Loading...
Specificationswilli---_ "54j-vle - co( 73 l Cw kah/t- _ A RECEIVED JAN 5 2016 1 CITY OF TIGARD tr u ctu ra BUILDING DIVISION Concepts....,_ ., ,,__ . . , . ,1 , ,, j, ., . , /, Engineering . ,,,, 23142 Arroyo Vista Mme Rancho Santa Margarita, GA 92688 Tel: 949-888-8850 Fax: 94.9-888-8851 e-mail: mail@sceinc.net . f. Project Name : QCD `' '\. A rbc =� Project Number : P-122215-1 V �`syn N ,1:U`�•' /. Date : 12/30/15 ` }y ''~-7/' 4`/ n.., , Street Address : 731g, SW <ABLE LANE STE 500 == • City/State : TIGRD, OR 97224 r _ Scope of Work : STORAGE RACK Du, 302Q1S Corp Office Address: 1615 Yeager Ave - La Verne, CA 01750 S 4i Structural Concepts Engineering 1200 N. Jefferson Ste. Ste F Anaheim. CA 92807 Tel: 714.632.7330 Fax: 714.632.7763 • By: A.A. Project: QCD Project#: P-122215-1 Design Data 1)The analyses herein conforms to the requirements of the: 2012 IBC Section 2209 2013 CBC Section 22O9A ANSI MH 16.1-2012 Specifications for the Design of Industrial Steel Storage Racks'2012 RMI Rack Design Manual" ASCE 7-10,section 15.5.3 2)Transverse braced frame steel conforms to ASTM A570,Gr.50,with minimum strength, Fy=50 ksi Longitudinal frame beam and connector steel conforms to ASTM A570,Gr.50,with minimum yield,Fy=50 ksi All other steel conforms to ASTM A36,Gr.36 with minimum yield,Fy=36 ksi 3)Anchor bolts shall be provided by installer per ICC reference on plans and calculations herein. 4)All welds shall conform to AWS procedures,utilizing E70xx electrodes or similar.All such welds shall be performed in shop,with no field welding allowed other than those supervised by a licensed deputy inspector. 5)The existing slab on grade is 5.5"thick with minimum 3000 psi compressive strength.Allowable Soil bearing capacity is 2000 psf. The design of the existing slab is by others. 6)Load combinations for rack components correspond to 2012 RMI Section 2.1 for ASD level load criteria Definition of Components A f- Column Beam j ( Horizontal Brace Beam to Column Connector Diagonal Brace Frame Feightame Beam ProductSpacing Base Plate and Anchors T F + Panel Beam Height Length —� ITT F.Frame id Depth Front View: Down Aisle Section A: Cross Aisle (Longitudinal) Frame (Transverse) Frame QCD P-122215-1 ELEV I I-1 2 Page of I 12/30/2015 4.1 Str tural Looncepts ---, E ngineering — 1200 N. Jefferson Ste. Ste F Anaheim. CA 92807 Tel: 714.632.7330 Fax: 714 632.7763 By: A.A. Project: QCD Project#: P-122215-1 Configuration&Summary: ELEV 11-12 SELECTIVE RACK I T **RACK COLUMN REACTIONS ASD LOADS 50" AXIAL DL= 100/b 84" AXIAL LL= 3,000/b SEISMIC AXIAL Ps=+/- 3,172 lb BASE MOMENT= 8,000 in-lb 168" .N 168" 50" 84" 50" 96" 42" Seismic Criteria #Bm Lvls Frame Depth Frame Height #Diagonals Beam Length Frame Type Ss=0.967,Fa=1.113 2 42 in 168.0 in 3 96 in Single Row - Component Description STRESS Column Fy=50 ksi Struc C3x3.5 P=3100 lb,M=16880 in-lb 0.67-OK Column&Backer None None None N/A Beam Fy=50 ksi Struc C4x4.5 Unbraced Length=40" Capacity: 8948 lb/pr 0.34-0K Beam Connector Fy=50 ksi Lvl 1: 2 bolt OK Mconn=11097 in-lb Mcap=27480 in-lb 0.4-OK Brace-Horizontal Fy=36 ksi Struc L1-1/2 x L1-1/2 x 1/8 0.22-OK Brace-Diagonal Fy=36 ksi Struc L1-1/2 x L1-1/2 x 1/8 0.68-0K Base Plate Fy=36 ksi 8x5x3/8 Fixity=8000 in-lb 0.61-OK Anchor 2 per Base 0.5"x 2"Embed HILTI KWIKBOLT TZ ESR 1917 Inspection Reqd(Net Seismic Uplift=1576 Ib) 0.583-OK Slab&Soil 5.5"thk x 3000 psi slab on grade.2000 psf Soil Bearing Pressure 0.29-OK Level Load** Story Force Story Force Column Column Conn. Beam Per Level Beam Spcg Brace Transv Longit. Axial Moment Moment Connector 1 3,000 lb 84.0 in 50.0 in 252 lb 207 lb 3,100 lb 16,880 "# 11,097 "# 2 bolt OK 2 3,000 lb 84.0 in 50.0 in 505 lb 415 lb 1,550 lb 8,709 "# 5,189 "# 2 bolt OK 50.0 in **Load defined as product weight per pair of beams Total: 757 lb 622 lb Notes I 2J 12/30/2015 QCD P-1 222 15-I ELEV 1 1-1 2 Page f of ' 4\ Structural - Concepts 111 - E _ ngineering 1200 N. Jefferson Ste.Ste F Anaheim. CA 92807 Tel: 714.632.7330 Fax: 714.632.7763 By: A.A. Project: QCD Project#: P-122215-1 Seismic Forces Configuration: ELEV 11-12 SELECTIVE RACK Lateral analysis is performed with regard to the requirements of the 2012 RMI ANSI MH 16.1-2012 Sec 2.6&ASCE 7-10 sec 15.5.3 Ss= 0.967 Transverse(Cross Aisle)Seismic Load �� S1= 0.420 V= Cs*Ip*Ws=Cs*Ip*(0.67*P*Prf+D) vt Fa= 1.113 Csl= Sds/R r1.7."11711r1.7."11711 Fv= 1.580 = 0.1794 Cs-max*Ip= 0.1794 II,a Sds=2/3*Ss*Fa= 0.718 Cs2= 0.044*SdS Vmin= 0.015 j Sd1=2/3*S1*Fv= 0.442 = 0.0316 Eff Base Shear=Cs= 0.1794 Transverse Elevation Ca=0.4*2/3*Ss*Fa= 0.2870 Cs3= 0.5*S1/R Ws= (0.67*PLRFI*PL)+DL(RMI 2.6.2) (Transverse,Braced Frame Dir.)R= 4.0 = 0.0525 = 4,220 lb Ip= 1.0 Cs-max= 0.1794 Vtransv=vt= 0.1794* (200 lb+4020 Ib) PRFs= 1.0 Base Shear Coeff=Cs= 0.1794 Etransverse= 757 lb Pallet Height=hp= 72.0 in Limit States Level Transverse seismic shear per uptight DL per Beam Lvl= 100 lb Level PRODUCT LOAD P P*0.67*PRF1 DL hi wi*hi Fi Fi*(hi+hp/2) 1 3,000 lb 2,010 lb 100 lb 84 in 177,240 252.3 lb 30,276-# 2 3,000 lb 2,010 lb 100 lb 168 in 354,480 504.7 lb 102,959-# sum: P=6000 lb 4,020 lb 200 lb W=4220 lb 531,720 757 lb 1=133,235 Longitudinal (Downaisle)Seismic Load Similarly for longitudinal seismic loads,using R=6.0 Ws= (0.67* PLRy * P)+ DL PRFZ= 1.0 ® Q Cs1=Sd1/(T*R)= 0.1475 = 4,220 lb (Longitudinal,Unbraced Dir.)R= 6.0 ► I trl Cs2= 0.0316 Cs=Cs-max*Ip= 0.1475 T= 0.50 sec ""'• k:•;:':•:•1,--.:`" Cs3= 0.0350 Vlong= 0.1475* (200 lb+4020 Ib) EJ k= Cs-max= 0.1475 Elongitudinal= 622 lb Limit States Level Longit.seismic shear per upright Level PRODUC LOAD P P*0.67*PRF2 DL hi wi*hi Fi Front View 1 3,000 lb 2,010 lb 100 lb 84 in 177,240 207.3 lb I 2 3,000 lb 2,010 lb 100 lb 168 in 354,480 414.7 lb I sum: 4,020 lb 200 lb W=4220 lb 531,720 622 lb QCD P-12221 5-l ELEV 1 1-1 2 Paget4 of Li 61 12/30/2015 1 Structural Concepts Engineering • 1200 N.Jefferson Ste. Ste F Anaheim. CA 92807 Tel: 714.632.7330 Fax: 714.63.2.7763 By: A.A. Project: QCD Project#: P-122215-1 Downaisle Seismic Loads Configuration: ELEV 11-12 SELECTIVE RACK Determine the story moments by applying portal analysis.The base plate is assumed to provide partial fixity. Seismic Story Forces Typical frame made Vlong= 622 lb Tributary area of two columns Vcol=Vlong/2= 311 lb of rack frame F1= 207 lb „::1 :::::::;H . \ Typical Frame made of-two columns F2= 415 lb �� F3= 0 lb --P- (•- k J l.:,,4 ----.1 .- ". `r u , r Top View 96" —1 , Front View Side View Conceptual System Seismic Story Moments - Mbase-max= 8,000 in-lb <===Default capacity hl-eff= h1-beam clip height/2 "1111111 Mbase v= (Vcol*hieff)/2 = 80 in Vcol ' _ = 12,440 in-lb <===Moment going to base F - Mbase-eff= Minimum of Mbase-max and Mbase-v h2 = 8,000 in-lb -' M 1-1= [Vcol *hleff] Mbase eff M 2-2= [Vcol-(F1)/2] *h2 Imo.=i, = (311 lb*80 in)-8000 in-lb = [311 lb-207.4 Ib]*84 in/2 :.3 = 16,880 in-lb = 8,709 in-lb h1 hleff Mseis= (Mupper+Mlower)/2 Beam to Column Elevation Mseis(1-1)= (16880 in-lb+8709 in-lb)/2 Mseis(2-2)= (8709 in-lb+0 in-lb)/2 = 12,794 in-lb = 4,354 in-lb rho= 1.0000 Summary of Forces LEVEL hi Axial Load Column Moment** Mseismic** Mend-fixity Mconn** Beam Connector 1 84 in 3,100 lb 16,880 in-lb 12,794 in-lb 3,059 in-lb 11,097 in-lb 2 bolt OK 2 84 in 1,550 lb 8,709 in-lb 4,354 in-lb 3,059 in-lb 5,189 in-lb 2 bolt OK Mconn= (Mseismic+ Mend-fixity)*0.70*rho Mconn-allow(2 Bolt)= 27,480 in-lb **all moments based on limit states level loading QCD P-1222 15-I ELEV 11-12 Page of ` 12/30/201 5 Structural Concepts Engineering 1200 N. Jefferson Ste. Ste F Anaheim. CA 92807 Tel: 714.632.7330 Fax:714.632.7763 By: A.A. Project: QCD Project#: P-122215-1 Column(Longitudinal) Configuration: ELEV 11-12 SELECTIVE RACK Section Properties Column Member= Struc C3x3.5 3.00 in Aeff= 0.881 in^2 Fy= 50,000 psi „_ � -� ro Ix= 1.414 in^4 Kx= 1.7 V 138 in SX= 0.943 in^3 Lx= 82.0 in 0 4 rx= 1.267 in Ky= 1.0 Iy= 0.138 in^4 Ly= 50.0 in Sy= 0.157 in^3 Cm= 0.85 ry= 0.396 in Loads Considering loads at level 1 COLUMN DL= 100 lb Critical load cases are:RMI Sec 2.1 COLUMN PL= 3,000 lb Load Case 5:::(1+0.105*Sds)D+0.75*(1.4+0.14Sds)*B*P+0.75*(0.7*rho*E)<=1.0,ASD Method Mcol= 16,880 in-lb Sds= 0.7175 Load Case 6::(1+0.104*Sds)D+(0.85+0.14Sds)*B*P+(0.7*rho*E)<=1.0,ASD Method 1+0.105*Sds= 1.0753 1.4+0.14Sds= 1.5005 By analysis,Load case 6 governs utilizing loads as such 1+0.14Sds= 1.1005 0.85+0.14*Sds= 0.9505 Axial Load=Pa= 1.10045*100 lb+ 0.95045*0.7*3000 lb B= 0.7000 = 2,106 lb rho= 1.0000 Moment=Mx= 0.7*rho*Mcol = 0.7* 16880 in-lb = 11,816 in-lb Axial Analysis (kl/r)x= (1.7*82 in/1.267 in) (kl/r)y= (1*50 in/0.396 in) = 110.02 = 126.26 (kl/r)max= 126.26 Cc= (2n^2E/Fy)^0.5 = 107.0 SINCE(KL/r)max>Cc,USE EQTN E2-2 Fa= 12n^2E/23(kl/r)^2 23(kl/r)^2 = 9,367 psi fa= Pa/AREA = 2,390 psi fa/Fa= 0.26 >0.15 Bending Analysis fbx= Mx/Sx Fbx= 0.6*Fy = 12,530 psi = 30,000 psi F'ex= (12*n^2*E)/(23*(KL fb/Fb= 0.42 = 12,336 psi (1-fa/F'e)= 1.00 Combined Stresses (H1-1): fa/Fa +fbx/[Fbx* (1-fa/F'ex)] = 0.67 <_ 1.0 OK (H1-2): fa/(0.6*Fy) +fb/Fb= 0.50 <_ 1.0 OK QCD P-1 222 1 5-I ELEV 11-12 Page Lof 2/30/201 5 w _ Sttiçturai 'i.