Loading...
Report (4) TRANSMITTAL OF SUBMITTAL INFORMATION (ATTACH TO EACH SUBMITTAL) CH2MHILL DATE: FEBRUARY 21,2014 TO:City Of Tigard Building Department Submittal No.: Deferred submittals seismic information bracing and anchoring ❑New Submittal ❑Resubmittal FROM: CH2M HILL Project: Durham AWWTP Cogeneration and Brown Grease Facilities Project No.: Permit number BUP2013-00117 Specification Section No.: various see information below OFFICE COPY SUBMITTAL TYPE: Shop Drawing Sample X Informational The following items are hereby submitted: Number of Description of Item Submitted Spec.and Drawing or Contains Variation Copies (Type,Size,Model Number,Etc.) Para.No. Brochure Number to Contract No Yes 2 Hard FOG waste transfer pump 11317 Submittal # anchoring 119.2 2 hard HVAC equipment anchoring 15720.B Submittal # 242.1 2 hard Cogeneration equipment 11391 Submittal #283 seismic anchoring REV 02/02 FORM 295 Submittal Response # 1 6471 - 5D2 Cogeneration and Brown Grease ate . Serv1Ce Our commitment is clear. Printed 11/20/2014, Page 1 of 1 Subject: CH2M HILL Response t Submittal#242.1 RECEIVED Submitted : 11/12/2014 1�:1C Created By: CH2M HILL, Luke Scoggins Type: Official NOV 2 4 2014 L P zOra-60 17 CITY OFTIGARD OFFICE COPY BUILDING DIVISION } /10,41-C a ypee 66740.3 ,-i-z Action Submittal Response Status: Informational Submittal Response Stat . CCD-Complies with Contract Documents " Deferred Submittal Response Status: Comment: 1.This submittal has been reviewed for compliance with the contract documents.The design criteria used have been reviewed against the project design criteria stated in the project drawings, specifications and current building codes.The correct criteria were implemented in the design unless specifically commented on otherwise. The calculations were not checked for accuracy or correctness except for general compliance.An engineer registered in the state of Oregon who is responsible for the design of this particular element has stamped the calculations. eadoc a Ake Portland 4 .; Mechanical C0fhrct0 Inc. Oye Q�Q( � www.PMC-G.com -4C1-0R5 44- "Committed to Quality CCB#151807 Submittal Data 01612 Anchorage and Bracing for Division 15 HVAC Equipment — Seismic Drawings (REVISED) Project: Durham Cogen & Brown Grease Receiving 16060 SW 85th Ave Tigard, OR 97224 Submitted By: Portland Mechanical Construction, Inc. Attention: Paul Hettervig 2000 SE Hanna Harvester Dr Milwaukie, OR 97222 (503) 656-7400 Supplier: ISAT 14325 NE Airport Way #101 Portland, OR 97230 (503) 252-4423 Date Submitted: October 28, 2014 Heating — Air Conditioning — Refrigeration — Plumbing — Sheet Metal — Kitchen Equipment 2000 SE Hanna Harvester Dr. • Milwaukie, OR 97222-7575 503-656-7400 • Fax: 503-656-6374 • Toll Free: 866-656-7400 • -I MaiggE6 ST=C BRACING NOTES FOR SUSPENDED comEoNtn. VEIRATION,-• I",SIJ, ,.M COMP911_,LENTS. EIT ,.......,........„....„._Mar0.0.01.2.....10.....Le.04=11.041414:0•10 I, FIEsTswa.Vepapp f Ononnr 5,FORT F 0 Ur•• V 0004040 1.4041 40404 • nor Po. .......n.rens rarlwenore10/"..v.111..C.,c. 0.0 OF.00100•00 000.0 .,,,,,,G.L.7.7.....7.=.j........„:„...........40,,,,,,, Se.40 4440001 14 01,004441,41.00.101,0,4 Ct0,4 001000,4 10 44 ..,...................„.,„,,,...,..,..,,,,,.,..........,....,,, 11.14.4.0110 4440•040.0 RM.SOO.114.00.14 100.0 WOO 0.0014 ''nF'LS't'ri.:F: 10.0 0....4•04.4.......0.4 44.4.4.0400,e••110.00, or Tmemxceras Iwo..er rrtrorrert• rrre.CAKE MYNA.is.Qom 1.....3 wag 7.113,0 eN1 C.0e0 MD 7.01/2pre...W.Va. }IN 0.40100/1000 101014.S.0.14/44.1044 10.4 000•40 ono.macaws. "rm...cc vrat Karroo,o ra:C...C.EArrICIVOISNACTOP• •010 TO N 044100 40 00.00•-•01 t,.00.000.1•11.00110•4..40 1007.11.04..... 1010••MI 0.404 0401•••••••TO.00•04.00 P.M 000,002/04141 •=1.:4 04:1r3000=.1000F,710., 4[4000100011.01000.000 MM.1•••••■•001 11.1.0.1,000 Arr..to......0.4 041m mcmcsovo.....s Kassa,. DZW/1.9122/1 •sineoursampall wawa anacerranrwurc•;Kum,c.a..re....or•rory 70 ••••■••31.eararrark•urs•YaL.1.2 Mr rl.......rrs umrss...roomy...ft. FASTENEAS AND ANdiCCIS, #4147.1111.0110010.0.4.00..00.0.0..04 Ga.04.400•TM •11100010401.010.441011001.00.4000140.0.0 1.SW MO 04.104 TOM. 0.......1,0 OW lor crwer.ra.,41 40• "...1.:7■7151 ,.........,,.......„,......,,,......,,...........,......,............,., ''''''''reV"■%3"4".. •os•amnowLraraor perm nrammore room.rorma rang owe Mir..eninArai 04.0.00 4.4(pa.•06010 0 401[4.00S.04•0.1.0011 A MM.. r40/ZSZ•0•130411101.114.10.0104■14 01001411.00.00.4.0 aborvr 0,0*Our.......rwaw us..sm..Me....A.M...",0".M.,. DO 01010 •P01009,44.404 000400.047.MAW..4400040404011 14•11110.10.010100.1001110001.0•••••0010.10/4110P.0400014004 ...“..,•••,...4.4,•,..e.4...."........„,,rm.rowygme....a 4 04 zg.....=,..rawndro.scemilmva otaronamnev.woraro.ow. *mix 2 Feu or.arsr recro•or n•ammo ft arrercor ammo.rwrowss we ocean...al a ru rtrucn.sva me.Aro moor..rodeo'aroma.war orroacrtmuciacra rnrcc ..,....................,,,,...,:c.„... 0000.1440 CO.0 0,00004•4•04•110.0.40.00.11047 08072 044.017049.000.000.104.1.0000••10.004L „•:,..0.7=V0442L....1001=1/101,111114 MOM*0.044000000 ,..40..••,............,..„...........•"••Lc., ,.. x wafts lova roam*.via.yr.amen...nod Kau m•a-rro•e•rm o.,,, .=....„..,“,%.3:=....Maw. ....•••.---...7,-'..rr...... ...:3LL"....'"".""•%.•".....”."...r....'"........ 0. .104.1041.4•0•11111.11{014000.1.4000.41040 0040041•0•••••••01r..14.4./40.00.0.A71•00:0014.0170SED 04..44 41..14 44.........."7...•••'AL.=r...... 4..a U ...........Lawmornasnr.K.Iateutrtoruce....Ato am way° ',........................... C.) 0 -...,.....ffin=s....t....,.....,nar....,...aseTowm,■.-,= ,rz..A r•••1101100.A.W.1.10"CrOr0D A 04000 040 1.00,01.400 .(TZ:=Wlre as.44...""r4ON'S=0.7671%nr.fr''"'''''''''''''''' ra tZ %Sr.WOO.00 101.0400.00 N 0.400.71■0001..NT 1104A1r44. rs.:41=071•=1110.....e:1e.V.Paalluccw' I%vow%"' .P."44,...;4=z,......-7-„„....vz,-.....e.A=4..m: 4) 1.0110.1.0.1[S01011.140.04.414.110001000400111•01109. 0 rz 0 010.1•0010.4(000.0.•00 0•••••••■••••■••••••00100,1.0•441. WA*■01 ,•106•11111•11.7=V".AillitS.:6•1=40 "Ogirg ,.,..c...., TMD...9 0SN__, __Ka,!,,I;Myg2_,,..0 : .. ,...,......, .14,0=11110:42=10.„10:0.NZ...4 MR 11101.7,1171100.0 CS1114.4,110, 11.00.00400010.0000 000 L)6- 080.0401/0•041001.•UMLE 0......t.s. a CoaryameaccrralwractIVAINrcamauarIcC•00[0w1Marrrar000mermart Or i Mk 0,40.000 741 POLON.40.I. ,...000.r.0. ,..,41,Mite.r.0.21.22/•=0210.1..004.10&••=3.,40?.S..,..= mwei ....4 Z "•"<,..'0::......,"`=7."*..17,'"...°7'''"""*"1""'"971e....74"• ery recrc,c, Ntra .03 3 j... 40.1•100.00001.0y.0.00/r. Ria11211•WSWP0'00111=1."0:0"="."). C''''' .,..,...K. A. .... PI•nos P40.0..04,444:03 00 0 0.11004.40 0(440.4,00100 0.00.411400111 L007.0 4041,14 S.0 ....... ...4••••0.0..... :Z.:: 0 ,.. 0 ri 0 _1DIV„„a=ra '.'"'''••'="oC"r 1:0=4 ....c..,.....•. r ••=ao,,,...g.mmarar 4 meow.we..Arrarrou.1 slyzzr.owed.arr.. 41.= ,r.r.,,3.0..,..,,,,,,,c,,,,,,,,, ...row r.corgo...mono zr a. ...,,,.. :7.= .F., g Z i'l ,.......,...., ......03...... .mer 4o 1.41no maismo”overwaw.wee str unuoe me ''......=7....41.441.,===.,,,4,747„:=...,j,r,... .LOSO 14•0:00NOS "I.' ocrararr roc room rzeoramome....um.... wan r.....wrc. rm...I 0'4.'3 ...vs...moor AN mcar r re.m.o..6 nocrara onua car..wm.r.v.............•PM MOANS 1.,00.049 00.11100•14.0 0.1 4.0.14:00110040.4 04.01. 1040 WM.110.40.40 0.4•0001.0.400r0 4000. 0 .0.0•00041,413.100 44 001101•1000,00.404,0000.400 SS 1•00.0 "0...... t 0•4000.11/40400,000.1100.04.1.0•0002.000,0 4.0,444 .liti.1 ,RE mow SM.LOMA,..0...lan um Mr...co To son....m...,••Lrceruce cr Irc cor,....chorol.me taro Lew...raw rot mama ... 03, ..., c..........,....c... 04100 WO0100 SE 04.04EDC0007•0 TM WOOS 0 rrS470evra .11 ....10400.01:044[40.04 017 W. ..." ...... CO 0 Nal onactrroo-rt.e.C.Iterornar./co v.. .... ...... 1.0010/1.0.0170.10•44.000•001.1110001440001904.4.• . 0....00•10 0001 .0. 100.00,D•0110 04.. ....1•4/0 .......1...;.• I.At .044010004 0 101.0•0•01111.0 ,4.,•4%.,,,,...y.• 2,4•fr...p,...4.4.......1.0„...70.4•44. Ay .014.000 40 &aeon.,rum..ma nue, ...gr...4.•on•4.L...•."...4...04.0.00........... .4 0011.1001•14 0 00 0.0PS 0. .01404. 0 E 11,0 400 SUILOO COM.1.4.0 P.err•unow.omassre.........rta ram's rd....Pcc.......corco maw..nro me WOW.Lope,iourt cr...pct. .0 4 4-40,103SS 01•0 Ian Loa.. .44400004104 To omen cos.,...,ruowm.o.rasceo Eros_ ,... ,,,......,....,,,,,,,,,,••,,.. .... ,,,,,,,,,.....,,...,,,,,,,,,,,,,,-, n 0 0100.4010401..74 .40 41.4 00001 WALT'ASS-IRANCE ,....00 c••••,,p04,4„,“,,,....o.“.,........,....,....,..... 00,.„,..sagkr..*-14.44.1.,..,•0=0:=4=9:A=4,.„000400,..,140 NM .0.40.000 0117.40.0.• p.„4, ...,,c4.,....,,,,,,..., cc.rormw.e wrl.ec,srerc..ree. wow...,/CO NTACI.C....■PAC..•cr.rean[0...CrOn a,WIN 11,KU.Pal....../ ... ......,,,,, .,. , A.01.0.044 0.00••• •00 440.0 RE00110 FOR 0.0.4 0400 OF A 013040C.00.0104,0 ,.. .......,.. • 440.0004 0 .00 MN 004 rcot 01.412.4=AOr.Fr TO THE C0000410 OFW04(0 1,4 0404 Os .4 nrt 04-00.04,00C 000."[A V.+fag 00.1.0•0010 TO.ES,-ma..e s,mmtc moos Ica..to.00r 0 a... , .. vv.rum.*v..,°own*. pr. • p. 4.4. . 4...•••••■••.4.4 0.. 044• 1.10031:r1.C......4•4 400 00 fell.00T 04.14044 CO0040 444 Mt 5.0,40 .re,....Or.4......444000100•441.0•0101110..W..011.01 ,,[1: =701 MN)00.07.0. A rum • 0,10 001.44•1 0004.0 04,.0.0.4 . COLOO.“10•00 tern.. m pea mu.... SPECIAL INSPECTIONS ••• rum own mom cc ;co crscLre c.as scrcrre le,or,recr errors....ea Le.To rrneroarastrom names.. wil •67 M. to cretum 1....vcrat, • ,sera,...era orturortrer Kt..31...,E0 refurC S...Ye Arl ru•ra.TO SeeD, ...,. ,...0,...,,,,,.....z.A. LOS/00+00 0[4,0.TOd 1 0 Facurcl......or rear•ox...11...c. ., ,,,, • ....“.......... SOr PM.17.1.000 IN 10 rm.Nag rem .o.• cawc..c.d nom .... .....,,,,,,,.......,..„.. • r•co oral War I•C 305MIC MACHO IIELM0/113.13 101111.1973108111111 MUM I 1 • is ns mIc onotn WM.'o,t con .0•00/0 W..0 co win.roscor•taw cart. or nammor co p.a. e ccarro.....c...s...at Nowa,raccrura4 r 1•0•Ver. 1. 04004, n• 700,4,AL Le. 14," .,a 10.1}10100.44•40•00.0 Mi.err 00710011 LW .....01:t 1•0 4000000 044.. ,,,,,.., le Loam raw wart vacs.crxram roma • won..rucnsrurarn um x.e.r.or.rm..,cnom r. 0.040.11 oess.0 wow v•••• ..•••,......,....4.........., ...,,, .,. =man rawer no•rr.....11.1l . . WO 4.0.40 P040.01 400 MAW V. 4••on10,46.140 ••441-.44.....4■4 4 • 11.1.1111.014•••TO SW FA.. IEAT SEISMIC ERACNO ISCMENCLATURE: sil.F.....zlz. .,. .........75 own"?lox rowan.. ..............,* 1 .. cum-nucrEre Arse kdrun surremor Nom Irp•sum, @... or...0 orrEL-,oru-our ..... ...____.. l• ................, :,... =.11*.A.M.OatavEvrt trIP 1,..71. , , ES norm.ar a _ ,.......,,,„„ O ...a...L... . ISI4C00,41•0•04-110401•40 .4 *satyr roru.rnra••. .... merwcrtuow•I rrfrourrn we ....v.,* .___ rocs on Pco enc.* . ...r...4.04 4.40 ; :00,041.04 .13•400041.001.4 0E0 ...... 1 •41.0 .0._ 0. 1S0- ..0. 0_ sr.,. NOSTRUCTURAL N C SEISMIC NOTES SB0.0 .A CM.1.9bed To Area*Sehrok 11.104.Ca.Compliance r j 1 9110'I!p {i i''!I'�{�ee I o= 111 `f��' � r �jtr+fR" at i „lit ! i ti i Ili i rttlr N II } f' ti III Ili gill t% I 'III I it 1! ; ii (� j�.6..a; ,,`?Eli 3'11 j i1 j j ii 11 hi 1 KKKKK1§ ell [ E !i i{ii ii 9t/ I tq(I.' (FE1. i1 !' i . 1t i! 11 1l!i sumalj ::',4111 jE1 I Ili lii II 1 ■ !a i lj it I ii 1 11111 ii¢i e 1 j 11 1 # ill 1 1 It 1'' �$ 111 ,i i4 :c i)1 Idll 1 KK , r t 1��t IttpP i I��;I , ! ; 1 jl I I i trI" ' 1 1 i !ll 1 I ! E i g 1 1 :`ylt lE1 I �I rem!i L `111 ilii I i i i Ij i� !EH tJ � 1 it 1 ! 1 ggEg!1t I ;E..6 LEEPb i if PEEEE g38 ss"ssss>! I a3oa�E PPPPP I Midi I ILI D «,1 1 "ill it1s i II Portland Mechancial Contractor i �1 co II I Durham Cogeneration B Brown Grease Receiving ilE�o ‘4 lirl i Iij 1 1•■N•N•N• omg�ei 91SS� • ^ 1111 pI{t 11 11111111111111111L11 1111 1 i rrrrrrr r r'' ! 