Loading...
Report RECEIVEF • -t=; = MAY 7 2014 CITY OF TIGARD • [ ONTERRAII CITM& ' 5 NE 1 2nd v , Vancouver, WA 98685 ' `4'Ai,i. SYSTEM BUILDI �:�t•I ' ') 877 Fax (360) 694-0281 • Permit is l 2 - -C : Z Addre.* • . , IR& _:r _1 Suite#t StancTawjro des a 2d dcq ,y., —I""• Fence posts on e'-e'centers are early installed just behind the face of the wall in the wedge nrra between bloc le.. 12'B enc h Block Full Blocks ---_- `\� ~ 4 I: - Corner Block i.- ...!:.??..--- - :'-G r• Compacted Crushed Han.Bow StoncTcrra Block teas elm i vri.Vel um bar Property OFFICE COPY Y Create Reinforced Walls (MSE) Standard Shapes & Sizes 6 or Non-Reinforced Walls (Gravity) %ct Gc,ck Glock r` 'I•�`t' 1•s„h.:..—I -, FULL HALF { + r 1 m Itr r _ t FULL HALF BENCH j t3751bs 695 IDS r l,,= -. n,.a 623 up 95 D ;.ny:1 nonn.k: FULL FULL BENCH Kg ■• IL_ _I2% 1 CORNER CORNER RigFeee 1800 516 kg 2300 lin 'j t ---1.-. 1343 kg or' • / l TT.1 FULL 12” BENCH 12-l_• 4_,..� 'Sr lr•rli end " (i eohrd Non, Preliminary-block layouts to be approved by engineer *Double sided or freestanding blocks available RECEIVED rlaIIIIIIIIII_Lllb' MAY 7 2014 " ONIT ERRA iN �+SIT t15 NE 172nd Avenue, Vancouver, WA 98685 WALL SYSTEM UILDIN01/111 1118441 (800) 377-3877 Fax (360) 694-0281 ice_ - - 41611' :if' i, • : t« 4,k.„ �` L `�.. .r ,�. - .. 1 .,- ■ y..-._.fir. 1 t I ...,11111Alli .#. 1 ji -______ 111 •Ii ma . A 1.____ ____- - ___ .4'1. �� >r ,� 1 r,, : , 1«'lt 11 , j - ,► , • . '41‘ �. 1 r .w. �, -___ ,�,1.,,, ,..� ....w - 4 ili t ;lit El Inter-locking © Set with Small Equipment CI Curved Walls - NI 8 Sq. Ft. of Face per Block © Build in Limited Space CI Easy & Fast Installation El Low Cost kl 8 Ft. Min. Radius of Curvature Natural Architectural Finish ° ' ° . ' z‘ ;� a`iil 1BILIT LESS EFFORT r:-. t 0 I • , A .stoneterra.net ° • 4116Tr„r NrnES: su1L.s c..coue gto 9esO. to Lc CoAyc.er*O to 9554 of she 1"1"+1.4wNt DRY 1)[usp4y i 5:e4 r from It. A3 155 x ANoniuNAt. passo1J �tR is tA: 2so?sr $VtcMAxote RECEIVED ff.15JVli( ss• •9$2s 5,•.x185) sos..7003 MAY 72014 • CITY OF TIGARD BUILDING DIVISION fe.-c c 2'fZ'y4' S'wNe'ttttA l).110 12" %.1. Feria MEAL A� VAt�,twa Fti.t_ S1'ste k A )r W - tileNTACAVD 601150 *IC 191,0" 4� StX6AkK, r fr c 014 41' P(42 r. vgpmv +vicc: W n.!gpec . _ 04 MT*R SR%C W) C1e JPRA1&)Qotl( 11 a"'Deep Mw, CW3141) cumpocTee; M%N �tti,ue Le)eL% ()NO. 1 4 r t,�oi�\ Sec rtta J 5A11 075 ��ED PR ff' 141 lt. a 0 - , 9,Yo NPR N R EXPIRES: WV/5— I :HA ne EN, P-�TA�I,J�►Jc� u 0 S BY CirA DATE 5AII4 Consulting Lnyineer3 MUIM e(VC A�%) ceu�»eR REV DATE .3tructural Engineering JOB NO 1424 (503) 968-9994 p (503) 968-8444 f SKEET 51 1 OF Z Na s: See SK1 Folk AvDrIto1J •L %Pro PEE-cAs Z'12'x4' STUN ETePeA 1J-10,U _ i2 OW, FRec g1ZA J%3 SAT EAA e6RAUVLAR 1•ILL N r . STQA'TACnRM SC„350 F aFf , STRASA R%t SCn35n 1 /0.1 1l/ x 6 p . 8M 4" c6 Pelf. 'DRAa.) PIPL Lu(24q)e0 ►N : ` i FIL4-6R FN6R\e W I c1.eootJ t'RAI faock0C L V' Veep mg. . cp.,s►�ec 3F1 ►Th . cUr++Po►r-TeO 5TUNe 1t■ eLlob pAp 6 Fr LA1ak ectK1LJ 51 L� Ans _ • �}C1'U/t. �11,kp PR aft A ip ,4 • sF '9 SIT 10 17 v X19°N R. /At\ • 10(PIILFS: 6/30 /4 — 1ft ^ tCfl.hu+u) WcIAS BY C DATE 5/644 Consulting Engineers MusItM EGJek3u' ea-ftee REV _ DATE otructuraL Engineering JOB NO 14-126 (503)968-9994 p (503) 968-8444 f SHEET 5C7._ OF 2 TT - J Nc7Ftb: L 9.41 rue Aryans J M.. I Nf, PRE-CAVI 2 *2')(41' S11.)0 Te cc cf.w au IA 0. MEC 5`(5TeM _ (S.414001.A,t2 !'ice' JstA- y1-1.0 $01350 X IC`"cw STaatt►•^t•,C) 12.a+3sa SPr r-t - f x10" I S' ti?t∎ -,a10 501350 S st sWt r--t • 4 4 ($ ?Etc, DRAW 9tPE w est n I-- �`. /. def.r y t►.� f1L FAOR'G. W I CLe.A►J t7RA1A3 t�tD' UC , t • L co" 'Deep u■ i. t(•JSt1EO cwKpactec I- Srr Mma. s'�ui�+e LeV€L. .3 4^0 i R 7 L-4./c.40 Sectiov. 5�3 MS minof _ t4, fit a-- 4.4„„ik, fry 9�N R. NP -xpi lit S: 6/30 ° I; j BY e(." DATE IANN Consulting G.ngineera 1i trAt4.1t'' It•u115 REV CM DATE ,3tructural engineering Moll■+► eQ,hAlL)✓ ttvter JOB NO 10124 (503)968-9994 p (503) 968-8444 f SHEET 541 OF _ s RECEIVED • MAY 7 2014 CITY OFTIGARD Structural Calculations BUILDING DIVISION for Retaining Walls @ Muslim Educational Trust (MET) Tigard, Oregon May 6, 2014 DESIGN PARAMETERS 2010 Oregon Structural Specialty Code SPECIAL INSPECTION REQUIRED State of Oregon Structural Specialty Code ❑ Concrete and Reinforcing Steel • .0 Bolts Installed in Concrete •❑ Special Moment-Resisting Concrete Frame ❑ Reinforcing Steel&Prestreseing Steel Tendons ❑ Structural Welding ❑ High-Strenght Bolting (0 Structural Masonry ❑ Reinforced Gypsum Concrotb I insulating Concrete Fill Q Spray Applied Fire-Resistive'Matarkft ,y1RUCTUF ❑ Pilings,Drilled Piers and Caissons PROF Special Grading,Excavation and RIMS n ro f ` 1 Smoke-Control Sys tems � or- 4, ❑ Other Inspections ---- -<--- Oyr, 10. ',7 �` Y R. HP • EXP: 6/3O/ S"-- By: Date: 1HO_ Consultin G..n irteerr5 Chk: Date: 9 9 structural L_ngineering Job #: (503) 968-9994(phone) (503) 968-8444(fax) Sheet: Of: 4 5/1/2014 Design Maps Surrrnary Report IFUSM Design Maps Summary Report User-Specified Input Building Code Reference Document ASCE 7-05 Standard (which utilizes USGS hazard data available in 2002) Site Coordinates 45.44299°N, 122.80973°W Site Soil Classification Site Class D - "Stiff Soil" Occupancy Category I/II/III �' - ,.. tW . Aloha ,. -I 4.„, / (I'•iFM a,P ` a �Yt i 4 ""^•,..,.:, S mow. d /'elivefton ''•. . Z!-r '�. '",.T.t-ll._-�eft ' � 44r-' t.• •-r "IX. f :. +µ`� Gorden ,i 1 1- rdl, x.,� T*°-j {j�� 1-311•. - �r-' `` ice ` pa,'Z ti"°" I6 '^P r[j drc rF.^"--'-�` Y 4 •,' �n <1/41u ' t�} , a r i- . a i ,S f �,r+! T . . i0 a t�f , r • ' * � -81- .�5'z Yx h '1,4•'-' - El .' , .--!--� .", , Y i., -.o)-440#. 4 4 c3 r. u t �,�r i r-..s 1 # ,$ ; , ,' USGS-Provided Output ������ - Ss = 0.932 g SMS = 1.050 g S°s = 0.700 g S1 = 0.338 g S„ = 0.583 g SDI = 0.388 g MCE Response Spectrum Design Response Spectrum 1.10 0.72 0.» 0.64 0.98 0.56 0.77 S 0.66 a+ 0.48 a 0.55 , 0.40 0.44 0.]2 0.22 0.24 0,22 0.16 0.11 0.00 0.00 0.00 0.00 0.20 0.40 0.60 0.90 1.00 1.20 1.40 1.60 1.00 2.00 0.00 0.20 0.40 0.60 0.60 1.00 1.20 1.40 1.60 1.90 2.00 Period, T(sec) Period, T(sec) Although this Information is a product of the U.S. Geological Survey, we provide no warranty, expressed or implied, as to the accuracy of the data contained therein. This tool is not a substitute for technical subject-matter knowledge. Pecs v ic) ott-ew“L u ti pc>z AxE 11,8 'S _ 5s - z.s• 2...5 = •37 1 httpJ/ehpl-earthqualm.cr.usgs.gotddesignrnaps lus/summary.php?template=mini mai&Iati tude=45.4429905&longitude=-122.8097294&si tool ass=3&r islcategory=..- 1/1 ft I , '+ I O\1 1 ERRA." 9 WALL SYSTEM StoneTerra, Inc v3.3 Build 14093 Project: New Project Location: Site Location Designer: xxx ' Date: 5/6/2014 +� Section: Section 1 Design Method:AASHTO_2002 Design Unit: StoneTerra: . ' Seismic Acc: 0.370 5 190 ft SOIL PARAMETERS cp coh y laill Reinforced Soil: 25 deg 0 psf 110 pcf Retained Soil: 25 deg 0 psf 110 pcf Foundation Soil: 34 deg 0 psf 110 pcf Leveling Pad: Crushed Stone GEOMETRY • Design Height: 4.00 ft Live Load: 0 psf Wall Batter/Tilt: 2.40/0.00 deg Live Load Offset: 0.00 ft Embedment: 0.50 ft Live Load Width: 20 ft Leveling Pad Depth: 0.50 ft Dead Load: 0 psf Slope Angle: 0.0 deg Dead Load Offset: 0.0 ft Slope Length: 0.0 ft Dead Load Width: 100 ft Slope Toe Offset: 0.0 ft Leveling Pad Width: 3.00 ft Vertical 6 on Single Depth RESULTS(Static/Seismic) FoS Sliding: 5.31 (fndn)/2.67 FoS Overturning: 30.07/ 12.96 Bearing: 511 /534.92 FoS Bearing: 35.74 / 32.70 Top Wall Stability: 11.79 To Ht Lngth Geogrid Ta:[sets] TMax[Tmd]:` Tal/FS[sets] Tal[seis] PkCn(sets) PkCNFS[sets] FS PO FS SIdg 1 200 8.00 SG350 2550(3953] , 201(173] 1700[3513] 12.69[22.88] 683(911] 5.10[5.93] 2.36[2.19] 50.69[25.60] StoneTerra, Inc Page 1 7- S"° l' ERRS' WAL. ..