Loading...
Plans : ECLIPSE ECLIPSE - ENGINEERING . COM E N G I N E E R I N G 22nd, RECEII\IED January 22 , 2014 JAN 2 9 2014 City of Tigard CVTYOF lG VON Attn: Dan Nelson BUILDING Re: American Eagle Outfitters—Store#2056 Washington Square mall Plan Check Number=BUP2013-00308 Dan: This letter was prepared in response to the comments recently issued for the American Eagle Store. Please note that Eclipse Engineering, Inc. is only re-submitting structural details and calculations for the shelving racks and storefront framing. All other submittal requirements shall be provided by the project architect or their consultants. Review Corrections: 1) Noted. 2) We have provided calculations for the seismic bracing of all metal stud walls. Interior walls shall run full height to the roof structure so that diagonal bracing is not required. The studs have been sized accordingly. t 3) We have provided calculations for the metal stud framing and bracing at the storefront per the seismic requirements of ASCE 7. 4) We have attached the shelving rack calculations completed previously. Eclipse Engineering, Inc. has only reviewed the structural components within our scope of services, and we do not take any responsibility for any other portion of the project or plan submittal. Please feel free contact us with any questions on this portion of the project—(541)389-9659. Sincerely, Eclipse Engineering, Inc. .��ckv PROI . G I N�, /p � 9 .... — 76024P Robert VanCamp, PE -- Project Engineer OREGON Enclosed: calculations cto 1,oPoots••e Oe • 13,raeP�Q City of Tigard Fpr vA�� A. •r.v-d Plans Expires 3O•2 4 By Air Date ( .t IA- Digitally signed by „ Roba Robert �•�•°� {/�� ON:cn•Pabert VanCamp 1 7 `7 O/ WmNbrvi Engineering.Inc,ou Va n Ca m p 2011.0112,o-47:05�00 OFFICE COPY MISSOULA WHITEFISH SPOKANE FEND 713 Web NIL Sib Flredi,YT69102 IRS Oar M.s UMW*.WNW *2I Wed RiailkAl Sib 717 Saban,WA5Y101 376 SW Suf Odws.Sib 2,Bead.OR 67702 Fide(106)7234733•Fax(406)7214068 Plaitj10g131•71S•FQ106tlt,Tf111 Plain:(508)921.7731•Fax(509)6214704 blow(541)3B9A6 8•Fax(6U)3124708 5 EC Li PS E ECLIPSE - ENGINEERING . COM E N G I N E E R I N G RECEIVED JAN 2 9 2014 Structural Calculations CITYOFTIGARD BUILDING DIVISION Light Gage Steel Storefront Framing American Eagle Outfitters — Store #2056 Washington Square Mall 9767 SW Washington Square Rd — Sp. #D07 Tigard, Oregon 97223 PROFe G I N� ,s/0 �' 76024PE u OREGON C 200 Prepared For: `1 ATV/04°' ' American Eagle Outfitters 77 Hot Metal Street—6th Floor Expires (043e.2o114 Pittsburgh, PA 15203 Robert g VanCamp Please note: Eclipse Engineering, Inc. has reviewed only the adequacy of the storefront to support the interior vertical and lateral loads of the above noted area. We neither take responsibility for any other element nor the integrity of the structure as a whole. MiS':�f'ai.A WHITEFISH 113 West P 'ISabalan .MT59602 1006BM1rMMMSeME MOW MT6O97 maw AMMO M,SO717 Spokane,WA90201 376 SW EU Dive.Suite&Bend,OR 97102 Mow(a06)1216733•Pax 006)72149 Rencp06►6623715•Faxmoms Plow:(5ogf21-7731•Fax Me)921-579 Rion.(SC1)3e9•®659•Fax(51)312.9704 i EC LI PS E AEO-Store#2056 1/16/2014 E N G I N E E R I N G Tigard, OR RVC CALCULATE SEISMIC FORCE - Nonstructural Elements psf:= lb-ft—2 Step 1 -Determine Seismic Use Group of Bldg. SUG:= 11 IE:= 1.0 Step 2-Determine Ss and S1 from maps SS:= 0.948 Si := 0.341 Step 3-Determine the Site Class Class D Assume Site Class D unless established by the building official or a soils engineer Step 4-Determine Fa and Fv Fa:= 1.121 F,:= 1.718 (use ICC program, see attached printout) Step 5-Determine SMS and SM1 SMS:= Fa Ss SMI := FvS1 SMS= 1.063 SM1 = 0.586 Step 6 Determine S and SDI 2 2 p DS DI S DS:= 3'SMS SDI:= 3•SM1 SDS= 0.708 SDI = 0.391 Step 7- Determine Seismic Design Category SDC:= "D" From ASCE 7 Table 11.6-1 SDC:= "D" From ASCE 7 Table 11.6-2 Non-Structural Component Coefficients (ASCE 7 Table 13.5-1): • 1. Interior Nonstrucural Walls and Partitions A. All other walls and partitions ap:= 1.0 Rp:= 2.5 Weight of Interior Wall - W P:= 15-psf gypsum/studs/finishing (conservative) Total Height of Structure- h:= 304ft Height to Wall Center of Gravity- z:= 15•ft SEISMIC DESIGN IN ACCORDANCE WITH ASCE -7, Section 13.3.1 Finax:= 1.6-SDs IE.Wp Finax= 17.003-psf Fmin 0.3.SDs.IE.Wp Fmin= 3.188 psf F:= 0.4 apR DS Wp I 1 + 2 hJ F= 3.4•psf l 1E Fp:= if(F>Finax,Finax,F) Fp:= if(F<Fmin Fmin F) Fp= 3.4-psf USE: MIN TRANSVERSE FORCE = 5psf FOR STOREFRONT WALLS 1/15 'i EC LI PS E AEO-Store#2056 1/23/2014 ENGINEERING Tigard, OR RVC LIGHT GAUGE STOREFRONT CEILING JOISTS - Drywall Bulkhead kp:= 1000 Ib ksi:= kp in 2 psf := lb ft– t 2 plf:= lb•ft 1 Joist Design Data : Joist Simple Span Length - Lei:= 611 Steel Yield Strength - F := 33ksi Uniform Weight of Ceiling - pclg;= 5•psf Modulus of Elasticity- E:= 29000ksi Tributary Width of Ceiling - wclg:= 16•in Uniform Load on Joist- Loci:= pclg we1g= 6.7•0f Cantilever Length - le:= 0.ft Pt Load on Joist- pi := 0•lb Location of Pt- a:= 0-ft TRY: 362S162 -33 JOISTS @ 16" o.c. Area of Joist- A:= 0.262in2 Radius of Gyration, y- ry:= 0.616in Effective Section - Se:= 0.268in3 Radius of Gyration, x- rX:= 1.450in Moment of Inertia - 1:= 0.551in 4 Thickness of t:= 0.0346in Element- Effective Width of Element- w:= 1.625in Effective Length Factor- K:= 1.0 SIMPLE SPAN -LIGHT GAGE STEEL JOIST DESIGN Maximum Design Shear Maximum Design Moment- Conservative wcj•Lci Pi (Lcj+ 10 wej•Lej2 Vcj:_ + = 201b Mcj:= + p.1 = 30 ft-lb 2 Lcj 8 Allowable Bending Actual Bending Mcj Stress - Fb:= 0.6.Fy= 19.8•ksi Stress- fb:= — = 1.343•ksi Se Allowable Shear Actual Shear Vcj Stress - F„:= 0.4•Fy= 13.2•ksi Stress- fv:_ — = 0.076-ksi A 5.wc..Lc4 P..1�Lc2 Load Deflection - Ac,;_ + 0.0642 = 0.012-in 384•E•I E•I 1 fv c� = 5918 fb = 0.068 = 0.006 Ocj Fb F, THE 362S162 - 33 JOISTS SPANNING 6'-0" ARE ADEQUATE TO SUPPORT THE LOADS FOR THIS INTERIOR CEILING. 