11• fli11II�.,..Y1111111Y11 i1iilii ilY1® l616ilriurrlu1111110,01i III IiYOl ti: Ilill ®®J���II��lallllllllllIlIlllIlI 1111 t11t Illlar`l�aaaala!!t!ll,�r,,� i di: 1i1 h��d111�111YliIIIIIYIIIYYC1111� 1i1I 1'not iuip II IH '`I Ii P 1 jlaongi rjrl 1 �•.1 a , u._ :it 2 r 1� ' 1 3111. ar I E11 I,�(1a E,E�I1 a�1II I ; 16 S iI rEil�liYl66ii6Rl6Cr iaa t Id( 11111111111111lIIt1114a`, rI �f I a;� E91L1` `tC �1` ®1 i6© III nl It 6616Y1 I,I 2�g�„g} ptte ofl!l ml 11 S IIIIIIIIIIIIIII 11 Ii I iiSiYffiYiiiYlurnnirEl'1N mI� ? .111 11f `111111111111111111111IIIiiikii111i1� a II q ZiggaiIY�aii661Y6' �IYY� wit 111 16 MI tI ®f: 1 vi®ti:i iII s I H 1 II:i A)1 nu i II: I 119 01 .1, Hilili: r� � Ig Y i tl i 5�^ n i 9 V '�i I }1 E � ms E�f ,i r I I II ' I1E I t t o yit i 11r e i i 1 �t R I ,� I f P" I , a ,1lIft E r r El 4�0 I ,Ir4 all I III 1 U "fit ;till \� Iii Portland Mechancial Contractor it ;� (ill� I Durham Cogeneration&Brown Grease Receiving 1161 N Ijlt HVAC Eli SW MO Avenue • Q Q ® ® p wt.wamagracm.......mcno.couraxas Ks,LOUT. 5I I 5 I I Erin,. ® .----H---"------S. 1,7 1. , B C — nor— : ° / _e E' I I ( �) p wl I * rI f■— ter MI 9 N'n "° mu I ■ IN -- y -1 L__4444_4 .44_444 J G. FLOOR PLAN 9#... CLEAN WATER SERVICES www,, sama w"s RT,y ••• TOUR ( Oem�{i�r�Smice CH2MHILL DURHAM PHASE SO`Ki� FLOOR AC X•••u 7tsM-ut TOCONTRACT MOIYINTIS 1 OATIMI _� Nwr� "I w w rw �-� COGENERATIONANOBROWN w AMMO ...,n .o.. .a. wra...ww GREASE RECEMNO FACURF-S re GPI • 4=1,ra,kIi■ '. . �, . ads:::::. _ ?iii■■i■A-a-°- I -._ • Magi --E-7=7.7,--r---- •-........ i _ /1111111[311111111 . Fame, 0 ...n.: it .....,,_ til IMMI! 1,— r: C efteses ce- L.,- ..mportr lir,N •ZAT,— 0 111 , ...Rs's... ............. .4.• U F... •,.....*., 1 ft CC ................. ...\ =...."..'.....4". =TX= ., .0....■KmA.. ■ .0..yrz .......... waraAmenals .....ra S M1..7.21.143 ........... ei !!!'"'"T!"'".7".`""rt.,., "-*"."-Fitir!"..`!!!•."14',,, , --m-" 15-W-M-rs-,"sr.. .... s 1111112./.MI. El= 0= Mt Sr 4•111. 03 .4t 41 Ltd 43111... LW 07111140 C"a "....=Z.'''. 7F...-T-..FE,t•F.; ..,-....-=:.-_:7; .gr., .,,. = . ;I% --:-..axr." ::. --.....-..-- Zr. 0 t... • Z e &' 0 o .........u 0 e 0 13 ....01,.413 a 1■1071.0.1 . ;air. Ct.E ttr.vms I Cr= ........ 8 r] C\ , .,46- ' 1=1 =mle ......., .... • - • , i=I SEEM T -- , , Ewa •••0 • 1 ••="0 .1, . .“.. / • Za.N.- i . i 1." -- --- mi2,50AMON.iflage twatemaliniagnalurem imarazaffiriandeanailess ................................ ....., ................................. LW&AM LW WWII 1.=,-...4_,I=,.....-...71- "'....113".....^... ..r.....-.....,. ... . LLW 1.1 gy—...iii, ......, ft__ =1=2n — n ...t.___ — .nn WAD INSTALLATION DETALS ...... SBH2.1 ..C*.f..03.4ped Ts S.W..Saimk Mimi Wm Camplienn, 1 f WIMMAIIIIIONOMMOSINNIWAR i 1....sili ill 1i ii i i '1 ;fib } ;1 a, i ii g3 If i' ,li 1 '''''� 1 i IlLE f i I lit i'I1 i € ii I It 11111 tt i "' 1,1,' i I t t eP . 4 i 1� iv l� } 1 ; ii it q O. O / ilk 01/ i. I. 1 III! �� .is bi ti l p I I 1 6 ii1 ! IL i A C i( • 1 tl1�3`: I 1 'hi i 11 Pi! i 1 �t Mir ' III Portland Mechancial Contractor f ,� r �� ++ 4`! 3 Durham Cogeneration&Brown Grease Receiving . Iiill s IiI 4 ill HvAC 111 it r-. EMT %;13E.E.SE437 imam.. AIMMIELMIMIt \=.4._..c...,...e... ..... .... ......... e==ii0 leing.TZE .7,. Imn=ra L- am Maur tri 1.': Ai#, 1.--"■,. 4--inil 11 C -171-4A'''.4 • (-L..- - :....... 1... > l' Mall ... 0 o 4..., 0 C.) 0 .=....-..-1.-===... Z-L-9MEIV-17-i.M7iMatril •----•-•••••------: ..,......... , • , MCIV:.:■_.”=.36. V) C ro rEHEIF-1,.=..E"=Fin'.3.-S.1.:=-= \, .7.17...`-• . ■ , imr====== 0 .2. r..=_====.-2:-------•-.= DVIIIFIVMHIFIA.r." --: --- (..)0 "wannakong="1-"s1 SOW awinen N.KIM WV g SAI.,APPI Gc...0.0fil.TRAM,431W/ - —- --,",—,,-- lillaV •=0:1.-.M.A.,...Ar 0 2 0 IZ 1.111,11,1Yr A■••01/1. Z 03 C 1. 0-,.... .V_Y__, .. '-''' :::. ''''''td..1.V. _ cd.Lii,_ ..■-1. = CA) 0 -ar...-.....-• ....T■ •••••• • ...1.4 ZC1)i — *0 C r.. 0. f uo .r.mr.e=Fs r. ,, --i F—.-.-1-17.-)4 .•.-.....,.-....L A. 0 M 0 IIIII ■ iLE t ■"• ••■•■ •■ ....t•t•.t :''•',1'..'-'•'i,ii:ii=-3== - . Mil,GCL..i. wiEE=== zi E•ii_,iiii•Llif-ii'::::::.: ;=::::::.r."••• v.: ........... ,..- ......-.L.,•_........_.- •::-,:r.:::.7.:47.7,":,:'-`::-.....-..: 11 -----.--4... - -. — -.- iliiiWARIL2 .:::.=:.==..-. ......•-•-••....^.--• 1....=.0=4,,No 1r Emmy ...-.. ..... 71es.....ww............",.. N-...mANLyNN .AavAnt •••••v N......m.m...mArN ....:, L...0= '''- ow.. _....:4/14e El= ••••.:•---=: ''' ,....„*,....„.. Erl= ,................„ La 101/41 "Rii 4.7r.7 m""r:r 6 4 7r..."LIL....Z-=" gal ... .- ...".r".•: . ..M a g.,...nti, ..........,7-.....-F. :''''..2!..."" =.-:..-,v: ..... ____ _. Id-tit ....... !711., :::. 'mil'141 U. r:Y, •?...' .."-id.i.-IL .. 14.1.11, . .6 .= C•■•■Ow M-.. •.2 :. -. - 7. 1, I ___ .... ,__ _ ...... ANCHORAGE&GENERAL SEISMIC DUALS ...... SB3.1 ..UM.>DeiP•IIT•StrwrIlor Sagok%ay Coe C./.../.., [ DURHAM COGENERATION AND BROWN GREASE RECEIVING FACILITIES CROSS REFERENCE PHASE 5D2 DIVISION 15 HVAC EQUIPMENT SECTION 01612 ANCHORAGE AND BRACING PART 1 GENERAL 1.01 SUMMARY A. This Section covers requirements for anchorage and bracing of equipment, distribution systems,and other nonstructural components required in accordance with the ICC 2009 International Building Code(IBC) as amended by the 2010 Oregon Structural Specialty Code(OSSC), for seismic,wind, gravity, soil,and operational loads. 1.02 REFERENCES A. The following is a list of standards which may be referenced in this Section: 1. American Institute of Steel Construction(AISC): 360, Specification for Structural Steel Buildings. 2. American Society of Civil Engineers (ASCE): ASCE 7, Minimum Design Loads for Buildings and Other Structures. 3. International Code Council(ICC): International Building Code (IBC). 4. National Fire Protection Association(NFPA): 13, Standard for the Installation of Sprinkler Systems. 5. State of Oregon: 2010 Oregon Structural Specialty Code(OSSC). 1.03 DEFINITIONS A. Authority Having Jurisdiction(AHJ): Permitting building agency; may be a federal, state, local,or other regional department,or individual including building official, fire chief, fire marshal,chief of a fire prevention bureau, labor department, or health department, electrical inspector; or others having statutory authority.AHJ may be Owner when authorized to be self-permitting by governmental permitting agency or when no governmental agency has authority. B. Designated Seismic System: Architectural, electrical, and mechanical system or their components for which component importance factor is greater than 1.0. PW/WBG/422389-5D2 ANCHORAGE AND BRACING JUNE 2013 01612 - 1 DURHAM COGENERATION AND BROWN GREASE RECEIVING FACILITIES PHASE 5D2 1.04 DESIGN AND PERFORMANCE REQUIREMENTS A. General: 1. Anchorage and bracing systems shall be designed by a qualified professional engineer registered in the State of Oregon. 2. Design anchorage and bracing of architectural, mechanical, and electrical components and systems in accordance with this Section, unless a design is specifically provided within Contract Documents or where exempted hereinafter. 3. Design attachments,braces, and anchors for equipment, components, and distribution systems to structure for gravity, seismic,wind, and operational loading. 4. Design seismic anchorage and bracing for modified existing architectural,mechanical,or electrical systems where code requirements would dictate design for similar new components. 5. Piping and ductwork,whether exempt or not exempt for this Section, shall be anchored and braced so that lateral or vertical displacement does not result in damage or failure to essential architectural, mechanical, or electrical equipment. 6. Architectural Components: Includes,but are not limited to, nonstructural walls and elements,partitions,cladding and veneer, access flooring, signs,cabinets, suspended ceilings, and glass in glazed curtain walls and partitions. 7. Provide supplementary framing where required to transfer anchorage and bracing loads to structure. 8. Adjust equipment pad sizes or provide additional anchorage confinement reinforcing to provide required anchorage capacities. 9. Design anchorage and bracing for: a. Equipment and components that weigh more than 400 pounds and are mounted 4 feet or less above adjacent finished floor. b. Equipment weighing more than 75 pounds that is mounted more than 4 feet above adjacent finished floor. c. Mechanical and electrical components that are not provided with flexible connections between components and associated ductwork,piping,or conduit. d. Distribution systems that weigh more than 5 pounds per foot that are mounted more than 4 feet above adjacent finished floor. 10. Design seismic anchorage and bracing for Designated Seismic Systems regardless of weight or mounting height. a. Component Important Factor: 1) Ip equals 1.0,unless noted otherwise. ANCHORAGE AND BRACING PW/WBG/422389-5D2 01612 - 2 JUNE2013 DURHAM COGENERATION AND BROWN GREASE RECEIVING FACILITIES PHASE 5D2 2) Ip shall be taken as 1.5 if any of the following conditions apply: a) Component is required to function for life-safety purposes after an earthquake, including fire protection sprinkler systems and egress stairways. b) Component contains hazardous materials. c) Component is in or attached to Occupancy Category IV structure and is needed for continued operation of facility or its failure could impair continued operation of facility. 11. For components exempted from design requirements of this Section, provide bolted,welded,or otherwise positively fastened attachments to supporting structure. B. Design Loads: 1. Gravity: Design anchorage and bracing for self weight and superimposed loads on components and equipment. 2. Wind: Design anchorage and bracing for wind criteria provided on General Structural Notes on Drawings for exposed architectural components and exterior and wind-exposed mechanical and electrical equipment. Alternately,manufacturer certification may be provided for components such as roofmg and flashing to verify attachments meet Project-specific design criteria. 3. Operational: a. For loading supplied by equipment manufacturer for IBC required load cases. b. Loads may include equipment vibration,torque,thermal effects, effects of internal contents (weight and sloshing), water hammer, and other load-inducing conditions. c. Locate braces to minimize vibration to or movement of structure. d. For vibrating loads,use anchors meeting requirements of Section 05500, Metal Fabrications, for anchors with designated capacities for vibratory loading per manufacturer's ICC-ES report. 4. Hydraulic: Design of anchorage for submerged gates and other mechanical equipment shall include hydrostatic and hydrodynamic loads determined in accordance with Section 15.7 of ASCE 7-05. 5. Seismic: a. In accordance with 2009 IBC, Section 1613, and Chapter 13 of ASCE 7. b. Design anchorage and bracing for design criteria listed on General Structural Notes on Drawings. c. Design seismic attachments,braces, and anchorages for parts or elements of architectural,mechanical, and electrical systems in PW/WBG/422389-5D2 ANCHORAGE AND BRACING JUNE2013 01612 - 3 DURHAM COGENERATION AND BROWN GREASE RECEIVING FACILITIES PHASE 5D2 accordance with provisions of IBC and following Site-specific seismic criteria,unless noted otherwise on Drawings: 1) Site-Specific Spectral Response Coefficients: a) Short Period Mapped Maximum Considered Earthquake Acceleration, 5 Percent Damped: Ss equals 0.93 g. b) 1 Period Mapped Maximum Considered Earthquake Acceleration, 5 Percent Damped: Si equals 0.33 g. c) Short Period Design Spectral Response Acceleration, 5 Percent Damped: Sips equals 0.70 g. d) 1 Second Period Design Spectral Response Acceleration, 5 Percent Damped: SDI equals 0.39 g. 2) Site Class: D. 3) Seismic Design Category(SDC): D,unless noted otherwise. Same as supporting structure's SDC, as shown on Drawings. 