Loading...
Report (9) (03 i€ s vy c3v? 20\3- 00\A-1 Unison Solutions, Inc. 5451 Chavenelle Road Dubuque, Iowa 52002 www.unisonsolutions.com I V WY/ PSV COMPRESS Pressure Vessel Design Calculations Item: Siloxane Removal Model #: 7' x 16' Vessel (SN 1576/1577) Customer: Durham Job # (Dwg #) 175-03/04 (6V-175-21/22) Engineer: Eric Dreier Date: January 15, 2014 (<-�D PROA-6, ` 5.•E OFFICE COPY ' OREGON 1/4 GOLDS4 f' P:RES: 3a is Table of Contents General Arrangement Drawing 1/171 Deficiencies Summary 2/171 Nozzle Schedule 3/171 Nozzle Summary 4/171 Pressure Summary 5/171 Revision History 7/171 Settings Summary 8/171 Radiography Summary 10/171 Thickness Summary 11/171 Weight Summary 12/171 Long Seam Summary 13/171 Hydrostatic Test, 14/171 Upper Shell 15/171 Lower Shea 24/171 Top Head 40/171 Straight Flange on Top Head 45/171 Straight Flange on Bottom Head 54/171 Bottom Head 63/171 Drain(D). 68/171 Elliptical Man-Way(EMW) 71/171 Gas Outlet(GO>. 76/171 Left Septa(LS) 83/171 Middle Septa(MS) 90/171 Pressure Safety Valve(PSV). 97/171 Right Septa (RS1 102/171 Vent(V) 109/171 Leas 114/171 Table of Contents Seismic Code 124/171 Wind Code 128/171 Clip#3 132/171 Lug#t 136/171 Lug#2 145/171 Lug#3 154/171 Packed Bed#1 163/171 Platform Mounting Bracket. 164/171 Top Pipe Support. 168/171 ii I T T V nli-DI,Y.L 1l!1A BIln$ MIlg -7\Ti7L-7- KiTEI!frUlEr7ii41\ • - tTi 1.1PI.siL•�FaRn'•Lfii• .. — .t.ibiiYwi'�Gi.{RL +/iMIWY. M∎1 117ll:T� • - - - -. �rtgira 1...ri+l2• s•ltg.0 •.wn IRS u.••n. 1 ''�aw.-C Med Mt 11f.1 R /// VV�� IN eII��77 �Oxl-f�q3o0.e9cG�uN ��zps�°y Wl.�,�rgl�lyu .'W in 96 I MRgi.BP2 rn117cnrax aua47i 1& :zit "�`} ''277 'nu.I J 3 al CI _41n -I . m;a1 • 1 ttorals i VW le I• u¢mz-w.; Trill. 1 .11111111 -F - ---- --------,----Q- CG- -- 1 ----= -•- --- - -• -�-.o;- I I .ou 7A 11 011 •mr+mrfourer art, _ lm ivrnvmremrmrf I a n∎ rm� Ig .V.I o NoI^ao u., 1 5t�, ^ f Ivo Deficiencies Summary No deficiencies found. 2/171 Nozzle Schedule Nmazrk Service Size Materials Tested Normalized Fine Grain Flange Blind D Drain NPS 3 Class 3000-threaded Nozzle SA-182 F304L<=5 No No No N/A No EMW Elliptical Man-Way 16"x 1Z Elliptical Nozzle Nozzle SA-240 304L No No No N/A No GO Gas Outlet NPS 8 Sch 10S Nozzle SA-312 TP304L Wld No No No NPS 8 Class 150 No pipe SO A182 F304L LS Left Septa NPS 8 Sch 10S Nozzle SA-312 TP304L Wld No No No NPS 8 Class 150 No pipe SO A182 F304L MS Middle Septa NPS 8 Sch 10S Nozzle SA-312 TP304L Wld No No No NPS 8 Class 150 No pipe SO A182 F304L Pressure Safety PSV Valve NPS 2 Class 3000-threaded Nozzle SA-182 F304L<=5 No No No NiA No La Right Septa NPS 8 Sch 10S Nozzle SA-312 TP304L Wld No No No NPS 8 Class 150 No pipe SO A182 F304L Y Vent NPS 0.5 Class 3000- threaded Nozzle SA-182 F304L<=5 No No No N/A No 3/171 Nozzle Summary Shell Reinforcement Nozzle OD t Req to Al? AZ? Pad Corr Ap/A� mark (In) (In) (in) (In) (6/6) Nom t Design t User t Width (in) (In) (In) (in) (Q'n D 4.25 0.375 0.0625 Yes Yes 0.1434* N/A N/A N/A 0 Exempt EMW 17.5 0.75 0.0072 Yes Yes 0.1434* 0.0351 N/A N/A 0 241.8 QQ 8.625 0.148 0.1086 Yes Yes 0.1434' 0.0351 WA N/A 0 386.5 La 8.625 0.148 0.0714 Yes Yes 0.1875 0.0377 N/A N/A 0 315.3 Isiaa 8.625 0.148 0.0714 Yes Yes 0.1875 0.0377 N/A N/A 0 322.6 Ea 3 0.3125 0.0625 Yes Yes 0.1434' 0.0351 N/A N/A 0 675.5 $a 8.625 0.148 0.0714 Yes Yes 0.1875 0.0377 N/A N/A 0 315.3 V 1.125 0.1425 0.0625 Yes Yes 0.1434' 0.0351 N/A N/A 0 932.8 tn: Nozzle thickness Req tn: Nozzle thickness required per UG-45/UG-16 Nom t: Vessel wall thickness Design t: Required vessel wall thickness due to pressure+corrosion allowance per UG-37 User t: Local vessel wall thickness (near opening) Aa: Area available per UG-37, governing condition Ar: Area required per UG-37, governing condition Corr: Corrosion allowance on nozzle wall Head minimum thickness after forming 4/171 Pressure Summary Pressure Summary for Chamber bounded by Bottom Head and Top Head P T Identifier MAWP MAP MDMT MDMT Impact Design Design (psi) (psi) ( °F) Exemption Tested (psi) (°F) Top Head 15 150 25.73 26.02 -320 Note 1 No Straight Flange on Top Head 15 150 52.28 52.28 -320 Note 2 No Upper Shell 15 150 52.28 52.28 -320 Note 2 No Lower Shell 15 150 52.28 52.28 -320 Note 2 No Straight Flange on Bottom Head 15 150 52.28 52.28 -320 Note 2 No Bottom Head 15 150 25.73 26.02 -320 Note 1 No Platform Mounting Bracket, 15 150 15 N/A N/A N/A N/A Top Pipe Support 15 150 15 N/A N/A N/A N/A • Leas 15 150 15 N/A N/A N/A N/A Clio#3 15 150 15 N/A N/A N/A N/A Drain(DI 15 150 15 15 -320 Note 3 No Elliptical Man-Way(EMW) 15 150 15 15 -320 Note 3 No Gas Outlet(GO) 15 150 15 15 -55 Note 4 No Left Septa(LS) 15 150 15 15 -55 Note 4 No Middle Septa(MS) 15 150 15 15 -55 Note 4 No Pressure Safety Valve(PSVI 15 150 15 15 -320 Note 5 No Right Septa(RS) 15 150 15 15 -55 Note 4 No Vent(V) 15 150 15 15 -320 Note 6 No Chamber design MDMT is -20 °F Chamber rated MDMT is -55 °F @ 15 psi Chamber MAWP was used in the MDMT determination Chamber MAWP hot & corroded is 15 psi @ 150 °F Chamber MAP cold & new is 15 psi @ 70 °F This pressure chamber is not designed for external pressure. 5/171 Notes for MDMT Rating: Note# Exemption Details 1. Material Rated MDMT per UHA-51(d)(1)(a),(carbon content does not exceed 0.10%)=-320°F 2. Impact test exempt per UHA-51(g)(coincident ratio=0.2298) 3. Impact test exempt per UHA-51(g)(coincident ratio=0.2446) Flange rating governs: 4. Flange rated MDMT=-320°F Per UHA-51(d)(1)(a) Bolts rated MDMT per Fig UCS-66 note(c)_-55°F 5. Impact test exempt per UHA-51(g)(coincident ratio=0.2796) 6. Impact test exempt per UHA-51(g)(coincident ratio=0.0027) Design notes are available on the Settings Summary page. 6/171 Revision History No. Date Operator Notes 0 10/23/2013 edreier New vessel created ASME Section VIII Division 1 [COMPRESS 2013 Build 7330] Converted from ASME Section VIII Division 1, 2010 Edition, All Addenda to 1 1/14/2014 edreier ASME Section VIII Division 1, 2013 Edition. During the conversion, changes may have been made to your vessel (some may be listed above). Please check your vessel carefully. 7/171 Settings Summary COMPRESS 2014 Build 7400 Units: U.S. Customary Datum Line Location:0.00"from bottom seam Design ASME Section VIII Division 1, 2013 Edition Design or Rating: Get Thickness from Pressure Minimum thickness: 0.0625" per UG-16(b) Design for cold shut down only: No Design for lethal service (full radiography required): No Design nozzles for: Design P only Corrosion weight loss: 100%of theoretical loss UG-23 Stress Increase: 1.20 Skirt/legs stress increase: 1.0 Minimum nozzle projection: 1" Juncture calculations for a>30 only: No Preheat P-No 1 Materials> 1.25"and <= 1.50"thick: No UG-37(a) shell tr calculation considers longitudinal stress: No Butt welds are tapered per Figure UCS-66.3(a). Hydro/Pneumatic Test Shop Hydrotest Pressure: 1.3 times vessel MAWP Test liquid specific gravity: 1.00 Maximum stress during test: 90%of yield Required Marking- UG-116 UG-116(e) Radiography: RT4 UG-116(f) Postweld heat treatment: None Code Cases\Interpretations Use Code Case 2547: No Use Code Case 2695: No Apply interpretation VIII-1-83-66: Yes Apply interpretation VIII-1-86-175: Yes Apply interpretation VIII-1-01-37: Yes No UCS-66.1 MDMT reduction: No No UCS-68(c) MDMT reduction: No Disallow UG-20(f) exemptions: No 8/171 UG-22 Loadings UG-22(a) Internal or External Design Pressure : Yes UG-22(b) Weight of the vessel and normal contents under operating or test conditions: Yes UG-22(c) Superimposed static reactions from weight of attached equipment (external loads): No UG-22(d)(2) Vessel supports such as lugs, rings, skirts,saddles and legs: Yes UG-22(f) Wind reactions: Yes UG-22(f) Seismic reactions: Yes UG-22(j) Test pressure and coincident static head acting during the test: No Note: UG-22(b),(c) and (f) loads only considered when supports are present. 9/171 Radiography Summary Radiography for Chamber bounded by Bottom Head and Top Head Longitudinal Seam Top Circumferential Seam Bottom Circumferential Seam Component Category Radiography/Joint Category Radiography/Joint Category Radiography/Joint Mark (Fig (Fig (Fig UW-3) Type UW-3) Type UW-3) Type Top Head A None UW-11(c)/Type N/A N/A B None UW-11(c)/Type None Upper Shell A None UW-11(c)/Type B None UW-11(c)/Type B None UW-11(c)/Type None I 1 1 Lower Shell A None UW-11(c)/Type B None UW-11(c)/Type B None UW-11(c)/Type None 1 1 1 Bottom Head A None UW-11(c)/Type B None UW-11(c)/Type N/A N/A None 1 1 Nozzle Longitudinal Seam Nozzle to Vessel Circumferential Nozzle free end Circumferential Seam Seam Gas Outlet(GO), A User Defined(E= D N/A/Type 7 C N/A RT3 1.00) Elliptical Man-Way(EMW) A User Defined(E= D N/A/Type 7 N/A N/A RT1 1.00) Pressure Safety Valve(PSV) N/A Seamless No RT D N/A/Type 7 N/A N/A N/A Vent(V) N/A Seamless No RT D N/A/Type 7 N/A N/A N/A Middle Septa(MS) A User Defined(E= D N/A/Type 7 C N/A RT3 1.00) Left Septa(LS) A U )Defined(E= D N/A/Type 7 C N/A RT3 Right Septa(RS) A User Defined(E= D N/A/Type 7 C N/A RT3 1.00) Drain(Dl N/A Seamless No RT D N/A/Type 7 N/A N/A N/A Nozzle Flange Longitudinal Seam Flange Face Nozzle to Flange Circumferential Seam ASME B16.5/16.47 flange attached to Gas N/A Seamless No RT N/A N/A/Gasketed C N/A N/A Outlet(GO) ASME B16.5/16.47 flange attached to N/A Seamless No RT N/A N/A/Gasketed C N/A N/A Middle Septa(MS) ASME 816.5/16.47 flange attached to Left N/A Seamless No RT N/A N/A/Gasketed C N/A N/A Septa(LS) ASME B16.5/16.47 flanae attached to Right N/A Seamless No RT N/A N/A/Gasketed C N/A N/A Septa(RS) Chamber bounded by Bottom Head and Top Head-UG-116(e)Radiography: RT4 1 0/1 71 Thickness Summary Component Material Diameter Length Nominal t Design t Total Corrosion Joint Load Identifier (in) (in) (In) (in) (in) E Too Head SA-240 304L 84 OD 15.707 0.1434' 0.0951 0 0.70 Internal Straight Flange on Too Head SA-240 304L 84 OD 1 0.1875 0.0539 0 0.70 Internal Upper Shell SA-240 304L 84 OD 96 0.1875 0.0539 0 0.70 Internal Lower Shell SA-240 304L 84 OD 96 0.1875 0.0539 0 0.70 Internal Straight Flange on Bottom Head SA-240 304L 84 OD 1 0.1875 0.0539 0 0.70 Internal Bottom Head SA-240 304L 84 OD 15.707 0.1434' 0.0951 0 0.70 Internal Nominal t: Vessel wall nominal thickness Design t: Required vessel thickness due to governing loading +corrosion Joint E: Longitudinal seam joint efficiency Head minimum thickness after forming Load internal: Circumferential stress due to internal pressure governs external: External pressure governs Wind: Combined longitudinal stress of pressure +weight+wind governs Seismic: Combined longitudinal stress of pressure+weight+seismic governs 11/171 Weight Summary Weight(Ib)Contributed by Vessel Elements Component O eratin Surface Area Metal Metal Insulation Lining Piping Liquid g Test Liquid ft2 New Corroded* Insulation Supports +Liquid New Corroded New Corroded Too Head 283.4 283.4 0 0 0 0 0 0 2,124.6 2,124.6 48 Upper Shell 1.374.5 1,374.5 0 0 0 0 0 0 19,032.9 19,032.9 176 Lower Shell 1,364.9 1,364.9 0 0 0 0 0 0 19,083.4 19,083.4 175 Bottom Head 293.3 293.3 0 0 0 0 0 0 2,097.4 2,097.4 50 Leas 389.3 389.3 0 0 0 0 0 0 0 0 51 TOTAL: 3,705.4 3,705.4 0 0 0 0 0 0 42,338.3 42,338.3 500 Shells with attached nozzles have weight reduced by material cut out for opening. Weight(Ib)Contributed by Attachments Component Nozzles& Surface Area Body Flanges Flan es Packed Ladders & Tra s Tray Rings& Vertical ft g Beds Platforms y Supports Clips Loads New Corroded New Corroded Top Head 0 0 138.4 138.4 0 0 0 0 0 0 3 Upper Shell 0 0 0 0 4,563.3 0 0 0 51.3 0 3 Lower Shell 0 0 129.1 129.1 9,126.7 0 0 0 21.7 0 7 Bottom Head 0 0 1.3 1.3 0 0 0 0 0 0 0 Leas 0 0 0 0 0 0 0 0 0 0 0 TOTAL: 0 0 268.8 268.8 13,690 0 0 0 73 0 13 Vessel operating weight, Corroded: 17,737 lb Vessel operating weight, New: 17,737 lb Vessel empty weight, Corroded: 4,047 lb Vessel empty weight, New: 4,047 lb Vessel test weight, New: 46,386 lb Vessel test weight, Corroded: 46,386 lb Vessel surface area: 513 ft2 Vessel center of gravity location -from datum - lift condition Vessel Lift Weight, New: 4,047 lb Center of Gravity: 86.8047" Vessel Capacity Vessel Capacity** (New): 5,068 US gal Vessel Capacity** (Corroded): 5,068 US gal **The vessel capacity does not include volume of nozzle, piping or other attachments. 12/171 Long Seam Summary Shell Long Seam Angles Component Seam 1 Seam 2 Upper Shell 0° 328.1369° Lower Shell 30° 358.1369° Shell Plate Lengths Component Starting Plate 1 Plate 2 Angle Upper Shell 0° 240" 23.3048" Lower Shell 30° 240" 23.3048" *North is located at 0° *Plate Lengths use the circumference of the vessel based on the mid diameter of the components 11 E S tiV LI RS LS T I ! I Shell Rollout 13/171 Hydrostatic Test Shop test pressure determination for Chamber bounded by Bottom Head and Top Head based on MAWP per UG-99(b) Shop hydrostatic test gauge pressure is 19.5 psi at 70 °F (the chamber MAWP= 15 psi) The shop test is performed with the vessel in the horizontal position. Local test Test liquid UG-99(b) UG-99(b) Identifier pressure static head stress pressure psi psi ratio factor Top Head(1) 22.522 3.022 1 1.30 Straight Flange on Top Head 22.52 3.02 1 1.30 Upper Shell 22.52 3.02 1 1.30 Lower Shell 22.52 3.02 1 1.30 Straight Flange on Bottom Head 22.52 3.02 1 1.30 Bottom Head 22.522 3.022 1 1.30 Drain(D) 21.074 1.574 1 1.30 Elliptical Man-Way(EMW) 22.009 2.509 1 1.30 Gas Outlet(GO) 21.161 1.661 1 1.30 Left Septa(LS) 21.811 2.311 1 1.30 Middle Septa(MS) 21.161 1.661 1 1.30 Pressure Safety Valve(PSV) 22.245 2.745 1 1.30 Right Septa(RS) 20.512 1.012 1 1.30 Vent(V) 21.026 1.526 1 1.30 Notes: (1) Top Head limits the UG-99(b)stress ratio. (2)The zero degree angular position is assumed to be up, and the test liquid height is assumed to the top-most flange. The field test condition has not been investigated for the Chamber bounded by Bottom Head and Top Head. 14/171 Upper Shell ASME Section VIII Division 1, 2013 Edition Component: Cylinder Material specification: SA-240 304L(II-D p. 86, In.43) Impact test exempt per UHA-51(g)(coincident ratio =0.2298) Internal design pressure: P = 15 psi @ 150 °F Static liquid head: Pth = 3.02 psi (SG = 1, HS=83.6691", Horizontal test head) Corrosion allowance Inner C =0" Outer C=0" Design MDMT= -20 °F No impact test performed Rated MDMT= -320 °F Material is not normalized Material is not produced to Fine Grain Practice PWHT is not performed Radiography: Longitudinal joint- None UW-11(c)Type 1 Top circumferential joint- None UW-11(c) Type 1 Bottom circumferential joint- None UW-11(c) Type 1 Estimated weight New= 1,374.5 lb corr= 1,374.5 lb Capacity New=2,282.56 US gal corr=2,282.56 US gal OD = 84" Length _ 96„ Lc = 0.1875" Design thickness,(at 150 °F)Appendix 1-1 t = P*Ro/(S*E+0.40*P) + Corrosion = 15*42/(16,700*0.70+0.40*15) +0 = 0.0539" Maximum allowable working pressure, (at 150 °F)Appendix 1-1 P = S*E*t/(R0-0.40*t) - Ps = 16,700*0.70*0.1875/(42-0.40*0.1875) -0 = 52.28 psi Maximum allowable pressure, (at 70 °F) Appendix 1-1 P = S*E*t/(Ro-0.40*t) = 16,700*0.70*0.1875/(42-0.40*0.1875) = 52.28 psi %Forming strain- UHA-44(a)(2) EFE = (50*t/ Rf)*(1 - R1/ R0) = (50*0.1875/41.9063)*(1 -41.9063/oo) = 0.2237% 15/171 Design thickness=0.0539" The governing condition is due to internal pressure. The cylinder thickness of 0.1875"is adequate. Thickness Required Due to Pressure+ External Loads Allowable Stress Before Req'd Thk Due Pressure P( Temperature( Corrosion C Req'd Thk Due to to Condition psi) UG-23 Stress °F) (in) Load Tension(In) Compression Increase(psi) (In) St Sc Oeratina.Hot&Corroded 15 16,700 7.100 150 0 Wind 9.0227 0.0212, o Seismic 0.0234 0.0205 Ooeratina.Hot&New 15 16,700 7.100 150 0 Wind 0.0227 0.0212 Seismic 0.0234 0.0205 Hot Shut Down.Corroded 0 16,700 7.100 150 0 Wind 0.0004 0.002 Seismic 0.001 9.003 Hot Shut Down.New 0 16,700 7.100 150 0 Wind 0.0004 9.002 Seismic 0.001 0.003 Empty.Corroded 0 16,700 76621 70 0 Wind 0.0004 0.0018 Seismic 0.0004 0.0018 Empty.New 0 16,700 776_21 70 0 Wind 0.0004 0.0018 Seismic 0.0004 0.0018 Hot Shut Down.Corroded.Weiaht& 0 16,700 7.100 150 0 Weight 0.0009 0.0011 Eccentric Moments Only Allowable Compressive Stress, Hot and Corroded-SCHC, (table HA-3) A = 0.125/(Ra/t) = 0.125/(42/0.1875) = 0.000558 B = 7,100 psi S = 16,700/ 1.00 = 16,700 psi SCHC = min(B, S) =7.100 DSi Allowable Compressive Stress, Hot and New-Sam ScHN = ScHC = 7.100 psi Allowable Compressive Stress, Cold and New-SccN, (table HA-3) A = 0.125/(Rp/t) = 0.125/(42/0.1875) = 0.000558 B = 7,621 psi S = 16,700/ 1.00 = 16,700 psi ScCN = min(B, S) =7.621 psi 16/171 Allowable Compressive Stress,Cold and Corroded-Sccc Sccc = ScCN = 7,621 psi Allowable Compressive Stress,Vacuum and Corroded-Sac,(table HA-3) A = 0.125/(Ro/t) = 0.125/(42/0.1875) = 0.000558 B = 7,100 psi S = 16,700/ 1.00 = 16,700 psi Sac = min(B, S) = 7.100 psi Operating. Hot& Corroded. Wind. Bottom Seam tp = P*R/(2*St*Ks*Eo+ 0.40 7I) (Pressure) = 15*41.8125/(2*16,700*1.20*0.70+0.401151) = 0.0224" tm = M/(n*Rm2*St*Ks*Ec) (bending) = 53,729/(t*41.90632'16,700*1.20*0.70) = 0.0007" = 0.6*W/(2*71*Rm*St*Ks*Eo) (Weight) = 0.60*1,847.6/(2*7t*41.9063*16,700*1.20*0.70) = 0.0003" tt = tp+tm -tH, (total required,tensile) = 0.0224+0.0007- (0.0003) = 0.0227" two = W/(2*n*Rm*St*Ks*EC) (Weight) = 1,847.6/(2*n*41.9063*16,700*1.20*0.70) = 0.0005" to = Itmc+two-tpcI (total, net tensile) = 10.0007+ (0.0005) - (0.0224)1 = 0.0212" Maximum allowable working pressure, Longitudinal Stress P= 2*St*Ks*Eo*(t-tm+tw)/(R-0.40*(t-tm+tw)) = 2*16,700*1.20*0.70*(0.1875 -0.0007+ (0.0003))/(41.8125 -0.40*(0.1875-0.0007+(0.0003))) = 125.77 psi Operating. Hot & New. Wind. Bottom Seam tp = P*R/(2*St*Ks*Ec+0.40*IPI) (Pressure) = 15*41.8125/(216,700'1.20'0.70+0.401151) = 0.0224" tm = M/(n*Rm2*St*Ks*Ec) (bending) = 53,729/(7t*41.90632*16,7001.20*0.70) = 0.0007" 17/171 • C = 0.6*W/(2*n*Rm*St*Ks*Ec) (Weight) = 0.60*1,847.6/(2*n*41.9063*16,700*1.20*0.70) = 0.0003" tt = tp+tm -tw (total required,tensile) = 0.0224+0.0007- (0.0003) = 0.0227" Cc = W/(2*n*Rm*St*Ks*Ec) (Weight) = 1,847.6/(2*n*41.9063*16,700*1.20*0.70) = 0.0005" tc = Itmc+Cc-tpcl (total, net tensile) = 10.0007+ (0.0005) - (0.0224)1 = Q.0212" Maximum allowable working pressure, Longitudinal Stress P= 2*St*Ks*Ec*(t-tm +tw)/(R -0.40*(t-tm+tw)) = 2*16,700*1.20*0.70*(0.1875-0.0007+ (0.0003))/(41.8125-0.40*(0.1875 -0.0007+ (0.0003))) = 125.77 psi Hot Shut Down. Corroded.Wind. Bottom Seam tp = 0" (Pressure) tm = M/(n*Rm2*St*Ks*Ec) (bending) = 53,729/(n*41.90632*16,700*1.20*0.70) = 0.0007" C = 0.6*W/(2*n*Rm*St*Ks*Ec) (Weight) = 0.60•1,847.6/(2*n*41.9063*16,700*1.20*0.70) = 0.0003" tt = t,+tm -tw (total required,tensile) = 0+0.0007- (0.0003) = 0.0004" tmc = M/(n*Rm2*Sc*Ks) (bending) = 53,729/(n*41.90632*7,099.82*1.20) = 0.0011" twc = W/(2*n*Rm*Sc*Ks) (Weight) = 1,847.6/(2*n*41.9063*7,099.82*1.20) = 0.0008" tc = tmc+twc-tpc (total required,compressive) = 0.0011 + (0.0008) - (0) = 0.002" Hot Shut Down. New.Wind. Bottom Seam tP = 0" (Pressure) tm = M/(x*Rm2*St*Ks*Ec) (bending) = 53,729/(n*41.90632*16,700*1.20*0.70) = 0.0007" 18/171 tw = 0.6*W/(2*n*Rm*St*Ks*Ec) (Weight) = 0.60*1,847.6/(2*n*41.9063*16,700*1.20*0.70) = 0.0003" tt = tp+tm-tv (total required,tensile) = 0+0.0007- (0.0003) = 0.0004" tmc = M/(n*Rm2*Sc*Ks) (bending) = 53,729/(7t*41.90632*7,099.82*1.20) = 0.0011" twc = W/(2*n*Rm*Sc*Ks) (Weight) = 1,847.6/(2*n*41.9063*7,099.82*1.20) = 0.0008" tc = tmc+tWC-tPc (total required,compressive) = 0.0011 + (0.0008) - (0) = 0.002" Empty. Corroded.Wind. Bottom Seam tp = 0" (Pressure) tm = M/(n*Rm2*St*Ks*Ec) (bending) = 53,729/(n*41.90632*16,700*1.20*0.70) = 0.0007" tw = 0.6*W/(2*n*Rm*St*Ks*Ec) (Weight) = 0.60*1,847.6/(2*n*41.9063*16,700*1.20*0.70) = 0.0003" tt = tp+tm -t (total required,tensile) = 0+0.0007- (0.0003) = 0.0004" tmc = M/(n*Rm2*Sc*Ks) (bending) = 53,729/(n*41.90632*7,620.56*1.20) = 0.0011" twc = W/(2*n*Rm*Sc*Ks) (Weight) = 1,847.6/(2*n*41.9063*7,620.56*1.20) = 0.0008" tc = tmc+tr„c-tpc (total required, compressive) = 0.0011 +(0.0008) - (0) = 9.0018" Empty.New.Wind. Bottom Seam tp = 0" (Pressure) tm = M/(n*Rm2*St*Ks*Ec) (bending) = 53,729/(n*41.90632*16,700*1.20*0.70) = 0.0007" iw = 0.6*W/(2*n*Rm*St*Ks*Ec) (Weight) = 0.60*1,847.6/(2*2t*41.9063*16,700*1.20*0.70) = 0.0003" 19/171 • tt = tp+tm -tw (total required,tensile) = 0+0.0007-(0.0003) = 0.0004" tmc = M/(n*Rm2*Sc*Ks) (bending) = 53,729/(n*41.90632*7,620.56*1.20) = 0.0011" twc = W/(2*lt*Rm*Sc*Ks) (Weight) = 1,847.6/(2*n*41.9063*7,620.56*1.20) = 0.0008" tc = tmc+twc-tpc (total required,compressive) = 0.0011 + (0.0008) - (0) = 0.0018" Hot Shut Down.Corroded.Weight& Eccentric Moments Only. Bottom Seam t = 0" (Pressure) tm = M/(n*Rm2*Sc*Ks) (bending) = 2,997/(n*41.90632*7,099.82*1.00) = 0.0001" tw = W/(2*n*Rm*Sc*Ks) (Weight) = 1,847.6/(2*n*41.9063*7,099.82*1.00) = 0.001" tt = Itp+tm - , (total, net compressive) = 10+0.0001 - (0.001)1 = 0.0009" tc = tmc+twc-tpc (total required, compressive) = 0.0001 + (0.001) - (0) = 0.0011" Operating. Hot& Corroded. Seismic. Bottom Seam tp = P*R/(2*St*Ks*Ec+0.40*IPI) (Pressure) = 15*41.8125/(2*16,700*1.20*0.70+0.401151) = 0.0224" tm = M/(n*Rm2*St*Ks*Ec) (bending) = 99,929/(n*41.90632*16,700*1.20*0.70) = 0.0013" t Y = (0.6-0.14*SDs)*W/(2*n*Rm*St*Ks*Ec) (Weight) = 0.50*1,847.6/(2*n*41.9063*16,700*1.20*0.70) = 0.0003" tt = tp+tm -tw (total required,tensile) = 0.0224+0.0013 - (0.0003) = 0.0234" twc = (1 +0.14*SDS)*W/(2*n*Rm*St*Ks*Ec) (Weight) = 1.10*1,847.6/(2*n*41.9063*16,700*1.20*0.70) = 0.0005" 20/171 tc = Itmc+twc-tpc1 (total, net tensile) = 10.0013 + (0.0005) - (0.0224)1 = 0.0205" Maximum allowable working pressure, Longitudinal Stress P= 2*St*Ks*Ec*(t-tm+tw)/(R -0.40*(t-tm+tw)) = 21 6,700*1.20'0.70*(0.1875-0.0013 + (0.0003))/(41.8125-0.40*(0.1875 -0.0013 + (0.0003))) = 125.34 psi Operating. Hot& New. Seismic. Bottom Seam tp = P*R/(2*St*Ks*Ec+0.40*IPI) (Pressure) = 15`41.8125/(2*16,700*1.20*0.70+0.40*1151) = 0.0224" tm = M/(x*Rm2*St*Ks*Ec) (bending) = 99,929/(n*41.90632*16,700*1.20*0.70) = 0.0013" C = (0.6-0.14*SDS)*W/(2*n*Rm*St*Ks*Ec) (Weight) = 0.50•1,847.6/(2`7t*41.9063`16,700*1.20*0.70) = 0.0003" tt = tp+tm -tw (total required,tensile) = 0.0224+0.0013- (0.0003) = 0.0234" twc = (1 +0.14*Sps)*W/(2*n*Rm*St*Ks*Ec) (Weight) = 1.10*1,847.6/(2'n*41.9063'16,700*1.20'0.70) = 0.0005" tc = Itmc+cc-tpc1 (total, net tensile) = 10.0013 + (0.0005) -(0.0224)1 = 0.0205" Maximum allowable working pressure, Longitudinal Stress P= 2*St*Ks*Ec*(t-tm+i )/(R -0.40*(t-tm+tw)) = 2*16,700*1.20*0.70*(0.1875-0.0013 + (0.0003))/(41.8125 -0.40*(0.1875 -0.0013 + (0.0003))) = 125.34 psi Hot Shut Down. Corroded.Seismic. Bottom Seam tp = 0" (Pressure) tm = M/(n*Rm2*St*Ks*Ec) (bending) = 99,929/(n*41.90632*16,700*1.20*0.70) = 0.0013" C = (0.6-0.14*SDs)*W/(2*n*Rm*St*Ks*Ec) (Weight) = 0.50*1,847.6/(2*n*41.9063'16,700*1.20*0.70) = 0.0003" tt = tp+tm -tw (total required,tensile) = 0+0.0013- (0.0003) 21/171 = 0.001" tmc = M/(n*Rm2*Sc*Ks) (bending) = 99,929/(n*41.90632*7,099.82*1.20) = 