��.... � h �a h 4 . F - v �' f l : L ; d ,,,4-i A s ,, i�: COMPOUND RESULTS Compound stability is a global analysis (Bishop)with the failure planes originating at the top of the slope/wall and exiting out through the face of the wall. For MSE walls, the resistance of the geogrid reinforcement is included in the analysis and the shear resistance of the face units is included. ID Enter Point X Enter Point Y Exit Point X Exit Point Y Center X Center Y Radius FoS 125 12.60 4.00 2.00 0.00 -3.94 31.79 32.34 1.615 - 118 12.60 4.00 2.00 0.00 -3.94 31.79 32.34 1.615 111 12.60 4.00 2.00 0.00 -3.94 31.79 32.34 1.615 140 13.40 4.00 2.00 0.00 -4.30 36.20 36.74 1.615 148 13.40 4.00 2.00 0.00 -4.30 36,20 36.74 1.615 132 13.40 4.00 2.00 0.00 -4.30 36.20 36.74 1.615 174 14.20 4.00 2.00 0.00 -4.66 40.92 41.46 1.622 156 14.20 4.00 2.00 0.00 -4.66 40.92 41.46 1.622 165 14.20 4.00 2.00 0.00 -4.66 40.92 _ 41.46 1.622 97 11.80 4.00 2.00 0.00 -3.59 27.70 28.26 1.638 GLOBAL RESULTS --- Global stability is a global analysis (Bishop)with the failure planes originating at the top of the slope/wall and exiting out below the wall in the area infront of the structure. For MSE walls, the resistance of the geogrid reinforcement Is included in the analysis. The curve may go through the base of the wall and the wall shear would be included. In most cases the failure plane will pass below the structure. ID Enter Point X Enter Point Y 1 Exit Point X Exit Point Y Center X ' Center Y r- Radius FoS 1225 11.80 4.00 -5.38 0.50 -0,43 20.09 20.21 1.387_ 1049 11.00 4.00 -4.58 _ 0.50 -0.06 16.82 16.93 1.399 1399 12.60 4.00 -5.38 0.50 -0.21 21.85 21.97 1.410 1328 11.80 4.00 -10.98 0.50 -3.43 27.26 27.81 1.437 942 10.20 4.00 -7.78 0.50 -1.17 14.50 15.48 -1,450 1127 11.00 4.00 -9.38 0.50 -2,60 22.09 22,63 1.453 -1213 11.80 4.00 ____-4.58 _-___...____-. 0.50 0.16 18.42 18.53 1.460 804 9.40 4.00 -8.58 0.50 -2.56 17.49 18.02 1.463 930 10.20 4.00 -6.98 0.50 -0.65 13.33 14.31 1.464 • 2017 15.00 4.00 -6.98 0.50 -0.70 31.84 31,96 1.464 StoneTerra, Inc Page 2 S S'I'( ) l': ERRA, WALL SYSTEM StoneTerra, Inc v3.3 Build 14093 Project: New Project Location: Site Location Designer: xxx Date: 5/6/2014 'x,, Section: Section 1 f Design Method: AASHTO_2002 ��� 4 � �i r Design Unit: StoneTerra: ? SOIL PARAMETERS cp coh y 8 ft Reinforced Soil: 25 deg 0 psf 110 pcf Retained Soil: 25 deg 0 psf 110 pcf Foundation Soil: 34 deg 0 psf 110 pcf Leveling Pad: Crushed Stone GEOMETRY Design Height: 4.00 ft Live Load: 250 psf Wall Batter/Tilt: 2.40/0.00 deg Live Load Offset: 0.00 ft Embedment: 0.50 ft Live Load Width: 20 ft Leveling Pad Depth: 0.50 ft Dead Load: 0 psf Slope Angle: 0.0 deg Dead Load Offset: 0.0 ft Slope Length: 0.0 ft Dead Load Width: 100 ft Slope Toe Offset: 0.0 ft Leveling Pad Width: 3.00 ft Vertical 6 on Single Depth RESULTS FoS Sliding: 2.49 (fndn) FoS Overturning: 11.12 Bearing: 674 FoS Bearing: 28.57 Top Wall Stability: 2.67 ID Height Length Geogrid. Ta TPa I TPgII TPgdl TMax FS str Tal cn FS PkConn FS PO/[Tmax] F slr[ndnj 1 2.00 8.00 SG350 1700 201 304 0 505 5.05 683 2.03 2.36/(2013 15.49[3.21) StoneTerra, Inc Page 1 4 ST()N II:TERRA wnt a , COMPOUND RESULTS Compound stability is a global analysis (Bishop)with the failure planes originating at the top of the slope/wall and exiting out through the face of the wall. For MSE walls, the resistance of the geogrid reinforcement is included in the analysis and the shear resistance of the face units is included. ID Enter Point X Enter Point Y Exit Point X Exit Point Y Center X Center Y _ Radius FoS 67 10.20 4.00 2.00 0.00 -2.91 20.48 21.06 1.809 - 62 10.20 4.00 2.00 0.00 -2.91 20.48 21.06 1.809 57 10.20 4.00 2.00 0.00 _ -2.91 20.48 21.06 1.809 84 11.00 4.00 2.00 0.00 -3.25 23.93 - 24.50 1.818 72 11.00 _ 4.00 2.00 0.00 -3.25 23.93 24.50 1.818 78 11.00 4.00 2.00 0.00 -3.25 23.93 24,50 1.818 38 8.60 4.00 2.00 0.00 -2.29 14.52 15.14 1.822 34 8.60 4.00 2.00 - 0.00 •-2.29 14.52 15.14 ' 1.822 30 8.60 4.00 2.00 0.00 -2.29 14.52 15.14 1.822 42 9.40 4.00 2.00 0.00 -2.59 17.34 17.94 1.824 GLOBAL RESULTS Global stability is a global analysis (Bishop)with the failure planes originating at the top of the slope/wall and exiting out below the wall in the area infront of the structure. For MSE walls,the resistance of the geogrid reinforcement is included in the analysis. The curve may go through the base of the wall and the wall shear would be included. In most cases the failure plane will pass below the structure. ID Enter Point X . Enter Point Y Exit Point X Exit Point Y Center X Center Y Radius FoS 389 7.00 4.00 -5.38 0.50 -1.10 9.01 9.52 1,735 510 7.80 4.00 -6.18 0.50 -1.41 _ 11.11 11.63 1.756 390 7.00 4.00 -5.38 0.50 -0.66 7.44 8.40 1,765--383 7.00 4.00 -4.58 0.50 -0.54 8.06 8.57 1.777 .-511 7.80 4.00 -6.18 0.50 -0.93 9.19 10.15 1.784 520 7.80 4.00 -6.98 0.50 -1.46 10.14 11.11 1.791 - • 384 7.00 _ 4.00 -4.58 0,50 -0.12 6.65 7.60 1.792_ 502 7.80 4.00 -5,38 0.50 -0.85 10.03 10.55 1.793 199 5.40 4.00 -5.38 0.50 -1.18 5.91 6.85 _1,797 ' 397 7.00 4.00 -- - -6.18 __..._.0.50 -1.19 8.29 - 9.25 1.803 StoneTerra, Inc Page 2 5 • s'I'( )\ I..TERRA WALL SYSTEM DESIGN DATA TARGET DESIGN VALUES (Factors of Safety) Minimum Factor of safety for the sliding along the base FSsI = 1.5 Minimum Factor of safety for overturning about the toe FSot= 2.0 Minimum Factor of safety for bearing (foundation shear failure) FSbr = 2.0 -Seismic requirements are 75% of MINIMUM DESIGN REQUIREMENTS Minimum embedment depth Min emb = 0.5 ft INPUT DATA Geometry Wall Geometry Design Height, top of leveling pad to finished grade at top of wall H =4.00 ft Embedment, measured from top of leveling pad to finished grade emb=0.50 ft Leveling Pad Depth LP Thickeness =0.50 ft Face Batter, measured from vertical i =2.40 deg • Slope Geometry Slope Angle, measured from horizontal (3=0.00 deg Slope toe offset, measured from back of the face unit STL_offset=0.00 ft • Slope Length, measured from back of wall facing SL_Length =0.00 ft NOTE: If the slope toe is offset or the slope breaks within three times the wall height, a Coulomb Trial Wedge method of analysis is used. Surcharge Loading Live Load, assumed transient loading (e.g. traffic) LL = 250.00 psf Live Load Offset, measured from back face of wall LL_offset=0.00 ft Live Load Width, assumed strip loading LL_width =20.00 ft Dead Load, assumed permanent loading (e.g. buildings) DL = 0.00 psf Dead Load Offset, measured from back face of wall DL_offset=0,00 ft Dead Load Width, assumed strip loading DL_width = 100.00 ft Soil Parameters Retained Zone Angle of Internal Friction cp = 25.00 deg Cohesion coh =0.00 psf Moist Unit Weight gamma =110.00 pcf Foundation Angle of Internal Friction cp = 34.00 deg • Cohesion coh =0.00 psf Moist Unit Weight gamma =110.00 pcf StoneTerra, Inc Page 3 6 ST( )\ F TERRA WALL SYSTEM RETAINING WALL UNITS STRUCTURAL PROPERTIES: N is the normal force [or factored normal load] on the base unit The default leveling pad to base unit shear is 0.8 tan(cp) [AASHTO 10.6.3.4] or may be the manufacturer supplied data. cp is assumed to be 40 degrees for a stone leveling pad, Unit Designation: StoneTerra Unit Dimensions: Height= 2.00 ft Depth = 2.00 ft Width =4.00 ft Density= 140.00 pcf Weight= 560 lbs Unit to Unit Shear Unit to Leveling Pad Shear T = N tan(0.00) + 2000.00 ppf T = N tan(30.00) + 20.00 ppf • StoneTerra, Inc Page 4 • L+ I + ) . I ERRA { ►J C WALL SYSTEM • GEOGRID REINFORCING STRUCTURAL PROPERTIES: Stratagrid GEOGRID PROPERTIES Name Tuft RFcr RFd RFid Cl Cd Alpha LIDS SG350 5000 _ 2 1 1 1 1 1 2550 CONNECTION STRENGTHS Grid Slopel Intercept 1 Peak Break Slope 2 Intercept 2 Max Normal Cn cr Mot SG350 35 630 1676 4 1692 5758 1 1 SHEAR STRENGTHS Slope 0 deg Intercept 4000 psf CONENCTION CREEP In AASHTO design methods a mechanical connector may rupture the reinforcing, thus a creep reduction factor would be applied. If no test data is available, the creep reduction factor for the reinforcing would be applied.lf a frictional connection is used, then a creep reduction factor would not be applied and a factor of 1.0 is applicable. StoneTerra, Inc Page 5 S \ I',TERRA" I WALL SYSTEM CALCULATION RESULTS OVERVIEW UltraWall calculates stability assuming the wall is a rigid body. Forces and moments are calculated about the base and the front toe of the wall. The base block width is used in the calculations. The concrete units and granular fill over