Loading...
Reportr fp '9Fc 1q F/V kA MILLER e4/C/1 2 , O CONSULTING �40 0,c, , 11Js ENGINEERS (i II STRUCTURAL CALCULATIONS Vl7 N New Three Ton & Five Ton Crane Runway 14650 SW 72nd Avenue, Portland, Oregon US Crane & Hoist February 27, 2015 Project No. 150119 252 pages Principal Checked: RPA ��RUCTUR,1< .<<'OD PROpe CD (<, , N�F"A /0. 1 .0 l «('5- • ,16 ���;_ City of Tigard .o OREGON c4, A r ved Plan: tri 11 /) *���� B t"-" R. A L'�� EXPIRES: 12 -31 -2015 OFFICE COPY *** LIMITATIONS *** Miller Consulting Engineers, Inc. was retained in a limited capacity for this project. This design is based upon information provided by the client, who is solely responsible for accuracy of same. No responsibility and or liability is assumed by or is to be assigned to the engineer for items beyond that shown on these sheets. Engineering Practical,Diverse Structural Solutions Since 1978 9570 S W Barbur Blvd.,Suite 100, Portland,Oregon 97219-5412 Phone:(503)246-1250 Fax:(503)246-1395 www.miller-se.com Building Code: 2014 Oregon Structural Specialty Code 1 Soils Report: No Soils Report by: N/A Dated: N/A Soil Bearing: 1500 PSF Retaining Walls: No I Equivalent Fluid Pressure(active): N/A PCF Passive bearing: N/A PCF Friction: N/A Structural System: Non-building Structure I Vertical System: N/A Lateral Sys: N/A Element Hoist(3 ton) Bridge(3 ton) Hoist(5 ton) Bridge(5 ton) I Load Type Dead Dead Dead Dead Basic Design Value(PSF) 254 2746 364 3636 I Loads: Load Type Lift(3 ton) Lift(5 ton) Value(PSF) 6000 10000 I Deflection Criteria I Lateral Design Parameters; Wind Design: N/A MPH Exposure Importance Factors Iw= IE= 1.00 Is= I,= Risk Cat: II I (ice) (seismic) (snow) (ice) I Seismic Design Latitude: 45.414250 Seismic design parameters are based on published Longitude: -122.748040 values from the USGS web site. 2%PE in 50 years,0.2 sec SA=Ss 2%PE in 50 years,1.0 sec SA=S1 I See Following Page for design darameters (Site class B parameters are indicated on this page,for actual site class I used in design,refer to seismic design summary) I I I Design Summary: I The following calculations are for(2)bridge crane runways. The larger runway is 108 feet long and has 3 cranes;(2)3 ton cranes and(1)5 ton crane. The smaller runway is 84 feet long and has(2)cranes;(1)3 ton crane and(1)5 ton crane. The design allows all cranes to be operating and fully loaded at any location along the runway,without proximity limitations. The cranes must be layed out to have the 5 ton crane between the(2)3 ton cranes at the long span and with the 3 ton crane on the north side of the 5 ton crane on the short span as shown in construction drawings. I I I I I I I I I . 9570 SW Barbur Blvd. Project Name: New Three Ton&Five Ton Crane Runway Project#: 150119 -' Suite One Hundred I _ Portland,OR 97219 Location: 14650 SW 72nd Avenue,Portland,Oregon I MILLER (503)246-1250 Client: Us Crane&Hoist CONSULTING FAX:246-1395A ENGINEERS 'i'�C�/ BY: JLT Ck'd: Date: 02/27/15 Pagel of 252 1 dS Design Maps Summary Report User-Specified Input Building Code Reference Document ASCE 7-10 Standard (which utilizes USGS hazard data available in 2008) Site Coordinates 45.41425°N, 122.74804°W Site Soil Classification Site Class D -"Stiff Soil" Risk Category I/II/III v v F 1 USGS-Provided Output S5 = 0.971 g SM5= 1.079 g SD5 = 0.719 g Si = 0.421 g SM1 = 0.664 g SD1 = 0.443 g For information on how the SS and S1 values above have been calculated from probabilistic (risk-targeted) and deterministic ground motions in the direction of maximum horizontal response, please return to the application and select the"2009 NEHRP"building code reference document. MCER Response Spectrum Design Response Spectrum 1.10 0.72 0.99 0.64 0.99 0.56 0.17 0.49 ai 0.66 iT L0 0.55 LA 0.l0 0.32 0.44 0.33 0.24 0.22 0.16 0.11 D.09 0.00 0.00 0.00 0.20 0.40 0.60 0.90 1.00 1.20 1.40 1.60 1.90 2.00 0.00 0.20 0.40 0.60 0.20 1.00 1.20 1.40 1.60 1.90 2.00 Period.T(sec) Period,T(sec) 9570 SW Barbur Blvd Project Name New Three Ton & Five Ton Crane Runway Project# 150119 Suite One Hundred Portland,OR 97219 Location 14650 SW 72nd Avenue, Portland, Oregon MILLER Client US Crane & Hoist Phone 503.246.1250 Pe4 02/27/2015 2 of 252 CONSULTING Fax 503.246.1395 By _ JLT Ck'd Date __ Page ENGINEERS www.miller-se.com ASCE 7-10 Seismic Design-Transverse S.= 97.10% Risk Targeted Maximum Considered Earthquake(Figure 22-1,22-3,22-5,and 22-6)(pages 158 through 165) S,= 42.10% Risk Targeted Maximum Considered Earthquake(Figure 22-2,22-4,22-5,and 22-6)(pages 158 through 165) Fa= 1.11 Table 11.4-1,page 55 Fv= 1.58 Table 11.4-1,page 55 Sus=F S.= 1.08 eqn.11.4-1 page 55 =F„S,= 0.66 eqn.11.4-2 page 55 Sos=(2)Sus/(3) = 0.72 eqn.11.4-3 page 55 SD,=(2)SN,/(3) = 0.44 eqn.11.4-4 page 55 Site Class D Table 20.3-1,page 152 Risk Category II Table 1.5-1,page 2 Seismic Force Resisting System H.Steel systems not specifically detailed for seismic resistance Seismic Design Category(short per.) D Table 11.6-1,page 56 Seismic Design Category(1 sec) D Table 11.6-2,page 56 Seismic Design Category D (Contras) R= 1.50 Table 12.2-1,pages 60-62 = 1.50 Table 12.2-1,pages 60-62 Cd= 1.50 Table 12.2-1,pages 60-62 le= 1.00 importance factor,Table 1.5-2,page 4 CT= 0.02 Table 12.8-2,page 72 x= 0.75 Table 12.8-2,page 72 h„= 20 ft,defined in section 12.8.2.1,page 72 T= 0.189 Eqn.12.8-7,page 72 Cu= 1.4 Table 12.8-1,page 72 Ta„_,= 0.265 section 12.8.2,page 72 C.= 0.480 Eqn.12.8-2,pg 72 TL= 16 Fig.22-12 through 22-16,page 170-173 C.= 1.562 need not exceed-Eq.12.8-3&12.8 1,page 71-72 C.= 0.032 shall not be less than-Eq.12.8-5 8 12.8-6,page 72 C,= 0.480 (control) Redundancy Factor p: 1.00 Section 123.4,pg 67 9570 SW earbur Blvd New Three Ton & Five Ton Crane Runway 150119 Art Suite One Hundred Project Name Project# Portland,OR 97219 Location 14650 SW 72nd Avenue, Portland, Oregon MILLER Client US Crane& Hoist Phone 503.246.1250 02/27/2015 3 of 252 CONSULTING Fax 503.246.1395 By JLT Ck'd Date Page ENGINEERS www.miller-se.com ASCE 7-10 Seismic Design-Longitudinal S.= 97.10% Risk Targeted Maximum Considered Earthquake(Figure 22-1,22-3,22-5,and 22-6)(pages 158 through 165) S,= 42.10% Risk Targeted Maximum Considered Earthquake(Figure 22-2,22-4,22-5,and 22-6)(pages 158 through 165) Fa= 1.11 Table 11.4-1,page 55 Fv= 1.58 Table 11.4-1,page 55 Sus=F.S.= 1.08 eqn.11.4-1 page 55 S.,,=F„S,= 0.66 eqn.11.4-2 page 55 SOS=(2)Sras/(3) = 0.72 eqn.11.4-3 page 55 So1=(2)Su19) = 0.44 eqn.11.4-4 page 55 Site Class D Table 20.3-1,page 152 Risk Category 11 Table 1.5-1,page 2 Seismic Force Resisting System Seismic Design Category(short per.) D Table 11.6-1,page 56 Seismic Design Category(1 sec) D Table 11.6-2,page 56 Seismic Design Category D (Controls) R= 3.00 Table 12.2.1,pages 60-62 = 1.50 Table 12.2-1,pages 60-62 Cd= 1.50 Table 12.2-1,pages 60-62 IE= 1.00 importance factor,Table 1.5-2,page 4 Cr= 0.02 Table 12.8-2,page 72 x= 0.75 Table 12.8-2,page 72 h„= 20 ft,defined in section 12.8.2.1,page 72 T= 0.189 Eqn.12.8-7,page 72 Cu= 1.4 Table 12.8-1,page 72 Ta,„m= 0.265 section 12.8.2,page 72 C.= 0.240 Eqn.12.8-2,pg 72 IL= 16 Fig.22-12 through 22-16,page 170-173 C.= 0.781 need not exceed-Eq.12.8-3&12.8-4,page 71-72 C.= 0.032 shall not be less than-Eq.12,8-5 6 12.8-6,page 72 C.= 0.240 (control) Redundancy Factor p: 1.00 Section 12.3.4,pg 67 . 9570 SW Barbur Blvd New Three Ton & Five Ton Crane Runway 150119 Suite One Hundred Project Name Project# Portland,OR 97219 Location 14650 SW 72nd Avenue, Portland, Oregon MILLER Client US Crane & Hoist Phone 503.246.1250 02/27/2015 4 of 252 CONSULTING Fax 503.246.1395 By JLT Ck'd Date Page ENGINEERS www.miller-se.com Bridge Crane Loading ASCE 7-05 Standard Crane Type: Remotely Operated Bridge Crane Crain Rail Type: 1.5 x 1.5 Steel Rail Rail wt: 24 Ibs/yd Rail height: 1.5 inches Inputs Rated Capacity = 3 tons Bridge Wt. = 2746 lbs Hoist Wt.= 254 lbs 2 wheels/vertical and longitudinal loading 4 wheels/transverse loading Wheel Load= 3814 lbs PWIlee1=(Crane Capacity+Bridge Wt./2+Hoist Wt.)/2 Longitudinal lateral= 10% Transervse Lateral= 20% Vertical Impact Factor= 25% Vertical Impact Load= 953 lbs Pimp=Wheel Load*Impact Factor Crane Lateral Load= 1251 lbs Plat.=0.20*(Crane Capacity+Hoist) Crane Tractive Load= 763 lbs Pio„g.=0.10*Wheel Load*2 Wheels Seismic Mass= 1627 lbs Mass=Bridge Wt./2+Hoist Seismic Loads Cs(Trans.)= 0.48 t(Trans.)= 1 Cs(Long.)= 0.24 p(Long.)= 1 Cs(Trans.)= 0.48 Omega(Trans.)= 1.5 pCs(Long.)= 0.24 Omega(Long.)= 1.5 .2*Sds(Vertical)= 0.144 Computer Model input summary db= 24.7 in-Beam depth dr= 1.5 in-Crane Rail depth D= 8.00 plf-Crane Rail weight Cd= 814 lbs/wheel-Crane dead(bridge,trolley,hoist,etc) Cv= 3000 lbs/wheel-Crane vertical lift Cvi= 953 lbs/wheel-Crane vertical impact Cs= 313 lbs/wheel-Crane side/lateral load(single wheel load) Cls= 381 lbs/wheel-Crane longitudinal load(tractive load-single crane wheel loads) Ehs= 360 lbs/wheel-Seismic load transverse Ehl= 195 lbs/wheel-Seismic load long Ev= 117 lbs/wheel-Seismic load vertical Ts= 361 ft-lbs/wheel-Torsional load due to Cs Tls= 440 ft-lbs/wheel-Torsional load due to Cls Ths= 416 ft-lbs/wheel-Torsional load due to Ehs Thl= 225 ft-lbs/wheel-Torsional load due to Ehl 9570 SW Barbur Blvd New Three Ton & Five Ton Crane Runway 150119 Suite One Hundred Project Name Project# Portland,OR 97219 Location 14650 SW 72nd Avenue, Portland, Oregon MILLER Client US Crane& Hoist CONSULTING Fax Phone 503.246.1250 503.246.1395 By JLT Ck'd Date 02/27/2015 Page 5 of 252 ENGINEERS www•miller-se.com Bridge Crane Loading ASCE 7-05 Standard Crane Type: Remotely Operated Bridge Crane Crain Rail Type: 1.5 x 1.5 Steel Rail Rail wt: 24 Ibs/yd Rail height: 1.5 inches Inputs Rated Capacity = 5 tons Bridge Wt. = 3636 lbs Hoist Wt.= 364 lbs 2 wheels/vertical and longitudinal loading 4 wheels/transverse loading Wheel Load= 5573 lbs Peel=(Crane Capacity+Bridge Wt./2+Hoist Wt.)/2 Longitudinal lateral= 10% Transervse Lateral= 20% Vertical Impact Factor= 25% Vertical Impact Load= 1393 lbs Pimp.=Wheel Load*Impact Factor Crane Lateral Load= 2073 lbs Plat.=0.20*(Crane Capacity+Hoist) Crane Tractive Load= 1115 lbs Pbng.=0.10*Wheel Load*2 Wheels Seismic Mass= 2182 lbs Mass=Bridge Wt./2+Hoist Seismic Loads Cs(Trans.)= 0.48 p(Trans.)= 1 Cs(Long.)= 0.24 p(Long.)= 1 NCs(Trans.)= 0.48 Omega(Trans.)= 1.5 pCs(Long.)= 0.24 Omega(Long.)= 1.5 .2'Sds(Vertical)= 0.144 Computer Model input summary db= 24.7 in-Beam depth dr= 1.5 in-Crane Rail depth D= 8.00 plf-Crane Rail weight Cd= 1091 lbs/wheel-Crane dead(bridge,trolley,hoist,etc) Cv= 5000 lbs/wheel-Crane vertical lift Cvi= 1523 lbs/wheel-Crane vertical impact Cs= 518 lbs/wheel-Crane side/lateral load(single wheel load) Cls= 557 lbs/wheel-Crane longitudinal load(tractive load-single crane wheel loads) Ehs= 480 lbs/wheel-Seismic load transverse Ehl= 262 lbs/wheel-Seismic load long Ev= 157 lbs/wheel-Seismic load vertical Ts= 598 ft-lbs/wheel-Torsional load due to Cs Tls= 643 ft-lbs/wheel-Torsional load due to Cls Ths= 554 ft-lbs/wheel-Torsional load due to Ehs Thl= 302 ft-lbs/wheel-Torsional load due to Ehl 9570 SW Barbur Blvd New Three Ton & Five Ton Crane Runway Project# 150119 Suite One Hundred Project Name Portland,OR 97219 Location 14650 SW 72nd Avenue, Portland, Oregon MILLER Client US Crane& Hoist Phone 503.246.1250 Re4 02/27/2015 6 of 252 CONSULTING Fax 503.246.1395 By JLT Ck'd Date Page ENGINEERS www.miller-se.com 4 Model Rendering Large Crane Runway 0 N CT' N 4/ sa 7 /7138 N 9t 92 Nei illiplo, ar" N f0i 55 /N51 40 . NC 100 N 75 /N998 � N as �N 9e /3 1 N18 4 U NS N/5 1 Nodes /11102 /N 109 ____,--"N 82 C �:,�12 - �NMdl ' 4 Nay 19 19 20 29 -4:. Nei 57a �1 � o �pt Bt 's\955 `A�y 2 ^2 /r;4‘ ii tr.ii 02 os‘01 X11 tip° \ .0 n 1 .00 Members h z, 8 of 252 9 . fg*9�9 _ - N2.;6-C Gay* 9 *�9 '*.\?s, /sA' # 0 YA .00 f �M** ctg x *�C,S*,�Y —�y „----- �,,� Sections .4.1::1' 4\re' $� *fie vjz�sa' ‘ 1 • atc 0--------"----"-------------e:;: ■ 4 ___,----- •,-------"-------- 11\ '.---------- • Connections 9 of 252 1./ F00(N0 (w w j"Fy-a l — 8181K88 B ( rwvl fF �e9MBFv-0BUPWI fia$��{18i1 /FY'-0 811(81p1 'Fy>0 811p0p8 S• } �pl F /Fr-0 B118wryl igL\ /11111;111h6ir\ ----- ----'------- Superimposed Dead Loads r 1 Position 1 (Cd1) Iy' /I\ /I/�y=-O 811848� F�Y�F091M1r- 1<1 r-d.eiycq • ...--..'- kr••• Ir/ .iiiL\ \ Fr-0 81 48488 Frlatiorm /.1 **IV\ / 1 1 Superimposed Dead Loads Position 2 (Cd2) /14 :r. . 10 of 252 i ---'< igiite.. 14/41.N '' Fy�.81�Cipl I Li Iv . ? —Fy.O 614104PI /Fy=.081 01 j�Y Ff ®�PB 'PI /� • Z \'Fr—O 814 I II / t°�!„,1 \4I L— /: F a a;1 a �8, FsA , Superimposed Dead Loads Position 3 (Cd3) .f i\i H �� y FfrfpGypl lillibb.\* FI /Fyr3lKcI ...._---- _.-----". iiiiL\ /\ r Superimposed Lift Loads Position 1 (Cv1) 11 of 252 F /Ffrr!/IFpI Fr=3�wGl may➢ is . .,------- illio . i .....-- 0,,,,-„,,,p,_/ \ i '1 F=/wfr Superimposed Lift Loads 1 Position 2 (Cv2) ■--'— .1411o. 4/ CINN. ._-----' .----k---- r Fy=�(wW Ffr.�(NI(;pl Wyr.3(..1 /�FY--3{w01 _____. r-�Iwvl ,i• ./,;.r\v \ _____. __- Superimposed Lift Loads 1 Position 3 (Cv3) 12 of 252 . 1(-.\ FY�O 957IK4I FfY3}Q 'D� 14111111 i ' _t /"'--- "1395314q ilit, _.---- I /1141/\ Superimposed Impact Loads l Position 1 (Cii) 1 111;k' jI)J1 1.r A 953F1KF�Yp1 rlq,/ I Fy-O 9530001 KpI I I / 14111011. is 10,00 . ■ f� l I �Fy'.095D� 0 VFfYb •/*/;\ e,'-'••-------. Fr 957PODj Superimposed Impact Loads Position 2 (Ci2) . 11111111116' 13 of 252 .■--'-'----<. 111;111'\11/Fr-0 953IKPI N liolipe /ciaD1 ci*e 94.IM6p /Fr-0.953p4D1 /Fy=.0953p4DI t______ Ffta-t 1iOppDl • /1(;*/\ ter/ Superimposed Impact Loads ` Position 3 (Ci3) '1*. N� ;... z--0.313DGDI ‘ i',■„,, t; ;,•$_:,. 0361110"1 / Fz� \ A b'lZt,-, '1311" illio,• -sc 3131wD1 �' \16oao 11.D'�0 // '�/ lj Superimposed Crane Side Loads � � Position 1 (Cs1) 14 of 252 "`i `•FZ=0317f pl4l isL\N 1 \1�_-\ FFM4. 03511Kip'nI i \ FHBQi`S14+�1• ''' Fz=03 Mu0 p 1 .---°"---..-...- \-'\1:\ /1--1--1N l\1 ` :.\\ :Fr037Awp1 iow,, .-----"--.--' 1 ∎\i F ¢M -0361IWp•RI \ 1 Fft60 4. I I I I Ili b 1'\. 1or-0 lb Kipl \ 1 /---- - ...----- Superimposed Crane Side Loads Position 2 (Cs2) . 1111;1k \ t \F\ 1 1 ,FFzaO �19rv'19. ______k______ ,_ Fz=0373114D1 Fz=OJ �1 �, -IIf4 0361p N Mu=O wp-,t) �1 F 04 . Fzro 31 =3 36 17' //� Superimposed Crane Side Loads \ ‘(. \1 �FZ=0313Iwpl `�^` �y, i' - g =03611wpRu ,. Position 3 (Cs3) 1 \F.aO. I Fzsm 37 Ma=036t'4•'fll 15 of 252 NN,Cky 7�4 '��.0 001(KiDi�' FFa3 a1[KDfII . .� r1 \ 3811KD1 1111111111 • ----- \\r FF 0 4,4'4 Al !. = IK0A Superimposed Longitudinal Crane Loads Position 1 (Cs1) . 1111111111'4 lopt.I x NA091 \ ` � `w e 9/1W IC p4 Fu0 041.0.1 4"'•• Mu-0 MKD11 V \\F,,,,,, ` \ FEDIKDI Fz=O 0 jF,� � 1 F =o sidlKD'm • A.0 Mu-0 • D911 I '/111111;111hhr\ ■■ °' . I Superimposed Transverse Seismic Loads Position 1 (Ehsl) • 11;11' 16 of 252 Y`' �`' �FE�Q FZ-01Kq'RI \ - FED tl '0,4 .....-.---'.-----."- kri\ �. F2-0 4 �I 14a4=01 WD I • look, 1 ■ \ =0116[gG'RI ......._______A I FVv.8, III Mn=04 Kip Superimposed Transverse Seismic Loads Position 2 (Ehs2) -------- .14'rN I U - ‘‘ �FZ=036(Wpl�y' R0704pitl EA, Mu�11 2Q. \f,\ , 1 i/ \ i---FZ=036[WDI F Q 14u-04t6WpR] FHs MuFz=O=01 wpt, 1-F-.. T'FZ=061 .4 -' I Ifti M,.-°11' 'nl Superimposed Transverse Seismic Loads Position 3 (Ehs3) 17 of 252 Fx=0.195{KpI / ,.., � ... .225IIGP'Rl 0••2.[Kip'RrWr1p .. 1 r telx=019efrop1 .p 22`04p1 t) r�F 0'1' M 2T4pYt) . .N 1•4;1 ../..'-'''..-- ''''''''' • Superimposed Longitudinal Seismic Loads 1 Position 1 (Ehl1) )t •01'2,.(1) 7 ' I itipo\ieN, - - M 221{iD"hl 4111 . ----- \ A'Fx=0.1951101 •r 1225[Kip'Rl 1 / 4i• 2`51 p Rl Superimposed Longitudinal Seismic Loads Position 2 (Eh12) 18 of 252 44)/iiiN 1 ./ - iii iii . �� `, F.1 -( 0 195K0 .. `.c.'," 10225IKp'Rl 1k. 1.I, AN / rl1.G p ft1 \ C '' 95 'Fx=0.195IKIN 0, .i i 122511401 „ :II Superimposed Longitudinal Seismic Loads � •. 5V p`fI Position 3 (Eh13) Fy�0.117pCp� 1 j, --- . / y-0ttlllGpl Ii 4 Fr-ott i'l, , Fr_ -0117040 1i�alpl Ff!'aO SfIAIbPI .' 1zo 1 .I' '•�/ v�-.tt tl�iq Ffr I _._...,-.■- •-• IL. ,_......"- cs> /\ \ I Superimposed Vertical Seismic Loads Position 1 (Ehvl) 19 of 252 LiP'o V.-0 117110P1 . ------.--kri\ i/I 1•11 / i.FV=0 117KPI /F F6+'809f1ibypl J I/ j/ Fx8Q1f1T0(ipl./11;11111\ /'' . . 41/1111 F1=_011>IKi 01 Superimposed Vertical Seismic Loads Position 2 (Ehv2) ---------\\I-- • 11;1111 fllpI I 11 I, .1�iL--Ff.amm;"KN 1 Fuse 1117�y1 — Fy=-0117/Kip1 'Fy--0.117110p1 �F Q1gW1 /� • ro.n7j I / . I -01 IOF . 41 +91f114*1 r-o.11 Superimposed Vertical Seismic Loads Position 3 (Ehv3) 20 of 252 Bentley Geometry Data GLOSSARY Cb22,Cb33 : Moment gradient coefficients Cm22,Cm33 :Coefficients applied to bending term in interaction formula d0 :Tapered member section depth at J end of member DJX : Rigid end offset distance measured from J node in axis X DJY : Rigid end offset distance measured from J node in axis Y DJZ : Rigid end offset distance measured from J node in axis Z DKX :Rigid end offset distance measured from K node in axis X DKY : Rigid end offset distance measured from K node in axis Y DKZ : Rigid end offset distance measured from K node in axis Z dL :Tapered member section depth at K end of member Ig factor : Inertia reduction factor(Effective Inertia/Gross Inertia)for reinforced concrete members K22 : Effective length factor about axis 2 K33 : Effective length factor about axis 3 L22 : Member length for calculation of axial capacity L33 : Member length for calculation of axial capacity LB pos :Lateral unbraced length of the compression flange in the positive side of local axis 2 LB neg :Lateral unbraced length of the compression flange in the negative side of local axis 2 RX :Rotation about X RY :Rotation about Y RZ :Rotation about Z TO : 1 =Tension only member 0=Normal member TX :Translation in X TY :Translation in Y TZ :Translation in Z Nodes Node X Y Z Rigid Floor [in] [in] [in] 1 0.00 0.00 0.00 0 2 72.00 0.00 0.00 0 3 42.00 209.849 0.00 0 4 72.00 209.849 0.00 0 5 451.50 0.00 0.00 0 6 451.50 209.849 0.00 0 7 1210.00 0.00 0.00 0 8 1210.00 209.849 0.00 0 9 1240.00 209.849 0.00 0 10 72.00 180.00 0.00 0 11 0.00 0.00 360.00 0 12 72.00 0.00 360.00 0 13 42.00 209.188 360.00 0 14 72.00 209.188 360.00 0 15 643.00 0.00 360.00 0 16 643.00 209.188 360.00 0 17 1210.00 0.00 360.00 0 18 1210.00 209.188 360.00 0 19 1240.00 209.188 360.00 0 20 72.00 180.00 360.00 0 21 72.00 207.013 60.00 0 22 72.00 207.013 300.00 0 23 72.00 147.013 0.00 0 24 72.00 147.013 360.00 0 25 1210.00 147.013 360.00 0 26 1210.00 147.013 0.00 0 27 1210.00 207.013 60.00 0 28 1210.00 207.013 300.00 0 29 1232.00 209.188 360.00 0 21 of 252 30 1232.00 209.849 0.00 0 31 1178.00 209.849 0.00 0 32 1178.00 209.188 360.00 0 33 1170.00 209.849 0.00 0 34 1170.00 209.188 360.00 0 35 1116.00 209.849 0.00 0 36 1120.00 209.188 360.00 0 37 1108.00 209.188 360.00 0 38 1108.00 209.849 0.00 0 39 1054.00 209.849 0.00 0 40 1054.00 209.188 360.00 0 41 616.00 209.188 360.00 0 42 670.00 209.188 360.00 0 43 678.00 209.188 360.00 0 44 608.00 209.188 360.00 0 45 554.00 209.188 360.00 0 46 732.00 209.188 360.00 0 47 668.00 209.849 0.00 0 48 614.00 209.849 0.00 0 49 676.00 209.849 0.00 0 50 606.00 209.849 0.00 0 51 552.00 209.849 0.00 0 52 730.00 209.849 0.00 0 53 1282.00 0.00 0.00 0 54 1282.00 0.00 360.00 0 55 1210.00 180.00 360.00 0 56 1210.00 180.00 0.00 0 67 0.00 -1.00 0.00 0 68 0.00 -1.00 360.00 0 69 1282.00 -1.00 0.00 0 70 1282.00 -1.00 360.00 0 75 830.50 0.00 0.00 0 76 830.50 209.849 0.00 0 77 50.00 209.188 360.00 0 78 104.00 209.188 360.00 0 79 112.00 209.188 360.00 0 80 166.00 209.188 360.00 0 81 174.00 209.188 360.00 0 82 228.00 209.188 360.00 0 83 50.00 209.849 0.00 0 84 104.00 209.849 0.00 0 85 112.00 209.849 0.00 0 86 166.00 209.849 0.00 0 87 174.00 209.849 0.00 0 88 228.00 209.849 0.00 0 89 857.50 209.849 0.00 0 90 865.50 209.849 0.00 0 91 919.50 209.849 0.00 0 92 803.50 209.849 0.00 0 93 795.50 209.849 0.00 0 94 741.50 209.849 0.00 0 95 953.50 209.188 360.00 0 96 899.50 209.188 360.00 0 97 891.50 209.188 360.00 0 98 837.50 209.188 360.00 0 99 961.50 209.188 360.00 0 100 1015.50 209.188 360.00 0 101 353.50 209.188 360.00 0 102 407.50 209.188 360.00 0 103 345.50 209.188 360.00 0 104 291.50 209.188 360.00 0 105 645.00 209.849 0.00 0 106 653.00 209.849 0.00 0 107 707.00 209.849 0.00 0 108 591.00 209.849 0.00 0 109 357.50 209.188 360.00 0 110 641.00 209.849 0.00 0 22 of 252 Restraints Node TX TY TZ RX RY RZ 2 1 1 1 0 1 0 5 1 1 1 1 1 0 7 1 1 1 0 1 0 12 1 1 1 0 1 0 15 1 1 1 1 1 0 17 1 1 1 0 1 0 67 1 1 1 0 1 0 68 1 1 1 0 1 0 69 1 1 1 0 1 0 70 1 1 1 0 1 0 75 1 1 1 1 1 0 Members Member NJ NK Description Section Material dO dL Ig factor [in] [in] 1 3 83 Runway Short W 24 x76_C 15 x 33.9 A36 0.00 0.00 0.00 2 2 23 Columns W 14X43 A992 Gr50 0.00 0.00 0.00 3 1 10 kicker brace HSS_SQR 4X4X1_4 A500 GrB rectangular 0.00 0.00 0.00 4 5 6 Columns W 14X43 A992 Gr50 0.00 0.00 0.00 6 7 26 Columns W 14X43 A992 Gr50 0.00 0.00 0.00 9 10 4 Columns W 14X43 A992 Gr50 0.00 0.00 0.00 10 13 77 Runway W 24 x 94_C 15 x 33.9 A36 0.00 0.00 0.00 11 12 24 Columns W 14X43 A992 Gr50 0.00 0.00 0.00 12 11 20 kicker brace HSS_SQR 4X4X1_4 A500 GrB rectangular 0.00 0.00 0.00 13 15 16 Columns W 14X43 A992 Gr50 0.00 0.00 0.00 15 17 25 Columns W 14X43 A992 Gr50 0.00 0.00 0.00 16 16 42 Runway W 24 x 94_C 15 x 33.9 A36 0.00 0.00 0.00 18 20 14 Columns W 14X43 A992 Gr50 0.00 0.00 0.00 19 4 21 Cross Beams W 12X40 A992 Gr50 0.00 0.00 0.00 20 8 27 Cross Beams W 12X40 A992 Gr50 0.00 0.00 0.00 21 21 22 Cross Beams W 12X40 A992 Gr50 0.00 0.00 0.00 22 22 14 Cross Beams W 12X40 A992 Gr50 0.00 0.00 0.00 23 23 10 Columns W 14X43 A992 Gr50 0.00 0.00 0.00 24 24 20 Columns W 14X43 A992 Gr50 0.00 0.00 0.00 25 23 21 Knee Brace T2L 4X4X1_4 A500 GrB rectangular 0.00 0.00 0.00 26 22 24 Knee Brace T2L 4X4X1_4 A500 GrB rectangular 0.00 0.00 0.00 27 25 55 Columns W 14X43 A992 Gr50 0.00 0.00 0.00 28 26 56 Columns W 14X43 A992 Gr50 0.00 0.00 0.00 29 27 28 Cross Beams W 12X40 A992 Gr50 0.00 0.00 0.00 30 28 18 Cross Beams W 12X40 A992 Gr50 0.00 0.00 0.00 31 26 27 Knee Brace T2L 4X4X1_4 A500 GrB rectangular 0.00 0.00 0.00 32 28 25 Knee Brace T2L 4X4X1_4 A500 GrB rectangular 0.00 0.00 0.00 33 29 19 Runway W 24 x 94_C 15 x 33.9 A36 0.00 0.00 0.00 34 30 9 Runway Short W 24 x 76_C 15 x 33.9 A36 0.00 0.00 0.00 37 33 31 Runway Short W 24 x 76_C 15 x 33.9 A36 0.00 0.00 0.00 38 34 32 Runway W 24 x 94_C 15 x 33.9 A36 0.00 0.00 0.00 41 37 36 Runway W 24 x 94_C 15 x 33.9 A36 0.00 0.00 0.00 42 38 35 Runway Short W 24 x 76_C 15 x 33.9 A36 0.00 0.00 0.00 43 39 38 Runway Short W 24 x 76_C 15 x 33.9 A36 0.00 0.00 0.00 44 40 37 Runway W 24 x 94_C 15 x 33.9 A36 0.00 0.00 0.00 45 41 16 Runway W 24 x 94_C 15 x 33.9 A36 0.00 0.00 0.00 46 42 43 Runway W 24 x 94_C 15 x 33.9 A36 0.00 0.00 0.00 47 43 46 Runway W 24 x94 C 15 x 33.9 A36 0.00 0.00 0.00 48 44 41 Runway W 24 x 94_C 15 x 33.9 A36 0.00 0.00 0.00 49 45 44 Runway W 24 x 94_C 15 x 33.9 A36 0.00 0.00 0.00 50 46 98 Runway W 24 x 94_C 15 x 33.9 A36 0.00 0.00 0.00 23 of 252 57 55 18 Columns W 14X43 A992 Gr50 0.00 0.00 0.00 58 56 8 Columns W 14X43 A992 Gr50 0.00 0.00 0.00 59 56 53 kicker brace HSS_SQR 4X4X1_4 A500 GrB rectangular 0.00 0.00 0.00 60 55 54 kicker brace HSS_SQR 4X4X1_4 A500 GrB rectangular 0.00 0.00 0.00 71 1 67 kicker brace HSS_SQR 4X4X1_4 A500 GrB rectangular 0.00 0.00 0.00 72 11 68 kicker brace HSS_SQR 4X4X1_4 A500 GrB rectangular 0.00 0.00 0.00 73 53 69 kicker brace HSS_SQR 4X4X1_4 A500 GrB rectangular 0.00 0.00 0.00 74 54 70 kicker brace HSS_SQR 4X4X1_4 A500 GrB rectangular 0.00 0.00 0.00 78 76 89 Runway Short W 24 x 76_C 15 x 33.9 A36 0.00 0.00 0.00 80 75 76 Columns W 14X43 A992 Gr50 0.00 0.00 0.00 82 6 51 Runway Short W 24 x 76_C 15 x 33.9 A36 0.00 0.00 0.00 83 50 108 Runway Short W 24 x 76_C 15 x 33.9 A36 0.00 0.00 0.00 84 48 50 Runway Short W 24 x 76_C 15 x 33.9 A36 0.00 0.00 0.00 85 47 106 Runway Short W 24 x 76_C 15 x 33.9 A36 0.00 0.00 0.00 86 47 49 Runway Short W 24 x 76_C 15 x 33.9 A36 0.00 0.00 0.00 87 49 107 Runway Short W 24 x 76_C 15 x 33.9 A36 0.00 0.00 0.00 88 52 94 Runway Short W 24 x 76_C 15 x 33.9 A36 0.00 0.00 0.00 90 78 79 Runway W 24 x 94_C 15 x 33.9 A36 0.00 0.00 0.00 92 80 81 Runway W 24 x 94_C 15 x 33.9 A36 0.00 0.00 0.00 93 81 82 Runway W 24 x 94_C 15 x 33.9 A36 0.00 0.00 0.00 94 82 104 Runway W 24 x 94_C 15 x 33.9 A36 0.00 0.00 0.00 96 84 85 Runway Short W 24 x 76_C 15 x 33.9 A36 0.00 0.00 0.00 98 86 87 Runway Short W 24 x 76 C 15 x 33.9 A36 0.00 0.00 0.00 99 87 88 Runway Short W 24 x 76_C 15 x 33.9 A36 0.00 0.00 0.00 100 88 6 Runway Short W 24 x 76_C 15 x 33.9 A36 0.00 0.00 0.00 101 89 90 Runway Short W 24 x 76_C 15 x 33.9 A36 0.00 0.00 0.00 102 90 91 Runway Short W 24 x 76_C 15 x 33.9 A36 0.00 0.00 0.00 103 91 39 Runway Short W 24 x 76_C 15 x 33.9 A36 0.00 0.00 0.00 104 92 76 Runway Short W 24 x 76_C 15 x 33.9 A36 0.00 0.00 0.00 105 93 92 Runway Short W 24 x 76_C 15 x 33.9 A36 0.00 0.00 0.00 106 94 93 Runway Short W 24 x 76_C 15 x 33.9 A36 0.00 0.00 0.00 107 95 99 Runway W 24 x 94_C 15 x 33.9 A36 0.00 0.00 0.00 108 96 95 Runway W 24 x 94_C 15 x 33.9 A36 0.00 0.00 0.00 109 97 96 Runway W 24 x 94_C 15 x 33.9 A36 0.00 0.00 0.00 110 98 97 Runway W 24 x 94_C 15 x 33.9 A36 0.00 0.00 0.00 111 99 100 Runway W 24 x 94_C 15 x 33.9 A36 0.00 0.00 0.00 112 100 40 Runway W 24 x 94_C 15 x 33.9 A36 0.00 0.00 0.00 113 101 109 Runway W 24 x 94_C 15 x 33.9 A36 0.00 0.00 0.00 114 102 45 Runway W 24 x 94_C 15 x 33.9 A36 0.00 0.00 0.00 115 103 101 Runway W 24 x 94_C 15 x 33.9 A36 0.00 0.00 0.00 116 104 103 Runway W 24 x 94_C 15 x 33.9 A36 0.00 0.00 0.00 117 105 110 Runway Short W24 x 76_C 15 x 33.9 A36 0.00 0.00 0.00 118 106 105 Runway Short W24 x 76_C 15 x 33.9 A36 0.00 0.00 0.00 119 107 52 Runway Short W 24 x 76_C 15 x 33.9 A36 0.00 0.00 0.00 120 108 51 Runway Short W24 x 76_C 15x 33.9 A36 0.00 0.00 0.00 121 109 102 Runway W 24 x 94_C 15 x 33.9 A36 0.00 0.00 0.00 122 110 48 Runway Short W 24 x 76_C 15 x33.9 A36 0.00 0.00 0.00 123 34 36 Runway W 24 x 94_C 15 x 33.9 A36 0.00 0.00 0.00 124 18 32 Runway W 24 x 94_C 15 x 33.9 A36 0.00 0.00 0.00 125 18 29 Runway W 24 x 94_C 15 x 33.9 A36 0.00 0.00 0.00 126 8 30 Runway Short W 24 x 76_C 15 x 33.9 A36 0.00 0.00 0.00 127 8 31 Runway Short W24 x76_C 15 x 33.9 A36 0.00 0.00 0.00 128 33 35 Runway Short W 24 x 76_C 15 x 33.9 A36 0.00 0.00 0.00 129 4 83 Runway Short W 24 x 76_C 15 x 33.9 A36 0.00 0.00 0.00 130 4 84 Runway Short W 24 x 76_C 15 x 33.9 A36 0.00 0.00 0.00 131 85 86 Runway Short W 24 x 76_C 15 x 33.9 A36 0.00 0.00 0.00 132 14 77 Runway W 24 x 94_C 15 x 33.9 A36 0.00 0.00 0.00 133 14 78 Runway W 24 x 94_C 15 x 33.9 A36 0.00 0.00 0.00 134 79 80 Runway W 24 x 94_C 15 x 33.9 A36 0.00 0.00 0.00 24 of 252 Orientation of Local Axes Member Rotation Axes23 NX NY NZ [Deg] 2 90.00 0 0.00 0.00 0.00 4 90.00 0 0.00 0.00 0.00 6 90.00 0 0.00 0.00 0.00 9 90.00 0 0.00 0.00 0.00 11 90.00 0 0.00 0.00 0.00 13 90.00 0 0.00 0.00 0.00 15 90.00 0 0.00 0.00 0.00 18 90.00 0 0.00 0.00 0.00 23 90.00 0 0.00 0.00 0.00 24 90.00 0 0.00 0.00 0.00 27 90.00 0 0.00 0.00 0.00 28 90.00 0 0.00 0.00 0.00 57 90.00 0 0.00 0.00 0.00 58 90.00 0 0.00 0.00 0.00 80 90.00 0 0.00 0.00 0.00 Rigid End Offsets Member DJX DJY DJZ DKX DKY DKZ [in] [in] [in] [in] [in] [in] 4 0.00 0.00 0.00 0.00 -15.587 0.00 9 0.00 0.00 0.00 0.00 -15.587 0.00 13 0.00 0.00 0.00 0.00 -15.33 0.00 18 0.00 0.00 0.00 0.00 -15.33 0.00 19 0.00 -2.836 0.00 0.00 0.00 0.00 20 0.00 -2.836 0.00 0.00 0.00 0.00 22 0.00 0.00 0.00 0.00 -2.175 0.00 25 0.00 6.85 6.85 0.00 -5.95 -5.95 26 0.00 -5.95 5.95 0.00 6.85 -6.85 30 0.00 0.00 0.00 0.00 -2.175 0.00 31 0.00 6.85 6.85 0.00 -5.95 -5.95 32 0.00 -5.95 5.95 0.00 6.85 -6.85 57 0.00 0.00 0.00 0.00 -15.33 0.00 58 0.00 0.00 0.00 0.00 -15.587 0.00 80 0.00 0.00 0.00 0.00 -15.587 0.00 Hinges Node-J Node-K Member M33 M22 V3 V2 M33 M22 V3 V2 TOR AXL Axial rigidity 3 0 0 0 0 1 1 0 0 0 0 Compression only 4 0 0 0 0 0 1 0 0 0 0 Full 9 0 0 0 0 0 1 0 0 0 0 Full 12 0 0 0 0 1 1 0 0 0 0 Compression only 13 0 0 0 0 0 1 0 0 0 0 Full 16 1 0 0 0 0 0 0 0 0 0 Full 18 0 0 0 0 0 1 0 0 0 0 Full 19 1 0 0 0 0 0 0 0 0 0 Full 20 1 0 0 0 0 0 0 0 0 0 Full 22 0 0 0 0 1 0 0 0 0 0 Full 25 1 0 0 0 1 0 0 0 0 0 Full 26 1 0 0 0 1 0 0 0 0 0 Full 30 0 0 0 0 1 0 0 0 0 0 Full 31 1 0 0 0 1 0 0 0 0 0 Full 25 of 252 32 1 0 0 0 1 0 0 0 0 0 Full 57 0 0 0 0 0 1 0 0 0 0 Full 58 0 0 0 0 0 1 0 0 0 0 Full 59 1 1 0 0 0 0 0 0 0 0 Compression only 60 1 1 0 0 0 0 0 0 0 0 Compression only 78 1 0 0 0 0 0 0 0 0 0 Full 80 0 0 0 0 0 1 0 0 0 0 Full 82 1 0 0 0 0 0 0 0 0 0 Full Load data GLOSSARY Comb : Indicates if load condition is a load combination Load conditions Condition Description Comb. Category D Dead load of runway/supports No DL Cd1 Crane dead(bridge,trolley,hoist,etc in position 1) No DL Cd2 Crane dead(bridge,trolley,hoist,etc in position 2) No DL Cd3 Crane dead(bridge,trolley,hoist,etc in position 3) No DL Cv1 Crane lift load(rated crane capacity-at position 1) No LL Cv2 Crane lift load(rated crane capacity-at position 2) No LL Cv3 Crane lift load(rated crane capacity-at position 3) No LL Ci 1 Crane vertical impact(wheel load at position 1) No LL Ci2 Crane vertical impact(wheel load at position 2) No LL Ci3 Crane vertical impact(wheel load at position 3) No LL Cs1 Crane side load(single wheel load at position 1) No LL Cs2 Crane side load(single wheel load at position 2) No LL Cs3 Crane side load(single wheel load at position 3) No LL Cls Crane transverse load(tractive load-single crane wheel loads-transverse No LL Ehs1 Seismic load transverse position 1 No EQ Ehs2 Seismic load transverse position 2 No EQ Ehs3 Seismic load transverse position 3 No EQ Ehl1 Seismic load long-position 1 No EQ Eh12 Seismic load long-position 2 No EQ Eh13 Seismic load long-position 3 No EQ Ehv1 Seismic load Vertical position 1 No EQ Ehv2 Seismic load Vertical position 2 No EQ Ehv3 Seismic load Vertical position 3 No EQ DDL Deflection Dead load No DL DLL Deflection Live Load No LL Load on nodes Condition Node FX FY FZ MX MY MZ [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] Cd 1 29 0.00 -0.814 0.00 0.00 0.00 0.00 30 0.00 -0.814 0.00 0.00 0.00 0.00 31 0.00 -0.814 0.00 0.00 0.00 0.00 32 0.00 -0.814 0.00 0.00 0.00 0.00 33 0.00 -1.091 0.00 0.00 0.00 0.00 34 0.00 -1.091 0.00 0.00 0.00 0.00 35 0.00 -1.091 0.00 0.00 0.00 0.00 36 0.00 -1.091 0.00 0.00 0.00 0.00 37 0.00 -0.814 0.00 0.00 0.00 0.00 38 0.00 -0.814 0.00 0.00 0.00 0.00 39 0.00 -0.814 0.00 0.00 0.00 0.00 26 of 252 40 0.00 -0.814 0.00 0.00 0.00 0.00 47 0.00 -1.091 0.00 0.00 0.00 0.00 48 0.00 -1.091 0.00 0.00 0.00 0.00 49 0.00 -0.814 0.00 0.00 0.00 0.00 50 0.00 -0.814 0.00 0.00 0.00 0.00 51 0.00 -0.814 0.00 0.00 0.00 0.00 52 0.00 -0.814 0.00 0.00 0.00 0.00 Cd2 41 0.00 -1.091 0.00 0.00 0.00 0.00 42 0.00 -1.091 0.00 0.00 0.00 0.00 43 0.00 -0.814 0.00 0.00 0.00 0.00 44 0.00 -0.814 0.00 0.00 0.00 0.00 45 0.00 -0.814 0.00 0.00 0.00 0.00 46 0.00 -0.814 0.00 0.00 0.00 0.00 89 0.00 -1.091 0.00 0.00 0.00 0.00 90 0.00 -0.814 0.00 0.00 0.00 0.00 91 0.00 -0.814 0.00 0.00 0.00 0.00 92 0.00 -1.091 0.00 0.00 0.00 0.00 93 0.00 -0.814 0.00 0.00 0.00 0.00 94 0.00 -0.814 0.00 0.00 0.00 0.00 Cd3 77 0.00 -0.814 0.00 0.00 0.00 0.00 78 0.00 -0.814 0.00 0.00 0.00 0.00 79 0.00 -1.091 0.00 0.00 0.00 0.00 80 0.00 -1.091 0.00 0.00 0.00 0.00 81 0.00 -0.814 0.00 0.00 0.00 0.00 82 0.00 -0.814 0.00 0.00 0.00 0.00 83 0.00 -0.814 0.00 0.00 0.00 0.00 84 0.00 -0.814 0.00 0.00 0.00 0.00 85 0.00 -1.091 0.00 0.00 0.00 0.00 86 0.00 -1.091 0.00 0.00 0.00 0.00 87 0.00 -0.814 0.00 0.00 0.00 0.00 88 0.00 -0.814 0.00 0.00 0.00 0.00 95 0.00 -1.091 0.00 0.00 0.00 0.00 96 0.00 -1.091 0.00 0.00 0.00 0.00 97 0.00 -0.814 0.00 0.00 0.00 0.00 98 0.00 -0.814 0.00 0.00 0.00 0.00 99 0.00 -0.814 0.00 0.00 0.00 0.00 100 0.00 -0.814 0.00 0.00 0.00 0.00 Cv1 29 0.00 -3.00 0.00 0.00 0.00 0.00 32 0.00 -3.00 0.00 0.00 0.00 0.00 34 0.00 -5.00 0.00 0.00 0.00 0.00 36 0.00 -5.00 0.00 0.00 0.00 0.00 37 0.00 -3.00 0.00 0.00 0.00 0.00 40 0.00 -3.00 0.00 0.00 0.00 0.00 47 0.00 -5.00 0.00 0.00 0.00 0.00 48 0.00 -5.00 0.00 0.00 0.00 0.00 49 0.00 -3.00 0.00 0.00 0.00 0.00 50 0.00 -3.00 0.00 0.00 0.00 0.00 51 0.00 -3.00 0.00 0.00 0.00 0.00 52 0.00 -3.00 0.00 0.00 0.00 0.00 Cv2 41 0.00 -5.00 0.00 0.00 0.00 0.00 42 0.00 -5.00 0.00 0.00 0.00 0.00 43 0.00 -3.00 0.00 0.00 0.00 0.00 44 0.00 -3.00 0.00 0.00 0.00 0.00 45 0.00 -3.00 0.00 0.00 0.00 0.00 46 0.00 -3.00 0.00 0.00 0.00 0.00 89 0.00 -5.00 0.00 0.00 0.00 0.00 90 0.00 -3.00 0.00 0.00 0.00 0.00 91 0.00 -3.00 0.00 0.00 0.00 0.00 92 0.00 -5.00 0.00 0.00 0.00 0.00 93 0.00 -3.00 0.00 0.00 0.00 0.00 94 0.00 -3.00 0.00 0.00 0.00 0.00 Cv3 83 0.00 -3.00 0.00 0.00 0.00 0.00 84 0.00 -3.00 0.00 0.00 0.00 0.00 85 0.00 -5.00 0.00 0.00 0.00 0.00 86 0.00 -5.00 0.00 0.00 0.00 0.00 87 0.00 -3.00 0.00 0.00 0.00 0.00 88 0.00 -3.00 0.00 0.00 0.00 0.00 95 0.00 -5.00 0.00 0.00 0.00 0.00 27 of 252 96 0.00 -5.00 0.00 0.00 0.00 0.00 97 0.00 -3.00 0.00 0.00 0.00 0.00 98 0.00 -3.00 0.00 0.00 0.00 0.00 99 0.00 -3.00 0.00 0.00 0.00 0.00 100 0.00 -3.00 0.00 0.00 0.00 0.00 Ci1 29 0.00 -0.953 0.00 0.00 0.00 0.00 32 0.00 -0.953 0.00 0.00 0.00 0.00 34 0.00 -1.523 0.00 0.00 0.00 0.00 36 0.00 -1.523 0.00 0.00 0.00 0.00 37 0.00 -0.953 0.00 0.00 0.00 0.00 40 0.00 -0.953 0.00 0.00 0.00 0.00 47 0.00 -1.523 0.00 0.00 0.00 0.00 48 0.00 -1.523 0.00 0.00 0.00 0.00 49 0.00 -0.953 0.00 0.00 0.00 0.00 50 0.00 -0.953 0.00 0.00 0.00 0.00 51 0.00 -0.953 0.00 0.00 0.00 0.00 52 0.00 -0.953 0.00 0.00 0.00 0.00 Ci2 41 0.00 -1.523 0.00 0.00 0.00 0.00 42 0.00 -1.523 0.00 0.00 0.00 0.00 43 0.00 -0.953 0.00 0.00 0.00 0.00 44 0.00 -0.953 0.00 0.00 0.00 0.00 45 0.00 -0.953 0.00 0.00 0.00 0.00 46 0.00 -0.953 0.00 0.00 0.00 0.00 89 0.00 -1.523 0.00 0.00 0.00 0.00 90 0.00 -0.953 0.00 0.00 0.00 0.00 91 0.00 -0.953 0.00 0.00 0.00 0.00 92 0.00 -1.523 0.00 0.00 0.00 0.00 93 0.00 -0.953 0.00 0.00 0.00 0.00 94 0.00 -0.953 0.00 0.00 0.00 0.00 Ci3 83 0.00 -0.953 0.00 0.00 0.00 0.00 84 0.00 -0.953 0.00 0.00 0.00 0.00 85 0.00 -1.523 0.00 0.00 0.00 0.00 86 0.00 -1.523 0.00 0.00 0.00 0.00 87 0.00 -0.953 0.00 0.00 0.00 0.00 88 0.00 -0.953 0.00 0.00 0.00 0.00 95 0.00 -1.523 0.00 0.00 0.00 0.00 96 0.00 -1.523 0.00 0.00 0.00 0.00 97 0.00 -0.953 0.00 0.00 0.00 0.00 98 0.00 -0.953 0.00 0.00 0.00 0.00 99 0.00 -0.953 0.00 0.00 0.00 0.00 100 0.00 -0.953 0.00 0.00 0.00 0.00 Cs1 29 0.00 0.00 0.313 0.361 0.00 0.00 30 0.00 0.00 0.313 0.361 0.00 0.00 31 0.00 0.00 0.313 0.361 0.00 0.00 32 0.00 0.00 0.313 0.361 0.00 0.00 33 0.00 0.00 0.518 0.598 0.00 0.00 34 0.00 0.00 0.518 0.598 0.00 0.00 35 0.00 0.00 0.518 0.598 0.00 0.00 36 0.00 0.00 0.518 0.598 0.00 0.00 37 0.00 0.00 0.313 0.361 0.00 0.00 38 0.00 0.00 0.313 0.361 0.00 0.00 39 0.00 0.00 0.313 0.361 0.00 0.00 40 0.00 0.00 0.313 0.361 0.00 0.00 47 0.00 0.00 0.518 0.598 0.00 0.00 48 0.00 0.00 0.518 0.598 0.00 0.00 49 0.00 0.00 0.313 0.361 0.00 0.00 50 0.00 0.00 0.313 0.361 0.00 0.00 51 0.00 0.00 0.313 0.361 0.00 0.00 52 0.00 0.00 0.313 0.361 0.00 0.00 Cs2 41 0.00 0.00 0.518 0.598 0.00 0.00 42 0.00 0.00 0.518 0.598 0.00 0.00 43 0.00 0.00 0.313 0.361 0.00 0.00 44 0.00 0.00 0.313 0.361 0.00 0.00 45 0.00 0.00 0.313 0.361 0.00 0.00 46 0.00 0.00 0.313 0.361 0.00 0.00 89 0.00 0.00 0.518 0.598 0.00 0.00 90 0.00 0.00 0.313 0.361 0.00 0.00 91 0.00 0.00 0.313 0.361 0.00 0.00 28 of 252 92 0.00 0.00 0.518 0.598 0.00 0.00 93 0.00 0.00 0.313 0.361 0.00 0.00 94 0.00 0.00 0.313 0.361 0.00 0.00 Cs3 77 0.00 0.00 0.313 0.361 0.00 0.00 78 0.00 0.00 0.313 0.361 0.00 0.00 79 0.00 0.00 0.518 0.598 0.00 0.00 80 0.00 0.00 0.518 0.598 0.00 0.00 81 0.00 0.00 0.313 0.361 0.00 0.00 82 0.00 0.00 0.313 0.361 0.00 0.00 83 0.00 0.00 0.313 0.361 0.00 0.00 84 0.00 0.00 0.313 0.361 0.00 0.00 85 0.00 0.00 0.518 0.605 0.00 0.00 86 0.00 0.00 0.518 0.605 0.00 0.00 87 0.00 0.00 0.313 0.361 0.00 0.00 88 0.00 0.00 0.313 0.361 0.00 0.00 95 0.00 0.00 0.518 0.598 0.00 0.00 96 0.00 0.00 0.518 0.598 0.00 0.00 97 0.00 0.00 0.313 0.361 0.00 0.00 98 0.00 0.00 0.313 0.361 0.00 0.00 99 0.00 0.00 0.313 0.361 0.00 0.00 100 0.00 0.00 0.313 0.361 0.00 0.00 Cls 41 0.557 0.00 0.00 0.00 0.00 -0.643 42 0.557 0.00 0.00 0.00 0.00 -0.643 43 0.381 0.00 0.00 0.00 0.00 -0.44 44 0.381 0.00 0.00 0.00 0.00 -0.44 45 0.381 0.00 0.00 0.00 0.00 -0.44 46 0.381 0.00 0.00 0.00 0.00 -0.44 47 0.557 0.00 0.00 0.00 0.00 -0.643 48 0.557 0.00 0.00 0.00 0.00 -0.643 49 0.381 0.00 0.00 0.00 0.00 -0.44 50 0.381 0.00 0.00 0.00 0.00 -0.44 51 0.381 0.00 0.00 0.00 0.00 -0.44 52 0.381 0.00 0.00 0.00 0.00 -0.44 Ehs1 29 0.00 0.00 0.36 0.416 0.00 0.00 30 0.00 0.00 0.36 0.416 0.00 0.00 31 0.00 0.00 0.36 0.416 0.00 0.00 32 0.00 0.00 0.36 0.416 0.00 0.00 33 0.00 0.00 0.48 0.554 0.00 0.00 34 0.00 0.00 0.48 0.554 0.00 0.00 35 0.00 0.00 0.48 0.554 0.00 0.00 36 0.00 0.00 0.48 0.554 0.00 0.00 37 0.00 0.00 0.36 0.416 0.00 0.00 38 0.00 0.00 0.36 0.416 0.00 0.00 39 0.00 0.00 0.36 0.416 0.00 0.00 40 0.00 0.00 0.36 0.416 0.00 0.00 47 0.00 0.00 0.48 0.554 0.00 0.00 48 0.00 0.00 0.48 0.554 0.00 0.00 49 0.00 0.00 0.36 0.416 0.00 0.00 50 0.00 0.00 0.36 0.416 0.00 0.00 51 0.00 0.00 0.36 0.416 0.00 0.00 52 0.00 0.00 0.36 0.416 0.00 0.00 Ehs2 41 0.00 0.00 0.48 0.554 0.00 0.00 42 0.00 0.00 0.48 0.554 0.00 0.00 43 0.00 0.00 0.36 0.416 0.00 0.00 44 0.00 0.00 0.36 0.416 0.00 0.00 45 0.00 0.00 0.36 0.416 0.00 0.00 46 0.00 0.00 0.36 0.416 0.00 0.00 89 0.00 0.00 0.48 0.554 0.00 0.00 90 0.00 0.00 0.36 0.416 0.00 0.00 91 0.00 0.00 0.36 0.416 0.00 0.00 92 0.00 0.00 0.48 0.554 0.00 0.00 93 0.00 0.00 0.36 0.416 0.00 0.00 94 0.00 0.00 0.36 0.416 0.00 0.00 Ehs3 77 0.00 0.00 0.36 0.416 0.00 0.00 78 0.00 0.00 0.36 0.416 0.00 0.00 79 0.00 0.00 0.48 0.554 0.00 0.00 80 0.00 0.00 0.48 0.554 0.00 0.00 81 0.00 0.00 0.36 0.416 0.00 0.00 29 of 252 82 0.00 0.00 0.36 0.416 0.00 0.00 83 0.00 0.00 0.36 0.416 0.00 0.00 84 0.00 0.00 0.36 0.416 0.00 0.00 85 0.00 0.00 0.48 0.554 0.00 0.00 86 0.00 0.00 0.48 0.554 0.00 0.00 87 0.00 0.00 0.36 0.416 0.00 0.00 88 0.00 0.00 0.36 0.416 0.00 0.00 95 0.00 0.00 0.48 0.554 0.00 0.00 96 0.00 0.00 0.48 0.554 0.00 0.00 97 0.00 0.00 0.36 0.416 0.00 0.00 98 0.00 0.00 0.36 0.416 0.00 0.00 99 0.00 0.00 0.36 0.416 0.00 0.00 100 0.00 0.00 0.36 0.416 0.00 0.00 Ehl1 29 0.195 0.00 0.00 0.00 0.00 -0.225 30 0.195 0.00 0.00 0.00 0.00 -0.225 31 0.195 0.00 0.00 0.00 0.00 -0.225 32 0.195 0.00 0.00 0.00 0.00 -0.225 33 0.262 0.00 0.00 0.00 0.00 -0.302 34 0.262 0.00 0.00 0.00 0.00 -0.302 35 0.262 0.00 0.00 0.00 0.00 -0.302 36 0.262 0.00 0.00 0.00 0.00 -0.302 37 0.195 0.00 0.00 0.00 0.00 -0.225 38 0.195 0.00 0.00 0.00 0.00 -0.225 39 0.195 0.00 0.00 0.00 0.00 -0.225 40 0.195 0.00 0.00 0.00 0.00 -0.225 Eh12 41 0.262 0.00 0.00 0.00 0.00 -0.302 42 0.262 0.00 0.00 0.00 0.00 -0.302 43 0.195 0.00 0.00 0.00 0.00 -0.225 44 0.195 0.00 0.00 0.00 0.00 -0.225 45 0.195 0.00 0.00 0.00 0.00 -0.225 46 0.195 0.00 0.00 0.00 0.00 -0.225 89 0.262 0.00 0.00 0.00 0.00 -0.302 90 0.195 0.00 0.00 0.00 0.00 -0.225 91 0.195 0.00 0.00 0.00 0.00 -0.225 92 0.262 0.00 0.00 0.00 0.00 -0.302 93 0.195 0.00 0.00 0.00 0.00 -0.225 94 0.195 0.00 0.00 0.00 0.00 -0.225 Eh13 77 0.195 0.00 0.00 0.00 0.00 -0.225 78 0.195 0.00 0.00 0.00 0.00 -0.225 79 0.262 0.00 0.00 0.00 0.00 -0.302 80 0.262 0.00 0.00 0.00 0.00 -0.302 81 0.195 0.00 0.00 0.00 0.00 -0.225 82 0.195 0.00 0.00 0.00 0.00 -0.225 83 0.195 0.00 0.00 0.00 0.00 -0.225 84 0.195 0.00 0.00 0.00 0.00 -0.225 85 0.262 0.00 0.00 0.00 0.00 -0.302 86 0.262 0.00 0.00 0.00 0.00 -0.302 87 0.195 0.00 0.00 0.00 0.00 -0.225 88 0.195 0.00 0.00 0.00 0.00 -0.225 Ehv1 29 0.00 -0.117 0.00 0.00 0.00 0.00 30 0.00 -0.117 0.00 0.00 0.00 0.00 31 0.00 -0.117 0.00 0.00 0.00 0.00 32 0.00 -0.117 0.00 0.00 0.00 0.00 33 0.00 -0.157 0.00 0.00 0.00 0.00 34 0.00 -0.157 0.00 0.00 0.00 0.00 35 0.00 -0.157 0.00 0.00 0.00 0.00 36 0.00 -0.157 0.00 0.00 0.00 0.00 37 0.00 -0.117 0.00 0.00 0.00 0.00 38 0.00 -0.117 0.00 0.00 0.00 0.00 39 0.00 -0.117 0.00 0.00 0.00 0.00 40 0.00 -0.117 0.00 0.00 0.00 0.00 47 0.00 -0.157 0.00 0.00 0.00 0.00 48 0.00 -0.157 0.00 0.00 0.00 0.00 49 0.00 -0.117 0.00 0.00 0.00 0.00 50 0.00 -0.117 0.00 0.00 0.00 0.00 51 0.00 -0.117 0.00 0.00 0.00 0.00 52 0.00 -0.117 0.00 0.00 0.00 0.00 Ehv2 41 0.00 -0.157 0.00 0.00 0.00 0.00 30 of 252 42 0.00 -0.157 0.00 0.00 0.00 0.00 43 0.00 -0.117 0.00 0.00 0.00 0.00 44 0.00 -0.117 0.00 0.00 0.00 0.00 45 0.00 -0.117 0.00 0.00 0.00 0.00 46 0.00 -0.117 0.00 0.00 0.00 0.00 89 0.00 -0.157 0.00 0.00 0.00 0.00 90 0.00 -0.117 0.00 0.00 0.00 0.00 91 0.00 -0.117 0.00 0.00 0.00 0.00 92 0.00 -0.157 0.00 0.00 0.00 0.00 93 0.00 -0.117 0.00 0.00 0.00 0.00 94 0.00 -0.117 0.00 0.00 0.00 0.00 Ehv3 77 0.00 -0.117 0.00 0.00 0.00 0.00 78 0.00 -0.117 0.00 0.00 0.00 0.00 79 0.00 -0.157 0.00 0.00 0.00 0.00 80 0.00 -0.157 0.00 0.00 0.00 0.00 81 0.00 -0.117 0.00 0.00 0.00 0.00 82 0.00 -0.117 0.00 0.00 0.00 0.00 83 0.00 -0.117 0.00 0.00 0.00 0.00 84 0.00 -0.117 0.00 0.00 0.00 0.00 85 0.00 -0.157 0.00 0.00 0.00 0.00 86 0.00 -0.157 0.00 0.00 0.00 0.00 87 0.00 -0.117 0.00 0.00 0.00 0.00 88 0.00 -0.117 0.00 0.00 0.00 0.00 95 0.00 -0.157 0.00 0.00 0.00 0.00 96 0.00 -0.157 0.00 0.00 0.00 0.00 97 0.00 -0.117 0.00 0.00 0.00 0.00 98 0.00 -0.117 0.00 0.00 0.00 0.00 99 0.00 -0.117 0.00 0.00 0.00 0.00 100 0.00 -0.117 0.00 0.00 0.00 0.00 DDL 101 0.00 -1.091 0.00 0.00 0.00 0.00 102 0.00 -1.091 0.00 0.00 0.00 0.00 103 0.00 -0.814 0.00 0.00 0.00 0.00 104 0.00 -0.814 0.00 0.00 0.00 0.00 105 0.00 -1.091 0.00 0.00 0.00 0.00 106 0.00 -0.814 0.00 0.00 0.00 0.00 107 0.00 -0.814 0.00 0.00 0.00 0.00 108 0.00 -1.091 0.00 0.00 0.00 0.00 DLL 101 0.00 -5.00 0.00 0.00 0.00 0.00 102 0.00 -5.00 0.00 0.00 0.00 0.00 103 0.00 -3.00 0.00 0.00 0.00 0.00 104 0.00 -3.00 0.00 0.00 0.00 0.00 105 0.00 -5.00 0.00 0.00 0.00 0.00 106 0.00 -3.00 0.00 0.00 0.00 0.00 107 0.00 -3.00 0.00 0.00 0.00 0.00 108 0.00 -5.00 0.00 0.00 0.00 0.00 Distributed force on members Y11` JY2 yi dl I d2 Condition Member Dirt Vail Val2 Dist1 % Dist2 % [Kip/ft] [Kip/ft] [in] [in] D 1 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 10 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 16 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 33 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 34 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 37 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 38 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 41 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 31 of 252 42 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 43 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 44 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 45 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 46 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 47 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 48 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 49 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 50 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 78 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 82 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 83 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 84 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 85 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 86 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 87 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 88 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 90 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 92 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 93 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 94 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 96 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 98 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 99 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 100 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 101 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 102 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 103 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 104 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 105 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 106 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 107 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 108 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 109 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 110 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 111 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 112 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 113 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 114 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 115 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 116 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 117 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 118 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 119 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 120 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 121 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 122 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 123 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 124 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 125 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 126 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 127 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 128 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 129 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 130 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 131 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 132 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 133 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 134 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 32 of 252 Self-Weight Multipliers for Load Conditions Self weight multiplier Condition Description Comb. MultX MultY MuItZZ D Dead load of runway/supports No 0.00 -1.00 0.00 Cd1 Crane dead(bridge,trolley,hoist,etc in position 1) No 0.00 0.00 0.00 Cd2 Crane dead(bridge,trolley,hoist,etc in position 2) No 0.00 0.00 0.00 Cd3 Crane dead(bridge,trolley,hoist,etc in position 3) No 0.00 0.00 0.00 Cv1 Crane lift load(rated crane capacity-at position 1) No 0.00 0.00 0.00 Cv2 Crane lift load(rated crane capacity-at position 2) No 0.00 0.00 0.00 Cv3 Crane lift load(rated crane capacity-at position 3) No 0.00 0.00 0.00 Cif Crane vertical impact(wheel load at position 1) No 0.00 0.00 0.00 Ci2 Crane vertical impact(wheel load at position 2) No 0.00 0.00 0.00 Ci3 Crane vertical impact(wheel load at position 3) No 0.00 0.00 0.00 Cs1 Crane side load(single wheel load at position 1) No 0.00 0.00 0.00 Cs2 Crane side load(single wheel load at position 2) No 0.00 0.00 0.00 Cs3 Crane side load(single wheel load at position 3) No 0.00 0.00 0.00 Cls Crane transverse load(tractive load-single crane wheel loads-transverse No 0.00 0.00 0.00 Ehs1 Seismic load transverse position 1 No 0.00 0.00 0.48 Ehs2 Seismic load transverse position 2 No 0.00 0.00 0.48 Ehs3 Seismic load transverse position 3 No 0.00 0.00 0.48 Ehl1 Seismic load long-position 1 No 0.24 0.00 0.00 Eh12 Seismic load long-position 2 No 0.24 0.00 0.00 Eh13 Seismic load long-position 3 No 0.24 0.00 0.00 Ehv1 Seismic load Vertical position 1 No 0.00 -0.144 0.00 Ehv2 Seismic load Vertical position 2 No 0.00 -0.144 0.00 Ehv3 Seismic load Vertical position 3 No 0.00 -0.144 0.00 DDL Deflection Dead load No 0.00 0.00 0.00 DLL Deflection Live Load No 0.00 0.00 0.00 List of Materials Note.-Only the graphically selected members and shells are listed Members: Profile Material Uweight Length Weight [Kip/ft] [in] [Kip] HSS_SQR 4X4X1_4 A500 GRB RECTANGULAR 1.14E-02 779.464 0.740 T2L 4X4X1_4 A500 GRB RECTANGULAR 1.31E-02 267.004 0.291 W 12X40 A992 GR50 3.96E-02 720.000 2.374 W 14X43 A992 GR50 4.26E-02 1358.622 4.824 W24 X 76_C 15 X33.9 A36 1.10E-01 1198.000 11.009 W 24 X 94_C 15 X 33.9 A36 1.29E-01 1198.000 12.873 Total weight[Kip] 32.111 33 of 252 Analysis Result Reactions LX?F Y Mx Z F FZ.,/i- Mz io Direction of positive forces and moments Forces IKiol Moments[Kid*ft] Node FX FY FZ MX MY MZ Condition D=Dead load of runway/supports 2 -0.02137 2.89866 0.18284 0.00000 0.00005 0.00000 5 0.00000 4.39506 -0.00019 -0.00445 0.00000 0.00000 7 0.02138 2.89853 0.18286 0.00000 -0.00005 0.00000 12 -0.04630 3.43476 -0.18262 0.00000 -0.00011 0.00000 15 0.00000 7.11655 -0.00009 0.00098 0.00000 0.00000 17 0.04630 3.41230 -0.18259 0.00000 0.00011 0.00000 75 0.00000 4.39506 -0.00022 -0.00487 0.00000 0.00000 SUM 0.00000 28.55091 0.00000 -0.00834 0.00000 0.00000 Condition Cd1=Crane dead(bridge,trolley,hoist,etc in position 1) 2 -0.01361 -0.45905 -0.00007 0.00000 0.00001 0.00000 5 0.00000 2.71194 -0.00011 -0.00196 0.00000 0.00000 7 0.01356 4.02019 0.00211 0.00000 -0.00004 0.00000 12 -0.01637 -0.57008 0.00030 0.00000 -0.00001 0.00000 15 0.00000 0.62340 -0.00001 -0.00008 0.00000 0.00000 17 0.01640 4.23183 -0.00232 0.00000 0.00007 0.00000 75 0.00000 3.67203 0.00010 0.00177 0.00000 0.00000 SUM -0.00003 14.23028 0.00000 -0.00027 0.00003 0.00000 Condition Cd2=Crane dead(bridge,trolley,hoist,etc in position 2) 2 -0.00243 -0.08203 -0.00006 0.00000 0.00000 0.00000 5 0.00000 0.34279 0.00007 0.00115 0.00000 0.00000 7 0.00246 0.26067 0.00019 0.00000 -0.00002 0.00000 12 -0.00515 0.04891 -0.00008 0.00000 -0.00002 0.00000 15 0.00000 4.97606 -0.00002 -0.00026 0.00000 0.00000 17 0.00512 0.05144 -0.00002 0.00000 0.00001 0.00000 75 0.00000 4.74909 -0.00009 -0.00149 0.00000 0.00000 SUM 0.00000 10.34693 0.00000 -0.00060 -0.00002 0.00000 Condition Cd3=Crane dead(bridge,trolley,hoist,etc in position 3) 2 -0.01357 4.02083 0.00281 0.00000 0.00008 0.00000 5 0.00000 0.95305 -0.00076 -0.01319 0.00000 0.00000 7 0.01331 -0.44969 -0.00015 0.00000 -0.00001 0.00000 12 -0.03913 3.43607 -0.00133 0.00000 -0.00005 0.00000 15 0.00000 3.32952 -0.00019 -0.00326 -0.00001 0.00000 17 0.03937 1.34783 -0.00090 0.00000 0.00015 0.00000 75 0.00000 -0.00685 0.00051 0.00891 0.00000 0.00000 SUM -0.00002 12.63076 0.00000 -0.00755 0.00016 0.00000 Condition Cv1=Crane lift load(rated crane capacity-at position 1) 2 -0.00106 -0.03302 0.00211 0.00000 0.00010 0.00000 5 0.00000 10.99949 -0.00232 -0.04041 -0.00001 0.00000 7 0.00011 -0.00631 0.00272 0.00000 0.00006 0.00000 34 of 252 12 -0.06614 -2.30622 0.00296 0.00000 0.00006 0.00000 15 0.00000 2.51764 -0.00057 -0.00987 -0.00003 0.00000 17 0.06701 17.10294 -0.00647 0.00000 0.00033 0.00000 75 0.00000 11.00002 0.00157 0.02730 -0.00001 0.00000 SUM -0.00009 39.27454 0.00000 -0.02298 0.00049 0.00000 Condition Cv2=Crane lift load(rated crane capacity-at position 2) 2 -0.00948 -0.32006 -0.00022 0.00000 0.00001 0.00000 5 0.00000 1.33284 0.00026 0.00451 0.00000 0.00000 7 0.00959 1.01240 0.00073 0.00000 -0.00007 0.00000 12 -0.02008 0.18872 -0.00031 0.00000 -0.00007 0.00000 15 0.00000 20.20385 -0.00006 -0.00103 0.00000 0.00000 17 0.01995 0.19860 -0.00006 0.00000 0.00005 0.00000 75 0.00000 19.32132 -0.00033 -0.00582 0.00000 0.00000 SUM -0.00001 41.93768 0.00000 -0.00234 -0.00007 0.00000 Condition Cv3=Crane lift load(rated crane capacity-at position 3) 2 -0.05577 16.23956 0.00869 0.00000 0.00037 0.00000 5 0.00000 3.85511 -0.00465 -0.08109 -0.00002 0.00000 7 0.05376 -1.81934 -0.00276 0.00000 0.00007 0.00000 12 -0.09114 -3.17956 0.00112 0.00000 0.00014 0.00000 15 0.00000 10.93533 -0.00017 -0.00294 -0.00007 0.00000 17 0.09300 7.76365 -0.00664 0.00000 0.00068 0.00000 75 0.00000 -0.02771 0.00443 0.07714 -0.00003 0.00000 SUM -0.00015 33.76705 0.00000 -0.00690 0.00114 0.00000 Condition Ci1=Crane vertical impact(wheel load at position 1) 2 -0.00033 -0.01029 0.00066 0.00000 0.00003 0.00000 5 0.00000 3.42884 -0.00072 -0.01258 0.00000 0.00000 7 0.00003 -0.00197 0.00085 0.00000 0.00002 0.00000 12 -0.02060 -0.71829 0.00092 0.00000 0.00002 0.00000 15 0.00000 0.78508 -0.00018 -0.00308 -0.00001 0.00000 17 0.02087 5.33183 -0.00202 0.00000 0.00010 0.00000 75 0.00000 3.42901 0.00049 0.00850 0.00000 0.00000 SUM -0.00003 12.24422 0.00000 -0.00716 0.00015 0.00000 Condition Ci2=Crane vertical impact(wheel load at position 2) 2 -0.00298 -0.10049 -0.00007 0.00000 0.00000 0.00000 5 0.00000 0.41876 0.00008 0.00142 0.00000 0.00000 7 0.00301 0.31815 0.00023 0.00000 -0.00002 0.00000 12 -0.00630 0.05939 -0.00010 0.00000 -0.00002 0.00000 15 0.00000 6.29367 -0.00002 -0.00032 0.00000 0.00000 17 0.00627 0.06249 -0.00002 0.00000 0.00002 0.00000 75 0.00000 6.01640 -0.00010 -0.00183 0.00000 0.00000 SUM 0.00000 13.06837 0.00000 -0.00074 -0.00002 0.00000 Condition Ci3=Crane vertical impact(wheel load at position 3) 2 -0.01736 5.06313 0.00271 0.00000 0.00012 0.00000 5 0.00000 1.20175 -0.00145 -0.02526 -0.00001 0.00000 7 0.01673 -0.56634 -0.00086 0.00000 0.00002 0.00000 12 -0.02840 -0.99075 0.00035 0.00000 0.00004 0.00000 15 0.00000 3.40885 -0.00005 -0.00092 -0.00002 0.00000 17 0.02898 2.42056 -0.00207 0.00000 0.00021 0.00000 75 0.00000 -0.00862 0.00138 0.02402 -0.00001 0.00000 SUM -0.00005 10.52858 0.00000 -0.00216 0.00035 0.00000 Condition Cs1=Crane side load(single wheel load at position 1) 2 -0.00193 0.02973 0.08205 0.00000 0.00295 0.00000 5 0.00000 -0.00118 -1.10951 -20.71488 0.00663 0.00000 7 0.00001 -2.27003 -1.82446 0.00000 -0.00196 0.00000 12 -0.00073 -0.12012 0.08171 0.00000 -0.00091 0.00000 15 0.00000 -0.00089 -0.42524 -7.73214 0.00522 0.00000 35 of 252 17 0.00260 2.17953 -1.82016 0.00000 -0.00213 0.00000 75 0.00000 -0.00036 -1.84839 -34.09957 -0.00024 0.00000 SUM -0.00006 -0.18333 -6.86400 -62.54660 0.00955 0.00000 Condition Cs2=Crane side load(single wheel load at position 2) 2 -0.00486 -0.20400 -0.03562 0.00000 -0.00017 0.00000 5 0.00000 -0.00305 -0.50680 -9.03464 0.00440 0.00000 7 0.00002 -0.31494 -0.25957 0.00000 -0.00621 0.00000 12 0.00001 0.04069 -0.02640 0.00000 0.00612 0.00000 15 0.00000 -0.00088 -1.95486 -36.42767 0.00015 0.00000 17 0.00469 0.15132 -0.26403 0.00000 -0.00506 0.00000 75 0.00000 -0.00099 -1.52871 -29.00749 -0.00006 0.00000 SUM -0.00013 -0.33184 -4.57600 -74.46979 -0.00082 0.00000 Condition Cs3=Crane side load(single wheel load at position 3) 2 -0.00780 -2.48389 -1.78137 0.00000 -0.00115 0.00000 5 0.00000 -0.00421 -0.61291 -11.19879 -0.00583 0.00000 7 0.00002 -0.59172 -0.50845 0.00000 0.00325 0.00000 12 0.00000 2.22092 -1.77719 0.00000 0.00283 0.00000 15 0.00000 -0.00212 -1.78867 -32.77289 0.00402 0.00000 17 0.00755 0.32830 -0.43423 0.00000 -0.01357 0.00000 75 0.00000 -0.00090 0.03882 0.66467 0.00043 0.00000 SUM -0.00023 -0.53361 -6.86400 -43.30701 -0.01003 0.00000 Condition Cls=Crane transverse load(tractive load-single crane wheel loads-transverse 2 -0.00001 0.00022 0.00018 0.00000 -0.00005 0.00000 5 0.00000 -0.09643 -0.00020 -0.00352 0.00000 0.00000 7 0.20891 -7.04634 -0.00270 0.00000 -0.00014 0.00000 12 -0.00001 -0.03222 0.00020 0.00000 0.00006 0.00000 15 0.00000 -0.07158 -0.00002 -0.00041 0.00000 0.00000 17 0.20313 -7.04072 0.00238 0.00000 0.00014 0.00000 75 0.00000 -0.01189 0.00017 0.00302 0.00000 0.00000 SUM 0.41200 -14.29896 0.00000 -0.00090 0.00002 0.00000 Condition Ehs1=Seismic load transverse position 1 2 -0.00173 -1.88040 -1.75913 0.00000 0.00436 0.00000 5 0.00000 -0.00216 -3.27025 -55.43790 0.00630 0.00000 7 0.00003 -4.29485 -3.75177 0.00000 -0.00331 0.00000 12 -0.00395 1.68498 -1.75550 0.00000 0.01003 0.00000 15 0.00000 -0.00198 -4.11134 -68.81874 0.00534 0.00000 17 0.00560 4.09933 -3.74335 0.00000 -0.01298 0.00000 75 0.00000 -0.00144 -4.04441 -69.46465 0.00039 0.00000 SUM -0.00005 -0.39652 -22.43576 -193.72129 0.01014 0.00000 Condition Ehs2=Seismic load transverse position 2 2 -0.00494 -2.13020 -1.88274 0.00000 0.00110 0.00000 5 0.00000 -0.00419 -2.63965 -43.21952 0.00398 0.00000 7 0.00004 -2.24601 -2.11158 0.00000 -0.00781 0.00000 12 -0.00106 1.92706 -1.86888 0.00000 0.01742 0.00000 15 0.00000 -0.00054 -5.71307 -98.86185 0.00003 0.00000 17 0.00582 2.04255 -2.11250 0.00000 -0.01611 0.00000 75 0.00000 -0.00211 -3.70733 -64.07763 0.00056 0.00000 SUM -0.00013 -0.41343 -20.03576 -206.15900 -0.00084 0.00000 Condition Ehs3=Seismic load transverse position 3 2 -0.00811 -4.52320 -3.71341 0.00000 -0.00001 0.00000 5 0.00000 -0.00544 -2.75005 -45.46684 -0.00675 0.00000 7 0.00004 -2.53475 -2.37166 0.00000 0.00210 0.00000 12 -0.00139 4.20162 -3.70443 0.00000 0.01390 0.00000 15 0.00000 -0.00210 -5.54012 -95.06185 0.00406 0.00000 17 0.00922 2.21270 -2.28986 0.00000 -0.02500 0.00000 75 0.00000 -0.00201 -2.06623 -33.01946 0.00107 0.00000 36 of 252 SUM -0.00024 -0.65318 -22.43576 -173.54815 -0.01062 0.00000 Condition Eh11=Seismic load long-position 1 2 -0.08625 0.00380 -0.00449 0.00000 -0.00191 0.00000 5 -0.08277 -0.00579 0.02253 0.39300 0.00015 0.00000 7 0.28136 -12.35118 -0.00020 0.00000 -0.00206 0.00000 12 -0.08602 0.01135 -0.00487 0.00000 0.00192 0.00000 15 -0.08260 -0.16903 0.00008 0.00139 -0.00031 0.00000 17 0.29835 -13.36032 0.00944 0.00000 0.00206 0.00000 75 -0.08277 -0.23577 -0.02250 -0.39232 0.00015 0.00000 SUM 0.15931 -26.10694 0.00000 0.00207 -0.00001 0.00000 Condition Ehl2=Seismic load long-position 2 2 -0.08625 0.00379 -0.00450 0.00000 -0.00191 0.00000 5 -0.08277 -0.02960 0.02254 0.39312 0.00015 0.00000 7 0.28136 -12.37491 -0.00022 0.00000 -0.00206 0.00000 12 -0.08602 -0.00444 -0.00487 0.00000 0.00192 0.00000 15 -0.08260 -0.13731 0.00010 0.00169 -0.00031 0.00000 17 0.29835 -13.37628 0.00944 0.00000 0.00207 0.00000 75 -0.08277 -0.18818 -0.02248 -0.39206 0.00015 0.00000 SUM 0.15931 -26.10694 0.00000 0.00275 -0.00001 0.00000 Condition Eh13=Seismic load long-position 3 2 -0.08625 -0.04372 -0.00448 0.00000 -0.00191 0.00000 5 -0.08277 0.04176 0.02250 0.39236 0.00015 0.00000 7 0.28136 -12.39846 -0.00023 0.00000 -0.00206 0.00000 12 -0.08602 -0.02029 -0.00481 0.00000 0.00192 0.00000 15 -0.08260 -0.10560 0.00006 0.00101 -0.00031 0.00000 17 0.29835 -13.39243 0.00945 0.00000 0.00207 0.00000 75 -0.08277 -0.18820 -0.02249 -0.39217 0.00015 0.00000 SUM 0.15931 -26.10694 0.00000 0.00121 0.00000 0.00000 Condition Ehvl=Seismic load Vertical position 1 2 -0.00488 0.33634 0.02631 0.00000 0.00001 0.00000 5 0.00000 0.98808 -0.00004 -0.00091 0.00000 0.00000 7 0.00487 0.98045 0.02663 0.00000 -0.00001 0.00000 12 -0.00868 0.39524 -0.02624 0.00000 -0.00002 0.00000 15 0.00000 1.06232 -0.00001 0.00015 0.00000 0.00000 17 0.00869 1.08272 -0.02662 0.00000 0.00002 0.00000 75 0.00000 1.12614 -0.00002 -0.00043 0.00000 0.00000 SUM 0.00000 5.97128 0.00000 -0.00119 0.00000 0.00000 Condition Ehv2=Seismic load Vertical position 2 2 -0.00327 0.39056 0.02631 0.00000 0.00001 0.00000 5 0.00000 0.64738 -0.00002 -0.00046 0.00000 0.00000 7 0.00327 0.43981 0.02635 0.00000 -0.00001 0.00000 12 -0.00707 0.48425 -0.02630 0.00000 -0.00002 0.00000 15 0.00000 1.68826 -0.00001 0.00012 0.00000 0.00000 17 0.00706 0.48157 -0.02629 0.00000 0.00002 0.00000 75 0.00000 1.28104 -0.00004 -0.00090 0.00000 0.00000 SUM 0.00000 5.41287 0.00000 -0.00124 0.00000 0.00000 Condition Ehv3=Seismic load Vertical position 3 2 -0.00487 0.98056 0.02672 0.00000 0.00002 0.00000 5 0.00000 0.73514 -0.00014 -0.00253 0.00000 0.00000 7 0.00483 0.33767 0.02630 0.00000 -0.00001 0.00000 12 -0.01196 0.97134 -0.02648 0.00000 -0.00002 0.00000 15 0.00000 1.45147 -0.00004 -0.00031 0.00000 0.00000 17 0.01199 0.66799 -0.02641 0.00000 0.00004 0.00000 75 0.00000 0.59711 0.00004 0.00059 0.00000 0.00000 SUM 0.00000 5.74126 0.00000 -0.00224 0.00002 0.00000 37 of 252 Condition DDL=Deflection Dead load 2 0.00000 -0.00058 -0.00007 0.00000 0.00000 0.00000 5 0.00000 1.86993 0.00046 0.00796 0.00000 0.00000 7 0.00023 -0.00691 0.00051 0.00000 -0.00002 0.00000 12 -0.01651 1.35335 -0.00086 0.00000 -0.00011 0.00000 15 0.00000 1.87016 -0.00013 -0.00229 0.00001 0.00000 17 0.01631 -0.56861 0.00072 0.00000 -0.00001 0.00000 75 0.00000 1.94000 -0.00062 -0.01085 0.00000 0.00000 SUM 0.00003 6.45734 0.00000 -0.00518 -0.00013 0.00000 Condition DLL=Deflection Live Load 2 0.00001 -0.00242 -0.00031 0.00000 -0.00002 0.00000 5 0.00000 7.98961 0.00191 0.03331 0.00001 0.00000 7 0.00094 -0.02890 0.00212 0.00000 -0.00010 0.00000 12 -0.06901 5.60349 -0.00358 0.00000 -0.00044 0.00000 15 0.00000 7.94477 -0.00055 -0.00956 0.00003 0.00000 17 0.06818 -2.37704 0.00301 0.00000 -0.00006 0.00000 75 0.00000 8.01011 -0.00260 -0.04539 0.00001 0.00000 SUM 0.00013 27.13962 0.00000 -0.02164 -0.00056 0.00000 ASD Envelope for nodal reactions Note.