4) Occupancy Category: III,unless noted otherwise. Anchorage and bracing Occupancy Category shall be same as that for supporting structure as shown on Drawings. d. Design forces for anchors in concrete or masonry shall be in accordance with ASCE 7, Section 13.4.2, or IBC Section 1905.1.9, as applicable for Project Seismic Design Category. C. Seismic Design Requirements: 1. Nonstructural Components: Design as nonbuilding structures for components with weights greater than or equal to 25 percent of effective seismic weight of overall structure. 2. Analyze local region of body of nonstructural component for load transfer of anchorage attachment if component Ip equals 1.5. 3. The following are exempt from requirements for provision of seismic anchorages and bracing, in addition to those items specifically exempted in ASCE 7,Part 13.5 for architectural components and Part 13.6 for electrical and mechanical equipment: a. Furniture, except storage cabinets and bookshelves over 6 feet tall. b. Temporary or movable equipment. 4. Fire protection sprinkler systems designed and constructed in accordance with NFPA 13 shall be considered to meet requirements of Chapter 13 of ASCE 7. 5. Support drawings and calculations for electrical distribution components shall be provided if any of the following conditions apply: a. Ip is equal to 1.5 and conduit diameter is greater than 2.5-inch trade size. ANCHORAGE AND BRACING PW/WBG/422389-5D2 01612-4 JUNE2013 DURHAM COGENERATION AND BROWN GREASE RECEIVING FACILITIES PHASE 5D2 b. Ip is equal to 1.5 and the total weight of bus duct, cable tray, or conduit supported by trapeze assemblies exceeds 10 pounds per foot. c. Supports are cantilevered up from floor. d. Supports include bracing to limit deflection and are constructed as rigid welded frames. e. Attachments utilize spot welds,plug welds, or minimum size welds as defined by AISC. 6. Existing components, systems, and equipment in their fmal condition that are modified by Project requirements and are not exempted by above paragraph shall require same anchorage and bracing drawing and calculation submittals as new equipment. Field verify existing conditions. 7. Other seismic design and detailing requirements identified in ASCE 7, Chapter 13 are required to be provided for new and modified or noted architectural,mechanical and electrical components, systems, or equipment. 1.05 SUBMITTALS A. Action Submittals: 1. Shop Drawings: a. List of architectural,mechanical, and electrical equipment requiring Contractor-designed anchorage and bracing, unless specifically exempted. b. Manufacturers' engineered seismic hardware product data. c. Seismic attachment assemblies' drawings; include connection hardware,braces, and anchors or anchor bolts for nonexempt components, equipment, and systems. d. List of existing architectural,mechanical, and electrical equipment or components to be modified in Project requiring Contractor- designed anchorage and bracing in final retrofitted condition. e. Seismic attachment assemblies' drawings; include connection hardware,braces, and anchors or anchor bolts for modified, nonexempt existing components,equipment, and systems where combination of new and existing systems or components' fmal condition would require anchorage or bracing under this Specification for new equipment. f. Submittal will be rejected if proposed anchorage method would create an overstressed condition of supporting member. Revise anchorages and strengthening of structural support so there is no overstressed condition. PW/WBG/422389-5D2 ANCHORAGE AND BRACING JUNE2013 01612- 5 DURHAM COGENERATION AND BROWN GREASE RECEIVING FACILITIES PHASE 5D2 B. Informational Submittals: 1. Anchorage and Bracing Calculations: For attachments,braces, and anchorages, include IBC and Project-specific criteria as noted on General Structural Notes on Drawings,in addition to manufacturer's specific criteria used for design; sealed by a civil or structural engineer registered in the State of Oregon. 2. Manufacturer's hardware installation requirements. C. Deferred Submittals: 1. Submitted seismic anchorage drawings and calculations are identified as IBC deferred submittals and will be submitted to and accepted by AHJ prior to installation of component, equipment or distribution system. 2. Submit deferred action submittals such as shop drawings with supporting deferred informational submittals such as calculations no less than 4 weeks in advance of installation of component, equipment or distribution system to be anchored to structure. 1.06 SOURCE QUALITY CONTROL A. Contractor and supplier responsibilities to accommodate Owner-furnished shop fabrication related special inspections and testing are provided in Project's Statement of Special Inspections on Drawings and Section 01455, Special Tests and Inspections. B. All other specified, regulatory required, or repair verification inspection and testing that are not listed in Statement of Special Inspections, are to be provided by Contractor and shall meet requirements of Section 01450, Quality Control. C. Source Quality Control shall be in accordance with Section 05500,Metal Fabrications. PART 2 PRODUCTS 2.01 GENERAL A. Attachments and supports transferring seismic loads to structure shall be designed and constructed of materials and products suitable for application and be in accordance with design criteria shown on Drawings and nationally recognized standards. B. Provide anchor bolts and concrete and masonry anchors for anchorage of equipment to concrete or masonry in accordance with Section 05500,Metal ANCHORAGE AND BRACING PW/WBG/422389-5D2 01612-6 JUNE 2013 DURHAM COGENERATION AND BROWN GREASE RECEIVING FACILITIES PHASE 5D2 Fabrications. Size of anchor bolts and anchors,required minimum embedment,and spacing shall be based on calculations submitted by Contractor. C. Do not use powder-actuated fasteners or sleeve anchors for seismic attachments and anchorage where resistance to tension loads is required. Do not use expansion anchors,other than undercut anchors, for nonvibration isolated mechanical equipment rated over 10 horsepower. PART 3 EXECUTION 3.01 GENERAL A. Make attachments,bracing, and anchorage in such a manner that component lateral force is transferred to lateral force resisting system of structure through a complete load path. B. Overall seismic anchorage system shall provide restraint in all directions, including vertical,for each component or system so anchored. C. Components mounted on vibration isolation systems shall have snubbers in each horizontal direction and vertical restraints where required to resist overturning. D. Anchor piping in such a manner as to ensure piping system has adequate flexibility and expansion capabilities at flexible connections and expansion joints. 1. Piping and ductwork suspended more than 12 inches below supporting structure shall be braced for seismic effects to avoid significant bending of hangers and their attachments,unless high-deformability piping is used per ASCE 7, Section 13.6.8 or HVAC ducts have a cross-sectional area of less than 6 square feet. E. Anchor tall and narrow equipment such as motor control centers and telemetry equipment at base and within 12 inches from top of equipment,unless approved otherwise by Engineer. F. Do not attach architectural,mechanical,or electrical components to more than one element of a building structure at a single restraint location where such elements may respond differently during a seismic event. Do not make such attachments across building expansion and contraction joints. PW/WBG/422389-5D2 ANCHORAGE AND BRACING JUNE2013 01612 - 7 DURHAM COGENERATION AND BROWN GREASE RECEIVING FACILITIES PHASE 5D2 3.02 INSTALLATION A. Do not install components or their anchorages or restraints prior to review and acceptance by Engineer and AHJ. B. Notify Engineer upon completion of installation of seismic restraints in accordance with Section 01455, Special Tests and Inspections. 3.03 FIELD QUALITY CONTROL A. In accordance with Section 05500,Metal Fabrications. B. Contractor responsibilities to accommodate Owner-furnished special inspections and testing are provided in Project's Statement of Special Inspections on Drawings and Section 01455, Special Tests and Inspections. C. Any other specified, regulatory required, or repair verification inspection and testing that are not listed in Statement of Special Inspections, are to be provided by Contractor and shall meet requirements of Section 01450, Quality Control. END OF SECTION ANCHORAGE AND BRACING PW/WBG/422389-5D2 01612- 8 JUNE 2013 • RECEIVED VAK Construction Engineering Services, LLC NOV 2 4 2014 6-1A K 1 8285 SW Nimbus Avenue,Suite 104 Beaverton,Oregon 97008 CITY OFTIGARD 503.718.5999 tel 503.718.5980 fax A akoivaa vakengineering.com BUILDING DIVISION M E M 0 TO: Kevin Orton, JW Fowler Job# 14-008A FROM: Alexis K. Michaud, P.E., VAK Engineering PROJECT: Durham AWWTF DATE: 9/16/2014 RE: Seismic Design of Equipment Anchorage—Switchgear Anchor Clips This memo is in regards to the seismic anchorage design for the Switchgear unit. Due to the overhang of the switchgear the originally designed anchor locations are not able to be installed. Angle clips shall be provided so that the anchors are accessible to install. All steel shall be ASTM A36 and all welding shall be done with E70 electrodes. Anchors did not change and shall be per the original submittal. Reference the attached detail and calculations for additional information. Please let me know if you need anything further with regards to this matter. Thanks, Ll ) .7/1 (c �D PROFF Api .049•PE � rh &., 1..,1°' PJO �S/(01\61 M\G� EXPIRES: Iz3(/f(p I Filename: 14 008A04 LTR 09 16 14.docx Page 1 of 1. —___1 CMci_osQI L 3 v 2 x 3/6 Pi I 1C-)LE ril I1 1 To 5c i2-'(- d VCS , ( L-000-'71 Cir\) s 4:7 im,,..= 4 1 il rt- rz-�CGrda_.►L(LL g el-.E.. Yn N --g8 It 3//'4 { eDL€ . tEtkix,? tX2-- C/W,,,(4, c.-3-1oe-c ll 9E..vv iv ,P.vw C_$ - e-,- = " .% t( �ltv > 2.11-q ---. 1._ <1_,q p 2 /I 2 2: , L il , V- I 4' ar-e-, cum z 3 / '� A.KOIV j 9/12/2014 Construction Engineering Services,LLC SEISMIC DESIGN FORCE 'Input: I SOS= 0.697 From Spec Sec 01612 ap= 2.5 Selected from ASCE 7-05 Tables 13.5-1 or 13.6-1 Rp= 8.0 Selected from ASCE 7-05 Tables 13.5-1 or 13.6-1 1p= 1.5 From Spec Sec 01612 If RM>OTM—>No Tension on Anchors Dist to CG Moments(ft-Ib) 1.3"Tension 1.3�'Shear�—� Component Wp(Ib) z/h Fp(Ib) Fp Max(Ib) Fp Min(Ib) Vert(ft) Horiz(ft) OTM RM #Anchors !l�b)- Switchgear 3750 0.00 653 6273 1176 Use Min Value 3.83 0.99 4509 2821 894 4 ,./ 382 /' General Notes: Fp was determined from Section 13.3 from ASCE 7-05 Anchor points on equipment were assumed to be existing based upon contractor provided drawings or shall be provided by equipment manufacturer. CG's were assumed to be at the center of component if not provided on drawings. Anchor design values were increased by a factor of 1.3 per ASCE 7-05 Section 13.4.2a. All components assumed to be floor mounted unless noted otherwise. All anchors specified are minimum size required,large size anchors are acceptable with approval from VAK Anchors shall be installed per manufacturers specifications Strength Design OTM=Fp*CG Vert Strength RM=(0.9-0.2'Sds)-Wp*CG Horiz T-------- 99(-t .1:4- K--h- .)