Loading...
Plans (8) 07 GJ S7` PWU ENGINEERING INC. Email: pwuengineerinq(u�comcast.net RECEIVED Ph: (503) 810-8309 Structural Calculations: OCT 2 6 2015 Job # LEN 15404 CITY OF TIGARD Date: 10/9/15 BUILDING DIVISION Project: Burlington A 3 car Master Reuse Garage Right Lot 9, Oak Crest, Tigard, OR Lennar Homes tiD P R OFFS ' G I N FF �� �• 19421PE A rt?ON 1 N'v ylL I P `N Expires: 06/30/2016 The following calculations are for lateral wind and seismic engineering and gravity loading of the beams and columns. Non-prescriptive foundations are outside the scope of this design and require approval from a geotechnical engineer. If the project is located on a sloping lot, the foundation system needs to be approved by a geotechnical engineer prior to construction. Failure to do so invalidates this design. The need for retaining walls for the project is the sole responsibility of the builder and a design will be included only if information provided by the builder,such as sections and drawings,are provided indicating where they are needed. All retaining wall designs should be verified by the geotechnical engineer of record for the subdivision or lot prior to construction. Failure to do so invalidates their design. The design is based on information provided by the client who is solely responsible for its accuracy. The engineering represents the finished product. Discrepancies from information provided by the client invalidate this design. PWU Engineering shall have no liability (expressed, or implied), with respect to the means and methods of construction workmanship or the actual materials used in construction. PWU Engineering Inc.shall have no obligation of liability,whether arising in contract(including warranty), Tort(including active, passive, or imputed negligence) or otherwise, for loss or use, revenue or profit, or for any other incidental or consequential damage. ----1 ,PWU ENGINEERING INC. Ph: 503 810-8309, Email: pwuengineering @comcast.net The following calculations are for the Burlington A 3Car Master plans for Plan approvals. Wind Loading: Per ASCE 7. Fig 6-2 See attached elevations for wind loading breakdown per level. 136mph Ultimate 3-sec gust Exposure B for Category I and II structure, Which is equal to 105mph ASD per the 2012 IBC and I.RC with state amendments The mean roof height of the house h =26.0' approximately. MFRS c Direction 111114 End Zones illterw 110 MCI FFRS Direction 2a ' End Zones Note: End zone may occur at any corner of the building. a= .10*50' = 5.0' or for h =26' a=.4(h) = .4(26')= 10.4' a=5.0' controls a must be larger than .04(50') =2.0' and 3' Therefore: 2a= 10.0' see Fig 6-2 ASCE 7, and Figure above. Seismic Loading: DI seismic design category per the latest edition of the state adopted code based on the 2012 IBC and IRC SDS= .76, R= 6.5, W=weight of structure V= [1.2 SDSI(R x 1.4)] W V= .100W Roof Dead load = 15 psf Floor Dead load= 15 psf Interior Wall Dead load= 6 psf Exterior Wall Dead load= 12 psf ■ Wind per ASCE 7 PWU ENGINEERING INC. Project,Burlington A 3Car Direction Front to Back 3s Gust Roof Least Speed Exp. Angle A L(ft) hAVG(ft) 105mph B 26.6 1.00 50.0 26.0 :• 6:12 MFRS a= 5.0 ft Ureclpn M End Zones ��.\ A 21.3 psf ors= 10.4 ft r4 B 6.8 psf Check 10psf min and a> 2.0 ft 0 j Direction C 15.8 psf load across all and a> 3.0 ft 2e D 6.0 psf zones. End Zones 2a_ 10.0 ft Note:End zone may occur at any corner of the butdfq. WR L(ft) 10.0 20.0 10.0 hA(ft) . , 4.0 4.0 ' hB(ft)' 7.0 7.0 hc(ft) 4.0 . h0(ft) 7.0 • W(plf) 0.0 132.4 105.1 132.4 0.0 0.0 0.0 0.0 0.0 0.0 150.0 - WR AVG 118.8 plf 100.0 I 1 10psf min load: 110.0 plf 50.0 - Governing value: 118.8 plf W2 L(ft) . 10.0 10.0 20.0 10.0 hA(ft) 7.5 5.5 10.0 . hB(ft) hc(ft) 4.5 10.0_ h0(ft) W(plf) 159.5 188.2 158.4' 212.6 0.0 0.0 0.0 0.0 0.0 0.0 300.0 - W2 AVG 175.4 plf 200.0 - t I 10psf min load:r 95.0 plf 100.0 - Governing value: 175.4 plf W1 L(ft) hA(ft) hB(ft) - hc(ft). h0(ft) W(plf) 0.0' 0.0 0.0 0.0' 0.0 0.0 0.0 0.0_ 0.0' 0.0 1.0 I W1 AVG #DIV/0! 10psf min load: #DIV/0! 0.5 Governing value: #DIV/0! 0.0 , 1111!111.UIUIIII'II1Iiimis1UI11mIIIII!IUUnnn imili H■11111t>IIIuimilloI•IIIuI■111thU IIII:U IIILItll11t11t1IN.1•IC1ttIUtltil.Ilttl{ 0 III111111 IIIIli1Ii11111111111111111 71111 11111I 11111IIIII111II1111111111 11I1111111111UIIIII1111111111i111111111I11 11111amu111131III Wir P11111IIC1I1111101 111111111 111111111111111/1I111I111111IIIIIIIIl11lIIIIIIII111111111 111I11111I111•Uii:uiiIIIII1111IIi111II111i'i1 O 1!►I111111111II11111 111111 i111111I II II1I111111111III1111111111111111111111111111!!I.IP1111Pr 111►11111111i1011111011 gilit liN111111III l.II11111►111 111111 11111i1111I111111111111111111IIIIII1II111111111I�II!ii1V'• ' �1111,VI"IIIIINIIIlIII • 11111►11111111:11111111\lIIII11i111II1111 ul111111ltliI11,111ll11II11,lJIlI111i1V'• .1111!11`:.moii;1 L ilII.III' II EIIIII\II111III:IIII1111►111IIIil111II1111II1111I11111II1111III1l1Ii11lI mr�' gl omm111/�//�► 'I'!111111111%.iII11 111100∎1111111121111 1111\11111L1111111111111111111111111I1111111111111111 �•/% 4IIi1M1115111 0 11111111110111111111:111111111111011111 i 11:II11111I1I111Ii111II1111UI11P' .A/IE II um �.1/11111,i.. Inu. 'A IIIIIIIIIIIV MIIIlY1I11111\11111111111I111II111111111111 1111I1111P. du I nl■IP i.i!twanumi Ki•_� VII` — 11111101111i.'•IIIM.: 'T 11113"1113131113 1111•' _ �+- �I I�h1�1 I�II!! I�I�I�IIIII 1 1111 r/I,1, _,,i ,. ,,�-, ..7-11n11ini1riluilnilliun 1 AL, 0 I'�/' 11 ,111111111I1111111111111I11111. il� �,�.AI1IL Ilu�.- �1111111n11111IIt"•1111111 c111111�1■NIII►`��' '',1411I1lo11111, II ►lillki 1 ,• I i�tuipm11! o••1;1►•. 1111.1�Iil�uli um i l___I Ina 0 ©0 ■�1A11111HI11 wor, AI3ILJI�u.- -igllunm1111um1•m1i1°11 �I�I�I11.1M11110 . . . . . - ° ∎/�g111foutitillog �1110111►'111111111111► 'Ivilli millirmilik ,. ,aw . .a,� i.■m�n■;.u�.. �a�111mimiiimiimilslit., `4tiUliiillliiillliiiil1111111l Iii'Iiiiiiillii!illiiiiiIiiiillliiill– --t- ..""— • —/� �y®��.������� •'1 1no11llun1m11IIW1IlunliiY1I111nCn1111i 11111U1ad—— — - M/ `i5a�t�A�r.ii .... r ,r..��.