Loading...
Plans (14) . __ .. Structural CalculationCEWED for o .c 11 2012. Full Lateral & Gravity Analysis otmarD�,i AD Plan A 1460 BUll,DiN Lot 73, Summer Creek Townhomes civ -oi 6aildikt_ .2.0 Tigard, OR [i 1 3 i s720(2- llo&.1. /1/1-alp.,. /?r City of Tigard l 00?60 dansgl(eft3 AZ7;1- 0.2= lo('� Prepared for A • Qved •/9 (�� , , sT�-vLCCi1O� Pulte Group B A'�e_ Date 12-13i�L_ i��3 /1451t-viL- 2, 1ldm � ,Lt 57- ..01L- cr 3a` taw April 7, 2011 OFFICE COPY JOB NUMBER: CEN-090 ***Limitations*** Engineer was retained in limited capacity for this project. Design is based upon information provided by the client,who is solely responsible for the accuracy of same. No responsibility and/or liability is assumed by, or is to be assigned to the engineer for items beyond that shown on these sheets. 122 sheets total including this cover sheet. si RUCTUR4L SA PROpp 00i NEER ?, 12.320 9 N J. EtV� XPIRESs 12-31-20.0 This Packet of Calculations is Null and Void if Signature above is not Original Harper Hoof Peterson Righellis Inc. 205 SE Spokane St. Suite 200 • Portland, OR 97202 ♦ [P] 503.221.1131 • [F] 503.221.1171 1104 Main St.Suite 100 ♦ Vancouver, WA 98660 • [P] 360.450.1 141 • [F] 360.750.1 141 1 133 NW Wall St.Suite 201 • Bend, OR 97701 ♦ [P] 541.318.1161 • [F] 541.318.1 141 RPeEW, Structural Calculations DEC 11 201: CITYOFTIG for BUILDINGDNISI N Full Lateral & Gravity Analysis of Plan C 1186 Lot 72, Summer Creek Townhomes Tigard, OR Prepared for Pulte Group April 7, 2011 JOB NUMBER: CEN-090 ***Limitations*** Engineer was retained in limited capacity for this project. Design is based upon information provided by the client,who is solely responsible for the accuracy of same. No responsibility and/or liability is assumed by, or is to be assigned to the engineer for items beyond that shown on these sheets. 98 sheets total including this cover sheet. stRvcTuR4 PROfpf , VS f4,014-4-4, 4././e2 4.‘.► 12,320 tl j, Y " Niq EtPIRESI 12-31-2011 This Packet of Calculations is Null and Void if Signature above is not Original Harper Houf Peterson Righellis Inc. 205 SE Spokane St.Suite 200 • Portland, OR 97202 ♦ [P] 503.221.1131 • [F]503.221.1171 1104 Main St.Suite 100 • Vancouver, WA 98660 • [P] 360.450.1141 • [F] 360.750.1 141 1133 NW Wall St.Suite 201 • Bend, OR 97701 • [P] 541.318.1161 • [F] 541.318.1141 RWCFIVF Structural Calculations DEC 11 201 CITY OF TIG for BUILDING DIVISION Full Lateral & Gravity Analysis of Plan B 1332 Lot 71 , Summer Creek Townhomes Tigard, OR Prepared for Pulte Group April 7, 2011 JOB NUMBER: CEN-090 ***Limitations*** Engineer was retained in limited capacity for this project. Design is based upon information provided by the client,who is solely responsible for the accuracy of same. No responsibility and/or liability is assumed by, or is to be assigned to the engineer for items beyond that shown on these sheets. 98 sheets total including this cover sheet. sIRucTUR4L 3\.\ NROF �efi �` 12.320FR OREGON .N EO"‘ EXPIRES 32-33-2031 This Packet of Calculations is Null and Void if Signature above is not Original Harper Hoof Peterson Righellis Inc. 205 SE Spokane St.Suite 200 • Portland, OR 97202 ♦ [PI 503.221.1131 • [9 503.221.1171 1104 Main St.Suite 100 • Vancouver, WA 98660 ♦ [P] 360.450.1 141 • [F] 360.750.1141 1133 NW Wall St.Suite 201 • Bend, OR 97701 • [P] 541.318.1161 • [F] 541.318.1 141 Structural Calculations RECEIVED for DEC 112012 Full Lateral & Gravity Analysis of CITY oFTIGARD Plan A 1460 BUILDING DIVISION Summer Creek Townhomes Tigard, OR Prepared for Pulte Group July 13, 2010 • JOB NUMBER: CEN-090 ***Limitations*** Engineer was retained in limited capacity for this project. Design is based upon information provided by the client,who is solely responsible for the accuracy of same. No responsibility and/or liability is assumed by, or is to be assigned to the engineer for items beyond that shown on these sheets. 117 sheets total including this cover sheet. This Packet of Calculations is Null and Void if Signature above is not Original Harper --" Houi PLterson Righellis Inc. 205 SE Spokane St. Suite 200 • Portland, OR 97202 • [P] 503.221.1131 • [F] 503.221.1171 1104 Main St.Suite 100 ♦ Vancouver, WA 98660 ♦ [P] 360.450.1 141 • [F] 360.750.1 141 1133 NW Wall St. Suite 201 ♦ Bend, OR 97701 ♦ [P] 541.318.1 161 • [F] 541.318.1141 1 Design Criteria Project Scope: Full lateral & Gravity Analysis of Unit A Design Specifications: Wind Design: Basic Wind Speed (mph): 100 From Building Authority Exposure: B From Building Authority Importance, lW: 1 2006 IBC/2007 OSSC Occupancy Category: II Residential Earthquake Design: Seismic Design Category: D From Building Authority Site Class: D Assumed, ASCE 7-05 Ch.20 Importance, IE: 1 ASCE 7-05 Table 11.5-1 Ss: 0.942 USGS Spectral Response Map S1: 0.339 USGS Spectral Response Map Dead Load: Floor: 13 psf Wall: 12 psf Wood Roof: 15 psf Live Load: Roof: 25 psf Snow Floor: 40 psf Residential Floor Materials and Design Data: Materials: Concrete Compressive Strength, f'c: 3000 psi Foundations &Slab on Grade Concrete Unit Weight,yc: 145 pcf Steel Reinforcement Yield Strength, fy: 60,000 psi Wood Studs (Wall Studs): Hem-Fir#2 2x&4x Wood Beams &Posts: DF-L#2 6x&Greater Wood Beams & Posts: DF-L#1 Glulam Beams: 24F-V4 PSL Beams: Fb=2,900 psi, FV=328psi, E=2.0 Million TS/LSL Beams: Fb=2325 psi, FV=460psi, E=1.55 Million Design Assumptions 1. Allowable soil bearing pressure (qa) : 1500 psf Assumed 2. All manufactured trusses,joists, and flush beams u.n.o.shall be designed by others. Structural Analysis Software Used: Mathcad 11 Microsoft Excel 2000 Wood Works—Sizer version 2002 Bently RAM Advanse Harper Project: SUMMERCREEK TOWNHOMES UNIT A Houf Peterson Client: PULTE GROUP Job# CEN-090 Righellis Inc. Date: Pg.# Designer: AMC LANDS,AVE ARE-4 IF(':S�3UR.E DESIGN CRITERIA 2007 Oregon Structural Specialty Code&ASCE 7-05 Roof Dead Load RFR:= 2.5•psf Framing RPL:= 1.5-psf Plywood RRF:= 5.psf Roofing RME:= 1.5-psf Mech&Elec RMS:= 1•psf Misc RCG:= 2.5-psf Ceiling RIN:= 1•psf Insulation RDL= 15•psf Floor Dead Load FFR:= 3-psf Framing FPL:= 4.psf Sheathing FME:= 1.5-psf Mech&Elec FMS:= 1.5•psf Misc FIN:= .5.psf Finish&Insulation FCLG:= 2.5•psf Ceiling FDL= 13-psf Wall Dead Load WOOD EX_Wa1IM:= 12•psf INT_Wallwt:= 10•psf Roof Live Load RLL:= 25-psf Floor Live Load FLL:= 40•psf 1 Harper Project: SUMMERCREEK TOWNHOMES UNIT A ,:• Houf Peterson Client: PULTE GROUP Job# CEN-090 Righellis Inc. r' Designer: AMC Date: Pg.# k \E 5 Transverse Seismic Forces Site Class=D Design Catagory=D Building Occupancy Category:II Weight of Structure In Transverse Direction Roof Weight Roof Area:= 843•ft2.1.12 RFWT:= RDL•Roof Area RF WT= 14162-lb Floor Weight Floor_Area2nd:= 647•ft2 FLRwr2nd := FDL•Floor_Area2nd FLRWT2nd = 8411•Ib Floor_Area3rd 652•ft2 FLRWT3rd:= FDL•Floor_Area3rd FLRWT3rd= 8476-lb Wall Weight EX Wall Area:_ (2203)•ft2 INT Wall_Area:= (906)•ft2 WALLWT:= EX_Wallwt•EX_Wall_Area+ INT Wallwt•INT_Wall_Area WALLW-i-=35496-lb WTTOTAL =66545 lb Equivalent Lateral Force Procedure(12.8,ASCE 7-05) hn:= 32 Mean Height Of Roof Ie:= 1 Component Importance Factor (11.5,ASCE 7-05) R.:= 6.5 Responce Modification Factor (Table 12.2-1,ASCE 7-05) Ct := .02 Building Period Coefficient (Table 12.8-2,ASCE 7-05) x:= .75 Building Period Coefficient (Table 12.8-2,ASCE 7-05) Period Ta:= Cr(hn)x Ta=0.27 < 0.5 (EQU 12.8-7,ASCE 7-05) S1 := 0.339 Max EQ, 5%damped,spectral responce acceleration of 1 sec. (Chapter 22,ASCE 7-05)...or SS:= 0.942 Max EQ,5%damped,spectral responce acceleration at short period From Figures 1613.5(1)&(2) Fa:= 1.123 Acc-based site coefficient @.3 s-period (Table 11.4-1,ASCE 7-05) Fv:= 1.722 Vel-based site coefficient @ 1 s-period (Table 11.4-2,ASCE 7-05) Harper Project: SUMMERCREEK TOWNHOMES UNIT A . Houf PetersonJob# CEN-090 Client: PULTE GROUP Righellis inc. '. rRlA• R Designer: AMC Date: Pg.# tS gli0� ...PC5 iF YL)RS (EQU 11.4-1,ASCE 7-05) SMS:= Fa-Ss SMS = 1.058 2•SMS (EQU 11.4-3,ASCE 7-05) Sds:= Sds=0.705 3 (EQU 11.4-2,ASCE 7-05) SMl:= pv'S1 SM1 =0.584 2•SMl (EQU 11.4-4,ASCE 7-05) 5d1 := 5M =0.389 3 Sds•Ie Cst:= Cst=0.108 (EQU 12.8-2,ASCE 7-05) R ...need not exceed... CsShc•� Csmax =0.223 (EQU 12.8-3,ASCE 7-05) max := TaR ...and shall not be less then... C1 := if(0.044•Sds•le <0.01,0.01,0.044•Sds•Ie) (EQU 12.8-5&6,ASCE 7-05) 0.5•S1•Iel C2 := if <0.6,0.01, R 11 Csmin min if(C l > C2,C 1,C2�maCsmm=0.031 Cs := if(Cst<Cs Cs if(Cst<Cs Cst Cs Cs =0.108 min> x> max) V:= Cs•WTTOTAL V=7220 lb (EQU 12.8-1,ASCE 7-05) E:= V-0.7 E = 5054 lb (Allowable Stress) Harper Project: SUMMERCREEK TOWNHOMES UNIT A Hoof Peterson Client: PULTE GROUP Job# CEN-090 Righellis Inc. E ti. 3 Designer: AMC Date: Pg.# l N�„::,cP_Afi,..!TE.. .r n'-,E•6s25 Transverse Wind Forces (Method 1 -Simplified Wind Procedure per ASCE 7-05) Basic Wind Speed: 100 mph(3 Sec Gust) Exposure:B Building Occupancy Category:II I� := 1.00 Importance Factor (Table 6-1,ASCE 7-05) hn=32 Mean Roof Height X:= 1.00 Adjustment Factor (Figure 6-3,ASCE 7-05) a2:= 2•.1.20-ft Zone A&B Horizontal Length Smaller of... a2=4 ft (Fig 6-2 note 10,ASCE 7-05) or a2:= .4•hn 2-ft a2=25.6 ft but not less than... a2min 3.2•ft a2, = 6 ft Wind Pressure (Figure 6-2,ASCE 7-05) Horizontal PnetzoneA 19.9•psf PnetzoneB 3.1psf Pnetzonec 14.4.psf PnetzoneD:= 3.3•psf Vertical PnetzoneE —8.8.psf PnetzoneF 12•psf PnetzoneG —6.4-psf PnetzoneH:= —9.7•psf Basic Wind Force PA:= PnetzoneA.Iw.X PA= 19.9•psf Wall HWC PB:= PnetzoneB'kr'X PB=3.2•psf Roof HWC PC:= PnetzoneC'Iw'X Pc= 14.4•psf Wall Typical PD:= PnetzoneD'Ivy'X PD=3.3•psf Roof Typical PE:= PnetzoneE'Ivy'X PE =—8.8•psf PF:= PnetzoneF'Ivy'X PF=—12-psf PC,:= PnetzoneG'Iw•X PG=—6.4•psf PH:= PnetzoneH'Iw.X PH=—9.7•psf Harper Project: SUMMERCREEK TOWNHOMES UNIT A ®1' ;. HOuf Peterson Client: PULTE GROUP Job# CEN-090 Righellis Inc. Date: Pg.# Designer: AMC £kC tVC 4c♦ C t 1a'V S Determine Wind Sail In Transverse Direction WSAILZoneA:= (41 + 59+ 29)•ft2 W SAILZoneB (19+ 0 + 23)•ft2 WSAILZoneC (391 + 307+ 272)412 WSAILZoneD (0 + 0 + 5)412 WA:=-- on WSAILZeA•PA WA= 2567 lb WB:= onWSAILZeB•PB WB= 134 lb WC:_ WSAILZonec•PC WC= 13968 lb WD:= WSAILZoneD•PD WD= 16 lb Wind_Force:= WA+ WB+ WC+ WD Wind Forcemil:= 10•psf•(WSAILZoneA+ WSAILZoneB + WSAILZoneC + WSAILZoneD) Wind_Force= 16686 lb Wind Forcemin= 11460 lb WSAILZoneE:= 94•ft2 W SAILZoneF 108•ft2 WSAILZoneC:= 320412 WSAILZoneH 3204t2 WE:_ WSAILZoneE•PE WE _—827 lb WE:= WSAILZoneF•PF WF =—1296 lb WG = WSAILZoneGPG WG=—2048 lb ., WH:= W SAILZoneff PH WH=—3104 lb Upliftnet:= WF+ WH+ (WE + WG) + RDLIWSAILZoneF+ WSP'II'ZoneH+ (WSAILZoneE+ WSAILZoneG)1••6.1.12 Upliftnet= 1212 lb (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN I CALCULATION Harper Project: SUMMERCREEK TOWNHOMES UNIT A . ._� Hoof Peterson Client: PULTE GROUP Job# CEN-090 Righellis Inc. ENSINEeet Designer: AMC Date: Pg.# T AR..N1:e.,TS•5U4 t'[YGRS Longitudinal Seismic Forces Site Class=D Design Catagory=D Building Occupancy Category:II Weight of Structure In Longitudinal Direction Roof Weight Roof Area= 944 ft2 F := RDL-Roof Area RFWT= 14162•Ib Floor Weight Floor_Area2nd =647 ft2 F LR 0A:= FDL•Floor Area2nd FLRWT2nd = 8411 lb Floor_Area3rd=652 ft2 FDL-Floor Area3rd FLRWT3rd = 8476.1b Wall Weight EN Wall Area:= (2203)412 INT Wall Area= 906 ft2 WN,�N�-J i := EX Wallwt-EX_Wall Area+ INT Wa11µt-1NT_Wall_Area WALLwi-=35496-lb WTTOTAL = 66545 lb Equivalent Lateral Force Procedure(12.8,ASCE 7-05) hn=32 Mean Height Of Roof Ie = 1 Component Importance Factor (11.5,ASCE 7-05) R:= 6.5 Responce Modification Factor (Table 12.2-1,ASCE 7-05) Ct= 0.02 Building Period Coefficient (Table 12.8-2,ASCE 7-05) x=0.75 Building Period Coefficient (Table 12.8-2,ASCE 7-05) Period := Ct•(hn)x Ta=0.27 < 0.5 (EQU 12.8-7,ASCE 7-05) Si =0.339 Max EQ,5%damped,spectral responce acceleration of 1 sec. (Chapter 22,ASCE 7-05)...or SS=0.942 Max EQ,5%damped,spectral responce acceleration at short period From Figures 1613.5(1)&(2) Fa= 1.123 Acc-based site coefficient @.3 s-period (Table 11.4-1,ASCE 7-05) F"= 1.722 Vel-based site coefficient @ 1 s-period (Table 11.4-2,ASCE 7-05) Harper Project: SUMMERCREEK TOWNHOMES UNIT A . Hp Houf Peterson Client: PULTE GROUP Job# CEN-090 Righellis Inc. Date: Pg.# -- Designer: AMC Eye, V R • 'S RS Lnt�U3;xo ARL-,:TE >l�R"tfOft .............. (EQU 11.4-1,ASCE 7-05) 5 := Fa Ss SMS = 1.058 2-SMS (EQU 11.4-3,ASCE 7-05) S _ nSv 3 Sds=0.705 (EQU 11.4-2,ASCE 7-05) cc'�' nX�X�— Fv Si SMI =0.584 2-SMI Sd1 =0.389 (EQU 11.4-4,ASCE 7-05) 3 Cst:_ Sds le Cst=0.108 (EQU 12.8-2,ASCE 7-05) nwvv R ...need not exceed... Shc•Ie Csmax = 0.223 (EQU 12.8-3,ASCE 7-05) C = Ta R ...and shall not be less then... ,CA:= if(0.044•Sds•le <0.01,0.01,0.044•Sds•Ie) (EQU 12.8-5&6,ASCE 7 05) r 0.5•SI•Iel := ifl Si <0.6,0.01, R JI isiC := if(Ci > C2,CI,C2) Csmin=0.031 Cs.= if(Cst<Csm,n,Csmin,if(Cst<Csmax>Cst Csmax)) Cs =0.108 V:= Cs•WTTOTAL V=7220 lb (EQU 12.8-1,ASCE 7-05) E:= V•0.7 E= 5054 lb (Allowable Stress) rw Harper Project: SUMMERCREEK TOWNHOMES UNIT A • ® ° .• HRtbheouf PetersonllInc. Client: PULTE GROUP Job# CEN-090 ts c H r Designer: AMC Date: Pg.# Longitudinal Wind Forces (Method 1 -Simplified Wind Procedure per ASCE 7-05) Basic Wind Speed: 110 mph(3 Sec Gust) Exposure:B Building Occupancy Category:II h,= 1.0 Importance Factor (Table 6-1,ASCE 7-05) ht,= 32 Mean Roof Height X= 1.00 Adjustment Factor (Figure 6-3,ASCE 7-05) a2:= 2•.1.20•ft Zone A&B Horizontal Length Smaller of... a2=4 ft (Fig 6-2 note 10,ASCE 7-05) or a2,:= .4•hn-2.ft a2=25.6 ft but not less than... a2 ,:= 3.2-ft a2min= 6 ft Wind Pressure (Figure 6-2,ASCE 7-05) Horizontal PnetzoneA= 19.9•psf PnetzoneB =3.2-psf PnetzoneC = 14.4-psf PnetzoneD=3.3•psf Vertical PnetzoneE=—8.8•psf PnetzoneF=—12-psf PnetzoneG=—6.4•psf PnetzoneH=—9.7•psf Basic Wind Force P4,:= PnetzoneA'Iw.X P,a, = 19.9•psf Wall HWC Pte:= PnetZoneB'Iw.X PB=3.2•psf Roof HWC P, ,,:= PnetzoneClw'X PC= 14.4.psf Wall Typical ,P ,:= PnetzoneD'Iw'X PD=3.3•psf Roof Typical 1,,,),,F„„:= PnetZoneE-Iw'X PE =—8.8•psf , := PnetzoneF'Iw'X PF=—12•psf , := PnetzoneGlw.X PG =—6.4•psf ,:= PnetzoneH'Iw.X PH=—9.7-psf Harper Project: SUMMERCREEK TOWNHOMES UNIT A 8 i;13 Houf Peterson Client: PULTE GROUP Job# CEN-090 Righellis Inc. Designer: AMC Date: Pg.# ar16. aG Rr i � S• 2 E _.R3 Determine Wind Sail In Longitudinal Direction WSMw j^ '_ (48 + 59+ 40)-ft2 +:= (10+ 0 + 44)•ft2 WNN (91+ 137 + 67)•ft2 W� 44A:= (43 + 0 + 113)•ft2 WA WSAILZoneA'PA WA=2925 lb W W SAILZoneB•PB WB= 173 lb W WSAILZoneC'PC WC=4248 lb W WSAILZoneD'PD WD= 515 lb WinN WA+ WB+ WC+ WD Wind Forc = 10•psf•(WSAILZoneA+ WSAILZoneB + WSAILZoneC + WSAILZoneD) Wind Force=78611b Wind Forcemm=6520 lb WSN4 = 148-ft2 WSivvw wuw7� k,„:= 120•ft2 WSJ'^'— 323•ft2 Wim' '= 252•ft2 W WSAILZoneE'PE WE =—1302 lb W WSAILZoneF'PF WF=—1440 lb WSAILZoneG'PG WG=—20671b Hw�3v- W�J— WSAILZoneH'PH WH=—24441b ,vv U li := WF+ WH+ (WE + WG) + RDLfWSAILZoneF+ WSAILZoneH+ (WSAILZoneE+ WSAILZoneG)]'.6-1.12 Uplift11et= 1243 lb (Positive number...no net uplift) IDO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN I CALCULATION Harper Houf Peterson Righellis Pg#: Transverse Wind Line Shear Distribution ASCE 7-05,section 6.4(Method 1-simplified) Design Criteria: Basic Wind Speed= 100 mph Wind Exposure= B (Section 6.5.6,ASCE 7-05) Mean Roof Height,H(ft)= 32 Roof Pitch= 6/12 Building Category= II (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf X= 1.00 Iw= 1.00 Wind Sail Wind Net Design Wind Pressure(psf) (ft2) Pressure(lbs) rte. Zone A= 19.9 129 2567 Wall High Wind Zone Horizontal Zone B= 3.2 42 134 Roof High Wind Zone Wind Forces Zone C= 14.4 970 13968 Wall Typ Zone Zone D= 3.3 5 17 Roof Typ Zone Zone E= -8.8 94 -827 Roof Windward High Wind Zone Vertical Zone F= -12.0 108 -1296 Roof Leeward High Wind Zone Wind Forces Zone G= -6.4 320 -2048 Roof Windward Typ Wind Zone Zone H= -9.7 320 -3104 Roof Leeward Typ Wind Zone Total Wind Force=l 16686 lbs ' Use to resist wind uplift: RoofOnly Total Exterior Wall Area= 2203 ft2 Uplift due to Wind Forces= -7275 lbs Resisting DeadLoad= 8472 lbs El 1197 Lbs...No Net Uplift I Wind Distribution Tributary to Diaphragms Wind Sail Tributary To Dia hragm(ft2): Zone A Zone B Zone C Zone D Main Floor 41 19 391 0 Upper Floor 59 0 307 0 Main Floor Diaphragm Shear= 6507 lbs Upper Floor Diaphragm Shear= 5595 lbs Roof Diaphragm Shear= 4584 lbs Wind Distribution To Shearwali Lines MAIN FLOOR UPPER FLOOR ROOF Tributary Line Shear Tributary Line Shear Tributary Line Shear Wall Line Diaphragm lbs Diaphragm Diaphragm ( ) (lbs) ) Width(ft) Width(ft) _vernessinsWidth(ft) Obs OBEINMINNIM A 13.08 1737 18 2797 19 2323 Al 24.50 3254 0 0 0 0 B 11.42 1516 18 2797 18.5 _ 2261 E= 49 6507 36 5595 37.5 4584 Harper Houf Peterson Righellis Pg#: Transverse Seismic Line Shear Distribution Seismic Design Category= D Occupancy Category= II Site Class= D S1= 0.34 Ss= 0.94 Importance Factor= 1.00 Table 11.5-1,ASCE 7-05 Structural System,R= 6.5 Table 12.2-1,ASCE 7-05 Ct= 0.020 Other Fa= 1.12 Fv= 1.72 Mean Roof Height,H(ft)= 32 Period(Ta)= 0.27 Equ. 12.8-7,ASCE 7-05 k= 1.00 12.8.3,ASCE 7-05 SMS 1.06 Equ. 11.4-1,ASCE 7-05 SMS= 0.58 Equ. 11.4-2,ASCE 7-05 0.71 Equ. 11.4-3,ASCE 7-05 Sos_SD1= C0.39 Equ. 11.4-4,ASCE 7-05 Css= 0.11 Equ. 12.8-2,ASCE 7-05 Csmin= 0.01 Equ. 12.8-5&6,ASCE 7-05 Csmax= 0.22 Equ.12.8-3,ASCE 7-05 Base Shear coefficient,v= 0.076 Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height(ft)= 8 Floor 3 Diaphragm Height(ft)= 18 Roof Diaphragm Height(ft)= 32 Floor 2 Wt(lb)= 8411 Floor 3 Wt(lb)= 8476 Roof Wt(lb)= 14162 Wall Wt(Ib)= 35496 Trib.Floor 2 Diaphragm Wt(Ib)= 22609 Trib.Floor 3 Diaphragm Wt(Ib)= 22674 Trib. Roof Diaphragm Wt(Ib)= 21261 Vertical Dist of Seismic Forces I CumulativeY.total of base shear I Rho Check to Shearwalls(lbs) to shearwalls Req'd? Vnoor 2(lb)= 720 100.0% Yes Vnoor s(Ib)= 1625 85.8% Yes Vroof(Ib)= 2709 53.6% Yes Shear Distribution To Wall Lines Wall Line Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line Roof Line Floor 2 Floor 3 Roof Shear ear Shbesar Shearbs sq ft sq ft sq ft A 102 361 394 114 897 1266 113 293 449 0 0 481 0 0 B 113 Al 126 728 1443 . Sum 647 654 843 720 1625 2709 Total Base Shear*= I 5054 LB I *Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. Harper Houf Peterson Righellis Pg#: Longitudinal Wind Line Shear Distribution ASCE 7-05,section 6.4(Method 1 -simplified) Design Criteria: Basic Wind Speed= 100 mph Wind Exposure= B (Section 6.5.6,ASCE 7-05) Mean Roof Height,H(ft)= 32 Roof Pitch= 6 /12 Building Category= II (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf X= 1.00 Iw= 1.00 Wind Sail (ftz) Wind Net Design Wind Pressure(psf) Pressure(lbs) Zone A= 19.9 147 . 2925 Wall High Wind Zone Horizontal Zone B= 3.2 54 173 Roof High Wind Zone Wind Forces Zone C= 14.4 295 4248 Wall Typ Zone Zone D= 3.3 156 515 Roof Typ Zone Zone E= -8.8 148 -1302 Roof Windward High Wind Zone Vertical Zone F= -12.0 120 -1440 Roof Leeward High Wind Zone Wind Forces Zone G= -6.4 323 -2067 Roof Windward Typ Wind Zone Zone H= -9.7 252 -2444 Roof Leeward Typ Wind Zone Total Wind Force=I 7861 lbs. I Use to resist wind uplift: Roof Only Total Exterior Wall Area= 2203 ft2 Uplift due to Wind Forces= -7254 lbs Resisting Dead Load= 8483 lbs E=) 1229 Lbs...No Net Uplift Wind Distribution Tributary to Diaphragms Wind Sail Tributary To Diaphragm(ft z): i i , Zone A Zone B Zone C Zone D Main Floor 48 10 91 43 Upper Floor 59 0 137 0 Main Floor Diaphragm Shear= 2440 lbs Upper Floor Diaphragm Shear= 3147 lbs Roof Diaphragm Shear= 2275 lbs Wind Distribution To Shearwall Lines MAIN FLOOR UPPER FLOOR ROOF Tributary Line Shear Tributary Line Shear Tributary Line Shear Wall Line Diaphragm lbs Diaphragm Diaphragm Width ft( (mirt, ) Width(ft)) (lbs) Wdth(ft) (lbs) nomemairetwor 1 10 1220 10 1573 10 1137 2 10 1220 10 1573 10 1137 E= 20 2440 20 3147 20 2275 Harper Houf Peterson Righellis Pg#: - Longitudinal Seismic Line Shear Distribution Seismic Design Category= D Occupancy Category= II Site Class= D 51= 0.34 Ss= 0.94 Importance Factor= 1.00 Table 11.5-1,ASCE 7-05 Structural System,R= 6.5 Table 12.2-1,ASCE 7-05 Ct= 0.020 Other Fa= 1.12 Fv= 1.72 Mean Roof Height,H(ft)= 32 Period(Ta)= 0.27 Equ. 12.8-7,ASCE 7-05 k= 1.00 12.8.3,ASCE 7-05 SMS 1.06 Equ. 11.4-1,ASCE 7-05 SAM= 0.58 Equ. 11.4-2,ASCE 7-05 0.71 Equ. 11.4-3,ASCE 7-05 SDs_ 0.39 Equ. 11.4-4,ASCE 7-05 Cs= 0.11 Equ. 12.8-2,ASCE 7-05 Cs Csmin= 0.01 Equ. 12.8-5&6,ASCE 7-05 Csmax= 0.22 Equ. 12.8-3,ASCE 7-05 Base Shear coefficient,v= 0.076 Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height(ft)= 8 Floor 3 Diaphragm Height(ft)= 18 Roof Diaphragm Height(ft)= 32 Floor 2 Wt(lb)= 8411 Floor 3 Wt(lb)= 8476 Roof Wt(lb)= 14162 Wall Wt(Ib)= 35496 Trib.Floor 2 Diaphragm Wt(lb)= 22609 Trib.Floor 3 Diaphragm Wt(Ib)= 22674 Trib.Roof Diaphragm Wt(Ib)= 21261 Vertical Dist of Seismic Forces 1Cumulative%total of base shear I Rho Check to Shearwalls(lbs) to shearwalls Req'd? Vnoorz(Ib)= 720 100.0% Yes Vnoor s(Ib)= 1625 85.8% Yes Vroof(lb)= 2709 53.6% Yes Shear Distribution To Wall Lines Wall Line Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line Roof Line Floor 2 Floor 3 Roof Shear Shear Shear sq ft sq ft sq ft lbs lbs lbs 1 286 291 415 318 725 1334 2 361 361 428 402 900 1375 Sum 647 652 843 720 1625 2709 Total Base Shear*= I 5054 LB *Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. Harper Houf Peterson Righellis Pg#: Shearwall Analysis Based on the ASCE 7-05 Transvere Shearwalls Line Load Controlled By: Wind Shear H L Wall H/L Line Load Line Load Line Load Dead V Panel Shear Panel Mo MR Uplift Panel Lgth. From 2nd Flr. From 3rd Flr. From Roof Load Sides Factor Type T (ft) (ft) (ft) ht k ht k ht k (kit) (plf) (ft-k) (ft-k) (k) 101 Not Used 102 7 1.75 3.50 4.00 8.00 1.74 18.00 2.80 27.00 2.32 1959 Double 1.40 NG 103 7 1.75 3.50 4.00 8.00 1.74 8.00 2.80 8.00 2.32 1959 Double 1.40 NG 103a 7 4.00 4.00 1.75 ox 8.00 3.25 814 Single 1.40 IV 104 8 4.50 10.50 1.78 ox 8.00 1.52 8.00 2.80 8.00 2.26 626 Single 1.40 III 105 8 3.00 10.50 2.67 OK 8.00 1.52 8.00 2.80 8.00 2.26 626 Single 1.40 III 106 8 3.00 10.50 2.67 OK 8.00 1.52 8.00 2.80 8.00 2.26 626 Single 1.40 III 109 8 4.58 17.08 1.75 OK 8.00 1.74 18.00 2.80 27.00 2.32 401 Single 1.40 II 110 8 12.50 17.08 0.64 ox 8.00 1.74 8.00 2.80 8.00 2.32 401 Single 1.40 II 111 8 4.50 7.25 1.78 OK 8.00 1.52 8.00 2.80 8.00 2.26 907 Double 1.40 VI 112 4.75 1.38 7.25 3.45 OK 8.00 1.52 8.00 2.80 8.00 2.26 907 Double 1.40 VI 113 4.75 1.38 7.25 3.45 OK 8.00 1.52 8.00 2.80 _ 8.00 2.26 _ 907 Double 1.40 VI 201 9 3.92 10.79 2.30 OK 9.00 2.80 18.00 2.32 474 Single 1.40 II 201a 9 4.17 10.79 2.16 ox 9.00 2.80 18.00 2.32 474 Single 1.40 II 201b 9 2.71 10.79 3.32 ox 9.00 2.80 18.00 2.32 474 Single 1.40 II 202A 9 2.96 11.96 3.04 OK 9.00 2.80 18.00 2.26 423 Single 1.40 II 202B 9 3.00 11.96 3.00 ox 9.00 2.80 18.00 2.26 423 Single 1.40 II 203 9 3.00 11.96 3.00 OK 9.00 2.80 18.00 2.26 423 Single 1.40 II 204 9 3.00 11.96 3.00 ox 9.00 2.80 18.00 2.26 423 Single 1.40 II 301 8 3.92 13.96 2.04 OK 8.00 2.32 166 Single 1.40 I 302 8 5.79 13.96 1.38 ox 8.00 2.32 166 Single 1.40 I 303 8 4.25 13.96 1.88 OK 8.00 2.32 166 Single 1.40 I 304 8 2.96 5.96 2.70 OK 8.00 2.26 379 Single 1.40 II 305 8 3.00 5.96 2.67 ox 8.00 2.26 379 Single 1.40 II Spreadsheet Column Definitions&Formulas L=Shear Panel Length H=Shear Panel Height Wall Length=Sum of Shear Panels Lengths in Shear Line H/L Ratio=Hight to Width Ratio Check V (Panel Shear)=Sum of Line Load/Total L Shear Factor=Adjustment For H/L>2:1 Mo(Overturning Moment)=Wall Shear*Shear Application ht Mr(Resisting Moment)=Dead Load*L2*0.5*(.6 wind or.9 seismic) Uplift T=(Mo-Mr)/(L-6 in) Harper Houf Peterson Righellis Pg#: Shearwall Analysis Based on the ASCE 7-05 fransvere Shearwalls Line Load Controlled By: MR Uplift Shear H L Wall H/L Line Load Line Load Line Load Dead I V Rho*V %Story ' # Panel Shear Panel Mo Panel T Lgth. From 2nd Flr. From 3rd Flr. FromStrength Bays Sides Factor Type m Roof Load (ft-k) (ft-k) (k) I (ft) (ft) (ft) ht I k ht I k ht k (kit) (plf) (ply Not Used 101 651 846 0.10 0.50 Double 0.50 NG 102 7 1.75 3.50 4.00 8.00 0.11 1800 0.90 27.00 1.27 651 846 0.10 0.50 Double 0.50 NG 103 7 1.75 3.50 4.00 8.00 0.11 8.00 0.90 8.00 1.27 10 7 4.00120 156 0.22 1.14 Single 1.00 I 4.00 1.75 oK 8.00 0.48 0.00 0.00 219 284 0.25 1.13 Single 1.00 I1 104 8 4.50 10.50 1.78 OK 8.00 0.13 8.00 0.73 8.00 1.44219 284 0.17 0.75 Single 0.75 III 105 8 3.00 10.50 2.67 oK 8.00 0.13 8.00 0.73 8.00 1.44 219 284 0.17 0.75 Single 0.75 III 106 8 3.00 10.50 2.67 on 8.00 0.13 8.00 0.73 8.00 1.44 134 174 0.25 1.15 Single 1.00 I 1. 109 8 4.58 17.08 1.75 oK 8.00 0.11 18,00 0.90 27.00 1.27 NA 174 3.13 Single 1.00 I 110 8 12.50 17.08 0.64 oK 8.00 0.11 8.00 0.90 8.00 1.27 13434 47411 NA0.25 Single 1.00 III 111 8 4.50 7.25 1.78 OK 8.00 0.13 8.00 0.73 8.00 1.44 316 411 0.08 1.13.53 Double 1.00 VII 112 5 1.38 7.25 3.45 OK 8.00 0.13 8.00 0.73 8.00 1.44 316 411 0.08 0.58 Double 0.58 VII 113 5 1.38 7.25 3.45 oK 8.00 0.13 8.00 0.73 8.00 1.44 9.00 0.90 18.00 1.27 200 261 0.17 0.87 Single 0.87 II 201a 9 2. 201 9 3.921 10.79 2.30 OK 10.79 2.16 OK 9.00 0.90 18.00 1.27 200 261 0.18 0.93 Single 0.93 II 2.71 10.799.00 0.90 18.00 1.27 200 261 0.12 0.60 Single 0.60 III 201 9 13.32 OK 2020A 9 2.966 11.96 3.04 oK 9.00 0.73 18.00 1.44 182 236 0.13 0.66 Single 0.66 III 20 9 3.00 11.96 3.00 oK 9.00 0.73 18.00 1.44 182 236 0.13 0.67 Single 0.67 III 203 9 3.00 11.96 3.00 oK 9.00 0.73 18.00 1.44 181 236 0.13 0.67 Single 0.67 III 204 9 3.00 11.96 3.00 oK 9.00 0.73 18.00 1.44 181 236 0.13 0.67 Single 0.67 III 800 1.27 91 118 0.20 0.98 Single 0.98 I 3018 3.92 13.96 2.04 OK 8.00 1.27 91 118 0.29 1.45 Single 1.00 I 3032 8 5.79 13.96 1.38 OK 303 8 4.25 13.96 1.88 oK 8.00 1.27 91 118 0.21 1.06 .Single 1.00 8.00 1.44 242 315 0.15 0.74 Single 0.74 III 304 8 2.96 5.96 2.70 OK 8.00 1.44 242 315 0.15 0.75 Single 0.75 IIl _ 305 8 3.00 5.96 2.67 oK Rho Calculation Does the 1st floor shearwalls resist more than 35%of the total transverse base shear? Yes Does the 2nd floor shearwalls resist more than 35%of the total transverse base shear? Yes Does the 3rd floor shearwalls resist more than 35%of the total transverse base shear? Yes Total 1st Floor Wall Length= 18.00 Total#1st Floor Bays= 4.77 Are 2 bays minimum present along each wall line? No 1st Floor Rho= 1.3 Total 2nd Floor Wall Length= 22.75 Total#2nd Floor Bays= 5 Are 2 bays minimum present along each wall line? No 2nd Floor Rho= 1.3 Total 3rd Floor Wall Length= 19.92 Total#3rd Floor Bays= 5 Are 2 bays minimum present along each wall line? No 3rd Floor Rho= 1.3 Spreadsheet Column Definitions&Formulas L=Shear Panel Length H=Shear Panel Height Wall Length=Sum of Shear Panels Lengths in Shear Line H/L Ratio=Hight to Width Ratio Check V (Panel Shear)=Sum of Line Load*Rho/Total L Story Strength=L/Total Story L (Required for walls with H/L>1.0,for use in Rho check) #Bays=2*L/H Shear Factor=Adjustment For H/L>2:1 Mo(Overturning Moment)=Wall Shear*Shear Application ht Mr(Resisting Moment)=Dead Load*L2*0.5*(.6 wind or.9 seismic) Uplift T=(Mo-Mr)/(L-6 in) . A a i ' Harper Houf Peterson Righellis Pg#: Shearwall Analysis Based on the ASCE 7-05 Longitudinal Shearwalls Line Load Controlled By: Wind Shear H L Wall H/L Line Load Line Load Line Load Dead V Panel Shear Panel Mo MR Uplift Panel Lgth. From 2nd Fir. From 3rd Flr. From Roof Load Sides Factor Type T (ft) (ft) (ft) ht k ht k ht k (kit) (plt) (ft-k) (ft-k) (k) 107 8 15.50 15.50 0.52 OK 10.00 1.22 18.00 1.57 27.00 1.14 1.03 254 Single 1.40 I 71.21 123.49 -0.19 108 8 15.50 15.50 0.52 OK 10.00 1.22 18.00 1.57 27.00 1.14 1.03 254 Single 1.40 I 71.21 123.49 -0.19 205 9 13.00 13.00 0.69 cm 9.00 1.57 18.00 1.14 0.70 208 Single 1.40 I 34.62 59.15 -0.07 206 9 13.00 13.00 0.69 of( 9.00 1.57 18.00 1.14 0.70 208 Single 1.40 I 34.62 59.15 -0.07 306 8 10.00 10.00 0.80 co( 8.00 1.14 0.29 114 Single 1.40 I 9.10 14.40 0.05 307 8 10.00 10.00 0.80 oic 8.00 1.14 0.29 114 Single 1.40 I 9.10 14.40 0.05 Spreadsheet Column Definitions&Formulas L=Shear Panel Length H=Shear Panel Height Wall Length=Sum of Shear Panels Lengths in Shear Line H/L Ratio=Hight to Width Ratio Check V (Panel Shear)=Sum of Line Load/Total L Shear Factor=Adjustment For H/L>2:1 Mo(Overturning Moment)=Wall Shear*Shear Application ht Mr(Resisting Moment)=Dead Load*L2*0.5*(.6 wind or.9 seismic) Uplift T=(Mo-Mr)/(L-6 in) Harper Houf Peterson Righellis Pg#: Shearwall Analysis Based on the ASCE 7-05 Longitudinal Shearwalls Line Load Control • o Uplift Shear H L Wall H/L Line Load Line Load Line Load Dead' V Rho*V %Story # Panel Shear�Panel M MR T Panel Lgth. From 2nd Flr. From 3rd Flr. From Roof Load Strength Bays Sides Factor Type (ft-k) (ft-k) (k) (ft) i (ft) (ft) ht k ht k ht k (klf) (plf) (plf) 107 8 15.50 15.50 0.52 OK 10.00 0.40 18.00 0.90 27.00 1.38 1.09 173 173 NA 3.88 Single 1.00 1 57.35 130.70 -1.40 108 8 15.50 I206 I 9 113 00 1 13.00 13.00 1 0.69 0.69 I OK on I I 19.00 1 0.73 1 18.001 1.33 0.76 158 I 158 I NA 1 2.89 I Single I 1.00 I 30.54 164.22 I -0.64 205 9 13.00 9.00 0.90 18.00 1.38 0.76 175 175 NA 2.89 Single l 1.00 I 32.85 64.22 -0.45 I 306 0.02 307 1 88 1 10.00 10.00 1 10.00 10.0010.80 0 80 I on OK I I I I 1800 8.00 1 1.38 0.35 138 1.33 0.35 133 1 138 133 I NA NA 1 2.502.50 1 Single 1.00 I 11.00 Single IMEN1) I 10.67 1 17.40 17.40 1 0.06 Rho Calculation Does the 1st floor shearwalls resist more than 35%of the total longitudinal base shear? Yes Does the 2nd floor shearwalls resist more than 35%of the total longitudinal base shear? Yes Does the 3rd floor shearwalls resist more than 35%of the total longitudinal base shear? Yes Total 1st Floor Wall Length= 31.00 Total#1st Floor Bays= 7.75 Are 2 bays minimum present along each wall line? Yes 1st Floor Rho= 1.0 Total 2nd Floor Wall Length= 26.00 Total#2nd Floor Bays= 6 Are 2 bays minimum present along each wall line? Yes 2nd Floor Rho= 1.0 Total 3rd Floor Wall Length= 20.00 Total#3rd Floor Bays= 5 Are 2 bays minimum present along each wall line? Yes 3rd Floor Rho= 1.0 Spreadsheet Column Definitions&Formulas L=Shear Panel Length H=Shear Panel Height Wall Length=Sum of Shear Panels Lengths in Shear Line H/L Ratio=Hight to Width Ratio Check V (Panel Shear)=Sum of Line Load*Rho/Total L %Story Strength=L/Total Story L (Required for walls with H/L>1.0,for use in Rho check) #Bays=2*L/H Shear Factor=Adjustment For H/L>2:1 Mo(Overturning Moment)=Wall Shear*Shear Application ht Mr(Resisting Moment)=Dead Load*L2*0.5*(.6 wind or.9 seismic) Uplift T=(Mo-Mr)/(L-6 in) Harper Houf Peterson Righellis Pg#: SHEAR WALL SUMMARY' Transvere Shearwalls 1 WllSit ` se r` � $ � 00V�hR 4m, so1dvn40aQ� .;;.4 101 Not Used 102 Simpson Strongwall 103 Simpson Strongwall 103a 814 1/2"APA Rated Plyw'd w/8d Nails @ 2/12 833 104 626 1/2"APA Rated Plyw'd w/8d Nails @ 3/12 638 105 626 1/2"APA Rated Plyw'd w/8d Nails @ 3/12 638 106 626 1/2"APA Rated Plyw'd w/8d Nails @ 3/12 638 109 401 1/2"APA Rated Plyw'd w/8d Nails @ 4/12 495 110 401 1/2"APA Rated Plyw'd w/8d Nails @ 4/12 495 111 907 2 Layers 1/2"APA Rated Plyw'd w/8d Nails @ 4/12 990 112 907 2 Layers 1/2"APA Rated Plyw'd w/8d Nails @ 3/12 990 113 907 2 Layers 1/2"APA Rated Plyw'd w/8d Nails @ 3/12 990 201 474 1/2"APA Rated Plyw'd w/8d Nails @ 4/12 495 201a 474 1/2"APA Rated Plyw'd w/8d Nails @ 4/12 495 201b 474 1/2"APA Rated Plyw'd w/8d Nails @ 3/12 495 202A 423 1/2"APA Rated Plyw'd w/8d Nails @ 3/12 495 202B 423 1/2"APA Rated Plyw'd w/8d Nails @ 3/12 495 203 423 1/2"APA Rated Plyw'd w/8d Nails @ 3/12 495 204 423 1/2"APA Rated Plyw'd w/8d Nails @ 3/12 495 301 166 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 339 302 166 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 339 303 166 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 339 304 379 1/2"APA Rated Plyw'd w/8d Nails @ 3/12 495 305 379 1/2"APA Rated Plyw'd w/8d Nails @ 3/12 495 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design loads. Harper Houf Peterson Righellis Pg#: SHEAR WALL SUMMARY' Longitudinal Shearwalls otom, _-*,all s-°-r- 1 -s, �.S`im Qn HQldov �i4 Q n` moi, a °02,5o aL T e=`.c - � r [� Q'' r - «s. `�" �• T 3lll )� Le n z r 8 s �i 0 � . 107 254 1/2 APA Rated Plyw'd w/8d Nails @ 6/12 339 Simpson None 0 108 254 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 339 ttF'; Simpson None 0 339 Simpson None 0 205 208 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 I 339 Simpson None 0 206 208 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 242 48 Simpson None 0 306 133 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 242 I 59 Simpson None 0 307 138 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design loads. Transverse Wind Uplift Design . Unit A Shear H Joist L Wall Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total Panel Height Lgth. From 2nd From 3rd From Wall Load(not Point Point ning Moment Moment Floor Shear @ Floor Shear @ Stacking @ Stacking From From Uplift Flr. Flr. Roof Shear including Load Load Momen @ Left @ Right Left Right Left Side of @ Right Wall Wall @ Left floors @ Left « t House Side of Above Above above if Right House @ Left @ Right walls stack) (ft) (ft) (ft) (ft) k k k k plf klf k k kft kft kft k k k k k 102 8 1.1667 1.75 3.50 1.737 2.8 2.32 6.857 1959 0.152 0.192 0.832 27.43 0.57 1.69 21.31 20.79 21.31 103 8 1.1667 1.75 3.50 1.737 2.8 2.32 6.857 1959 0.152 0.832 0.192 27.43 1.69 0.57 20.79 21.31 20.79 103A 8 1.1667 4.00 4.00 3.254 3.254 814 0.04 2.016 1.664 26.03 8.38 6.98 6.00 6.24 6.00 104 8 1.1667 4.50 10.50 1.516 2.8 2.26 6.576 626 0.1 0.8 0.078 25.08 4.61 1.36 5.58 6.06 5.58 105 8 1.1667 3.00 10.50 1.516 2.8 2.26 6.576 626 0.048 0.252 0.156 16.72 0.97 0.68 6.45 6.52 6.45 106 8 1.1667 3.00 10.50 1.516 2.8 2.26 6.576 626 - 0.048 0.156 0.252 16.72 0.68 0.97 6.52 6.45 6.52 109 8 1.1667 4.58 17.08 1.737 2.8 2.32 6.857 401 0.152 0.192 0.156 16.31_ 2.47 2.31 3.63 3.66 201L 201R 4.82 5.09 8.45 110 8 1.1667 12.50 17.08 1.737 2.8 2.32 6.857 401 0.096 0.156 0.192 44.52 9.45 9.90 3.24 3.21 201 aL 201bR 4.95 4.88 8.18 Ill 8 1.1667 4.50 7.50 1.516 2.8 2.26 6.576 877 0.144, 0.8 0.078 35.11 5.06 1.81 8.02 8.51 8.02 112 8 1.1667 1.50 7.50 1.516 2.8 2.26 6.576 877 0.048 0.252 0.234 11.70 0.43 0.41, 11.44 11.46 11.44 113 8 1.1667 1.50 7.50 1.516 2.8 2.26 6.576 877 0.048 0.234 0.252 11.70 0.41 0.43 11.46 11.44 11.46 201 9 1.1667 3.92 10.8 2.8 2.32 5.12 474 0.225 0.432 0.156 17.71 3.42 2.34 3.99 4.16 301L 301R 0.83 0.93 4.82 201a 9 1.1667 4.17 10.8 2.8 2.32 5.12 474 0.225 0.156 0.156 18.84 2.61 2.61 4.14 4.14 3021, 302R 0.80 0.80 4.95 201b 9 1.1667 2.71 10.8 2.8 2.32 5.12 474 0.225 0.156 0.432 12.24 1.25 2.00 4.24 4.08 303L 303R 0.91 0.80 5.15 202A 9 1.1667 2.96 11.958333 2.8 2.26 5.06 423 0.173_ 0.432 0.052 11,92 2.04 0.91 3.62 3.84 304L 304R 2.60 2.75 6.21 202B 9 1.1667 3 11.958333 2.8 2.26 5.06 423 0.173 0.052 0.216 12.09 0.93 1.43 3.84 3.74 305L 305R 2.74 2.16 6.58 203 9 1.1667 3 11.958333 2.8 2.26 5.06 423 0.309 0.216 0.312 12.09, 2.04 2.33 3.62 3.56 3.62 204 9 1.1667 3 11.958333 2.8 2.26 5.06 423 0.225 0.312 0.432 12.09 1.95 2.31 3.64 3.57 3.64 301 8 3.92 13.96 2.32 2.32 166, 0.232 0.384 0.204 5.21 3.29 2.58 0.83 0.93 0.83 302 8 5.79 13.96 2.32 2.32 166 0.232 0.204 0.204 7.70 5.07 5.07 0.80 0.80 0.80 303 8 4.25 13.96 2.32 2.32 166 0.232 0.204_0.384 5.65 2.96 3.73 0.91 0.80 0.91 304 8 2.96 5.96 2.26 2.26 379 0.232 0.384 0.136 8.98 2.15 1.42 2.60 2.75 2.60 305 8 3 5.96 2.26 2.26 379 0.232 0.136 1.104 9.10 1.45 4.36 2.74 2.16 2.74 Spreadsheet Column Definitions&Formulas L=Shear Panel Length H=Shear Panel Height Wall Length=Sum of Shear Panels Lengths in Shear Line V (Panel Shear)=Sum of Line Load/Total L Mo(Overturning Moment)=Wall Shear*Shear Application ht Mr(Resisting Moment)=Dead Load*L2*0.5*(.6 wind or.9 seismic) Uplift T=(Mo-Mr)/(L-6 in) Transverse Seismic Uplift Design Unit A Shear H Joist L Wall Line Load Line Load Line Wail V Lad(not Do ndt Doe nt Onei gur Moment Momentt F oor'SI ear'@ F oor'Shear @ Sta k n1g @ Stacking Frrpvoal m Frromift Uplift L Panel High t Lgth. From 2nd From 3rd From Fir. Fir Roof Shear including Load Load Momen @Left @Right Left Right LeHos de°f Side oft Abovle U Vle @Lett 1 floors @Left ig t House @ Lett @ above if Right Right walls stack k k k k (ft) (ft) (ft) (ft) k k k k plf kif k k kft kft kft k 7.91 7.91 7.11 0 0 102 8 1.1667 1.75 3.50 0.114 0.9 1.27 2.284 653 0.152 0.192 0.832 10.40 0.57 1.69 7.11 7.91 0 0 7.11 103 8 1.1667 1.75 3.50 0.114 0.9 1.27 2.284 653 0.152 0.832 0.192 10.40 1.69 0.57 106 0.69 0 0 1.06 103A 8 1.1667 4.00 4.00 0.481 0.481 120 0.04 2.016 1.664 3.85 8.38 6.98 1.0 0.6 0 0 1.06 104 8 1.1667 4.50 10.50 0.126 0.73 1.44 2.296 219 0.1 0.8 0.078 8.96 4.61 1.36 2 04 2 14 0 0 2.04 105 8 1.1667 3.00 10.50 0.126 0.73 1.44 2.296 219 0.048 0.252 0.156 5.97 0.97 0.68 0 2.14 106 8 1.1667 3.00 10.50 0.126 0.73 1.44 2.296 219 0.048 0.156 0.252 5.97 0.68 0.97 2 82 0.86 201 L 201 R 1.13 1.54 1.95 109 8 1.1667 4.58 17.08 0.114 0.9 1.27 2.284 134 0.152 0.192 0.156 5.58 2.47 2.31 0.56 0.53 201 aL 201 bR 1.32 1.32 1.88 110 8 1.1667 12.50 17.08 0.114 0.9 1.27 2.284 134 0.096 0.156 0.192 15.23 9.45 9.90 2 00 2 73 0 0 2.00 111 8 1.1667 4.50 7.50 0.126 0.73 1.44 2.296 306 0.144 0.8 0.078 12.54 5.06 1.81 0 3.79 112 8 1.1667 1.50 7.50 0.126 0.73 1.44 2.296 306 0.048 0.252 0.234 4.18 0.43 0.41 3.79 3.82 0 0 3.82 113 8 1.1667 1.50 7.50 0.126 0.73 1.44 2.296 306 0.048 0.234 0.252 4.18 0.41 0.43 3.82 3.79 0 201 9 1.1667 3.92 10.80 0.9 1.27 2.17 201 0.225 0.432 0.156 7.63 3.42 2.34 1.16 1.41 301 L 301 R 0.03 0.13 1.13 201a 9 1.1667 2. 10.80 0.9 1.27 2.17 201 0.225 0.156 0.156 8.11 2.61 2.61 ' 1.38 1.38 302L 302R -0.06 -0.06 1.32 1 201b 9 1.1667 2.7171 10.80 0.9 1.27 2.17 201 0.225 0.156 0.432 5.27 1.25 2.00 1.53 1.28 303E 303R 0.10 -0.06 1.63 202A 9 1.1667 3.00 11.96 0.73 1.44 2.17 181 0.173 0.432 0.052 5.25 2.04 0.91 1.15 1.50 304L 304R 1.28 1.50 2.43 202B 9 1.1667 3.00 11.96 0.73 1.44 2.17 181 0.173 0.052 0.216 5.32 0.93 1.43 1.49 1.35 305E 3005R 1..50 0.63 2.99 1.16 0.73 1.44 2.17 181 0.309 0.216 0.312 5.32 2.04 2.33 1.16 1.08 0 203 9 1.1667 3.00 11.96 0 1.19 204 9 1.1667 3.00 11.96 0.73 1.44 2.17 181 0.225 0.312 0.432 5.32 1.95 2.31 1.19 1.08 0 -0.03 0.13 0 0 -0.03 301 8 0 3.92 13.96 1.27 1.27 91 0.232 0.384 0.204 2.85 3.29 2.58 -0.063 0.1306 0 0 -0.06 302 8 0 5.79 13.96 1.27 1.27 91 0.232 0.204 0.204 4.21 5.07 5.070. 6 303 8 0 4.25 13.96 - 1.27 1.27 91 0.232 0.204 0.384 3.09 2.96 3.73 0.10 -0.06 0 0 0.20 1.44 1.44 242 0.232 0.384 0.136 5.72 2.15 1.42 1.28 1.50 0 0 8 304 8 0 2.96 5.96 1.50 305 8 0 3.00 5.96 1.44 1.44 242 0.232 0.136 1.104 5.80 1.45 4.36 1.50 0.63 0 0 Spreadsheet Column Definitions&Formulas L=Shear Panel Length 11=Shear Panel Height Wall Length=Sum of Shear Panels Lengths in Shear Line V (Panel Shear)=Sum of Line Load/Total L Mo(Overturning Moment)=Wall Shear*Shear Application ht Mr(Resisting Moment)=Dead Load*L2*0.5*(.6 wind or.9 seismic) Uplift T=(Mo-Mr)/(L-6 in) TRANSVERSE UPLIFT CALCULATIONS-SUMMARY UNIT A Shear Controlling Total Holdown Holdown Good Control Total Holdown Good For Panel Case Uplift @ or Strap Type@ Left For ling Uplift Type@ Left Left Case @ Right k Simpson k k Simpson k 102 Wind 21.31 Holdown None 0.00 Wind 20.79 None 0.00 103 Wind 20.79 Holdown None 0.00 Wind 21.31 None 0.00 103A Wind 6.00 Holdown HDQ8 w 3HF 6.65 Wind 6.24 HDQ8 w 3HF 6.65 104 Wind 5.58 Holdown HDQ8 w 3HF 6.65 Wind 6.06 HDQ8 w 3HF 6.65 105 Wind 6.45 Holdown HDQ8 w 3HF 6.65 Wind 6.52 HDQ8 w 3HF 6.65 106 Wind 6.52 Holdown HDQ8 w 3HF 6.65 Wind 6.45 HDQ8 w 3HF 6.65 109 Wind 8.45 Holdown HDQ8 w DF 9.23 Wind 8.75 HDQ8 w DF 9.23 110 Wind 8.18 Holdown HDQ8 w DF 9.23 Wind 8.09 HDQ8 w DF 9.23 Ill Wind 8.02 Holdown HDQ8 w DF 9.23 Wind 8.51 HDQ8 w DF 9.23 112 Wind 11.44 Holdown HDU14 14.93 Wind 11.46 HDU14 14.93 113 Wind 11.46 Holdown HDU14 14.93 Wind 11.44 HDU14 14.93 201 Wind 4.82 Strap MST48x2 5.75 Wind 5.09 MST48x2 5.75 201a Wind 4.95 Strap MST48x2 5.75 Wind 4.95 MST48x2 5.75 2016 Wind 5.15 Strap MST48x2 5.75 Wind 4.88 MST48x2 5.75 202A Wind 6.21 Strap MST60x2 8.11 Wind 6.59 MST60x2 8.11 202B Wind 6.58 Strap MST60x2 8.11 Wind 5.91 MST60x2 8.11 203 Wind 3.62 Strap MST60 4.06, Wind 3.56 MST60 4.06 204 Wind 3.64 Strap MST60 4.06 Wind 3.57 MST60 4.06 301 Wind 0.83 Strap MST37 1.79 Wind 0.93 MST37 1.79 302 Wind 0.80 Strap MST37 1.79 Wind 0.80 MST37 1.79 303 Wind 0.91 Strap MST37 1.79 Wind 0.80 MST37 1.79 304 Wind 2.60 Strap MST48 2.88 Wind 2.75 MST48 2.88 305 Wind 2.74 Strap MST48 2.88 Wind 2.16 MST48 2.88 BY. it 1.,\C., DATE 6 -. oL,.., - oio JOB NO' c ,.......N 4.3q 0 PROJECT: .. RE: ai a A-'x''''). "-- 1- eo,r t__octe‘ 7 7 w .' L AOa ,,s_ fj-,\1;,.-it_ 1:1-_)-:i -2,-, '-jr-A' '''.•-, ---y) ,- \.‘..-vz•,-,,,,,:,,,, :- C-,.r.). 'J./71,V' =7--, :,, :tri O• w i- IA O 2 Ei (1 Ck0 rj-C.1 4'IJ OP SSwa\ )(-)r- - 4c1 00 Vos ..., O _J X < 0 ce5-1- 0 z O o 2-w-0115 i = 3 et a.ci:Att vookil z etc i-uo.i < cikpac4L,) .-• 0 -1. i-_- ..., 0 _ Z D 2 0 I- i't 1 (... r i! O *.....1 E 0 U_ Z U Z l-j 0 O I I- 0_ 0 6 7 r.t) 4,1 *. 1) .•-• •_- CL) cu r a* :- ct 0 ..' • 0 . ' • • ....- . . , . . , ,....„ (:::-J3 I 5IN) 11-11 LE:-vkatf A.k..,01,,g,ilit,S LMC ,.._..„ 1 VV-41* ea , . ...._ ...... ..., > il I ILN . ' C. ,.....• .9 !- ..1 0 r3 r 1 0 (Q-D------- ' ').--11111111.ANSEEMMIEffilli,==== 1 0 I 0 b ALVJG,‘ 1141s Lit-z7 .., ..„ . _ ( cp) 1 TSVJ 1Ailc- LENK---0 frfr ktss'IWR-e\R-c-. P.,1-401\J C.,‘ IR/5 LliVC ,-- (7-11)-____, ...1.1 ,.._ ,, _ ..... 4:3 : tC-3 • I ----. - ! - • 1=21-7 1 1 • -1 ' •-1 0 V-3 UI CP\ ,1 0 lob- ) I a b S yo T RI s Lc,..,,ki(....-crik Acki IX bti 1-tvit-iv7 Auys-k.--, ri 1,;', LINE Q '..-- ) . .., .. „•:::,)r;,),.11 ''''', I ki. 1-,,,)r4C.,''l V 4-LI,)r4 )1 °,'41'\30,,-, OAc '::i. • c-6 __ .; -71 0 ..... .„ J _.; -7--- 0 ' , . 1 1 , ,,'„,: , ..„. _ ._.... • -- , - .., - • • , . . • 1 so . 31\10 S!4U 9rvO1V /4L-)N 11 SI--(1- NAS („P) ••.. ......;• , . S4\1 ''' \' \'"' . 1 ::1\1•C 3o ,.. (--) ' c -L '1 741, 0,3 , ,L ,r k...) i.) 1 -- - ) r,1-> )6"...""......... .1".. ....`:; 4 .11 1 a L , .,. , 0 I / , t---, )- T, r1-1 , SW 1)4\S C.P)(1 1 1+ kwr\Jc.-1. -1-1-115 UNJ.0 _____-...... .=.m.mmommEm•MIIMMENNEMEMENNii....1.11- . BY ANNC, DATE: (.0 .., o'k.o JOB NO Ce M ....ID Cl 0 PROJECT: RE: 'f17) Aeto4r ak Ft(TOr oP hovsc---, L_I 6 VLA(le-8 = .5'3-4 t.-Artct (colf.N k s,) C.s 14 - z LL E.T. oki cyhra gyn 0 w 0 2 tLi a -I Er < 0 o w CUt PaC 1 O urt6ock_eci clieThrt“)ry) 0 z . 0 = Cibo 1,9) ::a,s3.9‘.F ce o_ z o 20 ()CL Y D 2 2 0 U 2 0 cc d Li_ Z w 1-1 6 0 I ° H Ll- :.- ,., — - ct 0 .t-.4) 4....• - TP _, ,,4 I !ThCeN BYJoB No ..:_...\c\:\ (......., DATE ,,, i. .......A. PROJECT: 9'°° a-Ai—5'le,' RE 4 Op1-10N) 2.. ,..., ,oriAMIRIM 0 LI 0 N) ' : „ 1-0 Li' t RVEV 1..))1 IIT H 111111:10rcpp,„11111 I-1 — '-30‘f,iTf---9'17." a -1 t1A,CA X 5 Vfl tt-00.311 ‘..1(-1---: cc 0 o z w R D 1:-=5 i( ,) ,L))",:'--) PCeE.-,SJCe zc,_.....f. D o _ 0 u_ z -- F) $ - ---'-. ------ - 1- 0- - — ,----7----7--- -7'- , ,.„----"- --i - — -------rrel -<-------.-1 -7.,----„--_--: NA 5,, , -- -- ..- ---7-7,-,— — , ,e,,,,,t s.„i,,‘,.,••••........• ; 1._, t.,......___. --i__,:" -7-- 6, 1 /1,11_ _ ..._ _ _ , ..... . = -:-_-._ ' - - - (3-z.-0 _,---4 , 4 '. '-7' ' ---:.; '""" -`---1 -:-.• '-''4:,-7-;,,.--:- -'- (0 4.: I--. ' ' ' -;:-•- ;A r i C...) •,--, -.,= s..... CL, --- • - ,, = = •e.:--; = 0 c.,,17,-.. ,r„---rn -2_ c )(S, 1X3, C;ji Cj 1)( 41111 • ''7; 'ekft CLe ( G.1'')( 0 = 4.1.4 _ • 2.! A WM - _ tqinb) rt.r.1‘ ‘1-4, _ a - = V -• - • \'‘ = - t — - "r5 7.1 Z SIT-77-7 1- I -0 ;71 ;77 , = X- 1#C. Cl.a) 771)f)*\E - — v 0 a-Ls,a-A — - r (-0 0• „: ic cr17; 0 0 3 ° C--AS UCO \°01, m 0 2 11 0 do :1_03 FOH d )0 ON or q 3"a , WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN June 24,2010 12:49:04 WoodWorke®Sizer 7.1 Unit A-Front Load COMPANY I PROJECT RESULTS by GROUP -NDS 2005 SUGGESTED SECTIONS by GROUP for LEVEL 4 - ROOF- -------------- Mnf Trusses Not designed by request 1- 2x8 (2) 208 Lumber n-ply D.Fir-L No.2 By Others Not designed by request (2) 206 Lumber n-ply Hem-Fir No.2 2- 2x6Hem-Fir No.2 3- 2x6 (3) 206 Lumber Study 2x6 @16.0 Typ Wall Lumber Stud Hem-Fir Stud SUGGESTED SECTIONS by GROUP for LEVEL 3 - FLOOR _-_-- __�__ ._J=s______ Mnf Jst Not designed by request 2x6 @16.0 Sloped Joist Lumber-soft D.Fir-L No.2 1- 6x8 (2) 2x8 (1) Lumber n-ply D.Fir-L No.2 2- 208 (2) 208 Lumber n-ply D.Fir-L No.2 By Others Not designed by request By Others 2 Not designed by request (2) 2x12 Lumber n-ply D.Fir-L No.2 2- 2x12 5.12-x2ol2 5.125x10.5 Glulam-Unbalan. West Species 24F-V4 DF 0x5 0.5 4X6 Lumber-soft D.Fir-L No.2 2- 4x6 (2) 2x6 Lumber n-ply Hem-Fir No.2 - 4x6 406 Lumber Post Hem-Fir No.2 3- 4x6 (3) 2x6 Lumber n-ply Hem-Fir No.2 2- 2x6 (2) 2x4 Lumber n-ply Hem-Fir No.2 2x6 @16.0 Typ Wall Lumber Stud Hem-Fir Stud SUGGESTED SECTIONS by GROUP for LEVEL 2 - FLOOR Mnf Trusses Not designed by request Mnf Jst Not designed by request 2x8 @16.0 Deck Jst Lumber-soft D.Fir-L No.2 2- 208 (2) 2x8 Lumber n-ply D.Fir-L No.2 3.