..) I:12014 Inactive 4008 WESTERN POWER SYSTEMS DURHAM PROJECTIPHASE A SEISMIC ANCHORAGE DESIGMCALCS1RO\SEISMICFORCE.xIs JW FOWLER 14-008A DURHAM AWWTP VA K SHEET: OF Construction Engineering Services A.KOIV AISC 13TH ED.AXIAL&FLEXURAL DESIGN-L SHAPES(LRFD) SIZE: L3x2x3/8 SHAPE: Angle LOADING: AXIAL, P= 0.00 kips(neg. if tension) E= 29000 ksi MOMENT, Mx= 0.00 k-ft Fy= 36 ksi UNBRACED LENGTH, Lbx= 0.42 ft Kx= 1.00 MOMENT, My= 0.373 k-ft Ky= 1.00 UNBRACED LENGTH, Lby= 0.42 ft G= 11200 ksi SHEAR,V= 0.894 kips Cb= 1.00 (1.0 conservative) MEMBER: 0 DEMAND RATIOS Yielding Mnx/Ob= 3.15 k-ft 0.9 --> 0.00 < 1.0 OK! FLB Applies Mny/Ob= 1.49 k-ft 0.9 --> 0.25 <1.0 OK! (E3-1) Pn/Oc= 56.1 kips 0.9 --> 0.00 < 1.0 OK! (G2-1) Vn/Ov= 14.6 kips 0.9 --> 0.06 < 1.0 OKI (H1-1b) Pr/(2Pc)+Mrx/Mcx+Mry/Mcy --> 0.25 < 1.0 OK! MEMBER PROPERTIES A= 1.73 IO2 lx= 1.54 in"4 b2= 3.00 in Sx= 0.78 inA3 b= 2.00 in rx= 0.94 in t= 0.38 in Zx= 1.39 in"3 b/t= 5.33 ly= 0.54 in"4 b2/t= 8.0 Sy= 0.37 inA3 1= 0.0855 in"4 ry= 0.56 in Cw= 0.0413 1n"6 Zy= 0.68 inA3 rz= 0.43 in Kx*Lbx/rx= 5.3 Ky*Lby/ry= 9.0 COMPACTNESS V(E/Fy)= 28.38 FLEXURE(b): compact k= 0.688 in FLEXURE(b2): compact COMPRESSION (flange): non-slender AXIAL_FLEX_AISC13TH_angles.xlsx 9/16/2014 LI/ Submittal Response # 1 6471 - 5D2 Cogeneration and Brown Grease 1ean\Vater Services CIP Program Our commitment is that Printed 11/21/2014, Page 1 of 1 _ _FEZ / �1 Subject: CH2M HILL Response to Submittal #28� Submitted : 10/29/2014 — - RECEN I .EP Created By: CH2M HILL, Luke Scoggins Type: Official T,,.(r '� s--�n NOV 2 4 2014 OFFICE COPY CITY OFTIGARD BUILDING DIVISION 6-7e- ' -GO-rt L-7 w - r5 7'W i A 1 Action Submittal Response Status: –„\ Informational Submittal Response Status: CCD-Complies with Contract Documents Deferred Submittal Response Status: Comment: 1. This submittal has been reviewed for compliance with the contract documents. The design criteria used have been reviewed against the project design criteria stated in the project drawings, specifications and current building codes. The correct criteria were implemented in the design unless specifically commented on otherwise. The calculations were not checked for accuracy or correctness except for general compliance. An engineer registered in the state of Oregon who is responsible for the design of this particular element has stamped the calculations. 2. All design drawings and calculations are considered to be a deferred submittal. The stamped calculations shall be submitted with the Engineer's review form to the permitting agency.The contractor shall be aware that final acceptance of the calculations is subject to the approval of the permitting agency. eadoc Submittal Response # 1 -"N"\\ CServices 6471 - 5D2 Cogeneration and Brown P Gre Our commitnic ii is clear. _ Printed 11/21/2014, Page 1 of 1 Subject: CH2M Hill Design Response to Submittal # 119.2 Submitted : 04/16/2014 RECEIVED Created By: CH2M HILL, Luke Scoggins Type: Official NOV 2 4 2014 OFFICE COPY CITY OFTIGARD BUILDING DIVISION Action Submittal Response Statu : Informational Submittal Respons Status: CCD-Complies with Contract Documents Deferred Submittal Response Status: Comment: 1. This submittal has been reviewed for compliance with the contract documents. The design criteria used have been reviewed against the project design criteria stated in the project drawings, specifications and current building codes. The correct criteria were implemented in the design unless specifically commented on otherwise. The calculations were not checked for accuracy or correctness except for general compliance. An engineer registered in the state of Oregon who is responsible for the design of this particular element has stamped the calculations. eadoc 123/ -��ED PRo1 c GtNF s' VAK Construction Engineering Services, LLC �`' `4 Tar 8285 SW Nimbus Avenue,Suite 104 / :0496' • y Beaverton,Oregon 97008 503.718.5999 tef 503.718.5980 fax ;wo1 s;/ e•N akoiv( vakengineering.com .9( e 0,Z. S- ` M E M 0 EXPIRES:63 itlIge TO: Robert Culp, Western Power Systems Job # 14-008A ��;,E "� FROM: Alexis Koiv, P.E.,VAK Engineering �+ PROJECT: Durham AWWTF DATE: 1/23/2014 RE: Seismic Design of Equipment Anchorage N(lV 2 4 2014 This memo is in regards to the seismic design of the anchorage for the various e•ui`. t�� illi hs were based upon the International Building Code 2009 and ASCE 7-05. Included'=• r. i,: • DIVISION • Battery Box � C'�-COI HIT and L/T Pump • Diane Panel • Radiator • Engine ®FFICE COY Switch Gear • H/T and LIT Exp Tank • Vapor Phase • Grounding Resistor The first step of the analysis was to determine the seismic response values that were needed to determine the forces. Seismic values were based upon project specification section 01612. ASCE 7-05 governed the determination of the Seismic Design Force, Fp, applied to the components. Component amplification factors and response modification factors were taken from ASCE 7-05 Table 13.6-1 based upon the type of component. The importance factor was taken as 1.5 from project specifications. The Seismic Design Force was then calculated using the manufacturer provided weights. Anchor design forces were increased by a factor of 1.3 by ASCE 7-05 Section 13.4.2.a. It is assumed that all equipment will be anchored to an equipment pad per the contract concrete pad details and notes when required. All anchors shall be threaded rod either Stainless Steel 316 or Carbon Steel B7 where required by project requirements. Epoxy shall be Hilti HIT-HY 200 and shall be installed per manufacturer's instructions. Anchor sizes, embedment,minimum concrete thicknesses and minimum edge distances are provided in the summary table included all equipment. Concrete anchor values assumed the concrete to be cracked and were based upon a concrete strength of 4000 psi. I have attached all calculation sheets,drawings and design reference material. Please let me know if you need anything further. Thanks, Filename: 14 008A01 LTR 01 23 14.docx Page 1 of 7 i / __``i- WESTERN POWER SYSTEMS 14-008A DURHAM WTP (VA k W/ SEISMIC ANCHORAGE SHEET: 2- OF a / Construction Engineering Services A.KOIV EQUIPMENT LIST W/ANCHOR REQUIREMENTS Total Total#of Anchor Embedment Min.Conc Min. Edge Equipment Epoxy Weight(Ibs) Anchors Size(in) (in) Depth (in) Dist. (in) Battery Box 305 4 3/8" Hilti HIT-HY 200 3.5 6 4.5 Diane Panel 550 4 1/2" Hilti HIT-HY 200 4 7 4.5 Engine 29090 18 1" Hilti HIT-HY 200 9 12.5 9 H/T Exp Tank 647 4 5/8" Hilti HIT-HY 200 5 8.5 4.5 L/T Exp Tank 305 4 5/8" Hilti HIT-HY 200 5 8.5 4.5 Grounding Resistor 650 4 1/2" Hilti HIT-HY 200 3 7 4.5 H/T Pump 280 2 1/2" Hilti HIT-HY 200 3 7 4.5 L/T Pump 280 2 1/2" Hilti HIT-HY 200 3 7 4.5 Radiator 4200 4 1" Hilti HIT-HY 200 5 12.5 5.5 Silencer 1500 4 *Not included with this package Switch Gear 3750 4 5/8" Hilti HIT-HY 200 8 10 6 Vapor Phase 7885 4 7/8" Hilti HIT-HY 200 10 15 12 • A.Kolv �` 1/16/2014 Construction Engineering Services,LLC SEISMIC DESIGN FORCE Input: SOS= 0.697 From Spec Sec 01612 ap= 1.0 Selected from ASCE 7-05 Tables 13.5-1 or 13.6-1 Rp= 2.5 Selected from ASCE 7-05 Tables 13.5-1 or 13 6-1 Ip= 1.5 From Spec Sec 01612 if RM>OTM—>No Tension on Anchors Dist to CG Moments(ft-Ib) 1.3"Tension 1.3'Shear Component Wp(lb) z/h Fp(Ib) Fp Max(Ib) Fp Min(lb) Vert(ft) Horiz(ft) OTM RM (Ib) #Anchors (Ib) Battery Box 305 1.00 153 510 96 Use Actual Fp 0.67 0.33 102 77 127 4 50 t._._er5U,1/4&:11--- t -719 ROOF General Notes: Fp was determined from Section 13.3 from ASCE 7-05 Anchor points on equipment were assumed to be existing based upon contractor provided drawings or shall be provided by equipment manufacturer. CG's were assumed to be at the center of component if not provided on drawings. Anchor design values were increased by a factor of 1.3 per ASCE 7-05 Section 13.4.2a. All components assumed to be floor mounted unless noted otherwise. All anchors specified are minimum size required,large size anchors are acceptable with approval from VAK. Anchors shall be installed per manufacturers specifications Strength Design OTM=Fp*CG Vert Strength RM=(0.9-0.2*Sds]'Wp'CG Horiz \w V'\2014\14008 WESTERN POWER SYSTEMS DURHAM PROJECT■PHASE A SEISMIC ANCHORAGE DESIGN\CALCSIRO\SEISMICFORCE.xis MII.TI www.hlltl.us Profis Anchor 2.4.5 Company: Page: 1 Specifier: Project: Address: Sub-Project I Pos.No.: Phone I Fax: I Date: 1/16/2014 E-Mail: Specifiers comments: 1 Input data w - F •v Anchor type and diameter: a ,x ` a- �.. • Effective embedment depth: hel,ea=3.500 in.(her,un t=-in.) Material: ASTM F 593 Evaluation Service Report: ESR-3187 Issued I Valid: 4/1/201313/1/2014 Proof design method ACI 318/AC308 Stand-off installation: -(Recommended plate thickness:not calculated) Profile: no profile Base material: cracked concrete,4000,fc'=4000 psi;h=6.000 in.,Temp.short/long:32/32°F Installation: hammer drilled hole,installation condition:dry Reinforcement: tension:condition B,shear:condition B,no supplemental splitting reinforcement present edge reinforcement:none or<No.4 bar Seismic loads(cat.C,D,E,or F) yes(D.3.3.6) Geometry[in.]&Loading[lb,in.lb] Z 0 6 • • '4' - ;,--•=17/3_ 0 cn X Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor(c)2003-2009 Hilti AG,FL-9494 Schwan Hi!ti is a registered Trademark of Hilo AG,Schaan I11IIIJ1.111 www.hilti.us Profis Anchor 2.4.5 Company: Page: 2 Specifier. Project Address: Sub-Project I Pos.No.: Phone I Fax: [ Date: 1/16/2014 E-Mail: 2 Load case/Resulting anchor forces Load case:Design loads Anchor reactions[Ib] Tension force:(+Tension,-Compression) Anchor Tension force Shear force Shear force x Shear force y 1 127 50 50 0 max.concrete compressive strain: -[%.] max.concrete compressive stress: -[psi) resulting tension force in(x/y)=(0.000/0.000): 0[Ib] resulting compression force in(x/y)=(0.000/0.000):0[Ib] 3 Tension load Load N„a[Ib] Capacity 4N.[Ib] Utilization PN=N../$N5 Status Steel Strength' 127 2015 7 OK Bond Strength" 127 672 19 OK Concrete Breakout Strength" 127 1133 12 OK *anchor having the highest loading "anchor group(anchors in tension) 3.1 Steel Strength NN[lb] + ___ ithlonductle 4N..[1b] N.a[lb] 7750 0.650 0.400 2015 127 3.2 Bond Strength AN.[in.2) AN.o[in.2) s.r,N.[in.] c,x.N.[in.] c[in.] c..[in.] 72.92 72.92 8.539 4.270 4.500 8.066 ^c,a Tk,una,2500[Psi) )(dry Tk,a[Psi) Tk,nms,a[Psi) 1yg,Ne0 WoNa 17 1880 1.00 1044 1707 1.000 1.000 ect.N[in.) Wect,N. ecz,N[in.] We Ns W Joe WedNa 0.000 1.000 0.000 1.000 1.000 1.000 No[lb] 0 gsel.* 4nondckil U ue N,seis 4)aN [Ib] N,,,[Ib] 3445 0.650 0.750 0.400 0.800 672 127 3.3 Concrete Breakout Strength ANC(in.21 ANco(In?1 cs,min fin.] c..[in.] grc,N 95.06 110.25 4.500 8.066 1.000 ec1,N[in.) ecl.N ec2,N[in.] oC2 N y.d,N �g N ka 1.1110 1.000 ' 'n 1.... 0.957 1.000 17 Nb[lb] 0 (Ilselsmlc 41n.ndume Oft[Ib] Nue[lb] 7040 0.650 0.750 0.400 1133 127 Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor(e)2003.2909 Hlti AG.FL-8494 Schaan HIS is a registered Trademark of Hill AG.Schwan 5/ 1 .1116T1 www.hilti.us Profis Anchor 2.4.5 Company: Page: 3 Specifier. Project Address: Sub-Project I Pos.No.: Phone I Fax: I Date: 1/16/2014 E-Mail: 4 Shear load Load Vu,[lb] Capacity 4V„[lb] Utilization Dv=V„/oV„ Status Steel Strength' 50 651 8 OK Steel failure(with lever arm)* N/A N/A N/A N/A Pryout Strength(Bond Strength 50 1447 4 OK controls)" Concrete edge failure in direction x+" 50 559 9 OK 'anchor having the highest loading "'anchor group(relevant anchors) 4.1 Steel Strength V.[lb) + Onondudile •V,.[lb] Vua[lb] 2712 0.600 0.400 651 50 4.2 Pryout Strength(Bond Strength controls) AN.[in.21 Aram[in.2] sc,.N,[in.] Coo.[in.] c[in.] cac[in.] • 72.92 72.92 8.539 4.270 4.500 8.066 kc,a Tk,una,2500[psi] Kdry 'ricer]psi) Tkmes,cr[psi] tvg,N.0y N 17 1880 1.00 1044 1707 1.000 U e,,,N[in.] .c1.Na en2,N[in.] ylec2.Na y!p,N° ___ 4yed,Na _ 0.000 1.000 0.000 1.000 1.000 1.000 N,0[lb] 4 Qseumc �„onductile QN,sele 0 aVcpg[lb) Nu,[lb] 3445 0.700 0.750 0.400 0.800 1447 50 4.3 Concrete edge failure in direction x+ le[in.] do[in] c,[in.] Avo[in.2) Avco[in•21 3.000 0.375 4.000 63.00 72.00 yled.V 11lparellel,V ec,v(in.) ty.c,V yrc,v tyh,V 0.925 1.000 0.000 1.000 1.000 1.000 Vb[lb] $ 4setsmc Snondlable •Vou[lb) V.