Loading...
Specifications AEC FEB 1 .310 CITypF rOAR6. BUILDING pI VISION: AG I LYX BEAVERTON, OREGON CALCULATIONS FOR EQUIPMENT SUPPORT STRUCTURE DESIGN FOR EVEREST PROJECT IN TIGARD, OREGON FEBRUARY 2014 <<,cLo PRo, . Lti 2 ct- 584 7PE EGON Lyir <% ✓"e 7 76\116Q..03 /A, 4. W AL�� EXPIRES: fo 3o fig •• • EVERGREEN ENGINEERING -up 2 o l 2- 002. '. • Eugene,Oregon 541-484-4771 Fax 541-484-6759 kAec.Z Q 12:- O O &w �•� Project#2859.0 �q01-1 SW . (Nig/141• Evergreen Engineering Agilyx/Everest Erin Walters, PE • PO Box 21530 Tigard,Oregon Job#2859.0 Eugene,OR 97402 0409 Equipment Platform 2/5/2014 Ph: (541)484-4771 Fax: (541)484-6759 Equipment Support Platform Design Design the equipment support platform for Agilyx project in Tigard, OR. Design includes foundation and anchorage. Use the 2010 Oregon Structural Specialty Code in conjunction with ASCE 7-05 Dead Loads Wcycl:= .5kip Cyclone WHxch:= 10kip Heat Exchanger WHAB 3kip Hot Air Burner W&FB:= 9kip Gas Flue Burner Seismic Load -Non-building Structure; ASCE 7-05 sec. 15.4 Use R:= 1.25 no:= 2 Cd:= 2.5 ASCE 7-05 Tbl. 15.4-2-other 5ps:= 0.706 5D1 := 0.389 From project specific design criteria provided by Agilyx Seismic Design Cat. D (ASCE tbls. 11.6-1 and 2) IE:= 1.0 Tx:= .116 TZ:= .406 Conservatively use minimum period from RISA design check, MT:= Tx=0.116 sd:= 5bs Csd =0.56 Csmax 5b1 C Csmax=2.68 ASCE 7-05 sec. 12.8.1.1 T• — IE IE Csmin .03 ASCE 7-05 sec.15.4.1.2 Cs:= if(Csmax <Csd,Csmax,moX(Csd,Csmin)) =0.56 p:= 1.0 redundancy factor Seismic weight (note: equipment panels are considered separately) - A:= 38.8kip Taken from RISA dead load combination p • Cs• W= 21.91 • kip Vertical Load Effects - ASCE 7-05 12.4.2.2 Q,:= .2. 50s=0.14 J:\Jobs 2851-2875\2859.0_Agilyx- 1 GLTRedesign Project\3-Engr\3-15-Calcs\CS\ Page 2 of 25 Evergreen Engineering Agilyx/Everest EAW Tigard,Oregon Job#2859.0 Equipment Platform 2/5/2014 For seismic Loads -Check Direction of Loading requirements in accordance with ASCE 7-05 sec. 12.5.4 "... any column or wall that forms part of two or more intersecting seismic force-resisting systems and is subjected to axial load due to seismic forces acting along either principal plan axis equaling or exceeding 20 percent of the axial design strength of the column or wall shall be designed for the most critical load effect due to application of seismic forces in any direction. Either of the procedures of Section 12.5.3 a or B are permitted to be used to satisfy this requirement." Load combinations used to check axial forces from Seismic load alone.... Seismic+X p Y ELX .7 ELY .7 Seismic X p Y ELX -.7 ELY .7 Seismic+Z D Y ELZ .7 ELY .7 Seismic-Z p Y ELZ -.7 ELY .7 Unity Checks for posts... Member Shape Shape Code C... Locift1 LC Since columns that are part of two intersecting lateral force HSS8x8x4 .391 6.938 43 resisting systems have axial loads from seismic forces more M7 HSS8x8x4 .358 6.938 41 than 20% of their design strength,ASCE 7-05 sec 12.5.4 M8 HSS8x8x4 .351 6.938 43 does apply. M9 HSS8x8x4 .314 6.938 43 M10 HSS8x8x4 .297 5.974 42 M11 HSS8x8x4 .282 6.938 41 M12 HSS8x8x4 .289 6.938 42 M13 HSS8x8x4 .172 6.938 41 NOTE: Unity checks are the percentage of design M14 HSS8x8x4 .175 6.938 42 strength that is used M77 HSS8x8x4 .342 5.974 42 Sketch showing location