Loading...
Specifications /14 r2-6di • RECEIVED /7s� . MAY 11 2016 CT E N G I N E E R I N Gq 180 Nickerson S Structural Engineers INC G'I BUILDINGDIVISION QF 06.285 4206.285.0618 512 (V) S 8(F) #15238 Structural Calculations River Terrace Eo PRp, Plan 5 � 4tg �� F.• •; 60 #4,, Elevation A 4 Pi EG�iN& Tigard, OR 21-2 � �9��� T 0�� Design Criteria: 2012 IBC (ORSC, OSSC) 09/14/2015 ASCE 7-10 Wind Speed: 120(ULT); 93(ASD); Kzt=1 .0 Seismic: Ss=0.972, S1 =0.423, SDC=D Roof Snow Load = 25 psf Site Class = D, Bearing = 2000 psf Client: Polygon Northwest Company 109 East 13th Street, Suite 200 Vancouver, WA 98660-3229 Ph: 360.695.7700 Fax: 360.693.4442 Architect: Milbrandt Architects 25 Central Way, Suite 210 Kirkland, WA 98033 P h: 425.454.7130 Fax: 425.646.0945 J CT ENGINEERING 180 Nickerson St. INC Suite 302 Seattle,WA 98109 (206)285-4512(V) (206)285-0618(F) Polygon Northwest Company Multiple locations in Tigard, OR DESIGN SUMMARY: The proposed project is to be single-family homes. We understand that these homes are to be constructed in multiple locations throughout Tigard, Oregon. Design parameters are as noted below: The structures are two-story wood-framed. Roof framing is primarily with pre-manufactured pitched chord wood trusses. Upper floor framing is primarily with pre-manufactured parallel chord wood trusses. Floor framing over crawlspace is primarily pre-manufactured wood joists. The foundations are to be conventional spread footings. Wind design is based on the ASCE 7-10 MWFRS(Envelope Procedure)for 120 mph ultimate wind speed, exposure category B, and with a Kzt value of 1.00. Lateral design is based on the ASCE 7-10"equivalent lateral force"procedure with Ss equal to or less than 1.10 and S1 equal to or less than 0.50 and with soil classification"D". Plywood or OSB shearwalls are the primary lateral force resisting system (R=6.5). . Foundations have been sized for Class 4 soils as defined in IBC 1806.2. Codes considered; 2012 IBC, and currently adopted ORSC and OSSC. SHEET TITLE: DEAD LOAD SUMMARY CT PROJECT#: CT# ROOF Roofing- 3.5 psf Roofing-future 0.0 psf 5/8"plywood(O.S.B.) 2.2 psf Trusses at 24"o.c. 4.0 psf Insulation 1.0 psf (1)5/8"gypsum ceiling 2.8'psf Misc./Mech. 1.5_psf ROOF DEAD LOAD 15.0 PSF FLOOR floor finish 4.0 psf NO gypsum concrete 0.0 psf 3/4"plywood (O.S.B.) 2.7 psf joist at 12" 2.5 psf Insulation 1.0 psf (1) 1/2"gypsum ceiling 2.2 psf Misc. 2.6 psf FLOOR DEAD LOAD 15.0 PSF (2)2 s8 HDR (1)2x8 HDR (2 21;(8 H 1 R ()2x8 H 7R (2 2x8 HCR / s\ 2B•1 RB RB.3 RB.4 RB.S / o t 2 m N � \ � a / is-s ..1 �t \ / \ 1 / 1 - 1 o 2 s }\ _ t ..,\ N tai / ''' \ kQg N a F.rN CO fl. 1 I / C : NU tYo Q t -7'----• - O to I co O.:1-i m N a = tLn c� ti0 I L- - :•::::I -E N C7 .......... ............. ................ cc t:•:;5::t a:t-t:::tt•::: ;:is i;. .:::.:: ::::. 1 X":":*":"r::t:::::::::::::::�:.�::xt�:5:55;:::-;•5: :•:::.�:. : •::::. N I m 3- -- x ' tr ti a :::::::at":. HDF 216 HO' o Di ::.•5::L•: 5:r�r::nn:nSiS ::5n55E ic:c::-. I 2t 206 D 2 .... ........................................... ................................................................. r� tt•:::s•t:•::�: :5u•:::::::;;:::uitc:utea<%u:•s::•-•.au•�r��-���—,'-..+....::........ < __-�® \ R // m RB.13 RB.12 !� RB 10 RD.16 moo- � I II 1 t PLAN 5A PLAN 5A Roof Framing Plan 0 1/4"=1'-0" CT# 14051 2014.05.09 1/4" = 1'-0" (11x17) e co 1.Ta 1.Tb 1.Tc 1 >< r1/46' O II I. — F I II pi + ,, .. J i_ i E -1 1 111 I1 ,„ F ,.... ...N / N III . .i , ., i I. I II E-1 El-.-- \\_ 1 ma ---L N L -I L 1J no __//"\\ _ j 1111 RC II F W Nialliallir c m 8 4.Td not used this eleS1.a ion © P LAN 5A PLAN 5A Top Floor Shear Plan 1/4"=1'-0" CIT 14051 2014.05.09 1/4" = 1'-0" (11x17) stio se m m , 14 STHD14 3.5x9GLBHDR �- �- 1.Ma 4x10 HDR 1.Mb � " ;S=ri, =Ck=11. _ .. ., =:3=====.==:;-- 43.1 : :;--43.1I cr"` B.2 B 3 B 4 B.3 ill 1 / o I / I / I I 1 I _ J � �A � �1 • -- � I � l E - I i 01 1 1 I CC I I 0 I }- -1'- -11' 1 I I I1 I I I I 1I I I I I II I 1 I i }iini 3.5x 14�IG BEAM FB 1 3. x148 BEAM FB„ 3.5x9 3LB HDR ),i i �-- B.11 II B.12 00 i • II i 1 4xI lR 4;I HDR D_ .. , '�' ", \STAIR / i a1 I I T _��i' : \FRAMIN9 x 1 W R', STHD74 a 11 1 STWI 14 : to 111,_---� I 1.--S7kIC STHD14 \ / I. N 1 I 1 1 /\ / \ P4 -1 1 / \ / \ �I STHD14 STHD14 \ I I 3.5 BIG BEAM FB I / ;. I- m5.5x18 4HDR cr¢riysao +s-r- B.13 cc B.14 = I, 1 u_ - I 11 II I I I I I 1 1 1 re I i x LI ry L -- --------r�'------------- --I- -T• - ,p 1 n 1 A IIT I Fi v. 1 I Q to 1 18 1.- I 55.1 0 l 1 -2 2x8 HOR I G � J I H® =::I=::MO 74 5.125:1214L 3 HDR o r II --• .. 1. m ik__ IININI-�_�, • (2)2x8 HDR (2)2x8 HDR 2)2x8-10R STHD14 ® STHD74 I r P3 '°� STHD14 B.15 STHD14 , ® P3 I/a • 1 2x LEDGER f 2x LEDGER , •� I i•Me 1 1 4.Mc & 4.Md not used this elevation B.17 allh © MONO TRUSSES ge-/ e24''O.C. 0 P LAN 5A PLAN 5A Main Floor Shear/Top Floor Framing 1/4''=1'-0" CT# 14051 2014.05.09 1/4" = 1'-0" (11x17) 40'-0" if!3" 4.-0" 3"�6. -1'-3I y / • T.O.S. 3 1/2"CONC.SLAB o -0'-71/7 ,:,-.'24.„.) 'v I43'-3- T.O.S. --- y STH074 STHD74 ....... . �.� _..._�... � � f/� -, / Iii ........................ ,........ 1.....3/8..'.'.'.'.'.'.' j 1..4'r.0.3/r......':.'..'::.':.':.'.'.':.'.'':.'.'.'.'::.•.::.'.":.'.91`=.3'1/4-.'.':::.'.'.:'::.'; fi . ....... ........... ................................ ....................... I.' 1'.'.':.'.'.'. '.'..'..':..'.':..'...::. I.... :..:...'.CRAWL:SPACE..:....;.... ':.'.'. .':.'.'.. .'.'...:.L'.........:I ..1.75'.'.'.'.'.'.'.'.'..'.'...'.'.'.'.'.:.'.i.' � 1 ..................... o..l....•....W/.(2).//4'EACH.WAYTYP..'.'.'.'.'.'.'.:'. :::.'.'.'.'.'.'.'L'.'.'. _1'-0.112,.......i. ...................... ::'.'.':.'.'.'.'.':.'.'.'..'. j/! :.'9'-Q.1j2•:':'::'.':.':.':.'.:'.::::..4_'�.;...._.r::g�:':'::.::.'::':8:'0.1'.".::'::.::':.' _.1N 1 " !.•.'.:::.•.'.'.'.'.'.'::.':.'.'.'.'.'.':::. '.':.'.'.:•::::......iV, ...... BEARFN�W• iABOVE.-.-.-. -.-.=.-.,-.=.. .... ......rn-.-.-.-.-.--.--.-.-.--.... ........................................... _ � -9'-b 172'. ...... .................. _.,.......... ........... ... STHD74 f STHD14 .1..........•••.•............ ' T.O.S. O I...........� ..- I':::'.' ..'.'.30'x2i)'x:10.".FTG:.. '.".'.':.".'.::::-:1 75"•WIDE LVGTO •TCH':.i- '.'..:.'.'.'ILQIST,DEPTH AB0VE.PONIi. 20'-6" AZh 31/2"CONC.SLAB SLAB SLOPES 3 1/2" D -1'-01/2" FROM BACK TO APRON 1:':.'.'.'.'...... ... ..:.:.:.:.:.:.:.:'.':.'..'.'.'.'.'.......:.... .'1' +1.0.1 2'.•..... ,. ,........ VERIFY GARAGE SLAB HEIGHT ! ......:::::.�: -?.-—- ........... ........ .. WITH GRADING PLAN I'•': ,. .......... +-_- c i—' L_ -rte', - . C._ I O 6" \y._DAN"............ An 1 ,31/2"CONC.SLAG _._''._._._._a'. STHD74 STHD74 0 1 -1'-6 1/2" i i SLOPED DOWN t 1/4 :12 / a Ei n il P3 e P3 , iiSTHD14 STHD74 I L___�f. J It I 411) 40 16 fi SIM. S6.1 /2'-1' 16'-3" 2'-2"/ T-10" / 11'-8" / 40-0' ._-_ P LAN 5A 0 PLAN 5A 1/4Foundation Plan 1/4"=1'-0" CT# 14051 2014.05.09 " = 1'-0" (11x17) CT Engineering Project Title: Engineer: Project ID: 180 Nickerson,Suite 302 En g Seattle,WA 98109 Project Descr: (206)285 4512 Fax: (206)285 0618 Printed 6 MAR 2014,9:18AM M+ItlpeSmcpeBe ?n � `ll � Mitons, � a ,,' ttxmiP4g ACilm *-4 Bd*1:;12UOI[61444§ Lic.#:KW-06002997 Licensee:c.t.engineering Description PLAN 5-A Roof Trusses rWood Bm ea =Design GT a1 a t , a !'f { -t f" r-it € Calculations per 2012 NDS,IBC 012,CBC 2013,ASCE 7:10 BEAM Size: 4x12,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Douglas Fir-Larch Wood Grade: No.2 Fb-Tension 750.0 psi Fc-PrIl 700.0 psi Fv 170.0 psi Ebend-xx 1,300.0 ksi Density 32.210 pcf Fb-Compr 750.0 psi Fc-Perp 625.0 psi Ft 475.0 psi Eminbend-xx 470.0 ksi Applied Loads Unif Load: D=0.0150, S=0.0250 k/ft,Trib=3.0 ft Design Summary Max fb/Fb Ratio = 6.765. 1 fb:Actual: 4,720.15 psi at 22.000 ft in Span#1 12(0.0450'S(o.0750) Fb:Allowable: 697.70 psi j i } + Load Comb: +D+S+H 8 44.0 e, 4x12 Max fv/FvRatio= 0.568: 1 fv:Actual: 96.55 psi at 0.000 ft in Span#1 Fv:Allowable: 170.00 psi Load Comb: +D+S+H Max Deflections Max Reactions (k) D L Lr S w E H Downward L+Lr+S 11.778 in Downward Total 18.845 in Left Support 0.99 1.65 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.99 1.65 Live Load Defl Ratio 44 <360 Total Defl Ratio 28 <180 >WoodlBealn Design' •rGT a2 1l:I , f ar tAk ,, �� ,0,<s._.tts a a;`x. 0 Si, al Iatio0s per 2092'NDS,IBC21112;-CBC 2013., SC 7c 10 BEAM Size: 4x12,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Douglas Fir-Larch Wood Grade: No.2 Fb-Tension 750.0 psi Fc-PrIl 700.0 psi Fv 170.0 psi Ebend-xx 1,300.0 ksi Density 32.210 pcf Fb-Compr 750.0 psi Fc-Perp 625.0 psi Ft 475.0 psi Eminbend-xx 470.0 ksi Applied Loads Unif Load: D=0.0150, S=0.0250 k/ft,Trib=3.0 ft Design Summary Max fb/Fb Ratio = 6.765. 1 fb:Actual: 4,720.15 psi at 22.000 ft in Span#1 D(0.0450'S(o.o750) Fb:Allowable: 697.70 psi + * Load Comb: +D+S+H 44.0 ft, 4x12 Max fv/FvRatio= 0.568: 1 fv:Actual: 96.55 psi at 0.000 ft in Span#1 Fv:Allowable: 170.00 psi Load Comb: +D+S+H Max Deflections Max Reactions (k) 2 L Lr S W E H Downward L+Lr+S 11.778 in Downward Total 18.845 in Left Support 0.99 1.65 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.99 1.65 Live Load Defl Ratio 44<360 Total Defl Ratio 28 <180 j Wom,,i , Ga . S - va�5%a k.... Il t ssn �s.f�r" �, 0z frdiieulatronsper2092NDS BG2012GC203SCE710 BEAM Size: 4x12,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Douglas Fir-Larch Wood Grade: No.2 Fb-Tension 750.0 psi Fc-Prll 700.0 psi Fv 170.0 psi Ebend-xx 1,300.0 ksi Density 32.210 pcf Fb-Compr 750.0 psi Fc-Perp 625.0 psi Ft 475.0 psi Eminbend-xx 470.0 ksi Applied Loads Unif Load: D=0.0150, S=0.0250 k/ft,0.0 ft to 6.0 ft,Trib=2.0 ft Unif Load: D=0.0150, S=0.0250 k/ft,6.0 to 20.0 ft,Trib=17.50 ft Point: 0=0.990, S=1.650 k @ 6.0 ft Design Summary Max fb/Fb Ratio = 8.264; 1 D(0.2625)S(0.4376) lb:Actual: 6,075.59 psi at 9.667 ft in Span#1 !0.03`s„„ * • Fb:Allowable: 735.18 psi 3 4 ::_ a,, Load Comb: +D+S+H Max fv/FvRatio= 1.475: 1 20.0 ft 4x12 fv:Actual: 250.69 psi at 19.067 ft in Span#1 Fv:Allowable: 170.00 psi Load Comb: +D+S+H Max Deflections Max Reactions (k) D L Lr S w E H Downward L+Lr+S 3.106 in Downward Total 4.970 in Left Support 2.13 3.55 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 2.71 4.52 Live Load Defl Ratio 77 <360 Total Defl Ratio 48 <180 CT Engineering Project Title: 180 Nickerson,Suite 302 Engineer: Project ID: Seattle,WA 98109 Project Descr: (206)285 4512 Fax: (206)285 0618 printed:6 MAR 2014.9:18AM Multiple Simple Beam 41f40s1T 11Engd14051T 1.Ecs k a __x ENERcALc INC 1983-2014,.Builld,6141.23,syer6.(44.23 r Lic # �KW-06002997 Licensee::c.t.engineering Wood Be8111 �eSign GT a4 012,CBC 2013,'ASCE • rCalculations per 2012 NOS IBC 2 BEAM Size: 4x12,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Douglas Fir-Larch Wood Grade: No.2 Fb-Tension 750.0 psi Fc-PrIl 700.0 psi Fv 170.0 psi Ebend-xx 1,300.0 ksi Density 32.210 pcf Fb-Compr 750.0 psi Fc-Perp 625.0 psi Ft 475.0 psi Eminbend-xx 470.0 ksi Applied Loads Unif Load: D=0.0150, S=0.0250 k/ft,0.0 ft to 5.50 ft,Trib=17.50 ft Unif Load: D=0.0150, S=0.0250 k/ft,5.50 to 11.50 ft,Trib=2.0 ft Point: D=0.990, S=1.650 k @ 5.50 ft Design Summar, Max fb/Fb Ratio = 3.016. 1 D(0.2625 S(0.4375) t D(0 030)S(0 oso) fb:Actual: 2,239.39 psi at 5.482 ft in Span#1 Fb:Allowable: 742.56 psi Load Comb: +D+S+H Max fv/FvRatio= 0.849: 1 Yj fv:Actual: 144.30 psi at 0.000 ft in Span#1 Fv:Allowable: 170.00 psi 11.50 ft. 4x12 Load Comb: +Di-S+H Max Deflections Max Reactions (k) D L Lr S W E H Downward L+Lr+S 0.337 in Downward Total 0.540 in Left Support 1.66 2.77 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.95 1.59 Live Load Defl Ratio 409>360 Total Defl Ratio 255>180 CT Engineering Project Title: 180 Nickerson,Suite 302 Engineer: Project ID: Seattle,WA 98109 Project Descr: (206)285 4512 Fax: (206)285 0618 Printed:5 MAR 2014 5:00PM r, r r s '-� "" S' , i S K,h t]"1 4051T.-1Engrl149-K 1 ,6, 3 € t 11:;P�e'`Bira � � ` ' ' p' ' ' *� 114 M S E ERGX,LC,ING�'�'98320 Bo 6 4 3,Ver'§44,1a3f Ntu1#Iplie�1 p � .. -4- .. �„ ; .8 � 1 e: e .. Lic.#:,KW-06002997 Licensee:c.t.engineering Description PIAN 5•A1/4 Top Floor Framing ,,, Wood Bheam'Deslgn B•1 �' '' ,N' r rt� - lw 7 f s7 M; . A#I NCaiculations per2012 NDS,IBC20i12,CBC2013IASCE+10 BEAM Size: 4x10,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Douglas Fir-Larch Wood Grade: No.2 Fb Tension 900.0 psi Fc-Pill 1,350.0 psi Fv 180.0 psi Ebend-xx 1,600.0 ksi Density 32.210 pcf Fb-Compr 900.0 psi Fc-Perp 625.0 psi Ft 575.0 psi Eminbend xx 580.0 ksi Applied Loads Unit Load: D=0.0150, L=0.040 k/ft,Trib=10.250 ft Unit Load: D=0.0150, S=0.0250 k/ft,0.0 to 2.670 ft,Trib=3.0 ft Unif Load: D=0.0150, S=0.0250 k/ft,2.670 to 4.250 ft,Trib=23.0 ft Unif Load: D=0.010 k/ft,Trib=8.0 ft Point: D=0.990, S=1.650 k @ 2.670 ft Desian Summary CIAO 0 0 0 • "_=J1C1 ,t Max fb/Fb Ratio = 0.795. 