Loading...
Plans RFC q F��F ci aR29Z Ro, T)'pF 41s Cp�NG(VqA p S/pN DESIGN CALCULATIONS FOR ABC JOB #W 15G0032 City of Tigard A• ►► e' Plans 9`� By ' Date OFFICE COPY DES DATE Sj 03 02 14 check NO. REVISIONS DES DATE Date. March 6,2015 ABC Job Number W15G0032A AMERICAN BUILDINGS Builder Name. Esi Construction Builder Mailing Address: A evucer ot COMPANY Builder City,State,&Zip. Tualatin,OR Modesto Service Center Builder Telephone Number 2260 Tenaya Drive Modesto,California 95354 Customer Name JIBC (209)236-0580 Job Site City.State.&Zip: Tigard,OR Building Descnptiom SSM1 11123-20x60(1/2:12) This is to certify that the metal building components manufactured by the metal building manufacturer for the referenced building have been designed in accordance with the information specified to the metal building manufacturer on the order documents and summarized by the loading information shown below. The metal buildings manufacturer's design and fabrication facilities have attained accreditation from the International Accreditation Services(IAS),an International Code Council subsidiary,evidence that the personnel and quality system maintained by the metal building manufacturer are in compliance with both the LAS AC472 criteria and the requirements of Chapter 17 of the International Building Code. In addition to the dead load,D,of the building components,the members are designed to the following design basis: BUILDING RISK CATEGORY II SEISMIC ANALYSIS PROCEDURE Equivalent Lateral Force Site Classification D COLLATERAL DEAD LOAD,C 3.0 PSF Short Period Spectral Response Acceleration,Ss 99.10% 1 Sec Period Spectral Response Acceleration,S1 44.80% Seismic Importance Factor,le 1.00 Seismic Design Category D Spectral Response Coefficient,SOS 0.729 ROOF LIVE LOAD,L, 20.0 PSF Spectral Response Coefficient,SD1 0.464 (When Applied In Combination With Dead and Collateral Loads Only Basic Transverse Seismic-Force Resisting System ORDINARY MOMENT FRAMES"" 20.0 PSF Roof Live Load(Reducible as Permitted by Code)Is Applied In Basic Longitudinal Seismic-Force Resisting System CONCENTRIC BRACED FRAMES°° All Other Loading Combinations.) Transverse Seismic Response Coefficient,Cs 0210 Uniformly applied snow load not less than 25.0 PSF Longitudinal Seismic Response Coefficient,Cs 0.220 GROUND SNOW LOAD,Pg 25.0 PSF Transverse Response Modification Coefficient,R 3.50 Flat-Roof Snow Load,Pf 20.0 PSF Longitudinal Response Modification Coefficient,R 3.25 Thermal Factor,CI 1.00 ""NOT SPECIFICALLY DETAILED FOR SEISMIC RESISTANCE' Snow Exposure Factor,Ce 0.90 ADDITIONAL/AUXILIARY DESIGN LOADS,A As Noted Below Snow Importance Factor,Is 1.00 60X63 MEZZ FL WITH 1.125 PLYWOOD DECK NBABC TO BE DESIGN AS DIAPHRAGM WIND VELOCITY,Vim(3-second gust) 130.0 MPH WIND VELOCITY,Vend(3-second gust) 100.7 MPH Wind Exposure Category B Enclosure Classification Enclosed Internal Pressure Coefficient +/-0.18 Design Suction I Pressure for Wall Components -37.10 PSF and Cladding Not Designed or Provided By ABC. +0.00 PSF MF77ANINE(FLOOR)DEAD LOAD,D 15.0 PSF"' MEZZANINE(FLOOR)COLLATERAL LOAD,C 0.0 PSF*" MF77ANINE(FLOOR)LIVE LOAD,L 55.0 PSF"' MEZZANINE PARTITION LOAD 20PSF Unless otherwise specifically required by the contract documents,no investigation of floor vibration serviceability has been performed by the metal building manufacturer. You,the End User,and Engineer of Record for the Project should carefully review the design cntena described in this letter to confirm that they satisfy your requirements for the building. Any changes or deviations from the requirements of your purchase order specifications or building requirements should be reported immediately by written notice to the metal building manufacturers assigned Customer Service Representative. The metal building manufacturer will rely upon your acceptance or lack of exception to this Certification as a basis for proceeding with design and fabrication of the metal building system components as provided in this Certification. Note: This project is designed as an Enclosed Building. Accessories(doors,windows,etc.)by others must be designed as"components and cladding"in accordance with the specific wind provisions of the referenced building code. Please note that unless otherwise specified on your Purchase Order,the metal building manufacturer's Serviceability Standards(2006 MBMA Manual criteria)will be used for design and fabrication of your order. The above design loads and criteria are all applied in accordance with the 2014 Oregon Structural Specialty Code. The design is in general accordance with AISC 360-10 and the 2007 NASPEC. This certification is limited to the structural design of the framing and covering parts manufactured by the metal building manufacturer and as specified in the contract Accessory items such as doors,windows,louvers,translucent panels,and ventilators are not included.Also excluded are other parts of the project not provided by the metal building manufacturer such as foundations,masonry walls,mechanical equipment,structural connections by others,and the erection and inspection of the building.Failure of the excluded items to satisfy their required loads will impair the building design and invalidate this certification. The metal building manufacturer is American Buildings Company(ABC). The building should be erected in accordance to the ABC General Erection Guide and ABC's erection drawings for the referenced job. gr Pra The undersigned engineer is employed by the metal building manufacturer and does not serve as or represent the Engineer of Re.t•iw Sincerely, �<C�` GINE G` , ,J.^ �•=5PE vGC Y o41 2higuo Gong P E SJ O &05 PM IBC 2012 Design Letter of Certification V3.3 EXPIRES:06-30-, C ^, DESIGN CALCULATIONS Pamphlet Design Calculations Pamphlet TABLE OF CONTENTS SECTION 1, General Introduction 1.1 Figure 1 — Clear Span Rigid Frame Building 1.2 Selected References 1.3 SECTION 2, Rigid Frame Rigid Frame Explanation and Method of Analysis 2.1-2.3 Lateral Deflection of Frames 2.4 Rigid Frame Analysis SECTION 3, Endwalls and Bracing Endwall and Bracing Explanation and Method of Analysis 3.1 Figure 4 — Column and Beam Endwall Bracing 3.2 Figure 5— Column and Beam Endwall Tension Bracing 3.3 Nomenclature 3.4 Endwall Frame Analysis SECTION 4, Purlins and Girls Section Properties 4.1 Puffin and Girt Analysis SECTION 5, Panels Panel Profiles and Engineering Properties (Longspan III) 5.1 Panel Profiles and Engineering Properties (Architectural III) 5.2 Panel Profiles and Engineering Properties (Architectural "V" Rib) 5.3 Panel Profiles and Engineering Properties (Standing Seam II) 5.4 Panel Profiles and Engineering Properties (Standing Seam 360) 5.5 Panel Profiles and Engineering Properties (Shadow) 5.6 Panel Profiles and Engineering Properties (16" Loc-Seam) 5.7 Panel Profiles and Engineering Properties (12" Loc-Seam) 5.8 Panel Profiles and Engineering Properties (Multi-Rib) 5.9 Panel Profiles and Engineering Properties (Seam Loc) 5.10 SUBJECT TO CHANGE WITHOUT NOTICE REVISED Ma 31,2011 06/BC 2/2792 SECTION 1 GENERAL 4,1tA_ 31-6, I'?A 4- . 0 5 14- 11-4A 4- STEEL LINE • 60'-0" •STEEL UNE • 20'-0" 20'-0" 20'--0" • W W z Z • r LAI 4.1 ("' ! d - $I . G4 27' 7%s.. • • 0 O • • I I I I BSW E.H. = 27'-7 1/2" = I N _ c N SOP 17 kk I7 O N W Q O -II ( } y N H •) �a 0 i ■ C0 ti N N NN. 1 to [ �°v� I t a Y1,L47� N N rt r'' CO O i :.:±o �/ m o r .... CD L.._ ,0 . 1 1,,, //rr$, . r r i f ` 1 r. T N csi tie II/00' Or O -III-- 0 • • N 1 / �` N • 0 O �• • -%z 4 `{ 2 3'-L it, Z y z M. IN SL-i P� {,. iN;GI 3 ' , �tvofl ye GisL. 25 1 i 0 I t. 1Lr4 t., w io 0 11°11'374 - 20-0" 20'-0" 20-0" M L D Ekp 15 rs F • • ss a 141 ( rf R. 55 STEEL UNE 60'-0" STEEL UNE • • • lzc ' SI • `�'t Pai,,, 20 L"^' 0 0 0 0 ( 5 4 94? 1 I. . _ 1 . 1)N1 O LAJ 141,11-7:1 G 4..l X0.3 4s p$F osp 62.6 12$F 601 . r0 1 0 1 C Q\I 1.1 P u 1„L. .. I x x 1.65 6 , 1 (2 3 7.' 6 71 ) 35, 02-4'7) 3 5-35 /3 y$ _ g, s� c o r.T 12L4 1 K ►7.6 s,q.. , q• 0 , - '. 341.C2g 5/275 ..-- �_.-�.- - - - - ----------"-J--.- -I --- 1` 0 .� 2� '�,,,�i,,� Ca r �1.,H� . ►.. _ S ( to' sly, -� J „ �j 6I' . 134 S 5x y4 -r , �� ��yk�.'( 2/Z 1 . • 6 xi/z 8— '4' ASys . • I 11JSsi tii d t cq-"ot,T °E1-A-11- @ F_ 4 k, t-I q I I I I ° P� l7' 1 I i . ___ __ .---• } A ® ids Ft02p IZ'-o. C P . i 6/2796 .3 .., ___ ......_ ........... o _.... ____ , __I . . _ _ _ . ■ • , ____ . . , i . : . Lif"Vt . . I ' I i _i. 0 c a a.......)e,--v t._49 op Li ( 00 d rt.Tueo. , • 241 37, gip.?I L.__________________—_T_________._......... .. _j_.___ r 1 _____. .,_______ ____-- -I - ----L,&10. 1 -- ,, 1 +„, ,ibef4r- Iiii !15 '1° 17'i 1 • - ______ ._ . ci„,-, kl).v I °k•••• 4' ill. a_674r. 1 ( ! .. ' --y 41 ti-r1 • 8 = i Lc At (,)6,1(-. 921-1 0-12.4( tit ) ' 1 Ril .A,41 .z,..04.. 4. Al?P CA- A -\ ■0 X 1 4 1 . 1 . , -r , , • p, I2 r t V/b5 '0( 12,, (q/477-, 4 DLTpIL CR+Jorr CoN�� z•zjiia.+n Fir Oe lJ izew I •1501 t Can y2 ( Gfan, ' - PAsj �) / VT 40'7 y • iii -- � 51.4.43 51.4.43 pT 4xY P)f . X TZ ~ kJ, 6R1,k c j o ►'m a re-11 CR•*i a p 6-)D l . ctl.1. 5x %q. wEtr, i PF R6-14 I1 wbi3 5 8/2798 II i N u C 0 R Project No. : . BUILDINGS GROUP Description: A DIVISION OPNOCOR CORPORATION Engineer: End-Plate Moment Connections (AISC 13th Edition) Date: 2/25/2015 1 per ALSCMoment End-Plate Connections(Design Guide 16) &AISC Steel Construction Manual(13th Edition) Version:2.3(Date:12/30/11)By DDT i General Information: Design Method,(ASD/LRFD): ::-_ASD`_: ' Allowable Stress Ratio,ASR I....-.-_I fl© ;:=:-j Applied Loads: Required Axial Strength,P,: ` 1.6Qfl kips. �' Required Shear Strength, V,: �=._44 000 kips. Required Moment Strength,M,: k= 43.1DU===_ ft-kips. t4a Bolt Information: �°" -; ". Bolt Material: A3- 25 i 1 Bolt Diameter,d : ''e~_ _ Bolt Dimensions: Bolt Gage,g: 3 m. Moment Bolt Dimension,P f,: 1.25 in. 0,(+Po-G se) btkwl Bolt Dimension,P b: -- in. Bolt Spacing,5: 2.25 in. Four-Bolt Unstiffened(Flush) Section Geometry: Left Beam Slope:==-0:©(}:l2_= Right Section Designation: BD Sectum 3U Sec1io siki Web Depth,d%:(WF—Total Depth,d) 12.0 'in. •�_ _1129:. . .in- FFENER Web Thickness,t w: i1 3 in. / —r, in Flange Width,b f: .6.0 in a `°' Sit in. Outside Flange Thickness,t of: ( $ in. �W d gL25 in. Inside Flange Thickness,t,f: in. P I T- - ?• 1.:',1:1.0:25 .::::: _ - in. Column Stiffener Information: Stiffener Designation: F25.38 ()Beam-To-Col. 0 Beam-To-Beam End-Plate Information: Plate Width,by: 6.0 in. Plate Width,by: --===6)3 ::::-:-._ in. Plate Thickness,t p: 0.5 in. Plate Thickness,t p: 5 = in- Plate Yield Strength,FpY: 55#1 lcsi Plate Yield Strength,F py: 1 55 Q = kcsi. Recommended Plate Thickness,t p: 0.3919 in. Recommended Plate Thickness,ti,: 0.396 in. Weld Information: . Weld Information: Plate Flange Weld: FWD3 Plate Flange Weld: FWD3 Plate Web Weld: WP13 Plate Web Weld: WP13 End-Plate Stiffener Information: End-Plate Stiffener Information: Stiffener Designation: None Stiffener Designation: None Stiffener Weld: None Stiffener Weld: None Stiffener Length -- in. Stiffener Length: — in. ',111 ';;(,i. ....',.' '. ,';14 11;, _ o ypi .Tr_ i I Ati� i, 1 • 1 i Jill{Iii.i:ii imp - •■1 i,t r �b Ili I. f I l ,,iI 111.,11"lII l hti;iribi m it 'ant - �ll 111H 1:111 k . . 3,A)i! - 1._ 1 . !,I _ 1 (i]1 TI1��1 .It iii I1�I�1 ll11i�1 '4iiw {11 771] . Ira itt 1 1 1 { I fit{ i I l l s r f = iii 1111 .ty ,( t , •i J t il, i� li N IL..I I=1=11 F=I Project No. : BUILDINGS GROUP Description: ADIVISION OF NUCOR CORPORATION Engineer: End-Plate Moment Connections (RISC 13th Edition) Date: 2/25/2015 per AISC Moment End-Plate Connections(Design Guide 16)&AISC Steel Construction Manual(13th Edition) Version:2.3(Date:12/30/11)By DDT Detailing Information General Dimensions: Standard Bolt Dimensions: by I E Number of Bolts,n: 8 Bolt Diameter,db: 3/"e -N Bolt Gage,g: 3 _in 0 4 Bolt Dimension,P fi: 1.25 in. --N I Bolt Dimension,P1k: — in. \ • • �- Bolt Dimension,S: 2.25 in. _ Minimum Edge Distance,d e: -- in. x cm Maximum Flange Thickness,t f,,,¢,: 0.5 in. x Distance from nth bolt row to center of end-plate,x„: WEB j a Distance from outside row,x0: in. WELD Distance from 1st interior row,x 1: 8.75 in. t P • • ' 0 FLANGE Distance from 2nd interior row,x2: 6.5 in. I WELD Distance from ,'interior row,x 3: in. • 0 • IZA, I TIFFENER `S. if Jf3--4 PIM FOUR—BOLT FLUSH UNSTIFFENED t Left and Right Connection Plate Dimensions: Left End-Plate Width,b p: 6 in. Right End-Plate Width,b p: 6 in. Left End-Plate Thickness,t p: 0.5 in. Right End-Plate Thickness,t p: 0.5 in. Column Stiffener Flange Weld: FWD3 Right End-Plate Flange Weld: FWD3 Column Stiffener Web Weld: WP13 Right End-Plate Web Weld: WP13 End-Plate Length,I p: 21.0 in_ End-Plate Length,l p: 21.0 in. Column Stiffener Designation: F25.38 End-Plate Stiffener Information: Left End-Plate Stiffener: None Right End-Plate Stiffener: None Left End-Plate Stiffener Weld: None Right End-Plate Stiffener Weld: None Left End-Plate Stiffener Length: -- in. Right End-Plate Stiffener Length: — in. I 10/279107 • ______ __ _I.! tA_, : I!, 1 . - ,. ---T-71-4-__L—J v4(t x 2.6„. p . .—.1 ..- ..---' .,....1,_ s........... ,.... -. . ....... ... g.70‘ ‘... . -., .. . •••-, ..- i .■ .....' "........ 1 I .". ) .... .... .". "....." 1 ./' "•-.. .......". '.... . ,..- '`..R 4.1 . . .....,.1 .- . , . s'... ..- .. . . . ....,.. .N....V. ,1. 'A 1 Inif . I . .. . ,i ,i,r,......_____„,,,.., _,.fr , ,-I ..,...._ , . -.. . 411 - 44 1. 44 , . . • ..‘" 11/279Y1 i Minimum Seismic And Wind Forces Calculation %. ( IBC2O12) T T ��YYV American Buildings Company Job Number: mv2 P-01 - Engineer: SJ Building Geometry Information r Building Width= 111.00 ft. Roof Weight D+C = 8.30 psf Building Length= 60.00 ft. Roo 0 %Snow for Seismic= 0.00 psf FSW Eave Height= 23.00 ft. Weight of Sidewall= 2.60 psf Ridge From FSW= 110.00 ft. Weight of Endwall= 2.60 psf Roof Pitch= 0.5 /12 Longitudinal Partition WT. = 0.00 psf Canopy Width @ FSW= 0.00 ft. Quantity of Longitudinal Part. = 0 Canopy Width @ RSW= 0.00 ft. Transverse Partition WT. = 0.00 psf Max. Interior Bay Trib. = 20.00 ft_ Quantity of Transverse Part.= 0 Building End Bay Trib. = 11.00 ft Longitudinal Special Weight= 0.00 kips Transverse Special Weight= 0.00 kips Regular Structure: :Yes v I Stories Above Grade: 1 .I Flexible Diaphragm: yes v _. Seismic Informatiorr Risk Category = III..__._7 SS(%)= 99,10% S,(%)= 44.20% Site Class= D ■• Transverse Direction(Interior): R= 3.50 00= 3.00 T.= 0.34 Transverse Direction(End): R= 3.50 = 3.00 T.= 0.34 Longitudinal Direction: R= 3.25 C,= 3.00 T.= 0.21 Seismic Factor IE= 1.00 Fa= 1.10 F,= 1.56 Skis= 1.09 SM, = 0.69 Seismic Design Category= D SDS= 0.73 SDI = 0.46 Wind Information- qh=0.00256KhKZ,KaV2= 25.76 psf Longitudinal GC5 -GCPi= 0.69/1.04 Transverse GCPf-GCP1= 0.96/1.44 IWind/Seismic Forces in Transverse Direction Interior Bay Tributary Width =20 ft End Bay Tributary Width = 11 ft . 1. Wind Load 1. Wind Load Total Load =P,�B*H/2= 6.8 Kips Total Load =PI;B*H/2= 5.6 Kips 2.Seismic Load 2.Seismic Load Redundancy Factor p = 1.30 Redundancy Factor P = 1.30 W= 19.74 Kips W= 10.86 Kips Cs= 0.21 V=QE=4.11 Kips Cs= 0.21 V=QE=2.26 Kips Er=P E= 5.3 Kips E,=0.2S❑s1D= 2.7 Kips Eh=p'QE= 2.9 Kips E.,=0.2SID,'D= 1.5 Kips Er o.CIE= 12.3 Kips E9,°D,o•QE= 6.8 Kips IWind/Seismic Forces in Longitudinal Direction 1. Wind Load 4120 L Sr Rev..d c,ioi)r. Total Load =P54B•H/2= 27.7 Kips 2.Seismic Load(Accidental Torsion Included if not flexible diaphragm) Z L K + 3, c).S Redundancy Factor P= 1.30 I k W=62.6 Kips t S,S = 6B. • Cs= Q V=QE= 13 Kips i 7 Eh=P*QE= 18. KIps 01.5 2,=0.2Sp D= 8.1 Kips Em=Qo*QE= 42. ps 4.to • Version 6.0 Quality And Service Author:WW Every Time...AII The Time 9:0i Q�,( 16 i _ Minimum Seismic And Wind Forces Calculation .- � f ( lec2o12) trs` �►°' -4 4 • American Buildings Company Job Number. 10' canopy l,WW Engineer: SJ o I - Building Geometry Information Building Width= 10.00 ft. Roof Weight D+C = 5.30 psf Building Length= 62.80 ft. Roo 0 %Snow for Seismic= 0.00 psf FSW Eave Height= 13.00 ft. Weight of Sidewall= 0.00 psf Ridge From FSW= 10.00 ft. Weight of Endwall = 0.00 _ psf Roof Pitch= 0.5 /12 Longitudinal Partition WT. = 0.00 psf Canopy Width @ FSW= 0.00 ft. Quantity of Longitudinal Part. = 0 Canopy Width @ RSW= 0.00 ft. Transverse Partition WT. = 0.00 psf Max. Interior Bay Trib. = 20.92 ft. Quantity of Transverse Part. = 0 Building End Bay Trib.= 10.60 ft Longitudinal Special Weight= 0.00 kips Transverse Special Weight= 0.00 kips Regular Structure: Yes v Stories Above Grade: 1 . Flexible Diaphragm: yes - Seismic Information Risk Category = II ! Ss(%)= 99.10% S1(%)= 44.20% Site Class= D . Transverse Direction(lnterior): R= 3.50 f2o= 3.00 Ta= 0.22 Transverse Direction(End): R= 3.50 f„= 3.00 7,= 0.22 Longitudinal Direction: R= 3.25 = 3.00 Ta= 0.14 Seismic Factor le= 1.00 Fa= 1.10 F5= 1.56 SM5= 1.09 Sim = 0.69 Seismic Design Category= D SDS= 0.73 S01 = 0.46 Wind Information qh=0.00256KhKrKdV2= 25.76 psf Longitudinal GCpf-GCpi= 0.69/1.04 Transverse GC,r-GCS,= 0.96/1.44 Wind/Seismic Forces in Transverse Direction Interior Bay Tributary Width = 20.92 ft End Bay Tributary Width = 10.6 ft 1. Wind Load '1. Wind Load Total Load =Pw`B`H/2=3.5 kips Total Load =Psi'B'H/2= 2.6 Kips 2.Seismic Load 2.Seismic Load Redundancy Factor p = 1.30 Redundancy Factor P = 1.30 W= 1.11 Kips W= 0.56 Kips Cs= 0.21 V=QE=0.23 Kips C5= 0.21 V=QE= 0.12iIps E,,=ODE= 0.3 Kips E„=0.2So5 D= 0.2 Kips Er=p'Q_= 0.2 Kips E,=0.2S;-,'D= PA Kips Ern=QO*Qe= 0.7 Kips E,, lo*QE= 9.2Kips Wind/Seismic Forces in Longitudinal Direction 1. Wind Load Tota: Load =Pw B`H/2= 1.9 Kips 2.Seismic Load(Accidental Torsion included if not lexble diaphragm) Redundancy Factor p= 1.30 W=3.3 Kips Cs= 0.22 V=QE=0.7Kips Eh=P'QE= 1.0 Kips E„g:1.2Sps'D= 0.5 Kips Er.=t20`QE= 2.2 Kips Version 6.0 Quality And Service ��p Author:WW Every Time...All The Time 9:1'l�yl?12.51 215 1 I'�/�I 0 -�� Minimum Seismic And Wind Forces Calculation ......`:' ••:4'.. ( IBC2012) American Buildings Company Job Number: 8'canopy (zc vJ Engineer: SJ - Building Geometry Information Building Width= 8.00 ft. Roof Weight D+C = 6.50 psf Building Length= 42.00 ft_ Roo 0 %Snow for Seismic= 0.00 psf FSW Eave Height= 13.00 ft. Weight of Sidewall= 0.00 psf Ridge From FSW= 8.00 ft. Weight of Endwall= 0.00 _ psf Roof Pitch= 0.5 /12 Longitudinal Partition WT.= 0.00 psf Canopy Width @ FSW= 0.00 ft. Quantity of Longitudinal Part. = 0 Canopy Width @ RSW= 0.00 ft_ Transverse Partition WT.= 0.00 psf Max. Interior Bay Trib. = 20.92 ft. Quantity of Transverse Part.= 0 Building End Bay Trib. = 10.60 ft Longitudinal Special Weight= 0.00 kips Transverse Special Weight= 0.00 kips Regular Structure: yes Stories Above Grade: 1 .1 flexible Diaphragm: Yes vj Seismic Informatiorr Risk Category = _II v SS(%)= 99.10% S1(%)= 44.20% Site Class= D v Transverse Direction(Interior): R= 3.50 O.= 3.00 T.= 0.22 Transverse Direction(End)' R= 3.50 S),= 3.00 T.= 0.22 Longitudinal Direction: R= 3.25 CZ,= 3.00 T.= 0.14 Seismic Factor IE= 1.00 Fa= 1.10 Fv= 1.56 Sras= 1.09 SM1 = 0.69 Seismic Design Category= D Sos= 0.73 So,= 0.46 Wind Information qn=0.00256KhKaKdV2= 25.76 psf Longitudinal GC,„,-GCp,= 0.69/1.04 Transverse GCpt-GC0= 0.96/1.44 IWind/Seismic Forces in Transverse Direction Interior Bay Tributary Width =20.92 ft End Bay Tributary Width = 10.6 ft 1. Wind Load 1. Wind Load Total Load =P,.'8*H/2= 3,4 Kips Total Load =Pr,`B*H/2=2.6 Kips 2.Seismic Load 2_Seismic Load Redundancy Factor p = 1.30 Redundancy Factor P = 1.30 W= 1.09 Kips W=0.55 K Ips Cs= 0.21 V=QE=0.23 Kips Cs= 0.21 V=QE=0.11 Kips Et,=p'QE= 0.3 Kips E,,=0.2SD,"D= 0.2 Klps En=pnE= 0.1 Kips Ev=0.2S,D= D.1 Kips E,.,=!2o'QF= 0.7 Kips Em_C2o"Cle= 0.3 Kips Wind/Seismic Forces in Longitudinal Direction 1. Wind Load Total Load =P= B'H/2= 1.6 Kips 2.Seismic Load(Accidental Torsion Included if not Eexlble diaphragm) Redundancy Factor p •1.30 W=2.2 lops Cs= 0._22 V=QE= 0.5 Kips Eh=p'QE= 0.6 Klps E,=02SD,'D= 0.3 Kips Em=00"QE= 1.5 Kips Version 6.0 Quality And Service Author:WW Every Time...All The Time 9:064;∎,2L25! 15 ( D _. _ - Minimum Seismic And Wind Forces Calculation "'�.- ...�s�s� J ( IBC2012) LyyV• American Buildings Company Job Number: mezz Engineer: SJ - Building Geometry Information Building Width= 62.75 ft. Roof Weight D+C = 40.00 psf Building Length= 60.00 ft. Roo 0 %Snow for Seismic = 0.00 psf FSW Eave Height= 10.00 ft. Weight of Sidewall= 0.00 psf Ridge From FSW= 6.2.75 ft_ Weight of Endwall = 0.00 psf Roof Pitch= 0 /12 Longitudinal Partition WT. = 0.00 psf Canopy Width @ FSW= 0.00 ft. Quantity of Longitudinal Part. = 0 Canopy Width @ RSW= 0.00 ft. Transverse Partition WT. = 0.00 psf Max. Interior Bay Trib. = 20.00 ft_ Quantity of Transverse Part. = 0 Building End Bay Trib. = 11.00 ft Longitudinal Special Weight= 0.00 kips Transverse Special Weight= 0.00 kips Regular Structure: yes .I Stories Above Grade: 1 Flexible Diaphragm: Yes v - Seismic Information Risk Category = IT_ � S (%) = 99.10% S1(%)= 44.20% Site Class= D v Transverse Direction(Interior): R= 3.50 S?,= 3.00 Ta= 0.18 Transverse Direction(End): R= 3.50 = 3.00 Ta= 0.18 Longitudinal Direction: R= 3.25 0,= 3.00 Ta= 0.11 Seismic Factor le= 1.00 Fa= 1.10 F,,= 1.56 SMS= 1.09 SM, = 0.69 Seismic Design Category= D SDS= 0.73 SDI = 0.46 Wind Informaton q„=0.00256KhKZtKdV2= 25.76 psf Longitudinal GCaf-GCp= 0.69/1.04 Transverse GCra-GC,1= 0.96/1.44 Wind/Seismic Forces in Transverse Direction Interior Bay Tributary Width =20 ft End Bay Tributary Width = 11 ft 1. Wind Load 1. Wind Load Total Load =Pw B'H/2= 2.5 Kips Total Load =P„'B'ri/2= 2.0 Kips 2.Seismic Load 2.Seismic Load Redundancy Factor p = 1.30 Redundancy Factor P = 1.30 W= 50.20 Kips W= 27.61 Kips Cs= 0.21 V=QE= 10.46 Kips Cs= 0.21 V=Qt= 5.75 Kips En=P QE= 13.6 Kips E.=0.2So,*D= 7.3 Kips Eh=p'Q:= 7.5 Kips E„=0.2Sr„•D= 4.0 Kips ' E,=1-20'CE= 31.4 Kips f Em=WOE= 17.3 Kips Wind/Seismic Forces in Longitudinal Direction I 1. Wind Load Total Load =P„'B'H/2= 6.3 Kips 2.Seismic Load(Accidental Torsion Included if not flexible diaphragm) Redundancy Factor P= 1.30 W= 150.6 Kips Cs= 022 V=QE= 33.8 Kips Eh=P'QE= 43.9 Kips E,=0.2S0,'D= 22.0 Kips Em=0'QE= 101.4 Klps Version 6.0 Quality And Service Author:WW Every Time...All The Time 11:D .A�42/66,/D15 l��L` III b E C I Z∎r✓J -1-11-11-".1•S USc"t. Q = Cs = 0, zl ww T t El.o,u M2.-pi 0411,, 0 ppF n� i Ft 1- 1 v'jI oo1. 11,82 w.h � = 17"41 14.. V L9 , g 2.4 + 5.75 = 8,111'L . U c5.7,1 s . i�. g2 A 2s.i 44 . v12°°.F g, z{ t, gz x 25,3 + 2-1•61h �1 3qg (5�� M tla z � Z 3�`(5 L0 prpp0 t„ 2,6I` ) ry Z4.. (,k) f a 5.5k- ( 12,1it 16/279;16 • 1 RF ft 3 z '^/IzF,r,F = 21. s K v -. 4 4 $ 10,4 14-.4 4 I` Eh. V = 14,/4 ( ?��.s n 29, 3 . \__ � (� 5k) 2(.s'c + J /M1?Z = 7'71' (10k ) L0AD A`P?Lt io Ft 3 417_ ( 1},I ) ( 11,1) IL k (23, I ) 17/27914, Ls = 1"! t--ti t 5 o. 6 6 8 4 - 64 -- I s.3 + 33g = 41.1r i IA/ 2 ooF , z � 9 pi(r 131,-McE G-Lou• Mt oMil_ Ft C. i2noF v I .4i. 1 C Z4 9 ;M s0, V cLe 49. 1 C , 3 _ 16e. 12ooF ' c 611 - 7.L7k keno , btsi F� F . vkoof = ( 1,41 + t63) �� i4Zyz z7,6 _- - Iz.� (� ,.r;K) ¢ 7.6 - 75,3x tl.5 V MZ?� 11. 8 (15,4 le) ti„,6 i ( g.))) —r----- 18/27918 (=WI(3 r•;.. ) 15 (141- r•J G Q C _ /n"r1 b.9 K 2. 33.gi� L 1;14^ •7 x 3 3, g ( �, ,2 7. 7 USG 1k8"4:. flop. Ataow = Z4,23k x I.7 _ q 2 . 67 k !! k z77 ° - 51441-1-.4 C� Ft A C--.14 = 6"" •7 ( I .34 ( Z4—=-(-1-" ) = 122,1) •C rst' ,,.14, Sr'1 (14 - 13,6)5) 1 • .1 d� 19/27919 (o • rot, PLY,,000 - (zi t4"pi.„,/ -2JI' sho 1 ‘o, as 1'nti R r i = -pu II j o t ,�■ V FX joc \x �'/t _. --1 w � 4w t_ Mc'et - -i1 % 1� A,2-y, l i f %\9 131 �, 134 1 C oq MLz3 12 • )jL ' ZC- - ..1.— SC- I �f . 1.LG I I, w ` k 4-•`M4� I VI, Q47 �0 t o 0 B 3. 61 i.�o \1446 'I C� L ,a( b e 4bq, Ie.,. � Iq: (0- / -)51 W 4o x 1 1 w las 2 7. , 9?`&' J42._' IO x 1 I c 8x 11.5 -1 a V 5\(). clthil.-. F3.71 51 '417151 0 q _.. .-. %... . _. . _ : ,._ . , . . . ._ _ )_,.. , ii3) . _ 4.4. 3 e ci V [] on up i,At. / L. Tr, 2), 2a-Il I4 oMlti. Apt,itn„•.-IATe.S4)0 ‘C, . � 0 41 , 0 ►vo' C n 1 0w( to i c-:. vii'-tftb- • ' =‘Ya . 20/27920 ■ \,.._vi pit,. i 7 � 1 PE De-rat. 0 Fo &Ai 3. . , TT_ ! -- — - 2 . 4._ AGE J)F WI NJQO ig t arc' lipP 5TIFF*Icr 4 X % ryo LL 1L . Id Lo�tl,os — --- - - — -- - I . _ I ! .3_1<<4' JF31y ( !v• co,,0�u Rj 3H5 141-0 f I hi' si}&qr TAS, h. © t CD i — wlzx I¢ W — -- ME-` �'_ w IZ 2-� 11_' 1 / 3A`'- I Ao� 1 �Jl^` ` - x!2• i I �-- ,. - _.-_ i I LI r._l % It t 4 • cH? �. !L �� � J , i -1 .s-14,2,A., rf l►-JtRJ�f ILU 5e6C-144,Mt. b6.-i r-rt, 23' t�t� - Il - 3N 1g1%t �' r 21/279 1 N Csw Nit I��2 — (p t ' f'✓` !or w Dv.) lg - - -- J. -- — —L _ — -- — ' 1— r — f1/A, v'JIoxzz , •7s , it 6i-fy .= 8 S - I le_____ - C31 6% Is x :ill To F1 Mc e-2 / 13I �'bV 131 LocA lom 13? k f� lg K ��8$ Mc2Z. L .g„ $3 ) 4 Iq- K T6 J \ Sx %2 . l5 t \"41(.9 La no. STI F1.1 2 %. A 4 z 5 E-A. t-,--,-10 2'�Lk r8 I •p 13/5 1 0 j__ 0p6 4A K•c88 • I ; � 2 I i 9 w 3 -ur o ,t) I m } 1 `� li N I3z 13l —.I 1 i 78 it w/ - (n4)A 325. J Ni o ; CONNy.�IOM (.4• (.• o -0 use 3 - 44 ,43=y s 6 TA-.8. i '41$4-p 2212792 4,1,4- 11 — - - --�—.--- --- A\--1 21--t , Pbl. C.°L 3 - F -(( 15 t Zo x Z5/). � 0 r,-,,D IN/L �t'._ Pot _ LA. �• 7 - 3 = 4o PsF ( 14.5 1- 21. 3 )A. el( zo 17 Lk, ■ z �- 111 L . fhb 4 o psi( (a 5) ( 6-5 4- 1415)/v = 4-,c � P. 6,f it. S I C3 L oL (XIS f 6.0 W t74 e>r. 't E- 1 - 'I,5' 144.6c '("1)S x '4' X Zo 3 .g 23/27923 10 • IS /-5F s c P�,1 = zo Ps F- M 2-t-t, P,H s t)54:4,), C 51,4-0 `�� '613 . coma rsf ( zo)=1:1w,& 2Q-1( 6 x ib 15 x •}18i? 1514, �xYz �gn •11.0 �3. 15'.-41 6 ) % 14 x !� . r34- l'S (10,4) ZoI-u Sk 14X !ro 35 boot.6150,51)= 5, x A to 2.01-11 ('x qq �$ ??-7 . 95(+b/.y)=•41 I 70).1( 5x 4 t4-x zo - o zo• 13RA-i 1r1-4,4.fel, Pd.-1. ,-q1 lo NIA* 1>241 L,.PA•D F.L. 2, 0- j ( 101.4) 2, - 7 3,¢x. Y 41 D / M A4 CO IP, c B Pit& I27,t...j = ( 1 o i. 3 5.4 ` LG I, o p t • 515 EL.,,, 1 ;75 (+�Mz ) . (,z i,.s��►ti�._I b■ 1.1 D + •-7 E L,,,, c4c, 1 6 +` v 1.9 . P+' 6-4 = 2 7 P,- F, - 3 s.s4.. ?I3 3, Us& wt2- x (o a 134- ►N 12 k 14- 24/27924 'CLIPCONN ALL-BOLT-13.xIs'Program Created By:Joel Berg,P.E. Based on a Program By: Alex Tomanovich,P.E. Version 1.3 AISC BEAM END CONNECTION (ASD) Using Clip Angles Bolted to Column Flange and Bolted to Beam Web Subjected to Shear and/or Axial Load Project Name: - :• Client: Project No.: •' Prep.By: I Date: Input Data: Beam and Support Data: 1 tf=0.38 Beam Size= •W12X14 d=12.2 I Column Size= W8X31 NMI Beam Yield Stress, Fyb= __ 50 : ksi Column Yield Stress,Fyc= • :: 50 ksi Face of Col.Flange g=7 ta=0.3125 Connection Loadings: _ ED=2 11.11 I D2=3 Beam End Reaction(Shear), R= :..1.20 kips — .. =....ms. D1=3 Beam Axial Force,P= 29.60 kips Nr=3 /ill 1 S 1 1 1 _$ 1 P=5 k Connection Data and Parameters: 24 k Angle Leg .. �� g eg(OSL)at Column, Lc= 3 in. Lc=3 Angle Leg at Beam Web, Lb= 5 _in. s=0.5 Angle Leg Thickness,to=___•:.' __ :5/16 ; in. 4--4 Lb=5 Yield Stress of Angles,Fya= 50 ksi Diameter of Bolts,db= 3/4:' in. General Nomenclature ASTM Bolt Desig.(A325 or A490)= A 32.5: Bolt Type(N,X,or SC)= _ N r tw=0.285 c=0 Faying Surface Class= N.A.=;.° : 6=0.455 I dc1-0 Bolt Hole Type in Clip Angles= Standard - Number of Bolts in Vert. Row, Nr= 3 i' Bolt Gage in Angle OSL's,g= `. 7.000` in. d=14 I I I Dist.from Top/Beam to Bolts, D1 = :3:0000 in. Bolt Vertical Spacing in Angles,S= 30000 i in. Edge Distance for Angles,ED= 7'-2--.00C10-7' in. 1. bf--6.75 j H dc2=0 Dist.from Support to Bolts,D2= 3.0000 .. in. c=0 Beam Setback Distance,s= TO-.50007 in. Beam and Cope Nomenclature Length of Flange Cope(s),c= 0.0000' in. Depth of Top Flange Cope,dc1 = 0:0000. in. Max. Shear Capacity of Connection: Depth of Bottom Flange Cope,dc2= 0.0000 in. R(max)= 50 02 kips Col.Web Doubler Plate Thk.,td= 0.0000':. in. R= 24.00 kips Doubler Plate Yield Stress,Fyd= 36 in. S.R. = 0.48 S.R.<= 1.0, O.K. Member Properties: Beam: Column: A= __ 10.00 _ A= 7.65 in.^2 d= 14.000 d= 12.200 in. tw= 0.285 tw- - 0.230 y - in. bf= 6.750 bf= 6.490 _in. tf= 0.455 tf= 0.380 in. k= 0.855 k= 0.680 in. _ _ _-_ (continued) 2/23/2015 C:\Users\sjim\Desktop\desktop files save MSAfile\Design use■excel flles\ABC useful\ Page 1 9-52 AM AiscDOUBLE CLIP ALL-BOLT(WIDE FLANGE) 25/27925 of 6 22 American Buildings Company 2/20/2015,2:04 PM SINGLE-SPAN BEAM LOADING ANALYSIS Job Number: 71-6383.02 Description: W 1500032 beam I7s I Designer: JTE Span Length Max.Shear= 19.87 kips L= 20.92 ft. Max.Moment= 103.94 kip-ft at X= 10.46 ft End Moments(Kip-1) Dist.X ft Point Loads,kips Dist.X ft. Define Unsupported Segments for Cb Calculation Mt = 0.00 0.00 P1= 0.00 0.00 X2 12 Ml M„b, , M2 Cb M2 = 0.00 0.00 P2= 0.00 0.00 0.00 20.92 0.00 103.94 0.00 1.14 Distributed Loading P3= 0.00 0.00 0.00 20.92 _ 0.00 103 94 0.00_ 1.14 ' w 1 = 1.900 kips/ft. P4= 0.00 0.00 W 2 = 1.900 kips/ft. P5= 0.00 0.00 Partial Distributed Loading P6= 0.00 0.00 w,kipst'i Dist.A Dist.B P7= 0.00 0.00 LOADING DIAGRAM(Kips) 0.00 0.00 0.00 Ps= 0.00 0.00 0.00. 0.00 0.00 P9= 0.00 0.00 0.00 0.00 0.00 P10= 0.00 0.00 Final Design Requirements Dead weight of beam not included. 5 10 15 20 I 25 Axial Load, P= 0.00 kips -19.87 -19.87 X Axis Moment,Ms= 103.94 Idp-ft Y Axis Moment,My= 0.00 ldp-ft Shear, V = 19.87 kips SHEAR(Kips) I.&y= 2.00 ft C6 j 1.00= 19.9 9 Lb= 2.00 ft • K,= 1.00 Ky= 1.00 i • • 0 5 10 15 AY 25 Selected Member Size 3-Plate Built-Up Section `19.9 F,= 55 ksi F„= 70 ksi Top Flange 0.3125 In z 6 in Web 0.2188 In a 15 in 103.94 MOMENT(Kip-Feet) 1 99.78 99.78 Bottom Flange 0.3125 in z 6 in 87.31 87.31 66.52 66.52 I Section Properties Area = 7.03 in2 Full 1, = 281.39 in4 37.42 37.42 Weight = 23.93 lb 1, = 11.26 in4 Depth= 15.63 in Sx = 36.02 in3 0 00 0.00 r,= 135 Sy = 3.75 in3 0 • 5 10 15 20 25 r1= 633 Q,= 1.00 (E7-4.5,6) Ty= 1.27 Q.= 0.81 (57-16) DEFLECTION(Inches) . 0 5 10 15 20 25 • Deflection 0.00 ' Maximum Deflection is -1.003 In -0.31 -0.31 Location, X= 10.46 ft -0.60 -0.82 -0.96 -0.82 -0.60 Deflection Ratio= L/250 -0 96 -1.00 Calculated Strength(AMC 13th Edition ASD) Combined Axial and Bendins Strength Ratio Axial Strength P=0 kips Pnc/f 1=170.1 kips (E3-4) 0.96 (H1-1b) Strong Axis Bending Strength M,= 103.9 k-ft M,u/f24= 108.5 k-ft (F1-F5) Shear Stress Ratio= 0.36 Weak Axis Bending Strength My= 0 k-ft M,4//0.6= 15.1 k-ft (F6) Shear Strength V= 19.9 kips Vd0,,= 55.7 kips (G2-1-5) Web to Flange Welds Standard web to flange weld checks OK Bearing stiffeners are required. See Summary. Copy of BM_COLO5 V32 outline,Version 2.0 AISC 13th Edition P 23 1 American Buildings Company 21232015,8:54 AM teMil SINGLE-SPAN BEAM LOADING ANALYSIS �t Job Number: 71 6383.02 Description: FSW Jamb Support-Bay 5 I,'L. Designer: JTE Span Length Max.Shear= 29.75 kips • L- 25.92 ft Max.Moment= 175.82 kip-ft at X= 12.44 ft End Moments(Kip-ft) Dist.X,ft Point Loads,kips Dist.X,ft. Define Unsupported Segments for Cb Calculation Mt = 0.00 0.00 P,= 6.35 5.00 X, X, M, M,,,,. M2 C M2 = 0.00 0.00 Pi= 0.00 0.00 0.00 2.00 0.00 55.70 55.70 1.64 Distributed Loading P3= 0.00 0.00 2.00 _ 4.00 55.70 103.80 103.BO 1.22 w 1 = 1.900 kips/ft. P4= 0.00 0.00 W2 = 1.900 kips/ft. Ps= 0.00 0.00 Partial Distributed Loading P6= 0.00 0.00 w,kips/ft Dist.A Dist B P7= 0.00 0.00 LOADING DIAGRAM(Kips) • 0.00 0.00 0.00 Ps- 0.00 0.00 0.00 0.00 0.00 P9= 0.00 0.00 6.35 0.00 0.00 0.00 _ P10=_ 0.00 0.00 Final Design Requirements Dead weight of beam not included. 5 10 15 20 25 30 • • Axial Load, P= 0.00 kips -25.85 -29.75 X Axis Moment,M,= 175.82 kip-ft Y Axis Moment,M,= 0.00 kip-ft Shear, V = 29.75 kips `- I.,= 2.00 ft Cb= 1.00 29.7 SHEAR(Kips) L,= 2.00 ft 20.2 K,= 1.00 K,= 1.00 0.0 13.9 • • 0.0 . • , Selected Member Size 0 5 10 . 20 25 30 ; 3-Plate Built-Up Section Fr,= 55 ksi F,,= 70 kat -25.8 Top Flange 0.5 in x 6 in Web 0.2188 in x 18 in 17223 175.44 MOMENT(Kip Feet) 165118•Bottom Flange 0S in x 6 in 156.26 - 143.56 127.52 Section Properties 106.47 Area = 9.94 in2 Full I, = 619.84 in4 70 73 60.62 Weight = 33.82 Ib If = 18.02 in4 Depth= 19.00 in Sx = 65.25 in3 0.00 o.ao 14= 1.60 S, = 6.01 in3 0 5 10 16 20 25 30 r;= 7.90 Q,= 1.00 (E7-43,6) r,= 1.35 Qs= 0.81 (57-16) DEFLECTION(Inches) 0 5 10 15 20 25 30 Deflection 0.00 Maximum Deflection is -1.195 in -039 -037 Location, X- 12.96 ft -0.73 -0.70 -0.99 1.15 113 -0.96 Deflection Ratio= L/260 -1.20 . Calculated Strength(A1SC 13th Edition ASD) Combined Axial and Bending Strength Ratio Axial Strength P= 0 kips Pnc/12= 238.8 kips (E3-4) 0.87 (H1-1b) Strong Axis Beading Strength M,= 175.8 k-ft Me,/f26= 201 k-ft (F1-Fs) Shear Stress Ratio= 0.62 Weak Axis Bending Strength M,= 0 k-ft M,„/D6=25.3 k-ft (F6) Shear Strength V=29.7 kips VJQ„=48.3 kips (G2-1-5) Web to Flange Welds Standard web to flange weld checks OK Bearing stiffeners are required. See Summary. Copy of BM CO1.05_V3.213th A1~' Vernal 2.0 AISC 13th Edition PaL lT 27f2 1- 24' • • American Buildings Company 2/20/2015,224 PM SINGLE-SPAN BEAM LOADING ANALYSIS Job Number: 71-6383.02 Description: W1560032 beam {?j'3, Designer: JTE Span Length Max.Shear= 15.12 kips L= 15.92 ft. Max Moment= 60.19 kip-ft at X= 7.96 ft End Moments(Kip-ft) Dist.K ft, Point Loads,kips Dist.X ft. Define Unsupported Segments for Cb Calculation M! = 0.00 0.00 P1= 1100 0.00 Xt X2 M2 M,, M2 Cb M2 = 0.00 0.00 P2= 0.00 0.00 0.00 2.00. 0.00 26.45 26.45 1.60 Distributed Loading 133= 0.00 0.00 2.00 _ 4.00 26.45 45.30 45.30 1.18 _ w t = 1.900 kips/ft. P4_ 0.00 0.00 w2 = 1.900 kips/ft. P5= 0.00 0.00 Partial Distributed Loading P6= 0.00 0.00 • w,kips.'t DisL A Dirt B P7= 0.00 0.00 LOADING DIAGRAM(Kips) 0.00 . 0.00 0.00 P5= 0.00 0.00 0,00 0.00 0.00 Py= 0.00 0.00 0.00 0.00 0.00 P10= 0.00 0.00 Final Design Requirements Dead weight of bean not included. 5 10 15 i 20 Axial Load, P= 0.00 kips • X Axis Moment,Mx= 60.19 kip-ft -15.12 -15.12 Y Axis Moment,M,= 0.00 kip-ft Shear, V = 15.12 kips 1 SHEAR(Kips) 1,,,= 2.00 ft Cb= 1.00 15.1 Lb= 2.00 ft K,= 1.00 K,= 1.00 • 0 5 I 160 20 Selected Member Size 3-Plate Built-Up Section -15.1 Fy= 55 kid Fd= 70 ksi Top Flange 0.25 in x 6 in Web 0.1875 in x 14 in 57.79 60.19 MOMENT(IGp Feet) 57 79 Bottom Flange 0.25 in x 6 in 50.56 50.56 38.52 38.52 I Section Properties 21.67 21.67 Area = 5.63 in2 Full 1, = 195.19 in' Weight = 19.14 lb ly= 9.01 in4 0.00 Depth= 14.50 in Sx = 26.92 in3 0 5 10 15 o.00 20 rt= 1.54 S,= 3.00 in3 r,= 5.89 Q,= 0.92 (87-4,5,6) ry= 1.27 Q,= 0.79 (61-16) DEFLECTION(Inches) 0 2 4 6 8 10 12 14 16 18 Deflection 000 ' Maximum Deflection is -0.485 in -0.15 -0 15 Location, X= 7.96 ft -029 -0.29 -0.39 • -0 -0.39 Deflection Ratio= L/394 -0.46 -0.49 Calculated Strength(A1SC 13th Edition ASA) Combined Axial and Bending Strength Ratio Axial Strength P=0 kips Pnc/12= 126 kips (E3-4) 0.83 (H1-1b) Strong Axis Bending Strength M,=60.2 k-ft M,,,A2b=722 k-ft (Ftf5) Shear Stress Ratio= 039 Weak Axis Bending Strength M,=0 k-ft Mwi1ib= 10.2 k-ft (F6) Shear Strength V=15.1 kips VJQ,= 38.4 kips (G2-1-5) Web to Flange Welds Standard web to flange weld checks OK Bearing stiffeners are required. See Summary. Copy of BM_COLOS_V3213thAISC,Vcrsiou 2.0 AISC 13th Edition P�,gfLis, 25 I American Buildings Company 2/20/2015,3:28 PM SINGLE-SPAN BEAM LOADING ANALYSIS Job Number: 71-6383.02 Description: W I5(30032 beam (3.....5 Designer: JTE Span Length Max.Shear= 12.12 laps L= 20.92 ft Max.Moment= 57.17 kip-ft at X= 11.72 ft End Moments(Kip-ft) Dist.X,ft Point Loads,kips Dist.J(ft Define Unsupported Segments for C y Calculation M1 = 0.00 0.00 Pt= 4.80 - 15.90 X2 X2 Mt M,.., M2 C,, M2 = 0.00 0.00 P2= 0.00 0:00 0.00 2.00 0.00 17.63 17.63 1.62 Distributed Loading P3= 0.00 0.00 2.00 4.00 17.63_ 32.02 32.02 1.21 w t = 0.810 kips/ft. P4= 0.00 0.00 w 2 = 0.810 kips/ft. Ps= 0.00 0.00 Partial Distributed Loading P6= 0.00 0.00 w,laps/ft Dist.A Dist B P7= 0.00 0.00 LOADING DIAGRAM(Kips) 0.00 0.00 0.00 Ps= 0.00 0.00 0.00 0.00 0.00 P9= 0.00 0.00 4.80 0.00 0.00 0.00 Pmo= 0.00 0.00 .. j Final Desi$n Requirements Dead weight of bean not included. 5 10 15 20 25 Axial Load, P= 0.00 kips -9.62 X Axis Moment,M,= 57.17 kip-ft -12.12 Y Axis Moment,My= 0.00 kip-ft Shear, V = 12.12 kips Ly= 2.00 ft CI,= 1.00 SHEAR(Kips) 9.6 Ld= 2.00 ft K,= 1.00 1Cy= 1.00 0.0 -3.3 1 Selected Member Size o 5 10 213 25 3-Plate Built-Up Section -8.1 . Fy= 55 ksi F,= 70 kal -12.1 Top Flange 0.25 in x 5 in 56.36 Web 0.1875 in x 14 in 52.18 67.00 54.09 MOMENT(iGp Feet) Bottom Flange 0.25 in x 5 in 44A5 43.62 Section Properties 33.18 23 56 Area = 5.13 in2 Full 1, = 169.80 tn4 18.36 Weight = 17.44 lb 17 = 5.22 in4 Depth= 14.50 in S5 = 23.42 in3 0.00 0.00 r,= 1.26 Sr = 2.09 Ina 0 5 10 15 20 25 r.= 5.76 Q.= 1.00 (E7-4,5,6) . ry= 1.01 Q,= 0.78 (E7-16) DEFLECTION(Inches) 0 5 10 15 20 25 Deflection , 0.00 Maximum Deflection is -0923 in Location, X= 10.88 ft -0.28 0.30 -0.53 -0.57 Deflection Ratio= L/272 -0.73 -0.87 -0 92 -0.89 -0.77 Calculated Strength(AMC 13th Edition ASD) Combined Axial and Bending Strength Ratio Axial Strength P=0 kips Pnc/f2= 116.4 kips (E3-4) 0.82 (H1-1b) Strong Axis Bending Strength M,= 57.2 k-ft MJD,=70 k-ft (F1-F5) Shear Stress Ratio= 0.32 • Weak Axis Bending Strength My=0 k-ft Me/fly=8.2 k-ft (F6) Shear Strength V= 12.1 kips V,/f2,=38.4 kips (G2-1-5) Web to Flante Welds Standard web to flange weld checks OK Bearing stiffeners are required. See Summary. Copy of BM_COLOS_V3.2 13th AISC,Vasios 2.0 AISC 13th Edition Page oaf _ 2(.3. American Buildings Company 2/20/2015,3:26 PM SINGLE-SPAN BEAM LOADING ANALYSIS Job Number: 71-6383.02 Description: W15G0032 beam Q(Q Designer: JTE Span Length Max.Shear= 7.83 kips L= 20.92 ft. Max Moment= 35.59 kip-ft at X= 13.39 ft • End Moments(Kip-t) Dist.X ft Point Loads,bps Dist.X,fi. Define Unsupported Segments for Cb Calculation M1 = 0.00: 0.00 P1= 4.80 15.90 Xt X1 M, M„, M2 Cb M2 = 0.00 0.00 112= 0.00 0.00 0.00 15.00 0.00 35.58 35.04 1.24 Distributed Loading P3= 0.00 0.00 15.00 20.90 35.04 35.04 0.16 1.46 iv, = 0.400 kips/ft. 134= 0.00 0.00 w2 = 0.400 kips/ft P5= 0.00 0.00 Partial Distributed Loading P6= 0.00 0.00 w,kips/ft Dist.A Dist.B P7= 0.00 0.00 - LOADING DIAGRAM(Kips) 0.00 0.00 0.00 Ps= 0.00 0.00 0.00 0.00 0-00 P9= 0.00 0.00 4.80 . 0.00 0.00 0.00 P 10= 0.00 0.00 Final Design Requirements Dead weight of beam not included. Axial Load, P= 0.00 kips 5 34 5 10 15 20 25 • X Axis Moment,M.= 3559 klp-ft -7.83 Y Axis Moment,My= 0.00 kip-ft • Shear, V = 7.83 kips L,,= 15.00 ft Cb- 1.24 SHEAR(Kips) Lb= 15.00 ft I 5.3 K.,,= 1.00 Ky= 1.00 0.0 • 0.0 - I I 0 5 10 15 20 25 Selected Member Size • 3-Plate Built-Up Section Fy= 55 ksi F.= 70 ksi 5.8 -7.8 8 Top Flange 0.25 in x 6 in MOMENT(Kip-Feet) Web 0.1875 in x 14 in 33.93 35.46 3525 Bottom Flange 0.25 in x 6 in 30.65 29.27 25.61 Section Properties 18.82 15.51 Area = 5.63 in2 Full!. = 195.19 HI4 10.29 • • • Weight = 19.14 lb Is = 9.01 in4 • • • Depth= 14.50 in Sx = 26.92 i113 0.00 0.00 . ri= 1.54 Sy = 3.00 in3 0 5 10 15 20 25 r,= 5.89 Q.= 0.92 (87-4,5,6) ry= 1.27 Q,= 0.99 (87-16) DEFLECTION(Inches) 0 5 10 15 20 25 Deflection 0.00 ' Maximum Deflection is -0.491 in -015 -0.17 Location, X= 10.88 ft -0.28 _ -0.31 .38 Deflection Ratio= L/511 -0.46 ,0 49 048 -0.42 Calculated Strength(AJSC 13th Edition ASD 1 Combined Axial and Bending Strength Ratio Axial Strength P=0 kips Pnc/f1=41.8 kips (E3-4) 0.91 (H1-1b) Strung Axis Bending Strength M,=35.6 k-ft M,,,/1l6= 39.2 k-ft (F1-F5) Shear Stress Ratio= 020 Weak Axis Bending Strength M,-0 k-ft MA-1h= 10.2 k-ft (F6) Shear Strength V=7.8 klps Va/ft„= 38.4 kips (G2-1-5) Web to Flange Welds Standard web to flange weld checks DX Bearing stiffeners are required. See Summary. Copy of 8M_COLOS_V3.2 13th AISC,Version 2.0 AISC 13th Edition Page /G o �V I.7JV 2-7 American Buildings Company 2/202015,4:28 PM SINGLE-SPAN BEAM LOADING ANALYSIS Job Number: 71-6383.02 Description:W15G0032beam (3 1 Designer: JTE Span Length Max.Shear= 8.90 kips L= 20.92 ft. Max.Moment= 36.73 kip-ft at X= 8.37 ft End Moments(Kip ft) Dist.X ft Point Loads,kips Dist.X,fl. Define Unsupported Segments for Cb Calculation - j M1 = 0.00,- 0.00 P,= -4.80 4.00 X3 X2 M, M,,,, M2 Cb M7 ° 0.00 0.00 137= 0.00 0.00 0.00 2.00 0.00 16.85 16.85 1.64 Distributed Loading P3= 0.00 0.00 2.00 4.00 16.85 31.77 31.77 1.22 w 1 _ 0.480 kips/ft. P4= 0.00 0.00 w 2 = 0.480 kips/ft. P3= 0.00 0.00 Partial Distributed Loading P6= 0.00 0.00 w,kips/fi Dist.A Dist B P7= 0.00 0.00 LOADING DIAGRAM(Kips) 0.00 - 0.00 0.00 Pe= 0.00 0.00 0.00 0.00 0.00 P9= 0.00 .0.00 4.80 • 0.00 _ 0.00 _ 0.00 P15= 0.00 0.00 • final Design Reguirements Dead weight of beam not included. ,R . • Axial Load, P= 0.00 kips 0 5 10 15 20 25 -5.94 X Axis Moment,M.= 36.73 kip-ft -8.90 Y Axis Moment,M,= 0.00 kip-ft Shear, V = 8.90 kips L„= 2.00 ft Cb= 1.00 8.9 SHEAR(Kips) • L,= 2.00 ft 7.0 K,= 1.00 R,,- 1.00 0.0 1 0.0 2.2 0 5 10 15 20 25 Selected Membe Size 3-Plate Built-Up Section Fr= 55 ksi F.= 70 ksi .• Top Flange 0.25 ill x5in Web 0.1875 in x14 in 35 50 36.73 35.86 MOMENT(Kip-Feet) Bottom Flange 0.25 in x 5 in 32.17 3289 2782 Section Properties 17.57 20.65 Area = 5.13 in2 Full 1, = 169.80 in4 11.37 Weight = 17.44 lb 1y = 5.22 in4 Depth= 14.50 in Sx = 23.42 in3 0.00 • 0.00 • r,= 1.26 Sr = 2.09 in3 0 5 10 15 20 25 r,= 5.76 Q,= 1.00 (s7-4,5,6) r7= 1.01 Q,= 0.78 (0-16) DEFLECTION(Inches) 0 5 10 15 20 25 Deflection 0.00 Maximum Deflection is -0596 in -0.20 -0.18 Location, X= 10.04 ft -0.38 -0 50 -0.56 -0.47 -0.34 Deflection Ratio= L/421 -0.58 -0.60 Calculated Strength(MSC 13th Edition ASD) Combined Axial and Bending Strength Ratio Axial Strength P=0 kips Pnc/C1= 118.4 kips (E3-4) 0.52 (H1-1b) Strong Axis Bending Strength M,=36.7 k-ft Mm/06=70 k-ft (F1-F5) Shear Stress Ratio= 0.23 Weak Axis Bending Strength Mr=0 k-ft M,1i16=8.2 k-ft (F6) Shear Strength V= 8.9 kips V1/Q,=38.4 kips (G2-1-5) Web to Flame Welds Standard web to flange weld checks OK Bearing stiffeners are required. See Summary. �r Copy of BM COLDS V32136 AISC,Version 2.0 A1SC 13th Edition X31/-t L l 6S 1 2? 1 American Buildings Company 2/26/2015,2:02 PM SINGLE-SPAN BEAM LOADING ANALYSIS Job Number: 71-6383.02 Description: FSW Jamb Support- eij o, Designer: JTE Span Length Max.Shear= 10.21 kips L= 20.92 ft. Max.Moment= 53.39 kip-ft at X= 10.46 ft End Moments(Kip-ft) Dist.X,ft Point Loads,kips Disc.X ft. Define Unsupported Segments for C,, Calculation M1 = 0.00 0.00 Pr= 0.00 0.00 Xl X2 Mr Mawr M2 CD M2 = 0.00 0.00 P2= '0.00 0.00 0.00 2.00 0.00 18.47 18.47 1.62 Distributed Loading P3= 0.00 0.00 2.00 4.00 18.47 33.03 33.03 1.20 - w 1 = 0.976 kips/ft P4= 0.00 0.00 w 2 = 0.976 trips/ft. Ps= 0.00 0.00 Partial Distributed Loading P6= 0.00 0.00 w,kips/ft Dist A Drst.B P7= 0.00 0.00 LOADING DIAGRAM(Kips) 0.00 0.00 0.00 Ps= 0.00 0.00 0.00 0.00 0.00 P,=' 0.00 0.00 0.00 0.00 0.00 P,o= 0.00 0.00. Final Design Requirements Dead weight of beam not included. 5 10 15 20 i 25 • Axial Load, P= 0.00 kips -10.21 10.21 X Axis Moment,M„= 53.39 lip-ft 1 Y Axis Moment,My= 0.00 Icip-ft Shear, V = 10.21 kips 1 1.7 SHEAR(Flips)y= 2.00 ft Cb= 1.00 10.2 L.= 2.00 ft I K,= 1.00 Ky= 1.00 :0---------7--------------1-- 0 5 10 15 i'.P 25 Selected Member Size 3-Plate Built-Up Section -10.2 Fy= 55 ksi F„= 70 kst • Top Flange 0.375 in x 6 in Web 0.1875 in z 10 in 51.26 53.39 51.26 MOMENT(Flip Feet) Bottom Flange 0.375 in x 6 in 44.85 44.85 ' 34.17 34.17 Section Properties Area = 6.38 in2 Full Is = 136.77 in4 19.22 19.22 Weight = 21.69 lb 1 = 1351 End Depth= 10.75 in Sx = 25.45 i13 0.00 000 • rt= 1.66 87 = 4.50 it13 0 5 10 15 20 25 , r,= 4.63 Q,= 1.00 (37-4,5,6) ry= 1.46 Q,= 0.93 (E7-16) DEFLECTION(Inches) 0 5 10 15 20 25 pellection 000 ' Maximum Deflection is -1.060 in -0.33 0 Location, X= 10.46 ft -0.63 086 tot -0.86 43_63 Deflection Ratio= L/237 -1.01 -1 06 Calculated Strength(AJSC 13th Edition ASD) Combined Axial and Bending Strength Ratio Axial Strength P=0 kips Pnc/A= 157.3 kips (83-4) 0.69 (11-lb) Strong Axis Bending Strength Mr= 53.4 k-ft M,,,/Os,=76.9 k-ft (F1-F5) Shear Stress Ratio= 026 Weak Axis Bending Strength My= 0 k-ft M,/f1,= 18.8 k-ft (F6) Shear Strength V= 10.2 kips Vs/I1,,=39.8 kips (G2-1-5) Web to Flange Welds Standard web to flange weld checks OK. Bearing stiffeners are required. See Summary. Copy of BM_COLOS V321301.ALSC Version2.0 AISC 13th Edition P e,,.._a( 2 �y z`1 American Buildings Company 2/23/2015,8:51 AM SINGLE-SPAN BEAM LOADING ANALYSIS Job Number: 71-6383.02 Description: FSW Jamb Support-Bay 5 S(1,1 Designer: JTE Span Length Max.Shear= 6.35 kips L= 20.00 ft. Max.Moment= 54.00 kip-ft at X= 10.00 ft ' End Moments(Rip-Jt) Dist X fl Point Loads,lips Dist X ft Define Unsupported Segments for C y Calculation M1 = 0.00 0.00 P,= 8.90 10.00 Xt , X2 M2 M„� M2 C6 M2 = 0.00 0.00 P2= 0.00 0.00 0.00 2.00 0.00 12.32 12.32 1.65 Distributed Loading P3= 0.00 0.00 2.00 _ 4.00 12.32 23.88 23.88 1.2.4 h-1 = 0.190 kips/ft. P4= 0.00 0.00 $V2 = 0.190 kips/ft. Py= 0.00 0.00 Partial Distributed Loading P6= 0.00 0.00 w,kips/J) Dist.A Dist B P3= 0.00 0.00 LOADING DIAGRAM(Kips) 0.00 0.00 0.00 Ps- 0.00 0.00 8.90 0.00 0.00 0.00 P9= 0.00 0.00 0.00 0.00 0.00 Pia= 0.00 0.00 . Final Design Requirements Dead weight of beam not included. - ' Axial Load, P= 0.00 kips 5 10 15 25 -6.35 -6.35 I X Axis Moment,M,= 54.00 kip-ft I Y Axis Moment,M7= 0.00 kip-ft Shear, V = 6.35 kips Ly= 2.00 ft Cb= 1.00 6.4 SHEAR(Kips) 1....= 2.00 ft 4.5 ic= 1.00 Ky= 1.00 0.0 • 0.0 • 0 5 10 15 21 25 Selected Member Size W10712 -0.5 F5= 50 ksi Fo= 65 ksi -6.4 '� 54.00 MOMENT(Kip-Feet) • 4472 44.72 34 68 34.68 I Section Properties Area = 6.49 in2 Full 1, = 118.00 in4 23 88 23 Se 12.32 • Weight = 22.00 lb 17 = 11.40 in4 12.32 . Depth= 10.17 in S 23.20 in3 0 00 x = 0.00 r,= 1_55 S7 = 3.97 in3 0 5 10 15 20 25 r,= 4.27 Q,= 1.00 (E7-.48.6) • ry= 133 Q= 0.97 (E7-16) DEFLECTION(Inches) 0 5 10 15 20 25 ■ Deflection 0.00 Maximum Deflection is -0.949 in .0728 -0.28 Location, X= 10.00 ft -0' -am -0 90 -0 76-0 -0.90 -0.95 Deflection Ratio= L 1 253 Calculated Strength(AISC 13th Edition ASD) Combined Axial and Bending Stteneth Rain) Axial Strength P=0 kips Pne1S2=150.1 kips (E3-4) 0.83 (H 1-1 b) Strong Axis Bending Strength M„= 54 k-ft M,Jf26-64.9 k-ft (rt-t-s) Shear Stress Ratio- 0.13 Weak Axis Bending Strength My= 0 k-ft MWD,=151 k-ft (FO) Shear Strength V= 6.4 kips V,/11,=48.8 kips (G2-1.5) _ Copy of BM-COL05 V32131bMSC,Vernon 2.0 AISC 13th Edition Pag37-2 3� . 3 30 I American Buildings Company 2/23/2015,104 AM rieSiippi . . SINGLE-SPAN BEAM LOADING ANALYSIS lob Number: 71-638102 Description: FSW Jamb Support-Bay 5 j13, . Designer: JTE • • Span Length Max.Shear= 11.05 kips L= 20.00 ft. Max.Moment= 52.88 kip-ft at X= 5.00 ft End Moments(Kip-ft) Dist.X fl Point Loads,krps Dist.X ft. Define Unsupported Segments for Cb Calculation M1 = 0.00 0.00 P1= 12.20 5.00 X1 X7 Ml M„, M2 C6 M2 = 0.00 0.00 P2= 0.00 0.00 0.00 2.00 0.00 21.72 21.72 1.66 Distributed Loading P3- 0.00 0.00 2.00 4.00 21.72 42.68 42.68 1.24 wl = 0.190. kips/ft. P4= 0.00 0.00 w 2 = 0.190 kips/ft. P5= 0.00 0.00 Partial Distributed Loading P6= 0.0• 0.00 w,kips/fi Dist A Dist.B P7= 0.00 0.00 LOADING DIAGRAM(Kips) 0.00 0.00 0.00 Pt= 0.00 0.00 12.20 0.00 0.00 0.00 P9= 0.00 0.00 0.00 0.00 0.00 P10= 0.00 0.00 Final Design Requirements Dead weight of beam not included. . Axial Load, P= 29.60 kips 5 10 15 4.95 25 X Axis Moment,M„ .= 5288 kip-ft 11.05 Y Axis Moment,M7= 0.00 kip-ft Shear, V = 11.05 kips Ii= 2.00 ft CI,= 1.24 11.1 SHEAR(Kips) Lb= 2.00 ft • 10.1 • K.,= 1.00 Ky= L00 0.0 ** Selected Member Size p 0 0 ` p 15 y5 W12x26 -27 Fy= 50 ksi F„= 65 ksi -5.0 MOMENT(Kip-Feet) 50.68 45.72 42.88 40.00 33.52 Section Properties 2828 Area = 7.65 i212 Full I, = 204.00 1114 21.72 18.28 Weight = 26.00 lb 17, = 17.30 in4 9.52 Depth= 12.22 in Sx = 33.40 i113 0.00 0.00 rr= 1.75 Sy = 534 in3 0 5 10 15 20 25 r,= 5.17 Q,= 1.00 (E7-4.5.6) ry= 1.51 Q,= 0.93 (E7-16) DEFLECTION(Inches) 0 5 10 15 20 25 Deflection 0.00 Maximum Deflection is -0.529 in -0.15 -0.19 -0.28 Location, X= 9.20 ft -0.35 -0.40 Deflection Ratio= L/454 -0,47 -0.52 -0.52 -0 48 Calculated Strength(RISC 13th Edition ASD 1 (Second-Order Analysis P-6 Effect Considered) Combined Axial and Beading Strength Ratio Axial Strength P=29.6 kips Pnc/S2= 183.3 kips (E3-4) 0.68 (H1-1b) Strong Axis Bending Strength M,=52.9 k-ft Mo,/S2b=92.8 k-ft (F1-F5) Shear Stress Ratio= 0.20 Weak Axis Bending Strength My=0 k-ft M„/f ,=20.4 k-ft (F6) Shear Strength V=11.1 kips VJS2,.= 56.2 kips (G2-1-5) _ , Bearing stiffeners are required. See Summary. Copy of BM_COL05_V3213th AISC,Version 2.0 RISC 13th Edition Page, 2 7 qi' I I I American Buildings Company 2/23/2015,10:26 AM rifili SINGLE-SPAN BEAM LOADING ANALYSIS Job Number: 71-6383.02 Description: FSW Jamb Support-Bay 5 ,j(zj if, Designer: JTE Span Length Max Shear= 1.90 kips L= 20.00 ft. Max.Moment= 9.50 kip-ft at X= 10.00 ft End Moments(Kip-J1) Dist X ft Point Loads,kips Dist X,ft Define Unsupported Segments for C6 Calculation Mr = 0.00 0.00 P1= 0.00 0.00 Xr X2 Mt M M2 Cb M2 = 0.00 0.00 P2= 0.00 0.00 0.00 2.00 0.00 3.42 3.42 1.62 Distributed Loading P3=. 0.00 0.00 2.00 4.00 3.42_ 6.08 6.08 1.20 w r = 0.190 kips/ft. P4= 0.00 0.00 w 2 = 0.190 kips/ft P5= 0.00 0.00 Partial Distributed Loading P6= 0.00 0.00 w,kips 1)151.A Dist B P7= 0.00 0.00 LOADING DIAGRAM(Kips) 0.00 0.00 0.00 P8= 0.00 0.00 0.00 0.00 0.00 Py= 0.00 0.00 0.00 0.00 0.00 Plu= 0.00 0.00 Final Design Requirements Dead weight of bean not included. 5 10 15 25 Axial Load, P= 29.60 ldps -1.90 -1.90 X Axis Moment,M.= 930 kip-ft Y Axis Moment,My.= 0.00 kip-ft Shear, V = 1.90 kips Ly= 2.00 ft Cb= 1.20 SHEAR(lips) 1.9 Lb= 2.00 ft K,= 1.00 Ky.= 1.00 ♦ 0.0 • 0 5 10 15 0.( 25 Selected Member Size W12x14 -1.9 Fy,= 50 ksi F.= 65 kO 9.12 9.W MOMENT(IGp-Feet) 9.12 i 7.98 7.98 6.08 6.08 Section Properties Area = 4.16 in2 Full I, = 88.60 in4 3.42 3.42 Weight = 14.00 lb Is = 2.36 in4 Depth= 11.91 in Sx = 14.90 in3 0 00 0.00 r,= 0.96 Sy = 1.19 in3 0 5 10 15 20 25 r,= 4.62 Q.= 1.00 (E7-4,5,6) ry= 0.75 Q.= 0.84 (E7.16) DEFLECTION(Inches) 0 5 10 15 20 25 • Deflection -0,00 ' Maximum Deflection is -0.266 In -0AS -0.08 Location, X= 10.00 ft -0.16 -0 16 Deflection Ratio= L/902 -0.22 -0.25 -017 425 -0 22 Calculated Strength(AISC 13th Edition ASD) (Second-Order Analysis P-6 Effect Considered) Combined Axial and Bending Strength Ratio Axial Strength P=29.6 klps Pnc/f/=88.5 kips (E3-4) 0.55 (H1-1a) Strong Axis Bending Strength M.=9.5 k-ft M„JO -43.4 k-ft (Fl-Fe) Shear Stress Ratio= 0.04 Weak Axis Bending Strength My=0 k-ft Mq/f)b=4.7 k-ft (F6) Shear Strength V=1.9 kips V,Jflo=42.8 kips (G2-1-5) _ Copy arBM_COws_V3.2 13th MSC,Version 2.0 AISC 13th Edition Pag�- 2 J I/G/ 3 2- IY LJ C 1=1 R PROJECT: PAGE: vs uSLoINOS °Roue CLIENT: DESIGN BY: JOB NO.: DATE: REVIEW BY: Tube!Pipe Column Design Based on RISC Manual 13th Edition(RISC 360-05) I"T, STLJc3 LoL. INPUT DATA 8 DESIGN SUMMARY COLUMN SECTION(Tube or Pipe) HSS6.625X0.188 Pipe P COLUMN YIELD STRESS Fy = 42 ksi DIMENSION H = 11.5 ft AXIAL LOAD,ASD P= 40 kips W STRONG AXIS BENDING?(1=Yes,0=No) => 0 no,weak axis,y-y,bending. F_ _ 4 UNIFORM LATERAL LOAD,ASD w= 0 k/ft • CONCENTRATED LATERAL LOAD,ASD F= 0 kips at 0 ft from bottom THE DESIGN IS ADEQUATE. -- ANALYSIS CHECK COMBINED COMPRESSION AND BENDING CAPACITY(AISC 360-05,H1) , for Pr Z 0.2 Pc 9(Mee Mcy Pc = 0.56 < 1.0 [Satisfactory] Pr + Mrs Mn, for Pr<0.2 2Pc (Mar Mcy) Pc Where KL, = 11.5 ft,for x-x axial load. KL y = 11.5 ft,For y-y axial load. (KL/r)„,„„= 60 < 200 [Satisfactory] P,= 40 kips M„ = 0.00 M,.,= 0.00 Pc =P„/pc = 118 /1.67= 70.934 kips,(AISC 360-05 Chapter E) > P, [Satisfactory] Mc, =M„/fib = 25.34 /1.67= 15.174 ft-kips,(AISC 360-05 Chapter F) > M„ [Satisfactory] Mc,=M„/6Jb = 25.34 /1.67= 15.174 ft-kips,(AISC 360-05 Chapter F) • > M,y [Satisfactory] CHECK LATERAL DEFLECTION d,„eN = 0.00 in,at 11.50 ft from bottom L/ 240 = 0.58 In [Satisfactory] • Where Es = 29000 ksl Ix= 18.4 in4 ly= 18.4 in4 • 36/279363 NLJ DR VULCRAFT GROUP BRIGHAM CITY DIVISION Joist calculations for ABC # W15G0328 Building Permit Calculations Date: March 26, 2015 REDPROp Project Name: JAPANESE BAPTIST CHURCH / it 17588 Vulcraft File Number: 094-15-0448 Protect Location: PORTLAND, OR GQN Customer Name: ABC ►� ( i vry1T. Prepared By Scott A May, P.E. Sealed By: Scott A May, P.E. Mires: apt WIG, These calculations are submitted to the Engineer of Record for the purpose of obtaining a building permit only, and may differ from the final calculations. The Professional Engineer's Seal affixed hereto indicates that the Steel Joists and/or Joist Girders manufactured by Vulcraft are designed in accordance with the Standard Specifications of the Steel Joist Institute. These calculations have been prepared in accordance with designations, loading and dimensional information specified by the Engineer of Record as shown on the Vulcraft Bills of Material. MARK NO. DATE MARK NO. DATE J1-J9 3/26115 These Calculations are based on: 1. All SJI standard design criteria being met (bearing lengths, top chord lateral support, bridging, etc.). PO BOX 637 BRIGHAM CITY, UTAH 84302 PHONE 435 734 9433 FAX 435 723 5423 WWW.NUCOR.COM ABC #W2635-G15 JAPANESE BAPTIS THU, 26-MAR-2015 14 :55:25 PAGE 001 094-15-0448 SUMMARY 2R ASD DESIGN J1 16K186/150 20- 0 0/0 J1 **SHORTSPAN JOIST DESIGN REQUIREMENTS** SJI SPECS VULCRAFT UTAH 17 . 1. 1 *** JOIST DESIGN INCLUDES SELF WT = 4.8 PLF EXCEPT FOR MAIN UPLIFT CASES *** **** UNFACTORED LOADS **** MAIN TC UNIFORM (R) 186/150 20- 0 0/0 LOAD CASES GENERATED: 1= 1. 000D+1. 000L **JOIST LAYOUT** WORK LENGTH = 19- 8 0/0 EFF DEPTH = 15.2923 BRNG DEPTH LT= 2 1/2 RT= 2 1/2 WP TCXL END PANEL VAR PANEL HALF PANELS VAR PANEL END PANEL WP TCXR 0- 2 0/0 2-10 0/0 1- 0 0/0 12 @ 1- 0 0/0 1- 0 0/0 2-10 0/0 0- 2 0/0 BCX HOLD BACK: LEFT STD RIGHT STD (STD EXT = 0- 4 0/0) VERT REPL WEBS 2DL 2- 0 0/0 2DR 2- 0 0/0 DEFLECTION MAINSPAN JOIST IXX STD TL LL (IN**4) CAMBER LIMITS (L/240) -0. 98 (L/360) -0. 66 0 1/8 MAXIMA -0. 43 -0.34 DEV 59. **SEAT DESIGN** SEC LENGTH SEC LENGTH LEFT 158 SEAT 0- 4 0/0 RIGHT 158 SEAT 0- 4 0/0 SEAT WELD: LEFT= 1.2" STD ( 7.0" avbl) RIGHT= 1.2" STD ( 7 . 0" avbl) **CHORD DESIGN** CHORD FY = 50000. PSI SPAN/TCRY= 288 SPAN/BCRY= 378 SEC CHORD DESCRIPTION LENGTH CHRD GAP RYY LYY TC 152 L 1. 50X1. 50X0. 113 20- 0 0/0 0 1/2" 0.8167 3- 0 0/0 BC 101 L 1. 00X1. 00X0. 109 14- 8 0/0 0 1/2" 0. 6212 0- 0 0/0 TC REQ MP RATIOS GOV BC REQ MP RATIOS GOV MEM AXIAL K KL/R PP MP LC MEM AXIAL K KL/R PP MP LC 1 - 3868 1. 0 74 . 1 0 . 46 0. 41 1 1 + 4591 1. 0 122 . 3 0. 43 0. 37 1 2 - 3547 1. 0 80. 9 0.42 0.34 1 2 + 6091 1. 0 122.3 0. 53 0. 49 1 3 - 5341 .75 60. 6 0.42 0. 58 1 3 + 6989 1. 0 122.3 0. 58 0. 57 1 4 - 5341 .75 60. 6 0.51 0. 58 1 4 + 7288 1. 0 122.3 0. 58 0. 59 1 5 - 6540 .75 60. 6 0.51 0. 66 1 5 + 6989 1. 0 122 .3 0. 58 0. 57 1 6 - 6540 .75 60. 6 0. 55 0. 66 1 6 + 6091 1. 0 122 .3 0.53 0. 49 1 7 - 7138 .75 60.6 0. 55 0.71 1 7 + 4591 1. 0 122 .3 0. 43 0. 37 1 8 - 7138 . 75 60.6 0.57 0.71 1 9 - 7138 .75 60.6 0.57 0.71 1 10 - 7138 .75 60.6 0.55 0.71 1 11 - 6540 .75 60.6 0.55 0. 66 1 12 - 6540 .75 60. 6 0.51 0. 66 1 13 - 5341 .75 60. 6 0.51 0.58 1 ABC #W2635-G15 JAPANESE BAPTIS THU, 26-MAR-2015 14 :55:25 PAGE 002 094-15-0448 SUMMARY 2R ASD DESIGN J1 J1 TC REQ MP RATIOS GOV MEM AXIAL K KL/R PP MP LC 14 - 5341 .75 60. 6 0.42 0.58 1 15 - 3547 1. 0 80. 9 0.42 0.34 1 16 - 3868 1. 0 74 . 1 0.46 0. 41 1 **WEB DESIGN** WEB FY = 50000. PSI END REACTION = 1876.2 LBS HR: TOP-LT MIN VERT SHEAR = 656.7 LBS REQ GOV REQD WELD HL WEB SEC QTY K KL/R AXIAL RATIO LC LEN x SIZE AVBL WELD CLIP 2 20 1 1. 0 238.5 + 4241 0. 51 1 1.5 x 0. 185 2 . 0 2DL 18 1 . 90 124.4 - 555 0.23 1 1.5 x 0. 178 1.5 3 18 1 . 90 124.4 - 1692 0.70 1 1.5 x 0. 178 1.5 4 18 1 1. 0 138 .3 + 1215 0. 16 1 1.5 x 0. 178 1.5 5 18 1 . 90 124 . 4 - 1215 0.50 1 1.5 x 0. 178 1.5 6 16 1 1 . 0 155.5 + 835 0. 14 1 1.5 x 0. 170 1.5 7 16 1 . 90 140. 0 - 835 0. 55 1 1.5 x 0. 170 1.5 8 16 1 1. 0 155.5 + 835 0. 14 1 1.5 x 0. 170 1.5 9 16 1 . 90 140. 0 - 835 0.55 1 1.5 x 0. 170 1.5 9R 16 1 . 90 140. 0 - 835 0.55 1 1.5 x 0. 170 1.5 8R 16 1 1.0 155. 5 + 835 0. 14 1 1.5 x 0. 170 1.5 7R 16 1 . 90 140. 0 - 835 0. 55 1 1.5 x 0. 170 1.5 6R 16 1 1. 0 155. 5 + 835 0. 14 1 1.5 x 0. 170 1.5 5R 18 1 . 90 124 . 4 - 1215 0. 50 1 1.5 x 0. 178 1.5 4R 18 1 1. 0 138 . 3 + 1215 0. 16 1 1.5 x 0. 178 1.5 3R 18 1 . 90 124 . 4 - 1692 0.70 1 1.5 x 0. 178 1.5 2DR 18 1 . 90 124 . 4 - 555 0.23 1 1.5 x 0. 178 1.5 2R 20 1 1. 0 238 . 5 + 4241 0. 51 1 1.5 x 0. 185 2 .0 WEB GROUPING #W2 (L) #W3 #W2 (R) > 2 . 0 4. 0 2 .0 **BRIDGING REQUIREMENTS** **WEIGHT,COST,TIME** ALLOW LYY STRESS SLENDER UNIT LABOR COST= 11.51 TOTAL WT= 98 .79 TOP CHORD= 8 .5 FT 10.7 FT MATERIAL COST= 37.05 TOTAL COST= 67 . 34 BOT CHORD= 12. 4 FT WT/FT= 4 . 94 LBS TOTAL TIME= 0. 012 1 ROW HORIZONTAL SURF AREA= 34 .7 SQFT ABC #W2635-G15 JAPANESE BAPTIS THU, 26-MAR-2015 14 :55:25 PAGE 003 094-15-0448 SUMMARY 2R ASD DESIGN J2 16K186/150 20- 0 0/0 J2 **SHORTSPAN JOIST DESIGN REQUIREMENTS** SJI SPECS VULCRAFT UTAH 17 . 1. 1 *** JOIST DESIGN INCLUDES SELF WT = 4 . 8 PLF EXCEPT FOR MAIN UPLIFT CASES *** **** UNFACTORED LOADS **** MAIN TC UNIFORM (R) 186/150 20- 0 0/0 LOAD CASES GENERATED: 1= 1 . 000D+1.000L **JOIST LAYOUT** WORK LENGTH = 19- 8 0/0 EFF DEPTH = 15.2923 BRNG DEPTH LT= 2 1/2 RT= 2 1/2 WP TCXL END PANEL VAR PANEL HALF PANELS VAR PANEL END PANEL WP TCXR 0- 2 0/0 2-10 0/0 1- 0 0/0 12 @ 1- 0 0/0 1- 0 0/0 2-10 0/0 0- 2 0/0 BCX HOLD BACK: LEFT STD RIGHT STD (STD EXT = 0- 4 0/0) VERT REPL WEBS 2DL 2- 0 0/0 2DR 2- 0 0/0 DEFLECTION MAINSPAN JOIST IXX STD TL LL (IN**4) CAMBER LIMITS (L/240) -0. 98 (L/360) -0.66 0 1/8 MAXIMA -0. 43 -0.34 DEV 59. **SEAT DESIGN** SEC LENGTH SEC LENGTH LEFT 158 SEAT 0- 4 0/0 RIGHT 158 SEAT 0- 4 0/0 SEAT WELD: LEFT= 1.2" STD ( 7 .0" avbl) RIGHT= 1.2" STD ( 7 . 0" avbl) **CHORD DESIGN** CHORD FY = 50000. PSI SPAN/TCRY= 288 SPAN/BCRY= 378 SEC CHORD DESCRIPTION LENGTH CHRD GAP RYY LYY TC 152 L 1. 50X1. 50X0. 113 20- 0 0/0 0 1/2" 0. 8167 3- 0 0/0 BC 101 L 1. 00X1. 00X0. 109 14- 8 0/0 0 1/2" 0. 6212 0- 0 0/0 TC REQ MP RATIOS GOV BC REQ MP RATIOS GOV MEM AXIAL K KL/R PP MP LC MEM AXIAL K KL/R PP MP LC 1 - 3868 1. 0 74 . 1 0. 46 0.41 1 1 + 4591 1 . 0 122 . 3 0. 43 0. 37 1 2 - 3547 1. 0 80. 9 0 . 42 0.34 1 2 + 6091 1. 0 122.3 0. 53 0. 49 1 3 - 5341 .75 60. 6 0. 42 0.58 1 3 + 6989 1. 0 122.3 0. 58 0. 57 1 4 - 5341 .75 60. 6 0.51 0.58 1 4 + 7288 1. 0 122.3 0.58 0. 59 1 5 - 6540 .75 60. 6 0.51 0.66 1 5 + 6989 1. 0 122.3 0.58 0.57 1 6 - 6540 .75 60. 6 0.55 0. 66 1 6 + 6091 1 . 0 122.3 0.53 0. 49 1 7 - 7138 .75 60. 6 0.55 0.71 1 7 + 4591 1. 0 122. 3 0. 43 0. 37 1 8 - 7138 .75 60. 6 0.57 0.71 1 9 - 7138 .75 60. 6 0.57 0.71 1 10 - 7138 .75 60. 6 0 .55 0.71 1 11 - 6540 .75 60. 6 0.55 0.66 1 12 - 6540 .75 60. 6 0.51 0.66 1 13 - 5341 .75 60. 6 0.51 0.58 1 ABC #W2635-G15 JAPANESE BAPTIS THU, 26-MAR-2015 14:55:25 PAGE 004 094-15-0448 SUMMARY 2R ASD DESIGN J2 J2 TC REQ MP RATIOS GOV MEM AXIAL K KL/R PP MP LC 14 - 5341 .75 60.6 0. 42 0.58 1 15 - 3547 1. 0 80. 9 0. 42 0.34 1 16 - 3868 1. 0 74 . 1 0.46 0. 41 1 **WEB DESIGN** WEB FY = 50000. PSI END REACTION = 1876.2 LBS HR: TOP-LT MIN VERT SHEAR = 656.7 LBS REQ GOV REQD WELD HL WEB SEC QTY K KL/R AXIAL RATIO LC LEN x SIZE AVBL WELD CLIP 2 20 1 1. 0 238 . 5 + 4241 0.51 1 1.5 x 0. 185 2 . 0 2DL 18 1 . 90 124 . 4 - 555 0.23 1 1.5 x 0. 178 1. 5 3 18 1 . 90 124 . 4 - 1692 0.70 1 1.5 x 0. 178 1.5 4 18 1 1. 0 138 . 3 + 1215 0. 16 1 1.5 x 0. 178 1.5 5 18 1 . 90 124 . 4 - 1215 0.50 1 1.5 x 0. 178 1.5 6 16 1 1 . 0 155. 5 + 835 0. 14 1 1.5 x 0. 170 1.5 7 16 1 . 90 140. 0 - 835 0.55 1 1.5 x 0. 170 1.5 8 16 1 1. 0 155.5 + 835 0. 14 1 1.5 x 0. 170 1.5 9 16 1 . 90 140. 0 - 835 0.55 1 1.5 x 0. 170 1.5 9R 16 1 . 90 140. 0 - 835 0.55 1 1.5 x 0. 170 1.5 8R 16 1 1. 0 155.5 + 835 0. 14 1 1.5 x 0. 170 1.5 7R 16 1 . 90 140. 0 - 835 0.55 1 1.5 x 0. 170 1.5 6R 16 1 1.0 155. 5 + 835 0. 14 1 1.5 x 0. 170 1.5 5R 18 1 . 90 124 . 4 - 1215 0.50 1 1.5 x 0. 178 1.5 4R 18 1 1. 0 138 . 3 + 1215 0. 16 1 1.5 x 0. 178 1. 5 3R 18 1 . 90 124 . 4 - 1692 0.70 1 1.5 x 0. 178 1.5 2DR 18 1 . 90 124. 4 - 555 0.23 1 1.5 x 0. 178 1. 5 2R 20 1 1. 0 238 . 5 + 4241 0.51 1 1.5 x 0. 185 2 . 0 WEB GROUPING #W2 (L) #W3 #W2 (R) > 2 .0 4. 0 2 . 0 **BRIDGING REQUIREMENTS** **WEIGHT,COST,TIME** ALLOW LYY STRESS SLENDER UNIT LABOR COST= 11.51 TOTAL WT= 98 .79 TOP CHORD= 8 . 5 FT 10.7 FT MATERIAL COST= 37. 05 TOTAL COST= 67 .34 BOT CHORD= 12 . 4 FT WT/FT= 4 . 94 LBS TOTAL TIME= 0. 012 1 ROW HORIZONTAL SURF AREA= 34.7 SQFT ABC #W2635-G15 JAPANESE BAPTIS THU, 26-MAR-2015 14 : 55:25 PAGE 005 094-15-0448 SUMMARY 2R ASD DESIGN J3 16K186/150 20- 0 0/0 J3 **SHORTSPAN JOIST DESIGN REQUIREMENTS** SJI SPECS VULCRAFT UTAH 17 . 1. 1 *** JOIST DESIGN INCLUDES SELF WT = 4. 8 PLF EXCEPT FOR MAIN UPLIFT CASES *** **** UNFACTORED LOADS **** MAIN TC UNIFORM (R) 186/150 20- 0 0/0 LOAD CASES GENERATED: 1= 1. 000D+1.000L **JOIST LAYOUT** WORK LENGTH = 19- 8 0/0 EFF DEPTH = 15.2923 BRNG DEPTH LT= 2 1/2 RT= 2 1/2 WP TCXL END PANEL VAR PANEL HALF PANELS VAR PANEL END PANEL WP TCXR 0- 2 0/0 2-10 0/0 1- 0 0/0 12 @ 1- 0 0/0 1- 0 0/0 2-10 0/0 0- 2 0/0 BCX HOLD BACK: LEFT STD RIGHT STD (STD EXT = 0- 4 0/0) VERT REPL WEBS 2DL 2- 0 0/0 2DR 2- 0 0/0 DEFLECTION MAINSPAN JOIST IXX STD TL LL (IN**4) CAMBER LIMITS (L/240) -0. 98 (L/360) -0. 66 0 1/8 MAXIMA -0. 43 -0.34 DEV 59. **SEAT DESIGN** SEC LENGTH SEC LENGTH LEFT 158 SEAT 0- 4 0/0 RIGHT 158 SEAT 0- 4 0/0 SEAT WELD: LEFT= 1 .2" STD ( 7.0" avbl) RIGHT= 1.2" STD ( 7 . 0" avbl) **CHORD DESIGN** CHORD FY = 50000. PSI SPAN/TCRY= 288 SPAN/BCRY= 378 SEC CHORD DESCRIPTION LENGTH CHRD GAP RYY LYY TC 152 L 1.50X1. 50X0. 113 20- 0 0/0 0 1/2" 0. 8167 3- 0 0/0 BC 101 L 1. 00X1. 00X0. 109 14- 8 0/0 0 1/2" 0. 6212 0- 0 0/0 TC REQ MP RATIOS GOV BC REQ MP RATIOS GOV MEM AXIAL K KL/R PP MP LC MEM AXIAL K KL/R PP MP LC 1 - 3868 1. 0 74 . 1 0.46 0.41 1 1 + 4591 IT 122 .3 0. 43 0.37 1 2 - 3547 1. 0 80.9 0.42 0.34 1 2 + 6091 1. 0 122 .3 0.53 0.49 1 3 - 5341 .75 60.6 0.42 0.58 1 3 + 6989 1. 0 122 . 3 0.58 0.57 1 4 - 5341 .75 60.6 0.51 0.58 1 4 + 7288 1. 0 122 .3 0.58 0.59 1 5 - 6540 .75 60.6 0.51 0.66 1 5 + 6989 1. 0 122 . 3 0.58 0.57 1 6 - 6540 .75 60.6 0.55 0. 66 1 6 + 6091 1. 0 122 . 3 0.53 0.49 1 7 - 7138 .75 60. 6 0.55 0.71 1 7 + 4591 1. 0 122 . 3 0. 43 0.37 1 8 - 7138 .75 60.6 0.57 0.71 1 9 - 7138 .75 60.6 0.57 0.71 1 10 - 7138 .75 60.6 0.55 0.71 1 11 - 6540 .75 60.6 0.55 0.66 1 12 - 6540 . 75 60. 6 0.51 0. 66 1 13 - 5341 .75 60. 6 0.51 0.58 1 ABC #W2635-G15 JAPANESE BAPTIS THU, 26-MAR-2015 14 :55:25 PAGE 006 094-15-0448 SUMMARY 2R ASD DESIGN J3 J3 TC REQ MP RATIOS GOV MEM AXIAL K KL/R PP MP LC 14 - 5341 . 75 60. 6 0.42 0.58 1 15 - 3547 1. 