#Ofl is nem ngineering 1200 N.Jefferson Ste,Ste F Anaheim,CA 92807 Tel:714.632.7330 Fax:714.632.7763 By: A.A. Project:QCD Project#: P-122215-1 Transverse Column Configuration: ELEV 11-12 SELECTIVE RACK Section Properties Load at level= 1 V Section: Struc C3x3.5 --► Aeff= 0.881 in^2 Iy= 0.138 in^4 Ix= 1.414 in^4 Sy= 0.157 in^3 .r- 3.00 in -off Pv SX= 0.943 in^3 ry= 0.396 in I ���..�I rx= 1.267 in Fy= 50 ksi ' 1.38 in 4f= 1.67 Cmx= 0.85 0 Ps is E= 29,500 ksi width= 3.000 in Cb= 1.0 depthl= 1.3750 in Kx= 1.7 thickl= 0.130 in Ky= 1.0 Lx= 82.0 in Ly= 50.0 in Transverse Elevation Loads COLUMN D= 100 lb Critical load cases are:RMI Sec 2.1 COLUMN P= 3,000 lb Load Case 5::(110.105*Sds)D+0.75*(1.4+0.145ds)*B*P+0.75*(0.7*rho*E)<=1.0,ASD Method Sds= 0.7175 Load Case 6::(1+0.104*Sds)D+(0.85+0.14Sds)*B*P+(0.7*rho*E)<=1.0,ASD Method 1+0.105*Sds= 1.0753 1.4+0.14Sds= 1.5005 Load Case 5: 1+0.14Sds= 1.1005 Axial Load= 1.0753375*100 lb+0.75*(1.50045*0.7*3000 Ib)+0.75*(0.7*rho*3172 Ib) 0.85+0.14*Sds= 0.9505 = 4,136 lb B= 0.7000 Load Case 6: rho= 1.0000 Axial Load= 1.10045*100 lb+0.95045*0.7*3000 lb+(0.7*rho*3172 Ib) Movt= 133,235 in-lb = 4,326 lb Frame Depth=D= 42 in Seismic Axial=Pv= Movt/D Eff.Axial Load= Pa= 4,326 lb = 3,172 lb Axial Analysis (kl/r)x= (1.7*82 in/1.267 in) (kl/r)y = (1*50 in/0.396 in) = 110.02 = 126.26 Cc= (2n^2E/Fy)^0.5 (kl/r)max= 126.26 = 107.0 SINCE(KL/r)max> Cc, USE EQTN E2-2 Fa = 12n^2E/23(kl/r)^2 23(kl/r)^2 = 9,367 psi fa= Pa/AREA = 4,911 psi fa/Fa= 0.52 > 0.15 Bending Analysis Fbx= 0.6*Fy fbx= M/Sy = 30,000 psi = 0 psi fb/Fb= 0.00 F'ex= (12*n^2*E)/(23*(KL/r)^2) = 12,336 psi (1-fa/F'e)= 1.00 Combined Stresses (H1-1): fa/Fa +fbx/[Fbx* (1-fa/F'ex)] = 0.52 <_ 1.0 OK Structural Concepts Engineering 1200 N. Jefferson Ste. Ste F Anaheim. CA 92807 Tel: 714.632.7330 Fax: 714.632.7763 By: A.A. Project: QCD Project#: P-122215-1 Beam Configuration: ELEV 11-12 SELECTIVE RACK The beam to column connection is assumed to provide partial end fixity for the beam frame.The end moment calculated herein is added to the lateral force force portal moment when analyzing the connection capacity. The impact load on the beam is addressed by including the Impact Factor"a"in the determination of the beam center bending stress. Section Properties Beam Member= Struc C4x4.5 "S\ Beam at Level= 1 Beam Weight= 4.0 lb/ft \ Beam Type= Structural Thickness= 0.137 in4.000 in ti Ix= 3.469 in^4 Beam Shape= Channel Sx= 1.735 inA3 IBeam Length=L= 96.0 in d/Af= 9.4 \ IN= Unbraced Length,Lu= 40.0 in Impact Factor(a)=[1-(25%/2)]= 0.875 �r Loads Load Case:D+0.88P+Impact RMI Section 21,Load case 10 0/0 End Fixity= 25% Coeff B= 0.104/0.125 0= 0.25 = 0.832 Mcenter= I3*(wL^2/8) Mcenter= Mcenter(simple ends)-0*Mcenter(fixed ends) = 0.832*(wL^2/8) = wL^2/8-(0.25*wL^2/12) Mends= 0*Mmax(fixed ends) = wL^2/8 - wL^2/48 = (wL^2/12)*0.25 = 0.104*wL^2 = 0.0208*wL^2 Fy= 50,000 psi Fb= 0.6*Fy = 30,000 psi Fb' = 12,000/(lu*d/Af) = 12,000/(40*9.4) Fb-eff= 30,000 psi = 31,915 psi Live Load/Pair= 3,000 lb Dead Load/Pair= (4 lb/ft)* 2*96 in/12 Dist Load=w= 16.0 lb/in = 64 lb Mcenter= 0.104*wL^2 Mends= 0.0208*wL^2 = 15,295 in-lb = 3,059 in-lb Bending M= 15,295 in-lb fb= (M/Sx)/a 4 includes impact factor(a)reduction coeff,conservatively 1.OP is used in lieu of 0.88P = 10,075 psi fb/Fb= 10075 psi/30000 psi 0.34 <= 1.0,OK Bending Capcity= 8,948 lb/pair <=== Critical Deflection Defl-allow=L/ 180 Defl= i3*[5wL^4/(384*E*Ix)] = 0.534 in = [5*16 lb/in*(96 in)^4/(384*29.5x10^6 psi*3.469 in^4)]*0.832 = 0.144 in <=0.534 in,OK Deflection Capacity= 11,298 lb/Pair Allowable load per beam pair= 8,948 lb QCD P-1222 15-I ELEV I I-12 Pageg of 12/30/20 15 } Str tural • -•ts ngineering 1200 N.Jefferson Ste,Ste F Anaheim, CA 92807 Tel:714.632.7330 Fax: 714.632.7763 Dy: A.A. Project:QCD Project#: P-i 2221 s-i 2 Bolt Beam to Column Connection Configuration: ELEV l I-12 SELECTIVE RACK 1" 10► Mconn max= (Mseismic+ Mend-fixity)�`0.709Rho Ig /P1 = 11,097 in-lb = 2" t 0 8" 6" a Connector Type= 2 Bolt i Standard Bolt Pattern Shear Capacity ot bolt bolt Viam= 0.50 in Fy= 50,000 psi Fv-bolt= 2 I ,000 psi ji Ashear= (0.5 in)^2 " Pk/4 �r = 0. 1963 in^2 �� - 0 L Pshear= Ashear " Fv �® ir'���" = 21 ,000 psi •" 0.1963 in^2 -44 10 = 4,122 lb '4 TYR.3/76" bearing Capacity ot bolt 0 y��..y. 8" e/ istcol= 0. 137 in Fu= 65,000 psi Bolt Dam= 0.500 in 0 A__,„___,Pbearing= I .2 ' bearing Area ' Fu = I .2 ' 0.5 in dram " 0. 137 in • 65000 psi (2)OGRs BOLT = 5,343 lb > 4122 lb Moment Capacity of bracket Edge Distance=E= I .00 in Bolt Spacing= 4.0 in Py= 50,000 psi C= P I +P2 tclip= 0.18 in Sclip= 0. 140 in^3 = PI +PI"(2"/6") = 1 . 11 " PI Mcap= Sclip" Fbending C"d= Mcap = I .I I d= E = 0. 14 in^3 " 0.66 " Fy = 1 .00 in = 4,620 in-lb Pclip= Mcap/(I . I I " d) = 4620 in-lb/(1 .I I " I in) Thus, P 1 = 4,122 lb = 4, 1 62 lb Mconn-allow= [P I"6"+P 1"(2"/6")"0.5"] = 4122 LB"[6"+(276")"2"] = 27,480 in-lb > Mconn max, OK 1 49 QCD P-1 222 1 5-I ELEV I I-i2 Page of 12/30/2015 a StiKtural -n 1 -pts ngineering 1200 N.Jefferson Ste,Ste F Anaheim,CA 92807 Tel:714.632.7330 Fax:714.632.7763 By: A.A. Project: QCD Project#: P-1222154 Transverse Brace ELEV 11-12 SELECTIVE RACK Diagonal Member= Struc a-1/2 x u-1/2 x 1/8 Horizontal Member= Struc L1-1/2 x L1-1/2 x 1/8 D -•I Area= 0.35 inA2 Area= 0.35 in^2 Mika r min= 0.285 in r min= 0.285 in K= 1.0 K= 1.0 Fy= 36,000 psi vdr Ldiag H Frame Dimensions 0 I Load Case 6::(1_±.a.1-04-*Sti +[(0.85t0.14Sds)*B*P+[0.7*rho*EJB=1.0,ASD Method Bottom Panel Height=H= 50.0 in Clear Depth=D-B*2-4"=d= 35.3 in B 44' Frame Depth=D= 42.0 inLdiag= [d^2+H^2]^0.5 Typical Panel Configuration Column Width=B= 1.4 in = 61.2 in Diagonal Brace Vtransverse= 757 lb Vdiag= V*(Ldiag/D) Vb=Vtransv*0.7*rho= 757 lb* 0.7* 1 = 772 lb = 530 lb (kl/r)max= 214.74 (kl/r)x= (1*61.2 in/0.285 in) Cc= (2n^2E/Fy)^0.5 fa= P/AREA = 214.74 = 126.1 = 2,206 psi (KL/r)max> Cc, Eqtn E2-2 Applies Check Weld Fa= 12n^2E/23(kl/r)^2 Weld Tension= 772 lb 23(kl/r)^2 tweld= 0.125 in = 3,238 psi Lweld= 4.0 in Fweld= 70,000 psi fa/Fa= 0.68 <= 1.0 OK Weld Capacity= tweld*0.7071*Lweld*0.3*Fweld*1.0 = 7,425 lb 10.4% OK Horizontal Brace V=Vtransv= 530 lb (kl/r)x= (1*42 in/0.285 in) (kl/r)max= 147.37 = 147.37 Cc= (2n^2E/Fy)^0.5 = 126.1 (KL/r)max> Cc,Eqtn E2-2 Applies Fa = 12n^2E/23(kl/r)^2 fa= P/AREA ^ = 1,514 psi 23(kl/r) 2 = 6,876P si fa/Fa= 0.22 <= 1.0 OK 0 f ‘.9 Structural Concepts Engineering 1200 N.Jefferson Ste. Ste F Anaheim. CA 92807 Tel: 714.632.7330 Fax: 714.632.7763 By: A.A. Project: QCD Project#: P-122215-1 Single Row Frame Overturning Configuration: ELEV 11-12 SELECTIVE RACK Loads Critical Load case(s): 1)RMI Sec 2.2,item 7:(0.9-0.2Sds)D+(0.9 0.205ds)*B*Papp E*rho hp Sds= 0.7175 / v Vtrans=V=E=Qe= 757 lb (0.9-0.20Sds)= 0.7565 DEAD LOAD PER UPRIGHT=D= 200 lb (0.9-0.2Sds)= 0.7565 PRODUCT LOAD PER UPRIGHT=P= 6,000 lb B= 1.0000 H h Papp=P*0.67= 4,020 lb rho= 1.0000 ;t LC1=Wst1=(0.7565*D+0.7565*Papp*1)= 3,192 lb Frame Depth=Df= 42.0 in T Product Load Top Level,Ptop= 3,000 lb Htop-Ivl=H= 168.0 in DL/Lvl= 100 lb #Levels= 2 [0-of Seismic Ovt based on E,E(Fi*hi)= 133,235 in-lb #Anchors/Base= 2 height/depth ratio= 4.0 in hp= 72.0 in SIDE ELEVATION A)Fully Loaded Rack h=H+hp/2= 204.0 in Load case 1: Movt= E(Fi*hi)*E*rho Mst= Wstl*Df/2 T= (Movt-Mst)/Df = 133,235 in-lb = 3192 lb*42 in/2 = (133235 in-lb-67032 in-Ib)/42 in = 67,032 in-lb = 1,576 lb Net Uplift per Column 4- Net Seismic Uplift= 1,576 lb B)Top Level Loaded Only Load case 1: V1=Vtop= Cs*Ip*Ptop>=350 lb for H/D>6.0 Movt= [V1*h+V2*H/2]*0.7*rho = 0.1794*3000 lb = 78,965 in-lb = 538 lb T= (Movt-Mst)/Df Vleff= 538 lb Critical Level= 2 = (78965 in-lb-50837 in-lb)/42 in V2=VDD= Cs*Ip*D Cs*Ip= 0.1794 = 670 lb Net Uplift per Column = 36 lb Mst= (0.7565*D+0.7565*Ptop*1)*42 in/2 = 50,837 in-lb Net Seismic Uplift= 670 lb Anchor Check(2)0.5"x 2"Embed HILTI KWIKBOLT TZ anchor(s)per base plate. Special inspection is required per ESR 1917. Pullout Capacity=Tcap= 1,329 lb L.A.City Jurisdiction? NO Tcap*Phi= 1,329 lb Shear Capacity=Vcap= 1,844 lb Phi= 1 Vcap*Phi= 1,844 lb Fully Loaded: (788 lb/1329 Ib)^1 +(189 lb/1844 Ib)^1 = 0.70 <= 1.2 OK Top Level Loaded: (335 lb/13291b)^1+(134 Ib/1844 Ib)^1 = 0.32 <= 1.2 OK QCD P-1 222 1 5-I ELEV 11-1 2 Pagel 1 of (-49 12/30/2015 www.hilti.us Profis Anchor 2.6.0 Company: Page: 1 • Specifier: Project: QCD Address: Sub-Project I Pos.No.: Phone I Fax: I Date: 12/30/2015 E-Mail: Specifier's comments: 1 Input data 01101. 10simmimmowarivtomp Font Anchor type and diameter: Kwik Bolt TZ-CS 1/2(2) Effective embedment depth: het,ac=2.000 in.,Nom=2.375 in. Material: Carbon Steel Evaluation Service Report: ESR-1917 Issued I Valid: 5/1/2013 15/1/2015 Proof: Design method ACI 318-11 /Mech. Stand-off installation: eb=0.000 in.(no stand-off);t=0.375 in. Anchor plate: I%x I,x t=5.000 in.x 8.000 in.x 0.375 in.;(Recommended plate thickness:not calculated Profile: Square HSS(AISC);(L x W x T)=3.000 in.x 3.000 in.x 0.125 in. Base material: cracked concrete,3000,fc'=3000 psi;h=5.500 in. Installation: hammer drilled hole,Installation condition:Dry Reinforcement: tension:condition B,shear:condition B;no supplemental splitting reinforcement present edge reinforcement:>No.4 bar Seismic loads(cat.C,D,E,or F) Tension load:yes(D.3.3.4.3(d)) Shear load:yes(D.3.3.5.3(c)) Geometry[in.]