of columns that are part of two intersecting lateral force resisting systems. N a m 1 m a ' o a rn N a a v e, X a 2 Page 3 of 25 Evergreen Engineering Agilyx/Everest EAW • Tigard,Oregon Job#2859.0 Equipment Platform 2/5/2014 Load Combinations for Story Drift Checks Story Drift Load ❑ Y DL 1 ELX 1 ELY 1 Story Drift Load El Y DL 1 ELZ 1 ELY 1 Story Drill Load El Y DL 1 ELX -1 ELY 1 Story Drift Load ❑ Y DL 1 Eli -1 ELY 1 Maximum Story drift due to seismic forces -ASCE 7-05 sec. 12.12 h := 9.5ft Height to top of LFRS pail := .02• h = 2.28• in &x_mox-_ .784in bx Ox_max• Cd= 1.96 . in Story drifts are less than D .755in b D Cd 1.89• in the allowable -OKAY z_max .-- • z:= AZ_MIX' d— 3 Page 4 of 25 Evergreen Engineering Agilyx/Everest EAW Tigard,Oregon Job#2859.0 Equipment Platform 2/5/2014 Connection Design HSS12x4x1/4 Beam P:= 5.2kip Vy:= 3.6kip VZ:= 1.3kip b := 4in d:= 12in My:= 2.1kip• ft Mz:= 1.7kip• ft Weld I:= 2(b + d) = 32 . in 2 2 Sy:=• b + 3 =53.3 in SZ:= b • d + 3 = 96 in2 Elastic Vector Analysis of weld ( 2 2 2 2 2 Rnweld Vy + VZ + P + My + MZ =0.56 kip Design load on weld I I LI 5y 5Zi in 52 := 2.0 Rnweld• S2 to := =0.04• in 3/16" minimum weld: Use 1/4" fillet 0.6(70ksi).707 HSS8x8x1/4 Beam P:= 16.2kip ,)4,:= 5.6kip /):= 1.2kip t= 8in 4:= 8in x,:= 2.7kip• ft M,x:= .8kip• ft Weld k= 2(b + d) = 32 . in 2 2 , := d• b + 3 = 85.3• in2 , := b • d + 3 =85.3. in2 Elastic Vector Analysis of weld 2 2 My\2 2 kip R� := Vy (\./,• 2 + P+ + + MZ =0.67• Design load on weld I I i I Syi 5, in ,:= 2.0 Rnweld' S2 t:= =0.04 in 3/16" minimum weld: Use 1/4" fillet 0.6(70ksi).707 4 Page 5 of 25 Evergreen Engineering Agilyx/Everest EAW • Tigard,Oregon Job#2859.0 Equipment Platform 2/5/2014 HSS6x4x1/4 Beam P:= 6.5kip 2.6kip ,",,: 1.2kip = 4inf:= 6in 141 4,:= 1.2kip• ft := 4.4kip• ft Weld l:= 2(b + d) = 20• in b 2 2 d • b + = 29.3• in2 := b • d + —d2 36 • in2 Elastic Vector Analysis of weld 3 3 2 2 2 2 / �2 Ryd:= VY + vZ + p + MY + MZ = 1.59• kip Design load on weld I I) 5 SZ in yi ,:= 2.0 Rnweld tom:= =0.11. in 3/16" minimum weld: Use 1/4" fillet 0.6(70ksi).707 5 Page 6 of 25 Evergreen Engineering Agilyx/Everest EAW Tigard,Oregon Job#2859.0 ' Equipment Platform 2/5/2014 HSS4x4x1/4 Beam P:= 12.6kip / := 3.2kip y,,,,,:=,:= 1.5kip , ;= 4in j,,:= 4in M,i,:= 1.8kip• ft ,N ,:= 2kip• ft Weld 1,= 2(b + d) = 16 • in b 2 2 ,S,x:= d • b + = 21.3 • in2 ,5�:= b• d + = 21.3 • in2 Elastic Vector Analysis of weld 3 3 2 P 2 i \2 / 12 f(vJ2 y + V + ( + My + MZ = 1.72• kip Design load on weld— I I 0 ■.5y) 5z) in , := 2.0 Rnweld• SZ tom:= =0.12 . in 3/16" minimum weld: Use 1/4" fillet 0.6(70ksi).707 HSS2x2x1/4 Beam and Bracing P:= 3.2kip Ay,,w:= .47kip ,y,,x, 3ki = 2in:- • p ,!;= 2in Mt,:= .3kip- ft ,4,:_ .9kip ft Weld 1;= 2(b + d) = 8. in 2 2 5 := d • b + b =5.3 • in2 := b • d + d = 5.3 • in2 Elastic Vector Analysis of weld 3 3 2 2 2 2 i 2 = 2.17 := Vy + VZ + P + My + MZ kip Design load on weld I I (I 5 5Z in Y ,5 ,:= 2.0 Rnweld• 12 ,tt= =0.15• in Minimum weld: Use 1/4" fillet 0.6(70ksi).707 6 Page 7 of 25 Evergreen Engineering Agilyx/Everest EAW Tigard,Oregon Job#2859.0 Equipment Platform 2/5/2014 HSS Chord/Truss Design: F Y:= 46ksi Column to Brace connections: HSS 4x4x1/4 brace to HSS 8x8x1/4 column: HSS braces will be welded all around with 1/4" fillet weld. Fbranch 14.9kip Max brace force in HSS brace e ,:_ .74kip , „ Ski = 4in ,4,,f := 4in M,�,:= 1.6kip• ft ,„U,:= 1.7kip• ft - Weld 1:= 2(b + d) = 16 . in 2 2 ,5 := d • b + 3 = 21.3 in2 5,�„x:= b- d + 3 =21.3• in2 Elastic Vector Analysis of weld 2 2 2 ( �2 2 Vy Vz Fbranch My Mz kip Rye:= — + — + + + — = 1.61- — Design load on weld I I I Sy/ Sz in a:= 2.0 Rnweld. 