1 10) fb:Actual: 983.60 psi at 2.663 ft in Span#1 iii i Fb:Allowable: 1,237.45 psi Load Comb: +D+0.750L+0.750S+H Max fv/FvRatio= 0.588: 1 A A fv:Actual: 121.63 psi at 3.485 ft in Span#1 also n,4x10 Fv:Allowable: 207.00 psi Load Comb: +D+0.750L+0.750S+H Max Deflections Max Reactions (k) 1 L Lr S w E H Downward L+Lr+S 0.024 in Downward Total 0.038 in Left Support 1.05 0.87 0.92 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 1.60 0.87 1.84 Live Load Defl Ratio 2120 >360 Total Deft Ratio 1333 >180 rWood BeamiDesig -"B 2_ t � a' � f r„� , � „, , , f ,ft: CaTau1a#rons per 2012 NDS,SBC-201 CBC 2013,ASCE 71O, BEAM Size: 3.125x9,GLB, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: DF/DF Wood Grade: 24F-V4 Fb-Tension 2400 psi Fc-Prll 1650 psi Fv 265 psi Ebend-xx 1800 ksi Density 32.21 pcf Fb-Compr 1850 psi Fc-Perp 650 psi Ft 1100 psi Eminbend-xx 930 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=10.250 ft Unif Load: D=0.0150, S=0.0250 k/ft,2.670 to 6.50 ft,Trib=23.0 ft Unif Load: D=0.010 kik Trib=8.0 ft Point: D=0.560, S=0.9350 k @ 3.250 ft Desian Summary Max fb/Fb Ratio = 0.792. 1 + * U( "'WA o s, 7 fb:Actual: 2,168.64 psi at 3.250 ft in Span#1 � Fb:Allowable: 2,738.45 psi Load Comb: +D+0.750L+0.750S+H Max fv/FvRatio= 0.615: 1 A A fv:Actual: 187.53 psi at 5.763 ft in Span#1 6.50 n 3.125x9 Fv:Allowable: 304.75 psi Load Comb: +D+0.750L+0.750S+H Max Deflections Max Reactions (k) 12 L j S W E H Downward L+Lr+S 0.119 in Downward Total 0.189 in Left Support 1.43 1.33 1.12 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 1.97 1.33 2.02 Live Load Defl Ratio 654>360 Total Defl Ratio 412 >180 1Neod'Beallri Design B 3 h '157417'44-' 7 1 i ilk N, 74 #- M* I,ga `Carcul tions p��2012°ND lBc 2912,CBC2013 A",zbE 7a BEAM Size: 4x10,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Douglas Fir-Larch Wood Grade: No.2 Fb-Tension 900.0 psi Fc-Prll 1,350.0 psi Fv 180.0 psi Ebend-xx 1,600.0 ksi Density 32.210 pcf Fb-Compr 900.0 psi Fc-Perp 625.0 psi Ft 575.0 psi Eminbend-xx 580.0 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=10.250 ft Unif Load: D=0.0150, S=0.0250 k/ft,1.50 to 4.250 ft,Trib=23.0 ft Unif Load: D=0.010 k/ft,Trib=8.0 ft Point: D=0.560, S=0.9350 k @ 1.50 ft CT Engineering Project Title: 180 Nickerson,Suite 302 Engineer: Project ID: Seattle,WA 98109 Project Descr: (206)285 4512 Fax: (206)285 0618 Printed:5 MAR 2014,5:00PM Fde Q 1140511 i1 ri01414051T 1 EC6 Multiple Simple Beam �" :Er,I,ERCALC,3INC,19832014,Build6141.23 Ver614123 x;' Lic #..'KW-06002997 Licensee c.t.engineering Design Summary + • ,, ° s�of Max fb/Fb Ratio = 0.681• 1 D( .1 t fb:Actual: 842.88 psi at 1.941 ft in Span#1 i Fb:Allowable: 1,237.45 psi � � . Load Comb: +D+0.750L+0.7505+H Max fv/FvRatio= 0.502: 1 2 A fv:Actual: 103.92 psi at 0.000 ft in Span#1 Fv:Allowable: 207.00 psi 4.250 ft,4x10 Load Comb: +D+0.750L+0.750S+H Max Deflections Max Reactions (k) D L Lr S W E H Downward L+Lr+S 0.023 in Downward Total 0.036 in Left Support 1.17 0.87 1.12 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 1.34 0.87 1.40 Live Load Defl Ratio 2242>360 Total Defl Ratio 1411 >180 Wood Beam Design B 4 : i,;. .,- . . ., Calculations per 2012'NDS IBC 2012 C B_C 2013,ASCE 7-10 BEAM Size: 4x10,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Douglas Fir-Larch Wood Grade: No.2 Fb-Tension 900.0 psi Fc-Prll 1,350.0 psi Fv 180.0 psi Ebend-xx 1,600.0 ksi Density 32.210 pcf Fb-Compr 900.0 psi Fc-Perp 625.0 psi Ft 575.0 psi Eminbend-xx 580.0 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=10.250 ft Unif Load: D=0.0150, S=0.0250 k/ft,Trib=23.0 ft Unif Load: D=0.010 k/ft,Trib=8.0 ft Design Summary Max fb/Fb Ratio = 0.578. 1 + d. 8 3 fb:Actual: 715.19 psi at 2.125 ft in Span#1 � '. Fb:Allowable: 1,237.45 psi ., . � Load Comb: +D+0.750L+0.750S+H Max fv/FvRatio= 0.401: 1 A fv:Actual: 83.02 psi at 3.485 ft in Span#1 Fv:Allowable: 207.00 psi 4250 ft.400 Load Comb: +D+0.750L+0.7505+H Max Deflections Max Reactions (k) D L Lr S W E H Downward L+Lr+S 0.020 in Downward Total 0.031 in Left Support 1.23 0.87 1.22 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 1.23 0.87 1.22 Live Load Defl Ratio 2591 >360 Total Deft Ratio 1632>180 Wood Beam Design" B.5 (Typ) ;.' ;. £. . `1 I;g .; ,.? _... {,. w_ :? . Calculations per 2012 NDS IBC 2012,CBC 2013,ASCE 710- BEAM Size: 2-2x8,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Hem Fir Wood Grade: No.2 Fb-Tension 850.0 psi Fc-PrIl 1,300.0 psi Fv 150.0 psi Ebend-xx 1,300.0 ksi Density 27.70 pcf Fb-Compr 850.0 psi Fc-Perp 405.0 psi Ft 525.0 psi Eminbend-xx 470.0 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=1.0 ft Unif Load: D=0.0150, S=0.0250 kilt,Trib=5.0 ft Unif Load: D=0.010 k/ft,Trib=8.0 ft Design Summary Max fb/Fb Ratio = 0.109 1 fb:Actual: 127.33 psi at 1.375 ft in Span#1 Fb:Allowable: 1,169.59 psi Load Comb: +D+S+H 0 III Max fv/FvRatio= 0.092: 1 A A fv:Actual: 15.85 psi at 0.000 ft in Span#1 Fv:Allowable: 172.50 psi 2.750a 2.2,8 Load Comb: +D+S+H Max Deflections Max Reactions (k) D L Lr S W E H Downward L+Lr+S 0.002 in Downward Total 0.003 in Left Support 0.23 0.06 0.17 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.23 0.06 0.17 Live Load Defl Ratio 19147 >360 Total Dell Ratio 9430>180 CT Engineering Project Title: Project ID: 180 Nickerson,Suite 302 Engineer: Seattle,WA 98109 Project Descr: (206)285 4512 Fax: (206)285 0618 Printed: 2 1 1 5 MAR 0 4 5:00PM s=4 :g .-, ,, , r .,.ire a : a^gip g A )5 P� X141; efr l " ,yvagr T VE110 01140511;t1010 0517 ge6 i inuitiwbimp a Dealn i -e , x Ilk S; y 1`i �hkl" 61ERPAte lla,�983-"201,4;er d 6 14 123 Vers E4 1 23 < Lic.#:KW-06002997 Licensee:c.t..engineering Wood Beam Des'gn B 6 fpµ ��.,t'=.%I��,;,�Z:'.�.,��:-...,. .,;i.��.��' ,.., Y�;� �fis...,. ��' �. �;�..'��,., . . ,.r���. x,�. �:, Calculations per2012�NDS;IBC,20'12,CBC 2013 ASCE 7 1�Q BEAM Size: 2-2x8,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Hem Fir Wood Grade: No.2 Fb-Tension 850.0 psi Fc-PrIl 1,300.0 psi Fv 150.0 psi Ebend-xx 1,300.0 ksi Density 27.70 pcf Fb-Compr 850.0 psi Fc-Perp 405.0 psi Ft 525.0 psi Eminbend-xx 470.0 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=1.0 ft Unif Load: D=0.0150, S=0.0250 k/ft,Trib=5.0 ft Unif Load: D=0.010 k/ft,Trib=8.0 ft Design Summary •''' , ; , ';,8 ' • Max fb/Fb Ratio = 0.520. 1 fb:Actual: 606.14 psi at 3.000 ft in Span#1 Fb:Allowable: 1,165.07 psi Load Comb: +D+S+H Max fv/FvRatio= 0.283: 1 A A fv:Actual: 48.83 psi at 5.400 ft in Span#1 5.04 zz■5 Fv:Allowable: 172.50 psi Load Comb: +D+S+H Max Deflections Max Reactions (k) D L Lr S W E H Downward L+Lr+S 0.039 in Downward Total 0.079 in Left Support 0.51 0.12 0.38 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.51 0.12 0.38 Live Load Defl Ratio 1843 1843>3 60 Total Deft Ratio 908>180 Woad3Beam Des4n ` B 7 ,,� 7 O KAtI t r, m ; rit a ""Caclations per012NDSABC20CBC 2013-ASCE t BEAM Size: 2-2x8,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Hem Fir Wood Grade: No.2 Fb-Tension 850.0 psi Fc-PrIl 1,300.0 psi Fv 150.0 psi Ebend-xx 1,300.0 ksi Density 27.70 pcf Fb-Compr 850.0 psi Fc-Perp 405.0 psi Ft 525.0 psi Eminbend-xx 470.0 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=1.0 ft Unit Load: D=0.0150, S=0.0250 k/ft,Trib=5.0 ft Unif Load: D=0.010 k/ft,Trib=8.0 ft Design Summary ;..i';: ; Max fb/Fb Ratio = 0.292. 1 , fb:Actual: 340.95 psi at 2.250 ft in Span#1 Fb:Allowable: 1,167.23 psi - - - . '� Load Comb: +D+S+H Max fv/FvRatio= 0.195:1 A A fv:Actual: 33.57 psi at 0.000 ft in Span#1 ,504 i-z.5 Fv:Allowable: 172.50 psi Load Comb: +D+54-H Max Deflections Max Reactions (k) D L Lr S w E H Downward L+Lr+S 0.012 in Downward Total 0.025 in Left Support 0.38 0.09 0.28 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.38 0.09 0.28 Live Load Defl Ratio 4369 >360 Total Defl Ratio 2152 >180 LWood Beam,Des0gn ': B 8 3 .7 "1. "7 -,„ =x'. .Calculations er 2012"NDS lBG 2012 CBC 2013,ASCE 7 10`: '.F.. "°Ti.. .� "r#�a � t�., Y BEAM Size: 4x10,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Douglas Fir-Larch Wood Grade: No.2 Fb-Tension 900.0 psi Fc-PrIl 1,350.0 psi Fv 180.0 psi Ebend-xx 1,600.0 ksi Density 32.210 pcf Fb-Compr 900.0 psi Fc-Perp 625.0 psi Ft 575.0 psi Eminbend-xx 580.0 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=14.750 ft D 07113 L0590 Design Summary Max fb/Fb Ratio = 0.277. 1 fb:Actual: 298.66 psi at 1.750 ft in Span#1 Fb:Allowable: 1,077.23 psi ..,._. ,..•._., .`-� Load Comb: +D+L+H IllP Max fv/FvRatio= 0.205: 1 A A fv:Actual: 36.84 psi at 2.730 ft in Span#1 ,-504 a 19 Fv:Allowable: 180.00 psi Load Comb: +D+L+H Max Deflections Max Reactions (k) D L Lr S W E H Downward L+Lr+S 0.005 in Downward Total 0.007 in Left Support 0.39 1.03 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.39 1.03 Live Load Defl Ratio 7745>360 Total Defl Ratio 5633 >180 CT Engineering Project Title: 180 Nickerson,Suite 302 Engineer: Project ID: Seattle,WA 98109 Project Descr: (206)285 4512 Fax: (206)285 0618 Printed 5 MAR 2014 5:00PM Multiple Slmp(e Beam ]ile 0t14051T 11Eng11146511 1 EC6 1 Lic.# iKW-06002997 -.F ENERCALC INC 1983-2014,'BuIld 6 1,4:123 Ver614'1 23 s Licensee:c.t.engineering Wood Beam Design B 9 Calculations per2012 NDS,1BC 2012,CBC 2013,ASCE-7-10„ BEAM Size: 4x10,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Douglas Fir-Larch Wood Grade: No.2 Fb-Tension 900.0 psi Fc-Prll 1,350.0 psi Fv 180.0 psi Ebend-xx 1,600.0 ksi Density 32.210 pcf Fb-Compr 900.0 psi Fc-Perp 625.0 psi Ft 575.0 psi Eminbend-xx 580.0 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=14.750 ft Design Summary D 5.2213 L 0590 Max fb/Fb Ratio = 0.277 1 �1=== fb:Actual: 298.66 psi at 1.750 ft in Span#1 - Fb:Allowable: 1,077.23 psis , „ Load Comb: +D+L+H Max fv/FvRatio= 0.205: 1 A A fv:Actual: 36.84 psi at 2.730 ft in Span#1 Fv:Allowable: 180.00 psi 3.5011.4x10 Load Comb: +D+L+H Max Deflections Max Reactions (k) D L Lr S W E ii Downward L+Lr+S 0.005 in Downward Total 0.007 in Left Support 0.39 1.03 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.39 1.03 Live Load Defl Ratio 7745>360 Total Defl Ratio 5633>180 Wood Beam Design B 10 - „ Calculations per2012 NDS,IBC 2012 CBC 2013 ASCE 7-10'. BEAM Size: 1.75x14,TimberStrand, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: iLevel Truss Joist Wood Grade: TimberStrand LSL 1.55E Fb-Tension 2,325.0 psi Fc-PrIl 2,050.0 psi Fv 310.0 psi Ebend-xx 1,550.0 ksi Density 32.210 pcf Fb-Compr 2,325.0 psi Fc-Perp 800.0 psi Ft 1,070.0 psi Eminbend-xx 787.82 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=14.750 ft Design Summary D 02213 L 0.590 Max fb/Fb Ratio = 0.372. 1 ��� nimmt. fb:Actual: 766.31 psi at 3.000 ft in Span#1 us � � Fb:Allowable: 2,062.40 psi P Load Comb: +D+L+H . • - Max fv/FvRatio= 0.295: 1 7 7 fv:Actual: 91.39 psi at 4.840 ft in Span#1 Fv:Allowable: 310.00 psi 6.0 ft,1.75x14 Load Comb: +D+L+H Max Deflections Max Reactions (k) D L Lr s W E ti Downward L+Lr+S 0.028 in Downward Total 0.038 in Left Support 0.66 1.77 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.66 1.77 Live Load Defl Ratio 2581 >360 Total Defl Ratio 1877>180 Wood Beam Design B 11 Calculations per2012 NDS,IBC 2012,CBC 2013,ASCE 710:, BEAM Size: 1.75x14,TimberStrand, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: iLevel Truss Joist Wood Grade:TimberStrand LSL 1.55E Fb-Tension 2,325.0 psi Fc-Prll 2,050.0 psi Fv 310.0 psi Ebend-xx 1,550.0 ksi Density 32.210 pcf Fb-Compr 2,325.0 psi Fc-Perp 800.0 psi Ft 1,070.0 psi Eminbend-xx 787.82 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=14.750 ft Design Summary D 02213 L 0.590 Max fb/Fb Ratio = 0.198; 1 =_:_ fb:Actual: 431.05 psi at 2.250 ft in Span#1 �' Fb:Allowable: 2,180.79 psi ; Load Comb: +D+L+H :> • Max fv/FvRatio= 0.175: 1 A A fv:Actual: 54.39 psi at 0.000 ft in Span#1 Fv:Allowable: 310.00 psi 4.50 R 1.75x14 Load Comb: +D+L+H Max Deflections Max Reactions (k) D L Lr S W E H Downward L+Lr+S 0.009 in Downward Total 0.012 in Left Support 0.50 1.33 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.50 1.33 Live Load Defl Ratio 6120>360 Total Defl Ratio 4451 >180 CT Engineering Project Title: 180 Nickerson,Suite 302 Engineer: Project ID: Seattle,WA 98109 Project Descr: (206)285 4512 Fax: (206)285 0618 Printed 5 MAR 2014 5:00PM s�nz,M4 *. rY fps AAW*PFA Via'` c ,.,¢` ' ali z ge e'x �_'; '=praal.� rr �.t_? r titAi Q51?1iEngr114osirl:Eq. -Multiple'zimpiebeam �= f wilitIr� '. �„�a� 0Pv r a <e,64ER,CMC,I('fca�T983f-'2014fBfiild gt41x23„l e`_r,614 1 3 Lic.#:KW-06002997 -. =Licensee:c.t.engineering [Wood Beam Design's B 12 a.0.,,,,-414%.41,4,-,144-,:,,,,,,',,,,,„r ` b -* ' v V,k utr . �N 1 �T • 7Calculations per 2012 NDS;IBC�2012 CBC 2013,ASCE 710 EAM Size: 3.125x9,GLB, Fully Unbraced OR 3.125x10.5 Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: DF/DF Wood Grade: 24F-V4 Fb-Tension 2,400.0 psi Fc-Pr!! 1,650.0 psi Fv 265.0 psi Ebend-xx 1,800.0 ksi Density 32.210 pcf Fb-Compr 1,850.0 psi Fc-Perp 650.0 psi Ft 1,100.0 psi Eminbend-xx 930.0 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=14.0 ft Design Summary O 0.210 L 0.580 Max fb/Fb Ratio = 0.736. 