Loading...
Specifications (21) 1 of 26 sfa 5FA Design Group, LLC PROJECT NO. SHEET NO. STRUCTURAL I CIVIL LAND USE PLANNING 12-046 PROJECT DATE Reoffelsen Addition 10/4/2012 SUBJECT BY Design Criteria LM General Building Department City of Tigard Building Code/Year 2009 IBC/2010 OSSC Dead Loads Total Roof Dead Load 15.0 psf Floor Dead Load 12.0 psf Live Loads Roof Snow Load 25 psf Floor Live Load (Residential) 40 psf Deflections Total Load Deflection Limit L/240 Live Load Deflection Limit L/360 Wind Loads Wind Speed (3-Second Gust) 94.5 mph Exposure B Importance Factor 1.0 Seismic Loads Project Site Zip Code 97224 Seismic Design Category p Seismic Soil Site Class D Importance Factor 1.0 Response Modification Coefficient 6.5 Mapped MCE Spectral Response Acceleration (Short Periods) 93.6% Mapped MCE Spectral Response Acceleration (1 Second) 33.7% Seismic Response Coefficient, Cs 0.108 Basic Seismic Force Resisting System Light-framed walls sheathed with wood structural panels rated for shear resistance Design Base Shear 9560 lbs Analysis Procedure Used Equivalent Lateral Force Special Seismic Ordinances/Notes: None Soil Parameters Allowable Soil Bearing Pressure 1500 psf 1/3 Increase for Wind/Earthquake forces? Yes Additional Ordinances/Notes: None CO CN "6 CN fli —1 , —, 1, u 52./S 1.. - ..... n . i ., ./ J 11 II '711L(e,•11 OC C r4- ---j" --4,,-, : f.,...! I ,..,.... t.4. 0)01/6 1 !..- ,e, e 1,--•,Q h 4 ' 057- 15t , 1 Pi — - -.. — — I--3 1 1. ..... ..._ i ,g C) ,I : ( f1/4.9130 . . 'LI lik9 - )°°/ I ...-, . C . _ IC l i A 1 F 0 R T E " MEMBER REPORT Level, Floor:Joist PASSED 1 piece(s) 9 1/2" TM® 110 @ 24" OC 3 of 26 Overall Length:12'10" + + O 0 Ira• El All locations are measured from the outside face of left support(or left cantilever end).All dimensions are horizontal. De Ign Resulf IIiI Actual i l tocatlan AI'inred Itesul l Lpf Loath Con binatilon(Pattern) , System:Floor Member Reaction(lbs) 657 @ 2 1/2" 1041(2.25") Passed(63%) 1.00 1.0 D+1.0 L(All Spans) Member Type:Joist Shear(lbs) 637 @ 12'6 1/2" 1220 Passed(52%) 1.00 1.0 D+1.0 L(All Spans) Building Use:Residential Moment(Ft-lbs) 2004 @ 6'5" 2500 Passed(80%) 1.00 1.0 D+1.0 L(All Spans) Building Code:IBC Live Load Defl.(in) 0.235 @ 6'5" 0.310 Passed(L/633) -- 1.0 D+1.0 L(All Spans) Design Methodology:ASD Total Load Defl.(in) 0.306 @ 6'5" 0.621 Passed(L/487) -- 1.0 D+1.0 L(All Spans) TJ-ProT"Rating 43 40 Passed -- -- • Deflection criteria:LL(L/480)and TL(L/240). •Bracing(Lu):All compression edges(top and bottom)must be braced at 3'11/16"o/c unless detailed otherwise.Proper attachment and positioning of lateral bracing is required to achieve member stability. •A structural analysis of the deck has not been performed. • Deflection analysis is based on composite action with a single layer of 23/32"Panel(24"Span Rating)that is glued and nailed down. •Additional considerations for the TJ-Pro'"Rating include:5/8"Gypsum ceiling. �� 1 IIS pili _ IIIA;� Bearing it i ads; Suppoi :=111111111:;;'... Oi Floor , Iii x TTI Availa(i(e Regurred peed iol# Accessories 1-Stud wall-DF 3.50" 2.25" 1.75" 154 513 667 1 1/4"Rim Board 2-Stud wall-DF 3.50" 2.25" 1.75" 154 513 667 1 1/4"Rim Board •Rim Board is assumed to carry all loads applied directly above it,bypassing the member being designed. �, D d oof Liir7110 Lads ! ( a Location SPad1g Cr(0 90) (i 0O Comment�F, i,. 1-Uniform(PSF) 0 to 12'10" 24" 12.0 40.0 Residential-Living Areas 1Na ierhaeusewl Notes =+li it w "e = ?- $L$TAINABLE FORESTRY INITIATIVE Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disdaims any other warranties related to the software.Refer to current Weyerhaeuser literature for installation details. (www.woodbywy.com)Accessories(Rim Board,Blocking Panels and Squash Blocks)are not designed by this software.Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction.The designer of record,builder or framer is responsible to assure that this calculation is compatible with the overall project.Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. The product application,input design loads,dimensions and support information have been provided by Forte Software Operator t Forte Software Operator Job Notes 9/14/2012 10:59:48 AM Logan Miller Forte v4.0,Design Engine:V5.6.1.203 SFA Design Group (503)641-8311 joists.4te Imiller@sfadg.com Page 1 of 1 4 of 26 Steel Beam File:Z:12012 Projects112-046 Roffelsen Garage AdditionlCalculationstcalcs.ec6 ENERCALC,INC.1983-2012,Build:6.12.9,16,Ver:6.0.26 Lic.