2/15 • i EC LI PS E AEO-Store#2056 1/23/2014 N G I N E E R I N G Tigard, OR RVC LT GAUGE STL STORE FRONT CEILING HEADER - Sect. A.1.501 Header Design Data : Header Length - Lht := 21.5ft Uniform Weight of Tributary Width 8-ft Ceiling - Pcig:= 5•psf of Ceiling - Wei:= 2 = 4 ft Uniform Weight of Soffit- Psft:= 5•psf Height of Soffit- Hsft:= 4.ft Uniform Load on Header- Loh' := Prig Wei+ PstrHsft+ 2•(1.83•plf) = 43.7•plf TRY: DOUBLE 800S162 - 43 Area of Header- A:= 2•(0.537in2) Radius of Gyration, y- ry:= 0.546in Effective Section - Se:= 2•(1.019in3) Radius of Gyration, X- rX:= 2.397in Moment of Inertia - I:= 2•(4.500in4) Thickness of Element- t:= 0.0451in Effective Width of- Element W:= 3.25in Effective Length Factor- K:= 1.0 SIMPLE SPAN - LIGHT GAGE STEEL BEAM DESIGN Maximum Design Shear (at Maximum Design Moment- Base of Wall) - 2 �"?hl'Lhf Wh1.LhI Vhl := 2 = 469 lb Mbl := 8 = 2523 ft•lb Allowable Bending Actual Bending Mhi Stress - Fb:= 0.6.Fy= 19.8•ksi Stress - fb:_ — = 14.854•ksi Se Allowable Shear Actual Shear VhI : Stress- F�,:= 0.4•Fy= 13.2•ksi Stress- f�, _ — = 0.437•ksi A 5w L 4 h' Transverse Load Deflection - Ah1 := h' = 0.804•in 384•E•I Lh 1 fb fv — = 321 — = 0.75 — = 0.033 Oh t Fb Fv THE DOUBLE 800S162 - 43 HEADER SPANNING 21'6" IS ADEQUATE TO SUPPORT THE LOADS FOR THIS INTERIOR SOFFIT AND CEILING. 3/15 . 5 EC Ll PS E AEO-Store#2056 1/23/2014 E N G I N E E R I N G Tigard, OR RVC LT GAUGE STL STORE FRONT CEILING HEADER - Sect. A.1.500 Header Design Data : Header Length - i,1,2 :- sil Uniform Weight of Tributary Width 8•ft Ceiling - Pelg 5•psf of Ceiling - WcIg 2 = 4 ft Uniform Weight of Soffit- Psft:= 5•psf Height of Soffit- Hsft:= 4-ft Uniform Load on Header- Wh2:= Pclg Wclg+ Psft•Hsft+ 2•(1.08•plf) = 42.2.pIf TRY: DOUBLE 600S137 - 33 Area of Header- A:= 2•(0.318in2) Radius of Gyration, y- ry:= 0.464in Effective Section - Se:= 2•(0.455in3) Radius of Gyration, x- rx:= 2.229in Moment of Inertia - i:= 2•(1.548in4) Thickness of Element- t:= 0.0346in . Effective Width of Element- w:= 2.75in Effective Length Factor- K:= 1.0 SIMPLE SPAN - LIGHT GAGE STEEL BEAM DESIGN Maximum Design Shear (at Maximum Design Moment- Base of Wall) - L L X2 2 2 Vh2:_ h2 = 169 lb Mh2:_ 8 h = 337 ft.lb 2 Allowable Bending Actual Bending Mh2 Stress- Fb:= 0.6.Fy= 19.8•ksi Stress- fb:= — = 4.448•ksi Se Allowable Shear Actual Shear Vh2 Stress- F�,:= 0.4•Fy= 13.2•ksi Stress- f�,:_ — = 0.265•ksi A 5•W •Lh24 h2 Transverse Load Deflection - Ah1 :_ = 0.043•in 384•E•I Lhl = 59(2 fb = 0.225 4 = 0.02 Oh I Fb Fv THE DOUBLE 600S137 - 33 HEADER SPANNING 8'0" IS ADEQUATE TO SUPPORT THE LOADS FOR THIS INTERIOR SOFFIT AND CEILING. 4,15 ECLI PS E AEO-Store#2056 1/23/2014 E N G I N E E R I N G Tigard, OR RVC LIGHT GAGE STEEL CONNECTION ANALYSES No. 8 Screws through 0.033 in Materal - V833:= 164.1b T833:= 72•lb No. 10 Screws through 0.033 in Materal - V1033 := 177•1b T1033 := 84.11) MAXIMUM END SHEAR v V 201b V`' V = 0.122 ' = 0.1 9 FOR JOISTS- ci - ci=- V833 2•T833 FASTEN CEILING JOISTS TO 362T125 - 33 TRACK WITH (2) # 8 SCREWS & FASTEN TRACK TO LIGHT GAUGE STEEL HEADER ON WITH (2) #8 SCREW @ 16" o.c. MAXIMUM END SHEAR FOR HEADERS- max(Vhl,V1i2) = 469 lb MAXIMUM BRACE REACTION - Ptb:= 0•Ib NUMBER OF SCREWS USED - Ns:= 3 max(Vhl,vh2) max(Vhl,Vh2) Ptb Ptb = 0.954 = 0.884 = 0 = 0 3•V833 3•V1033 2'�'ti3; 2•T833 FASTEN CEILING HEADERS TO 362T125 - 33 TRACK WITH (3) # 8 SCREW PER SIDE OF HEADER & FASTEN TRACK TO SUPPORTING STRUCTURE WITH (6) #8 SCREWS PER END. 5%15 Wei EC LI PS E AEO-Store#2056 1/23/2014 ENGINEERING Tigard, OR RVC LIGHT GAUGE STEEL STUD BRACES - Header/Glass Support Brace Design Data -4ft max spacing: ((( \\ psf := lb•ft 2 Total Hor¢ontal Load - P:_ (5psf)•(4ft)•I 1- ) = 160 lb plf:= lb•ft 1 Unbraced Length, y- Ly:= 20ft l J ksi:= 1000.1b.in—2 Unbraced Length, x- Lx:= 20ft k:= 1000•Ib TRY: Double 362S162-33 Area of Brace- A:= 2.0.262in2 Radius of Gyration, y- ry:= 2.0.616in Effective Section - Se:= 2.0.268in3 Radius of Gyration, x- rx:= 2.1.45in Moment of Inertia - i:= 2.0.551 in4 Effective Width of Element- w:= 2.1.625•in Thickness of Element- t:= 0.0346in Number of Studs- N:= 1 Modulus of Elasticity- E:= 29000ksi Steel Yield Strength - F Y:= 33ksi Effective Length Factor- K:= 1.0 Capacity of Column z E 2 Buckling Stresses - Fey:_ = 7.5•ksi F„:_ i E = 41.8•ksi KLy112 C ) (K.L„)2 rx Fe:= if(Fey<FeX,Fey,Fex) Fe= 7.5•ksi Allowable Stress - Fn:= if Fe> Fy,Fyl l — Fy}Fe F„= 7.5•ksi 2 4•F,J Effective Area - Ae:= w-t-N Ae= 0.11•in2 Nominal Axial Strength - P„:= Ae•Fn Pn= 848.1 lb Pn2:= A�2 E Pn2= 661.4 lb 25.7• wl 2 t Factor of Safety- 52 := 1.92 ft,= 1.92 Pn Axial Load - Pa:_ " Pa= 442-lb 6/15 ECLI PS E AEO-Store#2056 1/23/2014 ENGINEERING Tigard, OR RVC