0 80. 9 0. 42 0.34 1 16 - 3868 1. 0 74 . 1 0. 46 0. 41 1 **WEB DESIGN** WEB FY = 50000. PSI END REACTION = 1876.2 LBS HR: TOP-LT MIN VERT SHEAR = 656.7 LBS REQ GOV REQD WELD HL WEB SEC QTY K KL/R AXIAL RATIO LC LEN x SIZE AVBL WELD CLIP 2 20 1 1. 0 238 .5 + 4241 0.51 1 1.5 x 0. 185 2 . 0 2DL 18 1 . 90 124. 4 - 555 0.23 1 1.5 x 0. 178 1.5 3 18 1 . 90 124. 4 - 1692 0.70 1 1.5 x 0. 178 1.5 4 18 1 1. 0 138 .3 + 1215 0. 16 1 1.5 x 0. 178 1.5 5 18 1 . 90 124. 4 - 1215 0.50 1 1.5 x 0. 178 1. 5 6 16 1 1.0 155. 5 + 835 0. 14 1 1.5 x 0. 170 1.5 7 16 1 . 90 140. 0 - 835 0.55 1 1.5 x 0. 170 1.5 8 16 1 1.0 155. 5 + 835 0. 14 1 1.5 x 0. 170 1.5 9 16 1 . 90 140. 0 - 835 0.55 1 1.5 x 0. 170 1.5 9R 16 1 . 90 140. 0 - 835 0.55 1 1.5 x 0. 170 1.5 8R 16 1 1.0 155. 5 + 835 0.14 1 1.5 x 0. 170 1.5 7R 16 1 . 90 140. 0 - 835 0.55 1 1.5 x 0. 170 1.5 6R 16 1 1.0 155.5 + 835 0. 14 1 1.5 x 0. 170 1.5 5R 18 1 . 90 124. 4 - 1215 0.50 1 1.5 x 0. 178 1. 5 4R 18 1 1.0 138. 3 + 1215 0.16 1 1.5 x 0. 178 1.5 3R 18 1 . 90 124. 4 - 1692 0.70 1 1.5 x 0. 178 1.5 2DR 18 1 . 90 124. 4 - 555 0.23 1 1.5 x 0. 178 1.5 2R 20 1 1. 0 238.5 + 4241 0. 51 1 1.5 x 0. 185 2 . 0 WEB GROUPING #W2 (L) #W3 #W2 (R) > 2 . 0 4 . 0 2 . 0 **BRIDGING REQUIREMENTS** **WEIGHT,COST,TIME** ALLOW LYY STRESS SLENDER UNIT LABOR COST= 11.51 TOTAL WT= 98 .79 TOP CHORD= 8 .5 FT 10.7 FT MATERIAL COST= 37. 05 TOTAL COST= 67 . 34 BOT CHORD= 12 . 4 FT WT/FT= 4 . 94 LBS TOTAL TIME= 0. 012 1 ROW HORIZONTAL SURF AREA= 34.7 SQFT ABC #W2635-G15 JAPANESE BAPTIS THU, 26-MAR-2015 14 :55:25 PAGE 007 094-15-0448 SUMMARY 2R ASD DESIGN J4 16K186/150 8- 9 0/0 J4 **SHORTSPAN JOIST DESIGN REQUIREMENTS** SJI SPECS VULCRAFT UTAH 17 . 1. 1 *** JOIST DESIGN INCLUDES SELF WT = 4 . 9 PLF EXCEPT FOR MAIN UPLIFT CASES *** **** UNFACTORED LOADS **** MAIN TC UNIFORM (R) 186/150 8- 9 0/0 LOAD CASES GENERATED: 1= 1 . 000D+1.000L **JOIST LAYOUT** WORK LENGTH = 8- 5 0/0 EFF DEPTH = 15.2923 BRNG DEPTH LT= 2 1/2 RT= 2 1/2 WP TCXL END PANEL VAR PANEL HALF PANELS VAR PANEL END PANEL WP TCXR 0- 2 0/0 2- 2 1/2 1- 0 0/0 2 @ 1- 0 0/0 1- 0 0/0 2- 2 1/2 0- 2 0/0 BCX HOLD BACK: LEFT STD RIGHT STD (STD EXT = 0- 4 0/0) VERT REPL WEBS 2DL 1- 4 1/2 2DR 1- 4 1/2 DEFLECTION MAINSPAN JOIST IXX STD TL LL (IN**4) CAMBER LIMITS (L/240) -0. 42 (L/360) -0.28 0 0/0 MAXIMA -0. 01 -0. 01 DEV 59. **SEAT DESIGN** SEC LENGTH SEC LENGTH LEFT 158 SEAT 0- 4 0/0 RIGHT 158 SEAT 0- 4 0/0 SEAT WELD: LEFT= 0.5" STD ( 7 .0" avbl) RIGHT= 0. 5" STD ( 7. 0" avbl) **CHORD DESIGN** CHORD FY = 50000. PSI SPAN/TCRY= 122 SPAN/BCRY= 161 SEC CHORD DESCRIPTION LENGTH CHRD GAP RYY LYY TC 152 L 1. 50X1. 50X0. 113 8- 9 0/0 0 1/2" 0.8167 3- 0 0/0 BC 101 L 1. 00X1. 00X0. 109 4- 8 0/0 0 1/2" 0. 6212 0- 0 0/0 TC REQ MP RATIOS GOV BC REQ MP RATIOS GOV MEM AXIAL K KL/R PP MP LC MEM AXIAL K KL/R PP MP LC 1 - 1265 1. 0 48 . 9 0.24 0. 06 1 1 + 1303 1. 0 122 . 3 0.11 0. 11 1 2 - 997 1. 0 80. 9 0.26 0. 09 1 2 + 1303 1.0 122 .3 0.11 0. 11 1 3 - 1303 .75 60. 6 0.26 0.26 1 4 - 1303 .75 60. 6 0.26 0.26 1 5 - 997 1. 0 80. 9 0.26 0. 09 1 6 - 1265 1 . 0 48 . 9 0.24 0. 06 1 ABC #W2635-G15 JAPANESE BAPTIS THU, 26-MAR-2015 14 :55:25 PAGE 008 094-15-0448 SUMMARY 2R ASD DESIGN J4 J4 **WEB DESIGN** WEB FY = 50000. PSI END REACTION = 803. 4 LBS HR: TOP-LT MIN VERT SHEAR = 281.2 LBS REQ GOV REQD WELD HL WEB SEC QTY K KL/R AXIAL RATIO LC LEN x SIZE AVBL WELD CLIP 2 18 1 IT 217. 6 + 1460 0.22 1 1.5 x 0. 178 1. 9 2DL 16 1 . 90 140. 0 - 440 0.29 1 1.5 x 0. 170 1.5 3 16 1 . 90 140. 0 - 495 0. 33 1 1.5 x 0. 170 1.5 4 16 1 . 90 140. 0 - 357 0.24 1 1.5 x 0. 170 1.5 4R 16 1 . 90 140. 0 - 357 0.24 1 1.5 x 0. 170 1. 5 3R 16 1 . 90 140.0 - 495 0.33 1 1.5 x 0.170 1. 5 2DR 16 1 . 90 140.0 - 440 0.29 1 1.5 x 0. 170 1. 5 2R 18 1 1. 0 217 . 6 + 1460 0.22 1 1.5 x 0.178 1. 9 WEB GROUPING #W2 (L) #W3 #W2 (R) > 1 .5 0. 0 1.5 **BRIDGING REQUIREMENTS** **WEIGHT,COST,TIME** LLOW LYY STRESS SLENDER UNIT LABOR COST= 9.37 TOTAL WT= 41. 61 SOP CHORD= 19. 9 FT 11. 6 FT MATERIAL COST= 15. 60 TOTAL COST= 39. 43 BOT CHORD= 12 . 4 FT WT/FT= 4.75 LBS TOTAL TIME= 0.010 0 ROWS HORIZONTAL SURF AREA 14. 4 SQFT ABC #W2635-G15 JAPANESE BAPTIS THU, 26-MAR-2015 14 : 55 :25 PAGE 009 094-15-0448 SUMMARY 2R ASD DESIGN J5 16K186/150 20- 0 0/0 J5 **SHORTSPAN JOIST DESIGN REQUIREMENTS** SJI SPECS VULCRAFT UTAH 17 . 1. 1 *** JOIST DESIGN INCLUDES SELF WT = 4 . 8 PLF EXCEPT FOR MAIN UPLIFT CASES *** **** UNFACTORED LOADS **** MAIN TC UNIFORM (R) 186/150 20- 0 0/0 LOAD CASES GENERATED: 1= 1. 000D+1. 000L **JOIST LAYOUT** WORK LENGTH = 19- 8 0/0 EFF DEPTH = 15.2923 BRNG DEPTH LT= 2 1/2 RT= 2 1/2 WP TCXL END PANEL VAR PANEL HALF PANELS VAR PANEL END PANEL WP TCXR 0- 2 0/0 2-10 0/0 1- 0 0/0 12 @ 1- 0 0/0 1- 0 0/0 2-10 0/0 0- 2 0/0 BCX HOLD BACK: LEFT STD RIGHT STD (STD EXT = 0- 4 0/0) VERT REPL WEBS 2DL 2- 0 0/0 2DR 2- 0 0/0 DEFLECTION MAINSPAN JOIST IXX STD TL LL (IN**4) CAMBER LIMITS (L/240) -0 . 98 (L/360) -0. 66 0 1/8 MAXIMA -0. 43 -0.34 DEV 59. **SEAT DESIGN** SEC LENGTH SEC LENGTH LEFT 158 SEAT 0- 4 0/0 RIGHT 158 SEAT 0- 4 0/0 SEAT WELD: LEFT= 1.2" STD ( 7.0" avbl) RIGHT= 1.2" STD ( 7. 0" avbl) **CHORD DESIGN** CHORD FY = 50000. PSI SPAN/TCRY= 288 SPAN/BCRY= 378 SEC CHORD DESCRIPTION LENGTH CHRD GAP RYY LYY TC 152 L 1. 50X1. 50X0. 113 20- 0 0/0 0 1/2" 0.8167 3- 0 0/0 BC 101 L 1. 00X1. 00X0. 109 14- 8 0/0 0 1/2" 0.6212 0- 0 0/0 TC REQ MP RATIOS GOV BC REQ MP RATIOS GOV MEM AXIAL K KL/R PP MP LC MEM AXIAL K KL/R PP MP LC 1 - 3868 1. 0 74 .1 0. 46 0. 41 1 1 + 4591 1. 0 122 . 3 0.43 0. 37 1 2 3547 1. 0 80. 9 0. 42 0.34 1 2 + 6091 1. 0 122 . 3 0.53 0. 49 1 3 - 5341 .75 60.6 0. 42 0.58 1 3 + 6989 1. 0 122 .3 0.58 0. 57 1 4 - 5341 .75 60.6 0.51 0.58 1 4 + 7288 1. 0 122 .3 0.58 0. 59 1 5 - 6540 .75 60. 6 0.51 0. 66 1 5 + 6989 1.0 122 .3 0.58 0. 57 1 6 - 6540 .75 60. 6 0.55 0. 66 1 6 + 6091 1. 0 122 .3 0.53 0. 49 1 7 - 7138 .75 60. 6 0.55 0.71 1 7 + 4591 1. 0 122 . 3 0. 43 0. 37 1 8 - 7138 .75 60. 6 0.57 0.71 1 9 - 7138 .75 60. 6 0.57 0.71 1 10 - 7138 .75 60. 6 0.55 0.71 1 11 - 6540 .75 60. 6 0.55 0. 66 1 12 - 6540 .75 60. 6 0.51 0. 66 1 13 - 5341 .75 60. 6 0.51 0.58 1 ABC #W2635-G15 JAPANESE BAPTIS THU, 26-MAR-2015 14 :55:25 PAGE 010 094-15-0448 SUMMARY 2R ASD DESIGN J5 J5 TC REQ MP RATIOS GOV MEM AXIAL K KL/R PP MP LC 14 - 5341 .75 60.6 0.42 0.58 1 15 - 3547 1. 0 80.9 0. 42 0. 34 1 16 - 3868 1. 0 74 . 1 0. 46 0. 41 1 **WEB DESIGN** WEB FY = 50000. PSI END REACTION = 1876.2 LBS HR: TOP-LT MIN VERT SHEAR = 656.7 LBS REQ GOV REQD WELD HL WEB SEC QTY K KL/R AXIAL RATIO LC LEN x SIZE AVBL WELD CLIP 2 20 1 1. 0 238 .5 + 4241 0. 51 1 1 .5 x 0. 185 2 .0 2DL 18 1 . 90 124. 4 - 555 0.23 1 1.5 x 0. 178 1.5 3 18 1 . 90 124. 4 - 1692 0.70 1 1.5 x 0. 178 1.5 4 18 1 1.0 138.3 + 1215 0. 16 1 1.5 x 0. 178 1.5 5 18 1 . 90 124.4 - 1215 0. 50 1 1.5 x 0. 178 1.5 6 16 1 1. 0 155.5 + 835 0. 14 1 1 .5 x 0. 170 1.5 7 16 1 . 90 140. 0 - 835 0. 55 1 1.5 x 0. 170 1.5 8 16 1 1. 0 155.5 + 835 0. 14 1 1.5 x 0.170 1.5 9 16 1 . 90 140.0 - 835 0.55 1 1.5 x 0.170 1.5 9R 16 1 . 90 140.0 - 835 0.55 1 1.5 x 0.170 1.5 8R 16 1 1.0 155.5 + 835 0. 14 1 1.5 x 0.170 1.5 7R 16 1 . 90 140. 0 - 835 0.55 1 1.5 x 0.170 1.5 6R 16 1 1.0 155.5 + 835 0. 14 1 1.5 x 0. 170 1.5 5R 18 1 . 90 124. 4 - 1215 0.50 1 1.5 x 0. 178 1.5 4R 18 1 1. 0 138.3 + 1215 0.16 1 1.5 x 0. 178 1. 5 3R 18 1 . 90 124 .4 - 1692 0.70 1 1.5 x 0. 178 1. 5 2DR 18 1 . 90 124. 4 - 555 0.23 1 1.5 x 0. 178 1.5 2R 20 1 1. 0 238. 5 + 4241 0.51 1 1.5 x 0. 185 2 . 0 WEB GROUPING #W2 (L) #W3 #W2 (R) > 2.0 4 .0 2 . 0 **BRIDGING REQUIREMENTS** **WEIGHT,COST,TIME** ALLOW LYY STRESS SLENDER UNIT LABOR COST= 11.51 TOTAL WT= 98 .79 TOP CHORD= 8 .5 FT 10.7 FT MATERIAL COST= 37 . 05 TOTAL COST= 67 .34 BOT CHORD= 12 . 4 FT WT/FT= 4 . 94 LBS TOTAL TIME= 0. 012 1 ROW HORIZONTAL SURF AREA= 34 . 7 SQFT ABC #W2635-G15 JAPANESE BAPTIS THU, 26-MAR-2015 14 :55:25 PAGE 011 094-15-0448 SUMMARY 2R ASD DESIGN J6 16K186/150 11- 3 0/0 J6 **SHORTSPAN JOIST DESIGN REQUIREMENTS** SJI SPECS VULCRAFT UTAH 17 . 1. 1 *** JOIST DESIGN INCLUDES SELF WT = 4 .7 PLF EXCEPT FOR MAIN UPLIFT CASES *** **** UNFACTORED LOADS **** MAIN TC UNIFORM (R) 186/150 11- 3 0/0 LOAD CASES GENERATED: 1= 1. 000D+1.000L **JOIST LAYOUT** WORK LENGTH = 10-11 0/0 EFF DEPTH = 15.2923 BRNG DEPTH LT= 2 1/2 RT= 2 1/2 WP TCXL END PANEL VAR PANEL HALF PANELS VAR PANEL END PANEL WP TCXR 0- 2 0/0 2- 5 1/2 1- 0 0/0 4 @ 1- 0 0/0 1- 0 0/0 2- 5 1/2 0- 2 0/0 BCX HOLD BACK: LEFT STD RIGHT STD (STD EXT = 0- 4 0/0) VERT REPL WEBS 2DL 1- 7 1/2 2DR 1- 7 1/2 DEFLECTION MAINSPAN JOIST IXX STD TL LL (IN**4) CAMBER LIMITS (L/240) -0.55 (L/360) -0.36 0 0/0 MAXIMA -0. 04 -0.03 DEV 59. **SEAT DESIGN** SEC LENGTH SEC LENGTH LEFT 158 SEAT 0- 4 0/0 RIGHT 158 SEAT 0- 4 0/0 SEAT WELD: LEFT= 0.7" STD ( 7.0" avbl) RIGHT= 0.7" STD ( 7 . 0" avbl) **CHORD DESIGN** CHORD FY = 50000. PSI SPAN/TCRY= 159 SPAN/BCRY= 209 SEC CHORD DESCRIPTION LENGTH CHRD GAP RYY LYY TC 152 L 1. 50X1.50X0. 113 11- 3 0/0 0 1/2" 0. 8167 3- 0 0/0 BC 101 L 1. 00X1. 00X0. 109 6- 8 0/0 0 1/2" 0. 6212 0- 0 0/0 TC REQ MP RATIOS GOV BC REQ MP RATIOS GOV MEM AXIAL K KL/R PP MP LC MEM AXIAL K KL/R PP MP LC 1 - 1814 IT 59.0 0.29 0. 11 1 1 + 1980 1. 0 122 . 3 0. 17 0. 16 1 2 - 1528 1. 0 80. 9 0.30 0. 11 1 2 + 2278 1. 0 122 . 3 0. 17 0. 18 1 3 - 2129 .75 60. 6 0.30 0.29 1 3 + 1980 1. 0 122 . 3 0. 17 0. 16 1 4 - 2129 .75 60.6 0.31 0.29 1 5 - 2129 .75 60. 6 0.31 0.29 1 6 - 2129 . 75 60. 6 0.30 0.29 1 7 - 1528 1. 0 80. 9 0.30 0. 11 1 8 - 1814 1. 0 59. 0 0.29 0. 11 1 ABC #W2635-G15 JAPANESE BAPTIS THU, 26-MAR-2015 14:55:25 PAGE 012 094-15-0448 SUMMARY 2R ASD DESIGN J6 J6 **WEB DESIGN** WEB FY = 50000. PSI END REACTION = 1040. 9 LBS HR: TOP-LT MIN VERT SHEAR = 364 .3 LBS REQ GOV REQD WELD HL WEB SEC QTY K KL/R AXIAL RATIO LC LEN x SIZE AVBL WELD CLIP 2 18 1 1.0 236.3 + 2043 0.30 1 1.5 x 0. 178 2 .0 2DL 16 1 . 90 140. 0 - 474 0.31 1 1.5 x 0. 170 1.5 3 16 1 . 90 140.0 - 732 0. 49 1 1.5 x 0. 170 1.5 4 16 1 1.0 155.5 + 463 0. 08 1 1.5 x 0. 170 1.5 5 16 1 . 90 140.0 - 463 0. 31 1 1.5 x 0.170 1.5 5R 16 1 . 90 140. 0 - 463 0. 31 1 1.5 x 0. 170 1.5 4R 16 1 1. 0 155.5 + 463 0. 08 1 1.5 x 0. 170 1.5 3R 16 1 . 90 140.0 - 732 0. 49 1 1.5 x 0. 170 1.5 2DR 16 1 . 90 140. 0 - 474 0. 31 1 1.5 x 0. 170 1.5 2R 18 1 1 . 0 236. 3 + 2043 0. 30 1 1.5 x 0. 178 2 .0 WEB GROUPING #W2 (L) #W3 #W2 (R) > 2 . 0 0. 0 2 .0 *BRIDGING REQUIREMENTS** **WEIGHT,COST,TIME** ALLOW LYY STRESS SLENDER UNIT LABOR COST= 9.72 TOTAL WT= 53. 06 TOP CHORD= 15. 6 FT 11. 6 FT MATERIAL COST= 19.89 TOTAL COST= 44 . 82 BOT CHORD= 12. 4 FT WT/FT= 4.72 LBS TOTAL TIME= 0. 010 0 ROWS HORIZONTAL SURF AREA= 18 .7 SQFT ABC #W2635-G15 JAPANESE BAPTIS THU, 26-MAR-2015 14 :55:25 PAGE 013 094-15-0448 SUMMARY 2R ASD DESIGN J7 16K186/150 14- 5 0/0 J7 **SHORTSPAN JOIST DESIGN REQUIREMENTS** SJI SPECS VULCRAFT UTAH 17 . 1. 1 *** JOIST DESIGN INCLUDES SELF WT = 4.8 PLF EXCEPT FOR MAIN UPLIFT CASES *** **** UNFACTORED LOADS **** MAIN TC UNIFORM (R) 186/150 14- 5 0/0 LOAD CASES GENERATED: 1= 1. 000D+1. 000L **JOIST LAYOUT** WORK LENGTH = 14- 1 0/0 EFF DEPTH = 15.2923 BRNG DEPTH LT= 2 1/2 RT= 2 1/2 WP TCXL END PANEL VAR PANEL HALF PANELS VAR PANEL END PANEL WP TCXR 0- 2 0/0 2- 0 1/2 1- 0 0/0 8 @ 1- 0 0/0 1- 0 0/0 2- 0 1/2 0- 2 0/0 BCX HOLD BACK: LEFT STD RIGHT STD (STD EXT = 0- 4 0/0) VERT REPL WEBS 2DL 1- 2 1/2 2DR 1- 2 1/2 DEFLECTION MAINSPAN JOIST IXX STD TL LL (IN**4) CAMBER LIMITS (L/240) -0.70 (L/360) -0.47 0 1/8 MAXIMA -0. 11 -0. 09 DEV 59. **SEAT DESIGN** SEC LENGTH SEC LENGTH LEFT 158 SEAT 0- 4 0/0 RIGHT 158 SEAT 0- 4 0/0 SEAT WELD: LEFT= 0. 8" STD ( 7 . 0" avbl) RIGHT= 0. 8" STD ( 7 . 0" avbl) **CHORD DESIGN** CHORD FY = 50000. PSI SPAN/TCRY= 206 SPAN/BCRY= 270 SEC CHORD DESCRIPTION LENGTH CHRD GAP RYY LYY TC 152 L 1. 50X1 . 50X0. 113 14- 5 0/0 0 1/2" 0. 8167 3- 0 0/0 BC 101 L 1. 00X1 . 00X0. 109 10- 8 0/0 0 1/2" 0. 6212 0- 0 0/0 TC REQ MP RATIOS GOV BC REQ MP RATIOS GOV MEM AXIAL K KL/R PP MP LC MEM AXIAL K KL/R PP MP LC 1 - 2067 1 . 0 42 . 1 0.28 0.08 1 1 + 2566 1. 0 122 . 3 0.24 0.21 1 2 - 1810 1. 0 80. 9 0.33 0.13 1 2 + 3461 1. 0 122 . 3 0.29 0.28 1 3 - 3014 .75 60. 6 0.33 0.25 1 3 + 3762 1. 0 122 . 3 0.29 0.30 1 4 - 3014 .75 60.6 0.37 0.25 1 4 + 3461 1. 0 122 . 3 0.29 0.28 1 5 - 3612 .75 60. 6 0.37 0.45 1 5 + 2566 1. 0 122 . 3 0.24 0.21 1 6 - 3612 . 75 60. 6 0.39 0.45 1 7 - 3612 . 75 60. 6 0.39 0.45 1 8 - 3612 . 75 60.6 0.37 0.45 1 9 - 3014 .75 60.6 0.37 0.25 1 10 - 3014 .75 60.6 0.33 0.25 1 11 - 1810 1. 0 80.9 0.33 0.13 1 12 - 2067 1. 0 42 .1 0.28 0.08 1 ABC #W2635-G15 JAPANESE BAPTIS THU, 26-MAR-2015 14:55:25 PAGE 014 094-15-0448 SUMMARY 2R ASD DESIGN J7 J7 **WEB DESIGN** WEB FY = 50000. PSI END REACTION = 1343. 6 LBS HR: TOP-LT MIN VERT SHEAR = 470 .2 LBS REQ GOV REQD WELD HL WEB SEC QTY K KL/R AXIAL RATIO LC LEN x SIZE AVBL WELD CLIP 2 16 1 1. 0 231. 0 + 2437 0. 46 1 1.5 x 0. 170 1. 8 2DL 16 1 . 90 140. 0 - 434 0.29 1 1.5 x 0. 170 1.5 3 16 1 . 90 140. 0 - 1224 0. 81 1 1.5 x 0. 170 1.5 4 16 1 1. 0 155. 5 + 725 0. 12 1 1.5 x 0. 170 1.5 5 16 1 . 90 140. 0 - 725 0. 48 1 1.5 x 0. 170 1. 5 6 16 1 1. 0 155. 5 + 598 0. 10 1 1.5 x 0. 170 1.5 7 16 1 . 90 140. 0 - 598 0.40 1 1. 5 x 0. 170 1. 5 7R 16 1 . 90 140. 0 - 598 0.40 1 1.5 x 0. 170 1. 5 6R 16 1 1. 0 155. 5 + 598 0. 10 1 1.5 x 0.170 1. 5 5R 16 1 . 90 140. 0 - 725 0.48 1 1.5 x 0.170 1. 5 4R 16 1 1. 0 155. 5 + 725 0. 12 1 1.5 x 0. 170 1. 5 3R 16 1 . 90 140. 0 - 1224 0.81 1 1.5 x 0. 170 1. 5 2DR 16 1 . 90 140. 0 - 434 0.29 1 1.5 x 0. 170 1.5 2R 16 1 1.0 231. 0 + 2437 0.46 1 1.5 x 0. 170 1. 8 WEB GROUPING #W2 (L) #W3 #W2 (R) > 3. 0 0. 0 3. 0 **BRIDGING REQUIREMENTS** **WEIGHT,COST,TIME** ALLOW LYY STRESS SLENDER UNIT LABOR COST= 10. 64 TOTAL WT= 69. 42 TOP CHORD= 12 . 0 FT 11 . 3 FT MATERIAL COST= 25. 98 TOTAL COST= 53. 51 BOT CHORD= 12 . 4 FT WT/FT= 4. 82 LBS TOTAL TIME= 0. 011 1 ROW HORIZONTAL SURF AREA= 25. 1 SQFT ABC #W2635-G15 JAPANESE BAPTIS THU, 26-MAR-2015 14:55:25 PAGE 015 094-15-0448 SUMMARY 2R ASD DESIGN J8 16K186/150 8- 9 0/0 J8 **SHORTSPAN JOIST DESIGN REQUIREMENTS** SJI SPECS VULCRAFT UTAH 17 . 1.1 *** JOIST DESIGN INCLUDES SELF WT = 4 . 9 PLF EXCEPT FOR MAIN UPLIFT CASES *** **** UNFACTORED LOADS **** MAIN TC UNIFORM (R) 186/150 8- 9 0/0 LOAD CASES GENERATED: 1= 1. 000D+1. 000L **JOIST LAYOUT** WORK LENGTH = 8- 5 0/0 EFF DEPTH = 15.2923 BRNG DEPTH LT= 2 1/2 RT= 2 1/2 WP TCXL END PANEL VAR PANEL HALF PANELS VAR PANEL END PANEL WP TCXR 0- 2 0/0 2- 2 1/2 1- 0 0/0 2 @ 1- 0 0/0 1- 0 0/0 2- 2 1/2 0- 2 0/0 BCX HOLD BACK: LEFT STD RIGHT STD (STD EXT = 0- 4 0/0) VERT REPL WEBS 2DL 1- 4 1/2 2DR 1- 4 1/2 DEFLECTION MAINSPAN JOIST IXX STD TL LL (IN**4) CAMBER LIMITS (L/240) -0. 42 (L/360) -0.28 0 0/0 MAXIMA -0. 01 -0. 01 DEV 59. **SEAT DESIGN** SEC LENGTH SEC LENGTH LEFT 158 SEAT 0- 4 0/0 RIGHT 158 SEAT 0- 4 0/0 SEAT WELD: LEFT= 0 . 5" STD ( 7 . 0" avbl) RIGHT= 0. 5" STD ( 7 . 0" avbl) **CHORD DESIGN** CHORD FY = 50000. PSI SPAN/TCRY= 122 SPAN/BCRY= 161 SEC CHORD DESCRIPTION LENGTH CHRD GAP RYY LYY TC 152 L 1. 50X1.50X0. 113 8- 9 0/0 0 1/2" 0. 8167 3- 0 0/0 BC 101 L 1. 00X1.00X0. 109 4- 8 0/0 0 1/2" 0. 6212 0- 0 0/0 TC REQ MP RATIOS GOV BC REQ MP RATIOS GOV MEM AXIAL K KL/R PP MP LC MEM AXIAL K KL/R PP MP LC - 1265 1. 0 48 . 9 0.24 0. 06 1 1 + 1303 1. 0 122.3 0. 11 0. 11 1 2 - 997 1. 0 80. 9 0.26 0.09 1 2 + 1303 1. 0 122.3 0. 11 0. 11 1 3 - 1303 .75 60. 6 0.26 0.26 1 4 - 1303 .75 60 . 6 0.26 0.26 1 5 - 997 1. 0 80. 9 0.26 0. 09 1 6 - 1265 1. 0 48 . 9 0 .24 0. 06 1 ABC #W2635-G15 JAPANESE BAPTIS THU, 26-MAR-2015 14:55:25 PAGE 016 094-15-0448 SUMMARY 2R ASD DESIGN J8 J8 **WEB DESIGN** WEB FY = 50000. PSI END REACTION = 803. 4 LBS HR: TOP-LT MIN VERT SHEAR = 281.2 LBS REQ GOV REQD WELD HL WEB SEC QTY K KL/R AXIAL RATIO LC LEN x SIZE AVBL WELD CLIP 2 18 1 1.0 217 . 6 + 1460 0.22 1 1. 5 x 0. 178 1. 9 2DL 16 1 . 90 140. 0 - 440 0.29 1 1.5 x 0. 170 1. 5 3 16 1 . 90 140. 0 - 495 0.33 1 1. 5 x 0. 170 1. 5 4 16 1 . 90 140. 0 - 357 0.24 1 1.5 x 0. 170 1. 5 4R 16 1 . 90 140. 0 - 357 0.24 1 1.5 x 0. 170 1 .5 3R 16 1 . 90 140. 0 - 495 0.33 1 1.5 x 0. 170 1.5 2DR 16 1 . 90 140. 0 - 440 0.29 1 1.5 x 0. 170 1.5 2R 18 1 1. 0 217. 6 + 1460 0.22 1 1 .5 x 0. 178 1. 9 WEB GROUPING #W2 (L) #W3 #W2 (R) > 1.5 0. 0 1.5 **BRIDGING REQUIREMENTS** **WEIGHT,COST,TIME** LLOW LYY STRESS SLENDER UNIT LABOR COST= 9.37 TOTAL WT= 41. 61 ,.OP CHORD= 19. 9 FT 11. 6 FT MATERIAL COST= 15. 60 TOTAL COST= 39. 43 BOT CHORD= 12 .4 FT WT/FT= 4 .75 LBS TOTAL TIME= 0. 010 0 ROWS HORIZONTAL SURF AREA= 14. 4 SQFT ABC #W2635-G15 JAPANESE BAPTIS THU, 26-MAR-2015 14 :55:25 PAGE 017 094-15-0448 SUMMARY 2R ASD DESIGN J9 16K186/150 20- 0 0/0 J9 **SHORTSPAN JOIST DESIGN REQUIREMENTS** SJI SPECS VULCRAFT UTAH 17 . 1. 1 *** JOIST DESIGN INCLUDES SELF WT = 4 . 8 PLF EXCEPT FOR MAIN UPLIFT CASES *** **** UNFACTORED LOADS **** MAIN TC UNIFORM (R) 186/150 20- 0 0/0 LOAD CASES GENERATED: 1= 1. 000D+1. 000L **JOIST LAYOUT** WORK LENGTH = 19- 8 0/0 EFF DEPTH = 15.2923 BRNG DEPTH LT= 2 1/2 RT= 2 1/2 WP TCXL END PANEL VAR PANEL HALF PANELS VAR PANEL END PANEL WP TCXR 0- 2 0/0 2-10 0/0 1- 0 0/0 12 @ 1- 0 0/0 1- 0 0/0 2-10 0/0 0- 2 0/0 BCX HOLD BACK: LEFT STD RIGHT STD (STD EXT = 0- 4 0/0) VERT REPL WEBS 2DL 2- 0 0/0 2DR 2- 0 0/0 DEFLECTION MAINSPAN JOIST IXX STD TL LL (IN**4) CAMBER LIMITS (L/240) -0 . 98 (L/360) -0. 66 0 1/8 MAXIMA -0. 43 -0.34 DEV 59. **SEAT DESIGN** SEC LENGTH SEC LENGTH LEFT 158 SEAT 0- 4 0/0 RIGHT 158 SEAT 0- 4 0/0 SEAT WELD: LEFT= 1.2" STD ( 7 . 0" avbl) RIGHT= 1.2" STD ( 7. 0" avbl) **CHORD DESIGN** CHORD FY = 50000. PSI SPAN/TCRY= 288 SPAN/BCRY= 378 SEC CHORD DESCRIPTION LENGTH CHRD GAP RYY LYY TC 152 L 1. 50X1. 50X0 . 113 20- 0 0/0 0 1/2" 0. 8167 3- 0 0/0 BC 101 L 1. 00X1. 00X0. 109 14- 8 0/0 0 1/2" 0. 6212 0- 0 0/0 TC REQ MP RATIOS GOV BC REQ MP RATIOS GOV MEM AXIAL K KL/R PP MP LC MEM AXIAL K KL/R PP MP LC 1 - 3868 IT 74 . 1 0.46 0. 41 1 1 + 4591 1. 0 122 . 3 0. 43 0. 37 1 2 - 3547 1. 0 80. 9 0.42 0.34 1 2 + 6091 1. 0 122 . 3 0. 53 0. 49 1 3 - 5341 .75 60. 6 0.42 0.58 1 3 + 6989 1. 0 122 . 3 0. 58 0.57 1 4 - 5341 .75 60. 6 0.51 0.58 1 4 + 7288 1.0 122 . 3 0. 58 0.59 1 5 - 6540 .75 60. 6 0.51 0. 66 1 5 + 6989 1.0 122 . 3 0. 58 0.57 1 6 - 6540 .75 60. 6 0.55 0. 66 1 6 + 6091 1.0 122 . 3 0.53 0. 49 1 7 - 7138 .75 60. 6 0.55 0.71 1 7 + 4591 1. 0 122 . 3 0. 43 0. 37 1 8 - 7138 .75 60 . 6 0.57 0.71 1 9 - 7138 .75 60. 6 0.57 0.71 1 10 - 7138 .75 60. 6 0.55 0.71 1 11 - 6540 .75 60. 6 0.55 0. 66 1 12 - 6540 . 75 60. 6 0.51 0. 66 1 13 - 5341 .75 60. 6 0.51 0.58 1 ABC #W2635-G15 JAPANESE BAPTIS THU, 26-MAR-2015 14 :55:25 PAGE 018 094-15-0448 SUMMARY 2R ASD DESIGN J9 J9 TC REQ MP RATIOS GOV MEM AXIAL K KL/R PP MP LC 14 - 5341 . 75 60. 6 0. 42 0.58 1 15 - 3547 1. 0 80. 9 0. 42 0.34 1 16 - 3868 1.0 74 . 1 0. 46 0. 41 1 **WEB DESIGN** WEB FY = 50000. PSI END REACTION = 1876.2 LBS HR: TOP-LT MIN VERT SHEAR = 656.7 LBS REQ GOV REQD WELD HL WEB SEC QTY K KL/R AXIAL RATIO LC LEN x SIZE AVBL WELD CLIP 2 20 1 1.0 238 . 5 + 4241 0.51 1 1.5 x 0. 185 2. 0 2DL 18 1 . 90 124. 4 - 555 0.23 1 1.5 x 0. 178 1.5 3 18 1 . 90 124. 4 - 1692 0.70 1 1.5 x 0. 178 1.5 4 18 1 1. 0 138.3 + 1215 0. 16 1 1.5 x 0. 178 1.5 5 18 1 . 90 124. 4 - 1215 0.50 1 1.5 x 0. 178 1.5 6 16 1 1 . 0 155.5 + 835 0. 14 1 1.5 x 0. 170 1.5 7 16 1 . 90 140. 0 - 835 0.55 1 1.5 x 0. 170 1.5 8 16 1 1. 0 155.5 + 835 0. 14 1 1.5 x 0.170 1.5 9 16 1 . 90 140.0 - 835 0.55 1 1.5 x 0. 170 1.5 9R 16 1 . 90 140.0 - 835 0. 55 1 1.5 x 0. 170 1.5 8R 16 1 1. 0 155.5 + 835 0. 14 1 1.5 x 0.170 1.5 7R 16 1 . 90 140.0 - 835 0.55 1 1.5 x 0.170 1.5 6R 16 1 1. 0 155.5 + 835 0. 14 1 1.5 x 0.170 1.5 5R 18 1 . 90 124.4 - 1215 0.50 1 1.5 x 0.178 1.5 4R 18 1 1.0 138 .3 + 1215 0. 16 1 1.5 x 0.178 1.5 3R 18 1 . 90 124 .4 - 1692 0.70 1 1.5 x 0.178 1.5 2DR 18 1 . 90 124 . 4 - 555 0.23 1 1.5 x 0.178 1.5 2R 20 1 1.0 238 .5 + 4241 0.51 1 1.5 x 0.185 2 .0 WEB GROUPING #W2 (L) #W3 #W2 (R) > 2 . 0 4. 0 2 .0 **BRIDGING REQUIREMENTS** **WEIGHT,COST,TIME** ALLOW LYY STRESS SLENDER UNIT LABOR COST= 11.51 TOTAL WT= 98.79 TOP CHORD= 8 .5 FT 10.7 FT MATERIAL COST= 37. 05 TOTAL COST= 67. 34 BOT CHORD= 12 . 4 FT WT/FT= 4. 94 LBS TOTAL TIME= 0.012 1 ROW HORIZONTAL SURF AREA= 34.7 SQFT I t ^, \- 7\7\7 4� coQ V p� Tit`�Oe '99 `�'y t D=16 0/0 3-0 3-0 HALF PANELS ` 14 @ 1-0 WORKLEN+4" = 20- 0 0/0 TCXL = 0- 0 0/0 TOP CHORD 2 L 1.50x1.50x0.113 TCXR = 0- 0 0/0 BCXL = 0- 4 0/0 BOTTOM CHORD 2 L 1.00x1.00x0.109 BCXR = 0- 4 0/0 WEB QTY SIZE WELD SIZE WEB QTY SIZE WELD SIZE 2 1 5/8 ROUND 1.5x0.185 9R 1 1/2 ROUND 1.5X0.170 2DL 1 9/16 ROUND 1.5X0.178 V5 DELETED 3 1 9/16 ROUND 1.5X0.178 8R 1 1/2 ROUND 1.5x0.170 4 1 9/16 ROUND 1.5x0.178 7R 1 1/2 ROUND 1.5X0.170 V2 DELETED V6 DELETED 5 1 9/16 ROUND 1.5x0.178 6R 1 1/2 ROUND 1.5X0.170 6 1 1/2 ROUND 1.5X0.170 SR 1 9/16 ROUND 1.5X0.178 V3 DELETED V7 DELETED 7 1 1/2 ROUND 1.5X0.170 4R 1 9/16 ROUND 1.5x0.178 8 1 1/2 ROUND 1.5x0.170 3R 1 9/16 ROUND 1.5x0.178 V4 DELETED 2DR 1 9/16 ROUND 1.5x0.178 9 1 1/2 ROUND 1.5x0.170 2R 1 5/8 ROUND 1.5X0.185 } $ MARK: J1 094-15-0448 SUMMARY 2R ABC #w2635-G15 JAPANESE BAPTIS THU, 26-MAR-2015 14:55:25 ^) h 1 0) 4� taQ \t / ?. ZX 1 �O� v E cP 9P X 0=16 0/0 3-0 3-0 HALF PANELS 14 @ 1-0 WORKLEN+4" = 20- 0 0/0 TCXL = 0- 0 0/0 TOP CHORD 2 L 1.50x1.50x0.113 TCXR = 0- 0 0/0 BCXL = 0- 4 0/0 BOTTOM CHORD 2 L 1.00x1.00x0.109 BCXR = 0- 4 0/0 WEB QTY SIZE WELD SIZE WEB QTY SIZE WELD SIZE 2 1 5/8 ROUND 1.5X0.185 9R 1 1/2 ROUND 1.5X0.170 2DL 1 9/16 ROUND 1.5X0.178 VS DELETED 3 1 9/16 ROUND 1.5X0.178 8R 1 1/2 ROUND 1.5X0.170 4 1 9/16 ROUND 1.5X0.178 7R 1 1/2 ROUND 1.5x0.170 v2 DELETED v6 DELETED 5 1 9/16 ROUND 1.5X0.178 6R 1 1/2 ROUND 1.5X0.170 6 1 1/2 ROUND 1.5x0.170 SR 1 9/16 ROUND 1.5x0.178 V3 DELETED V7 DELETED 7 1 1/2 ROUND 1.5X0.170 4R 1 9/16 ROUND 1.5x0.178 8 1 1/2 ROUND 1.5x0.170 3R 1 9/16 ROUND 1.5x0.178 v4 DELETED 2DR 1 9/16 ROUND 1.5X0.178 9 1 1/2 ROUND 1.5x0.170 2R 1 5/8 ROUND 1.5x0.185 MARK: J2 094-15-0448 SUMMARY 2R ABC #w2635—G15 JAPANESE BAPTIS THU, 26—MAR-2015 14:55:25 h 1 �� �Q a� O 2g 1 `'O� v E 8 9 �� 3p �'� 1 T D=16 0/0 3-0 3-0 HALF PANELS 14 @ 1-0 WORKLEN+4" = 20- 0 0/0 TCXL = 0- 0 0/0 TOP CHORD 2 L 1.50X1.50x0.113 TCXR = 0- 0 0/0 BCXL = 0- 4 0/0 BOTTOM CHORD 2 L 1.00X1.00x0.109 BCXR = 0- 4 0/0 WEB QTY SIZE WELD SIZE WEB QTY SIZE WELD SIZE 2 1 5/8 ROUND 1.5X0.185 9R 1 1/2 ROUND 1.5x0.170 2DL 1 9/16 ROUND 1.5X0.178 VS DELETED 3 1 9/16 ROUND 1.5X0.178 8R 1 1/2 ROUND 1.5x0.170 4 1 9/16 ROUND 1.5X0.178 7R 1 1/2 ROUND 1.5x0.170 V2 DELETED v6 DELETED 5 1 9/16 ROUND 1.5X0.178 6R 1 1/2 ROUND 1.5x0.170 6 1 1/2 ROUND 1.5x0.170 5R 1 9/16 ROUND 1.5x0.178 V3 DELETED V7 DELETED 7 1 1/2 ROUND 1.5x0.170 4R 1 9/16 ROUND 1.5x0.178 8 1 1/2 ROUND 1.5x0.170 3R 1 9/16 ROUND 1.5x0.178 V4 DELETED 2DR 1 9/16 ROUND 1.5x0.178 9 1 1/2 ROUND 1.5X0.170 2R 1 5/8 ROUND 1.5x0.185 MARK: 73 094-15-0448 SUMMARY 2R ABC #W2635-G15 JAPANESE BAPTIS THU, 26-MAR-2015 14:55:25 O< v ,P 0=16 0/0 2-4 1/2 2-4 1/2 HALF PANELS 4 @ 1-0 WORKLEN+4° = 8- 9 0/0 TCXL = 0- 0 0/0 TOP CHORD 2 L 1.50x1.50x0.113 TCXR = 0- 0 0/0 BCXL = 0- 4 0/0 BOTTOM CHORD 2 L 1.O0x1.00x0.109 BCXR = 0- 4 0/0 WEB QTY SIZE WELD SIZE WEB QTY SIZE WELD SIZE 2 1 9/16 ROUND 1.5x0.178 V2 DELETED 2DL 1 1/2 ROUND 1.5x0.170 4R 1 1/2 ROUND 1.5X0.170 3 1 1/2 ROUND 1.5x0.170 3R 1 1/2 ROUND 1.5x0.170 4 1 1/2 ROUND 1.5X0.170 2DR 1 1/2 ROUND 1.5x0.170 2R 1 9/16 ROUND 1.5x0.178 MARK: J4 094-15-0448 SUMMARY 2R ABC #w2635-G15 JAPANESE BAPTIS THU, 26-MAR-2015 14:55:25 0 ^) V A 0, V ..-■ <0"4- V C%'- 2. t Tr \5- /V -9c T D=16 0/0 3-0 3-0 HALF PANELS 14 @ 1-0 WORKLEN+4" = 20- 0 0/0 TCXL = 0- 0 0/0 TOP CHORD 2 L 1.50x1.50x0.113 TCXR = 0- 0 0/0 BCxL = 0- 4 0/0 BOTTOM CHORD 2 L 1.00x1.00x0.109 BCxR = 0- 4 0/0 WEB QTY SIZE WELD SIZE WEB QTY SIZE WELD SIZE 2 1 5/8 ROUND 1.5x0.185 9R 1 1/2 ROUND 1.5x0.170 2DL 1 9/16 ROUND 1.5X0.178 V5 DELETED 3 1 9/16 ROUND 1.5x0.178 8R 1 1/2 ROUND 1.5x0.170 4 1 9/16 ROUND 1.5x0.178 7R 1 1/2 ROUND 1.5x0.170 V2 DELETED V6 DELETED 5 1 9/16 ROUND 1.5x0.178 6R 1 1/2 ROUND 1.5x0.170 6 1 1/2 ROUND 1.5x0.170 5R 1 9/16 ROUND 1.5x0.178 V3 DELETED V7 DELETED 7 1 1/2 ROUND 1.5X0.170 4R 1 9/16 ROUND 1.5x0.178 8 1 1/2 ROUND 1.5x0.170 3R 1 9/16 ROUND 1.5x0.178 V4 DELETED 2DR 1 9/16 ROUND 1.5x0.178 9 1 1/2 ROUND 1.5x0.170 2R 1 5/8 ROUND 1.5x0.185 MARK: J5 094-15-0448 SUMMARY 2R ABC #W2635-G15 JAPANESE BAPTIS THU, 26-MAR-2015 14:55:25 / ‘) tS- C■.- 19- D=16 0/0 2-7 1/2 2-7 1/2 HALF PANELS 6 @ 1-0 WORKLEN+4" = 11- 3 0/0 TCXL = 0- 0 0/0 TOP CHORD 2 L 1.50x1.50x0.113 TCXR = 0- 0 0/0 BCXL = 0- 4 0/0 BOTTOM CHORD 2 L 1.00x1.00x0.109 BCXR = 0- 4 0/0 WEB QTY SIZE WELD SIZE WEB QTY SIZE WELD SIZE 2 1 9/16 ROUND 1.5X0.178 SR 1 1/2 ROUND 1.5x0.170 2DL 1 1/2 ROUND 1.5X0.170 v3 DELETED 3 1 1/2 ROUND 1.5x0.170 4R 1 1/2 ROUND 1.5x0.170 4 1 1/2 ROUND 1.5X0.170 3R 1 1/2 ROUND 1.5x0.170 v2 DELETED 2DR 1 1/2 ROUND 1.5X0.170 5 1 1/2 ROUND 1.5X0.170 2R 1 9/16 ROUND 1.5x0.178 MARK: J6 094-15-0448 SUMMARY 2R ABC #W2635-G15 JAPANESE BAPTIS THU, 26-MAR-2015 14:55:25 r V 6' .-% 0=16 0/0 2-2 1/2 2-2 1/2 HALF PANELS 10 @ 1-0 WORKLEN+4° = 14- 5 0/0 TCXL = 0- 0 0/0 TOP CHORD 2 L 1.50x1.50x0.113 TCxR = 0- 0 0/0 BCxL = 0- 4 0/0 BOTTOM CHORD 2 L 1.00x1.00x0.109 BCxR = 0- 4 0/0 WEB QTY SIZE WELD SIZE WEB QTY SIZE WELD SIZE 2 1 1/2 ROUND 1.5x0.170 7R 1 1/2 ROUND 1.5x0.170 2DL 1 1/2 ROUND 1.5X0.170 v4 DELETED 3 1 1/2 ROUND 1.5x0.170 6R 1 1/2 ROUND 1.5x0.170 4 1 1/2 ROUND 1.5x0.170 5R 1 1/2 ROUND 1.5x0.170 V2 DELETED v5 DELETED 5 1 1/2 ROUND 1.5x0.170 4R 1 1/2 ROUND 1.5x0.170 6 1 1/2 ROUND 1.5X0.170 3R 1 1/2 ROUND 1.5X0.170 V3 DELETED 2DR 1 1/2 ROUND 1.5X0.170 7 1 1/2 ROUND 1.5x0.170 2R 1 1/2 ROUND 1.5X0.170 MARK: J7 094-15-0448 SUMMARY 2R ABC #W2635-G15 JAPANESE BAPTIS THU, 26-MAR-2015 14:55:25 i t t 2 ^, b� v' �p� 19- O( v e D=16 0/0 2-4 1/2 2-4 1/2 HALF PANELS 4 @ 1-0 WORKLEN+4" = 8- 9 0/0 TCXL = 0- 0 0/0 TOP CHORD 2 L 1.50X1.50X0.113 TCXR = 0- 0 0/0 BCxL = 0- 4 0/0 BOTTOM CHORD 2 L 1.00X1.00x0.109 BCXR = 0- 4 0/0 WEB QTY SIZE WELD SIZE WEB QTY SIZE WELD SIZE 2 1 9/16 ROUND 1.5)(0.178 V2 DELETED 2DL 1 1/2 ROUND 1.5X0.170 4R 1 1/2 ROUND 1.5X0.170 3 1 1/2 ROUND 1.5X0.170 3R 1 1/2 ROUND 1.5X0.170 4 1 1/2 ROUND 1.5x0.170 2DR 1 1/2 ROUND 1.5x0.170 2R 1 9/16 ROUND 1.5x0.178 MARK: J8 094-15-0448 SUMMARY 2R ABC #w2635-G15 JAPANESE BAPTIS THU, 26-MAR-2015 14:55:25 2 1a� 1' `' 1 Vd) V �� �� s� a� .p "V 1R t D=16 0/0 3-0 3-0 HALF PANELS 14 @ 1-0 WORKLEN+4" = 20- 0 0/0 { TCXL = 0- 0 0/0 TOP CHORD 2 L 1.SOx1.50x0.113 TCXR = 0- 0 0/0 BCXL = 0- 4 0/0 BOTTOM CHORD 2 L 1.00x1.0OX0.109 BCXR = 0- 4 0/0 WEB QTY SIZE WELD SIZE WEB QTY SIZE WELD SIZE 2 1 5/8 ROUND 1.5x0.185 9R 1 1/2 ROUND 1.5x0.170 2DL 1 9/16 ROUND 1.5x0.178 V5 DELETED 3 1 9/16 ROUND 1.5X0.178 8R 1 1/2 ROUND 1.5x0.170 4 1 9/16 ROUND 1.5x0.178 7R 1 1/2 ROUND 1.5x0.170 V2 DELETED V6 DELETED 5 1 9/16 ROUND 1.5x0.178 6R 1 1/2 ROUND 1.5x0.170 6 1 1/2 ROUND 1.5x0.170 5R 1 9/16 ROUND 1.5x0.178 V3 DELETED v7 DELETED 7 1 1/2 ROUND 1.5x0.170 4R 1 9/16 ROUND 1.5x0.178 8 1 1/2 ROUND 1.5x0.170 3R 1 9/16 ROUND 1.5x0.178 V4 DELETED 2DR 1 9/16 ROUND 1.5X0.178 9 1 1/2 ROUND 1.5x0.170 2R 1 5/8 ROUND 1.5x0.185 MARK: J9 094-15-0448 SUMMARY 2R ABC #W2635-G15 JAPANESE BAPTIS THU, 26-MAR-2015 14:55:25 --- I Loar4"-Vt°e'Ac. ' 4 ?t1v.Iaop D77.4 ,, N(34i3 c to (3& I D-Cs*.i c, A- r-t if P F#-p ;�e., p cfr✓ La 4r� T. li Avn 6D ' 1 � t'h, 1 S ou►►� h FO — ..r n /. i O E-Gt R V I O/v\ l (CI c�, {�L�. O r BAY . O / � 9!rro rili Pw 4s f 1 1 1 a,2 Cam, 22,0 0.45 ki-F i ! i I ..� I I I I �� h 2 S,o O. i q C—�� 0,22 ki-F- " N E 1 I 1 1 0, 1 3 0 �" _ --�` 8PO4-A BP07-A —, I - —, f i- II i ... )K 409 G-r, c a 5 r u f3 k ctt mg GIRT t , r II s•-,,, .-ft --" 1 Lk 0 t .-., ‘A ikt. I- I LAS 6 17' 1 1 ....,} I 7._4...:0-...., BP04-A I / I % I�Ig}LGj,AI. ` / j 2 11 2 2 11 t 2 r__ � o I I I I 3B80P.ATE 24 al' 0� BP A PLATE �— 2 TE 378 II I 2 1 3/4 J/4 m N s I I I 1 -- — - '' 1111E n LAC 1 1 1 ,�1 . ro i I^�' r 31(✓1 - IN it� 1 1 I `u i I ,4 , 8 (L,,%.4TH` - ° gg N I ��U� I I ��`lt-+! 'Q I a BP04—A 8P05—A f_� 8 06—A ,• ,�1. 1‘.7()' I 3/8 PLACE 3/8 PLATE 1� PLATE BP07—A ' h I 37T—PLATE O. '-; � : I t 13P07-A 7 0 8 d a • At 1 „ I the t AD !.� S 9}I 17 5 4 7 2 t A9 _ i I i T - � C t Y I 1 I I n n n117 N p p eV w �'m I r BP,O-A BP,t-A1� I v"'i I N N N Mill 24 n �e ` 1+ --+-4 1 -1_ I 7 i l -,1 n I PORDIL FRAME -f� LIIC_ _ _ t GIRT UI GIRT LD - GIRT LPC- S, -L1�IE 5} 19'6} 20'0 / ,9'9' 53 I '1 a 0 © Q BP08—A BP09—q BP10—A BP11—A BP12—A area our T° our or srm 1 11,-1 3 8 PLATT-E 3/8 PLATE Q.1/24:5_.) 17r PLATE 373 PLATE LAO Ka 6t,+ ` RcvlcCV P j3,4sr< DL 7+ L.. 3.1ofZ icti4.. Pert 4," $etow FL,,,,k,/ ` ■ . 9.V). p:t8 ('. '' � 37/27937 • . . I I _i , I LOADING FRAME LINES 1, 4 LOADING FRAME LINES 2-3 LOADING COLIJNE A. BAY 3-4 CONDITION A C F CONDITION A C F CONDITION A e V H1 V V H1 V H1 V V H1 H2 V H1 V HI (kips) (kite) (kips) (kits) (kips) (kips) (kipe) (kips) (kips) (kips) (kips) (kips) (kips) (kips) (kips) - D +1.6 +0.4 +3.7 +2.3 -0.4 D +2..3 +0.7 +6.0 +3.3 -0.7 NA 0 +1.9 NA +2.2 NA C +0.5 +0.2 +1.9 +1.0 -0.2 C +1.0 +0.5 +3.7 +1.9 -0.5 NA $ H Tj"6 12 k.. +0.9 NA +0.9 NA -''H 6 hL +4.5 +0.1 +4.6 NA -0.1 N M,L'Ce' t) L. +L8 +0.1 +172 NA -0.1 NA 7V t L- q . +i.2 NA +1.2 NA )Y (1 e% L'- +6.3 +0.1 +612 NA -0.1 A r l(t �� +13.7 +0.2 +23.2 +0.1 -0.2 NA C NA NA NA NA , -C.4 -0.1 -0.8 -0.2 -0.2 -0.2 -0.1 L to +13 +129 to -1.7 L to +3.1 +24.4 to -3-i NA PORTAL FRAME L to NA to to +3.6 +6.8 +6.5 +12.6 +0.2 +0.2 +0.1 -0.2 -0.1 -0.2 -0.1 S +10.3 +2.1 +16.1 +6.5 -2.1 S +8.1 +3.9 +30.6 +15.7 -3.9 NA S to to to to +0.2 +0.1 +0.2 +0.1 -8.1 -7.7 -1.7 -8.8 -7.2 -0.8 -16.6 -44 -16-6 -8.6 w to to -20.7 -112 to W to to -27.1 -14.3 to NA W to to to to 1/1 +1.7 +55 +6.3 `- _ +1.3 +4.6 +6.3 kit +16.6 +4.8 +18.6 +8.6 H1 f -3.1 -8.] -2.3 -0.9 -2.4 -8.8 -7.2 -33.2 -0.8 -14.3 H1 fl -31.0 -14.7 -31.0 -17.3 IA C F E• to to to to to W to to -27.3 to to to /t A e E' to to to to i H2 v ID: W1500032A.01B +3-1 +8-3 +2.3 +0.9 +2.4 (at X braced boys) +1.3 +4-6 +4.5 +6.3 +14.3 112 V ID: W15G0032A01PPF1 +31.0 +14.6 +31.0 +17.4 All Wind reactions shown in the table above are based 08.1 -52 -1.2 -3.5 Alt Wind reactions shown in the table above or based on Ultimate Design Wind Speed and are unlactorod. E. 0/ I,ytS(t! to to to NA on Ultimate Design Wind Speed and are unicctored. 'Earthquake reaction* do not include any amplifications for M1 l 'Earthquake reactions do not include any amplifications for + A. 1 +52 +1.2 +3-5_ ovar3tron th which may or may not be required in the designrength which may a may not be required in the 9 Y Y eq design of column anchorage and foundation by other. H7 ��/� 1 1 -5.2 -13.5 -3.5 -10.0 design of column anchorage and foundation by other. 111 a horizontal force in the Alone of frame f t A C F E N�` It 0 to to to to Ht = horizontof lance in the plane of Trame H2 = horizontal force perpor�dreular to the plane of frame H2 at X braced bays) + .4 +118.1 +52 +13.5 +3.5 +10.0 H2 = horizontal force perpendicular to the plane of frame • V ID: W1500032A.OlA ( �'s) - NI Mind reactions shown in the table above ore hosed on lRUmate Design Wind Speed and are unfoctored. 'Earthquake reactions do not include any amplifications for overekrength which may or may not be required in the design of column anchorage and foundation by otherd. H1 = horizontal force in the plane of frame 1-12 = horizontal force perpenciculor to the plane of frame LOADING CURTAIN WALL AT FRAME LINE..,Y It LOADING CURTAIN WAIL AT FRAME LINEfs' I+ CONDITION B,C D E CONDITION B C D E V 112 V H2 V 112 V 112 V 112 V 112 V 112 V O 1 , (kips) (kips) (kips) (kips) (tripe) (kips) (kips) (kips) (kips) (kips) (kips) (kips) (kips) (kips) O +12 +0.1 +1.2 +0.1 +0.4 NA D +1.0 -0.1 +1.1 -0.1 +1.1 -0.1 +0.4 NA - -4.8 -7.1 -5.1 -7.8 -7.3 -3.7 -5.9 -4.0 -6.1' -4.3 -6.8 -6.6 I W to to to to +0.4 to W to to to to to to +0.4 to +6.0 +6.5 +6.5 +7.1 +6.6 +4.9 +6.5 +5.3 +6.7 +5.6 +7.4 4-7.3 1' +0.6 NA +0.7 NA +0.4 NA E. +0.6 NA +0.6 NA +0.7 NA +0.4 NA L +4.8 +0.9 +6.0 +0.9 +0.4 NA L +4.0 -0.6 +4.2 -0-8 +4.5 -0.7 +0.4 NA t- ''.\j l Vt S +10.1 +0.2 +5.7 +0.2 +0.4 NA S +10.1 -0.2 +10.1 -02 +6.5 -0.1 +0.4 NA • It° Ii;)11\r C +0.6 +0.1 +0.7 +0.1 NA NA C +0.5 -0.1 +0.5 -0.1 +0.6 -0.1 NA NA A , l R--(it-1'1(� R C(I'z (tOM l.:-/� C RL-Ld-+J M'p '}_ M l lY M D(. +9.2 NA +9.3 NA +0.4 NA MI r r M t.2- (2 v +9.2 NA +9.2 NA +9.3 NA +0.4 NA ■ a s � J U Q /L-I i t-1 141 A E In I 't Q H1�� ,,/ �,6 7� H7� �L 1 ` l I A B C 0 E F 9' f 1 G (A- +12.5 NA +12.6 NA +0.4 NA /1 A B C 0 E F I1LL t't, +12.5 NA +12.5 NA +12.6 NA +0.4 NA 142 v tD. WI 5G0032,k 01 B - 112 v 11 W1500032A.01 B 1 NI Wind reactions shown in the table above are based Al Wind reactions shown in the table above are based on Ultimate Design Wind Speed and are unfacto red. on tlltimnte Design Wind Speed and ore unfoctored. 'Earthquake reactions do not include any amplifications for •Earthquake reactions do not include any amplifications for overstrenglh which may or may not be required In the overstrength which may or may not be required In the design of column anchorage and foundation by other.. design of column anchorage and foundation by others. H1 = horizontal force in the plane of frame H1 = horizontal force in the plane of frame H2 = horizontal force perpendicular to the plane of frame H2 - horizontal force perpendicular to the plane of frame REACTION SCHEMATICS 35 . 38/27938 II I: i 1 MEMBER OUTSIDE FLG. WEB INSIDE FLG_ STARTING WEB ENDING WEB • NO. WIDTH/THICKNESS THICKNESS WIDTH/THICKNESS DEPTH (IN.) DEPTH (IN.) 1 10 6 X 0.3125 01188 6 X 0.3125 12.000 24,000 © 6 X 0.3125 0.2500 6 X 0.3125 24.000 24000 I 30 6 X 0.2500 0.2500 6 X 0.2600 24.000 24.000 40 E. X 0.2500 0.1644 6 X 0.2500 24.000 24.000 SPLICE BOLT TABLE 0 6 X 0.2500 0.1644 6 X 0.3125 24.000 24.000 • • 0 6 X 0.2500 0.1875 6 X 0.3125 24.000 24.000 SPLICE CITY SIZE DEPTH CLEAR AT SPLICE PLATE 512E 0 6 X 0.2500 0.1875 6 X 0.3125 24.000 24.000 • A 12 3/4 X 2 3/4 2'0 1/2 262 8 X 0.8250 © 6 X 0.2500 0.1644 6 X 0.2500 24.000 24.000 I B 6 3/4 X 2 2'0 9/18 21'4 7/8 8 x 0.5000 0 6 X 0.2500 0.164-4 6 X 0.2500 24.000 24.000 C 8 3/4 X 2 2'0 9/16 23'0 7/8 6 X 0.5000 10 6 X 0.2500 0.2188 6 X 0.2500 24.000 24.000 D 8 3/4 X 2 2'0 1/2 24'7 3/8 6 X 0.5000 - ' E 4 1/2 X 2 22'0 1/16 6 x 0.3750 11 6 X 0.2500 0.1644 6 X 0.2500 24.000 12.000 12 6 X 0.2500 0.1875 6 X 0.2500 11.000 11.000 X12 } 111'1 1 1 37'0 e 460 ie 5'2 i 29'7; 20 • 5'0(+- 1/16) o_ _ o O N O O N 'E 3L-3.10 & �EF3R-3.10 2'11 is 2'11 1e o , j J i O ( o N J CO, O O 1 IN. 0. U I h N �I N 1 m _ m m RR-0203 a •O` ® ' 1 O -III fr, RR-0202 RR-0201 0 O C :L-3.7 z E - L II FB-3 9... ∎1A c a In !)'` I1k �>4� _ r N N O 11 2 Ob :L-2.3 f . FBL-2.3 -i Ct 0 n i0 40 MIMI 'NI c UM - _ _ i0 RC-0201 RI-0201 RC-0202 J 71 1'06 1014 11 1'2 6� + 40'7 a TO CL OF COLUMN I 65'0 TO CL OF COLUMN + `1'2 111'0 OUT TO OUT OF GIRT LINE . O RIGID FRAME CROSS SECTION AT FL. 1, 4 0 NOTE: PRETENSIONED CONNECTIONS ARE REQUIRED. W15G0032AES01-02 •EF853L-3.10 - NOT REOUIRED AT FRAME UNE 4 COLUMN UPA_ F FRAME ID: W1300032A.01B 02/26/15 09:04 REFER TO DETAIL MF91AA ON SED-001. 0 •EFB53R-110 - NOT REOIIRED AT FRAME LINE 1 COLUMN UNE F - t' 39/27933 1. I MEMBER OUTSIDE FLG. WEB INSIDE fLG. STARTING WEB ENDING WEB NO WIDTH/THICKNESS THICKNESS WIDTH/THICKNESS DEPTH (IN.) DEPTH (IN.) • 0 8 X 0.3750 0.2188 8 X 0.3750 _ 12.000 26.000 0 8 X 0.3750 0.3125 8 X 0.3750 26.000 26.000 30 6 X 0.3125 0.2500 6 X 0.3750 32.000 30.06.3 0 6 X 0.2500 0.1875 6 X 0.3125 30.06.3 26.000 SPLICE BOLT TABLE Q 6 X 0.5000 0.2188 6 X 0.5000 26.000 26.000 SAUCE Ott SIZE DEPTH CLEAR AT SPLICE PLATE SIZE 06 X 0.5000 0.2188 6 X 0.5000 26.000 26.000 A 16 3/4 X 2 3/4 2'8 11/16 19'5 9/16 8 X 0.8250 CO 6 X 0.3750 0.1875 - 6 X 0.3125 26.000 26.000 8 8 3/4 x 2 2'3 21'2 5/8 5 x 0.5000 0 6 X 0.3750 0.1875 6 X 0.3750 26.000 26.000 C 10 3/4 X 2 3/4 2'3 217 5/8 6 x 0.6250 0 6 X 0.3125 0.1875 6 X 0.2500 26.000 26.000 0 10 3/4 X 2 2'2 3/4 22'10 3/4 6 X 0.5000 10 6 X 0.2500 0.2500 6 X 0.3125 28.000 28.000 E 10 3/4 X 2 3/4 2'2 9/16 24'5 1/16 6 X 0.6250 11 6 X 0.2500 0.1644 6 X 0.3125 28.000 12.000 F 4 1/2 X 2 21'9 13/16 6 X 0.3750 © 6 X 0.3750 0.1875 6 X 0.3750 12.000 12.000 12 2 111'1 6 35'8 30'0 6 9'11 116 52 4 29'54 20 O 6'0(4-- 1/16) b ro EFB53L-6.0 & EF853R-6-0 2'11 i6 2'11 16 N ,p i° I m r tl -r j i I m n b b V O r E i ,., M In I r m m * m m " 5 O , RR-0104 6 I T I O RR-0103 E o RR-0102 h f RR-0101 1 O D 18-4 11:1 T FBL-3.7 0 0 p ;q n 4--r 9e -.1-- r ,n i. N N O pp.. 11 N F. 40 !0 N b b N Q FB 2 _..p-F81-2.3 1© p o f tl tl M h b b b RC-0101 RI-0101 RC-0102 11 1'0 i 1'0 ab 12 1'2 41 + 40'7 i TO CL OF COLLIUN I 67'11 4 TO CL OF COWAN I �2 16 111'0 OUT TO OUT OF GIRT LINE 0 RIGID FRAME CROSS SECTION AT FL. 2-3 0 NOTE: PRETENSIONED CONNECTIONS ARE REQUIRED. W 1500032A ES01-03 *NOTE: FRAME BRACE BOTH SIDES AT SPECIFIED LOCATIONS (•) FRAME ID: W1500032k01A 02/25/15 16:24 REFER TO DETAIL MF91AA ON SED-001. 40/2744 PORTAL FRAME SPLICE BOLT TABLE SPLICE QTY SIZE DEPTH CLEAR AT SPLICE PLATE SIZE A 12 3/4 X 2 3/4 2'9 19.1 1/2 8 X 0.7500 B 14 1 X 3 1/4 2'9 19'0 1/4 8 X 0.7500 C WO 4 1/2 X 2 5 7/8 N/A N/A D 4 1/2 X 2 5 7/8 N/A N/A MEMBER OUTSIDE FLG. WEB INSIDE FLG. STARTING WEB ENDING WEB WIDTH/THICKNESS THICKNESS WIDTH/THICKNESS DEPTH (IN.) DEPTH (IN.) 0 8 X 0.6250 0.3750 B X 0.6250 16.750 16.750 Q 8 X 0.5000 0.2500 B X 0.5000 32.000 32.000 • • © 8 X 0.6250 0.3750 B X 0.6250 26.000 26.000 ,r_ C D r 1880 19.11 1/2BH l ESPR r 1B8058.-19.11 1/2HH S it. r 1138055=19.11 1/2HB- o Kr 1 it or PR-0301 O 4 L.,I lL� (0 I 1 . -- , 14411 is e. To o In $c lb g,G I), , • � I(A 1 ?.,0* i ill 4. c (,. X1-161/cfr • 11C(Z gc(2. I 84 (-2- 1; Q�,nl�� 0 -`� N $C 1 O O ID A* ri(I IX fps I gc.(Z$I'- . 8 c.1 ' $G{Z. ir4_rK to 1.-) '..1-t ' fr?( "(14.i * )t- II )r S G I ,S PC-0301 PC-0302- P619 - c--c, ncT�(,5 • 80Z35-18.6 1/4P1 80234=18.11 3/4P1 8011 15.8 3/8P1 (4) REQUIRED (4) REQUIRED (4) REQUIRED TYPICAL U.N. TYPICAL U.N. TYPICAL U.N. 51 19'6 z 20'0 19'6 i 5} a ..... a a- 1 i. 60'0 OUT TO OUT OF GIRT LINE . Si - 60C16-3.5 1/4NN S4 - C8A450 'I S2 - CBA� 1/8 SIDEWALL FRAMING PLAN AT LINE ('S"'` r 1TBOS2-19.11 1/2P1 r 1TBOS 19.11 1/2P1 ESPRH r 1T80$ 19.11 1/2P2 ( Ne--- BR7-24.3--s' � ./ \ NN ./ N i i S4 S4 1 N. ...// S4 S4 N.-N. i /N . i. iN. i N. S4 54 i N. S4 S4- 1 �, NN _ ` -PSS41-19.11 �.> - N , BR7-24.8-- r I S3- 53 \`N.N. ice'' S3 S3 N. i J / S2 52 ,/' \N S2 52 i . . i \1 J� S1 -1 S1 /,�' N. S1 -j S1 f i�tL' 80Z15-18.6 1/4R1 80213-18.11 3/4P1 80Z15-18.6 1/4P1 dt% • (5) REQUIRED 5) REQUIRED (5) REQUIRED 7' 1. TYPICAL U.N. TYPICAL U.N. TYPICAL U.N. 5� 19'6 Z 20'0 19'6 Z 5y 0 0 0 O i' 60'0 OUT TO OUT OF GIRT LINE _. S1 - 60C16-3.5 1/4NN S4 - CBA450 S2 - CBA440 SIDEWALL FRAMING PLAN AT LINE F NS3 - CBA-6.8 1/B 0A- RR-0203 c?4 . \%‘ . / -fa L - r ► r ^ ,c, RR-0202 i. 3'7 2 ' - _�.� w.d.� BOU2=5.4X1 RR-0201 • ° ' S41 S4 1 S4 1 S4 g 4' T � _� In y j tL -N o S4-I S4-«{ S4 d S4 • - 4 1} f ,{ lg. . 1 c.1� • *I . . o ,. 1 t7 �N N / T y'1 W,iZ 14-* 11'1�� �.IZ I n ' , 3 Iii yy ` __. I� S3 S3 S3 I 1 T �F T 1` cn . z Q�lZ N - _ T 1 o S2-) S2 H S2 S2 S2 . S2 #• 1< CO ! si -.1si -. si -..IS1 --1 S 1 S1 -. -{ 1 • r t � ' (EI-0101A \–EI-0102A EI-0103A ( "-EI-0104A RC-0202 W12X14 W12X1'r�RI-0201 W12X12F b, 4k W12X'4' RC-0201 iii h'2 L,ii g;I3 241 IIt 1 op�,I Fn(L Sloos ,y 1-, 80213-22.10 3/8P1 80Z13- 3.11'1/4P1 80Z�-19.10 3/4P1 BOZ14'–`19.10 3/4P1 8021 19.7 7/BP1 (5) REQUIRED (5) REQUIRED (4) REQUIRED (4) REQUIRED (4) REQUIRED TYPICAL U.N. TYPICAL U.N. TYPICAL U.N. TYPICAL U.N. TYPICAL U.N. 24'1 2 24'1 2 20'11 20'11 20'11 0 0 0 0 0 a r 111'0 OUT TO OUT OF GIRT LINE Z1 – 60Z14-12.9 l/16P1 S3 – CBA-6.8 1/B GABLE ANGLE GA-1 TYPICAL AT CORNERS S2 – 6001603.5 1/4NN EN[ WALLCB FAMING AT FRAME LINE 1 Lc J -\NIort. re.17 MLZ- _ !2'-v SC i4- t� I 1�1 act !-- ',C-,� (7.4- -1i1 . 13•4 c-110-1clp I 4. 6,a16 6.oLk...c.i. Gott..., FL; ;C lc' ! A n1 c a GL CAr I I Q'y RR-0203 w) Oc1'��� RR-0202 N+3'7 2 RR-0201 G 80U2-5.4X2 —��iC�— - III o In l t S4 S4 S4– S4 S4 S4 H -- 1 1 I I I I JJ II — a -° s • S4-1 S4H S4-1 S4 --I S41 S4–{ o "' I I I I I 1– o I I I n N 'c(0 � - - _ ` , • _ S3 S3 S3 S3 S3 S3 i• N S2 S2 S2 -I S2 –+ S2 -I S2 fO S1 � S1 S1 � 51 -1 S1 – S1 – r r In r ■ ■ –EI-0401 A EI-0402A "-EI-0403A –EI-0404A _ RC-0201 W12X.1 v �u S4G,L 2�42�1 - ' S G,4 W12X44 W12X14 RC-0202 I- ,, LQr�cl' To f'7 (� An; cct- . ,,dal i4i,o11 GAw+0l�. 8021.--19.7 7/8P2 80Z1(-44-19.10 3/4P1 802.1(.419.10 3/4P1 80Z13-23.1 1/4P1 80Z13-22.1013/8P2 CL4ThV t11-- (4) REQUIRED (4) REQUIRED (4) REQUIRED (5) REQUIRED (5) REQUIRED 1 TYPICAL U.N. TYPICAL U.N. TYPICAL U.N. TYPICAL U.N. TYPICAL U.N. 1 }912 P-ccr Hi 20'11 20'11 20'11 24'1 2 24'1 2 0 0 0 0 0 0 I111'0 OUT TO OUT OF GIRT LINE Z2 – 80214-12.9 1 16P2 S3 – CBA-6.8 1/6 GABLE ANGLE GA-1 TYPICAL AT CORNERS S1 – 50C16-3.5 1/4NN EN[ WALLCB FAMING AT FRAME LINE 4 S2 – CBA440 Al7p B12 i-1,N G 1}11,0VG G P-N O ti j Li Ni N - CO i BR5-22.8 - �CL-12 `��_ ���� �CL-12 CL-12-A7, 16 I I I 1'6 LAP(U.N.) 80216-22.11P1 80Z16-22.11P2 (3) REQUIRED (3) REQUIRED PICAL U.N. 1YPICAL U.N. 6 20'11 20'11 6 0 0 0 I42'10 OUT TO OUT OF PURIM LINE ROOF FRAMING PLAN W15G0032AES03-02 . 12C-w S c ANOp1- i '. BR5-23.4 CL-12 ,s- -CL 12 \ -- " / --- L--1-2 CL-12 m i .4 1'6 a 11'6 1'6 1 I 11'6 LAP(U.N.) LAP(U.N.) 80Z14-22.5P1 80216-23.11MM 80Z16-22.11BM (3) REQUIRED (3) REQUIRED (3) REQUIRED TYPICAL U.N. TYPICAL U.N. TYPICAL U.N. 6 I 20'5 20'11 20'11 2 52 0 0 0 0 1- 63'3 OUT TO OUT OF PURUN LINE ROOF FRAMING PLAN W 1500032A ES02-02 I-6---1,•.1 I D 1 � 4-740h Y 43/2794 '0 ABC Design Calculations Pamphlet 3uP2O 1 s-oc i F INTRODUCTION The information contained within this pamphlet is a technical description of an American Buildings Company metal building system. It represents an application of the most modern methods of mathematics and engineering to the design of a building system. Its purpose is to provide interested reviewers with necessary design calculations and other documentation required to readily verify the structural integrity of a building system. Figure 1 is a drawing of an American buildi ng system, illustrating typical load carrying members, i.e., rigid frames, endwalls, purlins, girts, bracing and panels. A clear span rigid frame building was selected for this purpose, however, any of American's other standard designs, as described in the American Buildings Company Standard Specifications, could have been used to illustrate these basic building components. All designs are in accordance with AISC or NASPEC specifications, as applicable. The stress distributions in all load carrying members are obtained by the most appropriate methods of the universally accepted elastic theory as applied to indeterminate structures. A computer is used for many of the complex and laborious design calculations. American's building systems are designed to meet the most severe conditions of loading as set forth by the specified building code. The combinations and applications of loads are incorporated into the design of a building and its components as required. Occasionally, special design conditions cannot be handled through one of our standard design formats. In these cases, special hand calculations will be included. Subsequent sections of this report present detailed design calculations and necessary explanations. These are: Section 2, Rigid Frame; Section 3, Column and Beam Endwall; Section 4, Purlins and Girts; Section 5, Roof and Wall Panels; and Section 6, Miscellaneous and Special Conditions. SUBJECT TO CHANGE WITHOUT NOTICE REVISED MAY 18,2008 061BC Section 1 Page 1 44/27944 ABC Design Calculations Pamphlet CLEAR SPAN RIGID FRAME BUILDING UR�I�S # >-' / _,.. .„-- 4,010AN _,, ,._ '''--- .444114 ,7 v ' .:. -<'' '' 40/ P II , ��` r S • , %IP±Il 9!! I' , 2 I+I� II o F��E i,. . III ����. ��°�,.,>. 01 �mi III it LNG G, NIA&-Li- FIGURE 1 SUBJECT TO CHANGE WITHOUT NOTICE REVISED MAY 18,2008 0618C Section 1 Page 2 45/27945 ABC Design Calculations Pamphlet SELECTED REFERENCES 1) American Institute of Steel Construction. Steel Construction Manual . Chicago, Ill: American Institute of Steel Construction. 2) American Iron and Steel Institute. North American Specification for the Design of Cold- Formed Steel Structural Members; Commentary on the North American Specification for the Design of Cold-Formed Steel Structural Members . Washington, D.C.: American Iron and Steel Institute. 3) Fritz Engineering Laboratory and Lynn S. Beedle. Structural Steel Design. New York: Ronald Press Co, 1964. 4) Griffiths, John D. Single Span Rigid Frames in Steel . New York: American Institute of Steel Construction, 1948. 5) Metal Building Manufacturers Association. Metal Building Systems Manual. Cleveland, Ohio: Metal Building Manufacturers Association. SUBJECT TO CHANGE WITHOUT NOTICE REVISED NOVEMBER 30,2011 061BC Section 1 Page 3 46/27946 SECTION 2 RIGID FRAME 47/27947 r. -Vw AMERICAN BUILDINGS COMPANY A PItJCCI R COMPANY MSA 43. 0 Page 1 of 36 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A. 01A 02/26/15 15: 44 : 39 STEEL FRAME ANALYSIS AND DESIGN BY THE DIRECT STIFFNESS METHOD BY THE 2010 AISC 360-10 SPECIFICATION FOR STRUCTURAL STEEL BUILDINGS WITH STABILITY DESIGN BY THE DIRECT ANALYSIS METHOD BUILDING DESCRIPTION - - RF FL 2-3 W15G0032A FRAME WIDTH BAY SPACING ROOF SLOPES INT. COLUMNS MEMBERS NODES 111.000 ft. 19.600 ft. 1 1 12 13 LEFT WALL SLOPE W/VERT. GIRT DEPTH GIRT SPACING(S) 0.000/ 12.0 1.50 in. 2 @ 48.00 in. 1 @ 78.00 in. 1 @ 60.00 in. 1 @ 48.00 in. NODE LOCATION WEB DEPTH CONNECTION BASE 1 0.000 ft. 12.000 in. PINNED SPLICE 2 19.886 ft. 26.000 in. RIGID EAVE 3 23.500 ft. 26.000 in. RIGID ROOF SLOPE 1 SLOPE W/HORIZ. PURLIN DEPTH TYP. PURLIN SPACE 0.500/ 12.0 8.00 in. 35.51 in. NODE LOCATION WEB DEPTH CONNECTION LEFT END 3 -0.000 ft. 32.000 in. RIGID SPLICE 4 11.833 ft. 30.053 in. RIGID SPLICE 5 31.833 ft. 26.000 in. RIGID SPLICE 6 41.788 ft. 26.000 in. RIGID SPLICE 8 51.833 ft. 26.000 in. RIGID SPLICE 9 71.833 ft. 26.000 in. RIGID SPLICE 10 91.833 ft. 26.000 in. RIGID RIGHT END 11 111.000 ft. 26.000 in. RIGID RIGHT WALL SLOPE W/VERT. GIRT DEPTH GIRT SPACING(S) 0.000/ 12.0 1.50 in. 2 @ 48.00 in. 1 @ 78.00 in. 2 @ 60.00 in. 1 @ 43.50 in. NODE LOCATION WEB DEPTH CONNECTION EAVE 11 28.125 ft. 28.000 in. RIGID SPLICE 12 24.810 ft. 28.000 in. RIGID BASE 13 0.000 ft. 12.000 in. PINNED INTERIOR COLUMN(S) X LOCATION/ NODE BASE ELEV. COL. DEPTH CONNECTION 1 TOP 6 41.833 ft. 12.000 in. PINNED 48/27948 MSA 43. 0 Page 2 of 36 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A. 01A 02/26/15 15: 44 : 39 BASE 7 0.000 ft. 12.000 in. PINNED 49/27949 MSA 43. 0 Page 3 of 36 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A. 01A 02/26/15 15: 44 : 39 MEMBER SIZES OUTER FLANGE WEB INNER FLANGE WEB-TO-FLANGE YIELD STRESS MEMBER WIDTH THICKNESS THICKNESS WIDTH THICKNESS WELD FLANGE WEB (inches) (inches) (inches) (inches) (ksi) (ksi) 1 8.00 X 0.3750 0.2188 8.00 X 0.3750 0.1875 55.0 55.0 2 8.00 X 0.3750 0.3125 8.00 X 0.3750 0.1875 55.0 55.0 3 6.00 X 0.3125 0.2500 6.00 X 0.3750 0.1875 55.0 55.0 4 6.00 X 0.2500 0.1875 6.00 X 0.3125 0.1875 55.0 55.0 5 6.00 X 0.5000 0.2188 6.00 X 0.5000 0.1875 55.0 55.0 6 6.00 X 0.3750 0.1875 6.00 X 0.3750 0.1875 55.0 55.0 7 6.00 X 0.5000 0.2188 6.00 X 0.5000 0.1875 55.0 55.0 8 6.00 X 0.3750 0.1875 6.00 X 0.3125 0.1875 55.0 55.0 9 6.00 X 0.3750 0.1875 6.00 X 0.3750 0.1875 55.0 55.0 10 6.00 X 0.3125 0.1875 6.00 X 0.2500 0.1875 55.0 55.0 11 6.00 X 0.2500 0.2500 6.00 X 0.3125 0.1875 55.0 55.0 12 6.00 X 0.2500 0.1644 6.00 X 0.3125 0.1250 55.0 55.0 FRAME SELF-WEIGHT AS APPLIED DEAD LOAD MEMBER MEMBER WEIGHT CONNECTION WEIGHT (lbs) (lbs) 1 687.0 2 77.9 137.4 3 429.6 4 587.3 117.9 5 405.1 117.9 6 0.0 7 408.6 8 618.2 88.4 9 644.8 10 507.6 132.7 11 50.3 12 562.2 Total: 4978.8 594.2 50/27950 MSA 43. 0 Page 4 of 36 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A. 01A 02/26/15 15: 44 : 39 NODE COORDINATES NODE X Y X OUT OF PLUMB (in. ) (in. ) (0.003xY) (in. ) 1 8.00 0.00 +/- 0.0000 2 15.00 238.63 +/- 0.7159 3 15.00 258.10 +/- 0.7743 4 142.62 264.40 +/- 0.7932 5 382.54 276.42 +/- 0.8293 6 502.00 281.40 +/- 0.8442 7 502.00 0.00 +/- 0.0000 8 622.54 286.42 +/- 0.8593 9 862.54 296.42 +/- 0.8893 10 1102.54 306.42 +/- 0.9193 11 1316.00 315.31 +/- 0.9459 12 1316.00 297.72 +/- 0.8932 13 1324.00 0.00 +/- 0.0000 51/27951 MSA 43.0 Page 5 of 36 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A. 01A 02/26/15 15: 44 : 39 LOAD CASE 1 : D No Stress Check; No Deflection Limits DEAD LOAD = 2.50 psf LOAD CASE 2 : D+C No Stress Check; No Deflection Limits DEAD LOAD = 5.50 psf LOAD CASE 3 : MEZD No Stress Check; No Deflection Limits CONCENTRATED LOADS * * LOAD COMPONENTS LOAD NO. LINE NO. * LOCATION FLG SIDE * HORIZONTAL VERTICAL MOMENT * (ft.) * (kips) (kips) (kip-ft) 1 1 11.50 Inner Flg 0.00 -10.00 0.00 2 -1 11.50 Neutral Axis 0.00 -17.00 0.00 LOAD CASE 4 : XMEZ No Stress Check; No Deflection Limits CONCENTRATED LOADS * * . LOAD COMPONENTS LOAD NO. LINE NO. * LOCATION FLG SIDE * HORIZONTAL VERTICAL MOMENT * (ft.) * (kips) (kips) (kip-ft) 1 1 11.50 Inner Flg 0.00 -14.00 0.00 2 -1 11.50 Neutral Axis 0.00 -23.00 0.00 LOAD CASE 5 : LEU- No Stress Check; L/180 Vertical Deflection Limit LIVE LOAD = 20.00 psf LOAD CASE 6 : L No Stress Check; L/180 Vertical Deflection Limit LIVE LOAD = 12.00 psf LOAD CASE 7 : LPAFN1-- No Stress Check; L/90 Vertical Deflection Limit * * HORIZONTAL * VERTICAL DISTRIBUTED LOADS * START END * LOAD INTENSITY * LOAD INTENSITY LOAD NO. LINE NO. * LOCATION LOCATION * AT START AT END * AT START AT END * (ft.) (ft. ) * (psf) (psf) * (psf) (psf) 1 2 0.00 41.83 0.00 0.00 -0.00 -0.00 2 2 41.83 111.00 0.00 0.00 -12.00 -12.00 LOAD CASE 8 : LPAFN2- No Stress Check; L/90 Vertical Deflection Limit * * HORIZONTAL * VERTICAL DISTRIBUTED LOADS * START END * LOAD INTENSITY * LOAD INTENSITY LOAD NO. LINE NO. * LOCATION LOCATION * AT START AT END * AT START AT END * (ft. ) (ft. ) * (psf) (psf) * (psf) (psf) 1 2 0.00 41.83 0.00 0.00 -12.00 -12.00 2 2 41.83 111.00 0.00 0.00 -0.00 -0.00 52/27952 MSA 43 .0 Page 6 of 36 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A. 01A 02/26/15 15: 44 : 39 LOAD CASE 9 : LPDFN1- No Stress Check; L/90 Vertical Deflection Limit * * HORIZONTAL * VERTICAL DISTRIBUTED LOADS * START END * LOAD INTENSITY * LOAD INTENSITY LOAD NO. LINE NO. * LOCATION LOCATION * AT START AT END * AT START AT END * (ft. ) (ft. ) * (psf) (psf) * (psf) (psf) 1 2 0.00 41.83 0.00 0.00 -12.00 -12.00 2 2 41.83 111.00 0.00 0.00 -12.00 -12.00 LOAD CASE 10 : SEU- No Stress Check; H/60 Horizontal Deflection Limit; L/180 Vertical Deflection Limit LIVE LOAD = 25.00 psf LOAD CASE 11 : S No Stress Check; H/60 Horizontal Deflection Limit; L/180 Vertical Deflection Limit LIVE LOAD = 25.00 psf LOAD CASE 12 : SPEFH1- No Stress Check; H/60 Horizontal Deflection Limit; L/180 Vertical Deflection Limit * * HORIZONTAL * VERTICAL DISTRIBUTED LOADS * START END * LOAD INTENSITY * LOAD INTENSITY LOAD NO. LINE NO. * LOCATION LOCATION * AT START AT END * AT START AT END * (ft. ) (ft. ) * (psf) (psf) * (psf) (psf) 1 2 0.00 48.25 0.00 0.00 -15.75 -15.75 2 2 48.25 111.00 0.00 0.00 -7.88 -7.88 LOAD CASE 13 : SPEFH2- No Stress Check; H/60 Horizontal Deflection Limit; L/180 Vertical Deflection Limit * * HORIZONTAL * VERTICAL DISTRIBUTED LOADS * START END * LOAD INTENSITY * LOAD INTENSITY LOAD NO. LINE NO. * LOCATION LOCATION * AT START AT END * AT START AT END * (ft. ) (ft. ) * (psf) (psf) * (psf) (psf) 1 2 0.00 48.25 0.00 0.00 -7.88 -7.88 2 2 48.25 111.00 0.00 0.00 -15.75 -15.75 LOAD CASE 14 : SPEHF1- No Stress Check; H/60 Horizontal Deflection Limit; L/180 Vertical Deflection Limit * * HORIZONTAL * VERTICAL DISTRIBUTED LOADS * START END * LOAD INTENSITY * LOAD INTENSITY LOAD NO. LINE NO. * LOCATION LOCATION * AT START AT END * AT START AT END * (ft. ) (ft. ) * (psf) (psf) * (psf) (psf) 1 2 0.00 48.25 0.00 0.00 -7.88 -7.88 2 2 48.25 111.00 0.00 0.00 -15.75 -15.75 LOAD CASE 15 : - SPEHF2- No Stress Check; H/60 Horizontal Deflection Limit; L/180 Vertical Deflection Limit * * HORIZONTAL * VERTICAL DISTRIBUTED LOADS * START END * LOAD INTENSITY * LOAD INTENSITY LOAD NO. LINE NO. * LOCATION LOCATION * AT START AT END * AT START AT END * (ft. ) (ft. ) * (psf) (psf) * (psf) (psf) 53/27953 MSA 43.0 Page 7 of 36 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A. 01A 02/26/15 15: 44 : 39 1 2 0.00 48.25 0.00 0.00 -15.75 -15.75 2 2 48.25 111.00 0.00 0.00 -7.88 -7.88 LOAD CASE 16 : SPDFH1- No Stress Check; H/60 Horizontal Deflection Limit; L/180 Vertical Deflection Limit * * HORIZONTAL * VERTICAL DISTRIBUTED LOADS * START END * LOAD INTENSITY * LOAD INTENSITY LOAD NO. LINE NO. * LOCATION LOCATION * AT START AT END * AT START AT END * (ft.) (ft. ) * (psf) (psf) * (psf) (psf) 1 2 0.00 48.25 0.00 0.00 -15.75 -15.75 2 2 48.25 111.00 0.00 0.00 -15.75 -15.75 LOAD CASE 17 : WL^ No Stress Check; H/18 Horizontal Deflection Limit; L/55 Vertical Deflection Limit WIND LOAD = 25.76 psf C1= -0.63; C2= -0.87; C3= -0.63 LOAD CASE 18 : WLX+^ No Stress Check; H/18 Horizontal Deflection Limit; L/55 Vertical Deflection Limit WIND LOAD = 25.76 psf Cl= -0.63; C2= -0.87; C3= -0.63 CONCENTRATED LOADS * * LOAD COMPONENTS LOAD NO. LINE NO. * LOCATION FLG SIDE * HORIZONTAL VERTICAL MOMENT * (ft.) * (kips) (kips) (kip-ft) 1 3 27.46 Neutral Axis 0.00 -18.90 0.00 -14.30 (out-of-plane) LOAD CASE 19 : WLX-^ No Stress Check; H/18 Horizontal Deflection Limit; L/55 Vertical Deflection Limit WIND LOAD = 25.76 psf Cl= -0.63; C2= -0.87; C3= -0.63 CONCENTRATED LOADS * * LOAD COMPONENTS LOAD NO. LINE NO. * LOCATION FLG SIDE * HORIZONTAL VERTICAL MOMENT * (ft.) * (kips) (kips) (kip-ft) 1 3 0.50 Neutral Axis 0.00 18.90 0.00 -14.30 (out-of-plane) LOAD CASE 20 : W1-> No Stress Check; H/18 Horizontal Deflection Limit; L/55 Vertical Deflection Limit WIND LOAD = 25.76 psf Cl= 0.58; C2= -0.51; C3= -0.11 LOAD CASE 21 : W1<- No Stress Check; H/18 Horizontal Deflection Limit; L/55 Vertical Deflection Limit WIND LOAD = 25.76 psf C1= -0.11; C2= -0.19; C3= 0.58 LOAD CASE 22 : W2-> No Stress Check; H/18 Horizontal Deflection Limit; L/55 Vertical Deflection Limit WIND LOAD = 25.76 psf Cl= 0.58; C2= -0.19; C3= -0.11 LOAD CASE 23 : W2<- No Stress Check; H/18 Horizontal Deflection Limit; L/55 Vertical Deflection Limit 54/27954 MSA 43. 0 Page 8 of 36 Job:W15GO032A C: \ABCP\FRAMES\W15G0032A. O1A 02/26/15 15: 44 : 39 WIND LOAD = 25.76 psf Cl= -0.11; C2= -0.51; C3= 0.58 LOAD CASE 24 : W3-> No Stress Check; H/18 Horizontal Deflection Limit; L/55 Vertical Deflection Limit WIND LOAD = 25.76 psf Cl= -0.27; C2= -0.51; C3= -0.27 LOAD CASE 25 : W3<- No Stress Check; H/18 Horizontal Deflection Limit; L/55 Vertical Deflection Limit WIND LOAD = 25.76 psf C1= -0.27; C2= -0.19; C3= -0.27 LOAD CASE 26 : W4-> No Stress Check; H/18 Horizontal Deflection Limit; L/55 Vertical Deflection Limit WIND LOAD = 25.76 psf C1= 0.22; C2= -0.87; C3= -0.47 LOAD CASE 27 : W4<- No Stress Check; H/18 Horizontal Deflection Limit; L/55 Vertical Deflection Limit WIND LOAD = 25.76 psf C1= -0.47; C2= -0.55; C3= 0.22 LOAD CASE 28 : E-> No Stress Check; H/20 Horizontal Deflection Limit CONCENTRATED LOADS * * LOAD COMPONENTS LOAD NO. LINE NO. * LOCATION FLG SIDE * HORIZONTAL VERTICAL MOMENT * (ft. ) * (kips) (kips) (kip-ft) 1 3. 23.50 Neutral Axis 4.80 0.00 0.00 2 3 28.13 Neutral Axis 4.80 0.00 0.00 3 1 11.50 Neutral Axis 10.00 0.00 0.00 LOAD CASE 29 : E<- No Stress Check; H/20 Horizontal Deflection Limit CONCENTRATED LOADS * * LOAD COMPONENTS LOAD NO. LINE NO. * LOCATION FLG SIDE * HORIZONTAL VERTICAL MOMENT * (ft. ) * (kips) (kips) (kip-ft) 1 1 23.50 Neutral Axis -4.80 0.00 0.00 2 3 28.13 Neutral Axis -4.80 0.00 0.00 3 1 11.50 Neutral Axis -10.00 0.00 0.00 LOAD CASE 30 : ELX+^ No Stress Check; H/20 Horizontal Deflection Limit CONCENTRATED LOADS * * LOAD COMPONENTS LOAD NO. LINE NO. * LOCATION FLG SIDE * HORIZONTAL VERTICAL MOMENT * (ft. ) * (kips) (kips) (kip-ft) 1 3 27.46 Neutral Axis 0.00 -13.50 0.00 -10.00 (out-of-plane) LOAD CASE 31 : ELX-^ No Stress Check; H/20 Horizontal Deflection Limit CONCENTRATED LOADS * * LOAD COMPONENTS LOAD NO. LINE NO. * LOCATION FLG SIDE * HORIZONTAL VERTICAL MOMENT * (ft. ) * (kips) (kips) (kip-ft) 1 3 0.50 Neutral Axis 0.00 13.50 0.00 55/27955 MSA 43. 0 Page 9 of 36 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A. 01A 02/26/15 15: 44 : 39 -10.00 (out-of-plane) LOAD CASE 32 : 0E-> No Stress Check; No Deflection Limits CONCENTRATED LOADS * * LOAD COMPONENTS LOAD NO. LINE NO. * LOCATION FLG SIDE * HORIZONTAL VERTICAL MOMENT * (ft.) * (kips) (kips) (kip-ft) 1 1 23.50 Neutral Axis 11.10 0.00 0.00 2 3 28.13 Neutral Axis 11.10 0.00 0.00 3 1 11.50 Neutral Axis 23.10 0.00 0.00 LOAD CASE 33 : KIE<- No Stress Check; No Deflection Limits CONCENTRATED LOADS * * LOAD COMPONENTS LOAD NO. LINE NO. * LOCATION FLG SIDE * HORIZONTAL VERTICAL MOMENT * (ft.) * (kips) (kips) (kip-ft) 1 1 23.50 Neutral Axis -11.10 0.00 0.00 2 3 28.13 Neutral Axis -11.10 0.00 0.00 3 1 11.50 Neutral Axis -23.10 0.00 0.00 LOAD CASE 34 : QELX+^ No Stress Check; No Deflection Limits CONCENTRATED LOADS * * LOAD COMPONENTS LOAD NO. LINE NO. * LOCATION FLG SIDE * HORIZONTAL VERTICAL MOMENT * (ft.) * (kips) (kips) (kip-ft) 1 1 22.83 Neutral Axis 0.00 -6.12 0.00 -5.60 (out-of-plane) 2 3 27.46 Neutral Axis 0.00 -7.41 0.00 -5.60 (out-of-plane) LOAD CASE 35 : QELX-^ No Stress Check; No Deflection Limits CONCENTRATED LOADS * * LOAD COMPONENTS LOAD NO. LINE NO. * LOCATION FLG SIDE * HORIZONTAL VERTICAL MOMENT * (ft.) * (kips) (kips) (kip-ft) 1 1 0.50 Neutral Axis 0.00 6.12 0.00 -5.60 (out-of-plane) 2 3 0.50 Neutral Axis 0.00 7.41 0.00 -5.60 (out-of-plane) LOAD CASE 36 : D+C + LEU- + MEZD + XMEZ nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.821 LOAD CASE 37 : D+C + LEU- + MEZD + XMEZ nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.808 LOAD CASE 38 : D+C + L + MEZD + XMEZ nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.701 LOAD CASE 39 : D+C + L + MEZD + XMEZ nR ASD; No Deflection Limits 56/27956 MSA 43 . 0 Page 10 of 36 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A. O1A 02/26/15 15: 44 : 39 Highest check ratio achieved in this load case = 0.679 LOAD CASE 40 : D+C + LPAFNl nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.637 LOAD CASE 41 : D+C + LPAFNl nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.633 LOAD CASE 42 : D+C + LPAFN2- nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.275 LOAD CASE 43 : D+C + LPAFN2- nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.277 LOAD CASE 44 : D+C + LPDFN1- nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.585 LOAD CASE 45 : D+C + LPDFN1- nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.580 LOAD CASE 46 : D+C + SEU- nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.998 LOAD CASE 47 : D+C + SEU-- nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.988 LOAD CASE 48 : D+C + S + MEZD + XMEZ nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.984 LOAD CASE 49 : D+C + S + MEZD + XMEZ nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.969 LOAD CASE 50 : D+C + SPEFH1- + MEZD + XMEZ nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.680 LOAD CASE 51 : D+C + SPEFH1- + MEZD + XMEZ nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.675 LOAD CASE 52 : D+C + SPEFH2- + MEZD + XMEZ nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.718 LOAD CASE 53 : D+C + SPEFH2- + MEZD + XMEZ nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.708 57/27957 MSA 43. 0 Page 11 of 36 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A. 01A 02/26/15 15: 44 : 39 LOAD CASE 54 : D+C + SPEHF1- + MEZD + XMEZ nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.718 LOAD CASE 55 : D+C + SPEHF1- + MEZD + XMEZ nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.708 LOAD CASE 56 : D+C + SPEHF2- + MEZD + XMEZ nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.680 LOAD CASE 57 : D+C + SPEHF2- + MEZD + XMEZ nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.675 LOAD CASE 58 : D+C + SPDFH1- + MEZD + XMEZ nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.756 LOAD CASE 59 : D+C + SPDFH1- + MEZD + XMEZ nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.734 LOAD CASE 60 : 1.10D+C + 0.70E-> + MEZD nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.780 LOAD CASE 61 : 1.10D+C + 0.70E-> + MEZD nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.793 LOAD CASE 62 : 1.10D+C + 0.70E<- + MEZD nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.797 LOAD CASE 63 : 1.10D+C + 0.70E<- + MEZD nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.787 LOAD CASE 64 : 1.10D+C + 0.70ELX+^ nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.240 LOAD CASE 65 : 1.10D+C + 0.70ELX+^ nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.237 LOAD CASE 66 : 1.10D+C + 0.70ELX-^ nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.233 LOAD CASE 67 : 1.10D+C + 0.70ELX-^ nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.231 LOAD CASE 68 : 0.92D+C + 0.580E-> + 0.92MEZD nL ASD Special Seismic; No Deflection Limits 58/27958 MSA 43 .0 Page 12 of 36 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A. 01A 02/26/15 15: 44 : 39 LOAD CASE 69 : 0.92D+C + 0.5852E-> + 0.92MEZD nR ASD Special Seismic; No Deflection Limits LOAD CASE 70 : 0.92D+C + 0.580E<- + 0.92MEZD nL ASD Special Seismic; No Deflection Limits LOAD CASE 71 : 0.92D+C + 0.5852E<- + 0.92MEZD nR ASD Special Seismic; No Deflection Limits LOAD CASE 72 : 0.92D+C + 0.5852ELX+^ nL ASD Special Seismic; No Deflection Limits LOAD CASE 73 : 0.92D+C + 0.58QELX+^ nR ASD Special Seismic; No Deflection Limits LOAD CASE 74 : 0.92D+C + 0.5852ELX-^ nL ASD Special Seismic; No Deflection Limits LOAD CASE 75 : 0.92D+C + 0.58cELX-^ nR ASD Special Seismic; No Deflection Limits LOAD CASE 76 : D+C + 0.45WL^ + 0.75L nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.218 LOAD CASE 77 : D+C + 0.45WL^ + 0.75L nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.221 LOAD CASE 78 : D+C + 0.45WLX+^ + 0.75L nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.259 LOAD CASE 79 : D+C + 0.45WLX+^ + 0.75L nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.264 LOAD CASE 80 : D+C + 0.45WLX-^ + 0.75L nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.218 LOAD CASE 81 : D+C + 0.45WLX-^ + 0.75L nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.221 LOAD CASE 82 : D+C + 0.45W1-> + 0.75L nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.316 LOAD CASE 83 : D+C + 0.45W1-> + 0.75L nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.321 LOAD CASE 84 : D+C + 0.45W1<- + 0.75L nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.474 59/27959 MSA 43. 