0.0021" twc = (1 +0.14*SD$)*W/(2*n*Rm*Sc*Ks) (Weight) = 1.10*1,847.6/(2*7c*41.9063*7,099.82*1.20) = 0.0009" tc = tmc+twc-tpc (total required, compressive) = 0.0021 + (0.0009) - (0) = 0.003" Hot Shut Down. New. Seismic. Bottom Seam tP = 0" (Pressure) tm = M/(n*Rm2*St*Ks*Ec) (bending) = 99,929/(n*41.90632*16,700*1.20*0.70) = 0.0013" tw = (0.6-0.14*Sos)*W/(2*n*Rm*St*Ks*Ec) (Weight) = 0.50*1,847.6/(2*71*41.906316,700*1.20*0.70) = 0.0003" tt = t,+tm -tw (total required,tensile) = 0+0.0013 - (0.0003) = 0.001" tmc = M/(7C*Rm2*Sc*Ks) (bending) = 99,929/(n*41.90632*7,099.82*1.20) = 0.0021" = (1 +0.14*Sos)*W/(2*n*Rm*Sc*Ks) (Weight) = 1.10*1,847.6/(2`n*41.9063*7,099.82*1.20) = 0.0009" tc = tmc+twc-tpc (total required,compressive) = 0.0021 + (0.0009) - (0) = 0.003" Empty.Corroded. Seismic. Bottom Seam tp = 0" (Pressure) tm = M/(n*Rm2*St*Ks*Ec) (bending) = 48,460/(n*41.90632*16,700*1.20`0.70) = 0.0006" tw = (0.6-0.14*Sos)*W/(2*7t*Rm*St*Ks*Ec) (Weight) = 0.50*1,847.6/(2`7t*41.9063*16,700*1.20*0.70) = 0.0003" tt = tp+tm -tw (total required,tensile) = 0+0.0006- (0.0003) = 0.0004" tmc = M/(7t*Rm2*Sc*Ks) (bending) = 48,460/(n*41.90632*7,620.56*1.20) 22/171 = 0.001" Cc = (1 +0.14*SDs)*W/(2*n*Rm*Sc*Ks) (Weight) = 1.10*1,847.6/(2*n*41.9063*7,620.56*1.20) = 0.0008" tc = tmc+twc-tpc (total required,compressive) = 0.001 + (0.0008) - (0) = 0.0018" Empty.New. Seismic. Bottom Seam tp = 0" (Pressure) tm = M/(n*Rm2*St*Ks*Ec) (bending) = 48,460/(n*41.90632*16,700*1.20*0.70) = 0.0006" c = (0.6-0.14*SDs)*W/(2*7i*Rm*St*Ks*Ec) (Weight) = 0.50*1,847.6/(2*7E*41.9063*16,700*1.20*0.70) = 0.0003" tt = tp+tm-c (total required,tensile) = 0+0.0006- (0.0003) = 0.0004" tmc = M/(n*Rm2*Sc*Ks) (bending) = 48,460/(7*41.90632*7,620.56*1.20) = 0.001" twc = (1 +0.14*Sp$)*W/(2*n*Rm*Sc*Ks) (Weight) = 1.10*1,847.6/(2*n*41.9063*7,620.56*1.20) = 0.0008" tc = tmc+twc-tpc (total required,compressive) = 0.001 + (0.0008) - (0) = 0.0018" 23/171 Lower Shell ASME Section VIII Division 1,2013 Edition Component: Cylinder Material specification: SA-240 304L (II-D p. 86, In. 43) Impact test exempt per UHA-51(g)(coincident ratio =0.2298) Internal design pressure: P = 15 psi @ 150 °F Static liquid head: Pfn = 3.02 psi (SG= 1, HS=83.6691", Horizontal test head) Corrosion allowance Inner C=0" Outer C =0" Design MDMT= -20 °F No impact test performed Rated MDMT= -320 °F Material is not normalized Material is not produced to Fine Grain Practice PWHT is not performed Radiography: Longitudinal joint- None UW-11(c) Type 1 Top circumferential joint- None UW-11(c)Type 1 Bottom circumferential joint- None UW-11(c)Type 1 Estimated weight New= 1,364.9 lb corr= 1,364.9 lb Capacity New=2,282.56 US gal corr=2,282.56 US gal OD = 84" Length _ 96" Lo t = 0.1875" Design thickness,(at 150 °F)Appendix 1-1 t = P*Ro/(S*E +0.40*P) + Corrosion = 15*42/(16,700*0.70+0.40*15) +0 = 0.0539" Maximum allowable working pressure,(at 150 °F)Appendix 1-1 P = S*E*t/(R0-0.40*t) - PS = 16,700*0.70*0.1875/(42-0.40*0.1875) - 0 = 52.28 psi Maximum allowable pressure, (at 70 °F)Appendix 1-1 P = S*E*t/(Ro-0.40*t) = 16,700*0.70*0.1875/(42 -0.40*0.1875) = 52.28 psi % Forming strain- UHA-44(a)(2) EFE = (50*t/ Rf)*(1 - R1/ R0) = (50*0.1875/41.9063)*(1 -41.9063/oo) = 0.2237% 24/171 Design thickness =0.0539" The governing condition is due to internal pressure. The cylinder thickness of 0.1875" is adequate. Thickness Required Due to Pressure+ External Loads Allowable Stress Before Pressure P( UG-23 Stress Temperature( Corrosion C Req'd Thk Due to Req'd Thk Due to Condition psi) Increase( °F) (in) Location Load Tension(In) Compression(in) psi) St Sc Top Wind 0.0169 0.0134 Operating,Hot&Corroded 15 16,700 7.100 150 0 Seismic 0.0194 0.0108 Bottom Wind 0.0183 9.0172 Seismic 0.0186 0.017 Top Wind 0.0169 0.0134 Operating.Hot&New 15 16,700 7.100 150 0 Seismic 0.0194 QO1Q Bottom Wind 0.0183 0.0172 Seismic 0.0186 0.017 Top Wind 0.0012 0.0053 Hot Shut Down,Corroded 0 16,700 7.100 150 0 Seismic 0.0038 0.0113 Bottom Wind 0.0027 Q.0016 Seismic 0.0029 0.0013 Top Wind 0.0012 0.0053 Hot Shut Down.New 0 16,700 7.100 150 0 Seismic 0.0038 0.0113 Bottom Wind 0.0027 0.0016 Seismic 0.0029 0.0013 Top Wind 0.0012 0.0049 Empty,Corroded 0 16,700 7.621 70 0 Seismic 0.0008 Q,QQ4 Bottom Wind 0.0001 Q Seismic 0.0001 Top Wind 0.0012 0.0049 Empty.New 0 16,700 7,621 70 0 Seismic 0.0008 0.004 Bottom Wind 0.0001 Q Seismic 0.0001 Q Hot Shut Down.Corroded, Top Weight 0.0017 0.0019 Weight&Eccentric Moments 0 16,700 00 150 0 nl 7.1 Bottom Weight 0.0032 _0.0032 Allowable Compressive Stress, Hot and Corroded-SCHc, (table HA-3) A = 0.125/(Flo/t) = 0.125/(42/0.1875) = 0.000558 B = 7,100 psi S = 16,700/ 1.00 = 16,700 psi ScHC = min(B, S) =7.100 psi 25/171 Allowable Compressive Stress, Hot and New-Sam ScHN = ScHC = 7.100 psi Allowable Compressive Stress,Cold and New-SccN, (table HA-3) A = 0.125/(Ro/t) = 0.125/(42/0.1875) = 0.000558 B = 7,621 psi S = 16,700/ 1.00 = 16,700 psi ScCN = min(B, S) =7.621 psi Allowable Compressive Stress, Cold and Corroded-$ccc Sccc = ScCN = 7.621 psi Allowable Compressive Stress,Vacuum and Corroded-Svc, (table HA-3) A = 0.125/(Ro/t) = 0.125/(42/0.1875) = 0.000558 B = 7,100 psi S = 16,700/ 1.00 = 16,700 psi Scv0 = min(B, S) =7,100 psi Operating. Hot&Corroded.Wind.Above Support Point tp = P*R/(2*St*Ks*Ec+0.40*IPI) (Pressure) = 15*41.8125/(2*16,700*1.20*1.00+0.40*1151) = 0.0156" tm = M/(n*Rm2*St*Ks*Ec) (bending) = 178,622/(n*41.90632*16,700*1.20*1.00) = 0.0016" t„ = 0.6*W/(2*n*Rm*St*Ks*Ec) (Weight) = 0.60*3,348.9/(2*n*41.9063*16,700*1.20*1.00) = 0.0004" tt = tp+tm -tw (total required,tensile) = 0.0156 +0.0016 - (0.0004) = 0.0169" �nrc = W/(2*7[*Rm*St*Ks*Ec) (Weight) = 3,348.9/(2*n*41.9063*16,700*1.20*1.00) = 0.0006" tc = Itmc+twc-tpc1 (total, net tensile) = 10.0016 + (0.0006) - (0.0156)1 = 0.0134" 26/171 Maximum allowable working pressure, Longitudinal Stress P= 2*St*Ks*Ec*(t-tm +tw)/(R -0.40*(t-tm+tw)) = 2*16,700*1.20*1.00*(0.1875-0.0016+ (0.0004))/(41.8125-0.40*(0.1875 -0.0016+ (0.0004))) = 178.87 psi Operating. l-I t& New.Wind. Above Support Point t, = P*R/(2*St*Ks*Ec+0.40*IPI) (Pressure) = 15*41.8125/(2*16,700*1.20*1.00+0.40*1151) = 0.0156" tm = M/(n*Rm2*St*Ks*Ec) (bending) = 178,622/(n*41.90632*16,700*1.20*1.00) = 0.0016" = 0.6*W/(2*n*Rm*St*Ks*Ec) (Weight) = 0.60*3,348.9/(2*7*41.9063*16,700*1.20*1.00) = 0.0004" tt = tp+tm -tw (total required,tensile) = 0.0156 +0.0016 - (0.0004) = 0.0169" `wc = W/(2*n*Rm*St*Ks*Ec) (Weight) = 3,348.9/(2*n*41.9063*16,700*1.20*1.00) = 0.0006" tp = Itmc+twc-tpcl (total, net tensile) = 10.0016+ (0.0006) - (0.0156)1 = 0.0134" Maximum allowable working pressure, Longitudinal Stress P= 2*St*Ks*Ec*(t-tm +tw)/(R -0.40*(t-tm+tw)) = 2*16,700*1.20*1.00*(0.1875-0.0016+ (0.0004))/(41.8125-0.40*(0.1875-0.0016 +(0.0004))) = 178.87 psi Hot Shut Down. Corroded.Wind. Above Support Point tp = 0" (Pressure) tm = M/(n*Rm2*St*Ks*Ec) (bending) = 178,622/(n*41.90632*16,700*1.20*1.00) = 0.0016" tw, = 0.6*W/(2*n*Rm*St*Ks*Ec) (Weight) = 0.60*3,348.9/(2*n*41.9063*16,700*1.20*1.00) = 0.0004" tt = tp+tm -tw (total required,tensile) = 0+0.0016 - (0.0004) = 0.0012" tmc = M/(n*Rm2*Sc*Ks) (bending) = 178,622/(n*41.90632*7,099.82*1.20) = 0.0038" 27/171 twc = W/(2*n*Rm*Sc*Ks) (Weight) = 3,348.9/(2*n*41.9063*7,099.82*1.20) = 0.0015" tc = tmc+twc-tpc (total required, compressive) = 0.0038+ (0.0015) - (0) = 0.0053" Hot Shut Down. New.Wind. Above Support Point tp = 0" (Pressure) tm = M/(n*Rm2*St*Ks*Ec) (bending) = 178,622/(n*41.90632*16,700*1.20*1.00) = 0.0016" tw = 0.6*W/(2*n*Rm*St*Ks*Ec) (Weight) = 0.60*3,348.9/(2*n*41.9063*16,700*1.20*1.00) = 0.0004" tt = tp+tm -tw (total required,tensile) = 0+0.0016 - (0.0004) = 0.0012" tmc = M/(n*Rm2*Sc*Ks) (bending) = 178,622/(7*41.90632*7,099.82*1.20) = 0.0038" twc = W/(2*n*Rm*Sc*Ks) (Weight) = 3,348.9/(2*n*41.9063*7,099.82*1.20) = 0.0015" tc = tmc+twc-tpc (total required, compressive) = 0.0038+ (0.0015) - (0) = 0.0053" Empty.Corroded.Wind. Above Support Point tp = 0" (Pressure) tm = M/(n*Rm2*St*Ks*Ec) (bending) = 178,622/(7041.90632*16,700*1.20*1.00) = 0.0016" tw = 0.6*W/(2*n*Rm*St*Ks*Ec) (Weight) = 0.60*3,348.9/(2*n*41.9063*16,700*1.20*1.00) = 0.0004" tt = tp+tm-tw (total required,tensile) = 0+0.0016 - (0.0004) = 0.0012" tmc = M/(n*Rm2*Sc*Ks) (bending) = 178,622/(n*41.90632*7,620.56*1.20) = 0.0035" twc = W/(2*n*Rm*Sc*Ks) (Weight) = 3,348.9/(2*n*41.9063*7,620.56*1.20) = 0.0014" 28/171 tc = tmc+twc-tpc (total required, compressive) = 0.0035 + (0.0014) - (0) = 0.0049" Empty. New.Wind. Above Support Point t = 0" (Pressure) tm = M/(n*Rm2*St*Ks*Ec) (bending) = 178,622/(7*41.90632+16,700*1.20*1.00) = 0.0016" tw = 0.6*W/(2*n*Rm*St*Ks*Ec) (Weight) = 0.60*3,348.9/(2*n*41.9063*16,700*1.20*1.00) = 0.0004" tt = tp+tm-tw (total required,tensile) = 0+0.0016 - (0.0004) = 0.0012" tmc = M/(n*Rm2*Sc*Ks) (bending) = 178,622/(n*41.90632*7,620.56*1.20) = 0.0035" twc = W/(2*n*Rm*Sc*Ks) (Weight) = 3,348.9/(2*n*41.9063*7,620.56*1.20) = 0.0014" tc = tmc+twc-tpc (total required,compressive) = 0.0035 + (0.0014) - (0) = 0.0049" Hot Shut Down. Corroded.Weight & Eccentric Moments Only.Above Support Point tp = 0" (Pressure) tm = M/(n*Rm2*Sc*Ks) (bending) = 4,635/(7E*41.90632*7,099.82*1.00) = 0.0001" tw = W/(2*n*Rm*Sc*Ks) (Weight) = 3,348.9/(2*n*41.9063*7,099.82*1.00) = 0.0018" tt = Itp+tm -two (total, net compressive) = 10 +0.0001 - (0.0018)1 = 0.0017" tc = tmc+twc-tpc (total required, compressive) = 0.0001 + (0.0018) - (0) = 0,0019" Operating.Hot & Corroded.Wind. Below Support Point tp = P*R/(2*St*Ks*Ec+0.40*IPI) (Pressure) = 15*41.8125/(2*16,700*1.20*1.00+0.40* 151) = 0.0156" 29/171 • tm = M/(n*Rm2*St*Ks*Ec) (bending) = 811 /(n*41.90632*16,700*1.20*1.00) = 0" t v = W/(2*n*Rm*St*Ks*Ec) (Weight) = -13,998.9/(2*7*41.9063*16,700*1.20*1.00) = -0.0027" (total required, tt - tp+tm-tw tensile) = 0.0156 +0 - (-0.0027) = 0.0183" tvvc = 0.6*W/(2*7*Rm*St*Ks*Ec) (Weight) = 0.60*-13,998.9/(2`7*41.9063•16,700*1.20*1.00) = -0.0016" (total, net tc = Itmc+ c-tpc1 tensile) = 10+ (-0.0016) - (0.0156)1 = 0.0172" Maximum allowable working pressure, Longitudinal Stress P= 2*St*Ks*Ec*(t-tm+tw)/(R -0.40*(t-tm+tw)) = 2*16,700*1.20*1.00*(0.1875-0+ (-0.0027))/(41.8125 -0.40*(0.1875 -0+ (-0.0027))) = 177.49 psi Operating. Hot& New. Wind. Below Support Point t, = P*R/(2*St*Ks*Ec+0.40*1P1) (Pressure) = 15*41.8125/(2*16,700*1.20*1.00+0.40*1151) = 0.0156" tm = M/(7*Rm2*St*Ks*Ec) (bending) = 811 /(7'41.90632*16,700*1.20*1.00) = 0" tN = W/(2*n*Rm*St*Ks*Ec) (Weight) = -13,998.9/(2*7*41.9063*16,700*1.20*1.00) = -0.0027" tt - tP+tm tw (total required, tensile) = 0.0156 +0 - (-0.0027) = 0.0183" cc = 0.6*W/(2*7*Rm*St*Ks*Ec) (Weight) = 0.60*-13,998.9/(2*n*41.9063*16,700*1.20*1.00) = -0.0016" (total, net tc = Itmc+twc tensile) = 10 + (-0.0016) - (0.0156)1 = 0.0172" 30/171 L Maximum allowable working pressure, Longitudinal Stress P= 2*St*Ks*Ec*(t-tm +tw)/(R - 0.40*(t-tm+tw)) = 2*16,700*1.20*1.00*(0.1875-0 + (-0.0027))/(41.8125-0.40*(0.1875-0 + (-0.0027))) = 177.49 psi Hot Shut Down.Corroded. Wind. Below Su000rt Point tp = 0" (Pressure) tm = M/(n*Rm2*St*Ks*Ec) (bending) = 811 /(n*41.90632*16,700*1.20*1.00) = 0" tw = W/(2*n*Rm*St*Ks*Ec) (Weight) = -13,998.9/(2*n*41.9063*16,700*1.20*1.00) = -0.0027" tt - tp+tm -C (total required, tensile) = 0+0- (-0.0027) = 0.0027" twc = 0.6*W/(2*n*Rm*St*Ks*Ec) (Weight) = 0.60*-13,998.9/(2*n*41.9063*16,700*1.20*1.00) = -0.0016" Cc (total, net tc = Itmc+ `v„c-tpcl tensile) = 10+ (-0.0016) - (0)1 = 0.0016" Hot Shut Down. New.Wind. Below Support Point tp = 0" (Pressure) tm = M/(1t*Rm2*St*Ks*Ec) (bending) = 811 /(n*41.90632*16,700*1.20*1.00) = 0" C = W/(2*n*Rm*St*Ks*Ec) (Weight) = -13,998.9/(2*n*41.9063*16,700"1.20*1.00) = -0.0027" (total required, tt - tp+tm -tw tensile) = 0 +0- (-0.0027) = 0.0027" twc = 0.6*W/(2*n*Rm*St*Ks*Ec) (Weight) = 0.60*-13,998.9/(2*n*41.9063*16,700*1.20*1.00) = -0.0016" (total, net tc = Itmc+twc-tpcl tensile) = 10+ (-0.0016) - (0)1 = 0.0016" 31/171 . Empty. Corroded.Wind. Below Support Point tP = 0" (Pressure) tm = M/(n*Rm2*St*Ks*Ec) (bending) = 811 /(n*41.90632'16,700*1.20*1.00) = 0" t, = W/(2*n*Rm*St*Ks*Ec) (Weight) = -309/(2*31*41.9063*16,700*1.20*1.00) = -0.0001" it — tP+tm tw (total required, tensile) = 0+0 - (-0.0001) = 0.0001" `vvc = 0.6*W/(2*7t*Rm*St*Ks*Ec) (Weight) = 0.60*-309/(2*n*41.9063*16,700*1.20*1.00) = 0" (total, net tc = Itmc+Cc-tpc1 tensile) = 10+ (0) - (0)I = Q Empty. New.Wind. Below Support Point t = 0" (Pressure) tm = M/(n*Rm2*St*Ks*Ec) (bending) = 811 /(7*41.90632*16,700*1.20*1.00) = 0" tN = W/(2'n*Rm*St*Ks*Ec) (Weight) = -309/(2*n*41.9063*16,700*1.20*1.00) = -0.0001" t (total required, tt — tp+tm - .'^ tensile) = 0+0 -(-0.0001) = 0.0001" twc = 0.6*W/(2*7t*Rm*St*Ks*Ec) (Weight) = 0.60*-309/(2*n*41.9063*16,700*1.20*1.00) = 0" (total, net tc = Itmc+ty„c-tpcl tensile) = 10+ (0) - (0)1 = Hot Shut Down. Corroded.Weight& Eccentric Moments Only. Below Support Point tP = 0" (Pressure) tm = M/(rz*Rm2*St*Ks*Ec) (bending) = 0/(n*41.90632*16,7001.00*1.00) = 0" 32/171 tw = W/(2*n*Rm*St*Ks*Ec) (Weight) = -13,998.9/(2*n*41.9063*16,700*1.00*1.00) = -0.0032" tt = tp+tm-tw (total required,tensile) = 0+0- (-0.0032) = 0.0032" tc = Itmc+twc-tpcl (total, net tensile) = 10+ (-0.0032) - (0)1 = 0.0032" Operating. Hot& Corroded. Seismic.Above Support Point tp = P*R/(2*St*Ks*Ec+0.40*IPI) (Pressure) = 15*41.8125/(2*16,700*1.20*1.00+0.40*1151) = 0.0156" tm = M/(n*Rm2*St*Ks*Ec) (bending) = 454,466/(n*41.90632*16,700*1.20*1.00) = 0.0041" tw = (0.6-0.14*Sps)*W/(2*n*Rm*St*Ks*Ec) (Weight) = 0.50*3,348.9/(2*n*41.9063*16,700*1.20*1.00) = 0.0003" tt = tp+tm -tw (total required,tensile) = 0.0156+0.0041 - (0.0003) = 0.0194" twc = (1 +0.14*Sps)*W/(2*7t*Rm*St*Ks*Ec) (Weight) = 1.10*3,348.9/(2*7t*41.9063*16,700*1.20*1.00) = 0.0007" tc = Itmc+twc-tpcl (total, net tensile) = 10.0041 + (0.0007) -(0.0156)1 = 0.0108" Maximum allowable working pressure, Longitudinal Stress P= 2*St*Ks*Ec*(t-tm +tw)/(R -0.40*(t-tm+tw)) = 2*16,700*1.20*1.00*(0.1875 -0.0041 + (0.0003))/(41.8125-0.40*(0.1875-0.0041 + (0.0003))) = 176.41 psi Operating. Hot& New. Seismic.Above Support Point tp = P*R/(2*St*Ks*Ec+0.40*IPI) (Pressure) = 15*41.8125/(2*16,700*1.20*1.00+0.40*1151) = 0.0156" tm = M/(n*Rm2*St*Ks*Ec) (bending) = 454,466/(n*41.90632*16,700*1.20*1.00) = 0.0041" tw = (0.6 -0.14*Sps)*W/(2*n*Rm*St*Ks*Ec) (Weight) = 0.50*3,348.9/(2*7*41.9063*16,700*1.20*1.00) 33/171 = 0.0003" tt = tp+tm -c (total required,tensile) = 0.0156+0.0041 - (0.0003) = 0.0194" twc = (1 +0.14*Sos)*W/(2*N*Rm*St*Ks*Ec) (Weight) = 1.10*3,348.9/(2*n*41.9063*16,700*1.20*1.00) = 0.0007" tc = Itmc+twc-tpcI (total, net tensile) = 10.0041 + (0.0007) -(0.0156)1 = 0.0108" Maximum allowable working pressure, Longitudinal Stress P= 2*St*Ks*Ec*(t-tm +tw)/(R -0.40*(t-tm+tw)) = 2*16,700*1.20*1.00*(0.1875-0.0041 + (0.0003))/(41.8125-0.40*(0.1875-0.0041 + (0.0003))) = 176.41 psi Hot Shut Down. Corroded.Seismic.Above Support Point tP = 0" (Pressure) tm = M/(n*Rm2*St*Ks*Ec) (bending) = 454,466/(n*41.90632*16,700*1.20*1.00) = 0.0041" tw = (0.6-0.14*SDS)*W/(2*n*Rm*St*Ks*Ec) (Weight) = 0.50'3,348.9/(2*7t*41.9063*16,700*1.20*1.00) = 0.0003" tt = tp+tm-tw (total required,tensile) = 0+0.0041 - (0.0003) = 0.0038" tmc = M/(n*Rm2*Sc*Ks) (bending) = 454,466/(n*41.90632*7,099.82*1.20) = 0.0097" twc = (1 +0.14*SDS)*W/(2*n'Rm*Sc*Ks) (Weight) = 1.10'3,348.9/(2*n*41.9063*7,099.82*1.20) = 0.0016" tc = tmc+twc-tpc (total required, compressive) = 0.0097+ (0.0016) - (0) = 0.0113" Hot Shut Down. New.Seismic. Above Support Point t = 0" (Pressure) tm = M/(n*Rm2*St*Ks*Ec) (bending) = 454,466/(n*41.90632*16,700*1.20*1.00) = 0.0041" tw = (0.6-0.14*SDS)*W/(2*n*Rm*St*Ks*Ec) (Weight) = 0.50*3,348.9/(2*n*41.9063*16,700*1.20*1.00) 34/171 = 0.0003" tt = tp+tm -tw (total required,tensile) = 0+0.0041 -(0.0003) = 0.0038" tmc = M/(n*Rm2*Sc*Ks) (bending) = 454,466/(n*41.90632*7,099.82*1.20) = 0.0097" cc = (1 +0.14*Sos)*W/(2*n*Rm*Sc*Ks) (Weight) = 1.10*3,348.9/(2*n*41.9063*7,099.82*1.20) = 0.0016" tc = tmc+twc-tpc (total required,compressive) = 0.0097+ (0.0016) -(0) = 0.0113" Empty. Corroded. Seismic.Above Support Point tp = 0" (Pressure) tm = M/(n*Rm2*St*Ks*Ec) (bending) = 126,799/(n*41.90632*16,700*1.20*1.00) = 0.0011" tw = (0.6-0.14*Sps)*W/(2*n*Rm*St*Ks Ec) (Weight) = 0.50*3,348.9/(2*n*41.9063*16,700*1.20*1.00) = 0.0003" tt = tp+tm -ty„ (total required,tensile) = 0+0.0011 - (0.0003) = 0.0008" tmc = M/(n*Rm2*Sc*Ks) (bending) = 126,799/(n*41.90632*7,620.56*1.20) = 0.0025" two = (1 +0.14*Sos)*W/(2*n*Rm*Sc*Ks) (Weight) = 1.10*3,348.9/(2*n*41.9063*7,620.56*1.20) = 0.0015" tc = tmc+ 'wc-tpc (total required, compressive) = 0.0025 + (0.0015) - (0) = 0.004" Empty. New. Seismic. Above Support Point tp = 0" (Pressure) tm = M/(n*Rm2*St*Ks*Ec) (bending) = 126,799/(n*41.90632*16,700*1.20*1.00) = 0.0011" tw = (0.6-0.14*Sos)*W/(2*n*Rm*St*Ks*Ec) (Weight) = 0.50*3,348.9/(2*n*41.9063*16,700*1.20*1.00) = 0.0003" tt = tp+tm-tw (total required,tensile) = 0+0.0011 - (0.0003) 35/171 • = 0.0008" tmc = M/(n*Rm2*Sc*Ks) (bending) = 126,799/(n*41.90632*7,620.56*1.20) = 0.0025" twc = (1 +0.14*SD$)*W/(2*n*Rm*Sc*Ks) (Weight) = 1.10'3,348.9/(2*n*41.9063*7,620.56*1.20) = 0.0015" tc = tmc+twc-tpc (total required,compressive) = 0.0025+ (0.0015) - (0) = 0.004" Operating, Hot& Corroded.Seismic. Below Support Point tp = P*R/(2*St*Ks*Ec+0.40*IPI) (Pressure) = 15'41.8125/(2*16,700*1.20'1.00+0.401151) = 0.0156" tm = M/(n*Rm2*St*Ks Ec) (bending) = 361 /(7*41.90632*16,700*1.20*1.00) = 0" tw = (1 +0.14'Sos)*W/(2'n*Rm*St*Ks*Ec) (Weight) = 1.10*-13,998.9/(2'n*41.9063*16,700*1.20*1.00) = -0.0029" (total required, tt - tp+tm-tw tensile) = 0.0156 +0 - (-0.0029) = 0.0186" wvc = (0.6-0.14*Sos)*W/(2*n*Rm*St*Ks*Ec) (Weight) = 0.50*-13,998.9/(2*n*41.9063*16,700'1.20*1.00) = -0.0013" (total, net tc = Itmc+twc-tpc1 tensile) = 10+ (-0.0013) - (0.0156)1 = 0.017" Maximum allowable working pressure, Longitudinal Stress P= 2*St*Ks*Ec*(t-tm+t )/(R -0.40*(t-tm+tw)) = 2*16,700*1.20*1.00*(0.1875-0+ (-0.0029))/(41.8125-0.40*(0.1875 -0 +(-0.0029))) = 177.25 psi Operating. Hot & New. Seismic. Below Support Point tp = P*R/(2*St*Ks*Ec+0.40*1P1) (Pressure) = 15*41.8125/(2*16,700*1.20*1.00+0.40*1151) = 0.0156" tm = M/(R*Rm2*St*Ks*Ec) (bending) = 361 /(n*41.90632*16,700*1.20*1.00) = 0" 36/171 tw = (1 +0.14*SDS)*W/(2*71*Rm*St*Ks*Ec) (Weight) = 1.10*-13,998.9/(2`n*41.9063*16,700*1.20*1.00) = -0.0029" (total required,- tt = tp+tm tensile) = 0.0156 +0 - (-0.0029) = 0.0186" twc = (0.6-0.14*SDS)*W/(2*n*Rm*St*Ks*Ec) (Weight) = 0.50*-13,998.9/(2*n*41.9063*16,700*1.20*1.00) = -0.0013" (total, net tc = Itmc+twc-tpcl tensile) = 10+ (-0.0013) - (0.0156)1 = 0.017" Maximum allowable working pressure, Longitudinal Stress P= 2*St*Ks*Ec*(t-tm+tw)/(R -0.40*(t-tm+tw)) = 2*16,700*1.20*1.00*(0.1875-0+ (-0.0029))/(41.8125 -0.40*(0.1875-0 + (-0.0029))) = 177.25 psi Hot Shut Down. Corroded.Seismic. Below Support Point tp = 0" (Pressure) tm = M/(7*Rm2*St*Ks*Ec) (bending) = 361 /(n*41.90632*16,700*1.20*1.00) = 0" tw = (1 +0.14*SDS)*W/(2*n*Rm*St*Ks*Ec) (Weight) = 1.10*-13,998.9/(2*71*41.9063*16,700*1.20*1.00) = -0.0029" (total required, tt - tp+tm tw tensile) = 0 +0- (-0.0029) = 0.0029" Cc = (0.6-0.14*SDs)*W/(2*7[*Rm*St*Ks*Ec) (Weight) = 0.50*-13,998.9/(2*n*41.9063*16,700*1.20*1.00) = -0.0013" (total, net tc = Itmc+twc-tpcl tensile) = 10 + (-0.0013) - (0)1 = 0.0013" Hot Shut Down. New. Seismic. Below Support Point tp = 0" (Pressure) tm = M/(n*Rm2*St*Ks*Ec) (bending) = 361 /(rz*41.90632*16,700*1.20*1.00) = 0" 37/171 tw = (1 +0.14*Sps)*W/(2"n*Rm*St*Ks*Ec) (Weight) = 1.10*-13,998.9/(2*7t*41.9063"16,700*1.20*1.00) = -0.0029" (total required, tt - tp+tm-tw tensile) = 0 +0- (-0.0029) = 0.0029" twc = (0.6-0.14*SDs)*W/(2*n*Rm*St*Ks*Ec) (Weight) = 0.50*-13,998.9/(2*n*41.9063*16,700*1.20*1.00) = -0.0013" (total, net tc = Itmc+twc-tpc1 tensile) = 10+ (-0.0013) - (0)1 = 0.0013" Empty.Corroded. Seismic. Below Support Point t = 0" (Pressure) tm = M/(n*Rm2*St*Ks*Ec) (bending) = 292/(n*41.90632"16,700*1.20*1.00) = 0" tw = (1 +0.14*SDs)*W/(2*n*Rm*St*Ks*Ec) (Weight) = 1.10*-309/(2*n*41.9063*16,700*1.20*1.00) = -0.0001" tt - tp+tm tv (total required, tensile) = 0+0- (-0.0001) = 0.0001" twc = (0.6-0.14*Sos)*W/(2"n*Rm*St*Ks*Ec) (Weight) = 0.50*-309/(2*7*41.9063*16,700*1.20*1.00) = 0" (total, net t tc = Itmc+twc-tpc1 tensile) = 10+ (0) - (0)I = Empty.New.Seismic. Below Support Point t = 0" (Pressure) tm = M/(n*Rm2*St*Ks*Ec) (bending) = 292/(n*41.90632*16,700*1.20*1.00) = 0" tw = (1 +0.14*Sps)*W/(2*n*Rm*St*Ks*Ec) (Weight) = 1.10*-309/(2*1t*41.9063*16,700*1.20*1.00) = -0.0001" tt - tp+tm iw (total required, tensile) = 0 +0 - (-0.0001) 38/171 = 0.0001" twc = (0.6-0.14*SDs)*W/(2*7t*Rm*St*Ks*Ec) (Weight) = 0.50*-309/(2*7t*41.906316,700*1.20*1.00) = On (total, net tc = Itmc+1"'c-tpcl tensile) = 10+ (0) -(0)I = Q 39/171 Top Head ASME Section VIII Division 1, 2013 Edition Component: F&D Head Material Specification: SA-240 304L(II-D p.86, In. 43) Material Rated MDMT per UHA-51(d)(1)(a), (carbon content does not exceed 0.10%) = -320 °F Internal design pressure: P = 15 psi @ 150 °F Static liquid head: Ps=0 psi (SG=1, H5=0" Operating head) Pth=3.02 psi (SG=1, H5=83.7132" Horizontal test head) Corrosion allowance: Inner C=0" Outer C=0" Design MDMT= -20°F No impact test performed Rated MDMT=-320°F Material is not normalized Material is not produced to fine grain practice PWHT is not performed Do not Optimize MDMT/Find MAWP Radiography: Category A joints- None UW-11(c)Type 1 Head to shell seam - None UW-11(c) Type 1 Estimated weight*: new=283.4 lb corr=283.4 lb Capacity*: new=251.5 US gal corr=251.5 US gal * includes straight flange Outer diameter = 84" Crown radius L = 78" Knuckle radius r = 6" Minimum head thickness = 0.1434" Straight flange length Le = 1" Nominal straight flange thickness tsf = 0.1875" Results Summary The governing condition is internal pressure. Minimum thickness per UG-16 = 0.0625" +0"=0.0625" Design thickness due to internal pressure (t) = 0.0951" Maximum allowable working pressure(MAWP) = 25.73 psi Maximum allowable pressure (MAP) = 26.02 psi M(Corroded) M=1/4*[3 + (L/r)1/2]=1/4*[3+ (78/6)1/2]=1.651388 M(New) M=1/4*[3 + (L/r)1/1=1/4*[3 + (78/6)1f2]=1.651388 40/171 Design thickness for internal pressure,(Corroded at 150 °F)Appendix 1-4(d) t = P*La*M/(2*S*E + P*(M -0.2)) +Corrosion = 15*78.1434*1.6514/(2*16,700*0.7+ 15*(1.6514-0.2)) +0 = 0.0827" Design thickness for internal pressure, (Corroded at 150 °F)Appendix 1-4(f)(1) 0.0005<_ (train head -Corrosion)/L=0.1434/78=0.0018<0.002 r/D = 0.07175_0.08 C1 = 9.31*r/D -0.086 = 9.31*0.0717-0.086 = 0.5813 Se = C,*ET*(t/r) = 0.5813*27.81 E+06*(0.095/6) = 255,983 psi C2 = 1.25 $ = (L*t)05/r = (78*0.095)05/6 = 0.453736 radians a = 0.5*D - r = 0.5*83.7132-6 = 35.8566" b = L- r = 78-6 = 72" 13 = arc cos(a/b) = arc cos(35.8566/72) = 1.049496 radians =0.4537< (3= 1.0495 c = a/(cos(3-4))) = 35.8566/(cos(1.0495-0.4537)) = 43.319602" Re = c+ r = 43.3196+6 = 49.319602" Pe = Se*t/(C2*Re*(0.5*Re/r- 1)) = 255,983*0.095/(1.25*49.3196*(0.5*49.3196/6- 