Loading...
Report (19) L)10 2_0t3 - 001. 11 l (03 -7 s 5 INTERNATIONAL SEISMIC APPLICATION TECHNOLOGY Submittal Documents Anchorage Design for Equipment Project Durham Congeneration Gas Purification System Procurement Location ���c.:s GIN°FFSs�o Durham, OR �N FR ti ck 79690PE • Contractor OFFICE COPY •REGON Unison FRCIN SO\`' EXPIRES: 6/30/14 ISAT Project#9000 REV 1: 1/15/2014 Prepared by: INTERNATIONAL SEISMIC APPLICATION TECHNOLOGY(ISAT) 5113 PACIFIC HWY E. #3, FIFE, WA 98424 ISAT Phone: (253) 926-2250 ISAT Fax: (253) 926-2463 =NSW Anchorage Design for Equipment Protect INTERNATIONAL SEISMIC Durham Congeneration Gas Purification System Procurement APPLICATION TECHNOLOGY Location 5113 PACIFIC HWY E.#3,FIFE,WA 98424 Durham,OR Phone: (253)926-2250 Contractor Fax: (253)926-2463 Unison Table of Contents Description Pages BASIS FOR DESIGN GROUND MOUNTED EQUIPMENT DETAILS SKI - SK7 GROUND MOUNTED EQUIPMENT CALCULATIONS 1 - 38 APPENDIX Wir Sari Anchorage Design for Equipment project_ INTERNATIONAL SEISMIC Durham Congeneration Gas Purification System Procurement APPLICATION TECHNOLOGY Location 5113 PACIFIC HWY E.#3,FIFE,WA 98424 Durham,OR Phone: (253)926-2250 Contractor Fax: (253) 926-2463 Unison Basis for Design BUILDING CODE: 2009 EDITION OF OREGON STRUCTURAL SPECIALITY CODE SUPPLEMENTED BY THE ASCE 7-05. MATERIAL SPECIFICATIONS: 28-DAY COMPRESSIVE STRENGTH OF CONCRETE ASSUMED TO BE 3,000 PSI. ADHESIVE ANCHORS SHALL CONFORM TO ICC REPORT ESR-2583 SCOPE OF WORK: THE SUPPORTING STRUCTURE IS BEYOND THE SCOPE OF THIS SUBMITTAL. IT IS THE RESPONSIBILITY OF THE CONTRACTOR TO SUBMIT THESE CALCULATIONS AND ASSOCIATED DOCUMENTS TO THE ENGINEER OF RECORD TO ANALYZE THE ABILITY OF THE SUPPORTING STRUCTURE TO ACCOMMODATE THE REACTIONS FROM THE CONNECTIONS SPECIFIED IN THIS SUBMITTAL. THIS SET OF CALCULATIONS IS BASED ON THE LOADS AND ASSUMPTIONS STATED WITHIN THIS SUBMITTAL. IF THE LOADS AND ASSUMPTIONS ARE NOT CORRECT THIS SUBMITTAL SHALL BE REVISED. MISAT INTERNATIONAL SEISMIC APPLICATION TECHNOLOGY Ground Mounted Equipment Details TOP VIEW BOTTOM VIEW ,AMeoLI REV.BY I AMR-BV I DATE DESCRIPTION OF CHIME MOUNTING HOLE DETAIL 1 REV 1 EDD f1M2013 PLATFORM MOUNTING HOLES VIEW 111111. 741 Ill 9 1 .;e e b _ _ -01, ---� r. i - -n-T''''t7,9' ith: 3.-4., a I ,, tS‘770 '.41111111%:1/471, raw. m i �I� �_ °'c 1-1 5� I t iii fir _ ' _. I►I `� `r �im - • 0111∎0 4 USE 1"DIA.ASTM F 593,GRADE 316 ROD+POWERS FRONT VIEW RIGHT VIEW PE1000+EPDXY WITH 6-1/8"EMBEDMENT INTO(E)8-1/4" (MIN)THICK CONCRETE PAD.PROVIDE 8"(MIN) EDGE I I I■II I � .I.I DISTANCE,4 ANCHORS PER LEG,TYP b o ± i, II I I IN a 9 '.nllai hili.., .e 9 a Ir � rai- ?w. �rr ' ��! � mz.I�� `�II r 1_I tAt!I�f III USE 1/2"DIA.ASTM F 593,GRADE 316 ROD+POWERS PE1000+EPDXY WITH 6-1/8"EMBEDMENT INTO(E) �' 'r'' 8-1/4"(MIN)THICK CONCRETE PAD.PROVIDE 8"(MIN) III EDGE DISTANCE,4 ANCHORS PER LEG,TYP i° i . . r l.:'l l NOTE:imm.1 .- . o �_ APPROXIMATE WEIGHT=135.000 LS INDICATES CENTER OF GRAVITY 1.1 :1 —' - = Unfaa1Solutions Inc. i NOTE:STRUCTURAL INTEGRITY OF 6�s1 CfraanaMs Road TANK CONNECTION BETWEEN 0i*s ,IA 52002 11131� INDIVIDUAL MODULES,AND UNISON , FAX 68YSS6aBTG I I MEMBERS ARE NOT IN ISAT'S SCOPE °"° "' AND RESPONSIBILITY OF OTHERS. .=VMINKC �w Hydrogen Sulfide Removal Vessels � � - PROJECT li5-DURHAM.OR 1.0 DESCRIPTION SE ISAAC EVALUATION-NUS VESSELS DRAWN BV NEV DATE I 11M2013 REVISION A DWG.MO J SL-116-61 REV.A l REKEVY I A DO I 022013 BYPASS ADDED ' TOP VIEW TOP VIEW SKID BASE HOLE DETAIL SK-2 t` O I I O ' I M 1---. 1111P1 11.,1 1=.!E li -I- Pt ' 44. 11 I III 1S.8- ,- — Ml_� 111:7 11 lo • IA tll 0 Cr b oti, .. § d. , a FRONT VIEW RIGHT VIEW USE 1"DIA.ASTM F 593,GRADE 316 ROD+POWERS PE1000+EPDXY WITH 4"EMBEDMENT INTO(E)6-1/4" n n B I ' � (MIN)THICK CONCRETE PAD.PROVIDE 6"(MIN)EDGE �`-) I I■���I DISTANCE,TYP JJ1- d •.• • •t il IS NOTE:STRUCTURAL INTEGRITY OF SKID CONNECTION BETWEEN INDIVIDUAL MODULES,AND MEMBERS ARE NOT ,..1 IN[BAT'S SCOPE AND RESPONSIBILITY OF OTHERS. I.V1 lilt k •:� _ 131 lei ,� r � _�el '�1 �—�� toll �M — I�I =N I pl—° rC1�� 1 -. CEVF, 0! .-A ilin.„..., a..,.., . ��1 ■ l ■. 11-11-1 I �1. Unison Solutions Inc. I I 5451 ChlveneMe Road UNISON [Subaqua,IA 52002 SOLUTIONS PRONE 503-6852007 FAA 5815852070 Inlet Filtration Skid E"'F"C"° e""'° "" NOTE: 175-DURHAM.OR APPROXIMATE WEIGHT=5,000 LBS 1'0 DESCRIPTION SEISMIC EVALUATION•BIOGAS SKID I INDICATES CENTER OF GRAVITY \. .J DRAWNBV KEV DATE 9/92013 REVISION A DWG.NO 4-17567 REVISION. 1. p acv.aural ay.SY I A/A.w I DATE 1 DESOINIT I Of C NA:* . SKID BA DETAIL sK-3 TOP VIEW F ,L II ra 1 I . ems} -r r , , 7 ,t. T I I `y y I 0' I , I r TYP I �� n b § b t 9 FRONT VIEW RIGHT VIEW USE 1"DIA.ASTM F 593,GRADE 316 ROD+ POWERS PE1000+EPDXY WITH 4"EMBEDMENT INTO(E)6-1/4"(MIN)THICK CONCRETE PAD. PROVIDE 6"(MIN)EDGE DISTANCE,TYP Limr■orl I . NOTE:STRUCTURAL INTEGRITY OF SKID r� CONNECTION BETWEEN INDIVIDUAL MODULES, _��®�� AND MEMBERS ARE NOT IN ISAT'S SCOPE AND RESPONSIBILITY OF OTHERS. A� -• ••- A a r.r I.r A, „ISIS. ,,ISIS, 1 , ISIS, , ISIS, a �l l ( :� o ,a,...IA 5 I, UNISON QomNS 52000 P , SOLUTIONS flfl : sACINEYM4,aI Blower Enclosure "' ■�» 1.0 a�Y.,.....� .... w..n NOTE: waaen..eeur.elaa.w..e a.Daer 177-awu..e. APPROXIMATE WEIGHT=15.000 LBS 01.1011.11011 MOM LWLINVIINN•MOM USD2 Q,INDICATES CENTER OF GRAVITY DRAWN NY siv DATE 01162013 s.w.0I - D.O.NO. SAM= f .. �1 iay.ri .i Nev.sr I m.1.w I o V1 ONS ..ul.na.awl.a , TOP VIEW 5.610 BASE HOLE DETAIL SK-4 . . .,,., . ...,, ,..,,,. _____� 011111-101 I C El: 11 it,n, IA ___=,___, , ii.,...0,..,, ..... imulIWANNIIIMM 1 J � II � IILII� _ 4 J ‘Ali i727. "' "rJ l 1 .K • c I v—i 1'TYP b4. 4 ",ti 4 FRONT VIEW RIGHT VIEW USE 1"DIA.ASTM F 593,GRADE 316 ROD+POWERS PE1000+EPDXY WITH 4"EMBEDMENT INTO(E)6-1/4" I •` (MIN)THICK CONCRETE PAD.PROVIDE 6"(MIN)EDGE , ,',�. DISTANCE,TYP Ili IIIIII1IOI II — IIt•±^11111li111 H\.�./ � _;�;�{�.1 t NOTE:STRUCTURAL INTEGRITY OF SKID CONNECTION � �� .'=.�� j pBETWEEN INDIVIDUAL MODULES,AND MEMBERS ARE �� '� �■ I•'� NOT 1N ISAT'S SCOPE AND RESPONSIBILITY OF OTHERS. 1 III - - - - IIIIII,iIIF`i ■ ■ ''.1 T_,it. II�. „ IIC� f� 1 AT A I - 4 I� urn 1111'■ ■ii11I iii l (Q' Iii?'" 1NIII 1 Reed INLM 1 I t0■1� - - . ■— sowriONO PHONE MUNiiT RAE Mf/MM1U 11p: i iin 1s1RE11wIME VAT NOT SE EI11FOPMit]11.EIR NOTE: Heat Exchanger Skid '� � APPROXIMATE WEIGHT=7,000 LBS PROJECT 'T aTION. INDICATES CENTER OF GRAVITY 1'0 ��~ �P ~�' OfA.Yllh WV DYNE M160013 REVISION OVAL E1. 01,1711.01 TOP VIEW PLATFORM ALSO NOTE:STRUCTURAL INTEGRITY OF SKID CONNECTION I,EA.SYMea]REV BY�APPR.BY[ wTC DESCRIPTONOFCOBRQE ' MOUNTS TO VESSELS BETWEEN INDIVIDUAL MODULES,AND MEMBERS ARE NOT A I KEV EDO l 552663 PLATFORM MOUNTING ROLES VIEW• �I r , IN ISAT'S SCOPE AND RESPONSIBILITY OF OTHERS. BOTTOM VIEW MOUNTING HOLE DETAIL ill Oldll: Ilk n\ ♦ � , Ward—IN I 0l w kI . mIII] , 1 t 14--Be i1h ' 1I ! r, griii== i v�- lI:la; ♦��,ai r r�♦ lam%t..■1► �°- ,•T�. 1111 IIII FRONT VIEW RIGHT VIEW `o—_--_-o p b o - a b b __ I. USE r DIA.ASTM F 593,GRADE 316 ROD+POWERS •�1'I / � ■ PE1000+EPDXY WITH 6-1/8"EMBEDMENT INTO(E)8-1/4" • a I ( D-C _ „ ! (MIN)THICK CONCRETE PAD.PROVIDE 8"(MIN) EDGE III DISTANCE,4 ANCHORS PER LEG,TYP i cAF ,.aL i .'a'T9 P-1 n - Ii'i ______________________________ I VIII �I,- ml. r, ii II£F USE 1/2"DIA.ASTM F 593,GRADE 3OD+POWERS PE1000+EPDXY• -�_� rile' WITH 6-1/8"EMBEDMENT INTO(E)8-1/4"(MIN)THICK CONCRETE PAD. ir ` PROVIDE 8"(MIN) EDGE DISTANCE,4 ANCHORS PER LEG,TYP I� j 1 '1- 1 Unson Sis. ♦ 5451 Ch vanilla Mood ;� _ V 1�_I;�0�,;1=1��_ _ �; ;��_ DMw,q,.,IA 52002 11��x��, . �� BoNirnoNS PHONE 56G8B88SS7 FAZE sea5esauro �1MI�'`_�OI_'-'I�� '(�1■ v we =NOW r OAK= NOTE: ° ".na. .iii rara.ar ' APPROXIMATE WEIGHT=100,000 LBS Siloxane Removal Vessels M'ba.R?U.YESOM.O..a: B INDICATES CENTER OF GRAVITY PROJECT 175•DURHAM.OR II �O I 14 I I DESCRIPTION SEISMIC EVALUATION-SLOW&VESSELS B, 1 1 L. 11 — — CAM.BY KEV I DATE 1N2013 REVISION A DWG.MD 61.176-86 D m n 0 . V m w . . o . . l O 1 y . 1 v , A v A O co- el a 2 o _ \'.-.T. ■■7■■■11111 —m ■■■■■7■■■■■11■ a mu.•••.,.0.11..., ■■■■■rL 1-■III�\ • ■_■_r_I:-PI 111;ill a • P . ■'MMO■MO■M■ AI_ 444.14.:■■ ■ ■■ ■ - i :� .�_ O- ■':■E! ■■11■■■■ — ■_.■_■�■�11�■�■ o uli■i■i■:i�i•o■ • , 11-r-lo.) A ti.) ll O2 _ W IJ 02I— o: n A V — 7 7 _� 00101 o, WI— cc m'O =.. yip- A1W '1 °TO CD 1 C w . . . ~ ?.,l II f11 H t2/ - -a d m y /I: I ^' O N =A • ZD . 77 Z . j NM (.n-0 Z7:1 Z� X cn 2/Z 0 o PROJECT: NAME. DATE: SIZE REV PART JTS2ODIAC JOHNSON — THERMAL Unison-JTS2ODIAC DRAWN Dov.oa.B 2/'m13 CONFIG. — SYSTEM S REVIEWED Bno.WAM 2/6)2013 B O MATERIAL DWG. NO. 1505 Industrial Way D.A.APPR. FINISH Caldwell,ID 83605 JTS-20 DIAC-M001.2 CL EM APPR. SCALE:1:20 NOTES WWW.JohnsonThermal.com Drawing Size B .awm TO N. SHEET 2 OF 4 e ■ > co Cl 0 . 8 7 6 5 4 3 2 1 SK-7 NOTE:STRUCTURAL INTEGRITY OF SKID USE 5/8"DIA.ASTM F 593,GRADE 316 ROD+ CONNECTION BETWEEN INDIVIDUAL POWERS PE1000+EPDXY WITH 3-3/4" MODULES,AND MEMBERS ARE NOT IN ISAT'S EMBEDMENT INTO(E)6"(MIN)THICK CONCRETE SCOPE AND RESPONSIBILITY OF OTHERS. PAD.PROVIDE 6"(MIN) EDGE DISTANCE,TYP 4400.1 110 g D D 4„4'3 „ 4� \ 99 2'-7 4 -10"- 10"— (REF.) j� B`� �� O J . =H W Z W \\ �\ O „ C C / w CO 0 H 1 1 O Q MOUNTING HOLE �� a@ i II V 0 Q LOCATIONS 6.5' -• 6,7,. 1 i •(REF.) i< 8 E a ; B _ NOTE: BASE SHOWN IS NOT A SEPARATE PIECE AND IS SHOWN FOR DIMENSIONS AND MOUNTING HOLE 4 ? a 2 LOCATIONS ONLY. d 2 a d .1 c N O L 1"(TYP.) e 0 8"MOUNTING HOLE N r E (TYP.OF 4) a;W v S W N E A A 9.~.'n oot Bottom View — C Glycol Chiller a�o �oC o All Members Made From 3 10 Gage Galvanized Steel o a3 8 7 6 5 I 2 1 MMT INTERNATIONAL SEISMIC APPLICATION TECHNOLOGY Ground Mounted Equipment Calculations IMMO! Project 1 t D 14325 N.E.Airport Way#113 0 5113 Pacific Hwy East#3 Title/Scale Portland,OR 97230 Fife,WA 98424 Calculated By V-S Date_ 10(13 T:503.252.4423 T:253.926.2550 Checked By Date F:503.252.4427 F:253.926.2463 • w Sheet No. I of ww.isatsb.com 11111111111111111111111 IL1111,11111111111111111111111111 ■■■■■■■■■■■■■■■■■■iI.mmmmm.wi6.1............ ■■■ ■■■■ ■■■■■■■■■■■ ■■ �1U"111" 1111'111111111'■'11111 1 111 '1111111:11111111111 1U ■■��■■■.. m ■ ■■� ■■1■u.■■■ p I ■a1■■uu■■p■■ ■■■u■■•■■■■ !HI!!H1hi1j ::IIIh:IIIiiir:ilIiiiIu! iIiIiiiilhiiII ^� -11�►1■■■ .U■1! i 1 iii ■ ■■■.■■■■■■ ■■■ �. �r,�■■■■a- _ ■ C rPrr��>r■■C,.i. zi- iI 71■■■ u■ ■■■■ ■■■■■■E■■■■■ICI.UrW■■FAMMIi■■r■■■■YE■■M■■■■ ••� ■■mmomp�I 111 ■ ■■1■■■■■■■■■ ■■■■■■■■.■■■■■■■■■■■■■■ ■■■■ ■ mmmmmm 1111■■:•11rn 1U11U11111 111111111111111111111■11■11111 11 mil■■.11::1 1111'1 1 1 v:1:'1C1� :1111111:11::1:11i11'■'�11 11 111iy11111 "''1'11' 1:1:11::11111 111■11111 1■■■�i11U11111■I■■■■■■■■■■■■. ■■■a'na11'■1■■■■■■■■■'■'■■'■■■■■■■' i ■■■■■■■■■■■■MW. itriroimi �■ ■ ■■■■■■■■■■■■■■■■■■■■■■■ ■■■ ■■ ■ ■ ■■_� C ■■■1■ '11 111■1■■■■■■111■■1'1 1111 ■■■U■■1■U1■1■PI■■P'■ 11■1■.■.n1 .. u.. 1S= = 1.1■■.■. ■■■■■■■■■■■ Li 9iel 6:_ _ r ■■■■■■■■w■ m ;awl �� ,� . Frommomm ■■■■■■■■■■■1.m11�mm►-_ m mi■■■■■■■■.�■ m■■■■�i ■_m 6mM ■■■■■■ ■■■■ ■■■■■ ° =lmmilwai ■ ■■■■►o■ iti '-■ "' Pam?. - .n /■■■■■ ■■■■1■■■■■1■ci. ■■ ■■■■■■■11 ■■■■■ p ■ cy 411 Mr 45 Miftd2■■■■■■ ■■■■■■■■■■■■■■■I•■■1■■■■■■ ■■1■■ ■ U1 ■ � "i1....�Us..2.■■■■■■■ ■■■■■■■■■■■■■■■■■. ■■■■■■■1■■■■■ ■1■■ t��� �5JS■■■■■■■■■■ ■. ■ ■■■■■■■■■■■■■■■■■.1■■■■■■■■■■■■■ ■'1 U11I�i1 C:1'1111 :11111111 11111 1111'11111 1111:1111111:1:11.11■1i■■■■■■■ ■■1■■■ 1'1'■■■■.■■■ """"'1"""""""""""""'11111111111111 11 1111111 1 ■■■■■■ ■■■■■■■■■■■■■■■■■■■■■■■■■■ ■■■ ■■■■■. • 111111 ■■■■■■. 1■■■■■■■■■■■■■■'11 U1■111'11' ■ 111'1: 1111mums 11151111 1'1111U1111U=11111000UUU■■■ ■■. ■ ■■1 1 1■■1■■■■■■■■■ ■ ■■1■■■■■I■U■■■■ ■ . ■ ■■■■■■■■ ■U■1■■■■ ■■■■■■■■■■. ■■■■■■■ ■■■■■■ ■■■1.111 1 111.1■■■■■■■■1 ■■■■■■■1 ■■■■■■■■■■.■1■.■■■■ U■. ■■. ■■■. ■■ 1■1■■■■■■■■■■■■■■111■■. ■■■■ ■■■■■■■■■■■■■■■.■■■1 ■■1■■■1■■■■1■■1■■■■■■■■■■■■■■■■■■■.■■■C■■■■ ■■■.■■■■■■"111111'1111111111'111111'11' 51::1111111:'11:11:111: 11:::=1:1=:11:111=11=1:::::1111:1'11111 111'1::=::111:1=11111:' ■■■■■■■■■■■■■■■■■■■.■■■■■■■■■■■. ■1■■■■U■. ■1■■■■■ ■■■■■■■ ■■■■ ■■■■■■■■■■■..■■■■■■.■■■■■■■■.■■■C■■■■■■■■■1■■■■■■■U■■■■■■■1■■■■1 1 111::1 :1:1111111111::1::1'1: n . . ; . . IMMO' .' Project .DAIN Title/Scale o 14325 N.E.Airport Way#113 [] 5113 Pacific Hwy East#3 Portland,OR 97230 Fife,WA 98424 Calculated By VS _ Date 10 1 13 T:503.252.4423 T:253.926.2550 Checked By Date F:503.252.4427 F:253.926.2463 www.isatsb.com Sheet No. of 1111111 1111111 1111 11111111 11111111111111111111111111111 III 111114 11111111 111111111111111 11!:I«114111111111111111HI■H ■■■�■■■■U■�"-- � au'A::::■■■■■■■■■■■■ ■■.�■�■■■■■ • ■■■■■■■■■■■■■■C■■i■.wmam■■■■■ + _■■■■■■■■■■■ ■■■■�■■■■■■.■■■■■■■■■■■■■C ■■ ._, mml■■■■■■p m.■■■■■■ ■■■■■■■■■■■ mom■�■■ ■■■■ ■ ■■ ■ ■■■■ nrnrnc: ■u■■■■ar~ ■tl■■■■■■■■■■■■■■■■■■ Maril rni ::■irn..■s■i::■..■■■rnrL■■■■.■■.■.■..■■rn■ ■ �■.:■:■■■ ■■._■■■■■■■■■■■a■■■■■■.■■r� ■■■ ■m■■■■r•uu rnrrnrnrn ■■■■■■■■ mum_■■I,7i■■■ C ■1 ' s it ■ m , .■ 2.5'0:x3 [ = - ■ �. u " mmom■■■ ■.m urn vmm :mii■ui■■iI■urnIr■■■ 1g: mum • mj-Kia�5■■■■■■ ■■.■■i■■uuu�i■■=■■.■■■■ ■■ M:::i■■■:: : :: ■.....■■■.■ ■■:■...... ■■■ ■ A�■■ ■■■ ■ri:I ■ ■P ■■ a■■■■■■■■■■■■■■■■■■■■■ ■■■___ PAIMIr■N■ �� W1��UT N ~ ,ono kA►1■ ■■.■ ■ ■■■■■■■.■■■ :■■■■.■■ L►1T�.w ■ Arnim ' ■■I■■=■■■■::■:■■.■■■■■■■■ ■■■■■■■u■■■■■: : ■■■■ C:■■■■■■■■■ .■ ■■■■■■■■■■■■■■■■■■■.■■■■ moo.■.■ ■■■■■■_■■■■ ■■:■■■■■ ■■.■■ ■ ■■■■■■■.■■.■■■...■■■■■■■ ■.. ■:■■■.■■■.■■■::i■. ■■■■::■■.■.:■::■■■■■.■■■■■ . ■■■■■■.■■■ ■■■■_rn.■I.■■■■M PIMMIMn ',1 a�-'�c'.uu.u.::: ■:■■ _ . ■■■_■■■►.��■■c! `� 6 :::_■■:::'iiiii::':::ii ■■■:■■■■■ ■::::::::::: • ■■■■ ■■■■■l■■■ pn■■■■■■ rn p■:::I■ii■■ . . f , • ::■'i"'■: iturs■—i j'sil twin:_A:is 1_0. _,.. )10.`t = 3105. v--PT • _■ :::''� •.rnuuIS ■r : 1' ::::1 :■:::::::':: :■■■ ■■1■11___. _ moo■■.■■■■■:: :■m■ n 11 •....��■...■.■.. . .::::..:.:.. .. . ■■■■_.■■■■■■■■■.►, ■mar�%it5■■■■■■r.��a �►��n�E�:■■■■■■■■■■■■■■■■■■ ■ ■ ■ ■■■■■■■.■■M■ ■a■■■■■■■rm■=m■■lilmi:::■■■■■■■■■■■■■■■_■:.■ :_:'' om ::::::■■■■■■a:ui■S■■■■■■m_.. ...■m ■u■■■rn■_■■■u■■■■■■ ■_ • ■■■■■■ ■■ ■■■.■■■■■ ■rn.■■■■ ■ ■■ ■ ■■ ■■■■■■■■ ■■ "u-u. ::11u"'■.■:■■.■■■■■■■■■u:■.■■a::■:1■.■.1■■.■■u■.■■..■1 .■■■.■■■■■■■■■■■■■■ ■■■■ • ■ ■■■■ ■■■■■ ■■■ ■■■ . ::II �� ■■■.■■■■.■■■■■■■■_.■.■■.■.: :. .■■■■■ ■■■■.■■:■. . :Ilur■ ■_■...■■.■.■. ■■■.....■ .■: ■■■■■:■■■■..■■.■:■ ::: :: "►i 35,too r_ c,3 ee ••'si::: ' ::::::::::::':': : : ■■■—■■: nrn - AL.:■ 7 111■■■■•: ■■■■■■■■■■■■:■:.m■A ■■■u■■:rnl�r'4 ■■■■■i■■■■■■■ ■u.■■■ ■■■■■■■■■■■■■■■■■■■■■■■■■ ■■■ ■■■ir■ ■■■■■ M■■■■■■■■■■ ■ ■■.■:■■■ ■■ ■■.■■ ■■■■■■■ ■■■ .■.�■ ■.■11u...■■u.■■■■■■■■■■.:_■■■■.■■:.■:■■■■C::=■ .■ :: :■:.■. ..■.a.■■■1 ■■■_■■■■■■.■■■■■■■■■ :::':::1:::::::■:' '..rn . .■ ■ ■ .... ...■■■■■■■...■■■■ ■■■m.■■�, ■■■: ■■■■A■■■�■M■■■ A■I■■■■■■■ ■P', ■ • :■...■■. a ':4■1•,�',' AIIMi.4:410;�■.;■ I 'A: ,1111 -� ■1EAr, _ r_+nl■.:■: ■ ■.■■■■■on ■■■ ■ rn.■■■■■ ■■■ : Ii■■ �■■■ w■S■m/ mirmi+■■■ mom■•■■■en ■ui■■■rn■�■■■■■..:■ ■:■:■■■■ ■■■Ii■■■■■■ •■fin�J■■■■: ■■■w■■■■■ai■■■■■■■a■■ ■■■■ :■ ■■■■■■■■■■■■■■■■■■■■a■■■■■ ■■■■ ■■■.■■■■■■■■■■■■■■r�!u■■rom■■_W■■:■■■■■■■■■■■■■■■■■■■■■■■■■■:■■■■ ■■■ ■■■■■■■■■■.C': .i :,..1j■" y,:■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ 1::.1::111111111 :.1111 1111111111111111:1111111 1111:::1:: :1 .■■...■■■■■■■■■■■:■ ■■■■u■■■■■■■■■■■■■.■■■■.■■■■■rn■■■■.■■■■■:■■ 111 _I111111111:::1.11:111:::1:::1::111::11::1: 11::11:11:111 1 :.■�■■■■■■ ■■■■■■.....■■■. .■..■■■■..■.■■■■■■■:■■■■■■■■■■■■■: urn_Iu..� ra■.■■■...■■■.■■.:■__■■..■■rn_■■■■■■._.■■.._■■■u■.._.: . ■.....■■ ■■■.■.■■■■■..■■■. _■■..■ _■■■■■. ■■■■■ .■■ ■■1 .■ ■■■ ■■■■■ ■■■■.■■■■■■■■■■■■■ ■ ■■■■■■■ ■■■■■■■■■■■■■ ■■■■■ ■■ ■...■.■■■.■■.■....■C .■.■■■■■:■■■■■■■■■■■■■■■..■■■■..:■■.■■■.■: ■■■.■.■■■■■■■■■■■■. Cu■.■..■■■■■■■■■■■■■.■■...■■■■■.■■■■■.■.■■.■ ■■■ ■.■■■■■■■■•■■ 0 ■■■■■■■■■■■■■ ■■■ ■■■■■■■■■■■■■■■■■■■ ■■■■ 3 ‘-1 ISAT SEISMIC BRACING Job: i V 5113 Pacific Highway E#3,Fife,WA 98424 Date: 10/25/2013 INTERNATIONAL SEISMIC PH: (253)926-2250 FX: (253)926-2463 Designed B : APPLICATION TECHNOLOGY ( � ( ) 8 Y I I ASCE 7-05 (IBC 2009)WIND: BUILDING DATA: Basic wind speed (3 sec gust) = 95 MPH Exposure C Building Roof Height H = 20 ft Component Shape= Round Component Height h = 20 ft Component Width W= 22 ft Component Depth D= 10 ft 6.5.15, Design Wind Load on Other Components F = qZ G Cf Af (Eq 6-28) qz= .00256 KZ KZt Kd V2 I (Eq 6-15) Ht. z at the centroid of area Af= 10 ft Exposure coefficient Kz= 0.9 6.5.6.6, T-6-3 for MWFR Topography factor KZt= 1.00 6.5.7.2 Directionality factor Kd = 0.95 Table 6-4 Importance factor 1,,= 1.00 Table 6-1 qz= 19.75 psf Gust Effect factor G = 0.85 6.5.8 h/D= 2.00 Force coeff Of= 0.717 Figure 6-21 through 6-23 Design wind pressure, F/Af = 12.03 psf W 12`0 31.15= t3.8 • Company name: PQ/, Powers Design Assist Project: Date: 1/15/2014 Version: 2.1.5000.17212 Project number: Page: 1/4 GEOMETRY: 11110i111.11111.11111111111111* . :„ 111111111111Shoior . ■ t . I +'t I r f .I .- . t 1 I i I I I LOAD ACTIONS: [ib], [ft-lb]. Z Design loads/actions i I /V, Nu 0 Y Vux 0 Mtn Ay Vuy 4388 Lly Mog M t,y 0 0 //' Vux .._._._._. �.». My Eccentric profile ...... / ex = 0.00 Inch; ey = 0.00 Inch �_.._._.. . _. ...._. ,._..