&Loading[Ib,in.lb] Z " tm 6 0 a - r s -- ro y36` 4'f�'` Input data and results must be checked for agreement with the existing conditions and for plausibility' ��, L' — / PROFIS Anchor(c)2003-2009 Hilti AG,FL-9494 Schaan Hilti is a registered Trademark of Hilti AG,Schaan VVV "`--��� F■111`Tll www.hilti.us Profis Anchor 2.6.0 Company: Page: 2 Specifier: Project: QCD Address: Sub-Project I Pos.No.: Phone I Fax: i Date: 12/30/2015 E-Mail: 2 Load case/Resulting anchor forces Load case:Design loads O 2 •y Anchor reactions[Ib] Tension force:(+Tension,-Compression) Anchor Tension force Shear force Shear force x Shear force y 1 788 189 0 189 2 788 189 0 189 ` 'x max.concrete compressive strain: -['A.] Tension max.concrete compressive stress: -[psi] resulting tension force in(x/y)=(0.000/0.000): 1576[Ib] resulting compression force in(x/y)=(0.000/0.000):0[Ib] 01 3 Tension load Load Nua[Ib] Capacity ON„[Ib] Utilization AN=Nua/$Na Status Steel Strength* 788 8029 10 OK Pullout Strength* N/A N/A N/A N/A Concrete Breakout Strength** 1576 2568 62 OK *anchor having the highest loading **anchor group(anchors in tension) 3.1 Steel Strength N55 =ESR value refer to ICC-ES ESR-1917 Nsteel>Nua ACI 318-11 Table D.4.1.1 Variables n Ase,N[in.2] fete[psi] 1 0.10 106000 Calculations Nsa[lb] 10705 Results Nsa[lb] 4tsteei Nsa[Ib] Nua[Ib] 10705 0.750 8029 788 Input data and results must be checked for agreement with the existing conditions and for plausibility! 2 O' 4'9PROFIS Anchor(c)2003-2009 Hilti AG,FL-9494 Schaan Hilti is a registered Trademark of Hilti AG,Schaan _ www.hilti.us Profis Anchor 2.6.0 Company: Page: 3 - Specifier: Project: QCD Address: Sub-Project I Pos.No.: Phone I Fax: I Date: 12/30/2015 E-Mail: 3.2 Concrete Breakout Strength Ncbg = (A o)1Vec,N 1Ved,N'Vc,N'Vcp,N Nb ACI 318-11 Eq.(D-4) 4,Ncbg>_N. ACI 318-11 Table D.4.1.1 Ark see ACI 318-11,Part D.5.2.1,Fig.RD.5.2.1(b) ANc0 =9 her ACI 318-11 Eq.(D-5) 1 tpec,N (1 +2 eN <_1.0 ACI 318-11 Eq.(D-8) — \ 3her Ved.N 1.5her =0.7+0.3(.ft'. c 1.0 ACI 318-11 Eq.(D-10) WcpN =RAA, 1.5hef),,1.0 ACI 318-11 Eq.(D-12) Cac Cac Nb =kc 1`a'hers ACI 318-11 Eq.(D-6) Variables 7 het[in.] ec1,N[in.] ec2.N[in.] Ca,min tin] 1Vc.N 2.000 0.000 0.000 4.000 1.000 Cac[in.] kc X. fc[psi] 5.500 17 1.000 3000 Calculations ANc[In.2] ANeO[i n.2] 1Vec1.N 1Vec2.N 1Ved.N 'Vcp.N Nb[Ib] 72.00 36.00 1.000 1.000 1.000 1.000 2634 Results Ncbg[Ib] concrete seismic (1)nonductile 4,Ncbg[Ib] NUe[Ib] 5267 0.650 0.750 1.000 2568 1576 Input data and results must be checked for agreement with the existing conditions and for plausibility! f L (�1r-�- PROFIS Anchor(c)2003-2009 Hilti AG,FL-9494 Schaan Hilti is a registered Trademark of Hilti AG,Schaan 1 -l` �J • N111.T1 www.hilti.us Profis Anchor 2.6.0 _ Company: Page: 4 Specifier: Project: QCD Address: Sub-Project I Pos.No.: Phone I Fax: I Date: 12/30/2015 E-Mail: 4 Shear load Load Vua[Ib] Capacity 4Vn[Ib] Utilization]1v=V../4)V. Status Steel Strength* 189 3572 6 OK Steel failure(with lever arm)* N/A N/A N/A N/A Pryout Strength** 378 3687 11 OK Concrete edge failure in direction x-** 378 6138 7 OK *anchor having the highest loading **anchor group(relevant anchors) 4.1 Steel Strength Vsa,eq =ESR value refer to ICC-ES ESR-1917 Vsteei Z Vua ACI 318-11 Table D.4.1.1 Variables n Ase v[in.2] fete[psi] 1 0.10 106000 Calculations Vsa,eq[Ib] 5495 Results Vsa.eq[Ib] 4tsteei 4)Vsa[Ib] Vua[Ib] 5495 0.650 3572 189 4.2 Pryout Strength VcP9 =kc P I./ANc)Ili Wed,N t/cN yfcp,N Nb] ACI 318-11 Eq.(D-41) ANcO 4)VcP9 Vua ACI 318-11 Table D.4.1.1 ANc see ACI 318-11,Part D.5.2.1,Fig.RD.5.2.1(b) ANco =9 her ACI 318-11 Eq.(D-5) 1 lpecN = (.1 +2 e 1.0 ACI 318-11 Eq.(D-8) 3hN 5 er tlled,N =0.7+0.3 (�a,minr)5 1.0 ACI 318-11 Eq.(D-10) 1.5he =M Oac � Oac /Ca min 1.5her\<1.0 ACI 318-11 Eq.(D-12) tlicP.N ` J Nb =kc Xa ijc hef5 ACI 318-11 Eq.(D-6) Variables kcp her[in.] ec1,N[in] ec2.N[in.] Ca,min[in] 1 2.000 0.000 0.000 4.000 i fc,N cac[in.] kc ?a fc[psi] - 1.000 5.500 17 1.000 3000 Calculations _ ANc[in.2] ANco[In•2] tVec1N tllec2,N 1Ved,N Wcp,N Nb[Ib] 72.00 36.00 1.000 1.000 1.000 1.000 2634 Results Vcpg[Ib] Oconcrete seismic 4inonductile 0 VcP9[Ib] Vua[lb] 5267 0.700 1.000 1.000 3687 378 Input data and results must be checked for agreement with the existing conditions and for plausibility! r �! PROFIS Anchor(c)2003-2009 Hilti AG,FL-9494 Schaan Hilti is a registered Trademark of Hilti AG,Schaan l\ www.hilti.us Profis Anchor 2.6.0 Company: Page: 5 Specifier: Project: QCD Address: Sub-Project I Pos.No.: Phone I Fax: I Date: 12/30/2015 E-Mail: 4.3 Concrete edge failure in direction x- Avc IVO/t Vcbg = (AACI 318 11 Eq.(D-31) o)lVc ell/ tVed,V Vh,V lVparallel,V Vb 4,Vcbg>Vua ACI 318-11 Table D.4.1.1 Ave see ACI 318-11,Part D.6.2.1,Fig.RD.6.2.1(b) Avco =4.5 Cat 2 ACI 318-11 Eq.(D-32) yec,v1 t\ 3Cat 2ev <1.0 ACI 318-11 Eq.(D-36) = tVed,v =0.7+0.3( Cat1.5c )s 1.0 ACI 318-11 Eq.(D-38) at .�I1.5cat iVh.V 1.0 ACI 318-11 Eq.(D-39) ha Vb = (7 (Ie 102 '_)kacats ACI 318-11 Eq.(D-33) da / Variables cat[in] cat[in.] ecv[in.] IVo.V ha[in.] 4.000 4.000 0.000 1.200 5.500 le[in.] ka da[in.] fc[psi] tVparallel,V 2.000 1.000 0.500 3000 2.000 Calculations Avc tin.21 Avco tin.21 tvec,V 'Ved,V 'Vh,V Vb[ib] 88.00 72.00 1.000 1.000 1.044 2862 Results Vcbg[Ib] (koncrete 4)seismic inonductile 4,Vcbg[Ib] Vua Pb] 8768 0.700 1.000 1.000 6138 378 5 Combined tension and shear loads N PV C. Utilization RN,V[%] Status 0.614 0.103 5/3 47 OK RNV=RN+8RV<=1 Input data and results must be checked for agreement with the existing conditions and for plausibility! / t C�l4-C7'PROFIS Anchor(c)2003-2009 Hilti AG,FL-9494 Schaan Hilti is a registered Trademark of Hilti AG,Schaan IU �,J F■III6TI www.hilti.us Profis Anchor 2.6.0 Company: Page: 6 Specifier: Project: QCD Address: Sub-Project I Pos.No.: Phone I Fax: I Date: 12/30/2015 E-Mail: 6 Warnings • Load re-distributions on the anchors due to elastic deformations of the anchor plate are not considered.The anchor plate is assumed to be sufficiently stiff,in order not to be deformed when subjected to the loading! Input data and results must be checked for agreement with the existing conditions and for plausibility! • Condition A applies when supplementary reinforcement is used.The 1 factor is increased for non-steel Design Strengths except Pullout Strength and Pryout strength. Condition B applies when supplementary reinforcement is not used and for Pullout Strength and Pryout Strength.Refer to your local standard. • Refer to the manufacturer's product literature for cleaning and installation instructions. • Checking the transfer of loads into the base material and the shear resistance are required in accordance with ACI 318 or the relevant standard! • An anchor design approach for structures assigned to Seismic Design Category C,D, E or F is given in ACI 318-11 Appendix D,Part D.3.3.4.3 (a)that requires the governing design strength of an anchor or group of anchors be limited by ductile steel failure.If this is NOT the case,the connection design(tension)shall satisfy the provisions of Part D.3.3.4.3(b),Part D.3.3.4.3(c),or Part D.3.3.4.3(d).The connection design (shear)shall satisfy the provisions of Part D.3.3.5.3(a),Part D.3.3.5.3(b),or Part D.3.3.5.3(c). • Part D.3.3.4.3(b)/part D.3.3.5.3(a)requires that the attachment the anchors are connecting to the structure be designed to undergo ductile yielding at a load level corresponding to anchor forces no greater than the controlling design strength.Part D.3.3.4.3(c)/part D.3.3.5.3(b) waives the ductility requirements and requires that the anchors shall be designed for the maximum tension/shear that can be transmitted to the anchors by a non-yielding attachment.Part D.3.3.4.3(d)/part D.3.3.5.3(c)waives the ductility requirements and requires the design strength of the anchors to equal or exceed the maximum tension/shear obtained from design load combinations that include E,with E increased by moo. • Hilti post-installed anchors shall be installed in accordance with the Hilti Manufacturer's Printed Installation Instructions(MPII).Reference ACI 318-11,Part 0.9.1 Fastening meets the design criteria! Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor(c)2003-2009 Hilti AG,FL-9494 Schaan Hilti is a registered Trademark of Hilo AG,Schaan 1■■1111:11.11 www.hilti.us Profis Anchor 2.6.0 Company: Page: 7 Specifier: Project: QCD Address: Sub-Project I Pos.No.: Phone I Fax: Date: 12/30/2015 E-Mail: 7 Installation data Anchor plate,steel:- Anchor type and diameter:Kwik Bolt TZ-CS 1/2(2) Profile:Square HSS(AISC);3.000 x 3.000 x 0.125 in. Installation torque:480.001 in.lb Hole diameter in the fixture:df=0.563 in. Hole diameter in the base material:0.500 in. Plate thickness(input):0.375 in. Hole depth in the base material:2.625 in. Recommended plate thickness:not calculated Minimum thickness of the base material:4.000 in. Cleaning:Manual cleaning of the drilled hole according to instructions for use is required. A 2.500 2.500 0 0 02 0 • 11 0 0 0 0 � X i 11 0 0 0 01 2.500 2.500 Coordinates Anchor in. Anchor x y c_x c.x c., c.1, 1 0.000 -3.000 4.000 - 4.000 - 2 0.000 3.000 4.000 - 10.000 j///---- �� Input data and results must be checked for agreement with the existing conditions and for plausibility! ` r-r-- tOt: PROFIS Anchor(c)2003-2009 Hilti AG,FL-9494 Schaan Hilti is a registered Trademark of Hilti AG,Schaan ` \ I■■11`TI www.hilti.us Profis Anchor 2.6.0 Company: Page: 8 Specifier: Project: QCD Address: Sub-Project I Pos.No.: Phone I Fax: Date: 12/30/2015 E-Mail: 8 Remarks; Your Cooperation Duties • Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles,formulas and security regulations in accordance with Hilti's technical directions and operating,mounting and assembly instructions,etc.,that must be strictly complied with by the user. All figures contained therein are average figures,and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore,you bear the sole responsibility for the absence of errors,the completeness and the relevance of the data to be put in by you. Moreover,you bear sole responsibility for having the results of the calculation checked and cleared by an expert,particularly with regard to compliance with applicable norms and permits,prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors,the correctness and the relevance of the results or suitability for a specific application. • You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular,you must arrange for the regular backup of programs and data and,if applicable,carry out the updates of the Software offered by Hilti on a regular basis.If you do not use the AutoUpdate function of the Software,you must ensure that you are using the current and thus up-to-date version of the Software in each case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences,such as the recovery of lost or damaged data or programs,arising from a culpable breach of duty by you. Input data and results must be checked for agreement with the existing conditions and for plausibility! l O+t-1- / PROFIS Anchor(c)2003-2009 Hilti AG,FL-9494 Schaan Hilti is a registered Trademark of Hilti AG,Schaan 14IIZIriI www.hilti.us Profis Anchor 2.6.0 Company: Page: 1 Specifier: Project: QCD Address: Sub-Project I Pos.No.: Phone I Fax: I Date: 12/30/2015 E-Mail: Specifier's comments: 1 Input data fel1.1,01011.111110.01,70101054 •.)., Anchor type and diameter: Kwik Bolt TZ-CS 1/2(2) Effective embedment depth: hefaa=2.000 in.,hnom=2.375 in. Material: Carbon Steel Evaluation Service Report: ESR-1917 Issued I Valid: 5/1/2013 15/1/2015 Proof: Design method ACI 318-11/Mech. Stand-off installation: eb=0.000 in.(no stand-off);t=0.375 in. Anchor plate: lx x ly x t=5.000 in.x 8.000 in.x 0.375 in.;(Recommended plate thickness:not calculated Profile: Square HSS(AISC);(L x W x T)=3.000 in.x 3.000 in.x 0.125 in. Base material: cracked concrete,3000,fb'=3000 psi;h=5.500 in. Installation: hammer drilled hole,Installation condition:Dry Reinforcement: tension:condition B,shear:condition B;no supplemental splitting reinforcement present edge reinforcement:>No.4 bar Seismic loads(cat.C,D,E,or F) Tension load:yes(D.3.3.4.3(d)) Shear load:yes(D.3.3.5.3(c)) Geometry[in.]&Loading[Ib,in.lb] Z 0 co '37B — 75. N .V Input data and results must be checked for agreement with the existing conditions and for plausibility! r U C(1-PROFIS Anchor(c)2003-2009 Hilti AG,FL-9494 Schaan Hilti is a registered Trademark of Hilti AG,Schaan v N1`TI www.hilti.us Profis Anchor 2.6.0 Company: Page: 2 Specifier: Project: QCD Address: Sub-Project I Pos.No.: Phone I Fax: I Date: 12/30/2015 E-Mail: 2 Proof I Utilization (Governing Cases) Design values[Ib] Utilization Loading Proof Load Capacity pr, [%] Status Tension Concrete Breakout Strength 1576 2568 62/- OK Shear Pryout Strength 378 3687 -/11 OK Loading DN Sv Utilization,3N,v[%] Status Combined tension and shear loads 0.614 0.103 5/3 47 OK 3 Warnings • Please consider all details and hints/warnings given in the detailed report! Fastening meets the design criteria! 4 Remarks; Your Cooperation Duties • Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles,formulas and security regulations in accordance with Hilti's technical directions and operating,mounting and assembly instructions,etc.,that must be strictly complied with by the user. All figures contained therein are average figures,and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore,you bear the sole responsibility for the absence of errors,the completeness and the relevance of the data to be put in by you. Moreover,you bear sole responsibility for having the results of the calculation checked and cleared by an expert,particularly with regard to compliance with applicable norms and permits,prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors,the correctness and the relevance of the results or suitability for a specific application. • You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular,you must arrange for the regular backup of programs and data and,if applicable,carry out the updates of the Software offered by Hilti on a regular basis.If you do not use the AutoUpdate function of the Software,you must ensure that you are using the current and thus up-to-date version of the Software in each case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences,such as the recovery of lost or damaged data or programs,arising from a culpable breach of duty by you. Input data and results must be checked for agreement with the existing conditions and for plausibility! CY—e—L19 PROFIS Anchor(c)2003-2009 Hilti AG.FL-9494 Schaan Hilti is a registered Trademark of Hilti AG,Schaan • _ Structural - Concepts Engineering "' 1200 N.Jefferson Ste.Ste F Anaheim. CA 92807 Tel: 714.632.7330 Fax: 714.632.7763 By: A.A. Project: QCD Project#: P-122215-1 Base Plate Configuration: ELEV 11-12 SELECTIVE RACK P .-- a -► Section �, Baseplate= 8x5x3/8 Eff Width=W= 8.00 in a= 3.00 in 1111 Mb Eff Depth=D= 5.00 in Anchor c.c. =2*a=d = 6.00 in limmomilmlimpli Column Width=b= 3.00 in N=#Anchor/Base= 2 iI b h- u a Column Depth=dc= 1.38 in Fy= 36,000 psi I-- w L= 2.50 in Downaisle Elevation Plate Thickness=t= 0.375 in Down Aisle Loads Load Case 5::(1+0.105*Sds)D+0.75*[(1.4+0.14Sds)*B*P+0.75*[0.7*rho*E1<=1.0,ASD Method COLUMN DL= 100 lb Axial=P= 1.0753375* 100 lb+ 0.75* (1.50045*0.7* 3000 Ib) COLUMN PL= 3,000 lb = 2,4711b Base Moment= 8,000 in-lb Mb= Base Moment*0.75*0.7*rho 1+0.105*Sds= 1.0753 = 8000 in-lb* 0.75*0.7*rho 1.4+0.14Sds= 1.5005 = 4,200 in-lb B= 0.7000 Axial Load P= 2,471 lb Mbase=Mb= 4,200 in-lb Axial stress=fa= P/A= P/(D*W) M1= wL^2/2=fa*L^2/2 = 62 psi = 193 in-lb Moment Stress=fb= M/S=6*Mb/[(D*B^2) Moment Stress=fb2= 2*fb* L/W = 78.8 psi = 49.2 psi Moment Stress=fbl= fb-fb2 M2= fb1*L^2)/2 = 29.5 psi = 92 in-lb M3 = (1/2)*fb2*L*(2/3)*L=(1/3)*fb2*L^2 Mtotal = M1+M2+M3 = 103 in-lb = 388 in-lb/in S-plate= (1)(t^2)/6 Fb= 0.75*Fy = 0.023 in^3/in = 27,000 psi fb/Fb= Mtotal/[(S-plate)(Fb)] F'p= 0.7*F'c = 0.61 OK = 2,100 psi OK Tanchor= (Mb-(PLapp*0.75*0.46)(a))/[(d)*N/2] Tallow= 1,329 lb OK = -896 lb No Tension Cross Aisle Loads Grocalload case Rall Sec 2.1,stem 4:(1+0.115ds)D1+(1+0.14505)PL.0.75+E[V 75c=1.0,,A.59 Method Check uplift load on Baseplate Check uplift forces on baseplate with 2 or more anchors per RMI 7.2.2. Pstatic= 2,4711b When the base plate configuration consists of two anchor bolts located on either side .f the column and a net uplift force exists,the minimum base plate thickness Movt*0.75*0.7*rho= 69,948 in-lb Pseismic= Movt/Frame Depth shall be determined based on a design bending moment in the plate equal Frame Depth= 42.0 in = 1,665 lb to the uplift force on one anchor times 1/2 the distance from P=Pstatic+PseismiC= 4,136 lb the centerline of the anchor to the nearest edge of the rack column" b=Column Depth= 1.38 in T I.4- ci Mu a - L=Base Plate Depth-Col Depth= 2.50 in Ta IIIIIII� _ ..li lig fa= P/A= P/(D*W) M= wLA2/2=fa*LA2/2 I-0 I b I �I - = 103 psi = 323 in-lb/in Elevation Uplift per Column= 1,576 lb Sbase/in= (1)(t^2)/6 Fbase= 0.75*Fy Qty Anchor per BP= 2 = 0.023 in^3/in = 27,000 psi Net Tension per anchor=Ta= 788 lb c= 2.50 in fb/Fb= M/[(S-plate)(Fb)] Mu=Moment on Baseplate due to uplift= Ta*c/2 = 0.51 OK = 985 in-lb Splate= 0.117 inA3 fb Fb *0.75= 0.233 OK QCD P 1222 15-I ELEV I I_1 2 Pa 9 of 12/30/201 5 •_ Structural - Concepts .. Engineering 1200 N. Jefferson Ste.Ste F Anaheim. CA 92807 Tel: 714.632.7330 Fax: 714,632,7763 By: A.A. Project: QCD Project#: P-122215-1 Slab on Grade Configuration:ELEV 11-12 SELECTIVE RACK P • :: : slab a r a . Concrete fc= 3,000 psi ,�� ::D : b e tslab=t= 5.5 in It_slab I Cross • teff= 5.5 in I uhlIIIIIIIllllIIIIIIIllIllIIIllHIIIIIIilllllllllllllllllllllllllllllllllllllll `----c ----' Aisle phi=o= 0.6 x -►IImo-- c -►, Soil ._- y B fsoil= 2,000 psf • • � L • Down Aisle Movt= 109,793 in-lb SLAB ELEVATION Frame depth= 42.0 in Baseolate Plan View Sds= 0.718 Base Plate 0.2*Sds= 0.144 Effec.Baseplate width=B= 8.00 in width=a= 3.00 in midway dist race of column to edge of plate=c= 5.50 