Loading...
Specifications (3) MST2012-00074 11023 SAGE TER MST2012-00075 11015 SAGE TER t , MST2012-00076 11007 SAGE TERkl ' a ; MST2012-00077 10999 SAGE TER ~ § 11inI Structural Calculations is for Full Lateral & Gravity Analysis of Plan A 1460 Lot 26, Summer Creek Townhomes Tigard, OR //67-02648-ozr7y Prepared for Pulte Group April 7, 2011 JOB NUMBER: CEN-090 ***Limitations*** Engineer was retained in limited capacity for this project. Design is based upon information provided by the client,who is solely responsible for the accuracy of same. No responsibility and/or liability is assumed by,or is to be assigned to the engineer for items beyond that shown on these sheets. 122 sheets total including this cover sheet. S«uctuk44 ka PROpp 12,320 (ez=„4„... 7 OFFICE COPY tfl, N J. ' (EXPIRES&12-31-2011 This Packet of Calculations is Null and Void if Signature above is not Original Harper bout Peterson i tiglellis Inc. 205 SE Spokane St.Suite 200 • Portland, OR 97202 ♦ [P]503.221.1131 • [F]503.221.1171 1 104 Main St.Suite 100 ♦ Vancouver, WA 98660 ♦ [P] 360.450.1 141 • [F] 360.750.1 141 1 133 NW Wall St.Suite 201 ♦ Bend, OR 97701 • [P] 541.318.1 161 • [F] 541.318.1 141 Structural Calculations for Full Lateral & Gravity Analysis of Plan B 1332 Lot 27, Summer Creek Townhomes Tigard, OR Prepared for Pulte Group April 7, 2011 JOB NUMBER: CEN-090 ***Limitations*** Engineer was retained in limited capacity for this project. Design is based upon information provided by the client,who is solely responsible for the accuracy of same. No responsibility and/or liability is assumed by, or is to be assigned to the engineer for items beyond that shown on these sheets. 98 sheets total including this cover sheet. YR.ut"114; c p PROp1 �r.y ��GI NE' - 2 44.4 12,320 kfl OREGON .Z- N J. 041 ' 'EXPIRES'12-31-2011 I This Packet of Calculations is Null and Void if Signature above is not Original Harper flout"Peter-Non I2tr„allis Inc 205 SE Spokane St. Suite 200 • Portland, OR 97202 ♦ EP]503.221.1131 • [F]503.221.1171 1 104 Main St.Suite 100 ♦ Vancouver, WA 98660 ♦ [P] 360.450.1 141 • [F] 360.750.1 141 1133 NW Wall St.Suite 201 • Bend, OR 97701 • [P] 541.318.1 161 • [F] 541.318.1 141 Structural Calculations for Full Lateral & Gravity Analysis of Plan C 1186 Lot 28, Summer Creek Townhomes Tigard, OR Prepared for Pulte Group April 7, 2011 JOB NUMBER: CEN-090 ***Limitations*** Engineer was retained in limited capacity for this project. Design is based upon information provided by the client,who is solely responsible for the accuracy of same. No responsibility and/or liability is assumed by, or is to be assigned to the engineer for items beyond that shown on these sheets. 98 sheets total including this cover sheet. sl-Ruetuit4; c5 . PRO/4,rj, e�Gt NE4-4, 4 `�► 12,320 1'"*- \ 0REG0N / HJ. E- IEXPIRES.12-31-2011 I This Packet of Calculations is Null and Void if Signature above is not Original Harper Houl Peterson kighellis Inc. 205 SE Spokane St.Suite 200 • Portland, OR 97202 ♦ [P] 503.221.1131 • [F]503.221.1171 1 104 Main St.Suite 100 ♦ Vancouver, WA 98660 ♦ [P] 360.450.1 141 • [F] 360.750.1 141 1 133 NW Wall St.Suite 201 ♦ Bend, OR 97701 • [P] 541.318.1 161 • [F] 541.318.1 141 Structural Calculations for Full Lateral & Gravity Analysis of Plan A 1460 Lot 29, Summer Creek Townhomes Tigard, OR Prepared for Pulte Group April 7, 2011 JOB NUMBER: CEN-090 ***Limitations*** Engineer was retained in limited capacity for this project. Design is based upon information provided by the client,who is solely responsible for the accuracy of same. No responsibility and/or liability is assumed by,or is to be assigned to the engineer for items beyond that shown on these sheets. 122 sheets total including this cover sheet. 1,11t"7411144 \c14Q PRO/4/31r, t,GtNt 4? 12,320 sOREGON ? VY 15,4' 'Q' J E41 ,. (EXPIRES.12-31-2012 This Packet of Calculations is Null and Void if Signature above is not Original Harper flout`Peterson R,,,,„„is Inc. 205 SE Spokane St.Suite 200 • Portland, OR 97202 ♦ [P]503.221.1131 • [F]503.221.1171 1 104 Main St.Suite 100 ♦ Vancouver, WA 98660 ♦ [P] 360.450.1 141 • [F] 360.750.1 141 1 133 NW Wall St.Suite 201 ♦ Bend, OR 97701 • [P] 541.318.1 161 • [F] 541.318.1 141 Design Criteria Project Scope: Full lateral & Gravity Analysis of Unit A Design Specifications: Wind Design: Basic Wind Speed (mph): 100 From Building Authority Exposure: B From Building Authority Importance,lW: 1 2009 IBC/2010 OSSC Occupancy Category: II Residential Earthquake Design: Seismic Design Category: D From Building Authority Site Class: D Assumed,ASCE 7-05 Ch.20 Importance,IE: 1 ASCE 7-05 Table 11.5-1 Ss: 0.942 USGS Spectral Response Map SI: 0.339 USGS Spectral Response Map Dead Load: Floor: 13 psf Wall: 12 psf Wood Roof: 15 psf Live Load: Roof: 25 psf Snow Floor: 40 psf Residential Floor Materials and Design Data: Materials: Concrete Compressive Strength,f'c: 3000 psi Foundations&Slab on Grade Concrete Unit Weight,yc: 145 pcf Steel Reinforcement Yield Strength,fy: 60,000 psi Wood Studs (Wall Studs): Hem-Fir#2 2x&4x Wood Beams&Posts: DF-L#2 6x&Greater Wood Beams &Posts: DF-L#1 Glulam Beams: 24F-V4 PSL Beams: Fb=2,900 psi,FV=328psi,E=2.0 Million TS/LSL Beams: Fb=2325 psi,FV=460psi,E=1.55 Million Design Assumptions 1. Allowable soil bearing pressure(qa) : 1500 psf Assumed 2. All manufactured trusses,joists,and flush beams u.n.o.shall be designed by others. Structural Analysis Software Used: Mathcad 11 Microsoft Excel 2000 Wood Works—Sizer version 2002 Bently RAM Advanse Harper Project: SIJMMERCREEK TOWNHOMES UNIT A I P out`Peterson on (Int PI ILTE GROUP Ri hellis Inc. JobN CEN-09a lira s �z` t m•. �' Desi ner: AMCDate: r awxs�a.aa �r r,w.:a c r r;.tt,xrr x,rea Pg.# DESIGN CRITERIA 2007 Oregon Structural Specialty Code&ASCE 7-05 Roof Dead Load RFR:= 2.5•psf Framing RPL:= 1.5•psf Plywood RRF:= 5•psf Roofing RME= 1.5•psf Mech&Elec RMS:= 1•psf Misc RCG 2.5.psf Ceiling RIN:= 1•psf Insulation RUL= 15.psf Floor Dead Load FFR:= 3•psf Framing FPL:= 4•psf Sheathing FME= 1.5•psf Mech&Elec FMS= 1.5•psf Misc FIN:_ .5•psf Finish&Insulation FCLG:= 2.5•psf Ceiling VOL= l 3=psf Wall Dead Load WOOD EX Wallwt= 12.psf INT Wallwt:= 10•psf Roof Live Load RLL:. 25,psr Floor Live Load 40-psf Harper Project: SUMMERCREEK TOWNHOMES Houf Peterson uN1'rA Client: PULTE GROUP Job# CEN-090 Righellis inc. G :_ Designer: AMC Date: Pg.# Transverse Seismic Forces Site Class=D Design Catagory=D Building Occupancy Category:II Weight of Structure In Transverse Direction Roof Weight Roof Area:= 843.112.1.12 RFWT:= RDL-Roof Area RFq,T= 141621b Floor Weight Floor Area2nd:= 647.112 FLRwund:= FDL•Floor Area2nd Fl RWT2nd=8411 lb Floor Area3rd:= 652ft2 FLRw-r3rd:= FDL-Floor Area3rd FLRVV73rd=8476 lb Wall Weight EX Wall Area:= (2203).112 INT Wall_Area:= (906).ft2 WALLpi,T:= EX Wallwt•EX Wall Area+ INT Walli,,t•1NT_Wall Area WALL — - wT=35496•Ib WTTOTAL=66545 lb Equivalent Lateral Force Procedure(12.8,ASCE 7-05) hn:= 32 Mean Height Of Roof Ie:= 1 Component Importance Factor (1 I.5,ASCE 7-05) 6.5 Responce Modification Factor (Table 12.2-1,ASCE 7-05) Ct := .02 Building Period Coefficient (Table 12.8-2,ASCE 7-05) x:= .75 Building Period Coefficient (Table 12.8-2,ASCE 7-05) Period r Ta:= Ct-(10Ta=0.27 < 0.5 (EQU 12.8-7,ASCE 7-05) S1 := 0.339 Max EQ,5%damped,spectral responce acceleration of 1 sec. (Chapter 22,ASCE 7-05)...or Ss:= 0.942 Max EQ,5%damped,spectral responce acceleration at short period From Figures 1613.5(1)&(2) Fa:= 1.123 Ace-based site coefficient @.3 s-period (Table 11.4-1,ASCE 7-05) F�:= 1.722 Vel-based site coefficient @ I s-period (Table 11.4-2,ASCE 7-05) L2 Harper Project: SUM MERCREEK TOWNIIOMES UNIT A +.- Hold'Peterson Righellis Inc. Client: PULTE GROUP Job# CEN-090 1)esigner: AMC Date: Pg.# Sas:= FSs S45= L058 (EQU 11.4-1,ASCE 7-05) 2.Sms Sds:= ---- Sds=0705 (EQU 11 A-3,ASCE 7-05) Sm i:= 12,,,•Si 3 SMI=0,584 (EQU 11.4-2,ASCE 7-05) 2.Sm1 Sd I := - Sdi=0389 (EQU 11.4-4,ASCE 7-05) 3 Sds'ie Cst:= - Cst=0.108 (EQU 12.8-2,ASCE 7-05) R ...need not exceed.- So.1, Csmax:= - Csnass =0.223 (EQU 12.8-3,ASCE 7-05) Ta•R ...and shall not be less then... C1 := 11(0.044-Sde le<0.01,0.01,0.044-Sds-le) ( 0.5•S1-ic (EQU 12.8-5&6,ASCE 7-05) C2 :' if Si <0,6,0.01, ',... R Csalm:= ult., >C2,CI,C2) Cs =0.031 Cs:= if(Cst<Csaim,Csam,i f(Cst<Csmax,Cst,Csmax)) Cs =0.108 :"-= Cs*WTTorAi. V=7220 lb (EQU 12.8-1,ASCE 7-05) E:= V.0.7 E=5054 lb (Allowable Stress) 1-11(1a)ruNi:ir,eterson (Project: S1J141MERCREEK TOWNHOMES Righellis Inc. EN-090 Designer: AMC Date: Pg.ft Transverse Wind Forces (Method 1 -Simplified Wind Procedure per ASCE 7-05) Basic Wind Speed: 100 mph(3 Sec Gust) Exposure:B Building Occupancy Category:II lw:= 1.00 Importance Factor (Table 6-1,ASCE 7-05) hn=32 Mean Roof Height X:= 1.00 Adjustment Factor Smaller (Figure 6-3,ASCE 7-05) of.. a2:= 2-.1-20-ft Zone A&B Horizontal Length (Fig 6-2 note 10,ASCE 7-05) PUL1 GROUP a2 4 ft Aal:= Job# c "NIT A 256 ft or 3-2-ft but not less than... a2mit,:= amm 6 ft Wind Pressure (Figure 6-2,ASCE 7-05) Horizontal PnetzoneA:= 19.9-psf Pnetzwo 3.2-psf Pnetz„c:= 14.4-psf PnetzoneD:= 3-1130 Vertical PnetzoncE:= —8.8-psf PnetutheF:= —12-psf Pnet,„,,G —6.4-psi ?net-Limn:=—9.7-psf Basic Wind Force PA:= PnetzaiteiCke X PA -a 19.9..psf Wall HWC PB:= PnetzoneB'IWX PB at 3.2-psi Roof HWC • PnetzoneCiw'X Pc= 14.4-psf Wall Typical PD:=PnetzneD'Iw X Pr)=3.3.psf Roof Typical PE:=PnetioneE'ke X P ---8.8,psf PF Pnetionerlw'X P 1 2-psf PG:= Pnetinne0-1,-X PG • Pnetnnerriw.X Pi —9.7-psf Harper Project: SUMMERCREEK TOWNHUIt�ES UNIT A t Houf Peterson Client: PULTE GROUP Job# CEN-090 Righellis Inc. Designer: AMC Date: Pg.# Determine Wind Sail In Transverse Direction WSAILZoneH= (41 +59+29)•ft2 WSAILZoneB (19+ 0 +23)•ft2 WSAILZoneC:= (391 +307+272)=1 WSAILzoneD (0+ 0+ 5)•112 WA:= WSAILZoneA'PA WA=2567 lb WB:= WSAILZoneB•PB WB= 134 lb WC:= WSAILZoneC'PC WC= 13968 lb WD:= WSAILZoneD'PD WD= 16 lb Wind Force:= WA+ WB+ WC+ WD Wind Forcemin:= 10•psf•(WSA1LZoneA+WSAILZoneB +WSAILZoncc+ WSA1LZoneD) Wind Force= 16686 lb Wind Forcemi„= 11460 lb WSAILZoneE 94'112 WSAILZoneF:= 108•ii2 WSAILZoneG:= 320.62 WSAILZoneH= 320•$2 WE:= WSA.ILZoneE-PE WE_—8271b WF:= WSAILZoneF•PF WF=—1296 lb WG:= WSAILZoneG•PG WG=—2048 lb WH:= WSAILZoneH'PH WH=—3104 lb Upliftnet WF+WIi+ (WE+ WG)+RDL•[WSAILZoneF+ WSAILZoneH+(WSAILZ_oneE+ WSAILZoneG)}.6.1.12 Upliftnet= 1212 lb (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN CALCULATION Harper Project: SUMMERCREEK TOWNIIOMES UNrr A IHP Houf Peterson Client: PULTE GROUP Job# CEN-090 Righellis Inc. �;N s Designer: AMC Date: Longitudinal Seismic Forces Site Class=D Design Catagory Cg ry=D Building Occupancy Category:II Weight of Structure In Longitudinal Direction Roof Weight Roof Area=944 ft2 NFAcv= RDL•Roof Area RFyrrp= 14162-lb Floor Weight Floor Area2nd=647 ft2 ,Favicwmdn:= FDL•Floor_Area2nd FLR ,12nd=8411 lb Floor Area3rd=652 ft2 yk = FDL-Floor Area3rd FLRWT3rd—8476.1b — Wall Weight BX.W ........= (2203)-ft2 INT_Wall_Area=906 ft2 A�:= EX Wallµr-EX_Wall Area+INT Wall�,,r•INT Wall_Area WALL _ — wr=35496-lb WTTOTAL=66545 lb Equivalent Lateral Force Procedure(12.8,ASCE 7-05) hn=32 Mean Height Of Roof = I Component Importance Factor (11.5,ASCE 7-05) RM,:= 6.5 Responce Modification Factor (Table 12.2-1,ASCE 7-05) Cr=0.02 Building Period Coefficient (Table 12.8-2,ASCE 7-05) x=0.75 Building Period Coefficient (Table 12.8-2,ASCE 7-05) Period x X0,,:= Ct.(hnr Ta=0.27 < 0.5 (EQU 12.8-7,ASCE 7-05) Sr =0.339 Max EQ,5%damped,spectral responce acceleration of 1 sec. (Chapter 22,ASCE 7-05)...or Ss=0.942 Max EQ,5%damped,spectral responce acceleration at short period From Figures 1613.5(1)&(2) Fa= 1.123 Acc-based site coefficient @.3 s-period (Table 114-1,ASCE 7-05) F„= 1.722 Vel-based site coefficient @ 1 s-period (Table 11.4-2,ASCE 7-05) Harper Project: S UMMERCREE"K."IDWN110MES UNIT A IP t Horn'Peterson Client: PULTE GROUP Ri helob# CEN-090 is I Inc.tc Designer: AMC Date: Pg.# ktly hl t S.Nt d£r* .W.i ie.F?? Fa.Ss Srrs=1.058 (EQU 11.4-1,ASCE 7-05) 2.S s Arlo- 3 Sd8=0.705 (EQU 11.4-3,ASCE 7-05) FvS1 SMI =0.584 (EQU 11.4-2,ASCE 7-05) '1+•11 := 3 Sdi =0.389 (EQU 11.4-4,ASCE 7-05) Sds•le Cst=0.108 (EQU 12.8-2,ASCE 7-05) ...need not exceed... sdl•c T R Csmax=0.223 (EQU 12.8-3,ASCE 7-05) Ta .R shall not be less then... := if(0.044.Sds•IC<0.01,0.01,0.044.Sib•le} 0.5•S1•Je) (EQU 12.8-5&6,ASCE 7-05) := if S1 <0.6,0.01, R if(CI >C2,C1,C2) Csn,i„=0.031 AcjA:--= if(Cst<Csmin,Csmin,if(Cst<Cs, ,Cst,Csm )) Cs=0.108 ,v,:= Cs-WT nrAi, V=7220 lb (EQU 12.84,ASCE 7-05) ,EKY:= V•0.7 E=5054 lb (Allowable Stress) Harper Project: SUMMERCREEK TOWNi lomE5 I/NIT A IHP.• Houf Peterson Client: PULTE GROUP Job# CEN-090 Righellis Inc. r t ,, Designer: AMC Date: Pg.it Longitudinal Wind Forces (Method 1 -Simplified Wind Procedure per ASCE 7-05) Basic Wind Speed: 110 mph(3 Sec Gust) Exposure:B Building Occupancy Category:H Iw,= 1.0 Importance Factor (Table 6-1,ASCE 7-05) lin=32 Mean Roof Height X= 1.00 Adjustment Factor (Figure 6-3,ASCE 7-05) a� 2•.1.20•ft Zone A&B horizontal Lh Smaller of... nni= en a2=4 ft (Fig 6-2 note 10,ASCE 7-05) — 4•hII 2-ft or a2=25.6 ft a� 3 2•ft but not less than... n Pi W'= a2min=6 ft Wind Pressure (Figure 6-2,ASCE 7-05) Horizontal PnetzoneA= 19.9•psf PnetzoneB=3.2•psf PnetzoneC= 14.4•psf PnetzoneD=3.3'psf Vertical PnetzoneE=—8.8•psf PnetzoneF=—12•psf PnetzoneG=—6.4•psf PnetzoneH=—9.7•psf Basic Wind Force ,:= PnetzoneA'Iw.X PA= 19.9•psf Wall HWC = PnetzoneB'Iw'X PB=3.2•psf Roof HWC ,= PnetzoneC'Iw'X PC= 14.4•psf Wall Typical Pte:= PnetzoneD'Iw.X PD=3.3•psf Roof Typical , = PnetzoneE'I ,.X PE=—8.8•psf PnetzoneF'Iw'X PF=—12.psf 1,2c4,' ,:= PnetzoneG'Iw.X PG=—6.4•psf 24:= PnetzoneH'Iw•X P11=—9.7•psf L csHarper Project: SUMMERCREEK-row NHOMES UNIT A Houf Peterson Client: PULTE GROUP Job# CEN-090 Righel]ts Inc. Designer: AMC Date: Pg.# Determine Wind Sail In Longitudinal Direction WNAVZw, = (48+ 59+40)•ft2 WN�N'A\II , (10+ 0+44)-ft2 = (91+ 137+ 67).ft2 Wivwnnin:= (43+0+ 113).ft2 NWN = W SAILZoneA'PA WA=2925 lb ,:= WSAILZoneB'PB WB= 173 lb J := WSAILZonec•PC We=4248 lb W = W SAILZoneD'PD WD=515 lb Wind Force:= WA+ WB+ We+ WD Wind o c = 10•psf•(WSAILzoneA+ WSAILZoneB +WSAILzonec+ WSAILZoneD) Wind Force=7861 lb Wind Forcemin=6520 lb VSAM IAS = 1.48412 2�:= 120.ft2 �'= 323•ft2 N�a`'� R 4:= 252•ft2 WSAILZoneE'PE WE=—1302 lb Wg,`:= WSAILZoneF'PF WF=—14401b WSAILZoneGPG WG=—2067 lb aim= WSAILZonei'PH W11=—2444 lb WiR = WF+ WI/+ (WE+ WG)+ RDL•EWSAILZoneF+ WSAILZonei+(WSAILZoneE+ WSAILLoneG)]..6.1.12 Upliftnei= 1243 lb (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN CALCULATION Harper Houf Peterson Righellis Pg#: Transverse Wind Line Shear Distribution ASCE 7-05,section 6,4(Method 1-simplified) Design Criteria: Basic Wind Speed= 100 mph Wind Exposure= B (Section 6.5.6,ASCE 7-05) Mean Roof Height,H(ft)= 32 Roof Pitch= 6/12 Building Category= II (Table 1604.5,OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf X= 1.00 Iw= 1.00 Wind Sail (ftz) Wind Net Design Wind Pressure( sf) Pressure(Ibs) Zone A= 19.9 129 2567 Wall High Wind Zone Horizontal Zone B= 3.2 42 134 Roof High Wind Zone Wind Forces Zone C= 14.4 970 13968 Wall Typ Zone Zone D= 3.3 5 17 Roof Typ Zone Zone E= -8.8 94 -827 Roof Windward High Wind Zone Vertical Zone F= -12.0 108 -1296 Roof Leeward High Wind Zone Wind Forces Zone G= -6.4 320 -2048 Roof Windward Typ Wind Zone Zone H= -9.7 320 -3104 Roof Leeward Typ Wind Zone Total Wind Force= 16686 lbs I Use to resist wind uplift: Roof Only Total Exterior Wall Area= 2203 ft2 Uplift due to Wind Forces= -7275 lbs Resisting Dead Load= 8472 lbs E_1 1197 Lbs...No Net Uplift Wind Distribution Tributary to Diaphragms Wind Sail Tributary To Diaphragm(ft): Zone A Zone B Zone C Zone D Main Floor 41 19 391 0 Upper Floor 59 0 307 0 Main Floor Diaphragm Shear= 6507 Ibs Upper Floor Diaphragm Shear= 5595 lbs Roof Diaphragm Shear= 4584 lbs Wind Distribution To Shearwall Lines MAIN FLOOR UPPER FLOOR ROOF TributaryLine Shear TributaryTributary Wall Line Diaphragm (lbs) Diaphragm Lin hear Diaphragm Line Shear Width ft Width ft) (lbs) Width ft) (lbs) A 13.08 1737 18 2797 19 2323 Al 24.50 3254 0 0 0 0 B 11.42 1516 18 2797 18.5 2261 E= 49 6507 36 5595 37.5 4584 Lt Harper Houf Peterson Righellis Pg#: Transverse Seismic Line Shear Distribution Seismic Design Category= D Occupancy Category= II Site Class= ID 1 S1 = 0.34 Ss= 0.94 Importance Factor= 1.00 Table 11.5-1,ASCE 7-05 Structural System,R= 6.5 Table 12.2-1,ASCE 7-05 Ct= 0.020 Other Fa= 1.12 Fv= 1.72 Mean Roof Height,H(ft)= 32 Period(Ta)= 0.27 Equ.12.8-7,ASCE 7-05 k= 1.00 12.8.3,ASCE 7-05 SMS 1.06 Equ.11.4-1,ASCE 7-05 SMI 0.58 Equ.11.4-2,ASCE 7-05 SDs= 0.71 Equ.11.4-3,ASCE 7-05 Sol= 0.39 Equ.11.4-4,ASCE 7-05 Cs= 0.11 Equ.12.8-2,ASCE 7-05 Csmin= 0.01 Equ.12.8-5&6,ASCE 7-05 Csmax= 0.22 Equ.12.8-3,ASCE 7-05 Base Shear coefficient,v= 0.076 Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height(ft)= 8 Floor 3 Diaphragm Height(ft)= 18 Roof Diaphragm Height(ft)= 32 Floor 2 Wt(1b)= 8411 Floor 3 Wt(lb)= 8476 Roof Wt(lb)= 14162 Wall Wt(Ib)= 35496 Trib.Floor 2 Diaphragm Wt(Ib)= 22609 Trib.Floor 3 Diaphragm Wt(Ib)= 22674 Trib.Roof Diaphragm Wt(Ib)= 21261 Vertical Dist of Seismic Forces I Cumulative%total of base shear I Rho Check to Shearwalls(lbs) to shearwalls Req'd? Vaoor2(lb)= 720 100.0% Yes V6aor3(Ib)= 1625 85.8% Yes V„„,I(lb)= 2709 53.6% Yes Shear Distribution To Wall Lines Wall Line Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line Roof Line Floor 2 Floor 3 Roof Shear Shear Shear sq ft sq ft sq ft lbs lbs lbs A 102 361 394 114 897 1266 Al 432 0 0 481 0 0 B 113 293 449 126 728 1443 Sum 647 654 843 720 1625 2709 Total Base Shear'= I 5054 LB *Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. Harper Houf Peterson Righellis Pg#: Longitudinal Wind Line Shear Distribution ASCE 7-05,section 6.4(Method 1-simplified) Design Criteria: Basic Wind Speed= 100 mph Wind Exposure= B (Section 6.5.6,ASCE 7-05) Mean Roof Height,H(ft)= 32 Roof Pitch= 6/12 Building Category= II (Table 1604.5,OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf X= 1.00 Iw= 1.00 Wind Sail (ft2) Wind Net Design Wind Pressure(psf) Pressure(Ws) Zone A= 19.9 147 2925 Wall High Wind Zone Horizontal Zone B= 3.2 54 173 Roof High Wind Zone Wind Forces Zone C= 14.4 295 4248 Wall Typ Zone Zone D= 3.3 156 515 Roof Typ Zone Zone E= -8.8 148 -1302 Roof Windward High Wind Zone Vertical Zone F= -12.0 120 -1440 Roof Leeward High Wind Zone Wind Forces Zone G= -6.4 323 -2067 Roof Windward Typ Wind Zone Zone H= -9.7 252 -2444 Roof Leeward Typ Wind Zone Total Wind Force=t 7861 lbs I Use to resist wind uplift: Roof Only Total Exterior Wall Area= 2203 ft2 Uplift due to Wind Forces= -7254 lbs Resisting Dead Load= 8483 lbs Il 1229 Lbs..No Net Uplift I Wind Distribution Tributary to Diaphragms Wind Sail Tributary To Diaphragm(ftp): Zone A Zone B Zone C Zone D O Main Floor 48 10 91 43 Upper Floor 59 0 137 0 Main Floor Diaphragm Shear= 2440 lbs Upper Floor Diaphragm Shear= 3147 lbs Roof Diaphragm Shear= 2275 lbs Wind Distribution To Shearwall Lines MAIN FLOOR UPPER FLOOR ROOF , . Tributary Line Shear Tributary Line Shear Tributary Line Shear Wall Line Diaphragm Diaphragm Diaphragm Width ft (lbs) Width ft (lbs) Width fI (lbs) 1 10 1220 10 1573 10 1137 2 10 1220 10 1573 10 1137 1= 20 2440 20 3147 20 2275 Harper Houf Peterson Righellis Pg#: Longitudinal Seismic Line Shear Distribution Seismic Design Category= D Occupancy Category= II Site Class= D S1 = 0.34 Ss= 0.94 Importance Factor= 1.00 Table 11.5-1,ASCE 7-05 Structural System,R= 6.5 Table 12.2-1,ASCE 7-05 Ct= 0.020 Other Fa= 1.12 Fv= 1.72 Mean Roof Height,H(ft)= 32 Period(Ta)= 0.27 Equ.12.8-7,ASCE 7-05 k= 1.00 12.8.3,ASCE 7-05 SMg= 1.06 Equ.11.4-1,ASCE 7-05 SMI 0.58 Equ.11.4-2,ASCE 7-05 Sips= 0.71 Equ.11.4-3,ASCE 7-05 SIM= 0.39 Equ.11.4-4,ASCE 7-05 Cs= 0.11 Equ.12.8-2,ASCE 7-05 Csmin= 0.01 Equ.12.8-5&6,ASCE 7-05 Csmax= 0.22 Equ.12.8-3,ASCE 7-05 Base Shear coefficient,v= 0.076 Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height(ft)= 8 Floor 3 Diaphragm Height(ft)= 18 Roof Diaphragm Height(ft)= 32 Floor 2 Wt(lb)= 8411 Floor 3 Wt(lb)= 8476 Roof Wt(Ib)= 14162 Wall Wt(Ib)= 35496 Trib.Floor 2 Diaphragm Wt(Ib)= 22609 Trib.Floor 3 Diaphragm Wt(Ib)= 22674 Trib.Roof Diaphragm Wt(Ib)= 21261 Vertical Dist of Seismic Forces I Cumulative%total of base shear I Rho Check to Shearwalls('_ibs) to shearwalls Req'd? Vfloor2(Ib)= 720 100.0% Yes Vflocr3(lb)= 1625 85.8% Yes V,00f(Ib)= 2709 53.6% Yes Shear Distribution To Wall Lines Wall Line Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line Roof Line Floor 2 Floor 3 Roof Shear Shear Shear sq ft sq ft sq ft lbs lbs lbs 1 286 291 415 318 725 1334 2 361 361 428 402 900 1375 Sum 647 652 843 720 1625 2709 Total Base Shear*= r 5054 LB *Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. Harper Houf Peterson Righellis Pg#: Shearwall Analysis Based on the ASCE 7-05 Transvere Shearwalls Line Load Controlled 11): %%mit Shear II L Wall WL Line Load Line Load Line Load Dead, V Panel -Shear Panel Mrs MR Uplift Panel Lgth. From 2nd Fir. From 3rd Flr. From Roof Load Sides Factor Type T (I1) (It) (ft) ht k ht k ht k (kit) (pit) (11-k) (ft-k) (k) 101 Not Used ..., 102 7 1,75 3.50 4.00 8.00 1.74 18.00 2.80 27.00 2.32 1959 Double 1.40 NG 103 7 1.75µ 3.50 4.00 8.00 1.74 8.00 2.80 8.00 232 1959 Double 1.40 NG - 103a_ 7 4.00 4.00 1.75 ox 8.00 3.25 814 Single IA0 1V 104 8 4.50 10.50 1.78 ox 8.00 1.52 8.00 2.80 8.00 2,26 626 Single ry 1.40 III 105 8 3.00 10.50 2.67 ox 800 1,52 8.00 2.80 8.00 2.26 626 r Single 1.40 IH 106 8 3.00 10.50. 