind Speed 3soo.Gut= 120 120 mph Figure 1609 Fig. 26.5-1AthruC V asd. Wind Speed 3 See. "€Ta LV,,,, h (EQ 16-33) Exposure= B B Iw= 1.0 1.0 N/A N/A Roof Type= Gable Gable: Ps 3a A= 28.6 28.61 psf Figure 28.6-1 Ps30 e= 4.6, "4.6:psf Figure 28.6-1 Ps3o c= 20.7. 20.7:psf Figure 28.6-1 Ps30o= 4.7. 4.7 psi Figure 28.6-1 A= 1.00 IMO I Figure 28.6-1 K#= 1.00 1,00: Section 26.8 windward/lee= 1.00 1:00(Single Family Home) X•K1'i : 1 1 ps=X'Kzt'I'pm= (Eq.28.6-1) Ps = 28.60 28.60 psf (LRFD) (Eq.28.6-1) Pse= 4.60 4.60 psf (LRFD) (Eq.28.6-1) Psc= 20.70 20.70 psf (LRFD) (Eq.28.6-1) ps o= 4.70 4.70 psf (LRFD) (Eq.28.6-1) Ps A and C avomoo= 24.7 24.7 psf (LRFD) Pseand Daverage= 4.7 4.7 psf (LRFD) a= 4 4 Figure 28.6-1 2a= 8 8 width-2.2a= 24 32 MAIN WIND-ASCE 7-10 CHAPTER 28 PART 2 Areas(N-S) Areas(E-W) (N-S) (E-W) Wind(N-S)(LRFD) Wind(E-W) (LRFD) width factor roof-> 1.00" 1:00 1.00 0.50 16 psf min. 16 psf min. width factor 2nd-> 1.00 1.00 wlnd(LRFD)wlnd(LRFD) DIAPHR. Story Elevation Height AA AD Ac AD AA AD Ac AD per 28.4.4 per 28.4.4 WIND SUM WIND SUM LEVEL Height (ft) hi(ft) h(ft) (sq.ft)(sq.ft)(sq.ft)(sq.ft) (sq.ft)(sq.It) (sq.ft)(sq.ft) Vi(N-S) V(N-S) Vi(E-W) V(E-W) 30.00 12.0 0 192 0 288 0 192 0 192 Roof - 18.00 18.00 4.0 64 0 96 0 64 0 128 0 10.2 9.2 6.05 6.05 6.27 6.27 2nd 8.00 10.00 10.00 9.0 144 0 216 0 144 0 288 0 5.8 6.9 8.59 14.64 10.08 16.35 1st(base) 10.00 0.00 0.00 0 0.00 0.00 AF= 1000 AF= 1008 16.0 16.1 V(n-s). 14.64 V(e-w)= 16.35 klps(LRFD) kips(LRFD) klps klps Page 3 ASCE 7-10 Part 1 SHEET TITLE: MAIN WIND FORCE RESISTING SYSTEM USING LOADS FROM ASCE 7-10 CHAPTER 28,PART 1 CT PROJECT#: CT#14189:Plan 5A SEE SEAW RAPID SOLUTION SPREADSHEET AND INSERT VALUES BELOW MAIN WIND-7-10 CHAPTER 28 PART 1 Wind(N-S) Wind(E-W) Min/Part 2(Max.) Min/Method 1(Max.) Wind(N-S)(LRFD) Wind(E-W)(LRFD) DIAPHR. Story Elevation Height DESIGN SUM DESIGN SUM DESIGN SUM DESIGN SUM LEVEL Height (ft) hi(ft) Vi(N-S) V(N-S) Vi(E-W) V(E-W) Vi(N-S) V(N-S) Vi(E-W) V(E-W) Roof - 18.00 18.00 0.00'. 0.00 0.000.00 10.24 10.24 6.27 6.27 2nd 8.00 10.00 10.00 :'0.00 0.00 ,,0.00'; 0.00 5.76 16.00 10.08 16.35 1st(base) 10.00 0.00 0.00 V(n-s)= 0.00 V(e-w)= 0.00 V(n-s)= 16.00 V(e-w)= 16.35 kips kips kips(LRFD) kips(LRFD) DESIGN WIND-Min./Part 2/Part 1 ASD Wind(N-S)(LRFD) Wind(E-W)(LRFD) Wind(N-S)(ASD) Wind(E-W)(ASD) 0.6'W 0.6'W DIAPHR. Story Elevation Height DESIGN SUM DESIGN SUM DESIGN SUM DESIGN SUM LEVEL Height (ft) hi(ft) VI(N-S) V(N-S) VI(E-W) V(E-W) VI(N-S) V(N-S) VI(E-W) V(E-W) Roof 8 10 10 10.24 10.24 6.27 6.27 6.14 6.14 3.76 3.76 2nd 10 0 0 5.76 16.00 10.08 16.35 3.46 9.60 6.05 9.81 1st(base) 0 0 0 V(n-s)= 16.00 V(e-w)= 16.35 V(n-s)= 9.60 V(e-w)= 9.81 kips(LRFD) kips(LRFD) kips(ASD) kips(ASD) Part 1 Base Shear Part 2 Base Shear = 0.0 0.0 ratio ratio Page 4 SHEET TITLE: SDPWS SHEARWALL VALUES PER TABLE 4.3A CT PROJECT#: CT#14189: Plan 5A SHEATHING THICKNESS tsheathing= 7/16" NAIL SIZE nail size= 0.131"dia.X 2.5"long STUD SPECIES SPECIES= H-F or SPF SPECIFIC GRAVITY S.G.= 0.43 ANCOR BOLT DIAMETER Anc. Bolt dia.= 0.625 ASD F.O.S.= 2.0 I' SHEARWALL TYPE Table 4.3A Seismic Table 4.3A Wind 7/16"w/8d common V seismic V s allowable V wind V w allowable (15/32"values per (SDPWS-2008) modify per S.G. (SDPWS-2008) modify per S.G. footnote 2) (divide by 2.0 FOS) (divide by 2.0 FOS) I (for ASD) (for ASD) --- 0 1 0 1 P6TN 150 150 150 150 P6 520 242 730 339 P4 760 353 1065 495 P3 980 456 1370 637 P2 1280 595 11 1790 832 2P4 1520 707 2130 990 2P3 1960 911 2740 1274 2P2 2560 1190 3580 1665 N.G. 10000 4650 10000 4650 GYPSUM THICKNESS tsheathing= 1/2" NAIL SIZE nail size= 1 1/4"long No.6 Type S or W Response Modification Coef. R= 6.5 SHEARWALL TYPE Table 2306.4.7 Seismic Wind 1/2"w/1 1/4"screw V allowable V s allowable V w allowable Blocked (PER 2009 IBC) modify G7 125 R>2 not allowed R>2 not allowed G4 150 R>2 not allowed R>2 not allowed 2G7 250 R>2 not allowed R>2 not allowed 2G4 300 R>2 not allowed R>2 not allowed 2G4 300 150 SHEET TITLE: LATERAL N-S,(front to back-up/down) CT PROJECT#: CT#14189:Plan 5A Diaph.Level: Roof Panel Height=, :8'ft. Seismic V I= 3.79 kips Design Wind N-S V I= 6.14 kips Max.aspect=: 3.5 SDPW S Table 4.3.4 Sum Seismic V I= 3.79 kips Sum Wind N-S V I= 6.14 kips Min.Lwall= 2.29 ft. (0.6-0.14Sds)D+0.7 p Qe 0.6D+W per SDPWS-2008 pc= 1.00 Table 4.3.3.5 Wind Wind E.Q. E.Q. p= 1.00 E.Q. E.Q. Wind Wind E.Q. E.Q. E.Q. E.Q. Wind Wind Wind Wind Max. Wall ID T.A. Lwall LDL elf. C 0 w dl V level V abv. V level V abv. 2w/h v i Type Type vi OTM Rorrrt Unet Us= OTM Row Uust Usum Usum HD (sgff) (ft) (ft) (kif) (kip) (kip) (kip) (kip) p (plf) (plf) (kip-ft) (kip-ft) (kip) (kip) (kip-ft) (kip-ft) (kip) (kip) (kip) Ext. r,A.T1 -416 15 0 46.0. 