#: KW-06005923 Licensee:SFA ENGINEERING LLC Description: 61(flush) CODE REFERENCES Calculations per AISC 360-05, IBC 2006, CBC 2007,ASCE 7-05 Load Combination Set: IBC 2006 Material Properties Analysis Method: Allowable Strength Design Fy:Steel Yield: 50.0 ksi Beam Bracing: Beam is Fully Braced against lateral-torsional buckling E:Modulus: 29,000.0 ksi Bending Axis: Major Axis Bending Load Combination IBC 2006 D(0.108)L(0.36) A Span=21.Oft • W8x31 Applied Loads Service loads entered.Load Factors will be applied for calculations. Beam self weight calculated and added to loads Uniform Load: D=0.1080, L=0.360 k/ft, Tributary Width=1.0 ft,(floor) DESIGN SUMMARY Design OK Maximum Bending Stress Ratio = 0.363: 1 Maximum Shear Stress Ratio= 0.115 : 1 Section used for this span W8x31 Section used for this span W8x31 Ma:Applied 27.510 k-ft Va:Applied 5.240 k Mn/Omega:Allowable 75.767 k-ft Vn/Omega:Allowable 45.60 k Load Combination +D+L+H Load Combination +D+L+H Location of maximum on span 10.500ft Location of maximum on span 0.000 ft Span#where maximum occurs Span#1 Span#where maximum occurs Span#1 Maximum Deflection Max Downward L+Lr+S Deflection 0.497 in Ratio= 506 Max Upward L+Lr+S Deflection 0.000 in Ratio= 0<360 Max Downward Total Deflection 0.690 in Ratio= 365 Max Upward Total Deflection 0.000 in Ratio= 0<240 Overall Maximum Deflections-Unfactored Loads Load Combination Span Max.""Defl Location in Span Load Combination Max."+"Defl Location in Span D+L 1 0.6900 10.605 0.0000 0.000 Vertical Reactions Unfactored Support notation:Far left is#1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 5.240 5.240 D Only 1.460 1.460 L Only 3.780 3.780 D+L 5.240 5.240 5 of 26 Printed:14 SEP 2012,11:22AM Wood Beam ENERCALC,INC.1983-2012,Build:6.12.8.26,Ver:6.0.26 Lic.#: KW-06005923 Licensee:SFA ENGINEERING LLC Description: B2 CODE REFERENCES Calculations per NDS 2005, IBC 2006, CBC 2007,ASCE 7-05 Load Combination Set: IBC 2006 Material Properties Analysis Method: Allowable Stress Design Fb-Tension 2,325.0 psi E:Modulus of Elasticity Load Combination IBC 2006 Fb-Compr 2,325.0 psi Ebend-xx 1,550.0 ksi Fc-Prll 2,050.0 psi Eminbend-xx 787.82 ksi Wood Species : iLevel Truss Joist Fc-Perp 800.0 psi Wood Grade :TimberStrand LSL 1.55E Fv 310.0 psi Ft 1,070.0 psi Density 32.210 pcf Beam Bracing : Beam is Fully Braced against lateral-torsion buckling D(0.066L(0.22) + + it + + , I ([ q s -x t4 �i v ' , qt qIrk i yg.!I t „2 hl te• A 3.5x9.5 Span = 12.50 ft Applied Loads Service loads entered. Load Factors will be applied for calculations. - Beam self weight calculated and added to loads Uniform Load: D=0.0660, L=0.220, Tributary Width=1.0 ft,(floor) DESIGN SUMMARY Design OK Maximum Bending Stress Ratio = 0.562 1 Maximum Shear Stress Ratio = 0.235 : 1 Section used for this span - 3.5x9.5 Section used for this span 3.5x9.5 fb:Actual = 1,306.36 psi N:Actual = 72.81 psi FB:Allowable = 2,325.O0psi Fv:Allowable = 310.00 psi Load Combination +D+L+H Load Combination +D+L+H Location of maximum on span = 6.250ft Location of maximum on span = 0.000 ft Span#where maximum occurs = Span#1 Span#where maximum occurs = Span#1 Maximum Deflection Max Downward L+Lr+S Deflection 0.314 in Ratio= 477 Max Upward L+Lr+S Deflection 0.000 in Ratio= 0<360 Max Downward Total Deflection 0.419 in Ratio= 357 Max Upward Total Deflection 0.000 in Ratio= 0<240 Overall Maximum Deflections-Unfactored Loads Load Combination Span Max.a-"Defl Location in Span Load Combination Max."+"Defl Location in Span D+L 1 0.4192 6.313 0.0000 0.000 Vertical Reactions-Unfactored Support notation:Far left is#1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 1.834 1.834 - D Only 0.459 0.459 L Only 1.375 1.375 D+L 1.834 1.834 6 of 26 Printed:14 SEP 2012,11:38AM Wood Beam ENERCALC,INC.1983-2012,Build:6.12.8.26,Ver:6.0.26 Lic.