2.67 ox 8:00 1.52 - 8.00 , 2:80 8.00 1 2.26 626 Single 1.40 111 109 8 4.58 17.08 175 ox , 8.00 1.74 18.00 2.80 27.00 2.32 401 Single 140 II 110 8 12.50 17.08 0.64 OK 8.00 1.74 8.00 2.80 8.00 2,32 401 Single 1.40 11 1 1 I 8 4.50 725 1.78 ox 8:00 .1.52 8.00 2.80 8.00 226 907 Double 1.40 VI 112 4.75 1,38 725 3.45 on 8.00 1.52 8.00 2.80 8.00 226 907 Double 1.40 VI 113 4.75 1.38 7:25 3.45 OK 8,00 1,52 8,00 2.80 8.00 2:26 907 Doubh I,40 VI - 201 9 3.92_ 10."930 OK 9.00' 2110 18.00 2.32 474 Single 1.40 it ` 201a 9 4.17 10.79 2.16ox 9.00 ' 2,80 18.00 232 474 ' Single 1.40 I1 201b 9 2.71 10.79 3.32 ox 9.00 2.80 18.00 2.32 474 Single 1.40- II 202A 9 2.96 11.96 3,04 ox 9.00 2.80 18.00v 2.26 423 Single I.40 II 20213 9 3.00 11.96 3.00' ox 9.00 2.80 18.00 2.26 423` Single 1.40 II 203 9 3.00 11.96 3.00 ox 9.00 2.80 18.00 2.26 423 Single 140 11 204 9 3.00 11.96 3.00 ox 9.00' 2.80 18.00 2.26 423 Single 1.40 II r__301 8 3.92 13.96 2.04T ox 8.00 2.32 166 r Single 140 1 302 8 5.79 13.96 1.38 ox 8.00 232 166 Single 1.40 1 303 8 4.25 13.96 1.88 nit 8.00 2.32 166 Single . 1.40 I ._ 304 8 2.96 5.96 2.70 ox 8.00 226 379 Single I.40 II 305 8 3.00 5.96 2.67 ox 8.00 226 379 Single I.40 11 Spreadsheet Column Definitions&Formulas L=Shear Panel Length H=Shear Panel Height Wall Length Sum of Shear Panels Lengths in Shear Line I37L Ratio Hight to Width Ratio Check V (Panel Shear) Sum of Line Load/Total L Shear Factor=Adjustment For IUL>2:1 Mo(Overturning Moment)=Wall Shear*Shear Application ht Mr(Resisting Moment)=Dead Load*L2*0.5*(.6 wind or.9 seismic) Uplift T-(Mo-Mr)/(L-6 in) L,V4 Harper Hoof Peterson Righellis Pg#: ._.._ Shearwall Analysis Based on the ASCE 7-05 fransvere Shearwalls Line Load Controlled Its Seismic Shear H I. Wall HIL Line Load Line Load Line Load Dead V Rho*V %Storyf Panel Shear Panel Mu Mei Uplift Panel Lgth, From 2nd Fir. From 3rd Flr. From Roof load Strength Bays Sides Factor "type T (0) (Ii) (fi) ht k ht k ht k (klf) (pH) (ph) (ft-k) (ft-k) (k) 101 Not Used 102 7 1.75 350 ' 4.00 8,00 0,11 18.00 0.90 27.00' 127 651 846 0,10 ' 0,50 Double 0,50 NG 103 7 135 ,150 4.00 8.00 0.11 8.00 0.90 8.00 1.27 651 846 0.10 0,.50 Double 030 NG 103a 7 4,00 4.00 1.75 on 8.00 0.48 0.00 0.00 120 156 0.22 1.14 Single 1.00 1 104 8 4.50 1050 1,78 on 8.00 0,13 8.00 0.73 8.00 1:44 219 284 025 1.13 Single 1.00 II 105 8 3.00 10,50 2,67 on 8,00 "0,13 8.00 0,73 8.00 1;44 219 284 0.17 0,75 Single 0.75 III 106 8 3:00 1050 2.67 on 8.00 0.13 8,00 0.73 8.00 1.44 219 284 0.17 0.75 Single 0:75 HI 109 8 4,58 17.08'.1.75 oK 8.00_ 0.11 18.00 0.90 2700 1.27 134 174 025 1.15 Single 1.00 1 110 8 12.50 17.08 0.64 OK 8.00 0.11 8.00 0.90 8,00. 127 134 174 NA 3.13 Single 1.00 1 III 8 4.50 7.25 1,78 on 8.00 0.13 8.00 0.73 8,00 1.44 316 411 0.25 1.13 Single IAO 111 112 5 138 7.25 3,45 on 8.00 0.138.00 0.73 8,00 L44 316 411 0.08 0.58 Double 0,58 VII 113 5 1.38 7.25` 3.45 oK 8 00 0.13 LL 8,00 0.73 8.00 I.44 316 411 0.08 058 Double 0,58 VII 201 9 3,92 ' 10.79' 2.30 on 900 090 18.00 1.27 200 261 0.17 0.87 Single 0.87 II 2Ola 9 4,17 11179' 216 on 9,00 0"90 18.00 127 200 261 0.18 0,93 Single 0.93 11 2011, 9 2,71 10.79' 3.32 on 9.00 0.90 18.00 127 200 261 0.12 0.60 Single 060 III + 202A 9 196 11596 3.04 on 9,00 0.73 .18.00 1A4 182 236 0.13 0,66 Single 0.66 Ill 20213 9 3:00 11.96 3.00 on 9.00 0.73 18:00 1.44 182 236 0.13. 0.67 Single 0,67 [Il 21139 3.00 11.96 3.00 OK 900 0.73 ''18.00 1.44 181 236 0t3 0.67 Single 0,67 111 204 9 3,00 1196 3.001 on 9.00 0.73 18.00 1.44 18I 236 0.13` 0.67 Single 0:67 111 301 8 3:92 13.96 2.04 OK 8.00 1.27 91 118 020 1,.98 Single 0.98 l 302 8 5.79 13,96' 138 on 8.00 1,27 9i 118 029 1,45, Single 100 I 303 8 425 1396 1.88 on 8.00 127 91 118 021 1.06 Single 100, I 304 8 2.96 5.96 2,70 OK 8.00 144 242 315 0.15 0.74 Single 0,74 HIW 305 8 3.00_ 5.96` 2.67 on 8.00 I A4 242 315 0.15 0.75 Single 0.75 'III Rho Calculation Does the 1st floor shearwalls resist more than 35%of the total transverse base shear? Yes Does the 2nd floor shearwalls resist more than 35%of the total transverse hose shear? Yes Does the 3rd floor shearwalls resist more than 35%of the total transverse base shear? Yes Total 1st Floor Wall Length rata Total S 1st Floor Bays= 4.77 Are 2 bays minimum present along each wall line? No l st Floor Rho- 13 'fatal 2nd Floor Wail Length 21:75 Total 31 2nd Floor Bays- s Are 2 bays minimum present along each wall line? No 2nd Floor Rho Total 3rd Floor Wall Length= inns Total#3rd Floor Bays== s Are 2 bays minhnum present along each wall line? No 3rd Floor Rha= t 3 Spreadsheet Column Definitions&Formulas L==Shear Panel Length H=Shear Panel Height Wall Length=Sum of Shear Panels Lengths in Shear Line ilL Ratio Hight to Width Ratio Check V(Panel Shear)=Sum of Line Load*Rho/Total L Story Strength=L/Total Story L (Required for walls with IUL>1.0,for use in Rho check) 31 Bays.-2*I.JH Shear Factor-Adjustment For 11ir.>2:I Mo(Overturning Moment) Wall Shear*Shear Application lit Mr(Resisting Moment)=Dead Load*L'*0.5*(.6 wind or.9 seismic) Uplift T=(Mo-Mr)/(L-6 in) Harper Houf Peterson Righellis Pg#: Shearwall Analysis Based on the ASCE.7-05 Lon 'tndinalShearwaIls Line Load Controlled Ur Wind Shear H L Wall HIL Line Load Line Load n Line Load Dead V Panel Shear Panel Mo MR Uplift Panel Lgth. From 2nd FIr. From 3rd FIr. From Roof Load Sides Factor Type T (ft) (ft) (ft) ht k ht k ht k (klf) (pit) (ft-k) (ft-k) (k) 107 8 15.50- 15.500.52 OK 10.00 1.22 18.00 1.57 27.00 1.14 " 1.03. 254 Single 1.40 1 71.21 123.49' -0.19 108 8 15.50 15.50 0.52 ox 10.00 1.22 1840 1.57 27.00 1.14 1:03 ' 254 Single 1.40 1 71.21 123.49 -019 205 9 13.00 13.00[0.49 ox 9.00 1.57 18.00 1.14 0.70 208 Single 1.40 1 34.62 59.15 -0.07 ..2,06 9 13.00 13.00 0,69 OK ox 9.00 1.57 1800 1,14 0.70 208 Single 1.40 I 34.62 59.15 -407 306 - 8 10,00 10.00 0.80 ox- 800 1.14 0.29 114 Single 1.40 I 9.10 14„40 0.05 307 8 10.00 10.00 0.80' ox 8.00 1.14 0.29 114 Single 1.40 I 9.10 14.40 0.05 Spreadsheet Column Definitions&Formulas L=Shear Panel Length II=Shear Panel Height Wall Length-Sum of Shear Panels Lengths in Shear Line II/L Ratio=Hight to Width Ratio Check V (Panel Shear)=Sum of Line Load/Total L Shear Factor=Adjustment For H/L>2:1 Mo(Overturning Moment)=Wall Shear*Shear Application ht Mr(Resisting Moment)=Dead Load*L2*0.5*(.6 wind or.9 seismic) Uplift T=(Mo-Mr)/(L-6 in) Harper Houf Peterson Righellis Pg#: Shearwall Analysis Based on the ASCE 7-05 '�ongitudiltal Shearwatts Use Load Coulrntlett fl Seismic Shear FI L Wall FUL Line Load Line Load Line load Dead V Rho*V %Story # Panel Shear Panel Mo Mx Uplift Panel Lgth. From 2nd Fir. From 3rd Fir. From Roof Load Strength Bays Sides Factor Type T (ft) (ft) (ft) ht k lit k ht k (MI) (p11) (pll) (ft-k) (ft-k) (k) 107 8 15.50 15.50 0.52 ox 10.00 0.32 18.00 0.73 27.00 133 1:09 153 153 NA 3.88 Single I.00 1 52.25 130.70 -1.74 108 . 8 15.50. 1530 0.52 ax 10.00 0.40 18.00' 030 27:00 1.38 I.09 173 173 NA 3.88 Single 1.00 I 5735 130.111 -1,40 205 9 1100 13.00 0.69 ox 9,00 0„73 1800 133 -0.76 158 158 NA 2.89 Sinele 1.00 1 30.54 64.22 -0.64 206 9 1300 13.00 0.69 ox 9.00 0.90 18.00 138 0.76 175 175 NA 2.89 Single a 1.00 1 32.85 64.22 445 306 8 10.00 10.00 0.80 ox 8.00 1.33 0.35' 133- 133' NA 2:50 Single 1.00 1 10.67 17.40 OM307 8 10.00 10.00 0:80 ox 8:00. 138 0.35 138 138 .. NA 2.50 Single 1.00 I 1100 17.40 0.06 Rho Calculation Does the 1st floor shearwalls resist more than 35%of the total longitudinal base shear? Yes '.. Does the 2nd floor shearwalls resist more than 35%of the total longitudinal base shear? Yes Does the 3rd floor shearwalls resist more than 35%of the total longitudinal base shear? Yes Total 1st Floor Walt length= 31.00 '.. Total#1st Floor Bays= 7.75 Are 2 bays minimum present along each wall line? Yes Ist Floor Rho 1.13 Total 2nd Floor Wall Length= 26.00 Total#2nd Floor Bays= s Are 2 bays minimum present along each wall line? Yes 2nd Floor Rho r.o Total 3rd Floor W011Length 20.00 '.. Total#3rd Floor Bays= 5 '.. Are 2 bays minimum present along each wall line? Yes 3rd Floor Rho- i.e Spreadsheet Column Definitions&Formulas L=Shear Panel Length H-Shear Panel Height Wall Length_:Sum of Shear Panels Lengths in Shear Line HIL Ratio=Hight to Width Ratio Check V(Panel Shear)-=Sum of Line Load*Rho/Total L %Story Strength=t,/Total Story 1. (Required for walls with11/1.>1.0,for use in Rho check) #Bays=2*Lill Shear Factor Adjustment For HIL>2:1 Mo(Overturning Moment)-Wail Shear*Shear Application ht Mr(Resisting Moment)=Dead Load*L2*0.5*(.6 wind or.9 seismic) Uplift T=(Mo-Mr)/(L-6 in) Harper Houf Peterson Righellis Pg#: SHEAR WALL SUMMARY' Transvere Shearwalls *Panel Wall Shear Wall Type Good For Uplift ' Simpson Ho!down Good For. V(p11) (pit) (1b) (1b) 101 Not Used 102 Simpson Strongwall 103 Simpson Strongwall 103a 814 1/2"APA Rated Plyw'd w/8d Nails @ 2/12 833 104 626 1/2"APA Rated Plyw'd w/8d Nails @ 3/12 638 105 626 1/2"APA Rated Plyw'd w/8d Nails @ 3/12 638 106 626 1/2"APA Rated Plyw'd w/8d Nails @ 3/12 638 109 401 1/2"APA Rated Plyw'd w/8d Nails @ 4/12 495 110 401 1/2"APA Rated Plyw'd w/8d Nails @ 4/12 495 111 907 2 Layers 1/2"APA Rated Plyw'd w/8d Nails @ 4/12 990 112 907 2 Layers 1/2"APA Rated Plyw'd w/8d Nails @ 3/12 990 r 113 907 2 Layers 1/2"APA Rated Plyw'd w/8d Nails @ 3/12 990 201 474 1/2"APA Rated Plyw'd w/8d Nails @ 4/12 495 201a 474 1/2"APA Rated Plyw'd w/8d Nails(a7 4/12 495 201b 474 1/2"APA Rated Plyw'd w/8d Nails @ 3/12 495 202A 423 1/2"APA Rated Plyw'd w/8d Nails @ 3/12 495 202B 423 1/2"APA Rated Plyw'd w/8d Nails(€0,3/12 495 203 423 1/2"APA Rated Plyw'd w/8d Nails @ 3/12 495 204 423 1/2"APA Rated Plyw'd w/8d Nails @ 3/12 495 301 166 1/2"APA Rated,Plyw'd w/8d Nails @ 6/12 339 302 166 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 339 303 166 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 339 304 379 1/2"APA Rated Plyw'd w/8d Nails @ 3/12 495 305 379 1/2"APA Rated Plyw'd w/8d Nails @i 3/12 495 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design loads. Harper Houf Peterson Righellis Pg#: SHEAR WALL SUMMARY1 Longitudinal Shearwalls Panel Wall Shear Wall Type Good For Uplift Simpson Holdown Good Fo V('lf) (ph) (lb) (lb) 107 254 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 339 192 ; Simpson None 0 108 254 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 339 -192 "* Simpson None 0 205 208 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 339 -69 Simpson None 0 206 208 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 339 -69 f Simpson None 0 306 133 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 242 48 Simpson None 0 307 138 ,1/2"APA Rated Plyw'd w/8d Nails cr,6/12 242 59 Simpson None 0 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design loads. Transverse Wind Uplift Design Unit A Shear H '' Joist L Wall T Line Load Line Load Line Total V Dead Dead Dead Over= Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total Total Panel Height Lgth. From 2nd From 3rd From Wall Load(not Point Point ping Moment Moment Floor Shear @ Floor Shear @ Stacking @ Stacking From From Uplift Uplift Fir. FIr. Roof Shear including Load Load Momen G Left @ Right Left Right Left Side of, @ Right Wall Wall Or,Left v floors ®Left @ t House Side of Above Above Right above if Right House @ Left L walls Right stack) (ft) (ft) (ft) (ft) k k k k plf klf k k kft kft MI k k k k k k " 102 8 1.1667 1.75 3.50 1,737 2.8 232 6.857 1959 0152 0.1920.832 2743 0.57 1.69 21.31 20,79` 103 8 1,1667 1.751 3.50 1.737 2.8 232 6,857 1959 0.152 0.832 0.192 27.43 1,69 0.57 20,79 21,31 21.71 20.31 103A 8 1.1667 4.00 4 00 3.254 _20.79 21.3 I , 3254 814 0 04 2:016 1..664 26,03 8.38 6.98 6.00 6.24 6.00 6.24 104 8 1.1667 4.50 10.50 1.516 2.8 226 6.576' 626 01- 0.8 0.078 25.08 4,61 136 5.58 6.06 105 8 11667 3.00 10.50 1,516 2:8 226 6,576' 626 0.048" 0.252 0.156 16.72 0.97 0.68 6.45 6,52 6.55 6,52 106 8 1,1667 3.00 1050 1.516 2.8 226 6576' 626 0.048 0.156 0252 16,72 0.68 0.97 6.52 6 45 b.45 6.52 6.52 6.45 109 8 1.1667 4.58 17,08 1.737 2.8 2..32 6.857 401 0.152 0.192 0.156 16.31 2.47 2.31 3.63 3.66 201L 201R 4.82 5.09 8.45 8.75 110 8 11667 12,50 17,08 1,737 2.8 132 6.857 401 0.096 0.156 0.192 44,52 9.45 9,90' 3.24 3.21 201aL 201bR 4,95 4.88 8.18 8,09 111 8 1,1667 4.50 7.50' 1.516' 2.8 226 6.576 877 0144 0:8 0.078 35,11 5.06 1.81 8,02 8.51 112 8 1.1667 150 7.50 1.516 2.8 226 6.576 877 0.048 0.252 0234 11,70 043 041 11.44 11.46 8.02 8.51 113 8 1,1667 1.50 750 1,516 2:8 2.26 6,576 877 0.048 0.234 0252 11.70 0.41 0.43'- 11:46 11,44 11.44 11.46 11.46 11.44 201 9 1.1667 3.92 10,8 2,8 2.32 5.12 474 0,225 0,432 0.156 17,71' 3.42 2.34 399 4,16 301L 301R 201a 9 1.1667' 4,17 10,8 2,8 232 512 474 0.225 0.156 0,156 18,84 2.61V 2.61 4.14 4.14 3021 302R 0.80 093 4,95 4.95 201b 9 1.1667 2.710.84 0 80 4,95 4.95 0.8 2,8 232 5,12 474 0.225 0,156 0432 12.24 125 2.00 4.24 4,08 303L 303R 091 0.80 5.15 4.88 202A 9 1.1667 2.96 11.958333 9 2.8 2,26 5,06 423 0,173 0.432 0.052 1192 204 0.91' 3.62 3.84 304L 304R 2028 9' 1.1667 3 11,958.333 2.8 2.26 5,06 423 0.173 0.052 0.216 12.09' 093 1.43' 3.84 3,74 305L 305R 2.64 2.74 2.12.16 3.66 6.58 3.55.91 203 9 1.1667 3 11.958333 2,8 2.26 5.06 423 0,309' 0.216 0.312 12,09 204 2.33: 3.62 3.56 3.622 3.56 6 204 9 1,1667 3 11.958333 2.8 2,26 5,06 423 0.235 0312 0432 12,09 195 2,31 3.64 3.57 3.64 3.57 • 301 8 3.92? 13.96 __ 232 2.32 166 0,232 0384 0.204 521 329 258 0,83 093 302 8 5.79 1396' 2,32 2 32 166 0232 0;204 0204, 7.70 5.07 5;07 0.80 0.80 0.$3 0.93 303 8, 4.25 13.96 0.$0 0.80 2;32 2.32 166 0.232 0.204 0.384 5.65 2 96' 3.73 091 0.80 09I 0.80 304 8 2.96 5.96 2.26 2,26 379 0232' 0.384 0.136 8.98 2.15 1,42 2.60 2.75 305 8 3 5,96 2.26 2.26 379 0,232 0.136 1.104 9.,10 1.45 4.36 2.74 2,16 2.74 2.16 6 W 2.74 2.1 Spreadsheet Column Definitions&Formulas L=Shear Panel Length jrni H=Shear Panel Height Wall Length=Sum of Shear Panels Lengths in Shear Line V(Panel Shear)=Sum of Line Load/Total L Mo(Overturning Moment)=Wall Shear*Shear Application ht Mr(Resisting Moment)=Dead Load*L2*0.5*(.6 wind or.9 seismic) Uplift T=(Mo-Mr)/(L-6 in) Transverse Seismic Uplift Design Unit A Shear H Joist L Wall 'Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting, Uplift From Uplift From Wall Wall Uplift Uplift_ Total Total Panel Height Lgth. From 2nd From 3rd From Wall Load(not Paint Point ding Moment Moment Floor Shear @ Floor Shear @ Stacking @ Stacking From From Uplift Uplift Fir. Flr. Roof Shear including Load Load Momen @ Left @ Right Left Right Left Side of @ Right Wall Wall @ Left @ floors @ Left @ t House Side of Above Above Right above if Right House @ Left walls Right stack) (ft) (ft) (i't) (ft) k k k k plf klf k k kft kft kft k k k k k k 102 8 1.1667 1.75 3.50 0.114 0,9 1.27 2.284 653 0.152 0.192 0.832 10,40 0 57 1.69 7,91 7.11 0 0 7.91 7.11 103 8 1.1667 1.75 3.50 0.114 0.9 127 2.284 653 0.152 0832 0.192 10.40 169 0.57 7.11 7,91 C 0 7.11 7.91 103A 8 1.1667 4,00 4.00 0.481 0.481 120 0 04 2 016 1.664 3.85 3.38 6.98 -1,06 0.69 0 0 -196 -0.69 104 8 1,1667 4..50 10.50 0,126 0 73 1,44 2.296 219 0.1 0.8 0.078 896 4.61 1.36 1.20 1.93 0 0 1.20' 1.93 105 8 1.1667 3.00 10.50 0.126 0.73 1,44` 2296 219 0048, 0 25 0.156 5.97 097 0,68 2.04 2.14 0 0 2.04 2.14 106 8 1.1667 3.00 10.50. 0,126 0 73 1.44 2.296 219 0.048 0.156 0252 5.97 0.68 0.97 2.14 2.04 0 0 2.14 2.04 109 8 1,1667 4.58 17.08 0.114, 0.9 1.27 2,284 134 0,152 0.192 0.156 5.58 2.47 2.31_ 0.82 0.86 201L 201R 1.13 1.54 1.95 2.40 110 8 11667 12,50 1708 0,114 09 1, 27 2.284 134 0.096 0.156 0.192 15.23' 9.45, 9,90 056 0.53 201aL 201bR W1.32 132 1.88 1.85 111 8 1.1667 4.50 7.50 0.126 0.73 1.44 2 296 306 0.144 0.8 0 078 12.54 5,06 1.81 2.00 2.73 0 0 2.00 2.73 112 8 1,1667 1.50 7.50 0.126 0.73 1.44 2.296 306 0,048 0,252 0234 4.18' 043 041 3.79 3,82 0 0 3.79 3.82 113 8 1,1667 1.50 7,50 0.126 0.73 1,44 2,296 306 0.048 0.234 0252 4.18 0.41 0.43 3.82 3,79 0 0 3.82 3.79 201 9 1.1667 3,92E 10,84 0.9 127 2.17 201 0,225 0.432 0,156 7.63 3.42 234 1,16 1.41 301L 301R -0.03 0,13 1,13, 1.54 201a 9 1.1667 4,17 10.80 09 1,27 2.17 201 0225 0.156 0,156' 8.11 2.61. 