___.._.._a_._._ ......M......._,..a.,.i Load reversal X-direction: 100% Load reversal Y-direction: 100% Input data end results must be checked for agreement with the existing circumstances,the standards and guidelines and must be checked for plausibility. Powers Fasteners,2 Powers Lane,Brewster,NY 10509,USA,http://www.powers.comi III .1 Company name: PDA Powers Design Assist Project: Date: 1/15/2014 Version: 2.1.5000.17212 Project number: Page: 2/4 CALCULATIONS: Selected anchor: PE1000+ - 1" rod ASTM F 593, Grade 316 __■ (stainless) _ ._. Effective embedment depth: hef = 6.000 inch Approval: ESR-2583 (12/1/2011) Issued: 12/112011 Basic principles design: Design method: ACI 318-08 (Appendix D) Concrete: Normal weight concrete, cracked concrete, fe = 3000 psi Load combination: taken from Section 9.2 Reinforcement: none edge reinforcement or < #4 bar Condition B Stand-off: not existent { Temperature range: Long term temperature: 75°F, Short term temperature: 104°F Drilling method: Hammer drilling Drill hole condition: Dry Seismic Loads: Yes (Yield of ductile attachment(fixture)) Resulting anchor forces/load distribution: Anchor No. Tension load Shear load 01 02 #1 O lb 1097 1b #2 0 l 1097 lb #3 Olb 10971b #4 0 l 1097 lb Maximum 0 lb 1097 lb Max. concrete compression strain: 0.00%a Max. concrete compression stress: 0 psi Resulting tension force: 0 lb Resulting compression force: 0 lb Summary: Design proof Demand Capacity Status Tension load - - - Shear load 4388 lb 5578 lb 0.79 s 1.0 OK Interaction - - - Anchor plate: Material: fyk = 36000 psi Length x width: 12.50 inch x 12.50 Inch Actual plate thickness: 0.394 inch Calculated plate thickness: not calculated • Profile: none selected Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines and must be checked for plausibility. Powers Fasteners,2 Powers Lane,Brewster,NY 10509,USA,http:llwww.powers.com/ . i - N Company name: P DA Powers Design Assist Project: Date: 1/15/2014 Version: 2.1.5000.17212 Project number: Page: 3/4 DESIGN PROOF SHEAR LOADING: Reference Steel strength (without lever arm): Ve, = 30888 lb D.6.1 * Veq = * av,sels * Veq = 0.65 * 0.80 * 30888 lb = 16062 lb D.6.1.2 Vua = 1097 lb Design proof: Vua/ (I)* Veq) = 1097 lb / 16062 lb = 0.07 5 1.00 Concrete breakout strength, direction y-: le = 6.00 inch D.6.2 do = 1.00 inch = 5.50 inch D.6.2.4 Cal I _ Vb = 7 * (le/ d0)0.2 * d00.5 * fc'0.5 * cal 1.5 = 7 * 1.431 * 1.000 * 54.772 * 12.90 = 7077 lb Avco = 136.13 inch2 Av = 206.25 inch2 Wed,V = 0.991 D.6.2.6 4Jav = 1.000 D.6.2.1c Wec,V = 1.000 D.6.2.5 acv = 1.000 D.6.2.7 41n V 1.000 D.6.2.8 * V cb 9 = 2 sets* * (Avc/A Vco)* 4t ed,V* W a,V* 4t ec,V *4t c,V* W h,V*V b D.6.2.1 = 0.75" 0.70" (206.25/136.13)•0.991 • 1.000* 1.000" 1.000* 1.000• 7077 lb= 5578 lb Vua = 4388 lb Design proof: Vua/ (CD* Vcbg) = 4388 lb / 5578 lb = 0.79 5 1.00 Input data and results must be checked for agreement with the exfsl'm0 circumstances,the standards and guidelines and must be checked tar plausibility. Powers Fasteners,2 Powers Lane,Brewster,NY 10509,USA,httpJlwww.powers.com! Company name: pin Powers Design Assist ! Project: Date: 1/15/2014 Version: 2.1.5000.17212 Project number: Page: 4/4 1. Pryout strength: = 5.333 inch h of kc = 17.0 N = k0 * fc'0.5 * hef1.5 = 17.0 * 54.77 * 12.317 = 11469 lb D.5.2.2 b ANc = 625.00 inch2 ANcO = 256.00 inch2 • 4/ec,N,x = 1.000 D.5.2.4 = 1.000 D.5.2.4 • 4 • /ec,N,y = 8.00 inch ca,min 4/ed N = 1.000 D.5.2.5 Wcp N = 1.000 D.5.2.7 4/c,N = 1.000 D.5.2.6 kcp = 2.0 D.6.3.1 * Vcp9 - mseis* W (ANC *Wec,N,x * Wec,N,y * ed,N* cp,N r Wc,N*N b* kcp =0.75'0.70 (625.001256.00)' 1.000 1.b00'1.000' 1.000 1.000' 11469 lb•2.0=29399 lb Vua = 4388 lb Design proof: Vua/ (0* V0p) = 4388 lb /29399 lb = 0.15 5 1.00 Fastening old WARNINGS/REMARKS: Calculations including seismic design requirements in accordance with ACI 318 D.3.3 are required for anchors in structures assigned to seismic design categories C, D, E and F. Under these seismic conditions, the direction of shear may not be predictable. As default and in accordance with ACI 318 D.3.3 the full shear force is assumed also in reverse direction for a safe design.This may influence the direction of the controlling concrete breakout strength. I I Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines and must be checked for plausibility. Powers Fasteners,2 Powers Lane,Brewster,NY 10509,USA,http:Nwww.powers.com/ i • • MEAT Project )L2.PtMAI { Title/Scale U 14325 N.E.Airport Way#113 0 5113 Pacific Hwy East#3 Portland,OR 97230 Fife,WA 98424 Calculated By VS Date 03 T:503.252.4423 T:253.926.2550 Checked By Date F:503.252.4427 F:253.926.2463 Q� www.isatsb.com Sheet No. v of 1111■■■■■■ • ■■ ■■■■■■■■■■■■■■■ ■1111■■.■.■■■■■■ • ■■■■.■■■■■■ ■■ 1::1:::11:::: '::::: IIIIIIIIII:: :'IIIII= IIMIIIIIII=IIII:III: .■■■■■■11■■■I iz■■■..L��'Y3Lt!1_■■41;'zl1 ■•■■■■.N■■■ ■ ■ ■■■■■ ■■ ■■■ ■■■■■■■■■■■■fil 1111■■■■■■■ ■■I■M■U■■■11■�■■�■■■ : :Company name: P DA Powers Design Assist - - Project: Date: 1/15/2014 Version: 2.1.5000.17212 Project number: Page: 1/4 GEOMETRY: 0? • �6pQ 6Q� • • 41 LOAD ACTIONS: [Ibl. [ft-Ibl Z Design loads/actions t Nu 0 N, vux 0 V uy 160 MUI f `�J /fiVuy 0 0 i •' M, M • X // ,M uz M Eccentric profile »—�—•-- .. -» -- ex = 0.00 Inch; ey = 0.00 inch ».»_�.._._.�� W...._......_»-. ,�..»»�».w_.... ....- Load reversal X-direction: 100% Load reversal Y-direction: 100% — Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines end must be checked for plausibility. Powers Fasteners,2 Powers Lane,Brewster,NY 10509,USA,http:llwww.powers,coml ' I Company name: PDA Powers Design Assi,, Project: Date: 1/15/2014 Version: 2.1.5000.17212 Project number: Page: 2/4 CALCULATIONS: r 1 Selected anchor: PE1000+ - 1"rod ASTM F 593, Grade 316 (stainless) Effective embedment depth: hef = 4.000 inch Approval: ESR-2583 (12/1/2011) • Issued: 12/1/2011 Basic principles design: Design method: ACI 318-08 (Appendix D) Concrete: Normal weight concrete, cracked concrete, fc = 3000 psi Load combination: taken from Section 9.2 Reinforcement: none edge reinforcement or < #4 bar Condition B Stand-off: not existent Temperature range. Long term temperature: 75°F, Short term temperature: 104°F Drilling method: Hammer drilling Drill hole condition: Dry Seismic Loads: Yes (Yield of ductile attachment(fixture)) Resulting anchor forces/load distribution: • • Anchor No. Tension load Shear load •• #1 O lb 160 lb AVIV. Maximum 0 lb 160 lb Max. concrete compression strain: 0.00%o Max, concrete compression stress: 0 psi Resulting tension force: 0 lb Resulting compression force: 0 lb Summary: Design proof Demand Capacity Status Tension load - - - Shear load 160 lb 2440 lb 0.07 5 1.0 OK Interaction - - - Anchor plate: Material: fyk = 36000 psi Length x width: 3.50 inch x 3.50 inch Actual plate thickness: 0.394 inch Calculated plate thickness: not calculated Profile: none selected Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines and must be checked for plausibility. Powers Fasteners,2 Powers Lane,Brewster,HY 10509,USA,http:l/www.powers.com/ piI{ (1 Company name: RDA RANKS Design Assist Project: Date: 1/15/2014 Version: 2.1.5000.17212 Project number: Page: 3/4 DESIGN PROOF SHEAR LOADING: Reference Steel strength (without lever arm): 1 I V©q = 30888 lb D.6.1 * Veq = * 0V,seis * Veq = 0.65 * 0.80 * 30888 lb = 16062 lb D.6.1.2 = 160 lb Vua Design proof: Vua/ (cI)* Veq) = 160 lb / 16062 lb = 0.01 5 1.00 Concrete breakout strength,direction y-: = 4.00 inch D.6.2 e do = 1.00 inch • Cal = 6.00 inch V b = 7 * (le/ d0)0.2 * d00,5* fc'0.5* cal1.5 = 7 * 1.320 * 1.000 * 54.772 * 14.70 = 7435 lb Avco = 162.00 inch2 Avc = 93.75 inch2 Wed,V = 0.900 D.6.2.6 41(0/ = 1.000 D.6.2.1 c Pc,V = 1.000 D.6.2.7 h,V 1.200 D.6.2.8 * seis* * (Avc/Avca)*Wed,v* Way Wc,v* Why D.6.2.1 Vcb = 0.75*0.70* (93.75!162.00)*0.900* 1.000" 1.000" 1.200" 7435 lb=2440 lb Vua = 160 lb Design proof: Vua/ (CO* Vcbg) = 160 lb /2440 lb = 0.07 <_ 1.00 I r I i I ' ( input data and results must be checked for agreement with he existing circumstances,the standards and guidelines and must be checked for plausibility. Powers Fasteners,2 Powers Lane,Brewster,NY 10509,USA,http://www.powers.coml -'Company name: PDA Powers Design Assist • —_ Project: Date: 1/15/2014 Version: 2.1.5000.17212 Project number: Page: 4/4 Pryout strength: het =4.000 inch • kc = 17.0 Nb = kc * fc'0.5* hef1.5 = 17.0 * 54.77 * 8.000 = 7449 lb D.5.2.2 ANc = 144.00 inch2 ANcO = 144.00 inch2 ca,min = 6.00 inch 1 4/ed,N = 1.000 D.5.2.5 = 1.000 D.5.2.7 �c N = 1.000 D.5.2.6 kcp = 2.0 D.6.3.1 * VCp =msees* (ANc/ANc0)* ed,N* Wcp,N * Wc,N* Nb*kcp =0.75 0,70'(144.00/144.00)'1.000 1.000' 1.000'7449 lb•2.0=7821 lb Vua = 160 lb Design proof: Vua/ (13* Vcp) = 160 lb / 7821 lb = 0.02 <_ 1.00 Fastening okl WARNINGS/REMARKS: Calculations including seismic design requirements in accordance with ACI 318 D.3.3 are required for anchors in structures assigned to seismic design categories C, D, E and F. Under these seismic conditions, the direction of shear may not be predictable.As default and in accordance with ACI 318 D.3.3 the full shear force is assumed also in reverse { direction for a safe design. This may influence the direction of the controlling concrete breakout strength. { f � � I i 1 Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines and must be checked for plausibility. Powers Fasteners,2 Powers Lane,Brewster,NY 10509,USA,http:/Iwww.powers.com/ . Project D1AR#1AW1 �I Title/Scale 14325 N.E.Airport Way#113 0 5113 Pacific Hwy East#3 I Portland,OR 97230 Fife,WA 98424 Calculated By Date- WAS T:503.252.4423 T:253.926.2550 Checked By Date F:503.252.4427 F:253.926.2463 • www.isatsb.com Sheet No of ■■■■■■■■■■■■■■■■■■■■■■■■■■■■ ■■■■■■■■■■■■I■■■■u■■■■■■■■■■■■■■ • ■■■■■■■■■ ■■■■■■ ■■■■■■■■■■■■■■■■■■■ ■ ■■■■ ■■■■■ ■■■■■■■■■■■ ■■■■■■■■■ ■OIM■M■. ■■■■■■ ■■ ■■■■■■■ ■I■I■■■■■■■■■ ■I■■■■■■■■■■■ ■■■■■■■■■U `;full n -�iu _Irar?Tr 7 ■ ■■■■ ■■■■■■■■■■■■■u■■■■■■■■■ ■■■ ' ■■■■■■■■■■INcC... ---"""""'m11■I■■■■!==========.11===1 ■■■■■■■■■■■■■I■■I■■■.■■■■■■■■■■■■■■■■III■■■■I■..■. I ■■�.■■■■I■ I ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ ■ ■■CZEW-,AN . �I■.;L V=J ■■ { ■■■■■■■■■■■■■I■U■■■■■■■■■■■■■■■■■■■■■■■■_■■■■ eU■■ m U!r�■P,rn■■■■ ■■■■■■►.� r4■r_Mu�1 :�:7ni.;F■■■.■■■■■■■■■■■■■■■■■■■ � ' rJ'∎:�::LAIu6i..:a■■■ ■■■■■■■■■■■■■■I11II i.1■■=■■■■■■■■II= ■I ■■1111■■III■11■I■■■■■■_ ==11= T=I1=11=. ■I1r:= ■■■__:■■■■■:_ ::■■■■::.■■:■■ ■ :: :■ =I==I=•mommomuu. llimnsrr�ua=IIII lm Immo:::r==:a Uru%II==I=1= 11■■■■!■ _■ -.- .■ ■■ ■■III ■ ■■ _ ■■■■■■■ ■uu■■I■■■■■■■■ ■■■. 111!■ - III.■1 i ._. II■=■■■■■■■_■■■■■■■■■■■■■■ ■■■■■ � rw . , _ 2s-12.1‘ rliNbi1 5�r , yo■_■■■■■■■■■■■■■■■■■■■■■■■■■■! I==:U:: • . . Amur ISAT SEISMIC BRACING Job: 5113 Pacific Highway E#3,Fife,WA 98424 Date: 10/25/2013 INTERNATIONAL SEISMIC APPLICATION TECHNOLOGY PH: (253)926-2250 FX: (253)926-2463 Designed By: ASCE 7-05 (IBC 2009)WIND: BUILDING DATA: Basic wind speed (3 sec gust)= 95 MPH Exposure C i Building Roof Height H = 0-15 ft Component Shape = Square Component Height h = 9 ft Component Width W= 12 ft Component Depth D= 8.5 ft 6.5.15, Design Wind Load on Other Components F = qz G CfAi (Eq 6-28) qz= .00256 KZ KZ=Kd V2 I (Eq 6-15) Ht. z at the centroid of area Af= 4.5 ft • Exposure coefficient KZ= 0.85 6.5.6.6, T-6-3 for MWFR Topography factor Kzt= 1.00 6.5.7.2 Directionality factor Kd = 0.95 Table 6-4 Importance factor IW= 1.00 Table 6-1 • qz= 18.66 psf Gust Effect factor G = 0.85 6.5.8 h/D = 1.06 Force coeff Cf= 1.301 Figure 6-21 through 6-23 Design wind pressure, F/Af = 20.63 psf • t ao-co3m.) 623.1P- 'J i t Company name: P DA 'owers Design Assn Project: Date: 1/15/2014 Version: 2.1.5000.17212 Project number: Page: 2/5 GEOMETRY: 04 • 10000. • . ! , 6,06 • • LOAD ACTIONS: Dbl. [ft-lb] Z Design loads/actions Nu 0 t Nu vux 0 • OM,. Vuy 728 ...._..... V uy __ _....__......._.. M ux 0 /// i uy uy 0 •{ :-!-•-•- ._._..—� X ���` , Muz 0 V V / / Mux i Eccentric profile ex = 0.00 inch; ey = 0.00 inch f~ Load reversal X-direction: 100% Load reversal Y-direction: 100% Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines and must be checked for plausibility Powers Fasteners,2 Powers Lane,Brewster,NY 10509,USA,http:l/www.powers.comf l C6 I Company name: P Qn )hers Design Assist Project: Date: 1/15/2014 4 Version: 2.1.5000.17212 Project number: Page: 3/5 4 I � CALCULATIONS: t Selected anchor: PE1000+- 1"rod ASTM F 593, Grade 316 MID (stainless) ` Effective embedment depth: hef = 4.000 inch Approval: ESR-2583 (12/1/2011) • Issued: 12/1/2011 Basic principles design: Design method: ACI 318-08(Appendix D) Concrete: Normal weight concrete, cracked concrete, fc = 3000 psi Load combination: taken from Section 9.2 Reinforcement: none edge reinforcement or < #4 bar Condition B Stand-off: not existent Temperature range: Long term temperature:75°F, Short term temperature: 104°F Drilling method: Hammer drilling Drill hole condition: Dry Seismic Loads: Yes (Yield of ductile attachment(fixture)) Resulting anchor forces!load distribution: Anchor No. Tension load Shear load #1 0 lb 728 lb Maximum 0 lb 728 lb l - Max. concrete compression strain: 0,00%o Max. concrete compression stress: 0 psi Resulting tension force: 0 lb Resulting compression force: 0 lb Summary: Design proof Demand Capacity Status Tension load - - Shear load 728 lb 2440 lb 0.30 s 1.0 OK Interaction - - - r Anchor plate: Material: fyk = 36000 psi Length x width: 3.50 inch x 3.50 inch Actual plate thickness: 0.394 inch Calculated plate thickness: not calculated Profile: none selected I I Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines and must be checked for plausibility. Powers Fasteners,2 Powers Lane,Brewster,NY 10509,USA,http:Awww.powers.com! '1 Company name: PDA Pow l s Design Assist -Project: Date: 1/15/2014 Version: 2.1.5000.17212 Project number: Page: 4/5 I � DESIGN PROOF SHEAR LOADING: Reference t i Steel strength (without lever arm): Veq = 30888 lb D.6.1 * V = * 0V,seis * Veq = 0.65 * 0.80 * 30888 lb = 16062 lb D.6.1.2 eq Vua = 728 lb • Design proof: Vua/ (0* Veq) = 728 lb / 16062 lb = 0.05 5 1.00 Concrete breakout strength, direction y-: le = 4.00 inch D.6.2 do = 1.00 inch Cal = 6.00 inch V = 7 * (le/ do)0.2 * d00.5 * fc'0.5 * Cal 1'5 b = 7 * 1.320 * 1.000 * 54.772 * 14.70 = 7435 lb Avco = 162.00 inch' Avc = 93.75 inch' V ed,V = 0.900 D.6.2.6 4ia,V = 1.000 D.6.2.1 c LIJC,v = 1.000 D.6.2.7 h,V 1.200 D.6.2.8 { * = �sels• CD* (AVc/AVcO)* Wed,V*V/a,V* Wc,V*LVh,V*Vb D.6.2.1 Vcb = 0.75" 0.70* (93.75/162.00)" 0.900* 1.000* 1.000* 1.200* 7435 lb=2440 lb Vua = 728 Ib • Design proof: Vua / (cl)* Vcbg) = 728 lb / 2440 lb = 0.30 <_ 1.00 { Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines and must be checked for plausibility. Powers Fasteners,2 Powers Lane,Brewster,NY 10509,USA,http://www.powers.com/ ra Company name: PDn Powers Design Assist.; • - - Project: Date: 1/15/2014 Version: 2.1.5000.17212 Project number: Page: 5/5 Pryout strength: het =4.000 inch kc = 17.0 Nb = kc * fc'0.5 * hef1.5 = 17.0 * 54.77 * 8.000 = 7449 lb D.5.2.2 ANc = 144.00 inch2 ANcO = 144.00 inch2 ca,min = 6.00 inch 4/ed,N = 1.000 D.5.2.5 = 1.000 D.5.2.7 f 4/cp,N tP c,N = 1.000 D.5.2.6 kcp = 2.0 D.6.3.1 * V cp Osels• (ANc/A Nco) Wed,N* cp,N*4 c,N* N b*kcp =0.75 0.70 (144.0D/144.00)' 1.000'1.000• 1.000'7449 lb•2.0=7821 lb Vua = 728 lb Design proof: Vua/ (cD* Vcp) = 728 lb / 7821 lb = 0,09 5 1.00 Fastening ok! WARNINGS/REMARKS: Calculations including seismic design requirements in accordance with ACI 318 D.3.3 are required for anchors in structures assigned to seismic design categories C, D, E and F. Under these seismic conditions, the direction of shear may not be predictable. As default and in accordance with ACI 318 D.3.3 the full shear force is assumed also in reverse direction for a safe design.This may influence the direction of the controlling concrete breakout strength. input data and results must be checked for agreement with the existing circumstances,the standards and guidelines and must be checked for plausibility. Powers Fasteners,2 Powers Lane,Brewster,NY 10509,USA,http://www.powers.com/ • • . ling" Project s-tAI1 0 14325 N.E.Airport Way#113 0 5113 Pacific Hwy East#3 Title/Scale Portland,OR 97230 Fife,WA 98424 Calculated By Vag Date ISO ILS T:503.252.4423 T:253.926.2550 Checked By Date F:503.252.4427 F:253,926.2463 { I www.lsatsb.com Sheet Na of ■■■■■■ ■■■■■■■■■■■■■■■■■ ■■■■ ■■■■■■■■■■■■■■■■■■■■1■■■■■■■■■■■■■ a...........mumpum.:=:iimil■ismiiii•=mummiii:i=..uiI.auuu mmum■■■■■■■■■■■■■r;:3 mr Ti . i-�-.■ate'Ails ■ ■■m■i■1i■ ■■■ ■■■■.p ■■ ■■■■■■■■■■■■■■■■■igwoma mom is m■■■■■■■ ■■ ■■■■■■■■■■ ■■■ ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■1■■■■■■■■■■m■■■■■11■■1■■■■■■■ le■1 1■■■■■■■■■■■■■■■■■■ ■ ■■■■■■■■■■■■■.■ ■ ■■■■ ■ ■ ■■■■ ■■.Ciuiii■m■■■■.■■ . ■. ■ii■ m■■■m.■1 ■1■p .mp ■ ■ .� ■m ■■■■ ■■■■■■■�■ il■■■■�mi,ommu m• ■■■lei■■■■11■■i■■iu ..:,...::= 14:', ., ii.:'=m■■■ ■■■■■■■►�.1�lCi_m /. v.�./] 4+►7 ■ ■■■■ ■■■■■■■■ ■/!■■ ■■■ ■■■■■■■■■millom .1.ii ■uuu i ■■■i■■■■■■■■iiii■ceriu =s �' i i■■■ ■■■■■■■■■ ■■■■ ■■■ ■■■■■ _ _. ■1■■ ■■■■■■m■ ■■ ■■■■■■■ mile ■■■ , ■■■■■■■1■■■■u■ii■m■■ ■n• ■■■■■■■■i■■i■i■■■■■■■■1■■.■■■ •u•u1■i klrLZi 2suuu■M�i • i ,t 2�1• NOiiiiiii===mi■ii�iil■i■■iiiiiii�i ■■■■■■■■■■■■■■■■■■■ • ■■■■ ■■ _- ■■■isasiilei■■■■lei■■■■11■■■■■■■■ ■■■■■■■■�■■■■■■■■■■m■■■■■■■ ■■ ■■m■ ■ ■■■■■■■■ ■■■■■ AOMPNWIN ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ ■■■■■■■■ MPIT ■ 9.0 '■r■gA4AO_ _ tcz;a i■■■1■■■■■■■■■■ ■■■■■■1■■■ iiiii■us MMOMM■■i■■IEMMIEUu ■■■■■ummu S immumil■i•UURummiu mo ■■■■■ir■■■■■■o. ■m �■■■■ 1n■■ VPMNI ■■■■■■O■■■■■■■■■■ i■■■■■■■■..1'c■M1■M//■1, rr 14,1 Y "43allan4.1.1ARIMWAMONINIMMI C=i:iiEMEMM :'Coii�:C:i:i: ■M ...■■■■■:iiiiiiisi■i rids::::: ■■.■■■. .■.■i� 1■■�■11■■■.■■■u■■�■■■■■lei. ■■■m1■■1■� N 111 •ii=i • iiiiii siiii■■:"pi■ :.nfF USNCoNNU�7•f1 ar a'laaiiiiiii �■■ ■u ■■ ■ ■■■■■■ ■■■■■■■■MU2..■■..■■..■.■I.l�.■..■■.I.■■■.■■■■■lei■■■iC■■� lei . ■■■■.■■■■■■■■■.■.■■■■■■■■■..■....■■■..■■■■ mmi .■■■■■■■■ i..i IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII I ■ i■ii■■iii.■i5 YAIUU imz &O3 ■' as...■....... iii ■■■ ■■■■ iii■lei■■■■■■1I��71i:�■■■ I ' ■■■■■111■ ■■�CCC ii■■■■■■■ muui:i a.....:.IUI■■■.■.i...iiiiiiii■.iiiiii... ■ ■ ■■ ■. .... .� ...... ... iii....=..m_■._.. ■. ■=■■iiiimemmiii�iiiiiiiiimu meiiiiiiil�iummim=�i=:i■iiiiii 1111= 1111.■1■■ �. .■■■■.■.. ■■■■■■. .■mad . .■lei.■■■. ■ ■■ ,>N■■■�le �►a ■PPIMM �■GNW■N■MI■ ■■■ 1■yIR■■■ ■■■■■ ■■■■■ ■■11■II.LTA■ f► 7l�ii►, '/YJ,:�S. ,f-. li� I�J■=fi•.C,►r■ I ■■■■m■ ■ ■.■ 1 ■ 11■i�iY■■ ,� ■ IMMEOMM1�■ m:imo■p■■1ii ■3�S■i■■■■i■ mom =i m mummum moiiiiiiummommumm::ii.immummiii . .■■■■■ ............ l ■■■.■■■■■■■■■■ ■ ■■ ■ ■■ ■■■■■■ ■■ ■■■ ■11■1■■■ ■■■ i ■ ■ ■ ■■ ■ iii■ii:iiiil■i ■i ■■ ■iiii iiii iiiii■■■ iiiii ■Ci iaiiu= ii iiiiiii iiiiii sIii ■ iaiii ■■■■ ■■■■ ... ■ .. i■ ■■■■ ■ ■■■.