the blocks are used as resisting forces. EARTH PRESSURES The method of analysis uses the Coulomb Earth Pressure equation (below) to calculate active earth pressures. Wall friction is assumed to act at the back of the wall face. The component of earth pressure is assumed to act perpendicular to the boundary surface. The effective delta angle is delta minus the wall batter at the back face (assumed to be vertical). If the slope breaks within the failure zone, a trial wedge method of analysis is used. INTERNAL EARTH PRESSURES Effective internal Delta angle delta = 0.0 deg Coefficient of active earth pressure ka =0.406 Internal failure plane p = 57.5 deg EXTERNAL EARTH PRESSURES Effective Delta angle (delta = R delta =0.0 deg Coefficient of active earth pressure ka =0.406 Effective Face Angle Face Alpha =0.00 deg External failure plane p = 57.5 deg cos(¢i+i)2 Ka'- 2 cos(i)2•cos(bi—i)(1 +j s `e+ �c + P)Q,., FORCES AND MOMENTS UltraWall resolves all the geometry into simple geometric shapes to make checking easier. All x and y coordinates are referenced to a zero point at the front toe. The wall image can be exported to CAD for a more detailed output. Name Factory Force(V)1Force(H) X-len Y-ten MO Mr WS (dI W1 J Face Blocks(W1) 1.00 1120 -- 1.00 - -- 1120 Soil(W2) 1.00 _ 0 -- 2.00 - - 0 . `1 w_ _. Soil(W3) 1.00 2640 -- -5.00 — - -- - 13200 � r LL(W7) 1.00 1500 - 5.00 - - 7500 s Pa_h 1.00 - 357 1.33 476 - r I �' f Pq_h 1.00 -- 406 2.00 812 , Sum(V,H) 1.00 5260 763 Sum Mom 1288 14320 H W1 1 J., ,I Note: live load forces and moments are not included e u{ W 3 /. in SumV or Mr as live loads are not included as resisting forces. R a 2 r WO: leveling pad W6: Rectang zone in broken i _ Via: W1: facing units W7: Live load over the mass ~`i L I_' W2: soil wedge behind the face W8: Dead load over the mas I S I _ W3: rectangular area in MSE area W9: Force Pa W4: the wedge at the back of the mass W10: Surcharge load Paq W5: slope area over the mass W11: Dead Load Surchage Paqd StoneTerra, Inc Page 6 q S I� I \ TERRA 'WALL SYSTEM BASE SLIDING Sliding at the base is checked at the soil-to-soil interface between the reinforced mass and the foundation soil. Forces resisting sliding = (SumV) SumV=5260 ppf Resisting force = SumV x tan(slope) +c x L Rf1 =1898 where L is the base width Driving force is the horizontal component of Pah + Pqh+ Pdh Df= 763 Friction angle is the lesser of the reinforced fill and Fnd cp= 34.00 deg Factor of Safety = Rf/Df FSsI =2.49 OK StoneTerra, Inc Page 7 ST( ):\ I TERRA !WALL SYSTEM OVERTURNING ABOUT THE TOE Overturning at the base is checked by assuming rotation about the front toe by the block mass, soil retained on the blocks or within the reinforced zone. Allowable overturning can be defined by eccentricity(e/L) or by the ratio of resisting moments divided by overturning moment(FSot). Moments resisting overturning = Sum(M1 to M6) + MPav+ MPqv Mr=14320 ft-lbs Moments causing overturning = MPah + MPqh Mo=1288 ft-lbs Factor of safety= Mr/Mo FSot=11,12 OK StoneTerra, Inc Page 8 1 •SSr )t I TERRA !WALL SYSTEM ECCENTRICITY AND BEARING Eccentricity is the calculation of the distance of the resultant away from the centroid of mass. In wall ReinDesign the eccentricity is used to calculate an effective footing width, or in rigid structure, it is used to calculate the pressure distribution below the base. Calculation of Eccentricity e = L/2 -(SumMr- SumMo)/SumV e = 8.00/2 - (13032.08 /5260.00) e = 0.097 Calculation of Bearing Pressures Qult= c*Nc+ q*Nq + 0.5*gamma*(B')*Ng where: Nc= 42.16 Nq = 29.44 Ng =41.06 c= 0.00 psf q = 55.00 psf B' = 7.81 ft Calculate Ultimate Bearing, Qult Qult=17275.07 psf Applied Bearing Pressures = (SumVert/ B') sigma =673.77 psf Calculated Factors of Safety for Bearing Quit/sigma =28.57 StoneTerra, Inc Page 9 ST( )N k TERRA WALL,SYSTEM TENSION CALCULATIONS Tmax is the maximum tension in the reinforcing based on the earth pressure and surcharge loads applied. In the AASHTO methods of design a simplified method of design is used. For wall batters less then 10 deg, the face is assumed vertical and a Rankine earth pressure coefficient is used. Sloping surcharges are treated like an equivalent earth load. For wall batters greater than 10 deg, a Coulomb method of analysis is used. TABLE OF RESULTS Elevation[ft] Name[ft] Ta[ppf] Coverage Ratlo% Tmax[ppf) 1 CDR Str 2.00 SG350 1700 100 505 I 3.36 1 StoneTerra, Inc Page 10 1� C`I'c )\HTERRA" ►�J? WALL SYSTEM PULLOUT CALCULATIONS Pullout is the amount of resistance of the reinforcing has to a pullout failure based on the Tmax applied and the depth of embedement(resistance). In an AASHTO design, the failure plane is fixed at the Rankine failure plane angle,45 + phi/2. All failure planes begin at the tail, of the facing units. Failure Plane Angle =57.5 Deg NOTE:The pullout capacity is limited by the LTDS of the reinforcing layer, not the ultimate pullout capacity calculated. Ci= 0.60 Pullout=2 x Le x Ci x tan(phi)x sv x Coverage TABLE OF RESULTS Elevation[ft] F* Alpha %Coverage Tmex[ppf] Lel ft] Pullout_[Pr][ppf] '- CDR PO 2.00 0.28 0.80 100 201 Mal 3.19 474 2.36 StoneTerra, Inc Page 11 �4 Wergrannoi S'I'( )N ETERRA' WALL SYSTEM CONNECTION CALCULATIONS Connection is the amount of resistance of the reinforcing has to a pullout failure from the facing units based on the Tmax applied and the normal load on the units. In an AASHTO LRFD design, creep on the connection may be applied for frictional and mechanical connections. In NCMA or AASHTO 2002, a frictional failure is based on the peak connection capacity divided by a factor of safety. For a rupture connection the capacity is the peak load divided by a creep reduction factor and a factor of safety. Frictional ConnectionPeak Connection = N tan(slope) + intercept Rupture ConnectionConnection Capacity= [N tan(slope) + intercept]/RFcr RFcr can be a value obtained from long-term testing or by default could be the creep reduction factor of the geogrid reinforcing. Base friction is used to reduce the tension in the bottom layer of reinforcing. The force in the bottom layer is the tension from half way to the reinforcing layer above to the halfway to the foundation level below. Base Friction =666.63 / 1.50 bs = 444 ppf Amount utilized to reduce bottom tension = 0 ppf TABLE OF RESULTS Elevation[ft) Name Tmax[ppf( %Coverage RFcn cr N[ppf] Avall_CN[ppf] CDR en 2.00 SG350 505 100 _ 1.00 560 1 683 1.35 StoneTerra, Inc Page 12 15 Q'j: ..)\...�a ERRA WALL SYSTEM StoneTerra, Inc v3.3 Build 14093 Project: New Project Location: Site Location {;f, Designer: xxx a °' ✓`� Date: 5/6/2014 , Section: Section 1 zs Design Method:AASHTO_2002 Design Unit: StoneTerra: 111111111111MMJ Ir'f Seismic Acc: 0.370 8.O0ft SOIL PARAMETERS cp coh y Reinforced Soil: 25 deg 0 psf 110 pcf Retained Soil: 25 deg 0 psf 110 pcf Foundation Soil: 34 deg 0 psf 110 pcf Leveling Pad: Crushed Stone GEOMETRY Design Height: 6.00 ft Live Load: 0 psf Wall Batter/Tilt: 2.40/0.00 deg Live Load Offset: 0.00 ft Embedment: 0.50 ft Live Load Width: 20 ft Leveling Pad Depth: 0.50 ft Dead Load: 0 psf Slope Angle: 0.0 deg Dead Load Offset: 0.0 ft Slope Length: 0.0 ft Dead Load Width: 100 ft Slope Toe Offset: 0.0 ft Leveling Pad Width: 3.00 ft Vertical 5 on Single Depth RESULTS (Static/Seismic) FoS Sliding: 3.51 (fndn)/ 1.82 FoS Overturning: 13.39/5.95 Bearing: 791 /879.83 FoS Bearing: 22.31 / 18.21 Top Wall Stability: 11.81 ID Ht Lngth Geogrid Ta(sets] TMax(Tmd] Tal/FS(sets] FS Tal(sets] PkCn(sets] PkCn/FS(sets] FS PO FS Sldg 2 4.00 10.00 SG350 2550(39531 20112291 170013513L 12.69117.2V_ 68319111 510 14.471 2.75(1.93] 52.01126.271 1 2.00 8.00 SG350' 2550[3953] 357(198] 1700(3513] 7.14(20.16] 946112621 3.97 7.24] 2.6513.861 14.12(7.671 StoneTerra, Inc Page 1 C1'i'O N 1, ERRA f WALL SY"".' • y ✓ COMPOUND RESULTS Compound stability is a global analysis(Bishop)with the failure planes originating at the top of the slope/wall and exiting out through the face of the wall. For MSE walls, the resistance of the geogrid reinforcement is included in the analysis and the shear resistance of the