1 00: 0.15f 1.53 0.00 0.95 0.00 1.00 1.00 63 P6TN P6TN 102 7.57 26.13 -1.30 -1.30 12.27 31.05 -1.31 -1.31 -1.30 Ext..; A T2• 139 5 0 `46:0: 1 00 0.15' 0.51 0.00 0.32 0.00 1.00 1.00 63 P6TN P6TN 103 2.53 8.71 -1.43 -1.43 4.10 10.35 -1.44 -1.44 -1.43 ' Ext. A T3 278: 10 0 46.0 1 00 0.15', 1.03 0.00 0.63 0.00 1.00 1.00 63 P6TN P6TN 103 5.06 17.42 -1.32 -1.32 8.20 20.70 -1.34 -1.34 -1.32 0 '0 0 .=0.0 1 00 0.00; 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 ' 0 0 0.0 1 00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0, 0.0 0.0 1 00 0.00: 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0 0 0.0 1 00 8:981 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0. ':0 0. 0.0 1.00:``0.001 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 .',•0 0 „ 0.0 1 00 r0 00 o.00 o.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.0 0.0 -,::;-1'.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ext.; .B.T1 150; 5 0 .'47.0 1 00 0.15' 0.55 0.00 0.34 0.00 1.00 1.00 68 P6TN P6TN 111 2.73 8.90 -1.42 -1.42 4.43 10.58 -1.42 -1.42 -1.42 Ext. ' B.t2 300, .10 0 c47.0 1 00 0 15 1.11 0.00 0.68 0.00 1.00 1.00 68 P6TN P6TN 111 5.46 17.80 -1.32 -1.32 8.85 21.15 -1.32 -1.32 -1.32 Ext. B T3 143 4 8 47.0 1 00 0.15: 0.53 0.00 0.33 0.00 1.00 1.00 68 P6TN P6TN 110 2.60 8.54 -1.44 -1.44 4.22 10.15 -1.44 -1.44 -1.44 B T4 -, 240, 8 0 ..47.`0 1 00 0 15 0.89 0.00 0.55 0.00 1.00 1.00 68 P6TN P6TN 111 4.36 14.24 -1.35 -1.35 7.08 16.92 -1.34 -1.34 -1.34 0,,, 0 0 = 0.0 1 00 :0 00; 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0]0 0 0 0 0 1 00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 •. p.0 0.0 1 00 „0 00. 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0, ;0.0 0.0 1 00:'!0.00; 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 .0 0 0.0 1.00, 0.00; 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 ,.0.0 0.0 1 00;;' 0.00: 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 00 0 00 1 00 0 00 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 ; 0 0 0.0 1 00 a 0.00` 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 , -;0 00.0 ']i:,1.:(:)0.:',, ,.'.3'::- M0-,, 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.`- 0.0 : 0.0 1.00 0.00: 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 ,.0 0 -.0.0 s::.,11'.00<', 0.00; 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 .0 0 00 1'00: 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 .:'0 0 0.0 :1.00 0.00: o.00 o.00 o.00 0.00 1.00 0.00 0- - o o.00 o.00 o.00 o.00 0.00 0.00 0.00 0.00 0.00 0 0.0 00 1.00 0.00; 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 :.0 0 ,•0.0 1 00 0 00, 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 ,,;0 0 ;',0.;0 1.00''rr 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1666 57.8 57.8=L eff. 6.14 0.00 3.79 0.00 EVelnd 6.14 EVEQ 3.79 Notes: denotes with shear transfer •. denotes perferated shear wall iSB denotes iSB Shear Panel SHEET TITLE: LATERAL N-S(front to back-up/down) CT PROJECT#: CT#14189:Plan 5A Diaph.Level: 2nd Panel Height= 9 ft. Seismic V I= 2.75 kips Design Wind N-S V I= 3.46 kips Max.aspect= ' . 3.5 SDPWS Table 4.3.4 Sum Seismic V I= 6.54 kips Sum Wind N-S V I= 9.60 kips Min.Lwall= 2.57 ft. (0.6-0.14Sds)D+0.7 p Qe 0.6D+W per SDPW S-2008 pc= 1.00 Table 4.3.3.5 Wind Wind E.Q. E.Q. p= 1.00 E.Q. E.Q. Wind Wind E.Q. E.Q. E.Q. E.Q. Wind Wind Wind Wind Max. Wall ID T.A. Lwall LDL e11, C 0 w dl V level V abv. V level V abv. 2w/h v i Type Type v i OTM Roan Unet Usum OTM Row Unet Usum Veum HD (sqft) (ft) (ft) (kit) (kip) (kip) (kip) (kip) p (pIf) (pif) (kip-ft) (kip-ft) (kip) (kip) (kip-ft) (kip-ft) (kip) (kip) (kip) Ext. A.Ma 621 29.0 46.0 1.00; 0.15 1.25 2.23 1.00 1.37 1.00 1.00 82 P6TN P6TN 120 21.34 50.51 -1.03 -2.32 31.33 60.03 -1.01 -2.32 -2.32 Ext. A.Mb 235 11.0 46.0 1.00 ' 0.15 0.47 0.84 0.38 0.52 1.00 1.00 82 P6TN P6TN 120 8.09 19.16 -1.07 -2.50 11.87 22.77 -1.05 -2.50 -2.50 Ext. 0= '0.0 0.0 ` 1.00; ! 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 -1.32 0.00 0.00 0.00 -1.34 -1.32 0 0.0 0.0 1.00< 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0 0 0.0-' 1.00 '0.00 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.0 0.0 1.00 0.00', 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - 0 0.0` 0.0 1.00`'0.00 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 ' 1.00 '0.00 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.0 0.0 1.00 ;0.00 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0` 0.0 " 0:0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ext. B.Ma 571 10.0';47.0 1.00 0.15 1.15 2.05 0.92 1.26 1.00 1.00 218 P6 P6 320 19.62 17.80 0.20 -1.23 28.81 21.15 0.82 -0.60 -0.60 Ext. B.Mb 285 5.0 47.0 - 1.00 ; 0.15 0.58 1.02 0.46 0.63 1.00 1.00 218 P6 P6 320 9.80 8.90 0.21 -1.11 14.39 10.58 0.88 -0.44 -0.44 Ext. 0 . 