��w�� 1,►���11C' �1 r 1 .1�� i1 0 `� 11110111 111 TI ii i i v 1 11 111111i11111111 _ 1,111111111111 1110111III I1111111111II111111111111 = I MIENIO � i1111111111II II1II1! II _ . _ =MUNI NM= I 240 I!III VIII 111111 1 111111 111111 1 111111 11111'1 111111 111111 511111 111111 1111111111111111111111111 11111 IIU1 : =I_ I ilk==_� lilliMIIIIMAIIIIIIRII I I I I I • 1 _ — =dam- .t n-:.=:1?". i - - nei!Ii !!ii1 il�!LIIIl!!!III!!VIII!!!,!II!!!!III!!!III!!I!III!!!III!.11 =_'= °�°► � Sro x.• ECHOMA-ST•- _ l. LLro x am•CNOMA.OTOCK 71.t76e• THERMA-11411 lamer Dom- 0 – 117 th TRANSOM O.&OE I C• © MOVE NV DOOR-TRANSOM AND DOES) FRONT ELEVATION (STANDARD STONE) VY•P-0• .. I; Wind per ASCE 7 ---- PWU ENGINEERING INC. Project Burlington A 3Car Direction Side to Side 3s Gust Roof Least Speed Exp. Angle It W(ft) hAvG(ft) 105mph B 26:6 1.00, 50.0 26.0 l'.�i 6:12 , � - a= 5.0 ft 'red" 7Q End Zones ��+ A 21.3 psf ora= 10.4 ft za ' 0 B 6.8 psf Check 10psf min and a> 2.0 ft j Duect,on C 15.8 psf load across all and a> 3.0 ft 2e End Zanes D 6.0 psf zones. 2a 10.0 a l bbtled�zone may occur at any corner of the WR L(ft) :10.0 _ 17.0 • 65 10.0 . _ - . hA(ft) 7.5 - 4.0 _ hB(ft) 5.0 he(ft) , ' 7.5 . 4.0 - hp(ft) ' K 2.5 5.0 • . W(plf) 0.0 159.5 133.7 93.2 118.9 0.0 0.0 0.0 0.0 0.0 200.0 - WR AVG 130.2 plf i I 10psf min load: 90.5 plf 100.0, I -- 1 Governing value: 130.2 plf 0.0 Wz L(ft) 10.0 . .. 23.5 : 6,5 _ 3.5 6:5 - hA(ft) 10.0 5:5 10.0 4.5 .. hB(ft) 6:0 he(ft) - _ _ . . '10.0 4:5 - .. . _ hp(ft) , W(plf) 0.0 212.6 158.4 188.2 212.6 136.3 0.0 0.0 0.0 0.0 300.0 - W2AVG 174.0 plf 200.0 --- --ry 10psf min load: 100.7 plf 100.0 - Governing value: 174.0 plf 0.o W1 L(ft) - . . hA(ft) . . • he(ft) h�(ft) ho(ft) W(plf) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 - W1 AVG #DIV/0! 10psf min load: #DIV/0! 0.5 - Governing value: #DIV/0! 0.0 , n 0 • u �� © e�/ `7111IIIIIII11 111:'■IIIIIIIIIIIIIIIIIIIliuiiiIII;I'IIIIIIilimiIIIIIIIIIII O `�11111111111111111111111I11111111111111111111111i�111111111\I1111i:111 '4111 1111I11111I11111111111I11111I1111IIIII11111 1II11111101111I1i11_.____._ ∎► `111 1111111111111iIIulC11IIIIIII�III11I111II110 11IIIl1'*MIIII!IIIIIIIIII /����� ` ''X1111111111111[1111111111111111111111711:111116/.C!IIIIII:UI1111 ��■ '•11111MI M11111111111111111111111111i1111i1g1\!111/10111/11 ■�� '`,111111111111111111111111 1111111111111�Rii11111:111!111!111 i� � `„ •111111111111II1111111111111I11111C111111II':!111111:1! — — — ToPluTe} / �_■—■ o,iru�ruuiruu�rnuiriucun.j.wire:, ' �_-� _� ,ii-111-\VIL-- • IIIII/171111.I1 111IIIIIIIIIIC,Ill•IIIIIIIII11\IIIIIIU IiIIIIII111111u O �� I!!i:i;a11111111111111111011111111I11111I0111111110i1111111111111 �ulli ll �- IIiI E!!IIIIII111111111I111:11111111111111C111111II111►`1111111111 0 ��∎� \ i _- ._111111111iaE:1P11111111111111i11111111111111\!1111111111\!1111111__,_.__. 11•11•1►■11MIIIIawMINI ■ ■111111111II111111111igil1 1111111111►11111111111111:11111111111:1111111111111 a •11111111111111111111111111:191:t�111110!11111111111110111111111101111111111 _'_` 1111111111111111111111111114!11''0!1;1 11101 1111111111111i1111111111101111111111 ►'��_ 11111111111111111111111'!1111:II111111IiiI;l:!II 111111111111!11111111111!1111111 1‘16.1.1.11.171111ws► 1111111111111111111111111'1A1111i111111111111∎Mit!11111111:1111111/1111:11111 ����w� — . mmhwit nom_ - – . IHIIII1!!III IIIIMI III!16711111111111111!!I!!1!!RIE !INII IIM11111!!!1' aro+tR,, — I■■ ...w ■1111111111111111111111111111'\111110 11111111111:111111111EIM511111111111101 TOP RATE w�r�ii� \. C'1111:ia11Ci:111C1:11111:111M111i::1111:1 1111:i�I1i11111111ii�';::? lla•.11 — —+ NI■va■■•• i■ —,—�■:,...— 1_�_ ��I ■• ••■ 11MINIIIMW■// Iii ■■■■■1••••11 ■■110•11111111 ■■■71■11i — MIME 11■■■•1 1∎∎ •11 I■ OMNI ��v ia��∎� �. �wr�w∎w�I ■ I 1■■•=111 MUNI . 111111111111■■∎■•• 1 I 791■11111■■■ ■ wr�wr�■�■ I I�w■w�11 iwMINWI 1�� r� — NIMBI aa-n.le.� — .iw�∎z :w• . LEFT SIDE ELEVATION (STANDARD STONE) I/4.•1' • "I -I O TOP PLATE • O EA O TOP PLATE uuilicemauuuJUiunnuuunm•nuui lolls nmunlnnunnuiuui.i ni.nm.nmUi rnunuuwnunn■nnu 111111 II 1111111111111111111111111I1111111111111111 11111 111111111111111111111111111111111111111111111 111111111111111111111/1111 11 11111111111111111111111 11111111111111111111111111111111111111111111111 11111111111111111111111111111111I111111I11111111111111111111 1111 111111111 111111 11111111111111111111111111111111111111111111111111111111111111111111111111111 11111 1111111II1111111111/111 11111111111111111111111111111 11111111111111111111111 11111111 11111111111111111111111111111111111111111111 1111111111m11111111111111 1:1111 II 11111111111111111111111 11111 11111/11111/1 11111 111111111I111111111111111111111111111111 11 11111111111 111 1111111 1110111111111111111111111111 11111111111111111•1111111 11111111111 1111111111111111111111111111111I11111111111111111111111111I 1111 111111111111111111111111 111111111111 11111111111111 1111111111111111111111111111111111111111111111111111111111111 111111111111111111111111111111111 111111111h11111111111 1111111 111111 1111111111111111111111111111111111111111111111111111111111111011111111111111111111111111111l1 II 10111111111 11111101111 1 REAR ELEVATION (STANDARD STONE) V4••I' p TOP PLATE !U6-itR TOP PLATE 1%I�IIIII�IIIIIMIIIII�1IIII�I 111�I1111�11111�11111�IIII�IIIII�IIIII�Ij :111.11 1111 1111►1111.111111111111 111111111.i1111111111I.1111I.1j 1 111/1111/1 II ur11111111 rr111 u111111111111111 111Ir 11111 IIIIIIIIIr11I11111I11111uIII/Iu1111III I,IIIIIIILuii•lit,�.ii 1 .•411..1111..1/111.I 11■i 11 1111 111.1 111.1 I111-:_._.a.11 -O• 0 .'fin.