[lb] 3287 0.700 0.750 0.400 559 50 5 Combined tension and shear loads ON (3V C Utilization J N,v(%I Status 0.189 0.089 5/3 9 OK [INV=[3N+[IV<=1 e. Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor(c)20032009 Heti AG,FL-9494 Sct aan Hd0 is a registered Trademark of Heti AG,Sctnan (//n / n/ MII..TI www.hilti.us Profis Anchor 2.4.5 Company: Page: 4 Specifier: Project: Address: Sub-Project I Pos, No.: Phone I Fax: Date: 1/16/2014 E-Mail: 6 Warnings • To avoid failure of the anchor plate the required thickness can be calculated in PROFIS Anchor.Load re-distributions on the anchors due to elastic deformations of the anchor plate are not considered.The anchor plate is assumed to be sufficiently stiff,in order not to be deformed when subjected to the loading! • Condition A applies when supplementary reinforcement is used.The D factor is increased for non-steel Design Strengths except Pullout Strength and Pryout strength. Condition B applies when supplementary reinforcement is not used and for Pullout Strength and Pryout Strength.Refer to your local standard. • Design Strengths of adhesive anchor systems are influenced by the cleaning method.Refer to the INSTRUCTIONS FOR USE given in the Evaluation Service Report for cleaning and installation instructions • The present version of the software does not account for adhesive anchor special design provisions corresponding to overhead applications. Refer to the ICC-ES Evaluation Service Report(e.g.section 4.1.1 of the ICC-ESR 2322)for details. • Checking the transfer of loads into the base material and the shear resistance are required in accordance with ACI 318 or the relevant standard! • An anchor design approach for structures assigned to Seismic Design Category C,D,E or F is given in ACI 318-08 Appendix D,Part D.3.3.4 that requires the governing design strength of an anchor or group of anchors be limited by ductile steel failure.If this is NOT the case,Part 0.3.3.5 requires that the attachment that the anchor is connecting to the structure shall be designed so that the attachment will undergo ductile yielding at a load level corresponding to anchor forces no greater than the controlling design strength.In lieu of 0.3.3.4 and 0.3.3.5, the minimum design strength of the anchors shall be multiplied by a reduction factor per D.3.3.6. An alternative anchor design approach to ACI 318-08,Part D.3.3 is given in IBC 2009,Section 1908.1.9,This approach contains "Exceptions"that may be applied in lieu of D.3.3 for applications involving"non-structural components"as defined in ASCE 7,Section 13.4.2. An alternative anchor design approach to ACI 318-08,Part D.3.3 is given in IBC 2009,Section 1908.1.9.This approach contains 'Exceptions"that may be applied in lieu of D.3.3 for applications involving"wall out-of-plane forces"as defined in ASCE 7,Equation 12.11-1 or Equation 12.14-10. • It is the responsibility of the user when inputting values for brittle reduction factors(¢nar,duaue)different than those noted in ACI 318-08,Part D.3.3.6 to determine if they are consistent with the design provisions of ACI 318-08,ASCE 7 and the governing building code. Selection of 0„o„d.cnl.=1.0 as a means of satisfying ACI 318-08,Part D.3.3.5 assumes the user has designed the attachment that the anchor is connecting to undergo ductile yielding at a force level<=the design strengths calculated per ACI 318-08,Part D.3.3.3. Fastening meets the design criteria! Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor(c)2003-2009 Hllti AG,FL-9494 Schwan Hilti is a registered Trademark of Hilti AG.Schwan 7/ { A 3 ' f GenAccTM's molded fiberglass s u yL t r' - battery box is your solution to battery storage. Every box rte i contains vent openings at each end to allow acid vapors to Y; escape, reducing the chance of an explosion. Boxes are easily anchored using optional mounting brackets with 'A" diameter mounting holes. We have boxes available in the following sizes for your NiCad and lead acid battery needs. Strong, Impact Resistant, Acid Containment GA-4D Battery Storage 2—Size 40 Batteries (batteries not included) E" Exterior Dimensions Length:49% " Width: 13 1 " Height: 12 %2 " Interior Dimensions Length: 47 " Width: 10 " Height;-12"_ Weight 30 lbs - ;. GA-8D Battery Storag Exterior Dimensions ` _� Length: 49 :'z " Width: 16 1/2 " Height: 1 Interior D p o . _Len:A 7 ' ...,k �. Huth.,,: L Weight rte. Options: • Heating Pads w/Thermostat • Multiple Latch Options Incl. Stainless Steel • Battery Straps • Mold-in Mounting Inserts and Mounting Brackets • Lip Seal s Contact us: info(a�genaccproducts.com fi. or sales at(309)696 9479 60 State Street, Suite 101 -Peoria,IL 61602 CONFIDENTIAL GenAcc,LLC ' . . 48.84 REF — - 12.09 REF - 8X R1.00 -1--- _...,.. _ ^' A 2X2.00 12.00 I 4X 10.50 2X 9.00 I { I -o-A 4X.875 2X 2.50 --0--;-+ 2X 20.00 2X 20.00 2X 2.50 48.00 1.625 8.00 2X 4.50 4X 18-280 5/16-16-18 8 UNC THREADED INSERT 1 SOLE SIZE: 0.500-.506 L, SEALED i i GenAcc Products `® _ MATERIAL: 3/18"FIBERGLASS(GP RESIN) UNIT OF MEASURE INCH 4X.50 - • 2X 3.38 11.25 - BATTERY BOX-BASE W/INSERTS UNLESS OTHERWISE SPECIFIED: SECTION A-A :RD's RZ00 a GA1006 DATE:10/28/09 DRAWN BY:STG CHANGE LEVEL: SCALE:1/4 DWG SIZE:C SHEET: 1:1 . . . . ------H ...--. - 3.50 --.1--.--- 8 00 7 i- 2X ..375 68.0• . 1 r-1.13 01//' ,7 R250 --,,, I-----i---7 r I 2.00 ...._1 i..__ _______ 1.-- 25 THK 15.00 1......--.-i-2 0 . i . 0 1.50 .............---...-. "12.00 ° ; I j / ,./-4X R25 1 ,i GenAcc Products MATERIAL 1/4 IN-ASTM A36 STEEL I UNIT OF MEASURE: I INCH - I I i BRACKET-BATTERY BOX I - GA3375 DATE: 1617/2012 1DRAWN BY:!STG I CHANGE LEVEL:I 00 -...-%.",-......, SCALE: 11/2 DWG SIZE: I C SHEET''1 OF 1 • • A.KOIV 1/16/2014 Construction Engineering Services,LLC SEISMIC DESIGN FORCE Input: SOS= 0.697 From Spec Sec 01612 ap= 2.5 Selected from ASCE 7-05 Tables 13.5-1 or 13.6-1 Rp= 6.0 Selected from ASCE 7-05 Tables 13.5-1 or 13.6-1 Ip= 1.5 From Spec Sec 01612 *If RM>OTM—>No Tension on Anchors Dist to CG Moments(ft-lb) 1.3*Tension 1.3*Shear Com sent _,„ Wp(Ib) z/h Fp(Ib) Fp Max(Ib) Fp Min(Ib) Vert(ft) Horiz(ft)_ OTM RM _ (Ib) #Anchors (Ib) 49.061000r 550 0.00 96 920 173 Use Min Value 4.83 0.88 834 366 360 4 56 General Notes: Fp was determined from Section 13.3 from ASCE 7-05 Anchor points on equipment were assumed to be existing based upon contractor provided drawings or shall be provided by equipment manufacturer. CG's were assumed to be at the center of component if not provided on drawings. Anchor design values were increased by a factor of 1.3 per ASCE 7-05 Section 13.4.2a. All components assumed to be floor mounted unless noted otherwise. All anchors specified are minimum size required,large size anchors are acceptable with approval from VAK Anchors shall be installed per manufacturers specifications Strength Design OTM=Fp*CG Vert Strength RM=[0.9-0.2*Sds)*Wp*CG Horiz V:\2014\14008 WESTERN POWER SYSTEMS DURHAM PROJEC1\PHASE A SEISMIC ANCHORAGE DESIGN\CALCS\RO\SEISMICFORCE.xls 1•011 ■Tl www.hilti.us Profis Anchor 2.4.5 Company: Page: 1 Specifier. Project Address: Sub-Project I Pos.No.: Phone I Fax: I Date: 1/16/2014 E-Mail: Specifler's comments: 1 Input data .._i Anchor type and diameter: . . s Effective embedment depth: he1Kt=4.000 in.(her,,,;t=-in.) "" Material: ASTM F 593 Evaluation Service Report: ESR-3187 Issued I Valid: 4/1/20131 3/1/2014 Proof: design method ACI 318/AC308 Stand-off installation: -(Recommended plate thickness:not calculated) Profile: no profile Base material: cracked concrete,4000,fc'=4000 psi;h=7.000 in.,Temp.short/long:32/32°F Installation: hammer drilled hole,installation condition:dry Reinforcement: tension:condition B,shear:condition B;no supplemental splitting reinforcement present edge reinforcement none or<No.4 bar Seismic loads(cat.C,D,E,or F) yes(D.3.3.6) Geometry[In.]&Loading[lb,in.lb] Z w e> ° ,X Input data and results must be checked for agreement with the existing conditions and for plausibility) PROFIS Anchor(c)2003-2009 Hiti AG,FL-9494 Schaan Hilti is a registered Trademark of Hiltl AG,Schaan /! �j !. �// NI1.11191 www.hilti.us ProfIs Anchor 2.4.5 Company: Page: 2 - Specifier. Project Address: Sub-Project I Pos.No.: Phone I Fax: I Date: 1/16/2014 E-Mail: 2 Load case/Resulting anchor forces Load case:Design loads Anchor reactions[lb] Tension force:(+Tension,-Compression) Anchor Tension force Shear force Shear force x Shear force y 1 360 56 -56 0 max.concrete compressive strain: -[%o] max.concrete compressive stress: -[psi) resulting tension force in(x/y)=(0.000/0.000): 0[lb] resulting compression force in(x/y)=(0.000/0.000):0[lb] 3 Tension load Load N.[lb] Capacity bN„[lb] Utilization 13N=N„„/¢N„ Status Steel Strength' 360 3689 10 OK Bond Strength" 360 774 47 OK Concrete Breakout Strength" 360 1188 31 OK *anchor having the highest loading "anchor group(anchors in tension) 3.1 Steel Strength N.[ib] .noneucsle •Ni1 [lb] N„,[lb] 14190 0.650 0.400 3689 360 3.2 Bond Strength ANe(in.2] AN.0[in.2] serm(in.) caNa[in.] c[in.] c.[in.] 103.89 129.63 11.385 5.693 4.500 9.097 kc,or rk,usazsoo[Psi) ¢d7 rk,cr[psi) rk,m.s,u[psi) y/g,Neo 9/10i. 17 1880 1.00 1051 1369 1.000 1.000 ee,.N[in.] yreel.He ee2,N[in.] ec2,Na W.Ne ty.dNa 0.000 1.000 0.000 1.000 1.000 0.937 N.[lb] $ +salank 4lnandresl. GN.seis $aNeg[lb] N.[lb] 5285 0.650 0.750 0.400 0.800 774 360 3.3 Concrete Breakout Strength A [in.2] ANCo[in.2] ;min[in.1 c.[in.] yre.N 110.25 144.00 4.500 9.097 1.000 ec1,N[in.] 1Ir.c1,N ecz,N[in.] yrec2,N 1yed.N WeyN km 0.000 1.000 0.000 1.000 0.925 1.000 17 _ Nb[lb] m Qselsrric 4)nonducate $Ncbg[lb] N.[lb] 8601 0.650 0.750 0.400 1188 360 • Input data and results must be checked for agreement with the existing conditions and br plausbllityt PROFIS Anchor(c)2003.2009 Hilti AG,FL-9494$chaan Hill is a registered Trademark of Hiai AG,Schwan 1 F 3/ I■■1I1■T1 www.hilti.us Profis Anchor 2.4.5 Company: Page: 3 - Specifier. Project: Address: Sub-Project I Pos.No.: Phone I Fax: I Date: 1/16/2014 E-Mail: 4 Shear load Load V.(Ib] Capacity 4V„[lb] Utilization pv=vu j4,Vn Status Steel Strength* 56 1430 4 OK Steel failure(with lever arm)' N/A N/A N/A N/A Pryout Strength(Bond Strength 56 1667 4 OK controls)" Concrete edge failure in direction x 56 713 8 OK 'anchor having the highest loading "anchor group(relevant anchors) 4.1 Steel Strength Vsa[Ib] m ritnonducele •Vsa[lb] Vu.[lb] 5960 0.600 0.400 1430 56 4.2 Pryout Strength(Bond Strength controls) AN.[in.21 ANw[in•2] sap.[in.] ccr,Ne[in.] c(in.) Go lint) 103.89 129.63 11.385 5.693 4.500 9.097 ke,er Tk,uncr,2500[Psi] Hdry Tk.cr[psi] Tk,max,u[PSI) tlrg.NaO Wg.He 17 1880 1.00 1051 1369 1.000 1.000 ecl,N[in.) t41ec1,Ns ec2,N(in.) Wa2,Ns WPM _ Sted,Na 0.000 1.000 0.000 1.000 1.000 0.937 N.0[lb] m sais Nc $nond„dtib aN,sels 0 aVcpg[lb] Nua[lbl 5285 0.700 0.750 0.400 0.800 1667 56 4.3 Concrete edge failure in direction x- l.