#: KW-06005923 Licensee:SFA ENGINEERING LLC Description: B3 CODE REFERENCES Calculations per NDS 2005, IBC 2006, CBC 2007,ASCE 7-05 Load Combination Set: IBC 2006 Material Properties Analysis Method: Allowable Stress Design Fb-Tension 2,325.0 psi E:Modulus of Elasticity Load Combination IBC 2006 Fb-Compr 2,325.0 psi Ebend-xx 1,550.0 ksi Fc-PrIl 2,050.0 psi Eminbend-xx 787.82 ksi Wood Species : iLevel Truss Joist Fc-Perp 800.0 psi Wood Grade :TimberStrand LSL 1.55E Fv 310.0 psi Ft 1,070.Opsi Density 32.210pcf Beam Bracing : Beam is Fully Braced against lateral-torsion buckling + + D(0.066)L(0.22) + + q IP II A 1.75x9.5 A Span=6.50 ft Applied Loads Service loads entered.Load Factors will be applied for calculations. - Beam self weight calculated and added to loads Uniform Load: D=0.0660, L=0.220, Tributary Width=1.0 ft,(floor) DESIGN SUMMARY Design OK Maximum Bending Stress Ratio = 0.30Q 1 Maximum Shear Stress Ratio = 0.208 : 1 Section used for this span 1.75x9.5 Section used for this span 1.75x9.5 fb:Actual = 697.53psi fv:Actual = 64.57 psi FB:Allowable = 2,325.00psi Fv:Allowable = 310.00 psi Load Combination +D+L+H Load Combination +D+L+H Location of maximum on span = 3.250ft Location of maximum on span = 5.720 ft Span#where maximum occurs = Span#1 Span#where maximum occurs = Span#1 Maximum Deflection Max Downward L+Lr+S Deflection 0.046 in Ratio= 1697 Max Upward L+Lr+S Deflection 0.000 in Ratio= 0 <360 Max Downward Total Deflection 0.061 in Ratio= 1288 Max Upward Total Deflection 0.000 in Ratio= 0<240 Overall Maximum Deflections-Unfactored Loads Load Combination Span Max.""Defl Location in Span Load Combination Max."+"Dell Location in Span D+L 1 0.0605 3.283 0.0000 0.000 Vertical Reactions•Unfactored Support notation:Far left is#1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 0.942 0.942 - D Only 0.227 0.227 L Only 0.715 0.715 D+L 0.942 0.942 7 of 26 VV.Od C•Iurnn File:Z12012Projects\12-046RoffelsenGarage Addition\Calculationslcalcs.ec6 ENERCALC,INC.1983-2012,Build:6.12.9.16,Ver6.0.26 Lic.#: KW-06005923 Licensee:SFA ENGINEERING LLC Description: 6x12 col Code References Calculations per 2005 NDS, IBC 2006, CBC 2007,ASCE 7-05 Load Combinations Used : IBC 2006 General Information Analysis Method: Allowable Stress Design Wood Section Name 6x12 End Fixities Top& Bottom Pinned Wood Grading/Manuf. Graded Lumber Overall Column Height 18.0 ft Wood Member Type Sawn (Used for non-slender calculations) Exact Width Wood Species Douglas Fir-Larch 5.50 in Allowable Stress Modification Factors Exact Depth 11.50 in Cf or Cv for Bending 1.0 Wood Grade No.2 Area 63.250 inA2 Cf or Cv for Compression 1.0 Fb-Tension 750.0 psi Fv 170.0 psi lx 697.07 inA4 Cf or Cv for Tension 1.0 Fb-Compr 750.0 psi Ft 475.0 psi ly 159.443 inA4 Cm:Wet Use Factor 1.0 Fc-PM 700.0 psi Density 32.210 pcf Ct:Temperature Factor 1.0 Fc-Perp 625.0 psi Cfu:Flat Use Factor 1.0 E:Modulus of Elasticity... x-x Bending y-y Bending Axial Kf:Built-up columns 1.0 1505 15.3.2 Basic 1,300.0 1,300.0 1,300.0 ksi Use Cr:Repetitive? No(non-polity) Minimum 470.0 470.0 Brace condition for deflection(buckling)along columns: Load Combination IBC 2006 X-X(width)axis:Unbraced Length for X-X Axis buckling=9.5 ft,K=1.0 Y-Y(depth)axis:Unbraced Length for X-X Axis buckling=9.5 ft,K=1.0 Applied Loads Service loads entered.Load Factors will be applied for calculations. Column self weight included:254.660 lbs*Dead Load Factor AXIAL LOADS. . . loads above:Axial Load at 18.0 ft,D=5.879, L=5.875,S=6.401 k B1, B2, B3:Axial Load at 8.50 ft,D=2.020,L=5.880 k DESIGN SUMMARY Bending&Shear Check Results PASS Max.Axial+Bending Stress Ratio = 0.5848:1 Maximum SERVICE Lateral Load Reactions.. Load Combination +D+0.750L+0.750S+H Top along Y-Y 0.0 k Bottom along Y-Y 0.0 k Governing NDS Forumla Comp Only,fc/Fc' Top along X-X 0.0 k Bottom along X-X 0.0 k Location of max.above base 0.0 ft Maximum SERVICE Load Lateral Deflections... At maximum location values are... Along Y-Y 0.0 in at 0.0 ft above base Applied Axial 21.771 k for load combination: n/a Applied Mx 0.0 k-ft Applied My 0.0 k-ft Along X-X 0.0 in at 0.0 ft above base Fc:Allowable 588.56 psi for load combination:n/a Other Factors used to calculate allowable stresses... I PASS Maximum Shear Stress Ratio= 0.0:1 Bending Compression Tension Load Combination +D+0.750L+0.750S+0.5250E+H Cf or Cv:Size based factors 1.000 1.000 Location of max.above base 18.0 ft Applied Design Shear 0.0 psi Allowable Shear 272.0 psi Maximum Deflections for Load Combinations -Unfactored Loads Load Combination Max.X-X Deflection Distance Max.Y-Y Deflection Distance D Only 0.0000 in 0.000 ft 0.000 in 0.000 ft L Only 0.0000 in 0.000 ft 0.000 in 0.000 ft S Only 0.0000 in 0.000 ft 0.000 in 0.000 ft D+L 0.0000 in 0.000 ft 0.000 in 0.000 ft D+S 0.0000 in 0.000 ft 0.000 in 0.000 ft D+L+S 0.0000 in 0.000 ft 0.000 in 0.000 ft 8 of 26 Wood Beam File:Z:12012 Projects112-046 Roffelsen Garage Addition\Calculationslcalcs.ec6 ENERCALC,INC.1983-2012Build:6.12.9.16,Ver.6.0.26 Lic.