0.0. 0.0 1.00 "0.00i 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 -1.44 0.00 0.00 0.00 -1.44 -1.44 - - 0 ".0.0 0.0 1.00: 0.001 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 -1.35 0.00 0.00 0.00 -1.34 -1.34 - - 0 0.0 00 1.00. 0:001 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 ,. 0.0 0.0 1.00 ,0.00 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 1.00 0.00: 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 . 00 1.00.. 0.00' 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 - 0.0 1.00 0.00' 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 '10.0 0.0 1.00; 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 '0.0 `0.0 1.00' '.0.00' 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 .;0.0;; 0.0 ;1.00 ' '0.00. 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0; -rx 0.0 " 0.0,=.1.00 - 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.0 0.0 1.00`.- 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 : '0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 ' 0.0 0.0 1.00",; 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 00.0 :.0.0 1.00_' 0.00: 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - 0 0.0 -, 0.0 , 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 1.00 0.00'' 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1712 55.0 55.0=L eff. 3.46 6.14 2.75 3.79 1.00 EV„,nd 9.60 EVEO 6.54 Notes: • denotes with shear transfer •• denotes perferated shear wall iSB denotes iSB Shear Panel M. SHEET TITLE: LATERAL'E-W(side to side-left/right) CT PROJECT#: CT#14189:Plan 5A Diaph.Level: Roof Panel Height=.- '?. 8';ft. Seismic V I= 3.79 kips Design Wind E-W V I= 3.76 kips Max aspect '. 3 5';SDPWS Table 4.3.4 Sum Seismic V i= 3.79 kips Sum Wind E-W V I= 3.76 kips Min.Lwall= 2.29 ft. (0.6-0.14Sds)D+0.7 p Qe 0.6D+W per SDPWS-2008 pt= 1.00 Table 4.3.3.5 Wind Wind E.Q. E.Q. p= 1.00 E.Q. E.Q. Wind Wind E.Q. E.Q. E.Q. E.Q. Wind Wind Wind Wind Max. Wall ID T.A. Lwall LDL en. C 0 w dl V level V abv. V level V abv. 2w/h v i Type Type v i OTM Row Line, Usum OTM Row Um Usum Ueum HD (sgft) (ft) (ft) (kit) (kip) (kip) (kip) (kip) p (plf) (plf) (kip-ft) (kip-ft) (kip) (kip) (kip-ft) (kip-ft) (kip) (kip) (kip) rear 1.Ta ;283 6 S 0 :40.0 '.--.I'„00-:;1'.: : ',0.15 ; ! 0.64 0.00 0.64 0.00 1.00 1.00 81 P6TN P6TN 80 5.16 12.12 -0.95 -0.95 5.12 14.40 -1.27 -1.27 -0.95 " rear 2.Tb '407 6 11 5 40.0 s 1 00 :0.15 0.92 0.00 0.93 0.00 1.00 1.00 81 P6TN P6TN 80 7.41 17.42 -0.92 -0.92 7.36 20.70 -1.23 -1.23 -0.92" rear. 3.Tc;,;141.8 4.0 40.0 1 00 ,r 0.15; 0.32 0.00 0.32 0.00 1.00 1.00 81 P6TN P6TN 80 2.58 6.06 -1.04 -1.04 2.56 7.20 -1.39 -1.39 -1.04" .,rear'- 4 Td �;,e 0- ":0.0 .,'0.0 1 00 =0.00 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 ,0.0 0,0,,,::-1.0,0 :':-.0.001 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ' 0 ' :0 0 , 0.0 1 00 .';0.00 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0, .„.,:0..0'"„'.o.0 ,,t0' 0.00. o.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 ..%0 0 0.0 1 00 10.00: 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 "0.1.:,,,.0 0 0.0..,-.'.!..1..60.-......:."0.00-, 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0, ,,.,:p,,,,,,...00. , 00 0.00; 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 -'0 0 , . 1 0.0 1 00 ::0.00! 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0 0 0.0 1 00 ;0 00: 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Front' 4 Ta ..166 6, ,._2 5 20.5 1..00,..;,;(.05. 0.38 0.00 0.38 0.00 1.00 0.63 242 P6 P6TN 150 3.03 1.94 0.59 0.59 3.01 2.31 0.38 0.38 0.59" .Front .4.Tb-'.160:6--.7.:.25 .20.5.:; .:-1'.00.;H'6.1 6 0.38 0.00 0.38 0.00 1.00 0.63 242 P6 P6TN 150 3.03 1.94 0.59 0.59 3.01 2.31 0.38 0.38 0.59* Front: 4 Tc 0 0 0 0.0 1.00; 0 00 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Front 4 Td',.'-'*i ::1866 '2.5 20.5 '1'.00, 0.15 0.38 0.00 0.38 0.00 1.00 0.63 242 P6 P6TN 150 3.03 1.94 0.59 0.59 3.01 2.31 0.38 0.38 0.59" Front` 4 Te,;'166.6 - -2.5',;-1,1.7 1.00;,. 0.15. 0.38 0.00 0.38 0.00 1.00 0.63 242 P6 P6TN 150 3.03 1.11 1.05 1.05 3.01 1.32 0.92 0.92 1.05 " Front 4 Tf ,;166 6 "-,2 5 11.7 1.0,c(L 0.151 0.38 0.00 0.38 0.00 1.00 0.63 242 P6 P6TN 150 3.03 1.11 1.05 1.05 3.01 1.32 0.92 0.92 1.05 " .0, .,:...0,0.,-,::- 0,.