Loading...
Report (10) f , RECEIVED AUG 2 0 2015 CITY OFTIGARD BUILDING DIVISION Quality Custom Distribution Frazier Racks Location: 7319 SW Kable Lane Portland, OR 97224 Prepared For: Frazier Industrial Co. Long Valley, NJ USA BOP OFFICE COPY Prepared By: L Nathan P. Bissonnette,P.E. r-3 I a) Frazier Industrial Co. 1640 5th Street, Ste 200 Santa Monica, CA 90401 (310) 260-2537 Job Number 15F2611 August 13, 2015 This Document and the design it contains is copyright by Frazier Industrial Company.It is provided as an instrument of service,and shall not be reproduced in any fashion without the written permission of Frazier Industrial Company. •Ep PROF. NGlN9S'j0 2 Notice to Building Departments Q 88677P 9r! If this calculation is submitted for building permit approval, it shall contain all sheets of calculations as listed in the table of contents on the next page(s),and shall be accompanied by all drawings listed in Section 1.All documen shall i bear appropriate seals and signatures in ink of a contrasting color with s e I Z 4, OREGON . ' U Job Number Reference.The calculation shall be signed across this blo '5° CH 11 tZ0 fi 441 elSSO° REPRODUCTIONS OF SIGNED COPIES ARE INVALID EXPIRES:12/31/2015 AUG 1 3 2015 NOIsImaO (18V911IQ Q711I� 51OZ 0 g 9Av (11.103114 FRAZIER INDUSTRIAL COMPANY Project: Quality Custom Distribution Job No. 15F2611 08/13/15 Sheet i Table of Contents 1. Reference Data 2 1.1 Scope of Work and Codes 2 1.2 Design Methods 2 1.3 Drawings 2 1.4 Seismic Criteria 5 2 Type A 6 2.1 Components and Geometry 6 2.2 Analysis 6 3TypeC 7 3.1 Components and Geometry 7 3.2 Analysis 7 ©Copyright by Frazier Industrial Company.Provided as an instrument of service.Copying by written permission only. FRAZIER INDUSTRIAL COMPANY Project: Quality Custom Distribution Job No. 15F2611 08/13/15 Sheet ii 1. Reference Data 1.1 Scope of Work and Codes This calculation reviews the installation of storage racks for structural adequacy. The sealing of drawings is for the structural review of the storage racks only. Other information is neither reviewed nor approved. IBC,ASCE/ANSI 7,FEMA 460,AISC/ANSI 360, RMI/ANSI MH16.1 are used for design. 1.2 Design Methods Per ANSI MH 16.1, this review employs LRFD direct design methods which are the only unrestricted design method in AISC 360. This uses notional loads to determine second order displacements , and is found in AISC 360,Appendix 7. Second order effects are considered by adding a stability moment demand to the column checks. Seismic forces are computed using the equivalent lateral force method in accordance with ANSI MH 16.1 and the period is computed using FEMA 460. Connector stiffness values are determined by cyclic testing in accordance with ANSI MH 16.1. 1.3 Drawings Frazier Industrial Co. Drawing Number Sheet Rev Remarks 15F2611 L000 APPROVED AS NOTED L001 Installation drawings(34x22) " L002 L003 " L004 " L005 08F4024 F001 Ref Fabrication drawings(8.5x11) it BC4-D BD-Z BH-4 " BP42-ND-E1 " RC42-40F it RC42-40R 15F2611 F00109 Fabrication drawings(8.5x11) F00203 F00461 F00462 ©Copyright by Frazier Industrial Company.Provided as an instrument of service.Copying by written permission only. FRAZIER INDUSTRIAL COMPANY Project: Quality Custom Distribution Job No. 15F2611 08/13/15 Sheet iii " FO1001 " F01102 " F05023 F05024 " F05025 " F05026 " F05027 F05028 F05029 " F05030 " F05205 F05206 F05210 F05211 " F05302 F07002 F07103 F07104 F09004 F92071 F92561 BC4-D BD-Z " BH-4 BP42-E1 " GIT2L " GIT2R GIT3 " M-07-01-01 " M-07-02-02 M-11-01-03 " M-11-01-06 " M-12-02-02 " M-18-01-01 M-18-02-01 ©Copyright by Frazier Industrial Company.Provided as an instrument of service.Copying by written permission only. FRAZIER INDUSTRIAL COMPANY Project: Quality Custom Distribution Job No. 15F2611 08/13/15 Sheet iv " M-18-02-02 " M-19-01-01 " M-19-01-03 M-19-01-21 " SD-D1 " SD-D2 " SD-R2 ©Copyright by Frazier Industrial Company.Provided as an instrument of service.Copying by written permission only. FRAZIER INDUSTRIAL COMPANY Project: Quality Custom Distribution Job No. 15F2611 08/13/15 Sheet v 1.4 Seismic Criteria ASCE 7 15.5.3, RMI MH16.1 2.6.2, FEMA 460 6.5.1 Within the constraints 0.044SDS*IE<CS=(R//DI *T < RUE/I E Yielding: S DI S DS 0.044SDS*IE*W<V=(RI IE)*T*W<(R/I E)*W E Given: Site Class D SS:=0.967 SMs:=Fa*Ss=2.0 S1:=0.420 SM,:=Fv*St=1.1 Fa:=1.11 SDS:=2/3*SMS=1.3 Fv:=1.58 SD,:=2/3*SM1=O.72 RCA:=4 (braced frame) RDA:=6 (moment frame) T= Structure period(sec) W= Rack+ (2/3)Contents I E:=1.0 (non-essential facility nor open to general public) Results in: CSmin:=0.044*SDS=0.058 CSSmax:=R 55=0.33 cA CDA `S DS •_ =0.22 Smear' RDA Calculated base shear coefficient depends on T, which may be determined by any rational method. ©Copyright by Frazier Industrial Company.Provided as an instrument of service.Copying by written permission only. • FRAZIER INDUSTRIAL COMPANY Project: Quality Custom Distribution Job No. 15F2611 08/13/15 Sheet vi 2 Type A Consider glide-in rack.Type B is also approved by this section. 2.1 Components and Geometry 1.9k 1.9k 196" .// 1 .9k 1 .9k 96" 97" BOXED 99" 3 13/16' 48" C/C 2.2 Analysis Type A—SCIA Engineer report. MINIMUM EMBEDMENT SHALL BE 3-3/8" ©Copyright by Frazier Industrial Company.Provided as an instrument of service.Copying by written permission only. 1. Project Licence name Microsoft Project QCD Part Appendix 1:Type A Description Order: 15F2611 Author NPB Date 7/28/2015 Structure General XYZ No.of nodes : 219 No.of beams: 186 No.of slabs : 0 No.of solids: 0 No.of used profiles: 7 No.of load cases: 8 No.of used materials: 4 Acceleration of gravity [mim/s2] 9810000.000 National code IBC 2. ISO i "IlL11111.._..- cp.4000.41... 