■.. ■■■■1 �lei ■■■ i ■■i moss■■■■ ■■m1■ ■ le ■■■.le ■■■■.lei■■■■■■■■■■■ ■■■. ■ ■ ■■■ .■.■■■■■■ ■■■■ ■ ii■■■1■■■■■ ■■ 1■ . . ■■■■■.■.■■ ■ ■ ■■ ■■■••• 111111111111uulI111111I 111111111111111111111111mHHI 111111III ■ ■■■ ■■■■■■■ ■■. ■1■■■■■ ■ 1 ■ m■■■■ ■■■■■■■ ■■■ ■■■ ■1■■■■■■■ iii 11111 ii iiiiiiiiiiiiiiii�iiiiiiiiii�iiiiiiiiiiliiiiiii iiiiii Qo Company name: i P D1\ P Iwers Design Assist . I Project: Date: 1/15/2014 j i Version: 2.1.5000.17212 Project number: Page: 1/4 i I 1 GEOMETRY: 1 i i i i f ■ n M ; i r i Y i 4 I ►. • I 4 I r a° 9•I • i j 1 I � .-4' ` }S : u� :,- I' to S ' `,t,. °°SS qt Sy ?& T' �*rF: 'Wyk . `N`' Y i , i I 1 j_OAD ACTIONS: [lb], [ft-Ib] ZZ Design loads/actions Nu 0 Nu a Y �I V ux M ,/ vu Vuy 255 / d Mug uy / E�_._..._0._._._� '` ,/ uz ., / �ux �,r" M ,r i Eccentric profile f' ex = 0.00 Inch; ey = 0.00 Inch j' I / Load reversal X-direction: 100% Load reversal Y-direction: 100% Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines and must be checked for plausibility. Powers Fasteners,2 Powers Lane,Brewster,NY 10509,USA,http:Uwww.powers.cond I r i r 4_i Company name: PDA Powers Design Assist - Project: Date: 1/15/2014 Version: 2.1.5000.17212 Project number: Page: 2/4 CALCULATIONS: ' t Selected anchor: PE1000+- 1"rod ASTM F 593, Grade 316 (stainless) , Effective embedment depth: hef = 4.000 inch Approval: ESR-2583 (12/1/2011) Issued: 12/1/2011 Basic principles design: Design method: ACI 318-08 (Appendix D) Concrete: Normal weight concrete, cracked concrete, f"c = 3000 psi Load combination: taken from Section 9.2 Reinforcement: none edge reinforcement or < #4 bar Condition B Stand-off: not existent Temperature range: Long term temperature: 75°F, Short term temperature: 104°F Drilling method: Hammer drilling Drill hole condition: Dry Seismic Loads: Yes (Yield of ductile attachment(fixture)) Resulting anchor forces/ load distribution: Anchor No. Tension load Shear load #1 0 lb 255 lb Maximum 0 lb 255 lb Max. concrete compression strain: 0.00%o Max. concrete compression stress: 0 psi Resulting tension force: 0 lb Resulting compression force: 0 lb Summary: Design proof Demand Capacity Status Tension load - - - Shear load 255 lb 2440 lb 0.10 s 1.0 OK Interaction Anchor plate: Material: fyk = 36000 psi Length x width: 3.50 inch x 3.50 inch Actual plate thickness: 0.394 inch Calculated plate thickness: not calculated Profile: none selected Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines and must be checked for plausibility. Powers Fasteners,2 Powers Lane,Brewster,NY 12509,USA,http://www.powers.com/ Company name: , PDA Powers Design Assist Project: Date: 1/15/2014 Version: 2.1.5000.17212 Project number: Page: 3/4 DESIGN PROOF SHEAR LOADING: Reference Steel strength (without lever arm): Veq = 30888 lb D.6.1 * V = * av,seis * Veq = 0.65 * 0.80 * 30888 lb = 16062 lb D.6.1.2 eq Vua = 255 lb Design proof: Vua/ (a)* Veq) = 255 lb/ 16062 lb = 0.02 5 1.00 Concrete breakout strength, direction y-: le = 4.00 inch D.6.2 do = 1.00 inch Cal = 6.00 inch Vb = 7 * (le/d0)0.2 * d00,5 * fc'0.5* Ca11.5 = 7 * 1.320 * 1.000 * 54.772 * 14.70 = 7435 lb Avco = 162.00 inch2 Avc = 93.75 inch2 4�ed,V = 0.900 D.6.2.6 4�a,V = 1,000 D.6.2.1 c 41c v = 1.000 D.6.2.7 41h,V 1.200 D.6.2.8 =Oseas* * (Avc/Avc0)*Wed,V•Wa,v*Wc,v* Wh,V*Vb D.6.2.1 * Vcb = 0.75* 0.70* (93.75/162.00)*0.900* 1.000* 1.000* 1.200" 7435 lb= 2440 lb Vua = 255 lb Design proof: Vua/ (0* Vcbg) = 255 lb /2440 lb = 0.10 5 1.00 Input data and results must be checked for agreement with the exIsting circumstances,the standards and guidelines and must be checked for plausibility. Powers Fasteners,2 Powers Lane,Brewster,NY 10509,USA,http:llwww.powers.con*/ 23 PDA Powers Design Assist' Company name: Project: Date: 1/15/2014 t i Version: 2.1.5000.17212 Project number: Page: 4/4 Pryout strength: Fief = 4.000 inch kc = 17.0 Nb = kc * fc 0.5* hef1.5 = 17.0 * 54.77 * 8.000 = 7449 lb D.5.2.2 ANc = 144.00 inch2 • ANcO = 144.00 inch2 = 6.00 inch Oa,min 4/ed,N = 1.000 D.5.2.5 tVcp,N = 1.000 D.5.2.7 I 4fc,N = 1.000 D.5.2.6 k = 2.0 D.6.3.1 cp CI) * Vep = sels* * (ANC/ANal)* Wed,N* Wcp,N* Wc,N* Nb* kcp =0.75*0.70*(144,00/144.00)* 1,000* 1.000" 1.000•7449 lb•2.0=7821 lb Vua = 255 lb Design proof: Vua/ (0* Vcp) = 255 lb / 7821 lb = 0.03 5 1.00 Fastening okl WARNINGS I REMARKS: Calculations including seismic design requirements in accordance with ACI 318 D.3.3 are required for anchors in structures assigned to seismic design categories C, D, E and F. Under these seismic conditions, the direction of shear may not be predictable. As default and in accordance with ACI 318 D.3.3 the full shear force is assumed also in reverse direction for a safe design.This may influence the direction of the controlling concrete breakout strength. Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines and must be checked for plausibility. Powers Fasteners,2 Powers Lane,Brewster,NY 10509,USA,http://www.powers.com/ f iii k -■ ,;T- Project PalZHAIP4 • 0 14325 N.E.Airport Way#113 0 5113 Pacific Hwy East#3 Title/Scale , Portland,OR 97230 Fife,WA 98424 Calculated By �5 Date (0113 i T:503.252.4423 T:253.926.2550 Checked By Date !� F:503.252.4427 F:253.926.2463 Sheet No. th of 1 www.isatsb.com , ■■■.■■■ ■■■ ■■■■■■■■■■■■■■■■■■■■■■■■■ E■■■■■■ ■■■■■■■■■■■■■■■■ ■■■■■■■■■■■■■■■■■■■■•■■■■■■■■u■■■■■■■■■sS■■.■■■.■■■■■..■■■■■a■■ ■■■■ ■■■■.■■■■■■.■■c:nrr�r.r�.�■r. ��r•;�r ■`►�.� M■■■■■■■■■■_■■■■■■■■■■■ ■_■■ ■■■■■■■■■■■■■■■=sue== mmi.�w�r��wammilme aM�i�■■■■ ■■■■■■■�■■ ■ ■■ ■..■■■■■■■■■■■■■■■■■■ ■■■ ■■ ■.■EM■■■■■■ ■■■■■■■■■■■■MM■■ .u. �u:■■...■:■ll*■■u.� ■■■■■■■■._■■...0:■� :�.■!u u..�u■■ i�� ■■.:■■■■■■■■■■■■■■■■■■ :■■■■■■■■■■■■■.■■■■■=■■.ri,: 3ui;i�a r�.A■■■ .. .m.. ra' .... �i� .:,'�'mi'" '....a .......::momp:'gyp' ! ' ■■�:■■■ iirW r ■trll MO .. ■r ' ■■■■■.■■■■■■...sen1 WINO � C ■■■■■■■■■■■.■:■■■■■■■■■■:■■•■ :■■■■_■■■■■■_■■ i lloggem■■ ■■■■■ ■■�. 'n►a.•�■■t!;r�i i �-ara�:� .i r r..1 ■■■ ■■ ■ ■■.■.■ ■■ ■ ■■■ ■■■NI■■■■■■■■au031 I1l1 ■:■ ■ ■ :■■ ■:■■■■■■r■■ uI:HhlIIH 111111IIIIIHHh1 O1I111111M�� I__IIIIIIIlI1I1UI .■■.■■.■u■uu■■■■■■..■ m■■■u _ ..■_■■■■.. ■■■■.■■■■■■ a _■_■�■■■=.inn.■■��■; , ■� ::�■�■ I.... ■ __■■■"'. _■■■■■■■..■■.■:■ ■ .■ ■r.c!i� ■ J&1, r 1 s--i ■ ■■_■■■■■■■■■■ ■� ■ .. . .. :. ._.*. _ ■ . . ■■ ■ ■■■■■:_ ■• •III ma ■: ,i ,■,,',irai . ,.- , C., - 9 s. (3-' ) IA' gill* . kid:■■:■ ■:m■ Ill....... ■■■ ■■■m■ ■ : 1 ---4 U . ■u ■ ■1� ■L ■■■■■■■■■■■'u■■■ -sat -i- Va3.6 ! ■ ■ ■ 4 :■■■�■:■:■■■■: ■■■■:■■■■■■■■■■■iran■■ - A ■"r■1"_ ■■■■■■■■■■■MM■■ .....ua...i...uau::.::::a:� `'':: ■.aI aa::::::::C:: ■::■■:■.■■■■■■■■w �1■■■t•■■■�`/■ _■ LAE , r . �wla!!P-!■■■■■ _: '::: " :':::u.•:: ':: ' : :::1 um m��i������ " CC :■ i . ...■■■■■.. r. • ■■..■ ■■ i ■■:■■.■■■.:.''�■:' ■■_■■■■■■■. r■■■.. ' ►a.■■■ ii■■■■:■■_■:■■■■■■■■■■■■..a .............. A .. via mm................::::_: . . . ■■■■.► � ��■■ ..... ■ ■■■■■.■ ■..■■ ■■■■■■■■■■■.■■■: .... ........■. ....r.■.1 =.0 ...■■.■■■...... i..■.■...■....■.. .■■aa■. . . ■■..� u■ • C:' ':' _::':::u::::a:: :: : : . ■ i .. ■ :■■■■ ■ .�■ . . a:i:.0 ■■.r .._: . ■� : ■:. . 6 ■::■■■ ..::■a..■: . ' ■1 Iii.. ■ "■■■.�■ .I .■ ■■ .� :■iliaa�u■:■ ..■ • ■■■■■■■.■■■. ■■■.■■. . . ......�..... :..■.�. ..■■....... . 111111111111111111111_ :'tf■I'■=■I■■■■■■w■■■■■■■■■■■■■■■■■■■■■■■■■: ■■■■ _■■■■ ........... ■■■■■■■■■■■EM■■■■■■■■■■■■■■_■■a■■■■■■■■■■ :::::■'■i':'aa..a.aa.a :::'::::::.�i■:'■:::uu.aa.'i:■::■aaa.. :i . a. aum:ii: . 'a.a..a:■""■■■'i::'isi:■'is iii:'i'■�'=Eu:C:::::::::■"ii.a Z� I • "Company name: [ PD/ Powers Design Assist Project: Date: 1/15/2014 Version: 2.1.5000.17212 Project number: Page: 1/6 I GEOMETRY: 400000001°. , 400.101111111.b : 4iqititio r'r lf,. t .tt • tar :t`4 . , LOAD ACTIONS: [Ib], [ft-lb]. Z Design loads I actions tNu 7100 Nu Y Vux 0 Ot Maot / V„ Vuy 3640 • KO r ,/ Eccentric profile _--.._..,..._._ -- _. .. _ / ex = 0.00 inch; ey = 0.00 inch w.�__�,. .w.. ..__ �..�.._-^^ �^„ � -^^ Load reversal X-directlon: 100% Load reversal Y-direction: 100% Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines and must be checked for plausibility. Powers Fasteners,2 Powers Lane,Brewster,NY 10509,USA,http:Mwww,powers.com/ ' 210 t i Company name: RDA Powers Design Ass - Project: Date: 1/15/2014 r I Version: 2.1.5000.17212 Project number: Page: 2/6 CALCULATIONS: . Selected anchor: PE1000+ - 1" rod ASTM F 593, Grade 316 • (stainless) _ Effective embedment depth: hef = 6.000 inch Approval: ESR-2583 (12/1/2011) Issued: 12/1/2011 Basic principles design: Design method: ACI 318-08 (Appendix D) Concrete: Normal weight concrete, cracked concrete, f'c = 3000 psi Load combination: taken from Section 9.2 Reinforcement: none edge reinforcement or < #4 bar Condition B Stand-off: not existent Temperature range: Long term temperature:75°F, Short term temperature: 104°F Drilling method: Hammer drilling Drill hole condition: Dry Seismic Loads: Yes (Yield of ductile attachment(fixture)) Resulting anchor forces/load distribution: 01 Anchor No. Tension load Shear load #1 1775Ib 910 lb #2 1775 lb 910 lb Y #3 1775 lb 910 lb li" ► : #4 1775 lb 910 lb Maximum 1775 lb 910 lb X04 0 3 Max. concrete compression strain: 0.00%o Max. concrete compression stress: 0 psi Resulting tension force: 7100 lb Resulting compression force: 0 lb • Summary: Design proof Demand Capacity Status Tension load 7100 lb 13650 lb 0.52 5 1.0 • Shear load 3640 lb 5578 lb 0.65 s 1.0 OK Interaction - - 0.98 5 1.0 Anchor plate: Material: fyk = 36000 psi • Length x width: 12.50 inch x 12.50 inch Actual plate thickness: 0.394 inch Calculated plate thickness: not calculated Profile: none selected Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines and must be checked for plausibility. Powers Fasteners,2 Powers Lane,Brewster,NY 10509,USA,http:l/www.powers,coml Company name: P❑A, Powers Design Assisi _.'Project: Date: 1/15/2014 Version: 2.1.5000.17212 Project number: Page: 3/6 DESIGN PROOF TENSION LOADING: Reference Steel strength: Nsa = 51485 lb D.5.1 t i * Nsa = * Nsa= 0.75 * 51485 lb = 38614 lb D.5.1.2 Nua = 1775 lb Design proof: Nua/ OD* Nsa) = 1775 lb / 38614 lb = 0.05 5 1.00 Concrete strength: = 5.333 inch D.5.2.3 h of kc = 17.0 Nb = kc * fc'0,5* hefts = 17.0 * 54.77 * 12.317 = 11469 lb D.5.2.2 ANco = 256.00 inch2 ANc = 625.00 inch2 4Pec,N,x = 1.000 D.5.2.4 s 4�ec,N,y = 1.000 D.5.2.4 Wed,N = 1.000 D.5.2.5 4�c,N = 1.00 D.5.2.6 Cac = 12.21 inch ca,min = 8.00 inch cp,N = 1.000 D.5.2.7 * NCb 9 = cPseis* * (ANc/ANco)* ec,N,x * Wec,N,y * Wed,N*4tc,N*Wcp,N * Nb D.5.2.1 = 0.75*0.65* (625.00/256.00)* 1.000* 1.000* 1.000* 1.00* 1.000* 11469 lb= 13650 lb Nua = 7100 1b Design proof: Nua/ (CO* Ncbg) = 7100 lb / 13650 lb = 0.52 5 1.00 • • Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines and must be checked for plausibility. Powers Fasteners,2 Powers Lane,Brewster,NY 10609,USA,http://www.powers.com/ I ;'Company name: P�/� Powers Design Assist Project: Date: 1115/2014 Version: 2.1.5000.17212 Project number: Page: 4/6 Pullout 1 Bond strength: = 5.333 inch hef Nag = TK,cr* TT * d * hef = 825 * Ti * 1.00 * 5.333 = 13821 lb D.5.3.9 ANa = 625.00 inch2 ANao = 256.00 inch2 4Ped,Na = 1.000 D.5.3.12 = 1.000 D.5.3.10 4fg,Na Wec,Na,x = 1.000 D.5.3.11 qiec,Na,y = 1,000 0.5.3.11 Gamin = 8.00 inch ti)p,Na = 1.000 D.5.3.14 * Nag °CDseis * (ANa/ANaO)*4ted,Na*Wg,Na* Wec,Na,x * 4/ec,Na,y * Wp,Na* aN,seis * Na0 =0.75*0.65* (625.00/256.00)• 1.000* 1.000* 1.000* 1.000• 1.000• 1.00* 13821 lb= 16449 lb Nua = 7100 1b Design proof: Nue/ (4)* Nag) = 7100 lb / 16449 lb = 0.43 <_ 1.00 DESIGN PROOF SHEAR LOADING: Reference Steel strength (without lever arm): Veq = 30888 lb D.6.1 * Veq = * 0V,seis * Veq = 0.65 * 0.80 * 30888 lb = 16062 lb D.6.1.2 Vua = 910 1b Design proof: Vua/ * Veq) = 910 lb / 16062 lb = 0.06 < 1.00 { Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines and must be checked for plausibility. Powers Fasteners,2 Powers Lane,Brewster,NY 10509,USA,http:Nwww.powers.com! Company name: P Dn rowers Design Assist Project: Date: 1/15/2014 Version: 2.1.5000.17212 Project number: Page: 5/6 Concrete breakout strength, direction y-: le = 6.00 inch D.6.2 do = 1.00 inch = 5.50 inch D.6.2.4 cal Vb = 7 * (le /d0)0.2* d00.5* fc'0.5* cal 1.5 = 7 * 1.431 * 1.000 * 54.772 * 12.90 = 7077 lb Avco = 136.13 inch2 qvc = 206.25 inch2 4�ed,V = 0.991 D.6.2.6 �av = 1.000 D.6.2.1c 4�ec,v = 1.000 D.6.2.5 4lc V = 1.000 D.6.2.7 4P h V 1.000 D.6.2.8 * Vcbg ° Osels* * (AVcf AVcO)*Wed,V*4ta,V*4tec,V *4rc,V*Wh,V V D.6.2.1 = 0.75" 0.70* (206.25/136.13)" 0.991 • 1.000* 1.000* 1.000• 1.000• 7077 lb=5578 lb Vua = 3640 lb Design proof: Vua/ (CI)* Vcbg) = 3640 lb / 5578 lb = 0.65 5 1.00 • si Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines and must be checked for plausibility. Powers Fasteners,2 Powers Lane,Brewster,NY 10509,USA,httpolwww.powers.cornl • Company name: Pan rowers DesigI Assist Project: Date: 1/15/2014 Version: 2.1.5000.17212 Project number: Page: 6/6 Pryout strength: hef = 5.333 inch { kc = 17.0 Nb kc * fc'0.5* hef 1.5 = 17.0 * 54.77 * 12.317 = 11469lb D.5.2,2 ANc = 625.00 inch2 ANcO = 256.00 inch2 4/ec,N,x = 1.000 D.5.2.4 N,y = 1.000 D.5.2.4 W ec, = 8.00 inch 0a,min 4/ed,N = 1.000 D.5.2.5 4/cp N = 1.000 D.5.2.7 t-Pc,N = 1.000 D.5.2.6 = 2.0 D.6.3.1 kcp * V seis * (ANc/ANcO)*Wec,N,x * Wec,N,y * UIed,N'Wcp,N * 1-1/0.1 * Nb* kcp cpg =0.75*0.70"(625.00/256.00)* 1.000" 1.000'1.000' 1.000' 1.000*11469 lb*2.0=29399 lb Vua = 3640 lb Design proof: Vua / (Cl)* Vcp) = 3640 lb / 29399 lb = 0.12 s 1.00 COMBINATION TENSION /SHEAR LOAD: Interaction: Design proof: (Nu/ (I)* Nn) + Vu ! (0* Vn)) / 1.2 = (0.52 + 0.65) 1 1.2 = 0.98 <_ 1.0 Fastening ok! WARNINGS/REMARKS: Calculations including seismic design requirements in accordance with ACI 318 D.3.3 are required for anchors in structures assigned to seismic design categories C, D, E and F. Under these seismic conditions, the direction of shear may not be predictable.As default and in accordance with ACI 318 D.3.3 the full shear force is assumed also in reverse direction for a safe design. This may influence the direction of the controlling concrete breakout strength. Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines and must be checked for plausibility. Powers Fasteners,2 Powers Lane,Brewster,NY 10509,USA,http:/lwww.powers.coml Project Vile AA . illitlig1011 Title/Scale 14325 N.E.Airport Way#113 Li 5113 Pacific Hwy East#3 l Portland,OR 97230 Fife,WA 98424 Calculated By5 Date (0(13 T:503.252.4423 T:253.926.2550 Checked By Date F:503.252.4427 F:253.926.2463 www.isatsb.com Sheet No. �� of ■ u■ uu•■■■■■■■■■■■ ■■■■■■■■■■■■■■_■■■■■■■■■■■■■_■ ar a■ ■aauuu�uuuaaaaaau�aaaau■■MEMEMIauaaauauuu�• ■_■■■■■■■■■■■■11l01117,1-a■■■■■■■■■■■■■_■■■■■.11■■■■■■_■ ■_■■■■■■■■■■C !■■■■■■■■■■■_■■■■■■■■■■■■■_■ : 1= =::: =: 1 : uaa : __ aua:1 :u a: : C : : : am :■■■. ■ !■..■.. �: . ■■■■N■WY MN 3.+141 ,/, a�i}■■■■■■■■■■■■■_■■■■■■■■■■■■■i■■■■ a■■■■■■Iia■ i■■■■a■■■■■■■■■■■■■■■■■■_■■■■■■■_■■■■■_■■ ■■ommumm1■ rimmor irol■RD, -1= /28 tit ■M■iiiiiii■iiiii■i• ■_■■■■Y� . ■■■NNE ■■■1:■ _■■■■■■■■■■■■■_■ ■■■■ ■■ ■ ■■■■■ ■■■■■■■ ■■■■■■■■_■■■■■■■■■■■■■_■ - ■_■■■■,� . AWA , A '001 ., �Ur�,arr k ��.I■ ■_■■■ li�■ I .■■rl■■Ya■Y.. ■aa■■■■■■■■■�i■■■■■ ■gm■■■� ■■■■■■UUUUU■ ■■■■■■■■■■■■■■■■■■■■■■■■■■■■ • i■■iaai� iiiiii■■■n■iaii■il■ii■ aaaiiaaauammuc m• ■■■■■■■■ ■■■■■momma■ -aaaq �!■■■■■■■■■■■■■■■■■■_■ ■_■■■■■T - . ■C■M 11 r■IC� E:C^1:■ri■■■■■■■■■■■■■_■ aaa11 a� as ■ a �1a■■■■r ■ .■■■■■■ua� aaa 1.'■1 1 ■n■ ■■� ■I■■■. C I =�_ --■■■■■■■■ ■■■O mill! l��■ ■; ::.iI•I■■■■■■■■■■■■■ . C..aaaaa Eiji =•iii■iainammuiiiiiiiiiiiiaaama m _•• ■ ■■■■■■■■■■■ _■■ ■■ ■■■■■■■■■■■■■■■■■■■■■■■■■■■■_■ ■�■■■■■ ■■■■■■■■■U■■I■■■■■■■■a■■■■■■■■■■■■■■■■■■■_■ ■_■■■■■aa ■■ ■■■■ ■■sr:.n1s■-sc c�►: �•�c 1■ ■�I■■■■■_■ ■� ■■■■■■�■■� M�ilLNIAWINEMIAMMAAMMINI . A1, 11:211NE ■ ■_ ■■■■ ■■■■Ug ��� �r momr�omiG ■■■ ■■ ■ ■_ a■■■■a■■■■//'11a■■ ■■u■u=Lra�Z■i1T,1■■■■■a■■ ■■■■=■■_ii■ . . ■_■■■■■■■■■■■Vii■■■■■■ ■ LMUN GS2■■■■■■■■■■■■■■■■ ■MM■■■■■■■u■■■■■■■■■■■i■■i■■■■a■■■■■■■■■■■■■■■■■■■ - • ■ ■■■■■■■ ■.m■■■■■■■ ■■ ■r■■■■w■■■■■■i■■■■■■■■■■■_■ M • ■ ■ �I■■■■■■r��n■■a■ `ii�ii iii A � 1ii■i■i•aa■■ - • ■ ■■■■■■r�,L ann . ■ im ■■■■■■■■■■■■■■■■■■r ■■■■■■■■■■_■■u■a■■■■ ■ ■■■■■■ Ia■■■■■■■■■■■■■■■■_■■a■■ ■■■■■■■■■■■■■■■■■■_ • ■_ ■■ ■■■■■■■■■■■■■■■ ■■■ ■■■■ ■■_■■■■ ■■ ■ ■ ■■■C■■C■1■■■■■■■■■■■■_■■■EM■■■ ■■■■I■I■■■■■■CI■■I■: ■ ■_■■■■■■■■ ■■■■■■ 7 ■■■_■■■.■■■ ■■ _■■■ ■■■■■!1_■ ■_■■■■■■■r PPM rin■■PrI■■Mt�I■�■M■M!�WPM■■CP■■■irr�_■ • •■�•••••••i 1• ['I■il i#i C,� n' ,5:7■ i �� Wan Tc'l_� AII1 • ■_■■■■■■■i Ssm■■ ■'i1■r■ ■aY■im■i■��IOYM■■�■i1C!�il_■ ■_■■■■ ■■ ■■■■■■ ■ m ■�■■ ■■ ■■■■■■ ■ ■■■ ■ ■_■■■■u■■■■■■■■■ on..i�' '! %■■■�■■�■_■■■m•IC�m■o ■II■ • ■■■■■■■ ■■■■■■■■■■■■■■■n `i�I■■■■■■■■_a■■�■_= iiiiii VIViAM _oi ■_■ ■■■■■■■■■■■■ MINN ■■■■■■■■■ _ ■ IN ■_■■■■■■■■■■■■■■w■■■■■_■■■■■■■■■■■IIf■■■■■■■■■■■■■■■ " ' _ ■11111111111111--IllllmIIIIII11HIIIIIIIIIII11_1 . ■■■■■■■■■■■■■■■■w■■■■■i■■■■■■■■■■■ ■_ ■■ ■■■■■■ ■ ■r■■ i■I=■=■■■■■■■■■■■!•■■■■■■w■■■■■■■■■a■w■■■■■■■■■I • ■■■ ■ ■■■■■■■■■■■■■■■■■■■IN ■■■■■■■■■■■■■■■■■■■■■■■ • • ■_■■■■■■■■■■■■■■�■■■■■_■IIIIIIIIIIIIIPOIIHIHII1I■■■■■ ■■ t ; 01S4111 ISAT SEISMIC BRACING Job: 5113 Pacific Highway E#3,Fife, WA 98424 Date: 10/25/2013 INTERNATIONAL SEISMIC APPLICATION TECHNOLOGY PH: (253)926-2250 FX: (253)926-2463 Designed By: 11 ASCE 7-05(IBC 2009)WIND: BUILDING DATA: Basic wind speed (3 sec gust) = 95 MPH Exposure C Building Roof Height H = 0-15 ft • Component Shape = Square Component Height h = 6.5 ft Component Width W= 6.5 ft Component Depth D= 4.5 ft 6.5.15, Design Wind Load on Other Components F = qZ G CfAf (Eq 6-28) qZ= .00256 KZ KZ,Kd V2 I (Eq 6-15) Ht. z at the centroid of area Af= 3.25 ft Exposure coefficient K1= 0.85 6.5.6.6, T-6-3 for MWFR Topography factor KZt= 1.00 6.5.7.2 Directionality factor Kd = 0.95 Table 6-4 Importance factor IW= 1.00 Table 6-1 qZ= 18.66 psf Gust Effect factor G = 0.85 6.5.8 h/D = 1.44 Force coeff Cf= 1.307 Figure 6-21 through 6-23 Design wind pressure, F/Af = 20.73 psf 20 '13 • !Company name: PDA Powers Design Assist 'Project: Date: 1/15/2014 Version: 2.1.5000.17212 Project number: Page: 1/6 GEOMETRY: i . 