- Ic is the controlling load condition My Y x T FY Mx Z Fx Mz Direction of positive forces and moments Forces Moments Node Fx Ic Fy Ic Fz Ic Mx Ic My Ic Mz Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 2 Max 0.000 A05 34.025 A06 2.803 A57 0.00000 A01 0.00318 A01 0.00000 A01 Min -0.220 Al2 -6.854 A82 -2.506 A45 0.00000 A01 -0.00302 A79 0.00000 A01 5 Max 0.058 A82 21.543 A07 2.289 A79 38.80602 A79 0.00663 A10 0.00000 A01 Min -0.058 A41 2.283 A83 -2.290 A19 -38.81627 A19 -0.00667 A04 0.00000 A01 7 Max 0.216 A06 10.475 A55 2.830 A55 0.00000 A01 0.00604 A08 0.00000 A01 Min 0.000 A08 -6.841 A48 -2.534 A43 0.00000 A01 -0.00642 A02 0.00000 A01 12 Max 0.000 A02 10.802 A24 2.501 A81 0.00000 A01 0.01213 A44 0.00000 A01 Min -0.308 A09 -6.843 A82 -2.795 A21 0.00000 A01 -0.01234 A56 0.00000 A01 15 Max 0.058 A83 38.576 All 3.999 A80 69.20379 A56 0.00522 A10 0.00000 A01 Min -0.058 A46 3.804 A46 -3.999 A20 -69.20265 A44 -0.00529 A04 0.00000 A01 17 Max 0.315 A03 35.777 A10 2.528 A79 0.00000 A01 0.01778 A57 0.00000 A01 Min 0.000 All -6.726 A47 -2.824 A19 0.00000 A01 -0.01736 A45 0.00000 A01 75 Max 0.058 A52 34.491 A02 2.831 A79 48.62064 A79 0.00075 A45 0.00000 A01 Min -0.058 A24 2.093 A48 -2.831 A19 -48.62560 A19 -0.00075 A57 0.00000 A01 67 Max 3.518 A82 8.900 A58 0.031 A55 0.00000 A01 0.00103 A80 0.00000 A01 Min -0.016 A47 0.046 A47 -0.031 A43 0.00000 A01 -0.00103 A20 0.00000 A01 68 Max 4.312 A09 10.933 A09 0.031 A80 0.00000 A01 0.00103 A55 0.00000 A01 Min -0.016 A47 0.046 A47 -0.031 A20 0.00000 A01 -0.00103 A43 0.00000 A01 38 of 252 69 Max 0.016 A83 8.900 A23 0.031 A56 0.00000 A01 0.00103 A21 0.00000 A01 Min -3.518 A47 0.046 A83 -0.031 A44 0.00000 A01 -0.00103 A81 0.00000 A01 70 Max 0.016 A83 11.187 A03 0.031 A81 0.00000 A01 0.00103 A43 0.00000 A01 Min -4.413 A03 0.046 A83 -0.031 A21 0.00000 A01 -0.00103 A55 0.00000 A01 LRFD Envelope for nodal reactions Note.- Ic is the controlling load condition My � I Fy Mx z Fx F • Mz) Direction of positive forces and moments Forces Moments Node Fx Ic Fy Ic Fz Ic Mx Ic My Ic Mz Ic [Kip] [Kip] [Kip] [Kip•ft] [Kip'ft] [Kip'ft] 2 Max 0.000 LO6 51.305 L06 3.963 L57 0.00000 LO1 0.00508 LO1 0.00000 LO1 Min -0.351 L12 -9.635 L82 -3.573 L45 0.00000 LO1 -0.00441 LO7 0.00000 LO1 5 Max 0.083 L78 31.619 L07 3.270 L79 55.43689 L79 0.01060 L10 0.00000 LO1 Min -0.083 L16 3.465 L83 -3.271 L19 -55.45035 L19 -0.01068 L04 0.00000 LO1 7 Max 0.342 L06 13.383 L55 4.001 L55 0.00000 LO1 0.00971 L08 0.00000 LO1 Min 0.000 L09 -9.617 L48 -3.612 L43 0.00000 LO1 -0.01026 L02 0.00000 LO1 12 Max 0.000 L02 13.420 L21 3.565 L81 0.00000 LO1 0.01733 L44 0.00000 LO1 Min -0.459 L09 -9.560 L82 -3.951 L21 0.00000 LO1 -0.01760 L56 0.00000 LO1 15 Max 0.083 L54 56.870 L11 5.713 L80 98.86240 L56 0.00836 L10 0.00000 LO1 Min -0.083 L29 5.768 L46 -5.713 L20 -98.86090 L44 -0.00848 L04 0.00000 LO1 17 Max 0.470 L03 54.189 L10 3.604 L79 0.00000 LO1 0.02534 L57 0.00000 LO1 Min 0.000 L11 -9.384 L47 -3.992 L19 0.00000 LO1 -0.02479 L45 0.00000 LO1 75 Max 0.083 L66 51.522 L02 4.044 L79 69.45792 L79 0.00107 L45 0.00000 LO1 Min -0.083 L16 3.178 L48 -4.044 L19 -69.46444 L19 -0.00107 L57 0.00000 LO1 67 Max 5.026 L82 12.696 L58 0.044 L55 0.00000 LO1 0.00147 L80 0.00000 LO1 Min -0.022 L47 0.070 L47 -0.044 L43 0.00000 LO1 -0.00147 L20 0.00000 LO1 68 Max 6.421 L09 16.254 L09 0.044 L80 0.00000 LO1 0.00147 L55 0.00000 LO1 Min -0.022 L47 0.070 L47 -0.044 L20 0.00000 LO1 -0.00147 L43 0.00000 101 69 Max 0.022 L83 12.696 L23 0.044 L56 0.00000 LO1 0.00147 L21 0.00000 LO1 Min -5.026 L47 0.070 L83 -0.044 L44 0.00000 LO1 -0.00147 L81 0.00000 101 70 Max 0.022 L83 16.658 L03 0.044 L81 0.00000 LO1 0.00147 L43 0.00000 LO1 Min -6.582 L03 0.070 L83 -0.044 L21 0.00000 LO1 -0.00147 L55 0.00000 101 39 of 252 Critical ASD Reactions My Ifc Er __x T Fy Mx I Fx Fie/•-> Mx Direction of positive forces and moments Forces fKiDl Moments FKiD*ftl Node FX FY FZ MX MY MZ Condition A11=D+Cd2+Cv2+Ci2+Cs2-CIs 15 0.00000 38.57608 -1.95524 -36.43178 0.00019 0.00000 Condition A44=0.6D+0.6Cd2+0.7Ehs2-0.7Ehv2 15 0.00000 6.07341 -3.99918 -69.20265 0.00002 0.00000 Condition A56=D+Cd2-0.7Ehs2+0.7Ehv2 15 0.00000 13.27477 3.99902 69.20379 -0.00001 0.00000 Condition A82=0.6D+0.6Cd1-0.7EhI1-0.7Ehvl 2 -0.19675 -6.85378 0.09091 0.00000 0.00145 0.00000 Critical LRFD Reactions My Jix��T Fy Mx Z Fx F?ff-3 6 fi Ivlz) Direction of positive forces and moments Forces fKiol Moments fKiD*ftl Node FX FY FZ MX MY MZ Condition L11=1.2D+1.2Cd2+1.6Cv2+1.6C12+1.6Cs2-1.6CIs 15 0.00000 56.87034 -3.12831 -58.29039 0.00029 0.00000 Condition L44=0.9D+0.9Cd2+Ehs2-Ehv2 15 0.00000 9.19456 -5.71312 -98.86090 0.00002 0.00000 Condition L56=1.2D+1.2Cd2-Ehs2+Ehv2 15 0.00000 16.19993 5.71291 98.86240 -0.00002 0.00000 Condition L82=0.9D+0.9Cd1-Ehli-Ehvl 2 -0.28105 -9.63545 0.13769 0.00000 0.00207 0.00000 40 of 252 Non-Seismic Nodal Displacements Envelope [ASD] Note.- Ic is the controlling load condition Nodal displacements envelope for: A01=D+Cd1+Cvl+Ci1+Csl+Cls A02=D+Cd2+Cv2+Ci2+Cs2+Cls A03=D+Cd3+Cv3+Ci3+Cs3+Cls A04=D+Cd1+Cvl+Cil-Csl+Cis A05=D+Cd2+Cv2+Ci2-Cs2+Cls A06=D+Cd3+Cv3+Ci3-Cs3+Cls A07=D+Cd1+Cvl+Ci 1-Csl-Cls A08=D+Cd2+Cv2+Ci2-Cs2-Cls A09=D+Cd3+Cv3+Ci3-Cs3-Cls Al0=D+Cd1+Cvl+Ci1+Csl-Cls Al 1=D+Cd2+Cv2+Ci2+Cs2-Cls A l2=D+Cd3+Cv3+Ci3+Cs3-Cls Translation Rotation Node X Ic Y Ic Z Ic Rx Ic Ry Ic Rz Ic [in] [in] [in] [Rad] [Rad] [Rad] 3 Max 0.078 A06 0.053 Al2 0.535 Al2 0.00390 A03 0.00059 A07 -0.00020 All Min -0.076 All 0.006 A02 -0.547 A06 -0.00368 A09 -0.00063 A01 -0.00224 A03 10 Max 0.057 A05 0.002 All 0.486 Al2 0.00156 A03 0.00053 A07 0.00202 All Min -0.048 All -0.016 A06 -0.501 A06 -0.00136 A09 -0.00059 A01 -0.00032 A05 13 Max 0.053 A02 0.045 A08 0.510 Al2 0.00262 Al2 0.00124 A08 -0.00075 A10 Min -0.092 A09 0.022 A04 -0.523 A06 -0.00291 A06 -0.00124 A02 -0.00151 A02 14 Max 0.053 A02 0.002 Al0 0.528 Al2 0.00124 Al2 0.00124 A08 -0.00075 A10 Min -0.092 A09 -0.004 A03 -0.538 A06 -0.00153 A06 -0.00124 A02 -0.00151 A02 21 Max 0.082 A04 0.061 A09 0.525 Al2 0.00068 Al2 0.00038 All -0.00025 A07 Min -0.102 Al0 -0.097 A03 -0.533 A06 -0.00053 A06 -0.00045 A01 -0.00201 A03 22 Max 0.102 A02 0.070 Alt 0.524 Al2 0.00046 A03 0.00056 A08 -0.00059 A10 Min -0.112 A09 -0.089 A06 -0.533 A06 -0.00076 A09 -0.00055 A02 -0.00134 A06 27 Max 0.119 A06 0.070 A04 0.545 A01 0.00077 A01 0.00076 A09 0.00129 Al2 Min -0.113 A08 -0.091 Al0 -0.539 A07 -0.00047 A07 -0.00111 A03 0.00081 A05 28 Max 0.127 A06 0.062 A01 0.545 A01 0.00055 A10 0.00114 Al2 0.00559 A09 Min -0.188 Al2 -0.100 A07 -0.539 A07 -0.00070 A04 -0.00148 A06 0.00124 A02 29 Max 0.052 A02 0.144 A06 0.540 A01 0.00268 A01 0.00266 Al2 0.00688 A09 Min -0.095 A09 0.030 All -0.534 A07 -0.00291 A07 -0.00277 A06 0.00145 A02 30 Max 0.077 A06 0.018 A05 0.543 A01 0.00396 A01 0.00127 All 0.00085 A08 Min -0.078 All 0.004 A09 -0.535 A07 -0.00368 A07 -0.00126 A05 0.00020 A06 31 Max 0.077 A06 -0.005 A06 0.562 A01 0.01912 A01 0.00132 All 0.00082 A08 Min -0.078 All -0.030 A08 -0.557 A07 -0.01886 A07 -0.00131 A05 0.00020 A06 37 Max 0.052 A02 -0.144 A02 0.577 A10 0.02422 A03 0.00255 Al2 0.00594 A09 Min -0.095 A09 -0.685 A09 -0.576 A04 -0.02441 A09 -0.00261 A06 0.00129 A02 38 Max 0.077 A06 -0.018 A06 0.578 A10 0.03718 A10 0.00132 All 0.00063 A08 Min -0.078 All -0.083 A08 -0.575 A04 -0.03697 A04 -0.00132 A05 0.00015 A06 76 Max 0.078 A06 -0.002 A09 0.504 A10 0.00360 A10 0.00009 A06 0.00349 A04 Min -0.078 All -0.018 A02 -0.505 A04 -0.00360 A04 -0.00008 Al2 0.00026 Al2 83 Max 0.078 A06 0.035 Al2 0.534 Alt 0.00390 A03 0.00059 A07 -0.00020 All Min -0.076 All 0.004 A05 -0.544 A06 -0.00368 A09 -0.00063 A01 -0.00224 A03 84 Max 0.078 A06 -0.005 All 0.524 Al2 0.01897 A03 0.00061 A07 -0.00021 All 41 of 252 Min -0.076 All -0.091 A06 -0.529 A06 -0.01877 A09 -0.00065 A01 -0.00215 A03 88 Max 0.078 A06 -0.025 All 0.452 A03 0.03455 A03 0.00099 Al2 -0.00007 A05 Min -0.076 All -0.254 A06 -0.449 A09 -0.03441 A09 -0.00102 A06 -0.00026 Al2 94 Max 0.078 A06 -0.023 A09 0.523 A10 0.03890 A10 0.00055 A05 0.00264 A04 Min -0.078 All -0.302 A01 -0.524 A04 -0.03890 A04 -0.00055 All 0.00019 Al2 95 Max 0.052 A02 -0.285 A02 0.703 Alt 0.05608 A03 0.00105 All 0.00115 A03 Min -0.094 A09 -1.285 A09 -0.710 A06 -0.05621 A09 -0.00105 A05 -0.00003 A10 96 Max 0.052 A02 -0.296 A02 0.725 Al2 0.05638 A03 0.00118 A04 0.00000 A02 Min -0.094 A09 -1.286 A09 -0.732 A06 -0.05648 A09 -0.00118 A10 -0.00111 A09 97 Max 0.052 A02 -0.296 A02 0.725 Al2 0.05560 A03 0.00120 A04 -0.00007 A02 Min -0.094 A09 -1.275 A09 -0.732 A06 -0.05570 A09 -0.00121 Al0 -0.00144 A09 98 Max 0.052 A02 -0.280 A02 0.699 Al2 0.04691 A03 0.00132 A04 -0.00052 A02 Min -0.094 A09 -1.139 A09 -0.705 A06 -0.04699 A09 -0.00131 A10 -0.00348 A09 99 Max 0.052 A02 -0.281 A02 0.695 Al2 0.05521 A03 0.00106 All 0.00148 A03 Min -0.094 A09 -1.275 A09 -0.703 A06 -0.05534 A09 -0.00106 A05 0.00009 A10 100 Max 0.052 A02 -0.245 A02 0.622 Al2 0.04592 A03 0.00173 Al2 0.00351 A06 Min -0.095 A09 -1.137 A09 -0.628 A06 -0.04607 A09 -0.00175 A06 0.00082 All 1198 in Maximum Vertical Deflection = 1.286 in = _ Li 1.286 in /932 Nodal Displacements Envelope with Seismic Forces [LRFD] Note.- lc is the controlling load condition Nodal displacements envelope for: L13=1.2D+1.2Cd1+Ehs1 L46=0.9D+0.9Cd1+Ehll-Ehvl L14=1.2D+1.2Cd2+Ehs2 L47=0.9D+0.9Cd2+Eh12-Ehv2 L15=1.2D+1.2Cd3+Ehs3 L48=0.9D+0.9Cd3+Eh13-Ehv3 L161.2D+1.2Cd 1+Ehl l L49=1.20+1.2Cd 1-Ehs1 Ll7=1.2D+1.2Cd2+Eh12 L50=1.2D+1.2Cd2-Ehs2 Ll8=1.2D+1.2Cd3+Eh13 L51=1.2D+1.2Cd3-Ehs3 L19=1.2D+1.2Cd1+Ehs1+Ehvl L52=1.20+1.2Cd1-Ehll L20=1.2D+1.2Cd2+Ehs2+Ehv2 L53=1.20+1.2Cd2-Eh12 L21=1.2D+1.2Cd3+Ehs3+Ehv3 L54=1.2D+1.2Cd3-Eh13 L22=1.2D+1.2Cd1+Eh11+Ehvl L55=1.20+1.2Cd1-Ehsl+Ehvl L23=1.2D+1.2Cd2+Eh12+Ehv2 L56=1.20+1.2Cd2-Ehs2+Ehv2 L24=1.2D+1.2Cd3+Eh13+Ehv3 L57=1.20+1.2Cd3-Ehs3+Ehv3 L251.20+1.2Cd 1+Ehs 1-Ehvl L58=1.2D+1.2Cd 1-Ehl l+Ehvl L26=1.2D+1.2Cd2+Ehs2-Ehv2 L59=1.2D+1.2Cd2-Eh12+Ehv2 L27=1.2D+1.2Cd3+Ehs3-Ehv3 L60=1.20+1.2Cd3-Eh13+Ehv3 L28=1.2D+1.2Cd1+Ehl1-Ehvl L61=1.2D+1.2Cd1-Ehsl-Ehv1 L29=1.20+1.2Cd2+Eh12-Ehv2 L62=1.20+1.2Cd2-Ehs2-Ehv2 L30=1.2D+1.2Cd3+Eh13-Ehv3 L63=1.20+1.2Cd3-Ehs3-Ehv3 L31=0.9D+0.9Cd 1+Ehs 1 L641.20+1.2Cd 1-Ehl l-Ehvl L32=0.9D+0.9Cd2+Ehs2 L65=1.20+1.2Cd2-Eh12-Ehv2 L33=0.9D+0.9Cd3+Ehs3 L66=1.20+1.2Cd3-Eh13-Ehv3 L34=0.9D+0.9Cd 1+Ehl1 L67=0.9D+0.9Cd 1-Ehs1 L35=0.9D+0.9Cd2+Ehl2 L68=0.9D+0.9Cd2-Ehs2 L36=0.9D+0.9Cd3+Ehl3 L69=0.9D+0.9Cd3-Ehs3 L37=0.9D+0.9Cd1+Ehsl+Ehvl L70=0.9D+0.9Cd1-Ehl1 L38=0.9D+0.9Cd2+Ehs2+Ehv2 L71=0.9D+0.9Cd2-Eh12 L39=0.9D+0.9Cd3+Ehs3+Ehv3 L72=0.9D+0.9Cd3-Eh13 L40=0.9D+0.9Cd1+Ehll+Ehvl L73=0.9D+0.9Cd1-Ehsl+Ehvl L41=0.9D+0.9Cd2+Eh12+Ehv2 L74=0.9D+0.9Cd2-Ehs2+Ehv2 L42=0.9D+0.9Cd3+Eh13+Ehv3 L75=0.9D+0.9Cd3-Ehs3+Ehv3 L43=0.9D+0.9Cd 1+Ehs 1-Ehvl L76=0.9D+0.9Cd 1-Ehl l+Ehvl L44=0.9D+0.9Cd2+Ehs2-Ehv2 L77=0.9D+0.9Cd2-Eh12+Ehv2 L45=0.9D+0.9Cd3+Ehs3-Ehv3 L78=0.9D+0.9Cd3-Eh13+Ehv3 42 of 252 L79=0.9D+0.9Cd 1-Ehsl-Ehv1 L82=0.9D+0.9Cd 1-Ehl l-Ehv1 L80=0.9D+0.9Cd2-Ehs2-Ehv2 L83=0.9D+0.9Cd2-Ehl2-Ehv2 L81=0.9D+0.9Cd3-Ehs3-Ehv3 L84=0.9D+0.9Cd3-Ehl3-Ehv3 Translation Rotation Node X Ic Y Ic Z Ic Rx Ic Ry Ic Rz Ic [in] [in] [in] [Rad] [Rad] [Rad] 3 Max 0.139 L48 0.020 L60 1.049 L45 0.00555 L21 0.00089 L79 -0.00010 L83 Min -0.136 L83 0.004 L80 -1.049 L57 -0.00529 L81 -0.00089 L19 -0.00076 L24 9 Max 0.136 L48 0.020 L22 1.041 L19 0.00558 L19 0.00159 L20 0.00077 L58 Min -0.140 L82 0.004 L84 -1.040 L79 -0.00531 L79 -0.00159 L80 0.00011 L48 13 Max 0.138 L47 0.047 L60 0.964 L45 0.00411 L45 0.00349 L80 -0.00050 L82 Min -0.137 L82 0.017 L46 -0.965 L57 -0.00437 L57 -0.00349 L20 -0.00172 L24 14 Max 0.138 L47 0.005 L82 1.047 L45 0.00252 L45 0.00349 L80 -0.00050 L82 Min -0.137 L82 -0.007 L24 -1.048 L57 -0.00279 L57 -0.00349 L20 -0.00172 L24 21 Max 0.151 L48 0.141 L81 1.039 L45 0.00133 L21 0.00077 L20 0.00003 L46 Min -0.151 L82 -0.163 L21 -1.040 L57 -0.00106 L81 -0.00077 L80 -0.00100 L60 22 Max 0.151 L47 0.141 L45 1.039 L45 0.00107 L45 0.00139 L80 -0.00025 L46 Min -0.152 L82 -0.163 L57 -1.040 L57 -0.00133 L57 -0.00139 L20 -0.00159 L60 27 Max 0.149 L48 0.143 L79 1.051 L19 0.00134 L19 0.00139 L81 0.00100 L22 Min -0.153 L82 -0.164 L19 -1.051 L79 -0.00107 L79 -0.00142 L21 0.00004 L83 28 Max 0.212 L57 0.143 L43 1.051 L43 0.00108 L43 0.00219 L45 0.00207 L24 Min -0.209 L45 -0.165 L55 -1.051 L55 -0.00134 L55 -0.00221 L57 0.00031 L83 29 Max 0.135 L47 0.051 L24 1.002 L43 0.00414 L43 0.00500 L45 0.00236 L60 Min -0.140 L82 0.013 L83 -1.002 L55 -0.00440 L55 -0.00501 L57 0.00058 L47 30 Max 0.136 L48 0.015 L22 1.046 L19 0.00558 L19 0.00159 L20 0.00077 L58 Min -0.140 L82 0.003 L84 -1.045 L79 -0.00531 L79 -0.00159 L80 0.00011 L48 31 Max 0.136 L48 0.001 L48 1.083 L19 0.02104 L19 0.00167 L20 0.00074 L58 Min -0.140 L82 -0.031 L58 -1.083 L79 -0.02080 L79 -0.00167 L80 0.00012 L48 41 Max 0.137 L47 -0.018 L82 1.425 L44 0.01557 L44 0.00067 L55 0.00149 L24 Min -0.139 L82 -0.048 L24 -1.426 L56 -0.01558 L56 -0.00067 L43 0.00053 L82 42 Max 0.137 L47 -0.023 L46 1.426 L44 0.01570 L45 0.00145 L55 -0.00067 L47 Min -0.139 L82 -0.071 L60 -1.426 L56 -0.01572 L57 -0.00145 L43 -0.00233 L60 43 Max 0.137 L47 -0.029 L47 1.428 L44 0.01751 L45 0.00154 L55 -0.00066 L47 Min -0.139 L82 -0.090 L60 -1.428 L56 -0.01753 L57 -0.00154 L43 -0.00231 L60 44 Max 0.137 L47 -0.022 L82 1.427 L44 0.01644 L44 0.00057 L55 0.00148 L24 Min -0.139 L82 -0.060 L24 -1.427 L56 -0.01646 L56 -0.00057 L43 0.00053 L82 84 Max 0.139 L48 0.001 L83 1.050 L21 0.02080 L21 0.00094 L79 -0.00012 L83 Min -0.136 L83 -0.030 L24 -1.050 L81 -0.02056 L81 -0.00094 L19 -0.00074 L24 85 Max 0.139 L48 0.000 L83 1.050 L21 0.02430 L21 0.00095 L79 -0.00012 L83 Min -0.136 L83 -0.036 L24 -1.050 L81 -0.02407 L81 -0.00095 L19 -0.00072 L24 93 Max 0.138 L48 -0.008 L84 1.007 L19 0.02165 L19 0.00025 L43 0.00098 L22 Min -0.139 L83 -0.041 L19 -1.007 L79 -0.02164 L79 -0.00025 L55 0.00018 L84 94 Max 0.138 L48 -0.018 L84 1.026 L19 0.04414 L19 0.00047 L80 0.00076 L22 Min -0.139 L83 -0.090 L22 -1.026 L79 -0.04414 L79 -0.00047 L20 0.00014 L84 95 Max 0.136 L47 -0.111 L47 1.662 L45 0.06180 L45 0.00179 L20 0.00039 L24 Min -0.140 L82 -0.435 L60 -1.662 L57 -0.06194 L57 -0.00179 L80 0.00007 L82 43 of 252 96 Max 0.136 L47 -0.114 L47 1.709 L45 0.06257 L45 0.00117 L20 -0.00004 L47 Min -0.139 L82 -0.436 L60 -1.710 L57 -0.06268 L57 -0.00117 L80 -0.00036 L60 97 Max 0.136 L47 -0.114 L47 1.710 L45 0.06191 L45 0.00114 L55 -0.00006 L47 Min -0.139 L82 -0.432 L60 -1.710 L57 -0.06203 L57 -0.00114 L43 -0.00047 L60 98 Max 0.137 L47 -0.106 L47 1.678 L45 0.05360 L45 0.00166 L55 -0.00025 L47 Min -0.139 L82 -0.388 L60 -1.678 L57 -0.05368 L57 -0.00166 L43 -0.00114 L60 99 Max 0.136 L47 -0.110 L47 1.648 L45 0.06091 L45 0.00189 L20 0.00049 L24 Min -0.140 L82 -0.432 L60 -1.649 L57 -0.06106 L57 -0.00188 L80 0.00011 L82 100 Max 0.136 L47 -0.096 L47 1.515 L45 0.05105 L45 0.00311 L45 0.00115 L60 Min -0.140 L82 -0.387 L60 -1.516 L57 -0.05122 L57 -0.00311 L57 0.00033 L83 101 Max 0.138 L47 -0.096 L82 1.503 L21 0.02315 L45 0.00163 L80 0.00006 L24 Min -0.138 L82 -0.292 L24 -1.502 L81 -0.02329 L57 -0.00163 L20 -0.00010 L59 102 Max 0.138 L47 -0.094 L82 1.481 L21 0.02063 L45 0.00099 L80 0.00048 L24 Min -0.138 L82 -0.278 L24 -1.481 L81 -0.02073 L57 -0.00099 L20 0.00011 L82 103 Max 0.138 L47 -0.096 L82 1.503 L21 0.02353 L45 0.00172 L80 0.00000 L48 Min -0.138 L82 -0.293 L24 -1.503 L81 -0.02367 L57 -0.00172 L20 -0.00015 L59 104 Max 0.138 L47 -0.088 L82 1.488 L21 0.02606 L45 0.00236 L80 -0.00021 L43 Min -0.138 L82 -0.280 L24 -1.488 L81 -0.02622 L57 -0.00236 L20 -0.00047 L59 Maximum Horizontal Distance for Adjacent Structure Transverse Seismic Deflection = 1.710 in* 1.5 = 2.57 in [R=1.5, Cd = 1.5 and 0 = 1.5] Longitudinal Seismic Deflection = 0.209 in* 1.5 = 0.314 in [R=3.0, Cd = 1.5 and C = 1.5] (E) Metal Building Deflection(assumed) = 0.025 H = 0.025 * 219 in = 5.475 in Minimum Transverse Clearance is 2.57" + 5.475" = 8.05"-Use 9 inches. Minimum Longitudinal Clearance is 0.314" + 5.475" = 5.79"-Use 6 inches. LRFD Forces Envelope Note.- lc is the controlling load condition Forces envelope for . L01=1.2D+1.2Cd 1+1.6Cv1+1.6Ci 1+1.6Cs1+1.6Cls L26=1.2D+1.2Cd2+Ehs2-Ehv2 L02=1.2D+1.2Cd2+1.6Cv2+1.6Ci2+1.6Cs2+1.6C1s L27=1.2D+1.2Cd3+Ehs3-Ehv3 L03=1.2D+1.2Cd3+1.6Cv3+1.6Ci3+1.6Cs3+1.6C1s L28=1.2D+1.2Cd1+Ehl1-Ehv1 L04=1.2D+1.2Cd1+1.6Cv1+1.6Ci1-1.6Cs1+1.6C1s L29=1.2D+1.2Cd2+Eh12-Ehv2 L05=1.2D+1.2Cd2+1.6Cv2+1.6C12-1.6Cs2+1.6Cls L30=1.2D+1.2Cd3+Eh13-Ehv3 L06=1.2D+1.2Cd3+1.6Cv3+1.6Ci3-1.6Cs3+1.6C1s L31=0.9D+0.9Cd 1+Ehs1 L07=1.2D+1.2Cd1+1.6Cv1+1.6C11-1.6Cs1-1.6CIs L32=0.9D+0.9Cd2+Ehs2 L08=1.2D+1.2Cd2+1.6Cv2+1.6Ci2-1.6Cs2-1.6CIs L33=0.9D+0.9Cd3+Ehs3 L09=1.2D+1.2Cd3+1.6Cv3+1.6Ci3-1.6Cs3-1.6CIs L34=0.9D+0.9Cd1+Ehl1 Li 0=1.2D+1.2Cd1+1.6Cv1+1.6Ci1+1.6Cs1-1.6CIs L35=0.9D+0.9Cd2+Eh12 L11=1.2D+1.2Cd2+1.6Cv2+1.6Ci2+1.6Cs2-1.6CIs L36=0.9D+0.9Cd3+Ehl3 L12=1.2D+1.2Cd3+1.6Cv3+1.6Ci3+1.6Cs3-1.6CIs L37=0.9D+0.9Cd1+Ehsl+Ehv1 L13=1.2D+1.2Cd1+Ehs1 L38=0.9D+0.9Cd2+Ehs2+Ehv2 L14=1.2D+1.2Cd2+Ehs2 L39=0.9D+0.9Cd3+Ehs3+Ehv3 L15=1.2D+1.2Cd3+Ehs3 L40=0.9D+0.9Cd1+Ehl1+Ehv1 L16=1.20+1.2Cd1+Ehl1 L41=0.9D+0.9Cd2+Eh12+Ehv2 L17=12D+1.2Cd2+Eh12 L42=0.9D+0.9Cd3+Eh13+Ehv3 L18=1.2D+1.2Cd3+Eh13 L43=0.9D+0.9Cd1+Ehs1-Ehv1 [19=1.2D+1.2Cd 1+Ehs 1+Ehv1 L44=0.9D+0.9Cd2+Ehs2-Ehv2 L20=1.2D+1.2Cd2+Ehs2+Ehv2 L45=0.9D+0.9Cd3+Ehs3-Ehv3 L21=1.2D+1.2Cd3+Ehs3+Ehv3 L46=0.9D+0.9Cd 1+EhI l-Ehv1 L22=1.20+1.2Cd1+Ehll+Ehv1 L47=0.9D+0.9Cd2+Eh12-Ehv2 L23=1.2D+1.2Cd2+Ehl2+Ehv2 L48=0.9D+0.9Cd3+Eh13-Ehv3 L24=1.2D+1.2Cd3+Eh13+Ehv3 L49=1.2D+12Cd1-Ehs1 L25=1.2D+1.2Cd1+Ehs1-Ehv1 L50=1.2D+1.2Cd2-Ehs2 44 of 252 L51=1.20+1.2Cd3-Ehs3 RC26=1.2D+1.2Cd2+Ehs2-Ehv2 L52=1.20+1.2Cd1-Ehl1 RC27=1.2D+1.2Cd3+Ehs3-Ehv3 L53=1.20+1.2Cd2-Eh12 RC28=1.20+1.2Cd1+Ehll-Ehv1 L54=1.2D+1.2Cd3-Eh13 RC29=1.20+1.2Cd2+Eh12-Ehv2 L55=1.2D+1.2Cd1-Ehsl+Ehv1 RC30=1.2D+1.2Cd3+Eh13-Ehv3 L56=1.2D+1.2Cd2-Ehs2+Ehv2 RC31=0.9D+0.9Cd1+Ehs1 L57=1.2D+1.2Cd3-Ehs3+Ehv3 RC32=0.9D+0.9Cd2+Ehs2 L58=1.20+1.2Cd 1-EhI1+Ehv1 RC33=0.9D+0.9Cd3+Ehs3 L59=1.20+1.2Cd2-Eh12+Ehv2 RC34=0.9D+0.9Cdl+Ehl1 L60=1.2D+1.2Cd3-Eh13+Ehv3 RC35=0.9D+0.9Cd2+Eh12 L61=1.2D+1.2Cd 1-Ehsl-Ehv1 RC36=0.9D+0.9Cd3+Eh13 L62=1.2D+1.2Cd2-Ehs2-Ehv2 RC37=0.9D+0.9Cd1+Ehsl+Ehv1 L63=1.2D+1.2Cd3-Ehs3-Ehv3 RC38=0.9D+0.9Cd2+Ehs2+Ehv2 L64=1.20+1.2Cd 1-Ehil-Ehv1 RC39=0.9D+0.9Cd3+Ehs3+Ehv3 L65=1.2D+1.2Cd2-Eh12-E hv2 RC40=0.9D+0.9Cd1+Ehll+Ehv1 L66=1.20+1.2Cd3-Eh13-Ehv3 RC41=0.9D+0.9Cd2+Eh12+Ehv2 L67=0.9D+0.9Cd 1-Ehs 1 RC42=0.9D+0.9Cd3+Eh 13+Ehv3 L68=0.9D+0.9Cd2-Ehs2 RC43=0.9D+0.9Cd1+Ehs1-Ehv1 L69=0.9D+0.9Cd3-Ehs3 RC44=0.9D+0.9Cd2+Ehs2-Ehv2 L70=0.9D+0.9Cd 1-Eh I1 RC45=0.9D+0.9Cd3+Ehs3-Ehv3 L71=0.9D+0.9Cd2-Eh12 RC46=0.9D+0.9Cd1+EhI1-Ehv1 L72=0.9D+0.9Cd3-Eh13 RC47=0.9D+0.9Cd2+Eh12-Ehv2 L73=0.9D+0.9Cd 1-Ehs 1+Ehv1 RC48=0.9D+0.9Cd3+Eh13-Ehv3 L74=0.9D+0.9Cd2-Ehs2+Ehv2 RC49=1.2D+1.2Cd1-Ehs1 L75=0.9D+0.9Cd3-Ehs3+Ehv3 RC50=1.2D+1.2Cd2-Ehs2 L76=0.9D+0.9Cd 1-Ehl1+Ehv1 RC51=1.2D+1.2Cd3-Ehs3 L77=0.9D+0.9Cd2-Eh12+Ehv2 RC52=1.2D+1.2Cd1-Ehl1 L78=0.9D+0.9Cd3-Eh13+Ehv3 RC53=1.2D+1.2Cd2-Eh12 L79=0.9D+0.9Cd 1-Ehs 1-Ehv1 RC54=1.2D+1.2Cd3-Eh13 L80=0.9D+0.9Cd2-Ehs2-Ehv2 RC55=1.2D+1.2Cd 1-Ehs1+Ehv1 L81=0.9D+0.9Cd3-Ehs3-E hv3 RC56=1.2D+1.2Cd2-Ehs2+Ehv2 L82=0.9D+0.9Cd1-Eh1l-Ehv1 RC57=1.20+1.2Cd3-Ehs3+Ehv3 L83=0.9D+0.9Cd2-Eh12-Ehv2 RC58=1.20+1.2Cd 1-EhI1+Ehv1 L84=0.9D+0.9Cd3-Eh13-Ehv3 RC59=1.20+1.2Cd2-Eh12+Ehv2 RC01=1.2D+1.2Cd 1+1.6Cv1+1.6Ci 1+1.6Cs 1+1.6CIs RC60=1.2D+1.2Cd3-Eh13+Ehv3 RCO2=1.20+1.2Cd2+1.6Cv2+1.6C12+1.6Cs2+1.6CIs RC61=1.2D+1.2Cd 1-Ehsl-Ehv1 RC03=1.20+1.2Cd3+1.6Cv3+1.6Ci3+1.6Cs3+1.6CIs RC62=1.2D+1.2Cd2-Ehs2-Ehv2 RC04=1.20+1.2Cd 1+1.6Cv1+1.6Ci 1-1.6Cs1+1.6C1s RC63=1.2D+1.2Cd3-Ehs3-Ehv3 RC05=1.20+1.2Cd2+1.6Cv2+1.6Ci2-1.6Cs2+1.6CIs RC64=1.2D+1.2Cd1-Ehll-Ehv1 RC06=1.20+1.2Cd3+1.6Cv3+1.6C13-1.6Cs3+1.6CIs RC65=1.20+1.2Cd2-Eh12-Ehv2 RC07=1.20+1.2Cd 1+1.6Cv1+1.6Ci 1-1.6Cs 1-1.6CIs RC66=1.20+1.2Cd3-Eh13-Ehv3 RC08=1.2D+1.2Cd2+1.6Cv2+1.6Ci2-1.6Cs2-1.6CIs RC67=0.9D+0.9Cd1-Ehs1 RC09=1.2D+1.2Cd3+1.6Cv3+1.6Ci3-1.6Cs3-1.6CIs RC68=0.9D+0.9Cd2-Ehs2 RC10=1.2D+1.2Cd 1+1.6Cv1+1.6Ci 1+1.6Cs 1-1.6CIs RC69=0.9D+0.9Cd3-Ehs3 RC11=1.2D+1.2Cd2+1.6Cv2+1.6Ci2+1.6Cs2-1.6CIs RC70=0.9D+0.9Cd1-Ehl1 RC12=1.2D+1.2Cd3+1.6Cv3+1.6Ci3+1.6Cs3-1.6CIs RC71=0.9D+0.9Cd2-Eh12 RC 13=1.2D+1.2Cd 1+Ehs 1 RC72=0.9D+0.9Cd3-Eh13 RC14=1.2D+1.2Cd2+Ehs2 RC73=0.9D+0.9Cd 1-Ehs1+Ehv1 RC15=1.2D+1.2Cd3+Ehs3 RC74=0.9D+0.9Cd2-Ehs2+Ehv2 RC16=1.20+1.2Cd 1+Ehl l RC75=0.9D+0.9Cd3-Ehs3+Ehv3 RC17=1.20+1.2Cd2+Eh12 RC76=0.9D+0.9Cd 1-EhI1+Ehv1 RC18=1.20+1.2Cd3+Eh13 RC77=0.9D+0.9Cd2-Eh12+Ehv2 RC19=1.20+1.2Cd 1+Ehs 1+Ehv1 RC78=0.9D+0.9Cd3-Eh13+Ehv3 RC20=1.2D+1.2Cd2+Ehs2+Ehv2 RC79=0.9D+0.9Cd1-Ehsl-Ehv1 RC21=1.20+1.2Cd3+Ehs3+Ehv3 RC80=0.9D+0.9Cd2-Ehs2-Ehv2 RC22=1.2D+1.2Cd 1+Ehl1+Ehv1 RC81=0.9D+0.9Cd3-Ehs3-Ehv3 RC23=1.20+1.2Cd2+Eh12+Ehv2 RC82=0.9D+0.9Cd1-Eh11-Ehv1 RC24=1.20+1.2Cd3+Eh13+Ehv3 RC83=0.9D+0.9Cd2-Eh12-Ehv2 RC25=1.20+1.2Cd 1+Ehs 1-Ehv1 RC84=0.9D+0.9Cd3-Eh13-Ehv3 MEMBER 1 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 0.00 L16 0.00 L09 0.00 L39 0.00 LO1 0.00 L51 0.00 L66 Min 0.00 L52 0.00 L54 0.00 L81 0.00 LO1 0.00 L57 0.00 L06 50% Max 0.01 L76 -0.03 L83 0.02 L39 0.00 LO1 0.00 L51 -0.01 L82 Min -0.01 L47 -0.05 L60 -0.02 L81 0.00 LO1 0.00 L39 -0.01 L57 45 of 252 100% Max 0.02 L76 -0.06 L83 0.04 L39 0.00 L01 0.01 L81 -0.02 L82 Min -0.02 L47 -0.10 L60 -0.04 L81 0.00 LO1 -0.01 L39 -0.03 L57 MEMBER 10 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip'ft] [Kip*ft] 0% Max 0.00 L36 0.00 L07 0.00 L51 0.00 LO1 0.00 L63 0.00 L27 Min 0.00 L58 0.00 L02 0.00 L09 0.00 LO1 0.00 L75 0.00 L60 50% Max 0.01 L83 -0.03 L44 0.02 L25 0.00 LO1 0.00 L63 -0.01 L80 Min -0.01 L47 -0.06 L58 -0.02 L75 0.00 LO1 0.00 L15 -0.01 L60 100% Max 0.02 L83 -0.07 L44 0.04 L25 0.00 L01 0.01 L49 -0.02 L80 Min -0.02 L47 -0.12 L58 -0.04 L75 0.00 L01 -0.01 L15 -0.04 L60 MEMBER 16 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip'ft] [Kip*ft] [Kip*ft] 0% Max -0.30 L44 30.22 L09 3.04 L57 2.06 L03 23.53 L81 0.00 L12 Min -3.92 LO6 2.78 L46 -3.04 L45 -2.06 L09 -23.53 L21 0.00 LO6 50% Max -0.30 L44 30.03 L09 2.97 L57 2.06 L03 20.15 L81 33.89 L09 Min -3.92 L06 2.66 L46 -2.97 L45 -2.06 L09 -20.15 L21 3.06 L46 100% Max -0.30 L44 29.85 L09 2.90 L57 2.06 L03 16.85 L81 67.58 109 Min -3.92 L06 2.54 L46 -2.90 L45 -2.06 L09 -16.85 L21 5.98 L46 MEMBER 19 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip•ft] 0% Max 12.67 L57 8.32 L45 0.22 L44 0.01 L09 2.36 L44 0.00 L06 Min -11.76 L45 -8.34 L57 -0.22 L56 0.00 L59 -2.36 L56 0.00 L21 50% Max 12.72 L57 8.25 L45 0.22 L44 0.01 L09 1.81 L43 20.71 L45 Min -11.81 L45 -8.47 L57 -0.22 L56 0.00 L59 -1.82 L55 -21.01 L57 100% Max 12.76 L57 8.17 L45 0.22 L44 0.01 L09 1.38 L43 41.23 L45 Min -11.85 L45 -8.60 L57 -0.22 L56 0.00 L59 -1.39 L55 -42.35 L57 MEMBER 20 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip'ft] [Kip*ft] [Kip'ft] 0% Max 12.71 L55 8.41 L43 0.29 L56 0.02 L12 3.79 L56 0.00 L61 Min -11.80 L43 -8.43 L55 -0.28 L44 0.00 L83 -3.78 L44 0.00 L19 50% Max 12.76 L55 8.34 L43 0.29 L56 0.02 L12 3.08 L56 20.93 L43 Min -11.85 L43 -8.56 L55 -0.28 L44 0.00 L83 -3.07 L44 -21.23 L55 100% Max 12.80 L55 8.26 L43 0.29 L56 0.02 L12 2.37 L56 41.68 L43 Min -11.90 L43 -8.69 L55 -0.28 L44 0.00 L83 -2.35 L44 -42.79 L55 MEMBER 21 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip`ft] [Kip'ft] [Kip*ft] 0% Max 0.48 L44 4.78 L57 0.22 L44 0.00 L03 1.38 L43 42.08 L45 Min -0.86 L56 -3.95 L45 -0.22 L56 0.00 L08 -1.39 L55 -43.22 L57 50% Max 0.29 L44 4.25 L57 0.22 L44 0.00 L03 0.96 L80 2.06 L58 Min -0.67 L56 -4.25 L45 -0.22 L56 0.00 L08 -0.96 L20 1.07 L45 100% Max 0.10 L44 3.95 L81 0.22 L44 0.00 L03 3.18 L80 42.14 L81 Min -0.48 L56 -4.78 L21 -0.22 L56 0.00 LO8 -3.18 L20 -43.23 L21 46 of 252 MEMBER 22 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 13.40 L21 8.61 L21 0.22 L44 0.00 L06 3.18 L56 41.27 L81 Min -12.50 L81 -8.18 L81 -0.22 L56 -0.01 L24 -3.18 L44 -42.36 L21 50% Max 13.35 L21 8.47 L21 0.22 L44 0.00 L06 3.73 L56 20.73 L81 Min -12.45 L81 -8.25 L81 -0.22 L56 -0.01 L24 -3.73 L44 -21.02 L21 100% Max 13.30 L21 8.34 L21 0.22 L44 0.00 L06 4.29 L56 0.00 L01 Min -12.40 L81 -8.33 L81 -0.22 L56 -0.01 L24 -4.28 L44 0.00 L01 MEMBER 29 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip`ft] 0% Max 0.90 L45 4.83 L55 0.29 L56 0.02 L06 2.37 L56 42.54 L43 Min -1.28 L57 -4.00 L43 -0.28 L44 0.00 L44 -2.36 L44 -43.67 L55 50% Max 0.71 L45 4.30 L55 0.29 L56 0.02 L06 1.60 L21 2.13 L57 Min -1.10 L09 -4.30 L43 -0.28 L44 0.00 L44 -1.60 L81 0.97 L45 100% Max 0.65 L03 4.00 L79 0.29 L56 0.02 L06 4.33 L21 42.58 L79 Min -1.10 L09 -4.83 L19 -0.28 L44 0.00 L44 -4.30 L81 -43.70 L19 MEMBER 30 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip•ft] [Kip*ft] [Kip`ft] 0% Max 13.63 L19 8.70 L19 0.29 L56 0.03 L03 4.33 L21 41.71 L79 Min -12.73 L79 -8.27 L79 -0.28 L44 0.00 L47 -4.30 L81 -42.82 L19 50% Max 13.58 L19 8.56 L19 0.29 L56 0.03 L03 5.01 L21 20.95 L79 Min -12.68 L79 -8.34 L79 -0.28 L44 0.00 L47 -4.98 L81 -21.25 L19 100% Max 13.54 L19 8.43 L19 0.29 L56 0.03 L03 5.69 L21 0.00 L01 Min -12.63 L79 -8.42 L79 -0.28 L44 0.00 L47 -5.65 L81 0.00 L01 MEMBER 33 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 0.02 L16 0.12 L19 0.04 L49 0.00 L01 0.01 L49 -0.02 L43 Min -0.02 L52 0.07 L43 -0.04 L13 0.00 L01 -0.01 L13 -0.04 L19 50% Max 0.01 L16 0.06 L19 0.02 L49 0.00 L01 0.00 L49 -0.01 L43 Min -0.01 L52 0.03 L43 -0.02 L13 0.00 L01 0.00 L13 -0.01 L19 100% Max 0.00 L01 0.00 L01 0.00 L01 0.00 L01 0.00 L01 0.00 L01 Min 0.00 L01 0.00 L01 0.00 L01 0.00 L01 0.00 L01 0.00 L01 MEMBER 34 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 0.02 L16 0.10 L19 0.04 L49 0.00 L01 0.01 L49 -0.02 L43 Min -0.02 L52 0.06 L43 -0.04 L13 0.00 L01 -0.01 L13 -0.03 L19 50% Max 0.01 L16 0.05 L19 0.02 L49 0.00 L01 0.00 L49 -0.01 L43 Min -0.01 L52 0.03 L43 -0.02 L13 0.00 L01 0.00 L13 -0.01 L19 100% Max 0.00 L01 0.00 L01 0.00 L01 0.00 L01 0.00 L01 0.00 L01 Min 0.00 L01 0.00 L01 0.00 L01 0.00 L01 0.00 L01 0.00 L01 MEMBER 37 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 0.22 L08 -1.14 L84 1.72 L01 2.32 L04 4.99 L10 20.79 L58 Min -4.33 L02 -6.04 L22 -1.71 L07 -2.32 L10 -5.28 L04 -1.21 L48 50% Max 0.22 L08 -1.17 L84 1.72 L01 2.32 L04 4.42 L10 18.86 L58 Min -4.33 L02 -6.09 L22 -1.71 L07 -2.32 L10 -4.72 L04 -1.66 L48 47 of 252 100% Max 0.22 L08 -1.20 L84 1.72 LO1 2.32 L04 3.85 L10 16.91 L58 Min -4.33 L02 -6.15 L22 -1.71 L07 -2.32 L10 -4.15 L04 -2.11 L48 MEMBER 38 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 0.20 L11 -2.29 L83 2.38 L19 2.54 L04 6.30 L10 123.17 L07 Min -6.03 LO6 -35.48 LO1 -2.38 L79 -2.55 L10 -6.60 L04 2.20 L47 50% Max 0.20 L11 -2.32 L83 2.40 L19 2.54 L04 5.59 L10 111.41 L07 Min -6.03 L06 -35.53 LO1 -2.40 L79 -2.55 L10 -5.90 L04 1.37 L47 100% Max 0.20 L11 -2.36 L83 2.42 L19 2.54 L04 4.89 L10 99.63 L07 Min -6.03 L06 -35.58 LO1 -2.42 L79 -2.55 L10 -5.19 L04 0.54 L47 MEMBER 41 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 0.20 L11 -1.75 L83 1.76 L21 2.16 L06 13.38 L43 248.35 L09 Min -6.03 L06 -29.06 L03 -1.76 L81 -2.16 L12 -13.38 L55 13.44 L47 50% Max 0.20 L11 -1.80 L83 1.79 L21 2.16 LO6 12.82 L43 233.91 L09 Min -6.03 LO6 -29.14 L03 -1.79 L81 -2.16 L12 -12.82 L55 12.48 L47 100% Max 0.20 L11 -1.85 L83 1.83 L21 2.16 L06 12.25 L43 219.70 L07 Min -6.03 LO6 -29.22 L03 -1.82 L81 -2.16 L12 -12.25 L55 11.48 L47 MEMBER 42 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 0.22 L08 -0.67 L84 0.65 L44 0.41 L04 8.99 L10 41.01 L08 Min -4.33 L02 -4.45 L05 -0.65 L56 -0.40 L10 -9.25 L04 4.40 L48 50% Max 0.22 L08 -0.70 L84 0.67 L44 0.41 L04 8.98 L10 39.86 L58 Min -4.33 L02 -4.49 L05 -0.67 L56 -0.40 L10 -9.23 L04 4.11 L48 100% Max 0.22 L08 -0.74 L84 0.69 L44 0.41 L04 8.96 L10 39.16 L58 Min -4.33 L02 -4.54 L05 -0.69 L56 -0.40 L10 -9.22 L04 3.81 L48 MEMBER 43 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 0.22 LO8 -0.11 L82 0.56 L02 0.30 L05 7.90 L43 58.79 L08 Min -4.33 L02 -3.81 L05 -0.57 L08 -0.30 L11 -7.90 L55 7.33 L48 50% Max 0.22 L08 -0.31 L82 0.56 L02 0.30 L05 8.25 L43 50.26 L08 Min -4.33 L02 -4.13 L05 -0.57 L08 -0.30 L11 -8.25 L55 6.10 L48 100% Max 0.22 L08 -0.52 L82 0.65 L44 0.30 L05 8.99 L10 41.01 LO8 Min -4.33 L02 -4.45 L05 -0.65 L56 -0.30 L11 -9.25 L04 4.40 L48 MEMBER 44 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 0.20 L11 -1.22 L82 1.58 L03 2.16 L06 18.63 L45 376.44 L09 Min -6.03 L06 -28.32 L03 -1.56 L09 -2.16 L12 -18.66 L57 20.97 L47 50% Max 0.20 L11 -1.46 L82 1.62 L21 2.16 L06 15.13 L45 312.81 L09 Min -6.03 L06 -28.69 L03 -1.62 L81 -2.16 L12 -15.16 L57 17.47 L47 100% Max 0.20 L11 -1.69 L82 1.76 L21 2.16 L06 13.38 L43 248.35 L09 Min -6.03 L06 -29.06 L03 -1.76 L81 -2.16 L12 -13.38 L55 13.44 L47 48 of 252 MEMBER 45 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip'ft] [Kip*ft] [Kip*ft] 0% Max -0.30 L44 -2.11 L82 2.56 L44 1.88 L05 18.79 L57 62.92 102 Min -3.92 L06 -27.78 L02 -2.56 L56 -1.88 L11 -18.79 L45 4.91 L82 50% Max -0.30 L44 -2.23 L82 2.63 L44 1.88 L05 21.12 L57 31.56 L02 Min -3.92 L06 -27.97 L02 -2.63 L56 -1.88 L11 -21.11 L45 2.47 L82 100% Max -0.30 L44 -2.35 L82 2.70 L44 1.88 L05 23.52 L81 0.11 L29 Min -3.92 L06 -28.15 L02 -2.70 L56 -1.88 L11 -23.52 L21 -0.11 L77 MEMBER 46 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max -0.30 L44 29.85 L09 2.90 L57 2.06 L03 16.85 L81 68.12 106 Min -4.81 L06 2.54 L46 -2.90 L45 -2.06 L09 -16.85 L21 5.98 L46 50% Max -0.30 L44 29.79 L09 2.88 L57 2.06 L03 15.89 L81 77.98 L06 Min -4.81 L06 2.51 L46 -2.88 L45 -2.06 109 -15.89 L21 6.82 L46 100% Max -0.30 L44 29.74 L09 2.86 L57 2.06 L03 14.93 L81 87.83 L06 Min -4.81 L06 2.47 L46 -2.85 L45 -2.06 L09 -14.94 L21 7.65 L46 MEMBER 47 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max -0.30 L44 29.74 L09 2.86 L57 2.06 L03 14.93 L81 88.54 L06 Min -5.42 L06 2.45 L47 -2.85 L45 -2.06 L09 -14.94 L21 7.65 L46 50% Max -0.30 L44 29.37 L09 2.72 L57 2.06 L03 8.67 L81 154.55 L06 Min -5.42 LO6 2.21 L47 -2.72 L45 -2.06 L09 -8.67 L21 12.95 L46 100% Max -0.30 L44 29.00 L09 2.58 L57 2.06 L03 7.89 L11 219.73 LO6 Min -5.42 LO6 1.98 L47 -2.58 L45 -2.06 L09 -7.89 L05 17.72 L46 MEMBER 48 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip'ft] [Kip*ft] [Kip*ft] 0% Max -0.30 L44 -2.04 L82 2.04 L44 0.92 LO5 17.45 L57 73.98 L11 Min -4.81 L09 -15.93 L02 -2.04 L56 -0.92 L11 -17.44 L45 6.30 L82 50% Max -0.30 L44 -2.08 L82 2.06 L44 0.92 L05 18.11 L57 68.74 L11 Min -4.81 L09 -15.98 L02 -2.06 L56 -0.92 L11 -18.11 L45 5.61 L82 100% Max -0.30 L44 -2.11 L82 2.08 L44 0.92 L05 18.79 L57 63.47 L11 Min -4.81 L09 -16.03 L02 -2.08 L56 -0.92 L11 -18.79 L45 4.91 L82 MEMBER 49 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max -0.30 L44 -1.57 L82 1.72 L21 0.49 L06 11.37 L06 110.87 L11 Min -5.42 L09 -7.89 L02 -1.71 L81 -0.48 L12 -11.22 L12 14.44 L82 50% Max -0.30 L44 -1.81 L82 1.86 L21 0.49 L06 13.12 L57 93.19 L11 Min -5.42 L09 -8.26 L02 -1.85 L81 -0.48 L12 -13.11 L45 10.64 L82 100% Max -0.30 L44 -2.04 L82 1.99 L21 0.49 L06 17.45 L57 74.69 L11 Min -5.42 L09 -8.62 L02 -1.99 L81 -0.48 L12 -17.44 L45 6.30 L82 MEMBER 50 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 0.20 L11 29.00 L09 2.58 L57 2.06 L03 7.89 L11 220.43 L06 Min -6.03 L06 0.32 L02 -2.58 L45 -2.06 L09 -7.89 L05 17.72 L46 50% Max 0.20 L11 28.28 L09 2.30 L57 2.06 L03 8.01 L45 345.38 LO6 Min -6.03 L06 -0.40 L02 -2.30 L45 -2.06 L09 -8.02 L57 25.51 L46 49 of 252 100% Max 0.20 L11 27.56 L09 2.10 L06 2.06 L03 17.54 L45 467.16 L06 Min -6.03 L06 -1.12 L02 -2.09 L12 -2.06 L09 -17.55 L57 29.91 L47 MEMBER 78 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 0.22 L08 25.35 L08 1.77 L80 1.82 L02 11.96 L79 0.00 L08 Min -4.33 L02 1.23 L48 -1.77 L20 -1.81 L08 -11.97 L19 0.00 L11 50% Max 0.22 L08 25.19 L08 1.71 L80 1.82 L02 10.24 L79 28.43 L08 Min -4.33 L02 1.13 L48 -1.71 L20 -1.81 L08 -10.25 L19 1.33 L48 100% Max 0.22 LO8 25.04 L08 1.65 L80 1.82 L02 10.29 L11 56.69 L08 Min -4.33 L02 1.03 L48 -1.65 L20 -1.81 L08 -10.29 L05 2.55 L48 MEMBER 82 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 0.12 L05 28.74 L07 1.92 L55 2.13 L10 9.57 L81 0.00 L07 Min -4.44 L12 1.42 L84 -1.92 L43 -2.13 L04 -9.57 L21 0.00 LO1 50% Max 0.12 L05 28.15 L07 1.70 L55 2.13 L10 6.45 LO6 119.10 L07 Min -4.44 L12 1.04 L84 -1.70 L43 -2.13 L04 -6.39 L12 5.16 L84 100% Max 0.12 L05 27.55 L07 1.65 L04 2.13 L10 8.88 LO1 235.72 L07 Min -4.44 L12 0.67 L84 -1.65 L10 -2.13 L04 -8.89 L07 8.75 L84 MEMBER 83 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max -0.02 L80 -0.26 LO6 1.15 104 1.55 L10 14.06 L07 324.72 L07 Min -3.83 L12 -19.61 L07 -1.15 L10 -1.55 L04 -14.04 LO1 10.83 L84 50% Max -0.02 L80 -0.32 L84 1.15 104 1.55 L10 13.35 L07 312.43 107 Min -3.83 L12 -19.70 L07 -1.15 L10 -1.55 L04 -13.32 LO1 10.65 L84 100% Max -0.02 L80 -0.37 L84 1.15 104 1.55 L10 12.63 L07 300.09 107 Min -3.83 L12 -19.79 L07 -1.15 L10 -1.55 104 -12.60 LO1 10.43 L84 MEMBER 84 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max -0.02 L80 -0.16 L06 0.65 105 0.98 L10 14.50 107 332.19 L07 Min -3.22 L12 -12.22 107 -0.65 L11 -0.98 104 -14.47 LO1 10.98 L84 50% Max -0.02 L80 -0.21 106 0.65 105 0.98 L10 14.28 107 328.11 L07 Min -3.22 L12 -12.27 L07 -0.65 L11 -0.98 104 -14.25 101 10.91 L84 100% Max -0.02 L80 -0.26 LO6 0.65 105 0.98 L10 14.06 107 324.02 L07 Min -3.22 L12 -12.31 L07 -0.65 L11 -0.98 L04 -14.04 LO1 10.83 L84 MEMBER 85 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max -0.02 L80 0.47 L06 0.65 L05 0.29 L11 13.69 104 331.86 L07 Min -3.03 L48 -3.06 L08 -0.65 L11 -0.29 L05 -13.65 L10 10.97 L84 50% Max -0.02 L80 0.38 L06 0.65 L05 0.29 L11 13.80 L04 331.93 L07 Min -3.01 L48 -3.15 108 -0.65 L11 -0.29 L05 -13.76 L10 11.08 L84 100% Max -0.02 L80 0.30 106 0.65 L05 0.29 L11 13.91 104 331.95 L07 Min -2.99 L48 -3.24 108 -0.65 L11 -0.29 L05 -13.88 L10 11.16 L84 50 of 252 MEMBER 86 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max -0.02 L80 3.06 L08 1.01 L01 0.94 L07 13.65 L10 332.19 L04 Min -3.11 L02 -12.22 L01 -1.01 L07 -0.94 L01 -13.69 L04 10.97 L84 50% Max -0.02 L80 3.01 L08 1.01 L01 0.94 L07 13.31 L10 328.11 L04 Min -3.11 L02 -12.27 L01 -1.01 L07 -0.94 L01 -13.35 L04 10.89 L84 100% Max -0.02 L80 2.97 L08 1.01 L01 0.94 L07 12.98 L10 324.02 L04 Min -3.11 L02 -12.31 L01 -1.01 L07 -0.94 L01 -13.02 L04 10.81 L84 MEMBER 87 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip`ft] [Kip*ft] 0% Max -0.02 L80 2.97 L08 1.51 L01 1.52 L07 12.98 L10 324.72 L04 Min -3.72 L02 -19.61 L01 -1.51 L07 -1.52 L01 -13.02 L04 10.81 L84 50% Max -0.02 L80 2.78 L08 1.51 L01 1.52 L07 11.02 L10 299.27 L04 Min -3.72 L02 -19.80 L01 -1.51 L07 -1.52 L01 -11.07 L04 10.39 L84 100% Max -0.02 L80 2.60 L08 1.51 L01 1.52 L07 9.07 L10 273.58 L04 Min -3.72 L02 -19.98 L01 -1.51 L07 -1.52 L01 -9.12 L04 9.82 L84 MEMBER 88 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip•ft] 0% Max 0.22 L08 2.33 L08 2.01 L01 2.09 L07 8.99 L11 235.72 104 Min -4.33 L02 -27.55 L01 -2.01 L07 -2.09 L01 -9.00 L05 8.70 L84 50% Max 0.22 L08 2.26 L08 2.01 L01 2.09 L07 9.31 L11 222.50 L04 Min -4.33 L02 -27.62 L01 -2.01 L07 -2.09 L01 -9.32 L05 8.36 L84 100% Max 0.22 L08 2.19 L08 2.01 L01 2.09 L07 9.62 L11 209.25 L04 Min -4.33 L02 -27.69 L01 -2.01 L07 -2.09 L01 -9.63 L05 8.01 L84 MEMBER 90 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 0.11 L02 8.29 L60 2.29 L57 2.59 L03 5.00 L03 22.88 L24 Min -6.03 L09 2.22 L46 -2.29 L45 -2.58 L09 -4.15 L09 0.07 L82 50% Max 0.11 L02 8.23 L60 2.27 L57 2.59 L03 5.63 L03 25.57 L24 Min -6.03 L09 2.18 L46 -2.26 L45 -2.58 L09 -4.78 L09 0.85 L82 100% Max 0.11 L02 8.17 L60 2.25 L57 2.59 L03 6.26 L03 28.24 L24 Min -6.03 L09 2.15 L46 -2.24 L45 -2.58 L09 -5.42 L09 1.61 L82 MEMBER 92 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 0.11 L02 4.94 108 1.01 L57 0.67 L03 11.94 L21 56.32 L24 Min -6.03 L09 1.68 L46 -1.01 L45 -0.67 L09 -11.88 L81 10.77 L82 50% Max 0.11 L02 4.88 L08 0.99 L57 0.67 L03 12.27 L21 57.72 L24 Min -6.03 L09 1.64 L46 -0.99 L45 -0.67 L09 -12.21 L81 11.37 L82 100% Max 0.11 L02 4.83 L08 0.97 L57 0.67 L03 12.59 L21 59.10 L24 Min -6.03 L09 1.61 L46 -0.96 L45 -0.67 L09 -12.54 L81 11.95 L82 MEMBER 93 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 0.11 L02 4.83 108 0.92 L80 0.23 L02 12.59 L21 59.32 L24 Min -6.03 L09 1.61 L46 -0.92 L20 -0.23 L08 -12.54 L81 11.95 L82 50% Max 0.11 L02 4.46 L08 0.78 L80 0.23 L02 13.79 L21 65.64 L24 Min -6.03 L09 1.37 L46 -0.78 L20 -0.23 L08 -13.74 L81 15.58 L82 51 of 252 100% Max 0.11 L02 4.09 LO8 0.64 L80 0.23 L02 14.68 L21 71.04 L24 Min -6.03 L09 1.14 L46 -0.64 L20 -0.23 L08 -14.64 L81 18.69 L82 MEMBER 94 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip`ft] 0% Max 0.11 L02 4.09 L08 0.78 L03 0.49 LO6 14.68 L21 71.26 L24 Min -6.03 L09 0.63 L48 -0.76 L09 -0.48 L12 -14.64 L81 18.69 L82 50% Max 0.11 L02 3.66 L08 0.78 L03 0.49 L06 14.38 L21 73.53 L24 Min -6.03 L09 0.35 L48 -0.76 L09 -0.48 L12 -14.33 L81 21.66 L82 100% Max 0.11 L02 3.22 L08 0.78 L03 0.49 L06 13.63 L21 81.85 L02 Min -6.03 L09 0.07 L48 -0.76 L09 -0.48 L12 -13.60 L81 23.90 L82 MEMBER 96 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip'ft] [Kip'ft] [Kip'ft] 0% Max 0.12 L05 30.85 L12 1.81 LO6 2.30 L03 5.51 L03 87.93 LO6 Min -4.44 L12 1.20 L80 -1.79 L12 -2.31 LO6 -4.66 L09 -2.13 L82 50% Max 0.12 L05 30.80 L12 1.81 LO6 2.30 L03 6.10 L03 98.14 L06 Min -4.44 L12 1.17 L80 -1.79 L12 -2.31 L06 -5.27 L09 -1.67 L82 100% Max 0.12 L05 30.75 L12 1.81 L06 2.30 L03 6.70 L03 108.34 L06 Min -4.44 L12 1.14 L80 -1.79 L12 -2.31 L06 -5.87 L09 -1.23 L82 MEMBER 98 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip`ft] [Kip*ft] [Kip`ft] 0% Max 0.12 L05 6.63 L12 0.48 L57 0.37 L03 11.00 L03 191.63 L06 Min -4.44 L12 0.74 L80 -0.47 L45 -0.37 L06 -10.29 L09 3.78 L82 50% Max 0.12 L05 6.58 L12 0.46 L57 0.37 L03 11.04 L03 193.76 LO6 Min -4.44 L12 0.71 L80 -0.46 L45 -0.37 L06 -10.34 L09 4.08 L82 100% Max 0.12 L05 6.53 L12 0.44 L57 0.37 L03 11.08 L03 195.89 L06 Min -4.44 L12 0.68 L80 -0.44 L45 -0.37 L06 -10.39 L09 4.37 L82 MEMBER 99 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip'ft] 0% Max 0.12 L05 1.35 L58 0.37 L03 0.21 L09 11.08 L03 195.89 L06 Min -4.44 L12 -0.95 L06 -0.35 L09 -0.21 L12 -10.39 L09 4.37 L82 50% Max 0.12 L05 0.99 L58 0.37 L03 0.21 L09 10.24 L03 193.39 L06 Min -4.44 L12 -1.27 L06 -0.35 L09 -0.21 L12 -9.61 L09 6.05 L82 100% Max 0.12 L05 0.64 L58 0.37 L03 0.21 L09 9.40 L03 190.17 LO6 Min -4.44 L12 -1.59 L06 -0.35 L09 -0.21 L12 -9.26 L81 7.28 L82 MEMBER 100 Station Axial Ic Shear V2 Ic Shear V3 is Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip'ft] 0% Max 0.12 L05 0.64 L58 0.87 L03 0.79 L09 9.40 L03 190.17 L06 Min -4.44 L12 -8.89 L06 -0.85 L09 -0.79 L12 -9.26 L81 7.28 L82 50% Max 0.12 L05 -0.40 L82 1.01 L21 0.79 L09 4.69 L05 101.22 L06 Min -4.44 L12 -10.21 L06 -1.01 L81 -0.79 L12 -4.71 L11 7.50 L82 100% Max 0.12 L05 -1.24 L82 1.51 L21 0.79 L09 9.57 L81 0.11 L34 Min -4.44 L12 -11.53 LO6 -1.50 L81 -0.79 L12 -9.58 L21 -0.11 L52 52 of 252 MEMBER 101 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 0.22 LO8 13.29 LO8 1.44 L79 0.86 L02 10.29 L11 56.69 108 Min -4.33 L02 1.03 L48 -1.44 L19 -0.86 L08 -10.29 L05 2.55 L48 50% Max 0.22 L08 13.24 L08 1.42 L79 0.86 L02 10.43 L11 61.11 L08 Min -4.33 L02 1.00 L48 -1.42 L19 -0.86 LO8 -10.43 L05 2.89 L48 100% Max 0.22 L08 13.19 L08 1.41 L79 0.86 L02 10.58 L11 65.52 LO8 Min -4.33 L02 0.97 L48 -1.41 L19 -0.86 L08 -10.58 L05 3.22 L48 MEMBER 102 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 0.22 L08 5.89 L08 1.41 L79 0.75 LO1 10.58 L11 65.52 L08 Min -4.33 L02 0.97 L48 -1.41 L19 -0.75 L07 -10.58 L05 3.22 L48 50% Max 0.22 L08 5.57 L08 1.29 L79 0.75 LO1 10.45 L11 78.42 L08 Min -4.33 L02 0.77 L48 -1.29 L19 -0.75 L07 -10.44 L05 5.17 L48 100% Max 0.22 LO8 5.26 L08 1.17 L79 0.75 LO1 10.32 L11 90.60 L08 Min -4.33 L02 0.56 L48 -1.17 L19 -0.75 L07 -10.31 L05 6.67 L48 MEMBER 103 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip•ft] [Kip`ft] 0% Max 0.22 L08 2.64 L58 1.17 L79 0.75 LO1 10.32 L11 90.60 L08 Min -4.33 L02 -2.22 L05 -1.17 L19 -0.75 L07 -10.31 L05 6.67 L48 50% Max 0.22 L08 1.76 L58 0.96 L04 0.75 LO1 7.43 L20 76.92 L08 Min -4.33 L02 -3.02 L05 -0.95 L10 -0.75 L07 -7.43 L80 8.42 L48 100% Max 0.22 L08 0.87 L58 0.96 L04 0.75 LO1 7.90 L43 58.79 L08 Min -4.33 L02 -3.81 L05 -0.95 L10 -0.75 L07 -7.90 L55 7.33 L48 MEMBER 104 Station Axial lc Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 0.22 L08 -1.22 L48 2.03 L19 2.09 L07 10.07 L11 64.30 L04 Min -4.33 L02 -28.42 LO1 -2.03 L79 -2.09 LO1 -10.08 L05 2.88 L84 50% Max 0.22 L08 -1.32 L48 2.09 L19 2.09 L07 9.57 L79 32.24 L04 Min -4.33 L02 -28.58 LO1 -2.09 L79 -2.09 LO1 -9.58 L19 1.44 L84 100% Max 0.22 L08 -1.42 L48 2.15 L19 2.09 L07 11.96 L79 0.11 L18 Min -4.33 L02 -28.74 LO1 -2.15 L79 -2.09 LO1 -11.97 L19 -0.11 L59 MEMBER 105 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 0.22 L08 -1.16 L48 2.01 LO1 2.09 L07 10.30 L11 83.22 L04 Min -4.33 L02 -28.33 LO1 -2.01 L07 -2.09 LO1 -10.31 L05 3.68 L84 50% Max 0.22 L08 -1.19 L48 2.02 L19 2.09 L07 10.19 L11 73.77 L04 Min -4.33 L02 -28.37 LO1 -2.02 L79 -2.09 LO1 -10.20 L05 3.28 L84 100% Max 0.22 L08 -1.22 L48 2.03 L19 2.09 L07 10.07 L11 64.30 L04 Min -4.33 L02 -28.42 LO1 -2.03 L79 -2.09 LO1 -10.08 L05 2.88 L84 MEMBER 106 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 0.22 L08 -0.75 L48 2.01 LO1 2.09 L07 9.62 L11 209.25 L04 Min -4.33 L02 -27.69 LO1 -2.01 L07 -2.09 LO1 -9.63 L05 8.01 L84 50% Max 0.22 L08 -0.96 L48 2.01 LO1 2.09 L07 9.96 L11 146.59 L04 Min -4.33 L02 -28.01 LO1 -2.01 L07 -2.09 LO1 -9.97 L05 6.07 L84 53 of 252 100% Max 0.22 L08 -1.16 L48 2.01 LO1 2.09 L07 10.30 L11 83.22 L04 Min -4.33 L02 -28.33 LO1 -2.01 L07 -2.09 L01 -10.31 L05 3.68 L84 MEMBER 107 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 0.20 L11 5.80 L07 0.57 L03 1.00 L06 26.79 L45 563.40 L09 Min -6.03 L06 -12.34 L03 -0.56 L09 -1.01 L12 -26.81 L57 29.35 L47 50% Max 0.20 L11 5.74 L07 0.57 L03 1.00 LO6 26.71 L45 559.35 L09 Min -6.03 L06 -12.40 L03 -0.56 L09 -1.01 L12 -26.73 L57 29.15 L47 100% Max 0.20 L11 5.69 L07 0.57 L03 1.00 LO6 26.61 L45 555.29 L09 Min -6.03 LO6 -12.45 L03 -0.56 L09 -1.01 L12 -26.64 L57 28.95 L47 MEMBER 108 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 0.20 L11 6.54 L07 0.70 L55 0.52 LO1 25.11 L45 563.65 L06 Min -6.03 LO6 -1.97 L02 -0.70 L43 -0.53 L07 -25.13 L57 30.82 L47 50% Max 0.20 L11 6.17 L07 0.56 L55 0.52 LO1 26.11 L45 563.83 L09 Min -6.03 L06 -2.33 L02 -0.56 L43 -0.53 L07 -26.13 L57 30.35 L47 100% Max 0.20 L11 5.80 L07 0.55 L04 0.52 LO1 26.79 L45 563.40 L09 Min -6.03 L06 -2.70 L02 -0.54 L10 -0.53 L07 -26.81 L57 29.35 L47 MEMBER 109 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 0.20 L11 12.22 L09 1.10 L06 0.91 L03 24.44 L45 555.69 L06 Min -6.03 L06 -1.86 L02 -1.08 L12 -0.91 L09 -24.45 L57 30.86 L47 50% Max 0.20 L11 12.16 L09 1.10 L06 0.91 L03 24.78 L45 559.68 L06 Min -6.03 L06 -1.91 L02 -1.08 L12 -0.91 L09 -24.80 L57 30.85 L47 100% Max 0.20 L11 12.11 L09 1.10 LO6 0.91 L03 25.11 L45 563.65 L06 Min -6.03 L06 -1.97 L02 -1.08 L12 -0.91 L09 -25.13 L57 30.82 L47 MEMBER 110 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 0.20 L11 20.26 L09 1.67 L57 1.48 L03 17.54 L45 467.16 L06 Min -6.03 L06 -1.12 L02 -1.67 L45 -1.49 L09 -17.55 L57 29.91 L47 50% Max 0.20 L11 19.89 L09 1.60 L06 1.48 L03 21.15 L45 511.84 L06 Min -6.03 L06 -1.49 L02 -1.59 L12 -1.49 L09 -21.16 L57 30.65 L47 100% Max 0.20 L11 19.52 L09 1.60 L06 1.48 L03 24.44 L45 555.69 L06 Min -6.03 L06 -1.86 L02 -1.59 L12 -1.49 L09 -24.45 L57 30.86 L47 MEMBER 111 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 0.20 L11 5.69 L07 1.07 L03 1.58 L06 26.61 L45 555.29 L09 Min -6.03 L06 -19.75 L03 -1.06 L09 -1.58 L12 -26.64 L57 28.95 L47 50% Max 0.20 L11 5.32 L07 1.07 L03 1.58 L06 25.00 L45 510.93 L09 Min -6.03 L06 -20.12 L03 -1.06 L09 -1.58 L12 -25.02 L57 27.26 L47 100% Max 0.20 L11 4.95 L07 1.07 L03 1.58 L06 23.07 L45 465.74 L09 Min -6.03 L06 -20.49 L03 -1.06 L09 -1.58 L12 -23.10 L57 25.04 L47 54 of 252 MEMBER 112 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ff] [Kip*ft] [Kip*ft] 0% Max 0.20 L11 4.95 L07 1.58 L03 2.16 L06 23.07 L45 465.74 L09 Min -6.03 L06 -27.79 L03 -1.56 L09 -2.16 L12 -23.10 L57 25.04 L47 50% Max 0.20 L11 4.69 L07 1.58 L03 2.16 L06 20.93 L45 421.30 L09 Min -6.03 L06 -28.06 L03 -1.56 L09 -2.16 L12 -20.96 L57 23.14 L47 100% Max 0.20 L11 4.43 L07 1.58 L03 2.16 L06 18.63 L45 376.44 L09 Min -6.03 LO6 -28.32 L03 -1.56 L09 -2.16 L12 -18.66 L57 20.97 L47 MEMBER 113 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 0.11 L02 2.37 L08 0.78 L03 0.49 LO6 12.34 L20 95.17 102 Min -6.03 L09 -0.81 L24 -0.76 L09 -0.48 L12 -12.34 L80 26.17 L82 50% Max 0.11 L02 2.35 L08 0.78 L03 0.49 L06 12.34 L20 95.52 102 Min -6.03 L09 -0.84 L24 -0.76 L09 -0.48 L12 -12.34 L80 26.20 L82 100% Max 0.11 L02 2.32 L08 0.78 L03 0.49 L06 12.34 L20 95.88 L02 Min -6.03 L09 -0.87 L24 -0.76 L09 -0.48 L12 -12.34 L80 26.23 L82 MEMBER 114 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 0.11 L02 1.64 L08 0.96 L21 0.49 L06 11.68 L20 103.89 L11 Min -6.03 L09 -1.63 L24 -0.96 L81 -0.48 L12 -11.68 L80 25.88 L82 50% Max 0.11 L02 0.64 L08 1.34 L21 0.49 L06 8.78 L20 110.79 L11 Min -6.03 L09 -2.75 L24 -1.34 L81 -0.48 L12 -8.77 L80 22.11 L82 100% Max 0.11 L02 -0.36 L08 1.72 L21 0.49 L06 11.37 L06 111.58 L11 Min -6.03 L09 -3.86 L24 -1.71 L81 -0.48 L12 -11.22 L12 14.44 L82 MEMBER 115 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip`ft] [Kip*ft] [Kip*ft] 0% Max 0.11 L02 2.48 L08 0.78 L03 0.49 L06 12.33 L20 93.69 L02 Min -6.03 L09 -0.69 L24 -0.76 L09 -0.48 L12 -12.33 L80 26.04 L82 50% Max 0.11 L02 2.43 L08 0.78 L03 0.49 L06 12.34 L20 94.44 L02 Min -6.03 L09 -0.75 L24 -0.76 L09 -0.48 L12 -12.34 L80 26.11 L82 100% Max 0.11 L02 2.37 L08 0.78 L03 0.49 L06 12.34 L20 95.17 L02 Min -6.03 L09 -0.81 L24 -0.76 L09 -0.48 L12 -12.34 L80 26.17 L82 MEMBER 116 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 0.11 L02 3.22 L08 0.78 L03 0.49 LO6 13.63 L21 81.85 L02 Min -6.03 L09 0.07 L48 -0.76 L09 -0.48 L12 -13.60 L81 23.90 L82 50% Max 0.11 L02 2.85 L08 0.78 L03 0.49 L06 12.66 L21 88.18 L02 Min -6.03 L09 -0.28 L24 -0.76 L09 -0.48 L12 -12.63 L81 25.23 L82 100% Max 0.11 L02 2.48 L08 0.78 L03 0.49 L06 12.33 L20 93.69 L02 Min -6.03 L09 -0.69 L24 -0.76 L09 -0.48 L12 -12.33 L80 26.04 L82 MEMBER 117 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max -0.02 L80 0.20 L06 0.65 L05 0.29 L11 14.03 L04 331.91 L07 Min -2.98 L48 -3.33 L08 -0.65 L11 -0.29 L05 -14.00 L10 11.20 L84 50% Max -0.02 L80 0.18 L06 0.65 L05 0.29 L11 14.06 L04 331.89 L07 Min -2.97 L48 -3.36 L08 -0.65 L11 -0.29 L05 -14.03 L10 11.20 L84 55 of 252 100% Max -0.02 L80 0.15 LO6 0.65 L05 0.29 L11 14.09 L04 331.87 L07 Min -2.97 L82 -3.38 L08 -0.65 L11 -0.29 L05 -14.06 LO1 11.20 L84 MEMBER 118 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max -0.02 L80 0.30 L06 0.65 L05 0.29 L11 13.91 L04 331.95 L07 Min -2.99 L48 -3.24 LO8 -0.65 L11 -0.29 L05 -13.88 L10 11.16 L84 50% Max -0.02 L80 0.25 L06 0.65 L05 0.29 L11 13.97 L04 331.94 L07 Min -2.98 L48 -3.29 L08 -0.65 L11 -0.29 L05 -13.94 L10 11.18 L84 100% Max -0.02 L80 0.20 LO6 0.65 L05 0.29 L11 14.03 L04 331.91 L07 Min -2.98 L48 -3.33 L08 -0.65 L11 -0.29 L05 -14.00 L10 11.20 L84 MEMBER 119 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max -0.02 L80 2.60 L08 1.51 LO1 1.52 L07 9.07 L10 273.58 L04 Min -3.72 L02 -19.98 LO1 -1.51 L07 -1.52 LO1 -9.12 L04 9.82 L84 50% Max -0.02 L80 2.47 L08 1.51 LO1 1.52 L07 8.37 L11 254.36 L04 Min -3.72 L02 -20.12 LO1 -1.51 L07 -1.52 LO1 -8.38 L05 9.30 L84 100% Max -0.02 L80 2.33 L08 1.51 LO1 1.52 L07 8.99 L11 235.02 L04 Min -3.72 L02 -20.25 LO1 -1.51 L07 -1.52 LO1 -9.00 L05 8.70 L84 MEMBER 120 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max -0.02 L80 -0.37 L84 1.15 L04 1.55 L10 12.63 L07 300.09 L07 Min -3.83 L12 -19.79 L07 -1.15 L10 -1.55 L04 -12.60 LO1 10.43 L84 50% Max -0.02 L80 -0.52 L84 1.15 L04 1.55 L10 10.76 L07 267.74 L07 Min -3.83 L12 -20.02 L07 -1.15 L10 -1.55 L04 -10.74 LO1 9.71 L84 100% Max -0.02 L80 -0.67 L84 1.15 L04 1.55 L10 8.89 L07 235.02 L07 Min -3.83 L12 -20.25 L07 -1.15 L10 -1.55 L04 -8.88 LO1 8.75 L84 MEMBER 121 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 0.11 L02 2.32 LO8 0.78 L03 0.49 L06 12.34 L20 95.88 102 Min -6.03 L09 -0.87 L24 -0.76 LO9 -0.48 L12 -12.34 L80 26.23 L82 50% Max 0.11 L02 1.98 LO8 0.83 L21 0.49 L06 12.14 L20 100.13 L11 Min -6.03 L09 -1.25 L24 -0.83 L81 -0.48 L12 -12.14 L80 26.28 L82 100% Max 0.11 L02 1.64 LO8 0.96 L21 0.49 106 11.68 L20 103.89 L11 Min -6.03 L09 -1.63 L24 -0.96 L81 -0.48 L12 -11.68 L80 25.88 L82 MEMBER 122 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max -0.02 L80 0.15 106 0.65 LO5 0.29 L11 14.09 L04 331.87 L07 Min -2.97 L82 -3.38 108 -0.65 L11 -0.29 LO5 -14.06 101 11.20 L84 50% Max -0.02 L80 0.00 L06 0.65 L05 0.29 L11 14.29 L07 331.95 L04 Min -3.00 L82 -3.54 L08 -0.65 L11 -0.29 L05 -14.26 LO1 11.15 L84 100% Max -0.02 L80 -0.16 L06 0.65 L05 0.29 L11 14.50 L07 331.86 L04 Min -3.03 L82 -3.70 L08 -0.65 L11 -0.29 L05 -14.47 LO1 10.98 L84 56 of 252 MEMBER 123 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip`ft] [Kip*ft] [Kip*ft] 0% Max 0.20 L11 29.90 L03 2.08 L21 2.16 L06 6.60 L04 123.17 L07 Min -6.03 L06 2.29 L83 -2.08 L81 -2.16 L12 -6.30 L10 2.20 L47 50% Max 0.20 L11 29.56 L03 1.95 L21 2.16 LO6 9.27 L04 171.79 L07 Min -6.03 L06 2.07 L83 -1.95 L81 -2.16 L12 -8.98 L10 7.07 L47 100% Max 0.20 L11 29.22 L03 1.83 L21 2.16 L06 12.25 L55 219.70 L07 Min -6.03 L06 1.85 L83 -1.82 L81 -2.16 L12 -12.25 L43 11.48 L47 MEMBER 124 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 0.20 L11 43.32 LO1 2.94 L19 3.12 L04 5.91 L21 -0.48 L11 Min -6.03 L06 2.64 L83 -2.94 L79 -3.12 L10 -5.87 L81 -20.26 L01 50% Max 0.20 L11 43.10 LO1 2.86 L19 3.12 L04 3.09 L44 42.60 L07 Min -6.03 L06 2.50 L83 -2.86 L79 -3.12 L10 -3.11 L56 -2.91 L47 100% Max 0.20 L11 42.89 LO1 2.78 L19 3.12 L04 5.19 L04 99.63 L07 Min -6.03 L06 2.36 L83 -2.78 L79 -3.12 L10 -4.89 L10 0.54 L47 MEMBER 125 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 0.27 L16 7.71 L07 0.51 L73 0.58 LO1 0.92 L04 -0.33 L83 Min -0.27 L58 0.26 L45 -0.51 L37 -0.58 L07 -0.92 L10 -13.90 L04 50% Max 0.24 L16 7.56 L07 0.50 L04 0.58 LO1 0.46 L04 -0.13 L83 Min -0.24 L58 0.17 L45 -0.50 L10 -0.58 L07 -0.46 L10 -6.90 L04 100% Max 0.22 L16 7.41 L07 0.50 L04 0.58 L01 0.01 L61 0.20 L82 Min -0.22 L58 0.07 L45 -0.50 L10 -0.58 L07 -0.01 L31 -0.27 L22 MEMBER 126 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 0.26 L16 1.49 L58 0.50 L07 0.58 LO1 0.92 L07 -0.28 L44 Min -0.26 L76 0.23 L45 -0.50 LO1 -0.58 L04 -0.92 LO1 -2.72 L22 50% Max 0.24 L16 1.34 L58 0.50 L07 0.58 LO1 0.46 L07 -0.11 L44 Min -0.24 L76 0.14 L45 -0.50 LO1 -0.58 L04 -0.46 LO1 -1.42 L22 100% Max 0.21 L16 1.20 L58 0.50 L07 0.58 LO1 0.01 L61 0.20 L82 Min -0.21 L76 0.06 L45 -0.50 L01 -0.58 L04 -0.01 L37 -0.26 L22 MEMBER 127 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 0.22 L08 7.66 L22 2.22 L01 2.90 L04 3.95 L44 -0.38 L09 Min -4.33 L02 1.44 L84 -2.22 L07 -2.90 L10 -3.97 L56 -8.56 L22 50% Max 0.22 L08 7.45 L22 2.22 LO1 2.90 L04 2.62 L02 7.26 L58 Min -4.33 L02 1.32 L84 -2.22 L07 -2.90 L10 -2.69 L08 -4.03 L48 100% Max 0.22 L08 7.24 L22 2.22 L01 2.90 L04 4.15 L04 16.68 L58 Min -4.33 L02 1.20 L84 -2.22 L07 -2.90 L10 -3.85 L10 -2.11 L48 MEMBER 128 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip`ft] [Kip*ft] 0% Max 0.22 L08 5.18 L05 1.14 L43 1.36 L04 5.28 L04 21.09 L58 Min -4.33 L02 1.14 L84 -1.14 L55 -1.36 L10 -4.99 L10 -1.21 L48 50% Max 0.22 LO8 4.86 L05 1.02 L43 1.36 L04 7.25 L04 30.37 L58 Min -4.33 L02 0.94 L84 -1.02 L55 -1.36 L10 -6.97 L10 1.53 L48 57 of 252 100% Max 0.22 L08 4.54 L05 0.90 L43 1.36 L04 9.22 L04 38.86 L58 Min -4.33 L02 0.74 L84 -0.90 L55 -1.36 L10 -8.96 L10 3.81 L48 MEMBER 129 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 0.26 L78 7.66 L09 0.50 L03 0.58 L09 0.92 L03 -0.28 L47 Min -0.26 L18 0.23 L83 -0.50 L06 -0.58 L12 -0.92 L06 -13.83 L12 50% Max 0.24 L78 7.53 L09 0.50 L03 0.58 L09 0.46 L03 -0.11 L47 Min -0.24 L18 0.14 L83 -0.50 L06 -0.58 L12 -0.46 L06 -6.87 L12 100% Max 0.21 L78 7.40 L09 0.50 L03 0.58 L09 0.01 L39 0.20 L48 Min -0.21 L18 0.06 L83 -0.50 