Loading...
Specifications (6) 29/ CT ENGINEERING Structural Engineers INC. 180 Nickerson Street Suite 302 Seattle, WA 98109 206.285.4512 (V) 206 285 0618 (F) #15238 Structural Calculations River Terrace Plan 5 , � so 1��dElevation B � Tigard, OR � EC N ,, 22,\o'<" Design Criteria: 2012 IBC (ORSC, OSSC) 09/14/2015 ASCE 7-10 Wind Speed: 120(ULT); 93(ASD); Kzt=1 .0 Seismic: Ss=0.972, S1 =0.423, SDC=D Roof Snow Load = 25 psf Site Class = D, Bearing = 2000 psf Client: Polygon Northwest Company 109 East 13th Street, Suite 200 Vancouver, WA 98660-3229 Ph: 360.695.7700 Fax: 360.693.4442 Architect: Milbrandt Architects 25 Central Way, Suite 210 Kirkland, WA 98033 Ph: 425.454.7130 Fax: 425.646.0945 CT E N G I`.N E E R I N G Nickerson St. INC Suite 302 Seattle,WA 98109180 (206)285-4512(V) (206)285-0618(F) Polygon Northwest Company Multiple locations in Tigard,OR DESIGN SUMMARY: The proposed project is to be single-family homes. We understand that these homes are to be constructed in multiple locations throughout Tigard, Oregon. Design parameters are as noted below: The structures are two-story wood-framed. Roof framing is primarily with pre-manufactured pitched chord wood trusses. Upper floor framing is primarily with pre-manufactured parallel chord wood trusses. Floor framing over crawlspace is primarily pre-manufactured wood joists. The foundations are to be conventional spread footings. Wind design is based on the ASCE 7-10 MWFRS(Envelope Procedure)for 120 mph ultimate wind speed, exposure category B, and with a Kzt value of 1.00. Lateral design is based on the ASCE 7-10"equivalent lateral force" procedure with Ss equal to or less than 1.10 and S1 equal to or less than 0.50 and with soil classification"D". Plywood or OSB shearwalls are the primary lateral force resisting system (R=6.5). . Foundations have been sized for Class 4 soils as defined in IBC 1806.2. Codes considered; 2012 IBC,and currently adopted ORSC and OSSC. CTSHEETPROJECT TITLE:#: CT#DEAD LOAD SUMMARY .........._..... ROOF Roofing- 3.5 psf Roofing-future 0.0 psf 5/8"plywood (O.S.B.) 2.2 psf Trusses at 24"o.c. 4.0 psf Insulation 1.0 psf (1)5/8"gypsum ceiling 2.8 psf Misc./Mech. 1.5 psf ROOF DEAD LOAD 15.0 PSF FLOOR floor finish 4.0 psf NO gypsum concrete 0.0 psf 3/4"plywood(O.S.B.) 2.7 psf joist at 12" 2.5 psf Insulation 1.0``psf (1) 1/2"gypsum ceiling 2.2 psf Misc. 2.6 psf FLOOR DEAD LOAD 15.0 PSF J (2)2 c8 HDR ( )2x8 FOR (2'2x8 H,R RB.1 RB.2 RB.3 1. R ^ 11:1[1 u‘-‘1-""11 ' y i.. GT bl 0..2 � lll GT ; �ll IS.I � 11,1 1i i 1 N ' m�( n r V, � Il i ROOF TRUSS @`24"O.0 ...,.-..-.. . i i re8 ................... ......_............... I A A a ..... ........... W is��'.�• N ;4h F C7 1 x 1 : c� m A , K - © (2).8 HD' �', RB.13 .p •_-_' G:� 'Vim • .. i GABLE END TRUSS , RB.1 111,4 -MI GAEL: END TRUSS PLAN 5B PLAN 5B Roof Framing Plan O1/4"=1'-0" CT# 14051 2014.05.09 1/4" = 1,-o" (11x17) 19 0 - t � fl° ►1 _ .,...., ___, I _F-1 i , ,_ _ II II F II Fl jai I ' M II r ' F i .. / N , tioii II II II P wit/ . ,..,64Mi. Ciliii 7 I I ly it 11 II Ili 4. a g . DI P4 ,: 0 4.Te 4.T- gar 0 0 0 © PLAN 5B PLAN 5B Top Floor Shear Plan 1/4"=1'-0" CT# 14051 2014.05.09 1/4" = 1'-0" (11x17) AIM %IP IMO 41:30 STHD14 ., 14 7 4x10 HDR , 3.5x9 GLB HDR d M. 4x10 HDR 4x10 HDR 4x10 HDR , 1 Ma ' --LI1II1,1— r<-.---1 I���1•----S--- 1 II�II ,1•1 r\--. B.�2S�7lddD�14G B. �(-.8.4 d.L3P 4 rS1H �mw� cc I , 1 I IN I I 3.51x2} BHDrD14A_N N 'yyM _ . :P4 - xX0Ar --::-. 11(2: 1.114-112-'.71-1:111'41:1 11BIolB- - L� 4 ' my I lp- I- .GrI' - rt -__ - / \'_ I 5 BIG BEAM FB rr5.5x'8 1413 HDR -crr .s-as-srsaswasaoraw re B.14 o x40 13 ii Ii EC TT1 1 . 11- II 4 1 '------ ---- ---J----- x I 0 x 0,1 -- —T --- --y--- r co ECrG ci IJ 11 CA u- I P)2x8 HDR B.1' III I o a I ; I x X 1 NO Is- rill111 55x12 GLB H02 I _ _ ' ti,IG B —, An I iii ©r ©11;11 4x10 ADR _ 4 M� ��II����I� __.. :,rte P3\ STH014 --- 3THD•14 B.15'g �� P3 SIM. 0 used this elevation HDR ��B.19 4.Mc & 4.Md not .... �IaFAIUE �'lo�-c•:::•;;�;zz::;;.:.,;z: � 4� ......r. B.19 17 MONO TRUSSES 05. @ 24'O.C. OPLAN 5B PLAN 5B Main Floor Shear/Top Floor Framing 1/4"=1'-0" CT# 14051 2014.05.09 1/4" = l'-0" (11x17) 3" 4_0' 3" l-1'-31 T.O.S. 3 1/2"CONC.SLAB o -0'-71/2" 741. -0-3- T.O.S. STHD14 STHD14 z ............................... ............................... . ........... i'.': .".:1'-04/2'......:.:.:........:... _..'. '.'.'.'.'.'.'.'.'.'.'.'.:.'.':.'.':.'.'.':..:'.'.•:.'.'. '.'.'. .'.'.'.'.'..'.'.:'.'..... ..............' .1:75x9:6'.. 1. . ...................................... ........... 1/2".'711.FLOORJOISTS.@. ......... JNSTALLSYS.T.EM.T.O.ALLOW...'.'::.'.'.'.'.'.'.':.'.'.':::.'.:.':..'.'.•.'.'.':.':..'..'.'.'.'.'.'.'...'. '.:.'.'.'.-.'.':.'.'a. , ..................... �- - ..................... ............ .... l'. .'.'.'.'.'.'.'.'.' ...'.'..'.'.'.'.'...'.'.'. i. .i.'.'. ::.'.'.'... DEP.TH.' :• PONY.WAL 5:.'...'. ! , ......................... ..I. .I.......... •••.............. .......................I I'. • IWH I STHD14 STHD14 .',':.':..'. .'.'.':.':...'.'.'.'.'.'.'..'..�.':':::..:....................... ..........i. 1i ® P4 T.O.S. P4 }'.':.':. o..l........:.:? .'.'.':.'.'.'.:'..':.'.'.':. .........!'. y '' '''30-x20-xi0"FTG'... I: 1 75"WIDE LVLTO "VEPONl1TCN':.,. .. I GIST DEPTH AB I I 8 2 3/4 i X 11 31(4 r .......... 31/2"CONC.SLAB SLAB SLOPES 31/2" I.'.'.'.'.'.'..'......'. `..'i 1-01/2 FROM BACK TO APRON VERIFY GARAGE SLAB HEIGHT WITH GRADING PLAN .'.:.:.'.. ;..'..:. '.'�'.'.'.'.'.::`.-_.,:.'....'.':.'.'..'.'.'.'.:........... ....:.'.'...i. 19'-10" :..'�. I r- I 11 MEM :'.'.'::....-.. Q'-3". � I .:':. I T.O.S. v7- 0 STHD14 UP r �L........ .. ... j 18 STHD14 _1'$1/2" Uri L 31E ;P:1) @ STHD14• --STHD14 ,, 31/2"CONC.SLAB SLOPED DOWN 103 1/` 1 1/4 I:12 44/ L f J _J ., J 0 UliP VLF 2'-'•A PLAN5152,-2^8 T-10" PLAN 5V-8 C.) 40'- ' CT# 14051 2014.05.09 ,i{4" = 1'-0" (11x17) J CT Engineering Project Title: Engineer: Project ID: 180 Nickerson,Suite 302 ProjectEn Descr: Seattle,WA 98109 (206)285 4512 Fax: (206)285 0618 Printed 26 MAR 2014,429PM i�ir1� 4�.., :� sr " a P. =i y ; t l' c affi`1rs nE ?,q�'(4PAI, �14=�9�1,t4051W-C6 Ieou1t1 �4'�51117 fey eaRl ., ,, 441 ` �� NERAL C 8 01418u,,tid,614i123 Vers14r1�23c< ..., 5'6 - a.,,... w.KW-06002997> ..7Tf K.xartv...r,.m, .o,s ..i,, . . , Lic.#s; � . ' ,Licensee.c.t.engineering Description PLAN 5.B Top Floor Framing 'Woad Beam Design %B 1 , ;4 r, I V Veil d' f i ,,^" ^.�" 7 � ` E-Calculations per2012 NDS,IBCC 2012,PCBC 2013;ElSCE 7 10 BEAM Size: 4x10,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Douglas Fir-Larch Wood Grade: No.2 Fb-Tension 900.0 psi Fc-Pill 1,350.0 psi Fv 180.0 psi Ebend-xx 1,600.0 ksi Density 32.210 pct Fb-Compr 900.0 psi Fc-Perp 625.0 psi Ft 575.0 psi Eminbend-xx 580.0 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=10.250 ft Unif Load: D=0.0150, S=0.0250 k/ft,0.0 to 2.670 ft,Trib=3.0 ft Unif Load: D=0.0150, S=0.0250 k/ft,2.670 to 4.250 ft,Trib=23.0 ft Unif Load: D=0.010 k/ft,Trib=8.0 ft Point: D=0.990, S=1.650 k @ 2.670 ft Design SummaryD o 0 Max fb/Fb Ratio = 0.795• 1 D0043 mia.`':"�'.;) fb:Actual: 983.60 psi at 2.663 ft in Span#1 i"00110#1°) Fb:Allowable: 1,237.45 psi Load Comb: +D+0.750L+0.750S+H 4111 Ell Max fv/FvRatio= 0.588: 1 A A fv:Actual: 121.63 psi at 3.485 ft in Span#1 4.250 n 4x10 Fv:Allowable: 207.00 psi Load Comb: +D+0.750L+0.750S+H Max Deflections Max Reactions (k) D L Lr 6 W E B Downward L+Lr+S 0.024 in Downward Total 0.038 in Left Support 1.05 0.87 0.92 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 1.60 0.87 1.84 Live Load Defl Ratio 2120>360 Total Dell Ratio 1333>180 Wood1Bearn Design B 2 ,.__ r 3 T , s k "` a d Gpil pj'"0 ei kill fBC 20siPaiC 201PASCE 7Z 10' <5''.. 'eal `S,z�� - ,,il fi, •"r ice% ,m> , , e. : .sw ,4 C L. ..P.,>, , BEAM Size: 1.75x14,TimberStrand, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: iLevel Truss Joist Wood Grade:TimberStrand LSL 1.55E Fb-Tension 2,325.0 psi Fc-PrIl 2,050.0 psi Fv 310.0 psi Ebend-xx 1,550.0 ksi Density 32.210 pcf Fb-Compr 2,325.0 psi Fc-Perp 800.0 psi Ft 1,070.0 psi Eminbend-xx 787.82 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=10.250 ft Unif Load: D=0.0150, S=0.0250 k/ft,2.670 to 6.50 ft,Trib=23.0 ft Unif Load: D=0.010 k/ft,Trib=8.0 ft Point: D=0.560, S=0.9350 k @ 3.250 ft Design Summary D 0 Max fb/Fb Ratio = 0.736. 1 ' D 0 rrJu'' `i= ~_~_'� fb:Actual: 1,600.40 psi at 3.250 ft in Span#1 � . '.".!.. "! Fb:Allowable: 2,175.87 psi �1 Load Comb: +D+0.750L+0.750S+H Max fv/FvRatio= 0.511: 1 . • fv:Actual: 182.08 psi at 5.352 ft in Span#1 6.50 n,1.75x14 Fv:Allowable: 356.50 psi Load Comb: +D+0.750L+0.750S+H Max Deflections Max Reactions (k) 2 L Lr S W E H Downward L+Lr+S 0.066 in Downward Total 0.104 in Left Support 1.43 1.33 1.12 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 1.97 1.33 2.02 Live Load Defl Ratio 1187>360 Total Defl Ratio 748>180 T,»x,9 �4Yf S �I�oad�BeamyDes �n�W B 3 Y .� �� � �� 'ea' ii, "etc.Ai Epp. =5 , - ,u , � s Ca ul tia Sn per2Q 2 SIDS;IBC 20 2:CBc r. A`SG 7 1U4 BEAM Size: 4x10,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Douglas Fir-Larch Wood Grade: No.2 Fb-Tension 900 psi Fc-PrIl 1350 psi Fv 180 psi Ebend-xx 1600 ksi Density 32.21 pcf Fb-Compr 900 psi Fc-Perp 625 psi Ft 575 psi Eminbend-xx 580 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=10.250 ft Unif Load: D=0.0150, S=0.0250 k/ft,1.50 to 4.250 ft,Trib=23.0 ft Unif Load: D=0.010 k/ft,Trib=8.0 ft Point: D=0.560, S=0.9350 k @ 1.50 ft CT Engineering Project Title: 180 Nickerson,Suite 302 Engineer: Project ID: Seattle,WA 98109 Project Descr: (206)285 4512 Fax: (206)285 0618 i rn219p97l�Beam� �.' >.,;f �'r ,._ �z-,,'�_ a'�»,..,A�. .�_x > •z��R(`t�-Teir Jf NN P.C,`9�8,3-.2,0_F11it1e�Q4�ISf14s�0P14nn.t1e,.d2226 MAR Rx`r 2014,4444..1�2292P33MMu#lt:pW- S0 Design Summary Cic'ensee:"ca.engineering": Max fb/Fb Ratio = 0.681• 1 r t ° tP 57sot fb:Actual: 842.88 psi at 1.941 ft in Span#1 . t Fb:Allowable: 1,237.45 psi p Load Comb: +D+0.750L+0.7505+H Max fv/FvRatio= 0.502: 1 A A fv:Actual: 103.92 psi at 0.000 ft in Span#1 Fv:Allowable: 207.00 psi 4.250 ft,4x10 Load Comb: +D+0.750L+0.750S+H Max Deflections Max Reactions (k) D L Lr s W E H Downward L+Lr+S 0.023 in Downward Total 0.036 in Left Support 1.17 0.87 1.12 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 1.34 0.87 1.40 Live Load Defl Ratio 2242 >360 Total Defl Ratio 1411 >180 Calculatwns per 2012 NDS IBC 2012,CBC 2013 ASCE 7-10 BEAM Size: 4x10,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Douglas Fir-Larch Wood Grade: No.2 Fb-Tension 900 psi Fc-Pill 1350 psi Fv 180 psi Ebend-xx 1600 ksi Density 32.21 pcf Fb-Compr 900 psi Fc-Perp 625 psi Ft 575 psi Eminbend-xx 580 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=10.250 ft Unif Load: D=0.0150, S=0.0250 k/ft,Trib=23.0 ft Unif Load: D=0.010 k/ft,Trib=8.0 ft Design Summary Max fb/Fb Ratio = 0.578 1 fb:Actual: 715.19 psi at 2.125 ft in Span#1 : Fb:Allowable: 1,237.45 psi Load Comb: +D+0.750L+0.7505+H rwr _� Max fv/FvRatio= 0.401: 1 A fv:Actual: 83.02 psi at 3.485 ft in Span#1 Fv:Allowable: 207.00 psi 42500.4210 Load Comb: +D+0.750L+0.7505+H Max Deflections Max Reactions (k) D L Lr S W E H Downward L+Lr+S 0.020 in Downward Total 0.031 in Left Support 1.23 0.87 1.22 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 1.23 0.87 1.22 Live Load Defl Ratio 2591 >360 Total Defl Ratio 1632>180 Wood Beam Design B.5 (Typ) Calculations per 2012:NDS,'IBC 2012,CBC4013 ASCE 7-10 BEAM Size: 2-2x8,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Hem Fir Wood Grade: No.2 Fb-Tension 850.0 psi Fc-Pill 1,300.0 psi Fv 150.0 psi Ebend-xx 1,300.0 ksi Density 27.70 pcf Fb-Compr 850.0 psi Fc-Perp 405.0 psi Ft 525.0 psi Eminbend-xx 470.0 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=1.0 ft Unif Load: D=0.0150, S=0.0250 k/ft,Trib=5.0 ft Unif Load: D=0.010 k/ft,Trib=8.0 ft Design Summary Max fb/Fb Ratio = 0.109. 1 +' . fb:Actual: 127.33 psi at 1.375 ft in Span#1 Fb:Allowable: 1,169.59 psi Load Comb: +D+S+H : .a_. Max fv/FvRatio= 0.092: 1 A fv:Actual: 15.85 psi at 0.000 ft in Span#1 Fv:Allowable: 172.50 psi 27508.2-2.8 Load Comb: +D+S+H Max Deflections Max Reactions (k) D L Lr S W E H Downward L+Lr+S 0.002 in Downward Total 0.003 in Left Support 0.23 0.06 0.17 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.23 0.06 0.17 Live Load Defl Ratio 19147>360 Total Defl Ratio 9430>180 CT Engineering Project Title: Project ID: Engineer: 7,. m0.d1-'s.:* ";-:";-- :, A x'-I 0:.-:_:ia' 180 Nickerson,Suite 302 Probed Descr: Seattle,WA 98109 (206)285 4512 Fax: Pnnled 26MhF2014 429PM (206)285 0618 , � � r.�� ��.��r ,<g� 2�,s� y+:�'����,����' ��;�4FilziY]13405TH J1Eng�1-005174�Gfi a�.U,t:,, �,zu z aE Mb F n sENERC C i 0:1983-01`Bu1ld 6 14„1,23"Ver 1 1 23,N�u1thple��Sirnpl��eain�; � ,�„�;;�������; ��� : � �:�� ,.. - �-_.� �.� ,�. � �.x. C. :. r ...x.. 997 n Licensee:c.t.:engineeringLic.#:' W-06002997 ._ _ .�. __i M._t._.__,,w_ M.OOtlBeam Deslgn *B 6 �' " S; sr : :.b 11u Calculations per 2012NDS,IBC 2012,CBC2013,ASCE 7 1D,�'... " ..,�.`...i�.�P . a`.�� . ':: : �. , x ,r ut..;�.