11 t,�— =0.11• in 3/16"minimum weld: Use 1/4" fillet 0.6(70ksi).707 Rectangular HSS Criteria: Truss T-Connections (moments): Check truss web to chord connections using AISC 13th K3.3a: Pr:= 18.44kip Required axial strength of chord Mr:= 17.3kip• ft Required moment capacity of chord Mrb:= 2.4ft kip Required moment capacity of brace Bb:= 4in Hb:= 4in tb:= 0.25in 0:= 45deg Zb:= 4.69in3 Brace Properties B:= 8in , := 8in t:= .25in A 9:= 7.1in2 ,5,:= 17.7in3 Chord Properties Fyn,:= 46ksi HSS yield strength E:= 29000ksi Fyb:= Fy=46 • ksi HSS branch yield strength 7 Page 8 of 25 Evergreen Engineering Agilyx/Everest EAW _ Tigard,Oregon Job#2859.0 Equipment Platform 2/5/2014 "B 11 if — <_ 35,"Okay" ,"No Good"J ="Okay" K3.3a.(2) Chord wall slenderness ratio t Bb if — 5 35,"Okay" ,"No Good" ="Okay" K3.3a.(3) Tension branch wall slenderness tb ratio if B <-min[i. [_ _j5.34 ,"Okay","No Good" = "Okay" K3.3a.(4) Compression branch wall tb Fyb slenderness ratio Bb 13:= — =0.5 B if( >_0.25,"Okay" ,"No Good") ="Okay" K3.3a.(5) Width ratio ifl B 0.5 <H <_ 2,"Okay" ,"No Good" I = "Okay" K3.3a.(6)Aspect ratio l J Hb if 0.5 <—— <2,"Okay" ,"No Good" ="Okay" Bb B Hb -y 2 tt = 16 sine) Chord slenderness ratio 11 := B =0.71 M r (K3-10) Utilization ratio U := r + =0.52 A9� 0.6Fy 5 � 0.6Fy U Qf:= min 1.3 -0.4—,1.0 =0.88 (K3-9) Interaction Factor ■ j Chord Wall Plastification: if(3<_0.85,"check (K3-11)" ,"don't check(K3-11)") ="check(K3-11)" 2 Mn1-12 := Fy• t Hb [O.Si + 2 + • Qf = 2.6. ft• kip (K3-11) 1.5 (1 - 13).5 (1- 3) Side Wal Local Yielding: if((3 0.85,"check (K3-12)" ,"don't check (K3-12)") = "don't check(K3-12)" 0.5• Fy• t 2 - Mn2_12 :_ • (Hb+ 5• t) = 8,8. ft • kip (K3-12) 1.5 8 Page 9 of 25 Evergreen Engineering Agilyx/Everest EAW Tigard,Oregon Job#2859.0 Equipment Platform 2/5/2014 Local Yielding (uneven load distribution): if(3?0.85,"check(K3-13)" ,"don't check (K3-13)") = "don't check (K3-13)" 10 (Fy• t) bt0l := Bb= 1.25• in (K3-14) (B (F[ Y •b tb) t/ := min(beO1,Bb) = 1.25• in Mn3 f2 Fyb • Zb— 1— be01 • Bb• Hb• tb =4.71• ft • kip (K3-13) 1.58 Bb Mn_11 := min(Mni_n,Mn2_12,Mn3_11) = 2.6• ft • kip if(Mrb 5 Mn_-1,"Okay" ,"No Good") = "Okay" Chord Wall Plastification: if(0 5 0.85,"check (K2-13)" ,"don't check (K2-13)") = "check (K2-13)" FY• t2 1 4 Pn1 := [2. + • Qf= 20.35• kip (K2-13) Chord wall Plastification 1.5 • sin(6) (1— (3) (1— p).5 Shear Yielding (Punching):6> 1 l if 1,"don't check(K2-14)" ,"check(K2-14)" I ="check(K2-14)" ( 7 if 6<0.85 A B >_ 10,"don't check(K2-14)" ,"check (K2-14)" I ="don't check(K2-14)" ( t c3eop:= min(5 P ,a) =0.16 K2.3b.