2.61V 138 138 302L 302R -0,06 -0,06 132 1.32 201b 9 1,1667 2.71 1080 0,9 1.27 2.17 201 0.225 0156 0.432 5.27 1.25 2.00 1.53 1.28 303L 303R 0.10 -0,06 1,61 122 202A 9 1,1667 2.96 11.96 0.73 1.44 2.17 181 0173 0432 0,052 525 204 091 1,15 1.50 304L 304R 1.28 1,50 2.43 3.00 202B 9 1,1667 3,00 1196 0.73 144- 2,17 181 0,173 0.052 0.216 5.32 093 1.43 1,49 1.35 305L 305R 1.50 0.63 2.99 1.97 203 9 1.1667 3:00 11;96 0.73 1.44 2.17 181 0309 0216 0.312 5,32 2.04 2.33 1.16 1.08 0 0 1,16 1,08 204 9 1.1667 3,00 11.96 0.73 1.44 2,17 181 0.225 0.312 0,432 5.32 1.95 2.31 1,19 1.08 0 0 1.19 1.08 301 8 0 3.92 13,96 1.27 127 91 0.232 0.384' 0.204 2.85 329 2.58 -0.03 0:13 0 0 0.03 0.13 302 8 0 5,79 1396 1.27 1.27 91 0.232 0,204 0.204p 4,21 5.07 5,07, -096 9.06 0 0 -0.06 -0.06 303 8 0 4.25 13.96 1.27 1 27 91 0,232 0,204 0.384 3.09 2.96 3.73 0.10 -0.06 0 0 0,10 -0.06 304 8� 0 2.96 5.96 144 1.44 242 0232 0:384 0,136 5,72 2,15 1.42 1.28 1::50 0 0 128 1.50 305 8 0 3,001 596 1.44 1,44 242 0232 0,136 1,104 5.80 1.45 4.36 1.50 0.63 0 0 1.50 0.63 Spreadsheet Column Definitions&Formulas __,...,-- L=Shear Panel Length H=Shear Panel Height Wall Length=Sum of Shear Panels Lengths in Shear Line V (Panel Shear)=Sum of Line Load/Total L Mo(Overturning Moment)=Wall Shear*Shear Application ht Mr(Resisting Moment)=Dead Load*L'*0 5*(.6 wind or.9 seismic) Uplift T=(Mo-Mr)/(L-6 in) TRANSVERSE UPLIFT CALCULATIONS-SUMMARY UNIT A Shear Controlling Total Holdown Holdown Good Control Total Holdown Good For Panel Case Uplift u' or Strap Type@ Left For ling Uplift Type@ Left Left Case @ Right k Simpson k k Simpson k 102 Wind 21.31 Holdown None 0.00 Wind 20.79 None 0.00 103 Wind 20.79 Holdown None 0.00 Wind 21.31 None 000 103A Wind 6.00 Holdown HDQ8 w 3HF 6.65 Wind 6.24 HDQ8 w 3HF 6.65 104 Wind 5.58 Holdown HDQ8 w 31-1F 6.65 Wind 6.06 HDQ8 w 3HF"' 6.65 105 Wind 6.45 Holdown HDQ8 w 3HF 6.65 Wind 6.52 HDQ8 w 311F 6.65' 106 Wind 6.52 Holdown HDQ8 w 3HF 6.65 Wind 6.45 HDQ8 w 3HF 6.65 109 Wind 8.45 Holdown HDQ8 w OF 9.23 Wind 8.75 HDQ8 w OF 9.23 110 Wind 8.18 Holdown HDQ8wDF 9.23 Wind 8.09 HDQSwDF 9.23 111 Wind 8.02 Holdown HDQ8 w DF 9.23 Wind 8.51 HDQ8 w DF 9.23 112 Wind 11.44 Holdown HDU14 14.93 Wind 11.46 HDU14 14.93'• 113 Wind 11.46 Holdown - HDU14 14.93' Wind 11,44 HDU14 14.93' 201 Wind 4.82 Strap MST48x2 5.75 Wind 5.09 MST48x2 .5.75 201a Wind 4.95 Strap MST48x2 5.75 Wind 4.95 MS'1'48x2 5.75 201b Wind 5.15 Strap MST48x2 5.75 Wind 4.88 MST48x2 5.75 202A Wind 6.21 Strap MST60x2 8.11 Wind 6.59 MST60x2 8.11 CO 2023 Wind 6.58 Strap MST60x2 8.11' Wind 5.91 MST60x2 8.11' 203 Wind 3.62 Strap MST60 4.06 Wind 3.56 MST60 4.06 204 Wind 3.64 Strap MST60 4.06 Wind 3.57 MST60 4.06 301 Wind 083 Strap MST37 1.79 Wind 0.93 MST37 1 1:79 302 Wind 0.80 Strap MST37 1.79 Wind 0.80 MST37 1.79 303 Wind 0.91 Strap MST37 1.79Wind 0.80 MST37 1.79 ~ 304 Wind 2.60'Strap MST48 2.88Wind 2.75 MST48 2.88 T 305 Wind 2.74 Strap MST48 2.88 Wind 2.16 MST48 2.88 ,Nt\r, DATE: (9 0., okato Jon No q 0 PROJECT' RE' 3SW — -Rear LoacK IA 11 w A' 0\ LOOAS tu-okis IL 2: (3001 a 06R_ WC j:k la \ dochQ 0 Eu LU a • 11 1 Cck. c)1/4c,Lirtb oP Ss\KG,\ i- -7: 414(X, \\OS r.f 11,1;kt\ O athrld. Lo4 -47 V4-'31.- A- car+ 1- aow6 6=e64.- tv.5/ 3 act-tow:An O atuo < Capwiettj O Ca93.(74--,\ SSU33,1x5 = 3ca,c) 44 cLwt cr:• 0 z 12 I O e• j 0.) : 4z: 4.4 5' G E., -...:1 Zt, 7.-----\, ,...._„ .. . , .......- 5V4I T14 IS Le 1,..*Ttf A,v,),,,,,c,-rtivs LI. e7 .—fl ,...,--- V I --- ., UP(lb) RiseRs / / 1 C. 0:4) !0" 117.4A1.7.6 !I 1 1 3 i! tis, i i 0 ---1 :1, ir- ,' s il 1 1 3,r • . . LW111111rollmmins ---,' 4 -11 Li '.. li- r : 0 (• 0 ::."------ --1 0 i 1 ,-..-- ;.1 Cr2. t,t ----- ' •-4 . .. ..... .4 0 bp 1 1 ... 0 -11 itS PiU)N.;Cfk T Wt.S LI tsjC,.' Z —4 7-g 0 ---9:u' m -31\111 S.1441 1—),"°,4711/41 ;3-6244 ill ,P64--V 1.--)1N''''':'11 S041 cv't*7,-, 01 ' 1 0 I , .. ...... . ....... ... ....-. - - ....,‘„7-,--7-..... ‘r....m,..!,,.v-.,--,---,,,,:.::•Z?"7,7"--•.,=7777-7"=,:7",'"',- . *-...... ;,,r1.....,..:• •...,-..- ........... ::::: ----,, r„.1 , „ . ... 1 ,_ 2 el o 4.. -J I) kJ) c---Ct . - a 0 L 0 i --3 U- - ---J—i . et- ,.• X •-z. ,,,, -,.._ . . . .... . . ..... . _.... .. ---, - .... . - • . , -?rv)7 94i..1.„ 1-/iNfr1Ad1t--)Na1 °71-R.L. 13 ( 4t:t ,...-- „ C --I ,.---,‘ ) --,- ------ ''' ..°mi...IImmill."linminnmMIMMIIMMIIMIMMIIMMIIIMIIMIIMIIMIIIMMIMIMIIIMIMMMIMI/ „‘ SN Ts („E,-NC-1TH Ai-0QC, INIS (-1/4Cr\-,,::'''''''' ;Os (ii ,t 1; , , ,:->- <-- „. . ., 19-) 1 . re , . ' i , . 1 - . - 1 ..,..., el _ . ,. --11 eil `f! 0 \,1 17 Tr z f 4 tel gl r- r ..... (-4 SV :;‘• , 0 CI 1111=1111111111.11M1111.0 til 5A) \-0‘,-- Le k -n-i-- A 14)N)(-, This Lk Nt=-7 r...., --I ..,.....-- „ .1) , ....„./., i sta Ili vc, .i.k.o(-I 306 I: 1 .. ., mail . i „ . ,,, :,i 03 I, 0 I.: V =MIN it fr', L.) .:, H r• i.i 1 i ....„ -I • '`,3 i . 0 „„ .. JO 1 e I4 "'"7..i.'—a,=,;'-',---;:;•."'"7",4,-",-„,...'''.4%...7..Z.zn,'''-"Nq.'.,--r,:"v'1,r,r,:,°,,-,,,,,x,:::;;;er.1 St\tv I:\..4\s L/ 1 .C.,',..,C r+ 'i PC LON;C-t 11-I I S LINACI- ..„ (.0 - ao‘o ...,‘„, c.)i......„,m ,,„_.0 CIC OP PROJECT' ,r RE la ck 0:.---,, ':€r cA.31- Fc(sror. op. 11 Ei i ...,-, I V- a n4, fi 4 44-Ao i 5., ...., o 4 5 v-k- E. ,.. o L 0(.10phraga) CUid,in ::: a0 ck I- W 0 • L.1 Cu ..:i Oi _I 6-4-1 I r ij OF urtADtoiriced diaohyaern u 7 til i) = Coo-sSCI,4) =as5,9‘.* , ' z O I. N'TV,:)u.... 1---. < 0 i: Wiz_ Jvca I;r1,3 eci"%kik.) z(ass D 2 2 0 ci I 1 7 _ 2 8* L. Z w Li 6 o 1, 1- 11. = ;) "4.". .., '.; . - L..,.4.9,0 c>4% DA IE. 1461 .mAt. Jon No or PROJECT: 5'10' RE Des r, oC r\rt,„ /block( r 0 7.1 OPTION) 1- Ea obritaXight 0 TR WI ti 0 10 F;F„ 30 NIT AO,x 514k vt-C.)Vt.t4 k)(-t• rc Ui D E.:5 1 U,) NA) Presuce, ao, 0 CACC 0 (% (v.) rk ?LAI t.:b BI-rie (u 44A jrjY Ic't c e erFm" T 7:ikAC\i* k ir1 A -0" 2 0 h z 1\kfr,0,x 19,43.65. 5) 4A-ct L orm-x I 542,17. ) t^1 t 4/1142. I IflilmtCm C6:1-1#/1 iN?" A (3c\LS:2.c) , v, , c • , q tn Kif„ , 4 ; -;• " „ o g a" \--) e crn, 2_ <12> L2,9 ic)11 E'T i A A DATE: _ k(---)..., JOE No. C .e Ki _0 ct 0 OF --„- --„ — --- —,,„- - ' PROJECT: RE: (-,,,,-)---i 10),) 2. -=',---- - EI1J rl til - 1::2,' 1: ‘1:: : 1 e'":, (: ';'+''s f'D 1 , - T.-. :-„.,,,• O IA 'il)v-,'', ,.'A.D'iTh V ((3 \i-i.'•e n'g:3 Tu.C;09,, E- ul li• [1 -1:(:1:3 :`,;. ) ;I: t 1''.: 0 r‘ '',TUI iNi T o ..1 ;v - i, `',0 ,:' ,e c ,'.1,,:.1--,, ,f (-',o 4„'x '-,,r,t, Er ti o . o z Lu 0 . 1 ff: C\ ..)`)kr,•6 PI' jf C ::'''' -- CA0.446 . a. Z L 0,-.},J., or\ : 3‘\ : ks.)9 \o',...0 \i„.1- 0 }-- 1,--7---T— 2 I 3 2 V4,4 Afo S' R.. 2 = 0 O \j‘ ,Z. _ ,,,, 07, 0 r.,) -,t) ' T1-T i [. ':-1, 1 --7 ,• z [,,,I. g , • . . T -''''TJ,'A., -. \„,..1 t_,' ,,:z,,,, id.- -:::, ,,/' 2 (,,,,1 1_„ig ( ...- i - , - ;N;,...f• - ,., = 0. I ,„-,,,,,,; li C..; = r•.., ,--- , -,,.--: 1 ..-z. ,,,,,.. 4,,,,, - 2 w O -- „ ..- . i-, 0., - •,.. ,„,-1 wi.„ -..),LI', ,, .p.-4 • : E4(5 ,4 • CA. ?,,,-,,„,..',,-,L 17. 0 i‘,.1 , ((,)•E',1';) 4- 'eJ.- :1.,,,.:' + a-f! ,,::: L 0,-•,:.)1 c, )..r. .-s :1',,,,,+ 0 t i:: ) <,\,,,,tz> = 1-• ,.„, : -.'' ,---,- : V 4,1 ,;;;`,k,-"J-'-' 17'o' :- `V-,,,C, C t,-(,)‘,-C-. e i7 C s',,,Cj:C( -...... = - • .,,, , -'1 ,.- -- . : -7717:,,,..77,,,,,, - 0,21,-,-,:ki ',----- _. ,. ( _ , \ . Y' ' '..(-: "( ' (' . 'f' --')( --\7 y ,:i .,,,,,-,i, ),,,,.; ,,0 . ,0 „.(., ), ,„ , Lo ,,, . ... , r L , V, ....,rA - -‘, _ -.. ' Y ; i q ',' ', ik. '..(,) , (,):-A i I 7 ', 1 t') • ov e3 r ,...m. _ .„„._,„ ,...„. .. ,....._ , _ „........., 1 WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN i Unit A-Front Load Wood Works®Sizer 7.1 Dec.15,2010 11:01147 " Ci1M1 Af:Y I _ YM?d?C'£ ...._.......—.. RESEike9 by'GROUP«1117.. .,...,,,--,..,.,. SUGGESTED SECTIONS by GROUP Per 12;11 L 4 -ROOF t Trusses Ent de9 d by„-a ,.tr-�..,�- 2x3 1 bar P ply n .,1 No,)' I- 22t by Others Notdesigned by regue11 121 2x1. is-ply_ -ply tem--1'1114 Ne.2 2-2 111 2110 ae:bar o-ply hem--ed, 10.2 2-2E6 :d/'Walt Lumbar Stud k•n-Pi.r Stud 2::6 816.0 2OGGLSTED'111(120 118 by GROUP for :2111'111, 3-111,4;;N Mnf 21 Nat t ,s d by supine cped Joist Lumber-soft 3`k ,-1 No.2 let 1'!':.19 021 2x5 ill Lumber newly D.Eir-L Ne.2 idN 421 'tIN lumber n-ply D, it-i. No.2 2-2xi by Others Net designed by request Sy():.hers 2 Not designed by reg nxut 1121 2E12 Lumber n-ply ix.Hir•L No.2 2' 2,412 5.129x1,$.5 G).ul.am-Un$alen. Fest Species.241-V4 0$' 5.1251x111.5 200 Lt,el,xr-noft. 11,41..-1, No.2 4rt ") 2x1 '!.amber a-ply iHem-fir No.2 2- let 4,6 Lumber: Pest Hen-Yir 1,1.2 4x6 121 221 Lumbar h-ply Nus-Fir No.2 -2116 101 2x4 Lxe,lnxr n-ply Hem-Fir No.22 - ';:4 Typ Nall Lumber Siad ties.-Pix 2nd 1116.0 SUGGESTED 3E1^,.11199 by GROUP for LEJi9, 2 - SLOW Mut n. Txxx ..:,.x.....� » Net dei byr 7 str.� 16x1 1st < Not dexigned by request Deck t Lumber-snit U.£it-L No.2 211E pi11,0 4x10 Lumber-soft D,E')r-L Ed,2 4,111 123 2x5 .,umbar 11-ply 0,Pir..L 104.2 2..2x2 .4.125x9 1118.1.,,,Unhalan. West Spades 244-14 DY 2.125E9 2x0 bomber-safe 1.F.I..r-1 No.2 4,9 Sy Others Not d signad by request Dy:lines 2 Not ries skied by request cc, 2E10 .IncA,r h-ply 11,Eir-L No.2 1-2x10 5,125X12 f4 hi nlnn...Uab,,i t, Wast Species 24£.:.124 Uy' 5.175x12 Hy°there'1 Not designed by,egoest .7,1274x.14 LSA. 1,51, 2..9E 1100FD 3.5x1.4 its 2xO Lumber n-ply Nem,-Fix he,L 2 "tot 4x4 Lumber i¢:x): Se 3_ Eo.2 411E en Lumber Post Amx-k'ir No,2 4x0 12) 2,6 Lumber n-ply Nex--ye, No.2 =-71s66 let Timber-soft iirn-,-t'ir No.2 Oil 121 2.x4 L=umber n-ply Aum-k'.ir. No.2 2-2x4 ux„nd1 'rutaxex-x,111 0.112 --L _e t 6110 )21 2x4 niubex n-ply Hem—Sin No.2 r_.224 'P Wall nmber itud f Stud 0 . 616.1 SUGGESTED S£OTOnN4 by GR01111 fan 1.10421, 1- SIOUX d..�, eel Sec geed by_elg eut Aug q _a a_=em CRITICAL;llllePne and DES1441 ORIDER/A Group rMemberr Analyetimiliasign Values Mai.xdin ....:Min ant a. Not desieen by inti2u,2 . .+.,..,:a.......x Oell'Tr765 beading 0.41 Sloped Joist j:_, Needing 0,10 ileo.2st4 unknown Unknow„ x.09 447.0 bbl bending 0,60 12) 2:,4 (li 435 Cunning 0.42 12, 2,0 b2 Eending 0.111 3.125x9 43 Bending 0.06 bee b27 Pending 0.22 11y Ott:x.ts Sy Others Not dsin d by x'e4rt292 Ey Othn.tx 2 By Others Not designed by request '2) 2,12 h5 Bending 121 2°10 :,2 near 0.70 .125112 III, :Iy_0g endla9 0.76 3y Ot: nex; 3 by 0tl;ers Not designed by Inuen 5.125E10.5 hi Deflect/5n 8.51 4X6 420 Sending 0.00 ' 3.125114 LS1. 414 bending 0.22 ;21 21x6 11.2 ,,.sal 0,91 4x4 .95 Axial 1,26 31i5 Axial. 1,211 (31 746 1129 kraal 0.75 U6 1121 Axial 0,70 121 2x4. 039 Axial Skin 2 112 ,axial 0.06 II) 2,4 1132 Axial 0,29 Typ Wall se14 Anal U.4b Pod ...ad net.,Anioned by regont DESIGN 01.E .q sa,wra ,:..w,.,,,s �n ams zw.cem 1111-aa .x:�»x..a•. 1111.rousse=_ 1 P verify tint the default denecrion limitszare appropriate ..,,...,<na.,. r your application. 2. DESIGN GhOUP OCCURS ON,'.UTl1'Lpl:y LP:VtiS: nu lower level rerun le considered tne 4'.n''.design )appear, in F-Pa Maturiala last. 1POUF l 111 rxk11, t loud gin d 93 ra' . Add..n ty run l o byy I 1 'ra_a;;n.scn 4 5E-21NG: ine demignet sm respensible t ru „ q that adequate hearing is provided, .. 5, 161L$11.Died- actual btexdth r. :sena/depth. 6. a:n Seine shall le laterally ly se/Tottede/Totted according to the p 1111._ . en NOS 1 3.3,4.7. lumber bending -ti3 null be laterally a . t 'according, _ the isl>z .i.ass of ADS Cie.,. 4.4.1. N 11)1.1,1-UP SEA102, it is aznimin 14 -,,,:.ply 4, 4,englaoontrunes inner (that in, no but_1oinse e pre .- - ked together securely at interval, net exceeding 4 lateen the depth and that each ply.13 equal1y,tep-leaded, Winn } arc n 1', e ined, special f nta,,in9 derails ex E: .d.� 9. Net-BEAMS iSt::,r' el Composite Lumber): ::a..her1 SC.. belemition -s lox 6''14 xa y Ver 4imat menu,. 'alta _,a ,,nt your lac 1't_,n .YlYvie_, 1 i'I T 1'l. 140iniled Ist bOite,i hUil,Up ,,.0:0,MS5 :1 i1 1,11-1.111. to the k s._onr, be N50 Elauce 15,2, .._WoodWorks__ ® Sizer SOFTWARE FOR WOOD DESIGN Unit A-Front Load WoodWorks®Sizer 7.1 Dec.15,2090 11:08:38 Concept Mode: Beam View Floor 2: 8 ' b31 b36 t3 J b38 F. b1 r b2' b10 '� b33 r, i J rw f b32 , b115 imam s. re; Q. 3 _. :,2 €. .._b4 214 ,,, b37 b f,: b8 C r ,"= £ Eµ���1)017 rat 31 r CfiX -31 D' '1rf C' �E„=. t, F 171r r F EF iFE l'fz 11,57 G' A- 6 z2 10 12`14 £, 8')E,22 4�, C .r0 3O ... . '30 3 -;3'42 44 48' 8 50 52 w)4 58 58 .,C1 2a' 4 ;6Y: F?'Y 72 74 :1,1` ;1-.245307`00lp A,4,1f1. €011sti2`22,2=222222<:E.s.,...0..8,f3.8.32.`4'4:4 e-,','Ir'",., .k 2_g..73,..f52000r05 -� - .r,,, _ _ Erfi3 ill ti'3.F�;£e 6F.'�,- �tri J^�f,t r,> Ef FtkoNi loPisN) BIZ WoodWorks®Sizer SOFTWARE FOR WOOD DESIGN Unit A-Front Load WoodWorks®Sizer 7.1 Dec.15,2010 11:08:40 Concept Mode: Column View Floor 2 : 8 ' c58 cfM c14 ,,. (� ... w } d 0 c89 c2 c70 c71 c91 t: ,o6 * 1 az. F it-Q:f e c90 c89 z' ' °1c82 c25 c12 I c28 -,-1, c81 c2 £2 rZi r, / c3 , 4c78 c77 � � If g c31t c75 • ii-079 ^' ` 7 c30 4 c32 1 [ c55 #alc50"'.,,... ..u..--£ , ',.. U 2 , c 1, . ?d fit r.. Z ). C.. ,_ 12 '' KIT Cob .. r. _WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A-Rear Load WoodWorks®Sizer 7.1 Dec.15,2010 11:08:51 Concept Mode: Beam View Floor 2: 8 ' b31 b38 a ____.4 b34 > 3 ii �£-b e. ,,`I 0 is QYx 3 k b10 !4-€, g, b33 .):.,,,f3. E1 b!2" J C7 111 ,' 4'Tit b1S)15 €‘ u�� .f 3 p =�_t "., ..... da-Y) Y ,la 41 „b4 f t€ ._a" P 1 1. 11 02 '2 `aa _83C`_< 5'3 ?5' G' t 4' a ..,'',r,' 1 585 0'1'2.3:4'5'67'8T51(1 1A:1,1!:t .£, 2c2 2<2'2,2'20<2 212.!36-3:3:3,21-3(3":3314,t„' :44040:40'545 5 8 5'5:h€6 5 t V. Prie_. uDct CRL1 WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A-Rear Load WoodWorks®Sizer 7.1 Dec.15,2010 11:08:53 Concept Mode: Column View Floor 2: 8 ' 079 c80: c82 c81 c3 t c4 .4a ' C89 g..: t C90 s Ic91 c25 012 c26 i �� gx. >. ,... i c72 c92 c2 CI if c73 i5 i 0 ea f c78 � YE 3 , c77 i cat c78 c71 C30 c32 C55 g c58 t,,,1 F..",B.B •(- .g. „rtc ,C - ce. , , ,Ats; :. .3 , . .is <_... i ... '" E, ` 14` .,2'3 22 1. 2.,,1 4 "634(1 3.$ ' s":"4 ,w ,.'(34,g/i.'",„ D ,r , ?' , <'i. :E 1 120 .,...,.,r_2.2122, ....., ,.7 .,<.a..,...-x";:4,1'4,..,.1,,..,...,�:W,.v ,., ,..,€., „r„s.:.. ,._., o ,...:20 7of: Ac I 1 WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A-Front Load WoodWorks®Sizer 7.1 Dec.15,2010 11:02:02 Concept Mode: Beam View Floor 3: 17 ' -..,..,;.. kE, o IS 0, i '...'v... li b35 b6 -'0 •,„' WA=7,0,.........rtu=0„, 61.1%a1 1>....'0. ,..., b7 0/-0 O ,:l ,- b40 ., 1▪0-0 ...1 i ; b9 f...., L▪5 b /0 b4.1r4= 4,„ .:.:................... . .,.,..,..,-t., ..0..i-Q ..j 0. b21 , r ....b20 g tng bilb17 1 :„: u.0 .), 1 b34 Jul 1 4.1 '''' " '' 8 - !,'":2-.) 4 .•.',, 5.-4 4 44 ..-; D 4 B B CCCC C CO CE;;CC CC C C CC C C CC CCICC CB BC L.0 EU 7:41)--0, );'EgLA'D 0 Pt;/501;)D D ET EE:.E EE',DEE EEEE E.tri:F:METEZ 02' -,1' C 8° It'':214"'',5310'20'22:24'20'20'30'32'34'30'30340'42'44'45'48. 52"''',,40 50 53:E.0.)'62'04;66' 0:70:72'74 igi 11,11'''.1,t'..'r.2.(i-2A'z.:2 222'2 203 0:),:3,3E30031304I4 A A.:4,4A/,44 e5 5;',','-, M,,';',,..F.,50.CC.f,,6.,::,-,,,,'6`,...)3-7,7f7 et(4) WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A-Front Load Wood torks(s)Sizer 7>1 Dec.15,2010 11:02:04 Concept Mode: Column View Floor : 1"7 " i si ,n c G16g C1? t ! 3. ,. c18 c$II '9'c87 t c86 c39 c24 c23 a$5' s1a*Vt $g c60 t"� 1 4 c3 . F ��}'y • g3 "m.—s,L 'ii4i-�0c756520 c c6c7k •c; >: r>. ..t ., .f 2 U 1 A WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A-Front Load WoodWorks®Sizer 7.1 Dec.15,2010 11:02:17 Concept Mode: Beam View Roof: 25 ' 41e 6 4n t, b23 b24 ' .,0 b 3 ' 56 ') 0.0 t -•,, , ed 41 6 4 S- 1 Li 0 0' . 4-rts 6 b39 b25 P 4 1. 4, ,-) t ,t . j ) ' 0 b27 b28 i --t, Le g # b "b , --. 0 12 '4'16 -8'20 22 "..4'26 78.3.i 32'34'V'38'40°4744 41-3 48 50..,2 ',4 5V 58'60 62'64 0(1(li /0 '2741-03' 3123 45 378 8 U1 1,` 1,12(1 1 12L'22 222f2 2 1 f21.3-3 3 .-1.z.,'.€ 31334t4 4.4,1,4'44 4,4,5=F,5.5,6.5'96 5 5'(--,=-5b,8'14,-Af->6r/17 7,7 7,7 7 77 5 C#115 I WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A-Front Load WoodWorks®Sizer 7.1 Dec.15,2010 11:02:19 Concept Mode: Column View Roof: 25' c42 c43 c44 c45 F rj £} 11 U c83 •c84 { C47 c517,50 c2 c53 2 4 PY` 1r 2 ,4 1( i3'2z 2224'2;X 28 7,,C'32 34'",;6'38'40'4,7 4446'4,2 5. 52 ',4 , 132 14 s s 5678' 1a1 t -. :. 1?t� 22.2'2,22e2, sis 121.:44'4W4'4,2(4 5 !2C15(5 i :,.4.6(:4$E:w;Ft,i.41 7%7'717(77 C COMPANY PROJECT I I i WoodWorks' 1 1 ..t/114/4crt#,722?.)('h 71I sow June 24,2010 12.42 b1 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,pat,or pit) 1.thad "Type (' ' ,-124t or, 3(;c7nttede Location r t.t1 linitis 1 w61 Dead partial 00 91j.2 61:3.2 2.*.e:3 -1.(30 Pl f 4461 Show Pnrtial ii' 156.0 8914,0 2.50 3.00 plf 3 0a61, Dead Point 622 e."r'=) lbs 4, 61. phew Point 11.92: F.50 3is 5 228 t4's4. `e.11. 3#C9I.. 47..7 plf• 6T;213 tine Fult LIDL 360.11 pi 7_j 33 Lead Foll 0I2(, 1.211.2 plf 9 113 Live _ Full 11D6 1,0.0 plf MAXIMUM RE yn. it � r � 's � Sr 1 I 0 31 ©. Dead 397 1061. Live '395 191, Total 1:1.69 2975 t1,a n t i.n8: Load Comb : 42 03 €. r{Itis 0.63_ 1.03 Lumber n-ply, D.Fir-L, No.2,2x10",2-Plys Self-weight of 6.59 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NOS 2005: Cr/F.8'619s Etits3 sis 'tilt.?? Ctais£e}n Value itrs41,,y815/005109 Bending t») ,',k, 331 Flo' . 113€1.. ft6/Eb" ', 0.25 Live: Detl'n 2,00 ‹L/953 0.1' . f190 ().04 .Tho effect of`ra;41 De61'0 0.01 „ s6/8VV 0,15 = L/280 n.0$point. 107<�s within a. clb,ytarEce e: c1t the su)S(Jcsr f_ has been included <$:. 175,.. NDS 3.8.3.1 ADDITIONAL DATA: f:=S4',1'0i81r. 1^(e'; CT.! CM f' C6 {,Y CFC CZ C`.. Ci Cn ILC4 3'v' 1611 ).15 1.00 1.00 - .. 1,00 1..00 1.00 ,3 F •• 900 1.15 1.00 .1.00 1.000 1.100 7.00 :.Cil) 1,.00(1 1.43:3 - :3 Fret 62:5 - 1.00 1,00 - - _ - 1.00 1.00 - .. 1.6 million 1.00 1.00 -- -- - -. 1,00 1.60 - 3 Fmin• 0.b8 million 1.00 1.00 - 1.0£1 2.()11 3 5heaa LC 43 ., D..7516.11), '.r 2676, b ctiasltj:.. _. 12:37 this Der,din1,.1 .: iCI' ., p».tS16. '. Ill =� 1178 les-ft Deflection: •¢�.( 03 - 11t,750.r8) Fl. 2`,4e0ti lb-int/ply Total Deflection ,- 1. ,I.(Y,lr:<aci I.uzat1 Deflection) Live 1,,._5;7 0011,8110E. (p dead ,,.,Live sr snow sei nd 3.impact C 5-''-el:s e t io C16-enneentrated l 1i'*11 t.C•;l are listed in the i#1r.l3:siS ootpe 1 DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3.BUILT-UP BEAMS:it is assumed that each ply is a single continuous member(that is,no butt joints are present)fastened together securely at Intervals not exceeding 4 times the depth and that each ply is equally top-loaded.Where beams are side-loaded,special fastening details may be required. COMPANY PROJECT 1 WoodWorks® J Rte WAW KO WOOD 0E516N June 24,2010 12:43 b3 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location (ft] Units Start End Start End 1_j45 Dead Full SElL 17.0 plf 2 145 Live Ful..l. UDL 25.0 pE f MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) : i y 94 Dead 106 106 Live 112 112 Total 218 218 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min.bearing length for beams is 1/2"for exterior supports Glulam-Unbal.,West Species, 24F-V4 DF,3-118x9" Self-weight of 6,48 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 10 Fe' = 265 fv/Fv' = 0.04 Bending(+) fb = 140 b' 2400 ib/Fb' 0.06 Live Defl'n 0.01 <L/999 0.30 = 1/360 0.04 Total Defl'n 0.03 = <1./999 0.45 = L/240 0.06 ADDITIONAL DATA: FACTORS: F/E CD CM St CL CV Ctu Cr Cfrt Notes Cm LC# Fe' 265 1.00 1.00 1.00 - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1,.