in Effec.Baseplate Depth=D= 5.00 in depth=b= 1.38 in midway dist face of column to edge of plate=e= 3.19 in Column Loads DEAD LOAD=D= 100 lb per column Load Case 1) (1.2+0.2Sds)D+(1.2+0.2Sds)*B*P+rho*E RMI SEC 2.2 EQTN 5 - unfactoredASD load = 1.3435* 100 lb+ 1.3435*0.7*3000 lb+ 1*2614 lb PRODUCT LOAD=P= 3,000 lb per column = 5,570 lb unfactored ASD load Load Case 2) (0.9-0.2Sds)D+(0.9-0.2Sds)*B*Papp+rho*E RMI SEC 2.2 EQTN 7 Papp= 2,010 lb per column = 0.7565* 100 lb+0.7565*0.7*2010 lb+ 1*2614 lb P-seismic=E= (Movt/Frame depth) = 3,754 lb = 2,614 lb per column Load Case 3) 1.2*D+ 1.4*P RMI SEC 2.2 EQTN 1,2 unfactored Limit State load = 1.2*100 lb+ 1.4*3000 lb B= 0.7000 = 4,320 lb rho= 1.0000 Effective Column Load=Pu= 5,570 lb per column Sds= 0.7175 1.2+ 0.2*Sds= 1.3435 0.9-0.20Sds= 0.7565 Puncture Apunct= [(c+t)+(e+t)]*2*t Fpunct= 2.66*phi*sgrt(fc) ^ = 216.56 inA2 = 87.4 psi fv/Fv= Pu/(Apunct*Fpunct) = 0.294 < 1 OK Slab Bending Pse=DL+PL+E= 5,570 lb Asoil= (Pse*144)/(fsoil) L= (Asoil)^0.5 y= (c*e)^0.5+ 2*t = 401 in^2 = 20.02 in = 15.2 in - x= (L-y)/2 M= w*x^2/2 S-slab= 1*teff^2/6 = 2.4 in = (fsoil*x^2)/(144*2) = 5.04 in^3 Fb= 5*(phi)*(fc)^0.5 = 40.6 in-lb fb/Fb= M/(S-slab*Fb) = 164.32 psi = 0.049 < 1,OK �% of �`� 12/30/201 5 QCD P-122215-1 ELEV 1 1-1 2 Page Structural Concepts 1,. �a Engineering 1200 N. Jefferson Ste. Ste F Anaheim. CA 92807 Tel: 714.632.7330 Fax: 714.632.7763 By: A.A. Project: QCD Project#: P-122215-1 Design Data f v S Lb a 1)The analyses herein conforms to the requirements of the: 2012 IBC Section 2209 2013 CBC Section 22O9A ANSI MH 16.1-2012 Specifications for the Design of Industrial Steel Storage Racks'2012 RMI Rack Design Manual" ASCE 7-10,section 15.5.3 2)Transverse braced frame steel conforms to ASTM A570,Gr.50,with minimum strength,Fy=50 ksi Longitudinal frame beam and connector steel conforms to ASTM A570,Gr.50,with minimum yield,Fy=50 ksi All other steel conforms to ASTM A36,Gr.36 with minimum yield,Fy=36 ksi 3)Anchor bolts shall be provided by installer per ICC reference on plans and calculations herein. 4)All welds shall conform to AWS procedures,utilizing E70x(electrodes or similar.All such welds shall be performed in shop,with no field welding allowed other than those supervised by a licensed deputy inspector. 5)The existing slab on grade is 5.5"thick with minimum 3000 psi compressive strength.Allowable Soil bearing capacity is 2000 psf. The design of the existing slab is by others. 6)Load combinations for rack components correspond to 2012 RMI Section 2.1 for ASD level load criteria Definition of Components A t� Column Beam • Horizontal Brace Beam to Column Connector Diagonal Brace Frame Height Beam P "tt Spacing Base Plate and Anchors Panel Tight Beam Length —� • Int Frame 4.1 Depth Front View: Down Aisle Section A: Cross Aisle (Longitudinal) Frame (Transverse ) Frame QCD P-122215-1 ELEV 6,7 PB INT Page of ` 12/30/2015 Str c+tural - . V oncepts Engineering - 1200 N.Jefferson Ste. Ste F Anaheim. CA 92807 Tel: 714.632.7330 Fax: 714.632.7763 By: A.A. Project: QCD Project#: P-122215.1 Configuration&Summary:ELEV 6,7 PUSHBACK RACK(EXT LOADS) T — °`0d _ L1: a3 ' SC,13— **RACK COLUMN REACTIONS • Ti.. ASD LOADS l' r '--t—b,-} - --[ AXIAL DL= 100/b ra 3.. AL LL.7.11.5 ®� --~- AXIAL LL= 6,000/b 3 �_ c,LT.o_ I- r-- SEISMIC AXIAL Ps=+/- 1,756/b • t. .3a t€ LT � EMI BASE MOMENT= 0 in-lb • - T.C.3. / 07® • IT 'GKK ILE!OH? _ 1 I-5— `•--t--4 r w t �f. T.C.3. W Ms WM IN = PFG I f7 HEA f Ser0,1 ".11,..V `r.1-51 'yl..��A'•OID. 1 T:r—'f T.C.3�.. I 107 C.C. rl J C!..0 ,..,16C.PAL C:i£-.fsC FOS!FF.O?EO?L]i. ��^^--\ 6C SF_TELI :3C 9 DFFP Plt,^IMEA.CK PACK•TYPE C V 9 DFFP PIM-MACK PACIC 'eGr ELtYA'1CN 7 `l kli...--.....nn.+......... - Seismic Criteria #Bm Lvls Frame Depth Frame Height #Diagonals Beam Length Frame Type Ss=0.967,Fa=1.113 4 54 in 204.0 in 5 96 in Single Row - Component Description STRESS Column Fy=50 ksi Struc C4x4.5 P=3100 lb,M=14940 in-lb 0.3-0K Column&Backer To Level 2 C4x4.5/C4x4.5 p=4650 lb,M= 18209 in-lb 0.19-OK Beam Fy=50 ksi Struc C4x4.5 Unbraced Length=40" Capacity: 8948 lb/pr 0.34-OK Beam Connector Fy=50 ksi Lvl 1: 2 bolt OK Mconn=13743 in-lb Mcap=27480 in-lb 0.5-OK Brace-Horizontal Fy=36 ksi Struc L2 x L2 x 1/8 0.27-OK Brace-Diagonal Fy=36 ksi Struc L2 x L2 x 1/8 0.35-OK Base Plate Fy=36 ksi 6x7x3/8 Fixity=0 in-lb 0.25-OK Anchor 2 per Base 0.5"x 2"Embed HILTI KWIKBOLT TZ ESR 1917 Inspection Reqd(Net Seismic Uplift=0 Ib) 0.167-OK Slab&Soil 5.5"thk x 3000 psi slab on grade. 2000 psf Soil Bearing Pressure 0.46-OK Level Load** Story Force Story Force Column Column Conn. Beam Per Level Beam Spcg Brace Transv Longit. Axial Moment Moment Connector 1 3,000 lb 10.0 in 36.0 in 38 lb 31 lb 6,200 lb 3,735 "# 9,822 "# 2 bolt OK 2 3,000 lb 60.0 in 36.0 in 265 lb 218 lb 4,650 lb 18,209 "# 13,743 "# 2 bolt OK 3 3,000 lb 60.0 in 36.0 in 492 lb 405 lb 3,100 lb 14,940 "# 10,475 "# 2 bolt OK 4 3,000 lb 60.0 in 36.0 in 719 lb 591 lb 1,550 lb 8,871 "# 5,246 "# 2 bolt OK 48.0 in **Load defined as product weight per pair of beams Total: 1,514 lb 1,245 lb Notes COLUMN BACKERS OK AT 76"ELEVATION 1500 LB AVG/2200 LB MAX PALLET x 2 WIDE x 3 DEEP ALL INTERIOR BEAMS C5x6.7 WITH 12"3 BOLT CUPS 3 RIGID ROW SPACERS REQUIRED QCD P-1222 15-I ELEV 6,7 PB EXT Pageacof 49 12/30/2015 • Str cctural V oncepts Engineering 1200 N. Jefferson Ste. Ste F Anaheim. CA 92807 Tel: 714.632.7330 Fax: 714.632.7763 By: A.A. Project: QCD Project#: P-122215-1 Configuration&Summary: ELEV 6,7 PUSHBACK RACK(INT LOADS) 1 � I SO LAk7 U_'•s=F�_ 'ic->�� **RACK COLUMN REACTIONS b4 ASD LOADS i __ -- I 9AXIAL DL= 200 lb I D l { �i;�_ WU - �— AXIAL LL= 12,000/b ,, —=____ ! .LF-.o= 8J I T.C.S. ! _�- SEISMICAXIAL Ps=+/ 3,203 lb f / MBASE MOMENT= 0 in-lb -' 4.n.. III J © T.R3. I 1 Ell WWI J MIME r FSG f NM _IN_ -� T.C.3. 3G•Lif" :tO,I C7a:,t :� 1 u C Ff.3L I CSY C.0 4-SJU:iO*! 34' 4J• C:Et-''Am", SCSI'FF.7ECTro .SCsrsTni:EC:. Cp..)3OFFD PtJ HEACK PACK-T/PE E 3DFFPPLCKEPCK RACK M•.- lraorr E:Erarew.l wvck SIM k2VATIC“ _ Seismic Criteria #Bm Lvls Frame Depth Frame Height #Diagonals Beam Length Frame Type Ss=0.967,Fa=1.113 4 54 in 204.0 in 5 96 in Single Row Component Description STRESS Column Fy=50 ksi Struc C4x4.5 P=6100 Ib,M=29172 in-lb 0.59-OK Column&Backer To Level 2 C4x4.5/C4x4.5 p=9150 lb,M=35553 in-lb 0.37-OK Beam Fy=50 ksi Struc C5x6.7 Unbraced Length=40" Capacity: 15894 lb/pr 0.38-OK Beam Connector Fy=50 ksi Lvl 1: 3 bolt OK Mconn=18383 in-lb Mcap=40726 in-lb 0.45-OK Brace-Horizontal Fy=36 ksi Struc L2 x L2 x 1/8 0.53-OK Brace-Diagonal Fy=36 ksi Struc L2 x12 x 1/8 0.69-OK Base Plate Fy=36 ksi 6x7x3/8 Fixity=0 in-lb 0.48-0K Anchor 2 per Base 0.5"x 2"Embed HILTI KWIKBOLT TZ ESR 1917 Inspection Reqd(Net Seismic Uplift=0 Ib) 0.333-OK Slab&Soil 5.5"thk x 3000 psi slab on grade.2000 psf Soil Bearing Pressure 0.91-OK Level Load** Story Force Story Force Column Column Conn. Beam Per Level Beam Spcg Brace Transv Longit. Axial Moment Moment Connector 1 6,000 lb 10.0 in 36.0 in 74 lb 61 lb 12,200 lb 4,862 "# 18,383 "# 3 bolt OK 2 6,000 lb 60.0 in 36.0 in 518 lb 425 lb 9,150 lb 35,553 "# 26,892 "# 3 bolt OK 3 6,000 lb 60.0 in 36.0 in 961 lblb 29,172 "# 20,510 "# 3 bolt OK 6,100 79016 4 6,000 lb 60.0 in 36.0 in 1,405 lb 1,155 lb 3,050 lb 17,321 "# 10,300 "# 3 bolt OK 48.0 in **Load defined as product weight per pair of beams Total: 2,957 lb 2,431 lb Notes COLUMN BACKERS OK AT 76"ELEVATION 1500 LB AVG/2200 LB MAX PALLET x 2 WIDE x 3 DEEP ALL INTERIOR BEAMS C5x6.7 WITH 12"3 BOLT CUPS 3 RIGID ROW SPACERS REQUIRED QCD P-1222 15-I ELEV E,7 PB INT ratgAi7 of Lo 12/30/20 15 Structural - Concepts ngineering 1200 N. Jefferson Ste. Ste F Anaheim. CA 92807 Tel: 714.632.7330 Fax: 714.632.7763 By: A.A. Project: QCD Project#: P-122215-1 Seismic Forces Configuration: ELEV 6,7 PUSHBACK RACK(INT LOADS) Lateral analysis is performed with regard to the requirements of the 2012 RMI ANSI MH 16.1-2012 Sec 2.6&ASCE 7-10 sec 15.5.3 Ss= 0.967 Transverse(Cross Aisle)Seismic Load 5621 S1= 0.420 V= Cs*Ip*Ws=Cs*Ip*(0.67*P*Prf+D) kit Fa= 1.113 Cs1= Sds/R 174 Fv= 1.580 = 0.1794 Cs max*Ip= 0.1794 11110111Sds=2/3*Ss*Fa= 0.718 Cs2= 0.044*Sds Vmin= 0.015 Sd1=2/3*S1*Fv= 0.442 = 0.0316 Eff Base Shear=Cs= 0.1794 Transverse Elevation Ca=0.4*2/3*Ss*Fa= 0.2870 Cs3= 0.5*S1/R Ws= (0.67*PLRFI*PL)+DL(RMI 2.6.2) (Transverse,Braced Frame Dir.)R= 4.0 = 0.0525 = 16,480 lb Ip= 1.0 Cs-max= 0.1794 Vtransv=Vt= 0.1794* (400 lb+ 16080 lb) PRFs= 1.0 Base Shear Coeff=Cs= 0.1794 Etransverse= 2,957 lb Pallet Height=hp= 48.0 in Limit States Level Transverse seismic shear per upright DL per Beam Lvl= 100 lb Level PRODUCT LOAD P P*0.67*PRF1 DL hi wi*hi Fi Fi*(hi+hp/2) 1 6,000 lb 4,020 lb 100 lb 10 in 41,200 73.9 lb 2,513-# I 2 6,000 lb 4,020 lb 100 lb 70 in 288,400 517.5 lb 48,645-# 3 6,000 lb 4,020 lb 100 lb 130 in 535,600 961.0 lb 147,994-# 4 6,000 lb 4,020 lb 100 lb 190 in 782,800 1,404.6 lb 300,5844 sum: P=24000 lb 16,080 lb 400 lb W=16480 lb 1,648,000 2,957 lb E=499,736 Longitudinal(Downaisle)Seismic Load Similarly for longitudinal seismic loads,using R=6.0 Ws= (0.67*PLRF2*P)+ DL PRF2= 1.0 1=1 . MEN Cs1=Sd1/(T*R)= 0.1475 = 16,480 lb (Longitudinal,Unbraced Dir.)R= 6.0 P. i„ Cs2= 0.0316 Cs=Cs-max*Ip= 0.1475 T= 0.50 sec = I 14 Cs3= 0.0350 Vlong= 0.1475* (400 lb+ 16080 Ib) = f..,.... Cs-max= 0.1475 Elongitudinal= 2,431 lb Limit states Level Longit.seismic shear per upright Level PRODUC LOAD P P*0.67*PRF2 DL hi wi*hi Fi Front View 1 6,000 lb 4,020 lb 100 lb 10 in 41,200 60.8 lb 2 6,000 lb 4,020 lb 100 lb 70 in 288,400 425.4 lb 3 6,000 lb 4,020 lb 100 lb 130 in 535,600 790.1 lb 4 6,000 lb 4,020 lb 100 lb 190 in 782,800 1,154.7 lb sum: 16,080 lb 400 lb W=16480 lb 1,648,000 2,431 lb Lk()) QCD P-1222 15-I ELEV 6,7 PS INT Fag J of 12/30/201 5 , • Structural Concepts ---..4'.,,_'/-.