[in.) dg[in.] c1[in.] Ave[in.2) Avm[in.2] 4.000 0.500 4.500 75.94 91.13 yfed,v Wparall.l,V ec,v[in.] tt.c,v tfc,V Why 4.900 1.000 0.000 1.000 1.000 1.000 Vb[lb] 4 Qseisnic $nonduccls 4tVcbg[lb] Vua[lb] 4529 0.700 0.750 0.400 713 56 5 Combined tension and shear loads pN j�v C Utilization pN,v I%l Status 0.465 0.078 5/3 30 OK pN„=pi,+ilk,<= 1 Input data and results must be checked for agreement with the existing conditions and for plausibility) PROFIS Anchor(c)2003-2009 HBO AG,FL-9494 Schaan HIS is a registered Trademark of Hitti AG,Schaan it 411 N11`TI www.hilti.us Profis Anchor 2.4.5 Company: Page: 4 Specifier: Project. Address: Sub-Project 1 Pos. No.: Phone I Fax Date: 1/16/2014 E-Mail: 6 Warnings • To avoid failure of the anchor plate the required thickness can be calculated in PROFIS Anchor.Load re-distributions on the anchors due to elastic deformations of the anchor plate are not considered.The anchor plate is assumed to be sufficiently stiff,in order not to be deformed when subjected to the loading! • Condition A applies when supplementary reinforcement is used.The factor is increased for non-steel Design Strengths except Pullout Strength and Pryout strength. Condition B applies when supplementary reinforcement is not used and for Pullout Strength and Pryout Strength.Refer to your local standard. • Design Strengths of adhesive anchor systems are influenced by the cleaning method.Refer to the INSTRUCTIONS FOR USE given in the Evaluation Service Report for cleaning and installation instructions • The present version of the software does not account for adhesive anchor special design provisions corresponding to overhead applications. Refer to the ICC-ES Evaluation Service Report(e.g.section 4.1.1 of the ICC-ESR 2322)for details. • Checking the transfer of loads into the base material and the shear resistance are required in accordance with ACI 318 or the relevant standard! • An anchor design approach for structures assigned to Seismic Design Category C,D,E or F is given in ACI 318-08 Appendix D,Part D.3.3.4 that requires the governing design strength of an anchor or group of anchors be limited by ductile steel failure.If this is NOT the case,Part D.3.3.5 requires that the attachment that the anchor is connecting to the structure shall be designed so that the attachment will undergo ductile yielding at a load level corresponding to anchor forces no greater than the controlling design strength.In lieu of D.3.3.4 and D.3.3.5, the minimum design strength of the anchors shall be multiplied by a reduction factor per D.3.3.6. An alternative anchor design approach to ACI 318-08,Part D.3.3 is given in IBC 2009,Section 1908.1.9.This approach contains "Exceptions"that may be applied in lieu of D.3.3 for applications involving"non-structural components"as defined in ASCE 7,Section 13.4.2. An alternative anchor design approach to ACI 318-08,Part D.3.3 is given in IBC 2009,Section 1908.1.9.This approach contains "Exceptions"that may be applied in lieu of D.3.3 for applications involving"wall out-of-plane forces"as defined in ASCE 7,Equation 12.11-1 or Equation 12.14-10. • It is the responsibility of the user when inputting values for brittle reduction factors(W„„nd„ctila)different than those noted in ACI 318-08,Part D.3.3.6 to determine if they are consistent with the design provisions of ACI 318.08,ASCE 7 and the governing building code. Selection of q,„o„d„„ule=1.0 as a means of satisfying ACI 318-08,Part D.3.3.5 assumes the user has designed the attachment that the anchor is connecting to undergo ductile yielding at a force level<=the design strengths calculated per ACI 318-08,Part D.3.3.3. Fastening meets the design criteria! Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor(c)2003.2009 Hilti AG,FL-9494 Schaan Hilti is a registered Trademark of Hilti AG,Schaan J/ System accessories Base Base/plinth TS Diane Cabinet Sheet steel Catalogue 33,page 542 IN(.. Dim: 1000W x 2200H x 600D mm 82.5 h 41 Weight .... z 55/ ft- 11 82.5 ❑14 18 a 14 14/1 725 SI Base/plinth,100 mm high ib ^ H r Description of the hole patterns r" 4 I .'1.L'_ 1° "I� 8 • { Jo B1/11= External dimensions �i/� ' u.1o/ � i--�T- - _.__._.._." -_=_--- - _"� 62/T2= For screw-fastening In '� "" the thread of the enclo- sure sure corner piece from :1,- below p P. i ,_ o m Base/plinth,200 mm high 83/T3= For screw-fastening ,i --- with captive nuts to the B5 . enclosure base from below or above _,o ff All holes(82-84/T2-T3)may ---rli: lgrr l be used for screw-fastening to }> „ the base. Base/plinth components front/rear Base/pllnth trim panels,side Width B7 82 B3 B4 85 Depth Ti T2 13 T4 T5 300 300 235 175 115 270 300 269 235 175 144 268 400 400 335 275 215 370 400 369 335 275 244 368 500 500 435 375 315 470 500 469 435 375 344 468 600 600 535 475 415 570 600 569 535 475 444 568 800 BOO 735 675 615 770 800 769 735 675 644 768 850 650 785 725 665 820 900 869 835 775 744 868 1000 1000 935 875 815 970 1000 969 935 875 844 968 1100 1100 1035 975 915 1070 1200 1169 1135 1075 1044 1168 1200 1200 1135 1075 1015 1170 1600 1600 1535 1475 1415 1570 Cable chamber for TS Catalogue 33,page 545 88 10 .15 gl ---i U 6n — 2s o6 I i Ion b6 E or bd yid DL D0 _.-._ :..._._ - �__...__ _.a ..p.O.O.0.0—O.O.O....�p.0... - ■ UU p0 1 P F 00 os 2 . —B/ 28.5 C.1 B5 n 0 .d --_— ---1 ' 20°U ea u u 20 0 C 0 n o 018 914 ri o Enclosure width mm 400 600 800 1000 1200 II r o 81 398 598 798 998 1198 ° ° B2 392 592 792 992 1192 ,s -- . „ 53 275 475 675 875 1075 pi _<^ 83._._ ._ B4 335 535 735 935 1135 02 85 312 512 712 912 1112 B6 335 535 735 935 1135 Enclosure depth mm 500 600 800;' - - TI 503 603 803 - - T2 457 557 _ 757 - - T3 435 535 735 - - T4 375 475 675 - - T5 344 444 644 - - Rittal Catalogue 33/System accessories/11.2012 281 1 69/ • ~^ r A.KOIV 1/16/2014 Construction Engineering Services.LLC SEISMIC DESIGN FORCE Input: SDS= 0.697 From Spec Sec 01612 ap= 1.0 Selected from ASCE 7-05 Tables 13 5-1 or 13.6-1 Rp= 2.5 Selected from ASCE 7-05 Tables 13.5-1 or 13.6-1 Ip= 1.5 From Spec Sec 01612 *If RM>OTM-->No Tension on Anchors Dist to CG Moments(ft-Ib) 1.3*Tension 1.3•Shear 1Component Wp(Ib) z/h Fp(Ib) Fp Max(Ib) Fp Min(Ib)I Vert(ft) Horiz(ft) OTM RM _ (Ib) _#Anchors (Ib) Engine 29090 0.00 4866 48662 9124 Use Min Value 4.38 1.21 39994 26735 2976 18 659 General Notes: Fp was determined from Section 13.3 from ASCE 7-05 Anchor points on equipment were assumed to be existing based upon contractor provided drawings or shall be provided by equipment manufacturer. CG's were assumed to be at the center of component if not provided on drawings. Anchor design values were increased by a factor of 1.3 per ASCE 7-05 Section 13.4.2a. All components assumed to be floor mounted unless noted otherwise. All anchors specified are minimum size required,large size anchors are acceptable with approval from VAK. Anchors shall be installed per manufacturers specificatons Strength Design OTM=Fp*CG Vert Strength RM=[0.9-0.2*Sds]`Wp'CG Horiz -�. V:12014\14008 WESTERN POWER SYSTEMS DURHAM PROJECTWHASE A SEISMIC ANCHORAGE DESIGNICALCS401SEISMICFORCE.xls I�III�TI www.hilti.us Profis Anchor 2.4.5 Company: Page: 1 Specifier: Project. Address: Sub-Project I Pos.No: Phone I Fax: Date: 1/16/2014 E-Mail: Specifier's comments: 1 Input data w w '- Anchor type and diameter: HIT-HY 200+HAS-R 316.1 Effective embedment depth: hexed=9 000 in.(hat,i t=-in.) Material: ASTM F 593 Evaluation Service Report: ESR-3187 Issued I Valid: 4/1/2013 1 3/1/2014 Proof. design method ACI 318/AC308 Stand-off installation: -(Recommended plate thickness:not calculated) Profile: no profile Base material: cracked concrete,4000,f0=4000 psi;h=12.500 in.,Temp.short/long:32/32°F Installation: hammer drilled hole,installation condition:dry Reinforcement: tension:condition B,shear.condition B;no supplemental splitting reinforcement present edge reinforcement:none or<No.4 bar Seismic loads(cat.C,D,E,or F) yes(D.3.3.6) Geometry[in.]&Loading[lb,'nib] Z l'jW‘j 0 1,4.5" 9" o Y - - °JO • %.94 • • a' a X Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor(c)2003.2009 Hilti AG,FL-9494 Schaan Hilti is a registered Trademark of Hilti AG,Schaan www.hllti-us Profis Anchor 2.4.5 Company: Page: 2 - Specifier: Project: Address: Sub-Project I Pos.No.: Phone I Fax: I Date: 1/16/2014 E-Mail: 2 Load case/Resulting anchor forces Load case:Design loads Anchor reactions[lb] Tension force:(+Tension,-Compression) Anchor Tension force Shear force Shear force x Shear force y 1 2976 659 659 0 max.concrete compressive strain: -[%01 max.concrete compressive stress: -[psi] resulting tension force in(x/y)=(0.000/0.000): 0[lb] resulting compression force in(x/y)=(0.000/0.000):0[Ib] 3 Tension load Load N.[lb] Capacity.Nn[lb] Utilization il,=N../+N. Status Steel Strength' 2976 13386 23 OK Bond Strength** 2976 3674 82 OK Concrete Breakout Strength' 2976 3253 92 OK anchor having the highest loading '"anchor group(anchors in tension) 3.1 Steel Strength N..[lb] Q rpnonducae 4,N,,[lb] Ni,,[lb] 51485 0.650 0.400 13386 2976 3.2 Bond Strength AN.[in.2] AN.0[in.2] Scr,N.[in.] coo,[in.] c[in.] can[in.] 407.71 518.51 22.771 11.385 9.000 20.935 ka,cr TiLuncr,2500[psi] Kdry Tk,cr[Psi] Tk,max,cr[psi] 44040 1119,N. 17 1880 1.00 904 1027 1.000 1.000 e.1.N[in.] Wsc1,Na ee2N lin.] Wec2,Na WAN, 4/.d.N. 0.000 1.000 0.000 1.000 1.000 0.937 N,0[lb] @seismic 44)444ucWe aN,sels $aNao[lb] N.[lb] 25568 0.650 0.750 0.400 1.000 3674 2976 3.3 Concrete Breakout Strength A (in.2] Awl[in.2] C,.min[in.1 can[in.] t11c,N het[in.] 400.00 484.00 9.000 20.935 1.000 7.333 ec1,N[in.] w•c1,N ec2,N(in.] y1 0.000 1.000 0.000 1 000 0.945 1 000 17 _ Nb[lb] aNertio •n.nducm. ONcpg[lb] N.[lb] 21352 0.650 0.750 0.400 3253 2976 • Input data and results must be checked for agreement with the existing conditions and for plausibietyl PROFIS Anchor(c)2003-2009 Hilti AG.FL-9494 Schaan HIS is a registered Trademark of Hat AG,Selman /9/ I1.i11..TI www.hilti.us Profis Anchor 2.4.5 Company: Page: 3 Specifier. Project: Address: Sub-Project I Pos.No.: Phone I Fax: I Date: 1/16/2014 E-Mail: 4 Shear load Load V.[lb] Capacity 4Vn[lb] Utilization pv=V1e/4Vn Status Steel Strength' 659 5190 13 OK Steel failure(with lever arm)' N/A N/A N/A N/A Pryout Strength(Concrete Breakout 659 7007 10 OK Strength controls)** Concrete edge failure in direction x+" 659 2746 24 OK *anchor having the highest loading "anchor group(relevant anchors) 4.1 Steel Strength V.[lb] 4 4nonducoie 4,Vsa[lb] -.._--V.[lb] 21623 0.600 0.400 5190 659 4.2 Pryout Strength(Concrete Breakout Strength controls) A [in.21 ANC0[in.2) cam*,(in.] kg, Cc[in.] Wc.N her[in.] 400.00 484.00 9.000 2 20.935 1.000 7.333 ed.,/[in.] yrecr,v ecz.v Dal tyec2,v Wed,N W O+ ku 0.000 1.000 0.000 1.000 0.945 1.000 17 Nb Obi eiemc 4nonducitie 4V, [lb] V.[lb] 21352 0.700 750 0.400 7007 659 4.3 Concrete edge failure in direction x+ I.(in.] do[in.] ct[in.] Ave[in.21 Avco[in.zl 8.000 1.000 9.000 281.25 364.50 Wed,v 4rparalleI,v----- __ ec.v[in.) Weo,v Wav Why 0.900 1.000 0.000 1.000 1.000 1.039 Vb[lb] 4 +seismic 4nonductie (Mpg[lb] V.