face units is included. ID Enter Point X Enter Point Y Exit Point X Exit Point Y Center X ' Center Y Radius FoS 233 16.28 6.00 2.00 0.00 -14,00 ' 58.09 60.26 1.328 y 243 16.28 6.00 2.00 0.00 -14.00 58.09 60.26 1.328_ 297 17.48 6.00 2.00 0.00 -15.08 67.05 69.19 1.342 286 17.48 6.00 2.00 - 0.00 -15.08 67.05 69.19 1.342 356 18.68 6.00 2.00 0.00 -16.17 76.72 78,84 1.363 344 18.68 6.00 2.00 0.00 -16.17 76.72 78.84 1.363 407 19.88 6.00 2.00 0.00 -17.27 87.10 89.21 1.378 420 19.88 6.00 2.00 0.00 J -17.27 87,10 89.21 1.378 154 13.88 _ - 6.00 2.00 0.00 -1.82 22.33 _ 22.65 1.378 146 13.88 6.00 2.00 , 0.00 -1.82 22.33 22.65 1.378 GLOBAL RESULTS Global stability is a global analysis (Bishop)with the failure planes originating at the top of the slope 1 wall and exiting out below the wall in the area infront of the structure. For MSE walls, the resistance of the geogrid reinforcement is included in the analysis. The curve may go through the base of the wall and the wall shear would be included. In most cases the failure plane will pass below the structure. ID Enter Point X Enter Point Y Exit Point X Exit Point Y Center X Center Y Radius FoS 1073 13.88 6.00 -7.78 0.50 -1.70 21.97 22.31 1.212 878 12.68 6.00 -7.78 _ 0.50 -2.01 19.87 20.21 1,217 L. 892 12.68 - 6.00 -8.98 0,50 -2.11 18.85 19.59 1.223 866 12.68 6.00 -6.58 0.50 -1.13 17.89 18.22 1.229 1301 15.08 6.00 _ -8.98 0.50 _ -2.27 _ 26.54 26.89 1.234 1549 16.28 6.00 -10.18 0.50 -2.84 31.58 31.94 1.239 921 12.68 ' 6.00 -11,38 0.50 -3.14 19.86 21.04 1.240 879 12.68 - 6.00 -7.78 0.50 -1.26 17.05 17.78 1.240 • 907 12.68 6.00 -10.18 0.50 -2.32 18.11 19.28 1.256 867 12.68 6.00 ` -6.58 0.50 -0.40 15.35 16.08 1.262 StoneTerra, Inc Page 2 I") '1'O\ V' ERRA" I WALL SYSTEM StoneTerra, Inc v3.3 Build 14093 Project: New Project Location: Site Location Designer: xxx PM / Date: 5/6/2014 r F� >{ Section: Section 1 b f- +l t Design Method: AASHTO_2002 ,,it,,,,,., Design Unit StoneTerra: l I,E ':t-', 8.00 ft SOIL PARAMETERS cp coh y 1"11 ad Reinforced Soil: 25 deg 0 psf 110 pcf Retained Soil: 25 deg 0 psf 110 pcf Foundation Soil: 34 deg 0 psf 110 pcf Leveling Pad: Crushed Stone GEOMETRY Design Height: 6.00 ft Live Load: 250 psf Wall BatterfTilt: 2.40/0.00 deg Live Load Offset: 0.00 ft Embedment: 0.50 ft Live Load Width: 20 ft • Leveling Pad Depth: 0.50 ft Dead Load: 0 psf Slope Angle: 0.0 deg Dead Load Offset: 0.0 ft Slope Length: 0.0 ft Dead Load Width: 100 ft Slope Toe Offset: 0.0 ft Leveling Pad Width: 3.00 ft Vertical 5 on Single Depth RESULTS FoS Sliding: 2.00(fndn) FoS Overturning: 6.27 Bearing: 984 FoS Bearing: 18.17 Top Wall Stability: 2.68 ID Height Length Geogrid. Ta TPa T-g11, TPgdl TMax S_str ' al_cn FS PkConn FS PO/[Tmax] F sir fndn] 2 4.00 10.00 SG350 1700 201 304 0 505 5.05 683 2.03 2.75/[201 15.89 1 2.00 8.00 SG350 1700 357 203 • 560 4.55 946 2.53 2.6543 6.61 .56 StoneTerra, Inc Page 1 lR ■ S ,O.\k ERRA" • WALL SY""" • h e __ Z . i 't+ Rt »=. '°4 i. 3j* 1 711111 -fn.. -.= -+u2 __ s. ...-t '+ - COMPOUND RESULTS Compound stability is a global analysis (Bishop)with the failure planes originating at the top of the slope/wall and exiting out through the face of the wall. For MSE walls, the resistance of the geogrid reinforcement is included in the analysis and the shear resistance of the face units is included. ID Enter Point X Enter Point Y Exit Point X Exit Point Y _ Center X Center Y Radius FoS 154 13.88 6.00 2,00 0.00 -1.82 22.33 22.65 1.622 146 13.88 6.00 2.00 0.00 T -1.82 22.33 22.65 1.622 118 12.68 6.00 2.00 0.00 -1.60 18.93 19.27 1.627 J 111 12.68 6.00 2.00 0.00 -1.60 18.93 19.27 1.627 87 11.48 6.00 2.00 0.00 _ -1.41 15.88 16.24 1.644 81 11.48 6.00 2.00 0.00 -1.41 15.88 16.24 1,644 145 13.88 6.00 2.00 0.00 -11.91 42.33 44.56 1.646 153 13.88 6.00 2.00 0.00 -11.91 42.33 44.56 1.646 82 11.48 _ 6.00 _ 2.00 0.00 _ 1,53 11.24 11,25 1.657 88 11.48 6.00 2.00 ____ 0.00 1.53 11,24 11.25 1.657 GLOBAL RESULTS Global stability is a global analysis (Bishop)with the failure planes originating at the top of the slope/wall and exiting out below the wall in the area infront of the structure. For MSE walls, the resistance of the geogrid reinforcement is included in the analysis. The curve may go through the base of the wall and the wall shear would be included. In most cases the failure plane will pass below the structure. ID Enter Point X Enter Point Y -' Exit Point X Exit Point Y Center X Center Y Radius FoS 892 12.68 6.000 -8.98 0.50 -2.11 -_ 18.85 19.59 1.579 878 12.68 6.00 -7.78 0.50 -2.01 19.87 20.21 1.590 - 866 12.68 6.00 -6.58 0.50 -1.13 17.89 18.22 1. 92 691 11.48 6.00 -6.58 0.50 -0.75 13.76 14.48 _ 1.602 W 690 11.48 6.00 -6.58 0.50 -1.44 16.03 16.35 1.609 534 10.28 6.00 -6.58 0,50 -1.09 12.27 12.99 1.611 . 701 11.48 6.00 -7.78 0.50 -1.60 15.35 16.08 1.620 714 11.48 6.00 -8.98 0.50 -1.87 14.87 16.03 1.624 - 879 12.68 6.00 -7.78 0.50 _ -1.26 _ 17.05 17.78 1.626 • 544 10.28 6.00 -7.78 0,50 -1.41 11.99 13.14 1.629 StoneTerra, Inc Page 2 14 • S') ( )\ kTERRA' WALL SYSTEM DESIGN DATA TARGET DESIGN VALUES (Factors of Safety) Minimum Factor of safety for the sliding along the base FSsI = 1.5 Minimum Factor of safety for overturning about the toe FSot = 2.0 Minimum Factor of safety for bearing (foundation shear failure) FSbr= 2.0 -Seismic requirements are 75% of MINIMUM DESIGN REQUIREMENTS Minimum embedment depth Min emb = 0.5 ft INPUT DATA Geometry Wall Geometry Design Height, top of leveling pad to finished grade,at top of wall H =6.00 ft Embedment, measured from top of leveling pad to finished grade emb=0.50 ft Leveling Pad Depth LP Thickeness =0.50 ft Face Batter, measured from vertical i =2.40 deg Slope Geometry Slope Angle, measured from horizontal (3=0.00 deg Slope toe offset, measured from back of the face unit STL_offset=0.00 ft Slope Length, measured from back of wall facing SL_Length =0.00 ft NOTE: If the slope toe is offset or the slope breaks within three times the wall height, a Coulomb Trial Wedge method of analysis is used. Surcharge Loading Live Load, assumed transient loading (e.g. traffic) LL = 250.00 psf Live Load Offset, measured from back face of wall LL offset=0.00 ft Live Load Width, assumed strip loading LL_width = 20.00 ft Dead Load, assumed permanent loading (e.g. buildings) DL = 0,00 psf Dead Load Offset, measured from back face of wail DL offset=0.00 ft Dead Load Width, assumed strip loading DL width = 100.00 ft Soil Parameters Retained Zone Angle of Internal Friction cP = 25.00 deg Cohesion coh =0.00 psf Moist Unit Weight gamma =110.00 pcf Foundation Angle of Internal Friction cp = 34,00 deg Cohesion coh =0.00 psf Moist Unit Weight gamma =110.00 pcf StoneTerra, Inc Page 3 ZC) iC'I'( )N NTERRA WALL SYSTEM RETAINING WALL UNITS STRUCTURAL PROPERTIES: N Is the normal force[or factored normal load] on the base unit The default leveling pad to base unit shear is 0.8 tan(c)) [AASHTO 10.6.3.4]or may be the manufacturer supplied data. cp is assumed to be 40 degrees for a stone leveling pad. Unit Designation: StoneTerra Unit Dimensions: Height= 2.00 ft Depth = 2.00 ft Width=4.00 ft Density= 140.00 pcf Weight= 560 lbs Unit to Unit Shear Unit to Leveling Pad Shear r = N tan(0.00) + 2000.00 ppf r= N tan(30.00) + 20.00 ppf StoneTerra, Inc Page 4 • 1 ' TTERRA IWALLSYSTEM GEOGRID REINFORCING STR UCTURAL PROPERTIES: Stratagrid GEOGRID PROPERTIES Name Tult RFcr RFd I RFId 1 CI Cd Alpha LTDS SG350 5000 2 1 1 1 1 1 1 1 2550 � CONNECTION STRENGTHS Grid Slopel Intercept 1 Peak Break Slope 2 Intercept 2 Max Normal Cn cr TLot SG350 j 35 630 1676 4 1692 5758 1 1 SHEAR STRENGTHS Slope 0 deg Intercept 4000 psf CON ENCTION CREEP In AASHTO design methods a mechanical connector may rupture the reinforcing, thus a creep reduction factor would be applied. If no test data is available, the creep reduction factor for the reinforcing would be applied.lf a frictional connection is used, then a creep reduction factor would not be applied and a factor of 1.0 is applicable. StoneTerra, Inc Page 5 77. ST( \ F.:TERRA {WALL SYSTEM CALCULATION RESULTS OVERVIEW UltraWall calculates stability assuming the wall is a rigid body. Forces and moments are calculated about the base and the front toe of the wall. The base block width is used in the calculations. The concrete units and granular fill over the blocks are used as resisting forces. EARTH PRESSURES The method of analysis uses the Coulomb Earth Pressure equation (below) to calculate active earth pressures. Wall friction is assumed to act at the back of the wall face. The component of earth pressure is assumed to act perpendicular to the boundary surface. The effective delta angle is delta minus the wail batter at the back face (assumed to be vertical). If the slope breaks within the failure zone, a trial wedge method of analysis is used. INTERNAL EARTH PRESSURES Effective internal Delta angle delta = 0.0 deg Coefficient of active earth pressure ka =0.406 Internal failure plane p = 57.5 deg EXTERNAL EARTH PRESSURES Effective Delta angle (delta = R delta =0.0 deg . Coefficient of active earth pressure ka =0.406 Effective Face Angle Face Alpha =0.00 deg External failure plane p= 57.5 deg cos((pi+i) Ka .5. 