-,,,:.1,•-,00:•-,:;, 0,,00., 00.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 ' 0.0..!, 00:21 00F,: 0.00: 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.0 .0.0 1 00.;`0.00: 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0'' .;0 0 „0.0 1 00:-0.00 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 ;`.0.0 '.0.0 1.00= GARAGE ABWP SHEET TITLE: LATERAL E-W(side to side-left/right) CT PROJECT#: CT#14189:Plan 5A Diaph.Level: 2nd Panel Height= 9 ft. Seismic V I= 2.75 kips Design Wind E-W V I= 6.05 kips Max.aspect= 3.5 SDPWS Table 4.3.4 Sum Seismic V I= 6.54 kip- Sum Wind E-W V I= 9.81 kips Min.Lwall= 2.57 ft. (0.6-0.14Sds)D+0.7 p Qe 0.6D+W per SDPWS-2008 pt= 1.00 Table 4.3.3.5 Wind Wind E.Q. ..Q. p= 1.00 E.Q. E.Q. Wind Wind E.Q. E.Q. E.Q. E.Q. Wind Wind Wind Wind Max. Wall ID T.A. Lwall LDL en. C 0 w dl V level V abv. V leve abv. 2w/h v i Type Type v i OTM ROW Unet Usum OTM ROTM Unet Usum Usum HD (sqft) (ft) (ft) (klf) (kip) (kip) (ki% (kip) p (plf) (plf) (kip-ft) (kip-ft) (kip) (kip) (kip-ft) (kip-ft) (kip) (kip) (kip) rear 1.Ta 107.6 4.3 12.3 1.00 0.15 0.38 0.4: 0.17 0.48 1.00 0.96 159 P6 P6 199 5.87 2.00 1.06 0.11 7.70 2.38 1.46 0.20 0.20" rear ,2.Tb 98.77• 3.9 12.3 1.00 0.15 0.35 0 3 0.16 0.43 1.00 0.87 175 P6 P6 200 5.34 1.82 1.09 0.17 7.02 2.16 1.50 0.27 0.27• rear 3.Tc 158.3 -_'6.3 19.5 1.00 0.15 0.56 s.70 0.25 0.70 1.00 1.00 152 P6 P6 199 8.61 4.65 0.70 -0.34 11.30 5.53 1.02 -0.37 -0.34• rear 4.Td 63.31 2.5 19.5 •1.00 .!0.00 0.22 0.28 0.10 0.28 1.00 0.56 274 P4 P6 200 3.42 0.00 1.87 1.87 4.50 0.00 2.45 2.45 2.45* 1.00 0.00 0.09 0.00 0.00 0.00 1.00 0.00 ##### N.G. - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 int 181.1, "5.5 5.5 1.00 0.00 '.64 0.00 0.29 0.00 1.00 1.00 53 P6TN P6TN 116 2.62 0.00 0.54 0.54 5.76 0.00 1.19 1.19 1.19 int 246.9 • 7.5 7.5 1.00 0.00' 0.87 0.00 0.40 0.00 1.00 1.00 53 P6TN P6TN 116 3.57 0.00 0.52 0.52 7.85 0.00 1.15 1.15 1.15 - 0, 0.0 0.0 1.00. `;0.9. 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 int ' 428. '10.0 10.0 1.00 '.'0 1.51 0.00 0.69 0.00 1.00 1.00 69 P6TN P6 151 6.19 0.00 0.66 0.66 13.61 0.00 1.46 1.46 1.46 0 0.0: 0.0 1.00; 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.000.00 0.00 0.00 0.00 0.00 0 0.0 0.0...1.'' 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 • 0 r 0 1.0' '.00 0.+0 0.'' +.01 100 1.90 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Front 4.Ta 117.1 2.4 20.5 1.00 0.15 0.41 0.51 0.19 0.52 1.s+ 0.53 550 P2 P4 386 6.34 1.86 2.58 3.18 8.34 2.21 3.53 3.91 3.91 ABWP Front 4.Tb 0 0.0 20.5 1.00 0.15 0.00 0.00 0.00 0.00 1.0a 0.00 #####N.G. P6 214 0.00 0.00 0.00 0.59 0.00 0.00 0.00 0.38 0.59 Front 4.Tc 0 0.0- 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.01 0.00 ##### N.G. P6 214 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Front .4.Td 117.1 2.4 20.5 1.00;'.0.15' 0.41 0.51 0.19 0.52 1.: 0.53 550 P2 P4 386 6.34 1.86 2.58 3.18 8.34 2.21 3.53 3.91 3.91 ABWP rot T 9:.91 0- '11 01 s 15; 0.-4 1.4 c 16 0..3 1.0a 0.44 659 2P4 P4 385 5.28 0.89 3.29 4.34 6.93 1.05 4.40 5.33 5.33* ront 4.Tf '96.91'• ;2.0 ..11.7 1.10; 0.15 1.34 0.43 0.16 0.43 1.00 0.44 659 2P4 P4 385 5.28 0.89 3.29 4.34 6.93 1.05 4.40 5.33 5.33* 1.00 0.001 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - 0 0.0 0.0 1.00 0.00; 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.0' 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - 0: 0.0 0.0 1.00 '0.00! 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 ` 0.0 0.0 1.00; 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - 0 0.0 0.0. 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.0 0.0. 1.00 0.00' 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.0 0.0 1.00 0.00' 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.0 0.0 • 1.00 ''0.00 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 1712 48.8 48.8=L eff. 6.05 3.76 2.75 3.79 EVnfnd 9.81 EVE0 6.54 Notes: denotes with shear transfer ABWP Alternate Braced Wall Panel-2308.9.3.2 "" denotes perferated shear wall iSB denotes iSB Shear Panel eva.. .. JOB#:' Elevation A ID:Elevation A:4.Ta,4.Tb,4.Tc , _ Roof Level wdl ;?, x150 plf V eq 1163.6,-, pounds V1 eq= 387.9 pounds V3 eq= 387.9 pounds V5 eq= 387.9 pounds V w=!.,,2855.5 pounds V1 w= 951.8 pounds V3 w= 951.8 pounds V5 w= 951.8 pounds v hdr eq= 56.8 plf -- •H1head=A vhdr= 139.3 p1/ H5 head= `` 1, I Fdragl eq= 123.0 Fdrag2 eq= 123.0 Fdrag5 eq= 123.0 Fdrag6 eq=1123.0 ( 'i: 1 sy sA Fdragl w= 41.8 Fdragl 301.8 Fdrag5 w= .1.8 Fdrag.w=301.8 A H1 pier= v1 eq= 155.2 pit v3 eq= 155.2 pIf v5 eq= 155.2 H5 pier= 5.0 ' vi w= 380.7 pll v3 w= 380.7 pll v5 w= 380.7 4.0 feet feet H total= 2w/h= 1 2w/h= 1 2w/h= 1 9.0 v Fdrag3= .0 Fdra. - 123.0 feet A Fdragl w=301.7979 Fdragl w=301.8 Fdrag7eq= 3.0 Fdrag8e. 123.0 I v P6 E.Q. Fdrag7w=301.8 Fdrag8w=301.8 A P4 WIND vsill eq= 56.8p1f H1 sill= (0.6-0.14Sds)D 0.6D v sill w= 139.3 p1fH5 sill= 3.0,,.x' EQ Wind 3.0 feet OTM 10472.8 25699.3 feet R OTM 14159 17020 v UPLIFT -200 470 s Up above 0 0 Up Sum -200 470 H/L Ratios: , --- -• L1=Is . 