0 Page 13 of 36 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A. 01A 02/26/15 15: 44 : 39 LOAD CASE 85 : D+C + 0.45W1<- + 0.75L nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.471 LOAD CASE 86 : D+C + 0.45W2-> + 0.75L nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.413 LOAD CASE 87 : D+C + 0.45W2-> + 0.75L nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.420 LOAD CASE 88 : D+C + 0.45W2<- + 0.75L nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.366 LOAD CASE 89 : D+C + 0.45W2<- + 0.75L nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.363 LOAD CASE 90 : D+C + 0.45W3-> + 0.75L nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.318 LOAD CASE 91 : D+C + 0.45W3-> + 0.75L nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.315 LOAD CASE 92 : D+C + 0.45W3<- + 0.75L nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.425 LOAD CASE 93 : D+C + 0.45W3<- + 0.75L nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.421 LOAD CASE 94 : D+C + 0.45W4-> + 0.75L nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.253 LOAD CASE 95 : D+C + 0.45W4-> + 0.75L nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.256 LOAD CASE 96 : D+C + 0.45W4<- + 0.75L nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.349 LOAD CASE 97 : D+C + 0.45W4<- + 0.75L nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.346 LOAD CASE 98 : D+C + 0.45WL^ + 0.75S nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.493 LOAD CASE 99 : D+C + 0.45WL^ + 0.75S nR ASD; No Deflection Limits 60/27960 MSA 43.0 Page 14 of 36 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A. 01A 02/26/15 15 : 44 : 39 Highest check ratio achieved in this load case = 0.489 LOAD CASE 100 : D+C + 0.45WLX+^ + 0.75S nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.547 LOAD CASE 101 : D+C + 0.45WLX+^ + 0.75S nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.556 LOAD CASE 102 : D+C + 0.45WLX-^ + 0.75S nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.493 LOAD CASE 103 : D+C + 0.45WLX-^ + 0.75S nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.489 LOAD CASE 104 : D+C + 0.45W1-> + 0.75S + MEZD + 0.75XMEZ nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.642 LOAD CASE 105 : D+C + 0.45W1-> + 0.75S + MEZD + 0.75XMEZ nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.632 LOAD CASE 106 : D+C + 0.45W1<- + 0.75S + MEZD + 0.75XMEZ nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.774 LOAD CASE 107 : D+C + 0.45W1<- + 0.75S + MEZD + 0.75XMEZ nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.763 LOAD CASE 108 : D+C + 0.45W2-> + 0.75S + MEZD + 0.75XMEZ nL ASD; No Deflection Limits. Highest check ratio achieved in this load case = 0.712 LOAD CASE 109 : D+C + 0.45W2-> + 0.75S + MEZD + 0.75XMEZ nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.731 LOAD CASE 110 : D+C + 0.45W2<- + 0.75S + MEZD + 0.75XMEZ nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.661 LOAD CASE 111 : D+C + 0.45W2<- + 0.75S + MEZD + 0.75XMEZ nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.651 LOAD CASE 112 : D+C + 0.45W3-> + 0.75S + MEZD + 0.75XMEZ nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.652 LOAD CASE 113 : D+C + 0.45W3-> + 0.75S + MEZD + 0.75XMEZ nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.634 61/27961 MSA 43. 0 Page 15 of 36 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A. 01A 02/26/15 15: 44 : 39 • LOAD CASE 114 : D+C + 0.45W3<- + 0.75S + MEZD + 0.75XMEZ nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.714 LOAD CASE 115 : D+C + 0.45W3<- + 0.75S + MEZD + 0.75XMEZ nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.702 LOAD CASE 116 : D+C + 0.45W4-> + 0.75S + MEZD + 0.75XMEZ nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.585 LOAD CASE 117 : D+C + 0.45W4-> + 0.75S + MEZD + 0.75XMEZ nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.584 LOAD CASE 118 : D+C + 0.45W4<- + 0.75S + MEZD + 0.75XMEZ nL ASD; No Deflection Limits Highest check ratio achieved in this load case - 0.654 LOAD CASE 119 : D+C + 0.45W4<- + 0.75S + MEZD + 0.75XMEZ nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.635 LOAD CASE 120 : 0.60D + 0.60WL^ nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.341 LOAD CASE 121 : 0.60D + 0.60WL^ nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.338 LOAD CASE 122 : 0.60D + 0.60WLX+^ nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.343 LOAD CASE 123 : 0.60D + 0.60WLX+^ nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.345 LOAD CASE 124 : 0.60D + 0.60WLX-^ nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.341 LOAD CASE 125 : 0.60D + 0.60WLX-^ nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.338 LOAD CASE 126 : 0.60D + 0.60W1-> nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.217 LOAD CASE 127 : 0.60D + 0.60W1-> nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.216 LOAD CASE 128 : 0.60D + 0.60W1<- nL ASD; No Deflection Limits 62/27962 MSA 43. 0 Page 16 of 36 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A. 01A 02/26/15 15: 44 : 39 Highest check ratio achieved in this load case = 0.254 LOAD CASE 129 : 0.60D + 0.60W1<- nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.253 LOAD CASE 130 : 0.60D + 0.60W2-> nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.178 LOAD CASE 131 : 0.60D + 0.60W2-> nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.178 LOAD CASE 132 : 0.60D + 0.60W2<- nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.294 LOAD CASE 133 : 0.60D + 0.60W2<- nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.296 LOAD CASE 134 : 0.60D + 0.60W3-> nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.153 LOAD CASE 135 : 0.60D + 0.60W3-> nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.152 LOAD CASE 136 : 0.60D + 0.60W3<- nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.089 LOAD CASE 137 : 0.60D + 0.60W3<- nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.089 LOAD CASE 138 : 0.60D + 0.60W4-> nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.406 LOAD CASE 139 : 0.60D + 0.60W4-> nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.403 LOAD CASE 140 : 0.60D + 0.60W4<- nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.246 LOAD CASE 141 : 0.60D + 0.60W4<- nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.248 LOAD CASE 142 : 0.50D + 0.70E-> nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.729 63/27963 MSA 43 . 0 Page 17 of 36 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A. 01A 02/26/15 15: 44 : 39 LOAD CASE 143 : 0.50D + 0.70E-> nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.732 LOAD CASE 144 : 0.50D + 0.70E<- nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.738 LOAD CASE 145 : 0.50D + 0.70E<- nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.735 LOAD CASE 146 : 0.50D + 0.70ELX+^ nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.158 LOAD CASE 147 : 0.50D + 0.70ELX+^ nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.158 LOAD CASE 148 : 0.50D + 0.70ELX-^ nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.088 LOAD CASE 149 : 0.50D + 0.70ELX-^ nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.087 LOAD CASE 150 : 0.41D + 0.5852E-> nL ASD Special Seismic; No Deflection Limits LOAD CASE 151 : 0.41D + 0.5852E-> nR ASD Special Seismic; No Deflection Limits LOAD CASE 152 : 0.41D + 0.5852E<- nL ASD Special Seismic; No Deflection Limits LOAD CASE 153 : 0.41D + 0.5852E<- nR ASD Special Seismic; No Deflection Limits LOAD CASE 154 : 0.41D + 0.5852ELX+^ nL ASD Special Seismic; No Deflection Limits LOAD CASE 155 : 0.41D + 0.58QELX+^ nR ASD Special Seismic; No Deflection Limits LOAD CASE 156 : 0.41D + 0.5852ELX-^ nL ASD Special Seismic; No Deflection Limits LOAD CASE 157 : 0.41D + 0.5852ELX-^ nR ASD Special Seismic; No Deflection Limits LOAD CASE 158 : 0.89D+C + 0.4352E-> + 0.62XMEZ + 0.89MEZD + 0.62L nL ASD Special Seismic; No Deflection Limits LOAD CASE 159 : 0.89D+C + 0.4352E-> + 0.62XMEZ + 0.89MEZD + 0.62L nR ASD Special Seismic; No Deflection Limits 64/27964 MSA 43 . 0 Page 18 of 36 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A. 01A 02/26/15 15: 44 : 39 LOAD CASE 160 : 0.89D+C + 0.43cE<- + 0.62XMEZ + 0.89MEZD + 0.62L nL ASD Special Seismic; No Deflection Limits LOAD CASE 161 : 0.89D+C + 0.431E<- + 0.62XMEZ + 0.89MEZD + 0.62L nR ASD Special Seismic; No Deflection Limits 65/27965 MSA 43 .0 Page 19 of 36 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A. 01A 02/26/15 15: 44 : 39 SUMMARY OF MAXIMUM MEMBER CHECK RATIOS OUTER FLANGE * WEB * INNER FLANGE * OUTER FLG WEB SHEAR INNER FLG MEM WIDTH THICK * THICK * WIDTH THICK * RATIO LOAD RATIO LOAD RATIO LOAD (in) (in) (in) (in) (in) 1 8.00 0.3750 0.2188 8.00 0.3750 0.652 61 0.238 62 0.797 62 2 8.00 0.3750 0.3125 8.00 0.3750 0.524 62 0.497 62 0.604 62 3 6.00 0.3125 0.2500 6.00 0.3750 0.652 62 0.237 46 0.725 62 4 6.00 0.2500 0.1875 6.00 0.3125 0.793 61 0.565 49 0.793 62 5 6.00 0.5000 0.2188 6.00 0.5000 0.819 49 0.525 49 0.849 49 6 6.00 0.3750 0.1875 6.00 0.3750 0.894 48 0.009 48 0.835 49 7 6.00 0.5000 0.2188 6.00 0.5000 0.819 49 0.689 46 0.850 49 8 6.00 0.3750 0.1875 6.00 0.3125 0.945 46 0.795 46 0.910 46 9 6.00 0.3750 0.1875 6.00 0.3750 0.998 46 0.451 49 0.888 46 10 6.00 0.3125 0.1875 6.00 0.2500 0.858 46 0.923 49 0.823 46 11 6.00 0.2500 0.2500 6.00 0.3125 0.415 49 0.606 49 0.573 49 12 6.00 0.2500 0.1644 6.00 0.3125 0.526 49 0.290 123 0.843 49 66/27966 MSA 43. 0 Page 20 of 36 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A. 01A 02/26/15 15: 44 : 39 VERTICAL KNEE PANEL ZONE ANALYSIS NODE 3 ELEMENT MEM DESC RATIO AXIAL SHEAR MOMENT LC kips kips kip-ft CAP PLATE 8.0 x 0.375 0.918 -8.2 -7.6 332.5 69 CAP PLATE END WELD CJP CAP PLATE WEB WELD FWD3 0.922 10.0 11.0 -354.6 70 STIFFENER 4.0 x 0.750 0.540 10.0 11.0 -354.6 70 STIFFENER END WELD CJP STIFFENER WEB WELD FWS3 0.995 10.0 11.0 -354.6 70 OUTER FLG WEB WELD FWD3 0.962 10.0 11.0 -354.6 70 WEB END WELD FWS4 0.926 5.3 9.0 -77.1 36 WEB 0.313 0.914 10.0 11.0 -354.6 70 VERTICAL KNEE PANEL ZONE ANALYSIS NODE 11 ELEMENT MEM DESC RATIO AXIAL SHEAR MOMENT LC kips kips kip-ft CAP PLATE 6.0 x 0.313 0.619 -4.5 -0.1 118.5 153 CAP PLATE END WELD CJP CAP PLATE WEB WELD FWS3 0.914 6.2 10.2 -149.8 159 STIFFENER 3.0 x 0.313 0.959 6.2 10.2 -149.8 159 STIFFENER END WELD FWD5 1.015 4.1 17.2 -80.8 37 STIFFENER WEB WELD FWS2 0.749 6.2 10.2 -149.8 159 OUTER FLG WEB WELD FWD3 0.469 6.1 5.8 -151.0 69 WEB END WELD FWS3 0.988 4.1 17.2 -80.8 37 WEB 0.250 0.704 6.2 10.2 -149.8 159 67/27967 MSA 43. 0 Page 21 of 36 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A. 01A 02/26/15 15: 44 : 39 SPLICE PLATE DESIGN BY DESIGN GUIDE 16- A325 BOLTS FULL TENSION ND IO WID THK DEPTH B DIA NB GA ROW BSP CSE MOMENT AXIAL SHEAR RTO LR in in in in in 0 I in kip-ft kips kips 3 IL 8.0 0.625 32.8 0.750 2 3.0 4 4 3.0 69 332.5 8.2 7.6 0.88 3 IR 8.0 0.625 32.7 0.750 2 3.0 4 4 3.0 69 332.1 1.9 7.6 0.89 3 OL 8.0 0.625 32.8 0.750 2 3.0 4 4 3.0 70 -354.6 -10.0 -11.0 0.87 3 OR 8.0 0.625 32.7 0.750 2 3.0 4 4 3.0 70 -354.3 -3.3 -11.0 0.99 5 OL 6.0 0.500 26.6 0.750 2 3.0 2 2 3.0 46 -116.0 -5.3 10.2 0.78 5 OR 6.0 0.500 27.0 0.750 2 3.0 2 2 3.0 46 -116.0 -5.5 10.2 0.73 5 IL 6.0 0.500 26.6 0.750 2 3.0 2 2 3.0 151 57.1 2.5 9.5 0.42 5 IR 6.0 0.500 27.0 0.750 2 3.0 2 2 3.0 151 57.1 2.7 9.6 0.40 6 OL 6.0 0.625 27.0 0.750 2 3.0 3 2 3.0 49 -241.7 -5.3 17.3 0.95 6 OR 6.0 0.625 27.0 0.750 2 3.0 3 2 3.0 49 -241.7 -5.6 -22.5 0.95 6 IL 6.0 0.625 27.0 0.750 2 3.0 3 2 3.0 121 71.9 3.9 -5.5 0.43 6 IR 6.0 0.625 27.0 0.750 2 3.0 3 2 3.0 121 71.9 4.5 6.7 0.44 9 IL 6.0 0.500 26.7 0.750 2 3.0 2 3 3.0 46 181.4 -5.0 -3.7 1.02 9 IR 6.0 0.500 26.7 0.750 2 3.0 2 3 3.0 46 181.4 -5.1 -3.5 1.00 9 OL 6.0 0.500 26.7 0.750 2 3.0 2 3 3.0 138 -59.0 3.1 0.9 0.43 9 OR 6.0 0.500 26.7 0.750 2 3.0 2 3 3.0 138 -59.0 3.1 1.0 0.43 11 OL 6.0 0.625 26.5 0.750 2 3.0 3 2 3.0 69 -151.5 0.5 5.6 0.70 11 OR 6.0 0.625 26.6 0.750 2 3.0 3 2 3.0 69 -151.0 -6.1 5.8 0.69 11 IL 6.0 0.625 26.5 0.750 2 3.0 3 2 3.0 152 119.0 -2.0 -0.1 0.76 11 IR 6.0 0.625 26.6 0.750 2 3.0 3 2 3.0 152 118.6 4.5 -0.1 0.71 68/27968 MSA 43.0 Page 22 of 36 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A. 01A 02/26/15 15: 44 : 39 SPLICE PLATE WELD DESIGN ND I/O WELD MOM AX SHR RATIO CSE L/R kip-ft kips kips 3 0/R CJP -329.3 2.0 -9.5 0.95 152 3 WEB FWS3 -354 .3 3.3 -11.0 0.99 70 3 I/R FWD5 332.1 -1.9 7.6 0.91 69 5 O/L FWD3 -116.0 5.3 10.2 1.00 46 5 WEB FWS3 -116.0 5.3 10.2 1.00 46 5 I/L FWD4 57.1 -2.5 9.5 0.94 151 5 0/R CJP -103.5 4.6 -2.3 N/A 161 5 WEB FWS3 -116.0 5.5 10.2 0.86 46 5 I/R CJP 12.6 -1.1 12.5 N/A 159 6 O/L CJP -91.4 4.5 0.6 N/A 161 6 WEB FWS3 -241.7 5.3 17.3 0.95 49 6 I/L CJP 43.4 0.1 -4.3 N/A 141 6 0/R CJP -91.4 3.5 -11.2 N/A 161 6 WEB FWS3 -241.7 5.6 -22.5 0.95 49 6 I/R CJP 43.4 -0.2 3.3 N/A 141 9 O/L FWD5 -59.0 -3.1 0.9 0.90 138 9 WEB FWS3 181.4 5.0 -3.7 1.02 46 9 I/L FWD4 181.4 5.0 -3.7 0.94 46 9 O/R FWD5 -59.0 -3.1 1.0 0.90 138 9 WEB FWS3 181.4 5.1 -3.5 1.00 46 9 I/R FWD5 181.4 5.1 -3.5 0.90 46 11 OIL FWD4 -151.5 -0.5 5.6 0.94 69 11 WEB FWS3 -151.5 -0.5 5.6 0.94 69 11 I/L FWD3 119.0 2.0 -0.1 1.00 152 69/27969 MSA 43. 0 Page 23 of 36 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A. 01A 02/26/15 15: 44 : 39 INTERIOR COLUMN CONNECTIONS * CAP PLATE * A325 BOLTS * THICKNESS WIDTH LENGTH * NO. DIAMETER AREA COL. * NODE (in. ) (in. ) (in. ) * (in. ) (in2) 1 6 0.375 6.000 13.000 4 0.500 0.785 * LOADING * BOLT RESISTANCE * HORIZ. VERTICAL MOMENT * SHEAR TENSION NODE * LOAD (kips) (kips) (kip-ft) * (kips) (kips) 6 158 -0.53 23.85 0.00 18.85 35.34 159 -0.63 24.02 0.00 18.85 35.34 160 0.77 11.80 -0.00 18.85 35.34 161 0.67 11.93 -0.00 18.85 35.34 FRAME SUPPORTS * BASE PLATE * ANCHOR BOLTS * THICKNESS WIDTH LENGTH * NO. DIAMETER AREA SUP. * NODE (in. ) (in. ) (in. ) * (in. ) (in2) 1 1 0.375 8.000 13.500 4 1.000 3.142 1 2 7 0.500 8.000 13.500 4 0.750 1.767 7 3 13 0.375 8.000 13.000 4 1.000 3.142 13 CONNECTION DESIGN FORCES AT SUPPORTS BOLT RESISTANCE LOAD HORIZONTAL VERTICAL MOMENT SHEAR TENSION NODE CASE (kips) (kips) (kip-ft) (kips) (kips) 1 158 14.97 15.36 0.00 36.44 60.76 159 15.23 15.18 0.00 36.44 60.28 160 19.40 30.23 0.00 36.44 52.46 161 19.26 30.06 0.00 36.44 52.71 7 158 1.42 53.74 0.00 20.50 38.44 159 1.69 53.89 -0.00 20.50 38.44 160 1.41 41.67 0.00 20.50 38.44 161 1.23 41.81 0.00 20.50 38.44 13 158 6.00 10.86 0.00 36.44 68.33 70/27970 MSA 43 . 0 Page 24 of 36 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A. 01A 02/26/15 15: 44 : 39 159 6.02 10.89 -0.00 36.44 68.33 160 1.56 8.06 -0.00 36.44 68.33 161 1.52 8.09 0.00 36.44 68.33 71/27971 MSA 43. 0 Page 25 of 36 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A. 01A 02/26/15 15: 44 : 39 SUPPORT REACTIONS CASE 1 : D CASE 2 : D+C SUPPORT NODE HORIZONTAL VERTICAL MOMENT SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) (kips) (kips) (kip-ft) 1 1 0.66 2.27 -0.00 1 1 1.12 3.24 0.00 2 7 0.00 5.98 -0.00 2 7 0.00 9.64 -0.00 3 13 -0.66 3.28 0.00 3 13 -1.12 5.17 -0.00 CASE 3 : MEZD CASE 4 : XMEZ SUPPORT NODE HORIZONTAL VERTICAL MOMENT SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) (kips) (kips) (kip-ft) 1 1 0.13 9.78 -0.00 1 1 0.19 13.70 0.00 2 7 -0.00 17.18 -0.00 2 7 -0.00 23.25 -0.00 3 13 -0.13 0.04 0.00 3 13 -0.19 0.06 0.00 CASE 5 : LEU- CASE 6 : L SUPPORT NODE HORIZONTAL VERTICAL MOMENT SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) (kips) (kips) (kip-ft) 1 1 3.09 6.48 0.00 1 1 1.85 3.89 0.00 2 7 0.00 24.44 0.00 2 7 0.00 14.67 0.00 3 13 -3.09 12.59 -0.00 3 13 -1.85 7.55 -0.00 CASE 7 : LPAFN1- CASE 8 : LPAFN2- SUPPORT NODE HORIZONTAL VERTICAL MOMENT SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) (kips) (kips) (kip-ft) 1 1 1.68 -0.78 -0.00 1 1 0.17 4.67 -0.00 2 7 0.00 9.31 0.00 2 7 -0.00 5.36 0.00 3 13 -1.68 7.74 0.00 3 13 -0.17 -0.19 0.00 CASE 9 : LPDFN1- CASE 10 : SEU- SUPPORT NODE HORIZONTAL VERTICAL MOMENT SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) (kips) (kips) (kip-ft) 1 1 1.85 3.89 0.00 1 1 3.86 8.10 0.00 2 7 0.00 14.67 0.00 2 7 0.00 30.55 0.00 3 13 -1.85 7.55 -0.00 3 13 -3.86 15.73 0.00 CASE 11 : S CASE 12 : SPEFH1- SUPPORT NODE HORIZONTAL VERTICAL MOMENT SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) (kips) (kips) (kip-ft) 1 1 3.86 8.10 0.00 1 1 1.33 5.58 0.00 2 7 0.00 30.55 0.00 2 7 0.00 14.14 0.00 3 13 -3.86 15.73 0.00 3 13 -1.33 4.85 -0.00 CASE 13 : SPEFH2- CASE 14 : SPEHF1- SUPPORT NODE HORIZONTAL VERTICAL MOMENT SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) (kips) (kips) (kip-ft) 1 1 2.31 2.07 0.00 1 1 2.31 2.07 0.00 2 7 0.00 14.73 -0.00 2 7 0.00 14.73 -0.00 3 13 -2.31 10.02 -0.00 3 13 -2.31 10.02 -0.00 CASE 15 : SPEHF2- CASE 16 : SPDFH1- SUPPORT NODE HORIZONTAL VERTICAL MOMENT SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) (kips) (kips) (kip-ft) 1 1 1.33 5.58 0.00 1 1 2.43 5.11 0.00 2 7 0.00 14.14 0.00 2 7 0.00 19.25 0.00 3 13 -1.33 4.85 -0.00 3 13 -2.43 9.91 -0.00 72/27972 MSA 43 . 0 Page 26 of 36 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A. 01A 02/26/15 15: 44 : 39 CASE 17 : WL^ CASE 18 : WLX+^ SUPPORT NODE HORIZONTAL VERTICAL MOMENT SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) (kips) (kips) (kip-ft) 1 1 -0.17 -7.30 0.00 1 1 0.20 -7.08 0.00 2 7 -0.00 -27.14 0.00 2 7 -0.00 -27.31 0.00 3 13 0.73 -14.31 0.00 3 13 0.36 4 .53 -0.00 -14.30 (out-of-plane) CASE 19 : WLX-^ CASE 20 : W1-> SUPPORT NODE HORIZONTAL VERTICAL MOMENT SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) (kips) (kips) (kip-ft) 1 1 -0.18 -7.31 0.00 1 1 -7.20 -5.64 0.00 2 7 -0.00 -27.14 0.00 2 7 -0.00 -14.89 0.00 3 13 0.74 -33.21 -0.00 3 13 0.65 -8.05 0.00 -14.30 (out-of-plane) CASE 21 : W1<- CASE 22 : W2-> SUPPORT NODE HORIZONTAL VERTICAL MOMENT SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) (kips) (kips) (kip-ft) 1 1 4.42 1.33 -0.00 1 1 -6.51 -3.32 -0.00 2 7 0.00 -8.58 -0.00 2 7 -0.00 -4.52 0.00 3 13 4.87 -3.39 -0.00 3 13 -0.79 -2.80 -0.00 CASE 23 : W2<- CASE 24 : W3-> SUPPORT NODE HORIZONTAL VERTICAL MOMENT SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) (kips) (kips) (kip-ft) 1 1 3.73 -0.99 -0.00 1 1 -0.37 -4.12 -0.00 2 7 0.00 -18.95 -0.00 2 7 -0.00 -16.08 -0.00 3 13 6.30 -8.64 0.00 3 13 0.93 -8.38 -0.00 CASE 25 : W3<- CASE 26 : W4-> SUPPORT NODE HORIZONTAL VERTICAL MOMENT SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) (kips) (kips) (kip-ft) 1 1 0.32 -1.81 -0.00 1 1 -7.00 -8.82 -0.00 2 7 -0.00 -5.71 -0.00 2 7 0.00 -25.96 0.00 3 13 -0.51 -3.14 -0.00 3 13 0.45 -13.98 -0.00 CASE 27 : W4<- CASE 28 : E-> SUPPORT NODE HORIZONTAL VERTICAL MOMENT SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) (kips) (kips) (kip-ft) 1 1 4.62 -1.85 -0.00 1 1 -16.07 -6.36 0.00 2 7 0.00 -19.65 -0.00 2 7 -0.00 5.16 -0.00 3 13 4.67 -9.32 -0.00 3 13 -3.53 1.20 -0.00 CASE 29 : E<- CASE 30 : ELX+^ SUPPORT NODE HORIZONTAL VERTICAL MOMENT SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) (kips) (kips) (kip-ft) 1 1 16.07 6.36 -0.00 1 1 0.27 0.16 0.00 2 7 0.00 -5.16 0.00 2 7 0.00 -0.12 -0.00 3 13 3.53 -1.20 0.00 3 13 -0.27 13.46 -0.00 -10.00 (out-of-plane) CASE 31 : ELX-^ CASE 32 : QE-> SUPPORT NODE HORIZONTAL VERTICAL MOMENT SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) (kips) (kips) (kip-ft) 1 1 -0.01 -0.00 -0.00 1 1 -37.15 -14.71 -0.00 2 7 -0.00 0.00 0.00 2 7 -0.00 11.93 0.00 3 13 0.01 -13.50 -0.00 3 13 -8.15 2.78 0.00 73/27973 MSA 43 . 0 Page 27 of 36 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A. 01A 02/26/15 15: 44 : 39 -10.00 (out-of-plane) CASE 33 : 0E<- CASE 34 : OELX+^ SUPPORT NODE HORIZONTAL VERTICAL MOMENT SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) (kips) (kips) (kip-ft) 1 1 37.15 14.71 0.00 1 1 0.18 6.13 -0.00 -5.60 (out-of-plane) 2 7 0.00 -11.93 -0.00 2 7 0.00 0.00 0.00 3 13 8.15 -2.78 -0.00 3 13 -0.18 7.40 -0.00 -5.60 (out-of-plane) CASE 35 : CASE 158: OELX-^ 0.89D+C + 0.430E-> + 0.62XMEZ + 0.89MEZD SUPPORT NODE HORIZONTAL VERTICAL MOMENT SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) (kips) (kips) (kip-ft) 1 1 -0.01 -6.12 0.00 1 1 -14.97 15.36 0.00 -5.60 (out-of-plane) 2 7 0.00 0.00 0.00 2 7 1.42 53.74 0.00 3 13 0.01 -7.41 -0.00 3 13 -6.00 10.86 0.00 -5.60 (out-of-plane) CASE 159: CASE 160: 0.89D+C + 0.430E-> + 0.62XMEZ + 0.89MEZD 0.89D+C + 0.430E<- + 0.62XMEZ + 0.89MEZD SUPPORT NODE HORIZONTAL VERTICAL MOMENT SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) (kips) (kips) (kip-ft) 1 1 -15.23 15.18 0.00 1 1 19.40 30.23 0.00 2 7 1.69 53.89 -0.00 2 7 -1.41 41.67 0.00 3 13 -6.02 10.89 -0.00 3 13 1.56 8.06 -0.00 CASE 161: 0.89D+C + 0.430E<- + 0.62XMEZ + 0.89MEZD SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) 1 1 19.26 30.06 0.00 2 7 -1.23 41.81 0.00 3 13 1.52 8.09 0.00 74/27974 MSA 43. 0 Page 28 of 36 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A. 01A 02/26/15 15: 44 : 39 NODAL DISPLACEMENTS CASE 1 : D CASE 2 : D+C Horizontal Deflection Limit: None Horizontal Deflection Limit: None Vertical Deflection Limit: None Vertical Deflection Limit: None HORIZONTAL VERTICAL ANGULAR HORIZONTAL VERTICAL ANGULAR NODE (in. ) (in. ) (rad. ) NODE (in.) (in. ) (rad. ) 1 0.000 0.000 0.001 1 0.000 0.000 0.002 2 -0.249 0.006 0.001 2 -0.432 0.010 0.001 3 -0.261 0.006 0.001 3 -0.452 0.010 0.001 4 -0.263 0.058 0.000 4 -0.457 0.102 0.001 5 -0.265 0.076 -0.000 5 -0.460 0.132 -0.001 6 -0.262 -0.008 -0.001 6 -0.454 -0.013 -0.002 7 0.000 0.000 0.001 7 0.000 0.000 0.002 8 -0.254 -0.194 -0.002 8 -0.441 -0.334 -0.003 9 -0.240 -0.540 -0.001 9 -0.418 -0.927 -0.001 10 -0.246 -0.422 0.002 10 -0.427 -0.727 0.003 11 -0.263 -0.011 0.002 11 -0.457 -0.019 0.003 12 -0.233 -0.011 0.002 12 -0.404 -0.019 0.003 13 0.000 0.000 0.000 13 0.000 0.000 0.000 CASE 3 : MEZD CASE 4 : XMEZ Horizontal Deflection Limit: None Horizontal Deflection Limit: None Vertical Deflection Limit: None Vertical Deflection Limit: None HORIZONTAL VERTICAL ANGULAR HORIZONTAL VERTICAL ANGULAR NODE (in. ) (in. ) (rad. ) NODE (in. ) (in.) (rad. ) 1 0.000 0.000 -0.001 1 0.000 0.000 -0.001 2 0.193 -0.010 -0.000 2 0.269 -0.015 -0.001 3 0.201 -0.010 -0.000 3 0.282 -0.015 -0.001 4 0.203 -0.049 -0.000 4 0.284 -0.069 -0.000 5 0.203 -0.040 0.000 5 0.284 -0.056 0.000 6 0.202 -0.012 0.000 6 0.282 -0.017 0.000 7 0.000 0.000 -0.001 7 0.000 0.000 -0.001 8 0.200 0.016 0.000 8 0.280 0.023 0.000 9 0.198 0.057 0.000 9 0.278 0.080 0.000 10 0.198 0.059 -0.000 10 0.277 0.082 -0.000 11 0.200 0.005 -0.000 11 0.280 0.007 -0.001 12 0.193 0.005 -0.000 12 0.270 0.007 -0.001 13 0.000 0.000 -0.001 13 0.000 0.000 -0.001 CASE 5 : LEU- CASE 6 : L Horizontal Deflection Limit: None Horizontal Deflection Limit: None Vertical Deflection Limit: L/180 Vertical Deflection Limit: L/180 HORIZONTAL VERTICAL ANGULAR HORIZONTAL VERTICAL ANGULAR NODE (in. ) (in. ) (rad.) NODE (in. ) (in. ) (rad. ) 1 0.000 0.000 0.007 1 0.000 0.000 0.004 2 -1.222 0.030 0.003 2 -0.733 0.018 0.002 3 -1.279 0.030 0.003 3 -0.768 0.018 0.002 4 -1.293 0.293 0.002 4 -0.776 0.176 0.001 5 -1.300 0.375 -0.002 5 -0.780 0.225 -0.001 6 -1.284 -0.035 -0.006 6 -0.771 -0.021 -0.003 7 0.000 0.000 0.005 7 0.000 0.000 0.003 8 -1.248 -0.931 -0.009 8 -0.749 -0.559 -0.005 9 -1.183 -2.580 -0.003 9 -0.710 -1.548 -0.002 10 -1.208 -2.031 0.007 10 -0.725 -1.218 0.004 11 -1.293 -0.051 0.009 11 -0.776 -0.031 0.005 12 -1.144 -0.051 0.008 12 -0.686 -0.030 0.005 13 0.000 0.000 0.000 13 0.000 0.000 0.000 75/27975 MSA 43. 0 Page 29 of 36 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A. 01A 02/26/15 15 : 44 : 39 CASE 7 : LPAFNI- CASE 8 : LPAFN2- Horizontal Deflection Limit: None Horizontal Deflection Limit: None Vertical Deflection Limit: L/90 Vertical Deflection Limit: L/90 HORIZONTAL VERTICAL ANGULAR HORIZONTAL VERTICAL ANGULAR NODE (in. ) (in. ) (rad. ) NODE (in. ) (in. ) (rad. ) 1 0.000 0.000 0.006 1 0.000 0.000 -0.002 2 -1.249 0.037 0.004 2 0.516 -0.019 -0.002 3 -1.326 0.037 0.004 3 0.558 -0.019 -0.002 4 -1.347 0.449 0.003 4 0.571 -0.273 -0.002 5 -1.350 0.474 -0.003 5 0.569 -0.249 0.002 6 -1.330 -0.013 -0.005 6 0.559 -0.008 0.002 7 0.000 0.000 0.005 7 0.000 0.000 -0.002 8 -1.300 -0.755 -0.007 8 0.551 0.196 0.001 9 -1.253 -1.914 -0.002 9 0.544 0.366 0.000 10 -1.272 -1.486 0.005 10 0.547 0.267 -0.001 11 -1.334 -0.045 0.007 11 0.558 0.015 -0.001 12 -1.218 -0.045 0.006 12 0.532 0.015 -0.002 13 0.000 0.000 0.002 13 0.000 0.000 -0.002 CASE 9 : LPDFN1- CASE 10 : SEU- Horizontal Deflection Limit: None Horizontal Deflection Limit: H/60 Vertical Deflection Limit: L/90 Vertical Deflection Limit: L/180 HORIZONTAL VERTICAL ANGULAR HORIZONTAL VERTICAL ANGULAR NODE (in. ) (in.) (rad. ) NODE (in. ) (in.) (rad. ) 1 0.000 0.000 0.004 1 0.000 0.000 0.008 2 -0.733 0.018 0.002 2 -1.528 0.038 0.004 3 -0.768 0.018 0.002 3 -1.599 0.038 0.003 4 -0.776 0.176 0.001 4 -1.617 0.366 0.002 5 -0.780 0.225 -0.001 5 -1.625 0.468 -0.002 6 -0.771 -0.021 -0.003 6 -1.605 -0.044 -0.007 7 0.000 0.000 0.003 7 0.000 0.000 0.006 8 -0.749 -0.559 -0.005 8 -1.560 -1.164 -0.011 9 -0.710 -1.548 -0.002 9 -1.478 -3.225 -0.004 10 -0.725 -1.218 0.004 10 -1.510 -2.538 0.009 11 -0.776 -0.031 0.005 11 -1.616 -0.064 0.011 12 -0.686 -0.030 0.005 12 -1.430 -0.063 0.010 13 0.000 0.000 0.000 13 0.000 0.000 0.000 CASE 11 : S CASE 12 : SPEFH1- Horizontal Deflection Limit: H/60 Horizontal Deflection Limit: H/60 Vertical Deflection Limit: L/180 Vertical Deflection Limit: L/180 HORIZONTAL VERTICAL ANGULAR HORIZONTAL VERTICAL ANGULAR NODE (in. ) (in.) (rad. ) NODE (in. ) (in. ) (rad. ) 1 0.000 0.000 0.008 1 0.000 0.000 0.001 2 -1.528 0.038 0.004 2 -0.156 -0.000 -0.000 3 -1.599 0.038 0.003 3 -0.152 -0.000 -0.000 4 -1.617 0.366 0.002 4 -0.149 -0.058 -0.000 5 -1.625 0.468 -0.002 5 -0.153 -0.009 0.000 6 -1.605 -0.044 -0.007 6 -0.153 -0.020 -0.001 7 0.000 0.000 0.006 7 0.000 0.000 0.001 8 -1.560 -1.164 -0.011 8 -0.144 -0.251 -0.003 9 -1.478 -3.225 -0.004 9 -0.122 -0.796 -0.001 10 -1.510 -2.538 0.009 10 -0.130 -0.636 0.002 11 -1.616 -0.064 0.011 11 -0.157 -0.011 0.003 12 -1.430 -0.063 0.010 12 -0.115 -0.011 0.002 13 0.000 0.000 0.000 13 0.000 0.000 -0.001 76/27976 MSA 43. 0 Page 30 of 36 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A. 01A 02/26/15 15: 44 : 39 CASE 13 : SPEFH2- CASE 14 : SPEHF1- Horizontal Deflection Limit: H/60 Horizontal Deflection Limit: H/60 Vertical Deflection Limit: L/180 Vertical Deflection Limit: L/180 HORIZONTAL VERTICAL ANGULAR HORIZONTAL VERTICAL ANGULAR NODE (in. ) (in. ) (rad. ) NODE (in. ) (in. ) (rad. ) 1 0.000 0.000 0.007 1 0.000 0.000 0.007 2 -1.288 0.036 0.004 2 -1.288 0.036 0.004 3 -1.360 0.036 0.004 3 -1.360 0.036 0.004 4 -1.379 0.404 0.002 4 -1.379 0.404 0.002 5 -1.383 0.452 -0.003 5 -1.383 0.452 -0.003 6 -1.364 -0.021 -0.006 6 -1.364 -0.021 -0.006 7 0.000 0.000 0.005 7 0.000 0.000 0.005 8 -1.331 -0.849 -0.008 8 -1.331 -0.849 -0.008 9 -1.275 -2.252 -0.002 9 -1.275 -2.252 -0.002 10 -1.297 -1.762 0.006 10 -1.297 -1.762 0.006 11 -1.370 -0.050 0.008 11 -1.370 -0.050 0.008 12 -1.236 -0.049 0.007 12 -1.236 -0.049 0.007 13 0.000 0.000 0.002 13 0.000 0.000 0.002 CASE 15 : SPEHF2- CASE 16 : SPDFH1- Horizontal Deflection Limit: H/60 Horizontal Deflection Limit: H/60 Vertical Deflection Limit: L/180 Vertical Deflection Limit: L/180 HORIZONTAL VERTICAL ANGULAR HORIZONTAL VERTICAL ANGULAR NODE (in. ) (in. ) (rad. ) NODE (in. ) (in. ) (rad. ) 1 0.000 0.000 0.001 1 0.000 0.000 0.005 2 -0.156 -0.000 -0.000 2 -0.962 0.024 0.002 3 -0.152 -0.000 -0.000 3 -1.007 0.024 0.002 4 -0.149 -0.058 -0.000 4 -1.019 0.231 0.001 5 -0.153 -0.009 0.000 5 -1.024 0.295 -0.001 6 -0.153 -0.020 -0.001 6 -1.011 -0.028 -0.004 7 0.000 0.000 0.001 7 0.000 0.000 0.004 8 -0.144 -0.251 -0.003 8 -0.983 -0.733 -0.007 9 -0.122 -0.796 -0.001 9 -0.931 -2.032 -0.002 10 -0.130 -0.636 0.002 10 -0.951 -1.599 0.006 11 -0.157 -0.011 0.003 11 -1.018 -0.040 0.007 12 -0.115 -0.011 0.002 12 -0.901 -0.040 0.007 13 0.000 0.000 -0.001 13 0.000 0.000 0.000 CASE 17 : WL^ CASE 18 : WLX+^ Horizontal Deflection Limit: H/18 Horizontal Deflection Limit: H/18 Vertical Deflection Limit: L/55 Vertical Deflection Limit: L/55 HORIZONTAL VERTICAL ANGULAR HORIZONTAL VERTICAL ANGULAR NODE (in. ) (in. ) (rad. ) NODE (in. ) (in. ) (rad. ) 1 0.000 0.000 -0.004 1 0.000 0.000 -0.003 2 0.915 -0.021 -0.003 2 0.756 -0.016 -0.002 3 0.966 -0.020 -0.002 3 0.799 -0.016 -0.002 4 0.980 -0.252 -0.001 4 0.811 -0.214 -0.001 5 0.992 -0.356 0.002 5 0.823 -0.329 0.001 6 0.979 0.039 0.006 6 0.810 0.039 0.005 7 0.000 0.000 -0.003 7 0.000 0.000 -0.003 8 0.943 0.957 0.009 8 0.776 0.931 0.009 9 0.881 2.634 0.003 9 0.715 2.568 0.003 10 0.915 1.991 -0.008 10 0.750 1.917 -0.008 11 1.004 0.047 -0.007 11 0.836 0.012 -0.007 12 0.878 0.046 -0.007 12 0.716 0.012 -0.007 13 0.000 0.000 -0.001 13 0.000 0.000 -0.000 CASE 19 : WLX-^ CASE 20 : W1-> 77/27977 MSA 43.0 Page 31 of 36 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A. 01A 02/26/15 15 : 44 : 39 Horizontal Deflection Limit: H/18 Horizontal Deflection Limit: H/18 Vertical Deflection Limit: L/55 Vertical Deflection Limit: L/55 HORIZONTAL VERTICAL ANGULAR HORIZONTAL VERTICAL ANGULAR NODE (in. ) (in. ) (rad. ) NODE (in. ) (in. ) (rad.) 1 0.000 0.000 -0.004 1 0.000 0.000 -0.012 2 0.919 -0.021 -0.003 2 2.091 -0.057 -0.005 3 0.970 -0.021 -0.002 3 2.181 -0.056 -0.004 4 0.984 -0.253 -0.001 4 2.201 -0.454 -0.002 5 0.997 -0.356 0.002 5 2.200 -0.425 0.003 6 0.983 0.039 0.006 6 2.182 0.021 0.005 7 0.000 0.000 -0.003 7 0.000 0.000 -0.008 8 0.947 0.958 0.009 8 2.151 0.783 0.007 9 0.885 2.635 0.003 9 2.098 2.098 0.002 10 0.920 1.992 -0.008 10 2.115 1.716 -0.005 11 1.008 0.048 -0.007 11 2.186 0.068 -0.008 12 0.882 0.047 -0.007 12 2.041 0.067 -0.008 13 0.000 0.000 -0.001 13 0.000 0.000 -0.006 CASE 21 : W1<- CASE 22 : W2-> Horizontal Deflection Limit: H/18 Horizontal Deflection Limit: H/18 Vertical Deflection Limit: L/55 Vertical Deflection Limit: L/55 HORIZONTAL VERTICAL ANGULAR HORIZONTAL VERTICAL ANGULAR NODE (in. ) (in. ) (rad. ) NODE (in. ) (in. ) (rad. ) 1 0.000 0.000 0.009 1 0.000 0.000 -0.011 2 -1.694 0.048 0.004 2 1.835 -0.051 -0.004 3 -1.772 0.048 0.004 3 1.913 -0.051 -0.004 4 -1.789 0.376 0.001 4 1.930 -0.391 -0.002 5 -1.784 0.207 -0.002 5 1.926 -0.311 0.002 6 -1.777 0.012 -0.001 6 1.913 0.006 0.003 7 0.000 0.000 0.006 7 0.000 0.000 -0.007 8 -1.776 -0.035 0.000 8 1.895 0.436 0.004 9 -1.782 0.060 0.000 9 1.867 1.120 0.001 10 -1.782 -0.013 -0.001 10 1.874 0.960 -0.003 11 -1.783 -0.042 0.001 11 1.913 0.053 -0.005 12 -1.762 -0.042 0.001 12 1.820 0.053 -0.005 13 0.000 0.000 0.011 13 0.000 0.000 -0.007 CASE 23 : W2<- CASE 24 : W3-> Horizontal Deflection Limit: H/18 Horizontal Deflection Limit: H/18 Vertical Deflection Limit: L/55 Vertical Deflection Limit: L/55 HORIZONTAL VERTICAL ANGULAR HORIZONTAL VERTICAL ANGULAR NODE (in. ) (in. ) (rad. ) NODE (in. ) (in. ) (rad. ) 1 0.000 0.000 0.008 1 0.000 0.000 -0.002 2 -1.437 0.043 0.004 2 0.502 -0.011 -0.001 3 -1.504 0.043 0.003 3 0.529 -0.011 -0.001 4 -1.518 0.313 0.001 4 0.536 -0.135 -0.001 5 -1.509 0.092 -0.001 5 0.543 -0.202 0.001 6 -1.507 0.027 0.001 6 0.535 0.023 0.003 7 0.000 0.000 0.005 7 0.000 0.000 -0.002 8 -1.520 0.312 0.003 8 0.514 0.559 0.005 9 -1.552 1.038 0.001 9 0.477 1.548 0.002 10 -1.541 0.743 -0.003 10 0.496 1.177 -0.004 11 -1.510 -0.027 -0.002 11 0.547 0.026 -0.005 12 -1.540 -0.028 -0.001 12 0.471 0.026 -0.004 13 0.000 0.000 0.012 13 0.000 0.000 -0.000 CASE 25 : W3<- CASE 26 : W4-> Horizontal Deflection Limit: H/18 Horizontal Deflection Limit: H/18 78/27978 MSA 43. 0 Page 32 of 36 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A. 01A 02/26/15 15: 44 : 39 Vertical Deflection Limit: L/55 Vertical Deflection Limit: L/55 HORIZONTAL VERTICAL ANGULAR HORIZONTAL VERTICAL ANGULAR NODE (in. ) (in. ) (rad. ) NODE (in. ) (in. ) (rad. ) 1 0.000 0.000 -0.001 1 0.000 0.000 -0.014 2 0.246 -0.006 -0.001 2 2.504 -0.066 -0.006 3 0.261 -0.006 -0.001 3 2.618 -0.066 -0.006 4 0.265 -0.072 -0.000 4 2.645 -0.571 -0.003 5 0.268 -0.087 0.000 5 2.650 -0.579 0.003 6 0.265 0.008 0.001 6 2.626 0.037 0.008 7 0.000 0.000 -0.001 7 0.000 0.000 -0.009 8 0.258 0.212 0.002 8 2.580 1.181 0.011 9 0.246 0.570 0.001 9 2.503 3.184 0.004 10 0.255 0.421 -0.002 10 2.535 2.530 -0.009 11 0.274 0.012 -0.001 11 2.642 0.089 -0.011 12 0.250 0.012 -0.001 12 2.448 0.088 -0.011 13 0.000 0.000 -0.001 13 0.000 0.000 -0.007 CASE 27 : W4<- CASE 28 : E-> Horizontal Deflection Limit: H/18 Horizontal Deflection Limit: H/20 Vertical Deflection Limit: L/55 Vertical Deflection Limit: None HORIZONTAL VERTICAL ANGULAR HORIZONTAL VERTICAL ANGULAR NODE (in. ) (in. ) (rad. ) NODE (in. ) (in. ) (rad. ) 1 0.000 0.000 0.007 1 0.000 0.000 -0.030 2 -1.280 0.039 0.003 2 5.334 -0.151 -0.013 3 -1.334 0.039 0.003 3 5.566 -0.151 -0.011 4 -1.345 0.259 0.001 4 5.615 -1.150 -0.005 5 -1.334 0.053 -0.001 5 5.599 -0.794 0.006 6 -1.333 0.028 0.001 6 5.567 -0.007 0.007 7 0.000 0.000 0.005 7 0.000 0.000 -0.020 8 -1.346 0.364 0.004 8 5.535 0.763 0.006 9 -1.378 1.146 0.001 9 5.493 1.804 0.002 10 -1.362 0.800 -0.004 10 5.498 1.720 -0.003 11 -1.327 -0.021 -0.002 11 5.565 0.142 -0.012 12 -1.355 -0.022 -0.001 12 5.352 0.142 -0.012 13 0.000 0.000 0.010 13 0.000 0.000 -0.022 CASE 29 : E<- CASE 30 : ELX+^ Horizontal Deflection Limit: H/20 Horizontal Deflection Limit: H/20 Vertical Deflection Limit: None Vertical Deflection Limit: None HORIZONTAL VERTICAL ANGULAR HORIZONTAL VERTICAL ANGULAR NODE (in. ) (in. ) (rad. ) NODE (in. ) (in. ) (rad. ) 1 0.000 0.000 0.030 1 0.000 0.000 0.001 2 -5.334 0.151 0.013 2 -0.114 0.003 0.000 3 -5.566 0.151 0.011 3 -0.120 0.003 0.000 4 -5.615 1.150 0.005 4 -0.121 0.027 0.000 5 -5.599 0.794 -0.006 5 -0.121 0.019 -0.000 6 -5.567 0.007 -0.007 6 -0.120 0.000 -0.000 7 0.000 0.000 0.020 7 0.000 0.000 0.000 8 -5.535 -0.763 -0.006 8 -0.119 -0.019 -0.000 9 -5.493 -1.804 -0.002 9 -0.118 -0.047 -0.000 10 -5.498 -1.720 0.003 10 -0.119 -0.052 0.000 11 -5.565 -0.142 0.012 11 -0.120 -0.025 0.000 12 -5.352 -0.142 0.012 12 -0.116 -0.024 0.000 13 0.000 0.000 0.022 13 0.000 0.000 0.001 CASE 31 : ELX-^ CASE 32 : f2E-> Horizontal Deflection Limit: H/20 Horizontal Deflection Limit: None Vertical Deflection Limit: None Vertical Deflection Limit: None 79/27979 MSA 43 . 0 Page 33 of 36 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A. 01A 02/26/15 15: 44 : 39 HORIZONTAL VERTICAL ANGULAR HORIZONTAL VERTICAL ANGULAR NODE (in. ) (in. ) (rad. ) NODE (in. ) (in. ) (rad. ) 1 0.000 0.000 -0.000 1 0.000 0.000 -0.070 2 0.003 -0.000 -0.000 2 12.329 -0.349 -0.029 3 0.003 -0.000 -0.000 3 12.865 -0.348 -0.026 4 0.003 -0.001 -0.000 4 12.980 -2.658 -0.011 5 0.003 -0.000 0.000 5 12.942 -1.836 0.014 6 0.003 -0.000 0.000 6 12.868 -0.017 0.016 7 0.000 0.000 -0.000 7 0.000 0.000 -0.046 8 0.003 0.000 0.000 8 12.795 1.764 0.014 9 0.003 0.001 0.000 9 12.697 4 .170 0.005 10 0.003 0.001 -0.000 10 12.708 3.975 -0.008 11 0.003 0.001 -0.000 11 12.863 0.328 -0.027 12 0.003 0.001 -0.000 12 12.371 0.328 -0.029 13 0.000 0.000 -0.000 13 0.000 0.000 -0.052 CASE 33 : QE<- CASE 34 : QELX+^ Horizontal Deflection Limit: None Horizontal Deflection Limit: None Vertical Deflection Limit: None Vertical Deflection Limit: None HORIZONTAL VERTICAL ANGULAR HORIZONTAL VERTICAL ANGULAR NODE (in. ) (in. ) (rad. ) NODE (in. ) (in. ) (rad. ) 1 0.000 0.000 0.070 1 0.000 0.000 0.000 2 -12.329 0.349 0.029 2 -0.008 -0.005 0.000 3 -12.865 0.348 0.026 3 -0.008 -0.005 0.000 4 -12.980 2.658 0.011 4 -0.009 -0.002 0.000 5 -12.942 1.836 -0.014 5 -0.009 0.001 -0.000 6 -12.868 0.017 -0.016 6 -0.009 -0.000 -0.000 7 0.000 0.000 0.046 7 0.000 0.000 0.000 8 -12.795 -1.764 -0.014 8 -0.009 -0.001 -0.000 9 -12.697 -4.170 -0.005 9 -0.009 -0.006 -0.000 10 -12.708 -3.975 0.008 10 -0.009 -0.010 -0.000 11 -12.863 -0.328 0.027 11 -0.009 -0.012 -0.000 12 -12.371 -0.328 0.029 12 -0.009 -0.012 0.000 13 0.000 0.000 0.052 13 0.000 0.000 0.000 CASE 35 : c ELX-^ Horizontal Deflection Limit: None Vertical Deflection Limit: None HORIZONTAL VERTICAL ANGULAR NODE (in. ) (in.) (rad. ) 1 0.000 0.000 0.000 2 -0.000 0.000 -0.000 3 -0.000 0.000 -0.000 4 -0.000 0.000 -0.000 5 -0.000 0.000 -0.000 6 -0.000 -0.000 -0.000 7 0.000 0.000 0.000 8 -0.000 -0.000 -0.000 9 -0.000 -0.000 -0.000 10 -0.000 -0.000 0.000 11 -0.000 0.000 0.000 12 -0.000 0.000 0.000 13 0.000 0.000 -0.000 80/27980 MSA 43 . 0 Page 34 of 36 Job:W15GO032A C: \ABCP\FRAMES\W15G0032A. 01A 02/26/15 15 : 44 : 39 WEIGHT OF BUILT-UP MEMBERS = 5480.2 lbs WEIGHT OF W SHAPE MEMBERS = 0.0 lbs WEIGHT OF PIPE MEMBERS = 0.0 lbs WEIGHT OF SPLICES = 358.7 lbs WEIGHT OF BASE PLATES = 37.8 lbs WEIGHT OF STIFFENERS = 33.3 lbs TOTAL WEIGHT = 5910.0 lbs 81/27981 MSA 43 . 0 Page 35 of 36 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A. 01A 02/26/15 15: 44 : 39 FLANGE BRACE LOCATIONS SEQ# P/G# REQD? LEFT COLUMN BASE 1 1 No 2 2 Yes 3 3 No 4 4 Yes 5 5 No (Eave) LEFT EAVE 6 1 No (Eave) 7 2 Yes (Both Sides) 8 3 Yes 9 4 No 10 5 Yes 11 6 No 12 7 Yes 13 8 No 14 9 Yes 15 10 Yes 16 11 No 17 12 Yes 18 13 No 19 14 Yes 20 15 No 21 16 Yes 22 17 No 23 18 Yes 24 19 No 25 20 Yes 26 21 No 27 22 Yes 28 23 No 29 24 Yes (Eave Frame Brace Req'd) RIGHT EAVE 30 1 Yes (Eave Frame Brace Req'd) 31 2 No 32 3 Yes 33 4 No 34 5 Yes 35 6 No RIGHT COLUMN BASE NOTE: FLANGE BRACES ARE ON ONE SIDE AT THE LOCATIONS SPECIFIED (SINGLE SIDED) . PDELTA ANALYSIS RATIOS iWebOptCycle = 1 icy = 1 Stable All Load Combinations 82/27982 AMERICAN BUILDINGS COMPANY A IYUCCFM COMPANY MSA 43. 0 Page 1 of 36 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A. 01B 02/26/15 15: 44 : 01 STEEL FRAME ANALYSIS AND DESIGN BY THE DIRECT STIFFNESS METHOD BY THE 2010 AISC 360-10 SPECIFICATION FOR STRUCTURAL STEEL BUILDINGS WITH STABILITY DESIGN BY THE DIRECT ANALYSIS METHOD BUILDING DESCRIPTION - - RF FL 1 & 4 ONLY W15G0032A FRAME WIDTH BAY SPACING ROOF SLOPES INT. COLUMNS MEMBERS NODES 111.000 ft. 10.500 ft. 1 1 12 13 LEFT WALL SLOPE W/VERT. GIRT DEPTH GIRT SPACING(S) 0.000/ 12.0 1.50 in. 2 @ 48.00 in. 1 @ 78.00 in. 1 @ 60.00 in. 1 @ 48.00 in. NODE LOCATION WEB DEPTH CONNECTION BASE 1 0.000 ft. 12.000 in. PINNED SPLICE 2 20.546 ft. 24.000 in. RIGID EAVE 3 23.500 ft. 24.000 in. RIGID ROOF SLOPE 1 SLOPE W/HORIZ. PURLIN DEPTH TYP. PURLIN SPACE 0.500/ 12.0 8.00 in. 35.51 in. NODE LOCATION WEB DEPTH CONNECTION LEFT END 3 -0.000 ft. 24.000 in. RIGID SPLICE 4 11.833 ft. 24.000 in. RIGID SPLICE 5 31.833 ft. 24.000 in. RIGID SPLICE 6 41.791 ft. 24.000 in. RIGID SPLICE 8 51.833 ft. 24.000 in. RIGID SPLICE 9 71.833 ft. 24.000 in. RIGID SPLICE 10 91.833 ft. 24.000 in. RIGID RIGHT END 11 111.000 ft. 24.000 in. RIGID RIGHT WALL SLOPE W/VERT. GIRT DEPTH GIRT SPACING(S) 0.000/ 12.0 1.50 in. 2 @ 48.00 in. 1 @ 78.00 in. 2 @ 60.00 in. 1 @ 43.50 in. NODE LOCATION WEB DEPTH CONNECTION SAVE 11 28.125 ft. 24.000 in. RIGID SPLICE 12 24.991 ft. 24.000 in. RIGID BASE 13 0.000 ft. 12.000 in. PINNED INTERIOR COLUMN(S) X LOCATION/ NODE BASE ELEV. COL. DEPTH CONNECTION 1 TOP 6 41.833 ft. 11.000 in. PINNED 83/27983 MSA 43 . 0 Page 2 of 36 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A. 01B 02/26/15 15: 44 : 01 BASE 7 0.000 ft. 11.000 in. PINNED 84/27984 MSA 43 . 0 Page 3 of 36 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A. 01B 02/26/15 15: 44 : 01 MEMBER SIZES OUTER FLANGE WEB INNER FLANGE WEB-TO-FLANGE YIELD STRESS MEMBER WIDTH THICKNESS THICKNESS WIDTH THICKNESS WELD FLANGE WEB (inches) (inches) (inches) (inches) (ksi) (ksi) 1 6.00 X 0.3125 0.2188 6.00 X 0.3125 0.1875 55.0 55.0 2 6.00 X 0.3125 0.2500 6.00 X 0.3125 0.1875 55.0 55.0 3 6.00 X 0.2500 0.2500 6.00 X 0.2600 0.1875 50.0 50.0 4 6.00 X 0.2500 0.1644 6.00 X 0.2500 0.1250 55.0 55.0 5 6.00 X 0.2500 0.1644 6.00 X 0.3125 0.1250 55.0 55.0 6 6.00 X 0.2500 0.1875 6.00 X 0.2500 0.1250 55.0 55.0 7 6.00 X 0.2500 0.1875 6.00 X 0.3125 0.1875 55.0 55.0 8 6.00 X 0.2500 0.1875 6.00 X 0.3125 0.1875 55.0 55.0 9 6.00 X 0.2500 0.1644 6.00 X 0.2500 0.1250 55.0 55.0 10 6.00 X 0.2500 0.1644 6.00 X 0.2500 0.1250 55.0 55.0 11 6.00 X 0.2500 0.2188 6.00 X 0.2500 0.1250 55.0 55.0 12 6.00 X 0.2500 0.1644 6.00 X 0.2500 0.1250 55.0 55.0 FRAME SELF-WEIGHT AS APPLIED DEAD LOAD MEMBER MEMBER WEIGHT CONNECTION WEIGHT (lbs) (lbs) 1 537.2 2 42.8 113.1 3 336.9 4 476.6 81.6 5 253.0 6 0.0 7 274.0 8 540.8 81.6 9 476.6 10 429.9 117.9 11 38.6 12 506.4 Total: 3912.7 394.1 85/27985 MSA 43 . 0 Page 4 of 36 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A. 01B 02/26/15 15: 44 : 01 NODE COORDINATES NODE X Y X OUT OF PLUMB (in.) (in. ) (0.003xY) (in. ) 1 8.00 0.00 +/- 0.0000 2 14.00 246.56 +/- 0.7397 3 14.00 262.07 +/- 0.7862 4 142.50 267.42 +/- 0.8023 5 382.50 277.42 +/- 0.8323 6 502.00 282.40 +/- 0.8472 7 502.00 0.00 +/- 0.0000 8 622.50 287.42 +/- 0.8623 9 862.50 297.42 +/- 0.8923 10 1102.50 307.42 +/- 0.9223 11 1318.00 316.40 +/- 0.9492 12 1318.00 299.89 +/- 0.8997 13 1324.00 0.00 +/- 0.0000 86/27986 MSA 43 . 0 Page 5 of 36 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A. 01B 02/26/15 15: 44 : 01 LOAD CASE 1 : D No Stress Check; No Deflection Limits DEAD LOAD = 2.50 psf LOAD CASE 2 : D+C No Stress Check; No Deflection Limits DEAD LOAD = 5.50 psf LOAD CASE 3 : MEZD No Stress Check; No Deflection Limits CONCENTRATED LOADS * * LOAD COMPONENTS LOAD NO. LINE NO. * LOCATION FLG SIDE * HORIZONTAL VERTICAL MOMENT * (ft. ) * (kips) (kips) (kip-ft) 1 1 11.50 Inner Flg 0.00 -4.60 0.00 2 -1 11.50 Neutral Axis 0.00 -4.50 0.00 LOAD CASE 4 : XMEZ No Stress Check; No Deflection Limits CONCENTRATED LOADS * * LOAD COMPONENTS LOAD NO. LINE NO. * LOCATION FLG SIDE * HORIZONTAL VERTICAL MOMENT * (ft. ) * (kips) (kips) (kip-ft) 1 1 11.50 Inner Flg 0.00 -6.40 0.00 2 -1 11.50 Neutral Axis 0.00 -6.10 0.00 LOAD CASE 5 : LEU- No Stress Check; L/180 Vertical Deflection Limit LIVE LOAD = 20.00 psf LOAD CASE 6 : L No Stress Check; L/180 Vertical Deflection Limit LIVE LOAD = 12.00 psf LOAD CASE 7 : LPAFN1- No Stress Check; L/90 Vertical Deflection Limit * * HORIZONTAL * VERTICAL DISTRIBUTED LOADS * START END * LOAD INTENSITY * LOAD INTENSITY LOAD NO. LINE NO. * LOCATION LOCATION * AT START AT END * AT START AT END * (ft. ) (ft. ) * (psf) (psf) * (psf) (psf) 1 2 0.00 41.83 0.00 0.00 -0.00 -0.00 2 2 41.83 111.00 0.00 0.00 -12.00 -12.00 LOAD CASE 8 : LPAFN2- No Stress Check; L/90 Vertical Deflection Limit * * HORIZONTAL * VERTICAL DISTRIBUTED LOADS * START END * LOAD INTENSITY * LOAD INTENSITY LOAD NO. LINE NO. * LOCATION LOCATION * AT START AT END * AT START AT END * (ft. ) (ft. ) * (psf) (psf) * (psf) (psf) 1 2 0.00 41.83 0.00 0.00 -12.00 -12.00 2 2 41.83 111.00 0.00 0.00 -0.00 -0.00 87/27987 MSA 43 . 0 Page 6 of 36 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A. 01B 02/26/15 15: 44 : 01 LOAD CASE 9 : LPDFN1- No Stress Check; L/90 Vertical Deflection Limit * * HORIZONTAL * VERTICAL DISTRIBUTED LOADS * START END * LOAD INTENSITY * LOAD INTENSITY LOAD NO. LINE NO. * LOCATION LOCATION * AT START AT END * AT START AT END * (ft. ) (ft. ) * (psf) (psf) * (psf) (psf) 1 2 0.00 41.83 0.00 0.00 -12.00 -12.00 2 2 41.83 111.00 0.00 0.00 -12.00 -12.00 LOAD CASE 10 : SEU- No Stress Check; H/60 Horizontal Deflection Limit; L/180 Vertical Deflection Limit LIVE LOAD = 25.00 psf LOAD CASE 11 : S No Stress Check; H/60 Horizontal Deflection Limit; L/180 Vertical Deflection Limit LIVE LOAD = 25.00 psf CONCENTRATED LOADS * * LOAD COMPONENTS LOAD NO. LINE NO. * LOCATION FLG SIDE * HORIZONTAL VERTICAL MOMENT * (ft. ) * (kips) (kips) (kip-ft) 1 1 12.00 Neutral Axis 0.00 -5.80 0.00 LOAD CASE 12 : SPEFH1- No Stress Check; H/60 Horizontal Deflection Limit; L/180 Vertical Deflection Limit * * HORIZONTAL * VERTICAL DISTRIBUTED LOADS * START END * LOAD INTENSITY * LOAD INTENSITY LOAD NO. LINE NO. * LOCATION LOCATION * AT START AT END * AT START AT END * (ft. ) (ft. ) * (psf) (psf) * (psf) (psf) 1 2 0.00 48.25 0.00 0.00 -15.75 -15.75 2 2 48.25 111.00 0.00 0.00 -7.88 -7.88 LOAD CASE 13 : SPEFH2- No Stress Check; H/60 Horizontal Deflection Limit; L/180 Vertical Deflection Limit * * HORIZONTAL * VERTICAL DISTRIBUTED LOADS * START END * LOAD INTENSITY * LOAD INTENSITY LOAD NO. LINE NO. * LOCATION LOCATION * AT START AT END * AT START AT END * (ft. ) (ft. ) * (psf) (psf) * (psf) (psf) 1 2 0.00 48.25 0.00 0.00 -7.88 -7.88 2 2 48.25 111.00 0.00 0.00 -15.75 -15.75 LOAD CASE 14 : SPEHFI- No Stress Check; H/60 Horizontal Deflection Limit; L/180 Vertical Deflection Limit * * HORIZONTAL * VERTICAL DISTRIBUTED LOADS * START END * LOAD INTENSITY * LOAD INTENSITY LOAD NO. LINE NO. * LOCATION LOCATION * AT START AT END * AT START AT END * (ft. ) (ft. ) * (psf) (psf) * (psf) (psf) 1 2 0.00 48.25 0.00 0.00 -7.88 -7.88 2 2 48.25 111.00 0.00 0.00 -15.75 -15.75 LOAD CASE 15 : SPEHF2- No Stress Check; H/60 Horizontal Deflection Limit; L/180 Vertical Deflection Limit 88/27988 MSA 43. 0 Page 7 of 36 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A. 01B 02/26/15 15 : 44 : 01 * * HORIZONTAL * VERTICAL DISTRIBUTED LOADS * START END * LOAD INTENSITY * LOAD INTENSITY LOAD NO. LINE NO. * LOCATION LOCATION * AT START AT END * AT START AT END * (ft. ) (ft. ) * (psf) (psf) * (psf) (psf) 1 2 0.00 48.25 0.00 0.00 -15.75 -15.75 2 2 48.25 111.00 0.00 0.00 -7.88 -7.88 LOAD CASE 16 : SPDFH1- No Stress Check; H/60 Horizontal Deflection Limit; L/180 Vertical Deflection Limit * * HORIZONTAL * VERTICAL DISTRIBUTED LOADS * START END * LOAD INTENSITY * LOAD INTENSITY LOAD NO. LINE NO. * LOCATION LOCATION * AT START AT END * AT START AT END * (ft. ) (ft. ) * (psf) (psf) * (psf) (psf) 1 2 0.00 48.25 0.00 0.00 -15.75 -15.75 2 2 48.25 111.00 0.00 0.00 -15.75 -15.75 LOAD CASE 17 : WL^ No Stress Check; H/18 Horizontal Deflection Limit; L/55 Vertical Deflection Limit WIND LOAD = 25.76 psf C1= -0.63; C2= -1.25; C3= -0.63 LOAD CASE 18 : WLX+^ No Stress Check; H/18 Horizontal Deflection Limit; L/55 Vertical Deflection Limit WIND LOAD = 25.76 psf C1= -0.63; C2= -0.87; C3= -0.63 CONCENTRATED LOADS * * LOAD COMPONENTS LOAD NO. LINE NO. * LOCATION FLG SIDE * HORIZONTAL VERTICAL MOMENT * (ft. ) * (kips) (kips) (kip-ft) 1 1 22.83 Neutral Axis 0.00 -7.32 0.00 -6.70 (out-of-plane) 2 3 27.46 Neutral Axis 0.00 -9.47 0.00 -7.16 (out-of-plane) LOAD CASE 19 : WLX-^ No Stress Check; H/18 Horizontal Deflection Limit; L/55 Vertical Deflection Limit WIND LOAD = 25.76 psf C1= -0.63; C2= -0.87; C3- -0.63 CONCENTRATED LOADS * * LOAD COMPONENTS LOAD NO. LINE NO. * LOCATION FLG SIDE *HORIZONTAL VERTICAL MOMENT * (ft. ) * (kips) (kips) (kip-ft) 1 1 0.50 Neutral Axis 0.00 7.32 0.00 -6.70 (out-of-plane) 2 3 0.50 Neutral Axis 0.00 9.47 0.00 -7.16 (out-of-plane) LOAD CASE 20 : W1-> No Stress Check; H/18 Horizontal Deflection Limit; L/55 Vertical Deflection Limit WIND LOAD = 25.76 psf C1= 0.79; C2= -0.89; C3= -0.25 CONCENTRATED LOADS * * LOAD COMPONENTS LOAD NO. LINE NO. * LOCATION FLG SIDE * HORIZONTAL VERTICAL MOMENT * (ft. ) * (kips) (kips) (kip-ft) 1 2 50.00 Neutral Axis 2.80 0.00 0.00 89/27989 MSA 43. 0 Page 8 of 36 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A. 01B 02/26/15 15: 44 : 01 LOAD CASE 21 : W1<- No Stress Check; H/18 Horizontal Deflection Limit; L/55 Vertical Deflection Limit WIND LOAD = 25.76 psf Cl= -0.25; C2= -0.35; C3= 0.79 CONCENTRATED LOADS * * LOAD COMPONENTS LOAD NO. LINE NO. * LOCATION FLG SIDE * HORIZONTAL VERTICAL MOMENT * (ft.) * (kips) (kips) (kip-ft) 1 2 50.00 Neutral Axis -2.80 0.00 0.00 LOAD CASE 22 : W2-> No Stress Check; H/18 Horizontal Deflection Limit; L/55 Vertical Deflection Limit WIND LOAD = 25.76 psf C1= 0.79; C2= -0.35; C3= -0.25 CONCENTRATED LOADS * * LOAD COMPONENTS LOAD NO. LINE NO. * LOCATION FLG SIDE * HORIZONTAL VERTICAL MOMENT * (ft.) * (kips) (kips) (kip-ft) 1 2 50.00 Neutral Axis 2.80 0.00 0.00 LOAD CASE 23 : W2<- No Stress Check; H/18 Horizontal Deflection Limit; L/55 Vertical Deflection Limit WIND LOAD = 25.76 psf Cl= -0.25; C2= -0.89; C3= 0.79 CONCENTRATED LOADS * * LOAD COMPONENTS LOAD NO. LINE NO. * LOCATION FLG SIDE * HORIZONTAL VERTICAL MOMENT * (ft.) * (kips) (kips) (kip-ft) 1 2 50.00 Neutral Axis -2.80 0.00 0.00 LOAD CASE 24 : W3-> No Stress Check; H/18 Horizontal Deflection Limit; L/55 Vertical Deflection Limit WIND LOAD = 25.76 psf Cl= -0.30; C2= -0.89; C3= -0.30 CONCENTRATED LOADS * * LOAD COMPONENTS LOAD NO. LINE NO. * LOCATION FLG SIDE * HORIZONTAL VERTICAL MOMENT * (ft.) * (kips) (kips) (kip-ft) 1 2 50.00 Neutral Axis 2.80 0.00 0.00 LOAD CASE 25 : W3<- No Stress Check; H/18 Horizontal Deflection Limit; L/55 Vertical Deflection Limit WIND LOAD = 25.76 psf C1= -0.30; C2= -0.35; C3= -0.30 CONCENTRATED LOADS * * LOAD COMPONENTS LOAD NO. LINE NO. * LOCATION FLG SIDE * HORIZONTAL VERTICAL MOMENT * (ft. ) * (kips) (kips) (kip-ft) 1 2 50.00 Neutral Axis -2.80 0.00 0.00 LOAD CASE 26 : W4-> No Stress Check; H/18 Horizontal Deflection Limit; L/55 Vertical Deflection Limit WIND LOAD = 25.76 psf Cl= 0.43; C2= -1.25; C3= -0.61 CONCENTRATED LOADS * * LOAD COMPONENTS LOAD NO. LINE NO. * LOCATION FLG SIDE * HORIZONTAL VERTICAL MOMENT 90/27990 MSA 43 . 0 Page 9 of 36 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A. 01B 02/26/15 15: 44 : 01 * (ft. ) * (kips) (kips) (kip-ft) 1 2 50.00 Neutral Axis 2.80 0.00 0.00 LOAD CASE 27 : W4<- No Stress Check; H/18 Horizontal Deflection Limit; L/55 Vertical Deflection Limit WIND LOAD = 25.76 psf C1= -0.61; C2= -0.71; C3= 0.43 CONCENTRATED LOADS * * LOAD COMPONENTS LOAD NO. LINE NO. * LOCATION FLG SIDE * HORIZONTAL VERTICAL MOMENT * (ft.) * (kips) (kips) (kip-ft) 1 2 50.00 Neutral Axis -2.80 0.00 0.00 LOAD CASE 28 : E-> No Stress Check; H/20 Horizontal Deflection Limit CONCENTRATED LOADS * * LOAD COMPONENTS LOAD NO. LINE NO. * LOCATION FLG SIDE * HORIZONTAL VERTICAL MOMENT * (ft. ) * (kips) (kips) (kip-ft) 1 1 23.50 Neutral Axis 2.60 0.00 0.00 2 3 28.13 Neutral Axis 2.60 0.00 0.00 3 1 11.50 Neutral Axis 5.50 0.00 0.00 LOAD CASE 29 : E<- No Stress Check; H/20 Horizontal Deflection Limit CONCENTRATED LOADS * * LOAD COMPONENTS LOAD NO. LINE NO. * LOCATION FLG SIDE * HORIZONTAL VERTICAL MOMENT * (ft. ) * (kips) (kips) (kip-ft) 1 1 23.50 Neutral Axis -2.60 0.00 0.00 2 3 28.13 Neutral Axis -2.60 0.00 0.00 3 1 11.50 Neutral Axis -5.50 0.00 0.00 LOAD CASE 30 : ELX+^ No Stress Check; H/20 Horizontal Deflection Limit CONCENTRATED LOADS * * LOAD COMPONENTS LOAD NO. LINE NO. * LOCATION FLG SIDE * HORIZONTAL VERTICAL MOMENT * (ft. ) * (kips) (kips) (kip-ft) 1 1 22.83 Neutral Axis 0.00 -3.98 0.00 -3.64 (out-of-plane) 2 3 27.46 Neutral Axis 0.00 -4.82 0.00 -3.64 (out-of-plane) LOAD CASE 31 : ELX-^ No Stress Check; H/20 Horizontal Deflection Limit CONCENTRATED LOADS * * LOAD COMPONENTS LOAD NO. LINE NO. * LOCATION FLG SIDE * HORIZONTAL VERTICAL MOMENT * (ft. ) * (kips) (kips) (kip-ft) 1 1 0.50 Neutral Axis 0.00 3.98 0.00 -3.64 (out-of-plane) 2 3 0.50 Neutral Axis 0.00 4.82 0.00 -3.64 (out-of-plane) LOAD CASE 32 : 0E-> No Stress Check; No Deflection Limits 91/27991 MSA 43 . 0 Page 10 of 36 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A. 01B 02/26/15 15: 44 : 01 CONCENTRATED LOADS * * LOAD COMPONENTS LOAD NO. LINE NO. * LOCATION FLG SIDE * HORIZONTAL VERTICAL MOMENT * (ft.) * (kips) (kips) (kip-ft) 1 1 23.50 Neutral Axis 6.00 0.00 0.00 2 3 28.13 Neutral Axis 6.00 0.00 0.00 3 1 11.50 Neutral Axis 12.70 0.00 0.00 LOAD CASE 33 : OE<- No Stress Check; No Deflection Limits CONCENTRATED LOADS * * LOAD COMPONENTS LOAD NO. LINE NO. * LOCATION FLG SIDE * HORIZONTAL VERTICAL MOMENT * (ft.) * (kips) (kips) (kip-ft) 1 1 23.50 Neutral Axis -6.00 0.00 0.00 2 3 28.13 Neutral Axis -6.00 0.00 0.00 3 1 11.50 Neutral Axis -12.70 0.00 0.00 LOAD CASE 34 : OELX+^ No Stress Check; No Deflection Limits CONCENTRATED LOADS * * LOAD COMPONENTS LOAD NO. LINE NO. * LOCATION FLG SIDE * HORIZONTAL VERTICAL MOMENT * (ft.) * (kips) (kips) (kip-ft) 1 1 22.83 Neutral Axis 0.00 -6.12 0.00 -5.60 (out-of-plane) 2 3 27.46 Neutral Axis 0.00 -7.41 0.00 -5.60 (out-of-plane) LOAD CASE 35 : cELX-^ No Stress Check; No Deflection Limits CONCENTRATED LOADS * * LOAD COMPONENTS LOAD NO. LINE NO. * LOCATION FLG SIDE * HORIZONTAL VERTICAL MOMENT * (ft.) * (kips) (kips) (kip-ft) 1 1 0.50 Neutral Axis 0.00 6.12 0.00 -5.60 (out-of-plane) 2 3 0.50 Neutral Axis 0.00 7.41 0.00 -5.60 (out-of-plane) LOAD CASE 36 : D+C + LEU- + MEZD + XMEZ nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.805 LOAD CASE 37 : D+C + LEU- + MEZD + XMEZ nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.805 LOAD CASE 38 : D+C + L + MEZD + XMEZ nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.574 LOAD CASE 39 : D+C + L + MEZD + XMEZ nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.574 LOAD CASE 40 : D+C + LPAFN1- nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.627 92/27992 MSA 43 . 0 Page 11 of 36 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A. 01B 02/26/15 15: 44 : 01 LOAD CASE 41 : D+C + LPAFN1- nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.623 LOAD CASE 42 : D+C + LPAFN2- nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.333 LOAD CASE 43 : D+C + LPAFN2= nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.335 LOAD CASE 44 : D+C + LPDFN1- nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.576 LOAD CASE 45 : D+C + LPDFN1-- nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.573 LOAD CASE 46 : D+C + SEU- nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.964 LOAD CASE 47 : D+C + SEU- nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.954 LOAD CASE 48 : D+C + S + MEZD + XMEZ nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.951 LOAD CASE 49 : D+C + S + MEZD + XMEZ nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.950 LOAD CASE 50 : D+C + SPEFHl + MEZD + XMEZ nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.495 LOAD CASE 51 : D+C + SPEFHl + MEZD + XMEZ nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.495 LOAD CASE 52 : D+C + SPEFH2- + MEZD + XMEZ nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.704 LOAD CASE 53 : D+C + SPEFH2= + MEZD + XMEZ nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.695 LOAD CASE 54 : D+C + SPEHF1- + MEZD + XMEZ nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.704 LOAD CASE 55 : D+C + SPEHF1- + MEZD + XMEZ nR 93/27993 MSA 43.0 Page 12 of 36 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A. 01B 02/26/15 15: 44 : 01 ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.695 LOAD CASE 56 : D+C + SPEHF2- + MEZD + XMEZ nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.495 LOAD CASE 57 : D+C + SPEHF2- + MEZD + XMEZ nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.495 LOAD CASE 58 : D+C + SPDFH1- + MEZD + XMEZ nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.682 LOAD CASE 59 : D+C + SPDFH1- + MEZD + XMEZ nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.682 LOAD CASE 60 : 1.10D+C + 0.70E-> + MEZD nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.547 LOAD CASE 61 : 1.10D+C + 0.70E-> + MEZD nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.556 LOAD CASE 62 : 1.10D+C + 0.70E<- + MEZD nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.845 LOAD CASE 63 : 1.10D+C + 0.70E<- + MEZD nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.836 LOAD CASE 64 : 1.10D+C + 0.70ELX+^ nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.247 LOAD CASE 65 : 1.10D+C + 0.70ELX+^ nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.247 LOAD CASE 66 : 1.10D+C + 0.70ELX-^ nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.246 LOAD CASE 67 : 1.10D+C + 0.70ELX-^ nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.246 LOAD CASE 68 : 0.92D+C + 0.5852E-> + 0.92MEZD nL ASD Special Seismic; No Deflection Limits LOAD CASE 69 : 0.92D+C + 0.5852E-> + 0.92MEZD nR ASD Special Seismic; No Deflection Limits LOAD CASE 70 : 0.92D+C + 0.5852E<- + 0.92MEZD nL 94/27994 MSA 43. 0 Page 13 of 36 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A. 01B 02/26/15 15: 44 : 01 ASD Special Seismic; No Deflection Limits LOAD CASE 71 : 0.92D+C + 0.580E<- + 0.92MEZD nR ASD Special Seismic; No Deflection Limits LOAD CASE 72 : 0.92D+C + 0.580ELX+^ nL ASD Special Seismic; No Deflection Limits LOAD CASE 73 : 0.92D+C + 0.58CELX+^ nR ASD Special Seismic; No Deflection Limits LOAD CASE 74 : 0.92D+C + 0.580ELX-^ nL ASD Special Seismic; No Deflection Limits LOAD CASE 75 : 0.92D+C + 0.580ELX-^ nR ASD Special Seismic; No Deflection Limits LOAD CASE 76 D+C + 0.45WL^ + 0.75L nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.117 LOAD CASE 77 : D+C + 0.45WL^ + 0.75L nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.114 LOAD CASE 78 : D+C + 0.45WLX+^ + 0.75L nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.213 LOAD CASE 79 : D+C + 0.45WLX+^ + 0.75L nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.209 LOAD CASE 80 : D+C + 0.45WLX-^ + 0.75L nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.210 LOAD CASE 81 : D+C + 0.45WLX-^ + 0.75L nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.208 LOAD CASE 82 : D+C + 0.45W1-> + 0.75L nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.286 LOAD CASE 83 : D+C + 0.45W1-> + 0.75L nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.289 LOAD CASE 84 : D+C + 0.45W1<- + 0.75L nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.568 LOAD CASE 85 : D+C + 0.45W1<- + 0.75L nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.557 LOAD CASE 86 : D+C + 0.45W2-> + 0.75L nL 95/27995 MSA 43 . 0 Page 14 of 36 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A. 01B 02/26/15 15: 44 : 01 ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.415 LOAD CASE 87 : D+C + 0.45W2-> + 0.75L nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.420 LOAD CASE 88 : D+C + 0.45W2<- + 0.75L nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.503 LOAD CASE 89 : D+C + 0.45W2<- + 0.75L nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.497 LOAD CASE 90 : D+C + 0.45W3-> + 0.75L nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.195 LOAD CASE 91 : D+C + 0.45W3-> + 0.75L nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.196 LOAD CASE 92 : D+C + 0.45W3<- + 0.75L nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.422 LOAD CASE 93 : D+C + 0.45W3<- + 0.75L nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.418 LOAD CASE 94 : D+C + 0.45W4-> + 0.75L nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.238 LOAD CASE 95 : D+C + 0.45W4-> + 0.75L nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.239 LOAD CASE 96 : D+C + 0.45W4<- + 0.75L nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.521 LOAD CASE 97 : D+C + 0.45W4<- + 0.75L nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.514 LOAD CASE 98 : D+C + 0.45WL^ + 0.75S nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.370 LOAD CASE 99 : D+C + 0.45WL^ + 0.75S nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.365 LOAD CASE 100 : D+C + 0.45WLX+^ + 0.75S nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.494 96/27996 MSA 43 . 0 Page 15 of 36 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A. 01B 02/26/15 15: 44 : 01 LOAD CASE 101 : D+C + 0.45WLX+^ + 0.75S nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.486 LOAD CASE 102 : D+C + 0.45WLX-^ + 0.75S nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.489 LOAD CASE 103 : D+C + 0.45WLX-^ + 0.75S nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.483 LOAD CASE 104 : D+C + 0.45W1-> + 0.755 + MEZD + 0.75XMEZ nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.494 LOAD CASE 105 : D+C + 0.45W1-> + 0.75S + MEZD + 0.75XMEZ nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.507 LOAD CASE 106 : D+C + 0.45W1<- + 0.75S + MEZD + 0.75XMEZ nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.789 LOAD CASE 107 : D+C + 0.45W1<- + 0.75S + MEZD + 0.75XMEZ nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.778 LOAD CASE 108 : D+C + 0.45W2-> + 0.75S + MEZD + 0.75XMEZ nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.654 LOAD CASE 109 : D+C + 0.45W2-> + 0.75S + MEZD + 0.75XMEZ nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.654 LOAD CASE 110 : D+C + 0.45W2<- + 0.75S + MEZD + 0.75XMEZ nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.651 LOAD CASE 111 : D+C + 0.45W2<- + 0.75S + MEZD + 0.75XMEZ nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.630 LOAD CASE 112 : D+C + 0.45W3-> + 0.75S + MEZD + 0.75XMEZ nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.473 LOAD CASE 113 : D+C + 0.45W3-> + 0.75S + MEZD + 0.75XMEZ nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.473 LOAD CASE 114 : D+C + 0.45W3<- + 0.75S + MEZD + 0.75XMEZ nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.698 LOAD CASE 115 : D+C + 0.45W3<- + 0.75S + MEZD + 0.75XMEZ nR 97/27997 MSA 43 . 0 Page 16 of 36 Job:W15G0O32A C: \ABCP\FRAMES\W15G0O32A. O1B 02/26/15 15: 44 : 01 ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.687 LOAD CASE 116 : D+C + 0.45W4-> + 0.755 + MEZD + 0.75XMEZ nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.448 LOAD CASE 117 : D+C + 0.45W4-> + 0.75S + MEZD + 0.75XMEZ nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.459 LOAD CASE 118 : D+C + 0.45W4<- + 0.75S + MEZD + 0.75XMEZ nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.681 LOAD CASE 119 : D+C + 0.45W4<- + 0.75S + MEZD + 0.75XMEZ nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.659 LOAD CASE 120 : 0.60D + 0.60WL^ nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.436 LOAD CASE 121 : 0.60D + 0.60WL^ nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.437 LOAD CASE 122 : 0.60D + 0.60WLX+^ nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.258 LOAD CASE 123 : 0.60D + 0.60WLX+^ nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.258 LOAD CASE 124 : 0.60D + 0.60WLX-^ nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.258 LOAD CASE 125 : 0.60D + 0.60WLX-^ nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.258 LOAD CASE 126 : 0.60D + 0.60W1-> nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.445 LOAD CASE 127 : 0.60D + 0.60W1-> nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.442 LOAD CASE 128 : 0.60D + 0.60W1<- nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.498 LOAD CASE 129 : 0.60D + 0.60W1<- nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.499 98/27998 MSA 43. 