-2208 3.125x9 Glulam-Unbalan. West Species 24F-V4 DF 408 4x8 Lumber-soft D.Fir-L No.2 By Others Not designed by request By Others 2 Not designed by request1- 2010 (2) 2x10 Lumber n-ply D.Fir-L No.2 5.-22010 5.125X12 GL Glulam-Unbalan. West Species 24F-V4 DF By Others 3 Not designed by request 3.5x14 3.125x14 LSL LSL 1.55E 2325Eb 2- 216 (2) 2x6 Lumber n-ply Hem-Fir No.2 404 4x4 Lumber Post Nem-Fir No.2 404 4x6 Lumber Post Hem-Fir No.2 3- 4x6 (3) 2x6 Lumber n-ply Hem-Fir No.2 2x6 6x6 Timber-soft Hem-Fir No.2 No.2 2- 2x4 (2) 2x4 Lumber softy Hem-Fir6x6 3 204 Timber-soft D.Fir-L No.2 3 2x4 (3) Wag Lumber StuHemSt.d Typ Wall Lumber Studd Hem-Fir Stud 2x6 @16.0 SUGGESTED SECTIONS by GROUP for LEVEL 1 - FLOOR Fnd Not designed by request CRITICAL MEMBERS and DESIGN CRITERIA Group Member CriterionAnalysis/Designlysis/Design Values ern= Mnf Jst Mnf Jst Not designed by request 0.91 Deck 1st j65 Bending Sloped Joist j30Uknown 0.00 Bending 0.10 2 8s unknown (2) 2 2x8 (1) b35 Bending 0.47Bendin 0.89 (2) 5x9 b3 Bending 0.06 4.825x9 4x8 b30 Bending 0.12 By Others By Others Not designed by request By Others 2 By Others Not designed by request 0 93 (2) 2x12 b6 Bending (2) 2X10 bl Shear 0.70Bendin 0.76 5.125he2 GL 1510e By Others 3 By Others Not designed by request 0 95 5.125x10.5 b9 Deflection 4X6 b20 Bending 0.0B 3.1Deflection 0.73 (2) 2x6 co2 2x64 LSL b14 Axial 0.91 (2) 0.07 4x4 c23 Axial 0.80 36 c29 Axial 0.75 (3) 2x6 c26 Axial 0.70 606 c26 Axial c39 Axial 0.62 6(2) 2o44 c11 Axial 0.86 (3) Wa4 11 32Wall w0uAxial Axial l 0.89 0.48 FodTyp Fnd Not designed by request _ DESIGN NOTES: 1. Please verify rify that the default deflection limits are appropriate for yourapplication. 2. DESIGN GROUP OCCURS ON MULTIPLE LEVELS: the lower level result is considered the final design and appears in the Materials List. ' 3. ROOF LIVE LOAD: treated as a r ow load with corresponding duration factor. Add an empty roof level to bypass this interpretation. 4. BEARING: the designer is responsible for ensuring that adequate bearing is proded. 5. GLULAM: bad actual breadth x actual dethvisions 6. Glulam Beams shall be laterally supportedaccording to thenro s of NDS Clause 3.3.3. 7. Sawn lumber bending members shall be laterally supported according to the provisions of NDS.Clause 4.4.1. continuous 8. BUILT-UP BEAMS: it is assumed that each ply is a single member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded. Where beams are side-loaded, special fastening details may be required. 9. SCL-BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 10. BUILT-UP COLUMNS: nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A-Front Load WoodWorks®Sizer 7.1 June 24,2010 12:41:17 Concept Mode : Beam View Floor 2 : 8 ' �V tV 1 D b31 t S ■ b1 b2 4, v. r b10 ■ b33 , b32- - b19)15 - b4b14 , ii e2 ■ b ... .. WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A-Front Load WoodWorks®Sizer 7.1 June 24,2010 12:41:19 Concept Mode : Column View Floor 2 : 8 ' 'VZ ('1� 1 1 LORD c58 c14 ��J(y 4 �� a y v =3" `N c69 c2 c70 c71 - D v c3 C4 rr ',,_ c25 c12 c26M anammlE 0 c72 ,'�: c2 c73 c781c3 1 g_ c77 c31 c76 c79, c30 c32 wf c55 ■ - --r E; -_..L., , ,--- _ -( _, ,Dat r; r WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A-Rear Load WoodWorks®Sizer 7.1 June 24,2010 13:14:33 Concept Mode : Beam View Floor 2 : 8 ' W b31 b34 b2 b10 b33 • b32 b19915 3 b4 1 b14 b30 9 b35 ■ WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A-Rear Load WoodWorks®Sizer 7.1 June 24,2010 13:14:35 Concept Mode: Column View Floor 2 : 8 ' „ ',PIR. L01)'� c58 c14 49 4 c82 c81 `s4 lY 0 EEy 3 ,r c25 c12 c26 c27 c73 c78, c77 c31 c76 c71 c55 lc56 WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A-Front Load WoodWorks®Sizer 7.1 June 24,2010 12:58:44 Concept Mode: Beam View Floor 3 : 17 ' b35 b6 1 r v J J b7 t' o b9 b20 b21 biib17 c ' c b34 b8 WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A-Front Load WoodWorks®Sizer 7.1 June 24,2010 12:58:42 Concept Mode : Column View Floor 3 : 17 ' µ 5r : ;U c62 c61 c15 c16 , -y v ,, • f c17 c18 c39 c24 c23 0 c59 c60 -7s c37 y 1r. - _ c35 : 6 ^67)c66 - c63 _ R "'r1 c756520 c1c6c74 L = WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A-Front Load WoodWorks®Sizer 7.1 June 24,2010 12:58:38 . i Concept Mode : Beam View Roof: 25 ' w8 b23 b24 _ b25 :' b27 b28 LEO WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN - Unit A-Front Load WoodWorks®Sizer 7.1 June 24,2010 12:58:40 Concept Mode: Column View Roof: 25 ' 4• - 042 c43 c44 c45 a — �t �L + mot ';...::::: .::-:,,, I �7 - ,.: 1 -_,.-t -_: . c51c50 c52 c53 Y p .c .. v s a ..FC+ - ..,, 4 , '. .. _ . %_2Lt�u _. ? _� _- .. t, . v . .'- - COMPANY PROJECT WoodWorks0 SOFTWARE FOR WOOD DESFGh June 24,2010 12:42 b1 i Design Check Calculation Sheet Sizer 7.1 LOADS (Ids,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w61 Dead Partial UD 613.2 613.2 2.50 3.00 plf. 2 w61 Snow Partial UD 795.0 795.0 2.50 3.00 pit 3 c61 Dead Point 622 2.50 lbs 4 c61 Snow Point 1192 2.50 lbs 5 j28 Dead Full UDL 47.7 phi 6 j28 Live Full UDL 160.0 pif 7 j33 Dead Full UDL 120.2 plf 8 j33 Live Full UDL 370.0 plf MAXIMUM REt err ' c s r' a�sr�#%- ,� -�"rir .�. a4g,"lO`! meg^. a:- . • , � x �1-; 1r ' " ata : .,,. *as t)' 31 Dead 391 1061 Live 795 1615 Total 1186 2676 Bearing: Load Comb #2 #3 Length 0.63 1.43 Lumber n-ply, D.Fir-L, No.2,2x10",2-Plys Self-weight of 6.59 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005 Criterion Analysis Value Design Value Analysis/Design Shear fv* = 67 Fv' = 207 fv*/Fv' = 0.32 Bending(+) fb = 331 Flo' = 1138 fb/Fb' = 0.29 Live Defl'n 0.00 = <L/999 0.10 = L/360 0.04 Total Defl'n 0.01 = <L/999 0.15 = -'-',1:1 /240 0.05 *The effect of point loads within a distance d of the support has been included as per NDS 3.4.3.1 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cru Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.100 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 1.00 1.00 E' 1.6 million 1.00 1.00 1.00 1.00 3 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3 Shear : LC #3 = D+.75(L+S), V = 2676, V design* = 1237 lbs Bending(+) : LC #3 = D+.75(L+S), M = 1178 lbs-ft Deflection: LC #3 = D+.75(L+S) EI= 158e06 lb-1nt/ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3.BUILT-UP BEAMS:it is assumed that each ply is a single continuous member(that is,no butt joints are present)fastened together securely at interyals not (exceeding 4 times the depth and that each ply is equally top-loaded.Where beams are side-loaded,special fastening details may be required. COMPANY PROJECT _ 1 l WoodWorks® SOFfW4RE FOR WOOD DESIGN June 24,2010 12:43 b3 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End l j45 Dead Full UDL 17.0 plf 2 j45 Live Full UDL 25.0 plf MAXIMUM REACTIONS (lbs) and BEARING LENGTHS(in) : ,,,,- Imo, e �. ; 1s =:,,y, /1 91 10, 106 Dead 106 106 Live 112 112 Total 218 Bearing: #2 Load Comb #2 0.5#2 Length 0.50* *Min.bearing length for beams is 1/2"for exterior supports Glulam-Unbal.,West Species, 24F-V4 DF,3-118x9" Self-weight of 6.48 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi) and Deflection (in) using NDS 2005: • Criterion Analysis Value Design Value Analysis/Design Shear fv = 10 Fv' = 265 fv/Fv' = 0.04 Bending(+) fb = 140 Fb' = 2400 fb/Fb' = 0.06 Live Defl'n 0.01 = <L/999 0.30 = L/360 0.04 Total Defl'n 0.03 = <L/999 0.45 = L/240 0.06 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cf rt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1_00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1_00 1.00 1.00 1.00 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - 2 E' 1.8 million 1.00 1.00 - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - Shear : LC #2 = D+L, V = 218, V design = 182 lbs Bending(+) : LC #2 = D+L, M = 491 lbs-ft Deflection: LC #2 = D+L EI= 342e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 . 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). n COMPANY PROJECT III WoodWorks® SOFTWARE FOR WOOD DESIGN June 24,2010 12:40 b6 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_c44 Dead Point 444 2.00 lbs 2 c44 Snow Point 647 2.00 lbs 3_w44 Dead Partial UD 389.2 389.2 0.00 2.00 plf 4 w44 Snow Partial UD 431.2 431.2 0.00 2.00 plf 5 c45 Dead Point 444 5.00 lbs 6 c45 Snow Point 647 5.00 lbs 7 w45 Dead Partial UD 389.2 389.2 5.00 6.00 plf 8 w45 Snow Partial UD 431.2 431.2 5.00 6.00 plf 9 j25 Dead Full UDL 120.2 plf 10 j25 Live Full UDL 370.0 plf MAXIMUM R CTIONS(lbs)and BEARING•LENGTHS(in) : .,s�gC'`4-,a ,'k- � x ., 1 'w ^,,«.r ..�."a-�''' ,1�3,"`' ma- 3 x., e ,-1= .z,s_:::::7,..,,,,x,,,,<4.4,144,,,,,„/„..„.„a - il � ` '''''':"',: '-''''''''4'''':''' t a s em"' *� •".t '- ,�" - e tea``x. et aa>�`],.---� " y' ,dw ,. °°ix'. :,,!1'.=_' < ` 0 61 1Dead 1436 1389 Live 1803 1803 Total 3239 3192 Bearing: Load Comb #3 #3 Length 1.73 1.70 Lumber n-ply, D.Fir-L, No.2, 2x12", 2-Plys Self-weight of 8.02 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 97 Fv' = 207 fv/Fv' = 0.47 Bending(+) fb = 805 Fb' = 1035 fb/Fb' = 0.78 Live Defl'n 0.03 = <L/999 0.20 = L/360 0.14 Total Defl'n 0.06 = <L/999 0.30 = L/240 0.20 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - 1.00 1.00 3 Emin' 0.58 million 1.00 1.00 - 1.00 1.00 3 Shear : LC #3 = D+.75(L+S), V = 3239, V design = 2190 lbs Bending(+) : LC #3 = D+.75(L+S), M = 4247 lbs-ft Deflection: LC #3 = D+.75(L+S) EI= 285e06 lb-in2/ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All GC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3.BUILT-UP BEAMS:it is assumed that each ply is a single continuous member(that is,no butt joints are present)fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded.Where beams are side-loaded,special fastening details may be required. COMPANY PROJECT WoodWorks® f ! 1 SOFTWARE FOR WOOD DESIGN June 24,2010 12:50 b8 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 2 j14 Dead Full UDL 113.7 plf 2 j14 Live Full UDL 350.0 plf MAXIMUM REACTIONS (lbs)and BEARING LENGTHS (in) : A 6� 10' 357 Dead 357 1050 Live 1050 1407 Total 1407 Bearing: #2 Load Comb #2 0.75 Length 0.75 Lumber n-ply, D.Fir-L, No.2,2x8",2-Plys Self-weight of 5.17 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 77 Fv' = 180 fv/Fv' = 0.43 Bending(+) fb = 963 Fb' = 1080 fb/Fb' = 0.330.89 Live Defl'n 0.07 = <L/999 0.20 = L/360 0.34 Total Defl'n 0.10 = L/712 0.30 = L/240 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1_00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E '1.6 million 1.00 1.00 - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - 1.00 1.00 2 Shear : LC #2 = D+L, V = 1407, V design = 1123 lbs Bending(+) : LC #2 = D+L, M = 2110 lbs-ft Deflection: LC #2 = D+L EI= 76e06 lb-in2/ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT-UP BEAMS:it is assumed that each ply is a single continuous member(that is, no butt joints are present)fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded.Where beams are side-loaded,special fastening details may be required. COMPANY PROJECT I 144 WoodWarks® SOFTWARE FOR WOOD DESIGN June 24,2010 12:40 b9 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j50 Dead Partial UD 113.7 113.7 0.00 1.50 plf 2 j50 Live Partial UD 350.0 350.0 0.00 1.50 plf 3_j14 Dead Partial UD 113.7 113.7 3.00 9.00 plf 4_j14 Live Partial UD 350.0 350.0 3.00 9.00 plf 5_j51 Dead Partial UD 113.7 113.7 1.50 3.00 plf 6 j51 Live Partial UD 350.0 350.0 1.50 3.00 plf 71j24 Dead Partial UD 120.2 120.2 0.00 3.00 plf 8_j24 Live Partial UD 370.0 370.0 0.00 3.00 plf 9 j25 Dead Partial UD 120.2 120.2 3.00 9.00 plf 10 j25 Live Partial UD 370.0 370.0 3.00 9.00 plf 11_j26 Dead Partial UD 120.2 120.2 9.00 12.00 plf 12 j26 Live Partial UD 370.0 370.0 9.00 12.00 plf 13 j52 Dead Partial UD 113.7 113.7 9.00 10.50 plf 14_j52 Live Partial UD 350.0 350.0 9.00 10.50 plf 15_j53 Dead Partial UD 113.7 113.7 10.50 12.00 plf 16 j53 Live Partial UD 350.0 350.0 10.50 12.00 plf MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) : 4`s{':3". #' ,$,,A. v- N4#--teif-. 4 .xe -.. ;,:u> , t. .4:'-44 Xrs r,,. :#� s a'` ;x.sr ,;; -' :a.fa+&saf f'I.WAWP :` -^ i'- -,.�"'�'--1X"s'; c�^ .fa Z4A,a 03. aw , ..;,.. z.a:..: ,,.-;, # ,-*Was s .c aN0Y1 6 ' d c3 .: t, -...,,....'�%.s k5"5 �.`$ _ +>Y#53 "ms`s..4"+.` ," S 'S j' 10 121 Dead 1478 Live 4320 1478 Total 5798 4320 Bearing: 5798 Load Comb #2 Length 1.74 #2 1.74 Glulam-Unbal.,West Species,24F-V4 DF, 5-1/8x10-1/2" Self-weight of 12.39 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection (in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 138 Fv' = 265 fv/Fv' = 0.52 Bending(+) fb = 2217 Fb' = 2400 fb/Fb' = 0.92 Live Defl'n 0.38 = L/381 0.40 = L/360 0.94 Total Defl'n 0.57 = L/252 0.60 = L/240 0.95 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D+L, V = 5798, V design = 4953 lbs Bending(+) : LC #2 = D+L, M = 17395 lbs-ft Deflection: LC #2 = D+L EI= 890e06 lb-int Total Deflection - 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). COMPANY PROJECT I WoodWorks® SOFTWARE FOR WOOD DESIGN June 24,2010 12:43 b10 Design Check Calculation Sheet Sizer 7.1 LOADS I lbs,psf,or plf) Load Type Distribution Pat- Start taartitudEe ion nd Start End tern 1 w39 Dead Partial UD 311.0 311.0 0.00 4.50 No 2 w39 Live Partial UD 680.0 680.0 .0000 4.50 No No 3 c39 Dead Point 827 2.00 No 4-c39 Live Point 5-332 Dead Partial UD 120.2 120.2 0.00 0.50 No 6 j32 Live Partial UD 370.0 370.0 0.00 0.50 No 7-j33 Dead Partial UD 120.2 120.2 1.00 4.00 No 8 j33 Live Partial UD 370.0 370.0 1.00 4.00 No 9-j34 Dead Partial UD 120.2 120.2 4.00 4.50 No 10 j34 Live Partial UD 370.0 370.0 4.00 4.50 No 11 j35 Dead Partial UD 120.2 120.2 4.50 7.50 No 12 j35 Live Partial UD 370.0 370.0 4.50 7.50 No 13 j36 Dead Partial UD 113.7 113.7 4.50 16.50 No 14 j36 Live Partial UD 350.0 350.0 4.50 16.50 No 15D37 Dead Partial UD 100.7 100.7 3.00 4.50 No 16 j37 Live Partial UD 310.0 310.0 3.00 4.50 No 17 j47 Dead Partial UD 120.2 120.2 7.50 13.50 No 18 X47 Live Partial UD 370.0 370.0 7.50 13.50 No 19D48 Dead Partial UD 120.2 120.2 13.50 16.50 No 20 X48 Live Partial UD 370.0 370.0 13.50 16.50 No 21 j49 Dead Partial UD 120.2 120.2 0.50 1.00 No 22 j49 Live Partial UD 370.0 370.0 3.000.50 1.00 No No 23 b32 Dead Point 300No 24-b32 Live Point 922 3.00 MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) riVAR-74,'.� 'tea' �. "_� t ��� 'e: A 16'-6'1 lo' 4-6" 16-6i Dead 452 4067 1180 Live 847 11291 4616 Uplift 12 15358 Total 1300 16 Bearing: #2 1.27 1. Load Comb #2 4 24 1.00 Length 0.50. 1.09 Cb 1.00 *Min bearing length for beams is 1/2"for exterior supports Glulam-Unbal.,West Species,24F-V4 DF,5-118x12" Self-weight of 14.16 plf included in loads; Lateral support top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 158 Fv' = 265 fv/Fv' = 0.60 Bending(+) fb = 1074 Fb' = 2400 fb/Fb' = 0.45 Bending(-) fb = 1396 Fb' = 1844 fb/Pb' 0.32 0.76 Live Defl'n 0.13 = <L/999 0.40 = L/360 0.32 Total Defl'n 0.19 = L/740 0.60 = L/240 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cf f00 L tert s 1C00 LC# Fv' 265 1.00 1.00 1.00 - - - Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fb'- 1850 1.00 1.00 1.00 0.997 1.000 1.00 1.00 1.001.00 - 2 1.00 Fcp' 650 - 1.00 1.00 - - - 1.00 - -2 E' 1.8 million 1.00 1.00 - - _ - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - Shear : LC #2 = D+L, V = 8357, V design = 6496 lbs Bending(+): LC #2 = D+L, M = 11006 lbs-ft Bending(-): LC #2 = D+L, M = 14310 lbs-ft Deflection: LC #2 = D+L EI= 1328e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D-dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.Grades with equal bending capacity in the top and bottom edges of the beam cross-section are recommended for continuous beams. 4.GLULAM:bxd=actual breadth x actual depth. 5.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 6.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). p,. ®+.` COMPANY PROJECT di WoodWorks0 SOFIWASF FOR WOOD DESIGN June 24,2010 12:44 b13 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or pif) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w58 Dead Partial UD 519.0 519.0 0.00 3.00 plf 2_w58 Snow Partial UD 505.0 505.0 0.00 3.00 plf 3_c40 Dead Point 217 5.50 lbs 4_c40 Live Point 668 5.50 lbs 5 c67 Dead Point 518 5.00 lbs 6_c67 Snow Point 778 5.00 lbs 7 c68 Dead Point 573 3.00 lbs 8 c68 Snow Point 942 3.00 lbs 9 w59 Dead Partial UD 593.7 593.7 5.00 8.00 plf 10 w59 Snow Partial UD 735.0 735.0 5.00 8.00 plf ll j37 Dead Partial UD 100.7 100.7 6.50 8.00 plf 12_j37 Live Partial UD 310.0 310.0 6.50 8.00 plf 13_j38 Dead Partial UD 81.2 81.2 3.50 6.50 plf 14_j38 Live Partial UD 250.0 250.0 3.50 6.50 plf 15_j39 Dead Partial UD 22.7 22.7 0.00 3.50 plf 16_j39 Live Partial UD 70.0 70.0 0.00 3.50 plf 17 b15 Dead Point 126 3.50 lbs 18-b15 Live Point 389 3.50 lbs 19-b32 Dead Point 225 6.50 lbs 20-b32 Live Point 693 6.50 lbs MAXIMUM REACTIONS lbs and BEARING LENGTHS in : . a '`"' ,aH. aea+-- ,,''��' a '� ` ,ter- - ,, ,^ . --- ,. R r • • ( O. 8i Dead 2561 3033 Live 2699 3789 Total 5261 6822 Bearing: Load Comb #3 #3 Length 1.88 2 44 LSL, 1.55E, 2325Fb,3-1/2x14" Self-weight of 15.31 plf included in loads; Lateral support top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection (in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 157 Fv' = 356 fv/Fv' = 0.44 Bending(+) fb = 1295 Fb' = 2674 fb/Fb' = 0.48 Live Defl'n 0.06 = <L/999 0.27 = L/360 0.24 Total Defl'n 0.14 = L/680 0.40 = L/240 0.35 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 3 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 3 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 3 Emin' 0.80 million - 1.00 - - - - 1.00 - - 3 Shear : LC #3 = D+.75(L+S), V = 6822, V design = 5122 lbs Bending(+) : LC #3 = D+.75(L+S), M = 12340 lbs-ft Deflection: LC #3 = D+.75(L+S) EI= 1241e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.SCL-BEAMS(Structural Composite Lumber):the attached SCL selection is for preliminary design only.For final member design contact your local SCL manufacturer. 3.Size factors vary from one manufacturer to another for SCL materials.They can be changed in the database editor. COMPANY PROJECT 1 WoodWorks0 SOFTWARE FOR WOOD DESIGN June 24,2010 12:43 b14 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) : Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w33 Dead Partial UD 317.7 317.7 9.00 12.00 plf 2 w33 Live Partial UD 350.0 350.0 9.00 12.00 pif 3-c19 Dead Point 357 9.00 lbs 4-c19 Live Point 1050 9.00 lbs 5 c20 Dead Point 357 3.00 lbs 6 c20 Live Point 1050 3.00 lbs 7 w34 Dead Partial UD 317.7 317.7 0.00 3.00 plf 8 w34 Live Partial UD 350.0 350.0 0.00 3.00 plf 9 c64 Dead Point 165 10.50 lbs 10 c64 Snow Point 225 10.50 lbs Dead Point 12 c65 165 1.50 lbs 12-c65 Snow Point 225 1.50 lbs 13 j36 Dead Full UDL 113.7 pit 14_j36 Live Full UDL 350.0 15_j43 Dead Partial UD 17.0 17.0 0.00 0.50 plf 16_j43 Live Partial UD 25.0 25.0 0.00 0.50 pif 17_j44 Dead Partial UD 17.0 17.0 0.50 1.50 plf 18_j44 Live Partial UD 25.0 25.0 0.50 1.50 plf 19_j45 Dead Partial UD 17.0 17.0 1.50 10.50 plf 20_j45 Live Partial UD 25.0 25.0 1.50 10.50 plf 21_j46 Dead Partial UD 17.0 17.0 10.50 12.00 plf 22j46 Live Partial UD 25.0 25.0 10.50 12.00 plf MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) tea. ,�.. -_,� , ...... A 1 121 i 0' 2351 Dead 2351 4350 Live 4350 6701 Total 6701 Bearing: #2 Load Comb #2 2'#2 Length 2.39 LSL, 1.55E,2325Fb,3-112x14" Self-weight of 15.31 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 163 Fv' = 310 fv/Fv' = 0.52 Bending(+) fb = 1769 Fb' = 2325 fb/Fb' = 0.76 Live Defl'n 0.25 = L/573 0.40 = L/360 0.63 Total Defl'n 0.43 = L/333 0.60 = L/240 0.72 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 2- 1.00 - - - Fcp' 800 - - 1.00 - - - 2 E' 1.5 million - 1.00 - - 1.00 - Emin' 0.80 million - 1.00 - - 1.00 - - 2 Shear : LC #2 = D+L, V = 6701, V design = 5314 lbs Bending(+) : LC #2 = D+L, M = 16851 lbs-ft Deflection: LC #2 = D+L EI= 1241e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.SCL-BEAMS(Structural Composite Lumber):the attached SCL selection is for preliminary design only.For final member design contact your local SCL manufacturer. 3.Size factors vary from one manufacturer to another for SCL materials.They can be changed in the database editor. �4 COMPANY PROJECT rpt WoodWorks® SOFTWARE FOR WOOD DFSIOS Ill June 24,2010 12:41 b20 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j30 Dead Full UDL 21.7 plf 2 j30 Live Full UDL 60.0 pit MAXIMUM REPS TInNS/lhc►and RFORWC� I FN fin) • -?"ter:• .,t. � s 3 '+�,r s '.. 1 ¢ . �. ..� . .� ��.. u�'.^". �tea, ter__ 10' Dead 46 Live 105 46 Total 151 105 Bearing: 151 Load Comb #2 #2 Length 0.50* 0.50* *Min.bearing length for beams is 1/2"for exterior supports Lumber-soft, D.Fir-L, No.2, 4x6" Self-weight of 4.57 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection (in)using NDS 2005 Criterion Analysis Value Design Value Analysis/Design Shear fv = 9 Fv' = 180 fv/Fv' = 0.05 Bending(+) fb = 90 Fb' = 1170 fb/Fb' = 0.08 Live Defl'n 0.00 = <L/999 0.12 = L/360 0.02 Total Defl'n 0.00 = <L/999 0.18 = L/240 0.02 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - 1.00 1.00 E' 1.6 million 1.00 1.00 - - 1.00 1.00 - 2 Emir:. 0.00 million 1.00 1.00 - - 1.00 1.00 - 2 Shear : LC #2 = D+L, V = 151, V design = 111 lbs Bending(+) : LC #2 = D+L, M = 132 lbs-ft Deflection: LC #2 = D+L EI= 78e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. COMPANY PROJECT fi 1 WoodWorks® June 24,2010 12:50 b30 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or pif) " Load Type Distribution Magnitude Location [ft] Units Start End Start End l j41 Dead Partial UD 68.0 68.0 2.00 4.00 pit Live Partial UD 100.0 100.0 2.00 4.00 plf 2_j41 Dead Partial UD 72.2 72.2 0.00 2.00 plf 3 j42 4 j42 Live Partial UD 106.2 106.2 0.00 2.00 plf MAXIMUM REACTIONS Ilhsl and REARING I F�GTHS Mil : , ,-„,,,,174,,,,4117--'..e. +fix' .. x , ?� • • -ate `�C �`` "''' '; "1 s �N3 `: ,,,,,,-otobar-0,..r.,-;0:!;,27 -'rV4it;n3eitZe4-, #>- --,1 .5,FX4--tk.,170V-..-4$11:0"6.9-4,..*,..:*,,--1,1,1t,', A. 41 10' 150 Dead 154 203 Live 209 353 Total 364 #2 Bearing: - Load Comb #2 0.50* Length 0.50* *Min.bearing length for beams is 1/2"for exterior supports Lumber-soft, D.Fir-L, No.2,4x8" Self-weight of 6.03 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Desig08 Shear fv = 15 Fv' = 180 Bending(+) fb = 140 Fb' = 1170 fb/Fb' 0.12 0.03 Live Defl'n 0.00 = <L/999 0.13 = L/360 0.04 Total Defl'n 0.01 = <L/999 0.20 = L/240 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr 1f00 1C00 1C00 LZ# Fv' 180 1.00 1.00 1.00 - - 100 - 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1_00 11.00 1.00 - - Fcp' 625 1.00 1.00 - 1.00 1.00 2 B' 1.6 million 1.00 1.00 - _ _ 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - Shear : LC #2 = D+L, V = 364, V design = 253 lbs Bending(+) : LC #2 = D+L, Ell= = 359 lbs ft Deflection: LC #2 = D+L EI= 178e06 lb-int+ Live Load Deflection. Total Deflection = 1.50(Dead Load Deflection) (D-dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. - 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. n - COMPANY PROJECT r 1 Woodworks® SOFTWARE FOR W000 DESIGN: June 24,2010 12:42 b31 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j 65 Dead Partial UD 47.7 47.7 0.00 4.00 plf 2_j65 Live Partial UD 160.0 160.0 0.00 4.00 pit 3_j28 Dead Partial UD 47.7 47.7 4.50 7.50 pit 4_j26:85, 8 Live Partial UD 160.0 160.0 4.50 7.50 pit 5 j62 Dead Partial UD 47.7 47.7 7.50 11.00 pit 6_j62 Live Partial UD 160.0 160.0 7.50 11.00 pit 7_j63 Dead Partial UD 47.7 47.7 11.00 17.00 plf 8_j63 Live Partial UD 160.0 160.0 11.00 17.00 pit 9 j64 Dead Partial UD 47.7 47.7 17.00 20.00 pit 10 j64 Live Partial UD 160.0 160.0 17.00 20.00 pit 11 j66 Dead Partial UD 47.7 47.7 4.00 4.50 pit 12 j66 Live Partial UD 160.0 160.0 4.00 4.50 plf MAXIMUM REACTIONS (lbs)and BEARING LENGTHS(in) : 201 Dead 619 619 Live 1600 1600 Total 2219 2219 Bearing: 10' Load Comb #2 #2 Length 0.67 0.67 Glulam-Unbal.,West Species,24F-V4 DF,5-1/8x12" Self-weight of 14.16 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005 Criterion Analysis Value Design Value Analysis/Design Shear fv = 49 Fv' = 265 fv/Fv' = 0.18 Bending(+) fb = 1082 Fb' = 2400 fb/Fb' = 0.45 Live Defl'n 0.43 = L/553 0.67 = L/360 0.65 Total Defl'n 0.69 = L/350 1.00 = L/240 0.69 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 1.00 - - E' 1.8 million 1.00 1.00 - 1.00 - 2 Emin' 0.85 million 1.00 1.00 1.00 - 2 Shear LC #2 = D+L, V = 2219, V design = 1997 lbs Bending(+) : LC #2 = D+L, M = 11095 lbs-ft Deflection: LC #2 = D+L EI= 1328e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LCs are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). COMPANY PROJECT di w dWorks® Arne 24,2010 1315 b34 - SOFTWARE FOR WOOD DESIGN Design Check Calculation Sheet SOP'7.1 LOADS;tbs.Pat..'PR) Load 7,, Dis---2----, sMagnitude L:datisn .f.t, Chips .art 2nd Start E,d Dead Par,lal CD 4•3' 613.2 0,0 a.os pif Partial 21, 755.0 795.3 0.03 ,.00 pif 1---in: Partial 0D 617.5 617.5 7.50 12.00 plf .77' Partal 074 1-• 7 301.2 7.50 11.CD pif 5.7112. ',Int 14,4 -I rn ihs Ihs 1 rI6 Dead p,,,,,, 1253 11.00 '7.00 ,C5 ,:c2.5 Enow 2,1,t 2404 17.00 its wE4 Dead Partial SD 617.5 617.5 17.00 le.so plf 227,r61 Dead Print E22 7.00 hos 12 d6.1 Er,w ;Lint 11,2 Its Dead P,In7. ,22 Its 14:762 Enrw 1,1,-. 1152 le. '4.3,63 Dead Par7lal 0D 612.2 613.2 1.00 4.20 pif le w63 6r.pw Partial 02 795.2 ',FS., 1.00 4.30 pif :_i:= 2: Dead Parrial h0 4-3" 613.2 7_00 7.50 plf 137.-,W Partial,D '35.3 745.0 7.0, 7.50 pif 2.1'-22'f:'3: Dead Partral 02 41.1 4O.1 11,0 11.00 Flf :-...i-l ! --- Partial'JD 163.0 ,62.0 17.00 13.00 pif _- _. rui, Parhral UD 17., 47., 4.50 ,.50 Fif Partial.2 1.50, 260., 4.50 7.50 pif Z5:162 Dead partial 0.2 47.7 47., 2.50 ii.00 P2f i7e.1.'4: Dead • Faimial 02 1,2., 3.22.1 0.30 2.00 plf Partial 0,2 3-3.0 37,, 2.00 2.00 Plf ... ..._ Dean Partial 0D 1,0.2 •. , 3.50 4,0 plf 30 132 Partial 02 3,0.3 173.0 1.50 1.00 Flf #3 Dead L1ve Partial CD 22,.2 LC0, 4.52 7.52 plf darhlal 0, 3,3., 3,3.3 4.50 7.53 Fif 33_33,, Dead - 24 331 Pa 35-335 Dead ,,,,3,h2 7:'•- 120.2 F.00 21.00 pif Par71.411 2D. 120.2 1,0.2 11.03 17.31 plf 33-54, :f77., Partiai CD 3'0, 316.0 21.00 1,.30 plf r.:3'' Partial CD 127.2 120.2 Z.00 3.50 pif 361 Par71a1 CD 3,0.9 3-1., 2.00 3.50 pif .4:2:1'1: Dead Live Partial CD 1,1.2 110.2 4.02 4.5, plf Partial CD 373.3 3-6.0 4.00 4.50 pif 43-1E3 Dead Partial 2D 47.7 17.7 11.20 11.00 Fif 44-3.53 Par,ial CD 163.3 160.0 11.0, l7.3.0 plf 1,31'1'2'5 Dead pshddsi co 47.7 47.7 13.00 20.00 p16 Pardial UD 150., 16C, le.00 ,o.os psf 47-,66 Dead Partial UD 47,, 47,7 4.30 4.53 Fl f i:166 Partia,02 2E3.0 1E0.0 4.1, 4.50 pif 4._lse Dead Parlial CD 2,0.2 2,3.2 17.CD le.CC Fif 50 lse live Partial 02 3,0, 3,0., 17.0C 25.00 plf 21-16P Dead Par7lal CD 1,3.2 123.= 13.00 20,30 plf 52_1635 ,ive Par,rai CD 3,1., 270., 12.20 2l.D, Fif 5.1,333,l Dead Far7ial JD 4,.2 47.7 2.00 4.20 p2f LI-re earhiai U2 160.2 1E0.3 Z.12 4.00 plf 55-.',23 Dead Partial 02 47., 47., 2.00 1.00 pif FE-7711 ,ivs Partial:ID 160.0 •P"2. 0,0 2.00 cif m MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in): i'Z',..,==',;;;-;:-'.-.,:-.„.::;;;.,1=Z-,`,=-;;;Z,..;-/Z-,:::"..-.;=.„.,.;;,.,..-:',..::-.;;;,"--. .:::-.7,:....;-:;::;,:;1.:21':;-,.;72,:,--.,=:::,;.::„....;:::!:. . ,•.';:17:Z:,:7,::=:=1.. ,:,-.: :-:;:,..:;'.4;.;:;:,%--„ ;;;;;;:1;..,-.':-._:.:-.:._-,i-',c-,:„.,:-.-;':--!.-.;.,:-'- =XZ;::;K1:;X3::Z.!.-= :;:lZg:: ;,= ._%17T7n=::';Z =V. '<;. ::-l.'-:::,'„.-'-;- ' ';,.' ' '' '7.',:;.7::,:;;i„:j;:i-;::;:;:'. ,!!:,_:"', :::',; - ====•i=747,. 7=::=7:7=1.:,::;:',',',%7-:.% : -;,,,, ... . ,,4;,;.. .:•:7,..:-, ..--1,:.;„',,:-„..,,,„ „,..;i:,:, Live 35E6 35-51 Drtal 17361 17301 5e„ir..4, •Fras Dpv, 43 43 Lerfath 1.21 5.13 Glulam-Bal.,West Species,24F-V8 DF,5-118x22-1/2" SelfwedgM 0126E5 pa included kr loads, Lateral support top.AA,bottom.at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)osjp,Nos 2006 1.Shear ..,. _ F' .sd fh.1.3,2 Ft' .2E04 fh/F,' . 1L52 Live Defi', 3.4I. 1/555 3.62- ,360 3.60. 0.34. ,,,,, 1.23- L/D4C s.e4 ADDITIONAL DATA: 4,270.54, FfE CD DM D, 21. 21 f0 Cr Cfrt Nptsa 2n L25 Ehsar :LD 43 =0...-5,L-5,,V- ,7261, V design 1_12=2:Le Petdi,g,t't L47#3 2,--.72'1,51,M. 2611F Its-, Defleddirr,LC,a -23.75,L.S) 62= 4-56e06 IL-1,, 125,1 ID's are listed In the Pralysd,drip, ',tad drshinat5ons, 7.2,,ED DESIGN NOTES: 1 Please verify Mat the default deflection MAs are appropdate for your application 2 GNIam design mMes are fat materiaN conforming to AITC 117-2001 and manufactured in accordance with ANSWAITC A190 1-1992 3. eotr,5 depth 4GGILLolaUu:m m tamsshabe laterallyit boA' IN suppoded acfcrfi. co'ngMt17.,pprovi(sions of 005 Clause 3.3.3. 5G bGIoA . ._ COMPANY PROJECT ill WoodWorks® SOFTWARE FOR WOOD DESIGN June 24,2010 12:49 b35 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j21 Dead Partial UD 120.2 120.2 0.50 1.50 plf 2_j21 Live Partial UD 370.0 370.0 0.50 1.50 plf 3 j59 Dead Partial UD 120.2 120.2 0.00 0.50 plf 4_j59 Live Partial UD 370.0 370.0 0.00 0pif 5_j60 Dead Partial UD 120.2 120.2 1.50 3..50 00 plf 6 j60 Live Partial UD 370.0 370.0 1.50 3.00 plf MAXIMUM RE!..- .01.1" ,.t % I I rr..,,rI.f 1. 47. li " �� Z.1� ra s y,-z�, .:z w�e�,a * " ��' < � �� �s �„ � .: �"mow. '�' ��' c'' A " s ah.moo. yc .r: 3 " 11%€ '§, s I' rgi�� °vtxa r c � ' ,.au If va�, r � 'z "- :", -•44,: , �. s€�, a§: a '`., ` +3 � 'tmsrs 7 �.s4 . ' 4:1-„, act » :'F 1 _ � 3,�M .acs d Fx ',- fa '" :044i.6.4 I 31 O. 188 Dead 188 Live 555 555 Total 743 743 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min.bearing length for beams is 1/2"for exterior supports Lumber n-ply, D.Fir-L, No.2,2x8",2-Plys Self-weight of 5.17 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection (in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 31 Fv' = 180 fv/Fv' = 0.17 Bending(+) fb = 254 Fb' = 1060 fb/Fb' = 0.24 Live Defl'n 0.00 = <L/999 0.10 = L/360 0.04 Total Defl'n 0.01 = <L/999 0.15 = L/240 0.04 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - ' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D+L, V = 743, V design = 444 lbs Bending(+): LC #2 = D+L, M = 557 lbs-ft Deflection:,LC #2 = D+L EI= 76e06 lb-in2/ply Total Deflection = 1 50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3.BUILT-UP BEAMS:it is assumed that each ply is a single continuous member(that is,no butt joints are present)fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded.Where beams are side-loaded,special fastening details may be required. COMPANY PROJECT ill WoodWorks® ill SOFTWARE FOR WOOD DESIGN June 24,2010 12:51 c2 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or pif) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_bl Dead Axial 1056 (Eccentricity 0.00 in) 2 bl Rf.Live Axial 2153 (Ecceptricity = 0.00 in) MAXIMUM REACTIONS (lbs) 0' Lumber n-ply, Hem-Fir, No.2,2x6", 2-Plys Self-weight of 3.41 plf included in loads; Pinned base;Loadface=depth(d);Built-up fastener:nails;Ke x Lb: 1.00 x 0.00=0.00[ft];Ke x Ld: 1.00 x 8.00=8.00[ft]; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Axial fc = 196 Fc' = 980 fc/Fc' = 0.20 Axial Bearing fc = 196 Fc* = 1644 fc/Fc* = 0.12 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.596 1.100 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D+L, P = 3236 lbs Kf = 1.00 (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT-UP COLUMNS:nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. COMPANY PROJECT 1 WoodWorks SOFTWARE FOR WOOD DESIGN June 24,2010 12:54 c12 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End l_c24 Dead Axial 1478 (Eccentricity = 0.00 in) 2 c24 Live Axial 4320 (Eccentricity = 0.00 in) 3 b10 Dead Axial 4067 (Eccentricity = 0.00 in) 4 b10 Live Axial 11291 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): • 8' Timber-soft, D.Fir-L, No.1, 6x6" Self-weight of 7.19 plf included in loads; Pinned base; Loadface=depth(d);Ke x Lb: 1.00 x 8.00=8.00[ft];Ke x Ld: 1.00 x 8.00=8.00[ft]; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Axial fc = 701 Fc' = 820 fc/Fc' = 0.86 Axial Bearing fc = 701 Fc* = 1000 fc/Fc* = 0.70 ADDITIONAL DAT FACTORS: F/E CDA: CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1000 1.00 1.00 1.00 0.820 1.000 - - 1.00 1.00 2 Fc* 1000 1.00 1.00 1.00 - 1.000 - - 1.00 1.00 2 Axial : LC #2 = D+L, P = 21214 lbs (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. COMPANY PROJECT illWoodWorks® SOFTWARE FOB WOOD DESIGN June 24,2010 12:53 c23 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) : Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b9 Dead Axial 1478 (Eccentricity = 0.00 in) 2-b9 Live Axial 4320 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs) 9' 0' Lumber Post, Hem-Fir, No.2,4x6" Self-weight of 3.98 plf included in loads; Pinned base;Loadface=depth(d);Ke x Lb: 1.00 x 9.00=9.00[ft];Ke x Ld: 1.00 x 9.00=9.00[ft]; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design I{ ' = fc/Fc' = 0.80 IAxial * _ Axial Bearing fc = 303 Fc* = 1430 fc/Fc 0.21 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cf rt Ci LC# Fc' 1300 1.00 1.00 1.00 0.265 1.100 - 1.00 1.00 2_ 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.100 Axial : LC #2 = D+L, P = 5834 lbs (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES! 1.Please verify that the default deflection limits are appropriate for your application. COMPANY PROJECT ill WoodWorks® SOFTWARE FOR W000 OEeGN June 24,2010 12:54 c26 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End l_c23 Dead Axial 1478 (Eccentricity = 0.00 in) 2 c23 Live Axial 4320 (Eccentricity = 0.00 in) 3—b10 Dead Axial 1180 (Eccentricity = 0.00 in) 4 bl0 Live Axial 3436 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): ►P • 0' 8' Timber-soft, Hem-Fir, No.2, 6x6" Self-weight of 6.25 plf included in loads; Pinned base;Loadface=depth(d);Ke x Lb: 1.00 x 8.00=8.00[ft];Ke x Ld: 1.00 x 8.00=8.00[ft]; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Axial fc = 346 Fc' = 492 fc/Fc' = 0.70 Axial Bearing fc = 346 Fc* = 575 fc/Fc* = 0.60 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 575 1.00 1.00 1.00 0.856 1.000 - - 1.00 1.00 2 Fc* 575 1.00 1.00 1.00 - 1.000 - - 1.00 1.00 2 Axial : LC #2 = D+L, P = 10465 lbs (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. /1 COMPANY PROJECT _ `l WoodWorks' SOFTWARE FOR WOOD DEDGN June 24,2010 12:52 c29 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1_b13 Dead Axial 3033 (Eccentricity = 0.00 in) 2 b13 Rf.Live Axial 5052 (Eccentricity = 0.00 in) MAXIMUM REACTIONS(lbs) m. 4" *-� 0' Lumber n-ply, Hem-Fir, No.2, 2x6",3-Plys Self-weight of 5.11 plf included in loads; Pinned base; Loadface=depth(d);Built-up fastener:applied wheeex Lb: 1.00 x permitted(refer t8.00 0ine help); Analysis x Ld: 1.00 x 8.00=8.00[ft];Repetitive factor: Analysis vs.Allowable Stress (psi) and Deflection (in) using NDS 2005: - Criterion (Analysis Value Design Value Analysis/Design Axial fc = 328 Fc' = 439 fc/Fc' = 0.75 Axial Bearing fc = 328 Fc* = 1644 fc/Fc* = 0.20 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.267 1.100 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D+L, P = 8126 lbs Kf = 0.60 (D=dead L=live 5=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) , Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.BUILT-UP COLUMNS:nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. - COMPANY PROJECT It WoodWorks® SOFTWARE FOR WOOD DESIGN June 24,2010 12:55 c31 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_b13 Dead Axial 2561 (Eccentricity = 0.00 in) 2 b13 Rf.Live Axial 3599 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): a. s�-. -�, -- s�, �>._�Asn a .��.,.,z . _„&�x�� .`• ,*, v� a ��' 1 0' 8' Lumber n-ply, Hem-Fir, No.2, 2x4", 3-Plys Self-weight of 3.25 plf included in loads; Pinned base;Loadface=depth(d); Built-up fastener:nails;Ke x Lb: 1.00 x 8.00=8.00[ft];Ke x Ld: 1.00 x 8.00=8.00[ft]; Repetitive factor: applied where permitted(refer to online help); Analysis vs.Allowable Stress (psi)and Deflection (in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Axial fc = 393 Fc' = 443 fc/Fc' = 0.89 Axial Bearing fc = 393 Fc* = 1719 fc/Fc* = 0.23 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.258 1.150 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D+L, P = 6186 lbs Kf = 0.60 (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2. BUILT-UP COLUMNS:nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. COMPANY PROJECT °`1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 24,2010 12:54 c39 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or pif) Load Type Distribution Magnitude Location [ft] Units Start End Start End l b21 Dead Axial 267 (Eccentricity = 0.00 in) 2 b21 Live Axial 822 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs) 0'• 9' Lumber n-ply,Hem-Fir, No.2, 2x4", 2-Plys Self-weight of 2.17 Of included in loads; Pinned base;Loadface=depth(d);Built-up fastener:nails;Ke x Lb: 1.00 x 9.00=9.00[ft];Ke x Ld: 1.00 x 9.00=9.00[ft]; Analysis vs.Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Axial fc = 106 Fc' = 171 fc/Fc' = 0.62 Axial Bearing fc = 106 Fc* = 1495 fc/Fc* = 0.07 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.114 1.150 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D+L, P = 1108 lbs Kf = 0.60 (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.BUILT-UP COLUMNS:nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. COMPANY PROJECT I1 Woodworks® SOFTWARE FOR WOOD DESIGN June 24,2010 12:52 c55 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b30 Dead Axial 154 (Eccentricity = 0.00 in) 2—b30 Live Axial 209 (Eccentricity = 0.00 in) MAXIMUM REACTIONS(lbs): 0' � 8' Lumber Post, Hem-Fir, No.2,4x4" Self-weight of 2.53 plf included in loads; Pinned base; Loadface=depth(d);Ke x Lb: 1.00 x 8.00=8.00[ft]; Ke x Ld: 1.00 x 8.00=8.00[ft]; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Axial fc = 31 Fc' = 470 fc/Fc' = 0.07 Axial Bearing fc = 31 Fc* = 1495 fc/Fc* = 0.02 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.315 1.150 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D+L, P = 384 lbs (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. PROJECT RE: L—I: L' BY PC"Li 0_1 0 W 1– W 0 2 w 7 wo C C ;-- U 2 D 2 2 0 0 w 2 B c 0 1 1- Z Li Z 0 z 0 H CL = 0 In 0 -' 0 •,. Ct 0 .. 7: 0 DATE 6 ...._a_ o0 bearos uJi Lakrctv P•eakklictetS ‘ce.cYro (c) -> WM1.S %O?) -.; 30S NOeckily1 V*3 --) vats aoaPt. '' ao-a,. Corn 1 kl- -- kkrkiVs -a„.aZ, ,: awl beam - t•-i -5 wo,,Ak.s act , ao i A 1-. 30 k T7 5nce U1/4.)M I _ - ,- eq.tr_h r;tkez, >`› Se ,s .01' u,i Ire u,..)' 0 oe., C a I C tja,A-rd JOB NO CEN ......eicto in,c. • - COMPANY PROJECT I i WoodWorks® sornvARE FOR WOOD DESIGN June 24,2010 13:07 b6 LC1 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location (ft] Units Start End Start End 1_c44 Dead Point 444 2.00 lbs 2 c44 Snow Point 647 2.00 lbs 3_w44 Dead Partial UD 389.2 389.2 0.00 2.00 plf 4_w44 Snow Partial UD 431.2 431.2 0.00 2.00 plf 5_c45 Dead Point 444 5.00 lbs 6_c45 Snow Point 647 5.00 lbs 7_w45 Dead Partial UD 389.2 389.2 5.00 6.00 plf 8_w45 Snow Partial UD 431.2 431.2 5.00 6.00 plf 9 j25 Dead Full UDL 120.2 plf 10 j25 Live Full UDL 370.0 plf WIND1 Wind Point 800 2.00 lbs WIND2 Wind Point -910 5.00 lbs MAXIMUM R CTIONS llbsl and BEARING LENGTHS(inl : ;", Y . 0 61 Dead 1436 1389 Live 2089 1803 Total 3525 3192 Bearing: Load Comb #4 #3 Length 1.88 1.70 Lumber n-ply, D.Fir-L, No.2, 2x12",2-Plys Self-weight of 8.02 plf included in loads; Lateral support top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 97 Fv' = 207 fv/Fv' = 0.47 Bending(+) fb = 805 Fb' = 1035 fb/Fb' = 0.78 Live Defl'n 0.03 = <L/999 0.20 = L/360 0.15 Total Defl'n 0.06 = <L/999 0.30 = L/240 0.21 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 4 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 4 Shear : LC #3 = D+.75(L+S), V = 3239, V design = 2190 lbs Bending(+) : LC #3 = D+.75(L+S), M = 4247 lbs-ft Deflection: LC #4 = D+.75(L+S+W) EI= 285e06 lb-int/ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3.BUILT-UP BEAMS:it is assumed that each ply is a single continuous member(that is,no butt joints are present)fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded.Where beams are side-loaded,special fastening details may be required. COMPANY PROJECT Ill WoodWorks® SOFTWARE FOR WOOD DESIGN June 24,2010 13:07 b6 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) : Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 c44 Dead Point 444 2.00 lbs 2 c44 Snow Point 647 2.00 lbs 3_w44 Dead Partial UD 389.2 389.2 0.00 2.00 plf 4_w44 Snow Partial UD 431.2 431.2 0.00 2.00 plf 5_c45 Dead Point 444 5.00 lbs 6 c45 Snow Point 647 5.00 lbs 7 w45 Dead Partial UD 389.2 389.2 5.00 6.00 plf 8 w45 Snow Partial UD 431.2 431.2 5.00 6.00 plf lf 9 j25 Dead Full UDL 120.2 pplf lO j25 Live Full UDL 370.0 2 00 lbs WIND1 Wind Point -800 lbs WIND2 Wind Point 910 5.00 MAXIMUM R •CTIONS Ilbsl and BEARING LENGTHS(in) �w vim" rr;"tt.,=jvAAfiVar.,'if:,iVAt-';',IAW;kt%:':'._',._r;,:&A&A-ka;f44o:":4'ak;'fX;',;::;F-r ,r'*r4a-4' ''.1'''";;;;,--;!". ' ',','"'''';", -.."-' ,'",',,,,",",' ` 'r.fi : fuS, 11= '' � ; d ,�y ' ty �- �:,,is €"w e '_rt ' dt � g t-' ^ D:„ --,,, m " -^x <' 6 . , i . A 61 10' 1389 - Dead 1436 1389 Live 1803 2172 Total 3239 Bearing: #4 Load Comb #3 1.#4 Length 1.73 Lumber n-ply, D.Fir-L, No.2,2x12", 2-Plys Self-weight of 8.02 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 97 Fv' = 207 fv/Fv' = 0.47 Bending(+) fb = 805 Fb' = 1035 fb/Fb' = 0.140.78 Live Defl'n 0.03 = <L/999 0.20 = L/360 0.20 Total Defl'n 0.06 = <L/999 0.30 = L/240 AN FACTORSDDITIONE, : F/EAL DATA:CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - 1.00 1.00 3 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3 Shear : LC #3 = D+.75(L+S), V = 3239, V design = 2190 lbs Bending(+) : LC #3 = D+.75(L+S), M = 4247 lbs-ft Deflection: LC #3 = D+.75(L+S) EI= 285e06 lb-in2/ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC - DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. , 3.BUILT-UP BEAMS:it is assumed that each ply is a single continuous member(that is,no butt joints are present)fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded.Where beams are side-loaded,special fastening details may be required. COMPANY PROJECT 111 I1 Wood Works® SOFTWARE FOR WOOD DESIGN June 24,2010 13:09 b14 LC1 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) : Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w68 Dead Partial UD 221.7 221.7 9.00 10.50 plf 2 w68 Live Partial UD 350.0 350.0 9.00 10.50 plf 3 c19 Dead Point 357 9.00 lbs 41c19 Live Point 1050 9.00 lbs 5 c20 Dead Point 357 3.00 lbs 6 c20 Live Point 1050 3.00 lbs 7_w66 Dead Partial UD 317.7 317.7 0.00 1.50 plf 8_w66 Live Partial UD 350.0 350.0 0.00 1.50 plf 9 c64 Dead Point 16510.50 lbs 1-15 c64 Snow Point 225 10.50 lbs ll c65 Dead Point 165 1.50 lbs 12 c65 Snow Point 225 1.50 lbs 13 w67 Dead Partial UD 221.7 221.7 1.50 3.00 plf 14-w67 Live Partial UD 350.0 350.0 1.50 3.00 plf 15 w69 Dead Partial UD 317.7 317.7 10.50 12.00 plf 16_w69 Live Partial UD 350.0 350.0 10.50 12.00 plf 17 j36 Dead Full UDL 113.7 plf 18 j36 Live Full UDL 350.0 plf 19_j43 Dead Partial UD 17.0 17.0 0.00 0.50 plf 20_j43 Live Partial UD 25.0 25.0 0.00 0.50 plf 21 344 Dead Partial UD 17.0 17.0 0.50 1.50 plf 22j44 Live Partial UD 25.0 25.0 0.50 1.50 plf 23_j45 Dead Partial UD 17.0 17.0 1.50 3.00 plf 24_j45 Live Partial UD 25.0 25.0 1.50 3.00 plf 25j46 Dead Partial UD 17.0 17.0 10.50 12.00 plf 26_j46 Live Partial UD 25.0 25.0 10.50 12.00 plf 27 j70 Dead Partial UD 17.0 17.0 3.00 9.00 plf 28 j70 Live Partial UD 25.0 25.0 3.00 9.00 plf 29 j71 Dead Partial UD 17.0 17.0 9.00 10.50 plf 30 j71 Live Partial UD 25.0 25.0 9.00 10.50 plf WIND1 Wind Point 3560 3.00 lbs WIND2 Wind Point -3640 9.00 lbs wind3 Wind Point -3620 0.00 lbs winds Wind Point 3570 12.00 lbs MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in): ''='-'TM -- ai�a?._. '„''-'',....*,„.''''''..-,;•• ' + Asx 1 _ 0"_ 'ee'.ccw''" .. _ . ft .