(b) Y 0.6• Fy• t' B• (2ri + 23e0p) Pn2_12 :_ =85.31 • kip (K2-14) Shear Yielding (Punching) 1.58 • sin(0) Sidewall Strength: if(p = 1,"check" ,"don't check") ="don't check" Hb k:= 1.5• t=0.38• in 1 := =5.66• in • sin(e) 2 • Fy• t Pn3_52 :_ • (5• k+ N) = 163.33 kip (K2-15) Sidewall Strength (local yielding) 1.5• sin(e) 1.6• t2 3N 5 Pn4_Si ( ) 1 + (H— 3 •. t) (E Fy) • Qf= 241.4• kip (K2-16) Sidewall Strength (local crippling) 2 • sin sin(8) Page 10 of 25 Evergreen Engineering Agilyx/Everest EAW Tigard,Oregon Job#2859.0 Equipment Platform 2/5/2014 Local Yielding (uneven load distribution): if((3<0.85,"don't check" ,"check") ="don't check" _ 10 — (Fy t) , := • Bb = 1.25. in (K2-19) B F ( yb' tb) t _ , := min(beoi,Bb} = 1.25• in Fyb• tb Pn5R :_ • (2Hb+ 2 • beoi —4tb) =69.15 • kip (K2-18) 1.58 Pn_S1 := min(Pnl_n,Pn2_12,Pn3_52>Pn4_12,Pn5_11) =20.35 . kip f(Pnf2 > Fbranch "Okay" "No Good") = "Okay" 10 Page 11 of 25 • Evergreen Engineering Agilyx/Everest EAW Tigard, Oregon Job#2859.0 Equipment Platform 2/5/2014 Reactions: Joint X111 I LC Y(k] LC Z]k] LC 131 max 2.145 32 20.868 30 3.547 26 min -3.734 27 -6.001 33 -2.71 37 R2 max 1.215 36 18.246 29 3.859 26 min -3.289 27 -10.664 34 -3.108 37 R3 max 2.4-4-4 36 6.856 25 3.004 38 4411 min -3102 23 -9.306 38 -2.922 25 Ait2 R4 max 2.081 32 24.954 30 2.395 30 min -4.389 27 1 318 33 -2.742 33 R3 4K1: R5 max 2.099 36 11.074 29 2.495 38 424 min -2.919 23 -7.748 34 -2.946 25 4R5 n R6 max 1.917 32 11.961 26 2.267 30 ,e!ct min -3.318 27 -4.494 37 -2.159 33 R7 max 1.928 36 12.136 25 1.892 38 `-- min -2.769 23 -4.852 38 -2.725 25 R8 max 1.276 32 6.341 26 1.104 30 min -1.781 27 -3.716 37 -1.34 33 R9 max 1.274 36 10.131 25 1.121 38 min -1.551 23 -1.899 38 -1.512 25 R10 max .241 32 13.081 30 .122 34 min -.322 35 5 023 33 -.22 37 R11 max 3.219 28 22.989 26 2.164 26 min -3.41 31 -.982 37 -2.064 37 11 Page 12 of 25 Evergreen Engineering Agilyx/Everest EAW Tigard,Oregon Job#2859.0 Equipment Platform 2/5/2014 Epoxy Anchors in Existing 10" slab __ Joint X[k] LC Y(k] I LC Z(k] LC R1 max 2.145 32 20.868 30 3.547 26 1 min -3.734 27 -6.001 33 -2.71 37 R4 max 2.081 32 24.954 30 2.395 30 min -4.389 27 1.318 33 -2.742 33 4R1 ,___,., ,,,. R6 ma 1.917 32 11.961 26 2.267 30 1i min -3.318 27 -4.494 37 -2.159 33 r R8 max. 1.276 32 6.341 26 1.104 30 r„R10 1 yr 4 min -1.781 27 -3.716 37 -1.34 33 R10 max 241 32 13.081 30 .122 34 R6 min 322 35 5.023 33 -.22 37 .4R8 R11 max 3.219 28 22_989 26 2.164 26 min -3 41 31 -982 37 -2.064 37 1 LC Joint.. X[k] . Y[k] Z(k] 33 R1 -1.39 -6.001 -2.533 Tension:71% Shear:56 96 JiTE 30 Steel: 30% Reduction for grout: - = 37.5 .8 PiE ErConcrete edge breakout: 56 Pr,cut' 16 Tension/Shear combination:93 96 ■Optimized embedment depth User selected embedment depth Embedment depth: 8 in 12 Page 13 of 25 Evergreen Engineering Agilyx/Everest EAW Tigard,Oregon Job#2859.0 Equipment Platform 2/5/2014 LC Joint.. X[k] Y[k] Z(k) LC I Joint.. I 27 R1 5.53 1.782 26 1 R1 1 -1.824 16.813 Shear:65% Shear:62% Steel: 43% ~ Steel: 41% Iliall NMI 43 41 Reduction for grout: — =53.75 Reduction for grout: — = 51.25 .8 1La .8 v. Concrete edge breakout 65% Nil Concrete edge breakout: 62% Pryout: 23 96 Ifs Pryout 22 Tension/Shear combination:0% Tension/Shear combination:0% 'Optimized embedment depth 'Optimized embedment depth 'User selected embedment depth 'User selected embedment depth Embedment depth: 8 in Embedment depth: in __ __ 1 LC I Joint.. X[k] Y[k] f Z[k] LC I Joint..1 X[k] Y(k) Z(k] 1 27 1I R4 -4.389 17.842 1 .511 37 R6 .288 -2.054 Shear:92% 1 LC Joint.. X(k] Y[k] Z jk] i 27 R6 7.472 I .584 I Steel; 46% LC Joint.. X[k] Y[k] Z]k) 26 R6 -1.688 11.961 VA- Concrete edge breakout: 92% Pryout: 25% - ® 3/4$Hilti HAS Carbon steel threaded rod with Tension/Shear combination:0% Hilti HIT-HY 200 Safe Set System; embed 8". Optimized embedment depth User selected embedment depth Embedment depth: kin 13 Page 14 of 25 Evergreen Engineering Agilyx/Everest EAW Tigard,Oregon Job#2859.0 Equipment Platform 2/5/2014 Cast in Place Anchors Joint X[k] LC Y[k] LC Z[k] LC R2 max 1.215 36 18.246 29 3.859 26 min -3.289 27 -10.664 34 -3.108 37 R3 max 2.444 36 6.856 25 3.004 38 mm -3.102 23 -9.306 38 -2.922 25 AR2 R5 max 2.099 36 11.074 29 2.495 38 ' e min -2.919 23 -7.748 34 -2.946 25 3 ' . 4.,: i, i- ' R7 max 1.928 36 12.136 25 1.892 38 57 mm -2.769 23 -4.852 38 -2.725 25 AR9 R9 max 1.274 36 10.131 25 1.121 38 min -1.551 23 -1.899 38 -1.512 25 LC Joint.. X[k] Y(k] Z[k] LC I Joint.. X[k] Y[k] Z[k] 34 R2 -1.439 -10.664 3.792 f 27 R2 -3.289 -2.739 j 1.706 Tension:87% Tension:23% Shear.17% Shear.56% Tension/Shear combination:46% ~ - Steel: 14% IIIMI Optimized embedment depth User selected embedment depth 19,1 Concrete edge breakout: 0% Embedment depth: 18 in __ , LC Joint.. X[k] Y[k] Z[k] 26 R2 -1.876 -7.479 �� Pryout: 17% Tension:61% MI Shear.70% Tension/Shear combination:84% Tension/Shear combination:99% Optimized embedment depth User selected embedment depth Optimized embedment depth User selected embedment depth Embedment depth: 0 in Embedment depth: 13 in Reduction for grout: 14 = 17.5 .8 5 5 ■ if 0.873 + .175 3 .. 1.0,"Okay","No Good") = "Okay" Use (4) 3/4"4:0 Heavy Hex Head ASTM 1554 GR 36, embed 8". 14 Page 15 of 25 Evergreen Engineering Agilyx/Everest EAW Tigard,Oregon Job#2859.0 Equipment Platform 2/5/2014 Anchorage at column line 2A requires shear reinforcement. Vmax 4kip 4'1:= 0.75 A4:= 2 • 0.21in2=0.42 in2 Area of tie (counts twice for hoops) Pal := (pi• 0.9• 60ksi • A4= 17.01• kip allowable load per#4 hoop �_ VmA4rea V,,, =0.24 required number of bars Pal Development in Tension: ACI 318-08 12.2.3 db:= 4 in fy:= 60000psi f := 4000psi 8 cb:= 1.5in clear cover over bars AA:= bin Bar spacing Is the bar epoxy coated? :ans "yes" or"no" coated:= "no" := 1.3 Use 1.0 for vertical bars and bars with less than 12" of fresh concrete below the bar or 1.3 otherwise -ACI 318-08 12.2.4(a) 11)e:= if(coated = "yes" ,if(cb < 3 • db v s<6db, 1.5,1.2), 1.0) = 1 Epoxy coated bar factor 12.2.4(b) := if(db 5 .75in,0.8, 1.0) =0.8 Bar size factor ACI 318-08 12.2.4(c) ' := (min(lkt• 1Pe'1.7)) = 1.3 X:= 1.0 Use 1.0 standard weight concrete or 0.75 for lightweight concrete -see ACI 318-08 12.2.4 for exception when using lightweight concrete. ktr := Oin Conservatively use 0 or See ACI 318-08 12.2.3 eq 12-2 for equation ob+ ktr k'tr := min d ,2.5 = 2.5 b r fy. , I fy• Ida:= if db 5 0.75in, ' db , • db =24.67. in 25X.J f'c• psi 20X•.1 f c• psi 3 fy "' •Is (db := [max[(— � ' db = 14.8 . in 40 >J f' � psi k'tr — Id:= max(min(lda,Idb),121n) = 14.8 • in 15 Page 16 of 25 Evergreen Engineering Agilyx/Everest EAW Tigard,Oregon Job#2859.0 Equipment Platform 2/5/2014 Hook Development in Tension; ACI 318-08 12.5 , ,:= if(coated ="yes" , 1.2,1.0) = 1 12.5.3 Modification Factors (conservatively can use 1.0 for all): 100:= 1.0 (a) For No. 11 bar and smaller hooks with side cover(normal to the plane of the hook) not less than 2.5in, and for 90 degree hook with cover on bar extension beyond hook not less than 2 in. 