4'i- P )2 cos(i)a•c05(5i-i.)(1 + 5 cose5i�i'.cos(i+ p) FORCES AND MOMENTS UltraWall resolves all the geometry into simple geometric shapes to make checking easier. All x and y coordinates are referenced to a zero point at the front toe. The wall image can be exported to CAD for a more detailed output. Name Factory Force(V) Force(H) X-Ien Y-len Mo Mr W8 (dj Face Blocks(W1) 1.00 1680 — 1.06 — — 1774 Soil(W2) 1.00 28 — 2.06 — -- 57 ( • Soil(W3) 1,00 3905 — 5.04 — — 19687 .444 ►• //•LL(W7) 1.00 1479 — 5.04 — — '7457 Pa_h 1.00 -- 804 -- 2.00 1607 — .�:i 4 r Pq_h 1.00 — 609 — 3.00 1826 -- Sum(V, H) 1.00 7091 1412 Sum Mom 3434.21518 H W1 f � �f Note: live load forces and moments are not included t�tr' in SumV or Mr as live loads are not included as resisting forces. j : r WO: leveling pad W6: Rectang zone in broken . a� W1: facing units W7: Live load over the mass _.1 BL I., W2: soil wedge behind the face W8: Dead load over the mas_ I I - W3: rectangular area in MSE area W9: Force Pa W4: the wedge at the back of the mass W10: Surcharge load Paq W5: slope area over the mass W11: Dead Load Surchage Paqd StoneTerra, Inc Page 6 g 1 ERRA i WALL SYSTEM BASE SLIDING Sliding at the base is checked at the soil-to-soil interface between the reinforced mass and the foundation soil. Forces resisting sliding = (SumV) SumV=7091 ppf Resisting force= SumV x tan(slope) + c x L Rf1 =2824 where L is the base width Driving force is the horizontal component of Pah + Pqh+ Pdh Df= 1412 Friction angle is the lesser of the reinforced fill and Fnd cp = 34.00 deg Factor of Safety = Rf/Df FSsI =2.00 OK StoneTerra, Inc Page S {WALL SYSTEM OVERTURNING ABOUT THE TOE Overturning at the base is checked by assuming rotation about the front toe by the block mass, soil retained on the blocks or within the reinforced zone. Allowable overturning can be defined by eccentricity (e/L)or by the ratio of resisting moments divided by overturning moment(FSot). Moments resisting overturning = Sum(M1 to M6) + MPav + MPqv Mr=21518 ft-lbs Moments causing overturning = MPah + MPqh Mo =3434 ft-lbs Factor of safety= Mr/Mo FSot=6.27 OK StoneTerra, Inc Page 8 5'I'C)\ I<TERRA WALL SYSTEM ECCENTRICITY AND BEARING Eccentricity is the calculation of the distance of the resultant away from the centroid of mass. In wall ReinDesign the eccentricity is used to calculate an effective footing width, or in rigid structure, it is used to calculate the pressure distribution below the base. Calculation of Eccentricity e= L/2 - (SumMr-SumMo)/SumV e = 8.00/2 - (18084.22/7091.38) e= 0.398 Calculation of Bearing Pressures Qult= c*Nc + q*Nq + 0.5*gamma*(B')*Ng where: Nc= 42.16 Nq = 29.44 Ng =41,06 c= 0.00 psf q= 55.00 psf B' = 7.20ft Calculate Ultimate Bearing, Qult Qult=16174.04 psf Applied Bearing Pressures = (SumVert/B`) sigma = 984.43 psf Calculated Factors of Safety for Bearing Quit/sigma =18.17 StoneTerra, Inc Page 9 7L. Cfl'O \ ( TERRA ►, 1 !WALL SYSTEM TENSION CALCULATIONS Tmax is the maximum tension in the reinforcing based on the earth pressure and surcharge loads applied. In the AASHTO methods of design a simplified method of design is used. For wall batters less then 10 deg, the face is assumed vertical and a Rankine earth pressure coefficient is used. Sloping surcharges are treated like an equivalent earth load. For wall batters greater than 10 deg, a Coulomb method of analysis is used. TABLE OF RESULTS Elevation[ft] Name[ft] Ta[ppf] Coverage Ratio% Tmax[ppf] CDR Str 4.00 SG350 1700 100 505 3.36 2.00 SG350 1700 100 560 3.04 ti StoneTerra, Inc Page 10 • S' 1'� )\ I��TERRA WALL SYSTEM PULLOUT CALCULATIONS Pullout is the amount of resistance of the reinforcing has to a pullout failure based on the Tmax applied and the depth of embedement(resistance). In an AASHTO design, the failure plane is fixed at the Rankine failure plane angle, 45+ phi/2. All failure planes begin at the tail. of the facing units. Failure Plane Angle=57.5 Deg NOTE:The pullout capacity Is limited by the LTDS of the reinforcing layer, not the ultimate pullout capacity calculated. Ci= 0.60 Pullout= 2 x Le x Ci x tan(phi)x sv x Coverage TABLE OF RESULTS Elevatlon[ft] F' Alpha %Coverage Tmax[ppf] Le[ft] La[ft] Pullout_[Pr][ppf] CDR PO 4.00 0.28 0.80 100 201 5.62 4.38 553 2.75 2.00 0.28 0.80 100 357 _ 4.81 , 3.19 947 2.65 StoneTerra, Inc Page 11 S '0 rITERRA' WALLSYSTEM CONNECTION CALCULATIONS Connection is the amount of resistance of the reinforcing has to a pullout failure from the facing units based on the Tmax applied and the normal load on the units. In an AASHTO LRFD design, creep on the connection may be applied for frictional and mechanical connections. In NCMA or AASHTO 2002, a frictional failure is based on the peak connection capacity divided by a factor of safety. For a rupture connection the capacity is the peak load divided by a creep reduction factor and a factor of safety. Frictional ConnectionPeak Connection = N tan(slope) + intercept Rupture ConnectionConnection Capacity= [N tan(slope) + intercept]/ RFcr RFcr can be a value obtained from long-term testing or by default could be the creep reduction factor of the geogrid reinforcing. Base friction is used to reduce the tension in the bottom layer of reinforcing. The force in the bottom layer is the tension from half way to the reinforcing layer above to the halfway to the foundation level below. Base Friction= 989.95/ 1.50 bs = 660 ppf Amount utilized to reduce bottom tension = 0 ppf TABLE OF RESULTS Elevation[ft] Name Tmax[ppf] %Coverage RFcn_cr N[ppf] Avail_CN[ppf] CDR on 4.00 - SG350 505 100 1.00 560 683 1.35 1 2.00 SG350 560 100 1.00 1120 946 1.69 StoneTerra, Inc Pace 12 • • SIO .AI�' ERRA WALL SYSTEM StoneTerra, Inc v3.3 Build 14093 Project: New Project Location: Site Location Designer: xxx , n.. Date: 5/6/2014 ; Section: Section 1 E , Design Method: AASHTO_2002 Design Unit StoneTerra � : ,r' Seismic Acc: 0.370 $00 ft SOIL PARAMETERS cp coh y Reinforced Soil: 25 deg 0 psf 110 pcf Retained Soil: 25 deg 0 psf 110 pcf Foundation Soil: 34 deg 0 psf 110 pcf Leveling Pad: Crushed Stone GEOMETRY Design Height: 8.00 ft Live Load: 0 psf Wall Batter/Tilt: 2,40/0.00 deg Live Load Offset: 0.00 ft Embedment: 0.50 ft Live Load Width: 20 ft Leveling Pad Depth: 0.50 ft Dead Load: 0 psf Slope Angle: 0.0 deg Dead Load Offset: 0.0 ft Slope Length: 0.0 ft Dead Load Width: 100 ft Slope Toe Offset: 0.0 ft Leveling Pad Width: 3.00 ft Vertical 6 on Single Depth RESULTS (Static/Seismic) FoS Sliding: 2.62 (fndn)/1.37 FoS Overturning: 7.54/3.40 Bearing: 1113 / 1366.90 FoS Bearing: 15,04/ 10.19 Top Wall Stability: 11.82 lb Ht Lngth Gengrld Ta(sets] TMax Find] Tat/FS(sets. FS Tal(sets) n[se s] C S(sets] ' FS PO F SL'g 3 6.00 12.00 SG350 2550 f3953] 201[264] 1700(3513] 12.69(15.00] 6831911) 5.10(3.89] 3.15(1.92] 53.33126.94] 2-4.00 10.00 SG350 2550(3953) 357[230] 1700(3513) 7.14(17..163 946(1262] 3.97(6.16] 3.10(3.84] 14.78[8.03 1 2.00 8.00 ' SG350 2550(3953] 536[197] 1700(35133 4.76120,05) 1208(1611) 3.38[9.191 2.65(5.77] 6.91(3.861 StoneTerra, Inc Page 1 7_0 