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - 1.00 - - E' 1.8 million 1.00 1.00 - 1.00 - 2 Emin' 0.85 million 1.00 1.00 - - 1,00 - 2 Shear : LC #2 = D+L, V = 218, V design == 182 lbs Bending(+) : LC #2 = DcL, M = 491 lbs-ft Deflection: LC #2 = D+L ET= 342e06 lb-in2 Total Deflection = 1.50(Deed Load Deflection) + Live Load Deflection. (D-dead 1 live S-=snow 'r7=wind 1 -impact C=construction Cld=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3, 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). COMPANY PROJECT 101.111 WoodWorks® sOfTWAme fraR WOOD f){.DCN June 24,2010 12:40 b6 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) I 'se.: Type D�. ir3�,riC ��c: Magnitude h,,t31i-:r: `�t Units Szirt- Ehd Start: End 1.c44 Dead Is>.nt 444 2.00 lbn., 27c44 Snow Point. 54.7 00 lbe +44 Dead cti.zl 0D .i;e9 ' 389.2 0.00 2.(. pif 4Rw44 Snow- 0artiai. U6 431.2 431..2 0.00 2.0.0 pit.` tol�s ()ca( P�o)nt 444 5.00 .'I.t)S £i:„SS ow Point. 697 .GCI ire Sri '...,.w45 Dead PJrti_l UD 384.2 309.'2. h.(I(1 6,Df; Rif 8-w'lb Snow narii. UD x'31. 431,2 5.00 6.00 bit 5::j25 Dead :.all. UDI. '123.2 xz ;` 10 125 Live Full,Ctl.).1.: 37(;.0 L-' ?- MAXIMUM R CTIONS(lbs)and BARING.LENGTHS tint. .,,,,,, , _ „ , ,_ . ,, , , , , , .. _ . ,, ,, , . , , , . „. . . , _ „ „ , , , , , ,, , .. ., , . , . . „ ,_ ,.„ „, . . .„, C . Y - fi f /';c r a� . , . , , _ , „ , , , „,„ ,,, „ . ,„ ,, „,„ . , „ , „. ,, „„, . , .. „. , , , , , .„ . ., l', ,i Dead 14.1.. 13',49 Live 1803 :903 Tot,a1 3239 '119'1. Be arino, Toad Comb 43 I.enyt.h L•-t3 1..70 Lumber n-ply,D.Fir-L,No.2,2x12",2-Plys Self-weight of 8,02 plf included in loads; Lateral support top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: CritP n .a ..o„ An_�L,415 Value I'ra=. i:,n ',�.alt.�ar:3Ey;_ it E^,i;�;n Shear +v 97 Pv' _ _2U7. v/r�:,. 1.4"7 lsendi;;g(7) ?-0 80.5 L'0' ... 1035 ' /F'o' - ,`18 Live Derl'n 0..03 <L/9'99 0.2t) _. L/360 0.14 Tota_ Defl'n 0.0. �:I,/49`:1 0.30 - L/:x40 ,.20 ADDITIONAL DATA: FACTORS: F/E CO CP`: CL Cr C!u Cr C'ft. Cn LCl1 Fv' 180 1.13 1.00 1.00 - - - 1.00 1.00 1.0C 3 Fb'4 900 1.15 _.GO 1.'' 1.000 1.O00 ..00 1.00 1.0; 1,0(1 _. 1 bY7,p' 525 - 1.00 1.00 - ^. .. 1. 1.0:.0 - Emil. 0.56 million 1.00 1.00 - 1.00 1..00 _ 3 Sbcar : LC fl3 - D+.75(1?8), V = 3234, V design - 2190 lbs Bending(*): LC tt3 r.75 iL S), V = 4247 lbs-ft. Deflection: LC #3 - D+.75(1:+'S) k;1.= :'90-1e05 -b-1n2/ply Tota' Defle :ion = ? s:tDe d Load Deflect:Ion) i ". c.. Lo,i. Deflection. {ti=c e_d L-i.ive show W wind I imp.tot C c.ns .t.nct i6n . ,d.eoncentratad) A11 LC'" are noted .n the mall...., output) Load comhinatio.nn: ICC-IOC DESIGN NOTES: 1,Please verify that the default deflection limits are appropriate for your application. 2,Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4 4,1. 3.BUILT-UP BEAMS:it is assumed that each ply is a single continuous member(that is,no butt joints are present)fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded.Where beams are side-loaded,special fastening details may be required, COMPANY PROJECT fit WoodWorks® SOFTWARE FOR WOOA DOICN June 24,2010 12:50 b8 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Loca.tion tfti Units Start End Start End 1...:: 14 Dead Full UDL. 111.1 plf 2 314 Lime Full MIL :350.0 plf MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) L 64 Dead 357 357 Live 1050 1050 Total 1407 1407 Bearing: Load Comb 112 #2 Length 0.75 0.75 Lumber n-ply,D.Fir-L, No.2,2x8",2-Plys Self-weight of 5.17 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: lbiterio. Analysis Value 7+.oign Value Analysis/Design Shear f'v - 77 Fe' - 100 fvf1'v' 0.43 Bending f+) tb - 963 En' 1080 thft''b' = 0.95 Live Detl'ri 0.177 = <L/999 0.20 - L/360 0.33 Total Octl'n 0.10 - L/712 0.10 L/240 0.34 ADDITIONAL DATA: FACTORS: FIE CD CM Ct 0L CF Cfu Cr Cftt Ci CO cit Fe' 180 1..00 1..00 1.00 - - 1.017 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 2 Fcp' 625 - 1.00 1 .00 - - - 1.09 1.00 - E' 1.6 million 1.00 1.00 - . - -- 1.00 1.00 - 2 Ervin' 0.58 million 1.00 1.00 -- - - 1.00 1.00 - 2 Shear : LC #2 -- .9+1., V = 1407, V design 1123 ns 3endtny(+): LC 02 - 0+L, M - 2/10 lbs-ft Deflection: 1,C 02 - D+L El= 76e00 lb-1n2/ply Total Deflection = 1.5.0(Dead Load Deflection) I Live Load Deflection. (D=de d L=live S.-snow W wind 1-=impact C=construction CLd-concentrated) (All Lc's are listed: in the Analysis output) Lod combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3.BUILT-UP BEAMS:it is assumed that each ply is a single continuous member(that is,no butt joints are present)fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded.Where beams are side-loaded,special fastening details may be required. a COMPANY PROJECT II III Sued 7 oodWorks s ' orrvemtr fon WOOD Datt.V.i June 24,2010 12:40 b9 Design Check Calculation Sheet Sizer 7,1 LOADS (lbs.Pst or plf) Type Distribution Magnitude Location [ft] Units Dfirt End Ittit End 1 150 Dead Partial. UP 113,7 113.7 0.00 1.50 plf Live Partial UD 350.0 350.0 0 1 1,50ill olt Dead Partial Ug 113,7 113.7 3.00 9.00 plf 4-114 Live Partial. UP 355.0 350.0 3.00 9.00 pa, Dead Partial UD 113,1 113.7 1.50 3.00 plf 6T]51 Live Partial UD 350,0 350.0 1.50 3.00 plf 7-124 Dead Partial UD 120.2 120.2 0.00 3.00 pit 8-124 Live Partial UP 370.0 :370.0 0.00 3.00 plO Dead Partial UD 120.2 120.2 3.00 9.00 pi1 725 f Live Partial UD 370.0 370.0 • 3.00 9.00 plf 11 ,26 Dead Partial SD 125,2 120.2 9.00 12.00 pit 127;.)26 Live Partial U0 370.0 370.0 9.00 12.00 plf 13 -552 Dead Partia1 UD 113.1 113.7 9.00 10.50 p,, 14 152 Live Partial SD 350,0 350.0 9.00 10.50 plf 10 j53 Seed Partial SD 113,7 113.7 10.50 12.00 plf 16'j53 live Partial. UD 300.0 350.0 10.50 12.00 pit MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) - - A 1W 121 Dead 1.470 .A88 Live 4320 4320 Total. 5798 Bearing: teed Comb #2 #2 Length 1-74 1.74 Glulam-Unbal.,West Species,24F-V4 DF,5-1/8x10-1/2" Self-weight of 12:39 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criter:iun Analysis Value Deoion Value Ahaiysi /Oesiqn Shear fv - 13R Ev' - 265 fv/TV' - 0,52 Bending 1+1 Pb - 2217 Ph' - 2450 f10./Fb' _ 0,92 Live Defl'n 0.36 - L/391 0.40 - 1/360 0.94 Total Deft'n 0.57 - L/202 0.61) 1/240 0,95 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV CPa Cr Cfrt Notes Co LC$ Fv` 265 1.00 1.00 1.00 1.00 1.00 1.00 E1*, 2400 1.00 1.00 1.03 2.000 1.000 1.00 1.no 1.00 1.00 Fop' 650 1.00 1-00 1,00 - 6' 1.8 million 1.00 1.00 a.00 - 2 Emin' 0.85 million 1,00 1_00 1,00 - 2 : LC 132 - 11+1, V 5199, V design = 1953 lbs Bendlag(1-); LC 112 U41, M 17395 lbs-ft Dofiectin.: LC 12 - 61" 890e06 11-1112 Total Deflection - 1.50(Dead Lpari Deflection) Live Load Defleotton. (5-dead I.-live 5-snow ki=wind 1-impact C-conntruction CLd-„Acentrated) LC' are listed in the Analyuls output) Lead cembineti.nns ICC-hit' DESIGN NOTES: 1:Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117 2001 and manufactured in accordance with ANSWAITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3,13, 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). if COMPANY PROJECT 414 0 ill WoodWorks SOMMatORM40,11000GN June 24,2010 12:43 b10 Design Check Calculation Sheet Sizer 7.1 LOADS I lbs,Psf,or Plf) Load Type D1str100tion Magnitude Location (t) Pat" Start End 5tart End term w39 lied Partial 1)5 811.0 311.0 0,00 4„:110 14(., 21)30 ldve Partial UD 660,0 500.0 0.00 4.50 Ne 3-c39 Dead Point 264 2.60 No 4 c39 Live Point 822 2.00 No 5-232 Dead Parttal U5 120.2 1110.2 2,01 0,50 No 5-y32 [dye Partial UD 370.0 370.0 0.00 0.50 No Dead Part1a1 UD 120.2 120.2 A-00 4.00 No 48311 Live Partial 1311 370.0 310.0 1.00 4.00 No 97834 5e),) Port1a1 UD 120.2 120,2 4.00 4,50 No lo 134 1leo Partial. UD 370.0 370.0 4.00 4.50 No 11'-'13.5 lead Partial UD 120,2 120.2 4.50 7,50 No 12-1135 Live Partial UD 370.0 310,0 4.50 7.50 No 1) 736 5ead Partial UD 113.7 113,8 4.50 16.50 No 14,j36 1142 Partial 01> 350.0 350,0 4.50 16.50 No 15437 Dead Partial UD 100,7 105,7 3.00 4.50 Na 15j37 Live Partial UD 310.0 310.0 3,00 4.52 Na 17 )47 Dead Partial UD 120.2 120..2 7.50 13.50 No 18ii17 Live Partial UD 370.0 .370.0 7.50 13.50 No 15-}411 Dead Partial UD 120.2 120,2 13.50 16.50 No 20-146 Live Partial 11D 370,0 370.0 13.50 16,50 No 21-.119 Dead Partial U0 120.2 120.2 0.50 1_00 Na 22 319 Live Partial UD 370.0 370,0 0.50 1.32 No 23-032 'lead Point 300 3.00 No 24-032 Live Point 922 3„00 9r, MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) K„:-::::„-:.::;.::. „.....„....„„.......%.....,.,--.- ..,•.„:',,'.'''',',',',7,,:.- ....,..,7,7,,,77,:,-;,..,.„-i,, ,,,z,..:,.........,,,..,:...;..,7.,;;„:„.,„.„,....,,,::.:-.,'. .:!!.!..!...„=,-.:::.:: . ,...... .-77---...'..::.....,!'.'.!.!',,,........-..... It.. A kr At.' le,61 Dead 452 4067 1.80 Live 1117 11291 3436 Uplift 1.2 11)1-01 1300 15355 4615 Bearing: Load 1)0,4,1 82 02 142 Length 0,50-', 4.24 1.21 CO 1.00 1,09 14101 bewitig Imigrn tts bosom is lir for exterior s4pperts. Glulam-Unbal.,West Species,24F-V4 DF,5-118x12" Self-weight of 14,16 plf included in loads; Lateral support:top=full.bottom=of supports; Analysis vs.Allowable Stress(psi)and Deflection(In)using NDS 20051 criterion Analysis Value Deoien Vaine Ana 1 YSi 5,II)eSiqri Shear to = .156 E'vt - 215 ' tv/Pv' - 0,50 Bending f il ft ' 1034 Fb' = 2400 Ab/Ft,' = 0,45 Bending I-1 fb .' 1395 Ft,' - 7,344 117/110' -- 0.36 Live DOS)'5 0,13 - <L/999 0.40 - 15/350 0,.7. Total Defl'a 0.19 ..: L/740 0.60 - 1/240 ADDITIONAL DATA: FACTORS: FiE CD CM Ct CL CV Cra Cr CArl Note,, Cr, 104 Fv' 265 1_00 1.00 1.00 - - - 1-00 1.00 1.00 2 110.-1 2400 1,00 1.00 1.00 3.000 1.000 1.00 1.00 1.01) 1,00 - ? 4(5'- 1650 1,00 4-00 1.00 0.997 1,000 1.00 1,00 1.00 1.00 - 7 Fop' 150 - /.00 1.00 . - - 1,00 - - F' 1.0 million 1-00 1.00 - - - 1.00 - - 2 Emin' 0.65 million 1.00 1.00 - - - - 1,00 - 2 Shear : LC 52 '' 0.1, V . 8357, V design - 6196 lbs Pe0d1.10111); LC 42 . Pit, M - 11006 lbs-ft Rending(-11 LC A2 - 51-L, M 6, 14310 lbs-ft 5uAlemtiou: LI 112 - 511 ED, 1324e06 1b-in2 Toni Deflection = 1.50(0ead Load Deflection) 1 Idve Load Deflection. U)-dead L-live 11=snow ?1-wind rimpact C'-construction CLd-concentratedi All LC's are listed in the Analysis output) Load combinations, ICC-15C DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSWAITC A190 1-1992 3 Grades with equal bending capacity in the top and bottom edges of the beam cross-section are recommended for continuous beams 4 GLULAM:bad=actual breadth x actual depth 5 Glulam Beams shall be laterally supported according to the provisions of MS Clause 3 3.3, 6.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). .... \ i , - COMPANY PROJECT i I Woodworks® SOrtIVANE FOR 11000 Dt5r;', June 24,2010 12:44 b13 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Lead Ea Distributiov, Mala.tt Location 111_, ISM `j rnr, Start ..n1 1 `nr.5 ':eai4 Fart :1 03 519.0 519.0 '.00 3,00 plf 2-s.58 -::rxP.artia1 U0 505.0 ..,.!:i.0 0.00 3,00 p11 3-c40 4.....( la ::is Po.-i.r;t. rife r.) I'• .. , ' 1' .,' Porta ; , / �.. 513 5.00 .cis 6� .87 ;rssw De.i.r,. 778 D:=a. P.:,int 573 3.00 1 i' cc8 15;" w Point. 942 ,00 .bs. �...vi I}r_ 1 r .al 013 593.7 593 ..,.0(. 3.00 p11 10 w.6 ;;r•'.w t 'rf ial Ul.) 73n.0 735.0 5.00 3.00 01.1' 11 ,'? li0a0 Pax .a1. 00 100.7 100.7 6.50 8.00 =1f 12-i37 '.Live 1 irt.iu'. UD 310.0 310.0 6.50 8.00 plf 13- 38 Li.vu Parli,: 170 51.2 91.2 3.50 6.50 plf 14:;3.1 ' Partial 11D 250.0 250.0 3.58 6.50 elf 1.: :.?(a<;f Partial.1. UD '1..2.7 22.7 0.00 10{'i39 1.: ve Partial 00 70.0 70.0 (}.00 3.50 plf' 17 5'. Pa +3 Pum:: 12.E 0 1t:s 18:b10 1< Po.n: 3893.511 lbs "-b3 Dead u:rit Pan 6.50 k;e; 2(,_k 36 Live Point nt: 663 r,.;€i 1.:k,F: MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) ,, J. *.:.,. ,. �; � ` -.44.:- `tom-• ' , ., ; R _ sK 4 ., - -: .,ate-s'•«e..�' ,R:_w -,_. ` yWC y A i 0' 13f Dead 2r...81 :1 v'f.' 2'6993033 1,...j.,..1 _:261 fit 3 , Bear:Lag: t3::2 "0ad Co^rb ##3 #3 LSL, 1.55E,2325Fb,3-112x14" Self-weight of 15.31 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005 . Cr I,.,,,:r i on AnalysisVolt..., . Den.itr,....... Value :.•n $,: ,.f > .10rn...._. .... .a.,- ft., °°- 157 v' ail t = 0.44 3cn ting!+} lb - 1295 15' 2674 fblcb' - 0.48 Live .,11'n 0.00 :L/999 0.2'7 (. 3f:0 ,7q 't':xf l 'n ( ,1 - '/.,/'( 0.40 1./240 0.35 ADDITIONAL DATA: FACTORS: F!E CD CM s CL` CL ,.. :'fu Cr Ccrt C1 en 1.:('?! Fv' 310 1.15 1.00 -- - _, 7.00 - 1.00 F5'+ 23:15 1.1.5 _. 1.00 :1.000 1.00 1.1)0 1.00 - 3 Fop' 800 - _ 1.00 - - - - 1.00 .. ,. _ E' 1..5 million •- 1.00 _ ' _ ,.00 _ - 3 Fnu.n' 0.30 mil 1 i.on __u_ 1.1'tJ - - _ ,. ,.03 .... - 3 S5i,..., IC #i.+ _ + 3, J : 6822, ue.v;0-: 5i.!, lar:. T riling€1-i: Le #i.f - 01-.15(1,1S), 1' 1,.140 Y : ctl ton ft? _ i< i,+4. F:1= 1241,808 15, a k-tip d i' i ro, „-wrind.1 1 .i1::.x.:: "o,.', ru.5t ion Cid-.:,x .c1.. ,_.tted; 11 LC'" aro -r stnti tr. iat(. Ana ysi,1 cntt.put; ,a.3ri •.,..,,,13a`;;.i..,..,,, 1:"C E3C DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application, 2,SCL-BEAMS(Structural Composite Lumber):the attached SCL selection is for preliminary design only.For final member design contact your local SCL manufacturer. 3.Size factors vary from one manufacturer to another for SCL materials.They can he changed in the database editor, ' l t COMPANY PROJECT i 1 WoodWorks® SO?TYQRF f)R 5V0,1t>211W W June 24,2010 12:43 b14 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) : Loans Type Distribution 53' i,_._t.0e Location ;;':l Unita „tart End Start: End I w33 Dsad Partial 1J(1 317.7 317.7 9.00 12.00 p1= w33 Live Partial Ul. 350.0 350.0 9.00 12.4.30 p1. i 3...r.1.9 [lead Point: 357 9.00 it.5 4'..c.`" Live 1'''nt .1650 9.00 1'' 5 s20 Dead l'nl.nt 357 .00 1o:: 6.._c2ii Live Point 1050 3.00 ibs 7��es3d Dead Part.i.al. 1.10 317,7 317.7 0.00 3.00 si' 8-w34 Live Partial UD 350.0 :'50.0 0.00 3.00 plf 9.-c:64 Dead Point 165 10.50 1.0s 10 c64 Snow Point 225 10.50 13 1.'.,013, Dead Point 165 150 lbs 12-..c65 Snow Point 225 ':..50 lbs 13... 36 Dead Full. LDL 113.7 Of 14 36 Live Full 51.11, 350.0 p1.f 1.5-143 Dead Partial ";G 17.0 17.0 0.00 0.50 plf 16- 43 Idve Part.i.d 117 25.0 25.0 0.00 0.50 plf '.1:--°4/ Dead F.';rt�.u1 3,) 17.13 27.0 0..`;ti .56 pit -8 . Live Partial. UD 25.0 5.0 0.50 1.50 pi' ;yam � Bead d P._ri::.a.i. 0D 17.0 17.0 1.50 10.50 plf 20,.:.,t'4.5 Live Partial 0D25.0 25.0 1.50 10.50 plf 2:1. ;16 ,'aad Partial. 11D 17.0 1.7.0 1.0.50 12.00 plf 7: 345. Live Partial a1 :1D 25...0 25.0 ..:10.50 12.00 plf MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) 74.7, 1,41",t55;,::::1,,,7,,,:,-7::,:4" ,--- -«.mow_.,,® ` . '` 4,440 -, ,CMN'..` ,0. '" 7 -.a '� "• -., _. .r«`'^ ,. 4 . :`.�,� ..�.._�'" A 1 0' 121 Dead 2351 i. Live 4351, 4350 Total 670.1. 6701 Load Comb ill #2, Length 2,39 2.39. LSL, 1.55E,2325Fb,3-112x14" Self-weight of 15,31 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005s Criterion Analysis 'alue Design Value T.nal is/D r-,^ Shear Ci - 1123 Fv - :?1: tv/_•' 0.52 Bending(*) f b - . 769 Eo' .. 2325 tbft 1' = 6.76 Live D. tl'n 0.25 - 1/573 0.40 = L/360 0.6:3 'Forel Detfi'r1 0.33 1/333 a 0.50 3/240 0.72 ADDITIONAL DATA: FACTORS. FIE . , CM Ct CL SIV Cf:_ Cr Cfrt CI Cu 1.C4 Fv' 31.0 1,00 _. 1.00 - -- - 1.00 -- 1.00 2 3•b'+ 2325 1.00 1.00 1.000 1.00 - 1.00 1.00 - -. 2 Fop' 810 -- - 1.00 - - - -- 1.00 - ._ .. 1.5 million 1.00 -- -. 1.00 _. .. Emis' 0.80 million - 1.00 - - - :1.00 - 2 Shear . LC 42 = 0+5, V = 6701, V design -- 5314 1bn fieE:ldi.ng i,'-3: 1,C 42 -- 5+1.:, 53 -- 16851 lbs-ft Deflection: LC 42 -. D+I, El" 1.211--06 lb-inl 1,50(llead ) ixetiec- Load D _:on. Dotal r .r,e,c[r.,: �- ._:.E'i} _, i =..:,ad 5=live S=bnew ;1=wind 1-Impact .--constr u..:.i.," Cerc e:ra:ed.l (Ail i; listed in the Analysisoutput_' Load :o. bi oa'tAons: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.SCL-BEAMS(Structural Composite Lumber):the attached SCL selection is for preliminary design only.For final member design contact your local SCL manufacturer. 3.Size factors vary from one manufacturer to another for SCL materials.They can be changed in the database editor. ti1i"- COMPANY PROJECT r i Woodworks® SteeWM(FOR WOOL O SIGN June 24,2010 12:41 b20 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or pif) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1._730 Dead Full UDL 21.,7 plf 2 j30 Live Full UDI, 60,0 plf MAXIMUM REleTtt'lNS tthci anti RFARINC: I FMC(THR tint• s a Dead 46 E 46 Live 105 105 Total 151 151 Bearing, Load Comb 42 #2 Length 0.50* 0.50* *Min.bearing length for beams is 1/2"for exterior supports Lumber-soft,D.Fir-L,No.2,4x6" Self-weight of 4.57 pif included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design_ Shear Ey -= 9 Fv' - 180 fv/Fv' 0.05 Bending(+) !:b = 90 Fb' 1170 fb/Fb' = 0.08 Live Def:l.'n 0.00 = <L/999 0.12 = L/360 0.02 Total. Defl'n 0.00 - <L/999 0.18 = L/240 0.02 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci. Cn LC# Fv' 180 1.00 1.00 1.00 - -- 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1,00 1.000 1.300 1.00 1.00 1.00 1.00 -- 2 Fcp' 625 - 1.00 1.00 - - - 1.00 1.00 - - E' 1 .6 million 1.00 1,00 - - -- 1.00 1.00 - 2 Emin' 0.00 million 1.00 1.00 - - - 1,00 1.00 - 2 Shear : LC #2 DrL, V . 151, V design = 111 lbs Bending(+) : LC #2 = fi+i.., M = 132 .lbs-ft Deflection: LC #2 tl+L E1 78e06 l.b-in2 Total Deflection = l.SO(Dead Load Deflection) + Live Load Deflection. (D}=--dead L-live S-snow W=wind I=impact C=construction CLd-concentrated) (A'll. LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. COMPANY PROJECT WoodWo rks® Y'1 t W4�Fr7d:1R�1'L>(xt5 f)y'M1Y vi' June 24,2010 12:50 b30 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psi,or plf) .Load Tye Distribution Magnitude Location (ft) Units Start End Start End 1_141. Dead Partial U43 68.0 611.0 2.00 4.00 p1f 2_j41 Live Partial U0 100.0 100.0 2.00 14.00 plf 3_342 Dead Partial 01' 77.2 72.2 0.00 2.00 ,:l i 142 live Partial UD 106.2 1066.2 0.00 2.00 o1 f MAXIMUMR , s . 1 k I ; xB • 10, Dead 154 100< Live 209 203 Total 364 353 Bearing: Lcs'd Comb #2 #2 Length 0.50 0.50' *Min.bearing'length for beams is 1/2"for exterior supports Lumber-soft,D.Fir--L, No.2,4x8" Self-weight of 6.03 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis s Value Design Valu Ana.iys:s/Drs€qit Shear fv 15 Fv' 180 Iv/Fv' _ 0.08 Dendingb fb 140 Fe' = 1170 fb/Pn' -- 0.12 Live Det1'n 0.00 = <L/999 0.13 - L/360 0.03 Total Csefl'a 0.01 : x:1./999 0.20 L/240 0.04 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cu L{.# Fv' 180 1.00 1.00 1.00 - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.011 1.00 1.00 - 2 Fcp' 625 - 1.00 1.030 - 1.00 1.00 E' 1.6 m111ion. 1.00 1..10 - - - - 1.00 1.00 2 Rain' 0.58 million 1.00 1.00 - -- - 1..00 1.00 - 2 Shear : LC 02 D+L, V -° :64, V design - 253 ,10'. 