56 0 I t 1 P 1 i L i I I i 6a • • { LOAD ACTIONS: [Ib].[ft-1131 z Design loads!actions N„ 560 u V ux 0 • Mat V uy 400 1 I i VuY Mox 0 _ X / Vim Ant , Eccentric profile 1 ex = 0.00 inch; ey = 0.00 inch • Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines and must be checked for plausibility. • Powers Fasteners,2 Powers Lane,Brewster,NY 10509,USA,httpllwww.powers.com/ • I FDA Powers Design Asci Company name: 1 t- Project: Date: 1/15/2014 Version:2.1.5000.17212 Project number: Page: 2/6 CALCULATIONS: • Selected anchor: PE1000+-5/8" rod ASTM F 593, Grade 316 (stainless) Effective embedment depth: Fief = 3.750 inch E - 1. ""ot Approval: ESR-2583(12/1/2011) Issued: 12/1/2011 Basic principles design: Design method: ACI 318-08 (Appendix D) Concrete: Normal weight concrete, cracked concrete, f"c = 3000 psi • Load combination: taken from Section 9.2 Reinforcement: none edge reinforcement or < #4 bar Condition B Stand-off: not existent Temperature range: Long term temperature: 75°F, Short term temperature: 104°F Drilling method: Hammer drilling Drill hole condition: Dry Seismic Loads: No Resulting anchor forces I load distribution: Anchor No. Tension load Shear load #1 560 lb 400 lb Y Maximum 560 lb 400 lb X Max. concrete compression strain: 0.00 Too Max. concrete compression stress: 0 psi Resulting tension force: 560 lb Resulting compression force: 0 lb Summary: Design proof Demand Capacity Status Tension load 560 lb 4395 lb 0.13 s 1.0 Shear load 400 lb 5465 lb 0.07 5 1.0 OK Interaction - - 0.17 5 1.0 Anchor plate: Material: fyk = 36000 psi Length x width: 3.50 inch x 3.50 inch Actual plate thickness: 0.394 inch Calculated plate thickness: not calculated Profile: none selected Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines and must be checked for plausibility. Powers Fasteners,2 Powers Lane,Brewster,NY 10509,USA,http:l/www.powers.coml Company name: PDA i'nwers Design Assn Project: Date: 1/15/2014 Version: 2.1.5000.17212 Project number: Page: 3/6 DESIGN PROOF TENSION LOADING: Reference Steel strength: Nsa = 22600 lb D.5.1 * N sa = * Nsa = 0•65 * 22600 lb = 14690 lb D.5.1.2 Nua = 560 lb Design proof: Nua / (0* Nsa) = 560 lb / 14690 lb = 0.04 5 1.00 Concrete strength: her = 3.750 inch kc = 17.0 Nb = kc * fc'0-5* hef1.5 = 17.0 * 54.77 * 7.262 = 6762 lb D.5.2.2 ANcO = 126.56 inch2 ANc = 126.56 inch2 Wec N x = 1.000 D.5,2.4 ec N y = 1.000 D.5.2.4 y 4fed,N = 1.000 D.5.2.5 j 1Pc N = 1.00 D.5.2.6 cac = 7.76 inch ca,min = 6.00 inch 4-Jcp,N = 1.000 D.5,2.7 • * Ncb = 4)* (ANc/ANcp) Wec,N,x "Wec,N,y * Wed,N* Wc,N*Wcp,N*Nb D.5.2.1 = 0.65* (126.56/126.56)* 1.000" 1.000* 1.000" 1.00* 1.000*6762 lb=4395 lb Nua = 560 lb Design proof: Nua / ND* Ncbg) = 560 lb /4395 lb = 0.13 s 1.00 • Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines and must be checked for plausibility. Powers Fasteners,2 Powers Lane,Brewster,NY 10509,USA,httpJ/www.powers.cons/ Vvo -!Company name: PDA Powers Design Assist' __.i Project: Date: 1/15/2014 Version: 2.1.5000.17212 Project number: Page: 4/6 Pullout 1 Bond strength: hef = 3.750 inch Nap = TK,cr* TT * d * hef = 940 * n * 0.63 * 3.750 = 6924 lb D.5.3.9 ANa = 126.56 inch2 ANaO = 126.56 inch2 • 41ed,Na = 1.000 D.5.3.12 tVg Na = 1.000 D.5.3.10 4lec,Na,x = 1.000 D.5.3.11 4tec,Na,y = 1.000 D.5.3.11 Ca,min = 6.00 inch 41p,Na = 1.000 D.5.3.14 * Na = " (ANa/ANa0)• Wed,Na• Wg,Na• Wec,Na,x *Wec,Na,y *Wp,Na* Na0 =0.65*(126.56/126.56)* 1.000* 1.000* 1.000* 1.000* 1.000*6924 lb=4501 lb N ua = 560 lb Design proof: Nua/ (4)• Nag) = 560 lb /4501 lb = 0.12 5 1.00 DESIGN PROOF SHEAR LOADING: Reference Steel strength (without lever arm): V = 13560 lb D.6.1 sa cl) * Vsa = (I) * Vsa= 0.60 * 13560 lb = 8136 lb D.6.1.2 Vua = 400 lb Design proof: Vua/ 0)* Vsa) = 400 lb / 8136 lb = 0.05 5 1.00 Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines and must be checked for plausibility. Powers Fasteners,2 Powers Lane,Brewster,NY 10509,USA,http:lfwww.powers.com/ • Company name: PDA Powers Design Assist ` Project: Date: 1/15/2014 Version: 2.1.5000.17212 Project number: Page: 5/6 I t Concrete breakout strength, direction x+: le = 3.75 inch D.6.2 do = 0.63 Inch cal = 6.00 Inch • Vb = 7 * (le I d0)0.2 * d00.5 * fc'0.5* cal 1.5 = 7 * 1.431 * 0.791 * 54.772 * 14.70 = 6375 lb • Avco = 162.00 inch2 • Avc = 90.00 inch2 4�ed,V = 0.900 D.6.2.6 Wa,V = 2.000 D.6.2.1c 4�c,V = 1.000 D.6.2.7 i tPh V 1.225 D.6.2.8 CO * Vcb = CO * (Avc /AVco) * 4Jed,V* 4la,V* 4lc,V * 1Ph,V* Vb D.6.2.1 = 0.70• (90.00/162.00)' 0.900•2.000' 1.000' 1.225• 6375 lb= 5465 lb Vua = 400 lb Design proof: Vua/ (CD* Vcbg) = 400 lb / 5465 lb = 0.07 <_ 1.00 Pryout strength: het. = 3.750 inch = 17.0 kc ■b = kc * fc'0.5* hef1,5 = 17.0 * 54.77 * 7.262 = 6762 lb D.5.2.2 ANc = 126.56 inch2 ANcO = 126.56 inch2 ca,min = 6.00 inch 4led,N = 1.000 D.5.2.5 kcp N = 1.000 D.5.2.7 4lc,N = 1.000 D.5.2.6 kcp = 2.0 D.6.3.1 * U p $* (ANc/A Nc0)*W ed,N*W cp,N *W c,N* Nb* kcp C = 0.70" (126.56/126.56)* 1.000* 1.000• 1.000" 6762 lb* 2.0=9466 lb Vua = 400 lb Design proof: Vua/ (0)* Vcp) = 400 lb / 9466 lb = 0.04 5 1.00 Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines and must be checked for plausibility. Powers Fasteners,2 Powers Lane,Brewster,NY 10509,USA,http:llwww.powers.com/ f Company name: PDn Powers Design Assist Project: Date: 1/15/2014 Version: 2.1.5000.17212 Project number: Page: 6/6 COMBINATION TENSION /SHEAR LOAD: Interaction: Design proof: (Nu/ (4)* Nn) + Vu/ (4)* Vn)) / 1.2 = (0.13 + 0.07)/ 1.2 = 0.17 __< 1.0 } Fastening oki WARNINGS/REMARKS: • Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines and must be checked for plausibility. Powers Fasteners,2 Powers Lane,Brewster,NY 10509,USA,http://www.powers.com/ =Mr INTERNATIONAL SEISMIC APPLICATION TECHNOLOGY Appendix EZ ICC EVALUATION SERVICE Most Widely Accepted and Trusted ICC-ES Evaluation Report ESR-2583* Reissued December 1, 2011 This report is subject to renewal December 1, 2013. www.icc-es.orq I (800)423-6587 I (562) 699-0543 A Subsidiary of the International Code Council® DIVISION: 03 00 00—CONCRETE uncracked normal-weight concrete only with 1/2 , 5/8-, 3/4-, Section: 03 16 00—Concrete Anchors 7/8- and 1-inch-diameter (12.7, 15.9, 19.1, 22.2 and 25.4 DIVISION:05 00 00—METALS mm) threaded steel rods and No. 4 through No. 8 steel reinforcing bars in core drilled holes. Use is limited to Section: 05 05 19—Post-Installed Concrete Anchors normal-weight concrete with a specified compressive REPORT HOLDER: strength, fa, of 2,500 psi to 8,500 psi (17.2 MPa to 58.6 MPa). POWERS FASTENERS,INC. The anchor system is an alternative to cast-in-place 2 POWERS LANE anchors described in Sections 1911 and 1912 of the 2009 BREWSTER, NEW YORK 10509 and 2006 IBC, and Sections 1912 and 1913 of the 2003 (914)235-6300 or(800)524-3244 IBC. The anchor systems may also be used where an www.powers.com engineering(c�powers.com engineered design is submitted in accordance with Section R301.1.3 of the 2009,2006 and 2003 IRC. ADDITIONAL LISTEE: 3.0 DESCRIPTION DEWALT(STANLEY BLACK&DECKER) 3.1 General: 701 EAST JOPPA ROAD TOWSON, MARYLAND 21286 The Powers PE1000+ Epoxy Adhesive Anchor System is (800)433-9258 comprised of a two-component epoxy adhesive provided in www.dewalt.com cartridges, static mixing nozzles, dispensing tools, hole cleaning equipment and adhesive injection accessories. EVALUATION SUBJECT: Product names for the report holder and the additional POWERS PE1000+®EPDXY ADHESIVE ANCHOR listee are presented in Table A of this report. Powers SYSTEM IN CRACKED AND UNCRACKED CONCRETE PE1000+ epoxy adhesive may be used with continuously threaded steel rods or deformed steel reinforcing bars.The 1.0 EVALUATION SCOPE primary components of the Powers PE1000+ Epoxy Compliance with the following codes: Adhesive Anchor System, including the epoxy adhesive cartridge, static mixing nozzle, the nozzle extension tube, • 2009,2006 and 2003 International Building Code®(IBC) dispensing tool and typical steel anchor elements, are • 2009,2006 and 2003 International Residential Code® shown in Figure 3 of this report. Manufacturer's published (IRC) installation instructions(MPH)and parameters,as included with each adhesive unit package, are replicated in Figure 5 Property evaluated: of this report. Structural 3.2 Materials: 2.0 USES 3.2.1 PE1000+ Epoxy Adhesive: PE1000+ epoxy 2.1 General: adhesive is an injectable two-component epoxy. The two components are separated by means of a labeled dual- The Powers PE1000+ epoxy adhesive anchors are used to cylinder cartridge.The two components combine and react resist static, wind or earthquake (IBC Seismic Design when dispensed through a static mixing nozzle, supplied Categories A through F) tension and shear loads in by Powers Fasteners, which is attached to the cartridge. A cracked and uncracked normal-weight concrete with 1/2-, nozzle extension tube is also packaged with the cartridge. /8 /4 /8-, 1-, and 11/4-inch-diameter (12.7, 15.9, 19.1, The PE1000+ epoxy adhesive is available in 13-ounce 22.2, 25.4 and 31.8 mm) threaded steel rods and No. 4 (385 mL), 20-ounce (585 mL), and 47-ounce (1400 mL) through No. 10 steel reinforcing bars in hammer-drilled cartridges. Each cartridge label is marked with the holes. adhesive expiration date. The shelf life, as indicated by the The anchors are used to resist static,wind or earthquake expiration date, applies to an unopened cartridge when (IBC Seismic Design Categories A and B only)tension and stored in accordance with Figure 5. shear loads in uncracked normal-weight concrete only with 3.2.2 Hole Cleaning Equipment: Hole cleaning 3/8-inch-diameter (9.5 mm) threaded steel rods and No. 3 equipment is comprised of steel wire brushes and an air steel reinforcing bars in hammer-drilled holes, and pump supplied by Powers Fasteners, Inc., and a 'Revised May 2013 ICC-ES Evaluation Reports are not to be construed as representing aesthetics or any other attributes not specifically addressed,nor are they to be construed as an endorsement of the subject of the report or a recommendation for its use.There is no warranty by ICC Evaluation Service,LLC,express or implied,as _ ANSI to any finding or other matter in this report,or as to any product covered by the report. "`re' L= Copyright©2013 Page 1 of 18 ESR-2583 I Most Widely Accepted and Trusted Page 2 of 18 compressed air nozzle. The equipment is shown in Figure Design parameters, including strength reduction factors, 5 of this report. 0, corresponding to each limit state and steel anchor 3.2.3 Dispensers: PE1000+ epoxy adhesive must be element, are provided in Table 4 through Table 8 of this dispensed with manual, pneumatic dispensers, or electric report. Design parameters are based on the 2009 IBC powered dispensers supplied by Powers Fasteners, inc. (ACI 318 08) unless noted otherwise in Sections 4.1.1 through 4.1.12. Strength reduction factors, 0, as described 3.2.4 Steel Anchor Elements: in ACI 318 D.4.4 must be used for load combinations 3.2.4.1 Threaded Steel Rods:Threaded steel rods must calculated in accordance with Section 1605.2 of the IBC,or be clean and continuously threaded (all-thread) in ACI 318 Section 9.2. Strength reduction factors, 0, as diameters as described in Table 4 and Figure 5 of this described in ACI 318 D.4.5 must be used for load report. Specifications for grades of threaded rod, including combinations calculated in accordance with ACI 318 the mechanical properties and corresponding nuts and Appendix C. washers, are listed in Table 2 of this report. Carbon steel The following provides amendments to ACI 318 threaded rods must be furnished with a minimum 0.0002- Appendix D as required for the strength design of adhesive inch-thick(0.005 mm)zinc electroplated coating complying anchors in hardened concrete. In conformance with ACI with ASTM B633, SC1; or a minimum 0.0021-inch-thick 318,all equations are expressed in inch-pound units. (0.053 mm)mechanically deposited zinc coating complying with ASTM B695, Class 55; or a hot dip galvanized zinc Modify ACI 318 D.4.1.2 as follows: coating complying with ASTM A153, Class C or D. The D.4.1.2--In Eq. (D-1) and (D-2), 0N,, and OV„ are the stainless steel threaded rods must comply with Table 2 of lowest design strengths determined from all appropriate this report. Steel grades and material types failure modes. ON,is the lowest design strength in tension (carbon, stainless) of the washers and nuts must be of an anchor or group of anchors as determined from matched to the threaded rods. Threaded steel rods must consideration of ON., either ONa or tbNag,and either ONct or be straight and free of indentations or other defects along ON;,by OV„ is the lowest design strength in shear of an their length. The embedded end may be either flat cut or anchor or a group of anchors as determined from cut on the bias to a chisel point. consideration of OV., either OVa or 014,t9, and either OVbp 3.2.4.2 Steel Reinforcing Bars: Steel reinforcing bars or 014pg. For adhesive anchors subjected to tension are deformed reinforcing bars(rebars) Table 5 and Figure resulting from sustained loading, refer to D.4.1.4 in this 5 of this report summarize reinforcing bar size ranges. report for additional requirements. Table 3 summarizes specifications of permitted reinforcing Add ACI 318 0.4.1.4 as follows: bar types and grades. The embedded portions of reinforcing bars must be clean, straight, and free of mill D.4.1.4—For adhesive anchors subjected to tension scale, rust, debris and other coatings (other than zinc)that resulting from sustained loading, a supplementary design may impair the bond with the adhesive. Reinforcing bars check shall be performed using Eq. (D-1) whereby N„a is must not be bent after installation, except as set forth in determined from the sustained load alone, e.g., the dead Section 7.3.2 of ACI 318, with the additional condition that load and that portion of the live load acting that may be the bars must be bent cold, and heating of the reinforcing considered as sustained and ON„is determined as follows: bars to facilitate field bending is not permitted. 0.4.1.4.1—For single anchors, ON„=0.750Na0. 3.2.4.3 Ductility: In accordance with ACI 318 Appendix D, in order for a steel anchor element to be considered 0.4.1.4.2—For anchor groups, Eq. (0-1) shall be ductile, the tested elongation must be at least 14 percent satisfied by taking qN„ = 0.75ONao for that anchor in an and the reduction of area must be at least 30 percent. anchor group that resists the highest tension load. Steel elements with a tested elongation of less than 14 D.4.1.4.3—Where shear loads act concurrently with the percent or a reduction of area less than 30 percent, or sustained tension load, interaction of tension and shear both, are considered brittle. Values for various steel shall be analyzed in accordance with D.4.1.3. materials are provided in Tables 2 and 3 of this report. Where values are nonconforming or unstated, the steel Modify ACI 318 D.4.2.2 in accordance with 2009 iBC element must be considered brittle, unless evidence Section 1908.1.10 as follows: otherwise is shown to the satisfaction of the registered D.4.2.2 – The concrete breakout strength requirements design professional and the code official. for anchors in tension shall be considered satisfied by the 3.3 Concrete: design procedure of D.5.2 provided Equation D-8 is not used for the anchor embedments exceeding 25 inches. Normal-weight concrete must comply with Sections 1903 The concrete breakout strength requirements for anchors and 1905 of the IBC,as applicable. in shear with diameters not exceeding 2 inches shall be 4.0 DESIGN AND INSTALLATION considered satisfied by the design procedure of D.6.2. For anchors in shear with diameter exceeding 2 inches, shear 4.1 Strength Design: anchor reinforcement shall be provided in accordance with 4.1.1 General: The design strength of anchors under the the procedure of 0.6.2.9. 2009 and 2003 IBC, as well as Section 301.1.3 of the 2009 4.1.2 Static Steel Strength in Tension, Nsa: The and 2003 IRC, must be determined in accordance with ACI nominal static steel strength of a single anchor in tension, 318-08 Appendix D and this report.The design strength of N,„, in accordance with ACI 318 D.5.1.2, is given in Tables anchors under the 2006 IBC and 2006 IRC must be 4 and 5 of this report for the corresponding steel anchor determined in accordance with ACI 318-05 Appendix D element. and this report. An example set of calculations in accordance with the 2009 IBC(ACI 318-08)is presented in 4.1.3 Static Concrete Breakout Strength in Tension, Figure 4 of this report. The anchor design must satisfy the Ncb or Nag: The nominal static concrete breakout strength requirements in ACI 318, D.4.1.1 and D.4.1.2, except as of a single anchor or group of anchors in tension, Na or required in ACI 318 D.3.3. Ncbg, must be calculated in accordance with ACI 318 D.5.2 with the following additions: ESR-2583 I Most Widely Accepted and Trusted Page 3 of 18 D.5.2.10 (2009 IBC) or D.5.2.9 (2006 IBC)—The limiting str,N+ (D-16e) concrete strength of adhesive anchors in tension shall be c "' = 2 calculated in accordance with D.5.2.1 to D.5.2.9 under the 2009 IBC or 0.5.2.1 to D.5.2.8 under the 2006 iBC, where D.5.3.9—The basic strength of a single adhesive anchor the value of kc to be used in Eq. (D-7)shall be: in tension in cracked concrete shall not exceed: kc,c, where analysis indicates cracking at service load Na0 =Tka•it•d.her (D-16t) levels in the anchor vicinity(cracked concrete). The values of kc,c,are given in Table 6 of this report. D.5.3.10—The modification factor for the influence of the failure surface of a group of adhesive anchors is: kc,u„Q where analysis indicates no cracking (f1 < fr) at - service load levels in the anchor vicinity 45 S (D-16g) (uncracked concrete). The values of kc„„,, are given in tli9N,=Wg NaO+ •0—WgNa0) Table 6 of this report. sc Na The basic concrete breakout strength of a single anchor where in tension, Nb, must be calculated in accordance with ACI 15 318 D.5.2.2 using the actual values of herand kc,c,or kc,unc, ka (D-16h) as given in the tables of this report. The value of Fc must W9,N,0 •=�- ,r-1 ' l z 1.0 be limited to agmaximum of 8,000 psi (55.2 MPa), in r avner,cr J accordance with ACI 318 D.3.5.The modification factor”?.