2.5 L2= fi5 L3= ,. 2.5 L4= ',; 6':5 LS=; iJ 2.5 Htotal/L= 0.44 4 , 0 4 Hpier/L1= 2.00 ? Hpier/L3= 2.00 E L total= 20.5 feet HpierlL5= 1.60 '°0.90Lreduction % m JOB#. Elevation A SHEARWALL WITH FORCE TRANSFER. ID: Elevation A 4.Te,4.-IT Roof Level w dl= 150 plf V eq 775.8 pounds V1 eq= 387.9 pounds V3 eq= 387.9 pounds V w= 1903.6 pounds V1 w= 951.8 pounds V3 w= 951.8 pounds ► v hdr eq= 64.6 plf ► A H head= ^ v hdr w= 158.6 p/f 1 V Fdragl eq= 210 F2 eq= 210 A Fdragl w= - 6 F2 -516 H pier= v1 eq= 141.0 p/f v3 eq= 141.0 p/f P6TN E.Q. 5.0 v1 w= 346.1 p/f v3 w= 346.1 plf P4 WIND feet H total= 2w/h= 1 2w/h= 1 9 v Fdrag3 eq= • F4 e.- 210 feet A Fdrag3 w=516 F4 w=516 2w/h= 1 H sill= (0.6-0.14Sds)D 0.6D v sill eq= 64.6 plf P6TN 3.0 EQ Wind v sill w= 158.6 p/f P6 feet OTM 6982 17133 R OTM 5391 6480 T • UPLIFT 140 940 Up above 0 0 UP sum 140 940 H/L Ratios: L1= > 2.8 L2= 6.5 L3= 2.8 Htotal/L= 0.75 ► . 101 Hpier/L1= 1.82 Hpier/L3= 1.82 L total= 12.0 feet SOB#: Elevation A SHEARWALL WITH FORCE TRANSFER ID: ElevationA 1.Ma,1.Mb -` Roof Level w dl= 150p/f V eq 1275.1 J. pounds V1 eq= 677.4 pounds V3 eq= 597.7 pounds V w= 2940.6 pounds V1 w= 1562.2 pounds V3 w= 1378.4 pounds v hdr eq= 106.3 p/f •H head= A v hdr w= 245.0 Of 1 v Fdragl eq= 226 F2 eq= 199 A Fdragl w= '.1 F2 -459 H pier= v1 eq= 159.4 Of v3 eq= 159.4 plf P6 E.Q. 5.0 v1 w= 367.6 p/f v3 w= 367.6 plf P4 WIND feet Htotal= 2w/h= 1 2w/h= 1 9 Fdrag3 eq= • F4 e.- 199 feet A Fdrag3 w=521 F4 w=459 2w/h= 1 H sill= (0.6-0.14Sds)D 0.6D v sill eq= 106.3 plf P6TN 3.0 EQ Wind v sill w= 245.0 plf P6 feet OTM 11476 26465 R OTM 5391 6480 UPLIFT 537 1763 Up above 0 0 UP sum 537 1763 H/L Ratios: L1= ' 43! L2= 4.0 L3 3.8 Htotal/L= 0.75 r ► 4 ►� Hpier/L1= 1.18 ► Hpier/L3= 1.33 L total= 12.0 feet JOB#: Elevation A SHEARWALL WITH FORCE TRANSFER ID: Elevation A 1.Mc,1.Md Roof Level w dl= 150 plf V eq 1368.9 pounds V1 eq= 977.8 pounds V3 eq= 391.1 pounds V w= 3157.1 pounds V1 w= 2255.0 pounds V3 w= 902.0 pounds -0. ---► v hdr eq= 62.2 p/f --0- • >•H head= A v hdr w= 143.5 pff 1 I Fdragl eq= 589 F2 eq= 236 Fdragl w= 58 F2 -543 H pier= vi eq= 156.4 p/f v3 eq= 156.4 pff P6 E.Q. 5.0 v1 w= 360.8 pff v3 w= 360.8 pff P4 WIND feet H total= 2w/h= 1 2w/h= 1 9 v Fdrag3 eq= F4 e.- 236 feet A Fdrag3 w= 1358 F4 w=543 2w/h= 1 H sill= (0.6-0.14Sds)D 0.6D vs/ll eq= 62.2 p/f P6TN 3.0 EQ Wind v sill w= 143.5 pff P6TN feet OTM 12320 28413 R OTM 18119 21780 v UPLIFT -272 311 Up above 0 0 UP sum -272 311 H/L Ratios: L1= 6.3 L2= 13.3 L3= 2.5 Htotal/L= 0.41 IP. Hpier/L1= 0.80 i Hpier/L3= 2.00 L total= 22.0 feet SOB#: Elevation A SHEARWALL WITH FORCE TRANSFER.;; ID: Elevation A-4.Me,4.Mf Roof Level w dl=; ` 150; plf V eq• 1094.8'. pounds V1 eq= 547.4 pounds V3 eq= 547.4 pounds V w2509.8; pounds V1 w= 1254.9 pounds V3 w= 1254.9 pounds ___.._............:.._._._ --� --÷ v hdr eq= 96.6 plf -0.- A -%•H head= A v hdr w= 221.5 plf 1 Y Fdragl eq= 354 F2 eq= 354 Fdragl w= : F2 -812 H pier= vi eq= 342.1 plf v3 eq= 342.1 plf P4 E.Q. 5.0" v1 w= 627.4 plf v3 w= 627.4 plf P3 WIND feet H total= 2w/h= 0.8 2w/h= 0.8 9 Fdrag3 eq= F4 e.- 354 feet 1 Fdrag3 w=812 F4 w=812 2w/h= 1 H sill= (0.6-0.14Sds)D 0.6D v sill eq= 96.6 plf P6TN 30:• EQ Wind v sill w= 221.5 plf P6 feet OTM 9853 22588 R OTM 4805 5777 V T UPLIFT 473 1577 Up above 140 940 UP sum 614 2517 H/L Ratios: L1 , 2.0 L2= .7.3 L3= 2.0 Htotal/L= 0.79 f 0 4 04 0 Hpier/L1= 2.50 Hpier/L3= 2.50 L total= 11.3 feet _ [ y . it.j -„ ... r _ r i �+ t I 11 311 ',,,,'..11:',".94 .. V :4;40.i a 4)" $.1 r '' a r....., . e 0_. ,-, nic 9 , . :., _0. icsiy,:::.,.....-:.:...,.. ,,,:....1 .. .. r•. . ., .. . . ' . . ...... ..,,..