1 r , �, Fb Allowable: 2,379.75 752.18 psi si at 4.000 ft in Span#1 fi f M y9bu 4i F Load Comb: +D+L+H 4 A • Max fv/FvRatio= 0.504: 1 fv:Actual: 133.60 psi at 0.000 ft in Span#1 Fv:Allowable: 265.00 psi 8.0 R 3.125x9 Load Comb: +D+L+H Max Deflections Max Reactions (k) D L Lr S W E II_ Downward L+Lr+S 0.152 in Downward Total 0.209 in Left Support 0.84 2.24 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.84 2.24 Live Load Defl Ratio 632 >360 Total Defl Ratio 459>180 CT Engineering Project Title: 180 Nickerson,Suite 302 Engineer: Project ID: Seattle,WA 98109 Project Descr: (206)285 4512 Fax: (206)285 0618 Printed 25 MAR 2014,9:28AM Fde ti1140511-11En014051T 1 ECfi Mu i (e SIi11 fe Beam y •, y rs o O1Yi ENERCALC INC 1963-2014,Budd 6 141;23 Ver6.14 123 Lic.(#::KW-06002997 Licensee;:.c t.engineering• Description : PLAN 5.At Top Floor Framing, Cont. Wood Beam Design B 13 °°"'"R"-" -i 2012,CBC 2013,ASCE 7-10 ;Calculations per 2012 ND5 tBC„ BEAM Size 3.5x14,TimberStrand, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: iLevel Truss Joist Wood Grade:TimberStrand LSL 1.55E Fb-Tension 2,325.0 psi Fc-Pr!' 2,050.0 psi Fv 310.0 psi Ebend-xx 1,550.0 ksi Density 32.210 pcf Fb-Compr 2,325.0 psi Fc-Perp 800.0 psi Ft 1,070.0 psi Eminbend-xx 787.82 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=8.0 ft Unif Load: D=0.0150, L=0.10 k/ft,Trib=5.0 ft Design Summary Big q 116`. 81 b Max fb/Fb Ratio = 0.422. 1 fb:Actual: 962.10 psi at 4.250 ft in Span#1 ' � Fb:Allowable: 2,280.40 psi Load Comb: +D+L+H - .._ �� � �((�� Max fv/FvRatio= 0.310: 1 A 2 fv:Actual: 95.96 psi at 7.338 ft in Span#1 Fv:Allowable: 310.00 psi 8.50 R 3.5,14 Load Comb: +D+L+H Max Deflections Max Reactions (k) D L Lr S w E H Downward L+Lr+S 0.078 in Downward Total 0.097 in i Left Support 0.83 3.49 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.83 3.49 Live Load Defl Ratio 1306>360 Total Defl Ratio 1055>180 Wood BeamDesign B 14 ,2012 t. ,. - - � ,..•Calculations=per ,NDS,IBC2012,,CBC2013,:ASCE7'10" BEAM Size: 5.125x18,GLB, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: DF/DF Wood Grade: 24F-V4 Fb-Tension 2,400.0 psi Fc-PrIl 1,650.0 psi Fv 265.0 psi Ebend-xx 1,800.0 ksi Density 32.210 pcf Fb-Compr 1,850.0 psi Fc-Perp 650.0 psi Ft 1,100.0 psi Eminbend-xx 930.0 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=12.0 ft Design Summary Max fb/Fb Ratio = 0.634. 1 D 0.180 L 0.480 ,313.03 at 10.125 ft in Span#1 Fb Allowable: 2psi r � Load Comb: +D+L+H :�.,. _._,__ �.-. .�r:ti_ a,�.. : .:., _ . __,_. .: :IL:L g Max fv/FvRatio= 0.350: 1 • 20.250 ft, 5.125x18 fv:Actual: 92.72 psi at 18.765 ft in Span#1 Fv:Allowable: 265.00 psi Load Comb: +D+L+H Max Deflections Max Reactions (k) D L Lr S w E H Downward L+Lr+S 0.407 in Downward Total 0.560 in Left Support 1.82 4.86 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 1.82 4.86 Live Load Defl Ratio 596 >360 Total Defl Ratio 433>180 itelqielgiWood Beam Design B 15 x ° 4 4 Calculat►oris„per4012 NDS,IBC,2012,CBC 2013,ASCE 7,10 BEAM Size: 2-2x8,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Hem Fir Wood Grade: No.2 Fb-Tension 850.0 psi Fc-Pr!! 1,300.0 psi Fv 150.0 psi Ebend-xx 1,300.0 ksi Density 27.70 pcf Fb-Compr 850.0 psi Fc-Perp 405.0 psi Ft 525.0 psi Eminbend-xx 470.0 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=9.50 ft Design Summary 0 0.1425 0.360 Max fb/Fb Ratio = 0.264. 1 fb:Actual: 268.39 psi at 1.500 ft in Span#1 �„ ,,, Fb:Allowable: 1,017.19 psi -"'" Load Comb: +D+L+H Max fv/FvRatio= 0.216: 1 A A fv:Actual: 32.43 psi at 2.400 ft in Span#1 Fv:Allowable: 150.00 psi 3.0 e.2-2,6 Load Comb: +D+L+H Max Deflections Max Reactions (k) 2 L Lr S W E H Downward L+Lr+S 0.006 in Downward Total 0.008 in Left Support 0.21 0.57 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.21 0.57 Live Load Defl Ratio 6403 >360 Total Defl Ratio 4657 >180 CT Engineering Project Title: 180 Nickerson,Suite 302 Engineer: Project ID: Seattle,WA 98109 Project Descr: (206)285 4512 Fax: (206)285 0618 Printed:25 MAR 2014,928AM ", Vin; . t ?tC&rsA &3 a* .a s c e z ear de=D1 05 M 0,49' > Ee6 ', M�Iftr�.lei SIM -leµ ewi'll'� � �t t�:�.'j �� t � t #�� j:��'lai},;, � .���n�M � �«�T� 9 �' „,...I Ar,....^M i1,.,...Rte a�La>. x€ a>. is>„,>., ....,,,.. > >�, i."...s > <,....,a,.,,,-R.g RCALC. 11„1 ,p,0§- 01 i 6 i4r€t' 3,V,$,ts" !{1 23:W.. ,�,, r- p ka �€es ^ .`."`.�v. : '� ����;" , �,���� � �e s � 1Ct. � :`}.�-g,I�.a r, � ,� � �>1� +� Lic.# KW-06002997 Licensee:c.t.engineering Wood Beam Design B.16 s itiwn ..m.:. r. ; .a -g R, i.• 4. ,Itel >.r r ;, Caiculahons er 2012 NDS,IBC 2012'6080 2013 NSCE 7 10,g BEAM Size: 5.125x12,GLB, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: DF/DF Wood Grade: 24F-V4 Fb-Tension 2,400.0 psi Fc-Pr!! 1,650.0 psi Fv 265.0 psi Ebend-xx 1,800.0 ksi Density 32.210 pcf Fb-Compr 1,850.0 psi Fc-Perp 650.0 psi Ft 1,100.0 psi Eminbend-xx 930.0 ksi Applied Loads Unif Load: D=0.0150, L=0.040 kilt,Trib=9.50 ft Unif Load: D=0.0150, S=0.0250 klft,Trib=2.0 ft Design Summary Max fb/Fb Ratio = 0.771• 1 Dlef 115 fb:Actual: 1,834.37 psi at 8.250 ft in Span#1 Fb:Allowable: 2,37923 psi s a i rr3 Load Comb: +D+L+H .�,v... u.„,,. . ..,_.. .a>„. ,o.,. .- . tau,.. .:_t ,.' • • Max fv/FvRatio= 0.369: 1 A A fv:Actual: 97.83 psi at 0.000 ft in Span#1 16.50 ft, 5.125x12 Fv:Allowable: 265.00 psi Load Comb: +D+L+H Max Deflections Max Reactions (k) D L Lr S W E H Downward L+Lr+S 0.543 in Downward Total 0.760 in Left Support 1.42 3.14 0.41 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 1.42 3.14 0.41 Live Load Defl Ratio 364>360 Total Defl Ratio 260>180 Wood Beam Design B 18 � it t nye t� �q �y�--� ` g -T 'rev gym �° P,M.A. *4 M 4;,94,4 BttOns�per 2012 NDS;1B0'2012,CBC2013,:ASCE 7 10 war �.1•.�,.,� ..� _ _ .>��,_,.��:ga,��.��� �_.a<r.M w.�.; a°� :^. :.. .R..<>. .-..>, ,.. .h.�>�a��rv>�F>s.,�,,. >a��.>_. �k� A s >. . BEAM Size: 2-2x8,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Hem Fir Wood Grade: No.2 Fb-Tension 850.0 psi Fc-Pr!! 1,300.0 psi Fv 150.0 psi Ebend-xx 1,300.0 ksi Density 27.70 pcf Fb-Compr 850.0 psi Fc-Perp 405.0 psi Ft 525.0 psi Eminbend-xx 470.0 ksi Applied Loads Unif Load: D=0.0150, S=0.0250 k/ft,Trib=4.0 ft Design Summary D 0.060 S 0.10 Max fb/Fb Ratio = 0.272• 1 amminamminimimleraninemmenienmemr fb:Actual: 276.24 psi at 2.750 ft in Span#1 Fb:Allowable: 1,014.63 psi Load Comb: +D+S+H 0 0 Max fv/FvRatio= 0.159: 1 A A fv:Actual: 23.87 psi at 0.000 ft in Span#1 Fv:Allowable: 150.00 psi 5.50 ft,2-2x8 Load Comb: +D+S+H Max Deflections Max Reactions (k) D L Lr S W E H Downward L+Lr+S 0.017 in Downward Total 0.027 in Left Support 0.17 0.28 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.17 0.28 Live Load Defl Ratio 3949>360 Total Defl Ratio 2468>180 Project Title: CT Engineering 180 Nickerson,Suite 302 Engineer: Project ID: Seattle,WA 98109 Project Descr: (206)285 4512 Fax: (206)285 0618 Printed:6 MAR 2014,9:21AM M6)285 a Slmfire-Beim, File; 0114o51T 11EngiS14051T lEC6 . .. �. ..,s?<. ENERCALC 4,7.-11.0,4014.60d:8,1 4123.Ner614 1.23 Lic.#:KW-06002997 Licensee:c.t.engineering Description : PLAN 5.Ak Crawlspace Framing Wood Beam Design CB 1 Calculations per 2012 NDS,IBC;2012,CBC 2013,ASCE 7-10" BEAM Size: 4x10,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Douglas Fir-Larch Wood Grade No.2 Fb-Tension 900.0 psi Fc-Prll 1,350.0 psi Fv 180.0 psi Ebend-xx 1,600.0 ksi Density 32.210 pcf Fb-Compr 900.0 psi Fc-Perp 625.0 psi Ft 575.0 psi Eminbend-xx 580.0 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=9.50 ft Design Summary D(0.14251 L(0.3eo) Max fb/Fb Ratio = 0.823: 1 i� ` � ' fb:Actual: 883.28 psi at 3.750 ft in Span#1 Fb:Allowable: 1,073.71 psi � �' Load Comb: +D+L+H Max fv/FvRatio= 0.403: 1 A fv:Actual: 72.63 psi at 0.000 ft in Span#1 7.50 ft4x10 Fv:Allowable: 180.00 psi Load Comb: +D+L+H Max Deflections Max Reactions (k) D L Lr S W E H Downward L+Lr+S 0.074 in Downward Total 0.101 in Left Support 0.53 1.43 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.53 1.43 Live Load Defl Ratio 1222 >360 Total Defl Ratio 888>180 • TJI JOISTS and RAFTERS • Code Code I Code Suggest Suggest .Suggest Lpick ick_•LEick Lpick .._._-_.-._.._..-..._._._.-. ... LITL d_-..i._._._.__-..- L Joist b d Spa. LL DL M max V max El L tb L fv L TL240 L LL360 L max TL defl. 4- LL detl_ rL TL360 L LL480 L.inax 'TL deft TL deft LL defl.iLL deb. .^�size&grade._...,width pnj._depth(in_j_._M•Z__�PsQtps2,4ft"Ibs1_. (g (Osi) (ft.) (ft_?__.__._(ft:)._.._.__`•_._. (ft.) __....�)_._1_ 01 Cft...) I ($.) (m) rano _,Sm_1_i,ratio__ 9.5"TJI 110 1.75 9.5 19.2 40 15: 2380 12201 1.40E+08 14.71 27.73 15.23- 14.80 14.71 0.661 0.48 } 13.31 13445 13.31! 0.44 360 0.32: 495 9.5"TJI 110 1.75 9.5 16 40 15,- 2380 1220 1.40E+08 16.11 33.27 16.19 15.73 15.73 0.721 0.52 14.14 14.29 .14.14 0.47 360 0.341 495 9.5"TJI 110 1.75 9.5 12 40 15 2380 1220 1.40E+08 18.61 44.36 17.82 17.31 17.31 0.791 0.58 15.57 15.73 .16.67 0.52 360 0.381 495 9.5"TJI 110 1.75 9.5 9.6 40 15 2380 1220 1.40E+08 20.80 55.45 19.19 18.64 18.64 0.851 0.62 16.77 16.94 • 16.77' 0.56 360 0.41 41 495 9.5"TJI 110 1.75 9.5 19.2 40 10 2500 1220 1.57E+08 15.81 30.50 16.34 15.37 16.37 ... 0.64• 0.51 14.27 13.97 13 97 0.44 384 0.35. 480 9.5"TJI 110 = .1.75.: .9.5.,.,'16 40 • 10 •2500 1221'1.57E+08 : 17.32 :36.60 ; 17.36 .'.16.34 `-„ 18.34' 0.68- 0.54 15.17 , 14184 „_,,f4.84• , 0A6 ',384 .0.37. 480 , 480 9.5"TJI 110 1.75 9.5 12 40 10 2500 12201 1.57E+08 20.00 48.80 19.11 17.98 17.96 0.75 0.60 1629 16.34 16.34 0.51 384 0.411__1' 480 9_5"TJI 110 175 9.5 9.6 40 10 2500 12201 1.57E+08 22.36 61.00 20.58 1927. 1927 0.814_._._.__0:65 17.98 17:60 17.60 0.55 384 0A44 480 9.5"TJI 210 2.0625 9.5 19.2 40 10 3000 13301 1.87E+08 17.32 33.25 17.32 16.301 16.30 0.68 0.54 15.13 14.81 1481, 0.46 384 0.371 480 15"T.11'210 , ,2.0625, - ..9.5'+-111'1 .40.- 10- :;.3000 1330 4.87E+08 ,18.97-.. 39.90 .18.40• ,17.32 17.32. :0.72 0.58 16:08;''' 15:74.. .,-,.,,..,,15.-74'... .0.49 384 029 480 9.55"'TJI 210 2.0625 9.5 12 40 101 3000 1330 1.87E+08 21.91 53.20 20.26 19.06 19.06 0.79 0.641I 17.70 17.32 , .17.32 0.54 384 0431 480 9.5"TJI 210 2.0625 9.5 9.6 40 10 3000 1330_1.87E+08 24.49 66.50 21.82 20.53 20.53 0.861 0.68 19.06 18.66 18.66' 0.58 384 0.47, 480 IIIIIIIIIIIi 9.5"TJI 230 2.3125 9.5 19.2 40 10 3330 1330 2.06E+08 18.25 33.25 17.89 16 83 16 83 0 70 i 0.56 15.63 15.29,,,:-...::,-15.29. 0.48 384 0.381, 480 "'9.5"TJI 230;`. 23125`:=:.'� 9.5� ,=16 • 40, 10 ,-.3330 `1330'2.06E+08 ,-`19.99 . 39;90 :�19.01 "17.89.;,^ 17.89;, ,0:75:`- .:0.601:;- '; 16.601'.-1625 „ 18:26 ,,0.51, ;384 " ':0.41 ,• 480 9.5"TJI 230 2.3125 9.5 12 40 10 3330 1330 2.06E+08 23.08 53.20 20.92 19.69 19.69 0.821 0.66 18.28 17.89 - 17.89 0.56 384 0.451 480 9.5"TJI 230 2.3125 9.5 9.6 40 10 3330 1330 2.06E+08 25.81 66.50 22.54 21.21 21.21 0.88 L 0_71- 19.69 19.27 ,,19.27' 00.60 384 0.4_111; 480 E _ 11.875"TJI 110 1.75 11 875 192 40 10 3160 15601 2.67E+08 1778 39.00 19.50 18.35 ..I.7•7/;4. ,,.,..9,67)._,....0•54..„ 17.04 16.67 16 67 0 52 384 0 42 480 '11275"TJI 110 '." 1:75''''.J'''.:"111.85-''7 : .,',':;.:-'16.'....,-<40 '. 10." ,.3160 ,.;1560' 2.67E+08 z19 47.; A6.80.1-L''20. 2,:'7 19.50: • '19.47 i 0.81,: 0 65 18:]0 , 17;72•>+,....,!4.,..17 72 0.55°: 384 =0A4 480 11.875"TJI 110 1.75 11.875 12 40 10 3160 1560 2.67E+08 22.49 62.40 22.81 21.46 21.46 0.891 072[ 19.93 19.50 19.50 0.61 384 0.49i 480 11.875"TJI 110 1.75 11.875 9.6 40 10 3160 1560 2.67E+08 25 14 78.00 24.57 23.12 23.12 0.961 0.77 21.46 21.01 21.01 0.66 384 0_53:_ 480 11.876'7.11 210 2.0625 11.875 19.2 40 10 3795 1655 3.15E+08 19.48 41.38 20.61 19.39 19.39 0.811 0.65 18.00 17.62 ..17.22. 0.55 384 0.441, 480 11:875"TJI 210P:; 2.0625,',;-'11.875,',.-1.* 1 40'' '.10 `--3795 ;:1655=115E+01,--.2124 .49:65 ' 21.90 20.61-`-:'=20.61 -0.86. 0.69;' 19.13' '1832 8;72: 1 ; .0.59 384--','0.47 480 11.875"TJI 210 2.0625 11.875 12 40 10 3795 1655 3.15E+08 24.64 66.20 24.10 22.68 22.68 0.951 0.761 21.05 20.61 20,61-__9.64 _381_1_51_1 0.52: __480 11.875"7J1 210 2.0625 11.875 9.6 40 10 3795 1655 3.15E+08 27.55 82.75 25.96 24.43 24.43 1.021 0.81 22.68 22.20 22.20 0.69 384 0.551 480 11.875"TJI 230 2.3125 11.875 19.2 40 10 4215 1655 3.47E+08 20.53 41.38 21.28 20.03 20.03 0.831 ,0.67 � 18.59 18.20 18'20 0.57--3E4-_ 0 45 480 11.875 TJI 230'. 2.3125 11.875' 16. :'40 -10':;, "4215- '1655, 3.47E+08":22.49 r -49:65, 22.62 21.28:, 21.28; ;`,0.89:. -0.71;.' 19;76, 19!34 19`34 0:60 384 ".-1 0.48 480 11.875"TJI 230 2.3125 11.875 12 40 10 4215 16551 3.47E+08 25.97 66.20 24.89 23.42 23.42 0.98 E 0.781. 