��..'1'P-':::'''i''7l-:l:l'''C BEMSize: 2-2x8,San, lyUnbracedUsing Allowable esDesign with IBC 2012 Load Combin Wood Gr de Nis Bending Wood Species: Hem Fir Fb-Tension 850.0 psi Fc-Prll 1'405.0 psi Ft 525.0 psi Eminbe d-xx 1 470 0 ksi Density 27.70 pc Fb-Compr 850.0 psi Fc-Perp P Applied Loads Unit Load: D=0.0150, L=0.040 k/ft,Trib=1.0 ft Unif Load: D=0.0150, S=0.0250 k/ft,Trib=5.0 ft Unit Load: D=0.010 k/ft,Trib=8.0 ft Design Summary + °� ' + Max fb/Fb Ratio = 0 520. 1 606.14 psi at 3.000 ft in S an#1 � � Fb:Allowable: 1 1165 07 Psi Load Comb: - Max Actual atio= 48 838 si 1at 5.400 ft in Span#1 iv:Actual: P sort z-2■e Fv:Allowable: 172.50 psi Max Deflections Load Comb: +D+S+H Max Reactions (k) g . Lr s_ w E H Upwa d L+Lr+S+S 0 000 in Upwa d Tot�tal 0.000 in Left Support 0.51 0.12 0.38 Live Load Dell Ratio 1843>360 Total Defl Ratio 908>180 Right Support 0 51 012 0 38 � mm fr�� R £WootlBeam Deslgln e B 7 „ --,-- x wow, ���, � � � ,�, ��x��,�� � a � Cal,�rutdtlons per 2012 NDS�II3C2012 CBCF20l3,ASCE�7,10 �..i��wn�-:'..;;1 i. �9\,�',E�+ ��. ��R..� ��S�'$,SS [�. ..t� �' E'4.wvr �^� �.51f� .2 n a... _- - x, n BEAM Size: 2-2x8,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combin Wood Grade Ni o Bending Wood Species: Hem Fir Fb-Tension 850.0 psi Fc-PrIl 1,300.0 psi Fv Ft 525.0 psi Eminbe d xx 1 40.0 ksi Density 27.70 p Fb-Compr 850.0 psi Fc-Perp P Applied Loads Unif Load: D=0.0150, L=0.040 klft,Trib=1.0 ft Unif Load: D=0.0150, S=0.0250 k/ft,Trib=5.0 ft Unif Load: D=0.010 k/ft,Trib=8.0 ft Design Summary i.,.trtes Max fb/Fb Ratio = 0.292: 1 (� � - fb:Actual: 340.95 psi at 2.250 ft in Span#1 a , Fb:Allowable: 1,16723 psi Load Comb: Max Actual . = 3 0.195 79 1at 0.000 ft in Span#1 fv:Actual: psi4.50k zz.e Fv:Allowable: 172.50 psi Max Deflections Load Comb: +D+S+H Downward L+Lr+S 0.012 in Downward Total 0.025 in Max upo (k) 0.09L Lr S W E Li Upward L+Lr+S 0.000 in Upward Total 0.000 in Left SupportSup0.38 028 Live Load Defl Ratio 4369>360 Total Defl Ratio 2152>180 Right Support 0.38 0 09 028 WOo llBeaini tkeslgil B 8 Fa s Calcutaho js r 20 2 NDS BC 2072 CBC 2013,ASGE'7 10 i ..'4 BEAM Size: 4x10,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combintions Gradoe Axis Bending Wood Species: Douglas Fir-Larch 1600 ksi Density 32.21 pcf Fb-Tension 900 psi Fc-Pel 1625 350 psi Ft 5si Fv 75 psi Eminbend-xx 580 ksi Fb-Compr 900 psi Fc-Perp P Applied Loads Unit Load: D=0.0150, L=0.040 k/ft,Trib=14.750 ft O 02213 L 0 590 Design Summary " "" Max fb/Fb Ratio = 0.277; 1 at 1 298.66 Psi .750 ft in Span#1 fb:Actual: a " ...- z•,�.�� � "''' Fb:Allowable: +D+L H psi Load Comb: A Max fvActual : = 3 0.205 40 si tat 2.730 ft in Span#1 3.50 n mno fv:Actual: psi Fv:Allowable: 180.00 psi Max Deflections Load Comb: +D+L+H Max Reactions (k) g L Lr S W E H Downward L+Lr+S 0.005 in Downward Total 0.007 In Left Support 0.39 1.03 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.39 1.03 Live Load Defl Ratio 7745>360 Total Defl Ratio 5633>180 CT Engineering 180 Nickerson,Suite 302 Project Title: Seattle,WA 98109 Engineer: Project ID: Project Descr: (206)285 4512 Fax: (206)285 0618 Muitnpie S�mpie Beam° P""�°� 2"' azerwt ' ' n:: 4 . 1I405iT 11-0 14061T 4123 ° c, ...,,..n ,,... ,,,. ,._.,. %..z . i g?„r a.4 a, iP3P4P,1N C 1983-A,,-'"",•-•-4--'•------4--- ---,----,'014BudBlg 1.23 er6,14, : L,c.#:KVY-06002997 � � � � .. �� Ely_ �„�, ,{1 Wood Beam Design B`g .,w.. . Licensee c.t.engineering; Calculations per 20:12 NDS,;(BC 2012;CBC 20.13,ASCE 7.10 BEAM Size: 4x10,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Douglas Fir-Larch Wood Grade: No.2 Fb-Tension 900 psi Fc-PrIl 1350 psi Fv 180 psi Ebend-xx 1600 ksi Density 32.21 pcf Fb-Compr 900 psi Fc-Perp 625 psi Ft 575 psi Eminbend-xx 580 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=14.750 ft Design Summary Max fb/Fb Ratio = 1 •o�z13 I.0.590 '! fb:Actual: 298.66 psi at 1.750 ft in Span#1 ' Fb:Allowable: 1,077.23 psi p , ,.- Load Comb: +D+L+H Max fv/FvRatio= 0.205: 1 A A fv:Actual: 36.84 psi at 2.730 ft in Span#1 Fv:Allowable: 180.00 psi 3.5011,4x10 Load Comb: +D+L+H Max Deflections Max Reactions (k) D k Lr S W E H Downward L+Lr+S 0.005 in Downward Total 0.007 in Left Support 0.39 1.03 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.39 1.03 Live Load Defl Ratio 7745>360 Total Defl Ratio 5633>180 Woomd BeaDeisn <B 10 _�------ - ._.-- -. .. -_ M 7 .._.. ., S 7,-;i�,',, Calculatlons,per 2012 NDS,IBC 2012.CBC 2013 ASCE 7 10 BEAM Size: 1.75x14,TimberStrand, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: iLevel Truss Joist Wood Grade:TimberStrand LSL 1.55E Fb-Tension 2,325.0 psi Fc-PrIl 2,050.0 psi Fv 310.0 psi Ebend-xx 1,550.0 ksi Density 32.210 pcf Fb-Compr 2,325.0 psi Fc-Perp 800.0 psi Ft 1,070.0 psi Eminbend-xx 787.82 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=14.750 ft Design Summary Max fb/Fb Ratio = 0,372. � 0.590 fb:Actual: 766.31 psi at 3.000 ft in Span#1 Fb:Allowable: 2,062.40 psi p k h � Load Comb: +D+L+H Max fv/FvRatio= 0.295: 1 A A fv:Actual: 91.39 psi at 4.840 ft in Span#1A A Fv:Allowable: 310.00 psi Load Comb: +D+L+f{ 6.0 ft,1.75x14 Max Deflections Maxx Reactions (k) QD L Lr g W ELeft Suction 06 1.77 H Downward L+Lr+S 0.028 in Downward Total 0.038 in Right upport 0.66 1.77 rtUpward L+Lr+S 0.000 in Upward Total 0.000 in Live Load Defl Ratio 2581 >360 Total Defl Ratio 1877>180 iWood Beam Design: ._____._..T._._______..__. _._ _.___._ .___.____A ` i a N Calculation2012 NDS,IBG 2012 CBC 20,1 ;ASCE 7=10 BEAM Size: 1.75x14,TimberStrand, Fully Unbraced �'�s per Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: iLevel Truss Joist Wood Grade:TimberStrand LSL 1.55E Fb-Tension 2,325.0 psi Fc-PrIl 2,050.0 psi Fv 310.0 psi Ebend-xx 1,550.0 ksi Density 32.210 pcf Fb-Compr 2,325.0 psi Fc-Perp 800.0 psi Ft 1,070.0 psi Eminbend-xx 787.82 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=14.750 ft Design Summary inieHm. Em- Max fb/Fb Ratio = 0.198. 1 ���°�! 0.590 s fb:Actual: 431.05 psi at 2.250 ft in Span#1 t ` Fb:Allowable: 2,180.79 psi Load Comb: +D+L+H : r y x" y .. _ Max fv/FvRatio= 0.175: 1 A A fv:Actual: 54.39 psi at 0.000 ft in Span#1 Fv:Allowable: 310.00 psi 4.50 R 1.75x14 Load Comb: +D+L+H Max Deflections Max Reactions (k) D L Lr S W E Li Downward L+Lr+S 0.009 in Downward Total 0.012 in Left Support 0.50 1.33 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.50 1.33 Live Load Defl Ratio 6120 >360 Total Defl Ratio 4451 >180 CT Engineering Project Title: Project ID: Engineer: 180 Nickerson,Suite 302 Project Descr: Seattle,WA 98109 (206)285 4512 Fax: Prinled:26MkR2014,429PM Lic # KW-06002997 �`�� b ood Beam D@Slgtl `�B 12� A �� � ���� � �� � Calculations er 20`12 NOS;1Bm�C 2012 CBC 2013,ASCE`?10` BEAM Size: 3.125x9,GLB, Fully Unbraced OR 3.125X10.5 Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: DF/DF Wood Grade: 24F-V4 Fb-Tension 2,400.0 psi Fc-Prll 1,650.0 psi Fv 265.0 psi Ebend-xx 1,800.0 ksi Density 32.210 p Fb-Compr 1,850.0 psi Fc-Perp 650.0 psi Ft 1,100.0 psi Eminbend-xx 930.0 ksi Applied Loads Unif Load: D=0.0150, L=0.040 klft,Trib=14.0 ft D 0.210 L 0.560 Design Summary Max fb/Fb Ratio = 0.736;1 � 's si at 4.000 ft in S an#1 rs r Fb:Allowable: 2,379.75 psi Load Comb: +D+L+H Max fv/FvRatio= 0.504: 1 - B.Oft 3.725x9 fv:Actual: 133.60 psi at 0.000 ft in Span#1 Fv:Allowable: +L+H psi Max Deflections Load Comb: +D+L I, Max Reactions (k) D L Lr 3 W E H Downward L+Lr+S 0.152 in Downward Total 0.209 m Left Support 0.84 2.24 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.84 2.24 Live Load Dell Ratio 632>360 Total Dell Ratio 459>180 • CT Engineering Project Title: 180 Nickerson,Suite 302 Seattle,WA 98109 Engineer: Project ID: Project Descr: (206)285 4512 Fax: (206)285 0618 Multiple S�mple'Beam P�i�azsiu,�.-4,,,,,:,..9.:6,... 4,, azaPM Uo.#:p,„ . i i:- "i. . .-•z , `� v,?...'' s z Q t140s1T 11Eri 14060 4EC6 ry„ E..., ..,1 KW-06002997 ; ; F-��ERCALC,INCINC 1983 2014 bice 6 14 23j.eng in 1.23 - Description : PLAN 5•B Top Floor Framing, Cont. Licensee:c;t.engineering E Wood Beam Design B 13 .`". a "_.. i.. `` <; , Calculations per2l)12 NDS IBC 2012;CBC:2013,ASCE 7 10 BEAM Size: 3.5x14,TimberStrand, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: iLevel Truss Joist Wood Grade: TimberStrand LSL 1.55E Fb-Tension 2,325.0 psi Fc-Pill 2,050.0 psi Fv 310.0 psi Ebend-xx 1,550.0 ksi Density 32.210 pcf Fb-Compr 2,325.0 psi Fc-Perp 800.0 psi Ft 1,070.0 psi Eminbend-xx 787.82 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=8.0 ft Unif Load: D=0.0150, L=0.10 k/ft,Trib=5.0 ft Design Summary Max fb/Fb Ratio = 0.422. 1 Bf89' 1tdt83 fb:Actual: 962.10 psi at 4.250 ft in Span#1 .. �r � • , , �j ' Fb:Allowable: 2,280.40 psi � Load Comb: +D+L+H 6 ss Max fv/FvRatio= 0.310: 1 �� fv:Actual: 95.96 psi at 7.338 ft in Span#1 Fv:Allowable: 310.00 psi U Load Comb: +D+L+H 8.508 3.5x14 Max Reactions (k) D L Lr g W E Max Deflections Left Su H Downward L+Lr+S 0.078 in Downward Total 0.097 in pport 0.83 3 49 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.83 3.49 Live Load Deft Ratio 1306>360 Total Dell Ratio 1055>180 Wood Beam Design B 14 ionse pr2012 NDS,IRC 2012,CBC 2013ASCE`7 Calculat10 BEAM Size: 5.125x18,GLB, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: DF/DF : 24F-V4 Fb-Tension 2,400.0 psi Fc-Pill 1,650.0 psi Fv Wood 65 0 psiade Ebend-xx 1,800.0 ksi Density 32.210 pcf Fb-Compr 1,850.0 psi Fc-Perp 650.0 psi Ft 1,100.0 psi Eminbend-xx 930.0 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=12.0 ft Design Summary Max fb/Fb Ratio = 0.634. 1 fb:Actual: 1,466.89 psi at 10.125 ft in Span#1 D 0 180 L 0 480 Fb:Allowable: 2,313.03 psis Load Comb: +D+L+Hz ��, tz x , • Max fv/FvRatio= 0.350: 1 ��°` fv:Actual: 92.72 psi at 18.765 ft in Span#1 20.250 ft 5.125x18 Fv:Allowable: 265.00 psi Load Comb: +D+L+H Max Deflections Max Reactions (k) D L Lr g W E Left Sppo1.82 4.86 H Downward L+Lr+S 0.407 in Downward Total 0.560 in Right uprtrt 1 82 4.86 Upward L+Lr+S 0.000 in Upward Total 0.000 in Wood Beam Desi n` 6 15 ...._.._. Live Load Defl Ratio 596 >360 Total Defl Ratio 433>180 g ,- � . Calculations er 2012 NDS IRC 2012 CBC 2013;. P: . ASCE 7`10 BEAM Size. 4x12,Sawn, Fully Unbraced � � _ •�� " �" `�`" Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Douglas Fir-Larch Wood Grade: No.2 Fb-Tension 900.0 psi Fc-Pr!! 1,350.0 psi Fv 180.0 psi Ebend-xx 1,600.0 ksi Density 32.210 pcf Fb-Compr 900.0 psi Fc-Perp 625.0 psi Ft 575.0 psi Eminbend-xx 580.0 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=9.50 ft Unif Load: D=0.0150, S=0.0250 k/ft,Trib=2.750 ft Design Summary Max fb/Fb Ratio = 0.893 °S3t8ai1ait�a3si fb:Actual: 876.94 psi at 4.375 ft in Span#1 , Fb:Allowable: 98226 psi Load Comb: +p+L+H .w.... . � :w�a �� .���� -' ' Max fv/FvRatio= A A fv:Actual: 73.91 psi at 0.000 ft in Span#1A Fv:Allowable: 180.00 psiA Load Comb: +D+L+H 8150 R 4x12 Max Deflections Max Reactions (k) D L Lr g W E Left Sppo0.80 1.66 H Downward L+Lr+S 0.090 in Downward Total 0.126 in Right uprtrt 0.80 1.66 0.30 Upward L+Lr+S 0.000 in Upward Total 0.000 in Live Load Defl Ratio 1172 >360 Total Defl Ratio 831 >180 CT Engineering Project Title: Project ID: 180 Nickerson,Suite 302 Engineer:Project Descr: Seattle,WA 98109 (206)285 4512 Fax: (206)285 0618 Printed:26 MAR 2014,4:28PM ;.V"i ficifzereteimRe x V4Aft� inR v � g � d5Egl�5j4C �in�t � . 2w� rs anilik WPM g ,5ro,,xk" : fzGA C98342014 Bil64123 V8r6( t3 a Lic.# KW 06002997 w . . Licensee:c,t._engineerin engineering Wood Beal>a Deslgn B 16 ,,M Cafc,attonsA'bi,l,12012 4IbSq iBC?012,GBC 2013 ASet7'10 BEAM Size: 5125x12,GLB, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations, iBending Wood Species: DF/DF ons Grade ts V4 800.0 ksi Fb-Tension 2,400.0 psi Fc-Prll 1,650.0 psi Fv 265.0 Ft 1,100 0 psi Eminbe d-xx 1 930.0 ksi Density 32.210 pcf 650.0 Fb-Compr 1,850.0 psi Fc-Perp P Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=9.50 ft Unif Load: D=0.0150, S=0.0250 k/ft,Trib=2.0 ft Design Summary �r Max fb/Fb Ratio = 0.771 1 fb:Actual: 1,834.37 psi at 8.250 ft in Span#1 Fb:Allowable: 2,37923 psi n , , � - r Load Comb: +D+L+H I. : �m A A Max fv/FvRatio= 0.369: 1 16.50 ft, 5.125x12 1v:Actual: 97.83 psi at 0.000 ft in Span#1 Fv:Allowable: 265.00 psi Max Deflections Load ctD L Lr H: +D+L+H S W E Downward L+Lr+S 0.543 in Downward Total 0.760 in Max Reactions (k) Upward L+Lr+S 0.000 in Upward Total 0.000 in Left Support1.42 3.14 0.41 Live Load Defl Ratio 364>360 Total Defl Ratio 260 >180 RighttSuupppoo rt 1.42 3.14 0.41 w � ��i Wood Beam Di fi B 17 cul to ion$pe;1012p i5 2012,CBG 20'!3;ASCE 7 1Dg BEAM Size: 2-2x8,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations, ons Gr de Nio Bending Wood Species: Hem Fir Fb-Tension 850 psi Fc-PrIl 1300 psi Ft 525 psi Emend-d xx 1300 ksi Density 27.7 pcf Fb-Compr 850 psi Fc-Perp Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=8.250 ft D 0.1238 L 0L 0 3�a�'� Design Summary ,,"�� . Max fb/Fb Ratio = 0.312• 1 fb:Actual: 31725 psi at 1.750 ft in Span#1 3 SU3 Fb:Allowable: +,p0+6.H psi A Load Comb: Max Actual: o= 30.241 144 1at 2.905 ft in Span#1 fv:Actual: psi3.50 ft.2-2x8 Fv:Allowable: 150.00 psi Max Deflections Load Reactionscmb: D+p+L L Lr S w E H Downward L+Lr+S 0.009 in Downward Total 0.012 in MaxSprt (k) Upward L+Lr+S 0.000 in Upward Total 0.000 in Left t Supportpo0 22 0 58 Live Load Defl Ratio 4643>360 Total Defl Ratio 3377 >180 Right 0 22 0 58 1 r1IV0[Od Be1tY1 01 4,'''' '. B 18 „V4 w3�Icutations per2012 NDSerlico 2U12 CBC 3 ASCE 7 1 BEAM Size: 2-2x8,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load CombinatiWons, Grade NAxis o - Bending Wood Species: Hem Fir Fb-Tennsion 850.0 psi Fc-Prll 1,300.0 ' psisi Ft 525 0 psi Eminbe d-xx 1,300.0 40.0 ksi Density 27.70 pcf 405.0 Fb-Compr 850.0 psi Fc-Perp P Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=8.250 ft o,2,8,0 330 Design Summary ��"�'�8'" Max fb/Fb Ratio = 0.312; 1 fb:Actual: 317.25 psi at 1.750 ft in Span#1 Fb:Allowable: +,D0+6.H psi 6 - Load Comb: • Max fv/FvRatio= 0.241:1 fv:Actual: 36.14 psi at 2.905 ft in Span#1 3.50 R,2-2x8 Fv: Com Allowable: 1+D5L+H0.00 psi Max Deflections Load cmb: 0.009 in Downward MaxReactionsSprt (k) Lr S W E H Upwad L+Lr+S+S 0.000 in Upward Total Total 0.012 in 0.000 in Leftgt Support 0.22 0.58 Live Load Defl Ratio 4643>360 Total Defl Ratio 3377 >180 Right Support 0.22 0.58 CT Engineering 180 Nickerson,Suite 302 Project Title: Seattle,WA 98109 Engineer: Project ID: (206)285 4512 Project Descr: Fax: (206)285 0618 Prined:26 MAR 2014,4:28PM Multiple Simple Beamh r s ,. Foe uild6 1TttlEngr11 rel4 23 Lic.