#: KW-06005923 Licensee:SFA ENGINEERING LLC Description: (N)garage hdr(wind only) CODE REFERENCES Calculations per NDS 2005,IBC 2006, CBC 2007,ASCE 7-05 Load Combination Set: IBC 2006 Material Properties Analysis Method: Allowable Stress Design Fb-Tension 900 psi E:Modulus of Elasticity Load Combination IBC 2006 Fb-Compr 900 psi Ebend-xx 1600 ksi Fc-Prll 1350 psi Eminbend-xx 580 ksi Wood Species : Douglas Fir-Larch Fc-Perp 625 psi Wood Grade :No.2 Fv 180 psi Ft 575 psi Density 32.21 pcf Beam Bracing : Beam is Fully Braced against lateral-torsion buckling W(0.064) i i i i i • 11.250 X 3.50 Span = 16.0 ft Applied Loads Service loads entered. Load Factors will be applied for calculations. Uniform Load: W=0.0160 ksf, Tributary Width=4.0 ft DESIGN SUMMARY- Design N.G. Maximum Bending Stress Ratio = 0.572 1 Maximum Shear Stress Ratio = 0.066 : 1 Section used for this span 11.250 X 3.50 Section used for this span 11.250 X 3.50 fb:Actual = 1,069.98 psi fv:Actual = 18.92 psi FB:Allowable = 1,872.00 psi Fv:Allowable = 288.00 psi Load Combination +D+W+H Load Combination +D+W+H Location of maximum on span = 8.000ft Location of maximum on span = 15.760 ft Span#where maximum occurs = Span#1 Span#where maximum occurs = Span#1 Maximum Deflection Max Downward L+Lr+S Deflection 0.000 in Ratio= 0<360 Max Upward L+Lr+S Deflection 0.000 in Ratio= 0<360 OK with 0.7 Max Downward Total Deflection 1.479 in Ratio= 129<180 Max Upward Total Deflection 0.000 in Ratio= 0<180 reduction per IBC Table 1604.3(f) Overall Maximum Deflections-Unfactored Loads Load Combination Span Max."-"Defl Location in Span Load Combination Max."+"Defl Location in Span W Only 1 1.4791 8.080 0.0000 0.000 Vertical Reactions-Unfactored Support notation:Far left is#1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 0.512 0.512 W Only 0.512 0.512 61,0409 N of SkO (` `old) / r—_ __� 1 J --------_ , r ------- No,1..73,c ii X41, yo 1 1 I ! ! t114 lt` __7 II " N.%.:.-7005 ^h14(h ,'�' �+o�g�SSkl��Sk'd +hStiB vo)I dRV' Al . 'Q 1 I s t P S (40 tS fa No,1)3.iSN1 ,N 1 f I h1� .ZN02 ,, u, r J 1 L 1 1 I ter: E J I ! I 1 ' 1 �� , � Al-i 9 NoiwaivnoJ 10of26 sfa SFA Design Group, LLC PROJECT NO. SHEET NO. STRUCTURAL I CIVIL I LAND USE PLANNING PROJECT DATE 10/4/2012 SUBJECT BY Existing Structure lateral load increase calculation Weight of Existing Structure Area Length Height Weight Total Weight Roof 1700 sq ft 15 psf 25500 lbs 3rd Story Exterior Walls 200 ft 8 ft 12 psf 19200 lbs 3rd Story Interior Walls 150 ft 8 ft 8 psf 9600 lbs Upper Floor 1200 sq ft 12 psf 14400 lbs 2nd Story Exterior Walls 200 ft 8 ft 12 psf 19200 lbs 2nd Story Interior Walls 150 ft 8 ft 8 psf 9600 lbs Lower Floor 1500 sq ft 12 psf 18000 lbs 1st Story Exterior Walls 80 ft 8 ft 12 psf 7680 lbs 1st Story Interior Walls 50 ft 8 ft 8 psf 3200 lbs Total Existing Structure Weight 126380 lbs Weight of Alteration Area Length Height Weight Total Weight Roof 0 sq ft 0 psf 0 lbs 3rd Story Exterior Walls O ft O ft 0 psf 0 lbs 3rd Story Interior Walls O ft O ft 0 psf 0 lbs Upper Floor 0 sq ft 0 psf 0 lbs 2nd Story Exterior Walls O ft O ft 0 psf 0 lbs 2nd Story Interior Walls O ft O ft 0 psf 0 lbs Lower Floor 727 sq ft 12 psf 8724 lbs 1st Story Exterior Walls O ft O ft 0 psf 0 lbs 1st Story Interior Walls 15 ft 8 ft 8 psf 960 lbs Miscellaneous 0 sq ft 0 psf 0 lbs Total Alteration Weight 9684 lbs Total New Structure Weight 136064 lbs Building Weight Increase 7.66% OK per IBC 3403.4 Existing unaltered structure does not need to be designed for additional loads. New openings in 2nd story wall are designed as peforated shearwalls so that the overturning forces on walls below do not change. 