-vsE ^,-" ate. r • 0121 Dead 2207 Live 4350 2207 Uplift 499 4350 Total 6557 479 Bearing: 6557 Load Comb #2 Length 2.34 #2 2.34 LSL,1.55E,2325Fb,3-1/2x14" Self-weight of 15.31 plf included in loads; Lateral support top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analvsis/Design Shear fv = 158 Fv' = 310 fv/Fv' = 0.51 Bending(+) fb = 1735 Fb' = 2325 fb/Fb' = 0.75 Live Defl'n 0.25 = L/573 0.40 = 1/360 0.63 Total Defl'n 0.42 = L/343 0.60 = L/240 0.70 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D+L, V = 6557, V design = 5170 lbs Bending(+): LC #2 = D+L, M = 16527 lbs-ft Deflection: LC #2 = D+L EI= 1241e06 lb-int - Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. Z SCL-BEAMS(Structural Composite Lumber):the attached SCL selection is for preliminary design only.For final member design contact your local SCL manufacturer. 3.Size factors vary from one manufacturer to another for SCL materials.They can be changed in the database editor. COMPANY PROJECT IIWoodWorksC2 SOFTWARFoRwoosostcn� June 24,2010 13:09 b14 L Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or pif) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w68 Dead Partial UD 221.7 221.7 9.00 10.50 plf 2 w68 Live Partial UD 350.0 350.0lbs 9.00 10.50 p11 3 c19 Dead Point 357 9.00 lbs 4c19 Live Point 1050 9'00 lbs 5c20 Dead Point 357 3.00 lbs 6 c20 Live Point 1050 3.00 7 w66 Dead Partial UD 317.7 317.7 0.00 1.50 plf ` 9 w66 Live Partial UD 350.0 350.0 0.00 1.00 plf lbs 9 c64 Dead Point 165 10.50 lbs 10 c64 Snow Point 225 10.50 1.50 lbs 11 c65 Dead Point 165 1.50 lbs 12 c65 Snow Point 225 13-w67 Dead Partial UD 221.7 221.7 1.50 3.00 plf 14 w67 Live Partial UD 350.0 350.0 1.50 3.00 plf 15 w69 Dead Partial UD 317.7 317.7 10.50 12.00 plf 16 w69 Live Partial UD 350.0 350.0 10.50 12.00 plf 17-136 7 j36 Dead Full UDL 113.7 plf 18,---; 8 j36 Live Full UDL 350.0 19 j43 Dead Partial UD 17.0 17.0 0.00 0.50 p1f 20 j43 Live Partial UD 25.0 25.0 0.00 0.50 plf 21 j44 Dead Partial UD 17.0 17.0 0.50 1.50 plf 22 j44 Live Partial UD 25.0 25.0 0.50 1.50 plf 23 145 Dead Partial UD 17.0 17.0 1.50 3.00 plf 24 j45 Live Partial UD 25.0 25.0 1.50 3.00 plf 25 j46 Dead Partial UD 17.0 17.0 10.50 12.00 plf 22'67:1160 6 146 Live Partial UD 25.0 25.0 10.50 12.00 plf 27 X70 Dead Partial UD 17.0 17.0 3.00 9.00 plf 28j70 Live Partial UD 25.0 25.0 3.00 9.00 plf 29 j71 Dead Partial UD 17.0 17.0 9.00 10.50 p11 _ 30 j71 Live Partial UD 25.0 25.0 9.00 10.50 plf WIND1 Wind Point -3560 3.00 lbs WIND2 Wind Point 3640 9.00 lbs 0.00 lbs wind3 Wind Point 3620 lbs winds Wind Point -3570 12.00 MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) _.. � y --.., i" ��-.. .. ^ ,, - ? , ,._ste ; - "'"=" :4','-41.-� . -"'".. ^ fr» ,', � ,, ,..' ` mo ' . -,a . - � . "_ ';?�'� t` # _ ►,. "T ' , .-.. A� 121 10, 2207 Dead 2482026 7 4817011 Live 8 Total 7033 19 Bearing: 2.51 Load Comb #9 Length 2.51 LSL,1.55E,2325Fb,3-112x14" Self-weight of 15.31 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 158 Fv' = 31fv/Fv' = 0.51 Bending(+) ft) = 1735 Fb' = 23312.05 32fb/Fb' 0063 Live Defl'n 0.25 = L/573 0.40 = L/360 0..70 Total Defl'n 0.42 = L/343 0.60 = L/240 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Co LC# - 1.00 - 1.00 2 Fv' 310 1.00 - 1.00 - - -1.00 - 2 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - - Fcp' 800 - - 1.00 - - _ - - 2 E' 1.5 million - 1.00 - - - 1.00 - - - 1.00 2 Emin' 0.80 million - 1.00 - - Shear : LC #2 = D+L, V = 6557, V design = 5170 lbs Bending(+): LC #2 = D+L, M = 16527 lbs-ft Deflection: LC #2 = D+L EI= 1241e06 lb-in t+ Live Load Deflection. Total Deflection = 1.50(Dead Load Deflection) (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-TBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.SCL-BEAMS(Structural Composite Lumber):the attached SCL selection is for preliminary design only.For final member design contact your local SCL manufacturer.' 3.Size factors vary from one manufacturer to another for SCL materials.They can be changed in the database editor. COMPANY PROJECT III WoodWorks SOFTWARE FOA WOOD DESICly June 24,2010 13:11 b13 LC1 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1 w58 Dead Partial UD 519.0 519.0 0.00 3.00 plf 2 w58 Snow Partial UD 505.0 505.0 0.00 3.00 p11 3 3_c40 Dead Point 217 5.50 '*-- '1 c40 Live Point 668 5.50 lbs 5 c67 Dead Point 518 5.00 lbs 6 c67 Snow Point 778 5.00 lbs 7 c68 Dead Point 573 3.00 lbs 8-c68 Snow Point 942 3.00 lbs 9 w59 Dead Partial UD 593.7 593.7 5.00 8.00 plf 10 w59 Snow Partial UD 735.0 735.0 5.00 8.00 plf 11 j37 Dead Partial UD 100.7 100.7 6.50 8.00 p11 12j 37 Live Partial UD 310.0 310.0 6.50 8.00 p11 13j 38 Dead Partial UD 81.2 81.2 3.50 6.50 plf 14 j38 Live Partial UD 250.0 250.0 3.50 6.50 plf 15j39 Dead Partial UD 22.7 22.7 0.00 3.50 p1f 16 j39 Live Partial UD 70.0 70.0 0.00 3.50 pit 17-b15 Dead Point 126 3.50 lbs 18 b15 Live Point 389 3.50 lbs 19-b32 Dead Point 225 6.50 lbs 20b32 Live Point 693 6.50 lbs W1 Wind Point 6590 0.00 lbs W2 Wind Point -6590 3.00 lbs W3 Wind Point 6590 5.00 lbs W4 Wind Point -6590 8.00 lbs MAXIMUM ' •CTIONS(lbs)and BEARING LENGTHS(in). , a ate,- �,. -' "O.' " - „ -r '`:-,a5g• e �"'.�`.�.. ». -" „ rte"*•" ' g` .. 7$ ' ': `- � z "." ;zu � `-4, '`- " >. -a.--..- e.i A • I 0' A Dead 2561 81 Live 6406 3033 Uplift 3789 Total 8968 3098 Bearing: 6822 Load Comb #4 Length 3.20 #3 2.44 LSL,1.55E,2325Fb,3-112x14" Self-weight of 15,31 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005 Criterion Analysis Value Design Value Analysis/Design Shear fv = 157 Fv' = 356 fv/Fv' = 0.49 Bending(+) fb = 1295 Fb' = 2674 fb/Fb' = 0.48 Live Defl'n 0.06 = <L/999 0.27 = L/360 0.24 Total Defl'n 0.14 = L/680 0.40 = L/240 0.35 ADDITIONAL DATA: FACTORS: F/E CD CM Cl CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 3 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - Fcp' 800 -. - 1.00 - - - - 1.00 - - - E' 1.5 millon - 1.00 - - - - 1.00 - - 3 Emin' 0.80 million - 1.00 - - - - 1.00 - - 3 Shear : LC #3 = D+.75(L+S), V = 6822, V design = 5122 lbs Bending(+): LC #3 = D+.75(L+S), M = 12340 lbs-ft Deflection: LC #3 = D+_75(L+57 EI= 1291e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.SCL-BEAMS(Structural Composite Lumber):the attached SCL selection is for preliminarydesign only.For final member design contact your local SCL manufacturer. 3.Size factors vary from one manufacturer to another for SCL materials.They can be changed in the database editor. COMPANY PROJECT 114 SOF(WARf FOR WOOD orsiow WoodWorks June 24,201013:11 b13 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or pit) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w58 f Dead Partial UD 519.0 519.0 0.00 3.00 plf 2 w58 Snow Partial UD 505.0 505.0 0.00 3.00 Pbs 3 c40 Dead Point 217 5.50 4 c40 Live Point 668 5.50 lbs 5 c67 Dead Point 518 5.00 lbs 6 c67 Snow Point 778 5.00 lbs 7 c68 Dead Point 573 3.00 lbs 8 c68 Snow Point 942 3.00 lbs 9 w59 Dead Partial UD 593.7 593.7 5.00 8.00 plf 10 w59 Snow Partial UD 735.0 735.0 5.00 8.00 plf 11 j37 Dead Partial UD 100.7 100.7 6.50 6.00 plf 12 j37 Live Partial UD 310.0 310.0 6.50 8.00 plf 13 138 Dead Partial UD 81.2 81.2 3.50 6.50 plf 19 j38 Live Partial UD 250.0 250.0 3.50 6.50 plf 15 j39 Dead Partial UD 22.7 22.7 0.00 3.50 plf 16 j39 Live Partial UD 70.0 70.0 0.00 3.50 Pbs 17 b15 Dead Point 126 3.50 18 b15 Live Point 389 3.50 lbs 19 b32 Dead Point 225 6.50 lbs 20 b32 Live Point 693 6.50 lbs W1 Wind Point -6590 0.00 lbs lbs W2 Wind Point 6590 3.00 lbs W3 Wind Point -6590 5.00 lbs Wq Wind Point 6590 8.00 MAXIMUM R CTIONS(Ibsl and BEARING LENGTHS(in) _ "� ,>- i �, ec. :: r" - - Z '--,m ` . --=t.- f . +8'= +',--m-, " Win^"• . e,,,egr.,,_s. ''- - 't.",..*r�-s s,;:, , .. --rte,,F ... -_- y, ,;1:V'::::'-'f'f«.--�' `S.-t> i" -:...ra m' -77., x ,; 2'."�'c .. , �"z y- ,-, ter. . 5 us ,:-,:,-,:,-,„;:,,, „..:..;'' ,.---5,7- `,.„---spa." = _ • 81 3033 A Dead 2561 7496 Live 2699 Uplift 3381 10529#9 Total 5261 Bearing: Load Comb #3 3.76 Length 1.88 LSL,1.55E,2325Fb,3-112x14" Self-weight of 15.31 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005 Criterion Analysis Value Design Value Analysis/Design Shear fv = 157 Fv' = 356 fv/Fv' = 0.49 Bending(+) fb = 1295 Fb' = 2674 fb/Fb' 0.. 24 Live Defl'n 0.06 = <L/999 0.27 = L/360 035 Total Defl'n 0.14 = L/680 0.40 = L/240 ADDITIONAL DATA: FACTORS: F/E CD CM C(t)0 CL CV Cfu Cr Cfrt Ci Co LC# Fv' 310 1.15 - 1. - - - - 1.00 - 1.00 3 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 3 800 - - 1.00 - - - - 1.00 _ - 3 Fcp' - - - 1.00 E' 1.5 million - 1.00 - - - 1.00 - - 3 Emin' 0.80 million - 1.00 - - Shear LC #3 = D+.75(L+S), V = 6822, V design = 5122 lbs Bending(+): LC #3 = D+.75(L+S), M = 12340 lbs-ft Deflection: LC #3 = D+.75(L+S) EI- 1241e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (A11 LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.SCL-BEAMS(Structural Composite Lumber):the attached SCL selection is for preliminary design only.For final member design contact your local SCL manufacturer. 3.Size factors vary from one manufacturer to another for SCL materials.They can be changed in the database editor. COMPANY PROJECT 1111 1 II I I Wood Wo r I.(.r„, June 24,2010 13:19 434 LC1 SOFTWARE FOR WOOD 05570N Design Check Calculation Sheet 55517.1 LOADS I lbs.PA Or Pif) lead Type Dis,,,,ties Magoloide looaoDon;ft] Cnits Sea,: End Eta, Epd ,wa, Dead Paot,1 CD 6:3.2 6:3.2 0.0, 2.30 pif ,:w2, Dead Partial CD 617.5 6,7.5 7.50 11.03 plf 3-1716 Dead Foie, 1436 11.00 15s 6-o15 Zed, Feico 2404 ---'7's 7-e16 Dead Fein: 13E9 :7.00 ,s ,:ola .,„„ Feint 2404 los 9 5654 Dead Faotial tD 617., 617.5 17.00 15.00 pif :46-wa, Snow Partial UD 6,, 591.2 17., 15.00 elf 1D-o61 Snow Fe,t 1132 7.0.0 ,..„, 12,-,,, Dead Feint 622 4.00 15s 14-c62 4.06 1, 15:wE3 :..„.2. Fart,. CC 613.2 613.2 D., 4.90 elf 16-463 She; Fartia.CD 735.4. 7'9E., 2.00 4.00 ple Dsad Faro, CD 617.6 617., :e., 22., elf sh.vd Fart, DC 501.2 501.2 15.30 2,.0, elf Dead Pareia CD 613.: 613.2 7.0, 7.50 plf 21-1E4 See; Fartie CD 765.0 '35.0 7.00 7.50 plf Dead Eaetis CD 47., 4"., 17.4, 15.00 elf ,2-164 Fartia JD 160.0 16,..1 1-.00 4.5.00 elf 24-125 Faeola' CD 160., 162.6 4.50 7.60 elf 2.5.--j62 Dead Farois. CO 47.7 4-7.7 7.56 11., elf 2E-162 live Fart, UV 260.0 160.0 7., 1.1.00 elf Dead Fartia UD -4.2' 12D.2 0,0 2.0C plf Di-j49 live 16-j32 Dead 36-j32 Fartia. UD 3'0.0 3,C., 3.5, 4.60 FIT 32-j33 Li, Faotoa CD 34CD 370., 4., 7.5, plf 3,134 Dead 34,34 Daf,la VD 27,2 ay,: ,., 5.0C elf 3,'35 Dead Farela D7 ,-4- 1,0.2 5.10 11.0C elf 36 j35 lies Farcia -, 371., 37,3 5.20 4.1.00 elf 3°j47 Deal Paoeia Ul- ,"' 120., 14..,2 14.00 edf 35-147 35=j67 Dead Faro, CD 1:6.2 1,0.2 2.CC 3.50 elf 4l-j42 Dead Fafoia. UD 4-4- :20.2 4., 4.52 plf 42 j42 llve Part, JD 341.0 37,, 4.4., 4.60 elf 43-163 Dead Fart, CD 47.6 47., 11.00 17.00 plf 44-j62 li-,e Faftra CD 160.,, 16:, 12.0, 17.00 plf :5-j0-2 Dead Dartia CD 4,., 4-.7 Le., 20.00 elf . 4,-,66 Dead Faro, UD 44.4 47.0 4.63 4.5C elf 45-j6, live Faro, CD 161.0 160.0 4.0D 4.5: elf 49,65, ,ad ',Du:T:6i - Fartia d.: 3,2 3-7t0 1".00 16.D, elf 31 jE, Dead 62 j63 - 53-j42 Dead Faetia CD la,: :E0.6 :,,, 4.CD elf . 6S-j73 Dead ED-j,63 Wired Falcia CD 16,0 1,62.0 3., D., cif W2 Wica Foie, -se, Its W3 WI, Ffint 5550 .11., Its W4 Wind Feint -52, 17.20 ,s W5 5,of 54E0 DC., 1, MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in): •'11 Dead 1740! 21327 4.2,72 leeal 13459 Eeas,,, load Dees 44 lets, 5.67 Glulam-Bal.,West Species,24F-V8 DF,5-118x22-1/2" Selleveight 0729.55 pIt included in bads; Lateral support top=hat bottom=at supports. Analysis vs.Allowable Stress(psi)and Deflection(in)using NOS 2005 Cr:ter:on toalvsis Value Desods Val, .nalveluiDesio, Shear 6ending,1 f5=D3FD fh/Fts c 0.32 live Defi'n 3.40= 4,535 0.64- ,6260 Total Cefi's 2.54. 1/755 1.00- 1,240 C.54 ADDITIONAL DATA: Ta,DORS: 7/6 CD DM Do 7l CC Dia Cr Dfso Fetes Ch 4."75 7--a" D-",-"-o-1.60,ead Dfad Deflefoifo. o live lead Deflscol44- ,-Jead :,::IC,are listed io the ADalvsls -,-,-; Load cossinatiens: ICC-DEC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2551 and manufactured in accordance with ANSVAITC A190.1-1992 3.GLULAM:bad=actual breadth a actual depth. 4.Glillarn Beams shag be laterally supported according to the provisions of NOS Clause 33.3. 5 GLULAM,bearing length based on smaller of Fop(tension),Fcp(compti). a COMPANY PROJECT I 11 Wooci\A/()rks 0 June 24 2010 1R19 b34 LC2 _ SOFTWARE FOR WOOD DESIGN Design Check Calculation Sheet SRer 7.1 LOADS i iw,psi.wpm Load TD,e Dist:it-0,o, sMagnitude Location Eft: :Snits tart End Start Ent 1.wE2 Seat Partial CS 613.2 613.2 0.00 1.00 plf Snow eartial US 795.0 195.0 0.90 2.0: pif .i:i Smad Pa--,al CS 617-5 017.5 7.50 11.00 pif S now Partial US 401.2 e01.2 7.5, 11.00 pif - Sea, Pot, 1434 Ins Dear eoint 2404 13=9 .cc 7..,c. ,. It, '91.,'4: Snow Pon., Z4D4 Its Seat Partial SS E11.5 617.5 17.00 1,00 plf 02.4 Snow Partial CS ecc.c, 801.2 17.00 19.0C pif 11 oEl Seat Point EZ, Ica ,Z-oEl 3r.ow Foint 114, 7.00 :Fs 13:c52 Saar Point 617, Its 14 oeS Snow Point 1141 4.00 iho 15:w83 Seat Partial CS 5'4 2 613.2 3.00 4.00 Flf le_w63 Snow Partial DS 745.0 79E., S.00 4.00 Fif 17 wEe Dead Faottal US 611.1 6:1.5 le.06 20.00 Fif --ow earoial SD i01.1 501.2 le.0, 10.00 Flf S eat Partial CS 513.2 619-1 s.00 7.5D pif 20-w71 Srnw oa-tial SS 'ea.° tee., 7.00 7.50 pif SITS:64 Seat eartial CS 41." 47.7 l'.00 le.0: pif 2:;-jj.'2: live Partdal DS lE0.0 1E0.0 1".00 Ii.00 plf Seat oa-tiai US 47." 41.7 4.e0 7.5O Flf .. .--1'. live Partial SD 1E0.0 :EC., 4.5, 7.,, piS "Dei Dead Partial CS 47.7 41.7 7.56 11.00 pl, '11-D!'e Partial WS :40.0 1E0.0 '.5,0 11.00 F:f Dear :Partial LS 11.0.2 110.2 0.00 2.00 pir Ze 132 Seat Partial SS 130.S 120.2 3.16 4.00 olf 30 D22 cive Partial DS a,a.o 3,,, 3.50 4.10 Flf 31 j33 Seat Partial CS 120.2 120.1 4.EC 7.50 Flf 32-_-j13 l,ve Partial US 3'0.0 3'0.0 4.50 1.50 plf 33 1,34 Seat Partial US -0: , 17,2 7.50 4.00 plf 34:j 34 Fartial SS 3-0., 370.0 7.51 S.00 pif 3B j35 =Lead Partial CS 120.2 '-'o 9.00 11.00 pif 56-135 lin, eartial US 370.0 370.0 e.30 11.00 plf 37 j47 Seat Sarnia:CD 120.1 1:0.1 11.00 17.00 pif 39 jes 40 1E7 live Partial US 370.0 370.0 2.07 3.50 plf nni-D44 Seat Partial DS 120.2 l.70.2 4.00 4.51 plf : 42 jne live Partial CD 310.: 370.0 4.00 4.50 p:.f 43-jE3 Sead Par.",US 4-.7 47.7 11.00 11.0, plc:. 44 163 live Partial CS 1E0.0 le:., 11_00 1".00 p_f n5 Dee Seat Partial SD 47," i,.7 li.D, 1'0.00 pie 4E-165 Live eartial SS IES.0 160.0 le.10 Z0,0 pif 4'j66 Seat Partial CD 47." 47.1 4.0, 4.10 pif 44'65 Seat Partial SS :",' 120.2 ,7.,, 14.00 pie ao-jce live Partiel SS 9,0.0 370.0 17.00 14.00 plf 51-j6e Seat Part1a1 US 120.2 110.2 14.00 Zl.00 nif en1-1", Seat Partial US 47., 41." 2.0, 4.DO plf 54-,7Z Live earolal CS 160.0 180.0 2.00 4.00 ;If SE-4,3 Seat Partial,,, 47.7 41.7 0.00 S.:0 Flf 56-,11 live Partial US 15C.0 1E1.0 0.06 Z.00 plf WI- Wind Pont-, -6,50 0.50 Sos WZ Wind ?sin: 5,50 4.00 Its W3 Wint Point -se5c 11.,0 nos 1,1 Wind Pofnio 5450 17.00 Its W5 Wind eoirt -5.5E0 210.00 ins MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in): .. .:::,.%:;.!-_''-• _. MI7. ...'t:'*!-:- ..:-'77-::71'''::'"*1:''''''.**4e'''..TI'-" T ';' '' ''''t-' ''''.,..t"'' ''',=".,-.:''''''':''' H:., ="71-S.a :47,..",...t'''''''''777:!::',": ;,..*'-' 17E"'";i17;''.,:,Z.;;;;14=1. ;`:;14',a"4-,;-.1*-7 .4„,,'-',..-'"...,-,-,,, '',,..3,,,,,':,'----,-. N,,,--=',,,,,T,tyr '''''''. :d'..ilEiLm.. :---'rn".'"'';'' ''',11,7,.•'.'"7.'7..-'7'-"i'5-:"="Z.:'7',W,:::'.. 1.-r-'-';'.=7.Z=.:7:=Z: f5.:=;.:=7:4:.:,4. 411-: Al. r A A rear In05 445: 9,14 70,31 5ear,n, '3 Glulam-Bal.,West Species,24F-V8 DF,5-118x22-1/2" S011-weight 01 2055 ptf included in loads; Lateral support top.NIL bdtomat supports: Analysis vs.Allowable Stress(psi)and Deflection(in)using NOS 2005 Ctlterion Analysis Value ',onion Value Analvsf.siSesion B ending,: th.2342 Fo..2504 fh/Fh.= 0.4, L ive oef-c., 1.41. Lieel 0.67- 1,360 0.61 7otal Sefi'n 0.34- L/Zen 1.n- c./.74, 0.44 ADDITIONAL DATA: FACTORS: S/11 SD 7M Ct 7.1.. SS 7fu 2: Cfnt Nc-r.es 7n :Cr Setting1-, LS:43 -D..75:1.+91,W c e415e 1,s-ft Deflection:LC+4 =6.+.75,,,, Pl- 57516e0E It-,n: . Total Deflect:1,n-I.SO;Seat load Deflection: +Live Load Deflecti:n. . ,D=deac l-live S.-snow W=wirr 1=innac, C=oonstouotion Slo-conrentcatud, (All IC's ars listed In the Analysis output, Load occhincilins. 177=127 , DESIGN NOTES: 1.Meese verify that the default deflection limits are appropriate for your applicathen. 2.GluRm design value are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:tad.actual breadth z adual depth 4.Gillialll Beams shall be lateragy supported according to the proRsions of NOS Clause 3.31 5.GLULAM:bearing length based on smaller of Fcpttension),Fcp(cormin). COMPANY PROJECT 11114 dworkse 'ii I 146130 June 24,2010 1320 b34 LC2 SOFTWARE FOR WOOD DESIGN Design Check Calculation Sheet Ster7,1 LOADS(Jw.rut or pH 2,ad Type Distrindti,, Magni-pude Er5a=i5, ,f., s..ts Staf, 5fd S7,r, End :_w52 Dead 5a,tial US 612.2 613.2 0.00 2.00 elf 7-w52 Sn,w Sarifal UD 795.0 755.0 0_00 1.00 plf Dead Pantie/.US 5:7.5 5:7.5 7.50 11.00 plf 4;55 Sn 5_515 De, 5,int 1425 11.0: ins -.2 ___ Sr-ew 5.1n, 1404 11/71 lee 7_515 Seed 5fin, ,3519 17.2C Ice 5_516 Snow 5,in, 2474 27.77: lb, Dead 2a5:ial DS 517.5 517.5 17.06 73'5' plf "?.S.':454 Sfre Part.:al SD 5:S.2 eo1.2 7.,.. :e.so ;If IS:_.el Dead Doin, 3n,w Rdint 5:: 1152 6.76 Ins Ise Sr,w %fin, 522 7.1.55 1.00 4.00 Ise Ihs :1:-= Seed 7artial VD 513.2 6,3.2 2.00 4.00 plf Sr..; Fart:a,',ID 735.0 755., 2.00 4.0, plf 7-we, Dead Par,tal,DD 512.5 517.5 '.^e 23.00 p1f Sere 5ariial DE =°. 7 as: 7 15.00 1,00 p:f ,5:/,71 Dead 5arifal SD 513.2 613.: 7.00 7.50 p:f - _ Snr. Par:ial 2.7 755.0 755.7 7.50 7.50 pff =a4 Lead 5er,,Di7 47.7 47.7 17.70 16.70 Elf 1:,,f--]!4, Ll'i3 Partfd:SD 15.1.7 160.0 :7,0 1,70 5-1S Dead Par,Ial iD 47.7 47.7 4.50 7.52 elf :24-125 Live 5armial SC 167.0 150.7 4.5, -,..-, plf Lire 5artial l, ,62/0 :51.7 7.50 1.1.70 pif r-5.:!.1: Dead Par,ial UD 120.2 120.2 0-10 2.70 elf Live Partial US 372.0 370.6 S.00 2.00 pif :3-132 Dead Fartial JD ,:7.2 ,20.: 3.56 4.07 pLf 31:11 33 Ii, Par,Ial DS 377.7 270.2 4.50 ".50 plf 32 j... Dead Iartial CD 1:25.2 '2'' 7_50 e.oc plf 34-134 Facipal dO 270.1 370.0 7.5: e.oc plf 7ead Pareial JD 120., 121.5 5.,, 12.00 52,7 Live 5ar,ial US 3/6.7 310.0 e.,, 11., plf -. ,.., . Dean Partial CD 127.: 126.2 11.70 17.0G plf __,_ Par,ial DS 370.7 270.0 :1.77 17.09 p2f 39 ,..7 Dee, Paf,1.1 DS 120.2 .2", 2.70 3.50 elf 5a5,1,77 370.: 370.7 2.17 3.50 r2f 446--i'f; -- part,p2 up 17,- 175,- 4.00 4.57 p25 Live Par,,,DS 7,,,c 3-0.0 4.00 4.57 slf 42:153 Dead Partial SD 47.7 43,3 i1.33 1,.. plf IL7_1.: L47. 7ead Partial VD 156.7 150.6 11.00 17.00 elf Perti..1 US 47.7 47.7 14.30 ,73.30 i,-,, 6 j55 ' '15-:1S6 sea5 r Part,:DS 157.0 166.0 4.70 4.as plf Dead 52:155 Partial DD 3,0.7 270.0 :5.2; :0.70 plf 33-'5 Dead Partial'ID 42.7 67.7 2.75 4.60 P44. ' - - :Partial UC 150.7 150., 2.7: 4.0: nIf '/ 3 Lead Partial VD a7.7 57.7 7.00 2.00 p:s Iive 5ar:ial JD 15,1 157.0 0.1, 2.0, plf Wind 5,in: -5E57 0.77 Ids W.' Wind P5in: 5550 4.00 Its 142 11.10 Ide W4 Wird Foint 5557 17_00 Ihs W5 Wind Poin, -5., 1,s MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in): "'-m--r-'-'4.1-,r-'7`..-..„. --= -4,===.747,1,777--,-rf==.,--- -!---.===.-z-:;';-1.4.::7-:.-:„., ,„-,:::'.:-,:','-- 1,•fri:". .=::;:i73?„:=Z:=,=-77.:,Z.5,;;. :„,7,':=,'. ..,,rz --'yn---,..t...-----FZ. ,:,--- 1-7....,-_,,- --,,:,,_--. -:,.-•-.=f.77,77 --: ---,__,,f--.7--- ----,74,„72,r,-;,,z;;; ;-=;:',;;z7=„77,r:177.=.:!:7-7,-=7:::7=Z:- ,-:71 -4-;,',-t,-,-;,- -•• •=:.---'7": .,.:',7,:,-,':t-,. .,.:,;=',.=7,,===-'47=-,;- ==-"'-'" '7.,''ZF,E',:,===-,Z::f.-'=';!ZZ='::.;=.;:4r,.7Z,': ,V._:-.tg',Mrl,'=Z':= 4:74 7.,tal 17561 5earina: Idae 7,5; a2 rendin 5.6!1' 5.19 Glulam-Bal.,West Species,24F-V8 DF,5-118x22-1/2" Self-avagM of 2555 pIt included in loads; Lateral support:top=full,bottoms at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NOS 2005 Criteri,n Analysis VaIue Desi5n Va.de Rna:vaisiDesi5n Shwa: Sen,ingf-, fb=:352 75..2504 d2/73. = 7.5.2 Live Sedl'n 7.41= E/551 0.67. 2/350 Tot,Defl'n 0.24 1/2,4 2.70. L/140 ADDITIONAL DATA: FACTORS: 65E CZ cI74 7, CI CV Sfd Cr Cfr: Nites 77. 17a =rear i EU.3 -D..751,-,i,V- 1725,,V design= 13552 lbs 2,,,5,..17a,line: 2.77-27= DESIGN NOTES: 1.Please verify that the default detection lards are appropriate for your application. 2 Guam,design values are for materials conforrNng to WC 117-2001 and manufactured in accordance with ANSI/AOC A190.1-1992 3.GLULAM:Lad s actual breadth x actual depth. 4.0'51.11 Beam.5174,he latarNN supported according to the provisions of NOS Clause 3.3.5 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(cornph) ....-' COMPANY PROJECT i Woodworks® 4LCINOLL SOFTWARE FOR WOOD LWSiON June 24,201013:23 b3 Design Check Calculation Sheet Sizer 7.1 LOADS (Has,psf,or plf) Load Type Distribution Magnitude Location )ft] Units Start End Start End 1 w62 Dead Partial UD 613.2 613.2 0.00 2.00 plf 3w29 Dead Partial UD 617.5 617.5 7.50 11.00 plf 5 c15 Dead Point 1436 11.00 lbs lbs 7 c16 Dead Point 1389 17.00 9-w64 Dead Partial UD 617.5 617.5 17.00 18.00 plf 13 c62 Dead Point 622 7. 00 lbs 2 4.00 lbs 15 w63 Dead Point 15 w63 Dead Partial UD 613.2 613.2 2.00 4.00 plf 17 w65 Dead Partial UD 617.5 617.5 18.00 20.00 plf 191w71 Dead Partial UD 613.2 613.2 7.00 7.50 plf 21_j64 Dead Partial UD 47.7 47.7 17.00 18.00 plf 23j28- Dead Partial UD 47.7 47.7 4.50 7.50 plf 25 j62 Dead Partial UD 47.7 47.7 7.50 11.00 plf 27-j48 Dead Partial UD 120.2 120.2 0.00 2.00 plf 29 j32 Dead Partial UD 120.2 120.2 3.50 4.00 plf 31 j33 Dead Partial UD 120.2 120.2 4.50 7.50 plf 33D34 Dead Partial UD 120.2 120.2 7.50 8.00 plf 35 j35 Dead Partial UD 120.2 120.2 8.00 11.00 plf 39-367 Dead Partial UD 120.2 120.2 2.00 3.50 plf 41 j49 Dead Partial UD 120.2 120.2 4.00 4.50 plf 43 j63 Dead Partial UD 47.7 47.7 11.00 17.00 plf 45 j65 Dead Partial UD 47.7 47.7 18.00 20.00 plf 47 j66 Dead Partial UD 47.7 47.7 4.00 4.50 plf 49 j68 Dead Partial UD 120.2 120.2 17.00 18.00 plf 51 j69 Dead Partial UD 120.2 120.2 18.00 20.00 plf 53D72 Dead Partial UD 47.7 47.7 2.00 4.00 plf 55_j73 Dead Partial UD 47.7 47.7 0.00 2.00 plf 1 WWind Point 5850 0.00 bs W2 Wind Point -5850 4.00 lbs W3 Wind Point 5850 11.00 lbs W4 Wind Point -5850 17.00 lbs W5 Wind Point 5850 20.00 MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) :-:--..t-;-:-:---: ^` :r„+s' *-'Aw.4......0.ew. , , yeses. ,t ,' .,s 7' c d.a, 201 i 0, 6822 Dead 7189 302 Live 156 Total 7238 7302 #2 Bearing: 2.11 Load Comb #2 Length 2.17 Glulam-Bal.,West Species,24F-V8 DF,5-1/8x22-1/2" Self-weight of 26.55 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 74 Fv' = 238 fv/Fv' = 0.31 Bending(+) fb = 950 Fb' = 2038 fb/Fb' = 0.47 Live Defl'n negligible 0.41 Total Defl'n 0.41 = L/585 1.00 = L/240 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 0.90 1.00 1.00 - - - - 1.00 1.00 1_00 1 Fb'+ 2400 0.90 1.00 1.00 1.000 0.944 1.00 1- _00 1.00 1.00 1.00- - 1 Fcp' 650 - 1.00 1.00 - - - 1.00 - - - - E' 1.8 million 1.00 1.00 - - - 1.00 - - 1 Emin' 0.85 million 1.00 1.00 - Shear : LC #1 = D only, V = 7189, V design = 5674 lbs - Bending(+): LC #1 = D only, M = 34217 lbs-ft Deflection: LC #1 = D only EI= 8756e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live 5=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC " DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). COMPANY PROJECT il WoodWorks® SOFIWARE FOR woos DESIGN June 24,2010 13:22 b34 LC2 NO LL Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location (ft) Units Start End Start End 1_w62 Dead Partial UD 613.2 613.2 0.00 2.00 plf 3_w29 Dead Partial UD 617.5 617.5 7.50 11.00 plf 5c15 Dead Point 1436 11.00 lbs 7 c16 Dead Point 1389 17.00 lbs 9-w64 Dead Partial UD 617.5 617.5 17.00 18.00 plf 11_c61 Dead Point 622 7.00 lbs 13 c62 Dead Point 622 4.00 lbs 15_w63 Dead Partial UD 613.2 613.2 2.00 4.00 plf 17w65 Dead Partial UD 617.5 617.5 16.00 20.00 plf 19_w71 Dead Partial UD 613.2 613.2 7.00 7.50 plf 21_j64 Dead Partial UD 47.7 47.7 17.00 18.00 plf 23_j28 Dead Partial UD 47.7 47.7 4.50 7.50 plf 25_j62 Dead Partial UD 47.7 47.7 7.50 11.00 plf 27_j48 Dead Partial UD 120.2 120.2 0.00 2.00 plf 29_j32 Dead Partial UD 120.2 120.2 3.50 4.00 plf 31j33 Dead Partial UD 120.2 120.2 4.50 7.50 plf 33_j34 Dead Partial UD 120.2 120.2 7.50 8.00 plf 35_j35 Dead Partial UD 120.2 120.2 8.00 11.00 plf 39_j67 Dead Partial UD 120.2 120.2 2.00 3.50 plf 41j49 Dead Partial UD 120.2 120.2 4.00 4.50 plf 431 j63 Dead Partial UD 47.7 47.7 11.00 17.00 plf 45j65 Dead Partial UD 47.7 47.7 18.00 20.00 plf 47_j66 Dead Partial UD 47.7 47.7 4.00 4.50 plf 49 j68 Dead Partial UD 120.2 120.2 17.00 18.00 plf 51-j69 Dead Partial UD 120.2 120.2 18.00 20.00 plf 53j72 Dead Partial UD 47.7 47.7 2.00 4.00 plf 55_j73 Dead Partial UD 47.7 47.7 0.00 2.00 p11 W1 Wind Point -5850 0.00 lbs W2 Wind Point 5850 4.00 lbs W3 Wind Point -5850 11.00 lbs W4 Wind Point 5850 17.00 lbs WS Wind Point -5850 20.00 lbs MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in): Io' Dead 7189 201 Live 6822 Total 7169 Bearing: 6822 Load Comb #1 Length 2.16 #1 2.05 Glulam-Bal.,West Species,24F-V8 DF,5-1/8x22-1/2" Self-weight of 26.55 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 74 Fv' = 238 fv/Fv' = 0.31 Bending(+) fb = 950 Fb' = 2038 fb/Fb' = 0.47 Live Defl'n negligible Total Defl'n 0.41 = L/585 1.00 = L/240 0.41 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 0.90 1.00 1.00 - - - - 1.00 1.00 1.00 1 Fb'+ 2400 0.90 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 1 - E' Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 1 Shear : LC #1 = D only, V = 7189, V design = 5674 lbs Bending(+): LC #1 = D only, M = 34217 lbs-ft Deflection: LC #1 = D only E1= 8756e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I-impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). •aHarper Project: t• Rout Peterson Client: r: Job# Ri,he111S Inc. Date: Pg.# Designe ^Cti•YttR EYORS AN6S:AFc AR( F W = 1600-lb Oe5'q, y Wdl:= 10--lb -8-ft-20-ft dl ft2 Seismic Forces Site Class=D Design Catagory=D Wp:= Wdl Ip:_ 1.0 Component Importance Factor (Sect 13.1.3,ASCE 7-05) S1 := 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. S := 0.942 Max EQ, 5%damped, spectral responce acceleration at short period s z:= 9 Height of Component h:= 32 Mean Height Of Roof Fa:= 1.123 Acc-based site coefficient @ .3 s-period (Table 1613.5.3(1), 2006 IBC) F := 1.722 Vel-based site coefficient @ 1 s-period (Table 1613.5.3(2), 2006 IBC) v Sms:= Fa•Ss Snit := Fv S1 Sds:_ 2"Sms Max EQ, 5%damped, spectral responce acceleration at short period 3 Exterior Elements & Body Of Connections ap:= 1.0 Rp:= 2.5 (Table 13.5-1,ASCE 7-05) 4a •Sds• i_ z Fp := p Rp ` J P•(1 + 2 h I-Wp EQU. 13.3-1 Fpmax 1.6•Sds•Ip-Wp EQU. 13.3-2 Fpmin:= .3.Sds'Ip.Wp EQU. 13.3-3 Fes. := if(Fp> Fpmax,Fpmax,if(Fp <Fpmin,Fpmin,Fp)) Fp = 338.5171.16 • Miniumum Vertical Force 0.2•Sds'Wdl=225.6781.16 Harper Project: ,,. HOuf Peterson Client: Righellis Inc. Job# EN41N E.s-:- LA§YEEIS __. Designer: Date: Pba.# I ANDSCAF ARC-i TEC S♦ [R': ?CRS .................._ Wdl:= 10• lb 8•ft•20•ft Wdl= 1600-lb ft2 Seismic Forces Site class=D Design Catagory=D Wp:= Wdl Ip := 1.0 Component Importance Factor (Sect 13.1.3, ASCE 7-05) S1 = 0.339 Max EQ, 5%damped, spectral responce acceleration of 1 sec. Ss:= 0.942 Max EQ, 5%damped, spectral responce acceleration at short period z:= 9 Height of Component h:= 32 Mean Height Of Roof Fa:= 1.123 Acc-based site coefficient @ .3 s-period (Table 1613.5.3(1), 2006 IBC) Fv:= 1.722 Vel-based site coefficient @ 1 s-period (Table 1613.5.3(2), 2006 IBC) Sms:= Fa•Ss Sml := Fv.S1 2•S ms Sds:= Max EQ, 5%damped, spectral responce acceleration at short period 3 Exterior Elements & Body Of Connections ap:= 1.0 Rp := 2.5 (Table 13.5-1, ASCE 7-05) Fp .— • .4ap•Sds'Ip Cl + 2. W Rp h J P EQU. 13.3-1 Fpmax:= 1.6-Sds•Ip•Wp EQU. 13.3-2 Fpmin •3•Sds•Ip•Wp EQU. 13.3-3 F := if(Fp >Fpmax,FPmax,if(Fp <Fpmin,FPmin,Fp)) Fp =338.5171.1b Miniumum Vertical Force 0.2•Sds•Wdi=225.6781-lb COMMUNICATION RECORD Righellis Inc. TO FROM LI MEMO TO FILE LI 2) HHaorupfePret ers on Li 10 PHONE NO.: PHONE CALL:Li MEETING:Li 71 C° m . 2 —r1 CI' 3 Li -4 it „ 0.3 03 0) (,)3 6- C`l 0- et- 4 0‘) m ul .4 p 416 By: Ae-W1/41 - ''''.,, I 7 DATE: i X\ JOB NO... PROJECT: RE: ______...........___......_______.. . ... .....___......________ 2)(L __A [DECtir4 w •• 11 V 17- o w 1- w 0 2 NPIll_ CPrPqC. t-T-NI (I L.c5 C*Ar-rirrvat-C) I 0 -J k VC Li = 0 lil U Z 1 Iii 2 re o_ Z • i• ‘ 1 , C,APRC.trY z -7'- 0 ("-- I(tO'a• b(o-i**Yncti 1 __1..._ (2 boarol ) f 1--- _ •F o E r--- pt.c ._ _....,_. ii „.....___ U le . 0 J x o x ci CC\90 C'41-A — (c) k 1)L7F- w 0 6 p. i i 1 u&) :At rtia ‘ ...= '0,,c1 5 p',-- - h i , I 1 1 1 - — — ._I--> . LE17E-4-:9.-_' . TS.}-7; •,+''1,(--4'•-i \) = , . lry,--D---.0(--, c- - ': i la -,,, s-v(, , i 0 c.; il 1 --, } ) r--.-- a ----.1 475 c”) ,, C T (41 )( \1( 7 2,0 9,4-:) 4:7:7--\7,) S'IF,. 4,`,` 40117: :'- '-- -, C'WO,\,i 1' .1 l -- /a:"' 30°I # l 11(..) z Q?..)1 #11* S\vw?s<-5•(\ 305'14- x4412.'‘ narper HP COMMUNICATION RECORD MEMO To FILE LI HR o. uhf Petersonws Inc. To 0 FROM 0 ENGINEERS.PLAt,5E;-1.7 LCAFE ARCHITECrS.ilIRVii.f 0'S. PHONE No.: PHONE CALL:D MEETING:0 tO -- ' . r9 g lol cc, .1) . n 11 ll q Q.) sr; CP I i ,, a) ‘:-''' ...-C cfl q .7.2 % ' u 0 - ,I, __ . • ,„ :7,.- z_ 9.) 4,-,,, ,,.-s,r, re? it Ii :0 ag 0 6 o Co 0 } . . 0 41 ::;) W. r4 0 . w.r.. i - S 0 I .......*---....---..— s 1.—.--77—• i 0 , 4- 0 (i ) , , , Harper COMMUNICATION RECORD HP Houf Peterson Righellis Inc. To 0 FROM El MEMO To FILE 0 E1,IGINEail, ,pL,,,ar, LA,C,,AP:i ARCrI/TECT.;+SU,VEY01, PHONE NO.: PHONE CALL:0 MEETING:0 M 13 CO Pi 21 75 2 m , (---3 I- 0 ..., II ic.,1 al 1 i 37 (f , 3 8 [2_) 9_) d -----0 0 0,0 0 ,......., o V. ....- r'—'••\ d , 01 1k -,-i 0 ,.., cn (Th (Th > F., Cil 1-1 Is- C) [----1. I .„, , 0 v. i . z 0 ..„1, riYIIIJCI COMMUNICATION RECORD KIIIZHouf Peterson FROM TO Li MEMO TO FILE❑ Righellis Inc. ❑ E,!GINCEY-?+PLACI::ERJ LA,D•-,'APF A-CliITECTs-SUi,VaYOR PHONE NO.: PHONE CALL:❑ MEETING:❑ Eli M M { m 1 li Kl _., .. , ..„..,. ,... MI "\ 7 F. G1 i i i"i L O P7:4 Z ..O 0 CrS e COMPANY PROJECT eit Wood Warks SOPFWARF FOR WOOD OFS GN June 8,2009 16:27 Hand Rail Design Check Calculation Sheet Sizer 8.0 LOADS: Load Type Distribution Pat- Locationft ] tern Start EndStarttudeEnd Unit LIVE Live (Point 2.50 200 (lbs MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) : 10. II Dead 54 Live 100 Total 104 100 Bearing: 104 Load Comb #2 Length 0.50* #2 Cb 1.00 0.50* *Min.bearing length for beams is 1/2"for exterior supports 1.00 Lumber-soft, Hem-Fir, No.2,2x6" Self-weight of 1.7 plf included in loads; Lateral support top=at supports,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 19 Fv' = 150 fv/Fv' = 0.13 Bending(+) fb = 405 Fb' = 1048 fb/Fb' = 0.39 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 Total Defl'n 0.03 = <L/999 0.25 = L/240 0.10 0.14 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cf rt Ci Cn LC# Fv' 150 1.00 1.00 1.00 Fb'+ 850 1.00 1.00 1.00 0.949 1.300 ' 1.00 1.00 1.00 1.00 1.00 2 Fcp' 405 - 1.00 1.00 - - 2 - E' 1.3 million 1.00 1.00 - - - - 1.00 1.00 - Emin' 0.47 million 1.00 1.00 - - 1.00 1.00 - 2 - - 1.00 1.00 - 2 Shear : LC #2 = L, V = 104, V design Bending(+) : LC #2 = L, M = 255 lbs-ft 103 lbs Deflection: LC #2 = L EI = 27e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection)+ Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction Lc=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. COMPANY PROJECT 1 Wood Wo ® SOFTWARE FOR WOOD DESIGN June 8,2009 16:27 Hand Rai12 Design Check Calculation Sheet Sizer 8.0 LOADS: LoadType Distribution tern Location End] I oarttudeEndlplft ILIVE (Live (Full UDL I MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) : A. 5t O' Dead 125 Live 125 125 Total 129 Bearing: #2 Load Comb #2 0.502 Length 0.50* 1.0* Cb 1.00 *Min.bearing length for beams is 1/2"for exterior supports Lumber-soft,Hem-Fir, No.2,2x6" Self-weight of 1.7 plf included in loads; Lateral support:top=at supports,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 19 Fv' = 150 fv/Fv' = 0.13 Bending(+) fb = 256 Fb' = 1048 fb/Fb' = 0.24 Dead Defl'n 0.00 = <L/999 0.16 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.11 Total Defl'n 0.03 = <L/999 0.25 = L/240 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cu LC# Fv' 150 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 0.949 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 405 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.3 million 1.00 1.00 - 1.00 1.00 - 2 Emin' 0.47 million 1.00 1.00 - - - 1.00 1.00 2 Shear : LC #2 = L, V = 129, V design = 106 lbs Bending(+) : LC #2 = L, M = 162 lbs-ft Deflection: LC #2 = L EI = 27e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction Lc=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. WoodWo rks® Sizer SOFTWARE FOR WOOD DESIGN Unit A-Front Load WoodWorks®Sizer 7.1 June 22,2010 13:57:56 Concept Mode : Reactions�r Base of Structure View Floor 2 : 8 ' „ 1 4 u. 1600 L 1600 L a,._, _._ 619D 619D a7 ,4 J! _ -KG 1193 L153 12404 L . 2404 L vu i _` 625 D105911439 D 1394 D ; -3 315E v 358 D" f C,... 315 L 100 L C 358 D 96D f � �) ;' 74(847 5611 L 756 L w 4(452 D 5546 D _ D r -J .. 6251., 25 L_ 203D 5d u 5D 105 L 908 L 307 ("f 46 5 9 c V \_-, 245 L_ c 1— r50L r, 3D _ ., tic74 � v v 3599 - 87 L 2587 L_ h *. ,. 209 LD8 D4 x1963 D 1963 D x-; 154D ZiauD 112363D ,, 78 D,D 106 D ,v '.� _. .i e 2`2-.2 v._:.7 _t�..,__„<.2..-- . -1. v'3.. E 5,5(5''5 _ ---`,-7,"":, - _ - '., V00-1-1 t•J C-;) L i1/4i 0 UT' 7v.0 NIT- WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A-Rear Load WoodWorks®Sizer 7.1 June 22,2010 13:57:37 Concept Mode : Reactions at Base of Structure View Floor 2 : 8 ' 1600 L „�- 1600 L - 619 D LL n -:; 13274 L 3304 L D y 7153 D 7072 ; ,▪ , 315 L 358 D ▪' 315 E 100L < \ 358D 196D` .. n. r 74(84 611 L J j �56 L r 4(452 D 5546 D 5_L�D . . 625L., • 5D D 203 D - _ 5D 105 L 908 L 46 D 307 - 245L_ 50L -,. 3 3 _D 374 D �. 9 2587 L X2587 L J i __ 59 209 LD 8 D 1963 D 1963 D 154D -itsu 2219D , �LL 725 L E78 D7 D3 617 D D e r u ��� r f�G � _�E E r t c f PE .._.�3uie.CrCC I.0 C CC,,CCCO Cw vCCCD3 3s,..< 1 z \''......... . n0T. IN)ty \ Our - Bentley Harper Houf Peterson Righellis Inc. Cu.-rent Date:6/24/2010 1:41 PM I system: English File name:O:\HHPR Projects\CEN-Centex Homes(309)\CEN-Plans\CEN-090 Summer Creek Townhomes\calcs\Unit A\foundations\F1.ftd\�\, Design Results Reinforced Concrete Footings GENERAL INFORMATION: Global status Warnings Design Code ACI 318-05 Footing type Spread Column type Steel Geometry '1 1 12 in I- 4.25 ft ~I ft PUMMENI 1425ff ft 4.25 ft Length 4.25[ft] WidthThickness 4.251.00[ft] [ft] Base depth 1.50[ft] Base area 18.06[ft2] Footing volume 18.06[ft3] Base plate length 5.50[in] Base plate width 5.50[in] Column length 5.50[in] Column width 5.50[in] Column location relative to footing g.c. Centered Materials [Kip/int] Concrete,fc 3.00[Kip/int] Steel,fy 60.00No Concrete type Normal Epoxy coated Concrete elasticity modulus . 3122.02[Kip/in2] Steel elasticity modulus : 29000.00[Kip/int] Unit weight 0.15[Kip/ft3] Soil Modulus of subgrade reaction 200.00[Kip/ft3] Unit weight(wet) : 0.11 [Kip/ft3] Footing reinforcement Free cover . 3.00[in] Maximum Rho/Rho balanced ratio : 0.75 Bottom reinforcement//to L(xx) . 644 @ 9.00" Bottom reinforcement//to B(zz) : 6-#4 @ 9.00" (Zone 1) Load conditions to be included in design Service loads: SC1 : DL S1 DL S2 DL+LL S3 DL+0.75LL Design strength loads: DC1 1.4DL D1 1.4DL D2 : 1.2DL+1.6LL Loads Condition Axial Mxx Mzz Vx Vz [Kip] [Kip*ft] [Kip*ft] [Kip] [Kip] DL 5.55 0.00 0.00 0.00 0.00 LL 15.61 0.00 0.00 0.00 0.00 RESULTS: Status Warnings -Insufficient development length,Section 21.5.4.1 Soil.Foundation interaction Allowable stress 1.5E03[Lb/ft2] Min.safety factor for sliding 1.25 Min.safety factor for overturning 1.25 Controlling condition S2 Condition qmean qmax Amax Area in compression Overturning FS [Lb/ft2] [Lb/ft2] [in] [ft2] (%) FSx FSz slip S2 1.38E03 1.38E03 0.0826 18.06 100 1000.00 1000.00---1000.00 Bending Factor 0.90 Min rebar ratio 0.00180 Development length Axis Pos. Id Ihd Dist1 Dist2 [in] [in] [in] [in] zz Bot. 20.11 7.04 19.75 19.75 xx Bot. 20.11 7.04 19.75 19.75 Axis Pos. Condition Mu 4*Mn Asreq Asprov Asreq/Asprov Mu/(4*Mn) [Kip*ft] [Kip*ft] [in2] [in2] ------------------------------------------ ----------------------------------- zz Top DC1 0.00 0.00 0.00 0.00 0.000 0.000 I I zz Bot. D2 13.38 45.76 1.10 1.20 0.918 0.292 xx Top DC1 0.00 0.00 0.00 0.00 0.000 0.000 I I xx Bot. D2 13.38 43.06 1.10 1.20 0.918 0.311 Shear Factor 4) 0.75 Shear area(plane zz) 3.10[ft2] Shear area(plane xx) 2.92[ft2] Plane Condition Vu Vc Vu/(4*Vn) [Kip] [Kip] xy D2 8.99 46.09 0.260 yz D2 8.68 48.88 0.237 Punching shear Perimeter of critical section(b... : 4.67[ft] Punching shear area 3.31 [ft2] Column Condition Vu Vc Vu/(4*Vn) [Kip] [Kip] column 1 D2 29.25 104.29 0.374 ,-.-=.11M Notes Pana/ _ *Soil under the footing is considered elastic and homogeneous. A linear soil pressure variation is assumed. *The required flexural reinforcement considers at least the minimum reinforcement *"' design bending moment is calculated at the critical sections located at the support faces *Only rectangular footings with uniform sections and rectangular columns are considered. *The nominal shear strength is calculated in critical sections located at a distance d from the support face *The punching shear strength is calculated in a perimetral section located at a distance d/2 from the support faces *Transverse reinforcement is not considered in footings *Values shown in red are not in compliance with a provision of the code *qprom=Mean compression pressure on soil. *gmax=Maximum compression pressure on soil. *Amax=maximum total settlement(considering an elastic soil modeled by the subgrade reaction modulus). *Mn=Nominal moment strength. *Mu/(4)*Mn)=Strength ratio. *Vn=Nominal shear or punchure force(for footings Vn=Vc). *Vu/(4)*Vn)=Shear or punching shear strength ratio. Page4 _ Beam Shear bcol 5•5•in (4x4 post) d := tg–2-in := 0.85 b := Width b =36-in Vu:= 0.4- fc•psi-b-d Vn= 16.32-kips 3 Vu qu. b 2 toll b Vu=7.83-kips < Vu= 16.32-kips GOOD Two-Way Shear bs:= 5.5-in Short side column width bL:= 5.5-in Long side column width bo:= 2-(bs+ d) + 2•(bL+ d) bo= 54-in 3c:= LO MV,x:= (1:1•/4 + 8 lfc psi•b-d Vu=48.96-kips 3 3•Oc/ Vnmax 0.2.66- fc psi-b-d Vnmax =32.56-kips ,V ,:= qu•[b2–�bcol+ (1)2] Vu= 15.88-kips < Vnmax =32.56-kips GOOD Flexure 2 Mu:= qu ( 2 /f b – bcoll _ 11 b Mu=4.98-ft-kips I\ 2//II A:= 0.65 b2 1:= 6 S=0.222-ft3 Ft:= 5.4- fc psi Ft= 162.5-psi Mu ft:_ — ft= 155.47-psi< Ft= 162.5-psi GOOD Use a 3'-0"x 3'-0"x 10" plain concrete footing Plain Concrete Isolated Square Footing Design: F2 fc:= 2500-psi Concrete strength fy:= 60000-psi Reinforcing steel strength Es:= 29000•ksi Steel modulus of elasticity "(cone:= 150•pcf Concrete density soil:= 100•pcf Soil density gall 1500-psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldl:= 2659-lb Pd1:= Totaldi Total11:= 7756-lb P11:= Totalll Pt1:= Pdi+ p11 Ptl= 10415-lb Footing Dimensions tf:= 10-in Footing thickness Width:= 36•in Footing width A:= Width2 Footing Area vw gnet:= gall —tf'"Yconc gnet= 1375-psf Pt' Aregd Aregd =7.575•ft2 < A=9•ft2 GOOD clnet Widthreqd:= Aregd Widthreqd=2.75-ft < Width =3.00 ft GOOD Ultimate Loads Pd1+ ^f con, Pu:= 1.4•Pd1+ 1.7•P11 Pu= 18.48-kips Pu qu:_ — qu=2.05•ksf A Plain Concrete Isolated Square Footing Design: F4 fc:= 2500-psi Concrete strength fy:= 60000-psi Reinforcing steel strength ES:= 29000-ksi Steel modulus of elasticity 'Yconc 150•pcf Concrete density 'Ysoil:= 100•pcf Soil density gall 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldl:= 5001-lb Pd1:= Totaldi Totalll:= 7639-lb Pll:= Totalll Ptl Pd1+ P11 Pti= 12640-lb Footing Dimensions tf:= 12-in Footing thickness Width:= 42-in Footing width A:= Width2 Footing Area quer:= gall —tf'Yconc gnet= 1350•psf Pg Areqd gnet Areqd= 9.363•ft2 < A= 12.25 ft2 GOOD Widthreqd:= Aregd Widthreqd=3.06-ft < Width=3.50 ft GOOD Ultimate Loads ,:= Pdl+ tf'A'"Yconc Pu:= 1.4-13d1+ 1.7•P11 Pu=22.56-kips Pu qn A qu= 1.84•ksf Seam Shear 2•in bcol 0.85–5.5-in (4x4 post) d:= 4):=tg b := Width b =42-in 3' 4 f st b d Vn=23.8-kips c P Vu (b –bcoll b Vu=9.8-kips < Vn=23.8-kips GOOD 9u 2 /I Two-Way Shear bs:_ 5.5-in Short side column width bL:= 5.5-in Long side column width bo:= 2-(bS+ d) + 2•(bL+ d) bo=62-in pc 1.0 V := . 4 + 8 fc-psi l- •b-d Vn=71.4•kips 'w13^ 4 (3 3.k Vnmax:_ (I)• 2.66• fc•psi•b•d Vnmax =47.48-kips - 2 d)21 V = 19.49-kips < V,,,,, =47.48-kips GOOD Flexure 2 b –bcot (1 Mu=7.45-ft-kips Mu qu' C 2 I.b 0.65 \ / b•d23 S=0.405-ft S:_ Ft:= 5•0• fc•psi Ft= 162.5-psi Mu ft= 127.79-psi< Ft= 162.5 psi GOOD ft:= — S Pse a 3'-6" x 3'-6"x 12" plain concrete footing Plain Concrete Isolated Square Footing Design: F3 fu 2500-psi Concrete strength fy:= 60000-psi Reinforcing steel strength Es:= 29000•ksi Steel modulus of elasticity "Yconc 150•pcf Concrete density 'Ysod:= 100•pcf Soil density gall 1500-psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldi:= 2363-lb Pd1:= Totaldi Totalll:= 4575-lb P11:= Total!' Ptl:= Pdl+ P11 Ptl =6938-lb Footing Dimensions tf:= 10-in Footing thickness Width:= 30-in Footing width A:= Width2 Footing Area gnet gall —tf''Yconc gnet= 1375•psf Ptl Areqd gnet Aregd = 5.046•ft2 < A=6.25•ft2 GOOD Widthreqd:= Aregd Widthreqd=2.25.ft < Width =2.50 ft GOOD Ultimate Loads APNA: Pdl+tfA.-^fconc Pu:= 1.4•Pdl+ 1.7•Pll Pu= 12.18-kips Pu qu A— qu= 1.95•ksf Beam Shear bco1:= 5.5-in (4x4 post) d:= tg–2-in := 0.85 b:= Width b =30-in Vn:_ 4:1--4 fc•ps • i•b-d V„= 13.6-kips Vu (b –bcol� b Vu=4.97-kips < V„= 13.6-kips GOOD = qu' 2 Two-Way Shear bS:= 5.5-in Short side column width bL:= 5.5•in Long side column width bo:= 2-(bs + d� + 2.(bL+ d) bo= 54-in f3c:= 1.0 V + 8 fcpsi•b•d Vn=40.8-kips NvR = (3 343c VI,,,- :_ 0.2.66• fc•psi•b•d Vnmax =2713-kips 9u'[ (b2 – b + d 2 Vu=9.71•kips < Vnmax =27.13-kips GOOD ,vva4;— col Flexure Mu 2 Cb –bcotl (1) b Mu=2.54-ft-kips := qu 2 /I l 2 0.65 b•d23 SS=0.185•ft:= 6 Ft:= 5.0• fc•psi Ft= 162.5•psi Mu ft:= — ft=95.19-psi < Ft= 162.5-psi GOOD S 'Use a 2'-6"x 2'-6"x 10" plain concrete footing Plain Concrete Isolated Round Footing Design: f5 fe:= 3000-psi Concrete strength fy:= 60000-psi Reinforcing steel strength ES:= 29000•ksi Steel modulus of elasticity ''cone 150.pcf Concrete density 'soil:= 120•pcf Soil density cla11:= 1500•psf Allowable soil bearing pressure TYPICAL FOOTING Reaction Total di:= 619-lb Pdl:= Totaldi Totalll 1600.1b Pit:= Totalll Pt! Pd1+ Pll Pti=2219-lb Footing Dimensions tf:= 12•in Footing thickness Dia:= 18-in Footing diameter Tr-Dia2 A:= Footing Area 4 clnet Mall —tf'''conc gnet= 1350-psf Pt! Areqd gnet Aregd = 1.644-ft2 < A= 1.77-ft2 GOOD Dia IA regd'4 Diareqd J Diareqd = 1.45-ft < Dia= 1.50 ft GOOD Ultimate Loads nPn4'= Pd1+ tf-A•Iconc Pu:= 1.4 Pdl+ 1.7•P11 Pu=3.96-kips Pu qu A qu=2.24-ksf Beam Shear bcol 3.5•in (4x4 post) := 0.85 b:= cos(45•deg)-Dia b = 12.73 in Vn:= cp•4•` fc�psrb d V„=7.90Fkips 3 " (b —bcoll b Vu=0.91-kips <width Vn= 7.901•kips GOOD Two-Way Shear b 3.5•in Short side column -1 b 3.5 in Long side column width L:_ bo:= 2.(bS + d) + 2•(bL d) bo= 54 in (3c 1.0 V0.(1 + 8 }4fc pst b d Vu=23.703-kips :_ 3 3-Pc Vnmax = 15.76-kips V/1/flax:= 2.66- fc psi b d V •= qu'rb2 (bcol+ d)2] V„=—0.31-kips V„n, = 15.76 kips GOOD Flexure 2 rb —bcol 1 M„=0.18•ft•kips Mu qu' I 2j.(_ .b0.65 / 2 S:_ b -- S=0.123•ft378.01-psi 6 Ft:= 5 fc psi Ft= 178.01•psi Mu ft=9.9 psi Ft= 178.01 psi GOOD ft:= Use a 18" Dia.x 12" plain concrete footing • Plain Concrete Isolated Square Footing Design: F7 fe:= 2500•psi Concrete strength fy:= 60000-psi Reinforcing steel strength Es:= 29000-ksi Steel modulus of elasticity "Yconc 150-pcf Concrete density (soil:= 100•pcf Soil density gall:= 1500.psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldi:= 1200-lb Pd1:= Totaldi Tota111:= 3200.1b Pll:= Totalll Ptl:= PdI+ P11 Ptl=4400-lb Footing Dimensions tf:= 10-in Footing thickness Width:= 24•in Footing width A:= Width2 Footing Area gnet gall —tf'^Iconc net= 1375-psf Pt1 Areqd gnet Aregd =3.2-ft2 < A= 4•ft2 GOOD Widthregd:= Aregd Widthregd= 1.79-ft < Width =2.00 ft GOOD Ultimate Loads := Pdi+ tf.A''Yconc P„:= 1.4•Pd1+ 1.7-P11 P„=7.82•kips Pu chi A qu= 1.96-ksf Beam Shear bcol 5.5.in (4x4 post) d:= tf–2-in 41):= 0.85 b:= Width b =24•in V 10.88-kips s Vn;_ �-3• fc•psi-b•d n= P Vu qu' (b –bcoll b Vu=3.01.kips < Vn= 10.88-kips GOOD 2 /I Two-Way Shear bs=_ 5.5-in Short side column width b 5.5-in Long side column width L=_ bo:= 2•(bs+ + 2•(bL+ d) bo='54-in Rc:= 1.0 (4_ 8 fc.psi b d Vn=32.64-kips � 3 + 3Oc Vnmax 2.66- fc•psi•b•d Vnmax=21.71-kips V b –(bcol d)2] V =5.35-kips < Vnmax =21.71-kips s GOOD r2P nnyk= qn'[ � col u . Flexure 2 b –bc01) ] 1 M„= 1.16ftkips M = qu' 2 j.