„...., . . . TT-100F APRIL 2014. . A Portal Frame with Hold Downs for Engineered Applications The APA portal-frame design,as shown in Figure 1,was envisioned primarily for use as bracing in conventional light- frame construction.However,it can also be used in engineered applications,as described in this technical topic.The portal frame is not actually a narrow shear wall because it transfers shear by means of a semi-rigid,moment-resisting frame.The extended header is integral in the function of the portal frame,thus,the effective frame width is more than just the wall segment,but includes the header length that extends beyond the wall segment.For this shear transfer mechanism,the wall aspect ratio requirements of the code do not apply to the wall segment of the APA portal frame. Cyclic testing has been conducted on the APA portal-frame design(APA 2012).Recommended design values for engi- neered use of the portal frames are provided in Table 1.Design values are derived from the cyclic test data using a rational procedure that considers both strength and stiffness. The Table 1 values in this report were developed using the CUREE cyclic test protocol(ASTM E2126),using a flexible load head.Earlier testing was conducted using rigid load heads and the sequential phased displacement(SPD)method, as outlined in SEAOSC(1997)Standard Method of Cyclic(Reversed)Test forShear Resistance of Framed Walls for Buildings. The design values in Table 1 ensure that the code(IBC)drift limit and an adequate safety factor are maintained.For seismic design,APA recommends using the design coefficients and factors for light-frame(wood)walls sheathed with wood structural panels rated for shear resistance(Item 15 of Table 12.2-1 of ASCE 7-10).See APA Report T2004-59 for more details.For designs where deflection may be less of a design consideration,for example,wind loading while the portal frames are used in tandem with each other,and not used as conventional shear walls,a load factor of 2.5, based on the cyclic test results is used. Since cyclic testing was conducted with the portal frame attached to a rigid test frame using embedded strap-type hold downs,design values provided in Table 1 of this document should be limited to portal frames constructed on similar rigid-base foundations,such as a concrete foundation,stem wall or slab,and using a similar embedded strap- type hold down. I ®2014 AM—The Engineered Wood Association PORTAL FRAME DESIGN (MIN.WIDTH =22 1/2"): EQ= 810#< EQ (ALLOW)= 1031# WIND = 1260#<WIND (ALLOW)= 1444# Table 1.Recommended Allowable De gn Val. - for APA Portal Frame Used on a Rigid-Base Minimum Width Maximu eight Allowable Design(ASD)Values per Frame Segment (in.) ) Sheart°'°(Ibf) Deflection(in.) Load Factor 8 850 (1190 WIND) 0.33 3.09 16 10 625 (875 WIND) 0.44 2.97 8 1,675 (2345 WIND) 0.38 2.88 24 0.51 3.42 1'-10 1/2" 8 1520 EQ(2128 WIND) roundation f r Wind or Seismic Loading�''6's�31 EQ(1444 WIND) (a) Design values are based on the use of Douglas-fir or Southern pine framing.For other species of framing,multiply the above shear design value by the specific gravity adjustment factor=(1—(0.5—SG)),where SG=specific gravity of the actual framing.This adjustment shall not be greater than 1.0. (b) For construction as shown in Figure 1. (c) Values ore for a single portal-frame segment(one vertical leg and a portion of the header).For multiple portal-frame segments,the allowable shear design values are permitted to be multiplied by the number of frame segments(e.g.,two=2x,three=3x,etc.). (d) Interpolation of design values for heights between 8 and 10 feet,and for portal widths between 16 and 24 inches,is permitted. (e) The allowable shear design value is permitted to be multiplied by a factor of 1.4 for wind design. (f) If story drift is not a design consideration,the tabulated design shear values are permitted to be multiplied by a factor of 1.15.This factor is permitted to be used cumulatively with the wind-design adjustment factor in Footnote(e)above. Figure 1. Construction Details for APA Portal-Frame Design with Hold Downs Extent of header with double portal frames(two braced wall panels) Extent of header with single portal frame I (one braced wall panels) Header to jock-stud strap F 2'to 18'rough width of opening I per wind design min 1000 lbf for single or doubleportal on both sides of opening 9 opposite side of sheathing Pony , wall height . Fasten top plate to header t IIII1!IIIEEJIUI1 sinker nails at 3"o.c.typ a Fasten sheathing to header with 8d common or f' j I. Min.3/8"wood structural 12' galvanized box nails at 3"grid pattern as shown /panel sheathing max Pi r I. ; total ;.I y,: Header to jack-stud strap per wind design. wall Min 1000 lbf on both sides of opening opposite i r. height side of sheathing. r If needed,panel splice edges shall occur over and be 10' Min.double 2x4 framing covered with min 3/8" / ;L nailed to common blocking . max `" thick wood structural panel sheathing with . _ within middle 24'of portal r;' 8d common or galvanized box nails at 3'o.c. height.One row of 3"o.c. height .