21.74 21.28 21.28: 0.67 384 0.53 480 11.675"TJI 230 2.3125 11.875 9.6 40 10 4215 1655 3_47E+08 29.03 82_75 26.81 25.23 25.23 1.051 0.84 23.42 22.93 22.93 0.72 384 0.57 480 11.875"RFPI 400 2.0625 11.875 19.2 40 10 4315 1480 3.30E+08 20.77 37.00 _20.93 19.691 19.69 0.821 0.66 18.28 17.89 17.89 0.56 384 0.451 480 11.875"'RFPI'400; ? 2.0625' '11.8751 < -16 1:40 ',10++."...:.4315 ,1480 <3:30E+08 ; 2276 44:40'='`22:24. 20.93 , '20.93"".. 0.87 "0.70,' ."19:43 ,,:,19:01 19;01 0:59 ;,384 048 "'480 11.875"RFPI 400 2.0625 11.875 12 40 10 4315 1480 3.30E+08 26.28 59.20 24.48 23.03 23.03 0.961 0.77 21.38 20.93 20.93 0.65 384 0.521. 480 I 11.875"RFPI 400 2.0625 11.875 9.6 40 10 4315 1480 3.30E+08 29.38 74.00 26.37 24.81 24.81 1.031 0.83 23.03 22.54 22.54' 0.701 3841 0.56 480 Page 1 D+L+S CT#14051-4015.2 Twin Creek I LOAD CASE (12-12) (ASED ON ANSI/AF8PA NDS-198 SEE SECTION: 2.3.1 2.3.1 2.3.1 3.7.1 3.7.1 Ke 1.00 Design Buckling Factor D+L+S c 0.80(Constant). Section 3.7.1.5 Cr KcE 0.30(Constant), Section 3.7.1.5 Cf(Pb) Cf(Pc) 1997 NDS Cb (Varies) > Section 2.3,10 Bending Comp. Size Size Rep. Cd(Pb) Cb Cd(Pc) Eq.3.7-1 NOS 3.9.2 Max.Wall duration duration factor factor use Stud Grade Width Depth Spadng,Height Le/d Vert.Load Her.Loa 0.1.0 Load @ Plate Cd(Pb)Cd(Fe) Cf Cf Cr Fb Fc perp Fc E Pb Fc pup' Fc• Fce Pc fc fc/Pc lb lb/ In. In. In. I 0. plf psf pit (Fb) (Fc) psi psi psi psi psi psi psi psi psi psi psi FbNI-fc/Fce) H-F Stud 1.5 3.5 16 7.7083 26.4 1730 0.9916 1993.4 1.00 1.15 1.1 1.05 1.15 675 405 800 1,200,000 854 508 966 515.42 441.22 439.37 1.00 0.00 0.000 H-F Stud 1.5 3.5 16 9 30.9 1340 0.9968 1993.4 1.00 1.15 1.1 1.05 1.15 675 405 800 1.200,000 854 506 966 378.09 340.90 340.32 1.00 0.00 0.000 H-F Stud 1.5 3.5 12 9 30.9 1785 0.9947 2657.8 1.00 1.15 1.1 1.05 1.15 875 405 800 1,200,000 854 508 966 378.09 340.90 340.00 1.00 0.00 0.000 H-F Stud 1.5 3.5 16 8.25 28.3 1550 0.9921 1993.4 1.00 1.15 1.1 1.05 1.15 675 405 800 1,200,000 854 508 966 449.95 395.22 393.65 1.00 0.00 0.000 -I-I-F Stud 1.5 3.5 12 8.25 28.3 2070 0.9953 2657.8 1.00 1.15 1.1 1.05 1.15 675 405 800 1,200,000 854 506 966 449.95 395.22 394.29 1.00 0.00 0.000 H-F Stud 1.5 3.5 8 8.25 28.3 3100 0.9921 3988.7 1.00 1.15 1.1 1.05 1.15 875 405 , 800 1,200,000 854 506 966 449.95 395.22 393.65 1.00 0.00 0.000 SPF Stud 1.5 3.5 16 7.7083 26.4 1695 0.9952 2091.8 1.00 1.15 1.1 1.05 1.15 675 425 725 1,200,000 854 531 875.438 515.42 431.52 430.48 1.00 0.00 0.000 SPF Stud 1.5 3.5 16 9 30.9 1320 0.9944 2091.8 1.00 1.15 1.1 1.05 1.15 675 425 725 1,200,000 854 531 875.438 378.09 336.17 335.24 1.00 0.00 0.000 SPF Stud 1.5 3.5 12 9 30.9 1760 0.9844 2788.1 1.00 1.15 1.1 1.05 1.15 675 425 725 1,200,000 854 531 875.438 378.09 338.17 335.24 1.00 0.00 0.000 SPF Stud 1.5 35 18 8.25 28.3 1525 0.9957 2091.8 1.00 1.15 1.1 1.05 1.15 675 425 725 1,200,000 854 531 875.438 449.95 386.13 387.30 1.00 0.00 0.000 SPF Stud 1.5 3.5 12 8.25 28.3 2030 0.9925 2789.1 1.00 1.15 1.1 1.05 1.15 675 425 725 1,200.000 854 531 875.438 449.95 388.13 386.67 1.00 0.00 0.000 SPF Stud 1.5 3.5 8 8.25 28.3 3050 0.9957 .4183.6 1.00 1.15 1.1 1.05 1.15 875 425 725 1.200,000 854 531 875.438 449.95 388.13 387.30 1.00 0.00 0.000 H-F#2 1.5 5.5 16 7.7083 16.8 3132 0.2408 3132.4 1.00 1.15 1.3 1.10 1.15 850 405 1300 1,300,000 1,271 506 1644.5 1378.83 1031.58 506.18 0.49 0.00 0.000 Il-F#2 1.5 5.5 18 9 19.6 3132 0.3652 3132.4 1.00 1.15 1.3 1.10 1.15 850 405 1300 1,300.000 1,271 508 1644.5 1011.45 837.57 508.18 0.60 0.00 0.000 H-F#2 1.5 5.5 16 8.25 18.0 3132 0.2858 3132.4 1.00 1.15 1.3 1.10 1.15 850 405 1300 1,300.000 1,271 506 1644.5 1203.70 946.77 506.18 0.53 0.00 0.000 SPF#2 1.5 5.5 16 7.7083 16.8 3287 0.2737 3287.1 1.00 1.15 1.3 1.10 1.15 875 425 1150 1,400.000 1,308 531 1454.75 1484.89 1015.45 531.23 0.52 0.00 0.000 SPF#2 1.5 5.5 16 9 19.6 3287 0.3906 3287.1 1.00 1.15 1.3 1.10 1.15 875 425 1150 1,400,000 1,308 531 1454.75 1089.25 850.16 531.23 0.62 0.00 0.000 SPF#2 1.5 5.5 16 8.25 18.0 3287 0.3158 3287.1 1.00 1.15 1.3 1.10 1.15 875 425 1150 1,400,000 1,308 531 1454.75 1296.30 945,38 531.23 0.56 0.00 0.000 SPF Stud 1.5 3.5 16 14.57 50.0 545 0 0.9913 2091.8 1.00 1.15 1.1 1.05 1.15 675 425 725 1,200,000 854 531 875.438 144.26 139.02 138.41 1.00 0.00 0.000 SPF#2 1.5 5.5 16 19 41.5 1450 0 0.9917 3287.1 1.00 1.15 1.3 1.10 1.15 875 425 1150 1,400500 1.308 531 1454.75 244.40 235.32 234.34 1.00 0.00 0.000 H-F#2 1.5 5.5 16 19 41.5 1360 0 0.9969 3132.4 1.00 1.15 1.3 1.10 1.15 850 405 1300 1,300,000 1,271 506 1644.5 226.94 220.14 219.80 1.00 0.00 0.000 --.-..... (•.1Ne \•••./ Nj V't C:. ,.cN .) ........„ .s,..) (%\ '\' '' , . .t.,,.. Page 1 D+L+W CT#14051-4015.2 Twin Creek I LOAD CASE (12-13) (BASED ON ANSIFAFBPA NDS-1997) SEE SECTION: 2.3.1 2.3.1 2.3.1 3.7.1 3.7.1 Ke 1.00 Design Buckling_Factor D+L+W Cr c 0.80(Constant)> Section 3.7.1.5TO NOS ClCf 1997 KcE 0.30(Constant)e Section 3.7.1.5 Cd Cl(Pb)b(Fb) Cb Cdf (c)) Eq. Cb (Vanes) > Section 2.3.10 Bending Comp. Size Size Rep. .7-1 NDS 3.9.2 Max.Welt duration duration factor factor use Stud Grade Width Depth Spadng Height Led Vert.Load Hor.Load se 1.0 Load(B Plate Cd(Fb)Cd(Fe) Cf Cf Cr Fb Fe perp Fc E Fb' Fc perp' Fe' Fee Pe fc le./Fie ib lb/ In. in. in. R. pit psi pit (Fb) (Fe) psi psi psi psi psi psi psi psi psi psi psi Fb"(1-fe/Fce) H-F Stud 1.5 3.5 16 7.7083 26.4 1075 9.71 0.9951 1993.4 1.60 1.00 1.1 1.05 1.15 675 405 600 1,200,000 1,366 508 840 515.42 427.08 273.02 0.64 376.78 0.586 H-F Stud 1.5 3.5 18 9 30.9 755 8.46 0.9942 1993.4 1.60 1.00 1.1 1.05 1.15 675 405 800 1,200,000 1,368 506 840 378.09 333.99 191.75 0.57 447.52 0.685 H-F Stud 1.5 3.5 12 9 30.9 1140 8.46 0.9998 2657.8 1.60 1.00 1.1 1.05 1.15 675 405 800 1,200,000 1,366 506 840 378.09 333.99 217.14 0.85 335.64 0.577 H-F Stud 1.5 3.5 16 825 28.3 970 8.13 0.9943 1993.4 1.60 1.00 1.1 1.05 1.15 675 405 800 1,200,000 1,366 508 840 449.95 384.87 246.35 0.64 361.37 0.585 H-F Stud 1.5 3.5 12 8.25 28.3 1425 8.13 0.9974 2657.8 1.60 1.00 1.1 1.05 1.15 675 405 800 1,200,000 1,366 508 840 449.95 384.87 271.43 0.71 271.03 0.500 H-F Stud 1.5 3.5 8 825 28.3 2355 8.13 0.9981 3988.7 1.60 1.00 1.1 1.05 1.15 675 405 800 1.200,000 1.366 506 840 449.95 384.87 299.05 0.78 180.69 0.394 SPF Stud 1,5 3.5 16 7.7083 26.4 1060 9.71 0.9971 2091.8 1.60 1.00 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 761.25 515.42 415.53 269.21 0.65 376.78 0.577 SPF Stud 1.5 3.5 18 9 30.9 700 8.46 0.9115 2091.8 1.60 1.00 1.1 1.05 1.15 675 425 725 1,200,000 1.366 531 761.25 378.09 328.30 177.78 0.54 447.52 0.618 SPF Stud 1.5 3.5 12 9 30.9 1125 8.46 0.9931 2789.1 1.60 1.00 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 761.25 378.09 328.30 214.29 0.65 335.64 0.567 SPF Stud 1.5 3.5 16 8.25 28.3 960 8.13 0.9970 2091.8 1.60 1.00 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 761.25 449.95 376.35 243.81 0.65 361.37 0.577 SPF Stud 1.5 3.5 12 8.25 28.3 1405 8.13 0.9952 2789.1 1.80 1.00 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 761.25 449.95 376.35 267.62 0.71 271.03 0.490 SPF Stud 1.5 3.5 8 8.25 28.3 2320 6.13 0.8958 4183.6 1.60 1.00 1.1 1.05 1.15 675 425 725 1200,000 1,366 531 761.25 449.95 376.35 294.60 0.78 180.89 0.383 H-F#2 1.5 5.5 16 7.7083 16.8 3132 9.71 0.3909 3132.4 1.80 1.00 1.3 1.10 1.15 850 405 1300 1,300,000 2,033 506 1430 1378.83 969.91 506.18 0.52 152.58 0.119 H-F#2 1.5 5.5 16 9 19.6 3132 8.48 0.5743 3132.4 1.60 1.00 1.3 1.10 1.15 650 405 1300 1,300,000 2,033 506 1430 1011.45 804.50 506.18 0.63 181.23 0.178 H-F#2 1.5 5.5 16 8.25 18.0 3132 8.13 0.4411 3132.4 1.60 1.00 1.3 1.10 1.15 850 405 1300 1,300,000 2.033 506 1430 1203.70 899.13 506.18 0.56 148.34 0.124 SPF#2 1.5 5.5 16 7.7083 16.8 3287 9.71 0.4327 3287.1 1.60 1.00 1.3 1.10 1.15 875 425 1150 1,400,000 2,093 531 1265 1484.89 940.30 531.23 0.56 152.58 0.114 SPF#2 1.5 5.5 16 9 19.6 3287 8.46 0.6033 3287.1 1.60 1.00 1.3 1.10 1.15 875 425 1150 1,400,000 2,093 531 1265 1089.25 806.08 531.23 0.66 181.23 0.169 SPF#2 1.5 5.5 16 825 18.0 3287 8.13 0.4790 3287.1 1.60 1.00 1.3 1.10 1.15 875 425 1150 1,400,000 2,093 531 1265 1296.30 884.69 531.23 0.60 146.34 0.118 SPF Stud 1.5 3.5 16 14.57 50.0 70 8.46 0.9957 2091.8 1.60 1.00 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 761.25 144.26 138.14 17.78 0.13/WNW 0.879 SPF#2 1.5 5.5 16 19 41.5 860 9.71 0.9941 3287.1 1.60 1.00 1.3 1.10 1.15 875 425 1150 1.400,000 2.093 531 1265 244.40 233.80 106.67 0.40 927.02 0.786 H-F#2 1.5 5.5 16 19 41.5 600 9.71 0.9921 3132.4 1.60 1.00 1.3 1.10 1.15 850 405 1300 1,300,000 2,033 506 1430 226.94 219.02 96.97 0.44 927.02 0.796 Page 2 D+L+W+,SS CIO 14051-4015.2 Twin Creek I LOAD CASE I (12-14) I (BASED ON ANSI/AFBPA NDS-1997) SEE SECTION: 2.3.1 2.3.1 2.3.1 3.7.1 3.7.1 Ke 1.00 Design BUctdin.Factor D+L+W+Sl2 e 0.80(Constant)> Section 3.7.1.5 Cr KeE 0.30(Constant)> Section 3.7.1.5 Cl(Fb)_ Cf(Fe) 1997 NOS Cb (Varies > ,Section 2.3.10 Bending Comp. Size Size Rep._ Cd(Pb) Cb Cd(Fe) Eq.3.7-1 NOS 3.9.2 Max.Wall duration duration factor factor use Stud Grade VNdth Depth Spadng Height Laid Vert.Load Her.Load <>1.0 Load @ Plate Cd(Fb)Cd(Fc) Cf Cf Cr Fb Fe perp Fe E Fb' Fc perp' Fc- Fee Fc fe Ic/F'c lb fb/ in. In. in. 0. all Pe plf (Fb) (Fc) psi psi psi psi psi psi psi psi psi psi psi Fb'-(1-te/Fce) H-F Stud 1.5 3.5 16 7.7083 26.4 1095 9.71 0.9962 1993.4 1.60 1.15 1.1 1.05 1.15 675 405 800 1,200,000 1,366 506 966 515.42 441.22 278.10 0.63 376.78 0.599 H-F Stud 1.5 3.5 16 9 30.9 765 8.48 0.9986 1993.4 1.60 1.15 1.1 1.05 1.15 675 405 800 1,200,000 1,366 506 968 378.09 340.90 194.29 0.57 447.52 0.674 H-F Stud 1.5 3.5 12 9 30.9 1150 8.46 0.9969 2657.8 1.80 1.15 1.1 1.05 1.15 675 405 800 1,200,000 1,366 506 966 378.09 340.90 219.05 0.64 335.64 0.584 H-F Stud 1.5 3.5 16 8.25 28.3 985 8.13 0.9963 1993.4 1.60 1.15 1.1 1.05 1.15 675 405 800 1,200,000 1.366 506 968 449.95 395.22 250.16 0.63 361.37 0.598 H-F Stud 1.5 3.5 12 8.25 28.3 1445 8.13 0.9959 2657.8 1.60 1.15 1.1 1.05 1.15 675 405 800 1,200,000 1,366 506 966 449.95 395.22 275.24 0.70 271.03 0.511 H-F Stud 1.5 3.5 8 8.25 28.3 2390 8.13 0.9980 3986.7 1.80 1.15 1.1 1.05 1.15 675 405 800 1,200,000 1.366 508 968 449.95 395.22 303.49 0.77 180.69 0.408 SPF Stud 1.5 3.5 16 7.7083 28.4 1080 9.71 0.9935 2091.8 1.60 1.15 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 875.438 515.42 431.52 274.29 0.64 376.78 0.589 SPF Stud 1.6 3.5 16 9 30.9 760 8.46 0.9988 2091.8 1.60 1.15 1.1 1.05 1.15 875 425 725 1.200,000 1,366 531 875.438 378.09 338.17 193.02 0.57 447.52 0.669 SPF Stud 1.5 3.5 12 9 30.9 1140 8.46 0.9944 2789.1 1.60 1.15 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 875.438 378.09 336.17 217.14 0.65 335.64 0.577 SPF Stud 1.5 3.5 16 8.25 28.3 975 8.13 0.9952 2091.8 1.60 1.15 1.1 1.05 1.15 675 425 725 1.200,000 1,366 531 875.438 449.95 388.13 247.82 0.64 381.37 0.588 SPF Stud 1.5 3.5 12 8.25 28.3 1430 8.13 0.9952 2789.1 1.60 1.15 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 875.438 449.95 388.13 272.38 0.70 271.03 0.503 SPF Stud 1.5 3.5 8 8.25 28.3 2380 8.13 0.9922 4183.8 1.60 1.15 1.1 1.05 1.15 875 425 725 1.200,000 1.386 531 875.438 449.95 388.13 299.68 0.77 180.89 0.396 H-F#2 1.5 5.5 16 7.7083 16.8 3132 9.71 0.3593 3132.4 1.60 1.15 1.3 1.10 1.15 850 405 1300 1,300,000 2.033 506 1644.5 1378.83 1031.58 506.18 0.49 152.58 0.119 H-F#2 1.5 5.5 16 9 19.8 3132 8.46 0.5437 3132.4 1.60 1.15 1.3 1.10 1.15 850 405 1300 1,300,000 2.033 506 1644.5 1011.45 837.57 506.18 0.80 181.23 0.178 H-F#2 1.5 5.5 16 8.25 18.0 3132 8.13 0.4100 3132.4 1.60 1.15 1.3 1.10 1.15 850 405 1300 1,300,000 2.033 506 1644.5 1203.70 946.77 506.18 0.53 146.34 0.124 SPF#2 1.5 5.5 16 7.7083 16.8 3287 9.71 0.3872 3287.1 1.60 1.15 1.3 1.10 1.15 875 425 1150 1,400,000 2,093 531 1454.75 1484.89 1015.45 531.23 0.52 152.58 0.114 SPF#2 1.5 5.5 16 9 19.6 3287 8.46 0.5595 3287.1 1.80 1.15 1.3 1.10 1.15 875 425 1150 1,400,000 2,093 531 1454.75 1089.25 850.16 531.23 0.62 181.23 0.169 SPF#2 1.5 5.5 16 8.25 18.0 3287 8.13 0.4342 3287.1 1.60 1.15 1.3 1.10 1.15 875 425 1150 1,400,000 2,093 531 1454.75 1296.30 945.38 531.23 0.56 146.34 0.118 SPF Stud 1.5 3.5 16 14.57 50.0 70 8.46 0.9955 2091.8 1.60 1.15 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 875.438 144.26 139.02 17.78 0.13#1t### 0.979 SPF#2 1.5 5.5 16 19 41.5 660 9.71 0.9914 3287.1 1.60 1.15 1.3 1.10 1.15 875 425 1150 1.400,000 2,093 531 1454.75 244.40 235.32 106.67 0.45 927.02 0.786 H-F#2 1.5 5.5 16 19 41.5 600 9.71 0.9901 3132.4 1.60 1.15 1.3 1.10 1.15 850 405 1300 1,300,000 2,033 506 1644.5 228.94 220.14 96.97 0.44 927.02 0.796 Page 3 D+L+S+.5W CT#14061-4015.2 Twin Creek I LOAD CASE I (12-15) I (BASED ON ANSIIAF6PA NDS-1897) SEE SECTION: 2.3,1 2.3.1 2.3.1 3.7.1 3.7.1 Ks 1.00 Design Buckling Factor D+L+S+Wl2 c 0.80(Constant)> Section 3.7.1.5 Cr KcE 0.30(Constant)> Section 3.7.1.5Cf(Fb) Cf(Fc) 1997 NOS Cb (Varies > Section 2.3.10 Bending Comp.Size Size Rep. Cd(Fb) Cb Cd(Fe) Eq.3.7-1 NDS 3.9.2 Max.Wat duration duration factor factor use Stud Grade Width Depth Spadng Height Le/d Vert.Load Nor.Load ..1.0 Load @ Plate Cd(Fb)Cd(Fc) Cf