1 4M1 1 h.,41111"0-44011:14% i ;jt1EL1Iuir , 40.14b. 1 * i x ui SiiEK NEMETSCNEK Sc Project QCD FRAZIER Part Appendix 1:Type A Author NPB Date 7/28/2015 3. Table of contents 1. Project 1 2. ISO 1 3.Table of contents 2 4. Geometry 3 4.1.Cross-sections 3 4.2. Hinges 3 4.3. Nodal supports 3 4.4. beam labels 4 4.5.side view 5 4.6. Parameters 6 5. Loads 8 5.1. Load cases 8 5.2.Combinations 8 5.3. Nonlinear combinations 8 6. Beam 9 6.1.Connector Test Data 9 6.2.Interior Beam Check 10 6.3.Aisle Beam Check 14 7. Stability 18 7.1.Internal forces on member; N 18 7.2.Internal forces on member; My 19 7.3. Displacement of nodes; Uy 20 7.4.stability-segment 21 7.5.Column Check-Gravity 22 8. Seismic-XA 23 8.1. EQXA diagonal 23 8.2.EQXA horizontal 24 8.3.Horizontal Check EQ right 25 8.4. Diagonal Check EQ left 25 8.5. Horizontal Check EQ left 25 8.6. Diagonal Check EQ right 25 8.7.Column 1 check EQ left 26 8.8.Column 2 check EQ left 26 8.9.Column 3 check EQ left 26 8.10.Column 1 check EQ right 27 8.11.Column 2 check EQ right 27 8.12.Column 3 check EQ right 27 8.13.XA rxns 28 8.14.Anchors 29 8.15. Baseplate Ductility 32 8.16. Baseplate Capacity 33 IINMTSCNEU 2/33 Sc a • J Project QCD FRAZIER Part Appendix 1:Type A Author NPB Date 7/28/2015 4. Geometry 4.1. Cross-sections Name Type Detailed Item material Fabrication A Iy [inch2] [inch4] CS3 C3X3.5 A572 grade 50 rolled 1.0900e+00 1.5700e+00 CS4 C4X4.5 A572 grade 50 rolled 1.3800e+00 3.6500e+00 CB4 C4X5.4 A572 grade 50 rolled 1.5800e+00 3.8500e+00 DCS4 2U box C4X4.5 A572 grade 50 welded 2.7764e+00 7.2857e+00 �L1.5 L11/2x11/2x1/8 A36 rolled 3.5960e-01 1.2037e-01 L2 L2x2x1/8 A36 rolled 4.8360e-01 2.7485e-01 13 L11/4x11/4x1/8 A36 rolled 2.9760e-01 6.7751e-02 4.2. Hinges Name Member Position ux uy uz fix fiy Stiff-fiy fiz [kipinch/rad] H3 B7 Both Rigid Rigid Rigid Rigid Flexible 4.5600e+03 Free 1-16 B24 Both Rigid Rigid Rigid Rigid Flexible 4.5600e+03 Free H29 B71 Both Rigid Rigid Rigid Rigid Flexible 4.5600e+03 Free H32 B83 Both Rigid Rigid Rigid Rigid Flexible 4.5600e+03_Free H45 B111 Both Rigid Rigid Rigid Rigid Flexible 4.5600e+03 Free H48 8123 Both Rigid Rigid Rigid Rigid Flexible 4.5600e+03 Free H61 8151 Both Rigid Rigid Rigid Rigid Flexible 4.5600e+03 Free H64 B163 Both Rigid Rigid Rigid Rigid Flexible 4.5600e+03 Free 4.3. Nodal supports "Name Node System Type X Y Z Rx Stiffness Rx Ry Rz [kipinch/rad] BP42-E2#1 N3 GCS Standard Rigid Rigid Rigid Flexible 3.0000e+03 Rigid Rigid BP42-E2#2 N4 GCS Standard Rigid Rigid Rigid Flexible 3.0000e+03 Rigid Rigid BP42-E2#3 N7 GCS Standard Rigid Rigid Rigid Flexible 3.0000e+03 Rigid Rigid BP42-E2#4 N8 GCS Standard Rigid Rigid Rigid Flexible 3.0000e+03 Rigid Rigid BP42-E2#5 N11 GCS Standard Rigid Rigid Rigid Flexible 3.0000e+03 Rigid Rigid BP42-E2#6 N12 GCS Standard Rigid Rigid Rigid Flexible 3.0000e+03 Rigid Rigid BP42-E2#7 N80 GCS Standard Rigid Rigid Rigid Flexible 3.0000e+03 Rigid Rigid BP42-E2#8 N82 GCS Standard Rigid Rigid Rigid Flexible 3.0000e+03 Rigid Rigid BP42-E2#9 N84 GCS Standard Rigid Rigid Rigid Flexible 3.0000e+03 Rigid Rigid BP42-E2#10 N127 GCS Standard Rigid Rigid Rigid Flexible 3.0000e+03 Rigid Rigid BP42-E2#11 N129 GCS Standard Rigid Rigid Rigid Flexible 3.0000e+03 Rigid Rigid BP42-E2#12 N131 GCS Standard Rigid Rigid Rigid Flexible 3.0000e+03 Rigid Rigid BP42-E2#13 N174 GCS Standard Rigid Rigid Rigid Flexible 3.0000e+03 Rigid Rigid BP42-E2#14 N176 GCS Standard Rigid Rigid Rigid Flexible 3.0000e+03 Rigid Rigid BP42-E2#15 N178 GCS Standard Rigid Rigid Rigid Flexible 3.0000e+03 Rigid Rigid 3/33 I I INE'MET51CNEK c 1 E R Project QCD Part Appendix 1:Type A Author NPB Date 7/28/2015 4.4. beam labels 0' U1 in U) in U U U 0 0 A 11 CB4 CB4 ca CD CB4 CB4 0 D CO s 0 0 0 0 0 1 -y CB4 -a) CB4 CB4 CB4 4 A 0 0 0 U) V) 0 0 0 0 0 .4:V) Vim). U') Ni ,-- p 0 0 0 0 0 0 r_ _ -If x 1111111111111 4/33 NEMETSCHEK S C A Project QCD FRAZIER Part Appendix 1:Type A Author NPB Date 7/28/2015 4.5. side view V.; L1.5 N 15 U U U 11.5 15 L1.5 * * N (0 N) U U L1.5 15 L1.5 a V) ih N U U U N L1.5 L5 0 x L1.5 L5 11 111T11111111 Sco 5/33 I�I NEMEZCNEK Project QCD FRAZIER Part Appendix 1:Type A Author NPB Date 7/28/2015 4.6. Parameters Description Type Evaluation Formula Value Unit Ht Total Frame Height Length Value 0.000 inch h400 section top Length Value 400.000 inch AoH1 Aisle Overhang on le Length Value 0.000 inch AoH2 Aisle Overhang on le Length Value 0.000 inch B Bay width Length Value 100.000 inch CS-CB4 Cross-Section CB4 Library 57 CS-CS3 Cross-Section CS3 Library 54 CS-CS4 Cross-Section CS4 Library 56 CS-DCS4 Cross-Section DCS4 Library 62 CS-L1.5 Cross-Section L1.5 Library 67 CS-L2 Cross-Section L2 Library 75 CS-L5 Cross-Section L5 Library 90 D Frame depth Length Value 101.800 inch dl Depth of frame 1 Length Value 48.000 inch dloadl Depth of the pallet k Length Value 48.000 inch dload2 Depth of the pallet k Length Value 48.000 inch Fa Fa Coefficient Value 1.11272 Fv Fv Coefficient Value 1.5799 hl Elevation of level 1 Length Value 97.000 inch h2 Elevation of level 2 Length Value 196.000 inch hloadl Height of the pallet I Length Value 84.000 inch hload2 Height of the pallet I Length Value 42.000 inch Levels Number of levels for Coefficient Value 2 loadsDeepl Number of loads dee Coefficient Value 2 loadsDeep2 Number of loads dee Coefficient Value 2 IoadsWidel Number of loads wid Coefficient Value 2 loadsWide2 Number of loads wid Coefficient Value 2 loadWeighti Weight of each load Force Value 1900.00 lbf loadWeight2 Weight of each load Force Value 1900.00 lbf Ro Redundancy factor Combination Factor Value 1.30 si Spacing 1 Length Value 53.800 inch 51 51 Coefficient Value 0.4201 SS SS Coefficient Value 0.968207 Tda DA period Coefficient Value 2 TributaryLoad Maximun tributary lo Length Formula max((d1+(2*AoH1)) 50.900 inch TributaryPostHeight Height of the columr Len Value 97.000 inch Txa XA period Coefficient Value 0.02 W1 Weight on level 1 Force Value 7600.00 lbf W2 Weight on level 2 Force Value 7600.00 lbf xl Frame 1 X axis Length Formula dl 48.000 inch x2 Frame 2 X axis Length Formula dl +sl 101.800 inch ohl Overhang on level 1 Length Formula (dloadl *IoadsDeep -5.800 inch oh2 Overhang on level 2 Length Formula (dload2*loadsDeep -5.800 inch SM1 SM1 Coefficient Formula S1*Fv 0.663716 SMS SMS Coefficient Formula SS*Fa 1.07734 pl Distributed load for I Surface load Formula -W1/(B*(D+min(oh1 -114.000 Ibf/ft^2 ple Intermediate value ft Surface load Formula -W1/(B*D) -107.505 Ibf/ft^2 p2 Distributed load for I_Surface load Formula -W2/(B*(D+min(oh2 -114.000 Ibf/ft^2 p2e Intermediate value fi Surface load Formula -W2/(B*D) -107.505 Ibf/ft^2 SD1 SD1 Coefficient Formula 2/3*SM1 0.442477 SDS SDS Coefficient Formula 2/3*SMS 0.718227 CsCA CsCA seismic coeffici Coefficient Formula max(0.044*SDS;min 0.179557 CsDA CsDA seismic coeffici Coefficient Formula max(0.044*SDS;min 0.0368731 n1 Notional load for ley( Surface load Formula 0.005*p1 -0.570 Ibf/ft^2 n2 Notional load for ley( Surface load Formula 0.005*p2 -0.570 Ibf/ft^2 P Total post load Surface load Formula ple+p2e -215.010 Ibf/ft^2 sumph Sum weight