#:FNV-06002997 ` ^ "� `-•-` � �EINERCALC,;INC 198 .201g�$uiTii 6,141,�3 VerG14j 23• Woo', Beare Desi n ; d Licensee c.t.engineering B19 _ 9 �_.� Calculations per 2012 NDS ►BC 2012 CBC2013 ASCD?10" BEAM Size: 4x8,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Douglas Fir-Larch Fb-Tension 900 psi Fc-Prll 1350 si Fv Wood Grade: No.2 Fb-Compr 900 psi Fc-Perp 625 psi Ft 75 psi Emend- 1580 ksi Density 32.21 pcf P 5 575 psi Eminbend-xx 580 ksi Applied Loads Unit Load: D=0.0150, S=0.0250 k/ft,Trib=3.50 ft Design Summary Max fb/Fb Ratio = 0.593. 1 fb:Actual: 791.49 psi at 5.375 ft in Span#1 D(0.05250 S(0.08750) Fb:Allowable: 1,334.07 psi Load Comb: +D+S+HN � � � Max fv/FvRatio= 0.192: 1 A fv:Actual: 39.74 psi at 10.177 ft in Span#1 A Fv:Allowable: 207.00 psi 10.750 rt, 4x8 Load Comb: +D+S+H Max Reactions (k) D L Lr g W E Max Deflections Left an 0.28QH Downward L+Lr+S 0.149 in Downward Total 0.238 in Right Supportp0.28 0.47 Upward L+Lr+S 0.000 in Upward Total 0.000 in Live Load Defl Ratio 867>360 Total Deft Ratio 542>180 CT Engineering Project Title: Project ID: 180 Nickerson,Suite 302 Engineer:Project Descr: Seattle,WA 98109 (206)285 4512 Fax: (206)2fi8p5 0618 ... � Printed:6MAR 714,9:51AM r� � e� � �= � � 4.1� 4 Oxx �i ' � "" stl � ro0510: 1 51 i4�u� � �ix �� E�Itf�gALGR+1C 1963-2014YBu�6j*1 1 .# Licensee.c.t.engineering LiDescription PLAN 53 2nd floor wall Headers _M ',Wood Beam V4(5101 gn Typical Partial/Non Bearing Heade-e(6'cls eaCaPUIat ons p 2 12 N s,iec 2012,cBC'2013 AseE BEAM Size: 2-2x8,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations, Combin tii Bending Wood Species: Hem Firsi Fv Wons Grade o Fb-Tension 850.0 psi Fc-Prll 1,300.0 Psi Ft 525.0 psi Eminbend-xx 1,300.0 470.0 ksi Density 27.70 pcf 405.0 Fb-Compr 850.0 psi Fc-Perp P Applied Loads Unif Load: D=0.0150, S=0.0250 k/ft,Trib=5.0 ft Design Summary o 0.0750 S 0.1250 Max fb/Fb Ratio = 0.476. 1 fb:Actual: 48228 psi at 3.250 ft in Span#1 _,, _ � � � Fb:Allowable: 1,0013 55 psi • A • Load Comb: A Max fv/FvRatio= 0.245: 1 fv:Actual: 36.76 psi at 0.000 ft in Span#1 6.50 n 2-2x8 Fv:Allowable: 150.00 psi Max Deflections Load Comb: +D+S+H _ _ Downward L+Lr+S 0.041 in Downward Total 0.065 in Max Reactions (k) g LLr s w E H 0.41 Upward L+Lr+S 0.000 in Upward Total 0.000 in Rightt Support rt 0 24 0.41 Left p 0.24 Live Load Deft Ratio 1913>360 Total Defl Ratio 1196 >180 __ �--• --"�--- .__. `�� �" . rr " Wood"$exam Deslgln Typical FUII width Bearing Header(4 clear Clculat px s; a 20 2 s;1BC 202 C C 2013A5 770. BEAM Size: 2-2x8,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations, Combin Axis Bending Wood Species: Hem Fir WonsG Major s 300.0 ksi Fb-Tension 850.0 psi Fc-Prll 1,300.0 psi Fv 150.0 Ft 525 0 psi Eminbend-)c< 1 470.0 ksi Density 27.70 pcf 405.0 Fb-Compr 850.0 psi Fc-Perp P Applied Loads Unif Load: D=0.0150, S=0.0250 k/ft,Trib=23.0 ft o s4so s o s�so Design Summary ��`��'�, Max fb/Fb Ratio = 0.934. 1 fb:Actual: 948.44 Psi at 2.125 ft in Span#1 Fb:Allowable: 1,015.94 psi psi A Load Comb: Max fvActual = 9 0.647 i tat 3.655 ft in Span#1 arson z-zxe Allowableiv:Aopsi Fv: Com : +S+ psi Max Deflections Load Comb: +p+S+H E H Downward L+Lr+S 0.034 in Downward Total 0.055 in Max Left uppo (k) 0.73D L Lr 1.22 w Upward L+Lr+S 0.000 in Upward Total 0.000 in SupportSup1 22 Live Load Defl Ratio 1488>360 Total Defl Ratio 930>180 Right Support 0 73 ��z,� Wood Beam' Design Header RB 9 B ergo 2�os >tec�o1 cBc20 3 Asc�710 �.v.«�'�`�?Y� .-,a�sz"vz,,x�,��...�ca.,r�_.,�._w.� .,.,,> i � .. � �, .-,..l «.u,sy� �F.�,ea z x�'T4�?� �__3. _ ��.„r<.. ..4...�.s- BEAM Size: 2-2x8,Sawn Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combintions Grade Nio B -ending Wood Species: Hem Fir Fb-Tennsion 850.0 psi Fc-Prll 1,300.0 psi Ft 525 0 psi Emenbend- 1,300.0 ksi 470 0 ksi Density 27.70 pcf Fb-Compr 850.0 psi Fc-Perp Applied Loads Unif Load: D=0.0150, S=0.0250 k/ft,Trib=5.0 ft Point: D=1.010, S=1.680 k @ 0.50 ft o w Design Summary Max fb/Fb Ratio = 0.597; 1 '�"'�""o 0.0750 s 0.1250 fb:Actual: 696.61 Psi at 1.348 ft in Span#1 Fb:Allowable: 1,116.16 psi • Load Comb: Max fvActual = 4 0.265 76 si 1fv at 4.655 ft in Span#1 5.250 n,2-2x8 Allowable:AoP . Fv: Com : +S+ psi Max Deflections Load acmb: +D+S+H Max Reactions (k) D L Lr S w E H Downward L+Lr+S 0.038 in Downward Total 0.060 in Left Support 1.11 1.85 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.29 0.49 Live Load Defl Ratio 1671 >360 Total Defl Ratio 1044>180 CT Engineering 180 Nickerson,Suite 302 Project Title: Seattle,WA 98109 Engineer: Project ID: (206)285 4512 Project Descr: Fax: (206)285 0618 IYlult�ple Sllmpte Beam r Printed.6MAR2014 951AM a< r f ' Ale Q1140511-t1E.P9 er61 1.23 Lic.# KVI/06002997 :ENERCALC INC 1983-201Q Build 6 14,1 23 Ver614 Wood Beam Design': Licensee:?c.t engineering 9 Header RB 17. � - Calculations per.2012 NDS,IBC 2012 CBC 2013 ASCE 7-10 BEAM Size: Usi ng AI Sawn, Fully Stress Design Unbraced Wood Species: Hem Fir with IBC 2012 Load Combinations,Major Axis Bending Fb-Tension 850.0 psi Fc-PrIl 1,300.0 si Fv Wood Grade: No.2 Fb-Compr 850.0 psi Fc-Pe p 150.0 psi Emend-roc 1,300.0 ksi Density 27.70 pcf rp 405.0 psi Ft 525.0 psi Eminbend-xx 470.0 ksi Applied Loads Unif Load: D=0.0150, S=0.0250 k/ft,Trib=5.0 ft Point: D=0.90, S=1.50 k @ 0.50 ft Design Summary Max fb/Fb Ratio = 0.556 1 "'R fb:Actual: 648.22 psi at 1.488 ft in Span#1 50 S oo r250r Fb:Allowable: 1,166,16 psi Load Comb: +D+S+H 40 Max fv/FvRatio= 0.254: 1 A fv:Actual: 43.76 psi at 4.655 ft in Span#1A Fv:Allowable: 172.50 psi Load Comb: +D+S+I{ 5.250 R,2.2x8 Max Reactions (kj D L Lr g W E Max Deflections Left Sppo1.01 11 Downward L+Lr+S 0.036 in Downward Total 0.057 in Right upoort 0.28 1.69 Upward L+Lr+S 0.000 in Upward Total 0.000 in 0.47 Live Load Defl Ratio 1774>360 Total Defl Ratio 1108>180 Project Title: Project ID: 18 Nickerson, Engineer: 180 Nickerson,Suite 302 Project Descr: Seattle,WA 98109 (206)285 4512 Fax: (20 6q)285 85 0618 61 8 � ,etM z11?" s a ?ligi',F, a m ;4 NA z :95-1107�:�i3n6UdehR 14tl5081114,1I91fE2AM jC ' l61p�e Bearn f s'Wks, Rng o mg' , xq % , E2CApittC 198320114,BidSI84 Licensee:c.t.engineering Lic.#:KW-06002997 Descr)•tion PIAN 5.B Crawispace Framing iYlf0 d Beam Designs CB 1 r-L r r 1CalcWations7pef 012 1407.113:G 2012 GBC 2013;ASCE?10 BEAM Size: 4x10,Sawn, Fully U d Using Allowable Stress DesignDesign with IBC 2012 Load Combinations, d Gradoe Axis oBending 1 600.0 ksi Density 32.210 pcf Wood -Species: Douglas Fir Larch Fb-Tension 900.0 psi Fc-Pel 1,350.0 psi Ft 575 0 psi Eminbend-xx 580.0 ksi Fb-Compr 900.0 psi Fc-Perp Aoelied Loads Unif Load: D=0.0150, L=0.040 Mt,Tit=9.50 ft p 01425 L 0L 0 380 Design Summa►v �'M� Max fb/Fb Ratio = 0.823. 1 tb:Actual: 883.28 psi at 3.750 ft in Span#1 Fb:Allowable: 1,073.71 psi psi • Load Comb: Max fv/FVRetio= 72.630.403 0p3si 1 0.000 ft in Span#1 7.50 ft,4x10 fv:Actual• Lo: Com b:e: psi Max Deflections Load Comb: +D+L+HLDownward L+Lr+S 0.074 in Downward Total 0.101 in Max Support (k) 1.43 Lr S w E Li Upward L+Lr+S 0.000 in Upward Total 0.000 in Left t Support 0.53 Live Load Dell Ratio 1222>360 Total Defl Ratio 888>180 Right Support 0.53 1.43 TJI JOISTS and RAFTERS Code�.._._._._ --____.___-.�.�____-�__-8888,._. --- Joist w- 1---3----1---71 Spa, LL DL M max Vmax ElL fb L fir L TL240 L LL360 L ax TL deft, 1 LL def.1 Code Suggest Suggest �size&grade width In. de th it. (In.)pa ( s 8888 g80➢ t Suggest Lpick Lpickry Lpick L Ick (-! � ""•-""-'""" _.. L TL360 L LL480 L max TL deb Tr deg LL deft Lr tioft^ ( ? P 2.1P52�.(ft-I�. (PS4 (e0 (ft) (�t� «)_.._._..___.�•�") :.__lin.?_._._._.._ �..____.._g 4844__ 9.5"TJI 110 1.75 9.5 19.2 40 15 2380 1220 1.40E+08 14.71 27.73 15.23 14.80 14.71 0.661 (ft.) 1n ratio i0. ! ratio _._..__._._. 07._._. :._._._..�._ 9.5"TJI 110 1.75 9.5 16 40 15 2380 1220 1,40E+08 16.11 33.27 16.19 15.73 153 _._.._._._.._._..___._.._._._.._ 0.52 ._..__ 8888.__._._._._8488.__ 0.48 13.31 13 45 13.31' 0.44 360 0.32� ••495 9_5:'TJI 110. 1.75 9.5 12 40 15 2380 1220 1.40E+08 18,61 44.36 17.82 17.31 43_..._.___._._..__._._._._._...._._._17.33 0.72 14.14 14.29 15.170.47 360 0,34: 495 .__._._'_ --8848__---•--_ JI 110 1.75 9,5 9M 40 15 2380 1220 1.40E+08 20.80 55,45 _19. 9_ 18.64 18.64 0.85' • a 8488____..�._._ _._.._.__.._._.__._.._._._.`._.__.__�.............._.._.._._.___...__._.__._._ 17.31 _--. 0,791----0.58E_�_._.._ 15 57 8888 15 73 15.b71 0 52 360_.._.0.36»4848_495 0.62 16.77 16 94 16.77 0 56 360 0.41; 495 9.5"TJI 110 1.75 9,5 19.2 40 10 2500 1220 1.57E+08 15.81 30.50__-16 34 15.37 15,37 0.64- 8484_ 4484__ _•54484_._ 9.5"TJI 1.75 9.5 16 40; L10 2500 1220 .'1,57E+08 17.32 36,60. 17.36 16.34 16.34 0,68 0.5415.17 _••_ -" ; 0 51 14 27 13,97 13.97 _..0 44 384 0 351 _.._._._ 9.5"TJI 110 1,75 9,5 12 40 10 2500 1220 1.57E+08 20.00 48.80 19.11 17.98 17.98 _ 0 75480 - - - -- 15 19 14.84 14.84 0.46 384 0.371 ! 480 9.5"TJI 110 1.75 9.5 9.6 40 10 2500 1220 1.57E+08 22.36 61.00 20.58 -19.37.'._._.._•19.371 -0.8 .� "� •""'- "---- 0 60 _ 16 69 16 34 16.34 0.51 384 0.41 480 - ___ 1 - -•_--- ...._._.._._._..__._..___.._._...._._._._._.._._. 1. 0 65 17:98 17.60 17.60 0.55 384 0.44' 480 9.5"TJI 210 2.0625 9 5 19.2 40 101 3000 13301 1 87E+08 17.32 3325 17 32 16.30 16.301 p_•w `-� 0 _-.._.�___._._.._..._.._._._44 4484._8888_4484._ _ 9.5"TJI 210 2.0625 ._ 9.5 161 40" 10 3000 1330-1.87E+08 18.97 "I 39.90 18.40- 17.32 68 0.54 ` 8484._ 15,13 14 81' __.._._._ 9 5 TJI 210 2.0625 _9,5 12 40 10 3000 1330 1.87E+08 21,91 53.20 20.26 19.06 19 O6 j 00.72 0.58 79 0.64 16.08 15 74 14 81 0 54 384 0.37I- 480 16 74. ;'0 49 384 0 39 480 9 5"TJI 210 2.0625 ---__ _ __, - --- 17.70 17.32 17 32 0 54 384 0 43 480 8848__ .5 9.6 40 10 3000 1330 1.87E+08 24.49 66.50 21.82 20,53 20.53 0.861 0,68 --•--._...�8884_ -------._.._._._.._. �.___-8488_ 4884.8484___ _.. 21.8-_ 0.._._.___ 20.53 .._.__..._.._.__. 19,06 18,6618.66 .--838 9.5"TJI 230 2.3125 "- ----- __ , 0.58 384 0.47; 480 9 5 19,2 40 10 3330 1330 2.06E+08 18.25 33 25 17.89 16,83 16,83 0,70; -•--_.._.__._._.-_.x___480 _..: 9.5"TJI 230 2.3125 9.5 '16'. 40 10 3330> 1330 2.06E+08- { 19.99< 39.90; 19.01 17.89 17.89 0.75 0.60 16 6 V-_ 0 56 15.63 15.29 15 29 0.48 384 0.38'-'480 9.5"TJI 230 2.3125 9.5 12 40 10 3330 1330 2.06E+08 23.08 53,20 20,92 19.69 19.69 0.821 0.66 18 28 1 89 16.25 0.516 384 0.41 480 9.5'TJI 230 2.3125 '-'-'---•__8448___ ._�_._.8488_._ --- 9,6 40 10 3330 1330 2.06E+08 25.81 66,50 22,54 21,21 21,21 0.881 -_••- --- _._ 8888_ 8,488. 17 89 0.56 384. 0.45 480 0.71 19.69 1927 19271 0.60 384 0.481-`_._..___ .-•-'-_- -_ 8484_.8844 .._. 11.875"TJI 110 1.75 11.875 19.2 40 10 3160 1560 2,67E+08 17.78 39.00 19.50 18.35 17.78 0.617i 480 8448 11.875"Ti!110 1.75 11.875 16 40 10 3160. 1560 2.67E+08 `19.47 46.80' - 20.72 19.50 19.47 0.81 _ 1 11.875"TJI 110 1.75 11.875 12 40 10 3160 1560 2.67E+08 22.49 62.40 22.81 21.46 21.46 0.89 0.72 1704 16.67 16.67 0 52 384 0 42 480 --•-- 0 65 18,10. 17 72. 17 72 0.55 61 384 0.44 480 11.875"TJI 110 1.75 11.875 9.6 40 10 3160 1560 2.67E+08 25.14 7.8.00 24.57 23.12 23.12 0.961 0.77 .__._.__._._._. --- y _.._._._ _._.._._19 93 19 50 !19 50 0 61 384._. 0 49j 480 1 21.46 21.01 21.01 0.66 384 0.53! 480 11.875"TJI 210 2.0625 11.875 19.2 4�0 10 3795 1655 3,15E+0819 48�41 38 20.61 19,39 19.39 0.811 0.65` 17.62 11:875"TJI 210 2.0625- 11.875 ; 16 40, 10 3795 1655 3115E+08 21.34 49.65 21.90' 20.61` 20.61 0.86 - 0.59 38 18,00 17 62 OM 384 0 441 480 11.875"TJI 210 2.0625 11.875 12 40 10 3795 1655 3.15E+08 24.64 66.20 24.10 22.68 22.68 0.951 0.76 21.05 ;20.61 ;, 11.875"TJI 210 2.0625 11.875 9.6 40 10 3795 1655 3.15E+08 27.55 82.75 25.96 24.43 24.43 1.021 18.722 6 384 0 55 480 21.05 20.61' 20 61 0.64 384_ 0 52 480 0.81 22.68 22.20 2220 0.69 -'384 0.551-^_ 11.875"TJI 230 2.3125 11.875 19.2 40 10 4215 1655 3,47E+08 20.53 41.38 21.28 20.03 20.03 0.83j 0.671 18.59 18.20' 18.20 0 11.875"TJI 230 .:2,3125 11.875 '16:1 40 10: 4215' 1655.