Cf Cr Fb Fe perp Fc E Fb' Fe perp' Fc- Fee Pc fc fdP'e lb fb/ in. In. in. 4 pit Psf pif (Fb) (Fc) psi Pei psi Psi psi psi psi psi psi psi psi Fb"(1-fc/Fce) H-F Stud 1.5 3.5 16 7.7083 26.4 1335 4.855 0.9935 1993.4 1.60 1.15 1.1 1.05 1.15 675 405 800 1,200,000 1,366 506 966 515.42 441.22 339.05 0.77 188.39 0.403 H-F Stud 1.5 3.5 16 9 30.9 970 4.23 0.9923 1993.4 1.60 1.15 1.1 1.05 1.15 675 405 800 1,200,000 1,366 506 966 378.09 340.90 246.35 0.72 223.76 0.470 H-F Stud 1.5 3.5 12 9 30.9 1380 4.23 0.9976 2657.8 1.60 1.15 1.1 1.05 1.15 675 405 800 1,200,000 1,366 506 966 378.09 340.90 262.86 0.77 167.82 0.403 H-F Stud 1.5 3.5 16 825 28.3 1195 4.065 0.9960 1993.4 1.60 1.15 1.1 1.05 1.15 675 405 800 1,200,000 1,366 506 966 449.95 395.22 303.49 0.77 180.69 0.408 H-F Stud 1.5 3.5 12 8.25 28.3 1680 4.065 0.9990 2657.8 1.60 1.15 1.1 1.05 1.15 675 405 800 1,200,000 1,366 506 966 449.95 395.22 320.00 0.91 135.51 0.343 H-F Stud 1.5 3.5 8 8.25 28.3 2665 4.065 0.9999 3986.7 1.60 1.15 1.1 1.05 1.15 675 405 800 1,200,000 1,386 508 968 449.95 395.22 338.41 0.86 90.34 0.267 SPF Stud 1.5 3.5 16 7.7083 26.4 1315 4.855 0.9907 2091.8 1.60 1.15 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 875.438 515.42 431.52 333.97 0.77 188.39 0.392 SPF Stud 1.5 3.5 16 9 30.9 965 4.23 0.9970 2091.8 1.60 1.15 1.1 1.05 1.15 675 425 725 1,200,000 1,386 531 875.438 378.09 336.17 245.08 0.73 223.76 0.466 SPF Stud 1.5 3.5 12 9 30.9 1370 4.23 0.9990 2789.1 1.60 1.15 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 875.438 378.09 336.17 260.95 0.78 167.82 0.396 SPF Stud 1.5 3.5 16 8.25 28.3 1180 4.065 0.9922 2091.8 1.60 1.15 1.1 1.05 1.15 675 425 725 1,200,000 1.366 531 875.438 449.95 388.13 299.68 0.77 180.69 0.396 SPF Stud 1.5 3.5 12 8.25 28.3 1660 4.065 0.9973 2789.1 1.60 1.15 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 875.438 449.95 388.13 316.19 0.81 135.51 0.334 SPF Stud 1.5 3.5 8 8.25 28.3 2630 4.065 0.9969 4183.6 1.60 1.15 1.1 1.05 1.15 675 425 725 1.200,000 1,368 531 675.438 449.95 388.13 333.97 0.86 90.34 0.257 H-F#2 1.5 5.5 18 7.7083 16.8 3132 4.855 0.3001 3132.4 1.60 1.15 1.3 1.10 1.15 850 405 1300 1,300,000 2,033 506 1644.5 1378.83 1031.58 506.18 0.49 76.29 0.059 H-F#2 1.5 5.5 16 8.25 18.0 3132 4.065 0.3479 3132.4 1.60 1.15 1.3 1.10 1.15 850 405 1300 1,300 000 2,033 506 1644.5 1203.70 946.77 506.18 0.53 73.617 0.062 SPF#2 1.5 5.5 16 7.7083 16.8 3287 4.655 0.3304 3287.1 1.60 1.15 1.3 1.10 1.15 875 425 1150 1,400,000 2,093 531 1454.75 1484.89 1015.45 531.23 0.52 76.29 0.057 SPF#2 1.5 5.5 16 9 19.6 3287 4.23 0.4750 3287.1 1.60 1.15 1.3 110 1.15 875 425 1150 1,400,000 2,093 531 1454.75 1089.25 850.16 531.23 0.62 90.61 0.085 SPF#2 1.5 5.5 16 625 18.0 3287 4.065 0.3750 , 3287.1 1.60 1.15 1.3 1.10 1.15 875 425 1150 1,400,000 2,093 531 1454.75 1296.30 945.38 531.23 0.56 73.17 0.059 SPF Stud 1.5 3.5 16 14.57 50.0 255 4.23 0.9959 2091.8 1.60 1.15 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 875.438 14426 139.02 64.76 0.47 586.43 0.779 SPF#2 1.5 5.5 16 19 41.5 935 4.855 0.9925 3287.1 1.60 1.15 1.3 1.10 1.15 875 425 1150 1.400,000 2,093 531 1454.75 244.40 235.32 151.11 0.64 463.51 0.580 H-F#2 1.5 5.5 16 19 41.5 865 4.855 0.9970 3132.4 1.60 1.15 1.3 1.10 1.15 850 405 1300 1,300,000 2,033 506 1644.5 226.94 220.14 139.80 0.64 463.51 0.584 Page 4 D+L+S+.7E CTM 14051-4015.2 Twin Creek I LOAD CASE I (12-16) I (BASED ON ANSI/AFBPA NDS-1997) SEE SECTION: 2.3.1 2.3.1 2.3.1 3.7.1 3.7.1 Ke 1.00 Design Budding Factor D+L+S+E1t.4 c 0.80(Constant)> Section 3.7.1.5 Cr KcE 0.30(Constant)> Section 3.7.1.5 Cr(Pb) Cf(Fc) 1997 NDS Cb (Varies) > Section 2.3.10 Bending,Comp. Size Size Rep. Cd(Fb) Cb Cd(Fc) Eq.3.7-1 NOS 3.9.2 Maz.Wall duration duration factor factor use Stud Grade Width Depth Spadng Height Le/d Vert Load Her.Load 0.1.0 Load CI PlateCd(Fb)Cd(Fe) Cf Cf Cr Fb Fc perp Fc E Fb' Fc perp' Fc• Fee re Ic fclF'c lb Ib/ In. In. in. R. p0 psf plf (Fb) (Fc) psi psi psi psi psi psi psi psi psi psi psi Fb'•(1-ferFce) H-F Stud 1.5 3.5 16 7.7083 26.4 1415 3.57 0.9983 1993.4 1.60 _1.15 1.1 1.05 1.15 675 405 800 1,200,000 1,366 508 966 515.42 441.22 359.37 0.81 138.53 0.335 H-F Stud 1.5 3.5 16 9 30.9 1010 3.57 0.9980 1993.4 1.60 1.15 1.1 1.05 1.15 675 405 800 1,200,000 1,386 508 966 378.09 340.90 256.51 0.75 188.85 0.430 H-F Stud 1.5 3.5 12 9 30.9 1420 3.57 0.9937 2657.8 1.60 1.15 1.1 1.05 1.15 675 405 800 1,200,000 1,368 506 966 378.09 340,90 270.48 0.79 141.63 0.364 H-F Stud 1.5 3.5 16 8.25 28.3 1225 3.57 0.9961 1983.4 1.60 1.15 1.1 1.05 1.15 675 405 800 1,200,000 1,366 506 966 449.95 395.22 311.11 0.79 158.68 0.376 H-F Stud 1.5 3.5 12 8.25 28.3 1710 3.57 0.9947 2657.8 1.60 1.15 1.1 1.05 1.15 675 405 800 1,200,000 1,366 506 966 449.95 395.22 325.71 0.82 119.01 0.315 H-F Stud 1.5 3.5 8 8.25 28.3 2700 3.57 0.9968 3988.7 1.60 1.15 1.1 1.05 1.15 875 405 800 1,200,000 1,388 508 966 449.95 395.22 342.86 0.87 79.34 0.244 SPF Stud 1.5 3.5 16 7.7083 26.4 1395 3.57 0.9984 2091.8 1.60 1.15 1.1 1.05 1.15 675 425 725 1,200,000 1,368 531 875.438 515.42 431.52 354.29 0.82 138.53 0.324 SPF Stud 1.5 3.5 18 9 30.9 1000 3.57 0.9918 2091.8 1.60 1.15 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 875.438 378.09, 336.17 253.97 0.76 188.85 0.421 SPF Stud 1.5 3.5 12 9 30.9 1410 3.57 0.8982 2789.1 1.60 1.15 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 875.438 378.09 336.17 268.57 0.80 141.63 0.358 SPF Stud 1.5 3,5 18 8.25 28.3 1210 3.57 0.9932 2091.8 1.60 1.15 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 875.438 449.95 388.13 307.30 0.79 158.68 0.366 SPF Stud 1.5 3.5 12 8.25 28.3 1690 3.57 0.9940 2789.1 1.60 1.15 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 875.438 449.95 388.13 321.90 0.83 119.01 0.306 SPF Stud 1.5 3.5 8 8.25 28.3 2670 3.57 0.9987 4183.8 1.60 1.15 1.1 1.05 1.15 875 425 , 725 1,200.000 1,366 531 875.438 449.95 388.13 339.05 0.87 79.34 0.238 H-F M2 1.5 5.5 16 7.7083 16.8 3132 3.57 0.2844 3132.4 1.60 1.15 1.3 1.10 1.15 850 405 1300 1,300,000 2,033 506 1644.5 1378.83 1031.58 506.18 0.49 56.10 0.044 H-F M2 1.5 5.5 18 9 19.8 3132 3.57 0.4405 3132.4 1.60 1.15 1.3 1.10 1.15 850 405 1300 1,300,000 2933 506 1644.5 1011.45 837.57 508.18 0.60 78.47 0.075 H-F 02 1.5 5.5 16 825 18.0 3132 3.57 0.3404 3132.4 1.60 1.15 1.3 1.10 1.15 850 405 1300 1,300,000 2,033 506 1644.5 1203.70 948.77 508.18 0.53 64.26 0.055 SPF M2 1.5 5.5 18 7.7083 18.8 3287 3.57 0.3154 3287.1 1.60 1.15 1.3 1.10 1.15 875 425 1150 1,400,000 2,093 531 1454.75 1484.89 1015.45 531.23 0.52 58.10 0.042 SPF#2 1.5 5.5 16 9 19.6 3287 3.57 0.4618 3287.1 1.60 1.15 1.3 1.10 1.15 875 425 1150 1,400,000 2,093 531 1454.75 1089.25 850.16 531.23 0.82 76.47 0.071 SPF#2 1.5 5.5 16 8.25 18.0 3287 3.57 0.3678 3287.1 1.60 1.15 1.3 1.10 1.15 875 425 1150 1,400,000 2,093 531 1454.75 1296.30 945.38 531.23 0.56 64.26 0.052 SPF Stud 1.5 3.5 16 14.57 50.0 285 3.57 0.9981 2091.8 1.60 , 1.15 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 875.438 144.26 139.02 72.38 0.52 494.93 0.727 SPF#2 1.5 5.5 16 19 41.5 1020 3.57 0.9910 3287.1 1.60 1.15 1.3 1.10 1.15 875 425 1150 1,400,000 2,093 531 1454.75 244.40 235.32 164.85 0.70 340.83 0.500 H-F#2 1.5 5.5 16 19 41.5 945 3.57 0.9939 3132.4 1.60 1.15 1.3 1.10 1.15 850 405 1300 1,300,000 2,033 506 1644.5 226.94 220.14 152.73 0.69 340.83 0.513 • Page 5 180 Nickerson St C T . 'EENGINEERING Sutte 302 _ �^^�� I N CR--3 Seattle,WA Project: I �P b •ic t 1 , 98109 (206)285.4512 Si �} Q` • Date: Client: J1Jy-v j 1iv ``1—i v.( L st. • Page Number: (2 6)285-0618 ...3 . I &. ~: N . . _ 4I ' Ano.. c.r II GYf1 . • : t t ! • a • i t. < i . 3i5 s s tuu ,�,l, mPLfi Ply; f• i4 4 1ST � D. � 4 3 : F 3 S .r„1. 1!-..r••. Ll �.._e.1-.... ..xl .'wet - ; K. . z' -- 51p5 G, ►t .,.-PAS. �N Y.3 ., _'= 5 ':�L , It - -=- ie` . 3 it , l S w jr•1 , ,QFC . f f t . Y/_,,7 ..., 4 Y F 1 4 3 i t ('�j [ i g ` 1 i ,., m 4 i t � ; J�E�' )4,..1.1: y � ii # • -• t . r - � v £ -... ., r . !�J1(/� � fA� }��} tj�� �y�j• < ` I i I i i ,�-- ice': =K. structural Engineers 13Wr V . T7jr, f� � 180 is.lickerson St. CT EN G.;1 N E- ER 1N G Suite302 / a c. SSeattle,WA / 9 Project: -C __w. .Date (206)2854512 MX: Client: Page Number- \ (206)285-0618 . .114,.., : -194a3) psr a6) - ( 150p 1 o rl. plptiv NA (2- -g) 120 Wat- ,.... . ) lox, ru__ s. eivt . . s 47, Kk el-o 16) - 3,16 ,' • == f.f 01* f414 7111) 2.4000 , I 547 t°Psr V • == g is i-tv1 . - 41 I81 s4 -40 asy( 2,. .,,ed:::.--.45-aKi.ts 45- ._ 44. *, e of c.. f a i q3cA 4-. 2:Rro at-- 5 kaig.. i livi"5"."4:El l'i .. i'e ril.f 4 : ,• .`L4 . • .f, ' Strocturai Engineers Design Maps Summary Report Page 1 of 1 MIMS Design Maps Summary Report User-Specified Input Building Code Reference Document 2012 International Building Code (which utilizes USGS hazard data available in 2008) Site Coordinates 45.43123°N, 122.77149°W Site Soil Classification Site Class D -"Stiff Soil" Risk Category I/II/III p B a i �yy�.to a: _. b _." 1 +. �A}'#2�Mj�""�"yG `'r `�S� 11` ,.«isq' .moi R'Y�\V n�'M . �4` f .10414,94-754.: � �t.✓ t ,"" `4= sl 1. thittie,. R+ a' t o W....-.'(r4 of r 4 y,'. a, e ''1', , „ nom; „- 3 , t 1 `,s4 t f'. ,- ,C" 'Age 0.'`' ' ' " 2..* lftl - • A .s ate I ':3;-:'.'f:, s fi s i 3 1 �5 , 'r `r-. ` e,„.:4',{4.,,,,,O II� AIlti18 q f Vtilkqe.Alkt.A1Zik:ttz.7,4.,'tr!'",,Iot.1,t- ,111' :.,:-..0''.41.441 + {ao7 .aa a z fi . ' 1 t ,. y ,a f sr ry* a ` , L r S � ....--1--,._ lamtY x -'•. w .,V ai - ,- ytx '' .xf � 4.4..,,,,e- r,' . LakeOswego? J ' i � <� fs . h'i12 Scol15� �` x ri�jnC� . � € •.'...1,-4;., 27;f4;11011',1-&".''..:::':......,:::.' � 7 cg r _ pfa , ;..: ,44 s r € v �s q m1 ' z ' 1,., iu„ w n »°s 0 ff, 1 #q s ...........a .aaa5, 1� ' �-;; ¢€. ; rniiQCIU@S# + � , f..°7-4ec 2 Nlapt .` dna R� ' MapQuest , . t..>,F ..> ..a ..r .. USGS-Provided Output Ss = 0.972 g SMS = 1.080 g Sos = 0.720 g S. = 0.423 g SMI = 0.667 g S01 = 0.445 g For information on how the SS and Si values above have been calculated from probabilistic(risk-targeted) and deterministic ground motions in the direction of maximum horizontal response, please return to the application and select the"2009 NEHRP"building code reference document. MCER Response Spectrum Design Response Spectrum 0.82 1.10 0.80 0.35 0,7 0.88 0.54 . 0.77 0.54 A S 0,48 v 0.40 a 0.55 , 4820.40 t 0.44 0.22 0.72 0.24 0.22 0.15 0.11 0.02 0.00 0.00 0.00 0.20 0.40 0.40 0.80 1.00 1.70 1.40 1.50 1.110 2.00 0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.50 1_80 2.00 Period,T(sec) Period,T(sec) Although this information is a product of the U.S.Geological Survey,we provide no warranty,expressed or implied,as to the accuracy of the data contained therein.This tool is not a substitute for technical subject-matter knowledge. http://ehp2-earthquake.wr.usgs.gov/designmaps/us/summary.php?template=minimal&latit... 9/14/2015 2012 IBC SEISMIC OVERVIEW SHEET TITLE: 2012 IBC SEISMIC OVERVIEW CT PROJECT#: CT#14189:Plan 5A Step# 2012 IBC ASCE 7-10 1. RISK CATEGORY TYPE=11 Table 1604.5 Table 1.5-1 OCCUPANCY CATEGORY 2. IMPORTANCE FACTOR IE= 1.00 Section 1613.1 ->ASCE Table 1.5-2 3. Site Class-Per Geo. Engr. S.C.= D Section 1613.3.5 Section 11.4.2/Ch.20 Table 1613.3.3(2) Table 20.3-1 4. 0.2 Sec. Spectral Response Ss= 0.97 Figure 1613.3.1(1) Figure 22-1 5. 1.0 Sec. Spectral Response Si= 0.43 Figure 1613.3.1(2) Figure 22-2 Latitude= Varies . N Longitude= Varies W N/A (Or by ZIP code) (Or by ZIP code) http://earthquake.usos.00v/research/hazm aps/ http://earthquake.usos.qov/desionmaos/us/apolication.php 6. Site Coefficient(short period) Fa= 1.11 Figure 1613.3.3(1) Table 11.4-1 7. Site Coefficient(1.0 second) Fv= 1.58 Figure 1613.3.3(2) Table 11.4-2 Stas=Fa`Ss Sats= 1.08 EQ 16-37 EQ 11.4-1 SM,=F„`S, SM.= 0.68 EQ 16-38 EQ 11.4-2 Sos=2/3*SMS SDs= 0.72 EQ 16-39 EQ 11.4-3 SDI=2/3*SM1 Sul= 0.45 EQ 16-40 EQ 11.4-4 8. Seismic Design Category 0.2s SDCs= D Table 1613.3.5(1) Table 11.6-1 9. Seismic Design Category 1.0s SDC1 = D Table 1613.3.5(2) Table 11.6-2 10. Seismic Design Category SDC= D Max. Max. 11. Wood structural panels --- --- N/A Table 12.2-1 12. Response Modification Coef. R= 6.5 N/A Table 12.2-1 13. Overstrength Factor 00= 3.0 , N/A Table 12.2-1 14. Deflection Amplification Factor C0= 4.0 N/A Table 12.2-1 15. Plan Structural Irregularities No N/A Table 12.3-1 16. Vertical Structural Irregularities --- No N/A Table 12.3-2 17. Permitted Procedure Equiv. Lateral Force --- Table 12.6-1 Page 1 2012 IBC EQUIV.LAT.FORCE SHEET TITLE: 2012 IBC EQUIVALENT LATERAL FORCE PROCEDURE PER ASCE 7-10 CT PROJECT#: CT#14189:Plan 5A Sos= 0.72 h„= 18.00 (ft) SDI= 0.45 x=' 0.75 ASCE 7(Table 12.8-2) R= 6.5 Ct= 0.020 ASCE 7(Table 12.8-2) 1E= 1.0 T= 0.175 ASCE 7(EQ 12.8-7) = 0.43 k=' 1 ASCE 7(Section 12.8.3) T� 6ASCE 7(Section 11.4.5:Figure 22-15) Cs=Sos/(R/IE) 0.110 W ASCE 7(EQ 12.8-2) Cs=Sol/(T*(R/IE)) (for T<TL) 0.399 W ASCE 7(EQ 12.8-3)(MAX.) Cs=(Sot*TO/(T2*(R/IE)) (for T>TL) 0.000 W ASCE 7(EQ 12.8-4)(MAX.) Cs=0.01 0.010 W ASCE 7(EQ 12.8-5)(MIN.) Cs=(0.5 Sl)/(R/IE) 0.033 W ASCE 7(EQ 12.8-6)(MIN.if Si>0.6g) CONTROLLING DESIGN BASE SHEAR= 0.110 W VERTICAL DISTRIBUTION OF SEISMIC FORCES PER ASCE 7-10 SECTION 12.8.3 (EQ 12.8-11) (EQ 12.8-12) C = DIAPHR. Story Elevation Height AREA DL W, w; *h;k wX *hzk DESIGN SUM LEVEL Height (ft) h;(ft) (sqft) (ksf) (kips) (kips) Ew; *h;k Vi DESIGN Vi Roof ,';, --- 18.00 18.00 1666', 0.022;, 36.652 659.7 0.58 3.79 3.79 2nd ~ 8.00 " 10.00' 10.00 1712 , 0:028' 47.936 479.4 0.42 2.75 6.54 1st(base) 10.00 0:00', SUM= 84.6 1139.1 1.00 6.54 E=V= 9.34(LRFD) 0.7*E= 6.54 (ASD) DIAPHRAGM FORCES PER ASCE 7-10 SECTION 12.10.1.1 (EQ 12.10-1) Design Fp_ DIAPHR. F, E F, w; E w, FP,= EF;*wcx 0.4*SDs*IE*w, 0.2*SDS*IE*Wp LEVEL (kips) (kips) (kips) (kips) (kips) Ew; Max.FPX FPX Min. Roof 3.79 3.79 36.7 36.7 5.26 3.79 10.52 5.26 2nd 2.75 6.54 47.9 84.6 6.88 3.71 13.76 6.88 1st(base) 0.00 0.00 0.0 84.6 0.00 0.00 0.00 0.00 Page 2 ASCE 7-10 WIND Part2 SHEET TITLE: MAIN WIND FORCE RESISTING SYSTEM USING LOADS FROM ASCE 7.10 CHAPTER 28,PART 2 CT PROJECT#: CT#14189:Plan 5A NS E-W F-B S-S 2012 IBC ASCE 7-10 Ridge Elevation(ft)= 30.00 30M0 ft. Roof Plate Ht.