times he Line load Formula (ple*h1)+(p2e*h2) -2624.911 Ibf/ft Vca ca seis total Surface load Formula 0.67*CsCA*P -25.866 Ibf/ft^2 VcaH ca seis horizontal-ti Surface load Formula -0.67*CsCA*P 25.866 Ibf/ft^2 Vda da seis total Surface load Formula 0.67*CsDA*P -5.312 Ibf/ft^2 6/33 III n1IIIJIIIIII NEMETSGNEK Project QCD F'R&ZIER Part Appendix 1:Type A Author NPB Date 7/28/2015 Name Description Type Evaluation Formula Value Unit DL Combo factor-DL Combination Factor Formula 0.9-0.2*SDS 0.76 DLDown Combo factor-DL-D Combination Factor Formula 1.2+0.2*SDS 1.34 EQ Combo factor-EQ Combination Factor Formula 0.67 0.67 EQneg Combo factor-EQ n Combination Factor Formula -0.67 -0.67 PL Combo factor-PL Combination Factor Formula 0.67*(0.9-0.2*SDS) 0.51 vcai ca seis level 1 Surface load Formula (Vca*ple*h1)/sumpl -8.563 Ibf/ft^2 vca2 ca seis level 2 Surface load Formula (Vca*p2e*h2)/sumpl -17.303 Ibf/ft^2 vdal da seis level 1 Surface load Formula Vda*ple*hl/sumph -1.759 Ibf/ft^2 vda2 da seis level 2 Surface load Formula Vda*p2e*h2/sumph -3.553 Ibf/ft^2 (EQ)/0.67 Combo factor-EQ/ Combination Factor Formula EQ/0.67 1.00 (PL)/0.67 Combo factor-PL/I Combination Factor Formula PL/0.67 0.76 0.7(DLDown) 0.7*Combo factor- Combination Factor Formula 0.7*DLDown 0.94 otml overturning moment Moment Formula vcal *(B*D)*(hloa -25425.73 lbfinch otm2 overturning moment Moment Formula vca2*(B*D)*(hloa -25687.85 lbfinch x0 x-coordinate aisle pc Length Value 0.000 inch otmAl overturning moment Line load Formula -otml/(B*dl) 63.564 lbf/ft otmA2 overturning moment Line load Formula -otm2/(B*dl) 64.220 lbf/ft otmR1 overturning moment Line load Formula otml/(B*dl) -63.564 lbf/ft otmR2 overturning moment Line load Formula otm2/(B*dl) -64.220 lbf/ft PostLoad Force Formula ((((IoadsWidel*load' 11282.83 lbf vcaHl ca seis horizontal lev Surface load Formula VcaH*pl*hl/sumph 9.081 Ibf/ft^2 vcaH2 ca seis horizontal lev Surface load Formula VcaH*p2*h2/sumph 18.348 Ibf/ft^2 yl Frameline Y axis Length Formula 1 * B 100.000 inch y2 Frameline Y axis Length Formula 2* B 200.000 inch y3 Frameline Y axis Length Formula 3 * B 300.000 inch y4 Frameline Y axis Length Formula 4* B 400.000 inch 111IIIIIIIIIIIII 7/33 NEMETSGNEN Scia IER Project A Part Appendix 1:Type A Author NPB Date 7/28/2015 5. Loads 5.1. Load cases Name Description Action type LoadGroup Direction Absences Spec Load type LC1 Permanent LG1 -Z None Self weight Dead Permanent LG1 -Z None Self weight Product Product load Permanent LG1 AG1 Standard NL Notional Load Permanent LG1 AG1 Standard EQ(DA) Down aisle Permanent LG1 AG1 Standard EQ(CA) Cross aisle Permanent LG1 None Standard EQ(CA)H Cross aisle- Permanent LG1 None horizontal check Standard EQ-Otm Mass center Permanent LG1 None Standard 5.2. Combinations Name Description Type Load cases Coeff. COl 1.4P+1.4N Linear-ultimate Product-Product load 1.40 NL-Notional Load 1.40 CO2 1.0E+1.0P(DA) Linear-ultimate EQ(DA)-Down aisle 1.00 Dead 1.34 CO3 1.0E+1.0P(CA) Linear-ultimate Dead 1.34 Product-Product load 0.94 EQ(CA)-Cross aisle 1.30 CO4 1.0EH+(0.9-0.2SDS)PL Linear-ultimate Dead 0.76 Product-Product load 0.51 EQ(CA)H-Cross aisle-horizontal check 0.67 EQ-Otm-Mass center _0.67 CO5 1.0E+(0.9-0.2SDS)PL neg Linear-ultimate Dead 0.76 Product-Product load 0.51 EQ(CA)-Cross aisle 0.67 EQ-Otm-Mass center -0.67 CO6 1.0E(CA) H Linear-ultimate Product-Product load 1.00 Dead 1.34 EQ(CA)H-Cross aisle-horizontal check 1.30 5.3. Nonlinear combinations Name Description Type Load cases Coeff. NC1 1.2D+1.4P+1.4N Ultimate Dead 1.20 Product-Product load 1.40 NL-Notional Load 1.40 8/33 (I'I1111111IIIII NEMETSCHEK acia 01 p1 . ij W n cD 0 c, 0 3 fD a 0 f cD IIIII M. L F °tu FP THIS 174WNEL BEAM HAS 1[68b�'(STD)RANGE 0RO(tATnN. c' Di n g.. Ara 7 o � 1/8" 1 0 ill r 0 Bubbly.428 Revision: Customised 609: cwg-2014-07-29 I 0 Rem:\1411484-PRO1-4213-58EAM CCN: FUS I • Om:CNAN141 BEAM-STD C54-028-4C175-13 CONN(4'09000T Date: 7/29/2014 Pc/Q/U Component Item Qty/Cut Unit Ref.Deg(s)/Comments A ir 01 I C 404.5 50051 2B IN - 3/16 02 I CONN AC175-12 1 EA N-11-01-06 SECTION A-A 90 3 BOLT 1/2 0 1 1/4 GRADE 5 ZINC I 1 !FA - 95 3 NUT 1/2 ZINC I I - backbone at FEMA rotations w A-14T1484-F428-429 4th,8th, bottom hole B N mt. kesc kuo100d (rad) (kip.in) (kip.in/rad) syRNm-Fe,mm 0.0000 0.0 2210 NaN 4590 Sa 0.0037 9.9 2210 2640 4560 BOLTS ON SHADED HOLES 45 0.0050 11.1 670 2210 4490 0.0075 12.4 330 1650 4350 0.0100 12.8 200 1270 4280 0.0150 14.0 200 930 4160 x 0.0200 16.6 200 620 4090 P col 0.0300 24.7 200 620 3840 0.0400 33.2 200 620 3560 N L beam P right a 0.0500 37.9 200 750 3520 0.0600 40.7 200 670 3520 ��D left P col �� 0.0600 45.6 290 610 3520 c#7, , 0.0900 45.3 0 500 3520 "s am ®III— 10 0.1000 45.7 0 450 3520 1 5 P left 428 429 CO D ht I Number of tests: 2 9 °s 002 DDS,r D.m 01 The above table represents average test values. orb For design, use appropriate reduction factors. P cal Values are per aide. + q_, 6 ER 'DO NOT SCALE* .ae- IF>tt ORANGE cNrncT:- OP - I 7/24/14 CA �$�'3' SLt m BRANS at DATE: GATE: n.s oRA*ID w ma AND aETARS 5 DIE PROPERTY or ;EEL i'7e (428) CHANNEL BEAM ' -- MG ENO 05K D ,NE FRAZIER ROUSmA COMPANY AND 5 SUIRRTrtn rare xaMS :, s„ CWG . NPB REV �,,E, 3.001 Bt': B/. Bf: cwnocNR�u wsaecnox.It IS Nm m a COPIED w USED ,,"� „ STD CS4-028-AC175-13 CONN (4" OFFSET) Pte' 1 � C, �o. IN ANY MANNER DtvnvR 1vL TO THE INNRESIN OF DMG NO A- 1411 484 - F428 1 A a, = a, rD nRAnD1 INDUSTRIAL COMPANY. ""Ir-'s OIHEPNYAg SMON" WINO PUNCHING (SPR) Ott, D MS 01 CI: r=- V 52 IN— -- '3:� 1 _ 00 G: N S= O0 Z N A x_ to m D o Project QCD IRRAZIER Part Appendix 1:Type A Author NPB Date 7/28/2015 6.2. Interior Beam Check BEAM CAPACITY CHECK C(Imp)4X5.4 2-WIDE BAY 1 .0 DESIGN FORCES W =4.14 kip (PALLET WEIGHT) L = 100 in (BEAM LENGTH) CASE 1- two pallet loads on shelf R1 _ 1 32 =2.46 kip (REACTION FORCE OF BEAM) M1 = 2560 W L=58.3 kip•in (MAXIMUM MOMENT OF BEAM) 8 empwarow f 19W/32 17W/32 drir, 19 L/40 mcx = 61 ' /2566 10/33 Project QCD ZIER Part Appendix 1:Type A Author NPB Date 7/28/2015 CASE 2- one pallet load on shelf R2= 15 2 =1 .94 kip (REACTION FORCE OF BEAM) M2= 512 W L=36.4 kip•in (MAXIMUM MOMENT OF BEAM) L it Lit L ki,O3 r______ 15W/32 5W/32 / - Mrox = 45WL/512 11/33 III NEMETSCHEK' Sco Project QCD 'ER Part Appendix 1:Type A Author NPB Date 7/28/2015 2.0 UNBRACED LENGTH CASE 1 Lbl =0 nb= 0 W/2 W/2 CASE 2 1--b2 = 34L= 75 i n nb_ 0 W/2 L 12/33 IIIlllllllilllll 5CIc3 Project QCD FRAZIER Part Appendix 1:Type A Author NPB Date 7/28/2015 3.0 SECTION PROPERTIES Zx Sx [in3] [in3] Ix [in4] its [in] h0 [in] ly[in4] ry [in] J [in4] Cw[in6] c 1.92 2.29 3.85 0.528 3.7 0.312 0.444 0.0399 0.921 1.07 4.0 CAPACITY CHECK 4.1 YIELDING Mp=Fy•Zx=50.2.29=115 kip•in 4.2 LATERAL TORSIONAL BUCKLING Lp=1.76•ry•ll F I =18.8 in Y y 1 I Lr=1.95 its E ii J c 1 + 1 +6.76 ( 0.7-7 Sx•h0 2 =96.8 in 0.7. S X E J •c ) CASE 1 Lb<= Lp, Plastic Bending: Mn1 =Mp=115=115 kip•in CASE 2 Since Lp < Lb2 <= Lr, Inelastic Bending: Mn2=Cb.