11 of 26 ASCE 7-05 CHAPTER 11,12,13 SEISMIC DESIGN CRITERIA Soil Site Class D v Table 20-3-1, Default=D Response Spectral Acc. (0.2 sec)Ss= 93.60%g =0.936g Figure 22-1 through 22-14 Response Spectral Acc.( 1.0 sec)Si = 33.70%g =0.337g Figure 22-1 through 22-14 Site Coefficient Fa= 1.126 Table 11.4-1 Site Coefficient F„= 1.726 Table 11.4-2 Max Considered Earthquake Acc.SMs= Fa.Ss = 1.054 (11.4-1) Max Considered Earthquake Acc. 5M1= F„.S1 =0.582 (11.4-2) @ 5%Damped Design SDs= 2/3(SMs) =0.702 (11.4-3) SD1 = 2/3(SM1) =0.388 (11.4-4) Building Occupancy Categories II,Standard V Table 1-1 Design Category Consideration: Flexible Diaphragm V with dist.between seismic resisting system>40ft Seismic Design Category for 0.1sec D Table 11.6-1 Seismic Design Category for 1.0sec D Table 11.6-2 S1<.75g NA Section 11.6 Since Ta<.8Ts(see below), SDC= D Control(exception of Section 11.6 does not apply) 12.8 Equivalent lateral force procedure A.BEARING WALL SYSTEMS T-12.2-1 Seismic Force Resisting System(E-W) 13.Light-framed walls sheathed with wood structural panels rated for shear resistance or steel sheets A.BEARING WALL SYSTEMS T-12.2-1 Seismic Force Resisting System(N-S) 13.Light-framed walls sheathed with wood structural panels rated for shear resistance or steel sheets Ct= 0.02 x= 0.75 T-12.8-2 Building ht. H„= 30 ft Limited Building Height(ft)= 65 S, 4-489 for Sof 0.388g Table 12.8-1 Approx Fundamental period,Ta= Ct(hn)x =0.256 12.8-7 TL= 16 Sec Calculated T shall not exceed Cu.Ta -0.350 Use T= 0.256 sec. 0.8Ts= 0.8(SD1/SDs) =0.442 Control(exception of Section 11.6 does not apply) Is structure Regular&<_5 stories? Yes • 12.8.1.3 Response Spectral Acc.(0.2 sec)Ss= 0.936g Max Ss<_0.15g Fa= 1.13 @ 5%Damped Design SDs= 2/s(Fa.Ss) =0.702g (11.4-3) =0.000 E-W N-S Response Modification Coef. R= 6.5 6.5 Table-12.2-1 Over Strength Factor Qo= 2.5 2.5 foot note g Importance factor I= 1.00 1.00 Table 11.5-1 Seismic Base Shear V= Cs W Cs W S SDS Cs= D =0.108 R/I =0.108 (12.8-2) R/Ior need not to exceed, Cs= SD1 =0.233 SD1 =0.233 For T<_TL (12.8-3) (R/I).T (R/I).T or Cs= SD1TL N/A SD1TL N/A For T>TL (12.8-4) T (R/I) T (R/I) Min Cs= 0.5S1I/R N/A 0.5S1I/R N/A For Si >_0.6g (12.8-6) Use Cs= 0.108 0.108 Design base shear V= 0.108 W 0.108 W 12 of 26 Seismic Weight Calculations Job Name: Roffelsen Addition Job Number: 12-046 10/4/2012 Weight of Structure: Total Load: ROOF DIAPHRAGM: Comments: Snow Load: 25 psf Roof Dead Load: 15 psf Roof Diaphragm Area: 1700 sq.ft. Height of Diaphragm: 32 ft —► 25.5 kips Wall Weights Below: Wall Height: 8 ft Interior Wall Lengths: 150 If Exterior Wall Perimeter: 200 If Interior Weight: 8 psf Exterior Weight: 12 psf —► 14.4 kips we = 39.9 kips 3rd FLOOR DIAPHRAGM: Floor Dead Load(1): 12 psf Floor Diaphragm Area(1): 1500 sq.ft. Height of Diaphragm: 18 ft —► 18.0 kips Wall Weights Below: Wall Height: 9 ft Interior Wall Lengths: 150 If Exterior Wall Perimeter: 200 If Interior Weight: 8 psf Exterior Weight: 12 psf —► 30.6 kips wa = 48.6 kips • 13 of 26 ASCE 7-05 WIND: BUILDING DATA: Basic wind speed(3 sec gust)= 94.5 MPH Exposure B v Roof Pitch= 6.00 :12 Mean Roof Height h= 27 ft Importance factor I„„= 1.00 T-6-1 6.4 MOTHOD 1-SIMPLIFIED PROCEDURE(LOW-RISE,60 FT) Height Adjustment factor A= 1.00 Fig 6-2 4.77D II 5.39B B=26.6 C 12.83C Ill9.37C H=31.4 17.16A All forces shown in psf 2.625 • 14.11A Ell II J 'Iy 1 35 ft 4. 42 ft ILONGITUDINAL(E-W)ELEV. TRANSVERSE(N-S)ELEV. 14.1 IA ' 2a= 7.0ft 10%of least dimension= 3.5 ft T14.67 kips 40%of the eave height= 9.1 ft 11.1 psf 5 ft 9.66 k 4%of least dimension or 3 ft= 3.0 ft 10.2 psf 9.37C _ therefore a= 3.5 ft 42ft ' Example:le: A K P5= n P530 (6-1) -' All forces shown in psf 7.04 KZi= 1.00 6.5.7 I t t t A t A } Ihorizontal load at end zone psso= 14.1 X Fig 6-2 I I 12.83C 17.16A Height Adjustment factor A= 1.00 Fig 6-2 X PLAN VIEW Importance factor Iw= 1.00 6.2 14.11 psf MWFRS Horizontal Loads Load Roof End Zone Interior zone Direction Angle Wall(A) Roof(B) Wall(C) Roof(D) Transverse 26.6 17.16 5.39 12.83 4.77 Longitudinal All 14.112 -7.3868 9.37125 -4.41 *If roof pressure under horizontal loads is less than zero,use zero Plus and minus signs signify pressures acting toward and away from projected surfaces,respectively. For the design of the longitudinal MWFRS use A=0°,and locate the zone E/F,G/H boundary at the mid-length of the building • 14 of 26 FIGURE 6.2,Main Wind Force System g.r �, w.. ail lith I ill III -1 r, L. 1 1.,,i;7;`,:f..,,,,,,.