'ending(+) LC #2 = D 1., M r 359 lbs-ft Deflection: LC #2 - C+L El 178e06 1b.-i;n2 "Total Deflection e 1.50(Dead Load Deflection) s Live Lead Deflection. (0edead 1r=live S=snow 4%-wind T':Fimpart Ceovnutructivn CLL cancentrated) (A11 I.0*s are listed in the Analysis output_) Load combinations: TCC-IBC: DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1, ��`p" a COMPANY PROJECT WoodWorks® sOrrwARErnR WOOOCL 4GN Dec, 15.201011;03 b31 (cR.C114T WIND) Design Check Calculation Sheet Sizer 7.1 LOADS (lbs.psf,or plf) Load Type Distribution Magnitude 1.'Cation lft Unit Start End Start End 1µj65 Dead Partial 00 47.7 47.7 0.010 4.00 pit` 2_165 Live Partial UD 160.0 160.0 0.00 4.00 pif 3-j28 Dead tartial. u0 37,7 47.7 4.50 7.50 plf 4_)28 Live Partial UI' 160,0 160.0 4.50 7.50 p11 5_162 Dead Partial O0 47.7 47.7 7.501 10.00 pit 6_)62 Live Partial UD 160.0 160.0 7.50 10.00 pit 7__368 Dead Partial UD 47.7 47.7 4.00 4.50 pit 8 j66 Live Partial UD 160.0 160.0 4.00 4.50 pit MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in): b.�b:' , 5- r - � }10 1 Dead 277 277 Live 800 800 Total 1077 1077° Bearing: Load Cued, 42 #2 Length 0.50* , 17.50* "Min bearing length for beams is 1/2"for exterior supports Lumber-soft, D.Fir-L, No.2,4x10" Self-weight of 7.69 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection (in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear tv - 12 Fv, ' 180 to/k'v' ,: 0,23 1€eltdir19(+) fb = 647 Eb' _ 1080 fb/ 'la' = 0.60 Live Dett'n 0.10 w <L/999 0.33 - 4/360 00.29 Total. De 1'n 0.15 L/810 0.50 L/240 0.30 ADDITIONAL DATA: FACTORS: 1/I Cl' CM Ct t:L. Cl'' CSu Cr efr''- Ci en LCi1 Iv' 180 1.00 1.00 1,44 - - 1.00 1.00 1.00 2 Ft.+ 900 1.01' 1.04 1.00 1,000 1,21)0 1.00 1.011 1.00 1.00 Fop' 625 - 1.00 1.00 1.00 1.00 _ _ F' 1.6 million 1,00 1.04 - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - 1.00 1.40 - 2 Shear : LC 42 = 14 , V - 1077, v design 911 .lbs €3encting{+}: 1,C 4? Uat,, M 2693 lbs-ft: Deflection: LC ,02 - D+L 11. 369e06 lb-in2 Total Deflection = 1.50(Dead "Load Det;l.eetiun) t- Live toad Deflection. IG-dead L=1:i,ve ,:::snow W-wind T-impact C:c4:'axst-ruc:tion t_,.c3_ncnc1':rI.' ec44 (711 L 's are listed in the Analysis output) toad combinations: ICC-Inc DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 619. \ COMPANY PROJECT 44 el WoodWorks® SOFTWARE FON WOOD DESIGN June 24,2010 12:42 b31 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) ILoad Type Distribution Magnitude Location [ft] Units Start End Start End 1,_.j65 Dead Partial UD 47.7 47.7 0.00 4.00 p11 2_j65 Live Partial UD 160.0 160.0 0.00 4.00 plf 3_j28 Dead Partial UD 47.7 47.7 4.50 7.50 plf 4_j28 Live Partial UD 160.0 160.0 4.50 7.50 plf I 5j62 Dead Partial. U1) 47.7 47.7 7.50 11.00 pif 6_j62 Live Partial UD 160.0 160.0 7.50 11.00 plf 7j63 Dead Partial UD 47.7 47.7 11.00 17.00 plf 8_j63 Live Partial UD 160.0 160.0 11.00 17.00 plf 9_j64 Dead Partial UD 47.7 47.7 17.00 20.00 plf 10j64 Live Partial UD 160.0 160.0 17.00 20.00 plf 11_j66 Dead Partial UD 47.7 47.7 4.00 4.50 plf 12 j66 jLive Partial UD 160.0 160.0 4.00 4.50 plf MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) : (fir 201 • Dead 61.9 ,_ 61.9 Live 1600 1600 '' Total 2219 2219 Bearing: Load Comb 42 #2 Length 0.67_ 0.67 Glulam-Unbal.,West Species,24F-V4 DF,5-1/8x12" Self-weight of 14.16 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 49 Fv' = 265 fir/Fv' = 0.16 (lending(+) fb - 1082 Fb' = 2400 fb/Fb' = 0.45 Live Def'l'n 0.43 = L/553 0.67 = L/360 0.65 Total Defl'n 0.69 = L/350 1.00 = L/240 0.69 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1..00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1,00 - - 1.00 - - 5' 1.8 million 1.00 .1.00 - - .- 1.00 - 2 Frain' 0.85 million 1.00 1.00 - - -- - 1.00 - 2 Shear : LC #2 = D+L, V 2.21.9, V design = 1997 lbs Bending(+): LC #2 - D+L, M = 1.1095 lbs-ft. Deflection: LC #2 D+L EI- 1328e06 lb-.i.n2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D-dead L=live S=snow W=wind I=impact C-construction CLd=concentrated) (All LC's are listedin the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). COMPANY PROJECT i Woo d Wo r ks® JTie 24.20.312 b34 sofrwAer foa woos DESIGN w Design Check Calculation Sheet Saw?.t LOADS is,.P.1.oPI,l.' 22 9E, 3'z 9, 3 YS' , 4•': t„ SL 49, B: MAXIMUM REACTIONS(lba)and BEARING LENGTHS fin) L ' ---'' - Glulam-Bal.,West Species,24F-V8 OF,5.118x22-112" sat-.s 01 a 35.55 Of Ind,aea in baits; Lain.P10,1111..bath..al,q a.. Analysis vs.Allowable Stress(psi)and Deflection(in)ai, w5 o.9: ADDITIONAL DATA: r-,,,,,,, rs e,., DESIGN NOTES: 1 FN.sa«:ey...ttla498.42.foOolN$>v<xc,Pout ii'.it'.a<ykrex:n 2 f.i an 4...A,vats ore Pg ma!e'Ja-M ornwo:-OTC 1)7 2,191 and manteactuwi In,cit.trite wpb ANS um-C AlW1.1510 3 GLUM:CW ncha;k9:R.w11,x mhrd d4Bpb 4 CU4an'R§ra:OM ka N'R.,ly p.9f(+p1M AKmlK N'Je 4:,y-axg y[NGS Ckwse 99 3 S C114AWM/le^0'aranRd it s nswee.F1awaenj-r.einr,h1. COMPANY PROJECT ea Wo-odWorks® .111YAR!WN tWOOP la£'SIGN June 24,2010 12:43 b35 Design Check Calculation Sheet Sizer 71 LOADS (lbs,psf,or pif) : Load Type isaiatributlon Magnitude 1 Locatirae, tftl Unita Si-d;=_ End Start End • 1 j21 dead Partial 00 150.2 120.3 0.50 1.x;0- telt 2 I21 t.i •e Par tjai Uri 3''...i 310.0 0.50 1.3'3 pit' 11 ,jia9 litaIxi i*darlie1 110 120.2 120." 0.00 0..s0 l,lf 4_)511 Live Partial 0.0 370,0 370.0 0.00 0.`.z0 tall 5,,,,j60 lie., Pe-:al US 120.2 120.2 1.50 3.00 pl f 6 i60 Live 1',artlal. UD 370.0 370.03 1,50 3.00 pl£ MAXIMUM R - -, _ - m, W � K y 1p 9 31 %ltve 5.51.1 55.5 Total 743 743 Load Comb 42 42 LerXetb 0,50" f).50' Min bearing length for beams is 112"for exterior supports Lumber n-ply,D.Fir-L,No.2,2x8",2-Plys Self-weight of 5.17 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005 z Criterion Analysis Value Design fraise Analysis/resign Shedx f.v 31_ 0J'' „ 1.:80 fv/Ft,' 0,,7 '1 Bending(i 1 t 254 lib* - ,at3p ''/1'11' R. 0,24 Live f'Pfi'n 0.00 - <1.,'999 0.10 - 1,/360'''i�! :i.04 Total Defl'n S. -i <1r1990 0.15 1✓/Z40 0.04+ ADDITIONAL DATA: FACTORS: FiS CM t;l, C1, C1, CF Ct a Cr CF rt CI Cn L€_4 Fv' 180 1.00 1.00 1.00 - - .. 1.10 1.00 1.00 2 tr,.' 900 1,170 1.00 1.00 '1.000 :.2rk7a 1.t)o ?.r#t. 1.ot 1.1}0 ,> PCp' 625 - 7..00 1.00 _ 1.00 1.00 - _ F" 1.5 million 1.00 1.00 _ m. 1.00 2.00 - Emie' 0.58 million 1.00 1.001 - - 1.00 1,010 - Shear : LC. 02 it l,.,, V . 743, v design __ 444 lbs end"xrirltr#t f.C: 07. nil., 11 ,i 557 .lbs-ft: Deflection: 7.4 47. :7,1, 13TH 'TI,€'''*. .ika-i'..'/ply Total Deflection - .8. .,)i.5.i Load Vellereionl r Live Load Ctctlec.?3irr. (0-dead t. live ,-snow b7=wi1. 1-impact C constructton , 1 cr,r,. sxtsaied) (All lac,',; are ttsteti in the Analyst output) Load combinations: 1€1£:-1f7C DESIGN NOTES: 1,Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3.BUILT-UP BEAMS:it Is assumed that each ply is a single continuous member(that is,no butt Joints are present)fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded.Where beams are side-loaded,special fastening details may be required. COMPANY PROJECT WoodWorks® June 24,2010 12:51 c2 Design Check Calculation Sheet Sizer 7.1 LOADS l lbs,psf,or pif) Load Type Distribution Magnitude Location Ctt 1 Units Start End Start End l bl Dead Axial 1056 (Eccentricity == 0.00 in) 2 bl ltt.Live Axial 2153 (F.cc`ntri'i.ty - 0.00 in) MAXIMUM REACTIONS(lbs): 0' 8' Lumber n-ply, Hem-Fir,No.2,2x6",2-Plys Self-weight of 3.41 Of included in loads; Pinned base;Loadface=depth(d);Built-up fastener.nails;Ke x Lb:1.00 x 0.00=0.00[ft];Ke x Ld:1.00 x 8.00=8.00[ft]; Analysis vs.Allowable Stress(psi)and Deflection (in)using NDS 2005;; Criterion Anal.ysl s Value Desi rt Value Analysis/Design Axial to 136 Fc.' 900 fc/Fc' (L20 Axial Bearing fc = 196 Fc* - 1644 fc/ 'r..*' 0.12 ADDITIONAL DATA: FACTORS: F/F~ CDD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# FC' 1300 1.25 LOU 1.00 0.'% 1.100 - 1.00 1.00 2 Pc* 1307 1.1.5 1.011 1.00 - 2.100 - 1.00 1.00 2 Axial. : LC 02 - D+Lx P = 37.36 lbs Kt - 1.00 (1 deed L.li.'e S COMPANY PROJECT 00°11111114 * 11 00 WOr S® sonwmurcurwoononxx June 24,2010 12:54 c12 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ftj Units Start End Start End 1c24 Dead Axial 1478 (Ecce trinity = 0.00 in) 2c24 Live Axial 4320 (Ecce trinity = 0.06 in) 3-b10 Dead Axial 4067 (Ecce trinity = 0.04 in) 4 b10 Live Axial 11291 (Ecce trinity 0.0u in) MAXIMUM REACTIONS(lbs): ;;Zoit41V44"tigitiV,Witik.t,:itSg.g$444?";.40; ,,„tas1444,4 w 44r-4P w,vAu • , %.+5,4 41,, go4..11,) • 0' Timber-soft, D.Fir-L, No.1,6x6" Self-weight of 7.19 plf included in loads; Pinned base;Loadface=depth(d);Ke x Lb:1.00 x 8.00=8.00[ft];Ke x Ld:1.00 x 8.00=8.00[ft]; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: 11111112Mil Deal qn Value EMOSEEEME Axial Fc - 820 fc/Fc' - 0,86 Axial Bearing Fc* = 1000 fc/Fc* = 0.70 ADDITIONAL DATA: FACTORS; PIE CD CM Ct CL/CF CF Cfu Cr Cfrt Ci LC# Fc' 1000 1.00 1.00 1.00 0.820 1.000 - - 1.00 1.00 2 Fc* 1000 1.00 1.00 1.00 - 1.000 - - 1.00 1.00 2 Axial : LC #2 - P = 21214 lbs (D-dead L=live S=snow W-wind I=ipact C=construction Cl.d=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. COMPANY PROJECT Woodworks® .114'01June 24,2010 12:53 c23 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location (ftl Lanita Start End Start End 1 b9 Dead Axial 1478 (Eccentriity ' 0.00 in) 2-b9 Live Axial 4320 (Eccentricity .=, 0.00 in) MAXIMUM REACTIONS(lbs): •t x s 0, 9' Lumber Post,Hem-Fir,No.2,4x6" Self-weight of 3.98 plf included in loads; Pinned base;Loadface=depth(d);Ke x Lb:1.00 x 9.00=9.00(ft(;Ke x Ld:1.00 x 9.00=9.00[ft); Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Axial fc 303 E"( " - 3'/8 fc/Fc 0.80 Axiai. Bearing fc = 303 Fc* = 1430 fc/Fe' 0.21 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP Cr Cfu Cr Cfrt Ci LC4 Fc' 1300 1.00 1.00 1.00 0.265 1.100 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 1.100 - - 1.00 1.00 2 Axial. LC #2 D+L, P = 5831 lha (D=dead L live S=snow W-=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations': ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. COMPANY PROJECT ffl WoodWorks° SOFTWARE FOR WOOD fF$(N June 24,2010 12:54 c26 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location (ft) Units Start End Start End 1 c23 Dead Axi.a.l. 1478 (Eccer tr.i:.city = 0.0 i .in) 2 c23 Live Axial 4320 (Eccentricity = 0.00 in) 3-b10 Dead Axial 1180 (Eccentricity = 0.00 in) 4-b10 ,Live Axial 3436 (Eccentricity 0.0Q in) MAXIMUM REACTIONS(lbs): 0. Timber-soft,Hem-Fir,No.2,6x6" Self-weight of 6.25 plf included in loads; Pinned base;Loadface=depth(d);Ke x Lb:1.00 x 8.00=8.00[ft];Ke x Ld:1.00 x 8.00=8.00[ft]; Analysis vs.Allowable Stress(psi)and Deflection (in)using NDS 2005 Criterion Analysis Value Design Value Analysis/Design Axial fc 346 Fc' = 492 fc/Fc = 0.70 Axial Bearing fc = 346 Fc* = 575 fc/Fc* = 0.60 ADDITIONAL DATA: FACTORS: FIE CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 575 1.00 1.00 1.00 0.856 1.000 - - 1.00 1.00 2 Fc* 575 1.00 1.00 1.00 - 1.000 1.00 1.00 2 Axial : LC #2 = D+L, P = 10465 lbs (D-dead L-live S--snow iai-wind T.=impact C-construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. COMPANY PROJECT .% 00° W I I I 00 Works® 14011VAAT rOil 1413-06 orwc,N June 24,2010 12:52 c29 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) : Load Type Distribution Magnitude Location Itt) Units Statt Eon start End 1 b13 bead Axial 3033 (Ecce tricity 2-b13 Rf.Cie Axial _ 5057 (Ecce trteity - 0.09 inl MAXIMUM REACTIONS(lbs): . ... ..... ,42, _.. ............2._ O. 8' Lumber n-ply,Hem-Fir,No.2,2x6",3-Plys Self-weight of 5.11 plf included in loads; Pinned base;Loadface=depth(d);Built-up fastener nails;Ke x Lb:1.00 x 8.00=8.00 RI;Ke x Ld:1.00 x 8.00=8.00 MI;Repetitive factor: applied where permitted(refer to online help); Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Des)qn AxIal Ir - 328 Fc. -. 439 fe/Fc' --- 0.75 Axial nearing fc ---, 378 Fc* - 1644 fc/Fc' . 0.20 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP OF Cfu Cr Cfrt Ci LC# Fc, 1300 1.15 1.00 1.00 0.267 1.100 - - 1.00 1,00 2 Fc* 1300 1.15 1.00 1.00 - 1.100 - - 1.00 1,00 2 Axial : LC 12 ',.' D-t.L, P - 8126 lbs Et ' 0.60 (b.dead L-live S-snow W-wind f=impacn C-constrution CLd=mconcentrated) (All CC's are listed in the Analysls output) Load combinations: ICC-InC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.BUILT-UP COLUMNS:nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. COMPANY PROJECT WoodWo rks® s(StIlYApF!Y;.ip f.Yvftlsfllti400 June 24,2010 12:55 e31 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs.pst,or plf Toad Type DistributionT Magnitude Location (ft] Units Start Rnd Start End 1_b13 Dead Axil 2561 (Ecce tric.ity - 0,00 in) 2 b13 Rf.Live Axial 1599 (Ecce tr:etty 0.00 in) MAXIMUM REACTIONS(lbs): Lumber n-ply,Hem-Fir,No.2,2x4",3-Plys Self-weight of 3.25 plf Included in loads; Pinned base;Loadface=depth(d);Built-up fastener.nails;Ke x Lb:1.00 x 8.00=8.00[ft];Ke x Ld:1.00 x 8.00=8.00[ft];Repetitive factor: applied where permitted(refer to online help); Analysis vs.Allowable Stress(psi)and Deflection (in)using NOS 2005 Criterion Analysis Value Design Value Analysis/Design Axial fc 393 Fe' = 443 tc/1C' 0,80 Axial Bearing fe = 393 Et:* = 1719 tc/Fc"' = 0.23 ADDITIONAL DATA; FACTORS: F/E CD CM Ct cL/CP CF Cfu Cr Cfxt Ci LC4 FLT 1300 1.15 1.00 1.00 0,258 1.150 - .00 1.00 2 Fc* 1300 1..15 1.00 1.00 - 1.150 - '..00 1.00 2 Axial : LC 42 D+1 P = 6186 lbs Ff = 0.60 (D-dead L live S=snow i=wind t=tmpact: C.'t:ans'ur.uction CLd`=s.oncentratedl (All 1C's are listed In the Analysis output( Load combinations: ICC-TEC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.BUILT-UP COLUMNS:nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. COMPANY PROJECT a11104 WOOdWors I I k ® VOIVIANftc0 veOun For,80.v June 24,2010 12:54 c39 Design Check Calculation Sheet Sizer 7.1 LOADS psf,or plf) Load Type Distribution Magnitude Location (fti Units Start End Start End 1 b2t Dead Axial 267 (Eccentricity 4 0.00 in) 2 b2I Live Axial. 822 (Eccentricity 0.00 in) MAXIMUM REACTIONS(lbs): 0. Lumber n-ply,Hem-Fir,No.2,2x4",2-Plys Self-weight of 2.17 plf included in loads; Pinned base;Loadface=depth(d);Built-up fastener:nails;Ke x Lb:1.00 x 9.00=9.00[ft];Ke x Ld:1.00 x 9.00=9.00[ft]; Analysis vs.Allowable Stress(psi)and Deflection(in)using NOS 2005 Criterion Analysis Value Design Value Anatysis/Design --A—xi-71 fc = 106 Fc' 171 fc/Fc0.62 Axial Bearing to 106 Fc'" 1495 foiro. = 0,07 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP Cr (fu Cr CIrt Ci 1,C# Fe, 1300 1.00 1.00 1.00 0.114 1,150 — 1.00 1.00 2 Fe* 1300 LOU 1.00 1.00 - 1.150 — 1.00 1,00 2 Axial : LC 112 = P - 1108 lbs Kt 0.60 )D=dead L=live S-snow tfrwrnd 1.1mpact C=construl'"tion CIA concentrated) LCs are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1_Please verify that the default deflection limits are appropriate for your application. 2.BUILT-UP COLUMNS:nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. COMPANY PROJECT WoodWorks : June 24,2010 12:52 c55 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location (ftj Units Start End Start End 1 b30 Dead Axial 1.54 (Eccentricity = 0.0€0 .in) 2 b30 Live Axial 209 (Eccentricity - 0.00 in) MAXIMUM REACTIONS(lbs): B' Lumber Post,Hem-Fir,No.2,4x4" Self-weight of 2.53 plf included In loads; Pinned base;Loadface=depth(d);Ke x Lb:1.00 x 8.00=8.00[ft Ke x Ld:1.00 x 8.00=8.00[ft); Analysis vs.Allowable Stress(psi)and Deflection(in)using NOS 2005: Criterion ?analysis Value Design Value Analysis/Design Axial lc = 31 Fe' - 470 fe/Fc = 0.07 Axial Beartnq fe = 31 Fe* x Y: 14_, A. ` L ff_: i ._ V k JOB NO.: if L or PROJ ECT RE' `Beams I [.J ti 6 6 - tt k 203 t7 2 n , t s aoaPt o re w VXIXrn PI - .• tis u a w x 0 at cti c , U z 2 or00,6t rtl of 2 a U I iix COMPANY PROJECT ill WoodWorks® S.?ZW.iRF U'tt tt(l.7fl:.if.'N June 24,2010 13:07 b6 LC1 Design Check Calculation Sheet Sizer 7,1 LOADS (lbs,psf,or plf) Load Type Distribution r:k,t:t-,inrz N7a_1.it tucic=. Lbca c,a €i.t-1 Units StartE!-,,.1 t..aat End rt: Dead Point 414 2.00 ibs l,..c44 Snow Point 647 2.00 lbs 3-w44 Dead Part:.i.al. UD 389,2 389,2 6.66 2.06 plt 4 w44 Snow Partial. €0 431.2 431.2 0.00 2.,00 plf ,_,,._",._; Dead Point. 444 .00 lbs ...c=`. now Point 641 5.06 lbs .7��w4`': Dead Partial UP 389.2 309.2 5,00 6.00 p1£ r'....w45Snow Partial JD 431.2 43:1,2 5.00 6..00 plf 97525 Dead Fni.l. t7D_i:. 120.2 <^.1.f 10 w.j2 Live ', Full. lli',i:, 370.0 _,i.' WIKID1 Wind Point 800 2.06 7.bu WIND2 Wind Point. --910 5.00 lbs MAXIMUM REtACT1ONS fibs)and BEARING LENGTHS fintl. -� r ,'c, 10' 61 Dead 1436 _ __... : 1399 Live 2003 1803 `oLa1 352` :3192 Bearing: Load Comb k4 #3 Length 1..88 ..7° Lumber n-ply,D.Fir-L, No.2,2x12",2-Plys Self-weight of 8.02 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: riteri0A Analysis 'Value Oesiesn Value Aualx%ialuesigu. Dendi.ng(=) ft; - 805 Pii' -- 1035 fb/il-b' - 0.78 Live Deiii'a 0.113 = <i,i'3?9 ' 0.26 - l.:...... 0.1.5 Tota t`1',.. 0.06 - <L{999 0,30 - L/240 (},2:1. ADDITIONAL DATA: FACTORS: F/f.: C. CM C: CL, C ,.,,.,, CI Cr'fC. Ch ,C7: v 180 18 .00 .1.00 - - - -- 1.00 1.00 1.00 3 1.000 1.000 1,00 1.00 1..00 1.00 -- 3 =cp 625 :.;;,, 1.00 - 1.00 1.00 - E' 1.6 million 1.00 1.00 .- .- ... .-. 1..00 :1.00 - 4 Emi.n' 0.5ti radion 1.00 1..00 -- ... - - 1.60 1.00 - 4 .,ear . L" • ••• •••••••••••••••••• • ••• •••••• • •••••••.itn? - .2.190 lbs ending(+): LC; &3 ...: D4.75(L+S), M 4247 l.Z'S- t Deflection: L. #4 - Ci+ ?5(L+;'+W) , 285e06 lb- n2/ply Total Deflection -- „ ,6ea. Load Detl c:.::..on7 Live Load Deflection. (D lead _-live 5- •now w-wind 1_..im a.et ( 'f.:nEtructiau CLd-concentrated) (Ali LC's are 1.:.sLed :in the Analysis output', Load combinations.: ICC-IDC DESIGN NOTES: 1,Please verify that the default deflection limits are appropriate for your application. 2,Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3,BUILT-UP BEAMS:it is assumed that each ply is a single continuous member(that is,no butt joints are present)fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded,Where beams are side-loaded,special fastening details may be required. 6132- COMPANY PROJECT illt 0 WoodWorks SOFYWARC FOS WOOD if1VGN June 24,2010 13:07 b6 LC2 , ..., Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,pat,or plf) Lead Type Distributjon Magnitudfa Location it. 1 Unitn Star1. End Start. End 1,c44 Dead Point 444 2.00 lbs 2"C44 Snow Point 647 2.00 10o 3-w44 Dead Partial L0 389.2 389.2 0.00 2.00 flit 4w44 Snow Partial OD 431.2 431.2 0.00 2.00 pif 5-c45 Dead Point 444 5.00 lbs 6,7,c45 Snow Point (.47 5.00 lbs 7 w45 Dead Partial OD 389.2 389.2 5.00 6.00 elf - 8 wIE Snow Partial UT) 431.2 431.2 5.00 6.00 p11 9-125 Dead Full 00I, 120.2 pit 176 j25 Live Full DDL 370.0 oif WIRD1 Wind Point. -BOO .00 lbs ,WIND2 _Wind Point 910 5.00 ibe • MAXIMUM REACTIONallbs1 and BEARING LENGTHS tint; - .,,,............