SIMPLE SPAN - LIGHT GAGE STEEL BRACE DESIGN Assume Simple Span Span - L:= Lx= 20ft Dead Load on Brace - wd:= 0.89p1f wd= 0.9•plf Axial Load - P:= P•cos(45deg) P= 113.1 lb Shear Load - Pv:= P P,= 113.1 lb 2 Maximum Design Moment- wd M :_ M = 44.5 ft lb 8 wd•L Maximum Design Shear- V:_ + Pv V= 1221b 2 Allowable Bending Stress- Fb:= 0.6•F Fb= 19.8•ksi Actual Bending Stress- fb:= M fb= 1•ksi Se Allowable Moment- M„,:= Se-Fb Maxo= 884.4 if lb Allowable Shear Stress- F,:= 0.4.Fy F„= 13.2•ksi Actual Shear Stress - fv:= V A f,= 0.2•ksi 5•wd•L4 L Dead Load Deflection - O:= 0= 0.1.in — = 2393.9 384•E•I Combined Axial and Bending Stresses : M P + — = 0.31 Maxo Pa Capacity of#8 TEK screw Ve:= 164-lb Number of Screws Required - N:= ceil( P) N= 1 Ve USE: (2) 362S162-33 LIGHT GAGE STEEL STUD BRACE @ 4'-0" o.c. WITH (3) #8 TEK SCREWS AT EACH END - MAX UNBRACED LENGTH = 20' 7/15 . EC LI PS E AEO-Store#2056 1/23/2014 ENGINEERING Tigard, OR RVC LIGHT GAUGE STEEL WALL STUDS - 6" Studs Stud Design Data : kp:= 1000.1b ksi:= kp in 2 psf lb ft 2 plf:= lb•ft Unbraced Length, y- Ly:= 4ft Unbraced Length, x- Lx:= 29ft Uniform Weight of Spacing of Studs Wall on Studs- Pd 10 psf in Wall - ss:= 24 in Transverse Pressure Uniform Transverse on Studs- P, 5•psf Load on Studs - we Pc sS= 10 plf TRY: 600S200 -43 Area of Brace - A:= 0.492in2 Radius of Gyration, y- ry:= 0.739 in Effective Section - Se:= 0.873in3 Radius of Gyration, x- rx:= 2.335in Moment of Inertia - I:= 2.683 in4 Effective Width of Thickness of Element- w:= 2.00in Element- t:= 0.0451in Number of Studs- N:= 1 Modulus of Elasticity- E:= 29000ksi Steel Yield Strength - Fy:= 33ksi Effective Length Factor- K:= 1.0 Capacity of Column 2.E Tr2.E Buckling Stresses - Fey:_ Fex - (K:1/2 K Lx 2 y ( rx Fey= 67.8•ksi FeX= 12.9•ksi Fe:= if Fey<FeX,Fey,Fex) Fe= 12.9•ksi Allowable Stress - Fa:= if Fe>Fy,Ft,. 1 — Fy ,F, F„= 12.9•ksi 2 l 4.Fc Effective Area - Ae:= w•t•N Ae= 0.09•in2 Nominal Axial Strength - Pa:— Ae F„ Pa= 1162.3 lb A P„2:= �2 E P„2= 2786.3 lb 2 25.7.1 w t Factor of Safety- Si,:= 1.92 Ste= 1.92 Allowable Axial Load - Pa:= F° = 605 lb Fa:= Pa = 6.711.ksi 52e A 8/15 . 'i EC LI PS E AEO-Store#2056 1/23/2014 ENGINEERING Tigard, OR RVC LIGHT GAUGE STEEL WALL STUDS - Cont... Stud Height- Hs:= 29•ft Ceiling Height- Hg b:= 12•ft Axial Load on Actual Axial Pd Studs- Pd pd.Hg,b•Ss= 240 lb Stress- fa:= = 2.661•ksi— Ac Maximum Design Shear(at Maximum Design Moment- Base of Wall) - 2" w Vmax Vmax —Hgwb)= 951b Mmax:= 2 w = 453 ft•lb t , Design Shear at Top of Wall - Vt0p:= wt•Hgwb—Vmax= 25 lb Allowable Bending Actual Mmax Stress - Fb:= 0.6•Fy= 19.8.ksi Stress- b:= = 6.225•ksi Se Allowable Shear Actual Shear Vmax Stress- F„:= 0.4•Fy= 13.2•ksi Stress - f„:_ = 1.055•ksi At Transverse Load Deflection - A:_ (wt 0.5 Hs 1 [Hg,,,b2•(2•Lx— Hg,,b)2— (2•Hg,,,b)•(0.5.HS)2•(2•Lx— Hg,,b) + Hs.(0.5•Hs)3] = 0.745•in I1 24•E•I•HS L f b f f f = 467 = 0.314 - = 0.08 b + a = 0.711 0 Fb F„ Fb Fa 9/15 • 'i EC LI PS E AEO-Store#2056 1/23/2014 ENGINEERING Tigard, OR RVC LIGHT GAUGE STEEL WALL STUDS - 3-5/8" Studs Stud Design Data : kp:= 1000.1b ksi:= kp in 2 psf:= lb ft 2 plf:= lb•ft 1 Unbraced Length, y- Ly:= 4ft Unbraced Length, x- Lx:= 29ft Uniform Weight of Spacing of Studs Wall on Studs - Pa 10•psf in Wall - ss:= 12•in Transverse Pressure Uniform Transverse on Studs - Pt:= 5 psf Load on Studs - wt= Pt ss= 5 plf TRY: 362S200 -43 Area of Brace - A:= 0.385in2 Radius of Gyration, y- ry:= 0.767in Effective Section - Se:= 0.427in3 Radius of Gyration, x- rx:= 1.474in Moment of Inertia - i:= 0.836in4 Effective Width of Thickness of Element- w'= 2'o0tn Element- t:= 0.0451in Number of Studs- N:= 1 Modulus of Elasticity- E:= 29000ksi Steel Yield Strength - Fy:= 33ksi Effective Length Factor- K:= 1.0 • Capacity of Column 2 E z E Buckling Stresses - Fey:_ Fex it . K•Ly12 Cry / (K.Lx)2 rx Fey= 73.1•ksi Fex= 5.1•ksi Fe:= if Fey<Fex,Fey,Fex Fe= 5.1•ksi Allowable Stress - F„:= if Fe>Py,Fyr1— Fy 1,Fe F„= 5.1•ksi 2 l 4•F,J Effective Area - Ae:= w•t•N Ae= 0.09•in2 Nominal Axial Strength - P„:= Ae F„ P„= 463.2 lb A P„2:= �2 E Piz= 2180.3 lb 25.7•(w 2 t Factor of Safety- ft,:= 1.92 Ste= 1.92 Allowable Axial Load - Pa:= PO = 2411b Fa:= Pa = 2.674-ksi lie Ac 10/15 • "i EC LI PS E AEO-Store#2056 1/23/2014 E N G I N E E R I N G Tigard, OR RVC LIGHT GAUGE STEEL WALL STUDS - Cont... Stud Height- HS:= 29•ft Ceiling Height- Hob:= 12•ft Axial Load on Actual Axial Pd Studs - Pd Pd'Hgwb•Ss= 120 lb Stress - fa:= Ae = 1.33•ksi Maximum Design Shear (at Maximum Design Moment- Base of Wall) - 2 Vmax:= HI(2'Lx — Hgb)= 48lb Mmax:= 2 = 226 t•lb.Hmb t Design Shear at Top of Wall - Vtop:= wt•Hgb— Vmax= 12 lb Allowable Bending Actual Bending Mmax Stress- Fb:= 0.6•Fy= 19.8•ksi Stress- fb:= 3 = 6.364•ksi Se Allowable Shear Actual Shear Vmax Stress - F�:= 0.4.Fy= 13.2•ksi Stress - fv:_ = 0.528•ksi Ac Transverse Load Deflection - Q:_ Cwt 0.5 HS [Hb2•(2•Lx— Hgwb12— (2•Hgb)•(0.5•HS)2•(2.Lx— Hgb) + Hs.(0.5.HS)3] = 1.195•in 24.E•I•HS JI / f v f v f f - = 291 = 0.321 = 0.04 b + a = 0.819 A Fb Fv, Fb Fa 11/15 . i EC Ll PS E AEO-Store#2056 1/23/2014 ENGINEERING Tigard, OR RVC LIGHT GAUGE STEEL WALL STUDS - 3-5/8" Studs Stud Design Data : kp:= 1000.1b ksi:= kp in 2 psf:= lb-ft- b ft 2 plf:= lb•ft 1 Unbraced Length, y- Ly.