LO6 -0.58 L12 -0.01 L75 -0.26 L60 MEMBER 130 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 0.12 L05 38.53 L12 2.31 L06 2.88 L03 2.56 L57 -0.41 L05 Min -4.44 L12 1.44 L80 -2.29 L12 -2.88 L06 -2.53 L44 -19.60 L12 50% Max 0.12 L05 38.34 L12 2.31 L06 2.88 L03 2.46 L03 37.18 LO6 Min -4.44 L12 1.32 L80 -2.29 L12 -2.88 L06 -1.73 L44 -4.04 L82 100% Max 0.12 L05 38.15 L12 2.31 L06 2.88 L03 5.51 L03 87.93 L06 Min -4.44 L12 1.20 L80 -2.29 L12 -2.88 LO6 -4.66 L09 -2.13 L82 MEMBER 131 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion lc M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 0.12 LO5 19.01 L12 1.19 L57 1.34 L03 6.70 L03 108.34 LO6 Min -4.44 L12 1.14 L80 -1.19 L45 -1.34 L06 -5.87 L09 -1.23 L82 50% Max 0.12 L05 18.69 L12 1.08 L57 1.34 L03 8.85 LO3 150.34 LO6 Min -4.44 L12 0.94 L80 -1.07 L45 -1.34 L06 -8.08 L09 1.50 L82 100% Max 0.12 L05 18.37 L12 0.98 L06 1.34 L03 11.00 L03 191.63 L06 Min -4.44 L12 0.74 L80 -0.96 L12 -1.34 L06 -10.29 L09 3.78 L82 MEMBER 132 Station Axial lc Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 0.27 L72 1.55 L60 0.51 L45 0.58 L06 0.92 LO3 -0.33 L80 Min -0.27 L24 0.26 L83 -0.51 L81 -0.58 L12 -0.92 L09 -2.80 L60 50% Max 0.24 L72 1.38 L60 0.50 L03 0.58 LO6 0.46 LO3 -0.13 L80 Min -0.24 L24 0.17 L83 -0.50 L06 -0.58 L12 -0.46 LO9 -1.46 L60 100% Max 0.22 L72 1.22 L60 0.50 L03 0.58 LO6 0.01 L20 0.20 L48 Min -0.22 L24 0.07 L83 -0.50 LO6 -0.58 L12 -0.01 L49 -0.27 L60 MEMBER 133 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 0.11 L02 9.87 L60 2.81 L57 3.16 L03 4.50 L80 -0.50 L02 Min -6.03 L09 2.50 L46 -2.81 L45 -3.16 L09 -4.50 L20 -9.93 L09 50% Max 0.11 L02 9.63 L60 2.73 L57 3.16 L03 2.63 L80 10.22 L24 Min -6.03 L09 2.36 L46 -2.73 L45 -3.16 L09 -2.63 L20 -3.14 L82 100% Max 0.11 L02 9.38 L60 2.65 L57 3.16 LO3 5.00 L03 22.65 L24 Min -6.03 L09 2.22 L46 -2.65 L45 -3.16 L09 -4.15 L09 0.07 L82 58 of 252 MEMBER 134 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 0.11 L02 6.70 L60 1.77 L57 1.63 L03 6.26 L03 28.54 L24 Min -6.03 L09 2.15 L46 -1.76 L45 -1.63 L09 -5.42 L09 1.61 L82 50% Max 0.11 L02 6.29 L60 1.63 L57 1.63 L03 8.63 L03 42.74 L24 Min -6.03 L09 1.91 L46 -1.62 L45 -1.63 L09 -8.38 L81 6.46 L82 100% Max 0.11 L02 5.88 L60 1.49 L57 1.63 L03 11.94 L21 56.02 L24 Min -6.03 L09 1.68 L46 -1.49 L45 -1.63 L09 -11.88 L81 10.77 L82 MEMBER 2 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 9.64 L82 3.96 L57 0.00 L06 0.00 L07 0.00 L53 0.00 L63 Min -51.31 L06 -3.57 L45 -0.35 L12 -0.01 LO1 0.00 L48 0.00 L33 50% Max 9.83 L82 3.84 L57 0.00 L06 0.00 L07 2.15 L12 23.89 L57 Min -50.99 L06 -3.45 L45 -0.35 L12 -0.01 LO1 0.00 L06 -21.50 L45 100% Max 10.03 L82 3.71 L57 0.04 L24 0.00 L07 4.30 L12 47.01 L57 Min -50.68 L06 -3.32 L45 -0.41 L82 -0.01 LO1 0.00 L06 -42.23 L45 MEMBER 3 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max -0.06 L47 0.07 L22 0.04 L55 0.00 L55 0.00 L20 0.00 L47 Min -13.65 L58 0.03 L44 -0.04 L43 0.00 L43 0.00 L80 -0.42 L82 50% Max 0.00 L47 0.03 L82 0.00 L20 0.00 L55 0.18 L20 0.27 L23 Min -13.54 L82 0.00 L47 0.00 L80 0.00 L43 -0.18 L80 -0.19 L82 100% Max 0.11 L23 0.02 L82 0.04 L20 0.00 L55 0.00 LO1 0.00 LO1 Min -13.46 L82 -0.07 L23 -0.04 L80 0.00 L43 0.00 LO1 0.00 LO1 MEMBER 4 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max -3.47 L83 3.27 L79 0.08 L78 0.01 L04 0.00 L07 55.45 L19 Min -31.62 L07 -3.27 L19 -0.08 L16 -0.01 L10 0.00 L03 -55.44 L79 50% Max -3.20 L83 3.10 L79 0.00 L07 0.01 L04 0.33 L18 29.64 L19 Min -31.21 L07 -3.11 L19 0.00 L03 -0.01 L10 -0.33 L52 -29.64 L79 100% Max -2.94 L83 2.94 L79 0.08 L18 0.01 L04 0.00 LO1 5.18 L19 Min -30.79 L07 -2.94 L19 -0.08 L52 -0.01 L10 0.00 LO1 -5.18 L79 MEMBER 6 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 9.62 L48 4.00 L55 0.34 L06 0.01 L02 0.00 L65 0.00 L61 Min -13.38 L55 -3.61 L43 0.00 L09 -0.01 L08 0.00 L46 0.00 L25 50% Max 9.81 L48 3.88 L55 0.34 L47 0.01 L02 0.00 L09 24.12 L55 Min -13.04 L07 -3.49 L43 0.00 L09 -0.01 L08 -2.10 LO6 -21.74 L43 100% Max 10 01 L48 3.75 L55 0.41 L47 0.01 L02 0.00 L09 47.48 L55 Min -12.72 L07 -3.36 L43 -0.04 L58 -0.01 LO8 -4.21 L47 -42.72 L43 MEMBER 9 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 3.23 L81 9.03 L45 4.54 L82 0.01 L07 5.39 L82 19.51 L57 Min -53.13 L12 -9.94 L57 0.00 L02 -0.01 LO1 0.00 L02 -17.46 L45 50% Max 3.25 L81 9.05 L45 4.53 L82 0.01 L07 2.69 L82 13.59 L57 Min -53.10 L12 -9.95 L57 0.00 L02 -0.01 LO1 0.00 L02 -12.09 L45 59 of 252 100% Max 3.27 L81 9.06 L45 4.53 L82 0.01 L07 0.00 L01 7.68 L57 Min -53.07 L12 -9.97 L57 0.00 L02 -0.01 L01 0.00 L01 -6.71 L45 MEMBER 11 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 9.56 L82 3.57 L81 0.00 L02 0.02 L56 0.00 L09 0.00 L57 Min -13.42 L21 -3.95 L21 -0.46 L09 -0.02 L44 0.00 L07 0.00 L39 50% Max 9.76 L82 3.44 L81 0.00 L02 0.02 L56 2.81 L09 21.45 L81 Min -13.07 L21 -3.83 L21 -0.46 L09 -0.02 L44 0.00 L02 -23.82 L21 100% Max 9.95 L82 3.31 L81 0.04 L24 0.02 L56 5.62 L09 42.14 L81 Min -12.72 L21 -3.70 L21 -0.46 L09 -0.02 L44 0.00 L02 -46.87 L21 MEMBER 12 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max -0.06 L47 0.07 L09 0.04 L80 0.00 L80 0.00 L43 0.00 L47 Min -17.48 L09 0.03 L80 -0.04 L20 0.00 L20 0.00 L55 -0.54 L09 50% Max 0.00 L47 0.03 L09 0.00 L43 0.00 L80 0.18 L43 0.27 L23 Min -17.37 L09 0.00 L47 0.00 L55 0.00 L20 -0.18 L55 -0.20 L84 100% Max 0.11 L23 0.02 L84 0.04 L43 0.00 L80 0.00 L01 0.00 L01 Min -17.27 L09 -0.07 L23 -0.04 L55 0.00 L20 0.00 L01 0.00 L01 MEMBER 13 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max -5.77 L46 5.71 L80 0.08 L54 0.01 L04 0.00 L41 98.86 L44 Min -56.87 L11 -5.71 L20 -0.08 L29 -0.01 L10 0.00 L29 -98.86 L56 50% Max -5.51 L46 5.55 L80 0.00 L41 0.01 L04 0.33 L41 53.38 L44 Min -56.46 L11 -5.55 L20 0.00 L29 -0.01 L10 -0.33 L84 -53.38 L56 100% Max -5.25 L46 5.38 L80 0.08 L41 0.01 L04 0.00 L01 9.24 L44 Min -56.04 L11 -5.38 L20 -0.08 L84 -0.01 L10 0.00 L01 -9.24 L56 MEMBER 15 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 9.38 L47 3.60 L79 0.47 L03 0.02 L45 0.00 L64 0.00 L61 Min -54.19 L10 -3.99 L19 0.00 L11 -0.03 L57 0.00 L23 0.00 L43 50% Max 9.58 L47 3.48 L79 0.47 L03 0.02 L45 0.00 L11 21.69 L79 Min -53.88 L10 -3.87 L19 0.00 L11 -0.03 L57 -2.88 L03 -24.07 L19 100% Max 9.78 L47 3.35 L79 0.47 L03 0.02 L45 0.00 L11 42.62 L79 Min -53.56 L10 -3.74 L19 -0.04 L60 -0.03 L57 -5.76 L03 -47.37 L19 MEMBER 18 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 1.90 L45 9.95 L21 5.96 L09 0.02 L80 6.89 L09 17.32 L81 Min -19.69 L57 -9.05 L81 0.00 L05 -0.02 L20 0.00 L05 -19.34 L21 50% Max 1.91 L45 9.97 L21 5.96 L09 0.02 L80 3.44 L09 12.09 L81 Min -19.66 L57 -9.07 L81 0.00 L05 -0.02 L20 0.00 L05 -13.59 L21 100% Max 1.93 L45 9.98 L21 5.96 L09 0.02 L80 0.00 L01 6.85 L81 Min -19.63 L57 -9.08 L81 0.00 L05 -0.02 L20 0.00 L01 -7.83 L21 60 of 252 MEMBER 23 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 10.53 L82 8.93 L45 0.05 L24 0.01 L07 4.30 L12 46.64 L57 Min -53.17 L03 -9.84 L57 -0.42 L82 -0.01 L01 0.00 L02 -42.09 L45 50% Max 10.57 L82 8.96 L45 0.06 L24 0.01 L07 4.79 L82 33.09 L57 Min -53.10 L03 -9.87 L57 -0.43 L82 -0.01 L01 0.00 L02 -29.80 L45 100% Max 10.62 L82 8.99 L45 0.08 L24 0.01 L07 5.39 L82 19.51 L57 Min -53.03 L03 -9.90 L57 -0.44 L82 -0.01 L01 0.00 L02 -17.46 L45 MEMBER 24 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 12.31 L12 9.85 L21 0.05 L24 0.02 L80 5.62 L09 42.01 L81 Min -16.00 L57 -8.95 L81 -0.46 L09 -0.02 L20 0.00 L05 -46.51 L21 50% Max 12.38 L12 9.88 L21 0.06 L24 0.02 L80 6.25 L09 29.68 L81 Min -15.92 L57 -8.98 L81 -0.46 L09 -0.02 L20 0.00 L05 -32.94 L21 100% Max 12.45 L12 9.91 L21 0.08 L24 0.02 L80 6.89 L09 17.32 L81 Min -15.84 L57 -9.01 L81 -0.46 L60 -0.02 L20 0.00 L05 -19.34 L21 MEMBER 25 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 17.20 L45 0.01 L54 0.16 L03 0.00 L44 0.41 L57 0.00 L08 Min -19.12 L57 -0.01 L16 -0.07 L81 0.00 L09 -0.25 L45 0.00 L03 50% Max 17.21 L45 0.00 L03 0.13 L03 0.00 L44 0.58 L57 0.01 L64 Min -19.07 L57 0.00 L08 -0.08 L81 0.00 L09 -0.57 L45 -0.01 L18 100% Max 17.21 L45 0.01 L18 0.10 L03 0.00 L44 0.80 L81 0.00 101 Min -19.03 L57 -0.01 L64 -0.09 L57 0.00 L09 -0.81 L21 0.00 101 MEMBER 26 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 17.23 L81 0.01 L60 0.11 L12 0.00 L12 0.81 L45 0.00 L44 Min -19.03 L21 -0.01 L46 -0.08 L06 0.00 L80 -0.81 L57 0.00 L09 50% Max 17.22 L81 0.00 L09 0.08 L45 0.00 L12 0.57 L21 0.01 L82 Min -19.07 L21 0.00 L44 -0.11 L57 0.00 L80 -0.57 L81 -0.01 L24 100% Max 17.22 L81 0.01 L24 0.07 L45 0.00 L12 0.41 L21 0.00 L01 Min -19.12 L21 -0.01 L82 -0.16 L57 0.00 L80 -0.24 L81 0.00 L01 MEMBER 27 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 10.25 L47 9.95 L19 0.47 L03 0.03 L21 0.00 L08 42.48 L79 Min -56.47 L07 -9.05 L79 -0.05 L60 -0.03 L81 -5.77 L03 -47.00 L19 50% Max 10.29 L47 9.98 L19 0.47 L03 0.03 L21 0.00 L08 30.02 L79 Min -56.40 L07 -9.08 L79 -0.06 L60 -0.03 L81 -6.41 L03 -33.30 L19 100% Max 10.34 L47 10.01 L19 0.47 L03 0.03 L21 0.00 L08 17.53 L79 Min -56.33 L07 -9.10 L79 -0.08 L60 -0.03 L81 -7.06 L03 -19.57 L19 MEMBER 28 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 10.51 L48 9.03 L43 0.42 L47 0.01 L11 0.00 L11 47.10 L55 Min -16.29 L19 -9.94 L55 -0.05 L58 -0.01 L05 -4.21 L47 -42.58 L43 50% Max 10.55 L48 9.06 L43 0.43 L47 0.01 L11 0.00 L11 33.43 L55 Min -16.21 L19 -9.96 L55 -0.06 L58 -0.01 L05 -4.79 L47 -30.14 L43 61 of 252 100% Max 10.60 L48 9.09 L43 0.44 L47 0.01 L11 0.00 L11 19.71 L55 Min -16.13 L19 -9.99 L55 -0.08 L58 -0.01 L05 -5.39 L47 -17.67 L43 MEMBER 31 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 17.39 L43 0.01 L54 0.16 L19 0.00 L06 0.41 L55 0.00 L12 Min -19.31 L55 -0.01 L16 -0.07 L79 0.00 L44 -0.25 L43 0.00 L06 50% Max 17.40 L43 0.00 L06 0.11 L19 0.00 L06 0.58 L55 0.01 L58 Min -19.26 L55 0.00 L12 -0.08 L79 0.00 L44 -0.58 L43 -0.01 L36 100% Max 17.41 L43 0.01 L36 0.08 L10 0.00 L06 0.81 L79 0.00 LO1 Min -19.21 L55 -0.01 L58 -0.11 L04 0.00 L44 -0.82 L19 0.00 LO1 MEMBER 32 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 17.42 L79 0.01 L83 0.09 L19 0.00 L80 0.81 L43 0.00 LO6 Min -19.22 L19 -0.01 L24 -0.10 L07 -0.01 L03 -0.82 L55 0.00 L45 50% Max 17.41 L79 0.00 L45 0.08 L43 0.00 L80 0.58 L19 0.01 L60 Min -19.27 L19 0.00 L06 -0.13 L07 -0.01 L03 -0.58 L79 -0.01 L47 100% Max 17.40 L79 0.01 L47 0.07 L43 0.00 L80 0.41 L19 0.00 LO1 Min -19.32 L19 -0.01 L60 -0.16 L07 -0.01 L03 -0.25 L79 0.00 LO1 MEMBER 57 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 2.01 L43 10.05 L19 0.00 L08 0.03 L21 0.00 L08 17.53 L79 Min -58.13 L04 -9.15 L79 -6.11 L03 -0.03 L81 -7.06 L03 -19.57 L19 50% Max 2.02 L43 10.06 L19 0.00 L08 0.03 L21 0.00 L08 12.25 L79 Min -58.10 L04 -9.16 L79 -6.11 L03 -0.03 L81 -3.53 L03 -13.76 L19 100% Max 2.04 L43 10.08 L19 0.00 L08 0.03 L21 0.00 LO1 6.95 L79 Min -58.07 L04 -9.17 L79 -6.11 L03 -0.03 L81 0.00 LO1 -7.94 L19 MEMBER 58 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 3.32 L79 9.13 L43 0.00 L11 0.01 L11 0.00 L11 19.71 L55 Min -17.41 L19 -10.04 L55 -4.54 L47 -0.01 L05 -5.39 L47 -17.67 L43 50% Max 3.34 L79 9.14 L43 0.00 L11 0.01 L11 0.00 L11 13.74 L55 Min -17.38 L19 -10.05 L55 -4.53 L47 -0.01 LO5 -2.69 L47 -12.24 L43 100% Max 3.36 L79 9.16 L43 0.00 L11 0.01 L11 0.00 LO1 7.77 L55 Min -17.34 L19 -10.06 L55 -4.53 L47 -0.01 L05 0.00 LO1 -6.81 L43 MEMBER 59 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 0.11 L59 0.07 L59 0.04 L81 0.00 L44 0.00 L49 0.00 L23 Min -13.46 L47 -0.02 L47 -0.04 L21 0.00 L56 0.00 L19 0.00 L84 50% Max 0.00 L83 0.00 L83 0.00 L81 0.00 L44 0.18 L21 0.27 L59 Min -13.54 L47 -0.03 L47 0.00 L21 0.00 L56 -0.18 L81 -0.19 L47 100% Max -0.06 L83 -0.03 L44 0.04 L44 0.00 L44 0.00 L21 0.00 L83 Min -13.65 L23 -0.07 L60 -0.04 L56 0.00 L56 0.00 L81 -0.42 L47 62 of 252 MEMBER 60 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 0.11 L59 0.07 L59 0.04 L55 0.00 L21 0.00 L55 0.00 L23 Min -17.70 L03 -0.02 L48 -0.04 L43 0.00 L81 0.00 L31 0.00 L83 50% Max 0.00 L83 0.00 L83 0.00 L55 0.00 L21 0.18 L43 0.27 L59 Min -17.81 L03 -0.03 L03 0.00 L43 0.00 L81 -0.18 L55 -0.20 L48 100% Max -0.06 L83 -0.03 L80 0.04 L21 0.00 L21 0.00 L43 0.00 L83 Min -17.91 L03 -0.07 L03 -0.04 L81 0.00 L81 0.00 L55 -0.55 L03 MEMBER 71 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max -0.07 L47 0.02 L47 0.04 L43 0.00 L20 0.00 L43 0.42 L82 Min -12.69 L58 -5.03 L82 -0.04 L55 0.00 L80 0.00 L55 0.00 L47 50% Max -0.07 L47 0.02 L47 0.04 L43 0.00 L20 0.00 L43 0.21 L82 Min -12.70 L58 -5.03 L82 -0.04 L55 0.00 L80 0.00 L55 0.00 L47 100% Max -0.07 L47 0.02 L47 0.04 L43 0.00 L20 0.00 L01 0.00 L01 Min -12.70 L58 -5.03 L82 -0.04 L55 0.00 L80 0.00 L01 0.00 L01 MEMBER 72 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip•ft] [Kip*ft] [Kip*ft] 0% Max -0.07 L47 0.02 L47 0.04 L20 0.00 L43 0.00 L20 0.54 L09 Min -16.25 L09 -6.42 L09 -0.04 L80 0.00 L55 0.00 L80 0.00 L47 50% Max -0.07 L47 0.02 L47 0.04 L20 0.00 L43 0.00 L20 0.27 L09 Min -16.25 L09 -6.42 L09 -0.04 L80 0.00 L55 0.00 L80 0.00 L47 100% Max -0.07 L47 0.02 L47 0.04 L20 0.00 L43 0.00 L01 0.00 L01 Min -16.25 L09 -6.42 L09 -0.04 L80 0.00 L55 0.00 L01 0.00 101 MEMBER 73 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max -0.07 L83 5.03 L47 0.04 L44 0.00 L81 0.00 L44 0.00 L83 Min -12.69 L23 -0.02 L83 -0.04 L56 0.00 L21 0.00 L56 -0.42 L47 50% Max -0.07 L83 5.03 L47 0.04 L44 0.00 L81 0.00 L44 0.00 L83 Min -12.70 L23 -0.02 L83 -0.04 L56 0.00 L21 0.00 L56 -0.21 L47 100% Max -0.07 L83 5.03 L47 0.04 L44 0.00 L81 0.00 L01 0.00 L01 Min -12.70 L23 -0.02 L83 -0.04 L56 0.00 L21 0.00 L01 0.00 L01 MEMBER 74 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max -0.07 L83 6.58 L03 0.04 L21 0.00 L55 0.00 L21 0.00 L83 Min -16.66 L03 -0.02 L83 -0.04 L81 0.00 L43 0.00 L81 -0.55 L03 50% Max -0.07 L83 6.58 L03 0.04 L21 0.00 L55 0.00 L21 0.00 L83 Min -16.66 L03 -0.02 L83 -0.04 L81 0.00 L43 0.00 L81 -0.27 L03 100% Max -0.07 L83 6.58 L03 0.04 L21 0.00 L55 0.00 L01 0.00 L01 Min -16.66 L03 -0.02 L83 -0.04 L81 0.00 L43 0.00 L01 0.00 L01 MEMBER 80 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max -3.18 L48 4.04 L79 0.08 L66 0.00 L57 0.00 L66 69.46 L19 Min -51.52 L02 -4.04 L19 -0.08 L16 0.00 L45 0.00 L06 -69.46 L79 50% Max -2.92 L48 3.88 L79 0.00 L66 0.00 L57 0.33 L17 37.40 L19 Min -51.11 L02 -3.88 L19 0.00 L06 0.00 L45 -0.33 L52 -37.39 L79 63 of 252 100% Max -2.66 L48 3.71 L79 0.08 L17 0.00 L57 0.00 LOl 6.82 L11 Min -50.69 L02 -3.71 L19 -0.08 L52 0.00 L45 0.00 LO1 -6.82 L05 Envelope for nodal reactions-Connection Design with Omega Note.- lc is the controlling load condition My Y e__ J x T Fy Mx Z Fx Fz Mz Direction of positive forces and moments Envelope of nodal reactions for . L01=1.2D+1.2Cd1+1.6Cv1+1.6Ci1+1.6Cs1+1.6Cls L49=1.20+1.2Cd1-Ehs1 L02=1.2D+1.2Cd2+1.6Cv2+1.6Ci2+1.6Cs2+1.6Cls L50=1.2D+1.2Cd2-Ehs2 L03=1.20+1.2Cd3+1.6Cv3+1.6Ci3+1.6Cs3+1.6C1s L51=1.2D+1.2Cd3-Ehs3 L04=1.2D+1.2Cd 1+1.6Cv1+1.6Ci 1-1.6Cs1+1.6Cls L52=1.2D+1.2Cd 1-Ehl1 L05=1.20+1.2Cd2+1.6Cv2+1.6Ci2-1.6Cs2+1.6Cls L53=1.2D+1.2Cd2-Eh12 L06=1.20+1.2Cd3+1.6Cv3+1.6Ci3-1.6Cs3+1.6C1s L54=1.2D+1.2Cd3-Eh13 L07=1.2D+1.2Cd 1+1.6Cv1+1.6Ci1-1.6Cs1-1.6CIs L55=1.2D+1.2Cd1-Ehs 1+Ehv1 L08=1.2D+1.2Cd2+1.6Cv2+1.6Ci2-1.6Cs2-1.6Cls L56=1.2D+1.2Cd2-Ehs2+Ehv2 L09=1.2D+1.2Cd3+1.6Cv3+1.6Ci3-1.6Cs3-1.6CIs L57=1.2D+1.2Cd3-Ehs3+Ehv3 L10=1.2D+1.2Cd1+1.6Cv1+1.6Ci1+1.6Cs1-1.6CIs L58=1.2D+1.2Cd1-Ehll+Ehv1 L11=1.2D+1.2Cd2+1.6Cv2+1.6Ci2+1.6Cs2-1.6CIs L59=1.2D+1.2Cd2-Eh12+Ehv2 L12=1.2D+1.2Cd3+1.6Cv3+1.6Ci3+1.6Cs3-1.6CIs L60=1.2D+1.2Cd3-Ehl3+Ehv3 L13=1.2D+1.2Cd1+Ehs1 L61=1.2D+1.2Cd1-Ehsl-Ehv1 L14=1.2D+1.2Cd2+Ehs2 L62=1.2D+1.2Cd2-Ehs2-Ehv2 L15=1.2D+1.2Cd3+Ehs3 L63=1.2D+1.2Cd3-Ehs3-Ehv3 L16=1.2D+1.2Cd1+Eh11 L64=1.2D+1.2Cd1-Ehll-Ehv1 L17=1.20+1.2Cd2+Eh12 L65=1.2D+1.2Cd2-Eh12-Ehv2 L18=1.2D+1.2Cd3+Ehl3 L66=1.2D+1.2Cd3-Eh13-Ehv3 L19=1.2D+1.2Cd1+Ehsl+Ehv1 L67=0.9D+0.9Cd1-Ehs1 L20=1.2D+1.2Cd2+Ehs2+Ehv2 L68=0.9D+0.9Cd2-Ehs2 L21=1.2D+1.2Cd3+Ehs3+Ehv3 L69=0.9D+0.9Cd3-Ehs3 L22=1.2D+1.2Cd1+Ehl1+Ehv1 L70=0.9D+0.9Cd1-Ehl1 L23=1.20+1.2Cd2+Eh12+Ehv2 L71=0.9D+0.9Cd2-Ehl2 L24=1.2D+1.2Cd3+Eh13+Ehv3 L72=0.9D+0.9Cd3-Ehl3 L25=1.2D+1.2Cd 1+Ehs1-Ehv1 L73=0.9D+0.9Cd 1-Ehs1+Ehv1 L26=1.2D+1.2Cd2+Ehs2-Ehv2 L74=0.9D+0.9Cd2-Ehs2+Ehv2 L27=1.2D+1.2Cd3+Ehs3-Ehv3 L75=0.9D+0.9Cd3-Ehs3+Ehv3 L28=1.2D+1.2Cd 1+Ehl1-Ehv1 L76=0.9D+0.9Cd 1-Ehl1+Ehv1 L29=1.2D+1.2Cd2+Eh12-Ehv2 L77=0.9D+0.9Cd2-Eh12+Ehv2 L30=1.2D+1.2Cd3+Eh13-Ehv3 L78=0.9D+0.9Cd3-Eh13+Ehv3 L31=0.9D+0.9Cd 1+Ehs 1 L79=0.9D+0.9Cd 1-Ehsl-Ehv1 L32=0.9D+0.9Cd2+Ehs2 L80=0.9D+0.9Cd2-Ehs2-Ehv2 L33=0.9D+0.9Cd3+Ehs3 L81=0.9D+0.9Cd3-Ehs3-Ehv3 L34=0.9D+0.9Cd 1+Ehl1 L82=0.9D+0.9Cd 1-EhI l-Ehv1 L35=0.9D+0.9Cd2+Ehl2 L83=0.9D+0.9Cd2-Ehl2-Ehv2 L36=0.9D+0.9Cd3+Eh13 L84=0.9D+0.9Cd3-Eh13-Ehv3 L37=0.9D+0.9Cd1+Ehsl+Ehv1 C01=1.2D+1.2Cd1+1.5Ehs1 L38=0.9D+0.9Cd2+Ehs2+Ehv2 CO2=1.2D+1.2Cd2+1.5Ehs2 L39=0.9D+0.9Cd3+Ehs3+Ehv3 CO3=1.2D+1.2Cd3+1.5Ehs3 L40=0.9D+0.9Cd1+Eh11+Ehv1 C04=1.2D+1.2Cd1+1.5Ehl1 L41=0.9D+0.9Cd2+Eh12+Ehv2 C05=1.2D+1.2Cd2+1.5Ehl2 L42=0.9D+0.9Cd3+Eh13+Ehv3 C06=1.2D+1.2Cd3+1.5Ehl3 L43=0.9D+0.9Cd1+Ehs1-Ehv1 C07=1.2D+1.2Cd1+1.5Ehsl+Ehvl L44=0.9D+0.9Cd2+Ehs2-Ehv2 C08=1.2D+1.2Cd2+1.5Ehs2+Ehv2 L45=0.9D+0.9Cd3+Ehs3-Ehv3 C09=1.2D+1.2Cd3+1.5Ehs3+Ehv3 L46=0.9D+0.9Cd1+Ehl1-Ehv1 C10=1.2D+1.2Cd1+1.5Ehl1+Ehv1 L47=0.9D+0.9Cd2+Eh12-Ehv2 C11=1.2D+1.2Cd2+1.5Ehl2+Ehv2 L48=0.9D+0.9Cd3+Eh13-Ehv3 C12=1.2D+1.2Cd3+1.5Ehl3+Ehv3 64 of 252 C13=1.2D+1.2Cd1+1.5Ehs1-Ehv1 C43=1.2D+1.2Cd1-1.5Ehsl+Ehv1 C14=1.2D+1.2Cd2+1.5Ehs2-Ehv2 C44=1.2D+1.2Cd2-1.5Ehs2+Ehv2 C15=1.2D+1.2Cd3+1.5Ehs3-Ehv3 C45=1.2D+1.2Cd3-1.5Ehs3+Ehv3 016=1.2D+1.20d1+1.5Eh11-Ehv1 046=1.2D+1.2Cd1-1.5EhI1+Ehv1 017=1.2D+1.2Cd2+1.5Eh12-Ehv2 C47=1.2D+1.2Cd2-1.5Eh12+Ehv2 C18=1.2D+1.2Cd3+1.5Eh13-Ehv3 C48=1.2D+1.2Cd3-1.5Eh13+Ehv3 C19=0.9D+0.9Cd1+1.5Ehs1 C49=1.2D+1.2Cd1-1.5Ehs1-Ehv1 C20=0.9D+0.9Cd2+1.5Ehs2 C50=1.2D+1.2Cd2-1.5Ehs2-Ehv2 C21=0.9D+0.9Cd3+1.5Ehs3 C51=1.2D+1.2Cd3-1.5Ehs3-Ehv3 C22=0.9D+0.9Cd 1+1.5Ehl1 C52=1.2D+1.2Cd 1-1.5Eh11-Ehv1 C23=0.9D+0.9Cd2+1.5Ehl2 C53=1.2D+1.2Cd2-1.5Eh12-Ehv2 C24=0.9D+0.9Cd3+1.5Ehl3 054=1.2D+1.2Cd3-1.5Eh13-Ehv3 C25=0.9D+0.9Cd 1+1.5Ehs 1+Ehv1 C55=0.9D+0.9Cd1-1.5Ehs1 C26=0.9D+0.9Cd2+1.5Ehs2+Ehv2 C56=0.9D+0.9Cd2-1.5Ehs2 C27=0.9D+0.9Cd3+1.5Ehs3+Ehv3 C57=0.9D+0.9Cd3-1.5Ehs3 C28=0.9D+0.9Cd 1+1.5Ehl1+Ehv1 C58=0.9D+0.9Cd 1-1.5Ehl1 C29=0.9D+0.9Cd2+1.5Eh12+Ehv2 C59=0.9D+0.9Cd2-1.5Ehl2 C30=0.9D+0.9Cd3+1.5Ehl3+Ehv3 C60=0.9D+0.9Cd3-1.5Eh13 C31=0.9D+0.9Cd 1+1.5Ehs 1-Ehvl C61=0.9D+0.9Cd1-1.5Ehs1+Ehv1 C32=0.9D+0.9Cd2+1.5Ehs2-Ehv2 C62=0.9D+0.9Cd2-1.5Ehs2+Ehv2 C33=0.9D+0.9Cd3+1.5Ehs3-Ehv3 C63=0.9D+0.9Cd3-1.5Ehs3+Ehv3 C34=0.9D+0.9Cd 1+1.5Eh11-Ehv1 C64=0.9D+0.9Cd1-1.5Eh11+Ehv1 C35=0.9D+0.9Cd2+1.5Eh12-Ehv2 C65=0.9D+0.9Cd2-1.5Eh12+Ehv2 C36=0.9D+0.9Cd3+1.5Eh13-Ehv3 C66=0.9D+0.9Cd3-1.5Eh13+Ehv3 037=1.2D+1.2Cd1-1.5Ehs1 C67=0.9D+0.9Cd1-1.5Ehs1-Ehv1 C38=1.2D+1.2Cd2-1.5Ehs2 C68=0.9D+0.9Cd2-1.5Ehs2-Ehv2 C39=1.2D+1.2Cd3-1.5Ehs3 C69=0.9D+0.9Cd3-1.5Ehs3-Ehv3 C40=1.2D+1.2Cd1-1.5EhI1 C70=0.9D+0.9Cd1-1.5Ehl1-Ehv1 C41=1.2D+1.2Cd2-1.5EhI2 C71=0.9D+0.9Cd2-1.5Eh12-Ehv2 042=1.2D+1.2Cd3-1.5Eh13 C72=0.9D+0.9Cd3-1.5Eh13-Ehv3 Forces Moments Node Fx Ic Fy Ic Fz Ic Mx Ic My Ic Mz Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 15 Max 0.124 C58 56.870 L11 8.569 C68 148.29311 C44 0.00836 L10 0.00000 LO1 Min -0.124 CO6 5.683 C34 -8.570 C08 -148.29161 C32 -0.00848 L04 0.00000 LO1 12 Max 0.000 L02 15.522 C09 5.417 C69 0.00000 LOl 0.02604 C32 0.00000 LOl Min -0.459 L09 -16.257 C70 -5.803 C09 0.00000 LO1 -0.02632 C44 0.00000 LOl 17 Max 0.470 L03 54.189 L10 5.476 C67 0.00000 LOl 0.03783 C45 0.00000 LO1 Min 0.000 L11 -16.072 C35 -5.864 C07 0.00000 LOl -0.03728 C33 0.00000 LO1 70 Max 0.033 C71 20.451 C12 0.067 C69 0.00000 LOl 0.00221 C31 0.00000 LO1 Min -8.119 C12 0.070 C71 -0.067 C09 0.00000 LOl -0.00221 C43 0.00000 LO1 Forces envelope for Connection Design with Omega Note.- Ic is the controlling load condition Forces envelope for . L01=1.2D+1.2Cd1+1.6Cv1+1.6Ci1+1.6Cs1+1.6Cls L16=1.20+1.2Cd1+EhI1 L02=1.2D+1.2Cd2+1.6Cv2+1.6Ci2+1.6Cs2+1.6C1s L17=1.20+1.2Cd2+Eh12 L03=1.2D+1.2Cd3+1.6Cv3+1.6Ci3+1.6Cs3+1.6Cls L18=1.2D+1.2Cd3+Eh13 L04=1.2D+1.2Cd1+1.6Cv1+1.6011-1.6Cs1+1.6Cls L19=1.2D+1.2Cd1+Ehsl+Ehv1 L05=1.2D+1.2Cd2+1.6Cv2+1.6012-1.6Cs2+1.6Cls L20=1.2D+1.2Cd2+Ehs2+Ehv2 L06=1.2D+1.2Cd3+1.6Cv3+1.6013-1.6Cs3+1.6CIs L21=1.2D+1.2Cd3+Ehs3+Ehv3 L07=1.2D+1.2Cd1+1.6Cv1+1.6011-1.6Cs1-1.6CIs L22=1.2D+1.2Cd1+Eh11+Ehv1 L08=1.2D+1.2Cd2+1.6Cv2+1.6012-1.6Cs2-1.6CIs L23=1.2D+1.2Cd2+Eh12+Ehv2 L09=1.2D+1.2Cd3+1.6Cv3+1.6Ci3-1.6Cs3-1.6CIs L24=1.20+1.2Cd3+Eh13+Ehv3 L10=1.2D+1.2Cd1+1.6Cv1+1.6011+1.6Cs1-1.6CIs L25=1.20+1.2Cd1+Ehs1-Ehv1 L11=1.2D+1.2Cd2+1.6Cv2+1.6Ci2+1.6Cs2-1.6CIs L26=1.20+1.2Cd2+Ehs2-Ehv2 L12=1.2D+1.2Cd3+1.6Cv3+1.6Ci3+1.6Cs3-1.6CIs L27=1.20+1.2Cd3+Ehs3-Ehv3 L13=1.2D+1.2Cd1+Ehs1 L28=1.2D+1.2Cd1+Ehl1-Ehv1 L14=1.2D+1.2Cd2+Ehs2 L29=1.2D+1.2Cd2+Eh12-Ehv2 L15=1.2D+1.2Cd3+Ehs3 L30=1.2D+1.2Cd3+Eh13-Ehv3 65 of 252 L31=0.9D+0.9Cd 1+Ehs1 C10=1.2D+1.2Cd1+1.5Eh11+Ehv1 L32=0.9D+0.9Cd2+Ehs2 C11=1.2D+1.2Cd2+1.5Ehl2+Ehv2 L33=0.9D+0.9Cd3+Ehs3 C12=1.2D+1.2Cd3+1.5Ehl3+Ehv3 L34=0.9D+0.9Cd1+Ehl1 C13=1.2D+1.2Cd1+1.5Ehs1-Ehv1 L35=0.9D+0.9Cd2+Eh12 C14=1.2D+1.2Cd2+1.5Ehs2-Ehv2 L36=0.9D+0.9Cd3+Eh13 C15=1.20+1.2Cd3+1.5Ehs3-Ehv3 L37=0.9D+0.9Cd 1+Ehs1+Ehv1 Cl 6=1.20+1.2Cd 1+1.5Eh11-Ehv1 L38=0.9D+0.9Cd2+Ehs2+Ehv2 C17=1.2D+1.2Cd2+1.5Eh12-Ehv2 L39=0.9D+0.9Cd3+Ehs3+Ehv3 C18=1.2D+1.2Cd3+1.5Eh13-Ehv3 L40=0.9D+0.9Cd1+Ehll+Ehv1 C19=0.9D+0.9Cd1+1.5Ehs1 L41=0.9D+0.9Cd2+Eh12+Ehv2 C20=0.9D+0.9Cd2+1.5Ehs2 L42=0.9D+0.9Cd3+Eh13+Ehv3 C21=0.9D+0.9Cd3+1.5Ehs3 L43=0.9D+0.9Cd 1+Ehs 1-Ehv1 C22=0.9D+0.9Cd 1+1.5Eh11 L44=0.9D+0.9Cd2+Ehs2-Ehv2 C23=0.9D+0.9Cd2+1.5Eh12 L45=0.9D+0.9Cd3+Ehs3-Ehv3 C24=0.9D+0.9Cd3+1.5EhI3 L46=0.9D+0.9Cd1+Eh11-Ehv1 C25=0.9D+0.9Cd1+1.5Ehsl+Ehv1 L47=0.9D+0.9Cd2+Eh12-Ehv2 C26=0.9D+0.9Cd2+1.5Ehs2+Ehv2 L48=0.9D+0.9Cd3+Eh13-Ehv3 C27=0.9D+0.9Cd3+1.5Ehs3+Ehv3 L49=1.2D+1.2Cd1-Ehs1 C28=0.9D+0.9Cd1+1.5EhI1+Ehv1 L50=1.2D+1.2Cd2-Ehs2 C29=0.9D+0.9Cd2+1.5EhI2+Ehv2 L51=1.2D+1.2Cd3-Ehs3 C30=0.9D+0.9Cd3+1.5EhI3+Ehv3 L52=1.2D+1.2Cd1-Ehl1 C31=0.9D+0.9Cd1+1.5Ehs1-Ehv1 L53=1.2D+1.2Cd2-Ehl2 C32=0.9D+0.9Cd2+1.5Ehs2-Ehv2 L54=1.2D+1.2Cd3-Ehl3 C33=0.9D+0.9Cd3+1.5Ehs3-Ehv3 L55=1.2D+1.2Cd1-Ehsl+Ehv1 C34=0.9D+0.9Cd1+1.5Eh11-Ehvl L56=1.2D+1.2Cd2-Ehs2+Ehv2 C35=0.9D+0.9Cd2+1.5Eh12-Ehv2 L57=1.2D+1.2Cd3-Ehs3+Ehv3 C36=0.9D+0.9Cd3+1.5EhI3-Ehv3 L58=1.2D+1.2Cd1-Ehll+Ehv1 C37=1.2D+1.2Cd1-1.5Ehs1 L59=1.2D+1.2Cd2-Eh12+Ehv2 C38=1.2D+1.2Cd2-1.5Ehs2 L60=1.2D+1.2Cd3-Eh13+Ehv3 C39=1.2D+1.2Cd3-1.5Ehs3 L61=1.2D+1.2Cd1-Ehsl-Ehv1 C40=1.2D+1.2Cd1-1.5Ehi1 L62=1.2D+1.2Cd2-Ehs2-Ehv2 C41=1.2D+1.2Cd2-1.5Eh12 L63=1.2D+1.2Cd3-Ehs3-Ehv3 C42=1.2D+1.2Cd3-1.5Eh13 L64=1.2D+1.2Cd1-Ehll-Ehv1 C43=1.2D+1.2Cd1-1.5Ehsl+Ehv1 L65=1.20+1.2Cd2-Eh12-Ehv2 C44=1.2D+1.2Cd2-1.5Ehs2+Ehv2 L66=1.20+1.2Cd3-Eh13-Ehv3 C45=1.20+1.2Cd3-1.5Ehs3+Ehv3 L67=0.9D+0.9Cd 1-Ehs1 C46=1.20+1.2Cd1-1.5Eh11+Ehv1 L68=0.9D+0.9Cd2-Ehs2 C47=1.20+1.2Cd2-1.5Ehl2+Ehv2 L69=0.9D+0.9Cd3-Ehs3 C48=1.20+1.2Cd3-1.5Ehl3+Ehv3 L70=0.9D+0.9Cd1-Ehl1 C49=1.2D+1.2Cd1-1.5Ehs1-Ehv1 L71=0.9D+0.9Cd2-Eh12 C50=1.2D+1.2Cd2-1.5Ehs2-Ehv2 L72=0.9D+0.9Cd3-Eh13 C51=1.2D+1.2Cd3-1.5Ehs3-E hv3 L73=0.9D+0.9Cd1-Ehsl+Ehv1 C52=1.20+1.2Cd1-1.5Eh11-Ehv1 L74=0.9D+0.9Cd2-Ehs2+Ehv2 C53=1.2D+1.2Cd2-1.5Eh12-Ehv2 L75=0.9D+0.9Cd3-Ehs3+Ehv3 C54=1.20+1.2Cd3-1.5Eh13-Ehv3 L76=0.9D+0.9Cd 1-Ehl1+Ehv1 C55=0.9D+0.9Cd1-1.5Ehs1 L77=0.9D+0.9Cd2-Ehl2+Ehv2 C56=0.9D+0.9Cd2-1.5Ehs2 L78=0.9D+0.9Cd3-Eh13+Ehv3 C57=0.9D+0.9Cd3-1.5Ehs3 L79=0.9D+0.9Cd 1-Ehs 1-Ehv1 C58=0.9D+0.9Cd1-1.5Eh11 L80=0.9D+0.9Cd2-Ehs2-Ehv2 C59=0.9D+0.9Cd2-1.5Eh12 L81=0.9D+0.9Cd3-Ehs3-Ehv3 C60=0.9D+0.9Cd3-1.5Eh13 L82=0.9D+0.9Cd 1-Ehl l-Ehv1 C61=0.9D+0.9Cd1-1.5Ehs1+Ehv1 L83=0.9D+0.9Cd2-Eh12-Ehv2 C62=0.9D+0.9Cd2-1.5Ehs2+Ehv2 L84=0.9D+0.9Cd3-Eh13-EM C63=0.9D+0.9Cd3-1.5Ehs3+Ehv3 C01=1.20+1.2Cd 1+1.5Ehs 1 C64=0.9D+0.9Cd1-1.5Eh11+Ehv1 CO2=1.2D+1.2Cd2+1.5Ehs2 C65=0.9D+0.9Cd2-1.5Ehl2+Ehv2 CO3=1.2D+1.2Cd3+1.5Ehs3 C66=0.9D+0.9Cd3-1.5Eh13+Ehv3 C04=1.20+1.2Cd 1+1.5Eh11 C67=0.9D+0.9Cd1-1.5Ehs1-Ehv1 C05=1.20+1.2Cd2+1.5Eh12 C68=0.9D+0.9Cd2-1.5Ehs2-Ehv2 C06=1.20+1.2Cd3+1.5Eh13 C69=0.9D+0.9Cd3-1.5Ehs3-Ehv3 C07=1.2D+1.2Cd1+1.5Ehsl+Ehv1 C70=0.9D+0.9Cd1-1.5Eh11-Ehv1 C08=1.20+1.2Cd2+1.5Ehs2+Ehv2 C71=0.9D+0.9Cd2-1.5Eh12-Ehv2 C09=1.20+1.2Cd3+1.5Ehs3+Ehv3 C72=0.9D+0.9Cd3-1.5Eh13-Ehv3 66 of 252 MEMBER 30 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 20.16 C07 12.91 C07 0.43 C44 0.03 L03 6.48 C09 62.76 C67 Min -19.25 C67 -12.48 C67 -0.43 C32 0.00 C35 -6.46 C69 -63.88 C07 50% Max 20.08 C07 12.78 C07 0.43 C44 0.03 L03 7.50 C09 31.48 C67 Min -19.18 C67 -12.55 C67 -0.43 C32 0.00 C35 -7.47 C69 -31.77 C07 100% Max 20.01 C07 12.64 C07 0.43 C44 0.03 L03 8.53 C09 0.00 L01 Min -19.11 C67 -12.63 C67 -0.43 C32 0.00 C35 -8.49 C69 0.00 L01 MEMBER 9 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 7.40 C69 13.71 C33 6.81 C70 0.01 C43 8.08 C70 28.61 C45 Min -53.13 L12 -14.62 C45 0.00 L02 -0.01 C31 0.00 L02 -26.56 C33 50% Max 7.42 C69 13.73 C33 6.80 C70 0.01 C43 4.04 C70 19.91 C45 Min -53.10 L12 -14.64 C45 0.00 L02 -0.01 C31 0.00 L02 -18.41 C33 100% Max 7.44 C69 13.75 C33 6.79 C70 0.01 C43 0.00 L01 11.20 C45 Min -53.07 L12 -14.66 C45 0.00 L02 -0.01 C31 0.00 L01 -10.24 C33 MEMBER 13 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max -5.68 C34 8.57 C68 0.12 C58 0.01 L04 0.00 L41 148.29 C32 Min -56.87 L11 -8.57 C08 -0.12 CO6 -0.01 L10 0.00 L29 -148.29 C44 50% Max -5.42 C34 8.32 C68 0.00 L41 0.01 L04 0.50 C17 80.07 C32 Min -56.46 L11 -8.32 C08 0.00 L29 -0.01 L10 -0.50 C47 -80.08 C44 100% Max -5.16 C34 8.07 C68 0.12 C17 0.01 L04 0.00 L01 13.85 C32 Min -56.04 L11 -8.07 C08 -0.12 C47 -0.01 L10 0.00 L01 -13.86 C44 MEMBER 32 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 26.45 C67 0.01 C71 0.13 C07 0.00 C68 1.22 C31 0.00 C12 Min -28.26 C07 -0.01 C12 -0.11 C67 -0.01 L03 -1.23 C43 0.00 C71 50% Max 26.45 C67 0.00 C71 0.13 C31 0.00 C68 0.87 C07 0.02 C48 Min -28.31 C07 0.00 C12 -0.16 043 -0.01 L03 -0.87 C67 -0.02 C35 100% Max 26.45 C67 0.01 C35 0.13 C31 0.00 C68 0.57 C07 0.00 L01 Min -28.36 C07 -0.01 C48 -0.21 C43 -0.01 L03 -0.40 C67 0.00 L01 MEMBER 60 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 0.11 L59 0.08 C47 0.07 C43 0.00 C09 0.00 C47 0.00 C11 Min -21.78 C36 -0.05 C36 -0.07 C31 0.00 C69 0.00 C36 0.00 C60 50% Max 0.00 C71 0.00 C71 0.00 C43 0.00 C09 0.27 C31 0.31 C47 Min -21.87 C12 -0.04 C12 0.00 C31 0.00 C69 -0.27 C43 -0.36 C36 100% Max -0.05 C71 -0.03 C68 0.07 C09 0.00 C09 0.01 C31 0.00 C71 Min -22.00 C12 -0.08 C48 -0.07 C69 0.00 C69 -0.01 C43 -0.68 C12 MEMBER 130 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 0.12 L05 38.53 L12 3.32 C45 2.88 L03 3.82 C45 -0.41 L05 Min -6.46 C70 1.44 C68 -3.31 C33 -2.88 L06 -3.79 C32 -19.60 L12 50% Max 0.12 L05 38.34 L12 3.21 C45 2.88 L03 2.60 C44 37.18 L06 Min -6.41 C70 1.32 C68 -3.21 C33 -2.88 L06 -2.60 C32 -6.85 C70 67 of 252 100% Max 0.12 L05 38.15 L12 3.10 C45 2.88 L03 5.51 L03 87.93 L06 Min -6.36 C70 1.20 C68 -3.10 C33 -2.88 L06 -4.76 C69 -4.81 C70 Steel Code Check Report: Summary-Group by member Load conditions to be included in design: L01=1.2D+1.2Cd 1+1.6Cv1+1.6Ci 1+1.6Cs1+1.6CIs L60=1.20+1.2Cd3-Eh13+Ehv3 L02=1.2D+1.2Cd2+1.6Cv2+1.6Ci2+1.6Cs2+1.6CIs L61=1.2D+1.2Cd1-Ehsl-Ehv1 L03=1.2D+1.2Cd3+1.6Cv3+1.6Ci3+1.6Cs3+1.6CIs L62=1.2D+1.2Cd2-Ehs2-Ehv2 L04=1.2D+1.2Cd1+1.6Cv1+1.6Ci1-1.6Cs1+1.6CIs L63=1.2D+1.2Cd3-Ehs3-Ehv3 L05=1.2D+1.2Cd2+1.6Cv2+1.6Ci2-1.6Cs2+1.6C1s L64=1.20+1.2Cd1-Ehll-Ehv1 L06=1.2D+1.2Cd3+1.6Cv3+1.6Ci3-1.6Cs3+1.6CIs L65=1.20+1.2Cd2-Eh12-Ehv2 L071.2D+1.2Cd 1+1.6Cv1+1.6Ci1-1.6Cs1-1.6CIs L66=1.20+1.2Cd3-Eh13-Ehv3 L08=1.2D+1.2Cd2+1.6Cv2+1.6Ci2-1.6Cs2-1.6CIs L67=0.913+0.9Cd 1-Ehs1 L09=1.2D+1.2Cd3+1.6Cv3+1.6Ci3-1.6Cs3-1.6CIs L68=0.913+0.9Cd2-Ehs2 Li 0=1.2D+1.2Cd 1+1.6Cv1+1.6Ci1+1.6Cs1-1.6CIs L69=0.9D+0.9Cd3-Ehs3 L11=1.2D+1.2Cd2+1.6Cv2+1.6Ci2+1.6Cs2-1.6CIs L70=0.9D+0.9Cd 1-Ehl1 L12=1.2D+1.2Cd3+1.6Cv3+1.6Ci3+1.6Cs3-1.6Cls L71=0.9D+0.9Cd2-Eh12 L13=1.2D+1.2Cd1+Ehs1 L72=0.913+0.9Cd3-Ehl3 L14=1.2D+1.2Cd2+Ehs2 L73=0.9D+0.9Cd1-Ehs1+Ehv1 L15=1.2D+1.2Cd3+Ehs3 L74=0.9D+0.9Cd2-Ehs2+Ehv2 Li 6=1.2D+1.2Cd 1+Ehl1 L75=0.9D+0.9Cd3-Ehs3+Ehv3 L17=1.2D+1.2Cd2+Eh12 L76=0.9D+0.9Cd1-Eh11+Ehv1 L18=1.2D+1.2Cd3+Eh13 L77=0.9D+0.9Cd2-Eh12+Ehv2 L19=1.2D+1.2Cd 1+Ehsl+Ehv1 L78=0.9D+0.9Cd3-Ehl3+Ehv3 L20=1.20+1.2Cd2+Ehs2+Ehv2 L79=0.9D+0.9Cd 1-Ehsl-Ehv1 L21=1.2D+1.2Cd3+Ehs3+Ehv3 L80=0.9D+0.9Cd2-Ehs2-Ehv2 L221.2D+1.2Cd 1+Ehl1+Ehv1 L81=0.9D+0.9Cd3-Ehs3-Ehv3 L23=1.2D+1.2Cd2+Eh12+Ehv2 L82=0.9D+0.9Cd 1-Eh1l-Ehv1 L24=1.2D+1.2Cd3+Eh13+Ehv3 L83=0.9D+0.9Cd2-Eh12-Ehv2 L25=1.2D+1.2Cd1+Ehs 1-Ehv1 L84=0.9D+0.9Cd3-Eh13-Ehv3 L26=1.20+1.2Cd2+Ehs2-Ehv2 C01=1.2D+1.2Cd1+1.5Ehs1 L27=1.2D+1.2Cd3+Ehs3-Ehv3 CO2=1.2D+1.2Cd2+1.5Ehs2 L28=1.2D+1.2Cd1+Ehl1-Ehv1 CO3=1.2D+1.2Cd3+1.5Ehs3 L29=1.2D+1.2Cd2+Eh12-Ehv2 C04=1.2D+1.2Cd1+1.5Eh11 L30=1.2D+1.2Cd3+Eh13-Ehv3 C05=1.2D+1.2Cd2+1.5Eh12 L31=0.9D+0.9Cd 1+Ehs 1 C06=1.2D+1.2Cd3+1.5EhI3 L32=0.913+0.9Cd2+Ehs2 C07=1.2D+1.2Cd1+1.5Ehsl+Ehv1 L33=0.9D+0.9Cd3+Ehs3 C08=1.20+1.2Cd2+1.5Ehs2+Ehv2 L34=0.913+0.9Cd1+Ehl1 C09=1.2D+1.2Cd3+1.5Ehs3+Ehv3 L35=0.9D+0.9Cd2+Eh12 C10=1.20+1.2Cd 1+1.5Eh11+Ehv1 L36=0.9D+0.9Cd3+Eh13 C11=1.20+1.2Cd2+1.5EhI2+Ehv2 L37=0.9D+0.9Cd1+Ehs1+Ehv1 C12=1.20+1.2Cd3+1.5Eh13+Ehv3 L38=0.9D+0.9Cd2+Ehs2+Ehv2 Cl 3=1.20+1.2Cd 1+1.5Ehs 1-Ehv1 L39=0.913+0.9Cd3+Ehs3+Ehv3 C14=1.20+1.2Cd2+1.5Ehs2-Ehv2 L40=0.9D+0.9Cd1+EhI l+Ehv1 C15=1.20+1.2Cd3+1.5Ehs3-Ehv3 L41=0.9D+0.9Cd2+Eh12+Ehv2 C16=1.20+1.2Cd1+1.5Eh11-Ehv1 L42=0.9D+0.9Cd3+Eh13+Ehv3 C17=1.2D+1.2Cd2+1.5Eh12-Ehv2 L43=0.913+0.9Cd1+Ehs1-Ehv1 C18=1.20+1.2Cd3+1.5Eh13-Ehv3 L44=0.9D+0.9Cd2+Ehs2-Ehv2 C19=0.9D+0.9Cd1+1.5Ehs1 L45=0.9D+0.9Cd3+Ehs3-Ehv3 C20=0.9D+0.9Cd2+1.5Ehs2 L46=0.9D+0.9Cd1+Ehl1-Ehv1 C21=0.9D+0.9Cd3+1.5Ehs3 L47=0.9D+0.9Cd2+Eh12-Ehv2 C22=0.9D+0.9Cd1+1.5Ehl1 L48=0.913+0.9Cd3+Eh13-Ehv3 C23=0.9D+0.9Cd2+1.5Ehl2 L49=1.20+1.2Cd1-Ehs 1 C24=0.9D+0.9Cd3+1.5Ehl3 L50=1.2D+1.2Cd2-Ehs2 C25=0.9D+0.9Cd1+1.5Ehs1+Ehv1 L51=1.20+1.2Cd3-Ehs3 C26=0.9D+0.9Cd2+1.5Ehs2+Ehv2 L521.20+1.2Cd 1-Ehl1 C27=0.9D+0.9Cd3+1.5Ehs3+Ehv3 L53=1.20+1.2Cd2-Eh12 C28=0.9D+0.9Cd1+1.5Ehl1+Ehv1 L54=1.213+1.2Cd3-Eh13 C29=0.9D+0.9Cd2+1.5EhI2+Ehv2 [55=1.2D+1.2Cd 1-Ehs 1+Ehv1 C30=0.9D+0.9Cd3+1.5Eh13+Ehv3 L56=1.20+1.2Cd2-Ehs2+Ehv2 C31=0.9D+0.9Cd1+1.5Ehs1-Ehv1 L57=1.20+1.2Cd3-Ehs3+Ehv3 C32=0.9D+0.9Cd2+1.5Ehs2-Ehv2 L58=1.20+1.2Cd1-Ehll+Ehv1 C33=0.9D+0.9Cd3+1.5Ehs3-Ehv3 L59=1.20+1.2Cd2-Eh12+Ehv2 C34=0.9D+0.9Cd1+1.5Eh11-Ehv1 68 of 252 C35=0.9D+0.9Cd2+1.5Eh12-Ehv2 C54=1.2D+1.2Cd3-1.5Eh13-Ehv3 C36=0.9D+0.9Cd3+1.5Eh13-Ehv3 C55=0.9D+0.9Cd1-1.5Ehs1 C37=1.2D+1.2Cd1-1.5Ehs1 C56=0.9D+0.9Cd2-1.5Ehs2 C38=1.2D+1.2Cd2-1.5Ehs2 C57=0.9D+0.9Cd3-1.5Ehs3 C39=1.2D+1.2Cd3-1.5Ehs3 C58=0.9D+0.9Cd1-1.5Ehl1 C40=1.2D+1.2Cd 1-1.5Ehl1 C59=0.9D+0.9Cd2-1.5Eh12 C41=1.2D+1.2Cd2-1.5EhI2 C60=0.9D+0.9Cd3-1.5Ehl3 C42=1.20+1.2Cd3-1.5Ehl3 C61=0.9D+0.9Cd1-1.5Ehsl+Ehv1 C43=1.20+1.2Cd1-1.5Ehsl+Ehv1 C62=0.9D+0.9Cd2-1.5Ehs2+Ehv2 C44=1.20+1.2Cd2-1.5Ehs2+Ehv2 C63=0.9D+0.9Cd3-1.5Ehs3+Ehv3 C45=1.20+1.2Cd3-1.5Ehs3+Ehv3 C64=0.9D+0.9Cd1-1.5Eh11+Ehvl C46=1.20+1.2Cd1-1.5Eh11+Ehv1 C65=0.9D+0.9Cd2-1.5Ehl2+Ehv2 C47=1.20+1.2Cd2-1.5Ehl2+Ehv2 C66=0.9D+0.9Cd3-1.5Eh13+Ehv3 C48=1.20+1.2Cd3-1.5Ehl3+Ehv3 C67=0.9D+0.9Cd 1-1.5Ehs1-Ehv1 C49=1.20+1.2Cd1-1.5Ehs1-Ehv1 C68=0.9D+0.9Cd2-1.5Ehs2-Ehv2 C50=1.2D+1.2Cd2-1.5Ehs2-Ehv2 C69=0.9D+0.9Cd3-1.5Ehs3-Ehv3 C51=1.2D+1.2Cd3-1.5Ehs3-Ehv3 C70=0.9D+0.9Cd 1-1.5Eh11-Ehv1 C52=1.2D+1.2Cd1-1.5EhI1-Ehv1 C71=0.9D+0.9Cd2-1.5Eh12-Ehv2 C53=1.2D+1.2Cd2-1.5Eh12-Ehv2 C72=0.9D+0.9Cd3-1.5Eh13-Ehv3 Description Section Member Ctrl Eq. Ratio Status Reference Columns W 14X43 2 L06 at 100.00% 0.40 OK Eq.H1-la 4 L19 at 0.00% 0.22 OK Eq. H1-lb 6 L55 at 100.00% 0.28 OK Eq. H1-lb 9 L12 at 0.00% 0.18 OK Eq.H1-lb 11 L21 at 100.00% 0.28 OK Eq. H1-lb 13 L11 at 0.00% 0.43 OK Eq. H1-2 15 L10 at 100.00% 0.42 OK Eq. H1-la 18 L09 at 0.00% 0.17 OK Eq. H1-lb 23 L03 at 0.00% 0.38 OK Eq. H1-1a 24 L12 at 0.00% 0.28 OK Eq. H1-lb 27 L04 at 0.00% 0.41 OK Eq.H1-1a 28 L04 at 0.00% 0.26 OK Eq.H1-1b 57 L04 at 0.00% 0.19 OK Eq.H1-lb 58 LO1 at 0.00% 0.14 OK Eq.H1-1b 80 L02 at 0.00% 0.39 OK Eq.H1-2 Cross Beams W 12X40 19 L45 at 100.00% 0.57 OK Eq.H1-lb 20 L43 at 100.00% 0.59 OK Eq. Hl-lb 21 L21 at 100.00% 0.55 OK Eq. H1-lb 22 L81 at 0.00% 0.60 OK Eq. H1-lb 29 L19 at 100.00% 0.55 OK Eq. H1-lb 30 L79 at 0.00% 0.61 OK Eq. H1-lb kicker brace HSS_SQR 4X4X1_4 3 L58 at 0.00% 0.31 OK Eq.Hi-la 12 L09 at 0.00% 0.40 OK Eq. H1-1a 59 L23 at 100.00% 0.31 OK Eq. H1-1a 60 L03 at 100.00% 0.41 OK Eq. H1-1a 71 L82 at 100.00% 0.13 OK 72 L09 at 0.00% 0.17 OK 73 L47 at 100.00% 0.13 OK 74 L03 at 0.00% 0.17 OK Knee Brace T2L 4X4X1_4 25 L57 at 0.00% 0.20 OK Sec. E4 26 L21 at 100.00% 0.20 OK Sec. E4 31 L55 at 100.00% 0.26 OK Eq.H1-la 32 L19 at 0.00% 0.26 OK Eq.H1-la Runway W 24 x 94_C 15 x 33.9 10 L58 at 100.00% 0.00 OK 16 L09 at 100.00% 0.14 OK Eq.H1-1b 33 L19 at 0.00% 0.00 OK 38 L04 at 0.00% 0.17 OK Eq. H1-1b 41 L06 at 0.00% 0.33 OK Eq. H1-lb 44 L06 at 0.00% 0.51 OK Eq. H1-lb 45 L57 at 100.00% 0.10 OK Eq. Hl-lb 46 L06 at 100.00% 0.15 OK Eq. H1-lb 69 of 252 47 L03 at 100.00% 0.27 OK Eq. H1-lb 48 L08 at 0.00% 0.12 OK Eq. H1-lb 49 L08 at 0.00% 0.17 OK Eq. H1-lb 50 L06 at 100.00% 0.62 OK Eq. H1-lb 90 L12 at 100.00% 0.06 OK Eq. H1-1b 92 L57 at 100.00% 0.12 OK Eq. H1-lb 93 L57 at 100.00% 0.14 OK Eq. H1-lb 94 L57 at 50.00% 0.15 OK Eq. H1-lb 107 L06 at 0.00% 0.76 OK Eq. H1-1b 108 L06 at 100.00% 0.76 OK Eq. H1-1b 109 L06 at 100.00% 0.76 OK Eq. H1-lb 110 LO6 at 100.00% 0.75 OK Eq. H1-lb 111 L06 at 0.00% 0.75 OK Eq. H1-lb 112 L06 at 0.00% 0.63 OK Eq. H1-lb 113 LO8 at 100.00% 0.13 OK Eq. H1-1b 114 LO8 at 100.00% 0.17 OK Eq. H1-lb 115 L57 at 0.00% 0.13 OK Eq. H1-lb 116 L57 at 0.00% 0.14 OK Eq. H1-lb 121 LO8 at 100.00% 0.15 OK Eq. H1-lb 123 L04 at 100.00% 0.31 OK Eq. H1-1b 124 L01 at 0.00% 0.25 OK Eq. H1-lb 125 L07 at 0.00% 0.02 OK 132 L57 at 0.00% 0.01 OK Eq. H1-lb 133 L09 at 0.00% 0.13 OK Eq. H1-lb 134 L57 at 100.00% 0.12 OK Eq. H1-1b Runway Short W 24 x 76_C 15 x 33.9 1 L60 at 100.00% 0.00 OK 34 L19 at 0.00% 0.00 OK 37 L10 at 0.00% 0.05 OK Eq. H1-lb 42 L19 at 0.00% 0.10 OK Eq. H1-lb 43 L11 at 0.00% 0.10 OK Eq. H1-lb 78 L02 at 100.00% 0.13 OK Eq. H1-lb 82 L10 at 100.00% 0.38 OK Eq. H1-lb 83 L10 at 0.00% 0.53 OK Eq. H1-lb 84 L07 at 0.00% 0.54 OK Eq. H1-lb 85 L07 at 100.00% 0.54 OK Eq. H1-lb 86 L04 at 0.00% 0.54 OK Eq. H1-1b 87 L04 at 0.00% 0.53 OK Eq. H1-lb 88 L04 at 0.00% 0.37 OK Eq. H1-lb 96 LO3 at 100.00% 0.19 OK Eq. H1-1b 98 L03 at 100.00% 0.33 OK Eq. H1-lb 99 L03 at 0.00% 0.33 OK Eq. H1-lb 100 L03 at 0.00% 0.31 OK Eq. H1-1b 101 LO2 at 100.00% 0.15 OK Eq. H1-lb 102 L02 at 100.00% 0.18 OK Eq. H1-lb 103 L02 at 0.00% 0.18 OK Eq. H1-lb 104 LO2 at 0.00% 0.13 OK Eq. H1-lb 105 L02 at 0.00% 0.15 OK Eq. H1-lb 106 L04 at 0.00% 0.32 OK Eq. Hl-lb 117 L04 at 100.00% 0.54 OK Eq. H1-lb 118 L07 at 100.00% 0.54 OK Eq. H1-lb 119 L04 at 0.00% 0.43 OK Eq. H1-lb 120 L10 at 0.00% 0.49 OK Eq. H1-lb 122 L04 at 100.00% 0.54 OK Eq. H1-lb 126 L07 at 0.00% 0.01 OK Eq. H1-lb 127 L01 at 0.00% 0.07 OK Eq. H1-lb 128 L19 at 100.00% 0.09 OK Eq. H1-lb 129 L09 at 0.00% 0.03 OK 130 L03 at 100.00% 0.15 OK Eq. H1-lb 131 L03 at 100.00% 0.32 OK Eq. H1-lb 70 of 252 Detailed Steel Code Check Report: Comprehensive Members: Hot-rolled Design code: AISC 360-2010 LRFD Member 13 (Columns) Design status OK Section information Section name: W 14X43 (US) Dimensions Ztt Itk1 1.k * - t d tw --• I bf J. bf = 8.000 [in] Width d = 13.700 [in] Depth k = 1.120 [in] Distance k k1 = 1.000 [in] Distance k1 tf = 0.530 [in] Flange thickness tw = 0.305 [in] Web thickness Properties Section properties Unit Major axis Minor axis Gross area of the section. (Ag) [in2] 12.600 Moment of Inertia(local axes) (I) [in4] 428.000 45.200 Moment of Inertia(principal axes) (I') [in4] 428.000 45.200 Bending constant for moments(principal axis) (J') [in] 0.000 0.000 Radius of gyration(local axes) (r) [in] 5.828 1.894 Radius of gyration(principal axes) (r) [in] 5.828 1.894 Saint-Venant torsion constant. (J) [in4] 1.050 Section warping constant. (Cw) [in6] 1950.000 Distance from centroid to shear center(principal axis) (xo,yo) [in] 0.000 0.000 Top elastic section modulus of the section(local axis) (Ssup) [in3] 62.600 11.300 Bottom elastic section modulus of the section(local axis) (Sinf) [in3] 62.600 11.300 Top elastic section modulus of the section(principal axis) (S'sup) [in3] 62.600 11.300 Bottom elastic section modulus of the section(principal axis) (S'inf) [in3] 62.600 11.300 Plastic section modulus(local axis) (Z) [in3] 69.600 17.300 Plastic section modulus(principal axis) (Z') [in3] 69.600 17.300 Polar radius of gyration. (ro) [in] 6.128 Area for shear (Aw) [in2] 8.480 4.180 Torsional constant. (C) [in3] 1.733 Material :A992 Gr50 Properties Unit Value Yield stress(Fy): [Kipnn2] 50.00 Tensile strength(Fu): [Kipfn2] 65.00 Elasticity Modulus(E): [Kipfin2] 29000.00 Shear modulus for steel(G): [Kip/in2] 11153.85 71 of 252 DESIGN CRITERIA Description Unit Value Length for tension slenderness ratio(L) [in] 193.86 Distance between member lateral bracing points Length(Lb)[in] Top Bottom 193.86 193.86 Laterally unbraced length Length[in] Effective length factor Major axis(L33) Minor axis(L22) Torsional axis(Lt) Major axis(K33) Minor axis(K22) Torsional axis(Kt) 193.86 193.86 193.86 2.10 1.20 - Additional assumptions Continuous lateral torsional restraint No Tension field action No Continuous flexural torsional restraint No Effective length factor value type Recommended Major axis frame type Non sway Minor axis frame type Sway DESIGN CHECKS AXIAL TENSION DESIGN 1 Axial tension Ratio 0.00 Capacity 567.00[Kip] Reference : Eq.Sec.D2 Demand 0.00[Kip] Ctrl Eq. : L01 at 0.00% Intermediate results Unit Value Reference Factored axial tension capacitv(4Pn) [Kip] 567.00 Eq.Sec.02 Nominal axial tension capacity(Pn) [Kip] 630.00 Eq.D2-1 AXIAL COMPRESSION DESIGN 1✓ Compression in the major axis 33 Ratio 0.14 Capacity 396.87[Kip] Reference : Sec.El Demand 56.87[Kip] Ctrl Eq. : L11 at 0.00% Intermediate results Unit Value Reference Section classification Unstiffened element classification — Non slender Unstiffened element slenderness(X) — 7.55 Unstiffened element limiting slenderness(Xr) — 13.49 Stiffened element classification — Slender Stiffened element slenderness(X) — 37.57 Stiffened element limiting slenderness(Xr) — 35.88 Factored flexural buckling strength(4Pn33) [Kip] 396.87 Sec.El 72 of 252 Effective length factor(K33) - 2.10 Unbraced length(L33) [in] 193.86 Effective slenderness((KLJr)33) - 69.85 Eq.E3-4 Elastic critical buckling stress(Fe33) [Kip/in2] 58.66 Eq.E3-4 Reduction factor for slender unstiffened elements(Qs33) - 1.00 Effective area of the cross section based on the effective width (A... [in2] 12.60 Eq.E7-2 Reduction factor for slender stiffened elements(Qa33) - 1.00 Eq.E7-16 Full reduction factor for slender elements(Q33) - 1.00 Sec.E7 Critical stress for flexural buckling(Fcr33) [Kip/in2] 35.00 Eq.E7-2 Nominal flexural buckling strength(Pn33) [Kip] 440.97 Eq.E7-1 Compression in the minor axis 22 Ratio 0.30 Capacity 188.69[Kip] Reference : Sec.El Demand 56.87[Kip] Ctrl Eq. : L11 at 0.00% Intermediate results Unit Value Reference Section classification Unstiffened element classification - Non slender Unstiffened element slenderness(X) - 7.55 Unstiffened element limiting slenderness(Xr) - 13.49 Stiffened element classification - Slender Stiffened element slenderness(X) - 37.57 Stiffened element limiting slendemess(Xr) -- 35.88 Factored flexural buckling strencith(en22) [Kip] 188.69 Sec.El Effective length factor(K22) - 1.20 Unbraced length(L22) [in] 193.86 Effective slenderness((KL/r)22) - 122.82 Eq.E3-4 Elastic critical buckling stress(Fe22) [Kip/in2] 18.97 Eq.E3-4 Reduction factor for slender unstiffened elements(Qs22) - 1.00 Effective area of the cross section based on the effective width (A... [in2] 12.60 Eq.E7-3 Reduction factor for slender stiffened elements(Qa22) - 1.00 Eq.E7-16 Full reduction factor for slender elements(Q22) - 1.00 Sec.E7 Critical stress for flexural buckling(Fcr22) [Kip/in2] 16.64 Eq.E7-3 Nominal flexural buckling strength(Pn22) [Kip] 209.66 Eq.E7-1 Factored torsional or flexural-torsional buckling strength(4)Pn11) [Kip] 390.55 Sec.E4 Effective length factor(K11) -- 1.00 Unbraced length(L11) [in] 193.86 Flexural constant(H) - 1.00 Eq.E4-10 Torsional or flexural-torsional elastic buckling stress(Fell) [Kip/in2] 56.13 Eq.E4-4 Elastic torsional buckling stress(Fez) [Kip/in2] 56.13 Eq.E4-9 Reduction factor for slender unstiffened elements(Qs11) - 1.00 Effective area of the cross section based on the effective width (A... [in2] 12.60 Eq.E7-2 Reduction factor for slender stiffened elements(Qa11) - 1.00 Eq.E7-16 Full reduction factor for slender elements(Q11) - 1.00 Sec.E7 Critical stress for torsional or flexural-torsional buckling(Fcr11) [Kip/in2] 34.44 Eq.E7-2 Nominal torsional or flexural-torsional buckling strength(Pn11) [Kip] 433.94 Eq.E7-1 FLEXURAL DESIGN if Bending about major axis,M33 Ratio 0.38 Capacity 261.00[Kip*ft] Reference : Sec. Fl Demand -98.86[Kip*ft] Ctrl Eq. : L50 at 0.00% Intermediate results Unit Value Reference Section classification Unstiffened element classification - Compact 73 of 252 Unstiffened element slenderness(X) - 7.55 Limiting slenderness for noncompact unstiffened element(Xr) - 24.08 Limiting slenderness for compact unstiffened element(Xp) -- 9.15 Stiffened element classification -- Compact Stiffened element slenderness(X) -- 37.57 Limiting slenderness for noncompact stiffened element(Xr) -- 137.27 Limiting slenderness for compact stiffened element(Xp) - 90.55 Factored yielding strength(On) [Kip*ft] 261.00 Sec.F1 Yielding(Mn) [Kip*ft] 290.00 Eq.F2-1 Factored lateral-torsional buckling strength(+Mn) [Kip*ft] 261.00 Sec.Fl Limiting laterally unbraced length for yielding(Lp) [in] 80.28 Eq.F2-5 Effective radius of gyration used in the determination of Lr(rts) [in] 2.18 Eq.F2-7 Lateral-torsional factor(c) - 1.00 Eq.F2-8a Limiting laterally unbraced length for inelastic lateral-torsional bucklin... [in] 240.20 Eq.F2-6 Lateral-torsional buckling modification factor(Cb) - 1.58 Eq.F1-1 Critical stress(Fcr) [Kip/in2] 76.31 Eq.F2-4 Lateral-torsional buckling(Mn) [Kip*ft] 290.00 Eq.F2-2 Bending about minor axis,M22 Ratio 0.01 Capacity 64.88[Kip*ft] Reference : Sec.Fl Demand 0.33[Kip*ft] Ctrl Eq. : L16 at 50.00% Intermediate results Unit Value Reference Section classification Unstiffened element classification -- Compact Unstiffened element slenderness(X) - 7.55 Limiting slenderness for noncompact unstiffened element(Xi) -- 24.08 Limiting slenderness for compact unstiffened element(Xp) -- 9.15 Stiffened element classification -- Compact Stiffened element slenderness(X) -- 37.57 Limiting slenderness for noncompact stiffened element(Xr) -- 137.27 Limiting slenderness for compact stiffened element(Xp) -- 90.55 Factored yielding strencith(4Mn) [Kip*ft] 64.88 Sec.F1 Yielding(Mn) [Kip*ft] 72.08 Eq.F6-1 DESIGN FOR SHEAR At Shear in major axis 33 Ratio 0.00 Capacity 228.96[Kip] Demand -0.08[Kip] Ctrl Eq. : L16 at 0.00% Intermediate results Unit Value Reference Factored shear capacity(4)Vn) [Kip] 228.96 Web slenderness(Xw) - 7.55 Sec.G2 Shear area(Aw) [in2] 8.48 Web buckling coefficient(kv) - 1.20 Sec.G7 Web buckling coefficient(Cv) - 1.00 Eq.G2-3 Nominal shear strength(Vn) [Kip] 254.40 Eq.G2-1 74 of 252 Shear in minor axis 22 Ratio 0.05 Capacity 125.40[Kip] Reference : Sec.G2.1(a) Demand -5.71 [Kip] Ctrl Eq. : L14 at 0.00% Intermediate results Unit Value Reference Factored shear capacity(4)Vn) [Kip] 125.40 Sec.G2.1(a) Web slenderness(X,w) — 37.57 Sec.G2 Shear area(Aw) [in2] 4.18 Web buckling coefficient(Cv) — 1.00 Eq.G2-2 Nominal shear strength(Vn) [Kip] 125.40 Eq.G2-1 COMBINED ACTIONS DESIGN it Combined flexure and axial compression Ratio 0.43 Ctrl Eq. L02 at 0.00% Reference : Eq. H1-2 Intermediate results Unit Value Reference Interaction for doubly symmetric members for in-plane bending — 0.29 Eq.Hl-lb In-plane required flexural strength(Mr33) [Kip*ft] 58.29 In-plane available flexural strength(Mc33) [Kip*ft] 261.00 Sec.Fl In-plane required axial compressive strength(Pr) [Kip] 56.86 In-plane available axial compressive strength(Pc) [Kip] 396.87 Sec.El Interaction for doubly symmetric members for out-of-plane bending — 0.43 Eq.H1-2 Out-of-plane required flexural strength(Mr33) [Kip*ft] 58.29 Out-of-plane available flexural-torsional strength(Mc33) [Kip*ft] 261.00 Sec.Fl Out-of-plane required axial compressive strength(Pr) [Kip] 56.86 Out-of-plane available axial compressive strength(Pco) [Kip] 188.69 Sec.El Combined flexure and axial tension Ratio 0.38 Ctrl Eq. L14 at 0.00% Reference : Eq.H1-lb Intermediate results Unit Value Reference Required flexural strength about strong axis(Mr33) [Kip*ft] 98.86 Available flexural strength about strong axis(Mc33) [Kip*ft] 261.00 Sec.Fl Required flexural strength about weak axis(Mr22) [Kip*ft] 0.00 Available flexural strength about weak axis(Mc22) [Kip*ft] 64.88 Sec. Fl Required axial tensile strength(Pr) [Kip] 0.00 Available axial tensile strength(Pc) [Kip] 567.00 Eq.Sec.D2 Combined flexure and axial compression about local axis Ratio N/A • Ctrl Eq. -- Reference . Combined flexure and axial tension about local axis Ratio N/A • Ctrl Eq. — Reference . 75 of 252 Member 30 (Cross Beams) Design status OK Section information Section name: W 12X40 (US) Dimensions ,tf i i t 4k ci tw -► r bf bf = 8.010 [in] Width d = 11.900 [in] Depth k = 1.020 [in] Distance k k1 = 0.875 [in] Distance k1 tf = 0.515 [in] Flange thickness tw = 0.295 [in] Web thickness Properties Section properties Unit Major axis Minor axis Gross area of the section. (Ag) [in2] 11.700 Moment of Inertia(local axes) (I) [in4] 307.000 44.100 Moment of Inertia(principal axes) (I') [in4] 307.000 44.100 Bending constant for moments(principal axis) (J') [in] 0.000 0.000 Radius of gyration(local axes) (r) [in] 5.122 1.941 Radius of gyration(principal axes) (r) [in] 5.122 1.941 Saint-Venant torsion constant. (J) [in4] 0.906 Section warping constant. (Cw) [in6] 1440.000 Distance from centroid to shear center(principal axis) (xo,yo) [in] 0.000 0.000 Top elastic section modulus of the section(local axis) (Ssup) [in3] 51.500 11.000 Bottom elastic section modulus of the section(local axis) (Sinf) [in3] 51.500 11.000 Top elastic section modulus of the section(principal axis) (Sssup) [in3J 51.500 11.000 Bottom elastic section modulus of the section(principal axis) (S'inf) [in3] 51.500 11.000 Plastic section modulus(local axis) (Z) [in3] 57.000 16.800 Plastic section modulus(principal axis) (Z) [in3] 57.000 16.800 Polar radius of gyration. (ro) [in] 5.478 Area for shear (Aw) [in2] 8.250 3.510 Torsional constant. (C) [in3] 1.605 Material :A992 Gr50 Properties Unit Value Yield stress(Fy): [Kip/in2] 50.00 Tensile strength(Fu): [Kipfin2] 65.00 Elasticity Modulus(E): [Kipfin2] 29000.00 Shear modulus for steel(G): [KipTn2] 11153.85 DESIGN CRITERIA Description Unit Value Length for tension slenderness ratio(L) [in] 360.00 76 of 252 Distance between member lateral bracing points Length(Lb)[in] Top Bottom 360.00 360.00 Laterally unbraced length Length[in] Effective length factor Major axis(L33) Minor axis(L22) Torsional axis(Lt) Major axis(K33) Minor axis(K22) Torsional axis(Kt) 60.00 360.00 60.00 1.0 1.0 1.0 Additional assumptions Continuous lateral torsional restraint No Tension field action No Continuous flexural torsional restraint No Effective length factor value type None Major axis frame type Sway Minor axis frame type Sway DESIGN CHECKS AXIAL TENSION DESIGN Axial tension Ratio 0.03 Capacity 526.50[Kip] Reference : Eq.Sec.D2 Demand 13.63[Kip] Ctrl Eq. : L19 at 0.00% Intermediate results Unit Value Reference Factored axial tension capacitv(cPn) [Kip] 526.50 Eq.Sec.D2 Nominal axial tension capacity(Pn) [Kip] 585.00 Eq.D2-1 AXIAL COMPRESSION DESIGN tit Compression in the malor axis 33 Ratio 0.02 Capacity 521.24[Kip] Reference : Sec.El Demand 12.73[Kip] Ctrl Eq. : L79 at 0.00% Intermediate results Unit Value Reference Section classification Unstiffened element classification — Non slender Unstiffened element slenderness(A) — 7.78 Unstiffened element limiting slenderness(Ar) — 13.49 Stiffened element classification — Non slender Stiffened element slenderness(A) — 33.42 Stiffened element limiting slenderness(Ar) — 35.88 Factored flexural buckling strength(4Pn33) [Kip] 521.24 Sec.El Effective length factor(K33) — 1.00 Unbraced length(L33) [in] 60.00 Effective slenderness((KL/r)33) -- 11.71 Eq.E3-4 Elastic critical buckling stress(Fe33) [Kip/in2] 2086.16 Eq.E3-4 Reduction factor for slender unstiffened elements(Qs33) — 1.00 Effective area of the cross section based on the effective width (A... [in2] 11.70 Eq.E3-2 Reduction factor for slender stiffened elements(Qa33) — 1.00 77 of 252 Full reduction factor for slender elements(Q33) -- 1.00 Sec.E7 Critical stress for flexural buckling(Fcr33) [Kip/in2] 49.50 Eq.E3-2 Nominal flexural buckling strength(Pn33) [Kip] 579.16 Eq.E3-1 Compression in the minor axis 22 Ratio 0.17 Capacity 76.87[Kip] Reference : Sec.El Demand 12.73[Kip] Ctrl Eq. : L79 at 0.00% Intermediate results Unit Value Reference Section classification Unstiffened element classification -- Non slender Unstiffened element slendemess(k) - 7.78 Unstiffened element limiting slenderness(kr) -- 13.49 Stiffened element classification -- Non slender Stiffened element slenderness(?) -- 33.42 Stiffened element limiting slenderness(kr) - 35.88 Factored flexural buckling strength(en22) [Kip] 76.87 Sec.El Effective length factor(K22) - 1.00 Unbraced length(L22) [in] 360.00 Effective slenderness((KL/r)22) - 185.43 Eq.E3-4 Elastic critical buckling stress(Fe22) [Kip Tin2] 8.32 Eq.E3-4 Reduction factor for slender unstiffened elements(Qs22) - 1.00 Effective area of the cross section based on the effective width (A... [in2] 11.70 Eq.E3-3 Reduction factor for slender stiffened elements(Qa22) -- 1.00 Full reduction factor for slender elements(Q22) -- 1.00 Sec.E7 Critical stress for flexural buckling(Fcr22) [Kip/in2] 7.30 Eq.E3-3 Nominal flexural buckling strength(Pn22) [Kip] 85.41 Eq.E3-1 Factored torsional or flexural-torsional buckling strength(4Pn11) [Kip] 496.35 Sec.E4 Effective length factor(K11) - 1.00 Unbraced length(L11) [in] 60.00 Flexural constant(H) -- 1.00 Eq.E4-10 Torsional or flexural-torsional elastic buckling stress(Fe11) [Kip/in2] 354.86 Eq.E4-4 Elastic torsional buckling stress(Fez) [Kip/in2] 354.86 Eq.E4-9 Reduction factor for slender unstiffened elements(Qs11) - 1.00 Effective area of the cross section based on the effective width (A... [in2] 11.70 Eq.E3-2 Reduction factor for slender stiffened elements(Qa11) - 1.00 Full reduction factor for slender elements(Q11) -- 1.00 Sec.E7 Critical stress for torsional or flexural-torsional buckling(Fcr11) [Kip/in2] 47.14 Eq.E3-2 Nominal torsional or flexural-torsional buckling strength(Pn11) [Kip] 551.50 Eq.E4-1 FLEXURAL DESIGN J Bending about major axis,M33 Ratio 0.50 Capacity 85.46[Kip*ft] Reference : Sec.Fl Demand -42.82[Kip*ft] Ctrl Eq. : L19 at 0.00% Intermediate results Unit Value Reference Section classification Unstiffened element classification -- Compact Unstiffened element slenderness(?) - 7.78 Limiting slenderness for noncompact unstiffened element(kr) - 24.08 Limiting slendemess for compact unstiffened element(k p) - 9.15 Stiffened element classification -- Compact Stiffened element slendemess(?) - 33.42 Limiting slenderness for noncompact stiffened element(Xr) - 137.27 78 of 252 Limiting slenderness for compact stiffened element(X.p) - 90.55 Factored yielding strength(4)Mn) [Kip*ft] 213.75 Sec.Fl Yielding(Mn) [Kip*ft] 237.50 Eq.F2-1 Factored lateral-torsional buckling strength(0Mn) [Kip*ft] 85.46 Sec.Fl Limiting laterally unbraced length for yielding(Lp) [in] 82.29 Eq.F2-5 Effective radius of gyration used in the determination of Lr(rts) [in] 2.21 Eq.F2-7 Lateral-torsional factor(c) - 1.00 Eq.F2-8a Limiting laterally unbraced length for inelastic lateral-torsional bucklin... [in] 253.81 Eq.F2-6 Lateral-torsional buckling modification factor(Cb) - 1.00 Eq.F1-1 Critical stress(Fcr) [Kip/in2] 22.13 Eq.F2-4 Lateral-torsional buckling(Mn) [Kip*ft] 94.96 Eq.F2-3 Bending about minor axis,M22 Ratio 0.09 Capacity 63.00[Kip-ft] Reference : Sec.Fl Demand 5.69[Kip*ft] Ctrl Eq. : L21 at 100.00% Intermediate results Unit Value Reference Section classification Unstiffened element classification - Compact Unstiffened element slenderness(?,) - 7.78 Limiting slenderness for noncompact unstiffened element(a.r) - 24.08 Limiting slenderness for compact unstiffened element(Xp) - 9.15 Stiffened element classification - Compact Stiffened element slenderness()) - 33.42 Limiting slendemess for noncompact stiffened element(Xr) -- 137.27 Limiting slenderness for compact stiffened element(a.p) -- 90.55 Factored yielding strength(4Mn) [Kip*ft] 63.00 Sec.Fl Yielding(Mn) [Kip*ft] 70.00 Eq.F6-1 DESIGN FOR SHEAR st Shear in major axis 33 Ratio 0.00 Capacity : 222.75[Kip] Demand 0.29[Kip] Ctrl Eq. : L50 at 0.00% Intermediate results Unit Value Reference Factored shear caoacity(4Vn) [Kip] 222.75 Web slenderness(Xw) - 7.78 Sec.G2 Shear area(Aw) [in2] 8.25 Web buckling coefficient(kv) - 1.20 Sec.G7 Web buckling coefficient(Cv) - 1.00 Eq.G2-3 Nominal shear strength(Vn) [Kip] 247.50 Eq.G2-1 Shear in minor axis 22 Ratio 0.08 Capacity 105.30[Kip] Reference : Sec.G2.1(a) Demand 8.70[Kip] Ctrl Eq. : L19 at 0.00% 79 of 252 Intermediate results Unit Value Reference Factored shear capacitv(4Vn) [Kip] 105.30 Sec.G2.1(a) Web slenderness(kw) — 33.42 Sec.G2 Shear area(Aw) [in2] 3.51 Web buckling coefficient(Cv) -- 1.00 Eq.G2-2 Nominal shear strength(Vn) [Kip] 105.30 Eq.G2-1 COMBINED ACTIONS DESIGN Se Combined flexure and axial compression Ratio 0.61 Ctrl Eq. L79 at 0.00% Reference : Eq.H1-lb Intermediate results Unit Value Reference Interaction of flexure and axial force — 0.61 Eq.Hl-lb Required flexural strength about strong axis(Mr33) [Kip*ft] 41.71 Available flexural strength about strong axis(Mc33) [Kip*ft] 85.46 Sec.Fl Required flexural strength about weak axis(Mr22) [Kip*ft] -2.51 Available flexural strength about weak axis(Mc22) [Kip*ft] 63.00 Sec.Fl Required axial compressive strength(Pr) [Kip] 12.73 Available axial compressive strength(Pc) [Kip] 76.87 Sec.El Combined flexure and axial tension Ratio 0.55 Ctrl Eq. L13 at 0.00% Reference : Eq. H1-lb Intermediate results Unit Value Reference Required flexural strength about strong axis(Mr33) [Kip*ft] -42.75 Available flexural strength about strong axis(Mc33) [Kip*ft] 85.46 Sec.Fl Required flexural strength about weak axis(Mr22) [Kip*ft] 2.51 Available flexural strength about weak axis(Mc22) [Kip*ft] 63.00 Sec.Fl Required axial tensile strength(Pr) [Kip] 13.57 Available axial tensile strength(Pc) [Kip] 526.50 Eq.Sec.D2 Combined flexure and axial compression about local axis Ratio N/A Ctrl Eq. Reference .• Combined flexure and axial tension about local axis Ratio : N/A Ctrl Eq. Reference .