---- Engineering 1200 N. Jefferson Ste.Ste F Anaheim. CA 92807 Tel: 714.632.7330 Fax: 714532.7763 By: A.A. Project: QCD Project#: P-122215-1 Downaisle Seismic Loads Configuration: ELEV 6,7 PUSHBACK RACK(INT LOADS) Determine the story moments by applying portal analysis.The base plate is assumed to provide no fixity. Seismic Story Forces Typical frame made Vlong= 2,431 lb Tributary area oftwo columns Vcol=Vlong/2= 1,216 lb ofrackframe Nik' ` F1= 61 lb ,i ,, -. Typical Frame made F2= 425 lb t i _I -dr'''. F3= F3= 790 Ib -►�- F �'f k:�f 'I ~ • I, .... , "I Ir l .... .-::'.4 H I::.4 H r_—i1 Y — f1 .�1� , Top View 96 Front View Side View Seismic Story Moments Conceptual System Mbase-max= 0 in-lb <===Default capacity hl-eff= hi-beam clip height/2 Mbase-v= (Vcol*hleff)/2 = 4 in Vcol ' ii_ = 2,431 in-lb <===Moment going to base Mbase-eff= Minimum of Mbase-max and Mbase-v h2 = 0 in-lb PINNED BASE ASSUMED M 1-1= [Vcol *hleff] Mbase eff M 2-2= [Vcol-(F1)/2]*h2 I�=! = (1216 lb*4 in)-0 in-lb = [1216 lb-212.7 Ib]*60 in/2 27 = 4,862 in-lb = 35,553 in-lb h1 3 3 Mseis= (Mupper+Mlower)/2 Beam to Column Elevation Mseis(1-1)= (4862 in-lb+35553 in-lb)/2 Mseis(2-2)= (35553 in-lb+ 29172 in-lb)/2 = 20,208 in-lb = 32,363 in-lb rho= 1.0000 Summary of Forces LEVEL hi Axial Load Column Moment** Mseismic** Mend-fixity Mconn** Beam Connector 1 10 in 12,200 lb 4,862 in-lb 20,208 in-lb 6,054 in-lb 18,383 in-lb 3 bolt OK 2 60 in 9,150 lb 35,553 in-lb 32,363 in-lb 6,054 in-lb 26,892 in-lb 3 bolt OK 3 60 in 6,100 lb 29,172 in-lb 23,246 in-lb 6,054 in-lb 20,510 in-lb 3 bolt OK 4 60 in 3,050 lb 17,321 in-lb 8,660 in-lb 6,054 in-lb 10,300 in-lb 3 bolt OK I Mconn= (Mseismic+Mend-fixity)*0.70*rho Mconn-allow(3 Bolt)= 40,726 in-lb **all moments based on limit states level loading (4- �`I 12/30/20 15 QCD F'-1222 15-I ELEV 6,7 PB INT Page- � of Structural Concepts Engineering 1200 N. Jefferson Ste. Ste F Anaheim. CA 92807 Tel: 714.632.7330 Fax: 714.632.7763 By: A.A. Project: QCD Project#: P•122215-1 Backered Column(Longitudinal) Configuration: ELEV 6,7 PUSHBACK RACK(INT LOADS) Section Properties 4.00 in _J Column Member= C4x4.5/C4x4.5 Aeff= 2.384 in '2 Fy= 50,000 psi r/ // r i r r Ix= 6.540 in^4 Kx= 1.7 1.58 in Sx= 3.270 in^3 Lx= 57.5 in rx= 1.656 in Ky= 1.0 Iy= 3.294 in^4 Ly= 36.0 in Sy= 2.079 inA3 Cm= 0.85 ry= 1.175 in Loads Considering loads at level 2 COLUMN DL=D= 150 lb Critical load cases are:RMI Sec 2.1 COLUMN LIVE LOAD=P= 9,000 lb Load Case 5:::(1+0.105*Sds)D+0.75*(1.4+0.14Sds)*B*P+a 75*(0.7*rho*E)<=1.0,ASD Method Mcol= 35,553 in-lb axial load coeff: 0.78773625*P seismic moment coeff: 0.5625*Mcol • Sds= 0.7175 Load Case 6::(1+0.104*Sds)D+(0.85+0.14Sds)*B*P+(0.7*rho*E)<=1.0,ASD Method 1+0.105*Sds= 1.0753 1.4+0.14Sds= 1.5005 By analysis,Load case 6 governs utilizing loads as such 1+0.14Sds= 1.1005 0.85+0.14*Sds= 0.9505 Axial=Pa= 1.10045*150 lb+0.95045*0.7*9000 lb 6= 0.7000 = 6,153 lb rho= 1.0000 Moment=Mx= 0.7*rho*Mcol = 0.7* 35553 in-lb = 24,887 in-lb Axial Analysis (kl/r)x= (1.7*57.5 in/1.656 it (kl/r)y= (1*36 in/1.175 in) = 59.03 = 30.64 (kl/r)max= 59.03 Cc= (2n^2E/Fy)^0.5 = 107.0 SINCE(KL/r)max<Cc,USE EQTN E2-1 Fa= [1-((kl/r)^2/2Cc^2)]Fv 5/3+ 3(kl/r)/8Cc-(kl/r)^3/8Cc^3 = 22,883 psi fa= Pa/AREA fa/Fa= 0.11 < 0.15 = 2,581 psi Bending Analysis fbx= Mx/Sx Fbx= 0.6*Fy = 7,611 psi = 30,000 psi F'ex= (12*n^2*E)/(23*(KI fb/Fb= 0.25 = 42,859 psi (1-fa/F'e)= 1.00 Combined Stresses (H1-3): fa/Fa +fb/Fb= 0.37 <_ 1.0 OK COD P-1222 15-I ELEV 6,7 PB INT Pac of 1.4 12/30/20 15 Structural Concepts Engineering 1200 N. Jefferson Ste. Ste F Anaheim. CA 92807 Tel: 714.632.7330 Fax: 714.632.7763 By: A.A. Project: QCD Project#: P-122215-1 Column(Longitudinal) Configuration: ELEV 6,7 PUSHBACK RACK(INT LOADS) Section Properties Column Member= Struc C4x4.5 4.00 in --ri Aeff= 1.192 in^2 Fy= 50,000 psi „ mom ...asimp Ix= 3.270 in^4 Kx= 1.7 1 1.58 in SX= 1.635 in^3 Lx= 57.5 in 0 rx= 1.656 in Ky= 1.0 Iy= 0.256 in^4 Ly= 36.0 in Sy= 0.237 in^3 Cm= 0.85 ry= 0.464 in Loads Considering loads at level 3 COLUMN DL= 100 lb Critical load cases are:RMI Sec 2.1 COLUMN PL= 6,000 lb Load Case 5.::(1+0.105*Sds)D+0.75*(1.4+0.145ds)*B*P+0.75*(0.7*rho*E)<=1.0,ASD Method Mcol= 29,172 in-lb Sds= 0.7175 Load Case 6::(1+0.104*Sds)D+(0.85+0.14Sds)*B*P+(0.7*rho*E)<=1.0,ASD Method 1+0.105*Sds= 1.0753 1.4+0.14Sds= 1.5005 By analysis,Load case 6 governs utilizing loads as such 1+0.14Sds= 1.1005 0.85+0.14*Sds= 0.9505 Axial Load=Pa= 1.10045*100 lb+ 0.95045*0.7*6000 lb B= 0.7000 = 4,102 lb rho= 1.0000 Moment=Mx= 0.7*rho*Mcol = 0.7* 29172 in-lb = 20,420 in-lb Axial Analysis (kl/r)x= (1.7*57.5 in/1.656 in (kl/r)y= (1*36 in/0.464 in) = 59.03 = 77.59 (kl/r)max= 77.59 Cc= (2n^2E/Fy)^0.5 = 107.0 SINCE(KL/r)max<Cc,USE EQTN E2-1 Fa= [1-((kl/r)^2/2Cc^2)lFv 5/3+3(kl/r)/8Cc-(kl/r)^3/8Cc^3 = 19,491 psi fa= Pa/AREA = 3,441 psi fa/Fa= 0.18 >0.15 Bending Analysis fbx= Mx/Sx Fbx= 0.6*Fy = 12,490 psi = 30,000 psi F'ex= (12*n^2*E)/(23*(KL fb/Fb= 0.42 = 42,859 psi (1-fa/F'e)= 1.00 Combined Stresses (Hi-i): fa/Fa+fbx/[Fbx* (1-fa/F'ex)] = 0.59 <_ 1.0 OK (H1-2): fa/(0.6*Fy) +fb/Fb= 0.53 <_ 1.0 OK 1 -I 6 7 PB INT Pa �`of �� 12/30/201 5 QCD P-1222 5 ELEV 9 • . Str tura) Lir on is engineering 1200 N.Jefferson Ste,Ste F Anaheim,CA 92807 Tel:714.632.7330 Fax:714.632.7763 By: A.A. Project:QCD Project#: P-122215-1 'Transverse Column Configuration:ELEV 6,7 PUSHBACK RACK(INT LOADS) Section Properties Load at level= 1 V Section: C4x4.5/C4x4.5 Aeff= 2.384 in^2 Iy= 3.294 in^4 4.00 in Ix= 6.540 in^4 Sy= 2.079 in^3 Eni Pv Sx= 3.270in^3 ry= 1.175in /F/ // //// rx= 1.656 in Fy= 50 ksi J1.58 in 52f= 1.67 Cmx= 0.85 Ps Ps E= 29,500 ksi width= 4.000 in Cb= 1.0 depthl= 1.580 in Kx= 1.7 thickl= 0.1370 in Ky= 1.0 Lx= 7.5in Ly= 36.0 in Transverse Elevation Loads COLUMN D= 200 lb Critical load cases are:RMI Sec 2.1 COLUMN P= 12,000 lb Load Case 5::(1+0.105*Sds)D+0.75*(1.4+0.14Sds)*B*P+0.75*(0.7*rho*E)<=1.0,ASD Method Sds= 0.7175 Load Case 6::(1+0.104*Sds)D+(0.85+0.14Sds)*B*P+(0.7*rho*E)<=1.0,ASD Method 1+0.105*Sds= 1.0753 1.4+0.14Sds= 1.5005 Load Case 5: 1+0.14Sds= 1.1005 Axial Load= 1.0753375*200 lb+0.75*(1.50045*0.7*12000 Ib) +0.75*(0.7*rho*3203 Ib) 0.85+0.14*Sds= 0.9505 = 11,349 lb B= 0.7000 Load Case 6: rho= 1.0000 Axial Load= 1.10045*200 lb+0.95045*0.7*12000 lb+(0.7*rho*3203 Ib) Movt= 499,736 in-lb = 10,446 lb Frame Depth=D= 156 in Seismic Axial=Pv= Movt/D Eff.Axial Load= Pa= 11,349 lb = 3,203 lb Axial Analysis (kl/r)x= (1.7*7.5 in/1.656 in) (kl/r)y= (1*36 in/1.175 in) = 7.70 = 30.64 Cc= (2n^2E/Fy)^0.5 (kl/r)max= 30.64 = 107.0 SINCE(KL/r)max < Cc,USE EQTN E2-1 Fa = [1-((kl/r)^2/2Cc^2)]Fv 5/3+3(kl/r)/8Cc-(kl/r)^3/8Cc^3 = 27,074 psi fa= Pa/AREA = 4,761 psi fa/Fa= 0.18 > 0.15 Bending Analysis Fbx= 0.6*Fy 30 000 psi fbx= M/Sy = � / = 0 psi fb/Fb= 0.00 F'ex= (12*n^2*E)/(23*(KL/r)^2) = 2,519,131 psi (1-fa/F'e)= 1.00 Combined Stresses (H1-1): fa/Fa +fbx/[Fbx*(1-fa/F'ex)] = 0.18 <_ 1.0 OK i CX �-�`� • Structural • Concepts Engineering 1200 N. Jefferson Ste.Ste F Anaheim. CA 92807 Tel: 714.632.7330 Fax: 714.632.7763 By: A.A. Project: QCD Project#: P-122215-1 Beam Configuration: ELEV 6,7 PUSHBACK RACK(EXT LOADS) The beam to column connection is assumed to provide partial end fixity for the beam frame.The end moment calculated herein is added to the lateral force force portal moment when analyzing the connection capacity. The impact load on the beam is addressed by including the Impact Factor"a"in the determination of the beam center bending stress. Section Properties Beam Member= Struc C4x4.5 "4 \ = n n Beam at Level= 1 Beam Weight= 4.0 lb/ft Beam Type= Structural Thickness= 0.137 in 4.000 in \ Ix= 3.469 in^4 Beam Shape= Channel Sx= 1.735 in^3 -Beam Length=L= 96.0 in d/Af= 9.4 IMO Unbraced Length,Lu= 40.0 in Impact Factor(a)=[1-(25%/2)]= 0.875 ti "7 Loads Load Case:D+0.88P 4-Impact RMI Section 2.1,Load case 10 End Fixity= 25% Coeff 13= 0.104/0.125 0= 0.25 = 0.832 Mcenter= 8*(wL^2/8) Mcenter= Mcenter(simple ends)-0*Mcenter(fixed ends) = 0.832*(wL^2/8) = wL^2/8-(0.25*wL^2/12) Mends= 0*Mmax(fixed ends) = wL^2/8 - wL1'2/48 = (wL^2/12)*0.25 = 0.104*wL^2 = 0.0208*wL^2 Fy= 50,000 psi Fb= 0.6*Fy = 30,000 psi Fb'= 12,000/(lu*d/Af) = 12,000/(40*9.4) Fb-eff= 30,000 psi = 31,915 psi Live Load/Pair= 3,000 lb Dead Load/Pair= (4 lb/ft)*2*96 in/12 Dist Load=w= 16.0 lb/in = 64 lb Mcenter= 0.104*wL^2 Mends= 0.0208*wL^2 = 15,295 in-lb = 3,059 in-lb Bending M= 15,295 in-lb fb= (M/Sx)/a 4-- includes impact factor(a)reduction