= 4ft Unbraced Length, x- Lx:= 29ft Uniform Weight of Spacing of Studs Wall on Studs - pd 10•psf in Wall - ss:= 16•in Transverse Pressure Uniform Transverse on Studs - Pt:= 5•psf Load on Studs - wt Pt ss= 6.7 plf TRY: 3625200 -54 Area of Brace - A:= 0.479in2 Radius of Gyration, y- ry:= 0.761 in Effective Section - Se:= 0.490in3 Radius of Gyration, x- rx:= 1.467in Moment of Inertia - I:= 1.030in4 Effective Width of Thickness of Element- w:= 2.00in Element- t:= 0.0566in Number of Studs- N:= 1 Modulus of Elasticity- E:= 29000ksi Steel Yield Strength - Fy:= 33ksi Effective Length Factor- K:= 1.0 - Capacity of Column Tr 2 E 7r2 .E Stresses - Fey F„= E . K Lyl2 K Lx 2 Cry ) \ r,� ) Fey= 71.9•ksi FeX= 5.1•1csi Fe:= if(Fey<Fex,Fey,Fex) Fe= 5.1•ksi Allowable Stress- F,:= i Fe>2,Fy1 1 — 4 FF 1,Fe1 Fn= 5.1•ksi F, J Effective Area - Ae:= w•t•N Ae= 0.11•in2 Nominal Axial Strength - Pn:= Ae•Fn Pn= 575.8 lb Pn2 A�2 E Pn2= 4272.41b 25.7.(w) 2 t Factor of Safety- f2e:= 1.92 52,= 1.92 Allowable Axial Load - Pa:= pn = 300 lb Fa:= Pa = 2.649-ksi S2c Ae 12/15 . i EC LI PS E AEO-Store#2056 1/23/2014 ENGINEERING Tigard, OR RVC LIGHT GAUGE STEEL WALL STUDS - Cont... Stud Height- Hs:= 29.0 Ceiling Height- H - 12.ft gwb�- Axial Load on Actual Axial Pd Studs - Pd PdrHgwb•Ss= 160 lb Stress - fa:= = 1.413 ksi Maximum Design Shear (at Maximum Design Moment- Base of Wall) - wt•H b1 Vmax2 Vmax C 2 L j(2Lx_ Hb) = 631b Mmax 2 = 302 ft•]b t Design Shear at Top of Wall - viol,:= wt•Hg..•b- Vmax= 171b Allowable Bending Fb — 0.6 F 19.8 ksi Actual Bending f - Mmax = 7 394•ksi Stress- b y= Stress- b Se Allowable Shear Actual Shear Vmax Stress- F,:= 0.4.Fy= 13.2•ksi Stress - f,, = 0.56•ksi _ Ae Transverse Load Deflection - A:= C Wt 0.5 HS1 [Hgwb2•(2.Lx— H b)2— (2•Hgb)•(0.5•HS)2•(2•Lx— Hs�,b) + HS•(0.5•HS)3] = 1.294•in 24•E•1•HS JI L l f f f f . = 269 b = 0.373 v = 0.042 b + a = 0.907 A Fb Fs, Fb Fa 13/15 . i EC LI PS E AEO-Store#2056 1/23/2014 ENGINEERING Tigard, OR RVC • LIGHT GAUGE STEEL WALL STUDS - 2-1/2" Studs Stud Design Data : kp:= 1000•1b ksi:= kp•in 2 psf:= lb•ft 2 plf:= lb•ft 1 Unbraced Length, y- Ly:= 4ft Unbraced Length, x- Lx:= 29ft Uniform Weight of Spacing of Studs Wall on Studs - Pd 10•psf in Wall- ss:= 12•in Transverse Pressure Uniform Transverse on Studs- Pt:= 5-psf Load on Studs- Wt pc s,= 5-plf TRY: 250S162-43 Area of Brace - A:= 2 0.289in2 Radius of Gyration, y- ry:= 2.0.620in Effective Section - Se:= 2.0.240in3 Radius of Gyration, X- rx:= 2.1.022in Moment of Inertia - I:= 2.0.302in4 Effective Width of Thickness of Element- w:= 2.1.625in Element- t:= 0.0451in Number of Studs- N:= 1 Modulus of Elasticity- E:= 29000ksi Steel Yield Strength - F := 33ksi Effective Length Factor- K:= 1.0 - Capacity of Column 2•E -n-2 Buckling Stresses- Fey:= 'r F„:- E K•I,y2 (K.1..x2 ( rY ) rx Fey= 191•ksi FeX= 9.9•ksi F,:= if(Fey<FeX,Fey,Fex) Fe= 9.9•ksi Allowable Stress- F,,:= i Fe>2y,Fy(1 — 4 FF ),Fe Fn= 9.9•ksi e Effective Area - Ae:= w•t•N Ae= 0.15•in2 Nominal Axial Strength - Pn:= Ae•Fn P„= 1447.3 lb Pn2:= A�2 E Pn2= 1239.6 lb 25.7•(r )2 ` t Factor of Safety- S2e:= 1.92 SZ,= 1.92 P a Allowable Axial Load - Pa:_ —n = 754 lb Fa:= = 5.143•ksi . fic Ac • -: EC LI PSE AEO-Store#2056 1/23/2014 . ENGINEERING Tigard, OR RVC LIGHT GAUGE STEEL WALL STUDS - Cont... Stud Height- 1-1,:= 29.ft Ceiling Height- H -= 12.ft gwb• Axial Load on Actual Pd Studs- Pd Pd.Hgwb•ss= 120 lb Stress - a:= �e = 0.819•ksi Maximum Design Shear (at Maximum Design Moment- Base of Wall) - 2 Vmax I w2 L b)•(2'Lx– Hg b) = 481b Mmax 2 w = 226 ft-lb x t Design Shear at Top of Wall- Vtop:= wc•Hg,,,b— Vmax= 12 lb Allowable Bending Actual Bending Mmax Stress- Fb:= 0.6•Fy= 19.8•ksi Stress - fb:= = 5.661•ksi Se Allowable Shear Actual Shear Vmax Stress - Fv:= 0.4•Fy= 13.2•ksi Stress- fv:_ = 0.325•ksi Ae Transverse Load Deflection - . 0.– (wt 0.5 HS [Hg,„b2 (2 Lx– Hg,,,b)2– (2•Hgwb)•(0.5•Hs)2•(2•Lx– H8,,,,b) + HS•(0.5•HS)3] = 1.654•in 24•E•1•I ) LL Hs fb fv fb fa — = 210 — = 0.286 — = 0.025 — + — = 0.445 A Fb Fv Fb Fa ECLIPSE ECLIPSE - ENGINEERING . COM E N G I N E E R I N G RECEIVED JAN 29 2014 Structural Calculations gUIDINGTIGARD Steel Storage Racks Pipp PC Manual Carriage with Retail Shelving for Pipp Mobile Storage Systems, Inc. American Eagle Outfitters - Store #2056 Washington Square Mall 9767 SW Washington Square Rd - Sp. #D07 Tigard, Oregon 97223 .\C�`cO PROFFss .441 76024PE /�4 �GIN� ' : y 76024PE OREGON O'C. 13.X' 0 Prepared For: 6FAT VP American Eagle Outfitters Expires . ("36.2°14 , r 77 Hot Metal Street— 6 Floor Pittsburgh, PA 15203 Robert r EKa= VanCamp Please note: Eclipse Engineering, Inc. has reviewed only the adequacy of the storefront to support the interior vertical and lateral loads of the above noted area. We neither take responsibility for any other element nor the integrity of the structure as a whole. 113 West Main.Sate B.Mssed&MT 59802 1005 Rake(Ave,Stile E.Me h.MT 59337 4211MeM Rmrsde Ave_Sue 717 Wane.WA 99201 376 SW Bd Dnee,State B.Rend,OR 97702 Phone'(e46)7214733•Fax(406)72144988 Fe761e:(406)862.3715•Fax 4054623718 Phase:(509)921.7731•Fax(509)921.5704 P111ne:(541)389-9859•Fax(541)312-8706 Eclipse Engineering, Inc. American Eagle Oufitters-Store#2056 11/25/2013 Consulting Engineers Tigard,OR RVC Pipp Mobile STEEL STORAGE RACK DESIGN 2009 IBC & 2010 OSSC &ASCE 7-05 - 15.5.3 kips:= 1000•Ib Design Vertical Steel Posts at Each Corner : 1 Shelving Dimensions: plf:= lb.ft- 2 psf:= Ib•ft Total Height of Shelving Unit- ht:= 10.ft pcf:= Ib ft 3 Width of Shelving Unit- w:= 4-ft ksi:= 1000.1b-in—2 Depth of Shelving Unit- d:= 1.33•ft Number of Shelves- N := 11 Vertical Shelf Spacing - S:= 12.0•in Shelving Loads: Maximum Live Load From Jeans (stacked 12 pairs tall and 3 wide): Weight of(1) Pair of Jeans- W. .