(Mp—(Mp-0.7•Fy•Sx)• �2 )=80.4 kip•in 1 4.3 BENDING MOMENT CAPACITY Mi1 =1.4•M1=81.7 kip•in Mu2=1.4•M2=50.9 kip•in ratio=max( M"1 , Mug )=max(015 )=o.792 OK l 0.9 .80.4 4.4 BEAM DEFLECTION A= 5 W• L3 _ 5-4.14. 1003 0.482 in < L/180 OK 384• E• Ix = 384.29000 •3.85 I=max ratio;; L =max 0.792;01 00 =0.868 180 180 IIIIIIIIIIIIIIII 13/33 HEMETSGMEK Scia Project QCD FRAZIER Part Appendix 1:Type A Author NPB Date 7/28/2015 6.3. Aisle Beam Check BEAM CAPACITY CHECK C(ImD)4X4.5 2-WIDE BAY 1 .0 DESIGN FORCES W =1 .97 kip (PALLET WEIGHT) L = 100 in (BEAM LENGTH) CASE 1- two pallet loads on shelf R1 = 1 32= 1 .17 kip (REACTION FORCE OF BEAM) M1 = 2560 W L=27.8 kip-in (MAXIMUM MOMENT OF BEAM) lip 1 19W/32 17W/32 lire 19L/40 Ar Mmox = 161 WL/2560 Il1III IItIIIIII 14/33 NEMETSCNEN • Project QCD FRAZIER Part Appendix 1:Type A Author NPB Date 7/28/2015 CASE 2- one pallet load on shelf R = i 5 W =0.925 kip (REACTION FORCE OF BEAM 2 32 p ( BEAM) = 512 M2 W 1 = 17.3 kip•in (MAXIMUM MOMENT OF BEAM) t ' 15W/32 5W/32 �J A j 2�f � P Mmox = 45WL/5 1 III i I I I I 15/33 NEMETIC EMET$CNEN FRAZIER Project A Part Appendix 1:Type A Author NPB Date 7/28/2015 2.0 UNBRACED LENGTH CASE 1 Lbi =0 nb= 0 W/2 W/2 _ ii eizz, diereffzej CASE 2 1—b2 = 34L =7• in nb= 0 W/2 • Lb IIINlIIITisig 16/33 EMETSCNE Project QCD FRAZIER Part Appendix 1:Type A Author NPB Date 7/28/2015 3.0 SECTION PROPERTIES Sx [in3] zx[in3] Ix [in4] its [in] h0 [in] ly [in4] Ty [in] J [inn] Cw[in6] c 1.83 2.12 3.65 0.524 3.7 0.289 0.458 0.0322 0.871 1.07 4.0 CAPACITY CHECK 4.1 YIELDING Mp=Fy•Zx=50.2.12=106 kip•in 4.2 LATERAL TORSIONAL BUCKLING I Lp=1.76•ry• F 11 =19.4 in Y E J•c 1 0.7•F v Sx•h0 2 Lr=1.95•rts• 0.7•Fy Sx•h0 1 + 1 +6.76 ( E J •c ) =88.8 in CASE 1 Lb<= Lp, Plastic Bending: Mr,1 =Mp=106=106 kip•in CASE 2 Since Lp < Lb2 <= Lr, Inelastic Bending: )-72.4 Mn2=Cb•I(Mp—(Mp-0.7•Fy•Sx). br 2 p kip•in 1 4.3 BENDING MOMENT CAPACITY Mil =1.4• M1=39 kip•in Ma=1.4•M2=24.3 kip•in ratio=max(�M i '�PMMn2 )=max(09306 '0.9 72.4 )=0.408 OK 4.4 BEAM DEFLECTION A- 5•W• L3 _ 5 1.97• 1003 _0.243 in < L/180 OK 384• E• Ix 384.29000 .3.65 I=max ratio; L =max 0.408;0100 =0.437 180 180 17/33 II1NMSHK �aa Project QCD IFRAZIER Part Appendix 1:Type A Author NPB Date 7/28/2015 7. Stability 7.1. Internal forces on member; N -0.001 0.001 J� q . {U r- -5 635 —5.634 f —5.631 r q CO ' + C0 -r —11.273 —11.268 i r x Y -11.241 18/33 1111111111111111 NEMETSCHEKf Sc!a • Project QCD IFRAZIER Part Appendix 1:Type A Author NPB Date 7/28/2015 7.2. Internal forces on member; My i ., n —0.042 —0.086 ee - c� - -1.397`, , .. m so s so Q 11 M_ CT) 't. CD �r • 0.727 O �r —1.789 -- n an m .r y 1.783 19/33 1 1 1NE'METE'CNEK' Scia Project QCD FRAZIER Part Appendix 1:Type A Author NPB Date 7/28/2015 7.3. Displacement of nodes; Uy 4- 0.042 –0.156 –0.149 –0.142— –0.347 –0.133 -. 0.136 –0.073- 0.072 — 0.072 —, •Hi 0.01– --.. 0.017}. x Y 20/33 'IIiTH Scia Project QCD FRAZIER Part Appendix 1:Type A Author NPB Date 7/28/2015 7.4. stability-segment Name Header stability-segment Linear calculation, Extreme : Global Selection : Named selection - interior-frame Combinations : COl Layer : B3 STABILITY CHECK GEOMETRY Ib,1<be Kam I COLUMN PROPERTIES 2U box (C(Imp)4X4.5) H=97 in !column=IO.CS.Chars.ly=3.03-10-6=7.29 in4 - -1 Column Deflection - From Model Pu=11.3 kip mtop=IO.Section.Buckling Data.EndForces.Mly=201 =1.78 kip•in mbot=IO.Section.Buckling Data.End Forces.M2y=-202=-1.79 kip•in Count=IO.Beam.Section.Count=42=42 ibot=abs(IO.Beam.Section[0].Deformations[0].uz)=abs(0)=0 in atop=abs(IO.Beam.Section[42-2].Deformations[0].uz)=abs(1.82.10.3)=0.0715 in Ml model=abs(mtop)+abs(mbot)=abs(1.78 kip•in)+abs(-1.79 kip•in)=3.57 kip•in M2model=-Pu•(Atop—Abot)= -11.3 kip (0.0715 in-0 in)=0.806kip•in M2model __ 0.806 kio-in Smodel= =0.226 M1 model 3.57 kip•in 21/33 III NE'METSICNEK' Scie Project QCD RtAZIER Part Appendix 1:Type A Author NPB Date 7/28/2015 7.5. Column Check - Gravity Nonlinear calculation, Extreme :Cross-section Selection : Named selection -interior-frame Nonlinear combinations : NC1 Case Member css mat dx un.check [inch] [-] NC1 B70 CS4-C(Imp)4X4.5 A572 grade 50 97.000 0.31 NC1 894 L5-L(ARCUS)11/4x11/4x1/8 A36 26.900_ 0.03 NC1 B96 L1.5-L(ARCUS)11/2x11/2x1/8 .A36 48.000 0.03 NC1 B97 L2-L(ARCUS)2x2x1/8 A36 31.241 0.02 Column check is for gravity load only. See seismic section for bracing and post checks. 9 tY Y 9 P III III IIIIIII 22/33 'I�NEMETSCHEK &aa Project QCD FRAZIER Part Appendix 1:Type A Author NPB Date 7/28/2015 8. Seismic-XA 8.1. EQXA diagonal e if C i 7 i E.. r X 23/33 I I(NE'METE'CHEKI Scia Project QCD FRAZIER Part Appendix 1:Type A Author NPB Date 7/28/2015 8.2. EQXA horizontal T 1. 0 1 ♦ s Y X 24/33 1111111111111111 NEMETSGNEK acia Project QCD FRAZIER Part Appendix 1:Type A Author NPB Date 7/28/2015 8.3. Horizontal Check EQ right Linear calculation, Extreme : Global Selection : Named selection -interior-frame Combinations : C06 Layer : horizontal-3 Case Member css mat dx un.check [inch] [-] C06 1 B102 lfl612M_1aW rrsa (A A36 48.000 0.60 8.4. Diagonal Check EQ left Linear calculation, Extreme : Global Selection : Named selection -interior-frame Combinations : CO3 Layer :diagonal-3 Case Member css mat dx un.check [inch] [-] CO3 2 B97 L2- L ARCUS 2x2x1 8 A36 31.241 0.56 8.5. Horizontal Check EQ left Linear calculation, Extreme : Global Selection : Named selection -interior-frame Combinations : CO3 Layer : horizontal-3 Case Member css mat dx un.check [inch] [-] CO3 2 B104 L1.5-L ARCUS 11 2x11 2x1 8 A36 48.000 0.46 8.6. Diagonal Check EQ right Linear calculation, Extreme : Global Selection : Named selection -interior-frame Combinations : C06 Layer : diagonal-3 Case Member css mat dx un.check [inch] [-] C06 1 B99 L2- ARCUS 2x2x1 8 A36 62.482 0.22 25/33 I I(NEfMETB'CNEN' SCO FRAZIER Project QCD Part Appendix 