coeff,conservatively 1.0P is used in lieu of 0.88P = 10,075 psi fb/Fb= 10075 psi/30000 psi 0.34 <=1.0,OK Bending Capcity= 8,948 lb/pair <===Critical Deflection Defl-allow=L/ 180 Defl= 13*[5wL^4/(384*E*Ix)] = 0.534 in = [5*16 lb/in*(96 in)^4/(384*29.5x10^6 psi *3.469 inA4)]*0.832 = 0.144 in <=0.534 in,OK Deflection Capacity= 11,298 lb/Pair Allowable load per beam pair= 8,948 lb QCD P-122215-1 ELEV 6,7 PB EXT Pages of t49 12/30/2015 • Structural Concepts ngineering 1200 N. Jefferson Ste. Ste F Anaheim. CA 92807 Tel: 714.632.7330 Fax: 714.632.7763 By: A.A. Project: QCD Project#: P-122215-1 Beam Configuration: ELEV 6,7 PUSHBACK RACK(INT LOADS) The beam to column connection is assumed to provide partial end fixity for the beam frame.The end moment calculated herein is added to the lateral force force portal moment when analyzing the connection capacity. The impact load on the beam is addressed by including the Impact Factor"a"in the determination of the beam center bending stress. Section Properties Beam Member= Struc C5x6.7 111 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII111111111111 Beam at Level= 1 Beam Weight= 4.0 lb/ft it Beam Type= Structural Thickness= 0.190 in 5.000.n Ix= 7.490 in^4 Beam Shape= Channel 3 Sx= 3.000 in^3 z "MEN Beam Length=L= 96.0 in d/Af= 8.93 Unbraced Length,Lu= 40.0 in Impact Factor(a)=[1-(25%/2)]= 0.875 Loads Load Case;D+0.88P#Impact RMI Section 2.1,Load case 10 %End Fixity= 25% Coeff f3= 0.104/0.125 0= 0.25 = 0.832 Mcenter= B*(wL^2/8) Mcenter= Mcenter(simple ends)-0*Mcenter(fixed ends) = 0.832*(wL^2/8) = wL^2/8-(0.25*wL^2/12) Mends= 0*Mmax(fixed ends) = wL^2/8 - wL^2/48 = (wL^2/12)*0.25 = 0.104*wL^2 = 0.0208*wLA2 Fy= 50,000 psi Fb= 0.6* Fy = 30,000 psi Fb' = 12,000/(lu*d/Af) = 12,000/(40*8.93) Fb-eff= 30,000 psi = 33,595 psi Live Load/Pair= 6,000 lb Dead Load/Pair= (4 lb/ft)*2*96 in/12 Dist Load=w= 31.6 lb/in = 64 lb Mcenter= 0.104*wL^2 Mends= 0.0208*wL^2 = 30,271 in-lb = 6,054 in-lb Bending M= 30,271 in-lb fb= (M/Sx)/a t-- includes impact factor(a)reduction coeff, conservatively 1.OP is used in lieu of 0.88P = 11,532 psi fb/Fb= 11532 psi/30000 psi = 0.38 <= 1.0,OK Bending Capcity= 15,894 lb/pair <===Critical Deflection Defl-allow=L/ 180 Defl= B* [5wL^4/(384*E*Ix)] = 0.534 in = [5*31.6 lb/in*(96 in)^4/(384*29.5x10^6 psi *7.49 in^4)]*0.832 = 0.132 in <=0.534 in,OK Deflection Capacity= 24,468 lb/Pair Allowable load per beam pair= 15,894 lb QCD P 1222 15-I ELEV 6,7 Pb INT Pag/ of 12/30/201 5 Str tura) - -o is - '''',...4.4'.-7-_,:i ngineering 1200 N.Jefferson Ste,Ste F Anaheim, CA 92807 Tel:714.632.7330 Fax: 714.632.7763 By: A.A. Project:QCD Project#:P-122215-I 3 Bolt Beam to Column Connection Configuration: ELEV 6,7 PUSIIBACK RACK(INT LOADS) 1" P1 Mconn max= (Mseismic+ Mend-fixity)*0.70*Rho ' = 18,383 in-lb Load at level 1 , O 2" 12" X /P2 10" O P3 Connector Type= 3 Bolt >c ,,,./O' C Connector Elevation Shear Capacity of bolt bolt Diam= 0.50 in Py= 50,000 psi Fv-bolt= 21 ,000 psi r'e. Ashear= (0.5 in)^2 * P1/4 ��10 _ = O. 1963 m^2 44100 � " Pshear= Ashear * Fv = 21 ,000 psi ' 0. 1963 in^2 a mill = 4,122112 1 10 12" bearing Capacity of bolt by1 i I 110'a1 DB tcol= 0. 137 in Fu= 65,000 psi 11 I Bolt Diam= 0.500 in —' 5/8" © 1 1 1 1 Pbearing= I .2 ' bearing Area ' Fu ,;/ = 1 .2 ' 0.5 in dram ' 0.137 in ' 65000 psi = 5,343 Ib > 4122 Ib Moment Capacity of bracket Edge Distance=E= I .00 in Bolt Spacing= 4.0 in Py= 50,000 psi C= P I +P2+P3 tclip= 0.18 in Sclip= 0. 140 in^3 = P I +P I'(4.5"/8.5")+P 1'(0.5"/8 5") = 1 .588 ' PI Mcap= Sclip ' Fbending C'd= Mcap = 1 .588 cl= E = 0. 1 4 in^3 ' 0.66 ' Fy = 1 .00 in = 4,620 in-Ib Pclip= Mcap/(I .588 ' d) _ = 4620 in-lb/(1 .588 * 1 in) Thus, P I = 2,909 Ib = 2,909 Ib Mconn-allow= [P 1 '1 0"+P I"(6710")'6"+P I'(2"/1 O")'2"] = 2909 LB'[I0"+(6"/I0") G°+ (271O")'21 = 40,726 in-lb > Mconn max, OK 2)L-.S.- L t_e/ QCD P-1222 15-I ELEV 6,7 PB INT PagE of )2/30/2015 St tural • a pts ngineering • 1200 N.Jefferson Ste,Ste F Anaheim,CA 92807 Tel:714.632.7330 Fax:714.632.7763 By: A.A. Project: QCD Project#: P4222154 Transverse Brace ELEV 6,7 PUSHBACK RACK(INT LOADS) Diagonal Member= Struc L2 x L2 x 1/8 Horizontal Member= Struc L2 x L2 x 1/8 '- D Area= 0.48 in^2 Area= 0.48 in^2 Malkin r min= 0.398 in r min= 0.398 in K= 1.0 K= 1.0 Fy= 36,000 psi Fez- Ldiag H Frame Dimensions 0 Load Case 6::(1 +[(0.85+0.14Sds)*B*P+[0.7*rho*EJB=1.0,ASD Method Bottom Panel Height=H= 36.0 in Clear Depth=D-B*2-4"=d= 46.8 in B Frame Depth=D= 54.0 in Ldiag= [d^2+ H^2]^0.5 Tvoical Panel Configuration Column Width=B= 1.6 in = 59.0 in - Diagonal Brace Vtransverse= 2,957 lb Vdiag= V*(Ldiag/D) Vb=Vtransv*0.7*rho= 2957 lb* 0.7* 1 = 2,262 lb = 2,070 lb (kl/r)max= 148.24 (kl/r)x= (1*59 in/0.398 in) Cc= (2n^2E/Fy)^0.5 fa= P/AREA = 148.24 = 126.1 = 4,674 psi (KL/r)max> Cc, Eqtn E2-2 Applies Check Weld Fa = 12n^2E/23(kl/r)^2 Weld Tension= 2,262 lb 23(kl/r)^2 tweld= 0.125 in = 6,795 psi Lweld= 4.0 in Fweld= 70,000 psi fa/Fa= 0.690 <= 1.0 OK Weld Capacity= tweld*0.7071*Lweld*0.3*Fweld*1.0 = 7,425 lb 30.5% OK Horizontal Brace V=Vtransv= 2,070 lb (kl/r)x= (1*54 in/0.398 in) (kl/r)max= 135.68 = 135.68 Cc= (2n^2E/Fy)^0.5 = 126.1 (KL/r)max> Cc, Eqtn E2-2 Applies Fa = 12n^2E/23(kl/r)^2 fa= P/AREA 23(kl/r)^2 = 4,277 psi = 8,112 psi fa/Fa= 0.53 <= 1.0 OK L( - Structural Concepts _ Engineeringo 1200 N. Jefferson Ste. Ste F Anaheim. CA 92807 Tel: 714.632.7330 Fax: 714 632.7763 By: A.A. Project: QCD Project#: P-122215-1 Single Row Frame Overturning Configuration:ELEV 6,7 PUSHBACK RACK(INT LOADS) Loads t Critical Load case(s): hp i �;; :::: 1 )RRMI Sec 2.2,item 7:(0.9-0.2Sds)D+(0.9-0.20Sds)*B*Papp-E*rho V Sds= 0.7175 Vtrans=V=E=Qe= 2,957 lb (0.9-0.20Sds)= 0.7565 DEAD LOAD PER UPRIGHT=D= 400 lb (0.9-0.2Sds)= 0.7565 H h _ PRODUCT LOAD PER UPRIGHT=P= 24,000 lb 6= 1.0000 Papp=P*0.67= 16,080 lb rho= 1.0000 :t LC1=Wst1=(0.7565*D+0.7565*Papp*1)= 12,467 lb T Frame Depth=Df= 156.0 in Product Load Top Level,Ptop= 6,000 lb Htop-Iv1=H= 190.0 in Df DL/Lvl= 100 lb #Levels= 4 Seismic Ovt based on E,E(Fi*hi)= 499,736 in-lb #Anchors/Base= 2 SIDE ELEVATION - height/depth ratio= 1.2 in hp= 48.0 in A)Fully Loaded Rack h=H+hp/2= 214.0 in Load case 1: - Movt= E(Fi*hi)*E*rho Mst= Wst1*Df/2 T= (Mout-Mst)/Df = 499,736 in-lb = 12467 lb* 156 in/2 = (499736 in-lb-972426 in-lb)/156 in = 972,426 in-lb = -3,030 lb No Uplift Net Seismic Uplift= -3,030 lb B)Top Level Loaded Only Load case 1: +h* VV2*H/2]*0.7*rho 0 V1=Vtop= Cs*Ip*Ptop>=350 lb for H/D>6.0 Movt== [Vi[V1166 7 in-lb 1,00 = 0.1794*6000 lb T= (Movt-Mst)/Df = 1761b Vleff= 1,076 lb Critical Level= 4 = (166017 in-lb-377645 in-lb)/156 in V2=V0L= Cs*Ip*D CS*Ip= 0.1794 = -1,357 lb No Uplift = 72 lb Mst= (0.7565*D+ 0.7565*Ptop*1)*156 in/2 = 377,645 in-lb I Net Seismic Uplift= -1,357 lb Anchor Check(2)0.5"x 2"Embed HILTI KWIKBOLT TZ anchor(s)per base plate. Special inspection is required per ESR 1917. Tca *Phi= 1 329 lb Pullout Capacity=Tcap= 1,329 lb L.A.City Jurisdiction? NO p , Shear Capacity=Vcap= 1,844 lb Phi= 1 Vcap*Phi= 1,844 lb Fully Loaded: (739 lb/1844 Ib)^1 = 0.40 <= 1.2 OK Top Level Loaded: (-679 lb/1329 Ib)^1+ (269 lb/1844 lb)^1= 0.15 <= 1.2 OK ` 1 12/30/2015 QCD P-122215-1 ELEV 6,7 PB INT Pa 9e- � 0 of Structural Concepts °' . L.ngineering 1200 N. Jefferson Ste. Ste F Anaheim. CA 92807 Tel: 714.632.7330 Fa: 714.632,7763 By: A.A. Project: QCD Project#: P-122215-1 Base Plate Configuration: ELEV 6,7 PUSHBACK RACK(INT LOADS) P •- a -► Section 1, Baseplate= 6x7x3/8 Eff Width=W= 6.00 in a= 2.00 in n. Mb Eff Depth=D= 4.00 in Anchor cc. =2*a=d= 4.00 in sillii Column Width=b= 4.00 in N=#Anchor/Base= 2 I I b I.- L R Column Depth=dc= 3.16 in Fy= 36,000 psi f- w ____,.- L= ►L= 1.00 in Downaisle Elevation Plate Thickness=t= 0.375 in Down Aisle Loads Load Case 5:::(1+0.105*Sds)D+0.75*[(1.4+0.145ds)*B*P+0.75*[0.7*rho*E7<=1.0,ASD Method COLUMN DL= 200 lb Axial=P= 1.0753375* 200 lb+0.75* (1.50045* 0.7* 12000 Ib) COLUMN PL= 12,000 lb = 9,668 lb Base Moment= 0 in-lb Mb= Base Moment*0.75*0.7*rho 1+0.105*Sds= 1.0753 = 0 in-lb*0.75*0.7*rho 1.4+0.14Sds= 1.5005 = 0 in-lb B= 0.7000 Axial Load P= 9,668 lb Mbase=Mb= 0 in-lb Axial stress=fa= P/A=P/(D*W) M1= wL^2/2=fa*L^2/2 = 403 psi = 201 in-lb Moment Stress=fb= M/S=6*Mb/[(D*B^2] Moment Stress=fb2= 2*fb*11W = 0.0 psi = 0.0 psi Moment Stress=fbl = fb-fb2 M2= fb1*L^2)/2 = 0.0 psi = 0 in-lb M3 = (1/2)*fb2*L*(2/3)*L= (1/3)*fb2*L^2 Mtotal = M1+M2+M3 = 0 in-lb = 201 in-lb/in S-plate= (1)(t^2)/6 Fb= 0.75*Fy = 0.023 inA3/in = 27,000 psi fb/Fb= Mtotal/[(S-plate)(Fb)] F'p= 0.7*F'c = 0.32 OK = 2,100 psi OK Tanchor= (Mb-(PLapp*0.75*0.46)(a))/[(d)*N/2] Tallow= 1,329 lb OK = -6,234 lb No Tension Cross Aisle Loads Cnbcalload case RMlSec 2.t,"ern 4:(I+O.I15ds)O[+(I+019sosyt.o.75+Ep.o.75<=1.0,,ASO Method Check uplift load on Baseplate Check uplift forces on baseplate with 2 or more anchors per RMI 7.2.2. Pstatic= 9,668 lb When the base plate configuration consists of two anchor bolts located on either side .f the column and a net uplift force exists,the minimum base plate thickness Movt*0.75*0.7*rho= 262,361 in-lb Pseismic= Movt/Frame Depth shall be determined based