== 1.40•Ib Weight of Jeans per shelf- Wti:= 3.12.Wi Wtj= 50.4 lb psf in sf- W.LLB:_ LLB = 9.4737•psf w•d ote: With 11 shelves, the floor Design Live Load on Shelf- LL:= 10.psf oading will be max 100 psf, which Dead Load on Shelf- DL:= 2.0.psf s OK on 100 psf retail floor Section Properties of 3/4" x 1 9/16" x 16 Gauge Steel Channel : Modulus of Elasticity of Steel - E:= 29000.ksi Steel Yield Stress - F := 33.ksi Physical Dimensions of Channel : Channel Width- out-to-out- b:= 1.5625.in Channel Depth - out-to-out- h:= 0.75•in Radius at Corners- Rc:= 0.188•in Channel Thickness- t:= 0.0593.in 16 Gauge Channel Width- CL-to- CL- be:= b— 0.51 be= 1.5329.in Channel Height- CL- to-CL- h�:= h—t h = 0.6907-in Radius of Gyration in x and y- rx:= 0.4982•in ry•= 0.3239 in Section Modulus in x and y- SSx:= 0.0614.in3 Sy:= 0.0628 in3 Moment of Inertia in x and y- Ix:= 0.0557.in4 Iy:= 0.0236.in4 Full Cross Sectional Area - AP:= 0.2246.1n2 Length of Unbraced Post- Lx:= S= 12•in 1.1:= S= 12.in Lt:= S= 12.in Effective Length Factor- Kx:= 1.0 K := 1.0 Kt:= 1.0 1 Eclipse Engineering, Inc. American Eagle Oufitters-Store#2056 11/25/2013 Consulting Engineers Tigard,OR RVC Section Properties Continued: Density of Steel - psteel:= 490•pcf Weight of Post- Wp:= psteel•Ap•ht Wp = 7.6426.1b Vertical DL on Post- Pd := DL•w•.25•d•N + Wp Pd = 36.9026 lb Vertical LL on Post- P1:= LL•w•.25•d•N Pi= 146.3 lb Total Vertical Load on Post- Pp := Pd + Pl Pp= 183.2026•lb Floor Load Calculations : Weight of Mobile Carriage: We:= 50•lb Total Load on Each Unit: W:= 4-Pp+ We W= 782.811b Area of Each Shelf Unit: Au := w•(d + 8.in) A„= 7.9867 ft 2 Floor Load under Shelf: PSF:= A PSF= 98.0147•psf NOTE: SHELVING LIVE LOAD IS LESS THAN 100 psf REQUIRED FOR RETAIL FLOOR LOADING This is considering the aisle area next to the shelf to help disburse the shelf load Find the Seismic Load using Full Design Live Load : ASCE-7 Seismic Design Procedure: Importance Factor- IE:= 1.0 Determine SS and S1 from maps- Ss:= 0.948 S1:= 0.341 Determine the Site Class - Class D Determine Fa and Fv - Fa:= 1.121 Fv:= 1.718 Determine SMS and SM1 SMS Pa-Ss SM1 Fv•S1 SMS= 1.0627 SM1= 0.5858 Determine SDS and SDI_ SDS 3•SMS SDI 3•SMl SDS= 0.708 SDI= 0.391 Structural System - Section 15.5.3 ASCE-7: 4. Steel Storage Racks R:= 4.0 110:= 2 Cd := 3.5 Rp:= R ap•= 2.5 Ip := 1.0 Total Vertical LL Load on Shelf- W1:= LL•w•d W1= 53.21b W Total Vertical DL Load on Shelf- Wd := DL•w•d+ 4• WP Wd = 13.4191 lb Seismic Analysis Procedure per ASCE-7 Section 13.3.1: Average Roof Height- hr:= 24•ft Height of Rack Attachment- z:= 0•ft For Ground Floor 2 Eclipse Engineering, Inc. American Eagle Oufitters-Store#2056 11/25/2013 Consulting Engineers Tigard,OR RVC 0.4•ap•SDS z Seismic Base Shear Factor- Vt:= Rp h 1 + 2• Vt= 0.1771 r Ip Shear Factor Boundaries- Vtm11,:= 0.3•Sps•Ip Vtmin = 0.2125 Vtmax 1.6•SDS•Ip Vtmax= 1.1336 Vt:= if(Vt>Vtmax,Vtmax,Vt) Vt:= if(Vt<Vtmin,Vtmin,Vt) Vt= 0.213 Seismic Loads Continued : v For ASD, Shear may be reduced - V := t V = 0.1518 p 1.4 p Seismic DL Base Shear- Vtd:= Vp•Wd•N Vtd = 22.41 lb DL Force per Shelf: Fd := Vp•Wd Fd = 2.04 lb Seismic LL Base Shear- Vti:= V •WI•N Vti = 88.84 lb LL Force per Shelf: F1:= Vp•W1 FI= 8.08 lb 0.67* LL Force per Shelf: F1.67:= 0.67•Vp'WI F1.67= 5.41 lb Force Distribution per ASCE-7 Section 15.5.3.3: Operating Weight is one of Two Loading Conditions : Condition #1: Each Shelf Loaded to 67% of Live Weight Cumulative Heights of Shelves- H1:= .5•S+ 1.5•S+ 2.5.S+ 3.5.S+ 4.5•S+ 5.5•S+ 6.5.S+ 7.5.S H2:= 8.5.S+ 9.5.S+ 10.5.S H := H1+ H2 Total Moment at Shelf Base- Mt:= H•Wd + H 0.67•Wl Mt= 2968.3 ft•lb Vertical Distribution Factors for Each Shelf- Total Base Shear- Vtotal:= Vtd+ 0.67.Vti Vtotal = 81.93 lb Wd•0.5•S+ Wi•0.67.0.5•S C1:= C1= 0.0083 F1 Ci-(Vtotai) F1= 0.68 lb Mt Wd•1.5.S+ W1•0.67.1.5•S C2 - C2= 0.0248 F2:= C2•(Vt0te1) F2= 2.03 lb Mt Wd•2.5•S+ W1.0.67.2.5.S C3:= C3= 0.0413 F3:= C3•(Vtotal) F3= 3.39 lb Mt Wd 3.5•S+ W1.0.67.3.5.S C4 C4= 0.0579 F4:= C4•(Vtotal) F4= 4.741b Mt 3 Eclipse Engineering, Inc. American Eagle Oufitters-Store#2056 11/25/2013 Consulting Engineers Tigard,OR RVC Wd•4.5•S+ W1.0.67.4.5•S C5:= C5= 0.0744 F5:= C5•(Vtotal) F5= 6.09 lb Mt Wd•5.5.5+ WI 0.67.5.5 S C6:= C6= 0.0909 F6:= C6•(Vtotai) F6= 7.45 lb Mt Wd•6.5•S+ W1.0.67.6.5•S C7:= C7= 0.1074 F7:= C7•(Vt0tal) F7= 8.8 lb Mt Wd•7.5•S+ W1.0.67-7.5-S Cg:= Mr Cg= 0.124 Fg:= C8•(Vtotal) F8= 10.16lb Wd•8.5•S+ WI.0.67.8.5•S Cg:= M - C9= 0.1405 Fg:= Cg•(Vtotal) Fg= 11.511b t Wd•9.5•S+ WI.0.67.9.5•S C10:= M C10= 0.157 Flo:= C1o•(Vtotal) Flo= 12.87 lb t Wd•10.5.S+ WI.0.67.10.5•S C11:= C11 = 0.1736 F11:= Cil.