-347E+08 � -___ 480 11.875"TJI 230 2.3125 11.875 12 40 101 4215 1655 3.47E+08 25.97 66.20 24.89 23.42 23.42 0.981 0.78 7 384 0,53 480 .62 21.28 21.28 0.89 0.71' 19.76: " '19 34• . '19 34' �0.60 384;: 0.48 �-480 11.875"Ti!230 2.3125 11.875 9.6 40 10 4215 1655 3.47E+08 29.03 82.75 26.81 25.23 25.23 1.051 ________•_•_.,. 21.74 21 28 21.28 0.67 j 384 0.53: 4888__-•- •----••-_,_,_ � 480 --"" --- -.._._._._._.___..x._.__.._._0.84 23,42 8484_.-22 93 .. 22.93' 0.72 384 0.571 480 11.875"RFPI 400 2.0625 11.175 192 40 701 4315 1480 3.30E+08 2077 37.00 20.93 19.69 19.68 p,g 1 _ W 0 £3 19.69 _.._._._.._._._.._.._..__._.-__.__.._._._ 11.875"RFPI 400,-' 2.0625 •11.875 ; 16 -4844_'.___.___,_TM�_ 40 1a � 4315 1480 3.30E+08 22.76 44.40 22.24 20.93 20.93 0.87. 0.70, 19.43 19.018.28 1 17.891 0.59 384 0.48 480 11.875"RFPI 40011.875" 1 2.06251 11.8751 9.61 40! 10! 43151 1480! 3.30E+081 29.38 74.00 26.371 24.811 24.811 1.031 0.83 I 23.03 20.93 20.93 0.65 384 0.52! 480 28 93 0.59 384 0 52 480 .961 ! j 23.03! 22.54 22.54: 070 384 0561480 Page 1 D+L+S LOAD CASE (12-12) (BASED ON ANSIIAF&PA NDS-1997) SEE SECTION: 2.3.1 2.3.1 2.3.1 3.7.1 3.7.1 CTA 1e -40100 TwinCreekD+L+8 Cr Ke 1.00 Design Budding Factor Cf(Pb) CI(Fe) 1997 NOS ...mmmmmn••••...••im..•..••m.mmi •i•.m.i.•i•••••••m• c 0.80(Constant)> Section 3.7.1.5 Cdi (Pb) Cb Cd(Fc) Eq.3.7-1 KcE 0.30(Constant)> Section 3.7.1.50 Bending Comp. Size Size Rep.Cb (Varies) > Section 2.3.10I NDS 3.9.2 Max.Wail duration duration factor tailor use Pb'' Fc perp Fc' Fce Fc fci IGF° psi Fb -(1 1 (Pb) (Fc) psi psi psi pd psi psi psi psi psi Ps IFce) Stud Grade Width Depth Spadng Height Leld Vert.Load Hor.Lou u 1.0 Load a Plate Cd(Pb)Cd(Fc) Cf Cf Cr Pb Fe perp Fc 0.000 Ins 3, In. 7. Plf Psi H-F Stud 1.5 3.5 16 7.7083 26.4 1730 0.9916 1993.4 1.00 1.15 1.1 1.05 1.15 675 405 800 1,200,000 854 506 966 515.42 44122 439.37 1.00 0.00 H-F Stud 1.5 3.5 16 9 30.9 1340 0.9986 1993.4 1.00 1.15 1.1 1.05 1.15 675 405 800 1,200.000 854 506 966 378.09 340.90 340.32 1.00 0.00 0.000 0.9947 2857.8 1.00 1.15 1.1 1.05 1.15 675 405 800 1,200 000 854 506 966 378.09 340.90 340.00 1.00 0.00 0.000 H-F Stud 1.5 3.5 12 9 30.9 1785 0.9921 1993.4 1.00 1.15 1.1 1.05 1.15 675 405 800 1,200,000 854 606 966 449.95 395.22 393.85 1.00 0.00 0.000 H-F Stud 1.5 3.5 16 8.25 28.3 1550 0.9953 2657.8 1.00 1.15 1.1 1.05 1.15 675 405 800 1,200,000 854 506 966 449.95 395.22 394.29 1.00 0.00 0.000 H-F Stud 1.5 3.5 8 8.25 28.3 2070 H-FPStud 1.5 3.5 8 8.253 28.3 31 95 0.99212091.6 1.00 1.15 1.1 1.05 1.15 675 425 725 1,200,000 854 531 875.438 515.42 431.52 430.48 1.00 0.00 0.000 0.9952 393.65 1.00 0.00 0.000 SPF Stud 1.5 3.5 16 7.7083 28.4 1695 09944 2091.8 1.00 1.15 1.1 1.05 1.15 675 425 725 1,200,000 854 531 875.438 378.09 338.17 335.24 1.00 0.00 0.000 SPF Stud 1.5 3.5 12 9 30.9 1320 SPF Stud 1.5 3.5 12 9 30.9 1760 0.9944 2789.1 1.00 1.15 1.1 1.05 1.15 675 425 725 1,200,000 854 531 875.438 378.09 338.17 335.24 1.00 0.00 0.000 0.9925 2789.1 1.00 1.15 1.1 1.05 1.15 675 425 725 1,200,000 854 531 875.438 449.95 388.13 386.67 1.00 0.00 0.000 F Stud 1.5 5.5 8 SPF Stud 1.5 3.5 16 825 28.3 1525 0.9957 2091.8 1.00 1.15 1.1 1.05 1.15 675 425 725 1,200,000 854 531 875.438 449.95 388.13 387.30 1.00 0.00 0.000 SPF Stud 1.5 3.5 82 823 6.8 3050 825 28.3 2030 0.9957 4183.8 1.00 1.15 1.1 1.05 1.15 875 425 725 1.200,000 854 531 875.438 449.95 388.13 387.30 1.00 0.00 0.000 SP H- 1 H-F A2 1.5 5.5 18 7.7083 16.8 3132 02408 3132.4 1.00 1.15 1.3 1.10 1.15 850 405 1300 1,300,000 1,271 508 1644.5 1378.83 1031.58 506.18 0.40 0.00 0.000 H-F A2 1.5 5.5 16 9 19.6 3132 0.3852 3132.4 1.00 1.15 1.3 1.10 1.15 850 405 1300 1,300,000 1.271 506 1644.5 1011.45 837.57 508.18 0.60 0.00 0.000 H-F#2 1.5 5.5 16 8.25 18.0 3132 0.2858 3132.4 1.00 1.15 1.3 1.10 1.15 850 405 1300 1,300.000 1,271 506 1644.5 1203.70 946.77 506.18 0.53 0.00 0.000 SPF A2 1.5 5.5 16 7.7083 16.8 3287 0.2737 3287.1 1.00 1.15 1.3 1.10 1.15 875 425 1150 .1,400,000 1,308 531 1454.75 1484.89 1015.45 531.23 0.52 0.00 0.000 0.3158 3287.1 1.00 1.15 1.3 1.10 1.15 875 425 1150 1,400,000 1,308 531 1454.75 1296.30 945.38 531.23 0.58 0.00 0.000 SPF A2 1.5 5.5 16 9 19.6 3287 0.3905 3287.1 1.00 1.15 1.3 1.10 1.15 875 425 1150 1,400,000 1,308 531 1454.75 1089.25 850.16 531.23 0.82 0.00 0.000 SPF 92 1.5 5.5 16 825 18.0 3287 SPF Stud 1.5 3.5 16 14.57 50.0 545 0 0.9913 2091.8 1.00 1.15 1.1 1.05 1.15 675 425 725 1,200,000 854 531 875.438 144.26 139.02 138.41 1.00 0.00 0.000 1454.75 H-F A2 1.5 5.5 16 19 41.5 1360 0 0.9969 3132.4 1.00 1.15 1.3 1.10 1.15 850 405 1300 1,300,000 1,271 508 1644.5 226.94 220.14 219.80 1.00 0.00 0.000 Page 1 D+L+W CM 14051-4010.2 Twin Creek I LOAD CASE (1243) Ke 1.00 Desi.n Bucktn•Factor D+L+W (BASED ON ANSI/AF&PA NDS-1997) SEE SECTION: 2.3.1 2.3.1 2.3.1 3.7.1 3.7.1 IIIEEIIIIIIEEEIEMr `���1 nnlmaa®-- �•••�..00C..p�MINE so, _ -1997 NDS _� ��������-�GJQMTaQIDF��GI'a����tK[1I51t�C� 1�Q���_�_� � �� QQm�{ Nor.Load® �mduratlo¢�• �� ���-��_�--_�� ®®®©����® ILClel EelEit33CMm0NIDIEZ Q7t3�© GMM9®= - H-F Stud 1.5 3,5 18 7.7083 28.4 1075 9.71 0. 1093M�-- 1.1 1.05 M N�r75 405 800 1,200,000 0�'�7��� 5r���I�.�_315.42 427.08 273.02 0.64r����' H-F Stud 1.5 3.5 16 9 30.9 755 8.48 0.9942 1993.4 1.60 1.00 1.1 1.05 1.15 675 405 800 1,200,000 1,388 506 840 378.09 333.99 191.75 0.57 447.52 0.885 H-F Stud 1.5 3.5 12 9 30.9 1140 8,48 0.9998 2657.8 1.60 1.00 1.1 1.05 1.15 675 405 800 1,200,000 1,366 508 840 378.09 333.99 217.14 0.85 335,64 0.577 H-F Stud 1.5 3.5 16 8.25 28.3 970 8.13 0.9943 1993.4 1.60 1.00 1.1 405 800 1,200,000 1,366 506 840 449.95 384 87 H-F Stud 1.5 3.5 12 8.25 28.3 1425 8.13 0.9974 2657.8 1.60 1.00 1.1 ®®® 405 800 1,200,000 1,366 506 840 449.95 384.87 271.43 0.71 271.03 0.500 H-F Stud 1.5 3.5 8 8.25 28.3 2355 8.13 0.9981 3988.7 1.80 1.00 1.1 1.05 1.15 875 405 800 1.200,000 1,366 506 840 449.95 384.87 299.05 0.78 180.89 0.394 SPF Stud 1.5 3.5 16 7.7083 28.4 1060 9.71 0.9971 '2091.8 1.60 1.00 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 761.25 515.42 415,53 269.21 0,65 376.78 0,577 SPF Stud 1.5 3.5 16 9 30.9 700 8.46 0.9115 2091.8 1.60 1.00 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 781.25 378.09 328.30 177.78 0.54 447.52 0.618 SPF Stud 1.5 3.5 12 9 30.9 1125 8.46 0.9931 2789.1 1.60 1.00 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 781.25 378.09 328.30 214.29 0.65 335.64 0.567 SPF Stud 1.5 3.5 16 8.25 28.3 960 8.13 0.9970 2091.8 1.80 1.00 1.1 1.05 1.15 675 425 725 1.200,000 1,366 531 761.25 449.95 376.35 243.81 0.65 361.37 0.577 SPF Stud 1.5 3.5 12 8.25 28.3 1405 8.13 0.9952 2789.1 1.80 1.00 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 761.25 449.95 376.35 287.62 0.71 271.03 0.490 SPF Stud 1.5 3.5825 28.3 2320 8.13 0.9958 4183.8 1.60 1.00 1.1 1.05 1.15 675 425 725 1,200,000 1,368 531 761.25 449.95 376.35 294.80 0.78 180.69 0.383 H-F#2 1.5 5.5 7.7083 16.8 3132 9.71 0.3909 3132.4 1.60 1.00 1.3 1.10 1.15 850 405 1300 1,300,000 2,033 506 1430 1378.83 969.91 506,18 0.52 152.58 0.119 H-F#2 1.5 5.5 9 19.8 3132 8.48 0.5743 3132.4 1.60 1.00 1.3 1.10 1.15 850 405 1300 1,300,000 2,033 508 1430 1011.45 804.50 508.18 0.83 181.23 0.178 H-F#2 1.5 5.5 8.25 18.0 3132 8.13 0.4411 3132.4 1.60 1.00 1.3 1.10 1.15 850 405 1300 1,300,000 2,033 506 1430 1203.70 899.13 508.18 0.56 146.34 0.124 SPF#2 1.5 5.5 7.7083 16.8 3287 9.71 0.4327 3287.1 1.60 1.00 1.3 1.10 1.15 875 425 1150 1,400,000 2.093 531 1265 1484.89 940.30 53123 0.56 152.56 0.114 SPF#2 1.5 5.5 16 9 19.6 3287 8.46 0.6033 3287.1 1.60 1.00 1.3 1.10 1.15 875 425 1150 1,400,000 2,093 531 1285 1089.25 808.08 531.23 0.66 181.23 0.168 SPF#2 1.5 5.5 18 8.25 18.0 3287 8.13 0.4790 3287.1 1.60 1.00 1.3 1.10 1.15 875 425 1150 1,400,000 2,093 531 1285 1296.30 884.69 531.23 0.60 146.34 0.118 SPF Stud 1.5 3.5 16 14.57 50.0 70 8.46 0,9957 2091.8 1.80 1.00 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 761.25 144.26 138.14 17.78 0.13!WNW 0.979 SPF#2 1.5 5.5 16 19 41.5 660 9.71 0.8941 3287.1 1.60 1.00 1.3 1.10 1.15 875 425 1150 1,400,000 2,093 531 1265 244.40 233.80 108.67 0.48 927.02 0.786 H-F#2 1.5 5.5 16 19 41,5 600 9.71 0.9921 3132.4 1.80 1.00 1.3 1.10 1.15 850 405 1300 1,300,000 2,033 506 1430 226.94 219.02 98.97 0.44 927.02 0.798 Page 2 D+L+W+.55 (BASED ON ANSI/AFBPA NDS-1997) SEE SECTION: 2.3.1 2.3.1 2.3.1 3.7.1 3.7.1 CTA 14051-4016.2 Twin Creek I LOAD CASE I (12-14) I WL+W+812 Cr Ke 1.00 Design Buckling Fador CI(Pb) Cf(Fc) 1997 NOS e 0.80(Constant)> Section 3.7.1.5 Cd(Pb) Cb Cd(Fe) Eq. KeE 0.30(Constant)s) > Section 3.7.1.5Bending Comp. Size Size Rep. Cb (Varies) > Section 2.3.10Po/ NDS 3.9.2 Max.WaB duration duration factor factor use Fb' Fc perp' Fe' Fee Fc fe fclFa fsi Fb"(1-fc/Fee) If (Pb) (Fe) psi psi psi psi psi psi psi psi psi psi P Stud Grade VNdth Depth Spacing Height Le/d Vert.Load Her.Load <•1.0 Load a Plata Cd(Pb)Cd(Fc) Cf Cf Cr Pb Fe perp Fc E In. In.15 7. pit psi P H-F Stud 1.5 3.5 18 7.7083 26.4 1095 9.71 0.9962 1993.4 1.60 1.15 1.1 1.05 1.15 675 405 800 1,200,000 1,366 508 966 515.42 441.22 278.10 0.63 3711.78 0.599 H-F Stud 1.5 3.5 16 9 30.9 765 5.46 0.9966 1993.4 1.60 1.15 1.1 1.05 1.15 875 405 800 1,200,000 1,368 508 966 378.09 340.90 194.29 0.57 447.52 0.674 H-F Stud 1.5 3.5 12 9 30.9 1150 8.46 0.9969 2657.8 1.60 1.15 1.1 1.05 1.15 675 405 800 1,200,000 1,366 506 966 378.09 340.90 219.05 0.64 335.64 0.584 H-F Stud 1.5 3.5 16 8.25 28.3 985 8.13 0.9963 1993.4 1.60 1.15 1.1 1.05 1.15 675 405 800 1,200,000 1,366 506 966 449.95 395.22 250.18 0.63 361.37 0.596 28.3 2390 8.13 0.9980 39563 1.60 1.15 1.1 1.05 1.15 675 405 800 1.200,000 1.366 506 966 449.95 39522 303.49 0.77 180.69 0.406 H-F Stud 1.5 3.5 12 825 28.3 1445 8.13 0.9959 2657.8 1.60 1.15 1.1 1.05 1.15 675 405 800 1,200,000 1,366 506 966 449.95 39522 275.24 0.70 271.03 0.511 H-F Stud 1.5 3.5 8 8 y 30.9 760 8.46 0.9988 2091.8 1.60 1.15 1.1 1.05 1.15 875 425 725 1,200,000 1,368 531 875.438 378.09 338.17 193.02 0.57 447.52 0.689 SPF Stud 1.5 3.5 16 7.7083 26.4 1080 9.71 0.9935 2091.8 1.60 1.15 1.1 1,05 1.15 675 425 725 1,200,000 1,366 531 575.438 515.42 431.52 274.29 0.64 376.78 0.589 SPF Stud 1.5 3.5 16 SPF Stud 1.5 3.5 12 9 30.9 1140 8.46 0.9944 2789.1 1.60 1.15 1.1 1.05 1.15 675 425 725 �1.200,000 1,366 531 875.438 378.09 336.17 217.14 0.65 335.64 0.577 SPF Stud 1.5 3.5 18 825 28.3 975 8.13 0.9952 2091.8 1.80 1.15 1.1 1.05 1.15 675 425 725 1.200,000 1.366 531 875.438 449.95 388.13 247.62 0.64 381.37 0.588 SPF Stud 1.5 3.5 SPF Stud 1.5 3.5 18 525 28.3 2360 8.13 0.9922 4183.8 1.60 1.15 1.1 1.05 1.15 875 425 725 1,200 000 1,386 531 875.438 449.95 388.13 299.68 0.77 180.69 0.396 9 19.6 3132 8.48 0.5437 3132.4 1.60 1.15 1.3 1.10 1.15 850 405 1300 1,300,000 2.033 506 1644.5 1011.45 837.57 506.18 0.80 181.23 0.178 H-F A2 1.5 5.5 16 7.7083 16.8 3132 9.71 0.3593 3132.4 1.60 1.15 1.3 1.10 1.15 850 405 1300 1,300.000 2,033 506 1644.5 1378.83 1031.58 506.18 0.49 152.58 0.119 H-F A2 1.5 5.5 16 H-F#2 1.5 5.5 16 8.25 18.0 3132 8.13 0.4100 3132.4 1.80 1.15 1.3 1.10 1.15 850 405 1300 1,300,000 2.033 506 1644.5 1203.70 946.77 506.18 0.53 146.34 0.124 5PF#2 1.5 5.5 16 7.7083 16.8 3287 9.71 0.3572 3287.1 1.60 1.15 1.3 1.10 1.15 875 425 1150 1,400,000 2,093 531 1454.75 1484.89 1015.45 531.23 0.52 152.58 0.114 SPF#2 1.5 5.5 16 9 19.6 3287 8.46 0.5595 3287.1 1.60 1.15 1.3 1.10 1.15 875 425 1150 1,400.000 2,093 531 1454.75 108925 850.16 53123 0.62 181.23 0.19 SPF 92 1.5 5.5 18 825 18.0 3287 8.13 0.4342 3287.1 1.60 1.15 1.3 1.10 1.15 875 425 1150 1,400,000 2,093 531 1454.75 1296.30 945.38 53123 0.56 146.34 0.118 SPF Stud 1.5 3.5 16 14.57 50.0 70 8.46 0.9855 2091.8 1.60 1.15 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 875.438 144.26 139.02 17.78 0.13 WNW 0.979 SPF A2 1.5 5.5 18 19 41.5 660 9.71 0.9914 3287.1 1.60 1.15 1.3 1.10 1.15 875 425 1150 1.400,000 2,093 531 1454.75 244.40 235.32 108.67 0.45 927.02 0.788 1:1-F#2 1.5 5.5 16 19 41.5 600 9.71 0.9901 3132.4 1.60 1.15 1.3 1.10 1.15 550 405 1300 1,300,000 2,033 506 1644.5 228.94 220.14 96.97 0.44 927.02 0.798 Page 3 D+L+S+.SW • CT#14051-4015.2 Twin Creek I LOAD CASE I (12-15) I (BASED ON ANSUAFBPA NDS-1997) SEE SECTION: 2.3.1 2.3.1 2.3.1 3.7.1 3.7.1 Ke 1.00 Design Buckling Factor D+L+S+Wl2 e 0.80(Constant)> Section 3.7.1.5 Cr KcE 0.30(Constant)> Section 3.7.1.5 Cf(Fb) Cf(Fc) 1997 NDS Cb wades). > Sec0on 2.3.10 Bending Comp. Size Size Rep. Cd(Fb) Cb Cd(Fe) Eq.3.7-1 NDS 3.9.2 Maz.Wali duration duration factor factor use Stud Grade Width Depth Spadng Height Le/d Vert.Load Hor.Load «1.0 Load 052 Plate Cd(Fb)Cd(Fc2 Cf Cf Cr Fb Fc perp Fc E Pb' Fc perp Fc- Fee Pe lc fe/F'c ib Ib/ In. In. In. ft. Of psf pif (Fb) (Fc) psi psi psi psi psi psi psi psi psi psi psi Fb"(1-fc/Fce) H-F Stud 1.5 3.5 16 7.7083 26.4 1335 4.855 0.9935 1993.4 1.60 1.15 1.1 1.05 1.15 675 405 800 1,200,000 1,366 506 966 515.42 441.22 339.05 0.77 188.39 0.403 H-F Stud 1.5 3.5 18 9 30.9 970 4.23 0.9923 1993.4 1.80 1.15 1.1 1.05 1.15 675 405 800 1,200,000 1,366 508 968 378.09 340.90 246.35 0.72 223.78 0.470 H-F Stud 1.5 3.5 12 9 30.9 1380 4.23 0.9976 2657.8 1.60 1.15 1.1 1.05 1.15 675 405 800 1,200,000 1,366 508 966 378.09 340.90 262.88 