0 Page 17 of 36 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A. 01B 02/26/15 15: 44 : 01 LOAD CASE 130 : 0.60D + 0.60W2-> nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.384 LOAD CASE 131 : 0.60D + 0.60W2-> nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.383 LOAD CASE 132 : 0.60D + 0.60W2<- nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.463 LOAD CASE 133 : 0.60D + 0.60W2<- nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.470 LOAD CASE 134 : 0.60D + 0.60W3-> nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.343 LOAD CASE 135 : 0.60D + 0.60W3-> nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.341 LOAD CASE 136 : 0.60D + 0.60W3<- nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.183 LOAD CASE 137 : 0.60D + 0.60W3<- nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.183 LOAD CASE 138 : 0.60D + 0.60W4-> nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.591 LOAD CASE 139 : 0.60D + 0.60W4-> nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.587 LOAD CASE 140 : 0.60D + 0.60W4<- nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.442 LOAD CASE 141 : 0.60D + 0.60W4<- nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.447 LOAD CASE 142 : 0.50D + 0.70E-> nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.542 LOAD CASE 143 : 0.50D + 0.70E-> nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.545 LOAD CASE 144 : 0.50D + 0.70E<- nL 99/27999 MSA 43. 0 Page 18 of 36 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A. 01B 02/26/15 15: 44 : 01 ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.765 LOAD CASE 145 : 0.50D + 0.70E<- nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.762 LOAD CASE 146 : 0.50D + 0.70ELX+^ nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.110 LOAD CASE 147 : 0.50D + 0.70ELX+A nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.110 LOAD CASE 148 : 0.50D + 0.70ELX-^ nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.109 LOAD CASE 149 : 0.50D + 0.70ELX-^ nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.109 LOAD CASE 150 : 0.41D + 0.5852E-> nL ASD Special Seismic; No Deflection Limits LOAD CASE 151 : 0.41D + 0.5852E-> nR ASD Special Seismic; No Deflection Limits LOAD CASE 152 : 0.41D + 0.5852E<- nL ASD Special Seismic; No Deflection Limits LOAD CASE 153 : 0.41D + 0.5852E<- nR ASD Special Seismic; No Deflection Limits LOAD CASE 154 : 0.41D + 0.5852ELX+^ nL ASD Special Seismic; No Deflection Limits LOAD CASE 155 : 0.41D + 0.5852ELX+^ nR ASD Special Seismic; No Deflection Limits LOAD CASE 156 : 0.41D + 0.5852ELX-^ nL ASD Special Seismic; No Deflection Limits LOAD CASE 157 : 0.41D + 0.5852ELX-^ nR ASD Special Seismic; No Deflection Limits LOAD CASE 158 : 0.89D+C + 0.4352E-> + 0.62XMEZ + 0.89MEZD + 0.62L nL ASD Special Seismic; No Deflection Limits LOAD CASE 159 : 0.89D+C + 0.4352E-> + 0.62XMEZ + 0.89MEZD + 0.62L nR ASD Special Seismic; No Deflection Limits LOAD CASE 160 : 0.89D+C + 0.4352E<- + 0.62XMEZ + 0.89MEZD + 0.62L nL ASD Special Seismic; No Deflection Limits LOAD CASE 161 : 0.89D+C + 0.4352E<- + 0.62XMEZ + 0.89MEZD + 0.62L nR ASD Special Seismic; No Deflection Limits 100/279100 MSA 43. 0 Page 19 of 36 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A. 01B 02/26/15 15: 44 : 01 SUMMARY OF MAXIMUM MEMBER CHECK RATIOS OUTER FLANGE * WEB * INNER FLANGE * OUTER FLG WEB SHEAR INNER FLG MEM WIDTH THICK * THICK * WIDTH THICK * RATIO LOAD RATIO LOAD RATIO LOAD (in) (in) (in) (in) (in) 1 6.00 0.3125 0.2188 6.00 0.3125 0.509 62 0.125 62 0.845 62 2 6.00 0.3125 0.2500 6.00 0.3125 0.464 62 0.500 62 0.506 62 3 6.00 0.2500 0.2500 6.00 0.2600 0.587 62 0.107 46 0.700 62 4 6.00 0.2500 0.1644 6.00 0.2500 0.556 61 0.382 49 0.625 62 5 6.00 0.2500 0.1644 6.00 0.3125 0.833 49 0.616 49 0.950 48 6 6.00 0.2500 0.1875 6.00 0.2500 0.519 48 0.003 106 0.494 49 7 6.00 0.2500 0.1875 6.00 0.3125 0.760 49 0.557 46 0.909 49 8 6.00 0.2500 0.1875 6.00 0.3125 0.828 46 0.400 46 0.623 46 9 6.00 0.2500 0.1644 6.00 0.2500 0.964 46 0.350 49 0.782 46 10 6.00 0.2500 0.1644 6.00 0.2500 0.696 46 0.705 49 0.561 46 11 6.00 0.2500 0.2188 6.00 0.2500 0.382 109 0.492 109 0.523 109 12 6.00 0.2500 0.1644 6.00 0.2500 0.452 109 0.157 121 0.635 109 101/279101 MSA 43 . 0 Page 20 of 36 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A. 01B 02/26/15 15 : 44 : 01 VERTICAL KNEE PANEL ZONE ANALYSIS NODE 3 ELEMENT MEM DESC RATIO AXIAL SHEAR MOMENT LC kips kips kip-ft CAP PLATE 6.0 x 0.313 0.967 -3.6 -3.3 164 .7 69 CAP PLATE END WELD FWD6 0.871 -1.4 -0.8 79.6 60 CAP PLATE WEB WELD FWS4 1.024 4.7 5.7 -181.5 70 STIFFENER 3.0 x 0.375 0.990 4.7 5.7 -181.5 70 STIFFENER END WELD FWD6 1.015 2.8 5.2 -45.0 36 STIFFENER WEB WELD FWS3 0.722 4 .7 5.7 -181.5 70 OUTER FLG WEB WELD FWD3 0.712 4 .7 5.7 -181.5 70 WEB END WELD FWS3 0.988 2.8 5.2 -45.0 36 WEB 0.250 0.958 4.7 5.7 -181.5 70 VERTICAL KNEE PANEL ZONE ANALYSIS NODE 11 ELEMENT MEM DESC RATIO AXIAL SHEAR MOMENT LC kips kips kip-ft CAP PLATE 6.0 x 0.250 0.670 4.0 3.7 -101.0 69 CAP PLATE END WELD FWD4 1.030 -1.0 2.3 31.1 63 CAP PLATE WEB WELD FWS3 0.750 4.0 3.7 -101.0 69 STIFFENER 3.0 x 0.250 0.832 4.0 3.7 -101.0 69 STIFFENER END WELD FWD4 1.015 2.3 9.7 -47.4 37 STIFFENER WEB WELD FWS2 0.610 4.0 3.7 -101.0 69 OUTER FLG WEB WELD FWD2 0.592 4.0 3.7 -101.0 69 WEB END WELD FWS3 0.864 2.3 9.7 -47.4 37 WEB 0.219 0.739 4.0 3.7 -101.0 69 102/279102 MSA 43 . 0 Page 21 of 36 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A. O1B 02/26/15 15: 44 : 01 SPLICE PLATE DESIGN BY DESIGN GUIDE 16- A325 BOLTS FULL TENSION ND IO WID THK DEPTH B DIA NB GA ROW BSP CSE MOMENT AXIAL SHEAR RTO LR in in in in in 0 I in kip-ft kips kips 3 IL 6.0 0.625 24.6 0.750 2 3.0 3 3 3.0 69 164.7 3.6 3.3 0.77 3 IR 6.0 0.625 24.5 0.750 2 3.0 3 3 3.0 69 164.5 0.1 3.4 0.92 3 OL 6.0 0.625 24.6 0.750 2 3.0 3 3 3.0 70 -181.5 -4.7 -5.7 0.82 3 OR 6.0 0.625 24.5 0.750 2 3.0 3 3 3.0 70 -181.4 -1.1 -5.7 1.01 5 OL 6.0 0.500 24.5 0.750 2 3.0 2 2 3.0 46 -56.5 -2.9 5.4 0.40 5 OR 6.0 0.500 24.6 0.750 2 3.0 2 2 3.0 46 -56.5 -3.0 5.4 0.40 5 IL 6.0 0.500 24.5 0.750 2 3.0 2 2 3.0 138 32.5 2.8 -1.5 0.27 5 IR 6.0 0.500 24.6 0.750 2 3.0 2 2 3.0 138 32.5 2.8 -1.4 0.26 9 IL 6.0 0.500 24.6 0.750 2 3.0 2 2 3.0 46 105.2 -2.7 -1.9 0.77 9 IR 6.0 0.500 24.5 0.750 2 3.0 2 2 3.0 46 105.2 -2.8 -1.7 0.78 9 OL 6.0 0.500 24.6 0.750 2 3.0 2 2 3.0 138 -55.1 1.7 0.9 0.43 9 OR 6.0 0.500 24.5 0.750 2 3.0 2 2 3.0 138 -55.1 1.7 1.0 0.43 11 OL 6.0 0.500 24.5 0.750 2 3.0 2 2 3.0 69 -101.3 -0.4 3.6 0.78 11 OR 6.0 0.500 24 .5 0.750 2 3.0 2 2 3.0 69 -101.0 -4.0 3.7 0.77 11 IL 6.0 0.500 24.5 0.750 2 3.0 2 2 3.0 152 80.5 -0.5 -0.1 0.60 11 IR 6.0 0.500 24.5 0.750 2 3.0 2 2 3.0 152 80.3 3.0 -0.1 0.63 103/279103 MSA 43. 0 Page 22 of 36 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A. 01B 02/26/15 15: 44 : 01 SPLICE PLATE WELD DESIGN ND I/O WELD MOM AX SHR RATIO CSE LIE kip-ft kips kips 3 0/R FWD3 -181.4 1.1 -5.7 0.92 70 3 WEB FWS3 -181.4 1.1 -5.7 1.01 70 3 I/R FWD3 164.5 -0.1 3.4 0.96 69 5 O/L FWD3 -56.5 2.9 5.4 1.00 46 5 WEB FWS2 -56.5 2.9 5.4 1.00 46 5 I/L FWD3 32.5 -2.8 -1.5 1.00 138 5 O/R FWD3 -56.5 3.0 5.4 1.00 46 5 WEB FWS2 -56.5 3.0 5.4 1.00 46 5 I/R FWD4 32.5 -2.8 -1.4 0.94 138 9 O/L FWD3 -55.1 -1.7 0.9 1.00 138 9 WEB FWS3 105.2 2.7 -1.9 0.94 46 9 I/L FWD4 105.2 2.7 -1.9 0.94 46 9 O/R FWD3 -55.1 -1.7 1.0 1.00 138 9 WEB FWS2 105.2 2.8 -1.7 1.00 46 9 I/R FWD3 105.2 2.8 -1.7 1.00 46 11 O/L CJP -96.9 1.2 5.6 1.00 159 11 WEB FWS2 -101.3 0.4 3.6 1.00 69 11 I/L FWD3 80.5 0.5 -0.1 1.00 152 104/279104 MSA 43 . 0 Page 23 of 36 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A. 01B 02/26/15 15: 44 : 01 INTERIOR COLUMN CONNECTIONS * CAP PLATE * A325 BOLTS * THICKNESS WIDTH LENGTH * NO. DIAMETER AREA COL. * NODE (in. ) (in. ) (in. ) * (in. ) (in2) 1 6 0.375 6.000 12.000 4 0.500 0.785 * LOADING * BOLT RESISTANCE * HORIZ. VERTICAL MOMENT * SHEAR TENSION NODE * LOAD (kips) (kips) (kip-ft) * (kips) (kips) 6 158 -0.13 12.34 0.00 18.85 35.34 159 -0.16 12.40 0.00 18.85 35.34 160 0.20 7.19 -0.00 18.85 35.34 161 0.17 7.24 -0.00 18.85 35.34 FRAME SUPPORTS * BASE PLATE * ANCHOR BOLTS * THICKNESS WIDTH LENGTH * NO. DIAMETER AREA SUP. * NODE (in. ) (in. ) (in. ) * (in.) (in2) 1 1 0.375 8.000 13.500 4 1.000 3.142 1 2 7 0.375 8.000 12.000 4 0.750 1.767 7 3 13 0.375 8.000 13.000 4 1.000 3.142 13 CONNECTION DESIGN FORCES AT SUPPORTS BOLT RESISTANCE LOAD HORIZONTAL VERTICAL MOMENT SHEAR TENSION NODE CASE (kips) (kips) (kip-ft) (kips) (kips) 1 158 7.44 7.79 0.00 36.44 68.33 159 7.54 7.72 -0.00 36.44 68.33 160 9.95 14.92 -0.00 36.44 68.33 161 9.90 14.85 0.00 36.44 68.33 7 158 0.55 20.51 0.00 20.50 38.44 159 0.66 20.57 0.00 20.50 38.44 160 0.57 15.36 -0.00 20.50 38.44 161 0.50 15.41 -0.00 20.50 38.44 13 158 3.77 6.65 0.00 36.44 68.33 105/279105 MSA 43 . 0 Page 24 of 36 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A. 01B 02/26/15 15: 44 : 01 159 3.78 6.66 -0.00 36.44 68.33 160 1.28 4.68 -0.00 36.44 68.33 161 1.26 4.69 -0.00 36.44 68.33 106/279106 MSA 43.0 Page 25 of 36 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A. 01B 02/26/15 15: 44 : 01 SUPPORT REACTIONS CASE 1 : D CASE 2 : D+C SUPPORT NODE HORIZONTAL VERTICAL MOMENT SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) (kips) (kips) (kip-ft) 1 1 0.42 1.60 -0.00 1 1 0.67 2.14 -0.00 2 7 -0.00 3.70 0.00 2 7 0.00 5.63 0.00 3 13 -0.42 2.31 0.00 3 13 -0.67 3.33 0.00 CASE 3 : MEZD CASE 4 : XMEZ SUPPORT NODE HORIZONTAL VERTICAL MOMENT SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) (kips) (kips) (kip-ft) 1 1 0.07 4.52 0.00 1 1 0.09 6.28 -0.00 2 7 0.00 4.56 0.00 2 7 -0.00 6.19 0.00 3 13 -0.07 0.02 -0.00 3 13 -0.09 0.03 0.00 CASE 5 : LEU- CASE 6 : L SUPPORT NODE HORIZONTAL VERTICAL MOMENT SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) (kips) (kips) (kip-ft) 1 1 1.66 3.62 0.00 1 1 1.00 2.17 -0.00 2 7 0.00 12.85 0.00 2 7 -0.00 7.71 0.00 3 13 -1.66 6.83 -0.00 3 13 -1.00 4.10 0.00 CASE 7 : LPAFN1- CASE 8 : LPAFN2- SUPPORT NODE HORIZONTAL VERTICAL MOMENT SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) (kips) (kips) (kip-ft) 1 1 0.88 -0.35 -0.00 1 1 0.12 2.53 -0.00 2 7 -0.00 4.88 0.00 2 7 0.00 2.83 -0.00 3 13 -0.88 4.19 0.00 3 13 -0.12 -0.09 0.00 CASE 9 : LPDFN1- CASE 10 : SEU- SUPPORT NODE HORIZONTAL VERTICAL MOMENT SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) (kips) (kips) (kip-ft) 1 1 1.00 2.17 -0.00 1 1 2.08 4.53 0.00 2 7 -0.00 7.71 0.00 2 7 -0.00 16.07 -0.00 3 13 -1.00 4.10 0.00 3 13 -2.08 8.54 0.00 CASE 11 : S CASE 12 : SPEFH1- SUPPORT NODE HORIZONTAL VERTICAL MOMENT SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) (kips) (kips) (kip-ft) 1 1 2.10 10.30 0.00 1 1 0.74 3.07 0.00 2 7 -0.00 16.09 -0.00 2 7 -0.00 7.46 -0.00 3 13 -2.10 8.55 0.00 3 13 -0.74 2.65 0.00 CASE 13 : SPEFH2- CASE 14 : SPEHF1- SUPPORT NODE HORIZONTAL VERTICAL MOMENT SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) (kips) (kips) (kip-ft) 1 1 1.23 1.21 -0.00 1 1 1.23 1.21 -0.00 2 7 0.00 7.73 0.00 2 7 0.00 7.73 0.00 3 13 -1.23 5.43 0.00 3 13 -1.23 5.43 0.00 CASE 15 : SPEHF2- CASE 16 : SPDFH1- SUPPORT NODE HORIZONTAL VERTICAL MOMENT SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) (kips) (kips) (kip-ft) 1 1 0.74 3.07 0.00 1 1 1.31 2.85 0.00 2 7 -0.00 7.46 -0.00 2 7 -0.00 10.12 0.00 3 13 -0.74 2.65 0.00 3 13 -1.31 5.38 -0.00 107/279107 MSA 43 . 0 Page 26 of 36 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A. 01B 02/26/15 15: 44 : 01 CASE 17 : WL^ CASE 18 : WLX+^ SUPPORT NODE HORIZONTAL VERTICAL MOMENT SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) (kips) (kips) (kip-ft) 1 1 -0.58 -5.65 -0.00 1 1 0.06 3.24 0.00 -6.70 (out-of-plane) 2 7 -0.00 -20.71 -0.00 2 7 -0.00 -14.26 -0.00 3 13 1.36 -11.17 -0.00 3 13 0.24 1.68 0.00 -7.16 (out-of-plane) CASE 19 : WLX-^ CASE 20 : W1-> SUPPORT NODE HORIZONTAL VERTICAL MOMENT SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) (kips) (kips) (kip-ft) 1 1 -0.12 -11.40 0.00 1 1 -7.72 -6.37 -0.00 -6.70 (out-of-plane) 2 7 -0.00 -14.26 -0.00 2 7 0.00 -12.99 -0.00 3 13 0.42 -17.24 -0.00 3 13 -0.33 -7.36 0.00 -7.16 (out-of-plane) CASE 21 : W1<- CASE 22 : W2-> SUPPORT NODE HORIZONTAL VERTICAL MOMENT SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) (kips) (kips) (kip-ft) 1 1 5.36 1.70 -0.00 1 1 -7.05 -4.15 -0.00 2 7 0.00 -8.49 0.00 2 7 0.00 -3.82 -0.00 3 13 4.92 -3.71 -0.00 3 13 -1.67 -2.54 0.00 CASE 23 : W2<- CASE 24 : W3-> SUPPORT NODE HORIZONTAL VERTICAL MOMENT SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) (kips) (kips) (kip-ft) 1 1 4.69 -0.53 0.00 1 1 -2.67 -5.13 -0.00 2 7 0.00 -17.66 -0.00 2 7 0.00 -13.88 0.00 3 13 6.26 -8.54 0.00 3 13 0.61 -7.71 -0.00 CASE 25 : W3<- CASE 26 : W4-> SUPPORT NODE HORIZONTAL VERTICAL MOMENT SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) (kips) (kips) (kip-ft) 1 1 2.06 -0.45 -0.00 1 1 -7.61 -8.14 0.00 2 7 0.00 -6.69 0.00 2 7 0.00 -18.81 -0.00 3 13 0.80 -3.37 0.00 3 13 -0.44 -10.58 0.00 CASE 27 : W4<- CASE 28 : E-> SUPPORT NODE HORIZONTAL VERTICAL MOMENT SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) (kips) (kips) (kip-ft) 1 1 5.46 -0.07 0.00 1 1 -8.31 -3.14 -0.00 2 7 -0.00 -14.31 0.00 2 7 0.00 2.28 -0.00 3 13 4.81 -6.93 0.00 3 13 -2.39 0.86 0.00 CASE 29 : E<- CASE 30 : ELX+^ SUPPORT NODE HORIZONTAL VERTICAL MOMENT SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) (kips) (kips) (kip-ft) 1 1 8.31 3.14 0.00 1 1 0.09 3.98 -0.00 -3.64 (out-of-plane) 2 7 -0.00 -2.28 0.00 2 7 -0.00 0.01 -0.00 3 13 2.39 -0.86 -0.00 3 13 -0.09 4.81 -0.00 -3.64 (out-of-plane) CASE 31 : ELX-^ CASE 32 : 0E-> SUPPORT NODE HORIZONTAL VERTICAL MOMENT SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) (kips) (kips) (kip-ft) 108/279108 MSA 43. 0 Page 27 of 36 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A. 01B 02/26/15 15: 44 : 01 1 1 -0.00 -3.98 -0.00 1 1 -19.19 -7.25 -0.00 -3.64 (out-of-plane) 2 7 -0.00 0.00 0.00 2 7 0.00 5.26 -0.00 3 13 0.00 -4.82 0.00 3 13 -5.51 2.00 -0.00 -3.64 (out-of-plane) CASE 33 : f2E<- CASE 34 : QELX+^ SUPPORT NODE HORIZONTAL VERTICAL MOMENT SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) (kips) (kips) (kip-ft) 1 1 19.19 7.25 0.00 1 1 0.14 6.12 0.00 -5.60 (out-of-plane) 2 7 -0.00 -5.26 0.00 2 7 -0.00 0.01 -0.00 3 13 5.51 -2.00 0.00 3 13 -0.14 7.40 0.00 -5.60 (out-of-plane) CASE 35 : CASE 158: SELX-^ 0.89D+C + 0.430E-> + 0. 62XMEZ + 0.89MEZD SUPPORT NODE HORIZONTAL VERTICAL MOMENT SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) (kips) (kips) (kip-ft) 1 1 -0.00 -6.12 0.00 1 1 -7.44 7.79 0.00 -5.60 (out-of-plane) 2 7 -0.00 0.00 -0.00 2 7 0.55 20.51 0.00 3 13 0.00 -7.41 0.00 3 13 -3.77 6.65 0.00 -5.60 (out-of-plane) CASE 159: CASE 160: 0.89D+C + 0.430E-> + 0.62XMEZ + 0.89MEZD 0.89D+C + 0.430E<- + 0. 62XMEZ + 0.89MEZD SUPPORT NODE HORIZONTAL VERTICAL MOMENT SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) (kips) (kips) (kip-ft) 1 1 -7.54 7.72 -0.00 1 1 9.95 14.92 -0.00 2 7 0.66 20.57 0.00 2 7 -0.57 15.36 -0.00 3 13 -3.78 6.66 -0.00 3 13 1.28 4.68 -0.00 CASE 161: 0.89D+C + 0.43QE<- + 0.62XMEZ + 0.89MEZD SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) 1 1 9.90 14.85 0.00 2 7 -0.50 15.41 -0.00 3 13 1.26 4.69 -0.00 109/279109 MSA 43 . 0 Page 28 of 36 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A. 01B 02/26/15 15: 44 : 01 NODAL DISPLACEMENTS CASE 1 : D CASE 2 : D+C Horizontal Deflection Limit: None Horizontal Deflection Limit: None Vertical Deflection Limit: None Vertical Deflection Limit: None HORIZONTAL VERTICAL ANGULAR HORIZONTAL VERTICAL ANGULAR NODE (in. ) (in. ) (rad.) NODE (in. ) (in. ) (rad. ) 1 0.000 0.000 0.002 1 0.000 0.000 0.002 2 -0.296 0.006 0.001 2 -0.475 0.009 0.001 3 -0.306 0.006 0.001 3 -0.492 0.009 0.001 4 -0.309 0.061 0.000 4 -0.496 0.099 0.000 5 -0.310 0.077 -0.000 5 -0.498 0.123 -0.000 6 -0.307 -0.006 -0.001 6 -0.493 -0.010 -0.002 7 0.000 0.000 0.001 7 0.000 0.000 0.002 8 -0.299 -0.209 -0.002 8 -0.480 -0.332 -0.003 9 -0.284 -0.576 -0.001 9 -0.456 -0.917 -0.001 10 -0.290 -0.449 0.002 10 -0.465 -0.717 0.003 11 -0.308 -0.009 0.002 11 -0.495 -0.015 0.003 12 -0.278 -0.009 0.002 12 -0.446 -0.014 0.003 13 0.000 0.000 0.000 13 0.000 0.000 0.000 CASE 3 : MEZD CASE 4 : XMEZ Horizontal Deflection Limit: None Horizontal Deflection Limit: None Vertical Deflection Limit: None Vertical Deflection Limit: None HORIZONTAL VERTICAL ANGULAR HORIZONTAL VERTICAL ANGULAR NODE (in. ) (in.) (rad.) NODE (in. ) (in. ) (rad. ) 1 0.000 0.000 -0.001 1 0.000 0.000 -0.001 2 0.142 -0.006 -0.000 2 0.198 -0.009 -0.000 3 0.147 -0.006 -0.000 3 0.205 -0.009 -0.000 4 0.148 -0.034 -0.000 4 0.206 -0.047 -0.000 5 0.148 -0.024 0.000 5 0.206 -0.033 0.000 6 0.147 -0.004 0.000 6 0.205 -0.006 0.000 7 0.000 0.000 -0.001 7 0.000 0.000 -0.001 8 0.146 0.015 0.000 8 0.203 0.022 0.000 9 0.145 0.044 0.000 9 0.202 0.062 0.000 10 0.145 0.044 -0.000 10 0.202 0.061 -0.000 11 0.147 0.003 -0.000 11 0.204 0.004 -0.000 12 0.141 0.003 -0.000 12 0.197 0.004 -0.000 13 0.000 0.000 -0.001 13 0.000 0.000 -0.001 CASE 5 : LEU- CASE 6 : L Horizontal Deflection Limit: None Horizontal Deflection Limit: None Vertical Deflection Limit: L/180 Vertical Deflection Limit: L/180 HORIZONTAL VERTICAL ANGULAR HORIZONTAL VERTICAL ANGULAR NODE (in. ) (in. ) (rad. ) NODE (in. ) (in. ) (rad. ) 1 0.000 0.000 0.006 1 0.000 0.000 0.004 2 -1.193 0.025 0.003 2 -0.716 0.015 0.002 3 -1.236 0.025 0.003 3 -0.742 0.015 0.002 4 -1.246 0.249 0.001 4 -0.748 0.149 0.001 5 -1.250 0.307 -0.001 5 -0.750 0.184 -0.001 6 -1.237 -0.025 -0.005 6 -0.742 -0.015 -0.003 7 0.000 0.000 0.004 7 0.000 0.000 0.003 8 -1.205 -0.823 -0.008 8 -0.723 -0.494 -0.005 9 -1.147 -2.275 -0.003 9 -0.688 -1.365 -0.002 10 -1.169 -1.788 0.007 10 -0.701 -1.073 0.004 11 -1.243 -0.035 0.008 11 -0.746 -0.021 0.005 12 -1.120 -0.034 0.007 12 -0.672 -0.021 0.004 13 0.000 0.000 0.001 13 0.000 0.000 0.001 110/279110 MSA 43. 0 Page 29 of 36 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A. 01B 02/26/15 15: 44 : 01 CASE 7 : LPAFN1- CASE 8 : LPAFN2- Horizontal Deflection Limit: None Horizontal Deflection Limit: None Vertical Deflection Limit: L/90 Vertical Deflection Limit: L/90 HORIZONTAL VERTICAL ANGULAR HORIZONTAL VERTICAL ANGULAR NODE (in. ) (in. ) (rad.) NODE (in. ) (in. ) (rad. ) 1 0.000 0.000 0.006 1 0.000 0.000 -0.002 2 -1.195 0.029 0.004 2 0.479 -0.014 -0.002 3 -1.252 0.029 0.004 3 0.511 -0.015 -0.002 4 -1.268 0.397 0.002 4 0.521 -0.248 -0.001 5 -1.269 0.400 -0.002 5 0.519 -0.216 0.002 6 -1.253 -0.009 -0.005 6 0.510 -0.005 0.002 7 0.000 0.000 0.004 7 0.000 0.000 -0.002 8 -1.226 -0.660 -0.006 8 0.503 0.166 0.001 9 -1.185 -1.678 -0.002 9 0.497 0.313 0.000 10 -1.201 -1.307 0.005 10 0.500 0.235 -0.001 11 -1.255 -0.031 0.006 11 0.509 0.010 -0.001 12 -1.159 -0.031 0.006 12 0.487 0.010 -0.001 13 0.000 0.000 0.003 13 0.000 0.000 -0.002 CASE 9 : LPDFN1- CASE 10 : SEU- Horizontal Deflection Limit: None Horizontal Deflection Limit: H/60 Vertical Deflection Limit: L/90 Vertical Deflection Limit: L/180 HORIZONTAL VERTICAL ANGULAR HORIZONTAL VERTICAL ANGULAR NODE (in. ) (in. ) (rad. ) NODE (in. ) (in. ) (rad. ) 1 0.000 0.000 0.004 1 0.000 0.000 0.008 2 -0.716 0.015 0.002 2 -1.491 0.031 0.004 3 -0.742 0.015 0.002 3 -1.545 0.031 0.003 4 -0.748 0.149 0.001 4 -1.558 0.311 0.001 5 -0.750 0.184 -0.001 5 -1.563 0.384 -0.001 6 -0.742 -0.015 -0.003 6 -1.547 -0.031 -0.006 7 0.000 0.000 0.003 7 0.000 0.000 0.005 8 -0.723 -0.494 -0.005 8 -1.507 -1.029 -0.010 9 -0.688 -1.365 -0.002 9 -1.433 -2.844 -0.004 10 -0.701 -1.073 0.004 10 -1.461 -2.235 0.008 11 -0.746 -0.021 0.005 11 -1.554 -0.044 0.010 12 -0.672 -0.021 0.004 12 -1.400 -0.043 0.009 13 0.000 0.000 0.001 13 0.000 0.000 0.001 CASE 11 : S CASE 12 : SPEFH1- Horizontal Deflection Limit: H/60 Horizontal Deflection Limit: H/60 Vertical Deflection Limit: L/180 Vertical Deflection Limit: L/180 HORIZONTAL VERTICAL ANGULAR HORIZONTAL VERTICAL ANGULAR NODE (in. ) (in. ) (rad. ) NODE (in. ) (in.) (rad. ) 1 0.000 0.000 0.008 1 0.000 0.000 0.001 2 -1.437 0.026 0.004 2 -0.168 0.001 -0.000 3 -1.489 0.026 0.003 3 -0.165 0.000 -0.000 4 -1.502 0.298 0.001 4 -0.162 -0.059 -0.000 5 -1.507 0.376 -0.001 5 -0.165 -0.014 0.001 6 -1.492 -0.031 -0.006 6 -0.165 -0.014 -0.001 7 0.000 0.000 0.005 7 0.000 0.000 0.001 8 -1.452 -1.021 -0.009 8 -0.157 -0.226 -0.002 9 -1.379 -2.826 -0.004 9 -0.138 -0.708 -0.001 10 -1.407 -2.218 0.008 10 -0.145 -0.561 0.002 11 -1.499 -0.043 0.009 11 -0.169 -0.008 0.002 12 -1.346 -0.042 0.009 12 -0.133 -0.007 0.002 13 0.000 0.000 0.001 13 0.000 0.000 -0.001 111/279111 MSA 43 . 0 Page 30 of 36 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A. 01B 02/26/15 15: 44 : 01 CASE 13 : SPEFH2- CASE 14 : SPEHF1- Horizontal Deflection Limit: H/60 Horizontal Deflection Limit: H/60 Vertical Deflection Limit: L/180 Vertical Deflection Limit: L/180 HORIZONTAL VERTICAL ANGULAR HORIZONTAL VERTICAL ANGULAR NODE (in. ) (in. ) (rad. ) NODE (in. ) (in. ) (rad. ) 1 0.000 0.000 0.006 1 0.000 0.000 0.006 2 -1.242 0.029 0.004 2 -1.242 0.029 0.004 3 -1.295 0.029 0.003 3 -1.295 0.029 0.003 4 -1.310 0.353 0.002 4 -1.310 0.353 0.002 5 -1.312 0.377 -0.002 5 -1.312 0.377 -0.002 6 -1.296 -0.015 -0.005 6 -1.296 -0.015 -0.005 7 0.000 0.000 0.005 7 0.000 0.000 0.005 8 -1.267 -0.746 -0.007 8 -1.267 -0.746 -0.007 9 -1.217 -1.980 -0.002 9 -1.217 -1.980 -0.002 10 -1.236 -1.551 0.006 10 -1.236 -1.551 0.006 11 -1.300 -0.034 0.007 11 -1.300 -0.034 0.007 12 -1.189 -0.033 0.007 12 -1.189 -0.033 0.007 13 0.000 0.000 0.002 13 0.000 0.000 0.002 CASE 15 : SPEHF2- CASE 16 : SPDFH1- Horizontal Deflection Limit: H/60 Horizontal Deflection Limit: H/60 Vertical Deflection Limit: L/180 Vertical Deflection Limit: L/180 HORIZONTAL VERTICAL ANGULAR HORIZONTAL VERTICAL ANGULAR NODE (in. ) (in. ) (rad. ) NODE (in. ) (in. ) (rad. ) 1 0.000 0.000 0.001 1 0.000 0.000 0.005 2 -0.168 0.001 -0.000 2 -0.940 0.020 0.002 3 -0.165 0.000 -0.000 3 -0.973 0.019 0.002 4 -0.162 -0.059 -0.000 4 -0.981 0.196 0.001 5 -0.165 -0.014 0.001 5 -0.985 0.242 -0.001 6 -0.165 -0.014 -0.001 6 -0.975 -0.019 -0.004 7 0.000 0.000 0.001 7 0.000 0.000 0.003 8 -0.157 -0.226 -0.002 8 -0.949 -0.648 -0.006 9 -0.138 -0.708 -0.001 9 -0.903 -1.792 -0.002 10 -0.145 -0.561 0.002 10 -0.920 -1.408 0.005 11 -0.169 -0.008 0.002 11 -0.979 -0.027 0.006 12 -0.133 -0.007 0.002 12 -0.882 -0.027 0.006 13 0.000 0.000 -0.001 13 0.000 0.000 0.001 CASE 17 : WL^ CASE 18 : WLX+^ Horizontal Deflection Limit: H/18 Horizontal Deflection Limit: H/18 Vertical Deflection Limit: L/55 Vertical Deflection Limit: L/55 HORIZONTAL VERTICAL ANGULAR HORIZONTAL VERTICAL ANGULAR NODE (in. ) (in. ) (rad. ) NODE (in. ) (in. ) (rad. ) 1 0.000 0.000 -0.006 1 0.000 0.000 -0.004 2 1.215 -0.023 -0.003 2 0.910 -0.026 -0.003 3 1.263 -0.023 -0.003 3 0.948 -0.026 -0.002 4 1.275 -0.270 -0.001 4 0.957 -0.217 -0.001 5 1.286 -0.399 0.001 5 0.965 -0.290 0.001 6 1.270 0.040 0.007 6 0.954 0.027 0.005 7 0.000 0.000 -0.004 7 0.000 0.000 -0.003 8 1.224 1.209 0.011 8 0.922 0.845 0.008 9 1.141 3.341 0.004 9 0.865 2.316 0.003 10 1.181 2.542 -0.010 10 0.894 1.745 -0.007 11 1.291 0.043 -0.010 11 0.971 0.014 -0.007 12 1.134 0.042 -0.009 12 0.864 0.014 -0.006 13 0.000 0.000 -0.001 13 0.000 0.000 -0.001 CASE 19 : WLX-^ CASE 20 : W1-> 112/279112 I MSA 43. 0 Page 31 of 36 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A. 01B 02/26/15 15: 44 : 01 Horizontal Deflection Limit: H/18 Horizontal Deflection Limit: H/18 Vertical Deflection Limit: L/55 Vertical Deflection Limit: L/55 HORIZONTAL VERTICAL ANGULAR HORIZONTAL VERTICAL ANGULAR NODE (in. ) (in. ) (rad. ) NODE (in. ) (in. ) (rad. ) 1 0.000 0.000 -0.004 1 0.000 0.000 -0.026 2 0.917 -0.017 -0.003 2 4.852 -0.111 -0.012 3 0.956 -0.017 -0.002 3 5.026 -0.110 -0.011 4 0.966 -0.213 -0.001 4 5.066 -1.013 -0.004 5 0.974 -0.290 0.001 5 5.062 -0.824 0.005 6 0.963 0.027 0.005 6 5.028 0.025 0.010 7 0.000 0.000 -0.003 7 0.000 0.000 -0.018 8 0.931 0.846 0.008 8 4.973 1.400 0.012 9 0.874 2.323 0.003 9 4.878 3.711 0.005 10 0.903 1.758 -0.007 10 4.904 3.105 -0.010 11 0.980 0.032 -0.007 11 5.030 0.109 -0.016 12 0.873 0.032 -0.006 12 4.768 0.108 -0.016 13 0.000 0.000 -0.001 13 0.000 0.000 -0.016 CASE 21 : W1<- CASE 22 : W2-> Horizontal Deflection Limit: H/18 Horizontal Deflection Limit: H/18 Vertical Deflection Limit: L/55 Vertical Deflection Limit: L/55 HORIZONTAL VERTICAL ANGULAR HORIZONTAL VERTICAL ANGULAR NODE (in. ) (in. ) (rad. ) NODE (in. ) (in. ) (rad. ) 1 0.000 0.000 0.021 1 0.000 0.000 -0.024 2 -4.088 0.097 0.010 2 4.430 -0.103 -0.011 3 -4.244 0.097 0.010 3 4.591 -0.103 -0.010 4 -4.279 0.895 0.003 4 4.626 -0.931 -0.003 5 -4.267 0.505 -0.004 5 4.619 -0.669 0.005 6 -4.249 0.016 -0.003 6 4.592 0.007 0.007 7 0.000 0.000 0.015 7 0.000 0.000 -0.016 8 -4.241 -0.229 -0.001 8 4.557 0.884 0.007 9 -4.235 -0.385 -0.001 9 4.499 2.265 0.003 10 -4.231 -0.518 -0.000 10 4.510 1.991 -0.006 11 -4.250 -0.076 0.005 11 4.590 0.093 -0.011 12 -4.157 -0.077 0.006 12 4.398 0.092 -0.012 13 0.000 0.000 0.021 13 0.000 0.000 -0.017 CASE 23 : W2<- CASE 24 : W3-> Horizontal Deflection Limit: H/18 Horizontal Deflection Limit: H/18 Vertical Deflection Limit: L/55 Vertical Deflection Limit: L/55 HORIZONTAL VERTICAL ANGULAR HORIZONTAL VERTICAL ANGULAR NODE (in. ) (in. ) (rad. ) NODE (in. ) (in. ) (rad. ) 1 0.000 0.000 0.019 1 0.000 0.000 -0.013 2 -3.666 0.090 0.009 2 2.498 -0.055 -0.006 3 -3.808 0.090 0.009 3 2.594 -0.055 -0.006 4 -3.840 0.813 0.003 4 2.617 -0.549 -0.002 5 -3.824 0.350 -0.004 5 2.621 -0.517 0.003 6 -3.813 0.034 -0.000 6 2.601 0.027 0.007 7 0.000 0.000 0.014 7 0.000 0.000 -0.009 8 -3.825 0.287 0.004 8 2.559 1.090 0.010 9 -3.856 1.061 0.001 9 2.484 2.944 0.004 10 -3.837 0.595 -0.004 10 2.512 2.359 -0.008 11 -3.809 -0.060 0.001 11 2.610 0.063 -0.011 12 -3.787 -0.061 0.002 12 2.434 0.062 -0.010 13 0.000 0.000 0.022 13 0.000 0.000 -0.007 CASE 25 : W3<- CASE 26 : W4-> Horizontal Deflection Limit: H/18 Horizontal Deflection Limit: H/18 113/279113 MSA 43. 0 Page 32 of 36 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A. 01B 02/26/15 15: 44 : 01 Vertical Deflection Limit: L/55 Vertical Deflection Limit: L/55 HORIZONTAL VERTICAL ANGULAR HORIZONTAL VERTICAL ANGULAR NODE (in. ) (in. ) (rad. ) NODE (in. ) (in. ) (rad. ) 1 0.000 0.000 0.007 1 0.000 0.000 -0.028 2 -1.303 0.032 0.003 2 5.269 -0.119 -0.013 3 -1.351 0.032 0.003 3 5.462 -0.119 -0.012 4 -1.362 0.284 0.001 4 5.506 -1.114 -0.004 5 -1.356 0.123 -0.001 5 5.506 -0.951 0.005 6 -1.351 0.013 -0.000 6 5.468 0.036 0.012 7 0.000 0.000 0.005 7 0.000 0.000 -0.019 8 -1.355 0.109 0.001 8 5.399 1.752 0.016 9 -1.363 0.370 0.000 9 5.281 4.672 0.006 10 -1.351 0.164 -0.002 10 5.321 3.827 -0.013 11 -1.340 -0.020 0.001 11 5.479 0.123 -0.019 12 -1.321 -0.020 0.001 12 5.173 0.122 -0.018 13 0.000 0.000 0.006 13 0.000 0.000 -0.017 CASE 27 : W4<- CASE 28 : E-> Horizontal Deflection Limit: H/18 Horizontal Deflection Limit: H/20 Vertical Deflection Limit: L/55 Vertical Deflection Limit: None HORIZONTAL VERTICAL ANGULAR HORIZONTAL VERTICAL ANGULAR NODE (in. ) (in. ) (rad.) NODE (in. ) (in.) (rad. ) 1 0.000 0.000 0.019 1 0.000 0.000 -0.028 2 -3.670 0.089 0.009 2 5.240 -0.124 -0.012 3 -3.808 0.089 0.009 3 5.426 -0.124 -0.012 4 -3.838 0.794 0.003 4 5.467 -1.086 -0.004 5 -3.823 0.378 -0.004 5 5.452 -0.712 0.005 6 -3.810 0.028 -0.001 6 5.422 -0.004 0.006 7 0.000 0.000 0.013 7 0.000 0.000 -0.019 8 -3.814 0.124 0.002 8 5.393 0.706 0.006 9 -3.831 0.575 0.001 9 5.351 1.725 0.003 10 -3.814 0.204 -0.003 10 5.354 1.661 -0.004 11 -3.802 -0.062 0.003 11 5.419 0.103 -0.011 12 -3.752 -0.063 0.003 12 5.227 0.103 -0.012 13 0.000 0.000 0.020 13 0.000 0.000 -0.021 CASE 29 : E<- CASE 30 : ELX+^ Horizontal Deflection Limit: H/20 Horizontal Deflection Limit: H/20 Vertical Deflection Limit: None Vertical Deflection Limit: None HORIZONTAL VERTICAL ANGULAR HORIZONTAL VERTICAL ANGULAR NODE (in.) (in. ) (rad. ) NODE (in. ) (in. ) (rad. ) 1 0.000 0.000 0.028 1 0.000 0.000 -0.000 2 -5.240 0.124 0.012 2 -0.001 -0.004 0.000 3 -5.426 0.124 0.012 3 -0.001 -0.005 0.000 4 -5.467 1.086 0.004 4 -0.001 -0.003 0.000 5 -5.452 0.712 -0.005 5 -0.001 -0.001 0.000 6 -5.422 0.004 -0.006 6 -0.001 -0.000 0.000 7 0.000 0.000 0.019 7 0.000 0.000 0.000 8 -5.393 -0.706 -0.006 8 -0.001 -0.000 -0.000 9 -5.351 -1.725 -0.003 9 -0.001 -0.002 -0.000 10 -5.354 -1.661 0.004 10 -0.001 -0.006 -0.000 11 -5.419 -0.103 0.011 11 -0.001 -0.009 -0.000 12 -5.227 -0.103 0.012 12 -0.001 -0.008 -0.000 13 0.000 0.000 0.021 13 0.000 0.000 0.000 CASE 31 : ELX-^ CASE 32 : nE-> Horizontal Deflection Limit: H/20 Horizontal Deflection Limit: None Vertical Deflection Limit: None Vertical Deflection Limit: None 114/279114 MSA 43. 0 Page 33 of 36 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A. 01B 02/26/15 15: 44 : 01 HORIZONTAL VERTICAL ANGULAR HORIZONTAL VERTICAL ANGULAR NODE (in. ) (in. ) (rad. ) NODE (in. ) (in. ) (rad. ) 1 0.000 0.000 0.000 1 0.000 0.000 -0.066 2 -0.000 0.000 -0.000 2 12.096 -0.286 -0.029 3 -0.000 0.000 -0.000 3 12.526 -0.285 -0.027 4 -0.000 0.000 -0.000 4 12.619 -2.507 -0.009 5 -0.000 0.000 -0.000 5 12.584 -1.644 0.012 6 -0.000 -0.000 -0.000 6 12.516 -0.010 0.014 7 0.000 0.000 0.000 7 0.000 0.000 -0.044 8 -0.000 -0.000 -0.000 8 12.448 1.629 0.013 9 -0.000 -0.000 -0.000 9 12.351 3.981 0.006 10 -0.000 -0.000 0.000 10 12.357 3.833 -0.008 11 -0.000 0.000 0.000 11 12.508 0.238 -0.026 12 -0.000 0.000 0.000 12 12.066 0.238 -0.027 13 0.000 0.000 -0.000 13 0.000 0.000 -0.050 CASE 33 : aE<- CASE 34 : QELX+^ Horizontal Deflection Limit: None Horizontal Deflection Limit: None Vertical Deflection Limit: None Vertical Deflection Limit: None HORIZONTAL VERTICAL ANGULAR HORIZONTAL VERTICAL ANGULAR NODE (in. ) (in.) (rad. ) NODE (in. ) (in. ) (rad. ) 1 0.000 0.000 0.066 1 0.000 0.000 -0.000 2 -12.096 0.286 0.029 2 -0.001 -0.007 0.000 3 -12.526 0.285 0.027 3 -0.001 -0.007 0.000 4 -12.619 2.507 0.009 4 -0.001 -0.005 0.000 5 -12.584 1.644 -0.012 5 -0.002 -0.001 0.000 6 -12.516 0.010 -0.014 6 -0.002 -0.000 0.000 7 0.000 0.000 0.044 7 0.000 0.000 0.000 8 -12.448 -1.629 -0.013 8 -0.002 -0.000 -0.000 9 -12.351 -3.981 -0.006 9 -0.002 -0.004 -0.000 10 -12.357 -3.833 0.008 10 -0.002 -0.009 -0.000 11 -12.508 -0.238 0.026 11 -0.002 -0.014 -0.000 12 -12.066 -0.238 0.027 12 -0.002 -0.013 -0.000 13 0.000 0.000 0.050 13 0.000 0.000 0.000 CASE 35 : f ELX-^ Horizontal Deflection Limit: None Vertical Deflection Limit: None HORIZONTAL VERTICAL ANGULAR NODE (in.) (in. ) (rad. ) 1 0.000 0.000 0.000 2 -0.001 0.000 -0.000 3 -0.001 0.000 -0.000 4 -0.001 0.000 -0.000 5 -0.001 0.000 -0.000 6 -0.000 -0.000 -0.000 7 0.000 0.000 0.000 8 -0.000 -0.000 -0.000 9 -0.000 -0.000 -0.000 10 -0.000 -0.000 0.000 11 -0.000 0.000 0.000 12 -0.000 0.000 0.000 13 0.000 0.000 -0.000 115/279115 MSA 43 . 0 Page 34 of 36 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A. 01B 02/26/15 15: 44 : 01 WEIGHT OF BUILT-UP MEMBERS = 4282.7 lbs WEIGHT OF W SHAPE MEMBERS = 0.0 lbs WEIGHT OF PIPE MEMBERS = 0.0 lbs WEIGHT OF SPLICES = 221.2 lbs WEIGHT OF BASE PLATES = 32.7 lbs WEIGHT OF STIFFENERS = 38.2 lbs TOTAL WEIGHT 4574.9 lbs 116/279116 MSA 43. 0 Page 35 of 36 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A. 01B 02/26/15 15: 44 : 01 FLANGE BRACE LOCATIONS SEQ# P/G# REQD? LEFT COLUMN BASE 1 1 No 2 2 Yes 3 3 No 4 4 Yes 5 5 No (Eave) LEFT EAVE 6 1 No (Eave) 7 2 Yes (Both Sides) 8 3 Yes 9 4 No 10 5 Yes 11 6 No 12 7 Yes 13 8 No 14 9 Yes 15 10 No 16 11 Yes 17 12 No 18 13 Yes 19 14 No 20 15 Yes 21 16 No 22 17 Yes 23 18 No 24 19 Yes 25 20 No 26 21 Yes 27 22 No 28 23 Yes 29 24 Yes (Eave Frame Brace Req'd) RIGHT EAVE 30 1 Yes (Eave Frame Brace Req'd) 31 2 No 32 3 Yes 33 4 No 34 5 Yes 35 6 No RIGHT COLUMN BASE NOTE: FLANGE BRACES ARE ON ONE SIDE AT THE LOCATIONS SPECIFIED (SINGLE SIDED) . PDELTA ANALYSIS RATIOS iWebOptCycle = 1 icy = 1 Stable All Load Combinations 117/279117 LT AMERICAN BUILDINGS COMPANY A r4LJ c D m COMPANY MSA 43 . 0 Page 1 of 29 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A. 01PPF1 02/27/15 08 : 16: 45 STEEL FRAME ANALYSIS AND DESIGN BY THE DIRECT STIFFNESS METHOD BY THE 2010 AISC 360-10 SPECIFICATION FOR STRUCTURAL STEEL BUILDINGS WITH STABILITY DESIGN BY THE DIRECT ANALYSIS METHOD BUILDING DESCRIPTION - - PF FSW BAY 2 W15G0032A FRAME WIDTH BAY SPACING ROOF SLOPES INT. COLUMNS MEMBERS NODES 19.542 ft. 1.000 ft. 1 0 3 4 LEFT WALL SLOPE W/VERT. GIRT DEPTH GIRT SPACING(S) 0.000/ 12.0 0.13 in. 1 @ 282.00 in. NODE LOCATION WEB DEPTH CONNECTION BASE 1 0.000 ft. 16.750 in. PINNED EAVE 2 23.500 ft. 16.750 in. RIGID ROOF SLOPE 1 SLOPE W/HORIZ. PURLIN DEPTH TYP. PURLIN SPACE 0.000/ 12.0 11.00 in. 234.50 in. NODE LOCATION WEB DEPTH CONNECTION LEFT END 2 -0.000 ft. 32.000 in. RIGID RIGHT END 3 19.542 ft. 32.000 in. RIGID RIGHT WALL SLOPE W/VERT. GIRT DEPTH GIRT SPACING(S) 0.000/ 12.0 7.00 in. 1 @ 282.00 in. NODE LOCATION WEB DEPTH CONNECTION EAVE 3 23.500 ft. 26.000 in. RIGID BASE 4 0.000 ft. 26.000 in. PINNED 118/279118 MSA 43. 0 Page 2 of 29 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A. 01PPF1 02/27/15 08 : 16: 45 MEMBER SIZES OUTER FLANGE WEB INNER FLANGE WEB-TO-FLANGE YIELD STRESS MEMBER WIDTH THICKNESS THICKNESS WIDTH THICKNESS WELD FLANGE WEB (inches) (inches) (inches) (inches) (ksi) (ksi) 1 8.00 X 0.6250 0.3750 8.00 X 0.6250 0.2500 55.0 55.0 2 8.00 X 0.5000 0.2500 8.00 X 0.5000 0.1875 55.0 55.0 3 8.00 X 0.6250 0.3750 8.00 X 0.6250 0.2500 55.0 55.0 FRAME SELF-WEIGHT AS APPLIED DEAD LOAD MEMBER MEMBER WEIGHT CONNECTION WEIGHT (lbs) (lbs) 1 1185.4 204.6 2 957.5 233.6 3 1449.4 Total: 3592.3 438.3 119/279119 MSA 43. 0 Page 3 of 29 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A. 01PPF1 02/27/15 08 : 16: 45 NODE COORDINATES NODE X Y X OUT OF PLUMB (in. ) (in. ) (0.003xY) (in. ) 1 9.00 0.00 +/- 0.0000 2 9.01 254.50 +/- 0.7635 3 214.00 254.50 +/- 0.7635 4 214.00 0.00 +/- 0.0000 120/279120 MSA 43 . 0 Page 4 of 29 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A.01PPF1 02/27/15 08 : 16: 45 LOAD CASE 1 : D No Stress Check; No Deflection Limits DEAD LOAD = 1.00 psf LOAD CASE 2 : MEZD No Stress Check; No Deflection Limits CONCENTRATED LOADS * * LOAD COMPONENTS LOAD NO. LINE NO. * LOCATION FLG SIDE * HORIZONTAL VERTICAL MOMENT * (ft. ) * (kips) (kips) (kip-ft) 1 1 11.50 Inner Flg 0.00 -0.90 0.00 2 3 11.50 Inner Flg 0.00 -0.90 0.00 LOAD CASE 3 : XMEZ No Stress Check; No Deflection Limits CONCENTRATED LOADS * * LOAD COMPONENTS LOAD NO. LINE NO. * LOCATION FLG SIDE * HORIZONTAL VERTICAL MOMENT * (ft. ) * (kips) (kips) (kip-ft) 1 1 11.50 Inner Flg 0.00 -1.20 0.00 2 3 11.50 Inner Flg 0.00 -1.20 0.00 LOAD CASE 4 : D+C-> No Stress Check; No Deflection Limits DEAD LOAD = 0.10 psf CONCENTRATED LOADS * * LOAD COMPONENTS LOAD NO. LINE NO. * LOCATION FLG SIDE * HORIZONTAL VERTICAL MOMENT * (ft. ) * (kips) (kips) (kip-ft) 1 1 23.50 Neutral Axis 0.04 0.00 0.00 LOAD CASE 5 : D+C<- No Stress Check; No Deflection Limits DEAD LOAD = 0.10 psf CONCENTRATED LOADS * * LOAD COMPONENTS LOAD NO. LINE NO. * LOCATION FLG SIDE * HORIZONTAL VERTICAL MOMENT * (ft. ) * (kips) (kips) (kip-ft) 1 3 23.50 Neutral Axis -0.04 0.00 0.00 LOAD CASE 6 : D-> No Stress Check; No Deflection Limits DEAD LOAD = 0.10 psf CONCENTRATED LOADS * * LOAD COMPONENTS LOAD NO. LINE NO. * LOCATION FLG SIDE * HORIZONTAL VERTICAL MOMENT * (ft. ) * (kips) (kips) (kip-ft) 1 1 23.50 Neutral Axis 0.02 0.00 0.00 LOAD CASE 7 : D<- No Stress Check; No Deflection Limits DEAD LOAD = 0.10 psf 121t279121 MSA 43. 0 Page 5 of 29 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A. 01PPF1 02/27/15 08 : 16: 45 CONCENTRATED LOADS * * LOAD COMPONENTS LOAD NO. LINE NO. * LOCATION FLG SIDE * HORIZONTAL VERTICAL MOMENT * (ft.) * (kips) (kips) (kip-ft) 1 3 23.50 Neutral Axis -0.02 0.00 0.00 LOAD CASE 8 : LEU--> No Stress Check; L/180 Vertical Deflection Limit CONCENTRATED LOADS * * LOAD COMPONENTS LOAD NO. LINE NO. * LOCATION FLG SIDE * HORIZONTAL VERTICAL MOMENT * (ft. ) * (kips) (kips) (kip-ft) 1 1 23.50 Neutral Axis 0.13 0.00 0.00 LOAD CASE 9 : LEU-<- No Stress Check; L/180 Vertical Deflection Limit CONCENTRATED LOADS * * LOAD COMPONENTS LOAD NO. LINE NO. * LOCATION FLG SIDE * HORIZONTAL VERTICAL MOMENT * (ft. ) * (kips) (kips) (kip-ft) 1 3 23.50 Neutral Axis -0.13 0.00 0.00 LOAD CASE 10 : L-> No Stress Check; L/180 Vertical Deflection Limit CONCENTRATED LOADS * * LOAD COMPONENTS LOAD NO. LINE NO. * LOCATION FLG SIDE * HORIZONTAL VERTICAL MOMENT * (ft. ) * (kips) (kips) (kip-ft) 1 1 23.50 Neutral Axis 0.13 0.00 0.00 LOAD CASE 11 : L<- No Stress Check; L/180 Vertical Deflection Limit CONCENTRATED LOADS * * LOAD COMPONENTS LOAD NO. LINE NO. * LOCATION FLG SIDE * HORIZONTAL VERTICAL MOMENT * (ft.) * (kips) (kips) (kip-ft) 1 3 23.50 Neutral Axis -0.13 0.00 0.00 LOAD CASE 12 : SEU--> No Stress Check; H/60 Horizontal Deflection Limit; L/180 Vertical Deflection Limit CONCENTRATED LOADS * * LOAD COMPONENTS LOAD NO. LINE NO. * LOCATION FLG SIDE * HORIZONTAL VERTICAL MOMENT * (ft.) * (kips) (kips) (kip-ft) 1 1 23.50 Neutral Axis 0.17 0.00 0.00 LOAD CASE 13 : SEU- <- No Stress Check; H/60 Horizontal Deflection Limit; L/180 Vertical Deflection Limit CONCENTRATED LOADS * * LOAD COMPONENTS LOAD NO. LINE NO. * LOCATION FLG SIDE * HORIZONTAL VERTICAL MOMENT * (ft.) * (kips) (kips) (kip-ft) 1 3 23.50 Neutral Axis -0.17 0.00 0.00 LOAD CASE 14 : S-> No Stress Check; H/60 Horizontal Deflection Limit; L/180 Vertical Deflection Limit CONCENTRATED LOADS * * LOAD COMPONENTS 122/279122 MSA 43 . 0 Page 6 of 29 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A. 01PPF1 02/27/15 08 : 16: 45 LOAD NO. LINE NO. * LOCATION FLG SIDE * HORIZONTAL VERTICAL MOMENT * (ft. ) * (kips) (kips) (kip-ft) 1 1 23.50 Neutral Axis 0.17 0.00 0.00 LOAD CASE 15 : S<- No Stress Check; H/60 Horizontal Deflection Limit; L/180 Vertical Deflection Limit CONCENTRATED LOADS * * LOAD COMPONENTS LOAD NO. LINE NO. * LOCATION FLG SIDE * HORIZONTAL VERTICAL MOMENT * (ft. ) * (kips) (kips) (kip-ft) 1 3 23.50 Neutral Axis -0.17 0.00 0.00 LOAD CASE 16 : WPIP-> No Stress Check; H/18 Horizontal Deflection Limit; L/55 Vertical Deflection Limit CONCENTRATED LOADS * * LOAD COMPONENTS LOAD NO. LINE NO. * LOCATION FLG SIDE * HORIZONTAL VERTICAL MOMENT * (ft. ) * (kips) (kips) (kip-ft) 1 1 23.50 Neutral Axis 13.40 0.00 0.00 LOAD CASE 17 : WPIP<- No Stress Check; H/18 Horizontal Deflection Limit; L/55 Vertical Deflection Limit CONCENTRATED LOADS * * LOAD COMPONENTS LOAD NO. LINE NO. * LOCATION FLG SIDE * HORIZONTAL VERTICAL MOMENT * (ft. ) * (kips) (kips) (kip-ft) 1 3 23.50 Neutral Axis -13.40 0.00 0.00 LOAD CASE 18 : WNIP-> No Stress Check; H/18 Horizontal Deflection Limit; L/55 Vertical Deflection Limit CONCENTRATED LOADS * * LOAD COMPONENTS LOAD NO. LINE NO. * LOCATION FLG SIDE * HORIZONTAL VERTICAL MOMENT * (ft. ) * (kips) (kips) (kip-ft) 1 1 23.50 Neutral Axis 13.40 0.00 0.00 LOAD CASE 19 : WNIP<- No Stress Check; H/18 Horizontal Deflection Limit; L/55 Vertical Deflection Limit CONCENTRATED LOADS * * LOAD COMPONENTS LOAD NO. LINE NO. * LOCATION FLG SIDE * HORIZONTAL VERTICAL MOMENT * (ft. ) * (kips) (kips) (kip-ft) 1 3 23.50 Neutral Axis -13.40 0.00 0.00 LOAD CASE 20 : E-> No Stress Check; H/20 Horizontal Deflection Limit CONCENTRATED LOADS * * LOAD COMPONENTS LOAD NO. LINE NO. * LOCATION FLG SIDE * HORIZONTAL VERTICAL MOMENT * (ft. ) * (kips) (kips) (kip-ft) 1 1 23.50 Neutral Axis 16.60 0.00 0.00 2 1 11.50 Neutral Axis 15.40 0.00 0.00 LOAD CASE 21 : E<- No Stress Check; H/20 Horizontal Deflection Limit CONCENTRATED LOADS * * LOAD COMPONENTS LOAD NO. LINE NO. * LOCATION FLG SIDE * HORIZONTAL VERTICAL MOMENT 123/279123 MSA 43 . 0 Page 7 of 29 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A. 01PPF1 02/27/15 08 : 16: 45 * (ft. ) * (kips) (kips) (kip-ft) 1 3 23.50 Neutral Axis -16.60 0.00 0.00 2 1 11.50 Neutral Axis -15.40 0.00 0.00 LOAD CASE 22 : (1E-> No Stress Check; No Deflection Limits CONCENTRATED LOADS * * LOAD COMPONENTS LOAD NO. LINE NO. * LOCATION FLG SIDE * HORIZONTAL VERTICAL MOMENT * (ft. ) * (kips) (kips) (kip-ft) 1 1 23.50 Neutral Axis 38.30 0.00 0.00 2 1 11.50 Neutral Axis 35.50 0.00 0.00 LOAD CASE 23 : nE<- No Stress Check; No Deflection Limits CONCENTRATED LOADS * * LOAD COMPONENTS LOAD NO. LINE NO. * LOCATION FLG SIDE * HORIZONTAL VERTICAL MOMENT * (ft. ) * (kips) (kips) (kip-ft) 1 3 23.50 Neutral Axis -38.30 0.00 0.00 2 1 11.50 Neutral Axis -35.50 0.00 0.00 LOAD CASE 24 : D+C-> + MEZD + XMEZ nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.034 LOAD CASE 25 : D+C-> + MEZD + XMEZ nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.035 LOAD CASE 26 : D+C-> + LEU--> nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.019 LOAD CASE 27 : D+C-> + LEU--> nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.019 LOAD CASE 28 : D+C-> + L-> nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.019 LOAD CASE 29 : D+C-> + L-> nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.019 LOAD CASE 30 : D+C<- + LEU-<- nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.018 LOAD CASE 31 : D+C<- + LEU-<- nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.017 LOAD CASE 32 : D+C<- + L<- nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.018 124/279124 MSA 43. 0 Page 8 of 29 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A. 01PPF1 02/27/15 08 : 16: 45 LOAD CASE 33 : D+C<- + L<- nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.017 LOAD CASE 34 : D-> + LEU --> nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.019 LOAD CASE 35 : D-> + LEU=-> nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.019 LOAD CASE 36 : D-> + L-> nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.019 LOAD CASE 37 : D-> + L-> nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.019 LOAD CASE 38 : D<- + LEU-<- nL ASD; No Deflection Limits Highest check ratio achieved in this load case - 0.017 LOAD CASE 39 : D<- + LEU-<- nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.017 LOAD CASE 40 : D<- + L<- nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.017 LOAD CASE 41 : D<- + L<- nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.017 LOAD CASE 42 : D+C-> + SEU--> nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.019 LOAD CASE 43 : D+C-> + SEU--> nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.020 LOAD CASE 44 : D+C-> + S-> nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.019 LOAD CASE 45 : D+C-> + 5-> nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.020 LOAD CASE 46 : D+C<- + SEU-<- nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.019 LOAD CASE 47 : D+C<- + SEU-<- nR ASD; No Deflection Limits 125/279125 MSA 43 . 0 Page 9 of 29 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A. 01PPF1 02/27/15 08 : 16: 45 Highest check ratio achieved in this load case = 0.018 LOAD CASE 48 : D+C<- + S<- nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.019 LOAD CASE 49 : D+C<- + S<- nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.018 LOAD CASE 50 : D-> + SEU--> nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.019 LOAD CASE 51 : D-> + SEU--> nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.019 LOAD CASE 52 : D-> + S-> nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.019 LOAD CASE 53 : D-> + S-> nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.019 LOAD CASE 54 : D<- + SEU-<- nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.018 LOAD CASE 55 : D<- + SEU-<- nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.018 LOAD CASE 56 : D<- + S<- nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.018 LOAD CASE 57 : D<- + S<- nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.018 LOAD CASE 58 : D+C-> + 0.60WPIP-> nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.370 LOAD CASE 59 : D+C-> + 0.60WPIP-> nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.370 LOAD CASE 60 : D+C-> + 0.6OWNIP-> nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.370 LOAD CASE 61 : D+C-> + 0.6OWNIP-> nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.370 126/279126 MSA 43.0 Page 10 of 29 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A. 01PPF1 02/27/15 08: 16: 45 LOAD CASE 62 : D+C<- + 0.60WPIP<- nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.303 LOAD CASE 63 : D+C<- + 0.60WPIP<- nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.303 LOAD CASE 64 : D+C<- + 0.6OWNIP<- nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.303 LOAD CASE 65 : D+C<- + 0.6OWNIP<- nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.303 LOAD CASE 66 : D-> + 0.60WPIP-> nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.369 LOAD CASE 67 : D-> + 0.60WPIP-> nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.369 LOAD CASE 68 : D-> + 0.6OWNIP-> nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.369 LOAD CASE 69 : D-> + 0.6OWNIP-> nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.369 LOAD CASE 70 : D<- + 0.60WPIP<- nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.302 LOAD CASE 71 : D<- + 0.60WPIP<- nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.302 LOAD CASE 72 : D<- + 0.60WNIP<- nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.302 LOAD CASE 73 : D<- + 0.6OWNIP<- nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.302 LOAD CASE 74 : 1.10D+C-> + 0.70E-> + 1.10MEZD nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.856 LOAD CASE 75 : 1.10D+C-> + 0.70E-> + 1.10MEZD nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.857 LOAD CASE 76 : 1.10D+C<- + 0.70E<- + 1.10MEZD nL ASD; No Deflection Limits 127/279127 MSA 43. 0 Page 11 of 29 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A. 01PPF1 02/27/15 08 : 16: 45 Highest check ratio achieved in this load case = 0.787 LOAD CASE 77 : 1.10D+C<- + 0.70E<- + 1.10MEZD nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.787 LOAD CASE 78 : 1.10D-> + 0.70E-> + 1.10MEZD nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.855 LOAD CASE 79 : 1.10D-> + 0.70E-> + 1.10MEZD nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.856 LOAD CASE 80 : 1.10D<- + 0.70E<- + 1.10MEZD nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.787 LOAD CASE 81 : 1.10D<- + 0.70E<- + 1.10MEZD nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.786 LOAD CASE 82 : 0.92D+C-> + 0.5852E-> + 0.92MEZD nL ASD Special Seismic; No Deflection Limits LOAD CASE 83 : 0.92D+C-> + 0.5852E-> + 0.92MEZD nR ASD Special Seismic; No Deflection Limits LOAD CASE 84 : 0.92D+C<- + 0.58QE<- + 0.92MEZD nL ASD Special Seismic; No Deflection Limits LOAD CASE 85 : 0.92D+C<- + 0.58QE<- + 0.92MEZD nR ASD Special Seismic; No Deflection Limits LOAD CASE 86 : 0.92D-> + 0.5852E-> + 0.92MEZD nL ASD Special Seismic; No Deflection Limits LOAD CASE 87 : 0.92D-> + 0.5852E-> + 0.92MEZD nR ASD Special Seismic; No Deflection Limits LOAD CASE 88 : 0.92D<- + 0.5812E<- + 0.92MEZD nL ASD Special Seismic; No Deflection Limits LOAD CASE 89 : 0.92D<- + 0.58QE<- + 0.92MEZD nR ASD Special Seismic; No Deflection Limits LOAD CASE 90 : D+C-> + 0.45WPIP-> + 0.75L-> nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.283 LOAD CASE 91 : D+C-> + 0.45WPIP-> + 0.75L-> nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.284 LOAD CASE 92 : D+C-> + 0.45WNIP-> + 0.75L-> nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.283 128/279128 MSA 43.0 Page 12 of 29 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A. 01PPF1 02/27/15 08 : 16: 45 LOAD CASE 93 : D+C-> + 0.45WNIP-> + 0.75L-> nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.284 LOAD CASE 94 : D+C<- + 0.45WPIP<- + 0.75L<- nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.232 LOAD CASE 95 : D+C<- + 0.45WPIP<- + 0.75L<- nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.231 LOAD CASE 96 : D+C<- + 0.45WNIP<- + 0.75L<- nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.232 LOAD CASE 97 : D+C<- + 0.45WNIP<- + 0.75L<- nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.231 LOAD CASE 98 : D-> + 0.45WPIP-> + 0.75L-> nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.282 LOAD CASE 99 : D-> + 0.45WPIP-> + 0.75L-> nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.283 LOAD CASE 100 : D-> + 0.45WNIP-> + 0.75L-> nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.282 LOAD CASE 101 : D-> + 0.45WNIP-> + 0.75L-> nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.283 LOAD CASE 102 : D<- + 0.45WPIP<- + 0.75L<- nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.231 LOAD CASE 103 : D<- + 0.45WPIP<- + 0.75L<- nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.230 LOAD CASE 104 : D<- + 0.45WNIP<- + 0.75L<- nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.231 LOAD CASE 105 : D<- + 0.45WNIP<- + 0.75L<- nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.230 LOAD CASE 106 : D+C-> + 0.45WPIP-> + 0.75S-> nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.284 LOAD CASE 107 : D+C-> + 0.45WPIP-> + 0.75S-> nR ASD; No Deflection Limits 129/279129 MSA 43 . 0 Page 13 of 29 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A. 01PPF1 02/27/15 08 : 16: 45 Highest check ratio achieved in this load case = 0.285 LOAD CASE 108 : D+C-> + 0.45WNIP-> + 0.75S-> nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.284 LOAD CASE 109 : D+C-> + 0.45WNIP-> + 0.75S-> nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.285 LOAD CASE 110 : D+C<- + 0.45WPIP<- + 0.75S<- nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.233 LOAD CASE 111 : D+C<- + 0.45WPIP<- + 0.75S<- nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.232 LOAD CASE 112 : D+C<- + 0.45WNIP<- + 0.75S<- nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.233 LOAD CASE 113 : D+C<- + 0.45WNIP<- + 0.75S<- nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.232 LOAD CASE 114 : D-> + 0.45WPIP-> + 0.75S-> nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.283 LOAD CASE 115 : D-> + 0.45WPIP-> + 0.75S-> nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.284 LOAD CASE 116 : D-> + 0.45WNIP-> + 0.75S-> nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.283 LOAD CASE 117 : D-> + 0.45WNIP-> + 0.75S-> nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.284 LOAD CASE 118 : D<- + 0.45WPIP<- + 0.75S<- nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.232 LOAD CASE 119 : D<- + 0.45WPIP<- + 0.75S<- nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.231 LOAD CASE 120 : D<- + 0.45WNIP<- + 0.75S<- nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.232 LOAD CASE 121 : D<- + 0.45WNIP<- + 0.75S<- nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.231 130/279130 MSA 43. 0 Page 14 of 29 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A.01PPF1 02/27/15 08 : 16: 45 LOAD CASE 122 : 0.60D+C-> + 0.60WPIP-> nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.369 LOAD CASE 123 : 0.60D+C-> + 0.60WPIP-> nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.370 LOAD CASE 124 : 0.60D+C-> + 0.6OWNIP-> nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.369 LOAD CASE 125 : 0.60D+C-> + 0.6OWNIP-> nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.370 LOAD CASE 126 : 0.60D+C<- + 0.60WPIP<- nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.303 LOAD CASE 127 : 0.60D+C<- + 0.60WPIP<- nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.302 LOAD CASE 128 : 0.60D+C<- + 0.6OWNIP<- nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.303 LOAD CASE 129 : 0.60D+C<- + 0.6OWNIP<- nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.302 LOAD CASE 130 : 0.60D-> + 0.60WPIP-> nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.368 LOAD CASE 131 : 0.60D-> + 0.60WPIP-> nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.369 LOAD CASE 132 : 0.60D-> + 0.6OWNIP-> nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.368 LOAD CASE 133 : 0.60D-> + 0.6OWNIP-> nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.369 LOAD CASE 134 : 0.60D<- + 0.60WPIP<- nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.302 LOAD CASE 135 : 0.60D<- + 0.60WPIP<- nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.302 LOAD CASE 136 : 0.60D<- + 0.60WNIP<- nL ASD; No Deflection Limits 131/279131 MSA 43 . 0 Page 15 of 29 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A. 01PPF1 02/27/15 08 : 16: 45 Highest check ratio achieved in this load case = 0.302 LOAD CASE 137 : 0.60D<- + 0.6OWNIP<- nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.302 LOAD CASE 138 : 0.50D + 0.70E-> nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.854 LOAD CASE 139 : 0.50D + 0.70E-> nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.854 LOAD CASE 140 : 0.50D + 0.70E<- nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.780 LOAD CASE 141 : 0.50D + 0.70E<- nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.779 LOAD CASE 142 : 0.50D+C-> + 0.70E-> nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.855 LOAD CASE 143 : 0.50D+C-> + 0.70E-> nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.855 LOAD CASE 144 : 0.50D+C<- + 0.70E<- nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.781 LOAD CASE 145 : 0.50D+C<- + 0.70E<- nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.780 LOAD CASE 146 : 0.50D-> + 0.70E-> nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.854 LOAD CASE 147 : 0.50D-> + 0.70E-> nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.855 LOAD CASE 148 : 0.50D<- + 0.70E<- nL ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.780 LOAD CASE 149 : 0.50D<- + 0.70E<- nR ASD; No Deflection Limits Highest check ratio achieved in this load case = 0.780 LOAD CASE 150 : 0.41D + 0.58QE-> nL ASD Special Seismic; No Deflection Limits LOAD CASE 151 : 0.41D + 0.5852E-> nR 132/279132 MSA 43 .0 Page 16 of 29 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A. 01PPF1 02/27/15 08 : 16: 45 ASD Special Seismic; No Deflection Limits LOAD CASE 152 : 0.41D + 0.5852E<- nL ASD Special Seismic; No Deflection Limits LOAD CASE 153 : 0.41D + 0.5852E<- nR ASD Special Seismic; No Deflection Limits LOAD CASE 154 : 0.41D+C-> + 0.5852E-> nL ASD Special Seismic; No Deflection Limits LOAD CASE 155 : 0.41D+C-> + 0.5852E-> nR ASD Special Seismic; No Deflection Limits LOAD CASE 156 : 0.41D+C<- + 0.5852E<- nL ASD Special Seismic; No Deflection Limits LOAD CASE 157 : 0.41D+C<- + 0.58QE<- nR ASD Special Seismic; No Deflection Limits LOAD CASE 158 : 0.41D-> + 0.5852E-> nL ASD Special Seismic; No Deflection Limits LOAD CASE 159 : 0.41D-> + 0.5852E-> nR ASD Special Seismic; No Deflection Limits LOAD CASE 160 : 0.41D<- + 0.5852E<- nL ASD Special Seismic; No Deflection Limits LOAD CASE 161 : 0.41D<- + 0.5852E<- nR ASD Special Seismic; No Deflection Limits LOAD CASE 162 : 0.91D + 0.5852E-> + 0.91MEZD + 0.62XMEZ nL ASD Special Seismic; No Deflection Limits LOAD CASE 163 : 0.91D + 0.5852E-> + 0.91MEZD + 0.62XMEZ nR ASD Special Seismic; No Deflection Limits LOAD CASE 164 : 0.91D + 0.5852E<- + 0.91MEZD + 0.62XMEZ nL ASD Special Seismic; No Deflection Limits LOAD CASE 165 : 0.91D + 0.5852E<- + 0.91MEZD + 0.62XMEZ nR ASD Special Seismic; No Deflection Limits 133/279133 MSA 43 . 0 Page 17 of 29 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A. 01PPF1 02/27/15 08 : 16: 45 SUMMARY OF MAXIMUM MEMBER CHECK RATIOS OUTER FLANGE * WEB * INNER FLANGE * OUTER FLG WEB SHEAR INNER FLG MEM WIDTH THICK * THICK * WIDTH THICK * RATIO LOAD RATIO LOAD RATIO LOAD (in) (in) (in) (in) (in) 1 8.00 0.6250 0.3750 8.00 0.6250 0.624 75 0.318 76 0.787 76 2 8.00 0.5000 0.2500 8.00 0.5000 0.500 76 0.563 76 0.540 75 3 8.00 0.6250 0.3750 8.00 0.6250 0.716 76 0.443 75 0.857 75 134/279134 MSA 43. 0 Page 18 of 29 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A. 01PPF1 02/27/15 08 : 16: 45 VERTICAL KNEE PANEL ZONE ANALYSIS NODE 2 ELEMENT MEM DESC RATIO AXIAL SHEAR MOMENT LC kips kips kip-ft CAP PLATE 8.0 x 0.375 0.550 1.0 -41.1 188.7 83 CAP PLATE END WELD FWD7 0.975 -0.0 0.5 1.1 26 CAP PLATE WEB WELD FWD3 0.880 -0.9 42.6 -188.8 84 STIFFENER 4.0 x 0.375 0.938 -0.9 42.6 -188.8 84 STIFFENER END WELD FWD4 1.019 0.1 0.7 -0.2 24 STIFFENER WEB WELD FWS3 0.870 -0.9 42.6 -188.8 84 OUTER FLG WEB WELD FWD4 0.567 -0.9 42.6 -188.8 84 WEB END WELD FWS5 0.889 0.1 0.7 -0.2 24 WEB 0.375 0.730 -0.9 42.6 -188.8 84 VERTICAL KNEE PANEL ZONE ANALYSIS NODE 3 ELEMENT MEM DESC RATIO AXIAL SHEAR MOMENT LC kips kips kip-ft CAP PLATE 8.0 x 0.500 0.947 -23.3 -41.6 451.2 85 CAP PLATE END WELD FWD9 0.949 -0.1 0.5 2.3 31 CAP PLATE WEB WELD FWD4 0.912 23.4 41.9 -451.5 83 STIFFENER 4.0 x 0.750 0.754 23.4 41.9 -451.5 83 STIFFENER END WELD CJP STIFFENER WEB WELD FWS5 0.827 23.4 41.9 -451.5 83 OUTER FLG WEB WELD FWD4 0.884 23.4 41.9 -451.5 83 WEB END WELD FWS5 1.023 23.4 41.9 -451.5 83 WEB 0.375 1.024 23.4 41.9 -451.5 83 135/279135 MSA 43. 0 Page 19 of 29 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A. 01PPF1 02/27/15 08 : 16: 45 SPLICE PLATE DESIGN BY DESIGN GUIDE 16- A325 BOLTS FULL TENSION ND IO WID THK DEPTH B DIA NB GA ROW BSP CSE MOMENT AXIAL SHEAR RTO LR in in in in in 0 I in kip-ft kips kips 2 IL 8.0 0.750 33.3 0.750 2 3.0 3 3 3.0 83 188.7 -1.0 41.1 0.62 2 IR 8.0 0.750 33.0 0.750 2 3.0 3 3 3.0 83 188.5 -22.3 41.3 0.53 2 OL 8.0 0.750 33.3 0.750 2 3.0 3 3 3.0 84 -188.8 0.9 -42.6 0.63 2 OR 8.0 0.750 33.0 0.750 2 3.0 3 3 3.0 84 -189.0 2.0 -42.3 0.66 3 OL 8.0 0.750 33.0 1.000 2 3.5 3 4 3.5 83 -451.1 -22.3 42.3 0.86 3 OR 8.0 0.750 33.3 1.000 2 3.5 3 4 3.5 83 -451.5 -23.4 41.9 0.84 3 IL 8.0 0.750 33.0 1.000 2 3.5 3 4 3.5 84 451.7 2.0 -41.4 0.82 3 IR 8.0 0.750 33.3 1.000 2 3.5 3 4 3.5 84 451.3 23.3 -41.8 0.85 136/279136 MSA 43. 0 Page 20 of 29 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A.O1PPF1 02/27/15 08 : 16: 45 SPLICE PLATE WELD DESIGN ND I/O WELD MOM AX SHR RATIO CSE L/R kip-ft kips kips 2 O/R CJP -188.1 -1.7 -42.1 N/A 165 2 WEB FWS3 -189.0 -2.0 -42.3 0.99 84 2 I/R CJP 187.5 22.3 41.1 N/A 163 3 O/L CJP -449.0 22.3 42.1 N/A 163 3 WEB FWS3 451.7 -2.0 -41.4 0.99 84 3 I/L CJP 449.6 -1.7 -41.2 N/A 165 137/279137 MSA 43 . 0 Page 21 of 29 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A. 01PPF1 02/27/15 08 : 16: 45 FRAME SUPPORTS * BASE PLATE * ANCHOR BOLTS * THICKNESS WIDTH LENGTH * NO. DIAMETER AREA SUP. * NODE (in. ) (in. ) (in. ) * (in. ) (in2) 1 1 0.500 10.000 18.500 4 1.250 4.909 1 2 4 0.500 10.000 28.000 4 1.250 4.909 4 CONNECTION DESIGN FORCES AT SUPPORTS BOLT RESISTANCE LOAD HORIZONTAL VERTICAL MOMENT SHEAR TENSION NODE CASE (kips) (kips) (kip-ft) (kips) (kips) 1 162 20.37 -38.15 0.00 56.94 100.60 163 20.62 -38.18 0.00 56.94 100.14 164 18.61 45.13 -0.00 56.94 103.89 165 18.87 45.11 0.00 56.94 103.42 4 162 22.51 45.34 -0.00 56.94 96.59 163 22.26 45.36 0.00 56.94 97.06 164 24.26 -37.95 0.00 56.94 93.30 165 24.01 -37.92 0.00 56.94 93.78 138/279138 MSA 43 . 0 Page 22 of 29 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A. 01PPF1 02/27/15 08 : 16: 45 SUPPORT REACTIONS CASE 1 : D CASE 2 : MEZD SUPPORT NODE HORIZONTAL VERTICAL MOMENT SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) (kips) (kips) (kip-ft) 1 1 0.02 1.88 -0.00 1 1 0.04 0.92 0.00 2 4 -0.02 2.17 -0.00 2 4 -0.04 0.88 0.00 CASE 3 : XMEZ CASE 4 : D+C-> SUPPORT NODE HORIZONTAL VERTICAL MOMENT SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) (kips) (kips) (kip-ft) 1 1 0.05 1.23 -0.00 1 1 0.01 1.82 0.00 2 4 -0.05 1.17 0.00 2 4 -0.05 2.21 -0.00 CASE 5 : D+C<- CASE 6 : D-> SUPPORT NODE HORIZONTAL VERTICAL MOMENT SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) (kips) (kips) (kip-ft) 1 1 0.04 1.92 -0.00 1 1 0.02 1.84 -0.00 2 4 0.00 2.11 0.00 2 4 -0.04 2.19 0.00 CASE 7 : D<- CASE 8 : LEU--> SUPPORT NODE HORIZONTAL VERTICAL MOMENT SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) (kips) (kips) (kip-ft) 1 1 0.03 1.89 0.00 1 1 -0.05 -0.17 0.00 2 4 -0.01 2.14 0.00 2 4 -0.09 0.17 -0.00 CASE 9 : LEU-<- CASE 10 : L-> SUPPORT NODE HORIZONTAL VERTICAL MOMENT SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) (kips) (kips) (kip-ft) 1 1 0.05 0.17 0.00 1 1 -0.05 -0.17 0.00 2 4 0.09 -0.17 -0.00 2 4 -0.09 0.17 -0.00 CASE 11 : L<- CASE 12 : SEU--> SUPPORT NODE HORIZONTAL VERTICAL MOMENT SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) (kips) (kips) (kip-ft) 1 1 0.05 0.17 0.00 1 1 -0.06 -0.21 -0.00 2 4 0.09 -0.17 -0.00 2 4 -0.11 0.21 -0.00 CASE 13 : SEU-<- CASE 14 : S-> SUPPORT NODE HORIZONTAL VERTICAL MOMENT SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) (kips) (kips) (kip-ft) 1 1 0.06 0.21 0.00 1 1 -0.06 -0.21 -0.00 2 4 0.11 -0.21 -0.00 2 4 -0.11 0.21 -0.00 CASE 15 : S<- CASE 16 : WPIP-> SUPPORT NODE HORIZONTAL VERTICAL MOMENT SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) (kips) (kips) (kip-ft) 1 1 0.06 0.21 0.00 1 1 -4.82 -16.64 -0.00 2 4 0.11 -0.21 -0.00 2 4 -8.58 16.64 -0.00 CASE 17 : WPIP<- CASE 18 : WNIP-> SUPPORT NODE HORIZONTAL VERTICAL MOMENT SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) (kips) (kips) (kip-ft) 1 1 4.81 16.64 0.00 1 1 -4.82 -16.64 -0.00 2 4 8.60 -16.64 0.00 2 4 -8.58 16.64 -0.00 CASE 19 : WNIP<- CASE 20 : E-> SUPPORT NODE HORIZONTAL VERTICAL MOMENT SUPPORT NODE HORIZONTAL VERTICAL MOMENT 139/279139 MSA 43 . 0 Page 23 of 29 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A. 01PPF1 02/27/15 08 : 16: 45 (kips) (kips) (kip-ft) (kips) (kips) (kip-ft) 1 1 4.81 16.64 0.00 1 1 -14.66 -30.98 -0.00 2 4 8.60 -16.64 0.00 2 4 -17.34 30.98 -0.00 CASE 21 : E<- CASE 22 : f2E-> SUPPORT NODE HORIZONTAL VERTICAL MOMENT SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) (kips) (kips) (kip-ft) 1 1 14.65 30.98 -0.00 1 1 -33.81 -71.45 0.00 2 4 17.35 -30.98 0.00 2 4 -39.99 71.45 -0.00 CASE 23 : CASE 162: f2E<- 0.91D + 0.58f2E-> + 0.91MEZD + 0.62XMEZ n SUPPORT NODE HORIZONTAL VERTICAL MOMENT SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) (kips) (kips) (kip-ft) 1 1 33.78 71.45 -0.00 1 1 -20.37 -38.15 0.00 2 4 40.02 -71.45 -0.00 2 4 -22.51 45.34 -0.00 CASE 163: CASE 164: 0.91D + 0.58cE-> + 0.91MEZD + 0.62XMEZ n 0.91D + 0.58f2E<- + 0.91MEZD + 0.62XMEZ n SUPPORT NODE HORIZONTAL VERTICAL MOMENT SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) (kips) (kips) (kip-ft) 1 1 -20.62 -38.18 0.00 1 1 18.61 45.13 -0.00 2 4 -22.26 45.36 0.00 2 4 24.26 -37.95 0.00 CASE 165: 0.91D + 0.58QE<- + 0.91MEZD + 0.62XMEZ n SUPPORT NODE HORIZONTAL VERTICAL MOMENT (kips) (kips) (kip-ft) 1 1 18.87 45.11 0.00 2 4 24.01 -37.92 0.00 140/279140 MSA 43. 