'a=0.7, 1.0 otherwise 14)b:= 1.0 (b) For 90 degree hooks of No. 11 and smaller bars that are either enclosed within ties or stirrups perpendicular to the bar being developed, spaced not grater than 3db along Idh; or enclosed within ties or stirrups parallel to the bar being developed, spaced not greater than 3db along the length of the tail extension of the hook plus bend ipb=0.8; 1.0 otherwise 10c:= 1.0 (c) For 180 degree hooks of No. 11 and smaller bars that are enclosed within ties or stirrups . perpendicular to the bar being developed, spaced not grater than 3db along Idh .p =0.8; 1.0 otherwise f - Idh := max .02 e Y db 1pa b'8 db,bin =9.49 in Hook development length (90 degree) X J f'c. psi Use 3/4"$ASTM F 1554 GR36 anchor rods, embed 8". Use#4 hoops at 9"oc in the short direction and #5 @12"oc T&B in the long direction. Joint X[k] LC Y[k] LC Z[k] LC R9 max 1.274 36 10.131 25 1.121 38 min -1.551 23 -1.899 38 -1.512 25 Tension:20% S hear:81% Tension/Shear combination:77% Use (4) 3/4"4 Heavy Hex Head ASTM 1554 GR 36, embed 8". Optimized embedment depth User selected embedment depth Embedment depth iii in 16 Page 17 of 25 Evergreen Engineering Agilyx/Everest EAW Tigard,Oregon Job#2859.0 Equipment Platform 2/5/2014 LC Joint.. X[k] Y[k] Z[k] f LC Joint.. X[k] VW] I Z[k] 38 R7 .395 -4.852 1.892 i 23 R7 -2.769 8.245 ll -1.337 Tension:45% Shear:89% Shear:56% Tension/Shear combination:0% Tension/Shear combination:65% Optimized embedment depth Optimized embedment depth User selected embedment depth User selected embedment depth Embedment depth: in ___ Embedment depth: IB in LC Joint.. X[k] Y[k] Z[k] 25 R7 -1.243 12.136 Shear:87% Use (4) 3/4"4) Heavy Hex Head ASTM 1554 GR 36, Tension/Shear combination:0% embed 8" Optimized embedment depth User selected embedment depth • Embedment depth: 18 LC Joint.. X[k] Y(k] Z[k] s LC Joint.. X(k] Y[k] Z[kj 138 R3 .712 -9.306 3.004 23 R3 2.734 -.952 Tension:61% Shear:72% Shear:69% Tension/Shear combination:0% Tension/Shear combination:97% Optimized embedment depth Optimized embedment depth User selected embedment depth User selected embedment depth Embedment depth: 8 in Embedment depth: 18 in LC Joint... I X[k] Y[k] Z(k] Nodes: R3 & R5: 34 R3 -.925 -8.487 2.964 Use (4) 3/4"$ Heavy Hex Head ASTM 1554 GR 36, Tension:56% embed 8". Shear:69% Tension/Shear combination:91% Optimized embedment depth User selected embedment depth Embedment depth: in __ 17 Page 18 of 25 Evergreen Engineering Agilyx/Everest EAW Tigard,Oregon Job#2859.0 Equipment Platform 2/5/2014 Foundation Design: ES= Existing Slab BP= Building Pedestal ES6 S= New Slab ES3 ES5 ES7 B=2 E'�4 ES1 Si S3 S6 — S2 S4 S8 S5 S7 BP1 BP2 Label ) Thickness[in] I Material [E j 10 Conc4000NW ES2 24 Conc400DNW ES3 24 Conc400DNW ES4 24 Conc4000NW ES5 10 Conc4004Ntiti Maximum soil pressure per RISA Foundation: ES6 10 Conc4000NW 965 psf ES7 10 Conc40DONW 1243 psf (1.33 allowable increase) ESB 18 Conc4000NW S1 10 Conc4000NW S2 10 Conc4000NW S3 10 Conc4000NW S4 10 Conc4000NW S5 10 Conc4000NW S6 10 Conc4000NW S7 10 Conc4000NW S8 10 Conc4000NW BP1 12 Conc3000NW BP2 12 Conc3000NW 18 Page 19 of 25 Evergreen Engineering Agilyx/Everest EAW Tigard, Oregon