-, _-°,H111100000111011111111'... 1,,,,...;., , „,.," 0111,Pre. 0. Transverse I , r r r li,''''''7>. ....J Longitudinal Use max pressure of Long.and Trans.directions for both directions? Yes (Conservative-Recommended for complex roof structures) w= 1.0 (See IBC Section 1605.3.2-wind load calculation factor) Total Diaphragm Force: (Long Direction) E-W ROOF DIAPHRAGM AREA: BL D BR Area: 0 0 0 sq.ft. 0.00 I 0.00 I 0.00 kips AL C AR - Area: 59 250 59 sq.ft. 1.01 I 3.21 I 1.01 kips -► 4.22 kips 3rd FLOOR DIAPHRAGM AREA: AL C AR Area: 112 336 112 sq.ft. 1.92 I 4.31 I 1.92 kips -► 6.23 kips Total: 10.45 kips Total Diaphragm Force: (Short Direction) N-S ROOF DIAPHRAGM AREA: BL D BR Area: 49 0 49 sq.ft. 0.26 0.00 0.26 kips AL C AR Area: 49 392 49 sq.ft. 0.84 I 5.03 I 0.84 kips -► 6.13 kips 3rd FLOOR DIAPHRAGM AREA: AL C AR Area: 119 448 118 sq.ft. 2.04 I 5.75 I 2.03 kips -► 7.79 kips Total: 13.92 kips 15 of 26 Lateral Load Calculations Job Name: Roffelsen Addition 2009 International Building Code ASCE 7-0512.8.3 Job Number: 12-046 10/4/2012 E-W N-S CS -► 0.108 0.108 Total Diaphragm Shear Force: V= CS x W -► 9.56 kips 9.56 kips Vertical Distribution: ROOF DIAPHRAGM SHEAR FORCE: V -► 5.67 kips 5.67 kips 3rd FLOOR DIAPHRAGM SHEAR FORCE: V -► 3.89 kips 3.89 kips d il:."7.---,,,,,,,.:4, o81Iilimudt som 44;NIF fl1EMI(11 CJI; III 7 R11,,, MI,d .w ,4 Diaphragm Force Distributions: ASCE 7-0512.10.1.1 Coef. Limits > 0.4SDS(I)W= 0.281 > 0.2SDS(I)W= 0.140 Use LEVEL Wi,KIPS EWI,KIPS Fi,KIPS EFI,KIPS FpX Coef. FpX Coef. FpX,KIPS ROOF E-W 39.90 39.90 5.67 5.67 0.14 -► 0.14 5.7 kips P N-S 5.67 5.67 0.14 -► 0.14 5.7 kips 3rd FLOOR E-W 48.60 88.50 3.89 9.56 0.11 -► 0.14 6.8 kips N-S 3.89 9.56 0.11 -► 0.14 6.8 kips Lateral Comparison (East-West Only): DL Factor Section 1605.3.2 ROOF DESIGN SHEAR 3.97 kips < 4.22 kips 0.60 Wind Controls for East-West Direction! 3rd FLOOR DESIGN SHEAR 6.69 kips < 10.45 kips 0.60 Wind Controls for East-West Direction! Lateral Comparison (North-South Only): ROOF DESIGN SHEAR 3.97 kips < 6.13 kips 0.60 Wind Controls for North-South Direction! 3rd FLOOR DESIGN SHEAR 6.69 kips < 13.92 kips 0.60 Wind Controls for North-South Direction! 16 of 26 Lateral Load Calculations Job Number: 12-046 2009 International Building Code Section 1613.6.1 ROOF Flexible Diaphragm Analysis: (EAST-WEST DIRECTION ONLY) V = 3972 lbs (Seismic Shear) V = 4220 lbs (Wind Shear) A = 1700 sq ft (Diaphragm Area) A = 368 sq ft (Pressure Area) fp = 2.34 psf (Seismic) qs = 11.47 psf (Wind) Seismic: d = 48.0' w; = 112 plf Wind: h = 10.5' Ali = 120 plf 4 b = 35.0' Support Lines: A (3 Seismic: 1963 lbs 1963 lbs Wind: 2107 lbs 2107 lbs Check sum of forces: Seismic: 3926 lbs OK Wind: 4214 lbs OK Total Rxn: 2107 lbs 2107 lbs Available shear wall length per shear line below: I. = 21.0' 999.0' Shear Line Z F [ v Sheathing Allowable Wall Type Shear Yp (3F) A 2107 lbs 21.0' 100 plf 1 side(s) 260 plf A (3F) B 2107 lbs 999.0' 2 plf 1 side(s) 260 plf A Lateral Load Calculations Job Number: 12-046 10/4/2012 2009 International Building Code Section 1613.6.1 3rd FLOOR . (EAST-WEST DIRECTION ONLY) Wall Description Additional Dead Loads Strap Left Side Calculations Right Side Calculations Shear Wall Length Width Wall Type Hght v Wall Ld Typ- Unfrm Ld Pt LdL Loci_ Pt LdR LocR (S/HD) Down Force Net Uplift Holddown SW Post Down Force Net Uplift Holddown SW Post (3F)A-1 11.5' 6" Ext.(Siding) 8' 100 plf 1154 lbs A 0 plf 0 lbs 0.0' 0 lbs 11.5' S 802.8 lbs -388.8 lbs none (2)2x6 802.8 lbs -388.8 lbs none (2)2x6 (3F)A-2 9.5' 6" Ext.