SI't )\ rTERRA� ►J I WALL SYST=- i COMPOUND RESULTS Compound stability is a global analysis (Bishop)with the failure planes originating at the top of the slope/wall and exiting out through the face of the wall. For MSE walls, the resistance of the geogrid reinforcement is included in the analysis and the shear resistance of the face units is included. ID Enter Point X _ Enter Point Y Exit Point X Exit Point Y Center X Center Y Radius FoS _ 294 17.57 8.00 2.00 0.00 -7.49 _ 37.62 38.79 ' 1.170 284 17.57 8.00 2.00 0.00 -7.49 37.62 38.79 1.170 547 22.37 _ 8.00 2.00 0.00 -31.49 115.19 119.96 1.178 561 22.37 8.00 2.00 0.00 -31.49 115.19 119.96 1.178 374 19.17 8.00 2.00 0.00 -8.15 44.19 45,34 1.180 362 19.17 8.00 2.00 0.00 -8.15 44.19 45.34 1.180 669 23.97 8.00 2.00 0.00 -33.69 132.16 _ 136.89 1.199 653 23.97 8.00 _ 2.00 0.00 -33.69 132.16 136.89 1.199 449 20.77 8.00 2.00 0.00 -8.82 51.40 52.53 _ 1.201 462 20.77 8.00 2.00 0.00 -8.82 51.40 52.53 1.201 GLOBAL RESULTS Global stability is a global analysis (Bishop)with the failure planes originating at the top of the slope/wall and exiting out below the wall in the area infront of the structure. For MSE walls, the resistance of the geogrid reinforcement is included in the analysis. The curve may go through the base of the wall and the wall shear would be included. In most cases the failure plane will pass below the structure. ID Enter Point X Enter Point Y Exit Point X Exit Point Y Center X Center Y Radius FoS 1330 17.57 8.00 -12.58 0.50 -4.30 31.58 32.16 1.080 826 14.37 8.00 -10.98 0.50 -3.17 20.70 21.66 1.088_ 1056 15.97 _ 8.00 -10.98 0.50 - -3.53 25.88 26.45 1.098 813 14.37 8.00 -9.38 _ 0.50 -2.02 18.53 19.48 1.105 600 ' 12.77 8.00 -7.78 0,50 -1.29 14.62 15.54 1.109 1635 19.17 8.00 -14.18 0.50 -5.08 37.92 38.51 1.112 . 841 14.37 8.00 -12.58 0.50 -3.68 20.68 - 22.06 1.113 1073 15.97 8.00 -12.58 _ 0.50 -3.88 25.48 26.45 1.118 1015 15.97 8.00 -6.18 _ 0.50 -0,81 21.09 21.28 1.124 1042 15.97 8.00 -9.38 0.50 -2.33 - 23.27 23.83 1.129 StoneTerra, Inc Page 2 LI • . ST()\IJTERRA WALL SYSTEM StoneTerra, Inc v3.3 Build 14093 Project: New Project Location: Site Location 4„„,,,,MI Designer: xxx fi. Date: 5/6/2014 a ` a mg., / Section: Section 1 Qo / Design Method: AASHTO_2002 I, Design Unit: StoneTerra: �i A l' 8.00 ft SOIL PARAMETERS 9 coh y lIII i...1 i...1 Reinforced Soil: 25 deg 0 psf 110 pcf Retained Soil: 25 deg 0 psf 110 pcf Foundation Soil: 34 deg 0 psf 110 pcf Leveling Pad: Crushed Stone GEOMETRY . Design Height: 8.00 ft Live Load: 250 psf Wall Batter/Tilt: 2.40/0.00 deg Live Load Offset: 0.00 ft Embedment: 0.50 ft Live Load Width: 20 ft Leveling Pad Depth: 0.50 ft Dead Load: 0 psf Slope Angle: 0.0 deg Dead Load Offset: 0.0 ft Slope Length: 0.0 ft Dead Load Width: 100 ft Slope Toe Offset: 0.0 ft Leveling Pad Width: 3.00 ft Vertical b on Single Depth RESULTS FoS Sliding: 1.69 (fndn) FoS Overturning: 4.13 Bearing: 1358 FoS Bearing: 12.09 Top Wall Stability: 2.68 . ID Height Length Geogrid. Ta TPa TPgll TPgdl TMax FS str Tal cn_ FS PkConn FS PO/tTmax] FS sir(fndnn 3 6.00 12.00 SG350 1700 201 304 ' 0 505 5.05 683 2.03 3.151(201) 16.30 2 4.00 10.00 SG350 1700 357 203 0 560 4.55 946 2.53 3.10/(357] 6:92 1 2.00 8.00 SG350 1700 r 536 203 0 4. 739 3.45 1208 2.45 2.65/(536] 3.93(2.18] StoneTerra, Inc Page 1 7.Z • • SI,°N ( 'TERRA, WALL SYSTL" t: s w1 a F r'i� rt r J If 3; COMPOUND RESULTS Compound stability is a global analysis (Bishop)with the failure planes originating at the top of the slope/wall and exiting out through the face of the wall. For MSE walls, the resistance of the geogrid reinforcement is included in the analysis and the shear resistance of the face units is included. ID ' Enter Point X Enter Point Y . Exit Point X Exit Point Y Center X Center Y Radius ~ FoS 160 14.37 8.00 2.00 0.00 -1.23 18.55 -- 18.83 1.477 168 14.37 8.00 2.00 0.00 -1.23 - 18.55 18.83 1.477^ 294 17.57 _ 8.00 2.00 0.00 -7.49 37.62 38.79 _ 1.484 284 17.57 8.00 2.00 0.00 -7.49 37.62 38.79 1.484 167 14.37 _ 8.00 2.00 0.00 -6.27 26.35 27.62 1.493 ' 159 14.37 8.00 2.00 0.00 -6.27 4Y 26.35 27.62 1.493 218 15.97 8.00 2.00 0.00 -6.86 31.67 32.89 ' 1.497 227 15,97 8.00 2.00 0.00 -6.86 31.67 32.89 1.497 228 15.97 8.00 2.00 0.00 -1.37 r 22.08 22.34 1.502 219 15.97 8.00 2.00 0.00 -1.37 22.08 22.34 1.502 GLOBAL RESULTS Global stability is a global analysis(Bishop)with the failure planes originating at the top of the slope/wall and exiting out below the wall in the area infront of the structure. For MSE walls,the resistance of the geogrid reinforcement is included in the analysis. The curve may go through the base of the wall and the wall shear would be included. In most cases the failure plane will pass below the structure. ID Enter Point X Enter Point Y Exit Point X Exit Point Y Center X Center Y Radius FoS-' 826 14.37 8.00 -10.98 0.50 -3,17 _ 20.70 21.66 1.411 600 12.77 8.00 -7.78 _ 0.50 -1.29 14.62 15.54 1.414 ' 813 14.37 8.00 -9.38 0.50 -2.02 - 18.53 19.48 1,442 812 14.37 8.00 -9.38 0.50 -2.74 20.82 21.38 1.469 611 12.77 8.00 -9.38 0.50 -1.89 14.83 16.17 1,474 841 14.37 _ 8.00 -12.58 0,50 -3.68 20.68 22.06 1.477 801 14,37 8.00 -7.78 _ 0.50 - -1.54 18,54 19.09 1.485 1056 15.97 8.00 -10.98 _ __ 0.50 -3.53 _ 25.88 26.45 1.487 _ 827 14.37 8.00 -10.98 0,50 -2.55 18.60 19,97 1.487 • 780 14,37 8.00 -4.58 0.50 0.08 16.41 16.58 1.488 StoneTerra, Inc Page 2 • 1 _ '� 1 1 I TERRA 'WALL SYSTEM DESIGN DATA TARGET DESIGN VALUES (Factors of Safety) Minimum Factor of safety for the sliding along the base FSsI = 1.5 Minimum Factor of'safety for overturning about the toe FSot= 2.0 Minimum Factor of safety for bearing (foundation shear failure) FSbr= 2.0 -Seismic requirements are 75% of MINIMUM DESIGN REQUIREMENTS Minimum embedment depth Min emb= 0.5 ft INPUT DATA Geometry Wall Geometry Design Height, top of leveling pad to finished grade at top of wall H =8.00 ft Embedment, measured from top of leveling pad to finished grade emb =0.50 ft Leveling Pad Depth LP Thickeness =0.50 ft Face Batter, measured from vertical i =2.40 deg • Slope Geometry Slope Angle, measured from horizontal (3 =0.00 deg Slope toe offset, measured frcm back of the face unit STL_offset=0.00 ft Slope Length, measured from back of wall facing SL_Length =0.00 ft NOTE: If the slope toe is offset or the slope breaks within three times the wall height, a Coulomb Trial Wedge method of analysis is used. Surcharge Loading Live Load, assumed transient loading (e.g. traffic) LL = 250.00 psf Live Load Offset, measured from back face of wall LL_offset=0.00 ft Live Load Width, assumed strip loading LL_width = 20.00 ft Dead Load, assumed permanent loading (e.g. buildings) DL= 0.00 psf Dead Load Offset, measured from back face of wall DL offset=0.00 ft Dead Load Width, assumed strip loading DL width = 100.00 ft Soil Parameters Retained Zone Angle of Internal Friction rP = 25.00 deg Cohesion coh =0.00 psf Moist Unit Weight gamma =110.00 pcf Foundation Angle of Internal Friction cp = 34.00 deg Cohesion coh =0.00 psf Moist Unit Weight gamma =110.00 pcf StoneTerra, Inc Page 3 • .^ .�wnwr•�� . 