� in all framing(studs,blocking,and sills)typ. nailing is required in each panel edge. Min length of panel per table 1 Typical portal frame construction • Min(2)3500 lb strap-type hold-downs (embedded into concrete and nailed into framing) Min double 2x4 post(king and jack stud).Number of Min reinforcing of foundation,one#4 bar I jack studs per IRC tables top and bottom of footing Lap bars 15 min R502.5(1)&(2). t tF%u 11 t , Min footing size under opening is 12"x 12'.A turned-down Min 1000 lb hold-down slab shall be permitted at door openings. device(embedded into concrete and nailed Min(1)5/8'diameter anchor bolt installed per IRC R403.1.6— into framing) with 2"x 2'x 3/16"plate washer 2 0 2014 APA—The Engineered Wood Association References APA, 2004, Confirmation of Seismic Design Coefficients for the.APA.Portal Frame, APA Report T2004-59, APA—The Engineered Wood Association,Tacoma,WA. APA,2012,Effect of Hold-Down Capacity on IRC Bracing Method PFH and IBC Alternate Method,APA Report T2012L-24, APA—The Engineered Wood Association,Tacoma,WA. ASCE,2010,Minimum Design Load for Buildings and Other Structures.ASCE 7.American Society of Civil Engineers. Reston,VA. ASTM E2126-11,Standard Test Methods for Cyclic(Reversed)Load Test forShear Resistance of Vertical Elements of the Lateral Force Resisting Systems for Buildings,ASTM International.West Conshohocken,PA. SEAOSC, 1997,Standard Method of Cyclic(Reversed)Test for Shear Resistance of Framed Walls for Buildings,Structural Engineers Association of Southern California.Whither,CA. • • We have field representatives in many major U.S.cities and in Canada who can help answer questions involving vvww.apawood.org APA trademarked products.For additional assistance in specifying engineered wood products,contact us: APA HEADQUARTERS:7011 So.19th St.•Tacoma,Washington 98466•(253)565-6600•Fax:(253)565-7265 APA PRODUCT SUPPORT HELP DESK:(253)620-7400•E-mail:help@apawood.org Form No.TL100� Revised April 2014 DISCLAIMER:The information contained herein is based on APA—The Engineered Wood Association's continuing programs of laboratory testing,product research,and comprehensive field experience.Neither APA nor its members . make any warranty,expressed or implied,or assume any legal liability or responsibility for the use,application �� of,and/or reference to opinions,findings,conclusions,or recommendations included in this publication.Consult your local jurisdiction or design professional to assure compliance with code, construction,and performance requirements.Because APA has no control over quality of workmanship or the conditions under which engineered wood products ore used,it cannot accept responsibility of product performance or designs as actually constructed. 3 ©2014 APA—The Engineered Wood Association 180 Nickerson St. CT E N G I N E .E R 1,N. G �tA�� Suite 302 �7f7 r TQA 1 N C• �'t�v-L /� n D Seattic,WA Project; f`"' ' ��", ✓ ' �J Date: /"t5'�� I (206)285-4572 � '�n - �7 Client: �-✓l� ' 25q3,9��.. L ( C✓S PAX: � 2 16,65'2 Page Number: (206)285-0618 • -V.e;:-• .5a711 • . — b =As4)(A—`CMZ) • • 0 4::6r ` `` X t6`` • 12" k V' LF;ri".Dt' afra.s--(Avc;K: Fvf2_ . 04.711) ,F;675-Ps4 r-D( Pcs).:meV15144).). . ,k-�u - tT►Vkk e . . ) (-tet' e - K---enkTV6- 8600/16 0", a= a)(0,2)/617) •., 0.3 2 89Z3)/-1 ) • • zoti , z ))(,2�1w .,�.g `fin •CSC. � �} tb(�( �4 _ v h � 88 ,9, )• 4. • _ . GDS'. 5° • • . 8: x1c9 F13, 1,0/(2 44_ • . . of •o,;6e tUr. JZx (z to/4-4-743 xl, ep_ov1Y5s dti i Aeo.,1„ ...._ 00 ot...„: 4;5( 5oe. Structural Engineers j WOOD FRAME CONSTRUCTION MANUAL 63 .t; �A Table 2.2A Uplift Connection Loads from Wind ,l • . •• •• . (For Roof-to-Wall,Wall-to-Wall,and Wali-to-Foundation) . 700-yr.Wind Speed 110 115 120 130 140 150 160 170 180 195 3-second gust(mph) f Roof/Ceiling Assembly Roof Span(ft) 'unit Connection Loads(plf)1,113A5,6,7 Design Dead Load 12. 118 128 140 164 190 219 249 281 315 369 2 24 195 213 232 •272 315 362 412 465 521 612 O psfe 36 272 298 324 380 441 506 576 650 729 856 ttt 48 350 383 417 489 567 651 741 836 938 1100 fr[ P3 . 60 428 468 509 598 693 796 906 1022 1146 1345 0 . 12 70 80 92 116 142 171 201 233 267 321 0 24 111 129 148 188 231. 278 328 381 437 528 in 10 psf 36 178 204 260 321 386 456 530 609 736 0) 48 194 227 261 333 411 495 585 680 782 944 2 60 236 276 317 406 501 604 714 830 954 1153 J 12 46 56 68 92 118 147 177 209 243 297 24 69 87 106 146 189 236 286 339 395 486 15 psf 36 118 144 200 261 326 396 470 549 676 48 116 149 183 255 333 417 507 602 704 866 . 