on a design bending moment in the plate equal Frame Depth= 54.0 in = 4,859 lb to the uplift force on one anchor times 1/2 the distance from P=Pstatic+Pseismic= 14,526 lb the centerline of the anchor to the nearest edge of the rack column" b=Column Depth= 3.16 in T I~ c * Mu a hui L=Base Plate Depth-Col Depth= 1.00 in Ta ,.,i1ll111 il fa= P/A= P/(D*W) M= wL^2/2=fa*LA2/2 I--ft 1 b I �I = 605 psi = 303 in-lb/in Elevation Uplift per Column= 0 lb Sbase/in= (1)(t^2)/6 Fbase= 0.75*Fy Qty Anchor per BP= 2 = 0.023 in^3/in = 27,000 psi Net Tension per anchor=Ta= 0 lb c= 1.00 in fb/Fb= M/[(S-plate)(Fb)] Mu=Moment on Baseplate due to uplift= Ta*c/2 = 0.48 OK = in-lb Splate= 0.094 in^3 fb Fb *0.75= 0 OK L 12/30/201 5 QCD P-122215-1 ELEV 6,7 PB INT -g of Structural - Concepts _ , Engineering 1200 N. Jefferson Ste, Ste F Anaheim. CA 92807 Tel: 714.632.7330 Fax:_714.632.7763 By: A.A. Project: QCD Project#: P-122215-1 Slab on Grade Configuration: ELEV 6,7 PUSHBACK RACK(INT LOADS) P •... .stab • Concrete a r a - i fc= 3,000 psi - D I b e • tslab=t= 5.5 in slab I Cross teff= 5.5 in IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII,IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII --- Aisle 2i. phi=f= 0.6 �- X --I H. c --1.1Soil Y fsoil= 2,000 psf .. .... ......Down Aisle ................... I:- L � ...... ..... Movt= 349,815 in-Ib SLAB ELEVATION Frame depth= 156.0 in Baseplate Plan View Sds= 0.718 _ Base Plate 0.2*Sds= 0.144 Effec.Baseplate width=B= 6.00 in width=a= 4.00 in midway dist face of column to edge of plate=c= 5.00 in Effec.Baseplate Depth=D= 4.00 in depth=b= 3.16 in midway dist face of column to edge of plate=e=3.58 in Column Loads DEAD LOAD=D= 200 lb per column Load Case 1) (1.2+0.2Sds)D+(1.2+0.2Sds)*B*P+rho*E RMI SEC 2.2 EQTN 5 - unfactored ASD load = 1.3435*200 lb+ 1.3435*0.7* 12000 lb+ 1*2242 lb PRODUCT LOAD=P= 12,000 lb per column = 13,796 lb unfactored ASD load Load Case 2) (0.9-0.2Sds)D+(0.9-0.2Sds)*B*Papp+ rho*E RMI SEC 2.2 EQTN 7 Papp= 8,040 lb per column = 0.7565*200 lb+0.7565*0.7*8040 lb+ 1*2242 lb P-seismic=E= (Movt/Frame depth) = 6,651 lb = 2,242 lb per column Load Case 3) 1.2*D+ 1.4*P RMI SEC 2.2 EQTN 1,2 unfactored Limit State load = 1.2*200 lb+ 1.4*12000 lb B= 0.7000 = 17,040 lb rho= 1.0000 Effective Column Load=Pu= 17,040 lb per column Sds= 0.7175 1.2+0.2*Sds= 1.3435 0.9-0.20Sds= 0.7565 Puncture Apunct= [(c+t)+(e+t)]*2*t Fpunct= 2.66*phi*sqrt(fc) = 215.38 in^2 = 87.4 psi fv/Fv= Pu/(Apunct*Fpunct) = 0.905 < 1 OK Slab Bending Pse=DL+PL+E= 17,040 lb Asoil= (Pse*144)/(fsoil) L= (Asoil)^0.5 y= (c*e)^0.5+ 2*t = 1,227 inA2 = 35.03 in = 15.2 in _ x= (L-y)/2 M= w*x^2/2 S-slab= 1*teff^2/6 = 9.9 in = (fsoil*x^2)/(144*2) = 5.04 inA3 Fb= 5*(phi)*(fc)^0.5 = 680.5 in-lb fb/Fb= M/(5-slab*Fb) = 164.32 psi = 0.821 < 1,OK QCD P-122215-1 ELEV 6,7 PB INT Fag Page-Q of 14 12/30/2015 , . Strr+cturai V oncepts Engineering r•• 1200 N.Jefferson Ste. Ste F Anaheim. CA 92807 Tel: 714.632.7330 Fax: 714.632.7763 By: A.A. Project: QCD Project#: P-122215-1 Configuration&Summary: ELEV 2,3 PUSHBACK RACK(INT LOADS) '' t '°—i '' v **RACK COLUMN REACTIONS 1 '-,C-1-....c.„. £�:.\ — ASD LOADS ' AXIAL DL= 100 lb 1 _ ...„.1.-4ffl.0 AXIAL LL= 6,000 lb a_F SEISMIC AXIAL Ps=-f/- 2,501 lb A. ,; f' BASE MOMENT= 0 in lb 'i aa•ca r *.C:Y.rh^:r T ..CT C-CR 01'5!5 , C 2 DEEP PU P.EACK PRC% tl nae..tiucwi'M 2 DEEP PUSHE.CK PACK t 2i AVOW,e�ra�aw-:voce - Seismic Criteria #Bm Lvls Frame Depth Frame Height #Diagonals Beam Length Frame Type Ss=0.967,Fa=1.113 2 54 in 204.0 in 5 96 in Single Row Component Description STRESS Column Fy=50 ksi Struc C4x4.5 P=3050 lb, M=17010 in-lb 0.34-OK Column&Backer To Level 1 C4x4.5/C4x4.5 p=6100 Ib,M=47385 in-lb 0.43-OK Beam Fy=50 ksi Struc C5x6.7 Unbraced Length=40" Capacity: 15894 lb/pr 0.38-OK Beam Connector Fy=50 ksi Lvl 1:3 bolt OK Mconn=26776 in-lb Mcap=40726 in-lb 0.66-OK Brace-Horizontal Fy=36 ksi Struc L2 x L2 x 1/8 0.26-OK Brace-Diagonal Fy=36 ksi Struc L2 x L2 x 1/8 0.35-OK Base Plate Fy=36 ksi 6x7x3/8 Fixity=0 in-lb 0.66-OK Anchor 2 per Base 0.5"x 2"Embed HILTI KWIKBOLT 17 ESR 1917 Inspection Reqd(Net Seismic Uplift=0 Ib) 0.167-OK Slab&Soil 5.5"thk x 3000 psi slab on grade. 2000 psf Soil Bearing Pressure 0.44-OK Level Load** Story Force Story Force Column Column Conn. Beam Per Level Beam Spcg Brace Transv Longit. _ Axial Moment Moment Connector 1 6,000 lb 84.0 in 36.0 in 493 lb 405 lb 6,100 lb 47,385 "# 26,776 "# 3 bolt OK 2 6,000 lb 84.0 in 36.0 in 985 lb 810 lb 3,050 lb 17,010 "# 10,191 "# 3 bolt OK 36.0 in 36.0 in 48.0 in **Load defined as product weight per pair of beams Total: 1,478 lb 1,215 lb Notes COLUMN BACKERS MUST EXTEND TO 84"ELEVATION 1500 LB AVG/2200 LB MAX PALLET x 2 WIDE x 2 DEEP ALL INTERIOR BEAMS C5x6.7 WITH 12"3 BOLT CUPS 3 RIGID ROW SPACERS REQUIRED QCD P-1222 15-I ELEV 2,3 PB INT Page of C----k- 1 2/30/201 5 • StrAtural . V oncepts Engineering 1200 N. Jefferson Ste. Ste F Anaheim. CA 92807 Tel: 714.632.7330 Fax: 714.632.7763 By: A.A. Project: QCD Project#: P-122215-1 Configuration&Summary: ELEV 2,3 PUSHBACK RACK(EXT LOADS) v 1 s t'--F44-i ; .....t.„,..,,,,,, 4r a,_-,k` =pro. **RACK COLUMN REACTIONS lirFE ASD LOADS AXIAL DL= 100/b ME 0 __ _^ -;,a•L'� AXIAL LL= 3,000/b '. tt =_E'°s r." ' SEISMIC AXIAL P5=+/- 1 281/b V T.C.G. A_i£_. .147' i�Yi �v� M3}Fe r•s.. % ',ir' -IN-Willialli BASE MOMENT= 0 in/b n 4'.1:.%1T-- E-. ^ = . g ea s M� T.c- z . ;.� i' a . 1 H ;%T,-. 1` 1 4-•-j I II '. a' - . tar c.c. J •a ?"..CTE..:Ca1"5'f5-ct,,.l.:34 1(Th., 2 `2 DEEP P`5SH.EACK PACK 7Th y 2 DEEP PuSHEACK RACK J,..,T uc,AT E.2 wec sae etw,aer. Seismic Criteria # Bm Lvls Frame Depth Frame Height #Diagonals Beam Length Frame Type Ss=0.967,Fa=1.113 2 54 in 204.0 in 5 96 in Single Row - Component Description STRESS Column Fy=50 ksi Struc C4x4.5 P=1550 Ib,M=8709 in-lb 0.17-OK Column&Backer To Level 1 C4x4.5/C4x4.5 p=3100 lb,M=24880 in-lb 0.23-OK Beam Fy=50 ksi Struc C4x4.5 Unbraced Length=40' Capacity: 8948 lb/pr 0.34-OK Beam Connector Fy=50 ksi Lvl 1:2 bolt OK Mconn=13897 in-lb Mcap=27480 in-lb 0.51-OK Brace-Horizontal Fy=36 ksi Struc L2 x L2 x 1/8 0.13-OK Brace-Diagonal Fy=36 ksi Struc L2 x L2 x 1/8 0.18-OK Base Plate Fy=36 ksi 6x7x3/8 Fixity=0 in-lb 0.34-OK Anchor 2 per Base 0.5"x 2"Embed HILTI KWIKBOLT TZ ESR 1917 Inspection Reqd(Net Seismic Uplift=0 Ib) 0.083-OK Slab&Soil 5.5"thk x 3000 psi slab on grade.2000 psf Soil Bearing Pressure 0.22-OK Level Load** Story Force Story Force Column Column Conn. Beam Per Level Beam Spcg Brace Transv Longit. Axial Moment Moment Connector 1 3,000 lb 84.0 in 36.0 in 252 lb 207 lb 3,100 lb 24,880 "# 13,897 "# 2 bolt OK 2 3,000 lb 84.0 in 36.0 in 505 lb 415 lb 1,550 lb 8,709 "# 5,189 "# 2 bolt OK 36.0 in 36.0 in 48.0 in **Load defined as product weight per pair of beams Total: 757 lb 622 lb Notes COLUMN BACKERS MUST EXTEND TO 84"ELEVATION 1500 LB AVG/2200 LB MAX PALLET x 2 WIDE x 2 DEEP ALL EXTERIOR BEAMS C4x4.5 WITH 8"2 BOLT CUPS 3 RIGID ROW SPACERS REQUIRED 4 ` I2/30/20I5 QCD P 1222 15 I ELEV 2,3 Pb EXT Page of •_ Stryktural - V oncepts -- Engineering 1200 N. Jefferson Ste. Ste F Anaheim. CA 92807 Tel;714.6327330 Fax: 714.632.7763 By: A.A. Project: QCD Project#: P-122215-1 Configuration&Summary: ELEV 1,3 PUSHBACK RACK 1II ;,,_,c c,\� ,� RACK COLUMN REACTIONS ` ASD LOADS i5 mos _,x_‘..E AXIAL DL= 100 lb _ :1Tn-�_ 11. AXIAL LL= 3,000/b SEAMS l'•= c' ✓r SEISMIC AXIAL Ps=+/- 1,281 lb }`y T.C.3. fa LE':a.5 'INN E-M'C mom k _.,.c.:. 3____°, BASE MOMENT= 0 in-lb 4 -- M 1_ T03. t t.i, � l 1 �Ir T . 3 3 C'.E%-FtlO T .,.G. ,,.yE., r—~.2 CEEP PUGHEACK RACK 2 DEEP PUSHEACK RACK •flo%T:a_v..te._1wm 1/4.,y Mat[Lawn re Length Frame Type _ Seismic Criteria # Bm Lvls Frame Depth Frame Height #Diagonals Beam Len 9 Single Row Ss=0.967, Fa=1.113 2 54 in 204.0 in 5 48 in Sin g " Component Description STRESS Column Fy=50 ksi Struc C4x4.5 P=1550 lb, M=8709 in-lb 0.17-OK Column&Backer To Level 1 C4x4.5/C4x4.5 p=3100 Ib,M= 24880 in-lb 0.23-OK Beam Fy=50 ksi Struc C3x3.5 Unbraced Length,-40" Capacity: 10423 lb/pr 0.29-OK Beam Connector Fy=50 ksi Lvl 1:2 bolt OK Mconn=12816 in-lb Mcap=27480 in-lb 0.47-OK Brace-Horizontal Fy=36 ksi Struc L2 x L2 x 1/8 0.13-OK Brace-Diagonal Fy=36 ksi Struc L2 x L2 x 1/8 0.18-OK Base Plate Fy=36 ksi 6x7x3/8 Fixity=0 in-lb 0.34-OK Anchor 2 per Base 0.5"x 2"Embed HILTI KWIKBOLT TZ ESR 1917 Inspection Reqd(Net Seismic Uplift=0 Ib) 0.083-OK Slab&Soil 5.5"thk x 3000 psi slab on grade. 2000 psf Soil Bearing Pressure 0.22-0K Level Load** Story Force Story Force Column Column Conn. Beam Per Level Beam Spcg Brace Transv Longit. Axial Moment Moment Connector 1 3,000 lb 84.0 in 36.0 in 252 lb 207 lb 3,100 lb 24,880 "# 12,816 "# 2 bolt OK 2 3,000 lb 84.0 in 36.0 in 505 lb 415 lb 1,550 lb 8,709 "# 4,108 "# 2 bolt OK 36.0 in 36.0 in 48.0 in **Load defined as product weight per pair of beams Total: 757 lb 622 lb Notes COLUMN BACKERS MUST EXTEND TO 84"ELEVATION 1500 LB AVG/2200 LB MAX PALLET x 1 WIDE x 2 DEEP ALL BEAMS ARE C3x3.5 WITH 8"2 BOLT CLIPS 3 RIGID ROW SPACERS REQUIRED.ANALYSIS APPLIES TO EXTERIOR AND INTERIOR LOCATIONS QCD P-1222 15-I ELEV I,3 PB Pa of(— I 9 12/30/2015