==:=111=11111 ra i ara-Rx r-w RIGHT SIDE ELEVATION (STANDARD STONE) vs••I O• Seismic & Governing Values �PWU ENGINEERING INC. Project Burlington A 3Car Seismic Loading per latest edition of state adopted code based on 2012 IBC and IRC Design V= [1.2 Sps/(R x 1.4)]W Category R SOS D1 6.5 0.76 Roof Dead Load: 15psf Floor Dead Load: 15psf Interior Wall Dead Load: 6psf V=I 0.100*W Exterior Wall Dead Load: 12psf Check Seismic Front to Back vs Wind Seismic Wind WR = [0.100 * (15+5+3) * 43 ft] = 99.1 plf < 118.8 plf Wind Governs W2 = [0.100 * (15+5+3+4) * 50 ft] + 99.1 plf= 234.4 plf < 294.2 plf Wind Governs W1 = [0.100 * (15+5+3+4) * + 234.4 plf= 234.4 plf #DIV/0! #DIV/0! #DIV/0! Check Seismic Side to Side vs Wind Seismic Wind WR =_ [0.100 * (15+5+3) * 40 ft] = 92.2 plf < 130.2 plf Wind Governs W2 =_ [0.100 * (15+5+3+4) * 50 ft] + 92.2 plf= 227.5 plf < 304.2 plf Wind Governs W1 = [0.100 * (15+5+3+4) * '+ 227.5 plf_= 227.5 plf #DIV/0! #DIV/0! #DIV/0! Redundancy factor= 1.0 per ASCE 7 section 12.3.4.2 Line Loads -PWU ENGINEERING INC. Project Burlington A 3Car High Roof Diaphragm -Upper Floor Walls Line A.2 P =12.38 k LTOTAL -.21.0 ft v = 2.38 k / 21.0 ft = 113 plf 'Type A Wall h =;8.0"ft LwoRST =:21.0 ft MOT = 113 plf * 8.0 ft * 21.0 ft = 19.01 kft MR = (15 psf * 2.0 ft ;+ 12 psf * 8.0 ft) * (21.0ft)2 / 2 * 0.6 = 16.67 kft + (Olbi *, O.Oft) ,+ (OIb ; * 0.Oft) = 0.00kft + 16.67kft = 16.67kft T = (19.01 kft - 16.67kft) / 21.0 ft = 0.11 k + 0.00 k ;= 0.11 k No hd req'd Line B P = 2.38 k LTOTAL =.29.5 ft v = 2.38 k / 29:5 ft = 81 plf 'Type A Wall h ='8.0 ft LwoRST = 14.0 ft MOT = 81 plf * 8.0 ft * 14.0 ft = 9.02 kft MR = (15 psf *, 2.0 ft ,+ 12 psf * 8.0 ft) * (14.0ft)2 / 2 * 0.6 = 7.41 kft + (0 lb • * 0.0 ft) + (0lb * 0.0 ft) = 0.00 kft + 7.41 kft = 7.41 kft T = (9.02kft - 7.41 kft) / 14.0 ft = 0.12 k + 0.00 k :'= 0.12 k J No hd req'd Line 1 P = 1.76 k LTOTAL = 19.3 ft v = 1.76 k / 19.3 ft = 91 plf Type A Wall h = 8.0 ft LWORST = 4.0 ft MOT = 91 plf * 8.0 ft * 4.0 ft = 2.92 kft MR = (15 psf * 2.0 ft. + 12 psf * 8.0 ft) * (4.Oft)2 / 2 * 0.6 = 0.60 kft +. (0.lb * O.Oft) '+ . (0lb , * 0.0.ft.) = 0.00kft + 0.60kft = 0.60kft T = (2.92kft - 0.60kft) / 4.0 ft = 0.58 k + 0.00 k = 0.58 k I No hd req'd Line 2 P =,2.83 k LTOTAL = 19.5 ft v = 2.83 k / 19.5 ft = 145 plf Type A Wall h = 8.0 ft, LwoRST = 19.5 ft MOT = 145 plf * 8.0 ft * 19.5 ft = 22.65 kft MR = (15 psf *. 5.0 ft. ,+ 12 psf * 8.0 ft) * (19.5ft)2 / 2 * 0.6 = 19.51 kft + (0Ib * ,0.0ft) ,+ (0lb * 0.0 ft) = 0.00 kft + 19.51 kft = 19.51 kft T = (22.65kft - 19.51kft) / 19.5 ft = 0.16k + 0.00k = 0.16k No hd reqd Line 3 P = 1.07 k , I I LTOTAL = 7.0 ft I I v = 1.07 k / 7.0 ft = 153 plf Type A Wall See FTAO Cale No hd req'd Low Roof I Upper Floor Diaphragm -Main Floor Walls Line A.1/A.2 P =;6.76 k LTOTAL = 47.5 ft v = 6.76 k / 47.5 ft = 142 plf Type A Wall h =;9.0-ft LWORST = 21.0 ft MOT = 142 plf * 9.0 ft * 21.0 ft = 26.90 kft MR = (15 psf * 5.0 ft !+ 12 psf * 9.0 ft) * (21.0ft_)2 / 2 * 0.6 = 24.2 kft + (Olb , *, 0.Oft) + (Olb * 'O.Oft) = 0.00 kft + 24.2 kft = 24.2 kft T = (26.90kft - 24.2kft) / 21.0 ft = 0.13 k + 0.00 k "= 0.13 k I No hd req'd Line B P ='6.76 k LTOTAL =142.0 ft v = 6.76 k / 42.0 ft = 161 plf 'Type A Wail h =`9.0 ft LWORST =!42.0 ft MOT = 161 plf * 9.0 ft * 42.0 ft = 60.85 kft MR = (15 psf *, .2.0 ft + 12 psf * 9.0 ft) * (42.0ft)2 / 2 * 0.6 = 73.03 kft +, (0 lb *. 0.0 ft) •+ (0 lb * 0.0 ft) = 0.00 kft + 73.03 kft = 73.03 kft T = (60.85kft - 73.03kft) / 42.0 ft = 0.00 k + 0.00.k = 0.00 k I No hd req'd Line 1 P =,4.11 k I I LTOTAL =,16.5 ft I I v = 4.11 k / 16.5 ft = 249 plf Type B Wall See FTAO Calc No hd req'd Line 2 P = 7.`18 k LTOTAL = 26.5 ft v = 7.18 k / ' 26.5 ft = 271 plf Type A Wall h ='9.0,ft LWORST '12.5 ft MOT = 271 plf * 9.0 ft * 12.5 ft = 30.49 kft MR = (15 psf * 2.0 ft + 12 psf * 9.0 ft) * (12.5ft)2 / 2 * 0.6 = 6.47 kft +' (01b , * O.Oft) + (5001b * 10.Oft) = 5.00kft + 6.47kft = 11.47kft T = (30.49kft - 11.47kft) / 12.5 ft = 1.52 k +' 0.00 k = 1.52 k I Use type 1 hd Line 3 P = 3.08 k LTOTAL = 10.5 ft = 3.08 k / 10.5 ft = 293 plf Type B Wall h = 6.5 ft LwoRST = 1.8 ft MOT = 293 plf * 6.5 ft * 1.8 ft = 3.33 kft MR = (15 psf * 2.0 ft + 12 psf * 6.5 ft) * (1.8ft)2 / 2 * 0.6 = 0.10 kft + (Olb `* 0.Oft) + (5001b , * 2.3ft) 1.13kft + 0.10kft = 1.22kft T = (3.33kft - 1.22kft) / 1.8 ft = 1.20 k + 0.00 k = 1.20 k See FTAO Calc Use type 1 hd on garage piers only e r Force Transfer Around Opening (FTAO) ---OPWU ENGINEERING INC. Diekmann Technique @ Upper Floor Line 3 Li = 3.5ft • Lo=16.O.ft L2 ='3.5ft V=:1,.07 k vA= -35 plf vu= 219 plf vF = -35 plf hu ='1.0 it • F1 = 0.66 k F2 = 0.66 k vB= 153 plf vB = 153 plf ho=i5.0 ft F1 = 0.66 k F2 = 0.66 k -> -* hi_=,2.Oft vc= -35 plf vE = 219 plf vH = -35 plf J. T H = 0.66k H = 0.66k H=I ( 1.07k *8.0ft) / 13.0 ft= I 0.66 k H:W Ratios 5.Oft : 3.5ft = 1.4 : 1 vh = 1.07 k/ 7.0 ft= 153 plf 5.0 ft : 3.5 ft = 1.4 : 1 v"= 0.66 k/ 3.0 ft= 219 plf Use: Type A Wall F = 219 plf* 6.00 ft= I 1.32 k F1 = ( 1.32k* 3.5 ft)/ 7.0 ft= 0.66 k F2 = ( 1.32 k* 3.5 ft)/ 7.0 ft= 0.66 k Use: (2) Bays BLKG T+C Couple after Dead Load is applied for holdown requirements MR= [( 15psf* 2 ft + 12psf* 8.0 ft) * (13.0 ft)"2 *0.6/2] + ( 0.0ft *5001b) = 6.39 kft T= 0.66 kft- (6.39kft / 13.0ft) I = 0.17 k +0.00k= 0.17 k) No hd req'd Force Transfer Around Opening (FTAO) --- S�PWU ENGINEERING INC. Diekmann Technique @ Main Floor Line 1 Li ='3.5ft Lo= 5.0ft L2 =4.0ft , V=∎1.87k vA= 25 plf vp= 336 plf vF= 25 plf hu = 1.0 ft 4- F1 = 0.78 k F2= 0.90 k vE= 249 plf vG = 249 plf ho=,5.0 ft_ _ F� = 0.78k F2 = 0.90k h�= 3.Oft vo= 25 plf vE= 336 plf vH = 25 plf T H = 1.34k H = 1.34k H=I ( 1.87k *9.Oft) / 12.5 ft= I 1.34 k H:W Ratios 5.O ft : 3.5 ft 1= 1.4 : 1 vh = 1.87 k/ 7.5 ft= 249 plf 5.0 ft : 4.0 ft 1= 1.3 : 1 v„= 1.34 k/ 4.0 ft= 336 plf Use: Type B Wall F = 336 plf* 5.00 ft= I 1.68 k F1 = ( 1.68k * 3.5 ft)/ 7.5 ft= 0.78 k F2= ( 1.68 k * 4.0 ft)/ 7.5 ft= 0.90 k Use: (2) Bays BLKG T+C Couple after Dead Load is applied for holdown requirements MR= [( 15psf* 5 ft+ 12psf* 9.O ft) * (12.5 ft)^2 ;--6.6/2], + ( 0.0ft *5001b) = 8.58 kft T= 1.34 kft- ( 8.58kft / 12.5ft) I = 0.66 k +0.00k= 0.66I No hd req'd -.Force Transfer Around Opening (FTAO) PWU ENGINEERING INC. Diekmann Technique @ Main Floor Line 3 L� =i3.'5 ft Lo=16.0 ft L2 =13.5 ft V=!2.05 vA= -113 plf VD= 473 plf vF= -113 plf hu=.1.0 ft F1 = 1.42 k F2= 1.42 k vB= 293 plf vG = 293 plf ho=■6.0 ft F1 = 1.42k F2= 1.42k h�= 2.Oft vc = -113 plf vE= 473 plf vH = -113 plf y T H = 1.42k H = 1.42k H=1 (2.05k * 9.0ft) / 13.0 ft= I 1.42 k H:W Ratios 6.Oft : 3.5ft = 1.7 : 1 vh = 2.05 k/ 7.0 ft= 293 plf 6.0 ft : 3.5 ft I= 1.7 : 1 vv= 1.42 k/ 3.0 ft= 473 plf Use: Type B Wall F= 473 plf* 6.00 ft= I 2.84 k F1 = (2.84k* 3.5ft)/ 7.Oft= 1.42k F2= (2.84 k* 3.5 ft)/ 7.0 ft= 1.42 k Use: (2) Bays BLKG T+C Couple after Dead Load is applied for holdown requirements MR= [( 15psf* 5ft + 12psf*' 9.0ft) * (13.0 ft)^2 *0.6/2] + ( 13.0ft *5001b) = 15.78 kft T= 1.42 kft- ( 15.78 kft / 13.0 ft) = 0.21 k ±0.00k= 0.21 k) No hd req'd 2 94' e 0 .Nr O -L1-- - A r� ,,, A e 9.1) - 1 t( ti� 1 ,_, 1 h r ! . [ 1 "-6,1'J 1 "' ' oPTwuL n�Tr�eoaH / A7 e LAT= � m Oil r © 7 VAE i L J e 7N MEM WALL ELM, ,� TO ee AREA _. 