(Vtotal) F11 = 14.22 lb Mt C1+ C2+ C3+ C4+ C5+ C6+ C7+ Cg+ C9+ C10+ C11 = 1 Coefficients Should total 1.0 Condition #2: Top Shelf Only Loaded to 100% of Live Weight Total Moment at Base of Shelf- Mta := (N — 1)•S•Wd + (N — 1)•S•W1= 666.19 ft-lb Total Base Shear- Vtota12:= Vtd+ FI= 30.49 lb Wd•0.5•S+ 0•W1.0.5•S Cla := M Cia = 0 Fla:= C1a•(Vtotal2) Fla = 0.31 lb to Wd•(N — 1)•S+ W1-(N — 1).S Cga:= Cga= 1 F8a:= Cga (Vtotal2) Fga = 30.49 lb M to Condition #1 Controls for total base shear. By Inspection, Force Distribution for intermediate shelves without LL are negligible. Column Design in Short Direction : MS:= 4-S-0/td +Va) MS= 27.813 ft-lb Bending Stress on Column- fbx:= M5 S 1 fbx= 5.4358-ksi OK Allowable Bending Stress- Fb := 0.6.Fy Fb= 19.8.ksi 4 Eclipse Engineering, Inc. American Eagle Oufitters-Store#2056 11/25/2013 Consulting Engineers Tigard,OR RVC Find Allowable Axial Load for Channel Column Allowable Buckling Stresses- 'Tr2•E ir2•E 0ex.x 2 crex.x= 493.3359•ksi oex.y \2 °ex.y= 208.5245•ksi K • K •Ly rx ry i crex if(o ex.x<0ex.y,crex.x cex.y) 0ex= 208.5245•ksi Distance from Shear Center- t'hc2•bc2 to CL of Web via X-axis ec:= 4-1x ec= 0.2983-in Distance From CL Web to Centroid- xc:= 0.649•in– 0.5•t xc= 0.6193.in Distance From Shear Center x0:= xc+ ec xo= 0.9177.in to Centroid- Polar Radius of Gyration - ro:=V rx2 + ry2 + xo2 ro= 1.0933-in Torsion Constant- 3:= 1•(2•b•t3 + h•t3) J= 0.00027•in4 in Constant- C t•b •h 3•b•t+ 2•h•t Warping g w:_ J Cw= 0.00648-in 6 12 6-b-t+ h•t Shear Modulus- G := 11300•ksi 1 7c2•E'Cw vt:= • G•3+ / 2 Qt= 59.3144•ksi Ap•ro 2 (Kt•4) 2 p:= 1– (— p= 0.2954 ro Fet 21a to-ex+ at) – (Qex+ Qt�2 – 4'0'Qex'6t] Fet= 48.8063•ksi Elastic Flexural Buckling Stress- Fe:= if(Fet<c'ex,Fet•°ex) Fe= 48.8063•ksi Allowable Compressive Stress- Fo:= if Fe> 2,Fy• 1 – 4 F ,Fe Fn = 27.4218•ksi e Factor of Safety for Axial Comp. - no:= 1.92 5 Eclipse Engineering, Inc. American Eagle Oufitters-Store#2056 11/25/2013 Consulting Engineers Tigard,OR RVC Find Effective Area - Determine the Effective Width of Flange - Flat width of Channel Flange- wf:= b— Rc— 0.5.t wf= 1.3449-in Flange Plate Buckling Coefficient- kf:= 0.43 1.052 f E w F Flange Slenderness Factor- xf t Xf= 1.1188 0.22 1 Pf 1 �f J Xf pf= 0.7181 Effective Flange Width- be:= if(Xf>0.673,pf•wf,wf) be= 0.9657.in Determine Effective Width of Web- Flat width of Channel Web- ww:= h— 2.R. — t ww= 0.3147•in Web Plate Buckling Coefficient- kw:= 4.0 w F Web Slenderness Factor- aw:= 105 w n �w= 0.0858 kw t E pw Ii — 0.221 1 Pw= —18.2086 \ xw J Xw Effective Web Width- he:= if(xw>0.673,pw•ww,ww) he= 0.3147-in Effective Column Area - Ae:= t•(he+ 2•be) Ae= 0.1332.in2 Nominal Column Capacity- Pr, := Ae•Fn Pr, = 3652 lb P Allowable Column Capacity- Pa:_ Pa= 1902 lb Check Combined Stresses - 7r2•E-Ix zr2 E I Pcrx Pcrx= 1 x 105 lb Pcry:_ Pcry= 46908 lb r Kx•Lx 12 Ky.�Y)2 Pcr:= if(Pcrx< Pcry,Pcrx.Pcry) Pcr= 46908 lb Magnification Factor- := 1 — SZo Pp a= 0.9925 C m:= 0.85 Pcr Combined Stress: Pp + Cm•f bx = 0.331 MUST BE LESS THAN 1.0 Pa Fb•a Final Design: 3/4" x 1 9/16" x 16ga CHANNEL IS ADEQUATE FOR REQD COMBINED AXIAL AND BENDING LOADS NOTE: Pp is the total vertical load on post, not 67% live load, so the design is conservative 6 Eclipse Engineering, Inc. American Eagle Oufitters-Store#2056 11/25/2013 Consulting Engineers Tigard,OR RVC STEEL STORAGE RACK DESIGN PER 2009 IBC & 2010 OSSC & ASCE 7-05 - 15.5.3 Find Overturning Forces Total Height of Shelving Unit- Ht:= ht= /Oft Width of Shelving Unit- w = 4ft Depth of Shelving Unit- d= 1.33 ft Number of Shelves- N= 11 Vertical Shelf Spacing- S= 12.in Height to Top Shelf Center of G - htop Ht htop= /Oft Height to Shelf Center of G - he:= (N 2 1) S h�= 6•ft From Vertical Distribution of Seismic Force previously calculated - Controlling Load Cases - Weight of Rack and 67% of LL- W:= (Wd + 0.67.N•N W= 539.6946lb Seismic Rack and 67% of LL- V:= Vtd+ 0.67•Vtl V= 81.934 lb M1:= F1.0.5•S+ F2.1.5.S+ F3.2.5.S+ F4.3.5.S+ F5.4.5•S+ F6.5.5•S+ F7•6.5•S+ F8.7.5•S M2:= F9.8.5.S+ F10•9.5•S+ F11.10.5•S Overturning Rack and 67% of LL- M := M1+ M2= 599.6ft•Ib Weight of Rack and 100%Top Shelf- Wa:= Wd•N + W1 Wa= 200.8106 lb Seismic Rack and 100%Top Shelf- Va:= Vtd+ Fl Va= 30.48611b Overturning Rack and 100%Top Shelf- Ma:= Vtd•hc+ Fi•htop Ma= 215.2ft•Ib Controlling Weight- We:= if(W>Wp,W,Wp) We= 539.695 lb Controlling Shear- Vc:= if(V>Va,V,Va) = 81.934 lb Controlling Moment- Mot:= if(M > Ma,M,Ma) Mot= 599.61 ft•Ib vvc Tension Force on Column Anchor- T:= Mot – 0.60. 2 T= 288.92 lb per side of shelving unit d 2 T:= if(T <0•Ib,0•Ib,T) T= 288.92441b V` Shear Force on Column Anchor- V:= — V= 411b 2 USE: HILTI KWIK BOLT TZ ANCHOR (or equivalent) - USE 3/8"(1) x 2" embed installed per the requirements of Hilti Allowable Tension Force- Ta:= 1006•Ib For 2500psi Concrete Allowable Shear Force - Va:= 999•Ib Combined Loading - p•1.0.T + p•1.0•V 0 427 p:= 1.3 For Concrete Ta Va MUST BE LESS THAN 1.0 7 Eclipse Engineering, Inc. American Eagle Oufitters-Store#2056 11/25/2013 Consulting Engineers Tigard,OR RVC Strap Bracing on Backside of Shelving Units : Total Seismic Base Shear- Vc= 81.934 lb V Shear Force on Backside into Braces- Vb:= 2 Vb = 40.967 lb Number of Shelf Bays Supported by Brace- Nb := 1 Each Shelf is Individually Braced 2 (Vb.hc12 Tension Force into Brace- Tb := Nb• Vb + J Tb= 73.8543 lb w USE 0.75" x 16ga STRAPS Width of Strap- b5:= 0.75-in Thickness of Strap- is:= 0.0545.in Area of Strap- A5:= b5•t5 A5= 0.0409•in2 T Tension Stress in Strap- ft:= ft= 1.81•ksi s