'I'( )N I:TERRA: 'WALL SYSTEM RETAINING WALL UNITS STRUCTURAL PROPERTIES: N is the normal force [or factored normal load] on the base unit The default leveling pad to base unit shear is 0.8 tan(cp) [AASHTO 10.6.3.4] or may be the manufacturer supplied data. cp is assumed to be 40 degrees for a stone leveling pad. Unit Designation: StoneTerra Unit Dimensions: Height= 2.00 ft Depth =2,00 ft Width =4.00 ft Density= 140.00 pcf Weight= 560 lbs Unit to Unit Shear Unit to Leveling Pad Shear T= N tan(0,00) + 2000.00 ppf T= N tan(30.00) + 20.00 ppf StoneTerra, Inc Page 4 Sr()\l TERRK J WALL SYSTEM GEOGRID REINFORCING STRUCTURAL PROPERTIES: Stratagrid GEOGRID PROPERTIES f Name Tult RFcr RFd RFid Cl Cd Alpha LTDS SG350 5000 2 1 1 1 1 _ 1 2550 CONNECTION STRENGTHS GGrld Slope1 Intercept 1 Peak Break Slope 2 Intercept 2 I Max Normal Cn cr T l. t . SG350 35 630 1676 4 1692 1 5758 1 1 ' SHEAR STRENGTHS Slope 0 deg Intercept 4000 psf CONENCTION CREEP In AASHTO design methods a mechanical connector may rupture the reinforcing, thus a creep reduction factor would be applied. If no test data is available, the creep reduction factor for the reinforcing would be applied.lf a frictional connection is used, then a creep reduction factor would not be applied and a factor of 1.0 is applicable. StoneTerra, Inc Page 5 • '1't )\ 1';TERRA 1 WALL SYSTEM CALCULATION RESULTS OVERVIEW UltraWall calculates stability assuming the wall is a rigid body, Forces and moments are calculated about the base and the front toe of the wall. The base block width is used in the calculations. The concrete units and granular fill over the blocks are used as resisting forces. EARTH PRESSURES The method of analysis uses the Coulomb Earth Pressure equation (below) to calculate active earth pressures. Wall friction is assumed to act at the back of the wall face. The component of earth pressure is assumed to act perpendicular to the boundary surface. The effective delta angle is delta minus the wall batter at the back face (assumed to be vertical). If the slope breaks w'thin the failure zone, a trial wedge method of analysis is used. INTERNAL EARTH PRESSURES Effective internal Delta angle delta = 0.0 deg Coefficient of active earth pressure ka =0.406 Internal failure plane p = 57.5 deg EXTERNAL EARTH PRESSURES Effective Delta angle (delta = 13 delta =0.0 deg Coefficient of active earth pressure ka =0.406 Effective Face Angle Face Alpha =0.00 deg External failure plane p = 58.0 deg cos(¢i+92 Ka:- cos()3 cos •- 1 +Jr + i)g �cosesi�)cosi+ R} ' FORCES AND MOMENTS UltraWall resolves all the geometry into simple geometric shapes to make checking easier. All x and y coordinates are referenced to a zero point at the front toe. The wall image can be exported to CAD for a more detailed output. r----..-_ ; Name Factory Force(V) Force(H) X-len Y-len Mc . Mr W8/c11) t Face Blocks(W1) 1.00 2240 -- 1.10 — _ — 2475 9Y7� Soil(W2) 1.00 74 -- _ 2.11 — _ 156 • Soil(W3) 1.00 5132 — 5.08 -- — 26093 �i • r Lt(W7) 1.00 1456 — 5.08 — — 7413 / Pa_h 1.00 -- 1428 -- 2.67 3809 — ! ,,: 4 / Pq_h 1.00 — 784 -- 4.00 3137 -- al d, le Sum(V,H) 1.00 8904 2213 Sum Mom 6947 28723 H Wf : t Note: live load forces and moments are not included ate W3 4 in SumV or Mr as live loads are not included as resisting forces. I E ]�� WO: leveling pad W6: Rectang zone in broken T _ ct�� W1: facing units W7: Live load over the mass —'`'a L i_�' W2: soil wedge behind the face W8: Dead load over the mas_ I 6 I . W3: rectangular area in MSE area W9: Force Pa W4: the wedge at the back of the mass W10: Surcharge load Paq W5: slope area over the mass WI 1: Dead Load Surchage Paqd StoneTerra, Inc Page 6 • S"° ,T ERRA' • WALL SYSTEM BASE SLIDING Sliding at the base is checked at the soil-to-soil interface between the reinforced mass and the foundation soil. Forces resisting sliding = (SumV) SumV=8904 ppf Resisting force = SumV x tan(slope) + c x L Rf1 =3741 where L is the base width Driving force is the horizontal component of Pah + Pqh+ Pdh Df=2213 Friction angle is the lesser of the reinforced fill and Fnd cp = 34.00 deg Factor of Safety= Rf/Df FSsI =1.69 OK StoneTerra, Inc Page 7 -2 n SnI,0\ I ERRA WALL SYSTEM OVERTURNING ABOUT THE TOE Overturning at the base is checked by assuming rotation about the front toe by the block mass, soil retained on the blocks or within the reinforced zone. Allowable overturning can be defined by eccentricity (e/L) or by the ratio of resisting moments divided by overturning moment(FSot). Moments resisting overturning = Sum(M1 to M6) + MPav+ MPqv Mr=28723 ft-lbs Moments causing overturning = MPah + MPqh Mo =6947 ft-lbs Factor of safety= Mr/Mo FSot=4.13 OK StoneTerra, Inc Page B S1'O\ ETERRA }WALL SYSTEM 1 ECCENTRICITY AND BEARING Eccentricity is the calculation of the distance of the resultant away from the centroid of mass. In wall ReinDesign the eccentricity is used to calculate an effective footing width, or in rigid structure, it is used to calculate the pressure distribution below the base. Caculation of Eccentricity e= L/2 - (SumMr- SumMo)/SumV e = 8.00/2 - (21776.51 /8904.32) e= 0.722 Calculation of Bearing Pressures Qult= c*Nc + q*Nq + 0.5*gamma*(B)*Ng where: Nc =42.16 Nq = 29.44 Ng =41.06 c= 0.00 psf q= 55.00 psf B' =6.56 ft Calculate Ultimate Bearing, Qult Qult=14829.20 psf • Applied Bearing Pressures = (SumVert/ B') sigma =1358.16 psf Calculated Factors of Safety for Bearing Quit/sigma =12.09 StoneTerra, Inc Page 9 A S"I'( )N 1 ; ERRA' 1 WALL SYSTEM TENSION CALCULATIONS Tmax is the maximum tension in the reinforcing based on the earth pressure and surcharge loads applied. In the AASHTO methods of design a simplified method of design is used. For wall batters less then 10 deg, the face is assumed vertical and a Rankine earth pressure coefficient is used. Sloping surcharges are treated like an equivalent earth load. For wall batters greater than 10 deg, a Coulomb method of analysis is used. TABLE OF RESULTS Elevation(ft] Name(ft] Te[ppf] Coverage Ratio% Tmax(ppf] CDR Str 6.00 SG350 1700 100 505 3.36 4.00 SG350 1700 100 560 3,04 2.00 SG350 1700 100 739 2.30 StoneTerra, Inc Page 10 • C1'I�� ) I ERRA ►� 7 !WALL SYSTEM • PULLOUT CALCULATIONS Pullout is the amount of resistance of the reinforcing has to a pullout failure based on the Tmax applied and the depth of embedement(resistance). I n an AASHTO design, the failure plane is fixed at the Rankine failure plane angle,45 + phi/2. All failure planes begin at the tail. of the facing units. Failure Plane Angle = 57.5 Deg NOTE: The pullout capacity is limited by the LTDS of the reinforcing layer, not the ultimate pullout capacity calculated. Ci= 0.60 Pullout= 2 x Le x Ci x tan(phi)x sv x Coverage TABLE OF RESULTS Elevation[ft] r Alpha %Coverage Tmax[ppfJ Le[ft] Le[ft] Pullout [Pr][ppt] CDR PO 6.00 0.28 0.80 100 201 6.43 5.57 633 3.15 4.00 0.28 0.80 100 357 5.62 4.38 1107 3.10 2.00 0.28 0.80 100 538 4.81 3.19 1421 2.65 StoneTerra, Inc Page 11 42 • ST( N I• TERRA IWALL SYSTEM CONNECTION CALCULATIONS Connection is the amount of resistance of the reinforcing has to a pullout failure from the facing units based on the Tmax applied and the normal load on the units. In an AASHTO LRFD design, creep on the connection may be applied for frictional and mechanical connections. In NCMA or AASHTO 2002, a frictional failure is based on the peak connection capacity divided by a factor of safety. For a rupture connection the capacity is the peak load divided by a creep reduction factor and a factor of safety. Frictional ConnectionPeak Connection = N tan(slope) + intercept Rupture ConnectionConnection Capacity= [N tan(slope) + intercept]/RFcr RFcr can be a value obtained from long-term testing or by default could be the creep reduction factor of the geogrid reinforcing. Base friction is used to reduce the tension in the bottom layer of reinforcing. The force in the bottom layer is the tension from half way to the reinforcing layer above to the halfway to the foundation level below. Base Friction = 1313.26 / 1.50 bs = 876 ppf Amount utilized to reduce bottom tension = 0 ppf TABLE OF RESULTS Elevation[ft] Name Tmax[ppf] %Coverage RFcn_cr Ni ppf] Avail_CN[ppf] CDR cn 6.00 SG350 505 100 1.00 _ 560 683 1.35 4.00 SG350 560 100 1.00 1120 i 946 1.69 2.00 SG350 739 100 1.00 1680 1208 1.64 StoneTerra, Inc Page 12 ,- CITY OF TIGARD Approved by Plalln IJt.I SITE CONSTRUCTION NOTES C) / LEGEND Date: - -I „/ 0 0 O DUCT U SID O P AMPS ER ADA STANDARDS(2) — COSTING CURET Initi • � / Q `.^ / Q - +r M I t CONSTRUCT 6" VETiTICAL CURB. PROPOSE)CURB STYLE GiC fits N als•. A� 13 v� i 0 r M w� 1 TA . © SEE SHEET C109 FOR DETAIL- • •• L VI / (]O� -...r M IZt �l1 y � El CONSTRUCT PLANTER AREA. ® or G1019LW INLET i PROTECTION A pp ���//` {� �j SEE LANDSCAPE PLANS FOR INFORMATION. �C`Ri it w'� �Ie �.) �1: CONSTRUCT CONCRETE SIDEWALK. ■ PROPOSED IDS SOIYRE CR108ASIN m MI W�TFRBAG NIT PROfECBON -37 5 8 I,t a SEE SHEET 0109 FOR DETAIL (IS•LRCM GTCHBA9N SIZE) W ' O`� lkb 0. ' �P ' H wa.. zo Hti SEE ARCHITECTURAL PLANS FOR SCORING DETAILS. W S�j�i C�' X I�t / I" CONSTRUCT HANDICAP PARKING STALL EMT we oeu oe m w° SS$M• • r' M © SEE THIS SHEET FOR DETAIL_ < el 5\1_---1 — U - it 20' 1 INSTALL FLUSH - NONRAISED CURB ALONG NORTH OO EXISTING SNORT NAN��,. n © T ETISTNG SUCRM LINE o O a VV X/ M6 m. F, ' 20 E i La SIDE OF FIRE ACCESS FOR PEDESTRIAN USE. TH o / ��.