4:0 rne can COL WRAP AMOR!EMIRS MOTH cP EARAPILIALL PER DET west FOR Pto IAO I ET1oo UPPER FLOOR LATERAL PLAN 1 ENTIRE WALL E EV TO ISE&EATIED UM c600 COL WRAP ACR066 EMIR LI940714 CF SEAR/ALL PER DET 0 0 10/760 POR PTA()METHOD B O n e A 19. © 7 -- . . . . .L . . . .. 4.. . 4._E .? I_s=s FREER . . . : : ....t.1 0 '�' . 0 ;7. • TO WALL ELEV'— A LII = TO BE 6HEATHED r .:01 ^ Ac CM COIL WRAP Oh I I ACR066 ENTIRE LOON Tr p 2 �CET T I' G/6EtP01 FEN= AA AA roue&TEM WALL UP 60 WALL 1EIOM OARAOE PIER IAC DCUNB BE10EH1 TOP OP WW1 MAY BE 6166TI IED FOR WALL AHD BOTTOM OP TYPE 76-7 HOLDC4N6 PER HEADER 16 6'.P MAX 6CFEDILE PER DET PAW PER DETAIL WY31 Tr MAIN FLOOR LATERAL PLAN w•.r.w J 8'_• II'- i o 1 Cc:' 1 r 1-71 , Liii J 1 1 1 9-64' g-4 ti ern OPTIONAL LAYOUT uTOUT c L ----1 In kV I I- • J IMRE WALL B2v to ee eMntWP USE Cam COL STRAP ACRO/O BRIT!LB OET or IMEAwmuL. PER Der lo/ev POR PTAV runic° UPPER FLOOR LATERAL PLAN DIME WALL MEN/ TO ee WEANED InE Gen COIL e„WAP ACR088 E TIFe LENa1H OP eF'!.01®1411 PER MT g 10,662 FOR FTAO I E1HOD ,Q ee'-e Q'e0 IMII Ma 1E-- i'--- MU- 0 A e � IIII1� "::: � 11 . . 1 1 e LtI.. . * B 0 TnRe WALL F1 ev tr TO e8 MEATH= _ /i1 �k _. I Gel!COIL e1RAr T--7 r Ark, EHTIIeB LeH9TH I I ID�iesT Tim HOD -j�- ell -r- lir A 0 GARAGE PER HOLDO LN6 so LUAl• ei�iew rt LP MAY ea eI&6TTIUTED FOR EETYEEII TOP oP ett9 T1T818-]HOLDOIWe PER LUAU-A1®8OTTT 1 OF !GRIMM PER DET 111691 HEADER 8 e'-P TTAx P ER DETAIL O/e91 —1--- MAIN FLOOR LATERAL PLAN . . HOLDOWN SCHEDULE MARK Boundary Tension of DF Tension of HF Anchor Anchor Anchor Tension NUMBER HOLDOWN Studs Allowable Lbs Allowable Lbs Mono Pour Two Pour End Corner 1 HDU2-SDS2.5 (2)2x 3075 2215 SSTB16 SSTB2OL S=2550, S=2550,w=3610 w=3610 2 HDU4-SDS2.5 (2)2x 4565 3285 SB 5/8X24 SB 5/8X24 w=66705 w-66705 3 HDU5-SDS2.5 (2)2x 5645 4065 SB 5/8X24 SB5/8X24 w-66705 w=66705 SSTB28 (NOTE 6.) SSTB34(NOTE 6.) S=6395, S=7315, 4 HDU8-SDS2.5 (3)2x 7870 5665 8"MIN STEMWALL 8"MIN STEMWALL w=7615 w=8710 8 HDU11-SDS2.5 (1)6x 9535 6865 PAB8-36, 10"min PAB8-36, 10"min embed into 32"min embed into 32"min 9 HHDQ14-SDS2.5 (1)6x 14445 10350 width footing. If at width footing.If at retaining wall lap retaining wall lap anchor with vert reinf anchor with vert reinf bar hooked to Ftg. bar hooked to Ftg. 5 MSTC28 (2)2x 3000 2590 N/A N/A 6 MSTC40 (2)2x 4335 3745 N/A N/A 7 MSTC66 (2)2x 5660 5660 N/A N/A Notes: 1.. Install all holdowns per manufactureer specificaiton per C-2011 Simpson Strong Tie catalog. 2. Match studs on schedule for walls below on all wall to wall holdowns. 3. (2)2x studs nailed together with (2) rows of 16d @ 3" o.c. staggered. Trimmer stud may be used as part of boundary member. 4. Refer to shearwall schedule and typical shearwall details for wall locations and configurations. 5. Refer to Simpson catalog for minimum embed of anchors into concrete. 6. Increase footing depth or stemwall height as required for 28/8" minimum embedment depth. SHEARWALL SCHEDULE (a-m) ONLY REQ'D ON INTERIOR SHEARWALLS. MARK REF NOTES: (a,i) Note: (b) EDGE NAILING FEILD NAILING SILL TO CONCRETE SILL TO WOOD SHEAR TRANSFER CAPACITY CAPACITY NUMBER SHEATHING NAIL SIZE SPACING SPACING CONNECTION. Note: (c) CONNECTION. Note (g) CLIPS (h) Lb/Ft (SEISMIC) Lb/Ft(WIND) A 16" OSB (1) SIDE 8d 6" 12" z" Dia.A.B. @ 30"o/c 16d @ 4"o/c A35 @ 24"o/c 255 357 B i" 6 OSB (1) SIDE(f) 8d 4" 12" 2"Dia.A.B. @ 18"o/c (m) 16d @ 21z"o/c A35 @ 15"o/c 395 553 C 16"OSB (1) SIDE(e,f) 8d 3" 12" 2"Dia.A.B. @ 12"o/c (m) 16d @ 2"o/c A35 @ 12"o/c 505 707 D 16"OSB (1) SIDE(e,f) 8d 2" 12" z"Dia.A.B. @ 11"o/c (m) 16d @ 2"o/c A35 @ 9"o/c 670 938 E 16"OSB (2) SIDE (d,e,f) 8d 6" 12" Z"Dia.A.B. @ 12"o/c (m) 16d @ 2"o/c A35 @ 12"o/c 510 714 F 16"OSB (2) SIDE (d,e,f) 8d 4"Staggered 12" 2"Dia.A.B. @ 8"o/c (m) 16d @ 3"o/c(2) rows staggered A35 @ 6"o/c 790 1106 G 16"OSB (2) SIDE (d,e,f) 8d 3"Staggered 12" 2"Dia.A.B. @ 7"o/c (m) 16d @ 2"o/c(2)rows staggered HGA1OKT @ 8"o/c 1010 1414 H 16"OSB (2) SIDE (d,e,f) 8d 2"Staggered 12" 2"Dia.A.B. @ 52"o/c (m) 16d @1i1"o/c(2)rows staggered HGA1OKT @ 6"o/c 1340 1876 Notes: a) All wall construction to conform to SDPWS Table 4.3A. b) Use Common Wire Nails for all wood sheathing and cooler nails for gypboard sheathing. c) A.B. minimum 7"embed into concrete. 3"x3"x14"plate washers req'd at all shear wall A.B. in seismic zone D, E, F. d) Panel joints shall be offset to fall on different framing members or framing shall be 3x or thicker and nails on each side shall be staggered. e) 3x or Dbl 2x framing at all panel edges and nails shall be staggered. f) All edges blocked. g) Common Wire Nails. h) Clip to be attached from continuous blocking to top of continuous top plates. Clips are not required at Gyp Bd walls but blocking is attached per the toenailing schedule. i) See attached typical shearwall details. j) Sheathing to be Structrual I Sheathing. k) Values are for framing of H-F. m) 3x, Dbl 2x, or 2x Flat at panel edges. Stagger nails. See note C for plate washers and details for plate washer edge distance. On sill plates of all walls use a single 2x sill and 2x blocking in between the studs for plywood edge nailing surface. • PWU ENGINEERING INC. Ph: 503 810-8309, Email: pwuengineerin.' @comcast.net $ R_QF pry • 6/i2 62 4 122 /12. - LIZ. (250 2a(Uii2) : 22, (/SE zcsP 14L. 14(,,11)+S= 14, oven p "Sr\ L= (a' 58s114 �- 5.5/k • • • • • i I"IDR @ Roof i ---,PWU ENGINEERING INC. Loads and criteria Total Span: 5.00 ft I =60 in Fully Braced? Yes 1 Point Loads 1 Load Location Pressure Treated? No _ # DL LL TL 1 0 lb Repetitive Use? No 2 0 lb 3 0 lb Wet Service? No • 4 O lb 5 0 lb Sustained Temperature? T<_ 100°F Uniform Loads I Load Factors Load Extent CD 1.00 # DL LL TL Start End Total CF 1.40 1 -238 plf -350 plf -588 plf 0.00 ft 5.00 ft 5.00 ft 2 0 plf 0.00 ft 3 0 plf 0.00 ft Deflection Criteria - 4 0 plf 0.00 ft TL L/240 0.25 in 5 0 plf 0.00 ft LL L/480 1 0.13 in Triangular Loads Max Load Extent # DL . LL TL Zero End Max End Total 1 Oplf • 0.00ft 2 _ O plf 0.00 ft 3 0 plf 0.00 ft 4 _ Oplf 0.00ft 5 O plf 0.00 ft -800 -600 -400 w 200 D. .. 