Job#2859.0 Equipment Platform 2/5/2014 Rebar Design: DE DS20 ns17 ng1F ns1' DS14 DS19 DS12 DS11 DS10 DS9 Label •! UC Top I Top Bars Governi I UC B... Sot Bar... ( Govern... UC Sh._ Govern. DS1 .282 .129 #5 @l2in DS1-X16 .594 DS1-X23 DS2 .303 12 #5 @l2in DS2-X16 .196 DS2-X22 DS3 .292 .192 #5 @12in DS3-X24 .539 DS3-X23 DS4 .28 18 #5 @12in DS4-X24 .602 DS4-X23 DS5 .234 .074 #5 @12in DS5-X19 .181 DS5-X22 DS6 .162 .114 #5 @l2in DS6-X17 .16 DS6-X23 DS7 .368 .533 #5 @12in DS7-X19 .632 DS7-X21 DS8 .277 .633 #5 @12in DS8-X2 .659 DS8-X2 DS9 .182 .049 #5 @l2in DS9-X5 .231 DS9-X5 DS10 .057 .278 #5 @12in DS10-X1 .294 DS10-X6 DS11 .249 181 #5 @12in DS11-X4 .405 DS11-X4 DS12 .443 062 #5 @12in DS12-X1 .356 DS12-X4 DS14 .146 .095 #5 @12in DS14-X7 .252 DS14-X7 DS15 12 .171 #5 @12in DS15-X8 .251 DS15-X5 DS16 .144 .091 #5 @12in DS16-X7 .181 DS16-X8 DS17 .182 039 #5 @12in DS17-X8 .158 DS17-X8 • DS18 .161 #4 @12in DS18-X8 .235 #4 @12in DS18-X8 .234 DS18-X8 DS19 .064 #4@12in DS19-X6 .34 #4 @12in DS19-X10 .35 DS19-X10 DS20 .093 #4 @12in DS20-X9 .242 #4 @12in DS20-X9 .049 DS20-X7 19 Page 20 of 25 Evergreen Engineering Agilyx/Everest EAW Tigard,Oregon Job#2859.0 ' Equipment Platform 2/5/2014 Check Shear Connection to Existing Concrete V1:= 1.2kip 0 ! Tension:0% { Shear.74% 0 5 Tension/Shear combination:0% O ,2,20° t , Optimized embedment depth 3/4"$smooth dowel bar 12"oc, • User selected embedment depth embed 6" each side. Embedment depth: 5 in _ -IMessages r • 20 Page 21 of 25 Evergreen Engineering Agilyx/Everest EAW Tigard,Oregon Job#2859.0 Equipment Platform 2/5/2014 Seismic Loads for Equipment: Heat Exchanger (Cracker): Ip:= 1.0 WP:= 10kip ap.= 1.0 RP:=• 2.5 Table 13.6-1: furnaces, heat exchangers •Let h/z = 1.0 since equipment is attached at top of supporting structure .4• ap• 56s fpl := (RP) • (1 + 2) fp2 := 1.6. 5bs• Ip fp3 :_ .3 . 5ps• IF, IP Fp:= if(fp1 <fp2,max(fpi,fp3),fp2) • Wp= 3.39• kip +w:= .2 5ps=0.14 Vertical Seismic Force, ASCE 7-05 13.3.1 Base reactions from overturning moment: 1 Ts:= Fp• 3.8ft• 3ft 4.29• kip R1:= TS-0.86Wp• .5=-0.01• kip NO UPLIFT j := Fp= 3.39 • kip 3 tw:= —in 5a1 := 2.0 16 Rnweld' 9 Iw:= = 1.22 . in Minimum weld: Use 1/4" fillet 0.6(70ksi).707• tw Weld at beam locations with 3/16" fillet weld. Flue Gas Burner: / := 9kip := if(fp1 <fp2,max(fpi,fp3),fp2) • Wp= 3.05• kip Base reactions from overturning moment: 1 „T := Fp• 2ft• 2ft = 3.05• kip = TS-0.86Wp .5=-0.82• kip NO UPLIFT 30w04:= Fp= 3.05 • kip 3 := 2.0 , . 16—in Rnweld• 12 ow 0.6(70ksi).707 tw = 1.1 in Minimum weld: Use 1/4" fillet Weld at beam locations with 3/16" fillet weld. 21 Page 22 of 25 Evergreen Engineering Agilyx/Everest EAW Tigard,Oregon Job#2859.0 ' Equipment Platform 2/5/2014 Hot Air Burner: ,)14,„:= 3kip ,f4„:= if(fpl <fp2,max(fpi,fp3),fp2) • Wp= 1.02 kip Base reactions from overturning moment: ,T := Fp• .92ft 1 = 1.02• kip .92ft ,R4;= TS—0.86Wp• .5=—0.27• kip NO UPLIFT R, := Fp= 1.02 • kip 3 te= 2.0 ,• 16 in Rnweld' I := =0.37• in Minimum weld: Use 1/4" fillet 0.6(70ksi).707• tw Weld at beam locations with 3/16" fillet weld. 22 Page 23 of 25 Evergreen Engineering Agilyx/Everest EAW . Tigard,Oregon Job#2859.0 Equipment Platform 2/5/2014 Mixing Chamber Support The mixing chamber will be supported by the columns of the existing platform and