- shall be taken as 1.0. Anchors shall not be installed in and where lightweight concrete. Additional information for the n =The number of tension-loaded adhesive anchors determination of the nominal concrete breakout strength is in a group. given in Table 6 of this report for the corresponding steel anchor element. k`° rh f' (0-16i) Tkrna.ra• d e! c 4.1.4 Static Pullout Strength in Tension: In lieu of determining the nominal static pullout strength in The value of Pc must be limited to 8,000 psi(55.2 MPa), accordance with ACI 318 D.5.3, nominal static bond maximum,in accordance with AC!318 D.3.5. strength in tension must be calculated in accordance with the following sections added to AC!318: D.5.3.11—The modification factor for eccentrically loaded adhesive anchor groups is: D.5.3.7—The nominal bond strength of a single adhesive anchor, Na, or group of adhesive anchors, Nag, in tension 1 --s 1.0 (D 16 J) shall not exceed: 1+ veG"a = 2e,, For a single anchor S,,,,,+ ANa Eq. (D-16j)is valid for e <s Na = W edNa'W p Na'Nao (D 16a) -2 AN If the loading on an anchor group is such that only For a group of anchors certain anchors are in tension, only those anchors that are A in tension shall be considered when determining the N =—"a N (D 16b) ag 'Wed,Na'WgNa'Wec,Na'Wp,Na a0 eccentricity, a'N, for use in Eq. (0-16j). ANao In the case where eccentric loading exists about two where: orthogonal axis, the modification factor iPec,Na shall be ANa is the projected area of the failure surface for the single computed for each axis individually and the product of anchor or group of anchors that shall be approximated as these factors used as wcc,Na in Eq. (D-16b). the base of the rectilinear geometrical figure that results D.5.3.12—The modification factor for the edge effects for from projecting the failure surface outward a distance, a single adhesive anchor or a group of adhesive anchors Ccr,Na, from the centerline of the anchor, or in the case of a loaded in tension is: group of anchors, from a line through a row of adjacent anchors. ANa shall not exceed nANao where n is the number for ca„„, >Co,Na (D-161) of anchors in tension in the group. in AC1 318 Figures RD.5.2.1a and RD.5.2.1b, the terms 1.5he and 3.0ha,shall Wed,Na =1.0 be replaced with cc,Na and Scr,Na, respectively. or ANao is the projected area of the failure surface of a for (D-16m) single anchor without the influence of proximate edges in +.n:„<�,,,Na accordance with Eq. (D-16c). ll 6c d,Na =[0.7+0.3•Ca' „JS 1.0 ANao = S o,NS)2 (D-1 ) We CC,Na with D.5.3.13—When an adhesive anchor or a group of scr,Na=as given by Eq. (D-16d) adhesive anchors is located in a region of a concrete 0.5.3.8—The critical spacing and critical edge distance member where analysis indicates no cracking at service shall be calculated as follows: load levels, the nominal strength Na or Nag of a single adhesive anchor or a group of adhesive anchors shall be s 20•d 1,45 0 s 3.h (D-16d) calculated according to Eq. (D-16a) and Eq. (D-16b) with co,+ "- o/ vicuna. substituted for 4c, in the calculation of the basic 1,450 strength Nao in accordance with Eq. (0-161). The factor Wg,Nao shall be calculated in accordance with Eq. (D-16h) ESR-2583 [ Most Widely Accepted and Trusted Page 4 of 18 whereby the value of rkmax,una shall be calculated in The bond strength values in Table 7 for hammer-drilled accordance with Eq. (D-16n) and substituted for rkmax,a in holes and in Table 8 for core drilled holes, correspond to Eq. (D-16h). concrete compressive strength Pc equal to 2,500 psi (17.2 MPa). For concrete compressive strength, fc _ =ksuna h f (D-16n) between 2,500 psi and 8,000 psi (17.2 MPa and 55.2 k am°n° d e1. ° MPa), the tabulated characteristic bond strength may be The increased by a factor of (fc / 2,500)012 [For SI: (fc / he value of fc must be limited to a maximum of 8,000 17.2)0.12].]. Where applicable, the modified bond strength psi(55.2 MPa)in accordance with ACI 318 D.3.5. values must be used in lieu of rk,a and rkuna in Equations D.5.3.14—When an adhesive anchor or a group of (D-16d), (D-16f) and (D-16h). The resulting nominal bond adhesive anchors is located in a region of a concrete strength must be multiplied by the associated strength member where analysis indicates no cracking at service reduction factor¢nn. load levels, the modification factor shall be taken as: 4.1.6 Static Steel Strength in Shear, Vu: The nominal �pNB =1.0 when carrn�Cae (D-16o) static steel strength of a single anchor in shear, V,a, in accordance with ACI 318 D.6.1.2 is given in Tables 4 and maxlc •c aN+I when c amin<c ac (D-16p) 5 of this report for the corresponding anchor steel. +mn, t1-1 AN.= c,� 4.1.7 Static Concrete Breakout Strength In Shear, Vcb or Vcbg: The nominal static concrete breakout strength in where: shear of a single adhesive anchor or a group of adhesive car shall be determined in accordance with Section 4.1.10 anchors, Vcb or Vcbg, respectively, must be calculated in of this report. accordance with ACI 318 D.6.2 based on information given in Table 6 of this report. The basic concrete breakout For all other cases, 44)p,,,ra = 1.0 (e.g. when cracked strength in shear of a single anchor in cracked concrete, concrete is considered). Vb, must be calculated in accordance with ACI 318 D.6.2.2 Additional information for the determination of nominal using the value of d given in Tables 4 and 5 of this report in bond strength in tension is given in Section 4.1.5 and lieu of de (2009 IBC) and do (2006 IBC). In addition, her Tables 7 and 8 of this report. must be substituted for€e. In no case shall hef exceed 8d. The value of fc must be limited to a maximum of 8,000 psi 4.1.5 Bond Strength Determination: Bond strength (55.2 MPa),in accordance with ACI 318 D.3.5. values are a function of concrete compressive strength, concrete state (cracked, uncracked), drilling method 4.1.8 Static Concrete Pryout Strength In Shear: In lieu (hammer-drill, core drilling) and installation conditions of determining the nominal static pryout strength in shear (dry concrete,water-saturated concrete,water-filled holes). in accordance with ACI 318 D.6.3.1, the nominal pryout Special inspection level is periodic except as noted in strength must be calculated In accordance with the Section 4.4 of this report. following sections added to ACI 318: Bond strength values must be modified with the factor K,„, D.6.3.2—The nominal pryout strength of an adhesive for cases where holes are drilled in water-saturated anchor or group of adhesive anchors shall not exceed: concrete (Kw,) or where the holes are water-filled at the (a)for a single adhesive anchor: time of anchor installation(Kw),as follows: Vq, = min Ikcp •N+;kc,„ •N,I (D-30a) PERMISSIBLE ASSOCIATED CONCRETE DRILLING BOND STRENGTH (b)fora group of adhesive anchors: METHOD INSTALLATION STATE STRENGTH REDUCTION D-30b CONDITIONS FACTOR V,. = min Ik4, •N,e;k� •N�I ( ) where: Dry concrete rka Od kr() = 1.0 for her<2.5 inches(64 mm) Water-saturated Cracked Hammer- concrete rka'Kws Ows kro = 2.0 for her 2.5 inches(64 mm) drill Na shall be calculated in accordance with Eq. (D-16a) Water-filled hole (flooded) rk,a'Kwf Ow Nag shall be calculated in accordance with Eq. (D-16b) kb and Nag are determined in accordance with D.5.2.1 Dry concrete rk„nc, Od 4.1.9 Minimum Member Thickness hmm, Anchor Water-saturated Spacing Smm, Edge Distance cm,n: In lieu of ACI 318 Uncracked Hammer- concrete rkuna'Kris Ows D.8.1 and D.8.3, values of cm,, and sm,n described in this drill report must be observed for anchor design and installation. Water-filled hole Likewise, in lieu of ACI 318 D.8.5, the minimum member (flooded) rkuna•Kw. civet thicknesses, Nit', described in this report must be observed for anchor design and installation. In determining Dry concrete minimum edge distance,c,,,,,,, the following section must be added to ACI 318: Water-saturated vicuna. D.8.8—For adhesive anchors that will remain untorqued Uncracked Core drill concrete KWE 4s after installation, the minimum edge distance shall be Water-filled hole based on minimum cover requirements for reinforcement in (flooded) rku„a•K"' Ow, 7.7. For adhesive anchors that will be torqued during installation, the minimum edge distance and spacing distances are given in Table 6 and Figure 5 of this report. ESR-2583 I Most Widely Accepted and Trusted Page 5 of 18 For anchors that will be torqued during installation, the where maximum torque, Tmax, must be reduced for edge Ta/lowableAso = Allowable tension load(lbf or kN). distances less than 5 anchor diameters (5d). T,,,,,, is subject to the edge distance,cmin,and anchor spacing,smrn, Verbwable.ASD = Allowable shear load(lbf or kN). and shall comply with the following requirements: OM, = Lowest design strength of an anchor or MAXIMUM TORQUE SUBJECT TO EDGE DISTANCE anchor group in tension as determined NOMINAL in accordance with ACI 318 Appendix D MIN.EDGE MIN.ANCHOR MAXIMUM with amendments in Section 4.1 of this ANCHOR SIZE, DISTANCE, SPACING, TORQUE, report, or Section 1908.1.9 and d Cmin smin ,, 1908.1.10 of the 2009 IBC, or Section 1908.1.16 of the 2006 IBC as applicable all sizes 5d 5d 1.0 m„ (lbf or kN). in.to t in. 1.75 in. 0,14 = Lowest design strength of an anchor or (9.5 mm to 25.4 mm) (45 mm) anchor group in shear as determined in 5d 0.45 T„ accordance with ACI 318 Appendix D 1'4 in 2.75 in. with amendments in Section 4.1 of this (31.8 mm) (70 mm) report, or Section 1908.1.9 and 1908.1.10 of the 2009 IBC, or and For values of Tmax, see Table 9 and Figure 5 of this Section 1908.1.16 of the 2006 IBC as report. applicable(lbf or kN). 4.1.10 Critical Edge Distance cac: In lieu of ACI 318 a = Conversion factor calculated as a D.6.6, cac,must be determined as follows: weighted average of the load factors for rkM 0.4 the controlling load combination. In cac=het (1180� max[3.1 0.7hh�;1.41 Eq.(4-1) addition, a must include all applicable where sk, ,c� is the characteristic bond strength in factors to account for non-ductile failure untracked concrete, h is the member thickness, and her is modes and required over strength. the embedment depth. The requirements for member thickness, edge distance rk�„c,need not be taken as greater than: and spacing, described in this report must apply. An example of allowable stress design values for illustrative purposes is shown in Table 10 of this report. kuncr,jhetf'c 4.2.2 Interaction of Tensile and Shear Forces: rk,uncr = it•d Interaction must be calculated in accordance with AC1 318 4.1.11 Requirements for Seismic Design: For load D.7 as follows: combinations including seismic loads, the design must be For shear loads V 5 0.2 Velbwable,ASD, the full allowable performed in accordance with ACI 318 D.3.3, as modified load in tension shall be permitted. by Section 1908.1.9 of the 2009 IBC, Section 1908.1.16 of the 2006 IBC or the following: For tension loads T 5 0.2 Tadowable,ASD, the full allowable load in shear shall be permitted. CODE ACI 318 D.3.3 CODE EQUIVALENT DESIGN SEISMIC REGION For all other cases: 2003 IBC and Moderate or high Seismic Design Categories C, T + V S 1.2 Eq. (4-4) 2003 IRC seismic risk D,E,and F Tallowable,ASD Vadowabk,ASo 4.3 Installation: For brittle steel elements, the anchor strength must be adjusted in accordance with ACI 318-08 D.3.3.5 or D.3.3.6 Installation parameters are provided in Table 9 of this or with ACI 318-05 D.3.3.5. report. Anchor locations must comply with this report and the plans and specifications approved by the code official. For structures assigned to Seismic Design Categories C, Installation of the Powers PE1000+ Epoxy Adhesive D, E or F, the nominal steel shear strength, Vie, must be Anchor System must be in accordance with the adjusted by ay,seis as given in Tables 4 and 5 of this report manufacturer's published installation instructions (MPII) for the corresponding anchor steel. For structures assigned included in each unit package and reproduced in Figure 5 to Seismic Design Categories C, D, E or F, an adjustment of this report. of the nominal bond strength sk,c,by ary,aels is not necessary 4.4 Special Inspection: since aN,seie= 1.0 in all cases. 4.1.12 Interaction of Tensile and Shear Forces: For Periodic special inspection must be performed where designs that include combined tension and shear, the required in accordance with Sections 1704.4 and 1704.15 interaction of tension and shear loads must be calculated of the 2009 IBC, or Sections 1704.4 and 1704.13 of the in accordance with ACI 318 D.7. 2006 or 2003 IBC, whereby periodic special inspection is defined in Section 1702.1 of the IBC, and this report. The 4.2 Allowable Stress Design(ASD): special inspector must be on the jobsite initially during 4.2.1 General: For anchors designed using load anchor installation to verify the anchor type, adhesive combinations in accordance with IBC Section 1605.3 expiration date, anchor dimensions, concrete type, (Allowable Stress Design)loads must be established using concrete compressive strength, hole dimensions, hole the equations below: cleaning procedures, anchor spacing, edge distances, concrete thickness, anchor embedment, maximum applied Tadowaae,ASO= cNn/a (Eq.4-2) torque moment, and adherence to the manufacturer's and published installation instructions (MPH). The special ,k inspector must verify the initial installations of each type Vmeowable,ASD=wVn�a (Eq.4-3) ESR-2583 I Most Widely Accepted and Trusted Page 6 of 18 and size of adhesive anchor by construction personnel on 5.9 Strength design values must be established in the site. Subsequent installations of the same anchor type accordance with Section 4.1 of this report. and size by the same construction personnel are permitted 5.10 Allowable stress design values must be established in to be performed in the absence of the special inspector. accordance with Section 4.2 of this report. Any change in the anchor product being installed or the personnel performing the installation requires an initial 5.11 Minimum anchor spacing and edge distance, as well inspection. For ongoing installations over an extended as minimum member thickness, must comply with the period, the special inspector must make regular values given in this report. inspections to confirm correct handling and installation of 5.12 The maximum embedment depth is limited to twelve the product. anchor diameters for the following applications: All For all cases where anchors are installed overhead installations with anchor elements oriented (vertical up) and are designed to resist sustained tension horizontally or upwardly inclined and installations in loads, continuous special inspection is required. water-filled holes in holes drilled with a carbide drill Under the IBC, additional requirements as set forth in bit. Sections 1705, 1706 or 1707 must be observed, where The maximum embedment depth is limited to twenty applicable. anchor diameters for the following applications: 4.5 Compliance with NSF/ANSI Standard 61: Installations vertically downward in holes drilled with a core drill bit and installations in dry and saturated The Powers PE1000+ Epoxy Adhesive Anchor System concrete in holes drilled with a carbide drill bit. complies with the requirements of NSF/ANSI Standard 61, 5.13 Prior to anchor installation, calculations and details as referenced in Section 605 of the 2009 and 2006 International Plumbing Code®(IPC),and is certified for use demonstrating compliance with this report must be submitted to the code official. The calculations and as an anchoring adhesive for installing threaded rods less details must be prepared by a registered design than or equal to 1.3 inches(33 mm)in diameter in concrete professional where required by the statutes of the for water treatment applications. jurisdiction in which the project is to be constructed. 5.0 CONDITIONS OF USE 5.14 Anchors are not permitted to support fire-resistive The Powers PE1000+ Epoxy Adhesive Anchor System construction. Where not otherwise prohibited by the described in this report complies with, or is a suitable code, Powers PE1000+ epoxy adhesive anchors are alternative to what is specified in, those codes listed in permitted for installation in fire-resistive construction Section 1.0 of this report, subject to the following provided that at least one of the following conditions is conditions: fulfilled: 5.1 Powers PE1000+ epoxy adhesive anchors must be • Anchors are used to resist wind or seismic forces installed in accordance with the manufacturer's only. published installation instructions (MPII) as attached to each cartridge and reproduced in Figure 5 of this • Anchors that support gravity load-bearing report. structural elements are within a fire-resistive 5.2 The anchors described in this report must be installed envelope or a fire-resistive membrane, are in normal-weight concrete having a specified protected by approved fire-resistive materials, or compressive strength, fc, from 2,500 psi to 8,500 psi have been evaluated for resistance to fire exposure (17.2 MPa to 58.6 MPa) subject to the conditions of in accordance with recognized standards. this report. • Anchors are used to support non-structural 5.3 The anchors with threaded steel rods and steel elements. reinforcing bars may be installed in normal-weight concrete that is cracked or that may be expected to 5.15 Since an ICC-ES acceptance criteria for evaluating crack during the service life of the anchor, when data to determine the performance of adhesive installed in hammer-drilled holes as described in anchors subjected to fatigue or shock loading is Section 2.1 and in accordance with Table 1 of this unavailable at this time, the use of these anchors report.The anchors with threaded steel rods and steel under such conditions is beyond the scope of this reinforcing bars are limited to installation in untracked report. concrete when installed in core drilled holes in 5.16 Use of threaded rods made of carbon steel with zinc accordance with Table 1 of this report. electroplated coating as specified in Section 3.2.4.1 of 5.4 The values of fc used for calculation purposes must this report, or steel reinforcing bars other than zinc not exceed 8,000 psi(55.2 MPa). coated(galvanized)steel reinforcing bars as specified 5.5 Anchors must be installed in concrete base materials in Table 3 of this report,must be limited to dry,interior in holes predrilled in accordance with the installation locations. instructions provided in Figure 5 of this report. 