• Member 60 (kicker brace) Design status OK 80 of 252 Section information Section name: HSS_SQR 4X4X1_4 (US) Dimensions 4t - 1 a a = 4.000 [in] Height b = 4.000 [in] Width T = 0.233 [in] Thickness Properties Section properties Unit Major axis Minor axis Gross area of the section. (Ag) [in2] 3.370 Moment of Inertia(local axes) (I) [in4] 7.800 7.800 Moment of Inertia(principal axes) (I') [in4] 7.800 7.800 Bending constant for moments(principal axis) (J') [in] 0.000 0.000 Radius of gyration(local axes) (r) [in] 1.521 1.521 Radius of gyration(principal axes) (r') [in] 1.521 1.521 Saint-Venant torsion constant. (J) [in4] 12.800 Section warping constant. (Cw) [in6] 0.000 Distance from centroid to shear center(principal axis) (xo,yo) [in] 0.000 0.000 Top elastic section modulus of the section(local axis) (Ssup) [in3] 3.900 3.900 Bottom elastic section modulus of the section(local axis) (Sinf) [in3] 3.900 3.900 Top elastic section modulus of the section(principal axis) (S'sup) [in3] 3.900 3.900 Bottom elastic section modulus of the section(principal axis) (S'inf) [in3] 3.900 3.900 Plastic section modulus(local axis) (Z) [1n3] 4.700 4.700 Plastic section modulus(principal axis) (Z) [in3] 4.700 4.700 Polar radius of gyration. (ro) [in] 2.150 Area for shear (Aw) [in2] 1.538 1.538 Torsional constant. (C) [in3] 6.563 Material:A500 GrB rectangular Properties Unit Value Yield stress(Fy): [Kip/in2] 46.00 Tensile strength(Fu): [Kip/in2] 58.00 Elasticity Modulus(E): [Kip/in2] 29000.00 Shear modulus for steel(G): [Kip/in2] 11153.85 DESIGN CRITERIA Description Unit Value Length for tension slenderness ratio(L) [in] 193.87 Distance between member lateral bracing points Length(Lb)[in] Top Bottom 193.87 193.87 81 of 252 Laterally unbraced length Length[in] Effective length factor Major axis(L33) Minor axis(L22) Torsional axis(Lt) Major axis(K33) Minor axis(K22) Torsional axis(Kt) 193.87 193.87 193.87 1.0 1.0 1.0 Additional assumptions Continuous lateral torsional restraint No Tension field action No Continuous flexural torsional restraint No Effective length factor value type None Major axis frame type Sway Minor axis frame type Non sway DESIGN CHECKS AXIAL TENSION DESIGN 11 Axial tension Ratio 0.00 Capacity 139.52[Kip] Reference : Eq.Sec.D2 Demand 0.11 [Kip] Ctrl Eq. : L58 at 0.00% Intermediate results Unit Value Reference Factored axial tension capacitv(4Pn) [Kip] 139.52 Eq.Sec.D2 Nominal axial tension capacity(Pn) [Kip] 155.02 Eq.D2-1 AXIAL COMPRESSION DESIGN I, Compression in the major axis 33 Ratio 0.38 Capacity 46.88[Kip] Reference : Sec.El Demand 17.91 [Kip] Ctrl Eq. : L03 at 100.00% Intermediate results Unit Value Reference Section classification Unstiffened element classification — Non slender Unstiffened element slenderness(A) — 14.17 Unstiffened element limiting slenderness(kr) — 35.15 Stiffened element classification — Non slender Stiffened element slenderness(A) — 14.17 Stiffened element limiting slenderness(Ar) — 35.15 Factored flexural buckling strength(4Pn33) [Kip] 46.88 Sec.El Effective length factor(K33) — 1.00 Unbraced length(L33) [in] 193.87 Effective slenderness((KUr)33) — 127.43 Eq.E3-4 Elastic critical buckling stress(Fe33) [Kip/in2] 17.63 Eq.E3-4 Reduction factor for slender unstiffened elements(Qs33) — 1.00 Effective area of the cross section based on the effective width (A... [in2] 3.37 Eq.E3-3 Reduction factor for slender stiffened elements(Qa33) — 1.00 Full reduction factor for slender elements(Q33) -- 1.00 Sec.E7 Critical stress for flexural buckling(Fcr33) [Kip/in2] 15.46 Eq.E3-3 Nominal flexural buckling strength(Pn33) [Kip] 52.09 Eq.E3-1 82 of 252 Compression in the minor axis 22 Ratio 0.38 Capacity 46.88[Kip] Reference : Sec.El Demand 17.91 [Kip] Ctrl Eq. : L03 at 100.00% Intermediate results Unit Value Reference Section classification Unstiffened element classification - Non slender Unstiffened element slenderness(X) - 14.17 Unstiffened element limiting slenderness(kr) - 35.15 Stiffened element classification - Non slender Stiffened element slenderness(X) - 14.17 Stiffened element limiting slenderness(Xi) - 35.15 Factored flexural buckling strength(4Pn22) [Kip] 46.88 Sec.El Effective length factor(K22) - 1.00 Unbraced length(L22) [in] 193.87 Effective slenderness((KUr)22) - 127.43 Eq.E3-4 Elastic critical buckling stress(Fe22) [Kipfln2] 17.63 Eq.E3-4 Reduction factor for slender unstiffened elements(Qs22) - 1.00 Effective area of the cross section based on the effective width (A... [in2] 3.37 Eq.E3-3 Reduction factor for slender stiffened elements(Qa22) - 1.00 Full reduction factor for slender elements(Q22) - 1.00 Sec.E7 Critical stress for flexural buckling(Fcr22) [Kipfn2] 15.46 Eq.E3-3 Nominal flexural buckling strength(Pn22) [Kip] 52.09 Eq.E3-1 FLEXURAL DESIGN 1, Bending about major axis,M33 Ratio 0.03 Capacity 16.22[Kip*ft] Reference : Sec.Fl Demand -0.55[Kip*ft] Ctrl Eq. : L03 at 100.00% Intermediate results Unit Value Reference Section classification Unstiffened element classification - Compact Unstiffened element slenderness(X) - 14.17 Limiting slenderness for noncompact unstiffened element(kr) - 35.15 Limiting slenderness for compact unstiffened element(Xp) -- 28.12 Stiffened element classification -- Compact Stiffened element slenderness(X) - 14.17 Limiting slenderness for noncompact stiffened element(Xr) - 143.12 Limiting slenderness for compact stiffened element(Xp) - 60.76 Factored yielding strength(4)Mn) [Kip*ft] 16.22 Sec.Fl Yielding(Mn) [Kip*ft] 18.02 Eq.F7-1 Bending about minor axis,M22 Ratio 0.01 Capacity 16.22[Kip*ft] Reference : Sec.Fl Demand 0.18[Kip*ft] Ctrl Eq. : L13 at 50.00% Intermediate results Unit Value Reference Section classification Unstiffened element classification - Compact 83 of 252 Unstiffened element slenderness(X) - 14.17 Limiting slenderness for noncompact unstiffened element(kr) -- 35.15 Limiting slenderness for compact unstiffened element(A.p) -- 28.12 Stiffened element classification -- Compact Stiffened element slenderness(X) -- 14.17 Limiting slenderness for noncompact stiffened element(Xr) -- 143.12 Limiting slenderness for compact stiffened element(Xp) -- 60.76 Factored vieldina strength(On) [Kip*ft] 16.22 Sec. Fl Yielding(Mn) [Kip*ft] 18.02 Eq.F7-1 DESIGN FOR SHEAR lit Shear in major axis 33 Ratio 0.00 Capacity 38.21 [Kip] Demand -0.04[Kip] Ctrl Eq. : L13 at 0.00% Intermediate results Unit Value Reference Factored shear capacitv(4Vn) [Kip] 38.21 Web slenderness(X,w) -- 14.17 Sec.G2 Shear area(Aw) [in2] 1.54 Web buckling coefficient(kv) - 5.00 Sec.G5 Web buckling coefficient(Cv) - 1.00 Eq.G2-3 Nominal shear strength(Vn) [Kip] 42.46 Eq.G2-1 Shear in minor axis 22 Ratio 0.00 Capacity 38.21 [Kip] Demand -0.07[Kip] Ctrl Eq. : L03 at 100.00% Intermediate results Unit Value Reference Factored shear capacity(On) [Kip] 38.21 Web slenderness(Xw) - 14.17 Sec.G2 Shear area(Aw) [in2] 1.54 Web buckling coefficient(kv) - 5.00 Sec.G5 Web buckling coefficient(Cv) - 1.00 Eq.G2-3 Nominal shear strength(Vn) [Kip] 42.46 Eq.G2-1 TORSION DESIGN iri Torsion Ratio 0.00 Capacity 13.58[Kip*ft] Demand 0.00[Kip*ft] Ctrl Eq. : L01 at 0.00% Intermediate results Unit Value Reference Factored torsion capacity(4)Tn) [Kip*ft] 13.58 Critical torsional buckling stress(Fcr) [KipTn2] 27.60 Eq.H3-3 Nominal torsion capacity(Tn) [Kip*ft] 15.09 Eq.H3-1 COMBINED ACTIONS DESIGN 1 84 of 252 Combined flexure and axial compression Ratio 0.41 Ctrl Eq. L03 at 100.00% Reference : Eq.H1-la Intermediate results Unit Value Reference Interaction of flexure and axial force — 0.41 Eq.H1-1a Required flexural strength about strong axis(Mr33) [Kip*ft] -0.55 Available flexural strength about strong axis(Mc33) [Kip*ft] 16.22 Sec. Fl Required flexural strength about weak axis(Mr22) [Kip*ft] 0.00 Available flexural strength about weak axis(Mc22) [Kip*ft] 16.22 Sec.Fl Required axial compressive strength(Pr) [Kip] 17.91 Available axial compressive strength(Pc) [Kip] 46.88 Sec.El Combined flexure and axial tension Ratio 0.03 Ctrl Eq. L03 at 100.00% Reference : Eq.H1-lb Intermediate results Unit Value Reference Required flexural strength about strong axis(Mr33) [Kip*ft] -0.55 Available flexural strength about strong axis(Mc33) [Kip*ft] 16.22 Sec.Fl Required flexural strength about weak axis(Mr22) [Kip*ft] 0.00 Available flexural strength about weak axis(Mc22) [Kip*ft] 16.22 Sec.Fl Required axial tensile strength(Pr) [Kip] 0.00 Available axial tensile strength(Pc) [Kip] 139.52 Eq.Sec.D2 Combined flexure and axial compression about local axis Ratio N/A • Ctrl Eq. -- Reference . Combined flexure and axial tension about local axis Ratio N/A • Ctrl Eq. — Reference . Combined torsion,flexure,shear and axial compression Ratio N/A • Ctrl Eq. -- Reference . Combined torsion,flexure,shear and axial tension Ratio N/A • Ctrl Eq. -- Reference . Member 32 (Knee Brace) Design status OK 85 of 252 Section information Section name: T2L 4X4X1_4 (US) Dimensions It 4114. t a a a = 4.000 [in] Flange length b = 4.000 [in] Width s = 0.000 [in] Separation = 0.250 [in] Thickness Properties Section properties Unit Major axis Minor axis Gross area of the section. (Ag) [in2] 3.870 Moment of Inertia(local axes) (I) [in4] 6.000 10.536 Moment of Inertia(principal axes) (I') [in4] 10.536 6.000 Bending constant for moments(principal axis) (J') [in] 0.000 -0.705 Radius of gyration(local axes) (r) [in] 1.245 1.650 Radius of gyration(principal axes) (r) [in] 1.650 1.245 Saint-Venant torsion constant. (J) [in4] 0.081 Section warping constant. (Cw) [in6] 0.151 Distance from centroid to shear center(principal axis) (xo,yo) [in] 0.973 0.027 Top elastic section modulus of the section(local axis) (Ssup) [in3] 5.560 2.677 Bottom elastic section modulus of the section(local axis) (Sinf) [in3] 2.050 2.677 Top elastic section modulus of the section(principal axis) (S'sup) [in3] 5.560 5.551 Bottom elastic section modulus of the section(principal axis) (S'inf) [in3] 2.050 2.089 Plastic section modulus(local axis) (Z) [in3] 3.650 4.238 Plastic section modulus(principal axis) (Z) [in3] 3.650 3.761 Polar radius of gyration. (ro) [in] 2.280 Area for shear (Aw) [in2] 2.000 2.000 Torsional constant. (C) [in3] 0.323 Material :A500 GrB rectangular Properties Unit Value Yield stress(Fy): [Kip/in2] 46.00 Tensile strength(Fu): [Kip/in2] 58.00 Elasticity Modulus(E): [Kip/in2] 29000.00 Shear modulus for steel(G): [Kip/in2] 11153.85 DESIGN CRITERIA Description Unit Value Length for tension slenderness ratio(L) [in] 66.75 Intermediate connectors type Snug-tight bolted Clear distance between longitudinal connectors [in] 0.00 Distance between member lateral bracing points Length(Lb)[in] Top Bottom 66.75 66.75 86 of 252 Laterally unbraced length Length[in] Effective length factor Major axis(L33) Minor axis(L22) Torsional axis(Lt) Major axis(K33) Minor axis(K22) Torsional axis(Kt) 66.75 66.75 66.75 1.0 1.0 1.0 Additional assumptions Continuous lateral torsional restraint No Tension field action No Continuous flexural torsional restraint No Effective length factor value type None Major axis frame type Sway Minor axis frame type Sway DESIGN CHECKS AXIAL TENSION DESIGN if Axial tension Ratio 0.11 Capacity 160.22[Kip] Reference : Eq.Sec.D2 Demand 17.42[Kip] Ctrl Eq. : L79 at 0.00% Intermediate results Unit Value Reference Factored axial tension caoacitv(4Pn) [Kip] 160.22 Eq.Sec.D2 Nominal axial tension capacity(Pn) [Kip] 178.02 Eq.D2-1 AXIAL COMPRESSION DESIGN V. Compression in the major axis 33 Ratio 0.14 Capacity 136.24[Kip] Reference : Sec.El Demand 19.32[Kip] Ctrl Eq. : L19 at 100.00% Intermediate results Unit Value Reference Section classification Unstiffened element classification - Slender Unstiffened element slenderness(X) -- 16.00 Unstiffened element limiting slenderness(Xr) - 11.30 Stiffened element classification - Slender Stiffened element slenderness(2.) - 16.00 Stiffened element limiting slenderness(Xr) - 11.30 Factored flexural buckling strenath(cFPn33) [Kip] 136.24 Sec.El Effective length factor(K33) - 1.00 Unbraced length(L33) [in] 66.75 Effective slenderness((KL/r)33) -- 40.46 Eq.E3-4 Elastic critical buckling stress(Fe33) [Kip/in2] 174.88 Eq.E3-4 Reduction factor for slender unstiffened elements(Qs33) - 0.94 Eq.E7-13 Effective area of the cross section based on the effective width (A... [in2] 3.87 Eq.E7-2 Reduction factor for slender stiffened elements(0a33) - 1.00 Eq.E7-16 Full reduction factor for slender elements(Q33) - 0.94 Sec.E7 Critical stress for flexural buckling(Fcr33) [Kip/in2] 39.12 Eq.E7-2 Nominal flexural buckling strength(Pn33) [Kip] 151.38 Eq.E7-1 Compression in the minor axis 22 Ratio 0.20 87 of 252 Capacity 95.74[Kip] Reference : Sec.E4 Demand 19.32[Kip] Ctrl Eq. : L19 at 100.00% Intermediate results Unit Value Reference Section classification Unstiffened element classification -- Slender Unstiffened element slenderness(X) - 16.00 Unstiffened element limiting slenderness(kr) -- 11.30 Stiffened element classification - Slender Stiffened element slenderness(X) - 16.00 Stiffened element limiting slenderness(A.r) - 11.30 Factored flexural buckling strength(en22) [Kip] 125.96 Sec.El Effective length factor(K22) - 1.00 Unbraced length(L22) [in] 66.75 Effective slenderness((KUr)22) - 53.61 Eq.E6-1 Elastic critical buckling stress(Fe22) [Kip/in2] 99.59 Eq.E3-4 Reduction factor for slender unstiffened elements(Qs22) - 0.94 Eq.E7-13 Effective area of the cross section based on the effective width (A... [in2] 3.87 Eq.E7-2 Reduction factor for slender stiffened elements(Qa22) -- 1.00 Eq.E7-16 Full reduction factor for slender elements(Q22) - 0.94 Sec.E7 Critical stress for flexural buckling(Fcr22) [Kip/in2] 36.16 Eq.E7-2 Nominal flexural buckling strength(Pn22) [Kip] 139.95 Eq.E7-1 Factored torsional or flexural-torsional buckling strength(4Pn11) [Kip] 95.74 Sec.E4 Effective length factor(K11) - 1.00 Unbraced length(L11) [in] 66.75 Flexural constant(H) - 0.82 Eq.E4-10 Torsional or flexural-torsional elastic buckling stress(Fe11) [Kip/in2] 39.77 Eq.E4-5 Elastic torsional buckling stress(Fez) [Kip/in2] 44.57 Eq.E4-9 Reduction factor for slender unstiffened elements(Qs11) - 0.94 Eq.E7-13 Effective area of the cross section based on the effective width (A... [in2] 3.87 Eq.E7-2 Reduction factor for slender stiffened elements(Qa11) - 1.00 Eq.E7-16 Full reduction factor for slender elements(Q11) -- 0.94 Sec.E7 Critical stress for torsional or flexural-torsional buckling(Fcr11) [Kip/in2] 27.49 Eq.E7-2 Nominal torsional or flexural-torsional buckling strength(Pn11) [Kip] 106.37 Eq.E7-1 FLEXURAL DESIGN V Bending about malor axis,M33 Ratio 0.00 Capacity 7.07[Kip•ft] Reference : Sec. Fl Demand -0.01 [Kip*ft] Ctrl Eq. : L16 at 50.00% Intermediate results Unit Value Reference Section classification Unstiffened element classification - Noncompact Unstiffened element slenderness(X) -- 16.00 Limiting slenderness for noncompact unstiffened element(kr) - 22.85 Limiting slenderness for compact unstiffened element(gyp) - 13.56 Stiffened element classification - Noncompact Stiffened element slenderness(A) - 16.00 Limiting slenderness for noncom pact stiffened element(A.r) -- 22.85 Limiting slenderness for compact stiffened element(Ap) - 13.56 Factored yielding strength(4Mn) [Kip*ft] 7.07 Sec.Fl Yielding(Mn) [Kip*ft] 7.86 Eq.F9-1 Factored lateral-torsional buckling strength(4)Mn) [Kip*ft] 17.02 Sec.Fl Lateral-torsional buckling modification factor(Cb) - 1.14 Eq.C-F1-3 Factor for lateral-torsional buckling in tees and doubles angles(B) -- -1.57 Eq.F9-5 Lateral-torsional buckling(Mn) [Kip*ft] 18.91 Eq.F9-4 88 of 252 Factored compression flange local buckling strength(On) [Kip*ft] 7.29 Sec.Fl Critical stress(Fcr) [Kip/in2] 47.41 Eq.F9-7 Flange local buckling(Mn) [Kip*ft] 8.10 Eq.F9-6 Bending about minor axis,M22 Ratio 0.07 Capacity 12.48[Kip`ft] Reference : Sec.Fl Demand -0.82[Kip*ft] Ctrl Eq. : L49 at 0.00% Intermediate results Unit Value Reference Section classification Unstiffened element classification - Noncompact Unstiffened element slenderness(X) - 16.00 Limiting slenderness for noncompact unstiffened element(kr) - 22.85 Limiting slenderness for compact unstiffened element(Ap) - 13.56 Stiffened element classification -- Noncompact Stiffened element slenderness(X) - 16.00 Limiting slenderness for noncompact stiffened element(kr) - 22.85 Limiting slenderness for compact stiffened element(Ap) -- 13.56 Factored yielding strength(4)Mn) [Kip*ft] 14.62 Sec.Fl Yielding(Mn) [Kip'ft] 16.25 Eq.F6-1 Factored compression flange local buckling strength(4)Mn) [Kip'ft] 12.48 Sec. Fl Flange local buckling(Mn) [Kip'ft] 13.86 Eq.F6-2 DESIGN FOR SHEAR iir Shear in major axis 33 Ratio 0.00 Capacity 49.68[Kip] Demand -0.16[Kip] Ctrl Eq. : L07 at 100.00% Intermediate results Unit Value Reference Factored shear capacity(On) [Kip] 49.68 Web slenderness(Aw) - 16.00 Sec.G2 Shear area(Aw) [in2] 2.00 Web buckling coefficient(kv) - 1.20 Sec.G7 Web buckling coefficient(Cv) - 1.00 Eq.G2-3 Nominal shear strength(Vn) [Kip] 55.20 Eq.G2-1 Shear in minor axis 22 Ratio 0,00 Capacity 49.68[Kip] Demand -0.01 [Kip] Ctrl Eq. : L16 at 0.00% Intermediate results Unit Value Reference Factored shear capacity(On) [Kip] 49.68 Web slenderness(Aw) - 16.00 Sec.G2 Shear area(Aw) [in2] 2.00 Web buckling coefficient(kv) - 1.20 Sec.G2.1(b) Web buckling coefficient(Cv) -- 1.00 Eq.G2-3 Nominal shear strength(Vn) [Kip] 55.20 Eq.G2-1 89 of 252 COMBINED ACTIONS DESIGN F Combined flexure and axial compression Ratio 0.26 Ctrl Eq. L19 at 0.00% Reference Eq. H1 is Intermediate results Unit Value Reference Interaction of flexure and axial force -- 0.26 Eq. H1-la Required flexural strength about strong axis(Mr33) [Kip'ft] 0.00 Available flexural strength about strong axis(Mc33) [Kip*ft] 11.32 Sec. Fl Required flexural strength about weak axis(Mr22) [Kip'ft] 0.81 Available flexural strength about weak axis(Mc22) [Kip*ft] 12.48 Sec. Fl Required axial compressive strength(Pr) [Kip] 19.22 Available axial compressive strength(Pc) [Kip] 95.74 Sec.E4 Combined flexure and axial tension Ratio 0.12 Ctrl Eq. L79 at 0.00% Reference Eq. H1-1b Intermediate results Unit Value Reference Required flexural strength about strong axis(Mr33) [Kip*ft] 0.00 Available flexural strength about strong axis(Mc33) [Kip*ft] 11.32 Sec. Fl Required flexural strength about weak axis(Mr22) [Kip*ft] -0.82 Available flexural strength about weak axis(Mc22) [Kip*ft] 12.48 Sec. Fl Required axial tensile strength(Pr) [Kip] 17.42 Available axial tensile strength(Pc) [Kip] 160.22 Eq.Sec. D2 Combined flexure and axial compression about local axis Ratio N/A • Ctrl Eq. — Reference . Combined flexure and axial tension about local axis Ratio N/A • Ctrl Eq. — Reference Member 108 (Runway) Design status OK 90 of 252 Section information Section name: W 24 x 94_C 15 x 33.9 (US) Dimensions 4. Cd 1,4. w !:_ Ctf 4-vitw t i Wbf-1 FWtf Cbf = 3.400 [in] Width Cd = 15.000 [in] Depth Ctf = 0.650 [in] Flange thickness Ctw = 0.400 [in] Web thickness Wbf = 9.070 [in] Width Wd = 24.300 [in] Depth Wtf = 0.875 [in] Flange thickness Wtw = 0.515 [in] Web thickness Properties Section properties Unit Major axis Minor axis Gross area of the section. (Ag) [in2] 37.836 Moment of Inertia(local axes) (I) [in4] 3736.698 421.885 Moment of Inertia(principal axes) (I') [in4] 3736.698 421.885 Bending constant for moments(principal axis) (J') [in] -9.282 0.000 Radius of gyration(local axes) (r) [in] 9.938 3.339 Radius of gyration(principal axes) (r) [in] 9.938 3.339 Saint-Venant torsion constant. (J) [in4] 6.009 Section warping constant. (Cw) [in6] 28872.345 Distance from centroid to shear center(principal axis) (xo,yo) [in] 0.000 7.008 Top elastic section modulus of the section(local axis) (Ssup) [in3] 393.564 56.251 Bottom elastic section modulus of the section(local axis) (Sinf) [in3] 245.747 56.251 Top elastic section modulus of the section(principal axis) (S'sup) [in3] 393.564 56.251 Bottom elastic section modulus of the section(principal axis) (S'inf) [in3] 245.747 56.251 Plastic section modulus(local axis) (Z) [in3] 324.666 86.431 Plastic section modulus(principal axis) (Z) [in3] 324.666 86.431 Polar radius of gyration. (ro) [in] 12.610 Area for shear (Aw) [in2] 21.613 16.224 Torsional constant. (C) [in3] 6.868 Material:A36 Properties Unit Value Yield stress(Fy): [Kip/in2] 36.00 Tensile strength(Fu): [Kip/in2] 58.00 Elasticity Modulus(E): [Kip/in2] 29000.00 Shear modulus for steel(G): [Kip/in2] 11507.94 DESIGN CRITERIA Description Unit Value Length for tension slenderness ratio(L) [in] 571.00 Distance between member lateral bracing points Length(Lb)[in] Top Bottom 571.00 571.00 91 of 252 Laterally unbraced length Length[in] Effective length factor Major axis(L33) Minor axis(L22) Torsional axis(Lt) Major axis(K33) Minor axis(K22) Torsional axis(Kt) 571.00 571.00 54.00 1.0 1.0 1.0 Additional assumptions Continuous lateral torsional restraint No Tension field action No Continuous flexural torsional restraint No Effective length factor value type None Major axis frame type Non sway Minor axis frame type Sway DESIGN CHECKS AXIAL TENSION DESIGN if Axial tension Ratio 0.00 Capacity : 1225.90[Kip] Reference : Eq.Sec.D2 Demand 0.20[Kip] Ctrl Eq. : L11 at 0.00% Intermediate results Unit Value Reference Factored axial tension caoacitv(4Pn) [Kip] 1225.90 Eq.Sec.D2 Nominal axial tension capacity(Pn) [Kip] 1362.11 Eq.D2-1 AXIAL COMPRESSION DESIGN V Compression in the major axis 33 Ratio 0.01 Capacity : 1030.33[Kip] Reference : Sec.El Demand 6.03[Kip] Ctrl Eq. : L06 at 0.00% Intermediate results Unit Value Reference Section classification Unstiffened element classification -- Non slender Unstiffened element slendemess(A.) — 5.23 Unstiffened element limiting slenderness(A.r) — 15.89 Stiffened element classification -- Slender Stiffened element slenderness(A,) -- 43.79 Stiffened element limiting slendemess(A.r) -- 42.29 Factored flexural buckling strength(en33) [Kip] 1030.33 Sec.El Effective length factor(K33) — 1.00 Unbraced length(L33) [in] 571.00 Effective slenderness((KUr)33) — 57.46 Eq.E3-4 Elastic critical buckling stress(Fe33) [Kip/in2] 86.70 Eq.E3-4 Reduction factor for slender unstiffened elements(Qa33) -- 1.00 Effective area of the cross section based on the effective width (A... [in2] 37.84 Eq.E7-2 Reduction factor for slender stiffened elements(Qa33) — 1.00 Eq.E7-16 Full reduction factor for slender elements(Q33) -- 1.00 Sec.E7 Critical stress for flexural buckling(Fcr33) [Kip/in2] 30.26 Eq.E7-2 Nominal flexural buckling strength(Pn33) [Kip] 1144.81 Eq.E7-1 92 of 252 Compression in the minor axis 22 Ratio 0.02 Capacity 292.32[Kip] Reference : Sec.El Demand 6.03[Kip] Ctrl Eq. : LO6 at 0.00% Intermediate results Unit Value Reference Section classification Unstiffened element classification - Non slender Unstiffened element slenderness(X) - 5.23 Unstiffened element limiting slenderness(Xi) - 15.89 Stiffened element classification - Slender Stiffened element slenderness(X) - 43.79 Stiffened element limiting slenderness(Xr) - 42.29 Factored flexural buckling strength(4Pn22) [Kip] 292.32 Sec.El Effective length factor(K22) - 1.00 Unbraced length(L22) [in] 571.00 Effective slenderness((KUr)22) - 171.00 Eq.E3-4 Elastic critical buckling stress(Fe22) [Kip/1n2] 9.79 Eq.E3-4 Reduction factor for slender unstiffened elements(Qs22) - 1.00 Effective area of the cross section based on the effective width (A... [in2] 37.84 Eq.E7-3 Reduction factor for slender stiffened elements(Qa22) - 1.00 Eq.E7-16 Full reduction factor for slender elements(Q22) - 1.00 Sec.E7 Critical stress for flexural buckling(Fcr22) [Kip/in2] 8.58 Eq.E7-3 Nominal flexural buckling strength(Pn22) [Kip] 324.80 Eq.E7-1 Factored torsional or flexural-torsional buckling strenath(4Pn11) [Kip] 1191.72 Sec.E4 Effective length factor(K11) - 1.00 Unbraced length(Li1) [in] 54.00 Flexural constant(H) - 0.69 Eq.E4-10 Torsional or flexural-torsional elastic buckling stress(Fell) [Kip/in2] 698.10 Eq.E4-4 Elastic torsional buckling stress(Fez) [Kipfin2] 482.51 Eq.E4-9 Reduction factor for slender unstiffened elements(Qs11) - 1.00 Effective area of the cross section based on the effective width (A... [in2] 37.58 Eq.E7-2 Reduction factor for slender stiffened elements(Qa11) - 0.99 Eq.E7-16 Full reduction factor for slender elements(Q11) - 0.99 Sec.E7 Critical stress for torsional or flexural-torsional buckling(Fcr11) [Kipfin2] 35.00 Eq.E7-2 Nominal torsional or flexural-torsional buckling strength(Pn11) [Kip] 1324.13 Eq.E7-1 FLEXURAL DESIGN lit Bending about maior axis,M33 Ratio 0.64 Capacity 876.60[Kip*ft] Reference : Sec. Fl Demand . 563.83[Kip*ft] Ctrl Eq. : L09 at 50.00% Intermediate results Unit Value Reference Section classification Unstiffened element classification - Slender Unstiffened element slenderness(X) - 34.25 Limiting slenderness for noncompact unstiffened element(kr) -- 28.38 Limiting slenderness for compact unstiffened element(Ap) -- 10.79 Stiffened element classification - Compact Stiffened element slenderness(X) - 43.79 Limiting slenderness for noncompact stiffened element(Xr) - 161.78 Limiting slenderness for compact stiffened element(Ap) - 106.72 Factored yielding strength(4Mn) [Kip*ft] 876.60 Sec.Fl Yielding(Mn) [Kip*ft] 974.00 Sec.F4.2 Factored lateral-torsional buckling strength(4)Mn) [Kip*ft] 876.60 Sec.Fl 93 of 252 Radius of gyration of the compression flange(n) [in] 5.20 Limiting laterally unbraced length for yielding(Lp) [in] 166.80 Eq.F2-5 Calculated stress used in the calculation of nominal strength(FL) [Kip/in2] 22.48 Eq.F4-6b Effective radius of gyration used in the determination of Lr(rts) [in] 2.98 Eq.F2-7 Lateral-torsional factor(c) - 1.00 Eq.F2-8a Limiting laterally unbraced length for inelastic lateral-torsional bucklin... [in] 365.63 Eq.F2-6 Lateral-torsional buckling modification factor(Cb) - 1.00 Eq.C-F1-3 Web plastification factor(Rpc) - 1.32 Eq.F4-4 Critical stress(Fcr) [Kip/in2] 30.10 Eq.F4-5 Lateral-torsional buckling(Mn) [Kip*ft] 974.00 Eq.F4-3 Bending about minor axis,M22 Ratio 0.11 Capacity : 233.36[Kip*ft] Reference : Sec. Fl Demand -26.81 [Kip*ft] Ctrl Eq. : L57 at 100.00% Intermediate results Unit Value Reference Section classification Unstiffened element classification - Slender Unstiffened element slenderness(a,) - 34.25 Limiting slenderness for noncompact unstiffened element(?.r) -- 28.38 Limiting slenderness for compact unstiffened element(Xi)) -- 10.79 Stiffened element classification -- Compact Stiffened element slenderness()) - 43.79 Limiting slenderness for noncompact stiffened element(kr) - 161.78 Limiting slenderness for compact stiffened element(a.p) -- 106.72 Factored yielding strength(4)Mn) [Kip*ft] 233.36 Sec. Fl Yielding(Mn) [Kip*ft] 259.29 Eq.F6-1 DESIGN FOR SHEAR it Shear in malor axis 33 Ratio 0.00 Capacity : 420.15[Kip] Demand -0.70[Kip] Ctrl Eq. : L13 at 0.00% Intermediate results Unit Value Reference Factored shear capacitv(On) [Kip] 420.15 Web slenderness(Xw) -- 5.18 Sec.G2 Shear area(Aw) [in2] 21.61 Web buckling coefficient(kv) -- 1.20 Sec.G7 Web buckling coefficient(Cv) - 1.00 Eq.G2-3 Nominal shear strength(Vn) [Kip] 466.83 Eq.G2-1 Shear in minor axis 22 Ratio 0.02 Capacity 315.39[Kip] Demand 6.54[Kip] Ctrl Eq. : L07 at 0.00% Intermediate results Unit Value Reference Factored shear capacity(On) [Kip] 315.39 Web slenderness(Xw) - 43.79 Sec.G2 Shear area(Aw) [in2] 16.22 94 of 252 Web buckling coefficient(kv) — 5.00 Sec.G2.1(b) Web buckling coefficient(Cv) — 1.00 Eq.G2-3 Nominal shear strength(Vn) [Kip] 350.44 Eq.G2-1 COMBINED ACTIONS DESIGN If Combined flexure and axial compression Ratio 0.76 Ctrl Eq. L06 at 100.00% Reference : Eq.H1-lb Intermediate results Unit Value Reference Interaction of flexure and axial force — 0.76 Eq.Hl-lb Required flexural strength about strong axis(Mr33) [Kip`ft] 562.65 Available flexural strength about strong axis(Mc33) [Kip`ft] 876.60 Sec.Fl Required flexural strength about weak axis(Mr22) [Kip'ft] -26.27 Available flexural strength about weak axis(Mc22) [Kip*ft] 233.36 Sec.Fl Required axial compressive strength(Pr) [Kip] 6.03 Available axial compressive strength(Pc) [Kip] 292.32 Sec.El Combined flexure and axial tension Ratio 0.75 Ctrl Eq. LO6 at 100.00% Reference : Eq.H1-lb Intermediate results Unit Value Reference Required flexural strength about strong axis(Mr33) [Kip*ft] 562.65 Available flexural strength about strong axis(Mc33) [KipIt] 876.60 Sec.Fl Required flexural strength about weak axis(Mr22) [Kip*ft] -26.27 Available flexural strength about weak axis(Mc22) [Kip*ft] 233.36 Sec.Fl Required axial tensile strength(Pr) [Kip] 0.00 Available axial tensile strength(Pc) [Kip] 1225.90 Eq.Sec.D2 Combined flexure and axial compression about local axis Ratio N/A • Ctrl Eq. — Reference . Combined flexure and axial tension about local axis Ratio N/A • Ctrl Eq. -- Reference . Member 84(Runway Short) Design status OK 95 of 252 Section information Section name: W 24 x 76_C 15 x 33.9 (US) Dimensions Cd 14. w 2bf f Wd 4I I Ctf 4 i-Wtw t 'f b,+bf'r*Wtr Cbf = 3.400 [in] Width Cd = 15.000 [in] Depth Ctf = 0.650 [in] Flange thickness Ctw = 0.400 [in] Web thickness Wbf = 9.000 [in] Width Wd = 23.900 [in] Depth Wtf = 0.680 [in] Flange thickness Wtw = 0.440 [in] Web thickness Properties Section properties Unit Major axis Minor axis Gross area of the section. (Ag) [in2] 32.357 Moment of Inertia(local axes) (I) [in4] 3024.336 395.590 Moment of Inertia(principal axes) (I') [in4] 3024.336 395.590 Bending constant for moments(principal axis) (J') [in] -9.584 0.000 Radius of gyration(local axes) (r) [in] 9.668 3.497 Radius of gyration(principal axes) (r) [in] 9.668 3.497 Saint-Venant torsion constant. (J) [in4] 3.438 Section warping constant. (Cw) [in6] 22314.354 Distance from centroid to shear center(principal axis) (xo,yo) [in] 0.000 6.956 Top elastic section modulus of the section(local axis) (Ssup) [in3] 342.187 52.745 Bottom elastic section modulus of the section(local axis) (Sinf) [in3] 195.601 52.745 Top elastic section modulus of the section(principal axis) (S'sup) [in3] 342.187 52.745 Bottom elastic section modulus of the section(principal axis) (S'inf) [in3] 195.601 52.745 Plastic section modulus(local axis) (Z) [in3] 261.095 77.980 Plastic section modulus(principal axis) (Z') [in3] 261.095 77.980 Polar radius of gyration. (ro) [in] 12.413 Area for shear (Aw) [in2] 17.980 14.377 Torsional constant. (C) [in3] 5.056 Material:A36 Properties Unit Value Yield stress(Fy): [Kip/in2] 36.00 Tensile strength(Fu): [Kip/in2] 58.00 Elasticity Modulus(E): [Kip/in2] 29000.00 Shear modulus for steel(G): [Kip/in2] 11507.94 DESIGN CRITERIA Description Unit Value Length for tension slenderness ratio(L) [in] 379.00 Distance between member lateral bracing points Length(Lb)[in] Top Bottom 379.00 379.00 96 of 252 Laterally unbraced length Length[in] Effective length factor Major axis(L33) Minor axis(L22) Torsional axis(Lt) Major axis(K33) Minor axis(K22) Torsional axis(Kt) 379.00 379.00 8.00 1.0 1.0 1.0 Additional assumptions Continuous lateral torsional restraint No Tension field action No Continuous flexural torsional restraint No Effective length factor value type None Major axis frame type Non sway Minor axis frame type Sway DESIGN CHECKS AXIAL TENSION DESIGN d Axial tension Ratio 0.00 Capacity : 1048.36[Kip] Reference : Eq.Sec.02 Demand 0.00[Kip] Ctrl Eq. : L01 at 0.00% Intermediate results Unit Value Reference Factored axial tension capacity(4)Pn) [Kip] 1048.36 Eq.Sec.D2 Nominal axial tension capacity(Pn) [Kip] 1164.84 Eq.D2-1 AXIAL COMPRESSION DESIGN if Compression in the major axis 33 Ratio 0.00 Capacity 936.95[Kip] Reference : Sec.El Demand 3.22[Kip] Ctri Eq. : L12 at 0.00% Intermediate results Unit Value Reference Section classification Unstiffened element classification -- Non slender Unstiffened element slenderness(X) — 6.62 Unstiffened element limiting slenderness(Xr) — 15.89 Stiffened element classification — Slender Stiffened element slenderness(X) -- 51.23 Stiffened element limiting slenderness(k r) - 42.29 Factored flexural buckling strength(4Pn33) [Kip] 936.95 Sec.El Effective length factor(K33) — 1.00 Unbraced length(L33) [in] 379.00 Effective slenderness((KL/r)33) -- 39.20 Eq.E3-4 Elastic critical buckling stress(Fe33) [Kipfin2] 186.24 Eq.E3-4 Reduction factor for slender unstiffened elements(Qs33) — 1.00 Effective area of the cross section based on the effective width (A... [in2] 31.27 Eq.E7-2 Reduction factor for slender stiffened elements(Qa33) -- 0.97 Eq.E7-16 Full reduction factor for slender elements(Q33) — 0.97 Sec.E7 Critical stress for flexural buckling(Fcr33) [Kip/in2] 32.17 Eq.E7-2 Nominal flexural buckling strength(Pn33) [Kip] 1041.05 Eq.E7-1 97 of 252 Compression in the minor axis 22 Ratio 0.01 Capacity 564.80[Kip] Reference : Sec.El Demand 3.22[Kip] Ctrl Eq. : L12 at 0.00% Intermediate results Unit Value Reference Section classification Unstiffened element classification - Non slender Unstiffened element slenderness(X) - 6.62 Unstiffened element limiting slenderness(Ar) - 15.89 Stiffened element classification - Slender Stiffened element slenderness(X) - 51.23 Stiffened element limiting slenderness(Ar) - 42.29 Factored flexural buckling strength(4:Pn22) [Kip] 564.80 Sec.El Effective length factor(K22) - 1.00 Unbraced length(L22) [in] 379.00 Effective slenderness((KL/r)22) - 108.39 Eq.E3-4 Elastic critical buckling stress(Fe22) [Kipfin2] 24.36 Eq.E3-4 Reduction factor for slender unstiffened elements(Qs22) -- 1.00 Effective area of the cross section based on the effective width (A... [in2] 32.36 Eq.E7-2 Reduction factor for slender stiffened elements(Qa22) - 1.00 Eq.E7-16 Full reduction factor for slender elements(Q22) - 1.00 Sec.E7 Critical stress for flexural buckling(Fcr22) [Kipfin2] 19.39 Eq.E7-2 Nominal flexural buckling strength(Pn22) [Kip] 627.55 Eq.E7-1 Factored torsional or flexural-torsional buckling strenath4Pn11) [Kip] 1004.02 Sec.E4 Effective length factor(K11) -- 1.00 Unbraced length(L11) [in] 8.00 Flexural constant(H) - 0.69 Eq.E4-10 Torsional or flexural-torsional elastic buckling stress(Fe11) [Kip/in2] 29191.57 Eq.E4-4 Elastic torsional buckling stress(Fez) [Kip/n2] 20024.41 Eq.E4-9 Reduction factor for slender unstiffened elements(Qs11) - 1.00 Effective area of the cross section based on the effective width (A... [in2] 31.00 Eq.E7-2 Reduction factor for slender stiffened elements(Qa11) - 0.96 Eq.E7-16 Full reduction factor for slender elements(Q11) -- 0.96 Sec.E7 Critical stress for torsional or flexural-torsional buckling(Fcr11) [Kip/in2] 34.48 Eq.E7-2 Nominal torsional or flexural-torsional buckling strength(Pn11) [Kip] 1115.58 Eq.E7-1 FLEXURAL DESIGN 1/ Bending about maior axis,M33 Ratio 0.47 Capacity 704.96[Kip*ft] Reference : Sec. Fl Demand 332.19[Kip*ft] Ctrl Eq. : L07 at 0.00% Intermediate results Unit Value Reference Se ction classification Unstiffened element classification -- Slender Unstiffened element slenderness(X) -- 34.25 Limiting slenderness for noncompact unstiffened element(Ar) -- 28.38 Limiting slenderness for compact unstiffened element(Xp) - 10.79 Stiffened element classification - Compact Stiffened element slenderness(X) - 51.23 Limiting slenderness for noncompact stiffened element(Xs) - 161.78 Limiting slenderness for compact stiffened element(Ap) - 106.72 Factored yielding strenath(4Mn) [Kip*ft] 704.96 Sec. Fl Yielding(Mn) [Kip*ft] 783.29 Sec.F4.2 Factored lateral-torsional buckling strenath(4Mn) [Kip*ft] 704.96 Sec.Fl 98 of 252 Radius of gyration of the compression flange(rt) [in] 5.44 Limiting laterally unbraced length for yielding(Lp) [in] 174.66 Eq.F2-5 Calculated stress used in the calculation of nominal strength(FL) [Kip/in2] 20.58 Eq.F4-6b Effective radius of gyration used in the determination of Lr(rts) [in] 2.95 Eq.F2-7 Lateral-torsional factor(c) - 1.00 Eq.F2-8a Limiting laterally unbraced length for inelastic lateral-torsional bucklin... [in] 345.32 Eq.F2-6 Lateral-torsional buckling modification factor(Cb) - 1.00 Eq.C-F1-3 Web plastification factor(Rpc) - 1.33 Eq.F4-4 Critical stress(Fcr) [Kip/in2] 63.56 Eq.F4-5 Lateral-torsional buckling(Mn) [Kip*ft] 783.29 Eq.F4-3 Bending about minor axis.M22 Ratio 0.07 Capacity 210.55[Kip'ft] Reference : Sec. Fl Demand 14.50[Kip'ft] Ctrl Eq. : L07 at 0.00% Intermediate results Unit Value Reference Section classification Unstiffened element classification - Slender Unstiffened element slenderness(X) - 34.25 Limiting slenderness for noncompact unstiffened element(kr) - 28.38 Limiting slenderness for compact unstiffened element(Xp) - 10.79 Stiffened element classification -- Compact Stiffened element slenderness(X) - 51.23 Limiting slenderness for noncompact stiffened element(?.r) - 161.78 Limiting slenderness for compact stiffened element(Xp) - 106.72 Factored vieldina strenoth(4Mn) [Kip*ft] 210.55 Sec.Fl Yielding(Mn) [Kip*ft] 233.94 Eq.F6-1 DESIGN FOR SHEAR 1 Shear in major axis 33 Ratio 0.00 Capacity 349.53[Kip] Demand -0.65[Kip] Ctrl Eq. : L02 at 0.00% Intermediate results Unit Value Reference Factored shear capacitv(4Vn) [Kip] 349.53 Web slenderness(Xw) - 6.62 Sec.G2 Shear area(Aw) [in2] 17.98 Web buckling coefficient(kv) -- 1.20 Sec.G7 Web buckling coefficient(Cv) - 1.00 Eq.G2-3 Nominal shear strength(Vn) [Kip] 388.37 Eq.G2-1 Shear in minor axis 22 Ratio 0.04 Capacity 279.48[Kip] Demand -12.31 [Kip] Ctrl Eq. : L07 at 100.00% Intermediate results Unit Value Reference Factored shear caeacity(4Vn) [Kip] 279.48 Web slenderness(Xw) - 51.23 Sec.G2 Shear area(Aw) [in2] 14.38 99 of 252 Web buckling coefficient(kv) — 5.00 Sec.G2.1(b) Web buckling coefficient(Cv) — 1.00 Eq.G2-3 Nominal shear strength(Vn) [Kip] 310.54 Eq.G2-1 COMBINED ACTIONS DESIGN V* Combined flexure and axial compression Ratio 0.54 Ctrl Eq. L07 at 0.00% Reference : Eq.H1-lb Intermediate results Unit Value Reference Interaction of flexure and axial force — 0.54 Eq.Hl-lb Required flexural strength about strong axis(Mr33) [Kip*ft] 332.19 Available flexural strength about strong axis(Mc33) [Kip*ft] 704.96 Sec.Fl Required flexural strength about weak axis(Mr22) [Kip*ft] 14.50 Available flexural strength about weak axis(Mc22) [Kip*ft] 210.55 Sec.Fl Required axial compressive strength(Pr) [Kip] 2.92 Available axial compressive strength(Pc) [Kip] 564.80 Sec.El Combined flexure and axial tension Ratio 0.54 Ctrl Eq. L07 at 0.00% Reference : Eq.H1-lb Intermediate results Unit Value Reference Required flexural strength about strong axis(Mr33) [Kip*ft] 332.19 Available flexural strength about strong axis(Mc33) [Kip*ft] 704.96 Sec. Fl Required flexural strength about weak axis(Mr22) [Kip*ft] 14.50 Available flexural strength about weak axis(Mc22) [Kip*ft] 210.55 Sec.Fl Required axial tensile strength(Pr) [Kip] 0.00 Available axial tensile strength(Pc) [Kip] 1048.36 Eq.Sec.D2 Combined flexure and axial compression about local axis Ratio N/A Ctrl Eq. Reference . Combined flexure and axial tension about local axis Ratio N/A Ctrl Eq. — Reference .• 100 of 252 13rAw� Ta /ZuNwa`r Ctwivet.Tiol�d (see page 67 for (L�S�GE . .__ • . ...__..____... .,. . ._.. ........_.,. ,.._„_--w,.- connection forces) T;Aar = Za, 01 lit P (6107 ` I11 30) 1�7z = S,s le f" - T (Co - i o) IV .7. 1Z,r.ty L'P (Cov • A.430).� V3 – . q kr� (c.4,-/- Mlo) M.33 d k,P- Fr CF4E(t 13 Ot15 is.23 ki . 2V/ �. k i V, 4Y . (ZO•°Ik 7. (Z.61 ` ` 10 k/e .a —�3otYS o`T Q ti y?.° L 1 / �, BOCTS . Z FT 1�/fat T 1.5` ` —=1 t15r (2) `Y4 _..0 A ?..c- U�� 5.`7t ' ,.>^E Aer r IAA T 4 tTS rivet) • z?.Ott k eJt li Ft ie 6L&c.i, 15 kF,nrt.. ,,t u'FJv,i'. et ATf 0,6o 4, r Gib 6 RN _ C?,6fJ Ft /�"u t u!►s �. � kr '� u Alt 5 R,,, - 0.60(5.40.125.) t ho(58)(1,5) :5- . kJF Fl 7 G k'sr 'S 0.40(36)0.c) # 1.0(CO(2.S ft t�f 0,5-0 /iv ,-°t' i si q i5 k t 17?,4,t kip Am- - 0.50"(5u) - 2.5 IN ' ANV z 0,50"(2)(i.5I'— 0:47?) 2 F4Z5rnz 177,1f k ? 28.4 le if v k 0. O`, Pt AT( .R 0. -15-0 IA(8 0k 9570 SW Barbur Blvd Project Name New Three Ton & Five Ton Crane Runway Project# 150119 rt Suite One Hundred MI Portland,OR 97219 Location 14650 SW 72nd Avenue, Portland, Oregon MILLER Client US Crane & Hoist _ Phone 503.246.1250 02/27/2015 101 of 252 CONSULTING Fax 503.246.1395 By JLT Ck'd RPA Date Page ENGINEERS www.miller-se.com Steel Fastener Design -AISC 13th Addition - Brace Beam to Runway Web Type: Bolt Grade: A325 Threads are included in the shear plane Diameter: 0.75 in Loading: LRFD Use Factored Loads A= 0.442 in2 dr= 0.642 in ft= 0.4 ksi =0.17/0.442 fv= 31.7 ksi = 14/0.442 % - 0.75 Fastener Capacity Summary: Fnt= 90 ksi, Table J3.2 Fnv= 48 ksi, Table J3.2 Tc= 29.84 k=90*0.442 *0.75 Vc= 15.91 k=48 *0.442 *0.75 ft/(Fnt*0.75)= 0.01 <20%, effects of combined stresses need not be investig fv/(Fnv*0.75)= 0.88 < 1.0 OK Combined effects are not ap licable. F'nt= N/A ksi, Eq.J3-3, page 16.1-109 T'c= N/A k, reduced tension capacity Use 0.75"diameter A325 bolt Bearing Strength at Fastener Holes: (J3.10, pg 16.1-111) t=I 0.500 line Deformation at hole is not acceptable at service load Standard hole size Box or HSS member? No Fu = 58 ksi I Fy= 36 ksi Lc= 1 in Rn = 34.80 k Rc= 26.10 k = 34.8 * 0.75 14k <26.1k OK 9570 SW Barbur Blvd Project Name New Three Ton & Five Ton Crane Runway project# 150119 at Suite One Hundred Portland,OR 97219 gLocation 14650 SW 72nd Avenue, Portland, Oregon MILLER Client US Crane & Hoist CONSULTING Fax Phone 5 3.246.6395 503.246.1250 By JLT 02/27/2015 102 of 252 y Ck'd Date Page www.miller-se.com w.miller-se.com 13t,40-t To AU N WA y COP/Al fLTI UN Conrr. (2._Aec,, ) (_,'NFc 'TIFf_/Y Ire CJ L P 17,-E6 - 2 .a Uec„, O.3`/kk.I. 401 4 31' 1 00. lc" .= zd..75'1 I L F:eN$,E L (AA-B (T) I ,16 34 a Wft 4 t7 t awe sl pf(use 1/4"welds) of 'Z.1, 6;t FF rl,rf"g ) ATC I (- Et✓k .1-1F-r1\164 • gro (eqc Ad-q) j !I.ZOn-klp 11 wt t MA), Maeh /r Ay CND c vc..utfAN I -. met l) ( qt•V - 1 6 1N .1- � '? ti 0.7 ct o,6)(0.7r�7l)/ '4') (idles►)(,3.S/Nz) 75:I-i /N - k;, 75,17 IN -. ki (Z.) A /so./A/- k, > 11.2 k;p-F=r •la = 13 y e/ /I./- k;0,0 - A I ( ) 'Oc" / _ 6. 5/N 3 I OF S - 0,9(36) (6.751Pd) - Z l 9 />v- kie 2 131/ - f,'/) a USf" #46 1A)(1.!•J h.'vroi r.-W-S $ ,ç" Ss,FF ite I ' 9570 SW Barbur Blvd Project Name New Three Ton & Five Ton Crane Runway Project# 150119 I Suite One Hundred - Portland,OR 97219 gibLocation 14650 SW 72nd Avenue, Portland, Oregon MILLER Client US Crane & Hoist Phone 503.246.1250 02/27/2015 103 of 252 CONSULTING Fax 503.246.1395 By JLT Ck'd R4 Date Page ENGINEERS www.miller-se.com 'Qrt,y/MA ti To Co c. w r-t�v �oniry EC TtOrV — 1/A eln ('E'A/v IE' (see page 67 for connection forces) V,mar t- S O.7'kip (C 6g - M 13 t2o I10 V3 m„ - !LO 16 (Cl? - 114 13) 46.---e - 11122 may 4 0 r7 - le;10 i M33�fQ>< = 13.B F –II f� (egg — It 13 ) �I \ i VI Sucr �t ,t2k�� t (eU7k�"1) L, f3,®?kej 2.0z id/f2c.T L3oc_rS „ T = /3. & 6. - kip . ( / r) - zy, 6 k,��` TS 1z:3 , 3,07 k gii7-1( V1301-7 = Ii,vs k Ldst (q) %" 4 A)zs- I/ t 13006 Al FcgeN Coe-u.-N TeOLT - 70.?t k;f (use 3/4 dia bolts) CHEtk WrtP Kwe-1_9 0. 7 (o )(110(O,7 7l (7O) - S'. . ,7 k//t4 7 (20.7kt -65"/s-.5717m ,_ 0, 2,0 IN Lis At r i't e i'7 Wit,0 A c G. A2vUt40) C'AP TD (dCt-rryi/ ES s57o sw Barbur Blvd Project Name New Three Ton & Five Ton Crane Runway Project# 150119 Suite One Hundred Portland,OR 97219 Location 14650 SW 72nd Avenue, Portland, Oregon MI MILLER Client US Crane & Hoist Phone 503.246.1250 02/27/2015 Page 104 of 252 CONSULTING Fax 503.246.1395 By JLT Ck'd Date ENGINEERS www.miller-se.com Steel Fastener Design -AISC 13th Addition -TOP OF COLUMN CONNECTION Type: Bolt Grade: A325 Threads are included in the shear plane Diameter: 0.625 in Loading: LRFD Use Factored Loads I A= 0.307 in2 dr= 0.527 in ft= 40.7 ksi = 12.5/0.307 fv= 16.9 ksi = 5.19/0.307 I cp= 0.75 Fastener Capacity Summary: Fnt= 90 ksi, Table J3.2 Fnv= 48 ksi, Table J3.2 Tc= 20.72 k = 90* 0.307 *0.75 Vc= 11.05 k =48 *0.307 *0.75 ft/(Fnt*0.75)= 0.60 < 1.0 OK fv/(Fnv*0.75)= 0.47 _< 1.0 OK Effects on tension capacity due to comb ined stresses: I F'nt= 74.8 ksi, Eq. J3-3, page 16.1-109 T'c= 17.2 k, reduced tension capacity I 17.22 > 12.50K Use 0.625"diameter A325 bolt J Bearing Strength at Fastener Holes: (J3.10, pg 16.1-111) t=I 0.500 Iin2 I Deformation at hole is not acceptable at service load Standard hole size I Box or HSS member? No Fu = 58 ksi I Fy= 36 ksi Lc= 0.8 in I Rn = 27.84 k Rc= 20.88 k =27.84 *0.75 5.19k <20.88k OK 9570 SW Barbur Blvd Project Name New Three Ton & Five Ton Crane Runway Project# 150119 I S Suite One Hundred _ Portland,OR 97219 14650 SW 72nd Avenue, Portland, Oregon Location MILLER Client US Crane & Hoist Phone 503.246.1250 02/27/2015 105 of 252 CONSULTING Fax 503.246.1395 By J LT Ck'd Date Page ENGINEERS www.miller-se.com I e k (FIVE 12 /14 = 13, f3 kt r CµEck We( ": "Y/ / I S' S = 0.7s(a4) N:7070('70)(13. 5)(2) ( /4) = / vto /N - k, A'? = 1 ,et k - OVA/) - (v,05q f o,01.-3/ 0/76)(&IS") = icy, 3 ,N p k,e LlsE 119 WEGns, '# 1304-7 6E ASA EN0 s Ti.74 Pr �E CNE�,e L cTs 6 A31 - ic,p Vf3vc_Ts “3 � �-��Z = )5_, 12 kip yN 5't v Vrpoo = 171 k u (2 ) .%v` F375- Lao,Ts AT EAc 2 64 k I /'V 1:3Cam 9570 SW Barbur Blvd Project Name New Three Ton & Five Ton Crane Runway Project# 150119 - Suite One Hundred Portland,OR 97219 Location 14650 SW 72nd Avenue, Portland, Oregon j MILLER Client US Crane & Hoist Phone 503.246.1250 02/27/2015 106 of 252 CONSULTING Fax 503.246.1395 By JLT Ck'd Date Page ENGINEERS www.miller-se.com k,a)'L T o C t vt wj.ty (c?n'Ne t T r ay 2t/ - CO-Ir4k FZ.A/VA r eW 211 74) Q llgal 2 I T= 12.3 Kips (from page 104) M = (2 inch)(12.3) = 24.6 in kips 0/110 ' 04 r 0. 1 (6-01e5,)(60,6609f - 7i3,1 k,, IN? 20-'0 Q. . ef I c : ei - SW" < 9)1 Qk T= (12.3 kips )(2.5 inches) =30.75 in kips OM = (0.9)(Fy)(Z) = (0.9)(36)(8)(12)4 =64.8 in kips >= 30.75 in kips I PL 1 x8x1.-2" 1 I 8 ,1 I7 in ti, 11 . - A _, .. 9570 5W Barbur Blvd Project Name New Three Ton & Five Ton Crane Runway Project# 150119 I at Suite One Hundred Portland,OR 97219 la 14650 SW 72nd Avenue, Portland, Oregon Location MILLER Client US Crane & Hoist Phone 503.246.1250 02/27/2015 107 of 252 CONSULTING Fax 503.246.1395 By JLT Ck'd Date Page ENGINEERS www.miller-se.com I (see page 67 for /\N(LE iA .E LoNNrc i7oN connection forces) PA+6,), - Z , 3c Wv I (Col " M 3 Z) \12�nr ., /0 1t, 0:4(4c, ,p(r) ituA,► = z,6,,ys` k ,P ( C 64 - P432,) Ys�,.� = ZI 0 lb (L'i 3 - m32) Cuiv vrc- -noN TO EAN Air ( ' ' V V 2g. 3C.14",r "6-) = Z0,05'k,f) Tpr_sp 20 45- k 1 p M - 20,d 5 k►r (/"� -- :Y:30.21 /N - k ►p A WFcp (1w)(o.7o )(n")(z) = y. Z`-t /A/ 2 e. ,_ (frii)(03071)(06zi )1 gr Mi L 7o�S, (o. )(a7S) = 31 , 5 k51 /fi 5 - 1.1:-y 2o.�k(z) .Li /N-k.p I G 7 y-Z`(mit t g.y6f'N3 � µ'Sr -31.5 /�S/ ,r Us r /4 tort. aoT N 5 t'ears a PG Ar,f &Lc P %z' x 4 "x It- of t CHECk SOC.°f ( kk ) /z• ' • $3,-- 1::> k r �f fy„ s gory vriew = 35. ; k (A 37. ) oRt s riE,ae) U P 28, 36k c,k. at b Pr9570 SW Barbur Blvd New Three Ton & Five Ton Crane Runway Suite One Hundred oject Name Project# 150119 Portland,OR 97219 MLocation 14650 SW 72nd Avenue, Portland, Oregon MILLER Client US Crane&Hoist Phone 503.246.1250 02/27/2015 108 of 252 CONSULTING Fax 503.246.1395 By JLT Ck'd Date Page ENGINEERS www.miller-se.com (see page 65 for LASE: (.. wti, nom (lA/2G,E (%z ANF) connection forces) 41 X = •' Ng,21 K P- e- (le -P C.' - ' ; iv n F )c) P,„ = �(.. .s.x k,,' f Le --t, L it ; Na 06 r r ) I Pr,,' — --/6, z457 k,P (Le --1, el() ; mope 11 ) MA r lh fie --- Lo3 • ; Steel Fastener Design -AISC 13th Addition-ANCHOR BOLT Type: Bolt Grade: A325 Threads are included in the shear plane Diameter: 1 in Loading: LRFD Use Factored Loads A= 0.785 in2 dr= 0.865 in ft= 53 ksi=41.6/0.785 fv= 2.8 ksi=2.19/0.785 0.75 Fastener Capacity Summary: Fnt= 90 ksi, Table J3.2 Fnv= 48 ksi, Table J3.2 Tc= 52.99 k=90*0.785 *0.75 Vc= 28.26 k=48*0.785 *0.75 ft/(Fnt*0.75) = 0.79 < 1.0 OK fv/(Fnv*0.75) = 0.08 <20%, effects of combined stresses need not be investigated Combined effects are not ap licable. F'nt= N/A ksi, Eq.J3-3, page 16.1-109 T'c= N/A k, reduced tension capacity Use 1"diameter A325 bolt Bearing Strength at Fastener Holes: (J3.10, pg 16.1-111) t=I 0.500 Iin2 Deformation at hole is not acceptable at service load Standard hole size Box or HSS member? No Fu = 58 ksi Fy= 36 ksi Lc= 2.375 in Rn = 69.60 k Rc= 52.20 k =69.6*0.75 2.19k<52.2k OK Si 9570 SW Barbur Blvd Project Name New Three Ton & Five Ton Crane Runway Project# 150119 Suite One Hundred - Portland,OR 97219 _ Location 14650 SW 72nd Avenue, Portland, Oregon MILLER Client US Crane & Hoist Phone 503.246.12504 02/27/2015 110 of 252 CONSULTING Fax 503.246.1395 By JLT Ck'd Date Page ENGINEERS www.miller-se.com 134145g Coiwk 1 cTrpi _ Co 'r 6A0'Ce CPA^1r ) 34S Pt. A7F I F pa p f T _ /b,2 k 4 0,0 k - 97 Z k,P f3rApIrvl„ - r'(o,ss)l )(0.Gs) = 2,1-/el ik/ M e - 977 k ( sr1 — Z•1/9/t ) - 36 7,9, 6.<;p -..9 c " •6 24 3 _ /I _ 3 0.`7 ( 3G ksr)(zy") 1 , !2 ` 1I2' x PI K 7r a _ Or' f3ASE w1=Cp M M Mere? - 1111 d rAo (OAO = l ,3 r k;to - 0,9 t(9N 4 33.AVLI7)4 513CIGIV(7 7,2'y ) /yy, ( Fi- - kir swr=co = 119c1 + cl /3 I, ? ($.00)(Ii6 /)f I7,Gy� Z s s/iNO -4 b r... 19, _ e" v4 ° d - (2)i. — 13.7 — a-)!.5-2,,' — IZ.. i I #r - 0,6 i(0.75) (70)(0,707/) ( s//6) SS'S) 42 = /yg,Z 1r - krp P12 .2 ? NY: Fr-k;, ok I I GIs 6 C46:' WELD . A IJeouND I Et 9570 SW Barbur Blvd New Three Ton & Five Ton Crane Runway Suite One Hundred Project Name Project# 150119 Portland,OR 97219 _ Location 14650 SW 72nd Avenue, Portland, Oregon MILLER Client US Crane & Hoist Phone 503.246.1250 02/27/2015 111 of 252 CONSULTING Fax 503.246.1395 By J LT Ck'd Date Page ENGINEERS www.miller-se.com I C'O II ant /JNt1102 C ✓-, ‘y • . _CI = � Fir., /g.. - Z.5 ho = ( 7) +0(0. _. 'I; /,L V/" l l . r z.975" I ZZ P4 . 1'/g, 3 0 W M 17 r► , ,Q - tl y►t - — VG = (2 # yh,191) .tf3000'oZZ)(I2') \ z / , e 76-- 6 n of! 1/e : ?:`? 1. �,,j;3000 I(l Z? I L"} - Z 3y fr I r G 6" ( , *L w 3z" -- Glt f ‘f \l c, ° 1- 3000 (I2) (Jz) - Sao k.,,> 7yy1"'""' 4 U C — 0.7 (23 .2 ) )��4/ kin 7. --1aAk� 81 kips (see page 109) e.gak AwAt.E [ _ o,.lkk(s.) - Z,c3 Z, (iz „v/f,) - 0..6/ k/Fr, M r�a� = 57/23 1(-119--Fr ,fc / f'44f S,l 3k-Fr (Pi/rf)/� USE C>_5-x 43 X at - glI mil, „v : Z, 11 sv 9570 SW Barbur Blvd Project Name New Three Ton & Five Ton Crane Runway Project# 150119 Et Suite One Hundred Portland,OR 97219 MLocation 14650 SW 72nd Avenue, Portland, Oregon MILLER Client US Crane & Hoist Phone 503.246.1250 02/27/2015 112 of 252 CONSULTING Fax 503.246.1395 By JLT Ck'd Rilil Date Page ENGINEERS www.miller-se.com I I I Vi I e I a I I i .. 0'.-4 rl. I I I 1X I 2 r\ ° w v x M L Y a G 4 .1 b 1, 6. tl V. A r, s° a° o I I I I I 1 I c I m v A w 1 4 a 1 1 :44. p w w w w w L 0. .:e9; J A 1 R. NOM Oma�Oe. V P X 09 tiff ONtiN0 nOn K I iJ� 00 0. C Ha W 000 v tlY `2 8 v Q 0 7 U 2 O 0 1 ✓✓J✓ J J✓ G G A N1 I Af A R A T.1 i1 u G a a:u 1 1 d d J✓G C Ye,J w b n a, r�n V. .ti y Y Y 12 F a Y 0'•• Y Y JI 4 4 H M fl\\' d .+! E{Yl Y q G] A OO vlava.�.��00 ✓ N P oo Y . J V Q 1 tgmrrgPlAtl 1 .4 .i Xe u 0.' .l n�uae /� U Mil b 4 W Yl0 O NNl'INOOO.n 1/\ O GOO N ✓ ✓N W.y"w tl b e� NN 1 000°0 O G i~ % 11 D w a1 2:° >x ll u . . oGaG o m m l✓il'O b J M w d 4 X C � G N CIO u 1 r1 d l C .. b G X ry m I C O w % l% .. p 9 N P e v 1 i O O 9 tl Y 9 it! .1 —II [\�\ d � 1 1 b %�t+f '00 yZ W O OJ✓ L 1 O ! J�H X qy tl %J m H ✓✓ 'I L✓+i.+UU VV O E P N d O 1 G P w w-0'3 Y M o 7 Y O 4 4 G C J✓b Y I .�, 41 � O �Y J V. G O O w 4 >OG �: •<�a i 0. .Yi - .1 N~ .iMM O O A CC OOY 4 P A■ YY d N W K C G v P 61 Y g1 Y w C e.t,-.' pb Ell U G M.Gi,%Y yG li Gi% m : R C 2' 6 O.X% W 5 C X 9 2 Z Z]]]]2 U O' G 2 1 E I E A i y 1 D d £ l/1 v! G. a 4 K 11 £ Art Portland,9570 SW Barbur Blvd Project Name New Three Ton&Five Ton Crane Runway Project# 150119 1 Suite One Hundred_ OR 97219 Location 14650 SW 72nd Avenue, Portland, Oregon MILLER Client US Crane& Hoist ;7n� CONSULTING Fax Phone 5 30246. 395 o By JLT Ck'd ��`� Date 02/27/2015 Page 113 of 252 ENGINEERS www.miller-se.com I 1.( eF2 ea ACE ea/VA/,r^eT)0N Y ; Z2. rb k,P (G.0 - CIZ ) /t't¢wt 6,0) /Si ( " = to �G PLATE LU,Dr is /0. 7 6 " f //. 24 4 ` I?" /_ ( rs .. X 21_.x0 k 1/645 ) - 7,0.113 rwr,d �>< l r.•ay _ ?Z,0c 1 ( 414 1.5) = 8,I7 1.4p p (-Ire K tai-r 5 VA/04,T - / 6 16.92 i,-s '116 k/64"4-.T )�,rvu ; ZO.?2 l`/ cr VA.-T 2 G.5 /I LT ' 6, 14- 17/3oe..r Vpeov /1.0.5 USE- (I) % A375- 6ex.r 5 CNtc_Ic eerie< lOP 7 (1 5 -- o,(-'ZS" '►�,, = yyy' b' P (i/. &, (Z.6kip)(t. I f37S ) F f).2,c�1' 5$ k6i (G 1N) G (0.5)7 v.37 _ s //Y 3 a = a.y(Y)(°.375) — IZ.Isrn-lef;o lif = 2 ,6 (!-45") - 3,c! iy_k�,� . 9570 SW Barbur Blvd Project Name New Three Ton & Five Ton Crane Runway Project# 150119 . Suite One Hundred _ Portland,OR 97219 Location 14650 SW 72nd Avenue, Portland, Oregon MILLER Client US Crane& Hoist Phone 503.246.1250 02/27/2015 114 of 252 CONSULTING Fax 503.246.1395 By JLT_ Ck'd Date Page ENGINEERS www.miller-se.com lele let`s got/4e F (,,.,r, (see page 67 for connection forces) (fire c.oif c x fik - e- 0.50N'60")// (36 k6)) (c ) - Zo. 7S ,N - k1 I 9 LA PG 'fY it for° X J ' - or' vitro (ti) %' 0 /9 376- 042e.7-6 efl k APit H04- I-4:91-7-4 V RtL� _ (( i �0.067k)z) ,z = alt �tP � (en -rr 30) Mu+.r,p, F g.)2.‘‘ �►‘ et,,Ay F 7 v.4 k. (C'z, N 7o' 1`,,,,,is., t U5 �L/) /L N o , 3 F rr f 4kt)1 is 60e--r- T� -e5 e fa- ' or: roccov.7 r r f6 i I Si 9570 SW Barbur Blvd Project Name New Three Ton & Five Ton Crane Runway Project# 150119 Suite One Hundred - Mb Portland,OR 97219 14650 SW 72nd Avenue, Portland, Oregon Location MILLER Client US Crane & Hoist Phone 503.246.1250 02/27/2015 115 of 252 CONSULTING Fax 503.246.1395 By JLT Ck'd Date Page ENGINEERS www.miller-se.com I II4I IIMMIIII I www.hilti.us Profis Anchor 2.5.0 Company: Miller Consulting Engineers Page: 0 Specifier: JLT Project: Address: Sub-Project I Pos.No.: Phone I Fax: (503)246-1250 I Date: 2/27/2015 E-Mail: Specifier's comments: 1 Input data Anchor type and diameter: Kwik Bolt TZ-CS 1/2(3 1/4) r` ie er Effective embedment depth: her,ad=3.250 in.,h ,,,=3.625 in. Material: Carbon Steel Evaluation Service Report: ESR-1917 Issued I Valid: 5/1/2013 1 5/1/2015 Proof: Design method ACI 318-11 /Mech. Stand-off installation: eb=0.000 in.(no stand-off);t=0.500 in. Anchor plate: Ix x ly x t=12.000 in.x 12.000 in.x 0.500 in.;(Recommended plate thickness:not calculated) Profile: Rectangular HSS(AISC);(L x W x T)=5.000 in.x 4.000 in.x 0.250 in. Base material: cracked concrete,2500,fc'=2500 psi;h=6.000 in. Installation: hammer drilled hole,Installation condition:Dry Reinforcement: tension:condition B,shear:condition B;no supplemental splitting reinforcement present edge reinforcement:none or<No.4 bar Seismic loads(cat.C,D,E,or F) Tension load:yes(D.3.3.4.3(d)) (NOTE KICKER BRACES Shear load:yes(D.3.3.5.3(c)) ARE DESIGNE DTO ACT IN COMPRESSION ONLY. Geometry[in.]&Loading[Ib,in.Ib] TENSILE CAPACITY IS z IGNORED AND THUS NOT USED IN CONNECTION) of8 9 N o 1"7\..x'' a\J .: 55u 0.5-- o to 116 of 252 Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor(c)2003-2009 Hilti AG,FL-9494 Schaan Hilti is a registered Trademark of Hilti AG,Schaan 1■■11`TI www.hilti.us Profis Anchor 2.5.0 Company: Miller Consulting Engineers Page: 1 Specifier: JLT Project: Address: Sub-Project I Pos.No.: Phone I Fax: (503)246-1250 I Date: 2/27/2015 E-Mail: 2 Load case/Resulting anchor forces Load case:Design loads 0 3 0 4 Y LAnchor reactions[Ib] Tension force:(+Tension,-Compression) Anchor Tension force Shear force Shear force x Shear force y 1 0 2030 2030 0 2 0 2030 2030 0 x 3 0 2030 2030 0 Compression 4 0 2030 2030 0 max.concrete compressive strain: 0.03[%o] max.concrete compressive stress: 142[psi] resulting tension force in(x/y)=(0.000/0.000): 0[Ib] resulting compression force in(x/y)=(0.000/0.000):20450[lb] 01 02 3 Tension load Load Nu,[lb] Capacity 4N„[Ib] Utilization fiN=N,,JfNn Status Steel Strength* N/A N/A N/A N/A Pullout Strength* N/A N/A N/A N/A Concrete Breakout Strength" N/A N/A N/A N/A *anchor having the highest loading "anchor group(anchors in tension) 117 of 252 Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor(c)2003-2009 Hilti AG,FL-9494 Schaan Hilti is a registered Trademark of Hilti AG,Schaan 'MI IIMTI www.hiltl.us Profis Anchor 2.5.0 Company: Miller Consulting Engineers Page: 2 Specifier: JLT Project: Address: Sub-Project I Pos.No.: Phone I Fax: (503)246-1250 I Date: 2/27/2015 E-Mail: 4 Shear load Load Vua[Ib] Capacity}Vn[Ib] Utilization j3v=Vua/¢Vn Status Steel Strength* 2030 3572 57 OK Steel failure(with lever arm)' N/A N/A N/A N/A Pryout Strength" 8120 25785 32 OK Concrete edge failure in direction** N/A N/A N/A N/A *anchor having the highest loading "anchor group(relevant anchors) 4.1 Steel Strength Vsa,eq =ESR value refer to ICC-ES ESR-1917 VstBel z Vua ACI 318-11 Table D.4.1.1 Variables n Ase.v[in.2] futa[psi] 1 0.10 106000 Calculations Vsa.eq[Ib] 5495 Results Vsa,eq[Ib] $51ee1 +Vsa[lb] Vua[lb] 5495 0.650 3572 2030 4.2 Pryout Strength Vein =kcp[(ANco)Wec,N Wed,N We,N Wop,N Nb] ACI 318-11 Eq.(D-41) Vcpg 2 Vua ACI 318-11 Table D.4.1.1 ANc see ACI 318-11, Part D.5.2.1,Fig.RD.5.2.1(b) A =9 h,2A ACI 318-11 Eq.(D-5) 1 Wec,N = 1 +2 eN 51.0 ACI 318-11 Eq.(D-8) 3 het Waa N =0.7+0.3(Ca,min her)c 1.0 ACI 318-11 Eq.