1)) = 126.86 psi Py = (C2*Re*(0.5*Re/r- 1)) = 22,700*0.095/(1.25*49.3196*(0.5*49.3196/6- 1)) = 11.25 psi Pe/ Py= 126.86/ 11.25= 11.28>8.29 41/171 Pck = 2*Py = 2*11.25 = 22.5 psi Po(/ 1.5= 15 psi >_ Internal design pressure P= 15 psi t = t +Corrosion = 0.09502 +0 = 0.09502" Design thickness is acceptable per Appendix 1-4(f)for a design pressure of 15 psi. The head internal pressure design thickness is 0.0951". Maximum allowable working pressure, (Corroded at 150 °F)Appendix 1-4(d) P = 2*S*E*t/(M*Lo-t*(M-0.2)) - PS = 2*16,700*0.7*0.1434/(1.6514*78.1434-0.1434*(1.6514-0.2)) -0 = 26.02 psi Maximum allowable working pressure,(Corroded at 150 °F)Appendix 1-4(f)(1) 0.0005<_ (tmin head -Corrosion)/L=0.1434/78=0.0018<0.002 r/D = 0.0717<_ 0.08 C1 = 9.31*r/D-0.086 = 9.31*0.0717-0.086 = 0.5813 Se = C1*ET*(t/r) = 0.5813*27.81 E+06*(0.1434/6) = 386,320 psi C2 = 1.25 = (L*t)0.5/r = (78*0.1434)05/6 = 0.557405 radians a = 0.5'D -r = 0.5*83.7132-6 = 35.8566" b = L-r = 78-6 = 72" 13 = arc cos(a/b) = arc cos(35.8566/72) = 1.049496 radians =0.5574< (3= 1.0495 c = a/(cos((i-4))) = 35.8566/(cos(1.0495-0.5574)) 42/171 = 40.683871" Re = c+ r = 40.6839+6 = 46.683871" Pe = Se*t/(C2*Re*(0.5*Re/r- 1)) = 386,320*0.1434/ (1.25*46.6839*(0.5*46.6839/6 - 1)) = 328.45 psi Py = S *t/(C2*Re*(0.5*Re/r- 1)) = 2y2,700'0.1434/(1.25*46.6839*(0.5*46.6839/6- 1)) = 19.3 psi Pe/ Py=328.45/ 19.3= 17.02>8.29 Pik = 2*P = 2*19.3 = 38.6 psi Pik/ 1.5=25.73 psi P = Pik/ 1.5 Ps = 38.6/1.5-0 = 25.73 psi The maximum allowable working pressure (MAWP) is 25.73 psi. Maximum allowable pressure, (New at 70 °F)Appendix 1-4(d) P = 2*S*E*t/(M*L0-t*(M-0.2)) - PS = 2*16,700*0.7*0.1434/(1.6514'78.1434-0.1434*(1.6514-0.2)) -0 = 26.02 psi Maximum allowable pressure, (New at 70 °F)Appendix 1-4(f)(1) 0.0005<_ (tmin head -Corrosion)/L=0.1434/78=0.0018<0.002 r/D = 0.07175_ 0.08 C1 = 9.31*r/D -0.086 = 9.31*0.0717-0.086 = 0.5813 Se = C1*ET*(t/r) = 0.5813*28.3E+06*(0.1434/6) = 393,159 psi C2 = 1.25 = (L*t)o.e/r = (78*0.1434)0.5/6 = 0.557405 radians a = 0.5*D - r = 0.5*83.7132-6 = 35.8566" 43/171 b = L- r = 78-6 = 72" R = arc cos(a/b) = arc cos(35.8566/72) = 1.049496 radians =0.5574< p= 1.0495 c = a/(cos((3-4)) = 35.8566/(cos(1.0495-0.5574)) = 40.683871" Re = c+ r = 40.6839+6 = 46.683871" Pe = Se*t/(C2*Re*(0.5*Re/r- 1)) = 393,159*0.1434/(1.25*46.6839*(0.5*46.6839/6 - 1)) = 334.27 psi Py = S *t/(C2*Re*(0.5*Re/r- 1)) = 25,000*0.1434/(1.25*46.6839*(0.5*46.6839/6- 1)) = 21.26 psi Pe/Py=334.27/21.26= 15.73>8.29 Pck = 2*Py = 2*21.26 = 42.51 psi Pck/ 1.5=28.34 psi P = Pck/ 1.5- PS = 42.51 /1.5-0 = 28.34 psi The maximum allowable pressure (MAP) is 26.02 psi. Forming strain- UHA-44(a)(2) EFE = (75*t/Rf)*(1 - Rf/R0) = (75*0.1875/6.0938)*(1 -6.0938/oo) = 2.3077% 44/171 Straight Flange on Top Head ASME Section VIII Division 1, 2013 Edition Component: Straight Flange Material specification: SA-240 304L(II-D p. 86, In. 43) Impact test exempt per UHA-51(g)(coincident ratio =0.2298) Internal design pressure: P= 15 psi @ 150 °F Static liquid head: Pth = 3.02 psi (SG= 1, HS=83.6691", Horizontal test head) Corrosion allowance Inner C=0" Outer C=0" Design MDMT= -20 °F No impact test performed Rated MDMT= -320 °F Material is not normalized Material is not produced to Fine Grain Practice PWHT is not performed Radiography: Longitudinal joint- None UW-11(c)Type 1 Circumferential joint- None UW-11(c) Type 1 Estimated weight New= 14.3 lb corr= 14.3 lb Capacity New=23.78 US gal corr=23.78 US gal OD = 84" Length _ 1" L, t = 0.1875" Design thickness,(at 150 °F)Appendix 1-1 t = P*Re/(S*E +0.40*P) +Corrosion = 15*42/(16,700*0.70+0.40*15) +0 = 0.0539" Maximum allowable working pressure,(at 150 °F)Appendix 1-1 P = S*E*t/(R0-0.40*t) - PS = 16,700*0.70*0.1875/(42 -0.40*0.1875) -0 = 52.28 psi Maximum allowable pressure, (at 70 °F)Appendix 1-1 P = S*E*t/(H0-0.40*t) = 16,700*0.70*0.1875/(42 -0.40*0.1875) = 52.28 psi %Forming strain- UHA-44(a)(2) EFE = (50*t/ Rf)*(1 - Rf/Ro) = (50*0.1875/41.9063)*(1 -41.9063/00) = 0.2237% 45/171 Design thickness=0.0539" The governing condition is due to internal pressure. The cylinder thickness of 0.1875"is adequate. Thickness Required Due to Pressure+ External Loads Allowable Req'd Thk Due Stress Before Pressure P( Temperature( Corrosion C Req'd Thk Due to to Condition UG-23 Stress 'F) (in) Load psi) Tension(in) Compression Increase(psi) (in) St Sc Operating,Hot&Corroded 15 16,700 7_`00 150 0 Wind 0.0223 0.0222 Seismic 0.0224 0.0222 Operating.Hot&New 15 16,700 L 150 0 Wind 0,0223 0.0222 100 Seismic 0.0224 0.0222 Hot Shut Down.Corroded 0 16,700 L1.QQ 150 0 Wind Q 0.0003 Seismic Q 0.0003 Hot Shut Down.New 0 16,700 7.100 150 0 Wind Q 0.0003 Seismic Q 0.0003 Empty,Corroded 0 16,700 7721 70 0 Wind Q 0.0003 Seismic Q 0.0003 Empty.New 0 16,700 7.621 70 0 Wind Q 0.0003 Seismic Q 0.0003 Hot Shut Down.Corroded.Weight& 0 16,700 7700 150 0 Weight 0.0001 0.0003 Eccentric Moments Only Allowable Compressive Stress, Hot and Corroded-ScHC, (table HA-3) A = 0.125/(Rp/t) = 0.125/(42/0.1875) = 0.000558 B = 7,100 psi S = 16,700/ 1.00 = 16,700 psi ScHC = min(B, S) =7.100 osi Allowable Compressive Stress, Hot and New-ScHN ScHN = ScHC = 7.100 psi Allowable Compressive Stress, Cold and New-SccN, (table HA-3) A = 0.125/(Rp/t) = 0.125/(42/0.1875) = 0.000558 B = 7,621 psi S = 16,700/ 1.00 = 16,700 psi ScCN = min(B, S) =7.621 Dsi 46/171 Allowable Compressive Stress, Cold and Corroded-Sccc Sccc = ScCN = 7.621 psi Allowable Compressive Stress, Vacuum and Corroded-Sac, (table HA-3) A = 0.125/(R0/t) = 0.125/(42/0.1875) = 0.000558 B = 7,100 psi S = 16,700/ 1.00 = 16,700 psi Sac = min(B, S) =7.100 psi Operating. Hot&Corroded.Wind. Bottom Seam tp = P*R/(2*St*Ks*Ec+0.40*IPI) (Pressure) = 15*41.8125/(2*16,700*1.20*0.70+0.40*1151) = 0.0224" tm = M/(n*Rm2*St*Ks*Ec) (bending) = 3,782/(7c*41.90632*16,700*1.20*0.70) = 0" t,N = 0.6*W/(2*n*Rm*St*Ks*Ec) (Weight) = 0.60*421.9/(2*n*41.9063*16,700*1.20*0.70) = 0.0001" tt - tp+tm tw (total required, tensile) = 0.0224 +0 - (0.0001) = 0.0223" twc = W/(2*7r*Rm*St*Ks*Ec) (Weight) = 421.9/(2*n*41.9063*16,700*1.20*0.70) = 0.0001" (total, net tc = Itmc+twc-tpc1 tensile) = 10+ (0.0001) - (0.0224)1 = 0.0222" Maximum allowable working pressure, Longitudinal Stress P= 2*St*Ks*Ec*(t-tm+tw)/(R -0.40*(t-tm+tw)) = 2*16,700*1.20*0.70*(0.1875-0+ (0.0001))/(41.8125-0.40*(0.1875-0+ (0.0001))) = 126.05 psi Operating. Hot& New.Wind. Bottom Seam tp = P*R/(2*St*Ks*Ec+0.40*IPI) (Pressure) = 15*41.8125/(2*16,700*1.20*0.70 +0.40*1151) = 0.0224" tm = M/(n*Rm2*St*Ks*Ec) (bending) 47/171 = 3,782/(7*41.90632*16,700*1.20*0.70) = 0" tN = 0.6*W/(2*n*Rm*St*Ks Ec) (Weight) = 0.60*421.9/(2*n*41.9063*16,700*1.20'0.70) = 0.0001" (total required, tt = tp+tm-tw tensile) = 0.0224+0 -(0.0001) = 0.0223" twc = W/(2*7E*Rm*St*Ks*Ec) (Weight) = 421.9/(2*7*41.9063*16,700*1.20*0.70) = 0.0001" (total, net tc = Itmc+cc-tpcl tensile) = 10+ (0.0001) - (0.0224)1 = 0.0222" Maximum allowable working pressure, Longitudinal Stress P= 2*St*Ks*Ec*(t-tm+tw)/(R-0.40*(t-tm+tw)) = 2*16,700*1.20'0.70*(0.1875-0+ (0.0001))/(41.8125 -0.40*(0.1875-0+ (0.0001))) = 126.05 psi Hot Shut Down. Corroded.Wind. Bottom Seam t = 0" (Pressure) tm = M/(n*Rm2*Sc*Ks) (bending) = 3,782/(n*41.90632*7,099.82*1.20) = 0.0001" t„Y = 0.6*W/(2*n*Rm*Sc*Ks) (Weight) = 0.60*421.9/(2*n*41.9063"7,099.82*1.20) = 0.0001" tt = Itp+tm-t1 (total, net compressive) = 10 +0.0001 - (0.0001)1 = Q twc = W/(2*n*Rm*Sc*Ks) (Weight) = 421.9/(2*n*41.9063*7,099.82*1.20) = 0.0002" tc = tmc+twc-tpc (total required, compressive) = 0.0001 + (0.0002) - (0) = 0.0003" Hot Shut Down.New.Wind. Bottom Seam tp = 0" (Pressure) tm = M/(7C*Rm2*Sc*Ks) (bending) = 3,782/(n*41.90632*7,099.82*1.20) = 0.0001" 48/171 tw = 0.6*W/(2*n*Rm*Sc*Ks) (Weight) = 0.60*421.9/(2*7t*41.9063*7,099.82*1.20) = 0.0001" tt = Itp+tm-twl (total, net compressive) = 10 +0.0001 - (0.0001)1 = Q twc = W/(2*n*Rm*Sc*Ks) (Weight) = 421.9/ (2*n*41.9063*7,099.82*1.20) = 0.0002" to = tmc+two-tpc (total required,compressive) = 0.0001 + (0.0002) - (0) = 0.0003" Empty. Corroded.Wind. Bottom Seam tp = 0" (Pressure) tm = M/(n*Rm2*Sc*Ks) (bending) = 3,782/(n*41.90632*7,620.56*1.20) = 0.0001" tw = 0.6*W/(2*n*Rm*Sc Ks) (Weight) = 0.60*421.9/(2*7*41.9063*7,620.56*1.20) = 0.0001" tt = ltp+tm-twl (total, net compressive) = 10 +0.0001 -(0.0001)1 = Q twc = W/(2*n*Rm*Sc*Ks) (Weight) = 421.9/(2*n*41.9063*7,620.56*1.20) = 0.0002" to = tmc+two-tpc (total required, compressive) = 0.0001 + (0.0002) - (0) = 0.0003" Empty.New.Wind. Bottom Seam tp = 0" (Pressure) tm = M/(n*Rm2*Sc*Ks) (bending) = 3,782/(n*41.90632*7,620.56*1.20) = 0.0001" tw = 0.6*W/(2*n*Rm*Sc*Ks) (Weight) = 0.60*421.9/(2*n*41.9063*7,620.56*1.20) = 0.0001" tt = ltp+tm -twl (total, net compressive) = 10+0.0001 -(0.0001)1 = twc = W/(2*n*Rm*Sc*Ks) (Weight) = 421.9/(2*n*41.9063"7,620.56*1.20) = 0.0002" 49/171 • tc = tmc+t -tpc (total required,compressive) = 0.0001 + (0.0002) - (0) = 0.0003" Hot Shut Down. Corroded.Weight& Eccentric Moments Only. Bottom Seam tP = 0" (Pressure) tm = M/(n*Rm2*Sc*Ks) (bending) = 2,997/(n*41.90632*7,099.82*1.00) = 0.0001" = W/(2*n*Rm*Sc*Ks) (Weight) = 421.9/(2*21*41.9063*7,099.82*1.00) = 0.0002" tt = Itp+tm-t.I (total, net compressive) = 10+0.0001 - (0.0002)1 = 0.0001" tc = tmc+twc-tpc (total required,compressive) = 0.0001 +(0.0002) - (0) = 0.0003" Operating. Hot& Corroded. Seismic. Bottom Seam tp = P*R/(2*St*Ks*Ec+0.40*IPI) (Pressure) = 15*41.8125/(2*16,700*1.20*0.70+0.40*1151) = 0.0224" tm = M/(n*Rm2*St*Ks*Ec) (bending) = 5,215/(7041.90632*16,700*1.20*0.70) = 0.0001" = (0.6-0.14*Sps)*W/(2*n*Rm*St*Ks*Ec) (Weight) = 0.50*421.9/(2*7*41.9063*16,700*1.20*0.70) = 0.0001" t tw (total required, t - t1)+tm- tensile) = 0.0224+0.0001 - (0.0001) = 0.0224" Inc = (1 +0.14*Sos)*W/(2*n*Rm*St*Ks*Ec) (Weight) = 1.10*421.9/(2*n*41.9063*16,700*1.20*0.70) = 0.0001" (total, net tc = Itmc+t19C-tpcl tensile) = 10.0001 + (0.0001) -(0.0224)1 = 0.0222" Maximum allowable working pressure, Longitudinal Stress P= 2*St*Ks*Ec*(t-tm+tW)/(R -0.40*(t-tm+ty„)) = 2*16,700*1.20*0.70*(0.1875-0.0001 + (0.0001))/(41.8125 -0.40*(0.1875 -0.0001 + (0.0001))) = 126.03 psi 50/171 Operating. Hot & New. Seismic.Bottom Seam . t, = P*R/(2*St*Ks*Ec+0.401131) (Pressure) = 15*41.8125/(2*16,700*1.20*0.70+0.401151) = 0.0224" tm = M/(n*Rm2*St*Ks*Ec) (bending) = 5,215/(n*41.90632*16,700*1.20*0.70) = 0.0001" tW = (0.6-0.14*SDS)*W/(2*n*Rm*St*Ks*Ec) (Weight) = 0.50*421.9/(2*n*41.9063*16,700*1.20*0.70) = 0.0001" C (total required, tr - tp+tm tensile) = 0.0224+0.0001 - (0.0001) = 0.0224" Cc = (1 +0.14*Sos)*W/(2*1C*Rm*St*Ks*Ec) (Weight) = 1.10*421.9/(2*n*41.9063*16,700*1.20*0.70) = 0.0001" } (total, net tc = It=+Cc-tp l tensile) = 10.0001 + (0.0001) - (0.0224)1 = 0.0222" Maximum allowable working pressure, Longitudinal Stress P= 2*St*Ks*Ec*(t-tm+t)/(R -0.40*(t-tm+tN,)) = 2*16,700*1.20*0.70*(0.1875-0.0001 + (0.0001))/(41.8125-0.40*(0.1875 -0.0001 +(0.0001))) = 126.03 psi Hot Shut Down.Corroded. Seismic. Bottom Seam tP = 0" (Pressure) tm = M/(7t*Rm2*St*Ks*Ec) (bending) = 5,215/(n*41.90632*16,700*1.20*0.70) = 0.0001" t,,, = (0.6 -0.14*SDS)*W/(2*7t*Rm*St*Ks*Ec) (Weight) = 0.50*421.9/(2*n*41.9063*16,700*1.20*0.70) = 0.0001" tt = tp+tm -tW (total required,tensile) = 0+0.0001 - (0.0001) = Q tmc = M/(x*Rm2*Sc*Ks) (bending) = 5,215/(n*41.90632*7,099.82*1.20) = 0.0001" Cc = (1 +0.14*Sos)*W/(2*t*Rm*Sc*Ks) (Weight) = 1.10*421.9/(2*n*41.9063*7,099.82*1.20) = 0.0002" 51/171 • tc = tmc+twc-tpc (total required, compressive) = 0.0001 + (0.0002) - (0) = 0.0003" Hot Shut Down. New.Seismic. Bottom Seam t = 0" (Pressure) tm = M/(n*Rm2*St*Ks*Ec) (bending) = 5,215/(n*41.90632*16,700*1.20*0.70) = 0.0001" = (0.6-0.14*Sps)*W/(2*n*Rm*St*Ks*Ec) (Weight) = 0.50*421.9/(2*n*41.9063*16,700*1.20*0.70) = 0.0001" tt = tp+tm -tw (total required, tensile) = 0+0.0001 - (0.0001) = tmc = M/(n*Rm2*Sc*Ks) (bending) = 5,215/(n*41.90632*7,099.82*1.20) = 0.0001" twc = (1 +0.14*Sps)*W/(2*n*Rm*Sc*Ks) (Weight) = 1.10*421.9/(2*n*41.9063*7,099.82*1.20) = 0.0002" tc = tmc+twc-tpc (total required, compressive) = 0.0001 + (0.0002) - (0) = 0.0003" Empty. Corroded. Seismic. Bottom Seam tp = 0" (Pressure) tm = M/(n*Rm2*St*Ks*Ec) (bending) = 4,811 /(n*41.90632*16,700*1.20*0.70) = 0.0001" tw = (0.6-0.14*SDS)*W/(2*7[*Rm*St*Ks*Ec) (Weight) = 0.50*421.9/(2*n*41.9063*16,700*1.20*0.70) = 0.0001" tt = tp+tm -tw (total required, tensile) = 0+0.0001 -(0.0001) = Q tmc = M/(n*Rm2*Sc*Ks) (bending) = 4,811 /(n*41.90632*7,620.56*1.20) = 0.0001" we = (1 +0.14*Sps)*W/(2*n*Rm*Sc*Ks) (Weight) = 1.10*421.9/(2*n*41.9063*7,620.56*1.20) = 0.0002" tc = tmc+twc-tpc (total required, compressive) = 0.0001 + (0.0002) - (0) = 0.0003" 52/171 Empty. New Seismic. Bottom Seam tp = 0" (Pressure) tm = M/(n*Rm2*St*Ks*Ec) (bending) = 4,811 /(n*41.90632*16,700*1.20*0.70) = 0.0001" C = (0.6-0.14*SDs)*W/(2*n*Rm*St*Ks*Ec) (Weight) = 0.50*421.9/(2*n*41.9063*16,700*1.20*0.70) = 0.0001" tt = tp+tm -t (total required,tensile) = 0+0.0001 - (0.0001) = Q tmc = M/(n*Rm2*Sc*Ks) (bending) = 4,811 /(n*41.90632*7,620.56*1.20) = 0.0001" twc = (1 +0.14*SDS)*W/(2*n*Rm*Sc*Ks) (Weight) = 1.10*421.9/(2*n*41.9063*7,620.56*1.20) = 0.0002" tc = tmc+twc-tp, (total required, compressive) = 0.0001 + (0.0002) - (0) = 0.0003" 53/171 Straight Flange on Bottom Head ASME Section VIII Division 1,2013 Edition Component: Straight Flange Material specification: SA-240 304L(II-D p. 86, In.43) Impact test exempt per UHA-51(g)(coincident ratio =0.2298) Internal design pressure: P = 15 psi @ 150 °F Static liquid head: Pih = 3.02 psi (SG = 1, HS=83.6691", Horizontal test head) Corrosion allowance Inner C=0" Outer C=0" Design MDMT=-20 °F No impact test performed Rated MDMT=-320 °F Material is not normalized Material is not produced to Fine Grain Practice PWHT is not performed Radiography: Longitudinal joint- None UW-11(c) Type 1 Circumferential joint- None UW-11(c) Type 1 Estimated weight New= 14.3 lb corr= 14.3 lb Capacity New=23.78 US gal corr=23.78 US gal OD = 84" Length _ 1" Lc t = 0.1875" Design thickness,(at 150 °F)Appendix 1-1 t = P*R0/(S*E +0.40*P) +Corrosion = 15*42/ (16,700*0.70+0.40*15) +0 = 0.0539" Maximum allowable working pressure,(at 150 °F)Appendix 1-1 P = S*E*t/(R0-0.40*t) - PS = 16,700*0.70*0.1875/(42 -0.40*0.1875) -0 = 52.28 psi Maximum allowable pressure,(at 70 °F)Appendix 1-1 P = S*E*t/(H0-0.40*t) = 16,700*0.70*0.1875/(42-0.40*0.1875) = 52.28 psi % Forming strain- UHA-44(a)(2) EFE = (50*t/ Rf)*(1 - R1/R0) = (50*0.1875/41.9063)*(1 -41.9063/oo) = 0.2237% 54/171 Design thickness =0.0539" The governing condition is due to internal pressure. The cylinder thickness of 0.1875" is adequate. Thickness Required Due to Pressure+ External Loads Allowable Stress Before Req'd Thk Due Pressure P( Temperature( Corrosion C Req'd Thk Due to to Condition psi) UG-23 Stress 'F) (in) Load Tension(in) Compression Increase(psi) (In) St Sc Operating,Hot&Corroded 15 16,700 7.100 150 0 Wind 0.0261 0.0246 - Seismic 0.0265 0.0242 Oeratina.Hot&New 15 16,700 7.100 150 0 Wind 0.0261 0.0246 p Seismic 0.0265 4.90242 Hot Shut Down.Corroded 0 16,700 7.100 150 0 Wind 0.0038 0.0023 Seismic 0.0042 0.0019 Hot Shut Down,New 0 16,700 7.100 150 0 Wind 0.0038 0.0023 Seismic 0.0042 p.0019 Empty,Corroded 0 16,700 7.621 70 0 Wind 0.0001 Q Seismic 0.0001 Q Empty.New 0 16,700 1621 70 0 Wind 0.0001 Q Seismic 0.0001 Q Hot Shut Down.Corroded.Weight& 0 16,700 7.100 150 0 Weight 0.0045 0.0045 Eccentric Moments Only Allowable Compressive Stress, Hot and Corroded-SCHC,(table HA-3) A = 0.125/(Ro/t) = 0.125/(42/0.1875) = 0.000558 B = 7,100 psi S = 16,700/ 1.00 = 16,700 psi SCHC = min(B, S) =7.100 psi Allowable Compressive Stress,Hot and New-SCHN ScHN = ScHC = 7.100 psi Allowable Compressive Stress,Cold and New-SccN,(table HA-3) A = 0.125/(Flo/t) = 0.125/(42/0.1875) = 0.000558 B = 7,621 psi S = 16,700/ 1.00 = 16,700 psi ScCN = min(B, S) =7.621 psi 55/171 • Allowable Compressive Stress,Cold and Corroded-Sccc Sccc = ScCN = 7.621 osi Allowable Compressive Stress,Vacuum and Corroded-Sac, (table HA-3) A = 0.125/(R0/t) = 0.125/(42/0.1875) = 0.000558 B = 7,100 psi S = 16,700/1.00 = 16,700 psi Scvc = min(B, S) =7.100 psi Operating. Hot&Corroded.Wind.Top Seam tp = P*R/(2*St*Ks*Ec+0.40*IPI) (Pressure) = 15*41.8125/(2'16,700*1.20*0.70+0.40'1151) = 0.0224" tm = M/(n*Rm2*St*Ks*Ec) (bending) = 705/(n*41.90632*16,700*1.20*0.70) = 0" = W/(2*n*Rm*St*Ks*Ec) (Weight) = -13,984.6/(2*7*41.9063*16,700*1.20*0.70) = -0.0038" tt - tp+tm ty (total required, tensile) = 0.0224+0- (-0.0038) = 0.0261" twc = 0.6*W/(2*n*Rm*St Ks*Ec) (Weight) = 0.60*-13,984.6/(2*n*41.9063*16,700*1.20*0.70) = -0.0023" (total, net tc = Itmc+twc-tp1 tensile) = 10+ (-0.0023) - (0.0224)1 = 0.0246" Maximum allowable working pressure, Longitudinal Stress P= 2*St*Ks*Ec*(t-tm+tw)/(R-0.40*(t-tm+tw)) = 2*16,700*1.20*0.70*(0.1875-0+ (-0.0038))/(41.8125 -0.40*(0.1875 -0 + (-0.0038))) = 123.48 psi Operating. Hot& New.Wind.Too Seam tp = P*R/(2*St*Ks*Ec+0.40*IPI) (Pressure) = 15*41.8125/(2*16,700*1.20*0.70+0.401151) = 0.0224" tm = M/(n*Rm2*St*Ks*Ec) (bending) 56/171 = 705/(n*41.90632*16,700*1.20*0.70) . = 0" tw = W/(2*n*Rm*St*Ks*Ec) (Weight) = -13,984.6/(2*n*41.9063*16,700*1.20*0.70) = -0.0038" tt - tp+tm tw (total required, tensile) = 0.0224+0 - (-0.0038) = 0.0261" twc = 0.6*W/(2*n*Rm*St*Ks*Ec) (Weight) = 0.60*-13,984.6/(2*2t*41.9063*16,700*1.20*0.70) = -0.0023" (total, net tc = Itmc+twc-tp I tensile) = 10+ (-0.0023) - (0.0224)1 = 0.0246" Maximum allowable working pressure, Longitudinal Stress P= 2*St*Ks*Ec*(t-tm+t)/(R-0.40*(t-tm +tw)) = 2*16,700*1.20*0.70*(0.1875-0+ (-0.0038))/(41.8125-0.40*(0.1875-0+ (-0.0038))) = 123.48 psi Hot Shut Down. Corroded.Wind.Top Seam tP = 0" (Pressure) tm = M/(n*Rm2*St*Ks*Ec) (bending) = 705/(n*41.90632`16,700*1.20*0.70) = 0" tw = W/(2*n*Rm*St*Ks*Ec) (Weight) = -13,984.6/(2*n*41.9063*16,700*1.20*0.70) = -0.0038" (total required, tt - tp+tm-tw tensile) = 0+0- (-0.0038) = 0.0038" twc = 0.6*W/(2*n*Rm*St*Ks*Ec) (Weight) = 0.60*-13,984.6/(2*n*41.9063*16,700*1.20*0.70) _ -0.0023" (total, net tc = Itmc+t,c-tpcl tensile) = 10+ (-0.0023) - (0)1 = 0.0023" Hot Shut Down. New.Wind.Top Seam t, = 0" (Pressure) tm = M/(n*Rm2*St*Ks*Ec) (bending) 57/171 = 705/(n*41.90632*16,700*1.20*0.70) = 0" tw = W/(2*n*Rm*St*Ks*Ec) (Weight) = -13,984.6/(2*n*41.9063*16,700*1.20*0.70) = -0.0038" (total required, tt - tp+tm-tw tensile) = 0 +0 - (-0.0038) = 0.0038" twc = 0.6*W/(2*n*Rm*St*Ks*Ec) (Weight) = 0.60*-13,984.6/(2*n*41.9063*16,700*1.20*0.70) = -0.0023" (total, net tc = Itmc+twc-tpc1 tensile) = 10+ (-0.0023) - (0)1 = 0.0023" Empty. Corroded.Wind.Top Seam tp = 0" (Pressure) tm = M/(n*Rm2*St*Ks*Ec) (bending) = 705/(n*41.90632*16,700*1.20*0.70) = 0" tw = W/(2*n*Rm*St*Ks*Ec) (Weight) = -294.7/(2*n*41.9063*16,700*1.20`0.70) = -0.0001" tt = tp+tm-t (total required,tensile) = 0+0- (-0.0001) = 0.0001" twc = 0.6*W/(2*n*Rm*St*Ks*Ec) (Weight) = 0.60`-294.7/(2*7*41.9063*16,700*1.20*0.70) = 0" tc = Itmc+twc-tpc1 (total, net tensile) = 10 +(0) - (0)I = Q Empty. New.Wind.Top Seam tp = 0" (Pressure) tm = M/(n*Rm2*St*Ks*Ec) (bending) = 705/(2t*41.90632*16,700*1.20*0.70) = 0" tw = W/(2*n*Rm*St`Ks*Ec) (Weight) = -294.7/(2*n*41.9063*16,700*1.20*0.70) = -0.0001" tt = tp+tm -tw (total required,tensile) = 0+0- (-0.0001) 58/171 = 0.0001" `wc = 0.6*W/(2*7t*Rm*St*Ks*Ec) (Weight) = 0.60*-294.7/(2*n*41.9063*16,700"1.20"0.70) = 0" tc = Itmc+twc-tpc1 (total, net tensile) = 10+ (0) - (0)I = Q Hot Shut Down. Corroded.Weight& Eccentric Moments Only.Top Seam tp = 0" (Pressure) tm = M/(n*Rm2*St*Ks*Ec) (bending) = 0/(7*41.90632*16,700*1.00*0.70) = 0" = W/(2*7t*Rm*St*Ks*Ec) (Weight) = -13,984.6/(2*7t*41.9063*16,700*1.00*0.70) = -0.0045" tt = tp+tm-tv„ (total required,tensile) = 0+0- (-0.0045) = 0.0045" tc = Itmc+twc-tpc1 (total, net tensile) = 10 + (-0.0045) - (0)1 = 0.0045" Operating. Hot& Corroded.Seismic.Top Seam tp = P*R/(2*St*Ks*Ec+0.40*IPI) (Pressure) = 15*41.8125/(2`16,700*1.20*0.70+0.40*1151) = 0.0224" tm = M/(n*Rm2*St*Ks*Ec) (bending) = 319/(7C41.90632*16,700*1.20*0.70) = 0" tw = (1 +0.14*SDs)*W/(2*n*Rm*St*Ks*Ec) (Weight) = 1.10*-13,984.6/(2*7t*41.9063`16,700*1.20"0.70) = -0.0042" t (total required, tt = tp+tm- `w tensile) = 0.0224+0-(-0.0042) = 0.0265" twc = (0.6-0.14*SDs)*W/(2*n*Rm*St*Ks*Ec) (Weight) = 0.50*-13,984.6/(2*1t*41.9063*16,700*1.20*0.70) = -0.0019" (total, net tc = Itmc+twc-tpc1 tensile) = 10+ (-0.0019) - (0.0224)1 = 0.0242" 59/171 • Maximum allowable working pressure, Longitudinal Stress P= 2*St*Ks*Ec*(t-tm +tw)/(R -0.40*(t-tm+tw)) = 2*16,700*1.20*0.70*(0.1875-0+ (-0.0042))/(41.8125 -0.40*(0.1875-0+ (-0.0042))) = 123.24 psi Operating. Hot& New. Seismic.Top Seam tp = P*R/(2*St*Ks*Ec+0.40*IPI) (Pressure) = 15*41.8125/(2*16,700*1.20*0.70+0.40 1151) = 0.0224" tm = M/(n*Rm2*St*Ks*Ec) (bending) = 319/(7t*41.90632*16,700*1.20*0.70) = 0" tw = (1 +0.14*SDS)*W/(2*n*Rm*St*Ks*Ec) (Weight) = 1.10*-13,984.6/(2*n*41.9063*16,700*1.20*0.70) = -0.0042" (total required, tt - tp+tm-tw tensile) = 0.0224+0 -(-0.0042) = 0.0265" twc = (0.6-0.14*SDS)*W/(2*7t*Rm*St*Ks*Ec) (Weight) = 0.50*-13,984.6/(2*n*41.9063*16,700*1.20*0.70) = -0.0019" Cc (total, net tc = Itmc+ `wc-tpcl tensile) = 10+ (-0.0019) -(0.0224)1 = 0.0242" Maximum allowable working pressure, Longitudinal Stress P= 2*St*Ks*Ec*(t-tm+C)/(R-0.40*(t-tm+tw)) = 2*16,700*1.20*0.70*(0.1875-0+ (-0.0042))/(41.8125-0.40*(0.1875 -0+ (-0.0042))) = 123.24 psi Hot Shut Down. Corroded.Seismic.Top Seam tp = 0" (Pressure) tm = M/(n*Rm2*St*Ks*Ec) (bending) = 319/(7*41.90632*16,700*1.20*0.70) = 0" tw = (1 +0.14*SDS)*W/(2*n*Rm*St*Ks*Ec) (Weight) = 1.10*-13,984.6/(2*7041.9063*16,700*1.20*0.70) = -0.0042" (total required, tt - tp+tm-tw tensile) = 0 +0- (-0.0042) = 0.0042" 60/171 Cc = (0.6-0.14*SDS)*W/(2*n*Rm*St*Ks*Ec) (Weight) . = 0.50*-13,984.6/(2*n*41.9063*16,700*1.20*0.70) _ -0.0019" (total, net tc = Itmc+twc-tpc1 tensile) = 10+ (-0.0019) - (0)1 = 0.0019" Hot Shut Down.New. Seismic.Top Seam tP = 0" (Pressure) tm = M/(n*Rm2*St*Ks*Ec) (bending) = 319/(n*41.90632*16,700*1.20*0.70) = 0" tw = (1 +0.14*SDS)*W/(2*n*Rm*St*Ks*Ec) (Weight) = 1.10*-13,984.6/(2*n*41.9063*16,700*1.20*0.70) = -0.0042" t< - tP+tm tw (total required, tensile) = 0 +0 - (-0.0042) = 0.0042" Cc = (0.6-0.14*SDS)*W/(2*n*Rm*St*Ks*Ec) (Weight) = 0.50*-13,984.6/(2*2t*41.9063*16,700*1.20*0.70) = -0.0019" tc = Itmc+tWc-tpc1 (total, net tensile) = 10+ (-0.0019) - (0)1 = 0.0019" Empty. Corroded. Seismic.Top Seam tP = 0" (Pressure) tm = M/(n*Rm2*St*Ks*Ec) (bending) = 261 /(n*41.90632*16,700*1.20*0.70) = 0" tw = (1 +0.14*SDS)*W/(2*n*Rm*St*Ks*Ec) (Weight) = 1.10*-294.7/(2*n*41.9063*16,700*1.20*0.70) = -0.0001" tt = tp+tm -t (total required,tensile) = 0+0- (-0.0001) = 0.0001" twc = (0.6-0.14*SDS)*W/(2*n*Rm*St*Ks*Ec) (Weight) = 0.50*-294.7/(2*n*41.9063*16,700*1.20*0.70) = 0" tc = Itmc+twc-tpc1 (total, net tensile) = 10+ (0) - (0)I = Q 61/171 Empty. New. Seismic.Top Seam t, = 0" (Pressure) tm = M/(n*Rm2*St*Ks*Ec) (bending) = 261 /(n*41.90632*16,700*1.20*0.70) = 0" = (1 +0.14*Sos)*W/(2*n*Rm*St*Ks*Ec) (Weight) = 