(_}b 0.65 2 b•el3 S=0.148ft S:_ 6 Ft:= 5.0 fc•psi Ft= 162.5•psi M„ ft:= ft=54.45 psi Ft= 162.5 psi GOOD — S 'Use a 2'-0"x 2'-0"x 10" plain concrete footing Plain Concrete Isolated Square Footing Design: FG, fe:= 2500-psi Concrete strength fy:= 60000-psi Reinforcing steel strength Es:= 29000.ksi Steel modulus of elasticity "Yconc:= 150•pcf Concrete density ''soil:= 100•pcf Soil density gall:= 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Total di:= 7072•lb Pd1:= Totaldl Totalis:= 13304.lb P11 := Tota111 Pt1 Pd1+ Pll Pt!=20376-lb Footing Dimensions tf:= 15•in Footing thickness Width:= 48•in Footing width A,:= Width2 Footing Area gnet ga11 —tf''Yconc gnet= 1313.psf Ptl Areqd gnet Areqd= 15.525•ft2 < A= 16•ft2 GOOD Widthregd:= Aregd Widthreqd =3.94-ft < Width=4.00 ft GOOD Ultimate Loads ,:= Pd1+ tf'A''Yconc Pu:= 1.4.13d1+ 1.7•P11 Pu=36.72•kips Pu gu:= A qu=2.29•ksf Beam Shear bdo:co1:t= 5-.5-in (4x4 post) b::===W0.85g idth2•in b =48-in u3• 4 f st•b d Vn= 35.36 kips c P Cb -bcoll b Vu= 16.26•kips < Vn= 35.36 kips GOOD 2 Two-Way Shear b 5.5 in Short side column width S:_ b 5.5 in Long side column width L = bo:= 2•(b8 + d) + 2•(bL+ d) b0=74•in 3c:= 1.0 V = 0. 4 + 81•cfc psi•b•d Vn= 106.08 kips Vnmax (1).2.66 fc psi b d Vnmax=70.54•kips V = 31.26 kips < Vnmax =70.54-kips GOOD Nyb;= qu f b2 -(bcol+ d)2] u Flexure 2 Cb -b colt - () b Mu= 14.39 ft kips Mu qu /) 0.65 b.d2 S=0.782•ft3 A\:= 5 � fcpsi Ft= 162.5-psi Ft:= Mu ft= 127.75 psis Ft= 162.5-psi GOOD ft._ S (Use a 4'-0"x 4'-0"x 15" plain concrete footing 0"-• P.D - =- -G a V4 :' •• n,, _ Z w oo ; ,s, c _.1.- cm-777-- = ' • -1--n _il (at)I '0 -*7.--- Th --- 70--- -.7.- .1t.tut ..__ (-z)sic:e +.f,,z. .;Li 6/w = 2go 1 0 -1.1- ( )( -)C (,.. .t' il)c:Ict:-C, 4 ci 0(-7,...1,-X, ` SI )( 0 0) -— 4 W ni Z M 0 73 .. 0 f 1 rr- 43 ;\ tSS O '\Lk k_.'\ 4 -t \ \'Scr-. 1:-` .LC\ J o K K f4's C ")\7)---;k4D > .-q 0' 3 x m z n o i-. 1 1, irt I , M —I M 0 -AVIS'e 7ii .n2'e f .17 ., 2 ell 0 r - )1,0-k..!\I MA CAA 1 ,__,• L_J Poo-1 +uo.}ki - 4.-.1un •,,, rvel x ,. --,(-2- )‹. I'e\e 6AA 4001 Ta.UtCip03 apAroad Q b0- 1.)419J. •ON 90I- olcre -- c) ------md AB ... _............._.. � " . Harper Houf Peterson Righellis Inc. Current Date:6/22/2010 10:43 AM Units system:English File name:O:\HHPR Projects\CEN-Centex Homes(309)\CEN-Plans\CEN-090 Summer Creek Townhomes\talcs\Unit A\foundations\Front Load 2.etz\ M33=51.9[Kip`ft] M33=-12.19[Kip-ft] 4 nr- Bentley' Harper Houf Peterson Righellis Inc. Current Date:6/22/2010 10:35 AM Units system: English File name:O:\HHPR Projects\CEN-Centex Homes(309)\CEN-Plans\CEN-090 Summer Creek Townhomes\calcs\Unit A\foundations\Front Load.etz\ UM 1T14 —Ct.._ M33=25.66[Kip*ft] M33=-30.27[Kip*ft] A 0 DATE (.0amoJOB NO.. j i M -Oct BY: t...\\\KC..., PROJECT: S.W. c kr-'00V RE: v 30.4110x4\ tlr � Z o W .153� ' ,\53t� E1-T v CC 0 l L Z O O Ck ec-- OVefku1 oY \kyr - 30,4 t k 3041 -t (2,`16 )( ) l 1 L. 1 b VS ao.`tob t rrr;cti 0 L(73" )_ 3(aa9.®acs.. )) ,ail pc: = . xxx == '�"" Harper Houf Peterson Righellis Inc. Current Date:6/22/2010 10:38 AM Units system: English File name:O:\HHPR Projects\CEN-Centex Homes(309)\CEN-Plans\CEN-090 Summer Creek Townhomes\calcs\Unit A\foundations\Rear Load.etz\ M33=43.24[Kip-ft] M33=-45.06[Kip`ft] A Z Mrks- .- B4111* ny Harper Houf Peterson Righellis Inc. Current Date:6/22/2010 10:43 AM Units system:English File name:O:\HHPR Projects\CEN Centex Homes(309)\CEN-Plans\CEN-090 Summer Creek Townhomes\calcs\Unit A\foundations\Rear Load 2.etz M33=41.88[Kip"ft1 M33=-46.37[Kip*ft] NI\Grte\e‘r\ LC2 , . ;---_: 'a C• P ,..,., CD • cp ..':: 'Z.,- 44444 Cri i dal a -710 ... -412A 4 < hb. — ccesi1Y-)\ c)s•ohy.-- , 0 0 Tt • ril bEg'ro 7.--' .0 ;•Tr- v 7111 hi ")*0 7.--Sk/ ''D'o ,It a £ 44 vud. •L'e'I (zi -.59(_WO'0 )(j-t1+1.0)06'0 --= u vy 0 ( -KC)c000S)qT/(X01o94/ f tbia r1:10 -LNI‘ j-61j--.0 =CV ")'O 31 ah# C,,,,') i o o r-- -1 Z 7 .. 0 'll 100 i." 9'0 ..,'". 7-1 ___1 ft)4 z."lebZ '0 --r;S 'V 'D'o s:11 0 3 3 C Cil :7S: rO/C‘f'--"d 12 (7) (7-1 b-P)' S`c‘do to.0 =--u WO -I 6 119 two z -.i -39,-c--- ki --1-1,un =0‘ww -0 xi 2 0 Z • (') M 0 > ✓ 0 r Li g 4S1 -bltec-17 ni H 171 0 H z 71 131 d i I Z Y\1 X. „0-le . ,-- .. . D 0 q U tl 00i '?''0 Cr' ....r0- , :38 103 Meld ON or 0 I 0 °72Cti --' C) .31V0 '\N V Ae (.,_-'1-114,9 ` {/ 1- _jay c.�C.:44-:,°){0- 0 k _ - trq o„ .4 € t t. s ° 'o,i �t1 a ' r 0 CA czbvil: -S1l' bz'0a 0 `"V40 8 .. N1Qn . Q V c60E)CG'0)/coa0'r1)Qb2' \) =\ (1/4 z z'Pc),Q, - 1)(®c o oQ)CQ-k..0.-\ )0 In`Q \ A!' Z hi') 'Sg < 'J� 9 09,14\= . * (:) • \ 1..4\,zt v---\ _L..:(...\67)(900 5-k9,08 (coorbo, o)\ . -.....-- v xi cy c.5 o x ")1a"0 S '7'0 ,t"1S1' n ; '�? . z cal, ..'�0) t E c/ 0\0.0 V,\N( j, c ✓ z -R j- SQ) s— 4.-- 1 4‘‘,1<-\ 0 \lwvi = m z m illk hWc.,G c' Dom'[A!�P D 2 In- Zit' 1 c v .k1.)` 1 r 3 0 I z Aql x-1 x „1- ‘.,i 1).001 ku°aa 38 :10310ad 31V4 AS ON 901- BY: A\Nf\,,,, .. (....m.........r DATE: (...), a 0 10 JOB NO.: C',. ...., c 1,.....,-, ---t u PROJECT: RE: t,..) --cvl. A- A — 'n - Ski.), 7 Ei -J 0 ,. . w 5.a\ <, 1--- w 0 2 2 IA 2 1---! = 1 w 1,..- ------.1 Li 0 J Cr < U 1 ..44........_._____ 1 L,J . z . 0 1 cc a_ z Check_ Oveitucywk9 0 Moi- ---7- "aro•0 s tccb-- _ ... z M9.- -7---- ( 'Nfo°1s01-1,5151:4) 4-'27 'a( '\'‘ ' ' I Lit' '\ - cf t A L. i'' i i t.0 i,.._.t0A? ) ...,. / 1 i 0 1\11*1,c‹.•.- (6')(0't56)(.1 ,5)(.5)(4-) +'45 t* N((0) 4,'' \ , L. ' ';\ "'"" u t,c1 (0 , I I_ '... .............* .„,„. t Ap I > c 0: 4 0 Vr•••• 0 - ce d Mor — Li. z z . , 0 1 = ACva.a(j) .... ) .:-, t_. c' ..-• ex._ _ — fuse. 7--,:,9_',:::) :,. , .. O C3 _ ! ',,i',.-L - ,- •':4 4-3.2-1 2„) 4"(1,L L:k...?...71)„,,',.,..,'' ' 4 7,-;,__ _J-.----,?, ?).c.t.z sc+. 4)0, 12 4-- 4 17,)L. 47.1.- \,S(a ,,O• .--) .-....._ '4.-S,ct f.', 4- 4 71)L j.,f‘ '‘ ..e ;„...711-Y-) r. . ( S'24H3 -;) .'',11) +-(11 -F37 A'Ni:,p_ i+ r-,, 5 M :...._ ::::?ia -4. ,,..., 37)..1_ e....., r•- (,,t.)G4,--?:,-'7';',--- \,s 112 :' LC4- krng x tac-- .. (4(, ,bL A--`343t- - at.,' ,c).7-)- — s- ,'D`7-,-) 17+-7+ c-t-- _ DATE (0 3, 0 0 JOB No k-:- LI PROJECT: --, RE: 3(\AL -2(c-')) . ' _J CD (0 c .IS-C7 Ni \S 0 O w 0 2 NA i L“., , I,o ÷ Ot t ' ..- \ c.f.i. e,,.-z-- 1•\\17:7 Ill 1-- clo uw 1- .0,- , ;37-7-.71 C--).'7.5- 1'J 1(2J § 3('1 ..5 ((0-- ii,,iii. • ix i Z 3 -')4. 'I 72; 7)',....:--' -3„..?)--1.-'17 \-- - y ) ,..-.. .,1‘, I 46 t,L, /- -3(-2 i75-3-5 ) — °"-- ' ' _ ' ' ' ' —__ z ,, _ ,-. _ ,, ‘:r1?.....,'0!*5-- ,Eli 2 , 0 - T 0 li_ Z Ld --1 Z — 0 0 I I-CO• .> "I: .... — co •—, -- 1. Ci. = ;•-• ct E Aarins __ ‘IEr "fr” , '�" BentleyHarper Houf Peterson Righellis Inc. Current Date:6/22/2010 10:42 AM Units system:English File name:O:\HHPR Projects\CEN-Centex Homes(309)\CEN-Plans\CEN-090 Summer Creek Townhomes\calcs\Unit A\foundations\Interior 2.etz\ M33=23.55[Kip*ft] M33=-17.88[Kip-ft] ►- 7Bentley- Harper Houf Peterson Righellis Inc. Current Date:6/22/2010 10:42 AM Units system:English File name:O:\HHPR Projects\CEN-Centex Homes(309)\CEN-Plans\CEN-090 Summer Creek Townhomes\calcs\Unit A\foundations\Interior.etz M33=32.26[Kip*ft] M33=-9.27[Kip-ft] 1 4---- ACI 318-05 Appendix D 1.0" Diameter Bar Capacity at Portal Frame Concrete Breakout Strength Stem Wall Capacity when govern by 3 edges Foundation Capacity Givens Givens fc= 3000 psi fc= 3000 psi h'ef= 3.50 inches hef= 12.00 inches (into the Fc Stem = 8.00 inches Note: hef above is the the embedment into or cm.= 5.25 inches the foundation and does not consider stem wz Fnd Width = 36.00 inches cmin = 2.25 inches cmin = 18.00 inches Itic,N= 1.00 cast-in-place anchor Wc,N= 1.00 cast-in-place anchor k= 24 cast-in-place anchor k= 24 cast-in-place anchor = 0.75 strength reduction factor 4)= 0.75 strength reduction fact, Calculations Calculations ANc= 68 in` AN= 1296 in` ANO= 110.25 in` ANO= 1296 in2 Nb= 8,607 pounds Nb= 55,121 pounds Wed,N= 0.8286 Wed,N= 1.00 Ncb= 4,399 pounds kb= 55,121 pounds 4)Ncb= 3,299 pounds $Ncb= 41,341 pounds Combined Capacity of Stem Wall and Foundation (I)Ncb= 44,640 0.7500= 33,480 r V „Lei:4 0 w = b -t ft C1 0 N1c_kie-O m z � `: 0§ (t tot) be 0 = Vj 03 Sjv°q * `2) - 0.5t C11 0 3 -oto . 9i1X35° hJC r sem.. 4 '0� f'bN1 ba-h&0 c'4\ 10;5'0 =S A/ ( `) ; z _ � 110 _P) °V o o 051 54 12. X ig ❑ 3 3 0 m z Vats+ 1111 G *t'J , O)os..).A0pccrn_YO 103foad G 0 J/ \\4 I' Concrete Side Face Blow Out Givens Abry= 2.15 in` fc= 3000 psi cm,„= 18.00 inches = 0.75 strength reduction factor Calculations Nsb= 231,191 pounds Nsb= 173,393 pounds Concrete Pullout Strength Givens Abrg= 2.15 in` fc= 3000 psi = 0.75 strength reduction factor Calculations Np= 51,552 pounds 4 Np= 38,664 pounds Steel Yield Strength Givens ft= 58,000 psi A= 0.606 in2 = 0.80 strength reduction factor Calculations Ns= 35,148 pounds RNs= 28,118 pounds < 33,480 Ductility Met Holdown Check Holdown: HDU14 Holdown Capacity= 14,930 pounds 1.6* Capacity= 23,888 pounds 23,888 < 28,118 Holdown Checks DATE. JOB NO. , BY'. • PROJECT: RE: SVem Watt ' Co P3 W �, S (�e5 C) BU i lc�.► S J i Li �� o asctCt2?s3= aoc� Pus u�.;l 4o1NCtsop� �C'11 � �l1z�_ 33 pLF stern Cahz�( ts0pc �(UJ ) IOOJ P SO W W O 1 Z �L o (3G l levy is ) o • P a 3 l.�l I 1 t(jc)w vstic�iS w = \ .O($ c - ex_. cc 0 1 p / O = t1 (9 2le�,,e'<,)(t3 psi- - r�34 f' F I - 4o►NCts© XVI-7_ kbh2..) = 333 p s\-e (tltz)( tso w = too CIBC 1'4. psc ) _ ''a10 f..x. c fix)c. L'Y: Cat4.z C 4.0 1= �-2v P L,G a,- aa-t10 OW 'tSC7U� = Same as p mtrv;�,, loch- ice, T L e \3b c'l ,r \00'A-) W = 1,00 O -€_ Y pac T�".�ui 1 C 3)C2 X t3�Cz� = 4l� �.F .S too=r 40‘► �lsopc.()C'l�i�8 ri. 333pJ Afrr-1 (c6(0.)(‘..,() IOo tiv LL o (b-12:)L 7- \2`� Puy- .3tex,r' VL a6a9 fi i©ow Structural CaIculatioEIv, D for DEC 11 2012 op Full Lateral & GravityAl CIS Divisl nay N�GIoON Plan C 1 186 Summer Creek Townhomes Tigard, OR Prepared for Pulte Group July 13, 2010 JOB NUMBER: CEN-090 ***Limitations*** Engineer was retained in limited capacity for this project. Design is based upon information provided by the client,who is solely responsible for the accuracy of same. No responsibility and/or liability is assumed by, or is to be assigned to the engineer for items beyond that shown on these sheets. 98 sheets total including this cover sheet. This Packet of Calculations is Null and Void if Signature above is not Original Harper RP,° Uouf Petersen Ri rhellis Inc. 205 SE Spokane St. Suite 200 • Portland, OR 97202 • [P] 503.221.1131 • [F] 503.221.1171 1104 Main St. Suite 100 ♦ Vancouver, WA 98660 ♦ [P] 360.450.1 141 • [F] 360.750.1141 1133 NW Wall St.Suite 201 ♦ Bend, OR 97701 • [P] 541.318.1 161 • [F] 541.318.1 141 Design Criteria Project Scope: Full lateral & Gravity Analysis of Unit C Design Specifications: Wind Design: Basic Wind Speed (mph): 100 From Building Authority Exposure: B From Building Authority Importance, l�,,: 1 2006 IBC/2007 OSSC Occupancy Category: II Residential Earthquake Design: Seismic Design Category: D From Building Authority Site Class: D Assumed, ASCE 7-05 Ch.20 Importance, IE: 1 ASCE 7-05 Table 11.5-1 Ss: 0.942 USGS Spectral Response Map SI: 0.339 USGS Spectral Response Map Dead Load: Floor: 13 psf Wall: 12 psf Wood Roof: 15 psf Live Load: Roof: 25 psf Snow Floor: 40 psf Residential Floor Materials and Design Data: Materials: Concrete Compressive Strength,f's: 3000 psi Foundations &Slab on Grade 145 pcf 60,000 psi Hem-Fir#2 DF-L#2 DF-L#1 24F-V4 Fb=2,900 psi, FV=328psi, E=2.0 Million Fb=2325 psi, FV=460psi, E=1.55 Million Concrete Unit Weight,yc: Steel Reinforcement Yield Strength, fy: Wood Studs (Wall Studs): 2x&4x Wood Beams & Posts: 6x&Greater Wood Beams & Posts: Glulam Beams: PSL Beams: TS/LSL Beams: Design Assumptions 1. Allowable soil bearing pressure (qa) : 1500 psf Assumed 2. All manufactured trusses,joists, and flush beams u.n.o.shall be designed by others. Structural Analysis Software Used: Mathcad 11 Microsoft Excel 2000 Wood Works—Sizer version 2002 Bently RAM Advanse Harper Project: Summer Creek Townhomes UNIT C fsrilVt- Houf PetersonClient: Pulte Group Job# CEN-090 Righellis Inc. Date: June 2010 Pg.# Designer: AMC ENGIN eERS•PORN NERS IANOSCAPE Aft C-I SEC,..S4REtRS_ DESIGN CRITERIA 2007 Oregon Structural Specialty Code&ASCE 7-05 Roof Dead Load RFR:= 2.5-psf Framing RPL:= 1.5-psf Plywood RRF:= 5•psf Roofing RME:= 1.5-psf Mech&Elec RMS:= 1-psf Misc RCG:= 2.5•psf Ceiling RIN:= 1•psf Insulation RDL= I5•psf Floor Dead Load FFR:= 3.psf Framing FPL:= 4.psf Sheathing FME:= 1.5•psf Mech&Elec FMS:= 1.5-psf Misc FIN:= .5-psf Finish&Insulation FCLG:= 2.5-psf Ceiling FDL= 13•psf Wall Dead Load WOOD EX Wagwt:= 12.psf INT_Wall := 10•psf Roof Live Load RLL:= 25.psf Floor Live Load FLL:= 40.psf C.— �e Harper Project: Summer Creek Townhomes UNIT C ^ ' i = Houf Peterson Client: Pulte Group Job# CEN-090 Righellis Inc. NGINE F •Ftp g Designer: AMC Date: June 2010 Pg.# - AYC E AR H.T � 5.,,4YEYJ P. Transverse Seismic Forces Site Class=D Design Catagory=D Building Occupancy Category:II Weight of Structure In Transverse Direction Roof Weight Roof Area:= 748•ft2.1.12 RFS T:= RDL Roof Area RFWT= 12566•1b Floor Weight Floor_Area2nd:= 605-ft2 FLRWT2nd:= FDL•Floor d Area2nd FLR 7865•Ib WT2n = Floor Area3rd:= 600•ft2 FLRWT3rd FDL•Floor Area3rd FLRw r3rd=7800.1b Wall Weight EX Wall Area:= (2203)•ft2 INT Wall Area:= (906)•ft2 WALLwT:= EX_Wallwt•EX_Wall_Area+ INT Wallw•INT_Wall_Area WALLWT=35496•Ib WTTOTAL=63727 lb Equivalent Lateral Force Procedure(12.8,ASCE 7-05) hn:= 32 Mean Height Of Roof Ie:= 1 Component Importance Factor (11.5,ASCE 7-05) R:= 6.5 Responce Modification Factor (Table 12.2-1,ASCE 7-05) Ct:= .02 Building Period Coefficient (Table 12.8-2,ASCE 7-05) x:= .75 Building Period Coefficient (Table 12.8-2,ASCE 7-05) Period x Ta:= Ct.(hn) Ta= 0.27 < 0.5 (EQU 12.8-7,ASCE 7-05) S1 := 0.339 Max EQ,5%damped,spectral responce acceleration of I sec. (Chapter 22,ASCE 7-05)...or SS:= 0.942 Max EQ,5%damped,spectral responce acceleration at short period From Figures 1613.5(1)&(2) Fa:= 1.123 Ace-based site coefficient @.3 s-period (Table 11.4-1,ASCE 7-05) F„:= 1.722 Vel-based site coefficient @ 1 s-period (Table 11.4-2,ASCE 7-05) Harper Project: Summer Creek Townhomes UNIT C . Houf Peterson Client: Pulte Group Job# CEN-090 ^ - Righellis Inc. Date: June 2010 Pg.# —a.i G,,t£--7,;---„7,--,T,,,s------ Designer: AMC LxN��:nF= AP,Ck:i�C TS�SLit'.F'i Cft� ` (EQU 11.4-1,ASCE 7-05) SMS:= Fa'Ss SMS= 1.058 2•SMS (EQU 11.4-3,ASCE 7-05) Sds:= Sds=0.705 3 SMI := Fv'S1 SMl 0.584 (EQU 11.4-2,ASCE 7-05) 2•SM1 (EQU 11.4-4,ASCE 7-05) Sdl := Sdl =0.389 3 Sds Cst=0.108 (EQU 12.8-2,ASCE 7-05) Cst:= R ...need not exceed... Sdl Cs 0.223 (EQU 12.8-3,ASCE 7-05) Csm� := T •R max –– a ...and shall not be less then... C1 := if(0.044•Sds•Ie<0.01,0.01,0.044•Sds•Ie) (EQU 12.8-5&6,ASCE 7-05) 0.5511 C2:= if S1 <0.6,0.01, R Csmm:= if(Ci >C2,C 1,C2) Csmin=0.031 Cs:= if(Cst<Csmin,Csmin,if(Cst<Csmax>Cst Csmax)) Cs =0.108 VV:= Cs•WTTOTAL V=6914 lb (EQU 12.8-1,ASCE 7-05) E:= V•0.7 E =4840 lb (Allowable Stress) C— Lb Harper Project: Summer Creek Townhomes UNIT C '. Houf Peterson Client: Pulte GroupRighellisp Job# CEN-090 Inc. E 4 €= •PLAN,. Designer: AMC Date: June 2010 Pg.# LANDS:.AFE ARC.flrECTS♦S;;R vE"VORS Transverse Wind Forces (Method 1 -Simplified Wind Procedure per ASCE 7-05) Basic Wind Speed: 100 mph(3 Sec Gust) Exposure:B Building Occupancy Category:II I„:= 1.00 Importance Factor (Table 6-1,ASCE 7-05) hn=32 Mean Roof Height X:= 1.00 Adjustment Factor (Figure 6-3,ASCE 7-05) a2:= 2•.1 16•ft Zone A&B Horizontal Length Smaller of... a2=3.2 ft (Fig 6-2 note 10,ASCE 7-05) a2:_ .4-11,•2-ft or a2=25.6 ft but not less than... a2min 3.2•ft a2mm =6 ft Wind Pressure (Figure 6-2,ASCE 7-05) Horizontal PnetzoneA 19.9•psf PnetzoneB 3.2•psf Pnetzonec:= 14.4•psf PnetzoneD 3.31psf Vertical PnetzoneE 8.8•psf PnetzoneF 12•psf PnetzoneG —6.4•psf PnetzoneH 9.7•psf Basic Wind Force PA:= PnetzoneA'Iw.X PA = 19.9.psf Wall HWC Pg:= PnetzoneB.Iw.X PB=3.2•psf Roof HWC PC PnetzoneClw•X Pc= 14.4•psf Wall Typical PD = PnetzoneD.I .X PD =3.3•psf Roof Typical PE:= PnetzoneE.Iw•X PE =—8.8.psf PF:= PnetzoneF.Iw.X PF=—12•psf PnetzoneG•Iw.X PC,=—6.4•psf PH:= PnetzoneH'Ivy'X PH=—9.7•psf C^ LL-1 Harper Project: Summer Creek Townhomes UNIT C r i �; Hf Peterson Client: Pulte Group Job# CEN-090 - �s Righellis Inc. Date: June 2010 Pg.# __- EN�:„E„..,.„„,-„CTS• ,, - - Designer: AMC LANE,'A?=APC,31 ESiJ t EYC1R5 -' Determine Wind Sail In Transverse Direction WSJ-ZoneA:= (55 + 59+ 29)-ft2 WSAILZoneB:= (6+0 + 23)-ft2 WSAILZoneC (429+ 355 + 339)-ft2 WSAII-ZoneD (0 + 0 + 4)-ft2 WA:= WSAILZoneA'PA WA 2846 lb WB:= WSAILZoneB-PB WB=93 lb WC:= WSAILZoneC'PC WC= 161711b WD:= WSAILZoneD'PD WD= 13 lb Wind_Force:= WA+ WB+ WC+ WD - Wind Forcemin:= 10-psf.(WSAILZoneA+ WSAILZoneB + WSAILZoneC + WSAILZoneD) Wind_Force= 19123 lb Wind Forcemm= 12990 lb WSAELZoneE 43412 WSAILZoneF:= 43-ft2 WSAILZoneG:= 334-ft2 WSAILZoneH 327•ft2 WE:= WSAILZoneE'PE WE =—378 lb WF:= WSAII-ZoneFPF WF=—516 lb WG:= WSAILZoneG'PG WG =—2138 lb WH:= WSAILZoneH-PH WH=—31721b Upliftnet= WF+ WH+ (WE + WG) + RDL.[WSAILZoneF+ WSAILZoneH+ (WSAILZoneE+ WSAILZoneG)]'-6.1.12 Upliftnet= 1326 lb (Positive number...no net uplift) I W DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDON I CALCULATION Harper Project: Summer Creek Townhomes UNIT C Ilouf Peterson Client: Pulte Grou Righellis Inc. p Job# CEN-090 Designer: AMC Date: June 2010 Pg.# IANLS 4F AF tE.:'S Si�YEYGF:S Longitudinal Seismic Forces Site Class=D Design Catagory=D Building Occupancy Category:II Weight of Structure In Longitudinal Direction Roof Weight Roof Area= 838 ft2 RDL-Roof Area RFWT= 12566-lb Floor Weight Floor_Area2nd =605 ft2 FfLRy = FDL•Floor_Area2nd FLRWT2nd=7865 Ib Floor_Area3rd=600 ft2 FLR = FDL•Floor_Area3rd FLRWT3rd=7800.1b Wall Weight EX Wall Area:= (2203)-ft2 INT Wall Area= 906 ft2 WN„`� = EX_Wallwt-EX_Wall_Area+ INT Wallwt•INT_Wall_Area WALLWT=35496-lb WTTOTAL=63727 lb Equivalent Lateral Force Procedure(12.8,ASCE 7-05) hn= 32 Mean Height Of Roof Ie = 1 Component Importance Factor (11.5,ASCE 7-05) R:= 6.5 Responce Modification Factor (Table 12.2-1,ASCE 7-05) Ct= 0.02 Building Period Coefficient (Table 12.8-2,ASCE 7-05) x= 0.75 Building Period Coefficient (Table 12.8-2,ASCE 7-05) Period x ,j:= Ct-(hnr Ta=0.27 < 0.5 (EQU 12.8-7,ASCE 7-05) Si = 0.339 Max EQ,5%damped,spectral responce acceleration of 1 sec. (Chapter 22,ASCE 7-05)...or Ss=0.942 Max EQ,5%damped,spectral responce acceleration at short period From Figures 1613.5 (1)&(2) Fa= 1.123 Acc-based site coefficient @.3 s-period (Table 11.4-1,ASCE 7-05) = 1.722 Vel-based site coefficient @ 1 s-period (Table 11.4-2,ASCE 7-05) C-L(I) NJJO�n'= Fa.; a Ss Harper Project: Summer Creek Townhomes - -,: Houf Peterson Client: Pulte Group Job# CEN-090 Righellis Inc. EkItJfti P1A43:.R — Designer: AMC Date: June 2010 Pg.# - E4 SMS = 1.058 N C ^5�>?E �FC'Ni'E�iJ�Si:rt VEY6t2S UNIT (EQU 11.4-1,ASCE 7-05) 2•SMS (EQU 11.4-3,ASCE 7-05) S '= 3 Sds=0.705 (EQU 11.4-2,ASCE 7-05) rSnA�n= F�S1 SM1 =0.584 2•SM1 (EQU 11.4-4,ASCE 7-05) MS� 3 Shc =0.389 e Cst:_ Sds Cst=0.108 (EQU 12.8-2,ASCE 7-05) rniwv R ...need not exceed... _ Shc Cs =0.223 (EQU 12.8-3,ASCE 7-05) Cs , max Ta•R ...and shall not be less then... C if(0.044•Sds•le < 0.01,0.01,0.044•Sds•le) (EQU 12.8-5&6,ASCE 7-05) 0.5.S1Com:= if Si <0.6,0.01, R C := if(CI > C2,C1,C2) Csmin=0.031 Cs:= if(Cst<Csmin, min�Cs if(Cst<Csmax>Cst Csmax)) Cs =0.108 V:= Cs•WTTOTAL V=6914 lb (EQU 12.8-1,ASCE 7-05) E:= V.0.7 E= 4840 lb (Allowable Stress) Nw Harper Project: Summer Creek Townhomes UNIT C g ' ,>* Houf Peterson ,;° Client: Pulte Group Job# CEN-090 Righellis Inc. N tRs P k5 - Designer: AMC Date: June 2010 Pg.# - A4i'G .✓E Aft CHI E- •5 E Longitudinal Wind Forces (Method 1 -Simplified Wind Procedure per ASCE 7-05) Basic Wind Speed: 110 mph(3 Sec Gust) Exposure:B Building Occupancy Category:II Iw= 1.0 Importance Factor (Table 6-1,ASCE 7-05) hn= 32 Mean Roof Height X= 1.00 Adjustment Factor (Figure 6-3,ASCE 7-05) a2 2-.1•16-ft Zone A&B Horizontal Length Smaller of... a2= 3.2 ft (Fig 6-2 note 10,ASCE 7-05) a22:= .4 hri 2 ft or a2=25.6 ft but not less than... a2, ,:= 3.2.ft a2min = 6 ft Wind Pressure (Figure 6-2,ASCE 7-05) Horizontal PnetzoneA= 19.9•psf PnetzoneH =3.21psf PnetzoneC = 14.4•psf PnetzoneD=3.3•psf Vertical PnetzoneE=—8.8-psf PnetzoneF=—12•psf PnetzoneG=—6.4-psf PnetzoneH=—9.7•psf Basic Wind Force Pte:= PnetzoneA'Iw.X PA = 19.9•psf Wall HWC = PnetzoneB'I .X PB=3.2•psf Roof HWC Pte:= PnetzoneC'Iw'X Pc= 14.4.psf Wall Typical Pte:= PnetzoneD'Iw.X PD =3.3.psf Roof Typical , := PnetzoneE'Iw.X PE=—8.8•psf := PnetzoneF'Iw.X PF=—12•psf ,:= PnetzoneGlw.X PG=—6.4•psf 2:= PnetzoneH-Iw'X PH =—9.7•psf Harper Project: Summer Creek Townhomes UNIT C E ' .• Houf Peterson Client: Pulte Group Job# CEN-090 r=_ Righellis Inc. - Designer: AMC Date: June 2010 Pg.# Ek INE , 'R - µ :;A F h"H!TECTLSS.! J(v JEORS Determine Wind Sail In Longitudinal Direction (58+ 59+ 21)412 WSn:= (0 + 0 + 51)4t2 A := (98 + 99+ 34)412 WN := (0 + 0 + 114)412 W WSAILZoneA•PA WA=2746 lb MM9W�/— W WSAILZoneB•PB WB= 163 lb W WSAILZoneC 1 C Wc=3326 lb WSAILZoneD•PD WD= 376 lb Win d Force _ WA+ WB+ Wc+ WD Wind Fore = 10•psf•(WSAILZoneA+ WSAILZoneB + WSAILZoneC + WSAILZoneD) Wind Force=6612 lb Wind Forcemin= 5340 lb WWS. = 151•#2 W� 138. 12 WW§S14, 4 C,„ 242•#2 WSAILA := 216•ft2 W WSAILZoneE•PE WE =—1329 lb ,vu W WSAILZoneF'PF WF=—1656 lb WSAILZoneGPG WG=—1549 lb W _ WSAILZoneH•PH WH=—2095 lb + WSAIL + (WSAILZoneE+ WSAILZoneG)1'•6.1.12 U li := WF + Wg+ (WE + WG) + RDL•�WSAILZoneF ZoneH Upliftnet=901 lb (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN I CALCULATION Harper Hoof Peterson Righellis Pg#: Transverse Wind Line Shear Distribution ASCE 7-05,section 6.4(Method 1-simplified) Design Criteria: Basic Wind Speed= 100 mph Wind Exposure= B (Section 6.5.6,ASCE 7-05) Mean Roof Height,H(ft)= 32 Roof Pitch= 6/12 Building Category= II (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf X= 1.00 lw= 1.00 Wind Sail (ft2) Wind Net Design Wind Pressure(psf) Pressure(lbs) Zone A= 19.9 143 2846 Wall High Wind Zone Horizontal Zone B= 3.2 29 93 Roof High Wind Zone Wind Forces Zone C= 14.4 1123 16171 Wall Typ Zone Zone D= 3.3 4 13 Roof Typ Zone Zone E= -8.8 43 -378 Roof Windward High Wind Zone Vertical Zone F= -12.0 43 -516 Roof Leeward High Wind Zone Wind Forces Zone G= -6.4 334 -2138 Roof Windward Typ Wind Zone Zone H= -9.7 327 -3172 Roof Leeward Typ Wind Zone Total Wind Force=l 19123 lbs Use to resist wind uplift: Roof Only Total Exterior Wall Area= 2203 ft2 Uplift due to Wind Forces= -6204 lbs Resisting Dead Load= 7517 lbs E_) 1313 Lbs...No Net Uplift Wind Distribution Tributary to Diaphragms Wind Sail Tributary To Dia hragm(ft2): Zone A Zone B Zone C Zone D Main Floor 55 6 429 0 Upper Floor 59 0 355 0 Main Floor Diaphragm Shear= 7291 lbs Upper Floor Diaphragm Shear= 6286 lbs Roof Diaphragm Shear= 5546 lbs Wind Distribution To Shearwall Lines MAIN FLOOR UPPER FLOOR ROOF Tributary Line Shear Tributary Tributary Wall Line Line Shear ry Diaphragm (lbs) Diaphragm lbs Diaphragm Line Shear Width(ft) Width(ft) ( ) Width(ft) (lbs) A 15.83 2321 6.58 1150 19.00 2773 B 19.00 2785 18.00 3143 0.00 0 C 14.92 2186 11.42 1994 19.00 2773 E= 49.75 7291 36 6286 38.00 5546 Harper Houf Peterson Righellis Pg#: Transverse Seismic Line Shear Distribution Seismic Design Category= D Occupancy Category= II Site Class= D S1= 0.34 Ss= 0.94 Importance Factor= 1.00 Table 11.5-1,ASCE 7-05 Structural System,R= 6.5 Table 12.2-1,ASCE 7-05 Ct= 0.020 Other Fa= 1.12 Fv= 1.72 Mean Roof Height,H(ft)= 32 Period(Ta)= 0.27 Equ. 12.8-7,ASCE 7-05 k= 1.00 12.8.3,ASCE 7-05 1.06 Equ. 11.4-1,ASCE 7-05 SMS 0.58 Equ. 11.4-2,ASCE 7-05 S"" 0.71 Equ. 11.4-3,ASCE 7-05 SolSDS_= 0.39 Equ. 11.4-4,ASCE 7-05 Cs= 0.11 Equ.12.8-2,ASCE 7-05 Cs Csmin= 0.01 Equ. 12.8-5&6,ASCE 7-05 Csmax= 0.22 Equ.12.8-3,ASCE 7-05 Base Shear coefficient,v= 0.076 Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height(ft)= 8 Floor 3 Diaphragm Height(ft)= 18 Roof Diaphragm Height(ft)= 32 Floor 2 Wt(lb)= 7865 Floor 3 Wt(lb)= 7800 Roof Wt(Ib)= 12566 Wall Wt(Ib)= 35496 Trib.Floor 2 Diaphragm Wt(lb)= 22063 Trib.Floor 3 Diaphragm Wt(Ib)= 21998 Trib.Roof Diaphragm Wt(Ib)= 19665 Vertical Dist of Seismic Forces I Cumulative%total of base shear I Rho eqChek to Shearwalls(lbs) to shearwalls Vfloor z(Ib)= 711 100.0% Yes Vfloor 3(lb)= 1595 85.3% Yes Vroot(Ib)= 2534 52.4% Yes Shear Distribution To Wall Lines Wall Line Tributary Area Tributary Area Tributaryo Area Flof ShearrLine Floor 3 Line Roof Shear ne Floor 2 Floor 3 sq ft sq ft sq ft 168 314 lbs 1 lbs lbs l bs A 124 105 326 0 185 B 273 259 0 3 369 68 775 506 13490 C 129 169 371 2534 Sum 526 533 697 711 1595 Total Base Shear"= I 4840 LB *Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. Harper Houf Peterson Righellis Pg#: Longitudinal Wind Line Shear Distribution ASCE 7-05,section 6.4(Method 1-simplified) Design Criteria: - Basic Wind Speed= 100 mph Wind Exposure= B (Section 6.5.6,ASCE 7-05) Mean Roof Height,H(ft)= 32 Roof Pitch= 6 /12 Building Category= II (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf A.= 1.00 Iw= 1.00 Wind Sail (ft2) Wind Net Design Wind Pressure(psf) Pressure(lbs) Zone A= 19.9 138 2746 Wall High Wind Zone Horizontal Zone B= 3.2 51 163 Roof High Wind Zone Wind Forces Zone C= 14.4 231 3326 Wall Typ Zone Zone D= 3.3 114 376 Roof Typ Zone Zone E= -8.8 151 -1329 Roof Windward High Wind Zone Vertical Zone F= -12.0 138 -1656 Roof Leeward High Wind Zone Wind Forces Zone G= -6.4 242 -1549 Roof Windward Typ Wind Zone Zone H= -9.7 216 -2095 Roof Leeward Typ Wind Zone Total Wind Force=l 6612 lbs I - Use to resist wind uplift: Roof&Half of Upper Floor Walls Total Exterior Wall Area= 2203 ft2 Uplift due to Wind Forces= -6629 lbs Resisting Dead Load= 10160 lbs E=I 3531 Lbs...No Net Uplift I Wind Distribution Tributary to Diaphragms Wind Sail Tributary To Diaphragm(ft2): Zone A Zone B Zone C Zone D Main Floor 58 0 98 0 Upper Floor 59 0 99 0 Main Floor Diaphragm Shear= 2565 lbs Upper Floor Diaphragm Shear= 2600 lbs Roof Diaphragm Shear= 1447 lbs • Wind Distribution To Shearwall Lines MAIN FLOOR UPPER FLOOR ROOF Tributary Line Shear Tributary Line Shear Tributary Line Shear Wall Line Diaphragm m Dia lbs Diaphragm (lbs) (lbs) Width(ft) Width(ft) Width(ft) - 1 8 1283 8 1300 8 723 2 8 1283 8 1300 8 723 E= 16 2565 16 2600 16 1447 C— ...r-- Harper Houf Peterson Righellis Pg#: Longitudinal Seismic Line Shear Distribution Seismic Design Category= D Occupancy Category= II Site Class= D S1= 0.34 Ss= 0.94 Importance Factor= 1.00 Table 11.5-1,ASCE 7-05 Structural System,R= 6.5 Table 12.2-1,ASCE 7-05 Ct= 0.020 Other Fa= 1.12 Fv= 1.72 Mean Roof Height,H(ft)= 32 Period(Ta)= 0.27 Equ. 12.8-7,ASCE 7-05 k= 1.00 12.8.3,ASCE 7-05 SMS 1.06 Equ. 11.4-1,ASCE 7-05 SMI= 0.58 Equ. 11.4-2,ASCE 7-05 SOS= 0.71 Equ. 11.4-3,ASCE 7-05 S131_ 0.39 Equ. 11.4-4,ASCE 7-05 Cs= 0.11 Equ. 12.8-2,ASCE 7-05 Cs Csmin= 0.01 Equ. 12.8-5&6,ASCE 7-05 Csmax= 0.22 Equ. 12.8-3,ASCE 7-05 Base Shear coefficient,v= 0.076 Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height(ft)= 8 Floor 3 Diaphragm Height(ft)= 18 Roof Diaphragm Height(ft)= 32 Floor 2 Wt(lb)= 7865 Floor 3 Wt(lb)= 7800 Roof Wt(lb)= 12566 Wall Wt(Ib)= 35496 Trib. Floor 2 Diaphragm Wt(Ib)= 22063 Trib. Floor 3 Diaphragm Wt(lb)= 21998 Trib. Roof Diaphragm Wt(lb)= 19665 Vertical Dist of Seismic Forces ICumulative%total of base shear I Rho Check to Shearwalls(lbs) to shearwalls Req'd? Vfloor2(lb)= 711 100.0% Yes Vfloor3(lb)= 1595 85.3% Yes Vroof(lb)= 2534 52.4% Yes Shear Distribution To Wall Lines I Wall Line Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line Roof Line Floor 2 Floor 3 Roof Shear Shear Shear sq ft sq ft sq ft lbs lbs lbs 1 275 270 360 I 323 718 1220 2 330 330 388 388 877 1315 Sum 605 600 748 711 1595 2534 Total Base Shear*= I 4840 LB 1 *Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. Harper Houf Peterson Righellis Pg#: . Shearwall Analysis Based on the ASCE 7-05 Transvere Shearwalls Line Load Controlled By: Wind Shear H L Wall H/L Line Load Line Load Line Load Dead V Panel Shear Panel Mo MR Uplift Panel Lgth. From 2nd Flr. From 3rd Flr. From Roof Load Sides Factor Type T (ft) (ft) (ft) ht k ht k ht k (kit) (plt) (ft-k) (ft-k) (k) 101 8 5.17 5.17 1.55 ox 8.00 2.32 18.00 1.15 27.00 2.77 1209 Double 1.40 VII 102 8 4.00 4.00 2.00 ox 8.00 2.79 8.00 3.14 1482 Double 1.40 VIII 103 8 3.83 7.33 2.09 ox 8.00 2.19 8.00 1.99 8.00 2.77 948 Double 1.40 VI 104 8 3.50 7.33 2.29 OK 8.00 2.19 8.00 1.99 8.00 2.77 948 Double 1.40 VI 105 8 4.25 12.75 1.88 ox 8.00 2.32 18.00 1.15 27.00 2.77 490 Single 1.40 II 106 8 8.50 12.75 0.94 ox 8.00 2.32 18.00 1.15 27.00 2.77 490 Single 1.40 II 107 8 1.25 1.25 6.40 8.00 2.19 18.00 1.15 27.00 2.77 4887 Double 1.40 NG 108 8 1.25 3.50 6.40 8.00 2.19 8.00 1.99 8.00 2.77 1987 Double 1.40 NG 109 8 1.25 3.50 6.40 8.00 2.19 8.00 1.99 8.00 2.77 1987 Double 1.40 NG 110 8 1.00 3.50 8.00 8.00 2.19 8.00 1.99 8.00 2.77 1987 Double 1.40 NG 201 9 5.58 9.17 1.61 ox 9.00 1.15 18.00 2.77 428 Single 1.40 II 202 9 3.58 9.17 2.51 ox 9.00 1.15 18.00 2.77 428 Single 1.40 II 202A 9 3.50 3.50 2.57 OK 9.00 3.14 898 Double 1.40 VI 203 9 7.00 7.00 1.29 ox 9.00 1.99 18.00 2.77 681 Single 1.40 IV 301 8 6.00 10.00 1.33 ox 8.00 2.77 277 Single 1.40 I 302 8 4.00 10.00 2.00 ox 8.00 2.77 277 Single 1.40 I 303 8 4.96 9.92 1.61 OK 8.00 2.77 280 Single 1.40 I 304 8 4.96 9.92 1.61 OK 8.00 2.77 280 Single 1.40 I Spreadsheet Column Definitions&Formulas L=Shear Panel Length H=Shear Panel Height Wall Length=Sum of Shear Panels Lengths in Shear Line H/L Ratio=Hight to Width Ratio Check V (Panel Shear)=Sum of Line Load/Total L Shear Factor=Adjustment For H/L>2:1 Mo(Overturning Moment)=Wall Shear*Shear Application ht Mr(Resisting Moment)=Dead Load*L2*0.5*(.6 wind or.9 seismic) Uplift T=(Mo-Mr)/(L-6 in) Harper Houf Peterson Righellis Shearwall Analysis Based on the ASCE 7-05 Iransvere Shearwalls Line Load Controlled By: Seismic * Panel Shear Panel Mo MR Uplift Strength Bays Sides Factor Type Pg#: T Shear H L Wall H/L Line Load Line Load Line Load Dead V Rho V %Story # Panel Lgth. From 2nd Flr. From 3rd Fir. From Roof Load (ft-k) (ft-k) (k) (ft) (ft) (ft) ht k ht k ht k (kit) (plf) (plf) 323 419 0.31 1.29 Single 1.00 III 101 8 5.17 5.17 1.55 OK 8.00 0.17 18.00 0.31 27.00 1.19 .00 Single 1.00 . III 102 8 4.00 4.00 2.00 OK 8.00 0.37 8.00 0.78 0.00 254 331 0.2 286 372 0.24 4 ]1.00 Single 1.00 II 103 8 3.83 7.33 2.09 OK 8.00 0.17 8.00 0.51 8.00 1.19 254 331 0.23 0.88 Single 0.88 III 104 8 3.50 733 2.29 OK 8.00 0.17 8.00 0.51 8.00 1.19 6 1.06 Single 1.00 _ I 105 8 4.25 12.75 1.88 oK 8.00 0.17 18.00 0.31 27.00 1.19 131 170 131 170 0.2.2N 2.13 Single 1.00 I 106 8 8.50 12.75 0.94 OK 8.00 0.17 18.00 0.31 27.00 1.19 107 8 1.25 1.25 6.40 8.00 0.27 18.00 0.51 27.00 1.19 1572 2044 0.08 0.31 Double 0.31 NG 108 8 1.25 3.50 6.40 8.00 0.27 8.00 0.51 8.00 1.19 561 730 0.08 031 Double 031 NG 561 730 0.08 0.31 Double 031 NG 109 8 1.25 3.50 6.40 8.00 0.27 8.00 0.51 8.00 1.19 561 730 0.06 0.25 Double 0.25 NG 110 8 1.00 3.50 8.00 8.00 0.27 8.00 0.51 8.00 1.19 164 213 -028 1.24 Single 1.00 I 201 9 5.58 9.17 1.61 OK 9.00 0.31 18.00 1.19 202 9 3.58 9.17 2.51 OK 9.00 0.31 18.00 1.19 164 213 0.18 0.80 Single 0.80 II 202A 9 3.50 3.50 2.57 OK 9.00 0.78 0.00 221 288 0.18 0.78 Single 0.78 III 203 9 7.00 7.00 1.29 OK 9.00 0.51 18.00 1.19 242 314 0.36 1.56 Single 1.00 I I 1 8.00 1.19 119 154 0.30 1.50 Single 1.00 I 3012 8 6.00 8 4.00 1.10.00 9.92 2 21.0.603 OK OK 8.00 1.19 119 154 0.20 1.00 Single 1.00 I 3038.00 1.19 119 155 0.25 1.24 Single 1.00 I 303 8 4.96 9.92 1.611 oK 8.00 1.19 119 155 0.25 1.24 Single 1.00 I 304 8 4.96 9.92 1.61 OK Rho Calculation Does the 1st floor shearwalls resist more than 35%of the total transverse base shear? Yes Does the 2nd floor shearwalls resist more than 35%of the total transverse base shear? Yes Does the 3rd floor shearwalls resist more than 35%of the total transverse base shear? Yes Total 1st Floor Wall Length= 16.50 Total#1st Floor Bays= 4.13 Are 2 bays minimum present along each wall line? No 1st Floor Rho= 13 Total 2nd Floor Wall Length= 19.67 Total 1 2nd Floor Bays= 4 Are 2 bays minimum present along each wall line? No 2nd Floor Rho= 13 Total 3rd Floor Wall Length= 19B2 Total#3rd Floor Bays= 5 Are 2 bays minimum present along each wall line? Yes 3rd Floor Rho= 1.0 Spreadsheet Column Definitions&Formulas L=Shear Panel Length H=Shear Panel Height Wall Length=Sum of Shear Panels Lengths in Shear Line H/L Ratio=Hight to Width Ratio Check V (Panel Shear)=Sum of Line Load*Rho/Total L %Story Strength=L/Total Story L (Required for walls with H/L>1.0,for use in Rho check) #Bays=2*L/H Shear Factor=Adjustment For H/L>2:1 Mo(Overturning Moment)=Wall Shear*Shear Application ht Mr(Resisting Moment)=Dead Load*1.2*0.5*(.6 wind or.9 seismic) Uplift T=(Mo-Mr)/(L-6 in) Harper Houf Peterson Righellis Pg#: Shearwall Analysis Based on the ASCE 7-05 r Longitudinal Shearwalls Line Load Controlled By: Wind Shear H L Wall H/L Line Load Line Load Line Load Dead V Panel Shear Panel Mo MR Uplift Panel Lgth. From 2nd Fir. From 3rd Fir. From Roof Load Sides Factor Type T (ft) (ft) (ft) ht k ht k ht k (kit) (plf) (ft-k) (ft-k) (k) 105 8 12.75 12.75 0.63 OK 10.00 1.28 18.00 1.30 27.00 0.72 1.13 259 Single 1.40 I 55.75 92.01 0.04 106 8 12.75 12.75 0.63 ox 10.00 1.28 18.00 1.30 27.00 0.72 1.13 259 Single 1.40 I 55.75 92.01 0.04 204 9 11.50 11.50 0.78 ox 9.00 1.30 18.00 0.72 0.75 176 Single 1.40 I 24.71 49.73 -0.47 205 9 11.50 11.50 0.78 OK 9.00 1.30 18.00 0.72 0.75 176 Single 1.40 I 24.71 49.73 -0.47 305 8 10.00 10.00 0.80 ox 8.00 0.72 0.29 72 Single 1.40 I 5.78 14.40 -0.30 306 _ 8 10.00 10.00 0.80 ox 8.00 0.72 0.29 72 Single 1.40 I 5.78 14.40 -0.30 Spreadsheet Column Definitions&Formulas L=Shear Panel Length H=Shear Panel Height Wall Length=Sum of Shear Panels Lengths in Shear Line H/L Ratio=Hight to Width Ratio Check V (Panel Shear)=Sum of Line Load/Total L Shear Factor=Adjustment For H/L>2:1 Mo(Overturning Moment)=Wall Shear*Shear Application ht Mr(Resisting Moment)=Dead Load*L2*0.5*(.6 wind or.9 seismic) Uplift T=(Mo-Mr)/(L-6 in) 1 C- ?-1I Harper Houf Peterson Righellis Pg#: Shearwall Analysis Based on the ASCE 7-05 Longitudinal Shearwalls Line Load Controlled By: Seismic Shear H L Wall H/L Line Load Line Load Line Load Dead V Rho*V %Story # Panel Shear Panel Mo MRUplift Sides Factor Type Bays T Panel Lgth. From 2nd Flr. From 3rd Flr. From Roof Load Strength (ft-k) (ft-k) (k) (ft) (ft) (ft) ht k ht I k ht k (klf) (plf) (pit) 105 8 12.75 12.75 0.63 I OK 10.00 0.32 18.00 0.72 27.00 1.22 1.19 177 177 NA 3.19 Single 1.00 1 49.09 96.89 -0.74 106 8 12.75 12.75 0.63 J oK 10.00 0.39 18.00 0.88 27.00 1.32 1.19 202 202 NA 3.19 Single 1.00 I 55.17 96.89 -0.24 I 204 16 NA 2.56 Single 1.00 I .42 53.69 205 9 1 11.50 11.501 11.50 11.501 0.78 0.781 OK OK I I 19.00 9.00 I 0.88 0.72 118.001 1.22 0.81 1 32 0.81 191 I 191 I NA I 2.56 1 Single I 1.00 I 3156 153.69 I -0.06 I8.00 1.22 035 122 I 122 I NA I 2.50 I Single 11.00 I 9.76117.401 -0.07 I I306 I 8 110 00 110.00 10.80 I oK I I I I 18.00 I 1.32 0.35 132 132 NA 2.50 Single 1.00 1 10.52 17.40 0.01 Rho Calculation Does the 1st floor shearwalls resist more than 35%of the total longitudinal base shear? Yes Does the 2nd floor shearwalls resist more than 35%of the total longitudinal base shear? Yes Does the 3rd floor shearwalls resist more than 35%of the total longitudinal base shear? Yes Total 1st Floor Wall Length= 25.50 Total#1st Floor Bays= 6.3S Are 2 bays minimum present along each wall line? Yes 1st Floor Rho= 1.0 Total 2nd Floor Wall Length= 23.00 Total#2nd Floor Bays= s Are 2 bays minimum present along each wall line? Yes 2nd Floor Rho= 1.0 Total 3rd Floor Wall Length= 20.00 Total#3rd Floor Bays= 5 Are 2 bays minimum present along each wall line? Yes 3rd Floor Rho= 1.0 Spreadsheet Column Definitions&Formulas L=Shear Panel Length H=Shear Panel Height Wall Length=Sum of Shear Panels Lengths in Shear Line H/L Ratio=Hight to Width Ratio Check V (Panel Shear)=Sum of Line Load*Rho/Total L %Story Strength=L/Total Story L (Required for walls with H/L>1.0,for use in Rho check) #Bays=2*L/I-1 Shear Factor=Adjustment For H/L>2:1 Mo(Overturning Moment)=Wall Shear*Shear Application ht Mr(Resisting Moment)=Dead Load*L2*0.5*(.6 wind or.9 seismic) Uplift T=(Mo-Mr)/(L-6 in) C- ' 1 Harper Houf Peterson Righellis Pg#: SHEAR WALL SUMMARY' TransvereyyS�hearwalls �r PAT WaSI hear l'an� ��� ac,�� ���".` ate.-,y"��`�e € � ls3�j � - 'i� 3' �, ,. :412t -' xr Ott a ls; Wall . r .Good 1 `''' �" r t -s. c > ;`f xrx V, s " ,:.",ice- -�-. :.f r `a- ._ r .d 101 1209 2 Layers 1/2"APA Rated Plyw'd w/8d Nails @ 3/12 1276 102 1482 2 Layers 1/2"APA Rated Plyw'd w/8d Nails @ 2/12 1667 103 948 2 Layers 1/2"APA Rated Plyw'd w/8d Nails @ 4/12 990 104 948 2 Layers 1/2"APA Rated Plyw'd w/8d Nails @ 4/12 990 105 490 1/2"APA Rated Plyw'd w/8d Nails @ 4/12 495 106 490 1/2"APA Rated Plyw'd w/8d Nails @ 4/12 495 107 108 Simpson Strongwall Simpson Strongwall 109 Simpson Strongwall 110 Simpson Strongwall 201 428 1/2"APA Rated Plyw'd w/8d Nails @ 4/12 495 202 428 1/2"APA Rated Plyw'd w/8d Nails @ 4/12 495 202A 898 2 Layers 1/2"APA Rated Plyw'd w/8d Nails @ 4/12 990 203 681 1/2"APA Rated Plyw'd w/8d Nails @ 2/12 833 301 277 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 339 - 302 277 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 339 303 280 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 339 304 280 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 339 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design loads. C-- LAItt . Harper Houf Peterson Righellis Pg#: SHEAR WALL SUMMARY' Longitudinal Shearwalls af A * aI0r % 4 { idi� a_ . - . (1 ). 105 259 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 339 44 Simpson None 0339 44 Simpson None 0 106 259 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 204 176 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 I 339 ` Simpson None 0 205 I 191 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 242 R,, § :^' Simpson None 0 305 122 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 242 : ?�, Simpson None 0 306 ( 132 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 242 8 Simpson None 0 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design loads. C— j TrUnitansverseC Wind Uplift Design • Shear H Joist L Wall Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total Total Panel Height Lgth. From 2nd From 3rd From Wall Load(not Point Point ning Moment Moment Floor Shear @ Floor Shear @ Stacking @ Stacking From From Uplift Uplift Flr. Flr. Roof Shear including Load Load Momen @ Left @ Right Left Right Left Side of @ Right Wall Wall @ Left @ floors @ Left @ t House Side of Above Above Right above if Right House @ Left @ walls stack) Right (ft) (ft) (ft) (ft) k k k k plf klf k k kft kft kft k k k k k k 101 8 1.1667 5.21 5.21 2.321 1.15 2,773 6.244 1199 0.1 0.192 0.208 54.53 2.36 2.44 11.28 11.27 201 L 201 R 4.97 5.11 16.25 16.38 102 8 1.1667 4.00 4.00 2.785 3.143 5.928 1482 0.092 0.192 51.09 1.50 0.74 14.34 14.47 103 8 1.1667 3.83 7.33 2.186 1.994 2.773 6.953 948 0.1 0.24 0.078 31.98 1.65 1.03 9,30 9.41 203R 1/2 14.34 14.47 104 8 1.1667 3.50 7.33 2.186 1.994 2.773 6.953 948 0.1 0.078 0.192 29.20 0.89 1.28 9.56 9.48 ( ) 3.83 9.30 13.24 105 8 1.1667 4.58 13.08 2.321 1.15 2.773 6.244 477 0.1 0.192 0.078 19.10 1.93 1.41 4.39 4.47 201E 201R9.56 9.48 106 8 1.1667 8.50 13.08 2.321 1.15 2.773 6.244 477 0.1 0.078 0.384 35.43 4.28 6.88 4.11 3.91 202L 202R 4.97 5.11 9.36 9.58 107 8 1.1667 1.25 4.75 2.186 1.994 2.773 6.953 1464 0.048 0.192 0.045 14.64 0.28 0.09 18.77 18.92 5.35 5.22 9.46 9.13 108 8 1.1667 1.25 4.75 2.186 1.994 2.773 6.953 1464 0.048 0.045 0.192 14.64 0.09 0.28 18.92 18.77 18.77 18.92 109 8 1.1667 1.25 4.75 2.186 1.994 2.773 6.953 1464 0.1 0.24 0.208 14.64 0.38 0.34 18.70 18.7318.92 26.38 203R 110 8 1.1667 1.00 4.75 2.186 1.994 2.773 6.953 1464 0.1 0.208 0.192 11.71 0.26 0.24 19.81 19.83 304R 1 1.65 19.811 2.65 19.81.48 21.48 201 9 1.1667 5.875 9,75 1.15 2.773 3.923 402 0.172 0.432 0.156 23.22 5.51 3.88 3.39 3.56 301L 301 R 202 9 1.1667 3.875 9.75 1.58 1.55 4.97 5.11 1.15 2.773 3.923 402 0.172 0.156 0.432 15.32 1.90 2.97 3.66 3.49 302L 302R 1.69 1.72 5.35 5.22 202A 9 1.1667 3.833 3.833 3.143 3.143 820 0.142 0.816 28.29 4.17 1.04 6.73 7.22 203 9 1.1667 7.083 7.083 1.994 2.773 4.767 673 0.172 0.468 0.192 46.14 7.63 5.67 5.87 6.03 303L 303R 1.65 1.62 7.52 7.65 301 8 5.958 9.916 2.773 2.773 280 0.24 0.384 0.432 13.33 6.55 6.83 1.58 1.55 302 8 3.958 9.916 1.58 1.55 2.773 2.773 280 0.24 0.432 0.384 8.85 3.59 3.40 1.69 1.72 1.69 1.72 303 8 4.958 9.916 2.773 2.773 280 0.24 0.384 0.432 11.09 4.85 5.09 1.65 1.62 304 8 4.958 9.916 1.65 1.62 2.773 2.773 280 0.24 0.432 0.384 11.09 5.09 4.85 1.62 1.65 1.62 1.65_ Spreadsheet Column Definitions&Formulas L=Shear Panel Length H=Shear Panel Height Wall Length=Sum of Shear Panels Lengths in Shear Line V (Panel Shear)=Sum of Line Load/Total L Mo(Overturning Moment)=Wall Shear*Shear Application ht Mr(Resisting Moment)=Dead Load*L2*0.5*(.6 wind or.9 seismic) Uplift T,=(Mo-Mr)/(L-6 in) 1 r Transverse Seismic Uplift Design Unit C ShPanerl H it L Wall Line Load Line Load Line al V Loadd Dead(notPoint Point ead O i g r Resisting Moment Momentt Floorting ift From Shear @ Floor'ft From Wall Wall Shear @ Stacking @ Stacking From From Upllift Uplift ift Uplift Panel Height Lgth. From 2nd From 3rd From Wall Right Left Side of @ Right Wall Wall @ Left @ Shear including Load Load Momen @ Left @ Right Left g Right Fir. Flr. Roof House Side of Above Above g boves @ Left @ t House @ Left @ above if Right Right walls stack k k k k k (ft) (ft) (ft) (ft) k k k k plf klf k k kft kft kft k 101 8 1.1667 5.21 5.21 0.168 0.314 1.185 1.667 320 0.1 0.192 0.208 15.08 2.36 .2.442.75 2.74 201L 201 R 0.65 0.85 3.40 3.59 2.49 2.68 0 0 2.49 2.68 59 102 8 1.1667 4.00 4.00 0.369 0.775 1.144 286 0.092 0.192 0 10.06 1.50 0.74 2 49 2 2.44 2.668154 0 203R(1/2) 1.01 2.44 3.62 0 0 2.66 2.54 103 8 1.1667 3.83 7.33 0.174 0.506 1.349 2.029 277 0.1 0.24 0.078 9.62 1,65 1.03 104 8 1.1667 3.50 7.33 0.174 0.506 1.349 2.029 277 0.1 0.078 0.192 8.78 0.89 1.28 2 66 0.98 201E 201R 0.65 0.85 1.52 1.54 105 8 1.1667 4.58 13.08 0.168 0.314 1.185 1.667 127 0.1 0.192 0.078 5.28 1.93 1.41 0.74 0.45 202L 202R11.22 1.85 1.97 1.474 6.12 0.44 0 0 . . 7 106 8 1.1667 8.50 13.08 0.168 0.314 1.185 1.667 127 0.1 0.078 0.384 9.80 4.28 6.886.34 6.12 107 8 1.1667 1,25 4.75 0.174 0.506 1.349 2.029 427 0,048 0.192 0.045 4.84 0.28 0.09 6.34 6.34 0 0 6.00 6.12 0 203R 2.02 6.0038.071 108 8 1.1667 1.25 4.75 0.174 0.506 1.349 2.029 427 0.048 0.045 0.192 4.84 0.09 0.28304R 0.21 7.28 7.52 109 8 1.1667 1.25 4.75 0.174 0.506 1.349 2.029 427 0.1 0.24 0.208 4.84 0.38 0.34 110 8 1.1667 1.00 4.75 0.174 0.506 1.349 2.029 427 0.1 0.208 0.192 3.87 0.26 0.24 7.28 7,31 0 0.314 1.185 1.499 154 0.172 0.432 0.156 8.96 5.51 3.88 0.68 0.93 301L 301R -0.03 -0.08 0.65 0.85 201 9 1.1667 3.88 9.75 1.22 1.57 202 9 1.1667 3.88 9.75 0.314 1.185 1.499 154 0.172 0.156 0.432 5.91 1.90 2.97 0.84 0,84 302L 300E 3002R 0.14 0.18 1.22 1.02 202A 9 1.1667 3.83 3.83 0.775 0.775 202 0.142 0.816 0 6.98 4.17 1.04 203 9 1.1667 7.08 7.08 0.506 1.349 1.855 262 0.172 0.468 0.192 18.27 7.63 5.67 1.61 1.86 303L 303R 0.21 0.16 1.82 2.02 -0.03 -0.08 0 0 -0.03 -0.08 301 8 0 3.96 9.92 1.185 1.185 120 0.24 0.384 0.432 5.70 6.55 6.83 018 0 0 0.14 0.18 302 8 0 3.96 9.92 1.185 1.185 120 0.24 0.432 0.384 3.78 3.59 3.40 0.1 4 0. 0.1 303 8 0 4.96 9.92 1.349 1.349 136 0.24 0.384 0.432 5.40 4,85 5.09 0.21 0.16 0 0 021 0.26 304 8 0 4.96 9.92 1.349 1.349 136 0.24 0.432 0.384 5.40 5.09 4.85 0.16 0.21 0 Spreadsheet Column Definitions&Formulas L=Shear Panel Length H=Shear Panel Height Wall Length=Sum of Shear Panels Lengths in Shear Line V (Panel Shear)=Sum of Line Load/Total L Mo(Overturning Moment)=Wall Shear*Shear Application ht Mr(Resisting Moment)=Dead Load*L2*0.5*(.6 wind or.9 seismic) Uplift T^=(Mo-Mr)/(L-6 in) `, 9 /µ TRANSVERSE UPLIFT CALCULATIONS-SUMMARY UNIT C Shear Controlling Total Holdown Holdown Good Control Total Holdown Good For Panel Case Uplift @ or Strap Type@ Left For ling Uplift Type@ Left Left Case @ Right k Simpson k k Simpson k 101 Wind 16.25 Holdown HDI9 w DF 19.07 Wind 16.38 HDI9 w DF 19.07 102 Wind 14.34 Holdown HDU14 14.93 Wind 14.47 HDU14 14.93 103 Wind 9.30 Holdown HDU14 14.93 Wind 13.24 HDU14 14.93 104 Wind 9.56 Holdown HDU14 14.93 Wind 9.48 HDU14 14.93 105 Wind 9.36 Holdown HDU14 14.93 Wind 9.58 HDU14 14.93 106 Wind 9.46 Holdown HDU14 14.93 Wind 9.13 HDU14 14.93 107 Wind 18.77 Holdown None 0.00 Wind 18.92 None 0.00 108 Wind 18.92 Holdown None 0.00 Wind 18.77 None 0.00 109 Wind 18.70 Holdown _ None 0.00 Wind 26.38 None 0.00 110 Wind 19.81 Holdown None 0.00 Wind 21.48 None 0.00 . 