0 Page 24 of 29 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A. 01PPF1 02/27/15 08: 16: 45 NODAL DISPLACEMENTS CASE 1 : D CASE 2 : MEZD Horizontal Deflection Limit: None Horizontal Deflection Limit: None Vertical Deflection Limit: None Vertical Deflection Limit: None HORIZONTAL VERTICAL ANGULAR HORIZONTAL VERTICAL ANGULAR NODE (in. ) (in. ) (rad. ) NODE (in. ) (in. ) (rad. ) 1 0.000 0.000 0.000 1 0.000 0.000 0.000 2 -0.002 -0.001 -0.000 2 -0.001 -0.000 0.000 3 -0.002 -0.001 0.000 3 -0.001 -0.000 0.000 4 0.000 0.000 0.000 4 0.000 0.000 0.000 CASE 3 : XMEZ CASE 4 : D+C-> Horizontal Deflection Limit: None Horizontal Deflection Limit: None Vertical Deflection Limit: None Vertical Deflection Limit: None HORIZONTAL VERTICAL ANGULAR HORIZONTAL VERTICAL ANGULAR NODE (in. ) (in. ) (rad. ) NODE (in. ) (in. ) (rad. ) 1 0.000 0.000 0.000 1 0.000 0.000 -0.000 2 -0.002 -0.000 0.000 2 0.002 -0.001 -0.000 3 -0.002 -0.000 0.000 3 0.002 -0.001 0.000 4 0.000 0.000 0.000 4 0.000 0.000 -0.000 CASE 5 : D+C<- CASE 6 : D-> Horizontal Deflection Limit: None Horizontal Deflection Limit: None Vertical Deflection Limit: None Vertical Deflection Limit: None HORIZONTAL VERTICAL ANGULAR HORIZONTAL VERTICAL ANGULAR NODE (in. ) (in.) (rad. ) NODE (in. ) (in. ) (rad. ) 1 0.000 0.000 0.000 1 0.000 0.000 0.000 2 -0.005 -0.001 -0.000 2 0.000 -0.001 -0.000 3 -0.005 -0.001 0.000 3 0.000 -0.001 0.000 4 0.000 0.000 0.000 4 0.000 0.000 -0.000 CASE 7 : D<- CASE 8 : LEU--> Horizontal Deflection Limit: None Horizontal Deflection Limit: None Vertical Deflection Limit: None Vertical Deflection Limit: L/180 HORIZONTAL VERTICAL ANGULAR HORIZONTAL VERTICAL ANGULAR NODE (in.) (in. ) (rad. ) NODE (in. ) (in. ) (rad. ) 1 0.000 0.000 0.000 1 0.000 0.000 -0.000 2 -0.003 -0.001 -0.000 2 0.011 0.000 -0.000 3 -0.003 -0.001 0.000 3 0.010 -0.000 -0.000 4 0.000 0.000 0.000 4 0.000 0.000 -0.000 CASE 9 : LEU-<- CASE 10 : L-> Horizontal Deflection Limit: None Horizontal Deflection Limit: None Vertical Deflection Limit: L/180 Vertical Deflection Limit: L/180 HORIZONTAL VERTICAL ANGULAR HORIZONTAL VERTICAL ANGULAR NODE (in. ) (in. ) (rad. ) NODE (in. ) (in. ) (rad. ) 1 0.000 0.000 0.000 1 0.000 0.000 -0.000 2 -0.010 -0.000 0.000 2 0.011 0.000 -0.000 3 -0.011 0.000 0.000 3 0.010 -0.000 -0.000 4 0.000 0.000 0.000 4 0.000 0.000 -0.000 CASE 11 : L<- CASE 12 : SEU--> Horizontal Deflection Limit: None Horizontal Deflection Limit: H/60 Vertical Deflection Limit: L/180 Vertical Deflection Limit: L/180 HORIZONTAL VERTICAL ANGULAR HORIZONTAL VERTICAL ANGULAR . NODE (in. ) (in. ) (rad. ) NODE (in. ) (in. ) (rad. ) 1 0.000 0.000 0.000 1 0.000 0.000 -0.000 141/279141 MSA 43 . 0 Page 25 of 29 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A. 01PPF1 02/27/15 08 : 16: 45 2 -0.010 -0.000 0.000 2 0.013 0.000 -0.000 3 -0.011 0.000 0.000 3 0.013 -0.000 -0.000 4 0.000 0.000 0.000 4 0.000 0.000 -0.000 CASE 13 : SEU-<- CASE 14 : S-> Horizontal Deflection Limit: H/60 Horizontal Deflection Limit: H/60 Vertical Deflection Limit: L/180 Vertical Deflection Limit: L/180 HORIZONTAL VERTICAL ANGULAR HORIZONTAL VERTICAL ANGULAR NODE (in. ) (in. ) (rad. ) NODE (in. ) (in. ) (rad. ) 1 0.000 0.000 0.000 1 0.000 0.000 -0.000 2 -0.013 -0.000 0.000 2 0.013 0.000 -0.000 3 -0.013 0.000 0.000 3 0.013 -0.000 -0.000 4 0.000 0.000 0.000 4 0.000 0.000 -0.000 CASE 15 : S<- CASE 16 : WPIP-> Horizontal Deflection Limit: H/60 Horizontal Deflection Limit: H/18 Vertical Deflection Limit: L/180 Vertical Deflection Limit: L/55 HORIZONTAL VERTICAL ANGULAR HORIZONTAL VERTICAL ANGULAR NODE (in. ) (in. ) (rad. ) NODE (in. ) (in. ) (rad. ) 1 0.000 0.000 0.000 1 0.000 0.000 -0.006 2 -0.013 -0.000 0.000 2 1.062 0.009 -0.000 3 -0.013 0.000 0.000 3 1.058 -0.007 -0.001 4 0.000 0.000 0.000 4 0.000 0.000 -0.006 CASE 17 : WPIP<- CASE 18 : WNIP-> Horizontal Deflection Limit: H/18 Horizontal Deflection Limit: H/18 Vertical Deflection Limit: L/55 Vertical Deflection Limit: L/55 HORIZONTAL VERTICAL ANGULAR HORIZONTAL VERTICAL ANGULAR NODE (in. ) (in. ) (rad. ) NODE (in. ) (in. ) (rad. ) 1 0.000 0.000 0.006 1 0.000 0.000 -0.006 2 -1.058 -0.009 0.000 2 1.062 0.009 -0.000 3 -1.060 0.007 0.001 3 1.058 -0.007 -0.001 4 0.000 0.000 0.006 4 0.000 0.000 -0.006 CASE 19 : WNIP<- CASE 20 : E-> Horizontal Deflection Limit: H/18 Horizontal Deflection Limit: H/20 Vertical Deflection Limit: L/55 Vertical Deflection Limit: None HORIZONTAL VERTICAL ANGULAR HORIZONTAL VERTICAL ANGULAR NODE (in. ) (in. ) (rad. ) NODE (in. ) (in. ) (rad. ) 1 0.000 0.000 0.006 1 0.000 0.000 -0.014 2 -1.058 -0.009 0.000 2 2.199 0.017 0.000 3 -1.060 0.007 0.001 3 2.191 -0.014 -0.003 4 0.000 0.000 0.006 4 0.000 0.000 -0.011 CASE 21 : E<- CASE 22 : nE-> Horizontal Deflection Limit: H/20 Horizontal Deflection Limit: None Vertical Deflection Limit: None Vertical Deflection Limit: None HORIZONTAL VERTICAL ANGULAR HORIZONTAL VERTICAL ANGULAR NODE (in. ) (in. ) (rad.) NODE (in. ) (in. ) (rad. ) 1 0.000 0.000 0.014 1 0.000 0.000 -0.032 2 -2.194 -0.017 -0.000 2 5.072 0.039 0.000 3 -2.194 0.014 0.003 3 5.054 -0.032 -0.007 4 0.000 0.000 0.011 4 0.000 0.000 -0.026 CASE 23 : QE<- Horizontal Deflection Limit: None Vertical Deflection Limit: None HORIZONTAL VERTICAL ANGULAR 142/279142 MSA 43. 0 Page 26 of 29 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A. 01PPF1 02/27/15 08 : 16: 45 NODE (in. ) (in. ) (rad. ) 1 0.000 0.000 0.032 2 -5.061 -0.039 -0.000 3 -5.060 0.032 0.007 4 0.000 0.000 0.026 143/279143 MSA 43. 0 Page 27 of 29 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A. 01PPF1 02/27/15 08 : 16: 45 WEIGHT OF BUILT-UP MEMBERS = 3527.1 lbs WEIGHT OF W SHAPE MEMBERS = 0.0 lbs WEIGHT OF PIPE MEMBERS = 0.0 lbs WEIGHT OF SPLICES = 266.0 lbs WEIGHT OF BASE PLATES = 65.9 lbs WEIGHT OF STIFFENERS = 42.4 lbs TOTAL WEIGHT = 3901.3 lbs 144/279144 MSA 43. 0 Page 28 of 29 Job:W15G0032A C: \ABCP\FRAMES\W15G0032A. 01PPF1 02/27/15 08 : 16: 45 FLANGE BRACE LOCATIONS SEQ# P/G# REQD? LEFT COLUMN BASE 1 1 Yes (Eave Frame Brace Req'd) LEFT EAVE 2 1 Yes (Eave Frame Brace Req'd) 3 2 Yes (Eave Frame Brace Req'd) RIGHT EAVE 4 1 Yes (Eave Frame Brace Req'd) RIGHT COLUMN BASE NOTE: FLANGE BRACES ARE ON ONE SIDE AT THE LOCATIONS SPECIFIED (SINGLE SIDED) . PDELTA ANALYSIS RATIOS iWebOptCycle = 1 icy = 1 Stable All Load Combinations 145/279145 ABC Design Calculations Pamphlet RIGID FRAME EXPLANATION AND METHOD OF ANALYSIS Rigid frame analysis and design is a very exacting task. American Buildings Company has developed a computer program that permits detailed analysis and design to be performed for steel frames. Following is a brief description of this program. The program combines the STIFFNESS METHOD of structural design theory with MATRIX mathematics operations. This is made possible through the use of computers. The processing speed of the modern computer permits the use of complex mathematical methods which would be impractical in hand computations. These techniques, along with a completely rigorous structural theory approach, give technically precise and accurate results. The program consists of seven segments: 1) Geometry Input 2) Loading Input and Stiffness Computation 3) Equivalent Forces Computations 4) Solution for Displacements 5) Reactions and Member Force Computation 6) Strength Analysis 7) Design Decisions Geometry: The general structural configuration that the program can analyze or design is depicted in Figure 2. It shows a gable frame with vertical sidewalls and a roof sloping downward on both sides of the ridge. Rafters may be supported at intermediate points by interior columns. Each sidewall column or rafter may be composed of a number of segments with "I" shaped cross-sections that may be prismatic or tapered. Interior columns must be prismatic, but may be "I" sections or pipes. Bases of sidewall and interior columns may be at different levels. Left and right sidewall heights and roof slopes may be unequal. SUBJECT TO CHANGE WITHOUT NOTICE REVISED MAY 18,2008 061BC Section 2 Page 1 146/279146 ABC Design Calculations Pamphlet RIGID FRAME EXPLANATION AND METHOD OF ANALYSIS /-PURLIN COVERING 11%0 NODE MEMBER—/ I \ CENTER LINE GIRT- 1 FIGURE 2 Typical Configuration of Frame Support and Loadings: Column bases may be specified pinned, free, sliding, rolling, or fixed. Tops of interior columns may be specified pinned or fixed to the rafters. Uniformly distributed loads are considered to be transmitted to the frame by girts and purlins, which are at specified locations. Concentrated forces and moments may be applied at any location on the frame, thus permitting the inclusion of overhang loads, crane loads, bracket loads, etc. Input: Input to the program consists of information on building geometry, web depths at critical locations, column locations, girt and purlin locations, load intensities and combinations, material properties, deflection limits, and stress criteria. If only analysis is required, member cross-section details are also input. If the frame is to be designed, inventories of flange sizes, web material, W-shapes, and pipe sizes are employed. SUBJECT TO CHANGE WITHOUT NOTICE REVISED MAY 18,2008 0618C Section 2 Page 2 147/279147 ABC Design Calculations Pamphlet RIGID FRAME EXPLANATION AND METHOD OF ANALYSIS Analysis: In the analysis option no decision making is done concerning member selection. From the information supplied, which includes all member sizes, the program develops the precise centerline geometry of the frame. The analysis is carried out on the line configuration, composed of straight line segments ("Members") defined by the joints and other junction points called "Nodes". All the loads are transformed into equivalent forces and moments and applied at Node Points. The direct stiffness method of matrix structural elastic analysis is adopted. The member stiffnesses are computed, and superposed to yield the force-displacement relations for the entire frame. Stiffness coefficients and equivalent end actions for tapered members are obtained by numerical analysis. The Nodal displacements for the specified support and loading conditions are solved by a matrix block recursion routine. The support reactions and member end forces and moments are then calculated. Finally, the most critical and shear stresses along each member are computed, and checked against allowable criteria according to AISC Specifications. The most critical stresses are those with the greatest ratio when compared to allowable stresses. The program analyzes the frame for each specified loading combination. Design: In the design option, a frame is determined by an iterative process of analysis and design. Initiated by the Analysis of a frame approximated from the specified flange, web and pipe inventories, the design proceeds in cycles of analysis, criteria checks, selection of fresh sections, and reanalysis until a satisfactory frame is obtained. When the design is complete, the program will analyze and check the frame for each specified loading combination. Output: The output may be requested at various levels of detail. The basic output consists of a listing of input data, centerline geometry, reactions, member end reactions, Nodal displacements, member sizes, criteria checks, bolted connections, anchor bolts and base plates. More exhaustive information may be extracted if desired. SUBJECT TO CHANGE WITHOUT NOTICE REVISED Ma 18,2008 06/8C Section 2 Page 3 148/279148 ABC Design Calculations Pamphlet LATERAL DEFLECTION OF FRAMES As noted in Section 1.3.4.8 of Metal Building Systems Manual, 2006 Edition: "Many metal building systems are designed with moment-resistant frames aligned in the transverse direction to resist lateral loading. Experience has shown that the lateral drift of the frames under wind loading is far less than predicted by the usual static analytical procedures." These factors unquestionably account for most of this apparent anomaly: 1) Drift calculations are traditionally based on full design loads. 2) Moment-rotation stiffnesses of"pinned" bases are taken as zero. 3) The usual analytical procedures are based on "bare" frames (skin action of roof diaphragms and endwalls is neglected) thus load sharing has not been taken into account. 4) The static analysis used does not take into account the dynamic effects of the applied load and the mass effects of the structure. Theoretical bare frame deflections are given on the computer printout for each node point. Lateral deflection limits are based upon American Buildings Company Serviceability Policy unless specified otherwise. SUBJECT TO CHANGE WITHOUT NOTICE REVISED MAY 18,2008 0618C Section 2 Page 4 149/279149 SECTION 3 ENDWALLS AND ROD BRACING 150/279150 Beam and Column Endwall Design Ver. 43.0 Page 1 American Buildings Company Mon Mar 02 16:05:30 2015 Job Name: W15G0032A Job Part: 1 LEW BUILDING TYPE IS SINGLE SLOPE ENDWALL TYPE IS RIGID FRAME BUILDING WIDTH = 111.000 ft BUILDING LENGTH = 60.000 ft LEFT HEIGHT = 27.625 ft RIGHT HEIGHT = 23.000 ft LEFT SLOPE _ -0.500 :12 RIGHT SLOPE = 0.000 :12 BAY SPACING = 20.000 ft ROOF OVERHANG = 0.000 ft BUILDING CODE: 2014 Oregon Structural Specialty Code DESIGN SPECIFICATION: 2010 AISC 360-10 Specification for Structural Steel Buildings COLDFORMED DESIGN SPECIFICATION: 2007 AISI NASPEC North American Cold-Formed Steel Specification RISK CATEGORY OF BUILDING: II. All buildings and other structures except those listed in Risk Categories I, III, and IV ROOF EXPOSURE CONDITION: Fully Exposed: Roofs exposed on all sides with no shelter afforded by terrain, higher structures or trees ENCLOSURE CLASSIFICATION: Enclosed Buildings EXPOSURE (SURFACE ROUGHNESS) CATEGORY: B. Urban and suburban areas, wooded areas or other terrain with numerous closely spaced obstructions having the size of single-family dwellings or larger & extending at least 2600 ft from site DESIGN ROOF LIVE LOAD = 20.000 psf COLLATERAL LOAD = 3.000 psf GROUND SNOW LOAD = 25.000 psf SNOW EXPOSURE FACTOR = 0.900 SNOW IMPORTANCE FACTOR = 1.000 SLOPED ROOF SNOW LOAD = 25.000 psf DESIGN WIND VELOCITY = 130.000 mph SEISMIC DATA: Maximum response acceleration at short periods Ss = 99.1 %g Maximum response acceleration at 1 sec periods S1 = 44.8 %g Seismic site soil classification D Design spectral response acceleration at short periods Sds = 0.729 g Design spectral response acceleration at 1 sec periods Sdl = 0.464 g Seismic Design Category D Redundancy factor p = 1.3 Force to OMF moment frames = pCsW p=1.30 Cs=Sds/(R/I)=0.208 R=3.5 = 0.271W Force to OMF moment frame connections = S)CsW n=3 Cs=Sds/ (R/I) R=3.5 = 0.625W Force to OMF collectors = cCsW c=3 Cs=Sds/ (R/I) R=3.5 = 0.625W 151/279151 Beam and Column Endwall Design Ver. 43.0 Page 2 American Buildings Company Mon Mar 02 16:05:30 2015 Job Name: W15G0032A Job Part: 1 LEW Force to roof diaphragm = Sds/ (R/I)W R=3.5 = 0.208W *** COLUMN BASE ELEVATIONS COL COL ELEV (ft) 0 -0.500 1 -0.500 2 -0.500 3 -0.500 4 -0.500 5 -0.500 ALL COLUMN LOADS ARE REFERENCED FROM THE COLUMN BASE ELEVATION. *** DESIGN LOAD COMBINATIONS CASE LOAD FACT GROUP => 1 1.000 D+C 1.000 L 2 1.000 D+C 1.000 S 1.000 MEZD 1.000 XMEZ 3 1.000 D 0.600 W+ 4 1.000 D 0.600 W- 5 1.102 D+C 0.700 ELX 6 1.000 D+C 0.450 W+ 0.750 L 7 1.000 D+C 0.450 W- 0.750 L 8 1.000 D+C 0.450 W+ 0.750 S 1.000 MEZD 0.750 XMEZ 9 1.000 D+C 0.450 W- 0.750 S 1.000 MEZD 0.750 XMEZ 10 0.600 D 0.600 W+ 11 0.600 D 0.600 W- 12 0.498 D+C 0.700 ELX *** LOADS HORIZ VERT GROUP TYPE M FM TO FL START psf/ psf/ MOMT END HORIZ VERT ft kips kips kip-ft ft psf psf -- -- -- ---- ---- ---- W+ UNIF C 1 1 0 0.00 22.17 0.00 0.00 0.00 22.17 0.00 W- UNIF C 1 1 0 0.00 -25.79 0.00 0.00 0.00 -25.79 0.00 W+ UNIF C 2 5 0 0.00 20.87 0.00 0.00 0.00 20.87 0.00 W- UNIF C 2 5 0 0.00 -23.19 0.00 0.00 0.00 -23.19 0.00 W+ UNIF C 6 6 0 0.00 22.17 0.00 0.00 0.00 22.17 0.00 W- UNIF C 6 6 0 0.00 -25.79 0.00 0.00 0.00 -25.79 0.00 D CONC C 3 3 0 11.25 0.00 -0.56 3.00 L CONC C 3 3 0 11.25 0.00 -4.39 23.42 S CONC C 3 3 0 11.25 0.00 -5.00 4.00 W+ CONC C 3 3 0 11.25 0.00 -5.80 30.95 W- CONC C 3 3 0 11.25 0.00 5.80 -30.95 D+C CONC C 3 3 0 11.25 0.00 -1.24 6.61 D CONC C 4 4 0 11.25 0.00 -0.52 2.79 L CONC C 4 4 0 11.25 0.00 -4.14 22.11 S CONC C 4 4 0 11.25 0.00 -9.50 5.00 W+ CONC C 4 4 0 11.25 0.00 -5.39 28.74 W- CONC C 4 4 0 11.25 0.00 5.39 -28.74 D+C CONC C 4 4 0 11.25 0.00 -1.15 6.14 D CONC C 5 5 0 11.25 0.00 -0.52 2.79 152/279152 Beam and Column Endwall Design Ver. 43.0 Page 3 American Buildings Company Mon Mar 02 16:05:30 2015 Job Name: W15G0032A Job Part: 1 LEW *** LOADS (continued) HORIZ VERT GROUP TYPE M FM TO FL START psf/ psf/ MOMT END HORIZ VERT ft kips kips kip-ft ft psf psf - -- -- -- ---- ---- ---- L CONC C 5 5 0 11.25 0.00 -4.14 22.11 S CONC C 5 5 0 11.25 0.00 -9.50 5.00 W+ CONC C 5 5 0 11.25 0.00 -5.39 28.74 W- CONC C 5 5 0 11.25 0.00 5.39 -28.74 D+C CONC C 5 5 0 11.25 0.00 -1.15 6.14 D CONC C 6 6 0 11.25 0.00 -0.26 1.39 L CONC C 6 6 0 11.25 0.00 -2.09 11.16 S CONC C 6 6 0 11.25 0.00 -5.00 3.00 W+ CONC C 6 6 0 11.25 0.00 -2.69 14.37 W- CONC C 6 6 0 11.25 0.00 2.69 -14.37 D+C CONC C 6 6 0 11.25 0.00 -0.58 3.07 ELX RUNF R 0 0 0 0.00 7.50 0.00 0.00 MEZD CONC C 3 5 0 12.00 0.00 -8.60 0.00 XMEZ CONC C 3 5 0 12.00 0.00 -11.90 0.00 FY COLD FORMED = 55.0 ksi FY HOT ROLLED = 50.0 ksi FY BUILT UP = 55.0 ksi *** ENDWALL COLUMNS MEM DESCRIPTION LOCATION BASE PLATES A BLT ROW BEND RT SHR RT CT ft in in in in 1 RIGID-FM 0.000 0 0.000 0.00 0 0.00 0.000 0.000 2 W12X14 24.125 6 0.375 12.50 2 0.75 0.889 0.092 3 W12X26 48.250 8 0.500 12.50 2 0.75 0.383 0.082 4 W12X26 69.167 8 0.500 12.50 2 1.00 0.353 0.074 5 W12X26 90.083 8 0.500 12.50 2 0.75 0.349 0.073 6 RIGID-FM 111.000 0 0.000 0.00 0 0.00 0.000 0.000 *** FRAME BRACE SUMMARY LOCATION IN FT FROM REF PT COLUMN REF PT IS FROM THE COLUMN BASE. RAFTERS ARE AS NOTED 153/279153 Beam and Column Endwall Design Ver. 43.0 Page 4 American Buildings Company Mon Mar 02 16:05:30 2015 Job Name: W15G0032A Job Part: 1 LEW *** MAXIMUM ENDWALL REACTIONS AND DESIGN LOAD COMBINATIONS CASE M VERT M HORZ LOAD FACTOR / LOAD GROUP => kips kips 1 6.3 -1.2 1.000 D+C 1.000 L 2 31.8 -0.5 1.000 D+C 1.000 S 1.000 MEZD 1.000 XMEZ 3 4.7 -4.4 1.000 D 0.600 W+ 4 -2.1 4.6 1.000 D 0.600 W- 5 2.0 -0.3 1.102 D+C 0.700 ELX 6 7.8 -4.2 1.000 D+C 0.450 W+ 0.750 L 7 2.6 3.3 1.000 D+C 0.450 W- 0.750 L 8 28.9 -3.6 1.000 D+C 0.450 W+ 0.750 S 1.000 MEZD 0.750 XMEZ 9 24.0 3.3 1.000 D+C 0.450 W- 0.750 S 1.000 MEZD 0.750 XMEZ 10 4.5 -4.4 0.600 D 0.600 W+ 11 -2.3 4.6 0.600 D 0.600 W- 12 1.3 -0.1 0.498 D+C 0.700 ELX 13 6.5 -7.1 1.000 W+ 14 -4.8 7.8 1.000 W- 15 0.0 0.0 1.000 ELX 16 1.2 -0.1 1.000 D 17 5.0 -0.9 1.000 L 18 10.1 -0.2 1.000 S 19 1.9 -0.3 1.000 D+C 20 9.3 0.0 1.000 MEZD 21 12.6 0.0 1.000 XMEZ TOTAL X-BRACING WEIGHT 0.0 TOTAL PIPE STRUT WEIGHT 0.0 TOTAL 0.0 TOTAL CABLE X-BRACING WEIGHT 0.0 PERCENT CABLE X-BRACING WEIGHT -1 154/279154 Beam and Column Endwall Design Ver. 43.0 Page 5 American Buildings Company Mon Mar 02 16:05:30 2015 Job Name: W15G0032A Job Part: 1 LEW *** SUMMARY MEMBER STRESS REPORT ENDWALL COLUMNS COL NO MEMBER DESC L CASE S RATIO 1 RIGID-FM 0 0.00 2 W12X14 4 0.89 3 W12X26 6 0.38 4 W12X26 6 0.35 5 W12X26 6 0.35 6 RIGID-FM 0 0.00 155/279155 Beam and Column Endwall Design Ver. 43.0 Page 1 American Buildings Company Tue Mar 03 09:12:36 2015 Job Name: W15G0032A Job Part: 1 REW BUILDING TYPE IS SINGLE SLOPE ENDWALL TYPE IS RIGID FRAME BUILDING WIDTH = 111.000 ft BUILDING LENGTH = 60.000 ft LEFT HEIGHT = 23.000 ft RIGHT HEIGHT = 27.625 ft LEFT SLOPE = 0.500 :12 RIGHT SLOPE = 0.000 :12 BAY SPACING = 20.000 ft ROOF OVERHANG = 0.000 ft BUILDING CODE: 2014 Oregon Structural Specialty Code DESIGN SPECIFICATION: 2010 AISC 360-10 Specification for Structural Steel Buildings COLDFORMED DESIGN SPECIFICATION: 2007 AISI NASPEC North American Cold-Formed Steel Specification RISK CATEGORY OF BUILDING: II. All buildings and other structures except those listed in Risk Categories I, III, and IV ROOF EXPOSURE CONDITION: Fully Exposed: Roofs exposed on all sides with no shelter afforded by terrain, higher structures or trees ENCLOSURE CLASSIFICATION: Enclosed Buildings EXPOSURE (SURFACE ROUGHNESS) CATEGORY: B. Urban and suburban areas, wooded areas or other terrain with numerous closely spaced obstructions having the size of single-family dwellings or larger & extending at least 2600 ft from site DESIGN ROOF LIVE LOAD = 20.000 psf COLLATERAL LOAD = 3.000 psf GROUND SNOW LOAD = 25.000 psf SNOW EXPOSURE FACTOR = 0.900 SNOW IMPORTANCE FACTOR = 1.000 SLOPED ROOF SNOW LOAD = 25.000 psf DESIGN WIND VELOCITY = 130.000 mph SEISMIC DATA: Maximum response acceleration at short periods Ss = 99.1 %g Maximum response acceleration at 1 sec periods S1 = 44.8 %g Seismic site soil classification D Design spectral response acceleration at short periods Sds = 0.729 g Design spectral response acceleration at 1 sec periods Sdl = 0.464 g Seismic Design Category D Redundancy factor p = 1.3 Force to OMF moment frames = pCsW p=1.30 Cs=Sds/(R/I)=0.208 R=3.5 = 0.271W Force to OMF moment frame connections = QCsW 0=3 Cs=Sds/ (R/I) R=3.5 = 0.625W Force to OMF collectors = QCsW Q=3 Cs=Sds/ (R/I) R=3.5 = 0.625W 156/279156 Beam and Column Endwall Design Ver. 43.0 Page 2 American Buildings Company Tue Mar 03 09:12:36 2015 Job Name: W15G0032A Job Part: 1 REW Force to roof diaphragm = Sds/ (R/I)W R=3.5 = 0.208W *** COLUMN BASE ELEVATIONS COL COL ELEV (ft) 0 -0.500 1 -0.500 2 -0.500 3 -0.500 4 -0.500 5 -0.500 ALL COLUMN LOADS ARE REFERENCED FROM THE COLUMN BASE ELEVATION. *** DESIGN LOAD COMBINATIONS CASE LOAD FACT GROUP => 1 1.000 D+C 1.000 L 2 1.000 D+C 1.000 S 1.000 MEZD 1.000 XMEZ 3 1.000 D 0.600 W+ 4 1.000 D 0.600 W- 5 1.102 D+C 0.700 ELX 6 1.000 D+C 0.450 W+ 0.750 L 7 1.000 D+C 0.450 W- 0.750 L 8 1.000 D+C 0.450 W+ 0.750 S 1.000 MEZD 1.000 XMEZ 9 1.000 D+C 0.450 W- 0.750 S 1.000 MEZD 1.000 XMEZ 10 0.600 D 0.600 W+ 11 0.600 D 0.600 W- 12 0.498 D+C 0.700 ELX *** LOADS HORIZ VERT GROUP TYPE M FM TO FL START psf/ psf/ MOMT END HORIZ VERT ft kips kips kip-ft ft psf psf -- -- -- ---- ---- ---- W+ UNIF C 1 1 0 0.00 22.17 0.00 0.00 0.00 22.17 0.00 W- UNIF C 1 1 0 0.00 -25.79 0.00 0.00 0.00 -25.79 0.00 W+ UNIF C 2 5 0 0.00 20.87 0.00 0.00 0.00 20.87 0.00 W- UNIF C 2 5 0 0.00 -23.19 0.00 0.00 0.00 -23.19 0.00 W+ UNIF C 6 6 0 0.00 22.17 0.00 0.00 0.00 22.17 0.00 W- UNIF C 6 6 0 0.00 -25.79 0.00 0.00 0.00 -25.79 0.00 D CONC C 2 2 0 11.17 0.00 -0.42 1.81 L CONC C 2 2 0 11.17 0.00 -3.35 14.50 S CONC C 2 2 0 11.17 0.00 -9.50 5.00 W+ CONC C 2 2 0 11.17 0.00 -4.31 18.68 W- CONC C 2 2 0 11.17 0.00 4.31 -18.68 D+C CONC C 2 2 0 11.17 0.00 -0.92 3.99 D CONC C 3 3 0 11.17 0.00 -0.45 1.95 L CONC C 3 3 0 11.17 0.00 -3.60 15.61 S CONC C 3 3 0 11.17 0.00 -9.50 5.00 W+ CONC C 3 3 0 11.17 0.00 -4.64 20.11 W- CONC C 3 3 0 11.17 0.00 4.64 -20.11 D+C CONC C 3 3 0 11.17 0.00 -0.99 4.29 D CONC C 4 4 0 11.17 0.00 -0.48 2.09 157/279157 Beam and Column Endwall Design Ver. 43.0 Page 3 American Buildings Company Tue Mar 03 09:12:36 2015 Job Name: W15G0032A Job Part: 1 REW *** LOADS (continued) HORIZ VERT GROUP TYPE M FM TO FL START psf/ psf/ MOMT END HORIZ VERT ft kips kips kip-ft ft psf psf - -- -- -- ---- ---- ---- L CONC C 4 4 0 11.17 0.00 -3.86 16.73 S CONC C 4 4 0 11.17 0.00 -5.84 3.00 W+ CONC C 4 4 0 11.17 0.00 -4.97 21.55 W- CONC C 4 4 0 11.17 0.00 4.97 -21.55 D+C CONC C 4 4 0 11.17 0.00 -1.06 4.60 D CONC C 1 1 0 11.17 0.00 -0.24 1.05 L CONC C 1 1 0 11.17 0.00 -1.93 8.36 S CONC C 1 1 0 11.17 0.00 -5.00 3.00 W+ CONC C 1 1 0 11.17 0.00 -2.49 10.77 W- CONC C 1 1 0 11.17 0.00 2.49 -10.77 D+C CONC C 1 1 0 11.17 0.00 -0.53 2.30 ELX RUNF R 0 0 0 0.00 7.50 0.00 0.00 MEZD CONC C 2 4 0 12.00 0.00 -8.60 0.00 XMEZ CONC C 2 4 0 12.00 0.00 -11.90 0.00 FY COLD FORMED = 55.0 ksi FY HOT ROLLED = 50.0 ksi FY BUILT UP = 55.0 ksi *** ENDWALL COLUMNS MEM DESCRIPTION LOCATION BASE PLATES A BLT ROW BEND RT SHR RT CT ft in in in in 1 RIGID-FM 0.000 0 0.000 0.00 0 0.00 0.000 0.000 2 W12X26 20.917 8 0.500 12.50 2 0.75 0.313 0.068 3 W12X26 41.833 8 0.500 12.50 2 0.75 0.327 0.071 4 W12X26 62.750 8 0.500 12.50 2 1.00 0.339 0.078 5 W12X14 86.875 6 0.375 12.50 2 0.75 0.889 0.092 6 RIGID-FM 111.000 0 0.000 0.00 0 0.00 0.000 0.000 *** FRAME BRACE SUMMARY LOCATION IN FT FROM REF PT COLUMN REF PT IS FROM THE COLUMN BASE. RAFTERS ARE AS NOTED 158/279158 Beam and Column Endwall Design Ver. 43.0 Page 4 American Buildings Company Tue Mar 03 09:12:36 2015 Job Name: W15G0032A Job Part: 1 REW *** MAXIMUM ENDWALL REACTIONS AND DESIGN LOAD COMBINATIONS CASE M VERT M HORZ LOAD FACTOR / LOAD GROUP => kips kips 1 5.6 -0.8 1.000 D+C 1.000 L 2 31.5 -0.4 1.000 D+C 1.000 S 1.000 MEZD 1.000 XMEZ 3 3.6 -4.1 1.000 D 0.600 W+ 4 -1.8 4.4 1.000 D 0.600 W- 5 1.6 -0.2 1.102 D+C 0.700 ELX 6 6.8 -3.7 1.000 D+C 0.450 W+ 0.750 L 7 2.1 3.3 1.000 D+C 0.450 W- 0.750 L 8 31.1 -3.3 1.000 D+C 0.450 W+ 0.750 S 1.000 MEZD 1.000 XMEZ 9 27.2 3.3 1.000 D+C 0.450 W- 0.750 S 1.000 MEZD 1.000 XMEZ 10 3.4 -4.1 0.600 D 0.600 W+ 11 -2.0 4.4 0.600 D 0.600 W- 12 1.1 -0.1 0.498 D+C 0.700 ELX 13 5.6 -6.8 1.000 W+ 14 -4.3 7.4 1.000 W- 15 0.0 0.0 1.000 ELX 16 1.0 -0.1 1.000 D 17 4.0 -0.7 1.000 L 18 10.1 -0.2 1.000 S 19 1.5 -0.2 1.000 D+C 20 9.2 0.0 1.000 MEZD 21 12.5 0.0 1.000 XMEZ TOTAL X-BRACING WEIGHT 0.0 TOTAL PIPE STRUT WEIGHT 0.0 TOTAL 0.0 TOTAL CABLE X-BRACING WEIGHT 0.0 PERCENT CABLE X-BRACING WEIGHT -1 159/279159 Beam and Column Endwall Design Ver. 43.0 Page 5 American Buildings Company Tue Mar 03 09:12:36 2015 Job Name: W15G0032A Job Part: 1 REW *** SUMMARY MEMBER STRESS REPORT ENDWALL COLUMNS COL NO MEMBER DESC L CASE S RATIO 1 RIGID-FM 0 0.00 2 W12X26 8 0.31 3 W12X26 8 0.33 4 W12X26 8 0.34 5 W12X14 4 0.89 6 RIGID-FM 0 0.00 160/279160 Longitudinal Bracing Design Ver. 43.0 Page 1 American Buildings Company Fri Feb 27 09:34:34 2015 Job Name: W15G0032A Job Part: 1 BXW BUILDING TYPE IS SINGLE SLOPE BUILDING WIDTH = 111.000 ft BUILDING LENGTH = 60.000 ft LEFT HEIGHT = 27.625 ft RIGHT HEIGHT = 23.000 ft LEFT SLOPE _ -0.500 :12 RIGHT SLOPE = 0.000 :12 BAY SPACING = 20.000 ft ROOF OVERHANG = 0.000 ft BUILDING CODE: 2014 Oregon Structural Specialty Code DESIGN SPECIFICATION: 2010 AISC 360-10 Specification for Structural Steel Buildings COLDFORMED DESIGN SPECIFICATION: 2007 AISI NASPEC North American Cold-Formed Steel Specification RISK CATEGORY OF BUILDING: II. All buildings and other structures except those listed in Risk Categories I, III, and IV ROOF EXPOSURE CONDITION: Fully Exposed: Roofs exposed on all sides with no shelter afforded by terrain, higher structures or trees ENCLOSURE CLASSIFICATION: Enclosed Buildings EXPOSURE (SURFACE ROUGHNESS) CATEGORY: B. Urban and suburban areas, wooded areas or other terrain with numerous closely spaced obstructions having the size of single-family dwellings or larger & extending at least 2600 ft from site DESIGN ROOF LIVE LOAD = 20.000 psf COLLATERAL LOAD = 3.000 psf GROUND SNOW LOAD = 25.000 psf SNOW EXPOSURE FACTOR = 0.900 SNOW IMPORTANCE FACTOR = 1.000 SLOPED ROOF SNOW LOAD = 25.000 psf DESIGN WIND VELOCITY = 130.000 mph SEISMIC DATA: Maximum response acceleration at short periods Ss = 99.1 %g Maximum response acceleration at 1 sec periods S1 = 44.8 %g Seismic site soil classification D Design spectral response acceleration at short periods Sds = 0.729 g Design spectral response acceleration at 1 sec periods Sdl = 0.464 g Seismic Design Category D Redundancy factor p = 1.3 Force to CBF braced frames = pCsW p=1.30 Cs=Sds/(R/I)=0.224 R=3.25 = 0.292W x 1.1 to include accidental torsion = 0.321W Force to CBF braced frame connections = QCsW D=2 Cs=Sds/ (R/I) R=3.25 = 0.449W x 1.1 to include accidental torsion = 0.494W Force to CBF collectors = QCsW 52=2 Cs=Sds/ (R/I) R=3.25 = 0.449W x 1.1 to include accidental torsion = 0.494W Force to OMF moment frames = pCsW p=1.30 Cs=Sds/ (R/I)=0.208 R=3.5 = 0.271W x 1.1 to include accidental torsion = 0.298W 161/279161 Longitudinal Bracing Design Ver. 43.0 Page 2 American Buildings Company Fri Feb 27 09:34:34 2015 Job Name: W15G0032A Job Part: 1 BXW Force to OMF moment frame connections = cCsW c2=3 Cs=Sds/ (R/I) R=3.5 = 0.625W x 1.1 to include accidental torsion = 0.687W Force to OMF collectors = OCsW Q=3 Cs=Sds/ (R/I) R=3.5 = 0.625W x 1.1 to include accidental torsion = 0.687W Force to roof diaphragm = Sds/ (R/I)W R=3.25 = 0.224W *** COLUMN BASE ELEVATIONS - ALL COLUMN BASES ARE LOCATED AT FINISHED FLOOR. ALL COLUMN LOADS ARE REFERENCED FROM THE COLUMN BASE ELEVATION. *** DESIGN LOAD COMBINATIONS CASE LOAD FACT GROUP => 1 1.000 D+C 1.000 LEU- nR 2 1.000 D+C 1.000 LEU- nL 3 1.000 D+C 1.000 L nR 4 1.000 D+C 1.000 L nL 5 1.000 D+C 1.000 SEU= nR 6 1.000 D+C 1.000 SEU= nL 7 1.000 D+C 1.000 S nR 8 1.000 D+C 1.000 S nL 9 1.000 D 0.600 WPIP-> nR 10 1.000 D 0.600 WPIP<- nL 11 1.000 D 0.600 WNIP-> nR 12 1.000 D 0.600 WNIP<- nL 13 1.102 D+C 0.700 E-> nR 14 1.102 D+C 0.700 E<- nL 15 0.918 D+C 0.583 0E-> nR 16 0.918 D+C 0.583 0E<- nL 17 1.000 D+C 0.450 WPIP-> 0.750 L nR 18 1.000 D+C 0.450 WPIP<- 0.750 L nL 19 1.000 D+C 0.450 WNIP-> 0.750 L nR 20 1.000 D+C 0.450 WNIP<- 0.750 L nL 21 1.000 D+C 0.450 WPIP-> 0.750 S nR 22 1.000 D+C 0.450 WPIP<- 0.750 S nL 23 1.000 D+C 0.450 WNIP-> 0.750 S nR 24 1.000 D+C 0.450 WNIP<- 0.750 S nL 25 0.600 D 0.600 WPIP-> nR 26 0.600 D 0.600 WPIP<- nL 27 0.600 D 0.600 WNIP-> nR 28 0.600 D 0.600 WNIP<- nL 29 0.498 D+C 0.700 E-> nR 30 0.498 D+C 0.700 E<- nL 31 0.415 D+C 0.583 GE-> nR 32 0.415 D+C 0.583 0E<- nL *** LOADS HORIZ VERT GROUP TYPE M FM TO FL START psf/ psf/ MOMT END HORIZ VERT ft kips kips kip-ft ft psf psf - -- -- -- ---- ---- ---- D+C UNIF R 0 0 0 0.00 0.00 -6.00 0.00 111.00 0.00 -6.00 D UNIF R 0 0 0 0.00 0.00 -3.00 0.00 111.00 0.00 -3.00 162/279162 Longitudinal Bracing Design Ver. 43.0 Page 3 American Buildings Company Fri Feb 27 09:34:34 2015 Job Name: W15G0032A Job Part: 1 BXW *** LOADS (continued) HORIZ VERT GROUP TYPE M FM TO FL START psf/ psf/ MOMT END HORIZ VERT ft kips kips kip-ft ft psf psf - -- -- -- ---- ---- ---- LEU- UNIF R 0 0 0 0.00 0.00 -20.00 0.00 111.00 0.00 -20.00 L UNIF R 0 0 0 0.00 0.00 -19.56 0.00 111.00 0.00 -19.56 SEU- UNIF R 0 0 0 0.00 0.00 -25.00 0.00 111.00 0.00 -25.00 S UNIF R 0 0 0 0.00 0.00 -25.00 0.00 111.00 0.00 -25.00 WPIP-> UNIF B 1 6 1 0.00 6.84 0.00 0.00 0.00 6.84 0.00 WPIP-> UNIF R 0 0 0 0.00 0.00 22.41 0.00 111.00 0.00 22.41 WPIP-> UNIF B 1 6 4 0.00 12.89 0.00 0.00 0.00 12.89 0.00 WPIP<- UNIF B 1 6 1 0.00 -12.89 0.00 0.00 0.00 -12.89 0.00 WPIP<- UNIF R 0 0 0 0.00 0.00 22.41 0.00 111.00 0.00 22.41 WPIP<- UNIF B 1 6 4 0.00 -6.84 0.00 0.00 0.00 -6.84 0.00 WNIP-> UNIF B 1 6 1 0.00 16.11 0.00 0.00 0.00 16.11 0.00 WNIP-> UNIF R 0 0 0 0.00 0.00 13.14 0.00 111.00 0.00 13.14 WNIP-> UNIF B 1 6 4 0.00 3.61 0.00 0.00 0.00 3.61 0.00 WNIP<- UNIF B 1 6 1 0.00 -3.61 0.00 0.00 0.00 -3.61 0.00 WNIP<- UNIF R 0 0 0 0.00 0.00 13.14 0.00 111.00 0.00 13.14 WNIP<- UNIF B 1 6 4 0.00 -16.11 0.00 0.00 0.00 -16.11 0.00 E-> RUNF R 0 0 0 0.00 9.96 0.00 0.00 f2E-> RUNF R 0 0 0 0.00 9.96 0.00 0.00 E<- RUNF R 0 0 0 0.00 -9.96 0.00 0.00 nE<- RUNF R 0 0 0 0.00 -9.96 0.00 0.00 FY COLD FORMED = 55.0 ksi FY HOT ROLLED = 50.0 ksi FY BUILT UP = 55.0 ksi *** WIND BRACING DESIGN *** WALL BRACING LOCATIONS BY BAY NUMBER/TYPE *** FSW => 3 PF1 *** RSW => 2 2 BR7- BR7- *** ROOF BRACING LOCATIONS BY BAY NUMBER *** ROOF => 2 163/279163 Longitudinal Bracing Design Ver. 43.0 Page 4 American Buildings Company Fri Feb 27 09:34:44 2015 Job Name: W15G0032A Job Part: 1 BXW CASE NO: 1 LOAD FACT / GROUP => 1.000 D+C 1.000 LEU- nR ROOF FORCE DISTRIBUTION: FORCES SHOWN ARE 1ST ORDER STRUT BAY: 1 2 3 #1 0.038 APPLIED-, AXIAL: 0.013 0.161 -0.013 0.136 CARRIEDT X: 0.136 #2 0.075 APPLIED-, AXIAL: 0.025 0.110 -0.025 0.060 CARRIEDT X: 0.060 #3 0.070 APPLIED-, AXIAL: 0.023 0.047 -0.023 0.010 CARRIED4' X: 0.010 #4 0.065 APPLIED-, AXIAL: 0.022 0.054 -0.022 0.075 CARRIED4' X: 0.075 #5 0.065 APPLIED-, AXIAL: 0.022 0.119 -0.022 0.141 CARRIED44 X: 0.141 #6 0.033 APPLIED-, AXIAL: 0.011 0.162 0.173 WALL FORCE DISTRIBUTION: FORCES SHOWN ARE 1ST ORDER STRUT BAY: 1 2 3 #1 0.038 APPLIED-, AXIAL: 0.013 0.161 -0.013 0.173 CARRIED4- X: 0.173 WALL FORCE DISTRIBUTION: FORCES SHOWN ARE 1ST ORDER STRUT BAY: 1 2 3 #6 0.033 APPLIED-, AXIAL: 0.011 0.162 0.173 0.173 CARRIED4' X: 0.173 *** BRACING STRUT DESIGN ST PG LOCATION BN BAY SPA STRUT FORCE STRUT PIPE ft ft kips RATIO CONN 1 0 0.000 1 19.542 8054 EAVE STRUT 0.000 0.327 2 20.000 P 6.625X0.188 0.166 0.041 F6 2 20.000 8054 EAVE STRUT 0.000 0.079 3 19.542 80S2 EAVE STRUT -0.014 0.341 2 5 24.125 1 19.542 80Z14 SINGLE ZEE 0.000 1.002 2 20.000 80Z14 SINGLE ZEE 0.096 0.790 3 19.542 80Z14 SINGLE ZEE -0.028 1.002 3 10 48.250 1 19.542 80Z14 SINGLE ZEE 0.000 0.983 2 20.000 80Z16 SINGLE ZEE 0.026 0.891 3 19.542 80Z14 SINGLE ZEE -0.026 0.983 4 14 69.167 1 19.542 80Z14 SINGLE ZEE 0.000 0.983 2 20.000 80Z16 SINGLE ZEE 0.036 0.891 3 19.542 80Z14 SINGLE ZEE -0.024 0.983 5 18 90.083 1 19.542 80Z14 SINGLE ZEE 0.000 1.002 2 20.000 80Z14 SINGLE ZEE 0.109 0.804 3 19.542 80Z14 SINGLE ZEE -0.024 1.002 6 23 111.000 1 19.542 8054 EAVE STRUT 0.000 0.128 164/279164 Longitudinal Bracing Design Ver. 43.0 Page 5 American Buildings Company Fri Feb 27 09:34:44 2015 Job Name: W15G0032A Job Part: 1 BXW 2 20.000 8054 EAVE STRUT 0.170 0.827 *** RSW WALL BRACING LOCATION 0.000 ft DESIGN BRACED BAY 20.000 ft FORCES SHOWN ARE 2ND ORDER = (1ST ORDER FORCES) X (B2) , B2 = 1.121 NO T TIER HT BAY QTY SIZE LENGTH HZ FOR TN FOR ST FOR A TEN ft ft ft kips kips kips kips 1 1 13.813 20.000 1 BR 7 24.306 0.194 0.236 0.194 14 .600 PIPE STRUT = 4.500 in DIA X 0.188 in, FORCE = 0.194 1 2 12.646 20.000 1 BR 7 23.663 0.194 0.230 0.194 14.600 *** ROOF BRACING DESIGN BRACED BAY 20.000 ft FORCES SHOWN ARE 2ND ORDER = (1ST ORDER FORCES) X (B2) , B2 = 1.121 NO BAY QTY SIZE LENGTH HZ FOR TN FOR ST FOR A TEN ft ft kips kips kips kips 1 24.125 1 BR 6 31.353 0.152 0.238 NA 10.700 2 24.125 1 BR 5 31.353 0.068 0.106 NA 7.345 3 20.917 1 BR 5 28.953 0.011 0.016 NA 7.345 4 20.917 1 BR 5 28.953 0.084 0.122 NA 7.345 5 20.917 1 BR 6 28.953 0.158 0.228 NA 10.700 CASE NO: 2 LOAD FACT / GROUP => 1.000 D+C 1.000 LEU- nL ROOF FORCE DISTRIBUTION: FORCES SHOWN ARE 1ST ORDER STRUT BAY: 1 2 3 #1 0.038 APPLIED€ AXIAL: -0.013 0.161 0.013 0.136 CARRIEDT X: 0.136 #2 0.075 APPLIED€ AXIAL: -0.025 0.110 0.025 0.060 CARRIEDT X: 0.060 #3 0.070 APPLIED€ AXIAL: -0.023 0.047 0.023 0.010 CARRIED4, X: 0.010 #4 0.065 APPLIED€ AXIAL: -0.022 0.054 0.022 0.075 CARRIED4, X: 0.075 #5 0.065 APPLIED€ AXIAL: -0.022 0.119 0.022 0.141 CARRIED4' X: 0.141 #6 0.033 APPLIED€ AXIAL: -0.011 -0.022 0.011 WALL FORCE DISTRIBUTION: FORCES SHOWN ARE 1ST ORDER STRUT BAY: 1 2 3 #1 0.038 APPLIED€ AXIAL: -0.013 0.161 0.013 0.173 CARRIED4 X: 0.173 WALL FORCE DISTRIBUTION: FORCES SHOWN ARE 1ST ORDER STRUT BAY: 1 2 3 #6 0.033 APPLIED€ AXIAL: -0.011 -0.022 0.011 0.173 CARRIED4 X: 0.173 165/279165 Longitudinal Bracing Design Ver. 43.0 Page 6 American Buildings Company Fri Feb 27 09:34:44 2015 Job Name: W15G0032A Job Part: 1 BXW *** BRACING STRUT DESIGN ST PG LOCATION BN BAY SPA STRUT FORCE STRUT PIPE ft ft kips RATIO CONN 1 0 0.000 1 19.542 8054 EAVE STRUT 0.000 0.327 2 20.000 P 6.625X0.188 0.180 0.041 F6 2 20.000 8054 EAVE STRUT 0.000 0.079 3 19.542 8052 EAVE STRUT 0.014 0.341 2 5 24.125 1 19.542 80Z14 SINGLE ZEE 0.000 1.002 2 20.000 80Z14 SINGLE ZEE 0.124 0.790 3 19.542 80Z14 SINGLE ZEE 0.028 1.002 3 10 48.250 1 19.542 80Z14 SINGLE ZEE 0.000 0.983 2 20.000 80Z16 SINGLE ZEE 0.053 0.891 3 19.542 80Z14 SINGLE ZEE 0.026 0.983 4 14 69.167 1 19.542 80Z14 SINGLE ZEE 0.000 0.983 2 20.000 80Z16 SINGLE ZEE 0.060 0.891 3 19.542 80Z14 SINGLE ZEE 0.024 0.983 5 18 90.083 1 19.542 80Z14 SINGLE ZEE 0.000 1.002 2 20.000 80Z14 SINGLE ZEE 0.133 0.804 3 19.542 80Z14 SINGLE ZEE 0.024 1.002 6 23 111.000 1 19.542 80S4 EAVE STRUT 0.000 0.128 2 20.000 8054 EAVE STRUT -0.012 0.827 *** RSW WALL BRACING LOCATION 0.000 ft DESIGN BRACED BAY 20.000 ft FORCES SHOWN ARE 2ND ORDER = (1ST ORDER FORCES) X (B2) , B2 = 1.122 NO T TIER HT BAY QTY SIZE LENGTH HZ FOR TN FOR ST FOR A TEN ft ft ft kips kips kips kips 1 1 13.813 20.000 1 BR 7 24.306 0.194 0.236 0.194 14.600 PIPE STRUT = 4.500 in DIA X 0.188 in, FORCE = 0.194 1 2 12.646 20.000 1 BR 7 23.663 0.194 0.230 0.194 14 .600 *** ROOF BRACING DESIGN BRACED BAY 20.000 ft FORCES SHOWN ARE 2ND ORDER = (1ST ORDER FORCES) X (B2) , B2 = 1.122 NO BAY QTY SIZE LENGTH HZ FOR TN FOR ST FOR A TEN ft ft kips kips kips kips 1 24.125 1 BR 6 31.353 0.152 0.238 NA 10.700 2 24.125 1 BR 5 31.353 0.068 0.106 NA 7.345 3 20.917 1 BR 5 28.953 0.011 0.016 NA 7.345 4 20.917 1 BR 5 28.953 0.084 0.122 NA 7.345 5 20.917 1 BR 6 28.953 0.158 0.228 NA 10.700 CASE NO: 3 LOAD FACT / GROUP => 1.000 D+C 1.000 L nR 166/279166 Longitudinal Bracing Design Ver. 43.0 Page 7 American Buildings Company Fri Feb 27 09:34:44 2015 Job Name: W15G0032A Job Part: 1 BXW ROOF FORCE DISTRIBUTION: FORCES SHOWN ARE 1ST ORDER STRUT BAY: 1 2 3 #1 0.037 APPLIED-, AXIAL: 0.012 0.158 -0.012 0.133 CARRIEDT X: 0.133 #2 0.074 APPLIED-, AXIAL: 0.025 0.109 -0.025 0.059 CARRIEDT X: 0.059 #3 0.069 APPLIED-, AXIAL: 0.023 0.046 -0.023 0.010 CARRIED4, X: 0.010 #4 0.064 APPLIED-, AXIAL: 0.021 0.053 -0.021 0.074 CARRIED4, X: 0.074 #5 0.064 APPLIED-, AXIAL: 0.021 0.117 -0.021 0.138 CARRIED', X: 0.138 #6 0.032 APPLIED-, AXIAL: 0.011 0.160 0.170 WALL FORCE DISTRIBUTION: FORCES SHOWN ARE 1ST ORDER STRUT BAY: 1 2 3 #1 0.037 APPLIED-, AXIAL: 0.012 0.158 -0.012 0.170 CARRIED-' X: 0.170 WALL FORCE DISTRIBUTION: FORCES SHOWN ARE 1ST ORDER STRUT BAY: 1 2 3 #6 0.032 APPLIED-, AXIAL: 0.011 0.160 0.170 0.170 CARRIED'' X: 0.170 *** BRACING STRUT DESIGN ST PG LOCATION BN BAY SPA STRUT FORCE STRUT PIPE ft ft kips RATIO CONN 1 0 0.000 1 19.542 80S4 EAVE STRUT 0.000 0.327 2 20.000 P 6.625X0.188 0.163 0.041 F6 2 20.000 8054 EAVE STRUT 0.000 0.079 3 19.542 80S2 EAVE STRUT -0.014 0.341 2 5 24.125 1 19.542 80Z14 SINGLE ZEE 0.000 1.002 2 20.000 80Z14 SINGLE ZEE 0.094 0.790 3 19.542 80Z14 SINGLE ZEE -0.028 1.002 3 10 48.250 1 19.542 80Z14 SINGLE ZEE 0.000 0.983 2 20.000 80Z16 SINGLE ZEE 0.026 0.891 3 19.542 80Z14 SINGLE ZEE -0.026 0.983 4 14 69.167 1 19.542 80Z14 SINGLE ZEE 0.000 0.983 2 20.000 80Z16 SINGLE ZEE 0.035 0.891 3 19.542 80Z14 SINGLE ZEE -0.024 0.983 5 18 90.083 1 19.542 80Z14 SINGLE ZEE 0.000 1.002 2 20.000 80Z14 SINGLE ZEE 0.107 0.804 3 19.542 80Z14 SINGLE ZEE -0.024 1.002 6 23 111.000 1 19.542 80S4 EAVE STRUT 0.000 0.128 2 20.000 80S4 EAVE STRUT 0.167 0.827 *** RSW WALL BRACING LOCATION 0.000 ft DESIGN BRACED BAY 20.000 ft FORCES SHOWN ARE 2ND ORDER = (1ST ORDER FORCES) X (B2) , B2 = 1.123 167/279167 Longitudinal Bracing Design Ver. 43.0 Page 8 American Buildings Company Fri Feb 27 09:34:44 2015 Job Name: W15G0032A Job Part: 1 BXW NO T TIER HT BAY QTY SIZE LENGTH HZ FOR TN FOR ST FOR A TEN ft ft ft kips kips kips kips 1 1 13.813 20.000 1 BR 7 24.306 0.191 0.232 0.191 14 .600 PIPE STRUT = 4.500 in DIA X 0.188 in, FORCE = 0.191 1 2 12.646 20.000 1 BR 7 23.663 0.191 0.226 0.191 14 .600 *** ROOF BRACING DESIGN BRACED BAY 20.000 ft FORCES SHOWN ARE 2ND ORDER = (1ST ORDER FORCES) X (B2) , B2 = 1.123 NO BAY QTY SIZE LENGTH HZ FOR TN FOR ST FOR A TEN ft ft kips kips kips kips 1 24.125 1 BR 6 31.353 0.150 0.235 NA 10.700 2 24.125 1 BR 5 31.353 0.067 0.104 NA 7.345 3 20.917 1 BR 5 28.953 0.011 0.016 NA 7.345 4 20.917 1 BR 5 28.953 0.083 0.120 NA 7.345 5 20.917 1 BR 6 28.953 0.155 0.225 NA 10.700 CASE NO: 4 LOAD FACT / GROUP => 1.000 D+C 1.000 L nL ROOF FORCE DISTRIBUTION: FORCES SHOWN ARE 1ST ORDER STRUT BAY: 1 2 3 #1 0.037 APPLIED- AXIAL: -0.012 0.158 0.012 0.133 CARRIEDT X: 0.133 #2 0.074 APPLIED- AXIAL: -0.025 0.109 0.025 0.059 CARRIEDT X: 0.059 #3 0.069 APPLIED- AXIAL: -0.023 0.046 0.023 0.010 CARRIED4, X: 0.010 #4 0.064 APPLIED- AXIAL: -0.021 0.053 0.021 0.074 CARRIED.' X: 0.074 #5 0.064 APPLIED- AXIAL: -0.021 0.117 0.021 0.138 CARRIED•' X: 0.138 #6 0.032 APPLIED- AXIAL: -0.011 -0.021 0.011 WALL FORCE DISTRIBUTION: FORCES SHOWN ARE 1ST ORDER STRUT BAY: 1 2 3 #1 0.037 APPLIED- AXIAL: -0.012 0.158 0.012 0.170 CARRIED•' X: 0.170 WALL FORCE DISTRIBUTION: FORCES SHOWN ARE 1ST ORDER STRUT BAY: 1 2 3 #6 0.032 APPLIED- AXIAL: -0.011 -0.021 0.011 0.170 CARRIED' X: 0.170 *** BRACING STRUT DESIGN ST PG LOCATION BN BAY SPA STRUT FORCE STRUT PIPE 168/279168 Longitudinal Bracing Design Ver. 43.0 Page 9 American Buildings Company Fri Feb 27 09:34:44 2015 Job Name: W15G0032A Job Part: 1 BXW ft ft kips RATIO CONN 1 0 0.000 1 19.542 8054 EAVE STRUT 0.000 0.327 2 20.000 P 6.625X0.188 0.177 0.041 F6 2 20.000 8054 EAVE STRUT 0.000 0.079 3 19.542 8052 EAVE STRUT 0.014 0.341 2 5 24.125 1 19.542 80Z14 SINGLE ZEE 0.000 1.002 2 20.000 80Z14 SINGLE ZEE 0.122 0.790 3 19.542 80Z14 SINGLE ZEE 0.028 1.002 3 10 48.250 1 19.542 80Z14 SINGLE ZEE 0.000 0.983 2 20.000 80Z16 SINGLE ZEE 0.052 0.891 3 19.542 80Z14 SINGLE ZEE 0.026 0.983 4 14 69.167 1 19.542 80Z14 SINGLE ZEE 0.000 0.983 2 20.000 80Z16 SINGLE ZEE 0.059 0.891 3 19.542 80Z14 SINGLE ZEE 0.024 0.983 5 18 90.083 1 19.542 80Z14 SINGLE ZEE 0.000 1.002 2 20.000 80Z14 SINGLE ZEE 0.131 0.804 3 19.542 80Z14 SINGLE ZEE 0.024 1.002 6 23 111.000 1 19.542 8054 EAVE STRUT 0.000 0.128 2 20.000 80S4 EAVE STRUT -0.012 0.827 *** RSW WALL BRACING LOCATION 0.000 ft DESIGN BRACED BAY 20.000 ft FORCES SHOWN ARE 2ND ORDER = (1ST ORDER FORCES) X (B2) , B2 = 1.120 NO T TIER HT BAY QTY SIZE LENGTH HZ FOR TN FOR ST FOR A TEN ft ft ft kips kips kips kips 1 1 13.813 20.000 1 BR 7 24.306 0.191 0.232 0.191 14.600 PIPE STRUT = 4.500 in DIA X 0.188 in, FORCE = 0.191 1 2 12.646 20.000 1 BR 7 23.663 0.191 0.225 0.191 14.600 *** ROOF BRACING DESIGN BRACED BAY 20.000 ft FORCES SHOWN ARE 2ND ORDER = (1ST ORDER FORCES) X (B2) , B2 = 1.120 NO BAY QTY SIZE LENGTH HZ FOR TN FOR ST FOR A TEN ft ft kips kips kips kips 1 24.125 1 BR 6 31.353 0.149 0.234 NA 10.700 2 24.125 1 BR 5 31.353 0.066 0.104 NA 7.345 3 20.917 1 BR 5 28.953 0.011 0.016 NA 7.345 4 20.917 1 BR 5 28.953 0.083 0.120 NA 7.345 5 20.917 1 BR 6 28.953 0.155 0.224 NA 10.700 CASE NO: 5 LOAD FACT / GROUP => 1.000 D+C 1.000 SEU- nR ROOF FORCE DISTRIBUTION: FORCES SHOWN ARE 1ST ORDER STRUT BAY: 1 2 3 #1 0.045 APPLIED4 AXIAL: 0.015 0.192 -0.015 0.162 CARRIEDT X: 0.162 #2 0.090 APPLIED4 AXIAL: 0.030 0.132 -0.030 169/279169 Longitudinal Bracing Design Ver. 43.0 Page 10 American Buildings Company Fri Feb 27 09:34:44 2015 Job Name: W15G0032A Job Part: 1 BXW 0.072 CARRIEDT X: 0.072 #3 0.084 APPLIED-) AXIAL: 0.028 0.056 -0.028 0.012 CARRIED,P X: 0.012 #4 0.078 APPLIED-) AXIAL: 0.026 0.064 -0.026 0.090 CARRIED,P X: 0.090 #5 0.078 APPLIED-) AXIAL: 0.026 0.142 -0.026 0.168 CARRIED'- X: 0.168 #6 0.039 APPLIED-) AXIAL: 0.013 0.193 0.206 WALL FORCE DISTRIBUTION: FORCES SHOWN ARE 1ST ORDER STRUT BAY: 1 2 3 #1 0.045 APPLIED-) AXIAL: 0.015 0.192 -0.015 0.206 CARRIED,P X: 0.206 WALL FORCE DISTRIBUTION: FORCES SHOWN ARE 1ST ORDER STRUT BAY: 1 2 3 #6 0.039 APPLIED-) AXIAL: 0.013 0.193 0.206 0.206 CARRIED•'- X: 0.206 *** BRACING STRUT DESIGN ST PG LOCATION BN BAY SPA STRUT FORCE STRUT PIPE ft ft kips RATIO CONN 1 0 0.000 1 19.542 80S4 EAVE STRUT 0.000 0.327 2 20.000 P 6.625X0.188 0.204 0.042 F6 2 20.000 80S4 EAVE STRUT 0.000 0.079 3 19.542 80S2 EAVE STRUT -0.017 0.341 2 5 24.125 1 19.542 80Z14 SINGLE ZEE 0.000 1.002 2 20.000 80Z14 SINGLE ZEE 0.117 0.790 3 19.542 80Z14 SINGLE ZEE -0.035 1.002 3 10 48.250 1 19.542 80Z14 SINGLE ZEE 0.000 0.983 2 20.000 80Z16 SINGLE ZEE 0.032 0.891 3 19.542 80Z14 SINGLE ZEE -0.032 0.983 4 14 69.167 1 19.542 80Z14 SINGLE ZEE 0.000 0.983 2 20.000 80Z16 SINGLE ZEE 0.044 0.891 3 19.542 80Z14 SINGLE ZEE -0.030 0.983 5 18 90.083 1 19.542 80Z14 SINGLE ZEE 0.000 1.002 2 20.000 80Z14 SINGLE ZEE 0.133 0.804 3 19.542 80Z14 SINGLE ZEE -0.030 1.002 6 23 111.000 1 19.542 80S4 EAVE STRUT 0.000 0.128 2 20.000 80S4 SAVE STRUT 0.208 0.827 *** RSW WALL BRACING LOCATION 0.000 ft DESIGN BRACED BAY 20.000 ft FORCES SHOWN ARE 2ND ORDER = (1ST ORDER FORCES) X (B2) , B2 = 1.153 NO T TIER HT BAY QTY SIZE LENGTH HZ FOR TN FOR ST FOR A TEN ft ft ft kips kips kips kips 1 1 13.813 20.000 1 BR 7 24.306 0.238 0.289 0.238 14.600 170/279170 Longitudinal Bracing Design Ver. 43.0 Page 11 American Buildings Company Fri Feb 27 09:34:44 2015 Job Name: W15G0032A Job Part: 1 BXW PIPE STRUT = 4.500 in DIA X 0.188 in, FORCE = 0.238 1 2 12.646 20.000 1 BR 7 23.663 0.238 0.282 0.238 14 .600 *** ROOF BRACING DESIGN BRACED BAY 20.000 ft FORCES SHOWN ARE 2ND ORDER = (1ST ORDER FORCES) X (B2) , B2 = 1.153 NO BAY QTY SIZE LENGTH HZ FOR TN FOR ST FOR A TEN ft ft kips kips kips kips 1 24.125 1 BR 6 31.353 0.186 0.292 NA 10.700 2 24.125 1 BR 5 31.353 0.083 0.130 NA 7.345 3 20.917 1 BR 5 28.953 0.014 0.020 NA 7.345 4 20.917 1 BR 5 28.953 0.104 0.150 NA 7.345 5 20.917 1 BR 6 28.953 0.193 0.280 NA 10.700 CASE NO: 6 LOAD FACT / GROUP => 1.000 D+C 1.000 SEU- nL ROOF FORCE DISTRIBUTION: FORCES SHOWN ARE 1ST ORDER STRUT BAY: 1 2 3 #1 0.045 APPLIEDF AXIAL: -0.015 0.192 0.015 0.162 CARRIEDT X: 0.162 #2 0.090 APPLIEDF AXIAL: -0.030 0.132 0.030 0.072 CARRIEDT X: 0.072 #3 0.084 APPLIEDF AXIAL: -0.028 0.056 0.028 0.012 CARRIED•- X: 0.012 #4 0.078 APPLIEDF AXIAL: -0.026 0.064 0.026 0.090 CARRIEDJ' X: 0.090 #5 0.078 APPLIEDF AXIAL: -0.026 0.142 0.026 0.168 CARRIED•' X: 0.168 #6 0.039 APPLIEDF AXIAL: -0.013 -0.026 0.013 WALL FORCE DISTRIBUTION: FORCES SHOWN ARE 1ST ORDER STRUT BAY: 1 2 3 #1 0.045 APPLIEDF AXIAL: -0.015 0.192 0.015 0.206 CARRIED.' X: 0.206 WALL FORCE DISTRIBUTION: FORCES SHOWN ARE 1ST ORDER STRUT BAY: 1 2 3 #6 0.039 APPLIEDF AXIAL: -0.013 -0.026 0.013 0.206 CARRIED4' X: 0.206 *** BRACING STRUT DESIGN ST PG LOCATION BN BAY SPA STRUT FORCE STRUT PIPE ft ft kips RATIO CONN 1 0 0.000 1 19.542 8054 EAVE STRUT 0.000 0.327 2 20.000 P 6.625X0.188 0.220 0.042 F6 171/279171 Longitudinal Bracing Design Ver. 43.0 Page 12 American Buildings Company Fri Feb 27 09:34:44 2015 Job Name: W15G0032A Job Part: 1 BXW 2 20.000 80S4 EAVE STRUT 0.000 0.079 3 19.542 80S2 EAVE STRUT 0.017 0.341 2 5 24.125 1 19.542 80Z14 SINGLE ZEE 0.000 1.002 2 20.000 80Z14 SINGLE ZEE 0.151 0.790 3 19.542 80Z14 SINGLE ZEE 0.034 1.002 3 10 48.250 1 19.542 80Z14 SINGLE ZEE 0.000 0.983 2 20.000 80Z16 SINGLE ZEE 0.064 0.891 3 19.542 80Z14 SINGLE ZEE 0.032 0.983 4 14 69.167 1 19.542 80Z14 SINGLE ZEE 0.000 0.983 2 20.000 80Z16 SINGLE ZEE 0.073 0.891 3 19.542 80Z14 SINGLE ZEE 0.030 0.983 5 18 90.083 1 19.542 80Z14 SINGLE ZEE 0.000 1.002 2 20.000 80Z14 SINGLE ZEE 0.163 0.804 3 19.542 80Z14 SINGLE ZEE 0.030 1.002 6 23 111.000 1 19.542 80S4 EAVE STRUT 0.000 0.128 2 20.000 80S4 EAVE STRUT -0.015 0.827 *** RSW WALL BRACING LOCATION 0.000 ft DESIGN BRACED BAY 20.000 ft FORCES SHOWN ARE 2ND ORDER = (1ST ORDER FORCES) X (B2) , B2 = 1.149 NO T TIER HT BAY QTY SIZE LENGTH HZ FOR TN FOR ST FOR A TEN ft ft ft kips kips kips kips 1 1 13.813 20.000 1 BR 7 24.306 0.237 0.288 0.237 14 .600 PIPE STRUT = 4.500 in DIA X 0.188 in, FORCE = 0.237 1 2 12.646 20.000 1 BR 7 23.663 0.237 0.281 0.237 14.600 *** ROOF BRACING DESIGN BRACED BAY 20.000 ft FORCES SHOWN ARE 2ND ORDER = (1ST ORDER FORCES) X (B2) , B2 = 1.149 NO BAY QTY SIZE LENGTH HZ FOR TN FOR ST FOR A TEN ft ft kips kips kips kips 1 24.125 1 BR 6 31.353 0.186 0.291 NA 10.700 2 24.125 1 BR 5 31.353 0.083 0.129 NA 7.345 3 20.917 1 BR 5 28.953 0.014 0.020 NA 7.345 4 20.917 1 BR 5 28.953 0.103 0.149 NA 7.345 5 20.917 1 BR 6 28.953 0.192 0.279 NA 10.700 CASE NO: 7 LOAD FACT / GROUP => 1.000 D+C 1.000 S nR ROOF FORCE DISTRIBUTION: FORCES SHOWN ARE 1ST ORDER STRUT BAY: 1 2 3 #1 0.045 APPLIED9 AXIAL: 0.015 0.192 -0.015 0.162 CARRIEDT X: 0.162 #2 0.090 APPLIED-, AXIAL: 0.030 0.132 -0.030 0.072 CARRIEDT X: 0.072 #3 0.084 APPLIED-, AXIAL: 0.028 0.056 -0.028 0.012 CARRIED4' X: 0.012 #4 0.078 APPLIED-, AXIAL: 0.026 0.064 -0.026 172/279172 Longitudinal Bracing Design Ver. 43.0 Page 13 American Buildings Company Fri Feb 27 09:34:44 2015 Job Name: W15G0032A Job Part: 1 BXW 0.090 CARRIEDJ- X: 0.090 #5 0.078 APPLIED4 AXIAL: 0.026 0.142 -0.026 0.168 CARRIED4' X: 0.168 #6 0.039 APPLIED-I AXIAL: 0.013 0.193 0.206 WALL FORCE DISTRIBUTION: FORCES SHOWN ARE 1ST ORDER STRUT BAY: 1 2 3 #1 0.045 APPLIED-, AXIAL: 0.015 0.192 -0.015 0.206 CARRIED4, X: 0.206 WALL FORCE DISTRIBUTION: FORCES SHOWN ARE 1ST ORDER STRUT BAY: 1 2 3 #6 0.039 APPLIED- AXIAL: 0.013 0.193 0.206 0.206 CARRIEDJ. X: 0.206 *** BRACING STRUT DESIGN ST PG LOCATION BN BAY SPA STRUT FORCE STRUT PIPE ft ft kips RATIO CONN 1 0 0.000 1 19.542 8054 EAVE STRUT 0.000 0.327 2 20.000 P 6.625X0.188 0.204 0.042 F6 2 20.000 8054 EAVE STRUT 0.000 0.079 3 19.542 8052 EAVE STRUT -0.017 0.341 2 5 24.125 1 19.542 80Z14 SINGLE ZEE 0.000 1.002 2 20.000 80Z14 SINGLE ZEE 0.117 0.790 3 19.542 80Z14 SINGLE ZEE -0.035 1.002 3 10 48.250 1 19.542 80Z14 SINGLE ZEE 0.000 0.983 2 20.000 80Z16 SINGLE ZEE 0.032 0.891 3 19.542 80Z14 SINGLE ZEE -0.032 0.983 4 14 69.167 1 19.542 80Z14 SINGLE ZEE 0.000 0.983 2 20.000 80Z16 SINGLE ZEE 0.044 0.891 3 19.542 80Z14 SINGLE ZEE -0.030 0.983 5 18 90.083 1 19.542 80Z14 SINGLE ZEE 0.000 1.002 2 20.000 80Z14 SINGLE ZEE 0.133 0.804 3 19.542 80Z14 SINGLE ZEE -0.030 1.002 6 23 111.000 1 19.542 8054 EAVE STRUT 0.000 0.128 2 20.000 8054 EAVE STRUT 0.208 0.827 *** RSW WALL BRACING LOCATION 0.000 ft DESIGN BRACED BAY 20.000 ft FORCES SHOWN ARE 2ND ORDER = (1ST ORDER FORCES) X (B2) , B2 = 1.153 NO T TIER HT BAY QTY SIZE LENGTH HZ FOR TN FOR ST FOR A TEN ft ft ft kips kips kips kips 1 1 13.813 20.000 1 BR 7 24.306 0.238 0.289 0.238 14.600 PIPE STRUT = 4.500 in DIA X 0.188 in, FORCE = 0.238 1 2 12.646 20.000 1 BR 7 23.663 0.238 0.282 0.238 14 .600 *** ROOF BRACING DESIGN BRACED BAY 20.000 ft 173/279173 Longitudinal Bracing Design Ver. 43.0 Page 14 American Buildings Company Fri Feb 27 09:34:44 2015 Job Name: W15G0032A Job Part: 1 BXW FORCES SHOWN ARE 2ND ORDER = (1ST ORDER FORCES) X (B2) , B2 = 1.153 NO BAY QTY SIZE LENGTH HZ FOR TN FOR ST FOR A TEN ft ft kips kips kips kips 1 24.125 1 BR 6 31.353 0.186 0.292 NA 10.700 2 24.125 1 BR 5 31.353 0.083 0.130 NA 7.345 3 20.917 1 BR 5 28.953 0.014 0.020 NA 7.345 4 20.917 1 BR 5 28.953 0.104 0.150 NA 7.345 5 20.917 1 BR 6 28.953 0.193 0.280 NA 10.700 CASE NO: 8 LOAD FACT / GROUP => 1.000 D+C 1.000 S nL ROOF FORCE DISTRIBUTION: FORCES SHOWN ARE 1ST ORDER STRUT BAY: 1 2 3 #1 0.045 APPLIEDF AXIAL: -0.015 0.192 0.015 0.162 CARRIEDT X: 0.162 #2 0.090 APPLIEDF AXIAL: -0.030 0.132 0.030 0.072 CARRIEDT X: 0.072 #3 0.084 APPLIEDF AXIAL: -0.028 0.056 0.028 0.012 CARRIED4' X: 0.012 #4 0.078 APPLIEDF AXIAL: -0.026 0.064 0.026 0.090 CARRIED4' X: 0.090 #5 0.078 APPLIED€ AXIAL: -0.026 0.142 0.026 0.168 CARRIED4' X: 0.168 #6 0.039 APPLIED€ AXIAL: -0.013 -0.026 0.013 WALL FORCE DISTRIBUTION: FORCES SHOWN ARE 1ST ORDER STRUT BAY: 1 2 3 #1 0.045 APPLIEDF AXIAL: -0.015 0.192 0.015 0.206 CARRIEDJ, X: 0.206 WALL FORCE DISTRIBUTION: FORCES SHOWN ARE 1ST ORDER STRUT BAY: 1 2 3 #6 0.039 APPLIEDF AXIAL: -0.013 -0.026 0.013 0.206 CARRIED4' X: 0.206 *** BRACING STRUT DESIGN ST PG LOCATION BN BAY SPA STRUT FORCE STRUT PIPE ft ft kips RATIO CONN 1 0 0.000 1 19.542 80S4 EAVE STRUT 0.000 0.327 2 20.000 P 6.625X0.188 0.220 0.042 F6 2 20.000 8054 EAVE STRUT 0.000 0.079 3 19.542 8052 EAVE STRUT 0.017 0.341 2 5 24.125 1 19.542 80Z14 SINGLE ZEE 0.000 1.002 2 20.000 80Z14 SINGLE ZEE 0.151 0.790 174/279174 Longitudinal Bracing Design Ver. 43.0 Page 15 American Buildings Company Fri Feb 27 09:34 :44 2015 Job Name: W15G0032A Job Part: 1 BXW 3 19.542 80Z14 SINGLE ZEE 0.034 1.002 3 10 48.250 1 19.542 80Z14 SINGLE ZEE 0.000 0.983 2 20.000 80Z16 SINGLE ZEE 0.064 0.891 3 19.542 80Z14 SINGLE ZEE 0.032 0.983 4 14 69.167 1 19.542 80Z14 SINGLE ZEE 0.000 0.983 2 20.000 80Z16 SINGLE ZEE 0.073 0.891 3 19.542 80Z14 SINGLE ZEE 0.030 0.983 5 18 90.083 1 19.542 80Z14 SINGLE ZEE 0.000 1.002 2 20.000 80Z14 SINGLE ZEE 0.163 0.804 3 19.542 80Z14 SINGLE ZEE 0.030 1.002 6 23 111.000 1 19.542 80S4 EAVE STRUT 0.000 0.128 2 20.000 8054 EAVE STRUT -0.015 0.827 *** RSW WALL BRACING LOCATION 0.000 ft DESIGN BRACED BAY 20.000 ft FORCES SHOWN ARE 2ND ORDER = (1ST ORDER FORCES) X (B2) , B2 = 1.149 NO T TIER HT BAY QTY SIZE LENGTH HZ FOR TN FOR ST FOR A TEN ft ft ft kips kips kips kips 1 1 13.813 20.000 1 BR 7 24.306 0.237 0.288 0.237 14.600 PIPE STRUT = 4.500 in DIA X 0.188 in, FORCE = 0.237 1 2 12.646 20.000 1 BR 7 23.663 0.237 0.281 0.237 14.600 *** ROOF BRACING DESIGN BRACED BAY 20.000 ft FORCES SHOWN ARE 2ND ORDER = (1ST ORDER FORCES) X (B2) , B2 = 1.149 NO BAY QTY SIZE LENGTH HZ FOR TN FOR ST FOR A TEN ft ft kips kips kips kips 1 24.125 1 BR 6 31.353 0.186 0.291 NA 10.700 2 24.125 1 BR 5 31.353 0.083 0.129 NA 7.345 3 20.917 1 BR 5 28.953 0.014 0.020 NA 7.345 4 20.917 1 BR 5 28.953 0.103 0.149 NA 7.345 5 20.917 1 BR 6 28.953 0.192 0.279 NA 10.700 CASE NO: 9 LOAD FACT / GROUP => 1.000 D 0.600 WPIP-> nR ROOF FORCE DISTRIBUTION: FORCES SHOWN ARE 1ST ORDER STRUT BAY: 1 2 3 #1 1.976 APPLIED-, AXIAL: 0.685 7.318 -1.290 6.631 CARRIEDT X: 6.631 #2 3.809 APPLIED-, AXIAL: 1.320 4.145 -2.486 2.822 CARRIEDT X: 2.822 #3 3.422 APPLIED-, AXIAL: 1.186 1.189 -2.233 0.600 CARRIED4, X: 0.600 #4 3.070 APPLIED-, AXIAL: 1.064 1.667 -2.004 3.670 CARRIED.", X: 3.670 #5 2.962 APPLIED-, AXIAL: 1.027 4.700 -1.933 6.633 CARRIED4 X: 6.633 #6 1.427 APPLIED-, AXIAL: 0.495 7.129 7.130 175/279175 Longitudinal Bracing Design Ver. 43.0 Page 16 American Buildings Company Fri Feb 27 09:34:44 2015 Job Name: W15G0032A Job Part: 1 BXW WALL FORCE DISTRIBUTION: FORCES SHOWN ARE 1ST ORDER STRUT BAY: 1 2 3 #1 1.976 APPLIED-) AXIAL: 0.685 7.318 -1.290 8.608 CARRIED4, X: 8.608 WALL FORCE DISTRIBUTION: FORCES SHOWN ARE 1ST ORDER STRUT BAY: 1 2 3 #6 1.427 APPLIEDi AXIAL: 0.495 7.129 7.130 8.060 CARRIED4 X: 8.060 *** BRACING STRUT DESIGN ST PG LOCATION BN BAY SPA STRUT FORCE STRUT PIPE ft ft kips RATIO CONN 1 0 0.000 1 19.542 80S4 SAVE STRUT 0.684 0.327 2 20.000 P 6.625X0.188 7.316 0.162 F6 2 20.000 80S4 EAVE STRUT 0.000 0.079 3 19.542 80S2 EAVE STRUT -1.290 0.341 2 5 24.125 1 19.542 80Z14 SINGLE ZEE 1.317 1.002 2 20.000 80Z14 SINGLE ZEE 4.142 0.790 3 19.542 80Z14 SINGLE ZEE -2.486 1.002 3 10 48.250 1 19.542 80Z14 SINGLE ZEE 1.183 0.983 2 20.000 80Z16 SINGLE ZEE 1.186 0.891 3 19.542 80Z14 SINGLE ZEE -2.233 0.983 4 14 69.167 1 19.542 80Z14 SINGLE ZEE 1.062 0.983 2 20.000 80Z16 SINGLE ZEE 1.664 0.891 3 19.542 80Z14 SINGLE ZEE -2.004 0.983 5 18 90.083 1 19.542 80Z14 SINGLE ZEE 1.024 1.002 2 20.000 80Z14 SINGLE ZEE 4.697 0.804 3 19.542 80Z14 SINGLE ZEE -1.933 1.002 6 23 111.000 1 19.542 80S4 EAVE STRUT 0.493 0.128 2 20.000 80S4 EAVE STRUT 7.128 0.827 *** RSW WALL BRACING LOCATION 0.000 ft DESIGN BRACED BAY 20.000 ft FORCES SHOWN ARE 2ND ORDER = (1ST ORDER FORCES) X (B2) , B2 = 1.000 NO T TIER HT BAY QTY SIZE LENGTH HZ FOR TN FOR ST FOR A TEN ft ft ft kips kips kips kips 1 1 13.813 20.000 1 BR 7 24.306 8.608 10.461 8.608 14.600 PIPE STRUT = 4.500 in DIA X 0.188 in, FORCE = 8.608 1 2 12.646 20.000 1 BR 7 23.663 8.608 10.184 8.608 14.600 *** ROOF BRACING DESIGN BRACED BAY 20.000 ft FORCES SHOWN ARE 2ND ORDER = (1ST ORDER FORCES) X (B2) , B2 = 1.000 NO BAY QTY SIZE LENGTH HZ FOR TN FOR ST FOR A TEN ft ft kips kips kips kips 176/279176 Longitudinal Bracing Design Ver. 43.0 Page 17 American Buildings Company Fri Feb 27 09:34 :44 2015 Job Name: W15G0032A Job Part: 1 BXW 1 24.125 1 BR 6 31.353 6.631 10.396 NA 10.700 2 24.125 1 BR 5 31.353 2.822 4.424 NA 7.345 3 20.917 1 BR 5 28.953 0.600 0.869 NA 7.345 4 20.917 1 BR 5 28.953 3.670 5.313 NA 7.345 5 20.917 1 BR 6 28.953 6.633 9.602 NA 10.700 CASE NO:10 LOAD FACT / GROUP => 1.000 D 0.600 WPIP<- nL ROOF FORCE DISTRIBUTION: FORCES SHOWN ARE 1ST ORDER STRUT BAY: 1 2 3 #1 1.976 APPLIED+ AXIAL: -1.290 7.318 0.685 6.631 CARRIEDT X: 6.631 #2 3.809 APPLIED+ AXIAL: -2.486 4.145 1.320 2.822 CARRIEDT X: 2.822 #3 3.422 APPLIED+ AXIAL: -2.233 1.189 1.186 0.600 CARRIED4 X: 0.600 #4 3.070 APPLIED+ AXIAL: -2.004 1.667 1.064 3.670 CARRIED,, X: 3.670 #5 2.962 APPLIED+ AXIAL: -1.933 4.700 1.027 6.633 CARRIED•, X: 6.633 #6 1.427 APPLIED+ AXIAL: -0.931 -0.933 0.495 WALL FORCE DISTRIBUTION: FORCES SHOWN ARE 1ST ORDER STRUT BAY: 1 2 3 #1 1.976 APPLIED+ AXIAL: -1.290 7.318 0.685 8.608 CARRIED•, X: 8.608 WALL FORCE DISTRIBUTION: FORCES SHOWN ARE 1ST ORDER STRUT BAY: 1 2 3 #6 1.427 APPLIED+ AXIAL: -0.931 -0.933 0.495 8.060 CARRIED, X: 8.060 *** BRACING STRUT DESIGN ST PG LOCATION BN BAY SPA STRUT FORCE STRUT PIPE ft ft kips RATIO CONN 1 0 0.000 1 19.542 8054 EAVE STRUT -1.288 0.327 2 20.000 P 6.625X0.188 7.318 0.162 F6 2 20.000 8054 EAVE STRUT 0.000 0.079 3 19.542 80S2 EAVE STRUT 0.685 0.341 2 5 24.125 1 19.542 80Z14 SINGLE ZEE -2.483 1.002 2 20.000 80Z14 SINGLE ZEE 4.145 0.790 3 19.542 80Z14 SINGLE ZEE 1.320 1.002 3 10 48.250 1 19.542 80Z14 SINGLE ZEE -2.231 0.983 2 20.000 80Z16 SINGLE ZEE 1.189 0.891 3 19.542 80Z14 SINGLE ZEE 1.186 0.983 4 14 69.167 1 19.542 80Z14 SINGLE ZEE -2.001 0.983 177/279177 Longitudinal Bracing Design Ver. 43.0 Page 18 American Buildings Company Fri Feb 27 09:34:44 2015 Job Name: W15G0032A Job Part: 1 BXW 2 20.000 80Z16 SINGLE ZEE 1.667 0.891 3 19.542 80Z14 SINGLE ZEE 1.064 0.983 5 18 90.083 1 19.542 80Z14 SINGLE ZEE -1.931 1.002 2 20.000 80Z14 SINGLE ZEE 4.700 0.804 3 19.542 80Z14 SINGLE ZEE 1.027 1.002 6 23 111.000 1 19.542 8054 EAVE STRUT -0.930 0.128 2 20.000 8054 EAVE STRUT -0.931 0.827 *** RSW WALL BRACING LOCATION 0.000 ft DESIGN BRACED BAY 20.000 ft FORCES SHOWN ARE 2ND ORDER = (1ST ORDER FORCES) X (B2) , B2 = 1.000 NO T TIER HT BAY QTY SIZE LENGTH HZ FOR TN FOR ST FOR A TEN ft ft ft kips kips kips kips 1 1 13.813 20.000 1 BR 7 24.306 8.608 10.461 8.608 14.600 PIPE STRUT = 4.500 in DIA X 0.188 in, FORCE = 8.608 1 2 12.646 20.000 1 BR 7 23.663 8.608 10.184 8.608 14.600 *** ROOF BRACING DESIGN BRACED BAY 20.000 ft FORCES SHOWN ARE 2ND ORDER = (1ST ORDER FORCES) X (B2) , B2 = 1.000 NO BAY QTY SIZE LENGTH HZ FOR TN FOR ST FOR A TEN ft ft kips kips kips kips 1 24.125 1 BR 6 31.353 6.631 10.396 NA 10.700 2 24.125 1 BR 5 31.353 2.822 4.424 NA 7.345 3 20.917 1 BR 5 28.953 0.600 0.869 NA 7.345 4 20.917 1 BR 5 28.953 3.670 5.313 NA 7.345 5 20.917 1 BR 6 28.953 6.633 9.602 NA 10.700 CASE NO:11 LOAD FACT / GROUP => 1.000 D 0.600 WNIP-> nR ROOF FORCE DISTRIBUTION: FORCES SHOWN ARE 1ST ORDER STRUT BAY: 1 2 3 #1 1.976 APPLIED.. AXIAL: 1.612 8.245 -0.363 6.631 CARRIEDT X: 6.631 #2 3.809 APPLIED-) AXIAL: 3.107 5.932 -0.699 2.822 CARRIEDT X: 2.822 #3 3.422 APPLIED- AXIAL: 2.791 2.794 -0.628 0.600 CARRIED4 X: 0.600 #4 3.070 APPLIED-, AXIAL: 2.504 3.107 -0.564 3.670 CARRIED4' X: 3.670 #5 2.962 APPLIED-) AXIAL: 2.416 6.089 -0.544 6.633 CARRIED4' X: 6.633 #6 1.427 APPLIED- AXIAL: 1.164 7.798 7.799 WALL FORCE DISTRIBUTION: FORCES SHOWN ARE 1ST ORDER STRUT BAY: 1 2 3 #1 1.976 APPLIED.. AXIAL: 1.612 8.245 -0.363 8.608 CARRIEDk X: 8.608 178/279178 Longitudinal Bracing Design Ver. 43.0 Page 19 American Buildings Company Fri Feb 27 09:34:44 2015 Job Name: W15G0032A Job Part: 1 BXW WALL FORCE DISTRIBUTION: FORCES SHOWN ARE 1ST ORDER STRUT BAY: 1 2 3 #6 1.427 APPLIED-) AXIAL: 1.164 7.798 7.799 8.060 CARRIED4 X: 8.060 *** BRACING STRUT DESIGN ST PG LOCATION BN BAY SPA STRUT FORCE STRUT PIPE ft ft kips RATIO CONN 1 0 0.000 1 19.542 80S4 EAVE STRUT 1.611 0.327 2 20.000 P 6.625X0.188 8.243 0.183 F6 2 20.000 80S4 EAVE STRUT 0.000 0.079 3 19.542 80S2 EAVE STRUT -0.363 0.341 2 5 24.125 1 19.542 80Z14 SINGLE ZEE 3.104 1.002 2 20.000 80Z14 SINGLE ZEE 5.929 0.790 3 19.542 80Z14 SINGLE ZEE -0.699 1.002 3 10 48.250 1 19.542 80Z14 SINGLE ZEE 2.788 0.983 2 20.000 80Z16 SINGLE ZEE 2.791 0.891 3 19.542 80Z14 SINGLE ZEE -0.628 0.983 4 14 69.167 1 19.542 80Z14 SINGLE ZEE 2.502 0.983 2 20.000 80Z16 SINGLE ZEE 3.104 0.891 3 19.542 80Z14 SINGLE ZEE -0.564 0.983 5 18 90.083 1 19.542 80Z14 SINGLE ZEE 2.414 1.002 2 20.000 80Z14 SINGLE ZEE 6.086 0.804 3 19.542 80Z14 SINGLE ZEE -0.544 1.002 6 23 111.000 1 19.542 80S4 HAVE STRUT 1.163 0.128 2 20.000 80S4 EAVE STRUT 7.797 0.827 *** RSW WALL BRACING LOCATION 0.000 ft DESIGN BRACED BAY 20.000 ft FORCES SHOWN ARE 2ND ORDER = (1ST ORDER FORCES) X (B2) , B2 = 1.000 NO T TIER HT BAY QTY SIZE LENGTH HZ FOR TN FOR ST FOR A TEN ft ft ft kips kips kips kips 1 1 13.813 20.000 1 BR 7 24.306 8.608 10.461 8.608 14 .600 PIPE STRUT = 4.500 in DIA X 0.188 in, FORCE = 8.608 1 2 12.646 20.000 1 BR 7 23.663 8.608 10.184 8.608 14 .600 *** ROOF BRACING DESIGN BRACED BAY 20.000 ft FORCES SHOWN ARE 2ND ORDER = (1ST ORDER FORCES) X (B2) , B2 = 1.000 NO BAY QTY SIZE LENGTH HZ FOR TN FOR ST FOR A TEN ft ft kips kips kips kips 1 24.125 1 BR 6 31.353 6.631 10.396 NA 10.700 2 24.125 1 BR 5 31.353 2.822 4.424 NA 7.345 3 20.917 1 BR 5 28.953 0.600 0.869 NA 7.345 4 20.917 1 BR 5 28.953 3.670 5.313 NA 7.345 179/279179 Longitudinal Bracing Design Ver. 43.0 Page 20 American Buildings Company Fri Feb 27 09:34:44 2015 Job Name: W15G0032A Job Part: 1 BXW 5 20.917 1 BR 6 28.953 6.633 9.602 NA 10.700 CASE NO:12 LOAD FACT / GROUP => 1.000 D 0.600 WNIP<- nL ROOF FORCE DISTRIBUTION: FORCES SHOWN ARE 1ST ORDER STRUT BAY: 1 2 3 #1 1.976 APPLIED+ AXIAL: -0.363 8.245 1.612 6.631 CARRIEDT X: 6.631 #2 3.809 APPLIED+ AXIAL: -0.699 5.932 3.107 2.822 CARRIEDT X: 2.822 #3 3.422 APPLIED+ AXIAL: -0.628 2.794 2.791 0.600 CARRIED4 X: 0.600 #4 3.070 APPLIED+ AXIAL: -0.564 3.107 2.504 3.670 CARRIED4' X: 3.670 #5 2.962 APPLIED+ AXIAL: -0.544 6.089 2.416 6.633 CARRIED4• X: 6.633 #6 1.427 APPLIED+ AXIAL: -0.262 -0.263 1.164 WALL FORCE DISTRIBUTION: FORCES SHOWN ARE 1ST ORDER STRUT BAY: 1 2 3 #1 1.976 APPLIED+ AXIAL: -0.363 8.245 1.612 8.608 CARRIED4, X: 8.608 WALL FORCE DISTRIBUTION: FORCES SHOWN ARE 1ST ORDER STRUT BAY: 1 2 3 #6 1.427 APPLIED+ AXIAL: -0.262 -0.263 1.164 8.060 CARRIED4- X: 8.060 *** BRACING STRUT DESIGN ST PG LOCATION BN BAY SPA STRUT FORCE STRUT PIPE ft ft kips RATIO CONN 1 0 0.000 1 19.542 80S4 EAVE STRUT -0.361 0.327 2 20.000 P 6.625X0.188 8.245 0.183 F6 2 20.000 80S4 SAVE STRUT 0.000 0.079 3 19.542 80S2 EAVE STRUT 1.612 0.341 2 5 24.125 1 19.542 80Z14 SINGLE ZEE -0.696 1.002 2 20.000 80Z14 SINGLE ZEE 5.932 0.790 3 19.542 80Z14 SINGLE ZEE 3.107 1.002 3 10 48.250 1 19.542 80Z14 SINGLE ZEE -0.625 0.983 2 20.000 80Z16 SINGLE ZEE 2.794 0.891 3 19.542 80Z14 SINGLE ZEE 2.791 0.983 4 14 69.167 1 19.542 80Z14 SINGLE ZEE -0.561 0.983 2 20.000 80Z16 SINGLE ZEE 3.107 0.891 3 19.542 80Z14 SINGLE ZEE 2.504 0.983 5 18 90.083 1 19.542 80Z14 SINGLE ZEE -0.541 1.002 2 20.000 80Z14 SINGLE ZEE 6.089 0.804 180/279180 Longitudinal Bracing Design Ver. 43.0 Page 21 American Buildings Company Fri Feb 27 09:34:44 2015 Job Name: W15G0032A Job Part: 1 BXW 3 19.542 80Z14 SINGLE ZEE 2.416 1.002 6 23 111.000 1 19.542 80S4 EAVE STRUT -0.261 0.128 2 20.000 80S4 SAVE STRUT -0.262 0.827 *** RSW WALL BRACING LOCATION 0.000 ft DESIGN BRACED BAY 20.000 ft FORCES SHOWN ARE 2ND ORDER = (1ST ORDER FORCES) X (B2) , B2 = 1.000 NO T TIER HT BAY QTY SIZE LENGTH HZ FOR TN FOR ST FOR A TEN ft ft ft kips kips kips kips 1 1 13.813 20.000 1 BR 7 24.306 8.608 10.461 8.608 14 .600 PIPE STRUT = 4.500 in DIA X 0.188 in, FORCE = 8.608 1 2 12.646 20.000 1 BR 7 23.663 8.608 10.184 8.608 14 .600 *** ROOF BRACING DESIGN BRACED BAY 20.000 ft FORCES SHOWN ARE 2ND ORDER = (1ST ORDER FORCES) X (B2) , B2 = 1.000 NO BAY QTY SIZE LENGTH HZ FOR TN FOR ST FOR A TEN ft ft kips kips kips kips 1 24.125 1 BR 6 31.353 6.631 10.396 NA 10.700 2 24.125 1 BR 5 31.353 2.822 4.424 NA 7.345 3 20.917 1 BR 5 28.953 0.600 0.869 NA 7.345 4 20.917 1 BR 5 28.953 3.670 5.313 NA 7.345 5 20.917 1 BR 6 28.953 6.633 9.602 NA 10.700 CASE NO:13 LOAD FACT / GROUP => 1.102 D+C 0.700 E-> nR *** SEISMIC SERVICEABILITY BASED ON H/18 STRUT FL: 1 4 DEFL H/XXXX DEFL H/XXXX in in #1 0.479 h/679 0.441 h/737 #2 1.091 h/282 1.071 h/288 #3 1.488 h/199 1.486 h/199 #4 1.542 h/185 