1.10*-294.7/(2*n*41.9063*16,700*1.20*0.70) = -0.0001" tt = tp+tm -tr„ (total required,tensile) = 0+0- (-0.0001) = 0.0001" `wc = (0.6-0.14*Sos)*W/(2*n*Rm*St*Ks*Ec) (Weight) = 0.50*-294.7/(2*7t*41.9063*16,700*1.20*0.70) = 0" tc = Itmc+tWC-tpcl (total, net tensile) = 10+ (0) - (0)I = Q 62/171 Bottom Head ASME Section VIII Division 1, 2013 Edition Component: F&D Head Material Specification: SA-240 304L(II-D p.86, In. 43) Material Rated MDMT per UHA-51(d)(1)(a), (carbon content does not exceed 0.10%) = -320 °F Internal design pressure: P = 15 psi @ 150 °F Static liquid head: Ps=0 psi (SG=1, Hs=0"Operating head) Pth=3.02 psi (SG=1, H =83.7132" Horizontal test head) Corrosion allowance: Inner C=0" Outer C=0" Design MDMT= -20°F No impact test performed Rated MDMT= -320°F Material is not normalized Material is not produced to fine grain practice PWHT is not performed Do not Optimize MDMT/Find MAWP Radiography: Category A joints- None UW-11(c)Type 1 Head to shell seam - None UW-11(c) Type 1 Estimated weight*: new=293.3 lb corr=293.3 lb Capacity*: new=251.5 US gal corr=251.5 US gal * includes straight flange Outer diameter = 84" Crown radius L = 78" Knuckle radius r = 6" Minimum head thickness = 0.1434" Straight flange length Lsf = 1" Nominal straight flange thickness tsf = 0.1875" Results Summary The governing condition is internal pressure. Minimum thickness per UG-16 = 0.0625"+0" =0.0625" Design thickness due to internal pressure (t) = 0.0951" Maximum allowable working pressure (MAWP) = 25.73 psi Maximum allowable pressure (MAP) = 26.02 psi M(Corroded) M=1/4*[3 + (L/r)19=1/4*[3+ (78/6)1/2]=1.651388 M(New) M=1/4*[3 + (L/r)1/2]=1/4*[3+ (78/6)1/2]=1.651388 63/171 • Design thickness for internal pressure, (Corroded at 150 °F)Appendix 1-4(d) t = P*Lo*M/(2*S*E + P*(M -0.2)) + Corrosion = 15`78.1434*1.6514/(2*16,700*0.7+ 15*(1.6514-0.2)) +0 = 0.0827" Design thickness for internal pressure, (Corroded at 150 °F)Appendix 1-4(f)(1) 0.0005<_ (tm head Corrosion)/L=0.1434/78=0.0018<0.002 r/D = 0.07175_ 0.08 C� = 9.31*r/ D-0.086 = 9.31*0.0717-0.086 = 0.5813 Se = C1*ET*(t/r) = 0.5813*27.81 E+06*(0.095/6) = 255,983 psi C2 = 1.25 = (L*t)03/r = (78*0.095)05/6 = 0.453736 radians a = 0.5*D - r = 0.5*83.7132-6 = 35.8566" b = L- r = 78-6 = 72" R = arc cos(a/b) = arc cos(35.8566/72) = 1.049496 radians =0.4537< (3= 1.0495 c = a/(cos((3-0)) = 35.8566/(cos(1.0495-0.4537)) = 43.319602" Re = c+ r = 43.3196+6 = 49.319602" Pe = Se*t/(C2*Re*(0.5*Re/r- 1)) = 255,983*0.095/(1.25*49.3196*(0.5*49.3196/6- 1)) = 126.86 psi Py = Sy*t/(C2*Re*(0.5*Re/r- 1)) = 22,700*0.095/(1.25*49.3196*(0.5*49.3196/6- 1)) = 11.25 psi Pe/Py= 126.86/ 11.25= 11.28>8.29 64/171 Pck = 2*Py = 2*11.25 = 22.5 psi Pck/ 1.5= 15 psi ? Internal design pressure P= 15 psi t = tr+Corrosion = 0.09502 + 0 = 0.09502" Design thickness is acceptable per Appendix 1-4(f)for a design pressure of 15 psi. The head internal pressure design thickness is 0.0951". Maximum allowable working pressure,(Corroded at 150 °F)Appendix 1-4(d) P = 2*S*E*t/(M*La-t*(M -0.2)) - PS = 2*16,700*0.7*0.1434/(1.6514*78.1434-0.1434*(1.6514-0.2)) -0 = 26.02 psi Maximum allowable working pressure, (Corroded at 150 °F)Appendix 1-4(f)(1) 0.0005< (tm head Corrosion)/L=0.1434/78=0.0018<0.002 r/D = 0.07175_ 0.08 C1 = 9.31*r/D -0.086 = 9.31*0.0717-0.086 = 0.5813 Se = Ci*ET*(t/r) = 0.5813*27.81 E+06*(0.1434/6) = 386,320 psi C2 = 1.25 = (L*t)o.5/r = (78*0.1434)05/6 = 0.557405 radians a = 0.5*D - r = 0.5*83.7132-6 = 35.8566" b = L- r = 78-6 = 72" = arc cos(a/b) = arc cos(35.8566/72) = 1.049496 radians �=0.5574< (3= 1.0495 c = a/(cos(43-0)) = 35.8566/(cos(1.0495-0.5574)) 65/171 = 40.683871" Re = c+ r = 40.6839+ 6 = 46.683871" Pe = Se*t/(C2*Re*(0.5*Re/r- 1)) = 386,320*0.1434/(1.25*46.6839*(0.5*46.6839/6- 1)) = 328.45 psi Py = S *t/(C2*Re*(0.5*Re/r- 1)) = 22,700*0.1434/(1.25*46.6839*(0.5*46.6839/6- 1)) = 19.3 psi Pe/ Py=328.45/19.3= 17.02>8.29 Pik = 2*Py 2*19.3 = 38.6 psi Pck/ 1.5=25.73 psi P = Pck/ 1.5- Ps = 38.6/ 1.5 -0 = 25.73 psi The maximum allowable working pressure (MAWP) is 25.73 psi. Maximum allowable pressure,(New at 70 °F)Appendix 1-4(d) P = 2*S*E*t/(M*L0-t*(M -0.2)) - PS = 2*16,700*0.7*0.1434/(1.6514*78.1434-0.1434*(1.6514-0.2)) -0 = 26.02 psi Maximum allowable pressure, (New at 70 °F)Appendix 1-4(f)(1) 0.0005<_(tmin head -Corrosion)/L=0.1434/78=0.0018<0.002 r/D = 0.07175_ 0.08 C1 = 9.31*r/ D-0.086 = 9.31*0.0717-0.086 = 0.5813 Se = C1*ET*(t/r) = 0.5813*28.3E+06*(0.1434/6) = 393,159 psi C2 = 1.25 = (L*t)05/r = (78*0.1434)05/6 = 0.557405 radians a = 0.5*D - r = 0.5*83.7132-6 = 35.8566" 66/171 b = L- r = 78-6 = 72" 13 = arc cos(a/b) = arc cos(35.8566/72) = 1.049496 radians �=0.5574< (i= 1.0495 c = a/(cos(R-4))) = 35.8566/(cos(1.0495-0.5574)) = 40.683871" Re = c+ r = 40.6839+6 = 46.683871" Pe = Se*t/(C2*Re*(0.5*Re/r- 1)) = 393,159'0.1434/(1.25'46.6839'(0.5'46.6839/6- 1)) = 334.27 psi Py = S 't/(C2'Re*(0.5*Re/r- 1)) = 25,000'0.1434/(1.25`46.6839"(0.5'46.6839/6- 1)) = 21.26 psi Pe/Py=334.27/21.26= 15.73 >8.29 Pck = 2*Py = 2'21.26 = 42.51 psi Pck/ 1.5=28.34 psi P = Pck/ 1.5- Ps = 42.51 / 1.5 -0 = 28.34 psi The maximum allowable pressure (MAP) is 26.02 psi. %Forming strain- UHA-44(a)(2) EFE = (751/Rf)*(1 - Rf/R0) = (75'0.1875/6.0938)'(1 -6.0938/oo) = 2.3077% 67/171 Drain(D) ASME Section VIII Division 1,2013 Edition w(lower) = 0 in Leg41 = 0.1875 in 0.1431 Note:round inside edges per UG-76(c) Location and Orientation Located on: Bottom Head Orientation: 0° End of nozzle to datum line: -17.6781 in Calculated as hillside: No Distance to head center, R: 0 in Passes through a Category A joint: No Nozzle Access opening: No Material specification: SA-182 F304L<=5 (II-D p. 86, In. 39) Description: NPS 3 Class 3000-threaded Inside diameter, new: 3.5 in Nominal wall thickness: 0.375 in Corrosion allowance: 0 in Projection available outside vessel, Lpr: 1 in Local vessel minimum thickness: 0.1434 in Liquid static head included: 0 psi Longitudinal joint efficiency: 1 68/171 Reinforcement Calculations for Internal Pressure UG-45 Nozzle UG-37 Area Calculation Summary Wall (in2) Thickness For Pr 15 psi @150°F Summary(in) The nozzle passes UG-45 required available Al A2 A3 A5 welds tmq train This nozzle is exempt from area 0.0625 0.375 calculations per UG-36(c)(3)(a) UG-41 Weld Failure Path Analysis Summary The nozzle is exempt from weld strength calculations per UW-15(b)(2) UW-16 Weld Sizing Summary Weld description Required weld Actual weld Status throat size(in) throat size(in) Nozzle to shell fillet(Leg4i) 0.095 0.1312 weld size is adequate Calculations for internal pressure 15 psi @ 150 °F Nozzle Impact test exempt per UHA-51(g)(coincident ratio=0.2446). Parallel Limit of reinforcement per UG-40 LA = MAX(d, Re+ (tn- Cn) + (t-C)) = MAX(3.5, 1.75+ (0.375-0) + (0.1434-0)) = 3.5 in Outer Normal Limit of reinforcement per UG-40 LH = MIN(2.5*(t-C), 2.5*(tn-Cn) +te) = MIN(2.5*(0.1434-0), 2.5*(0.375-0) +0) = 0.3585 in Nozzle required thickness per UG-27(c)(1) tm = P*Rn/(Se*E-0.6*P) = 15*1.75/(16,700*1 -0.6*15) = 0.0016 in Required thickness tr from UG-37(a)(a) tr = P*Lo*M/(2*S*E + P*(M -0.2)) = 15*78.1434*1 /(2*16,700*1 + 15*(1 -0.2)) = 0.0351 in This opening does not require reinforcement per UG-36(c)(3)(a) 69/171 • Check the weld-From UW-16(f)(3)(a)(3)(a) ta UG-27 = P*Ro/(S*E +0.4*P) +Corrosion = 15*2.125/(16,7001 +0.4*15)+0 = 0.0019 in to = max[to UG-27 ,ta UG-22] = max[0.0019 , 0] = 0.0019 in tb1 = 0.095 in tb1 = max[tb1 , tb UG16] = max[0.095 , 0.0625] = 0.095 in tb = min[tb3 ,tb1 ] = min[0.2074 , 0.095] = 0.095 in tUG-45 = max[to , to] = max[0.0019 , 0.095] = 0.095 in tw(actual) =0.7*Leg =0.7*0.1875=0.1313 in The fillet weld size is satisfactory. ASME B16.11 Coupling Wall Thickness Check Interpretation VIII-1-83-66 has been applied. Wall thickness req'd per ASME B16.11 2.1.1: tr1 =0.0019 in (E =1) Wall thickness per UG-16(b): tr3=0.0625 in Available nozzle wall thickness new,to=0.375 in The nozzle neck thickness is adequate. 70/171 Elliptical Man-Way(EMW) ASME Section VIII Division 1, 2013 Edition tw(lower) = 0 in Leg41 = 0.1875 in Leg43= 0.1875 in hnew= 1 in 18.0000 0.8604 Note:round inside edges per UG-76(c) Location and Orientation Located on: Top Head Orientation: 225° End of nozzle to datum line: 205.4142 in Calculated as hillside: No Distance to head center, R: 30 in Passes through a Category A joint: No Nozzle Access opening: Yes Material specification: SA-240 304L(II-D p. 86, In. 43) Description: 16"x 12" Elliptical Nozzle Inside diameter, new: 16 in Nominal wall thickness: 0.75 in Corrosion allowance: 0 in Projection available outside vessel, Lpr: 3.4104 in Internal projection, hnew: 1 in Local vessel minimum thickness: 0.1434 in User input radial limit of reinforcement: 9 in Liquid static head included: 0 psi Longitudinal joint efficiency: 1 Elliptical manway pressure rating: 300 psi @ 200 °F 71/171 r Reinforcement Calculations for Internal Pressure UG-45 Nozzle Wall UG-37 Area Calculation Summary (in2) Thickness For P-15 psi @150°F Summary The opening is adequately reinforced (in) The nozzle passes UG-45 A A A required avai able Al A2 A3 A5 welds treg tmin 0.5613 1.3574 0.2166 0.5326 0.5378 -- 0.0704 0.0072 0.75 UG-41 Weld Failure Path Analysis Summary (Ibf) All failure paths are stronger than the applicable weld loads Weld load Weld load Path 1-1 Weld load Path 2-2 W W1-1 strength W2.2 strength 8.469.57 9,482.26 272,856.89 22.642.7 84,353.24 UW-16 Weld Sizing Summary Weld description Required weld Actual weld Status throat size(in) throat size(in) Nozzle to shell fillet(Leg4i) 0.1004 0.1312 weld size is adequate Nozzle to inside shell fillet(Leg43) 0.1004 0.1312 q weld size is adequate (corroded) Calculations for internal pressure 15 psi @ 150 °F Nozzle Impact test exempt per UHA-51(g)(coincident ratio = 0.2446). Parallel Limit of reinforcement per UG-40 LH = MAX(d, Rn + (tn - C ) + (t- C)) = MAX(16, 8 + (0.75 -0) + (0.1434 -0)) = 16 in LA = 9 in (User Defined) Outer Normal Limit of reinforcement per UG-40 LH = MIN(2.5*(t - C), 2.5`(tn- C ) +te) = MIN(2.5`(0.1434-0), 2.5*(0.75 - 0) +0) = 0.3585 in Inner Normal Limit of reinforcement per UG-40 L1 = MIN(h, 2.5`(t- C), 2.5*(ti - Cr,- C)) = MIN(1. 2.5`(0.1434 -0), 2.5*(0.75 -0 -0)) = 0.3585 in Nozzle required thickness per UG-27(c)(1) try = P'Rn/ (Sn`E - 0.6*P) = 15*8/(16,700'1 - 0.6•15) 72/171 = 0.0072 in Required thickness tr from UG-37(a)(a) tr = P*Lo*M/(2*S*E + P*(M -0.2)) = 15*78.1434*1 /(2*16,700*1 + 15*(1 -0.2)) = 0.0351 in Area required per UG-37(c) Allowable stresses: Sr,= 16,700, S„= 16,700 psi frl = lesser of 1 or Sr,/S�= 1 fr2= lesser of 1 or Sr,/S,= 1 A = d*tr*F+2*tn*tr*F*(1 -fri) = 16`0.0351*1 +2*0.75*0.0351*1*(1 - 1) = 0.5613 in2 Area available from FIG. UG-37.1 Al: (specified limit governs) =0.2166 in2 = (2*Iimits-d)*(E,*t- F*tr) -2*tn*(E.,*t- F*tr)*(1 -fri) = (2*9- 16)*(1'0.1434- 1'0.0351) -2*0.75*(1'0.1434- 1*0.0351)*(1 - 1) = 0.2166 in2 A2=smaller of the following=0.5326 in2 = 5*(tn-tm)*fr2*t = 5*(0.75 -0.0072)*1*0.1434 = 0.5326 in2 = 5*(tn-tm)*fr2*tn = 5*(0.75 -0.0072)*1*0.75 = 2.7855 in2 A3=smaller of the following=0.5378 in2 = 5 111,2 = 5*0.1434*0.75'1 = 0.5378 in2 = 5*t,*ti*fr2 = 5*0.75*0.75*1 = 2.8125 in2 = 2*h*t.*f,2 73/171 2*1*0.75*1 = jin2 A41 = Leg2*f,2 = 0.18752*1 = 0.035Z in2 A43 = Leg2*f,2 = 0.18752*1 = 0.0352 in2 Area= Al +A2+A3+A41 +A43 = 0.2166+ 0.5326+0.5378+0.0352 +0.0352 = 1.3574 in2 As Area>=A the reinforcement is adequate. UW-16(d)Weld Check train= lesser of 0.75 or to or t=0.1434 in t1(min)or t2(min� =lesser of 0.25 or 0.71„,n=0.1004 in tl(actuai) =0.7 Leg =0.7*0.1875=0.1312 in The weld size t1 is satisfactory. t2(actual)=0.7*Leg =0.7*0.1875=0.1312 in The weld size t2 is satisfactory. t1 +t2=0.2624>= 1.25*tmin The combined weld sizes for t1 and t2 are satisfactory. UG-45 Nozzle Neck Thickness Check(Access Opening) Interpretation VIII-1-83-66 has been applied. ta UG-27 = P*R/(S*E -0.6*P) +Corrosion = 15*8/(16,700*1 -0.6*15) +0 = 0.0072 in ta = max[to UG-27 ,ta UG-22] = max[0.0072 , 0] = 0.0072 in Available nozzle wall thickness new,to=0.75 in The nozzle neck thickness is adequate. 74/171 • Allowable stresses in joints UG-45 and UW-15(c) Nozzle wall in shear: 0.7*16,700 = 11,690 psi Inner fillet weld in shear: 0.49*16,700= 8,183 psi Lower fillet weld in shear: 0.49*16,700= 8,183 psi Strength of welded joints: (1) Inner fillet weld in shear (it/2)*Nozzle OD*Leg*S1 = (n/2)*17.5*0.1875*8,183 =42,176.62 lbf (3) Nozzle wall in shear (it/2)*Mean nozzle dia*tn*Sn = (it/2)*16.75*0.75*11,690=230,680.28 lbf (5) Lower fillet weld in shear (it/2)*Nozzle OD*Leg*Si= (it/2)*17.5*0.1875*8,183 =42,176.62 lbf Loading on welds per UG-41(b)(1) W = (A-Al +2*tn*fri*(E1*t- F*tr))*Sv = (0.5613 -0.2166+2*0.75*1*(1*0.1434- 1*0.0351))*16,700 = 8.469.57 lbf W1.1 = (A2+A5+A41 +A42)*Sv = (0.5326+0+0.0352+0)*16,700 = 9.482.26 lbf W2-2= (A2+A3+A41 +A43+2*tn*t*frt)*Sv = (0.5326+0.5378+0.0352+0.0352+ 2*0.75*0.1434*1)*16,700 = 22.642.7,lbf Load for path 1-1 lesser of W or W1_f =8,469.57 lbf Path 1-1 through (1) &(3) =42,176.62 +230,680.28=272.856.89 lbf Path 1-1 is stronger than W so it is acceptable per UG-41(b)(2). Load for path 2-2 lesser of W or W2_2=8,469.57 lbf Path 2-2 through (1), (5) =42,176.62+42,176.62=84.353.24 lbf Path 2-2 is stronger than W so it is acceptable per UG-41(b)(2). %Forming strain-UHA-44(a)(2) EFE = (50*t/ Rf)*(1 - Rf/Ro) = (50*0.75/6.375)*(1 -6.375/oo) = 5.8824% 75/171 • Gas Outlet(GO) ASME Section VIII Division 1,2013 Edition tw(lower) = 0 in Leg41 = 0.1875 in Leg43= 0.1875 in .1875 hnew= 1 in 0.1434 — 1 I 'fL J 1.0000 0.1 875 Note:round inside edges per UG-76(c) Location and Orientation Located on: Top Head Orientation: 0° End of nozzle to datum line: 214.5879 in Calculated as hillside: No Distance to head center, R: 0 in Passes through a Category A joint: No Nozzle Access opening: No Material specification: SA-312 TP304L Wld pipe (II-D p. 90, In. 6) Description: NPS 8 Sch 10S Inside diameter, new: 8.329 in Nominal wall thickness: 0.148 in Corrosion allowance: 0 in Projection available outside vessel, Lpr: 5.852 in Internal projection, hnew: 1 in Projection available outside vessel to flange face, Lf: 6 in Local vessel minimum thickness: 0.1434 in Liquid static head included: 0 psi Longitudinal joint efficiency: 1 ASME B16.5-2009 Flange Description: NPS 8 Class 150 SO A182 F304L Bolt Material: SA-193 B7 Bolt<=2 1/2 (II-D p. 352, In. 31) Blind included: No Rated MDMT: -55°F (Per UHA-51(d)(1)(a)) 76/171 (Flange rated MDMT= -320 °F . Bolts rated MDMT per Fig UCS-66 note (c) = -55 °F) Liquid static head: 0 psi MAWP rating: 212.5 psi@ 150°F MAP rating: 230 psi @ 70°F Hydrotest rating: 350 psi @ 70°F External fillet weld leg (UW-21): 0.2072 in (0.2072 in min) Internal fillet weld leg (UW-21): 0.148 in (0.148 in min) PWHT performed: No 77/171 Reinforcement Calculations for Internal Pressure UG-45 Nozzle UG-37 Area Calculation Summary(in2) Wall For P.15 psi @ 150°F Thickness The opening is adequately reinforced Summary(in) The nozzle passes UG-45 A A A required available A/ A2 A3 A5 welds tfe4 tmin 0.2937 1.1354 0.8974 0.088 0.090Z -- 0.0598 0.095, 0.1295 UG-41 Weld Failure Path Analysis Summary(lbf) All failure paths are stronger than the applicable weld loads Weld load Weld load Path 1-1 Weld load Path 2-2 W W1.1 strength W2.2 strength -9.625.9 1.968.93 37.264.12 4.577.85 35.350.43 UW-16 Weld Sizing Summary Weld description Required weld Actual weld Status throat size(in) throat size(in) Nozzle to shell fillet(Legal) 0.1004 0.1312 weld size is adequate Nozzle to inside shell fillet(Leg43) 0.1004 0.1312 q weld size is adequate (corroded) Calculations for internal pressure 15 psi @ 150 °F Nozzle Impact test exempt per UHA-51(g)(coincident ratio=0.034). Parallel Limit of reinforcement per UG-40 LR = MAX(d, Rn+ (tn-Cn) + (t-C)) = MAX(8.329,4.1645+ (0.148-0) +(0.1434-0)) = 8.329 in Outer Normal Limit of reinforcement per UG-40 LH = MIN(2.5*(t-C), 2.5*(tn- Cn) +te) = MIN(2.5*(0.1434-0), 2.5*(0.148-0) +0) = 0.3585 in Inner Normal Limit of reinforcement per UG-40 LI = MIN(h, 2.5*(t-C), 2.5*(ti- Cn-C)) = MIN(1, 2.5*(0.1434-0), 2.5*(0.148-0 -0)) = 0.3585 in Nozzle required thickness per UG-27(c)(1) tm = P*Rn/(Sn*E -0.6*P) = 15*4.1645/((14,200/0.85)*1 -0.6*15) = 0.0037 in 78/171 Required thickness tr from UG-37(a)(a) tr = P*Lo*M/(2*S*E+ P*(M -0.2)) = 15*78.1434*1 /(2*16,700*1 + 15*(1 -0.2)) = 0.0351 in Area required per UG-37(c) Allowable stresses:Sn= 14,200, S„= 16,700 psi fr, =lesser of 1 or Sn/S�=0.8503 f2= lesser of 1 or Sn/S =0.8503 A = d*tr*F+2*tn*tr*F*(1 -fri) = 8.329*0.0351*1 +2*0.148*0.0351*1*(1 -0.8503) = 0.2937 in2 Area available from FIG. UG-37.1 Al = larger of the following=0.8974 in2 = d*(E1*t- F*tr) -2*tn*(E1*t- F*tr)*(1 -frt) = 8.329*(1'0.1434- 1*0.0351) -2*0.148*(1*0.1434- 1*0.0351)*(1 -0.8503) = 0.8974 in2 = 2*(t+tn)*(E1*t- F*tr) -2*tn*(E,*t- F*tr)*(1 -frt) = 2*(0.1434+0.148)*(1*0.1434- 1'0.0351) -2*0.148*(1*0.1434- 1*0.0351)*(1 -0.8503) = 0.0583 in2 A2=smaller of the following=0.088 in2 = 5*(tn-tm)*f21 = 5*(0.148-0.0037)*0.8503*0.1434 = 0.088 in2 = 5*(tn-tm)*f2*tn = 5*(0.148-0.0037)'0.8503'0.148 = 0.0908 in2 A3=smaller of the following=0.0902 in2 = 5*t*t;*f2 = 5*0.1434*0.148*0.8503 = 0.0902 in2 = 5 1;1;*f2 = 5*0.148*0.148*0.8503 = 0.0931 in2 79/171 = 2*h*ti*f2 = 2*1*0.148*0.8503 = 0.2517 in2 A41 = Leg2*f2 = 0.18752*0.8503 = 0.0299 in2 A43 = Leg2*f2 = 0.18752*0.8503 = 0.0299 in2 Area= Al +A2+A3+A41 +A43 = 0.8974+0.088+0.0902+0.0299+0.0299 = 1.1354 in2 As Area>=A the reinforcement is adequate. UW-16(d)Weld Check tmin= lesser of 0.75 or to or t=0.1434 in t1(min) or t2(min) = lesser of 0.25 or 0.7*tmin=0.1004 in tl(actuai)=0.7 Leg =0.7*0.1875=0.1312 in The weld size t1 is satisfactory. t2(actual)=0.7*Leg =0.7*0.1875 =0.1312 in The weld size t2 is satisfactory. t1 +t2=0.2624>= 1.25*tmin The combined weld sizes for t1 and t2 are satisfactory. UG-45 Nozzle Neck Thickness Check Interpretation VIII-1-83-66 has been applied. ta UG-27 = P*R/(S*E-0.6*P) +Corrosion = 15*4.1645/(14,200*1 -0.6*15) +0 = 0.0044 in ta = max[ta UG-27 ta UG-22] = max[0.0044 , 0] = 0.0044 in tbl = 0.095 in tbl = max[tb1 ,tb uG16] 80/171 = max[0.095 ,0.0625] = 0.095 in tb = min[tb3 , tb1 ] = min[0.2818 , 0.095] = 0.095 in tUG-45 = max[to , tb] = max[0.0044 , 0.095] = 0.095 in Available nozzle wall thickness new,to=0.875*0.148=0.1295 in The nozzle neck thickness is adequate. Allowable stresses in joints UG-45 and UW-15(c) Nozzle wall in shear: 0.7*14,200= 9,940 psi Inner fillet weld in shear: 0.49*14,200 = 6,958 psi Lower fillet weld in shear: 0.49*14,200 = 6,958 psi Strength of welded joints: (1) Inner fillet weld in shear (it/2)*Nozzle OD*Leg*S =(n/2)*8.625*0.1875*6,958= 17,675.21 Ibf (3) Nozzle wall in shear (n/2)*Mean nozzle dia*tn*Sn = (n/2)*8.477*0.148*9,940= 19,588.9 Ibf (5) Lower fillet weld in shear (it/2)*Nozzle OD*Leg*Si = (it/2)*8.625*0.1875*6,958= 17,675.21 Ibf Loading on welds per UG-41(b)(1) W = (A-Al +2*tn*fr1*(E,*t- F*tr))*Sv = (0.2937-0.8974+2*0.148*0.8503*(1*0.1434- 1*0.0351))*16,700 = -9.625.9 lbf W1_1 = (A2+A5+A41 +A42)*Sv = (0.088+0+0.0299+0)*16,700 = 1.968.93lbf W2_2= (A2+A3+A41 +A43+2*tn*t*fri)*Sv = (0.088+0.0902 +0.0299+0.0299+2*0.148*0.1434*0.8503)*16,700 = 4.577.85 lbf Load for path 1-1 lesser of W or W1-1 = -9,625.9 Ibf Path 1-1 through (1) & (3) = 17,675.21 + 19,588.9=37.264.12 Ibf Path 1-1 is stronger than W so it is acceptable per UG-41(b)(2). 81/171 Load for path 2-2 lesser of W or W2_2=-9,625.9 Ibf Path 2-2 through (1), (5) = 17,675.21 + 17,675.21 =35.350.43 lbf Path 2-2 is stronger than W so it is acceptable per UG-41(b)(2). 82/171 Left Septa(LS) ASME Section VIII Division 1, 2013 Edition tw(lower) = 0 in Leg41 = 0.1875 in Leg43= 0.1875 in 0.1875 New= 1 in 0.1875 — 1 J 1.0000 0.1875 Note:round inside edges per UG-76(c) Location and Orientation Located on: Lower Shell Orientation: 90° Nozzle center line offset to datum line: 6 in End of nozzle to shell center: 48 in Offset from center, Lo: 18 in Passes through a Category A joint: Yes Nozzle Access opening: No Material specification: SA-312 TP304L Wld pipe (II-D p. 90, In. 6) Description: NPS 8 Sch 10S Inside diameter, new: 8.329 in Nominal wall thickness: 0.148 in Corrosion allowance: 0 in Opening chord length: 9.2399 in Projection available outside vessel, Lpr: 8.1449 in Internal projection, hnew: 1 in Projection available outside vessel to flange face, Lf: 8.2929 in Local vessel minimum thickness: 0.1875 in Liquid static head included: 0 psi Longitudinal joint efficiency: 1 ASME B16.5-2009 Flange Description: NPS 8 Class 150 SO A182 F304L Bolt Material: SA-193 B7 Bolt<=2 1/2 (II-D p. 352, In. 31) Blind included: No Rated MDMT: -55°F (Per UHA-51(d)(1)(a)) 83/171 (Flange rated MDMT=-320 °F Bolts rated MDMT per Fig UCS-66 note (c) =-55 °F) Liquid static head: 0 psi MAWP rating: 212.5 psi@ 150°F MAP rating: 230 psi@ 70°F Hydrotest rating: 350 psi@ 70°F External fillet weld leg (UW-21): 0.2072 in (0.2072 in min) Internal fillet weld leg (UW-21): 0.148 in (0.148 in min) PWHT performed: No 84/171 Reinforcement Calculations for Internal Pressure UG-45 Nozzle UG-37 Area Calculation Summary(in2) Wall For P=15 psi @ 150°F Thickness The opening is adequately reinforced Summary(in) The nozzle passes UG-45 required available Al A2 A3 A5 welds treq teen 0.3501 1.1039 0.8602 0.0908 0.0931 -- 0.0598 0.0625 0.1295 UG-41 Weld Failure Path Analysis Summary(lbf) All failure paths are stronger than the applicable weld loads Weld load Weld load Path 1-1 Weld load Path 2-2 W Wt.t strength W2-2 strength -8.125.38 2.015.69 37.264.12 4.858.31 35.350.43 UW-16 Weld Sizing Summary Weld description Required weld Actual weld Status throat size(in) throat size(In) Nozzle to shell fillet(Leg4i) 0.1036 0.1312 weld size is adequate Nozzle to inside shell fillet(Leg43) 0.1036 0.1312 weld size is adequate (corroded) Calculations for internal pressure 15 psi @ 150 °F Nozzle Impact test exempt per UHA-51(g)(coincident ratio=0.034). Parallel Limit of reinforcement per UG-40 LR = MAX(d, Rn +(tn-Cn) + (t-C)) = MAX(9.2399,4.62+ (0.148-0) + (0.1875-0)) = 9.2399 in Outer Normal Limit of reinforcement per UG-40 LH = MIN(2.5*(t-C), 2.5*(tn-Cn) +te) = MIN(2.5*(0.1875-0), 2.5*(0.148-0) +0) = 0.37 in Inner Normal Limit of reinforcement per UG-40 Ll = MIN(h, 2.5*(t-C), 2.5*(t; -Cn-C)) = MIN(1, 2.5*(0.1875-0), 2.5*(0.148-0 -0)) = 0.37 in Nozzle required thickness per UG-27(c)(1) trn = P*Rn/(Sn*E -0.6*P) = 15*4.1645/((14,200/0.85)*1 -0.6*15) = 0.0037 in 85/171 Required thickness tr from UG-37(a) tr = P*R /(S*E +0.4*P) = 15*42/(16,700'1 +0.4*15) = 0.0377 in Area required per UG-37(c) Allowable stresses: Sn= 14,200, S„= 16,700 psi fri = lesser of 1 or Sn/S,,=0.8503 fr2= lesser of 1 or Sn/S„=0.8503 A = d*tr*F+2*tn*tr*F*(1 -fr1) = 9.2399*0.0377*1 +2*0.148*0.0377*1*(1 -0.8503) = 0.3501 in2 Area available from FIG. UG-37.1 Al = larger of the following=0.8602,in2 = d*(E1*t- F*tr) -2*tn*(E1*t- F*tr)*(1 -fr1) = 9.2399*(0.7*0.1875- 1*0.0377) -2*0.148*(0.7*0.1875 - 1*0.0377)*(1 -0.8503) = 0.8602 in2 = 2*(t+tn)*(E1*t- F*tr) -2*tn*(E1*t- F*tr)*(1 -fr1) = 2*(0.1875+0.148)*(0.7*0.1875- 1*0.0377) - 2*0.148*(0.7*0.1875- 1*0.0377)*(1 -0.8503) = 0.0586 in2 A2=smaller of the following=0.0908 in2 = 5*(1n-tm)*fr2 1 = 5*(0.148-0.0037)*0.8503*0.1875 = 0.115 in2 = 5*(tn-tm)*f2*tn = 5*(0.148-0.0037)*0.8503*0.148 = 0.0908 in2 A3= smaller of the following=0.0931 in2 = 5*t*ti*f2 = 5*0.1875*0.148*0.8503 = 0.118 in2 = 5*t;*t;*f2 = 5*0.148*0.148*0.8503 = 0.0931 in2 86/171 2*h*ti*fry = 2*1*0.148*0.8503 = 0.2517 in2 A41 = Leg2*f,2 = 0.18752*0.8503 = 0.0299 in2 A43 = Leg2*f,2 = 0.18752*0.8503 = 0.0299 in2 Area= Al +A2+A3+A41 +A43 = 0.8602+ 0.0908 +0.0931 +0.0299 +0.0299 = 1.1039 in2 As Area>=A the reinforcement is adequate. UW-16(d)Weld Check tmin = lesser of 0.75 or tb or t=0.148 in ti(min)or t2(min) = lesser of 0.25 or 0.7*tmin = 0.1036 in tl(actual) =0.7 Leg =0.7*0.1875 =0.1312 in The weld size t1 is satisfactory. t2(actual) =0.7*Leg =0.7*0.1875 =0.1312 in The weld size t2 is satisfactory. t1 +t2 =0.2624>= 1.25*tmin The combined weld sizes for t1 and t2 are satisfactory. UG-45 Nozzle Neck Thickness Check ta UG-27 = P*R/(S*E- 0.6*P) + Corrosion = 15*4.1645/(14,200*1 -0.6*15) +0 = 0.0044 in ta max[ta UG-27 ta UG-22 = max[0.0044 , 0] = 0.0044 in tb1 = P*Ro/(S*E +0.4*P) +Corrosion = 15*42/(16,700*1 +0.4*15) + 0 = 0.0377 in tb1 = max[tb1 , tb UG16 max[0.0377 , 0.0625] 87/171 = 0.0625 in tb = min[tb3 tb1 = min[0.2818 , 0.0625] = 0.0625 in tUG-45 = max[to , tb] = max[0.0044, 0.0625] = 0.0625 in Available nozzle wall thickness new,to=0.875*0.148= 0.1295 in The nozzle neck thickness is adequate. Allowable stresses in joints UG-45 and UW-15(c) Nozzle wall in shear: 0.7*14,200= 9,940 psi Inner fillet weld in shear: 0.49*14,200= 6,958 psi Lower fillet weld in shear: 0.49*14,200= 6,958 psi Strength of welded joints: (1) Inner fillet weld in shear (n/2)*Nozzle OD*Leg*Si= (n/2)*8.625*0.1875*6,958 = 17,675.21 Ibf (3) Nozzle wall in shear (n/2)*Mean nozzle dia*tn*Sn= (7[/2)*8.477*0.148*9,940 = 19,588.9 Ibf (5) Lower fillet weld in shear (n/2)*Nozzle OD*Leg*S,_ (n/2)*8.625*0.1875*6,958 = 17,675.21 Ibf Loading on welds per UG-41(b)(1) W = (A-Al +2*tn*fr1*(E1*t- F*tr))*Sv = (0.3501 -0.8602+2*0.148*0.8503*(0.7*0.1875 - 1*0.0377))*16,700 = -8.125.38 lbf W1_1 = (A2+A5+A41 +A42)*Sv = (0.0908+0+0.0299+0)*16,700 = 2,015.69 Ibf W2_2= (A2 +A3+A41 +A43+2 1n*t*frf)*Sv = (0.0908+0.0931 +0.0299+0.0299+ 2*0.148*0.1875*0.8503)*16,700 = 4.858.31 Ibf Load for path 1-1 lesser of W or W1.1 = -8,125.38 Ibf Path 1-1 through (1) & (3) = 17,675.21 + 19,588.9=37.264.12 Ibf Path 1-1 is stronger than W so it is acceptable per UG-41(b)(2). Load for path 2-2 lesser of W or W2_2=-8,125.38 Ibf Path 2-2 through (1), (5) = 17,675.21 + 17,675.21 =35.350.43 Ibf 88/171 Path 2-2 is stronger than W so it is acceptable per UG-41(b)(2). 