5.17 Use of threaded rods made of stainless steel or 5.6 Loads applied to the anchors must be adjusted in carbon steel with hot dip galvanized zinc coating or accordance with Section 1605.2 of the IBC for mechanically deposited zinc coating as specified in strength design and in accordance with Section Section 3.2.4.1 of this report; or zinc coated 1605.3 of the IBC for allowable stress design. (galvanized) steel reinforcing bars as specified in 5.7 Powers PE1000+ epoxy adhesive anchors are Table 3 of this report, is permitted for exterior recognized for use to resist short-term and long-term exposure or damp environments. loads, including wind and earthquake loads,subject to 5.18 Steel anchoring materials in contact with preservative- the conditions of this report. treated wood must be of zinc-coated steel or stainless 5.8 In structures assigned to Seismic Design Categories steel under the IBC or IRC. The minimum coating C, D, E, and F under the IBC or IRC, anchor design weights for zinc-coated steel must comply with ASTM must comply with Section 4.1.11 of this report. A153, Class C or D, or ASTM B695, Class 55. ESR-2583 I Most Widely Accepted and Trusted Page 7 of 18 Exception: 1/2-inch-diameter (12.7 mm) or greater 6.0 EVIDENCE SUBMITTED anchors under the IRC. Data in accordance with the ICC-ES Acceptance Criteria 5.19 Steel anchoring materials in contact with fire- for Post-installed Adhesive Anchors in Concrete (AC308), retardant-treated wood must be of zinc-coated steel dated February 2012, including, but not limited to, tests or stainless steel under the IBC or IRC.The minimum under freeze/thaw conditions (Annex 1, Table 4.2, test coating weights for zinc-coated steel must comply series 6), tests under sustained load (Annex 1, Table 4.2, with ASTM A153,Class C or D,or ASTM B695,Class test series 7), tests for installation direction 55. Exception: 1/2-inch-diameter(12.7 mm)or greater (Annex 1, Table 4.2, test series 8), tests at elevated anchors under the 2006 and 2003 IRC. temperatures (Annex 1, Table 4.2, test series 12a), tests 5.20 Periodic special inspection must be provided in for resistance to alkalinity (Annex 1, Table 4.2, test series accordance with Section 4.4 of this report.Continuous 13a),tests for resistance to sulfur(Annex 1,Table 4.2,test special inspection for overhead installations (vertical series 13b)and tests for seismic tension and shear(Annex up)that are designed to resist sustained tension loads 1,Table 4.2,test series 17 and 18). must be provided in accordance with Section 4.4 of 7.0 IDENTIFICATION this report. 5.21 Powers PE1000+ epoxy adhesive anchors may be Powers PE1000+ epoxy adhesive is identified by used in all installation directions [e.g. vertically packaging labeled with the lot number; expiration date; downward (floor), horizontal (wall) and upwardly company name and corresponding product name as set inclined (overhead)] in accordance with the forth in Table A of this report; evaluation report number installation instructions as attached to each cartridge (ICC-ES ESR 2583); and name of the inspection agency and reproduced in Figure 5 of this report. (IEA). Threaded rods, nuts, washers and deformed 5.22 Powers PE1000+ epoxy adhesive is manufactured reinforcing bars are standard steel anchor elements and under an approved must conform to applicable national or international pp quality control program, with specifications as set forth in Tables 2 and 3 of this report. inspections by Ingenieurburo Eligehausen and Asmus (I EA)(AA-707). TABLE A—PRODUCT NAMES BY COMPANY COMPANY NAME PRODUCT NAME Powers Fasteners PE1000+ DEWALT(Stanley Black&Decker) Pure150-PRO ESR-2583 I Most WrdelyAccep(ed and Trusted Page 8 of 18 TABLE 1—DESIGN USE AND TABLE INDEX DESIGN STRENGTH' THREADED ROD(FRACTIONAL)' DEFORMED REINFORCING BAR' Steel N,e V,. Table 4 Table 5 Concrete Na, Vm, V� Vw Vey Table 6 Table 6 Hammer-drilled holes Table 7 Table 7 Bond' N.,Nn Diamond cored holes Table 8 Table 8 CONCRETE CONCRETE THREADED ROD REINFORCING DRILLING MINIMUM MAXIMUM SEISMIC DESIGN TYPE STATE DIAMETER(Inch) BAR SIZE(No.) METHOD EMBEDMENT EMBEDMENT CATEGORIES' Cracked 1/2,"/e,'/4,r/e,1 and 11/4 4,5,6,7,8,9,10 Hammer-drill See Table 7 See Table 7 A through F Normal-weight Uncracked '/e,'/2.°/e,'/4,7/e,1 and 11/4 3,4,5,6,7,8,9,10 Hammer-drill See Table 7 See Table 7 A and B Uncracked 1/2,%,34,7/e and 1 4,5,6,7,8 Core drill See Table 8 See Table 8 A and B For SI:1 inch=25.4 mm.For pound-Inch units:1 mm=0.03937 inch. 'Reference ACI 318 D.4.1.2.The controlling strength is decisive from all appropriate failure modes(i.e.steel,concrete,bond)and design assumptions 'See Section 4.1.4 and 4.1.5 of this report. 'See Section 4.1.11 for requirements for seismic design where applicable. 'Anchors with'/r,a/e-,'/4-,7/0-1-and 04-inch-diameter(12.7,15.9,19.1,22.2,25.4 and 31.8 mm)threaded steel rods and No.4 through No.10 steel reinforcing bars may be installed in normal-weight concrete that is cracked or that may be expected to crack during the service life of the anchor when installed in hammer-drilled holes.Anchors with /e-inch-diameter(9.5 mm)threaded steel rods and No.3 steel reinforcing bars are limited to installation in uncracked concrete when installed in hammer-drilled holes. 'Anchors with 1/2-,a/e-,3/4-,7/e-and 1-Inch-diameter(12.7,15.9,19.1,22.2 and 25.4 mm)threaded steel rods and No.4 through No.8 steel reinforcing bars are limited to installation in uncracked concrete when installed in core drilled holes. 10~6111 . Kammer-DM Con Drfh 11MNi� Water-Filled Water- Water-Fllted W Wateritiled Dry Concrete Hole dell Concrete Saturated Dry Concrete S*lmted woo Concrete (Flooded) _ Concrete Hose(Flowed) Concrete ) a re.,, •KW .: 1' � r w ,+ ," ' re,.,.� rt1.., X,, te..v'A _ +f t' a .. #4 �' sue:. �i # FIGURE 1—FLOW CHART FOR THE ESTABLISHMENT OF DESIGN BOND STRENGTH ESR-2583 I Most Widely Accepted and Trusted Page 9 of 18 TABLE 2—SPECIFICATIONS AND PHYSICAL PROPERTIES OF COMMON FRACTIONAL THREADED CARBON AND STAINLESS STEEL ROD MATERIALS' MIN.SPECIFIED MIN.SPECIFIED REDUCTION ULTIMATE YIELD STRENGTH f„" ELONGATION OF AREA NUT THREADED ROD SPECIFICATION UNITS STRENGTH, 0.2 PERCENT OFFSET, —fr, MINIMUM i MINIMUM SPECIFICATION' fo, fy, PERCENT ASTM A362 and psi 58,000 36,000 ° F15543 Grade 36 (MPa) (400) (248) 1'61 23 ASTM A194/ ASTM F15543 psi 75,000 55,000 A563 Grade A Carbon Grade 55 (MPa) (517) (380) 1.36 23 40 Steel ASTM F1554' psi 125,000 105,000 Grade 105 (MPa) (862) (724) 1.19 15 ASTM A1941 ASTM A1934 psi 125,000 105,000 A563 Grade DH Grade B7 (MPa) (860) (720) 1.19 16 50 ASTM F5935 CW1 psi 100,000 65,000 ro ('/s to°/°inch dia.) (MPa) (690) (450) 1.54 20 - ASTM F594 ASTM F5935 CW2 psi 85,000 4.5,000 +3 �1 2 0 3 Group Stainless (a/.to 1'/.Inch dia. (MPa) (590) (310) 1.89 25 Steel (Types 304 ASTM A1936 psi 75,000 30,000 and 316) Grade B8/B8M,Class 1 (MPa) (517) (207) 2.50 30 50 ASTM F594 Alloy Group ASTM A1934 psi 95,000 75,000 1 27 25 40 1,2 or 3 Grade B8/B8M2,Class 2B (MPa) (655) (517) For SI:1 inch=25.4 mm,1 psi=0.006897 MPa.For pound-Inch units:1 mm=0.03937 inch,1 MPa=145.0 psi. 'Adhesive must be used with continuously threaded carbon or stainless steels(all-thread)that have thread characteristics comparable with ANSI B1.1 UNC Coarse Thread Series.Tabulated values correspond to anchor diameters included in this report. Standard Specification for Carbon Structural Steel. 'Standard Specification for Anchor Bolts,Steel,36,55,and 105-ksi Yield Strength 'Standard Specification for Alloy-Steel and Stainless Steel Bolting Materials for High Temperature or High Pressure Service and Other Special Purpose Applications. 'Standard Specification for Stainless Steel Bolts,Hex Cap Screws,and Studs. °Standard Standard Specification for Alloy-Steel and Stainless Steel Bolting for High Temperature or High Pressure Service and Other Special Purpose Applications. 'Based on 2-Inch(50 mm)gauge length except ASTM A193,which are based on a gauge length of 4d. 'Nuts of other grades and style having specified proof load stress greater than the specified grade and style are also suitable.Nuts must have specified proof load stresses equal to or greater than the minimum tensile strength of the specified threaded rod.Material types of the nuts and washers must be matched to the threaded rods. °Minimum percent reduction of area reported in ASTM A36 is 50 percent. 10Minimum percent reduction of area not reported In the referenced ASTM standard. TABLE 3—SPECIFICATIONS AND PHYSICAL PROPERTIES OF COMMON STEEL REINFORCING BARS' REINFORCING SPECIFICATION UNITS MINIMUM SPECIFIED ULTIMATE STRENGTH,f„„ MINIMUM SPECIFIED YIELD STRENGTH,f,., ASTM A6152,A7674,Grade 75 Psi 100,000 75,000 (MPa) (690) (520) ASTM A6152,A7674,Grade 60 Psi 90,000 60,000 (MPa) (620) (414) ASTM A7063,A7674,Grade 60 psi 80,000 60,000 (MPa) (550) (414) ASTM A6152,A767 4,Grade 40 Psi 60,000 40,000 (MPa) (415) (275) For SI:1 psi=0.006897 MPa.For pound-Inch units:1 MPa=145.0 psi. 'Adhesive must be used with specified deformed reinforcing bars.Tabulated values correspond to bar sizes included in this report. 'Standard Specification for Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement.Grade 60 and Grade 40 bars may be considered ductile elements provided the actual yield strength based on mill tests does not exceed fy.by more than 18,000 psi and the ratio of the actual tensile strength to actual yield strength is not less than 1.25. 'Standard Specification for Low-Alloy Steel Deformed and Plain Bars for Concrete Reinforcement.Bars furnished to specification are considered ductile elements. 'Standard Specification for Zinc-Coaled(Galvanized)Steel Bars for Concrete Reinforcement.Bars furnished to specification are considered brittle elements unless evidence is otherwise shown to the satisfaction of the registered design professional and code official in accordance with Section 3.2.4.3 of this report. ESR-2583 I Most Widely Accepted and Trusted Page 10 of 18 TABLE 4-STEEL DESIGN INFORMATION FOR FRACTIONAL THREADED ROD DESIGN INFORMATION SYMBOL UNITS NOMINAL ROD DIAMETER(Inch)' 'fa 11: % 3141 31e 1 1114 Threaded rod nominal outside diameter d Inch 0.375 0.500 0.625 0.750 0.875 1.000 1.250 (mm) (9.5) (12.7) (15.9) (19.1) (22.2) (25.4) (31.8) Threaded rod effective cross-sectional area A. Inch' 0.0775 0.1419 0.2260 0.3345 0.4617 0.6057 0.9691 (mm2) (50) (92) (146) (216) (298) (391) (625) lbf 4,495 8,230 13,110 19,400 26,780 35,130 56,210 Nominal strength as governed by steel N'° (kN) (20.0) (36.6) (58.3) (86.3) (119.1) (156.3) (250.0) ASTM A36 strength(for a single anchor) V. lbf 2,695 4,940 7,860 11,640 16,070 21,080 33,725 and Fl554, (kN) (12.0) (22.0) (35.0) (51.8) (71.4) (93.8) (150.0) Grade 36 Reduction factor for seismic shear ov... - Not applicable 0.85 0.85 0.85 0.85 0.80 0.80 Strength reduction factor for tension' d - 0.75 Strength reduction factor for shear' 4 - 0.65 Ibf 5,810 10,640 16,950 25,085 34,625 45,425 72,680 Nominal strength as governed by steel N. (kN) (25.9) (47.3) (75.4) (111.6) (154.0) (202.0) (323.3) strength(for a single anchor) V. Lbf 3,485 6,385 10,170 15,050 20,775 27255 43,610 ASTM F1554, (kN) (15.5) (28.4) (45.2) (67.0) (92.4) (121.2) (194.0) Grade 55 Reduction factor for seismic shear ay,.., - Not applicable 0.85 0.85 0.85 0.85 0.80 0.80 Strength reduction factor for tension' 4 - 0.75 Strength reduction factor for shear' 0 - 0.65 Lbf 9,685 17,735 28,250 41,810 57,710 75,710 121,135 Nominal strength as governed by steel N9° (RN) (43.1) (78.9) (125.7) (186.0) (256.7) (336.8) (538.8) ASTM A193 strength(for a single anchor) Lbf 5,815 10,640 16,950 25,085 34,625 45,425 72,680 Grade B7 V. (kN) (25.9) (7.3) (75.4) (111.6) (154.0) (202.1) (323.3) and F1554, Reduction factor for seismic shear ay... - Not applicable 0.85 0.85 0.85 0.85 0.80 0.80 Grade 105 - Strength reduction factor for tension' 4 - 0.75 Strength reduction factor for shear' d - 0.65 Lbf 7,750 14,190 22,600 28,430 39,245 51,485 82,370 Nominal strength as governed by steel N'° (RN) (34.5) (63.1) (100.5) (126.5) (174.6) (229.0) (366.4) ASTM F593 strength(for a single anchor) Lbf 4,650 8,515 13,560 17,060 23,545 30,890 49,425 CW Stainless V (kN) (20.7) (37.9) (60.3) (75.9) (104.7) (137.4) (219.8) (Types 304 Reduction factor for seismic shear avay - Not applicable 0.85 0.85 0.85 0.85 0.80 0.80 and 316) Strength reduction factor for tension' 0 - 0.65 Strength reduction factor for shear' - 0.60 Lbf 4,420 8,090 12,880 19,065 26,315 34,525 55,240 ASTM A193 Nominal strength as governed by steel X58 (kN) (19.7) (36.0) (57.3) (84.8) (117.1) (153.6) (245.7) Grade B8/B8M, strength(for a single anchor)' Lbf 2,650 4,855 7,730 11,440 15,790 20715 33,145 Class 1 V. (kN) (11.8) (21.6) (34.4) (50.9) (70.2) (92.1) (147.4) Stainless Reduction factor for seismic shear ay..�, - Not applicable 0.85 0.85 0.85 0.85 0.80 0.80 (Types 304 -and 316) Strength reduction factor for tension' 0 - 0.75 Strength reduction factor for shear" i - 0.65 Lbf 7,365 13,480 21,470 31,775 43,860 57,545 92,065 ASTM A193 Nominal strength as governed by steel N" (kN) (32.8) (60.0) (95.5) (141.3) (195.1) (256.0) (409.5) Grade B8B8M2,strength(for a single anchor) Lbf 4,420 8,085 12,880 19,065 26,315 34,525 55,240 Class 2B V'° (NN) (19.7) (36.0) (57.3) (84.8) (117.1) (153.6) (245.7) Stainless Reduction factor for seismic shear ay..is - Not applicable 0.85 0.85 0.85 0.85 0.80 0.80 (Types 304 and 316) Strength reduction factor for tension' 0 - 0.75 Strength reduction factor for shear' 0 - 0.65 For SI:1 inch=25.4 mm,1 lbf=4.448 N.For pound-Inch units:1 mm=0.03937 inches,1 N=0.2248 lbf. 'Values provided for fractional steel element material types are based on minimum specified strengths and calculated in accordance with ACI 318 Eq.(D-3)and Eq. (D-20)except where noted.Nuts must be appropriate for the rod,as listed in Table 2 of this report. The tabulated value of',applies when the bad combinations of Section 1605.2.1 of the IBC or ACI 318 Section 9.2 are used in accordance with ACI 318 D.4.4.If the load combinations of ACI 318 Appendix C are used,the appropriate value of 0 must be determined in accordance with ACI 318 D.4.5. 'In accordance with ACI 318 0.5.1.2 and D.6.1.2 the calculated values for nominal tension and shear strength for ASTM A193 Grade B8/138M Class 1 stainless steel threaded rods are based on limiting the specified tensile strength of the anchor steel to 1.94.or 57,000 psi(393 MPa). ESR-2583 I Most Widely Accepted and Trusted Page 11 of 18 TABLE 5-STEEL DESIGN INFORMATION FOR REINFORCING BARS DESIGN INFORMATION SYMBOL UNITS NOMINAL REINFORCING BAR SIZE(REBAR)' No.3 No.4 No.5 No.6 No.7 No.8 No.9 No.10 Rebar nominal outside diameter d Inch 0.375 0.500 0.625 0.750 0.875 1.000 1.125 1.250 (mm) (9.5) (12.7) (15.9) (19.1) (22.2) (25.4) (28.7) (32.3) Rebar effective cross-sectional area A. Inch 0.110 0.200 0.310 0.440 0.600 0.790 1.000 1.270 (mm') (71) (129) (200) (284) (387) _(510) (645) (819) Ibf 11,000 20,000 31,000 44,000 60,000 79,000 100,000 127,000 Nominal strength as governed by steel N' (kN) (48.9) (89.0) (137.9) (195.7) (266.9) (351.4) (444.8) (564.9) ASTM strength(for a single anchor) Ibf 6,600 12,000 18,600 26,400 36,000 47,400 60,000 76,200 A615, V„ (kN) (29.4) (53.4) (82.7) (117.4) (160.1) (210.8) (266.9) (338.9) Grade Reduction factor for seismic shear Gv,�, - Not applicable 0.70 0.70 0.70 0.70 0.70 0.70 0.70 75 - Strengthreductionfactorfortension' 0 - 0.65 Strength reduction factor for shear" 0 - 0.60 lbf 9,900 18,000 27,900 39,600 54,000 71,100 90,000 114,300 Nominal strength as governed by steel N. (kN) (44.0) (80.1) (124.1) (176.1) (240.2) (316.3) (400.3) (508.4) ASTM strength(for a single anchor) Ibf 5,940 10,800 16,740 23,760 32,400 42,660 54,000 68,580 A615, V,. (kN) (26.4) (48.0) (74.5) (105.7) (144.1) (189.8) (240.2) (305.0) Grade Reduction factor for seismic shear au,w, - Not applicable 0.70 0.70 0.70 0.70 0.70 0.70 0.70 60 Strength reduction factor for tension' 0 - 0.65 Strength reduction factor for shear" f - 0.60 Ibf 8,800 16,000 24,800 35,200 48,000 63,200 80,000 101,600 Nominal strength as governed by steel N. (kN) (39.1) (71.2) (110.3) (156.6) (213.5) (281.1) (355.9) (452.0) ASTM strength(fora single anchor) no 5,280 9,600 14,880 21,120 28,800 37,920 48,000 60,960 A706, V" (kN) (23.5) (42.7) (66.2) (94.0) (128.1) (168.7) (213.5) (271.2) J Grade Reduction factor for seismic shear Gv,,,t, - Not applicable 0.70 0.70 0.70 0.70 0.70 0.70 0.70 60 - - Strength reduction factor for tension' 0 - 0.75 Strength reduction factor for shear" ; - 0.65 Ibf 6,600 12,000 18,600 26,400 Nominal strength as governed by steel NM (kN) (29.4) (53.4) (82.7) (117.4) In accordance with ASTM A615, ASTM strength(for a single anchor) Ibf 3,960 7,200 11,160 15,840 Grade 40 bars are furnished only in A615, V. (kN) (17.6) (32.0) (49.6) (70.5) sizes No.3 through No.6 Grade Reduction factor for seismic shear ay,,,, - Not applicable 0.70 0.70 0.70 40 Strength reduction factor for tension' 0 - 0.65 Strength reduction factor for shear" 4 - 0.60 For SI:1 Inch=25.4 mm,1 lbf=4.448 N.For pound-Inch units:1 mm=0.03937 Inches,1 N=0.2248 Ibf. 