0.77 187.82 0.403 H-F Stud 1.5 3.5 18 8.25 28.3 1195 4.065 0.9960 1993.4 1.60 1.15 1.1 1.05 1.15 675 405 800 1,200,000 1,366 506 966 449.95 395.22 303.49 0.77 180.69 0.406 H-F Stud 1.5 3.5 12 8.25 28.3 1680 4.065 0.9990 2657.8 1.60 1.15 1.1 1.05 1.15 675 405 800 1,200,000 1,366 508 966 449.95 395.22 320.00 0.81 135.51 0.343 H-F Stud 1.5 3.5 8 825 28.3 2865 4.065 0.9999 3986.7 1.80 1.15 1.1 1.05 1.15 875 405 800 1.200,000 1.368 506 966 449.95 395.22 338.41 0.88 90.34 0.267 SPF Stud 1.5 3.5 18 7.7083 26.4 1315 4.855 0.9907 2091.8 1.60 1.15 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 875.438 515.42 431.52 333.97 0.77 188.39 0.392 OFF Stud 1.5 3.5 18 9 30.9 985 4.23 0.9970 2091.8 1.60 1.15 1.1 1.05 1.15 675 425 725 1,200,000 1,386 531 875.438 378.09 338.17 245.08 0.73 223.78 0.466 SPF Stud 1.5 3.5 12 9 30.9 1370 4.23 0.9990 2789.1 1.60 1.15 1.1 1.05 1.15 675 425 725 1,200.000 1,366 531 875.438 378.09 336.17 280.95 0.78 167.82 0.398 SPF Stud 1.5 3.5 16 8.25 28.3 1180 4.065 0.9922 2091.8 1.80 1.15 1.1 1.05 1.15 675 425 725 1.200,000 1,366 531 875.438 449.95 388.13 299.68 0.77 180.69 0.396 SPF Stud 1.5 3.5 12 825 28.3 1660 4.065 0.9973 2789.1 1.80 1.15 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 875.438 449.95 388.13 316.19 0.81 135.51 0.334 SPF Stud 1.5 3.5 8 825 28.3 2830 4.065 0.9969 4183.6 1.80 1.15 1.1 1.05 1.15 675 425 725 1,200,000 1.368 531 875.438 449.95 388.13 333.97 0.86 90.34 0.257 H-F#2 1.5 5.5 16 7.7083 16.8 3132 4.855 0.3001 3132.4 1.60 1.15 1.3 1.10 1.15 850 405 1300 1,300,000 2,033 506 1644.5 1378.83 1031.58 506.18 0.49 78.29 0.059 H-F#2 1.5 5.5 18 9 19.6 3132 4.23 0.4544 3132.4 1.60 1.15 1.3 1.10 1.15 850 405 1300 1,300,000 2,033 506 1644.5 1011.45 837.57 508.18 0.80 90.81 0.089 H-P#2 1.5 5.5 16 8.25 18.0 3132 4.065 0.3479 3132.4 1.60 1.15 1.3 1.10 1.15 850 405 1300 1,300,000 2,033 506 1644.5 1203.70 946.77 506.18 0.53 73.17 0.062 SPF#2 1.5 5.5 18 7.7083 18.8 3287 4.855 0.3304 3287.1 1.60 1.15 1.3 1.10 1.15 875 425 1150 1,400,000 2,093 531 1454.75 1484.89 1015.45 531.23 0.52 78.29 0.057 SPF#2 1.5 5.5 16 9 19.6 3287 4.23 0.4750 3287.1 1.60 1.15 1.3 1.10 1.15 875 425 1150 1,400,000 2,093 531 1454.75 1089.25 850.16 531.23 0.62 90.61 0.085 SPF#2 1.5 5.5 16 8.25 18.0 3287 4.065 0.3750 3287.1 1.60 1.15 1.3 1.10 1.15 875 425 1150 1,400.000 2,093 531 1454.75 1296.30 945.38 531.23 0.56 73.17 0.059 SPF Stud 1.5 3.5 16 14.57 50.0 255 4.23 0.9959 2091.8 1.60 1.15 1.1 1.05 1.15 675 425 725 ,1,200,000 1.366 531 875.438 144.26 139.02 64.76 0.47 586.43 0.779 SPF#2 1.5 5.5 18 19 41.5 935 4.855 0.9925 3287.1 1.60 1.15 1.3 1.10 1.15 875 425 1150 1,400,000 2,093 531 1454.75 244.40 235.32 151.11 0.84 463.51 0.580 H-F#2 1.5 5.5 16 19 41.5 865 4.855 0.9970 3132.4 1.60 1.15 1.3 1.10 1.15 850 405 1300 1,300,000 2,033 508 1644.5 226.94 220.14 139.80 0.64 463.51 0.594 Page 4 D+L+S+.7E CT#14051-4015.2 Twin Creek I LOAD CASE I (12-16) I (BASED ON ANSI/AFBPA NDS-1997) SEE SECTION: 2,3.1 2.3.1 2.3.1 3.7.1 3.7.1 Ke 1.00 Design Buckling Factor D+L+S+EI1.4 Cr c 0.80(Constant)> Section 3.7.1.5 Cf(Fb) Cf(Fc) 1997 NOS KcE 0.30(Constant)> Sedan 3.7.1.5 Cd(Pb) b Cdf a Eq. Cb (Vales) > Section 2.3.10 Bending Comp. Size Size Rep. ( ) (F) .7-1 NOS 3.9.2 .Max.Wall duration duration factor factor use Stud Grade Width Depth Spadng Height Le/d Vert.Load Hor.Load u 1.0 Load @ PlatgCd(Fb)Cd(Fe) Cf Cf Cr Fb Fe perp Fc E Fb' Fc perp' Fc• Fee F'c fc tclF'e lb ib/ in. In in 8 plf psf pit (Fb) (Fe) psi psi psi psi psi psi psi psi psi psi psi Fb^(1-1GFce) H-F Stud 1.5 3.5 16 7.7083 26.4 1415 3.57 0.9983 1993.4 1.60 1.15 1.1 1.05 1.15 675 405 800 1,200,000 1,366 506 966 515.42 441.22 359.37 0.81 138.53 0.335 H-F Stud 1.5 3.5 16 9 30.9 1010 3.57 0.9960 1993.4 1.80 1.15 1.1 1.05 1.15 675 405 800 1,200,000 1,366 506 966 378.09 340.90 256.51 035 188.85 0.430 H-F Stud 1.5 3.5 12 9 30.9 1420 3.57 0.9937 2657.8 1.60 1.15 1.1 1.05 1.15 675 405 800 1,200.000 1,366 506 966 378.09 340.90 270.48 0.79 141.63 0.364 H-F Stud 1.5 3.5 16 8.25 28.3 1225 3.57 0.9961 1993.4 1.60 1.15 1.1 1.05 1.15 675 405 800 1,200,000 1,366 506 966 449.95 395.22 311.11 0.79 158.68 0.376 H-F Stud 1.5 3.5 12 8.25 28.3 1710 3.57 0.9947 2657.8 1.60 1.15 1.1 1.05 1.15 675 405 800 1,200,000 1,366 506 966 449.95 395.22 325.71 0.62 119.01 0.315 H-F Stud 1.5 3.5 8 8.25 28.3 2700 3.57 0.9966 3986.7 1.60 1.15 1.1 1.05 1.15 875 405 800 1,200,000 1,368 508 966 449.95 395.22 342.86 0.87 79.34 0.244 SPF Stud 1.5 3.5 16 7.7083 26.4 1395 3.57 0.9984 2091.8 1.60 1.15 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 875.438 515.42 431.52 354.29 0.82 138.53 0.324 SPF Stud 1.5 3.5 16 9 30.9 1000 3.57 0.9918 2091.8 1.60 1.15 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 875.438 378.09 336.17 253.97 0.76 188.85 0.421 SPF Stud 1.5 3.5 12 9 30.8 1410 3.57 0.9962 2789.1 1.60 1.15 1.1 1.05 1.15 675 425 725 1,200,000 1,365 531 875.438 378.09 336.17 268.57 0.80 141.63 0.358 SPF Stud 1.5 3.5 16 825 28.3 1210 3.57 0.9932 2091.8 1.60 1.15 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 875.438 449.95 388.13 307.30 0.79 158.68 0.366 SSPF Stud 1.5 3.5 12 8.25, 28.3 1690 3.57 0.9940 2789.1 1.60 1.15 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 875.438 449.95 388.13 321.90 0.83 0.306 PF Stud 1.5 3.5 8 8.25 28.3 2670 3.57 0.9987 4183.8 1.60 1.15 1.1 1.05 1.15 675 425 725 1,200 000 1,366 531 875.438 449.95 388.13 339.05 0.87 119.01 79.34 0.236 H-F#2 1.5 5.5 16 7.7083 16.8 3132 3.57 0.2844 3132.4 1.60 1.15 1.3 1.10 1.15 850 405 1300 1,300,000 2,033 506 1644.5 1378.83 1031.58 506.18 0.49 56.10 0.044 H-F#2 1.5 5.5 16 825 18.0 3132 3.57 0.3404 3132.4 1,60 1.15 1.3 1.10 1.15 850 405 1300 1,300,000 2,033 506 1644.5 1203.70 946.77 508.18 0.53 64.26 0.055 SPF#2 1.5 5.5 18 7.7083 16.8 3287 3.57 0.3154 3287.1 1.60 1.15 1.3 1.10 1.15 875 425 1150 1,400,000 2,093 531 1454.75 1484.89 1015.45 531.23 0.52 56.10 0.042 SPF#2 1.5 5.5 16 9 19.6 3287 3.57 0.4618 3287.1 1.60 1.15 1.3 1,10 1.15 875 425 1150 1,400,000 2,093 531 1454.75 1089.25 850.16 531.23 0.62 76.47 0.071 SPF#2 1.5 5.5 16 8.25 18.0 3287 3.57 0.3678 3287.1 1.60 1.15 1.3 1.10 1.15 875 425 1150 1,400,000 2,093 531 1454.75 1296.30 945.38 531.23 0.56 64.26 0.052 SPF Stud 1.5 3.5 16 14.57 50.0 285 3.57 0.9981 2091.8 1.60 1.15 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 875.438 144.26 139.02 72.38 0.52 494.93 0.727 SPF#2 1.5 5.5 16 19 41.5 1020 3.57 0.9910 3287.1 1.60 1.15 1.3 1.10 1.15 875 425 1150 1,400.000 2,093 531 1454.75 244.40 235.32 164.85 0.70 340.83 0.500 H•F#2 1.5 5.5 16 19 41.5 945 3.57 0.9939 3132.4 1.60 1.15 1.3 1.10 1.15 850 405 1300 1,300,000 2,033 506 1844.5 226.94 220.14 152.73 0.69 340.83 0.513 Page 5 C T E N G i tV .E `E R I`N G' 180 Nickerson St s. N [ � Suites, Project: 6'�T1 fl � Seattle,WA Date: 98009 Client: 31 Mc 5 (206)285-4512 ( �( • Page Number FAX: (206)285.0618 Cj_kg ' 3 G,w -�'-�p �: vivo ft� • �� s s _5 a f t2ez �T4 = ! •Y _ • tvv � v� _ • iijok ?-Bi7.r3 _ { S g Z 2 : t • • r G tt-a P SLY , , , god M... J { f 3 • , ♦ i 01f�T _LB w ! G ,{ � 3 - } •• ---�- • F J f w: x - } r,_ • W1 : ithZ12 5i7; Structural Engineers 180 ckerson St• • NiSuite 302 E ERIN, G SeStHe,WA //:. - :.-7,_'(6471w..-._:.'m'... - rac 98109 -.,1 '. . Date: - � {206).283-4512 Pso'ect. c El,:—.N1.1.-,,7.-:.--.- PAX• � Page Number (206}285-0618 • Client• tb4 1*5? v4) ---- 11kdli f P P' V - al.. 1,0-- gi**40.fr Ii).4--/034z- /70 4.4— . A.4. *, e Of C� • • ltsre f... ,i 9 .7. Oa 4-, VW) 4-,a5, tr__ hog-. . . . 11- ..1=. 1,,P1-". . -4901914X i , ,.r i. ,_ . . .• . i '' eti""4- e--6 999 /�I - 4.4143 Structural Engineers l Design Maps Summary Report Page 1 of 1 Design Maps Summary Report User-Specified Input Building Code Reference Document 2012 International Building Code (which utilizes USGS hazard data available in 2008) Site Coordinates 45.43123°N, 122.77149°W Site Soil Classification Site Class D -"Stiff Soil" Risk Category I/II/III a _x`'14i' 4;&,i; �� 1 , � 2SOaOm ' 6 :;:i--,::.;11:.1::Z:,.-1::;,.., ..A' f .-. 3f' /fir '1 Y a 1 1 } !r` , " i t jf � y r+ rmir}gtart '� x1%- a t i z ar, �17 -� ` _ -4`,--,,e-------- Lake Oswegcs. . - srhalf8 `" ' _ °" ,�r `"N {D RT ti :,` 3 King City , Q hamar'`"" A , ;0� r { „ AMERICA; T latin € f_ ..... , ,fia t` <z..-„tr" ,.�._, ... , 17.„=...- .,eKt?AtW data@_.�.x._ i _ . . ? ®'Kl .7:7.. USGS-Provided Output _M.u.__s Ss = 0.972 g SMs = 1.080 g Sas = 0.720 g Si = 0.423 g SMI = 0.667 g S°: = 0.445 g For information on how the SS and Si values above have been calculated from probabilistic(risk-targeted)and deterministic ground motions in the direction of maximum horizontal response, please return to the application and select the"2009 NEHRP"building code reference document. MCER Response Spectrum Design Response Spectrum o,sa 1.30 0.80 0.39 0.72 0,22 Oso 0:77 0S6 v 0:&5 B 0.42 N 0.55 , SpA 0,40 0.44 0.32 0:33 0.24 0.22 0.16 0.11 0.08 0.00 0.00 0.00 0,20 0.40 0.50 0.20 1.00 1.20 1.40 1.50 L90 7:00 0.00 0.70 0.40 0.g0 0.80 1.00 1.30 1.40 1.b0 1.80 2.00 Period,T(sec) Period,T(vac) Although this information is a product of the U.S.Geological Survey,we provide no warranty,expressed or implied,as to the accuracy of the data contained therein.This tool is not a substitute for technical subject-matter knowledge. http://ehp2-earthquake.wr.usgs.gov/designmaps/us/summary.php?template=minimal&latit... 9/14/2015 2012 IBC SEISMIC OVERVIEW SHEET TITLE: 2012 IBC SEISMIC OVERVIEW CT PROJECT#: Elevation B Step# 2012 IBC ASCE 7-10 1. RISK CATEGORY TYPE=II Table 1604.5 Table 1.5-1 OCCUPANCY CATEGORY 2. IMPORTANCE FACTOR IE= 1.00 •= Section 1613.1 ->ASCE Table 1.5-2 3. Site Class-Per Geo. Engr. S.C. D ; Section 1613.3.5 Section 11.4.2/Ch.20 Table 1613.3.3(2) Table 20.3-1 4. 0.2 Sec.Spectral Response Ss 0 97 Figure 1613.3.1(1) Figure 22-1 5. 1.0 Sec.Spectral Response S1 0 43V°, Figure 1613.3.1(2) Figure 22-2 Latitude="4546 „ N Longitude= -122.89 W N/A;; (Or by ZIP code) (Or by ZIP code) http://earthquake.usgs.gov/research/hazmaps/ htto://aeohazards.usgs.gov/designmaps/us/application.php 6. Site Coefficient(short period) Fa 1 11", Figure 1613.3.3(1) Table 11.4-1 7. Site Coefficient(1.0 second) Fv 1.58 ; Figure 1613.3.3(2) Table 11.4-2 SMs= 1,08 EQ 16-37 EQ 11.4-1 SMs=Fa*Ss EQ 16-38 EQ 11.4-2 SM1=F„*S1 SMI- 0.68 SDs=2/3*SMs SDs= 0.72 EQ 16-39 EQ 11.4-3 SDS=2/3*SMS SDS= 0.45 EQ 16-40 EQ 11.4-4 8. Seismic Design Category 0.2s SDC5=:D Table 1613.3.5(1) Table 11.6-1 9, Seismic Design Category 1.0s SDC,= DTable 1613.3.5(2) Table 11.6-2 10. Seismic Design Category SDC= D Max. Max. 11. Wood structuralpanels -" . N/A Table 12.2-1 12. Response Modification Coef. R= 6,5. N/A Table 12.2-1 13. Overstrength Factor Os= 3.0 N/A Table 12.2-1 14. Deflection Amplification Factor CD= 4.0 N/A Table 12.2-1 15. Plan Structural Irregularities - No N/A Table 12.3-1 16. Vertical Structural Irregularities - No N/A Table 12.3-2 17. Permitted Procedure Equiv. Lateral Force - Table 12.6-1 Page 2 2012 IBC EQUIV.LAT.FORCE SHEET TITLE: 2012 IBC EQUIVALENT LATERAL FORCE PROCEDURE PER ASCE 7-10 CT PROJECT#: Elevation B Sos= 0.72 h„ = 18.00(ft) Sol= 0.45 x= 0.75 ASCE 7-05(Table 12.8-2) R= 6.5 Ci= 0.020 ASCE 7-05(Table 12.8-2) 1E= 1.0 T= 0.175 ASCE 7-05(EQ 12.8-7) S1= 0.43 k= 1 ASCE 7-05(Section 12.8.3) Ti__ ' 6 ASCE 7-05(Section 11.4.5:Figure 22-15) Cs=SiDS (R/IE) 0.111 W ASCE 7-05(EQ 12.8-2) Cs=Sol/(T*(R/lE) (for T<TL) 0.399 W ASCE 7-05(EQ 12.8-3)(MAX.) Cs=(Sol*TL)/(f2*(R/IE)) (for T>TL) 0.000 W ASCE 7-05(EQ 12.8-4)(MAX.) Cs=0.01 0.010 W ASCE 7-05(EQ 12.8-5)(MIN.) Cs=(0.5 S,)/(R/IE) 0.033 W ASCE 7-05(EQ 12.8-6)(MIN.if Si>0.6g) CONTROLLING DESIGN BASE SHEAR= 0.111 W VERTICAL DISTRIBUTION OF SEISMIC FORCES PER ASCE 7-10 SECTION 12.8.3 (EQ 12.8-11) (EQ 12.8-12) DIAPHR. Story Elevation Height AREA DL w; w, *h;k wC*hXk DESIGN SUM LEVEL Height (ft) hi (ft) (sqft) (ksf) (kips) (kips) Ew, *h;k Vi DESIGN Vi Roof - 18.00 18.00 1666 0.022 36.652 659.7 0.58 3,88 3.88 2nd 8.00 10.00 10.00 1712 0.028 47.936 479.4 0.42 2.82 1st(base) 10.00 0.00 6.70 SUM= 84.6 1139.1 1.00 6.70 E=V= 9.38(LRFD) E/1.4= 6.70(ASD) DIAPHRAGM FORCES PER ASCE 7-10 SECTION 12.10.1.1 (EQ 12.10-1) Design For = DIAPHR. F, E Fi w, E w; Fpx= EFL*ww pr 0.4*Sos*fa*wp 0.2*Sps*IE*wp LEVEL (kips) (kips) (kips) (kips) (kips) Ew; Fpr Max. F Min. px Roof 3.88 3.88 36.7 36.7 5.28 3.88 10.56 2nd 2.82 6.70 47.9 84.6 6.91 3.80 13.81 5 98 6.91 1st(base) 0.00 0.00 0.0 84.6 0.00 0.00 0.00 0.00 Page 3 ASCE 7-10 WIND Part2 SHEET TITLE: MAIN WIND FORCE RESISTING SYSTEM USING ING LOADS FROM ASCE 7-10 CHAPTER 28,PART 2 CT PROJECT# B NS E W ASCE 7-10 F-B S-S 2012 IBC Ridge Elevation(ft)_- 30 00; 30A0 ft. Roof Plate Ht.= 18.00 18.00 Roof Mean Ht.= 24.00 24.00 ft. - -- Building Width= 40 0 48.0 ft. FI 26.5 1A thru C V ult Wind Speed ase Gust 120 120 mph Figure 1609 g• V asd. Wind Speed 3see Gust=z3,� 9„mph (EQ 16-33) Exposure= . B B IW= 1.0 10 NIA NIA Roof Type= Gable Gable P830A' 28.6 28.8 psf Figure 28.6-1 Ps3o s= 4.6 , ,4.6 psf Figure 28.8-1 Ps3oc= 20 7 20.7'-psf Figure 28.6-1 Figure 28.6-1 PB30 G= 41 .:- 4.7 psf A= 1.00 1 00 Figure 28.8-1 Ict= 100" ' 1.00` Section 26.8 windwardllee= ", 1.00 ? 