= 18.00 18.00 Roof Mean Ht.= 24.00 24.00 ft. - - Building Width= 40.0 48.0ft. V u/t. Wind Speed 3See.Gum= 120 - 120 mph Figure 1609 Fig. 26.5-1A thru C V asd. Wind Speed 3 see Guar=k s 93 .) 93 m h (EQ_1�� �� ,....... P 16.33) Exposure= B B lw= 1.0 1.0 N/A N/A Roof Type= <Gable Gable Ps30 A= 28.6 28.6f psf Figure 28.6-1 Ps30e= 4.6, ` 4.6 psf Figure 28.6-1 Ps30c= 20.7 20.7 psf Figure 28.6-1 Ps300= 4.7. '<4.7psf Figure 28.6-1 A= 1.00 1.00 Figure 28.6-1 Kz,_ : 1.00 1 00 Section 26.8 windward/lee= 1.00 1.00(Single Family Home) X'Kr'1 : 1 1 Ps=X•Kzt'I'Pa30= (Eq.28.6-1) Ps A= 28.60 28.60 psf (LRFD) (Eq.28.6-1) Ps a= 4.60 4.60 psf (LRFD) (Eq.28.6-1) Ps c= 20.70 20.70 psf (LRFD) (Eq.28.6-1) Ps o= 4.70 4.70 psf (LRFD) (Eq.28.6-1) Ps A and C average= 24.7 24.7 psf (LRFD) Ps a end 0 areiage= 4.7 4.7 pst (LRFD) a= 4 4 Figure 28.6-1 2a= 8 8 width-2'2a= 24 32 MAIN WIND-ASCE 7-10 CHAPTER 28 PART 2 Areas(N-S) Areas(E-W) (N-S) (E-W) Wind(N-S)(LRFD) Wind(E-W) (LRFD) width factor roof-> 1.00 1.00' 1.00; 0.50 16 psf min. 16 psf min- width factor 2nd-> 1.00 1.00 wind(LRFD)wind(LRFD) DIAPHR. Story Elevation Height AA AB AC A0 AA AB Ac AD per 28.4.4 per 28.4.4 WIND SUM WIND SUM LEVEL Height (ft) hi(ft) h(ft) (sq.ft) (sq.It)(sq.ft) (sq.ft) (sq.ft)(sq.ft)(sq.ft)(sq.ft) Vi(N-S) V(N-S) Vi(E-W) V(E-W) 30.00 12.0 0 192 0 288 0 192 0 192 Roof -- 18.00 18.00 4.0 64 0 96 0 64 0 128 0 10.2 9.2 6.05 6.05 6.27 6.27 2nd 8.00 10.00 10.00 9.0 144 0 216 0 144 0 288 0 5.8 6.9 8.59 14.64 10.08 16.35 1st(base) 10.00 0.00 0.00 0 0.00 0.00 AF= 1000 AF= 1008 16.0 16.1 V(n-s). 14.64 V(e-w). 16.35 klps(LRFD) kips(LRFD) kips kips Page 3 ASCE 7-10 Part 1 SHEET TITLE: MAIN WIND FORCE RESISTING SYSTEM USING LOADS FROM ASCE 7-10 CHAPTER 28,PART 1 CT PROJECT#: CT#14189:Plan 5A SEE SEAW RAPID SOLUTION SPREADSHEET AND INSERT VALUES BELOW MAIN WIND-7-10 CHAPTER 26 PART 1 Wind(N-S) Wind(E-W) Min/Part 2(Max.) Min/Method 1(Max.) Wind(N-S)(LRFD) Wind(E-W)(LRFD) DIAPHR. Story Elevation Height DESIGN SUM DESIGN SUM DESIGN SUM DESIGN SUM LEVEL Height (ft) hi(ft) Vi(N-S) V(N-S) Vi(E-W) V(E-W) Vi(N-S) V(N-S) Vi(E-W) V(E-W) Roof - 18.00 18.00 0.00 0.00 0.00 0.00 10.24 10.24 627 6.27 2nd 8.00 10.00 10.00 ;0.00 0.00 0:00; 0.00 5.76 16.00 10.08 16.35 1st(base) 10.00 0.00 0.00 V(n-s)= 0.00 V(e-w)= 0.00 V(n-s)= 16.00 V(e-w)= 16.35 kips kips kips(LRFD) kips(LRFD) DESIGN WIND-Min./Part 2/Part 1 ASD Wind(N-S)(LRFD) Wind(E-W)(LRFD) Wind(N-S)(ASD) Wind(E-W)(ASD) 0.6'W 0.6'W DIAPHR. Story Elevation Height DESIGN SUM DESIGN SUM DESIGN SUM DESIGN SUM LEVEL Height (ft) hi(ft) VI(N-S) V(N-S) VI(E-W) V(E-W) VI(N-S) V(N-S) Vi(E-W) V(E-W) Roof 8 10 10 10.24 10.24 6.27 6.27 6.14 6.14 3.76 3.76 2nd 10 0 0 5.76 16.00 10.08 16.35 3.46 9.60 6.05 9.81 1st(base) 0 0 0 V(n-s)= 16.00 V(e-w)= 16.35 V(n-s)= 9.60 V(e-w)= 9.81 kips(LRFD) kip RFD) kips(ASD) kips(ASD) Part 1 Base Shear Part 2 Base Shear = 0.0 0.0 ratio ratio Page 4 SHEET TITLE: SDPWS SHEARWALL VALUES PER TABLE 4.3A CT PROJECT#: CT#14189: Plan 5A SHEATHING THICKNESS tsheathing= 7/16" NAIL SIZE nail size= 0.131"dia.X 2.5"long STUD SPECIES SPECIES= H-F or SPF SPECIFIC GRAVITY S.G. = 0.43 ANCOR BOLT DIAMETER Anc. Bolt dia.= 0.625 ASD F.O.S.= 2.0 SHEARWALL TYPE Table 4.3A Seismic Table 4.3A Wind 7/16"w/8d common V seismic V sallowable V wind V w allowable (15/32"values per (SDPWS-2008) modify per S.G. (SDPWS-2008) modify per S.G. footnote 2) (divide by 2.0 FOS) (divide by 2.0 FOS) ' (for ASD) (for ASD) -- 0 1 0 1 P6TN 150 150 150 150 P6 520 242 730 339 P4 760 353 1065 495 P3 980 456 1370 637 P2 1280 595 1790 832 2P4 1520 707 2130 990 2P3 1960 911 2740 1274 2P2 2560 1190 3580 1665 N.G. 10000 4650 10000 4650 GYPSUM THICKNESS .,tsheathing= /2" NAIL SIZE nail size= 1 1/4"long No.6 Type S or W Response Modification Coef. R= 6.5 SHEARWALL TYPE Table 2306.4.7 Seismic Wind 1/2"w/1 1/4"screw V allowable V s allowable V w allowable Blocked (PER 2009 IBC) modify G7 125 R>2 not allowed R>2 not allowed G4 150 R>2 not allowed R>2 not allowed 2G7 250 R>2 not allowed R>2 not allowed 2G4 300 R>2 not allowed R>2 not allowed 2G4 300 150 SHEET TITLE: LATERAL N-Sl(front to back-up/down) CT PROJECT#: CT#14189:Plan 5A Diaph.Level: Roof Panel Height= ` -8 ft. Seismic V I= 3.79 kips Design Wind N-S V i= 6.14 kips Max.aspect= : 3.5;SDPWS Table 4.3.4 Sum Seismic V I= 3.79 kips Sum Wind NS V I= 6.14 kips Min.Lwall= 2.29 ft. (0.6-0.14Sds)D+0.7 p Qe 0.6D+W per SDPWS-2008 pc= 1.00 Table 4.3.3.5 Wind Wind E.Q. E.Q. p= 1.00 E.Q. E.Q. Wind Wind E.Q. E.Q. E.Q. E.Q. Wind Wind Wind Wind Max. Wall ID T.A. Lwall Logy eft. C 0 w dl V level V abv. V level V abv. 2w/h v i Type Type v i OTM Rona Unat Usum OTM Rona Unet Usum Usum HD (soft) (ft) (ft) (klf) (kip) (kip) (kip) (kip) p (Plf) (Pif) (kip-ft) (kip-ft) (kip) (kip) (kip-ft) (kip-ft) (kip) (kip) (kip) Ext: .;;A.T1 .,;416 15 "46 0 .0 1 00 .0.15: 1.53 0.00 0.95 0.00 1.00 1.00 63 P6TN P6TN 102 7.57 26.13 -1.30 -1.30 12.27 31.05 -1.31 -1.31 -1.30 Ext. A T2, .` 1,39, 50 „46.0 1 00 :0:15; 0.51 0.00 0.32 0.00 1.00 1.00 63 P6TN P6TN 103 2.53 8.71 -1.43 -1.43 4.10 10.35 -1.44 -1.44 -1.43 .Ext. A T3 278 '10.0 46.0 1.00 „0.15', 1.03 0.00 0.63 0.00 1.00 1.00 63 P6TN P6TN 103 5.06 17.42 -1.32 -1.32 8.20 20.70 -1.34 -1.34 -1.32 0 '":0 0 0.0, 1 00 '0.00; 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0,--;;4;.0.0,.:,;:,;---.0.0.'.7-:',..1'.00'-:R:;:;:0-.001 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0 r: 0.0; 1 00,.0.00: 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 W:0 0 -.'0.0 1 00,-:,0.00! 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0 0 " 0.0 1 00 ";0.00: 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0 0" 0.0 1 00 :0 00 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0„; ,0.0, ' 0.0 100 0001. 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ext.:: B . .T1." 150:...::5 0 ":47.0 1.00. ?"0.15: 0.55 0.00 0.34 0.00 1.00 1.00 68 P6TN P6TN 111 2.73 8.90 -1.42 -1.42 4.43 10.58 -1.42 -1.42 -1.42 Ext:;.B t2 " 300 '`10 0 -,47.0 1 00 0.15: 1.11 0.00 0.68 0.00 1.00 1.00 68 P6TN P6TN 111 5.46 17.80 -1.32 -1.32 8.85 21.15 -1.32 -1.32 -1.32 Ext. B T3 '- 1.43 4 8 47.0 1 00 015: 0.53 0.00 0.33 0.00 1.00 1.00 68 P6TN P6TN 110 2.60 8.54 -1.44 -1.44 4.22 10.15 -1.44 -1.44 -1.44 B T4 . 240 ',8 0 47 0 1 00 .015: 0.89 0.00 0.55 0.00 1.00 1.00 68 P6TN P6TN 111 4.36 14.24 -1.35 -1.35 7.08 16.92 -1.34 -1.34 -1.34 0 0 0 0.0 1 00 0 00 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 ,'0.0 ,' 0.0 100 ','0,00: 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 :0 0 0.0 1 00 0.00! 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 00 . : .0::„:--1,00 :0.00;.0 . 0. 0 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0-`"":0.0 ".0.0 1.00:`0.00; 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 ,-;0.0 0.0 1.00;- 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0 0 0.0 1 00 0 00 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0•,;:';0 0 0 0 1 00 0.00.! 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0. .0 0 0.0 1 00 ,::','0:00: 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0 0 0.0 1.00 0 00. 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0""."r,0 0 "•0.0 1.00; 0.00; 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 ' 0 0 0.0 1 00 0.00: 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0 0 0.0 1.00 0 00 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ;--;':;-.1::,-;;-;-.,.1;;.;;-,1,::.0.;-:..::: 0.0 A 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 . .:<:0 0 ";,0.0 1.:001"..,;1/001 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 4: 0 0 , ,0.;0 100 % 0 00 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1666 57.8 57.8=L eff. 6.14 0.00 3.79 0.00 EVxfnd 6.14 EVEa 3.79 Notes: * denotes with shear transfer ** denotes perforated shear wall iSB denotes iSB Shear Panel SHEET TITLE: LATERAL N-S(front to back-up/down) CT PROJECT#: CT#14189:Plan 5A Diaph.Level: 2nd Panel Height=` 9 ft. Seismic V i= 2.75 kips Design Wind N-S V I= 3.46 kips Max.aspect= 3.5 SDPWS Table 4.3.4 Sum Seismic V i= 6.54 kips Sum Wind N-S V 1= 9.60 kips Min.Lwall= 2.57 ft. (0.6-0.14Sds)D+0.7 p Qe 0.6D+W per SDPWS-2008 pt= 1.00 Table 4.3.3.5 Wind Wind E.Q. E.Q. p= 1.00 E.Q. E.Q. Wind Wind E.Q. E.Q. E.Q. E.Q. Wind Wind Wind Wind Max. Wall ID T.A. Lwall LOL off. C 0 w dl V level V abv.V level V abv. 2w/h v i Type Type v i OTM Roan Una, Usum OTM R0TM IJ Usum Uaum HD (sqft) (ft) (ft) (kif) (kip) (kip) (kip) (kip) p (Of) (plf) (kip-ft) (kip-ft) (kip) (kip) (kip-ft) (kip-ft) (kip) (kip) (kip) Ext. "A.Ma 621 29.0 " 46.0 1.00 0.15 1.25 2.23 1.00 1.37 1.00 1.00 82 P6TN P6TN 120 21.34 50.51 -1.03 -2.32 31.33 60.03 -1.01 -2.32 -2.32 Ext. A.Mb 235 11.0 46.0" 1.00 0.15' 0.47 0.84 0.38 0.52 1.00 1.00 82 P6TN P6TN 120 8.09 19.16 -1.07 -2.50 11.87 22.77 -1.05 -2.50 -2.50 Ext:' 0 0.0 0.0 1.00 ! 0.00' 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 -1.32 0.00 0.00 0.00 -1.34 -1.32 0 " 0.0 . .0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 ' 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.0 0.0= .1.00''"0.001 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 , 0.0'' 0.0' 1.00 "0.00: 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0" 0.0 ".0.0 1.00 '0.00 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 -:0.0 " 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.0. 0.0" , 1.00. „ 0.00 0.00 •0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ext. 8.Ma 571 10.0 47.0 1.00 0.15' 1.15 2.05 0.92 1.26 1.00 1.00 218 P6 P6 320 19.62 17.80 0.20 -1.23 28.81 21.15 0.82 -0.60 -0.60 Ext. B.Mb 285 5.0 ""47.0 1.00";;,0.15 0.58 1.02 0.46 0.63 1.00 1.00 218 P6 P6 320 9.80 8.90 0.21 -1.11 14.39 10.58 0.88 -0.44 -0.44 Ext. 0�" ..0.0"" 0.0 1.00;p 0.00'1 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 -1.44 0.00 0.00 0.00 -1.44 -1.44 0." "?0.0- ""0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 -1.35 0.00 0.00 0.00 -1.34 -1.34 0`~, 0 0 0.0 1.00:''0.00. 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 ..:0.0`" _0.0 1.00 0.00. 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 1.00 " 0.00, ' 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0; ";`0.0 1.00 ;,0.001 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 : -0 0 -"`0.0 1 00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0- - :- "0.0-" 0.0 1.00" 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 ";0 0 0.0"'1.00"`'0.00 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 '0 0; 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 ,0.0 0.0 1.00' 0.00! 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 '0.0 0.0 1.00 ,''" 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 ,"0.0 0.0 " 1.00 ,0.00 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 ",0.0 0.0. 1.00 0.00- ' 0.00 :0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 00 ,:0.0 1.00 0.00: 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0" 0.0 , 1.00 ",:0.00, 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0 0.0 1.00 0.00'' 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1712 55.0 55.0=L eff. 3.46 6.14 2.75 3.79 1.00 EV,„ind 9.60 EVE0 6.54 Notes: denotes with shear transfer ** denotes perferated shear wall iSB denotes iSB Shear Panel SHEET TITLE: LATERAL E., (side to side-left/right) CT PROJECT#: CT#14189:Plan 5A Diaph.Level: Roof Panel Height= .8ft. Seismic V I= 3.79 kips Design Wind E-W V I= 3.76 kips . ; Max.aspect 3.5SDPWS Table 4.3.4 Sum Seismic V I= 3.79 kips Sum Wind E-W V i= 3.76 kips Min.Lwall= 2.29 ft. (0.6-0.14Sds)D+0.7 p Qe 0.6D+W per SDPWS-2008 pt= 1.00 Table 4.3.3.5 Wind Wind E.Q. E.Q. p= 1.00 E.Q. E.Q. Wind Wind E.Q. E.Q. E.Q. E.Q. Wind Wind Wind Wind Max. Wall ID T.A. Lwall LDL en. C 0 w dl V level V abv. V level V abv. 2w/h v i Type Type v i OTM Rohe Une1 U. OTM Rona Unet Usam Usum HD (sqft) (ft) (ft) (klf) (kip) (kip) (kip) (kip) p (pIO) (plf) (kip-ft) (kip-ft) (kip) (kip) (kip-ft) (kip-ft) (kip) (kip) (kip) rear 1 Ta;`283 6,-,.8.0 40.0r 1 00 015; 0.64 0.00 0.64 0.00 1.00 1.00 81 P6TN P6TN 80 5.16 12.12 -0.95 -0.95 5.12 14.40 -1.27 -1.27 -0.95 " rear 2 Tb 407 6 1,1.5 40 0: 1 00 015; 0.92 0.00 0.93 0.00 1.00 1.00 81 P6TN P6TN 80 7.41 17.42 -0.92 -0.92 7.36 20.70 -1.23 -1.23 -0.92" rear: 3 Tc ;;141 8 .4 0 40:0. 