201 Wind 4.97 Strap MST48x2 5.75 Wind 5.11 MST48x2 5.75 202 Wind 5.35 Strap MST48x2 5.75 Wind 5.22 MST48x2 5.75 202A Wind 6.73 Strap MST60x2 8.11 Wind 7.22 MST60x2 8.11 203 Wind 7.52 Strap MST60x2 8.11 Wind 7.65 MST60x2 8.11 301 Wind 1.58 Strap MST48 2.88 Wind 1.55 MST48 2.88 302 Wind 1.69 Strap MST48 2.88 Wind 1.72 MST48 2.88 303 Wind 1.65 Strap MST48 2.88 Wind 1.62 MST48 2.88 304 Wind 1.62 Strap MST48 2.88 Wind 1.65 MST48 2.88 n o T �a3 ioy 0N % T C. - tiST FLQOg. - qD ��� ct.,. + dv nuT .)L? 4 k`ei (144,01 1 NOV (ID /PCn _Lel —D cvn qoi €..0k 4•11 To‘k 6011 Zel _ reassoul 0 11, 0 so\ t 2,01 0aoa U '3 p, a QS 11 9 3 i i aoa A /\ I . 1 VNtT L- L140 p t.00 R- w3 aD3 ��S .1.00I•`d 1 cAS ?30°13 CZ??t. " J ‘ Nk l 01\ei -,7 (P hog, qa, I • i _ . ,„3. ,i f T f g K III i I 1 i UJ a CS ," h r1 •1 ki 1. r -t°S \Q ��+^.�/}) 1 BY.4\W...di DATE. ,3 ,. 41 k JOB No:_ to.„. Ot OF PROJECT: RE: CheC\c- T)iA faclm ragN `er- - 7 ilk _� � 1t�,�, '1011 1 1 I-- 2 4a'kSc' 2 LINE `!i \rNe Q -6Po.)p9✓R � V O w W O rn cc d Z _S.9., - '3S' , 151--6' - ---'—b' {. o l..s►.I R LANE?) C.. a U (gyp 3. ;, o ->,311.\._1 �.ly?,1/2` ,W e_ 1 }:p 4. (1 - s ` ' o I77-)‘-- r -'1' '', > CrN 1!' V v f 'V 11 z _ ?' iiii (; ZLZ$ ( <,2,S1 3-',-.)(2_#— \ .L?( -\ = ,, a°1— 1,-1(..L. x ?3s,, ----_..__ `aA :.c 7' (-.,ph(alrf\ J.)144 r'i =IL Ct ID 5U '_ te. ,= 0 a Li Li] w - o w O 2 2 L-1 cr 0 I: Z- 2 0 o 7-- CI- O• - ix 0 LL. Z 7 ig - 0 1 H Cl. = c4, 16)0 TT') •:: it' •Ci° -•-•-r-i BY: k w,.......„ PROJECT: DATE: ".." da'0 ° ' JOB No RE:, (3 : Ostr,,s,t,3 SH Avo.\A T-LjPoo.3 p\-- C12,)(092SV's1-4.) -- 0.0ci 5.1_ ToktAA = aLict, El axiA), \ob E- S)me_ a•-, to—÷ El t.,,,A,,,,v, woit c,,,,,,‘.uiy\f_ ,,,c,t (I 54)6A0,01:0 -i--( Yo.0 is6/12). (tb)( c.,.; 0A.co. :: 4. 1\-3 * El wao ‘\O - \2-- ,- (1 if -,,, . (, ---, . - ,),7-11,0,0k-)._. ),.: ) 4-- ,...,5 i(ri.c,,r,y,,,--.- ,;(:-., ) i-k's,.t2. ,,.c),(,),..--, \_,r.) ri--k r. 1 ),,3,0,,z..., ;:7-• ,, . -vi_ ‘001 571,0c ::,,,t0,07—S.N-- \O -- s- .z.--. 13 5 1 VAI, - tOt1, , ‘ t 0 r!ii.14,,tyt,--',e •(-i'C-k Sy),•:•ro,"-- 0,73G 0 ve) 1,09,54 6,q 2_ \I• P--44– Qt D.-3b 5 - ,30(.° 14- \157-D At 5hqness v S'neckie --- 9,rc S-04-5* 1-1-etebto tt- -, '- -0'• '! f . 1-,-)6 o 0,akcI '> ‘ 1.1,''-,:,,,c# -' c:si(,•-,i '4'-.°)c--IY- ..,. ‘ 0 cts -k- ' -, ',.)0-41,?:( S tts1'-----\ '‘-0 k, AI-) \ (°° 'c*' :- tic-‘ Q.- \ 40.& ...::: ,',..,)E, ,•i,W73'ck\ u3c\\ A"' V ' 5 &IL) S 1-I e_Pic4. = k.) _ \ at.5, \'Necr \0-1-- \ , 1 1 V00) Uv- - • CAL ,• , Oy___ CO . , TA ,--,f!'.' .,:•* tZ4"<-.•; BY' MANkis....L..e, DATE: d"k1 3\1/4 0 JOB NO. OF PROJECT: RE: 7.)• .yvivox)riN, (ctvc +4 nt w •• LOO,C)1/4_ Voc)\cCa PC-(70A- tkrAV'tS 2:-(1b11)(2_) L:aa _I 0 O LIJ • L-I _J fY 6 \ VA‘A S LI 14' 0 et) it- Se kS.MiC 0 Ct.) to0 S:A.C` 1-12,1rta ff a_ O oc \odced ci(0,vla 1/4,11 tin t--) I n) -4a-4 0 02 O - ft 0 Z O I o• 6 49, a) •- ct• o 111*I7 ...... By. 1 A L DATE \ 1 k--0 JOB NO CK., oct c) OF PROJECT RE op-1-- 0),j --) — — ,_2 — f-, • .,•7‘.., ,-; — ,, uil 6 --:.,)1 i-tz '-ic, f r'i-, .._:"... lock\‘oor- c' i-i C 1-• w O 2 w• 7-- --\--f; 1.2) 1J 11 1 ' 1:1)CI, 7731 rq T Li -j il\A''''' A \,f3%.i' ,f f -"- ir, .f C.) ,•.„4.-. =--, , cs a :: v22,...0,1 00 L, c (\e, .--,f ,,-7 j-imc := — 00 ) p-.: r i ,.., ',.... Cc..\ \C‘S‘,\ 'L ' )c...`` \i)\',.)C.- V— ::: r--•-F- , o k o z T TD 2 0 N A o --3....:_. 2 , , '7- , ebtallellnalla 0:45* c° b \\10-0,f --= 5-(at 4-::: '.; •"i• : Li. z ; i 11 ui , i ',, 1.*, ,..i ---------4,-- 1 11.5" A , ,‘ -- ---,-- - '- ir---- „. ) T-7 •=1 7E0 a.: d .t.,i s.,...:, 7...- 0 kt,1 9.. t Nt•-4-42 __, tquetI.Tc4 )(II ,(1.1--5) -..,..-. 14-0-1-p5 C, _ I. 74- Li. tr- =f- ' V 11054; .1 .. ... .... = - .. ......;,....._ = doctf,ST7 V.41... , -- (6 0 p,,,:)a{:..)0,0y1,0--)c, 0----)ci.-,---y1.0-)( 1. )(t.i-s) -....x- 6 -7-(3,,?:,a2`;sa-s'',. t:e*Y i,C A i.,(:) )L1,''''--) ,0.°1.11,?--)(1 •0)6:0)- :-/ BY: -iLk pv\,,c.". DATE: -. 1 -\0 JOB No. IN __ _ OF r 1 iL Ni --0G(.0 PROJECT: . C4.22 a'.4.1---5'-li; RE: . Cic C.\M i A--,cN @ Sio,( 5 toy-% ,., ... OPT I ON) 1- J O fi: Z 1101,Z111., 0 IA 0/4/VANUA F- lal O 2 Tczt 13 wsoTH ID N.) 00-7.21t F..F. v:11- - I " 2 b....."1111111111.- E -301r,11 I: qt--ciliz." ,trab- ,, To9 PLA-1-6.- 4-5 Li MV ". 5TAvt_0(21--ty,kk-trz cL < 0 0 4 . O z w 0 1 DE 5 I C-);.,) jo,)1j 7) -PCCS,-)Ce it n_ Z = —' 4/,Ot ps-C 0c-.F. O . 7 O ik T 7 -N;1.4 \ \: ‘gl...:; \ C'‘C\ *i $ t$ 0-0 2 0 - cc 0 Li_ Z F- 0- -S,_.-.• M 5.1-1:it.?Yr xl-- , - — --7,— --1 ,,.... I v -- , , 1, ' 'G' '4)'-'40 i'D.5c ).1..- 7' - 0\'--- ct t'' ( '\ \ (''''-j) 0 0,----i Ti) 2_ —L3 1 • WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN • UNIT C-FRONT LOAD WoodWorks®Sizer 7.1 June 28,2010 13:26:08 .. COMPANY ( PROJECT RESULTS by GROUP - NDS 2005 SUGGESTED SECTIONS by GROUP for LEVEL 4 - ROOF __ ________ _ Mnf Trusses Not designed by request (2) 2x10 Lumber n-ply D.Fir-L No.2 2- 2x10 (3) 2x6 Lumber n-ply Hem-Fir No.2 3- 2x6 Typ Wall - Lumber Stud Hem-Fir Stud 2x6 @16.0 SUGGESTED SECTIONS by GROUP for LEVEL 3 - FLOOR Mnf Jst Not designed by request (2) 2x8 Lumber n-ply D.Fir-L No.2 1- 2x8 By Others Not designed by request By Others 2 Not designed by request 4x6 Lumber-soft D.Fir-L No.2 4x6 1.75x14 LSL LSL 1.55E 2325Fb 1.75014 (2) 2x6 Lumber n-ply Hem-Fir No.2 2- 2x6 6x6 Timber-soft Hem-Fir No.2 6x6 (2) 2x4 Lumber n-ply Hem-Fir No.2 2- 2x4 (3) 2x4 Lumber n-ply Hem-Fir No.2 3- 2x4 Typ Wall Lumber Stud Hem-Fir Stud 2x6 @16.0 --------------------- _ _ -_ SUGGESTED SECTIONS by GROUP for LEVEL 2 - FLOOR Mnf Trusses Not designed by request Deck Joist Lumber-soft D.Fir-L No.2 208 @16.0 Mnf Jet Not designed by request Landing Lumber-soft D.Fir-L No.2 2x6 @16.0 (2) 208 Lumber n-ply D.Fir-L No.2 2- 2x8 4x8 Lumber-soft D.Fir-L No.2 408 By Others Not designed by request 3.125x10.5 Glulam-Unbalan. West Species 24F-V4 DF 3.125x10.5 5.25x14 PSL PSL 2.0E 2900Fb 5.25x14 4x6 • Lumber-soft D.Fir-L No.2 4x6 (2) 2x6 Lumber n-ply Hem-Fir No.2 2- 2x6 4x4 Lumber Post Hem-Fir No.2 4x4 4x6 Lumber Post Hem-Fir No.2 4x6 6x6 Timber-soft Hem-Fir No.2 6x6 (2) 2x4 Lumber n-ply Hem-Fir No.2 2- 2x4 (3) 2x4 Lumber n-ply Hem-Fir No.2 3- 2x4 .Typ Wall Lumber Stud Hem-Fir__- Stud 2x6 @16.0 SUGGESTED SECTIONS by GROUP for LEVEL 1 - FLOOR Fnd = _=Not designed by request • CRITICAL MEMBERS and DESIGN CRITERIA Group Member Criterion Analysis/Design Values Deck Joist jB Bending _------ 0.41 Mnf Jst Mnf Jst Not designed by request Landing j27 Bending 0.17 (2) 2x8 b1 Bending 0.96 408 b19 Bending 0.05 By Others By Others Not designed by request By Others 2 By Others Not designed by request 3.125x10.5 b12 Deflection 0.83 (2) 2x10 b6 Bending 0.85 5.25014 PSL b1B Deflection 0.79 406 b21 Bending 0.88 1.75014 LSL b23 Bending 0.71 Ftg Ftg Not designed by request (2) 2x6 c10 Axial 0.88 404 c42 Axial 0.04 406 c50 Axial 0.25 (3) 2x6 c16 Axial 0.87 6x6 c23 Axial 0.46 (2) 204 c28 Axial 0.84 (3) 2x4 c12 Axial 0.41 Typ Wall wl2 Axial 0.24 Fnd Fnd Not designed by request • DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for yourapplication. 2. DESIGN GROUP OCCURS ON MULTIPLE LEVELS: the lower level result is considered the final design and appears in the Materials List. 3. ROOF LIVE LOAD: treated as a snow load with c esponding duration factor. Add a empty roof level to bypass this interpretation. 4. BEARING: the designer is responsible for ensuring that adequate bearing is provided. 5. GLULAM: bxd =actual breadth x actual depth. 6. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 7. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 8. BUILT-UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded. Where beams are side-loaded, special fastening details may be required. 9. SCL-BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. r 10. BUILT-UP COLUMNS: nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. C ('-'''N\ WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN June 28,2010 13:16:53 UNIT C-FRONT LOAD WoodWorks®Sizer 7.1 Conceptb2 de : Beam View Floor 2 : 8 ' , _ b1 ■ ■ b21■ I -- E b10 b18 b3 NI b191111=11b20 11,,,71).-1,72,r' a _r_-[4_,L4 S �- C- (-,() _ WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN UNIT C-REAR LOAD WoodWorks®Sizer 7.1 June 28,2010 13:26:28 Concept mode : Beam View Floor 2 : 8 ' b12 2,e-6 c-- u 0 _ C b24 b23 -.,,.. * b10 b11 , b19 mot gi ge a-c DS - b2111==1111b20 4 '`_•• 0-:CO 2 C.: ' " '" "' • "" - ' LOCI` (13 WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN UNIT C-FRONT LOAD WoodWorks®Sizer 7.1 June 28,2010 13:16:55 Co c24ept Mode : Column View Floor 2 : 8 ' h47.� C4 _c2 c38 u s ,s r w c50 c51 _v. 'c33 c34 =c35 c47 ,c19 071 _ a c36 ,a t1c18 c22 4 c23 c41 Y- e cI eriF�S c42 1c43 _'" ^ LC ct_i. E EL WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN UNIT C-FRONT LOAD WoodWorks®Sizer 7.1 June 28,2010 13:16:49 Concept Mode : Beam View Floor 3 : 17 ' b4 b22 b24 ®s23 b16 b14 b17 lR TM WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN UNIT C-FRONT LOAD WoodWorks®Sizer 7.1 June 28,2010 13:16:46 Concept Mode : Column View Floor 3 : 17 ' 72 c9 c10 4-. Lt V, _4_rte -, c48 cA 9 G r K Cit ' r cL ,a c12 ,c11r c26 c27 I _ .f c39c40 . _ Y Y, _�Cr s n 3, -r s c./2)C`7,1: WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN UNIT C-FRONT LOAD WoodWorks®Sizer 7.1 June 28,2010 13:16:41 - Concept Mode : Beam View Roof: 25 ' b5 333 • _ v b6 mt :=." WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN UNIT C-FRONT LOAD WoodWorks®Sizer 7.1 June 28,2010 13:16:44 Concept Mode : Column View Roof: 25 ' .E v c13 c14 L, T -h u s .', 5.s Gr_:, -" c16 c15 W y _ . � _ .. _. _2 2 _..L 1 _Lit._2.-2. .._. _2.2 - ,_','2,.E-":<,77_, C- COMPANY PROJECT eft WoodWorks® SOFTWARE FOR WOOD DESIGN June 28,2010 13:20 j8 Design Check Calculation Sheet Sizer 7.1 ::::::::;;;, ,,,7 OADS (lbs,psf,or pif _ i Load Type Distribution Magnitude Location [ft] Units Start End Start End Loadl Live Full UDL 53.3 plf Load2 Dead Full UDL 13.3 plf MAXIMUM REACTIONS (lbs)7::.,:7:.:77_:77H:",.:s: ___(:;_;::,7:,i„:7 10, ;;, t Dead 64 64 Live 213 213 Total 277 277 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min.bearing length for joists is 1/2"for exterior supports Lumber-soft, D.Fir-L, No.28" Spaced at 16"c/c;Self-weight of 2.58 plf ind in loads; Lateral support:top=full,bottom=at supports;Repetitive factor:applihere permitted(refer to online help); Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 20 Criterion Analysis Value Design Value Analysis/Desi Shear fv = 32 Fv' = 180 fv/Fv' = 0 Bending(+) fb = 506 Fb' = 1242 fb/Fb' = 0 Live Defl'n 0.06 = <L/999 0.27 = L/360 0 Total Defl'n 0.09 = <L/999 0.40 = L/240 0 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Co LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.200 1.00 1.15 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - 1.00 1.00 2 Emin' 0.58 million 1.00 1.00 - - - 1.00 1.00 2 Shear : LC #2 = D+L, V = 277, V design = 235 lbs Bending(+) : LC #2 = D+L, M = 554 lbs-ft Deflection: LC #2 = D+L EI= 76e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2 Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. COMPANY PROJECT r 1 'Woodworks® _ SOFTWARE FOR WOOD DESIGN June 28,2010 13:21 j27 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End plf Loadl Live Full UDL 53.3 plf Load2 Dead Full UDL 17.3 MAXIMUM REACTIONS (Ibsl and BEARING LENGTHS(inl �� 4 44AR 10' 39 Dead 39 107 Live 107 145 Total 145 Bearing: #2 Load Comb #2 0.5#2 Length 0.50* *Min.bearing length for joists is 1/2"for exterior supports Lumber-soft, D.Fir-L, No.2, 2x6" Spaced at 16"c/c;Self-weight of 1.96 plf included in loads; Lateral support:top=full,bottom=at supports;Repetitive factor:applied where permitted(refer to online help); Analysis vs.Allowable Stress(psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 20 Fv' = 180 fv/Fv' 0.11 Bending(+) fb = 230 Fb' = 1345 fb/Fb' = 0.17 Live Defl'n 0.01 = <L/999 0.13 = L/360 0.070.07 Total Defl'n 0.01 = <L/999 0.20 = L/240 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt- - 0 1Ci0 1Cn LC# Fv' 180 1.00 1.00 1.00 - - - 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.15 1.00 1.00 1.00 1.00 - - Fcp' 625 - 1.00 1.00 - _ - - 1.00 1.00 - 2 -E' 1.6 million 1.00 1.00 - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - Shear : LC #2 = D+L, V = 145, V design = 112 lbs Bending(+) : LC #2 = D+L, M = 145 lbs-ft Deflection: LC #2 = D+L EI= 33e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. �"- GI c:j - COMPANY PROJECT i 1 WoodWorks SOFfWAREFOA WOOD DESIGN June 28,2010 13:26 b11 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or pif) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w56 Dead Partial UD 498.0 498.0 0.00 6.00 plf 2_w56 Rf.Live Partial UD 450.0 450.0 0.00 6.00 plf 3_c46 Dead Point 938 5.00 lbs 4 c46 Rf.Live Point 1350 5.00 lbs MAXIMUM RE! • . . . . . : , ^' � a " t'` -�-� c� -Z `�' '�a� °" � -�� "_ �'� �'°. `��;�.�� ;• s �v=ate -Y_.""c �r. ,,�,�z.'-�; „ s ►_, -aw .�`. -•� ..`n mom_ m r� sy I 0 6�• Dead 1673 2298 Live 1575 2475 Total 3248 4773 Bearing: Load Comb #2 #2 Length 2.32 3.41 LSL, 1.55E,2325Fb, 1-314x14" Self-weight of 7.66 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005 Criterion Analysis Value Design Value Analysis/Design Shear fv* = 207 Fv' = 356 fv*/Fv' = 0.58 Bending(+) fb = 1159 Fb' = 2674 fb/Fb' = 0.43 Live Defl'n 0.03 = <L/999 0.20 = L/360 0.15 Total Defl'n 0.07 = L/980 0.30 = L/240 0.24 *The effect of point loads within a distance d of the support has been included as per NDS 3.4.3.1 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 1.00 - 1.00 2 Fb'+ 2325 1.15 1.00 1.000 1.00 1.00 1.00 - 2 Fcp' 800 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D+L, V = 4773, V design* = 3386 lbs Bending(+) : LC #2 = D+L, M = 5520 lbs-ft Deflection: LC #2 = D+L EI= 620e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limbeitrs):athree aapparcohperdiatSeCfoLr syeoleucr taiopnpliiscafotiropnr elimi2. SCL-BEAMS(Structural Composite Lumnary design only.For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials.They can be changed in the database editor. C-- 61 COMPANY PROJECT r 1 WoodWorks® - SOFTWARE FOR WOOD DESIGN June 28,2010 13:21 b1 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w33 Dead Partial UD 402.0 402.0 0.00 1.50 plf 2_w33 Rf.Live Partial UD 450.0 450.0 0:500 1.50 plf f 3 c9 Dead Point 985 bs q 1.50 lbs cg Rf.Live Point 1470 5 plf �9 Dead Full UDL 47.7 plf 6 j9 Live Full UDL 160.0 plf Load7 Live Full UDL 40.0 plf Loads Dead Full UDL 13.0 MAXIMUM RI t*"g-� ., $s -`4 'x.5` z,"��"'Y A•Sf t4` £ � � d ,.,� �,., . > .:,,,� �, .,� "` : is - s3 .y, .f 2 a ` '«s 'C* §y ,.a.six ' wa"x v r",.- �i a �.- 4�� �,r .xe. � � max:����a�r� �'z�-�w 31 1ZFI 0' 742 Dead 1043 1204 Live 1541 1946 Total 2585 Bearing: 1.04 Load Comb #2 #2 Length 1.38 Lumber n-ply, D.Fir-L, No.2,2x8", 2-Plys Self-weight of 5.17 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 135 Ey' = 207 fv/Fv' = 0.65 Bending(+) fb = 1196 Fb' = 1242 fb/Fb' = 0.96 Live Defl'n 0.01 = <L/999 0.10 = L/360 0.19 14 Total Defl'n 0.03 = <L/999 0.15 = L/240 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt00 1Ci0 1C00 LC# FFv' 180 1.15 1.00 1.00 - - 2 Fb'+ 900 1.15 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 -1.00 1.00 - Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - -2 E' 1.6 million 1.00 1.00 - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - Shear : LC #2 = D+L, V = 2585, V design = 1961 lbs Bending(+) : LC #2 = D+L, M = 2619 lbs-ft Deflection: LC #2 = D+L EI= 76e06 lb-int/ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3.BUILT-UP BEAMS:it is assumed that each ply is a single continuous member(that is,no butt joints are present)fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded.Where beams are side-loaded,special fastening details may be required. C- COMPANY PROJECT 1 WoodWorksti SOFTWARE FOR WOOD DESIGN June 28,2010 13:18 b12 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j8 Dead Partial UD 47.7 47.7 0.00 4.50 plf 2_j8 Live Partial UD 160.0 160.0 0.00 4.50 plf 3_j9 Dead Partial UD 47.7 47.7 4.50 7.50 plf 4j9 Live Partial UD 160.0 160.0 4.50 7.50 plf 5_j10 Dead Partial UD 47.7 47.7 7.50 16.00 plf 6 j10 Live Partial UD 160.0 160.0 7.50 16.00 plf MAXIMUM REACTIONS(lbs) and BEARING LENGTHS (in) : te=n � �, . w ,,' , -. .,: gym,. -� . . Pz ;V. . ..:_,. , ., m,f .77:_ .n. .w_. ,1_,.-x . �..cil..„= .;.. 1 10 164 Dead 442 442 Live 1280 1280 Total 1722 1722 Bearing: • Load Comb #2 #2 Length 0.85 0.85 Glulam-Unbal.,West Species, 24F-V4 DF, 3-1/8x10-1/2" Self-weight of 7.55 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 70 Fv' = 265 fv/Fv' = 0.26 Bending(+) fb = 1440 Fb' = 2400 fb/Fb' = 0.60 Live Defl'n 0.43 = L/441 0.53 = L/360 0.82 Total Defl'n 0.66 = L/290 0.80 = L/240 0.83 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D+L, V = 1722, V design = 1534 lbs Bending(+) : LC #2 = D+L, M = 6890 lbs-ft Deflection: LC #2 = D+L EI= 543e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM: bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension), Fcp(comp'n). COMPANY PROJECT 11 114 WoodWorks® _ SOFTWARE FOR WOOD DESIGN June 28,2010 13:17 b17 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w49 Dead Partial UD 402.0 402.0 4.00 7.50 plf 2_w49 Snow Partial UD 450.0 450.0 4.00 4.00 7.50 pit 3_c15 Dead Point 938 4.00bs lbs 4 c15 Snow Point 1350plf Load5 Dead Full UDL 13.0 plf Load6 Live Full UDL 40.0 MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) : .. � � ;,F- ,w,:, T`.--- ,t' x --ers ..--s ite as � �' y,L -' 71,;-_,:---;':,•:,.. a ,- :,•:,.- y'. v', 5 a:- ', ^. "` z cr...-��* ,--- A, A 7'-6'l 10' 1656 Dead 843 1927 Live 997 3584 - Total 1841 Bearing: #4 Load Comb #4 2.56 Length 1.31 . LSL, 1.55E,2325Fb, 1-3/4x14" Self-weight of 7.66 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi) and Deflection (in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 162 Fv' = 356 fv/Fv' = 0.45 Bending(+) fb = 1511 Fb' = 2674 fb/Fb' = 00.57 Live Defl'n 0.06 = <L/999 0.25 = L/360 0.33 Total Defl'n 0.12 = L/722 0.37 = L/240 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr CfrtCi 1.00CnLC# Fv' 310 1.15 - 1.00 - - - 1.00 - 4 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1_00 1.00 1.00 - - - Fcp' 800 - - 1.00 - - _ - - - 4 E' 1.5 million - 1.00 - 1.00 - Emin' 0.80 million - 1.00 - - - 1.00 4 Shear : LC #4 = D+S, V = 3584, V design = 2643 lbs Bending(+) : LC #4 = D+S, M = 7198 lbs-ft Deflection: LC #4 = D+S EI= 620e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. - 2.SCL-BEAMS(Structural Composite Lumber):the attached SCL selection is for preliminary design only.For final member design contact your local SCL manufacturer. 3.Size factors vary from one manufacturer to another for SCL materials.They can be changed in the database editor. C- CiIt 1\-. COMPANY PROJECT i WoodWorks SOFTWARE FOR WOOD DESIGN June 28,2010 13:51 b18 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_c16 Dead Point 938 5.00 lbs 2 c16 Rf.Live Point 1350 5.00 lbs 3 w37 Dead Partial UD 498.0 498.0 15.00 16.00 plf 4 w37 Rf.Live Partial UD 450.0 450.0 15.00 16.00 plf 5 w54 Dead Partial UD 498.0 498.0 14.50 15.00 plf 6_w54 Rf.Live Partial UD 450.0 450.0 14.50 15.00 plf 7 w55 Dead Partial UD 96.0 96.0 6.00 7.00 plf 8 w56 Dead Partial UD 498.0 498.0 0.00 6.00 plf 9 w56 Rf.Live Partial UD 450.0 450.0 0.00 6.00 plf 10_c39 Dead Point 843 7.00 lbs 11 c39 Rf.Live Point 1147 7.00 lbs 12_c40 Dead Point 1656 14.50 lbs 13 c40 Rf.Live Point 2077 14.50 lbsak MAXIMUM REACTIONS(lbs)and BEARING LENGTHS (in) : Z «� r,- A 10' 161 Dead 3950 3630 Live 3994 3956 Total 7944 Bearing: 7586 Load Comb #2 #2 Length 2.77 2.64 Glulam-Unbal.,West Species, 16F-E3 DF, 5-1/8x16-1/2" Self-weight of 19.47 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 117 Fv' = 247 fv/Fv' = 0.47 Bending(+) fb = 1443 Fb' = 1831 fb/Fb' = 0.79 Live Defl'n 0.21 = L/935 0.53 - L/360 0.38 Total Defl'n 0.49 = L/391 0.80 = L/240 0.61 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 215 1.15 1.00 1.00 - ® - - 1.00 1.00 1.00 2 Fb'+ 1600 1.15 1.00 1.00 1.000 0.995 1.00' 1.00 1.00 1.00 - 2 Fcp' 560 - 1.00 1.00 - - - - 1.00 - - - E' 1.6 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.79 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D+L, V = 7944, V design = 6613 lbs Bending(+): LC #2 = D+L, M = 27966 lbs-ft Deflection: LC #2 = D+L EI= 3070e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow 14-wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). C- G „....-...._ k. COMPANY PROJECT 1 WoodWorks® - OOD DESIGN, June 28,2010 13:26 b18.1 - Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or pif) : Load Type Distribution SMaagnEnd Start itudionE[ft) Units rt nd 1 w63 Dead Partial UD 402.0 402.0 0.00 1.00 plf 2_w63 Rf.Live Partial UD 450.0 450.0 0.0000 1.00 pif f 3_c9 Dead Point 985 bs 1.00 lbs 4 c9 Rf.Live Point 1470 7 00 lbs 5 c10 Dead Point 985 6 c10 Rf.Live Point 1470 7.00 lbs 7 w64 Dead Partial UD 402.0 402.0 7.00 9.50 plf 8 w64 Rf.Live Partial UD 450.0 450.0 7.00 9.50 plf lf 9 j25 Dead Full UDL 47.7 pplf 10 j25 Live Full UDL 160.0 plf Loadll Dead Full UDL 13.0 plf Load12 Live Full UDL 40.0 MAXIMUM REACTIONS (lbs)and BEARING LENGTHS(in) : ' _.,. ' 'r' ---i7.17.1..4- 1,-1-31.1=.xT ,, �,M q f," F - 109'-6'I l 0' 2047 Dead 1977 3189 Live 3226 5236 Total 5204 Bearing: #2 Load Comb #2 2.58 Length 2.56 Glulam-Unbal.,West Species, 24F-V4 DF,3-118x10-112" Self-weight of 7.55 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 195 Fv' = 305 fv/Fv' = 0.64 Bending(+) fb = 2004 Fb' = 2760 fb/Fb' 00.73 .73 Live Defl'n 0.18 = L/627 0.32 = L/360 0 57 Total Defl'n 0.34 = L/335 0.47 = L/240 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt 1.00 Notes0 L 00 LC# Fv '265 1.15 1.00 1.00 - - - 2 Fb'+ 2400 1.15 1.00 1.00 1.000 1.000 1_00 1.00 1.00 1.00.00 Fcp' 650 - 1.00 1.00 - _ - - 1.00 - - 2 E' 1.8 million 1.00 1.00 - _ 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - Shear : LC #2 = D+L, V = 5236, V design = 4256 lbs Bending(+) : LC #2 = D+L, M = 9589 lbs-ft Deflection: LC #2 = D+L EI= 543e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provconnsof NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp( p'')• C__-- \, COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN June 28,2010 13:21 b19 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j24 Dead Full UDL 51.0 plf 2 j24 Live Full UDL 75.0 plf MAXIMUM RE a - - - - - • EAS TW • n r z� c . ; 0s,.. A A 10' 34 Dead 86 86 Live 112 112 Total 198 198 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min.bearing length for beams is 1/2"for exterior supports Lumber-soft, D.Fir-L, No.2,4x8" Self-weight of 6.03 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 7 Fv' = 180 fv/Fv' = 0.04 Bending(+) fb = 58 Fb' = 1170 fb/Fb' = 0.05 Live Defl'n 0.00 = <L/999 0.10 = L/360 0.01 Total Defl'n 0.00 = <L/999 0.15 = L/240 0.01 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D+L, V = 198, V design = 118 lbs Bending(+) : LC #2 = D+L, M = 149 lbs-ft Deflection: LC #2 = D+L EI= 178e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. C-- et\ COMPANY PROJECT r`l WoodWorks° SOFTWARE FOR WOOD DESIGN June 28,2010 13:17 b23 _ Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or pif) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1214 Dead Partial UD 78.0 78.0 0.00 7.00 plf 2214 Live Partial UD 240.0 240.0 0.00 7.00 plf 3_j29 Dead Partial UD 78.0 78.0 7.00 10.50 plf 4_j29 Live Partial UD 240.0 240.0 7.00 10.50 plf 5231 Dead Partial UD 26.0 26.0 7.00 10.50 plf 62 31 Live Partial UD 80.0 80.0 _0000 10.50 pit 77 b24 Dead Point 409 bs 8 b24 Live Point 1080 7.00 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS(in) i7,:." a` "` :' -,�.*e' ,.,.,;; ,_., €- _ tet:�, &,,,, - .:,„ "v-''47 . -. .. - 2: +".7 - P - '�w ' , w 4 T-- .mss 10'-6'{ I0� 798 Dead 601 2213 Live 1667 3012 Total 2268 Bearing: #2 Load Comb #2 2.#2 Length 1.62 LSL, 1.55E, 2325Fb, 1-314x14" Self-weight of 7.66 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 154 Fv' = 310 fv/Fv' 0.50 Bending(+) fb = 1658 Fb' = 2325 fb/Fb' = 0.71 Live Defl'n 0.18 = L/714 0.35 = L/360 0.50 Total Defl'n 0.27 = L/462 0.52 = L/240 0.52 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.00 - 1.00 - - - 1.00 - 1.00 2_ - 2 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1_00 1.00 1.00 - - - Fcp' 800 - - 1.00 - - - - - - E' 1.5 million - 1.00 - 1.00 Emin' 0.80 million - 1.00 - - 1.00 2 Shear : LC #2 = D+L, V = 3012, V design = 2515 lbs Bending(+) : LC #2 = D+L, M = 7897 lbs-ft Deflection: LC #2 = D+L EI= 620e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.SCL-BEAMS(Structural Composite Lumber):the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. i3.Size factors vary from one manufacturer to another for SCL materials.They can be changed in the database editor. Ci - C( COMPANY PROJECT i WoodWorks' SOFTWARE FOR WOOD DESIGN June 28,2010 13:17 b24 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End Loadl Dead Full UDL 200.0 plf Load2 Live Full UDL 540.0 plf MAXIMUM REACTIONS (Ibsl and AFARING_I FNGTHS linl : 44 Dead 409 409 Live 1080 1080 Total 1489 1489 Bearing: Load Comb #2 #2 Length 0.68 0.68 Lumber-soft, D.Fir-L, No.2,4x6" Self-weight of 4.57 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 89 Fv' = 180 fv/Fv' = 0.50 Bending(+) fb = 1013 Fb' = 1170 fb/Fb' = 0.87 Live Defl'n 0.04 = <L/999 0.13 = L/360 0.30 Total Defl'n 0.06 = L/764 0.20 = L/240 0.31 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.00 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D+L, V = 1489, V design = 1148 lbs Bending(+) : LC #2 = D+L, M = 1489 lbs-ft Deflection: LC #2 = D+L EI= 78e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. C OR COMPANY PROJECT 1 WoodWorks® _ SOFTWARE FOR WOOD DESIGN June 28,2010 13:22 c10 - Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 c14 Dead Axial 938 (Eccentricity = 0.00 in) 2 c14 Rf.Live Axial 1350 (Eccentricity = 0.00 in) 3_b4 Dead Axial 47 (Eccentricity = 0.00 in) 4 b4 Live Axial 120 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs) 0' Lumber n-ply, Hem-Fir, No.2, 2x6",2-Plys Self-weight of 3.41 plf included in loads; Pinned base;Loadface=depth(d);Built-up fastener:nails;Ke x Lb: 1.00 x 9.00=9.00[ft];Ke x Ld:1.00 x 9.00=9.00[ft]; Analysis vs.Allowable Stress(psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Anaysis/Design88 Axial fc = 151 Fc' = 172 fc/Fc' Bearing fc = 151 Fc* = 1644 fc/Fc* = 0.09 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cfrt rt 1Ci LC# Fc' 1300 1.15 1.00 1.00 0.104 1.100 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 Axial : LC #2 = D+L, P = 2485 lbs Kf = 0.60 (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.BUILT-UP COLUMNS:nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. COMPANY PROJECT tit WoodWorks® SOFTWARE FOR WOOD DESIGN June 28,2010 13:25 c12 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End l b23 Dead Axial 601 (Eccentricity = 0.00 in) 2 b23 Live Axial 1667 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): 0' 9' Lumber n-ply, Hem-Fir, No.2, 2x4", 3-Plys Self-weight of 3.25 plf included in loads; Pinned base; Loadface=depth(d);Built-up fastener:nails; Ke x Lb: 1.00 x 9.00=9.00[ft];Ke x Ld: 1.00 x 9.00=9.00[ft];Repetitive factor: applied where permitted(refer to online help); Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Axial fc = 146 Fc' = 356 fc/Fc' = 0.41 Axial Bearing fc = 146 Fc* = 1495 fc/Fc* = 0.10 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.238 1.150 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D+L, P = 2297 lbs Kf = 0.60 (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2.BUILT-UP COLUMNS: nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. COMPANY PROJECT 0°44 Woodworks' SOFTWARE FOR WOOD DESIGN June 28,2010 13:23 c16 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b6 Dead Axial 938 (Eccentricity = 0.00 in) 2—b6 Rf.Live Axial 1350 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs) ,i _I.. ,:- sg;: _ `a, _' nasi. l 17' 0' Lumber n-ply, Hem-Fir, No.2, 2x6",3-Plys Self-weight of 5.11 plf included in loads; Pinned base;Loadface=depth(d);Built-up fastener: nails;Ke x Lb:1.00 x 17.00=17.00[ft];Ke x Ld: 1.00 x 17.00=17.00[ft];Repetitive factor: applied where permitted(refer to online help); Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Axial fc = 96 Fc' = 110 fc/Fc' = 0.87 Axial Bearing fc = 96 Fc* = 1644 fc/Fc* = 0.06 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cf rt Ci LC# Fc' 1300 1.15 1.00 1.00 0.067 1.100 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D+L, P = 2375 lbs Kf = 0.60 (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.BUILT-UP COLUMNS:nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. COMPANY PROJECT I WoodWorks0 SOFTWARE FOR WOOD DESIGN June 28,2010 13:25 c23 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End l b18 Dead Axial 3978 (Eccentricity = 0.00 in) 2 b18 Rf.Live Axial 3994 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): A 8' Timber-soft, Hem-Fir, No.2,6x6" Self-weight of 6.25 plf included in loads; Pinned base;Loadface=depth(d);Ke x Lb: 1.00 x 8.00=8.00[ft];Ke x Ld: 1.00 x 8.00=8.00[ft]; Analysis vs.Allowable Stress (psi)and Deflection (in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Axial fc = 265 Fc' = 548 fc/Fc' = 0.48 Axial Bearing fc = 265 Fc* = 661 fc/Fc* = 0.40 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# - Fc' 575 1.15 1.00 1.00 0.829 1.000 - - 1.00 1.00 2 Fc* 575 1.15 1.00 1.00 - 1.000 - - 1.00 1.00 2 Axial : LC #2 = D+L, P = 8022 lbs (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. COMPANY PROJECT 1I WoodWorks® SOFTWARE FOR WOOD DESIG June 28,2010 13:23 c28 - Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_b24 Dead Axial 409 (Eccentricity = 0.00 in) 2 b24 Live Axial 1080 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs) 0' Lumber n-ply, Hem-Fir, No.2,2x4",2-Plys Self-weight of 2.17 plf included in loads; Pinned base;Loadface=depth(d);Built-up fastener: nails;Ke x Lb: 1.00 x 9.00=9.00[ft];Ke x Ld: 1.00 x 9.00=9.00[ft]; Analysis vs.Allowable Stress(psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design 84 Axial fc = 144 Fc' = 171 Axial Bearing fc = 144 Fc* = 1495 fc/Fc 0.10 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cf rt Ci LC# 1.00 1.00 2 Fc' 1300 1.00 1.00 1.00 0.114 1.150 - -1.150 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - Axial : LC #2 = D+L, P = 1509 lbs Kf = 0.60 (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2. BUILT-UP COLUMNS:nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. c- 6,\( \k--\,_ COMPANY PROJECT i 1 WoodWorks® SOFIWARF FOR WOOD DESIGN June 28,2010 13:22 c42 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b19 Dead Axial 86 (Eccentricity = 0.00 in) 2-b19 Live Axial 112 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): r;;�r�, .Y,s ,�.._e a �' -�-� � � < �� � ... ' �� �. l 0' 8' Lumber Post, Hem-Fir, No.2,4x4" Self-weight of 2.53 plf included in loads; Pinned base;Loadface=depth(d);Ke x Lb: 1.00 x 8.00=8.00[ft];Ke x Ld: 1.00 x 8.00=8.00[ft]; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Axial fc = 18 Fc' = 470 fc/Fc' = 0.04 Axial Bearing fc = 18 Fc* = 1495 fc/Fc* = 0.01 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.315 1.150 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D+L, P = 218 lbs (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. �� 61"\(. 6." COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN June 28,2010 13:22 c50 .- Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End l c48 Dead Axial 599 (Eccentricity = 0.00 in) 2 c48 Live Axial 1660 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs) Aim a "� e a , , p, O O Lumber Post, Hem-Fir, No.2,4x6" Self-weight of 3.98 plf included in loads; Pinned base;Loadface=depth(d);Ke x Lb: 1.00 x 8.00=8.00[ft];Ke x Ld: 1.00 x 8.00=8.00[ft]; Analysis vs.Allowable Stress(psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value6Analysis/Design Axial fc = 119 Fc' fc/Fc' = 0.25 Axial Bearing fc = 119 Fc* = 1430 fc/Fc* = 0.08 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cf rt Ci LC# Fc' 1300 1.00 1.00 1.00 0.327 1.100 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D+L, P = 2291 lbs (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. jc. V ) Grp 0 SDD CD • 0 0 11 0 0 Z Pz _ 0 ec\ c-> ; I fl Ji 4-1 )' f ( z° Q1,1 -Dr-N1\c 0 (-) 0 INIXl\ \CA ri 3 0 V.k02 1119M 4.--6(-4 RI 0 M !-7 1 SJ-0,LI)-C,Q\zt I\Oji-"Mt \ \AA. %_0(1 SOSCOB _1_03 Q190 Piap 0 3_Lva -ON eor COMPANY PROJECT ® - i 1 WoodWorks __..._...i...•••i•i. SOFTWARE FOP WOOD DESIGN June 28,2010 13:36 b17 LC1 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) = Location [ft] Units Load Type Distribution StMart En-e Start End 1 w49 lf Dead Partial UD 402.0 402.0 4.00 7.50 plf 2 w49 Snow Partial UD 450.0 450.0 4.00 7 50 lbs 3 c15 Dead point 938 1350 4.00 lbs 4 c15 Snow Point plf Loads Dead Full UDL 13.0 plf Load6 Live Full UDL 40.0 lbs wind Wind Point 2240 4.00 MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) --.- ---,4'.."'.-'.'- . ',2".:.--:- ..e ,,,4„:7&-54,-...- ' .' - ,- "m""'1-," % -a, "s a,�'.� .t----- ' '^ "t` ``1".,, y.4_,,-rtea": y z ..,. "�s .�. "� -:-..,,:z-4.,,,- -,,'� �,,,.,.. '"' x�`t' •"�.,L.r,4 >. .:�,v�e- A,-- A 10' 1656 Dead 843 2454 Live 1645 4110 Total 2488 #4 Bearing: Load Comb #4 2.94 Length 1.78 LSL, 1.55E,2325Fb, 1-314x14" Self-weight of 7.66 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi) and Deflection (in) using NDS 2005 Criterion Analysis Value Design Value Anfv/Fvs/Desig45 Shear fv = 162 Fv' = 356 - Bending(+) fb = 1511 Fb' = 2674 fb/Fb' - 0.57 0.34 Live Defl'n 0.09 = <L/999 0.25 = L/360 0.41 Total Defl'n 0.15 = L/580 0.37 = L/240 ADDITIONAL DATA: 1.00 - FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrrtt Ci 1.00CnL6# Fv' 310 1.15 1.00 - - - -- 6 1.00 1.000 1.00 - 1.00 1.00 Fb'+ 2325 1.15 - - 1.00 - - - Fcp' 800 - 1.00 _ _ 1.00 4 E' 1.5 million 1.00 _ - 1.00 - - 4 Emin' 0.80 million - 1.00 - - LC #6 = D+S, V = 3584, V design = 2643 lbs Shear 7198 lbs-ft Bending(+) LC #6 = D+S, M Deflection: LC #4 = D+.75(L+S+W) EI= 620e06Llbe1Load Deflection. Total Deflection = 1.50(Dead Load Deflection) (D-dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.SCL-BEAMS(Structural Composite Lumber):the attached SCL selection is for preliminary design only.For final member design contact your local SCL manufacturer. 3.Size factors vary from one manufacturer to another for SCL materials.They can be changed in the database editor. CTh COMPANY PROJECT di WoodWorks° SOFTWARE FOR WOOD DESIGN June 28,2010 13:36 b17 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w49 Dead Partial UD 402.0 402.0 4.00 7.50 plf 2 w49 Snow Partial UD 450.0 450.0 4.00 7.50 plf 3_c15 Dead Point 938 4.00 lbs 4 c15 Snow Point 1350 4.00 lbs Load5 Dead Full UDL 13.0 plf Load6 Live Full UDL 40.0 plf wind Wind Point -2240 4.00 lbs MAXIMUM REACTIONS lbs and BEARING LENGTHS in : �",. ^` `� �.. ''-• �-. . oma. n� �-�. -*�" � - . - " ra -yam• -z ,� x``-.icy • A A ►tet 10' Dead 843 1656 Live 997 1927 Uplift 528 189 Total 1841 3584 Bearing: Load Comb #6 #6 Length 1.31 2.56 LSL, 1.55E, 2325Fb, 1-3/4x14" Self-weight of 7.66 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection (in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 162 Fv' = 356 fv/Fv' = 0.45 Bending(+) fb = 1511 Fb' = 2674 fb/Fb' = 0.57 Bending(-) fb = 469 Fb' = 1114 fb/Fb' = 0.42 Live Defl'n 0.06 = <L/999 0.25 = L/360 0.22 Total Defl'n 0.12 = L/722 0.37 = L/240 0.33 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 6 Fb'+ 2325 1.15 1.00 1.000 1.00 - 1.00 1.00 - - Fb'- 2325 1.60 - 1.00 0.299 1.00 - 1.00 1.00 - - Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 6 Emin' 0.80 million - 1.00 - - - - 1.00 - - 6 Shear : LC #6 = D+S, V = 3584, V design = 2643 lbs Bending(+) : LC #6 = D+S, M = 7198 lbs-ft Bending(-) : LC #8 = .6D+W, M = 2235 lbs-ft Deflection: LC #6 = D+S EI= 620e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.SCL-BEAMS(Structural Composite Lumber):the attached SCL selection is for preliminary design only.For final member design contact your local SCL manufacturer. 3.Size factors vary from one manufacturer to another for SCL materials.They can be changed in the database editor. 62'9 COMPANY PROJECT I WoodWorks0 SOFTWARE FOR WOOD DESIGN June 28,2010 13:41 b18 Id Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 c16 Dead Point 938 5.00 lbs 2 c16 Snow Point 1350 5.00 lbs 3 w37 Dead Partial UD 498.0 498.0 15.00 16.00 plf 4 w37 Snow Partial UD 450.0 450.0 15.00 16.00 plf 5 w54 Dead Partial UD 498.0 498.0 14.50 15.00 plf 6 w54 Snow Partial UD 450.0 450.0 14.50 15.00 plf 7 w55 Dead Partial UD 96.0 96.0 6.00 7.00 plf 8 w56 Dead Partial UD 498.0 498.0 0.00 6.00 plf 9 w56 Snow Partial UD 450.0 450.0 0.00 6.00 lbs lf 10 c39 Dead Point 843 lbs s 11_c39 Snow Point 1147 7.00 12 c40 Dead Point 1656 14.50 lbs 13 c40 Snow Point 2077 14.50 lbs WIND1 Wind Point 8750 0.00 lbs WIND2 Wind Point -8750 7.00 lbs MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in): ',-4--`,:4,.., '&' Y Ate' � ." yy. _ �_ .3 , '.R1 .. ,-A,. A 161 1 0' 3630 Dead 3950 3956 Live 5866 3956 Uplift 7586 Total 9816 Bearing: #2 Load Comb #3 2.#2 Length 2.95 Glulam-Unbal.,West Species,24F-V4 DF,5-118x16-112" Self-weight of 19.47 plf included in loads; Lateral support:top=full,bottom=at supports: Analysis vs.Allowable Stress(psi)and Deflection (in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 117 Fv' = 305 fv/Fv' = 0.38 Bending(+) fb = 1443 Fb' = 2747 fb/Fb' 0.53 Bending(-) fb = 1354 Fb' = 2743 fb/Fb' - 0.49 Live Defl'n -0.43 = L/446 0.53 = L/360 0.81 Total Defl'n -0.26 = L/737 0.80 = L/240 0.33 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes, Cn LC# Fv' 265 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.15 1.00 1.00 1.000 0.995 1.00 1.00 1.00 1.00 - Fb'- 1850 1.60 1.00 1.00 0.927 1.000 1.00 1.0001.00 1.001.00 - 4 Fcp' 650 - 1.00 LOU - - - 1.00 - - 4 E' 1.8 million 1.00 1.00 - - 1.00 - - 4 Emin' 0.85 million 1.00 1.00 - - Shear : LC #2 = D+S, V = 7944, V design = 6613 lbs Bending(+) : LC #2 = D+S, M = 27966 lbs-ft Bending(-) : LC #4 = .6D+W, M = 26233 lbs-ft Deflection: LC #4 = .6D+W EI= 3453e06 lb-int Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). ( 02)0 COMPANY PROJECT I 1 WoodWorks° SOFTWARE FOR WOOD DESIGN June 28,2010 13:41 b18 Ic2 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or pif) : Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_c16 Dead Point 938 5.00 lbs 2 c16 Snow Point 1350 5.00 lbs 3 w37 Dead Partial UD 498.0 498.0 15.00 16.00 plf 4_w37 Snow Partial UD 450.0 450.0 15.00 16.00 plf 5_w54 Dead Partial UD 498.0 498.0 14.50 15.00 plf 6 w54 Snow Partial UD 450.0 450.0 14.50 15.00 plf 7 w55 Dead Partial UD 96.0 96.0 6.00 7.00 plf 8 w56 Dead Partial UD 498.0 498.0 0.00 6.00 plf 9 w56 Snow Partial UD 450.0 450.0 0.00 6.00 plf 10_c39 Dead Point 843 7.00 lbs ll c39 Snow Point 1147 7.00 lbs 12 c40 Dead Point 1656 14.50 lbs 13 c40 Snow Point 2077 14.50 lbs WIND1 Wind Point -8750 0.00 lbs WIND2 Wind Point 8750 7.00 lbs MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in): '" i -, �,. ,•,,q wa w--, ' '�" -;:,L . a.,.,-s. .• '- ' ` t y::_ {= 5 r it a -,�ssxr x.x+, , "' ms's-re,--%T�k r p+^hr^^ ' `' }� Ge".-,;; { 1 0. 161 - Dead 3950 Live 3994 3630 Uplift 1396 5838 Total 7944 Bearing: 9468 Load Comb #2 #3 Length 2.38 2.84 Glulam-Unbal.,West Species,24F-V4 DF, 5-1/8x16-1/2" Self-weight of 19.47 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 168 Fv' = 424 fv/Fv' = 0.40 Bending(+) fb = 2579 Fb' = 3822 fb/Fb' = 0.67 Live Defl'n 0.41 = L/467 0.53 = L/360 0.77 Total Defl'n 0.58 = L/331 0.80 = L/240 0.72 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.60 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 2400 1.60 1.00 1.00 1.000 0.995 1.00 1.00 1.00 1.00 - 3 Fcp' 650 - 1.00 1.00 - - - - .1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 3 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 3 Shear : LC #3 = D+.75(S+W), V = 10637, V design = 9461 lbs Bending(+) : LC #3 = D+.75(S+W), M = 49976 lbs-ft Deflection: LC #3 = D+.75(S+W) EI= 3453e06 lb-in2 Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). COMPANY PROJECT di WoodWorks® SOKlN'ARf FOR tY006 DESIGN June 28,2010 13:41 b18 Ic2 NO LL Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) : Load Type Distribution Magnitude Location [ft) Units Start End Start End Dead Point 938 5.00 lbs 2 c16 2 c16 Snow Point 1350 5.00 lbs 3 w37 Dead Partial UD 498.0 498.0 15.00 16.00 plf 4_w37 Snow Partial UD 450.0 450.0 15.00 16.00 plf 5 w54 Dead Partial UD 498.0 498.0 14.50 15.00 plf 6 w54 Snow Partial UD 450.0 450.0 14.50 15.00 plf 7 w55 Dead Partial UD 96.0 96.0 6.00 7.00 plf 8 w56 Dead Partial UD 498.0 498.0 0.00 6.00 plf f 10 c39 Dead Point 843 'Deadbs Point 1656 14.50 lbs 12 -8750 WIND10.00 lbs Wind Point WIND2 Wind Point 8750 7.00 lbs MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) n A 164 Ip' 3630 Dead 3950 3670 Live 960 Uplift 1396 7300 Total 4910 Bearing: #3 Load Comb #2 2.#3 Length 1.47 Glulam-Unbal.,West Species,24F-V4 DF,5-1/8x16-112" Self-weight of 19.47 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 135 Fv' = 424 fv/Fv' 0.32 Bending(+) fb = 2202 Fb' = 3822 fb/Fb' - 0.590.58 Live Defl'n 0.31 = L/614 0.53 = L/360 0.60 Total Defl'n 0.48 = L/398 0.80 = L/240 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr 1.00C- frt Notes tes 1Cn LC# Fv' 265 1.60 1.00 1.00 - 4 Fb'+ 2400 1.60 1.00 1.00 1.000 0.995 1.00 1_00 1.00 1.00 1.00 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - 3 E' 1.8 million 1.00 1.00 - - - 1.00 - - 3 Emin' 0.85 million 1.00 1.00 - - Shear : LC #3 = D+.75(S+W), V = 8361, V design = 7630 lbs Bending(+) : LC #4 = .6D+W, M = 42673 lbs-ft Deflection: LC #3 = D+.75(S+W) EI= 3453e06 lb-int Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). COMPANY PROJECT I WoodWorks® SOFTWARE FOR WOOD DESTCN June 28,2010 13:42 b18 Ic1 NO LL Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_c16 Dead Point 938 5.00 lbs 2_c16 Snow Point 1350 5.00 lbs 3_w37 Dead Partial UD 498.0 498.0 15.00 16.00 plf 4 w37 Snow Partial UD 450.0 450.0 15.00 16.00 plf 5 w54 Dead Partial UD 498.0 498.0 14.50 15.00 plf 6-w54 Snow Partial UD 450.0 450.0 14.50 15.00 plf 7 w55 Dead Partial UD 96.0 96.0 6.00 7.00 plf 8 w56 Dead Partial UD 498.0 498.0 0.00 6.00 plf 10 c39 Dead Point 843 7.00 lbs 12 c40 Dead Point 1656 14.50 lbs WIND1 Wind Point 8750 0.00 lbs WIND2 Wind Point -8750 7.00 lbs MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) : `' , t Aayn:.. Z,.rzs.. a +=-^;:4; 'S' .. "; .t„'z£dt r, :, ,. ,4,.+..xz _a _✓. a«n ::':f, ;;:: >., wn.a� ..3»1a ,4W.«ri.m..w,exo-i 10' 16/1 Dead 3950 Live 3591 3630 Uplift 1065 .. Total 7541 1588 Bearing: 4695 Load Comb #3 Length 2.26 #2 1.41 Glulam-Unbal.,West Species,24F-V4 DF,5-1/8x16-1/2" Self-weight of 19.47 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 74 Fv' = 305 fv/Fv' = 0.24 Bending(+) fb = 933 Fb' = 2747 fb/Fb' = 0.34 Bending(-) fb = 1354 Fb' = 2743 fb/Fb' = 0.49 Live Defl'n -0.43 = L/446 0.53 = L/360 0.81 Total Defl'n -0.26 = L/737 0.80 = L/240 0.33 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.15 1.00 1.00 - 1.00 1.00 1.00 2 Fb'+ 2400 1.15 1.00 1.00 1.000 0.995 1.00 1.00 1.00 1.00 - 2 Fb'- 1850 1.60 1.00 1.00 0.927 1.000 1.00 1.00 1.00 1.00 - 4 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 4 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 4 Shear : LC #2 = D+S, V = 4910, V design = 4172 lbs Bending(+) : LC #2 = D+S, M = 18077 lbs-ft Bending(-): LC #4 = .6D+W, M = 26233 lbs-ft Deflection: LC #4 = .6D+W EI= 3453e06 lb-in2 Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). C- 6,22 COMPANY PROJECT i Woodworks® SOFf'MRE FOB WOOD DESIGN June 28,2010 13:43 beam under 202a LC1 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End dead Dead Full Area 13.00 (1.33)* psf live Live Full Area 40.00 (1.33)* psf wall Dead Partial UD 90.0 90.0 0.00 3.83 p Windl Wind Point 7380 bs Wind2 Wind Point -7380 3.83 lbs *Tributary Width (ft) MAXIMUM REACTIONS (lbs)and BEARING LENGTHS (in) : f '-r :. .------E .ht '?ffifa r- _ ', � '� .. -...^.,,- ,1 f'" '^ "� r" . -4'a [€; "�'" � ,'4" „- awn' - '.._a... •,, , 1r .,,�r e- -3-.:z. ,',-1:--=”'","&"w _.,. ' - t .='"-_s. .