0 � J- 200 5.00 ft 400 R1 R2 600 — 1.47 k 1.47 k 800 PWU Engineering Inc.©2013,Software v1.02,3/06/14 HDR @ Roof --- PWU ENGINEERING INC. Results -800 -600 -400 - . , -200 - a • 200 5.00 ft 400 1. 600 1 R1 R2 47 k 1.47 k 800 Type: Reactions (k) DL LL TL TL Douglas Fir-Larch #2 R1 595 lb 875 lb 1470 lb 1.47 k R2 595 lb 875 lb 1470 lb 1.47 k Size: - 2000 (1) 4x8 DF#2 I 1500 1000 - A 25.38 in2 _ .1 500 - S 30.66 in3 o � � , _ I 111.15 in4 • -500 F„' 180 psi -1000 Ft; 1260 psi -1500 -2000 - E' x 106 1.60 VAllowable 3.05 k _ 2000 'knowable 3.22 k-ft Design values are based off NDS 2005 Edition,published by American • 1500 Wood Council. 4 • 1000 d Shear Moment : 500 VMAx 1.47 k MMAX 1.84 k-ft V , Allowable _ Allowable V 3.05 k M 3.22 k-ft o Ratio 0.48 Ratio 0.57 0.00 , OK OK -0.01 • Deflection c -0.02 TL LL u..- -0.03 Actual 0.05 in 0.03 in o -0.04 IIIIIIIII&_- .A Criteria 0.25 in 0.13 in Ratio 0.19 0.22 -0.05 OK OK PWU Engineering Inc.02013,Software v1.02,3/06/14 HDR @ GT1 _ -PWU ENGINEERING INC. Loads and criteria Total Span: 5.00'ff I =60 in Fully Braced? Yes Point Loads • Load Location Pressure Treated? No # DL LL TL 1 -2261 lb -3325 lb -5586 lb 0.75 ft Repetitive Use? . No 2 O lb 3 0 lb Wet Service? No 4 0 lb 5 0 lb Sustained Temperature? T<_ 100°F Uniform Loads Load Factors Load Extent CD 1.00 DL LL TL Start End Total CV 1.00 1 -170 plf -250 plf -420 plf 0.00 ft 0.75 ft. 0.75 ft 2 -34 plf -50 plf -84 plf 0.75 ft 5.00 ft 4.25 ft 3 0 plf 0.00 ft Deflection Criteria 4 0 plf 0.00 ft TL L1240 0.25 in 5 0 plf _ 0.00 ft LL r L/480 0.13 in Triangular Loads Max Load Extent # - DL LL TL Zero End Max End Total 1 Oplf 0.00ft 2 O plf 0.00 ft 3 Oplf 0.00ft 4 _ O plf 0.00 ft 5 O plf 0.00 ft -600 -5.59 k -400 - -200 - w R2 5.00 ft 1.07 k 200 R1 400 — 5.19 k 600 PWU Engineering Inc.©2013,Software v1.02,3/06/14 HDR @ GT1 -PWU ENGINEERING INC. • Results -600 -5.59 k -400 - T -200 - w a. , V 0 A , 1 R2 o 5.00 ft 1.07 k 200 400 1 R1 5.19 k 600 Type: Reactions (k) Boise Glulam 24F-V4 DL LL TL TL R1 2101 lb 3090 lb 5191 lb 5.19 k R2 432 lb 635 lb 1067 lb 1.07 k Size: 6000 (1) 3'/2'x9" GL I 5000 4000 - A 31.50 in2 .a 3000 - S 47.25 in3 „ 2000 - • I 212.63 in4 -c 1000 - F,; 265 psi 0 , Ft,' 2400 psi -1000 E'x 106 1.80 -2000 VAllowable 5.57 k 4000 MAllowable 9.45 k-ft Design values are based off BOISE GLULAM Specifier Guide, 2 3000 published by Boise Cascade EWP dated 02/28/13. . 8 2000 d Shear Moment 0 1000 v VMAo 5.19 k MMAx 3.78 k-ft V 5.57 M 9.45 k-ft 0 Allowable Allowable Ratio 0.93 Ratio 0.40 0.00 OK OK A -0.01 , :7... Ilk . Deflection `_ -0.02 .A. TL LL w Actual 0.03 in 0.02 in o -0.03 Criteria _ 0.25 in 0.13 in Ratio 0.13 0.16 -0.04 OK OK PWU Engineering Inc 02013,Software v1.02,3/06/14 Beam #1 =- -- PWU ENGINEERING INC. Loads and criteria Total Span: 3.50 ft I =42 in Fully Braced? Yes - LPoint Loads Load Location Pressure Treated? No # DL LL TL 1 0 lb Repetitive Use? No • 2 0 lb 3 0 lb Wet Service? No 4 0 lb 5 0 lb Sustained Temperature? T<_ 100°F Uniform Loads Load Factors Load Extent CD 1.00 # DL LL TL Start End Total CF 0.90 1 -60 plf -160 plf -220 plf 0.00 ft 3.50 ft 3.50 ft 2 0 plf 0.00 ft 3 0 plf 0.00 ft Deflection Criteria 4 _ 0 plf 0.00 ft TL L/240 0.18 in • 5 - 0 plf _ 0.00 ft LL L/480 0.09 in � Triangular Loads Max Load Extent # DL LL TL Zero End Max End Total 1 0 plf 0.00 ft 2 Oplf 0.00ft 3 0 plf 0.00 ft 4 Oplf 0.00ft 5 O plf 0.00 ft -250 -200 - . -150 - -100 - -50 - a 50 3.50 ft 100 150 R1 R2 200 0.39 k 0.39 k 250 PWU Engineering Inc©2013,Software v1.02,3/06/14 Beam #1 --,PWU ENGINEERING INC. Results -250 -200 - -150 - -100 - w -50 - . O. 0 50 3.50 ft 100 150 ' R1 R2 200 0.39 k 0.39 k 250 Type: Reactions (k) DL LL TL TL Douglas Fir-Larch #2 R1 105 lb 280 lb 385 lb 0.39 k R2 105 lb 280 lb 385 lb 0.39 k Size: 600 (1) 2x.14 DF#2 I 400 A 19.88 in' 200 - \ S 43.89 in' ti o d 290.78 in4 v -200 F,' 180 psi -400 \ Fb' 810 psi E' x 106 1.60 -600 VAllowable 2.39 k 400 MAllowable 2.96 k-ft Design values are based off NDS 2005 Edition,published by American a 300 Wood Council. 4 ` -• 200 v Shear Moment :4.) 100 W III VmAx 0.39 k _ MMAX 0.34 k-ft o , , VAllowable 2.39 k !knowable 2.96 k-ft ' Ratio 0.16 _ Ratio 0.11 0.00 OK OK 0.00 , :7.. AM Deflection a 0.00 111 . TL LL d Actual 0.00 in 0.00 in o o.00 Criteria 0.18 in 0.09 in Ratio 0.01 0.01 0.00 OK OK PWD Engineering Inc.©2013,Software v1.02,3/06/14 Beam #2 PWU ENGINEERING INC. Loads and criteria Total Span: 13.00 ft I = 156 in Fully Braced? Yes. Point Loads Load Location Pressure Treated? # DL LL TL 1 _ -105 lb -280 lb -385 lb 6.50 ft Repetitive Use? No 2 0 lb 3 0 lb Wet Service? No 4 0 lb 5 0 lb Sustained Temperature? T<_ 100°F Uniform Loads Load Factors Load Extent CD 1.00 DL LL TL Start End Total CV 1.00 1 -143 plf -380 plf -523 plf 0.00 ft 6.50 ft 6.50 ft 2 -203 plf -540 plf -743 plf 6.50 ft 13.00 ft 6.50 ft 3 0 plf 0.00 ft Deflection Criteria 4 0 plf 0.00 ft TL L/240 0.65 in 5 0 plf 0.00 ft LL L/480 . 0.33 in Triangular Loads Max Load Extent # DL LL TL Zero End Max End Total 1 Oplf 0.00ft 2 Oplf 0.00ft 3 O plf 0.00 ft 4 0 plf 0.00 ft 5 0 plf 0.00 ft -1500 -1000 -500 - ,� -0.39 k a o � = / 0 13.00 ft 500 1000 -- R1 3.95 k R2 4.66 k 1500 PVVU Engineering Inc.©2013,Software v1.02,3/06/14 Beam #2 -PWU ENGINEERING INC. Results -1500 -1000 -500 - — w -0.39 k . • =' V a 0 - J o 13.00 ft ▪ 500 R1 1000 — 3.95k R2 4.66 k 1500 Type: Reactions (k) Boise Glulam 24F-V4 DL LL TL _ TL RI 1076 lb 2870 lb 3946 lb 3.95 k _ R2 1271 lb 3390 lb 4661 lb 4.66 k Size: 6000 (1) 5'/2"x12" GL I 4000 A 66.00 in2 2000 - S 132.00 in' 0 , , I 792.00 in4 d v -2000 .- F„' 265 psi aooa Fb' 2400 psi -6000 E' x 106 1.80 VAllowable 11.66 k 20000 MAllowable 26.40 k-ft Design values are based off BOISE GLULAM Specifier Guide, 2 15000 published by Boise Cascade EWP dated 02/28/13. $' c 10000 m E Shear Moment z° 5000 - VMAX 4.66 k MMAX 14.63 k-ft VAllowable 11.66 k M 26.40 k-ft o , owable Allowable Ratio 0.40 Ratio 0.55 0.00 ,-_ , , - , OK OK -Es -0.10 Deflection `s -0.20 TL LL d Actual 0.31 in 0.22 in o -0.30 Criteria 0.65 in 0.33 in Ratio 0.47 0.69 -0.40 OK OK PWU Engineering Inc.02013,Software v1.02,3/06/14 Beam #3 -PWU ENGINEERING INC. Loads and criteria Total Span: . 