new columns that will land on the screw frame. S8,:=:= 1.5kip , ,:= if(fp1 < fp2,max(fpi,fp3),fp2) • Wp=0.51 • kip Ev:_ .2• 5p,• Wp=0.2• kip Vertical Seismic Force, ASCE 7-05 13.3.1 , ,:= .2 • Sp,=0.14 ,R , := Fp=0.51 • kip 3 t, := —in ,5 ,:= 2.0 16 Rnweld' (Z Imo:= =0.18• in Minimum weld: Use 1/4" fillet 0.6(70ksi).707• tw Weld chamber at beam locations withl3/16" fillet weld. HSS4x4 Beam Connections: P:= 1.6kip Vx:= 4.6ki p t, 4604 „,y,,,,,:= .3kip 447 4-34-. Mx:= Okip• ft AM,:= 6.3kip- ft HSS4x4x1/4 Post b:= 4in , := 4in Weld 1:= 2(b + d) = 16 • in b2 2 d2 2 := d • b + 3 = 21.3 • in SX:= b d + 3 = 21.3 • in Elastic Vector Analysis of weld— Vx2 (Vz 2 (-P2 (MX\2 /Mz\2 kip Design load on weld I , \ I i ' I �5xj \ Szj in P_:= 2.0 Rnweld' 11 � � . 0.6(70ksi).707 0.24 in '"' Use 1/4" fillet weld all around. 23 Page 24 of 25 Evergreen Engineering Agilyx/Everest EAW Tigard,Oregon Job#2859.0 Equipment Platform 2/5/2014 HSS4x4 Column Connection: P:= 1.6kip / := 4.6kip / :_ .3kip m c HSS4x4x1/4 Post K:= 4in := 4in co Weld N70A 1:= (b + d) = 8 • in •N69A \2 i \2 ( \2 Rte:= V, + VZ — —P =0.54. —kip Design load on weld l ) 0 ) � I ) in 52.:7 2.0 Rnweld• S2 , _ =0.04. in 0.6(70ksi).707 Use 3/16" fillet weld all around. 24 Page 25 of 25 • ' EVERGREEN ENGINEERING , INC . • . . ' Engineering and Construction Services }.. 'r MEMORANDUM TO: Steve Anderson FROM: Max Frederick DATE: February 21,2014 SUBJECT: Description of GTL Redesign Project The scope of the project being submitted to the City of Tigard for permitting is as follows: Installation of equipment, including heat exchangers,piping,bins,natural gas burners(2)and associated piping to - modify the experimental process capabilities. To that end, we will be installing: 1. Concrete Foundations 2. Steel equipment support structures 3. One(1) Flue Gas Burner of 450,000 BTU capacity. The vent from this burner will be absorbed by the process gases. 4. One(1) Hot Air Burner of 550,000 BTU capacity. The vent from this burner will exit the building and be vented at a point 10' above the roof line on the east side of the building. 5. Process equipment, including a serpentine heat exchanger,jacketed,heated process piping, instrumentation and controls,and a scrap material "ash"bin. It is my understanding that the City of Tigard will be permitting and inspecting the concrete foundations,steel equipment support structures, natural gas burners,gas lines and the single gas burner vent for adherence to the Oregon Building Codes. Drawings for the concrete foundations,steel support structures,general arrangement of equipment and piping have been issued. Drawing 2859-0_1000L01 rev 2 is being issued to identify the scope of work associated with providing natural gas to the burner valve trains. A 1 V2""diameter, A106 carbon steel,schedule 40 line will be tied into the existing 2"natural gas line running on the outside of the east side of the building. This line will penetrate the building wall,and a 1 1/2" shut off valve will be installed. The natural gas supply line will then be routed to the joint supply connection on the burner valve train skid, located on the top of the equipment support structure. • P.O.Box 21530, Eugene, OR 97402-0409 (541) 484-4771 FAX (541) 484-6759 www.evergreenengineering.com