[lb] 18118 0.700 0.750 0.400 2746 659 5 Combined tension and shear loads 11/14 pv C Utilization 13N,v 1%) Status 0.915 0.240 5/3 96 OK [1/Nv=A+p,<=1 Input data and results must be checked for agreement with the etdslbrg conditions and for plausibility! PROFIS Anchor(c)2003-200011N AG.FL-9494 Schoen Hid is a registered Trademark of HI AG,Schaan �^l (N/ F■'l`T' www.hilti.us _ Profis Anchor 2.4.5 Company: Page: 4 Specifier: Project: Address: Sub-Project I Pos.No: Phone I Fax: i Date: 1/16/2014 E-Mail. 6 Warnings • To avoid failure of the anchor plate the required thickness can be calculated in PROFIS Anchor.Load re-distributions on the anchors due to elastic deformations of the anchor plate are not considered.The anchor plate is assumed to be sufficiently stiff,in order not to be deformed when subjected to the loading! • Condition A applies when supplementary reinforcement is used.The ID factor is increased for non-steel Design Strengths except Pullout Strength and Pryout strength. Condition B applies when supplementary reinforcement is not used and for Pullout Strength and Pryout Strength.Refer to your local standard. • Design Strengths of adhesive anchor systems are influenced by the cleaning method. Refer to the INSTRUCTIONS FOR USE given in the Evaluation Service Report for cleaning and installation instructions • The present version of the software does not account for adhesive anchor special design provisions corresponding to overhead applications. Refer to the ICC-ES Evaluation Service Report(e.g.section 4.1.1 of the ICC-ESR 2322)for details. • Checking the transfer of loads into the base material and the shear resistance are required in accordance with ACI 318 or the relevant standard! • An anchor design approach for structures assigned to Seismic Design Category C,D,E or F is given in ACI 318-08 Appendix D,Part D.3.3.4 that requires the governing design strength of an anchor or group of anchors be limited by ductile steel failure.If this is NOT the case,Part D.3.3.5 requires that the attachment that the anchor is connecting to the structure shall be designed so that the attachment will undergo ductile yielding at a load level corresponding to anchor forces no greater than the controlling design strength.In lieu of 0.3.3.4 and D.3.3.5, the minimum design strength of the anchors shall be multiplied by a reduction factor per D.3.3.6. An alternative anchor design approach to ACI 318-08,Part D.3.3 is given in IBC 2009,Section 1908.1.9.This approach contains "Exceptions"that may be applied in lieu of D.3.3 for applications involving"non-structural components"as defined in ASCE 7,Section 13.4.2. An alternative anchor design approach to ACI 318-08,Part D.3.3 is given in IBC 2009,Section 1908.1.9.This approach contains "Exceptions"that may be applied in lieu of D.3.3 for applications involving"wall out-of-plane forces"as defined in ASCE 7,Equation 12.11-1 or Equation 12.14-10. • It is the responsibility of the user when inputting values for brittle reduction factors(4)„e„d„al0 different than those noted in ACI 318-08,Part D.3.3.6 to determine if they are consistent with the design provisions of ACI 318-08,ASCE 7 and the governing building code. Selection of q„o„du e=1.0 as a means of satisfying ACI 318-08,Part D.3.3 5 assumes the user has designed the attachment that the anchor is connecting to undergo ductile yielding at a force level<=the design strengths calculated per ACI 318-08,Part D.3.3.3. Fastening meets the design criteria! Input data and results must be checked for agreement wen the epstiing conditions and for plausibility! PROFIS Anchor(Cl 2003-2009 Hilti AG,FL-9494 Schaan Hilt is a registered Trademark of Hilti AG,Schaan 2!/ , - --- -:..--Z�- --r-T--- 1 —.� 110 w•/ -- /N wa • IIL •..,�L P._-� _ . n� I di- lE i I i l.. ,j s -.IM.II■u+ nail,-I�IIIIt +�-+a.1 ► �..ilk;'�'�} ' I �, il. , ,! '. ■ j,�, ••T . ��"� %jam II N I 11 r p_- •� r I I j r l " , .11 APIUMMIIIIRIM '-=ii=i=i lIznikr=• • L.fj' ---, 11 ' i_ ,- - t---r t IN •_J1N 111 ® ,11Nal j 14 •4411 N/ 1 it s MVO 4 • l ata 'wa a.4 _ —— _ _ —,.-i.f. ,aima_ "' rm: j.11 t iin rill— — I rte, - ; 7}---: 4= '_� a 1 �,} -z w aVLI -.. y ,IL i -10-11 ENGINE WEIGHT - FILLED I� • + - �- �a ! 29,090 LBS 1� • ..1' ”- , — — — .tt°;��,,_ I ttl . u+�= i..••A®. ` t,,, i cse,os amie Fill . ® \� , \ `VOL FOR 4 POWER :'CaL;<tic7 tTCU Y If6 p,1 i - L. -.... .°..'�,, - a.aaea \.mt.aa aow.a C O*iE 1'IONS ':444 $16 6'S-E f 1!e L .N .>> 55221 1, _mw4N,.1.4.3410 a,00.wM.r.aw.s l.t. MM...V..i 141210.4 MAIN M MARC 1M-1'PANEL II I F . FOR ALL OTHER ' .-2-=..._-__=:7-'.7.1._,:: IDIANZLOE IICiIRWI . � - i ACOmawi.truolee -: A ir„ s >...N...... .n . , 642,04424410100144 1RTM/lmt/,N L .• tM10M.,N pf.=Y Mil.:.1: i .g.D.. G �4 { .{•j ee.aro,a•d� �,/' . . . . a . . 4 _ 4 �—_-___._—a_ 4 1_ :y 12.10= ��I t-*66'. —"�— N ter: XY7.WWrTSii.r.. i i,"PequaT 37, • IF r r ^` r .' .s -�.yJc "-N�"� I / `-k/ I ,°` i ot:I. n -i �.. � 1 i 1 !I fl i C:.; '-' --‘1t...::-L.' ____ -' ' 7::.- --* 1 Q 1 2Z 1911 OL4 OL9 I -- OLS -_I OLS _Qa- OLf I LL9 I L9C` ear le ......-_ •=. • I 6 RS 4 ÷ ry / i 1 A Y ' s , _ t 1 41. , , :._:____,, f • . . 1 / r. A.KOIV a ` 1/16/2014 Construction Engineering Services,LLC SEISMIC DESIGN FORCE Input: SDS= 0.697 From Spec Sec 01612 ap= 1.0 Selected from ASCE 7-05 Tables 13.5-1 or 13.6-1 Rp= 2.5 Selected from ASCE 7-05 Tables 13.5-1 or 13.6-1 Ip= 1.5 From Spec Sec 01612 `If RM>OTM—>No Tension on Anchors Dist to CG Moments(ft-lb) 1.3•Tension 1.3`Shear Component Wp(Ib) z/h Fp(Ib) Fp Max(Ib) Fp Min(lb) Vert(ft) Horiz(ft) OTM RM (Ib) _#Anchors (Ib) HIT Expansion Tank 647 0.00 108 1082 203 Use Min Value 3.33 0.56 676 277 449 4 66 VT Expansion Tank 305 0.00 51 510 96 Use Min Value 2 50 0.46 239 106 197 4 31 General Notes Fp was determined from Section 13.3 from ASCE 7-05 Anchor points on equipment were assumed to be existing based upon contractor provided drawings or shall be provided by equipment manufacturer. CG's were assumed to be at the center of component if not provided on drawings. Anchor design values were increased by a factor of 1.3 per ASCE 7-05 Section 13.4.2a. All components assumed to be floor mounted unless noted otherwise. All anchors specified are minimum size required,large size anchors are acceptable with approval from VAK. Anchors shall be installed per manufacturers specifications Strength Design OTM=Fp`CG Vert Strength RM=[O.9-0.2`Sds]`Wp`CG Horiz V:12014114008 WESTERN POWER SYSTEMS DURHAM PROJECTIPHASE A SEISMIC ANCHORAGE DESIGNICALC SIR0ISEISMICFORCE.xis /7 -TAN t� 11■II1 ..Tl www.hiltLus Profis Anchor 2.4.5 Company: — Page: 1 Specifier. Project: Address: Sub-Project I Pos.No.: Phone I Fax: I Date: 1/16/2014 E-Mail: Specifier's comments: 1 Input data 1 .••YiiL1�l:.•w ...h Anchor type and diameter: 47y i A q «it:11 u � * ,.,�,..�,,.:,,:� Effective embedment depth: heed=5.000 in.(h,«.w,,,;t=-in.) 01. 7� z Material: ASTM F 593 Evaluation Service Report: ESR-3187 Issued I Valid: 4/1/201313/1/2014 Proof design method ACI 318/AC308 Stand-off installation: -(Recommended plate thickness:not calculated) Profile: no profile Base material: cracked concrete,4000, =4000 psi;h=8.500 in.,Temp.short/long:32/32°F Installation: hammer drilled hole,installation condition:dry Reinforcement: tension:condition B,shear:condition B;no supplemental splitting reinforcement present edge reinforcement none or<No.4 bar Seismic loads(cat.C,D,E,or F) yes(D.3.3.6) Geometry[in.]&Loading[lb,in.ib] Z 0 t. 5 y Lj M • � s } Y,fn " x Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor(c)2003-2009 Hdti AG,FL-9494 Schwan Hiti is a registered Trademark or HIS AG,Schwan 2S/ F■11`TI www.hIlti.us Profis Anchor 2.4.5 Company: Page: 2 - Specifier: Project: Address: Sub-Project I Pos.No: Phone I Fax: I Date: 1/16/2014 E-Mail: 2 Load case/Resulting anchor forces Load case:Design loads Anchor reactions[Ib] Tension force:(+Tension,-Compression) Anchor Tension force Shear force Shear force x Shear force y 1 449 66 -66 0 max.concrete compressive strain: -(%e] max.concrete compressive stress: -(psi) resulting tension force in(x/y)=(0.000/0.000): 0[Ib) resulting compression force in(x/y)=(0.000/0.000):0[Ib) 3 Tension load Load N.[Ib] Capacity 4f■Ia(Ib] Utilization c =N„al+Na Status Steel Strength' 443 5876 OK Bond Strength** 449 642 70 OK Concrete Breakout Strength” 449 1117 41 OK 'anchor having the highest loading "anchor group(anchors in tension) 3.1 Steel Strength N,a[Ib] 4) 4>nonducele 4N,a[Ib) N„a(Ib] 22600 0.650 0.400 5876 449 3.2 Bond Strength Am,(in.21 Ar,a0(in.21 sc,.N„[in.] Ccr,N*(in.) c(in.) cac[in.] 90.25 202.54 14.232 7.116 4.500 11.202 kc,a Tb,una,2soo[psll Kdry Um[Psi) Tk,nes,a(psi) Wg,Nao Wb,Na 17 1880 1.00 1057 1224 1.000 1.000 ec1,N[in.] Wec1,Na ec2,N(in.] We2Na '14ye�N�* yrW,Na 0.000 1.000 0.000 1.000 1.000 0.890 Na[Ib) ¢ mselamic $nonductile aN aala 4,aNag[Ib) NI..[Ib] 8304 0.550 0.750 0.400 0.4800 642 449 3.3 Concrete Breakout Strength AN,(in.2) ANm[in.21 ca.rnin(in.] cac(in.1 c,N he[in.) 90.25 100.00 4.500 11.202 1.00 3.333 ec1,N(in.1 _ Wacl,N ec2,N(in.] tec2,N 1yad,N 111cp,N kcr 0.000 1.000 0.000 1.000 0.970 1.000 17 Nb[Ib] ¢ f seisnic 4/nonductne �Ncbg[Ib] N,,,[Ib] 6543 0.650 0.750 0.400 1117 449 Input data and results must be chocked for agreement with the existing conditions and for plausibility! PROFIS Anchor(c)2003-2009 Hilll AG.FL-9494 Schaan HIS is a registered Trademark of Heti AG.Schaan l•/ • IMIIITI www.hilti.us Profis Anchor 2.4.5 Company: Page: 3 Specifier: Project: Address: Sub-Project I Pos.No.: Phone I Fax: ] Date: 1/16/2014 E-Mail: 4 Shear load Load V.[lb] Capacity+V„[lb] Utilization pv=VuJOV„ Status Steel Strength' 66 2278 3 OK Steel failure(with lever arm)' N/A N/A N/A N/A Pryout Strength(Bond Strength 66 1383 5 OK controls)" Concrete edge failure in direction x-" 66 674 10 OK 'anchor having the highest loading "anchor group(relevant anchors) 4.1 Steel Strength Vs.[lb) O Onondudil. OVsa[lb] Vua[lb] 9492 0.600 0.400 2278 66 4.2 Pryout Strength(Bond Strength controls) AN.[in.2) ANao[in.2] Scr a[in.] ca,NS[in.] c[in.) cao[in.) 90.25 202.54 14.232 7.116 4.500 11.202 kc,u Tk,uncr,2500(psi) Kdry Tka[psi] Tk,mmt,u[psi] 4i9■Na0 tli9,Na 17 1880 1.00 1057 1224 1.000 1.000 eon[in.] yi.cl,Na eC2.N[in.] t}i.c2,N■ WW2 yed.N. 0.000 1.000 0.000 1.000 1.000 0.890 No[lb] O 4)aeisnic Ononducsi, aN,seis •aV 9[lb] Nu,[lb] 8304 0.700 0.750 0.400 0.800 1383 66 4.3 Concrete edge failure in direction x- i,[in.] do[in.] ct[in.] Avc(in.2] Avuo(in.2) 5.000 0.625 4.500 64.13 91.13 i.dV etiparallel,V e,v[in.] 4i.C,V lhgv WV 0.960 1.000 0.000 1.000 1.000 1.000 5064 0.100 0�5 0 40.400 OV6741b] V66b] 5 Combined tension and shear loads ON _ pv Utilization pN,V(%] Status 0.699 0.098 5/3 58 OK j3wv=pi4+[3C<=1 Input dale and results must be checked for agreement with the existing conditions and for plausibility) PROFIS Anchor(c)2003-2009 Hi9 AG,Ft.-9.494 Schoen Hilo is a registered Trademark of Hibi AG,Schaan • 27 1.11111 1.71111111 www.hilti.us Profis Anchor 2.4.5 Company: Page: 4 Specifier: Project: Address: Sub-Project I Pos.No.: Phone I Fax: Date: 1/16/2014 E-Mail: 6 Warnings • To avoid failure of the anchor plate the required thickness can be calculated in PROFIS Anchor.Load re-distributions on the anchors due to elastic deformations of the anchor plate are not considered.The anchor plate is assumed to be sufficiently stiff,in order not to be deformed when subjected to the loading! • Condition A applies when supplementary reinforcement is used.Them factor is increased for non-steel Design Strengths except Pullout Strength and Pryout strength. Condition B applies when supplementary reinforcement is not used and for Pullout Strength and Pryout Strength.Refer to your local standard. • Design Strengths of adhesive anchor systems are influenced by the cleaning method.Refer to the INSTRUCTIONS FOR USE given in the Evaluation Service Report for cleaning and installation instructions • The present version of the software does not account for adhesive anchor special design provisions corresponding to overhead applications. Refer to the ICC-ES Evaluation Service Report(e.g.section 4.1.1 of the ICC-ESR 2322)for details. • Checking the transfer of loads into the base material and the shear resistance are required in accordance with ACI 318 or the relevant standard! • An anchor design approach for structures assigned to Seismic Design Category C,D,E or F is given in ACI 318-08 Appendix D,Part D.3.3.4 that requires the governing design strength of an anchor or group of anchors be limited by ductile steel failure.If this is NOT the case,Part D.3.3.5 requires that the attachment that the anchor is connecting to the structure shall be designed so that the attachment will undergo ductile yielding at a load level corresponding to anchor forces no greater than the controlling design strength.In lieu of D.3.3.4 and D.3.3.5, the minimum design strength of the anchors shall be multiplied by a reduction