7.00 ft ( = 84 in Fully Braced? - Yes. , Point Loads Load Location Pressure Treated? No # DL LL TL 1 0 lb Repetitive Use? • No 2 . 0 lb 3 0 lb Wet Service? - No 4 . Olb 5 -" 0 lb Sustained Temperature? - T<_ 100°F Uniform Loads Load Factors Load Extent CD 1.00. DL LL TL Start End Total CF 0.90 1 =60 plf -160 plf • -220 plf ,0.00 ft , 7.00 ft- 7.00 ft 2 0 plf 0.00 ft 3 0 plf • 0.00 ft Deflection Criteria 4 0 plf 0.00 ft TL L/2-40' 0.35 in 5 0 plf _ 0.00 ft LL U480. = 0.18 in Triangular Loads Max Load Extent # DL LL TL _ Zero End Max End Total 1 Oplf 0.00ft 2 Oplf 0.00ft 3 - 0 plf 0.00 ft 4 Oplf 0.00ft 5 O plf • 0.00 ft -250 -200 - - -150 100 ;. .. -50 -- a. ° 50 7.00 ft 100 150 - R1 R2 200 — 0.77k 0.77k - 250 PVVU Engineering Inc.©2013,Software v1.02,3/06/14 Beam #3 - PWU ENGINEERING INC. Results -250 -200 - -150 - -100 - -50 -0. 3 50 7.00 ft 100 150 R1 R2 200 0.77 k 0.77 k 250 Type: Reactions (k) DL LL TL TL Douglas Fir-Larch #2 R1 210 lb 560 lb 770 lb 0.77 k R2 210 lb 560 lb 770 lb 0.77 k Size: 1000 - (1.) 2x14 DF#2 - 500 A 19.88 in2 S . 43.89 in' ki 0 1 , - 0 290.78 in4 y F,; 180 psi -500 - Fb' 810 psi -1000 E. x 106 1.60 VAllowable 2.39 k 1500 MAllowable 2.96 k-ft Design values are based off NDS 2005 Edition,published by American a 1000 Wood Council. c m Shear Moment a 500 n VMAX 0.77 k MMAx 1.35 k-ft VAllowable 2.39 k M 2.96 k-ft 0 owable Allowable Ratio 0.32 Ratio 0.45 0.00 1 , OK OK -0.01 Deflection `o TL LL d 0.02 Actual 0.03 in 0.02 in o • Criteria 0.35 in 0.18 in Ratio 0.07 0.11 -0.03 OK OK PWU Engineering Inc.©2013,Software v1.02,3/06/14 Beam #4 --- PWU ENGINEERING INC. Loads and criteria Total Span: 12.50 ft .1 = 150 in Fully Braced? Yes Point Loads Load Location Pressure Treated? No # DL LL TL _ 1 _ 0 lb Repetitive Use? _, - No 2 _ 0lb ' 3 0 lb Wet Service? No _ 4 Olb 5 0 lb Sustained Temperature? T<_ 100°F Uniform Loads Load Factors Load Extent Co 1.00 # DL LL TL Start End Total CF 1.20 1 -51 plf -75 plf -126 plf 0.00 ft 12.50 ft 12.50 ft 2 0 plf _ _ 0.00 ft 3 0 plf 0.00 ft Deflection Criteria - 4 . 0 plf 0.00 ft TL L/500 0.30 in - _ 5 0 plf 0.00 ft LL L/500 0.30 in Triangular Loads Max Load Extent DL LL _ TL Zero End Max End Total 1 Oplf 0.00ft 2 0 plf _ 0.00 ft 3 0 plf _ 0.00 ft 4 O plf _ 0.00 ft 5 0 plf 0.00 ft -150 . - .. -100 - -50 - . CL 0 „ . 0 12.50 ft 50 100 --- R1 R2 0.79 k 0.79 k 150 PWU Engineering Inc.©2013,Software v1.02,3/06/14 Beam #4 - OPWU ENGINEERING INC. Results -150 -- -100 - -5 0 - 4- 1 2.5 0 ft 50 100 — R1 R2 - 0.79 k 0.79 k 150 Type: Reactions (k) DL LL TL TL Douglas Fir-Larch #2. R1 319 lb 469 lb 788 lb 0.79 k - R2 _ 319 lb 469 lb 788 lb 0/9 k Size: 1000 (1) 4x10 DF#2 I 500 - A 32.38 in2 a S 49.91 in3 ,� o , CD _ _ I 230.84 in4 N F„' 180 psi -500 \ Fb' 1080 psi E' x 106 1.60 -1000 VAllowable 3.89 k 3000 MAllowable 4.49 k-ft 2500 Design values are based off NDS 2005 Edition,published by American 2 3 2000 Wood Council. 1 IIMMV 500 Shear Moment c 1000 m 500 , — VMAx 0.79 k MMAx 2.46 k-ft V All 3.89 k M 4.49 k-ft o owable Allowable Ratio 0.20 Ratio 0.55 0.00 OK OK ■ A c -0.05 _. , Deflections -0.10 Al TL LL Actual 0.19 in 0.11 in o -0.15 . . AMI Criteria 0.30 in 0.30 in Ratio 0.62 0.37 -0.20 OK OK PWU Engineering Inc.©2013,Software v1.02,3/06/14 • Beam #5 -PWU ENGINEERING INC. Loads and criteria Total Span: 7.00 ft = 84 in Fully Braced? Yes Point Loads Load Location Pressure Treated? No # DL LL TL 1 _ 0 lb Repetitive Use? No 2 0 lb 3 0 lb Wet Service? No 4 O lb 5 0 lb Sustained Temperature? T s 100°F Uniform Loads Load Factors Load Extent CD 1.00 # DL LL TL Start End Total CF 1.40 1 -75 plf -200 plf -275 plf 0.00 ft 7.00 ft 7.00 ft 2 0 plf 0.00 ft 3 0 plf 0.00 ft Deflection Criteria 4 0 plf 0.00 ft TL L/240 0.35 in 5 0 plf 0.00 ft LL L/480 0.18 in Triangular Loads Max Load Extent DL LL TL Zero End Max End Total 1 0 plf 0.00 ft 2 0 plf 0.00 ft 3 0 plf 0.00 ft 4 0 plf 0.00 ft 5 O plf 0.00 ft -400 -300 -200 - -100 - a . _ • 0 7.00 ft 100 200 -- R1 R2 - 300 — 0.96k 0.96 k _ 400 PWU Engineering Inc.02013,Software v1.02,3/06/14 Beam #5 ----- PWU ENGINEERING INC. Results -400 -300 -200 - �, -100 - a J o 100 7.00 ft 200 — R1 R2 - 300 —0.96 k 0.96 k - 400 Type: Reactions (k) Douglas Fir-Larch #2 DL LL TL TL 9 RI 263 lb 700 lb 963 lb 0.96 k R2 263 lb 700 lb 963 lb 0.96 k Size: 1500 (1) 4x8 DF#2 I 1000 . A 25.38 in' 500 - S 30.66 in3 Ili o . d 111.15 in4 F„' 180 psi -1000 Fb' 1260 psi -1500 E'x 106 1.60 VAllowable 3.05 k 2000 MAllowable 3.22 k-ft Design values are based off NDS 2005 Edition,published by American a 1500 ; Wood Council. 4 c 1000 d Shear Moment 2 500 W . VMAx 0.96 k MMAX 1.68 k-ft o VVAllowble 3.05 k MAllowable 3.22 k-ft Ratio 0.32 Ratio 0.52 0.00 OK OK A "E -0.02 Deflection o- 0.0a TL LL v- 0.06 111111161" ' AIM Actual . 0.08 in 0.06 in o o.os Criteria 0.35 in 0.18 in Ratio 0.24 0.35 -0.10 OK OK PWU Engineering Inc.©2013,Software v1.02,3/06/14 • Beam #6 PWU ENGINEERING INC. Loads and criteria Total Span: 3.50 ft I =42'in Fully Braced? Yes Point Loads Load Location Pressure Treated? ;No DL LL TL 1 0 lb Repetitive Use? No 2 O lb 3 0 lb Wet Service? No 4 O lb 5 0 lb Sustained Temperature? T<_ 100°F. Uniform Loads Load Factors Load Extent CD 1.00 # DL LL TL Start End Total CF 1.20 1 -171 plf -200 Of -371 plf 0.00 ft 3.50 ft 3.50 ft 2 O plf 0.00 ft 3 • 0 plf 0.00 ft Deflection Criteria 4 0 plf 0.00 ft TL L/240 0.18 in 5 0 plf 0.00 ft LL L/480- 0.09 in Triangular Loads Max Load Extent DL LL TL Zero End Max End Total 1 O plf 0.00 ft 2 Oplf 0.00ft 3 O plf 0.00 ft 4 - Oplf 0.00ft 5 0 plf 0.00 ft -500 -400 -300 - -200 - w -100 - a 0 0 100 3.50 ft 200 300 400 R1 R2 ,- 0.65 k 0.65 k 500 PVVU Engineering Inc.©2013,Software v1.02,3/06/14 Beam #6 PWU ENGINEERING INC. Results -500 -400 -300 - • -200 - w -100 - a A 2, 100 3.50 ft • 200 300 400 R1 R2 0.65 k 0.65 k 500 Type: Reactions (k) DL LL TL TL Douglas Fir-Larch #2 R, 299 lb 350 lb 649 lb 0.65 k R2 299 lb 350 lb 649 lb 0.65 k Size: 1000 (1) 4x10 DF#2 500 -� A 32.38 in2 S 49.91 in3 ,� o 230.84 in4 F„' 180 psi -500 Fb' 1080 psi -1000 - E' x 106 1.60 VAllowable 3.89 k 600 MAllowable 4.49 k-ft 500 Design values are based off NDS 2005 Edition,published by American .a 400 Wood Council. V IOW - 300 0 200 r Shear Moment VMAX 0.65 k MMAX 0.57 k-ft 100 All V 3.89 k M 4.49 k-ft o owable Allowable Ratio 0.17 Ratio 0.13 0.00 , OK OK A c 0.00 , Deflection s 0.00 • All TL LL d Actual 0.00 in 0.00 in o o.00 Criteria 0.18 in 0.09 in Ratio 0.02 0.02 0.00 OK OK PWU Engineering Inc.