89/171 • Middle Septa(MS) ASME Section VIII Division 1,2013 Edition tw(lower) = 0 in Leg41 = 0.1875 in I Leg43= 0.1875 in 0.1875 hne,= 1 in 0.1875 - 1 frH 1.0000 0.1875 Note:round inside edges per UG-76(c) Location and Orientation Located on: Lower Shell Orientation: 90° Nozzle center line offset to datum line: 6 in End of nozzle to shell center: 48 in Passes through a Category A joint: Yes Nozzle Access opening: No Material specification: SA-312 TP304L Wld pipe (II-D p. 90, In. 6) Description: NPS 8 Sch 10S Inside diameter, new: 8.329 in Nominal wall thickness: 0.148 in Corrosion allowance: 0 in Projection available outside vessel, Lpr: 5.852 in Internal projection, hnew: 1 in Projection available outside vessel to flange face, Lf: 6 in Local vessel minimum thickness: 0.1875 in Liquid static head included: 0 psi Longitudinal joint efficiency: 1 ASME B16.5-2009 Flange Description: NPS 8 Class 150 SO A182 F304L Bolt Material: SA-193 B7 Bolt<= 2 1/2 (II-D p. 352, In. 31) Blind included: No Rated MDMT: -55°F (Per UHA-51(d)(1)(a)) (Flange rated MDMT= -320 °F Bolts rated MDMT per Fig UCS-66 note (c) =-55 °F) 90/171 Liquid static head: 0 psi . MAWP rating: 212.5 psi@ 150°F MAP rating: 230 psi@ 70°F Hydrotest rating: 350 psi @ 70°F External fillet weld leg (UW-21): 0.2072 in (0.2072 in min) Internal fillet weld leg (UW-21): 0.148 in (0.148 in min) PWHT performed: No 91/171 • Reinforcement Calculations for Internal Pressure UG-45 Nozzle UG-37 Area Calculation Summary(in2) Wall For P=15 psi @ 150°F Thickness The opening is adequately reinforced Summary(in) The nozzle passes UG-45 A required available Ai A2 A3 A5 welds tfeq tmin 0.3158 1.0186 0.7749 0.0908 0.0931 -- 0.0598 0.0625 0.1295 UG-41 Weld Failure Path Analysis Summary(Ibf) All failure paths are stronger than the applicable weld loads Weld load Weld load Path 1-1 Weld load Path 2-2 W W1-1 strength W2.2 strength -7.274.51 2.015.69 37.264.12 4.858,31 35.350,43 UW-16 Weld Sizing Summary Weld description Required weld Actual weld Status throat size(In) throat size(in) Nozzle to shell fillet(Legai) 0.1036 0.1312 weld size is adequate 0.1312 Nozzle to inside shell fillet(Lego) 0.1036 weld size is adequate Calculations for internal pressure 15 psi @ 150 °F Nozzle Impact test exempt per UHA-51(g)(coincident ratio= 0.034). Parallel Limit of reinforcement per UG-40 LR = MAX(d, Rn+ (tn-Cn) +(t-C)) = MAX(8.329, 4.1645+ (0.148-0) +(0.1875- 0)) = 8.329 in Outer Normal Limit of reinforcement per UG-40 LH = MIN(2.5*(t- C),2.5`(tn- Cn) +te) MIN(2.5*(0.1875-0),2.5'(0.148-0) +0) = 0.37 in Inner Normal Limit of reinforcement per UG-40 Ll = MIN(h, 2.5*(t-C), 2.5*(ti -Cn-C)) = MIN(1, 2.5*(0.1875-0), 2.5*(0.148-0 -0)) = 0.37 in Nozzle required thickness per UG-27(c)(1) trn = P`Rn/(Sn*E-0.6`P) = 15'4.1645/((14,200/0.85)'1 -0.6'15) = 0.0037 in 92/171 Required thickness tr from UG-37(a) tr = P*Ro/ (S*E +0.4*P) = 15*42/(16,700*1 + 0.4*15) = 0.0377 in Area required per UG-37(c) Allowable stresses: Sn= 14,200, Sy= 16,700 psi fr1 = lesser of 1 or Sn/Si,,=0.8503 fr2= lesser of 1 or Sn/S,= 0.8503 A = d*tr*F+2*tn*tr*F*(1 -fr1) = 8.329*0.0377*1 +2*0.148*0.0377*1*(1 -0.8503) = 0.3158 in2 Area available from FIG. UG-37.1 Al = larger of the following=0.7749 in2 = d*(E1*t- F*tr) -2*tn*(E1*t - F*tr)*(1 -fri) = 8.329*(0.7*0.1875- 1*0.0377) -2*0.148*(0.7*0.1875- 1*0.0377)*(1 -0.8503) = 0.7749 in2 = 2*(t+tn)*(El*t- F*tr) -2*tn*(E1*t- F*tr)*(1 -fri) = 2*(0.1875+0.148)*(0.7*0.1875 - 1*0.0377) -2*0.148*(0.7*0.1875- 1*0.0377)*(1 -0.8503) = 0.0586 in2 A2= smaller of the following=0.0908 in2 = 5*(tn-tm)*fr2*t = 5*(0.148-0.0037)*0.8503*0.1875 = 0.115 in2 = 5*(tn-tm)*fr2*tn = 5*(0.148-0.0037)*0.8503*0.148 = 0.0908 in2 A3 =smaller of the following=0.0931 in2 = 5*t*ti*fr2 = 5*0.1875•0.148*0.8503 = 0.118 in2 = 5*t;*t;*fr2 = 5*0.148*0.148*0.8503 = 0.0931 in2 93/171 = 2*h*ti*fr2 2*1*0.148'0.8503 = 0.2517 in2 A41 = Leg2*fr2 = 0.18752*0.8503 = 0.0299 in2 A43 = Leg2*f,2 = 0.18752'0.8503 = 0.0299 in2 Area= Al +A2+A3+A41 +A43 = 0.7749+ 0.0908 +0.0931 +0.0299+0.0299 = 1.0186 in2 As Area>=A the reinforcement is adequate. UW-16(d)Weld Check train= lesser of 0.75 or to or t=0.148 in t1(min)or t2(min = lesser of 0.25 or 0.7*tmin =0.1036 in tl(actuaI) =0.7 Leg =0.7*0.1875=0.1312 in The weld size t1 is satisfactory. t2(actual) =0.7*Leg =0.7*0.1875=0.1312 in The weld size t2 is satisfactory. t1 +t2=0.2624>= 1.25*train The combined weld sizes for t1 and t2 are satisfactory. UG-45 Nozzle Neck Thickness Check ta UG-27 = P*R/(S*E -0.6*P) +Corrosion = 15*4.1645/(14,200*1 -0.6*15)+0 = 0.0044 in ta = max[ta UG-27 , ta UG-22 = max[0.0044 , 0] = 0.0044 in tb1 = P*Ra/(S*E +0.4*P) +Corrosion = 15'42/(16,700*1 +0.4*15) +0 = 0.0377 in tb1 = max[tb1 ,tb UG16 = max[0.0377 , 0.0625] 94/171 • = 0.0625 in tb = min[tb3 , tb1 ] = min[0.2818 , 0.0625] = 0.0625 in tUG-45 = max[to , tb] = max[0.0044 , 0.0625] = 0.0625 in Available nozzle wall thickness new, to=0.875*0.148=0.1295 in The nozzle neck thickness is adequate. Allowable stresses in joints UG-45 and UW-15(c) Nozzle wall in shear: 0.7*14,200 = 9,940 psi Inner fillet weld in shear: 0.49*14,200 = 6,958 psi Lower fillet weld in shear: 0.49*14,200 = 6,958 psi Strength of welded joints: (1) Inner fillet weld in shear (n/2)*Nozzle OD*Leg*S; = (n/2)*8.625*0.1875*6,958= 17,675.21 lbf (3) Nozzle wall in shear (it/2)*Mean nozzle dia*tn*Sn=(n/2)*8.477*0.148*9,940= 19,588.9 lbf (5) Lower fillet weld in shear (n/2)*Nozzle OD*Leg*Si = (n/2)*8.625*0.1875*6,958= 17,675.21 lbf Loading on welds per UG-41(b)(1) W = (A-Al +2*tn*fr1*(E1*t - F*tr))*Sv = (0.3158 -0.7749 +2*0.148*0.8503*(0.7*0.1875- 1*0.0377))*16,700 = -7.274.51 lbf W1-1 = (A2+A5+A41 +A42)*Sv _ (0.0908 +0+ 0.0299 +0)*16,700 = 2.015.69 lbf W2.2= (A2 +A3+A41 +A43+2*tn*t*fr1)*Sv = (0.0908 +0.0931 +0.0299+0.0299+ 2*0.148*0.1875*0.8503)*16,700 = 4.858.31 lbf Load for path 1-1 lesser of W or W1_1 = -7,274.51 lbf Path 1-1 through (1) & (3) = 17,675.21 + 19,588.9=37.264.12 lbf Path 1-1 is stronger than W so it is acceptable per UG-41(b)(2). Load for path 2-2 lesser of W or W2_2= -7,274.51 lbf Path 2-2 through (1), (5) = 17,675.21 + 17,675.21 =35.350.43 lbf 95/171 ' Path 2-2 is stronger than W so it is acceptable per UG-41(b)(2). 96/171 Pressure Safety Valve(PSV) ASME Section VIII Division 1, 2013 Edition tw(lower) = 0 in Leg41 = 0.1875 in Leg43= 0.1875 in 0.1875 hnew= 0.25 in 0.1434 1 0.2500 0.1075 Note:round inside edges per UG-76(c) Location and Orientation Located on: Top Head Orientation: 180° End of nozzle to datum line: 203.0768 in Calculated as hillside: Yes Distance to head center, R: 33 in Passes through a Category A joint: Yes Nozzle Access opening: No Material specification: SA-182 F304L<=5 (II-D p. 86, In. 39) Description: NPS 2 Class 3000-threaded Inside diameter, new: 2.375 in Nominal wall thickness: 0.3125 in Corrosion allowance: 0 in Opening chord length: 2.6211 in Projection available outside vessel, Lpr: 1 in Internal projection, hnew: 0.25 in Local vessel minimum thickness: 0.1434 in Liquid static head included: 0 psi Longitudinal joint efficiency: 1 97/171 Reinforcement Calculations for Internal Pressure UG-45 Nozzle UG-37 Area Calculation Summary(in2) Wall For P=15 psi @ 150°F Thickness The opening is adequately reinforced Summary (in) The nozzle passes UG-45 required available At A2 A3 A5 welds treq tmin 0.0919 0.6212 0.1712 0.2233 0.1563 -- 0.0704 0.0625 0.3125 UG-41 Weld Failure Path Analysis Summary (Ibf) All failure paths are stronger than the applicable weld loads Weld load Weld load Path 1-1 Weld load Path 2-2 W W1-1 strength W2_2 strength -641.94 4.316.95 22.652 9.010.9 14.460.55 UW-16 Weld Sizing Summary Weld description Required weld Actual weld Status throat size(in) throat size(in) Nozzle to shell fillet(Leg4t) 0.1004 0.1312 weld size is adequate 0.1312 Nozzle to inside shell fillet(Leg43) 0.1004 weld size is adequate (corroded) Calculations for internal pressure 15 psi @ 150 °F Nozzle Impact test exempt per UHA-51(g)(coincident ratio = 0.2796). Parallel Limit of reinforcement per UG-40 LR = MAX(d, Rn + (tn - C5) + (t- C)) = MAX(2.6211, 1.3106 + (0.3125-0) + (0.1434 - 0)) = 2.6211 in Outer Normal Limit of reinforcement per UG-40 LR = MIN(2.5*(t - C), 2.5*(tn- Cn) +te) = MIN(2.5*(0.1434- 0), 2.5*(0.3125 -0) +0) = 0.3585 in Inner Normal Limit of reinforcement per UG-40 Ll = MIN(h, 2.5*(t - C), 2.5"(ti-Cn- C)) MIN(0.25, 2.5*(0.1434-0), 2.5*(0.3125 - 0 - 0)) = 0.25 in Nozzle required thickness per UG-27(c)(1) tr, = P*R5/ (S5*E - 0.6*P) = 15'1.1875/(16,7001 -0.6`15) = 0.0011 in 98/171 Required thickness tr from UG-37(a)(a) tr = P*Lo*M/(2*S*E + P*(M - 0.2)) 15*78.1434*1 /(2*16,700*1 + 15*(1 - 0.2)) = 0.0351 in Area required per UG-37(c) Allowable stresses: Sn= 16,700, S„= 16,700 psi fri = lesser of 1 or Sr,/S„= 1 fr2 = lesser of 1 or Sn/S,= 1 A = d*tr*F+2*tn*tr*F*(1 -fri) = 2.6211*0.0351*1 +2*0.3125*0.0351*1*(1 - 1) = 0.0919 in2 Area available from FIG. UG-37.1 Al = larger of the following=0.1712 in2 = d*(E1*t- F*tr) -2*tn*(E1*t- F*tr)*(1 -fr1) = 2.6211*(0.7*0.1434- 1*0.0351) -2*0.3125*(0.7*0.1434- 1*0.0351)*(1 - 1) = 0.1712 in2 = 2*(t+tn)*(El*t- F*tr) - 2*tn*(E1*t - F*tr)*(1 -fr1) = 2*(0.1434+ 0.3125)*(0.7*0.1434- 1*0.0351) -2*0.3125*(0.7*0.1434- 1*0.0351)*(1 - 1) = 0.0595 in2 A2=smaller of the following=0.2233 in2 = 5*(tn-tm)*fr2*t = 5*(0.3125-0.0011)*1*0.1434 = 0.2233 in2 = 5*(tn-tm)*f2*tn = 5*(0.3125-0.0011)*1*0.3125 = 0.4866 in2 A3 =smaller of the following=0.1563 in2 = 511,1r2 = 5*0.1434*0.3125*1 = 0.2241 in2 = 5 1;1;1r2 = 5*0.3125*0.3125*1 = 0.4883 in2 99/171 = 2*h*ti*fr2 = 2*0.25*0.3125*1 = 0.1563 in2 A41 = Leg2*fr2 = 0.18752*1 = 0.0352 in2 A43 = Leg2*fr2 = 0.18752*1 = 0.0352 in2 Area= Al +A2+A3+A41 +A43 = 0.1712+ 0.2233 +0.1563 +0.0352+0.0352 = 0.6212 in2 As Area>=A the reinforcement is adequate. UW-16(d)Weld Check train=lesser of 0.75 or to or t=0.1434 in t1(min)or t2(min2 = lesser of 0.25 or 0.7*tmin=0.1004 in tl(actual)=0.7 Leg =0.7*0.1875 =0.1312 in The weld size t1 is satisfactory. t2(actual)=0.7*Leg =0.7*0.1875=0.1312 in The weld size t2 is satisfactory. t1 +t2=0.2624>= 1.25*tmin The combined weld sizes for t1 and t2 are satisfactory. ASME B16.11 Coupling Wall Thickness Check Interpretation VIII-1-83-66 has been applied. Wall thickness req'd per ASME B16.11 2.1.1: t =0.0013 in (E =1) Wall thickness per UG-16(b): t,3= 0.0625 in Available nozzle wall thickness new, to=0.3125 in The nozzle neck thickness is adequate. Allowable stresses in joints UG-45 and UW-15(c) Nozzle wall in shear: 0.7*16,700= 11,690 psi Inner fillet weld in shear: 0.49*16,700= 8,183 psi Lower fillet weld in shear: 0.49*16,700 = 8,183 psi 100/171 Strength of welded joints: (1) Inner fillet weld in shear (n/2)*Nozzle OD*Leg*S; = (7t/2)*3•0.1875*8,183= 7,230.28 Ibf (3) Nozzle wall in shear (n/2)*Mean nozzle dia*tn*Sn = (n/2)*2.6875*0.3125*11,690= 15,421.72 Ibf (5) Lower fillet weld in shear (n/2)*Nozzle OD*Leg*S; = (it/2)*3*0.1875*8,183= 7,230.28 Ibf Loading on welds per UG-41(b)(1) W = (A-Al + 2*tn*fr1*(E1*t- F*tr))*Sv = (0.0919-0.1712 +2*0.3125*1*(0.7*0.1434- 1*0.0351))*16,700 = -641.94 lbf W1_1 = (A2+A5+A41 +A42)*Sv = (0.2233 + 0+0.0352 +0)*16,700 = 4.316.95 Ibf W2-2= (A2+A3+A41 +A43+ 2*tn*t*fr1)*Sv = (0.2233 +0.1563+ 0.0352+0.0352+ 2*0.3125*0.1434*1)*16,700 = 9.010.9 lb1 Load for path 1-1 lesser of W or W1.1 = -641.94 lbf Path 1-1 through (1) &(3) =7,230.28+ 15,421.72=22.652 Ibf Path 1-1 is stronger than W so it is acceptable per UG-41(b)(2). Load for path 2-2 lesser of W or W2.2=-641.94 Ibf Path 2-2 through (1), (5) = 7,230.28+ 7,230.28= 14.460.55 Ibf Path 2-2 is stronger than W so it is acceptable per UG-41(b)(2). 101/171 Right Septa(RS) ASME Section VIII Division 1,2013 Edition tw(lower) = 0 in Leg41 = 0.1875 in Leg43= 0.1875 in 0.1875 h„,,,= 1 in 0.1875 1 'I� J 1.0000 0.1875 Note:round inside edges per UG-76(c) Location and Orientation Located on: Lower Shell Orientation: 90° Nozzle center line offset to datum line: 6 in End of nozzle to shell center: 48 in Offset from center, Lo: -18 in Passes through a Category A joint: Yes Nozzle Access opening: No Material specification: SA-312 TP304L Wld pipe (II-D p. 90, In. 6) Description: NPS 8 Sch 10S Inside diameter, new: 8.329 in Nominal wall thickness: 0.148 in Corrosion allowance: 0 in Opening chord length: 9.2399 in Projection available outside vessel, Lpr: 8.1449 in Internal projection, knew: 1 in Projection available outside vessel to flange face, Lf: 8.2929 in Local vessel minimum thickness: 0.1875 in Liquid static head included: 0 psi Longitudinal joint efficiency: 1 ASME B16.5-2009 Flange Description: NPS 8 Class 150 SO A182 F304L Bolt Material: SA-193 B7 Bolt<=2 1/2 (II-D p. 352, In. 31) Blind included: No Rated MDMT: -55°F (Per UHA-51(d)(1)(a)) 102/171 L (Flange rated MDMT= -320 °F Bolts rated MDMT per Fig UCS-66 note (c) = -55 °F) Liquid static head: 0 psi MAWP rating: 212.5 psi@ 150°F MAP rating: 230 psi@ 70°F Hydrotest rating: 350 psi@ 70°F External fillet weld leg (UW-21): 0.2072 in (0.2072 in min) Internal fillet weld leg (UW-21): 0.148 in (0.148 in min) PWHT performed: No 103/171 Reinforcement Calculations for Internal Pressure UG-45 Nozzle UG-37 Area Calculation Summary(in2) Wall For P=15 psi @150`F Thickness The opening is adequately reinforced Summary (in) The nozzle passes UG-45 A A A required available A� A2 A3 As welds treq tmin 0.3501 1.1039 0.8602 0.0908 0.0931 -- 0.0598 0.0625 0.1295 UG-41 Weld Failure Path Analysis Summary (Ibf) All failure paths are stronger than the applicable weld loads Weld load Weld load Path 1-1 Weld load Path 2-2 W Wt-t strength W2.2 strength -8,125.38 2.015.69 37.264.12 4,858.31 35.350.43 UW-16 Weld Sizing Summary Weld description Required weld Actual weld Status throat size(in) throat size(in) Nozzle to shell fillet(Leg41) 0.1036 0.1312 weld size is adequate Nozzle to inside shell fillet(Leg43) 0.1036 0.1312 q weld size is adequate (corroded) Calculations for internal pressure 15 psi @ 150 °F Nozzle Impact test exempt per UHA-51(g)(coincident ratio = 0.034). Parallel Limit of reinforcement per UG-40 LR = MAX(d, Rn + (tn- On) + (t-C)) = MAX(9.2399, 4.62 + (0.148- 0) + (0.1875 - 0)) = 9.2399 in Outer Normal Limit of reinforcement per UG-40 LH = MIN(2.5*(t- C), 2.5`(tn- Cn) +te) = MIN(2.5*(0.1875-0), 2.5*(0.148- 0) + 0) = 0.37 in Inner Normal Limit of reinforcement per UG-40 LI = MIN(h, 2.5*(t- C), 2.5*(ti - Cn- C)) = MIN(1, 2.5*(0.1875 - 0), 2.5`(0.148- 0 -0)) = 0.37 in Nozzle required thickness per UG-27(c)(1) t,n = P*Rn/ (Sn*E - 0.6*P) = 15`4.1645/((14,200/0.85)'1 -0.6'15) = 0.0037 in 104/171 Required thickness tr from UG-37(a) tr = P*Ro/(S*E +0.4*P) = 15*42/(16,700*1 +0.4*15) = 0.0377 in Area required per UG-37(c) Allowable stresses:Sn= 14,200, S„= 16,700 psi fri =lesser of 1 or S„/S„=0.8503 fr2=lesser of 1 or Sn/S =0.8503 A = d*tr*F+2*tn*tr*F*(1 -fri) = 9.2399*0.0377*1 +2*0.148*0.0377*1*(1 -0.8503) = 0.3501 in2 Area available from FIG. UG-37.1 Al = larger of the following=0.8602 in2 = d*(E1't- F*tr) -2*tn*(Ei*t- F*tr)*(1 -fri) = 9.2399*(0.7'0.1875- 1*0.0377) -2*0.148*(0.7*0.1875 - 1*0.0377)*(1 -0.8503) = 0.8602 in2 = 2*(t+tn)*(E1*t- F*tr) -2*tn*(E,*t- F*tr)*(1 -fri) = 2*(0.1875+0.148)*(0.7*0.1875- 1*0.0377) -2*0.148*(0.7*0.1875- 1*0.0377)*(1 -0.8503) = 0.0586 in2 A2= smaller of the following=0.0908 in2 = 5*(tr,-tm)*f2*t = 5*(0.148-0.0037)*0.8503*0.1875 = 0.115 in2 = 5*(tn-tm)*f2*tn = 5*(0.148-0.0037)*0.8503*0.148 = 0.0908 in2 A3=smaller of the following=0.0931 in2 = 5*t*ti*f2 = 5*0.1875*0.148*0.8503 = 0.118 in2 = 5 1,*ti*fr2 = 5*0.148*0.148*0.8503 = 0.0931 in2 105/171 = 2*h*ti*fr2 = 2*1*0.148'0.8503 = 0.2517 in2 A41 = Leg2*fr2 = 0.18752*0.8503 = 0.0299 in2 A43 = Leg2*f,2 = 0.18752*0.8503 = 0.0299 in2 Area= Al +A2+As+A41 +A43 = 0.8602+ 0.0908 +0.0931 +0.0299+0.0299 = 1.1039 in2 As Area>=A the reinforcement is adequate. UW-16(d)Weld Check train= lesser of 0.75 or to or t=0.148 in ti(min)or t2(min, = lesser of 0.25 or 0.7*tmin =0.1036 in ti(actual) =0.7 Leg =0.7*0.1875=0.1312 in The weld size t1 is satisfactory. t2(actual)=0.7*Leg =0.7*0.1875=0.1312 in The weld size t2 is satisfactory. t1 +t2=0.2624>= 1.25*train The combined weld sizes for t1 and t2 are satisfactory. UG-45 Nozzle Neck Thickness Check ta UG-27 = P*R/(S*E -0.6*P) +Corrosion = 15*4.1645/(14,200*1 -0.6*15) +0 = 0.0044 in ta = max[ta UG-27+ta UG-22 = max[0.0044 , 0] = 0.0044 in tb1 = P*Ro/(S*E +0.4*P) +Corrosion = 15*42/(16,700*1 +0.4*15) +0 = 0.0377 in tb1 = max[tb1 , tb UG16] = max[0.0377 , 0.0625] 106/171 = 0.0625 in tb = min[tb3 , tb, ] min[0.2818 , 0.0625] = 0.0625 in tUG-45 = max[to , tb = max[0.0044 , 0.0625] = 0.0625 in Available nozzle wall thickness new, to=0.875*0.148=0.1295 in The nozzle neck thickness is adequate. Allowable stresses in joints UG-45 and UW-15(c) Nozzle wall in shear: 0.7*14,200= 9,940 psi Inner fillet weld in shear: 0.49*14,200 = 6,958 psi Lower fillet weld in shear: 0.49*14,200 = 6,958 psi Strength of welded joints: (1) Inner fillet weld in shear (it/2)*Nozzle OD*Leg*S; = (it/2)*8.625*0.1875*6,958= 17,675.21 Ibf (3) Nozzle wall in shear (n/2)*Mean nozzle dia*ta*Sn= (n/2)*8.477*0.148*9,940= 19,588.9 Ibf (5) Lower fillet weld in shear (n/2)*Nozzle OD*Leg*S, _ (n/2)*8.625*0.1875*6,958= 17,675.21 Ibf Loading on welds per UG-41(b)(1) W = (A-Al +2*tn*f0*(Ef*t- F*tr))*Sv = (0.3501 -0.8602 + 2*0.148*0.8503*(0.7*0.1875- 1*0.0377))*16,700 = -8.125.38 lbf W1.1 = (A2+A5+A41 +A42)*Sv = (0.0908+0 +0.0299+0)*16,700 = 2.015.69 Ibf W2_2= (A2+A3+A41 +A43+2*tn*t*fri)*Sv = (0.0908+0.0931 +0.0299+0.0299+ 2*0.148*0.1875*0.8503)*16,700 = 4.858.31 Ibf Load for path 1-1 lesser of W or W1_1 = -8,125.38 Ibf Path 1-1 through (1) & (3) = 17,675.21 + 19,588.9 =37.264.121bf Path 1-1 is stronger than W so it is acceptable per UG-41(b)(2). Load for path 2-2 lesser of W or W2_2= -8,125.38 Ibf Path 2-2 through (1), (5) = 17,675.21 + 17,675.21 =35.350.43 Ibf 107/171 • Path 2-2 is stronger than W so it is acceptable per UG-41(b)(2). 