---,,,--,77,14-1'o. >�.�. ,z_ A♦ 16i 10, 302 Dead 565 302 Live 1646 1538 Uplift 729 Total 2211 Bearing: #2 Load Comb #3 0.502 Length 0.84 *Min.bearing length for beams is 1/2"for exterior supports PSL, 2.0E,2900Fb,3-112x14" Self-weight of 15.31 plf included in loads; Lateral support:top=at supports,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 160 Fv' = 464 fv/Fv' = 0.34 Bending(+) fb = 324 Fb' = 2433 fb/Fb' 0.13 Bending(-) fb = 2163 Fb' = 2842 fb/Fb' = 00:7867. Live Defl'n -0.46 = L/415 0.53 = L/360 Total Defl'n -0.42 = L/456 0.80 = L/240 0.53 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr 1frrtt Ci 1Cn00 LCC# Fv' 290 1.60 - 1.00 - - 2 Fb'+ 2900 1.00 - 1.00 0.839 1.00 - 1.00 1.00 - 400 - - Fb'- 2900 1.60 - 1.00 0.613 1.00 T 1.00 00 - - Fcp' 750 - - 1.00 - _ _ 1.00 - - _ E' 2.0 million - 1.00 - - 1.00 - - 4 Emin' 1.04 million - 1.00 - - - Shear : LC #4 = .6D+W, V = 5224, V design = 5224 lbs Bending(+) : LC #2 = D+L, M = 3088 lbs-ft Bending(-) : LC #4 = .6D+W, M = 20612 lbs-ft Deflection: LC #4 = .6D+W EI= 1601e06 lb-in2 Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.SCL-BEAMS(Structural Composite Lumber):the attached SCL selection is for preliminary design only.For final member design contact your local SCL manufacturer. 13.Size factors vary from one manufacturer to another for SCL materials.They can be changed in the database editor. COMPANY PROJECT lit WoodWorks� SOFTWARE FOR WOOD DESIGN June 28,2010 13:43 beam under 202a LC2 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End dead Dead Full Area 13.00 (1.33)* psf live Live Full Area 40.00 (1.33)* psf wall Dead Partial UD 90.0 90.0 0.00 3.83 plf Windl Wind Point -7380 0.00 lbs Wind2 Wind Point 7380 3.83 lbs *Tributary Width (ft) MAXIMUM REACTIONS (lbs)and BEARING LENGTHS(in) : 10 A 164 Dead 565 Live 427 302 Uplift 1380 1696 Total 992 Bearing: 1950 Load Comb #2 Length 0.50* #4 *Min. bearing length for beams is 1/2"for exterior supports 0.74 PSL, 2.0E, 2900Fb, 3-1/2x14" Self-weight of 15.31 plf included in loads; Lateral support:top=at supports,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection (in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 181 Fv' = 464 fv/Fv' = 0.39 Bending(+) fb = 2352 Fb' = 2842 fb/Fb' = 0.83 Live Defl'n 0.44 = L/435 0.53 = L/360 0.83 Total Defl'n 0.48 = L/398 0.80 = L/240 0.60 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 290 1.60 - 1.00 - - - 1.00 - 1.00 4 Fb'+ 2900 1.60 - 1.00 0.613 1.00 - 1.00 1.00 4 Fcp' 750 - - 1.00 - - - - 1.00 - - - E' 2.0 million - 1.00 - - - - 1.00 - - 4 Emin' 1.04 million - 1.00 - - - - 1.00 - - 4 Shear : LC #4 = .6D+W, V = 6000, V design = 5909 lbs Bending(+) : LC #4 = .6D+W, M = 22412 lbs-ft Deflection: LC #4 = .6D+W EI= 1601e06 lb-in2 Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.SCL-BEAMS(Structural Composite Lumber):the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3.Size factors vary from one manufacturer to another for SCL materials.They can be changed in the database editor. COMPANY PROJECT "11 0 iii WoodWorks SOFTWARE FOR WOOD DESiCht June 28,2010 13:44 b18 REAR LC1 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) : Load Type Distribution Magnitude Location [ft] Units Start End Start End 1w63 Dead Partial UD 402.0 402.0 0.00 1.00 plf 2w63 Snow Partial UD 450.0 450.0 0.00 1.00 plf _ 3c9 Dead Point 985 1.00 lbs _ 4c9 Snow Point 1470 1.00 lbs 5c10 Dead Point 985 7.00 lbs _ 6c10 ISpm Point 1470 7.00 lbs _ 7w64 Partial UD 402.0 402.0 7.00 9.50 plf 8w64 Snow Partial UD 450.0 450.0 7.00 9.50 plf 9j25 Dead Full UDL 47.7 plf 10 j25 Live Full UDL 160.0 plf _ Loadll Dead Full UDL 13.0 plf Load12 Live Full UDL 40.0 plf W1 Wind Point 6190 1.00 lbs W2 Wind Point -6190 7.00 lbs MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) : ,=,,..*-i_,__ -,-,yi--,rpwk-,-,,zi,-*ttvto-f4:-,rt -,,..,,.-zozioqo-z,tvv-7,-.,v-,:- -,4-,;',. ,•.::mv:00.0,43g,vig ,4'r':_N '.'L' 4',',i,Ze-,,;. -44-14A4-i*ai'":*i'.=rAS;Atiqt'ir 4,170, !..,,,„ --,..,,:_;;,,,,;.•.. :,',:i ..i,;:-:::•,4*.O.LP0 ':,•::„;-,7-::,,,-;,:: •,..:,:ti,;,•,4,,,',1e,,,-.:,,tft4,-Vittightleev4V7".,,,,M--..47.,z1i-VA4. -.4*.,TXWAI.i.,43,A4 .46t.. :,':A',' :Wtirilt40011.MMO'n,',..46 ,.,:: :,-::,,,,,••••4,.•,v,,,,,*-.4,-,Ii ..yav,k...1---1•1;,,,r2:','".1,50-15.ti,V,#) ,454giatM,S-W400;*-4*4;1P,-;-M0,%-7WNOW-',,i,i,.:--.r,•:'-i,'''r "_,,,:-,,z-.-,,,.:,-.i-,' ,',.,-;!,x.,',,:z4v,...,,,,,4seatA,-TAA-4:: ";,,.,',,,z-,-,,,.,•..., ,,;;,,',,,,,,,4:•,:z,,.,-,f,,;;-,,,-,,,, ,..:grehr4,t,WOr-, V;,,,I.A.,,,,,,,,,: ,_:-:0,":r'it4::T'MM'T;!irMV':':e ''-7;,., ,,,,,i'77.7,','',C,?,-: ;.',4j,or;Vr#1.,',:,? _ 1-*!- _. :', , ,_:.,7 ,i.,..r. '.;•g1T-K4:',4,-,-;.!'„ ,,-4., WAV?.4061., ,,N ,S,4 ,,,,,14,7,AMIE41 .0.At7.- ',,MTP. F,Oit4 .-„:-It'll,ONfelMs!WO4,24,,WWWV,?:', 004f0At" --.., I 0 g-64 Dead 1977 2047 Live 5352 2391 Uplift 2667 Total 7329 4439 Load Comb #4 #3 Bearing: Length 3.61 2.19 Glulam-Unbal.,West Species,24F-V4 DF,3-1/8x10-1/2" Self-weight of 7.55 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 297 Fv' = 424 fv/Fv. = 0.70 Bending(+) fb = 1693 Fb' = 2760 fb/Fb' = 0.61 Bending(-) fb = 1580 Fb' = 2844 fb/Fb' - 0.56 Live Defl'n 0.14 = L/837 0.32 = L/360 0.43 Total Defl'n 0.29 = L/386 0.47 = L/240 0.62 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.60 1.00 1.00 - - - - 1.00 1.00 1.00 4 Fb'+ 2400 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 3 Fb'- 1850 1.60 1.00 1.00 0.961 1.000 1.00 1.00 1.00 1.00 - 8 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 3 Rain' 0.85 million 1.00 1.00 - - - 1.00 - 3 Shear : LC #4 = D+.75(L+S+W), V = 7329, V design = 6491 lbs Bending(+): LC #3 = D+.75(L+S), M - 8104 lbs-ft Bending(-): LC #8 - .6D+W, M - 7558 lbs-ft Deflection: LC #3 = D+.75(L+S) EI= 543e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I-impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLUM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 1 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOL}DESIGN June 28,2010 13:44 b18 REAR LC2 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_w63 Dead Partial UD 402.0 402.0 0.00 1.00 plf 2_w63 Snow Partial.UD 450.0 450.0 0.00 1.00 plf 3_c9 Dead Point 985 1.00 lbs 4 c9 Snow Point 1470 1.00 lbs 5_c10 Dead Point 985 7.00 lbs 6 cl0 Snow Point 1470 7.00 lbs 71w64 Dead Partial UD 402.0 402.0 7.00 9.50 plf 8_w64 Snow Partial UD 450.0 450.0 7.00 9.50 plf 9 j25 Dead Full UDL 47.7 plf 10_j25 Live Full UDL160.0 plf Loadll Dead Full UDL 13.0 plf Load12 Live Full UDL 40.0 plf W1 Wind Point -6190 1.00 lbs W2 Wind Point 6190 7.00 lbs MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) : : Wit . 4' a .' �eille;' s " a°lA eT4‘,n .' #F- s. ,_ a .._ ,.., --.,:',.-,•1,-.1,,:,',,,,..-.,-;,- ---,-0.0%..,+,..�`",.' I 0' 9'-e'1 Dead 1977 Live 2420 2047 Uplift 2709 5324 Total 4397 Bearing: 7371 Load Comb #3 Length 2.16 #4 3.63 Glulam-Unbal.,West Species,24F-V4 DF,3-1/8x10-1/2" Self-weight of 7.55 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 299 Fv' = 424 fv/Fv' = 0.70 Bending(+) fb = 3225 Fb' = 3840 fb/Fb' = 0.84 Live Defl'n 0.24 = L/468 0.32 = L/360 0.77 Total Defl'n 0.40 = L/283 0.47 = L/240 0.85 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.60 1.00 1.00 - - - - 1.00 1.00 1.00 4 Fb'+ 2400 1.60 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 4 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 4 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 4 Shear : LC #4 = D+.75(L+S+W), V = 7371, V design = 6533 lbs Bending(+) : LC #4 = D+.75(L+S+W), M = 15434 lbs-ft Deflection: LC #4 = D+.75(L+S+W) EI= 543e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D-dead 1,-live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). 44, Harper Project: ' Houf Peterson Client: Job# Righelils Inc. Date: Pg.# -E-,,a,„.„-,- 4Rti NE --- Designer: I.kN6S F }RC-t 1£ -S• tR iCR� De L' - fleS t S \ Wdl•= 10.—lb •8•ft•20•ft Wdi= 1600•lb ft Seismic Forces Site Class=D Design Category=D Wp:= Wdl IP 1.0 Component Importance Factor (Sect 13.1.3,ASCE 7-05) S1 := 0.339 Max EQ, 5%damped, spectral responce acceleration of 1 sec. S := 0.942 Max EQ, 5%damped, spectral responce acceleration at short period s z:= 9 Height of Component h:= 32 Mean Height Of Roof F := 1.123 Acc-based site coefficient @ .3 s-period (Table 1613.5.3(1), 2006 IBC) a F := 1.722 Vel-based site coefficient @ 1 s-period (Table 1613.5.3(2), 2006 IBC) v Sms:= Fa Ss Smi := Fv-S1 Sds__ 2'Sms Max EQ, 5%damped, spectral responce acceleration at short period 3 Exterior Elements & Body Of Connections a : P= 1.0 R := 2.5 (Table 13.5-1, ASCE 7-05) P 4a •Sds z FP:= pR (1 + 2 h •Wp EQU. 13.3-1 P `` Fpmax:= 1.6•Sds•Ip•WP EQU. 13.3-2 Fpmin •3'Sds'Ip•Wp EQU. 13.3-3 4.,= if(Fp>Fpmax,Fpmax,if(Fp <Fpmin,Fpmin J Fp)) Fp =338.51711b Miniumum Vertical Force 0.2•Sds'Wdl=225.6781-lb , Harper Project: 1l#; .• Houf Peterson client: Job#L77- Righellis Inc. Designer: Date: P # ENGIN E 9l 95 Q Wdl 10' Ib -8-ft-20-ft Wdl= 1600.1b ft Seismic Forces Site Class=D Design Catagory=D Wp-•= Wdl Ip:= 1.0 Component Importance Factor (Sect 13.1.3, ASCE 7-05) S1 := 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. Ss:= 0.942 Max EQ, 5% damped, spectral responce acceleration at short period z:= 9 Height of Component h:= 32 Mean Height Of Roof Fa:= 1.123 Acc-based site coefficient @ .3 s-period (Table 1613.5.3(1), 2006 IBC) Fv-= 1.722 Vel-based site coefficient @ 1 s-period (Table 1613.5.3(2), 2006 IBC) Sms:= Fa-Ss Sml := Fv S1 2 Sms Sds := Max EQ, 5% damped, spectral responce acceleration at short period 3 Exterior Elements & Body Of Connections ap := 1.0 Rp:= 2.5 (Table 13.5-1, ASCE 7-05) 4a Sds i_ z Fp:= p p �1 + 2-hl•Wp EQU. 13.3-1 �, J Fpmax:= 1.6.Sds-Ip-Wp EQU. 13.3-2 Fpmin:= .3•Sds•Ip'Wp EQU. 13.3-3 F4:= if(Fp >Fpmax,Fpmax,if(Fp <Fpmin,Fpmin,Fp)) Fp =338.5171-lb Miniumum Vertical Force 0.2.Sds•Wdl =225.6781•lb BYA \i\L„.., DATE \\/0\, V'j���q/j(� � OF JOB NO.: . '. / , P ROJ ECT:: RE: }-^ -1 0k+v 7--, l �J y, ver or PU4Nr , = r 1 to.el,S +�L1= 17- Z • 20 • O W E- W O 22 ( �3 J 1 a Q ix 6 W C= T = I(qSti c tVP 8C1i Lii0 a a Z eO us2- 5rsr\ s 1 L lei Q F 275 A. o 0 i / t J / / / I O o u_ z w z O O _ H a Co c.na..) r _ -_ 0..a ,.= _ 1-4 CG O . xxx • ET • • ) O '; 4 0-h t.) ------ Yo 1i-Z1 --a IIL 07" -1211Sac \ CC\VQ\\ •4-3/# l'ce, ::. cs*A1 ) # 100 = C -Ne 13°1 r4 nl (V‘C)J‘' ) •-• i. -. i t" - I. • ac) 0 P _ei u.7. -•-? +11 (----,0 '-'-',„ __----- ( IA 0-7 "7 - i--- / .4. — 4........._ , -- 6.,.. ,... I -) )--1 -, rn T---------T-------ii 5 tO(5"--;CY\-40 k S i ? C,•-Nic----D\ -_.::.'71.i":21 '-'-.6-7i.,---rs9--1 __ "I a o • .C...--. 3. v 9 El m . \ C)) -7-410D 06 Yr' F, In 3 - 2 I D f'-----:DIV I ...,--\, ,icy kL.),. Li c4c)f,n4 ao\ IA)i)106c 1 i 1 r) i , A I 6 0 1 \t, z: V C Z-- E .3- .-1 I i I A L'. . a • x M ,121IT . 0 0 • Z rn o P x I Ow/4 tc)trt(31 .:•-= ( I 'YA-V4t\ei)Lq.q .1) r,---- 0 Ei 1 11 c..\,z)t-A-tuck-) ? I) k--1-1 pciAd 0 --WYz 0 m --1 RI 0 1-3 tirr)act I , / z m 0 F .. m 0 0 nq \-,)c,\‘ .i 'D ao3road - -- ---- ,, I,oN sor t ,A9 : , BY, WV( C',13t11\ DATE, , ' T., JOB No.. _.% PROJECT: RE: I)pc k‘'.... por,....,)r. pru..23. ,,,._.. .I._.„,,,..,.....Lli__-----_,.;". 1,-,-).--, CI E z UI 4 i t 0 1 „, ZOO* w 2 Ell -1- •-•- •-• I-1-00 INJ 0 z 111 0 1 X 0- T=C Vic 0 -z () _ 5‘iry\?(DorN 4-10u 4 1 To 0 0 .4.— El ."--- m 0 ix 6 U_ Z UI n z 0 1 UDC)"T) H IL coit (4(.3"-) T--; C 80oo it IN) i I • 1 9.:400 ti Pi' T1) '-';-'7, • 1,- C- ( L Harper COMMUNICATION RECORD HP Houf Peterson Righellis Inc. To Ei FROM 0 MEMO TO FILE 0 FPGINEEP• +PLAI,Iti., PHONE NO.• PHONE CALL:0 MEETING:0 A -13 [1] fn 73 --•\ C 70 ---1 2 rn (1) 2C.) .... II 0 CA ti (r -, -..) g.....) 9.) d ..c. _E 00 Q (2 ...._ 0 0 C3 cl:. ',) 457.: .31 it 7 ..- 3>• 03 ....... a d . 017 .....2 ',...—, 2 t‘ -.....> 01 lj 1' in It•wo. .-- - . 'c ---I -,..) , n ,, ) cm, I 1, ) ,....., 1 , ! i .-- , ,, 1 , z i P (-- ; N----- .........._..... . (2,) ( narper COMMUNICATION RECORD HP Houf Peterson Righellis Inc. To FROM El . MEMO TO FILE 0 ,,,,,,,,,,.PLA.,,ER,; LAND,,,PF 45,,1111TatiS4S,,V:YOR,2 PHONE No.• PHONE CALL:Eil MEETING: . M 13 1:0 P? 2 In n ,k) r.I cg ....-, Fe--- „11 . 01 . ... .,.., _to ..t, -, —7 r..) o . ......_, ... d -I', (,. -C-- ..._..........._. 9 r- c".N. f 37 Li ch C 1 C iv, v-s c . i 'NS 1 r 1 03 .10 z 0 ‘ (....:) 0 , , > , ' n‘ C COMPANY PROJECT III "ii WoodWorks® SOFTWARE FOR WOOD DESIGN June 8,2009 16:27 Hand Rail Design Check Calculation Sheet Sizer 8.0 LOADS: (Load Type Distribution Pat- Location [ft] Magnitude Unit LIVE (Live Point tern� 2t50rt End Start End 200 lbs MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) : It 10 Dead 54 Live 100 Total 104 100 Bearing: 104 Load Comb #2 Length 0.50* #2 Cb 1.00 0.50* *Min.bearing length for beams is 1/2"for exterior supports 1.00 Lumber-soft, Hem-Fir, No.2,2x6" Self-weight of 1.7 plf included in loads; Lateral support:top=at supports,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shearfv = / = 0.13 19 Fv' = 150 fv/Fv' Bending(+) fb = 405 Fb' = 1048 fb/Fb' = 0.39 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.20 Total Defl'n 0.03 = <L/999 0.25 = L/240 0.14 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cf rt Ci Cn LC# Fv' 150 1.00 1.00 1.00 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 0.949 1.300 1.00 1.00 1.00 1.00 2 Fcp' 405 - 1.00 1.00 - - 1.00 1.00 E' 1.3 million 1.00 1.00 - - - 1.00 1.00 - 2 Emin' 0.47 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = L, V = 104, V design = 103 lbs Bending(+) : LC #2 = L, M = 255 lbs-ft Deflection: LC #2 = L EI = 27e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction Lc=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. C- &I 4 (t COMPANY PROJECT 1141 d1 WoodWorks�' � SOFTWARE F08 WOOD DESIGN r June 8,2009 16:27 Hand Rail2 Design Check Calculation Sheet Sizer 8.0 LOADS: LoadI Type Distribution Pat- Location [ft] Magnitude Unit ILIVE tern Start End Start End Live (Full UDL I I 50.0 plf MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) 5i l0, Dead 125 Live 125 129 Total 129 Bearing: #2 Load Comb #2 0.5 2 Length 0.50* 1.00 Cb 1.00 *Min.bearing length for beams is 1/2"for exterior supports Lumber-soft,Hem-Fir, No.2, 2x6" Self-weight of 1.7 plf included in loads; Lateral support:top=at supports,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design_ 150 ue Analysis/Design Shear fv = 19fv/Fv' = 0.13 Bending(+) fb = 256 Pb' = 1048 fb/Fb' = 0.24 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.16 0.116 Total Defl'n 0.03 = <L/999 0.25 = L/240 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfr0 iCi0 1 00 LC# Fv' 150 1.00 1.00 1.00 - Fb'+ 850 1.00 1.00 1.00 0.949 1.300 1.00 1.00 1.00 1.00 _ 2 Fcp' 405 - 1.00 1.00 - - - 1.00 1.00 - _ _ - 1.00 1.00 - 2 E' 1.3 million 1.00 1.00 - - - 1.00 1.00 - 2 Emin' 0.47 million 1.00 1.00 - - Shear : LC #2 = L, V = 129, V design = 106 lbs Bending(+) : LC #2 = L, M = 162 lbs-ft Deflection: LC #2 = L EI = 27e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction Lc=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN UNIT C-FRONT LOAD WoodWorks®Sizer 7.1 June 22,2010 14:24:15 Concept Mode : Reactions at Base of Structure View Floor 2 : 8 ' 1280 L 1280 L 442 D 442 D r: ,, v 15411204 L 14701 1047746 D)992 D _z 11660 L 553 L 599 D 200 D Juin p• 1080 L 409 D 640 L 208 D 480 E 1667 L _" 3001,1 1100L98DL 75 L 409 D 409 D IS u:` : 24 D _ ii,-,- 994 L 113 L , 3956 L 3978 . 8113E t 3658 D f M :633 DD3386 D ' - -• '' c\ccrf\A- ..,0('-& borjt-f3.. 00 c WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN UNIT C-REAR LOAD WoodWorks®Sizer 7.1 June 22,2010 14:22:33 Concept Mode: Reactions at Base of Structure View Floor 2 : 8 ' - 1280 L 1280 L v :'- : 442D " 442D fi 4.5,--...- _5; , +k v 'a "26LI1 `3189L __. 1977 DCVO 2047 D ; 2068 L 689 L , 731 D 244 D ,_. -� 1080 L 640 L �, 409 D 208 D - :::! 480 L - _ 1776 L . 300 0 1080 L98 D L: 75 L , 409 D 409 D 75 D3-; L tememsow::::: 113E 113 L60 L50 L2077 L 113E38113L D 23 D8 D1656 D v � _ 6DD1'86Da- _ '1 h �`- i 3 �'r_ii CO"..-2 it f t ._ C r 0'(-C" t D k.v \31\far LcDac\ (DO.i \'''Mots j Plain Concrete Isolated Square Footing Design: F2 fe:= 2500-psi Concrete strength fy:= 60000-psi Reinforcing steel strength Es:= 29000-ksi Steel modulus of elasticity Yconc 150•pcf Concrete density 'Ysoil 100•pcf Soil density gall 1500-psf Allowable soil bearing pressure COLUMN FOOTING Reaction Total := 3978-lb Pd1:= Totaldi Totalis:= 3994•lb P11:= Totalll Pd Pd1+ P11 Pti=7972•lb Footing Dimensions tf:= 10-in Footing thickness Width:= 30-in Footing width A:= Width2 Footing Area gnet gall –tf'^lconc gnet= 1375-psf Ptl Areqd gnet Areqd = 5.798 ft2 < A= 6.25.ft2 GOOD Widthregd:= Areqd Widthregd =2.41.ft < Width =2.50 ft GOOD Ultimate Loads Pdl+ tf'A'^Iconc Pu:= 1.4•Pdl+ 1.7•Pll Pu= 13.45-kips Pu qu= — qu=2.15•ksf A Beam Shear bcol 5.5-in (4x4 post) d:= tf—2-in (I):= 0.85 b:= Width b =30•in Vn:_ (1)-•34fc•ps • i•b•d Vn= 13.6-kips — Vu:= qu(b bcol b Vu= 5.49 kips < Vu= 13.6 kips GOOD 2 Two-Way Shear bS:= 5.5-in Short side column width bL:_ 5.5-in Long side column width b0:= 2-(bg + d) + 2-(bL+ b0= 54-in Rc:= 1.0 V = 4 + fc psi b d Vn=40.8-kips (3 3.0c Vax := x•2.66- fc•psi-b-d Vax =27.13-kips Ay4,1:= qu[b2 —(bcuii + 02] vu= 10.73-kips < V,u„ax =27.13-kips GOOD Flexure )21 b —b1 Mu qu Ccol (1)-b Mu=2.8 ft kips 2 2 0.65 b-d26 S =0A85-ft3 Ft:= 5-44)- fc•psi Ft= 162.5-psi Mu f :__ _ ft= 105.14•psi< Ft= 162.5-psi GOOD t 'Use a 2'-6"x T-6"x 10" plain concrete footing C - � t BY. A \Pc= 0 DATE. ),,) ( Jos No Or 09 PROJECT: • RE: S\--erc\ UJa.1‘ Too-hr\3 w - des OP boikbrvis o w f- w O 2 11(.. aSct r2.,?SC ): 300 p wom 2 w ct,(2ieveis)(\- psc-') "2- Oee) 401N (tso Faliiiii)C6112.7)_7 333 5k-ern 0 (81tz..)(15-0pcc-)(w ) -7- 100 kkj a. (8c k.)(72. 1eQmcç ?\_F tcor 0 TO.ko) SOO pC' ( ) 0 1. 1-/-51 4- ICO LiD 'CS-0010 uw) .0t..(a ' 7-C, IS 0 Cc 0 It. Z ecfU VC- z H DL: g'-‘5 612) -..3cc pt. ukickki ryy--- 4°'"( 5OpcF 1n ( / 1))03s-2 pL.,F S'--e I 00 Lk) (1,51 c,sF fr-,Y) U., ch. a3ow&j sooa) t' 8 I (L ts,1 r Pr e 12' Ct.L A M toci- can t oo "Pa( (0(X) ?))(2 t-4 t Pc.t: Stocr 5tfrel LL (b- 1,22)(0,0)(1.) i2550 c - wr A6act -HOOL0 tjo 2,2 u s-e c24 t r-Lef BY: Li DATE: Q JOB NO CI a OF PROJECT: RE: ofvoiC -Fran4i Loaci .tot x 31_ le i6,1ov1 tuty:ti Kf-ck • w • w tic-J 1C7A O 2 LOIV- 4,06 2 ' 0 w Z 0 os- — w . C € V\ L. 0 etkuirt of3 C, M. , ©r \tv, t0 + 00,k0i- k2,ebb q`3, ts(alt1-3,5k,S11%,0 ir 4VIC(c0747) A *---% +- COI 6-0 -1-4,V-1-61 ) 01c,(I) acoSwa r_] T-S— Q (Y/r > ; \e-., O - tt 0 pAor Ll- Z • = I- E. d.b.cltS c24-racx ,...q,..(2214aLAT) ()Pack 3 L( -2e ) 3 CS 5)(1 ty-2 icrf)) z 0 c..; _ 4.0 • c- c(4) Bentley- Harper Houf Peterson Righellis Inc. Current Date:6/22/2010 10:53 AM Units system:English File name:O:\HHPR Projects\CEN-Centex Homes(309)\CEN-Plans\CEN-090 Summer Creek Townhomes\calcs\Unit C\FDN\Front Load.etz\ M33=83.44[Kip*ft] M33=-12.21 [Kip*ft] x yl �- y "et Harper Houf Peterson Righellis Inc. Current Date:6/22/2010 10:54 AM Units system: English File name:O:\HHPR Projects\CEN-Centex Homes(309)\CEN-Plans\CEN-090 Summer Creek Townhomes\calcs\Unit C\FDN\Front Load 2.etz\ M33=43.5[Kip`ft] M33=-40.04[Kip-ft] A X C `��J 0 p, CD CD -- • CD - v) - 0 0.-SE I cf61-).1 ) :: 7-25.S ' 7 OTAT6)- = 01,,1 21)1 It\ g = nit Z 4i EA:10 = 4 1-1C, ' ---- X p . o I x iqi .\6.41v '?Z\ ' 0) -= kC -> (C-59 hS) c•11 0 3 --NO< ct19 'e, ciirliTe-4 1C-00 111N 70, 104 be.s-t) (c., :11)e• 4 cb ) 'e -t -0 o'r 0 ,1‘ ri 3 0 0061, 0007 m -I m 0 pool pc.G.'tk D :103.8 0 obo- N ON 90, CY\ Q ... Bentte y Harper Houf Peterson Righellis Inc. Current Date:6/22/2010 10:57 AM Units system: English File name:O:\HHPR Projects\CEN-Centex Homes(309)\CEN-Plans\CEN-090 Summer Creek Townhomes\calcs\Unit C\FDN\Rear Load 2.etz\ M33=36-82[Kip*ft] M33=-5022[Kip*ft] X \ 1 ,.. ...,.t.7 _ . --: 0 ._ 0 '4, 0 _ C97, tV51:t')t. C?Z,''' )-1 c s-A Gi WO 43`e,G2)1''; ---- 4 -;;;571 :SI;-61-2i:77S' )-1,--, :: 7 m Z 1.1 P (7) 1S're >ea5;e. X ig v) .1\i/ sal -E,Q'qi --:----7Q -7dh 4 cic'h \e > 1°W.S'l o C1 h 4 Z. 1'h s':= 7C.,,1 h i c p -t--.) ,1->v :_- (i1)-(0 + (,) 11.1 › --I 1-1 1001S ="--- i-ow z -0 x . iii luiapdA0 --)toD-4-) , O m z 0 m 0 n x > f--tet------- ‘19 —1- tr -k ✓ 0 n r7i K m --I m 0 O 7 77 -I :i311601S ('''' S j°! S>0 D -1--s.un '3H • :1.03r08d • . • 400--'Alia) •ON SOF c CRT an Bentley Harper Houf Peterson Righellis Inc. Current Date:6/22/2010 1:17 PM Units system:English File name:O:\HHPR Projects\CEN-Centex Homes(309)\CEN-Plans\CEN-090 Summer Creek Townhomes\talcs\Unit C\FDN\Interior.etz\ M33=60.31 [Kip*ft] • — — —. M33=163.58E-12[Kip`ftr —— M33=-18.91E-10[Kip`ft] M33=-21.22[Kip-ft] X Imo" Ben te Harper Houf Peterson Righellis Inc. Current Date:6/22/2010 1:17 PM Units system: English File name:O:\HHPR Projects\CEN-Centex Homes(309)\CEN-Plans\CEN-090 Summer Creek Townhomes\calcs\Unit C\FDN\Interior 2.etz\ M33=55.84[Kip*ft] • M33=65.17E-11[Kip*ft] — — --_ —- M33=21.46E-11 [Kip-ft) M33=-25.6[Kip*ft) X r r. it /-> (7) '-'''' - r'''' '' '.. ' -- - ,A .)-% r-- -.....t. - '--1-I ..,pt W 0 N , 60 h 0 ....7 cz -,,(€)(Crici-Sx_.(3,0)/ cooc/o-o 6ss'0 =19 (,.. -L. `"--j,'I(:)ST1 -t---#4.• c:Z.) e)(,.W.(:‘; C'cj --t- ?-- °) C.\*) 'C' ';*"'\-5 17:3) c, ..-ei 41 b 4 .7: _7) ,',-11.:7 ' Q ,..., i 1 •E'. =L.- IV -I - 0 -, cn ::--",, • = tc4—A QU ) .i.:1 - s'cl e,i --ccre.0)1 = Au a c‘v ..., 7--N' l' (-11.-; --n;-1--:-b-Tp-571;F6- -- yo‘ooe 2--- klq-kAv --Ao e: 1-J-A sele:{_a) -= cli --Lt)(COOP-OSS-90b' 0 -----"VI 0 i 0 iCA:l...*0 / / r" .k_,,e. -0 ..-..-- Cl."'at't))C90-0S')VY(Crif)40')PIZ 0) --- 10 z m p 72 S_SO 1:5V ' '0 riqi 3 W 2 (7) c(r) 'o -....... -X51 5 cl -1, x c.„ z 0 Pi 0 E 0 K g 0 m -I al -n z - CP) .. m - 0 0 _3Q-1d-01- 0 103 I-02,1d 40 °b 0--"'--rl a- 3 :ON eor C,C ' C) 0€ C I ... -- : :--- = : 0 P '-t ot::: _7 — I..•• a _ 7 - CD = 0 o i SA r:„:-/ \ -'7 :4,5 2 ---,:,, i-)(.., (,-• = ____ C., a \ g \ —1----zic 7 ra \-•,-Z. -, -•-• - ... ) — ,,,_r c,.4-, ---:. •• -,,,..,,,,, ....,,-•_ -•:=1 i -1-1 (.- 0 = ; 'I k e -- - -... -o -1 I 0 I 0 7-n < lq e -› il o1 > m z 0 ,J 3 —4? 7 : - 6'19----177.0-07-177-C' ---" 1 C -1,,....1 t--i,16, bl..„> -1--°14,,, 't---,' z (7) ( Z 17 )( . _ , :.--,4 ) )-k- 47/ i‘e -i- ., t) 1,/\/ z (Ai) la ic cf?' Z M M 0 0 o > oc'eg_-- •-ij -3- 40s\-X-!-`147)07)(ki) r 0 , -..-.-- 71 g K "-- 1 ( 5 ' 'OW --2,1,..„v.",,,.4,--i--, --..-,, -, ; 1„ ::,:tfy). z-A--,1-1),.)1 m m 0 il 0 F 4.Jr))- ( -. - . • J_D3 rOtA d C \ )—i3j --- 31vo VI \CI Ae• AC1318-05 Appendix D , 1.0" Diameter Bar Capacity at Portal Frame Concrete Breakout Strength Stem Wall Capacity when govern by 3 edges Foundation Capacity Givens Givens fc= 3000 psi f = 3000 psi h'ef= 3.50 inches hef= 12:00 inches (into the Fc Stem = 8.00 inches Note: hef above is the the embedment into or cmax= 5.25 inches the foundation and does not consider stem wz FndWidth = 36.00 inches c — 2.25 inches cmin= 18.00 inches min — Wc,N= 1.00cast-in-place anchor Wc,N= 1.00 cast-in-place anchor k= 24cast-in-place anchor k= 24 cast-in-place anchor = 0.75 strength reduction factor = 0.75 strength reduction fact Calculations Calculations ANS= 68 in` AN= 1296 in` Amp= 110.25 in` ANO= 1296 in` a Nb= 8,607 pounds Nb= 55,121 pounds Wed,N— 0.8286Wed,N= 1.00 Nth= 4,399 pounds Ncb= 55,121 pounds , Ocb= 3,299 pounds (I)Ncb= 41,341 pounds Combined Capacity of Stem Wall and Foundation 4Ncb= 44,640 0.754Ncb= 33,480 r Concrete Side Face Blow Out • Givens Abrg= 2.15 in` fc= 3000 psi cmin= 18.00 inches = 0.75 strength reduction factor Calculations Nsb= 231,191 pounds (I)Nsb= 173,393 pounds Concrete Pullout Strength Givens Abrg= 2.15 in` fc= 3000 psi = 0.75 strength reduction factor • Calculations Np= 51,552 pounds 4N = 38,664 pounds Steel Yield Strength Givens ft= 58,000 psi A= 0.606 in2 = 0.80 strength reduction factor Calculations Ns= 35,148 pounds SNS= 28,118 pounds < 33,480 Ductility Met Holdown Check Holdown: HDU14 Holdown Capacity= 14,930 pounds 1.6*Capacity= 23,888 pounds 23,888 < 28,118 Holdown Checks ACI 318-05 Appendix D 1.125" Diameter Bar Capacity at Standard Stem Wall Concrete Breakout Strength Stem Wall Capacity when govern by 3 edges Foundation Capacity Givens Givens fc= 3000 psi fc.= 3000 psi h'ef= 17.00 inches het= 12.00 inches (into the Foundation) Stem = 8.00 inches Note: hef above is the the embedment into only the the foundation and does not consider stem wall embedment Fnd Width = 36.00 inches cmm = 2.25 inches cmin= 18.00 inches Wc,N= 1.00 cast-in-place anchor Wc,N= 1.00 cast-in-place anchor k= 24 cast-in-place anchor k= 24 cast-in-place anchor = 0.75 strength reduction factor = 0.75 strength reduction factor Calculations Calculations ANc= 408 in AN= 1296 in` AN() = 2601 in` Am)= 1296 in` Nb= 92,139 pounds Nb= 55,121 pounds ed,N= 0.7265 Vfed,N= 1.00 Ncb= 10,500 pounds Nth= 55,121 pounds 4Ncb= 7,875 pounds $NCb= 41,341 pounds Combined Capacity of Stem Wall and Foundation 4Ncb= 49,216 0.754Ncb= 36,912 Com" Concrete Side Face Blow Out Givens Abr9 = 2.75 in` fc= 3000 psi cmfn = 18.00 inches 4)= 0.75 strength reduction factor Calculations Nsb = 261,589 pounds 4)Nsb = 196,192 pounds Concrete Pullout Strength Givens Abrg = 2.75 in` fc= 3000 psi (15= 0.75 strength reduction factor Calculations Np= 66,000 pounds SNP= 49,500 pounds Steel Yield Strength Givens ft= 58,000 psi A= 0.763 in2 4)= 0.80 strength reduction factor Calculations Ns = 44,254 pounds (1)Ns= 35,403 pounds < 36,912 Ductility Met Holdown Check Holdown: HD19 Holdown Capacity= 16,380 pounds 1.6*Capacity= 26,208 pounds 26,208 < 35,403 Holdown Checks C4 k RlicE Structural Calculations IVSD for C OEC J J 2012 BUII,DII�D CARD Full Lateral & Gravity Analysis of wisl°N Plan B 1332 Summer Creek Townhomes Tigard, OR Prepared for Pulte Group July 13, 2010 • JOB NUMBER: CEN-090 ***Limitations*** Engineer was retained in limited capacity for this project. Design is based upon information provided by the client,who is solely responsible for the accuracy of same. No responsibility and/or liability is assumed by, or is to be assigned to the engineer for items beyond that shown on these sheets. 96 sheets total including this cover sheet. This Packet of Calculations is Null and Void if Signature above is not Original Harper FR' Houf Peterson Righellis Inc. 1 205 SE Spokane St. Suite 200 • Portland, OR 97202 • [P] 503.221.1131 • [F]503.221.1171 1104 Main St. Suite 100 ♦ Vancouver, WA 98660 ♦ [P] 360.450.1141 • [F] 360.750.1141 1 133 NW Wall St. Suite 201 • Bend, OR 97701 • [P] 541.318.1 161 • [F] 541.318.1 141 Design Criteria Project Scope: Full lateral & Gravity Analysis of Unit B Design Specifications: Wind Design: Basic Wind Speed (mph): 100 From Building Authority Exposure: B From Building Authority Importance, IW: 1 2006 IBC/2007 OSSC Occupancy Category: II Residential Earthquake Design: Seismic Design Category: D From Building Authority Site Class: D Assumed,ASCE 7-05 Ch.20 Importance, IE: 1 ASCE 7-05 Table 11.5-1 Ss: 0.942 USGS Spectral Response Map Sl: 0.339 USGS Spectral Response Map Dead Load: Floor: 13 psf Wall: 12 psf Wood Roof: 15 psf Live Load: Roof: 25 psf Snow Floor: 40 psf Residential Floor Materials and Design Data: Materials: Concrete Compressive Strength, f'c: 3000 psi Foundations &Slab on Grade Concrete Unit Weight,yc: 145 pcf Steel Reinforcement Yield Strength,fy: 60,000 psi Wood Studs (Wall Studs): Hem-Fir#2 2x&4x Wood Beams& Posts: DF-L#2 6x&Greater Wood Beams & Posts: DF-L#1 Glulam Beams: 24F-V4 PSL Beams: Fb=2,900 psi, FV=328psi, E=2.0 Million TS/LSL Beams: Fb=2325 psi, FV=460psi, E=1.55 Million Design Assumptions 1. Allowable soil bearing pressure (qa) : 1500 psf Assumed 2. All manufactured trusses,joists, and flush beams-u.n.o.shall be designed by others. Structural Analysis Software Used: Mathcad 11 Microsoft Excel 2000 Wood Works—Sizer version 2002 Bently RAM Advanse harper Project: SummCTownhomes iJNIT B CEN 090 liottf Peterson. Tient: Pulte er Groupreek Rlghellts Inc. Date: June 2010 Job#Pg.# ENGINEE cLAh E4 Designer: AMC I..A tl fiS F% AftC t icG{$ S R:E fOR DESIGN CRITERIA 2007 Oregon Structural Specialty Code&ASCE 7-05 Roof Dead Load RFR:= 2.5-psf Framing RPL:= 1.5-psf Plywood RRF:= 5.psf Roofing RME:= 1.5•psf Mech&Elec RMS:= 1-psf Misc RCG:= 2.5-psf Ceiling RIN:= 1-psf Insulation RDL= 15•psf Floor Dead Load FFR:= 3•psf Framing FPL:= 4-psf Sheathing FME:= 1.5-psf Mech&Elec FMS:= 1.5•psf Misc FIN:= .5.psf Finish&Insulation FCLG:= 2.5-psf Ceiling FDL= 13•psf Wall Dead Load WOOD EX Wallwt:= 12•psf INT Wallwt:= 10-psf Roof Live Load RLL:= 25•psf Floor Live Load FLL:= 40-psf Q Project:roject:HarperUNIT B Summer Creek Townhomes ' 1' t• Houf Peterson -,,,->, Client: Pulte Group Job# CEN-090 Righellis Inc, N --. t RS.,Le%,IN.R.S -- - Designer. AMC Date: June 2010 Pg.# _aNC F.. ,y r :f"6ft5 Transverse Seismic Forces Site Class=D Design Catagory=D Building Occupancy Category:II Weight of Structure In Transverse Direction Roof Weight Roof Area:= 748•ft2.1.12 RFWT:= RDL-Roof Area RFWT= 12566 lb Floor Weight Floor Area2nd:= 605.ft2 FLRWT2nd:= FDL•Floor_Area2id FLRWT2nd=7865 lb Floor_Area3rd 600.12 FLRWT3rd FDL-Floor_Area3rd FLRWT3rd=7800.1b Wall Weight EX Wall Area:= (2203)412 INT Wall_Area:= (906)•ft2 WALL := EX_Wallwt•EX_Wall_Area+ 1NT Wallwi•INT_Wall Area WALL WTTOTAL =63727 lb Equivalent Lateral Force Procedure(12.8,ASCE 7-05) hn:= 32 Mean Height Of Roof I,:= 1 Component Importance Factor (11.5,ASCE 7-05) A,:= 6.5 Responce Modification Factor (Table 12.2-1,ASCE 7-05) Ct:= .02 Building Period Coefficient (Table 12.8-2,ASCE 7-05) x:= .75 Building Period Coefficient (Table 12.8-2,ASCE 7-05) Period x Ta:= Ct hnr Ta= 0.27 < 0.5 (EQU 12.8-7,ASCE 7-05) Si := 0.339 Max EQ,5%damped,spectral responce acceleration of 1 sec. (Chapter 22,ASCE 7-05)...or Ss:= 0.942 Max EQ, 5%damped,spectral responce acceleration at short period From Figures 1613.5(1)&(2) Fa:= 1.123 Acc-based site coefficient @.3 s-period (Table 11.4-1,ASCE 7-05) F,:= 1.722 Vel-based site coefficient @ 1 s-period (Table 11.4-2,ASCE 7-05) 47 1 n HpProject: Summer CTownhomes UNB I.Houfarer Peterson Client: Pulte Gr Job# CEN-090IT Rlghellis Inc• Date: June 2010 ...# Designer: AMC tiGi?�EERS• LANCSZAPE Ap C- E::'T,S.3..R 3;C t7R$ (EQU 11.4-1,ASCE 7-05) SMS:= Fa.Ss SMg = 1.058 2-SMS (EQU 11.4-3,ASCE 7-05) Sds:= Sds=0.705 3 (EQU 11.4-2,ASCE 7-05) SMl:= F�S1 SMI =0.584 2.SM1 (EQU 11.4-4,ASCE 7-05) Sdl := Sd1 =0.389 3 Cst:= Sds Cst=0.108 (EQU 12.8-2,ASCE 7-05) R ...need not exceed... Shc'Ie (EQU 12.8-3,ASCE 7-05) Csmax =0.223 Csmax Ta•R ...and shall not be less then... C1 := if(0.044•Sds•le <0.01,0.01,0.044-Sds•Ie) (EQU 12.8-5&6,ASCE 7-05) 0.5-Si-lel C2:= if Si <0.6,0.01, R 11 Csmin:= if(Ci >C2,C1,C2) Csmin =0.031 Cs:= if(Cst<Csmin,Csmin>if(Cst<Csmax,Cst,Csmax )) Cs =0.108 V:= Cs•WTTOTAL V=69141b (EQU 12.84,ASCE 7-05) E:= V•0.7 E =4840 lb (Allowable Stress) Harper Project: Summer Creek Townhomes UNIT B `IItif 47T: '_:. Houf Peterson Client: Pulte Group Job# CEN-090 Righellis Inc. N , E R P,a z Designer: AMC Date: June 2010 Pg.# NCS E AR RV'EYORS Transverse Wind Forces (Method 1 -Simplified Wind Procedure per ASCE 7-05) Basic Wind Speed: 100 mph(3 Sec Gust) Exposure:B Building Occupancy Category:II h,:= 1.00 Importance Factor (Table 6-1,ASCE 7-05) hn= 32 Mean Roof Height X:= 1.00 Adjustment Factor (Figure 6-3,ASCE 7-05) a2:= 2..1.16-ft Zone A&B Horizontal Length Smaller of.. a2=3.2 ft (Fig 6-2 note 10,ASCE 7-05) a2:= .4-11,-2-ft or a2=25.6 ft but not less than... a2min 3.2.ft a2min =6 ft Wind Pressure (Figure 6-2,ASCE 7-05) Horizontal PnetzoneA 19.91psf PnetzoneB 3.2•psf Pnetzonec:= 14.4•psf PnetzoneD= 3.3.psf Vertical PnetzoneE —8.8.psf PnetzoneF 12•psf PnetzoneG 6.4•psf PnetzoneH —9.7-psf Basic Wind Force PA.= PnetzoneA'Iw'X PA = 19.9.psf Wall HWC PB:= PnetzoneB'Iw'X PB=3.2.psf Roof HWC PC:= PnetzoneC'Iw.X Pc= 14.4.psf Wall Typical PD:= PnetzoneD-Iw'X PD =3.3-psf Roof Typical PE := PnetzoneE'Iw.X PE =—8.8-psf PF:= PnetzoneF'Iw.X PF=—12-psf PC,:= PnetzoneG'Iw.X PG =—6.4.psf PH:= PnetzoneH'Iw.X PH =—9.7-psf f. _1 u Harper Project: Summer Creek Townhomes UNIT B '• Houf Peterson Client: Pulte Group Job# CEN-090 Righellis Inc. Date: June 2010 Pg.# Designer: AMC ENCINEERSTNE S _>fte5-a•: FF^NI:E5�S�Su F+E FOKS • Determine Wind Sail In Transverse Direction WSAll-ZoneA (55 + 59+ 29)•12 WSAILZoneB= (6+ 0 + 23)•ft2 WSAILZoneC (429 + 355+ 339)•ft2 WSMLZoneD:= (0 + 0 + 4).ft2 WA:_ WSAILZoneA'PA WA= 2846 lb Wg:= WSAILZoneB'PB WB=93 lb WC:= WSAILZoneC'PC WC= 16171 lb WD:= WSAILZoneD'PD WD= 13 lb Wind_Force:= WA+ WB+ WC+ WD Wind_Forcemin:= 10•psf•(WSAILZoneA+ WSAILZoneB + WSAItzonec + WSAILZoneD) Wind_Force= 19123 lb Wind Forcenin= 12990 lb WSJ-ZoneE 43 ft2 W SAILZoneF 43•ft2 WSAILZoneG 334412 W SAILZoneH 327•ft2 WE:= WSAILZoneE'PE WE =—378 lb WF:= WSAILZoneF'PF WF=—516 lb WG:= WSAILZoneG'PG WG =—21381b WH:= W SAILZoneff PH WH=—31721b Upliftnet WF+ WH+ (WE + WG) + RDL'CWSAILZoneF+ WSAILZoneH+ (WSAILZoneE+ WSAILZonea'•6.1.12 Upliftnet= 1326 lb (Positive number...no net uplift) IDO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN I CALCULATION Harper Project: Summer Creek Townhomes UNIT B `i. ' Houf Peterson Client: Pulte Group Job# CEN-090 Righellis Inc. h :l:EE LANNE 5 --- Designer: AMC Date: June 2010 Pg.# LANG:,(-_ Aft ,.TS R,E"ORS Longitudinal Seismic Forces Site Class=D Design Catagory=D Building Occupancy Category:II Weight of Structure In Longitudinal Direction Roof Weight Roof Area= 838 ft2 atlyx„:= RDL•Roof Area RFwT= 12566.1b Floor Weight Floor_Area2nd=605 ft2 F, , := FDL-Floor Area2nd FLRWT2nd=7865.1b Floor_Area3rd=600 ft2 F, o,R Kpviv= FDL•Floor Area3rd FLRWT3rd = 7800-lb Wall Weight EN Wall Area:= (2203)•112 1NT Wall Area= 906 ft2 Wim:= EX_Wallwt•EX_Wal1_Area+ T Wallwt•INT Wall_Area WALLWT=35496-lb WTTOTAL= 63727 lb Equivalent Lateral Force Procedure(12.8,ASCE 7-05) hi,=32 Mean Height Of Roof le = I Component Importance Factor (11.5,ASCE 7-05) R:= 6.5 Responce Modification Factor (Table 12.2-1,ASCE 7-05) Ct=0.02 Building Period Coefficient (Table 12.8-2,ASCE 7-05) x=0.75 Building Period Coefficient (Table 12.8-2,ASCE 7-05) Period 20„ x := Ct•(hnr Ta=0.27 < 0.5 (EQU 12.8-7,ASCE 7-05) S1 =0.339 Max EQ,5%damped,spectral responce acceleration of 1 sec. (Chapter 22,ASCE 7-05)...or SS=0.942 Max EQ,5%damped,spectral responce acceleration at short period From Figures 1613.5(1)&(2) Fa= 1.123 Acc-based site coefficient @.3 s-period (Table 11.4-1,ASCE 7-05) F,= 1.722 Vel-based site coefficient @ 1 s-period (Table 11.4-2,ASCE 7-05) _1 1 S�Sn:= Fa:;',1:, Harper Project: Summer Creek Townhomes - HouUNIT B "` Job# CEN 090 f Peterseni Clent: Pulte GroupRighellis Inc.EhINE.'RSDate: lune 2010 Pg.#SMS = 1.058. R A4h_R Designer: AMC�• t ;q._f?t'E TS i;H E rRS (EQU 11.4-1,ASCE 7-05) 2.SMS (EQU 11.4 3,ASCE 7-05) 5�:= Sds= 0.705 3 (EQU 11.4-2,ASCE 7-05) ,,§1,A,:= F�S1 SMl =0.584 2.SM1 (EQU 11.4 4,ASCE 7-05) S Shc =0.389 ^'vdJ+^ 3 Sds.le (EQU 12.8-2,ASCE 7-05) Cst:= Cst= 0.108 R ...need not exceed... Shc Csmax =0.223 (EQU 12.8-3,ASCE 7-05) � Cs := Ta R ...and shall not be less then... CA:= if(0.044•Sds•Ie <0.01,0.01,0.044•Sds•le) (EQU 12.8-5&6,ASCE 7-05) 05SlIe� := if�S1 <0.6,0.01, R _ C�:= if(Ci > C2,CI,C2) Csmin=0.031 NCs .= if(Cst<Csmin+Csmini if(Cst<Csmax,Cst,Csmax)) Cs =0.108 V:= Cs•WTTOTAL V= 6914 lb (EQU 12.8-1,ASCE 7-05) E:= V•0.7 E=4840 lb (Allowable Stress) Nw r), aHarper Project: Summer Creek Townhomes UNIT B '. ► Houf Peterson Client: Pulte Grou Righellis Inc. p Job# CEN-090 N_EGRLAtr,Ek Designer: AMC Date: June 2010 Pg.# iAN�S E R� S• 0.;Ev3�E Longitudinal Wind Forces (Method 1 -Simplified Wind Procedure per ASCE 7-05) Basic Wind Speed: 110 mph(3 Sec Gust) Exposure:B Building Occupancy Category:II = 1.0 Importance Factor (Table 6-1,ASCE 7-05) hn= 32 Mean Roof Height X= 1.00 Adjustment Factor (Figure 6-3,ASCE 7-05) a2:= 2•.1.16•ft Zone A&B Horizontal Len h Smaller of... a2=3.2 ft (Fig 6-2 note 10,ASCE 7-05) a2,:= .4.11,-2-ft or a2=25.6 ft but not less than... �:= 3.2.ft a2m;n = 6ft Wind Pressure (Figure 6-2,ASCE 7-05) Horizontal PnetzoneA= 19.9•psf PnetzoneB =3.2•psf PnetzoneC = 14.4•psf PnetzoneD=3.3-psf Vertical Pnet?oneE=—8.8•psf PnetzoneF=—12•psf PnetzoneG=—6.4•psf Pnet?oneH=—9.71psf Basic Wind Force te:= PnetzoneA'Iw.X PA= 19.9•psf Wall HWC Pte:= PnetzoneB'Iw'X PB=3.2•psf Roof HWC Pc:= PnetzoneC'Iw.X Pc= 14.4•psf Wall Typical Pte:= PnetzoneD•Iw.X PD =3.3•psf Roof Typical PnetzoneE'Iw'X PE =—8.8•psf PnetzoneF'Iw.X PF=—12•psf Pte:= Pnet2oneGlw.X PC, =—6.4•psf := PnetzoneH'Iw'X PH=—9.7.psf Harper Project: Summer Creek Townhomes UNIT B Hoof Peterson Client: Pulte Group Job# CEN-090 Righellis Inc. ''''-E : tiEEa .. A„a=�� Designer: AMC Date: June 2010 Pg.# L{NCSCR?E RRCHITEO T+•SUR'✓EYDRS Determine Wind Sail In Longitudinal Direction Wim := (58+ 59+ 21)•ft2 WN,SAIL , (0 + 0 + 51)•ft2 NWSw AIL , := (98+ 99+ 34)11.2 W := (0 +0 + 114)•12 AAAAA,W _ WSAILZoneA'PA WA=2746 lb W WSAILZoneB'PB WB= 163lb W WSAILZoneC'PC WC=3326 lb rrn 4i— WSAILZoneD'PD WD= 376 lb MANWind = WA+ WB+ WC+ WD WWWWWW Wind Forc = 10-psf•(WSAILZoneA+ WSAILZoneB + WSAILZoneC + WSAILZoneD) Wind Force= 6612 lb Wind Forcenin= 5340.lb L W = 15111 2 N W - — 138412SkAAN793 W := 2424t2 nwx �9 ,:= 216-ft2 W WSJ-ZoneE'PE WE =—1329 lb W WSAILZoneFPF WF=—1656 lb w _ W W SAILZoneG'PG WG = —1549 lb At4,;= WSAILZoneH'PH WH=—2095 lb - U li := WF+ WH+ (WE + WG) + RDL•[WSAILZoneF+ WSAILZoneH+ (WSAILZoneE+ WSAILZoneG)]'.6.1.12 Upliftnet=901 lb (Positive number...no net uplift) I DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN CALCULATION J Harper Houf Peterson Righellis Pg#: Transverse Wind Line Shear Distribution ASCE 7-05,section 6.4(Method 1-simplified) Design Criteria: Basic Wind Speed= 100 mph Wind Exposure= B (Section 6.5.6,ASCE 7-05) Mean Roof Height,H(ft)= 32 Roof Pitch= 6/12 Building Category= II (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf = 1.00 Iw= 1.00 Wind Sail (ft) Wind Net Design Wind Pressure(psf) Pressure(lbs) VIIIIIIMISIMIENI Zone A= 19.9 143 2846 Wall High Wind Zone Horizontal Zone B= 3.2 29 93 Roof High Wind Zone Wind Forces Zone C= 14.4 1123 16171 Wall Typ Zone Zone D= 3.3 4 13 Roof Typ Zone Zone E= -8.8 43 -378 Roof Windward High Wind Zone Vertical Zone F= -12.0 43 -516 Roof Leeward High Wind Zone Wind Forces Zone G= -6.4 334 -2138 Roof Windward Typ Wind Zone Zone H= -9.7 327 -3172 Roof Leeward Typ Wind Zone Total Wind Force=l 19123 lbs I Use to resist wind uplift: Roof Only Total Exterior Wall Area= 2203 ft2 Uplift due to Wind Forces= -6204 lbs Resisting Dead Load= 7517 lbs E=) 1313 Lbs...No Net Uplift I Wind Distribution Tributary to Diaphragms Wind Sail Tributary To Dia hragm(ft2): Zone A Zone B Zone C 1 Zone D Main Floor 55 6 429 0 Upper Floor 59 0 355 0 Main 7291 lbs UpperFloor Floor Diaphragm ShearDiaphragm.Shear== 6286 lbs Roof Diaphragm Shear= 5546 lbs Wind Distribution To Shearwall Lines MAIN FLOOR UPPER FLOOR ROOF Tributary Line Shear Tributary Tributary Wall Line Line Shear ry Diaphragm (lbs) Diaphragm lbs Diaphragm Line Shear Width ft Width ft ( ) (lbs) �:., Width ft A 15.83 2275 20.50 3143 21.33 2773 - B 19.50 2802 0.00 0 0.00 0 C 15.42 2215 20.50 3143 21.33 2773 E= 50.75 7291 41 6286 42.67 5546 -1 'ffl Harper Houf Peterson Righellis Pg#: Transverse Seismic Line Shear Distribution Seismic Design Category= D Occupancy Category= II Site Class= D S1= 0.34 Ss= 0.94 Importance Factor= 1.00 Table 11.5-1,ASCE 7-05 Structural System,R= 6.5 Table 12.2-1,ASCE 7-05 Ct= 0.020 Other Fa= 1.12 Fv= 1.72 Mean Roof Height,H(ft)= 32 Period(Ta)= 0.27 Equ.12.8-7,ASCE 7-05 k_ 1.00 12.8.3,ASCE 7-05 SMI_ 1.06 Equ.11.4-1,ASCE 7-05 0.58 Equ.11.4-2,ASCE 7-05 Sic= Sos= 0.71 Equ. 11.4-3,ASCE 7-05 Spy= 0.39 Equ.11.4-4,ASCE 7-05 Cs= 0.11 Equ.12.8-2,ASCE 7-05 Csmin= 0.01 Equ.12.8-5&6,ASCE 7-05 Csmax= 0.22 Equ.12.8-3,ASCE 7-05 Base Shear coefficient,v= 0.076 Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height(ft)= 8 Floor 3 Diaphragm Height(ft)= 18 Roof Diaphragm Height(ft)= 32 Floor 2 Wt(lb)= 7865 Floor 3 Wt(lb)= 7800 Roof Wt(lb)= 12566 Wall Wt(Ib)= 35496 Trib. Floor 2 Diaphragm Wt(lb)= 22063 Trib.Floor 3 Diaphragm Wt(Ib)= 21998 Trib.Roof Diaphragm Wt(Ib)= 19665 Vertical Dist of Seismic Forces I Cumulative%total of base shear I Rho Check to Shearwalls(lbs) to shearwalls Req'd? Vfloor z(Ib)= 711 100.0% Yes unoors(Ib)= 1595 85.3% Yes V,00f(lb)= 2534 52.4% Yes Shear Distribution To Wall Lines Wall Line Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line Roof Line Floor 2 Floor 3 Roof Shear Shear Shear e r sq ft sq ft sq ft lbs lbs 299 371 148 795 1257 A 126 B 282 0 0 331 0 0 C 197 301 377 231 800 1277 Sum 605 600 748 711 1595 2534 Total Base Shear*= ( 4840 LB *Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. Harper Houf Peterson Righellis Pg#: - Longitudinal Wind Line Shear Distribution ASCE 7-05,section 6.4(Method 1 -simplified) Design Criteria: Basic Wind Speed= 100 mph Wind Exposure= B (Section 6.5.6,ASCE 7-05) Mean Roof Height,H(ft)= 32 Roof Pitch= 6/12 Building Category= II (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf A= 1.00 lw= 1.00 Wind Sail (ft2) Wind Net Design Wind Pressure(psf) Pressure(lbs) 4 Zone A= 19.9 138 2746 Wall High Wind Zone Horizontal Zone B= 3.2 51 163 Roof High Wind Zone Wind Forces Zone C= 14.4 231 3326 Wall Typ Zone Zone D= 3.3 114 376 Roof Typ Zone Zone E_ -8.8 151 -1329 Roof Windward High Wind Zone Vertical Zone F= -12.0 138 -1656 Roof Leeward High Wind Zone Wind Forces Zone G= -6.4 242 -1549 Roof Windward Typ Wind Zone Zone H= -9.7 216 -2095 Roof Leeward Typ Wind Zone Total Wind Forcel 6612 lbs l Use to resist wind uplift: Roof&Half of Upper Floor Walls Total Exterior Wall Area= 2203 ft2 Uplift due to Wind Forces= -6629 lbs Resisting Dead Load= 10160 lbs E_) 3531 Lbs...No Net Uplift I Wind Distribution Tributary to Diaphragms Wind Sail Tributary To Dia hragm(ft2): Zone A Zone B Zone C Zone D Main Floor 58 0 98 0 Upper Floor 59 0 99 0 Main Floor Diaphragm Shear= 2565 lbs Upper Floor Diaphragm Shear= 2600 lbs Roof Diaphragm Shear= 1447 lbs Wind Distribution To Shearwall Lines MAIN FLOOR UPPER FLOOR ROOF Tributary Line Shear Tributa ry Wall Line Diaphragm Diaphragm Line Shear iaphra Line Shear m DWagm Width(ft) (lbs) Width(ft) (lbs) _ - dth(ft) (lbs) 1 8 1283 8 1300 8 723 2 8 1283 8 1300 8 723 Z= 16 2565 16 2600 16 1447 Harper Houf Peterson Righellis Pg#: - Longitudinal Seismic Line Shear Distribution Seismic Design Category= D Occupancy Category= II Site Class= D S1 = 0.34 Ss= 0.94 Importance Factor= 1.00 Table 11.5-1,ASCE 7-05 Structural System,R= 6.5 Table 12.2-1,ASCE 7-05 Ct= 0.020 Other Fa= 1.12 Fv= 1.72 Mean Roof Height,H(ft)= 32 0.27 Equ. 12.8-7,ASCE 7-05 Period(Ta)= 1.00 12.8.3,ASCE 7-05 k= _ 1.06 Equ. 11.4-1,ASCE 7-05 Sees 0.58 Equ. 11.4-2,ASCE 7-05 SMS= SDS- 0.71 Equ. 11.4-3,ASCE 7-05 _ 0.39 Equ. 11.4-4,ASCE 7-05 Css C 0.11 Equ. 12.8-2,ASCE 7-05 Csmin= 0.01 Equ. 12.8-5&6,ASCE 7-05 Csmax= 0.22 Equ. 12.8-3,ASCE 7-05 Base Shear coefficient,v= 0.076 Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height(ft)= 8 Floor 3 Diaphragm Height(ft)= 18 Roof Diaphragm Height(ft)= 32 Floor 2 Wt(lb)= 7865 Floor 3 Wt(lb)= 7800 Roof Wt(Ib)= 12566 Wall Wt(Ib)= 35496 Trib. Floor 2 Diaphragm Wt(Ib)= 22063 Trib. Floor 3 Diaphragm Wt(Ib)= 21998 Trib.Roof Diaphragm Wt(Ib)= 19665 Vertical Dist of Seismic Forces 1Cumulative%total of base shear I Rho Check to Shearwalls(lbs) to shearwalls Req'd? Vfloor 2(Ib)= 711 100.0% Yes Vfloor3(Ib)= 1595 85.3% Yes Vroof(lb)= 2534 52.4% Yes Shear Distribution To Wall Lines Wall Line Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line Roof Line I Floor 2 Floor 3 Roof Shear Shear Shear sq ft sq ft sq ft lbs lbs 360 323 718 1220 1 275 270 2 330 330 388 388 877 1315 Sum 605 600 748 711 1595 2534 Total Base Shear*= I 4840 LB 1 - *Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. I • e —1 4__ Harper Houf Peterson Righellis Pg#: :Li••.