1:Type A Author NPB Date 7/28/2015 8.7. Column 1 check EQ left Linear calculation, Extreme :Global Selection : Named selection -interior-frame Combinations : CO3 Layer :A3 Case Member css mat dx un.check [inch] [-] CO3/2 B79 BEMENEEM A572 •rade 50 0.000 0.42 8.8. Column 2 check EQ left Linear calculation, Extreme : Global Selection : Named selection -interior-frame Combinations : CO3 Layer : B3 Case Member css mat dx un.check [inch] [-] CO3 2 B82 CS4-C Im• 4X4.5 A572 •rade 50 0.000 0.30 8.9. Column 3 check EQ left Linear calculation, Extreme :Global Selection : Named selection -interior-frame Combinations :CO3 Layer :C3 Case Member css mat dx un.check [inch] [-] CO3 2 B72 CS4-C Im• 4X4.5 A572 •rade 50 97.000 0.50 Illnninnnu 26/33 NEMETSCNEK ;,ca Project QCD FRAZIER Part Appendix 1:Type A Author NPB Date 7/28/2015 8.10. Column 1 check EQ right Linear calculation, Extreme :Global Selection : Named selection -interior-frame Combinations : CO6 Layer :A3 Case Member css mat dx un.chedc [inch] [-] CO6 1 B79 CS4-C Im. 4X4.5 A572 .rade 50 0.000 0.44 8.11. Column 2 check EQ right Linear calculation, Extreme : Global Selection : Named selection -interior-frame Combinations : CO6 Layer : B3 Case Member css mat dx un.check [inch] [-] CO6 1 B70 CS4-C Im. 4X4.5 A572 oracle 50 96.000 0.35 8.12. Column 3 check EQ right Linear calculation, Extreme : Global Selection : Named selection -interior-frame Combinations : CO6 Layer :C3 Case Member css mat dx un.check [inch] [-] CO6 1 B72 CS4-C Im. 4X4.5 A572 'rade 50 97.000 0.54 IIIIIIIIIIIll 27/33 I NEMETSCHEK SCta Project QCD FRAZIER Part Appendix 1:Type A Author NPB Date 7/28/2015 8.13. XA rxns 1 I / CO N N co cci X 28/33 I 1'NEfMETE'CMER Sc Project QCD FRAZIER Part Appendix 1:Type A Author NPB Date 7/28/2015 8.14. Anchors Linear calculation Combination: C04 Extreme 1D:Global Selection: Named selection -interior-frame Filter: Layer =A3 ANCHOR CHECK IN ACCORDANCE WITH ACI 318 APPENDIX D 1.0 ANCHOR INFORMATION 1/2 Simpson SB2 het=3.38 in EFFECTIVE EMBEDMENT db=0.5 in ANCHOR DIAMETER n=2 NUMBER OF ANCHORS PER BASEPLATE ft=4 ksi CONCRETE STRENGTH 2.0 LOAD DESIGN ANCHORS FOR UPLIFT TENSION SHEAR RESISTED BY ANCHORS IN OTHER POST Design Uplift, Nua -2.47 kip 3.0 CAPACITY, 3.1 STEEL FAILURE (D.5.1) tNn tl! Q Q O lo 0 0 3.1.1 ANCHOR GROUP CONSIDER (2) ANCHORS PER BASEPLATE n=2 3.1.2GROUPSTEELSTRENGTH Ase,N= fl•4 b2 = 3.14 4.5 in2 =0.196 in2 futa=125 ksi Nsa=n•Ase,N futa=2.0.196 in2.125 ksi=49.1 kip IIIIIII111111111 29/33 NEMET3CNEK Sca Project QCD FRAZIER Part Appendix 1:Type A Author NPB Date 7/28/2015 3.2 CONCRETE BREAKOUT (0.5.2) 1 tN J.ly 0 � + Qc;Ioi c ` ,Q{O c` o O � ` C c � 010,...0000'�° O 000:00, ° C' _it a ° 3.2.1 BREAKOUT AREA ANco=9•here=9 3.38 in2=103 in2 ANc=(1.5•het+S+1.5•hef).(1.5•het+1.5•hef) =(1.5.3.38 in+3 in+1.5 3.38in)•(1.5 3.38 in+1.5.3.38 in)=133 in2 3.2.2 MODIFICATION FACTORS ECCENTRIC LOAD(D.5.2.4) BOTH ANCHORS ARE LOADED EQUALLY 1Pec,N= 1 EDGE EFFECTS(D.5.2.5) Ca,mn=1.5•her=1.5.3.38 in=5.06 in 44ed,N=0.7+0.3• =0.7+0.3• 5.06 in =1 1.5.5•h het 1.5 3.38 in CRACKS AT SERVICE LEVEL FORCES (D.5.2.6) SLAB ON GRADE REMAINS UNCRACKED AT SERVICE LOAD LEVELS 4Jc,N= 1.4 ANCHORS DESIGNED FOR UNCRACKED CONCRETE (D.5.2.7) ANCHORS DESIGNED FOR CRACKED CONCRETE Ipcp,N= 1 3.2.3 GROUP BREAKOUT STRENGTH Nb=kc' fc 'het1.5=6.79kip Ncb=( Aim)•LIJec,N't11ed,N'41c,N'111cp,N•Nb =( 103 33 inin 2 1 • 1 .1.4.1 .6.79 kip=12.31 kip III 1 unuunnt 30/33 NEMETSCNEK Saa • Project QCD FRAZIER Part Appendix 1:Type A Author NPB Date 7/28/2015 3.3 PULLOUT STRENGTH (D.5.3) fir t ° a Q a 3.3.1 ANCHOR GROUP CONSIDER (2) ANCHORS PER BASEPLATE n=2 3.3.2 MODIFICATION FACTORS CRACKS AT SERVICE LEVEL FORCES (D.5.3.6) SLAB ON GRADE REMAINS UNCRACKED AT SERVICE LOAD LEVELS Wc,P= 1.4 3.3.3GROUP PULLOUT STRENGTH Nper=3.74 kip f. 0.5 Np=Nper•( fcBASE ) =3.74kip.( 25ksi )°5=4.73kip Np„=n•yic,P•Np=2. 1.4.4.73 kip=13.2 kip 3.4 STRENGTH DESIGN REQUIREMENTS(0.3.3.4.4) 3.4.1 REDUCTION FACTOR CATEGORY 1 APPENDIX C LOAD COMBINATIONS DUCTILE BASEPLATE ATTACHMENT 4=0.8 3.4.2 DESIGN CAPACITY EARTHQUAKE DESIGN Nn=min(Nsa;Ncb;Np„)=min(49.1 kip;12.31 kip;13.2 kip)=12.3 kip On=4)s-4)•Nn=0.75.0.8.12.3kip=7.39 kip 3.4.3 INTERACTION Int= Nua _ 2.47 ki p _0.335 OK (1)Nn 7.39 kip 31/33 I I(NEEMETSONEK1 Scia Project QCD FRAZIER Part Appendix 1:Type A Author NPB Date 7/28/2015 8.15. Baseplate Ductility 15F2611 Quality Custom Distribution 8/13/15 Ss=0.97 S1=0.42 Fa=1.11 Fv=1.58 PG 1/1 BASEPLATE DUCTILITY CHECK REFERENCE ACI 318-11 D.3.3.4.3: GROUP OF ANCHORS SHALL BE DESIGNED FOR THE MAXIMUM TENSION THAT CAN BE TRANSMITTED BY A DUCTILE YIELD MECHANISM IN THE ATTACHMENT IN FLEXURE. 3 16 11, 15 i is • (2)C4X4S .11-111 410 2)P1/2 X 5 1/2'FLOOR NIOIOPS PER BASE PIKE A�-- ~ 1111 _IA 512' 1516• (UNSUPPORTED BASEPLATE ECCENTRICITY) SECTION A-A IWEPIATE-TO-COWYM ATTACHMENT (DESIGN TENSION CAPACITY OF ANCHOR GROUP) Calculate bending demands at anchor capacity and verify that plate forms a yield mechanism: SECTION MODULUS CALC (pNn=7.4k (see anchor calcs) 1_ B = 6" (baseplate width) J t = 3/8" (baseplate thickness) B e = 0.9375" (distance to anchors) SECTION B-B Fy = 36ksi (baseplate yield) S=I/c increase attachment yield by 1.25 times for expected strength. 1=B*t3/12 c=t/2 M plate= rpNn*e=7.4k* 0.9375"= 6.9 k—in S=B*t2/6 Mn=1.25*Fy*S=1.25*36ksi*6"*(3/8")2/6= 6.3 k—in M >Mn (PLATE IS DUCTILE — OK) 3-3/8" MINIMUM EMBEDMENT plate 32/33 II IA!!jri CN[I( IIII I1CHEI[ SC12 Project QCD FRAZIER Part Appendix 1:Type A Author NPB Date 7/28/2015 8.16. Baseplate Capacity 15F2611 Quality Custom Distribution 8/13/15 Ss=0.97 S1=0.42 Fa=1.11 Fv=1.58 PG 1/1 BASEPLATE CAPACITY CHECK REFERENCE RMI 7.1.2.2: THE MINIMUM BASE PLATE THICKNESS SHALL BE DETERMINED BASED ON A DESIGN BENDING MOMENT IN THE PLATE EQUAL TO THE UPLIFT FORCE TIMES Y THE DISTANCE FROM THE CENTERLINE OF THE ANCHOR TO THE NEAREST EDGE OF THE RACK COLUMN. 