108/171 Vent(V) ASME Section VIII Division 1, 2013 Edition tw(iower) = 0 in Leg41 = 0.1875 in Leg43= 0.1875 in 0.1875 hnew= 0.25 in 0.1434 I , 0.2500 0.1875 Note:round inside edges per UG-76(c) Location and Orientation Located on: Top Head Orientation: 270° End of nozzle to datum line: 203.0768 in Calculated as hillside: Yes Distance to head center, R: 33 in Passes through a Category A joint: Yes Nozzle Access opening: No Material specification: SA-182 F304L<=5(II-D p. 86, In. 39) Description: NPS 0.5 Class 3000-threaded Inside diameter, new: 0.84 in Nominal wall thickness: 0.1425 in Corrosion allowance: 0 in Opening chord length: 0.927 in Projection available outside vessel, Lpr: 1.4203 in Internal projection, hnew: 0.25 in Local vessel minimum thickness: 0.1434 in Liquid static head included: 0 psi Longitudinal joint efficiency: 1 109/171 Reinforcement Calculations for Internal Pressure UG-45 Nozzle UG-37 Area Calculation Summary(in2) Wall For P=15 psi @ 150°F Thickness The opening is adequately reinforced Summary (in) The nozzle passes UG-45 A A Al A A2 A3 A5 treq tmin required available welds 0.0325 0.3034 0.0605 0.1012 0.0713 -- 0.0704 0.0625 0.1425 UG-41 Weld Failure Path Analysis Summary (Ib) All failure paths are stronger than the applicable weld loads Weld load Weld load Path 1-1 Weld load Path 2-2 W W1_1 strength W2-2 strength -156.48 2.277.88 5.282.23 4,738.11 5.422.71 UW-16 Weld Sizing Summary Weld description Required weld Actual weld Status throat size(in) throat size(in) Nozzle to shell fillet(Legal) 0.0997 0.1312 weld size is adequate 0.1312 weld size is adequate Nozzle to inside shell fillet(Leg 43) 0.0997 q (corroded) Calculations for internal pressure 15 psi @ 150 °F Nozzle Impact test exempt per UHA-51(g)(coincident ratio = 0.0027). Parallel Limit of reinforcement per UG-40 LR = MAX(d, Rn + (tn - Cn) + (t- C)) = MAX(0.927, 0.4635 + (0.1425- 0) + (0.1434- 0)) = 0.927 in Outer Normal Limit of reinforcement per UG-40 LR = MIN(2.5*(t - C), 2.5*(tn- Cn) +te) = MIN(2.5*(0.1434 -0), 2.5`(0.1425 -0) + 0) = 0.3563 in Inner Normal Limit of reinforcement per UG-40 L1 = MIN(h, 2.5*(t- C), 2.5*(ti-Cn - C)) = MIN(0.25, 2.5*(0.1434-0), 2.5*(0.1425 -0 -0)) = 0.25 in Nozzle required thickness per UG-27(c)(1) t,n = P'Rn/ (Sn*E - 0.6*P) = 15'0.42/ (16,700'1 -0.6'15) = 0.0004 in 110/171 Required thickness tr from UG-37(a)(a) tr = P`La*M/(2*S*E + P*(M -0.2)) = 15*78.1434*1 /(2*16,700*1 + 15*(1 -0.2)) = 0.0351 in Area required per UG-37(c) Allowable stresses: Sn = 16,700, S„= 16,700 psi fr, = lesser of 1 or Sn/S„= 1 frz= lesser of 1 or Sn/S„= 1 A = d*tr`F+2*tn*tr*F*(1 -fri) = 0.927*0.0351*1 +2*0.1425'0.0351*1*(1 - 1) = 0.0325 in2 Area available from FIG. UG-37.1 A, = larger of the following=0.0605 in2 = d*(E1*t - F*tr) -2*tn*(E1*t- F*tr)*(1 -fri) = 0.927*(0.7'0.1434- 1*0.0351) -2*0.1425*(0.7*0.1434- 1*0.0351)*(1 - 1) = 0.0605 in2 = 2*(t+tn)*(E1*t- F*tr) -2*tn*(E1*t- F*tr)*(1 -fri) = 2*(0.1434+0.1425)*(0.7*0.1434 - 1*0.0351) -2*0.1425*(0.7*0.1434- 1*0.0351)*(1 - 1) = 0.0373 in2 A2= smaller of the following=0.1012 in2 = 5*(tn-tm)*fr2*t = 5*(0.1425-0.0004)*1*0.1434 = 0.1019 in2 = 5*(tn-tm)*f2*tn = 5*(0.1425-0.0004)*1*0.1425 = 0.1012 in2 A3=smaller of the following=0.0713 in2 = 5*t*ti*fr2 = 5*0.1434*0.1425*1 = 0.1022 in2 = 5*t;*t;*f2 = 5*0.1425*0.1425*1 = 0.1015 in2 111/171 = 2*h*ti*fr2 = 2*0.25*0.1425*1 = 0.0713 in2 A41 = Leg2*f,2 = 0.18752*1 = 0.035Z in2 A43 = Leg21r2 = 0.18752*1 = 0.0352 in2 Area Al +A2+A3+A41 +A43 = 0.0605+ 0.1012+0.0713+0.0352 +0.0352 = 0.3034 in2 As Area>=A the reinforcement is adequate. UW-16(d)Weld Check tm;n=lesser of 0.75 or to or t=0.1425 in t1(min)or t2(min, =lesser of 0.25 or 0.7*tmin=0.0997 in tl(actual) =0.7 Leg =0.7*0.1875=0.1312 in The weld size t1 is satisfactory. t2(actual) =0.7*Leg =0.7*0.1875=0.1312 in The weld size t2 is satisfactory. t1 +t2=0.2624>= 1.25*tmin The combined weld sizes for t1 and t2 are satisfactory. ASME B16.11 Coupling Wall Thickness Check Interpretation VIII-1-83-66 has been applied. Wall thickness req'd per ASME B16.11 2.1.1: tr1 =0.0005 in (E =1) Wall thickness per UG-16(b): tr3= 0.0625 in Available nozzle wall thickness new,to=0.1425 in The nozzle neck thickness is adequate. Allowable stresses in joints UG-45 and UW-15(c) Nozzle wall in shear: 0.7*16,700= 11,690 psi Inner fillet weld in shear: 0.49*16,700 = 8,183 psi Lower fillet weld in shear: 0.49*16,700= 8,183 psi 112/171 Strength of welded joints: (1) Inner fillet weld in shear (n/2)*Nozzle OD*Leg*Si = (n/2)*1.125*0.1875•8,183=2,711.35 Ibf (3) Nozzle wall in shear (n/2)*Mean nozzle dia*tn*Sn= (n/2)*0.9825*0.1425*11,690 =2,570.88 Ibf (5) Lower fillet weld in shear (n/2)*Nozzle OD*Leg*Si = (n/2)*1.125*0.1875`8,183=2,711.35 Ibf Loading on welds per UG-41(b)(1) W = (A-Al +2*tn*fr1*(E1*t- F*tr))*Sv _ (0.0325-0.0605 +2*0.1425*1*(0.7*0.1434- 1*0.0351))*16,700 = -156.48 lbf W1_1 = (A2+A5+A41 +A42)*Sv = (0.1012+0+0.0352+0)*16,700 = 2.277.88lbf W2-2= (A2+A3+A41 +A43+2*tn*t*fr1)*Sv = (0.1012+0.0713 +0.0352+0.0352+ 2`0.1425*0.1434*1)*16,700 = 4.738.11 Ibf Load for path 1-1 lesser of W or Wm = -156.48 Ibf Path 1-1 through (1) & (3) =2,711.35+2,570.88= 5.282.23 Ibf Path 1-1 is stronger than W so it is acceptable per UG-41(b)(2). Load for path 2-2 lesser of W or W2_2= -156.48 Ibf Path 2-2 through (1), (5) =2,711.35+2,711.35 = 5.422.71,Ibf Path 2-2 is stronger than W so it is acceptable per UG-41(b)(2). 113/171 Legs Leg material: Leg description: 8 inch sch 10 pipe Number of legs: N = 4 Overall length: 61 in Base to girth seam length: 47.75 in Pad length: 14 in Pad width: 12 in Pad thickness: 0.1875 in Bolt circle: 86 in Anchor bolt size: 0.75 inch series 8 threaded Anchor bolt material: Anchor bolts/leg: 1 Anchor bolt allowable stress: Sb= 20,000 psi Anchor bolt corrosion allowance: 0 in Anchor bolt hole clearance: 0.375 in Base plate width: 12 in Base plate length: 12 in Base plate thickness: 0.5 in (0.1853 in required) Base plate allowable stress: 24,000 psi Foundation allowable bearing stress: 1,658 psi User defined leg eccentricity: 0 in Effective length coefficient: K= 1.2 Coefficient: Cm= 0.85 Leg yield stress: F = 25,000 psi Leg elastic modulus: E = 29,000,000 psi Leg to pad fillet weld: 0.1875 in (0.0935 in required) Pad to shell fillet weld: 0.1875 in (0.0511 in required) Legs braced: No Note:The support attachment point is assumed to be 1 in up from the cylinder circumferential seam. 114/171 - Force Leg Axial Shear Axial Bending Bending Ratio Ratio Loading attack ° end load resisted fa fbx fby H. H1 2 angle ° lbf lbf psi psi psi Wind 0 494.8 447.4 126 2.667 0 0.1461 0.1700 operating corroded 90 4,337.0 447.4 1.100 0 2,667 0.2139 0.2350 Moment= 0 180 6,444.4 447.4 1.635 2,667 0 0.2511 0.2706 14,817.51b1-ft 270 4,337.0 447.4 1.100 0 2,667 0.2139 0.2350 Force Axial Shear Axial Bending Bending Leg Ratio Ratio Loading attack ° end load resisted fa fbx fby angle ° position lbf Ibf psi psi psi H1.1 H1-2 Wind 0 -1.558.7 447.4 -396 2.667 0 0.1099 0.1353 empty corroded 90 914.5 447.4 232 0 2.667 0.1535 0.1771 Moment= 0 180 3,021.9 447.4 767 2.667 0 0.1907 0.2127 14,817.5lbt-ft 270 914.5 447.4 232 0 2.667 0.1535 0.1771 115/171 Force Axial Shear Axial Bending Bending Leg Ratio Ratio Loading attack end load resisted fa fbx f by angle ° position lbf lbf psi psi psi H1-1 H1.2 Governing 0 -3,203.2 1,172.5 -813 6,989 0 0.3030 0.3694 Condition 90 4,760.4 1,172.5 1,208 0 6,989 0.4447 0.5041 180 10.142.4 1,172.5 2.574 6.989 Q 0.5405 0.5951 Seismic operating 270 4,760.4 1,172.5 1,208 0 6,989 0.4447 0.5041 corroded Moment= 37,842.1 Ibt-ft Force Axial Shear Axial Bending Bending Loading attack Leg end load resisted fa fbx f Ratio Ratio angle ° position ° lbf IN psi psi psi 111-1 Ht -2 Seismic 0 -1,039.9 240.8 -264 1,435 0 0.0556 0.0694 empty corroded 90 1,003.8 240.8 255 0 1,435 0.0916 0.1040 Moment= 0 180 2,503.1 240.8 635 1,435 0 0.1180 0.1293 10,542.3lbt-ft 270 1,003.8 240.8 255 0 1,435 0.0916 0.1040 Leg Calculations (AISC manual ninth edition) Axial end load, P1 (Based on vessel total bending moment acting at leg attachment elevation) P1 =(1 +0.14*Sps)*Wt/N +48*Mt/(N*D) = (1 +0.14*0.6973)*17,347.89/4+48*37,842.1 /(4*84.375) = 10.142.36 Ibf Allowable axial compressive stress, Fa(AISC chapter E) Cc=Sgr(2*n2*E/F ) = Sgr(2*n2*29,000,600 /25,000) = 151.3191 K*I/r= 1.2*48.9375/2.9975= 19.5913 Fa= 1 * (1 - (K*I/r)2/(2*Cc2))*Fy/(5/3 +3*(K*I/r)/(8*Cc)-(K*I/r)3/(8*Cc3)) = 1 * (1 - (19.5913)2/(2*151.31912))*25,000/(5/3+3*(19.5913)/(8*151.3191)-(19.5913)3/(8*151.31913)) = 14,456 psi Allowable axial compression and bending(AISC chapter H) F'ex= 1*12*n2*E/(23*(K*I/r)2) = 1*12*n2*29,000,000/(23*(19.5913)2) =389,067 psi F'e = 1*12*n2*E/(23*(K*I/r)2) = 1*12*n2*29,000,000/(23*(19.5913)2) =389,067 psi Fb= 1*0.66*Fy = 1*0.66*25,000 = 16,500 psi Compressive axial stress 116/171 fa= P1 /A = 10,142.36/3.941 =2.574 psi Bending stresses fbx= F*cos(a)*L/(Ix/C ) + P1*Ecc/(Ix/Cx) = 1,172.46*cos(0)*48.9375/(35.41 /4.313) + 10,142.36'0/(35.41 /4.313) =6.989 psi fby= F*sin(a)*L/(ly/Cy) = 1,172.46*sin(0)*48.9375/(35.41 /4.31) = psi AISC equation H1.1 H1.1 =fa/Fa+Cmx*fbx/((1 -fa/Fex)*Fbx) +Cm *fb /((1 -fa/Fey)*Fby) =2,574/14,456+0.85*6,989/((1 -2,574/389,067)'16,500) +0.85*0/((1 -2,574/389,067)*16,500) =0.5405 AISC equation H1-2 H1_2=fa/(0.6*1*F ) +fbx/Fbx+fby/ Fby =2,574/(0.6*1*2,000) +6,989/ 16,500+0/ 16,500 =0.5951 4,8 inch sch 10 pipe legs are adequate. Anchor bolts-Seismic operating corroded condition governs Tensile loading per leg (1 bolt per leg) R =48*M/(N*BC) - (0.6-0.14'S0S)'W/N =48*56,463.8/(4'86) - (0.6 -0.14*0.6973)*17,737.18/4 =5,651.01 Ib1 Required area per bolt Ab= R/(Sb*n) =5,651.01 /(20,000*1) =0.2826 in2 Area of a 0.75 inch series 8 threaded bolt(corroded) =0.302 in2 0.75 inch series 8 threaded bolts are satisfactory. Check the leg to pad fillet weld, Bednar 10.3, Seismic operating corroded governs Note: continuous welding is assumed for all support leg fillet welds. (2*b*d+d2)/3 = (2'8.626'12.0625+ 12.06252)/3 = 117.8687 in2 JW= (b+2*d)3/ 12-d2*(b+d)2/(b+2'd) = (8.626 +2*12.0625)3/ 12- 12.06252*(8.626+ 12.0625)2/(8.626+2*12.0625) = 1,025.9185 in3 117/171 E =d2/(b+2*d) = 12.06252/(8.626+2'12.0625) =4.442732 in Governing weld load fx= Cos(0)*1,172.46= 1,172.46 Ibf Governing weld load fy=Sin(0)*1,172.46=0 Ibf ft = P1 / eid = 10,142.36/32.751 =309.68 Ibf/in (VL direct shear) f2=fy*L1eg*0.5*b/Jw =0*48.9375*0.5'8.626/ 1,025.9185 =0 Ibf/in (VL torsion shear) f3 =fy/Lweid =0/32.751 =0 Ibf/in (Mc direct shear) f4=f *Lie *E/Jw =0*48.9375* 4.4427/ 1,025.9185 =0 Ibf/in (V torsion shear) f5= (fx*L1eg+ P1*Ecc)/Zw = (1,172.46*48.9375+ 10,142.36*0)/117.8687 =486.79 Ib/in (ML bending) f6=fx/LW id = 1,172.46/32.751 =35.8 lbt/in (Direct outward radial shear) f= Sgr((f1 +f2)2+ (f3+f4)2+ (f5+f6)2) =Sqr((309.68+0)2+ (0 +0)2+ (486.79+35.8)2) =607.46 Ibf/in (Resultant shear load) Required leg to pad fillet weld leg size(welded both sides+top) tw=f/(0.707*0.55*Sa) =607.46/(0.707*0.55*16,700) =0.0935 in The 0.1875 in leg to pad attachment fillet weld size is adequate. Check the pad to vessel fillet weld, Bednar 10.3, Seismic operating corroded governs Zw=b*d +d2/3 = 12*14+ 142/3 =233.3333 in2 Jw = (b+d)3/6 = (12 + 14)3/6 =2,929.3333 in3 f1 = Pt /Lweid = 10,142.36/52 = 195.05 lbf/in (VL direct shear) 118/171 f2=fy*Lieg*0.5*b/Jw =0*48.9375*0.5*12/2,929.3333 =0 lbf/in (VL torsion shear) f3=fy/weld =0/52 =0 lbf/in (V c direct shear) f4=f *L1e *0.5*d/Jw =0*48.9375*0.5*14/2,929.3333 =0 lbf/in (V c torsion shear) f5= (fx*L1eg + Pt*Ecc)/Zw = (1,172.46*48.9375+ 10,142.36*0)/233.3333 =245.9 lbf/in (ML bending) f6=fx/weld = 1,172.46/52 =22.55 lbf/in (Direct outward radial shear) f=Sgr((f, +f2)2+(f3+f4)2+ (f5+f6)2) = Sqr((195.05+0)2+ (0+0)2+ (245.9+22.55)2) =331.83 lbf/in (Resultant shear load) Required pad to vessel fillet weld leg size(welded all around the pad edge) tw=f/(0.707*0.55*Sa) =331.83/(0.707*0.55*16,700) =0.0511 in 0.1875 in pad to vessel attachment fillet weld size is adequate. Base plate thickness check, AISC 3-106 fP= P/(B*N) = 12,745.88/(12*12) =89 psi tb=(N - (d -tL))/2*Sgr(3*fP/Sb) =(12- (8.625 -0.148))/2*Sqr(3*89/24,000) =0.1853 in The base plate thickness is adequate. 119/171 Check the leg to vessel attachment stresses, WRC 107 (Seismic operating corroded governs) Applied Loads Radial load: Pr= -1,172.46 lbf Circumferential moment:Mc= 0 Ib-in Circumferential shear: Vc= 0 lbf Longitudinal moment: ML= 57,377.41 Ibf in Longitudinal shear: VL= -3,203.21 lbf Torsion moment: Mt= 0 Ibf in Internal pressure: P = 15 psi Mean shell radius: Rm=41.9063 in Local shell thickness: T= 0.1875 in Shell yield stress: Sy= 22,700 psi Design factor: 3 Maximum stresses due to the applied loads at the pad edge(includes pressure) y= 19m/T=41.9063/0.1875=223.5 C1 =6, C2= 11.1118 in Local circumferential pressure stress= P*R,/T=3,345 psi Local longitudinal pressure stress= P*R,/(2*T) =1,672 psi Maximum combined stress(P,+Pb+Q) =26,748 psi Allowable combined stress(PL+Pb+Q) = +-3*S= +-50,100 psi Note:The allowable combined stress(PL+Pb+Q) is based on the strain hardening characteristics of this material. The maximum combined stress (PL+Pb+Q) is within allowable limits. Maximum local primary membrane stress(EL) = 12,852 psi Allowable local primary membrane stress(PL) =+-1.5*S=+-25,050 psi The maximum local primary membrane stress(PL) is within allowable limits. 120/171 Stresses at the pad edge per WRC Bulletin 107 Figure value R Au Al Bu BI Cu CI Du DI 3C* 3.9113 0.2522 0 0 0 0 584 584 584 584 4C' 17.3864 0.2187 2,594 2,594 2,594 2,594 0 0 0 0 1C 0.0588 0.1805 0 0 0 0 11,766 -11,766 11,766 -11,766 2C-1 0.0125 0.1805 2,501 -2,501 2,501 -2,501 0 0 0 0 3A' 6.5312 0.1758 0 0 0 0 0 0 0 0 1A 0.0527 0.1783 0 0 0 0 0 0 0 0 3B' 10.505 0.2159 -6,913 -6,913 6,913 6,913 0 0 0 0 19-1 0.0089 0.1825 -11,395 11,395 11,395 -11,395 0 0 0 0 Pressure stress' 3,345 3,345 3,345 3,345 3,345 3,345 3,345 3,345 Total circumferential stress -9,868 7,920 26,748 -1,044 15,695 -7,837 15,695 -7,837 Primary membrane -974 -974 12,852 12,852 3,929 3,929 3,929 3,929 circumferential stress' 3C' 5.1977 02187 776 776 776 776 0 0 0 0 4C' 14.8869 02522 0 0 0 0 2,221 2,221 2,221 2,221 1C-1 0.0242 0.2247 4,842 -4,842 4,842 -4,842 0 0 0 0 2C 0.033 0.2247 0 0 0 0 6,603 -6,603 6,603 -6,603 4A* 18.8865 0.1758 0 0 0 0 0 0 0 0 2A 0.0198 0.2062 0 0 0 0 0 0 0 0 413' 4.5376 0.2159 -4,818 -4,818 4,818 4,818 0 0 0 0 2B-1 0.0112 0.2106 -12,429 12,429 12,429 -12,429 0 0 0 0 Pressure stress' 1,672 1,672 1,672 1,672 1,672 1,672 1,672 1,672 Total longitudinal stress -9,957 5,217 24,537 -10,005 10,496 -2,710 10,496 -2,710 Primary membrane -2,370 -2,370 7,266 7,266 3,893 3,893 3,893 3,893 longitudinal stress' Shear from Mt 0 0 0 0 0 0 0 0 Circ shear from Vc 0 0 0 0 0 0 0 0 Long shear from VL 0 0 0 0 384 384 -384 -384 Total Shear stress 0 0 0 0 384 384 -384 -384 Combined stress(PL+Pb+Q) -9,957 7,920 26,748 -10,005 15,723 -7,866 15,723 -7,866 Note: *denotes primary stress. Maximum stresses due to the applied loads at the leg edge(includes pressure) y= Rm/T=41.9063/0.375 = 111.75 C1 =4.313, C2=9.574 in Local circumferential pressure stress= P"RI/T=3,345 psi Local longitudinal pressure stress= P'Ri/(2*T) =1,672 psi Maximum combined stress (PL+Pb+Q) = 16,529 psi Allowable combined stress (PL+Pb+Q) =+-3*S =+-50,100 psi Note:The allowable combined stress (PL+Pb+Q) is based on the strain hardening characteristics of this material. The maximum combined stress (PL+Pb+Q) is within allowable limits. 121/171 ' Maximum local primary membrane stress (PL) =7,784 psi Allowable local primary membrane stress (PL) =+-1.5*S=+-25,050 psi The maximum local primary membrane stress(EL) is within allowable limits. 122/171 Stresses at the leg edge per WRC Bulletin 107 • Figure value R A. AI B. B1 C. CI Du DI 3C' 5.0392 0.2073 0 0 0 0 376 376 376 376 4C* 12.8799 0.1758 961 961 961 961 0 0 0 0 1C 0.0648 0.1399 0 0 0 0 3,242 -3,242 3,242 -3,242 2C-1 0.0323 0.1399 1,616 -1,616 1,616 -1,616 0 0 0 0 3A' 4.4061 0.1343 0 0 0 0 0 0 0 0 1A 0.0692 0.1424 0 0 0 0 0 0 0 0 313' 9.0107 0.1751 -3,478 -3,478 3,478 3,478 0 0 0 0 1B-1 0.0187 0.1532 -7,129 7,129 7,129 -7,129 0 0 0 0 Pressure stress* 3,345 3,345 3,345 3345 3345 3,345 3345 3,345 Total circumferential stress -4,685 6,341 16,529 -961 6,963 479 6,963 479 Primary membrane 828 828 7,784 7,784 3,721 3,721 3,721 3,721 circumferential stress' 3C* 6.5396 0.1758 488 488 488 488 0 0 0 0 4C' 11.5222 0.2073 0 0 0 0 860 860 860 860 1C-1 0.046 0.1814 2,301 -2,301 2,301 -2,301 0 0 0 0 2C 0.0347 0.1814 0 0 0 0 1,736 -1,736 1,736 -1,736 4A' 8.8537 0.1343 0 0 0 0 0 0 0 0 2A 0.0282 0.173 0 0 0 0 0 0 0 0 4B* 3.9629 0.1751 -2,282 -2,282 2,282 2,282 0 0 0 0 2B-1 0.0193 0.1866 -6,043 6,043 6,043 -6,043 0 0 0 0 Pressure stress' 1,672 1,672 1,672 1,672 1,672 1,672 1,672 1,672 Total longitudinal stress -3,864 3,620 12,786 -3,902 4,268 796 4,268 796 Primary membrane -122 -122 4,442 4,442 2,532 2,532 2,532 2,532 longitudinal stress' Shear from Mt 0 0 0 0 0 0 0 0 arc shear from Vc 0 0 0 0 0 0 0 0 Long shear from VL 0 0 0 0 223 223 -223 -223 Total Shear stress 0 0 0 0 223 223 -223 -223 Combined stress(PL+Pb+Q) -4,685 6,341 16,529 -3,902 6,981 911 6,981 911 Note: 'denotes primary stress. 123/171 Seismic Code Method of seismic analysis: IBC 2009 ground supported (Seismic analysis in accordance with ASCE 7-05. All paragraph, page, and table references are from ASCE 7-05.) Site Class D Importance Factor: I = 1.2500 Spectral Response Acceleration at short S 92.60% period (%g) 5-- Spectral Response Acceleration at period of 1 S =33.40% sec(%g) Response Modification Coeficient from Table R -3.0000 15.4-2 Acceleration based site co-efficient: Fa= 1.1 296 Velocity based site co-efficient: F�= 1.7320 Long-period transition period: TL= 16.0000 Redundancy factor: p = 1.3000 User Defined Vertical Accelerations No Considered: 12.4.2.3 Basic Load Combinations for Allowable Stress Design The following load combinations are considered in accordance with ASCE section 2.4.1: 5. D+ P+ Ps+0.7E = (1.0+0.14Sos)D+ P+Ps+0.7pQE 8. 0.6D+ P+PS+0.7E = (0.6-0.14Sos)D+ P+Ps+0.7pQE Where D = Dead load P = Internal or external pressure load PS =Static head load E = Seismic load = Eh+1- E,, = pQE+1-0.2SDSD Vessel Characteristics Vessel height: 21.3714 ft Vessel Weight: Operating, Corroded: 17,737 lb Empty, Corroded:4,047 lb Period of Vibration Calculation Fundamental Period, T: Operating, Corroded:0.126 sec(f=7.9 Hz) Empty, Corroded:0.059 sec(f= 17.0 Hz) The fundamental period of vibration T(above) is calculated using the Rayleigh method of approximation: T= 2 * PI* Sqr( {Sum(W,*y?)}/{g * Sum(W,*y,)} ), where 124/171 Wl is the weight of the ith lumped mass, and yi is its deflection when the system is treated as a cantilever beam. Seismic Shear Reports: Operating. Corroded Empty. Corroded Base Shear Calculations Seismic Shear Report: Operating, Corroded Bending Com onent Elevation of bottom Elastic modulus E Inertia I Seismic shear at Moment at p above base(in) (106 psi) (fta) Bottom(Ibf) Bottom (lbf-ft) Top Head 239.75 27.8 226 435 Upper Shell 143.75 27.8 2.0906 2,462 8.327 Lower Shell(top) 47.75 27.8 2.0906 4.620 37,872 Legs 0 29.0 0.0068 4,690 56,464 Lower Shell(bottom) 47.75 27.8 2.0906 48 30 Bottom Head 47.75 27.8 36 27 `Moment of Inertia I varies over the length of the component Seismic Shear Report: Empty, Corroded Bending Component Elevation of bottom Elastic modulus E Inertia I Seismic shear at Moment at above base(in) (106 psi) (ft) Bottom(lbf) Bottom (Ibf•ft) Top Head 239.75 28.3 185 401 Upper Shell 143.75 28.3 2.0906 669 4.038 Lower Shell(top) 47.75 28.3 2.0906 914 10,567 Legs 0 29.0 0.0068 963 14,342 Lower Shell(bottom) 47.75 28.3 2.0906 31 24 Bottom Head 47.75 28.3 30 22 `Moment of Inertia I varies over the length of the component 11.4.3: Maximum considered earthquake spectral response acceleration The maximum considered earthquake spectral response acceleration at short period, SMs SMs = F` S = 1.1296 * 92.60/ 100 = 1.0460 The maximum considered earthquake spectral response acceleration at 1 s period, SM, SM, =F*S = 1.7320 * 33.40/ 100 = 0.5785 11.4.4: Design spectral response acceleration parameters Design earthquake spectral response acceleration at short period, Sos SDS = 2/3 * SMS = 2/3 * 1.0460 = 0.6973 Design earthquake spectral response acceleration at 1 s period, So, So, = 2/3 * SMI = 2/3 *0.5785 = 0.3857 12.4.2.3: Seismic Load Combinations: Vertical Term 125/171 Factor is applied to dead load. Compressive Side: = 1.0+0.14* SDs = 1.0+0.14*0.6973 = 1.0976 Tensile Side: =0.6-0.14* SDS =0.6 -0.14*0.6973 = 0.5024 Base Shear Calculations Operating. Corroded Empty. Corroded Base Shear Calculations:Operating, Corroded Paragraph 15.4.4: Period Determination Fundamental Period is taken from the Rayleigh method listed previously in this report. T =0.1264 sec. 12.8.1: Calculation of Seismic Response Coefficient CS is the value computed below, bounded by CSMin and CSMax: CSMin is calculated with equation 15.4-1 and shall not be less than 0.03 (see ASCE 7-05 Supplement No. 2); in addition, if S1 >=0.6g, CSMin shall not be less than eqn 15.4-2. CSMax calculated with 12.8-3 because (T=0.1264) <= (TL= 16.0000) CS =a96/(B,/1) =0.6973/(3.0000/ 1.2500) = 0.2906 CSMin = max (0.044 * * 1 , 0.03) = max ( 0.044* 0.6973* 1.2500 , 0.03 ) =0.0384 CSMax =5.,94/(T* (B/1)) =0.3857/(0.1264* (3.0000/1.2500)) = 1.2717 Cs =0.2906 12.8.1:Calculation of Base Shear V =CS*W =0.2906 * 17,737.1816 = 5,153.68 lb 12.4.2.1 Seismic Load Combinations: Horizontal Seismic Load Effect, Eh QE = V Eh =0.7* p* QE (Only 70%of seismic load considered as per Section 2.4.1) =0.70 * 1.3000 * 5,153.68 =4,689.85 lb Base Shear Calculations: Empty, Corroded Paragraph 15.4.2:T <0.06, so: V = 0.30* S * W*1 126/171 =0.30*0.6973 *4,047.2012' 1.2500 . = 1,058.35 lb 12.4.2.1 Seismic Load Combinations: Horizontal Seismic Load Effect, Eh QE =V Eh =0.7* p * QE (Only 70%of seismic load considered as per Section 2.4.1) =0.70* 1.3000 * 1,058.35 =963.10 lb 127/171 ' Wind Code Building Code: IBC 2009 (Wind analysis in accordance with ASCE 7-05. All paragraph, page, and table references are from ASCE 7-05.) Elevation of base above grade: 0.0000 ft Increase effective outer diameter by: 0.0000 ft Wind Force Coefficient Cf: 0.7170 Basic Wind Speed:, V: 95.0000 mph Importance Factor:, I: 1.1500 Exposure category: C Wind Directionality Factor, Kd: 0.9500 Topographic Factor, Kzt: 1.0000 Enforce min. loading of 10 psf: Yes Vessel Characteristics Vessel height, h: 21.3714 ft Vessel Minimum Diameter, b Operating, Corroded:7.0000 ft Empty, Corroded:7.0000 ft Fundamental Frequency, n1 Operating, Corroded:7.9141 Hz Empty, Corroded: 17.0254 Hz Damping coefficient, R Operating,Corroded:0.0198 Empty, Corroded:0.0200 Table Lookuo Values 2.4.1 Basic Load Combinations for Allowable Stress Design The following load combinations are considered in accordance with ASCE section 2.4.1: 5. DI- P+ Ps+ W 7. 0.6D+ P+ PS+ W Where D = Dead load P = Internal or external pressure load PS =Static head load W =Wind load Wind Deflection Reports: Operating. Corroded Empty, Corroded Wind Pressure Calculations 128/171 Wind Deflection Report: Operating, Corroded . Elevation of Effective OD Elastic modulus Inertia Platform Total wind bending Deflection Component bottom above (ft) E(106 psi) I(ft4) wind shear at shear at moment at at top(in) base(in) Bottom(Ibf) Bottom(lbf) Bottom(lbf-ft) Top Head 239.75 7.00 27.8 • 0 114 315 0.0174 Upper Shell 143.75 7.00 27.8 2.091 0 915 4,477 0.0172 Lower Shell(top) 47.75 7.00 27.8 2.091 0 1.679 14.885 0.0163 Legs 0 0 29.0 0.006831 0 1,790 21.939 0.0158 Lower Shell(bottom) 47.75 7.00 27.8 2.091 0 110 68 0.0158 Bottom Head 47.75 7.00 27.8 0 102 59 0.0158 *Moment of Inertia I varies over the length of the component Wind Deflection Report: Empty, Corroded Elevation of Effective OD Elastic modulus Inertia Platform Total wind bending Deflection Component bottom above (ft) E(106 psi) I(f14) `wind shear at shear at moment at at top(in) base(in) Bottom(Ibf) Bottom(lbf) Bottom(lbf-ft) Top Head 239.75 7.00 28.3 • 0 114 315 0.0174 Upper Shell 143.75 7.00 28.3 2.091 0 915 4,477 0.0172 Lower Shell(top) 47.75 7.00 28.3 2.091 0 1.679 14.885 0.0163 Legs 0 0 29.0 0.006831 0 1,790 21.939 0.0158 Lower Shell(bottom) 47.75 7.00 28.3 2.091 0 110 68 0.0158 Bottom Head 47.75 7.00 28.3 0 102 59 0.0158 `Moment of Inertia I varies over the length of the component Wind Deflection Report: Vacuum, Corroded Elevation of I Platform Total wind bending Effective OD Elastic modulus Inertia Deflection Component bottom above wind shear at shear at moment at base(in) (ft) E(106 psi) I(ft4) Bottom Obi) Bottom(ibf) Bottom(Ibt-ft) at top(in) Top Head 239.75 7.00 27.8 • 0 114 315 0.0174 Upper Shell 143.75 7.00 27.8 2.091 0 915 4,477 0.0172 Lower Shell(top) 47.75 7.00 27.8 2.091 0 1.679 14.885 0.0163 Legs 0 0 29.0 0.006831 0 1,790 21.939 0.0158 Lower Shell(bottom) 47.75 7.00 27.8 2.091 0 110 68 0.0158 Bottom Head 47.75 7.00 27.8 0 102 59 0.0158 'Moment of Inertia I varies over the length of the component Wind Deflection Report: Hydrotest, New, field Elevation of Effective OD Elastic modulus Inertia Platform Total wind bending Deflection Component bottom above wind shear at shear at moment at base(in) (ft) E(106 psi) I(ft4) Bottom(lbf) Bottom(lbf) Bottom(lbf-ft) at top(in) Top Head 239.75 7.00 28.3 • 0 0 250 0.0001 Upper Shell 143.75 7.00 28.3 2.091 0 0 250 0 Lower Shell(top) 47.75 7.00 28.3 2.091 0 0 386 0 Legs 0 0 29.0 0.006831 0 0 386 0 Lower Shell(bottom) 47.75 7.00 28.3 2.091 0 0 0 0 Bottom Head 47.75 7.00 28.3 0 0 0 0 *Moment of Inertia I varies over the length of the component 129/171 ' Wind Deflection Report: Hydrotest, Corroded, field Elevation of Effective OD Elastic modulus Inertia platform Total wind bending Deflection Component bottom above (ft) E(106 psi) I(ft4) wind shear at shear at moment at at top(in) base(in) Bottom(lbf) Bottom(lbf) Bottom(lbf-ft) Top Head 239.75 7.00 28.3 0 0 250 0.0001 Upper Shell 143.75 7.00 28.3 2.091 0 0 250 0 Lower Shell(top) 47.75 7.00 28.3 2.091 0 0 386 0 Legs 0 0 29.0 0.006831 0 0 386 0 Lower Shell(bottom) 47.75 7.00 28.3 2.091 0 0 0 0 Bottom Head 47.75 7.00 28.3 0 0 0 0 *Moment of Inertia I varies over the length of the component Wind Pressure (WP) Calculations Gust Factor (G-) Calculations Kz = 2.01 * (Z/Zg)2i'Y = 2.01 * (Z/900.0000)°-2105 qz = 0.00256 * Kz * Kzt * Kd *V2 ` I = 0.00256 * Kz * 1.0000 *0.9500 * 95.00002* 1.1500 = 25.2411 * Kz WP =qz ` G * Cf (Minimum 10 Ib/ft2) = qz *Q.