(D-10) 1.5 WcpN =MAX(Camin 1.5h f% 5 1.0 ACI 318-11 Eq.(D-12) Cac Cao f Nb =kc as'h �5 ACI 318-11 Eq.(D-6) Variables kcp her[in.] ec1.N[in.] ec2.N[in.] camin[in.] 2 3.250 0.000 0.000 Wc,N Cac[in.] kc ka fc[psi] 1.000 7.500 17 1.000 2500 Calculations ANC[in.2] ANCO[in.2] Wecl,N 14)ec2,N Wed,N WcpN Nb[lb] 351.56 95.06 1.000 1.000 1.000 1.000 4980 Results Vcp9[Ib] +concrete +seismic 4,nonductile +Vcpg[Ib] Vua[Ib] 36836 0.700 1.000 1.000 25785 8120 118 of 252 Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor(c)2003-2009 Hilti AG,FL-9494 Schaan Hilti is a registered Trademark of Hilti AG,Schaan I■■11`TI www.hilti.us Profis Anchor 2.5.0 Company: Miller Consulting Engineers Page: 3 Specifier: JLT Project: Address: Sub-Project I Pos. No.: Phone I Fax: (503)246-1250 I Date: 2/27/2015 E-Mail: 5 Warnings • Load re-distributions on the anchors due to elastic deformations of the anchor plate are not considered.The anchor plate is assumed to be sufficiently stiff,in order not to be deformed when subjected to the loading! Input data and results must be checked for agreement with the existing conditions and for plausibility! • Condition A applies when supplementary reinforcement is used.The D factor is increased for non-steel Design Strengths except Pullout Strength and Pryout strength. Condition B applies when supplementary reinforcement is not used and for Pullout Strength and Pryout Strength.Refer to your local standard. • Refer to the manufacturer's product literature for cleaning and installation instructions. • Checking the transfer of loads into the base material and the shear resistance are required in accordance with ACI 318 or the relevant standard! • An anchor design approach for structures assigned to Seismic Design Category C,D, E or F is given in ACI 318-11 Appendix D, Part D.3.3.4.3 (a)that requires the governing design strength of an anchor or group of anchors be limited by ductile steel failure. If this is NOT the case,the connection design(tension)shall satisfy the provisions of Part D.3.3.4.3(b), Part D.3.3.4.3(c),or Part D.3.3.4.3(d).The connection design (shear)shall satisfy the provisions of Part D.3.3.5.3(a), Part D.3.3.5.3(b),or Part D.3.3.5.3(c). • Part D.3.3.4.3(b)/part D.3.3.5.3(a)requires that the attachment the anchors are connecting to the structure be designed to undergo ductile yielding at a load level corresponding to anchor forces no greater than the controlling design strength. Part D.3.3.4.3(c)/part D.3.3.5.3(b) waives the ductility requirements and requires that the anchors shall be designed for the maximum tension/shear that can be transmitted to the anchors by a non-yielding attachment.Part D.3.3.4.3(d)/part D.3.3.5.3(c)waives the ductility requirements and requires the design strength of the anchors to equal or exceed the maximum tension/shear obtained from design load combinations that include E,with E increased by S2o. • Hilti post-installed anchors shall be installed in accordance with the Hilti Manufacturer's Printed Installation Instructions(MPII). Reference ACI 318-11,Part D.9.1 Fastening meets the design criteria! 119 of 252 Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor(c)2003-2009 Hilti AG,FL-9494 Schaan Hilti is a registered Trademark of Hilti AG,Schaan 1■■1U IMMIM U www.hilti.us Profis Anchor 2.5.0 Company: Miller Consulting Engineers Page: 4 Specifier: JLT Project: Address: Sub-Project I Pos.No.: Phone I Fax: (503)246-1250 I Date: 2/27/2015 E-Mail: 6 Installation data Anchor plate,steel:- Anchor type and diameter:Kwik Bolt TZ-CS 1/2(3 1/4) Profile:Rectangular HSS(AISC);5.000 x 4.000 x 0.250 in. Installation torque:480.001 in.lb Hole diameter in the fixture:df=0.563 in. Hole diameter in the base material:0.500 in. Plate thickness(input):0.500 in. Hole depth in the base material:4.000 in. Recommended plate thickness:not calculated Minimum thickness of the base material:6.000 in. Cleaning:Manual cleaning of the drilled hole according to instructions for use is required. •y 6.000 6.000 • • • • 03 04 • 0 0 0 0 ci • li•x 0 0 0 co 01 02 • 141 • • 1.500 9.000 1.500• Coordinates Anchor in. Anchor x c.x c-y c,,, 1 -4.500 -4.500 - - - - 2 4.500 -4.500 - - - - 3 -4.500 4.500 - - - - 4 4.500 4.500 - - - - 120 of 252 Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor(c)2003-2009 Hilti AG,FL-9494 Schaan Hilti is a registered Trademark of Hilti AG,Schaan 141`T www.hilti.us Profis Anchor 2.5.0 Company: Miller Consulting Engineers Page: 5 Specifier: JLT Project: Address: Sub-Project I Pos.No.: Phone I Fax: (503)246-1250 I Date: 2/27/2015 E-Mail: 7 Remarks; Your Cooperation Duties • Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles,formulas and security regulations in accordance with Hilti's technical directions and operating,mounting and assembly instructions,etc.,that must be strictly complied with by the user. All figures contained therein are average figures,and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore,you bear the sole responsibility for the absence of errors,the completeness and the relevance of the data to be put in by you. Moreover,you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits,prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors,the correctness and the relevance of the results or suitability for a specific application. • You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular,you must arrange for the regular backup of programs and data and,if applicable,carry out the updates of the Software offered by Hilti on a regular basis. If you do not use the AutoUpdate function of the Software,you must ensure that you are using the current and thus up-to-date version of the Software in each case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences,such as the recovery of lost or damaged data or programs,arising from a culpable breach of duty by you. 121 of 252 Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor(c)2003-2009 Hilti AG,FL-9494 Schaan Hilti is a registered Trademark of Hilti AG,Schaan 146 0-00 1 ,e A I r t'',E',4 i?i iM /4 Aie V E27r'C AC CDA,J I'1 .1 Z7 k 1 1.0 A.b 3 N 7O) oic. 13EAP'H A 4e6-4 _ I.s ►Nc,$EASE W nN t,Wis Cc'4tS. I1• t 434�'P//.S k'5c0,33) "" 5 , ► — 2,5 r 7,5 641. (I4i k 30" offAA2E 5 E�.r,0N. C t et if f°21 Atikt (lave, f` •r,N/; O W/1 s v, ( S) (36 ). (. tZ" C`"l) - Ily S . ml , gyp f 1;/ rllt /l 3 „r{ - ke 1 ____ to -.: /.S ,, f t4"4z-pt) = 0, r Lei it ' 4 _ i — • — —I 1 1-11 a, , u " - _ Z"_ ji f Ye, , CvN `Ck IZ" Sau AA P PtATr J Ca,,ice,_,: (mo,,,,,Kr AQ,vf = �"_ etr ` '1 1) ( Z / 1 Cvr`IL. = ii' 4 2- �L 1 I.1 7 16 S, z - 2d _ Z �klf /•lYie ( �Z �) Fi) /voa)y,eif --tom CA gAc,Tr . v 44 Co,!C K r-t ES Portland,9570 SW Barbur Blvd Project Name New Three Ton & Five Ton Crane Runway Project# 150119 StOnHdd OR 97219 MILocation 14650 SW 72nd Avenue, Portland, Oregon MILLER Client US Crane & Hoist Phone 503.246.1250 02/27/2015 122 of 252 CONSULTING Fax 503.246.1395 By JLT Ck'd Rill Date Page ENGINEERS www.miller-se.com 1� p n1G,ef-R 1.-- 6f..-- Te.f_vc, ��uNT. t'/1���} _ 11.I%a�' ``�Z % 0,93 k/ ( ` )� _ 7. g6 /N- kir I p, _ I Z" (0.5) / . 7 0 S /N Ati/n _ � _ 36 0.7.5-- )142 - /6. 17- In -k; ° / � /".7 Mt, = .y6 /,v •k►P 4. /6, 17 /n1 - k,e My I 051 '1i. 7 " X 'Z1X V—o" I Fog. k1 I ,o ).'',�15fr /L/TE I — 9570 SW Barbur Blvd Project Name New Three Ton & Five Ton Crane Runway Project# 150119 S Suite One Hundred Portland,OR 97219 14650 SW 72nd Avenue, Portland, Oregon Location MILLER Client US Crane& Hoist Phone 503.246.12504 02/27/2015 123 of 252 CONSULTING Fax 503.246.1395 By J LT Ck'd Date Page ENGINEERS www.miller-se.com I t L { mac d 6.1'4 G,r,(( (LUAD/A' °'3� 7 �,� - Cs, ) FTC ec 11 to ►�; = SQO, 000 TN `re Afry7 i'AI roe. 12 — M 13 o) r c T a orr eeor''FeT v11 y • Zsyo k'P # J k t 1,5k . Zl,q k lit or Di L of 3TOY BRAN( v. 3�r k 1' Z.25�r�=) �9.73121N - U s.'� ,� 0,186, k4N ()z,'7p,) _ 2,23 32s--4, 1S-4.1 /N ar- ( 14 49) (z) ( 'IIN) (12 .6e 3.36 k/Ft wc,a . QAtet� �•Z�3 ,36(lt.��e 66 terD M13o) _ k U �A 346. 53k + 31?i,6) t 1.s k(1,Z) (./513 (2.zs,rvZ}( 1.7)rz - 0.7s.) i 0200'4 (!?1 /F,) S G. 156i //Y`/ U7441 3 61')(z)(1/nt (�oie ,')(41c (0,70 = r3,35 37,7. 3'36710,35 _ k) LD e'Ak. To t 1<f 33y 40(TN � (dfi-t 14' I?" U.P. �/14.a E30 9570 SW Barbur Blvd Project Name New Three Ton & Five Ton Crane Runway Project# 150119 - Suite One Hundred _ Portland,OR 97219 Location 14650 SW 72nd Avenue, Portland, Oregon MILLER Client US Crane & Hoist Phone CONSULTING Fax 503.246.1395 503.246.1250 By JLT Ck'd Date 02/27/2015 'd Page 124 of 252 ENGINEERS www.miller-se.com 0 - I \ Area: 34.7096 sq in I co cr't rn 4.50 3.01 Perimeter: 107.9942 in I Bounding box: X: -7.5000 -- 7.5000 in Y: -16.0888 -- 9.7312 in Centroid: X: 0.0000 in Centroid Y: 0.0000 in I co Moments of inertia: X: 3256.1561 sq in sq in N Y: 390.8589 sq in sq in Product of inertia: XY: 0.0000 sq in sq in Radii of gyration: X: 9.6856 in Y: 3.3557 in Principal moments (sq in sq in) and X-Y directions about centroid: I: 390.8589 along [0.0000 -1.0000] I J: 3256.1561 along [1.0000 0.0000] I ' ∎ 8.99 I I co 0? 1.50 Area: 12.0643 sq in Perimeter: 44.3547 in I Bounding box: X: -7.5000 -- 7.5000 in Y: -2.9188 -- 1.9812 in 1 ?_i_ Centroid: X: 0.0000 in Centroid 1 Y: 0.0000 in I Moments of inertia: X. 12.3449 sq in sq in L.- -. 7.50 Y: 308.2693 sq in sq in 15.00 Product of inertia: XY: 0.0000 sq in sq in Radii of gyration: X: 1.0116 in Y: 5.0549 in Principal moments (sq in sq in) and X-Y directions about centroid: I: 12.3449 along [1.0000 0.0000] I J: 308.2693 along [0.0000 1.0000] EDMASS PROPERTIES OF W24X76 WITH C15X33.9 9570 SW Barbur Blvd Project Name New Three Ton & Five Ton Crane Runway Project# 150119 S Suite One Hundred la Location OR 97219 Location 14650 SW 72nd Avenue, Portland, Oregon I MILLER Client US Crane& Hoist Phone 503.246.1250 ,e4 02/27/2015 125 of 252 CONSULTING Fax 503.246.1395 By J LT Ck'd Date Page ENGINEERS www.miller-se.com I eg',INNa -re, 43CAru 10NN£aT1oN r//3.7rG1-LF 0He"' F.Se = IZ, 6,c3 k51. v aC .Goy3) (9. 7 3i? - �.9��Z 1 J O, 9O. (1?) /6, 01 1l/N C.Y-'W EGD ' O.70'71 ( 3//6) (z) (3,$) (;z. ()43) /t 71 k/, 0- /°. - lQ (, q (1©O) . gt,37� (0.7071)(1/4)(2)(2.5)12.68) = 11.2 KIP/IN t 2FD 6Nol k -9$ u (I7. .oi3) C9m2 . 1,gpil) 1, 35 (I2' /.6, '/Fr °'/.06( , - 03071 ( 3/6)(Z)(3c9(76)(a-G)(0,?S) = zq. z3 k/, a- // .Z� (too) = SS,`�/(ATI. = bZ9.13 rAT, hue 60e-ere OLS W t,o CHAIF//V(t . To IfA,' GU i 7 PI 1/4" 4UEc », 2.5" lo•'/4 AT tzU d.('. E90 6(eq-epE Et 9570 SW Barbur Blvd New Three Ton & Five Ton Crane Runway Suite One Hundred Project Name Project# 150119 Portland,OR 97219 Location 14650 SW 72nd Avenue, Portland, Oregon MILLER Client US Crane& Hoist Phone 503.246.1250 02/27/2015 126 of 252 CONSULTING Fax 503.246.1395 By JLT Ck'd Date Page_ ENGINEERS www.miller-se.com Foundation Design Results Reinforced Concrete Footings — Long Span Cantilevered Column GENERAL INFORMATION: Global status OK Design Code ACI 318-2011 Footing type Spread Column type Steel Geometry 24i 93 in in ".�..� .2R ft in 49.5 in 49.5 in I4 3.25 ft Length • 99.00[in] Width • 99.00[in] Thickness • 24.00[in] Base depth • 24.00[in] Base area • 9801.00[in2] Footing volume 235224.00[in3] Base plate length • 20.00[in] Base plate width • 20.00[in] Column length • 13.70[in] Column width • 8.00[in] 127 of 252 Column location relative to footing g.c. Centered Materials Concrete,fc 3.00[Kip/in2] Steel,fy 60.00[Kip/in2] Concrete type Normal Epoxy coated No Concrete elasticity modulus : 3122.02[Kip/in2] Steel elasticity modulus : 29000.00[Kipfin2] Unit weight 0.15[Kip/ft3] Soil Modulus of subgrade reaction 200.00[Kip/ft3] Unit weight(wet) 0.11 [Kip/ft3] Footing reinforcement Free cover : 3.00[in] Maximum Rho/Rho balanced ratio : 0.75 Bottom reinforcement//to L(xx) : 9-#5 @ 11.00" Top reinforcement//to L(xx) : 945 @ 11.00" Bottom reinforcement//to B(zz) : 945 @ 11.00" (Zone 1) Top reinforcement//to B(zz) : 945 @ 11.00" Load conditions to be included in design Service loads: SO1 _S01 S45 _S45 S02 _S02 S46 _S46 S03 _S03 S47 _547•SO4 _SO4 S48 _S48 S05 _S05 S49 _S49 SO6 _S06 S50 _550 S07 _S07 S51 _S51 S08 _S08 S52 _S52 S09 _S09 S53 _S53 S10 _S10 S54 _S54 S11 _S11 S55 _S55 S12 _S12 S56 _S56 S13 _S13 S57 _557 S14 _S14 S58 _S58 S15 _S15 S59 _S59 S16 _S16 S60 _S60 S17 _S17 S61 S18 _S18 S62 _S62 S19 _S19 S63 _S63 S20 _S20 S64 _S64 S21 _S21 S65 _S65 S22 _S22 S66 _S66 S23 _S23 S67 _S67 S24 _S24 S68 _S68 S25 _S25 S69 _S69 S26 _S26 S70 _S70 S27 _S27 S71 _571 S28 _S28 S72 _S72 S29 _S29 S73 _S73 S30 _S30 S74 _S74 S31 _S31 S75 _S75 S32 _S32 S76 _576 S33 _S33 S77 _S77 S34 _S34 S78 _S78 S35 _S35 S79 _S79 S36 _S36 S80 _S80 S37 _S37 S81 _S81 S38 _S38 S82 _S82 S39 _S39 S83 _S83 S40 _S40 S84 _S84 S41 _S41 Design strength loads: S42 _S42 RCO1 _RCO1 S43 _S43 RCO2 _RCO2 S44 _S44 RCO3 _RCO3 128 of 252 RC04 _RC04 RC45 _RC45 RC05 _RC05 RC46 _RC46 RC06 _RC06 RC47 _RC47 RC07 RC07 RC48 _RC48 RC08 _RCO8 RC49 _RC49 RC09 _RC09 RC50 _RC50 RC10 _RC10 RC51 _RC51 RC11 _RC11 RC52 _RC52 RC12 _RC12 RC53 _RC53 RC13 _RC13 RC54 _RC54 RC14 _RC14 RC55 _RC55 RC15 _RC15 RC56 _RC56 RC16 _RC16 RC57 _RC57 RC17 _RC17 RC58 _RC58 RC18 _RC18 RC59 _RC59 RC19 _RC19 RC60 _RC60 RC20 _RC20 RC61 _RC61 RC21 RC21 RC62 _RC62 RC22 _RC22 RC63 _RC63 RC23 _RC23 RC64 _RC64 RC24 _RC24 RC65 _RC65 RC25 _RC25 RC66 _RC66 RC26 _RC26 RC67 _RC67 RC27 _RC27 RC68 _RC68 RC28 _RC28 RC69 _RC69 RC29 _RC29 RC70 _RC70 RC30 _RC30 RC71 _RC71 RC31 _RC31 RC72 _RC72 RC32 _RC32 RC73 _RC73 RC33 _RC33 RC74 _RC74 RC34 RC34 RC75 _RC75 RC35 _RC35 RC76 _RC76 RC36 _RC36 RC77 _RC77 RC37 _RC37 RC78 _RC78 RC38 _RC38 RC79 _RC79 RC39 _RC39 RC80 _RC80 RC40 _RC40 RC81 _RC81 RC41 _RC41 RC82 _RC82 RC42 _RC42 RC83 _RC83 RC43 _RC43 RC84 _RC84 RC44 _RC44 RESULTS: Status OK Soil.Foundation interaction With Seismic Allowable stress 2E03[Lb/ft2] 1500 psf*1.33 = 1996 psf Min.safety factor for sliding 1.25 Min.safety factor for overturning 1.25 Controlling condition S44-1 Condition qmean qmax Amax Area in compression Overturning FS Footing [Lb/ft2] [Lb/ft2] [in] [in2] (%) FSx FSz slip S44-1 885 1.77E03 0.106 4305.88 44 1000.00 1.41 3.78 Bending Factor 4 0.90 Min rebar ratio 0.00180 129 of 252 Development length Axis Pos. Id Ihd Dist1 Dist2 [in] [in] [in] [in] zz Bot. 27.39 9.59 39.50 39.50 xx Bot. 27.39 9.59 38.08 38.08 Z2 Top 12.00 6.00 42.50 42.50 xx Top 12.00 6.00 39.65 39.65 Axis Pos. Condition Mu 4*Mn Asreq Asprov Asreq/Asprov Mu/(4*Mn) Footing [Kip*ft] [Kip*ft] [in2] [in2] zz Top RC74-1 -14.48 -255.57 0.16 2.79 0.056 0.057 . I zz Bot. RC44-1 75.03 255.57 4.12 2.79 1.477 0.294 ■ xx Top RCO1 -1 0.00 0.00 0.00 2.79 0.000 0.000 ( ] xx Bot. RC11 -1 43.23 247.72 4.28 2.79 1.533 0.175 Strength provided?1.33*Asreq. 2.0.31" Minimum steel required= = 0.0021 > 0.0018- - OK 24'•12" Shear Factor 0.75 Shear area(plane zz) 2048.06[in2] Shear area(plane xx) 1986.19[in2] Plane Condition Vu Vc Vu/(4)*Vn) Footing [Kip] [Kip] xy RC11 -1 12.89 217.58 0.079 1 1 yz RC68-1 26.99 224.35 0.160 Punching shear Factor 4) • 0.75 Perimeter of critical section(b... : 143.20[in] Punching shear area 2917.70[in2] Column Condition Vu Vc Vu/(4)*Vn) Footing [Kip] [Kip] column 1 RC11 -1 49.45 639.24 0.103 I 1 Notes *Soil under the footing is considered elastic and homogeneous. A linear soil pressure variation is assumed. *The required flexural reinforcement considers at least the minimum reinforcement *The design bending moment is calculated at the critical sections located at the support faces *Only rectangular footings with uniform sections and rectangular columns are considered. *The nominal shear strength is calculated in critical sections located at a distance d from the support face *The punching shear strength is calculated in a perimetral section located at a distance d/2 from the support faces *Transverse reinforcement is not considered in footings 130 of 252 'Values shown in red are not in compliance with a provision of the code 'gprom=Mean compression pressure on soil. *qmax=Maximum compression pressure on soil. gmax=maximum total settlement(considering an elastic soil modeled by the subgrade reaction modulus). Mn=Nominal moment strength. *Mu/(4*Mn)=Strength ratio. *Vn=Nominal shear or punchure force(for footings Vn=Vc). *Vu/(4)*Vn)=Shear or punching shear strength ratio. Highest Soil Bearing — Non-Seismic -- OK Column Current load condition Axial Vx Vz Mxx Mzz lwp) [KO [Kip] (wp'K) lK p ft) Column 1 S11 38 58 1.96 0 00 0 00 36.43 Description Value Unit Percentage Area in compression 9801.00 [in2] (100.00%l Mean soil bearing pressure 866 4096 [Lbift2] Maximum soil bearing pressure 1297.4814 [Lbrft2] Allowable soil stress I 1996.0000 [Lbrft2] Surcharge(soil weight+concrete weight) i 299.64 [Lb!ft2] 99 in \ A / \ •B.41Qli \ 1 K7 \ 29 33 IG , 49.5 in 1 I \1 \ I H 57.71 in lip+ i 1297 PSF < 1500 PSF s . -1216 Kip- 42. Kq'11� ``-- 131 of 252 0 1, 13.7 ii ar. 1.'�.. .4: :: 711 995.11M F" °%%. 3 11 in • 24 in (1)9/6011M (11995S11n 99 in 0 14 Zone 1'.9iin- _ _ . i - i; i' .rrrrrwr2►.ri rrrr R�� .cw,wr +iiw!rvIrvi."*.w....= ; ,------- 4 • 4 morgat n , • t 49.5 In 49.5 in • r 99 n 132 of 252 Reinforced Concrete Footings — Short Span Cantilevered Columns GENERAL INFORMATION: Global status OK Design Code ACI 318-2011 Footing type Spread Column type Steel Geometry i {II • 4 - N A _ F h s 45n GF 1- 45 in } y F IIb a ft Length 90.00[in] Width 90.00[in] Thickness 24.00[in] Base depth 24.00[in] Base area 8100.00[in2] Footing volume 194400.00[in3] Base plate length 20.00[in] Base plate width 20.00[in] Column length 13.70[in] Column width 8.00[in] Column location relative to footing g.c. Centered 133 of 252 1 Materials Concrete,fc 3.00[Kip/in2] Steel,fy 60.00[Kipfin2] Concrete type Normal Epoxy coated No Concrete elasticity modulus : 3122.02[Kip/in2] Steel elasticity modulus : 29000.00[Kip/in2] Unit weight 0.15[Kip/ft3] Soil Modulus of subgrade reaction 200.00[Kip/ft3] Unit weight(wet) 0.11 [Kip/ft3] Footing reinforcement Free cover : 3.00[in] Maximum Rho/Rho balanced ratio : 0.75 Bottom reinforcement//to L(xx) : 845 @ 12.00" Top reinforcement//to L(xx) : 8-#5 @ 12.00" Bottom reinforcement//to B(zz) : 845 @ 12.00" (Zone 1) Top reinforcement//to B(zz) : 845 @ 12.00" Load conditions to be included in design Service loads: S46 _546 SO1 _S01 S47 •SO2 _S02 S48 _S48 S03 _S03 S49 _S49 SO4 _SO4 S50 _S50 S05 _S05 S51 _S51 S06 _S06 S52 _S52 S07 _S07 S53 _S53 SO8 _S08 S54 _554 S09 _S09 S55 _555 S10 _S10 S56 _S56 S11 _S11 S57 _S57 S12 _S12 S58 _S58 S13 _S13 S59 _S59 S14 _S14 S60 _S60 S15 _S15 S61 _S61 S16 _S16 S62 _S62 S17 _S17 S63 _S63 S18 _S18 S64 _S64 S19 _S19 S65 _S65 S20 _S20 S66 _866 S21 _S21 S67 _S67 S22 _S22 S68 _S68 S23 _S23 S69 _S69 S24 _S24 S70 _S70 S25 _S25 S71 _571 S26 _S26 S72 _S72 S27 _S27 S73 _573 S28 _S28 S74 _S74 S29 _S29 S75 _S75 S30 _S30 S76 _S76 S31 _S31 S77 S32 _S32 S78 _S78 S33 _S33 S79 _S79 S34 _S34 S80 _S80 S35 _S35 S81 _S81 S36 _S36 S82 _S82 S37 _S37 S83 _S83 S38 _S38 S84 _S84 S39 _S39 Design strength loads: S40 _S40 RCO1 _RCO1 S41 _S41 RCO2 _RCO2 S42 _S42 RCO3 _RCO3 S43 _S43 RCO4 _RCO4 S44 _S44 RCO5 _RCO5 S45 _S45 RCO6 _RCO6 134 of 252 RC07 _RC07 RC46 _RC46 RCO8 _RC08 RC47 _RC47 RC09 _RC09 RC48 _RC48 RC10 _RC10 RC49 _RC49 RC11 _RC11 RC50 _RC50 RC12 _RC12 RC51 _RC51 RC13 _RC13 RC52 _RC52 RC14 _RC14 RC53 _RC53 RC15 _RC15 RC54 _RC54 RC16 _RC16 RC55 _RC55 RC17 _RC17 RC56 _RC56 RC18 _RC18 RC57 _RC57 RC19 _RC19 RC58 _RC58 RC20 _RC20 RC59 _RC59 RC21 _RC21 RC60 _RC60 RC22 _RC22 RC61 _RC61 RC23 _RC23 RC62 _RC62 RC24 _RC24 RC63 _RC63 RC25 _RC25 RC64 _RC64 RC26 _RC26 RC65 _RC65 RC27 _RC27 RC66 _RC66 RC28 _RC28 RC67 _RC67 RC29 _RC29 RC68 _RC68 RC30 _RC30 RC69 _RC69 RC31 _RC31 RC70 _RC70 RC32 _RC32 RC71 _RC71 RC33 _RC33 RC72 _RC72 RC34 _RC34 RC73 _RC73 RC35 _RC35 RC74 _RC74 RC36 _RC36 RC75 _RC75 RC37 _RC37 RC76 _RC76 RC38 _RC38 RC77 _RC77 RC39 _RC39 RC78 _RC78 RC40 _RC40 RC79 _RC79 RC41 _RC41 RC80 _RC80 RC42 _RC42 RC81 _RC81 RC43 _RC43 RC82 _RC82 RC44 _RC44 RC83 _RC83 RC45 _RC45 RC84 _RC84 RESULTS: Status OK Soil.Foundation interaction With Seismic Allowable stress 2E03[Lb/ft2]—> 1500 psf* 1.33 = 1996 psf Min.safety factor for sliding 1.25 Min.safety factor for overturning 1.25 Controlling condition S79-2 Condition qmean qmax Amax Area in compression Overturning FS Footing [Lb/ft2] [Lb/ft2] [in] [in2] (%) FSx FSz slip S79-2 806 1.61E03 0.0967 3737.09 46 1000.00 1.44 4.45 Bending Factor 4) 0.90 Min rebar ratio 0.00180 135 of 252 Development length Axis Pos. Id Ihd Dist1 Dist2 [in] [in] [in] [in] zz Bot. 27.39 9.59 35.00 35.00 xx Bot. 27.39 9.59 33.58 33.58 zz Top 12.00 6.00 38.00 38.00 xx Top 12.00 6.00 35.15 35.15 Axis Pos. Condition Mu 4*Mn Asreq Asprov Asreq/Asprov Mu/(4)*Mn) Footing [Kip*ft] [Kip*ft] [in2] [in2] zz Top RC49-2 -10.44 -227.25 0.11 2.48 0.045 0.046 1 ] zz Bot. RC43-2 50.97 227.25 3.78 2.48 1.522 0.224 xx Top RCO1 -1 0.00 0.00 0.00 2.48 0.000 0.000 ( ] xx Bot. RCO2-2 34.44 220.28 3.89 2.48 1.568 0.156 III Strength provided>_1.33*Asreq. 2.0.31" Minimum steel required= = 0.0021 > 0.0018- - OK 24".12" Shear Factor 41 0.75 Shear area(plane zz) 1861.88[in2] Shear area(plane xx) 1805.63[in2] Plane Condition Vu Vc Vu/(4*Vn) Footing [Kip] [Kip] xy RCO2-2 10.27 197.80 0.069 I I yz RC31 -2 20.41 203.96 0.133 ■ Punching shear Factor(I) • 0.75 Perimeter of critical section(b... : 143.20[in] Punching shear area 2917.70[in2] Column Condition Vu Vc Vul(4*Vn) Footing [Kip] [Kip] column 1 RCO2-2 43.38 639.24 0.090 I ] Notes *Soil under the footing is considered elastic and homogeneous. A linear soil pressure variation is assumed. 'The required flexural reinforcement considers at least the minimum reinforcement *The design bending moment is calculated at the critical sections located at the support faces *Only rectangular footings with uniform sections and rectangular columns are considered. *The nominal shear strength is calculated in critical sections located at a distance d from the support face *The punching shear strength is calculated in a perimetral section located at a distance d/2 from the support faces *Transverse reinforcement is not considered in footings 136 of 252 *Values shown in red are not in compliance with a provision of the code *gprom=Mean compression pressure on soil. *qmax=Maximum compression pressure on soil. *Amax=maximum total settlement(considering an elastic soil modeled by the subgrade reaction modulus). *Mn=Nominal moment strength. *Mu/(1:1)*Mn)=Strength ratio. 'Vn=Nominal shear or punchure force(for footings Vn=Vc). *Vu/(4)*Vn)=Shear or punching shear strength ratio. Highest Soil Bearing — Non-Seismic -- OK Column Current load condition Axial Vx Vz Mxx Mzz iK,ri [Kip) [Kip[ [wdei [wp"•i Column 1 _S05 34 49[ -1.53 0.00 0.00 -29 02 Description I Value Unit Percentage Area in compression 8100.00 [in21 (100.00%) Mean soil bearing pressure 912 7474 [Lbift2] Maximum soil bearing pressure 1369 0406 (Lbrft21 Allowable soil stress 1996 0000 (Lbrft2j Surcharge(soil weight+concrete weight) 299.64 (Lbift2j hi 90 in H i �, allaii I 23 06 Kp7 ____._:, Ili .: 90 in \`, a 1 45 in H 375in H 13690 PSF < 1500 psf 'i 9112)(4,,- . 32 95 K1 Itre-1 137 of 252 ED r 13.1 in 1 f;-5'. *. F.i• +,is 8#5012m �'.3 ' A rx- NTrilwor, 24 in 11)80.12 in 1 8#5®12n 90 n 1 1 I Zone 1,D0in r i • 45.In l + 1 451 i 45 in 90 m 138 of 252 Reinforced Concrete Footings—Corner Columns GENERAL INFORMATION: Global status OK Design Code ACI 318-2011 Footing type Spread Column type Steel Geometry '4 ii r J la in I A A 38 n --1 ± 8 ft 38 n v z l----x 38 in 38 in 1 r dft Length 72.00[in] Width 72.00[in] Thickness 24.00[in] Base depth 24.00[in] Base area 5184.00[in2] Footing volume 124416.00[in3] Base plate length 20.00[in] Base plate width 20.00[in] Column length 13.70[in] Column width 8.00[in] Column location relative to footing g.c. Centered 139 of 252 Materials Concrete,fc 3.00[Kip/in2] Steel,fy 60.00[KipTn2] Concrete type Normal Epoxy coated No Concrete elasticity modulus : 3122.02[Kip/in2] Steel elasticity modulus : 29000.00[KipTn2] Unit weight 0.15[Kip/ft3] Soil Modulus of subgrade reaction 200.00[Kip/ft3] Unit weight(wet) 0.11 [Kip/ft3] Footing reinforcement Free cover : 3.00[in] Maximum Rho/Rho balanced ratio 0.75 Bottom reinforcement//to L(xx) : 745 @ 11.00" Top reinforcement//to L(xx) : 745 @ 11.00" Bottom reinforcement//to B(zz) : 745 @ 11.00" (Zone 1) Top reinforcement//to B(zz) : 745 @ 11.00" Load conditions to be included in design Service loads: S47 _S47 SO1 _S01 S48 _S48 SO2 _S02 S49 _S49 S03 _S03 S50 _S50 SO4 _SO4 S51 _S51 S05 _S05 S52 _S52 SO6 _S06 S53 _S53 S07 _507 S54 _S54 S08 _S08 S55 • S09 _S09 S56 _S56 S10 _S10 S57 • S11 _S11 S58 _S58 S12 _S12 S59 _559 S13 _S13 S60 _S60 S14 _S14 S61 _S61 S15 _S15 S62 _S62 S16 _S16 S63 _S63 S17 _S17 S64 _S64 S18 _S18 S65 _S65 S19 _S19 S66 _S66 S20 _S20 S67 S21 _S21 S68 _S68 S22 _S22 S69 _S69 S23 _S23 S70 _S70 S24 _S24 S71 _S71 S25 _S25 S72 _S72 S26 _S26 S73 _S73 S27 _S27 S74 _S74 S28 _S28 S75 _S75 S29 _S29 S76 _S76 S30 _S30 S77 _S77 S31 _S31 S78 _S78 S32 _S32 S79 _S79 S33 _533 S80 _S80 S34 _S34 S81 _S81 S35 _S35 S82 _582 S36 _S36 S83 _S83 S37 _S37 S84 _S84 S38 _S38 Design strength loads: S39 _S39 RCO1 _RCO1 S40 _S40 RCO2 _RCO2 S41 _S41 RCO3 _RCO3 S42 _S42 RCO4 _RCO4 S43 _S43 RCO5 _RCO5 S44 _S44 RCO6 _RCO6 S45 _S45 RCO7 _RCO7 S46 _S46 RCO8 _RCO8 140 of 252 RC09 _RC09 RC47 _RC47 RC10 _RC10 RC48 _RC48 RC11 _RC11 RC49 _RC49 RC12 _RC12 RC50 _RC50 RC13 _RC13 RC51 _RC51 RC14 _RC14 RC52 _RC52 RC15 _RC15 RC53 _RC53 RC16 _RC16 RC54 _RC54 RC17 _RC17 RC55 _RC55 RC18 _RC18 RC56 _RC56 RC19 _RC19 RC57 _RC57 RC20 _RC20 RC58 _RC58 RC21 _RC21 RC59 _RC59 RC22 _RC22 RC60 _RC60 RC23 _RC23 RC61 _RC61 RC24 _RC24 RC62 _RC62 RC25 _RC25 RC63 _RC63 RC26 _RC26 RC64 _RC64 RC27 _RC27 RC65 _RC65 RC28 _RC28 RC66 _RC66 RC29 _RC29 RC67 _RC67 RC30 _RC30 RC68 _RC68 RC31 _RC31 RC69 _RC69 RC32 _RC32 RC70 _RC70 RC33 _RC33 RC71 _RC71 RC34 _RC34 RC72 _RC72 RC35 _RC35 RC73 _RC73 RC36 _RC36 RC74 _RC74 RC37 _RC37 RC75 _RC75 RC38 _RC38 RC76 _RC76 RC39 _RC39 RC77 _RC77 RC40 _RC40 RC78 _RC78 RC41 _RC41 RC79 _RC79 RC42 _RC42 RC80 _RC80 RC43 _RC43 RC81 _RC81 RC44 _RC44 RC82 _RC82 RC45 _RC45 RC83 _RC83 RC46 _RC46 RC84 _RC84 RESULTS: Status OK Soil.Foundation interaction With Seismic Allowable stress 2E03[Lb/ft2] —> 1500 psf* 1.33 = 1996 psf Min.safety factor for sliding 1.25 Min.safety factor for overturning 1.25 Controlling condition S10-4 Condition qmean qmax Amax Area in compression Overturning FS Footing [Lb/ft2] [Lb/ft2] [in] [in2] (%) FSx FSz slip S10-4 1.29E03 1.41E03 0.0845 5184.00 100 1000.00 34.72 10.49 Bending Factor 4) 0.90 Min rebar ratio 0.00180 Development length 141 of 252 Axis Pos. Id Ihd Dist1 Dist2 [in] [in] [in] [in] zz Bot. 27.39 9.59 26.00 26.00 xx Bot. 27.39 9.59 24.58 24.58 zz Top 12.00 6.00 29.00 29.00 xx Top 12.00 6.00 26.15 26.15 Check Plain Concrete-beyond development length 12 in*(21 in)2 OM.=0.6*5*\3000 psi* 6 =435 in-kip 1996psf*1.6*(2.5 ft)2 12 in MReq= 2 * 1 ft =120 in-kip 435 in-kip >_120 in-kip-Plain Concrete OK Axis Pos. Condition Mu 4)*Mn Asreq Asprov Asreq/Asprov Mu/(4)*Mn) Footing [Kip•ft] [Kip*ft] [in2] [in2] zz Top RCO9-1 -4.74 -198.55 0.05 2.17 0.023 0.024 r i zz Bot. RC10-4 25.91 198.55 3.11 2.17 1.433 0.130 • 1 xx Top RC82-2 -4.89 -192.45 0.05 2.17 0.025 0.025 1 I xx Bot. RC10-4 26.41 192.45 3.11 2.17 1.433 0.137 5 I Strength provided>-1.33*ASreq. 2*0.31" Minimum steel required= = 0.0021 > 0.0018- - OK 24".12" Shear Factor+ 0.75 Shear area(plane zz) 1489.50[in2] Shear area(plane xx) 1444.50[in2] Plane Condition Vu Vc Vu/(4)*Vn) Footing [Kip] [Kip] xy RC10-4 6.74 158.24 0.057 . I yz RC10-4 5.73 163.17 0.047 i I Punching shear Factor 4 • 0.75 Perimeter of critical section(b... : 143.20[in] Punching shear area 2917.70[in2] Column Condition Vu Vc Vu/(4*Vn) Footing [Kip] [Kip] column 1 RC10-4 40.81 639.24 0.085 I I Notes •Soil under the footing is considered elastic and homogeneous. A linear soil pressure variation is assumed. *The required flexural reinforcement considers at least the minimum reinforcement *The design bending moment is calculated at the critical sections located at the support faces •Only rectangular footings with uniform sections and rectangular columns are considered. •The nominal shear strength is calculated in critical sections located at a distance d from the support face 142 of 252 *The punching shear strength is calculated in a perimetral section located at a distance d/2 from the support faces *Transverse reinforcement is not considered in footings Values shown in red are not in compliance with a provision of the code 'gprom=Mean compression pressure on soil. *gmax=Maximum compression pressure on soil. *Amax=maximum total settlement(considering an elastic soil modeled by the subgrade reaction modulus). *Mn=Nominal moment strength. *Mu/(4*Mn)=Strength ratio. Vn=Nominal shear or punchure force(for footings Vn=Vc). *Vu/(4)*Vn)=Shear or punching shear strength ratio. Highest Soil Bearing — Non-Seismic -- OK Column Current load condition Axial Vx Vz Mxx Mzz Puel [KT] re) (Km s] (Kp'n] Column 1 510 35.78 2.01 -0.05 0.00 0.00 Description Value Unit Percentage Area in compression 5184.00 [in2] _ (100.00%) Mean soil bearing pressure 1293.4522 [Lb/ft2] Maximum soil bearing pressure 1408.0423 [Lb/ft2] Allowable soil stress 1996.0000 (Lb/ft2] Surcharge(soil weight+concrete weight) 299.64 (Lb/ft2] H 72 in H • A a.0 / \ i • 72 in (\ ` . 11 45 KCi% ` I \ \ 35 97 in I145KO:- 1 • 4 37 04 in H .Kw-- 06 143 of 252 n ' 14 :"Iis*I' -e —,- ft .: •-• ;,.....:... ,:.4'.r. a 11 in .',. . .. . . . ■ 241n • • • . ...\ • \ 1 -4--E;'.-11 Ti 11 11t5eilin 72 in j 0 • Z011*1•72in , L 1 '''''•-• ...– , SI R IN ... 4 mi7,411,10 +11 '111H94zriiik. lui* . • 36In • * . 144 of 252 { a Ff%- z gyp$ ' f' Model Rendering Small Crane Runway • 4, 0, 0 N Ul N) 22 /NU3 'N 75 3 ,/1101 '14 103 r � r- N 93 h es N 8 1 0 9�4.00., N95 N ��n{�N 49 Nh 19 X47 5 �N91 23 / /Nyo b0� �N 1Od°_8"� /N99 7 �/N 48 C,14 NM46 1'4 SO N,67 7 29 '43 Nodes 11 Fl Iv N 58 2s+ .......---■11 iii 81 o i�100»� 2 AO /� • 123 1'. /2 12�5'0 �2 1A 1 2 1,, • / r4 O. H;1111:\. ili 98 g 1` � g2 A x �A9g,10 10 w Q...AAAAAAt.• f'L ¢ / Y Members -E 146 of 252 /5. 9 ` 2:x94- 9 9 W N f* Q7 3 24xO' ; ,y stl 15 11.51 N ------61:40, . C Nb x33? yNN `4t �Zpx16� �'A 1 � t + co c c 5x /1Sx3 '�, A r/V2 Yj1px16 x X 1. } Sections P �x� 4 N e 4a i_-- \ —--144----.illipii.N,N N. .".- ---------------:\ \\. • Y.-------- . Connections r 147 of 252 1r=-0 110p1 I /.. iiiklii . ✓ FY=-1 09[KiPI F riliSAI Fy-0814(14p] .i......... *IL . /1 \ill-------Fr-1.09PGA �d�/� I Is . /FY-1OWN FF,�.seav�;q =11e14p pl Superimposed Dead Loads Position 1 (Cd1)ii, • L „ ..,.../Fy=•1 09(IGPI . ----------ki I� I) 411(I r 1 YIwpl�/Fr.1FY=-0 814(K N J ',',\. *'t.' // 1 Superimposed Dead Loads Position 2 (Cd2) . 1111;011111' 148 of 252 �� ji _/Fy=.1091KPI F i ri�W�J Fr-O.81 P1 ikloih 1 r / 1 I ■ Fy=t.09114D1 FFaa84P1 Fy--0.91aIIGpI Superimposed Dead Loads • f Position 3 (Cd3) . 111;111 .,---f 11* l r r-5"1�k M, -51KPI Fy=-3NPl Fy- pl I . 11001' r.------ Superimposed Lift Loads Position 1 (CO.) 149 of 252 1 III 1/ i1 Fr-3KP1 .----- -.'-\\F-'\ Lifks, 1 I\ ../.-----. I r�FfY1 /�Fr--3lKial • Superimposed Lift Loads Position 2 (Cv2) ://- 1\ LI FY-5(KIP] Ir----- 1 °-3[KPI ikloolb . ------ki---. II I / IFy=S[Ktal . iN\ .......-----Fr--3lKIP1 Superimposed Lift Loads 1 Position 3 (Cv3) .q,ro 150 of 252 I �f / �/. p F Ki 1 1FY-0 953II )J'Fy=1.52Iwp1 Y/ f4e Fr-�'Qs�l�vl / r' /✓ .. Superimposed Impact Loads 1 Position 1 (Ci1) • I /I 'Fy=1.5211.01 11111 \N FRI: d Fr-0.9531wDl .---------ki \ II fl 41..../ -1.52IKip1 \ ________. 1..../FOa /Fy.0 953IK P1 1111111 . Superimposed Impact Loads l Position 2 (Ci2) . '41 !k'' 151 of 252 j L.........: Fy=-1.52[10p) Fy--0. ) 1.---- I _y - r 1.52[10p[ I \- �,. Superimposed Impact Loads ;5 . Fp.O959[Kip) Position 3 (Ci3) I \ �Fz=0.518[I0p) ,' FED°. Q, f0.598[14p91[ ...................j Fz=O 3 Mnc=0 p,ham,. Til , / • 1 `� � Fz:-°54Kipj Fr-03 +■ 1 Fz=0.518)K M Mia=O. : p ■ %.004 ,vy•=0.598Np41[ N p )i: A \ \\ Superimposed Crane Side Loads \ Fr-051890]] F .4.1„,. ) l Position 1 (Cs1) =q 31 M 0.361 pr) 11;0% • 152 of 252 I /f/ 1 ∎\7 Fz=0 5181K0 IL\ Aa.,, f =0 596[Kirm Fz=0.31. Mgc-43.36 1p'ft] ./ \ l \ 'FZ- 59&p] Fz=O 31 jlk . m=0 36 p'ttl Superimposed Crane Side Loads Position 2 (Cs2) .` �� IIII ' Fz=O 181Kp1 1 - 598[Kp'1t[Fn • 1 DS 1.62Kip'ftl /-- - - Ilkllko.\ I ' Fz=0.51 l., : 1598[Kpltl a6 '''+_ 4'r Fz= r'�' °'61 Superimposed Crane Side Loads 1 Position 3 (Cs3) it 153 of 252 a ' I \ /' 7-C� •F x=0 557[61.31 F# R =064314p111 ..............„,....( F= 381 Uft[ M KP nI .-----'---ki":\\ ` ! �/'Fx=O 551[61.31 F1 �,. , 'hl p•ftI i. 1:A. 1 \ Superimposed Longitudinal Crane Loads Position 1 (Cs1) 1 \ IN i Fz=0.48IKiP1 \kZ F wt� : =0 5541KVIt1 1� M .1 •KIP ` \ \ \L \\ 1 �Fz=O 48[61.31 \ t 'Fz-0 481KPit`R Mzxro4 IGp \ i 44,41 I i P 1 Z" k , � �FZ=048(!4.31 ./11;111111 \ . RO. .. =05541Kip111 y�py •i. I - ___..�Pft1 Superimposed Transverse Seismic Loads Position 1 (Ehs1) . 1111;1106 154 of 252 { 1\ ;\1 'FZ-:°, <z \ Ff�6 x=0 554p4p'RI 'Fz=0 36 0 TI Mzx=O 41 ip'fl] f -,N, toillbb. . '/111;11h1.\ -----------. \ \ \I ` �\ ' ' Fz=OABI�PI \ , sFf Fdxx=0554(11141 0 pi Mxx=041 iWitl Superimposed Transverse Seismic Loads Position 2 (Ehs2) 1 ./- \.1 I\1 N\1 Fz=0 48114P1 1F-0 =0554(Z �y'.'..:Q Rml Kip'R] W03.4 p"RI ALtt,,s. .---k,--c ,.._\ ----. . . ... ,:. Fi=O .\ _FH6GwG'R1 f z F-=03a 4 1 I,, \ 1'' _ Mu=041 ipIt] I Superimposed Transverse Seismic Loads Position 3 (Ehs3) 155 of 252 . '''F /.... •F r=O 292[Kipl f AI : ipY1 ,,i; ,:\\\ / /J 7 _ 'Fn=o.282(IGpI F gg I oveq I. t,,,19E4 411441"t? Superimposed Longitudinal Seismic Loads Position 1 (Ehl1) .--------S: IC : i, I 11111 illillb*\1 \„M GP'RI ki i„ \ L'' fF' :'3"vJi' ..,... 7t:Fx=0 26211%) 0 302[K vnl ________C M 5 VII] .110' bop, .q Superimposed Longitudinal Seismic Loads Position 2 (Eh12) 156 of 252 ....-• .199 21)4 'Fx o.z00w4l P ftl� 4 $:.0? q(r1 1.1 q{ip'hl .'-- --- ...'-\\\I\ \, 'FK=O 262(IGPI 0302tWp'ttl F I VO. .` -'�`{I. I\ <,,...".Y.---^ . // nt a sl I Superimposed Longitudinal Seismic Loads Position 3 (Ehl3) I), Li15i Ki pl Fy=-0117tICpl Pl IL . it II F 4ftidl6p l Fy°-0 171K pi jvi / Fr-0.117IKPI 1 /Fy=0157Dop1 I f xs9lfpropl Fy- +7f ip1 ''./f 1...........--1-:r_o. -15711GPI -1 117KP1 Superimposed Vertical Seismic Loads Position 1 (Ehv1) •1 . rs :r 157 of 252 ./ f I1f,,___,Fy=-0.157110PI -*Erg IfI74IMpI FY=-0.117IIUPI ./ i I� 1 I ����-0157pGP1 !�F tf11 • //Fr=-0/17IKPI 1 Superimposed Vertical Seismic Loads Position 2 (Ehv2) I i 1\ Fy=-0.1571wp1 F 1ffailp1 Fr—O.11 I IFy=-0 1 Fai�d/WOO./Fr-0.1171141 Superimposed Vertical Seismic Loads Position 3 (Ehv3) 158 of 252 Bentley Geometry data GLOSSARY Cb22, Cb33 : Moment gradient coefficients Cm22, Cm33 : Coefficients applied to bending term in interaction formula d0 :Tapered member section depth at J end of member DJX : Rigid end offset distance measured from J node in axis X DJY : Rigid end offset distance measured from J node in axis Y DJZ : Rigid end offset distance measured from J node in axis Z DKX : Rigid end offset distance measured from K node in axis X DKY : Rigid end offset distance measured from K node in axis Y DKZ : Rigid end offset distance measured from K node in axis Z dL :Tapered member section depth at K end of member Ig factor : Inertia reduction factor(Effective Inertia/Gross Inertia)for reinforced concrete members K22 : Effective length factor about axis 2 K33 : Effective length factor about axis 3 L22 : Member length for calculation of axial capacity L33 : Member length for calculation of axial capacity LB pos : Lateral unbraced length of the compression flange in the positive side of local axis 2 LB neg : Lateral unbraced length of the compression flange in the negative side of local axis 2 RX : Rotation about X RY : Rotation about Y RZ : Rotation about Z TO : 1 =Tension only member 0=Normal member TX :Translation in X TY :Translation in Y TZ :Translation in Z Nodes Node X Y Z Rigid Floor [in] [in] [in] 21 914.00 209.193 -360.00 0 22 944.00 209.193 -360.00 0 24 914.00 146.338 -360.00 0 26 914.00 206.338 -300.00 0 33 914.00 180.00 -360.00 0 72 936.00 209.193 -360.00 0 73 882.00 209.193 -360.00 0 74 873.00 209.193 -360.00 0 75 820.00 209.193 -360.00 0 9 914.00 209.849 0.00 0 10 944.00 209.849 0.00 0 32 914.00 180.00 0.00 0 68 936.00 209.849 0.00 0 69 882.00 209.849 0.00 0 70 873.00 209.849 0.00 0 71 820.00 209.849 0.00 0 1 0.00 0.00 0.00 0 2 72.00 0.00 0.00 0 3 493.00 0.00 0.00 0 4 914.00 0.00 0.00 0 6 42.00 209.849 0 00 0 7 72.00 209.849 0.00 0 8 493.00 209.849 0.00 0 11 72.00 146.338 0.00 0 12 914.00 146.338 0.00 0 13 0.00 0.00 -360.00 0 14 72.00 0.00 -360.00 0 15 643.00 0.00 -360.00 0 16 914.00 0.00 -360.00 0 159 of 252 18 42.00 209.193 -360.00 0 19 72.00 209.193 -360.00 0 20 643.00 209.193 -360.00 0 23 72.00 146.338 -360.00 0 25 72.00 206.338 -300.00 0 27 72.00 206.338 -60.00 0 28 914.00 206.338 -60.00 0 29 72.00 180.00 0.00 0 31 72.00 180.00 -360.00 0 34 986.00 0.00 0.00 0 35 986.00 0.00 -360.00 0 44 104.00 209.849 0.00 0 45 104.00 209.193 -360.00 0 46 112.00 209.849 0.00 0 47 112.00 209.193 -360.00 0 48 166.00 209.849 0.00 0 49 166.00 209.193 -360.00 0 58 0.00 -1.00 0.00 0 59 0.00 -1.00 -360.00 0 60 986.00 -1.00 0.00 0 61 986.00 -1.00 -360.00 0 66 50.00 209.193 -360.00 0 67 50.00 209.849 0.00 0 88 489.00 209.849 0.00 0 89 481.00 209.849 0.00 0 90 427.00 209.849 0.00 0 91 547.00 209.849 0.00 0 92 351.50 209.193 -360.00 0 93 405.50 209.193 -360.00 0 94 343.50 209.193 -360.00 0 95 289.50 209.193 -360.00 0 96 278.50 209.849 0.00 0 97 328.50 209.849 0.00 0 98 270.50 209.849 0.00 0 99 216.50 209.849 0.00 0 100 639.00 209.193 -360.00 0 101 693.00 209.193 -360.00 0 102 631.00 209.193 -360.00 0 103 577.00 209.193 -360.00 0 104 382.50 209.193 -360.00 0 105 328.50 209.193 -360.00 0 106 255.50 209.849 0.00 0 107 309.50 209.849 0.00 0 108 2e07.50. __ 209.849 0.00 0 109 35�5:5Q ._ 209.193 -360.00 0 Restraints Node TX TY TZ RX RY RZ 2 1 1 1 0 1 0 3 1 1 1 1 1 0 4 1 1 1 0 1 0 14 1 1 1 0 1 0 15 1 1 1 1 1 0 16 1 1 1 0 1 0 58 1 1 1 0 1 0 59 1 1 1 0 1 0 60 1 1 1 0 1 0 61 1 1 1 0 1 0 160 of 252 Members Member NJ NK Description Section Material dO dL Ig factor [in] [in] 26 21 26 Beam W 12X40 A992 Gr50 0.00 0.00 0.00 30 26 24 Brace T2L 4X4X1_4 A36 0.00 0.00 0.00 40 24 33 Column W 12X40 A992 Gr50 0.00 0.00 0.00 44 33 21 Column W 12X40 A992 Gr50 0.00 0.00 0.00 81 72 22 Runway Beam W 24 x 94_C 15 x 33.9 A36 0.00 0.00 0.00 83 74 73 Runway Beam W 24 x 94_C 15 x 33.9 A36 0.00 0.00 0.00 126 74 75 Runway Beam W 24 x 94_C 15 x 33.9 A36 0.00 0.00 0.00 127 21 73 Runway Beam W 24 x 94_C 15 x 33.9 A36 0.00 0.00 0.00 128 21 72 Runway Beam W 24 x 94_C 15 x 33.9 A36 0.00 0.00 0.00 42 12 28 Brace T2L 4X4X1_4 A36 0.00 0.00 0.00 43 32 9 Column W 12X40 A992 Gr50 0.00 0.00 0.00 77 68 10 Runway Beam Even W 24 x 76_C 15 x 33.9 A36 0.00 0.00 0.00 79 70 69 Runway Beam Even W 24 x 76_C 15 x 33.9 A36 0.00 0.00 0.00 123 70 71 Runway Beam Even W 24 x 76_C 15 x 33.9 A36 0.00 0.00 0.00 124 9 69 Runway Beam Even W 24 x 76_C 15 x 33.9 A36 0.00 0.00 0.00 125 9 68 Runway Beam Even W 24 x 76_C 15 x 33.9 A36 0.00 0.00 0.00 1 6 67 Runway Beam Even W 24 x 76_C 15 x 33.9 A36 0.00 0.00 0.00 2 8 88 Runway Beam Even W 24 x 76_C 15 x 33.9 A36 0.00 0.00 0.00 6 2 11 Column W 12X40 A992 Gr50 0.00 0.00 0.00 8 4 12 Column W 12X40 A992 Gr50 0.00 0.00 0.00 11 3 8 Column W 12X40 A992 Gr50 0.00 0.00 0.00 12 18 66 Runway Beam W 24 x 94_C 15 x 33.9 A36 0.00 0.00 0.00 14 20 101 Runway Beam W 24 x 94_C 15 x 33.9 A36 0.00 0.00 0.00 18 16 24 Column W 12X40 A992 Gr50 0.00 0.00 0.00 19 15 20 Column W 12X40 A992 Gr50 0.00 0.00 0.00 21 14 23 Column W 12X40 A992 Gr50 0.00 0.00 0.00 23 19 25 Beam W 12X40 A992 Gr50 0.00 0.00 0.00 24 25 27 Beam W 12X40 A992 Gr50 0.00 0.00 0.00 25 27 7 Beam W 12X40 A992 Gr50 0.00 0.00 0.00 27 26 28 Beam W 12X40 A992 Gr50 0.00 0.00 0.00 28 28 9 Beam W 12X40 A992 Gr50 0.00 0.00 0.00 31 27 11 Brace T2L 4X4X1_4 A36 0.00 0.00 0.00 33 25 23 Brace T2L 4X4X1_4 A36 0.00 0.00 0.00 34 13 31 Kicker Brace HSS_SQR 4X4X1_4 A500 GrB rectangular 0.00 0.00 0.00 35 1 29 Kicker Brace HSS_SQR 4X4X1_4 A500 GrB rectangular 0.00 0.00 0.00 36 23 31 Column W 12X40 A992 Gr50 0.00 0.00 0.00 37 31 19 Column W 12X40 A992 Gr50 0.00 0.00 0.00 38 29 7 Column W 12X40 A992 Gr50 0.00 0.00 0.00 39 11 29 Column W 12X40 A992 Gr50 0.00 0.00 0.00 41 12 32 Column W 12X40 A992 Gr50 0.00 0.00 0.00 45 34 32 Kicker Brace HSS_SQR 4X4X1_4 A500 GrB rectangular 0.00 0.00 0.00 46 35 33 Kicker Brace HSS_SQR 4X4X1_4 A500 GrB rectangular 0.00 0.00 0.00 50 49 95 Runway Beam W 24 x 94_C 15 x 33.9 A36 0.00 0.00 0.00 55 44 46 Runway Beam Even W 24 x 76_C 15 x 33.9 A36 0.00 0.00 0.00 56 45 47 Runway Beam W 24 x 94_C 15 x 33.9 A36 0.00 0.00 0.00 61 93 103 Runway Beam W 24 x 94_C 15 x 33.9 A36 0.00 0.00 0.00 69 1 58 Kicker Brace HSS_SQR 4X4X1_4 A500 GrB rectangular 0.00 0.00 0.00 70 13 59 Kicker Brace HSS_SQR 4X4X1_4 A500 GrB rectangular 0.00 0.00 0.00 71 34 60 Kicker Brace HSS_SQR 4X4X1_4 A500 GrB rectangular 0.00 0.00 0.00 72 35 61 Kicker Brace HSS_SQR 4X4X1_4 A500 GrB rectangular 0.00 0.00 0.00 80 71 91 Runway Beam Even W 24-x 76_C 15 x 33.9 A36 0.00 0.00 0.00 92 90 97 Runway Beam Even W 24 x 76_C 15 x 33.9 A36 0.00 0.00 0.00 97 88 89 Runway Beam Even W 24 x 76 C 15 x 33.9 A36 0.00 0.00 0.00_ 98 89 90 Runway Beam Even W 24 x 76_C 15 x 33.9 A36 0.00 0.00 0.00 100 91 8 Runway Beam Even W 24 x 76_C 15 x 33.9 A36 0.00 0.00 0.00 101 92 109 Runway Beam W 24 x 94_C 15 x 33.9 A36 0.00 0.00 0.00 103 94 92 Runway Beam W 24 x 94_C 15 x 33.9 A36 0.00 0.00 0.00 104 95 105 Runway Beam W24 x 94_C 15 x 33.9 A36 0.00 0.00 0.00 105 96 98 Runway Beam Even W 24 x 76_C 15 x 33.9 A36 0.00 0.00 0.00 106 97 107 Runway Beam Even W 24 x 76_C 15 x 33.9 A36 0.00 0.00 0.00 107 98 106 Runway Beam Even W 24 x 76_C 15 x 33.9 A36 0.00 0.00 0.00 161 of 252 108 99 48 Runway Beam Even W 24 x 76_C 15 x 33.9 A36 0.00 0.00 0.00 109 100 20 Runway Beam W 24 x 94_C 15 x 33.9 A36 0.00 0.00 0.00 110 101 75 Runway Beam W 24 x 94_C 15 x 33.9 A36 0.00 0.00 0.00 111 102 100 Runway Beam W 24 x 94_C 15 x 33.9 A36 0.00 0.00 0.00 112 103 102 Runway Beam W 24 x 94_C 15 x 33.9 A36 0.00 0.00 0.00 113 104 93 Runway Beam W 24 x 94_C 15 x 33.9 A36 0.00 0.00 0.00 114 105 94 Runway Beam W 24 x 94_C 15 x 33.9 A36 0.00 0.00 0.00 115 106 99 Runway Beam Even W 24 x 76_C 15 x 33.9 A36 0.00 0.00 0.00 116 107 108 Runway Beam Even W 24 x 76_C 15 x 33.9 A36 0.00 0.00 0.00 117 7 67 Runway Beam Even W 24 x 76_C 15 x 33.9 A36 0.00 0.00 0.00 118 7 44 Runway Beam Even W 24 x 76_C 15 x 33.9 A36 0.00 0.00 0.00 119 46 48 Runway Beam Even W 24 x 76_C 15 x 33.9 A36 0.00 0.00 0.00 120 19 66 Runway Beam W 24 x 94_C 15 x 33.9 A36 0.00 0.00 0.00 121 19 45 Runway Beam W 24 x 94_C 15 x 33.9 A36 0.00 0.00 0.00 122 47 49 Runway Beam W 24 x 94_C 15 x 33.9 A36 0.00 0.00 0.00 129 108 96 Runway Beam Even W 24 x 76_C 15 x 33.9 A36 0.00 0.00 0.00 130 109 104 Runway Beam W 24 x 94_C 15 x 33.9 A36 0.00 0.00 0.00 Orientation of Local Axes Member Rotation Axes23 NX NY NZ [Deg] 40 90.00 0 0.00 0.00 0.00 44 90.00 0 0.00 0.00 0.00 43 90.00 0 0.00 0.00 0.00 6 90.00 0 0.00 0.00 0.00 8 90.00 0 0.00 0.00 0.00 11 90.00 0 0.00 0.00 0.00 18 90.00 0 0.00 0.00 0.00 19 90.00 0 0.00 0.00 0.00 21 90.00 0 0.00 0.00 0.00 36 90.00 0 0.00 0.00 0.00 37 90.00 0 0.00 0.00 0.00 38 90.00 0 0.00 0.00 0.00 39 90.00 0 0.00 0.00 0.00 41 90.00 0 0.00 0.00 0.00 Rigid End Offsets Member DJX DJY DJZ DKX DKY DKZ [in] [in] [in] [in] [in] [in] 26 0.00 -2.855 0.00 0.00 0.00 0.00 30 0.00 -5.95 -5.95 0.00 5.95 5.95 44 0.00 0.00 0.00 0.00 -15.205 0.00 42 0.00 5.95 -5.95 0.00 -5.95 5.95 43 0.00 0.00 0.00 0.00 -15.462 0.00 11 0.00 0.00 0.00 0.00 -15.462 0.00 19 0.00 0.00 0.00 0.00 -15.205 0.00 23 0.00 -2.855 0.00 0.00 0.00 0.00 25 0.00 0.00 0.00 0.00 -3.512 0.00 28 0.00 0.00 0.00 0.00 -3.512 0.00 31 0.00 -5.95 5.95 0.00 5.95 -5.95 33 0.00 -5.95 -5.95 0.00 5.95 5.95 37 0.00 0.00 0.00 0.00 -15.205 0.00 38 0.00 0.00 0.00 0.00 -15.462 0.00 162 of 252 Hinges Node-J Node-K Member M33 M22 V3 V2 M33 M22 V3 V2 TOR AXL Axial rigidity 26 1 0 0 0 0 0 0 0 0 0 Full 30 1 0 0 0 1 0 0 0 0 0 Full 44 0 0 0 0 0 1 0 0 0 0 Full 42 1 0 0 0 1 0 0 0 0 0 Full 43 0 0 0 0 0 1 0 0 0 0 Full 2 1 0 0 0 0 0 0 0 0 0 Full 11 0 0 0 0 0 1 0 0 0 0 Full 19 0 0 0 0 0 1 0 0 0 0 Full 23 1 0 0 0 0 0 0 0 0 0 Full 25 0 0 0 0 1 0 0 0 0 0 Full 28 0 0 0 0 1 0 0 0 0 0 Full 31 1 0 0 0 1 0 0 0 0 0 Full 33 1 0 0 0 1 0 0 0 0 0 Full 34 0 0 0 0 1 1 0 0 0 0 Compression only 35 0 0 0 0 1 1 0 0 0 0 Compression only 37 0 0 0 0 0 1 0 0 0 0 Full 38 0 0 0 0 0 1 0 0 0 0 Full 45 0 0 0 0 1 1 0 0 0 0 Compression only 46 0 0 0 0 1 1 0 0 0 0 Compression only 109 0 0 0 0 1 0 0 0 0 0 Full Load data GLOSSARY Comb : Indicates if load condition is a load combination Load conditions Condition Description Comb. Category D Dead load of runway/supports No DL Cd1 Crane dead(bridge,trolley,hoist,etc in position 1) No DL Cd2 Crane dead(bridge,trolley,hoist,etc in position 2) No DL Cd3 Crane dead(bridge,trolley,hoist,etc in position 3) No DL Cv1 Crane lift load(rated crane capacity-at position 1) No LL Cv2 Crane lift load(rated crane capacity-at position 2) No LL Cv3 Crane lift load(rated crane capacity-at position 3) , No LL Ci1 Crane vertical impact(wheel load at position 1) No LL Ci2 Crane vertical impact(wheel load at position 2) No LL Ci3 Crane vertical impact(wheel load at position 3) No LL Cs1 Crane side load(single wheel load at position 1) No LL Cs2 Crane side load(single wheel load at position 2) No LL Cs3 Crane side load(single wheel load at position 3) No LL Cls Crane transverse load(tractive load-single crane wheel loads-transverse No LL Ehs1 Seismic load transverse position 1 No EQ Ehs2 Seismic load transverse position 2 No EQ Ehs3 Seismic load transverse position 3 No EQ Ehl1 Seismic load long-position 1 No EQ Eh12 Seismic load long-position 2 No EQ Ehl3 Seismic load long-position 3 No EQ Ehv1 Seismic load Vertical position 1 No EQ Ehv2 Seismic load Vertical position 2 No EQ Ehv3 Seismic load Vertical position 3 No EQ DDL Deflection Dead Load No DL DLL Deflection Live Load No LL 163 of 252 Load on Nodes Condition Node FX FY FZ MX MY MZ [Kip] [Kip] [Kip] [Kip*ft] [Kip'ft] [Kip`ft] Cd1 72 0.00 -1.091 0.00 0.00 0.00 0.00 73 0.00 -1.091 0.00 0.00 0.00 0.00 74 0.00 -0.814 0.00 0.00 0.00 0.00 75 0.00 -0.814 0.00 0.00 0.00 0.00 68 0.00 -1.091 0.00 0.00 0.00 0.00 69 0.00 -1.091 0.00 0.00 0.00 0.00 70 0.00 -0.814 0.00 0.00 0.00 0.00 71 0.00 -0.814 0.00 0.00 0.00 0.00 44 0.00 -0.814 0.00 0.00 0.00 0.00 45 0.00 -0.814 0.00 0.00 0.00 0.00 46 0.00 -1.091 0.00 0.00 0.00 0.00 47 0.00 -1.091 0.00 0.00 0.00 0.00 48 0.00 -1.091 0.00 0.00 0.00 0.00 49 0.00 -1.091 0.00 0.00 0.00 0.00 66 0.00 -0.814 0.00 0.00 0.00 0.00 67 0.00 -0.814 0.00 0.00 0.00 0.00 Cd2 88 0.00 -1.091 0.00 0.00 0.00 0.00 89 0.00 -0.814 0.00 0.00 0.00 0.00 90 0.00 -0.814 0.00 0.00 0.00 0.00 91 0.00 -1.091 0.00 0.00 0.00 0.00 92 0.00 -1.091 0.00 0.00 0.00 0.00 93 0.00 -1.091 0.00 0.00 0.00 0.00 94 0.00 -0.814 0.00 0.00 0.00 0.00 95 0.00 -0.814 0.00 0.00 0.00 0.00 Cd3 96 0.00 -1.091 0.00 0.00 0.00 0.00 97 0.00 -1.091 0.00 0.00 0.00 0.00 98 0.00 -0.814 0.00 0.00 0.00 0.00 99 0.00 -0.814 0.00 0.00 0.00 0.00 100 0.00 -1.091 0.00 0.00 0.00 0.00 101 0.00 -1.091 0.00 0.00 0.00 0.00 102 0.00 -0.814 0.00 0.00 0.00 0.00 103 0.00 -0.814 0.00 0.00 0.00 0.00 Cv1 68 0.00 -5.00 0.00 0.00 0.00 0.00 69 0.00 -5.00 0.00 0.00 0.00 0.00 70 0.00 -3.00 0.00 0.00 0.00 0.00 71 0.00 -3.00 0.00 0.00 0.00 0.00 45 0.00 -3.00 0.00 0.00 0.00 0.00 47 0.00 -5.00 0.00 0.00 0.00 0.00 49 0.00 -5.00 0.00 0.00 0.00 0.00 66 0.00 -3.00 0.00 0.00 0.00 0.00 Cv2 88 0.00 -5.00 0.00 0.00 0.00 0.00 89 0.00 -3.00 0.00 0.00 0.00 0.00 90 0.00 -3.00 0.00 0.00 0.00 0.00 91 0.00 -5.00 0.00 0.00 0.00 0.00 92 0.00 -5.00 0.00 0.00 0.00 0.00 93 0.00 -5.00 0.00 0.00 0.00 0.00 94 0.00 -3.00 0.00 0.00 0.00 0.00 95 0.00 -3.00 0.00 0.00 0.00 0.00 Cv3 96 0.00 -5.00 0.00 0.00 0.00 0.00 97 0.00 -5.00 0.00 0.00 0.00 0.00 98 0.00 -3.00 0.00 0.00 0.00 0.00 99 0.00 -3.00 0.00 0.00 0.00 0.00 100 0.00 -5.00 0.00 0.00 0.00 0.00 101 0.00 -5.00 0.00 0.00 0.00 0.00 102 0.00 -3.00 0.00 0.00 0.00 0.00 103 0.00 -3.00 0.00 0.00 0.00 0.00 Cif 68 0.00 -1.523 0.00 0.00 0.00 0.00 69 0.00 -1.523 0.00 0.00 0.00 0.00 70 0.00 -0.953 0.00 0.00 0.00 0.00 71 0.00 -0.953 0.00 0.00 0.00 0.00 164 of 252 45 0.00 -0.953 0.00 0.00 0.00 0.00 47 0.00 -1.523 0.00 0.00 0.00 0.00 49 0.00 -1.523 0.00 0.00 0.00 0.00 66 0.00 -0.953 0.00 0.00 0.00 0.00 Ci2 88 0.00 -1.523 0.00 0.00 0.00 0.00 89 0.00 -0.953 0.00 0.00 0.00 0.00 90 0.00 -0.953 0.00 0.00 0.00 0.00 91 0.00 -1.523 0.00 0.00 0.00 0.00 92 0.00 -1.523 0.00 0.00 0.00 0.00 93 0.00 -1.523 0.00 0.00 0.00 0.00 94 0.00 -0.953 0.00 0.00 0.00 0.00 95 0.00 -0.953 0.00 0.00 0.00 0.00 Ci3 96 0.00 -1.523 0.00 0.00 0.00 0.00 97 0.00 -1.523 0.00 0.00 0.00 0.00 98 0.00 -0.953 0.00 0.00 0.00 0.00 99 0.00 -0.953 0.00 0.00 0.00 0.00 100 0.00 -1.523 0.00 0.00 0.00 0.00 101 0.00 -1.523 0.00 0.00 0.00 0.00 102 0.00 -0.953 0.00 0.00 0.00 0.00 103 0.00 -0.953 0.00 0.00 0.00 0.00 Cs1 72 0.00 0.00 0.518 0.598 0.00 0.00 73 0.00 0.00 0.518 0.598 0.00 0.00 74 0.00 0.00 0.313 0.361 0.00 0.00 75 0.00 0.00 0.313 0.361 0.00 0.00 68 0.00 0.00 0.518 0.598 0.00 0.00 69 0.00 0.00 0.518 0.598 0.00 0.00 70 0.00 0.00 0.313 0.361 0.00 0.00 71 0.00 0.00 0.313 0.361 0.00 0.00 44 0.00 0.00 0.313 0.361 0.00 0.00 45 0.00 0.00 0.313 0.361 0.00 0.00 46 0.00 0.00 0.518 0.598 0.00 0.00 47 0.00 0.00 0.518 0.598 0.00 0.00 48 0.00 0.00 0.518 0.598 0.00 0.00 49 0.00 0.00 0.518 0.598 0.00 0.00 66 0.00 0.00 0.313 0.361 0.00 0.00 67 0.00 0.00 0.313 0.361 0.00 0.00 Cs2 88 0.00 0.00 0.518 0.598 0.00 0.00 89 0.00 0.00 0.313 0.361 0.00 0.00 90 0.00 0.00 0.313 0.361 0.00 0.00 91 0.00 0.00 0.518 0.598 0.00 0.00 92 0.00 0.00 0.518 0.598 0.00 0.00 93 0.00 0.00 0.518 0.598 0.00 0.00 94 0.00 0.00 0.313 0.361 0.00 0.00 95 0.00 0.00 0.313 0.361 0.00 0.00 Cs3 96 0.00 0.00 0.518 0.598 0.00 0.00 97 0.00 0.00 0.518 0.598 0.00 0.00 98 0.00 0.00 0.313 0.361 0.00 0.00 99 0.00 0.00 0.313 0.361 0.00 0.00 100 0.00 0.00 0.518 0.598 0.00 0.00 101 0.00 0.00 0.518 0.598 0.00 0.00 102 0.00 0.00 0.313 0.361 0.00 0.00 103 0.00 0.00 0.313 0.361 0.00 0.00 Cls 88 0.557 0.00 0.00 0.00 0.00 -0.643 89 0.381 0.00 0.00 0.00 0.00 -0.44 90 0.381 0.00 0.00 0.00 0.00 -0.44 91 0.557 0.00 0.00 0.00 0.00 -0.643 92 0.557 0.00 0.00 0.00 0.00 -0.643 93 0.557 0.00 0.00 0.00 0.00 -0.643 94 0.381 0.00 0.00 0.00 0.00 -0.44 95 0.381 0.00 0.00 0.00 0.00 -0.44 Ehs1 72 0.00 0.00 0.48 0.554 0.00 0.00 73 0.00 0.00 0.48 0.554 0.00 0.00 74 0.00 0.00 0.36 0.416 0.00 0.00 75 0.00 0.00 0.36 0.416 0.00 0.00 68 0.00 0.00 0.48 0.554 0.00 0.00 69 0.00 0.00 0.48 0.554 0.00 0.00 70 0.00 0.00 0.36 0.416 0.00 0.00 71 0.00 0.00 0.36 0.416 0.00 0.00 165 of 252 44 0.00 0.00 0.36 0.416 0.00 0.00 45 0.00 0.00 0.36 0.416 0.00 0.00 46 0.00 0.00 0.48 0.554 0.00 0.00 47 0.00 0.00 0.48 0.554 0.00 0.00 48 0.00 0.00 0.48 0.554 0.00 0.00 49 0.00 0.00 0.48 0.554 0.00 0.00 66 0.00 0.00 0.36 0.416 0.00 0.00 67 0.00 0.00 0.36 0.416 0.00 0.00 Ehs2 88 0.00 0.00 0.48 0.554 0.00 0.00 89 0.00 0.00 0.36 0.416 0.00 0.00 90 0.00 0.00 0.36 0.416 0.00 0.00 91 0.00 0.00 0.48 0.554 0.00 0.00 92 0.00 0.00 0.48 0.554 0.00 0.00 93 0.00 0.00 0.48 0.554 0.00 0.00 94 0.00 0.00 0.36 0.416 0.00 0.00 95 0.00 0.00 0.36 0.416 0.00 0.00 Ehs3 96 0.00 0.00 0.48 0.554 0.00 0.00 97 0.00 0.00 0.48 0.554 0.00 0.00 98 0.00 0.00 0.36 0.416 0.00 0.00 99 0.00 0.00 0.36 0.416 0.00 0.00 100 0.00 0.00 0.48 0.554 0.00 0.00 101 0.00 0.00 0.48 0.554 0.00 0.00 102 0.00 0.00 0.36 0.416 0.00 0.00 103 0.00 0.00 0.36 0.416 0.00 0.00 Ehl1 44 0.195 0.00 0.00 0.00 0.00 -0.225 45 0.195 0.00 0.00 0.00 0.00 -0.225 46 0.262 0.00 0.00 0.00 0.00 -0.302 47 0.262 0.00 0.00 0.00 0.00 -0.302 48 0.262 0.00 0.00 0.00 0.00 -0.302 49 0.262 0.00 0.00 0.00 0.00 -0.302 66 0.195 0.00 0.00 0.00 0.00 -0.225 67 0.195 0.00 0.00 0.00 0.00 -0.225 Eh12 88 0.262 0.00 0.00 0.00 0.00 -0.302 89 0.195 0.00 0.00 0.00 0.00 -0.225 90 0.195 0.00 0.00 0.00 0.00 -0.225 91 0.262 0.00 0.00 0.00 0.00 -0.302 92 0.262 0.00 0.00 0.00 0.00 -0.302 93 0.262 0.00 0.00 0.00 0.00 -0.302 94 0.195 0.00 0.00 0.00 0.00 -0.225 95 0.195 0.00 0.00 0.00 0.00 -0.225 Eh13 96 0.262 0.00 0.00 0.00 0.00 -0.302 97 0.262 0.00 0.00 0.00 0.00 -0.302 98 0.195 0.00 0.00 0.00 0.00 -0.225 99 0.195 0.00 0.00 0.00 0.00 -0.225 100 0.262 0.00 0.00 0.00 0.00 -0.302 101 0.262 0.00 0.00 0.00 0.00 -0.302 102 0.195 0.00 0.00 0.00 0.00 -0.225 103 0.195 0.00 0.00 0.00 0.00 -0.225 Ehvl 72 0.00 -0.157 0.00 0.00 0.00 0.00 73 0.00 -0.157 0.00 0.00 0.00 0.00 74 0.00 -0.117 0.00 0.00 0.00 0.00 75 0.00 -0.117 0.00 0.00 0.00 0.00 68 0.00 -0.157 0.00 0.00 0.00 0.00 69 0.00 -0.157 0.00 0.00 0.00 0.00 70 0.00 -0.117 0.00 0.00 0.00 0.00 71 0.00 -0.117 0.00 0.00 0.00 0.00 44 0.00 -0.117 0.00 0.00 0.00 0.00 45 0.00 -0.117 0.00 0.00 0.00 0.00 46 0.00 -0.157 0.00 0.00 0.00 0.00 47 0.00 -0.157 0.00 0.00 0.00 0.00 48 0.00 -0.157 0.00 0.00 0.00 0.00 49 0.00 -0.157 0.00 0.00 0.00 0.00 66 0.00 -0.117 0.00 0.00 0.00 0.00 67 0.00 -0.117 0.00 0.00 0.00 0.00 Ehv2 88 0.00 -0.157 0.00 0.00 0.00 0.00 89 0.00 -0.117 0.00 0.00 0.00 0.00 90 0.00 -0.117 0.00 0.00 0.00 0.00 91 0.00 -0.157 0.00 0.00 0.00 0.00 166 of 252 92 0.00 -0.157 0.00 0.00 0.00 0.00 93 0.00 -0.157 0.00 0.00 0.00 0.00 94 0.00 -0.117 0.00 0.00 0.00 0.00 95 0.00 -0.117 0.00 0.00 0.00 0.00 Ehv3 96 0.00 -0.157 0.00 0.00 0.00 0.00 97 0.00 -0.157 0.00 0.00 0.00 0.00 98 0.00 -0.117 0.00 0.00 0.00 0.00 99 0.00 -0.117 0.00 0.00 0.00 0.00 100 0.00 -0.157 0.00 0.00 0.00 0.00 101 0.00 -0.157 0.00 0.00 0.00 0.00 102 0.00 -0.117 0.00 0.00 0.00 0.00 103 0.00 -0.117 0.00 0.00 0.00 0.00 DDL 104 0.00 -1.091 0.00 0.00 0.00 0.00 105 0.00 -1.091 0.00 0.00 0.00 0.00 106 0.00 -1.091 0.00 0.00 0.00 0.00 107 0.00 -1.091 0.00 0.00 0.00 0.00 DLL 104 0.00 -5.00 0.00 0.00 0.00 0.00 105 0.00 -5.00 0.00 0.00 0.00 0.00 106 0.00 -5.00 0.00 0.00 0.00 0.00 107 0.00 -5.00 0.00 0.00 0.00 0.00 Distributed Force on Members v41 Iv2 yd1 I I d2 Condition Member Dirt Vail Val2 Dist1 % Dist2 % [Kip/ft] [Kip/ft] [in] [in] D 81 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 83 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 126 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 127 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 128 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 77 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 79 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 123 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 124 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 125 V -0.0077 -0.0077 0.00 Yes 100.00 Yes 1 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 2 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 12 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 14 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 50 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 55 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 56 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 61 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 80 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 92 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 97 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 98 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 100 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 101 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 103 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 104 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 105 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 106 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 107 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 108 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 109 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 110 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 111 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 167 of 252 112 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 113 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 114 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 115 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 116 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 117 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 118 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 119 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 120 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 121 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 122 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 129 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes 130 Y -0.0077 -0.0077 0.00 Yes 100.00 Yes Self-Weight Multipliers for Load Conditions Self weight multiplier Condition Description Comb. MuItX MultY MultZ D Dead load of runway/supports No 0.00 -1.00 0.00 Cd1 Crane dead(bridge,trolley,hoist,etc in position 1) No 0.00 0.00 0.00 Cd2 Crane dead(bridge,trolley,hoist,etc in position 2) No 0.00 0.00 0.00 Cd3 Crane dead(bridge,trolley,hoist,etc in position 3) No 0.00 0.00 0.00 Cv1 Crane lift load(rated crane capacity-at position 1) No 0.00 0.00 0.00 Cv2 Crane lift load(rated crane capacity-at position 2) No 0.00 0.00 0.00 Cv3 Crane lift load(rated crane capacity-at position 3) No 0.00 0.00 0.00 Ci1 Crane vertical impact(wheel load at position 1) No 0.00 0.00 0.00 Ci2 Crane vertical impact(wheel load at position 2) No 0.00 0.00 0.00 Ci3 Crane vertical impact(wheel load at position 3) No 0.00 0.00 0.00 Cs1 Crane side load(single wheel load at position 1) No 0.00 0.00 0.00 Cs2 Crane side load(single wheel load at position 2) No 0.00 0.00 0.00 Cs3 Crane side load(single wheel load at position 3) No 0.00 0.00 0.00 Cls Crane transverse load(tractive load-single crane wheel loads-transverse No 0.00 0.00 0.00 Ehs1 Seismic load transverse position 1 No 0.00 0.00 0.48 Ehs2 Seismic load transverse position 2 No 0.00 0.00 0.48 Ehs3 Seismic load transverse position 3 No 0.00 0.00 0.48 Ehl1 Seismic load long-position 1 No 0.24 0.00 0.00 Ehl2 Seismic load long-position 2 No 0.24 0.00 0.00 Eh13 Seismic load long-position 3 No 0.24 0.00 0.00 Ehv1 Seismic load Vertical position 1 No 0.00 -0.144 0.00 Ehv2 Seismic load Vertical position 2 No 0.00 -0.144 0.00 Ehv3 Seismic load Vertical position 3 No 0.00 -0.144 0.00 DDL Deflection Dead Load No 0.00 0.00 0.00 DLL Deflection Live Load No 0.00 0.00 0.00 List of materials Members: Profile Material Uweight Length Weight [Kip/ft] [in] [Kip] HSS_SQR 4X4X1_4 A500 GRB RECTANGULAR 1.14E-02 779.464 0.740 T2L 4X4X1_4 A36 1.32E-02 272.095 0.299 W 12X40 A992 GR50 3.96E-02 1885.125 6.215 W24 X 76_C 15 X33.9 A36 1.10E-01 902.000 8.289 W 24 X 94_C 15 X 33.9 A36 1.29E-01 902.000 9.692 Total weight[Kip] 25.236 168 of 252 Analysis result Reactions My Y c_.