1.00(Single Family Home) X'Krt•l : 1 1 Ps=X.Kzt'I'p.3o= (Eq.28.6-1) PsA= 28.60 28.60 psf (LRFD) (Eq.28.6-1) Ps = 4.60 4.60 psf(LRFD) (Eq.28.6-1) Psc= 20.70 20.70 psf(LRFD) (Eq.28.6-1) pso= 4.70 4.70 psf (LRFD) (Eq.28.6-1) PSAend Cwarn e= 24.7 24.7 psf (LRFD) Ps aand 0 VIOrne= 4.7 4.7 psf (LRFD) a= 4 4 Figure 28.8-1 2a= 8 8 width-2 2a= 24 32 Areas E W (N-S) (E-W) Wind(NS)(LRFD) Wind(E-W) (LRFD) MAIN WIND-ASCE 7-10 CHAPTER 28 PART 2 Areas(NS) ( ) width factor roof-> 100 1:00; 1A0' 100 ,9;<7Q wind(LRFD)wind(LRFD) width factor 2nd-> 1 00ND SUM DIAPHR. Story Elevation Height AA AB Ac A0 AA AB Ac Ac per 28.4.4 per 28.4.4 WN S) V(N S) Vi WIND V SUM LEVEL Height (ft) hi(ft) h(ft) (sq.ft)(sq.ft)(sq.ft)(sq.ft) (sq.ft)(sq.ft)(sq.ft)(sq.ft) 30.00 12.0 0 192 0 288 0 192 0 384 Roof - 18.00 18.00 4.0 64 0 96 0 64 0 128 0 10.2 12.3 6.05 6.05 7.17 7.17 2nd 8.00 10.00 10.00 9.0 144 0 216 0 144 0 288 0 5.8 6.9 8.59 14.64 10.08 17.25 1st(base) 10.00 0.00 0.00 0 0.00 0.00 qF= 1000 AF= 1200 16.0 19.2 V(n-s). 14.64 V(e-w)= 17.25 kips(LRFD) kips(LRFD) kips kips Page 4 ASCE 7-10 Part 1 SHEET TITLE: MAIN WIND FORCE RESISTING SYSTEM USING LOADS FROM ASCE 7-10 CHAPTER 28,PART 1 CT PROJECT#: Elevation B SEE SEAW RAPID SOLUTION SPREADSHEET AND INSERT VALUES BELOW MAIN WIND-7-10 CHAPTER 28 PART 1 Wind(N-S) Wind(E-W) Min/Part 2(Max.) Min/Method 1(Max.) DIAPHR. Story Elevation Height DESIGN SUM DESIGN SUM Wind DESI N)(LRFD)SUM WindSUM (LRFD)SUMLEVEL Height (ft) hi(ft) Vi(N-S) V(N-S) Vi(E-W) V(E-W) Vi(N-S) V(N-S) Vi(E-W) V(E-W) Roof - 18.00 18.00 0.00 0.00 0.00 0.00 2nd 8.00 10.00 10.00 15.76 16.00 16.91 19 20 0.00 0.00 0.00 0.00 5.76 16.00 6.91 1st(base) 10.00 0.00 0.00 1920 V(n-s)= 0.00 V(e-w)= 0.00 V(n-s). 16.00 V(e-w)= 19.20 kips kips kips(LRFD) kips(LRFD) DESIGN WIND-Min./Part 2/Part 1 ASD Wind(NS)(LRFD) Wind(E-W)(LRFD) Wind(N-S)(ASD) Wind(E-W)(ASD) DIAPHR. Story Elevation Height DESIGN SUM DESIGN SUM DESIGN SUM DESIGN SUM LEVEL Height (ft) hi(ft) Vi(N-S) V(N-S) Vi(E-W) V(E-W) Vi(N-S) V(N-S) Vi(E-W) V(E-W) Roof 8 10 10 10.24 10.24 12.29 12.29 7.93 7.93 9.52 9.52 2nd 10 0 0 5.76 16.00 6.91 19.20 4.46 12.39 5.35 1st(base) 0 0 0 14.87 V(n-s)= 16.00 V e-w= ( )= 14.87 ( ) 19.20 V(n3)= 12.39 V e-w- kps(LRFD) kips LRE) kips)ASD) ki.s(ASD) I Part 1 Base Shear Part 2 Base Shear = 0.0 0.0I ratio ratio Page 5 MM.MMl.M.MM.M.MlM.MMMMI.MM..MmmmmT - SHEET TITLE: SDPWS SHEARWALL VALUES PER TABLE 4.3k CT PROJECT#: Elevation B SHEATHING THICKNESS tsheathing= 7/16" NAIL SIZE nail size= 0.131 diaX_2 5'long STUD SPECIES SPECIES= H-F or SPF SPECIFIC GRAVITY S.G.= 0.43 • ANCOR BOLT DIAMETER Anc.Bolt dia.= 0.625 ASD F.O.S.= 2.0 i,, SHEARWALL TYPE Table 4.3A Seismic Table 4.3A Wind 7/16"w/8d common V seismic V s allowable V wind V w allowable (15/32"values per (SDPWS-2008) (dimodify per S.vide d by 2.0 FOS). (SDPWS-2008) modify(divide byy per S.FOS). footnote 2) (for ASD) (for ASD) -- 0 1 0 1 P6TN,! 150 150 150 150 P6? 520 242 730 339 P4 • 760 353 1065 495 1370; 637 P3 � 980! 456 P2 1280 595 1790 832 2P4 • „15201 707 2130?, 990 2P3 1960 911 2740 1274 2P2 3580= 1665 - ;2560' 1190- - N.G. 10000 4650 10000 4650 GYPSUM THICKNESS tsheathing= 1/2” • NAIL SIZE nail size 1 6.5 1/4"Iong.No.6 Type S or W Response Modification Coef. = SHEARWALL TYPE Table 2306.4.7 Seismic Wind 1/2"w/1 1/4"screw V allowable V s allowable V w allowable Blocked (PER 2009 IBC) modify G7 125 R>2 not allowed R>2 not allowed G4 150 R>2 not allowed R>2 not allowed 2G7 250 R>2 not allowed R>2 not allowed 2G4 300 R>2 not allowed R>2 not allowed 2G4 300 150 • SHEET TITLE: LATERALN-S(front to back-up/down) CT PROJECT#: Elevation B Diaph.Level: Roof Panel Height° 8 ft. Seismic V i= 3.88 kips Design Wind N-S V I= 7.93 kips Max.aspect= 3.5 SDPWS Table 4.3.4 Sum Seismic V i= 3.88 kips Sum Wind N-S V I= 7.93 kips Min.Lwall= 2.29 ft. per SDPWS-2008 (0.6-0.14Sds)D+0.7 p Qe 0.6D+W pi= 1.00 Table 4.3.3.5 Wind Wind E.Q. E.Q. p= 1.00 E.Q. E.Q. Wind Wind E.Q. EQ. E.Q. E.Q. Wind Wind Wind Wind Max. Wall ID T.A. Lwall LDL efl. C 0 w dl V level V abv.V level V abv. 2w/h v i Type Type v i OTM (sqft) (ft) (ft) Ro7M Unet Ueum OTM Roan Unet Ueum Usum HD (kit) (kip) (kip) (kip) (kip) p (plf) (plf) (kip-ft) (kip-ft) (kip) (kip) (kip-ft) (kip-ft) (kip) (kip) (kip) Ext. A.T1 416 4 15.0 46.0 1.00.. 0.15 1.98 0.00 0.97 0.00 1.00 1.00 65 P6TN P6TN 132 7.76 26.12 -1.28 -1.28 15.86 31.05 -1.06 -1.06 -1.06 Ext. A.T2 139 5.0 46.0 .1.00 0.15 0.66 0.00 0.32 0.00 1.00 1.00 65 P6TN P6TN 132 2.59 8.71 -1.41 -1.41 5.29 10.35 -1.17 -1.17 -1.17 E- -xt. A.T3 . 278 10.0 46.0 :.1.00. 0.15 1.32 0.00 0.65 0.00 1.00 1.00 65 P6TN P6TN 132 5.17 17.41 -1.31 -1.31 10.58 20.70 -1.08 -1.08 -1.08 0 0.0' 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 1.00- 0.00: 0.00 0.00 0.00 0.00 1.00 0.00 0-- 0 0 0 ' 0.0 ,1.00 0.00;' 0.00 0.00 0.00 0.00 1.00 0.00 0-_ - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0? 0.0 '0.0. 1.00'- 0.00- - 0.00 0.00 0.00 0.00 1.00 0.00 0-- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 1.00. 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0--- 0: 0.0 0.0 1.00' 0.001 0.00 0.00 0.00 0.00 1.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - -- - 0 0.0 0.0 1.00 0.00! 0.00 0.00 0.00 0.00 1.00 0.00 0-- _- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ext. B.T1 150 : 5.0 ' 47.0 1.00' 0.15' 0.71 0.00 0.35 0.00 1.00 1.00 70 P6TN P6TN 143 2.80 8.90 -1.41 -1.41 5.72 10.58 -1.12 -1.12- 100 .12 Ext. B.T2 300; 10.0 47.0 1.00 0.15 1.43 0.00 0.70 0.00 1.00 1.00 70 P6TN P6TN 143 5.59 17.79 -1.31 -1.31 11.43 21.15 -1.04 -1.04 -1.04 Ext. B.T3 143 4.8 . 47.0 ' 1.00 . 0.15 0.88 0.00 0.33 0.00 1.00 1.00 70 P6TN P6TN 143 2.66 8.45 -1.42 -1.42 5.43 10.05 -1.13 -1.13 -1.13 E- -xt. B.T4 240 8.0 '47.0 1.00 0.15 1.14 0.00 0.56 0.00 1.00 1.00 70 P6TN P6TN 143 4.47 14.23 -1.33 -1.33 9.15 16.92 -1.06 -1.06 -1.06 0 0.0 „ 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- - - 0 0.0 :. 0.0 1.00 0.00: 0.00 0.00 0.00 0.00 1.00 0.00 0-_ - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 1.00;-0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-_ -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0 0„' 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-_ -1.00 0 0,00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0 0 ;."0.0 1.00 0.00- - 0.00 0.00 0.00 0.00 1.00 0.00 0-- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - -- - 0 , 0 0 :;0.0 1.00 : 0.00' 0.00 0.00 0.00 0.00 1.00 0.00 0--- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 ;0.0 1.00 0.00: 0.00 0.00 0.00 0.00 1.00 0.00 0--- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-_ - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 1.00 0.00' 0.00 0.00 0.00 0.00 1.00 0.00 0-_ - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-_ - -- - 0 °; 0.0 0.0 '1.00 0.00- 0.00 0.00 0.00 0.00 1.00 0.00 0-- _ 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0. 0.0 0.0." 1.00,- 0.00: 1 0.00 0.00 0.00 0.00 1.00 0.00 0-_ - - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0- - ' 0.0 0.0 .,1.00 ' 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-_ 0 0.0 0.0 1.00 - 0.00' 0.00 0.00 0.00 0.00 1.00 0.00 0-_ _-- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.0 '0.0 . 1,00'` 0.001 0.00 0.00 0.00 0.00 1.00 0.00 0-- - _ - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 1666 57.8 57.8=L eff. 7.93 0.00 3.88 0.00 --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 EVwind 7.93 EVED 3.88 Notes: denotes with shear transfer denotes perferated shear wall iSB denotes iSB Shear Panel SHEET TITLE: LATERAL N-S(front to back-up/d E evation B CT PROJECT# Diaph.Level: 2nd Panel Height= 9:ft. Seismic V I= 2.82 kips Design Wind N-S V I= 4.46 klps Max.aspect ? 35 SDPWS Table 4.3:4N. .4 Sum Seismic V i= 6.70 kips Sum Wi nd N-S V I= 12.39 kips Min.Lwall= 2.57 ff. (0.6-0.14Sds)D+0.7 p Qe 0.6D+W per SDPWS-2008 pt= 1.00 Table 4.3.3.5 Wind Wind E.Q. E.Q. p= 1.00 E.Q. E.Q. Wind 1,.. ind E.Q. E.Q. .Q` E.Q. OTM Rind D�d :d Oa. HD Wail ID T.A. Lwall LDLeff. C o w dl V level V abv.V level V abv. 2w/h vi Type Type v i (kiTM (ROTM) (kip-ff) (kip-ff) (kip) (kip) (kip) Ext A Ma-.' 235 110, ;46 0 1 00 0-15; 0 61 1.09 0 39 0 53 1.00 1 00 84 P6TN P6 155 28.29 1916 1.05 601000 15 34 22.77 0.72 5980000 -1 89 Ext A Mb-, 1 0.00 0.00 0.00 8 -1.08 0 zs:0 0 0 0 1 001,0.00! 0.00 0.00 0.00 0.00 1.00 0.00 0 -- 0 0.00 0.00 0.00 0 0.000.00 0 0.00 1.00 0 0.00 0.00 0.00 0 0.000.00 0 0.00 0; 0 0 0 0 1.00 0.00! 0.00 0.00 0.00 0.00 1.00 0 0.00 0.00 0.00 0 0.000.00 0 0.00 0 0 1:00', 0.00!, 0.00 0.00 0.00 0.00 1.00 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 ., 0 0.:-.-...0.0,. ..1,00.:.;;:.0.00- 0.00 0.00 0.00 0.00 1.00 0.00 0--- r 0 0.00 0.00 0.00 0.00 0.000.00 0.00 0.00 0 0:0..:,-..; 0.0 1,.00`:::,::0;00. 0.00 0.00 0.00 0.00 1.00 0.00 0-_ 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 :.0 0.0 0:0' 1.00.:,..:(3.00 0.00 0.00 0.00 0.00 1.00 0.00 0-_ -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 `;0.0 0.0: 0.00 0.00 0.00 0.00 1.00 0.00 0-- Ext B Ma, 571 10.0..'-'47 0 ;1.00 0 15 1.74 2.64 0.47 0.85 1.00 1.00 223 P6 P4 413 10.05 0.94 1.29 1.00 1.00 223 P6 P4 413 20.09 17.79 0.25 -1.16 37.18 21.15 1.72 0.27 -1.04 18.59 10.58 1.85 0.811 0.81 E- B.Mb';. 280,- 50 470 '1.00 015; 0.74 . -- 0 0.00 0.00 0.00 -1.42 0.00 0.00 0.00 -1.13 -1.13 0..:-; '',6'.0. :',.-..13'..0'.,::::.:1.68. .0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- 0 0.00 0.00 0.00 -1.33 0.00 0.00 0.00 -1.06 -1.06 p.,:,:'.,9.9.:',;:,,;0 0 •1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0--- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 01. 0 0, :;U 0 1.00 0:00; 0.00 0.00 0.00 0.00 1.00 0.00 0 - - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 o a o ,0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0--- -- 0 00.0000 00.0000 00.0000 00.0000 00.0000 00.0000 0.00 0.00 0.00 00 ';'.0-,'.,:',',, :(1'.0.-: ,40'.0. J:00: , 0.00: 0.00 0.00 0.00 0.00 1.00 0.00 0--- --'� 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.0 0.0,, 1.00 .o.bo.; 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 „•0,. 0 0 -`:'0 0 1.00 0.00: 0.00 0.00 0.00 0.00 1.00 0.00 0'-- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0; 0 0 ,=0.0 1.00 0 00! 0.00 0.00 0.00 0.00 1.00 0.00 0--- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0 0 "<A 0 1.00 0 00` 0.00 0.00 0.00 0.00 1.00 0.00 0-.- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0 0 0 0 1.00 0.00. 0.00 0.00 0.00 0.00 1.00 0.00 0- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0..'":.','0.0 _+0.0.,,:".1'.0U,:',0 00. 0.00 0.00 0.00 0.00 1.00 0.00 0- "' 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Q' 0.0 -..<0.0'' 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0- "' 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 '0 4 ,0.0 ,„0 0 1.00 0 00; 0.00 0.00 0.00 0.00 1.00 0.00 0-- _ 0 0.00 0.00 0,00 0.00 0.00 0.00 0.00 0.00 0.00 '0". 0.0 :.'!:0:0'',,,1:`.00. 0.00' 0.00 0.00 .00 0.00 1.00 0.00 0-- •- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0 0-::',.:0.0 .1.00:?'..,-.0.00:, 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0'F 0.0; :0.0 1.00- 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0. 0 0', 0:0' 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 '' 0,,.,--..A.0- 0.0'-.1.00. '0..,00 0.00 0.00 0.00 0.00 1.00 0.00 0- -- 1712 55.0 55.0=Leff. 4.48 7.93 2.82 3.88 1.00 EV wind 12.39 E VEQ 6.70 Notes: denotes with shear transfer •• denotes perferated shear wall ISB• denotes iSB Shear Panel SHEET TITLE: LATERAL E-W(side to side-left/right) CT PROJECT#: Elevation B Diaph,Level: Roof Panel Height= 8 ft. Seismic V I= 3.88 kips Design Wind E-W V I= 9.52 kips Max,aspect= 3.5 SDPWS Table 4.3.4 Sum Seismic V I= 3.88 ki s Min.Lwall= 2.29 ft. P Sum Wind E-W V I= 9.52 kips (0.6-0,14Sds)D+0.7 p Qe 0,6D+W per SDPWS-2008 pc= 1.00 Table 4.3.3.5 Wind Wind E.Q. E.Q. p= 1.00 E.Q. E.Q. Wend Wind E.Q. E.Q. E.Q. E.Q. Wind Wind Wind Wind Max. Wall ID T.A. Lwall LOL eft. C 0 w dl V level V abv.V level V abv. 2w/h v i Type Type v i OTM R U (Stift) (ft) (ft) (kit) (kip) (kip) (kip) (kip) p OTM net Usum OTM Ron,/ Unet Usum Usum HD (PIO) (plt) (kip-ft) (kip-ft) (kip) (kip) (kip-ft) (kip-ft) (kip) (kip) (kip) Rear 1.Ta*"283,6 8.0 40.0 1.00 0.15 1.62 0.00 0.66 0.00 1.00 1.00 83* Rear 2.Tb* 407.6 11.5 40.0" " 1.00 " 203 5.28 17.41 -0.93 -0.93 12.96 14.40 -0.20 -0.20* 0.15 2.33 0.00 0.95 0.00 1.00 1.00 83. Rear 3.Tc* 141.8 4.0 "40.0 " 1.00 0,15 0,81 0.00 0.33 0.00 1.00 1.00 83* * 203 7.59 17.41 -0.91 -0.91 18.63 20.70 -0.19 -0.19 Rear 4.Td 0 0.00 0.00 0 0 0.0i "I 0.0 1.00 0.00' ' 0.00 0.00 0.00 0.00 1.00 0.00 0__ 203 2.64 6.06 -0.00 0.00 -0.00 0.00 7.20 -0.22 -0.22* 0 0,0' " 0.0" 1.00 " 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0_- .00 0.00 0.00 0.00 0.00 0.00 Int N/A 0 ! 