1 00 `015; 0.32 0.00 0.32 0.00 1.00 1.00 81 P6TN P6TN 80 2.58 6.06 -1.04 -1.04 2.56 7.20 -1.39 -1.39 -1.04" rear? 4Td 0;-.'0 0 '"0.01 00 0 00 I 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0: ,,,,,47 ,.'. ,:9,,,...,1,.4..,o0 00 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 . 0 0 ;0.0, 1 00 '0 00 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0 0 0.0' 1 000.00' 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Q, ;0 0 0.0'. 1 00 ;::0.00.: 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0. . 0 0 0 0: 1 00 0 00 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0 0 0:0 1 00 ,0.00; 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 . A 0 0.0 , 1 00 0 00: 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0 0 0 0 1 00 0 00: 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Front 4.7ra,,.166 6 ?5 20.5 1 00 0151. 0.38 0.00 0.38 0.00 1.00 0.63 242 P6 P6TN 150 3.03 1.94 0.59 0.59 3.01 2.31 0.38 0.38 0.59 Front!:;4.Tb. 1.166 6 2 5 - 20.5 1 00 015' 0.38 0.00 0.38 0.00 1.00 0.63 242 P6 P6TN 150 3.03 1.94 0.59 0.59 3.01 2.31 0.38 0.38 0.59* Front 4 Tc 0 -0 0 0.0 1 00 ,i 0 00; 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Front 4Td -166 6 2 5 20.5 1 00 015: 0.38 0.00 0.38 0.00 1.00 0.63 242 P6 P6TN 150 3.03 1.94 0.59 0.59 3.01 2.31 0.38 0.38 0.59' Front' 4 Te;;'°.166 6 ,-:_ 2 5, -11.7 1 00;-0.15's 0.38 0.00 0.38 0.00 1.00 0.63 242 P6 P6TN 150 3.03 1.11 1.05 1.05 3.01 1.32 0.92 0.92 1.05 " Front` 4 Tf, ,166 6 25 .11.7 1.00 `'0.15; 0.38 0.00 0.38 0.00 1.00 0.63 242 P6 P6TN 150 3.03 1.11 1.05 1.05 3.01 1.32 0.92 0.92 1.05 " 0 ,0 0 0.0 .1.00 `0.00 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0 0 '0.0 1 00,- 0:00,, 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0 0 ;0.0 -,1 00 10.001• 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 .: 0 0 0.0 1 00 • 0:00: 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0. 0 0 0.0 1 00'Y,0.00 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0 0 ,. 0.0 1 00 0.001. 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0. :°I0 0 .0 0 00 1 0.00: 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 '1.0.0 ' 0,0 1.00 ' 0.00; 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.0 00 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0 0 00 1 00 0 00 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 00 00- 1 00-;`,0.001. 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.0 00 1.00 0.00' 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1666 36.0 36.0=L eff. 3.76 0.00 3.79 0.00 EVwnd 3.76 EVEQ 3.79 Notes: denotes with shear transfer "' denotes perterated shear wall iSB denotes iSB Shear Panel GARAGE ABWP SHEET TITLE: LATERAL E-W(side to side-left/right) CT PROJECT#: CT#14189:Plan 5A Diaph.Level: 2nd Panel Height= 9 ft. Seismic V I= 2.75 kips Design Wind E-W V I= 6.05 kips Max.aspect= ';3.5 SDPWS Table 4.3.4 Sum Seismic V I= 6.54 kip- Sum Wind E-W V I= 9.81 kips Min.Lwall= 2.57 ft. (0.6-0.14Sds)D+0.7 p Qe 0.6D+W per SDPWS-2008 pi= 1.00 Table 4.3.3.5 Wind Wind E.Q. ..Q. p= 1.00 E.Q. E.Q. Wind Wind E.Q. E.Q. E.Q. E.Q. Wind Wind Wind Wind Max. Wall ID T.A. Lwall LEL e11, Co w dl V level V abv. V leve abv. 2w/h vi Type Type vi OTM Row U„et U. OTM Row U„8, Usum Usam HD (sqft) (ft) (ft) (kif) (kip) (kip) (ki, (kip) p (plf) (pif) (kip-ft) (kip-ft) (kip) (kip) (kip-ft) (kip-ft) (kip) (kip) (kip) rear 1.Ta 107.6 4.3 12.3 1.00. 0.15 0.38 0.4: 0.17 0.48 1.00 0.96 159 P6 P6 199 5.87 2.00 1.06 0.11 7.70 2.38 1.46 0.20 0.20' rear ,2.Tb 98.77 3.9- 12.3 1.00 0.15 0.35 0 3 0.16 0.43 1.00 0.87 175 P6 P6 200 5.34 1.82 1.09 0.17 7.02 2.16 1.50 0.27 0.27" rear 3:Tc 158.3 6.3 19.5 ..1.00 0.15 0.56 ..70 0.25 0.70 1.00 1.00 152 P6 P6 199 8.61 4.65 0.70 -0.34 11.30 5.53 1.02 -0.37 -0.34" rear 4.Td 63.31 " 2.5 19.5. 1.00 .`0.00 0.22 0.28 0.10 0.28 1.00 0.56 274 P4 P6 200 3.42 0.00 1.87 1.87 4.50 0.00 2.45 2.45 2.45• 0 0.0 0.0 1.00 0.00 0.9► 0.00 0.00 0.00 1.00 0.00 ##### N.G. - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 int 181.1 5.5 5.5 1.00 ;0.00 x.64 0.00 0.29 0.00 1.00 1.00 53 P6TN P6TN 116 2.62 0.00 0.54 0.54 5.76 0.00 1.19 1.19 1.19 int - 246.9 7.5 7.5 1.00 0.00 0.87 0.00 0.40 0.00 1.00 1.00 53 P6TN P6TN 116 3.57 0.00 0.52 0.52 7.85 0.00 1.15 1.15 1.15 - - 0. 0.0 0.0 1.00';0.9% 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 int 428 .10.0 10.0 1.00 .`6.10' 1.51 0.00 0.69 0.00 1.00 1.00 69 P6TN P6 151 6.19 0.00 0.66 0.66 13.61 0.00 1.46 1.46 1.46 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 ..1.9! 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - ► ►0 :;►0 1.0‘ 1.00 0.90 0.99 1.09 ►00 1.50 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Front 4.Ta : 117.1 ."'2 4 20.5 1.00 0.15; 0.41 0.51 0.19 0.52 1.'.1 0.53 550 P2 P4 386 6.34 1.86 2.58 3.18 8.34 2.21 3.53 3.91 3.91 ABWP Front 4.Tb , 0 0.0 20.5 1.00 0.15 0.00 0.00 0.00 0.00 1.0' 0.00 #####N.G. P6 214 0.00 0.00 0.00 0.59 0.00 0.00 0.00 0.38 0.59 Front 4.Tc , 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.01 0.00 ##### N.G. P6 214 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Front 4.Td 117.1 2.4 20.5 1.00 .'0.15 0.41 0.51 0.19 0.52 1.:► 0.53 550 P2 P4 386 6.34 1.86 2.58 3.18 8.34 2.21 3.53 3.91 3.91 ABWP ro,t `,.T- ,9 91 ' -.•:0 11 09, .-;►15': 0.'4 9.4- c 16 0.13 1.0t 0.44 659 2P4 P4 385 5.28 0.89 3.29 4.34 6.93 1.05 4.40 5.33 5.33* Front 4.Tf :96.91 . 2.0 -.11.7 1.10' 0.15 ►.34 0.43 0.16 0.43 1.00 0.44 659 2P4 P4 385 5.28 0.89 3.29 4.34 6.93 1.05 4.40 5.33 5.33* - 0 `0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 ' 0.0. 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0' 0.0 0.0 . 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 - 0.0 0.0 1.00;;.0.00 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0: "0.0 1.00 '0.00', 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 -` 0.0; 1.00 0.001 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 ` 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 1.00' 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - 0 0.0 0.0 1.00 i 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - 0 0 0 ;:0.0 .1.00•. 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 . `0.0 - 1.00E '0.001 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1712 48.8 48.8=Leff. 6.05 3.76 2.75 3.79 EVxind 9.81 EVEo 6.54 Notes: denotes with shear transfer ABWP Alternate Braced Wall Panel-2308.9.3.2 "" denotes perferated shear wall iSB denotes iSB Shear Panel JOB#:'. Elevation A ID:;ElevationA4Ta,4.Tb,;,4.Tc. : Roof Level w dl= ,^„ .150' plf V eq',. 1163.6 pounds V1 eq= 387.9 pounds V3 eq= 387.9 pounds V5 eq= 387.9 pounds V w=', 2855.5 pounds V1 w= 951.8 pounds V3 w= 951.8 pounds V5 w= 951.8 pounds v hdr eq= 56.8 plf - A H1 head=A v hdr= 139.3 plf I H5 head= " 1• Fdragl eq= 123.0 Fdrag2 eq= 123.0 Fdrag5 eq= 123.0 Fdrag6 eq= 123.0 1 v Fdragl w=hil. 301.8 Fdrag5 w= .1.8 Fdtag•w= 301.8 n Hi pier= v1 eq= 155.2 plf v3 eq= 155.2 Of v5 eq= 155.2 H5 pier- 5.0 vi w= 380.7 Of v3 w= 380.7 p/f v5 w= 380.7 4.0 .?, feet feet H total= 2w/h= 1 2w/h= 1 2w/h= 1 9.0 v Fdrag3= .0 Fdra. - 123.0 feet A Fdragl w=301.7979 Fdragl w=301.8 Fdrag7eq= 3.0 Fdrag8e• 123.0 v_ P6 EQ. Fdrag7w=301.8 Fdrag8w= 301.8 P4 WIND v sill eq= 56.8 plf HI sill= (0.6-0.14Sds)D 0.6D vsill w= 139.3p/f H5 sill= 3.0 i EQ Wind 3.0; feet OTM 10472.8 25699.3 feet R OTM 14159 17020 V UPLIFT -200 470 v Up above 0 0 Up Sum -200 470 H/L Ratios: L1= = ,2.5 L2= 6.5 L3 ''•, •'2.5 L4= •, , 6.5 L5 ` 2.5 Htotal/L= 0.440 0-4 0 ► Hpier/L1= 2.00 Hpier/L3= 2.00 < L total= 20.5 feet Hpier/L5= 1.60 ,0.90 L reduction 4 * JOB#: Elevation A SHEARWALL WITH FORCE TRANSFER, ID: Elevation A 4.Te,4.Tf Roof Level w dl= 150 p/f V eq 775.8 pounds V1 eq= 387.9 pounds V3 eq= 387.9 pounds V w= 1903.6 pounds V1 w= 951.8 pounds V3 w= 951.8 pounds -_•,. ► v hdr eq= 64.6 plf ► •H head= A v hdr w= 158.6 p/f 1 y Fdragl eq= 210 F2 eq= 210 Fdragl w= • 6 F2 -516 H pier= v1 eq= 141.0 p/f v3 eq= 141.0 plf P6TN E.Q. 5.0 v1 w= 346.1 p/f v3 w= 346.1 plf P4 WIND feet H total= 2w/h= 1 2w/h= 1 9 v Fdrag3 eq= 8 F4 e.- 210 feet A Fdrag3 w=516 F4 w=516 2w/h= 1 H sill= (0.6-0.14Sds)D 0.6D v sill eq= 64.6 p/f P6TN 3.0' EQ Wind v sill w= 158.6 plf P6 feet OTM 6982 17133 R OTM 5391 6480 a v UPLIFT 140 940 Up above 0 0 UP sum 140 940 H/L Ratios: L1=. 2.8 L2= 6.5 L3= 2.8 Htotal/L= 0.75 4 .4 `4 Hpier/L1= 1.82 Hpier/L3= 1.82 L total= 12.0 feet JOB#. Elevation A SHEARWALL WITH FORCE TRANSFER ID: ElevationA 1.Ma,1.Mb Roof Level w dl= 150 plf V eq 1275.1; pounds V1 eq= 677.4 pounds V3 eq= 597.7 pounds V w=•, 2940.6; pounds V1 w= 1562.2 pounds V3 w= 1378.4 pounds ...:..................._.__... v hdr eq= 106.3 plf --► •H head= A v hdr w= 245.0 plf 1` v Fdragl eq= 226 F2 eq= 199 • Fdragl w= 1 F2 -459 H pier= v1 eq= 159.4 plf v3 eq= 159.4 plf P6 E.Q. 5.0 vi w= 367.6 plf v3 w= 367.6 plf P4 WIND feet H total= 2w/h= 1 2w/h= 1 9 Fdrag3 eq= • F4-.- 199 feet A Fdrag3 w=521 F4 w=459 2w/h= 1 H sill= (0.6-0.14Sds)D 0.6D v sill eq= 106.3 plf P6TN 3.0 EQ Wind v sill w= 245.0 plf P6 feet OTM 11476 26465 R OTM 5391 6480 y UPLIFT 537 1763 Up above 0 0 UP sum 537 1763 H/L Ratios: L1= 4,3° L2= 4.0 L3=` 3.8 HtotaUL= 0.75 r ► 1 ►4 ► Hpier/L1= 1.18 Hpier/L3= 1.33 L total= 12.0 feet JOB#: Elevation A SHEARWALL WITH FORCE TRANSFER ID: Elevation A 1.Mc,1.Md Roof Level w dl= 150 p/f V eq 1368.9 pounds V1 eq= 977.8 pounds V3 eq= 391.1 pounds V w= 3157.1 pounds V1 w= 2255.0 pounds V3 w= 902.0 pounds --_0. v hdr eq= 62.2 plf ► •H head= A v hdr w= 143.5 plf ............... ...... 1 v Fdragl eq= 589 F2 eq= 236 A Fdragl w= 58 F2 -543 H pier= vi eq= 156.4 p/f v3 eq= 156.4 plf P6 E.Q. 5.0 v1 w= 360.8 p/f v3 w= 360.8 plf P4 WIND feet H total= 2w/h= 1 2w/h= 1 9 Fdrag3 eq= F4 e•- 236 feet . Fdrag3 w=1358 F4 w=543 2w/h= 1 H sill= (0.6-0.14Sds)D 0.6D v sill eq= 62.2 p/f P6TN 3.0 EQ Wind v sill w= 143.5 p/f P6TN feet OTM 12320 28413 R OTM 18119 21780 ,e, • UPLIFT -272 311 Up above 0 0 UP sum -272 311 H/L Ratios: L1= 6.3 L2= 13.3 L3= 2.5 Htotal/L= 0.41 1.4 Hpier/L1= 0.80 Hpier/L3= 2.00 L total= 22.0 feet SOB#: Elevation A SHEARWALL WITH FORCE TRANSFER..;, ID: Elevation A 4.Me,4.Mf Roof Level w dl= 150 plf .......__.._....:._.........: V eq 1094.8 pounds V1 eq= 547.4 pounds V3 eq= 547.4 pounds V w= 2509.8; pounds V1 w= 1254.9 pounds V3 w= 1254.9 pounds ..............._..:.:........... ----� � v hdr eq= 96.6 plf *H head= A v hdr w= 221.5 plf Fdragl eq= 354 F2 eq= 354 Fdrag1 w= F2 -812 H pier= v1 eq= 342.1 plf v3 eq= 342.1 plf P4 E.Q. 5.0 :- v1 w= 627.4 plf v3 w= 627.4 plf P3 WIND feet H total= 2w/h= 0.8 2w/h= 0.8 9 Fdrag3 eq= • F4 e.- 354 feet A Fdrag3 w=812 F4 w=812 2w/h= 1 H sill= (0.6-0.14Sds)D 0.6D v sill eq= 96.6 plf P6TN 30_'. EQ Wind v sill w= 221.5 plf P6 feet OTM 9853 22588 R OTM 4805 5777 UPLIFT 473 1577 Up above 140 940 UP sum 614 2517 H/L Ratios: L1 -; 2.0 L2 7.3 L3= 2.0 Htotal/L= 0.79 4 0 4 1041 Hpier/L1= 2.50 Hpier/L3= 2.50 L total= 11.3 feet t 'f . f ':f..-,7"--ii-'7,1T7:,::—.77,> t ,,. �� . 'f3.'.,.,, .. _ •• t w "' ', ?®ori fr • h AP� - i ':fids.......,!; .:.... ' .: .... -:• . ..,_: .. :.::. . . - ..., , , : - - ...