1.536 h/186 #5 1.288 h/213 1.264 h/217 #6 0.925 h/291 0.841 h/320 ROOF FORCE DISTRIBUTION: FORCES SHOWN ARE 1ST ORDER Force to roof diaphragm = Sds/ (R/I)W R=3.25 = 0.224 x 1.1 to include accidental torsion = 0.247W STRUT BAY: 1 2 3 #1 1.255 APPLIED-* AXIAL: 0.418 5.355 -0.418 4.519 CARRIEDT X: 4.519 #2 2.510 APPLIED-* AXIAL: 0.837 3.682 -0.837 2.009 CARRIEDT X: 2.009 #3 2.343 APPLIED-* AXIAL: 0.781 1.562 -0.781 0.334 CARRIED4 X: 0.334 181/279181 Longitudinal Bracing Design Ver. 43.0 Page 22 American Buildings Company Fri Feb 27 09:34:44 2015 Job Name: W15G0032A Job Part: 1 BXW #4 2.176 APPLIED-, AXIAL: 0.725 1.784 -0.725 2.510 CARRIED•- X: 2.510 #5 2.176 APPLIED-, AXIAL: 0.725 3.960 -0.725 4.685 CARRIED- X: 4.685 #6 1.088 APPLIED-, AXIAL: 0.363 5.411 5.773 WALL FORCE DISTRIBUTION: FORCES SHOWN ARE 1ST ORDER RSW BRACING (Strut 1) = 1 Bays of X-Bracing Force to CBF braced frames = pCsW p=1.30 Cs=Sds/(R/I)=0.224 R=3.25 = 0.292 x 1.1 to include accidental torsion = 0.321W STRUT BAY: 1 2 3 #1 1.628 APPLIED-, AXIAL: 0.543 6.949 -0.543 7.492 CARRIED- X: 7.492 WALL FORCE DISTRIBUTION: FORCES SHOWN ARE 1ST ORDER FSW BRACING (Strut 6) = 1 Bays of Portal Frames Force to OMF moment frames = pCsW p=1.30 Cs=Sds/(R/I)=0.208 R=3.5 = 0.271 x 1.1 to include accidental torsion = 0.298W STRUT BAY: 1 2 3 #6 1.312 APPLIED-, AXIAL: 0.437 6.523 6.960 6.960 CARRIED- X: 6.960 *** BRACING STRUT DESIGN ST PG LOCATION BN BAY SPA STRUT FORCE STRUT PIPE ft ft kips RATIO CONN 1 0 0.000 1 19.542 80S4 EAVE STRUT 0.000 0.327 2 20.000 P 6.625X0.188 6.599 0.146 F6 2 20.000 8054 EAVE STRUT 0.000 0.079 3 19.542 8052 EAVE STRUT -0.559 0.341 2 5 24.125 1 19.542 80Z14 SINGLE ZEE 0.000 1.002 2 20.000 80Z14 SINGLE ZEE 2.926 0.790 3 19.542 80Z14 SINGLE ZEE -0.860 1.002 3 10 48.250 1 19.542 80Z14 SINGLE ZEE 0.000 0.983 2 20.000 80Z16 SINGLE ZEE 0.803 0.891 3 19.542 80Z14 SINGLE ZEE -0.803 0.983 4 14 69.167 1 19.542 80Z14 SINGLE ZEE 0.000 0.983 2 20.000 80Z16 SINGLE ZEE 1.089 0.891 3 19.542 80Z14 SINGLE ZEE -0.746 0.983 5 18 90.083 1 19.542 80Z14 SINGLE ZEE 0.000 1.002 2 20.000 80Z14 SINGLE ZEE 3.326 0.804 3 19.542 80Z14 SINGLE ZEE -0.746 1.002 6 23 111.000 1 19.542 80S4 EAVE STRUT 0.000 0.128 2 20.000 8054 SAVE STRUT 6.266 0.827 *** RSW WALL BRACING LOCATION 0.000 ft DESIGN BRACED BAY 20.000 ft FORCES SHOWN ARE 2ND ORDER = (1ST ORDER FORCES) X (B2) , B2 = 1.028 NO T TIER HT BAY QTY SIZE LENGTH HZ FOR TN FOR ST FOR A TEN 182/279182 Longitudinal Bracing Design Ver. 43.0 Page 23 American Buildings Company Fri Feb 27 09:34:44 2015 Job Name: W15G0032A Job Part: 1 BXW ft ft ft kips kips kips kips 1 1 13.813 20.000 1 BR 7 24.306 7.704 9.363 7.704 14.600 PIPE STRUT = 4.500 in DIA X 0.188 in, FORCE = 7.704 1 2 12.646 20.000 1 BR 7 23.663 7.704 9.115 7.704 14 .600 *** ROOF BRACING DESIGN BRACED BAY 20.000 ft FORCES SHOWN ARE 2ND ORDER = (1ST ORDER FORCES) X (B2) , B2 = 1.029 NO BAY QTY SIZE LENGTH HZ FOR TN FOR ST FOR A TEN ft ft kips kips kips kips 1 24.125 1 BR 6 31.353 4.651 7.290 NA 10.700 2 24 .125 1 BR 5 31.353 2.068 3.241 NA 7.345 3 20.917 1 BR 5 28.953 0.343 0.497 NA 7.345 4 20.917 1 BR 5 28.953 2.583 3.739 NA 7.345 5 20.917 1 BR 6 28.953 4 .822 6.981 NA 10.700 CASE NO:14 LOAD FACT / GROUP => 1.102 D+C 0.700 E<- nL *** SEISMIC SERVICEABILITY BASED ON H/18 STRUT FL: 1 4 DEFL H/XXXX DEFL H/XXXX in in #1 0.438 h/742 0.485 h/671 #2 1.048 h/294 1.092 h/282 #3 1.451 h/204 1.477 h/200 #4 1.482 h/192 1.510 h/189 #5 1.188 h/231 1.233 h/223 #6 0.844 h/319 0.844 h/319 ROOF FORCE DISTRIBUTION: FORCES SHOWN ARE 1ST ORDER Force to roof diaphragm = Sds/(R/I)W R=3.25 = 0.224 x 1.1 to include accidental torsion = 0.247W STRUT BAY: 1 2 3 #1 1.255 APPLIED€ AXIAL: -0.418 5.355 0.418 4.519 CARRIEDT X: 4.519 #2 2.510 APPLIED€ AXIAL: -0.837 3.682 0.837 2.009 CARRIEDT X: 2.009 #3 2.343 APPLIED€ AXIAL: -0.781 1.562 0.781 0.334 CARRIED4 X: 0.334 #4 2.176 APPLIED€ AXIAL: -0.725 1.784 0.725 2.510 CARRIED4' X: 2.510 #5 2.176 APPLIED€ AXIAL: -0.725 3.960 0.725 4.685 CARRIED4. X: 4.685 #6 1.088 APPLIED€ AXIAL: -0.363 -0.725 0.363 WALL FORCE DISTRIBUTION: FORCES SHOWN ARE 1ST ORDER RSW BRACING (Strut 1) = 1 Bays of X-Bracing 183/279183 Longitudinal Bracing Design Ver. 43.0 Page 24 American Buildings Company Fri Feb 27 09:34:44 2015 Job Name: W15G0032A Job Part: 1 BXW Force to CBF braced frames = pCsW p=1.30 Cs=Sds/ (R/I)=0.224 R=3.25 = 0.292 x 1.1 to include accidental torsion = 0.321W STRUT BAY: 1 2 3 #1 1.628 APPLIEDF AXIAL: -0.543 6.949 0.543 7.492 CARRIED4, X: 7.492 WALL FORCE DISTRIBUTION: FORCES SHOWN ARE 1ST ORDER FSW BRACING (Strut 6) = 1 Bays of Portal Frames Force to OMF moment frames = pCsW p=1.30 Cs=Sds/ (R/I)=0.208 R=3.5 = 0.271 x 1.1 to include accidental torsion = 0.298W STRUT BAY: 1 2 3 #6 1.312 APPLIED€ AXIAL: -0.437 -0.874 0.437 6.960 CARRIED4, X: 6.960 *** BRACING STRUT DESIGN ST PG LOCATION BN BAY SPA STRUT FORCE STRUT PIPE ft ft kips RATIO CONN 1 0 0.000 1 19.542 80S4 EAVE STRUT 0.000 0.327 2 20.000 P 6.625X0.188 7.159 0.159 F6 2 20.000 80S4 EAVE STRUT 0.000 0.079 3 19.542 80S2 EAVE STRUT 0.559 0.341 2 5 24.125 1 19.542 80Z14 SINGLE ZEE 0.000 1.002 2 20.000 80Z14 SINGLE ZEE 3.787 0.790 3 19.542 80Z14 SINGLE ZEE 0.860 1.002 3 10 48.250 1 19.542 80Z14 SINGLE ZEE 0.000 0.983 2 20.000 80Z16 SINGLE ZEE 1.606 0.891 3 19.542 80Z14 SINGLE ZEE 0.803 0.983 4 14 69.167 1 19.542 80Z14 SINGLE ZEE 0.000 0.983 2 20.000 80Z16 SINGLE ZEE 1.835 0.891 3 19.542 80Z14 SINGLE ZEE 0.746 0.983 5 18 90.083 1 19.542 80Z14 SINGLE ZEE 0.000 1.002 2 20.000 80Z14 SINGLE ZEE 4.073 0.804 3 19.542 80Z14 SINGLE ZEE 0.746 1.002 6 23 111.000 1 19.542 80S4 SAVE STRUT 0.000 0.128 2 20.000 80S4 EAVE STRUT -0.450 0.827 *** RSW WALL BRACING LOCATION 0.000 ft DESIGN BRACED BAY 20.000 ft FORCES SHOWN ARE 2ND ORDER = (1ST ORDER FORCES) X (B2) , B2 = 1.028 NO T TIER HT BAY QTY SIZE LENGTH HZ FOR TN FOR ST FOR A TEN ft ft ft kips kips kips kips 1 1 13.813 20.000 1 BR 7 24.306 7.705 9.364 7.705 14.600 PIPE STRUT = 4.500 in DIA X 0.188 in, FORCE = 7.705 1 2 12.646 20.000 1 BR 7 23.663 7.705 9.116 7.705 14.600 *** ROOF BRACING DESIGN BRACED BAY 20.000 ft FORCES SHOWN ARE 2ND ORDER = (1ST ORDER FORCES) X (B2) , B2 = 1.028 184/279184 Longitudinal Bracing Design Ver. 43.0 Page 25 American Buildings Company Fri Feb 27 09:34:44 2015 Job Name: W15G0032A Job Part: 1 BXW NO BAY QTY SIZE LENGTH HZ FOR TN FOR ST FOR A TEN ft ft kips kips kips kips 1 24.125 1 BR 6 31.353 4.647 7.285 NA 10.700 2 24.125 1 BR 5 31.353 2.066 3.239 NA 7.345 3 20.917 1 BR 5 28.953 0.343 0.497 NA 7.345 4 20.917 1 BR 5 28.953 2.581 3.736 NA 7.345 5 20.917 1 BR 6 28.953 4.819 6.976 NA 10.700 185/279185 Longitudinal Bracing Design Ver. 43.0 Page 26 American Buildings Company Fri Feb 27 09:34:44 2015 Job Name: W15G0032A Job Part: 1 BXW *** MAXIMUM BRACING REACTIONS AND DESIGN LOAD COMBINATIONS CASE M RSW VERT M RSW HORZ LOAD FACTOR / LOAD GROUP => 33 18.9kips 14.3kips 1.000 WPIP-> nR 34 18.9kips 14.3kips 1.000 WPIP<- nL 35 18.9kips 14.3kips 1.000 WNIP-> nR 36 18.9kips 14.3kips 1.000 WNIP<- nL 37 14.1kips 10.6kips 1.000 E-> nR 38 14.lkips 10.6kips 1.000 E<- nL 39 0.lkips 0.0kips 1.000 D+C 40 0.0kips 0.0kips 1.000 D 41 0.2kips 0.lkips 1.000 LEU- 42 0.2kips 0.lkips 1.000 L 43 0.2kips 0.2kips 1.000 SEU- 44 0.2kips 0.2kips 1.000 S CASE M VERT M HORZ LOAD FACTOR / LOAD GROUP => 33 0.Okips 0.0kips 1.000 WPIP-> nR 34 0.0kips 0.0kips 1.000 WPIP<- nL 35 0.0kips 0.0kips 1.000 WNIP-> nR 36 0.0kips 0.0kips 1.000 WNIP<- nL 37 0.0kips 0.0kips 1.000 E-> nR 38 0.0kips 0.0kips 1.000 E<- nL 39 0.0kips 0.0kips 1.000 D+C 40 0.0kips 0.0kips 1.000 D 41 0.0kips 0.0kips 1.000 LEU- 42 0.0kips 0.0kips 1.000 L 43 0.0kips 0.0kips 1.000 SEU- 44 0.0kips 0.0kips 1.000 S *** LOAD CASE SUMMARY B2 CASE NO: 1 1.000 D+C + 1.000 LEU- nR 1.12 CASE NO: 2 1.000 D+C + 1.000 LEU - nL 1.12 CASE NO: 3 1.000 D+C + 1.000 L nR 1.12 CASE NO: 4 1.000 D+C + 1.000 L nL 1.12 CASE NO: 5 1.000 D+C + 1.000 SEU- nR 1.15 CASE NO: 6 1.000 D+C + 1.000 SEU- nL 1.15 CASE NO: 7 1.000 D+C + 1.000 S nR 1.15 CASE NO: 8 1.000 D+C + 1.000 S nL 1.15 CASE NO: 9 1.000 D + 0.600 WPIP-> nR 1.00 CASE NO: 10 1.000 D + 0.600 WPIP<- nL 1.00 CASE NO: 11 1.000 D + 0.600 WNIP-> nR 1.00 CASE NO: 12 1.000 D + 0.600 WNIP<- nL 1.00 CASE NO: 13 1.102 D+C + 0.700 E-> nR 1.03 CASE NO: 14 1.102 D+C + 0.700 E<- nL 1.03 CASE NO: 15 0.918 D+C + 0.583 0E-> nR 1.02 CASE NO: 16 0.918 D+C + 0.583 QE<- nL 1.02 CASE NO: 17 1.000 D+C + 0.450 WPIP-> + 0.750 L nR 1.05 CASE NO: 18 1.000 D+C + 0.450 WPIP<- + 0.750 L nL 1.05 186/279186 Longitudinal Bracing Design Ver. 43.0 Page 27 American Buildings Company Fri Feb 27 09:34:44 2015 Job Name: W15G0032A Job Part: 1 BXW CASE NO: 19 1.000 D+C + 0.450 WNIP-> + 0.750 L nR 1.07 CASE NO: 20 1.000 D+C + 0.450 WNIP<- + 0.750 L nL 1.07 CASE NO: 21 1.000 D+C + 0.450 WPIP-> + 0.750 S nR 1.07 CASE NO: 22 1.000 D+C + 0.450 WPIP<- + 0.750 S nL 1.06 CASE NO: 23 1.000 D+C + 0.450 WNIP-> + 0.750 S nR 1.09 CASE NO: 24 1.000 D+C + 0.450 WNIP<- + 0.750 S nL 1.09 CASE NO: 25 0.600 D + 0.600 WPIP-> nR 1.00 CASE NO: 26 0.600 D + 0.600 WPIP<- nL 1.00 CASE NO: 27 0.600 D + 0.600 WNIP-> nR 1.00 CASE NO: 28 0.600 D + 0.600 WNIP<- nL 1.00 CASE NO: 29 0.498 D+C + 0.700 E-> nR 1.01 CASE NO: 30 0.498 D+C + 0.700 E<- nL 1.01 CASE NO: 31 0.415 D+C + 0.583 0E-> nR 1.01 CASE NO: 32 0.415 D+C + 0.583 QE<- nL 1.01 187/279187 *** ESTIMATED BRACING WEIGHT SUMMARY *** ESTIMATED WALL PIPE STRUT WEIGHT SUMMARY BN TN WALL BAY SPA STRUT WEIGHT ft lbs 2 2 RSW 20.000 P 4.500X0.188 173.2 TOTAL 173.2 *** ESTIMATED WALL BRACING WEIGHT SUMMARY BN WALL DESC WEIGHT lbs 2 RSW BR7- 122.4 2 RSW BR7- 122.4 TOTAL 244.9 *** ESTIMATED ROOF PIPE STRUT WEIGHT SUMMARY ST LOCATION BN BAY SPA STRUT WEIGHT ft ft lbs 1 0.000 2 20.000 P 6.625X0.188 240.9 TOTAL 240.9 *** ESTIMATED ROOF BRACING WEIGHT SUMMARY BN DESC WEIGHT lbs 1 BR6- 122.3 2 BR5- 96.3 3 BR5- 92.3 188/279188 Longitudinal Bracing Design Ver. 43.0 Page 28 American Buildings Company Fri Feb 27 09:34:44 2015 Job Name: W15G0032A Job Part: 1 BXW 4 BR5- 92.3 5 BR6- 116.4 TOTAL 519.6 TOTAL X-BRACING WEIGHT 764.5 TOTAL PIPE STRUT WEIGHT 414.1 TOTAL 1178.6 TOTAL CABLE X-BRACING WEIGHT 0.0 PERCENT CABLE X-BRACING WEIGHT 0 189/279189 Longitudinal Bracing Design Ver. 43.0 Page 29 American Buildings Company Fri Feb 27 09:34:44 2015 Job Name: W15G0032A Job Part: 1 BXW *** SUMMARY MEMBER STRESS REPORT WALL X BRACING WALL BAY TR TYPE X-BRACE L CASE S RATIO FSW 3 1 PF PF1 NA RSW 2 1 RD BR7- 16 0.82 RSW 2 2 RD BR7- 16 0.80 WALL PIPE STRUTS WALL BAY TR PIPE DIA THICK L CASE S RATIO RSW 2 2 4.500 0.188 16 0.73 ROOF X BRACING XB NO TYPE X-BRACE L CASE S RATIO 1 RD BR6- 9 0.97 2 RD BR5- 9 0.60 3 RD BR5- 9 0.12 4 RD BR5- 9 0.72 5 RD BR6- 9 0.90 ROOF PIPE STRUTS ST LINE BAY PIPE DIA THICK L CASE S RATIO 1 2 6.625 0.188 16 0.24 190/279190 ABC Design Calculations Pamphlet ENDWALLS AND BRACING Calculations providing for the structural integrity of the endwall framing and tension bracing are presented in this section. Endwall components included in the analysis are the roof beam, corner columns and interior columns. In addition, the analysis contains designs for roof and sidewall tension bracing. Figure 4 of this section illustrates these members schematically along with the loadings imposed on them. Endwall framing and tension bracing is designed for specific load combinations. Roof beams are designed using moments for a continuous beam. Corner columns are typically designed with pinned bases and a top connection that can be either pinned or fixed while interior columns are typically designed with pinned connections at both the base and the top. Wind forces exerted on the sidewalls are resisted, where possible, by tension bracing, moment connections at the knees, or by the wall diaphragm. Roof bracing consists of tension members which transfer wind forces on the ends of the buildings to the eaves where the sidewall bracing carries the sum of the forces to the foundation. Figure 5 shows the forces acting on the bracing. Page 4 of this section provides definitions for nomenclature used in the computer printouts that follow. The printouts list results of the stress analyses on the above building members along with column base plate and splice plate information. Allowable stresses are based on yield stresses of 50 ksi for hot-rolled mill sections and 55 ksi for cold-formed and factory built-up sections. SUBJECT TO CHANGE WITHOUT NOTICE REVISED MAY 18,2008 061BC Section 3 Page 1 191/279191 ABC Design Calculations Pamphlet ENDWALLS AND BRACING r - , .--40-10P'- 'N'teP-N., FRAMING /' I L.Q --f-----..... A, Pitritir Vr ■• r> r roy „„se 1►I cgs ,��' p s ,,tom LOADING R R�� RRl ' %� .RV2 RV RV R i,. ..,:..: . +H-A RHE �" / RL2 RL1 RL1 RL2 RLcc R4 RV2 RV RV RV2 RV, LIVE+DEAD WIND+DEAD WIND+DEAD WIND ON SIDEWALL WIND ON ENDWALL FIGURE 4 COLUMN AND BEAM ENDWALL BRACING SUBJECT TO CHANGE WITHOUT NOTICE REVISED Ma 18,2008 osIac 192/279192 Section 3 Page 2 ABC Design Calculations Pamphlet ENDWALLS AND BRACING BLDG ' " Q RIGID FRAME z o a r Q CL RIGID FRAME L1 _ CE RIGID FRAME _J ® ® O O O —C) - - - - - - F Lv j_ T _ T — — —` _T —T — RIGID FRAME - - 1'-6" -r t t I I If RWF (3) RWF (2) I RWF (2) RWFI (3) I 1 1 PLAN I 1 1 I 1 1 1 I 1 I 1 I 1 1 I RWF ANG T 1 T 9 O I O 9 ENDWALL ELEVATION FIGURE 5 COLUMN AND BEAM ENDWALL TENSION BRACING SUBJECT TO CHANGE WITHOUT NOTICE REVISED MAY 18,2008 06113C 193/279193 Section 3 Page 3 ABC Design Calculations Pamphlet ENDWALLS AND BRACING NOMENCLATURE A BLT ROW - Quantity of 2-bolt rows and diameter of anchor rods required at column base A TEN - Allowable tension force in cable or rod bracing BAY SPA - Bay spacing BC_ - Bracing cable BEND RT - Ratio of actual to allowable bending moment BN - Bay number BN MOM - Bending moment BR_ - Bracing rod BXW - Longitudinal bracing design report B2 - Force amplifier for considering 2nd order effects CB FOR - Calculated tension force in cable or rod bracing CT - Connection designation for the top of the column D - Uniform dead load D+C - Uniform dead load including uniform collateral load DN - Number of purlins required at a strut purlin location E - Earthquake (seismic) load HZ FOR - Wind or seismic shear at the top of vertical bracing tier L - Uniform roof live load LEW - Left endwall LP - Roof live load applied in pattern configuration M HORZ - Maximum horizontal reaction at column base M VERT - Maximum vertical reaction at column base nL - Notional load acting Left to Right nR - Notional load acting Right to Left PG - Purlin or girt line number PIPE CONN - Pipe strut connection designation REW - Right endwall S - Uniform roof snow load S - Roof snow load applied in pattern or unbalanced configuration SHR RT - Ratio of actual to allowable shear forces SP BLT ROW Number of horizontal rows and diameter of splice bolts ST FOR - Strut force SO - Vertical Bracing location (RSW) not at FSW or RSW TIER HT - Height (From base) to the top of the vertical brace member TN FOR - Calculated Tension force in brace member W- - Wind load with negative internal coefficient applied to strong axis of column W+ - Wind load with positive internal coefficient applied to strong axis of column WL - Wind load from wind blowing left-to-right WN FOR - Wind or seismic force resisted by tension bracing WR - Wind load from wind blowing right-to-left SUBJECT TO CHANGE WITHOUT NOTICE REVISED November 05,2010 osiac 194/279194 Section 3 Page 4 SECTION 4 PURLIN AND GIRT 195/279195 AMERICAN BUILDINGS COMPANY F r o n t R o o f D e s i g n Designer: SJ Version Number: Ver. 43.0 Job Number: W15G0032A, Module: 1 Date/Time: 02/27/15 09:34 AM Type Width Length Ridge Dist Slope(F) Slope (R) No.BAYS LSS 111.000 ft 60.000 ft 111.000 ft 0.500:12 0.000:12 3 Wall Base Adjustments: FSW RSW LEW REW 0.000 ft 0.000 ft 0.000 ft 0.000ft S.Wall Eave Ht. Lean-To Width E.Wall Type Col_Spc. Girt Type Overhang Front: 23.000 ft 0.000 ft Left 4 S F 0.000 ft Rear: 27.625 ft 0.000 ft Right 4 S F 0.000 ft Building Code: 2014 Oregon Structural Specialty Code Building Use Category: II. All buildings and other structures except those listed in Risk Categories I, III, and IV (Snow Importance Factor = 1.000) Roof Dead Load = 1.500 psf Collateral Load = 3.000 psf Roof Live Load = 20.000 psf But Not Less Than 20.000 psf When Applied As A Uniform Load In Combination With Dead And Collateral Loads Ground Snow Load = 25.000 psf Snow Exposure Category: Fully Exposed (Snow Exposure Factor = 0.900) Thermal Condition: All structures except as indicated below (Thermal Factor = 1.000) Roof Snow Load = 25.000 psf But Not Less Than 25.000 psf When Applied As A Uniform Load In Combination With Dead And Collateral Loads Wind Velocity = 130.000 mph Open Condition: Enclosed Buildings Wind Exposure Category: B. Urban and suburban areas, wooded areas or other terrain with numerous closely spaced obstructions having the size of single-family dwellings or larger & extending at least 2600 ft from site Design Wind Pressure (Cladding and Secondary) = 25.764 psf Anti-Roll Region #1 from eave to peak Width: 111.096 ft On Slope: 0.5:12 Lines(np) : 22 W(gravity) : 30.2193 psf At Frame Line: 2 Applied Force(PL) : 393.48 lbs Qty Clips Needed: 1 Qty Clips Utilized: 1 Resistance: 2000 lbs Purlin locations on slope from peak to eave. Line Distance Design Interest Anti-Roll Lt.Edge Rt.Edge Weight No. (feet) Spacing Line Region Clip Package Package (lbs) 0 0.00 2.61 Y 281.2 eave strut 1 5.23 5.11 Y 223.9 2 10.23 5.00 223.9 3 15.23 5.00 223.9 4 20.23 5.00 223.9 5 25.23 5.00 Y 239.4 6 30.23 5.00 223.9 7 35.23 5.00 223.9 8 40.23 5.00 223.9 9 45.23 5.00 223.9 10 50.23 5.00 Y 223.9 11 55.23 5.00 1 Y(Uphill) 223.9 12 60.23 5.00 223.9 13 65.23 5.00 Y 223.9 Page 1 of 43 196/279196 14 70.23 5.00 Y 223.9 15 75.23 5.00 223.9 16 80.23 5.00 223.9 17 85.23 5.00 223.9 18 90.23 5.00 Y 239.4 19 95.23 5.00 223.9 20 100.23 5.00 Y 223.9 TYP 21 105.23 3.97 Y 223.9 22 108.16 2.93 223.9 23 111.10 1.47 Y 254.1 eave strut LINE WEIGHT TOTAL 5491.6 EXTENDED WEIGHT TOTAL 5491.6 Page 2 of 43 197/279197 P A N E L Panel type: S3P24 Sx(top) = 0.116 in3; Sx(bottom) = 0.08 in3; Fy = 50 ksi Support purlin location (eave to ridge) : 0.000 2.934 5.867 10.867 15.867 20.867 25.867 30.867 35.867 40.867 45.867 50.867 55.867 60.867 65.867 70.867 75.867 80.867 85.867 90.867 95.867 100.867 105.867 110.867 Applied loads and adjusted loads: 1.200 psf= 1.199 to 1.199 lb/ft D 20.000 psf= 19.965 to 19.965 lb/ft L+ 25.000 psf= 24.957 to 24.957 lb/ft S+ -76.776 psf= -76.776 to -76.776 lb/ft W(at eave corner)- 16.000 psf= 16.000 to 16.000 lb/ft W(at eave corner)+ -76.776 psf= -76.776 to -76.776 lb/ft W(at peak corner)- 16.000 psf= 16.000 to 16.000 lb/ft W(at peak corner)+ -51.012 psf= -51.012 to -51.012 lb/ft W(at rake edge)- 16.000 psf= 16.000 to 16.000 lb/ft W(at rake edge)+ -51.012 psf= -51.012 to -51.012 lb/ft W(at eave edge)- 16.000 psf= 16.000 to 16.000 lb/ft W(at eave edge)+ -51.012 psf= -51.012 to -51.012 lb/ft W(at peak edge)- 16.000 psf= 16.000 to 16.000 lb/ft W(at peak edge)+ -30.401 psf= -30.401 to -30.401 lb/ft W(typical)- 16.000 psf= 16.000 to 16.000 lb/ft W(typical)+ Load Combination: D + L+ Check By ASD; L/60 Deflection Limit Net uniform load of 21.164 21.164 21.164 lb/ft Continuous spans of 5.000 5.000 5.000 ft Shear = 63.493 lb + Bending = -52.911 ft-lb; Check Ratio = 0.277 Load Combination: D + S+ Check By ASD; L/60 Deflection Limit Net uniform load of 26.156 26.156 26.156 lb/ft Continuous spans of 5.000 5.000 5.000 ft Shear = 78.467 lb + Bending = -65.389 ft-lb; Check Ratio = 0.342 Load Combination: D + 0.6W(at eave corner)- Check By ASD; No Deflection Limit Net uniform load of -44.867 -44.867 -44 .867 lb/ft Continuous spans of 2.934 2.934 5.000 ft Moment = -93.845 ft-lb; Capacity = -199.601 ft-lb; Check Ratio = 0.470 S3P24 panel passed E1592. No Screws = 2; Clip : STD Load = -44.867 psf; Capacity = 73.510 psf; Check Ratio = 0.610 (E1592) Load Combination: D + 0.6W(at eave corner)+ Check By ASD; No Deflection Limit Net uniform load of 10.799 10.799 10.799 lb/ft Continuous spans of 2.934 2.934 5.000 ft Shear = 31.908 lb + Bending = -24.551 ft-lb; Check Ratio = 0.129 Load Combination: D + 0.6W(at peak corner) - Check By ASD; No Deflection Limit Net uniform load of -44.867 -44.867 lb/ft Continuous spans of 5.000 5.000 ft Page 3 of 43 198/279198 Shear = 140.209 lb + Bending = 140.209 ft-lb; Check Ratio = 0.515 S3P24 panel passed E1592. No Screws = 2; Clip : STD Load = -44.867 psf; Capacity = 73.510 psf; Check Ratio = 0.610 (E1592) Load Combination: D + 0.6W(at peak corner)+ Check By ASD; No Deflection Limit Net uniform load of 10.799 10.799 lb/ft Continuous spans of 5.000 5.000 ft Shear = -33.747 lb + Bending = -33.747 ft-lb; Check Ratio = 0.174 Load Combination: D + 0.6W(at rake edge)- Check By ASD; No Deflection Limit Net uniform load of -29.408 -29.408 -29.408 lb/ft Continuous spans of 5.000 5.000 5.000 ft Moment = -58.817 ft-lb; Capacity = -199.601 ft-lb; Check Ratio = 0.295 S3P24 panel passed E1592. No Screws = 2; Clip : STD Load = -29.408 psf; Capacity = 73.510 psf; Check Ratio = 0.400 (E1592) Load Combination: D + 0.6W(at rake edge)+ Check By ASD; No Deflection Limit Net uniform load of 10.799 10.799 10.799 lb/ft Continuous spans of 5.000 5.000 5.000 ft Shear = 32.397 lb + Bending = -26.997 ft-lb; Check Ratio = 0.141 Load Combination: D + 0.6W(at eave edge)- Check By ASD; No Deflection Limit Net uniform load of -29.408 -29.408 -29.408 lb/ft Continuous spans of 2.934 2.934 5.000 ft Moment = -61.512 ft-lb; Capacity - -199.601 ft-lb; Check Ratio = 0.308 S3P24 panel passed E1592. No Screws = 2; Clip : STD Load = -29.408 psf; Capacity = 73.510 psf; Check Ratio = 0.400 (E1592) Load Combination: D + 0.6W(at eave edge)+ Check By ASD; No Deflection Limit Net uniform load of 10.799 10.799 10.799 lb/ft Continuous spans of 2.934 2.934 5.000 ft Shear = 31.908 lb + Bending = -24.551 ft-lb; Check Ratio = 0.129 Load Combination: D + 0.6W(at peak edge)- Check By ASD; No Deflection Limit Net uniform load of -29.408 -29.408 lb/ft Continuous spans of 5.000 5.000 ft Shear = 91.901 lb + Bending = 91.901 ft-lb; Check Ratio = 0.337 S3P24 panel passed E1592. No Screws = 2; Clip : STD Load = -29.408 psf; Capacity = 73.510 psf; Check Ratio = 0.400 (E1592) Load Combination: D + 0.6W(at peak edge)+ Check By ASD; No Deflection Limit Net uniform load of 10.799 10.799 lb/ft Continuous spans of 5.000 5.000 ft Shear = -33.747 lb + Bending = -33.747 ft-lb; Check Ratio = 0.174 Load Combination: D + 0.6W(typical)- Check By ASD; No Deflection Limit Net uniform load of -17.042 -17.042 -17.042 lb/ft Continuous spans of 5.000 5.000 5.000 ft Moment = -34.084 ft-lb; Capacity = -199.601 ft-lb; Check Ratio = 0.171 S3P24 panel passed E1592. No Screws = 2; Clip : STD Load = -17.042 psf; Capacity = 49.252 psf; Check Ratio = 0.346 (E1592) Page 4 of 43 199/279199 Load Combination: D + 0.6W(typical)+ Check By ASD; No Deflection Limit Net uniform load of 10.799 10.799 10.799 lb/ft Continuous spans of 5.000 5.000 5.000 ft Shear = 32.397 lb + Bending = -26.997 ft-lb; Check Ratio = 0.141 Load Combination: D + 0.45W(at eave corner)+ + 3/4L+ Check By ASD; No Deflection Limit Net uniform load of 23.373 23.373 23.373 lb/ft Continuous spans of 2.934 2.934 5.000 ft Shear = 69.060 lb + Bending = -53.137 ft-lb; Check Ratio = 0.280 Load Combination: D + 0.45W(at peak corner)+ + 3/4L+ Check By ASD; No Deflection Limit Net uniform load of 23.373 23.373 lb/ft Continuous spans of 5.000 5.000 ft Shear = -73.041 lb + Bending = -73.041 ft-lb; Check Ratio = 0.377 Load Combination: D + 0.45W(at rake edge)+ + 3/4L+ Check By ASD; No Deflection Limit Net uniform load of 23.373 23.373 23.373 lb/ft Continuous spans of 5.000 5.000 5.000 ft Shear = 70.119 lb + Bending = -58.432 ft-lb; Check Ratio = 0.305 Load Combination: D + 0.45W(at eave edge)+ + 3/4L+ Check By ASD; No Deflection Limit Net uniform load of 23.373 23.373 23.373 lb/ft Continuous spans of 2.934 2.934 5.000 ft Shear = 69.060 lb + Bending = -53.137 ft-lb; Check Ratio = 0.280 Load Combination: D + 0.45W(at peak edge)+ + 3/4L+ Check By ASD; No Deflection Limit Net uniform load of 23.373 23.373 lb/ft Continuous spans of 5.000 5.000 ft Shear = -73.041 lb + Bending = -73.041 ft-lb; Check Ratio = 0.377 Load Combination: D + 0.45W(typical)+ + 3/4L+ Check By ASD; No Deflection Limit Net uniform load of 23.373 23.373 23.373 lb/ft Continuous spans of 5.000 5.000 5.000 ft Shear = 70.119 lb + Bending = -58.432 ft-lb; Check Ratio = 0.305 Load Combination: D + 0.45W(at eave corner)+ + 3/4S+ Check By ASD; No Deflection Limit Net uniform load of 27.116 27.116 27.116 lb/ft Continuous spans of 2.934 2.934 5.000 ft Shear = 80.121 lb + Bending = -61.648 ft-lb; Check Ratio = 0.324 Load Combination: D + 0.45W(at peak corner)+ + 3/4S+ Check By ASD; No Deflection Limit Net uniform load of 27.116 27.116 lb/ft Continuous spans of 5.000 5.000 ft Shear = -84.739 lb + Bending = -84.739 ft-lb; Check Ratio = 0.437 Load Combination: D + 0.45W(at rake edge)+ + 3/4S+ Check By ASD; No Deflection Limit Net uniform load of 27.116 27.116 27.116 lb/ft Continuous spans of 5.000 5.000 5.000 ft Shear = 81.349 lb + Bending = -67.791 ft-lb; Check Ratio = 0.354 Page 5 of 43 200/279200 Load Combination: D + 0.45W(at eave edge)+ + 3/4S+ Check By ASD; No Deflection Limit Net uniform load of 27.116 27.116 27.116 lb/ft Continuous spans of 2.934 2.934 5.000 ft Shear = 80.121 lb + Bending = -61.648 ft-lb; Check Ratio = 0.324 Load Combination: D + 0.45W(at peak edge)+ + 3/4S+ Check By ASD; No Deflection Limit Net uniform load of 27.116 27.116 lb/ft Continuous spans of 5.000 5.000 ft Shear = -84.739 lb + Bending = -84.739 ft-lb; Check Ratio = 0.437 Load Combination: D + 0.45W(typical)+ + 3/4S+ Check By ASD; No Deflection Limit Net uniform load of 27.116 27.116 27.116 lb/ft Continuous spans of 5.000 5.000 5.000 ft Shear = 81.349 lb + Bending = -67.791 ft-lb; Check Ratio = 0.354 Load Combination: 0.6D + 0.6W(at eave corner)- Check By ASD; No Deflection Limit Net uniform load of -45.346 -45.346 -45.346 lb/ft Continuous spans of 2.934 2.934 5.000 ft Moment = -94.849 ft-lb; Capacity = -199.601 ft-lb; Check Ratio = 0.475 S3P24 panel passed E1592. No Screws = 2; Clip : STD Load = -45.346 psf; Capacity = 73.510 psf; Check Ratio = 0.617 (E1592) Load Combination: 0.6D + 0.6W(at eave corner)+ Check By ASD; No Deflection Limit Net uniform load of 10.319 10.319 10.319 lb/ft Continuous spans of 2.934 2.934 5.000 ft Shear = 30.491 lb + Bending = -23.461 ft-lb; Check Ratio = 0.123 Load Combination: 0.6D + 0.6W(at peak corner)- Check By ASD; No Deflection Limit Net uniform load of -45.346 -45.346 lb/ft Continuous spans of 5.000 5.000 ft Shear = 141.707 lb + Bending = 141.707 ft-lb; Check Ratio = 0.520 S3P24 panel passed E1592. No Screws = 2; Clip : STD Load = -45.346 psf; Capacity = 73.510 psf; Check Ratio = 0.617 (E1592) Load Combination: 0.6D + 0.6W(at peak corner)+ Check By ASD; No Deflection Limit Net uniform load of 10.319 10.319 lb/ft Continuous spans of 5.000 5.000 ft Shear = -32.248 lb + Bending = -32.248 ft-lb; Check Ratio = 0.166 Load Combination: 0.6D + 0.6W(at rake edge)- Check By ASD; No Deflection Limit Net uniform load of -29.888 -29.888 -29.888 lb/ft Continuous spans of 5.000 5.000 5.000 ft Moment = -59.776 ft-lb; Capacity = -199.601 ft-lb; Check Ratio = 0.299 S3P24 panel passed E1592. No Screws = 2; Clip : STD Load = -29.888 psf; Capacity = 73.510 psf; Check Ratio = 0.407 (E1592) Load Combination: 0.6D + 0.6W(at rake edge)+ Check By ASD; No Deflection Limit Net uniform load of 10.319 10.319 10.319 lb/ft Continuous spans of 5.000 5.000 5.000 ft Shear = 30.958 lb + Bending = -25.798 ft-lb; Check Ratio = 0.135 Page 6 of 43 201/279201 Load Combination: 0.6D + 0.6W(at eave edge)- Check By ASD; No Deflection Limit Net uniform load of -29.888 -29.888 -29.888 lb/ft Continuous spans of 2.934 2.934 5.000 ft Moment = -62.515 ft-lb; Capacity = -199.601 ft-lb; Check Ratio = 0.313 S3P24 panel passed E1592. No Screws = 2; Clip : STD Load = -29.888 psf; Capacity = 73.510 psf; Check Ratio = 0.407 (E1592) Load Combination: 0.6D + 0.6W(at eave edge)+ Check By ASD; No Deflection Limit Net uniform load of 10.319 10.319 10.319 lb/ft Continuous spans of 2.934 2.934 5.000 ft Shear = 30.491 lb + Bending = -23.461 ft-lb; Check Ratio = 0.123 Load Combination: 0.6D + 0.6W(at peak edge)- Check By ASD; No Deflection Limit Net uniform load of -29.888 -29.888 lb/ft Continuous spans of 5.000 5.000 ft Shear = 93.400 lb + Bending = 93.400 ft-lb; Check Ratio = 0.343 S3P24 panel passed E1592. No Screws = 2; Clip : STD Load = -29.888 psf; Capacity = 73.510 psf; Check Ratio = 0.407 (E1592) Load Combination: 0.6D + 0.6W(at peak edge)+ Check By ASD; No Deflection Limit Net uniform load of 10.319 10.319 lb/ft Continuous spans of 5.000 5.000 ft Shear = -32.248 lb + Bending = -32.248 ft-lb; Check Ratio = 0.166 Load Combination: 0.6D + 0.6W(typical)- Check By ASD; No Deflection Limit Net uniform load of -17.521 -17.521 -17.521 lb/ft Continuous spans of 5.000 5.000 5.000 ft Moment = -35.043 ft-lb; Capacity = -199.601 ft-lb; Check Ratio = 0.176 S3P24 panel passed E1592. No Screws = 2; Clip : STD Load = -17.521 psf; Capacity = 49.252 psf; Check Ratio = 0.356 (E1592) Load Combination: 0.6D + 0.6W(typical)+ Check By ASD; No Deflection Limit Net uniform load of 10.319 10.319 10.319 lb/ft Continuous spans of 5.000 5.000 5.000 ft Shear = 30.958 lb + Bending = -25.798 ft-lb; Check Ratio = 0.135 Load Combination: D + 0.18W(at eave corner) - Check By ASD; L/60 Deflection Limit Net uniform load of -12.931 -12.931 -12.931 lb/ft Continuous spans of 2.934 2.934 5.000 ft Moment = -27.048 ft-lb; Capacity = -199.601 ft-lb; Check Ratio = 0.136 S3P24 panel passed E1592. No Screws = 2; Clip : STD Load = -12.931 psf; Capacity = 73.510 psf; Check Ratio = 0.176 (E1592) Load Combination: D + 0.18W(at eave corner)+ Check By ASD; L/60 Deflection Limit Net uniform load of 4.144 4.144 4 .144 lb/ft Continuous spans of 2.934 2.934 5.000 ft Shear = 12.243 lb + Bending = -9.421 ft-lb; Check Ratio = 0.050 Load Combination: D + 0.18W(at peak corner)- Check By ASD; L/60 Deflection Limit Net uniform load of -12.931 -12.931 lb/ft Continuous spans of 5.000 5.000 ft Page 7 of 43 202/279202 Shear = 40.411 lb + Bending = 40.411 ft-lb; Check Ratio = 0.148 S3P24 panel passed E1592. No Screws = 2; Clip : STD Load = -12.931 psf; Capacity = 73.510 psf; Check Ratio = 0.176 (E1592) Load Combination: D + 0.18W(at peak corner)+ Check By ASD; L/60 Deflection Limit Net uniform load of 4.144 4.144 lb/ft Continuous spans of 5.000 5.000 ft Shear = -12.949 lb + Bending = -12.949 ft-lb; Check Ratio = 0.067 Load Combination: D + 0.18W(at rake edge)- Check By ASD; L/60 Deflection Limit Net uniform load of -8.190 -8.190 -8.190 lb/ft Continuous spans of 5.000 5.000 5.000 ft Moment = -16.379 ft-lb; Capacity = -199.601 ft-lb; Check Ratio = 0.082 S3P24 panel passed E1592. No Screws = 2; Clip : STD Load = -8.190 psf; Capacity = 73.510 psf; Check Ratio = 0.111 (E1592) Load Combination: D + 0.18W(at rake edge)+ Check By ASD; L/60 Deflection Limit Net uniform load of 4.144 4.144 4.144 lb/ft Continuous spans of 5.000 5.000 5.000 ft Shear = 12.431 lb + Bending = -10.359 ft-lb; Check Ratio = 0.054 Load Combination: D + 0.18W(at eave edge)- Check By ASD; L/60 Deflection Limit Net uniform load of -8.190 -8.190 -8.190 lb/ft Continuous spans of 2.934 2.934 5.000 ft Moment = -17.130 ft-lb; Capacity = -199.601 ft-lb; Check Ratio = 0.086 S3P24 panel passed E1592. No Screws = 2; Clip : STD Load = -8.190 psf; Capacity = 73.510 psf; Check Ratio = 0.111 (E1592) Load Combination: D + 0.18W(at eave edge)+ Check By ASD; L/60 Deflection Limit Net uniform load of 4.144 4.144 4.144 lb/ft Continuous spans of 2.934 2.934 5.000 ft Shear = 12.243 lb + Bending = -9.421 ft-lb; Check Ratio = 0.050 Load Combination: D + 0.18W(at peak edge)- Check By ASD; L/60 Deflection Limit Net uniform load of -8.190 -8.190 lb/ft Continuous spans of 5.000 5.000 ft Shear = -25.593 lb + Bending = 25.593 ft-lb; Check Ratio = 0.094 S3P24 panel passed E1592. No Screws = 2; Clip : STD Load = -8.190 psf; Capacity = 73.510 psf; Check Ratio = 0.111 (E1592) Load Combination: D + 0.18W(at peak edge)+ Check By ASD; L/60 Deflection Limit Net uniform load of 4.144 4.144 lb/ft Continuous spans of 5.000 5.000 ft Shear = -12.949 lb + Bending = -12.949 ft-lb; Check Ratio = 0.067 Load Combination: D + 0.18W(typical)- Check By ASD; L/60 Deflection Limit Net uniform load of -4.396 -4.396 -4.396 lb/ft Continuous spans of 5.000 5.000 5.000 ft Moment = -8.793 ft-lb; Capacity = -199.601 ft-lb; Check Ratio = 0.044 S3P24 panel passed E1592. No Screws = 2; Clip : STD Load = -4.396 psf; Capacity = 49.252 psf; Check Ratio = 0.089 (E1592) Page 8 of 43 203/279203 Load Combination: D + 0.18W(typical)+ Check By ASD; L/60 Deflection Limit Net uniform load of 4.144 4.144 4.144 lb/ft Continuous spans of 5.000 5.000 5.000 ft Shear = 12.431 lb + Bending = -10.359 ft-lb; Check Ratio = 0.054 Load Combination: D + 0.14W(at eave corner)+ + 3/4L+ Check By ASD; L/60 Deflection Limit Net uniform load of 18.382 18.382 18.382 lb/ft Continuous spans of 2.934 2.934 5.000 ft Shear = 54.312 lb + Bending = -41.789 ft-lb; Check Ratio = 0.220 Load Combination: D + 0.14W(at peak corner)+ + 3/4L+ Check By ASD; L/60 Deflection Limit Net uniform load of 18.382 18.382 lb/ft Continuous spans of 5.000 5.000 ft Shear = -57.442 lb + Bending = -57.442 ft-lb; Check Ratio = 0.297 Load Combination: D + 0.14W(at rake edge)+ + 3/4L+ Check By ASD; L/60 Deflection Limit Net uniform load of 18.382 18.382 18.382 lb/ft Continuous spans of 5.000 5.000 5.000 ft Shear = 55.145 lb + Bending = -45.954 ft-lb; Check Ratio = 0.240 Load Combination: D + 0.14W(at eave edge)+ + 3/4L+ Check By ASD; L/60 Deflection Limit Net uniform load of 18.382 18.382 18.382 lb/ft Continuous spans of 2.934 2.934 5.000 ft Shear = 54.312 lb + Bending = -41.789 ft-lb; Check Ratio = 0.220 Load Combination: D + 0.14W(at peak edge)+ + 3/4L+ Check By ASD; L/60 Deflection Limit Net uniform load of 18.382 18.382 lb/ft Continuous spans of 5.000 5.000 ft Shear = -57.442 lb + Bending = -57.442 ft-lb; Check Ratio = 0.297 Load Combination: D + 0.14W(typical)+ + 3/4L+ Check By ASD; L/60 Deflection Limit Net uniform load of 18.382 18.382 18.382 lb/ft Continuous spans of 5.000 5.000 5.000 ft Shear = 55.145 lb + Bending = -45.954 ft-lb; Check Ratio = 0.240 Load Combination: D + 0.14W(at eave corner)+ + 3/4S+ Check By ASD; L/60 Deflection Limit Net uniform load of 22.125 22.125 22.125 lb/ft Continuous spans of 2.934 2.934 5.000 ft Shear = 65.373 lb + Bending = -50.300 ft-lb; Check Ratio = 0.265 Load Combination: D + 0.14W(at peak corner)+ + 3/4S+ Check By ASD; L/60 Deflection Limit Net uniform load of 22.125 22.125 lb/ft Continuous spans of 5.000 5.000 ft Shear = -69.141 lb + Bending = -69.141 ft-lb; Check Ratio = 0.357 Load Combination: D + 0.14W(at rake edge)+ + 3/4S+ Check By ASD; L/60 Deflection Limit Net uniform load of 22.125 22.125 22.125 lb/ft Continuous spans of 5.000 5.000 5.000 ft Shear = 66.375 lb + Bending = -55.313 ft-lb; Check Ratio = 0.289 Page 9 of 43 204/279204 Load Combination: D + 0.14W(at eave edge)+ + 3/4S+ Check By ASD; L/60 Deflection Limit Net uniform load of 22.125 22.125 22.125 lb/ft Continuous spans of 2.934 2.934 5.000 ft Shear = 65.373 lb + Bending = -50.300 ft-lb; Check Ratio = 0.265 Load Combination: D + 0.14W(at peak edge)+ + 3/4S+ Check By ASD; L/60 Deflection Limit Net uniform load of 22.125 22.125 lb/ft Continuous spans of 5.000 5.000 ft Shear = -69.141 lb + Bending = -69.141 ft-lb; Check Ratio = 0.357 Load Combination: D + 0.14W(typical)+ + 3/4S+ Check By ASD; L/60 Deflection Limit Net uniform load of 22.125 22.125 22.125 lb/ft Continuous spans of 5.000 5.000 5.000 ft Shear = 66.375 lb + Bending = -55.313 ft-lb; Check Ratio = 0.289 Load Combination: 0.6D + 0.18W(at eave corner) - Check By ASD; L/60 Deflection Limit Net uniform load of -13.411 -13.411 -13.411 lb/ft Continuous spans of 2.934 2.934 5.000 ft Moment = -28.051 ft-lb; Capacity = -199.601 ft-lb; Check Ratio = 0.141 S3P24 panel passed E1592. No Screws = 2; Clip : STD Load = -13.411 psf; Capacity = 73.510 psf; Check Ratio = 0.182 (E1592) Load Combination: 0.6D + 0.18W(at eave corner)+ Check By ASD; L/60 Deflection Limit Net uniform load of 3.664 3.664 3.664 lb/ft Continuous spans of 2.934 2.934 5.000 ft Shear = 10.826 lb + Bending = -8.330 ft-lb; Check Ratio = 0.044 Load Combination: 0.6D + 0.18W(at peak corner)- Check By ASD; L/60 Deflection Limit Net uniform load of -13.411 -13.411 lb/ft Continuous spans of 5.000 5.000 ft Shear = -41.910 lb + Bending = 41.910 ft-lb; Check Ratio = 0.154 S3P24 panel passed E1592. No Screws = 2; Clip : STD Load = -13.411 psf; Capacity = 73.510 psf; Check Ratio = 0.182 (E1592) Load Combination: 0.6D + 0.18W(at peak corner)+ Check By ASD; L/60 Deflection Limit Net uniform load of 3.664 3.664 lb/ft Continuous spans of 5.000 5.000 ft Shear = -11.450 lb + Bending = -11.450 ft-lb; Check Ratio = 0.059 Load Combination: 0.6D + 0.18W(at rake edge)- Check By ASD; L/60 Deflection Limit Net uniform load of -8.669 -8.669 -8.669 lb/ft Continuous spans of 5.000 5.000 5.000 ft Moment = -17.339 ft-lb; Capacity = -199.601 ft-lb; Check Ratio = 0.087 S3P24 panel passed E1592. No Screws = 2; Clip : STD Load = -8.669 psf; Capacity = 73.510 psf; Check Ratio = 0.118 (E1592) Load Combination: 0.6D + 0.18W(at rake edge)+ Check By ASD; L/60 Deflection Limit Net uniform load of 3.664 3.664 3.664 lb/ft Continuous spans of 5.000 5.000 5.000 ft Shear = 10.992 lb + Bending = -9.160 ft-lb; Check Ratio = 0.048 Page 10 of 43 205/279205 Load Combination: 0.6D + 0.18W(at eave edge)- Check By ASD; L/60 Deflection Limit Net uniform load of -8.669 -8.669 -8.669 lb/ft Continuous spans of 2.934 2.934 5.000 ft Moment = -18.133 ft-lb; Capacity = -199.601 ft-lb; Check Ratio = 0.091 S3P24 panel passed E1592. No Screws = 2; Clip : STD Load = -8.669 psf; Capacity = 73.510 psf; Check Ratio = 0.118 (E1592) Load Combination: 0.6D + 0.18W(at eave edge)+ Check By ASD; L/60 Deflection Limit Net uniform load of 3.664 3.664 3.664 lb/ft Continuous spans of 2.934 2.934 5.000 ft Shear = 10.826 lb + Bending = -8.330 ft-lb; Check Ratio = 0.044 Load Combination: 0.6D + 0.18W(at peak edge)- Check By ASD; L/60 Deflection Limit Net uniform load of -8.669 -8.669 lb/ft Continuous spans of 5.000 5.000 ft Shear = 27.092 lb + Bending = 27.092 ft-lb; Check Ratio = 0.099 S3P24 panel passed E1592. No Screws = 2; Clip : STD Load = -8.669 psf; Capacity = 73.510 psf; Check Ratio = 0.118 (E1592) Load Combination: 0.6D + 0.18W(at peak edge)+ Check By ASD; L/60 Deflection Limit Net uniform load of 3.664 3.664 lb/ft Continuous spans of 5.000 5.000 ft Shear = -11.450 lb + Bending = -11.450 ft-lb; Check Ratio = 0.059 Load Combination: 0.6D + 0.18W(typical)- Check By ASD; L/60 Deflection Limit Net uniform load of -4.876 -4.876 -4.876 lb/ft Continuous spans of 5.000 5.000 5.000 ft Moment = -9.752 ft-lb; Capacity = -199.601 ft-lb; Check Ratio = 0.049 S3P24 panel passed E1592. No Screws = 2; Clip : STD Load = -4.876 psf; Capacity = 49.252 psf; Check Ratio = 0.099 (E1592) Load Combination: 0.6D + 0.18W(typical)+ Check By ASD; L/60 Deflection Limit Net uniform load of 3.664 3.664 3.664 lb/ft Continuous spans of 5.000 5.000 5.000 ft Shear = 10.992 lb + Bending = -9.160 ft-lb; Check Ratio = 0.048 Load Combination: L+ No Stress Design; L/60 Deflection Limit Net uniform load of 19.965 19.965 19.965 lb/ft Continuous spans of 5.000 5.000 5.000 ft Deflection = 0.014 inches; Limit = 1.000 inches; Check Ratio = 0.014 Load Combination: S+ No Stress Design; L/60 Deflection Limit Net uniform load of 24.957 24.957 24.957 lb/ft Continuous spans of 5.000 5.000 5.000 ft Deflection = 0.018 inches; Limit = 1.000 inches; Check Ratio = 0.018 Roof purlin line 0 (Eave Strut) Design Spacing 2.615 ft Mounting Condition at Supports SIMPLE Page 11 of 43 206/279206 Lateral Restraint by Panel Attachment CLIPPED End Inset Dimension at Lt End of Line 0.458 ft End Inset Dimension at Rt End of Line 0.458 ft Wind Suction Coefficient 0.000 Wind Pressure Coefficient 0.000 DESIGN SUMMARY Roof purlin line 0 (Eave Strut) Span Length Mark Left Right Brace End Load Check Controlling ID No. Lap Lap Pts Clips Case Ratio Check (ft) (ft) (ft) 1L 0.458 80S4 0.000 0.000 0 No 13 0.170 bearing at bolt 0 L/ 999 deflection 1 19.542 80S4 0.000 0.000 0 R.End 5 0.327 compression+bending 24 L/9999 deflection 2 20.000 80S4 0.000 0.000 0 L.End 8 0.079 bending 24 L/9999 deflection 3 19.542 80S2 0.000 0.000 0 No 6 0.341 compression+bending 24 L/9999 deflection 3R 0.458 80S2 0.000 0.000 0 No 14 0.129 bearing at bolt 0 L/ 999 deflection Total weight (extended) = 281.2 (281.2) lbs. Max check ratio = 0.341 LOAD COMBINATIONS Roof purlin line 0 (Eave Strut) No. Load Case Description 1 D+C + LEU- Check By ASD; No Deflection Limit 2 D+C + SEU- Check By ASD; No Deflection Limit 3 D+C + 0.6WPIP-> Check By ASD; No Deflection Limit 4 D+C + 0.6WPIP<- Check By ASD; No Deflection Limit 5 D+C + 0.6WNIP-> Check By ASD; No Deflection Limit 6 D+C + 0.6WNIP<- Check By ASD; No Deflection Limit 7 1.1 (D+C) + 0.7E-> Check By ASD; No Deflection Limit 8 1.1 (D+C) + 0.7E<- Check By ASD; No Deflection Limit 9 83.3333% x 1.1 (D+C) + 0.7QE-> ASD Special Seismic; No Deflection Limit 10 83.3333% x 1.1 (D+C) + 0.70E<- ASD Special Seismic; No Deflection Limit 11 0.6(D+C) + 0.6WPIP-> Check By ASD; No Deflection Limit 12 0.6(D+C) + 0.6WPIP<- Check By ASD; No Deflection Limit 13 0.6(D+C) + 0.6WNIP-> Check By ASD; No Deflection Limit 14 0.6(D+C) + 0.6WNIP<- Check By ASD; No Deflection Limit 15 1/2 (D+C) + 0.7E-> Page 12 of 43 207/279207 Check By ASD; No Deflection Limit 16 1/2 (D+C) + 0.7E<- Check By ASD; No Deflection Limit 17 83.3333% x 1/2(D+C) + 0.70E-> ASD Special Seismic; No Deflection Limit 18 83.3333% x 1/2 (D+C) + 0.70E<- ASD Special Seismic; No Deflection Limit 19 0.31WPIP-> No Stress Check; L/180 Deflection Limit 20 0.31WPIP<- No Stress Check; L/180 Deflection Limit 21 0.31WNIP-> No Stress Check; L/180 Deflection Limit 22 0.31WNIP<- No Stress Check; L/180 Deflection Limit 23 1/2LEU- No Stress Check; L/150 Deflection Limit 24 SEU- No Stress Check; L/180 Deflection Limit APPLIED LOADS Roof purlin line 0 (Eave Strut) No. Load Load Span Intensity From Intensity To Type Group Designation # lb/ft (kips) feet lb/ft feet 1 AXLD WPIP-> 1 1.139 0.000 0.000 0.000 2 AXLD WPIP-> 3 -2.147 0.000 0.000 0.000 3 AXLD WPIP<- 1 -2.147 0.000 0.000 0.000 4 AXLD WPIP<- 3 1.139 0.000 0.000 0.000 5 AXLD WNIP-> 1 2.685 0.000 0.000 0.000 6 AXLD WNIP-> 3 -0.602 0.000 0.000 0.000 7 AXLD WNIP<- 1 -0.602 0.000 0.000 0.000 8 AXLD WNIP<- 3 2.685 0.000 0.000 0.000 9 AXLD E-> 3 -0.771 0.000 0.000 0.000 10 AXLD 0E-> 3 -1.078 0.000 0.000 0.000 11 AXLD E<- 3 0.771 0.000 0.000 0.000 12 AXLD 0E<- 3 1.078 0.000 0.000 0.000 13 AXLD D+C 3 -0.003 0.000 0.000 0.000 14 AXLD LEU- 3 -0.010 0.000 0.000 0.000 15 AXLD SEU- 3 -0.012 0.000 0.000 0.000 Roof purlin line 1 (In Peak Edge Strip) Design Spacing 5.115 ft Mounting Condition at Supports BYPASS Lateral Restraint by Panel Attachment CLIPPED End Inset Dimension at Lt End of Line 0.458 ft End Inset Dimension at Rt End of Line 0.458 ft Line is Contained Within 7.800 ft Edge Strip at Eave Line is Contained Within 7.800 ft Edge Strip at Peak With a 7.800 ft Edge Strip at Lt End and a 7.800 ft Edge Strip at Rt End Wind Suction Coefficient -1.280 Wind Pressure Coefficient 0.621 DESIGN SUMMARY Roof purlin line 1 (In Peak Edge Strip) Page 13 of 43 208/279208 Span Length Mark Left Right Brace End Load Check Controlling ID No. Lap Lap Pts Clips Case Ratio Check (ft) (ft) (ft) 1L 0.458 80Z14 0.000 0.000 0 No 14 0.924 bending+crippling 14 L/ 73 deflection 1 19.542 80Z14 0.000 1.000 0 No 14 1.005 bending 18 L/ 340 deflection 2 20.000 80Z16 2.500 2.500 0 No 14 0.910 bending 25 L/1537 deflection 3 19.542 80Z14 1.000 0.000 0 No 14 1.005 bending 18 L/ 340 deflection 3R 0.458 80Z14 0.000 0.000 0 No 14 0.924 bending+crippling 14 L/ 73 deflection Total weight (extended) = 223.9 (223.9) lbs. Max check ratio = 1.005 LOAD COMBINATIONS Roof purlin line 1 (In Peak Edge Strip) No. Load Case Description 1 D+C + L Check By ASD; No Deflection Limit 2 D+C + S Check By ASD; No Deflection Limit 3 D+C + SEFHL= Check By ASD; No Deflection Limit 4 D+C + SEFHR- Check By ASD; No Deflection Limit 5 D+C + SEHFL= Check By ASD; No Deflection Limit 6 D+C + SEHFR- Check By ASD; No Deflection Limit 7 D+C + SDFH1L= Check By ASD; No Deflection Limit 8 D+C + SDFHX1- Check By ASD; No Deflection Limit 9 D+C + SDFHX2= Check By ASD; No Deflection Limit 10 D+C + SDFHX3- Check By ASD; No Deflection Limit 11 D + 0.6W- Check By ASD; No Deflection Limit 12 D+C + 0.6W+ Check By ASD; No Deflection Limit 13 D+C + 0.45W+ + 3/4L Check By ASD; No Deflection Limit 14 D+C + 0.45W+ + 3/4S Check By ASD; No Deflection Limit 15 0.6D + 0.6W- Check By ASD; No Deflection Limit 16 0.6(D+C) + 0.6W+ Check By ASD; No Deflection Limit 17 L No Stress Check; L/150 Deflection Limit 18 S No Stress Check; L/180 Deflection Limit 19 SEFHL= Page 14 of 43 209/279209 No Stress Check; L/180 Deflection Limit 20 SEFHR- No Stress Check; L/180 Deflection Limit 21 SEHFL- No Stress Check; L/180 Deflection Limit 22 SEHFR- No Stress Check; L/180 Deflection Limit 23 SDFH1L- No Stress Check; L/180 Deflection Limit 24 SDFHX1- No Stress Check; L/180 Deflection Limit 25 SDFHX2- No Stress Check; L/180 Deflection Limit 26 SDFHX3- No Stress Check; L/180 Deflection Limit 27 0.31W- No Stress Check; L/180 Deflection Limit 28 0.31W+ No Stress Check; L/180 Deflection Limit APPLIED LOADS Roof purlin line 1 (In Peak Edge Strip) No. Load Load Span Intensity From Intensity To Type Group Designation # lb/ft (kips) feet lb/ft feet 1 UNIF D ALL 7.665 0.000 7.665 0.000 2 UNIF D+C ALL 22.982 0.000 22.982 0.000 3 UNIF L ALL 102.114 0.000 102.114 0.000 4 UNIF S ALL 127. 643 0.000 127.643 0.000 5 UNIF SEFHL- 1L 80.415 0.000 80.415 0.458 6 UNIF SEFHL- 1 80.415 0.000 80.415 19.542 7 UNIF SEFHL- 2 40.208 0.000 40.208 20.000 8 UNIF SEFHL- 3 40.208 0.000 40.208 19.542 9 UNIF SEFHL- 3R 40.208 0.000 40.208 0.458 10 UNIF SEFHR- 1L 40.208 0.000 40.208 0.458 11 UNIF SEFHR- 1 40.208 0.000 40.208 19.542 12 UNIF SEFHR- 2 40.208 0.000 40.208 20.000 13 UNIF SEFHR- 3 80.415 0.000 80.415 19.542 14 UNIF SEFHR- 3R 80.415 0.000 80.415 0.458 15 UNIF SEHFL- 1L 40.208 0.000 40.208 0.458 16 UNIF SEHFL- 1 40.208 0.000 40.208 19.542 17 UNIF SEHFL- 2 80.415 0.000 80.415 20.000 18 UNIF SEHFL- 3 80.415 0.000 80.415 19.542 19 UNIF SEHFL- 3R 80.415 0.000 80.415 0.458 20 UNIF SEHFR- 1L 80.415 0.000 80.415 0.458 21 UNIF SEHFR- 1 80.415 0.000 80.415 19.542 22 UNIF SEHFR- 2 80.415 0.000 80.415 20.000 23 UNIF SEHFR- 3 40.208 0.000 40.208 19.542 24 UNIF SEHFR- 3R 40.208 0.000 40.208 0.458 25 UNIF SDFH1L- 1L 40.208 0.000 40.208 0.458 26 UNIF SDFH1L- 1 40.208 0.000 40.208 19.542 27 UNIF SDFH1L- ALL 40.208 0.000 40.208 0.000 28 UNIF SDFHX1- 1L 40.208 0.000 40.208 0.458 29 UNIF SDFHX1- 1 40.208 0.000 40.208 19.542 30 UNIF SDFHX1- 2 40.208 0.000 40.208 20.000 31 UNIF SDFHX1- ALL 40.208 0.000 40.208 0.000 32 UNIF SDFHX2- 2 40.208 0.000 40.208 20.000 33 UNIF SDFHX2- 3 40.208 0.000 40.208 19.542 34 UNIF SDFHX2- 3R 40.208 0.000 40.208 0.458 Page 15 of 43 210/279210 35 UNIF SDFHX2- ALL 40.208 0.000 40.208 0.000 36 UNIF SDFHX3- 3 40.208 0.000 40.208 19.542 37 UNIF SDFHX3- 3R 40.208 0.000 40.208 0.458 38 UNIF SDFHX3- ALL 40.208 0.000 40.208 0.000 39 UNIF W- ALL -168.667 0.000 -168.667 0.000 40 UNIF W+ ALL 81.833 0.000 81.833 0.000 Roof purlin line 5 (Strut Line) Design Spacing 5.000 ft Mounting Condition at Supports BYPASS Lateral Restraint by Panel Attachment CLIPPED End Inset Dimension at Lt End of Line 0.458 ft End Inset Dimension at Rt End of Line 0.458 ft With a 7.800 ft Edge Strip at Lt End and a 7.800 ft Edge Strip at Rt End Wind Suction Coefficient at Interior Region -1.080 Wind Suction Coefficient in Edge Strip at End -1.280 Wind Pressure Coefficient 0.621 DESIGN SUMMARY Roof purlin line 5 (Strut Line) Span Length Mark Left Right Brace End Load Check Controlling ID No. Lap Lap Pts Clips Case Ratio Check (ft) (ft) (ft) 1L 0.458 80Z14 0.000 0.000 0 No 32 0.901 bending+crippling 32 L/ 76 deflection 1 19.542 80Z14 0.000 1.000 0 No 32 1.002 bending 52 L/ 352 deflection 2 20.000 80Z14 2.500 2.500 0 No 36 0.790 compression+bending 60 L/1875 deflection 3 19.542 80Z14 1.000 0.000 0 No 32 1.002 bending 52 L/ 352 deflection 3R 0.458 80Z14 0.000 0.000 0 No 32 0.901 bending+crippling 32 L/ 76 deflection Total weight (extended) = 239.4 (239.4) lbs. Max check ratio = 1.002 LOAD COMBINATIONS Roof purlin line 5 (Strut Line) No. Load Case Description 1 D+C + L Check By ASD; No Deflection Limit 2 D+C + LEU- Check By ASD; No Deflection Limit 3 D+C + S Check By ASD; No Deflection Limit 4 D+C + SEFHL- Check By ASD; No Deflection Limit 5 D+C + SEFHR- Check By ASD; No Deflection Limit 6 D+C + SEHFL- Check By ASD; No Deflection Limit 7 D+C + SEHFR- Page 16 of 43 211/279211 Check By ASD; No Deflection Limit 8 D+C + SDFHIL- Check By ASD; No Deflection Limit 9 D+C + SDFHX1- Check By ASD; No Deflection Limit 10 D+C + SDFHX2- Check By ASD; No Deflection Limit 11 D+C + SDFHX3- Check By ASD; No Deflection Limit 12 D+C + SEU- Check By ASD; No Deflection Limit 13 D + 0.6W- Check By ASD; No Deflection Limit 14 D + 0.6WPIP-> Check By ASD; No Deflection Limit 15 D + 0.6WPIP<- Check By ASD; No Deflection Limit 16 D + 0.6WNIP-> Check By ASD; No Deflection Limit 17 D + 0.6WNIP<- Check By ASD; No Deflection Limit 18 D+C + 0.6W+ Check By ASD; No Deflection Limit 19 D+C + 0.6WPIP-> Check By ASD; No Deflection Limit 20 D+C + 0.6WPIP<- Check By ASD; No Deflection Limit 21 D+C + 0.6WNIP-> Check By ASD; No Deflection Limit 22 D+C + 0.6WNIP<- Check By ASD; No Deflection Limit 23 1.1D + 0.7E-> Check By ASD; No Deflection Limit 24 1.1D + 0.7E<- Check By ASD; No Deflection Limit 25 1.1 (D+C) + 0.7E-> Check By ASD; No Deflection Limit 26 1.1 (D+C) + 0.7E<- Check By ASD; No Deflection Limit 27 D+C + 0.45W+ + 3/4L Check By ASD; No Deflection Limit 28 D+C + 0.45WPIP-> + 3/4L Check By ASD; No Deflection Limit 29 D+C + 0.45WPIP<- + 3/4L Check By ASD; No Deflection Limit 30 D+C + 0.45WNIP-> + 3/4L Check By ASD; No Deflection Limit 31 D+C + 0.45WNIP<- + 3/4L Check By ASD; No Deflection Limit 32 D+C + 0.45W+ + 3/4S Check By ASD; No Deflection Limit 33 D+C + 0.45WPIP-> + 3/4S Check By ASD; No Deflection Limit 34 D+C + 0.45WPIP<- + 3/4S Check By ASD; No Deflection Limit 35 D+C + 0.45WNIP-> + 3/4S Check By ASD; No Deflection Limit 36 D+C + 0.45WNIP<- + 3/4S Check By ASD; No Deflection Limit 37 0.6D + 0.6W- Page 17 of 43 212/279212 Check By ASD; No Deflection Limit 38 0.6D + 0.6WPIP-> Check By ASD; No Deflection Limit 39 0.6D + 0.6WPIP<- Check By ASD; No Deflection Limit 40 0.6D + 0.6WNIP-> Check By ASD; No Deflection Limit 41 0.6D + 0.6WNIP<- Check By ASD; No Deflection Limit 42 0.6(D+C) + 0.6W+ Check By ASD; No Deflection Limit 43 0.6(D+C) + 0.6WPIP-> Check By ASD; No Deflection Limit 44 0.6(D+C) + 0.6WPIP<- Check By ASD; No Deflection Limit 45 0.6(D+C) + 0.6WNIP-> Check By ASD; No Deflection Limit 46 0.6(D+C) + 0.6WNIP<- Check By ASD; No Deflection Limit 47 1/2D + 0.7E-> Check By ASD; No Deflection Limit 48 1/2D + 0.7E<- Check By ASD; No Deflection Limit 49 1/2 (D+C) + 0.7E-> Check By ASD; No Deflection Limit 50 1/2 (D+C) + 0.7E<- Check By ASD; No Deflection Limit 51 L No Stress Check; L/150 Deflection Limit 52 S No Stress Check; L/180 Deflection Limit 53 SEFHL- No Stress Check; L/180 Deflection Limit 54 SEFHR- No Stress Check; L/180 Deflection Limit 55 SEHFL- No Stress Check; L/180 Deflection Limit 56 SEHFR- No Stress Check; L/180 Deflection Limit 57 SDFH1L- No Stress Check; L/180 Deflection Limit 58 SDFHX1- No Stress Check; L/180 Deflection Limit 59 SDFHX2- No Stress Check; L/180 Deflection Limit 60 SDFHX3- No Stress Check; L/180 Deflection Limit 61 0.31W- No Stress Check; L/180 Deflection Limit 62 0.31W+ No Stress Check; L/180 Deflection Limit 63 0.31WPIP-> No Stress Check; L/180 Deflection Limit 64 0.31WPIP<- No Stress Check; L/180 Deflection Limit 65 0.31WNIP-> No Stress Check; L/180 Deflection Limit 66 0.31WNIP<- No Stress Check; L/180 Deflection Limit 67 1/2LEU- Page 18 of 43 213/279213 No Stress Check; L/150 Deflection Limit 68 SEU- No Stress Check; L/180 Deflection Limit APPLIED LOADS Roof purlin line 5 (Strut Line) No. Load Load Span Intensity From Intensity To Type Group Designation # lb/ft (kips) feet lb/ft feet 1 UNIF D ALL 7.493 0.000 7.493 0.000 2 UNIF D+C ALL 22.468 0.000 22.468 0.000 3 UNIF L ALL 99.827 0.000 99.827 0.000 4 UNIF S ALL 124.783 0.000 124.783 0.000 5 UNIF SEFHL- 1L 78.614 0.000 78.614 0.458 6 UNIF SEFHL- 1 78.614 0.000 78.614 19.542 7 UNIF SEFHL- 2 39.307 0.000 39.307 20.000 8 UNIF SEFHL- 3 39.307 0.000 39.307 19.542 9 UNIF SEFHL- 3R 39.307 0.000 39.307 0.458 10 UNIF SEFHR- 1L 39.307 0.000 39.307 0.458 11 UNIF SEFHR- 1 39.307 0.000 39.307 19.542 12 UNIF SEFHR- 2 39.307 0.000 39.307 20.000 13 UNIF SEFHR- 3 78.614 0.000 78.614 19.542 14 UNIF SEFHR- 3R 78.614 0.000 78.614 0.458 15 UNIF SEHFL- 1L 39.307 0.000 39.307 0.458 16 UNIF SEHFL- 1 39.307 0.000 39.307 19.542 17 UNIF SEHFL- 2 78.614 0.000 78.614 20.000 18 UNIF SEHFL- 3 78.614 0.000 78.614 19.542 19 UNIF SEHFL- 3R 78.614 0.000 78.614 0.458 20 UNIF SEHFR- 1L 78.614 0.000 78.614 0.458 21 UNIF SEHFR- 1 78.614 0.000 78.614 19.542 22 UNIF SEHFR- 2 78.614 0.000 78.614 20.000 23 UNIF SEHFR- 3 39.307 0.000 39.307 19.542 24 UNIF SEHFR- 3R 39.307 0.000 39.307 0.458 25 UNIF SDFH1L- 1L 39.307 0.000 39.307 0.458 26 UNIF SDFH1L- 1 39.307 0.000 39.307 19.542 27 UNIF SDFH1L- ALL 39.307 0.000 39.307 0.000 28 UNIF SDFHX1- 1L 39.307 0.000 39.307 0.458 29 UNIF SDFHX1- 1 39.307 0.000 39.307 19.542 30 UNIF SDFHX1- 2 39.307 0.000 39.307 20.000 31 UNIF SDFHX1- ALL 39.307 0.000 39.307 0.000 32 UNIF SDFHX2- 2 39.307 0.000 39.307 20.000 33 UNIF SDFHX2- 3 39.307 0.000 39.307 19.542 34 UNIF SDFHX2- 3R 39.307 0.000 39.307 0.458 35 UNIF SDFHX2- ALL 39.307 0.000 39.307 0.000 36 UNIF SDFHX3- 3 39.307 0.000 39.307 19.542 37 UNIF SDFHX3- 3R 39.307 0.000 39.307 0.458 38 UNIF SDFHX3- ALL 39.307 0.000 39.307 0.000 39 UNIF W- 1L -164.888 0.000 -164.888 0.458 40 UNIF W- 1 -164.888 0.000 -164.888 7.342 41 UNIF W- 1 -139.125 7.342 -139.125 19.542 42 UNIF W- 2 -139.125 0.000 -139.125 20.000 43 UNIF W- 3 -139.125 0.000 -139.125 12.200 44 UNIF W- 3 -164.888 12.200 -164.888 19.542 45 UNIF W- 3R -164.888 0.000 -164.888 0.458 46 UNIF W+ ALL 80.000 0.000 80.000 0.000 47 UNIF WPIP-> 1L -164.888 0.000 -164.888 0.458 48 UNIF WPIP-> 1 -164.888 0.000 -164.888 7.342 49 UNIF WPIP-> 1 -139.125 7.342 -139.125 19.542 50 UNIF WPIP-> 2 -139.125 0.000 -139.125 20.000 Page 19 of 43 214/279214 51 UNIF WPIP-> 3 -139.125 0.000 -139.125 19.542 52 UNIF WPIP-> 3R -139.125 0.000 -139.125 0.458 53 UNIF WPIP<- 1L -139.125 0.000 -139.125 0.458 54 UNIF WPIP<- 1 -139.125 0.000 -139.125 19.542 55 UNIF WPIP<- 2 -139.125 0.000 -139.125 20.000 56 UNIF WPIP<- 3 -139.125 0.000 -139.125 12.200 57 UNIF WPIP<- 3 -164.888 12.200 -164.888 19.542 58 UNIF WPIP<- 3R -164.888 0.000 -164.888 0.458 59 UNIF WNIP-> 1L -118.514 0.000 -118.514 0.458 60 UNIF WNIP-> 1 -118.514 0.000 -118.514 7.342 61 UNIF WNIP-> 1 -92.750 7.342 -92.750 19.542 62 UNIF WNIP-> 2 -92.750 0.000 -92.750 20.000 63 UNIF WNIP-> 3 -92.750 0.000 -92.750 19.542 64 UNIF WNIP-> 3R -92.750 0.000 -92.750 0.458 65 UNIF WNIP<- 1L -92.750 0.000 -92.750 0.458 66 UNIF WNIP<- 1 -92.750 0.000 -92.750 19.542 67 UNIF WNIP<- 2 -92.750 0.000 -92.750 20.000 68 UNIF WNIP<- 3 -92.750 0.000 -92.750 12.200 69 UNIF WNIP<- 3 -118.514 12.200 -118.514 19.542 70 UNIF WNIP<- 3R -118.514 0.000 -118.514 0.458 71 AXLD WPIP-> 1 2.196 0.000 0.000 0.000 72 AXLD WPIP-> 2 6.887 0.000 0.000 0.000 73 AXLD WPIP-> 3 -4.139 0.000 0.000 0.000 74 AXLD WPIP<- 1 -4.139 0.000 0.000 0.000 75 AXLD WPIP<- 2 6.887 0.000 0.000 0.000 76 AXLD WPIP<- 3 2.196 0.000 0.000 0.000 77 AXLD WNIP-> 1 5.174 0.000 0.000 0.000 78 AXLD WNIP-> 2 9.866 0.000 0.000 0.000 79 AXLD WNIP-> 3 -1.160 0.000 0.000 0.000 80 AXLD WNIP<- 1 -1.160 0.000 0.000 0.000 81 AXLD WNIP<- 2 9.866 0.000 0.000 0.000 82 AXLD WNIP<- 3 5.174 0.000 0.000 0.000 83 AXLD E-> 2 4.034 0.000 0.000 0.000 84 AXLD E-> 3 -1.186 0.000 0.000 0.000 85 AXLD E<- 2 5.220 0.000 0.000 0.000 86 AXLD E<- 3 1.186 0.000 0.000 0.000 87 AXLD D+C 2 0.020 0.000 0.000 0.000 88 AXLD D+C 3 -0.006 0.000 0.000 0.000 89 AXLD LEU- 2 0.066 0.000 0.000 0.000 90 AXLD LEU- 3 -0.019 0.000 0.000 0.000 91 AXLD SEU- 2 0.082 0.000 0.000 0.000 92 AXLD SEU- 3 -0.024 0.000 0.000 0.000 Roof purlin line 10 (Strut Line) Design Spacing 5.000 ft Mounting Condition at Supports BYPASS Lateral Restraint by Panel Attachment CLIPPED End Inset Dimension at Lt End of Line 0.458 ft End Inset Dimension at Rt End of Line 0.458 ft With a 7.800 ft Edge Strip at Lt End and a 7.800 ft Edge Strip at Rt End Wind Suction Coefficient at Interior Region -1.080 Wind Suction Coefficient in Edge Strip at End -1.280 Wind Pressure Coefficient 0.621 DESIGN SUMMARY Roof purlin line 10 (Strut Line) Page 20 of 43 215/279215 Span Length Mark Left Right Brace End Load Check Controlling ID No. Lap Lap Pts Clips Case Ratio Check (ft) (ft) (ft) 1L 0.458 80Z14 0.000 0.000 0 No 32 0.904 bending+crippling 32 L/ 75 deflection 1 19.542 80Z14 0.000 1.000 0 No 32 0.983 bending 52 L/ 348 deflection 2 20.000 80Z16 2.500 2.500 0 No 32 0.891 compression+bending 59 L/1572 deflection 3 19.542 80Z14 1.000 0.000 0 No 32 0.983 bending 52 L/ 348 deflection 3R 0.458 80Z14 0.000 0.000 0 No 32 0.904 bending+crippling 32 L/ 75 deflection Total weight (extended) = 223.9 (223.9) lbs. Max check ratio = 0.983 LOAD COMBINATIONS Roof purlin line 10 (Strut Line) No. Load Case Description 1 D+C + L Check By ASD; No Deflection Limit 2 D+C + LEU- Check By ASD; No Deflection Limit 3 D+C + S Check By ASD; No Deflection Limit 4 D+C + SEFHL- Check By ASD; No Deflection Limit 5 D+C + SEFHR- Check By ASD; No Deflection Limit 6 D+C + SEHFL- Check By ASD; No Deflection Limit 7 D+C + SEHFR- Check By ASD; No Deflection Limit 8 D+C + SDFH1L- Check By ASD; No Deflection Limit 9 D+C + SDFHX1- Check By ASD; No Deflection Limit 10 D+C + SDFHX2- Check By ASD; No Deflection Limit 11 D+C + SDFHX3- Check By ASD; No Deflection Limit 12 D+C + SEU- Check By ASD; No Deflection Limit 13 D + 0.6W- Check By ASD; No Deflection Limit 14 D + 0.6WPIP-> Check By ASD; No Deflection Limit 15 D + 0.6WPIP<- Check By ASD; No Deflection Limit 16 D + 0.6WNIP-> Check By ASD; No Deflection Limit 17 D + 0.6WNIP<- Check By ASD; No Deflection Limit 18 D+C + 0.6W+ Check By ASD; No Deflection Limit 19 D+C + 0.6WPIP-> Page 21 of 43 216/279216 Check By ASD; No Deflection Limit 20 D+C + 0.6WPIP<- Check By ASD; No Deflection Limit 21 D+C + 0.6WNIP-> Check By ASD; No Deflection Limit 22 D+C + 0.6WNIP<- Check By ASD; No Deflection Limit 23 1.1D + 0.7E-> Check By ASD; No Deflection Limit 24 1.1D + 0.7E<- Check By ASD; No Deflection Limit 25 1.1 (D+C) + 0.7E-> Check By ASD; No Deflection Limit 26 1.1 (D+C) + 0.7E<- Check By ASD; No Deflection Limit 27 D+C + 0.45W+ + 3/4L Check By ASD; No Deflection Limit 28 D+C + 0.45WPIP-> + 3/4L Check By ASD; No Deflection Limit 29 D+C + 0.45WPIP<- + 3/4L Check By ASD; No Deflection Limit 30 D+C + 0.45WNIP-> + 3/4L Check By ASD; No Deflection Limit 31 D+C + 0.45WNIP<- + 3/4L Check By ASD; No Deflection Limit 32 D+C + 0.45W+ + 3/4S Check By ASD; No Deflection Limit 33 D+C + 0.45WPIP-> + 3/4S Check By ASD; No Deflection Limit 34 D+C + 0.45WPIP<- + 3/4S Check By ASD; No Deflection Limit 35 D+C + 0.45WNIP-> + 3/4S Check By ASD; No Deflection Limit 36 D+C + 0.45WNIP<- + 3/4S Check By ASD; No Deflection Limit 37 0.6D + 0.6W- Check By ASD; No Deflection Limit 38 0.6D + 0.6WPIP-> Check By ASD; No Deflection Limit 39 0.6D + 0.6WPIP<- Check By ASD; No Deflection Limit 40 0.6D + 0.6WNIP-> Check By ASD; No Deflection Limit 41 0.6D + 0.6WNIP<- Check By ASD; No Deflection Limit 42 0.6(D+C) + 0.6W+ Check By ASD; No Deflection Limit 43 0.6(D+C) + 0.6WPIP-> Check By ASD; No Deflection Limit 44 0.6(D+C) + 0.6WPIP<- Check By ASD; No Deflection Limit 45 0.6(D+C) + 0.6WNIP-> Check By ASD; No Deflection Limit 46 0.6(D+C) + 0.6WNIP<- Check By ASD; No Deflection Limit 47 1/2D + 0.7E-> Check By ASD; No Deflection Limit 48 1/2D + 0.7E<- Check By ASD; No Deflection Limit 49 1/2 (D+C) + 0.7E-> Page 22 of 43 217/279217 Check By ASD; No Deflection Limit 50 1/2 (D+C) + 0.7E<- Check By ASD; No Deflection Limit 51 L No Stress Check; L/150 Deflection Limit 52 S No Stress Check; L/180 Deflection Limit 53 SEFHL- No Stress Check; L/180 Deflection Limit 54 SEFHR- No Stress Check; L/180 Deflection Limit 55 SEHFL- No Stress Check; L/180 Deflection Limit 56 SEHFR- No Stress Check; L/180 Deflection Limit 57 SDFH1L- No Stress Check; L/180 Deflection Limit 58 SDFHX1- No Stress Check; L/180 Deflection Limit 59 SDFHX2- No Stress Check; L/180 Deflection Limit 60 SDFHX3- No Stress Check; L/180 Deflection Limit 61 0.31W- No Stress Check; L/180 Deflection Limit 62 0.31W+ No Stress Check; L/180 Deflection Limit 63 0.31WPIP-> No Stress Check; L/180 Deflection Limit 64 0.31WPIP<- No Stress Check; L/180 Deflection Limit 65 0.31WNIP-> No Stress Check; L/180 Deflection Limit 66 0.31WNIP<- No Stress Check; L/180 Deflection Limit 67 1/2LEU- No Stress Check; L/150 Deflection Limit 68 SEU- No Stress Check; L/180 Deflection Limit APPLIED LOADS Roof purlin line 10 (Strut Line) No. Load Load Span Intensity From Intensity To Type Group Designation # lb/ft(kips) feet lb/ft feet 1 UNIF D ALL 7.493 0.000 7.493 0.000 2 UNIF D+C ALL 22.468 0.000 22.468 0.000 3 UNIF L ALL 99.827 0.000 99.827 0.000 4 UNIF S ALL 124.783 0.000 124.783 0.000 5 UNIF SEFHL- 1L 78.614 0.000 78.614 0.458 6 UNIF SEFHL- 1 78.614 0.000 78.614 19.542 7 UNIF SEFHL- 2 39.307 0.000 39.307 20.000 8 UNIF SEFHL- 3 39.307 0.000 39.307 19.542 9 UNIF SEFHL- 3R 39.307 0.000 39.307 0.458 10 UNIF SEFHR- 1L 39.307 0.000 39.307 0.458 11 UNIF SEFHR- 1 39.307 0.000 39.307 19.542 12 UNIF SEFHR- 2 39.307 0.000 39.307 20.000 13 UNIF SEFHR- 3 78.614 0.000 78.614 19.542 14 UNIF SEFHR- 3R 78.614 0.000 78.614 0.458 Page 23 of 43 218/279218 15 UNIF SEHFL- 1L 39.307 0.000 39.307 0.458 16 UNIF SEHFL- 1 39.307 0.000 39.307 19.542 17 UNIF SEHFL- 2 78.614 0.000 78.614 20.000 18 UNIF SEHFL- 3 78.614 0.000 78.614 19.542 19 UNIF SEHFL- 3R 78.614 0.000 78.614 0.458 20 UNIF SEHFR- 1L 78.614 