Allowable Tension Stress- Ft:= 0.6.33•ksi Ft= 19.8•ksi USE #10 SCREWS or RIVETS TO CONNECT STRAP TO FRAME : Shear Capacity of#10 Screw - Vc:= 293-lb Connecting to 16ga metal T b Number of Screws Required - N5:= N5= 0.2521 V c USE: min (1) #10 SCREW or RIVET AT EACH END OF STRAP VERIFY HILTI BOLT CONNECTION FROM STRAP : h Tension Force from Brace- T„:= Nb•Vb•- Tv= 61.45lb (Vertical Component) w Shear Force from Brace - Vh:= Nb•Vb Vh = 40.967 lb (Horizontal Component) 1.0•Tv (1.0-Vh) Combined Loading - + = 0.1 MUST BE LESS THAN 1.0 Ta Va 8 Eclipse Engineering, Inc. American Eagle Oufitters-Store#2056 11/25/2013 Consulting Engineers Tigard, OR RVC STEEL ANIT-TIP CLIP AND ANTI-TIP TRACK DESIGN Tension (Uplift) Force on each side - T — 288.92443 lb Connection from Shelf to Anti-Tip track: Capacity of 1/4" diameter bolt in 16 ga steel - Zc:= 312.Ib if(T < 2�Z ,"(2) 1/4" Bolts are Adequate" ."No Good") = "(2) 1/4" Bolts are Adequate" Use 3/16" Diameter anti-tip device - Yield Stress of Angle Steel - Fy:= 36.ksi Thickness of Anti-tip Head - to:= 0.090•in Width of Anti-tip Rod + Radius- br:= 0.25.in Width of Anti-tip Head - ba:= 0.490-in Width of Anti-tip Flange - La:= ba— br La= 0.12•in 2 Tension Force per Flange leg- Ti:= 0.5.T T1= 144.4622 lb TI-La Bending Moment on Leg - MI:= 2 M1= 0.722311-ft•Ib ba•tat Section Modulus of Leg - Si:= 6 S1= 0.0007 in3 Mi Bending Stress on Leg - fb :-= S fb = 13.1031 ksi i f b Ratio of Allowable Loads - = 0.485 MUST BE LESS THAN 1.00 0.75-Fy Width of Anti-Tip track- L:= 5.1.in Thickness of Aluminum Track- tt:= 0.25.in Average Thickness Spacing of Bolts - Stb:= 24.in L tt2 Section Modulus of Track- St:= 6 St= 0.0531-in3 T.Stb Design Moment on Track- M :— 8 M = 72.2ft-lb for continuous track section Bending Stress on Track- fb : fb = 16.3157-ksi St Allowable Stress of Aluminum - Fb:= 21-ksi Ratio of Allowable Loads fb Fb— 1 = 0.777 MUST BE LESS THAN 1.00 ANTI - CLIP STEEL CONNECTION AND TRACK ARE ADEQUATE 9 • Eclipse Engineering, Inc. American Eagle Oufitters-Store#2056 11/25/2013 Consulting Engineers Tigard,OR RVC Connection from Steel Racks to Wall Seismic Analysis Procedure per ASCE-7 Section 13.3.1: Average Roof Height- hr:= 24.0•ft Height of Rack Attachments- zb:= 10.ft At Top for fixed racks connected to walls 0.4.ap•SDS zb Seismic Base Shear Factor- Vt:- • 1 + 2.— Vt= 0.3247 r Ip Shear Factor Boundaries- Vtmin:= 0.3•SDs•Ip Vtmin= 0.2125 Vtmax 1.6•SDS•Ip Vtmax= 1.1336 Vt:= if(Vt>Vtmax,Vtmax Vt:= if(Vt<Vtmin.Vtmin,Vt) Vt= 0.325 Seismic Coefficient- Vt= 0.3247 Number of Shelves- N = 11 Weight per Shelf- Wtf := 50-lb Total Weight on Rack- WT:= 4.Pp WT= 732.8106 lb 0.7•Vt•WT Seismic Force at top and bottom - T„:= 2 T„= 83.2844 lb Connection at Top: Standard Stud Spacing - Sttud := 16.in Width of Rack- w = 4ft Number of Connection Points - Nc:= floor( 1 Nc= 3 on each rack Sttud) Tv Force on each connection point- Fc:= Fc= 27.7615 lb N c Capacity per inch of embedment- Ws:= 135.lb in Fc Required Embedment- ds:= W ds= 0.2056•in For Steel Studs: 5 Pullout Capacity in 20 ga studs T20:= 83-lb For#10 Screw - Per Scafco MIN #10 SCREW ATTACHED EXISTING WALL STUD IS ADEQUATE TO RESIST SEISMIC FORCES ON SHELVING UNITS. EXPANSION BOLT IS ADEQUATE BY INSPECTION AT THE BASE 10 Eclipse Engineering, Inc. American Eagle Oufitters-Store#2056 11/25/2013 Consulting Engineers Tigard,OR RVC STEEL STORAGE RACK DESIGN STEEL CHANNEL SECTION PROPERTIES W/O LIPS Channel Dimensions 3/4 x 1 9/16 x 16 gauge - Channel Flange Length- df:= 1.5625•in Channel Web Width- bw:= 0.75•in Channel Thickness- t:= 0.0598•in Radius at Corners- R:= 0.188•in Area of one Flange- Af:= (df- t)•t Af= 0.0899.in2 Area of Web- Aw:= bw•t Aw= 0.0448•in2 Total Area of Channel- At:= 2.Af+ A, At= 0.2246•in2 X-X Section Properties: df- t Distance to Flange CL- yfx:= t+ 2 yfx= 0.8111-in Distance to Web CL ywx= 2 ywx= 0.0299•in Centroid of Channel - Yc:= 2 Af Yfx+ Aw Ywx yc= 0.6551•in 2-Af+ Aw Dist- Flange CL to Centroid - Yxi:= Yfx-Yc Yxi= 0.156.in Dist- Web CL to Centroid- Yx2 Yc— Ywx Yx2= 0.6252-in t (df- 03 Moment of Inertia of one Flange•Ifx:= 12 Ifx= 0.0169.in4 Moment of Inertia of Web- I, := 12 = 1.3365 x 10 5.in4 Using Parallel Axis Theorem - Moment of Inertia of Channel - Ix:= 2•(Ifx+ Af•Yx12) + �Iwx+ Aw.Yx22) Ix= 0.0557•in4 Distance from Centroid to edge- cx:= if(yc>df— Yc,Yc,df—Yc) cx= 0.9074•in I Section Modulus of Channel- Sx:= X Sx= 0.0614•in3 cx I Radius of Gyration- rx:= A rx= 0.4982.in At 11 Eclipse Engineering, Inc. American Eagle Oufitters-Store#2056 11/25/2013 Consulting Engineers Tigard,OR RVC Y - Y Section Properties : Distance to Outer Flange CL- xf1:= bw— 2 xf1 = 0.7201•in Distance to Near Flange CL- xfz:= Z xf2= 0.0299•in b Centroid of Channel - := 2 xc= 0.375•in Dist- Flanges to Centroid- x1:= Xf1 — xc x1= 0.3451.in ldf— t)'t3 Moment of Inertia of Flange- Ify:= 12 I fy= 0.000027•in4 t bw3 Moment of Inertia of Web- Iwy:= 12 I,,,,y= 0.0021•in4 Using Parallel Axis Theorem- Moment of Inertia of Channel - Iy:= IWy+ 2•(Ify+ Af.x12) Iy= 0.0236.in4 Distance from Centroid to edge- cy:= - cy= 0.375.in Section Modulus of Channel- Sy:= Iy Sy= 0.0628•in3 w Radius of Gyration- ry:= A ry = 0.3239.in At 12 Eclipse Engineering, Inc American Eagle Outfitters-Store#2056 11/25/2013 Consulting Engineers Tigard, OR RVC Project