©2013,Software v1.02,3/06/14 Beam #7 • —,PWU ENGINEERING INC. Loads and criteria Total Span: 5.00 ft I =60 in Fully Braced? Yes Point Loads Load Location Pressure Treated? No # DL LL TL 1 0 lb Repetitive Use? No 2 O lb 3 0 lb Wet Service?L No 4 0 lb 5 0 lb Sustained Temperature? T<_ 100°F Uniform Loads Load Factors Load Extent CD 1.00 # DL LL TL Start End Total CF 1.40 1 -201 plf -280,plf -481 plf _ 0.00 ft 5.00 ft 5.00 ft 2 0 plf 0.00 ft 3 0 plf 0.00 ft Deflection Criteria 4 0 plf 0.00 ft TL L/240 0.25 in 5 0 plf 0.00 ft LL L/480 0.13 in Triangular Loads Max Load Extent DL LL TL Zero End Max End Total 1 0 plf 0.00 ft • 2 0 plf 0.00 ft 3 0 plf 0.00 ft ' 4 0 plf 0.00 ft 5 • O plf 0.00 ft -600 -400 - -200 - m 0 J 5.00 ft 200 400 — R1 R2 - 1.20 k 1.20 k 600 PWU Engineenng Inc.©2013,Software v1.02,3/06/14 Beam #7 -----,PWU ENGINEERING INC. Results -600 - -400 - -200 - CL o 5.00 ft 200 400 — R1 R2 1.20 k 1.20 k I 600 ' Type: Reactions (k) DL _ LL TL TL Douglas sir-Larch #2 R, 503 lb 700 lb 1203 lb 1.20 k R2 503 lb 700 lb 1203 lb 1.20 k Size: - 1500 (1) 4x8 DF#2 I loon - = A 25.38 in2 500 S 30.66 in' „ o I d 111.15 in4 w -500 F,' 180 psi -1000 \ Fb' 1260 psi E' x 106 1.60 -1500 VAllowable 3.05 k 2000 - MAllowable 3.22 k-ft Design values are based off NDS 2005 Edition,published by American a 1500 Wood Council. = -' 1000 IShear Moment ° 500 V VMAX 1.20 k _ MMAX 1.50 k-ft o V , VAllowable 3.05 k MAllowable 3.22 k-ft ' Ratio 0.39 Ratio 0.47 0.00 OK OK c -0.01 Deflection `s -0.02 TL LL -3 ML Actual 0.04 in 0.02 in o -0.03 Criteria 0.25 in 0.13 in Ratio 0.15 0.18 -0.04 OK OK PWU Engineering Inc.02013,Software v1.02,3/06/14 Beam #8 —,PWU ENGINEERING INC. Loads and criteria Total Span: 3.75 ft I =45 in Fully Braced? Yes Point Loads Load Location Pressure Treated? No , # DL LL TL 1 0 lb Repetitive Use? , No 2 O lb 3 0 lb Wet Service? No 4 _ O lb 5 0 lb Sustained Temperature? T<_ 100°F Uniform Loads Load Factors Load Extent CD 1.00 # DL LL TL Start End Total CF 1.40 1 -426 plf -880 plf -1306 plf 0.00 ft 3.75 ft 3.75 ft 2 Oplf 0.00 ft 3 0 plf 0.00 ft Deflection Criteria 4 0 plf 0.00 ft TL L/240 0.19 in 5 0 plf 0.00 ft LL L/480 0.09 in Triangular Loads Max Load Extent DL LL TL Zero End Max End Total 1 Oplf 0.00ft 2 Oplf 0.00ft 3 O plf 0.00 ft 4 0 plf 0.00 ft 5 0 plf 0.00 ft -1500 -1000 - -500 - w 0 a 3.75 ft 500 1000 — R1 R2 2.45 k 2.45 k 1500 PVVU Engineering Inc.©2013,Software v1.02,3/06/14 Beam #8 -----.PWU ENGINEERING INC. Results -1500 -1000 - • -500 - w a. a 0 - �_ o 3.75 ft 500 1000 — - R1 R2 2.45 k 2.45 k 1500 Type: Reactions (k) • DL LL TL TL - Douglas Fir-Larch #2 R1 799 lb 1650 lb 2449 lb 2.45 k R2 799 lb 1650 lb 2449 lb 2.45 k Size: 3000 (1) 4x8 DF#2 2000 A 25.38 in2 a 1000 S 30.66 in' 'a 0 • , CD 111.15 in4 n -1000 F„' 180 psi -2000 Fb' 1260 psi E'x 106 1.60 -3000 VAllowable 3.05 k 2500 - MAllowable 3.22 k-ft 2000 Design values are based off NDS 2005 Edition,published by American d -IIIII Wood Council. _ 1500 £ 1000 lig' NMI Shear Moment 500 MI 2.45 k _ MMAx 2.30 k-ft o , , VAllowable 3.05 k MAllowable 3.22 k-ft ' Ratio 0.80 Ratio 0.71 0.00 , OK OK ■ , c 0.01 Deflection 2 -0.02 AM _ TL LL 1 ti Actual 0.03 in 0.02 in o -0.03 Criteria 0.19 in 0.09 in Ratio 0.17 _ 0.23 -0.04 OK OK PWU Engineering Inc.©2013,Software v1.02,3/06/14 HDR @ Den —,PWU ENGINEERING INC. Loads and criteria Total Span: 6.00 ft I = 72 in Fully Braced? Yes Point Loads Load Location Pressure Treated? No DL LL TL 1 0 lb Repetitive Use? No 2 O lb 3 0 lb Wet Service? No 4 O lb 5 0 lb Sustained Temperature? T<_ 100°F Uniform Loads Load Factors Load Extent CD 1.00 # DL LL TL Start End Total CF 1.20 1 -301 plf -445 plf -746 plf 0.00 ft 6.00 ft 6.00 ft 2 Oplf 0.00ft 3 0 plf 0.00 ft Deflection Criteria 4 0 plf 0.00 ft TL L/240 0.30 in 5 t 0 plf 0.00 ft LL L/480 0.15 in Triangular Loads M ax Load Extent # DL LL TL Zero End Max End Total 1 O plf 0.00 ft 2 O plf 0.00 ft 3 0 plf 0.00 ft 4 O plf 0.00 ft 5 0 plf 0.00 ft -1000 -800 -600 - -400 - .� -200 - a 0 ° 200 6.00 ft 400 600 800 --- R1 R2 1000 — 2.24 k 2.24 k _ PWU Engineering Inc.®2013,Software v1.02,3/06/14 HDR @ Den --*PWU ENGINEERING INC. Results -1000 -800 -600 - . . -400 - E- -200 - a 2 200 6.00 ft 400 - 600 800 — R1 R2 - 1000 — 2.24 k 2.24k - Type: Reactions (k) DL LL TL TL Douglas Fir-Larch #2 R1 903 lb 1335 lb 2238 lb 2.24 k R2 903 lb 1 1335 lb _ 2238 lb 2.24 k Size: I 3000 (1) 4-x10 DF#2 1 2000 A 32.38 in2 1000 7---...................... S 49.91 in' o I d 230.84 in4 1000 F„' 180 psi -2000 `� Ft; 1080 psi E'x 106 1.60 -3000 VAllowable 3.89 k 4000 MAllowable 4.49 k-ft Design values are based off NDS 2005 Edition,published by American a 3000 Wood Council. 4 2000 W :NII Shear Moment I 1000 VMAX 2.24 k _ 0 MMAX 3.36 k-ft V , VAllowable 3.89 k _ MAUowable 4.49 k-ft Ratio _ 0.58 - Ratio 0.75 0.00 . - ■ OK OK -0.02 Al Deflection s -0.04 _ TL LL d Actual 0.06 in 0.04 in o -0.06 Criteria 0.30 in 0.15 in Ratio 0.20 0.23 -0.08 OK OK PWU Engineering Inc.©2013,Software v1.02,3/06/14 .1 HDR @Garage —K\ PWU ENGINEERING INC. Loads and criteria Total Span: 16.00 ft I = 192 in Fully Braced? No 7 Unbraced Length: 16.00 ft Point Loads Load Location Pressure Treated? No • # DL LL TL 1 0 lb Repetitive Use? No • 2 0 lb 3 0 lb Wet Service? No . 4 0 lb 5 _ 0 lb Sustained Temperature? T 5...100°F Uniform Loads Load Factors Load Extent Co 1.00 # DL LL TL Start End Total CV _ 1.00 1 -114 plf -50 plf -164 plf - 0.00 ft 16.00 ft 16.00 ft 2 0 plf 0.00 ft 3 0 plf 0.00 ft Deflection Criteria 4 0 plf ' 0.00 ft TL L/240 0.80 in - 5 0 plf 0.00 ft LL L/480 0.40 in Triangular Loads Max Load Extent # DL LL TL Zero End Max End Total 1 _ O plf 0.00 ft 2 _ O plf 0.00 ft 3 _ O plf 0.00 ft 4 Oplf 0.00ft 5 O plf 0.00 ft -200 -150 - . -100 - . -50 - e a. . a 0 • _. • _- J 0 50 16.00 ft 100 150 - R1 R2 200 - 1.31 k 1.31 k _ PWU Engineering Inc.