0.000 78.614 0.458 21 UNIF SEHFR- 1 78.614 0.000 78.614 19.542 22 UNIF SEHFR- 2 78.614 0.000 78.614 20.000 23 UNIF SEHFR- 3 39.307 0.000 39.307 19.542 24 UNIF SEHFR- 3R 39.307 0.000 39.307 0.458 25 UNIF SDFH1L- 1L 39.307 0.000 39.307 0.458 26 UNIF SDFH1L- 1 39.307 0.000 39.307 19.542 27 UNIF SDFH1L- ALL 39.307 0.000 39.307 0.000 28 UNIF SDFHX1- 1L 39.307 0.000 39.307 0.458 29 UNIF SDFHX1- 1 39.307 0.000 39.307 19.542 30 UNIF SDFHX1- 2 39.307 0.000 39.307 20.000 31 UNIF SDFHX1- ALL 39.307 0.000 39.307 0.000 32 UNIF SDFHX2- 2 39.307 0.000 39.307 20.000 33 UNIF SDFHX2- 3 39.307 0.000 39.307 19.542 34 UNIF SDFHX2- 3R 39.307 0.000 39.307 0.458 35 UNIF SDFHX2- ALL 39.307 0.000 39.307 0.000 36 UNIF SDFHX3- 3 39.307 0.000 39.307 19.542 37 UNIF SDFHX3- 3R 39.307 0.000 39.307 0.458 38 UNIF SDFHX3- ALL 39.307 0.000 39.307 0.000 39 UNIF W- 1L -164.888 0.000 -164.888 0.458 40 UNIF W- 1 -164.888 0.000 -164.888 7.342 41 UNIF W- 1 -139.125 7.342 -139.125 19.542 42 UNIF W- 2 -139.125 0.000 -139.125 20.000 43 UNIF W- 3 -139.125 0.000 -139.125 12.200 44 UNIF W- 3 -164.888 12.200 -164.888 19.542 45 UNIF W- 3R -164.888 0.000 -164.888 0.458 46 UNIF W+ ALL 80.000 0.000 80.000 0.000 47 UNIF WPIP-> 1L -164.888 0.000 -164.888 0.458 48 UNIF WPIP-> 1 -164.888 0.000 -164.888 7.342 49 UNIF WPIP-> 1 -139.125 7.342 -139.125 19.542 50 UNIF WPIP-> 2 -139.125 0.000 -139.125 20.000 51 UNIF WPIP-> 3 -139.125 0.000 -139.125 19.542 52 UNIF WPIP-> 3R -139.125 0.000 -139.125 0.458 53 UNIF WPIP<- 1L -139.125 0.000 -139.125 0.458 54 UNIF WPIP<- 1 -139.125 0.000 -139.125 19.542 55 UNIF WPIP<- 2 -139.125 0.000 -139.125 20.000 56 UNIF WPIP<- 3 -139.125 0.000 -139.125 12.200 57 UNIF WPIP<- 3 -164.888 12.200 -164.888 19.542 58 UNIF WPIP<- 3R -164.888 0.000 -164.888 0.458 59 UNIF WNIP-> 1L -118.514 0.000 -118.514 0.458 60 UNIF WNIP-> 1 -118.514 0.000 -118.514 7.342 61 UNIF WNIP-> 1 -92.750 7.342 -92.750 19.542 62 UNIF WNIP-> 2 -92.750 0.000 -92.750 20.000 63 UNIF WNIP-> 3 -92.750 0.000 -92.750 19.542 64 UNIF WNIP-> 3R -92.750 0.000 -92.750 0.458 65 UNIF WNIP<- 1L -92.750 0.000 -92.750 0.458 66 UNIF WNIP<- 1 -92.750 0.000 -92.750 19.542 67 UNIF WNIP<- 2 -92.750 0.000 -92.750 20.000 68 UNIF WNIP<- 3 -92.750 0.000 -92.750 12.200 69 UNIF WNIP<- 3 -118.514 12.200 -118.514 19.542 70 UNIF WNIP<- 3R -118.514 0.000 -118.514 0.458 71 AXLD WPIP-> 1 1.972 0.000 0.000 0.000 72 AXLD WPIP-> 2 1.972 0.000 0.000 0.000 73 AXLD WPIP-> 3 -3.718 0.000 0.000 0.000 74 AXLD WPIP<- 1 -3.718 0.000 0.000 0.000 Page 24 of 43 219/279219 75 AXLD WPIP<- 2 1.972 0.000 0.000 0.000 76 AXLD WPIP<- 3 1.972 0.000 0.000 0.000 77 AXLD WNIP-> 1 4 .647 0.000 0.000 0.000 78 AXLD WNIP-> 2 4 .647 0.000 0.000 0.000 79 AXLD WNIP-> 3 -1.042 0.000 0.000 0.000 80 AXLD WNIP<- 1 -1.042 0.000 0.000 0.000 81 AXLD WNIP<- 2 4 .647 0.000 0.000 0.000 82 AXLD WNIP<- 3 4 .647 0.000 0.000 0.000 83 AXLD E-> 2 1.107 0.000 0.000 0.000 84 AXLD E-> 3 -1.107 0.000 0.000 0.000 85 AXLD E<- 2 2.214 0.000 0.000 0.000 86 AXLD E<- 3 1.107 0.000 0.000 0.000 87 AXLD D+C 2 0.005 0.000 0.000 0.000 88 AXLD D+C 3 -0.005 0.000 0.000 0.000 89 AXLD LEU- 2 0.018 0.000 0.000 0.000 90 AXLD LEU- 3 -0.018 0.000 0.000 0.000 91 AXLD SEU- 2 0.023 0.000 0.000 0.000 92 AXLD SEU- 3 -0.023 0.000 0.000 0.000 Roof purlin line 13 (Strut Line) Design Spacing 5.000 ft Mounting Condition at Supports BYPASS Lateral Restraint by Panel Attachment CLIPPED End Inset Dimension at Lt End of Line 0.458 ft End Inset Dimension at Rt End of Line 0.458 ft With a 7.800 ft Edge Strip at Lt End and a 7.800 ft Edge Strip at Rt End Wind Suction Coefficient at Interior Region -1.080 Wind Suction Coefficient in Edge Strip at End -1.280 Wind Pressure Coefficient 0.621 DESIGN SUMMARY Roof purlin line 13 (Strut Line) Span Length Mark Left Right Brace End Load Check Controlling ID No. Lap Lap Pts Clips Case Ratio Check (ft) (ft) (ft) 1L 0.458 80Z14 0.000 0.000 0 No 14 0.904 bending+crippling 14 L/ 75 deflection 1 19.542 80Z14 0.000 1.000 0 No 14 0.983 bending 18 L/ 348 deflection 2 20.000 80Z16 2.500 2.500 0 No 14 0.890 bending 25 L/1572 deflection 3 19.542 80214 1.000 0.000 0 No 14 0.983 bending 18 L/ 348 deflection 3R 0.458 80Z14 0.000 0.000 0 No 14 0.904 bending+crippling 14 L/ 75 deflection Total weight (extended) = 223.9 (223.9) lbs. Max check ratio = 0.983 LOAD COMBINATIONS Roof purlin line 13 (Strut Line) No. Load Case Description 1 D+C + L Page 25 of 43 220/279220 Check By ASD; No Deflection Limit 2 D+C + S Check By ASD; No Deflection Limit 3 D+C + SEFHL- Check By ASD; No Deflection Limit 4 D+C + SEFHR- Check By ASD; No Deflection Limit 5 D+C + SEHFL- Check By ASD; No Deflection Limit 6 D+C + SEHFR- Check By ASD; No Deflection Limit 7 D+C + SDFH1L- Check By ASD; No Deflection Limit 8 D+C + SDFHX1- Check By ASD; No Deflection Limit 9 D+C + SDFHX2- Check By ASD; No Deflection Limit 10 D+C + SDFHX3- Check By ASD; No Deflection Limit 11 D + 0.6W- Check By ASD; No Deflection Limit 12 D+C + 0.6W+ Check By ASD; No Deflection Limit 13 D+C + 0.45W+ + 3/4L Check By ASD; No Deflection Limit 14 D+C + 0.45W+ + 3/4S Check By ASD; No Deflection Limit 15 0.6D + 0.6W- Check By ASD; No Deflection Limit 16 0.6(D+C) + 0.6W+ Check By ASD; No Deflection Limit 17 L No Stress Check; L/150 Deflection Limit 18 S No Stress Check; L/180 Deflection Limit 19 SEFHL- No Stress Check; L/180 Deflection Limit 20 SEFHR- No Stress Check; L/180 Deflection Limit 21 SEHFL- No Stress Check; L/180 Deflection Limit 22 SEHFR- No Stress Check; L/180 Deflection Limit 23 SDFHIL- No Stress Check; L/180 Deflection Limit 24 SDFHX1- No Stress Check; L/180 Deflection Limit 25 SDFHX2- No Stress Check; L/180 Deflection Limit 26 SDFHX3- No Stress Check; L/180 Deflection Limit 27 0.31W- No Stress Check; L/180 Deflection Limit 28 0.31W+ No Stress Check; L/180 Deflection Limit APPLIED LOADS Roof purlin line 13 (Strut Line) No. Load Load Span Intensity From Intensity To Page 26 of 43 221/279221 Type Group Designation # lb/ft(kips) feet lb/ft feet 1 UNIF D ALL 7.493 0.000 7.493 0.000 2 UNIF D+C ALL 22.468 0.000 22.468 0.000 3 UNIF L ALL 99.827 0.000 99.827 0.000 4 UNIF S ALL 124.783 0.000 124.783 0.000 5 UNIF SEFHL- 1L 78.614 0.000 78.614 0.458 6 UNIF SEFHL- 1 78.614 0.000 78.614 19.542 7 UNIF SEFHL- 2 39.307 0.000 39.307 20.000 8 UNIF SEFHL- 3 39.307 0.000 39.307 19.542 9 UNIF SEFHL- 3R 39.307 0.000 39.307 0.458 10 UNIF SEFHR- 1L 39.307 0.000 39.307 0.458 11 UNIF SEFHR- 1 39.307 0.000 39.307 19.542 12 UNIF SEFHR- 2 39.307 0.000 39.307 20.000 13 UNIF SEFHR- 3 78.614 0.000 78.614 19.542 14 UNIF SEFHR- 3R 78.614 0.000 78.614 0.458 15 UNIF SEHFL- 1L 39.307 0.000 39.307 0.458 16 UNIF SEHFL- 1 39.307 0.000 39.307 19.542 17 UNIF SEHFL- 2 78.614 0.000 78.614 20.000 18 UNIF SEHFL- 3 78.614 0.000 78.614 19.542 19 UNIF SEHFL- 3R 78.614 0.000 78.614 0.458 20 UNIF SEHFR- 1L 78.614 0.000 78.614 0.458 21 UNIF SEHFR- 1 78.614 0.000 78.614 19.542 22 UNIF SEHFR- 2 78.614 0.000 78.614 20.000 23 UNIF SEHFR- 3 39.307 0.000 39.307 19.542 24 UNIF SEHFR- 3R 39.307 0.000 39.307 0.458 25 UNIF SDFH1L- 1L 39.307 0.000 39.307 0.458 26 UNIF SDFH1L- 1 39.307 0.000 39.307 19.542 27 UNIF SDFH1L- ALL 39.307 0.000 39.307 0.000 28 UNIF SDFHX1- 1L 39.307 0.000 39.307 0.458 29 UNIF SDFHX1- 1 39.307 0.000 39.307 19.542 30 UNIF SDFHX1- 2 39.307 0.000 39.307 20.000 31 UNIF SDFHX1- ALL 39.307 0.000 39.307 0.000 32 UNIF SDFHX2- 2 39.307 0.000 39.307 20.000 33 UNIF SDFHX2- 3 39.307 0.000 39.307 19.542 34 UNIF SDFHX2- 3R 39.307 0.000 39.307 0.458 35 UNIF SDFHX2- ALL 39.307 0.000 39.307 0.000 36 UNIF SDFHX3- 3 39.307 0.000 39.307 19.542 37 UNIF SDFHX3- 3R 39.307 0.000 39.307 0.458 38 UNIF SDFHX3- ALL 39.307 0.000 39.307 0.000 39 UNIF W- 1L -164.888 0.000 -164.888 0.458 40 UNIF W- 1 -164.888 0.000 -164.888 7.342 41 UNIF W- 1 -139.125 7.342 -139.125 19.542 42 UNIF W- 2 -139.125 0.000 -139.125 20.000 43 UNIF W- 3 -139.125 0.000 -139.125 12.200 44 UNIF W- 3 -164.888 12.200 -164.888 19.542 45 UNIF W- 3R -164.888 0.000 -164.888 0.458 46 UNIF W+ ALL 80.000 0.000 80.000 0.000 Roof purlin line 14 (Strut Line) Design Spacing 5.000 ft Mounting Condition at Supports BYPASS Lateral Restraint by Panel Attachment CLIPPED End Inset Dimension at Lt End of Line 0.458 ft End Inset Dimension at Rt End of Line 0.458 ft With a 7.800 ft Edge Strip at Lt End and a 7.800 ft Edge Strip at Rt End Page 27 of 43 222/279222 Wind Suction Coefficient at Interior Region -1.080 Wind Suction Coefficient in Edge Strip at End -1.280 Wind Pressure Coefficient 0.621 DESIGN SUMMARY Roof purlin line 14 (Strut Line) Span Length Mark Left Right Brace End Load Check Controlling ID No. Lap Lap Pts Clips Case Ratio Check (ft) (ft) (ft) 1L 0.458 80Z14 0.000 0.000 0 No 32 0.904 bending+crippling 32 L/ 75 deflection 1 19.542 80Z14 0.000 1.000 0 No 32 0.983 bending 52 L/ 348 deflection 2 20.000 80Z16 2.500 2.500 0 No 32 0.891 compression+bending 59 L/1572 deflection 3 19.542 80Z14 1.000 0.000 0 No 32 0.983 bending 52 L/ 348 deflection 3R 0.458 80Z14 0.000 0.000 0 No 32 0.904 bending+crippling 32 L/ 75 deflection Total weight (extended) = 223.9 (223.9) lbs. Max check ratio = 0.983 LOAD COMBINATIONS Roof purlin line 14 (Strut Line) No. Load Case Description 1 D+C + L Check By ASD; No Deflection Limit 2 D+C + LEU- Check By ASD; No Deflection Limit 3 D+C + S Check By ASD; No Deflection Limit 4 D+C + SEFHL- Check By ASD; No Deflection Limit 5 D+C + SEFHR- Check By ASD; No Deflection Limit 6 D+C + SEHFL- Check By ASD; No Deflection Limit 7 D+C + SEHFR- Check By ASD; No Deflection Limit 8 D+C + SDFHIL- Check By ASD; No Deflection Limit 9 D+C + SDFHX1- Check By ASD; No Deflection Limit 10 D+C + SDFHX2- Check By ASD; No Deflection Limit 11 D+C + SDFHX3- Check By ASD; No Deflection Limit 12 D+C + SEU- Check By ASD; No Deflection Limit 13 D + 0.6W- Check By ASD; No Deflection Limit 14 D + 0.6WPIP-> Check By ASD; No Deflection Limit 15 D + 0.6WPIP<- Check By ASD; No Deflection Limit 16 D + 0.6WNIP-> Page 28 of 43 223/279223 Check By ASD; No Deflection Limit 17 D + 0.6WNIP<- Check By ASD; No Deflection Limit 18 D+C + 0.6W+ Check By ASD; No Deflection Limit 19 D+C + 0.6WPIP-> Check By ASD; No Deflection Limit 20 D+C + 0.6WPIP<- Check By ASD; No Deflection Limit 21 D+C + 0.6WNIP-> Check By ASD; No Deflection Limit 22 D+C + 0.6WNIP<- Check By ASD; No Deflection Limit 23 1.1D + 0.7E-> Check By ASD; No Deflection Limit 24 1.1D + 0.7E<- Check By ASD; No Deflection Limit 25 1.1 (D+C) + 0.7E-> Check By ASD; No Deflection Limit 26 1.1 (D+C) + 0.7E<- Check By ASD; No Deflection Limit 27 D+C + 0.45W+ + 3/4L Check By ASD; No Deflection Limit 28 D+C + 0.45WPIP-> + 3/4L Check By ASD; No Deflection Limit 29 D+C + 0.45WPIP<- + 3/4L Check By ASD; No Deflection Limit 30 D+C + 0.45WNIP-> + 3/4L Check By ASD; No Deflection Limit 31 D+C + 0.45WNIP<- + 3/4L Check By ASD; No Deflection Limit 32 D+C + 0.45W+ + 3/4S Check By ASD; No Deflection Limit 33 D+C + 0.45WPIP-> + 3/4S Check By ASD; No Deflection Limit 34 D+C + 0.45WPIP<- + 3/4S Check By ASD; No Deflection Limit 35 D+C + 0.45WNIP-> + 3/4S Check By ASD; No Deflection Limit 36 D+C + 0.45WNIP<- + 3/4S Check By ASD; No Deflection Limit 37 0.6D + 0.6W- Check By ASD; No Deflection Limit 38 0.6D + 0.6WPIP-> Check By ASD; No Deflection Limit 39 0.6D + 0.6WPIP<- Check By ASD; No Deflection Limit 40 0.6D + 0.6WNIP-> Check By ASD; No Deflection Limit 41 0.6D + 0.6WNIP<- Check By ASD; No Deflection Limit 42 0.6(D+C) + 0.6W+ Check By ASD; No Deflection Limit 43 0.6(D+C) + 0.6WPIP-> Check By ASD; No Deflection Limit 44 0.6(D+C) + 0.6WPIP<- Check By ASD; No Deflection Limit 45 0.6(D+C) + 0.6WNIP-> Check By ASD; No Deflection Limit 46 0.6(D+C) + 0.6WNIP<- Page 29 of 43 224/279224 Check By ASD; No Deflection Limit 47 1/2D + 0.7E-> Check By ASD; No Deflection Limit 48 1/2D + 0.7E<- Check By ASD; No Deflection Limit 49 1/2 (D+C) + 0.7E-> Check By ASD; No Deflection Limit 50 1/2 (D+C) + 0.7E<- Check By ASD; No Deflection Limit 51 L No Stress Check; L/150 Deflection Limit 52 S No Stress Check; L/180 Deflection Limit 53 SEFHL- No Stress Check; L/180 Deflection Limit 54 SEFHR- No Stress Check; L/180 Deflection Limit 55 SEHFL- No Stress Check; L/180 Deflection Limit 56 SEHFR- No Stress Check; L/180 Deflection Limit 57 SDFH1L- No Stress Check; L/180 Deflection Limit 58 SDFHX1- No Stress Check; L/180 Deflection Limit 59 SDFHX2- No Stress Check; L/180 Deflection Limit 60 SDFHX3- No Stress Check; L/180 Deflection Limit 61 0.31W- No Stress Check; L/180 Deflection Limit 62 0.31W+ No Stress Check; L/180 Deflection Limit 63 0.31WPIP-> No Stress Check; L/180 Deflection Limit 64 0.31WPIP<- No Stress Check; L/180 Deflection Limit 65 0.31WNIP-> No Stress Check; L/180 Deflection Limit 66 0.31WNIP<- No Stress Check; L/180 Deflection Limit 67 1/2LEU- No Stress Check; L/150 Deflection Limit 68 SEU- No Stress Check; L/180 Deflection Limit APPLIED LOADS Roof purlin line 14 (Strut Line) No. Load Load Span Intensity From Intensity To Type Group Designation # lb/ft(kips) feet lb/ft feet 1 UNIF D ALL 7.493 0.000 7.493 0.000 2 UNIF D+C ALL 22.468 0.000 22.468 0.000 3 UNIF L ALL 99.827 0.000 99.827 0.000 4 UNIF S ALL 124.783 0.000 124.783 0.000 5 UNIF SEFHL- 1L 78.614 0.000 78.614 0.458 6 UNIF SEFHL- 1 78.614 0.000 78.614 19.542 7 UNIF SEFHL- 2 39.307 0.000 39.307 20.000 8 UNIF SEFHL- 3 39.307 0.000 39.307 19.542 Page 30 of 43 225/279225 9 UNIF SEFHL- 3R 39.307 0.000 39.307 0.458 10 UNIF SEFHR- 1L 39.307 0.000 39.307 0.458 11 UNIF SEFHR- 1 39.307 0.000 39.307 19.542 12 UNIF SEFHR- 2 39.307 0.000 39.307 20.000 13 UNIF SEFHR- 3 78.614 0.000 78.614 19.542 14 UNIF SEFHR- 3R 78.614 0.000 78.614 0.458 15 UNIF SEHFL- 1L 39.307 0.000 39.307 0.458 16 UNIF SEHFL- 1 39.307 0.000 39.307 19.542 17 UNIF SEHFL- 2 78.614 0.000 78.614 20.000 18 UNIF SEHFL- 3 78.614 0.000 78.614 19.542 19 UNIF SEHFL- 3R 78.614 0.000 78.614 0.458 20 UNIF SEHFR- 1L 78.614 0.000 78.614 0.458 21 UNIF SEHFR- 1 78.614 0.000 78.614 19.542 22 UNIF SEHFR- 2 78.614 0.000 78.614 20.000 23 UNIF SEHFR- 3 39.307 0.000 39.307 19.542 24 UNIF SEHFR- 3R 39.307 0.000 39.307 0.458 25 UNIF SDFH1L- 1L 39.307 0.000 39.307 0.458 26 UNIF SDFH1L- 1 39.307 0.000 39.307 19.542 27 UNIF SDFH1L- ALL 39.307 0.000 39.307 0.000 28 UNIF SDFHX1- 1L 39.307 0.000 39.307 0.458 29 UNIF SDFHX1- 1 39.307 0.000 39.307 19.542 30 UNIF SDFHX1- 2 39.307 0.000 39.307 20.000 31 UNIF SDFHX1- ALL 39.307 0.000 39.307 0.000 32 UNIF SDFHX2- 2 39.307 0.000 39.307 20.000 33 UNIF SDFHX2- 3 39.307 0.000 39.307 19.542 34 UNIF SDFHX2- 3R 39.307 0.000 39.307 0.458 35 UNIF SDFHX2- ALL 39.307 0.000 39.307 0.000 36 UNIF SDFHX3- 3 39.307 0.000 39.307 19.542 37 UNIF SDFHX3- 3R 39.307 0.000 39.307 0.458 38 UNIF SDFHX3- ALL 39.307 0.000 39.307 0.000 39 UNIF W- 1L -164.888 0.000 -164.888 0.458 40 UNIF W- 1 -164.888 0.000 -164.888 7.342 41 UNIF W- 1 -139.125 7.342 -139.125 19.542 42 UNIF W- 2 -139.125 0.000 -139.125 20.000 43 UNIF W- 3 -139.125 0.000 -139.125 12.200 44 UNIF W- 3 -164.888 12.200 -164.888 19.542 45 UNIF W- 3R -164.888 0.000 -164.888 0.458 46 UNIF W+ ALL 80.000 0.000 80.000 0.000 47 UNIF WPIP-> 11, -164.888 0.000 -164.888 0.458 48 UNIF WPIP-> 1 -164.888 0.000 -164.888 7.342 49 UNIF WPIP-> 1 -139.125 7.342 -139.125 19.542 50 UNIF WPIP-> 2 -139.125 0.000 -139.125 20.000 51 UNIF WPIP-> 3 -139.125 0.000 -139.125 19.542 52 UNIF WPIP-> 3R -139.125 0.000 -139.125 0.458 53 UNIF WPIP<- 1L -139.125 0.000 -139.125 0.458 54 UNIF WPIP<- 1 -139.125 0.000 -139.125 19.542 55 UNIF WPIP<- 2 -139.125 0.000 -139.125 20.000 56 UNIF WPIP<- 3 -139.125 0.000 -139.125 12.200 57 UNIF WPIP<- 3 -164.888 12.200 -164.888 19.542 58 UNIF WPIP<- 3R -164.888 0.000 -164.888 0.458 59 UNIF WNIP-> 1L -118.514 0.000 -118.514 0.458 60 UNIF WNIP-> 1 -118.514 0.000 -118.514 7.342 61 UNIF WNIP-> 1 -92.750 7.342 -92.750 19.542 62 UNIF WNIP-> 2 -92.750 0.000 -92.750 20.000 63 UNIF WNIP-> 3 -92.750 0.000 -92.750 19.542 64 UNIF WNIP-> 3R -92.750 0.000 -92.750 0.458 65 UNIF WNIP<- 1L -92.750 0.000 -92.750 0.458 66 UNIF WNIP<- 1 -92.750 0.000 -92.750 19.542 67 UNIF WNIP<- 2 -92.750 0.000 -92.750 20.000 68 UNIF WNIP<- 3 -92.750 0.000 -92.750 12.200 Page 31 of 43 226/279226 69 UNIF WNIP<- 3 -118.514 12.200 -118.514 19.542 70 UNIF WNIP<- 3R -118.514 0.000 -118.514 0.458 71 AXLD WPIP-> 1 1.769 0.000 0.000 0.000 72 AXLD WPIP-> 2 2.768 0.000 0.000 0.000 73 AXLD WPIP-> 3 -3.335 0.000 0.000 0.000 74 AXLD WPIP<- 1 -3.335 0.000 0.000 0.000 75 AXLD WPIP<- 2 2.768 0.000 0.000 0.000 76 AXLD WPIP<- 3 1.769 0.000 0.000 0.000 77 AXLD WNIP-> 1 4.170 0.000 0.000 0.000 78 AXLD WHIP-> 2 5.168 0.000 0.000 0.000 79 AXLD WNIP-> 3 -0.935 0.000 0.000 0.000 80 AXLD WNIP<- 1 -0.935 0.000 0.000 0.000 81 AXLD WNIP<- 2 5.168 0.000 0.000 0.000 82 AXLD WNIP<- 3 4.170 0.000 0.000 0.000 83 AXLD E-> 2 1.501 0.000 0.000 0.000 84 AXLD E-> 3 -1.028 0.000 0.000 0.000 85 AXLD E<- 2 2.530 0.000 0.000 0.000 86 AXLD E<- 3 1.028 0.000 0.000 0.000 87 AXLD D+C 2 0.007 0.000 0.000 0.000 88 AXLD D+C 3 -0.005 0.000 0.000 0.000 89 AXLD LEU- 2 0.024 0.000 0.000 0.000 90 AXLD LEU- 3 -0.017 0.000 0.000 0.000 91 AXLD SEU- 2 0.031 0.000 0.000 0.000 92 AXLD SEU- 3 -0.021 0.000 0.000 0.000 Roof purlin line 18 (Strut Line) Design Spacing 5.000 ft Mounting Condition at Supports BYPASS Lateral Restraint by Panel Attachment CLIPPED End Inset Dimension at Lt End of Line 0.458 ft End Inset Dimension at Rt End of Line 0.458 ft With a 7.800 ft Edge Strip at Lt End and a 7.800 ft Edge Strip at Rt End Wind Suction Coefficient at Interior Region -1.080 Wind Suction Coefficient in Edge Strip at End -1.280 Wind Pressure Coefficient 0.621 DESIGN SUMMARY Roof purlin line 18 (Strut Line) Span Length Mark Left Right Brace End Load Check Controlling ID No. Lap Lap Pts Clips Case Ratio Check (ft) (ft) (ft) 1L 0.458 80Z14 0.000 0.000 0 No 32 0.901 bending+crippling 32 L/ 76 deflection 1 19.542 80Z14 0.000 1.000 0 No 32 1.002 bending 52 L/ 352 deflection 2 20.000 80Z14 2.500 2.500 0 No 36 0.804 compression+bending 60 L/1875 deflection 3 19.542 80Z14 1.000 0.000 0 No 32 1.002 bending 52 L/ 352 deflection 3R 0.458 80Z14 0.000 0.000 0 No 32 0.901 bending+crippling 32 L/ 76 deflection Total weight (extended) = 239.4 (239.4) lbs. Max check ratio = 1.002 Page 32 of 43 227/279227 LOAD COMBINATIONS Roof purlin line 18 (Strut Line) No. Load Case Description 1 D+C + L Check By ASD; No Deflection Limit 2 D+C + LEU- Check By ASD; No Deflection Limit 3 D+C + S Check By ASD; No Deflection Limit 4 D+C + SEFHL- Check By ASD; No Deflection Limit 5 D+C + SEFHR- Check By ASD; No Deflection Limit 6 D+C + SEHFL- Check By ASD; No Deflection Limit 7 D+C + SEHFR- Check By ASD; No Deflection Limit 8 D+C + SDFHIL- Check By ASD; No Deflection Limit 9 D+C + SDFHX1- Check By ASD; No Deflection Limit 10 D+C + SDFHX2- Check By ASD; No Deflection Limit 11 D+C + SDFHX3- Check By ASD; No Deflection Limit 12 D+C + SEU- Check By ASD; No Deflection Limit 13 D + 0.6W- Check By ASD; No Deflection Limit 14 D + 0.6WPIP-> Check By ASD; No Deflection Limit 15 D + 0.6WPIP<- Check By ASD; No Deflection Limit 16 D + 0.6WNIP-> Check By ASD; No Deflection Limit 17 D + 0.6WNIP<- Check By ASD; No Deflection Limit 18 D+C + 0.6W+ Check By ASD; No Deflection Limit 19 D+C + 0.6WPIP-> Check By ASD; No Deflection Limit 20 D+C + 0.6WPIP<- Check By ASD; No Deflection Limit 21 D+C + 0.6WNIP-> Check By ASD; No Deflection Limit 22 D+C + 0.6WNIP<- Check By ASD; No Deflection Limit 23 1.1D + 0.7E-> Check By ASD; No Deflection Limit 24 1.1D + 0.7E<- Check By ASD; No Deflection Limit 25 1.1 (D+C) + 0.7E-> Check By ASD; No Deflection Limit 26 1.1 (D+C) + 0.7E<- Check By ASD; No Deflection Limit 27 D+C + 0.45W+ + 3/4L Check By ASD; No Deflection Limit 28 D+C + 0.45WPIP-> + 3/4L Page 33 of 43 228/279228 Check By ASD; No Deflection Limit 29 D+C + 0.45WPIP<- + 3/4L Check By ASD; No Deflection Limit 30 D+C + 0.45WNIP-> + 3/4L Check By ASD; No Deflection Limit 31 D+C + 0.45WNIP<- + 3/4L Check By ASD; No Deflection Limit 32 D+C + 0.45W+ + 3/4S Check By ASD; No Deflection Limit 33 D+C + 0.45WPIP-> + 3/4S Check By ASD; No Deflection Limit 34 D+C + 0.45WPIP<- + 3/4S Check By ASD; No Deflection Limit 35 D+C + 0.45WNIP-> + 3/4S Check By ASD; No Deflection Limit 36 D+C + 0.45WNIP<- + 3/4S Check By ASD; No Deflection Limit 37 0.6D + 0.6W- Check By ASD; No Deflection Limit 38 0.6D + 0.6WPIP-> Check By ASD; No Deflection Limit 39 0.6D + 0.6WPIP<- Check By ASD; No Deflection Limit 40 0.6D + 0.6WNIP-> Check By ASD; No Deflection Limit 41 0.6D + 0.6WNIP<- Check By ASD; No Deflection Limit 42 0.6(D+C) + 0.6W+ Check By ASD; No Deflection Limit 43 0.6(D+C) + 0.6WPIP-> Check By ASD; No Deflection Limit 44 0.6(D+C) + 0.6WPIP<- Check By ASD; No Deflection Limit 45 0.6(D+C) + 0.6WNIP-> Check By ASD; No Deflection Limit 46 0.6(D+C) + 0.6WNIP<- Check By ASD; No Deflection Limit 47 1/2D + 0.7E-> Check By ASD; No Deflection Limit 48 1/2D + 0.7E<- Check By ASD; No Deflection Limit 49 1/2 (D+C) + 0.7E-> Check By ASD; No Deflection Limit 50 1/2 (D+C) + 0.7E<- Check By ASD; No Deflection Limit 51 L No Stress Check; L/150 Deflection Limit 52 S No Stress Check; L/180 Deflection Limit 53 SEFHL- No Stress Check; L/180 Deflection Limit 54 SEFHR- No Stress Check; L/180 Deflection Limit 55 SEHFL- No Stress Check; L/180 Deflection Limit 56 SEHFR- No Stress Check; L/180 Deflection Limit 57 SDFH1L- No Stress Check; L/180 Deflection Limit 58 SDFHX1- Page 34 of 43 229/279229 No Stress Check; L/180 Deflection Limit 59 SDFHX2- No Stress Check; L/180 Deflection Limit 60 SDFHX3- No Stress Check; L/180 Deflection Limit 61 0.31W- No Stress Check; L/180 Deflection Limit 62 0.31W+ No Stress Check; L/180 Deflection Limit 63 0.31WPIP-> No Stress Check; L/180 Deflection Limit 64 0.31WPIP<- No Stress Check; L/180 Deflection Limit 65 0.31WNIP-> No Stress Check; L/180 Deflection Limit 66 0.31WNIP<- No Stress Check; L/180 Deflection Limit 67 1/2LEU- No Stress Check; L/150 Deflection Limit 68 SEU- No Stress Check; L/180 Deflection Limit APPLIED LOADS Roof purlin line 18 (Strut Line) No. Load Load Span Intensity From Intensity To Type Group Designation # lb/ft(kips) feet lb/ft feet 1 UNIF D ALL 7.493 0.000 7.493 0.000 2 UNIF D+C ALL 22.468 0.000 22.468 0.000 3 UNIF L ALL 99.827 0.000 99.827 0.000 4 UNIF S ALL 124.783 0.000 124.783 0.000 5 UNIF SEFHL- 1L 78.614 0.000 78.614 0.458 6 UNIF SEFHL- 1 78.614 0.000 78.614 19.542 7 UNIF SEFHL- 2 39.307 0.000 39.307 20.000 8 UNIF SEFHL- 3 39.307 0.000 39.307 19.542 9 UNIF SEFHL- 3R 39.307 0.000 39.307 0.458 10 UNIF SEFHR- 1L 39.307 0.000 39.307 0.458 11 UNIF SEFHR- 1 39.307 0.000 39.307 19.542 12 UNIF SEFHR- 2 39.307 0.000 39.307 20.000 13 UNIF SEFHR- 3 78.614 0.000 78.614 19.542 14 UNIF SEFHR- 3R 78.614 0.000 78.614 0.458 15 UNIF SEHFL- 1L 39.307 0.000 39.307 0.458 16 UNIF SEHFL- 1 39.307 0.000 39.307 19.542 17 UNIF SEHFL- 2 78.614 0.000 78.614 20.000 18 UNIF SEHFL- 3 78.614 0.000 78.614 19.542 19 UNIF SEHFL- 3R 78.614 0.000 78.614 0.458 20 UNIF SEHFR- 1L 78.614 0.000 78.614 0.458 21 UNIF SEHFR- 1 78.614 0.000 78.614 19.542 22 UNIF SEHFR- 2 78.614 0.000 78.614 20.000 23 UNIF SEHFR- 3 39.307 0.000 39.307 19.542 24 UNIF SEHFR- 3R 39.307 0.000 39.307 0.458 25 UNIF SDFH1L- 1L 39.307 0.000 39.307 0.458 26 UNIF SDFH1L- 1 39.307 0.000 39.307 19.542 27 UNIF SDFH1L- ALL 39.307 0.000 39.307 0.000 28 UNIF SDFHX1- 1L 39.307 0.000 39.307 0.458 29 UNIF SDFHX1- 1 39.307 0.000 39.307 19.542 30 UNIF SDFHX1- 2 39.307 0.000 39.307 20.000 31 UNIF SDFHX1- ALL 39.307 0.000 39.307 0.000 32 UNIF SDFHX2- 2 39.307 0.000 39.307 20.000 Page 35 of 43 230/279230 33 UNIF SDFHX2- 3 39.307 0.000 39.307 19.542 34 UNIF SDFHX2- 3R 39.307 0.000 39.307 0.458 35 UNIF SDFHX2- ALL 39.307 0.000 39.307 0.000 36 UNIF SDFHX3- 3 39.307 0.000 39.307 19.542 37 UNIF SDFHX3- 3R 39.307 0.000 39.307 0.458 38 UNIF SDFHX3- ALL 39.307 0.000 39.307 0.000 39 UNIF W- 1L -164.888 0.000 -164.888 0.458 40 UNIF W- 1 -164.888 0.000 -164.888 7.342 41 UNIF W- 1 -139.125 7.342 -139.125 19.542 42 UNIF W- 2 -139.125 0.000 -139.125 20.000 43 UNIF W- 3 -139.125 0.000 -139.125 12.200 44 UNIF W- 3 -164.888 12.200 -164.888 19.542 45 UNIF W- 3R -164.888 0.000 -164.888 0.458 46 UNIF W+ ALL 80.000 0.000 80.000 0.000 47 UNIF WPIP-> 1L -164.888 0.000 -164.888 0.458 48 UNIF WPIP-> 1 -164.888 0.000 -164.888 7.342 49 UNIF WPIP-> 1 -139.125 7.342 -139.125 19.542 50 UNIF WPIP-> 2 -139.125 0.000 -139.125 20.000 51 UNIF WPIP-> 3 -139.125 0.000 -139.125 19.542 52 UNIF WPIP-> 3R -139.125 0.000 -139.125 0.458 53 UNIF WPIP<- 1L -139.125 0.000 -139.125 0.458 54 UNIF WPIP<- 1 -139.125 0.000 -139.125 19.542 55 UNIF WPIP<- 2 -139.125 0.000 -139.125 20.000 56 UNIF WPIP<- 3 -139.125 0.000 -139.125 12.200 57 UNIF WPIP- 3 -164.888 12.200 -164 .888 19.542 58 UNIF WPIP<- 3R -164.888 0.000 -164.888 0.458 59 UNIF WNIP-> 1L -118.514 0.000 -118.514 0.458 60 UNIF WNIP-> 1 -118.514 0.000 -118.514 7.342 61 UNIF WNIP-> 1 -92.750 7.342 -92.750 19.542 62 UNIF WNIP-> 2 -92.750 0.000 -92.750 20.000 63 UNIF WNIP-> 3 -92.750 0.000 -92.750 19.542 64 UNIF WNIP-> 3R -92.750 0.000 -92.750 0.458 65 UNIF WNIP<- 1L -92.750 0.000 -92.750 0.458 66 UNIF WNIP<- 1 -92.750 0.000 -92.750 19.542 67 UNIF WNIP<- 2 -92.750 0.000 -92.750 20.000 68 UNIF WNIP<- 3 -92.750 0.000 -92.750 12.200 69 UNIF WNIP<- 3 -118.514 12.200 -118.514 19.542 70 UNIF WNIP<- 3R -118.514 0.000 -118.514 0.458 71 AXLD WPIP-> 1 1.707 0.000 0.000 0.000 72 AXLD WPIP-> 2 7.810 0.000 0.000 0.000 73 AXLD WPIP-> 3 -3.218 0.000 0.000 0.000 74 AXLD WPIP<- 1 -3.218 0.000 0.000 0.000 75 AXLD WPIP<- 2 7.810 0.000 0.000 0.000 76 AXLD WPIP<- 3 1.707 0.000 0.000 0.000 77 AXLD WNIP-> 1 4.023 0.000 0.000 0.000 78 AXLD WNIP-> 2 10.125 0.000 0.000 0.000 79 AXLD WNIP-> 3 -0.902 0.000 0.000 0.000 80 AXLD WNIP<- 1 -0.902 0.000 0.000 0.000 81 AXLD WNIP<- 2 10.125 0.000 0.000 0.000 82 AXLD WNIP<- 3 4.023 0.000 0.000 0.000 83 AXLD E-> 2 4.586 0.000 0.000 0.000 84 AXLD E-> 3 -1.028 0.000 0.000 0.000 85 AXLD E<- 2 5.614 0.000 0.000 0.000 86 AXLD E<- 3 1.028 0.000 0.000 0.000 87 AXLD D+C 2 0.022 0.000 0.000 0.000 88 AXLD D+C 3 -0.005 0.000 0.000 0.000 89 AXLD LEU- 2 0.075 0.000 0.000 0.000 90 AXLD LEU- 3 -0.017 0.000 0.000 0.000 91 AXLD SEU- 2 0.093 0.000 0.000 0.000 92 AXLD SEU- 3 -0.021 0.000 0.000 0.000 Page 36 of 43 231/279231 Roof purlin line 20 (Midfield) Design Spacing 5.000 ft Mounting Condition at Supports BYPASS Lateral Restraint by Panel Attachment CLIPPED End Inset Dimension at Lt End of Line 0.458 ft End Inset Dimension at Rt End of Line 0.458 ft With a 7.800 ft Edge Strip at Lt End and a 7.800 ft Edge Strip at Rt End Wind Suction Coefficient at Interior Region -1.080 Wind Suction Coefficient in Edge Strip at End -1.280 Wind Pressure Coefficient 0.621 DESIGN SUMMARY Roof purlin line 20 (Midfield) Span Length Mark Left Right Brace End Load Check Controlling ID No. Lap Lap Pts Clips Case Ratio Check (ft) (ft) (ft) 1L 0.458 80Z14 0.000 0.000 0 No 14 0.904 bending+crippling 14 L/ 75 deflection 1 19.542 80Z14 0.000 1.000 0 No 14 0.983 bending 18 L/ 348 deflection 2 20.000 80Z16 2.500 2.500 0 No 14 0.890 bending 25 L/1572 deflection 3 19.542 80Z14 1.000 0.000 0 No 14 0.983 bending 18 L/ 348 deflection 3R 0.458 80Z14 0.000 0.000 0 No 14 0.904 bending+crippling 14 L/ 75 deflection Total weight (extended) = 223.9 (223.9) lbs. Max check ratio = 0.983 LOAD COMBINATIONS Roof purlin line 20 (Midfield) No. Load Case Description 1 D+C + L Check By ASD; No Deflection Limit 2 D+C + S Check By ASD; No Deflection Limit 3 D+C + SEFHL- Check By ASD; No Deflection Limit 4 D+C + SEFHR- Check By ASD; No Deflection Limit 5 D+C + SEHFL- Check By ASD; No Deflection Limit 6 D+C + SEHFR- Check By ASD; No Deflection Limit 7 D+C + SDFH1L- Check By ASD; No Deflection Limit 8 D+C + SDFHX1- Check By ASD; No Deflection Limit 9 D+C + SDFHX2- Check By ASD; No Deflection Limit 10 D+C + SDFHX3- Page 37 of 43 232/279232 Check By ASD; No Deflection Limit 11 D + 0.6W- Check By ASD; No Deflection Limit 12 D+C + 0.6W+ Check By ASD; No Deflection Limit 13 D+C + 0.45W+ + 3/4L Check By ASD; No Deflection Limit 14 D+C + 0.45W+ + 3/4S Check By ASD; No Deflection Limit 15 0.6D + 0.6W- Check By ASD; No Deflection Limit 16 0.6(D+C) + 0.6W+ Check By ASD; No Deflection Limit 17 L No Stress Check; L/150 Deflection Limit 18 S No Stress Check; L/180 Deflection Limit 19 SEFHL- No Stress Check; L/180 Deflection Limit 20 SEFHR- No Stress Check; L/180 Deflection Limit 21 SEHFL- No Stress Check; L/180 Deflection Limit 22 SEHFR- No Stress Check; L/180 Deflection Limit 23 SDFHIL- No Stress Check; L/180 Deflection Limit 24 SDFHX1- No Stress Check; L/180 Deflection Limit 25 SDFHX2- No Stress Check; L/180 Deflection Limit 26 SDFHX3- No Stress Check; L/180 Deflection Limit 27 0.31W- No Stress Check; L/180 Deflection Limit 28 0.31W+ No Stress Check; L/180 Deflection Limit APPLIED LOADS Roof purlin line 20 (Midfield) No. Load Load Span Intensity From Intensity To Type Group Designation # lb/ft (kips) feet lb/ft feet 1 UNIF D ALL 7.493 0.000 7.493 0.000 2 UNIF D+C ALL 22.468 0.000 22.468 0.000 3 UNIF L ALL 99.827 0.000 99.827 0.000 4 UNIF S ALL 124.783 0.000 124.783 0.000 5 UNIF SEFHL- 1L 78.614 0.000 78.614 0.458 6 UNIF SEFHL- 1 78.614 0.000 78.614 19.542 7 UNIF SEFHL- 2 39.307 0.000 39.307 20.000 8 UNIF SEFHL- 3 39.307 0.000 39.307 19.542 9 UNIF SEFHL"- 3R 39.307 0.000 39.307 0.458 10 UNIF SEFHR- 1L 39.307 0.000 39.307 0.458 11 UNIF SEFHR- 1 39.307 0.000 39.307 19.542 12 UNIF SEFHR- 2 39.307 0.000 39.307 20.000 13 UNIF SEFHR- 3 78.614 0.000 78.614 19.542 14 UNIF SEFHR- 3R 78.614 0.000 78.614 0.458 15 UNIF SEHFL- 1L 39.307 0.000 39.307 0.458 16 UNIF SEHFL- 1 39.307 0.000 39.307 19.542 Page 38 of 43 233/279233 17 UNIF SEHFL- 2 78.614 0.000 78.614 20.000 18 UNIF SEHFL- 3 78.614 0.000 78.614 19.542 19 UNIF SEHFL- 3R 78.614 0.000 78.614 0.458 20 UNIF SEHFR- 1L 78.614 0.000 78.614 0.458 21 UNIF SEHFR- 1 78.614 0.000 78.614 19.542 22 UNIF SEHFR- 2 78.614 0.000 78.614 20.000 23 UNIF SEHFR- 3 39.307 0.000 39.307 19.542 24 UNIF SEHFR- 3R 39.307 0.000 39.307 0.458 25 UNIF SDFH1L- 1L 39.307 0.000 39.307 0.458 26 UNIF SDFH1L- 1 39.307 0.000 39.307 19.542 27 UNIF SDFH1L- ALL 39.307 0.000 39.307 0.000 28 UNIF SDFHX1- 1L 39.307 0.000 39.307 0.458 29 UNIF SDFHX1- 1 39.307 0.000 39.307 19.542 30 UNIF SDFHX1- 2 39.307 0.000 39.307 20.000 31 UNIF SDFHX1- ALL 39.307 0.000 39.307 0.000 32 UNIF SDFHX2- 2 39.307 0.000 39.307 20.000 33 UNIF SDFHX2- 3 39.307 0.000 39.307 19.542 34 UNIF SDFHX2- 3R 39.307 0.000 39.307 0.458 35 UNIF SDFHX2- ALL 39.307 0.000 39.307 0.000 36 UNIF SDFHX3- 3 39.307 0.000 39.307 19.542 37 UNIT SDFHX3- 3R 39.307 0.000 39.307 0.458 38 UNIF SDFHX3- ALL 39.307 0.000 39.307 0.000 39 UNIF W- 1L -164.888 0.000 -164.888 0.458 40 UNIF W- 1 -164.888 0.000 -164.888 7.342 41 UNIF W- 1 -139.125 7.342 -139.125 19.542 42 UNIF W- 2 -139.125 0.000 -139.125 20.000 43 UNIF W- 3 -139.125 0.000 -139.125 12.200 44 UNIF W- 3 -164.888 12.200 -164.888 19.542 45 UNIF W- 3R -164.888 0.000 -164.888 0.458 46 UNIF W+ ALL 80.000 0.000 80.000 0.000 Roof purlin line 21 (In Eave Edge Strip) Design Spacing 3.967 ft Mounting Condition at Supports BYPASS Lateral Restraint by Panel Attachment CLIPPED End Inset Dimension at Lt End of Line 0.458 ft End Inset Dimension at Rt End of Line 0.458 ft Line is Contained Within 7.800 ft Edge Strip at Eave With a 7.800 ft Edge Strip at Lt End and a 7.800 ft Edge Strip at Rt End Wind Suction Coefficient -1.280 Wind Pressure Coefficient 0.621 DESIGN SUMMARY Roof purlin line 21 (In Eave Edge Strip) Span Length Mark Left Right Brace End Load Check Controlling ID No. Lap Lap Pts Clips Case Ratio Check (ft) (ft) (ft) 1L 0.458 80Z14 0.000 0.000 0 No 14 0.722 bending+crippling 14 L/ 94 deflection 1 19.542 80Z14 0.000 1.000 0 No 14 0.784 bending 18 L/ 439 deflection 2 20.000 80Z16 2.500 2.500 0 No 14 0.710 bending 25 L/1982 deflection 3 19.542 80Z14 1.000 0.000 0 No 14 0.784 bending Page 39 of 43 234/279234 18 L/ 439 deflection 3R 0.458 80Z14 0.000 0.000 0 No 14 0.722 bending+crippling 14 L/ 94 deflection Total weight (extended) = 223.9 (223.9) lbs. Max check ratio = 0.784 LOAD COMBINATIONS Roof purlin line 21 (In Eave Edge Strip) No. Load Case Description 1 D+C + L Check By ASD; No Deflection Limit 2 D+C + S Check By ASD; No Deflection Limit 3 D+C + SEFHL- Check By ASD; No Deflection Limit 4 D+C + SEFHR- Check By ASD; No Deflection Limit 5 D+C + SEHFL- Check By ASD; No Deflection Limit 6 D+C + SEHFR- Check By ASD; No Deflection Limit 7 D+C + SDFH1L- Check By ASD; No Deflection Limit 8 D+C + SDFHXI- Check By ASD; No Deflection Limit 9 D+C + SDFHX2- Check By ASD; No Deflection Limit 10 D+C + SDFHX3- Check By ASD; No Deflection Limit 11 D + 0.6W- Check By ASD; No Deflection Limit 12 D+C + 0.6W+ Check By ASD; No Deflection Limit 13 D+C + 0.45W+ + 3/4L Check By ASD; No Deflection Limit 14 D+C + 0.45W+ + 3/4S Check By ASD; No Deflection Limit 15 0.6D + 0.6W- Check By ASD; No Deflection Limit 16 0.6(D+C) + 0.6W+ Check By ASD; No Deflection Limit 17 L No Stress Check; L/150 Deflection Limit 18 S No Stress Check; L/180 Deflection Limit 19 SEFHL- No Stress Check; L/180 Deflection Limit 20 SEFHR- No Stress Check; L/180 Deflection Limit 21 SEHFL- No Stress Check; L/180 Deflection Limit 22 SEHFR- No Stress Check; L/180 Deflection Limit 23 SDFH1L- No Stress Check; L/180 Deflection Limit 24 SDFHX1- No Stress Check; L/180 Deflection Limit 25 SDFHX2- Page 40 of 43 235/279235 No Stress Check; L/180 Deflection Limit 26 SDFHX3- No Stress Check; L/180 Deflection Limit 27 0.31W- No Stress Check; L/180 Deflection Limit 28 0.31W+ No Stress Check; L/180 Deflection Limit APPLIED LOADS Roof purlin line 21 (In Eave Edge Strip) No. Load Load Span Intensity From Intensity To Type Group Designation # lb/ft (kips) feet lb/ft feet 1 UNIF D ALL 5.945 0.000 5.945 0.000 2 UNIF D+C ALL 17.825 0.000 17.825 0.000 3 UNIF L ALL 79.198 0.000 79.198 0.000 4 UNIF S ALL 98.998 0.000 98.998 0.000 5 UNIF SEFHL- 1L 62.369 0.000 62.369 0.458 6 UNIF SEFHL- 1 62.369 0.000 62.369 19.542 7 UNIF SEFHL- 2 31.184 0.000 31.184 20.000 8 UNIF SEFHL- 3 31.184 0.000 31.184 19.542 9 UNIF SEFHL- 3R 31.184 0.000 31.184 0.458 10 UNIF SEFHR- 1L 31.184 0.000 31.184 0.458 11 UNIF SEFHR- 1 31.184 0.000 31.184 19.542 12 UNIF SEFHR- 2 31.184 0.000 31.184 20.000 13 UNIF SEFHR- 3 62.369 0.000 62.369 19.542 14 UNIF SEFHR- 3R 62.369 0.000 62.369 0.458 15 UNIF SEHFL- 1L 31.184 0.000 31.184 0.458 16 UNIF SEHFL- 1 31.184 0.000 31.184 19.542 17 UNIF SEHFL- 2 62.369 0.000 62.369 20.000 18 UNIF SEHFL- 3 62.369 0.000 62.369 19.542 19 UNIF SEHFL- 3R 62.369 0.000 62.369 0.458 20 UNIF SEHFR- 1L 62.369 0.000 62.369 0.458 21 UNIF SEHFR- 1 62.369 0.000 62.369 19.542 22 UNIF SEHFR- 2 62.369 0.000 62.369 20.000 23 UNIF SEHFR- 3 31.184 0.000 31.184 19.542 24 UNIF SEHFR- 3R 31.184 0.000 31.184 0.458 25 UNIF SDFH1L- 1L 31.184 0.000 31.184 0.458 26 UNIF SDFH1L- 1 31.184 0.000 31.184 19.542 27 UNIF SDFH1L- ALL 31.184 0.000 31.184 0.000 28 UNIF SDFHX1- 1L 31.184 0.000 31.184 0.458 29 UNIF SDFHX1- 1 31.184 0.000 31.184 19.542 30 UNIF SDFHX1- 2 31.184 0.000 31.184 20.000 31 UNIF SDFHX1- ALL 31.184 0.000 31.184 0.000 32 UNIF SDFHX2- 2 31.184 0.000 31.184 20.000 33 UNIF SDFHX2- 3 31.184 0.000 31.184 19.542 34 UNIF SDFHX2- 3R 31.184 0.000 31.184 0.458 35 UNIF SDFHX2- ALL 31.184 0.000 31.184 0.000 36 UNIF SDFHX3- 3 31.184 0.000 31.184 19.542 37 UNIF SDFHX3- 3R 31.184 0.000 31.184 0.458 38 UNIF SDFHX3- ALL 31.184 0.000 31.184 0.000 39 UNIF W- ALL -130.815 0.000 -130.815 0.000 40 UNIF W+ ALL 63.469 0.000 63.469 0.000 Roof purlin line 23 (Save Strut) Page 41 of 43 236/279236 Design Spacing 1.467 ft Mounting Condition at Supports SIMPLE Lateral Restraint by Panel Attachment THROUGH-FASTENED End Inset Dimension at Lt End of Line 0.458 ft End Inset Dimension at Rt End of Line 0.458 ft Wind Suction Coefficient 0.000 Wind Pressure Coefficient 0.000 DESIGN SUMMARY Roof purlin line 23 (Eave Strut) Span Length Mark Left Right Brace End Load Check Controlling ID No. Lap Lap Pts Clips Case Ratio Check (ft) (ft) (ft) 1L 0.458 8054 0.000 0.000 0 No 13 0.123 bearing at bolt 0 L/ 999 deflection 1 19.542 8054 0.000 0.000 0 R.End 5 0.128 compression+bending 24 L/9999 deflection 2 20.000 8054 0.000 0.000 0 B.End 5 0.827 bearing at bolt 24 L/9999 deflection 3 19.542 8054 0.000 0.000 0 L.End 8 0.043 bending+crippling 24 L/9999 deflection 3R 0.458 80S4 0.000 0.000 0 No 8 0.034 bending+crippling 0 L/ 999 deflection Total weight (extended) = 254.1 (254.1) lbs. Max check ratio = 0.827 LOAD COMBINATIONS Roof purlin line 23 (Eave Strut) No. Load Case Description 1 D+C + LEU- Check By ASD; No Deflection Limit 2 D+C + SEU- Check By ASD; No Deflection Limit 3 D+C + 0.6WPIP-> Check By ASD; No Deflection Limit 4 D+C + 0.6WPIP<- Check By ASD; No Deflection Limit 5 D+C + 0.6WNIP-> Check By ASD; No Deflection Limit 6 D+C + 0.6WNIP<- Check By ASD; No Deflection Limit 7 1.1 (D+C) + 0.7E-> Check By ASD; No Deflection Limit 8 1.1 (D+C) + 0.7E<- Check By ASD; No Deflection Limit 9 83.3333% x 1.1 (D+C) + 0.752E-> ASD Special Seismic; No Deflection Limit 10 83.3333% x 1.1 (D+C) + 0.752E<- ASD Special Seismic; No Deflection Limit 11 0.6 (D+C) + 0.6WPIP-> Check By ASD; No Deflection Limit 12 0.6(D+C) + 0.6WPIP<- Check By ASD; No Deflection Limit 13 0.6(D+C) + 0.6WNIP-> Check By ASD; No Deflection Limit 14 0.6(D+C) + 0.6WNIP<- Page 42 of 43 237/279237 Check By ASD; No Deflection Limit 15 1/2 (D+C) + 0.7E-> Check By ASD; No Deflection Limit 16 1/2 (D+C) + 0.7E<- Check By ASD; No Deflection Limit 17 83.3333% x 1/2 (D+C) + 0.752E-> ASD Special Seismic; No Deflection Limit 18 83.3333% x 1/2 (D+C) + 0.752E<- ASD Special Seismic; No Deflection Limit 19 0.31WPIP-> No Stress Check; L/180 Deflection Limit 20 0.31WPIP<- No Stress Check; L/180 Deflection Limit 21 0.31WNIP-> No Stress Check; L/180 Deflection Limit 22 0.31WNIP<- No Stress Check; L/180 Deflection Limit 23 1/2LEU- No Stress Check; L/150 Deflection Limit 24 SEU- No Stress Check; L/180 Deflection Limit APPLIED LOADS Roof purlin line 23 (Eave Strut) No. Load Load Span Intensity From Intensity To Type Group Designation # lb/ft (kips) feet lb/ft feet 1 AXLD WPIP-> 1 0.822 0.000 0.000 0.000 2 AXLD WPIP-> 2 11.850 0.000 0.000 0.000 3 AXLD WPIP<- 1 -1.550 0.000 0.000 0.000 4 AXLD WPIP<- 2 -1.550 0.000 0.000 0.000 5 AXLD WNIP-> 1 1.938 0.000 0.000 0.000 6 AXLD WNIP-> 2 12.966 0.000 0.000 0.000 7 AXLD WNIP<- 1 -0.435 0.000 0.000 0.000 8 AXLD WNIP<- 2 -0.435 0.000 0.000 0.000 9 AXLD E-> 2 9.304 0.000 0.000 0.000 10 AXLD 52E-> 2 13.012 0.000 0.000 0.000 11 AXLD E<- 2 -0.668 0.000 0.000 0.000 12 AXLD SIE<- 2 -0.935 0.000 0.000 0.000 13 AXLD D+C 2 0.035 0.000 0.000 0.000 14 AXLD LEU- 2 0.116 0.000 0.000 0.000 15 AXLD SEU- 2 0.146 0.000 0.000 0.000 Page 43 of 43 238/279238 AMERICAN BUILDINGS COMPANY F r o n t R o o f D e s i g n Designer: SJ Version Number: Ver. 43.0 Job Number: W15G0032A, Module: 2 Date/Time: 02/26/15 08:51 AM Type Width Length Ridge Dist Slope(F) Slope(R) No.BAYS LSS 111.000 ft 60.000 ft 111.000 ft 0.500:12 0.000:12 3 Wall Base Adjustments: FSW RSW LEW REW 0.000 ft 0.000 ft 0.000 ft 0.000ft S.Wall Eave Ht. Lean-To Width E.Wall Type Col_Spc. Girt Type Overhang Front: 23.000 ft 0.000 ft Left 4 S F 0.000 ft Rear: 27.625 ft 0.000 ft Right 4 S F 0.000 ft Building Code: 2014 Oregon Structural Specialty Code Building Use Category: II. All buildings and other structures except those listed in Risk Categories I, III, and IV (Snow Importance Factor = 1.000) Roof Dead Load = 1.500 psf Collateral Load = 3.000 psf Roof Live Load = 20.000 psf But Not Less Than 20.000 psf When Applied As A Uniform Load In Combination With Dead And Collateral Loads Ground Snow Load = 25.000 psf Snow Exposure Category: Fully Exposed (Snow Exposure Factor = 0.900) Thermal Condition: All structures except as indicated below (Thermal Factor = 1.000) Roof Snow Load = 25.000 psf But Not Less Than 25.000 psf When Applied As A Uniform Load In Combination With Dead And Collateral Loads Wind Velocity = 130.000 mph Open Condition: Open Buildings Wind Exposure Category: B. Urban and suburban areas, wooded areas or other terrain with numerous closely spaced obstructions having the size of single-family dwellings or larger & extending at least 2600 ft from site Design Wind Pressure (Cladding and Secondary) = 25.764 psf Anti-Roll Region #1 from eave to peak Width: 10.0087 ft On Slope: 0.5:12 Lines(np) : 3 W(gravity) : 30.3899 psf At Frame Line: 3 Applied Force(PL) : 1273.2 lbs Qty Clips Needed: 1 Qty Clips Utilized: 1 Resistance: 2000 lbs Purlin locations on slope from peak to eave. Line Distance Design Interest Anti-Roll Lt.Edge Rt.Edge Weight No. (feet) Spacing Line Region Clip Package Package (lbs) 1 1.50 2.96 Y 192.9 TYP 2 4.42 2.86 1 Y(Uphill) 192.9 3 7.21 2.80 192.9 4 10.01 1.40 Y 239.0 eave strut LINE WEIGHT TOTAL 817.7 EXTENDED WEIGHT TOTAL 817.7 Page 1 of 11 239/279239 • P A N E L Panel type: L3P26 Sx(top) = 0.037 in3; Sx(bottom) = 0.046 in3; Fy = 80 ksi Support purlin location (eave to ridge) : 0.000 2.796 5.592 8.509 Applied loads and adjusted loads: 0.940 psf= 0.939 to 0.939 lb/ft D 20.000 psf= 19.965 to 19.965 lb/ft L+ 25.000 psf= 24.957 to 24.957 lb/ft S+ -89.287 psf= -89.287 to -89.287 lb/ft W(overhang at eave corner)- 51.165 psf= 51.165 to 51.165 lb/ft W(overhang at eave corner)+ -89.287 psf= -89.287 to -89.287 lb/ft W(overhang at rake edge)- 51.165 psf= 51.165 to 51.165 lb/ft W(overhang at rake edge)+ -89.287 psf= -89.287 to -89.287 lb/ft W(overhang eave edge)- 51.165 psf= 51.165 to 51.165 lb/ft W(overhang eave edge)+ -44.992 psf= -44.992 to -44.992 lb/ft W(overhang typical)- 38.722 psf= 38.722 to 38.722 lb/ft W(overhang typical)+ Load Combination: D + L+ Check By ASD; L/60 Deflection Limit Net uniform load of 20.905 20.905 20.905 lb/ft Continuous spans of 2.796 2.796 2.917 ft Reaction = 66.160 lb; Capacity = 281.143 lb; Check Ratio = 0.235 Load Combination: D + S+ Check By ASD; L/60 Deflection Limit Net uniform load of 25.896 25.896 25.896 lb/ft Continuous spans of 2.796 2.796 2.917 ft Reaction = 81.957 lb; Capacity = 281.143 lb; Check Ratio = 0.292 Load Combination: D + 0.6W(overhang at eave corner)- Check By ASD; No Deflection Limit Net uniform load of -52.633 -52.633 lb/ft Continuous spans of 2.796 2.796 ft Reaction = -183.953 lb; Capacity = -239.467 lb; Check Ratio = 0.768 Load Combination: D + 0.6W(overhang at eave corner)+ Check By ASD; No Deflection Limit Net uniform load of 31.638 31.638 lb/ft Continuous spans of 2.796 2.796 ft Reaction = 110.575 lb; Capacity = 281.143 lb; Check Ratio = 0.393 Load Combination: D + 0.6W(overhang at rake edge)- Check By ASD; No Deflection Limit Net uniform load of -52.633 -52.633 lb/ft Continuous spans of 2.796 2.917 ft Reaction = -187.990 lb; Capacity = -239.467 lb; Check Ratio = 0.785 Load Combination: D + 0.6W(overhang at rake edge)+ Check By ASD; No Deflection Limit Net uniform load of 31.638 31.638 lb/ft Continuous spans of 2.796 2.917 ft Reaction = 113.002 lb; Capacity = 281.143 lb; Check Ratio = 0.402 Page 2 of 11 240/279240 Load Combination: D + 0.6W(overhang eave edge)- Check By ASD; No Deflection Limit Net uniform load of -52.633 -52.633 lb/ft Continuous spans of 2.796 2.796 ft Reaction = -183.953 lb; Capacity = -239.467 lb; Check Ratio = 0.768 Load Combination: D + 0.6W(overhang eave edge)+ Check By ASD; No Deflection Limit Net uniform load of 31.638 31.638 lb/ft Continuous spans of 2.796 2.796 ft Reaction = 110.575 lb; Capacity = 281.143 lb; Check Ratio = 0.393 Load Combination: D + 0.6W(overhang typical)- Check By ASD; No Deflection Limit Net uniform load of -26.056 -26.056 lb/ft Continuous spans of 2.796 2.917 ft Reaction = -93.064 lb; Capacity = -239.467 lb; Check Ratio = 0.389 Load Combination: D + 0.6W(overhang typical)+ Check By ASD; No Deflection Limit Net uniform load of 24.172 24.172 lb/ft Continuous spans of 2.796 2.917 ft Reaction = 86.336 lb; Capacity = 281.143 lb; Check Ratio = 0.307 Load Combination: D + 0.45W(overhang at eave corner)+ + 3/4L+ Check By ASD; No Deflection Limit Net uniform load of 38.937 38.937 lb/ft Continuous spans of 2.796 2.796 ft Reaction = 136.086 lb; Capacity = 281.143 lb; Check Ratio = 0.484 Load Combination: D + 0.45W(overhang at rake edge)+ + 3/4L+ Check By ASD; No Deflection Limit Net uniform load of 38.937 38.937 lb/ft Continuous spans of 2.796 2.917 ft Reaction = 139.072 lb; Capacity = 281.143 lb; Check Ratio = 0.495 Load Combination: D + 0.45W(overhang eave edge)+ + 3/4L+ Check By ASD; No Deflection Limit Net uniform load of 38.937 38.937 lb/ft Continuous spans of 2.796 2.796 ft Reaction = 136.086 lb; Capacity = 281.143 lb; Check Ratio = 0.484 Load Combination: D + 0.45W(overhang typical)+ + 3/4L+ Check By ASD; No Deflection Limit Net uniform load of 33.338 33.338 lb/ft Continuous spans of 2.796 2.917 ft Reaction = 119.073 lb; Capacity = 281.143 lb; Check Ratio = 0.424 Load Combination: D + 0.45W(overhang at eave corner)+ + 3/4S+ Check By ASD; No Deflection Limit Net uniform load of 42.681 42.681 lb/ft Continuous spans of 2.796 2.796 ft Reaction = 149.170 lb; Capacity = 281.143 lb; Check Ratio = 0.531 Load Combination: D + 0.45W(overhang at rake edge)+ + 3/4S+ Check By ASD; No Deflection Limit Net uniform load of 42.681 42.681 lb/ft Continuous spans of 2.796 2.917 ft Reaction = 152.443 lb; Capacity = 281.143 lb; Check Ratio = 0.542 Page 3 of 11 241/279241 Load Combination: D + 0.45W(overhang eave edge)+ + 3/4S+ Check By ASD; No Deflection Limit Net uniform load of 42.681 42.681 lb/ft Continuous spans of 2.796 2.796 ft Reaction = 149.170 lb; Capacity = 281.143 lb; Check Ratio = 0.531 Load Combination: D + 0.45W(overhang typical)+ + 3/4S+ Check By ASD; No Deflection Limit Net uniform load of 37.082 37.082 lb/ft Continuous spans of 2.796 2.917 ft Reaction = 132.444 lb; Capacity = 281.143 lb; Check Ratio = 0.471 Load Combination: 0.6D + 0.6W(overhang at eave corner)- Check By ASD; No Deflection Limit Net uniform load of -53.009 -53.009 lb/ft Continuous spans of 2.796 2.796 ft Reaction = -185.266 lb; Capacity = -239.467 lb; Check Ratio = 0.774 Load Combination: 0.6D + 0.6W(overhang at eave corner)+ Check By ASD; No Deflection Limit Net uniform load of 31.262 31.262 lb/ft Continuous spans of 2.796 2.796 ft Reaction = 109.262 lb; Capacity = 281.143 lb; Check Ratio = 0.389 Load Combination: 0.6D + 0.6W(overhang at rake edge)- Check By ASD; No Deflection Limit Net uniform load of -53.009 -53.009 lb/ft Continuous spans of 2.796 2.917 ft Reaction = -189.332 lb; Capacity = -239.467 lb; Check Ratio = 0.791 Load Combination: 0.6D + 0.6W(overhang at rake edge)+ Check By ASD; No Deflection Limit Net uniform load of 31.262 31.262 lb/ft Continuous spans of 2.796 2.917 ft Reaction = 111.660 lb; Capacity = 281.143 lb; Check Ratio = 0.397 Load Combination: 0.6D + 0.6W(overhang eave edge)- Check By ASD; No Deflection Limit Net uniform load of -53.009 -53.009 lb/ft Continuous spans of 2.796 2.796 ft Reaction = -185.266 lb; Capacity = -239.467 lb; Check Ratio = 0.774 Load Combination: 0.6D + 0.6W(overhang eave edge)+ Check By ASD; No Deflection Limit Net uniform load of 31.262 31.262 lb/ft Continuous spans of 2.796 2.796 ft Reaction = 109.262 lb; Capacity = 281.143 lb; Check Ratio = 0.389 Load Combination: 0.6D + 0.6W(overhang typical)- Check By ASD; No Deflection Limit Net uniform load of -26.432 -26.432 lb/ft Continuous spans of 2.796 2.917 ft Reaction = -94.406 lb; Capacity = -239.467 lb; Check Ratio = 0.394 Load Combination: 0.6D + 0.6W(overhang typical)+ Check By ASD; No Deflection Limit Net uniform load of 23.797 23.797 lb/ft Continuous spans of 2.796 2.917 ft Reaction = 84.995 lb; Capacity = 281.143 lb; Check Ratio = 0.302 Page 4 of 11 242/279242 Load Combination: D + 0.18W(overhang at eave corner)- Check By ASD; L/60 Deflection Limit Net uniform load of -15.494 -15.494 lb/ft Continuous spans of 2.796 2.796 ft Reaction = -54.151 lb; Capacity = -239.467 lb; Check Ratio = 0.226 Load Combination: D + 0.18W(overhang at eave corner)+ Check By ASD; L/60 Deflection Limit Net uniform load of 10.356 10.356 lb/ft Continuous spans of 2.796 2.796 ft Reaction = 36.194 lb; Capacity = 281.143 lb; Check Ratio = 0.129 Load Combination: D + 0.18W(overhang at rake edge)- Check By ASD; L/60 Deflection Limit Net uniform load of -15.494 -15.494 lb/ft Continuous spans of 2.796 2.917 ft Reaction = -55.340 lb; Capacity = -239.467 lb; Check Ratio = 0.231 Load Combination: D + 0.18W(overhang at rake edge)+ Check By ASD; L/60 Deflection Limit Net uniform load of 10.356 10.356 lb/ft Continuous spans of 2.796 2.917 ft Reaction = 36.988 lb; Capacity = 281.143 lb; Check Ratio = 0.132 Load Combination: D + 0.18W(overhang eave edge)- Check By ASD; L/60 Deflection Limit Net uniform load of -15.494 -15.494 lb/ft Continuous spans of 2.796 2.796 ft Reaction = -54.151 lb; Capacity = -239.467 lb; Check Ratio = 0.226 Load Combination: D + 0.18W(overhang eave edge)+ Check By ASD; L/60 Deflection Limit Net uniform load of 10.356 10.356 lb/ft Continuous spans of 2.796 2.796 ft Reaction = 36.194 lb; Capacity = 281.143 lb; Check Ratio = 0.129 Load Combination: D + 0.18W(overhang typical)- Check By ASD; L/60 Deflection Limit Net uniform load of -7.341 -7.341 lb/ft Continuous spans of 2.796 2.917 ft Reaction = -26.22.2 lb; Capacity = -239.467 lb; Check Ratio = 0.109 Load Combination: D + 0.18W(overhang typical)+ Check By ASD; L/60 Deflection Limit Net uniform load of 8.066 8.066 lb/ft Continuous spans of 2.796 2.917 ft Reaction = 28.809 lb; Capacity = 281.143 lb; Check Ratio = 0.102 Load Combination: D + 0.14W(overhang at eave corner)+ + 3/4L+ Check By ASD; L/60 Deflection Limit Net uniform load of 22.976 22.976 lb/ft Continuous spans of 2.796 2.796 ft Reaction = 80.300 lb; Capacity = 281.143 lb; Check Ratio = 0.286 Load Combination: D + 0.14W(overhang at rake edge)+ + 3/4L+ Check By ASD; L/60 Deflection Limit Net uniform load of 22.976 22.976 lb/ft Continuous spans of 2.796 2.917 ft Reaction = 82.062 lb; Capacity = 281.143 lb; Check Ratio = 0.292 Page 5 of 11 243/279243 Load Combination: D + 0.14W(overhang eave edge)+ + 3/4L+ Check By ASD; L/60 Deflection Limit Net uniform load of 22.976 22.976 lb/ft Continuous spans of 2.796 2.796 ft Reaction = 80.300 lb; Capacity = 281.143 lb; Check Ratio = 0.286 Load Combination: D + 0.14W(overhang typical)+ + 3/4L+ Check By ASD; L/60 Deflection Limit Net uniform load of 21.258 21.258 lb/ft Continuous spans of 2.796 2.917 ft Reaction = 75.928 lb; Capacity = 281.143 lb; Check Ratio = 0.270 Load Combination: D + 0.14W(overhang at eave corner)+ + 3/4S+ Check By ASD; L/60 Deflection Limit Net uniform load of 26.719 26.719 lb/ft Continuous spans of 2.796 2.796 ft Reaction = 93.384 lb; Capacity = 281.143 lb; Check Ratio = 0.332 Load Combination: D + 0.14W(overhang at rake edge)+ + 3/4S+ Check By ASD; L/60 Deflection Limit Net uniform load of 26.719 26.719 lb/ft Continuous spans of 2.796 2.917 ft Reaction = 95.433 lb; Capacity = 281.143 lb; Check Ratio = 0.339 Load Combination: D + 0.14W(overhang eave edge)+ + 3/4S+ Check By ASD; L/60 Deflection Limit Net uniform load of 26.719 26.719 lb/ft Continuous spans of 2.796 2.796 ft Reaction = 93.384 lb; Capacity = 281.143 lb; Check Ratio = 0.332 Load Combination: D + 0.14W(overhang typical)+ + 3/4S+ Check By ASD; L/60 Deflection Limit Net uniform load of 25.002 25.002 lb/ft Continuous spans of 2.796 2.917 ft Reaction = 89.298 lb; Capacity = 281.143 lb; Check Ratio = 0.318 Load Combination: 0.6D + 0.18W(overhang at eave corner)- Check By ASD; L/60 Deflection Limit Net uniform load of -15.870 -15.870 lb/ft Continuous spans of 2.796 2.796 ft Reaction = -55.464 lb; Capacity = -239.467 lb; Check Ratio = 0.232 Load Combination: 0.6D + 0.18W(overhang at eave corner)+ Check By ASD; L/60 Deflection Limit Net uniform load of 9.980 9.980 lb/ft Continuous spans of 2.796 2.796 ft Reaction = 34.881 lb; Capacity = 281.143 lb; Check Ratio = 0.124 Load Combination: 0.6D + 0.18W(overhang at rake edge)- Check By ASD; L/60 Deflection Limit Net uniform load of -15.870 -15.870 lb/ft Continuous spans of 2.796 2.917 ft Reaction = -56.681 lb; Capacity = -239.467 lb; Check Ratio = 0.237 Load Combination: 0.6D + 0.18W(overhang at rake edge)+ Check By ASD; L/60 Deflection Limit Net uniform load of 9.980 9.980 lb/ft Continuous spans of 2.796 2.917 ft Reaction = 35.646 lb; Capacity = 281.143 lb; Check Ratio = 0.127 Page 6 of 11 244/279244 Load Combination: 0.6D + 0.18W(overhang eave edge)- Check By ASD; L/60 Deflection Limit Net uniform load of -15.870 -15.870 lb/ft Continuous spans of 2.796 2.796 ft Reaction = -55.464 lb; Capacity = -239.467 lb; Check Ratio = 0.232 Load Combination: 0.6D + 0.18W(overhang eave edge)+ Check By ASD; L/60 Deflection Limit Net uniform load of 9.980 9.980 lb/ft Continuous spans of 2.796 2.796 ft Reaction = 34.881 lb; Capacity = 281.143 lb; Check Ratio = 0.124 Load Combination: 0.6D + 0.18W(overhang typical)- Check By ASD; L/60 Deflection Limit Net uniform load of -7.717 -7.717 lb/ft Continuous spans of 2.796 2.917 ft Reaction = -27.563 lb; Capacity = -239.467 lb; Check Ratio = 0.115 Load Combination: 0.6D + 0.18W(overhang typical)+ Check By ASD; L/60 Deflection Limit Net uniform load of 7.690 7.690 lb/ft Continuous spans of 2.796 2.917 ft Reaction = 27.467 lb; Capacity = 281.143 lb; Check Ratio = 0.098 Load Combination: L+ No Stress Design; L/60 Deflection Limit Net uniform load of 19.965 19.965 19.965 lb/ft Continuous spans of 2.796 2.796 2.917 ft Deflection = 0.009 inches; Limit = 0.583 inches; Check Ratio = 0.015 Load Combination: S+ No Stress Design; L/60 Deflection Limit Net uniform load of 24.957 24.957 24.957 lb/ft Continuous spans of 2.796 2.796 2.917 ft Deflection = 0.011 inches; Limit = 0.583 inches; Check Ratio = 0.019 Roof purlin line 1 (In Eave Edge Strip) Design Spacing 2.958 ft Mounting Condition at Supports BYPASS Lateral Restraint by Panel Attachment THROUGH-FASTENED End Inset Dimension at Lt End of Line 0.500 ft End Inset Dimension at Rt End of Line 0.458 ft Line is Contained Within 5.433 ft Edge Strip at Eave With a 5.433 ft Edge Strip at Lt End and a 5.433 ft Edge Strip at Rt End Wind Suction Coefficient -1.155 Wind Pressure Coefficient 0.993 DESIGN SUMMARY Roof purlin line 1 (In Eave Edge Strip) Span Length Mark Left Right Brace End Load Check Controlling ID No. Lap Lap Pts Clips Case Ratio Check (ft) (ft) (ft) 1L 0.500 80Z16 0.000 0.000 0 No 14 0.999 bending+crippling 14 L/ 77 deflection 1 20.417 80Z16 0.000 1.000 0 No 14 0.999 bending+crippling Page 7 of 11 245/279245 18 L/ 404 deflection 2 20.917 80Z16 1.000 1.000 0 No 14 1.095 bending 26 L/2132 deflection 3 20.958 80Z16 1.000 0.000 0 No 14 1.038 bending 18 L/ 372 deflection 3R 0.458 80Z16 0.000 0.000 0 No 14 1.019 bending+crippling 14 L/ 70 deflection Total weight (extended) = 192.9 (192.9) lbs. Max check ratio = 1.095 LOAD COMBINATIONS Roof purlin line 1 (In Eave Edge Strip) No. Load Case Description 1 D+C + L Check By ASD; No Deflection Limit 2 D+C + S Check By ASD; No Deflection Limit 3 D+C + SEFHL- Check By ASD; No Deflection Limit 4 D+C + SEFHR- Check By ASD; No Deflection Limit 5 D+C + SEHFL- Check By ASD; No Deflection Limit 6 D+C + SEHFR" Check By ASD; No Deflection Limit 7 D+C + SDFH1L- Check By ASD; No Deflection Limit 8 D+C + SDFHX1- Check By ASD; No Deflection Limit 9 D+C + SDFHX2- Check By ASD; No Deflection Limit 10 D+C + SDFHX3- Check By ASD; No Deflection Limit 11 D + 0.6W- Check By ASD; No Deflection Limit 12 D+C + 0.6W+ Check By ASD; No Deflection Limit 13 D+C + 0.45W+ + 3/4L Check By ASD; No Deflection Limit 14 D+C + 0.45W+ + 3/4S Check By ASD; No Deflection Limit 15 0.6D + 0.6W- Check By ASD; No Deflection Limit 16 0.6(D+C) + 0.6W+ Check By ASD; No Deflection Limit 17 L No Stress Check; L/150 Deflection Limit 18 S No Stress Check; L/180 Deflection Limit 19 SEFHL- No Stress Check; L/180 Deflection Limit 20 SEFHR- No Stress Check; L/180 Deflection Limit 21 SEHFL- No Stress Check; L/180 Deflection Limit 22 SEHFR- No Stress Check; L/180 Deflection Limit 23 SDFHIL- Page 8 of 11 246/279246 No Stress Check; L/180 Deflection Limit 24 SDFHX1- No Stress Check; L/180 Deflection Limit 25 SDFHX2- No Stress Check; L/180 Deflection Limit 26 SDFHX3- No Stress Check; L/180 Deflection Limit 27 0.31W- No Stress Check; L/180 Deflection Limit 28 0.31W+ No Stress Check; L/180 Deflection Limit APPLIED LOADS Roof purlin line 1 (In Eave Edge Strip) No. Load Load Span Intensity From Intensity To Type Group Designation # lb/ft(kips) feet lb/ft feet 1 UNIF D ALL 4.434 0.000 4 .434 0.000 2 UNIF D+C ALL 13.293 0.000 13.293 0.000 3 UNIF L ALL 59.064 0.000 59.064 0.000 4 UNIF S ALL 73.830 0.000 73.830 0.000 5 UNIF SEFHL- 1L 46.513 0.000 46.513 0.500 6 UNIF SEFHL- 1 46.513 0.000 46.513 20.417 7 UNIF SEFHL- 2 23.256 0.000 23.256 20.917 8 UNIF SEFHL- 3 23.256 0.000 23.256 20.958 9 UNIF SEFHL- 3R 23.256 0.000 23.256 0.458 10 UNIF SEFHR- 1L 23.256 0.000 23.256 0.500 11 UNIF SEFHR- 1 23.256 0.000 23.256 20.417 12 UNIF SEFHR- 2 23.256 0.000 23.256 20.917 13 UNIF SEFHR- 3 46.513 0.000 46.513 20.958 14 UNIF SEFHR- 3R 46.513 0.000 46.513 0.458 15 UNIF SEHFL- 1L 23.256 0.000 23.256 0.500 16 UNIF SEHFL- 1 23.256 0.000 23.256 20.417 17 UNIF SEHFL- 2 46.513 0.000 46.513 20.917 18 UNIF SEHFL- 3 46.513 0.000 46.513 20.958 19 UNIF SEHFL- 3R 46.513 0.000 46.513 0.458 20 UNIF SEHFR- 1L 46.513 0.000 46.513 0.500 21 UNIF SEHFR- 1 46.513 0.000 46.513 20.417 22 UNIF SEHFR- 2 46.513 0.000 46.513 20.917 23 UNIF SEHFR- 3 23.256 0.000 23.256 20.958 24 UNIF SEHFR- 3R 23.256 0.000 23.256 0.458 25 UNIF SDFH1L- 1L 23.256 0.000 23.256 0.500 26 UNIF SDFH1L- 1 23.256 0.000 23.256 20.417 27 UNIF SDFH1L- ALL 23.256 0.000 23.256 0.000 28 UNIF SDFHX1- 1L 23.256 0.000 23.256 0.500 29 UNIF SDFHX1- 1 23.256 0.000 23.256 20.417 30 UNIF SDFHX1- 2 23.256 0.000 23.256 20.917 31 UNIF SDFHX1- ALL 23.256 0.000 23.256 0.000 32 UNIF SDFHX2- 2 23.256 0.000 23.256 20.917 33 UNIF SDFHX2- 3 23.256 0.000 23.256 20.958 34 UNIF SDFHX2- 3R 23.256 0.000 23.256 0.458 35 UNIF SDFHX2- ALL 23.256 0.000 23.256 0.000 36 UNIF SDFHX3- 3 23.256 0.000 23.256 20.958 37 UNIF SDFHX3- 3R 23.256 0.000 23.256 0.458 38 UNIF SDFHX3- ALL 23.256 0.000 23.256 0.000 39 UNIF W- ALL -88.047 0.000 -88.047 0.000 40 UNIF W+ ALL 75.681 0.000 75.681 0.000 Page 9of11 247/279247 Roof purlin line 4 (Eave Strut) Design Spacing 1.398 ft Mounting Condition at Supports SIMPLE Lateral Restraint by Panel Attachment THROUGH-FASTENED End Inset Dimension at Lt End of Line 0.500 ft End Inset Dimension at Rt End of Line 0.458 ft Wind Suction Coefficient 0.000 Wind Pressure Coefficient 0.000 DESIGN SUMMARY Roof purlin line 4 (Eave Strut) Span Length Mark Left Right Brace End Load Check Controlling ID No. Lap Lap Pts Clips Case Ratio Check (ft) (ft) (ft) 1L 0.500 80S5 0.000 0.000 0 No 13 0.055 bearing at bolt 0 L/ 999 deflection 1 20.417 8055 0.000 0.000 0 No 13 0.111 bearing at bolt 24 L/9999 deflection 2 20.917 80S5 0.000 0.000 0 No 6 0.111 bearing at bolt 24 L/9999 deflection 3 20.958 80S5 0.000 0.000 0 No 14 0.110 bearing at bolt 24 L/9999 deflection 3R 0.458 80S5 0.000 0.000 0 No 14 0.055 bearing at bolt 0 L/ 999 deflection Total weight (extended) = 239.0 (239.0) lbs. Max check ratio = 0.111 LOAD COMBINATIONS Roof purlin line 4 (Eave Strut) No. Load Case Description 1 D+C + LEU- Check By ASD; No Deflection Limit 2 D+C + SEU- Check By ASD; No Deflection Limit 3 D+C + 0.6WPIP-> Check By ASD; No Deflection Limit 4 D+C + 0.6WPIP<- Check By ASD; No Deflection Limit 5 D+C + 0.6WNIP-> Check By ASD; No Deflection Limit 6 D+C + 0.6WNIP<- Check By ASD; No Deflection Limit 7 1.1 (D+C) + 0.7E-> Check By ASD; No Deflection Limit 8 1.1 (D+C) + 0.7E<- Check By ASD; No Deflection Limit 9 83.3333% x 1.1 (D+C) + 0.7cE-> ASD Special Seismic; No Deflection Limit 10 83.3333% x 1.1 (D+C) + 0.7cE<- ASD Special Seismic; No Deflection Limit 11 0.6(D+C) + 0.6WPIP-> Check By ASD; No Deflection Limit 12 0.6(D+C) + 0.6WPIP<- Page 10 of 11 248/279248 Check By ASD; No Deflection Limit 13 0.6(D+C) + 0.6WNIP-> Check By ASD; No Deflection Limit 14 0.6(D+C) + 0.6WNIP<- Check By ASD; No Deflection Limit 15 1/2 (D+C) + 0.7E-> Check By ASD; No Deflection Limit 16 1/2 (D+C) + 0.7E<- Check By ASD; No Deflection Limit 17 83.3333% x 1/2 (D+C) + 0.70E-> ASD Special Seismic; No Deflection Limit 18 83.3333% x 1/2 (D+C) + 0.70E<- ASD Special Seismic; No Deflection Limit 19 0.31WPIP-> No Stress Check; L/180 Deflection Limit 20 0.31WPIP<- No Stress Check; L/180 Deflection Limit 21 0.31WNIP-> No Stress Check; L/180 Deflection Limit 22 0.31WNIP<- No Stress Check; L/180 Deflection Limit 23 1/2LEU- No Stress Check; L/150 Deflection Limit 24 SEU- No Stress Check; L/180 Deflection Limit APPLIED LOADS Roof purlin line 4 (Eave Strut) No. Load Load Span Intensity From Intensity To Type Group Designation # lb/ft(kips) feet lb/ft feet 1 AXLD WPIP-> 1 0.779 0.000 0.000 0.000 2 AXLD WPIP-> 2 0.779 0.000 0.000 0.000 3 AXLD WPIP-> 3 -0.549 0.000 0.000 0.000 4 AXLD WPIP<- 1 -0.549 0.000 0.000 0.000 5 AXLD WPIP<- 2 0.779 0.000 0.000 0.000 6 AXLD WPIP<- 3 0.779 0.000 0.000 0.000 7 AXLD WNIP-> 1 0.779 0.000 0.000 0.000 8 AXLD WNIP-> 2 0.779 0.000 0.000 0.000 9 AXLD WNIP-> 3 -0.549 0.000 0.000 0.000 10 AXLD WNIP<- 1 -0.549 0.000 0.000 0.000 11 AXLD WNIP<- 2 0.779 0.000 0.000 0.000 12 AXLD WNIP<- 3 0.779 0.000 0.000 0.000 13 AXLD E-> 2 0.244 0.000 0.000 0.000 14 AXLD E-> 3 -0.250 0.000 0.000 0.000 15 AXLD 0E-> 2 0.375 0.000 0.000 0.000 16 AXLD 0E-> 3 -0.384 0.000 0.000 0.000 17 AXLD E<- 2 0.494 0.000 0.000 0.000 18 AXLD E<- 3 0.250 0.000 0.000 0.000 19 AXLD nE<- 2 0.760 0.000 0.000 0.000 20 AXLD 0E<- 3 0.384 0.000 0.000 0.000 21 AXLD D+C 2 0.001 0.000 0.000 0.000 22 AXLD D+C 3 -0.001 0.000 0.000 0.000 23 AXLD LEU- 2 0.004 0.000 0.000 0.000 24 AXLD LEU- 3 -0.004 0.000 0.000 0.000 25 AXLD SEU- 2 0.005 0.000 0.000 0.000 26 AXLD SEU- 3 -0.005 0.000 0.000 0.000 Page 11 of 11 249/279249 AMERICAN BUILDINGS COMPANY F r o n t R o o f D e s i g n Designer: SJ Version Number: Ver. 43.0 Job Number: W15G0032A, Module: 3 Date/Time: 02/24/15 04:41 PM Type Width Length Ridge Dist Slope(F) Slope(R) No.BAYS LSS 111.000 ft 60.000 ft 111.000 ft 0.500:12 0.000:12 3 Wall Base Adjustments: FSW RSW LEW REW 0.000 ft 0.000 ft 0.000 ft 0.000ft S.Wall Eave Ht. Lean-To Width E.Wall Type Col_Spc. Girt Type Overhang Front: 23.000 ft 0.000 ft Left 4 S F 0.000 ft Rear: 27.625 ft 0.000 ft Right 4 S F 0.000 ft Building Code: 2014 Oregon Structural Specialty Code Building Use Category: II. All buildings and other structures except those listed in Risk Categories I, III, and IV (Snow Importance Factor = 1.000) Roof Dead Load = 1.500 