60 140 180 221 310 405 508 618 734 858 _ 1057. • 12 22 32 44 68 94 123 153 185 219 273 • 24 27 45 64 104 147 194 244 297 353 444 ' ! 20 psf 36 32 58 84 140 201 266 336 410 489 616 ��114!`•? 48 38 71 105 177 255 339 429 524 626 788 • 60 44 84 125 214 309 412 522 638 762 961, 12 - 8 20 44 70 99 129 161 195 249 • 24 - 3 22 62 ' 105 152 202 255 311 402 • 25 psf 36 - - 24 80 141 206 276 350 429 556 48 - - 27 99 177 261 351 446 548 710 60 - - 29 118 213 316 , 426 542 666 865 1 Tabulated unit uplift connection loads shall be permitted to be multiplied by 0.75 for framing not located within 6 feet of corners for buildings less than 30 feet in width(W),or W/5 for buildings greater than 30 feet in width. 2 Tabulated uplift loads assume a building located in Exposure B with a mean roof height of 33 feet. For buildings • located in other exposures,the tabulated values for 0 psf roof dead load shall be multiplied by the appropriate adjustment factor in Section 2.1.3.1 then reduced by the appropriate design dead load. 3 Tabulated uplift loads are specified in pounds per linear foot of wall. To determine connection requirements, E: multiply the tabulated unit uplift load by the multiplier from the table below corresponding to the spacing of the . connectors: Connection Spacing(in.) I 1216 19.2 24 48 Multiplier 1.00 I 1.33 I 1.60 I 2.00 4.00 ' 4 Tabulated uplift loads equal total uplift minus 0.6 of the roof/telling assembly design dead load. • s Tabulated uplift loads are specified for roof-to-wall connections. When calculating uplift loads for wall-to-wall-or .l • ' • wall-to-foundation connections,tabulated uplift values shall be permitted to be reduced by 73 plf(0.60 x 121 plf) 41• for each full wall above. i.r':• 6 When calculating uplift loads for ends of headers/girders,multiply the tabulated unit uplift load by 1/2 of the Ff' c3,'.y��: header/girder span(ft.). Cripple studs need only be attached per typical uplift requirements. r,i i T For jack rafter uplift connections,use a roof span equal to twice the Jack rafter length.The jack rafter length : includes the overhang length and the Jack span. .f E''' 3 Tabulated uplift loads for 0 psf design dead load are included for Interpolation or use with actual roof dead loads. gt: AMERICAN WOOD COUNCIL els, 180 Nickerson St. CT ENGINEERING Suite 302 ► 1 N C. I L Seattle,WA Project: T CAL S)ikv jf6• Date: 98109 (206)2854512 FAX: Client: Page Number: (206)285-06I8 LOCi? ();())1V-1-7 711'10 .14P V"VtiL 434S:W(7) .46 j! yrs • PP .W D g- evt*t • iv)A0A142 I 1W1 :_ 1 l o MPF ( wy nip.. g 1,,; .N1.4 15 P 1)Z. : • axit4A40 ` i SS. . ; . fi b: :.412-.7"... � . . . tit VIM g. • . . .. ... . .. • . . . s - . .• (A-(0)(1) 0)( 64). .• ..... •: • 6)) e- TN1A, .1 • • 711 (2 .( • 6`�. .:- aA610- • _ - • yet, c @ Fes-- ') = (FY .a 7- fi Structural Engineers TRUSS TO WALL CONNECTION ';I,i VAIliE'; #OF TRUSS PLIES CONNECTOR TO TRUSS TO TOP PLATES 111'1 II I 11 1 HI (6) 0.131"X 1.5" (4) 0.131"X 2.5" .iia) 41!,' 1 H2.5A (5) 0.131" X 2.5" (5) 0.131"X 2.5" 53'.1 Ilii 1 SDWCI5600 itif.r 1! ..._ 2 H10-2 (9) 0.148" X 1.5" (9) 0.148"X 1.5" 101(1 iOti • 2 (2)H2.5A (5) 0.131" X 2.5" EA. (5)0.131"X 2.5" EA. MA A 2 (2)SDWC15600 - - •O 'Ain 3 (3)SDWC15600 - - 11y_` :115 .. ROOF FRAMING PER PLAN 8d AT 6" O.C. . -_ .. 2X VENTED BLK'G. �' 0.131" X 3" TOENAIL '" AT 6" O.C. .T:3 I \N2.5A & SDWC15600 STYI F COMMON/GIRDER TRUSS ---11-- PER PLAN TRUSS TO WALL CONNECTION TO EACH H1 STYLE BEARING/SHEAR WALL PER TRUSS PLY PER TABLE ABOVE PLAN AND SCHEDULE SCALE: 3/4"= 1'-0" (BEAM/HEADER AT SIMILAR) 14 TYP. RAISED HEEL TRUSS TO WALL CONNECTION [ ------------ TRUSS TO WALL CONNECTION SPE VALUES #OF TRUSS CONNECTOR TO TRUSS TO TOP PLATES UPLIFT F1 PUSS 1 H1 (6) 0.13r X 1.5" (4) 0.131" X 2.5" -400 415 1 H2.5A (5) 0.131"X 2.5" (5)0.131" X 2.5" C,�S `•iID 1 SDWC15600 - - -4-6.-- ...-i'.. • 2 H10-2 (9) 0.148" X 1.5" (9)0.148" X 1.5" -160 Tan _' 2 (2)H2.5A (5) 0.131" X 2.5" EA. (5) 0.131"X 2.5" EA. ion-TIT- 2 (2)SDWC15600 . - - 97U 730_... 3 (3)SDWC15600 - - I,t?iii---- 34'� ADD A35 0 48"0.C. ROOF FRAMING PER PLAN FOR.H25A AND SDWC STYLE ' 8d AT 6" O.C. CONNECTIONS .1414644 2X VENTED BLK'G 111.111Kirta21411-14 11111..L ..44-% . 1 ill H2.5A & SOWC15600 STYI F ' iCOMMON/GIRDER TRUSS PER PLAN TRUSS TO WALL CONNECTION TO EACH H1 STYLE BEARING/SHEAR WALL PER TRUSS PLY PER TABLE ABOVE PLAN AND SCHEDULE SCALE: 3/4"= 1'-0" (BEAM/HEADER AT SIMILAR) 1 19 1 TYPICAL TRUSS TO WALL CONNECTION [