§-J X T FY Mx x Fx F to:) Direction of positive forces and moments Forces[Kip] Moments fKip*ftl Node FX FY FZ MX MY MZ Condition D=Dead load of runway t supports 4 0.02614 2.90029 -0.17389 0.00000 0.00007 0.00000 16 0.03082 2.25012 0.17263 0.00000 -0.00002 0.00000 15 0.00000 5.37237 -0.00019 -0.00824 0.00000 0.00000 3 0.00000 4.73438 0.00041 0.00963 0.00000 0.00000 2 -0.02591 2.90644 -0.17324 0.00000 -0.00005 0.00000 14 -0.03101 3.93033 0.17428 0.00000 0.00013 0.00000 SUM 0.00003 22.09393 0.00001 0.00140 0.00013 0.00000 Condition Cd1=Crane dead(bridge,trolley,hoist,etc in position 1) 4 0.01823 2.91209 -0.00172 0.00000 0.00003 0.00000 16 0.01707 2.78116 0.00155 0.00000 -0.00002 0.00000 15 0.00000 0.69785 -0.00001 -0.00028 0.00000 0.00000 3 0.00000 0.63677 -0.00002 -0.00035 0.00000 0.00000 2 -0.01819 2.83342 -0.00156 0.00000 -0.00003 0.00000 14 -0.01710 2.94919 0.00176 0.00000 0.00004 0.00000 SUM 0.00001 12.81047 0.00000 -0.00063 0.00002 0.00000 Condition Cd2=Crane dead(bridge,trolley,hoist,etc in position 2) 4 0.00270 0.05037 -0.00063 0.00000 0.00003 0.00000 16 0.01646 -0.56277 -0.00081 0.00000 0.00001 0.00000 15 0.00000 1.85071 0.00024 0.00422 0.00000 0.00000 3 0.00000 3.50654 0.00016 0.00276 0.00000 0.00000 2 -0.00247 0.07766 0.00008 0.00000 -0.00001 0.00000 14 -0.01665 1.36664 0.00096 0.00000 0.00010 0.00000 SUM 0.00003 6.28916 0.00000 0.00697 0.00012 0.00000 Condition Cd3=Crane dead(bridge,trolley,hoist,etc In position 3) 4 0.01222 -0.41011 0.00057 0.00000 -0.00001 0.00000 16 0.00233 0.12229 0.00049 0.00000 -0.00002 0.00000 15 0.00000 3.48746 -0.00020 -0.00353 0.00000 0.00000 3 0.00000 1.85169 -0.00015 -0.00255 0.00000 0.00000 2 -0.01236 1.53262 -0.00082 0.00000 -0.00007 0.00000 14 -0.00217 0.04325 0.00011 0.00000 0.00001 0.00000 SUM 0.00001 6.62720 0.00000 -0.00608 -0.00008 0.00000 Condition Cv1=Crane lift load(rated crane capacity-at position 1) 4 0.03653 13.69835 -0.00674 0.00000 0.00017 0.00000 16 0.04342 -1.48626 0.00032 0.00000 0.00006 0.00000 15 0.00000 1.17924 0.00020 0.00327 0.00000 0.00000 3 0.00000 1.04773 0.00008 0.00136 -0.00001 0.00000 2 -0.03537 -1.18902 -0.00039 0.00000 0.00005 0.00000 14 -0.04453 13.23945 0.00654 0.00000 0.00022 0.00000 169 of 252 SUM 0.00005 26.48948 0.00000 0.00463 0.00049 0.00000 Condition Cv2=Crane lift load(rated crane capacity-at position 2) 4 0.01117 0.27029 -0.00270 0.00000 0.00012 0.00000 16 0.06879 -2.35261 -0.00339 0.00000 0.00002 0.00000 15 0.00000 7.86319 0.00102 0.01773 0.00000 0.00000 3 0.00000 14.74567 0.00066 0.01154 -0.00002 0.00000 2 -0.01021 0.25792 0.00039 0.00000 -0.00003 0.00000 14 -0.06963 5.65890 0.00402 0.00000 0.00043 0.00000 SUM 0.00013 26.44335 0.00000 0.02927 0.00053 0.00000 Condition Cv3=Crane lift load(rated crane capacity-at position 3) 4 0.05099 -1.71131 0.00238 0.00000 -0.00002 0.00000 16 0.00948 0.60105 0.00211 0.00000 -0.00008 0.00000 15 0.00000 14.62287 -0.00086 -0.01484 0.00000 0.00000 3 0.00000 7.89567 -0.00061 -0.01068 0.00001 0.00000 2 -0.05160 6.32767 -0.00343 0.00000 -0.00030 0.00000 14 -0.00882 0.13806 0.00041 0.00000 0.00003 0.00000 SUM 0.00005 27.87401 0.00000 -0.02551 -0.00036 0.00000 Condition Ci1=Crane vertical impact(wheel load at position 1) 4 0.01136 4.23045 -0.00208 0.00000 0.00005 0.00000 16 0.01337 -0.45756 0.00010 0.00000 0.00002 0.00000 15 0.00000 0.35973 0.00006 0.00099 0.00000 0.00000 3 0.00000 0.33149 0.00002 0.00039 0.00000 0.00000 2 -0.01100 -0.36992 -0.00012 0.00000 0.00002 0.00000 14 -0.01371 4.10540 0.00202 0.00000 0.00007 0.00000 SUM 0.00001 8.19959 0.00000 0.00138 0.00015 0.00000 Condition Ci2=Crane vertical impact(wheel load at position 2) 4 0.00347 0.08022 -0.00083 0.00000 0.00004 0.00000 16 0.02131 -0.72876 -0.00105 0.00000 0.00001 0.00000 15 0.00000 2.42832 0.00032 0.00549 0.00000 0.00000 3 0.00000 4.56261 0.00020 0.00357 0.00000 0.00000 2 -0.00317 0.08382 0.00012 0.00000 -0.00001 0.00000 14 -0.02157 1.75613 0.00124 0.00000 0.00013 0.00000 SUM 0.00004 8.18233 0.00000 0.00906 0.00016 0.00000 Condition Ci3=Crane vertical impact(wheel load at position 3) 4 0.01580 -0.53029 0.00074 0.00000 -0.00001 0.00000 16 0.00295 0.18090 0.00065 0.00000 -0.00002 0.00000 15 0.00000 4.52710 -0.00026 -0.00459 0.00000 0.00000 3 0.00000 2.43671 -0.00019 -0.00331 0.00000 0.00000 2 -0.01599 1.96477 -0.00106 0.00000 -0.00009 0.00000 14 -0.00275 0.04528 0.00013 0.00000 0.00001 0.00000 SUM 0.00002 8.62447 0.00000 -0.00790 -0.00011 0.00000 Condition Cs1=Crane side load(single wheel load at position 1) 4 0.00093 1.55389 -1.25764 0.00000 0.00157 0.00000 16 0.00305 -1.68948 -1.26651 0.00000 0.00254 0.00000 15 0.00000 -0.00154 -0.75323 -13.51173 0.00110 0.00000 3 0.00000 -0.00290 -0.66353 -11.97096 -0.00041 0.00000 2 -0.00408 1.55487 -1.35371 0.00000 -0.00119 0.00000 14 0.00000 -1.69127 -1.35337 0.00000 0.00006 0.00000 SUM -0.00009 -0.27643 -6.64800 -25.48269 0.00367 0.00000 Condition Cs2=Crane side load(single wheel load at position 2) 4 -0.00002 0.11104 -0.08835 0.00000 -0.00523 0.00000 16 0.00384 -0.24116 -0.09494 0.00000 -0.00357 0.00000 15 0.00000 -0.00490 -0.90728 -16.69647 -0.00661 0.00000 3 0.00000 0.00064 -1.14428 -21.73162 -0.00073 0.00000 170 of 252 2 -0.00390 0.53639 -0.56743 0.00000 0.00341 0.00000 14 -0.00003 -0.66860 -0.52172 0.00000 0.00906 0.00000 SUM -0.00011 -0.26659 -3.32400 -38.42809 -0.00367 0.00000 Condition Cs3=Crane side load(single wheel load at position 3) 4 -0.00002 0.24103 -0.20850 0.00000 -0.00122 0.00000 16 0.00216 -0.31390 -0.19701 0.00000 -0.00617 0.00000 15 0.00000 -0.00327 -1.05689 -20.09083 -0.00329 0.00000 3 0.00000 0.00092 -0.80958 -15.07858 -0.00378 0.00000 2 -0.00218 0.57340 -0.50097 0.00000 0.00614 0.00000 14 -0.00002 -0.64760 -0.55106 0.00000 0.00329 0.00000 SUM -0.00006 -0.14943 -3.32400 -35.16941 -0.00503 0.00000 Condition Cls=Crane transverse load(tractive load-single crane wheel loads-transverse 4 0.14985 -5.00381 0.00205 0.00000 0.00010 0.00000 16 0.14582 -4.97899 -0.00171 0.00000 -0.00011 0.00000 15 0.00000 -0.05979 -0.00003 -0.00045 0.00000 0.00000 3 0.00000 -0.04379 0.00000 -0.00002 0.00000 0.00000 2 -0.00001 -0.04323 -0.00013 0.00000 0.00004 0.00000 14 -0.00001 -0.04570 -0.00018 0.00000 -0.00005 0.00000 SUM 0.29565 -10.17530 0.00000 -0.00047 -0.00001 0.00000 Condition Ehsl=Seismic load transverse position 1 4 0.00247 3.09162 -2.80012 0.00000 -0.00347 0.00000 16 0.00606 -3.38091 -2.81178 0.00000 -0.00302 0.00000 15 0.00000 -0.00616 -3.39919 -56.62965 -0.00569 0.00000 3 0.00000 -0.00297 -2.93334 -48.71859 -0.00105 0.00000 2 -0.00867 3.52189 -3.35780 0.00000 0.00177 0.00000 14 -0.00003 -3.81391 -3.35334 0.00000 0.01058 0.00000 SUM -0.00018 -0.59044 -18.65558 -105.34825 -0.00087 0.00000 Condition Ehs2=Seismic load transverse position 2 4 -0.00004 1.69405 -1.62546 0.00000 -0.01009 0.00000 16 0.00777 -1.95741 -1.63416 0.00000 -0.00899 0.00000 15 0.00000 -0.01018 -3.54543 -59.66367 -0.01349 0.00000 3 0.00000 0.00159 -3.41959 -58.58833 -0.00159 0.00000 2 -0.00789 2.50959 -2.56079 0.00000 0.00666 0.00000 14 -0.00007 -2.77726 -2.51017 0.00000 0.01986 0.00000 SUM -0.00023 -0.53962 -15.29558 -118.25200 -0.00764 0.00000 Condition Ehs3=Seismic load transverse position 3 4 0.00082 1.79478 -1.74487 0.00000 -0.00606 0.00000 16 0.00599 -2.02611 -1.73615 0.00000 -0.01166 0.00000 15 0.00000 -0.00849 -3.71029 -63.34545 -0.01030 0.00000 3 0.00000 0.00113 -3.07098 -51.67149 -0.00453 0.00000 2 -0.00692 2.52116 -2.49324 0.00000 0.00933 0.00000 14 -0.00006 -2.75601 -2.54006 0.00000 0.01412 0.00000 SUM -0.00017 -0.47353 -15.29558 -115.01694 -0.00911 0.00000 Condition Eh11=Seismic load long-position 1 4 0.19879 -9.36920 0.00532 0.00000 0.00177 0.00000 16 0.21694 -10.15991 -0.00256 0.00000 -0.00166 0.00000 15 -0.07675 -0.18420 -0.00594 -0.10301 0.00015 0.00000 3 -0.07691 -0.09551 0.00001 0.00019 -0.00023 0.00000 2 -0.08052 -0.02662 0.00136 0.00000 0.00167 0.00000 14 -0.08030 -0.01661 0.00180 0.00000 -0.00164 0.00000 SUM 0.10125 -19.85205 0.00000 -0.10282 0.00006 0.00000 Condition Ehl2=Seismic load long-position 2 4 0.19879 -9.36075 0.00531 0.00000 0.00177 0.00000 16 0.21694 -10.15975 -0.00256 0.00000 -0.00166 0.00000 171 of 252 15 -0.07675 -0.18420 -0.00595 -0.10326 0.00015 0.00000 3 -0.07691 -0.11273 -0.00001 -0.00011 -0.00023 0.00000 2 -0.08052 -0.01804 0.00138 0.00000 0.00167 0.00000 14 -0.08030 -0.01658 0.00183 0.00000 -0.00164 0.00000 SUM 0.10125 -19.85205 0.00000 -0.10337 0.00006 0.00000 Condition Ehl3=Seismic load long-position 3 4 0.19878 -9.36898 0.00532 0.00000 0.00177 0.00000 16 0.21695 -10.14675 -0.00255 0.00000 -0.00166 0.00000 15 -0.07675 -0.20392 -0.00591 -0.10257 0.00015 0.00000 3 -0.07691 -0.09551 0.00004 0.00068 -0.00023 0.00000 2 -0.08052 -0.02659 0.00133 0.00000 0.00167 0.00000 14 -0.08030 -0.01029 0.00178 0.00000 -0.00165 0.00000 SUM 0.10125 -19.85205 0.00000 -0.10190 0.00006 0.00000 Condition Ehvl=Seismic load Vertical position 1 4 0.00618 0.82097 -0.02528 0.00000 0.00001 0.00000 16 0.00668 0.71589 0.02508 0.00000 0.00000 0.00000 15 0.00000 0.83559 -0.00003 -0.00123 0.00000 0.00000 3 0.00000 0.73488 0.00006 0.00134 0.00000 0.00000 2 -0.00615 0.81044 -0.02516 0.00000 -0.00001 0.00000 14 -0.00671 0.96832 0.02533 0.00000 0.00002 0.00000 SUM 0.00001 4.88609 0.00000 0.00011 0.00002 0.00000 Condition Ehv2=Seismic load Vertical position 2 4 0.00395 0.40935 -0.02512 0.00000 0.00001 0.00000 16 0.00659 0.23490 0.02474 0.00000 0.00000 0.00000 15 0.00000 1.00144 0.00001 -0.00059 0.00000 0.00000 3 0.00000 1.14765 0.00008 0.00179 0.00000 0.00000 2 -0.00389 0.41409 -0.02493 0.00000 -0.00001 0.00000 14 -0.00665 0.74071 0.02522 0.00000 0.00003 0.00000 SUM 0.00001 3.94814 0.00000 0.00120 0.00004 0.00000 Condition Ehv3=Seismic load Vertical position 3 4 0.00532 0.34311 -0.02495 0.00000 0.00001 0.00000 16 0.00456 0.33344 0.02493 0.00000 0.00000 0.00000 15 0.00000 1.23684 -0.00006 -0.00170 0.00000 0.00000 3 0.00000 0.90965 0.00004 0.00102 0.00000 0.00000 2 -0.00531 0.62335 -0.02506 0.00000 -0.00002 0.00000 14 -0.00456 0.55037 0.02510 0.00000 0.00002 0.00000 SUM 0.00001 3.99676 0.00000 -0.00068 0.00001 0.00000 Condition DDL=Deflection Dead Load 4 0.00709 -0.23743 0.00000 0.00000 0.00001 0.00000 16 0.00951 -0.32488 -0.00021 0.00000 0.00000 0.00000 15 0.00000 1.07320 0.00003 0.00045 0.00000 0.00000 3 0.00000 1.08450 0.00001 0.00021 0.00000 0.00000 2 -0.00704 0.85455 -0.00040 0.00000 -0.00004 0.00000 14 -0.00953 0.76923 0.00057 0.00000 0.00006 0.00000 SUM 0.00002 3.21918 0.00000 0.00067 0.00002 0.00000 Condition DLL=Deflection Live Load 4 0.03249 -1.08813 0.00000 0.00000 0.00004 0.00000 16 0.04359 -1.48891 -0.00097 0.00000 -0.00002 0.00000 15 0.00000 4.91844 0.00012 0.00208 0.00000 0.00000 3 0.00000 4.97023 0.00006 0.00097 0.00000 0.00000 2 -0.03228 3.91637 -0.00182 0.00000 -0.00018 0.00000 14 -0.04368 3.52536 0.00262 0.00000 0.00027 0.00000 SUM 0.00011 14.75335 0.00000 0.00305 0.00010 0.00000 172 of 252 ASD Envelope for Nodal Reactions Note.- Ic is the controlling load condition My f 7 x j` Fy Mx 1 Fx F 9 MZD Direction of positive forces and moments Forces Moments Node Fx Ic Fy Ic Fz Ic Mx Ic My Ic Mz Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip`ft] [Kip`ft] 4 Max 0.180 A06 27.783 A10 1.872 A79 0.00000 A01 0.00718 A56 0.00000 A01 Min 0.000 All -4.660 A48 -2.153 A19 0.00000 A01 -0.00702 A44 0.00000 A01 16 Max 0.212 A02 7.696 A55 2.160 A55 0.00000 A01 0.00815 A81 0.00000 A01 Min 0.000 A09 -5.450 A47 -1.881 A43 0.00000 A01 -0.00820 A21 0.00000 A01 15 Max 0.054 A66 28.001 A06 2.597 A81 44.33616 A81 0.00944 A80 0.00000 A01 Min -0.054 A29 2.954 A46 -2.598 A21 -44.35499 A21 -0.00944 A20 0.00000 A01 3 Max 0.054 A59 27.548 A02 2.394 A56 41.02501 A56 0.00380 A09 0.00000 A01 Min -0.054 A18 2.616 A82 -2.393 A44 -41.00519 A44 -0.00378 A03 0.00000 A01 2 Max 0.000 A02 15.795 A03 2.264 A79 0.00000 A01 0.00647 A45 0.00000 A01 Min -0.183 Al2 -4.548 A83 -2.543 A19 0.00000 A01 -0.00673 A09 0.00000 A01 14 Max 0.000 A06 28.251 A04 2.541 A55 0.00000 A01 0.01415 A20 0.00000 A01 Min -0.215 A08 -4.599 A84 -2.260 A43 0.00000 A01 -0.01378 A80 0.00000 A01 58 Max 2.658 A60 6.746 A60 0.031 A81 0.00000 A01 0.00103 A55 0.00000 A01 Min -0.016 A47 0.046 A47 -0.031 A21 0.00000 A01 -0.00103 A43 0.00000 A01 59 Max 2.981 A08 7.588 A08 0.031 A56 0.00000 A01 0.00103 A79 0.00000 A01 Min -0.016 A48 0.046 A48 -0.031 A44 0.00000 A01 -0.00103 A19 0.00000 A01 60 Max 0.016 A83 6.751 A22 0.031 A80 0.00000 A01 0.00103 A43 0.00000 A01 Min -2.660 A22 0.046 A83 -0.031 A20 0.00000 A01 -0.00103 A55 0.00000 A01 61 Max 0.016 A84 7.471 A02 0.031 A57 0.00000 A01 0.00103 A19 0.00000 A01 Min -2.935 A02 0.046 A84 -0.031 A45 0.00000 A01 -0.00103 A79 0.00000 A01 LRFD Envelope for nodal reactions Note.- Ic is the controlling load condition y M f x T FY Mx Z Fx FZ/• M= fg Direction of positive forces and moments 173 of 252 Forces Moments Node Fx Ic Fy Ic Fz Ic Mx Ic My Ic Mz Ic [Kip] [Kip] [Kip] [Kip`ft] [Kip`ft] [Kip`ft] 4 Max 0.273 L06 42.127 L10 2.667 L79 0.00000 LO1 0.01023 L56 0.00000 LO1 Min 0.000 L11 -6.496 L48 -3.036 L19 0.00000 LO1 -0.01003 L44 0.00000 LO1 16 Max 0.320 L02 9.845 L55 3.045 L55 0.00000 L01 0.01164 L81 0.00000 LO1 Min 0.000 L09 -7.644 L47 -2.680 L43 0.00000 LO1 -0.01171 L21 0.00000 LO1 15 Max 0.077 L65 41.244 L06 3.710 L81 63.33687 L81 0.01349 L80 0.00000 L01 Min -0.077 L18 4.482 L46 -3.711 L21 -63.36159 L21 -0.01349 L20 0.00000 L01 3 Max 0.077 L77 40.771 L02 3.420 L56 58.60433 L56 0.00608 L09 0.00000 L01 Min -0.077 L30 3.969 L82 -3.419 L44 -58.57831 L44 -0.00605 L03 0.00000 LO1 2 Max 0.000 L02 23.499 L03 3.226 L79 0.00000 LO1 0.00923 L45 0.00000 LO1 Min -0.278 L12 -6.327 L83 -3.593 L19 0.00000 LO1 -0.01074 L09 0.00000 LO1 14 Max 0.000 L06 42.450 L04 3.590 L55 0.00000 LO1 0.02016 L20 0.00000 LO1 Min -0.325 L08 -6.350 L84 -3.221 L43 0.00000 LO1 -0.01968 L80 0.00000 LO1 58 Max 3.797 L60 9.615 L60 0.044 L81 0.00000 LO1 0.00147 L55 0.00000 LO1 Min -0.022 L47 0.070 L47 -0.044 L21 0.00000 LO1 -0.00147 L43 0.00000 LO1 59 Max 4.507 L08 11.441 LOS 0.044 L56 0.00000 LO1 0.00147 L79 0.00000 LO1 Min -0.022 L48 0.070 L48 -0.044 L44 0.00000 LO1 -0.00147 L19 0.00000 LO1 60 Max 0.022 L83 9.622 L22 0.044 L80 0.00000 LO1 0.00147 L43 0.00000 LO1 Min -3.800 L22 0.070 L83 -0.044 L20 0.00000 LO1 -0.00147 L55 0.00000 LO1 61 Max 0.022 L84 11.260 L02 0.044 L57 0.00000 LO1 0.00147 L19 0.00000 LO1 Min -4.435 L02 0.070 L84 -0.044 L45 0.00000 LO1 -0.00147 L79 0.00000 LO1 Critical ASD Reactions My Y c__-.fi T Fy Mx Z Fx si Fz/•- M2J Direction of positive forces and moments Forces FKi01 Moments IKip`ftl Node FX FY FZ MX MY MZ Condition A04=D+Cd1+Cv1+Ci1-Cs1+Cls 14 -0.03739 28.25114 1.53900 0.00000 0.00035 0.00000 Condition A21=D+Cd3+0.7Ehs3+0.7Ehv3 15 0.00000 9.72475 -2.59764 -44.35499 -0.00721 0.00000 Condition A47=0.6D+0.6Cd2+0.7EhI2-0.7Ehv2 16 0.15179 -5.45014 0.08464 0.00000 -0.00116 0.00000 174 of 252 Critical LRFD Reactions My Y C� J x Fy Mx z Fx Fz Mz Direction of positive forces and moments Forces[Kiel Moments[Kip'ft] Node FX FY FZ MX MY MZ Condition LO4=1.2D+1.2Cd1+1.6Cv1+1.6C11-1.6Cs1+1.6Cls 14 -0.04058 42.45001 2.39199 0.00000 0.00049 0.00000 Condition L21=1.2D+1.2Cd3+Ehs3+Ehv3 15 0.00000 11.86739 -3.71083 -63.36159 -0.01030 0.00000 Condition L47=0.9D+0.9Cd2+Eh12-Ehv2 16 0.21684 -7.64418 0.12834 0.00000 -0.00166 0.00000 Non-Seismic Nodal Displacements Envelope [ASD] Note.- Ic is the controlling load condition Nodal displacements envelope for: A01=D+Cd1+Cvl+Cil+Csl+Cls A02=D+Cd 2+Cv2+Ci 2+Cs2+Cl s A03=D+Cd3+Cv3+Ci3+Cs3+Cls A04=D+Cd 1+Cvl+Ci 1-Cs l+Cls A05=D+Cd 2+Cv2+Ci2-Cs2+Cls A06=D+Cd3+Cv3+Ci3-Cs3+Cls A07=D+Cd 1+Cvl+Ci 1-Cs 1-Cls A08=D+Cd2+Cv2+Ci2-Cs2-Cls A09=D+Cd3+Cv3+Ci3-Cs3-Cls A10=D+Cd1+Cvl+Ci1+Cs1-Cls All=D+Cd2+Cv2+Ci2+Cs2-Cls Al 2=D+Cd3+Cv3+Ci3+Cs3-Cls Translation Rotation Node X Ic Y Ic Z Ic Rx Ic Ry Ic Rz Ic [in] [in] [in] [Rad] [Rad] [Rad] 6 Max 0.063 A06 0.094 A09 0.473 A01 0.00325 A10 0.00146 A09 -0.00049 A10 Min -0.049 A10 0.011 A01 -0.483 A07 -0.00361 A04 -0.00144 A03 -0.00335 A06 18 Max 0.081 A02 0.154 All 0.465 A01 0.00256 A01 0.00210 A05 -0.00114 A09 Min -0.033 A09 0.032 A06 -0.472 A07 -0.00225 A07 -0.00215 All -0.00536 A02 19 Max 0.081 A02 0.000 Al2 0.466 A01 0.00118 A01 0.00210 A05 -0.00114 A09 Min -0.033 A09 -0.015 A04 -0.471 A07 -0.00087 A07 -0.00215 All -0.00536 A02 20 Max 0.080 A02 -0.004 A07 0.417 Al2 0.00303 Alt 0.00152 All -0.00002 A02 Min -0.034 A09 -0.016 A06 -0.416 A06 -0.00301 A06 -0.00152 A05 -0.00027 A09 44 Max 0.063 A06 -0.017 A07 0.457 A01 0.01391 A10 0.00149 A09 -0.00048 A10 Min -0.049 A10 -0.116 A03 -0.463 A07 -0.01424 A04 -0.00147 A03 -0.00327 A06 45 Max 0.081 A02 -0.037 Al2 0.467 A01 0.00898 A01 0.00216 A05 -0.00113 A09 Min -0.033 A09 -0.181 A05 -0.471 A07 -0.00869 A07 -0.00220 All -0.00529 A02 175 of 252 46 Max 0.063 A06 -0.021 A07 0.455 A01 0.01630 A10 0.00148 A09 -0.00047 A10 Min -0.049 Al0 -0.143 A03 -0.460 A07 -0.01663 A04 -0.00147 A03 -0.00322 A06 47 Max 0.081 A02 -0.046 Al2 0.467 A01 0.01043 A01 0.00217 A05 -0.00112 A09 Min -0.033 A09 -0.223 A05 -0.470 A07 -0.01014 A07 -0.00220 All -0.00525 A02 48 Max 0.063 A06 -0.044 A07 0.433 A10 0.02826 Al2 0.00133 A09 -0.00035 A01 Min -0.049 A10 -0.305 A03 -0.436 A04 -0.02850 A06 -0.00132 A03 -0.00265 A09 49 Max 0.081 A02 -0.105 Al2 0.461 A10 0.01667 A02 0.00208 A05 -0.00102 A09 Min -0.033 A09 -0.497 A05 -0.462 A04 -0.01641 A08 -0.00211 All -0.00475 A02 66 Max 0.081 A02 0.111 All 0.465 A01 0.00256 A01 0.00210 A05 -0.00114 A09 Min -0.033 A09 0.023 A06 -0.472 A07 -0.00225 A07 -0.00215 All -0.00536 A02 67 Max 0.063 A06 0.068 A09 0.471 A01 0.00325 A10 0.00146 A09 -0.00049 A10 Min -0.049 A10 0.007 A01 -0.480 A07 -0.00361 A04 -0.00144 A03 -0.00335 A06 89 Max 0.063 A06 -0.009 A01 0.453 All 0.00626 A02 0.00088 A03 0.00333 Al2 Min -0.050 A10 -0.050 Al2 -0.454 A05 -0.00628 A08 -0.00089 A09 0.00044 A01 90 Max 0.063 A06 -0.032 A01 0.451 All 0.02098 Alt 0.00082 A03 0.00299 Al2 Min -0.050 A10 -0.225 Al2 -0.452 A05 -0.02103 A06 -0.00082 A09 0.00039 A01 91 Max 0.063 A06 -0.025 A06 0.435 A02 0.01137 A02 0.00079 A03 -0.00027 A06 Min -0.050 Al0 -0.060 All -0.436 A08 -0.01142 A05 -0.00080 A09 -0.00086 Al0 92 Max 0.080 A02 -0.223 Al2 0.649 All 0.04401 A02 0.00064 A06 0.00018 A07 Min -0.034 A09 -1.022 A05 -0.647 A05 -0.04385 A08 -0.00064 Al2 -0.00019 A02 93 Max 0.080 A02 -0.222 Alt 0.646 All 0.04087 A02 0.00060 A10 0.00155 A05 Min -0.034 A09 -0.984 A05 -0.645 A05 -0.04075 A08 -0.00059 A04 0.00018 Al2 94 Max 0.080 A02 -0.221 Al2 0.645 All 0.04364 A02 0.00066 A06 0.00010 A07 Min -0.034 A09 -1.019 A05 -0.644 A05 -0.04348 A08 -0.00066 Al2 -0.00046 A02 101 Max 0.080 A02 -0.009 A01 0.373 Al2 0.00676 Al2 0.00136 All -0.00001 A02 Min -0.034 A09 -0.029 A09 -0.371 A06 -0.00669 A06 -0.00137 A05 -0.00018 A09 102 Max 0.080 A02 -0.025 A07 0.426 Al2 0.00478 Al2 0.00156 All 0.00534 A05 Min -0.034 A09 -0.075 A05 -0.424 A06 -0.00476 A06 -0.00156 A05 0.00135 Al2 103 Max 0.080 A02 -0.103 Al2 0.454 A03 0.01313 A02 0.00160 All 0.00504 A05 Min -0.034 A09 -0.359 A05 -0.453 A09 -0.01309 A08 -0.00159 A05 0.00117 Al2 104 Max 0.080 A02 -0.224 Al2 0.652 All 0.04221 A02 0.00062 A10 0.00082 A05 Min -0.034 A09 -1.012 A05 -0.651 A05 -0.04207 A08 -0.00061 A04 0.00004 A03 105 Max 0.080 A02 -0.218 Al2 0.637 All 0.04202 A02 0.00070 A06 -0.00004 A07 Min -0.034 A09 -1.008 A05 -0.636 A05 -0.04185 A08 -0.00070 Al2 -0.00095 A02 106 Max 0.063 A06 -0.064 A10 0.407 A03 0.05063 Al2 0.00085 A05 -0.00006 A01 Min -0.049 Al0 -0.467 A03 -0.408 A09 -0.05081 A06 -0.00086 All -0.00075 A09 107 Max 0.063 A06 -0.064 A10 0.425 A03 0.05090 Al2 0.00074 A10 0.00074 A03 Min -0.049 A10 -0.467 A03 -0.425 A09 -0.05104 A06 -0.00074 A04 0.00001 A08 108 Max 0.063 A06 -0.065 A10 0.420 A03 0.05368 Al2 0.00079 A05 0.00003 A01 Min -0.049 A10 -0.478 A03 -0.421 A09 -0.05383 A06 -0.00080 All -0.00012 A08 109 Max 0.080 A02 -0.223 Al2 0.650 All 0.04378 A02 0.00063 A06 0.00021 A07 Min -0.034 A09 -1.022 A05 -0.648 A05 -0.04362 A08 -0.00063 Al2 -0.00013 A03 Maximum Vertical Deflection = 1.022 in = 902 in = L/ 1.022 in 883 176 of 252 Nodal Displacements Envelope with Seismic Forces [LRFD] Note.- lc is the controlling load condition Nodal displacements envelope for: L13=1.2D+1.2Cd 1+Ehs 1 L76=0.9D+0.9Cd 1-Ehl1+Ehv1 L14=1.20+1.2Cd2+Ehs2 L77=0.9D+0.9Cd2-Eh12+Ehv2 L15=1.2D+1.2Cd3+Ehs3 L78=0.9D+0.9Cd3-Eh13+Ehv3 L16=1.2D+1.2Cd 1+Ehl1 L79=0.9D+0.9Cd 1-Ehsl-Ehv1 L17=1.2D+1.2Cd2+Eh12 L80=0.9D+0.9Cd2-Ehs2-Ehv2 L18=1.2D+1.2Cd3+Eh13 L81=0.9D+0.9Cd3-Ehs3-Ehv3 L191.2D+1.2Cd 1+Ehs 1+Ehv1 L82=0.9D+0.9Cd 1-Ehl l-Ehv1 120=1.2D+1.2Cd2+Ehs2+Ehv2 L83=0.9D+0.9Cd2-Eh12-Ehv2 L21=1.2D+1.2Cd3+Ehs3+Ehv3 L84=0.9D+0.9Cd3-Eh13-Ehv3 122=1.2D+1.2Cd1+Eh11+Ehv1 S13=1.2D+1.2Cd1+Ehs1 L23=1.2D+1.2Cd2+Eh12+Ehv2 S14=1.2D+1.2Cd2+Ehs2 L24=1.2D+1.2Cd3+Eh13+Ehv3 S15=1.2D+1.2Cd3+Ehs3 L25=1.2D+1.2Cd1+Ehs1-Ehv1 S16=1.2D+1.2Cd1+Ehl1 126=1.2D+1.2Cd2+Ehs2-Ehv2 S17=1.2D+1.2Cd2+Eh12 127=1.2D+1.2Cd3+Ehs3-Ehv3 S18=1.2D+1.2Cd3+Eh13 L28=1.2D+1.2Cd1+Ehl1-Ehv1 S19=1.20+1.2Cd1+Ehsl+Ehv1 L29=1.2D+1.2Cd2+Eh12-Ehv2 S20=1.2D+1.2Cd2+Ehs2+Ehv2 L30=1.2D+1.2Cd3+Eh13-Ehv3 S21=1.2D+1.2Cd3+Ehs3+Ehv3 L31=0.9D+0.9Cd1+Ehs1 S22=1.2D+1.2Cd1+Eh11+Ehv1 L32=0.9D+0.9Cd2+Ehs2 S23=1.20+1.2Cd2+Eh12+Ehv2 L33=0.9D+0.9Cd3+Ehs3 S24=1.20+1.2Cd3+Eh13+Ehv3 L34=0.9D+0.9Cd 1+Ehl1 S25=1.2D+1.2Cd 1+Ehs1-Ehv1 L35=0.9D+0.9Cd2+Eh12 S26=1.2D+1.2Cd2+Ehs2-Ehv2 L36=0.9D+0.9Cd3+Eh13 S27=1.2D+1.2Cd3+Ehs3-Ehv3 L37=0.9D+0.9Cd1+Ehsl+Ehv1 S28=1.20+1.2Cd1+Ehl1-Ehv1 L38=0.9D+0.9Cd2+Ehs2+Ehv2 S29=1.20+1.2Cd2+Eh12-Ehv2 L39=0.9D+0.9Cd3+Ehs3+Ehv3 S30=1.2D+1.2Cd3+Eh13-Ehv3 L40=0.9D+0.9Cd1+Eh11+Ehv1 S31=0.9D+0.9Cd1+Ehs1 L41=0.9D+0.9Cd2+Eh12+Ehv2 S32=0.9D+0.9Cd2+Ehs2 L42=0.9D+0.9Cd3+Eh13+Ehv3 S33=0.9D+0.9Cd3+Ehs3 L43=0.9D+0.9Cd 1+Ehs1-Ehvl S34=0.9D+0.9Cd 1+Ehl1 L44=0.9D+0.9Cd2+Ehs2-Ehv2 S35=0.9D+0.9Cd2+Eh12 L45=0.9D+0.9Cd3+Ehs3-Ehv3 S36=0.9D+0.9Cd3+Eh13 L46=0.9D+0.9Cd1+Ehl1-Ehv1 S37=0.9D+0.9Cd1+Ehs1+Ehv1 L47=0.9D+0.9Cd2+Eh12-Ehv2 S38=0.9D+0.9Cd2+Ehs2+Ehv2 L48=0.9D+0.9Cd3+Eh13-Ehv3 S39=0.9D+0.9Cd3+Ehs3+Ehv3 L491.2D+1.2Cd 1-Ehs 1 S40=0.9D+0.9Cd 1+Eh11+Ehv1 L50=1.2D+1.2Cd2-Ehs2 S41=0.9D+0.9Cd2+Eh12+Ehv2 L51=1.2D+1.2Cd3-Ehs3 S42=0.9D+0.9Cd3+Eh13+Ehv3 L52=1.20+1.2Cd 1-Ehl1 S43=0.9D+0.9Cd 1+Ehs1-Ehv1 L53=1.2D+1.2Cd2-Ehl2 S44=0.9D+0.9Cd2+Ehs2-Ehv2 L54=1.2D+1.2Cd3-Ehl3 S45=0.9D+0.9Cd3+Ehs3-Ehv3 L55=1.2D+1.2Cd 1-Ehs1+Ehv1 S46=0.9D+0.9Cd 1+EhI1-Ehv1 L56=1.2D+1.2Cd2-Ehs2+Ehv2 S47=0.9D+0.9Cd2+Eh12-Ehv2 L57=1.2D+1.2Cd3-Ehs3+Ehv3 S48=0.9D+0.9Cd3+Eh13-Ehv3 L58=1.2D+1.2Cd 1-EhI l+Ehv1 S49=1.2D+1.2Cd 1-Ehs 1 L59=1.2D+1.2Cd2-Eh12+Ehv2 S50=1.2D+1.2Cd2-Ehs2 L60=1.20+1.2Cd3-Eh13+Ehv3 S51=1.2D+1.2Cd3-Ehs3 L61=1.2D+1.2Cd1-Ehsl-Ehv1 S52=1.20+1.2Cd1-Ehl1 L62=1.20+1.2Cd2-Ehs2-Ehv2 S53=1.20+1.2Cd2-Eh12 L63=1.20+1.2Cd3-Ehs3-Ehv3 S54=1.20+1.2Cd3-Eh13 L64=1.20+1.2Cd1-Eh11-Ehv1 S55=1.20+1.2Cd1-Ehsl+Ehv1 L65=1.20+1.2Cd2-Eh12-Ehv2 S56=12D+12Cd2-Ehs2+Ehv2 L66=1.2D+1.2Cd3-Eh13-Ehv3 S57=1.20+1.2Cd3-Ehs3+Ehv3 L67=0.9D+0.9Cd 1-Ehs 1 S581.20+1.2Cd 1-Ehl1+Ehvi L68=0.9D+0.9Cd2-Ehs2 S59=1.2D+1.2Cd2-Eh12+Ehv2 L69=0.9D+0.9Cd3-Ehs3 S60=1.2D+1.2Cd3-Eh13+Ehv3 L70=0.9D+0.9Cd 1-Ehl1 S61=1.20+1.2Cd 1-Ehs 1-Ehv1 L71=0.9D+0.9Cd2-Eh12 S62=1.2D+1.2Cd2-Ehs2-Ehv2 L72=0.9D+0.9Cd3-Eh13 S63=1.2D+1.2Cd3-Ehs3-Ehv3 L73=0.9D+0.9Cd 1-Ehs 1+Ehv1 S64=1.20+1.2Cd 1-Eh11-Ehv1 L74=0.9D+0.9Cd2-Ehs2+Ehv2 S65=1.2D+1.2Cd2-Eh12-Ehv2 L75=0.9D+0.9Cd3-Ehs3+Ehv3 S66=1.20+1.2Cd3-Eh13-Ehv3 177 of 252 S67=0.9D+0.9Cd 1-Ehs1 S76=0.9D+0.9Cd 1-Ehl1+Ehv1 S68=0.9D+0.9Cd2-Ehs2 S77=0.9D+0.9Cd2-Eh12+Ehv2 S69=0.9D+0.9Cd3-Ehs3 S78=0.9D+0.9Cd3-Eh13+Ehv3 S70=0.9D+0.9Cd 1-Ehl1 S79=0.9D+0.9Cd 1-Ehs 1-Ehv1 S71=0.9D+0.9Cd2-Ehl2 S80=0.9D+0.9Cd2-Ehs2-Ehv2 S72=0.9D+0.9Cd3-Eh13 S81=0.9D+0.9Cd3-Ehs3-Ehv3 S73=0.9D+0.9Cd 1-Ehs 1+Ehv1 S82=0.9D+0.9Cd 1-Ehl l-Ehv1 S74=0.9D+0.9Cd2-Ehs2+Ehv2 S83=0.9D+0.9Cd2-Eh12-Ehv2 S75=0.9D+0.9Cd3-Ehs3+Ehv3 S84=0.9D+0.9Cd3-Eh13-Ehv3 Translation Rotation Node X Ic Y Ic Z Ic Rx Ic Ry Ic Rz Ic [in] [in] [in] [Rad] [Rad] [Rad] 19 Max 0.114 L47 0.003 L84 1.096 L19 0.00248 L19 0.00463 L80 -0.00058 L84 Min -0.102 L84 -0.006 L22 -1.096 L79 -0.00214 L79 -0.00464 L20 -0.00202 L23 20 Max 0.113 L47 -0.002 L46 1.264 L21 0.00894 L21 0.00311 L20 -0.00002 L47 Min -0.104 L84 -0.007 L57 -1.263 L81 -0.00894 L81 -0.00311 L80 -0.00018 L58 21 Max 0.112 L47 0.004 L47 0.912 L19 0.00209 L19 0.00273 L45 0.00019 L58 Min -0.104 L84 -0.005 L58 -0.910 L79 -0.00175 L79 -0.00273 L57 0.00004 L47 45 Max 0.114 L47 -0.016 L84 1.176 L19 0.01039 L19 0.00474 L80 -0.00059 L84 Min -0.102 L84 -0.070 L23 -1.176 L79 -0.01007 L79 -0.00475 L20 -0.00199 L23 47 Max 0.114 L47 -0.020 L84 1.196 L19 0.01179 L19 0.00474 L80 -0.00058 L84 Min -0.102 L84 -0.086 L23 -1.195 L79 -0.01147 L79 -0.00475 L20 -0.00197 L23 49 Max 0.114 L47 -0.051 L84 1.321 L19 0.01907 L20 0.00447 L80 -0.00054 L84 Min -0.102 L84 -0.188 L23 -1.320 L79 -0.01879 L80 -0.00448 L20 -0.00176 L23 66 Max 0.114 L47 0.043 L59 1.042 L19 0.00406 L19 0.00463 L80 -0.00058 L84 Min -0.102 L84 0.012 L48 -1.042 L79 -0.00372 L79 -0.00464 L20 -0.00202 L23 72 Max 0.112 L47 0.006 L24 0.897 L19 0.00421 L19 0.00272 L45 0.00018 L58 Min -0.104 L84 -0.001 L58 -0.895 L79 -0.00386 L79 -0.00273 L57 0.00004 L47 73 Max 0.112 L47 0.002 L47 0.935 L19 0.00895 L19 0.00282 L45 0.00018 L58 Min -0.104 L84 -0.011 L58 -0.934 L79 -0.00865 L79 -0.00282 L57 0.00005 L47 74 Max 0.112 L47 0.002 L47 0.942 L19 0.01002 L19 0.00284 L45 0.00017 L19 Min -0.104 L84 -0.013 L58 -0.940 L79 -0.00973 L79 -0.00284 L57 0.00005 L47 75 Max 0.113 L47 -0.001 L47 0.978 L19 0.01246 L19 0.00283 L45 0.00010 L24 Min -0.104 L84 -0.020 L58 -0.977 L79 -0.01224 L79 -0.00283 L57 0.00004 L83 92 Max 0.114 L47 -0.112 L84 1.790 L20 0.04795 L20 0.00108 L57 0.00001 L22 Min -0.103 L84 -0.379 L23 -1.789 L80 -0.04777 L80 -0.00108 L45 -0.00008 L60 93 Max 0.114 L47 -0.110 L84 1.791 L20 0.04484 L20 0.00085 L19 0.00055 L23 Min -0.103 L84 -0.366 L23 -1.790 L80 -0.04469 L80 -0.00085 L79 0.00012 L84 94 Max 0.114 L47 -0.111 L84 1.783 L20 0.04764 L20 0.00121 L57 -0.00003 L46 Min -0.103 L84 -0.378 L23 -1.782 L80 -0.04746 L80 -0.00121 L45 -0.00017 L59 95 Max 0.114 L47 -0.102 L84 1.693 L20 0.04166 L20 0.00235 L56 -0.00023 L79 Min -0.103 L84 -0.353 L23 -1.692 L80 -0.04145 L80 -0.00235 L44 -0.00076 L23 100 Max 0.113 L47 -0.005 L82 1.273 L21 0.00981 L21 0.00314 L20 0.00202 L23 Min -0.104 L84 -0.013 L56 -1.273 L81 -0.00980 L81 -0.00314 L80 0.00065 L84 101 Max 0.113 L47 -0.004 L47 1.144 L21 0.01145 L21 0.00277 L44 -0.00001 L47 Min -0.104 L84 -0.013 L60 -1.143 L81 -0.01138 L81 -0.00277 L56 -0.00015 L58 102 Max 0.113 L47 -0.010 L82 1.292 L21 0.01078 L21 0.00320 L20 0.00202 L23 Min -0.104 L84 -0.030 L23 -1.292 L81 -0.01077 L81 -0.00320 L80 0.00065 L84 178 of 252 103 Max 0.113 L47 -0.045 L82 1.414 L21 0.01847 L20 0.00327 L20 0.00189 L23 Min -0.103 L84 -0.137 L23 -1.413 L81 -0.01843 L80 -0.00327 L80 0.00059 L84 104 Max 0.114 L47 -0.112 L84 1.800 L20 0.04616 L20 0.00059 L57 0.00029 L23 Min -0.103 L84 -0.375 L23 -1.799 L80 -0.04601 L80 -0.00059 L45 0.00004 L84 105 Max 0.114 L47 -0.110 L84 1.765 L20 0.04598 L20 0.00144 L57 -0.00009 L46 Min -0.103 L84 -0.374 L23 -1.764 L80 -0.04579 L80 -0.00144 L45 -0.00034 L59 109 Max 0.114 L47 -0.112 L84 1.792 L20 0.04772 L20 0.00102 L57 0.00003 L22 Min -0.103 L84 -0.379 L23 -1.791 L80 -0.04755 L80 -0.00102 L45 -0.00006 L60 Maximum Horizontal Distance for Adjacent Structure Transverse Seismic Deflection = 1.800 in* 1.5 = 2.70 in [R=1.5, Cd = 1.5 and = 1.5] Longitudinal Seismic Deflection = 0.114 in* 1.5 = 0.171 in [R=3.0, Cd = 1.5 and 0 = 1.5] (E) Metal Building Deflection(assumed) = 0.025 H = 0.025 *219 in = 5.475 in Minimum Transverse Clearance is 2.70" +5.475"= 8.175"-Use 9 inches. Minimum Longitudinal Clearance is 0.171" + 5.475" = 5.65"- Use 6 inches. LRFD Forces envelope Member forces Note.- lc is the controlling load condition Forces envelope for . L01=1.2D+1.2Cd 1+1.6Cv1+1.6Ci 1+1.6Cs1+1.6CIs L39=0.9D+0.9Cd3+Ehs3+Ehv3 L02=1.2D+1.2Cd2+1.6Cv2+1.6Ci2+1.6Cs2+1.6Cls L40=0.9D+0.9Cd1+Ehl1+Ehv1 L03=1.2D+1.2Cd3+1.6Cv3+1.6Ci3+1.6Cs3+1.6Cls L41=0.9D+0.9Cd2+Eh12+Ehv2 L04=1.2D+1.2Cd 1+1.6Cv1+1.6C11-1.6Cs1+1.6CIs L42=0.9D+0.9Cd3+Eh13+Ehv3 L05=1.2D+1.2Cd2+1.6Cv2+1.6Ci2-1.6Cs2+1.6Cls L43=0.9D+0.9Cd1+Ehs1-Ehv1 L06=1.2D+1.2Cd3+1.6Cv3+1.6Ci3-1.6Cs3+1.6Cls L44=0.9D+0.9Cd2+Ehs2-Ehv2 L07=1.2D+1.2Cd1+1.6Cv1+1.6Ci 1-1.6Cs1-1.6CIs L45=0.9D+0.9Cd3+Ehs3-Ehv3 L08=1.2D+1.2Cd2+1.6Cv2+1.6Ci2-1.6Cs2-1.6CIs L46=0.9D+0.9Cd1+Ehll-Ehv1 L09=1.2D+1.2Cd3+1.6Cv3+1.6Ci3-1.6Cs3-1.6CIs L47=0.9D+0.9Cd2+Eh12-Ehv2 L10=1.2D+1.2Cd 1+1.6Cv1+1.6Ci 1+1.6Cs1-1.6Cls L48=0.9D+0.9Cd3+Eh13-Ehv3 L11=1.2D+1.2Cd2+1.6Cv2+1.6Ci2+1.6Cs2-1.6CIs L49=1.2D+1.2Cd 1-Ehs1 L12=1.2D+1.2Cd3+1.6Cv3+1.6Ci3+1.6Cs3-1.6CIs L50=1.2D+1.2Cd2-Ehs2 L13=1.2D+1.2Cd1+Ehs1 L51=1.2D+1.2Cd3-Ehs3 L14=1.2D+1.2Cd2+Ehs2 L52=1.2D+1.2Cd1-Ehl1 L15=1.2D+1.2Cd3+Ehs3 L53=1.20+1.2Cd2-Eh12 L16=1.2D+1.2Cd1+Ehl1 L54=1.2D+1.2Cd3-Eh13 L17=1.2D+1.2Cd2+Eh12 L55=1.20+1.2Cd1-Ehs1+Ehv1 L18=1.2D+1.2Cd3+Eh13 L56=1.20+1.2Cd2-Ehs2+Ehv2 Li 9=1.2D+1.2Cd 1+Ehs 1+Ehv1 L57=1.2D+1.2Cd3-Ehs3+Ehv3 L20=1.20+1.2Cd2+Ehs2+Ehv2 L581.2D+1.2Cd 1-Ehl1+Ehv1 L21=1.2D+1.2Cd3+Ehs3+Ehv3 L59=1.20+1.2Cd2-Eh12+Ehv2 L22=1.2D+1.2Cd1+Ehll+Ehv1 L60=1.2D+1.2Cd3-Eh13+Ehv3 L23=1.2D+1.2Cd2+Eh12+Ehv2 L61=1.2D+1.2Cd 1-Ehsl-Ehv1 L24=1.2D+1.2Cd3+Eh13+Ehv3 L62=1.2D+1.2Cd2-Ehs2-Ehv2 L25=1.20+1.2Cd1+Ehs1-Ehv1 L63=1.2D+1.2Cd3-Ehs3-Ehv3 L26=1.20+1.2Cd2+Ehs2-Ehv2 L641.20+1.2Cd 1-Ehl l-Ehv1 L27=1.2D+1.2Cd3+Ehs3-Ehv3 L65=1.20+1.2Cd2-Eh12-Ehv2 L281.2D+1.2Cd 1+Ehl1-Ehv1 L66=1.2D+1.2Cd3-Eh13-Ehv3 L29=1.2D+1.2Cd2+Eh12-Ehv2 L67=0.9D+0.9Cd1-Ehs1 L30=1.20+1.2Cd3+Eh13-Ehv3 L68=0.9D+0.9Cd2-Ehs2 L31=0.9D+0.9Cd 1+Ehs1 L69=0.9D+0.9Cd3-Ehs3 L32=0.9D+0.9Cd2+Ehs2 L70=0.9D+0.9Cd 1-Ehl1 L33=0.9D+0.9Cd3+Ehs3 L71=0.9D+0.9Cd2-Eh12 L34=0.9D+0.9Cd 1+Ehl1 L72=0.9D+0.9Cd3-Eh13 L35=0.9D+0.9Cd2+Eh12 L73=0.9D+0.9Cd1-Ehsl+Ehv1 L36=0.9D+0.9Cd3+Eh13 L74=0.9D+0.9Cd2-Ehs2+Ehv2 L37=0.9D+0.9Cd1+Ehs 1+Ehv1 L75=0.9D+0.9Cd3-Ehs3+Ehv3 L38=0.9D+0.9Cd2+Ehs2+Ehv2 L76=0.9D+0.9Cd 1-Ehl1+Ehv1 179 of 252 L77=0.9D+0.9Cd2-Eh12+Ehv2 L81=0.9D+0.9Cd3-Ehs3-Ehv3 L78=0.9D+0.9Cd3-Eh13+Ehv3 L82=0.9D+0.9Cd 1-Ehl l-Ehv1 L79=0.9D+0.9Cd1-Ehs 1-Ehv1 L83=0.9D+0.9Cd2-Ehl2-Ehv2 L80=0.9D+0.9Cd2-Ehs2-Ehv2 L84=0.9D+0.9Cd3-Eh13-Ehv3 MEMBER 12 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 0.00 L17 0.00 L02 0.00 L04 0.00 LO1 0.00 L04 0.00 L15 Min 0.00 L82 0.00 L05 0.00 L49 0.00 L81 0.00 L25 0.00 L08 50% Max 0.01 L65 -0.03 L44 0.02 L27 0.00 LO1 0.00 L68 -0.01 L82 Min -0.01 L16 -0.06 L57 -0.02 L49 0.00 L81 0.00 L25 -0.01 L23 100% Max 0.02 L65 -0.07 L44 0.04 L27 0.00 LO1 0.01 L49 -0.02 L82 Min -0.02 L16 -0.12 L57 -0.04 L49 0.00 L81 -0.01 L38 -0.04 L23 MEMBER 14 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 0.18 L09 11.41 L09 1.33 L55 0.69 L03 11.37 L79 0.10 L65 Min -4.32 L02 0.96 L47 -1.33 L43 -0.68 L09 -11.40 L19 -0.10 L35 50% Max 0.18 L09 11.07 L09 1.20 L55 0.69 L03 8.82 L12 23.41 109 Min -4.32 L02 0.74 L47 -1.20 L43 -0.68 L09 -8.76 L19 1.68 L47 100% Max 0.18 L09 10.73 L09 1.07 L55 0.69 L03 9.19 L12 46.12 L09 Min -4.32 L02 0.53 L47 -1.07 L43 -0.68 L09 -9.09 L06 3.00 L47 MEMBER 50 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 0.21 L06 22.04 LO8 1.80 L56 1.58 L11 9.70 L19 174.00 L02 Min -4.33 L11 -0.32 LO1 -1.80 L44 -1.58 L05 -9.66 L79 12.90 L84 50% Max 0.21 LO6 21.20 L08 1.48 L56 1.58 L11 17.87 L20 284.09 L02 Min -4.33 L11 -1.16 LO1 -1.48 L44 -1.58 L05 -17.82 L80 21.18 L84 100% Max 0.21 L06 20.36 L08 1.33 L08 1.58 L11 24.67 L20 390.11 L11 Min -4.33 L11 -2.01 LO1 -1.32 L02 -1.58 LO5 -24.64 L80 26.69 L84 MEMBER 56 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 0.21 L06 24.25 L07 2.12 L56 1.67 L10 4.21 L10 69.76 LO1 Min -4.33 L11 2.29 L48 -2.12 L44 -1.67 L04 -3.74 L04 1.81 L84 50% Max 0.21 LO6 24.19 107 2.10 L56 1.67 L10 4.62 L10 77.75 LO1 Min -4.33 L11 2.26 L48 -2.10 L44 -1.67 L04 -4.16 L04 2.61 L84 100% Max 0.21 LO6 24.14 L07 2.08 L56 1.67 L10 5.03 L10 85.73 LO1 Min -4.33 L11 2.22 L48 -2.08 L44 -1.67 L04 -4.57 L04 3.40 L84 MEMBER 61 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 0.18 L09 0.59 L09 1.34 L11 1.49 LO8 25.52 L20 419.06 102 Min -4.32 L02 -19.55 L02 -1.33 L05 -1.49 L02 -25.51 L80 29.57 L84 50% Max 0.18 L09 -0.58 L09 1.56 L20 1.49 L08 15.97 L44 275.17 102 Min -4.32 L02 -20.72 L02 -1.56 L80 -1.49 L02 -15.97 L56 24.04 L82 100% Max 0.18 L09 -1.70 L84 2.00 L20 1.49 L08 10.24 L12 122.90 L02 Min -4.32 L02 -21.89 L02 -2.00 L80 -1.49 L02 -10.21 LO6 12.51 L82 180 of 252 MEMBER 83 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 0.18 L09 -0.85 L83 0.77 L45 0.79 L07 3.03 L05 12.37 L09 Min -4.32 L02 -3.65 L03 -0.77 L57 -0.78 LO1 -3.50 L11 -0.84 L47 50% Max 0.18 L09 -0.89 L83 0.79 L45 0.79 L07 2.98 L05 11.06 L09 Min -4.32 L02 -3.72 L03 -0.79 L57 -0.78 LO1 -3.46 L11 -1.24 L47 100% Max 0.18 L09 -0.93 L83 0.81 L45 0.79 L07 2.97 L80 9.72 LO9 Min -4.32 L02 -3.78 L03 -0.82 L57 -0.78 LO1 -3.42 L11 -1.65 L47 MEMBER 101 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max -0.09 L81 1.32 L09 0.51 L11 0.53 L08 27.75 L20 451.50 L02 Min -3.43 L02 -7.07 L02 -0.50 L05 -0.53 L02 -27.73 L80 29.44 L84 50% Max -0.09 L81 1.30 L09 0.51 L11 0.53 LO8 27.69 L20 450.32 L02 Min -3.43 L02 -7.09 L02 -0.50 L05 -0.53 L02 -27.67 L80 29.49 L84 100% Max -0.09 L81 1.27 L09 0.51 L11 0.53 L08 27.63 L20 449.13 L02 Min -3.43 L02 -7.12 L02 -0.50 L05 -0.53 L02 -27.61 L80 29.52 L84 MEMBER 103 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max -0.09 L81 5.01 L08 0.43 L10 0.42 L11 27.66 L20 447.31 L02 Min -3.11 L11 -2.75 LO1 -0.41 L04 -0.43 L05 -27.63 L80 29.24 L84 50% Max -0.09 L81 4.96 L08 0.43 L10 0.42 L11 27.71 L20 448.90 L02 Min -3.11 L11 -2.80 LO1 -0.41 L04 -0.43 L05 -27.68 L80 29.35 L84 100% Max -0.09 L81 4.90 LOB 0.43 L10 0.42 L11 27.75 L20 450.47 L02 Min -3.11 L11 -2.86 LO1 -0.41 L04 -0.43 L05 -27.73 L80 29.44 L84 MEMBER 104 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max -0.09 L81 13.05 L08 0.83 L08 1.00 L11 24.67 L20 390.55 L02 Min -3.72 L11 -2.01 LO1 -0.82 L02 -1.00 L05 -24.64 L80 26.69 L84 50% Max -0.09 L81 12.79 LOB 0.83 L08 1.00 L11 25.90 L20 411.17 LO2 Min -3.72 L11 -2.27 LO1 -0.82 L02 -1.00 L05 -25.86 L80 27.86 L84 100% Max -0.09 L81 12.52 LO8 0.83 LO8 1.00 L11 26.95 L20 431.37 L02 Min -3.72 L11 -2.54 LO1 -0.82 L02 -1.00 L05 -26.93 L80 28.75 L84 MEMBER 109 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 0.18 L09 -2.53 L82 2.49 L21 1.98 LO9 10.79 L79 9.74 L06 Min -4.32 L02 -29.18 L06 -2.48 L81 -1.99 L03 -10.82 L19 0.85 L82 50% Max 0.18 L09 -2.54 L82 2.50 L21 1.98 LO9 11.09 L79 4.87 L06 Min -4.32 L02 -29.21 L06 -2.49 L81 -1.99 L03 -11.11 L19 0.43 L82 100% Max 0.18 L09 -2.56 L82 2.51 L21 1.98 LO9 11.38 L79 0.00 LO1 Min -4.32 L02 -29.23 L06 -2.51 L81 -1.99 L03 -11.40 L19 0.00 LO1 MEMBER 110 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 0.18 LO9 1.86 L58 1.07 L55 0.37 L10 9.19 L12 46.12 LO9 Min -4.32 L02 -1.19 L03 -1.07 L43 -0.36 L04 -9.09 L06 3.00 L47 50% Max 0.18 L09 0.90 L58 0.79 L07 0.37 L10 5.75 L12 38.42 LO9 Min -4.32 L02 -2.06 L03 -0.78 LO1 -0.36 L04 -5.59 L06 4.33 L47 181 of 252 100% Max 0.18 L09 -0.05 L82 0.79 L07 0.37 L10 3.58 L05 26.14 L09 Min -4.32 L02 -2.93 L03 -0.78 LO1 -0.36 L04 -3.97 L11 2.73 L47 MEMBER 111 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 0.18 L09 -2.46 L82 2.28 L20 1.49 L08 9.65 L79 22.71 L02 Min -4.32 L02 -22.63 L02 -2.28 L80 -1.49 L02 -9.67 L19 2.51 L82 50% Max 0.18 L09 -2.49 L82 2.30 L20 1.49 L08 10.22 L79 15.54 L06 Min -4.32 L02 -22.69 L02 -2.30 L80 -1.49 L02 -10.24 L19 1.68 L82 100% Max 0.18 L09 -2.53 L82 2.32 L20 1.49 L08 10.79 L79 9.74 L06 Min -4.32 L02 -22.74 L02 -2.32 L80 -1.49 L02 -10.82 L19 0.85 L82 MEMBER 112 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip•ft] [Kip*ft] [Kip*ft] 0% Max 0.18 L09 -1.99 L82 2.00 L20 1.49 L08 10.24 L12 122.90 L02 Min -4.32 L02 -21.89 L02 -2.00 L80 -1.49 L02 -10.21 LO6 12.51 L82 50% Max 0.18 L09 -2.22 L82 2.14 L20 1.49 L08 9.82 L12 73.22 L02 Min -4.32 L02 -22.26 L02 -2.14 L80 -1.49 L02 -9.78 L06 7.77 L82 100% Max 0.18 L09 -2.46 L82 2.28 L20 1.49 L08 9.65 L79 22.71 L02 Min -4.32 L02 -22.63 L02 -2.28 L80 -1.49 L02 -9.67 L19 2.51 L82 MEMBER 113 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max -0.09 L81 0.90 L09 0.52 L20 0.53 L08 26.63 L20 432.69 L02 Min -3.43 L02 -7.49 L02 -0.51 L80 -0.53 L02 -26.61 L80 29.77 L84 50% Max -0.09 L81 0.74 L09 0.58 L20 0.53 L08 26.10 L20 425.44 L02 Min -3.43 L02 -7.65 L02 -0.57 L80 -0.53 L02 -26.09 L80 29.72 L84 100% Max -0.09 L81 0.59 L09 0.64 L20 0.53 L08 25.52 L20 418.03 L02 Min -3.43 L02 -7.81 L02 -0.63 L80 -0.53 L02 -25.51 L80 29.57 L84 MEMBER 114 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max -0.09 L81 12.52 L08 0.83 L08 1.00 L11 26.95 L20 431.37 L02 Min -3.72 L11 -2.54 LO1 -0.82 L02 -1.00 L05 -26.93 L80 28.75 L84 50% Max -0.09 L81 12.42 L08 0.83 L08 1.00 L11 27.32 L20 439.02 L02 Min -3.72 L11 -2.64 LO1 -0.82 L02 -1.00 L05 -27.29 L80 29.02 L84 100% Max -0.09 L81 12.32 L08 0.83 L08 1.00 L11 27.66 L20 446.61 L02 Min -3.72 L11 -2.75 LO1 -0.82 L02 -1.00 L05 -27.63 L80 29.24 L84 MEMBER 120 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 0.27 L52 7.71 LO1 0.51 L31 0.58 L04 0.92 L10 -0.33 L44 Min -0.27 L22 0.26 L45 -0.51 L49 -0.58 LO1 -0.92 L04 -13.90 L10 50% Max 0.24 L52 7.56 LO1 0.50 L10 0.58 L04 0.46 L10 -0.13 L44 Min -0.24 L22 0.17 L45 -0.50 L04 -0.58 LO1 -0.46 L04 -6.90 L10 100% Max 0.22 L52 7.41 LO1 0.50 L10 0.58 L04 0.01 L37 0.20 L46 Min -0.22 L22 0.07 L45 -0.50 L04 -0.58 LO1 -0.01 L49 -0.27 L58 182 of 252 MEMBER 121 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 0.21 L06 31.99 L07 2.51 L55 2.25 L10 6.67 L56 -0.46 L06 Min -4.33 L11 2.57 L48 -2.50 L43 -2.25 L04 -6.59 L44 -18.38 L07 50% Max 0.21 LO6 31.77 L07 2.42 L55 2.25 L10 3.68 L56 28.73 L02 Min -4.33 L11 2.43 L48 -2.42 L43 -2.25 L04 -3.60 L44 -1.50 L84 100% Max 0.21 L06 31.55 L07 2.34 L55 2.25 L10 4.21 L10 69.76 LO1 Min -4.33 L11 2.29 L48 -2.34 L43 -2.25 L04 -3.74 L04 1.81 L84 MEMBER 122 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 0.21 L06 22.78 L08 2.08 L56 1.58 L11 5.03 L10 85.73 LO1 Min -4.33 L11 2.22 L48 -2.08 L44 -1.58 L05 -4.57 L04 3.40 L84 50% Max 0.21 L06 22.41 L08 1.94 L56 1.58 L11 6.89 L19 124.49 L02 Min -4.33 L11 1.99 L48 -1.94 L44 -1.58 L05 -6.85 L79 8.42 L84 100% Max 0.21 LO6 22.04 L08 1.80 L56 1.58 L11 9.70 L19 174.00 L02 Min -4.33 L11 1.75 L48 -1.80 L44 -1.58 L05 -9.66 L79 12.90 L84 MEMBER 126 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 0.18 L09 3.65 L03 0.77 L45 0.28 L06 3.50 L11 12.37 L09 Min -4.32 L02 0.85 L83 -0.77 L57 -0.27 L12 -3.03 L05 -0.84 L47 50% Max 0.18 L09 3.29 L03 0.66 L03 0.28 L06 3.74 L11 19.66 L09 Min -4.32 L02 0.62 L83 -0.67 L09 -0.27 L12 -3.30 L05 1.20 L47 100% Max 0.18 L09 2.93 L03 0.66 L03 0.28 LO6 3.97 L11 26.14 L09 Min -4.32 L02 0.39 L83 -0.67 L09 -0.27 L12 -3.58 L05 2.73 L47 MEMBER 127 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 0.18 L09 5.34 L22 1.27 L19 1.75 L07 4.29 L21 -0.47 L09 Min -4.32 L02 1.21 L83 -1.27 L79 -1.74 LO1 -4.29 L81 -7.93 L22 50% Max 0.18 L09 5.10 L22 1.18 L19 1.75 L07 3.56 L20 4.77 L09 Min -4.32 L02 1.07 L83 -1.18 L79 -1.74 LO1 -3.47 L80 -3.23 L47 100% Max 0.18 L09 4.86 L22 1.10 L19 1.75 L07 3.42 L11 9.72 L09 Min -4.32 L02 0.93 L83 -1.10 L79 -1.74 L01 -2.97 L80 -1.65 L47 MEMBER 128 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 0.08 L29 1.92 L58 0.83 L04 0.96 L10 1.52 L04 -0.33 L47 Min -0.08 L78 0.26 L47 -0.83 LO1 -0.96 L04 -1.52 L01 -3.26 L19 50% Max 0.05 L29 1.76 L58 0.83 L04 0.96 L10 0.76 L04 -0.13 L48 Min -0.05 L78 0.17 L47 -0.83 LO1 -0.96 L04 -0.76 LO1 -1.57 L19 100% Max 0.02 L29 1.59 L58 0.83 L04 0.96 L10 0.01 L67 -0.02 L43 Min -0.02 L78 0.07 L47 -0.83 LO1 -0.96 L04 -0.01 L13 -0.04 L19 MEMBER 130 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max -0.09 L81 1.27 L09 0.51 L11 0.53 L08 27.63 L20 449.13 L02 Min -3.43 L02 -7.12 L02 -0.50 L05 -0.53 L02 -27.61 L80 29.52 L84 50% Max -0.09 L81 1.09 L09 0.51 L11 0.53 L08 27.17 L20 441.02 L02 Min -3.43 L02 -7.31 L02 -0.50 L05 -0.53 L02 -27.15 L80 29.72 L84 183 of 252 100% Max -0.09 L81 0.90 L09 0.52 L20 0.53 L08 26.63 L20 432.69 L02 Min -3.43 L02 -7.49 L02 -0.51 L80 -0.53 L02 -26.61 L80 29.77 L84 MEMBER 1 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip"ft] [Kip*ft] [Kip*ft] 0% Max 0.00 L48 0.00 L03 0.00 L37 0.00 LO1 0.00 L61 0.00 L03 Min 0.00 L53 0.00 L12 0.00 L04 0.00 LO1 0.00 L73 0.00 L09 50% Max 0.01 L54 -0.03 L79 0.02 L37 0.00 LO1 0.00 L61 -0.01 L46 Min -0.01 L17 -0.05 L57 -0.02 L62 0.00 LO1 0.00 L39 -0.01 L24 100% Max 0.02 L54 -0.06 L79 0.04 L37 0.00 LO1 0.01 L61 -0.02 L46 Min -0.02 L17 -0.10 L57 -0.04 L62 0.00 LO1 -0.01 L20 -0.03 L24 MEMBER 2 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max -0.01 L44 27.43 L02 1.90 L20 1.96 L08 10.27 L43 0.00 L12 Min -2.70 LO6 1.70 L82 -1.90 L80 -1.96 L02 -10.28 L55 0.00 L06 50% Max -0.01 L44 27.40 L02 1.90 L20 1.96 L08 10.05 L43 4.57 L02 Min -2.70 LO6 1.68 L82 -1.89 L80 -1.96 L02 -10.06 L55 0.28 L82 100% Max -0.01 L44 27.38 L02 1.89 L20 1.96 L08 9.83 L43 9.13 L02 Min -2.70 LO6 1.67 L82 -1.89 L80 -1.96 L02 -9.85 L55 0.56 L82 MEMBER 55 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 0.27 L02 21.54 L09 1.62 L57 1.58 LO1 4.09 L10 56.30 L03 Min -3.60 L09 1.46 L47 -1.62 L45 -1.57 L07 -3.62 L04 0.04 L83 50% Max 0.27 L02 21.50 L09 1.60 L57 1.58 LO1 4.45 L10 63.39 L03 Min -3.60 L09 1.43 L47 -1.60 L45 -1.57 L07 -3.98 L04 0.57 L83 100% Max 0.27 L02 21.45 L09 1.59 L57 1.58 LO1 4.81 L10 70.47 L03 Min -3.60 L09 1.40 L47 -1.59 L45 -1.57 L07 -4.35 L04 1.10 L83 MEMBER 77 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 0.02 L36 0.10 L24 0.04 L73 0.00 LO1 0.01 L73 -0.02 L79 Min -0.02 L59 0.06 L79 -0.04 L15 0.00 LO1 -0.01 L15 -0.03 L24 50% Max 0.01 L36 0.05 L24 0.02 L73 0.00 LO1 0.00 L73 -0.01 L79 Min -0.01 L59 0.03 L79 -0.02 L15 0.00 LO1 0.00 L15 -0.01 L24 100% Max 0.00 L36 0.00 LO1 0.00 L73 0.00 LO1 0.00 LO1 0.00 LO1 Min 0.00 L59 0.00 L05 0.00 L15 0.00 LO1 0.00 LO1 0.00 LO1 MEMBER 79 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 0.22 L11 -1.29 L84 1.09 L19 0.91 L04 3.45 LO1 57.78 L07 Min -3.59 L06 -14.14 LO1 -1.09 L79 -0.91 L10 -3.92 L07 0.72 L48 50% Max 0.22 L11 -1.33 L84 1.11 L19 0.91 L04 3.25 LO1 52.53 L07 Min -3.59 L06 -14.19 LO1 -1.11 L79 -0.91 L10 -3.73 L07 0.19 L48 100% Max 0.22 L11 -1.36 L84 1.13 L19 0.91 L04 3.06 LO1 47.27 L07 Min -3.59 L06 -14.25 LO1 -1.13 L79 -0.91 L10 -3.54 L07 -0.36 L48 184 of 252 MEMBER 80 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 0.22 L11 3.04 L05 0.72 L20 0.25 LO1 5.62 L55 85.85 L07 Min -3.59 L06 -1.26 L07 -0.71 L80 -0.25 L07 -5.58 L43 6.04 L48 50% Max 0.22 L11 1.43 L05 0.50 L07 0.25 LO1 7.69 L56 62.36 L07 Min -3.59 LO6 -2.87 L07 -0.49 L01 -0.25 L07 -7.66 L44 11.63 L48 100% Max 0.22 L11 -0.18 L05 1.07 L55 0.25 LO1 9.49 L08 56.18 L02 Min -3.59 LO6 -4.48 L07 -1.06 L43 -0.25 L07 -9.44 L02 5.54 L48 MEMBER 92 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 0.27 L02 20.61 L03 1.48 L21 1.50 L06 8.78 L05 116.57 L12 Min -3.60 L09 0.05 L11 -1.48 L81 -1.50 L12 -8.86 L11 7.98 L82 50% Max 0.27 L02 20.03 L03 1.29 L03 1.50 L06 10.12 L09 198.95 L12 Min -3.60 L09 -0.53 L11 -1.29 L09 -1.50 L12 -10.07 L03 12.16 L82 100% Max 0.27 L02 19.45 L03 1.29 L03 1.50 LO6 15.42 L09 278.95 L12 Min -3.60 L09 -1.11 L11 -1.29 L09 -1.50 L12 -15.35 L03 14.50 L83 MEMBER 97 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max -0.01 L44 21.34 L03 1.76 L21 1.50 L06 9.83 L43 10.08 L08 Min -2.38 L09 1.67 L82 -1.76 L81 -1.50 L12 -9.85 L55 -0.05 LO1 50% Max -0.01 L44 21.30 L03 1.74 L21 1.50 LO6 9.40 L43 15.20 L08 Min -2.38 L09 1.64 L82 -1.74 L81 -1.50 L12 -9.41 L55 0.92 LO1 100% Max -0.01 L44 21.25 L03 1.72 L21 1.50 L06 9.15 LO1 22.10 L12 Min -2.38 L09 1.61 L82 -1.72 L81 -1.50 L12 -9.18 L07 1.65 L82 MEMBER 98 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max -0.01 L44 21.25 L03 1.72 L21 1.50 L06 9.15 L01 22.80 L12 Min -2.99 L09 1.61 L82 -1.72 L81 -1.50 L12 -9.18 L07 1.17 L01 50% Max -0.01 L44 20.93 L03 1.60 L21 1.50 L06 8.60 L05 69.69 L12 Min -2.99 L09 1.41 L82 -1.60 L81 -1.50 L12 -8.66 L11 5.05 L82 100% Max -0.01 L44 20.61 L03 1.48 L21 1.50 L06 8.78 L05 115.87 L12 Min -2.99 L09 1.20 L82 -1.48 L81 -1.50 L12 -8.86 L11 7.98 L82 MEMBER 100 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max -0.01 L44 -1.05 L48 1.07 L55 0.79 L11 9.49 L08 55.90 L11 Min -2.70 L06 -12.10 L11 -1.06 L43 -0.80 L05 -9.44 L02 5.54 L48 50% Max -0.01 L44 -1.25 L48 1.19 L55 0.79 L11 8.63 L10 28.31 L11 Min -2.70 L06 -12.42 L11 -1.18 L43 -0.80 L05 -8.61 L04 2.95 L48 100% Max -0.01 L44 -1.46 L48 1.30 L55 0.79 L11 10.27 L43 0.10 L70 Min -2.70 L06 -12.74 L11 -1.30 L43 -0.80 L05 -10.28 L55 -0.10 L48 MEMBER 105 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 0.27 L02 0.45 L22 0.58 L10 0.41 L03 17.35 L09 308.78 L12 Min -3.60 L09 -4.88 L09 -0.56 L04 -0.41 L09 -17.25 L03 14.01 L83 50% Max 0.27 L02 0.40 L04 0.58 L10 0.41 L03 17.23 L09 307.15 L12 Min -3.60 L09 -4.93 L09 -0.56 L04 -0.41 L09 -17.13 L03 13.91 L83 185 of 252 100% Max 0.27 L02 0.36 L04 0.58 L10 0.41 L03 17.10 L09 305.50 L12 Min -3.60 L09 -4.98 L09 -0.56 L04 -0.41 L09 -17.00 L03 13.79 L83 MEMBER 106 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 0.27 L02 7.70 L03 0.60 L19 0.54 L06 15.42 L09 278.95 L12 Min -3.60 L09 -1.11 L11 -0.60 L79 -0.54 L12 -15.35 L03 14.50 L83 50% Max 0.27 L02 7.59 103 0.58 L10 0.54 L06 15.79 L09 284.81 L12 Min -3.60 L09 -1.22 L11 -0.56 L04 -0.54 L12 -15.71 L03 14.52 L83 100% Max 0.27 L02 7.48 L03 0.58 L10 0.54 LO6 16.15 L09 290.58 L12 Min -3.60 L09 -1.34 L11 -0.56 L04 -0.54 L12 -16.07 L03 14.50 L83 MEMBER 107 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip•ft] 0% Max 0.27 L02 0.36 104 0.87 LO6 0.99 L03 17.10 L09 305.50 L12 Min -3.60 L09 -12.28 L09 -0.88 L12 -0.99 L09 -17.00 L03 13.79 L83 50% Max 0.27 L02 0.27 L04 0.87 L06 0.99 L03 16.56 L09 297.80 L12 Min -3.60 L09 -12.37 L09 -0.88 L12 -0.99 L09 -16.46 L03 13.54 L83 100% Max 0.27 L02 0.18 L04 0.87 L06 0.99 L03 16.02 L09 290.11 L03 Min -3.60 L09 -12.45 L09 -0.88 L12 -0.99 L09 -15.91 L03 13.26 L83 MEMBER 108 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 0.27 L02 -0.20 L46 1.37 LO6 1.57 L03 13.20 L09 249.70 L03 Min -3.60 L09 -20.22 L09 -1.38 L12 -1.57 L09 -13.07 L03 11.23 L83 50% Max 0.27 L02 -0.39 L46 1.37 L06 1.57 L03 10.32 L09 207.38 L03 Min -3.60 L09 -20.51 L09 -1.38 L12 -1.57 109 -10.19 L21 9.41 L83 100% Max 0.27 L02 -0.58 L46 1.37 LO6 1.57 103 7.45 L81 164.42 L03 Min -3.60 L09 -20.81 L09 -1.38 L12 -1.57 L09 -7.47 L21 7.19 L83 MEMBER 115 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 0.27 L02 0.18 L04 0.87 L06 0.99 103 16.02 L09 290.11 L03 Min -3.60 L09 -12.45 L09 -0.88 L12 -0.99 109 -15.91 L03 13.26 L83 50% Max 0.27 L02 -0.05 104 0.87 L06 0.99 L03 14.61 L09 270.09 L03 Min -3.60 L09 -12.68 L09 -0.88 L12 -0.99 L09 -14.49 L03 12.37 L83 100% Max 0.27 L02 -0.20 L46 0.87 L06 0.99 L03 13.20 L09 249.70 L03 Min -3.60 L09 -12.91 L09 -0.88 L12 -0.99 L09 -13.07 L03 11.23 L83 MEMBER 116 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 0.27 L02 7.48 L03 0.58 L10 0.54 L06 16.15 L09 290.58 L12 Min -3.60 L09 -1.34 L11 -0.56 L04 -0.54 L12 -16.07 103 14.50 L83 50% Max 0.27 L02 7.32 103 0.58 L10 0.54 L06 16.67 L09 298.62 L12 Min -3.60 L09 -1.50 L11 -0.56 L04 -0.54 L12 -16.58 L03 14.36 L83 100% Max 0.27 L02 7.16 L03 0.58 L10 0.54 LO6 17.19 L09 306.49 L12 Min -3.60 L09 -1.66 L11 -0.56 L04 -0.54 L12 -17.10 L03 14.11 L83 186 of 252 MEMBER 117 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 0.26 L70 1.49 L19 0.50 L10 0.58 L04 0.92 L10 -0.28 L83 Min -0.26 L28 0.23 L83 -0.50 L04 -0.58 L01 -0.92 L04 -2.72 L58 50% Max 0.24 L70 1.34 L19 0.50 L10 0.58 L04 0.46 L10 -0.11 L83 Min -0.24 L28 0.14 L83 -0.50 L04 -0.58 LO1 -0.46 L04 -1.42 L58 100% Max 0.21 L70 1.20 L19 0.50 L10 0.58 L04 0.01 L37 0.20 L46 Min -0.21 L28 0.06 L83 -0.50 L04 -0.58 L01 -0.01 L81 -0.26 L58 MEMBER 118 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 0.27 L02 21.92 L09 1.86 L55 2.15 L01 4.83 L56 -0.35 L02 Min -3.60 L09 1.70 L47 -1.85 L43 -2.15 L07 -4.75 L44 -7.04 L58 50% Max 0.27 L02 21.73 L09 1.78 L55 2.15 LO1 3.33 L56 27.79 L03 Min -3.60 L09 1.58 L47 -1.78 L43 -2.15 L07 -3.26 L44 -2.20 L83 100% Max 0.27 L02 21.54 L09 1.71 L55 2.15 LO1 4.09 L10 56.30 L03 Min -3.60 L09 1.46 L47 -1.71 L43 -2.15 L07 -3.62 L04 0.04 L83 MEMBER 119 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip•ft] 0% Max 0.27 L02 21.45 L09 1.59 L57 1.57 L03 4.81 L10 70.47 L03 Min -3.60 L09 1.40 L47 -1.59 L45 -1.57 L09 -4.35 L04 1.10 L83 50% Max 0.27 L02 21.13 L09 1.47 L57 1.57 L03 5.38 L10 117.80 L03 Min -3.60 L09 1.19 L47 -1.47 L45 -1.57 L09 -4.95 L04 4.37 L83 100% Max 0.27 L02 20.81 L09 1.37 L06 1.57 L03 7.47 L21 164.42 L03 Min -3.60 L09 0.99 L47 -1.38 L12 -1.57 L09 -7.45 L81 7.19 L83 MEMBER 123 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 0.22 L11 6.84 LO1 0.95 L20 0.33 L04 3.92 L07 57.78 L07 Min -3.59 L06 1.29 L84 -0.95 L80 -0.33 L10 -3.45 LO1 0.72 L48 50% Max 0.22 L11 6.53 LO1 0.83 L20 0.33 L04 4.39 L55 72.16 L07 Min -3.59 L06 1.09 L84 -0.83 L80 -0.33 L10 -4.35 L43 3.60 L48 100% Max 0.22 L11 6.21 LO1 0.72 L20 0.33 L04 5.62 L55 85.85 L07 Min -3.59 L06 0.89 L84 -0.71 L80 -0.33 L10 -5.58 L43 6.04 L48 MEMBER 124 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 0.22 L11 26.37 L01 1.75 L19 1.86 L04 4.30 L20 -0.38 L11 Min -3.59 L06 1.60 L84 -1.75 L79 -1.86 L10 -4.21 L80 -26.05 LO1 50% Max 0.22 L11 26.18 LO1 1.68 L19 1.86 L04 2.94 L11 12.71 L07 Min -3.59 LO6 1.48 L84 -1.68 L79 -1.86 L10 -2.75 L80 -2.40 L48 100% Max 0.22 L11 25.99 L01 1.61 L19 1.86 L04 3.54 L07 47.27 L07 Min -3.59 LO6 1.36 L84 -1.61 L79 -1.86 L10 -3.06 LO1 -0.36 L48 MEMBER 125 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 is [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 0.07 L16 12.10 L07 0.83 L04 0.96 L01 1.52 L04 -0.28 L44 Min -0.07 L53 0.23 L48 -0.83 L10 -0.96 L04 -1.52 L10 -21.98 L10 50% Max 0.04 L16 11.97 L07 0.83 L04 0.96 L01 0.76 L04 -0.11 L44 Min -0.04 L53 0.14 L48 -0.83 L10 -0.96 L04 -0.76 L10 -10.94 L10 187 of 252 100% Max 0.02 L16 11.84 L07 0.83 L04 0.96 LO1 0.01 L75 -0.02 L44 Min -0.02 L53 0.06 L48 -0.83 L10 -0.96 L04 -0.01 L45 -0.03 L24 MEMBER 129 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip"ft] [Kip*ft] 0% Max 0.27 L02 7.16 L03 0.58 L10 0.54 LO6 17.19 L09 306.49 L12 Min -3.60 L09 -1.66 L11 -0.56 L04 -0.54 L12 -17.10 L03 14.11 L83 50% Max 0.27 L02 7.14 L03 0.58 L10 0.54 L06 17.27 L09 307.64 L12 Min -3.60 L09 -1.68 L11 -0.56 L04 -0.54 L12 -17.17 L03 14.06 L83 100% Max 0.27 L02 7.11 L03 0.58 L10 0.54 L06 17.35 L09 308.78 L12 Min -3.60 L09 -1.70 L11 -0.56 L04 -0.54 L12 -17.25 L03 14.01 L83 MEMBER 6 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 6.33 L83 3.23 L79 0.00 L02 0.01 L09 0.00 L09 0.00 L19 Min -23.50 L03 -3.59 L19 -0.28 L12 -0.01 L45 0.00 L52 0.00 L55 50% Max 6.51 L83 3.11 L79 0.00 L02 0.01 L09 1.69 L12 19.32 L79 Min -23.21 L03 -3.48 L19 -0.28 L12 -0.01 L45 0.00 L02 -21.56 L19 100% Max 6.69 L83 2.99 L79 0.04 L24 0.01 L09 3.39 L12 37.93 L79 Min -22.92 L03 -3.36 L19 -0.31 L78 -0.01 L45 0.00 L02 -42.41 L19 MEMBER 8 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 6.50 L48 2.67 L79 0.27 L06 0.01 L44 0.00 L22 0.00 L13 Min -42.13 L10 -3.04 L19 0.00 L11 -0.01 L56 0.00 L83 0.00 L73 50% Max 6.68 L48 2.55 L79 0.27 L06 0.01 L44 0.00 L11 15.91 L79 Min -41.84 L10 -2.92 L19 0.00 L11 -0.01 L56 -1.67 L06 -18.16 L19 100% Max 6.86 L48 2.44 L79 0.31 L22 0.01 L44 0.00 L11 31.11 L79 Min -41.55 L10 -2.80 L19 -0.04 L58 -0.01 L56 -3.33 L06 -35.61 L19 MEMBER 11 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max -3.97 L82 3.42 L56 0.08 L77 0.01 L03 0.00 L77 58.58 L44 Min -40.77 L02 -3.42 L44 -0.08 L18 -0.01 L09 0.00 L18 -58.60 L56 50% Max -3.73 L82 3.27 L56 0.00 L77 0.01 L03 0.31 L16 31.51 L44 Min -40.39 L02 -3.27 L44 0.00 L18 -0.01 L09 -0.31 L66 -31.52 L56 100% Max -3.48 L82 3.11 L56 0.08 L16 0.01 L03 0.00 L01 5.68 L44 Min -40.00 L02 -3.11 L44 -0.08 L66 -0.01 L09 0.00 LO1 -5.69 L56 MEMBER 18 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 7.64 L47 3.05 L55 0.32 L02 0.01 L21 0.00 L42 0.00 L10 Min -9.84 L55 -2.68 L43 0.00 L09 -0.01 L81 0.00 L24 0.00 L67 50% Max 7.83 L47 2.93 L55 0.32 L02 0.01 L21 0.00 L09 18.22 L55 Min -9.52 L55 -2.56 L43 0.00 L09 -0.01 L81 -1.95 L02 -15.99 L43 100% Max 8.01 L47 2.81 L55 0.33 L48 0.01 L21 0.00 L09 35.73 L55 Min -9.20 L55 -2.45 L43 -0.04 L58 -0.01 L81 -3.90 L02 -31.27 L43 188 of 252 MEMBER 19 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max -4.48 L46 3.71 L81 0.08 L65 0.01 L20 0.00 L22 63.36 L21 Min -41.24 L06 -3.71 L21 -0.08 L18 -0.01 L80 0.00 L18 -63.34 L81 50% Max -4.24 L46 3.56 L81 0.00 L22 0.01 L20 0.31 L22 33.99 L21 Min -40.86 LO6 -3.56 L21 0.00 L18 -0.01 L80 -0.31 L71 -33.97 L81 100% Max -4.00 L46 3.40 L81 0.08 L22 0.01 L20 0.00 LO1 5.85 L21 Min -40.48 L06 -3.40 L21 -0.08 L71 -0.01 L80 0.00 LO1 -5.84 L81 MEMBER 21 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 6.35 L84 3.59 L55 0.00 LO6 0.02 L80 0.00 L28 0.00 L43 Min -42.45 L04 -3.22 L43 -0.32 L08 -0.02 L20 0.00 L64 0.00 L79 50% Max 6.53 L84 3.47 L55 0.00 L06 0.02 L80 1.98 L08 21.54 L55 Min -42.16 L04 -3.10 L43 -0.32 L08 -0.02 L20 0.00 L06 -19.28 L43 100% Max 6.71 L84 3.36 L55 0.04 L23 0.02 L80 3.96 L08 42.37 L55 Min -41.87 L04 -2.99 L43 -0.33 L59 -0.02 L20 0.00 L06 -37.86 L43 MEMBER 23 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 11.92 L55 7.55 L19 0.37 L44 