-,,-....;L.:- °• - . .', " TT-100F APRIL 2014 A Portal Frame with Hold Downs for Engineered Applications The APA portal-frame design,as shown in Figure 1,was envisioned primarily for use as bracing in conventional light- frame construction.However,it can also be used in engineered applications,as described in this technical topic.The portal frame is not actually a narrow shear wall because it transfers shear by means of a semi-rigid,moment-resisting frame.The extended header is integral in the function of the portal frame,thus,the effective frame width is more than just the wall segment,but includes the header length that extends beyond the wall segment.For this shear transfer mechanism,the wall aspect ratio requirements of the code do not apply to the wall segment of the APA portal frame. Cyclic testing has been conducted on the APA portal-frame design(APA 2012).Recommended design values for engi- neered use of the portal frames are provided in Table 1.Design values are derived from the cyclic test data using a rational procedure that considers both strength and stiffness. The Table 1 values in this report were developed using the CUREE cyclic test protocol(ASTM E2126),using a flexible load head.Earlier testing was conducted using rigid load heads and the sequential phased displacement(SPD)method, as outlined in SEAOSC(1997)Standard Method of Cyclic(Reversed)Test for Shear Resistance of Framed Walls for Buildings. The design values in Table 1 ensure that the code(IBC)drift limit and an adequate safety factor are maintained.For seismic design,APA recommends using the design coefficients and factors for light-frame(wood)walls sheathed with wood structural panels rated for shear resistance(Item 15 of Table 12.2-1 of ASCE 7-10).See APA Report T2004-59 for more details.For designs where deflection may be less of a design consideration,for example,wind loading while the portal frames are used in tandem with each other,and not used as conventional shear walls,a load factor of 2.5, based on the cyclic test results is used. Since cyclic testing was conducted with the portal frame attached to a rigid test frame using embedded strap-type hold downs,design values provided in Table 1 of this document should be limited to portal frames constructed on similar rigid-base foundations,such as a concrete foundation,stem wall or slab,and using a similar embedded strap- type hold down. 1 ®2014 APA—Thc Engineered Wood Association PORTAL FRAME DESIGN (MIN.WIDTH =22 1/2"): ` EQ= 810#< EQ(ALLOW)= 1031# WIND = 1260#<WIND (ALLOW)= 1444# Table 1.Recommended Allowable De gn Val. • for APA Portal Frame Used on a Rigid-Base Minimum Width Maximu eight Allowable Design(ASD)Values per Frame Segment (in.) ) Sheart"•0(lbf) Deflection(in.) Load Factor 8 850 (1190 WIND) 0.33 3.09 16 10 625 (875 WIND) 0.44 2.97 8 1,675 (2345 WIND) 0.38 2.88 24 . s 0.51 3.42 1'-10 1/2" 8 1520 EQ(2128 WIND) roundation 1/2" r Wind or Seismic Loadingf''b•s�31 EQ(1444 WIND) (a) Design values are based on the use of Douglas-fir or Southern pine framing.For other species of framing,multiply the above shear design value by the specific gravity adjustment factor=(1–(0.5–SG)),where SG=specific gravity of the actual framing.This adjustment shall not be greater than 1.0. (b) For construction as shown in Figure 1. (c) Values ore for a single portal-frame segment(one vertical leg and a portion of the header).For multiple portal-frame segments,the allowable shear design values are permitted to be multiplied by the number of frame segments(e.g.,two=2x,three=3x,etc.). (d) Interpolation of design values for heights between 8 and 10 feet,and for portal widths between 16 and 24 inches,is permitted. (e) The allowable shear design value is permitted to be multiplied by a factor of 1.4 for wind design. (f) If story drift is not a design consideration,the tabulated design shear values are permitted to be multiplied by a factor of 1.15.This factor is permitted to be used cumulatively with the wind-design adjustment factor in Footnote(e)above. Figure 1. Construction Details for APA Portal-Frame Design with Hold Downs 1 • Extent of header with double portal frames(two braced wall panels) • Extent of header with single portal frame (one braced wall panels) I Header to jock-stud strap I. 2'to 18'rough width of opening .II per wind design min 1000 lbf for single or double portal on both sides of opening ' ' —.—` _ - opposite side of sheathing Pony . IL III wall height 7 ' T Fasten top plate to header i ' 'i � with two rows of 16d � � - �;a �= +, sinker nails at 3"o.c.typ Fasten sheathing to header with 8d common or r Min.3/8"wood structural 12' galvanized box nails at 3"grid pattern as shown /panel sheathing max ! / total ;i.I Header to jack-stud strap per wind design. wall H. Min 1000 Ibf on both sides of opening opposite ` height 'i side of sheathing. If needed,panel splice edges shall occur over and be 10' :4 Min.double 2x4 framing covered with min 3/8" nailed to common blocking 'A thick wood structural panel sheathing with within middle 24"of portal max :: ps • •;} height w, 8d common or galvanized box nails at 3'o.c. :r height.One row of 3"o.c. in all framing(studs,blocking,and sills)typ. nailing is required in each panel edge. Min length of panel per table 1 ` Typical portal frame A construction Min(2)3500 lb strap-type hold-downs r; (embedded into concrete and nailed into framing) iv Min double 2x4 post(king and jock stud).Number of Min reinforcing of foundation,one#4 bar jack studs per IRC tables to and bottom of footing.Lap bars 15'min. R502.5(1)&(2). Min footing size under opening is 12"x 12".A turned-down Min 1000 lb hold-down slab shall be permitted at door openings device(embedded into concrete and nailed Min(1)5/8"diameter anchor bolt installed per IRC R403.1.6– into framing) with 2"x 2"x 3/16"plate washer 2 0 2014 APA–The Engineered Wood Association References APA, 2004, Confirmation of Seismic Design Coefficients for the.APA.Portal Frame, APA Report T2004-59, APA—The Engineered Wood Association,Tacoma,WA. APA,2012,Effect of Hold-Down Capacity on IRC Bracing Method PFH and IBC Alternate Method,APA Report T2012L-24, APA—The Engineered Wood Association,Tacoma,WA. ASCE,2010,Minimum Design Load for Buildings and Other Structures.ASCE 7.American Society of Civil Engineers. Reston,VA. ASTM E2126-11,Standard Test Methods for Cyclic(Reversed)Load Test for Shear Resistance of Vertical Elements of the Lateral Force Resisting Systems for Buildings,ASTM International.West Conshohocken,PA. SEAOSC, 1997,Standard Method of Cyclic(Reversed)Test for Shear Resistance of Framed Walls for Buildings,Structural Engineers Association of Southern California.Whittier,CA. • • • • We have field representatives in many major U.S.cities and in Canada who can help answer questions involving www cspriwood.org APA trademarked products.For additional assistance in specifying engineered wood products,contact us: APA HEADQUARTERS:7011 So.19th St.•Tacoma,Washington 98466•(253)565-6600•Fax:(253)565-7265 APA PRODUCT SUPPORT HELP DESK:(253)620-7400•E-mail:help@apawood.org Form No.IT-100F Revised April 2014 DISCLAIMER:The information contained herein is based on APA—The Engineered Wood Association's continuing programs of laboratory testing,product research,and comprehensive field experience.Neither APA nor its members make any warranty,expressed or implied,or assume any legal liability or responsibility for the use,application of,and/or reference to opinions,findings,conclusions,or recommendations included in this publication.Consult A PA your local jurisdiction or design professional to assure compliance with code,construction,and performance requirements.Because APA has no control over quality of workmanship or the conditions under which engineered wood products are used,it cannot accept responsibility of product performance or designs as actually constructed. 3 0 2014 APA—The Ennineercd WuodAssucinttun CT EN GI N E .E R ING180 Nickerson St. Suite 302 Project: f170-Fl OC1 e ,131kkiAO • D ScathWA �. � 9R109 e, Date: �� (206)285-4512 Client: g-1W q3r6),3.2 ( >S5 243P516%.5.,-2--) Page Number: PAX: (206)285-0618 • „„, I i gsV le_ 10 • � Gl x Le( 12 k k2 Li34/1 ems F2P12- . I.6 ..rDR � ,. (2Y0,Z �� ���;� �= 1-6(01_ 60) (5 04 , g Z3 <<zJ I . (01) Cbo M L ., /062)00,1) .e .— ► z k L ' > Of = 5I • 8. x 1,0/(2) ot= 0,q6 062cAtv, Lo/d1-4---piki; . erAut ., eQ,,9V!1 5k42-f- 001 L°l`1 = +,5` PxI,AWN,. • ct= a,sj e I = I tau ,°Z44- Structural Engineers WOOD FRAME CONSTRUCTION MANUAL 63 { 11'Mk Table 2.2A Uplift Connection Loads from Wind • • (For Roof-to-Wall,Wall-to-Wall,and Wall-to-Foundation) 700-yr.Wind Speed 3-second gust(mph) 110 115 120 130 140 150 160 170 180 195 Roof/Ceiling assembly Roof Span(ft) unit Connection Loads(plf)1'2'3/45 6,7 Design Dead Load 12. 118 128 140 164 190 219 249 281 315 369 Z 24 195 213 232 •272 315 362 412 465 521 612 G') 0 psf8 36 272 298 324 380 441 506 576 650 729 856 Z M 48 350 383 417 489 567 651 741 836 938 1100 M . 60 428 468 509 598 693 796 906 1022 1146 1345 v . 12. 70 80 92 116 142 171 201 233 267 321 0 24 111 129 148 188 231• 278 328 381 437 528 COrn 10 psf 36 152 178 204 260 321 386 456 530 609 736 -• 48 194 227 261 333 411 495 585 680 782 944 ,Z 60 236 276 317 406 501 , 604 714 830 954 1153 12, 46 56 68 . 92 118 147 . 177 , 209 243 297 24 69 87 106 146 189 236 286 339 395 486 15 psf 36 92. 118 144 200 261 326 396 470 549 676 48 116 149 183 255 333 417 507 602 704 866 60 140 180 221 310 405 508 618 734 858 1057' 12 22 32 44 68 94 123 153 185 219 273 • 24 27 45 64 104 147 194 244 297 353 444 ` JJ' 20 psf 36 32 58 84 140 201 266 336 410 489 616 'l '`� Ir! 48 38 71 105 177 255 339 429 524 626 788 .. • 60 44 84 125 214 309 412 522 638 762 961. 12 - 8 20 44 70 99 129 161 195 249 • 24 - 3 22 62 • 105 152 202 255 311 402 25 psf 36 - - 24 80 141 206 276 350 429 556 48 - - 27 99 177 261 351 446 548 710 •• 60 - - 29 118 213 316 426 542 666 865 • 1 Tabulated unit uplift connection loads shall be permitted to be multiplied by 0.75 for framing not located within 6 '• feet of corners for buildings less than 30 feet in width(W),or W/5 for buildings greater than 30 feet In width. 2 Tabulated uplift loads assume a building located in Exposure B with a mean roof height of 33 feet. For buildings located in other exposures,the tabulated values for 0 psf roof dead load shall be multiplied by the appropriate adjustment factor in Section 2.1.3.1 then reduced by the appropriate design dead load. 3 Tabulated uplift loads are specified in pounds per linear foot of wall. To determine connection requirements, f; multiply the tabulated unit uplift load by the multiplier from the table below corresponding to the spacing of the . connectors: Connection Spacing(in.) 12 16 19.2 24 48 • Multiplier , 1.00 1.33 I 1.60 2.00 4.00 1 • 4 Tabulated uplift loads equal total uplift minus 0.6 of the roof/ceiling assembly design dead load. 5 Tabulated uplift loads are specified for roof-to-wall connections. When calculating uplift loads for wall-to-wall or wail-to-foundation connections,tabulated uplift values shall be permitted to be reduced by 73 plf(0.60 x 121 plf) for each full wall above. �1 i`;. 6 When calculating uplift loads for ends of headers/girders,multiply the tabulated unit uplift load by 1/2 of the header/girder span(ft.). Cripple studs need only be attached per typical uplift requirements. ' t.` ; zs : ' . For jack rafter uplift connections,use a roof span equal to twice the jack rafter length.The jack rafter length . `I;ia,_ includes the overhang length and the Jack span. 3<< e Tabulated uplift loads for 0 psf design dead load are included for interpolation or use with actual roof dead loads. •.:1,r is. AMERICAN WOOD COUNCIL 1•.his.. 180 Nickerson St. C T ENGINEERING Suite 302 l//�►/�/ 1INC. S98109 eattle,WA Project: �Y, "�7\` `IV(ll '1 Liv Date: (zoG)z85-¢s12 FAX: Client: Page Number: (206)285-0618 ' ;\.VI I i. Y' U1OVRI-7 Iks6.-- • • p P W‘wID g CQQ*, • ivj vin►k : :: • •\e1) 1141S 10j. u.cr) • 15 P DL • o am I ," 2A t) • seixkikAoto •IUs : • • 3b: • (1( =FA ?Pd. i/44 aq•'°•4 .'-.Y 7c!0 .• • . . • . . • • •••. . t • . : ..; .•:: u Q : %6 2. .. 2:( • • . •: • ( 4)(2) 0,c.) 6:;‘). ...... 11,' , e00i'r1 - • 6)1(24re- TNA, ,Q 4-o X11 < (2 :( >6:,r_ 61-6y • 4)CP.,-5 (o-lel = ` lit 1 _ ; - : f:vv,•)196- Cvs,RfOdo G 64. P .Y, 1A-amities -- e :e (5Y nPs-0 Structural Engineers TRUSS TO WALL CONNECTION ,ii ii vAI iii••:; #OF TRUSS CONNECTOR TO TRUSS PLIES TO TOP PLATES UI'I III !1 1 HI (6) 0.131" X 1.5" (4) 0.131"X 2.5" .iiai ,Iti' 1 H2.5A (5) 0.131" X 2.5" (5) 0.131"X 2.5" i3N 1111 _.. 1 SOWCI5600 .+i+;, .....lis ....... 2 H10-2 (9) 0.148"X 1.5" (9) 0.148" X 1.5" 1(1!11 700 2 (2)H2.5A (5) 0.131"X 2.5" EA. (5) 0.131"X 2.5" EA. III%f1 2 (2)SDWC15600 - - ')/fl .._..1.1f1 ... 3 (3)SDWC15600 - - 14,:‘ 11: ROOF FRAMING PER PLAN 6d AT 6" O.C. 2X VENTED BL . z K'G0.131" X 3" TOENAIL AT 6 O.C. tri, / \H2.5A & SOWC15600 STYI FivrA /GIRDER TRUSS -�-- PER PLAN TRUSS TO WALL CONNECTION TO EACH H1 STYLE BEARING/SHEAR WALL PER TRUSS PLY PER TABLE ABOVE PLAN AND SCHEDULE SCALE: 3/4"=1'-0" (BEAM/HEADER AT SIMILAR) 14 TYP. RAISED HEEL TRUSS TO WALL CONNECTION [ TRUSS TO WALL CONNECTION sfPF VAIMS #OF TRUSS CONNECTOR 19 1111/55 TO TOP PLATES UPLIFT Fl PUSS 1 HI (6) 0.131" X 1.5" (4) 0.131" X 2.5" -900 115 1 H2.5A (5) 0.131"X 2.5' (5)0.131"X 2.5" 535 --.I1p 1 SOWC15600 - ----...__....._.... - qY.f? I15 • 2 H10-2 (9)0.148"X 1.5" (9)0.148" X 1.5" 11170 -Ali - 2 (2)H2.5A (5)0.131"X 2.5" EA. (5) 0.131"X 2.5" EA. 10'10- 2211- 2 (2)SDWC15600 • - - 9711 -Mu-. 3 (3)SDWC15600 - - -1:16!;'----_345 ADD A35 0 48"0.C. ROOF FRAMING PER PLAN FOR.H2.5A AND 111111101N SDWC STYLE ed AT 6" O.C. CONNECTIONSItiiI-•-..,... 2X VENTED BUM. 1.11.1 .411% 41,- 1 ri-----i". 111141* -,..... IMF I li I H2.5A & SfWC15600 STYI F . iCOMMON/GIRDER TRUSS _ PER PLAN TRUSS TO WALL CONNECTION TO EACH H1 STYLE BEARING/SHEAR WALL PER TRUSS PLY PER TABLE ABOVE PLAN AND SCHEDULE SCALE 3/4"= 1'-0" (BEAM/HEADER AT SIMILAR) 19 TYPICAL TRUSS TO WALL CONNECTION [