* 0.7170 (Minimum 10 lb/112) Design Wind Pressures Height Z qz WP: Operating WP: Empty WP: Hydrotest WP: Hydrotest WP: 0 Kz (psf) (psf) (psf) New Corroded Vacuum (psf) (psf) (psf) 15.0 0.8489 21.43 13.79 13.79 N.A. N.A. N.A. 20.0 0.9019 22.76 14.65 14.65 N.A. N.A. N.A. 25.0 0.9453 23.86 15.35 15.35 N.A. N.A. N.A. Design Wind Force determined from: F = Pressure * Af , where Af is the projected area. Height Z(') Kz qz(psf) WP(psf) %PRESSURESTABLEVOC% Height Z(') Kz qz(psf) ° WP(psf) /°PRESSURESTABLEVEC°/° Height Z(') Kz qz(psf) ° WP(psf) /oPRESSURESTABLEVVC°/o Gust Factor Calculations Operating, Corroded Empty. Corroded 130/171 Gust Factor Calculations: Operating, Corroded Vessel is considered a rigid structure as n1 = 7.9141 Hz 1 Hz. z = max (0.60*h, z ,, ) = max (0.60 *21.3714 , 15.0000) = 15.0000 l - =Q* (33/z)v6 =0.2000* (33/ 15.0000)1/6 =0.2281 LZ =]* (z/33)2 =500.0000* (15.0000/33)02000 =427.0566 Q =Sqr(1 /(1 +0.63* ((h+ h)/L7)0.63)) =Sqr(1 /(1 +0.63* ((7.0000+21.3714)/427.0566)0.63)) =0.9474 G =0.925* (1 + 1.7*g * le*Q)/(1 + 1.7*g,,* lZ) =0.925 * (1 + 1.7*3.40*0.2281 *0.9474)/(1 + 1.7*3.40 *0.2281) =0.8973 Gust Factor Calculations: Empty, Corroded Vessel is considered a rigid structure as n1 = 17.0254 Hz? 1 Hz. z = max (0.60* h , z ) = max (0.60*21.3714 , 15.0000 ) = 15.0000 le =h* (33/z)1/6 =0.2000 * (33/ 15.0000)1/6 =0.2281 L7- _]* (z /33)2 =500.0000 * (15.0000/33)0.2000 =427.0566 Q =Sqr(1 /(1 +0.63* ((h+ h)/LZ)0.63)) =Sqr(1 /(1 +0.63* ((7.0000 +21.3714)/427.0566)0.63)) =0.9474 G =0.925* (1 + 1.7*ge* lZ*0)/(1 + 1.7*g * li) =0.925* (1 + 1.7*3.40*0.2281 *0.9474)/(1 + 1.7*3.40*0.2281) =0.8973 Table Lookup Values a=9.5000,z9 =900.0000 ft [Table 6-2, page 78] c=0.2000, I = 500.0000,ep=0.2000 [Table 6-2, page 78] a=0.1538, b-=0.6500 [Table 6-2, page 78] zm;n= 15.0000 ft [Table 6-2, page 78] go=3.40 [6.5.8.1 page 26] g =3.40 [6.5.8.1 page 26] 131/171 Clip#3 Geometry Height(radial): 7" Pad Thickness: 0.1875" Width (circumferential): 2" Pad Width: 5" Length 2" Pad Length: 5" Fillet Weld Size: 0.1875" Pad Weld Size: 0.1875" Located on: Lower Shell (16"from top end) Location Angle: 0.00° Applied Loads Radial load: Pr= 500 Ibf Circumferential moment: Mc= 2,000 Ibfin Circumferential shear: Vc= 500 Ibf Longitudinal moment: ML= 2,000 Ibf in Longitudinal shear: VL= 1,000 Ibf Torsion moment: Mt= 0 Ibf-in Internal pressure: P = 15 psi Mean shell radius: Rm = 41.9063 in Shell yield stress: S = 22,700 psi Design factor: 3 Maximum stresses due to the applied loads at the lug edge(includes pressure) y= Rm/T=41.9063/0.375= 111.75 C, = 1.1875, C2= 1.1875 in Local circumferential pressure stress= P*R;/T=3,345 psi Local longitudinal pressure stress= P*R1/(2*T) =1,672 psi Maximum combined stress(PL+Pb+Q) = 14,325 psi Allowable combined stress(PL+Pb+Q) _+-3*S= +-50,100 psi Note:The allowable combined stress(PL+Pb+Q) is based on the strain hardening characteristics of this material. The maximum combined stress (PL+Pb+Q) is within allowable limits. Maximum local primary membrane stress(PL) =3,307 psi Allowable local primary membrane stress(PL) =+-1.5*S=+-25,050 psi The maximum local primary membrane stress(EL) is within allowable limits. 132/171 Stresses at the lug edge per WRC Bulletin 107 Figure value R Au Al Bu B1 C„ CI Du Di 3C* 22.9364 0.0283 0 0 0 0 -730 -730 -730 -730 4C* 20.9932 0.0283 -668 -668 -668 -668 0 0 0 0 1C 0.214 0.0283 0 0 0 0 -4,565 4,565 -4,565 4,565 2C-1 0.1583 0.0283 -3,377 3,377 -3,377 3,377 0 0 0 0 3A* 1.5724 0.0283 0 0 0 0 -169 -169 169 169 1A 0.101 0.0283 0 0 0 0 -7,258 7,258 7,258 -7,258 313* 5.8758 0.0283 -630 -630 630 630 0 0 0 0 1B-1 0.0586 0.0283 -4,211 4,211 4,211 -4,211 0 0 0 0 Pressure stress* 3,345 3,345 3,345 3,345 3,345 3,345 3,345 3,345 Total circumferential stress -5,541 9,635 4,141 2,473 -9,377 14,269 5,477 91 Primary membrane 2,047 2,047 3,307 3,307 2,446 2,446 2,784 2,784 circumferential stress' 3C* 22.9364 0.0283 -730 -730 -730 -730 0 0 0 0 4C* 20.9932 0.0283 0 0 0 0 -668 -668 -668 -668 1C-1 0.2055 0.0283 -4,384 4,384 -4,384 4,384 0 0 0 0 2C 0.1633 0.0283 0 0 0 0 -3,484 3,484 -3,484 3,484 4A' 1.8763 0.0283 0 0 0 0 -201 -201 201 201 2A 0.062 0.0283 0 0 0 0 -4,455 4,455 4,455 -4,455 46* 1.6542 0.0283 -177 -177 177 177 0 0 0 0 2B-1 0.1003 0.0283 -7,208 7,208 7,208 -7,208 0 0 0 0 Pressure stress' 1,672 1,672 1,672 1,672 1,672 1,672 1,672 1,672 Total longitudinal stress -10,827 12,357 3,943 -1,705 -7,136 8,742 2,176 234 Primary membrane 765 765 1,119 1,119 803 803 1,205 1,205 longitudinal stress* Shear from Mt 0 0 0 0 0 0 0 0 Circ shear from Vc 281 281 -281 -281 0 0 0 0 Long shear from Vi 0 0 0 0 -561 -561 561 561 Total Shear stress 281 281 -281 -281 -561 -561 561 561 Combined stress(PL+Pb+Q) -10,842 12,386 4,340 4,216 -9,510 14,325 5,570 1,131 Note: *denotes primary stress. Maximum stresses due to the applied loads at the pad edge(includes pressure) y= RR1/T=41.9063/0.1875=223.5 C1 =2.6875, C2=2.6875 in Local circumferential pressure stress= P*Ri/T=3,345 psi Local longitudinal pressure stress= P*Ri/(2*T) =1,672 psi Maximum combined stress (PL+Pb+Q) = 19,593 psi Allowable combined stress (PL+Pb+Q) = +-3*S=+-50,100 psi Note:The allowable combined stress (PL+Pb+Q) is based on the strain hardening characteristics of this material. The maximum combined stress (PL+Pb+Q) is within allowable limits. 133/171 • Maximum local primary membrane stress(EL) =3,486 psi Allowable local primary membrane stress(PL) =+-1.5*S=+-25,050 psi The maximum local primary membrane stress(EL) is within allowable limits. 134/171 Stresses at the pad edge per WRC Bulletin 107 - Figure value (3 Au Al Bu B1 Cu C1 Du Di 3C* 25.972 0.0641 0 0 0 0 -1,653 -1,653 -1,653 -1,653 4C* 34.6664 0.0641 -2,206 -2,206 -2,206 -2,206 0 0 0 0 1C 0.0929 0.0641 0 0 0 0 -7,927 7,927 -7,927 7,927 2C-1 0.0595 0.0641 -5,077 5,077 -5,077 5,077 0 0 0 0 3A' 8.3845 0.0641 0 0 0 0 -794 -794 794 794 1A 0.0846 0.0641 0 0 0 0 -10,745 10,745 10,745 -10,745 3B' 24.7755 0.0641 -2,347 -2,347 2,347 2,347 0 0 0 0 1B-1 0.034 0.0641 -4,318 4,318 4,318 -4,318 0 0 0 0 Pressure stress' 3,345 3,345 3,345 3,345 3,345 3,345 3,345 3,345 Total circumferential stress -10,603 8,187 2,727 4,245 -17,774 19,570 5,304 -332 Primary membrane -1,208 -1,208 3,486 3,486 898 898 2,486 2,486 circumferential stress' 3C' 25.972 0.0641 -1,653 -1,653 -1,653 -1,653 0 0 0 0 4C' 34.6664 0.0641 0 0 0 0 -2,206 -2,206 -2,206 -2,206 1C-1 0.1019 0.0641 -8,695 8,695 -8,695 8,695 0 0 0 0 2C 0.0595 0.0641 0 0 0 0 -5,077 5,077 -5,077 5,077 4A' 13.4594 0.0641 0 0 0 0 -1,275 -1,275 1,275 1,275 2A 0.0457 0.0641 0 0 0 0 -5,804 5,804 5,804 -5,804 4B* 8.2543 0.0641 -782 -782 782 782 0 0 0 0 2B-1 0.0495 0.0641 -6,287 6,287 6,287 -6,287 0 0 0 0 Pressure stress' 1,672 1,672 1,672 1,672 1,672 1,672 1,672 1,672 Total longitudinal stress -15,745 14,219 -1,607 3,209 -12,690 9,072 1,468 14 Primary membrane -763 -763 801 801 -1,809 -1,809 741 741 longitudinal stress' Shear from Mt 0 0 0 0 0 0 0 0 Circ shear from Vc 248 248 -248 -248 0 0 0 0 Long shear from Vi 0 0 0 0 -496 -496 496 496 Total Shear stress 248 248 -248 -248 -496 -496 496 496 Combined stress(PL+Pb+Q) -15,757 14,229 4,362 4,301 -17,822 19,593 5,367 1,051 Note: *denotes primary stress. 135/171 Lug#1 L t H . 111, . k—,p-- )1 ea Geometry Inputs Attached To Upper Shell Material 304L Orientation Longitudinal Distance of Lift Point From Datum 184" Angular Position 45.00° Length of Lug, L 6" Height of Lug, H 6" Thickness of Lug, t 0.5" Hole Diameter,d 1.5" Pin Diameter, Dp 0.875" Load Eccentricity, a, 0" Distance from Load to Shell or Pad, a2 3" Weld Size,tr„ 0.25" Width of Pad, Bp 4" Length of Pad, Lp 10" Pad Thickness, tp 0.25" Pad Weld Size, tM,p 0.25" Load Angle Normal to Vessel, (3 90.0000 ° Load Angle from Vertical, 0.0000 ° 136/171 Intermediate Values Load Factor 1.5000 Vessel Weight (new, incl. Load Factor), W 6071 lb Lug Weight (new), W1Q9 8 lb Allowable Stress, Tensile, at 15000 psi Allowable Stress, Shear, as 10000 psi Allowable Stress, Bearing, 6p 22500 psi Allowable Stress, Bending, Gb 16500 psi Allowable Stress, Weld Shear, r 10000 allowable psi Allowable Stress set to 1/3 Sy per ASME B30.20 No Summary Values Required Lift Pin Diameter, dfegd 0.3355" Required Lug Thickness, tregd 0.0898" Lug Stress Ratio, aratlo 0.11 Weld Shear Stress Ratio, tratlo 021 Lug Design Acceptable Local Stresses WRC 107 Acceptable Lift Forces Fr = force on vessel at lug Fr = (1/COS(4i))*[W*L3/ (L3 + L12)]*L2/ (Lt + L2) (1 /cos(0.0000))*[6,070.8*46.2676/ (46.2676+ 30.984 ) ]'31.1099/ (32.8833 + 31.1099 ) 1.768 Ibf See the help file for procedure description and definition of variables. Lug Pin Diameter-Shear stress dfegd = (2*Fr/(n*6s))o.5 = (2*1,768/(n*10,000))°5 = 0.3355" dreqd/ Dp = 0.3355/0.875 = 0.38 Acceptable a = Fr/A = Fr/ (2*(0.25*n*Dp2)) = 1,768/(2*(0.25*n*0.8752)) = 1,470 psi 137/171 • a/as = 1,470/ 10,000 = 0.15 Acceptable Lug Thickness-Tensile stress treqd = Fr/((L-d)*at) = 1,768/((6- 1.5)*15,000) = 0.0262" treqd/t = 0.0262/0.5 = 0.05 Acceptable a = Fr/A = Fr/((L-d)*t) = 1,768/((6 - 1.5)*0.5) = 786 psi a/at = 786/ 15,000 = 0.05 Acceptable Lug Thickness- Bearing stress tfegd = Fv/(Dp*ap) = 1,768/(0.875*22,500) = 0.0898" treqd/t = 0.0898/0.5 = 0.18 Acceptable a = Fv/Abearing = Fv/(Dp*(t)) = 1,768/(0.875*(0.5)) = 4,040 psi a/ap = 4,040/22,500 = 0.18 Acceptable Lug Thickness-Shear stress treqd = [Fv/as]/(2*Lshear) = (1,768/ 10,000)/(2*2.3168) = 0.0381" treed/t = 0.0381 /0.5 = 0.08 Acceptable Z = Fv/Ashear = Fv/(2*t*Lshear) = 1,768/(2*0.5*2.3168) = 763 psi i/as = 763/ 10,000 = 0.08 Acceptable Shear stress length (per Pressure Vessel and Stacks, A. Keith Escoe) Zl ' z 138/171 = 55*Dp/d = 55*0.875/ 1.5 = 32.0833° Lshear = (H -a2-0.5*d) +0.5*Dp*(1 -cos(4)) = (6-3-0.5*1.5) +0.5*0.875*(1 -cos(32.0833)) = 2.3168" Lug Plate Stress Lug stress tensile+ bending during lift: a ratio = [Ften/('Q`ten*6t)] + [Mbend/(Zbend*6b)]`— 1 = [(F;cos(a) )/(t*L*at)] +[(6*abs(Fr*sin(a)*Hght- Fr*cos(a)*at) )/(t*L2*ab)] <_ 1 _ 1,768*cos(90.0)/(0.5*6*15,000) +6*abs(1,768*sin(90.0)*3- 1,768*cos(90.0)*0)/ (0.5*62*16,500) = 0.11 Acceptable Weld Stress Weld stress,tensile,bending and shear during lift: Direct shear: Shear stress at lift angle 90.00°; lift force = 1,768 lbf ' weld = 2*(0.707)*c*(L+t) = 2*(0.707)*0.25*(6 +0.5) =2.2977 in2 Tt = Fr*cos(a)/'held = 1,768*cos(90.0)/2.2977 =0 psi Ts = Fr*Sin(a)/Aweld = 1,768*sin(90.0)/2.2977 =769 psi Tb = M*c/I 3*(Fr*sin(a)*Hght- Fr*cos(a)*at)/ (0.707*h*L*(3*t+ L)) 3*abs(1,768*sin(90.0)*3- 1,768*cos(90.0)*(0))/(7.9538) 2,000 psi T ratio = sqr( (t +Tb)2+ ;2)/tallowable 5 1 = sqr( (0+2,000)2+ (769)2)/ 10,000 = Acceptable Pad Weld Stress,tensile,bending and shear during lift: 139/171 • Direct shear: Shear stress at lift angle 90.00°; lift force= 1,768 lbf weld = 2*(0.707)*twp*(Lp+ Bp) = 2*(0.707)*0.25*(10+4) =4.949 in2 Tt = Fr*cos(a)/"weld = 1,768*cos(90.0)/4.949 =0 psi Ts = Fr*sin(a)/Aweld = 1,768*sin(90.0)/4.949 =357 psi Tb = M *c/ I 3*(Fr*sin(a)*Hght-Fr*cos(a)*a,)/ (0.707*hp*Lp*(3*Wp+ Lp)) = 3*abs(1,768*sin(90.0)*3.25- 1,768*cos(90.0)*(0))/(38.8850) 443 psi ratio = sqr( (t +Tb)2+Ts2)/ "allowable` 1 = sqr( (0+443)2+(357)2)/10,000 = 0.06 Acceptable WRC 107 Analysis Geometry Height(radial): 6" Pad Thickness: 0.25" Width (circumferential): 0.5" Pad Width: 4" Length 6" Pad Length: 10" Fillet Weld Size: 0.25" Pad Weld Size: 0.25" Located on: Upper Shell (11"from top end) Location Angle: 45.00° Applied Loads Radial load: Pr= 0 lbf Circumferential moment:M,= 0 lbf-in Circumferential shear: V,= 0 lbf Longitudinal moment: ML= 5,744.641bf-in Longitudinal shear: VL= 1,767.58Ib, Torsion moment: Mt= 0 Ibf-in Internal pressure: P = 0 psi Mean shell radius: Rm=41.9063 in Shell yield stress: Sy= 25,000 psi Design factor: 3 Maximum stresses due to the applied loads at the lug edge(includes pressure) 140/171 y= Rm/T=41.9063/0.4375=95.7857 C1 =0.5, C2=2 in Note:Actual lug C1 /C2< 1 /4, C1 /C2= 1 /4 used as this is the minimum ratio covered by WRC 107. Local circumferential pressure stress= P*Ri/T=0 psi Local longitudinal pressure stress= P*Ri/(2*T) =0 psi Maximum combined stress (PL+Pb+Q) =-12,730 psi Allowable combined stress (PL+Pb+Q) = +-3*S= +-50,100 psi Note: The allowable combined stress (PL+Pb+Q) is based on the strain hardening characteristics of this material. The maximum combined stress (PL+Pb+Q) is within allowable limits. Maximum local primary membrane stress (EL) =-609 psi Allowable local primary membrane stress (EL) =+-1.5*S=+-25,050 psi The maximum local primary membrane stress(PL) is within allowable limits. 141/171 Stresses at the lug edge per WRC Bulletin 107 Figure value R A. A1 B„ B1 C„ C1 Du DI 3C' 19.3122 0.0353 0 0 0 0 0 0 0 0 4C* 18.0287 0.0286 0 0 0 0 0 0 0 0 1C 0.252 0.021 0 0 0 0 0 0 0 0 2C-1 0.1999 0.021 0 0 0 0 0 0 0 0 3A* 0.7269 0.0189 0 0 0 0 0 0 0 0 1A 0.1013 0.0221 0 0 0 0 0 0 0 0 313' 4.7242 0.0301 -609 -609 609 609 0 0 0 0 1B-1 0.0602 0.0245 -10,567 10,567 10,567 -10,567 0 0 0 0 Pressure stress' 0 0 0 0 0 0 0 0 Total circumferential stress -11,176 9,958 11,176 -9,958 0 0 0 0 Primary membrane -609 -609 609 609 0 0 0 0 circumferential stress' 3C' 20.2841 0.0286 0 0 0 0 0 0 0 0 4C' 17.7159 0.0353 0 0 0 0 0 0 0 0 1C-1 0.2037 0.0298 0 0 0 0 0 0 0 0 2C 0.1625 0.0298 0 0 0 0 0 0 0 0 4A* 0.8193 0.0189 0 0 0 0 0 0 0 0 2A 0.0624 0.0277 0 0 0 0 0 0 0 0 413' 1.3205 0.0301 -341 -341 341 341 0 0 0 0 2B-1 0.0976 0.0339 -12,389 12,389 12,389 -12,389 0 0 0 0 Pressure stress* 0 0 0 0 0 0 0 0 Total longitudinal stress -12,730 12,048 12,730 -12,048 0 0 0 0 Primary membrane -341 -341 341 341 0 0 0 0 longitudinal stress' Shear from Mt 0 0 0 0 0 0 0 0 Circ shear from V, 0 0 0 0 0 0 0 0 Long shear from VL 0 0 0 0 -505 -505 505 505 Total Shear stress 0 0 0 0 -505 -505 505 505 Combined stress{PL+Pb+f]) -12,730 12,048 12,730 -12,048 1,010 1,010 1,010 1,010 Note: *denotes primary stress. Maximum stresses due to the applied loads at the pad edge(includes pressure) y= Rm/T=41.9063/0.1875=223.5 C1 =2.25, C2=5.25 in Local circumferential pressure stress= P*Ri/T=0 psi Local longitudinal pressure stress= P*Ri/(2'T) =0 psi Maximum combined stress(PL+Pb+Q) =-11,691 psi Allowable combined stress(PL+Pb+Q) = +-3'S= +-50,100 psi Note:The allowable combined stress (PL+Pb+Q) is based on the strain hardening characteristics of this material. The maximum combined stress (PL+Pb+Q) is within allowable limits. 142/171 Maximum local primary membrane stress (EL) = -3,081 psi Allowable local primary membrane stress (EL) = +-1.5*S = +-25,050 psi The maximum local primary membrane stress (PL) is within allowable limits. 143/171 Stresses at the pad edge per WRC Bulletin 107 Figure value Q A0 Al Bu B1 Cu CI Du DI 3C• 15.4448 0.112 0 0 0 0 0 0 0 0 4C• 30.1612 0.0945 0 0 0 0 0 0 0 0 1C 0.0817 0.0745 0 0 0 0 0 0 0 0 20-1 0.049 0.0745 0 0 0 0 0 0 0 0 3A' 8.7442 0.0712 0 0 0 0 0 0 0 0 1A 0.0809 0.0734 0 0 0 0 0 0 0 0 38.' 22.2403 0.0945 -3,081 -3,081 3,081 3,081 0 0 0 0 18-1 0.0281 0.0764 -8,610 8,610 8,610 -8.610 0 0 0 0 Pressure stress* 0 0 0 0 0 0 0 0 Total circumferential stress -11.691 5,529 11.691 -5,529 0 0 0 0 Primary membrane -3,081 -3,081 3,081 3,081 0 0 0 0 circumferential stress' 3C' 18.5118 0.0945 0 0 0 0 0 0 0 0 4C' 27.9614 0.112 0 0 0 0 0 0 0 0 1C-1 0.0664 0.0976 0 0 0 0 0 0 0 0 2C 0.0374 0.0976 0 0 0 0 0 0 0 0 4A* 14.7323 0.0712 0 0 0 0 0 0 0 0 2A 0.0379 0.0862 0 0 0 0 0 0 0 0 48' 8.8523 0.0945 -2,198 -2,198 2,198 2,198 0 0 0 0 2B-1 0.0313 0.0913 -8,019 8.019 8,019 -8,019 0 0 0 0 Pressure stress' 0 0 0 0 0 0 0 0 Total longitudinal stress -10,217 5,821 10,217 -5.821 0 0 0 0 Primary membrane -2.198 -2.198 2,198 2.198 0 0 0 0 longitudinal stress' Shear from Mt 0 0 0 0 0 0 0 0 Circ shear from V, 0 0 0 0 0 0 0 0 Long shear from VL 0 0 0 0 -449 -449 449 449 Total Shear stress 0 0 0 0 -449 -449 449 449 Combined stress(PL+Pb+Q) -11,691 5.821 11,691 -5.821 898 898 898 898 Note: *denotes primary stress. 144/171 Lug#2 L h tvc tp a I Bp -� Geometry Inputs Attached To Upper Shell Material 304L Orientation Longitudinal Distance of Lift Point From Datum 184" Angular Position 135.00° Length of Lug, L 6" Height of Lug, H 6" Thickness of Lug, t 0.5" Hole Diameter, d 1.5" Pin Diameter, Dp 0.875" Load Eccentricity, a, 0" Distance from Load to Shell or Pad, a2 3" Weld Size, tH, 0.25" Width of Pad, Bp 4" Length of Pad, Lp 10" Pad Thickness, tp 0.25" Pad Weld Size, tW, 0.25" Load Angle Normal to Vessel, (3 90.0000 ° Load Angle from Vertical, ¢ 0.0000 ° 145/171 Intermediate Values Load Factor 1.5000 Vessel Weight(new, incl. Load Factor), W 6071 lb Lug Weight(new), WIug 8 lb Allowable Stress, Tensile, at 15000 psi Allowable Stress, Shear, as 10000 psi 22500 Allowable Stress, Bearing, up psi Allowable Stress, Bending, ab 16500 psi Allowable Stress,Weld Shear, T 10000 allowable psi Allowable Stress set to 1/3 Sy per ASME B30.20 No Summary Values Required Lift Pin Diameter,dread 0.3449" Required Lug Thickness, treqd 0.0949" Lug Stress Ratio, aratio Weld Shear Stress Ratio, tratio 0.23 Lug Design Acceptable Local Stresses WRC 107 Acceptable Lift Forces Fr = force on vessel at lug Fr = (1/cos($))*[W*L3/(1_3+ Liz)]*L2/(Lt + L2) (1 /cos(0.0000))*[6,070.8*46.2676/(46.2676+30.984)]*32.8833/(31.1099 + 32.8833 ) = 1.868 Ibf See the help file for procedure description and definition of variables. Lug Pin Diameter-Shear stress dfegd = (2*Fr/(1r*as))o.5 = (2*1,868/(n*10,000))05 = 0.3449" dreqd/Dp = 0.3449/0.875 = 0.39 Acceptable = Fr/A = Fr/(2*(0.25*><*Dp2)) = 1,868/(2*(0.25*7*0.8752)) = 1,554 psi 146/171 a/as = 1,554/ 10,000 = 0.16 Acceptable Lug Thickness-Tensile stress tfegd = Fr/((L-d)*at) = 1,868/((6- 1.5)*15,000) = 0.0277" treqd/t = 0.0277/0.5 = 0.06 Acceptable a = Fr/A = Fr/((L-d)*t) = 1,868/((6- 1.5)*0.5) = 830 psi a/at = 830/15,000 = 0.06 Acceptable Lug Thickness- Bearing stress tfegd = Fv/(Dp*ap) = 1,868/(0.875*22,500) = 0.0949" treqd/t = 0.0949/0.5 = 0.19 Acceptable a = Fv/Abearing = Fv/(Dp*(t)) = 1,868/(0.875*(0.5)) = 4,271 psi a/op = 4,271 /22,500 = 0.19 Acceptable Lug Thickness-Shear stress two = [Fv/as]/(2 1-shear) = (1,868/10,000)/(2*2.3168) = 0.0403" treqd/t = 0.0403/0.5 = 0.08 Acceptable ti = Fv/Ashear * v 2*t shear = 1,868/(2*0.5*2.3168) = 806 psi /as = 806/10,000 = 0.08 Acceptable Shear stress length (per Pressure Vessel and Stacks, A. Keith Escoe) Zt r-- 1—f Z .- 00_ - 147/171 4, = 55*DP/d = 55*0.875/ 1.5 = 32.0833° Lshear = (H -a2-0.5*d) +0.5*Dp*(1 -cos(4,)) = (6-3 -0.5'1.5) +0.5*0.875*(1 -cos(32.0833)) = 2.3168" Lug Plate Stress Lug stress tensile+bending during lift: 6 ratio = [Ften/(Aten at)] + [Mbend/(Zbend*6b)] < 1 = [(Fr*cos(a) )/(t*L*at)]+ [(6*abs(Fr*sin(a)*Hght- Fr*cos(a)*at) )/(t*L2*ab)] <_ 1 _ 1,868*cos(90.0)/(0.5'6'15,000)+6*abs(1,868*sin(90.0)*3 - 1,868*cos(90.0)*0)/ (0.5*62*16,500) = 0.11 Acceptable Weld Stress Weld stress,tensile,bending and shear during lift: Direct shear: Shear stress at lift angle 90.00°; lift force = 1,868 lbf Aweld = 2*(0.707)1 *(L+t) = 2*(0.707)*0.25*(6 +0.5) =2.2977 in2 tit = Fr*cos(a)/Aweld = 1,868*cos(90.0)/2.2977 =0 psi Ts = Fr*sin(a)/Aweld = 1,868*sin(90.0)/2.2977 =813 psi ib = M*c/I 3*(Fr*sin(a)*Hght- Fr*cos(a)*at)/ (0.707*h*L*(3*t+L)) 3*abs(1,868*sin(90.0)*3 - 1,868*cos(90.0)*(0))/(7.9538) 2,114 psi ratio = sqr( (Tt+ tb)2+ts2)/'allowable< 1 = sqr( (0 +2,114)2+ (813)2)/ 10,000 = 0.23 Acceptable Pad Weld Stress,tensile,bending and shear during lift: 148/171 Direct shear: Shear stress at lift angle 90.00°; lift force= 1,868 lbf Aweld = 2*(0.707)*twp*(Lp+ Bp) = 2*(0.707)*0.25*(10+4) =4.949 in2 st = Fr*cos(a)/Aweld = 1,868*cos(90.0)/4.949 =0 psi Ts = Fr*sin(a)/Aweld = 1,868*sin(90.0)/4.949 378 psi tib = M * c/ I _ 3*(Fr*sin(a)*Hght- Fr*cos(a)*at)/ (0.707*hp*Lp*(3*Wp+ Lp)) 3*abs(1,868*sin(90.0)*3.25- 1,868*cos(90.0)*(0))/(38.8850) 468 psi ratio = sqr( ('Ct+'Lb)2+ts2)/tallowable< 1 = sqr( (0+468)2+ (378)2)/ 10,000 = 0.06 Acceptable WRC 107 Analysis Geometry Height(radial): 6" Pad Thickness: 0.25" Width (circumferential): 0.5" Pad Width: 4" Length 6" Pad Length: 10" Fillet Weld Size: 0.25" Pad Weld Size: 0.25" Located on: Upper Shell (11"from top end) Location Angle: 135.00° Applied Loads Radial load: Pr= 0 Ibt Circumferential moment:M,= 0 Ibfin Circumferential shear: V,= 0 lbt Longitudinal moment: ML= 6,072.12lbfin Longitudinal shear: VL= 1,868.351bt Torsion moment: Mt= 0 lbf in Internal pressure: P = 0 psi Mean shell radius: Rm=41.9063 in Shell yield stress: Sy= 25,000 psi Design factor: 3 Maximum stresses due to the applied loads at the lug edge(includes pressure) 149/171 y= Rm/T=41.9063/0.4375=95.7857 • C1 =0.5, C2= 2 in Note:Actual lug C1 /C2< 1 /4, Ci /C2= 1 /4 used as this is the minimum ratio covered by WRC 107. Local circumferential pressure stress= P*R1/T=0 psi Local longitudinal pressure stress= P*R,/(2*T) =0 psi Maximum combined stress(PL+Pb+Q) = -13,456 psi Allowable combined stress(PL+Pb+Q) = +-3*S=+-50,100 psi Note:The allowable combined stress (PL+Pb+Q) is based on the strain hardening characteristics of this material. The maximum combined stress (PL+Pb+Q) is within allowable limits. Maximum local primary membrane stress(EL) =-644 psi Allowable local primary membrane stress (PL) =+-1.5*S=+-25,050 psi The maximum local primary membrane stress(PL) is within allowable limits. 