••im•••ii•m•mmmmmmmmmimm. i .. .. _____..,. Shearwall Analysis Based on the ASCE 7-05 Transvere Shearwalls Line Load Controlled By: Wind Shear H L Wall H/L Line Load Line Load Line Load Dead V Panel Shear Panel M0 MR Uplift Panel Lgth. From 2nd Flr. From 3rd Fir. From Roof Load Sides Factor Type T (ft) (ft) (ft) ht k ht k ht k (klt) (plf) (ft-k) (ft-k) (k) 101 8 5.25 5.25 1.52 OK 8.00 2.28 18.00 3.14 27.00 2.77 1560 Double 1.40 VIII 102 8 3.88 3.88 2.06 OK 8.00 2.80 8.00 0.00 723 Single 1.40 IV 103 8 4.58 8.58 1.75 OK 8.00 2.22 8.00 3.14 8.00 2.77 947 Double 1.40 VI 104 8 4.00 8.58 2.00 ox 8.00 2.22 8.00 3.14 8.00 2.77 947 Double 1.40 VI 107 8 4.58 13.08 1.75 ox 8.00 2.28 18.00 3.14 27.00 2.77 _ 626 Single 1.40 III 108 8 8.50 13.08 0.94 OK 8.00 2.28 18.00 3.14 27.00 2.77 626 Single 1.40 III 109 8 3.88 3.88 2.06 of( 8.00 2.80 723 Single 1.40 IV 110 8 1.25 4.50 6.40 8.00 2.22 8.00 3.14 8.00 2.77 1807 Double 1.40 NG 111 8 2.00 4.50 4.00 8.00 2.22 8.00 3.14 8.00 2.77 1807 Double 1.40 NG 112 8 1.25 4.50 6.40 8.00 2.22 8.00 3.14 8.00 2.77 1807 Double 1.40 NG 201 9 6.79 9.79 1.33 ox 9.00 3.14 18.00 2.77 604 Single 1.40 III 202 9 3.00 9.79 3.00 OK 9.00 3.14 18.00 2.77 604 Single 1.40 III 203 9 5.00 5.00 1.80 ox 9.00 3.14 18.00 2.77 1183 Double 1.40 VII 204 Not Used 205 Not Used 206 Not Used 301 8 6.88 10.08 1.16 ox 8.00 2.77 275 Single 1.40 I 302 8 3.21 10.08 2.49 OK 8.00 2.77 275 Single 1.40 I 303 8 5.00 10.00 1.60 OK 8.00 2.77 277 Single 1.40 I 304 8 2.50 10.00 3.20 OK 8.00 2.77 277 Single 1.40 I 305 8 2.50 10.00 3.20 OK 8.00 2.77 277 Single 1.40 I Spreadsheet Column Definitions&Formulas L=Shear Panel Length H=Shear Panel Height Wall Length=Sum of Shear Panels Lengths in Shear Line H/L Ratio=Hight to Width Ratio Check V (Panel Shear)=Sum of Line Load/Total L Shear Factor=Adjustment For H/L>2:1 Mo(Overturning Moment)=Wall Shear*Shear Application ht Mr(Resisting Moment)=Dead Load*L2*0.5*(.6 wind or.9 seismic) Uplift T=(Mo-Mr)/(L-6 in) 8- LA 4 Harper Houf Peterson Righellis Pg#: Shearwall Analysis Based on the ASCE 7-05 Transvere Shearwalls Line Load Controlled By: Seismic * % Panel Shear Panel Mo MR Uplift Shear H L Wall H/L Line Load Line Load Line Load Dead V Rho V Story # T From 2nd Flr. From 3rd Flr. From Roof Load Strength Bays Sides Factor Type Panel Lgth. (ft-k) (ft-k) (k) (ft) (ft) (ft) ht k ht k ht k (klf) (plf) (plf) 419 545 0.30 1.31 Single 1.00 IV 101 8 5.25 5.25 1.52 OK 8.00 0.15 18.00 0.80 27.00 1.26 111 0.22 0.97 Single 0.97 I 102 8 3.88 3.88 2.06 OK 8.00 0.33 8.00 0.00 0.00 85 85350 0.26 1.15 Single 1.00 II 103 8 4.58 8.58 1.75 OK 8.00 0.23 8.00 0.80 8.00 1.28 104 8 4.00 8.58 2.00 OK 8.00 0.23 8.00 0.80 8.00 1.28 269 350 0.23 1.00 Single 1.00 II 168 219 0.26 1.15 Single 1.00 1 107 8 4.58 13.08 1.75 OK 8.00 0.15 18.00 0.80 27.00 1.26 3 Single 2. NA 8 211 69 1.00 I 108 8 8.50 13.08 0.94 OK 8.00 0.15 18.00 0.80 27.00 1.26 168 119 NA0.22 2.13 Single .00 I 109 8 3.88 3.88 2.06 OK 8.00 0.33 0.00 110 8 1.25 4.50 6.40 8.00 0.23 8.00 0.80 8.00 1.28 513 667 0.07 0.31 Double 0.31 NG 111 8 2.00 4.50 4.00 8.00 0.23 8.00 0.80 8.00 1.28 513 667 0.11 0.50 Double 0.50 NG 112 8 1.25 4.50 6.40 8.00 023 8.00 0.80 8.00 1.28 513 667 0.07 031 Double 0.31 NG 201 9 6.79 9.79 133 oK 9.009.001 0.280.28 18.0018.001 1.261.26 I I 157157 I 205205 0.460.20 I 1.510.67 1 SiSinglnglee 1.000.67 II I 203 9 I 1 203 9 1 5.00 1 5.00 5.00 5.00 13.801.80 1 oK OK I 1 19.00 0.55 118.00 1.28 366 476 0.34 1. 11 Single 1.00 IV Not Used 204 Not Used 205 Not Used 206 8.00 1.26 125 162 0.34 1.72 Single 1.00 I 3018 6.88 10.08 1.16 oK 8.00 1.26 125 162 0.16 0.80 Single 0.80 I 3032 8 3.21 10.08 2.49 OK 303 8 5.00 10.00 3.208.00 1.28 128 166 0.25 1.25 Single 1.00 1 1.60 OK 8.00 1.28 128 166 0.12 0.63 Single 0.63 II 304 8 2.50 10.00 OK 8.00 1.28 128 166 0.12 0.63 Single 0.63 II 305 8 2.50 10.00 3.20 OK Rho Calculation Does the 1st floor shearwalls resist more than 35%of the total transverse base shear? Yes Does the 2nd floor shearwalls resist more than 35%of the total transverse base shear? Yes Does the 3rd floor shearwalls resist more than 35%of the total transverse base shear? Yes Total 1st Floor Wall Length= I7.71 Total#1st Floor Bays= 4.43 Are 2 bays minimum present along each wall line? No 1st Floor Rho= 1.3 Total 2nd Floor Wall Length= 14.79 Total#2nd Floor Bays= 3 Are 2 bays minimum present along each wall line? No 2nd Floor Rho= 1.3 Total 3rd Floor Wall Length= 20.08 Total#3rd Floor Bays= 5 Are 2 bays minimum present along each wall line? Yes 3rd Floor Rho= 1.3 Spreadsheet Column Definitions&Formulas L=Shear Panel Length H=Shear Panel Height Wall Length=Sum of Shear Panels Lengths in Shear Line H/L Ratio=Hight to Width Ratio Check V (Panel Shear)=Sum of Line Load*Rho I Total L %Story Strength=L/Total Story L (Required for walls with H/L>1.0,for use in Rho check) #Bays=2*L/H Shear Factor=Adjustment For H/L>2:1 Mo(Overturning Moment)=Wall Shear*Shear Application ht Mr(Resisting Moment)=Dead Load*1.2*0.5*(.6 wind or.9 seismic) Uplift T=(Mo-Mr)/(L-6 in) Harper Houf Peterson Righellis Pg#: Shearwall Analysis Based on the ASCE 7-05 Longitudinal Shearwalls Line Load Controlled By: Wind Shear H L Wall H/L Line Load Line Load Line Load Dead V Panel Shear Panel Mo MR Uplift Panel Lgth. From 2nd Fir. From 3rd Fir. From Roof Load Sides Factor Type T (ft) (ft) (ft) ht k ht k ht k (klf) (plf) (ft-k) (ft-k) (k) 105 8 12.75 12.75 0.63ox 10.00 1.28 18.00 1.30 27.00 0.72 1.13 259 Single 1.40 I 55.75 92.01 0.04 106 8 12.75 12.75 0.631 ox 10.00 1.28 18.00 1.30 27.00 0.72 1.13 259 Single 1.40 I 55.75 92.01 0.04 207 9 11.50 11.50 0.78 OK 9.00 1.30 0.72 0.75 208 1 9 111.501 11.501 0.781 OK I I 19.00 1 1.30 118.001 0.72 10.75 1 176 176 1 Single I 1.40 I 24.71 1Single 1.40 I 24.71 1 49.73 49.73 1 --0.47 0.47 306 8 10.00 10.00 0.80 ox I 307 1 8 1 10.001 10.001 0.801 ox 1 1 8.00 1 0.72 1 0.29 1 72 1 Single 1 1.40 I 5.78 1 14.40 --0.30 0.30 8.00 0.72 0.29 72 Single I Spreadsheet Column Definitions&Formulas L=Shear Panel Length H=Shear Panel Height Wall Length=Sum of Shear Panels Lengths in Shear Line H/L Ratio=Hight to Width Ratio Check V (Panel Shear)=Sum of Line Load/Total L Shear Factor=Adjustment For H/L>2:1 Mo(Overturning Moment)=Wall Shear*Shear Application ht Mr(Resisting Moment)=Dead Load*L2*0.5*(.6 wind or.9 seismic) Uplift T=(Mo-Mr)/(L-6 in) L Harper Houf Peterson Righellis Pg#: Shearwall Analysis Based on the ASCE 7-05 ;.ongitudinal Shearwalls Line Load Controlled By: Seismic % Uplift Shear H L Wall H/L Line Load Line Load Line Load Dead V Rho*VStory # Panel Shear Panel Mo MR T Lgth. From 2nd Flr. From 3rd Flr. From Roof Load Strength Bays Sides Factor Type Panel (ft-k) (ft-k) (k) (ft) (ft) (ft) ht k ht I k ht I k (kl� (ply (plf) 105 8 12.75 12.75 0.631 OK 10.00 0.32 18.00 0.72 27.00 It 1.22 1.19 177 177 NA 3.19 Single 1.00 I 49.09 96.89 -0.74 106 8 12.75 12.75 0.63 OK 10.00 0.39 18.00 0.88 27.00 1.32 1.19 202 202 NA 3.19 Single 1.00 I 55.17 96.89 -0.24 16 NA 2.56 Single 1.00 I 28.42 53.69 ` 207 208 I 9 9 1 111.50 1.50 1 11.50 11.50 1 00.78.78 I oOK K 1 1 1 9 00 9.00 1 0 88 0.72 118.001 1.22 0.81 1 32 0.81 191 I 191 1 NA I 2.56 i Single I 1.00 I 31.56` 53 69 1 -0.06 I 307 18 110.00 110.00 10.80 I coo: I I I I 1800 I 11.22 0.35 122 1 1122 1 NNA I 22.50 I SSingle 1.00 I 9.76 117.40 I -.00..0077 0 07 Rho Calculation Does the 1st floor shearwalls resist more than 35%of the total longitudinal base shear? Yes Does the 2nd floor shearwalls resist more than 35%of the total longitudinal base shear? Yes Does the 3rd floor shearwalls resist more than 35%of the total longitudinal base shear? Yes Total 1st Floor Wall Length= 25.50 Total#1st Floor Bays= 6.38 Are 2 bays minimum present along each wall line? Yes 1st Floor Rho= 1.0 Total 2nd Floor Wall Length= 23.00 Total#2nd Floor Bays= 5 Are 2 bays minimum present along each wall line? Yes 2nd Floor Rho= 1.0 Total 3rd Floor Wall Length= 20.00 Total#3rd Floor Bays= 5 Are 2 bays minimum present along each wall line? Yes 3rd Floor Rho= 1.0 Spreadsheet Column Definitions&Formulas L=Shear Panel Length 11=Shear Panel Height Wall Length=Sum of Shear Panels Lengths in Shear Line H/L Ratio=Hight to Width Ratio Check V (Panel Shear)=Sum of Line Load*Rho/Total L Yo Story Strength=L/Total Story L (Required for walls with H/L>1.0.for use in Rho check) #Bays=2*L/H Shear Factor=Adjustment For H/L>2:1 Mo(Overturning Moment)=Wall Shear*Shear Application ht Mr(Resistingyoment)=Dead Load*L2*0.5*(.6 wind or.9 seismic) Uplift T=(Mo-Mr)/(L-6 in) Harper Houf Peterson Righellis SHEAR WALL SUMMARY' Transvere Shearwalls Pg#: x 101 102 103 104 107 108 109 110 111 112 1560 2 Layers 1/2"APA Rated Plyw'd w/8d Nails @ 2/12 1667 723 1/2"APA Rated Plyw'd w/8d Nails @ 2/12 833 947 2 Layers 1/2"APA Rated Plyw'd w/8d Nails @ 4/12 990 947 2 Layers 1/2"APA Rated Plyw'd w/8d Nails @ 4/12 990 626 1/2"APA Rated Plyw'd w/8d Nails @ 3/12 638 626 1/2"APA Rated Plyw'd w/8d Nails @ 3/12 638 723 1/2"APA Rated Plyw'd w/8d Nails @ 2/12 833 Simpson Strongwall Simpson Strongwall Simpson Strongwall 201 604 1/2"APA Rated Plyw'd w/8d Nails @ 3/12 638 202 604 1/2"APA Rated Plyw'd w/8d Nails @ 3/12 638 203 1183 2 Layers 1/2"APA Rated Plyw'd w/8d Nails @ 3/12 1276 204 Not Used 205 Not Used 206 Not Used 301 275 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 339 302 275 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 339 303 277 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 339 304 277 1/2"APA Rated Plyw'd w/8d Nails @ 4/12 339 305 277 1/2"APA Rated Plyw'd w/8d Nails @ 4/12 339 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design loads. Harper Houf Peterson Righellis Pg#: SHEAR WALL SUMMARY' Longitudinal Shearwalls w ane t e t71. -y 105 sx 259 1/2"APA Rated P1 w'd w/8d Nails ' 6/12 339 44 Sim.son None 0 106 259 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 339 44 Simpson None 0 2071 I 176 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 208 191 1/2"APAyam' 339 % Simpson None Rated PI 'd w/8d Nails @ 6/12 242 0 Simpson None 0 306122 APA Rated Plyw'd w/8d Nails @ 6/12 242 Simpson None 0 307 I 122 11/2" 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 242 '::-.-4,'W-',,,,,; Simpson None 0 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design loads. Transverse Wind Uplift Design Unit B Shear H Joist L Wall Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total Tot Panel Height Lgth. From 2nd From 3rd From Wall Load(not Point Point ning Moment Moment Floor Shear @ Floor Shear @ Stacking @ Stacking From From Uplift Upl Flr. FIr. Roof Shear including Load Load Momen @ Left @ Right Left Right Left Side of @ Right Wall Wall @ Left @ floors @ Left @ t House Side of Above Above above if Right Rig walls House @ Left @ stack) Right (ft) (ft) (ft) (ft) k k k k plf klf k k kft kft kft k k k k k k 101 8 1.1667 5.25 5.25 2.28 3.14 2.77 8.19 1560 0.1 0.8 0.208 72.42 5.58 2.47 14.54 14.93 102 8 1.1667 3.88 3,88 2.8 2.8 722 0.092 2.432 22.40 10.13 0.69 4.83 6.50 14.54 14. 103 8 1.1667 4.58 8.58 2.22 3.14 2.77 8.13 948 0.1 0.078 0.078 38.40 1.41 1.41 9.20 9.20 203 R -2.912. 6. 12 104 8 1.1667 4 8.58 2.22 3.14 2.77 8.13 948 0.234 0.117 1.632 33.54 2.34 8.40 9.18 8,14 .12 9.18 . 107 8 1.1667 4.58 13.08 2.28 3.14 2.77 8.19 626 0.1 0.192 0.078 25.36 1.93 1.41 5.93 6.01 201L L 201 R 108 8 1.1667 8.5 13.08 2.28 3.14 2.77 8.19 626 0.1 0.078 0.384 47.06 4.28 6.88 5.56 5.37 202E 202R 6.71 671. 12.65 8.12. 6.77 7.24 12.33 12. 110 8 1.1667 1.25 4.5 2.22 3.14 2.77 8.13 1807 0.1 0.384 0.078 18.07 0.56 0.18 23.00 23.30 203E 111 8 1.1667 2 4.5 2.22 3.14 2.77 8.13 1807 0.1 0.078 0.208 28.91 0.36 0.62 18.87 18.76 203R12.13 35.13 23. 112 8 1.1667 1.25 4.5 2.22 3.14 2.77 8.13 1807 0.1 0.208 1.424 18.07 0.34 1.86 23.17 21.99 -12.12 6.75 1 8. 23.17 21. 201 9 1.1667 6.79 9.79 3.14 2.77 5.91 604 0.172 0.848 0.156 39.13 9.72 5.02 4.90 5.32 301L 301R 202 9 1.1667 3 9.79 3.14 2.77 5.91 604 0.172 0.848 0.156 17.29 3.32 1.24 5.10 5.51 3021 302r 1.67 1.72 6.77 6 . 203 9 1.1667 5 5 3.14 2.77 5.91 1182 0.172 0.848 0.385 56.42 6.39 4.08 10.52 10.80 303L 303R 1.61 1.32 12.13 12. 301, 8 6.88 10.09 2.77 2.77 275 0.252 0.384 0.468 15.11 8.61 9.18 1.45 1.40 302 8 3.21 10.09 2.77 2.77 275 0.252 0.468 0.384 7.05 2.80 2.53 1.67 1.72 1.45 1. 303 8 5 10 2.77 2.77 277 0.252 0.384 0.858 11.08 5.07 7.44 1.61 1.32 1.67 1. 304 8 2.5 10 2.77 2.77 277 0.112 0.192 5.54 0.83" 0.35 2.02 2.13 1.61 1. 305 8 2.5 10 2.77 2.77 277 0.112 0.384 5.54 0.35 1.31 2.13 1.90 2.02 2. 2.13 1. Spreadsheet Column Definitions&Formulas L=Shear Panel Length H=Shear Panel Height Wall Length=Sum of Shear Panels Lengths in Shear Line �,,W„ V (Panel Shear)=Sum of Line Load/Total L Mo(Overturning Moment)=Wall Shear*Shear Application ht ^^ Mr(Resisting Moment)=Dead Load*L2*0.5*(.6 wind or.9 seismic) V , Uplift T=(Mo-Mr)/(L-6 in) Transverse Seismic Uplift Design Unit B Shear H Joist L Wall Line Load Line Load Line Wall V Load(not Po nt Po nt Ovne g r Momentt Momentt F oor'Shear @ F oor1Shear @ Sta k ng @ Stacak lng Frrom Frrom Uplift Upl ft T Panel Height Lgth. From 2nd From 3rd From Ri ht Left Side of @ Right Wall Wall @ Left @ Flr. Flr. Roof Shear including Load Load Mooren @Left @Right Left g House Side of Above Above Right bones @ Left @ t House @Left @ above if Right Right walls stack) k k k k k (ft) (ft) (ft) (ft) k k k k plf klf k k kft kft kftk 3.15 3.7 101 '8r 1.1667 5.25 5.25 0.148 0.795 1.257 2.2 419 0.11112 0.8 0.208 19.99 5.58 2.47 3.15 3.74 102 8 1.1667 3.88 3.88 0.331 0.331 85 0.092 2.432 0 2.65 10.13 0.69 -1.91 0.60 -1.91 0.6 2.42 2.42 203 R 97309'3 103 8 1.1667 4.58 8.58 0.231 0.8 1.277 2.308 269 0.1 0.078 0.078 11.15 1.41 1.41 2.18 0.6 104 8 1.1667 4.00 8.58 0.231 0.8 1.277 2.308 269 0.234 0.117 1.632 9.74 2.34 8.40 ;29 0.41 201E 201 (part) 7 0.34 2.46 1.7 107 8 1.1667 4.58 13.08 0.148 0.795 1.257 2.2 168 0.1 0.192 0.078 7.00 1.93 1.41 1 14 0 85 201 L 202R 3 1.35 1,47 2.2 108 8 1.1667 8.50 13.08 0.148 0.795 1.257 2.2 168 0.1 0.078 0.384 12.99 4.28 6.88 110 8 1.1667 1.25 4.50 0.231 0.8 1.277_ 2.308_ 513 1 0.384 0.078_ 5.80 0.56 0.18 5 89 5.74 203R 304E 9 2,91 5.7 111 8 1.1667 2.00 4.50 0.231 0.8 1.277 2.308 513 1 0.078 0.208 9.28 0.36 0.62 7.13 5.3 112 8 1.1667 1.25 4.50 0.231 0.8 1.277 2.308 513 0.1 0.208 1.424 5.80 0.34 1.86 7.13 5.36 201 9 1.1667 6.79 9.79 0.795 1.257 2.052 210 2 0.848 0.156 13.83 9.72 5.02 0.75 1.37 301E 301R -0.13 -0,20 0.62 ].1 0.8481 1.3 203 9 1.1667 5.00 9.79 0.7.8 1.277 2.077 415 0.172 0.848 0.385 20.18 6.39 4.08 2 89 3.30 303L 303R 0.11 -0 32 3.00 2.9 203 9 1.1.667 5.00 5.00 0.8 301 8 6.88 10.09 1.257 1.257 125 0.252 0.384 0.468 6.86 8.61 9.18 -0.13 -0.20 -0.13 -0.2 0.21 0.2 0.21 0.29 302 8 3.21 10.09 1.257 1.257 125 0.252 0.468 0.384 3.20 2.80 2.53 2 303 8 5.00 10.00 1.277 1.277 128 0.252 0.384 0.858 5.11 5.07 7.44 0.0.11 -0.32 0.110. 0.0.2 304 8 2.50 10.00 1.277 1.277 128 0.112 0.192 0 2.55 0.83 0.35 0.90 0.-` 305 8 2.50 10.00 1.277 1.277 128 0.112 0 0.384 2.55 0.35 1.31 0.90 0.55 Spreadsheet Column Definitions&Formulas L=Shear Panel Length t H=Shear Panel Height Wall Length=Sum of Shear Panels Lengths in Shear Line V (Panel Shear)=Sum of Line Load/Total L Mo(Overturning Moment)=Wall Shear*Shear Application ht Mr(Resisting Moment)=Dead Load*L2*0.5*(.6 wind or.9 seismic) Uplift T=(Mo-Mr)/(L-6 in) TRANSVERSE UPLIFT CALCULATIONS-SUMMARY UNIT b Shear Controlling Total Holdown Holdown Good Control Total Holdown Good For Panel Case Uplift @ or Strap Type@ Left For ling Uplift Type@ Left Left Case a Right k Simpson k k Simpson k 101 Wind 14.54 Holdown HD12 w DF 15.51 Wind 14.93 HD12 w DF 15.51 102 Wind 4.83 Holdown HDQ8 w 3HF 6.65 Wind 6.50 HDQS w 3HF 6.65 103 Seismic -0.56 Holdown HDQ8 w DF 9.23 Wind 9.20 HDQ8 w DF 9.23 104 Wind 9.18 Holdown HDQ8 w DF 9.23 Wind 8.14 HDQ8 w DF 9.23 107 Wind 12.65 Holdown HD12 w DF 15.51 Wind 12.72 HD12 w DF 15.51 108 Wind 12.33 Holdown HDU14 14.93 Wind 12.60 HDU14 14.93 110 Wind 35.13 Holdown None 0.00 Wind 23.30 None 0.00 111 Wind 6.75 Holdown None 0.00 Wind 18.76 None 0.00 112 Wind 23.17 Holdown None 0.00 Wind 21.99 None 0.00 201 Wind 6.35 Strap MST60x2 8.11 Wind 6.71 MST60x2 8.11 202 Wind 6.77 Strap MST60x2 8.11 Wind 7.24 MST60x2 8.11 203 Wind 12.13 Strap CMSTI2x2 18.43 Wind 12.12 CMST12x2 18.43 301 Wind 1.45 Strap MST48 2.88 Wind 1.40 MST48 2.88 302 Wind 1.67 Strap MST48 2.88 Wind 1.72 MST48 2.88 303 Wind 1.61 Strap MST48 2.88 Wind 1.32 MST48 2.88 304 Wind 2.02 Strap MST48 2.88 Wind 2.13 MST48 2.88 305 Wind 2.13 Strap MST48 2.88 Wind 1.90 MST48 2.88 r . BY (\NV....../ "1.)\.,,,..) O DATE: ao ko JOB NO. Cat,...) #J\...` ,v Ct PROJECT: RE: \fJ-1 V- a`>JT L)0 oc- S L`f'3 1vMa'=}. '._ 0?3 5T1 t i'-. y,� Lu - SIG-0, ) SE. 8.a ',ps J LI 0 ILl ~ 2 Ax o\ Loos ' \-- t t 0 . LU - (i,ZS}(1R,S 0,0IS)t(24 /.01IN+ (C\R,s')(o,O15) i.<2.74)(0,0 1:1(:612) 1./-0 Y`,YS DL L 0.7_5.-VIq,SY0.U25» 4-(0q,s-Y7.02S> 310 : ;..-6tL Sk— ° u ?0t0A. Z.: 1.0�k `�-i?S Li V >\.. \\\ : t1� oU ° (VI,0(0.015-)(05tt)4. (27)(o012NO,s +' (1c',c)(o,o\s)(1 1)} (al )(0.0is z) x Ar(6)(9.01-Nz ) t- (``I2.')(0.0t (� 7,.) -) (Z). a. a y. at , DI__DI__,p Z O ^�.., Q (t °\,5-10,07.5No) 3- (iq,- XOiO2-s• °12 ) = a„L. )1 kips S‘_ U ("1-2_10.046Y72) o.4 4 It.-` >s LU Z 2 T°k-u\ 5,-L"t" 0 wa11 1\2 . Dk- CC o( Iq,;�(0,0? ) .`� 12 % a.43 5 t<-\ S SL LL Z w ("I-2 o.o'o ti) e V o ! PJ -- 7 o - = Toli \ ! 5.\1 S 5icti\e.5 (2-e15k.ttr45S VI Al..i._ TNi PC Pv\\(- J-t")\€ ;'V1j_'c�fi DC;FI Y-=5j-,rzw.t a! 4,i- 54'tz'"- *-1 „,,, - 0.3s 5-3►1tz- O. \63 t�� SSw�S"'t ���� 1?)%-lb4 Alf- 0,6274 t\25,.Aa 1 x k4,0kt4,0 # 0 35- 63144.:v O i t 3 a°Itt 1 , cp - G \-)r-3o-op- ,,, \\ 5fa (. °' .:a \t2 1510 oma_ mix 1�' \\I = SSWatx')- Wo,iti allow ctif -17,4,i .--- A R' \t 0 tit .2 0 0`S-St 4 �X.. 1 44�flt� 0.�4 1�.a oc) e h\ell = I gQ\ 0 D 0 t01 0 - rOMMENt Mr1 O 1 p i i R 102 1 T 1 I 1 1 1 eitl - -0 C.) . 1°roe s°e 1.Qe 111MP VMS Ot \ 1 C) T f e 1 6.) co 1 _. . ..I.) li I I,1 . --..._. .:..:"_ _vas..�. CD C.) t Soso r> EH , w ---- _ = 1 t 1 d ,;,, 1 H ......: L.-.-ti ,,...* , p,1 r 3a`?-- Br S' �;\ DATE.� �- t--1 ....._kJoe NO.. PROJECT: t R,QQra''P 3-V'/8' RE: ` J :,-.1 v OPT O � 1111..--"S"'-...1111 Z I- 0 w iorzaimurt ❑ 1R' S 15'-5-'' c � � } ;,. O w t-'-';'' :, 4 ]i L1 _ PCs e 0 z # €, is s -_ 113'' u X O I IL Z p, 4 �� w Z #^ _ o l ' , j-X Lux. _ 1 a s ;moi r 5-1-2-7t- "s� Li5 -- -- - �`.! ",'=.Y Lt. i X3' °1 .. /: G= \-1x r 1 a • s.. G --- J Q,. 0 3 C7 Ld I V ---- i i. . -LItick \\r.-:.,, , - --:' r 0 r _,--_,,- i — ......... —,... .„ 7---. -,-,--k----,±,---.-icr•-,''''''7.,..,c'7,1'-'i : °- ' * ,,., . - — --i- ' — ----- _ ta ---",---77:---F77.7-:-4--; tv51th — -4-.- ( sc)-, _k 0 t, ,,.., . . , , Ct:7'4\ '''' 'Z.••' h k,'' :" `-'1" - = ,_.. - ,–'• 0 7. :3 til 1 i ----..... 77 77-7--- ---- -I c---. , --- ----_,_ ...,,,,, jr.:4,-, • - ..--''47 ----,---- - - , , -, l'"7) ...., Y k -0 H ¶ I r2-7: -'P.C`I 7C. s.-t_,-Ir) :: ...1.... 1 0 z m . - -1.<J, i tz - -- ..k ,\, 0 M - 0 .. ' ...,i —1— K . K 1 '1 At 1_ Ai /1 3li rn _ 0 \,C1 --k ,- D .- 1 m z 0 m 0 o xi - (. --, _ g e-, '-',.. 1 r•-, t, .. 1::, 0 Tr -I m 0 2' m "f 41 F 1,,. ,,,,t ...,,..-- :103 roid n b ..„ -- rss4 0 ) -ON sor n_, .--\ jjo _ WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B-Front Load WoodWorks®Sizer 7.1 June 28,2010 10:52:50 COMPANY I PROJECT RESULTS by GROUP- NIS 2005 SUGGESTED SECTIONS by GROUP for LEVEL 4 - ROOF Mnf Trusses Not designed by request (2) 2x8 Lumber n-ply D.Fir-L No.2 1- 2x0 By Others Not designed by request (2) 2x10 Lumber n-ply D.Fir-L No.2 2- 2x10 (2) 2x6 Lumber n-ply Hem-Fir No.2 2- 2x6 (3) 2x6 Lumber n-ply Hem-Fir No.2 3- 2x6 (2) 2x4 Lumber n-ply Hem-Fir No.2 2- 2x4 (3) 2x4 Lumber n-ply Hem-Fir No.2 3- 2x4 Typ Wall Lumber Stud Hem-Fir Stud 2x6 @16.0 Typ Wall 2x4 Lumber Stud Hem-Fir Stud 2x4 @16.0 SUGGESTED SECTIONS by GROUP for LEVEL 3 - FLOOR Mnf Jst Not designed by request landing Lumber-soft D.Fir-L No.2 2x6 @16.0 4x6 Lumber-soft D.Fir-L No.2 4x6 (2) 2x8 Lumber n-ply D.Fir-L No.2 1- 2x8 1.75014 LSL LSL 1.55E 2325Fb 1.75014 By Others Not designed by request By Others 2 Not designed by request (2) 2x10 Lumber n-ply D.Fir-L No.2 2- 2x10 (2) 2x6 Lumber n-ply Hem-Fir No.2 2- 2x6 (3) 2.6 Lumber n-ply Hem-Fir No.2 3- 2x6 (2) 2x4 Lumber n-ply Hem-Fir No.2 3- 2x4 (3) 2x4 Lumber n-ply Hem-Fir No.2 3- 2x4 Typ Wall Lumber Stud Hem-Fir Stud 2x6 @16.0 Typ Wall 2x4 Lumber Stud Hem-Fir Stud 2x4 @16.0 SUGGESTED SECTIONS by GROUP for LEVEL 2 - FLOOR Mnf Trusses Not designed by request deck joists Lumber-soft D.FIr-L No.2 2x8 @16.0 Mnf Jst Not designed by request 3.125014 LSL LSL 1.55E 2325Fb 3.5x14 4X8 Lumber-soft D.Fir-L No.2 4X8 3.125x10.5 Glulam-Unbalan. West Species 24F-V4 DF 3.125x10.5 5.125x16.5 GL Glulam-Balanced West Species 20F-V7 DF 5.125x16.5 (2) 2x10 Lumber n-ply D.Fir-L No.2 2- 2x10 4x12 Lumber-soft D.Fir-L No.2 4x12 3.125x141) LSL 1.55E 2325Fb 3.5014 (2) 206 Lumber n-ply Hem-Fir No.2 3- 2x6 - (3) 2x6 Lumber n-ply Hem-Fir No.2 3- 2x6 6x6 Timber-soft Hem-Fir No.2 6x6 (2) 2x4 Lumber n-ply Hem-Fir No.2 3- 2x4 (3) 2x4 Lumber n-ply Hem-Fir No.2 3- 2x4 Typ Wall Lumber Stud Hem-Fir Stud 2x6 @16.0 T SUGGESTED SECTIONS by GROUP for LEVEL 1 - FLOOR Fnd Not designed by request - CRITICAL MEMBERS and DESIGN CRITERIA Group Member Criterion Analysis/Design Values deck joists j42 Bending 0.41 Mnf Jet Mnf Jst Not designed by request landing j46 Bending 0.17 By Others 3 By Others Not designed by request 4x6 b25 Bending 0.87 (2) 2x0 b7 Bending 0.21 1.75x14 LSL b14 Bending 0.57 3.125x14 LSL b21 Shear 0.41 4.8 620 Bending 0.04 By Others By Others Not designed by request By Others 2 By Others Not designed by request 3.125x10.5 b24 Deflection 0.83 5.125016.5 GL b26 Bending 0.21 (2) 2x10 b15 Bending 0.93 4012 b22 Shear 0.16 3.1250141) b23 Deflection 0.09 Ftg Ftg Not designed by request (2) 206 c2 Axial 0.34 (3) 2x6 c64 Axial 0.59 6x6 c36 Axial 0.77 (2) 2x4 c25 Axial 0.35 (3) 2x4 c94 Axial 0.84 Typ Wall 1415 Axial 0.28 Fnd Fnd Not designed by request Typ Wall 2x4 u40 Axial 0.33 DESIGN NOTES: 1.5 Please verify that the default deflection limits are appropriate for yourapplication. 2. DESIGN GROUP OCCURS ON MULTIPLE LEVELS: the lower level result is considered the final design and appears in the Materials List. 3. ROOF LIVE LOAD: treated as a snow load with corresponding duration factor. Add an empty roof level to bypass this interpretation. 4. BEARING: the designer is responsible for ensuring that adequate bearing is provided. 5. GLULAM: bxd= actual breadth x actual depth. 6. Glulam Beams shall be laterally supported according to the provisions _ of NDS Clause 3.3.3. 7. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 8. BUILT-UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together rely at intervals not a eeding 4 times the depth and that each ply is equally top-loaded. Where beams are side-loaded, special fastening details may be required. 9. SCL-BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 10. BUILT-UP COLUMNS: nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN _ Unit B-Rear Load WoodWorks®Sizer 7.1 June 28,2010 10:56:39 Conceptb24Dde: Beam View Floor 2 : 8 ' II ■ o4-10 :;" b253-r. ice - - - - 0 y !tom .. _... 3ii_0 , _._ t .. J. ,) int- ..... _ _ .: b21 : 1 b6 b26 c, b2011 b23 b22 v D ll t C E.r r s. t—.tg (. ,#.-) WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B-Front Load WoodWorks®Sizer 7.1 June 28,2010 10:04:32 Concept b24:de: Beam View Floor 2 : 8 ' a b1 ■ ■ ■ ,� .. b21 b2& p b20— b22 b23 ! ■ 2 WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN - WoodWorks®Sizer 7.1 June 28,2010 10:04:34 Unit B-Front Load - Co:c60ept Mode : Ccc59imn View Floor 2 : 8 ' ❑ cf , A,` c57 c1 c2 c46 c58 , i ice. c47 �. G. "� c55 c63 oc49 ._ c50 c54 c68S_ < c53 -', c52; : c51 c7 c56 1-:;----: c40 c64 c36 f , , 71:.:':7 1 i c39 jra9 IN LI C C .- - WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B-Front Load WoodWorks®Sizer 7.1 .June 28,2010 10:04:29 Concept Mode : Beam View Floor 3 : 17 ' b7 b12 b25 b8 914 b13 b11 b10 b9 1 T WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B-Front Load WoodWorks®Sizer 7.1 June 28,2010 10:04:27 Concept Mode : Column View Floor 3 : 17 ' c14 c15 c38 ;• c25 c16 • c61 rw<, c17 c43 c23 c67 c22 c24 c26 _ .. • • • c45 c44 ) mist c21 c20c19 08 • WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B-Front Load WoodWorks®Sizer 7.1 June 28,2010 10:04:23 Concept Mode : Beam View Roof: 25 ' b15 ,74 ■ b16 b27 N. r b18 / / 1 . WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN _ Unit B-Front Load WoodWorks®Sizer 7.1 June 28,2010 10:04:25 Concept Mode: Column View Roof: 25 ' c27 c28 - .. y_ mama Egaii—"Insegs y, , Vc „ 1�Cc c29 c �.: c30 , d c66 1-c65 c34 c35 , COMPANY PROJECT 1 WoodWorks • SOFTWARE FOR WOOD DESIGN June 28,2010 10:34 b1 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) = Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w27 Dead Partial UD 539.7 539.7 0.00 2.50 plf 2_w27 Rf.Live Partial UD 493.7 493.7 0.00 2.50 plf 3_c14 Dead Point 1074 2.50 lbs 4c14 Rf.Live Point 1601 2.50 lbs 5 j43 Dead Full UDL 47.7 plf 6 j43 Live Full UDL 160.0 plf MAXIMUM RE .044V p 41 l 0 31 Dead 1048 Live 1227 1539 Total 2275 2089 Bearing: 3627 Load Comb #2 Length 1.21 #2 1.93 Lumber n-ply, D.Fir-L, No.2, 2x10",2-Plys Self-weight of 6.59 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv* = 127 Fv' = 207 fv*/Fv' = 0.62 Bending(+) fb = 581 Fb' = 1138 fb/Fb' = 0.51 Live Defl'n 0.01 = <L/999 0.10 = L/360 0.06 Total Defl'n 0.01 = <L/999 0.15 = L/240 0.09 *The effect of point loads within a distance d of the support has been included as per NDS 3.4.3.1 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.15 1.00 1.00 1.000 1.100 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D+L, V = 3627, V design* = 2356 lbs Bending(+): LC #2 = D+L, M = 2073 lbs-ft Deflection: LC #2 = D+L EI= 158e06 lb-int/ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3.BUILT-UP BEAMS:it is assumed that each ply is a single continuous member(that is,no butt joints are present)fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded.Where beams are side-loaded,special fastening details may be required_ 47 r COMPANY PROJECT i 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 28,2010 10:45 b7 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End nit Loadl Dead Full UDL 13.0 plf Load2 Live Full UDL 40.0 MAXIMUM REACTIONS lbs and BEARING LENGTHS in k d -144,444 .a ,fix , " ' r 14. � �, ,F � & 10' 54 Dead 54 120 Live 120 174 Total 174 Bearing: #2 Load Comb #2 0.5#2 Length 0.50* *Min.bearing length for beams is 1/2"for exterior supports Lumber n-ply, D.Fir-L, No.2, 2x8", 2-Plys Self-weight of 5.17 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005 Criterion Analysis Value Design Value Analysis/Design Shear fv = 10 Fv' = 180 fv/Fv' 0.05 Bending(+) fb = 120 Fb' = 1080 fb/Fb' = 0.11 Live Defl'n 0.01 = <L/999 0.20 = L/360 0.04 Total Defl'n 0.01 = <L/999 0.30 = L/240 0.04 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr 1.00Cfrt 1Ci0 1Co0 LC# FFv' 180 1.00 1.00 1.00 - - 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 Fcp' 625 - 1.00 1.00 - - _ 1. 00 1.00 - - 1.00 1.00 - 2 E' 1.6 million 1.00 1.00 - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - Shear : LC #2 = D+L, V = 174, V design = 139 lbs Bending(+) : LC #2 = D+L, M = 262 lbs-ft Deflection: LC #2 = D+L EI= 76e06 lb-in2/ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D-dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3.BUILT-UP BEAMS:it is assumed that each ply is a single continuous member(that is,no butt joints are present)fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded.Where beams are side-loaded,special fastening details may be required. COMPANY PROJECT O.° t WoodWorks° _ SOFtWARE FOR WOOD DESIGN June 28,2010 10:33 b8 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End l c30 Dead Point 59 3.50 lbs 2_c30 Snow Point 75 3.50 lbs 3_w47 Dead Partial UD 96.0 96.0 0.00 3.50 plf 4 j13 Dead Partial UD 78.0 78.0 0.00 5.50 plf 5_j13 Live Partial UD 240.0 240.0 0.00 5.50 plf 6_j14 Dead Partial UD 104.0 104.0 5.50 6.00 plf 7 j14 Live Partial UD 320.0 320.0 5.50 6.00 plf 8-b12 Dead Point 171 5.50 lbs 9-b12 Live Point 469 5.50 lbs MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) : , �'9 _ :n:;t. - s me t° 4 - .� r x �,, € � a < `cc,- ': IO Dead 531 6$ Live 761 556 Total 1292 1189 Bearing: 1744 Load Comb #2 Length 0.69 #2 0.93 Lumber n-ply, D.Fir-L, No.2,2x10",2-Plys Self-weight of 6.59 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv* = 67 Fv' = 180 fv*/Fv' = 0.37 Bending(+) fb = 556 Fb' = 990 fb/Fb' = 0.56 Live Defl'n 0.03 = <L/999 0.20 = L/360 0.13 Total Defl'n 0.05 = <L/999 0.30 = L/240 0.16 *The effect of point loads within a distance d of the support has been included as per NDS 3.4.3.1 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.100 1.00 1.00 1.00 1.00 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D+L, V = 1744, V design* = 1232 lbs Bending(+): LC #2 = D+L, M = 1964 lbs-ft Deflection: LC #2 = D+L EI= 158e06 lb-int/ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W-wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. - 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3.BUILT-UP BEAMS:it is assumed that each ply is a single continuous member(that is,no butt joints are present)fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded.Where beams are side-loaded,special fastening details may be required. 2 r IE COMPANY PROJECT - fi 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 28,2010 10:33 b9 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or pif) • Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w51 Dead Partial UD 96.0 96.0 2.00 3.00 lbs 2 c32 Dead Point 59 75 2.00 lbs 3_c32 Rf.Live Point plf Load4 Dead Full UDL 13.0 plf Load5 Live Full UDL 40.0 MAXIMUM REP^T'^A'e /ILwt "`4 DCADIAIP` I CAV"TLJC - ,40;p4:--,:„..:,-,-, ''�,`� '� , v�^'i � -- ,-.4: , i ° � "^ --, Wu Z.,3 ..q ' • .lrt L.,,^ �. .,,,,,,,,`, . .. ,, ,'z. MDQ*/ . 4+ „4w, . „.-.wry. ., *: !� 23i 1 0' 146 - Dead 63 110 Live 85 256 Total 148 #2 - Bearing: 0.50* Load Comb #2 Length 0.50* *Min.bearing length for beams is 112"for exterior supports Lumber n-ply, D.Fir-L, No.2, 2x8", 2-Plys Self-weight of 5.17 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design fv = 12 Fv' = 207 fv/Fv' - 0.06 Shear fb/Fb' = 0.07 Bending(+) fb = 82 Fb' = 1242 0.01 Live Defl'n 0.00 = <L/999 0.10 = L/360 0.01 Total Defl'n 0.00 = <L/999 0.15 = L/240 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr 1frt.00 1Ci0 1C00 LC# Fv' 180 1.15 1.00 1.00 - - - 2 Fb'+ 900 1.15 1.00 1.00 1.000 1.200 1.00 1_00 1.00 1.00 -1.00 1.00 - - Fcp' 625 1.00 1.00 - - 1.00 1.00 - 2 E' 1.6 million 1.00 1.00 -- 1.00 1.00 - 2 Ervin' 0.58 million 1.00 1.00 - Shear : LC #2 = D+L, V = 256, V design = 169 lbs Bending(+) : LC #2 = D+L, M = 179 lbs-ft Deflection: LC #2 = D+L EI= 76e06 lb-int/ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3.BUILT-UP BEAMS:it is assumed that each ply is a single continuous member(that is,no butt joints are present)fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded.Where beams are side-loaded,special fastening details may be required. r . r+ � COMPANY PROJECT i I1 'WoodWorks� SOn1W4REFOR WOOD Df510* June 28,2010 10:33 b10 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or pif) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1c33 Dead Point 59 1.00 lbs 2_c33 Snow Point 75 1.00 lbs 3 w52 Dead Partial UD 96.0 96.0 0.00 1.00 plf Load4 Dead Full UDL 13.0 plf Loads Live Full UDL 40.0 plf MAXIMUM RE/1rrrnkrc III „„4 newnrsir' I Cwir-rue I► . '` -s" „ r � ,',•my � "�� x� �,� as ��r� %� �v��-,.F x �"'e a . .� �«�'� � .� �a 1.. i o� Dead 146 31 Live 82 63 Total 229 64 Bearing: 127 Load Comb #3 Length 0.50* #3 *Min.bearing length for beams is 1/2"for exterior supports o.so* Lumber n-ply, D.Fir-L, No.2,2x8", 2-Plys Self-weight of 5.17 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 10 Fv' = 207 fv/Fv' = 0.05 Bending(+) fb = 72 Fb' = 1242 fb/Fb' = 0.06 Live Defl'n 0.00 = <L/999 0.10 = L/360 0.01 Total Defl'n 0.00 = <L/999 0.15 = L/240 0.01 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 3 Fcp' - E' Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3 Shear Bending(+) : Deflection: LC #3 = D+.75(L+S) EI= 76e06 lb-int/ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3.BUILT-UP BEAMS:it is assumed that each ply is a single continuous member(that is,no butt joints are present)fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded.Where beams are side-loaded,special fastening details may be required. COMPANY PROJECT fit WoodWQrks June 28,2010 10:36 b14 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or pif) Load Type Distribution Magnitude LocaSocationEnd [fft] Units rt 2 j33 Dead Partial UD 78.0 78.0 0.00 1.50 plf 2 j33 Live Partial UD 240.0 240.0 0.00 1.50 plf 3_j13 Dead Partial UD 78.0 78.0 3.00 8.50 plf 4 j13 Live Partial UD 240.0 240.0 3.00 8.50 plf 5 j34 Dead Partial UD 78.0 78.0 1.50 3.00 plf 6_j34 Live Partial UD 240.0 240.0 1.50 3.00 plf 7_j46 Dead Partial UD 28.9 28.9 5.00 8.50 plf 8_j46 Live Partial UD 80.0 80.0 5.00 8.50 plf 9_b25 Dead Point 409 lbs bs 10 b25 Live Point 1080 5.00 MAXIMUM REACTIONS (lbs)and BEARING LENGTHS (in) -.-.gyp ..., .-. t- * g'_6"1 1 0' 685 Dead 553 1878 Live 1522 2563 _ Total 2076 Bearing: #2 1.83 Load Comb #2 Length 1.48 LSL, 1.55E, 2325Fb, 1-314x14" Self-weight of 7.66 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi) and Deflection (in) using NDS 2005: fv Criterion Analysis Value Design Value An /Fvs/Design1 Shear fv = 126 Fv' = 310 Bending(+) fb = 1324 Fb' = 2325 fb/Fb' = 0.57 <L/999 0.28 = L/360 0.31 Live Defl'n 0.09 0.32 Total Defl'n 0.14 = L/750 0.42 = L/240 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrrtt Ci 1Cn00 LC# Fv' 310 1.00 - 1.00 - - 2 Fb'+ 2325 1.00 - 1.00 1.000 1.00 1.00 1.00 -_ 1.00 - - - Fcp' 800 - - 1.00 - _ - - 1.00 - - 2 E' 1.5 million - 1.00 - _ 1.00 - - 2 Emin' 0.80 million - 1.00 - - Shear : LC #2 = D+L, V = 2563, V design = 2064 lbs Bending(+) : LC #2 = D+L, M = 6308 lbs-ft Deflection: LC #2 = D+L EI= 620e06 lb-intLoad Deflection. Total Deflection = 1.50(Dead Load Deflection) + Live (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2.SCL-BEAMS(Structural Composite Lumber):the attached SCL selection is for preliminary design only.For final member design contact your local SCL manufacturer. 3.Size factors vary from one manufacturer to another for SCL materials.They can be changed in the database editor. ' /.. \t L COMPANY PROJECT i WoodWorks® Works SOF-MAW FOR WOOD DESIGN June 28,2010 10:48 b15 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j5 Dead Full UDL 335.7 plf 2 j5 Rf.Live Full UDL 493.7 plf MAXIMUM REACTIONS (lbs)and BEARING LENGTHS (in) : - ate r ; z s 0' 6 64 Dead 1027 Live 1481 1027 Total 2508 1481 Bearing: 2508 Load Comb #2 Length 1.34 #2 1.34 Lumber n-ply, D.Fir-L, No.2, 2x10", 2-Plys Self-weight of 6.59 plf included in loads; Lateral support:top=full, bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection (in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 101 Fv' = 207 fv/Fv' = 0.49 Bending(+) fb = 1055 Fb' = 1138 fb/Fb' = 0.93 Live Defl'n 0.05 = <L/999 0.20 = L/360 0.23 Total Defl'n 0.09 = L/776 0.30 = L/240 0.31 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.15 1.00 1.00 1.000 1.100 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D+L, V = 2508, V design = 1864 lbs Bending(+) : LC #2 = D+L, M = 3762 lbs-ft Deflection: LC #2 = D+L EI= 158e06 lb-int/ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3.BUILT-UP BEAMS:it is assumed that each ply is a single continuous member(that is, no butt joints are present)fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded.Where beams are side-loaded,special fastening details may be required. COMPANY PROJECT ti 1 WoodWorks SOFTWARE FOB WOOD DESIGN June 28,2010 10:46 b20 . Design Check Calculation Sheet Sizer 7.1 LOADS (ibs,psf,or plf) LoadType Distribution Magnitude Location [ft] Units Start End Start End l j47 Dead Partial UD 42.5 42.5 0.00 2.50 plf 2 j47 Live Partial UD 62.5 62.5 0.00 2.50 plf MAXIMUM REPI'TII kIC /M. A QCAQI It I cwI1+TUO i J .�: '�Tf�fi#,,s�'". �e- *% T.a �..�? ,%..-1 aal� i A A3A I 0' 53 Dead 71 53 Live 91 165 Total 162 Bearing: #2 Load Comb #2 0.502 Length 0.50* *Min.bearing length for beams is 1/2"for exterior supports Lumber-soft, D.Fir-L, No.2,4x8" Self-weight of 6.03 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fir = 6 Fv' = 180 fv/Fv' 0.03 Bending(+) fb = 46 Fb' = 1170 fb/Fb' = 0.04 Live Defl'n 0.00 = <L/999 0.10 = L/360 0.01 Total Defl'n 0.00 = <L/999 0.15 = L/240 0.01 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt 1Ci0 1C00 LC# Fv' 180 1.00 1.00 1.00 - - - - 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 2_ 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - Shear : LC #2 = D+L, V = 162, V design = 99 lbs Bending(+) : LC #2 = D+L, M = 118 lbs-ft Deflection: LC #2 = D+L EI= 178e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. • • COMPANY PROJECT 111 WoodWorks® SOFTWARE FOR WOOD DESIGNJune 28,2010 10:34 b21 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Pat- Start End Start End tern 1 w63 Dead Partial UD 308.0 308.0 6.00 10.00 No 2 w63 Live Partial UD 320.0 320.0 6.00 10.00 No 3 w62 Dead Partial UD 308.0 308.0 2.00 6.00 No 4 w62 Live Partial UD 320.0 320.0 2.00 6.00 No 5 w32 Dead Partial UD 369.0 369.0 0.00 2.00 No 6_w32 Snow Partial UD 357.5 357.5 000 2.00 No 7 c44 Dead Point 1940 1..50 No 8-c44 Snow Point 2853 1.50 No 9 j20 Dead Partial UD 104.0 104.0 6.50 10.00 No 10 j20 Live Partial UD 320.0 320.0 6.50 10.00 No 11_j21 Dead Partial UD 104.0 104.0 6.00 6.50 No 12 j21 Live Partial UD 320.0 320.0 6.00 6.50 No 13 j22 Dead Partial UD 104.0 104.0 2.002.50 No 14_j22 Live Partial UD 320.0 320.0 2.00 2.50 No 15 j23 Dead Partial UD 104.0 104.0 2.50 6.00 No 16 j23 Live Partial UD 320.0 320.0 2.50 6.00 No 17 j48 Dead Partial UD 71.5 71.5 0.00 1.50 No 18 j48 Live Partial UD 220.0 220.0 0.00 1.50 No 19 b23 Dead Point 658 0.00 No 20 b23 Snow Point 195 0.00 No MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in): ,,,:',-:, .'',-,%.,- ---,'-'-7.1;-1-.':.-,'.--"'',.. a x` ., -...3�' 2, .a.-- °�. g ;' ., ;.o.. , -2 �rt .7.-'i, A- ._ ^�. _:tea .mow T „,.�." a» .:7`'-a :-zz ." `._..."..:1.. ..,„,x.>x- E. -s. , - j fir 77:. 1 • . ,• . T' -;7";'"5,;:'.74.-7.,.: 14:-='; _ ' -gin N IMil • A 0 2 101 Dead 5581 2508 Live 5266 1311 Total 10897 Bearing: 3819 Load Comb #0 #3 Length 0.00 3.50 #2 Cb 0.00 1.11 1.23 1.00 LSL,1.55E,2325Fb,3-112x14" Self-weight of 15.31 pit included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv* = 139 Fe' = 356 fv*/Fv' = 0.39 Bending(+) fb = 717 Fb' = 2325 fb/Fb' = 0.31 Bending(-) fb = 600 Fb' = 2632 fb/Fb' = 0.23 Deflection: Interior Live 0.05 = <L/999 0.27 = L/360 0.17 Total 0.07 = <L/999 .40 = L/240 0.17 0 Cantil. Live -0.03 = L/698 0.13 = L/180 0.26 Total -0.03 = L/788 0.20 = L/120 0.15 *The effect of point loads within a distance d of the support has been included as per NDS 3.4.3.1 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 4 Fb'+ 2325 1.00 - 1.00 1• .000 1.00 - 1.00 1.00 - - Pb -' 2325 1.15 - 1.00 0• .984 1.00 - 1.00 1.00 - - 4 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #4 = D+S, V = 7237, V design* = 4536 lbs Bending(+): LC #2 = D+L, M = 6833 lbs-£t Bending(-): LC #4 = D+S, M = 5720 lbs-ft Deflection: LC #2 = D+L EI= 1241e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis outpu • t) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.SCL-BEAMS(Structural Composite Lumber):the attached SCL selection is for preliminary design only.For final member design contact your local SCL manufacturer. 3.Size factors vary from one manufacturer to another for SCL materials.They can be changed in the database editor. 4.The critical deflection value has been determined using maximum back-span deflection.Cantilever deflections do not govern design. t_) /" a r\ COMPANY PROJECT l WoodWorks® June 28,2010 10:35 b22 SOFTWARE FOR WOOD DESIGN Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) : Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_w69 Dead Partial UD 369.0 369.0 1.00 2.50 pit 2 w69 Snow Partial UD 357.5 357.5 1.00 2.50 pit 3 j48 Dead Partial UD 71.5 71.5 1.00 2.50 pit q j48 Live Partial UD 220.0 220.0 1.00 2.50 plf 5 j47 Dead Full UDL 42.5 plf 5 j47 Live Full UDL 62.5 1.00 lbs 7 b23 Dead Point 700 8 b23 Snow Point 195 1.00 lbs .''';',;;.::',F4,:?-„ ,*;„ , .� `..,, -.; x' tx "; ," .:mo i _, ' ftzt MAXIMUM RE a titnz + R` cA. C V. : �� � ias,.r ,i `Pv '*,,,V1.:',,,a " ate- � � ,� §.h��p,'� 'P7 ' .��a_r�w�-a:? a '" �r'�'Y� �t� yaa+ ',7 # � k�•�`'aa_' ,` 'I' a 'x>^'� �`;:�r,+ �' 'm" '�'.s✓ �.� ,rte, `r�.n : ,_ t`#u s,�" '�,",, ss�'�" �' 77! 'e- .a^` r *'' r..'z''' ' a ''? .5F aA, -..; il,,4 v._ J` a;, .Z�� -, �: '� ,ars. " ' a - % ..K,, r c „44 k � 7- , 't�4:./.4i---.:. acts _ , *- .2i/ '' ,1: I . �44 e e,e,:2.,^..,,k ,� .. _,'> �.�."°.;'n°',' tx a';.--,1,,,,,''` .., ,.....,...o-;. �. 2S 2'-6'1 1 0' 807 Dead 683 572 Live 341 1379 Total 1024 Bearing: #3 0.63 Load Comb #3 Length 0.50* *Min.bearing length for beams is 1/2"for exterior supports Lumber-soft,D.Fir-L, No.2,4x12" Self-weight of 9.35 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 30 Fv' = 207 fv/Fv' = 0.14 0.14 Bending(+) fb = 159 Fb' = 1138 fb/Fb' = 0.01 Live Defl'n 0.00 = <L/999 0.08 = L/360 0.02 Total Defl'n 0.00 = <L/999 0.13 = L/240 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt CiCn LC# Fv' 180 1.15 1.00 1.00 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.100 1.00 1.00 1.00 1.00 3 Fcp' 625 1.00 1.00 1.00 1.0000 _ - 1.00 1. 3 E' 1.6 million 1.00 1.00 - 1.00 1.00 3 Emin' 0.58 million 1.00 1.00 - - Shear LC #3 = D+.75(L+S), V = 1024, V design = 776 lbs Bending(+): LC #3 = D+.75(L+S), M = 978 lbs ft Deflection: LC #3 = D+.75(L+S) EI= 664e06 ib-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead 1,--live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. I 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. I 2let 14.• COMPANY PROJECT i i WoodWorks® SOFTWARE FOR WOOD DESIGN June 28,2010 10:35 b23 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_w33 Dead Partial UD 204.0 204.0 0.00 1.50 plf 2_c18 Dead Point 143 1.50 lbs 3_c18 Rf.Live Point 110 1.50 lbs 4_c19 Dead Point 59 4.50 lbs 5_c19 Rf.Live Point 85 4.50 lbs 6_w34 Dead Partial UD 108.0 108.0 4.50 6.50 plf 7_c20 Dead Point 59 6.50 lbs 8_c20 Rf.Live Point 85 6.50 lbs 9 c21 Dead Point 143 9.50 lbs lb- c21 Rf.Live Point 110 9.50 lbs 11 w35 Dead Partial UD 204.0 204.0 9.50 11.00 plf MAXIMUM REACTIONS(lbs)and BEARING LENGTHS (in) : ��,. x{ " � . ..t:"2 7517: as ^°z� �-� ate' 10' 114 Dead 700 700 Live 195 195 Total 895 Bearing: 895 Load Comb #2 #2 Length 0.50* 0.50* *Min.bearing length for beams is 1/2"for exterior supports LSL, 1.55E, 2325Fb, 3-1/2x14" Self-weight of 15.31 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 20 Fv' = 356 fv/Fv' = 0.05 Bending(+) fb = 213 Fb' = 2674 fb/Fb' = 0.08 Live Defl'n 0.01 = <L/999 0.37 = L/360 0.03 Total Defl'n 0.05 = <L/999 0.55 = L/240 0.09 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cf rt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D+L, V = 895, V design = 639 lbs Bending(+) : LC #2 = D+L, M = 2028 lbs-ft Deflection: LC #2 = D+L EI= 1241e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2.SCL-BEAMS(Structural Composite Lumber):the attached SCL selection is for preliminary design only.For final member design contact your local SCL manufacturer. 3.Size factors vary from one manufacturer to another for SCL materials.They can be changed in the database editor. COMPANY PROJECT _ r 1 WoodWorks® SOFT ARE FOR WOOD DESIGN June 28,2010 10:47 b24 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 j42 Dead Partial UD 47.7 47.7 0.00 4.50 plf 2-_j42 Live Partial UD 160.0 160.0 0.00 4.50 plf 3_j43 Dead Partial UD 47.7 47.7 4.50 7.50 plf 4_j43 Live Partial UD 160.0 160.0 4.50 7.50 plf 5_j44 Dead Partial UD 47.7 47.7 7.50 13.00 plf j44 Live Partial UD 160.0 160.0 7.50 13.00 plf 7_j45 Dead Partial UD 47.7 47.7 13.00 16.00 plf 8 j45 Live Partial UD 160.0 160.0 13.00 16.00 plf MAXIMUM REACTIONS (lbs)and BEARING LENGTHS(in) : 7 ...--....,...tam-," wm ;, ,18 a.4.�..43..a3Nn;Nr,-;,, ....,-,Ka,,,.,,a xx .,r.u�x.;. .;F , - t 164 I�� 442 Dead 442 1280 Live 1280 1722 Total 1722 Bearing: #2 Load Comb #2 0.#2 Length 0.85 Glulam-Unbal.,West Species, 24F-V4 DF,3-118x10-112" - Self-weight of 7.55 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 70 Fv' = 265 fv/Fv' = 0.26 Bending(+) fb = 1440 Fb' = 2400 fb/Fb' = 0.60 Live Defl'n 0.43 = L/441 0.53 = L/360 0.82 Total Defl'n 0.66 = L/290 0.80 = L/240 0.83 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - 2 E' 1.8 million 1.00 1.00 - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - Shear : LC #2 = D+L, V = 1722, V design = 1534 lbs Bending(+) : LC #2 = D+L, M = 6890 lbs-ft Deflection: LC #2 = D+L EI= 543e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM: bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). • 0 r_P) .lel COMPANY PROJECT X11 WoodWorks® SOFWARE FOR WOOD DESIGN( June 28,2010 10:33 b25 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Lotion [ft] Units Start End Starcat End Loadl Dead Full UDL 200.0 plf Load2 Live Full UDL 540.0 plf MAXIMUM REACTIONS /lbs) and BFARING LENGTHS (in) : # ' r ^"z' `'` - „�& Via"'. '. a ,��.": o- szs1.01,4.