Name = WASHINGTON SQUARE MALL Conterminous 48 States 2005 ASCE 7 Standard Latitude = 45.450774 Longitude = -122.780703 Spectral Response Accelerations Ss and S1 Ss and S1 = Mapped Spectral Acceleration Values Site Class B - Fa = 1.0 ,Fv = 1.0 Data are based on a 0.05 deg grid spacing Period Sa (sec) (g) 0.2 0.948 (Ss, Site Class B) 1.0 0.341 (S1, Site Class B) Conterminous 48 States 2005 ASCE 7 Standard Latitude = 45.450774 Longitude = -122.780703 Spectral Response Accelerations SMs and SM1 SMs = Fa x Ss and SM1 = Fv x S1 Site Class D - Fa = 1.121 ,Fv = 1.718 Period Sa (sec) (g) 0.2 1.063 (SMs, Site Class D) 1 .0 0.586 (SM1, Site Class D) Conterminous 48 States 2005 ASCE 7 Standard Latitude = 45.450774 Longitude = -122.780703 Design Spectral Response Accelerations SDs and 501 SDs = 2/3 x SMs and SD1 = 2/3 x SM1 Site Class D - Fa = 1.121 ,Fv = 1.718 Period Sa (sec) (g) iis 0.2 0.709 (SDs, Site Class D) 1 .0 0.390 (SD1, Site Class D) ,a / , Eclipse Engineering, Inc American Eagle Outfitters-Store#2056 11/25/2013 Consulting Engineers ineers Ti ard, OR RVC 9 -! and Welds) SCAFC0 Fasteners (Screws a Steel Scud Manufacturing Lo. Screw Table Notes 1. Screw spacing and edge distance shall not be less than 3 x D. (D = Nominal screw diameter) l2. The allowable screw values are based on the steel properties of the members being connected, per AISI section E4. 3. When connecting materials of different metal thicknesses or yield strength, the lowest applicable values should be used. 4. The nominal strength of the screw must be at least 3.75 times the allowable loads. 5. Values include a 3.0 factor of safety. 6. Applied loads may be multiplied by 0.75 for seismic or wind loading, per AISI A 5.1.3. 7. Penetration of screws through joined materials should not be less than 3 exposed threads. Screws should be installed and tightened in accordance with screw manufacturer's recommendations. Allowable Loads for Screw Connections (lbs/screw) No.12 ( . No.10 i No.8 No.6 Steel Thickness Steel Properties Die.=0.216(in) ( Dia.=0.190(in) Dia,=0.164(in) Dia.=0.138(in) Mils Design(in) Fy(ksi) Fu(ksi) Shear Pullout Shear Pullout Shear Pullout Shear Pullout 18 0.0188 33 45 66 39 60 33 27 0.0283 33 45 121 59 111 50 30 0.0312 33 45 151 76 141 65 129 55 33 0.0346 33 45 177 84 164 72 151 61 43 0.0451 33 45 280 124 263 109 244 94 224 79 54 0.0566 33 45 394 156 370 137 344 118 68 0.0713 33 45 557 156 523 173 C Weld Table Notes 1. Weld capacities based on AISI, section E2. 2. When connecting materials of different metal thickness or tensile strength (Fu), the lowest applicable values should be used. 3. Values include a 2.5 factor of safety. 4. Based on the minimum allowance load for fillet or flare groove welds, longitudinal or transverse loads. 5. Allowable loads based on E60xx electrodes 6. For material less than or equal to .1242" thick, drawings show nominal weld size. For such material, the effective throat of the weld shall not be less than the thickness of the thinnest connected part. Allowable Loads For Fillet Welds And Flare Groove Welds Design 1 Steel Properties Thickness Yield Tensile E60XX Electrodes Mil In. ksl ksi Ihs/in 43 0.0451 33 45 609 54 0.0566 33 45 764 68 0.0713 33 45 963 97 0.1017 33 45 1373 118 0.1242 33 45 1677 54 0.0566 50 65 1104 68 0.0713 50 65 1390 97 0.1017 50 65 1983 118 0.1242 50 65 _ 2422 . 48 • Eclipse Engineering, Inc American Eagle Outfitters-Store#2056 11/25/2013 Consulting Engineers Tigard, OR RVC • Page 11 of 14 ESR-1917 TABLE 9-KB-TZ CARBON AND STAINLESS STEEL ALLOWABLE SEISMIC TENSION(ASD),NORMAL-WEIGHT CRACKED CONCRETE,CONDITION B(pounds)''•' _ Concrete Compressive Strength= Nominal Embedment re+e 2,500 psi Pc•=3,000 psi Pc=4,000 psi re=8,000 psi Anchor Depth he, _ , Diameter (In.) Carbon Stainless Carbon Stainless Carbon Stainless Carbon Stainless steel steel steel steel steel steel steel steel 3/8 2 1,006 1,037 1,102 1,136 1,273 1,312 1,559 1,607 1/2 2 1,065 1212 1,167 1,328 1,348 1,533 1,651 1,878 3 1/4 2,178 2,207 2,386 2,418 2,755 2,792 3,375 3,419 31/8 2,081 2,081 2,280 2,280 2,632 2,632 3,224 3,224 5/8 4 3,014 2,588 3,301 2,835 3,812 3,274 4,669 4,010 314 3 3/4 2,736 3,594 2,997 3,937 3,460 4,546 4,238 5,568 4 3/4 3,900 3,900 4,272 4,272 4,933 4,933 6,042 6,042 For SI: 1 lbf=4.45 N,1 psi=0.00689 MPa For pound-inch units:1 mm=0.03937 inches 'Values are for single anchors with no edge distance or spacing reduction.For other cases,calculation of Rd as per ACT 318-05 and conversion to ASD in accordance with Section 4.2.1 Eq.(5)is required. 2Values are for normal weight concrete.For sand-lightweight concrete,multiply values by 0.60. 'Condition 8 applies where supplementary reinforcement in conformance with ACI 318-05 Section D.4.4 is not provided,or where pullout or pryout strength governs.For cases where the presence of supplementary reinforcement can be verified,the strength reduction factors associated with Condition A may be used. TABLE 10-KB-TZ CARBON AND STAINLESS STEEL ALLOWABLE SEISMIC SHEAR LOAD(ASD), (pounds)' Nominal Allowable Steel Capacity,Seismic Shear . Anchor Diameter Carbon Steel Stainless Steel 3/8 999 1,252 1/2 2,839 3,049 5/8 4,678 5,245 3/4 6,313 6,477 For SI:1 lb(=4.45 N 'Values are for single anchors with no edge distance or spacing reduction due to concrete failure.