'Values provided for reinforcing bar material types based on minimum specified strengths and calculated in accordance with ACI 318 Eq.(D-3)and Eq.(D-20). 'The tabulated value of 0 applies when the load combinations of Section 1605.2.1 of the IBC or ACI 318 Section 9.2 are used In accordance with ACI 318 D.4.4.If the load combinations of ACI 318 Appendix C are used,the appropriate value of 0 must be determined in accordance with ACI 318 D.4.5. TABLE 6-CONCRETE BREAKOUT AND PRYOUT DESIGN INFORMATION FOR FRACTIONAL THREADED ROD AND REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT OR A CORE DRILL AND DIAMOND CORE BIT' NOMINAL ROD DIAMETER(Inch)!REINFORCING BAR SIZE DESIGN INFORMATION SYMBOL UNITS '1e or#3 'lzor#41 5/eor#5 I a/4 or#8 L 7/,or#7 1 or#8 I #9 11/4 or#10 - Effectiveness factor for cracked concrete k Not 17 k, (SI) Applicable (7.1) - Effectiveness factor for uncracked concrete k„,„ 24 (SI) (10.0) Minimum embedment h inch 2'/a 2'/4 3'/a 3'/2 3'/2 4 4'/2 5 °''"" (mm) (60) (70) (79) (89) (89) (102) (114) (127) Maximum embedment heft. inch 41/2 10 12'12 15 171/2 20 22'/2 25 (mm) (114) (254) (318) (381) (445) (508) (572) (635) Minimum anchor spacing sm„ Inch 1'/a 2'/2 3'/, 33/4 4'/, 5 5'/4 6'/. (mm) (48) _ (64) (79) (95) (111) (127) (143) (159) Minimum edge distance cm,,, Inch 5d where d is nominal outside diameter of the anchor; (mm) see Section 4.1.9 of this report for design with reduced minimum edge distances Minimum member thickness h , inch h,,+11/4 h.r+2d,where d,,is hole diameter; (mm) (h,,+30) for installation parameters see Table 9 of this report Critical edge distance-splitting cK inch See Section 4.1.10 of this report (for uncracked concrete only) (mm) Strength reduction factor for tension, concrete failure modes,Condition 8' d - 0.65 Strength reduction factor for shear, concrete failure modes,Condition B' 0 - 0.70 For SI:1 Inch=25.4 mm,1 lbf=4.448 N.For pound-Inch units:1 mm=0.03937 inch,1 N=0.2248 lbf. 'Additional setting information is described in the installation Instructions,Figure 5 of this report. 'Condition A requires supplemental reinforcement,while Condition B applies where supplemental reinforcement is not provided or where pryout governs,as set forth in ACI 318 D.4.4.The tabulated value of 0 applies when the load combinations of Section 1605.2.1 of the IBC or ACI 318 Section 9.2 are used in accordance with ACI 318 D.4.4.If the load combinations of ACI 318 Appendix C are used,the appropriate value of¢must be determined In accordance with ACI 318 D.4.5. ESR-2583 I Most Widely Accepted and Trusted Page 12 of 18 TABLE 7-BOND STRENGTH DESIGN INFORMATION FOR FRACTIONAL THREADED RODS AND REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT' NOMINAL ROD DIAMETER(inch)!REINFORCING BAR SIZE DESIGN INFORMATION SYMBOL UNITS s/a or#3 1/2 or#4 °/s or#5 3/4 or#6 '/a or#7 1 or#8 #9 11/4 or#10 5 Minimum embedment h inch 23/8 2s/. 31/a 31/2 31/2 4 4'/z 'rm� (mm) (60) (70) (79) (89) (89) (102) (114) (127) Dry concrete and inch 41/2 10 121/2 15 171/2 20 221/7 25 Maximum saturated concrete' hv"' (mm) (114) (254) (318) (381) (445) (508) (572) (635) embedment Inch 4'/2 6 71/2 9 101/2 12 131/2 15 Water-filled hole(flooded) h.rmo (mm) (114) (152) (190) (225) (267) (305) (343) (381) Characteristic bond strength psi Not 1.119 920 857 807 807 807 807 Temperature In cracked concrete° rka (N/mm2) applicable (7.7) (6.3) (5.9) (5.6) (5.6) (5.6) (5.6) Range A4°'° Characteristic bond strength psi 2,375 2,244 2,148 2,073 2,013 1,960 1,916 1,876 In uncracked concrete° rk (Wmm2) (16.4) (15.5) (14.8) (14.3) (13.9) (13.5) (13.2) (12.9) Characteristic bond strength psi Not 547 450 419 394 394 394 394 Temperature In cracked concrete° rk•a (N/mm2) applicable (3.8) (3.1) (2.9) (2.7) (2.7) (2.7) (2.7) Range B''''S Characteristic bond strength psi 1,160 1,097 1,050 1,013 984 958 936 917 in uncracked concrete° rkvxcr (N/mm2) (7.9) (7.6) (7.2) (7.0) (6.8) (6.6) (6.5) (6.3) Dry concrete 4d - 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 Permissible Water-saturated concrete 4w. - 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 installation k-,.. - 0.93 0.90 0.96 1.0 1.0 1.0 1.0 0.99 conditions° 4,, - 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 Water-filled hole(flooded) K,.r - 0.93 0.83 0.75 0.70 0.65 0.62 0.59 0.56 For SI:1 Inch=25.4 mm,1 psi=0.006894 MPa.For pound-Inch units:1 mm=0.03937 Inch,1 MPa=145.0 psi. 'Bond strength values correspond to concrete compressive strength f°=2,500 psi.For concrete compressive strength,f,between 2,500 psi and 8,000 psi,the tabulated characteristic bond strength may be increased by a factor of(r/2,500)°'2[For SI:(rd 17.2)0''].See Section 4.1.5 of this report. 'Temperature Range A:Maximum long-term service temperature=75°F(24°C),maximum short-term service temperature=104'F(40°C). 'Temperature Range B:Maximum long-term service temperature=110°F(43'C),maximum short-term service temperature=140'F(60'C).The maximum short- term service temperature may be increased to 162°F(72°C)for Temperature Range B provided characteristic bond strengths are reduced by 10 percent. Short-term elevated concrete temperatures are those that occur over brief intervals,e.g.as a result of diurnal cycling.Long-term concrete temperatures are roughly constant over significant periods of time. 'Characteristic bond strengths are for sustained loads including dead and live loads.For load combinations consisting of short-term loads only such as wind or seismic,bond strengths may be increased 70 percent for Temperature Range B. 'Permissible installation conditions include dry concrete,water-saturated concrete and water-filled holes.Water-filled holes include applications in dry or water- saturated concrete where the drilled holes contain standing water at the time of anchor Installation.For Installation Instructions see Figure 5 of this report 'Maximum embedment is limited to twelve anchor diameters for horizontal and upwardly inclined installations. °For structures assigned to Seismic Design Categories C,D,E or F,bond strength values for cracked concrete do not require an additional reduction factor applied(nN,..r.=1.0).See Section 4.1.11 of this report. °Bond strength values for uncracked concrete are applicable for structures assigned to Seismic Design Categories A and B only. TABLE 8-BOND STRENGTH DESIGN INFORMATION FOR FRACTIONAL THREADED RODS AND REINFORCING BARS IN HOLES DRILLED WITH A CORE DRILL AND DIAMOND CORE BIT' NOMINAL ROD DIAMETER(inch)!REINFORCING BAR SIZE DESIGN INFORMATION SYMBOL UNITS 1/2 or#4 °ls or#5 3/4 or#6 '/2 or#7 1 or#8 Minimum embedment h.{„„ inch 2'/, 31/, 3% 3'/7 4 (mm) (70) (79) (89) (89) (102) he, 10 12'/7 15 17'/7 20 Maximum embedment' h (mm) (254) (318) (381) (445) (508) Temperature Characteristic bond strength psi 1,419 1,351 1,298 1,257 1,221 Range A2''•° in uncracked concrete' rk"'p (Wmm') (9.8) (9.3) (9.0) (8.7) (8.4) Temperature Characteristic bond strength psi 1,074 1,023 983 951 924 Range 13"'.. In uncracked concrete° Tkmc (N/mm') (7.4) (7.1) (6.8) (6.6) (6.4) Dry concrete 4, - 0.65 0.65 0.65 0.65 0.65 Permissible 4.. - 0.55 0.45 0.45 0.45 0.45 Installation Water-saturated concrete Conditions' K. - 1.0 1.0 1.0 1.0 1.0 Arc -Water-filled hole(flooded) 0.45 0.45 0.45 0.45 0.45 KW - 0.94 0.95 0.95 0.95 0.96 For SI:1 Inch=25.4 mm,1 psi=0.006894 MPa.For pound-inch units:1 mm=0.03937 inch,1 MPa=145.0 psi. 'Bond strength values correspond to concrete compressive strength r=2,500 psi.For concrete compressive strength,I',between 2,500 psi and 8,000 psi,the tabulated characteristic bond strength may be increased by a factor of(r/2,500)012[For SI:MI 17.2)°12).See Section 4.1.5 of this report. 'Temperature Range A:Maximum short-term service temperature=104'F(40'C),maximum long-term service temperature=75'F(24'C). 'Temperature Range B:Maximum short-term service temperature=140°F(60°C),maximum long-term service temperature=110'F(43'C).The maximum short- term service temperature may be increased to 162-F(72°C)for Temperature Range B provided characteristic bond strengths are reduced by 10 percent. 'Short-term elevated concrete temperatures are those that occur over brief intervals,e.g as a result of diurnal cycling.Long-term concrete temperatures are roughly constant over significant periods of time. 'Characteristic bond strengths are for sustained loads Including dead and live loads.For load combinations consisting of short-term loads only such as wind or seismic,bond strengths may be increased by 50 percent for Temperature Range A and 65 percent for Temperature Range B. 'Permissible installation conditions Include dry concrete,water-saturated concrete and water-filled holes.Water-filled holes Include applications in dry or water- saturated concrete where the drilled holes contain standing water at the time of anchor Installation.For installation instructions see Figure 5 of this report. 'Maximum embedment for dry concrete and saturated concrete is limited to twelve anchor diameters for horizontal and upwardly inclined installations. 'Bond strength values for uncracked concrete are applicable for structures assigned to Seismic Design Categories A and B only. ESR-2583 I Most Widely Accepted and Trusted Page 13 of 18 2400 , I 2200 - •` •_f Untracked Concrete 1' Temp Range A• 2000 F _ i .1•.�*.w." ... oi.-•♦ •'~' •+ ••••- Untracked Concrete gyp' 1800 --.--._ Temp Range A a -.. ...--- - Core Drilled Hot. 1600 • • 1 i aGq • •7L- Uncracked Concrete Temp Ranee N 1400 • 1200 - --4.--- .` -.--- �_— .. .-f- Untracked Concrete ✓ A— 1 Temp Range B • m 1000 • ` Corr Drilled Hole t+ `11-.. ,'..+., *.-_-_le 1• '1111.,. —•-Cracked Concrete 6 800 ._ .. .. +. �"'. ..�a.�.r...,�I r Temp Range A . 600 .............". . .. .. .......... ..........._.....i..._�._._.: �'�' « -,.. . .... i —)4- Concrete silli••e. Temp Range B l 0.250 0.375 0.500 0.625 0.750 0.875 1.000 1.125 1.750 1.375 1.500 Nominal Threaded Rod or Reinforcing Bar Diameter{in.) FIGURE 2—BOND STRENGTHS BASED ON NOMINAL ANCHOR DIAMETER TABLE 9—INSTALLATION PARAMETERS FOR FRACTIONAL THREADED ROD AND REINFORCING BARS PARAMETER SYMBOL UNITS NOMINAL ROO DIAMETER(inch)!REINFORCING BAR SIZE 3/r or#3 1/2 or#4 e/a or#5 3/4 or#6 r/a or#7 1 or#8 #9 11/4 #10 Threaded rod d inch 0.375 0.500 0.625 0.750 0.875 1.000 N/A' 1.250 N/A' outside diameter (mm) (9.5) (12.7) (15.9) (19.1) (22.2) (25.4) (31.8) Reber nominal inch 0.375 0.500 0.625 0.750 0.875 1.000 1.125 1 1.250 outside diameter d (mm) (9.5) (12.7) (15.9) (19.1) (22.2) (25.4) (28.7) N/A (31.8) F f Carbide drill bit a 1, 3 3 3 do(dew) inch 4e /16 /la or /4 /a 1 iii, 13/a 13/a 11/3 o t 7- nominal sae )++t } Diamond core bit Threaded rT_. nominal size d°(do) Inch N/A' '/e 34 r/e 1 1'4 N/A' N/A' N/A' Rod or #01 1—c 3 3 , Minimum inch 2/. 2 le 3 4 3 4 3/2 4 4'4 5 5 Reber ` embedment hdmin (mm) (60) (70) (79) (89) (89) (102) (114) (127) (127) . w 4 '• Maximum h Inch 4'/2 10 12'/2 15 17'12 20 221/a 25 25 .r.., embedment' (mm) (114) (254) (318) (381) (445) (508) (572) (635) (635) e. he Max.torque 7-4,44 ft-bs 15 33 60 105 125 165 200 280 280• • ;� Max.torque' T,,,,,, ft-bs 10 25 50 90 125 165 N/A' 280 N/A' h (A36/Grade 36 rod) d .w Max.torque' , :NO '. �' ' (Class 1 SS rod) T ft-bs 5 20 40 60 100 165 N/A' 280 N/A Minimum anchor Inch 17/4 2'/2 3'4 33/4 4'4 5 5'/e 6'14 8'4 spacing s•'" (mm) (48) (64) (79) (95) (111) (127) (143) (159) (159) Minimum edge Inch 5d;or see Section 4.1.9 of this report for installation parameters with reduced distance C"" (mm) minimum edge distances Minimum member inch h.r+1'/4 + thickness h'"'" (mm) (h.r+30) h.1 2d. For SI:1 Inch=25.4 mm,1 ft-Ibf=1.356 N-m.For pound-inch units:1 mm=0.03937 inch,1 N-m=0.7375 ft- Ibf. 'N/A=Not Applicable. 'The maximum embedment is limited to 12d for horizontal and upwardly inclined installations and for installations in water-filled(flooded)holes drilled with a carbide drill bit 'These values apply to ASTM A36/F1554 Grade 36 carbon steel threaded rods only. 'These values apply to ASTM A193 Grade B8/B8M(Class 1)stainless steel threaded rods only. MI Illiani• FIGURE 3—PE1000+EPDXY ADHESIVE ANCHOR SYSTEM INCLUDING TYPICAL STEEL ANCHOR ELEMENTS ESR-2583 I Most Widely Accepted and Trusted Page 14 of 18 Given: --- PE1000+Epoxy Adhesive Anchors TENSION SHEAR Group of two 1/2-inch diameter,ASTM A 193 Grade 87 anchor rods Concrete compressive strength:in=4,000 psi i- Aft y / 1.5ce She No supplemental reinforcement(Condition a per AO 318-88 D.4.4 r) I PC e n...•-�n ce.IT NI Assume untracked concrete and no eccentricity l 1- III Maximum short term temperature:100°F I _ f Maximum long term temperature:70°F I �° I 4a S.S/yr 4t♦ tom_. h,=12.O in.;hy=9.Oin. L___-t _ Car=c,,,..,=2.51n.;4,21.542 s,=41n_ I ON., Load combinetion from ACt 318 Section 9.2(no seismic considered) •Tr... '• 50%dead load and 50%live load assumed v46,„ Dry hole condition;hammer-drilled holy :� Assume T applied to anchors after installation and care h� Inspection regimen=periodic 1. hI• ( � 1 Calculate: 4' ....4 W t Strength Design(SD)capacities and convert to Allowable Stress Design(A;0) capacities for this configuration Calculation according to ACt 318-08 Appendix D and this report(ESR-2583) Code Ned. .•rt Ref. Step 1.Verify minimum member thickness,minimum spacing and edge distances: h,=12.0 In.th,,.,,=he+1-1/4w In....OK ACI313 §4.1.9 and s,,,.,.=4 in.2 s...=2-1/2 in.:.OK §D.8 Table 5 c,,,.„a c,,,=2-1/2 in.2 c.,,.=2-1/2 in.:.OK(t equals 5d where T.,.is applied)•Caleutaf capadip for oolifigurglan n:r_ -- , . _ ..:07.:.'.'. , Step T-1.Calculate steel strength of a single anchor in tension:N,,,,=17,735 lbs. AG 313 1412 and Calculate steel capacity of the anchor group:M.=0.75•2.17,735 lbs.=26,600 lbs. §D'5"1'1 Table 4 4 D.4.4 all) Step 1-2.Calculate concrete breakout strength of the anchor group In tension: ACt 318 Apt�(, �/� ,t §0.5.2.1(b)and §4.1.3 Nag= A Wer.NV1.d.A'Pr,NY'cy1i''S Eq.(D-5) pc, Step T-2a.Calculate A,,,and A, ACi 318 A,,,'9h1= 9•(9.0)'=729 in' §0.5.2.1 and - A..=(1.5 he'+se+1.51 )•(1.5he+Gt)=(13.5+4.0+13.5).(13.5+25)=496in.' Eq.(D-6) Step T-2b.Calculate ip,u,=1.0(There is no eccentricity for the anchors loaded in tension) ACl 318§0.5.2.4 Step T-2c.Calculate IP,,r,,,a 1.0 if c_,x 1.5 he; etc,N=0.7+0.31. If 4,....„r 1.5 he ACi 318 ca,.,,=2.5 in.<1.5 =24.3in.:. §0525 and he= �,ae= 0.7+03 1]5=0.75 Eq.(0-10)or(0-11) Step T-2d.Calculate 4=1.0(untracked concrete) ACI 3180.5-2.6 - Step T-2e.Cakulate 41,..,..=1.0 if c,,,...,2 4.; eha,,r== 1 If cg,.,<ce where AC1318 §4.1.10 ca=h,.•ft', )n+•max[2,8-0.7 f. ;1.41 §03.2.7 end Table 7 Eq.(0.12)or(D-13) c,,.„=2.5 in.; 4,=21.9 In-e-4P y,,,= c°---4--'''Z V, a 9,1-51,-=0.62 AC1318 40.5.2.2 -r Step T-2f.Calculate N,=k .A. f:h,7ts=24.1.0• •9.0ss=40,983 lbs. �� _ §4.1.3 Step T-2g.Calculate concrete breakout strength of the anchor group hi tension: ACt 318 Nos,=(496/729)•1.0.0.75.1.0.0.62•40,983=12.996 lbs I 0.5.2.1(b) §4.1.3 Calculate concrete breakout ca city= =0.65.12.996=&,428 lbs. 1 D.4.4 c)8) Step T-3.Calculate nominal bond strength of the anchor group in tension: AC308 Aira.I. §0.5.3.7 and §4.1.4 Nag= 1Yrd.Na�g.No W.eXafp.N,Na0 Eq.(D-16b) Apa, Step T-3a.Calculate sr,,,,,and co... (rRancr Increased by(f,/2,5001'in accordance with§4.1.8) AC308 §0.5.3.8 and s°u•.=20(d) `14 =20(0.5) o=12.85314= 3.9.0=27.0:.12.8 In.and co,.,=` •=6.4In. Eq,(D-16 d) Table 7 Eq.(D-16e) Step T-3b.CaktiateA,and A.., AC308 A,.„,=(a,,,.?c(12.8)'=164 in.' §03.3.7 and A"•=(c,,,,,+s+ c ,,.)•(c,,,,„+c„)=(6-,4+6)•(6+2.5)?13610.2 Eq.(D-16c) Step T-3c.Ca kcu ate bra•.=1.0 if c,,.,,•c,,,,.,,; Co.=(0,7+03`="-")if c...,,<c.,., AC308 `4N• §D53.12 end §4.1.4 s....,s:23 in.<c4,,,,=6 in.:.Ibe4•._(0.7+0.3 6)=0.83 Eq.(D-161)or(16m) os Sap T 3d.Calculate 4i6,r,= Wgov,o+ [�`- (1- Wgx,a)i LO r imi is AC 308 b%ltere: Wg.nao= tf"- 1) 1Ltereraneri 1 1.0 §053.10 and d.i.4 h-•`.*-e.r n'cri Eq.(D-16t) '4 Table T And: *ie„as„ - *.d h.T 'f = (,.)tom)V '7.09 b8 Eq.(0-16i) ss Wyxae= -[(W- 1)(za�) ,=1.111Wy,,= 1.11+ 1(72-14‘.1(1- 1.11)1.1.05 FIGURE 4-EXAMPLE CALCULATION FOR ILLUSTRATIVE PURPOSES ESR-2583 I Most Widely Accepted and Trusted Page 15 of 18 Cakulatlon according to AO 318-06 Appendix D and this report(ESR-2583)(Continued) _ Code Ref. Report Ref. Step T-3e.Calculate do„,„=1A(There Is no eccentricity for the anchors loaded In tension) §D §4.1.4 Step T-3L Calculate rGaa.=1.0 If c..*,2c ; ryrw=m'Aic :``Ty°)If C.,.e<4. AC D.5.3.14 and §41.4 """211.2-:'61= 1 0.27 Eq.(D-16o)&(16p) f 4.1.10 2.5 in.<c..=21.91n.:. ,= AC.308 4.1.4 Step T-3g.Calculate N„=rr.,,.(0)(d)(h.f)=2,374(00.5)(9.0j=33,562 lbs. f 0.5.3.9 and Table 7 Eq.(0-161) Step T-3h.Calculate bond strength of the anchor group in tension: AC308 N = •0.83•1.05.1.0.0.27 •33,562=6,549 lbs §D.5.3.7 and S 4.1.4 •A 164 Eq.(D-161) ACI Step T-3). Calculate bond strength capacity a p ,=0.65 =4,257 lbs. 318 W Table 7 §0AAC8 Step T-4.Determine controlling resistance strength for the anchors In tension: AC 318 §4.1.1 4W= i cnn,4"a Al„ 4,257 lbs. 40.4.13 Step T-5.Calculate allowable stress design conversion factor for loading condition: Controlling load combination:L2D+1.61.;50%Dead Load,50%Live Load AC303 §4.2.1 a=L2(50%)+1.6(50%)=L40 §0.3.2.1.1 Step T-Sa.Calculate allowable stress design value for the single anchor in Tension: AC308 a257_ §0.3.2.L1 and §4.2.1 Tauowabre.ASD= -- t 3,040 lbs. Eq.4-2 Catcidate shI capic`tV for cdnfiguration Step S-1.Calculate steel strength of a single anchor In shear;V,„=10,650 lbs. ACS 318 §4.1.6 Calculate steel capacity of the anchor group in shear:d nV=0.65.2*10,650 tbs.