(Siding) 8' 100 plf 953 lbs A 0 plf 0 lbs 0.0' 0 lbs 9.5' S 802.8 lbs -460.8 lbs none (2)2x6 802.8 lbs -460.8 lbs none (2)2x6 ' a �°'® 'e icy StC(I';t.i t .9 _ der :r'� �'✓81, olt1 :#�f� �r? 1 IN kr.1-f _i91000 & sd: a t4 V O_ N 0) 18 of 26 Lateral Load Calculations Job Number: 12-046 2009 International Building Code Section 1613.6.1 ROOF Flexible Diaphragm Analysis: (NORTH-SOUTH DIRECTION ONLY) V = 3972 lbs (Seismic Shear) V = 6134 lbs (Wind Shear) A = 1700 sq ft (Diaphragm Area) A = 588 sq ft (Pressure Area) fp = 2.34 psf (Seismic) qS = 10.43 psf (Wind) Seismic: d = 40.0' IN; = 93 plf Wind: h = 14.0' IN; = 146 plf 4 b = 42.0' Support Lines: 1 6 Seismic: 1963 lbs 1963 lbs Wind: 3067 lbs 3067 lbs Check sum of forces: Seismic: 3926 lbs OK Wind: 6134 lbs OK Total Rxn: 3067 lbs 3067 lbs Available shear wall length per shear line below: l = 35.0' 35.0' Shear Line E F 1 v Sheathing Allowable Wall Type Shear Yp (3F) 1 3067 lbs 35.0' 88 plf 1 side(s) 260 plf A (3F) 2 3067 lbs 35.0' 88 plf 1 side(s) 260 plf A Lateral Load Calculations Job Number: 12.046 10/4/2012 2009 International Building Code Section 1613.6.1 3rd FLOOR (NORTH-SOUTH DIRECTION ONLY) Wall Description Additional Dead Loads Strap Left Side Calculations Right Side Calculations Shear Wall Length Width Wall Type Hght v Wall Ld Type Unfrm Ld Pt Ldi. LOCL Pt LdR LocR (S/HD) Down Force Net Uplift Holddown SW Post Down Force Net Uplift Holddown SW Post (3F) 1 -1 35.0' 6' Ext.(Siding) 8' 88 plf 3067 lbs A 0 plf 0 lbs 0.0' 0 lbs 35.0' S 701.1 lbs 0.0 lbs none (2)2x6 701.1 lbs 0.0 lbs none (2)2x6 = 3A oto; 0 • 20 of 26 Lateral Load Calculations Job Number: 12-046 2009 International Building Code Section 1613.6.1 3rd FLOOR Flexible Diaphragm Analysis: (EAST-WEST DIRECTION ONLY) ' V = 2722 lbs (Seismic Shear) V = 6233 lbs (Wind Shear) V = 6694 lbs (Total Shear) V = 10453 lbs (Total Shear) A = 1500 sq ft (Diaphragm Area) A = 560 sq ft (Pressure Area) fp = 1.81 psf (Seismic) q s = 11.13 psf (Wind) Seismic: d = 42.0' w; = 76 plf Wind: h = 16.0' w; = 178 plf 4 4 b = 35.0' Support Lines: A Seismic: 1334 lbs 1334 lbs Wind: 3117 lbs 3117 lbs Load Above: 2107 lbs 2107 lbs Rxn Above: 2107 lbs 2107 lbs Check sum of forces: Seismic: 2667 lbs OK Wind: 6233 lbs OK Above: 4214 lbs OK Total Rxn: 5224 lbs 5224 lbs Available shear wall length per shear line below: L. = 32.0' 42.0' 98.0' 26.0' Shear Line Z F l v Sheathing Allowable Wall Type Shear Yp (1F) A 5224 lbs 32.0' 163 plf 1 side(s) 260 plf A (1F) B 5224 lbs 42.0' 124 plf 1 side(s) 260 plf A • • Lateral Load Calculations Job Number: 12-046 10/4/2012 2009 International Building Code Section 1613.6.1 1st FLOOR (EAST-WEST DIRECTION ONLY) Wall Description Additional Dead Loads Stacked Strap Left Side Calculations Right Side Calculations Shear Wall Length Width Wall Type Hght v Wall Ld Type Unfrm Ld Pt Ldp Loci Pt Ld5 LocR SW (S/HD' Force Abv Down Force Net Uplift Holddown SW Post Force Abv Down Force Net Uplift Holddown SW Post e e <. o a a , V t.. ci : a oa � :€ I. ; - a o ; ., t e a W :1F)B-1 42.0' 6" Ext.(Siding) 8' 124 plf 5224 lbs A 0 plf 0 lbs 0.0' 0 lbs 42.0' S 0.0 lbs 995.0 lbs 0.0 lbs none (2)2x6 0.0 lbs 995.0 lbs 0.0 lbs none (2)2x6 0 N 0) 22 of 26 Lateral Load Calculations Job Number: 12-046 1009 International Building Code Section 1613.6.1 3rd FLOOR Flexible Diaphragm Analysis: (NORTH-SOUTH DIRECTION ONLY) V = 2722 lbs (Seismic Shear) V = 7790 lbs (Wind Shear) V = 6694 lbs (Total Shear) V = 13925 lbs (Total Shear) A = 1500 sq ft (Diaphragm Area) A = 685 sq ft (Pressure Area) fp = 1.81 psf (Seismic) qs = 11.37 psf (Wind) Seismic: d = 35.0' w; = 64 plf Wind: h = 16.0' IN; = 182 plf 4 J b = 42.0' Support Lines: 1 6 Seismic: 1334 lbs 1334 lbs Wind: 3821 lbs 3821 lbs Load Above: 3067 lbs 3067 lbs Rxn Above: 3067 lbs 3067 lbs Check sum of forces: Seismic: 2667 lbs OK Wind: 7643 lbs OK Above: 6134 lbs OK Total Rxn: 6888 lbs 6888 lbs Available shear wall length per shear line below: l = 35.0' 35.0' Shear Line Z F l v Sheathing Allowable Wall Type Shear yp (1F) 1 6888 lbs 35.0' 197 plf 1 side(s) 260 plf A (1F) 2 6888 lbs 35.0' 197 plf 1 side(s) 260 plf A Is 1 rt a a Lateral Load Calculations Job Number: 12-046 10/4/2012 2009 International Building Code Section 1613.6.1 1st FLOOR (NORTH-SOUTH DIRECTION ONLY) Wall Description Additional Dead Loads Stacked Strap Left Side Calculations Right Side Calculations Shear Wall Lengt Width Wall Type Hght v Wall Ld Type Unfrm Ld Pt LdL LoCL Pt LdR LocR SW (S/HD` ForceAbv Down ForceNet Uplift Holddown SW Post Force Abv Down ForceNet Uplift Holddown SW Post (1F)1-1 v��g35.0' 6 Ext.(Siding)_ 9' 197 plf 6888 lbs Aµ 0f plf 0 lbs 0.0' 0 lbs 35.0' (3F) 2 1 (S/5 701.1 lbs 2472.4lbs 0.0 lbs none (2)2x6 701.1 lbs 2472.4lbs 0.0 lbs none (2)2x6 '''''''.:41%' ?; �E ("» ally* aT.