150/171 Stresses at the lug edge per WRC Bulletin 107 Figure value (3 Au Al B. BI Cu C1 Du DI 3C' 19.3122 0.0353 0 0 0 0 0 0 0 0 4C* 18,0287 0.0286 0 0 0 0 0 0 0 0 1C 0.252 0.021 0 0 0 0 0 0 0 0 2C-1 0.1999 0.021 0 0 0 0 0 0 0 0 3A• 0.7269 0.0189 0 0 0 0 0 0 0 0 1A 0.1013 0.0221 0 0 0 0 0 0 0 0 3B* 4.7242 0.0301 -644 -644 644 644 0 0 0 0 1B-1 0.0602 0.0245 -11,170 11,170 11,170 -11,170 0 0 0 0 Pressure stress* 0 0 0 0 0 0 0 0 Total circumferential stress -11.814 10,526 11.814 -10,526 0 0 0 0 Primary membrane -644 -644 644 644 0 0 0 0 circumferential stress' 3C* 20.2841 0.0286 0 0 0 0 0 0 0 0 4C* 17.7159 0.0353 0 0 0 0 0 0 0 0 1C-1 0.2037 0.0298 0 0 0 0 0 0 0 0 2C 0.1625 0.0298 0 0 0 0 0 0 0 0 4A* 0.8193 0.0189 0 0 0 0 0 0 0 0 2A 0.0624 0.0277 0 0 0 0 0 0 0 0 4B' 1.3205 0.0301 -360 -360 360 360 0 0 0 0 2B-1 0.0976 0.0339 -13,096 13,096 13.096 -13.096 0 0 0 0 Pressure stress' 0 0 0 0 0 0 0 0 Total longitudinal stress -13,456 12.736 13,456 -12,736 0 0 0 0 Primary membrane -360 -360 360 360 0 0 0 0 longitudinal stress* Shear from Mt 0 0 0 0 0 0 0 0 Circ shear from Vc 0 0 0 0 0 0 0 0 Long shear from VL 0 0 0 0 -534 -534 534 534 Total Shear stress 0 0 0 0 -534 -534 534 534 Combined stress(PL+Pb+O) -13.456 12,736 13,456 -12,736 1,068 1.068 1.068 1,068 Note: *denotes primary stress. Maximum stresses due to the applied loads at the pad edge(includes pressure) 7= Rm/T =41.9063/0.1875 = 223.5 C1 = 2.25, C2 =5.25 in Local circumferential pressure stress = P`Ri/T =0 psi Local longitudinal pressure stress = P`R;/ (2`T) =0 psi Maximum combined stress (PL+Pb+Q) = -12,358 psi Allowable combined stress (P L+Pb+Q) = +-3*S = +-50,100 psi Note: The allowable combined stress (PL+Pb+Q) is based on the strain hardening characteristics of this material. The maximum combined stress (PL+Pb+Q) is within allowable limits. 151/171 Maximum local primary membrane stress (EL) =-3,257 psi Allowable local primary membrane stress (PL)=+-1.5'S=+-25,050 psi The maximum local primary membrane stress(PL) is within allowable limits. 152/171 Stresses at the pad edge per WRC Bulletin 107 - Figure value 13 Au Al Bu BI Cu CI Du DI 3C' 15.4448 0.112 0 0 0 0 0 0 0 0 4C` 30.1612 0.0945 0 0 0 0 0 0 0 0 1C 0.0817 0.0745 0 0 0 0 0 0 0 0 2C-1 0.049 0.0745 0 0 0 0 0 0 0 0 3A' 8.7442 0.0712 0 0 0 0 0 0 0 0 t o 0.0809 0.0734 0 0 0 0 0 0 0 0 38.' 22.2403 0.0945 -3,257 -3.257 3.257 3.257 0 0 0 0 1B-1 0.0281 0.0764 -9,101 9,101 9,101 -9,101 0 0 0 0 Pressure stress* 0 0 0 0 0 0 0 0 Total circumferential stress -12,358 5,844 12.358 -5,844 0 0 0 0 Primary membrane -3.257 -3.257 3.257 3,257 0 0 0 0 circumferential stress' 3C' 18.5118 0.0945 0 0 0 0 0 0 0 0 4C` 27.9614 0.112 0 0 0 0 0 0 0 0 1C-1 0.0664 0.0976 0 0 0 0 0 0 0 0 2C 0.0374 0.0976 0 0 0 0 0 0 0 0 4A' 14.7323 0.0712 0 0 0 0 0 0 0 0 2A 0.0379 0.0862 0 0 0 0 0 0 0 0 413` 8.8523 0.0945 -2,323 -2,323 2,323 2.323 0 0 0 0 2B-1 0.0313 0.0913 -8,476 8.476 8,476 -8,476 0 0 0 0 Pressure stress* 0 0 0 0 0 0 0 0 Total longitudinal stress -10,799 6,153 10,799 -6,153 0 0 0 0 Primary membrane -2,323 -2,323 2,323 2.323 0 0 0 0 longitudinal stress' Shear from Mt 0 0 0 0 0 0 0 0 Circ shear from Vc 0 0 0 0 0 0 0 0 Long shear from VL 0 0 0 0 -475 -475 475 475 Total Shear stress 0 0 0 0 -475 -475 475 475 Combined stress(PL+Pb+Q) -12,358 6.153 12,358 -6,153 950 950 950 950 Note: *denotes primary stress. 153/171 Lug#3 L t L fi Bp Geometry Inputs Attached To Upper Shell Material 304L Orientation Longitudinal Distance of Lift Point From Datum 184" Angular Position 270.00° Length of Lug, L 6" Height of Lug, H 6" Thickness of Lug, t 0.5" Hole Diameter, d 1.5" Pin Diameter, Dp 0.875" Load Eccentricity, a, 0" Distance from Load to Shell or Pad,a2 3" Weld Size,tH, 0.25" Width of Pad, Bp 4" Length of Pad, Lp 10" Pad Thickness,tp 0.25" Pad Weld Size,tWp 0.25" Load Angle Normal to Vessel, 13 90.0000 ° Load Angle from Vertical, 0.0000 ° 154/171 Intermediate Values Load Factor 1.5000 Vessel Weight(new, incl. Load Factor), W 6071 lb Lug Weight(new), Wiug 8 lb Allowable Stress, Tensile, at 15000 psi Allowable Stress, Shear, as 10000 psi 22500 Allowable Stress, Bearing, ap psi Allowable Stress, Bending, ab 16500 psi Allowable Stress, Weld Shear, psi t allowable psi Allowable Stress set to 1/3 Sy per ASME B30.20 No Summary Values Required Lift Pin Diameter, dreqd 0.3937" Required Lug Thickness, tregd 0.1237" Lug Stress Ratio, aratlo Weld Shear Stress Ratio, 'Erato 23 Lug Design Acceptable Local Stresses WRC 107 Acceptable Lift Forces Fr = force on vessel at lug Fr = (1/cos($))*[W*L3/(L3+ Lt2)]*L2/(L1 + L2) (1 /cos(0.0000))*[6,070.8*30.984/(30.984+46.2676) ]*1 /(0+ 1 ) = 2.435 lbf See the help file for procedure description and definition of variables. Lug Pin Diameter-Shear stress dregd = (2*Fr/(n*as))o.5 = (2*2,435/(n*10,000))°.5 = 0.3937" dreqd/ Dp = 0.3937/0.875 = 0.45 Acceptable a = Fr/A = Fr/(2*(0.25*n*Dp2)) = 2,435/(2*(0.25*lt*0.8752)) = 2,025 psi 155/171 /as = 2,025/ 10,000 = 0.2 Acceptable Lug Thickness-Tensile stress tfegd = Fr/((L-d)*at) = 2,435/((6- 1.5)*15,000) = 0.0361" tfegd t = 0.0361 /0.5 = 0.07 Acceptable = Fr/A = Fr/((L-d)*t) = 2,435/((6- 1.5)*0.5) = 1,082 psi a/at = 1,082/15,000 = 0.07 Acceptable Lug Thickness- Bearing stress tfegd = Fv/(Dp*ap) = 2,435/(0.875*22,500) = 0.1237" treqd/t = 0.1237/0.5 = 0.25 Acceptable G Fv/Abearing = Fv/(Dp*(t)) = 2,435/(0.875*(0.5)) = 5,565 psi G/ap = 5,565/22,500 = 0.25 Acceptable Lug Thickness-Shear stress treqd = [Fv/as]/(2*Lshear) = (2,435/10,000)/(2*2.3168) = 0.0525" treqd/t = 0.0525/0.5 = 0.11 Acceptable Z = Fv/Ashear = Fv/(2 1*Lshear) = 2,435/(2*0.5*2.3168) = 1,051 psi z/as = 1,051 / 10,000 = 0.11 Acceptable Shear stress length (per Pressure Vessel and Stacks, A. Keith Escoe) ; z 156/171 = 55*Dp/d = 55*0.875/ 1.5 = 32.0833° Lshear = (H -a2-0.5*d) +0.5*Dp*(1 -cos(0)) = (6-3 -0.5*1.5) +0.5*0.875*(1 -cos(32.0833)) = 2.3168" Lug Plate Stress Lug stress tensile+ bending during lift: a ratio = [Ften/(Aten*at]] + [Mbend/(Zbend*ab)] 1 = [(Fr*cos(a) )/(t*L*at)] +[(6*abs(Fr*sin(a)*Hght- Fr*cos(a)*a,) )/(t*L2*ab)] <_ 1 2,435*cos(90.0)/(0.5*6*15,000) +6*abs(2,435*sin(90.0)*3-2,435*cos(90.0)*0)/ (0.5*62*16,500) = 0.15 Acceptable Weld Stress Weld stress,tensile,bending and shear during lift: Direct shear: Shear stress at lift angle 90.00°; lift force =2,435 lbf Aweld = 2*(0.707)*t *(L+t) = 2*(0.707)*0.25*(6 +0.5) =2.2977 in2 2t = Fr*COS(a)/Awed = 2,435*cos(90.0)/2.2977 =0 psi Ts = Fr*sln(a)/"weid = 2,435*sin(90.0)/2.2977 = 1,060 psi �b = M * c/I 3*(Fr*sin(a)*Hght- Fr*cos(a)*at)/ (0.707*h*L*(3*t+ L)) 3*abs(2,435*sin(90.0)*3- = 2,435*cos(90.0)*(0))/(7.9538) 2,755 psi T ratio = sqr( (it+tib)2+ts2)/ -allowable` 1 = sqr( (0 +2,755)2+ (1,060)2)/ 10,000 = 0.30 Acceptable Pad Weld Stress,tensile,bending and shear during lift: Direct shear: Shear stress at lift angle 90.00°; lift force =2,435 lbf 157/171 'weld = 2*(0.707)*twp*(LP+Bp) = 2*(0.707)*0.25*(10+4) =4.949 in2 Tt = Fr*COS(a)/Aweld = 2,435*cos(90.0)/4.949 =0 psi Ts = Fr*si n(a)/'held = 2,435*sin(90.0)/4.949 =492 psi Tb = M*c/I _ 3*(Fr*sin(a)*tight-Fr*cos(a)*at)/ (0.707*hp*LP*(3*Wp+ LP)) 3*abs(2,435*sin(90.0)*3.25- 2,435*cos(90.0)*(0))/(38.8850) 611 psi ratio = Sqr( (Tt+Tb)2+Ts2)/Tallowable< 1 = sqr( (0 +611)2+(492)2)/ 10,000 = 0.08 Acceptable WRC 107 Analysis Geometry Height(radial): 6" Pad Thickness: 0.25" Width (circumferential): 0.5" Pad Width: 4" Length 6" Pad Length: 10" Fillet Weld Size: 0.25" Pad Weld Size: 0.25" Located on: Upper Shell (11"from top end) Location Angle: 270.00° Applied Loads Radial load: Pr= 0 lbf Circumferential moment:Mc= 0 Ib;in Circumferential shear: Vc= 0 lbf Longitudinal moment: ML= 7,913.331bf-in Longitudinal shear: VL= 2,434.871b1 Torsion moment: Mt= 0 113f-in Internal pressure: P = 0 psi Mean shell radius: Rm=41.9063 in Shell yield stress: S,= 25,000 psi Design factor: 3 Maximum stresses due to the applied loads at the lug edge(includes pressure) y= Rm/T=41.9063/0.4375=95.7857 C1 =0.5, C2=2 in 158/171 Note:Actual lug C1 /C2< 1 /4, C1 /C2= 1 /4 used as this is the minimum ratio covered by WRC 107. Local circumferential pressure stress= P*R,/T=0 psi Local longitudinal pressure stress= P`R,/(2*T) =0 psi Maximum combined stress (PL+Pb+Q) = -17,537 psi Allowable combined stress (PL+Pb+Q) = +-3*S = +-50,100 psi Note:The allowable combined stress (PL+Pb+Q) is based on the strain hardening characteristics of this material. The maximum combined stress (PL+Pb+Q) is within allowable limits. Maximum local primary membrane stress (EL) =-839 psi Allowable local primary membrane stress (PL) _+-1.5*S=+-25,050 psi The maximum local primary membrane stress (PL) is within allowable limits. 159/171 Stresses at the lug edge per WRC Bulletin 107 Figure value 8 Au A1 Bu B1 Cu CI Du Di 3C' 19.3122 0.0353 0 0 0 0 0 0 0 0 4C' 18.0287 0.0286 0 0 0 0 0 0 0 0 1C 0.252 0.021 0 0 0 0 0 0 0 0 2C-1 0.1999 0.021 0 0 0 0 0 0 0 0 3A' 0.7269 0.0189 0 0 0 0 0 0 0 0 1A 0.1013 0.0221 0 0 0 0 0 0 0 0 313' 4.7242 0.0301 -839 -839 839 839 0 0 0 0 18-1 0.0602 0.0245 -14,556 14,556 14,556 -14,556 0 0 0 0 Pressure stress' 0 0 0 0 0 0 0 0 Total circumferential stress -15,395 13,717 15,395 -13,717 0 0 0 0 Primary membrane -839 -839 839 839 0 0 0 0 circumferential stress' 3C' 20.2841 0.0286 0 0 0 0 0 0 0 0 4C' 17.7159 0.0353 0 0 0 0 0 0 0 0 1C-1 0.2037 0.0298 0 0 0 0 0 0 0 0 2C 0.1625 0.0298 0 0 0 0 0 0 0 0 4A* 0.8193 0.0189 0 0 0 0 0 0 0 0 2A 0.0624 0.0277 0 0 0 0 0 0 0 0 48' 1.3205 0.0301 -470 -470 470 470 0 0 0 0 2B-1 0.0976 0.0339 -17,067 17,067 17,067 -17,067 0 0 0 0 Pressure stress* 0 0 0 0 0 0 0 0 Total longitudinal stress -17,537 16,597 17,537 -16,597 0 0 0 0 Primary membrane -470 -470 470 470 0 0 0 0 longitudinal stress' Shear from Mt 0 0 0 0 0 0 0 0 Circ shear from Ve 0 0 0 0 0 0 0 0 Long shear from VL 0 0 0 0 -696 -696 696 696 Total Shear stress 0 0 0 0 -696 -696 696 696 Combined stress(PL+Pb+Q) -17,537 16,597 17,537 -16,597 1,392 1,392 1,392 1,392 Note: *denotes primary stress. Maximum stresses due to the applied loads at the pad edge(includes pressure) y= Ft,/T=41.9063/0.1875 =223.5 C1 =2.25, C2=5.25 in Local circumferential pressure stress= P*RI/T=0 psi Local longitudinal pressure stress= P*Ri/(2*T) =0 psi Maximum combined stress(PL+Pb+Q) = -16,105 psi Allowable combined stress (PL+Pb+Q) =+-3*S= +-50,100 psi Note:The allowable combined stress (PL+Pb+Q) is based on the strain hardening characteristics of this material. The maximum combined stress (PL+Pb+Q) is within allowable limits. 160/171 Maximum local primary membrane stress (PL) =-4,244 psi Allowable local primary membrane stress (EL) =+-1.5*S=+-25,050 psi The maximum local primary membrane stress(EL) is within allowable limits. 161/171 Stresses at the pad edge per WRC Bulletin 107 Figure value R Au A1 Bu BI Cu C1 Du DI 3C* 15.4448 0.112 0 0 0 0 0 0 0 0 4C' 30.1612 0.0945 0 0 0 0 0 0 0 0 1C 0.0817 0.0745 0 0 0 0 0 0 0 0 20-1 0.049 0.0745 0 0 0 0 0 0 0 0 3A* 8.7442 0.0712 0 0 0 0 0 0 0 0 1A 0.0809 0.0734 0 0 0 0 0 0 0 0 3B* 22.2403 0.0945 -4.244 -4.244 4,244 4,244 0 0 0 0 1B-1 0.0281 0.0764 -11,861 11,861 11,861 -11,861 0 0 0 0 Pressure stress' 0 0 0 0 0 0 0 0 Total circumferential stress -16.105 7,617 16,105 -7.617 0 0 0 0 Primary membrane -4,244 -4,244 4,244 4244 0 0 0 0 circumferential stress' 3C' 18.5118 0.0945 0 0 0 0 0 0 0 0 40' 27.9614 0.112 0 0 0 0 0 0 0 0 10-1 0.0664 0.0976 0 0 0 0 0 0 0 0 2C 0.0374 0.0976 0 0 0 0 0 0 0 0 4A' 14.7323 0.0712 0 0 0 0 0 0 0 0 2A 0.0379 0.0862 0 0 0 0 0 0 0 0 413' 8.8523 0.0945 -3,027 -3,027 3,027 3,027 0 0 0 0 2B-1 0.0313 0.0913 -11,046 11,046 11.046 -11.046 0 0 0 0 Pressure stress* 0 0 0 0 0 0 0 0 Total longitudinal stress -14.073 8.019 14.073 -8.019 0 0 0 0 Primary membrane -3,027 -3.027 3.027 3.027 0 0 0 0 longitudinal stress' Shear from M1 0 0 0 0 0 0 0 0 Circ shear from Vc 0 0 0 0 0 0 0 0 Long shear from V L 0 0 0 0 -618 -618 618 618 Total Shear stress 0 0 0 0 -618 -618 618 618 Combined stress(PL+Pb+f]) -16.105 8.019 16.105 -8.019 1,236 1.236 1.236 1,236 Note: *denotes primary stress. 162/171 Packed Bed#1 . Distance from bottom of bed to datum: 0" Bed depth: 144" Bed diameter: 83.5" Bed density: 30.00 lb/ft3 Liquid holdup: 0.00%of dry weight Estimated bed weight, Empty: 13,690 lb Estimated bed weight, Operating 13,690 lb Included in vessel lift weight: No Present when vessel is empty: No Present during hydrotest: No 163/171 Platform Mounting Bracket Geometry Height(radial): 3" Pad Thickness: 0.25" Width (circumferential): 0.375" Pad Width: 4" Length 4" Pad Length: 8" Fillet Weld Size: 0.1875" Pad Weld Size: 0.1875" Located on: Upper Shell (37"from top end) Location Angle: 315.00° Applied Loads Radial load: Pr= 300 lbf Circumferential moment: Mc= 1,000 lb-in Circumferential shear: Vc= 300 lbf Longitudinal moment: ML= 1,000 lb-in Longitudinal shear: VL= 4,000 Ibf Torsion moment: Mt= 0 Ibf in Internal pressure: P = 15 psi Mean shell radius: Rm= 41.9063 in Shell yield stress: S,= 22,700 psi Design factor: 3 Maximum stresses due to the applied loads at the lug edge(includes pressure) y= Rm/T =41.9063/0.4375=95.7857 C1 =0.375, C2= 1.5in Note:Actual lug C1 /C2< 1 /4, C1 /C2= 1 /4 used as this is the minimum ratio covered by WRC 107. Local circumferential pressure stress= P*R1/T=3,345 psi Local longitudinal pressure stress= P*R,/(2*T) =1,672 psi Maximum combined stress(PL+Pb+Q) = 10,616 psi Allowable combined stress (PL+Pb+Q) =+-3*S=+-50,100 psi Note:The allowable combined stress(PL+Pb+Q) is based on the strain hardening characteristics of this material. The maximum combined stress (PL+Pb+Q) is within allowable limits. Maximum local primary membrane stress(PL) =3,149 psi Allowable local primary membrane stress(PL) =+-1.5*S =+-25,050 psi The maximum local primary membrane stress(PL) is within allowable limits. 164/171 Stresses at the lug edge per WRC Bulletin 107 . Figure value Q Au A1 Bt, B1 Cu CI Du Di 3C' 20.6431 0.0265 0 0 0 0 -338 -338 -338 -338 • 4C' 18.4039 0.0215 -301 -301 -301 -301 0 0 0 0 1C 0.2757 0.0157 0 0 0 0 -2,593 2,593 -2,593 2,593 2C-1 0.2254 0.0157 -2,120 2,120 -2,120 2,120 0 0 0 0 3A' 0.4866 0.0142 0 0 0 0 -7 -7 7 7 1A 0.1013 0.0166 0 0 0 0 -4,572 4,572 4,572 -4,572 3B' 3.516 0.0226 -105 -105 105 105 0 0 0 0 1B-1 0.0623 0.0184 -2,538 2,538 2,538 -2,538 0 0 0 0 Pressure stress' 3,345 3,345 3,345 3,345 3,345 3,345 3,345 3,345 Total circumferential stress -1,719 7,597 3,567 2,731 -4,165 10,165 4,993 1,035 Primary membrane 2,939 2,939 3,149 3,149 3,000 3,000 3,014 3,014 circumferential stress' 3C* 21.4807 0.0215 -351 -351 -351 -351 0 0 0 0 4C* 18.1412 0.0265 0 0 0 0 -297 -297 -297 -297 1C-1 0.2412 0.0224 -2,268 2.268 -2,268 2,268 0 0 0 0 2C 0.1963 .0.0224 0 0 0 0 -1,846 1,846 -1,846 1,846 4A' 0.5248 0.0142 0 0 0 0 -21 -21 21 21 2A 0.063 0.0208 0 0 0 0 -2,265 2,265 2,265 -2,265 4B' 0.9495 0.0226 -57 -57 57 57 0 0 0 0 2B-1 0.1027 0.0254 -3,026 3,026 3,026 -3,026 0 0 0 0 Pressure stress' 1,672 1,672 1,672 1,672 1,672 1,672 1,672 1,672 Total longitudinal stress -4,030 6,558 2,136 620 -2,757 5,465 1,815 977 Primary membrane 1,264 1,264 1,378 1,378 1,354 1,354 1,396 1,396 longitudinal stress' Shear from Mt 0 0 0 0 0 0 0 0 Circ shear from Vc 457 457 -457 -457 0 0 0 0 Long shear from VL 0 0 0 0 -1,524 -1,524 1,524 1,524 Total Shear stress 457 457 -457 -457 -1,524 -1,524 1,524 1,524 Combined stress(PL+Pt,+O) -4,117 7,769 3,700 2,826 -5,140 10,616 5,606 3,049 Note: *denotes primary stress. Maximum stresses due to the applied loads at the pad edge(includes pressure) y= Rm/T=41.9063/0.1875=223.5 C1 =2.1875, C2=4.1875 in Local circumferential pressure stress= P"R;/T=3,345 psi Local longitudinal pressure stress = P*Ri/(2*T) =1,672 psi Maximum combined stress (P L+Pb+Q) = 12,438 psi Allowable combined stress(PL+Pb+Q) =+-3*S= +-50,100 psi Note:The allowable combined stress (P L+Pb+Q) is based on the strain hardening characteristics of this material. The maximum combined stress (PL+Pb+Q) is within allowable limits. 165/171 Maximum local primary membrane stress (EL)=2,847 psi Allowable local primary membrane stress (PL) =+-1.5'S=+-25,050 psi The maximum local primary membrane stress(EL) is within allowable limits. 166/171 Stresses at the pad edge per WRC Bulletin 107 - Figure value p Au Al Bu B1 Cu C1 Du D1 3C' 18.561 0.0943 0 0 0 0 -709 -709 -709 -709 4C* 32.0963 0.0814 -1.225 -1.225 -1.225 -1.225 0 0 0 0 1C 0.0894 0.0667 0 0 0 0 -4.577 4.577 -4,577 4.577 20-1 0.0563 0.0667 -2,883 2.883 -2.883 2,883 0 0 0 0 3A' 8.4246 0.0648 0 0 0 0 -180 -180 180 180 1A 0.0839 0.0657 0 0 0 0 -5.201 5,201 5,201 -5.201 3B' 23.8239 0.0805 -727 -727 727 727 0 0 0 0 1B-1 0.032 0.0674 -1,932 1.932 1.932 -1,932 0 0 0 0 Pressure stress* 3,345 3,345 3.345 3,345 3,345 3.345 3.345 3,345 Total circumferential stress -3,422 6,208 1.896 3.798 -7,322 12,234 3,440 2,192 Primary membrane 1,393 1,393 2.847 2,847 2,456 2,456 2,816 2.816 circumferential stress' 30' 21.525 0.0814 -822 -822 -822 -822 0 0 0 0 4C* 30.1927 0.0943 0 0 0 0 -1,153 -1.153 -1.153 -1.153 110-1 0.0794 0.0837 -4.065 4,065 -4.065 4,065 0 0 0 0 12C 0.0445 0.0837 0 0 0 0 -2,278 2,278 -2.278 2,278 4A' 13.5902 0.0648 0 0 0 0 -490 -490 490 490 ` 2A 0.0411 0.0763 0 0 0 0 -2,193 2,193 2,193 -2.193 4B* 8.7275 0.0805 -441 -441 441 441 0 0 0 0 2B-1 0.039 0.0783 -2.027 2.027 2.027 -2.027 0 0 0 0 Pressure stress* 1.672 1.672 1,672 1,672 1,672 1,672 1.672 1,672 Total longitudinal stress -5.683 6.501 -747 3,329 -4,442 4,500 924 1,094 Primary membrane 409 409 1,291 1,291 29 29 1,009 1.009 longitudinal stress' Shear from Mt 0 0 0 0 0 0 0 0 Circ shear from Vc 183 183 -183 -183 0 0 0 0 Long shear from VL 0 0 0 0 -1.274 -1,274 1,274 1,274 Total Shear stress 183 183 -183 -183 -1.274 -1,274 1,274 1,274 Combined stress(PL+Pb+O) -5.698 6.589 2,668 3,861 -7.805 12,438 3,972 3,030 Note: *denotes primary stress. 167/171 Top Pipe Support Geometry Height(radial): 7" Pad Thickness: 0.1875" Width (circumferential): 2" Pad Width: 5" Length 2" Pad Length: 5" Fillet Weld Size: 0.1875" Pad Weld Size: 0.1875" Located on: Upper Shell (11"from top end) Location Angle: 0.00° Applied Loads Radial load: Pr= 500 Ibf Circumferential moment: M,= 2,000 Ibfin Circumferential shear: Vc= 500 Ibf Longitudinal moment: ML= 2,000 Ibf in Longitudinal shear: VL= 1,000 lbf Torsion moment: Mt= 0 1131-in Internal pressure: P= 15 psi Mean shell radius: Rm = 41.9063 in Shell yield stress: Sy= 22,700 psi Design factor: 3 Maximum stresses due to the applied loads at the lug edge(includes pressure) y= Rm/T=41.9063/0.375 = 111.75 C1 = 1.1875, C2= 1.1875 in Local circumferential pressure stress= P*R;/T=3,345 psi Local longitudinal pressure stress= P*RI/(2*T) =1,672 psi Maximum combined stress(PL+Pb+Q) = 14,325 psi Allowable combined stress(PL+Pb+Q) =+-3*S= +-50,100 psi Note:The allowable combined stress (PL+Pb+Q) is based on the strain hardening characteristics of this material. The maximum combined stress (PL+Pb+Q) is within allowable limits. Maximum local primary membrane stress(PL) =3,307 psi Allowable local primary membrane stress(EL) =+-1.5*S=+-25,050 psi The maximum local primary membrane stress (PL) is within allowable limits. 168/171 4 Stresses at the lug edge per WRC Bulletin 107 • Figure value Q A„ Al Bu B1 Cu CI Du DI 3C' 22.9364 0.0283 0 0 0 0 -730 -730 -730 -730 4C* 20.9932 0.0283 -668 -668 -668 -668 0 0 0 0 1C 0.214 0.0283 0 0 0 0 -4,565 4,565 -4,565 4,565 2C-1 0.1583 0.0283 -3,377 3,377 -3,377 3,377 0 0 0 0 3A' 1.5724 0.0283 0 0 0 0 -169 -169 169 169 1A 0.101 0.0283 0 0 0 0 -7,258 7,258 7,258 -7,258 3B' 5.8758 0.0283 -630 -630 630 630 0 0 0 0 18-1 0.0586 0.0283 -4,211 4,211 4,211 -4,211 0 0 0 0 Pressure stress' 3,345 3,345 3,345 3,345 3,345 3,345 3,345 3,345 Total circumferential stress -5,541 9,635 4,141 2,473 -9,377 14,269 5,477 91 Primary membrane 2,047 2,047 3,307 3,307 2,446 2,446 2,784 2,784 circumferential stress' 3C' 22.9364 0.0283 -730 -730 -730 -730 0 0 0 0 4C* 20.9932 0.0283 0 0 0 0 -668 -668 -668 -668 1C-1 0.2055 0.0283 -4,384 4,384 -4,384 4,384 0 0 0 0 2C 0.1633 0.0283 0 0 0 0 -3,484 3,484 -3,484 3,484 4A' 1.8763 0.0283 0 0 0 0 -201 -201 201 201 2A 0.062 0.0283 0 0 0 0 -4,455 4,455 4,455 -4,455 48* 1.6542 0.0283 -177 -177 177 177 0 0 0 0 28-1 0.1003 0.0283 -7,208 7,208 7,208 -7,208 0 0 0 0 Pressure stress' 1,672 1,672 1,672 1,672 1,672 1,672 1,672 1,672 Total longitudinal stress -10,827 12,357 3,943 -1,705 -7,136 8,742 2,176 234 Primary membrane 765 765 1,119 1,119 803 803 1,205 1,205 longitudinal stress' Shear from Mt 0 0 0 0 0 0 0 0 Circ shear from Vc 281 281 -281 -281 0 0 0 0 Long shear from VL 0 0 0 0 -561 -561 561 561 Total Shear stress 281 281 -281 -281 -561 -561 561 561 Combined stress(PL+Pb+Q) -10,842 12,386 4,340 4,216 -9,510 14,325 5,570 1,131 Note: *denotes primary stress. Maximum stresses due to the applied loads at the pad edge(includes pressure) y= Rm/T=41.9063/0.1875=223.5 C1 =2.6875, C2=2.6875 in Local circumferential pressure stress= P`RI/T=3,345 psi Local longitudinal pressure stress= P'RI/(2*T) =1,672 psi Maximum combined stress(PL+Pb+Q) = 19,593 psi Allowable combined stress(PL+Pb+Q) =+-3*S =+-50,100 psi Note:The allowable combined stress (PL+Pb+Q) is based on the strain hardening characteristics of this material. The maximum combined stress (PL+Pb+Q) is within allowable limits. 169/171 I Maximum local primary membrane stress (P1) =3,486 psi Allowable local primary membrane stress (PL) = +-1.5*S=+-25,050 psi The maximum local primary membrane stress(PL) is within allowable limits. 170/171 1 • Stresses at the pad edge per WRC Bulletin 107 • Figure value (3 A„ Al Bu B1 Cu CI Du DI 3C* 25.972 0.0641 0 0 0 0 -1,653 -1,653 -1,653 -1,653 4C 34.6664 0.0641 -2,206 -2,206 -2,206 -2,206 0 0 0 0 1C 0.0929 0.0641 0 0 0 0 -7,927 7,927 -7,927 7,927 2C-1 0.0595 0.0641 -5,077 5,077 -5,077 5,077 0 0 0 0 3A• 8.3845 0.0641 0 0 0 0 -794 -794 794 794 1A 0.0846 0.0641 0 0 0 0 -10,745 10,745 10,745 -10,745 3B* 24.7755 0.0641 -2,347 -2,347 2,347 2,347 0 0 0 0 1B-1 0.034 0.0641 -4,318 4,318 4,318 -4,318 0 0 0 0 Pressure stress' 3,345 3,345 3,345 3,345 3,345 3,345 3,345 3,345 Total circumferential stress -10,603 8,187 2,727 4,245 -17,774 19,570 5,304 -332 Primary membrane -1,208 -1,208 3,486 3,486 898 898 2,486 2,486 circumferential stress' 3C* 25.972 0.0641 -1,653 -1,653 -1,653 -1,653 0 0 0 0 4C' 34.6664 0.0641 0 0 0 0 -2,206 -2,206 -2,206 -2,206 1C-1 0.1019 0.0641 -8,695 8,695 -8,695 8,695 0 0 0 0 2C 0.0595 0.0641 0 0 0 0 -5,077 5,077 -5,077 5,077 4A• 13.4594 0.0641 0 0 0 0 -1,275 -1,275 1,275 1,275 2A 0.0457 0.0641 0 0 0 0 -5,804 5,804 5,804 -5,804 413' 8.2543 0.0641 -782 -782 782 782 0 0 0 0 • 2B-1 0.0495 0.0641 -6,287 6,287 6,287 -6,287 0 0 0 0 Pressure stress' 1,672 1,672 1,672 1,672 1,672 1,672 1,672 1,672 Total longitudinal stress -15,745 14,219 -1,607 3,209 -12,690 9,072 1,468 14 Primary membrane -763 -763 801 801 -1,809 -1,809 741 741 longitudinal stress' Shear from Mt 0 0 0 0 0 0 0 0 Circ shear from Vc 248 248 -248 -248 0 0 0 0 Long shear from V L 0 0 0 0 -496 -496 496 496 Total Shear stress 248 248 -248 -248 -496 -496 496 496 Combined stress(PL+Pb+Q) -15,757 14,229 4,362 4,301 -17,822 19,593 5,367 1,051 Note: *denotes primary stress. 171/171