-44.‘,..r,.4t r z s, ` t .' ' - ymak a r A +;, ,a. x -U . %4.: ', -.- ,,,A." ," n, tArxt e -- # § Q I O' 41 Dead 409 409 Live 1080 Total 1489 1080 Bearing: 1489 Load Comb #2 #2 Length 0.68 0.68 Lumber-soft, D.Fir-L, No.2,4x6" Self-weight of 4.57 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi)and Deflection (in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 89 Fv' = 180 fv/Fv' = 0.50 Bending(+) fb = 1013 Fb' = 1170 fb/Fb' = 0.87 Live Defl'n 0.04 = <L/999 0.13 = L/360 0.30 Total Defl'n 0.06 = L/764 0.20 = L/240 0.31 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.00 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D+L, V = 1489, V design = 1148 lbs Bending(+) : LC #2 = D+L, M = 1489 lbs-ft Deflection: LC #2 = D+L EI= 78e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 7 rx COMPANY PROJECT 000211A - I WoodWorks© June 28,201010:57 b25 SOFTWARE FOR WOOD DESIGN Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution MagnEnd Start itudionE(ft) Units art S nd 1 w72 Dead Partial UD 539.7 539.7 13.00 14.50 plf 21w72 Rf.Live Partial UD 493.7 493.7 13.00 14.50 plf 3w28 Dead Partial UD 535.5 535.5 0.00 4.50 plf w 428 Rf.Live Partial UD 487.5 487.5 7.000.00 4.50 pit 5 c14 Dead Point 1074 7 00 lbs bs 6 c14 Rf.Live Point 1�1 13.00 lbs 7 c15 Dead Point 13.00 lbs 8 c15 Rf.Live Point 1601 9 w73 Dead Partial UD 539.7 539.7 14.50 16.00 plf i0 w73 Rf.Live Partial UD 493.7 493.7 14.50 16.00 plf 11-w74 Dead Partial UD 443.7 443.7 5.50 7.00 plf 12-w74 Rf.Live Partial UD 493.7 493.7 5.50 7.00 plf 13 w75 Dead Partial UD 539.7 539.7 4.50 5.50 plf 14 w75 Rf.Live Partial UD 493.7 493.7 4.50 5.50 plf 15 j42 Dead Partial UD 47.7 47.7 0.00 4.50 p1f 16-j42 Live Partial UD 160.0 160.0 0.00 4.50 plf 17 X43 Dead Partial UD 47.7 47.7 4.50 5.50 pit 18 j43 Live Partial UD 160.0 160.0 4.50 5.50 plf 191j44 Dead Partial UD 47.7 47.7 7.50 13.00 plf 20 j44 Live Partial UD 160.0 160.0 7.50 13.00 plf 21 j45 Dead Partial UD 47.7 47.7 5.50 7.50 plf 22-j45 Live Partial UD 160.0 160.0 5.50 7.50 plf 23-j46 Dead Partial UD 47.7 47.7 13.00 14.50 plf 24 j46 Live Partial UD 160.0 160.0 13.00 14.50 plf 25-j47 Dead Partial UD 47.7 47.7 14.50 16.00 plf 26 j47 Live Partial UD 160.0 160.0 14.50 16.00 plf MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) ~ - ' J 161 g. 10' 4101 Dead 4328 9477 Live 5296 5101 Total 9624 #2 Bearing: 2.84 Load Comb #2 Length 2.89 Glulam-Bal.,West Species,24F-V8 DF,5-1/8x15" Self-weight of 17.7 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 157 Fv' = 305 fv/Fv' = 0.830.52 Bending(+) 1. fb = 2301 Pb' = 2760 fb/Fb' = 0.68 Live Defl'n 0.36 = L/528 0.53 = L/360 0.96 Total Defl'n 0.77 = L/249 0.80 = L/240 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrrtt40 328 41Cn LC# Fv' 265 1.15 1.00 1.00 - - - Fb'+ 2400 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.000 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - -- - 1.00 - - 2 E' 1.8 million 1.00 1.00 - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - Shear : LC #2 = D+L, V = 9624, V design = 8063 lbs Bending(+): LC #2 = D+L, M = 36854 lbs-ft Deflection: LC #2 = D+L EI= 2594e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). COMPANY PROJECT r WoodWorks fi SOFTWARE FOR WOOD DESIGN June 28,2010 10:36 b26 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_w37 Dead Partial UD 535.5 535.5 10.50 11.00 plf 2_w37 Snow Partial UD 487.5 487.5 10.50 11.00 plf 3_w38 Dead Partial UD 535.5 535.5 11.00 14.00 plf 4_w38 Snow Partial UD 487.5 487.5 11.00 14.00 pif 5_w39 Dead Partial UD 535.5 535.5 14.00 15.50 plf 6 w39 Snow Partial UD 487.5 487.5 14.00 15.50 plf MAXIMUM REACTIONS (lbs)and BEARING LENGTHS (in) : : 10, 15-6'i Dead 583 Live 393 2397 Total 976 2044 Bearing: 4441 Load Comb #2 Length 0.50* #2 "Min.bearing length for beams is 1/2"for exterior supports 1.33 Glulam-Bal.,West Species,20F-V7 DF, 5-118x16-1/2" Self-weight of 19.47 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 54 Fv' = 305 fv/Fv' = 0.18 Bending(+) fb = 488 Fb' = 2297 fb/Fb' = 0.21 Live Defl'n 0.05 = <L/999 0.52 = L/360 0.09 Total Defl'n 0.14 = <L/999 0.77 = L/240 0.18 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2000 1.15 1.00 1.00 1.000 0.999 1.00 1.00 1.00 1.00 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D+S, V = 4441, V design = 3070 lbs Bending(+) : LC #2 = D+S, M = 9454 lbs-ft Deflection: LC #2 = D+S EI= 3070e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: - 1. Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. - 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension), Fcp(comp'n). /. (,,,l'14-2., COMPANY PROJECT i 1 WoodWorksSOFT a ® June28,2010 10:50 c2 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) : Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_bl Dead Axial 1539 (Eccentricity = 0.00 in) 2—b1 Rf.Live Axial 2089 (Eccentricity = 0.00 in) MAXIMUM REACTIONS(lbs) 8' Lumber n-ply, Hem-Fir, No.2,2x6", 2-Plys Self-weight of 3.41 plf included in loads; Pinned base;Loadface=depth(d);Built-up fastener: nails;Ke x Lb: 1.00 x 0.00=0.00[ft];Ke x Ld: 1.00 x 8.00=8.00[ft]; Analysis vs.Allowable Stress(psi)and Deflection (in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design 980 Axial fc = 221 Fc' = fc/Fc' = 0.23 Axial Bearing fc = 221 Fc* = 1644 fc/Fc* = 0.13 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cfrt 1Ci0 LC# Fc' 1300 1.15 1.00 1.00 0.596 1.100 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.100 - Axial : LC #2 = D+L, P = 3655 lbs Kf = 1.00 (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.BUILT-UP COLUMNS: nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. COMPANY PROJECT t WoodWorks® SOFIWXREFOk WOOD DES$GN June 28,2010 10:52 c25 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b12 Dead Axial 514 (Eccentricity = 0.00 in) 2—b12 Live Axial 1408 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): ?rte � - � �,,:� a .. -,,tis'. 0' A 9' Lumber n-ply, Hem-Fir, No.2,2x4", 2-Plys Self-weight of 2.17 plf included in loads; Pinned base; Loadface=depth(d);Built-up fastener:nails;Ke x Lb: 1.00 x 0.00=0.00[ft];Ke x Ld: 1.00 x 9.00=9.00[ft]; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Axial fc = 185 Fc' = 380 fc/Fc' = 0.49 Axial Bearing fc = 185 Fc* = 1495 fc/Fc* = 0.12 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.254 1.150 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D+L, P = 1942 lbs Kf = 1.00 (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT-UP COLUMNS:nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. g_ / �� COMPANY PROJECT i 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 28,2010 10:51 c36 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b21 Dead Axial 5634 (Eccentricity = 0.00 in) 2—b21 Rf.Live Axial 7021 (Eccentricity = 0.00 in) MAXIMUM REACTIONS(lbs): Timber-soft, Hem-Fir, No.2,6x6" Self-weight of 6.25 plf included in loads; Pinned base;Loadface=depth(d); Ke x Lb: 1.00 x 8.00=8.00[ft];Ke x Ld: 1.00 x 8.00=8.00[ft]; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Axial fc = 420 Fc' = 548 fc/Fc' = 0.77 Axial Bearing fc = 420 Fc* = 661 fc/Fc* = 0.64 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 575 1.15 1.00 1.00 0.829 1.000 - - 1.00 1.00 2 Fc* 575 1.15 1.00 1.00 - 1.000 - - 1.00 1.00 2 Axial : LC #2 = D+L, P = 12705 lbs (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. COMPANY PROJECT di WoodWorks SOFTWARE FOR WOOD DESIGN June 28,2010 10:52 c44 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_c35 Dead Axial 1940 (Eccentricity = 0.00 in) 2 c35 Rf.Live Axial 2853 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): 0' 9' Lumber n-ply, Hem-Fir, No.2, 2x4", 3-Plys Self-weight of 3.25 plf included in loads; Pinned base;Loadface=depth(d);Built-up fastener:nails;Ke x Lb: 1.00 x 9.00=9.00[ft];Ke x Ld: 1.00 x 9.00=9.00[ft];Repetitive factor: applied where permitted(refer to online help); Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Axial fc = 306 Fc' = 363 fc/Fc' = 0.84 Axial Bearing fc = 306 Fc* = 1719 fc/Fc* = 0.18 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.211 1.150 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D+L, P = 4823 lbs Kf = 0.60 (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.BUILT-UP COLUMNS:nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. COMPANY PROJECT fit WoodWorks® $OFIWARE FOR WOOD DEIGN June 28,2010 10:51 c64 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_c45 Dead Axial 1940 (Eccentricity = 0.00 in) 2_c45 Rf.Live Axial 2853 (Eccentricity = 0.00 in) 3_b22 Dead Axial 807 (Eccentricity = 0.00 in) 4-b22 Rf.Live Axial 763 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs) 8' 0' Lumber n-ply, Hem-Fir, No.2,2x6", 3-Plys Self-weight of 5.11 plf included in loads; Pinned base;Loadface=depth(d);Built-up fastener:nails; where permitted i8. 0 to.00li[ft]; t help)Ld: 1.00 x 8.00=8.00[ft];Repetitive factor: applie on Analysis vs.Allowable Stress(psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Axial fc = 259 Fc' = 439 fc/Fc' = 0.59 Axial Bearing fc = 259 Fc* = 1644 fc/Fc* = 0.16 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.267 1.100 - 1.00 1.00 21.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.100 - Axial : LC #2 = D+L, P = 6404 lbs Kf = 0.60 (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2.BUILT-UP COLUMNS:nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. BY DATE ,....... ,, JOB NO 0.,c 0 Vti a010 ,,,, C t i -t...)0t0 PROJECT: RE: T6eanN kk.)i Laki-co„ -exctioy-‘ 1,- ___, win -, ..th\1 aip 3 Li. z P 0 w I— w 2 Ill 7 a _I cc a nC'e_ 5 W\f\& > .4S. k V\i'V C_ Grii ,..tf(0.1\riAle\ 0 w 0 z w 0 1 CC IL - A / C.,1) 11 ))1 Mk: of. CO 1 C 0\0 40, Iff z 0 = < u z D 2 2 0 C.) 2 0 X 0 Il- Z LI O I F a. o• 6 v) ;.. O i-E (1.) •,. , c,Z1 -- ..- i - COMPANY PROJECT I WoodWorks b25LC1 SOFTWARE FOR WOOD vesi05 June 28,2010 10:19 .. Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,Pet or pit) Load Type Distribution Magnitude Location (ft] Units Start End Start End 1 w72Dead Partial UD 539.7 539.7 13.00 14.50 plf 2 w72 Snow Partial UD 493.7 493.7 13.00 14.50 plf 3 w28 Dead Partial UD 535.5 535.5 0.00 4.50 plf 4 w28 Snow Partial UD 487.5 487.5 0.00 4.50 plf 5 c14 Dead Point 1074 7.00 lbs Snow Point 1601 7.00 lbs 7 c14lbs 7 c15 Dead Point 1074 13.00 lbs 8-c15 Snow Point 1601 13.00 9-w73 Dead Partial UD 539.7 539.7 14.50 16.00 plf 10 w73 Snow Partial UD 493.7 493.7 14.50 16.00 plf 11-w74 Dead Partial UD 443.7 443.7 5.50 7.00 plf 12-w74 Snow Partial UD 493.7 493.7 5.50 7.00 plf 131w75 Dead Partial UD 539.7 539.7 4.50 5.50 plf 14 w75 Snow Partial UD 493.7 493.7 4.50 5.50 plf 15 j42 Dead Partial UD 47.7 47.7 0.00 4.50 plf 16 j42 Live Partial UD 160.0 160.0 0.00 4.50 plf 17-j43 Dead Partial UD 47.7 47.7 4.50 5.50 plf 18 j43 Live Partial UD 160.0 160.0 4.50 5.50 plf 19_j44 Dead Partial UD 47.7 47.7 7.50 13.00 plf 20 j44 Live Partial UD 160.0 160.0 7.50 13.00 plf 21 j45 Dead Partial UD 47.7 47.7 5.50 7.50 plf 22 j45 Live Partial UD 160.0 160.0 5.50 7.50 plf 23j46 Dead Partial UD 47.7 47.7 13.00 14.50 plf 24 j46 Live Partial UD 160.0 160.0 13.00 14.50 plf 25-j47 Dead Partial UD 47.7 47.7 14.50 16.00 plf 26-j47 Live Partial UD 160.0 160.0 14.50 16.00 plbs lf 03 2A Wind Point 7960 0.00 2039.1 Wind Point -7960 7.00 lbs 7960 13.00 lbs 203B.2 Wind Point -7960 16.00 lbs 203B.2 Wind Point MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) ►-• 1 s1 10' 4101 Dead 4328 4096 Live 7703 2458 8197 Uplift Total 12031 _ #6 Bearing: 2.46 Load Comb #4 Length 3.61 Glulam-Bal.,West Species,24F-V8 DF,5-1/8x15" Self-weight of 17.7 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 136 Fv' = 305 fv/Fv' = 0.45 Bending(+) fb = 1986 Fb' = 2760 Live Defl'n 0.27 = L/704 0.53 = L/360 0.85 Total Defl'n 0.68 = L/283 0.80 = L/240 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.15 1.00 1.00 - - - 1.00 1.00 1.00 6 Fb'+ 2400 1.15 1.00 1.00 1.000 1.000 1.00 1_00 1.00 1.00 - 6 - - - Fcp' 650 - 1.00 1.00 - - - - 1.00 - - 3 E' 1.8 million 1.00 1.00 - - Emin' 0.85 million 1.00 1.00 - - - Shear : LC #6 = D+S, V = 8344, V design = 6983 lbs Bending(+): LC #6 = D+S, M = 31814 lbs-ft Deflection: LC #3 = D+.75(L+S) EI= 2594e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. • 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). ( f)i-, COMPANY PROJECT III 1 WoodWorks ... SOEFWARE FOR WOOD DESIGN June 28,2010 10:24 b25 LC1 NO LL Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or pif) : Load Type Distribution Magnitude Location )ft] Units Start End Start End 1_w72 Dead Partial UD 539.7 539.7 13.00 14.50 plf 3_w28 Dead Partial UD 535.5 535.5 0.00 4.50 plf 5_c14 Dead Point 1074 7.00 lbs 7_c15 Dead Point 1074 13.00 lbs 9 w73 Dead Partial UD 539.7 539.7 14.50 16.00 plf 11 w74 Dead Partial UD 443.7 443.7 5.50 7.00 plf 13_w75 Dead Partial UD 539.7 539.7 4.50 5.50 plf 15 j42 Dead Partial UD 47.7 47.7 0.00 4.50 plf 17_j43 Dead Partial UD 47.7 47.7 4.50 5.50 plf 19 j44 Dead Partial UD 47.7 47.7 7.50 13.00 plf 21_j45 Dead Partial UD 47.7 47.7 5.50 7.50 plf 23 j46 Dead Partial UD 47.7 47.7 13.00 14.50 plf 25 j47 Dead Partial UD 47.7 47.7 14.50 16.00 plf 203A Wind Point 7960 0.00 lbs 203A.1 Wind Point -7960 7.00 lbs 203B.1 Wind Point 7960 13.00 lbs 203B.2 Wind Point -7960 16.00 lbs MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) : - • IV 16t Dead 4328 Live 3300 4101 Uplift Total 7572 2458 Bearing: 4101 Load Comb #2 #1 Length 2.27 1.23 Glulam-Bal.,West Species, 24F-V8 DF,5-1/8x15" Self-weight of 17.7 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 70 Fv' = 238 fv/Fv' = 0.29 Bending(+) fb = 978 Fb' = 2160 fb/Fb' = 0.45 Live Defl'n -0.30 = L/632 0.53 = L/360 0.57 Total Defl'n -0.03 = <L/999 0.80 = L/240 0.04 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 0.90 1.00 1.00 - - - - 1.00 1.00 1.00 1 Fb'+ 2400 0.90 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 1 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #1 = D only, V = 4328, V design = 3577 lbs Bending(+): LC #1 = D only, M = 15667 lbs-ft Deflection: LC #2 = .6D+W EI= 2594e06 lb-int Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 • 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). /� / n 1 COMPANY PROJECT _ 011.11#i WoodWorks0 S JF1WARFPQRWOODOTRCN June 28,201010:20 b25 LC2 ,. Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or p[f) : Load Type Distribution Magnitude Location [ftl Units Start End Start End 1 w72 Dead Partial UD 539.7 539.7 13.00 19.50 plf 2w72 Snow Partial UD 493.7 493.7 13.00 14.50 plf 3-w28 Dead Partial UD 535.5 535.5 0.00 4.50 plf 4-w28 Snow Partial UD 487.5 487.5 0.00 4.50 pit 5-c14 Dead Point 1074 77 00 ls 00 lbs 6-c14 Snow Point 1601 7-c15 Dead Point 1074 13.00 lbs lbs 8 c15 Snow Point 1601 13.00 9-w73 Dead Partial UD 539.7 539.7 14.50 16.00 plf 10 w73 Snow Partial UD 493.7 493.7 14.50 16.00 plf 11-w74 Dead Partial UD 443.7 443.7 5.50 7.00 plf 12-w74 Snow Partial UD 493.7 493.7 5.50 7.00 plf 13 w75 Dead Partial UD 539.7 539.7 4.50 5.50 plf 14 w75 Snow Partial UD 493.7 493.7 4.50 5.50 plf 15-j42 Dead Partial UD 47.7 47.7 0.00 4.50 plf 16-j42 Live Partial UD 160.0 160.0 0.00 4.50 plf 17 j43 Dead Partial UD 47.7 47.7 4.50 5.50 plf 18_j43 Live Partial UD 160.0 160.0 4.50 5.50 pit 1X44 Dead Partial UD 47.7 47.7 7.50 13.00 plf 20_144 Live Partial UD 160.0 160.0 7.50 13.00 plf 21_145 Dead Partial UD 47.7 47.7 5.50 7.50 plf 22j45 Live Partial UD 160.0 160.0 5.50 7.50 plf 23 j46 Dead Partial UD 47.7 47.7 13.00 14.50 plf 24-j46 Live Partial UD 160.0 160.0 13.00 14.50 plf 25-j47 Dead Partial UD 47.7 47.7 14.50 16.00 plf 26-j47 Live Partial UD 1609.0 160.0 14.50 4.50 16.00 plf 203A Wind Point 203A.1 Wind Point 7960 7.00 lbs -7960 13.00 lbs Wind Point 2038.1 203B.2 Wind Point 7960 16.00 lbs MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) l+t" �sfr "a- � 'R h.F.ro"8.as, --,.. '� , '+ "TMs ?- $i '. "Y .--- eL' "'P'-`Sss^S.-3 ,,; Z _ a ..,_A s y3r-.7. min. -L, - gym. ..ru... .-� �,.: ,,,... ,„nv ..Lr° k. :=ten"'a2ti ... a- " 5,74-s-•.a.... 4=:Asss i- PYL^ e^�+ ' - ^%S i __ evz. ".u.'.M. ".s. .. `-/_::.. .- . ay / i A� 161 o' 4101 Dead 4328 7763 Live 4016 Uplift 2321 11864 Total 8344 #9 Bearing: 3.56 Load Comb #6 Length 2.50 Glulam-Bal.,West Species,24F-V8 DF,5-118x15" Self-weight of 17.7 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 136 Fv' = 305 fv/Fv' = 0.45 Bending(+) fb = 2949 Fb' = 3840 fb/Fb' = 0.790.77 Live Defl'n 0.42 = L/454 0.53 = L/360 0 79 Total Defl'n 0.69 = L/277 0.60 = L/240 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv` 265 1.15 1.00 1.00 - - - - 1.00 1.00 1_00 6 Fb'+ 2400 1.60 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 4 - Fcp' 650 - 1.00 1.00 - -- - - 1.00 - 4 E' 1.8 million 1.00 1.00 - - 1.00 - - 4 Emin' 0.85 million 1.00 1.00 - - Shear : LC #6 = D+S, V = 8344, V design = 6983 lbs Bending(+): LC #4 = D+.75(L+S+W), M = 47228 lbs-ft Deflection: LC #4 = D+.75(L+S+W) EI= 2594e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live 3=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSUAITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). 0 f elen COMPANY PROJECT i 1 WoodWorks® SOFTWARE'FOR WOOD DFSfGN June 28,2010 10:23 b25 LC2 NO LL Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_w72 Dead Partial UD 539.7 539.7 13.00 14.50 plf 3_w28 Dead Partial UD 535.5 535.5 0.00 4.50 plf 5_cl4 Dead Point 1074 7.00 lbs 7_c15 Dead Point 1074 13.00 lbs 9 w73 Dead Partial UD 539.7 539.7 14.50 16.00 plf ll_w74 Dead Partial UD 443.7 443.7 5.50 7.00 plf 13 w75 Dead Partial UD 539.7 539.7 4.50 5.50 plf 15 j42 Dead Partial UD 47.7 47.7 0.00 4.50 plf 17_j43 Dead Partial UD 47.7 47.7 4.50 5.50 plf 19_j44 Dead Partial UD 47.7 47.7 7.50 13.00 plf 21_j45 Dead Partial UD 47.7 47.7 5.50 7.50 plf 23_j46 Dead Partial UD 47.7 47.7 13.00 14.50 plf 25 j47 Dead Partial UD 47.7 47.7 14.50 16.00 plf 203A Wind Point -7960 0.00 lbs • 203A.1 Wind Point 7960 7.00 lbs 203B.1 Wind Point -7960 13.00 lbs 2038.2 Wind Point 7960 16.00 lbs MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) : ` ";"' � - . � yam--L t x 10' 161 Dead 4328 4101 Live 3391 Uplift 2321 Total 4328 7435 Bearing: Load Comb #1 #2 Length 1.30 2.23 Glulam-Bal.,West Species,24F-V8 DF, 5-1/8x15" Self-weight of 17.7 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 70 Fv' = 238 fv/Fv' = 0.29 Bending(+) fb = 1905 Fb' = 3840 fb/Fb' = 0.50 Live Defl'n 0.10 = <L/999 0.53 = L/360 0.18 Total Defl'n 0.37 = L/525 0.80 = L/240 0.46 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 0.90 1.00 1.00 - - - - 1.00 1.00 1.00 1 Fb'+ 2400 1.60 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #1 = D only, V = 4328, V design = 3577 lbs Bending(+): LC #2 = .6D+W, M = 30517 lbs-ft Deflection: LC #2 = .6D+W EI= 2594e06 lb-int Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). COMPANY PROJECT ill WoodWorks SOFTWARE FOR WOOD DESIGN - June 28,2010 10:25 b26 LC1 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) : Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w37 Dead Partial UD 535.5 535.5 10.50 11.00 plf 2 w37 Snow Partial UD 487.5 487.5 10.50 11.00 plf 3_w38 Dead Partial UD 535.5 535.5 11.00 14.00 plf 4_w38 Snow Partial UD 487.5 487.5 11.00 14.00 plf 5_w39 Dead Partial UD 535.5 535.5 14.00 15.50 plf w39 Snow Partial UD 487.5 487.5 14.00 15.50 pit W1.1 Wind Point 13500 10.50 lbs W1.2 Wind Point -13499 15.50 lbs MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) : k = - � A 15'-6'i la 2397 Dead 583 2397 Live 4182 18392 Total 4704 Bearing: #3 Load Comb #4 3.#3 Length 1.41 Glulam-Bal.,West Species, 20F-V7 DF, 5-118x16-112" Self-weight of 19.47 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi)and Deflection (in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 181 Fv' = 424 fv/Fv' = 0.43 Bending(+) fb = 2526 Fb' = 3195 fb/Fb' = 0.910.79 Live Defl'n 0.47 = L/395 0.52 = L/360 0 91 Total Defl'n 0.56 = L/331 0.77 = L/240 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.60 1.00 1.00 - - - - 1.00 1.00 1.00 4 Fb'+ 2000 1.60 1.00 1.00 1.000 0.999 1.00 1_00 1.00 1.00 1_00 - 4 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - 4 E' 1.6 million 1.00 1.00 - - - 1.00 - - 4 Emin' 0.85 million 1.00 1.00 - - Shear : LC #4 = .6D+W, V = 10643, V design = 10194 lbs Bending(+) : LC #4 = .6D+W, M = 48956 lbs-ft Deflection: LC #4 = .6D+W EI= 3070e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). COMPANY PROJECT lit woodworks® SOFTWARE FOR WOOD DEVON June 28,2010 10:27 b26 LC1 no II Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or pif) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_w37 Dead Partial UD 535.5 535.5 10.50 11.00 plf 3_w38 Dead Partial UD 535.5 535.5 11.00 14.00 plf 5_w39 Dead Partial UD 535.5 535.5 14.00 15.50 plf W1.1 Wind Point 13500 10.50 lbs W1.2 Wind Point -13499 15.50 lbs MAXIMUM REACTIONS(lbs)and BEARING LENGTHS (in) : a _ 10, ►A 15-6'I Dead 583 2397 Live 4182 8247 Total 4704 Bearing: 10583 Load Comb #2 #2 Length 1.41 3.18 Glulam-Bal.,West Species, 20F-V7 DF,5-1/8x16-1/2" Self-weight of 19.47 plf included in loads; Lateral support:top=full, bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection (in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 181 Fv' = 424 fv/Fv' = 0.43 Bending(+) fb = 2526 Fb' = 3195 fb/Fb' = 0.79 Live Defl'n 0.47 = L/395 0.52 = L/360 0.91 Total Defl'n 0.56 = L/331 0.77 = L/240 0.72 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.60 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2000 1.60 1.00 1.00 1.000 0.999 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.6 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = .6D+W, V = 10643, V design = 10194 lbs Bending(+) : LC'#2 = .6D+W, M = 48956 lbs-ft Deflection: LC #2 = .6D+W EI= 3070e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. _ 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). / n.......--` COMPANY PROJECT 0111011111 .. I WoodWorks® SOFTWARE FOR WOOD DESIGN June 28,2010 10:26 b26 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or pif) : Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w37 Dead Partial UD 535.5 535.5 10.50 11.00 plf 2-w37 Snow Partial UD 487.5 487.5 10.50 11.00 plf 3-w38 Dead Partial UD 535.5 535.5 11.00 14.00 plf 4-w38 Snow Partial UD 487.5 487.5 11.00 14.00 plf 5-w39 Dead Partial UD 535.5 535.5 14.00 15.50 plf 6 w39 Snow Partial UD 487.5 487.5 14.00 15.50 plbs lf W1.1 Wind Point -13499 10.50 W1.2 Wind Point 13500 15.50 lbs MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) e.. .ca. A A 15'-6't Ip' 2397 Dead 583 2044 Live 393 7647 Uplift 3945 4441 Total 976 Bearing: 1.33 Load Comb #2 #2 Length 0.50* *Min.bearing length for beams is 1/2"for exterior supports Glulam-Bal.,West Species,20F-V7 DF,5-118x16-112" Self-weight of 19.47 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fir = 136 Fv' = 424 fv/Fv' 0.32 Bending(+) fb = 488 Fb' = 2297 fb/Fb' - 0.21 Bending(-) fb = 2193 Fb' = 2940 fb/Fb' = 0.990.75 Live Defl'n -0.51 = L/362 0.52 = L/360 0.54 Total Defl'n -0.42 = L/441 0.77 = L/240 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr L rt N1otes L n LC# Fv' 265 1.60 1.00 1.00 - - 2 Fb'+ 2000 1.15 1.00 1.00 1.000 0.999 1.00 1.00 1.00 1.00 4 Fb'- 2000 1.60 1.00 1.00 0.919 1.000 1.00 1_00 1.00 1.00 1.00 Fcp' 650 - 1.00 1.00 - - - - - _ - 1.00 - - 4 E' 1.6 million 1.00 1.00 - - 1.00 - - 4 Emin' 0.85 million 1.00 1.00 - - Shear : LC #4 = .6D+W, V = 7647, V design = 7647 lbs Bending(+): LC #2 = D+S, M = 9454 lbs-ft Bending(-) : LC #4 = .6D+W, M = 42496 lbs-ft Deflection: LC #4 = .6D+W EI= 3070e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSUAITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). 0 1 '7 I COMPANY PROJECT i t WoodWorks SOFTWARE FOR WOOD DESIGN June 28,2010 10:30 b26 LC2 no II Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) : Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_w37 Dead Partial UD 535.5 535.5 10.50 11.00 plf 3_w38 Dead Partial UD 535.5 535.5 11.00 14.00 plf 5w39 Dead Partial UD 535.5 535.5 14.00 15.50 plf Wi.l Wind Point -13499 10.50 lbs W1.2 Wind Point 13500 15.50 lbs MAXIMUM REACTIONS (lbs)and BEARING LENGTHS(in) : �.�s �mm. ..:.z4�.+,,.. ,q.�'��ea «a.�r aeaa�. -.m-� ��,ma.n.� +c Pw�-r�r.�. a,.m��, �..�„�o-. �-.� 10� • 15'-6'l Dead 583 Live 2397 Uplift 3945 7647 Total 583 Bearing: 2397 Load Comb #1 #1 Length 0.50* 0.72 *Min.bearing length for beams is 1/2"for exterior supports Glulam-Bal.,West Species, 20F-V7 DF, 5-1/8x16-1/2" Self-weight of 19.47 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection (in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 136 Fv' = 424 fv/Fv' = 0.32 Bending(+) fb = 267 Fb' = 1797 fb/Fb' = 0.15 Bending(-) fb = 2193 Fb' = 2940 fb/Fb' = 0.75 Live Defl'n -0.51 = L/362 0.52 = L/360 0.99 Total Defl'n -0.42 = L/441 0.77 = L/240 0.54 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.60 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2000 0.90 1.00 1.00 1.000 0.999 1.00 1.00 1.00 1.00 - 1 Fb'- 2000 1.60 1.00 1.00 0.919 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.6 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = .6D+W, V = 7647, V design = 7647 lbs Bending(+) : LC #1 = D only, M = 5167 lbs-ft Bending(-) : LC #2 = .6D+W, M = 42496 lbs-ft Deflection: LC #2 = .6D+W EI= 3070e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: - 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). f/ c r."s s^. Harper Project: g ; V .-. Houf Peterson Client: Job# V Righellis Inc. E NGI S• Designer: Date: Pg.# LANtlAPE AR(L FCTS•,(11 Y6RS Dec\L best�1n Wdl 10-----8-ft-20-ft Wdi= 1600•lb ft Seismic Forces Site Class=D Design Catagory=D Wp:= Wdl Ip:= 1.0 Component Importance Factor (Sect 13.1.3,ASCE 7-05) S1 := 0.339 Max EQ, 5%damped, spectral responce acceleration of 1 sec. S := 0.942 Max EQ, 5%damped, spectral responce acceleration at short period s z:= 9 Height of Component h:= 32 Mean Height Of Roof F := 1.123 Acc-based site coefficient @ .3 s-period (Table 1613.5.3(1), 2006 IBC) a F -= 1.722 Vel-based site coefficient @ 1 s-period (Table 1613.5.3(2), 2006 IBC) v• Sms Fa Ss Sall := Fv-S1 Sds 2 Sms Max EQ, 5%damped, spectral responce acceleration at short period • 3 Exterior Elements & Body Of Connections ap:= 1.0 Rp:= 2.5 (Table 13.5-1, ASCE 7-05) Fp••= � J.4ap Sds'lp C1 + 2•h I•Wp EQU. 13.3-1 Fpmax'= 1.6•Sds•Ip•Wp EQU. 13.3-2 Fpmin:= .3.Sds'lp-Wp EQU. 13.3-3 Fes:= if(Fp>Fpmax,Fpmax, f(Fp <FpmimFpmimFp)) Fp= 338.5171.1b Miniumum Vertical Force 0.2•Sds.Wdl=225.6781•lb eV f Harper Project: Houf Peterson Client: Job# Righellis Inc. _.. Date:ate. ENGIN E45•FLAN 145 DesPg.# I ANDSCAPr ARC-E:iEC 5♦ U.':E l:RS Wdl:= 10• lb-- b -8-ft-20-ft Wdl = 1600-Ib ft2 Seismic Forces Site Class=D Design Catagory=D Wp:= Wdl Ip:= 1.0 Component Importance Factor (Sect 13.1.3, ASCE 7-05) S1 := 0.339 Max EQ, 5%damped, spectral responce acceleration of 1 sec. Ss:= 0.942 Max EQ, 5%damped, spectral responce acceleration at short period z:= 9 Height of Component h:= 32 Mean Height Of Roof Fa:= 1.123 Acc-based site coefficient @ .3 s-period (Table 1613.5.3(1), 2006 IBC) Fv:= 1.722 Vel-based site coefficient @ 1 s-period (Table 1613.5.3(2), 2006 IBC) Sms:= Fa•Ss Sml := Fv S1 2Sms Sds := Max EQ, 5%damped, spectral responce acceleration at short period 3 Exterior Elements & Body Of Connections ap:= 1.0 Rp:= 2.5 (Table 13.5-1, ASCE 7-05) F 4ap-Sds•In z P 1 + 2-- •W R h) p EQU. 13.3-1 Fpmax:= 1.6.Sds•Ip•Wp EQU. 13.3-2 Fpmin:= .3-Sds-Ip•Wp EQU. 13.3-3 Fes:= if(Fp>Fpmax,Fpmax,if(Fp <Fpmin,Fpmin,Fp)) F =338.5171.1b Miniumum Vertical Force 0.2-Sds'Wdl=225.6781-lb Harper Houf Peterson COMMUNICATION RECORD HP Righellis Inc. To El FROM 0 MEMO TO FILE El PHONE NO PHONE CALL:0 MEETING:LI] P1 A. 0 L A e.......,. E., *11 (..-i) • ;° --0 I 1 .. 11' tP ' -1 /1 0) ....0 e--- 6a. ....C) 4 * 3 ....c) — ' ?, 0 --o ,$) 01 tis ---, 71 01 ,_ , II rt- Or Li ... cfl I A.1s, rr VI . , N. -• 9) -1 II -....... -.. 0 . L.. c; N. ps N.. (Th Ccl ,-, 6 ,....c) 0 BY Ai,PDX (øi ,,f_ Ni) DATE: Dt , .. _, , 0 1 JOB NO . PROJECT: • RE: [2x(0 E LI A w . DectiNG w (.9 , z 1 F- 0 1-- w I 0 2 NAIA.... CPCPqC_ il—Nif (lLc Cry,,. ) 1 ...i 1 to .(e Cr a u --- --- 0 w 1' o z • e ii La 0 1 rt a_ • CAPIAC ITN/ k 12f I (2 board- ) 1 1 a I 6 x.v.1 -Fic o 7SONST-5 A 1 I pt-c , — — - /------ --1 — o i c Spcic inn \Oe_ "i/s3 ef, n 0.0 \ 0 J 2 C 1? Zi fi\c)()C +Li -:: (4) t .pL.:F- o 6 1 i i I g k.A..) ,A t 1 t),'". \ 1 , • ,II 1 1 .'b. C.) ---14 ____ _____ ------).„. p ei... J , . 1 1 (1) Swrin ST (1) ' C T (41,4 \11.r-z \-;( 7 2_ ,-) FA.' **1 — '-'7!",-,--,----- i' fFs. e: 40,'-.7'; . ; , _ ,-, c-- -- ; — --- — --'' , g Z C4 f 0.4 ''.-...'. Clf0,\J I' 11,i) 1_00& = 30°‘ (‘111(..) = S‘f\Apscrr\ 305114- x 4 ni 2: e_ tz" 0,C , f„., f I, I BY: Pcii)Nbei CritY1): 75. DATE. 111.1 01 0 Joe No.• C eti „oefo PROJECT: . - RE: (1 rt .,..,.. 2...1._ ...,............_ED w - • I: Loc r'''' A '1,-'-- 1... 4 `,.. O 01 .,- F- La O M 4. . ZOO•Of / li (A = Qoott( 4-a" a _I x a u o w BitaD i*IN1 La rc a. 3(,11 tioo i z ,7. Z.StIQ u _.,........._ i OE 5wn?coOr\ tAIDU4 To ______ -1-.- CI.60 0 U C 0 -74"2 0 IT ii 6 w 0 m 0- 1 _ 200 tr.... _4i Bocc te-i f.s/ T---: C .7:..- BOoo _ cc a.:400 ;# 4-D04 .( t •`4 ';'] i I Ai -1 : .. V R 1 i , ,,L • ..--) 7 f ..' Harper . , , 1 COMMUNICATION RECORD HP Houf Peterson Righellis Inc. To 0 FROM 0 MEMO TO FILE EI ENGINEEP + PLAV,,Eriti LAND,CAPY.ARCHITECT..SLIFO/C,..1, PHONE NO.• PHONE CALL:0 MEETING:0 M -11 w M M 75 771 0 (1) ) (-3 1-- c.) f.._ .., li 37 rf 3 8 9...) 0 0 0, 0 , 0 ..., 03 .........._ a 0 -..,-; 0 \,...r SD Tc. , ) e;•-).,, —t c....:.; ) 1 , 0 , . ---I ei 7-1 (.-. 0 0 1 . z P C...N.S Cr/ .—.........,— ZA:...: \ 0 ......0 - 0 narper Houf Peterson 0HP Righellis Inc. To 0 FROM 0 COMMUNICATION RECORD MEMO TO FILE 0 LA F 4F.Ciill'IlerS.Su:+V:YOR PHONE NO.: PHONE CALL:0 MEETING:0 . m -0 In M 2 m m . 7.1 ...g:...........„ ----) ,...-ci (..., C.7 Ls • H4 1.Mallit MI . -'4 -\ (3 k-of s_ (4 17 ) H 7,•-'",, v o ..... .c.-0 > V' 0 32) ..... . C . 7 C --/..., , 1 , . , r 1 0 co -I) z o 0 c.p. —1 (....s, la M 0 ......c) '0 Y COMPANY PROJECT g 1 Woodworks® SOFTWARE FOR WOOD DESIGN June 8,2009 16:27 Hand Rail2 Design Check Calculation Sheet Sizer 8.0 LOADS: Load Type Distribution Pat- Location [ft] Magnitude Unit tern Start End Start End LIVE Live Full UDL 50.0 plf MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) : IO' A 51 Dead Live 125 Total 129 125 Bearing: 129 Load Comb #2 Length 0.50* #2 Cb 1.00 0.50* *Min.bearing length for beams is 1/2"for exterior supports 1.00 4 Lumber-soft,Hem-Fir, No.2, 2x6" Self-weight of 1.7 plf included in loads; t Lateral support:top=at supports,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 19 Fv' = 150 fv/Fv' = 0.13 Bending(+) fb = 256 Fb' = 1048 fb/Fb' = 0.24 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.16 Total Defl'n 0.03 = <L/999 0.25 = L/240 0.11 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 150 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 0.949 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 405 - 1.00 1.00 - - - - 1.00 1.00 - E' 1.3 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.47 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = L, V = 129, V design = 106 lbs Bending(+) : LC #2 = L, M = 162 lbs-ft Deflection: LC #2 = L EI = 27e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction Lc=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. I 1,0\ a C/1 COMPANY PROJECT ifl WoodWorks® SOFTWARE FOR WOOD DESIGN June 8,2009 16:27 Hand Rail Design Check Calculation Sheet Sizer 8.0 LOADS: Load Type Distribution Pat- Location [ft] Magnitude Unit tern Start End Start End LIVE Live Point 2.50 200 lbs MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) : 10, 54 Dead Live 100 100 Total 104 104 Bearing: Load Comb #2 #2 Length 0.50* 0.50* Cb 1.00 1.00 *Min.bearing length for beams is 1!2"for exterior supports Lumber-soft, Hem-Fir,No.2,2x6" Self-weight of 1.7 plf included in loads; Lateral support:top=at supports,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 19 Fv' = 150 fv/Fv' = 0.13 Bending(+) fb = 405 Fb' = 1048 fb/Fb' = 0.39 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.20 Total Defl'n 0.03 = <L/999 0.25 = L/240 0.14 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cf rt Ci Cn LC# Fv' 150 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb1+ 850 1.00 1.00 1.00 0.949 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 405 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.3 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.47 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = L, V = 104, V design = 103 lbs Bending(+) : LC #2 = L, M = 255 lbs-ft Deflection: LC #2 = L EI = 27e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. 1 (D=dead L=live S=snow W=wind I=impact C=construction Lc=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 1- 1( a • WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B-Front Load WoodWorks®Sizer 7.1 June 22,2010 14:13:51 Concept Mode : Reactions at Base of Structure View Roof: 25 ' ■ M : 1280 L 1280 L 4r 442 D z 442 D 4v . y y 12272089 L 1601 L may_ L 10481539 D 1074 D z, , _ 5. -a,. t sa-� rt 17.1 Y 75L 59D av z7 1232E _r 14081. 514 D 556D W-, r 1080 L 640 L• sv u 409 D 792E '' -a aRn i 99 DJ _ 1522E• v. 553 D 99 D _n 98D -, 225 75 L ; ,-a 73 D 74 n v 2192E ," 1311 D _. .. J , �20 L r. h .: :-t L55 L 109 58 D 021 L 2450 2 1 D p5581 D . ' .. -�' ,E-O'B SOCC : ` 4 OC iCCC CCCi . ,J3 _ ' ._ D`'- 0c)D2 D_✓' ; tJ_ E`_EEEEE_E'EF ,F- f� 8 1b 2f22 2 _? 23, _, « 84'? _ _ _ 88 - < r , WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B Rear Load WoodWorks®Sizer 7.1 June 22,2010 14:14:21 Concept Mode: Reactions at Base of Structure View Floor 3 : 17 ' ■ ■ v : n;,. 1280 L- 1280 L 4d `''. . ,y= 442 D 442 D .. rtl 5296 L 376 L _, --''-'ny--''-'n4328 D 4101 D . 75L 59 D ,_1 r, 765 1036 L 277 D 483 D 9 DI 640 L 208 774 L - agni 99 DJ 1020 L99 D 368 D 98 D 75 L4 n t 225 73 To 2186L ‘_To 2186 1298 D . .) •4 L4.1 L `t 94 LLrl D. 4 If' 162 L -c 73 D7E2515 1215 D 5647 D _ - P C 7 DD 1 i.� E 0 ✓t- 13 z L ''DE ( E E'E'"EEEEE:rc [ E L«`Z c., "'d n✓f. C.�CC;n(fit L,�i--„ ..+ u �-v £= _ .,F 5 " - .. _ .. °-. : ", ,. .12^.22227,2s.. .,_"1,w "__, _.,,1 : .. -tom .., ..�._,. . . . ., ,...,i_ (:)QT k Cn I. OOT - R€p L,0 PIS) Plain Concrete Isolated Square Footing Design: Fl fc:= 2500-psi Concrete strength fy:= 60000-psi Reinforcing steel strength Es:= 29000-ksi Steel modulus of elasticity -1conc 150•pcf Concrete density 'Ysoil:= 100-pcf Soil density gall 1500-psf Allowable soil bearing pressure COLUMN FOOTING Reaction Total&:= 5647-lb Pd1:= Totaldi Totalll:= 7062-lb Pll := Totalll Pt1:= 1 d1+ P11 Pd= 12709-lb Footing Dimensions tf:= 12-in Footing thickness Width:= 42-in Footing width • nA:= Width2 Footing Area net:= gall -tf'"'Iconc gnet= 1350•psf Ptl Aregd:= gnet Aregd =9.414-ft2 < A= 12.254E2 GOOD Widthregd:= Aregd Widthregd =3.07-ft < Width = 3.50 ft GOOD Ultimate Loads Pdl+ tf'A'"Yconc Pu:= 1.4•Pdl+ 1.7-P11 P„= 22.48-kips Pu qu:= A— ch,= 1.84•ksf Beam Shear bcoi 5.5-in (4x4 post) d:= tf-2•in := 0.85 b := Width b =42-in Vn;_ 4.4• fc•psi•b•d Vn= 23.8-kips 3 (vub — Vu=9.77•kips < Vn=23.8•kips GOOD qu 2 /I Two-Way Shear bS:= 5.5-in Short side column width bL= 5.5•in Long side column width b,:= 2•(bg+ d) + 2•(bL+ d) bo=62•in Rc:= 1.0 4 + 8 fc psi b d Vn=71.4-kips Ayp.,,= .4)-(7 Vnmax 4).2.66• fc psi•b•d Vnmax =47.48-kips qu'[ —(b,01+bcol+ d)2 Vu= 19.42-kips < Vnmax=47.48-kips GOOD wvJY:= Flexure 2 -bcol (1 b Mu=7.43-ft-kips Mu qu' b 2 .(1).b 2) 0.65 13-d3 S=0.405•ft S:= ^^^ 6 Ft:= 5.4 fc•psi Ft= 162.5-psi Mu ft= 127.36-psi< Ft= 162.5-psi GOOD ft:= — lJse a 3'-6" x 3'-6"x 12" plain concrete footing er2 U� Plain Concrete Isolated Square Footing Design: F2 fc:= 2500-psi Concrete strength fy:= 60000-psi Reinforcing steel strength Es:= 29000•ksi Steel modulus of elasticity 'Yconc 150•pcf Concrete density -y := 100•pcf Soil density gall 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldl:= 4101-lb Pdl:= Totaldi Total11:= 5376-lb Pp:= Totalll Ptl Pd1+ Pll Ptt=9477-lb Footing Dimensions tf:= 10-in Footing thickness Width:= 36-in Footing width A:= Width2 Footing Area gnet gall —tf•^(conc qnet= 1375-psf Pu Areqd gnet Areqd = 6.892ft2 < A=9•ft2 GOOD Widthregd Aregd Widthregd =2.63-ft < Width=3.00 ft GOOD Ultimate Loads Pd]+ tf-A•"Yconc Pu:= 1.4-Pd1+ 1.7•Pll P„= 16.46-kips Pu qu:= A qu= 1.83-ksf Beam Shear bcol 5-2- .5-in (4x4 post) d:= tf –2•in ` 0.85 b := Width b =36-in Vn:_ •3 p . fc.psi.b-d Vt.,= 16.32-kips (b –bcol Vu:= qu b Vu=6.97 kips < Vn= 16.32 kips GOOD 2 Two-Way Shear bS:= 5.5-in Short side column width bL:_ 5.5-in Long side column width bo:= 2-(bg + d) + 2.(bL+ d) bo=54-in Rc:= 1.0 V = (4 + 8 fc•psi•b•d Vn=48.96-kips nn�ln 13 3'13c Vnmax:_ 41>2.66• fc psi-b•d Vnmax=32.56-kips �VNyk-= qu[b2–( - Om+ d)2] Vu= 14.14-kips < Vmn =32.56-kips GOOD Flexure 2 M Cb –bol1• 1 b Mu=4.43-ft-kips u:= qu• 2 /J 2) := 0.65 b-d2 S:_ S=0.222-ft3 Ft:= 5-4:1)• fc psi Ft= 162.5-psi Mu f :__ — ft= 138.42•psi< Ft= 162.5-psi GOOD t S Pse a 3'-0"x 3'-0"x 10" plain concrete footing Plain Concrete Isolated Square Footing Design: F2 fc:= 2500-psi Concrete strength fy:= 60000-psi Reinforcing steel strength Es:= 29000•ksi Steel modulus of elasticity 'Yconc 150.pcf Concrete density Ysoil 100•pcf Soil density gall 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldi:= 2515•Ib Pdl:= Totaldi Total11:= 3606-lb P11:= Totalll Ptl Pd1+ P11 Pti=6121-lb Footing Dimensions tf:= 10-in Footing thickness Width:= 30-in Footing width �A,:= Width2 Footing Area gnet gall —tf•^Iconc qnet= 1375•psf Ptl Areqd gnet Areqd=4.452•ft2 < A=6.25•ft2 GOOD Widthregd Aregd Widthregd=2.11-ft < Width=2.50 ft GOOD Ultimate Loads SAA:= Pd1+ tf•A'^Iconc Pu:= 1.4•Pdl+ 1.7 P11 Pu= 10.74-kips Pu qu A ch,= 1.72-ksf Beam Shear bcoi:= 5.5•in (4x4 post) d:= tf—2-in ito:= 0.85 b := Width b =30•in 4 :_ •b-d Vu= 13.6•kips Vn �•3• fc•p — V b —bcol b Vu=4.39-kips < Vu= 13.6•kips GOOD u:= qu(13 2 Two-Way Shear bs:= 5.5•in Short side column width bL:= 5.5-in Long side column width b0:= 2.(bs + d) + 2.(bL+ d) bo= 54•in �c:= 1.0 V = 4 + 8 f•psi•b-d Vu=40.8•kips nnR �3 3.Rc c Vn,ax:= x•2.66- fc•psi-b-d Vnmax =27.13-kips = qu.[b2 —(bcol+ d)2] Vu= 8.57•kips < Vax= 27.13•kips GOOD Flexure 2 mu:= gut(b —bcol (11 Mu=2.24 ft kips 2 2 0.65 b•d26 S=0.185-ft3 Ft:= 5. • i Ft= 162.5•psi Mu ft:= ft= 83.98 psi < Ft= 162.5•psi GOOD Use a 2'-6"x 2'-6"x 10" plain concrete footing BY: \qL DATE: S-3(P auto JOO. y , c( 0 41.305v- 4-aosx PROJECT: C 1 RE: C) *Fr-o L Loa LI pi ,q.9" a)T eFE 199 F- 0 7 1-114 0 714--4./5' I i—� t,15' , I a, r 0 Ct Q o W UZ c � Chi L Ove�tr of a O ,alai y-- t� , t t ► , +- 4-ago Cu.} - 1341,a 1 o . m -(O. \soX3. ifAt,c + &,4s e` - i ` 1(c,5> 4-s.so\(tI-) o S Hezi t rrl2 ct W i m _ a4at65 _ nci a1 ilkitt, O U N er2 -700'-r2 ni Benttey Harper Houf Peterson Righellis Inc. Current Date:6/22/2010 10:48 AM Units system:English File name:O:\HHPR Projects\CEN-Centex Homes(309)\CEN-Plans\CEN-090 Summer Creek Townhomes\calcs\Unit B\FDN\Front Load.etz\ M33=81.13[Kip*ft] M33=-23.24[Kip*ft] i • x 1 '711- isirly2PRamey Harper Houf Peterson Righellis Inc. Current Date:6/22/2010 10:49 AM Units system: English File name:O:\HHPR Projects\CEN-Centex Homes(309)\CEN-Plans\CEN-090 Summer Creek Townhomes\calcs\Unit B\FDN\Front Load 2.etz\ M33=48.59[Kip'ft] • M33=-54.65[Kip-ft] R, " BY: k 4.t........, DATE: -""."501‘i....) "ao t 0 JOB No.: Cc e...OCIL 0 PROJECT: RE \Q kOCti. 17 101)-ticl. --,t ti L11 6 5 -4, Iz i_ w , , 2 i—1 IV\y'rrio Z.": ik-- 3'--Cn -------74- Li , 0 O w Ur\ ,I-- C•.. in.4 4 Y4-6 . L, z Li, a -54,LS k -- 2 01\1\vr\ . .. Ot Qs() 'A,-,...,3;,... (it4,-cAl2,) 0 OiCy O• -- -> ( _11(o,61,30007)(4'k-)7:-. - 6 _ ,_ _ -.„. 1 • ,1 :1 00 Cay.:a601,-xx-)(‘5- -=Vb,01. 0. G it.s--)c, ) 53. kAti 1 CO i*s € al of-:- A = 1.4---3b wa- a.:.--1 (\ 0rocai) /al 5---,(3cioz,v2.-1 i_z) k_,. ..07 (t "253) -° 2 > SI i• if',) - --'S-- @ to" 0,c, a,r_ (N .29‘..;)(4o,0007)./(0,--5)(30 96\kci--4 .,-N,-7:- o t-t-Lb t rj °'-1-617_,) .??5' r--C-ic ) ).3.'N... 0 t- ,... 0., .,.. ,') • "' --i"----.:. It,., -- -4 € ri:' 0,c„ ( 0-) /0 4LMZ) 0 0:-40(0, tti-75 0 US By DATE. JOB NO.: PROJ ECT: RE: U:)1T 1.: 4i C -Rear Load Li zW o o , D /40 W 1 j o cc u W o \-1`-4--a L-1'-- -,,:-1,:,- - -I' l 1.101,— z Mor . 54 ,S3k1t Mz,w .(o) 4- a c(0.3a) t C«,33) _ "[S.34 tq DL 2 u Acer l ' xa/ x1 , 5 ' x = f it fcl _ °-i C f4 t °i (B. �� W la , l a -Y�Irc�x — c M _ 1a ,1 L(12. 4�' , - _ 4ao1 /FSfi g; ©. < Ifs . . 0L. C V f a . _ t = c == 0 ,i. 42 ,1'_'1 ,) Bentley- Harper Houf Peterson Righellis Inc. Current Date:6/22/2010 10:57 AM Units system:English File name:O:\HHPR Projects\CEN-Centex Homes(309)\CEN-Plans\CEN-090 Summer Creek Townhomes\calcs\Unit C\FDN\Rear Load 2.etz\ M33=36.82[Kip*ft] M33=-5022[Kip=ft] I ,# i 1 •1 ACI 318-05 Appendix D 1.125" Diameter Bar Capacity at Standard Stem Wall Concrete Breakout Strength Stem Wall Capacity when govern by 3 edges Foundation Capacity Givens Givens fc= 3000 psi fc= 3000 psi h'et= 17.00 inches het= 1200 inches (into the Foundation) Stem = 8.00 inches Note: hef above is the the embedment into only the the foundation and does not consider stem wall embedment Fnd Width = 36.00 inches cmin= 2.25 inches cmin= 18.00 inches yrc,N= 1.00 cast-in-place anchor tlic,N= 1.00 cast-in-place anchor k= 24 cast-in-place anchor k= 24 cast-in-place anchor = 0.75 strength reduction factor = 0.75 strength reduction factor Calculations Calculations ANO= 408 in` AN= 1296 in` r ANO= 2601 in` ANO= 1296 in` Nb= 92,139 pounds Nb= 55,121 pounds Wed,N= 0.7265 Wed,N= 1.00 Ncb= 10,500 pounds Ncb= 55,121 pounds (1)Ncb= 7,875 pounds (1)Ncb= 41,341 pounds Combined Capacity of Stem Wall and Foundation (I)Ncb= 49,216 0.75(1)Ncb= 36,912 • 2 aCrIC • Concrete Side Face Blow Out Givens Abrg= 2.75 in` fc= 3000 psi cm;n = 18.00 inches = 0.75 strength reduction factor Calculations Nsb= 261,589 pounds 4)Nsb= 196,192 pounds Concrete Pullout Strength Givens Abrg= 2.75 in` fc= 3000 psi 4)= 0.75 strength reduction factor Calculations Np= 66,000 pounds 4)Np= 49,500 pounds Steel Yield Strength Givens ft= 58,000 psi A= 0.763 in2 •= 0.80 strength reduction factor Calculations Ns= 44,254 pounds SNS= 35,403 pounds < 36,912 Ductility Met Holdown Check Holdown: HD19 Holdown Capacity= 16,380 pounds 1.6*Capacity= 26,208 pounds 26,208 < 35,403 Holdown Checks 41 11n ACI 318-05 Appendix D 1.0" Diameter Bar Capacity at Portal Frame Concrete Breakout Strength Stem Wall Capacity when govern by 3 edges Foundation Capacity Givens Givens fc= 3000 psi fc= 3000 psi h'ef= 3.50 inches hef= 12.00 inches (into the Fc Stem = 8.00 inches Note: hef above is the the embedment into or cmax= 5.25 inches the foundation and does not consider stem wz Fnd Width = 36.00 inches cm;n= 2.25 inches cm;n = 18.00 inches Wc,N= 1.00 cast-in-place anchor Wc,N= 1.00 cast-in-place anchor k= 24 cast-in-place anchor k= 24 cast-in-place anchor = 0.75 strength reduction factor = 0.75 strength reduction fact, Calculations Calculations ANc= 68 in` AN= 1296 in` ANo= 110.25 in` ANo= 1296 in` Nb= 8,607 pounds Nb= 55,121 pounds Wed,N= 0.8286 Wed,N= 1.00 Nob= 4,399 pounds Ncb= 55,121 pounds = 3,299 pounds (Kb= 41,341 pounds Combined Capacity of Stem Wall and Foundation 4)Ncb= 44,640 0.754Ncb= 33,480 r • I' n s l°"+. Concrete Side Face Blow Out Givens Abrg = 2.15 in` fc= 3000 psi cmin = 18.00 inches = 0.75 strength reduction factor Calculations Nsb= 231,191 pounds �Nsb= 173,393 pounds Concrete Pullout Strength Givens Abrg= 2.15 in` fc= 3000 psi 4)= 0.75 strength reduction factor Calculations NP= 51,552 pounds 4)Np= 38,664 pounds Steel Yield Strength Givens ft= 58,000 psi A= 0.606 in2 = 0.80 strength reduction factor Calculations Ns= 35,148 pounds SNS= 28,118 pounds < 33,480 Ductility Met Holdown Check Holdown: HDUI4 Holdown Capacity= 14,930 pounds 1.6*Capacity= 23,888 pounds 23,888 < 28,118 Holdown Checks rvl fit. -as r) •,- moi 4 We're : u _' a c1\ _ <Z)(©t)` g) o �1 c\ O0 (7) 0.61y(t1I¢) J �'-)c; I h _ czxi..)X ZxS 1-i1 d 001 : (76}(11)S' o • rorr\ 00'1 .:- (r) (1 co1 1-jC b Cr1OC�S1 5 rt,Oc h DI �- z CD • (I) 0 fld 01 s?xr;1� • oD) -I1 = (J s' t l X,B1) rnc0o) _ crY' G ,6 )(t1 ) p x o V 11 1 Z 0 X Q � �51 xk 00 ('r) MOOS, m OQ 1 g h o M • el&)OSt = 5 OCTS d a,5 Y•\0\.)4 414 cr%OO1 -4 4 g_h1 -'9001 y19c)1 - a d t 31Ohl ;s6 04P)cS;er41 Z.)03Q} = m M 00i m)(.1X1°-,S1 )C11'8/11 2�i'1 Lt1 Xj os�) r c o Jooi ,d god C js� 1 X.5` ,al z-)13 ?13 • L m \r)- :-r 00E ;� 3s6 zi)?iSp c �Q o m m 0 SCOUr1 ' ' r El 173 road a)00-- ON 90r 010C c,e 1 31v4 ---)1\1\1 A9