0.02 L08 6.38 L44 0.00 L55 Min -11.07 L43 -7.50 L79 -0.37 L56 -0.01 L03 -6.46 L56 0.00 L43 50% Max 11.97 L55 7.47 L43 0.37 L44 0.02 LO8 5.46 L44 18.76 L43 Min -11.12 L43 -7.62 L55 -0.37 L56 -0.01 L03 -5.53 L56 -18.89 L55 100% Max 12.02 L55 7.39 L43 0.37 L44 0.02 L08 4.55 L44 37.33 L43 Min -11.16 L43 -7.76 L55 -0.37 L56 -0.01 L03 -4.61 L56 -38.11 L55 MEMBER 24 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 0.36 L12 4.35 L55 0.37 L44 0.02 L02 4.55 L44 37.89 L43 Min -0.79 L06 -3.52 L43 -0.37 L56 -0.01 L09 -4.61 L56 -38.66 L55 50% Max 0.47 L80 3.82 L55 0.37 L44 0.02 L02 0.90 L44 2.33 L20 Min -0.84 L20 -3.81 L43 -0.37 L56 -0.01 L09 -0.90 L56 1.11 L80 100% Max 0.66 L80 3.52 L79 0.37 L44 0.02 L02 2.93 L57 37.87 L79 Min -1.03 L20 -4.35 L19 -0.37 L56 -0.01 L09 -2.92 L45 -38.61 L19 MEMBER 25 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 11.33 L19 7.75 L19 0.37 L44 0.02 LO5 2.93 L57 37.31 L79 Min -10.49 L79 -7.39 L79 -0.37 L56 -0.01 L12 -2.92 L45 -38.06 L19 50% Max 11.28 L19 7.61 L19 0.37 L44 0.02 L05 3.74 L57 18.75 L79 Min -10.44 L79 -7.46 L79 -0.37 L56 -0.01 L12 -3.73 L45 -18.87 L19 100% Max 11.23 L19 7.50 L43 0.37 L44 0.02 L05 4.65 L56 0.00 LO1 Min -10.39 L79 -7.55 L55 -0.37 L56 -0.01 L12 -4.57 L44 0.00 LO1 MEMBER 26 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 9.43 L55 6.29 L19 0.26 L80 0.00 L22 4.08 L81 0.00 L04 Min -8.59 L43 -6.23 L79 -0.27 L20 0.00 L84 -4.09 L21 0.00 L37 50% Max 9.48 L55 6.20 L43 0.26 L80 0.00 L22 3.46 L81 15.60 L43 Min -8.64 L43 -6.35 L55 -0.27 L20 0.00 L84 -3.47 L21 -15.70 L55 189 of 252 100% Max 9.52 L55 6.13 L43 0.26 L80 0.00 L22 2.85 L81 31.00 L43 Min -8.68 L43 -6.48 L55 -0.27 L20 0.00 L84 -2.85 L21 -31.73 L55 MEMBER 27 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 0.37 L44 3.71 L55 0.26 L80 0.00 L10 2.85 L81 31.47 L43 Min -0.73 L56 -2.88 L43 -0.27 L20 0.00 L03 -2.85 L21 -32.19 L55 50% Max 0.18 L44 3.17 L79 0.26 L80 0.00 L10 0.54 L09 2.28 L23 Min -0.55 L12 -3.18 L19 -0.27 L20 0.00 L03 -0.54 L03 1.21 L43 100% Max 0.14 LO6 2.88 L79 0.26 L80 0.00 L10 2.78 L20 31.51 L79 Min -0.55 L12 -3.71 L19 -0.27 L20 0.00 L03 -2.71 L80 -32.26 L19 MEMBER 28 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 10.02 L19 6.49 L19 0.26 L80 0.01 L58 2.78 L20 31.04 L79 Min -9.17 L79 -6.13 L79 -0.27 L20 0.00 L48 -2.71 L80 -31.80 L19 50% Max 9.97 L19 6.36 L19 0.26 L80 0.01 L58 3.45 L20 15.61 L79 Min -9.12 L79 -6.21 L79 -0.27 L20 0.00 L48 -3.37 L80 -15.73 L19 100% Max 9.92 L19 6.24 L43 0.26 L80 0.01 L58 4.13 L20 0.00 LO1 Min -9.07 L79 -6.30 L55 -0.27 L20 0.00 L48 -4.03 L80 0.00 LO1 MEMBER 30 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 is [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 12.72 L43 0.01 L16 0.03 L20 0.00 L05 0.46 L79 0.00 L79 Min -14.41 L55 -0.01 L52 -0.01 L80 0.00 L45 -0.48 L19 0.00 L19 50% Max 12.71 L43 0.00 L19 0.00 L04 0.00 L05 0.48 L55 0.01 L16 Min -14.45 L55 0.00 L79 -0.04 L10 0.00 L45 -0.48 L43 -0.01 L52 100% Max 12.70 L43 0.01 L52 -0.02 L79 0.00 L05 0.58 L55 0.00 LO1 Min -14.50 L55 -0.01 L16 -0.07 L19 0.00 L45 -0.38 L43 0.00 LO1 MEMBER 31 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 15.40 L79 0.01 L52 0.04 L56 0.01 L12 0.55 L43 0.00 L43 Min -17.10 L19 -0.01 L16 -0.02 L44 0.00 L80 -0.58 L55 0.00 L55 50% Max 15.40 L79 0.00 L55 0.00 L10 0.01 L12 0.58 L19 0.01 L52 Min -17.15 L19 0.00 L43 -0.04 L06 0.00 L80 -0.57 L79 -0.01 L16 100% Max 15.39 L79 0.01 L16 -0.02 L43 0.01 L12 0.68 L19 0.00 LO1 Min -17.20 L19 -0.01 L52 -0.08 L06 0.00 L80 -0.48 L79 0.00 LO1 MEMBER 33 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 15.41 L43 0.01 L16 0.03 L21 0.00 L45 0.55 L79 0.00 L79 Min -17.12 L55 -0.01 L52 -0.03 LO1 -0.01 L08 -0.58 L19 0.00 L19 50% Max 15.40 L43 0.00 L19 0.00 L45 0.00 L45 0.58 L55 0.01 L16 Min -17.16 L55 0.00 L79 -0.06 LO1 -0.01 L08 -0.57 L43 -0.01 L52 100% Max 15.39 L43 0.01 L52 -0.02 L79 0.00 L45 0.68 L55 0.00 LO1 Min -17.21 L55 -0.01 L16 -0.09 LO1 -0.01 L08 -0.48 L43 0.00 LO1 190 of 252 MEMBER 34 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max -0.06 L48 0.07 L22 0.04 L56 0.00 L56 0.00 L19 0.00 L48 Min -12.30 LO8 0.03 L84 -0.04 L44 0.00 L44 0.00 L79 -0.38 L08 50% Max 0.00 L48 0.02 L08 0.00 L19 0.00 L56 0.18 L19 0.27 L24 Min -12.19 LO8 0.00 L48 0.00 L79 0.00 L44 -0.18 L79 -0.15 L83 100% Max 0.11 L24 0.02 L83 0.04 L19 0.00 L56 0.00 LO1 0.00 101 Min -12.09 LO8 -0.07 L24 -0.04 L79 0.00 L44 0.00 LO1 0.00 LO1 MEMBER 35 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip•ft] [Kip*ft] [Kip*ft] 0% Max -0.06 L47 0.07 L22 0.04 L81 0.00 L81 0.00 L43 0.00 L47 Min -10.34 L60 0.02 L83 -0.04 L21 0.00 L21 0.00 L55 -0.32 L60 50% Max 0.00 L47 0.02 L60 0.00 L43 0.00 L81 0.18 L43 0.27 L23 Min -10.21 L60 0.00 L47 0.00 L55 0.00 L21 -0.18 L55 -0.14 L84 100% Max 0.11 L23 0.01 L84 0.04 L43 0.00 L81 0.00 LO1 0.00 LO1 Min -10.14 L84 -0.07 L23 -0.04 L55 0.00 L21 0.00 LO1 0.00 L01 MEMBER 36 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 7.18 L84 7.93 L43 0.04 L23 0.02 L56 3.96 L08 41.66 L55 Min -44.09 LO1 -8.78 L55 -0.34 L59 -0.02 L44 0.00 L03 -37.42 L43 50% Max 7.22 L84 7.96 L43 0.06 L23 0.02 L56 4.42 LO8 29.33 L55 Min -44.03 LO1 -8.81 L55 -0.36 L59 -0.02 L44 0.00 L03 -26.28 L43 100% Max 7.26 L84 7.98 L43 0.07 L23 0.02 L56 4.88 L08 16.96 L55 Min -43.96 LO1 -8.83 L55 -0.37 L59 -0.02 L44 0.00 L03 -15.10 L43 MEMBER 37 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 2.51 L81 8.03 L43 4.18 L08 0.02 L56 4.88 L08 16.96 L55 Mn`, -45.05 L10 -8.88 L55 0.00 L03 -0.02 L44 0.00 L03 -15.10 L43 50% Max - 2.53 L81 8.04 L43 4.18 L08 0.02 L56 2.44 LO8 11.78 L55 Min -45.03 L10 -8.89 L55 0.00 L03 -0.02 L44 0.00 L03 -10.41 L43 100% Max 2.55 L81 8.05 L43 4.18 LO8 0.02 L56 0.00 LO1 6.60 L55 Min -45.00 L10 -8.90 L55 0.00 L03 -0.02 L44 0.00 LO1 -5.73 L43 MEMBER 38 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 3.45 L44 8.86 L19 3.48 L12 0.01 L81 4.17 L12 15.18 L79 Min -24.42 L09 -8.02 L79 0.00 L05 -0.01 L12 0.00 L05 -17.03 L19 50% Max 3.47 L44 8.87 L19 3.48 L12 0.01 L81 2.09 L12 10.37 L79 Min -24.39 L09 -8.03 L79 0.00 L05 -0.01 L12 0.00 L05 -11.72 L19 100% Max 3.49 L44 8.89 L19 3.48 L12 0.01 L81 0.00 LO1 5.56 L79 Min -24.36 L09 -8.04 L79 0.00 L05 -0.01 L12 0.00 LO1 -6.39 L19 MEMBER 39 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 7.16 L83 8.77 L19 0.04 L24 0.01 L81 3.39 L12 37.48 L79 Min -23.38 L06 -7.92 L79 -0.32 L78 -0.01 L12 0.00 L05 -41.70 L19 50% Max 7.20 L83 8.79 L19 0.06 L24 0.01 L81 3.78 L12 26.35 L79 Min -23.31 L06 -7.95 L79 -0.34 L78 -0.01 L12 0.00 L05 -29.38 L19 191 of 252 100% Max 7.24 L83 8.82 L19 0.07 L24 0.01 L81 4.17 L12 15.18 L79 Min -23.24 L06 -7.98 L79 -0.35 L78 -0.01 L12 0.00 L05 -17.03 L19 MEMBER 40 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 8.49 L05 6.57 L43 0.34 L48 0.01 L45 0.00 L12 35.12 L55 Min -11.58 L19 -7.41 L55 -0.04 L58 -0.01 L57 -3.90 L02 -30.92 L43 50% Max 8.56 L05 6.59 L43 0.35 L48 0.01 L45 0.00 L12 24.71 L55 Min -11.51 L19 -7.44 L55 -0.06 L58 -0.01 L57 -4.35 L02 -21.69 L43 100% Max 8.62 L05 6.62 L43 0.37 L48 0.01 L45 0.00 L12 14.26 L55 Min -11.44 L19 -7.46 L55 -0.07 L58 -0.01 L57 -4.80 L02 -12.42 L43 MEMBER 41 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 7.32 L48 7.44 L19 0.32 L22 0.01 L20 0.00 L08 30.77 L79 Min -43.25 L07 -6.59 L79 -0.04 L58 -0.01 L80 -3.33 LO6 -35.00 L19 50% Max 7.36 L48 7.46 L19 0.34 L22 0.01 L20 0.00 L08 21.51 L79 Min -43.19 L07 -6.61 L79 -0.06 L58 -0.01 L80 -3.72 LO6 -24.56 L19 100% Max 7.41 L48 7.49 L19 0.35 L22 0.01 L20 0.00 L08 12.21 L79 Min -43.12 L07 -6.64 L79 -0.07 L58 -0.01 L80 -4.10 L06 -14.07 L19 MEMBER 42 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 12.71 L79 0.01 L16 0.09 L07 0.00 L80 0.57 L19 0.00 L43 Min -14.52 L19 -0.01 L52 0.02 L43 0.00 L02 -0.38 L79 0.00 L55 50% Max 12.72 L79 0.00 L55 0.06 L07 0.00 L80 0.48 L19 0.01 L16 Min -14.48 L19 0.00 L43 0.00 L81 0.00 L02 -0.48 L79 -0.01 L52 100% Max 12.72 L79 0.01 L52 0.03 L07 0.00 L80 0.46 L43 0.00 LO1 Min -14.43 L19 -0.01 L16 -0.03 L57 0.00 L02 -0.50 L07 0.00 LO1 MEMBER 43 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 1.71 L43 7.53 L19 0.00 LO8 0.01 L20 0.00 L08 12.21 L79 Min -43.49 L04 -6.69 L79 -3.42 L06 -0.01 L80 -4.10 L06 -14.07 L19 50% Max 1.73 L43 7.54 L19 0.00 L08 0.01 L20 0.00 L08 8.20 L79 Min -43.47 L04 -6.70 L79 -3.42 L06 -0.01 L80 -2.05 L06 -9.55 L19 100% Max 1.75 L43 7.56 L19 0.00 L08 0.01 L20 0.00 LO1 4.19 L79 Min -43.44 L04 -6.71 L79 -3.42 LO6 -0.01 L80 0.00 LO1 -5.03 L19 MEMBER 44 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 2.17 L79 6.66 L43 0.00 L12 0.01 L45 0.00 L12 14.26 L55 Min -13.46 L19 -7.51 L55 -4.11 L02 -0.01 L57 -4.80 L02 -12.42 L43 50% Max 2.19 L79 6.68 L43 0.00 L12 0.01 L45 0.00 L12 9.88 L55 Min -13.43 L19 -7.52 L55 -4.11 L02 -0.01 L57 -2.40 L02 -8.53 L43 100% Max 2.21 L79 6.69 L43 0.00 L12 0.01 L45 0.00 LO1 5.50 L55 Min -13.40 L19 -7.53 L55 -4.11 L02 -0.01 L57 0.00 LO1 -4.64 L43 192 of 252 MEMBER 45 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max -0.06 L83 0.07 L58 0.04 L20 0.00 L20 0.00 L55 0.00 L83 Min -10.34 L22 0.02 L48 -0.04 L80 0.00 L80 0.00 L43 -0.32 L22 50% Max 0.00 L83 0.02 L22 0.00 L55 0.00 L20 0.18 L55 0.27 L59 Min -10.22 L22 0.00 L83 0.00 L43 0.00 L80 -0.18 L43 -0.14 L46 100% Max 0.11 L59 0.01 L46 0.04 L55 0.00 L20 0.00 LO1 0.00 LO1 Min -10.14 L46 -0.07 L59 -0.04 L43 0.00 L80 0.00 L01 0.00 LO1 MEMBER 46 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max -0.06 L84 0.07 L58 0.04 L45 0.00 L45 0.00 L79 0.00 L84 Min -12.10 L02 0.03 L46 -0.04 L57 0.00 L57 0.00 L19 -0.37 L02 50% Max 0.00 L84 0.02 L02 0.00 L79 0.00 L45 0.18 L79 0.27 L60 Min -12.00 L02 0.00 L84 0.00 L19 0.00 L57 -0.18 L19 -0.15 L48 100% Max 0.11 L60 0.02 L48 0.04 L79 0.00 L45 0.00 LO1 0.00 LO1 Min -11.90 L02 -0.07 L60 -0.04 L19 0.00 L57 0.00 LO1 0.00 LO1 MEMBER 69 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max -0.07 L47 0.02 L47 0.04 L21 0.00 L43 0.00 L21 0.32 L60 Min -9.61 L60 -3.80 L60 -0.04 L81 0.00 L55 0.00 L81 0.00 L47 50% Max -0.07 L47 0.02 L47 0.04 L21 0.00 L43 0.00 L21 0.16 L60 Min -9.61 L60 -3.80 L60 -0.04 L81 0.00 L55 0.00 L81 0.00 L47 100% Max -0.07 L47 0.02 L47 0.04 L21 0.00 L43 0.00 LO1 0.00 101 Min -9.62 L60 -3.80 L60 -0.04 L81 0.00 L55 0.00 LO1 0.00 LO1 MEMBER 70 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max -0.07 L48 0.02 L48 0.04 L44 0.00 L19 0.00 L44 0.38 LO8 Min -11.44 L08 -4.51 L08 -0.04 L56 0.00 L79 0.00 L56 0.00 L48 50% Max -0.07 L48 0.02 L48 0.04 L44 0.00 L19 0.00 L44 0.19 LO8 Min -11.44 L08 -4.51 L08 -0.04 L56 0.00 L79 0.00 L56 0.00 L48 100% Max -0.07 L48 0.02 L48 0.04 L44 0.00 L19 0.00 LO1 0.00 LO1 Min -11.44 L08 -4.51 L08 -0.04 L56 0.00 L79 0.00 LO1 0.00 LO1 MEMBER 71 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max -0.07 L83 3.80 L22 0.04 L20 0.00 L55 0.00 L20 0.00 L83 Min -9.62 L22 -0.02 L83 -0.04 L80 0.00 L43 0.00 L80 -0.32 L22 50% Max -0.07 L83 3.80 L22 0.04 L20 0.00 L55 0.00 L20 0.00 L83 Min -9.62 L22 -0.02 L83 -0.04 L80 0.00 L43 0.00 L80 -0.16 L22 100% Max -0.07 L83 3.80 L22 0.04 L20 0.00 L55 0.00 LO1 0.00 LO1 Min -9.62 L22 -0.02 L83 -0.04 L80 0.00 L43 0.00 LO1 0.00 LO1 MEMBER 72 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max -0.07 L84 4.43 L02 0.04 L45 0.00 L79 0.00 L45 0.00 L84 Min -11.26 L02 -0.02 L84 -0.04 L57 0.00 L19 0.00 L57 -0.37 L02 50% Max -0.07 L84 4.43 L02 0.04 L45 0.00 L79 0.00 L45 0.00 L84 Min -11.26 L02 -0.02 L84 -0.04 L57 0.00 L19 0.00 L57 -0.18 L02 193 of 252 100% Max -0.07 L84 4.43 L02 0.04 L45 0.00 L79 0.00 LOl 0.00 L01 Min -11.26 L02 -0.02 L84 -0.04 L57 0.00 L19 0.00 LO1 0.00 LO1 MEMBER 81 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip'ft] [Kip'ft] [Kip'ft] 0% Max 0.02 L34 0.12 L24 0.04 L55 0.00 L01 0.01 L61 -0.02 L44 Min -0.02 L59 0.07 L43 -0.04 L13 0.00 L57 -0.01 L13 -0.04 L20 50% Max 0.01 L34 0.06 L24 0.02 L55 0.00 LOl 0.00 L61 -0.01 L44 Min -0.01 L59 0.03 L43 -0.02 L13 0.00 L57 0.00 L13 -0.01 L20 100% Max 0.00 L34 0.00 L03 0.00 L19 0.00 LO1 0.00 L61 0.00 L22 Min 0.00 L30 0.00 L12 0.00 L13 0.00 L57 0.00 L10 0.00 L70 Envelope for nodal reactions-Connection Design with Omega Note.- Ic is the controlling load condition My Y c-.- J x FY Mx Z Fx Fz m:Y‘ Direction of positive forces and moments Envelope of nodal reactions for . L01=1.2D+1.2Cd1+1.6Cv1+1.6Ci1+1.6Cs1+1.6Cls L37=0.9D+0.9Cd1+Ehsl+Ehv1 L02=1.2D+1.2Cd2+1.6Cv2+1.6Ci2+1.6Cs2+1.6CIs L38=0.9D+0.9Cd2+Ehs2+Ehv2 L03=1.2D+1.2Cd3+1.6Cv3+1.6Ci3+1.6Cs3+1.6Cls L39=0.9D+0.9Cd3+Ehs3+Ehv3 L04=1.20+1.2Cd1+1.6Cv1+1.6Ci1-1.6Cs1+1.6C1s L40=0.9D+0.9Cd1+Ehl1+Ehv1 L05=1.2D+1.2Cd2+1.6Cv2+1.6Ci2-1.6Cs2+1.6Cls L41=0.9D+0.9Cd2+Eh12+Ehv2 L06=1.2D+1.2Cd3+1.6Cv3+1.6Ci3-1.6Cs3+1.6Cls L42=0.9D+0.9Cd3+Eh13+Ehv3 L071.20+1.2Cd 1+1.6Cv1+1.6Ci 1-1.6Cs1-1.6CIs L43=0.9D+0.9Cd 1+Ehs1-Ehv1 L08=1.2D+1.2Cd2+1.6Cv2+1.6Ci2-1.6Cs2-1.6CIs L44=0.9D+0.9Cd2+Ehs2-Ehv2 L09=1.2D+1.2Cd3+1.6Cv3+1.6Ci3-1.6Cs3-1.6CIs L45=0.9D+0.9Cd3+Ehs3-Ehv3 L10=1.2D+1.2Cd1+1.6Cv1+1.6C11+1.6Cs1-1.6CIs L46=0.9D+0.9Cd1+Eh11-Ehv1 L11=1.2D+1.2Cd2+1.6Cv2+1.6Ci2+1.6Cs2-1.6CIs L47=0.9D+0.9Cd2+Eh12-Ehv2 L12=1.2D+1.2Cd3+1.6Cv3+1.6Ci3+1.6Cs3-1.6CIs L48=0.9D+0.9Cd3+Eh13-Ehv3 L13=1.20+1.2Cd1+Ehs1 L49=1.20+1.2Cd1-Ehs1 L14=1.20+1.2Cd2+Ehs2 L50=1.2D+1.2Cd2-Ehs2 L15=1.20+1.2Cd3+Ehs3 L51=1.2D+1.2Cd3-Ehs3 Li 6=1.20+1.2Cd 1+Eh11 L52=1.20+1.2Cd 1-Ehl1 L17=1.2D+1.2Cd2+Ehl2 L53=1.20+1.2Cd2-Eh12 L18=1.2D+1.2Cd3+Eh13 L54=1.2D+1.2Cd3-Eh13 L19=1.20+1.2Cd1+Ehsl+Ehv1 L55=1.2D+1.2Cd1-Ehsl+Ehv1 L20=1.20+1.2Cd2+Ehs2+Ehv2 L56=1.20+1.2Cd2-Ehs2+Ehv2 L21=1.20+1.2Cd3+Ehs3+Ehv3 L57=1.2D+1.2Cd3-Ehs3+Ehv3 L22=1.2D+1.2Cd1+Ehll+Ehv1 L58=1.2D+1.2Cd1-Eh11+Ehv1 L23=1.2D+1.2Cd2+Eh12+Ehv2 L59=1.2D+1.2Cd2-Eh12+Ehv2 L24=1.2D+1.2Cd3+Eh13+Ehv3 L60=1.20+1.2Cd3-Eh13+Ehv3 L25=1.20+1.2Cd1+Ehs1-Ehv1 L61=1.2D+1.2Cd1-Ehsl-Ehv1 L26=1.20+1.2Cd2+Ehs2-Ehv2 L62=1.2D+1.2Cd2-Ehs2-Ehv2 L27=1.20+1.2Cd3+Ehs3-Ehv3 L63=1.20+1.2Cd3-Ehs3-Ehv3 L28=1.20+1.2Cd1+Ehl1-Ehv1 L64=1.2D+1.2Cd1-Ehll-Ehv1 L29=1.2D+1.2Cd2+Eh12-Ehv2 L65=1.20+1.2Cd2-Eh12-Ehv2 L30=1.20+1.2Cd3+Eh13-Ehv3 L66=1.20+1.2Cd3-Eh13-Ehv3 L31=0.9D+0.9Cd 1+Ehs1 L67=0.9D+0.9Cd 1-Ehs1 L32=0.9D+0.9Cd2+Ehs2 L68=0.9D+0.9Cd2-Ehs2 L33=0.9D+0.9Cd3+Ehs3 L69=0.9D+0.9Cd3-Ehs3 L34=0.9D+0.9Cd 1+Eh11 L70=0.9D+0.9Cd 1-Ehl1 L35=0.9D+0.9Cd2+Eh12 L71=0.9D+0.9Cd2-Eh12 L36=0.9D+0.9Cd3+Ehl3 L72=0.9D+0.9Cd3-Eh13 194 of 252 L73=0.9D+0.9Cd1-Ehsl+Ehv1 C31=0.9D+0.9Cd1+1.5Ehs1-Ehv1 L74=0.9D+0.9Cd2-Ehs2+Ehv2 C32=0.9D+0.9Cd2+1.5Ehs2-Ehv2 L75=0.9D+0.9Cd3-Ehs3+Ehv3 C33=0.9D+0.9Cd3+1.5Ehs3-Ehv3 L76=0.9D+0.9Cd1-Ehll+Ehv1 C34=0.9D+0.9Cd1+1.5EhI1-Ehv1 L77=0.9D+0.9Cd2-Eh12+Ehv2 C35=0.9D+0.9Cd2+1.5Eh12-Ehv2 L78=0.9D+0.9Cd3-Eh13+Ehv3 C36=0.9D+0.9Cd3+1.5EhI3-Ehv3 L79=0.9D+0.9Cd 1-Ehs 1-Ehv1 C37=1.2D+1.2Cd 1-1.5Ehs1 L80=0.9D+0.9Cd2-Ehs2-Ehv2 C38=1.2D+1.2Cd2-1.5Ehs2 L81=0.9D+0.9Cd3-Ehs3-Ehv3 C39=1.2D+1.2Cd3-1.5Ehs3 L82=0.9D+0.9Cd1-Eh1l-Ehv1 C40=1.2D+1.2Cd1-1.5Eh11 L83=0.9D+0.9Cd2-Eh12-Ehv2 C41=1.2D+1.2Cd2-1.5Ehl2 L84=0.9D+0.9Cd3-Eh13-Ehv3 C42=1.2D+1.2Cd3-1.5Ehl3 C01=1.2D+1.2Cd1+1.5Ehs1 C43=1.2D+1.2Cd1-1.5Ehsl+Ehv1 CO2=1.2D+1.2Cd2+1.5Ehs2 C44=1.2D+1.2Cd2-1.5Ehs2+Ehv2 CO3=1.2D+1.2Cd3+1.5Ehs3 C45=1.2D+1.2Cd3-1.5Ehs3+Ehv3 C04=1.2D+1.2Cd 1+1.5Eh11 C46=1.2D+1.2Cd 1-1.5Ehl l+Ehv1 C05=1.2D+1.2Cd2+1.5Ehl2 C47=1.2D+1.2Cd2-1.5Ehl2+Ehv2 C06=1.2D+1.2Cd3+1.5Eh13 C48=1.2D+1.2Cd3-1.5Ehl3+Ehv3 C07=1.2D+1.2Cd1+1.5Ehsl+Ehv1 C49=1.2D+1.2Cd1-1.5Ehs1-Ehvl C08=12D+1.2Cd2+1.5Ehs2+Ehv2 C50=1.2D+1.2Cd2-1.5Ehs2-Ehv2 C09=1.2D+1.2Cd3+1.5Ehs3+Ehv3 C51=1.2D+1.2Cd3-1.5Ehs3-Ehv3 C10=1.2D+1.2Cd1+1.5Ehll+Ehv1 C52=1.2D+1.2Cd1-1.5Eh11-Ehv1 C11=1.2D+1.2Cd2+1.5Ehl2+Ehv2 C53=1.2D+1.2Cd2-1.5Eh12-Ehv2 C12=1.20+1.2Cd3+1.5Ehl3+Ehv3 C54=1.2D+1.2Cd3-1.5Eh13-Ehv3 C13=120+1.2Cd1+1.5Ehs1-Ehv1 C55=0.9D+0.9Cd1-1.5Ehsl C14=1.20+1.2Cd2+1.5Ehs2-Ehv2 C56=0.9D+0.9Cd2-1.5Ehs2 C15=1.2D+1.2Cd3+1.5Ehs3-Ehv3 C57=0.9D+0.9Cd3-1.5Ehs3 C16=1.20+1.2Cd1+1.5Eh11-Ehv1 C58=0.9D+0.9Cd1-1.5Eh11 C17=1.2D+1.2Cd2+1.5Eh12-Ehv2 C59=0.9D+0.9Cd2-1.5Eh12 C18=1.2D+1.2Cd3+1.5Eh13-Ehv3 C60=0.9D+0.9Cd3-1.5Eh13 C19=0.9D+0.9Cd1+1.5Ehs1 C61=0.9D+0.9Cd1-1.5Ehsl+Ehv1 C20=0.9D+0.9Cd2+1.5Ehs2 C62=0.9D+0.9Cd2-1.5Ehs2+Ehv2 C21=0.9D+0.9Cd3+1.5Ehs3 C63=0.9D+0.9Cd3-1.5Ehs3+Ehv3 C22=0.9D+0.9Cd 1+1.5Ehl1 C64=0.9D+0.9Cd 1-1.5Ehl1+Ehv1 C23=0.9D+0.9Cd2+1.5Eh12 C65=0.9D+0.9Cd2-1.5Ehl2+Ehv2 C24=0.9D+0.9Cd3+1.5Eh13 C66=0.9D+0.9Cd3-1.5Ehl3+Ehv3 C25=0.9D+0.9Cd 1+1.5Ehs1+Ehv1 C67=0.9D+0.9Cd1-1.5Ehs1-Ehv1 C26=0.9D+0.9Cd2+1.5Ehs2+Ehv2 C68=0.9D+0.9Cd2-1.5Ehs2-Ehv2 C27=0.9D+0.9Cd3+1.5Ehs3+Ehv3 C69=0.9D+0.9Cd3-1.5Ehs3-Ehv3 C28=0.9D+0.9Cd 1+1.5Eh11+Ehv1 C70=0.9D+0.9Cd 1-1.5Eh11-Ehv1 C29=0.9D+0.9Cd2+1.5Ehl2+Ehv2 C71=0.9D+0.9Cd2-1.5Eh12-Ehv2 C30=0.9D+0.9Cd3+1.5Ehl3+Ehv3 C72=0.9D+0.9Cd3-1.5Eh13-Ehv3 Forces Moments Node Fx Ic Fy Ic Fz Ic Mx Ic My Ic Mz Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 15 Max 0.115 C41 41.244 L06 5.565 C69 95.00975 C69 0.02024 C68 0.00000 LO1 Min -0.115 C05 4.390 C34 -5.566 C09 -95.03447 co 9 -0.02024 C08 0.00000 LO1 14 Max 0.000 L06 42.450 L04 5.267 C43 0.00000 LO1 0.03008 CO8 0.00000 LO1 Min -0.326 C47 -11.476 C72 -4.897 C31 0.00000 LO1 -0.02960 C68 0.00000 LO1 Forces envelope for Connection Design with Omega Note.- Ic is the controlling load condition Forces envelope for . LOl=1.2D+1.2Cd 1+1.6Cv1+1.6Ci1+1.6Cs 1+1.6CIs L09=1.2D+1.2Cd3+1.6Cv3+1.6Ci3-1.6Cs3-1.6CIs L02=1.20+12Cd2+1.6Cv2+1.6Ci2+1.6Cs2+1.6CIs L10=1.2D+1.2Cd1+1.6Cv1+1.6Ci1+1.6Cs1-1.6CIs L03=1.2D+1.2Cd3+1.6Cv3+1.6Ci3+1.6Cs3+1.6Cls L11=1.2D+1.2Cd2+1.6Cv2+1.6Ci2+1.6Cs2-1.6CIs L04=1.2D+1.2Cd1+1.6Cv1+1.6Ci 1-1.6Cs1+1.6Cls L12=1.2D+1.2Cd3+1.6Cv3+1.6Ci3+1.6Cs3-1.6CIs L05=1.2D+1.2Cd2+1.6Cv2+1.6Ci2-1.6Cs2+1.6Cls L13=1.20+12Cd1+Ehs1 L06=1.2D+1.2Cd3+1.6Cv3+1.6Ci3-1.6Cs3+1.6Cls L14=1.20+1.2Cd2+Ehs2 L07=1.20+1.2Cd1+1.6Cv1+1.6Ci1-1.6Cs1-1.6CIs L15=1.20+1.2Cd3+Ehs3 L08=1.2D+1.2Cd2+1.6Cv2+1.6Ci2-1.6Cs2-1.6Cls L16=1.20+1.2Cd1+Ehl1 195 of 252 L17=1.2D+1.2Cd2+Eh12 Cal=1.2D+1.2Cd1+1.5Ehs1 L18=1.2D+1.2Cd3+Eh13 CO2=1.2D+1.2Cd2+1.5Ehs2 L19=1.2D+1.2Cd1+Ehsl+Ehv1 CO3=1.2D+1.2Cd3+1.5Ehs3 L20=1.2D+1.2Cd2+Ehs2+Ehv2 C04=1.2D+1.2Cd1+1.5Eh11 L21=1.2D+1.2Cd3+Ehs3+Ehv3 C05=1.2D+1.2Cd2+1.5Eh12 L22=1.2D+1.2Cd1+Eh11+Ehv1 C06=1.2D+1.2Cd3+1.5Eh13 L23=1.2D+1.2Cd2+Eh12+Ehv2 C07=1.2D+1.2Cd1+1.5Ehsl+Ehv1 L24=1.2D+1.2Cd3+Eh13+Ehv3 C08=1.2D+1.2Cd2+1.5Ehs2+Ehv2 L25=1.2D+1.2Cd1+Ehs 1-Ehv1 C09=1.2D+1.2Cd3+1.5Ehs3+Ehv3 L26=1.20+1.2Cd2+Ehs2-Ehv2 C10=1.2D+1.2Cd 1+1.5Eh11+Ehv1 L27=1.2D+1.2Cd3+Ehs3-Ehv3 C11=1.2D+1.2Cd2+1.5Ehl2+Ehv2 L28=1.2D+1.2Cd1+Eh11-Ehv1 C12=1.2D+1.2Cd3+1.5EhI3+Ehv3 L29=1.2D+1.2Cd2+Eh12-Ehv2 C13=1.20+1.2Cd1+1.5Ehs1-Ehv1 L30=1.2D+1.2Cd3+Eh13-Ehv3 C14=1.2D+1.2Cd2+1.5Ehs2-Ehv2 L31=0.9D+0.9Cd 1+Ehs1 C15=1.20+1.2Cd3+1.5Ehs3-Ehv3 L32=0.9D+0.9Cd2+Ehs2 Cl 6=1.20+1.2Cd 1+1.5Eh11-Ehv1 L33=0.9D+0.9Cd3+Ehs3 C17=1.2D+1.2Cd2+1.5EhI2-Ehv2 L34=0.9D+0.9Cd1+Ehl1 C18=1.2D+1.2Cd3+1.5Eh13-Ehv3 L35=0.9D+0.9Cd2+Eh12 C19=0.9D+0.9Cd1+1.5Ehs1 L36=0.9D+0.9Cd3+Eh13 C20=0.9D+0.9Cd2+1.5Ehs2 L37=0.9D+0.9Cd 1+Ehs1+Ehv1 C21=0.9D+0.9Cd3+1.5Ehs3 L38=0.9D+0.9Cd2+Ehs2+Ehv2 C22=0.9D+0.9Cd1+1.5EhI1 L39=0.9D+0.9Cd3+Ehs3+Ehv3 C23=0.9D+0.9Cd2+1.5EhI2 L40=0.9D+0.9Cd1+EhI1+Ehv1 C24=0.9D+0.9Cd3+1.5EhI3 L41=0.9D+0.9Cd2+Eh12+Ehv2 C25=0.9D+0.9Cd 1+1.5Ehs1+Ehv1 L42=0.9D+0.9Cd3+Eh13+Ehv3 C26=0.9D+0.9Cd2+1.5Ehs2+Ehv2 L43=0.9D+0.9Cd 1+Ehs 1-Ehv1 C27=0.9D+0.9Cd3+1.5Ehs3+Ehv3 L44=0.9D+0.9Cd2+Ehs2-Ehv2 C28=0.9D+0.9Cd 1+1.5EhI1+Ehv1 L45=0.9D+0.9Cd3+Ehs3-Ehv3 C29=0.9D+0.9Cd2+1.5EhI2+Ehv2 L46=0.9D+0.9Cd1+Ehl1-Ehv1 C30=0.9D+0.9Cd3+1.5EhI3+Ehv3 L47=0.9D+0.9Cd2+Eh12-Ehv2 C31=0.9D+0.9Cd 1+1.5Ehs1-Ehv1 L48=0.9D+0.9Cd3+Eh13-Ehv3 C32=0.9D+0.9Cd2+1.5Ehs2-Ehv2 L49=1.20+1.2Cd 1-Ehs1 C33=0.9D+0.9Cd3+1.5Ehs3-Ehv3 L50=1.2D+1.2Cd2-Ehs2 C34=0.9D+0.9Cd1+1.5EhI1-Ehv1 L51=1.2D+1.2Cd3-Ehs3 C35=0.9D+0.9Cd2+1.5EhI2-Ehv2 L52=1.2D+1.2Cd 1-Ehl1 C36=0.9D+0.9Cd3+1.5EhI3-Ehv3 L53=1.20+1.2Cd2-Eh12 C37=1.2D+1.2Cd1-1.5Ehs1 L54=1.20+1.2Cd3-Eh13 C38=1.2D+1.2Cd2-1.5Ehs2 L55=1.20+1.2Cd1-Ehsl+Ehv1 C39=1.2D+1.2Cd3-1.5Ehs3 L56=1.2D+1.2Cd2-Ehs2+Ehv2 C40=1.20+1.2Cd1-1.5Eh11 L57=1.2D+1.2Cd3-Ehs3+Ehv3 C41=1.2D+1.2Cd2-1.5Eh12 L581.2D+1.2Cd 1-Ehl1+Ehv1 C42=1.20+1.2Cd3-1.5Eh13 L59=1.20+1.2Cd2-Eh12+Ehv2 C43=1.2D+1.2Cd1-1.5Ehsl+Ehv1 L60=1.20+1.2Cd3-Eh13+Ehv3 C44=1.2D+1.2Cd2-1.5Ehs2+Ehv2 L61=1.2D+1.2Cd1-Ehsl-Ehv1 C45=1.2D+1.2Cd3-1.5Ehs3+Ehv3 L62=1.2D+1.2Cd2-Ehs2-Ehv2 C46=1.20+1.2Cd1-1.5Eh11+Ehv1 L63=1.2D+1.2Cd3-Ehs3-Ehv3 C47=1.2D+1.2Cd2-1.5Eh12+Ehv2 L64=1.2D+1.2Cd1-Ehll-Ehv1 C48=1.2D+1.2Cd3-1.5Eh13+Ehv3 L65=1.2D+1.2Cd2-Eh12-Ehv2 C49=1.2D+1.2Cd1-1.5Ehs1-Ehv1 L66=1.2D+1.2Cd3-Eh13-Ehv3 C50=1.2D+1.2Cd2-1.5Ehs2-Ehv2 L67=0.9D+0.9Cd1-Ehs1 C51=1.20+1.2Cd3-1.5Ehs3-Ehv3 L68=0.9D+0.9Cd2-Ehs2 C52=1.2D+1.2Cd1-1.5Eh11-Ehv1 L69=0.9D+0.9Cd3-Ehs3 C53=1.2D+1.2Cd2-1.5Eh12-Ehv2 L70=0.9D+0.9Cd 1-Ehl1 C54=1.2D+1.2Cd3-1.5Eh13-Ehv3 L71=0.9D+0.9Cd2-Eh12 C55=0.9D+0.9Cd 1-1.5Ehs1 L72=0.9D+0.9Cd3-Eh13 C56=0.9D+0.9Cd2-1.5Ehs2 L73=0.9D+0.9Cd 1-Ehs 1+Ehv1 C57=0.9D+0.9Cd3-1.5Ehs3 L74=0.9D+0.9Cd2-Ehs2+Ehv2 C58=0.9D+0.9Cd 1-1.5Eh11 L75=0.9D+0.9Cd3-Ehs3+Ehv3 C59=0.9D+0.9Cd2-1.5Eh12 L76=0.9D+0.9Cd 1-Ehl l+Ehv1 C60=0.9D+0.9Cd3-1.5Eh13 L77=0.9D+0.9Cd2-Eh12+Ehv2 C61=0.9D+0.9Cd 1-1.5Ehs1+Ehv1 L78=0.9D+0.9Cd3-Eh13+Ehv3 C62=0.9D+0.9Cd2-1.5Ehs2+Ehv2 L79=0.9D+0.9Cd 1-Ehs 1-Ehv1 C63=0.9D+0.9Cd3-1.5Ehs3+Ehv3 L80=0.9D+0.9Cd2-Ehs2-Ehv2 C64=0.9D+0.9Cd1-1.5EhI l+Ehv1 L81=0.9D+0.9Cd3-Ehs3-Ehv3 C65=0.9D+0.9Cd2-1.5Eh12+Ehv2 L82=0.9D+0.9Cd 1-Eh1l-Ehv1 C66=0.9D+0.9Cd3-1.5Eh13+Ehv3 L83=0.9D+0.9Cd2-Eh12-Ehv2 C67=0.9D+0.9Cd1-1.5Ehs1-Ehv1 L84=0.9D+0.9Cd3-Eh13-Ehv3 C68=0.9D+0.9Cd2-1.5Ehs2-Ehv2 196 of 252 C69=0.9D+0.9Cd3-1.5Ehs3-Ehv3 C71=0.9D+0.9Cd2-1.5Eh12-Ehv2 C70=0.9D+0.9Cd 1-1.5Eh11-Ehv1 C72=0.9D+0.9Cd3-1.5Eh13-Ehv3 MEMBER 23 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 17.61 C43 11.32 C07 0.55 C32 0.02 L08 9.58 C32 0.00 C68 Min -16.76 C31 -11.26 C67 -0.55 C44 -0.01 L03 -9.66 C44 0.00 C07 50% Max 17.68 C43 11.23 C31 0.55 C32 0.02 L08 8.21 C32 28.16 C31 Min -16.83 C31 -11.38 C43 -0.55 C44 -0.01 L03 -8.28 C44 -28.29 C43 100% Max 17.75 C43 11.15 C31 0.55 C32 0.02 L08 6.84 C32 56.13 C31 Min -16.90 C31 -11.52 C43 -0.55 C44 -0.01 L03 -6.89 C44 -56.92 C43 MEMBER 37 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 5.79 C67 12.20 C31 5.61 C47 0.03 C44 6.53 C47 24.84 C43 Min -45.05 L10 -13.05 C43 0.00 L03 -0.03 C32 0.00 L03 -22.98 C31 50% Max 5.80 C67 12.21 C31 5.60 C47 0.03 C44 3.26 C47 17.23 C43 Min -45.03 L10 -13.06 C43 0.00 L03 -0.03 C32 0.00 L03 -15.87 C31 100% Max 5.82 C67 12.23 C31 5.59 C47 0.03 C44 0.00 L01 9.62 C43 Min -45.00 L10 -13.08 C43 0.00 L03 -0.03 C32 0.00 L01 -8.74 C31 MEMBER 33 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max 23.42 C31 0.01 C04 0.05 C09 0.00 C32 0.84 C67 0.00 C16 Min -25.13 C43 -0.01 C40 -0.03 L01 -0.01 L08 -0.87 C07 0.00 C46 50% Max 23.42 C31 0.00 C46 0.00 C33 0.00 C32 0.86 C43 0.02 C04 Min -25.18 C43 0.00 C16 -0.06 L01 -0.01 L08 -0.86 C31 -0.02 C40 100% Max 23.42 C31 0.01 C40 -0.01 C67 0.00 C32 0.95 C43 0.00 L01 Min -25.24 C43 -0.01 C04 -0.09 L01 -0.01 L08 -0.75 C31 0.00 L01 MEMBER 34 Station Axial Ic Shear V2 Ic Shear V3 Ic Torsion Ic M22 Ic M33 Ic [Kip] [Kip] [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 0% Max -0.05 C36 0.08 010 0.07 C44 0.00 C44 0.01 C07 0.00 C36 Min -16.89 C47 0.03 L84 -0.07 C32 0.00 C32 -0.01 C67 -0.52 C47 50% Max 0.00 C36 0.03 C47 0.00 C07 0.00 044 0.27 C07 0.31 C12 Min -16.77 C47 0.00 C36 0.00 C67 0.00 C32 -0.27 C67 -0.28 C71 100% Max 0.11 L24 0.04 C71 0.07 C07 0.00 C44 0.00 L01 0.00 L01 Min -16.67 C71 -0.08 C12 -0.07 C67 0.00 C32 0.00 L01 0.00 L01 Steel Code Check Report: Summary-Group by member Load conditions to be included in design: L01=1.20+1.2Cd1+1.6Cv1+1.6Ci1+1.6Cs1+1.6C1s L13=1.2D+1.2Cd1+Ehs1 L02=1.2D+1.2Cd2+1.6Cv2+1.6012+1.6Cs2+1.6C1s L14=1.2D+1.2Cd2+Ehs2 L03=1.2D+1.2Cd3+1.6Cv3+1.6Ci3+1.6Cs3+1.6Cls L15=1.2D+1.2Cd3+Ehs3 L04=1.2D+1.2Cd1+1.6Cv1+1.6011-1.6Cs1+1.6CIs L16=12D+1.2Cd1+Ehl1 L05=1.2D+1.2Cd2+1.6Cv2+1.6Ci2-1.6Cs2+1.6CIs L17=1.2D+1.2Cd2+Eh12 L06=1.2D+1.2Cd3+1.6Cv3+1.6Ci3-1.6Cs3+1.6CIs L18=1.2D+1.2Cd3+Eh13 L07=1.2D+1.2Cd1+1.6Cv1+1.6011-1.6Cs1-1.6CIs L19=1.20+1.2Cd1+Ehs1+Ehv1 L08=1.2D+1.2Cd2+1.6Cv2+1.6Ci2-1.6Cs2-1.6CIs L20=1.20+1.2Cd2+Ehs2+Ehv2 L09=1.2D+1.2Cd3+1.6Cv3+1.6C13-1.6Cs3-1.6CIs L21=1.20+1.2Cd3+Ehs3+Ehv3 L10=1.20+1.2Cd1+1.6Cv1+1.6Ci1+1.6Cs1-1.6CIs L22=1.20+1.2Cd1+Eh11+Ehv1 L 11=1.2D+1.2Cd2+1.6Cv2+1.6Ci2+1.6Cs2-1.6CIs L23=1.2D+1.2Cd2+Eh12+Ehv2 L12=1.2D+1.2Cd3+1.6Cv3+1.6013+1.6Cs3-1.6Cls L24=12D+1.2Cd3+Eh13+Ehv3 197 of 252 L25=1.2D+1.2Cd1+Ehs1-Ehv1 C07=1.2D+1.2Cd1+1.5Ehsl+Ehv1 L26=1.2D+1.2Cd2+Ehs2-Ehv2 C08=1.2D+1.2Cd2+1.5Ehs2+Ehv2 L27=1.2D+1.2Cd3+Ehs3-Ehv3 C09=1.2D+1.2Cd3+1.5Ehs3+Ehv3 L28=1.2D+1.2Cd1+Ehl1-Ehv1 C10=1.2D+1.2Cd1+1.5EhI1+Ehv1 L29=1.2D+1.2Cd2+Eh12-Ehv2 C11=1.2D+1.2Cd2+1.5Ehl2+Ehv2 L30=1.2D+1.2Cd3+Eh13-Ehv3 C12=1.2D+1.2Cd3+1.5Eh13+Ehv3 L31=0.9D+0.9Cd1+Ehs1 C13=1.2D+1.2Cd1+1.5Ehs1-Ehv1 L32=0.9D+0.9Cd2+Ehs2 C14=1.2D+1.2Cd2+1.5Ehs2-Ehv2 L33=0.9D+0.9Cd3+Ehs3 C15=1.2D+1.2Cd3+1.5Ehs3-Ehv3 L34=0.9D+0.9Cd1+Ehl1 C16=1.2D+1.2Cd1+1.5EhI1-Ehv1 L35=0.9D+0.9Cd2+Eh12 C17=1.20+1.2Cd2+1.5EhI2-Ehv2 L36=0.9D+0.9Cd3+Eh13 C18=1.2D+1.2Cd3+1.5EhI3-Ehv3 L37=0.9D+0.9Cd 1+Ehs 1+Ehv1 C19=0.9D+0.9Cd1+1.5Ehs1 L38=0.9D+0.9Cd2+Ehs2+Ehv2 C20=0.9D+0.9Cd2+1.5Ehs2 L39=0.9D+0.9Cd3+Ehs3+Ehv3 C21=0.9D+0.9Cd3+1.5Ehs3 L40=0.9D+0.9Cd 1+Ehl1+Ehv1 C22=0.9D+0.9Cd 1+1.5Eh11 L41=0.9D+0.9Cd2+Eh12+Ehv2 C23=0.9D+0.9Cd2+1.5Eh12 L42=0.9D+0.9Cd3+Eh13+Ehv3 C24=0.9D+0.9Cd3+1.5Eh13 L43=0.9D+0.9Cd1+Ehs1-Ehv1 C25=0.9D+0.9Cd1+1.5Ehsl+Ehv1 L44=0.9D+0.9Cd2+Ehs2-Ehv2 C26=0.9D+0.9Cd2+1.5Ehs2+Ehv2 L45=0.9D+0.9Cd3+Ehs3-Ehv3 C27=0.9D+0.9Cd3+1.5Ehs3+Ehv3 L46=0.9D+0.9Cd 1+Eh11-Ehv1 C28=0.9D+0.9Cd 1+1.5EhI1+Ehv1 L47=0.9D+0.9Cd2+Eh12-Ehv2 C29=0.9D+0.9Cd2+1.5Eh12+Ehv2 L48=0.9D+0.9Cd3+Eh13-Ehv3 C30=0.9D+0.9Cd3+1.5EhI3+Ehv3 L49=1.2D+1.2Cd1-Ehs 1 C31=0.9D+0.9Cd 1+1.5Ehs 1-Ehv1 L50=1.2D+1.2Cd2-Ehs2 C32=0.9D+0.9Cd2+1.5Ehs2-Ehv2 L51=1.2D+1.2Cd3-Ehs3 C33=0.9D+0.9Cd3+1.5Ehs3-Ehv3 L52=1.2D+1.2Cd1-Ehl1 C34=0.9D+0.9Cd1+1.5Eh11-Ehv1 L53=1.2D+1.2Cd2-Eh12 C35=0.9D+0.9Cd2+1.5Eh12-Ehv2 L54=1.20+1.2Cd3-Eh13 C36=0.9D+0.9Cd3+1.5Eh13-Ehv3 L55=1.2D+1.2Cd1-Ehsl+Ehv1 C37=1.2D+1.2Cd1-1.5Ehs1 L56=1.2D+1.2Cd2-Ehs2+Ehv2 C38=1.2D+1.2Cd2-1.5Ehs2 L57=1.2D+1.2Cd3-Ehs3+Ehv3 C39=1.2D+1.2Cd3-1.5Ehs3 L58=1.2D+1.2Cd1-Ehl1+Ehv1 C40=1.20+1.2Cd1-1.5Ehi1 L59=1.2D+1.2Cd2-Eh12+Ehv2 C41=1.20+1.2Cd2-1.5Eh12 L60=1.2D+1.2Cd3-Eh13+Ehv3 C42=1.20+1.2Cd3-1.5Eh13 L61=1.2D+1.2Cd1-Ehsl-Ehv1 C43=1.2D+1.2Cd1-1.5Ehsl+Ehv1 L62=1.2D+1.2Cd2-Ehs2-Ehv2 C44=1.2D+1.2Cd2-1.5Ehs2+Ehv2 L63=1.20+1.2Cd3-Ehs3-Ehv3 C45=1.2D+1.2Cd3-1.5Ehs3+Ehv3 L64=1.2D+1.2Cd1-Eh11-Ehv1 C46=1.2D+1.2Cd1-1.5Eh11+Ehv1 L65=1.2D+1.2Cd2-Eh12-Ehv2 C47=1.20+1.2Cd2-1.5Eh12+Ehv2 L66=1.2D+1.2Cd3-Eh13-Ehv3 C48=1.2D+1.2Cd3-1.5Eh13+Ehv3 L67=0.9D+0.9Cd1-Ehs1 C49=1.2D+1.2Cd1-1.5Ehs1-Ehv1 L68=0.9D+0.9Cd2-Ehs2 C50=1.2D+1.2Cd2-1.5Ehs2-Ehv2 L69=0.9D+0.9Cd3-Ehs3 C51=1.2D+1.2Cd3-1.5Ehs3-Ehv3 L70=0.9D+0.9Cd 1-Ehl1 C52=1.2D+1.2Cd1-1.5Eh11-Ehv1 L71=0.9D+0.9Cd2-Ehl2 C53=1.2D+1.2Cd2-1.5Eh12-Ehv2 L72=0.9D+0.9Cd3-Ehl3 C54=1.2D+1.2Cd3-1.5Eh13-Ehv3 L73=0.9D+0.9Cd1-Ehsl+Ehv1 C55=0.9D+0.9Cd1-1.5Ehs1 L74=0.9D+0.9Cd2-Ehs2+Ehv2 C56=0.9D+0.9Cd2-1.5Ehs2 L75=0.9D+0.9Cd3-Ehs3+Ehv3 C57=0.9D+0.9Cd3-1.5Ehs3 L76=0.9D+0.9Cd 1-Ehl1+Ehv1 C58=0.9D+0.9Cd 1-1.5Eh11 L77=0.9D+0.9Cd2-Eh12+Ehv2 C59=0.9D+0.9Cd2-1.5Eh12 L78=0.9D+0.9Cd3-Eh13+Ehv3 C60=0.9D+0.9Cd3-1.5Eh13 L79=0.9D+0.9Cd1-Ehs1-Ehv1 C61=0.9D+0.9Cd1-1.5Ehs1+Ehv1 L80=0.9D+0.9Cd2-Ehs2-Ehv2 C62=0.9D+0.9Cd2-1.5Ehs2+Ehv2 L81=0.9D+0.9Cd3-Ehs3-Ehv3 C63=0.9D+0.9Cd3-1.5Ehs3+Ehv3 L82=0.9D+0.9Cd1-Eh1 l-Ehv1 C64=0.9D+0.9Cd 1-1.5Eh11+Ehv1 L83=0.9D+0.9Cd2-Eh12-Ehv2 C65=0.9D+0.9Cd2-1.5EhI2+Ehv2 L84=0.9D+0.9Cd3-Eh13-Ehv3 C66=0.9D+0.9Cd3-1.5Ehi3+Ehv3 C01=1.2D+1.2Cd1+1.5Ehs1 C67=0.9D+0.9Cd1-1.5Ehs1-Ehv1 CO2=1.2D+1.2Cd2+1.5Ehs2 C68=0.9D+0.9Cd2-1.5Ehs2-Ehv2 CO3=1.2D+1.2Cd3+1.5Ehs3 C69=0.9D+0.9Cd3-1.5Ehs3-Ehv3 C04=1.20+1.2Cd1+1.5Ehi1 C70=0.9D+0.9Cd1-1.5Eh11-Ehv1 C05=1.20+1.2Cd2+1.5EhI2 C71=0.9D+0.9Cd2-1.5Eh12-Ehv2 C06=1.20+1.2Cd3+1.5Eh13 C72=0.9D+0.9Cd3-1.5Eh13-Ehv3 198 of 252 Description Section Member Ctrl Eq. Ratio Status Reference Beam W 12X40 23 L43 at 100.00% 0.85 OK Eq. H1-la 24 L55 at 0.00% 0.74 OK Eq. H1-lb 25 L79 at 0.00% 0.81 OK Eq. H1-la 26 L43 at 100.00% 0.65 OK Eq. H1-lb 27 L55 at 0.00% 0.59 OK Eq. H1-lb 28 L79 at 0.00% 0.66 OK Eq. H1-lb Brace T2L 4X4X1_4 30 L55 at 100.00% 0.32 OK Eq. H1-1a 31 L19 at 100.00% 0.38 OK Eq. Hi-la 33 L55 at 100.00% 0.38 OK Eq. H1-la 42 L19 at 0.00% 0.32 OK Eq. H1-la Column W 12X40 6 L19 at 100.00% 0.43 OK Eq. H1-lb 8 L01 at 100.00% 0.52 OK Eq. H1-la 11 L05 at 0.00% 0.47 OK Eq. H1-2 18 L55at 100.00% 0.37 OK Eq. H1-lb 19 L21 at 0.00% 0.47 OK Eq. H1-lb 21 L07 at 100.00% 0.54 OK Eq. H1-la 36 L10 at 0.00% 0.51 OK Eq. Hl-la 37 L07 at 0.00% 0.22 OK Eq. H1-lb 38 L10 at 0.00% 0.17 OK Eq. H1-lb 39 L19 at 0.00% 0.39 OK Eq. H1-lb 40 L55 at 0.00% 0.33 OK Eq. H1-lb 41 L04 at 0.00% 0.49 OK Eq. Hl-la 43 L01 at 0.00% 0.21 OK Eq. H1-lb 44 L04 at 0.00% 0.17 OK Eq. H1-lb Kicker Brace HSS_SQR 4X4X1_4 34 L08 at 0.00% 0.43 OK Eq.H1-la 35 L60 at 0.00% 0.36 OK Eq. H1-1a 45 L22 at 0.00% 0.36 OK Eq.H1-1a 46 L02 at 0.00% 0.42 OK Eq.H1-1a 69 L60 at 100.00% 0.15 OK 70 L08 at 0.00% 0.18 OK 71 L22 at 100.00% 0.15 OK 72 L02 at 0.00% 0.17 OK Runway Beam W 24 x 94_C 15 x 33.9 12 L57 at 100.00% 0.00 OK 14 L03 at 100.00% 0.15 OK Eq. H1-lb 50 L11 at 100.00% 0.81 OK Eq. H1-lb 56 Li0 at 100.00% 0.18 OK Eq. H1-lb 61 L02 at 0.00% 0.86 OK Eq. H1-lb 81 L24 at 0.00% 0.00 OK 83 L07 at 0.00% 0.04 OK Eq.H1-1b 101 L02 at 0.00% 0.93 OK Eq.H1-1b 103 L02 at 100.00% 0.93 OK Eq. H1-lb 104 L11 at 100.00% 0.89 OK Eq. H1-lb 109 L06 at 100.00% 0.14 OK 110 L03 at 0.00% 0.15 OK Eq. H1-1b 111 L02 at 100.00% 0.11 OK 112 L02 at 0.00% 0.23 OK Eq. Hl-lb 113 L02 at 0.00% 0.89 OK Eq.H1-lb 114 L11 at 100.00% 0.92 OK Eq.H1-lb 120 L01 at 0.00% 0.04 OK 121 L07 at 0.00% 0.33 OK Eq.Hl-lb 122 L11 at 100.00% 0.34 OK Eq.Hl-lb 126 L12 at 100.00% 0.07 OK Eq.H1-lb 127 L07 at 100.00% 0.04 OK Eq.H1-lb 128 L04 at 0.00% 0.01 OK Eq. H1-lb 130 L02 at 0.00% 0.93 OK Eq. H1-lb Runway Beam Even W 24 x 76_C 15 x 33.9 1 L57 at 100.00% 0.00 OK 2 L02 at 0.00% 0.15 OK 55 L06 at 100.00% 0.16 OK Eq. H1-lb 77 L24 at 0.00% 0.00 OK 79 L07 at 0.00% 0.15 OK Eq. H1-lb 80 L04 at 0.00% 0.21 OK Eq. H1-lb 199 of 252 92 L09 at 100.00% 0.71 OK Eq.H1-lb 97 L03 at 0.00% 0.11 OK 98 L09 at 100.00% 0.29 OK Eq. H1-lb 100 L05 at 0.00% 0.19 OK Eq. H1-lb 105 L09 at 0.00% 0.79 OK Eq. H1-lb 106 L09 at 100.00% 0.74 OK Eq. H1-lb 107 L09 at 0.00% 0.78 OK Eq. H1-lb 108 L09 at 0.00% 0.63 OK Eq. H1-1b 115 L09 at 0.00% 0.74 OK Eq. H1-lb 116 L09 at 100.00% 0.78 OK Eq. H1-lb 117 L04 at 0.00% 0.01 OK Eq. H1-lb 118 LO6 at 100.00% 0.12 OK Eq. H1-lb 119 L09 at 100.00% 0.40 OK Eq. H1-lb 123 L04 at 100.00% 0.21 OK Eq. H1-lb 124 L01 at 0.00% 0.33 OK Eq. H1-lb 125 L07 at 0.00% 0.07 OK 129 LO9at 100.00% 0.79 OK Eq.H1-lb Detailed Steel Code Check Report: Comprehensive Members: Hot-rolled Design code: AISC 360-2010 ASD Member 23 (Beam) Design status OK Section information Section name: W 12X40 (US) Dimensions ltf -+ Ijt tk It d tw 4- bf bf = 8.010 [in] Width d = 11.900 [in] Depth k = 1.020 [in] Distance k k1 = 0.875 [in] Distance k1 tf = 0.515 [in] Flange thickness tw = 0.295 [in] Web thickness Properties Section properties Unit Major axis Minor axis Gross area of the section. (Ag) [in2] 11.700 Moment of Inertia(local axes) (I) [in4] 307.000 44.100 Moment of Inertia(principal axes) (I') [in4] 307.000 44.100 Bending constant for moments(principal axis) (J') [in] 0.000 0.000 Radius of gyration(local axes) (r) [in] 5.122 1.941 Radius of gyration(principal axes) (r) [in] 5.122 1.941 Saint-Venant torsion constant. (J) [in4] 0.906 Section warping constant. (Cw) [in6] 1440.000 Distance from centroid to shear center(principal axis) (xo,yo) [in] 0.000 0.000 Top elastic section modulus of the section(local axis) (Ssup) [in3] 51.500 11.000 200 of 252 Bottom elastic section modulus of the section(local axis) (Sinf) [in3] 51.500 11.000 Top elastic section modulus of the section(principal axis) (S'sup) [in3] 51.500 11.000 Bottom elastic section modulus of the section(principal axis) (S'inf) [in3] 51.500 11.000 Plastic section modulus(local axis) (Z) [in3] 57.000 16.800 Plastic section modulus(principal axis) (Z) [in3] 57.000 16.800 Polar radius of gyration. (ro) [in] 5.478 Area for shear (Aw) [in2] 8.250 3.510 Torsional constant. (C) [in3] 1.605 Material :A992 Gr50 Properties Unit Value Yield stress(Fy): [KipTn2] 50.00 Tensile strength(Fu): [KipTn2] 65.00 Elasticity Modulus(E): [KipTn2] 29000.00 Shear modulus for steel(G): [Kipin2] 11153.85 DESIGN CRITERIA Description Unit Value Length for tension slenderness ratio(L) [in] 360.00 Distance between member lateral bracing points Length(Lb)[in] Top Bottom 360.00 360.00 Laterally unbraced length Length[in] Effective length factor Major axis(L33) Minor axis(L22) Torsional axis(Lt) Major axis(K33) Minor axis(K22) Torsional axis(Kt) 60.00 360.00 60.00 1.0 1.0 1.0 Additional assumptions Continuous lateral torsional restraint No Tension field action No Continuous flexural torsional restraint No Effective length factor value type None Major axis frame type Sway Minor axis frame type Sway DESIGN CHECKS AXIAL TENSION DESIGN 14, Axial tension Ratio 0.03 Capacity 350.30[Kip] Reference : Eq.Sec.D2 Demand 12.02[Kip] Ctrl Eq. : L55 at 100.00% Intermediate results Unit Value Reference Factored axial tension capacitv(Pn/S2) [Kip] 350.30 Eq.Sec.D2 Nominal axial tension capacity(Pn) [Kip] 585.00 Eq.D2-1 201 of 252 AXIAL COMPRESSION DESIGN if Compression in the major axis 33 Ratio 0.03 Capacity 346.80[Kip] Reference : Sec.El Demand 11.16[Kip] Ctrl Eq. : L43 at 100.00% Intermediate results Unit Value Reference Section classification Unstiffened element classification - Non slender Unstiffened element slenderness(X) - 7.78 Unstiffened element limiting slenderness(kr) - 13.49 Stiffened element classification - Non slender Stiffened element slenderness(?.) -- 33.42 Stiffened element limiting slenderness(kr) - 35.88 Factored flexural buckling strength(Pn33 0 [Kip] 346.80 Sec.El Effective length factor(K33) -- 1.00 Unbraced length(L33) [in] 60.00 Effective slenderness((KUr)33) - 11.71 Eq.E3-4 Elastic critical buckling stress(Fe33) [Kipfin2] 2086.16 Eq.E3-4 Reduction factor for slender unstiffened elements(Qs33) - 1.00 Effective area of the cross section based on the effective width (A... [in2] 11.70 Eq.E3-2 Reduction factor for slender stiffened elements(Qa33) - 1.00 Full reduction factor for slender elements(Q33) - 1.00 Sec.E7 Critical stress for flexural buckling(Fcr33) [Kipin2] 49.50 Eq.E3-2 Nominal flexural buckling strength(Pn33) [Kip] 579.16 Eq.E3-1 Compression in the minor axis 22 Ratio 0.22 Capacity 51.15[Kip] Reference : Sec.El Demand 11.16[Kip] Ctrl Eq. : L43 at 100.00% Intermediate results Unit Value Reference Section classification Unstiffened element classification - Non slender Unstiffened element slenderness()) - 7.78 Unstiffened element limiting slenderness(kr) -- 13.49 Stiffened element classification - Non slender Stiffened element slenderness(?) - 33.42 Stiffened element limiting slenderness(kr) - 35.88 Factored flexural buckling strength(Pn22/S2) [Kip] 51.15 Sec.El Effective length factor(K22) - 1.00 Unbraced length(L22) [in] 360.00 Effective slenderness((KUr)22) - 185.43 Eq.E3-4 Elastic critical buckling stress(Fe22) [Kipfn2] 8.32 Eq.E3-4 Reduction factor for slender unstiffened elements(Qs22) - 1.00 Effective area of the cross section based on the effective width (A... [in2] 11.70 Eq.E3-3 Reduction factor for slender stiffened elements(Qa22) - 1.00 Full reduction factor for slender elements(Q22) - 1.00 Sec.E7 Critical stress for flexural buckling(Fcr22) [Kipfin2] 7.30 Eq.E3-3 Nominal flexural buckling strength(Pn22) [Kip] 85.41 Eq.E3-1 Factored torsional or flexural-torsional buckling strength(Pn11/CI) [Kip] 330.24 Sec.E4 Effective length factor(K11) - 1.00 Unbraced length(L11) [in] 60.00 Flexural constant(H) - 1.00 Eq.E4-10 Torsional or flexural-torsional elastic buckling stress(Fell) [Kip/in2] 354.86 Eq.E4-4 202 of 252 Elastic torsional buckling stress(Fez) [Kip/in2] 354.86 Eq.E4-9 Reduction factor for slender unstiffened elements(Qs11) - 1.00 Effective area of the cross section based on the effective width (A... [in2] 11.70 Eq.E3-2 Reduction factor for slender stiffened elements(Qa11) - 1.00 Full reduction factor for slender elements(Q11) - 1.00 Sec.E7 Critical stress for torsional or flexural-torsional buckling(Fcr11) [Kip/in2] 47.14 Eq.E3-2 Nominal torsional or flexural-torsional buckling strength(Pn11) [Kip] 551.50 Eq.E4-1 FLEXURAL DESIGN Bending about major axis,M33 Ratio 0.67 Capacity 56.86[Kip*ft] Reference : Sec. Fl Demand -38.11 [Kip*ft] Ctrl Eq. : L55 at 100.00% Intermediate results Unit Value Reference Section classification Unstiffened element classification - Compact Unstiffened element slenderness(?.) -- 7.78 Limiting slenderness for noncompact unstiffened element(a.r) -- 24.08 Limiting slenderness for compact unstiffened element(a.p) - 9.15 Stiffened element classification -- Compact Stiffened element slenderness(?) - 33.42 Limiting slenderness for noncompact stiffened element(?,r) - 137.27 Limiting slenderness for compact stiffened element(?p) - 90.55 Factored yielding strenath(Mn/S2) [Kip*ft] 142.22 Sec. Fl Yielding(Mn) [Kip*ft] 237.50 Eq.F2-1 Factored lateral-torsional buckling strenath(Mn/S2) [Kip*ft] 56.86 Sec. F1 Limiting laterally unbraced length for yielding(Lp) [in] 82.29 Eq.F2-5 Effective radius of gyration used in the determination of Lr(rts) [in] 2.21 Eq.F2-7 Lateral-torsional factor(c) - 1.00 Eq.F2-8a Limiting laterally unbraced length for inelastic lateral-torsional bucklin... [in] 253.81 Eq.F2-6 Lateral-torsional buckling modification factor(Cb) - 1.00 Eq.F1-1 Critical stress(Fcr) [Kip/in2] 22.13 Eq.F2-4 Lateral-torsional buckling(Mn) [Kip*ft] 94.96 Eq.F2-3 Bending about minor axis,M22 Ratio 0.15 Capacity 41.92[Kip*ft] Reference : Sec. Fl Demand -6.46[Kip*ft] Ctrl Eq. : L56 at 0.00% Intermediate results Unit Value Reference Section classification Unstiffened element classification -- Compact Unstiffened element slenderness(?) -- 7.78 Limiting slenderness for noncompact unstiffened element(Xr) -- 24.08 Limiting slenderness for compact unstiffened element(Xp) -- 9.15 Stiffened element classification - Compact Stiffened element slenderness(X) - 33.42 Limiting slenderness for noncompact stiffened element(Xr) - 137.27 Limiting slenderness for compact stiffened element(Ap) - 90.55 Factored yielding strength(Mn/)) [Kip*ft] 41.92 Sec. F1 Yielding(Mn) [Kip*ft] 70.00 Eq.F6-1 203 of 252 DESIGN FOR SHEAR Vt Shear in maior axis 33 Ratio 0.00 Capacity 148.20[Kip] Demand -0.37[Kip] Ctrl Eq. : L50 at 0.00% Intermediate results Unit Value Reference Factored shear capacitv(Vn/S2) [Kip] 148.20 Web slenderness(?.w) — 7.78 Sec.G2 Shear area(Aw) [in2] 8.25 Web buckling coefficient(kv) — 1.20 Sec.G7 Web buckling coefficient(Cv) — 1.00 Eq.G2-3 Nominal shear strength(Vn) [Kip] 247.50 Eq.G2-1 Shear in minor axis 22 Ratio 0.11 Capacity 70.20[Kip] Reference : Sec.G2.1(a) Demand -7.76[Kip] Ctrl Eq. : L55 at 100.00% Intermediate results Unit Value Reference Factored shear capacitv(Vn/S2) [Kip] 70.20 Sec.G2.1(a) Web slenderness(Xw) — 33.42 Sec.G2 Shear area(Aw) [in2] 3.51 Web buckling coefficient(Cv) -- 1.00 Eq.G2-2 Nominal shear strength(Vn) [Kip] 105.30 Eq.G2-1 COMBINED ACTIONS DESIGN ile Combined flexure and axial compression Ratio 0.85 Ctrl Eq. L43 at 100.00% Reference : Eq.H1-la Intermediate results Unit Value Reference Interaction of flexure and axial force -- 0.85 Eq.H1-la Required flexural strength about strong axis(Mr33) [Kip*ft] 37.33 Available flexural strength about strong axis(Mc33) [Kip*ft] 56.86 Sec. Fl Required flexural strength about weak axis(Mr22) [Kip*ft] 2.30 Available flexural strength about weak axis(Mc22) [Kip*ft] 41.92 Sec. Fl Required axial compressive strength(Pr) [Kip] 11.16 Available axial compressive strength(Pc) [Kip] 51.15 Sec.El Combined flexure and axial tension Ratio 0.74 Ctrl Eq. L55 at 100.00% Reference : Eq.Hi-lb Intermediate results Unit Value Reference Required flexural strength about strong axis(Mr33) [Kip*ft] -38.11 Available flexural strength about strong axis(Mc33) [Kip*ft] 56.86 Sec. Fl 204 of 252 Required flexural strength about weak axis(Mr22) [Kip'ft] -2.33 Available flexural strength about weak axis(Mc22) [Kip*ft] 41.92 Sec.Fl Required axial tensile strength(Pr) [Kip] 12.02 Available axial tensile strength(Pc) [Kip] 350.30 Eq.Sec.D2 Combined flexure and axial compression about local axis Ratio N/A • Ctrl Eq. - Reference . Combined flexure and axial tension about local axis Ratio N/A • Ctrl Eq. - Reference . Member 33(Brace) Design status OK Section information Section name: T2L 4X4X1_4 (US) Dimensions It 9I 1 a i $ a '� a = 4.000 [in] Flange length b = 4.000 [in] Width s = 0.000 [in] Separation t = 0.250 [in] Thickness Properties Section properties Unit Major axis Minor axis Gross area of the section. (Ag) [in2] 3.870 Moment of Inertia(local axes) (I) [in4] 6.000 10.536 Moment of Inertia(principal axes) (I') [in4] 10.536 6.000 Bending constant for moments(principal axis) (J') [in] 0.000 -0.705 Radius of gyration(local axes) (r) [in] 1.245 1.650 Radius of gyration(principal axes) (r') [in] 1.650 1.245 Saint-Venant torsion constant. (J) [in4] 0.081 Section warping constant. (Cw) [in6] 0.151 Distance from centroid to shear center(principal axis) (xo,yo) [in] 0.973 0.027 Top elastic section modulus of the section(local axis) (Ssup) [in3] 5.560 2.677 Bottom elastic section modulus of the section(local axis) (Sinf) [in3] 2.050 2.677 Top elastic section modulus of the section(principal axis) (S'sup) [in3] 5.560 5.551 Bottom elastic section modulus of the section(principal axis) (S'inf) [in3] 2.050 2.089 Plastic section modulus(local axis) (Z) [in3] 3.650 4.238 Plastic section modulus(principal axis) (Z) [in3] 3.650 3.761 Polar radius of gyration. (ro) [in] 2.280 Area for shear (Aw) [in2] 2.000 2.000 Torsional constant. (C) [in3] 0.323 Material:A36 Properties Unit Value 205 of 252 Yield stress(Fy): [Kip/in2] 36.00 Tensile strength(Fu): [KipTn2] 58.00 Elasticity Modulus(E): [KipTn2] 29000.00 Shear modulus for steel(G): [Kip/in2] 11507.94 DESIGN CRITERIA Description Unit Value Length for tension slenderness ratio(L) [in] 68.02 Intermediate connectors type Snug-tight bolted Clear distance between longitudinal connectors [in] 0.00 Distance between member lateral bracing points Length(Lb)[in] Top Bottom 68.02 68.02 Laterally unbraced length Length[in] Effective length factor Major axis(L33) Minor axis(L22) Torsional axis(Lt) Major axis(K33) Minor axis(K22) Torsional axis(Kt) 68.02 68.02 68.02 1.0 1.0 1.0 Additional assumptions Continuous lateral torsional restraint No Tension field action No Continuous flexural torsional restraint No Effective length factor value type None Major axis frame type Sway Minor axis frame type Sway DESIGN CHECKS AXIAL TENSION DESIGN 11 Axial tension Ratio 0.18 Capacity 83.43[Kip] Reference : Eq.Sec.D2 Demand 15.41 [Kip] Ctrl Eq. : L43 at 0.00% Intermediate results Unit Value Reference Factored axial tension capacity(PnK2) [Kip] 83.43 Eq.Sec.D2 Nominal axial tension capacity(Pn) [Kip] 139.32 Eq.D2-1 AXIAL COMPRESSION DESIGN Compression in the maior axis 33 Ratio 0.23 Capacity 76.13[Kip] Reference : Sec.El Demand 17.21 [Kip] Ctrl Eq. : L55 at 100.00% Intermediate results Unit Value Reference Section classification 206 of 252 Unstiffened element classification -- Slender Unstiffened element slenderness(A.) - 16.00 Unstiffened element limiting slenderness(Ar) - 12.77 Stiffened element classification - Slender Stiffened element slenderness(a.) - 16.00 Stiffened element limiting slenderness(kr) - 12.77 Factored flexural buckling strength(Pn33/S2) [Kip] 76.13 Sec.El Effective length factor(K33) - 1.00 Unbraced length(L33) [in] 68.02 Effective slenderness((KUr)33) - 41.23 Eq.E3-4 Elastic critical buckling stress(Fe33) [Kiplin2] 168.40 Eq.E3-4 Reduction factor for slender unstiffened elements(Qs33) - 1.00 Eq.E7-13 Effective area of the cross section based on the effective width (A... [in2] 3.87 Eq.E7-2 Reduction factor for slender stiffened elements(Qa33) - 1.00 Eq.E7-16 Full reduction factor for slender elements(Q33) - 1.00 Sec.E7 Critical stress for flexural buckling(Fcr33) [Kiplin2] 32.85 Eq.E7-2 Nominal flexural buckling strength(Pn33) [Kip] 127.14 Eq.E7-1 Compression in the minor axis 22 Ratio 0.30 Capacity 57.47[Kip] Reference : Sec.E4 Demand 17.21 [Kip] Ctrl Eq. : L55 at 100.00% Intermediate results Unit Value Reference Section classification Unstiffened element classification - Slender Unstiffened element slenderness(A) - 16.00 Unstiffened element limiting slenderness(Ar) -- 12.77 Stiffened element classification - Slender Stiffened element slenderness(A,) - 16.00 Stiffened element limiting slenderness(Ar) - 12.77 Factored flexural buckling strength(Pn22/S2) [Kip] 71.17 Sec.El Effective length factor(K22) - 1.00 Unbraced length(L22) [in] 68.02 Effective slenderness((KL/r)22) - 54.63 Eq.E6-1 Elastic critical buckling stress(Fe22) [Kipfin2] 95.90 Eq.E3-4 Reduction factor for slender unstiffened elements(Qs22) - 1.00 Eq.E7-13 Effective area of the cross section based on the effective width (A... [in2] 3.87 Eq.E7-2 Reduction factor for slender stiffened elements(Qa22) - 1.00 Eq.E7-16 Full reduction factor for slender elements(Q22) - 1.00 Sec.E7 Critical stress for flexural buckling(Fcr22) [Kip/in2] 30.71 Eq.E7-2 Nominal flexural buckling strength(Pn22) [Kip] 118.85 Eq.E7-1 Factored torsional or flexural-torsional buckling strenath(Pn11K2) [Kip] 57.47 Sec.E4 Effective length factor(K11) - 1.00 Unbraced length(L11) [in] 68.02 Flexural constant(H) - 0.82 Eq.E4-10 Torsional or flexural-torsional elastic buckling stress(Fell) [Kip(1n2] 40.58 Eq.E4-5 Elastic torsional buckling stress(Fez) [Kip(n2] 45.99 Eq.E4-9 Reduction factor for slender unstiffened elements(Qs11) - 1.00 Eq.E7-13 Effective area of the cross section based on the effective width (A... [in2] 3.87 Eq.E7-2 Reduction factor for slender stiffened elements(Qat 1) - 1.00 Eq.E7-16 Full reduction factor for slender elements(Q11) - 1.00 Sec.E7 Critical stress for torsional or flexural-torsional buckling(Fat 1) [KipTn2] 24.80 Eq.E7-2 Nominal torsional or flexural-torsional buckling strength(Pn11) [Kip] 95.98 Eq.E7-1 207 of 252 FLEXURAL DESIGN d Bending about maior axis,M33 Ratio 0.00 Capacity 3.68[Kip*ft] Reference : Sec.Fl Demand -0.01 [Kip*ft] Ctrl Eq. : L52 at 50.00% Intermediate results Unit Value Reference Section classification Unstiffened element classification -- Noncompact Unstiffened element slenderness(k) -- 16.00 Limiting slendemess for noncompact unstiffened element(kr) - 25.83 Limiting slenderness for compact unstiffened element(?.p) -- 15.33 Stiffened element classification -- Noncompact Stiffened element slenderness(X) - 16.00 Limiting slenderness for noncompact stiffened element(?.r) - 25.83 Limiting slenderness for compact stiffened element(Xp) - 15.33 Factored yielding strength(Mn/S2) [Kip*ft] 3.68 Sec. Fl Yielding(Mn) [Kip*ft] 6.15 Eq.F9-1 Factored lateral-torsional buckling strength(Mn/S2) [Kip*ft] 11.47 Sec.Fl Lateral-torsional buckling modification factor(Cb) - 1.14 Eq.C-F1-3 Factor for lateral-torsional buckling in tees and doubles angles(B) - -1.55 Eq.F9-5 Lateral-torsional buckling(Mn) [Kip*ft] 19.15 Eq.F9-4 Factored compression flange local buckling strength(Mn/S2) [Kip*ft] 3.86 Sec.Fl Critical stress(Fcr) [Kipfin2] 37.77 Eq.F9-7 Flange local buckling(Mn) [Kip*ft] 6.45 Eq.F9-6 Bending about minor axis,M22 Ratio 0.09 Capacity 7.34[Kip*ft] Reference : Sec.Fl Demand 0.68[Kip*ft] Ctrl Eq. : L55 at 100.00% Intermediate results Unit Value Reference Section classification Unstiffened element classification - Noncompact Unstiffened element slenderness(A.) -- 16.00 Limiting slenderness for noncompact unstiffened element(Xr) -- 25.83 Limiting slenderness for compact unstiffened element(Ap) -- 15.33 Stiffened element classification - Noncompact Stiffened element slenderness(A,) -- 16.00 Limiting slenderness for noncompact stiffened element(kr) - 25.83 Limiting slenderness for compact stiffened element(Xp) -- 15.33 Factored yielding strength(Mn/S2) [Kip*ft] 7.61 Sec. Fl Yielding(Mn) [Kip*ft] 12.71 Eq.F6-1 Factored compression flange local buckling strength(Mn/ ) [Kip*ft] 7.34 Sec. Fl Flange local buckling(Mn) [Kip*ft] 12.26 Eq.F6-2 DESIGN FOR SHEAR 'dr Shear in maior axis 33 Ratio 0.00 Capacity 25.87[Kip] Demand -0.09[Kip] Ctrl Eq. : L01 at 100.00% 208 of 252 Intermediate results Unit Value Reference Factored shear capacity(Vn/S2) [Kip] 25.87 Web slenderness(Xw) - 16.00 Sec.G2 Shear area(Aw) [in2] 2.00 Web buckling coefficient(kv) - 1.20 Sec.G7 Web buckling coefficient(Cv) - 1.00 Eq.G2-3 Nominal shear strength(Vn) [Kip] 43.20 Eq.G2-1 Shear in minor axis 22 Ratio 0.00 Capacity 25.87[Kip] Demand 0.01 [Kip] Ctrl Eq. : L16 at 0.00% Intermediate results Unit Value Reference Factored shear capacity(Vn/S2) [Kip] 25.87 Web slenderness(Xw) -- 16.00 Sec.G2 Shear area(Aw) (in2] 2.00 Web buckling coefficient(kv) - 1.20 Sec.G2.1(b) Web buckling coefficient(Cv) - 1.00 Eq.G2-3 Nominal shear strength(Vn) [Kip] 43.20 Eq.G2-1 COMBINED ACTIONS DESIGN V Combined flexure and axial compression Ratio 0.38 Ctrl Eq. L55 at 100.00% Reference : Eq.H1-la Intermediate results Unit Value Reference Interaction of flexure and axial force - 0.38 Eq.H1-1a Required flexural strength about strong axis(Mr33) [Kip*ft] 0.00 Available flexural strength about strong axis(Mc33) [Kip*ft] 5.89 Sec.Fl Required flexural strength about weak axis(Mr22) [Kip*ft] 0.68 Available flexural strength about weak axis(Mc22) [Kip*ft] 7.34 Sec.Fl Required axial compressive strength(Pr) [Kip] 17.21 Available axial compressive strength(Pc) [Kip] 57.47 Sec.E4 Combined flexure and axial tension Ratio 0.17 Ctrl Eq. L43 at 25.00% Reference : Eq. H1-lb Intermediate results Unit Value Reference Required flexural strength about strong axis(Mr33) [Kip*ft] 0.00 Available flexural strength about strong axis(Mc33) [Kip*ft] 3.68 Sec. Fl Required flexural strength about weak axis(Mr22) [Kip*ft] -0.59 Available flexural strength about weak axis(Mc22) [Kip*ft] 7.34 Sec. Fl Required axial tensile strength(Pr) [Kip] 15.40 Available axial tensile strength(Pc) [Kip] 83.43 Eq.Sec.D2 209 of 252 Combined flexure and axial compression about local axis Ratio N/A • Ctrl Eq. -- Reference Combined flexure and axial tension about local axis Ratio N/A • Ctrl Eq. -- Reference Member 21 (Column) Design status OK Section information Section name: W 12X40 (US) Dimensions ltf iki 1,k 1 tw -+ F- '� bf bf = 8.010 [in] Width d = 11.900 [in] Depth k = 1.020 [in] Distance k k1 = 0.875 [in] Distance k1 tf = 0.515 [in] Flange thickness tw = 0.295 [in] Web thickness Properties Section properties Unit Major axis Minor axis Gross area of the section. (Ag) [in2] 11.700 Moment of Inertia(local axes) (I) [in4] 307.000 44.100 Moment of Inertia(principal axes) (I') [in4] 307.000 44.100 Bending constant for moments(principal axis) (J') [in] 0.000 0.000 Radius of gyration(local axes) (r) [in] 5.122 1.941 Radius of gyration(principal axes) (r) [in] 5.122 1.941 Saint-Venant torsion constant. (J) [in4] 0.906 Section warping constant. (Cw) [in6] 1440.000 Distance from centroid to shear center(principal axis) (xo,yo) [in] 0.000 0.000 Top elastic section modulus of the section(local axis) (Ssup) [in3] 51.500 11.000 Bottom elastic section modulus of the section(local axis) (Sinf) [in3] 51.500 11.000 Top elastic section modulus of the section(principal axis) (S'sup) [in3] 51.500 11.000 Bottom elastic section modulus of the section(principal axis) (S'inf) [in3] 51.500 11.000 Plastic section modulus(local axis) (Z) [in3] 57.000 16.800 Plastic section modulus(principal axis) (Z) [in3] 57.000 16.800 Polar radius of gyration. (ro) [in] 5.478 Area for shear (Aw) [in2] 8.250 3.510 Torsional constant. (C) [in3] 1.605 Material :A992 Gr50 Properties Unit Value Yield stress(Fy): [Kip/in2] 50.00 Tensile strength(Fu): [Kip/in2] 65.00 Elasticity Modulus(E): [Kip/in2] 29000.00 210 of 252 Shear modulus for steel(G): [Kipin2] 11153.85 DESIGN CRITERIA Description Unit Value Length for tension slenderness ratio(L) [in] 180.00 Distance between member lateral bracing points Length(Lb)[in] Top Bottom 180.00 180.00 Laterally unbraced length Length[in] Effective length factor Major axis(L33) Minor axis(L22) Torsional axis(Lt) Major axis(K33) Minor axis(K22) Torsional axis(Kt) 146.39 180.00 146.34 2.10 1.20 - Additional assumptions Continuous lateral torsional restraint No Tension field action No Continuous flexural torsional restraint No Effective length factor value type Recommended Major axis frame type Non sway Minor axis frame type Non sway DESIGN CHECKS AXIAL TENSION DESIGN Axial tension Ratio 0.02 Capacity 350.30[Kip] Reference : Eq.Sec.D2 Demand 6.71 [Kip] Ctrl Eq. : L84 at 100.00% Intermediate results Unit Value Reference Factored axial tension capacitv(Pn/ 2) [Kip] 350.30 Eq.Sec.D2 Nominal axial tension capacity(Pn) [Kip] 585.00 Eq.D2-1 AXIAL COMPRESSION DESIGN Compression in the major axis 33 Ratio 0.16 Capacity 269.20[Kip] Reference : Sec.El Demand 42.45[Kip] Ctrl Eq. : L04 at 0.00% Intermediate results Unit Value Reference Section classification Unstiffened element classification -- Non slender Unstiffened element slenderness(X) — 7.78 Unstiffened element limiting slenderness(Xr) — 13.49 Stiffened element classification — Non slender Stiffened element slenderness(?) — 33.42 211 of 252 Stiffened element limiting slenderness(kr) - 35.88 Factored flexural buckling strength(Pn33/S2) [Kip] 269.20 Sec.El Effective length factor(K33) - 2.10 Unbraced length(L33) [in] 146.39 Effective slenderness((KUr)33) -- 60.01 Eq.E3-4 Elastic critical buckling stress(Fe33) [Kip/in2] 79.47 Eq.E3-4 Reduction factor for slender unstiffened elements(Qs33) - 1.00 Effective area of the cross section based on the effective width (A... [in2] 11.70 Eq.E3-2 Reduction factor for slender stiffened elements(Qa33) -- 1.00 Full reduction factor for slender elements(Q33) -- 1.00 Sec.E7 Critical stress for flexural buckling(Fcr33) [Kip/in2] 38.42 Eq.E3-2 Nominal flexural buckling strength(Pn33) [Kip] 449.56 Eq.E3-1 Compression in the minor axis 22 Ratio 0.30 Capacity 141.70[Kip] Reference : Sec.El Demand 42.45[Kip] Ctrl Eq. : L04 at 0.00% Intermediate results Unit Value Reference Section classification Unstiffened element classification - Non slender Unstiffened element slenderness(X) - 7.78 Unstiffened element limiting slenderness(2.r) - 13.49 Stiffened element classification - Non slender Stiffened element slenderness(X) -- 33.42 Stiffened element limiting slenderness(kr) -- 35.88 Factored flexural buckling strength(Pn22/S2) [Kip] 141.70 Sec.El Effective length factor(K22) - 1.20 Unbraced length(L22) [in] 180.00 Effective slenderness((KL/r)22) - 111.26 Eq.E3-4 Elastic critical buckling stress(Fe22) [Kip/in2] 23.12 Eq.E3-4 Reduction factor for slender unstiffened elements(Qs22) - 1.00 Effective area of the cross section based on the effective width (A... [in2] 11.70 Eq.E3-2 Reduction factor for slender stiffened elements(Qa22) - 1.00 Full reduction factor for slender elements(Q22) - 1.00 Sec.E7 Critical stress for flexural buckling(Fcr22) [Kip/in2] 20.23 Eq.E3-2 Nominal flexural buckling strength(Pn22) [Kip] 236.64 Eq.E3-1 Factored torsional or flexural-torsional buckling strength(Pn11/S2) [Kip] 272.72 Sec.E4 Effective length factor(K11) - 1.00 Unbraced length(Lit) [in] 146.34 Flexural constant(H) -- 1.00 Eq.E4-10 Torsional or flexural-torsional elastic buckling stress(Fell) [Kip/in2] 83.60 Eq.E4-4 Elastic torsional buckling stress(Fez) [Kip/in2] 83.60 Eq.E4-9 Reduction factor for slender unstiffened elements(Qs11) - 1.00 Effective area of the cross section based on the effective width (A... [in2] 11.70 Eq.E3-2 Reduction factor for slender stiffened elements(Qa11) - 1.00 Full reduction factor for slender elements(Q11) - 1.00 Sec.E7 Critical stress for torsional or flexural-torsional buckling(Fcr11) [Kip/in2] 38.93 Eq.E3-2 Nominal torsional or flexural-torsional buckling strength(Pro 1) [Kip] 455.45 Eq.E4-1 FLEXURAL DESIGN %, Bending about major axis,M33 Ratio 0.38 Capacity 112.44[Kip*ft] Reference : Sec. Fl Demand 42.37[Kip*ft] Ctrl Eq. : L55 at 100.00% 212 of 252 Intermediate results Unit Value Reference Section classification Unstiffened element classification - Compact Unstiffened element slenderness(X) - 7.78 Limiting slenderness for noncompact unstiffened element(Ar) - 24.08 Limiting slenderness for compact unstiffened element(a.p) - 9.15 Stiffened element classification - Compact Stiffened element slenderness(X) - 33.42 Limiting slenderness for noncompact stiffened element(A.r) - 137.27 Limiting slenderness for compact stiffened element(Ap) - 90.55 Factored yielding strength(Mn/S2) [Kip*ft] 142.22 Sec.Fl Yielding(Mn) [Kip•ft] 237.50 Eq.F2-1 Factored lateral-torsional buckling strength(Mn/S2) [Kip*ft] 112.44 Sec.Fl Limiting laterally unbraced length for yielding(Lp) [in] 82.29 Eq.F2-5 Effective radius of gyration used in the determination of Lr(rts) [in] 2.21 Eq.F2-7 Lateral-torsional factor(c) - 1.00 Eq.F2-8a Limiting laterally unbraced length for inelastic lateral-torsional bucklin... [in] 253.81 Eq.F2-6 Lateral-torsional buckling modification factor(Cb) - 1.00 Eq.F1-1 Critical stress(Fcr) [Kipfin2] 57.96 Eq.F2-4 Lateral-torsional buckling(Mn) [Kip*ft] 187.77 Eq.F2-2 Bending about minor axis,M22 Ratio 0.09 Capacity 41.92[Kip*ft] Reference : Sec.Fl Demand 3.96[Kip*ft] Ctrl Eq. : L08 at 100.00% Intermediate results Unit Value Reference Section classification Unstiffened element classification - Compact Unstiffened element slenderness(X) - 7.78 Limiting slenderness for noncompact unstiffened element(Ar) - 24.08 Limiting slenderness for compact unstiffened element(a.p) - 9.15 Stiffened element classification - Compact Stiffened element slenderness(X) - 33.42 Limiting slenderness for noncompact stiffened element(Ar) - 137.27 Limiting slenderness for compact stiffened element(Ap) -- 90.55 Factored yielding strength(Mn/S2) [Kip*ft] 41.92 Sec.Fl Yielding(Mn) [Kip*ft] 70.00 Eq.F6-1 DESIGN FOR SHEAR 91 Shear in major axis 33 Ratio 0.00 Capacity 148.20[Kip] Demand -0.33[Kip] Ctrl Eq. : L52 at 100.00% Intermediate results Unit Value Reference Factored shear capacitv(Vn/ 2) [Kip] 148.20 Web slenderness(A.w) - 7.78 Sec.G2 Shear area(Aw) [in2] 8.25 Web buckling coefficient(kv) - 1.20 Sec.G7 Web buckling coefficient(Cv) - 1.00 Eq.G2-3 213 of 252 Nominal shear strength(Vn) [Kip] 247.50 Eq.G2-1 Shear in minor axis 22 Ratio 0.05 Capacity 70.20[Kip] Reference : Sec.G2.1(a) Demand 3.59[Kip] Ctrl Eq. : L55 at 0.00% Intermediate results Unit Value Reference Factored shear capacity(Vn/)) [Kip] 70.20 Sec.G2.1(a) Web slenderness(Xw) — 33.42 Sec.G2 Shear area(Aw) [in2] 3.51 Web buckling coefficient(Cv) — 1.00 Eq.G2-2 Nominal shear strength(Vn) [Kip] 105.30 Eq.G2-1 COMBINED ACTIONS DESIGN if Combined flexure and axial compression Ratio 0.54 Ctrl Eq. L07 at 100.00% Reference : Eq. H1-la Intermediate results Unit Value Reference Interaction of flexure and axial force — 0.54 Eq.H1-la Required flexural strength about strong axis(Mr33) [Kip*ft] 29.14 Available flexural strength about strong axis(Mc33) [Kip*ft] 112.44 Sec.Fl Required flexural strength about weak axis(Mr22) [Kip*ft] 3.34 Available flexural strength about weak axis(Mc22) [Kip*ft] 41.92 Sec.Fl Required axial compressive strength(Pr) [Kip] 33.95 Available axial compressive strength(Pc) [Kip] 141.70 Sec.El Combined flexure and axial tension Ratio 0.40 Ctrl Eq. L55 at 100.00% Reference : Eq.Hl-lb Intermediate results Unit Value Reference Required flexural strength about strong axis(Mr33) [Kip*ft] 42.37 Available flexural strength about strong axis(Mc33) [Kip*ft] 112.44 Sec.Fl Required flexural strength about weak axis(Mr22) [Kip*ft] 0.89 Available flexural strength about weak axis(Mc22) [Kip*ft] 41.92 Sec. Fl Required axial tensile strength(Pr) [Kip] 0.00 Available axial tensile strength(Pc) [Kip] 350.30 Eq.Sec.D2 Combined flexure and axial compression about local axis Ratio N/A Ctrl Eq. Reference .