` ., r• FA tlePla iall�R 0 r, CONSTRUCT 8'FENCE. s 3 '^ FI i �/� 6° ., �� !-1 i� E SEE ARCHITECTURAL PLANS FOR INFORMATION. ��', / I'int»ry 12" ��t ��r�l � ®o� d V`a O cp+Tnw"ACTOWRRTBO 7R°EVAEIa ANr oMAACCEPDURING CONSTRUCTION. F•• SC R•Cl © •� iit ,/• '®' �!� e �il+ '��,, �� Q 4"4444*-- 90 ExsTMC CONTOUR(51 / �� 6. �'DEC�, 0� :1 `Ai��� -_,, a CONSTRUCT CONCRETE/ASPHALT JOINT. -��/�� .. P E 188 - CCM COMM(I) / •i0 �O��O®�■ © ,k--- `'t;744 - ^ m C THI5CT ?IVALK STRIPING. SEE —--— PROPOSED T CRAW m 4- 31 DEC i IF• ^ / SEE ARCHITECTURAL PLANS ,mil / /t� CR ADDITIONAL SIDEWALK CONSTRUCT WHITE PAINTED"STOP' AND STOP BAR. o - i' M `• 26 - rsi I / , * m --- / . It r � '� ® / ��---�----- �I / TO INCLUDING STAINS SEE SHEET 0109 FOR DETAIL. PpOPOSD)DECOMPOSED OUInE O M;J �1 6: \/1.1 1 / lit O i l'171r a: to 2' TO BE USED. CONSTRUCT BICYCLE RACK. + I�rlR ��r� *if /� � ® SEE ARCHITECTURAL PLANS FOR INFORMATION. PROPOSED FEMME PAVERS � T-TM-TJI '� / CONSTRUCT TRASH/RECYCLE CLOSURE. M) © r' 6 ® 1 '!•� I I� I I ,�� �� % ��I m SEE ARCHITECTURAL FOR INFORMATION. PUG EASING UIUIY POI MTh DROP • �� , 1` S STALLS 0 9'X 13.5' poi / @➢ PAINT CURB RED YA IO 4•WITH LETTERING STATING d 099NG URJTY Pct 1 "Fit LT.-- 1,T HEAVY110N R II. !. / C ( 'ERIE LANE-NO PARKING PER ME 11FC.i 'Alt •6.I DECOWOSEO GRANITE-5EE SEE SHEET C109 FOR DETAIL (-- COSMIC LIRII'I POLE LTA'NRDHOR OS T AC / `�" .I I :i1" iIiiPr:i( SPECS.FOR ptADATO ® CT WNPONNNGS. (� UWf? E>oSTiIG UTU1 P0.E xON MOO 17 9 x E55 _ \ 2 R8 / �' / //„ / m RAISED Ppp51NG E Np1E,AAICIgR BW(I fir, E(' / `,/ 14011 FLIER// /,- PROPOSED LANDSCAPING � COSTING TROPE SOME POLE T 2 R/' n I Z8' I�C1 j Ark.,'ly �S . 11ETWEEM ROCK AND SUBCRADE ID SEE SHEET LANDSCAPE PLAN FOR PLANTING INFO. �. DIST P�RIAN RAIL CL _ 4' 12 COMPACTED SUBGRADE TYRCAL V' AC M +)--B/� I� • (9SX OF STANDARD PROCTOR LL1 Mi t 4 11.9 _, ',� IN OR APPROVED NATIVE) m 9QEWALK TO MATCH CONCRETE ELEVATION. ® E795fiIG CA5 METFA F-- 14 I, ,` t {' SEE GRADING PLAN FOR GRADES AND TRANSITION INFO. ' j� `� I " z • I I X141''?- . r '10111M e° DECOMPOSED GRANITE ® MILK sDISL oRNNACE MUCK BASH �? H 0 a �:I I II �H a] CONSTRUCT CONCRETE PATIO SIDEWALK 0 / 29 § O O 10 14 •. _ / I - I , I SECTION (TYPICAL) PER TYPICAL SIDEWALK SECTION DETAIL SHEET C109 O SO CO cam G'Tq°'D".. our U CL ' uT C) I ©Uy∎f N -.-,I a7 I / I * NOT TO SCALE ID ENSING'SUER VALVE I- CC / �` °' (X i - z�;- . Q CONSTRUCT CONCRETE ASPHALT PAVEMENT. Z V) l- �, '\ v ._ A '1, g..,9y2 S•ria�r., .L a4 Imaeid�, 1 --1 H SEE DETAIL THIS SHEET. If EXISTING OECTOIAUS TREE Q m �// 0_�.-.. © i 5q,1N ry ..). f �� / / ® PAINT CURB WHITE ALONG PEDESTRIAN DROP OFF ZONE.N \ rJ_.�,�ia�i��l� E105UNG D9RCSEN IRfF n © Q Fajt !�"anEJ8"'_.4*� '► ii * a ~ Z n HMHAw UNI(FENCE. -\- /'r ". J \, riff _ �14. � / ® EXISTING SIDEWALK TO REMAIN ATTACH 10 WALL FACE I 'LA /. 2'N��r-- `fig /�.: m lifiq 1LII - { I CONT110 COR PROTECT FROM DAMAGE. I t W\ / x © Q 36• 9, E105TNC PUMP HOUSE 70 REMAIN. ExlslNC DEDDLHDLrs ~ O U, / _ _ 2 R 1 I I_\/4 I m 0 Z Q\' © i N• p r T I ..V ; vi-T' E _1 EXISTING WELL TOWER TO REMAIN. J _ B EXSRNG}iRAT 1'i0!• U F / 1018 l..�F�-.8l}. I#' R-,-, / � � CTRACTOR TO PROTECT FROM DAMAGE. E W H D O %•♦\'� O X29 - 24' p UGR/r AC __I Y1 I' - -- I,4:::-:: ! fU I�III I „ /`' _ EXISTING SIDEWALK TO REMAIN. ® COSTING CA TANK A HOLE > 0 O \{ / Q, \ # iYgCAL ��1 �-" - ---- - 's�I��� _ - - ® CON7RAC70R TO PROTECT FROM DAMAGE. U Q •s " \ , 0 Iff I n p \ �,, - _ _ A r. -:• '�J•••�� �� 9 E DETAIL SHEET 0111 - F ` PERMABLE PAVERS SECTION. X- DOSTNG/INC 1I' V u a0 -*•::'-.•,.- .1-. w l �e 4- ;/,7 CC+C 005TIC WNCRE7E LLJ J '1{ �/ "" l4 " c �. OECOMPOSEO ® ��- dlr. � `•■��_��������: : ® DECOMPOSED GRANITE SECTION. 0 d { 1 ' GRANITE 1 ' ' "' SEE DETAIL THIS SHEET. AC ETO IG ASPIYLi DESIGN BUILD RETAINNG { / \ a 0' 21 \ -r.� PAVOLS r MO ME, FAB18G TO BE TEN. O WALL 10 BE CONSTRUCTED °{ 7 AC • 0 O }0 1111 I pL,�OVER TREE B'00TS BEFORE EXISTING SWING GATES TO BE RELOCATED WC EASING HEAT PUMP J cr UNDER SEPARATE PE}/IT. \� TYPX;AI \ 29 N 30 fl 26 T PUCWG BASE ROC(&CONCRETE WHERE SHOWN. DIRECTION OF GATE (�') 3_ SWNG TO BE REVERSED AS SHOWN. • >' .{ / I I -1 r...L.,. I'- i AT ALL LOCATIONS R0015 FCMD DOSTNG SIAYEY MDNLMDIP As NOTED • C) I ILL'-P`J F tO E.\,, d �• �,.�•' 4' 'FlRE LANE -NO PARKING"SIGN(TIP) 0( 5 INO°'A�.rT"P PE ,r,r,,,�,� 1 �{ a, -I _ I SEE DETA4 SHEET C109 SEE 9FET c1GK. •{' 16 _ I UNDER SEPARTE TREE REMOVAL CONCRETE CURS STOPS. I�.•wDE ANTE•s STRIPES AT Ie•o c v (•) / T- q I PERMIT- SEE WATERLINE PLAN FUTURE DRINKING FOUNTAIN LOCATION. wsrALL z'BEI•RD He 9a ® AT ACCSSIN.E PARKING SPA[E AiA.E N \: /\ /� __ - - ;� I m I FOR ADDITIONAL INFO. © SEE ARCHITECTURAL AND MEP PLANS m 4'TALL RACK!ARYL / - $yEET C109 fOR DETU NID C,,...E T4mARK p(c.SPAC CK'� Fes- •� n I 10,1', 2B' ® FOR INFO. S E E CARL SHEET C 1 0 6 AND C108 SEE S SHEET 0 swON 1•WOE WIT PAVEMENT J ATTACH 10 WALL FACE. { _ � �`����!`�r_..,.. II FOR UTU TY CONNECTIONS AT FOUNTAIN. STNPE rwltw = - \ / f SEE SHEET 0109/SO OCTAL "E"TwePK�,A genes n 14 .p, I_' - . _] m CONSTRUCT NEW FENCE FROM SCROLLS ROW TO TYPICAL HANDICAP PARKING STALL DETAIL N Y / _ I 17' 7 -- RENSED GATE LOCATION. INSTALL ON EAST AND MOT TO�'� g ' _ Q I II I REST SIDE OF EXTG,CURB AS SHOWN-MATCH\•{ �� 0 I N-PLAYGROUND T EXTG. FENCE TYPE CURRENTLY ALONG SCHOLLS. 3'DEP H-AsPHAL C CONCRETE ® zj I � ) I LIFT-IFAEl 1 2 NCH DENSE IIMAC PER OSSC 00745 0\�:�,', 3 E3i11E11T �91x AASNTO T- `� {\ i0 R/- • - - L----.i �.• ea-J� I iNiITE v�wiENt siw DO ek1 O ��55 iil\{\ N / ••- © ®�����������®• PWMII(1101 1 COATS TRAFFIC 2 DEPTH 3 4'-0) - 3 vVEIJNG L _ `. \�` I 7 STALLS O 9' 15.5' _ d—� _ a _ - I ' `"Sx Asn 0 15S>) ' ,',ii_ .III ,., 'Y-� �_ /. GL zo .r'-{%. ' ,• e I / r DEPTH E1 1/2•-0) •� �,'.14 g +� ! z © 14 // IE 9u M51TO Tia9) sASo •�„, A© FSJ T 12 COMPACTED SUBGROCT TYPICAL V'' „,.�. -. _._- _._ /// ® I (95X OF STANDARD PROCTOR OR APPROVED NATIVE) %..■ •__.-. - - -M •1RE7''ERENLE(EOTECMNILAI REPORT FOR ADDITIONAL DETAILS, f P.K' % �' v v `,_ CEDAR TYPICAL CROSSWALK(STRIPING DETAIL }HEAVY AC PAVEMENT SECTION. 1 ,�`/ f� i ,, •COIISBUeTIOII 1D” Nor TO SCALE DATE: 03/05/2012 4'TALL BLACK RPM \ 6 ALL RACK wpm 5'CONCRETE PAVEMENT- pHAN UM(FENCE. , c �' CEDAR J[ Y DEPTH-ASPIIALA CONCRETE \ ) MAN l/K FOKE �l 1 coNSTRUCnON JOINTS TO BE PLACED•IS INTERVAL MAX DRAWN BY: CPK • ATTACK T)WILL FACE / 9E7g1 RAD RETANI9- \� MAW 10 WAIT F• �.� FIt 7 MINIMUM COMPRESSIVE STRENGTH 4000 PSI 1 LIFT-CLASS•C ASPHALT _ / _ / J - !1Err�L 14" �) (91x AAS1m 5-209) PROJ. MGR: CPK _ / • FIR T —___ 2•DEPTH 3 4•-0) App\ti/j I CHECKED BY: CPK N RCki F�N ■ \ / 4' 12" FIR `�r •"�} L9E3wx ANSCTM 7) 2'DEPTH(3/4•-0) 5 MA -0? ■ \ `�' y, ( �� ystrs•� (AULST PROJECT NUMBER • it j\ff ♦ GENERAL CONSTRUCTION NOTES: ). 11 j 95%AS,M D 1551) MET.001 9' 9' ':i:'�i.-:ii;;, 8-DEPTH Asp"-0) .J�r4.1�G-r�� 8 C'4 n\ ■ WETLAND BOUNDARY PER• I. THE CONTRACTOR IS RESPONSIBLE TO REPLACE ANY -� CRUSTED R0 i�`..��/�'', 4'DEPTH E1 1 "-0) CASE FILE NUMBER . O � 4 RIDE WHILE PAVEMENT SURVEY MONUMENT THAT ARE DISTURBED DUE TO 9Tx MSHTO T-209 ItuSHED 9 ROd( N \ 1 FlSHMAN ENVIRONS STRIPE TTPICAI. CDNSTRUCTON CC SERVICES. \ 2 COMPACTED SUBCRADE TYPICAL (91x MSHTO T-209) •� 2. STRIPING TO BE PAINTED WITH 2 COATS TRAFFIC WHITE IN v95%OF STANDARD PROCTOR OR APPROVED NATIVE) Y COMPACTED SIJBORAOE TYPICAL • E S ,95x CF STANDARD PROCTOR OR APPROVED NATIVE) SHEET NUMBER \ SINGLE 4'WDE LINES.EXCEPT WHERE NOTED. REFERENCE CEDTECHMCAL REPORT FOR ADCTONAL DETAILS. CE CH ` 56 'REFERENCE 07ECNNICAL REPORT FOR ADDITAL DETAILS. e10y bi¢{ so' VEGETATED \ TYPICAL 9.0' WIDE PARKING STALL DETAIL 3 MAXIMUM AND TO PROVIDE CUR DE EXPANSION JOINTS O 2s o c TYPICAL CONCRETE PAVEMENT SECTION 1JGHT AC PAVEMENT SECT(��yV�II A \ CORRIDOR BOUNDARY TOT TO 9CALT MAXIMUM AND AT CURVES- TANGENTS AND CORNERS �\ • NOT TO SCALE NOT ro SCALE • OF Pi Y