psf Collateral Load = 3.000 psf Roof Live Load = 20.000 psf But Not Less Than 20.000 psf When Applied As A Uniform Load In Combination With Dead And Collateral Loads Ground Snow Load = 25.000 psf Snow Exposure Category: Fully Exposed (Snow Exposure Factor = 0.900) Thermal Condition: All structures except as indicated below (Thermal Factor = 1.000) Roof Snow Load = 25.000 psf But Not Less Than 25.000 psf When Applied As A Uniform Load In Combination With Dead And Collateral Loads Wind Velocity = 130.000 mph Open Condition: Enclosed Buildings Wind Exposure Category: B. Urban and suburban areas, wooded areas or other terrain with numerous closely spaced obstructions having the size of single-family dwellings or larger & extending at least 2600 ft from site Design Wind Pressure (Cladding and Secondary) = 25.764 psf Anti-Roll Region #1 from eave to peak Width: 8.00694 ft On Slope: 0.5:12 Lines(np) : 3 W(gravity) : 30.6258 psf At Frame Line: 2 Applied Force(PL) : 1040.48 lbs Qty Clips Needed: 1 Qty Clips Utilized: 1 Resistance: 2000 lbs Purlin locations on slope from peak to eave. Line Distance Design Interest Anti-Roll Lt.Edge Rt.Edge Weight No. (feet) Spacing Line Region Clip Package Package (lbs) 1 1.50 2.63 Y 131.5 TYP 2 3.75 2.19 Y 1 Y(Uphill) 131.5 3 5.88 2.13 131.5 4 8.01 1.06 Y 161.8 eave strut LINE WEIGHT TOTAL 556.3 EXTENDED WEIGHT TOTAL 556.3 Page 1 of 9 250/279250 P A N E L Panel type: L3P26 Sx(top) = 0.037 in3; Sx(bottom) = 0.046 in3; Fy = 80 ksi Support purlin location (eave to ridge) : 0.000 2.128 4.257 6.507 Applied loads and adjusted loads: 0.940 psf= 0.939 to 0.939 lb/ft D 20.000 psf= 19.965 to 19.965 lb/ft L+ 25.000 psf= 24.957 to 24.957 lb/ft S+ -72.139 psf= -72.139 to -72.139 lb/ft W(overhang at eave corner)- -43.798 psf= -43.798 to -43.798 lb/ft W(overhang at rake edge)- -43.798 psf= -43.798 to -43.798 lb/ft W(overhang eave edge)- -43.798 psf= -43.798 to -43.798 lb/ft W(overhang typical)- Load Combination: D + L+ Check By ASD; L/60 Deflection Limit Net uniform load of 20.905 20.905 20.905 lb/ft Continuous spans of 2.128 2.128 2.250 ft Reaction = 50.831 lb; Capacity = 281.143 lb; Check Ratio = 0.181 Load Combination: D + S+ Check By ASD; L/60 Deflection Limit Net uniform load of 25.896 25.896 25.896 lb/ft Continuous spans of 2.128 2.128 2.250 ft Reaction = 62.968 lb; Capacity = 281.143 lb; Check Ratio = 0.224 Load Combination: D + 0.6W(overhang at eave corner)- Check By ASD; No Deflection Limit Net uniform load of -42.344 -42.344 -42.344 lb/ft Continuous spans of 2.128 2.128 2.250 ft Reaction = -102.963 lb; Capacity = -239.467 lb; Check Ratio = 0.430 Load Combination: D + 0.6W(overhang at rake edge)- Check By ASD; No Deflection Limit Net uniform load of -25.340 lb/ft On a simple span of 2.250 ft Reaction = -28.507 lb; Capacity = -239.467 lb; Check Ratio = 0.119 Load Combination: D + 0.6W(overhang eave edge)- Check By ASD; No Deflection Limit Net uniform load of -25.340 -25.340 -25.340 lb/ft Continuous spans of 2.128 2.128 2.250 ft Reaction = -61.616 lb; Capacity = -239.467 lb; Check Ratio = 0.257 Load Combination: D + 0.6W(overhang typical)- Check By ASD; No Deflection Limit Net uniform load of -25.340 lb/ft On a simple span of 2.250 ft Reaction = -28.507 lb; Capacity = -239.467 lb; Check Ratio = 0.119 Load Combination: 0.6D + 0.6W(overhang at eave corner)- Check By ASD; No Deflection Limit Net uniform load of -42.720 -42.720 -42.720 lb/ft Continuous spans of 2.128 2.128 2.250 ft Page 2 of 9 251/:279251 Reaction = -103.877 lb; Capacity = -239.467 lb; Check Ratio = 0.434 Load Combination: 0.6D + 0.6W(overhang at rake edge)- Check By ASD; No Deflection Limit Net uniform load of -25.716 lb/ft On a simple span of 2.250 ft Reaction = -28.930 lb; Capacity = -239.467 lb; Check Ratio = 0.121 Load Combination: 0.6D + 0.6W(overhang eave edge)- Check By ASD; No Deflection Limit Net uniform load of -25.716 -25.716 -25.716 lb/ft Continuous spans of 2.128 2.128 2.250 ft Reaction = -62.530 lb; Capacity = -239.467 lb; Check Ratio = 0.261 Load Combination: 0.6D + 0.6W(overhang typical)- Check By ASD; No Deflection Limit Net uniform load of -25.716 lb/ft On a simple span of 2.250 ft Reaction = -28.930 lb; Capacity = -239.467 lb; Check Ratio = 0.121 Load Combination: D + 0.18W(overhang at eave corner)- Check By ASD; L/60 Deflection Limit Net uniform load of -12.338 -12.338 -12.338 lb/ft Continuous spans of 2.128 2.128 2.250 ft Reaction = -30.000 lb; Capacity = -239.467 lb; Check Ratio = 0.125 Load Combination: D + 0.18W(overhang at rake edge)- Check By ASD; L/60 Deflection Limit Net uniform load of -7.122 lb/ft On a simple span of 2.250 ft Reaction = -8.012 lb; Capacity = -239.467 lb; Check Ratio = 0.033 Load Combination: D + 0.18W(overhang eave edge)- Check By ASD; L/60 Deflection Limit Net uniform load of -7.122 -7.122 -7.122 lb/ft Continuous spans of 2.128 2.128 2.250 ft Reaction = -17.317 lb; Capacity = -239.467 lb; Check Ratio = 0.072 Load Combination: D + 0.18W(overhang typical)- Check By ASD; L/60 Deflection Limit Net uniform load of -7.122 lb/ft On a simple span of 2.250 ft Reaction = -8.012 lb; Capacity = -239.467 lb; Check Ratio = 0.033 Load Combination: 0.6D + 0.18W(overhang at eave corner)- Check By ASD; L/60 Deflection Limit Net uniform load of -12.713 -12.713 -12.713 lb/ft Continuous spans of 2.128 2.128 2.250 ft Reaction = -30.914 lb; Capacity = -239.467 lb; Check Ratio = 0.129 Load Combination: 0.6D + 0.18W(overhang at rake edge)- Check By ASD; L/60 Deflection Limit Net uniform load of -7.497 lb/ft On a simple span of 2.250 ft Reaction = -8.435 lb; Capacity = -239.467 lb; Check Ratio = 0.035 Load Combination: 0.6D + 0.18W(overhang eave edge)- Check By ASD; L/60 Deflection Limit Net uniform load of -7.497 -7.497 -7.497 lb/ft Continuous spans of 2.128 2.128 2.250 ft Page 3 of 9 252/279252 Reaction = -18.231 lb; Capacity = -239.467 lb; Check Ratio = 0.076 Load Combination: 0.6D + 0.18W(overhang typical)- Check By ASD; L/60 Deflection Limit Net uniform load of -7.497 lb/ft On a simple span of 2.250 ft Reaction = -8.435 lb; Capacity = -239.467 lb; Check Ratio = 0.035 Load Combination: L+ No Stress Design; L/60 Deflection Limit Net uniform load of 19.965 19.965 19.965 lb/ft Continuous spans of 2.128 2.128 2.250 ft Deflection = 0.003 inches; Limit = 0.450 inches; Check Ratio = 0.007 Load Combination: S+ No Stress Design; L/60 Deflection Limit Net uniform load of 24.957 24 .957 24.957 lb/ft Continuous spans of 2.128 2.128 2.250 ft Deflection = 0.004 inches; Limit = 0.450 inches; Check Ratio = 0.009 Roof purlin line 1 (Midfield) Design Spacing 2.625 ft Mounting Condition at Supports BYPASS Lateral Restraint by Panel Attachment THROUGH-FASTENED End Inset Dimension at Lt End of Line 0.500 ft End Inset Dimension at Rt End of Line 0.500 ft Line is Contained Within 4.283 ft Edge Strip at Eave With a 4.283 ft Edge Strip at Lt End and a 4.283 ft Edge Strip at Rt End Wind Suction Coefficient at Interior Region -1.468 Wind Suction Coefficient in Edge Strip at End -0.800 Wind Pressure Coefficient 0.000 DESIGN SUMMARY Roof purlin line 1 (Midfield) Span Length Mark Left Right Brace End Load Check Controlling ID No. Lap Lap Pts Clips Case Ratio Check (ft) (ft) (ft) 1L 0.500 80Z16 0.000 0.000 0 No 9 0.863 bending+crippling 9 L/ 131 deflection 1 20.917 80Z16 0.000 1.500 0 No 9 0.863 bending+crippling 17 L/ 648 deflection 2 20.917 80Z16 1.500 0.000 0 No 1 0.782 bending 19 L/ 648 deflection 2R 0.500 80Z16 0.000 0.000 0 No 1 0.602 bending+crippling 3 L/ 139 deflection Total weight (extended) = 131.5 (131.5) lbs. Max check ratio = 0.863 LOAD COMBINATIONS Roof purlin line 1 (Midfield) No. Load Case Description 1 D+C + L Check By ASD; No Deflection Limit Page 4 of 9 253/279253 2 D+C + SEFHL- Check By ASD; No Deflection Limit 3 D+C + SEFHR- Check By ASD; No Deflection Limit 4 D+C + SEHFL- Check By ASD; No Deflection Limit 5 D+C + SEHFR- Check By ASD; No Deflection Limit 6 D+C + SDFH1L- Check By ASD; No Deflection Limit 7 D+C + SDFHX1- Check By ASD; No Deflection Limit 8 D+C + SDFHX2- Check By ASD; No Deflection Limit 9 D+C + S Check By ASD; No Deflection Limit 10 D + 0.6W- Check By ASD; No Deflection Limit 11 0.6D + 0.6W- Check By ASD; No Deflection Limit 12 L No Stress Check; L/150 Deflection Limit 13 SEFHL- No Stress Check; L/180 Deflection Limit 14 SEFHR- No Stress Check; L/180 Deflection Limit 15 SEHFL- No Stress Check; L/180 Deflection Limit 16 SEHFR- No Stress Check; L/180 Deflection Limit 17 SDFH1L- No Stress Check; L/180 Deflection Limit 18 SDFHX1- No Stress Check; L/180 Deflection Limit 19 SDFHX2- No Stress Check; L/180 Deflection Limit 20 0.31W- No Stress Check; L/180 Deflection Limit 21 S No Stress Check; L/180 Deflection Limit APPLIED LOADS Roof purlin line 1 (Midfield) No. Load Load Span Intensity From Intensity To Type Group Designation # lb/ft(kips) feet lb/ft feet 1 UNIF D ALL 3.934 0.000 3.934 0.000 2 UNIF D+C ALL 11.795 0.000 11.795 0.000 3 UNIF L ALL 52.409 0.000 52.409 0.000 4 UNIF SEFHL- 1L 41.272 0.000 41.272 0.500 5 UNIF SEFHL- 1 41.272 0.000 41.272 20.917 6 UNIF SEFHL- 2 20.636 0.000 20.636 20.917 7 UNIF SEFHL- 2R 20.636 0.000 20.636 0.500 8 UNIF SEFHR- 1L 20.636 0.000 20.636 0.500 9 UNIF SEFHR- 1 20.636 0.000 20.636 20.917 10 UNIF SEFHR- 2 41.272 0.000 41.272 20.917 11 UNIF SEFHR- 2R 41.272 0.000 41.272 0.500 12 UNIF SEHFL- 1L 20.636 0.000 20.636 0.500 13 UNIF SEHFL- 1 20.636 0.000 20.636 20.917 Page 5 of 9 254/279254 14 UNIF SEHFL- 2 41.272 0.000 41.272 20.917 15 UNIF SEHFL- 2R 41.272 0.000 41.272 0.500 16 UNIF SEHFR- 1L 41.272 0.000 41.272 0.500 17 UNIF SEHFR- 2 20.636 0.000 20.636 20.917 18 UNIF SEHFR- 2R 20.636 0.000 20.636 0.500 19 UNIF SDFH1L- 1L 20.636 0.000 20.636 0.500 20 UNIF SDFH1L- 1 20.636 0.000 20.636 20.917 21 UNIF SDFH1L- ALL 20.636 0.000 20.636 0.000 22 UNIF SDFHX1- 1L 20.636 0.000 20.636 0.500 23 UNIF SDFHX1- 1 20.636 0.000 20.636 20.917 24 UNIF SDFHX1- 2 20.636 0.000 20.636 20.917 25 UNIF SDFHX1- 2R 20.636 0.000 20.636 0.500 26 UNIF SDFHX1- ALL 20.636 0.000 20.636 0.000 27 UNIF SDFHX2- 2 20.636 0.000 20.636 20.917 28 UNIF SDFHX2- 2R 20.636 0.000 20.636 0.500 29 UNIF SDFHX2- ALL 20.636 0.000 20.636 0.000 30 UNIF W- 1L -54.104 0.000 -54.104 0.500 31 UNIF W- 1 -54.104 0.000 -54.104 3.783 32 UNIF W- 1 -99.288 3.783 -99.288 20.917 33 UNIF W- 2 -99.288 0.000 -99.288 17.133 34 UNIF W- 2 -54.104 17.133 -54.104 20.917 35 UNIF W- 2R -54.104 0.000 -54.104 0.500 36 UNIF S 1L 73.373 0.000 79.039 0.500 37 UNIF S 1 73.373 0.000 164.040 8.000 38 UNIF S 2 73.373 0.000 164.040 8.000 39 UNIF S 2R 73.373 0.000 79.039 0.500 Roof purlin line 2 (In Eave Edge Strip) Design Spacing 2.189 ft Mounting Condition at Supports BYPASS Lateral Restraint by Panel Attachment THROUGH-FASTENED End Inset Dimension at Lt End of Line 0.500 ft End Inset Dimension at Rt End of Line 0.500 ft Line is Contained Within 4.283 ft Edge Strip at Eave With a 4.283 ft Edge Strip at Lt End and a 4.283 ft Edge Strip at Rt End Wind Suction Coefficient at Interior Region -1.468 Wind Suction Coefficient in Edge Strip at End -0.800 Wind Pressure Coefficient 0.000 DESIGN SUMMARY Roof purlin line 2 (In Eave Edge Strip) Span Length Mark Left Right Brace End Load Check Controlling ID No. Lap Lap Pts Clips Case Ratio Check (ft) (ft) (ft) 1L 0.500 80Z16 0.000 0.000 0 No 9 0.724 bending+crippling 9 L/ 156 deflection 1 20.917 80Z16 0.000 1.500 0 No 9 0.724 bending+crippling 17 L/ 777 deflection 2 20.917 80Z16 1.500 0.000 0 No 1 0.658 bending 19 L/ 777 deflection 2R 0.500 80216 0.000 0.000 0 No 1 0.507 bending+crippling 3 L/ 166 deflection Total weight (extended) = 131.5 (131.5) lbs. Max check ratio = 0.724 Page 6 of 9 255/279255 LOAD COMBINATIONS Roof purlin line 2 (In Eave Edge Strip) No. Load Case Description 1 D+C + L Check By ASD; No Deflection Limit 2 D+C + SEFHL- Check By ASD; No Deflection Limit 3 D+C + SEFHR- Check By ASD; No Deflection Limit 4 D+C + SEHFL- Check By ASD; No Deflection Limit 5 D+C + SEHFR- Check By ASD; No Deflection Limit 6 D+C + SDFH1L- Check By ASD; No Deflection Limit 7 D+C + SDFHXI- Check By ASD; No Deflection Limit 8 D+C + SDFHX2- Check By ASD; No Deflection Limit 9 D+C + S Check By ASD; No Deflection Limit 10 D + 0.6W- Check By ASD; No Deflection Limit 11 0.6D + 0.6W- Check By ASD; No Deflection Limit 12 L No Stress Check; L/150 Deflection Limit 13 SEFHL- No Stress Check; L/180 Deflection Limit 14 SEFHR- No Stress Check; L/180 Deflection Limit 15 SEHFL- No Stress Check; L/180 Deflection Limit 16 SEHFR- No Stress Check; L/180 Deflection Limit 17 SDFH1L- No Stress Check; L/180 Deflection Limit 18 SDFHX1- No Stress Check; L/180 Deflection Limit 19 SDFHX2- No Stress Check; L/180 Deflection Limit 20 0.31W- No Stress Check; L/180 Deflection Limit 21 S No Stress Check; L/180 Deflection Limit APPLIED LOADS Roof purlin line 2 (In Eave Edge Strip) No. Load Load Span Intensity From Intensity To Type Group Designation # lb/ft (kips) feet lb/ft feet 1 UNIF D ALL 3.281 0.000 3.281 0.000 2 UNIF D+C ALL 9.837 0.000 9.837 0.000 3 UNIF L ALL 43.709 0.000 43.709 0.000 4 UNIF SEFHL- 1L 34.421 0.000 34.421 0.500 5 UNIF SEFHL- 1 34.421 0.000 34.421 20.917 Page 7 of 9 256/279256 6 UNIF SEFHL- 2 17.210 0.000 17.210 20.917 7 UNIF SEFHL- 2R 17.210 0.000 17.210 0.500 8 UNIF SEFHR- 1L 17.210 0.000 17.210 0.500 9 UNIF SEFHR- 1 17.210 0.000 17.210 20.917 10 UNIF SEFHR- 2 34.421 0.000 34.421 20.917 11 UNIF SEFHR- 2R 34.421 0.000 34.421 0.500 12 UNIF SEHFL- 1L 17.210 0.000 17.210 0.500 13 UNIF SEHFL- 1 17.210 0.000 17.210 20.917 14 UNIF SEHFL- 2 34.421 0.000 34.421 20.917 15 UNIF SEHFL- 2R 34.421 0.000 34.421 0.500 16 UNIF SEHFR-' 1L 34.421 0.000 34 .421 0.500 17 UNIF SEHFR- 2 17.210 0.000 17.210 20.917 18 UNIF SEHFR- 2R 17.210 0.000 17.210 0.500 19 UNIF SDFH1L- 1L 17.210 0.000 17.210 0.500 20 UNIF SDFH1L- 1 17.210 0.000 17.210 20.917 21 UNIF SDFH1L- ALL 17.210 0.000 17.210 0.000 22 UNIF SDFHX1- 1L 17.210 0.000 17.210 0.500 23 UNIF SDFHX1- 1 17.210 0.000 17.210 20.917 24 UNIF SDFHX1- 2 17.210 0.000 17.210 20.917 25 UNIF SDFHX1- 2R 17.210 0.000 17.210 0.500 26 UNIF SDFHX1- ALL 17.210 0.000 17.210 0.000 27 UNIF SDFHX2- 2 17.210 0.000 17.210 20.917 28 UNIF SDFHX2- 2R 17.210 0.000 17.210 0.500 29 UNIF SDFHX2- ALL 17.210 0.000 17.210 0.000 30 UNIF W- 1L -45.122 0.000 -45.122 0.500 31 UNIF W- 1 -45.122 0.000 -45.122 3.783 32 UNIF W- 1 -82.806 3.783 -82.806 20.917 33 UNIF W- 2 -82.806 0.000 -82.806 17.133 34 UNIF W- 2 -45.122 17.133 -45.122 20.917 35 UNIF W- 2R -45.122 0.000 -45.122 0.500 36 UNIF S 1L 61.192 0.000 65.918 0.500 37 UNIF S 1 61.192 0.000 136.809 8.000 38 UNIF S 2 61.192 0.000 136.809 8.000 39 UNIF S 2R 61.192 0.000 65.918 0.500 Roof purlin line 4 (Eave Strut) Design Spacing 1.064 ft Mounting Condition at Supports SIMPLE Lateral Restraint by Panel Attachment THROUGH-FASTENED End Inset Dimension at Lt End of Line 0.500 ft End Inset Dimension at Rt End of Line 0.500 ft Wind Suction Coefficient 0.000 Wind Pressure Coefficient 0.000 DESIGN SUMMARY Roof purlin line 4 (Eave Strut) Span Length Mark Left Right Brace End Load Check Controlling ID No. Lap Lap Pts Clips Case Ratio Check (ft) (ft) (ft) 1L 0.500 80S5 0.000 0.000 0 No 0 0.000 0 L/ 999 deflection 1 20.917 80S5 0.000 0.000 0 No 0 0.000 0 L/ 999 deflection 2 20.917 8055 0.000 0.000 0 No 0 0.000 Page 8 of 9 257/279257 0 L/ 999 deflection 2R 0.500 80S5 0.000 0.000 0 No 0 0.000 0 L/ 999 deflection Total weight (extended) = 161.8 (161.8) lbs. Max check ratio = 0.000 Page 9 of 9 258/279258 AMERICAN BUILDINGS COMPANY Front Side Wall Girt Design Designer: SJ Version Number: Ver. 43.0 Job Number: W15G0032A, Module: 1 Date/Time: 02/27/15 09:23 AM Type Width Length Ridge Dist Slope(F) Slope(R) No.BAYS LSS 111.000 ft 60.000 ft 111.000 ft 0.500:12 0.000:12 3 Wall Base Adjustments: FSW RSW LEW REW 0.000 ft 0.000 ft 0.000 ft 0.000ft S.Wall Eave Ht. Lean-To Width E.Wall Type Col_Spc. Girt Type Overhang Front: 23.000 ft 0.000 ft Left 4 S F 0.000 ft Rear: 27.625 ft 0.000 ft Right 4 S F 0.000 ft Building Code: 2014 Oregon Structural Specialty Code Building Use Category: II. All buildings and other structures except those listed in Risk Categories I, III, and IV Wind Velocity = 130.000 mph Open Condition: Enclosed Buildings Wind Exposure Category: B. Urban and suburban areas, wooded areas or other terrain with numerous closely spaced obstructions having the size of single-family dwellings or larger & extending at least 2600 ft from site Design Wind Pressure (Cladding and Secondary) = 25.764 psf Design Spacing 5.750 ft Mounting Condition at Supports INSET Lateral Restraint by Panel Attachment THROUGH-FASTENED End Inset Dimension at Lt End of Line 0.458 ft End Inset Dimension at Rt End of Line 0.458 ft With a 6.000 ft Edge Strip at Lt End and a 6.000 ft Edge Strip at Rt End Wind Suction Coefficient at Interior Region -0.991 Wind Suction Coefficient in Edge Strip at End -1.082 Wind Pressure Coefficient 0.901 DESIGN SUMMARY Front Side Wall Girt Design Span Length Mark Left Right Brace End Load Check Controlling ID No. Lap Lap Pts Clips Case Ratio Check (ft) (ft) (ft) 1 19.542 80Z13 0.000 0.000 0 No 1 0.891 bending 3 L/ 543 deflection 2 20.000 80Z13 0.000 0.000 0 No 1 0.919 bending 3 L/ 515 deflection 3 19.542 80Z13 0.000 0.000 0 No 1 0.891 bending 3 L/ 543 deflection Total weight (extended) = 249.6 (249.6) lbs. Max check ratio = 0.919 LOAD COMBINATIONS Front Side Wall Girt Design No. Load Case Description 1 0.6W- Check By ASD; No Deflection Limit 259/2792 1 of 2 1 2 0.6W+ Check By ASD; No Deflection Limit 3 0.31W- No Stress Check; L/90 Deflection Limit 4 0.31W+ No Stress Check; L/90 Deflection Limit APPLIED LOADS Front Side Wall Girt Design No. Load Load Span Intensity From Intensity To Type Group Designation # lb/ft(kips) feet lb/ft feet 1 UNIF W- 1 -160.356 0.000 -160.356 5.542 2 UNIF W- 1 -146.842 5.542 -146.842 19.542 3 UNIF W- 2 -146.842 0.000 -146.842 20.000 4 UNIF W- 3 -146.842 0.000 -146.842 14.000 5 UNIF W- 3 -160.356 14.000 -160.356 19.542 6 UNIF W+ ALL 133.509 0.000 133.509 0.000 260/2795W 2 of 2 AMERICAN BUILDINGS COMPANY Rear Side Wall Girt Design Designer: SJ Version Number: Ver. 43.0 Job Number: W15G0032A, Module: 1 Date/Time: 02/26/15 01:25 PM Type Width Length Ridge Dist Slope(F) Slope(R) No.BAYS LSS 111.000 ft 60.000 ft 111.000 ft 0.500:12 0.000:12 3 Wall Base Adjustments: FSW RSW LEW REW 0.000 ft 0.000 ft 0.000 ft 0.000ft S.Wall Eave Ht. Lean-To Width E.Wall Type Col_Spc. Girt Type Overhang Front: 23.000 ft 0.000 ft Left 4 S F 0.000 ft Rear: 27.625 ft 0.000 ft Right 4 S F 0.000 ft Building Code: 2014 Oregon Structural Specialty Code Building Use Category: II. All buildings and other structures except those listed in Risk Categories I, III, and IV Wind Velocity = 130.000 mph Open Condition: Enclosed Buildings Wind Exposure Category: B. Urban and suburban areas, wooded areas or other terrain with numerous closely spaced obstructions having the size of single-family dwellings or larger & extending at least 2600 ft from site Design Wind Pressure (Cladding and Secondary) = 25.764 psf Design Spacing 5.750 ft Mounting Condition at Supports INSET Lateral Restraint by Panel Attachment THROUGH-FASTENED End Inset Dimension at Lt End of Line 0.458 ft End Inset Dimension at Rt End of Line 0.458 ft With a 6.000 ft Edge Strip at Lt End and a 6.000 ft Edge Strip at Rt End Wind Suction Coefficient at Interior Region -0.991 Wind Suction Coefficient in Edge Strip at End -1.082 Wind Pressure Coefficient 0.901 DESIGN SUMMARY Rear Side Wall Girt Design Span Length Mark Left Right Brace End Load Check Controlling ID No. Lap Lap Pts Clips Case Ratio Check (ft) (ft) (ft) 3 19.542 80215 0.000 0.000 2 No 1 1.018 bending 3 L/ 414 deflection 2 20.000 80213 0.000 0.000 0 No 1 0.919 bending 3 L/ 515 deflection 1 19.542 80Z15 0.000 0.000 2 No 1 1.018 bending 3 L/ 414 deflection Total weight (extended) = 209.5 (232.9) lbs. Max check ratio = 1.018 LOAD COMBINATIONS Rear Side Wall Girt Design No. Load Case Description 1 0.6W- Check By ASD; No Deflection Limit 261/2791 of 2 2 0.6W+ Check By ASD; No Deflection Limit 3 0.31W- No Stress Check; L/90 Deflection Limit 4 0.31W+ No Stress Check; L/90 Deflection Limit APPLIED LOADS Rear Side Wall Girt Design No. Load Load Span Intensity From Intensity To Type Group Designation # lb/ft(kips) feet lb/ft feet 1 UNIF W- 3 -160.356 0.000 -160.356 5.542 2 UNIF W- 3 -146.842 5.542 -146.842 19.542 3 UNIF W- 2 -146.842 0.000 -146.842 20.000 4 UNIF W- 1 -146.842 0.000 -146.842 14.000 5 UNIF W- 1 -160.356 14.000 -160.356 19.542 6 UNIF W+ ALL 133.509 0.000 133.509 0.000 262/270632 2 of 2 AMERICAN BUILDINGS COMPANY Left End Wall Girt Design Designer: SJ Version Number: Ver. 43.0 Job Number: W15G0032A, Module: 1 Date/Time: 02/26/15 10:29 AM Type Width Length Ridge Dist Slope(F) Slope(R) No.BAYS LSS 111.000 ft 60.000 ft 111.000 ft 0.500:12 0.000:12 3 Wall Base Adjustments: FSW RSW LEW REW 0.000 ft 0.000 ft 0.000 ft 0.000ft S.Wall Eave Ht. Lean-To Width E.Wall Type Col_Spc. Girt Type Overhang Front: 23.000 ft 0.000 ft Left 4 S F 0.000 ft Rear: 27.625 ft 0.000 ft Right 4 S F 0.000 ft Building Code: 2014 Oregon Structural Specialty Code Building Use Category: II. All buildings and other structures except those listed in Risk Categories I, III, and IV Wind Velocity = 130.000 mph Open Condition: Enclosed Buildings Wind Exposure Category: B. Urban and suburban areas, wooded areas or other terrain with numerous closely spaced obstructions having the size of single-family dwellings or larger & extending at least 2600 ft from site Design Wind Pressure (Cladding and Secondary) = 25.764 psf Design Spacing 5.750 ft Mounting Condition at Supports FLUSH Lateral Restraint by Panel Attachment THROUGH-FASTENED End Inset Dimension at Lt End of Line 0.000 ft End Inset Dimension at Rt End of Line 0.000 ft With a 6.000 ft Edge Strip at Lt End and a 6.000 ft Edge Strip at Rt End Wind Suction Coefficient at Interior Region -0.977 Wind Suction Coefficient in Edge Strip at End -1.054 Wind Pressure Coefficient 0.887 DESIGN SUMMARY Left End Wall Girt Design Span Length Mark Left Right Brace End Load Check Controlling ID No. Lap Lap Pts Clips Case Ratio Check (ft) (ft) (ft) 1 24.125 80Z13 0.000 0.000 3 No 1 1.014 bending 3 L/ 294 deflection 2 24.125 80Z13 0.000 0.000 3 No 1 1.005 bending 3 L/ 298 deflection 3 20.917 80Z13 0.000 0.000 0 No 1 0.990 bending 3 L/ 457 deflection 4 20.917 80Z13 0.000 0.000 0 No 1 0.990 bending 3 L/ 457 deflection 5 20.917 80Z13 0.000 0.000 0 No 1 1.004 bending 3 L/ 450 deflection Total weight (extended) = 469.0 (504.2) lbs. Max check ratio = 1.014 LOAD COMBINATIONS Left End Wall Girt Design 263/27M1 .1 of 2 No. Load Case Description 1 0.6W- Check By ASD; No Deflection Limit 2 0.6W+ Check By ASD; No Deflection Limit 3 0.31W- No Stress Check; L/90 Deflection Limit 4 0.31W+ No Stress Check; L/90 Deflection Limit APPLIED LOADS Left End Wall Girt Design No. Load Load Span Intensity From Intensity To Type Group Designation # lb/ft(kips) feet lb/ft feet 1 UNIF W- 1 -156.088 0.000 -156.088 6.000 2 UNIF W- 1 -144.708 6.000 -144.708 24.125 3 UNIF W- 2 -144.708 0.000 -144.708 24.125 4 UNIF W- 3 -144.708 0.000 -144.708 20.917 5 UNIF W- 4 -144.708 0.000 -144.708 20.917 6 UNIF W- 5 -144.708 0.000 -144.708 14.917 7 UNIF W- 5 -156.088 14.917 -156.088 20.917 8 UNIF W+ ALL 131.375 0.000 131.375 0.000 264/2792 2 of 2 AMERICAN BUILDINGS COMPANY Right End Wall Girt Design Designer: SJ Version Number: Ver. 43.0 Job Number: W15G0032A, Module: 1 Date/Time: 02/26/15 11:12 AM Type Width Length Ridge Dist Slope(F) Slope(R) No.BAYS LSS 111.000 ft 60.000 ft 111.000 ft 0.500:12 0.000:12 3 Wall Base Adjustments: FSW RSW LEW REW 0.000 ft 0.000 ft 0.000 ft 0.000ft S.Wall Eave Ht. Lean-To Width E.Wall Type Col_Spc. Girt Type Overhang Front: 23.000 ft 0.000 ft Left 4 S F 0.000 ft Rear: 27.625 ft 0.000 ft Right 4 S F 0.000 ft Building Code: 2014 Oregon Structural Specialty Code Building Use Category: II. All buildings and other structures except those listed in Risk Categories I, III, and IV Wind Velocity = 130.000 mph Open Condition: Enclosed Buildings Wind Exposure Category: B. Urban and suburban areas, wooded areas or other terrain with numerous closely spaced obstructions having the size of single-family dwellings or larger & extending at least 2600 ft from site Design Wind Pressure (Cladding and Secondary) = 25.764 psf Design Spacing 5.750 ft Mounting Condition at Supports FLUSH Lateral Restraint by Panel Attachment THROUGH-FASTENED End Inset Dimension at Lt End of Line 0.000 ft End Inset Dimension at Rt End of Line 0.000 ft With a 6.000 ft Edge Strip at Lt End and a 6.000 ft Edge Strip at Rt End Wind Suction Coefficient at Interior Region -0.977 Wind Suction Coefficient in Edge Strip at End -1.054 Wind Pressure Coefficient 0.887 DESIGN SUMMARY Right End Wall Girt Design Span Length Mark Left Right Brace End Load Check Controlling ID No. Lap Lap Pts Clips Case Ratio Check (ft) (ft) (ft) 1 20.917 80Z13 0.000 0.000 0 No 1 1.004 bending 3 L/ 450 deflection 2 20.917 80Z13 0.000 0.000 0 No 1 0.990 bending 3 L/ 457 deflection 3 20.917 80Z13 0.000 0.000 0 No 1 0.990 bending 3 L/ 457 deflection 4 24.125 80213 0.000 0.000 3 No 1 1.005 bending 3 L/ 298 deflection 5 24.125 80Z13 0.000 0.000 3 No 1 1.014 bending 3 L/ 294 deflection Total weight (extended) = 469.0 (504.2) lbs. Max check ratio = 1.014 LOAD COMBINATIONS Right End Wall Girt Design 265/279/2tr 1 of 2 No. Load Case Description . 1 0.6W- Check By ASD; No Deflection Limit 2 0.6W+ Check By ASD; No Deflection Limit 3 0.31W- No Stress Check; L/90 Deflection Limit 4 0.31W+ No Stress Check; L/90 Deflection Limit APPLIED LOADS Right End Wall Girt Design No. Load Load Span Intensity From Intensity To Type Group Designation # lb/ft(kips) feet lb/ft feet 1 UNIF W- 1 -156.088 0.000 -156.088 6.000 2 UNIF W- 1 -144.708 6.000 -144.708 20.917 3 UNIF W- 2 -144.708 0.000 -144.708 20.917 4 UNIF W- 3 -144.708 0.000 -144.708 20.917 5 UNIF W- 4 -144.708 0.000 -144.708 24.125 • • 6 UNIF W- 5 -144.708 0.000 -144.708 18.125 7 UNIF W- 5 -156.088 18.125 -156.088 24.125 8 UNIF W+ ALL 131.375 0.000 131.375 0.000 266/279k8e 2°f 2 ABC Design Calculations Pamphlet PURLINS AND GIRTS AMERICAN BUILDINGS COMPANY'S Standard Purlins and Girts are light gage 8"x 2 1/2" "Z" and"C", 9 1/2" x 3" "Z" and "C" and 12" x 3 1/8" "Z" and"C"sections(with stiffened flanges)cold formed from 55,000 psi yield steel. The fully braced section properties and capacities computed in accordance with the North American Cold-Formed Steel Specifications,2007 Edition,are as follows: DIMENSIONS,PROPERTIES AND CAPACITIES 2 1/2" 4" 3 3� " 2 1/2" p11"I7I8" "-ill 3116" T 8" T 9 1/2" T 12" 8" T 9 1!2" T 12" T � �17'I 7Ae " 131/8" 127/6- _ J11" 1313/16" SECTION THICKNESS WEIGH AREA I„ S„ r„ I,, Sy ry MAX. MAX. T T (in-2) (in.4) (in.3) (in.) (in.4) (in.3) (in.) ALLOW ALLOW* (in.) (lbs./R) (Full) (Effective) (Full) (Effective) * MOMENT SHEAR (KIP-FT.) (KIPS) 8Z16 0.060 _ 2.87 0.84 8.09 1.74 3.10 1.22 0.32 1.20 2.60 4.77 8Z15 0.067 3.20 0.94 8.99 1.97 3.09 1.36 0.38 1.20 3.63 5.39 8Z14 0.075 3.57 1.05 10.02 2.27 3.09 1.51 0.45 1.20 5.11 6.22 8Z13 0.089 4.22 1.24 11.80 2.81 3.08 1.77 0.58 1.19 8.57 7.70 8Z12 0.099 4.68 1.38 13.05 3.15 3.08 1.95 0.66 1.19 10.82 8.66 9.5Z15 0.067 3.82 1.12 15.28 2.61 3.69 2.33 0.51 1.44 3.02 7.16 9.5Z14 0.075 4.27 1.26 17.04 3.08 3.68 2.59 0.56 1.44 4.24 8.46 9.5Z13 0.089 5.05 1.49 20.09 3.75 3.68 3.04 0.73 1.43 7.11 10.30 9.5Z12 0.099 5.61 1.65 22.24 4.32 3.67 3.36 0.84 1.43 9.81 11.86 12Z13 0.089 5.96 1.75 36.36 5.34 4.55 3.66 0.86 1.45 5.54 14.64 12Z12 0.099 6.62 1.95 40.29 6.21 4.55 4.04 1.01 1.44 7.64 17.04 12Z11 0.120 8.00 2.35 48.42 7.81 4.54 4.83 1.30 1.43 13.66 21.44 8C16 0.060 2.86 0.84 7.94 1.80 3.07 0.71 0.36 0.92 2.60 4.94 8C15 0.067 3.19 0.94 8.82 2.05 3.07 0.79 0.40 0.92 3.63 5.62 8C14 0.075 3.56 1.05 9.81 2.37 3.06 0.87 0.45 0.91 5.11 6.51 8C13 0.089 4.26 1.24 11.53 2.88 3.05 1.01 0.54 0.91 8.57 7.90 8C12 0.099_ 4.73 1.37 12.73 3.18 3.05 1.11 0.60 0.90 10.82 8.74 9.5C15 0.067 3.81 1.12 15.02 2.76 3.66 1.36 0.57 1.10 3.02 7.58 9.5C14 0.075 4.26 1.25 16.74 3.17 3.65 1.51 0.64 1.10 4.24 8.71 9.5C13 0.089 5.07 1.49 19.69 3.91 3.65 1.76 0.76 1.09 7.11 10.73 9.5C12 0.099 5.64 1.66 21.78 4.46 3.64 1.94 0.85 1.09 9.81 12.24 12C13 0.089 5.98 1.76 36.00 5.80 4.52 2.26 0.89 1.13 5.54 15.91 12C12 0.099 6.65 1.96 39.84 6.64 4.52 2.48 1.00 1.13 7.64 18.23 12C11 0.120 8.06 2.37 47.78 7.96 _ 4.51 2.94 1.22 1.12 13.66 21.86 *Stress Increase=1.00 Moments and shears used in selecting "Z" and "C" sections and connections for the Purlin and Girts were found by the stiffness method of analysis. To meet varying load requirements, the "Z" and "C" members shall be of simple span or lapped over the interior frames to form a continuous beam. The purlin sections were then designed for the maximum positive moments and for the moment and shear combination at the beginning and termination of the laps. The double"Z" and"C"sections were also checked for the maximum negative moments over the interior frames. SUBJECT TO CHANGE WITHOUT NOTICE REVISED MAY 18.2008 061BC • • • Section 4 Page 1 SECTION 5 PANELS 268/279268 ABC Design Calculations Pamphlet PANEL PROFILES (LONGSPAN III) hi ili\ \\,,„,,, IT r - / / //t0111111 \1 f 111 i 1M - �i 1r 12T 1� ]Nt PANEL PROFILE PARTIAL CROSS SECTION Engineering Properties of American Buildings Company Long Span Ill Panel Designated Steel Base Total Panel Top In Bottom In Gage Yield Metal Thick. Weight Compression Compression Fb of KSI Thick. (In.) (lbs.15.2) Ix Sx Ma lx Sx Ma KSI Steel (In.) (In.4/ft.) (In3/ft.) K-IN. (In.4/ft.) (In3/ft.) K-IN. 29 Ga. 80 0.0137 0.0153 0.74 0.030 0.025 0.91 0.026 0.035 '1.27 36 26 Ga. 80 0.0177 0.0193 0.94 0.043 0.037 1.34 0.035 0.046 1.66 36 24 Ga. 80 0.0225 0.0241 1.17 0.060 0.054 1.95 0.047 0.059 2.14 36 22 Ga. 50 0.0300 0.0316 1.53 0.083 0.085 2.56 0.070 0.081 2.44 30 Gage No. Load Maximum Total Uniform Load in PSF of of Type Span Lenngths,Ft. Panel Spans 3.00 3.50 4.00 4.50 5.00 6.00 7.00 7.50 1 POS 67 B 49 B 38 B 30 B 24 B 17 B 12 B 11 B NEG -94 B -69 a -53 B -42 B -34 B -23 B -17 B -15 B 2 POS 46 c 40 c 35 c 31 c 28 c 22 B+S 17 B*S 15 B*S 29 Ga. NEG -49 P -42 P -36 B+S -29 B*S -23 B+S -16 B+S -12 B*S -11 B*S 3 POS 53 c 45 c 39 c 35 c 32 c 26 B 19 B 17 B NEG -56 P -48 P -42 P -35 B+s -29 B+S -20 B+S -15 B+s -13 B•S 4 POS 51 c 43 c 38 c 34 c 30 c 25 c 19 B+S 17 B*S NEG -54 P -46 P -40 P -33 B+S -27 B*S -19 B*S -14 B+S -12 B+S 1 POS 99 B 73 B 56 B 44 B 36 B 25 B 18 B 16 B NEG -123 B -91 B -69 B -55 B -44 B -31 B -23 B -20 B 2 POS 75 c 64 c 56 c 50 c 43 B+S 30 B+s 22 B*S 19 B+S 26 Ga. NEG -64 P -55 P -48 P -42 P -35 B*S -24 B+S -18 B+S -16 B+S 3 POS 85 c 73 c 64 c 57 c 51 c 37 B+s 28 B+S 24 B+S NEG -72 P -62 P -54 P -48 P -43 P -30 B+S -22 B+S -20 B+S 4 POS 82 c 70 c 61 c 55 c 49 c 35 B+s 26 B+S 23 B*S NEG -70 P -60 P -52 P -46 P -41 a+s -28 B+S -21 B+s -18 B+s 1 POS 145 B 106 B 81 B 64 B 52 B 36 B 27 B 23 B NEG -158 a -116 B -89 B -70 B -57 B -40 B -29 B -25 B 2 POS 117 c 100 c 87 B+s 69 B+s 56 B+s 39 B+s 29 B+S 25 B+S 24 Ga. NEG -81 P -69 P -61 P -54 P -49 P -36 B+S -26 B*S -23 B+S 3 POS 133 C 114 C 100 C 86 B*S 70 B+S 49 B+S 36 B+S 31 B+S NEG -92 P -79 P -69 P -61 P -55 P _ -45 B+S -33 B•S -29 B+S 4 POS 128 c 110 c 96 c 80 B+S 65 B+S 46 B+S 34 B*S 29 B+S NEG -89 P -76 P -66 P -59 P -53 P -42 B*S -31 a+S -27 B+S 1 POS 189 a 139 B 107 B 84 B 68 B 47 a 35 B 30 B NEG -180 B -133 B -102 B -80 B -65 B -45 B -33 B -29 B 2 POS 166 c 130 B+S 100 8*S 79 B+S 64 B+s 45 B+S 33 B*S 29 B*s 22 Ga. NEG -114 P -98 P -86 P -76 P -67 B*S -47 B+S -35 B+S -30 B*S 3 POS 188 c 161 c 124 B+S 99 13+s 80 B+S 56 a+s 41 B+s 36 B*S NEG -130 P -111 P -98 P -87 P -78 P -59 B+S -43 B+S -38 B+S 4 POS 181 c 151 B*S 116 B+S 92 B+S 75 B*S 52 B+S 38 B+S 34 B+S NEG -125 P -107 P -94 P -83 P -75 P -55 B+S -40 B+S -35 B*s 1.The panels are checked for bending(B),shear(S),combined bending and shear(B+S),deflection(D),web crippling(C),and panel pullover(P). The controlling check is noted in the table.Deflection is limited to span/60,with the wind load permitted to be taken as 0.7 times the'component&cladding"loads as noted in footnote f of IBC Table 1604.3. 2.Section Properties are calculated in accordance with the 2007 North American Specification for the Design of Cold-Formed Steel Structural Members. 3.Minimum yield strength of 29,26 and 24 gage steel is 80,000 psi. Minimum yield strength of 22 gage steel is 50,000 psi. 4.Steel panels are either aluminum-zinc alloy or G-90 coated. The base metal thickness is used In determining section properties. 5.Positive load(POS)is applied inward toward the panel supports,and is applied to the outer surface of the full panel cross-section. Negative load(NEG)is in the opposite direction. SUBJECT TO CHANGE WITHOUT NOTICE REVISED MAY 31,2011 06/BC 269/279269 Section 5 Page 1 ABC Design Calculations Pamphlet PANEL PROFILES (ARCHITECTURAL III) ,:// 4/111t\t\ _. 4' it Sao• ivy Lii 50.: PANEL PROFILE PARTIAL CROSS SECTION Engineering Properties of American Buildings Company Architectural Ill Panel Designated Steel Base Total Panel Top In Bottom In Gage Yield Metal Thick. Weight Compression Compression Fb of KSI Thick. (In.) (lbs./ft.') lx Sx Ma lx Sx Ma KSI Steel (In.) (In.'/ft.) (In.'/ft.) K-IN. (In.°/ft.) (In.'/ft.) K-IN. 29 Ga. 80 0.0137 0.0153 0.74 0.026 0.035 1.27 0.030 0.025 0.91 36 26 Ga. 80 0.0177 0.0193 0.94 0.035 0.046 1.66 0.043 0.037 1.34 36 24 Ga. 80 0.0225 0.0241 1.17 0.047 0.059 2.14 0.060 0.054 _ 1.95 36 22 Ga. 50 0.0300 0.0316 1.53 0.070 0.081 2.44 0.083 0.085 2.56 30 Gage No Load Maximum Total Uniform Load in PSF of of Type Span Lengths,Ft. Panel Spans 3.00 3.50 4.00 4.50 5.00 6.00 7.00 i 7.50 1 POS 76 C 65 C 53 B 42 B 34 B 23 B 17 B 15 B NEG -67 B -49 B -38 B -30 B -24 B -17 B -12 B -11 B 2 POS 46 c 40 c 35 c 29 B+s 23 B+S 16 B+S 12 B+S 11 B+S 29 Ga. NEG -49 P -42 P -37 P -33 P -30 P -22 B+s -17 B+S -15 B+s 3 POS 53 c 45 c 39 c 35 B+s 29 B+s 20 B+s 15 B+S 13 B+S NEG -56 P -48 P -42 P -37 P -34 P -26 B+s -19 B+S -17 B 4 POS 51 c 43 c 38 c 33 B+S 27 B+s 19 B+s 14 B+S 12 B+S NEG -54 P -46 P -40 P -36 P -32 P -26 B+S -19 B+S -17 B+S 1 POS 122 c 91 B 69 B 55 B 44 B 31_ B 23 B 20 B NEG -99 B -73 B -56 B -44 B -36 B -25 B -18 B -16 B 2 POS 75 c 64 c 54 B+s 43 B+s 35 B+s 24 B+s 18 B+S 16 B+S 26 Ga. NEG -64 P -55 P -48 P -42 P -38 P -30 B+S _ -22 B+S -19 B+S 3 POS 85 c 73 c 64 c 53 B+s 44 B+S 30 B+s 22 B+s 20 B+s NEG -72 P -62 P -54 P -48 P -43 P -36 P -28 B+S -24 B+s 4 POS 82 c 70 c 61 c 50 B's 41 B+S 28 B+S 21 B+s 18 B+S NEG -70 P -60 P -52 P -46 P -42 P -35 P -26 B+S -23 B+S 1 POS 158 B 116 B 89 B 70 B 57 B 40 B 29 B 25 B NEG -145 B -106 B -81 B -64 B -52 B -36 B -27 B -23 B 2 POS 117 c 100 c 80 B+S 63 B+S 52 B+S 36 B+S , 26 B•s 23 B+S 24 G NEG -81 P -69 P -61 P -54 P -49 P -39 B+S -29 B+S -25 B+S 3 POS 133 c 114 c 99 B«S 79 B•S 64 B+S 45 B+S 33 B•S 29 B+s NEG -92 P -79 P -69 P -61 P -55 P -46 P -36 B+s -31 B+S 4 POS 128 c 110 c 93 B+s 74 B's 60 B+S 42 B+5 31 B+S 27 B+S NEG -89 P -76 P -66 P -59 P -53 P -44 P -34 B•S -29 B+s 1 POS 180 B 133 B 102 B 80 B 65 B 45 B 33 B 28 B NEG -189 B -139 B -107 B -84 B -68 B -47 B -35 B -30 B 2 POS 166 c 136 B+s 105 B+S 83 B•S 67 B+S 47 B+s 35 B+S 30 B+s 22 Ga. NEG -114 P -98 P -86 P -76 P -64 B+S -45 B+S -33 B+S -29 B•s 3 POS 188 c 161 c 130 B+S 103 B+s 84 B+S 59 B+S 43 B+s 38 B+S NEG -130 P -111 P -98 P -87 P -78 P -56 B+S -41 B+s -36 B+S 4 POS 181 c 155 c 122 B+S 97 B+s _ 79 B+S 55 B+s 40 B+s 35 B+s NEG -125 P -107 P -94 P -83 P -75 B«S -52 B+S -38 B'S _34 B+S 1.The panels are checked for bending(B),shear(S),combined bending and shear(B+S),deflection(D),web crippling(C),and panel pullover(P). The controlling check is noted in the table.Deflection is limited to span/60,with the wind load permitted to be taken as 0.7 times the"component&Gadding"loads as noted in footnote f of IBC Table 1604.3. 2.Section Properties are calculated in accordance with the 2007 North American Specification for the Design of Cold-Formed Steel Structural Members. 3.Minimum yield strength of 29,26 and 24 gage steel is 80,000 psi. Minimum yield strength of 22 gage steel is 50,000 psi. 4.Steel panels are either aluminum-zinc alloy or G-90 coated. The base metal thickness is used in determining section properties. 5.Positive load(POS)is applied inward toward the panel supports,and is applied to the outer surface of the full panel cross-section. Negative load(NEG)is in the opposite direction. SUBJECT TO CHANGE WITHOUT NOTICE REVISED MAY 31,2011 06lBC Section 5 Page 2 270/279270 ABC Design Calculations Pamphlet PANEL PROFILES (ARCHITECTURAL "V" RIB AVN) MI I I 111\\\\\‘ __ ,2.0000 ,.2354 47• 0.4582 PANEL PROFILE PARTIAL CROSS SECTION Engineering Properties of American Buildings Company Architectural"V"Rib AVN Panel Designated Steel Base Total Panel Top In Bottom In Gage Yield Metal Thick. Weight Compression Compression Fb of KSI Thick. (In.) (lbs./fl.') lx Sx Ma lx Sx Ma KSI Steel (In.) (In.°/ft.) (In.'/ft.) K-IN. (In.'/ft.) (In.'/ft.) K-IN. 26 Ga. 80 0.0177 0.0193 0.94 0.030 0.042 1.50 0 028 0.035 1.55 36 24 Ga. 80 0 0222 0.0238 1.15 0.040 0.054 1 93 0.037 0.047 1.70 36 Gage No Load Maximum Total Uniform Load in PSF of of Type Span Lengths.Ft. Panel Spans 3 00 3.50 4.00 4.50 5.00 6.00 7.00 7.50 1 POS 111 B 82 8 63 B 49 B 40 B 28 B 20 B 18 e NEG -94 B -69 B -53 B -42 a -34 e -23 B -17 e -15 e 2 POS 71 c 61 c 51 B+s 41 B+a 33 B+s 23 B+s 17 B+a 15 B+a 26 Ga. NEG -64 P -55 P -48 P -42 P -38 P -27 B+s -20 B+S -18 B+s 3 POS 81 c 70 c 61 c 51 B+S 41 B+s 29 B+s 21 B+s 19 B+s NEG -72 P -62 P -54 P -48 P -43 P -34 B+s -25 B+s -22 B+B 4 POS 78 c 67 c 59 C 47 B•s 39 B+a 27 B+s 20 B+s 17 e+s NEG -70 P -60 P -52 P -46 P -42 P -32 B+s -24 B+s -21 B+s 1 POS 143 a 105 5 81 B 64 8 52 5 36 8 26 B 23 B NEG -126 B -93 B -71 8 -56 B -45 B -32 B -23 B -20 B 2 POS 109 c 91 B+a 70 B•5 55 B+s 45 B+s 31 B•s 23 B+s 20 B+s 24 Ga. NEG 80 P 69 P 60 P 53 P 48 P -36 B+s 26 8+a -23 B+s 3 POS 124 c 106 c 87 B+a 69 a+s 56 B+s 39 B+s 29 B+s 25 B+s NEG -91 P -78 P -68 P -61 P -55 P -44 B+s -33 B+s -28 B+a 4 POS 119 c 102 c 81 B+s 65 B+s 52 B+s 37 B+s 27 B+s 23 B's NEG -87 P -75 P -66 P -58 P -52 P -41 B+s -30 B+s -27 B+s 1.The panels are checked for bending(B),shear(S),combined bending and shear(B+S),deflection(D),web crippling(C),and panel pullover(P). The controlling check is noted in the table.Deflection is limited to span/60,with the wind load permitted to be taken as 0.7 times the"component 8 Gadding"loads as noted in footnote f of IBC Table 1604.3. 2.Section Properties are calculated in accordance with the 2007 North American Specification for the Design of Cold-Formed Steel Structural Members. 3.Minimum yield strength of 29,26 and 24 gage steel is 80,000 psi. Minimum yield strength of 22 gage steel is 50,000 psi. 4.Steel panels are either aluminum-zinc alloy or G-90 coated. The base metal thickness is used in determining section properties. 5.Positive load(POS)is applied inward toward the panel supports,and is applied to the outer surface of the full panel cross-section. Negative load(NEG)is in the opposite direction. SUBJECT TO CHANGE WITHOUT NOTICE REVISED FEBRUARY 3,2012 PB.03.2012 061BC Section 5 Page 3.1 271/279271 ABC Design Calculations Pamphlet PANEL PROFILES (ARCHITECTURAL "V" RIB AVK) 12" al I It\\\% '.,5/16" 64' r PANEL PROFILE PARTIAL CROSS SECTION Engineering Properties of American Buildings Company Architectural"V"Rib AVK Panel Designated Steel Base Total Panel Top In Bottom In Gage Yield Metal Thick. Weight Compression Compression Fb of KS1 Thick. (In.) (lbs./9.2) lx Sx Ma Ix Sx Ma KSI Steel (In.) (In.'/ft.) (In3/ft.) K-IN. (In.`/ft.) (In 3/fl.) K-IN. 26 Ga. 80 0.0177 0.0193 0.94 0.033 0.042 1.52 0.034 0.040 1.44 36 24 Ga. 80 0.0225 0.0241 1.17 0.043 0.055 1.99 0.043 0.054 1.95 36 Gage No. Load Maximum Total Uniform Load in PSF of of Type Span Lengths,Ft. Panel Spans 3.00 3.50 4.00 4.50 5.00 6.00 7.00 7.50 1 POS 113 B 83 B 63 B 50 B 41 B 28 B 21 B 18 B NEG -107 B -79 B -60 B -48 B -38 B -27 B -20 B -17 B 2 POS 88 C 76 C 59 B+S 47 B•S , 38 B+s 26 B+S 20 B+S 17 B+S 26 Ga. NEG -64 P -55 P -48 P -42 P -38 P -28 B+S -21 B+S -18 B+S 3 POS 100 c 86 C 73 B+S 58 B+S 47 B+S 33 B+S 24 B+5 21 B+S NEG -72 P -62 P -54 P -48 P -43 P -35 B+S -26 B+s -22 B+S 4 POS 96 c 83 c 68 B+S 54 B+S 44 8+5 31 B+S 23 B+S 20 8+5 NEG -70 P -60 P -52 P -46 P -42 P -32 B•S -24 B•s -21 B+s 1 POS 147 B 108 B 83 B 66 B 53 B 37 B 27 B 24 B NEG -145 B -106 B -81 B -64 B -52 B -36 8 -27 B -23 B 2 POS 138 c 104 B+S 80 B+S 63 B•S 52 B+S 36 B+S 26 B+S 23 B.S 24 Ga. NEG -81 P -69 P -61 P -54 P -49 P -37 B.S -27 B+S -23 B.S 3 POS 156 c 129 B+S 99 B+S 79 B+S 64 B+S 45 B+S 33 B+S 29 B+S NEG -92 P -79 P -69 P -61 P -55 P _ -46 B+S -34 B+S -29 B+S 4 POS 150 c 121 B+S 93 B+S 74 B+S 60 B.s 42 B+S 31 B.S 27 B+S NEG -89 P -76 P -66 P -59 P -53 P -43 8+5 -31 B+S -27 B+S 1.The panels are checked for bending(B),shear(S),combined bending and shear(B+S),deflection(D),web crippling(C),and panel pullover(P). The controlling check is noted in the table.Deflection is limited to span/60,with the wind load permitted to be taken as 0.7 times the"component 8 cladding"loads as noted in footnote f of IBC Table 1604.3. 2.Section Properties are calculated in accordance with the 2007 North American Specification for the Design of Cold-Formed Steel Structural Members. 3.Minimum yield strength of 29,26 and 24 gage steel is 80,000 psi. Minimum yield strength of 22 gage steel is 50,000 psi. 4.Steel panels are either aluminum-zinc alloy or G-90 coated. The base metal thickness is used in determining section properties. 5.Positive load(POS)is applied inward toward the panel supports,and is applied to the outer surface of the full panel cross-section. Negative load(NEG)is in the opposite direction. SUBJECT TO CHANGE WITHOUT NOTICE ISSUED FEBRUARY 3. 2012(PE 03 2012) 06180 Section 5 Page 3.2 272/279272 ABC Design Calculations Pamphlet PANEL PROFILES (STANDING SEAM II) 24- ' i 1iK. 1n'i I 11\1\22832' t 3" 2, � 1 __ 4 tour 51/16' 5 wir 4 WW f 314' 2 VW 191/4' • 2 3/8' PANEL PROFILE CROSS SECTION Engineering Properties of American Buildings Company Standing Seam II Panel Designated Steel Base Total Panel Top In Bottom In Gage Yield Metal Thick. Weight Compression Compression Fb of KSI Thick. (In.) (lbs./ft.') lx Sx Ma Ix Sx Ma KSI Steel (In.) (In.'/ft.) (In.3/ft.) K-IN. (In.'/ft.) (In.3/ft.) K IN _24 Ga. 50 0.0225 0.0241 1.20 0.277 0.112 3.36 0.129 0.079 2 37 30_ 22 Ga. 50 0.0300 0.0316 1.58 0.372 0.153 4.59 0.180 0.108 3.24 30 Gage No Load Maximum Total Uniform Load in PSF of of Type Span Lengths,Ft. Panel Spans 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 1 POS _995 B 560 B 358 B 249 B 183 B 140 B 111 B _ 90 B _ 24 Ga. 2 POS 549 B+S 339 B+S 228 B+S 163 B•s 122 8+s 95 B+S 75 B+S 61 B+S 3 POS 634 B+S 401 B+s 274 B+s 198 B+S 149 B+s 116 B+S 93 B+S 76 B+S 4 POS 608 B+S 381 B+5 259 B+s 187 B+S 140 B+S 109 B+S 87 B+S 71 B+S 1 POS 1360 B 765 B 490 B 340 B 250 B 191 B 151 B 122 B 22 Ga. 2 POS 793 B+S 481 B+s 320 B+S 227 B+S 169 B+S 131 B+S 104 B+S 85 B'S__ 3 POS 928 B•S 575 B+S 388 B+S 278 B+S 208 B+S 161 B+S 129 B+s 105 B+S 4 POS 886 B+s 545 B+S 366 B+s 261 B+S 195 B+s 151 B+S 121 B+S 98 B+S 1.The panels are checked for bending(B),shear(S),combined bending and shear(B+S)and deflection(D).The controlling check is noted in the table. Deflection is limited to span/60. 2.Section Properties are calculated in accordance with the 2007 North American Specification for the Design of Cold-Formed Steel Structural Members. 3.Minimum yield strength of 24 and 22 gage steel is 50,000 psi. 4.Steel panels are either aluminum-zinc alloy or G-90 coated. The base metal thickness is used in determining section properties. 5.Positive load(POS)is applied inward toward the panel supports and is applied to the outer surface of the full panel cross-section. SUBJECT TO CHANGE WITHOUT NOTICE REVISED MAY 31,2011 06IBC Section 5 Page 4 273/279273 ABC Design Calculations Pamphlet PANEL PROFILES (STANDING SEAM 360) _ 4 1 11\\\229„2. - r , w ♦9117 1_ 51116' i 5 vir j 4 stir e lii �2 3t8' 19114' 2 316' PANEL PROFILE CROSS SECTION Engineering Properties of American Buildings Company Standing Seam 360 Panel Designated Steel Base Total Panel Top In Bottom In Gage Yield Metal Thick. Weight Compression Compression - Fb of KSI Thick. (In.) (lbs.lft.) lx Sx Ma N Sx Ma KSI Steel (In.) (In.4lft.) (In.3/ft.) K-IN. (In.4lft.) (In.'/ft.) K-IN. 24 Ga. 50 0.0225 0.0241 1.20 0.278 0.116 3.48 0.126 0.080 2.41 30 22 Ga. 50 0.0300 0.0316 1.58 0.372 0.159 4.76 0.177 0.111 3.32 30 Gage No. Load Maximum Total Uniform Load in PSF of of Type Span Lengths,Ft. Panel Spans 1.50 200 2.50 3.00 3.50 4.00 4.50 5.00 1 POS 1032 B 581 B 372 B 258 B 190 B 145 a 115 B 93 B 24 Ga. 2 POS 548 B•S 340 B+S 230 B+s 165 B+S 123 B+S 96 B+S 76 a+s 62 B+S 3 POS 631 B+S 402 B+S 275 B+S 199 B+s 151 B+S 117 B+s 94 B•S 77 B+s 4 POS 606 B+S 382 B+S 261 B+S 188 B•S 142 B+S 110 B+S 88 B+S 72 B+S 1 POS 1409 B 793 B 507 a 352 B 259 B 198 B 157 a 127 e 22 Ga. 2 POS 798 B+S 487 B+S 325 13+S 231 B+S 173 B+S 133 B+S 106 B+S 86 B'S 3 POS 930 B+S 580 B+s 393 B+S 282 B+S 212 B+S 164 B+S 131 B+S 107 B+S 4 POS 889 B'S 551 B+S 371 B+S 266 B+S 199 B+S 154 B+S 123 B+S 100 B+S 1.The panels are checked for bending(B),shear(S),combined bending and shear(B+S)and deflection(D).The controlling check is noted in the table. Deflection is limited to span/60. 2.Section Properties are calculated in accordance with the 2007 North Amencan Specification for the Design of Cold-Formed Steel Structural Members Minimum yield strength of 24 and 22 gage steel is 50,000 psi. 4 Steel panels are either aluminum-zinc alloy or G-90 coated. The base metal thickness is used in determining section properties. 5 Positive load(POS)is applied inward toward the panel supports,and is applied to the outer surface of the full panel cross-section. SUBJECT TO CHANGE WITHOUT NOTICE REVISED MAY 31,2011 06/BC Section 5 Page 5 274/279274 ABC Design Calculations Pamphlet PANEL PROFILES (SHADOW PANEL) 16"NET COVERAGE 5" 6" 5" 7/8" 4 1/4" 7/6" Atli ��5{p"' 112" 60° 5' 2 15/16" p 2 7/8" I 1314"���/// t 12" 1•--' 7/16" �' 4/ , 31/32'.1/16"-O" 7/8'+0"-1/32" ���/III PANEL PROFILE CROSS SECTION Engineering Properties of American Buildings Company Shadow Panel Designated Steel Base Total Panel Top In Bottom In Gage Yield Metal Thick. Weight Compression Compression Fb of KSI Thick. (In.) (lbs./ft.2) Ix Sx Ma Ix Sx Ma KSI Steel (In.) (In'/ft.) _ (tn.3/ft.) K-tN. (In'/ft.) (In3/ft.) K-IN. 24 Ga. 50 0.0225' 0.0241 1.57 0.282 0.162 4.86 0.374 0.162 4.86 30 Gage No. Load Maximum Total Uniform Load in PSF of of Type Span Lengths,Ft. Panel Spans 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 1 POS 137 c 103 C 82 c 69 c 59 c 51 B 40 B 32 B NEG -278 P -202 B -130 B -90 8 -66 B -51 B -40 B -32 B 2 POS 88 C 66 C 53 c 44 c 38 C 33 C 29 c 26 c 24 Ga. NEG -111 P -83 P -67 P -56 P -48 P -42 P -37 P -31 B+S 3 POS 100 c 75 c 60 c 50 c 43 c 37 C 33 C 30 C NEG -126 P -95 P -76 P -63 P -54 P -47 P -42 P -38 P 4 POS 96 c 72 c 58 c 48 c 41 c 36 c 32 c 29 c NEG -122 P -91 P -73 P -61 P -52 P -46 P -41 P -36 B+s 1.The panels are checked for bending(B),shear(S),combined bending and shear(B+S),deflection(D),web crippling(C),and screw pullout(P). The controlling check is noted in the table.Deflection is limited to span/60,with the wind load permitted to be taken as 0.7 times the"component&cladding"loads as noted in footnote f of IBC Table 1604.3. 2.Section Properties are calculated in accordance with the 2007 North American Specification for the Design of Cold-Formed Steel Structural Members. 3.Minimum yield strength of 29,26 and 24 gage steel is 80,000 psi. Minimum yield strength of 22 gage steel is 50,000 psi. 4.Steel panels are either aluminum-zinc alloy or G-90 coated. The base metal thickness is used in determining section properties. 5.Positive load(POS)is applied inward toward the panel supports,and is applied to the outer surface of the full panel cross-section. Negative load(NEG)is in the opposite direction. SUBJECT TO CHANGE WITHOUT NOTICE REVISED MAY 31. 2011 06/BC Section 5 Page 6 275/279275 ABC Design Calculations Pamphlet PANEL PROFILES (16" LOC-SEAM / LOC-SEAM 360) LOC-SSEAM LOG-SEAM 360 i 1 1 63/64" 2 1 - 1 16• • PANEL PROFILE CROSS SECTION Engineering Properties of American Buildings Company 16"LocSeam Panel Designated Steel Base Total Panel Top In Bottom In Gage Yield Metal Thick. Weight Compression Compression Fb of KSI Thick. (In.) (lbs./ft 2) Ix Sx Ma lx Sx Ma KSI Steel (In.) (In.'/ft.) (In.'/ft.) K-IN. (In.'/ft.) (In3/ft.) K-IN. 24 Ga. 50 0.0225 0.0241 1.35 0.166 0.099 2.96 0.073 0.061 1.83 30 22 Ga. 50 0.0300 0.0316 1.77 _ 0.225 0.141 4.22 0.110 0.094 2.83 30 Gage No. Load Maximum Total Uniform Load in PSF of of Type Span Lengths,Ft. Panel Spans 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 1 POS 876 B 493 B 316 B 219 B 161 B 123 8 97 B 79 B 24 Ga. 2 POS 460 B+s 276 B+S 183 B+S 130 B+S 96 B+S 74 B+S 59 B+S 48 B+S 3 POS 542 B+S 333 B+S 223 B+S 159 8+S 119 B+S 92 B+S 73 B+S 60 B+S 4 POS 517 B+S 315 B+S 210 B+s 149 B+S 111 B+S 86 B+S 69 B+S 56 B+S 1 POS 1250 B 703 B 450 B 312 B 230 8 176 B 139 B 112 B 22 Ga 2 POS 735 B+S 436 B+S 287 B+S 202 B+S 150 B+S 116 B+S 92 B+S 75 B+S 3 POS 875 B+S 529 B+S 351 B+S 249 B+S 185 B+S 143 B+S 114 B+S 93 B+S 4 POS 831 B+S 499 B+S 330 B+S 234 B+S 174 B+S 134 B+S 107 B+S 87 B+S Engineering Properties of American Buildings Company 16"LocSeam 360 Panel Designated Steel Base Total Panel Top In Bottom In Gage Yield Metal Thick. Weight Compression Compression Fb of KSI Thick. (In.) (lbs./ft.2) lx Sx Ma lx Sx Ma KSI Steel (In.) (In.'/ft.) (In'/ft.) K-IN. (In 4/ft.) (In3/ft.) K-IN. 24 Ga. 50 0.0225 0.0241 1.35 0.140 0.078 2.35 0.063 0.056 1.67 30 22 Ga. 50 0.0300 0.0316 1.77 0.195 0.114 3.42 0.095 0.085 2.54 30 Gage No. Load Maximum Total Uniform Load in PSF of of Type Span Lengths,Ft. Panel Spans 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 1 POS 695 B 391 B 250 B 174 B 128 B 98 B 77 B 63 B 24 Ga. 2 POS 446 B+S 262 B+s 171 B+S 120 B+S 89 B+S 68 B+S 54 B+S 44 B+S 3 POS 537 B+S 319 B.s 210 B+S 148 B+S 110 B+S 85 B+S 67 B+S 55 8+S 4 POS 508 B+S 301 B+S 197 B+S 139 B+S 103 B+S 79 B+S 63 B+S 51 B+S 1 POS 1013 B 570 B 365 B 253 B 186 B 143 B 113 a 91 B 22 Ga. 2 POS 697 B+S 405 B+S 263 B+S 184 B+S 136 8...s 105 B+S 83 B+S 67 B+S 3 POS 846 B+S 497 8+S 325 B+S 228 B+S 169 B+S 130 B+S 103 B+S 84 B+S 4 POS 798 B+S 467 B+S 305 B+S 214 B+S 158 B+S 122 B+S 96 B+S 78 B+S 1.The panels are checked for bending(B),shear(S),combined bending and shear(B+S)and deflection(D).The controlling check is noted in the table. Deflection is limited to span/60. 2.Section Properties are calculated in accordance with the 2007 North American Specification for the Design of Cold-Formed Steel Structural Members. 3.Minimum yield strength of 24 and 22 gage steel is 50,000 psi. 4.Steel panels are either aluminum-zinc alloy or G-90 coated. The base metal thickness is used in determining section properties. 5.Positive load(POS)is applied inward toward the panel supports and is applied to the outer surface of the full panel cross-section. SUBJECT TO CHANGE WITHOUT NOTICE REVISED MAY 31. 2011 osrac 276/279276 Section 5 Page 7 ABC Design Calculations Pamphlet PANEL PROFILES (12" LOC-SEAM / LOC-SEAM 360) LOC SEAM LOC-SEAM 360 I1 s3/sa2-T r t 1r H PANEL PROFILE CROSS SECTION Engineering Properties of American Buildings Company 12"LocSeam Panel Designated Steel Base Total Panel Top In Bottom In Gage Yield Metal Thick. Weight Compression Compression Fb of KSI Thick. (In.) (lbs./fl3) Ix Sx Ma lx Sx Ma KSI Steel (In.) (In.'/ft.) (In.'/ft.) K-IN. (In.'/ft.) (In?/ft.) K-IN. 24 Ga. 50 0.0225 0.0241 1.47 0.204 0.130 3.91 0.098 0.081 2.44 30 22 Ga. 50 0.0300 0.0316 1.93 _ 0.281 _ 0.182 5.45 0.146 0.125 _ 3.76 30 Gage No. Load Maximum Total Uniform Load in PSF of of Type Span Lengths,Ft. Panel Spans 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 1 POS 1158 B 652 B 417 B 290 B 213 B 163 B 129 B 104 B 24 Ga. 2 POS 613 B+s 368 13•S 244 B+S 172 a+s 128 a+s 99 B+S 78 B+s 64 B+S 3 POS 722 B+S 443 a+s 296 B+S 211 B+S 158 B+S 122 B+S 97 B+S 79 B+S 4 POS 688 B+S 419 a+s 279 B+S 199 B+S 148 U.S• 115 B+S 91 B+S 74 U.S 1 POS 1616 B 909 B 582 B 404 a 297 a 227 B 180 a 145 e 22 Ga. 2 POS 977 U.S 580 B+S 381 B+S 269 B+S 199 B+S 154 B+S 122 B+S 99 B+S 3 POS 1164 e•s 703 B+S 467 B+S 331 B+S 246 a+s 190 B+S 151 B+S 123 B+s 4 POS 1105 B+S 663 B+S 439 B+S 311 B+S 231 B+S 178 B+S 142 B+S 115 B•S Engineering Properties of American Buildings Company 12"LocSeam 360 Panel Designated Steel Base Total Panel Top In Bottom In Gage Yield Metal Thick. Weight Compression Compression Fb of KSI Thick. (In.) (lbs./ft?) lx Sx Ma lx Sx Ma KSI Steel (In.) (In.'/ft.) (In.'/ft.) K-IN. (In.'/ft.) (In.'/ft.) K-IN. 24 Ga. 50 0.0225 0.0241 1.47 0.177 0.104 3.11 0.084 0.074 2.21 30 22 Ga. 50 0.0300 0.0316 1.93 _ 0.242 0.150 4.51 0.126 0.112 3.37 _ 30 Gage No. Load Maximum Total Uniform Load in PSF of of Type Span Lengths,Ft. Panel Spans 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 1 POS 920 B 518 a 331 is 230 B 169 B 129 B 102 B 83 B 24 Ga. 2 POS 594 B+s 348 B+S 227 a+s 160 B+S 118 e•s 91 B+S 72 B+S 58 U.S 3 POS 715 B+S 425 B+S 280 B+S 197 B+S 146 B+S 113 B+S 90 U.S 73 13+5 4 POS 676 B+S 400 B+S 263 B+S 185 B+S 137 U.S 106 B+S 84 B+S 68 B+S 1 POS 1335 a 751 B 481 B 334 B 245 8 188 B 148 B 120 e 22 Ga. 2 POS 927 B+s 538 a+s 350 B+s 245 a+s 181 B+s 139 B+s 110 13.6 89 B+S 3 POS 1125 B+S 660 B+S 432 U.S 303 B+S 225 B+S 173 B+S 137 B+S 111 B+S 4 POS 1061 B+S 621 B+s 405 B+s 284 B+S 210 B+S 162 a+s 128 B+S 104 B+S 1.The panels are checked for bending(B),shear(S),combined bending and shear(B+S)and deflection(D).The controlling check is noted in the table. Deflection is limited to span/60. 2.Section Properties are calculated in accordance with the 2007 North American Specification for the Design of Cold-Formed Steel Structural Members. 3.Minimum yield strength of 24 and 22 gage steel is 50,000 psi. 4.Steel panels are either aluminum-zinc alloy or G-90 coated. The base metal thickness is used in determining section properties. 5.Positive load(POS)is applied inward toward the panel supports and is applied to the outer surface of the full panel cross-section. SUBJECT TO CHANGE WITHOUT NOTICE REVISED MAY 31. 2011 06/BC Section 5 Page 8 277/279277 ABC Design Calculations Pamphlet PANEL PROFILES (MULTI-RIB) r 6" 314" 1" 314', 3 112" - 314"4l Vf _/-- . _ \ 1' 15116" PANEL PROFILE PARTIAL CROSS SECTION Engineering Properties of American Buildings Company Multi-Rib Panel Designated Steel Base Total Panel Top In Bottom In Gage Yield Metal Thick. Weight Compression Compression Fb of KSI Thick. (In.) (lbs./ft 2) Ix Sx Ma lx Sx Ma KSI Steel (In.) (In.'/ft.) (In.'t ft.) K-IN. (In.'1 ft.) (In.'I ft.) K-IN. 29 Ga. 80 0.0137 0.0153 0.74 0.025 0.033 1.19 0.017 0.029 1.06 36 26 Ga. 80 0.0177 0.0193 0.94 0.034 0.049 1.77 0.023 0.042 1.51 36 24 Ga. 80 0.0225 0.0241 1.17 0.045 0.067 2.41 0.032 0.059 2.13 36 22 Ga. 50 0.0300 0.0316 _ 1.53 0.060 _ 0.096 _ 2.87 0.050 0.088 _ 2.65 30 Gage No. Load Maximum Total Uniform Load in PSF of of Type Span Lengths,Ft. Panel Spans 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 1 POS 318 C 198 B 127 B 88 e 65 B 50 B 39 B 32 B NEG -247 P -176 a -113 B -78 a -58 B -44 B -35 B -28 B 2 POS 179 c 135 c 108 C 77 B+S 57 B+s 44 B+S 35 B+S 28 B•S 29 Ga. NEG -99 P -74 P -59 P -49 P -42 P -37 P -33 P -30 P 3 POS 204 c 153 c 122 C 95 B•S 70 B+S 54 B+S 43 B+S 35 B+S NEG -112 P -84 P -67 P -56 P -48 P -42 P -37 P -34 P 4 POS 196 c 147 c 118 c 89 13+S 66 B+S 51 B+S 40 B+S 33 B+s NEG -108 P -81 P -65 P -54 P -46 P -40 P -36 P -32 P 1 POS 509 c 295 B 189 B 131 B 96 a 74 B 58 B 47 B NEG -319 P -239 P -161 B -112 B -82 B -63 B -50 B -40 B 2 POS 292 C 219 C 157 B+S 110 B+s 81 B+S 62 B+S 49 B+S 40 B+S 26 Ga. NEG -127 P -96 P -76 P -64 P -55 P -48 P -42 P -38 P 3 POS 332 c 249 c 195 B+s 137 B+s 101 B+s 78 B+s 62 B+s 50 B+s NEG -145 P -109 P -87 P -72 P -62 P -54 P -48 P -43 P 4 POS 320 c 240 c 182 B•S 128 B+S 94 B+S 73 B+S 58 B+S 47 B+S NEG -139 P -105 P -84 P -70 P -60 P -52 P -46 P -42 P 1 POS 715 B 402 B 257_ a 179 B 131 B 101 B 79 B 64 B NEG -405 P -304 P -227 B -158 a -116 B -89 B -70 B -57 B 2 POS 460 c 342 B+S 222 B+S 155 B+S 114 B+5 88 B+S 70 B+s 56 B+S 24 Ga. NEG -162 P -122 P -97 P -81 P -69 P -61 P -54 P -49 P • 3 POS 522 C 392 c 274 B+S 192 B+S 142 B+s 109 B+S 87 8+S 70 a+s NEG -184 P -138 P -111 P -92 P -79 P -69 P -61 P T -55 P 4 POS 503 c 377 c 257 B+S 180 B+S 133 B+s 102 B+s 81 B+S 66 B•S NEG -177 P -133 P -106 P -89 P -76 P -66 P -59 P -53 P 1 POS 850 B 478 B 306 B 212 B 156 B 120 B 94 B 76 B NEG -572 P -429 P -283 e -196 a -144 B -111 B -87 B -71 B 2 POS 655 c 423 B+S 275 B+S 192 B+S 142 B+s 109 B+s 87 B+S 70 8+5 22 Ga NEG -229 P -172 P -137 P -114 P -98 P -86 P -76 P -69 P 3 _POS 744 c 518 B+S 339 a+s 238 B+s 177 B+s 136 B+s 108_B+s 87 B+S NEG -260 P -195 P -156 P -130 P -111 P -98 P -87 P -78 P 4 POS 716 c 391 B+s 254 B+S 223 B+S 165 B+S 127 13+S 101 B+S 82 B+S NEG -250 P -188 P -150 P -125 P -107 P -94 P -83 P -75 P 1.The panels are checked for bending(B),shear(S),combined bending and shear(B+S),deflection(D),web crippling(C),and panel pullover(P). The controlling check is noted in the table.Deflection is limited to span/60,with the wind load permitted to be taken as 0,7 times the"component&cladding"loads as noted in footnote f of IBC Table 1604.3. 2.Section Properties are calculated in accordance with the 2007 North American Specification for the Design of Cold-Formed Steel Structural Members. 3.Minimum yield strength of 29,26 and 24 gage steel is 80,000 psi. Minimum yield strength of 22 gage steel is 50,000 psi. 4.Steel panels are either aluminum-zinc alloy or G-90 coated. The base metal thickness is used in determining section properties. 5.Positive load(POS)is applied inward toward the panel supports,and is applied to the outer surface of the full panel cross-section. Negative load(NEG)is in the opposite direction. SUBJECT TO CHANGE WITHOUT NOTICE REVISED MAY 31,2011 06IBC Section 5 Page 9 278/279278 J ABC Design Calculations Pamphlet PANEL PROFILES (SEAM LOC) 0.3300`INSIDE 0.0625 INSIDE 1.7500'tA335, 0.8281 16300' 1 1 l _- 17,15 or 11r NET COVERAGE _ J PANEL PROFILE CROSS SECTION Engineering Properties of American Buildings Company 17'SeamLoc Panel Designated Steel Base Total Panel Top In Bottom In Gage Yield Metal Thick. Weight Compression Compression Fb of KSI Thick. (In.) (Ds.lft') Ix Sx Ma Ix Sx Ma KSI Steel (In.) (In.'I ft) (In.'/ft.) K-IN. (In.'/ft) (Ia°/ft) K-IN. 24 Ga. 50 0.0225 0.0241 1.47 0.117 0.078 2.35 0.058 0.057 1.70 30 22 Ga. 50 0.0300 0.0316 1.93 0.154 0.109 3.27 0.086 0.079 2.38 30 Gage No. Load Maximum Total Uniform Load in PSF of of Type Span Lengths,Ft. Panel Spans 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 1 POS 695 B 391 B 250 B 174 a 128 a 98 B 77 B 63 B 24 Ga. 2 POS 484 B+S 277 8.5 179 13+5 125 B.S 92 B+S 70 B+S 56 13+5 45 B+5 3 POS 595 B+S 343 e.s 222 13.5 155 9+5 114 B.5 88 B+s 70 B+s 56 8.5 4 POS 558 B+s 321 B+S 208 B+s 145 B.s 107 13.5 82 B.s 65 B.5 53 B.s 1 POS 970 B 546 B 349 B 242 B 178 B 136 B 108 B 87 B 2 POS 683 13.5 389 B+S 251 B+S 175 8.5 129 B+S 99 B.S 78 B+S 63 B+S 22 Ga. 3 POS 843 B.s 483 B's 312 8*5 218 B•S 160 B+s 123 B+5 97 B+5 79 a+s 4 POS 791 B•5 452 B•s 292 8.5 203 B+s 150 a+s 115 B.5 91 13.5 74 B.s Engineering Properties of American Buildings Company 16"SeamLoc Panel Designated Steel Base Total Panel Top In Bottom In Gage Yield Metal Thick. Weight Compression Compression Fb of KSI Thick. (In.) (lbs.1 ft) lx Sx 1 Ma lx Sx Ma KSI Steel (In.) (In'/ft.) (In.'/ft.) K-IN. (In.'lfl.) (In.'/ft.) K-IN. 24 Ga. 50 0.0225 00241 1.35 0.094 0059 1.78 0.044 0.043 1.28 30 22 Ga. 50 0.0300 0.0316 1.77 0.123 0084 2.51 0.065 0.060 1.79 30 Gage No. Load Maximum Total Uniform Load in PSF of of Type Span Lengths,Ft. Panel Spans 1.50 2.00 1 2.50 3.00 3.50 4.00 4.50 5.00 1 POS 527 B 297 0 190 B 132 B 97 B 74 a 59 B 47 6 24 Ga. 2 PDS 363 a+S 208 B+5 134 B.5 94 8+5 69 B+s 53 8+5 42 B+S 34 13.5 3 POS 447 B+s 257 B.5 167 B•5 117 a•S 86 6.5 66 B+5 52 B.5 42 a+s 4 POS 419 13+5 241 B+S 156 B+S 109 B.5 80 B.s 62 B.s 49 B.5 40 B.s 1 POS 743 B 418 B 268 B 186 B 136 B 105 B 83 B 67 B 22 Ga. 2 POS 513 a+s 292 B.s 188 B.s 131 B.s 97 B'S 74 B.S 59 B+5 47 8.5 3 POS 634 e.s 363 e.s 234 B.s 163 B.s 120 a+s 92 B+5 73 B.5 59 B+S 4 POS 594 B.s 340 B'S 219 Bis 153 o-s 113 a-s 86 B-S 68 B•s 55 B•s Engineering Properties of American Buildings Company 18"SeamLoc Panel Designated Steel Base Total Panel Top In Bottom In Gage Yield Metal Thick. Weight Compression Compression Fb tr of KSI Thick. (In.) (Ds./112) lx Sx Ma lx Sx Ma KSI Steel (In.) (In.'/ft.) (Ins/ft.) K-IN. pn.4/ft) (n.s/ft) K-IN. 24 Ga. 50 0.0225 0.0241 1.31 0.085 0.053 1.59 0.039 0.038 1.14 30 22 Ga. 50 _0.0300 0.0316 1.72 0112 _ 0.075 2.25 0.057 _ 0.053 1.59 30 Gage No. Load Maximum Total Uniform Load in PSF of of Type - - Span Lengths,Ft. Panel Spans 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 1 POS 470 B 265 B 169 B 118 B 86 B 66 B 52 B 42 B 24 Ga. 2 POS 323 E1.5 185 8.5 119 13.5 83 8.5 61 B.s 47 B.s 37 8.5 30 B+5 3 POS 397 B.5 229 B.0 148 B•s 104 B.S 76 8.0 59 13+5 46 B.s 38 6+0 4 POS 373 13•5 215 8+s 139 B.8 97 a+S 71 B.s 55 B•5 43 B.s 35 B+5 1 POS 666 8 375 8 240 8 166 8 122' B 94 B 74 8 60 B 22 Ga. 2 POS 456 B 8 .s 260 .S 167 B+s 117 13+5 86 B.s 66 B.s 52 B'S 42 13+S 3 PDS 563 8+5 323 B.5 208 8+S 145 B+S 107 B+S 82 B+5 65 8.5 53 B+5 4 POS 528 B+s 302 B.5 195 B.s 136 e.s 100 8.5 77 B.5 61 B'S 49 B•S 1.The panels are checked for bending(B),shear(S),combined bending and shear(B+S)and deflection(D).The controlling check is noted in the table. Deflection is limited to span/60. 2.Section Properties are calculated in accordance with the 2007 North American Specification for the Design of Cold-Formed Steel Structural Members. 3.Minimum yield strength o124 and 22 gage steel is 50,000 psi. 4.Steel panels are either aluminum-zinc alloy or G-90 coated. The base metal thickness is used in determining section properties. 5.Positive load(POS)is applied inward toward the panel supports and is applied to the outer surface of the full panel cross-section. SUBJECT TO CHANGE WITHOUT NOTICE REVISED MAY 31. 2011 061BC 279/279279 Section 5 Page 10 Ilk