• Combined flexure and axial tension about local axis Ratio N/A Ctrl Eq. -- Reference . 214 of 252 Member 34(Kicker Brace) Design status OK Section information Section name: HSS_SQR 4X4X1_4 (US) Dimensions j.t 1' a if a = 4.000 [in] Height b = 4.000 [in] Width T = 0.233 [in] Thickness Properties Section properties Unit Major axis Minor axis Gross area of the section. (Ag) [in2] 3.370 Moment of Inertia(local axes) (I) [in4] 7.800 7.800 Moment of Inertia(principal axes) (I') [in4] 7.800 7.800 Bending constant for moments(principal axis) (J') [in] 0.000 0.000 Radius of gyration(local axes) (r) [in] 1.521 1.521 Radius of gyration(principal axes) (r) [in] 1.521 1.521 Saint-Venant torsion constant. (J) [in4] 12.800 Section warping constant. (Cw) [in6] 0.000 Distance from centroid to shear center(principal axis) (xo,yo) [in] 0.000 0.000 Top elastic section modulus of the section(local axis) (Ssup) [in3] 3.900 3.900 Bottom elastic section modulus of the section(local axis) (Sint) [in3] 3.900 3.900 Top elastic section modulus of the section(principal axis) (S'sup) [in3] 3.900 3.900 Bottom elastic section modulus of the section(principal axis) (S'inf) [in3] 3.900 3.900 Plastic section modulus(local axis) (Z) [in3] 4.700 4.700 Plastic section modulus(principal axis) (Z) [in3] 4.700 4.700 Polar radius of gyration. (ro) [in] 2.150 Area for shear (Aw) [in2] 1.538 1.538 Torsional constant. (C) [in3] 6.563 Material :A500 GrB rectangular Properties Unit Value Yield stress(Fy): [Kip/in2] 46.00 Tensile strength(Fu): [Kiplin2] 58.00 Elasticity Modulus(E): [Kip/in2] 29000.00 Shear modulus for steel(G): [Kiplin2] 11153.85 DESIGN CRITERIA Description Unit Value Length for tension slenderness ratio(L) [in] 193.87 Distance between member lateral bracing points Length(Lb)[in] Top Bottom 193.87 193.87 215 of 252 Laterally unbraced length Length[in] Effective length factor Major axis(L33) Minor axis(L22) Torsional axis(Lt) Major axis(K33) Minor axis(K22) Torsional axis(Kt) 193.87 193.87 193.87 1.0 1.0 1.0 Additional assumptions Continuous lateral torsional restraint No Tension field action No Continuous flexural torsional restraint No Effective length factor value type None Major axis frame type Non sway Minor axis frame type Non sway DESIGN CHECKS AXIAL TENSION DESIGN Axial tension Ratio 0.00 Capacity 92.83[Kip] Reference : Eq.Sec.D2 Demand 0.11 [Kip] Ctrl Eq. : L22 at 100.00% Intermediate results Unit Value Reference Factored axial tension capacity(Pn/f2) [Kip] 92.83 Eq.Sec.D2 Nominal axial tension capacity(Pn) [Kip] 155.02 Eq.D2-1 AXIAL COMPRESSION DESIGN If Compression in the major axis 33 Ratio 0.39 Capacity 31.19[Kip] Reference : Sec.El Demand 12.30[Kip] Ctrl Eq. : L08 at 0.00% Intermediate results Unit Value Reference Section classification Unstiffened element classification — Non slender Unstiffened element slendemess(X) -- 14.17 Unstiffened element limiting slenderness(Xi) -- 35.15 Stiffened element classification — Non slender Stiffened element slenderness(X) -- 14.17 Stiffened element limiting slenderness(kr) — 35.15 Factored flexural buckling strength(Pn33/S2) [Kip] 31.19 Sec.El Effective length factor(K33) — 1.00 Unbraced length(L33) [in] 193.87 Effective slenderness((KUr)33) — 127.43 Eq.E3-4 Elastic critical buckling stress(Fe33) [Kip/in2] 17.63 Eq.E3-4 Reduction factor for slender unstiffened elements(Qs33) — 1.00 Effective area of the cross section based on the effective width (A... [in2] 3.37 Eq.E3-3 Reduction factor for slender stiffened elements(Qa33) — 1.00 Full reduction factor for slender elements(Q33) — 1.00 Sec.E7 Critical stress for flexural buckling(Fcr33) [Kip/in2] 15.46 Eq.E3-3 Nominal flexural buckling strength(Pn33) [Kip] 52.09 Eq.E3-1 216 of 252 Compression in the minor axis 22 Ratio 0.39 Capacity 31.19[Kip] Reference : Sec.El Demand 12.30[Kip] Ctrl Eq. : L08 at 0.00% Intermediate results Unit Value Reference Section classification Unstiffened element classification - Non slender Unstiffened element slenderness(A) - 14.17 Unstiffened element limiting slenderness(kr) - 35.15 Stiffened element classification - Non slender Stiffened element slenderness(A) - 14.17 Stiffened element limiting slenderness(kr) - 35.15 Factored flexural buckling strength(Pn22/n) [Kip] 31.19 Sec.El Effective length factor(K22) - 1.00 Unbraced length(L22) [in] 193.87 Effective slenderness((KUr)22) - 127.43 Eq.E3-4 Elastic critical buckling stress(Fe22) [Kip/n2] 17.63 Eq.E3-4 Reduction factor for slender unstiffened elements(Qs22) - 1.00 Effective area of the cross section based on the effective width (A... [in2] 3.37 Eq.E3-3 Reduction factor for slender stiffened elements(Qa22) - 1.00 Full reduction factor for slender elements(Q22) - 1.00 Sec.E7 Critical stress for flexural buckling(Fcr22) [Kip/in2] 15.46 Eq.E3-3 Nominal flexural buckling strength(Pn22) [Kip] 52.09 Eq.E3-1 FLEXURAL DESIGN ihe Bending about major axis,M33 Ratio 0.03 Capacity 10.79[Kip*ft] Reference : Sec. Fl Demand -0.38[Kip*ft] Ctrl Eq. : L08 at 0.00% Intermediate results Unit Value Reference Section classification Unstiffened element classification - Compact Unstiffened element slenderness(A,) -- 14.17 Limiting slenderness for noncompact unstiffened element(kr) - 35.15 Limiting slendemess for compact unstiffened element(Ap) -- 28.12 Stiffened element classification -- Compact Stiffened element slenderness(A) - 14.17 Limiting slenderness for noncompact stiffened element(kr) - 143.12 Limiting slendemess for compact stiffened element(Ap) - 60.76 Factored Yielding strength(Mn/SZ) [Kip*ft] 10.79 Sec. Fl Yielding(Mn) [Kip*ft] 18.02 Eq.F7-1 Bending about minor axis,M22 Ratio 0.02 Capacity 10.79[Kip*ft] Reference : Sec.Fl Demand 0.18[Kip*ft] Ctrl Eq. : L13 at 50.00% Intermediate results Unit Value Reference Section classification Unstiffened element classification -- Compact 217 of 252 Unstiffened element slenderness(X) -- 14.17 Limiting slenderness for noncompact unstiffened element(?.r) -- 35.15 Limiting slenderness for compact unstiffened element(Xp) - 28.12 Stiffened element classification - Compact Stiffened element slenderness(?) - 14.17 Limiting slenderness for noncompact stiffened element(kr) - 143.12 Limiting slenderness for compact stiffened element(Ap) - 60.76 Factored yielding strength(Mn/SZ) [Kip*ft] 10.79 Sec. Fl Yielding(Mn) [Kip'ft] 18.02 Eq.F7-1 DESIGN FOR SHEAR 1t Shear in major axis 33 Ratio 0.00 Capacity 25.42[Kip] Demand 0.04[Kip] Ctrl Eq. : L13 at 100.00% Intermediate results Unit Value Reference Factored shear capacity(Vn/S2) [Kip] 25.42 Web slenderness aw) - 14.17 Sec.G2 Shear area(Aw) [in2] 1.54 Web buckling coefficient(kv) - 5.00 Sec.G5 Web buckling coefficient(Cv) - 1.00 Eq.G2-3 Nominal shear strength(Vn) [Kip] 42.46 Eq.G2-1 Shear in minor axis 22 Ratio 0.00 Capacity 25.42[Kip] Demand -0.07[Kip] Ctrl Eq. : L22 at 100.00% Intermediate results Unit Value Reference Factored shear capacitv(Vn/0) [Kip] 25.42 Web slenderness(&w) - 14.17 Sec.G2 Shear area(Aw) [in2] 1.54 Web buckling coefficient(kv) - 5.00 Sec.G5 Web buckling coefficient(Cv) - 1.00 Eq.G2-3 Nominal shear strength(Vn) [Kip] 42.46 Eq.G2-1 TORSION DESIGN Torsion Ratio 0.00 Capacity 9.04[Kip'ft] Demand 0.00[Kip'ft] Ctrl Eq. : L01 at 0.00% Intermediate results Unit Value Reference Factored torsion caoacitv(Tn/S2) [Kip'ft] 9.04 Critical torsional buckling stress(Fcr) [Kip/in2] 27.60 Eq.H3-3 Nominal torsion capacity(Tn) [Kip'ft] 15.09 Eq.H3-1 218 of 252 COMBINED ACTIONS DESIGN sif Combined flexure and axial compression Ratio 0.43 Ctrl Eq. L08 at 0.00% Reference : Eq.H1-la Intermediate results Unit Value Reference Interaction of flexure and axial force -- 0.43 Eq.H1-la Required flexural strength about strong axis(Mr33) [Kip*ft] -0.38 Available flexural strength about strong axis(Mc33) [Kip*ft] 10.79 Sec. Fl Required flexural strength about weak axis(Mr22) [Kip*ft] 0.00 Available flexural strength about weak axis(Mc22) [Kip*ft] 10.79 Sec. Fl Required axial compressive strength(Pr) [Kip] 12.30 Available axial compressive strength(Pc) [Kip] 31.19 Sec.El Combined flexure and axial tension Ratio 0.03 Ctrl Eq. L08 at 0.00% Reference Eq. H1-1b Intermediate results Unit Value Reference Required flexural strength about strong axis(Mr33) [Kip*ft] -0.38 Available flexural strength about strong axis(Mc33) [Kip*ft] 10.79 Sec. Fl Required flexural strength about weak axis(Mr22) [Kip*ft] 0.00 Available flexural strength about weak axis(Mc22) [Kip*ft] 10.79 Sec. Fl Required axial tensile strength(Pr) [Kip] 0.00 Available axial tensile strength(Pc) [Kip] 92.83 Eq.Sec. D2 Combined flexure and axial compression about local axis Ratio N/A • Ctrl Eq. -- Reference . Combined flexure and axial tension about local axis Ratio N/A • Ctrl Eq. -- Reference Combined torsion,flexure,shear and axial compression Ratio N/A • Ctrl Eq. -- Reference . Combined torsion,flexure,shear and axial tension Ratio N/A • Ctrl Eq. — Reference . Member 101 (Runway Beam) Design status OK 219 of 252 Section information Section name: W 24 x 94_C 15 x 33.9 (US) Dimensions is Cd `k1Ctw :bf 1 Wd ECt* + u, i ,l,-�k*Wtf Cbf = 3.400 [in] Width Cd = 15.000 [in] Depth Ctf = 0.650 [in] Flange thickness Ctw = 0.400 [in] Web thickness Wbf = 9.070 [in] Width Wd = 24.300 [in] Depth Wtf = 0.875 [in] Flange thickness Wtw = 0.515 [in] Web thickness Properties Section properties Unit Major axis Minor axis Gross area of the section. (Ag) [in2] 37.836 Moment of Inertia(local axes) (I) [in4] 3736.698 421.885 Moment of Inertia(principal axes) (I') [in4] 3736.698 421.885 Bending constant for moments(principal axis) (J') [in] -9.282 0.000 Radius of gyration(local axes) (r) [in] 9.938 3.339 Radius of gyration(principal axes) (r) [in] 9.938 3.339 Saint-Venant torsion constant. (J) [in4] 6.009 Section warping constant. (Cw) [in6] 28872.345 Distance from centroid to shear center(principal axis) (xo,yo) [in] 0.000 7.008 Top elastic section modulus of the section(local axis) (Ssup) [in3] 393.564 56.251 Bottom elastic section modulus of the section(local axis) (Sint) [in3] 245.747 56.251 Top elastic section modulus of the section(principal axis) (Sssup) [in3] 393.564 56.251 Bottom elastic section modulus of the section(principal axis) (S'inf) [in3] 245.747 56.251 Plastic section modulus(local axis) (Z) [in3] 324.666 86.431 Plastic section modulus(principal axis) (Z') [in3] 324.666 86.431 Polar radius of gyration. (ro) [in] 12.610 Area for shear (Aw) [in2] 21.613 16.224 Torsional constant. (C) [in3] 6.868 Material :A36 Properties Unit Value Yield stress(Fy): [Kip/in2] 36.00 Tensile strength(Fu): [Kipfin2] 58.00 Elasticity Modulus(E): [Kipfin2] 29000.00 Shear modulus for steel(G): [KipTn2] 11507.94 DESIGN CRITERIA Description Unit Value Length for tension slenderness ratio(L) [in] 576.00 Distance between member lateral bracing points Length(Lb)[in] Top Bottom 567.00 576.00 220 of 252 Laterally unbraced length Length[in] Effective length factor Major axis(L33) Minor axis(L22) Torsional axis(Lt) Major axis(K33) Minor axis(K22) Torsional axis(Kt) 576.00 576.00 4.00 1.0 1.0 1.0 Additional assumptions Continuous lateral torsional restraint No Tension field action No Continuous flexural torsional restraint No Effective length factor value type None Major axis frame type Sway Minor axis frame type Sway DESIGN CHECKS AXIAL TENSION DESIGN lir Axial tension Ratio 0.00 Capacity 815.63[Kip] Reference : Eq.Sec.D2 Demand 0.00[Kip] Ctrl Eq. : L01 at 0.00% Intermediate results Unit Value Reference Factored axial tension capacitv(Pn/S ) [Kip] 815.63 Eq.Sec.D2 Nominal axial tension capacity(Pn) [Kip] 1362.11 Eq.D2-1 AXIAL COMPRESSION DESIGN it Compression in the maior axis 33 Ratio 0.01 Capacity 683.42[Kip] Reference : Sec.El Demand 3.43[Kip] Ctrl Eq. : L02 at 0.00% Intermediate results Unit Value Reference Section classification Unstiffened element classification — Non slender Unstiffened element slenderness(?.) — 5.23 Unstiffened element limiting slenderness(Xr) -- 15.89 Stiffened element classification -- Slender Stiffened element slenderness()) -- 43.79 Stiffened element limiting slenderness(Xr) -- 42.29 Factored flexural buckling strength(Pn33/52) [Kip] 683.42 Sec.El Effective length factor(K33) -- 1.00 Unbraced length(L33) [in] 576.00 Effective slenderness((KUr)33) — 57.96 Eq.E3-4 Elastic critical buckling stress(Fe33) [Kip/in2] 85.20 Eq.E3-4 Reduction factor for slender unstiffened elements(Qs33) — 1.00 Effective area of the cross section based on the effective width (A... [in2] 37.84 Eq.E7-2 Reduction factor for slender stiffened elements(Qa33) -- 1.00 Eq.E7-16 Full reduction factor for slender elements(Q33) — 1.00 Sec.E7 Critical stress for flexural buckling(Fcr33) [Kip/in2] 30.16 Eq.E7-2 Nominal flexural buckling strength(Pn33) [Kip] 1141.31 Eq.E7-1 221 of 252 Compression in the minor axis 22 Ratio 0.02 Capacity : 191.13[Kip] Reference : Sec.El Demand 3.43[Kip] Ctrl Eq. : L02 at 0.00% Intermediate results Unit Value Reference Section classification Unstiffened element classification - Non slender Unstiffened element slenderness(A) - 5.23 Unstiffened element limiting slenderness(kr) - 15.89 Stiffened element classification - Slender Stiffened element slenderness(A) - 43.79 Stiffened element limiting slenderness(kr) - 42.29 Factored flexural buckling strength(Pn22/L ) [Kip] 191.13 Sec.El Effective length factor(K22) - 1.00 Unbraced length(L22) [in] 576.00 Effective slenderness((KL/r)22) - 172.50 Eq.E3-4 Elastic critical buckling stress(Fe22) [Kip/in2] 9.62 Eq.E3-4 Reduction factor for slender unstiffened elements(Qs22) - 1.00 Effective area of the cross section based on the effective width (A... [in2] 37.84 Eq.E7-3 Reduction factor for slender stiffened elements(Qa22) - 1.00 Eq.E7-16 Full reduction factor for slender elements(Q22) - 1.00 Sec.E7 Critical stress for flexural buckling(Fcr22) [KipIn2] 8.44 Eq.E7-3 Nominal flexural buckling strength(Pn22) [Kip] 319.19 Eq.E7-1 Factored torsional or flexural-torsional buckling strength(Pn11/)) [Kip] 808.10 Sec.E4 Effective length factor(K11) - 1.00 Unbraced length(Lit) [in] 4.00 Flexural constant(H) - 0.69 Eq.E4-10 Torsional or flexural-torsional elastic buckling stress(Fell) [Kiprin2] 124214.60 Eq.E4-4 Elastic torsional buckling stress(Fez) [KipCn2] 85853.94 Eq.E4-9 Reduction factor for slender unstiffened elements(Qs11) - 1.00 Effective area of the cross section based on the effective width (A... [in2] 37.49 Eq.E7-2 Reduction factor for slender stiffened elements(Qa11) -- 0.99 Eq.E7-16 Full reduction factor for slender elements(Q11) -- 0.99 Sec.E7 Critical stress for torsional or flexural-torsional buckling(Fcr11) [Kip/in2] 35.67 Eq.E7-2 Nominal torsional or flexural-torsional buckling strength(Pn11) [Kip] 1349.53 Eq.E7-1 FLEXURAL DESIGN 1, Bending about major axis,M33 Ratio 0.77 Capacity 583.23[Kip*ft] Reference : Sec.Fl Demand : 451.50[Kip*ft] Ctrl Eq. : L02 at 0.00% Intermediate results Unit Value Reference Section classification Unstiffened element classification - Slender Unstiffened element slenderness(A) - 34.25 Limiting slenderness for noncompact unstiffened element(Ar) - 28.38 Limiting slenderness for compact unstiffened element(Ap) -- 10.79 Stiffened element classification -- Compact Stiffened element slenderness(A) - 43.79 Limiting slenderness for noncompact stiffened element(Ar) -- 161.78 Limiting slenderness for compact stiffened element(Ap) - 106.72 Factored yielding strength(Mn/S ) [Kip*ft] 583.23 Sec.Fl Yielding(Mn) [Kip*ft] 974.00 Sec.F4.2 Factored lateral-torsional buckling strength(Mn/)) [Kip*ft] 583.23 Sec.Fl 222 of 252 Radius of gyration of the compression flange(n) [in] 5.20 Limiting laterally unbraced length for yielding(Lp) [in] 166.80 Eq.F2-5 Calculated stress used in the calculation of nominal strength(FL) [Kip/in2] 22.48 Eq.F4-6b Effective radius of gyration used in the determination of Lr(rts) [in] 2.98 Eq.F2-7 Lateral-torsional factor(c) - 1.00 Eq.F2-8a Limiting laterally unbraced length for inelastic lateral-torsional bucklin... [in] 365.63 Eq.F2-6 Lateral-torsional buckling modification factor(Cb) - 1.00 Eq.C-F1-3 Web plastification factor(Rpc) - 1.32 Eq.F4-4 Critical stress(Fcr) [Kip/in2] 30.45 Eq.F4-5 Lateral-torsional buckling(Mn) [Kip`ft] 974.00 Eq.F4-3 Bending about minor axis,M22 Ratio 0.18 Capacity 155.27[Kip`ft] Reference : Sec.Fl Demand 27.75[Kip`ft] Ctrl Eq. : L20 at 0.00% Intermediate results Unit Value Reference Section classification Unstiffened element classification - Slender Unstiffened element slendemess(X) -- 34.25 Limiting slenderness for noncompact unstiffened element(2,r) - 28.38 Limiting slenderness for compact unstiffened element(Xp) -- 10.79 Stiffened element classification - Compact Stiffened element slenderness(X) - 43.79 Limiting slenderness for noncompact stiffened element(kr) -- 161.78 Limiting slenderness for compact stiffened element(Xp) -- 106.72 Factored yielding strength(Mn/S2) [Kip*ft] 155.27 Sec. Fl Yielding(Mn) [Kip`ft] 259.29 Eq.F6-1 DESIGN FOR SHEAR V Shear in major axis 33 Ratio 0.00 Capacity 279.54[Kip] Demand 0.51 [Kip] Ctrl Eq. : L11 at 0.00% Intermediate results Unit Value Reference Factored shear capacity(Vn/S2) [Kip] 279.54 Web slenderness(kw) - 5.18 Sec.G2 Shear area(Aw) [in2] 21.61 Web buckling coefficient(kv) -- 1.20 Sec.G7 Web buckling coefficient(Cv) - 1.00 Eq.G2-3 Nominal shear strength(Vn) [Kip] 466.83 Eq.G2-1 Shear in minor axis 22 Ratio 0.03 Capacity : 209.84[Kip] Demand -7.12[Kip] Ctrl Eq. : L02 at 100.00% Intermediate results Unit Value Reference Factored shear capacity(Vn/S2) [Kip] 209.84 Web slenderness(2.w) -- 43.79 Sec.G2 223 of 252 Shear area(Aw) [in2] 16.22 Web buckling coefficient(kv) -- 5.00 Sec.G2.1(b) Web buckling coefficient(Cv) — 1.00 Eq.G2-3 Nominal shear strength(Vn) [Kip] 350.44 Eq.G2-1 COMBINED ACTIONS DESIGN lit Combined flexure and axial compression Ratio 0.93 Ctrl Eq. L02 at 0.00% Reference : Eq.H1-lb Intermediate results Unit Value Reference Interaction of flexure and axial force — 0.93 Eq.H1-lb Required flexural strength about strong axis(Mr33) [Kip*ft] 451.50 Available flexural strength about strong axis(Mc33) [Kip*ft] 583.23 Sec.Fl Required flexural strength about weak axis(Mr22) [Kip*ft] 23.23 Available flexural strength about weak axis(Mc22) [Kip*ft] 155.27 Sec.Fl Required axial compressive strength(Pr) [Kip] 3.43 Available axial compressive strength(Pc) [Kip] 191.13 Sec.El Combined flexure and axial tension Ratio 0.92 Ctrl Eq. L02 at 0.00% Reference : Eq.H1-lb Intermediate results Unit Value Reference Required flexural strength about strong axis(Mr33) [Kip*ft] 451.50 Available flexural strength about strong axis(Mc33) [Kip*ft] 583.23 Sec.Fl Required flexural strength about weak axis(Mr22) [Kip*ft] 23.23 Available flexural strength about weak axis(Mc22) [Kip*ft] 155.27 Sec.Fl Required axial tensile strength(Pr) [Kip] 0.00 Available axial tensile strength(Pc) [Kip] 815.63 Eq.Sec.D2 Combined flexure and axial compression about local axis Ratio N/A Ctrl Eq. -- Reference .• Combined flexure and axial tension about local axis Ratio N/A Ctrl Eq. -- Reference .• Member 105(Runway Beam Even) Design status OK 224 of 252 Section information Section name: W 24 x 76_C 15 x 33.9 (US) Dimensions '1, 14.`k1Ctw :bf 1 Cti Wd -.l 14- + FWtw t Wb ,1 Wit Cbf = 3.400 [in] Width Cd = 15.000 [in] Depth Ctf = 0.650 [in] Flange thickness Ctw = 0.400 [in] Web thickness Wbf = 9.000 [in] Width Wd = 23.900 [in] Depth Wtf = 0.680 [in] Flange thickness Wtw = 0.440 [in] Web thickness Properties Section properties Unit Major axis Minor axis Gross area of the section. (Ag) [in2] 32.357 Moment of Inertia(local axes) (I) [in4] 3024.336 395.590 Moment of Inertia(principal axes) (I') [in4] 3024.336 395.590 Bending constant for moments(principal axis) (J') [in] -9.584 0.000 Radius of gyration(local axes) (r) [in] 9.668 3.497 Radius of gyration(principal axes) (r') [in] 9.668 3.497 Saint-Venant torsion constant. (J) [in4] 3.438 Section warping constant. (Cw) [in6] 22314.354 Distance from centroid to shear center(principal axis) (xo,yo) [in] 0.000 6.956 Top elastic section modulus of the section(local axis) (Ssup) [in3] 342.187 52.745 Bottom elastic section modulus of the section(local axis) (Sinf) [in3] 195.601 52.745 Top elastic section modulus of the section(principal axis) (S'sup) [in3] 342.187 52.745 Bottom elastic section modulus of the section(principal axis) (S'inf) [in3] 195.601 52.745 Plastic section modulus(local axis) (Z) [in3] 261.095 77.980 Plastic section modulus(principal axis) (Z) [in3] 261.095 77.980 Polar radius of gyration. (ro) [in] 12.413 Area for shear (Aw) [in2] 17.980 14.377 Torsional constant. (C) [in3] 5.056 Material :A36 Properties Unit Value Yield stress(Fy): [Kip/in2] 36.00 Tensile strength(Fu): [Kip/in2] 58.00 Elasticity Modulus(E): [KipTn2] 29000.00 Shear modulus for steel(G): [Kip/in2] 11507.94 DESIGN CRITERIA Description Unit Value Length for tension slenderness ratio(L) [in] 417.50 Distance between member lateral bracing points Length(Lb)[in] Top Bottom 417.50 417.50 225 of 252 Laterally unbraced length Length[in] Effective length factor Major axis(L33) Minor axis(L22) Torsional axis(Lt) Major axis(K33) Minor axis(K22) Torsional axis(Kt) 417.50 417.50 8.00 1.0 1.0 1.0 Additional assumptions Continuous lateral torsional restraint No Tension field action No Continuous flexural torsional restraint No Effective length factor value type None Major axis frame type Sway Minor axis frame type Sway DESIGN CHECKS AXIAL TENSION DESIGN s Axial tension Ratio 0.00 Capacity 697.51 [Kip] Reference : Eq.Sec.D2 Demand 0.27[Kip] Ctrl Eq. : L02 at 0.00% Intermediate results Unit Value Reference Factored axial tension capacitv(Pn/f 2) [Kip] 697.51 Eq.Sec.D2 Nominal axial tension capacity(Pn) [Kip] 1164.84 Eq.D2-1 AXIAL COMPRESSION DESIGN ille Compression in the major axis 33 Ratio 0.01 Capacity 614.09[Kip] Reference : Sec.El Demand 3.60[Kip] Ctrl Eq. : L09 at 0.00% Intermediate results Unit Value Reference Section classification Unstiffened element classification — Non slender Unstiffened element slenderness(X) — 6.62 Unstiffened element limiting slenderness(kr) - 15.89 Stiffened element classification -- Slender Stiffened element slenderness(X) — 51.23 Stiffened element limiting slenderness(Xr) - 42.29 Factored flexural buckling strength(Pn33K2) [Kip] 614.09 Sec.El Effective length factor(K33) — 1.00 Unbraced length(L33) [in] 417.50 Effective slenderness((KL/r)33) — 43.18 Eq.E3-4 Elastic critical buckling stress(Fe33) [Kip/in2] 153.48 Eq.E3-4 Reduction factor for slender unstiffened elements(Qs33) — 1.00 Effective area of the cross section based on the effective width (A... [in2] 31.33 Eq.E7-2 Reduction factor for slender stiffened elements(Qa33) — 0.97 Eq.E7-16 Full reduction factor for slender elements(Q33) — 0.97 Sec.E7 Critical stress for flexural buckling(Fcr33) [Kip/in2] 31.69 Eq.E7-2 Nominal flexural buckling strength(Pn33) [Kip] 1025.53 Eq.E7-1 Compression in the minor axis 22 226 of 252 Ratio 0.01 Capacity 329.30[Kip] Reference : Sec.El Demand 3.60[Kip] Ctrl Eq. : L09 at 0.00% Intermediate results Unit Value Reference Section classification Unstiffened element classification - Non slender Unstiffened element slenderness(X) - 6.62 Unstiffened element limiting slenderness(kr) - 15.89 Stiffened element classification - Slender Stiffened element slenderness(X) - 51.23 Stiffened element limiting slenderness(kr) - 42.29 Factored flexural buckling strength(Pn22/S)) [Kip] 329.30 Sec.El Effective length factor(K22) - 1.00 Unbraced length(L22) [in] 417.50 Effective slenderness((KL/r)22) - 119.40 Eq.E3-4 Elastic critical buckling stress(Fe22) [Kip/in2] 20.08 Eq.E3-4 Reduction factor for slender unstiffened elements(Qs22) - 1.00 Effective area of the cross section based on the effective width (A... [in2] 32.36 Eq.E7-2 Reduction factor for slender stiffened elements(Qa22) - 1.00 Eq.E7-16 Full reduction factor for slender elements(Q22) -- 1.00 Sec.E7 Critical stress for flexural buckling(Fcr22) [Kip/in2] 17.00 Eq.E7-2 Nominal flexural buckling strength(Pn22) [Kip] 549.93 Eq.E7-1 Factored torsional or flexural-torsional buckling strength(Pn11/0) [Kip] 668.01 Sec.E4 Effective length factor(K11) - 1.00 Unbraced length(L11) [in] 8.00 Flexural constant(H) - 0.69 Eq.E4-10 Torsional or flexural-torsional elastic buckling stress(Fe11) [Kip/in2] 29191.57 Eq.E4-4 Elastic torsional buckling stress(Fez) [Kip/in2] 20024.41 Eq.E4-9 Reduction factor for slender unstiffened elements(Qs11) - 1.00 Effective area of the cross section based on the effective width (A... [in2] 31.00 Eq.E7-2 Reduction factor for slender stiffened elements(Qa11) - 0.96 Eq.E7-16 Full reduction factor for slender elements(Q11) - 0.96 Sec.E7 Critical stress for torsional or flexural-torsional buckling(Fcr11) [Kip/in2] 34.48 Eq.E7-2 Nominal torsional or flexural-torsional buckling strength(Pn11) [Kip] 1115.58 Eq.E7-1 FLEXURAL DESIGN 1, Bending about malor axis,M33 Ratio 0.66 Capacity : 469.03[Kip•ft] Reference : Sec.Fl Demand 308.78[Kip*ft] Ctrl Eq. : L12 at 0.00% Intermediate results Unit Value Reference Section classification Unstiffened element classification -- Slender Unstiffened element slenderness(X) - 34.25 Limiting slenderness for noncompact unstiffened element(Ar) - 28.38 Limiting slenderness for compact unstiffened element(gyp) - 10.79 Stiffened element classification - Compact Stiffened element slenderness(X) - 51.23 Limiting slenderness for noncompact stiffened element(Ar) - 161.78 Limiting slenderness for compact stiffened element(Ap) - 106.72 Factored yielding strencith(Mn/ 2) [Kip*ft] 469.03 Sec.Fl Yielding(Mn) [Kip*ft] 783.29 Sec.F4.2 Factored lateral-torsional buckling strength(Mn/)) [Kip*ft] 469.03 Sec.Fl Radius of gyration of the compression flange(n) [in] 5.44 227 of 252 Limiting laterally unbraced length for yielding(Lp) [in] 174.66 Eq.F2-5 Calculated stress used in the calculation of nominal strength(FL) [Kip/in2] 20.58 Eq.F4-6b Effective radius of gyration used in the determination of Lr(rts) [in] 2.95 Eq.F2-7 Lateral-torsional factor(c) - 1.00 Eq.F2-8a Limiting laterally unbraced length for inelastic lateral-torsional bucklin... [in] 345.32 Eq.F2-6 Lateral-torsional buckling modification factor(Cb) - 1.00 Eq.C-F1-3 Web plastification factor(Rpc) - 1.33 Eq.F4-4 Critical stress(Fcr) [Kip/in2] 53.15 Eq.F4-5 Lateral-torsional buckling(Mn) [Kip*ft] 783.29 Eq.F4-3 Bending about minor axis.M22 Ratio 0.12 Capacity 140.08[Kip*ft] Reference : Sec.Fl Demand 17.35[Kip*ft] Ctrl Eq. : L09 at 0.00% Intermediate results Unit Value Reference Section classification Unstiffened element classification - Slender Unstiffened element slenderness(?) -- 34.25 Limiting slenderness for noncompact unstiffened element(?.r) - 28.38 Limiting slenderness for compact unstiffened element(Xp) - 10.79 Stiffened element classification - Compact Stiffened element slenderness(X) -- 51.23 Limiting slenderness for noncompact stiffened element(kr) - 161.78 Limiting slenderness for compact stiffened element(.p) - 106.72 Factored yielding strength(Mn/S2) [Kip*ft] 140.08 Sec.Fl Yielding(Mn) [Kip*ft] 233.94 Eq.F6-1 DESIGN FOR SHEAR V. Shear in major axis 33 Ratio 0.00 Capacity 232.56[Kip] Demand 0.58[Kip] Ctrl Eq. : L01 at 0.00% Intermediate results Unit Value Reference Factored shear capacity(Vn/2) [Kip] 232.56 Web slenderness(kw) - 6.62 Sec.G2 Shear area(Aw) [in2] 17.98 Web buckling coefficient(kv) - 1.20 Sec.G7 Web buckling coefficient(Cv) - 1.00 Eq.G2-3 Nominal shear strength(Vn) [Kip] 388.37 Eq.G2-1 Shear in minor axis 22 Ratio 0.03 Capacity 185.95[Kip] Demand -4.98[Kip] Ctrl Eq. : L09 at 100.00% Intermediate results Unit Value Reference Factored shear caoacitv(Vn/ 2) [Kip] 185.95 Web slendemess(kw) -- 51.23 Sec.G2 Shear area(Aw) [in2] 14.38 228 of 252 Web buckling coefficient(kv) — 5.00 Sec.G2.1(b) Web buckling coefficient(Cv) — 1.00 Eq.G2-3 Nominal shear strength(Vn) [Kip] 310.54 Eq.G2-1 COMBINED ACTIONS DESIGN At Combined flexure and axial compression Ratio 0.79 Ctrl Eq. L09 at 0.00% Reference : Eq.Hl-lb Intermediate results Unit Value Reference Interaction of flexure and axial force — 0.79 Eq.H1-lb Required flexural strength about strong axis(Mr33) [Kip*ft] 308.77 Available flexural strength about strong axis(Mc33) [Kip`ft] 469.03 Sec. Fl Required flexural strength about weak axis(Mr22) [Kip*ft] 17.35 Available flexural strength about weak axis(Mc22) [Kip`ft] 140.08 Sec.Fl Required axial compressive strength(Pr) [Kip] 3.60 Available axial compressive strength(Pc) [Kip] 329.30 Sec.El Combined flexure and axial tension Ratio 0.78 Ctrl Eq. L09 at 0.00% Reference : Eq. H1-lb Intermediate results Unit Value Reference Required flexural strength about strong axis(Mr33) [Kip*ft] 308.77 Available flexural strength about strong axis(Mc33) [Kip*ft] 469.03 Sec. Fl Required flexural strength about weak axis(Mr22) [Kip*ft] 17.35 Available flexural strength about weak axis(Mc22) [Kip*ft] 140.08 Sec.Fl Required axial tensile strength(Pr) [Kip] 0.00 Available axial tensile strength(Pc) [Kip] 697.51 Eq.Sec.D2 Combined flexure and axial compression about local axis Ratio N/A • Ctrl Eq. -- Reference . Combined flexure and axial tension about local axis Ratio N/A • Ctrl Eq. — Reference . 229 of 252 8e-Are. Tb Gewv wAY CQNNEc rIDN (6it1s c.- te#i# ) r f-i,:i Ay : IT C f It (eLt ) dkcA, z ) < 20.01 kip an 6,4w..,: U Es,c v Ac LAeGlL (0owc, Eire iZ = /J.3`,s k ( Cv7 X64 z3 ) < 12.64 kip 101 104 rAA i="S 1 1�0 . k .430 kip OK V3 J.`� ( �fu� r�,�G > --> #� ( wo a Ace ces6 rWAN tAtc i, CRANr: RUNWAY o COcuwr+v 0aivNa'rioM Vi mar = /1004- (e - Mee% 37) V3 u+Ay ° 5:59k (C6/7 - ltdru 3 ) V efSc4 r7 yBo,r5 7 22 3,56 +�/ ` 33Ma,� = g,�� +p-Fr (Cq3 - fi�EM mil") hweg r -c,, rs 9`C?Zk - Fr _ �- 6'--'is 8, fiDer 'Vreou 7 ll.os`` 115E' (1) she" 0 A 3IC T pa,vv ..r, Z 7-0 k Li$ �1- i 'M Ca ur�N Ckfc lc WEI-0 etorto = 0,6 (o.7s) 70 (o.7071)( 1/y t= S/57 fr/bv G (/ ,zk + i?.I U k 5Z 1N 7% l,fsr '4, ` A)fth xlrc Lriov _ 6.56 4(z) 4 I?.5„ _ Z5,'Z,r IVO( WO, CAP To Co t.a cA-i M 9570 SW Barbur Blvd Project Name New Three Ton & Five Ton Crane Runway Project# 150119 Ell Suite One Hundred Portland,OR 97219 Location 14650 SW 72nd Avenue, Portland, Oregon MI MILLER Client US Crane & Hoist Phone 503.246.1250 02/27/2015 230 of 252 CONSULTING Fax 503.246.1395 By JLT Ck'd Ra Date Page ENGINEERS www.miller-se.com eMetic re-A/vhE (V) 2.'f 70 . Ec F_5Eei2� � r k Tr. 8 ss- kI P mites " �,ss (x ) = f , - 11 I l t i o - b,9(C o ksi)fWO,460")� = o 1,61", - k;f, 7 7 /7, / ' ',° "' 7 F-�ANA f, 0k I Ct•Icck fi-trrc „ 1 N k,P Pl„ - Vi./ (36 rC6;) (s)( SY)/ Z7 3 IN - kle ? i 5, Zl,y - Ic;1, V t15 R. 34. x &A; ii- I/Z" f l I.7 (USE 1 INCH PLATE) ■f-'.5.1 imz.e, 9570 SW Barbur Blvd Project Name New Three Ton & Five Ton Crane Runway Project# 150119 I Ell Portland,Suite One Hundred OR 97219 Location 14650 SW 72nd Avenue, Portland, Oregon MI MILLER Client US Crane & Hoist Phone 503.246.1250 02/27/2015 231 of 252 CONSULTING Fax 503.246.1395 By JLT Ck'd RPA Date Page ENGINEERS www.miller-se.com I ,AtiALe BeAt 6oNN£CTI0N 134A y = 25-; z y, k i, (C. t/3 - Ite.e4,4 33) < 28.36 kip a = Z 3, yz /A 3►` j,(,`,� 33 < 26.45 kip / < .010 kip 11ZrA _me = /0 11:. NGotetE) V qo 4 (La7 _ mem tit) < .210 kip GAsf • It i OC 5i ;,v Ins (4 (r (,e,wi; e,: f),A4Es .108 Fitt Co,4vS 4e' 1055 VIA IV G.4240 C004/vAr, S 9570 SW Barbur Blvd Project Name New Three Ton & Five Ton Crane Runway Project# 150119 _ Suite One Hundred Portland,OR 97219 Location 14650 SW 72nd Avenue, Portland, Oregon MILLER Client US Crane& Hoist Phone 503.246.1250 02/27/2015 232 of 252 CONSULTING Fax 503.246.1395 By JLT Ck'd Date Page ENGINEERS www.miller-se.com e,4sr CoeIe/�'[ r/AN (.Stf-tAtt (At/4H ) AlMpy - q5-.036 k;p (GOct 'KV Is) O O '' 44 MAY t)ptl -rr I117zik (c.35; Ncor is) 37,4/4 C 17) Afoor Iii) ,, 11.4 ,- rio,AX; = 5.566 k (e o mfg. Is) P = 1/, (84.' k►P (Coq, f'/,OE 1s —, 14., - j�,03 • (i ) - 1/1.06760.) l 0" (0.9) 7, -,I k;/Zocs 6 0 = • i SO k r/ ocr , 7 r, 5 U5t 61) /g AF V/ (o.3262 t $75462-)''t I•?q /el /v`/ eoc.r_ f ocr * 1" Bolts OK 1-goo = 4/3, 5 7 k lip ir.o,, = 2/•4.ti k CHEck 1.4.1 Ft. 0 got 11, 1 -- astsC:) /1 _ q"so3 Fr - kt t - /0,i3 /N �FQ � 5W C`413 7- 8.01. (1400 (2) t IO. 37 z 2I3t s to 3 fir'. S = 0.6 (a,7s)(70)(0.7°1( (%y) D3.5-(40 m g9./ rr- kl'e ? 9S03 Fr-k, 0 O (' (A s f '/y, if LA)F`to 6 rr 4f7,U Ld FY D 9570 SW Barbur Blvd Project Name New Three Ton & Five Ton Crane Runway Project# 150119 at Suite One Hundred Portland,OR 97219 Location 14650 SW 72nd Avenue, Portland, Oregon MILLER Client US Crane & Hoist Phone CONSULTING Fax 5 3.246.11395 O By JLT Ck'd Date 02/27/2015 Page 233 of 252 ENGINEERS www.miller-se.com Steel Fastener Design -AISC 13th Addition -ANCHOR BOLT Type: Bolt Grade: A325 Threads are included in the shear plane Diameter: 0.875 in Loading: LRFD Use Factored Loads A= 0.601 in2 dr= 0.755 in ft= 55.6 ksi= 33.4/0.601 fv= 2.4 ksi= 1.47/0.601 cp— 0.75 Fastener Capacity Summary: Fnt= 90 ksi, Table J3.2 Fnv= 48 ksi, Table J3.2 Tc= 40.57 k=90 *0.601 *0.75 Vc= 21.64 k=48*0.601 *0.75 ft/(Fnt*0.75) = 0.82 < 1.0 OK fv/(Fnv*0.75) = 0.07 _<20%, effects of combined stresses need not be investigated Combined effects are not ap livable. F'nt= N/A ksi, Eq.J3-3, page 16.1-109 T'c= N/A k, reduced tension capacity Use 0.875"diameter A325 bolt Bearing Strength at Fastener Holes: (J3.10, pg 16.1-111) t=I 0.500 Iin2 Deformation at hole is not acceptable at service load Standard hole size Box or HSS member? No Fu = 58 ksi Fy= 36 ksi Lc= 2.375 in Rn = 60.90 k Rc= 45.68 k =60.9* 0.75 1.47k<45.68k OK S 9570 SW Barbur Blvd Project Name New Three Ton & Five Ton Crane Runway Project# 150119 Suite One Hundred Portland.OR 97219 _ Location 14650 SW 72nd Avenue, Portland, Oregon MILLER Client US Crane& Hoist Phone 503.246.1250 02/27/2015 234 of 252 CONSULTING Fax 503.246.1395 By JLT Ck'd Date Page ENGINEERS www.miller-se.com 1:345r CO/VNEe TI oil/ L5P-fAtt. CA4/Y ) I Ct-f c k p.-A7 E I r = > Pg _ Pi T = 1/,847k t 6'3,eo k 76, 7 k,p I 1.3rae1Nti = 75.lk►P/ ) - 2, Z` IN 0 ' (O. �) f3)(0.6s I AK ° 7 7 kr (Z.75 _ Z•zl/2.) - 121, Yrr - //v r .� ? N al Ikr'p- , ?�4 2Ce(WA ;)Zi A k'p- IN (y) ) '/Z- = 0, 67 0.4 ( 3C tcb,) 00 ) Use Pt .,I "x l3 1'x I11- 611" OF f), -.: l‘,Z k1p -1,, ? / Z/ ,q k,P.-,,'/ Cot.,c,re..Fr 4NI-IfI (AN6,t.e CwtB. IN Co Iv(.) I , ., z 364 = z. a 1,,,, , 62" f 5-' ) z t (i " f zy') Z - 06,1' _ (2c�y�6 ri)J3o00)(10�0)(G)(O,7S) = ),rj k;p 2 03' kip UCINi�I ` 'V l7 S 9570 Sw Barbur Blvd Project Name New Three Ton & Five Ton Crane Runway Project# 150119 Suite One Hundred la Portland,OR 97219 Location 14650 SW 72nd Avenue, Portland, Oregon MILLER Client US Crane & Hoist CONSULTING Fax Phone 03 gas 395 c By JLT Ck'd Date 02/27/2015 Page 235 of 252 ENGINEERS www.miller-se.com I eolyt. ANt rlp¢ £-oNr. C14 ate- 4' 6E-Aa/NA - 63,5 ly 4,(6') = o.c"1 : N 7 U, es- (3k5��((7,G5) A 4 les; IA 1�,6,Il'/Na (s ') 3,,11, 1/%, (iz , /17) - 38,3 k/� T Miti„ = 6.4 k -F7- ---p 5 MEN Pae,e . OK k--1r (I ) 2.y, /iv 3 r. (t7.1) Z' 36 'N a U� 5-, 5',, 3/git / ' _ Sit S 9570 SW Barbur Blvd Project Name New Three Ton & Five Ton Crane Runway project# 150119 Suite One Hundred lbLocation OR 97219 Location 14650 SW 72nd Avenue, Portland, Oregon MILLER Client US Crane & Hoist ;}�� CONSULTING Fax n5 30246.15395 503.246.1250 By JLT �'�`r 02/27/2015 236 of 252 y Ck'd Date __ Page ENGINEERS www.miller-se.com I a I I 1, I a 0 I 1 I u I I I I m X q q w a Y a a m a , s a° o° I I Y O a I I I 'A I e v N $4 a G q w q 9 1 tl I T Y p M U u 4 11Th! ,._ .:i k b 1 • i % m 7 w N Ma a % t - G o a u iv C o o X Sol . w vl P 41 C O :ii: • '431 I I % m I n� • %M , I Xa �o• i4.. N O v M" C ee O W�_v M 1 0 1 1 ai I 9570 SW Barbur Blvd Project Name New Three Ton & Five Ton Crane Runway Project# 150119 I a ll Suite One Hundred Mi Portland,OR 97219 Location 14650 SW 72nd Avenue, Portland, Oregon I MILLER Client US Crane & Hoist I Phone 503.246.1250 02/27/2015 237 of 252 CONSULTING Fax 503.246.1395 By JLT Clod__ Date — Page ENGINEERS www.miller-se.com I YtGkae U,QAc E 6,A, ^ /keg eg k (1,c G f Me 31/) < 22.00 kip Use- SA«IE CoLUw.A/ ro k1GI%6,2. (;orwue-t-rr ow A5 GAaAr 6c.Aiv6 prei6E5 fo Nay P . 7. 513E3k (Q o e N51) a,.` g rxi a,N,( T, �/ ` `'. '2 an i 7 Z D }ICY 2. FT gap (2 ' 0,5 (03T � ttIrtfc Pt 41.61 (OIVE 126`71 ok - sEe: 12) (jrgT( r&F' 2`1 " - 12-1'(7) - b '1 LISe it 1211 it"x 0- o" fiz I t P t = 5".a42 iN-k,P ( 1.67)(N 'z 10.)../J-2 _ 36 (1z") � 0Z0CD. 'ry o 2,9 i 16,/7 ire- IN ? .P IN , , ok. 9570 SW Barbur Blvd Project Name New Three Ton & Five Ton Crane Runway Project# 150119 . Suite One Hundred _ Portland,OR 97219 Location 14650 SW 72nd Avenue, Portland, Oregon MILLER Client US Crane& Hoist Phone 503.246.1250 02/27/2015 238 of 252 CONSULTING Fax 503.246.1395 By J LT Ck'd Date Page ENGINEERS www.miller-se.com Fp1( WrtD - 124 B kci V at k (AQ7 /> ►ZI� 4 21' I /, sk 1T = 26k- (z.zs,,r2) (rc,tiI r- o.'T ') - 26 k I 6. I41100 _ f. c k/FT � I K ,,D = O. 7o7l 0/4) (1)0)024is ks;) _ 3. 3� Art o 440;4/ SO (FAT,,36 k4.7 ce)g (i .8 ( rIE 1 V�AY = 31,71 4 /zel.5k) t 1,6 (?I() = 3$,6 :3d.6 k (7.1041)60.€114.1 — 0.7s) - 5`l 397z. 0,21 (rt) 2 s 47-1„9E10 = 0,?071 (37/6) (z)(I) (loGe51)i00(0.? } - 8. 3s kite 7- 057/le/ w KATr t, f7 k�T ' ) /U tort p 144 4- To C $Cr 3 W(7 llJe-e.F]S I V' 3//c 7e) 9570 SW Barbur Blvd Project Name New Three Ton & Five Ton Crane Runway Project# 150119 Suite One Hundred Portland,OR 97219 Location 14650 SW 72nd Avenue, Portland, Oregon MILLER Client US Crane& Hoist Phone 503.246.1250 02/27/2015 239 of 252 CONSULTING Fax 503.246.1395 By JLT Ck'd Re4 Date Page ENGINEERS www.miller-se.com 0 1 1 ,i co.c3.1 f i I Area: 40.0293 sq in 4.53 2.971 Perimeter: 108.7871 in Bounding box: X: -7.5000 -- 7.5000 in Y: -15.7939 -- 10.4161 in • Centroid: X: 0.0000 in N Y: 0.0000 in N Moments of inertia: X: 3972.5063 sq in sq in Y: 417.2555 sq in sq in Product of inertia: XY: 0.0000 sq in sq in Radii of gyration: X: 9.9619 in Y: 3.2286 in Principal moments (sq in sq in) and X-Y directions about centroid: I: 417.2555 along [0.0000 1.0000] J: 3972.5063 along [-1.0000 0.0000] 1 I J 1 1 9.07 rn 1.50 Area: 12.0643 sq in { Perimeter: 44.3547 in ii- Bounding box: X: -7.5000 -- 7.5000 in Al Y: -2.9188 -- 1.9812 in o Centroid: X: 0.0000 in Centroid -j Y: 0.0000 in Moments of inertia: X: 12.3449 sq in sq in 7.50 Y: 308.2693 sq in sq in 15.00 Product of inertia: XY: 0.0000 sq in sq in Radii of gyration: X: 1.0116 in Y: 5.0549 in Principal moments (sq in sq in)and X-Y directions about centroid: I: 12.3449 along [1.0000 0.0000] J: 308.2693 along [0.0000 1.0000] ED MASS PROPERTIES OF W24X94 WITH C15X33.9 112'=1'-0' 9570 SW Barbur Blvd Project Name New Three Ton & Five Ton Crane Runway Project# 150119 S Suite One Hundred Portland,OR 97219 _ Location 14650 SW 72nd Avenue, Portland, Oregon MILLER Client US Crane& Hoist Phone 503.246.1250 Re4 02/27/2015 240 of 252 CONSULTING Fax 503.246.1395 By JLT Ck'd Date Page ENGINEERS www.miller-se.com PE Am. A-W CoivNF_t rr c" I r��' rin'60. C Fsg - 1?,6 { kS t `3lrc7ioN P�(�FRTf� 's ON PeE 160% kit 97 Z.45' ins y d, 6 %,, ( ►Z /Fr) = 7. cq / I Wasp 07071 ( 341) (z)(g,5)Cr2.G&' ►-s;) //.?(; ��r,o z �qfan c soo) 67,9 Cc-0 SEE 196 — • 3 'h, ( ►2.U6ei mr7)00. 4/6! - l911Zl I 17'7, 5 7. 989 ('f = ft 96 k/Fr I �►� = a7o7/ ( 344) (2)( 5)(?O)(a6)(O.?S) _ 9.Z3 t`/Fr 67-16 or (ON S I kkf4d Cat ANN ft jo 0,KAs- 3 « USE 3" X 1/4 AT 12 INCHES 1,0/n4 46 tOec1J5 " to"/ ON CENTER TO MATCH OPP SIDE. AT' 12" 0.4 . 140 e4T,evrv- 9570 SW Barbur Blvd Project Name New Three Ton & Five Ton Crane Runway Project# 150119 I - Suite One Hundred Portland,OR 97219 Location 14650 SW 72nd Avenue, Portland, Oregon MILLER Client US Crane & Hoist Phone 503.246.1250 ,,Q 02/27/2015 241 of 252 CON 5 U LT I N G Fax 503.246.1395 By JLT Ck'd Date Page ENGINEERS www.miller-se.com I Foundation Design Results Reinforced Concrete Footings —Mid-span GENERAL INFORMATION: Global status OK Design Code ACI 318-2011 Footing type Spread Column type Steel Geometry =0, i. 37 it i • I- 9 L 43.5 in 1141 43.5 in � 7.25 ft I ___ .-x Length 87.00[in] Width 87.00[in] Thickness 24.00[in] Base depth 24.00[in] Base area 7569.00[in2] Footing volume 181656.00[in3] Base plate length 20.00[in] Base plate width 20.00[in] Column length 11.90[in] Column width 8.01 [in] 242 of 252 Column location relative to footing g.c. Centered Materials Concrete,fc 3.00[Kip/in2] Steel,fy 60.00[Kipfin2] Concrete type Normal Epoxy coated No Concrete elasticity modulus : 3122.02[Kip/in2] Steel elasticity modulus : 29000.00[Kip/iin2] Unit weight 0.15[Kip/ft3] Soil Modulus of subgrade reaction 200.00[Kip/ft3] Unit weight(wet) 0.11 [Kip/ft3] Footing reinforcement Free cover : 3.00[in] Maximum Rho/Rho balanced ratio : 0.75 Bottom reinforcement//to L()x) : 8-#5 @ 11.00" Top reinforcement//to L(xx) : 8-#5 @ 11.00" Bottom reinforcement//to B(zz) : 8-#5 @ 11.00" (Zone 1) Top reinforcement//to B(zz) : 8-#5 @ 11.00" Load conditions to be included in design Service loads: RC1 _RC1 RC44 _RC44 RC2 _RC2 RC45 _RC45 RC3 _RC3 RC46 _RC46 RC4 _RC4 RC47 _RC47 RC5 _RC5 RC48 _RC48 RC6 _RC6 RC49 _RC49 RC7 _RC7 RC50 _RC50 RC8 _RC8 RC51 _RC51 RC9 _RC9 RC52 _RC52 RC10 RC10 RC53 _RC53 RC11 _RC11 RC54 _RC54 RC12 _RC12 RC55 _RC55 RC13 _RC13 RC56 _RC56 RC14 _RC14 RC57 _RC57 RC15 _RC15 RC58 _RC58 RC16 _RC16 RC59 _RC59 RC17 _RC17 RC60 _RC60 RC18 _RC18 RC61 _RC61 RC19 _RC19 RC62 _RC62 RC20 _RC20 RC63 _RC63 RC21 _RC21 RC64 _RC64 RC22 _RC22 RC65 _RC65 RC23 _RC23 RC66 _RC66 RC24 _RC24 RC67 _RC67 RC25 _RC25 RC68 _RC68 RC26 _RC26 RC69 _RC69 RC27 _RC27 RC70 _RC70 RC28 _RC28 RC71 _RC71 RC29 _RC29 RC72 _RC72 RC30 _RC30 RC73 _RC73 RC31 _RC31 RC74 _RC74 RC32 _RC32 RC75 _RC75 RC33 _RC33 RC76 _RC76 RC34 _RC34 RC77 _RC77 RC35 _RC35 RC78 _RC78 RC36 _RC36 RC79 _RC79 RC37 _RC37 RC80 _RC80 RC38 _RC38 RC81 _RC81 RC39 _RC39 RC82 _RC82 RC40 _RC40 RC83 _RC83 RC41 _RC41 RC84 _RC84 RC42 _RC42 Design strength loads: RC43 _RC43 S1 _S1 243 of 252 S2 _S2 S44 _S44 S3 _S3 S45 _S45 S4 _S4 S46 _S46 S5 _S5 S47 _S47 S6 _S6 S48 _S48 S7 _S7 S49 _S49 S8 _S8 S50 _S50 S9 _S9 S51 _S51 S10 _S10 S52 _S52 S11 _S11 S53 _S53 S12 _S12 S54 _S54 S13 _S13 S55 _S55 S14 _S14 S56 _S56 S15 _S15 S57 _S57 S16 _S16 S58 _S58 S17 _S17 S59 _S59 S18 _S18 S60 _S60 S19 _S19 S61 S61 S20 _S20 S62 _S62 S21 _S21 S63 _S63 S22 _S22 S64 _S64 S23 _S23 S65 _S65 S24 _S24 S66 _S66 S25 _S25 S67 _S67 S26 _S26 S68 _S68 S27 _S27 S69 _S69 S28 _S28 S70 _S70 S29 _S29 S71 _S71 S30 _S30 S72 _S72 S31 _S31 S73 _S73 S32 _S32 S74 _S74 S33 _S33 S75 _S75 S34 _S34 S76 _S76 S35 _S35 S77 _S77 S36 _S36 S78 _S78 S37 _S37 S79 _S79 S38 _S38 S80 _S80 S39 _S39 S81 _S81 S40 _S40 S82 _S82 S41 _S41 S83 _S83 S42 _S42 S84 _S84 S43 S43 RESULTS: Status OK Soil.Foundation interaction With Seismic Allowable stress 2E03[Lb/ft2] —> 1500 psf*1.33 = 1996 psf Min.safety factor for sliding 1.25 Min.safety factor for overturning 1.25 Controlling condition RC45-2 Condition qmean qmax Amax Area in compression Overturning FS Footing [Lb/ft2] [Lb/ft2] [in] [in2] (%) FSx FSz slip RC45-2 792 1.58E03 0.0951 3671.47 49 1000.00 1.48 4.69 Bending 244 of 252 Factor 4) 0.90 Min rebar ratio 0.00180 Development length Axis Pos. Id Ihd Dist1 Dist2 [in] [in] [in] [in] zz Bot. 27.39 9.59 33.50 33.50 xx Bot. 27.39 9.59 32.52 32.52 zz Top 12.00 6.00 36.50 36.50 xx Top 12.00 6.00 34.55 34.55 Axis Pos. Condition Mu 4*Mn Asreq Asprov Asreq/Asprov Mu/(4)*Mn) Footing [Kip*ft] [Kip*ft] [in2] [in2] zz Top S63-2 -9.52 -227.13 0.10 2.48 0.041 0.042 zz Bot. S45-2 46.31 227.13 3.66 2.48 1.474 0.204 xx Top S1 -1 0.00 0.00 0.00 2.48 0.000 0.000 i xx Bot. S6-2 26.31 220.15 3.76 2.48 1.515 0.120 Strength provided>_1.33*Asreq. 2.0.31" Minimum steel required= = 0.0021 > 0.0018- - OK 24'.12" Shear Factor 4) 0.75 Shear area(plane zz) 1799.81 [in2] Shear area(plane xx) 1745.44[in2] Plane Condition Vu Vc Vu/(4)*Vn) Footing [Kip] [Kip] xy S6-2 7.79 191.20 0.054 I I yz S45-2 19.38 197.16 0.131 • 1 Punching shear Factor 4) • 0.75 Perimeter of critical section(b... . 141.41 [in] Punching shear area 2881.23[in2] Column Condition Vu Vc Vu/(4)*Vn) Footing [Kip] [Kip] column 1 S6-2 34.44 631.25 0.073 I I Notes •Soil under the footing is considered elastic and homogeneous. A linear soil pressure variation is assumed. *The required flexural reinforcement considers at least the minimum reinforcement •The design bending moment is calculated at the critical sections located at the support faces *Only rectangular footings with uniform sections and rectangular columns are considered. *The nominal shear strength is calculated in critical sections located at a distance d from the support face 245 of 252 *The punching shear strength is calculated in a perimetral section located at a distance d/2 from the support faces Transverse reinforcement is not considered in footings Values shown in red are not in compliance with a provision of the code *qprom=Mean compression pressure on soil. 'gmax=Maximum compression pressure on soil. 'Amax=maximum total settlement(considering an elastic soil modeled by the subgrade reaction modulus). •Mn=Nominal moment strength. *Mu/(4`Mn)=Strength ratio. *Vn=Nominal shear or punchure force(for footings Vn=Vc). •Vu/(d)*Vn)=Shear or punching shear strength ratio. Highest Soil Bearing — Non-Seismic -- OK Column I Current load condition Axial Vx Vz Mxx Mzz kui IKaI 11(.01 WA} I IKsertl Column 1 _RC5 27 54 -1 15 1 0.00 0.00 -21 76 Description Value Unit J Percentage Area in compression 7569 00 (in2] (100.00%) Mean soil bearing pressure 823.5792 (Lbift2] Maximum soil bearing pressure 1202.2983 (Lblft2] t.Allowable soil stress 1996.0000 (Lblft2] Surcharge(soil weight+concrete.:e,3 rt 299.64 lLblft2) 87 in !\, 1 1/!.7 Kt • 1 C.., ` 87 in 435r 11 ,sue. V 36.83 in 1202 PSF < 1500 PSF OK /51 K9 • • 246 of 252 C'_,) •••••--- 1,ii.ibil 1..i".•;:"...1.q. 0,i:;....s... . !;i:C..,4•:;.'7' .."..:,:rz"...!,.., !.....H,.;1.!. 21 at. ©1 1,r, `,..'...y .:,. / .... . .., , . ■ 24 in . .. • • • ' ° (I/8:0 VI 1181:.5 0 111n g7 in i r -1 Zona 1•67 in li 1 , ■ A 1 ; ---- .'--' -'•-4 T.044,9;3 it - • -I ..'' r? : ,.."7 , . ...”......., 13 in 1• , 1: ..7 — . .... . '' . 1.a..... ... E7 ^ •• , • h42.5 in -• 43.5In 87 in V 247 of 252 Reinforced Concrete Footings-Corners GENERAL INFORMATION: Global status OK Design Code ACI 318-2011 Footing type Spread Column type Steel Geometry A in _—� 5.2E ft in Mly 31.5 in 31.5 in 5.25 ft Length 63.00[in] Width 63.00[in] Thickness 24.00[in] Base depth 24.00[in] Base area 3969.00[in2] Footing volume 95256.00[in3] Base plate length 20.00[in] Base plate width 20.00[in] Column length 11.90[in] Column width 8.01 [in] Column location relative to footing g.c. Centered 248 of 252 Materials Concrete,fc 3.00[Kip/in2] Steel,fy 60.00[Kip/in2] Concrete type Normal Epoxy coated No Concrete elasticity modulus : 3122.02[Kip/in2] Steel elasticity modulus : 29000.00[Kip/in2] Unit weight 0.15[Kip/ft3] Soil Modulus of subgrade reaction 200.00[Kip/ft3] Unit weight(wet) 0.11 [Kip/ft3] Footing reinforcement Free cover : 3.00[in] Maximum Rho/Rho balanced ratio 0.75 Bottom reinforcement//to L(xx) : 645 @ 11.00" Top reinforcement//to L(xx) : 645 @ 11.00" Bottom reinforcement//to B(zz) : 645 @ 11.00" (Zone 1) Top reinforcement//to B(zz) : 645 @ 11.00" Load conditions to be included in design Service loads: RC1 _RC1 RC47 _RC47 RC2 _RC2 RC48 _RC48 RC3 _RC3 RC49 _RC49 RC4 _RC4 RC50 _RC50 RC5 _RC5 RC51 _RC51 RC6 _RC6 RC52 _RC52 RC7 _RC7 RC53 _RC53 RC8 _RC8 RC54 _RC54 RC9 _RC9 RC55 _RC55 RC10 _RC10 RC56 _RC56 RC11 _RC11 RC57 _RC57 RC12 _RC12 RC58 _RC58 RC13 _RC13 RC59 _RC59 RC14 _RC14 RC60 _RC60 RC15 _RC15 RC61 _RC61 RC16 _RC16 RC62 _RC62 RC17 _RC17 RC63 _RC63 RC18 _RC18 RC64 _RC64 RC19 _RC19 RC65 _RC65 RC20 _RC20 RC66 _RC66 RC21 _RC21 RC67 _RC67 RC22 _RC22 RC68 _RC68 RC23 _RC23 RC69 _RC69 RC24 _RC24 RC70 _RC70 RC25 _RC25 RC71 _RC71 RC26 _RC26 RC72 _RC72 RC27 _RC27 RC73 _RC73 RC28 _RC28 RC74 _RC74 RC29 _RC29 RC75 _RC75 RC30 _RC30 RC76 _RC76 RC31 _RC31 RC77 _RC77 RC32 _RC32 RC78 _RC78 RC33 _RC33 RC79 _RC79 RC34 _RC34 RC80 _RC80 RC35 _RC35 RC81 _RC81 RC36 _RC36 RC82 _RC82 RC37 _RC37 RC83 _RC83 RC38 _RC38 RC84 _RC84 RC39 _RC39 Design strength loads: RC40 _RC40 S1 _S1 RC41 _RC41 S2 _52 RC42 _RC42 S3 _53 RC43 _RC43 S4 _S4 RC44 _RC44 S5 _S5 RC45 _RC45 S6 _S6 RC46 _RC46 S7 _S7 249 of 252 S8 _S8 S47 _S47 S9 _S9 S48 _S48 S10 _510 S49 _S49 S11 _S11 S50 _S50 S12 _S12 S51 _S51 S13 _S13 S52 _S52 S14 _S14 S53 _S53 S15 _S15 S54 _S54 S16 _S16 S55 _S55 S17 _S17 S56 _S56 S18 _S18 S57 _S57 S19 _S19 S58 _S58 S20 _S20 S59 _S59 S21 _S21 S60 _S60 S22 _S22 S61 _S61 S23 _S23 S62 _S62 S24 _S24 S63 _S63 S25 _S25 S64 _S64 S26 _S26 S65 _S65 S27 _S27 S66 _S66 S28 _S28 S67 _S67 S29 _S29 S68 _S68 S30 _S30 S69 _S69 S31 _S31 S70 _S70 S32 _S32 S71 _S71 S33 _S33 S72 _S72 S34 _S34 S73 _S73 S35 _S35 S74 _S74 S36 _S36 S75 _575 S37 _S37 S76 _S76 S38 _S38 S77 _S77 S39 _S39 S78 _S78 S40 _S40 S79 _S79 S41 _S41 S80 _S80 S42 _S42 S81 _S81 S43 _S43 S82 _S821 S44 _S44 S83 _S83 S45 _S45 S84 _S84 S46 _S46 RESULTS: Status OK Soil.Foundation interaction Allowable stress 1.5E03[Lb/ft2] Min.safety factor for sliding 1.25 Min.safety factor for overturning 1.25 Controlling condition RC4-4 Condition qmean qmax Amax Area in compression Overturning FS Footing [Lb/ft2] [Lb/ft2] [in] [in2] (%) FSx FSz slip RC4-4 1.32E03 1.46E03 0.0873 3969.00 100 1000.00 31.14 10.98 Bending Factor 0.90 Min rebar ratio 0.00180 250 of 252 Development length Axis Pos. Id Ihd Dist1 Dist2 [in] [in] [in] [in] a Bot. 27.39 9.59 21.50 21.50 xx Bot. 27.39 9.59 20.53 20.53 zz Top 12.00 6.00 24.49 24.49 xx Top 12.00 6.00 22.55 22.55 Check Plain Concrete-beyond development length 4)M„=0.6*5*V3000 psi*12 in*621 in)2=435 in-kip 1996 psf*1.6*(2.5 ft)2 12 in MR`q= 2 * l ft =120 in-kip 435 in-kip ?120 in-kip-Plain Concrete OK Axis Pos. Condition Mu 4*Mn Asreq Asprov Asreq/Asprov Mu/(4)*Mn) Footing [Kip*ft] [Kip*ft] [in2] [in2] zz Top S47-2 -2.88 -170.25 0.03 1.86 0.017 0.017 I I zz Bot. S4-4 17.04 170.25 2.72 1.86 1.463 0.100 . I xx Top S47-2 -3.18 -165.02 0.04 1.86 0.019 0.019 I I xx Bot. S4-4 16.88 165.02 2.72 1.86 1.463 0.102 I I Strength provided>1.33*Asreq. 2*0.31" Minimum steel required= = 0.0021 > 0.0018- - OK 24".12" Shear Factor 0.75 Shear area(plane zz) 1303.31 [in2] Shear area(plane xx) 1263.94[in2] Plane Condition Vu Vc Vu/(4)*Vn) Footing [Kip] [Kip] xy S4-4 2.99 138.46 0.029 I I yz S4-4 2.15 142.77 0.020 I I Punching shear • Factor 4) 0.75 Perimeter of critical section(b... : 141.41 [in] Punching shear area 2881.23[in2] Column Condition Vu Vc Vu/(4)*Vn) Footing [Kip] [Kip] column 1 S4-4 29.09 631.25 0.061 II ] Notes *Soil under the footing is considered elastic and homogeneous. A linear soil pressure variation is assumed. *The required flexural reinforcement considers at least the minimum reinforcement 'The design bending moment is calculated at the critical sections located at the support faces 251 of 252 •Only rectangular footings with uniform sections and rectangular columns are considered. *The nominal shear strength is calculated in critical sections located at a distance d from the support face *The punching shear strength is calculated in a perimetral section located at a distance d/2 from the support faces *Transverse reinforcement is not considered in footings *Values shown in red are not in compliance with a provision of the code *qprom=Mean compression pressure on soil. *qmax=Maximum compression pressure on soil. 1 *Amax=maximum total settlement(considering an elastic soil modeled by the subgrade reaction modulus). •Mn=Nominal moment strength. t 'Mu/(4)'Mn)=Strength ratio. *i 1 •Vn=Nominal shear or punchure force(for footings Vn=Vc). •Vu/ 'Vn =Shear or punching shear strength ratio. 'f' •*5011n ;,t4.1 21 in i n I• Zone i.wfl 1 (1)6115 11 n 15 (1)$ 0 110 1 i 6 b r:r �. 44`k p ....M*3+.,•• 31 -. 4.1 Jr I A { 31_; W0' {t. jJ ■ 1 i � 1 1 ! 315in 71. ' 31.5m 63 n 252 of 252