-1. 1,7---:*, s e1.:., tJ s„' , , ,. 00 ' ,:' e�"¢ r .I< ,'4. 114 ...;.+ 1'`a 4*', N W O n) 0) 24 of 26 • Shearwall Force Transfer"Pier Method" Shearwall:1(3F)A-1 v Design Criteria: V= 3,428 lb —Wind Controls H= 9 ft L= 21 ft h1 = 48 in Ak ® -, h2= 48 in h3= 48 in WALL WALL WALL WALL L PIER 1 PIER 2 PIER 3 PIER 4 W1 = 16 In OK 5 3.5 WI dl W2 d2 W3 d3 W4 W2= 56 in OK<_3.5 L W3= 56 in OK 5 3.5 W4= 16 in OK53.5 Vi-1 Vi-2 Vi-3 Vi-4 dl= 36 in T, 1 1[7- 7j1. 1 T, 3' N. >J 3 T5 3 IN >JI 3i d2= 36 in M v7 d1/2 d1/2 v13 d2/2 , d2/2 T3 v9 d3/2 d3/2 v10 d3= 36 in L1 = 34 in = v7 s v8 s ;9 v-10 L2= 92 in T2 , T4 I , 14 L3= 92 in T2 �> J Ts ' T6 L4= 34 in 3 fJ 3 3 3 3 f> `qJ => > w1 = 16 in w2= 44 in L1— L2 L3 L4 >> W3= 16 In w4= 44 in w5= 16 in w6= 44 in Pier 1: Pier 2: Pier 3: Pier 4: Vit= 463 lb Vi2= 1,252 lb Vi3= 1,252 lb Vi4= 463 lb MOT1= 4,163 ft-lb MOT2= 11,264 ft-lb MOTS= 11,264 ft-lb MOT4= 4,163 ft-lb v1 +v2= 294 plf <_380plf v3+v4= 294 plf <_380p1f v5+v6= 294 plf 5 380plf v3+v4= 294 plf 5 380p1f v1 = 392 lb v3= 392 lb v5= 392 lb v1= 392 lb v2= 1,077 lb v4= 1,077 lb v6= 1,077 lb v2= 1,077 lb • T1 = 441 lb T3= 441 lb T5= 441 lb T1 = 441 lb T2= 441 lb T4= 441 lb T6= 441 lb T2= 441 lb v7= 347 plf 5 380plf v8= 268 plf 5 380plf v9= 268 plf <_380p1f v10= 347 plf <_380plf Max Opening Shear= 294 plf 5 380p1f Use 15/32"APA Rated Plywood w/8d at 4"o.c.edges,12"o.c.field Max Peir Shear= 347 plf 5 380p1f Use 15/32"APA Rated Plywood w/8d at 4"o.c.edges, 12"o.c.field • 25 of 26 - Shearwall Force Transfer"Pier Method" Shearwall: 3F)A-2 v Design Criteria: V= 1,796 lb •—Wind Controls H= 9 ft L= 11 ft O' 30;' h1= 48 in O,' I h2= 0 in V h3= 0 in WALL _ WALL _ WALL WALL W1= 48 in OK 5 3.5 J— PIER PIER 2 PIER 3 PIER 4 W1 dl W2 d _ W3 d3 _ W4 W2= 48 in OK<_3.5 L W3= 0 in W4= 0 in Vi-1_ Vi-2 Vi-3 Vi-4 � d1= 36 in 1 ��� T 2 >J 32 Ts 9 1('g,>Jl 3+I d2= 0 in d1/2 d1/2 T3 ` I 1 T3 d3/2 d3/2 d3= 0 in v7 v8 d2/2 d2/2 v9 v10 L1= 66 in = v7 s v8 t 9 s v10 L2= 66 in T4 I T4 L3= 0 in Tz Tz s I , "T6 L4= 0 in �' '� 3 I> ',1 3 �`? �� w1 = 16 in • I 3I I� 3I 3I L1 I Lv2 `L3` _-` "-L4" w3= 16 in F- F- w4= 44 in w5= 16 in w6= 44 in Pier 1: Pier 2: Pier 3: Pier 4: Vit= 898 lb Vi2= 898 lb Vi3= 0 lb Vi4= 0 lb MOT1= 8,081 ft-lb MOT2= 8,081 ft-lb MOTS= 0 ft-lb MOT4= 0 ft-lb v1 +v2= 294 plf 5 380p1f v3+v4= 294 plf <_380plf v5+v6= 0 plf 5 260p1f v3+v4= 0 plf <_260plf v1 = 392 lb v3= 392 lb v5= 0 lb v1 = 0 lb v2= 1,077 lb v4= 1,077 lb v6= 0 lb v2= 0 lb - T1= 441 lb T3= 0 lb T5= 0 lb T1 = 0 lb T2= 441 lb T4= 0 lb T6= 0 lb T2= 0 lb v7= 224 plf 5 260plf v8= 224 plf <_260p1f v9= 0 plf <_260p1f v10= 0 plf 5 260plf Max Opening Shear= 294 plf 5 380p1f Use 15/32"APA Rated Plywood w/8d at 4"o.c.edges, 12"o.c.field Max Peir Shear= 224 plf <_260plf Use 15/32"APA Rated Plywood w/8d at 6"o.c.edges,12"o.c.field 4 e V 26 of 26 s • Shearwall Force Transfer"Pier Method" • Shearwall:R3F)1-1 v Design Criteria: V= 6,888 lb <--Wind Controls H= 9 ft L= 35 ft = Oh1= 48 in �' / Oi; �,- h2= 0 in h3= 0 in WALL W WALL J- PIER 1 PIEALLR 2 WALL PIER 3 PIER 4 W1= 156 In OK<_3.5 W1 dl W2 d2 W3 d3 W4 W2= 216 in OK 5 3.5 L W3= 0 in W4= 0 in Vi-1_ Vi-2 Vi-3Vi-4 dl = 48 in T1 = 1f> >J1= 4 2! 1> 8;,,j2� _.-. 1 3I1' RINI _ d2= 0 in � d1/2 d1/2 T3 T3 d3/2I d3/2 d3= 0 in v7 v8 d2/2 d2/2 v9 ---II v10 L1= 180 in = v7 t v.8 v9 v9 s v100 L2= 240 in T4 T4 1 T4 L3= 0 in 1 T6 3 I P> >J N Tz I> >� 6 1 L4= 0 in 3 31 31 3 �� _ w1 = 16 in L1 L2 L3 L4 w3= 16 in F- I-- I-, w4= 44 in w5= 16 in w6= 44 in Pier 1: Pier 2: Pier 3: Pier 4: Vii= 2,952 lb Vi2= 3,936 lb Vi3= 0 lb Vi4= 0 lb Mort= 26,570 ft-lb MOT2= 35,426 ft-lb MOTS= 0 ft-lb Moro= 0 ft-lb v1 +v2= 354 plf <_380p1f v3+v4= 354 plf <_380plf v5+v6= 0 plf 5 260plf v3+v4= 0 plf <_260p1f v1 = 472 lb v3= 472 lb v5= 0 lb v1 = 0 lb v2= 1,299 lb v4= 1,299 lb v6= 0 lb v2= 0 lb • T1 = 709 lb T3= 0 lb T5= 0 lb T1= 0 lb T2= 709 lb T4= 0 lb T6= 0 lb T2= 0 lb v7= 227 plf 5 260pif v8= 219 plf 5 260p1f v9= 0 plf <_260p1f v10= 0 plf 5 260P If Max Opening Shear= 354 plf 5 380p1f Use 15/32"APA Rated Plywood w/8d at 4"o.c.edges,12"o.c.field Max Peir Shear= 227 plf 5 260p1f Use 15/32"APA Rated Plywood w/8d at 6"o.c.edges, 12"o.c.field