0.0 0.0 ""1.00, 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0__ 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Int N/A 0 0.0 0.0 1.00 , 0.001 0,00 0.00 0.00 0.00 1.00 0.00 0__ -_ 0 0,00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.0 "; 0.0 1.00'"0.00 0.00 0.00 0.00 0.00 1.00 0.00 0__ -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Int N/A 0 0.0- '0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0__ -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0: 0.0 " -0.0 1.00 0.00: 0.00 0.00 0.00 0.00 1.00 0.00 0__ - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Front- -" 4.Ta 148.7 2.5 11.0 1.00 0.15 0.85 0.00 0.35 0.00 1.00 0.63 222* * 0 0.00 1.04 0.94 0.94 0.00 1.24 0.00 0.00 0.00 Front 4.Tb 148.7 2.5 11.0 1.00• 0.15 0.85 0.00 0.35 0.00 1.00 0.63 222* * 340 2.77 1.04 0.94 0.94 6.80 1.24 3.03 3.03* * Front 4.Tc. 119 2.0: 9.7 ,•1,00 '0,15 0,68 0.00 0.28 0.00 1.00 0.50 277* * 340 2.77 1.04 0.94 0.94 5,44 1.24 3.03 3,43 Front 4.Td" 1 9 2.0 9 7 "1.00 0.15 0.68 0.00 0.28 0.00 1.00 0.50 277* 340 2.22 0.73 1.11 1.11 5.44 0.87 3.43 3.43* Front 4.Te;" 148.7- 2.5 11.7" 1.00 " 0.15 0.85 0.00 0.35 0.00 1.00 0.63 222* 340 2.22 1.10 0.911.11 0.91 5.44 1.31 3.43 2.99* Front 4.Tf` 148.7.` 2.5 " 11.7 `1.00 0.15! 0.85 0.00 0.35 0.00 1.00 0.63 222* * 340 2.77 1.10 0.91 6.801.11 .80 1.31 2.99 2.99* - - 0 0.0 0.0 1.00" 0.00: 0.00 0.00 0.00 0.00 1.00 0.00 0-- 340 0.00 0.00 0.0 0 0 0.00 0.0 0 0.00 6.80 0.00 2.99 2.99*- 0 0.00 0 0" 0.0 '"0.0 1.00.'0.00' 0.00 0.00 0.00 0.00 1.00 0.00 0-„ .0 0.00 0.00 0.00 0.00 0.00 0 .: 00r"""0,0;'1,00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0' 0.0 . 0.0 1.00. ` 0.00„ 0.00 0.00 0.00 0.00 1.00 0.00 0-- -_ 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0- - , 0.0 0.0 1,00 0.00: 0,00 0.00 0.00 0.00 1.00 0.00 0___ _- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0,0 0 0 ;1.00;;0.00' 0.00 0.00 0.00 0.00 1.00 0.00 0__ 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0; ' 0.0 " ••0.0 -1.00, .0- - .00 0.00 0.00 0.00 0.00 1.00 0.00 0__ _ 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0" 0.0"" 0.0 1.00; ;0.00' 0.00 0.00 0.00 0.00 1.00 0.00 0-_ 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0 0' 0 0 "1.00; 0.00; 0.00 0.00 0.00 0.00 1.00 0.00 0__ -_ 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0 0 0 0 -1:00 0,00: 000 0.00 0.00 0.00 1.00 0.00 0__ - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0 0 :" 0,0 1:00',=0.00' 0.00 0.00 0.00 0.00 1.00 0.00 0-_ _ 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - 0 0 0 0 0 1,00:' 0,00 0,00 0.00 0.00 0.00 1.00 0.00 0__ _ 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0, '-0 0, 0.0 1:00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- _ 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.0 0.0 '1.00: 0.00: 0.00 0.00 0.00 0.00 1.00 0.00 0- -_ _ 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 1666 37.5 37.5=L eff. 9.52 0.00 3.88 0.00 -'" 0 0.00 0,00 0.00 0.00 0,00 0.00 0.00 0.00 0.00 EV.,„d 9.52 EVE0 3.88 Notes: * denotes with shear transfer ** denotes perferated shear wall iSB denotes iSB Shear Panel GARAGE ABWP SHEET TITLE: LATERAL E-W(side to side-ieft/ri Ehevation B __ .. • nm•m••••i.m•.m•••m••m••• .i••i••ii••i•••••iiimi CT PROJECT# Diaph.Level: 2nd Seismic V i= 2.8 kips Design Wind E-W V 1= 5.35 kips Max.asspeectct3.5SDPWS Table 4.3.4 Sum Seismic Panel Heightft. V i= 6 0 kips Sum Wind E-W V I= 14.87 kips = 4 Min.Lwall= 2.57 ft. (0.6-0.14Sds)D+0.7 p Qe 0.6D+W per SDPWS-2008 pi= 1.00 Table 4.3.3.5 Wind Wind •.Q. E.Q. p= 1.00 E.Q. E.Q. Wind Wind E.Q. E.Q. E.Q. E.Q. Wind Wind Wind Wind d MUs=ax. HD C 0 w dl V level V abv level V abv. 2w/h v i Type Type v i OTM ROTM Unet Usual OTM ROTM Wall ID T.A. L(ft) L(ft) I (plf) (kip-ft) (kip-ft) (kip) (kip) (kip-ft) (kip-ft) (kip) (kip) (kip) (sqft) (ft) (ft) (klf) (kip) (k'• (kip) (kip) p (P� 361 5.98 1.98 1.12 0.18 13.80 2.36 3.19 3.00* Rear 1.Ta'; 107 6 ;. 4.3 '.1'2.3 1 00. 0.15 0.3, 1.20 0.18 0.49 1.00 0.94 166* 361 5.49 1.82 1.14 0.23 12.66 2.163 3.25 3.06* Rear d 2.Tb 98.77 3.9 12 3 1?.00 0.15 0.1 1.10 0.16 0.45 1.00 0.87 181 * * 361 8.80 4.61 0.75 -0.2720.30 5.48 2.65 2.44* Rear .3.Tc-'•158:3, 6.3 19.5 1 00 0 15, '.50 1.76 0.26 0.72 1.00 1.00 156* * 361 3.52 1.85 0.91 0. 8.12 2.19 3.23 3.23 * Rear 4 Td 63 31'`- 2.5 ; 19 5 1 00 0 15 0.20 0.70 0.10 0.29 1.00 0.56 0.00 0.00 0 00 0.00 1.00 0.00 280-- -- 361 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0770 00.00 0 •0.0 ,' 05 100 0 77 Int• NIA` 181 1 5.5 .5 5'',;5,'1".0.0. !'',z1.50015' 0.77 0 00 0 401 0.00 1 00 1.00 54 P6TN P6TN 103 3 66 2.13 0.22 0.22 6.95 2.53 0.65 0 65 0.65 Int • NIA s 246 9 7 5 7 5 1 00 ._ 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 8 00" 00 1 '� 000' 0.00 s00 0.00 0.00 1.00 10.00 0 - 6.34 3.79 0.27 0.27- 8 10 - 0 0 A�0 0 3 00 0 0 OAS 00 1.00 70 P6TN P6TN 1340 0 00 0.00 0.00 0.00 10 00 0.00 0.00 0.00 0.00 nt ,0 :0 1.0,' x.00 0.�0 0.0J x.00 0.60 1.01 0.00 0- -- 0 , 0.00 0.00 0.00 1.•'• 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Front 4 Ta 117 1. 2 4 •20 5 1 00 0.15 0.37 0.89 0.19 0.62 1. 0.54 629 ABWP ABWP 785 7.35 1.88 3.13 4.07 17.06 2.23 8.48 11.51 ABWP Front 4.Tb 0 0 0 0 0 1 00 0 15, 0.00 -_ 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Front 4.Tc 0 ; 0 0 0 0 1.00 0.15 0.00 0.009 0. 9 0.00 11.6 0.54 629.0 0.00 0 A 576785 4.55 1.88 2.751 .24 10.38 .23 6.99 1.90 Front -4:Td - WP .117.1 2 4 •1 5 1.00 ,015!. 0.37 0.89 0.1916 0 0.62 1.8,, 0.44 569 ABWP ABWP 7.35 1.88 3.13 4.24 17.06 2.23 8.48 11.90 AB r* T. . g; 91 • 0' `11 0� '.� 5 0. 4 576 4.55 0.88 2.75 3.66 10.38 1.05 6.99 9.99 Front.`4.T,f 98 91 2 0 11 7 •:1.00 015` 0.30 1.49 0.16 0.35 1.00 0.44 569* -_ 0 0.00 0.00 000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 O I 0 0 0 0 '1.00 0 00 0.00 0.00 0.00 0.00 1.00 0.00 0--- -_ 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0; 0 0 0 0 •1.00 •0.00; 0.00 0.00 0.00 0.00 1.00 0.00 0-- _ 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 00,C-0 00' 0.00 0.00 0.00 0.00 1.00 0.00 0--- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0 0 0 0 1.00 0 00 0.00 0.00 0.00 0.00 1.00 0.00 0'-- -_ 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0 0 :: 0 0 ;.;1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0', 0.0.`` 0 0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0--- _ 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 • 0.0 0 0 .1,00 •.0.00: 0.00 0.00 0.00 0.00 1.00 0.00 0--- _ 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 o,2-:-,..110 0.0-','1-.00:•:',•'0700 0.00 0.00 0.00 0.00 1.00 0.00 0--- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0; ,0 0 0.0 1;00 0.001 0.00 0.00 0.00 0.00 1.00 0.00 0-- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0 0 , 0 0 1;00 0.00; 0.00 0.00 0.00 0.00 1.00 0.00 0--- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0 -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0• 0:0"; 0 0 1:.00 ;0.001 0.00 0.00 0.00 0.00 1.00 0.00 0-- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0--- -- 1712 48.7 48.7=L eff. 5.35 9.52 2.82 3.88 EV „d 14.87 EVE) 6.70 Notes: * denotes with shear transfer ABWP Alternate Braced Wall Panel-2308.9.3.2 ** denotes perferated shear wall iSB denotes iSB Shear Panel JOB#: Elevation B SHEARWALL WITH FORCE TRANSFER ID: Elevation B 4.Ta,4.Tb Roof Level w dl= 150 p/f V eq 692.6, pounds V1 eq= 362.3 pounds V3 eq= 330.3 pounds V w-1699.7 pounds V1 w= 889.1 pounds V3 w= 810.6 pounds -► v hdr eq= 63.4 plf - 0- •H head= A v hdr w= 155.7 p/f 1 v Fdragl eq= 183 F2 eq= 166 Fdragl w= ••8 F2 -408 H pier= vi eq= 127.9 plf v3 eq= 127.9 plf P6TN E.Q. 5.0 vi w= 313.8 p/f v3 w= 313.8 plf P6 WIND feet H total= 2w/h= 1 2w/h= 9 1 feet � Fdrag3 eq= F4 e.- 166 Fdrag3 w=448 F4 w=408 2w/h= 1 H sill= (0.6-0.14Sds)D 0.6D v sill eq= 63.4 p/f P6TN 3.0 EQ Wind v sill w= 155.7 p/f P6 feet OTM 6234 15297 R OTM 4461 5363 v ♦ UPLIFT 173 969 Up above 0 0 UP sum 173 969 H/L Ratios: L1= 2.8 L2= 5.5 L3= 2.6 Htotal/L= 0.82 Hpier/L1= 1.76 ► 10 Hpier/L3= 1.94 L total= 10.9 feet ..._._....._. .........._... Elevation B SHEARWALL WITH FORCE TRANSFER ID Elevation B 4.Tc,4.Td, Roof Level w dl 150 plf V eq 554.1 pounds V1 eq= 277.1 pounds V3 eq= 277.1 pounds V3 w= 679.9 pounds V w 1359.7', pounds V1 w= 679.9 pounds v hdr eq= 58.3 plf H head= A v hdr w= 143.1 plf V Fdrag1 eq= 160 F2 eq= 160 Fdrag1 w= •4 F2 394 H pier= vi eq= 173.2 plf v3 eq= 173.2 plf P6 E.Q.v3 w= 339.9 plf P6 WIND �::. v1 w= 339.9 plf b.0 feet 2w/h= 0.8 H total= 2w/h- 0.8 9 • Fdrag3 eq= :I F4 e.- 160 feet ' Fdrag3 w=394 F4 w=394 2w/h= 1 H sill= (0.6-0.14Sds)D 0.6D v sill eq= 58.3 plf P6TN 3-0 EQ Wind v sill w= 143.1 plf P6TN feet OTM 4987 12238 R OTM 3379 4061 v v UPLIFT 182 926 Up above 0 0 UP sum 182 926 H/L Ratios: L2= ' 5:5 L3= 2.0 L1= 2.0 Htotal/L= 0.95 , , ' N HpierlLl= 2.50 Hpier/L3= 2.50 4 L total= 9.5 feet JOB#: Elevation B SHEARWALL WITH FORCE TRANSFER ID: Elevation B 4.Te,4.Tf Roof Level w dl= 150 p/f V eq 692.6 pounds V1 eq= 346.3 pounds V3 eq= 346.3 pounds V w= 1699.7 pounds V1 w= 849.8 pounds V3 w= 849.8 pounds v hdr eq= 60.2 p/f ---► •H head= A v hdr w= 147.8 p/f 1 Fdragl eq- 196 F2 eq= 196 A Fdragl w= •='0 F2 -480 H pier= v1 eq= 138.5 plf v3 eq= 138.5 plf P6TN E.Q. 5.0 v1 w= 339.9 p/f v3 w= 339.9 plf P6 WIND feet H total= 2w/h= 1 2w/h= 1 9 . Fdrag3 eq= :• F4 e.- 196 feet Fddrag3 w=480 F4 w=480 2w/h= 1 H sill= (0.6-0.14Sds)D 0.6D v sill eq= 60.2 p/f P6TN 3.0 EQ Wind v sill w= 147.8 p/f P6TN feet OTM 6234 15297 R OTM 4951 5951 UPLIFT 118 863 Up above 0 0 UP sum 118 863 H/L Ratios: L1= 2.5 L2 6.5 L3= 2.5 Htotal/L= 0.78 Hpier/L1= 2.00 0.4 Hpier/L3= 2.00 L total= 11.5 feet JOB#: Elevation B SHEARWALL'WITH FORCE TRANSFER ID: Elevation B 1.Ma1.Mb Roof Level w dl= 150 plf 1%7 1275.1' pounds V1 eq= 677.4 pounds V3 eq= 597.7 pounds V w 2940.6'; pounds V1 w= 1562.2 pounds V3 w= 1378.4 pounds v h61;17 dr eq= 106.3 plf •H head= A v hw= 245.0 plf 1' ;� Fdragi eq= 226 F2 eq= 199 Fdragl w= 1 F20 -459 H pier= vi eq 159.4 plf v3 eq:=== 159.4 plf P6 E.Q. 50 vi w= 367.6 plf v3 w= 367.6 plf P4 WIND feet H total= 2w/h= 1 2w/h= 1 9 Fdrag3 eq= F4-•- 199 feet £ Fdrag3 w=521 F4 w=459 H sill= (0.6-0.14Sds)D 0.60 v sill eq= 106.3 plf P6TN EQ Wind v sill w= 245.0 plf P6 feet OTM 11476 26465 R OTM 5391 6480 UPLIFT 537 1763 Up above 0 0 UP sum 537 1763 H/L Ratios: L1= 43, 1.2- ' 4.0 L3= 3.8 Htotal/L= 0.75 4 ► Hpier/L1= 1.18 Hpier/L3= 1.33 L total= 12.0 feet ......_....._.._............... . JOB#: Elevation B SHEARWALLWITH FORCE TRANSFER ID: Elevation B 1Mc,1.Md Roof Level w dl= 150 p/f V eq 1368.9 pounds V1 eq= 977.8 pounds V3 eq= 391.1 pounds V w= 3157.1 pounds V1 w= 2255.0 pounds V3 w= 902.0 pounds i ...___p„ v hdr eq= 62.2 plf --o..•H head= A v hdr w= 143.5 plf 1 v Fdragl eq= 589 F2 eq= 236 • Fdragl w= ,58 F2 -543 H pier= vi eq= 156.4 plf v3 eq= 156.4 p/f P6 E.Q. 5.0 vl w= 360.8 p/f v3 w= 360.8 plf P4 WIND feet H total= 2w/h= 1 2w/h= 1 9 . Fdrag3 eq= F4 e.- 236 feet • Fdrag3 w=1358 F4 w=543 2w/h= 1 H sill= (0.6-0.14Sds)D 0.6D v sill eq= 62.2 plf P6TN 3.0 EQ Wind v sill w= 143.5 plf P6TN feet OTM 12320 28413 R OTM 18119 21780 v • UPLIFT -272 311 Up above 0 0 UP sum -272 311 H/L Ratios: L1= 6.3 L2= ,' 13.3 L3= ' 2.5 Htotal/L= 0.41 " Hpier/L1= 0.80 Hpier/L3= 2.00 L total= 22.0 feet JOB It Elevation B SHEARWALL WITH FORCE TRANSFER ID: Elevation B 4 Me,4.Mf Roof Level w dl= 150 plf V eq 1011.7 pounds V1 eq= 505.9 pounds V3 eq= 505.9 pounds V w- 2305.8 pounds V1 w= 1152.9 pounds V3 w= 1152.9 pounds v hdr eq= 89.3 plf •H head= A v hdr w= 203.5 plf 1 Fdragl eq= 327 F2 eq= 327 A Fdragi w= .6 F2 -746 H pier= vi eq= 252.9 plf v3 eq= 252.9 plf P4 E.Q. 30 vi w= 576.5 plf v3 w= 576.5 plf P3 WIND feet H total= 2w/h= 1 2w/h= 1 7 Fdrag3 eq= F4 e•- 327 feet A Fdrag3 w=746 F4 w=746 2w/h= 1 H sill= (0.6-0.14Sds)D 0.6D v sill eq= 89.3 plf P6TN 3.0 EQ Wind v sill w= 203.5 plf P6 feet OTM 7082 16141 R OTM 4805 5777 UPLIFT 213 972 Up above 118 863 UP sum 332 1835 HIL Ratios: L1= 20 L2= 7.3 L3= 20 HtotallL= 0.62 4 4 11.4 Hpier/L1= 1.50 Hpier/L3= 1.50 L total= 11.3 feet • $ rK t f'lyt r (i ry I? y a ?r, ,r. c � IYF ..:-40:.