„„,_ Z. ii I IUL4W,Ali,::-i4AAE4C44i4MOOflROA61Ig)4tROW:AV.,AV;a4TlaAq4m1,IBWdCN4aTingttTg 0 Dead 1436 389 I. 1303 2172 Total 3239 3561 Bearing: Load Comb 43 #4 Length 1.73 1.90 Lumber n-ply, D.Fir-L,No.2,2x12",2-Plys Self-weight of 8.02 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005; Crli.orion Analysis Value Or..101 Value Analys1s/Design '11=',,,,, 5i; : 6r :;;'): : 12)!g I=j): : g:% Live Ocifi'n 0.03 - <L/999 0.20 ., L/360 0.14 Total Def'', 1).06 , .<1./999 0,30 = '/240 0,20 ADDITIONAL DATA: FACTORS: F/E CD CM Cr CL CF Cfu Cr Cfrt Ci Cr Lei; Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'i 900 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 3 Fel"' 625 - LOU CO1. - - - - 1.00 1.00 E. 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Emir,' 0,58 Mi 1 I i On 1.00 1.00 - ''' -. - 1.00 1.00 Shear : LC 03 - D+.711(L+S), Si - 3239, V design - 2190 lbs Bending(+): LC '/3 - 1 .75(L1LE1, M - 4247 lbs-tt Oefleci.jon: LC04.71a(LIS) ET- 285e0:6 lb-in2/ply Total DeflecLion - 1.50(Dead Load Deflection) f Live Load fletlec (0-dead L-liVe 3-snow W-wind I-impact. C-construction CLd-conntrated) (Aij LC's are listed in Lhe Analysis output1 Load combthatione: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2,Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4,4,1, 3.BUILT-UP BEAMS:it is assumed that each ply is a single continuous member(that is,no butt joints are present)fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded.Where beams are side-loaded,special fastening details may be required. , ) } COMPANY PROJECT .4D 1 I WoodWorks® SO*I WIWI'FOR WOOD 01020.0 June 24,2010 13:09 b14 LC1 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs.psf,or plf) , - Load Type Distrtbution Magnitude Location ISL) Units Start End F.taxt End 1 w68 C)ead Partial tEl 221 7 221_7 5.06 10.30 plf 2:tv65 Live Partial 3D 350.0 350.0 9.02) 10.50 ptf 3 r19 Dead Point 337 9.00 lbs 4 c10 Live Point 1050 9,00 lb, 5-c20 Dead Point 357 3.00 lbs 6-c20 Live Point 1050 3.00 lbs 7-1056 Dead Partial UD 311.7 317./ 0.00 1.50 nlf 6-w66 Partial 1311 350.0 350.0 0,00 1.50 if _ 9 164 Dead Point 165 10.50 lbs 121:1,4 Sni,w Polat 225 10.50 Ills ii cOO Dead Point 165 1,50 15, - 121,60 Snow Point 225 1.50 11, 13'wC7 Dead Partial UD 221.7 221,1 1,50 3.00 pit 14 067 Partial OD 350.0 350,0 1.50 3.00 plf 131-w69 Dead Partial UD 317.7 317.7 10,50 12,00 pif 10\q69 1)ve Partial UD 350..0 330.0 10. 0 12.00 p10 17-j36 Dead Full UDL 113.7 pif 101j35 Pull um, 350.0 plf 19_j43 Dead Partial UD 17.0 17,0 0.00 0.50 plf 20 j43 Live Partial UD 25.0 25.0 0.00 0.50 plf 21-144 Dead Partial Up 1q..0 17,0 0.50 1.50 pit 22-144 1,1,1, Partial UD 20,0 23.0 0,50 1.00 p10 23-j15 Dead -Partial UD 1.7.0 17.0 ]..-30 3,00 plf 24-g45 Live Partial UD 25.0 25.0 1.50 3,00 plf 25'34€ Dead Partial UD 17.0 1 .0 '2.50 12.00 plf 26-146 Live Partial DO 25.0 25,0 10.50 12.00 plf 271j70 Dead Partial UD 17,0 17.0 3.00 9,00 plf 24' j70 Live Pattial UD 25.0 25,0 3.00 9.00 1,01 21 j71 Dead Partial UD 17.0 1/50 #.00 10..50 Of , .$0,J 11 Live Partial UD 25,0 25.0 9.00 10.50 p' WIDE)) Wind Point 3500 3.00 WIND)? 133rd Point -3640 9.00 lbs wind3 014,0 Point -3620 0.00 lba wind5 Wind Point 3570 12,00 lbs MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in): P4t.4.!!.:.:-.i.';....•...,..,,,,, .,..;....::,:.,...,,,,- r, - : ...*,aigt4ki544 .,,,...,,b*,m,*:i4AwL:,'..:...,!:-::: :..,.. :.;L:: .. ...-,.,...--,M. ,, ,. iiia6, . '''---.....;iii,,...,iiiief-4 ,,,'-i-!:'''''':44, Alliffi1/47"";44444it4Z4i .---:4!iY.:',. AV'-'-::::'''"!::----:-,,r :-e /,'- iif',A:41 41, 44t:'Itt-.7:.7:::'.-- 7:5:4;14t, 7"iii.f4;oZ145Z;EJ§V,rCr' iti4giet1444 ;.;4044l44444!4 .--;::'VM-'.'j4,:. :*0:lltnpo, ,.7q::,!7;.1.19044- ! , 3A1AINIr1k:7,774:1:777iiii7ii':A..'' 77MariV: ttei ..7,7:'.77";r177.7ti41213 :;'t.i7.117]--,==ri: :. :::::::.. :-.".4t;'44",1' ,..4iLk ::- .:::` e X. :'1 MI A A I a _ 12 Dead 2207 2207 Live 4330 4350 Uplift 499 479 Total 6.357 555/ Beal:leg: -----, Load Comb #2 #2 _Length 2,34 2.34 LSL,1.55E,2325Fb,31/2x14 Self-weight of 15 31 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005; Criterasn Anaiyara Value Deslon Value AnatvaissfUcaugn 111)ear fv - 150 Fv) - :110 So/i"." .. 0.31 Reuding(tl fi, e• 1735 Cb) - 2325 fb/Fb' :)- 0.75 Live Umfi'n 0.25 - 1J573 0,40 p 1431i0 0.1.3 TotAl D0.1'1) 0.42 . Lf3-13 0.60 - 1,/2411 0,70 ADDITIONAL DATA: FACTORS) Fill CD CM Ct Cl CV Cf', Cr Cfrt Ci Ca LCS EV) 310 1.00 . /.00 - - - - 1100 - 1.00 2 Th.+ 2325 1.00 - 1,00 1.000 1100 - 1.00 1,00' Fcp" 000 - , 7,.00 . 7,.. Emin) 0,10 millinn - 1,00 - Shear : LC 62 . D)L, V - 6557, V design ). 5170 th, Bending)1): LC 02 - 21, 74 - 16527 lig)-ft Deflection: LC 312 - DLL El., 1211n06 15-in2 'fatal Deflection - 1.50Wead Lead Deflection) , Live load Ddflection. 412,0e0d L-Irve !j-snow W.wind 1.1.mpact t3n-roustroctIo3 CLd- oncentrated) (nil 7.:::,, al, 1 1 eted. is 'Sc Ana 1 iid.e eidpet) Load combination,: IC,.-'111 DESIGN NOTES: 1,Please verify that the default deflection limits are appropriate for your application, 2.SCL-BEAMS(Structural Composite Lumber):the attached SCL selection is for preliminary design only.For final member design contact your local SCL manufacturer 3 Size factors vary from ono manufacturer to another for SCL materials,They can be changed in the database editor. 61 1:)1 COMPANY PROJECT fit WoodWorks® sOFIWM1Nr FDR WOOD Dt3Juc June 24,2010 13:09 014 LC2 Design Check Calculation Sheet Sizer 7,1 LOADS (lbs.psi,or plt) : 303(1 Type Diver_butlon t{ ,,,,_tad.. I:( :.'jilt) [ft) ;'lits SI.azt. 04)d Start: End 1,226-8 bead Partial GD 221 221./ 8.00 18.50 p1 2068 Live Partial OD 350.0 75(3,1) 9.00 10,50 plf 3-c1,9 Dean PJ1,1' 9.11') lbs 5c1.9 Live Pohl,. .7.050 9,00 3Ls c.2^ Dead 'oin. 3.00 lbs u -c20 Live Point 30''^'' 3.00 lbs 7-069 Dred Partial UDUD ,51:.1 317,7 0.0; 1.50 p,;,`:: 8-0.66 Live: Partial UD 350,0 450.0 0.00 1.50 plf read Point. 165 10. l.ba 15 c:64 Snow Point'. 225 10,50 155" 11-c65 D:_a,d. oin'_ 165 1.50 Ilia 12"c " 'snow r,1n e•.?`: 3,11' lbs 17'WODead .p=artial U0 221.7 221."1 1.'0 3.00 p13 14 03,3 ave Palatial ` r50,0 0, . . ,,, 1, J :s5' f3 1 Oti plf 15 969 Dead Partial 0D 317.7 317.7 10,50 12.00 3') 16-960 Live Par.L.i a' .3.) 350,0 350,0 10.50 12,08 plf 1.1....36 Dead }':.11 tl.li; 113.7 p_1 7.6'»:36 Live Poll '3)3, 0.0 plf 1.914:3 lead Pattial 00 17.0 17,4 17,40 0.50 plf 20-143 ...vt Partial L. 25.0 25.0 0.00 0.50 p.l.f 21-'144 Dead Partial ..D 11.0 17.0 0,50 LSO plf 12. Live Partial UD 25.0 5,33 9.`i' 1.50 plf 2:3,.-4`} Dead Partial UD 17,0 17,.0 7..54.1 3.0C pif 1j45 live Partial -31) 25.0 25.0 1,SC 3.00 31.f `i x6 Dead Partia_. 0l,, 1.7.0 11.53 10,58 12,00 plf 20 'i4v live Partial. _di 25,0 25,0 10.50 12-00 plf 21170 Dead Partial :SD 17.0 17.1) :3.00 9.00 Pit 2>1.',.0 Live 35,31i.a1 :2 :.05.4 3,i7O 9.00 .1f Dead aci. Partial. 21) 1"7.0 17.0 9.00 10,', oIl 30µg71 3.iv- Partial ;`Ii 25.0 25.0 9.00 10.50 plf st"':'l,:1. .Wind Point -3560 .`i0 l be `A::34112 Wind Point 3640 9,00 lbs Wind Point 3620 6.00 i0s w a5£ 1)y1.10 Point. -'Si" 1. 12,00 has.... MAXIMUM REACTIONS Otbs)and BEARING LENGTHS On): y.,o„e 44 P ��-«gym,i '..e r ,c ', """ "");.' h!$n.,r zaan.ee::'.- »e 4.�+,ff ..r.;:' .,"4 .:T,:w..' 4 10' 12` Doad. 2207 %07 4626 4811 'ota7. 7033 70:i.3 Load Comb 91 #4 .,e7'.gtt -..... 0.51- 2.51 LSL,1.55E,2325Fb,3-112x14" Self-weight of 15.31 plf included in loads', Lateral support top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: L'rit:.z:fs<"4) AS1a lvOi:' value Design Value Rralvv.rl.lt# 97e Stear 't54 79' - 3''11 tv;IFv" - D.01 Dendron;+) fo »,35 to' thin,' - 0,15 Live Defi'n 3,.27 e i:/513 0.40 -# l361 0..63 :al nefl'., 0_4?_-9- l;i'943 0.6o .e L/248 0.70 ADDITIONAL DATA: FACTORS: Fa CD (v Ct 31. Cor Cfn Cr Cfe'' Ci1424 Fv' 310 1.00 ,. 1.00 - » - - 1,;)t3 .. 1.i12 Fl,', 232.5 1.00 .. ;,00 .000 ..., y0 1.90 1,00 - - ._ Frp' 1.00 - Lou _. _ _ - 1.i10 - - 4u" 1.5 , .,lion - LOUn _ - 1.00 2 Er:,i.n' 0.''3 million 1..00 ... Shear ..;,C #2 -- D+`. V _',,. 13 = 6557, / design - 5173 ' c;:::ri'.ng1'-1: %,C. 42 11,, '1 ::: 16527 i;, . .. :, Deflection: IC 3'2 = u,-i SI= 1241=06 1. n? Total 1c. fect io e . .Olne,:t 13,1,)' -1 3.' 'i.: 3 /U',, Load Dot#tictlon. E 5edeal 0 ,','' "--.row 9--wi.n(, 1,_tt,pact C=conetruction 11 _:3,/3011,I33; ll lieted in the Analysis output) Load C(:F.tl:llna:'00.1 ICC-TRC DESIGN NOTES: 1 Please verify that the default deflection limits are appropriate for your application. 2.SCL-EIEAMS(Structural Composite Lumber):the attached SGL selection is for preliminary design only.For final member design contact your local SCL manufacturer. 3..Size factors vary from one manufacturer to another for SCL materials.They can be changed in the database editor, COMPANY PROJECT 104 ® ill Wood Works 24.2010 1311 b13 LCI .Wolqw4oPoiovroo of slcs, Design CheckCalculation7 lSheet LOADS (lbs.psi,or Of 1 %' 1, - i (6 )9tion M00,lit'''' - ten 1 Er97 '''ai--i Edn Load 1.9/Pe F-' str' ' ' start ".'. .3,00 Of 5 . 9..0 0.0,9 „1 f A .94 09ad Va". 01 137 190 51 . r,,nr, 0 .05.0 0,06 - -36) ',,, 2 Partial 01. , .. , -8 .''.(1 Snow Dead Pc "I 217 5.124 'l. 5.60 4 ,',;l. Live Point 66B 5.90 lbs 5 i 6 Dsad Point S 11.4s 774 1.09 now Posnt Ina Snow Polc 6-c67 523 3.00 Pgit. lbs 27n68 942 1,90 O'. 9-.99 Dead Partial UD 593.7 7,;17, ;:i,:.2 ::2 p,..,Iii;' 10 w59 11-137 Snn. Parfial UD 735.0 :,..2.... . o ,..„.1 pif Dead 110 0 3,0'0 '' '' !'j2 '1, 12 13/ Live Partial 31) 190.7 100.2 ...,.,., _ co raj Partial UD "" , _ a so (..30 1 -. . .6.33 1)0 81.2 LI.' ,.. 0 50 641. 13j39 4233 12.,TV.. F'fr:ti.;:i 'd12 212i02.17, "6,-:.,2 : f. .,(61. -1.,:,0 p1.. 1 15-j39 ..1 op 70.8 70.o 3'.;„ 61129 rli.."1"6::'61, '..."'%1!,:l '1 120 - 0.6.,.12, 3.5. T.13.;,, Dead Podni, lbs 27-1,15 30') 3-50 13-b15 1,1,9 Poiot 226 6.60 lb., 19-1132 Dead Point 693 6,69 1)','0132 6590 0.80 11''Live r2,1:,..i d „i, - 3A0 3135 8 i Win -6690 92 Wind Point lbs 6.99 6590 133 wind "01 11 144 w Lnd Poi.nt 1 "9.1)12 a 0') 11)'. .90 MAXIMUM -...... -,... .., ky:t.t.#A.,'4•y.,.'„.t'wt6,9...9..22616,A7.11.:.a•2.,4.1,1,1,469.3-.2:-'.:,-.,.2'..'..6.1.'...1„......".11..5.6.,6.s.._.7:..*4*6,1,1-,=.,m6,,, -141•1.04.°„'„'.'.''..-.''"m7' ."1'''''H1" ::',",,''''-''',.%,,,,-'----'7,:,"*.iiiii*,----"?4,. ..'•wii-:--:-:-,:::',"" .--1Flg,' i,,K4., , .,-•:- .:,.v.::,,-..--,41 .:;-1:- ..,ii.Vg. .m,, ., - 4,,,,,;!:.:.:.::::,:.-:::;::::.L.::,„:4010;:„, ,...„..„.74ipis,:, : - .:..: *.4.57-,:,..:---,,,r.,-•-. -*.r .:-47.01,47477:7:''''-' --,,e7,,, :'i,:.,1v='-:::--,:.-':'''.!.!•!"''"--,:7:.,g1c, ,:-.'. .,..!:.'.. :,--:•-7.--:7---:,.,•:.,,,..-;,:j::.,'•:,- w,..,:;4'''o74:414.1!,,,,,-44,, ,..",--- -..‘..4*,.:,.-:. .-::.,.,„..,,;,w,:.:.:5.41r, ..,-..-,..:,!.r.2.,,,,,,•-- ' --- 7.311 A Da 3289 ead 256 3032 1. I.'e 6406 . Uplift 3093 Totol 3963 6422 02 Bear big': 1.o.i.,O Corn), 04 Length 3.20 2.44 , . 1.55E,LSL, of1531 2 , 3p217 iFmluciedn b,3-1/2x14"i1..ds Self-weightLateral support top=full,bottom=atsupports, Analysis frig NDS 2005 t Analysis vs.Allowable Stress(psi)and D,efile,,retion,(iinv),:it,,,o 3 91, c,lsondon 36111. /61. 21410 H*6;t,r., ',3'.,'3F- f"/ a' ' °144 ry . 451 heol" fp . 1291 13,,ding(+) 06' . 2674 11,! 0' = g.,:g 0.25 Live Defl'n 0.06 . 411/ 9 (0;..,21",75 IT.,:/.216.,.(1 Total 04,f1'n 0.14 * 1/1,64 A 1.L )6.1, ).11-11,?:;!-A: c, 1,00 -i r! ctlu Cr, ,0 ki.:::„. .,,i, -.3 117::c1„0 Li211 9 It 22, - 60' 110 232:,: 11:11 : 1,,..(0):11 1..200 160 : A.,,,I :,,...,....!, , ... . 0 .' .. 1.09 - - 7-F1'''P' 'l!.().'3411) 0I1 : 1.2 - ' 9 40 million - 1- - 5he'''' 1 U. 4?. 1?:.-71=1)1: '1"1: 11=,i-n"-1.Tt!lq", - 5122 11' Lie'di'q(41' LC 4' 7 1....-ItiL.si pi. 1241e06 it-lin4.,,,,a,i 0,f,,,,,i0p, , ''Il''cLI'''' LC " 4-'''"6 t'''d Den'''Ll r° ' L17,- „„3n c„„...„„en,,,,ed, LI deal ;',1:;---,-. ,.',',',,w.i.„Z„-.:,7'.:TZ .,',',,(,;-c"''.' 1,111, LO's are liatpd t, . Load combinations: 11.0.6.1. DESIGN NOTES: 1 Please verify that the default deflection limits are ap,prohprdiastecfLorseyoleuLiaapnpilsicraotriopnreliminary 2.SCL BEAMS(Structural Composite Lumber):the aLac e member design contact your local SCL manufacturer 3.Size factors vary from one manufacturer to another for SCL materials.Theycan ba changedd8insi9thneodnaytablaorse"eaditor Cl 2''' G ,. i ,,,,, F COMPANY PROJECT i WoodWorks') SUFI WAR!,OR Wove UIsIGN June 24,2010 13:11 b13 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or pit) Toad 'l^ :cutri.`:n.t ion 'lurn,,,de .:cera r Urn t, Stmt End Stsrt Fnd. e$8Ti .ii Lart..i..1. UD l i 0 51.9. 7,00 ?.IC plj 2-4,68 Sn:••a Partial. 110 505,0 505,C 3,°0 3.00 ptf 3;.-.'40 Dead Ps st 21.1 5.50 lbs 4•..rc4�1' l', Point 663 .`.:0 'Cl,, 5Yc67 Dead Point h,00 lbs 6W`4-67 Snow P.. st 778 5.00 L5:; r60 5'u.k Point 573 3,.00 lbs fl...,1,6 Sn...1w Pont 942 3.00 1ols ........E c. , 593 - ru t 9 r,�i C�ae:f Par;:::.a.3- UD ,0.>.' .! ;r;i1 `.0": 30 w;iv Snow Tar'.181. UD 735,0 735.0 5..00 0,06 ilii 11...j37 Dead Partial U,) 100_7 100.' 0.,.50 6,92 -+if. 12 j37 1=.v2 Partial U.) 310,0 :310.0 €,.50 8.00 iii iii41' Dead Partial U;i 81. 61.2 3.50 0„50 pl.i 1.4-inii 1,i.ve Pa-..E;al. 112 250 250.0 3..50 5,50 plf j39 Dead Partial UD 22.1 22.7 0,.80 3 t,11 16Wj39 Live P:,t tial UD 700 70.0 0..00 3,50 p!.f 17 b1.5 Deal : Point. 1.26" 3.50 la-bisLiw. Point 31', 3,50 lies I5-F3" Dead Point 225 6„50 lis 20-b32 Live 683 0.50 les WI... :9i:r-•3. Point -6590 0„00 15 W2. Wind Point. 6590 `„00 lbs 143 ,lrr,d Point ..5590 5,.00 lbs 54. Wind Puinf 041900.00 )L. MAXIMUMR e* $. : .� I. �.� wn ` gym _E view€ <'�; e d 81 0eri0 2551 3033 2699 7496 Uplift 3331 Total 51161 Load Comb 43 #4 Length 1.38 LSL,1.55E,2325Fb,3-1!2x14" Self-weight of 1531 p;f included in loads; Lateral support top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using Nos zoos: s r4r15I :kw 1vg,lI Nr11,'v' lYr/1 UI 1,4,iar Math ta6Eh,I095 fv = _17 Fv• .: ase +v"£c` 0,•14 II,ndislq r;) th = 1.295 Ft.' 8 2074 thin:" = 0,18 ',.ve Deli'_; 0.06 :L/999 0.27 Lr360 £1,24 Total :efl'r. 0,.14 - L/630 0.40 m. 3:/249 11,35 ADDITIONAL DATA: FACTORS: Fig CD CM rt. CA, :/ C. Cr CtttL1,,•,74Fv' 310 1.15 -- 1.00 _ 1.CU Fb'3 2325 1.15 1.2.0 1..000 1.110 - 1_09 1.4Ci - .Ip' E100 - 1.00 - ... 1,30 14' I.. - ii.e9 1.,001 - 1..00 3 _nir,' 1.60 trillion -.. 7_00 .- - - _, Shear (:,C Iii -- e II. 0(0.6) V_- 682, V .tes'i cn - 5122 lbs 4,1,11 05) ,l LC k_ ..: .71 . 5155, h' 2340 ..51' ft Deflection: LC. 71 - 11+,755}.,+;a e;I::: 12414406 to-1.r.2 eta'. Deflection -- 1.5 ID':,.i Lead Deflection) + Live I-au Le.1,,,L,,,,_ . -.l ion. :0_.o'.. 1 :.i`. ;;n.:Y .4 Wind 5.,.ct i, r',,,5t.011?')'o L'i,r1',.5'",,'5La.- (Al. L.:' a;: 1'.i ,1. .n the Anslys1.1 olltput) ' S .� 1 Ldsd cnmi;..na":z.r:ns: TCC-1.18C DESIGN NOTES: 1 Please verify that the default deflection limits are appropriate for your application. 2.SCL-BEAMS{Structural Composite Lumber):the attached SCL selection is for preliminary design only.For final member design contact your local SCL manufacturer. 3.Size factors vary from one manufacturer to another for SCL materials:.They can be changed in the database editor. COMPANY PROJECT °111111111 WoodWorks® June 24"0'013 19 tolO,C, 30t/VANE FOR WOOD 1)E55Gh. Design Check Calculation Sheet :a,er LOADS I Rs,POt, PI')• • MAXIMUM REACTIONS fibs)and BEARING LENGTHS(in): I g Glulam-Bal.,West Species,24F-V8 DE,5-1(8x22-112" Soll-vosyht of 2655 pllnoltsiol .tls, Lateral support lopo tut WO.-al supports, Analysis vs.Allowable Stress(psi)and Deflection(in) mos 2444 ADDITIONAL DATA: DESIGN NOTES: Please vevA,Rol 14e dalsoll detPohon Moils art oposoo...ISyour C,Altars rlosppl are for rraorals too'aomng .C 11,2009 and roarteeoPped arsprdanca voth ANSI,AFTC Al9O 3,992 POPP PRAPPI OcloPPRO. Crlotwo Rosros shel be pPralty spo.rla•a....rodrep prONI.ni nt C,ayse 3 33 5 GI,lJIAM oe,gOhy length Posed on se lot,. 11-r pl,loopon),r•O`Orn 11 (t;:, COMPANY PROJECT IIIII WoodWorks 'ii i . ,..w.24,20 On 13 1.04 t C2 SOFTWARF FOR WOOD DFSIGN Design Check Calculation Sheet SZEf 7 1 LOADS I e,pit or pH) , 5 '.., 4 ' r, 4, MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in); , . ...-.,,, Glulam-Bal.,West Species,24F-V8 DF,5-118x22-112' Self weight 026 55 plf Inciuded Iri levgis, loin.support to,ttil t.toen-of 0U050.10. Analysis vs.Allowable Stress(psi)and Deflection(in) ..... ,•`. ADDITIONAL DATA: DESIGN NOTES: i PKetie Miry it.if%°ODA Milestan louts we apomplate,roor aopcoleon 3 Citt/I AM b.=actual beg ad.o x act.mIdepth 4[3.oiar,3errts aboN be Man.?st.loax.oti orzorelang to tne proats.,0 NOS Cfate,c 3 3 b 0101AM k.Ang long.Ga...co urraller t.',epit.:er vv., ( �■ COMPANY PROJECT 11111 WoodWorks® June 29,201013 23 tW LC2 SOFIIVARF FOR WOOD DES)CN Design Check Calculation Sheet .uarrl LOADS i Ma,e . 3s 43,3. • 3;. g MAXIMUM REACTIONS(lbs)and SEARING LENGTHS tint:= z � 11 Glulam-Bal.,West Species,24F-V8 DF,5-118x22-112" 45#'+wbf i H 2LL.°.vA Mt tpa.kaytld is Aa?+ff: LMmal ummot fov RM,bdNari,,, myorrN Analysis vs.Allowable Stress(psi)and Deflection till).,_Nos xoos ADDITIONAL DATA: DESIGN NOTES: _... _... 1.Please verily Mal tFs delaull deflection F ds arc aper,,Lk^_la you apAetalbn 2 C:tiae demmn viams a'lk tat mmtsti%z^,fa]:a Al rcil/.20:"aW fronuMMaei in sceormrme'.Wt:S.,. '%3'C A5YJ.I=ML 3 OLVLAMEMI-t!tel Meath x ae!ua+ds,mh ckd.>n1 Dmms lacy wwa'•ed atc«a-c to M.cn,1,.;,,",t.NCS Claim.3.3.3 f;LI/LAM:Lcmee.j brwM tests im araMx e!P-p(tsm crr;fe:p(cai Vr,). 61W COMPANY PROJECT I WoodWorks® SOH wAMf r09WOOD ol53cN June 24,2010 13:23 b34 LC1 NO LL Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or ptf) 3 L•,rld Typo Distribution 'i 7 Pi h ide Location..:• it') Unita St-71,t Far 'l c a f t End 1 Wf:2. head Partial. UD 61d.2 ',13.2 .. 0.00 2.00 plf -a29 Dna: Partial IIB 811.5 877.5 7,50 11.00 p13 Dead Point 1.436 17..00 abs 1-,16 Dad Pa1n1. 1289 17.00 lbs 9'•.464 head Partial 110 617.5 617.5 17.00 12.00 plf IT c61 Dead Point 822 7.00 lbs 7 [:h,' Doed Point: 622 4.00 (h> a x6:3 Dead Partia1. UD 613.2 .13,.2. 2.00 4.00 pit 7._.vrb5 act Partial ?P 617 61 13.0(} 2.0.0`0 pit 19-w71 Dead Parrdal ? 813,2 61LL2 7.410 7.50 plf Li '64 ?earl Partial. L1 47.7 47.7 17.00 15.00 pit 23 -23 Dead _,rt:i.a1 t3(! 7 47,7 4,5t1 50 Of 25-.'i62 .,aad Partial UD 47.7 47,7 7.50 1.1,00 pif 718 Dead Partial. 0D 120 20.2 0.00 2.00 Pit P`? a32 Dead Partial 9D 120.2 20; '. 3.50 4.00 ::1: '193 Pead Partial UD 120.2 120,2 4,1,1 7,50 plf 33,034 Dead Partial 0:) 120.7 120.2 7,50 2.00 pit 35 j35 Dead 7art.iai, VD 1.20.2 120.2 8,00 1.1.00 pit 39 j37 Dead Partial. 120.2 120.2 2.00 3.50 plf 41 j4'( Dead Partial 1;1 120.2 .,0, 4„00 4.50 ps 43--'.--1(i lead 4.,artial 110 17.7 47,3 11.00 17.0(3 pif 45-j65 Dead Par,Pial till 47.7 47..7 1.8.002 1.00 plf 47-166 ;lead -.rk. ai. i"3 47 • 4'7. : ,4.:10 4.50 pi'. 