3 16 15 le (2)GM 2) 01/2 ll 5 1/2•FLOOR MOORS PER 915E PURE -- 1 1111 51 • 1516• (UNSUPPORTED BASEPLATE ECCENTRICITY) SECTION A-A BAYPIATE-TO-COWNN ATTACHMENT (DESIGN TENSION DEMAND ON Nu ANCHOR GROUP) Calculate bending demands at design forces and verify that PLASTIC MODULUS CALL plate has sufficient capacity. Nu= 2.5k (see anchor calcs) B = 6" (baseplate width) T+ - t = 3/8" (baseplate thickness) j B e = 0.9375" (distance to anchors) SECTION 9-a Fy = 36ksi (baseplate yield) Z=A/2*2y reduce plate bending capacity by 0.9 times for LRFD A=B*t y=t/4 Mpiate Nu/2*e=2.5k* 0.9375"= 2.3k—in Z=B*t2/4 coMn=0.9*Fy*Z=0.9*36ksi*6"*(3/8")2/4= 6.8k—in Mplate<=q Mn (OK—PLATE HAS SUFFICIENT CAPACITY IN SINGLE CURVATURE) 33/33 I((NE(METSiCHE1(I FRAZIER INDUSTRIAL COMPANY Project: Quality Custom Distribution Job No. 15F2611 08/13/15 Sheet vii 3 Type C Consider selective rack. 3.1 Components and Geometry 1.9k 1.9k 190" 1.9k 1.9k 96" 96" BOXED 99" 48" C/C 3.2 Analysis Type C—SCIA Engineer report. ©Copyright by Frazier Industrial Company.Provided as an instrument of service.Copying by written permission only. 1.. Project Licence name Microsoft Project 15F2611 QCD Part Appendix 2:Type C Author NPB Date 8/12/2015 Structure General XYZ No.of nodes: 110 No.of beams : 106 No.of slabs : 0 No.of solids: 0 No.of used profiles: 4 No.of load cases: 8 No.of used materials: 4 Acceleration of gravity [mim/s2] 9810000.000 National code IBC 2. ISO 71/4. —4 tki bzimi tk ►t N. 1 imiple.1. .ii,...... `� ii ilk 1,., 0.. .4 ii, 4„ 1 4.1,1 A 14" :1 „. 1 ,,, 111+140, -*a N 0. 1 4, . 1 ..„....... 1 1 1 I obi , i I„IlIllllIllIll NEMETSCHEK Sc a Project 15F2611 QCD 'ER Part Appendix 2:Type C Author NPB Date 8/12/2015 3. Table of contents 1. Project 1 2. ISO 1 3. Table of contents 2 4. Geometry 3 4.1.Cross-sections 3 4.2. Hinges 3 4.3. Nodal supports 3 4.4.beam labels 4 4.5.side view 5 4.6. Parameters 6 5. Beam 8 5.1.Connector Testing 8 5.2. Beam Check 9 6. Stability 13 6.1.Internal forces on member; N 13 6.2. Internal forces on member; My 14 6.3. Displacement of nodes; Uy 15 6.4.stability-segment 16 6.5.Check of steel 17 7. Seismic-XA 18 7.1. EQXA diagonal 18 7.2. EQXA horizontal 19 7.3. EQ XA 20 7.4.EQ XA(H) 20 7.5.XA rxns 21 7.6.Anchors 22 8. Seismic-DA 25 8.1. DA seis; My 25 8.2.Connector Check 25 8.3. Baseplate Check 25 2/25 III III III 1111111 NEMETSCHEK JCIa Project 15F2611 QCD FRAZIER Part Appendix 2:Type C Author NPB Date 8/12/2015 4. Geometry 4.1. Cross-sections Name Type Detailed Item material Fabrication A Iy [inchz] [inch°] CS4 C4X4.5 A572 grade 50 rolled 1.3800e+00 3.6500e+00 DCS4 2U box C4X4.5 A572 grade 50 welded 2.7764e+00 7.2857e+00 L1.5 L11/2x11/2x1/8 A36 rolled 3.5960e-01 1.2037e-01 L2 L2x2x1/8 A36 rolled 4.8360e-01 2.7485e-01 4.2. Hinges Name Member Position ux uy uz fix fly Stiff-fly fix [kipinch/rad] H2 B4 Both Rigid Rigid Rigid Rigid Flexible 2.3700e+03 Free H4 B12 Both Rigid Rigid Rigid Rigid Flexible 2.3700e+03 Free H14 B37 Both Rigid Rigid Rigid Rigid Flexible 2.3700e+03 Free H16 B42 Both Rigid Rigid Rigid Rigid Flexible 2.3700e+03 Free H22 B56 Both _Rigid Rigid Rigid Rigid Flexible 2.3700e+03 Free H24 B61 Both Rigid Rigid Rigid Rigid Flexible _ 2.3700e+03 Free H30 B75 Both Rigid Rigid Rigid Rigid Flexible 2.3700e+03 Free H32 B80 Both Rigid Rigid Rigid Rigid Flexible 2.3700e+03 Free 4.3. Nodal supports Name Node System Type X Y Z Rx Stiffness Rx Ry Rz [kipinch/rad] BP42-E2# N3 GCS Standard Rigid Rigid Rigid _Flexible 2.3700e+03 Rigid Rigid BP42-E2#1 N4 GCS Standard Rigid Rigid Rigid Flexible 2.3700e+03 Rigid Rigid BP42-E2#2 N7 GCS Standard Rigid Rigid Rigid Flexible 2.3700e+03 Rigid Rigid BP42-E2#3 N8 GCS Standard Rigid Rigid Rigid Flexible 2.3700e+03 Rigid Rigid BP42-E2#4 N38 GCS Standard Rigid Rigid Rigid Flexible 2.3700e+03 Rigid Rigid BP42-E2#5 N40 GCS Standard Rigid Rigid Rigid Flexible 2.3700e+03 Rigid Rigid BP42-E2#6 N56 GCS Standard Rigid Rigid Rigid Flexible 2.3700e+03 Rigid Rigid BP42-E2#7 N58 GCS Standard Rigid Rigid Rigid Flexible 2.3700e+03 Rigid Rigid BP42-E2#8 N74 GCS Standard Rigid Rigid Rigid Flexible 2.3700e+03 Rigid Rigid BP42-E2#9 N76 GCS Standard Rigid Rigid Rigid Flexible 2.3700e+03 Rigid Rigid III II11111111111 3/25 NEMETSCHEK S-ia IER Project 15F2611 QCD Part Appendix 2:Type C Author NPB Date 8/12/2015 4.4. beam labels v vv of as- a'. U) U) N U) N 0 U{ U U 0 CS4 CS4 a CS4 CS4 e0 0 D N U)U) U)� U UT 0 0 U* CS4 CS4 CS4 CS4 fi F�3 t fl N N; U) N. N4 0 0 0 0 0 t 4/25 II 1111111111111111 NEMETSCNEK Jwc3 Project 15F2611 QCD FRAZIER Part Appendix 2:Type C Author NPB Date 8/12/2015 4.5. side view L1.5 U U 11.5 L1.5 v V U L1.5 l2 i L1.5 a V O L1.5 '^ 1 L1.5 5/25 I(1 NEIMET$ICHEKI Scia Project 15F2611 QCD FRAZIER Part Appendix 2:Type C Author NPB Date 8/12/2015 4.6. Parameters Name Description Type Evaluation Formula Value Unit Ht Total Frame Height Length Value 0.000 inch h400 section top Length Value 400.000 inch AoH1 Aisle Overhang on le Length Value 0.000 inch AoH2 Aisle Overhang on le Length Value 0.000 inch B Bay width Length Value 100.000 inch CS-053 Cross-Section CS3 Library 54 CS-CS4 Cross-Section CS4 Library 56 CS-DCS4 Cross-Section DCS4 Library 62 CS-Undef Cross-Section Undef Library 51 D Frame depth Length Value 48.000 inch d1 Depth of frame 1 Length Value 48.000 inch dloadl Depth of the pallet k Length Value 48.000 inch dload2 Depth of the pallet Ic Length Value 48.000 inch Fa Fa Coefficient Value 1.11272 Fv Fv Coefficient Value 1.5799 hl Elevation of level 1 Length Value 96.000 inch h2 Elevation of level 2 Length Value 190.000 inch hloadl Height of the pallet I Length Value 84.000 inch hload2 Height of the pallet I Length Value 48.000 inch Levels Number of levels for Coefficient Value 2 loadsDeep) Number of loads dee Coefficient Value 1 loadsDeep2 Number of loads dee Coefficient Value 1 IoadsWidel Number of loads wid Coefficient Value 2 loadsWide2 Number of loads wid Coefficient Value 2 loadWeightl Weight of each load Force Value 1900.00 lbf loadWeight2 Weight of each load Force Value 1900.00 lbf Ro Redundancy factor Combination Factor Value 1.00 S1 Si Coefficient Value 0.4201 SS SS Coefficient Value 0.968207 Tda DA period Coefficient Value 2 Tributary Load Maximun tributary lo Length Formula max((d1+(2*AoH1)) 24.000 inch TributaryPostHeight Height of the columr Length Value 96.000 inch Txa XA period Coefficient Value 0.02 W1 Weight on level 1 Force Value 3800.00 lbf W2 Weight on level 2 Force Value 3800.00 lbf x1 Frame 1 X axis Length Formula dl 48.000 inch ohi Overhang on level 1 Length Formula (dloadl*loadsDeep 0.000 inch oh2 Overhang on level 2 Length Formula (dload2*loadsDeep 0.000 inch SM1 SM1 Coefficient Formula S1*Fv 0.663716 SMS SMS Coefficient Formula SS*Fa 1.07734 pl Distributed load for I Surface load Formula -W1/(B*(D+min(oh1 -114.000 Ibf/ft^2 ple Intermediate value 6 Surface load Formula -W1/(B*D) -114.000 Ibf/ft^2 p2 Distributed