� ;APA iTechnsc' r[ TOP1C$ i. . TT.,1OOF APRIL 2014 A Portal Frame with Hold Downs for pp Engineered A lications The APA portal-frame design,as shown in Figure 1,was envisioned primarily for use as bracing in conventional light- frame construction.However,it can also be used in engineered applications,as described in this technical topic.The portal frame is not actually a narrow shear wall because it transfers shear by means of a semi-rigid,moment-resisting frame.The extended header is integral in the function of the portal frame,thus,the effective frame width is more than just the wall segment,but includes the header length that extends beyond the wall segment.For this shear transfer mechanism,the wall aspect ratio requirements of the code do not apply to the wall segment of the APA portal frame. Cyclic testing has been conducted on the APA portal-frame design(APA 2012).Recommended design values for engi- neered use of the portal frames are provided in Table 1.Design values are derived from the cyclic test data using a rational procedure that considers both strength and stiffness. The Table 1 values in this report were developed using the CUREE cyclic test protocol(ASTM E2126),using a flexible load head.Earlier testing was conducted using rigid load heads and the sequential phased displacement(SPD)method, as outlined in SEAOSC(1997)Standard Method of Cyclic(Reversed)Test forShear Resistance of Framed Walls for Buildings. The design values in Table 1 ensure that the code(IBC)drift limit and an adequate safety factor are maintained.For seismic design,APA recommends using the design coefficients and factors for light-frame(wood)walls sheathed with wood structural panels rated for shear resistance(Item 15 of Table 12.2-1 of ASCE 7-10).See APA Report T2004-59 for more details.For designs where deflection may be less of a design consideration,for example,wind loading while the portal frames are used in tandem with each other,and not used as conventional shear walls,a load factor of 2.5, based on the cyclic test results is used. Since cyclic testing was conducted with the portal frame attached to a rigid test frame using embedded strap-type hold downs,design values provided in Table 1 of this document should be limited to portal frames constructed on similar rigid-base foundations,such as a concrete foundation,stem wall or slab,and using a similar embedded strap- type hold down. 1 ®2014 APA—The Engineered Wood Association PORTAL FRAME DESIGN (MIN.WIDTH =22 1/2"): ' EQ=810#< EQ (ALLOW)= 1031# WIND = 1260#<WIND (ALLOW)= 1444# Table 1.Recommended Allowable De gn Val• • for APA Portal Frame Used on a Rigid-Base Allowable Design(ASD)Values per Frame Segment Minimum Width Maximo • eight n Deflection(in.) Load Factor (in.) ) Sheart" (lbf) 8 850 (1190 WIND) 0.33 3.09 16 10 625 (875 WIND) 0.44 2.97 8 1,675 (2345 WIND) 0.38 2.88 24 • : 0.51 3.42 1'-10 1/2" 8 1520 EQ(2128 WIND) 1'-10 1/2" f$b�(31 EQ(1444 WIND) roundation for Wind or Seismic Loading ign value (a) the Design values are based m the user (1—Douglas-fir. or Southern here pineGframing.specific For raviother of the actual f aminecies of g.This ladjustm nt sha l not bthe above shear e g eater than the specific gravity adjustment factor=(1—(0.5—SG)), 9 N 1.0. (b) For construction as shown in Figure 1. (c) Values are for a single portal-frame segment(one vertical leg and a portion of the header).For multiple portal-frame segments,the allowable shear design values are permitted to be multiplied by the number of frame segments(e.g.,two=2x,three=3x,etc.). (d) Interpolation of design values for heights between 8 and 10 feet,and for portal widths between 16 and 24 inches,is permitted. (e) The allowable shear design value is permitted to be multiplied by a factor of 1.4 for wind design. (f) If story drift is not a design consideration,the tabulated design shear values are permitted to be multiplied by a factor of 1.15.This factor is permitted to be used cumulatively with the wind-design adjustment factor in Footnote(e)above. Figure 1. Construction Details for APA Portal-Frame Design with Hold Downs • Extent of header with double portal frames(two braced wall panels) • Extent of header with single portal frame (one braced wall panels) Header to jock-stud strap 1. per wind design min 1000 lbf 2'to 18'rough oraing on both sides of opening for single or double portal opposite side of sheathing Pony : f 111 l wallI height - r est- Fasten top plate to header �� with two rows of 16d t + ' '� sinker nails at 3'o.c.typ . is Fasten sheathing to header with 8d common or Min.3/8"wood structural 12' •M1: galvanized box nails at 3"grid pattern as shown panel sheathing ` y / max total :i-t y,,: Header to jack-stud strap per wind design. wall .;a ;«. Min 1000 lbf on both sides of opening opposite If needed,panel s edges height •"i `� side of sheathing. shall occur over and be nailed to common 10, • • Min.double 2x4 framing covered with min 3/8" ;- : within common blocking portal thick wood structural panel sheathing with :_,__n; height.One row of 3"o.c. max : I. 8d common or galvanized box nails at 3"o.c. nailing is required in each height :r in all framing(studs,blocking,and sills)typ. • panel edge. 'k- Min length of panel per table 1 Typical portal frame construction hk. ' Min(2)3500 lb strap-type hold-downs in (embedded into concrete and nailed into framing) Min double 2x4 post(kingand jack stud).Number of i jack studs per IRC tables Min reinforcing of foundation,one#4 bar __ 8502.5(1)&(2). i top and bottom of footing Lap bars 15 mm ! A` a� e e.x as Rxw.ea n roa.erc w*"wery Min footing size under opening is 12Min 1000 lb hold-down x 12'.A turned-down device(embedded into slab shall be permitted at door openings. concrete and nailed Min(1)5/8"diameter anchor bolt installed per IRC R403.1.6— into framing) with 2"x 2'x 3/16"plate washer 2 0 2014 APA—The Engineered Wood Association References APA, 2004n , Confirmation of Seismic Design Coefficients for the.APA.Portal Frame, APA.Report T2004-59, APA—The Engineered Wood Association,Tacoma,WA. APA,2012,Effect of Hold-Down Capacity on IRC Bracing Method PFH and IBC Alternate Method,APA Report T2012L-24, APA—The Engineered Wood Association,Tacoma,WA. ASCE,2010,Minimum Design Load for Buildings and Other Structures.ASCE 7.American Society of Civil Engineers. Reston,VA. ASTM E2126-11,Standard Test Methods for Cyclic(Reversed)Load Test for Shear Resistance of Vertical Elernents of the La(er al Force Resisting Systems for Buildings,ASTM International.West Conshohocken,PA. SEAOSC, 1997,Standard Method of Cyclic(Reversed) Test for Shear Resistance of Framed Walls for Buildings,Structural Engineers Association of Southern California.Whither,CA. • We have field representatives in many major U.S.cities and in Canada who can help answer questions involving yN,W apawood.or APA trademarked products.For additional assistance in specifying engineered wood products,contact us: APA HEADQUARTERS:7011 So.19th St.•Tacoma,Washington 98466■(253)565-6600•Fax:(253)565-7265 APA PRODUCT SUPPORT HELP DESK:(253)620-7400•E-mail:help@apawood.org Form No.TT-100F Revised April 2014 DISCLAIMER:The information contained herein is based on APA—The Engineered Wood Association's continuing programs of laboratory testing,product research,and comprehensive field experience.Neither APA nor its members :make any warranty,expressed or implied,or assume any legal liability or responsibility for the use,application of,and/or reference to opinions,findings,conclusions,or recommendations included in this publication.Consult PA your local jurisdiction or design professional to assure compliance with code, construction, and performance requirements.Because APA has no control over quality of workmanship or the conditions under which engineered wood products are used,it cannot accept responsibility of product performance or designs as actually constructed. 3 ©2014 APA—Thc Enginecird Wood Association 180 Nickerson St. Stdte 302 C T ENGINEERING Seattle,2WA 111111 (Q,R INC. �' tio� n G I -- 98109 Protect: ^'� e ✓ ' - Date: f tY�"l• ( (eatt)285-4512 Client: 23 .E,3.2 2.9-)Q516,..5,..2--) Page Number: (206)285-0618 ICI H .. . Ct. kV., • . . . On.:-_Ast)(ei_q/L) • � d-,6,, AL4- �\ �tl " . : • ._____5:1_&_2 21(_. . . : „ „, . lal.` X. Lt3:Theren• tfri.61\g.S---tAK- F7542- t°.-flt ) ( t1.017)144 .15.11-97-....rt* PVG/IK6::eatraLl. ( xo.2 0> p.s.6 ••sv► • A= a)(0,-6/6& . _ .0,3.12 5. (i 06 .. . . . $ 3L4z� 2 o 1).Ube L 4 - z� NI ,)l& (L.8. -- . _ . 68 004 . . . .. _ . sq;., -e.,5- : i • 41 1 Atp))11--_ Loc.' ) A _-_, 5° • - . 0. X Ce ri-3, w/a 44- of^ .o, e36 utUr. /ZX12 L0/ ¢7 . 1k 112. ` 4-4- ;,, . . 1N . eafl'AA., • (6)(1,c, V__,9v+l6s -4 pair 01` 61— 4,5 die is W ? . 0,5,,e• i Structural Engineers , WOOD FRAME CONSTRUCTION MANUAL 63 t. Table 2.2A Uplift Connection Loads from Wind • •. •' . _ . (For Roof-to-Wali,Wali-to-Wall,and Wall-to-Foundation) 700-yr.Wind Speed 3-second gust mph) 110 115 120 130 140 150 160 170 180 195 Roof/Ceiling Assembly Design Dead Load Roof Span(ft) Unit Connection Loads(plf)2'2'3'4,s,6.7 12. 118 128 140 164 190 219 249 281 315 369 Z 24 195 213 232 272 315 362 412 465 521 612 fi7 0 psfa . 36 272 298 324 380 441 506 576 650 729 856 Z 48 350 383 417 489 567 651 741 836 938 1100 M . 60 428 468 509 598 693 796 906 1022 1146 1345 m • 12 70 80 92 116 142 171 201 233 267 321 0 24 111 129 148 188 231. 278 328 381 437 528 M 10 psf 36 152 178 204 260 321 386 456 530 609 736 CA -+ 48 194 227 261 333 411 495 585 680 782 944 Z 60 236 276 317 406 501 604 714 830 954 1153 12, 46 56 68 , 92 118 147 177 209 243 297 24 69 87 106 146 189 236 286 339 395 486 15 psf 36 92. 118 144 200 261 326 396 470 549 676 48 116 149 183 255 333 417 507 602 704 866 60 140 180 221 310 405 508 618 734 858 1057• 12 22 32 44 68 94 123 153 185 219 273 • 24 27 45 64 104 147 194 244 297 353 444 i 20 psf 36 32 58 84 140 201 266 336 410 489 616 ','4" 48 38 71 105 177 255 339 429 524 626 788 • 60 44 84 125 214 309 412 522 638 762 961 12 - 8 20 44 70 99 129 161 195 249 • 24 - 3 22 62 105 152 202 255 311 402 25 psf 36 - - 24 80 141 206 276 350 429 556 48 - - 27 99 177 261 351 446 548 710 60 - - 29 118 213 316 426 542 666 865 2 Tabulated unit uplift connection loads shall be permitted to be multiplied by 0.75 for framing not located within 6 feet of corners for buildings less than 30 feet in width(W),or W/5 for buildings greater than 30 feet In width. 2 Tabulated uplift loads assume a building located in Exposure B with a mean roof height of 33 feet. For buildings ,+ located in other exposures,the tabulated values for 0 psf roof dead load shall be multiplied by the appropriate adjustment factor in Section 2.1.3.1 then reduced by the appropriate design dead load. '. 3 Tabulated uplift loads are specified in pounds per linear foot of wall. To determine connection requirements, il.....i. multiply the tabulated unit uplift load by the multiplier from the table below corresponding to the spacing of the . connectors: Connection Spacing(in.) 12 16 19.2 24 48 Multiplier 1.00 1.33 1.60 2.00 4.00 ° Tabulated uplift loads equal total uplift minus 0.6 of the roof/ceiling assembly design dead load. s Tabulated uplift loads are specified for roof-to-wall connections. When calculating uplift loads.forwall-to-wall-or wall-to-foundation connections,tabulated uplift values shall be permitted to be reduced by 73 plf(0.60 x 121 pif) for each full wall above. 6 When calculating uplift loads for ends of headers/girders,multiply the tabulated unit uplift load by 1/2 of the header/girder span(ft.). Cripple studs need only be attached per typical uplift requirements. ' • For jack rafter uplift connections,use a roof span equal to twice the Jack rafter length.The jack rafter length _. includes the overhang length and the jack span. es• s Tabulated uplift loads for 0 psf design dead load are included for interpolation or use with actual roof dead loads. lig FL AMERICAN WOOD COUNCIL 180 Nickerson St. Suite 302 C T E N G I P1 E E R I N G `�' n-V.lAf5. Seattle,WA l.IllllIl.11IMII.IlI.IlIIM.l..I...IIl.I.MM.IMMI.MMIMl.l.l.IMMMllM .°.I '7 Project: —{Vn 'ki 5)""'sl C / ' i L/ Date: (206)9285-4512 PAX: Page Number: (206)285-0618 Client: i �,q2 -T� G`2,2 A' . ,V41‘1.)D LA.Ci? 0:#V17.1-7 /• ' 7n7V4e) 'IP. -1;ifitL- 60\:0150)46 i.., I. 1 1�, - SPP Wb$0A N1 : • i iki I /o• MQ u.L ) . p. g vt,,; :�" . 33(-- • 15 - P‘,J. . DZ• : . : : . • • • . --.--- :----z;---. , ., • : • t) C1.NiNAao -` IMS . • ' 1 . .... ! -• . : ' • : ' ' ' : (A i EICA ? d l , '.: . ..•-•- 7 6.-ai.o-k)X- (4c!o,Otows-co, ) .. -. :.. -7-- :-. •-)0 .. . :. .:,-. ! 2.)i ,__ il• - :14:1-T.:..t__________ ti : : .0 .-*./.1.43- 09 zS T :c.*NPA-) : :1- y • : : .. 1: :. q,-;-_-_ (.A-6)(7) 61,0) . 64). : ... -..7--- .•::. .,.a * .. 0ii..:.' i- :- -:. r.-. 1 i-i-ci.-...i 1::. - . , -nip, Ayowri vi) .- - . • • • • * 50 •� i - b :/ - QZ � � = . - 99‘94-6:- 6.) �P 6viwineco . p .v :fraouh. e. --. ' e ..ft,ote_ 7 Fes- i t0)-- = (.)� n�5-FJ ---- 5644 Otwd. ie, --'! ": : Structural Engineers TRUSS TO WALL CONNECTION '.4'1 VAI(I[ #OF TRUSS CONNECTOR TO TRUSS PLIES TO TOP PLATES UPI II I f t 1 HI (6) 0.131" X 1.5" (4) 0.131"X 2.5" 400 ,I'; I H2.5A (5) 0.131" X 2.5' fi) 0.131"X 2.5" Hu1 SDWC15600 - 416 Iib 2 1110-2 (9) 0.148" X 1.5" (9)0.148"X 1.5" iU/li 700 2 (2)H2.5A (5) 0.131"X 2.5" EA. (5) 0.131"X 2.5" EA. Iwo 210 2 (2)SOWC15600 - - 9%ci .'.1(1 3 (3)SOWC15600 - - I,_._ ROOF FRAMING PERP LAN 8d AT 6" O.C. • 2X VENTED BUM. 0.131" X 3" TOENAIL Y �, AT 6" O.C. - - I H2.5A & SDWC15600 STYI F COMMON/GIRDER TRUSS PER PLAN TRUSS TO WALL CONNECTION TO EACH H1 STYLE BEARING/SHEAR WALL PER TRUSS PLY PER TABLE ABOVE PLAN AND SCHEDULE SCALE 3/4"=1'-0" (BEAM/HEADER AT SIMILAR) 14 TYP. RAISED HEEL TRUSS TO WALL CONNECTION [ • TRUSS TO WALL CONNECTION SPF VALUES_ #OF TRUSS CONNECTOR 1D TRUSS TO TOP PLATES UPLIFT PLIES F1 1 HI (6) 0.131" X 1.5" (4) 0.131"X 2.5" 400 415 1 H25A (5) 0.131"X 2.5" (5)0.131"X 2.5" -535--W- 1 SDWC15600 - - -76---- 115 • 2 H10-2 (9) 0.148"X 1.5" (9)0.148"X 1.5 1071) 701, 2 (2)H2.5A (5) 0.131"X 2.5" EA. (5) 0.131"X 2.5" EA, iaT--75.11--- 2 (2)SDWC15600 . - - (1!a 2.s0_..• 3 (3)SDWC15600 - _ "'-- - 145:i ;ryy_ ADD A35 ®48"O.C. ROOF FRAMING PER PLAN FOR-H2.5A AND iii SDWC STYLE --, ed AT 6" O.C. CONNECTIONS 2X VENTED BLK'G MIIImea.t% ,„,, -, MOTIIIII!...1141% MI I I I H2.5A & SDWC15600 SDI F . iCOMMON/GIRDER TRUSS PER PLAN TRUSS TO WALL CONNECTION TO EACH 111 STYLE BEARING/SHEAR WALL PER TRUSS PLY PER TABLE ABOVE PLAN AND SCHEDULE SCALE 3/4"= 1'-0" (BEAM/HEADER AT SIMILAR) 19 TYPICAL TRUSS TO WALL CONNECTION [