49--168 Dead 'artial. U3 1.20.2 120.2 17,00 10.00 ail. 31"7)') Dead Partial [11 120.2 120.2 18.00 20.00 plf. 3:j72 Dead i•art'..4: '313 13.7 47-_7 2.90 4.00 p1' 55J33 head Part1a1 00 43 43, 0.00 2.00 plf Ill Wind Point .1850 0.00 lbs W2 Wind Point 5850 41.00 lbs W3 Wind ?dint. 5050 11.00 11'>, W4 Wind Point -5850 17.00 1ias 10, 3. .1 ...5850 20.00 lbs MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in): tet 201Dead 7:109 PPPPPP... PPPPPP... PPPPPP. 6922 Live ':C' 1 10:? Total 7239 78319 Hearing: �J PPPPPP. Load Comb (12 f7 Length 2,17 PPPPPP t_ll. Glulam-Bal.,West Species,24F-V8 DF,5-118x22-112" Self-weight of 26.55 plf included in loads; Lateral support top=full,bottom=at supports, Analysis vs.Allowable Stress(psi)and Deflection(in)using NOS 2005: Criterion .1'-1 ,. 'a1 ,.ue Doeign. �1,w A, ly,taiDen'x:0b Shear �,v 74 Iv' 738 10'81 r" s1,32 Bending(+) f - Ph' 26.3E h/Fb' 0,17 L:i.:. De 'ra negligible '.. Tei.al ,.r P 0.41 ,i L/505' .00 = ',/240 0.41 ADDITIONAL DATA: FACTORS, F133 ''1 01 Ct. I. >'V Cfu Cr ',f3ri-: Notes Cn *1, Iv' 265 0.90 1.00 (.00 _ _ _ 1.00 1..00 1.00 .,i,: F11'' 2900 0.90 1,1,1,' 1.00 1.000 0.944 1,00 1.00 1.00 1.00 - :1. Pip' 650 - 1,00 7.00 .. _ l..(70 _ _ E. 1.8 ',,,Pion 1..00 3.oa - - 1.00 - _. :1 Emin' 0.85 million 1-00 1.00 - - - - 1.(7(1 - - 1 Shea-r 01 - 1 only, V - 7199, U design a 5874 It'. Bohdi3>'4 3: LC # ' only, 1.1- 31217.17 :.bs- t Total Deflection - 1.500Dead Load i...l...,t':-onl a_ Live Load Ooflactinn. ,n=.CI .'.i,\ 9N ,4.1.1' id •-..itpac:t. 4const_.,i.....33 1A ,,.'c3 rr-(Led.; .'. € the Analysis ::t:urt.3 Load comidnatIons, iCC-104.: DESIGN NOTES: 1..Please verify that the default deflection limits are appropriate for your application. 2.:Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A':90:.1-1992 3 GLULAM:bxd=actual breadth x actual depth, 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3,3 3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). C-) (.4I COMPANY PROJECT A lill 1111 I Wood Wo r ks 001TWANit-ORWOODVEN/GN June 24,2010 13:22 b34 LC2 NO LL Design Check Calculation Sheet $izer 7,1 LOADS (lbs.psi,or plf) : Load Type Di 5 tr ibIlt i On Magnitude Location MI Units Start Fad Start End 1 w62 Dead Pariial UD 111A.2 011.2 0.00 2.00 plt * 3:4,29 Dead Partial UD 617.5 617.5 7.50 11,00 pill 5 c1.1i Dead Point 1436 1.1.00 lbs 7-U16 Dead Pninc. 1389 17.00 Ins 9-464 Dead lUrtial 1All 617.5 617.5 17,00 19.00 plt IT c61 Dead Point 122 7,00 lbs 13-e62 Dead Po4nt 622 Int, ].5 wiil Dead Partial UD 613.2 613.2 2.00 4.00 Rif 17-weli, Dead Partial UD ill7.5 61'7.5 16,00 20..00 plt 19-w71 Dead Par.tial UD 613.2 613.2 7.00 7.50 pif 21-364 Dead Partial UD 47.7 47.7 17.00 18,00 pit 23 l',28 Dead Partial UD 47.7 47.7 1.50 7.50 olf 25:162 Dead Partial UD 47.7 47.7 7.50 11.00 p.t 21 44B Dead Partial UD 120.2 120.2 0.00 2.00 plf 29-130 Dead Piiirlplal UD 120.2 120.2 3.50 4.00 pit 317133 Dead Partial 0D 120.2 120.2 4.50 7.50 pif 33 j34 Dead Partial 'OD 120.2 120.2 7.50 8.00 pit 35:135 Dead Partial UD 120.2 120.2 8,00 11.00 plt 39 167 Dead Fartial UD 120.2 120.2 2.00 3,n0 plf 4,,j19 Dead Partial UD 120.2 120.2 4.00 4.50 pif 43 j63 Dead Partial OD 47.7 47.7 11..00 17.00 pit 45-j65 Dead Partial UD 47.7 47.7 18.00 20,00 pit 17-)66 Dead Partial UD 47.7 47.7 4.00 4,50 plt 68 Dedd Pe'itial UD 120.2 120.2 17.00 18,00 plb - 5.1_j69 Dead Partial 0D 120.2 120.2 10.00 20,00 pit 53.J72 Dead Partial IlD 47,7 41.7 2.00 1.00 pif S5:473 Dead Partial Ull 47.7 47.7 0.00 2.00 pit Wind Point -5850 0.00 ibs W2 Wind Point 5850 4.00 Ibs W3 Wtnd Paint -5850 11.00 lbs W4 Wiad POiDt 5850 17.00 lbs NS _Mil0d Point -8850 IbE; MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in): to' Ze.. Dead 7189 6822 Live Total 7180 6822 Bering: Load Comb #1 . 01 Length 2.1f, 2-0.5 Glulam-Bal.,West Species,24F-V8 DF,5-1/8x22-1/2" Self-weight of 26 55 plf included in loads; Lateral support:lop=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NOS 2005: Criterion Analysis Valour Design Value Analysis/Des:1,4n 11heat lv = 74 Cu' = 218 fvf8P = 0.31 Bendimq(4,1 fb :a 950 Eh' = 2038 thin," = 0.47 Live Dour segliqible Tptal P,q.i',,,, D,4a. - T.,,,5 = 1,0EI? - 11248 0.41 ADDITIONAL DATA: FACTORS: F/E Cl) CM Ct CL CV Cfo Cr Cfrt Notes Cu 508 Cu' 265 0.90 1.00 1.00 - - - 1.00 1.00 1.00 1 Fla', 2400 0.90 1.00 1.00 1.00) 0.941 1.00 1.00 1.00 1,00 01'' - 1.00 1.00 . - - 1.00 - - - E" 1.0 million 1.00 1.00 - - - - ' • Emir,' 0.85 million 1,00 1.00 - , - - 1.00 - - . _ • Shear : 10.0 ,01 - D only, V i, 718 , V deniga a 5674 lies liendingbil: LC 07 - 10 only, M - 34217 lbs-it Deflection: LC 01 - D only E1- 8756e06 lb in2 Total Deflection - 1) '0 Load Deflection) i liive Load Deiilection. (0-deal L-live Sa-spow W-wind )'impact C-constructien CLdadancentliatedl (Ail LC's are listed in the Analysis cbtp0t1 Load combinations: ICC-TOC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your appfication. 2:Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSVAITC A190„1-1992 3.GLULAM:bxd=actual breadth x actual depth. I4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3 3 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n), (-11/41 2m Harper Project: ill" tit:wt.Peterson Client: Job# Ri helps* Inc. ,,, ,�= Lh signer: Date: Pl.# 3131R;i T:kk= 3a.HOS 3# x!3.a £Zs3 pE7 fcti Wdl:= 10• lb •8-ft-20•$ Wdl 1600•lb '` s; ft 2 Seismic Forces Site Class=D Design Category=D Wp'= Wdl ip:= 1.0 Component Importance Factor (Sect 13.1.3,ASCE 7-05) S1 := 0.339 Max EQ, 5%damped,spectral responce acceleration of 1 sec. Ss:= 0.942 Max EQ, 5%damped,spectral responce acceleration at short period z:= 9 Height of Component h:= 32 Mean Height Of Roof Fa:= 1.123 Acc-based site coefficient @.3 s-period (Table 1613.5.3(1),2006 IBC) Fv:= 1.722 Vel-based site coefficient @ 1 s-period (Table 1613.5.3(2),2006 IBC) Sms:= Fa-Ss Srnl := FvSi 2•Sms Sds• Max EQ, 5%damped, spectral responce acceleration at short period 3 Exterior Elements& Body Of Connections ap 1.0 Rp:= 2.5 (Table 13.5-1,ASCE 7-05) ds Fp:= R �1+ 2•hl•W, EQU. 13.3-1 Fpmax:= 1•6'Sds-1p•Wp EQU. 13.3-2 Fpmin 3'Sds'Ip'Wp EQU, 13.3-3 4:= if(Fp>Fpmax,Fpmax,if(Fp<Fpmin,Fpmin,FrD F =338.5171-lb Miniumum Vertical Force 0.2•Sds'Wdl=225.6781-lb • Harper Project: Elptlf Peterson Client: Job# Ri lapis t c. „„,,,„„,„.s. .,„„,,,,, Designee; Date: Pg.# IAND,,,,,- AR w sl s,1•,,,muse,,Us Wdj:= 10• lb--.8-ft-20-ft Arco= 1600•lb ft2 Seismic Forces Site Glass=D Design Category=D Wp_ Wdl 1p:= 1.0 Component Importance Factor (Sect 13.1.3,ASCE 7-05) S1 := 0.339 Max EQ, 5%damped, spectral responce acceleration of 1 sec. Ss:= 0.942 Max EQ, 5%damped,spectral responce acceleration at short period a:= 9 Height of Component h:= 32 Mean Height Of Roof Fa:= 1.123 Acc-based site coefficient©.3 s-period (Table 1613.5.3(1),2006 IBC) • Fv:= 1.722 Vel-based site coefficient© 1 s-period (Table 1613.5.3(2),2006 IBC) 'ms`= Fa`'s Sm1 :_ Fv`S1 2:Sms sds Max EQ, 5%damped,spectral responce acceleration at short period Exterior Elements&Body Of Connections ap 1.0 Rp:= 2.5 (Table 13.5-1,ASCE 7-05) 4 S l ' ap• ds'lp z Fp:= rl +2•RP hJ Wp EQU. 13.3-1 Fpmax:= 1.6•5da•Ip•Wp EQU, 13.3-2 Fpmin:= .3•Sds•Ip•Wp EQU. 13.3-3 4.,,i— if(Fp>Fpmax,Fpmax,if(Fp<Fpmin,Fpmin,Fp)) Fp=338.5171-lb Miniumnm Vertical Force 0.2•Ste•Wdl=225.6781.1b CI Li L, CM NO PROJECT' ..,, tt. = A 0 w . ZO o gv rise. . 5t hr\PSCri"\ a t z z o z O• #i "Th L-2 0 4 Q1 b = (..1/4..44. a 7,--t-)v-L) ' .)'° ,1Z1 e1 „Z i,/7)4 -rib SV.s7sc \S 1 j 14* i e = °'‘IzA) # 1002 = Ocs\ CrIk "1 nsA_D `y7 fj,,}gp, (': ] f` '`� ° ± as : Vz) 'x. Di ; C.5 tuC (-30-A .-- -(7',,r1 • e, p E ' ..,,,pt 1 a 67ad o ge Ao< IrT ,-o Uj .' 7 t!1d S, k'Orllly nn o 0 z ❑ m ` '0'0 /) r.,ci. _ U\ U C df 4' rl Vu¢3 15 j it i 18 \ = c ii ,..,!1, 0 T i . 4, a m ,i r m O I' "144 .0f)*e�I = ( 1 f +# 1 €.q *1) • o ❑ cvoiUwcj Pel) k1i �kJd�iD -1udN • o VI p - M n m Li v CI a :1D3road 14____ .,.„ -)E3 i. , -- f -- , ' ,• -, CD ! 1701-H #.- ootl'e -7 cigee 1‘... 1. ALL - NI# 0 OQ? -7-- -D --.----1 1.., 1yi4f, poo - g 7- N .14 C42. A—e it-r ..) caboi -0 --I 0 0 Z 'ri 11 , 0 3 iE] --7 0 /92'1 0 01 M JOS6‘kIllg '." (1 Z F.) i400h ) _x_ 41C-144,1_ ,.2,9 -A , z h`72 -D m i O m NI# cc-hg ----- z . 0 0 ✓ 0 /1 3 3 0 m -I 2 al P F, El D ,..1..03rOb1d ON sor ' '43,`a THI4V13 A7Cit8ji. -- 1 , > limper Houf Peterson COMMUNICATION RECORD P Righellis Inc. TO 0 FROM 0 MEMO TO FILE 0 PHONE CALL:0 MEETING: # II Co m 4 0 ilo ' if (..) 1,- 0 f f ---- 3 93 9.3 r ...c. 0 ----o 8 bn. 8 S o 7 (---)Q itioic"'"41 03 ..." It 6 --; -,. 01 tj rni I , , I i Z I I C <8 4.--- ....... 0 narpot HP Houf Peterson Righellis Inc. 0\\. . TOO FROM COMMUNICATION RECORD • MEMO To PILE n .._, ,,, ,,, ,,:,,,..,,y,,t:, 1,.,,,s„, PHONE No.• PHONE CALL:0 MEETING:0 2) 13 ai rfi m -4 -i ., CA * N.N. lir=111111111 -1 , '1.11.111111111111111111111111111111111 Orti ht '1,1 (Z1 '14 . - 0 Ails._ N 7 0 ' I •T-. - Ut 01 > -1 ...-, Li r r% s i I 0 Z:i.A 0 *0 2 0 0 C-4 0 ' le. ". 1 COMPANY PROJECT il WoodWorks SOFTWARE FOR WOOD DESION June 8,2009 16:27 Hand Rafl Design Check Calculation Sheet Sizer 8.0 LOADS: Load Type Distribution Pat- Location [ft] Magnitude Unit tern Start End Start End LIVE Live Point 2.50 200 lbs - MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in): 1 I 0' 54 Dead Live 100 100 Total 104 104 Bearing: Load Comb #2 #2 Length 0.50* 0.50* Cb 1.00 1.00 'Hirt,bearing length for beams is 1/2"for exterior supports Lumber-soft,Hem-Fir,No.2,2x6" Self-weight of 1.7 plf included in loads; Lateral support:top=at supports,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NOS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 19 Fv' = 150 fv/Fv. = 0.13 Bending(+) fb = 405 Fb& = 1048 fb/Fb' = 0.39 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.20 Total Defl'n 0.03 = <L/999 , 0.25 = L/240 0.14 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cf rt Ci Cn LC# Fv' 150 1.00 1.00 1.00 - - - 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 0.949 1.300 1.00 1.00 1.00 1,00 - 2 Fop' 405 - 1.00 1.00 - 1.00 1.00 - E' 1.3 million 1.00 1.00 - - 1.00 1,00 - 2 Emin' 0.47 million 1.00 1.00 - - - - 1.00 1.00 2 Shear : LC #2 = L, V = 104, V design = 103 lbs Bending(+) : LC #2 = L, M = 255 lbs-ft Deflection: LC #2 = L EI = 27e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction Lc=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NOS Clause 4.4.1. ( 0 COMPANY PROJECT 1111 it Wood Works4:4 SOPr1VARE WR WOOD DESIGN June 8,2009 16:27 Hand Rall2 Design Check Calculation Sheet Sizer 8.0 LOADS: Load Type Distribution Pat- Location [ft] Magnitude 'Unit tern Start End Start End LIVE Live Full UDL 50.0 plf MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in): • 01 Dead Live 125 Total 129 125 Bearing: 129 Load Comb #2 Length 0.50* #2 Cb 1.001 0.50* *Min.bearing length for beams is 1/2"for exterior supports 1.00 Lumber-soft;Hem-Fir, No.2,2x6" Self-weight of 1.7 plf included in loads; Lateral support:top=at supports,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005 Criterion- Analysis Value Design Value Anal sis/Design Shear fv = 19 Fv' = 150 fv/Fv' = 0.13 Bending(+) fb = 256 Pb' = 1048 fb/Fb' _ 0.24 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.16 Total Defl'n 0.03 = <L/999 0.25 = L/240 0.11 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cf rt Ci en LC# Fv' 150 1.00 1.00 1.00 - - 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 0.949 1.300 1.00 1.00 1.00 1.00 2 Fcp' 405 - 1.00 1.00 - - - 1.00 1.00 E' 1.3 million 1.00 1.00 - - - - 1.00 1.00 2 Ervin' 0.47 million 1.00 1.00 - - - 1,00 1,00 2 Shear : LC #2 = L, V = 129, V design = 106 lbs Bending(+): LC #2 ffi L, M =. 162 lbs-ft Deflection: LC #2 = L RI = 27e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction Lc=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. • (isi WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A-Front Load WoodWorks®Sizer 7.1 June 22,2010 13:57:56 �oncept Mode: Reactions t Base of Structure View Floor 2: 8 ' _,. .: 611 "- ' 43,,,,c) 1 1600 L 1600 L / 619 0 619 D: .. :; • 1 $' i_ 1183[5'53:24041 2404 L 625 01059;1439 D" 1394 D T45 6 A3E „t-u z 315L: a9-8 3580" -+a J1 r3 uu-a:y �y r0 315 L f F-a i 0 L ' _ 358 D yJ.: o K_ rn long ■ zi-t3 ` 74647 . 5611 L 756 L 'i_0 zt.-ts ,-i 4//452 D 5546 D 2r 1d r,444 r 625L to 50 ,r6 2030 5D : 0 908 L r� ri 100307• s atil 245 L 6-6 50 L .., u-n ,4749 t...-:599 ' a7L 887L 0 • 209108 04.1953 0 iF 1963 0 4-a 154 D -co UQ 2363 p z 78DD 1060 , "' v' 7 4' 6' $' 13'12'14'16''8'20'22'24'26'28'39`37 74 u&'40'42'44'46'48'50'52'54 56 ,{5 60'62'64.'66'6R'/0 72'74'lea' IT 1`2'Y4`5 6'7'3'.9,1{1 1.11.1:1{11:1'2i2 22:2,22{ "7.122{3'3.3;3=3:3;8 32{4{.4 4.4:4-1; ;401{,5:5 5:5-,5,515f5,615,5{6 6k-6,6;6{5 K5'27 r, Vc)o-r‘N En t. Pc10 OT V Nsi- L { WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A-Rear Load WoodWorks®Sizer 7.1 June 22,2010 13:57:37 Concept Mode: Reactions at Base of Structure View Floor 2 : 8 ' C'Ya 4.,, 9 L.<, 16001. 1600L 619 0 619 0 .,.., -.) ,,. ,. 13774L 3304L °-1•-4 7153 0 7072D f:3J ;30 ,") zlt.) 3151. 358 0 a I ZY, r.,-...) 315 L ,...€.2,, ti 100 L 358 0 ' : 96 Di- -- cOm .. "'. ri smog a / - *1 74184 611 L " 56 L ,,,• =, -46452 D 5546 D , EV 13 16251. ' - 8 8 ,i 8 !'.,•:': 4..„tc i 908 L , . 11.,4 t.307 0 < " ',''- 209 t•D813 1963 D 0, 0 -1963 D . , 15411 -"It5°DU 725 L2219 D • 617 a 0 1 ;;.,,, ,"tt°E;-tH tt, ,°,t IT,' = ,, ° 8i Etc E ft tE Et LEI E ttta°X 0.°L2. Y 2 4' 6" 8' '0° 2°14'16 8' ,0,"2'14',6 .x:'202224'2028°30'3'22 24 26 28°30°0°./ tt:' t0 ;38°40°82'44 48°48°61, 52't.-4°r•t.,z 5.r.s° 64°rt)°8°48'70'7774'/5 ci12-34"55 7°5°91°t 1:1'11 tw°110.t20 2252,2'2 ri 2,2t31.3 3 3.7:,t0-48°,?Att°4f4 'A:e..V4f4 414,56../,',5 8-555 5 844 A 6 ti,twtitc4r7ct t-,71,40. --- OCIr 1alij .°1 LPiki**4%1()L1)r LP MVLP F2-- Ramie Harper Houf Peterson Righellis Inc. Ci–rent Date:6/24/2010 1:41 PM I system:English File name:O:117HHPR Projects\CEN-Centex Homes(309)\CEN-Plans\CEN-090 Summer Creek Townhomes\calcs\Unit A\foundations\F1.ftd\ Design Results Reinforced Concrete Footings GENERAL INFORMATION: Global status Warnings Design Code ACI 318-05 Footing type Spread Column type Steel Geometry .i —f12 in 42,5 ft 6'1 1425ft I ft 4.25 ft Pagel Length 4.25[ft] Width 4.25[ft] Thickness 1.00[ft] Base depth 1.50[ft] Base area 18.06[ft2] Footing volume 18.06[ft3] Base plate length 5.50[in] Base plate width 5.50[in] Column length 5.50[in] Column width 5.50[in] Column location relative to footing g.c. Centered Materials Concrete,fc 3.00[Kip/in2] Steel,fy 60.00[Kip/n2] Concrete type Normal Epoxy coated No Concrete elasticity modulus : 3122.02[Kip/int] Steel elasticity modulus : 29000.00[Kip/int] Unit weight 0.15[Kip/ft3] Soil Modulus of subgrade reaction 200.00[Kip/ft3] Unit weight(wet) 0.11 [Kip/ft3] Footing reinforcement Free cover . 3,00[in] Maximum Rho/Rho balanced ratio . 0.75 Bottom reinforcement//to L(xx) 6-#4 @ 9.00" Bottom reinforcement//to B(zz) 6-#4 @ 9.00" (Zone 1) Load conditions to be included in design Service loads: SC1 DL S1 DL S2 DL+LL S3 DL+0.75LL Design strength loads: DC1 1.4DL D1 1.4DL D2 1.2DL+1.6LL Loads Condition Axial Mxx Mzz Vx Vz [Kip] [Kip"ft] [Kip*ft] [Kip] [Kip] DL 5.55 0.00 0.00 0.00 0.00 LL 15.61 0.00 0.00 0.00 0.00 RESULTS: Status Warnings -Insufficient development length,Section 21.5.4.1 Soil.Foundation interaction Allowable stress 1.5E03[Lb/ft2] Min.safety factor for sliding 1.25 Min.safety factor for overturning 1.25 Page2 • Controlling condition S2 Condition qmean qmax Amax Area in compression Overturning FS [Lb/ft2] [Lb/ft2] [in] [ft2] (%) FSx FSz slip S2 1.38E03 1.38E03 0.0826 18.06 100 1000.00 1000.00 1000.00 N Bending Factor 40.90 Min rebar ratio 0.00180 Development length Axis Pos. Id lhd Dist1 Dist2 [in] [in] [in] [in] zz Bot. 20.11 7.04 19.75 19.75 xx Bot. 20.11 7.04 19.75 19.75 Axis Pos. Condition Mu 4)"Mn Asreq Asprov Asreq/Asprov Mu/(4)*Mn) [Kip"ft] [Kip"ft] [in2) [in2] zz Top DC1 0.00 0.00 0.00 0.00 0.000 0.000 I 1 zz Bot. D2 13.38 45.76 1.10 1.20 0.918 0.292 xx Top DC1 0,00 0.00 0.00 0.00 0.000 0.000 I I xx Bot. D2 13.38 43.06 1.10 1.20 0.918 0.311 Int I Shear Factor 4) 0.75 Shear area(plane zz) 3.10[ft2] Shear area(plane xx) 2.92[ft2] Plane Condition Vu Vc Vu/(4)"Vn) [Kip] [Kip] xy D2 8.99 46.09 0.260 yz D2 8.68 48.88 0.237 P=7 1 Punching shear Perimeter of critical section(b.., 4.67[ft] Punching shear area 3.31 [ft2] Column Condition Vu Vc Vu/($*Vn) [Kip] [Kip] column 1 D2 29.25 104.29 0.374 I_; t '.1 Notes Page3 ,,c,c„,, *Soil under the footing is considered elastic and homogeneous. A linear soil pressure variation is assumed. "The required flexural reinforcement considers at least the minimum reinforcement " design bending moment is calculated at the critical sections located at the support faces "Only rectangular footings with uniform sections and rectangular columns are considered. *The nominal shear strength is calculated in critical sections located at a distance d from the support face "The punching shear strength is calculated in a perimetral section located at a distance d/2 from the support faces *Transverse reinforcement Is not considered in footings Values Shown in red are not in compliance with a provision of the code *qprom=Mean compression pressure on soil. *qmax=Maximum compression pressure on soil. *Amax=maximum total settlement(considering an elastic soil modeled by the subgrade reaction modulus). *Mn=Nominal moment strength. "Mu/(4"Mn)=Strength ratio. "Vn=Nominal shear or punchure force(for footings Vn=Vc). *Vu!(4)"Vn)=Shear or punching shear strength ratio. Page4 Plain Concrete Isolated Square Footing Design: F2 fc:= 2500•psi Concrete strength fy•= 60000•psi Reinforcing steel strength • Es:= 29000•ksi Steel modulus of elasticity "Iconc:= 150•pcf Concrete density 'Ysoil:= 100•pcf Soil density gall:= 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldi:= 2659•1b Pd1:= Totaldl Totalll:= 7756•lb P11:= Totalll Pt! Pdl+P11 Pti= 10415.1b Footing Dimensions tf l0•in Footing thickness Width:= 36•in Footing width A:= Width2 Footing Area cinet gall—tf"(cone Clner= 1375•psf Pu Aregd chidArco=7.57541.2 < A=9•ft2 GOOD Widthregd:= Aregd Widthrcgd=2.75•ft < Width=3.00 ft GOOD Ultimate Loads FnA' Pdj+tf'A'7conc Pu= 1•4•Pd1+ 1.7•P11 Pu= 18.48•kips Pu qu:= A qu=2.05•ksf Beam Shear bccd:= 5.5.in (4x4 post) d:= tf 2.in 0.85 b:= Width 11=36-in V1 := 4p±3.4 fc-psi.b.d V„= 16,32.kips (b-awl V .b,:- qt, V„=7.83.kips < V,= 16.32.kips GOOD \., Two-Way Shear hs:= 5.5.in Short side column width bt,:= 5.5.in Long side column width + 4)+2-(bL+ d) b0=54.in I3 = 1,0 (4 8 — + --- \if,'psi-b.c1 V„=48.96.kips ,...,....,, i -"A '...' ' "V Vtum,:= 0.2.66-41-epsi-b.d V =32.56-kips 2 / ,y44,:= qufb -Ned+02] Vu=15.88.kips < Vimi =-32.56.kips GOOD Flexure -, ,- 1 h -bc01\- l ( Mu:- chi. . .1) M„=4,9841-kips 2 Ai.= 0,65 1 1:= —6 S=022/113 F1:= 5.0.4repsi Ft= 162.5.psi Mit ft:= — ft= 155.47-psi< Ft= 162.5-psi GOOD S Use a 3%0"x 3'..0"x 10"plain concrete footing Plain Concrete Isolated Square Footing Design: F3 := 2500-psi Concrete strength f .