load for I Surface load Formula -W2/(B*(D+min(oh2 -114.000 Ibf/ft^2 p2e Intermediate value f Surface load Formula -W2/(B*D) -114.000 Ibf/ft^2 SD1 SD1 Coefficient Formula 2/3*SM1 0.442477 SDS SDS Coefficient Formula 2/3*SMS 0.718227 CsCA CsCA seismic coeffici Coefficient Formula max(0.044*SDS;min 0.179557 CsDA _CsDA seismic coeffic Coefficient Formula max(0.044*SDS;min 0.0368731 n1 Notional load for levi Surface load Formula 0.005*p1 -0.570 Ibf/ft^2 n2 Notional load for levi Surface load Formula 0.005*p2 -0.570 Ibf/ft^2 P Total post load Surface load Formula ple+p2e -228.000 Ibf/ft^2 sumph Sum weight times he Line load Formula (p1e*h1)+(p2e*h2) -2717.000 Ibf/ft Vca ca seis total Surface load Formula 0.67*CsCA*P -27.429 Ibf/ft^2 VcaH ca seis horizontal-ti Surface load Formula -0.67*CsCA*P 27.429 Ibf/ft^2 Vda da seis total Surface load Formula 0.67*CsDA*P -5.633 Ibf/ft^2 DL Combo factor-DL Combination Factor Formula 0.9-0.2*SDS 0.76 DLDown Combo factor-DL-D Combination Factor Formula 1.2+0.2*SDS 1.34 EQ Combo factor-EQ Combination Factor Formula 0.67 0.67 PL Combo factor-PL Combination Factor Formula 0.67*(0.9-0.2*SDS) 0.51 vca1 ca seis level 1 Surface load Formula (Vca*ple*h1)/sumpl -9.207 Ibf/ft^2 6/25 I I I NEiMETSiCNENi SCG Project 15F2611 QCD FR&ZIER Part Appendix 2:Type C Author NPB Date 8/12/2015 t Lt- ',(4...r 15-1 10c Name Description Type Evaluation Formula Value Unit vca2 ca seis level 2 Surface load Formula (Vca*p2e*h2)/sumpl -18.222 Ibf/ft^2 vdal da seis level 1 Surface load Formula Vda*ple*h1/sumph -1.891 Ibf/ft^2 vda2 da seis level 2 Surface load Formula Vda*p2e*h2/sumph -3.742 Ibf/ft^2 (EQ)/0.67 Combo factor-EQ/ Combination Factor Formula EQ/0.67 1.00 (PL)/0.67 Combo factor-PL/I Combination Factor Formula PL/0.67 0.76 0.7(DLDown) 0.7*Combo factor- Combination Factor Formula 0.7*DLDown 0.94 otml overturning moment Moment Formula veal *(B*D)*(hloa -12889.75 Ibfinch otm2 overturning moment Moment Formula vca2*(B*D)*(hloa -14577.69 Ibfinch ..'4 x-coordinate aisle po Length Value 0.000 inch otmA1 overturning moment Line load Formula -otml/(B*d1) 32.224 lbf/ft otmA2 overturning moment Line load Formula -otm2/(B*dl) 36.444 lbf/ft otmR1 overturning moment Line load Formula otml/(B*di) -32.224 lbf/ft otmR2 overturning moment Line load Formula otm2/(B*dl) -36.444 lbf/ft PostLoad Force Formula ((((IoadsWidel*load' 5320.00 lbf vcaHl ca seis horizontal lev Surface load Formula VcaH*pl*hl/sumph 9.207 Ibf/ft^2 vcaH2 ca seis horizontal lev Surface load Formula VcaH*p2*h2/sumph 18.222 Ibf/ft^2 yl Frameline Y axis Length Formula 1 *B 100.000 inch y2 Frameline Y axis Length Formula 2*B 200.000 inch y3 Frameline Y axis Length Formula 3*B 300.000 inch y4 Frameline Y axis Length Formula 4*B 400.000 inch 7/25 I'1111111111111 NEMETSCHEK SWa vi ul • CO A fD O y 7 3 fD P. O -1 IIIII MN 28- m ppo A. -L, r-4 1H15 CH4NNa BEAM HAS'�7AN9ARQ'(SID)MANGE ORIENTATION. ., r°i 4 (j) A I c7,; R O :r fl/-vv-- Bubble: E x } a°426 Revision: Cuelemized BOIL c.g-2014-07-29 I i� Rem:\1411484-PRO1-426-SBFAM CON: F115 r Deau:CHANNEL BEAM-515 CS4-628-AC175-9 CORN(2'OFFSET) Date: 7/22/2014 3/16 1/ Po;C/U Component Item CAy/Cut unit Ref.Dw(s)/Commanta A L. 01 1 C 414.5 50K0 28 IN - 02 1 CONN AC175-9 1 EA N-11-01-03 SECTION A-A 90 2 BOLT 1/2 X 1 1/4 GRADE 5 ZOO 1 EA - 00 95 2 Nu 1/2 MC I FA _ backbone at FEMA rotations NJ A-14T1484-F426-427 4th hole e 0 is t k• kunlo.a (rad) (k113.111) (kip.in/rad) EAVna01-Fw1mm 0.0000 0.0 870 NaN 2660 BOLTS ON SHADED HOLES °° 0.0037 4.0 870 870 26 0 35- 0.0075 4.5 -50 590 2660 �f f 0.0100 4.1 -80 410 2660 30- / 0.0150 3.9 -80 250 2370 0.0200 4.8 -80 230 2370 P COI 0.0300 9.9 -80 230 2370 L beam P right X20- 0.0400 16.2 -80 230 2370 N 0.0500 22.5 -80 230 2370 E 0.0600 28.8 -80 230 2370 D left {N 15- / 0.0700 33.1 -80 230 2370 E�° I P col e 1 0.0800 35.0 -80 230 2370 . 1, / 0.0900 35.9 -80 230 2300 ear" tis 0.1000 36.9 -80 230 2290 P left 426 427 �I p right Number of tests: 2 - °o 0.e2 030 a�� 0 O ai The above table represents average test values. c�-N6 For design, use appropriate reduction factors. Values are per side. 4- P col •00 NOT SCALE° AO,. 1nN:ORANGE Clrracr:- 0P _ 7/24/1 4 CA A DER DATE: lilt �� INS DRANK N DECEN AND GEMS S DE EWEN,R 1NEaES .im. C426� CHANNEL BEAM �'� DWG CWG 11 NPB CHK REV > - 111E NADER NOUSNIAL CDMPANY AND 5 SLAMMED Ea4 DECNMS u.o01 _. 06 B!: BY: CamOamAE NSPECRON.n 1s Nn ro BE CONED w USED ANaxs 21 STD CS4-28-AC175-9 CONN (2" OFFSET) PIKE: , C7 - 3, N M }MANY. ID DE INTERESTS OF yy\NO PUNCHING (SPR) _Ott: DWG NO: A- 1471484 F426 E A o q Nom,ADEC(xmo-ca) D 73 rb = N CL to ' T Il N .. F-S Di \ 1--. N m- O� -o N p En CD (5 0 4 Project 15F2611 QCD FRAZIER Part Appendix 2:Type C Author NPB Date 8/12/2015 5.2. Beam Check BEAM CAPACITY CHECK C(Imp)4X4.5 2-WIDE BAY 1 .0 DESIGN FORCES W =1 .94 kip (PALLET WEIGHT) L = 100 in (BEAM LENGTH) CASE 1- two pallet loads on shelf R1 _ 1 32 =1 .15 kip (REACTION FORCE OF BEAM) 361 M1 — 560 W• L=27.3 kip•in (MAXIMUM MOMENT OF BEAM) it, , ArdigirArr 19W/32 17W/32 i► 19L/40 Mmax = 361WL/2560 Ilik!!! Ill�����l 9/25 NEMETSCNEK $C3 Project 15F2611 QCD FRAZIER Part Appendix 2:Type C Author NPB Date 8/12/2015 CASE 2- one pallet load on shelf R2 1 32 =0.909 kip (REACTION FORCE OF BEAM) M2= 512 -W- L= 17 kip-in (MAXIMUM MOMENT OF BEAM) 15W/32 5W/32 3L/8 Mmox = 45WL/512 10/25 IIIIIIIIIIIIIIII NEMETECKEK SCi3 Project 15F2611 QCD FRAZIER Part Appendix 2:Type C Author NPB Date 8/12/2015 2.0 UNBRACED LENGTH CASE 1 Lbl =0 nb= 0 W/2/2 W/2 CASE 2 1—b2= 34L =75 in nb= 0 W/2 Lb- 11/25 III NEEMET;'CNEN' SCIa Project 15F2611 QCD FRAZIER Part Appendix 2:Type C Author NPB Date 8/12/2015 3.0 SECTION PROPERTIES Sx [in3] Zx[in3] Ix [in4] its [in] h0 [in] ly[in4] ry [in] J [in4] Cw[in6] c 1.83 2.12 3.65 0.524 3.7 0.289 0.458 0.0322 0.871 1.07 4.0 CAPACITY CHECK 4.1 YIELDING M P—-F Y•Zx=50.2.12=106 kip•in 4.2 LATERAL TORSIONAL BUCKLING Lp=1.76• ry•ll F'=19.4 in Y Y Lr=1.95• rts E J •c �. 