=13,845 lbs. § .E.12 Table 4 S O44.4 a)11) Step S-2.Calculate concrete breakout strength of the anchor group in shear: ACI 318 Ayc , �R §0.6.2.1(b)and §4.1.7 _ VcbB Avco iPac.V Wade )"PRVVb Eq.(D-22) Step S-2a.Calculate A„=and Aw, AO 318 =43(4/-4.5•(1S)1■2iln 40.6.2.1 and - A,,(1.5C+;+1.5c r}•(13c,,,}=(3.75+4+3.75)•(3.75)=43 in' Eq.(D•23) Step S-214 Calculate:a,. 1.0(There is no eccentricity for the anchors loaded In shear) ACt 318 §0.6.2.5 _ Step Ste.Calculate 0•44,=1AW4221.5c4; sfrow= 0.7+0.3 a: If 4:<1.5c,, ACi818 ix, 4 D.8.2.6 and 134,4 =1.0 Eq.(0-27)or(0-29) AO 318 Step S-2d.Calculate 0,a 1.4{uncracked concrete) • §0.6.2.7 ACI Step S-2e.Calculate r,l4,=1.0ifh.21.55.,;+Jrrv= �Ifh,<1.5c.•, 8 a �i "• 4 0..6.6.2..6 and =9.0>1.54,=3.75.46,011,0 Eq.(0•29) ACI 818 Step S-2f.Calculate 4=7209 f,(ca1)L5=7(1.0){o�0 2 0.5�f�(2.5)u=1,875 lbs. 4 0.6.2.2 and - Eq.(0-24) Step S-2g.Calculate concrete breakout strength of a Single anchor in shear: ACI 318 Vd,=(43/28)•LO•LO•LO.1.4. 1,875 a 4,030 lbs §D.6.2.1(b) §4.1.7 Calculate concrete breakout capacity a IfV,a=0.70.4,030=2,820 lbs. §D4.4 c)i) Step S-3.Calculate nominal pryout strength of a single anchor in shear: AC308 V„y=min'kN ;kg,Ncyy1=min(2.0 .6,064;2.0 .11,7121=12,128lbs §0.6.32 and §4.1.8 Calculate pryout capacity:it V.,=0.70•12,128 lbs.=8,490 lbs. Eq.(0.30a) Step 5-4.Determine controlling resistance strength in shear: ACI 318 §4,1.1 �V=min eke.¢4'�,�rnJ_i5V4=2,820 lbs. 40.4.1.1 Step S-5.Calculate allowable stress design conversion factor for loading condition: Controlling load combination:1.2D+1.61.(50%dead load,50%live load) AC308 §4.2.1 =1.2(50%)+1.6(50%)=1A0 §0.3.2.1.1 Step 5-5a.Calculate allowable stress design value: AC308 zezo ¢0.3.2.1.1 and §4.2.1 Vauwa :..A O- _ '2,OlS lbs. _ l N Eq.4-3 FIGURE 4-EXAMPLE CALCULATION FOR ILLUSTRATIVE PURPOSES(Continued) ESR-2583 I Most Widely Accepted and Trusted Page 16 of 18 TABLE 10-EXAMPLE OF PE1000+EPDXY ADHESIVE ANCHOR ALLOWABLE STRESS DESIGN(ASD)VALUES FOR ILLUSTRATIVE PURPOSES"2'3'4'""°'"'",i° NOMINAL EFFECTIVE CONCRETE EFFECTIVE- CHARACTERISTIC NOMINAL STRENGTH ALLOWABLE ANCHOR EMBED.' STRENGTH12 NESS BOND STRENGTH IN REDUCTON TENSION LOAD" ROD he r. FACTOR STRENGTH TENSION FACTOR 111 N„/a DIAMETER (inches) (psi) FOR Tk°M N„ f" (pounds) OR REBAR UNCRACKED (psi) (pounds) SIZE CONCRETE Temp. Temp. Temp. Temp. Temp. Temp. Temp. Temp. (inch)(No.) k„,,, Range AT Range Be Range AT Range B A ° Range ' Range B° Range A' Range B° ASTM A193 Grade B7 Threaded Rod 21/. 2,500 24 2,375 1,160 4,392 3,246 0.65(conc) 0.65(bond) 1,930 1,425 ,/° 4'/2 2,500 24 2,375 1,160 9,750 6,150 0.75(steel) 0.65(bond) 4,945 2,700 23I4 2,500 24 2,244 1,097 5,472 4,713 0.65(conc) 0.65(bond) 2,400 2,070 112 10 2,500 24 2,244 1,097 17,750 17,232 _0.75(steel) 0.65(bond) 8,995 7,570 s 3'!° 2,500 24 2,148 1,050 6,629 6,375 0.65(conc) 0.65(bond) 2,910 2,800 /8 12'/2 2,500 24 2,148 1,050 28,250 25,771 0.75(steel) 0.65(bond) 14,320 11,320 a 3'I2 2,500 24 2,073 1,013 7,857 7,857 0.65(conc) 0.65(conc) 3,450 3,450 /° 15 2,500 24 2,073 1,013 41,875 35,802 0.75(steel) 0.65(bond) 21,220 15,725 3'/2 2,500 24 2,013 984 7,857 7,857 0.65(conc) 0.65(conc) 3,450 3,450 /° 17./2 2,500 24 2,013 984 57,750 47,336 0.75(steel) 0.65(bond) 29,265 20,790 1 4 2,500 24 1,960 958 9,600 9,600 0.65(cone) 0.65(conc) 4,215 4,215 20 2,500 24 1,960 958 75,750 60,193 0.75(steel) 0.65(bond) 38,390 26,435 1 /4 5 2,500 24 1,876 917 13,416 13,416 0.65(conc) 0.65(conc) 5.690 5,890 25 2,500 24 1,876 917 121,125 90.026 0.75(steel) 0.65(bard) 61,380 39,535 ASTM A706 Grade 60 Reinforcing Bar 23/° 2,500 24 2,375 1,160 4,392 3,246 0.65(conc) 0.65(bond) 1,930 1,425 3 4'/2 2,500 24 2,375 1,160 8,800 6,150 0.75(steel) 0.65(bond) 4,460 2,700 2'14 2,500 24 2,244 1,097 5,472 4,713 0.65(conc) 0.65(bond) 2,400 2,070 4 10 2,500 24 2,244 1,097 16,000 17,232 0.75(steel) 0.65(bond) 8,110 7,570 3'!4 2,500 24 2,148 1,050 6,629 6,375 0.65(conc) 0.65(bond) 2,910 2,800 5 12'/2 2,500 24 2,148 1,050 24,800 25,771 0.75(steel) 0.65(bond) 12,570 11,320 3'/2 2,500 24 2,073 1,013 7,857 7,857 0.65(conc) 0.65(conc) 3,450 3,450 6 15 2,500 24 2,073 1,013 35,200 35,802 0.75(steel) 0.65(bond) 17,840 15,725 3'12 2,500 24 2,013 984 7,857 7,857 0.65(conc) 0.65(conc) 3,450 3,450 7 17'/2 2,500 24 2,013 984 48,000 47,336 0.75(steel) 0.65(bond) 24,325 20,790 8 4 2,500 24 1,960 958 9,600 9,600 0.65(conc) 0.65(conc) 4,215 4,215 20 2,500 24 1,960 958 63,200 60,193 0.75(steel) 0.65(bond) 32,025 26,435 4'/2 2,500 24 1.916 936 11,455 11.455 0.65(conc) 0.65(conc) 5,030 5,030 9 22'/2 2,500 24 1,916 936 80,000 74,432 0.75(steel) 0.65(bond) 40,540 32,690 10 5 2,500 24 1,876 917 13,416 13,416 0.65(conc) 0.65(conc) 5,890 5,890 25 2,500 24 1,876 917 101,600 90,026 0.75(steel) 0.65(bond) 51,485 39,535 For SI:1 inch=25.4 mm,1 lbf=4.448 N,1 psi=0.006894 MPa.For pound-inch units:1 mm=0.03937 inch,1 N=0.2248 lbf,1 MPa=145.0 psi. 'Single anchor with static tension load only:ASTM A193 Grade B7 threaded rod and ASTM A706 Grade 60 reinforcing bar. 'Vertical downward installation direction. 'Special inspection interval=Periodic. `Installation temperature=41°F(5°C)to 104°F(40°C)for base material;41°F(5°C)10 95°F(35°C)for cartridge adhesive. 'Embedment=h.,„;„and h,,,,,,,for each diameter. °Concrete determined to remain uncracked for the life of the anchorage. 'Temperature Range A:Long-term service temperature=75°F(24°C),short-term service temperature=104°F(40°C). °Temperature Range B:Long-term service temperature=110°F(43°C),short-term service temperature=140°F(60°C). °Load combinations are based on ACI 318 Section 9.2 with no seismic loading considered. 10Thirty percent(30%)dead load and seventy percent(70%)live load;controlling load combination 1.2D+1.6L. "Calculation of weighted average for the conversion factor,a=1.2(0.3)+1.6(0.7)=1.48. t2P,.=2,500 psi compressive strength(normal-weight concrete). "C„=C.2 2 C.,,. "h 2 h„,,,,. "Strength reduction factor from controlling nominal strength In tension[i.e.steel,concrete(conc),bond]decisive from design assumptions. "Hammer-drilled holes In dry concrete. ESR-2583 I Most Widely Accepted and Trusted Page 17 of 18 11111 . 41111 Ilia PEI 1131P il I I 1 11111111 TO IT '� ��° � J11111141.I ILIIIII t t g. 11 $-' if . II IP.,2:-. 1-.;---2 7 4 gsi m mitii . : ult.411!fa hit! 90, Gfi i 7 *it Pi Phi . i : ipirW 119' F .5 ; 1 111 . As 144 ' 1 [lilt 11 3 I MICE N IA R ' * . 2.0 . ! gg '-' - L 72 1 sr Rti 1 g -2: it+ It f lit it -ii el I fl1jJI 4 F 1_° '151 go o i i 111, ill na• F � it I 1is81 [ ga. 9 o : ;i1 1 4 . Nig gill° x-71 ad i R R2t I[ttitiiijj ! f lfziwz, i m gill! till ' , Pillithiltill ' i '0 ;13 sa a r a . ` i QI 1111 I ! ? i g ,,v:� _ sty e= f= 1 4 1 ,,,s R '� ° [ 3 aY g_ 111111111111 ilnl ii P I . . . - 4Y . S . — gi,' a a a s a ig i �n�Z�ng` nh n + 'z 7 t gos8k;dote 680 ; p Sis . 111 . � _ P k- Ill 1l r limi 3' 1 is g 1 i pass :`= R+aii if it if . a �a AA3 . - t u I, i r y killti11111W i 1 U "[gig . stiA - isali= I _ v. III I LL----1'.--- . 114 : I it I I 1 I I r — i ”■54 ;ri . 21;.! MU) i I* i i "; f i ° a f iiaa °u« ?2', it i , -v 4- ' , . , N tiw si . 1 I ' 1 g1 FIGURE 5—MANUFACTURER'S PUBLISHED INSTALLATION INSTRUCTIONS(MPII) co . 0 co .+....„ d a co SELECT HAMMER DRILLING OR CORE DRILLING AS SUITABLE FOR APPLICATION FOLLOW STEPS#1 THROUGH#10 FOR RECOMMENDED U TALLATION m c O r gin De a hole ante the brae maaar.tlt reedy boom del b the ate del as lnwla a Cheek i dt+w valuation date a IMI* OD011lNa W P°ells f'l„ Resew WeialSablyDW Sheet tydSCl,Makes tlieNstb* rsgtaed by t 1st.Nec1W.teat btemlttwre arnwr(sea TWO lily.Tolerances of aadads r1.1 tits 2 1t :«w rust matt ofNuSwwaar dulling IS.sndkr Prot 'tow WNW eye and WO Preieataa.nvad be between 41•P-057 ts•C•WC)Wee mu WAN and 3 It6t c� cue limes.Car$ida44onshoutdbeghtertle1l�Mlal�lAlowNeeineoflhe g p..„.Ywi I Note to case of*raiding wader in Meddled beep hate flooded tees,Y to weer haste bo ri:- t atihesa0 In wean leatpera4aas.For the Monty.Pdrpaf*r flee 4184101 c +crowed from the hole(..g.%s urn,compressed at.aka peke to dde ring. 1.tnpera4ae see Tutla U. o CA d Sterne tom the bottom a black of Cm dried anchor hole,brow er tote Con(ore of lempe a bussed tnttxttg elorsb to Me ratrtatdgs.Lao star OMAN ter mint n terry toy U g and make sure the mbsug Memel le Melds the mash.Load the cartridge Ines the Ilimtnade dta:t,.minimum d lets mree(sa) t7 =red dispensing tool. Use a oomprwaed air rtawtase lean.t>Q pee kr al stews ol macho'add and wadalesp rues ? Nobs;Alreys use a new nt♦xtg rrusla emn newcaeabdrall Wed awe and OW tee E `� ,' ,'I raw.Anomaare r a hard RUMP assn volume 28 t ex,suppled by Powers Fast end)trey q M t1.rt/nM rt(otbns exceeding re ptrelaned tau(warNd Iwo of IN edlasNe. all3 ' fu teed br erctar rods&!T lb 3ra''I'M hat or rNrtfoMitg her what)saes a3 bo t0 Gx z /' y Poor to ewrLn0 the arohw sae for OW MN Ike Nod haw Ode.M Peron d b rn i p ' snlyedrrloAS sal more then 8tndxsa end Ramp male not bet leed wrenierster nrtcttor saes). X sa rn as DaladWro brush Minaret lice TON fry Ttk#at t6 61F t*i afar Neat.thr brush r nth uiR ee b.dmata depth bas to b.aledbe4 a Y!e setQle[.1Al•-alleeeetllatet11 a saatgrtt 0 aa gl --T� w a town.06111 tot or Outcry screw mss,Brisetan beta wnh trot selectee wee brush• h-_ and 4M of whoa damps. p -:, ern c4 bur lfinet(ax). 0•to s .*+ .. 7 AWluakw most b0 paepMly mod 6 a0ww pubeYMd Melire80 lstler to -s tY Abnolltsention(suppled by power;Fasteners)must be used krholes riled deeper ct W >s `' thtuuhaYNedbnrsh length The ore brush dlarrrser neat be 4.0c144 psi Wtply duriq use decanting Wheels*too Ilse MOM hole.aeprrarty d)tpalM rr esM tree tar to $ strokes et adhesive through tau irking nets unM ate adhlohr e e owrted rot wX Borah tr i0um s D„e„lee Table r):Tote brush shooed reibt trearech Imo use doted hoe.tr sot the I eats.0 Went*too smil and must be repriced tom the pager berth dontetar. } Rexesm and note the published stelkltg and cute law(see Tabie II)poor to inject/art O craw MI Repeat Step 2a again by blowfly the bola dean a ointment of four tines(la). /a pie aided teueere rao xy Owed aypr NO_ F id Repil 1040wlrp When fleshed foe hoe should be clean and free of duL tied*.10e,graaae,011 Or otter forego .,. Q fflu '.x mislaid. 9 Next go to Step 3. "4 at*the dawned hob appr0ffiarINy t rail 411 wet mused anMnanu stating t) ° 1. Me bolero orbaGooithe Nam Me.Slowt WYsluset a no*4.se lwl/_ ti aril•tote too the base mWenat web core drk to Ow 14r and embedment required by who w_ ."-s--'t�! gee tole SON mil cream akeoceals or sada Pot sospol eMe(toe's gassier < few w 2 , selected steel hardware clement(see Table Ill). l tort r a ola4gCNtwhMan 4dlemgbe ueeevia thtraQwl olio(see Thom h�. to o:.=r , ..we <- i paten WC.lees TaLleV)aer6b mod yulkeaeri then WAIN taus and ? H J preeSo on:Wear astable eye and skin prtfecTO01t Arad trwl MWIIi of dire want o1lrtp eah plakln plug: extension tutu tar 04111MM!11M MI4OI td11ba110wr ate them f4 la p u a M rota removal. O ►, 1'/:(bonehe end fobr'MawMll e**MIX PONS 1�eMIMSetIl+etktee to -7 Starling from the bottom a back of the drilled anchor Oda rinse/Mob the hoar clean with it t. note use elect as desa ve(In tier method ebore.Duets I Msesben me piston peg lull I wit sa(Ilnrasy*WOW from the honed hob try the adttMbepo sot rr vtewr(water/ro premium)until deer tester comes tot. IutR l Do not install a clzwa overhwd itratoutp popes'Ironing and irtraleebn co L nr ,- harp cake grease DYPowers Postmen,Carrie Poway kr desks piker o use. a Wet 11160eletrnine ratan diameter(see Tette l)lbr the doled hole and Wan Ire brushers' 4.ele iwlaptr?T to a rotary dot lod or tut lay*crew(butt.Borten ore bate Mitt the.eecled ore brush a The lodes shard be fee W dirt 91M1 .PI Or etbwei alrl Proud a. tie miler rell1MO.ip her trio gee anchor hie A�IIMiisgMpwr to ( co • Q "*r r of lour Whys its a). ..A.t1YeMba.r/Mswls M Yfs wRlaarvc ugrl the.etrlMlwM.e/U 4u sardwa w cc ti t ,- h retention(steeled by Powers Paltered%)steam be used for tors Wiled deeper than (UMW MielfweYlp tae. cQ „r ` YYiwtodstttunkrngut thewretrustat xmtiateatawa»taaeperornruywr*yuas Baum1stomes wwanwtluinsuroebMMNiwa01.1wA01PM �Vw t�111 T_ U V ,•0...•see Tads It.The boat"ywMQt4W jeee ionk11O fee mug'her, t rot t1»east I Q U m x Bn en es le tra snot and mat be replaced ritntaragao+y' +dlMidlAu<_ AOsdshae arelardtw+y 1Y Me enaldertlep M M name*rrAle•ete101p Y1MIrYendwg Mew wnMrt.radars ee m tMu/es.Probe**erasers la p 2C1 Rastas Sap 2a again b y nr ee tushttg the hole dean Wit water. tirwdtrwdstom tome eel a(beMtau.Fetal leMilerrre Y 410r darters Z a anti -i RePeet Riming Following gee restore Se standelp wrier completely lag.vapam..compassed as,etc.)poor to MIN MI1 lywtolool+baw ossee sot Yrotobbell MMller.d 101W t� a Q1 W mar iteweng To r(lin a deed bOrMlfle a Powers sn p waled at Hems a regcort mwxl4d WoorawpsriawAr rte title of teetpaarytrttMwr sawed a e.or deer 2 O le auebodt dabber dbrrlwl le bar poalee dial awrrw eollsoy be ut¢ Spa r- I StenilXIM a tow bloom or beck of ate(reed anchor hole,Pow the note dean performed arena the nr►ma orgy. �, I roeteobts,dusty a mirymum te Pouncnst(fa). w .*. but) poglxsaad sir nozzle Olen_90 pet to at strut of aru;rto rod and retrdactl4 lea w •D Mow dot*dimities amber b cure b w tgeNrd Sat own tube pate b ce � � � ' eppryilg way toad last]'Met Iq. kb ing f x ld Mow 4r Do not disturb.to MUG Of laid Yes aaltrrtetW t r sty add in• w ___-_.._—..._.__ ti Jt.p8l tW.Nng II PopeatileatZS aIJia by iUUar>ap Lou tole girth a era WW1*uaf 11o4.110 o1.oi hnv.(ic) p ■ +r ,� 10.Aber toil strong of the adttes*unclear,a favor!teen be loosed to gee ablates • and tightened W to the marrlwm laque(snow h Isbell)!riming a calibrated w > t � eDMt Step 2d steal+by(owing tow tzar(son.rrrarrtr an of bur tunes(4x,. a torque wrench to Venn tlt4ned{tae**should b e clean and he of otat,debts.Ica.prows,dl a other forego x • sr m r.- Noe Thule teas ear to exceed Po mavimum lore mfr IM akraw0 tender. Cl rtlebr'ist, "1`Nutt g0 to Step�. V ... W V) W EZ ICC EVALUATION SERVICE Most Widely Accepted and Trusted ICC-ES Evaluation Report ESR-2583 FBC Supplement issued May 1, 2013 This report is subject to renewal December 1, 2013. www.icc-es.orq I (800)423-6587 I (562) 699-0543 A Subsidiary of the International Code Council® DIVISION:03 00 00—CONCRETE Section:03 16 00—Concrete Anchors DIVISION:05 00 00—METALS Section: 05 05 19—Post-Installed Concrete Anchors REPORT HOLDER: POWERS FASTENERS,INC. 2 POWERS LANE BREWSTER,NEW YORK 10509 (914)235-6300 or(800)524-3244 www.powers.com engineering@powers.com EVALUATION SUBJECT: POWERS PE1000+®EPDXY ADHESIVE ANCHOR SYSTEM IN CRACKED AND UNCRACKED CONCRETE 1.0 REPORT PURPOSE AND SCOPE Purpose: The purpose of this evaluation report supplement is to indicate that the Powers PE1000+®Epoxy Adhesive Anchor System in Cracked and Uncracked Concrete, recognized in ICC-ES master evaluation report ESR-2583,has also been evaluated for compliance with the codes noted below. Applicable code editions: • 2010 Florida Building Code—Building • 2010 Florida Building Code—Residential 2.0 CONCLUSIONS The Powers PE1000+® Epoxy Adhesive Anchor System in Cracked and Uncracked Concrete, described in Sections 2.0 through 7.0 of the master evaluation report ESR-2583,complies with the 2010 Florida Building Code—Building and the 2010 Florida Building Code—Residential, provided the design and installation are in accordance with the International Building Code®(IBC)provisions noted in the master report,and under the following conditions: • Design wind loads must be based on Section 1609 of the 2010 Florida Building Code—Building or Section 301.2.1.1 of the 2010 Florida Building Code—Residential,as applicable. • Load combinations must be in accordance with Section 1605.2 or Section 1605.3 of the 2010 Florida Building Code— Building,as applicable. • The modifications to ACI 318 as shown in 2009 IBC Sections 1908.1.9 and 1908.1.10, as noted in 2009 IBC Section 1912.1,do not apply to the 2010 Florida Building Code. Use of the Powers PE1000+®epoxy adhesive anchors with stainless steel threaded rod materials and reinforcing bars has also been found to be in compliance with the High-Velocity Hurricane Zone provisions of the 2010 Florida Building Code— Building and the 2010 Florida Building Code—Residential,when the following conditions are met: • Design wind loads for use of the anchors in a High-Velocity Hurricane Zone must be based on Section 1620 of the Florida • Building Code—Building. • Reinforcing bars must be in accordance with Section 1922.4 of the Florida Building Code—Building. Use of the Powers PE1000+®epoxy adhesive anchors with carbon steel threaded rod materials for compliance with the High-Velocity Hurricane Zone provisions of the 2010 Florida Building Code—Building and the 2010 Florida Building Code— Residential has not been evaluated,and is outside the scope of this supplemental report. For products falling under Florida Rule 9N-3,verification that the report holder's quality assurance program is audited by a quality assurance entity approved by the Florida Building Commission for the type of inspections being conducted is the responsibility of an approved validation entity(or the code official when the report holder does not possess an approval by the Commission). This supplement expires concurrently with the master report reissued December 1,2011,revised May 2013. /CC-ES Evaluation Reports are not to be construed as representing aesthetics or any other attributes not specifically addressed,nor are they to be construed as an endorsement of the subject of the report or a recommendation for its use.There Is no warranty by ICC Evaluation Service,LLC,express or implied as to any finding or other matter In this report,or as to any product covered by the report hu nf' - Copyright®2013 Page 1 of 1