®2013,Software v1.02,3/06/14 HDR @ Garage — K— PWU ENGINEERING INC. Results -200 -150 - • -100 - w -50 - a o 50 16.00 ft 100 150 — R1 R2 - 200 — 1.31 k 1.31k _J Type: Reactions (k) DL Boise Glula .24F-V4 LL TL TL m _ R1 912 lb 400 lb 1• 312 lb 1.31 k R2 912 lb 400 lb 1• 312 lb 1.31 k Size: 1500 (1) 3�/2"x10'/2" GL 1000 A 36.75 in2 if 500 - S 64.31 in' 0 1111 11 , a) I 337.64 in4 N -500 F„' 265 psi -1000 Fb' 2032 psi E. x 106 1.80 -1500 VAllowable 6.49 k 6000 MAllowable 10.89 k-ft 5000 Design values are based off BOISE GLULAM Specifier Guide, a 4000 published by Boise Cascade EWP dated 02/28/13. — a) 3000 0 2000 Shear _ Moment. 0 VMAX 1.31 k _ MMAx 5.25 k-ft 1000 I. • VAllowable 6.49 k MAllowable 10.89 k-ft o owable - Allowable Ratio 0.20 Ratio 0.48 0.00 OK OK -0.10 , S ■ADeflection o 0.20 TL LL d -0.30 Actual 0.40 in 0.12 in o -0.40 • Criteria 0.80 in 0.40 in Ratio 0.50 0.30 -0.50 OK OK PWU Engineering Inc.©2013,Software v1.02,3/06/14 HDR @ Greatroom . PWU ENGINEERING INC. Loads and criteria Total Span: 5,00.ft = 60 in Fully Braced? Yes Point Loads _ Load _ Location Pressure Treated? No # DL LL TL 1 0 lb _ Repetitive Use? No 2 _ Olb _ 3 0 lb Wet Service? No 4 0 lb 5 0 lb Sustained Temperature? T Uniform Loads Load Factors Load Extent CD 1.00 DL LL TL Start End Total CV 1.00 1 -477 plf -730 plf -1207 plf 0.00 ft 5.00 ft 5.00 ft 2 0 plf 0.00 ft 3 0 plf 0.00 ft Deflection Criteria • 4 0 plf 0.00 ft TL L/240 0.25 in 5 0 plf 0.00 ft LL L/480 0.13 in Triangular Loads _Max Load Extent DL LL TL Zero End Max End Total 1 Oplf 0.00ft 2 O plf 0.00 ft 3 0 plf _ 0.00 ft 4 0 plf 0.00 ft 5 0 plf 0.00 ft -1500 -1000 - -500 - 0 0 5.00 ft 500 1000 — R1 R2 3.02 k 3.02 k 1500 PWU Engineering Inc.©2013,Software v1.02,3/06/14 HDR @ Greatroom PWU ENGINEERING INC. Results -1500 • -1000 - -500 - w a • 0 0 5.00 ft II 500 1000 - R1 R2 - 3.02 k 3.02 k 1500 Type: Reactions (k) DL LL TL TL Boise Glulam 24F-V4 R1 1191 lb 1825 lb 3016 lb 3.02 k R2 1191 lb 1825 lb 3016 lb 3.02 k Size: 4000 (1) 31/2"x9" GL 1 3000 1 2000 A 31.50 in' : woo - S 47.25 in3 0 , I 212.63 in4 .23 -1000 F„' 265 psi -2000 Ft,' 2400 psi 3000 -3000 E'x 106 1.80 VAllowable 5.57 k 4000 MAllowable 9.45 k-ft Design d by are Cascade off BOISE a GLULAM Specifier Guide, 3000 published by Boise Cascade EWP dated 02/28/13. = Mr I. ' , 2000 or . v Shear _ Moment ° 1000 VMAx 3.02 k Nampo( 3.77 k-ft , V All 5.57 : M 9.45 k-ft owable Allowable Ratio 0.54 Ratio 0.40 0.00 OK OK _ -0.01 , 1 A _ Deflection o- 0.02 TL LL d -0.03 AIM Actual 0.04 in 0.03 in o -0.04 MI - Criteria 0.25 in 0.13 in Ratio _ 0.18 0.21 0.05 OK OK PVVU Engineering Inc.©2013,Software v1.02,3/06/14 ,rt HDR @ Nook —OPWU ENGINEERING INC. Loads and criteria Total Span: 8.00 ft I = 96 in Fully Braced? Yes Point Loads Load Location Pressure Treated? No # DL LL TL 1 -1190 lb -1750 lb -2940 lb 2.00 ft Repetitive Use? No 2 -595 lb -875 lb -1470 lb 7.00 ft 3 0 lb Wet Service? No 4 0 lb 5 0 lb Sustained Temperature? T<_ 100°F Uniform Loads Load Factors Load Extent Co 1.00 # DL LL TL Start End Total CV 1.00 1 -239 plf -380 plf -619 plf 0.00 ft 7.00 ft 7.00 ft 2 -477 plf -730 plf -1207 plf 7.00 ft 8.00 ft 1.00 ft 3 0 plf 0.00 ft Deflection Criteria 4 _ 0 plf 0.00 ft TL L/240 0.40 in 5 0 plf 0.00 ft LL L/480 0.20 in Triangular Loads Max Load Extent DL LL TL Zero End Max End Total 1 0 plf 0.00 ft 2 O plf 0.00 ft 3 O plf 0.00 ft 4 Oplf 0.00ft 5 O plf 0.00 ft -2500 -2000 -1500 -2.94 k -1000 -1.47 k - -500 { z . oA • ° 500 8.00 ft 1000 1500 2000 R1 R2 4.90 k 5.05 k 2500 PWU Engineering Inc.©2013,Software v1.02,3/06/14 V i. HDR @ Nook - ,PWU ENGINEERING INC. Results -2500 -2000 -1500 -2.94 k -1000 -1.47 k E.-- -500 - 0. 1�/ c 0 ` 8.00 ft il 2 500 1000 1500 2000 R1 R2 4.90 k 5.05 k 2500 Type: Reactions (k) DL LL TL TL Boise Glulam 24F-V4 R1 1936 lb 2964 lb 4900 lb 4.90 k R2 1995 lb 3051 lb 5047 lb 5.05 k Size: 6000 - (1) 3'/2"x 10'/2" GL I 4000 _ • A 36.75 in2 2000 - S 64.31 in' ni 0 m I 337.64 in4 v -2000 F„' 265 psi -4000 Fb' 2400 psi E x 106 1.80 -6000 VAllowable 6.49 k 10000 MAllowable 12.86 k-ft 8000 Design values are based off BOISE GLULAM Specifier Guide, a published by Boise Cascade EVVP dated 02/28/13. = 6000 - E 4000 7 Shear Moment 2 2000 , VMAX 5.05 k MMAX 8.98 k-ft V 6.49 k M 12.86 k-ft o , � , Allowable Allowable Ratio 0.78 Ratio 0.70 0.00 OK OK N ' c • . A 0.05 All Deflection `s -0.10 1:3 _AIM TL _ LL Actual 0.17 in 0.11 in o -0.15 Criteria 0.40 in _ 0.20 in Ratio 0.44 0.53 -0.20 OK OK PWU Engineenng Inc.02013,Software v1.02,3/06/14 HDR @ 1 Car Garage —*PWU ENGINEERING INC. Loads and criteria Total Span: 8.00 ft I = 96 in Fully Braced? No Unbraced Length: 8.00 ft I Point Loads L oad Location Pressure Treated? No # DL LL TL 1 0 lb Repetitive Use? No 2 0 lb 3 0 lb Wet Service? No 4 0 lb 5 0 lb Sustained Temperature? T 5 1 00°F' Uniform Loads Load Factors Load Extent CD 1.00 # DL LL TL Start End Total CF 1.40 1 -114 plf -50 plf -164 plf 0.00 ft 8.00 ft 8.00 ft 2 O plf 0.00 ft 3 0 plf 0.00 ft Deflection Criteria . 4 0 plf 0.00 ft TL L/240 0.40 in 5 0 plf 0.00 ft LL L/480 0.20 in Triangular Loads Max Load Extent # DL LL TL Zero End Max End Total 1 Oplf 0.00ft 2 0 plf 0.00 ft 3 0 plf 0.00 ft — 4 0plf 0.00ft 5 O plf 0.00 ft -200 -150 - -100 - - .� - -50 - a 0 A 0 50 8.00 ft 100 150 — R1 R2 - 0.66 k 0.66 k 200 PWU Engineering Inc.©2013,Software v1.02,3/06/14 I: ' HDR @ 1 Car Garage ----- PWU ENGINEERING INC. Results -200 -150 - - -100 - , -50 •- . . .• J 50 8.00 ft 100 150 R1 R2 - 200 0.66 k 0.66 k Type: Reactions (k) DL LL TL TL Douglas Fit-Larch #2 _R1 456 lb 200 lb 656 lb 0.66 k R2 456 lb 200 lb 656 lb 0.66 k Size: 1000 (1) 4x8 DF#2 I 500 A 25.38 in2 a S 30.66 in' „ o , I 111.15 in4 F„' 180 psi -500 \ Fb' 1250 psi E' x 106 1.60 1000 VAllowable 3.05 k 1500 MAllowable 3.19 k-ft Design values are based off NDS 2005 Edition,published by American a 1000 Wood Council. C . v Shear Moment o 500 VMAX 0.66 k MMAX 1.31 k-ft VAllowable 3.05k MAllowable 0 owable Allowable Ratio _ 0.22 Ratio 0.41 0.00 , , OK OK 0.02 , , Deflection o -0.0a TL LL 5 -0.06 _ . Actual 0.08 in 0.03 in o -0.08 Criteria 0.40 in 0.20 in Ratio 0.21 0.13 0.10 OK OK PWIJ Engineering Inc.©2013,Software v1.02,3/06/14