1 1 +6.76 °I.FY S X 2 =8 8.8 0.7 Fy Sx h0 + ( E J •c ) CASE 1 Lb<= Lp, Plastic Bending: Mn1 =Mp=106=106 kip•in CASE 2 Since Lp < Lb2 <= Lr, Inelastic Bending: )=72.4 Mri2=Cb.I M -(M -0.7•FSx)• 2 �p kip•in p 4.3 BENDING MOMENT CAPACITY Mu1 =1.4•M1=38.3 kip•in Mug=1.4•M2=23.9 kip•in ratio=max( Mi1 ; MU2 )=max(086 =0.401 OK ` '0.9-72.4 4.4 BEAM DEFLECTION - 5•W• L3 5 1.94• 1003 0.239 in < U180 OK 384• E• Ix 384 .29000 •3.65 1=max ratio; A =max 0.401;0100 =0.429 180 180 12/25 III1111111111 / �"NEMETSCNEK 3 Project 15F2611 QCD FRAZIER Part Appendix 2:Type C Author NPB Date 8/12/2015 6. Stability 6.1. Internal forces on member; N —0.031 et =. —2.797 es —5.630 13/25 I111111111111III NEMETSCNEK Project 15F2611 QCD FRAZIER Part Appendix 2:Type C Author NPB Date 8/12/2015 6.2. Internal forces on member; My —0.005 ee 0.829' == ee hi 0.393 —1.110 x v 1.066 14/25 IIIIIIIIII111111 Scia Project 15F2611 QCD FRAZIER Part Appendix 2:Type C Author NPB Date 8/12/2015 6.3. Displacement of nodes; Uy —0.007 —0.106 —0.103 —0.101-'— —0,20 - —0.090 : a,a•: :: _ —a091 —0-091 __ 0.09- • —0.051 : ........ — 5.: :: 0-0':0 • ::: - x Y 15/25 1111111111MM s,_ Project 15F2611 QCD FRAZIER Part Appendix 2:Type C Author NPB Date 8/12/2015 6.4. stability-segment Name Header stability-segment Linear calculation, Extreme : Global Selection : Named selection- interior-frame Combinations : COl Layer : B3 STABILITY CHECK GEOMETRY lb& Koonn COLUMN PROPERTIES L 2U box (C(Imp)4X4.5) H=96 in 'column=IO.CS.Chars.ly=3.03.10.6=7.29 in4 Column Deflection - From Model Pu_5.63kip mtop=IO.Section.Buckl ing Data.End Fo rces.M ly=120=1.07 kip-in mbot=IO.Section.Buckling Data.End Forces.M2y=-125=-1.11 kip-in Count=IO.Beam.Section.Count=28=28 Obot=abs(IO.Beam.Section[0].Deformations[0].uz)=abs(0)=0 in Atop=abs(IO.Beam.Section[28—2].Deformations[0].uz)=abs(1.25.10-3)=0.0491 in Ml model=abs(mtop)+abs(mbot)=abs(1.07kip•in)+abs(-1.11 kip•in)=2.18kip-in M2model=-Pe•(Atop—Abot)=--5.63 kip•(0.0491 in—0 in)=0.276kip-in M2model _ 0.276 kip-in =0.127 Smodel= M1 model 2.18 kip•in 16 25 4EME SCHEK / 'IN @ME7SCMEK J.i3 Project 15F2611 QCD FRAZIER Part Appendix 2:Type C Author NPB Date 8/12/2015 6.5. Check of steel Nonlinear calculation, Extreme : Cross-section Selection : Named selection -interior-frame Nonlinear combinations : NC1 Case Member css mat dx un.check [inch] [-] NC1 B36 DCS4-2U box A572 grade 50 0.000 0.07 NC1 640 CS4-C(Imp)4X4.5 A572 grade 50 0.000 0.08 NC1 B46 L1.5-L(ARCUS)11/2x11/2x1/8 A36 0.000 0.02 NC1 B51 L2-L(ARCUS)2x2x1/8 A36 31.241 0.02 17/25 NEfMETE'CNEK' Soa Project 15F2611 QCD FRAZIER Part Appendix 2:Type C Author NPB Date 8/12/2015 7. Seismic-XA 7.1. EQXA diagonal 18/25 1111111111111111 NEMET$H !K $cla Project 15F2611 QCD FRAZIER Part Appendix 2:Type C Author NPB Date 8/12/2015 7.2. EQXA horizontal Ck _ Lx 19/25 NEMETSCHEK Scia Project 15F2611 QCD RtiikZIER Part Appendix 2:Type C Author NPB Date 8/12/2015 7.3. EQ XA Linear calculation, Extreme : Cross-section Selection : Named selection -interior-frame Combinations : CO3 Case Member css mat dx un.check [inch] [-] CO3 1 B36 DCS4-2U box A572 .rade 50 0.000 0.10 CO3 1 B44 IMEEETME A572 .rade 50 0.000 0.18 CO3 1 B46 IBAZIMILMMEYCB.Lkaiiiii A36 0.000 0.25 CO3 1 B49 12- ARCUS 2x2x1 8 A36 31.241 0.09 7.4. EQ XA (H) Linear calculation, Extreme : Cross-section Selection : Named selection -interior-frame Combinations : CO6 Case Member css mat dx un.check [inch] [-] CO6/2 B38 DCS4-2U box A572 grade 50 0.000 0.13 CO6/2 B41 CS4-C(Imp)4X4.5 A572 grade 50 0.000 0.18 CO6/2 B96 L1.5-L(ARCUS)11/2x11/2x1/8 A36 0.000 0.19 CO6/2 B49 L2-L(ARCUS)2x2x1/8 A36 0.000 0.22 1 20/25 EMIT Ill lI I / III NEM£TSCHEK • Project 15F2611 QCD RIAZIER Part Appendix 2:Type C Author NPB Date 8/12/2015 7.5. XA rxns • N o iD x 1111111111111111 21/25 NEMETSCHEN Project 15F2611 QCD FRAZIER Part Appendix 2:Type C Author NPB Date 8/12/2015 7.6. Anchors Linear calculation Combination: C04 Extreme 1D: Global Selection: Named selection -interior-frame Filter: Layer =A3 ANCHOR CHECK IN ACCORDANCE WITH ACI 318 APPENDIX D 1.0 ANCHOR INFORMATION 1/2 Simpson SB2 hef=3.38 in EFFECTIVE EMBEDMENT db=0.5 in ANCHOR DIAMETER n=2 NUMBER OF ANCHORS PER BASEPLATE fb=4 ksi CONCRETE STRENGTH 2.0 LOAD DESIGN ANCHORS FOR UPLIFT TENSION SHEAR RESISTED BY ANCHORS IN OTHER POST Design Uplift, Nua =0 kip 3.0 CAPACITY 3.1 STEEL FAILURE (D.5.1) tN, v O O 0 3.1.1 ANCHOR GROUP CONSIDER (2) ANCHORS PER BASEPLATE n=2 3.1.2 GROUP STEEL STRENGTH AseN- fl•4b2 _ 3.14 4.5 in2 =0.196 in2 futa=125 ksi Nsa=n•Ase,N•futa=2.0.196 in2. 125 ksi=49.1 kip 22/25 IIIIIIIIIIIII I'INEMETECNEK ac a Project 15F2611 QCD FRAZIER Part Appendix 2:Type C Author NPB Date 8/12/2015 3.2 CONCRETE BREAKOUT (D.5.2) lt: rw c o ° ° `c a £ 0 0 °1 , 0 ,0 ( 0 0 3.2.1 BREAKOUT AREA ANca=9 hef2=9.3.38 in2=103 in2 ANc=(1.5•het+S+1.5•hef)•(1.5•hef+1.5•her) =(1.5.3.38 in+4 in+1.5.3.38 in)•(1.5.3.38 in+1.5.3.38 in)=143 in2 3.2.2 MODIFICATION FACTORS ECCENTRIC LOAD(D.5.2.4) BOTH ANCHORS ARE LOADED EQUALLY 4tec,N= 1 EDGE EFFECTS(D.5.2.5) Ca,mn=1.5•het=1.5•3.38 in=5.06 in Wed,N=0.7+0.3• Ca.mn =0.7+0.3 5.06in _1 1.5•het 1.5.3.38 in CRACKS AT SERVICE LEVEL FORCES (D.5.2.6) SLAB ON GRADE REMAINS UNCRACKED AT SERVICE LOAD LEVELS 4tc,N= 1.4 ANCHORS DESIGNED FOR UNCRACKED CONCRETE (D.5.2.7) ANCHORS DESIGNED FOR CRACKED CONCRETE lJcp,N= 1 3.2.3GROUP BREAKOUT STRENGTH Nb=kc' fb 'het15=6.79kip Ncb=( Ate_)•41ec,N'Wed,N•41c,N'41cp,N'Nb _( 1143 03 inz 1 • 1 .1.4. 1 •6.79 kip=13.25 kip in 23/25 I I I NE' ET3'6NEKI Sco Project 15F2611 QCD '�� Part Appendix 2:Type C Author NPB Date 8/12/2015 3.3 PULLOUT STRENGTH (0.5.3) E 0 0 0 0 O 0 0. H 0 3.3.1 ANCHOR GROUP CONSIDER (2) ANCHORS PER BASEPLATE n=2 3.3.2 MODIFICATION FACTORS CRACKS AT SERVICE LEVEL FORCES (D.5.3.6) SLAB ON GRADE REMAINS UNCRACKED AT SERVICE LOAD LEVELS yic,p 1.4 3.3.3 GROUP PULLOUT STRENGTH Nper=3.74 kip Np=Nper ( ° )°5=3.74kP. ( 4ksi 2.5 ksi J 105_4.73 kip Npa=n•tpc,P•Np=2 1.4 4.73 kip=13.2 kip 3.4 STRENGTH DESIGN REQUIREMENTS(D.3.3.4.4) 3.4.1 REDUCTION FACTOR CATEGORY 1 APPENDIX C LOAD COMBINATIONS DUCTILE BASEPLATE ATTACHMENT 4=0.8 3.4.2 DESIGN CAPACITY EARTHQUAKE DESIGN Nn=min(Nsa;Ncb;Npn)=min(49.1 kip;13.25 kip;13.2kip)=13.2 kip �N =(1)s•4 N„=0.75.0.8.13.2 kip =7.95 kip 3.4.3 INTERACTION Int= N. 0 kip =0 OK — 7.95 kip 24/25 MILV 11tlllttl watessc„erc Sca • • Project 15F2611 QCD 1 IER Part Appendix 2:Type C Author NPB Date 8/12/2015 8. Seismic-DA 8.1. DA seis; My o.00 ‘• \ 2.122 7 3.80C\ C.D • 4 ;\ Y 3 e 10 \`\ 3.980 I 8.2. Connector Check Demand to connector is less than capacity determined by test.Connectors OK. 8.3. Baseplate Check The applied moment is less than the unfactored post load times 1/2 the column depth. Base is stable without inducing bending in the plate or tension in the anchors. Baspelate is OK by inspection. 25/25 IIINEMET84HEK' Scia