= 60000-psi Y• Reinforcing steel strength E,:= 29000-ksi Steel modulus of elasticity ^yccnc:= 150-pcf Concrete density := 100-pef Soil density ciall 1500-psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldi 2363-lb Pdi:= Tota1111 Totaig:=4575-lb P11:= Total!! Pdi+Pit 6938.1b Footing Dimensions t := 10-in Footing thickness Wei 30-in Footing width Width2 Footing Area gad gait tr''Tealic = I 375-psf Pit Arco:= — 2 (1net Areqd=5.046.ft < A=6.25.ft GOOD Widthreo NiAreqd Widthr,qd=2.25-ft < Width =2.5011 GOOD Ultimate Loads ZA:= Pin t A'Iconc + PH P„= 12.18,kips Pll q„:= = 1.95.ksf A Beam Shear bcul:= 5.5-in (4x4 post) d:= tt-2•in d:= 0.85 b:_ Width b=30-in Vi,= °3.4tc.psi'b'd yr, 13.6'kips fb_b." V,:= the <b Vt,=4.97•kips < V„T 13.6-kips GOOD \ 2 ✓ Two-Way Shear bs:= 5.5-in Short side column width bL:= 5,5-in Long side column width b,:= 2.(b5+ d)+2-(ht;+ci) bo=54•in 13 := 1.0 4 Vim; . w ,, c'pi'b'd ,�=- ltl.8.kips 3 3.13 V,i ,as:_ 4+-2.664 f'psi•b•d V"„zas=27.13`kips 22 $u b —�bce1+ de] Vt=9.71-kips < Vnan,x=27.13'kips GOOD Flexure 2 b—beo1 1 Mn 4u' .(2).b M,=2.54•ft.kips :- 0,65 b.d` N," _ `- S=0.185413 6 1'C:= 5.4). f.psi Ft= 162.5•psi ft S u f=95.19'psi < Ft= 162.S'psi GOOD Use a 2'-6"x 2'-6"x 10"plain concrete footing Plain Concrete Isolated Square Footing Design: F4 fe:= 2500-psi Concrete strength fy:= 60000-psi Reinforcing steel strength Es 29000•ksi Steel modulus of elasticity 'Yconc 150•pcf Concrete density (soil:= 100•pcf Soil density clan 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Teta ldl:= 5001-lb Pdl_ Totaldl Teta := 7639-lb P11:= Totalll Ptl Pdl+P11 P11= 12640-lb Footing Dimensions tf:= 12-in Footing thickness Width:= 42-in Footing width A Width2 Footing Area gnet:= gall—tf'lconc clnet= 1350•psf Pti Areqd 9.363 ft2 < A= 12.25 ft2 GOOD gnet Areqd Widthreqd:= JAregd Widthregd=3.06-ft < Width=3.50 ft GOOD Ultimate Loads ,Pwal�:= Pdl+tf'A''Ycone Pu:= 1.4 Pd1+ 1.7•Pl1 Pu=22.56-kips Pu qu = A qu= 1.84•ksf 1 Beam Shear bcoi:= 5.5-M (4x4 post) d:= tf-2-in 4):= 0,85 b:= Width b=42,in V„:= 4).-4qfc•psi•b•d V,=23,8-kips 3 4 b-bcol) h V„=9.8-kips < V„=23.8•kips GOOD \ 2 Two-Way Shear bs:= 5.5.in Short side column width bL:= 5.5.in Long side column width b0:= 2.(bs+ d)+2-(bL+ d) b0=61 in LO 4 8 4 .. 4). .± + --- . fv•pst•h-d V,=71A•kips rt,VTro 1 1,f3c 0.2.66•417„-psi•hd V =47.48-kips - 2 r kbm+ d)21 V,= 19.49,kips < V„, =47.48•kips GOOD Flexure 41 Ma:= qu• ( 2 ) • 2)-b M,= 7.45•ft•kips * \ At:= 0.65 2 ,..1 b•d 3 S-,,-.0,405-ft Ft:= 54,i fens' Ft= 162.5-psi ft:= — ft= 127.79•psi< Ft= 162.5•psi GOOD S Use a 3'-6"x 3-6"x ir plain concrete footing .\: \-2- Plain Concrete Isolated Round Footing Design: f5 fc:= 3000-psi Concrete strength fy:= 60000-psi Reinforcing steel strength Es:= 29000•ksi Steel modulus of elasticity Icon, 150•pcf Concrete density '(soil:= 120•pcf Soil density gall:= 1500-psf Allowable soil bearing pressure TYPICAL FOOTING Reaction Total := 619-lb Pd1:= Totaldl Totalll:= 1600-lb P11:= Totall1 Pti:= Pdl+Pll Pti=2219-lb Footing Dimensions tf:= 12-in Footing thickness Dia:= 18-in Footing diameter Tr•Dia2 ^A= 4 Footing Area gnet gall—tf'lconc net= 1350•psf PU Areqd (hetAreqd= 1.644.112 < A= 1.77.112 GOOD JAred4q ' Diareqd Diareqd= 1.45-$ < Dia=1.50 ft GOOD Ultimate Loads Pdl+tf'A''1'conc Pu:= 1.4•Pd1+ 1.7-P11 Pu=3.96-kips Pu 9u qu=2.24-ksf A Beam Shear be01:= 3.5-in (4x4 post) d:= tf-2-in 41):= 0.85 b:= cos(45•deg)•Dia b-=12.73•in V := (1).-4 Vr•-• 7,901-kips 3 bag\ Vu q„ •b Vu 0.91•kips < V 7.901•kips GOOD 2 ) Two-Way Shear bs 3.5-in Short side column width := 3,5-in Long side column width +d)+ 2-(bL+d) b.°=54-in = 1.0 (4 8 23.70.3.kips Vmuu:= 0.2,66.4 fu-psi•b•ti Vnrn = 15,76-kips Xu = qt,•-b2 (b„01+4:1)21 V„=-0,31-kips < V = 15.76-kips GOOD Flexure Mu:=•-, • -- •b Mu 0.18.fl•kips 2 , \2) .At:. 0.65 b•d- ----6 S=0.123•ft3 Ms := Ft= 178.01-psi Mu :-. 9.9•psi < Ft= 178.01•psi GOOD Use a 18"Dia.x 12 plain concrete footing \4 Plain Concrete Isolated Square Footing Design: FG f, 2500.psi Concrete strength f •= 60000,psi Reinforcing steel strength Y' E,:= 29000.ksi Steel modulus of elasticity 'fcone 150*Pcf Concrete density 'Noll 100'Pef Soil density := 150013sf Allowable soil bearing pressure COLUMN FOOTING Reaction Totald1:= 70724b Pd1:= Totaldi Totalll 13304.113 Pil Totalis := Pin+Pll Pd.=20376.1b Footing Dimensions tf:= 15-in Footing thickness Width:= 48.in Footing width A:. Width2 Footing Area gall - 1313.psf Arco:= Arco = 15.525.112 < A= 162.ft GOOD (Ind Widthreld:= ./Atega 'W'idthreqd 3.94.ft < Width=4,0011 GOOD Ultimate Loads Pd1 + rA-1c01c P,:= 1.4. + 1.7.PH = 36.724(ips Pu := =2.29-ksf A \S— Beam Shear be,al:= ssin (4x4 post) d:= tt—2•in 4). 0.85 b = Width b=48-in VM - -4f.psi.b-d V,a=35.36-kips b—bc8 VU:= qi, 2 ,b V„= 16.26-kips < V,,=35.36-kips GOOD i Two-Way Shear bs:- 5.5'-in Short side column width bL:= 5.5-in Long side column width be 2•(bg+ d)+ 2-(b1,+'d) b„=74-in 3e:= 1.0 4j V yi.= 4). ± -t - fe-psi'b.d V,= 106 08•kips 3 3.13, Vnanas:= 4a'2.66'4fc•psi•b-d V„,„„, =70.54-kips = qu- b2 0)01+d)1 V,=31.26-kips < V„„„„,=70 54•kips GOOD Flexure Mt,:- q„' b bcol 1 -b Mu= 1.4.39'I1-kips 2, 2 ✓ _ 2✓ 0.65 b.d 2 .- S=0.782•ft3 6 Ft:= 5.4)-,Ifepsi pt= 162.5•psi ft �„ ii= 127.75•psi< Ft = 162.5-psi GOOD Pee a 4'-O”x 4'-0”x 15"plain concrete footing 1to BentteV Microsoft Current Date:12/15/2010 11:11 AM WheY\ Qt‘i Units system:English Urvg. letib 15 1.)ext. +o Design Results 13 rear load Reinforced Concrete Footings GENERAL INFORMATION: Global status OK Design Code • ACI 318-05 Footing type Spread Column type Concrete Geometry 18 in 141 12 ft 7 ft 6 ft ft 12 ft • F16.1 Length 12.00[ft] Width 7,00[ft] Thickness 1.50[ft] Base depth 5.00[ft] Base area 84.00[ft2] Footing volume 126.00[ft3] Column length 12.00[in] Column width 12.00[in] Column location relative to footing g.c. Centered Materials Concrete,f'c 3.00[Kip/in2] Steel,fy 60.00[Kip/in2] Concrete type Normal Epoxy coated No Concrete elasticity modulus : 3122.02[Kip/in2] Steel elasticity modulus : 29000.00[Kip/in2] Unit weight 0.15[Kip/ft3] Soil Modulus of subgrade reaction 200.00[Kip/ft3] Unit weight(wet) 0.11 [Kip/ft3] Footing reinforcement Free cover 3.00[in] Maximum Rho/Rho balanced ratio . 0.75 Bottom reinforcement//to L(xx) . 945 @ 9.00" Bottom reinforcement//to B(zz) . 345 @ 13.00" (Zone 1) Bottom reinforcement//to B(zz) . 1245 @ 7.00" (Zone 2) Bottom reinforcement//to B(zz) 345 @ 13.00" (Zone 3) Dowel bar size Rebar 1 : 8-#4 Free cover . 1.00[in] Development length calculated . in tension Bars number//to x axis 3 Bars number//to z axis . 3 Stirrups , #4 @ 8.00" Legs number//to x axis : 2 Legs number//to z axis , 2 Load conditions to be included in design Service loads: SC1 DL Design strength loads: DC1 1.4DL Loads Condition Axial Mxx Mzz Vx Vz [Kip] [Kip*ft] [Kip"ft] [Kip] [Kip] RESULTS: Status OK Soil.Foundation interaction �L 2 Allowable stress 3E03[Lb/ft2] Min.safety factor for sliding 1.25 Min.safety factor for overturning 1.25 Minimum safety factor for bearing capacity(uplift) ; 2.50 Controlling condition SC1 Safety factor for bearing capacity(uplift) 1000.00 Condition qmean qmax Amax Area in compression Overturning FS [Lb/ft2] [Lb/ft2] [in] [ft2] (%) FSx FSz slip SCI 0 0 0 84.00 100 1000.00 1000.00 1000.00 Bending Factor 4) 0.90 Min rebar ratio 0.00180 Development length Axis Pos. Id Ihd Dist1 Dist2 [in] [in] [in] [in] zz Bot. 22.90 8.01 33.00 33.00 xx Bot. 26,71 9.35 63.00 63.00 Axis Pos. Condition Mu 4)*Mn Asreq Asprov Asreq/Asprov Mu/(4*Mn) [Kip*ft] [Kip*ft] [in2] [in2] zz Top DC1 0.00 0.00 0.00 0.00 0.000 0.000 I I zz Bot. DC1 0.00 179.50 0.00 2.79 0.000 0.000 I 1 xx Top DC1 0.00 0.00 0.00 0.00 0.000 0.000 I xx Bot. DC1 0.00 341.66 0.00 5.58 0.000 0.000 1 I Shear Factor 4) 0.75 Shear area(plane zz) 8.57[ft2] Shear area(plane xx) 14.06[ft2] Plane Condition Vu Vc Vu/($*Vn) [Kip] [Kip] xy DC1 0.00 221.83 0.000 I I yz DC1 0.00 135.15 0.000 t I Punching shear Perimeter of critical section(b... : 8.79[ft] Punching shear area10.53[ft2] 'CC 1L:, 03 Column Condition Vu Vo Vu/(4rVn) [KIP] [Kip) column 1 DC1 0.00 332:26 0.000 r Notes *Soil under the footing is considered elastic and homogeneous. A linear soil pressure variation is assumed. *The required flexural reinforcement considers at least the minimum reinforcement *The design bending moment is calculated at the critical sections located at the support faces *Only rectangular footings with uniform sections and rectangular columns are considered. *The nominal shear strength is calculated in critical sections located at a distanced from the support face *The punching shear strength is calculated in a perimetral section located at a distance d/2 from the support faces *Transverse reinforcement is not considered in footings *Values shown in red are not in compliance with a provision of the code *gprom=Mean compression pressure on soil. *qmax=Maximum compression pressure on soil. *Amax=maximum total settlement(considering an elastic soil modeled by the subgrade reaction modulus). *Mn=Nominal moment strength. *Mu/(4*Mh)=Strength ratio. *Vn=Nominal shear or punchure force(for footings Vn=Vc). *Vu/(1Y*Vn)=Shear or punching shear strength ratio. 1r L . Plain Concrete Isolated Square Footing Design: F7 fc:= 2500-psi Concrete strength fy:= 60000•psi Reinforcing steel strength Es:= 29000•ksi Steel modulus of elasticity 'lconc= 150•pcf Concrete density Ysoil 100-pcf Soil density gall= 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldl 1200-lb Pdl:= Totaldl Tota111:= 3200-lb P11:= Totalll Pt1:= Pd1+P11 Pt,=4400.1b Footing Dimensions tf:= 10•in Footing thickness Width:= 24•in Footing width A:= Width2 Footing Area gnat sail–tf'Yconc gnet= 1375•psf _ Pt1 Aregd• =3.2•ft2 < A=4•ft2 GOOD %et Areqd Widthregd:= JAregd Widthregd= 1.79•ft < Width=2.00 ft GOOD Ultimate Loads ,:= Pd]+ tf'A'"Yconc P„:= 1.4 Pd1+ 1.7•Pll Pu=7.82-kips Pu 9u A— qu= 1.96•ksf Beam Shear beol:= 5$41 (4x4 post) d t 2'4) := 0.85 b:.- Width b=24-in 4 V := le,-psi-b.d --- 10.88-kips 3 (b heal) V„ q,- •b V,.3.01-kips < V0 10.88.kips GOOD 2 / Two-Way Shear bs:= 5.5i Short side column width 14,1= 5.5-in 1..ong side column width b, 2-(bs+cl)+2-04,+ b„ 54-in := 1.0 (4 +3 f„.psi4)-d .32.64-kips 3.3 01 := 4).2,66. fe\r V„„„,, 21.71.kips -12 A q-- (b-11. N•1)27 =5.35-kips < Vtmax=21.714dps GOOD Flexure cl —2be°1)21 (1 u2) b 1.16-ft.kips 0.65 2 S 0.148.113 F := 5,4)..41r.psi F1= 162.5,psi ft:= =54.45-psi < Ft 162.5,psi GOOD Use a 2s-0"x r-cr x 10"plain concrete footing 1 BY At\i,c, DAM _(:) M 0cm JOE'NO C.70,:e ......... . octO OF . ... . PROJEC Co red .Foohncy) aa' )( i- (." x ca,ss RE' On -V A - fon+ Load 1 1 Li t1:101-i IQ'f.cv 0 w 1... w , 1 0 2 L I n t : ...1 0 J W a U —0,61--4-04---- 0 0 . o , . . T i X 0.. < _ Z C‘c\-e L •\(_. Gv eill..yfnira 7 X A A 2 O 1\1\107 .-:.• ' S,\ \ 4- ‘ ‘.-"/ 1\,—)t 0 ri M 2._ ,_. Co, c.)*X ,SNY3 457)(2.-2.)( I 1) 're :6(;,-6(0‘.2.s-) •i- D ,It.`'.-,C. ,1) 6 - u_ z i) [ 1 8 A tt ---: Al\iq :=- e....- (1 rzz;-+ -.),363(0 ..., A_ 6 2L IA s ,,-. bt,_ i ,6 — (.3;',5).°(2,52.1-)- (A- CI,t,-., :,_/(,)-7.,,), „ 72-1,), 1 A3L. ;2 g 0 6 M , = .,D:;-5 — '55 7 FS ° 0V-- 4) •,-. „ 16 :T; = P; ii . -;--- 0. '.- ..r. v: 9 n -3 ' Harper H+ of Peterson Righellis in Current Date:6122/2010 10:43 AM Units system:English j file name.O 1HHPR Projects\CEN-Centex Homes t317910EN-PlanslCEN-190 Summer Creek TTownhomeslcalcslUnit AlfoundationsFErant Load 2.etz1 } M33=51.9 Multi 1433.-12,19pelt) 4 3 I 1 1 1 „.. Bentley - Harper H ouf Peterson Righellis Current Date:EM2010,1035 AM. Units system:English File name:O:\HHPR Projects10EN-Centex Homes 309\CEN-PlansNCEN-090 Summer Creek Townhemeskcales‘Unit Akfoundations‘Front Loactetz\ M33.25.66 twit] M33=-30.27 tkiplil x 4 • • • • .m. .01,0 ,OE.3 NO C E ts,,,3...„0 9 0 PROJECT 5A d .Cookl RE. A °I ri 11 V 30.14 IL9-7. IC's& P t 0 2 , '2 Li 0 W 0 1 k'-1---- 0 , I hi 0 .1: 0 r--- .:( Checvm 0 4 e(4-uirivet3 0 z 2 < 0 0 F3 n ov- 17,S i w - z 0 z ).7 : ;:ac)k,,ct t, - 11(0 i kb s„, 1- 0- atO:410G (, (a0/61.0(07/.515(0)°41Y\ <a :. CA,:mo,..oe 0 c.; . 0 , h., a7\ba-accso) a) • , a) "" ‹.... 1,500 p%1- e."212. 1 fisrpor Hoot Peterson Rigttellis Current Date:6/22120/0 10<38 AM Units system:English File named O tHHPR ProJects10EN,_,Centex Homes C N Pl n \C Summer Creek TownhomestcalcstUnii A\#oundations\Rear Load,etzt M33-43.24 M33=-46.06[Kipltj A (j E £ F� S on Bentley.Harper Houf Peterson R1 hauls Inc. Current Datez 6/2212O1010:43 AM. Units system;English File name O 91HPRProjects\GEN-Centex Homes(309)\CEN PlanstCEN-090 Summer Creek Townhomes\calcs\Unit AtfoundationstRear Load 2.etz\ 33-41.88(Kipltj M33?-46.37(Ktp ttl £i ry 3 X m 1 i\f\c5ri\elfk i V BY A, NA,(......... `ALsATE'. f 11 JOB No e ts„, ,,,,,,0 9,D OF PROJECT: RE: "east (, l 03 w �� d 1 w O w U z ... • O O E y p, O 1rl.i i f 4 ' , ., A ,,:„.«0, 3t ,a' xats mit, Z "3W" Y i l it t:ac ;'`�`� y[ yC¥'... . i>',J 3 '*.34 ,<.m 1,)7),35-— E::::l o azo 0 A401 iX .`1%) i WI e \Q at, A..s 1:-. o. (4' X1,11- 0 AA A',:: 0,q0(a41;4'0(470 0,00-)65-* °'9Cf,l'2...) m+ 316 1-(LAS; 4 y C NV* ' , f o a I ' i I' " a =: 0, I(.1,(6C /a . It 4 OM rt 7,... 9,q(0,cigIt.o,006)65 —6,.(--.0141) , 4.0 t4 x mi,o C4 a BY: OAT,.. JO)s N'.,..: Q„' PROJECT: 0 tF i l'i51' ° `4 a Ur\1-it3 -3 Z1 ,i3 i Cr a Z - Up‘i)t- Pi - --- . -ate-'. . '1/4.l i‘ C --> - 1 Z o 4 Z :5 LE] 0, :::: (0,1•0‘1 1(,()01:1)) ilo 61.3,-66"'(4-;c):7-- \ 353 .1\J , ,rni \710,431..) ,. > a L 1 0 tt 5 cL, al , A .. i ,O BD vow Y t.a o,o ) / a,e,i x:sori :41' - . 0,(. . ctr-)' . 5 Iv �th ^. Q L\ ( 1,,OO° C1- , w) 1, - i 2 2. i.'a.Q' C(_ . c1+ µ' S- ,'< t .. I -4' ' e to" oic. ca= (t,2°1i O,OOO')/(o, ( otxa` 4.2%\3 = Q -Lb ti tJ oci 0 M Y\ .C'10 t:i. ci. tC - 1/45.-- °*-1-61)/2_ -" c-:e 5 ir— ->b-3,k1,1 :. , (/'' ''.> (� NI _ /] moi,J f� �'g/ '1'� T „+„x }a g'q .. ,t �,,y',y.9 d;p^.ly CS::..f... �.r �„ " ` A.F*`"i�+P �p f (` 8!, £ E,., t ,L.,3^ `•, £,da„�$. if , Y wa° ..a 0...46-41,2,-) = ..�4-a Y t`4� # T---:- Tr ,11.1 NO• _ ., PROJECT: RE' Ur\4 1; - \vy'r SW fr..,, - -J 0 aL.o3tet 1-• w 0 • 0 :i U2,1;1 O .., _4_ O z . 0 i . ._ CV\eck_ OvertufnlY\9 z 0 K., -7_ 'a' .03 1\i\ Z., -r- (eI0,1s0)(1,5)(5X4) +-(5- ( :)4- hLt.( ) (ft AL. 1\11 ,.* g,(5-Y0,iso-) A i5)('5)(41-) 4-5: ,(la) 4- 1 , (0L(2) L--. SC,. r2. 44.1,clk (0 , 1,Li .> 1 ,5 . , oY.- O . I :: 7—(5--6 — fr. 0 — Nil I ilii drtecit. -a c,,,o3 ,_ r.... 5,4 t5,2 4-1,b1, ... _ 11,la .. — , lo re t..,..2, ,-, ‘, 15.:c4 3,-72)(.2) (1,LL7 ,.) 1-. t4 DI_ o 6 $. 4 • , 0 C. j!CA 2_ y c) 4-- (1, (..C i- .3 (2-) 1-- (a O --) ,. W c- lo _,C,C , 3.0).... \,..5 (2 \C-\p,5 Is" , ,,,,-_-- .,`!.),S5 (:).frj,;;;',,- ..::: .:',:- 2.\-i,(,(..,i.7,,z,) I'S 75:‘1 — (:;''r irD•Y 7:7 4(6,z-5 I) \ ,-- 0 c0 3(. 2.(1,22-)) Va'r -- C.0 0 PRO../ CT: RE: Li n. tt ,: 0 Li tY, i„),,, (,,, c -Kas-C ., x Its1 k sou:-..-_-- a,„q7-!t- v...-9 1.— to ,' 0 2. , 4(? bE.. ÷- 3( ,cib It ?,-- -Q,C, 0'5 • j - IX 5 • w z Lo 0 2,:r45 t,-.. 9 2 i - 10,„ r---.., - - ' '- ---------- -:-- I zb(4) e ...,-: ,1 4 0 i z --3e- • ",-,..k.,,.? ,r , - O ) t i f „ ,0a , 1 1 , 0 Y, -0-r VI01 -- f"Y',- -,-47/7-3 )1,..77 ,— A 7.t.—2..LI,W5) „......, 0 m 0. -,, z w ,..., 0 6 - = , O 6 ... O - , •,..:: 0 0 .• O• 0 ...., '• .4046...: 19117" , .'7"-.-2b peottey Harper Hoof Peterson i'ghells Inc; Current Date:6/22/2010 10:42 AM. Units system:English File name:o:‘,11HPR Projes tssCEN-Centex Homes p09NEN Plans4CEW 090SummerCteekTuwnhar\dalc ttJniit A1foundattonsUnterior 2 e z1 } M33=23;551KJp'ttj M31,-17.813(Kip"ri Maywitt-t6 L.0 • � 1 Be n tee, Harper Rout Peterion Current Date:6/22/2010 10:42 AM Units system:Enolisn. File name:OAHHPft Pro ts\CEN Cantak,Hortiet(200).keet 6urnmet Creek Townilernes‘calestUnit AVoundationstirsterior.etz‘ • ..• • • • • • • 1 M33z32.26 ipftJ M33---9.27 A ..• II 1 MS, elf\I-s Le-e, 'F30 ,• ,•• ,:. R „9 :.-.-.: CD •. 00 LAI uv w < (21)dOr mr— . 2 u ( 1„-.)( )e% 15x-xati ).1 (c-f-,KAy")%.bc...o r Ei "a -04- c ) 4'3- 0 -71() -,- 9::-)1 qS4i tk ---- (C-C.:17VI‘e'l :.• ' 3 p4 e) r41 bOh*0 z--, ( f-)E,-Xs7,00fi)(2,./0/ c...00010i/ z V k IV a) ..t-* t-t- (,') 'col CV'T `0 i C'''IC' '*\/ - '0 O 01 z 0 c) , ✓ 0 K 0 rn —I - , z - S ::"...l: 5li:--Ii-,:-ii',75Tk),:c :1D3F0Md -10 010- 0-1\1,-)) ACI 318-05 Appendix D 1.0" Diameter Bar Capacity at Portal Frame Concrete Breakout Strength Stem Wall Capacity when govern by 3 edges Foundation Capacity Givens Givens fc= 3000 psi fc= 3000 psi h'er= 3.50 inches her= 12.00 inches (into the Fc Stem= 8.00 inches Note: hef above is the the embedment into or Cmax= 5.25 inches the foundation and does not consider stem w; Fnd Width= 36.00 inches Cmin= 2.25 inches Cmin= 18.00 inches Wc,N= 1.00 cast-in-place anchor yrc,N= 1.00 cast-in-place anchor k= 24 cast-in-place anchor k= 24 cast-in-place anchor $= 0.75 strength reduction factor = 0.75 strength reduction fact Calculations Calculations A = 68 in` AN= 1296 in` ANO= 110.25 in ANO= 1296 in` Nb= 8,607 pounds Nb= 55,121 pounds Wed.N= 0.8286 Wed.N= 1.00 Nth= 4,399 pounds Ncb= 55,121 pounds 4NCb= 3,299 pounds (I)Ncb= 41,341 pounds Combined Capacity of Stem Wall and Foundation (pith= 44,640 0.754Nnb= 33,480 Concrete Side Face Blow Out Givens Atm)= 2,15 in` fc= 3000 psi 18.00 inches = 0.75 strength reduction factor Calculations = 231,191 pounds $Nsb= 173,393 pounds Concrete Pullout Strength Givens At"= 2.15 in' fc= 3000 psi = 0.75 strength reduction factor Calculations Np= 51,552 pounds = 38,664 pounds Steel Yield Strength Givens ft= 58,000 psi A= 0.606 in2 (1)= 0.80 strength reduction factor Calculations N.= 35,148 pounds = 28,118 pounds 33,480 Ductility Met Holdown Check Holdown: HDLI14 Holdown Capacity= 14,930 pounds 1.6*Capacity= 23,888 pounds 23,888 28,118 Hoidown Checks 7-37D, 1 as n rn Oa I 4 Wel r : 11 -310i1' ::ri a sq•Zt =cl)co 4)(7,-5, 9) 'i' 11 r'n potOs>t)cztj ,-) k.A.k)ic.: ildQ..2e ...-.y.tisx:ttilyxe.to,,,t),110,t, ")c, t 1 y-)ryl 1.11ci COO) \ 1S‘ a-co .4* OO 1 --..z. en rr.00\ A \ogc,,‘ :11 S'iallo 1 _3001.3--, SrAiik,k) V s), ?W)OS - , _1/41 _\ %Ur') & g--4\ \'e 3-,- -LT -• Clc? ° Cr 00S1 5 nn 001 '.' • CD , 0 0 ::: • 0 5)ci o3ti -7 cs1)CY) 0rA,b) :11 j(xx) -i-16 r--1(.. -:,c iscl €,1 kg1) 01001 -.: ( r0OS1)(_711Q,) 1 (71/4)( '13/1.X ,_tOCA z.c .:•_dic flct:e :. (", 3',. c-,' 1 o1rY) .7)16 C.C1(;:.-, 77,1/41•V? l', : Q II -1 1 0 9 n VkA)1p1 !cla, () z , O --. , - El :: (Y) ., CrIOOSI ''r rY) • e")dOOS1 --.=• 3Sd 00S\-Z Cig$ A\OUX 3 . 1 i'4 CA001 4 )(2,-1-1\ ---- T'00) loc(8_ –„,..,----_,,,— -,..r„........,,*.............,,,A.9-.,,,, -,...........,.. .*...,-, ........,-....-m.........*............. -I 5 jora I I-- 3--vi ofyi :-...c,IscA 041))cs\at),?1 2,-)0,3Q) 1• m 1;) (Y1001 - c,(Y))( )CA 051 )c17.19) o o k J,ADic; d-lc) 2,2c: -7 C1.119)(144,1i)018 0S9 rsi1017 P 0 , JoOlSI I m k\\cirn il 6 00Z :7( )1 J..4.t..", t; m -t m 0 2 _ sCurpmet do s-wp ; -a , r,-, Ili CI ,,.,..,.,...........----- .1.031-0elci nor ON 40 31V0 ACI