factor per D.3.3.6. An alternative anchor design approach to ACI 318-08,Part D.3.3 is given in IBC 2009,Section 1908.1.9.This approach contains "Exceptions"that may be applied in lieu of D.3.3 for applications involving"non-structural components"as defined in ASCE 7,Section 13.4.2. An alternative anchor design approach to ACI 318-08,Part D.3.3 is given in IBC 2009,Section 1908.1.9.This approach contains "Exceptions"that may be applied in lieu of D.3.3 for applications involving"wall out-of-plane forces"as defined in ASCE 7,Equation 12.11-1 or Equation 12.14-10. • It is the responsibility of the user when inputting values for brittle reduction factors(mnond„ctie)different than those noted in ACI 318-08,Part D.3.3.6 to determine if they are consistent with the design provisions of ACI 318-08,ASCE 7 and the governing building code. Selection of Nonducslo=1.0 as a means of satisfying ACI 318-08,Part D.3.3.5 assumes the user has designed the attachment that the anchor is connecting to undergo ductile yielding at a force level<=the design strengths calculated per ACI 318-08,Part D.3.3.3. Fastening meets the design criteria! Input data and results must be checked for agreement with the existing conditions and for plausibility' PROFIS Anchor(c)2003-2009 Huh AG,FL-9494 Schaan Hilt'is a registered Trademark of HiIti AG,Schaan Cr --- I•■III6TI www.hilti.us Profis Anchor 2.4.5 Company: Page: 1 Specifier: Project: Address: Sub-Project I Pos.No.: Phone I Fax: I Date: 1/16/2014 E-Mail: Specifier's comments: 1 Input data ry _ F Anchor type and diameter: 1.NR M Effective embedment depth: h 5.000 in. h V.00 Material: ASTM F 593 Evaluation Service Report: ESR-3187 Issued I Valid: 4/1/2013 1 3/1/2014 Proof: design method ACI 318/AC308 Stand-off installation: -(Recommended plate thickness:not calculated) Profile: no profile Base material: cracked concrete,4000,fc'=4000 psi;h=8.500 in.,Temp.short/long:32/32°F Installation: hammer drilled hole,installation condition:dry Reinforcement: tension:condition B,shear:condition B;no supplemental splitting reinforcement present edge reinforcement:none or<No.4 bar Seismic loads(cat.C,D,E,or F) yes(D.3.3.6) Geometry[in.]&Loading[lb,in.lb] Z 0 4,5 ar --_,\— 0 _ -- 0 31c�n X Input data and results must be checked for agreement with the existing conditions and for plausibility! PROM Anchor(c)2003.2009 Heti AG,FL-9494 Schwan MO is a registered Trademark of Hid AG,Schaan Z9/ 1■■11`TI www.hilti.us Profis Anchor 2.4.5 Company: Page: 2 a Specifier: Project: Address: Sub-Project I Pos.No.: Phone I Fax: I Date: 1/16/2014 E-Mail: 2 Load case/Resulting anchor forces Load case:Design loads Anchor reactions[lb] Tension force:(+Tension,-Compression) Anchor Tension force Shear force Shear force x Shear force y 1 197 31 -31 0 max.concrete compressive strain: -NI max.concrete compressive stress: -[Psi] resulting tension force in(x/y)=(0.000/0.000): 0[Ib] resulting compression force in(x/y)=(0.000/0.000):0(Ibj 3 Tension load Load N1.[lb] Capacity On Pb] Utilization[3N=N,,,/fN„ Status Steel Strength* 167 5876 4 OK Bond Strength** 197 502 40 OK Concrete Breakout Strength" 197 939 21 OK anchor having the highest loading "anchor group(anchors in tension) 3.1 Steel Strength Nee[Ib] 4) $nenductia +Nsa[lb] Nue[Ib] 22600 0.650 0.400 5876 197 3.2 Bond Strength AN,[in.2] ANe0[in 21 scr.N,[in.] ca,Na[in.] c[in.] c10[in.] 72.25 202.54 14.232 7.116 4.000 11.202 L "c,a Tk,una-2500[Psi] Katy TKa[PSI) Tk,trox,a[Psi] Wo.NaD WgNa 17 1880 1.00 1057 1224 1.000 1.000 ee1N[in.] weel,Ne ec2,N[in.] Wecz.Na w Na W ■ 0.000 1.000 a 000 1.000 1.000 0.869 Nep[Ib] $ Oceanic $nowudse aN,sele 111 aNeg[Ib] Nu,[Ib] 8304 0.650 0.750 0.400 0.800 502 197 3.3 Concrete Breakout Strength Auk[in2] ANeo[in.2) ce,rnin[in] cae[in.] Wc.N hef[in.] 72.25 81.00 4.000 11.202 1.000 3.000 ect N lin.1 Wec1,N ec2,N[in.] yec2,N wed,N Wep,N ka 0.000 1.000 07000 1.000 0.967 1.000 17 Nb[Ib] Oseanic Ononducea $Necq Obi Nue[Ib) 5587 0.650 0.750 0.400 939 197 Input data and results must be checked for agreement with the existing conditions and for plausibility! PROPS Anchor(c)2003-2009 Nifli AG,FL-9494 Schaan Hit is a registered Trademark of HIS AG,Schoen 3o/30 FII`TI www.hilti.us Profis Anchor 2.4.5 Company: Page: 3 _ Specifier: Project: Address: Sub-Project I Pos.No.: Phone I Fax: I Date: 1/16/2014 E-Mail: 4 Shear load Load V„a[Ib] Capacity$V°[Ib] Utilization,=V,./tVa Status Steel Strength' 31 2278 2 OK Steel failure(with lever arm)* N/A N/A N/A N/A Pryout Strength(Bond Strength 31 1081 3 OK controls)" Concrete edge failure in direction x-" 31 588 6 OK anchor having the highest loading **anchor group(relevant anchors) 4.1 Steel Strength V5e[Ib] 41 4nondud.e 4)Vsa(lb) Vw[Ib] 9492 0.600 0.400 2278 31 4.2 Pryout Strength(Bond Strength controls) AN.[in.2] ANaO Iin.2] scr,Na[in.] ca Ne[in.] c[in.) ca,[in.] 72.25 202.54 14.232 7.116 4.000 11.202 ^c,a Tk,uncr,2500[PSI] Kdry tk,cr[Psi] tk,maa,er[Psi] ly,NeO 1119.41 17 1880 1.0 1057 1224 1.000 1.000 ed,N[in.] Wect,Ne ec2,N[in.) Wec2,Na WP,Ne tlred,Na 0.000 1.000 0.000 1.000 1.000 0.8v669 ] 8304 0.700 0.7 0 �0 400» 0.800 a11081[Ib) Nu,11b] 4.3 Concrete edge failure in direction x- Ie[in.] do[in.] c,[in.] Avc[in•2) Avco Iin 2] 5.000 0.625 4.500 57.38 91.13 Wed,v _WPe*Nlety ec,v[in.] Wec,V Wc,V Wh.V •.878 1.000 0.000 1.000 1.000 1.000 V5[lb] 0 4)551151c Onondudite 4)V [Ib] V,,.[Ib] 5064 0.700 0.750 0.400 588 31 5 Combined tension and shear loads pN v C Utilization 1 N,v[%] Status 0.393 0.053 5/3 22 OK pNV=pit+pv<=1 Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor(e)2003-2009 Hill AG,FL-9484 Schaan Hat is a registered Trademark of Hitt AG,Schaan 31/ 3{ I■■III6TI www.hilti.us Profis Anchor 2.4.5 Company: Page: 4 Specifier: Project: Address: Sub-Project I Pos.No.. Phone I Fax: Date 1/16/2014 E-Mail: 6 Warnings • To avoid failure of the anchor plate the required thickness can be calculated in PROFIS Anchor.Load re-distributions on the anchors due to elastic deformations of the anchor plate are not considered.The anchor plate is assumed to be sufficiently stiff,in order not to be deformed when subjected to the loading! • Condition A applies when supplementary reinforcement is used.The 0 factor is increased for non-steel Design Strengths except Pullout Strength and Pryout strength. Condition B applies when supplementary reinforcement is not used and for Pullout Strength and Pryout Strength.Refer to your local standard. • Design Strengths of adhesive anchor systems are influenced by the cleaning method.Refer to the INSTRUCTIONS FOR USE given in the Evaluation Service Report for cleaning and installation instructions • The present version of the software does not account for adhesive anchor special design provisions corresponding to overhead applications. Refer to the ICC-ES Evaluation Service Report(e.g.section 4.1.1 of the ICC-ESR 2322)for details. • Checking the transfer of loads into the base material and the shear resistance are required in accordance with ACI 318 or the relevant standard! • An anchor design approach for structures assigned to Seismic Design Category C,0,E or F is given in ACI 318-08 Appendix D,Part 0.3.3.4 that requires the governing design strength of an anchor or group of anchors be limited by ductile steel failure.If this is NOT the case,Part D.3.3.5 requires that the attachment that the anchor is connecting to the structure shall be designed so that the attachment will undergo ductile yielding at a load level corresponding to anchor forces no greater than the controlling design strength.In lieu of D.3.3.4 and D.3.3.5, the minimum design strength of the anchors shall be multiplied by a reduction factor per D.3.3.6. An alternative anchor design approach to ACI 318.08,Part D.3.3 is given in IBC 2009,Section 1908.1.9,This approach contains 'Exceptions"that may be applied in lieu of 0.3.3 for applications involving"non-structural components"as defined in ASCE 7,Section 13.4.2. An alternative anchor design approach to ACI 318-08,Part D.3.3 is given in IBC 2009,Section 1908.1.9.This approach contains "Exceptions"that may be applied in lieu of D.3.3 for applications involving"wall out-of-plane forces"as defined in ASCE 7,Equation 12.11-1 or Equation 12.14-10. • It is the responsibility of the user when inputting values for brittle reduction factors(cnnnductlla)different than those noted in ACI 318-08,Part D.3.3.6 to determine if they are consistent with the design provisions of ACI 318-08,ASCE 7 and the governing building code. Selection of 4nondudire=1.0 as a means of satisfying ACI 318-08,Part D.3.3.5 assumes the user has designed the attachment that the anchor is connecting to undergo ductile yielding at a force level<=the design strengths calculated per ACI 318-08,Part D.3.3 3. Fastening meets the design criteria! Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor(c)20032009 Hilti AG,FL-9494 Sdtaan Hilti is a registered Trademark of Hilti AG,Schaaf) 3z f NOTES: BILL OF MATERIAL 1. DESIGN PRESSURE, 150 PSIG DESIGN TEMP.] 32' TO 240'F PART QTY SIZE DESCRIPTION LENGTH JW PART# EXTER FINISH PRIME (SPEC OA-01-005) INTER FINISH PLAIN 1 1 PLUG, NPT, BMI CDO NOT REMOVE) 485722004 �z' 2. VESSEL TO BE FABRICATED & STAMPED PER ASME 2 1 STD LABEL, INSTALL., PRESSURE SENSITIVE SECT VIII, DIV 1, LATEST ED/ADDENDA (SHOWN BELOW). 3 1 73,4•x6;.6, HANDHOLE CVR PLT ASS'? (W/GSKT & FLAT BAR SUPP.) 672403610 3, CLEAN AND DRY TANK INSIDES PRIOR TO INSERTING BAG. TANK TO BE CHARGED TO 12 PSIG PRIOR TO SHIPMENT. 4 1 136' HOSE 662403620 4. MAXIMUM PRECHARGE IS 80 PSIG. 5 1 Y SCHRADER CHARGING VALVE, 300# NPT, BRASS 488502001 5. USE THRD PROTECTORS FOR SHIPPING. 6 1 16' BAG 660603732 6. VESSEL DESIGNED IN ACCORDANCE WITH IBC 2006 FOR THE SEISMIC ZONE CATEGORY F & WIND ANALYSIS AT 120 MPH W/ 7 1 2' HOSE CLAMP 662409002 THE LOAD PATH TAKEN DOWN TO THERAS FLOOR. 8 1 16' TANK FABRICATION DETAILS, REF ASME CARBON STL 630716022 7. EST WT 153 LBS EMPTY r,/ t,.7, E wr n 1-- CAPACITY 60 GAL NOM. ' REF, 2' SQ x %' THK x 2' LG ANGLE CLIPS, 0° 1 : • , YP 4 PLCS — 3 CLR REF, 5�6 LIFT LUG lir N,SEAM ! ' I Z 45' TYP I © c ,`]],1 III! 1 1 _ 270° 6 `J- �' '— -- REF REF, 4111E,MII7�� x �! OD �'/ I 116' MNPT `. /"120° l‘\_ L SYST CONN. © 180° © REF, CALIF REF, 1' CALIF SIGHT PORT Q O SIGHT PORT 4 O FULL CGY •=� i (111u CYX=0.04 al*K da;, :e AND CGZ=0.02 2 90' 3 ALL UNITS HER N ARE ITHE EXCLUSIVE PRNOPERTY OF THE AJOHN VOOD CQ ARE INCHES. THESE DOCUMENT/S SHALL NOT BE COPIED OR REPRODUCED IN PART SCALES OR IN FILL AS A BASIS OF DESIGN.MANUFACTURE.OR SALE]AND THE JOHN WOOD COMPANY 1_10 SHALL NOT BE USED IN ANY VAY DETRIMENTAL TO THE INTEREST OF THIS COMPANY. THEY ARE SUBJECT TO RETURN UPON REQUEST. 3D VIEW APPROVAL RELEASE 16' DIA ASME EXPANSION BAG TANK GEN ARRGMT, APPROVED REVISION DATE BY 60 GAL, W/CALIF SIGHT GLASS & 15i' MNPT TOP CONN. SIZE BY: DR. G.S. 1/13/09 THE JOHN WOOD COMPANY ' B J W C CONFIDENTIAL DATE: VALLEY FORGE, PA. RFMR-23-907 APP. !/11 , NOTES: BILL OF MATERIAL 1. DESIGN PRESSURE, 150 PSIG DESIGN TEMP.. 32' TO 240'F PART OTY SIZE DESCRIPTION LENGTH JW PART# EXTER FINISH PRIME <SPEC OA-01-005) INTER FINISH: PLAIN 1 1 W PLUG, NPT, BMI 485722004 2. VESSEL TO BE FABRICATED & STAMPED PER ASME 2 1 5'x6%' HANDHOLE CVR PLT ASS'Y <W/ GSKT 8. FLAT BAR) 672403609 SECT. VIII, DIV. 1, LATEST ADDENDA. 3 1 STD LABEL, INSTALL., PRESSURE SENSITIVE 3. CLEAN AND DRY TANK INSIDES PRIOR TO INSERTING BAG TANK TO BE CHARGED TO 12 PSIG PRIOR TO SHIPMENT. 4 1 IV HOSE 662403615 4. USE PAD AND/OR THD PROTECTORS FOR SHIPPING. 5 1 1/4' SCHRADER CHARGING VALVE, 300# NPT, BRASS 488502001 5. MAXIMUM PRECHARGE IS 80 PSIG. - 6. VESSEL DESIGNED IN ACCORDANCE WITH UBC 1997 FOR 6 1 12' BAG 660603728 SEISMIC ZONE IV & WIND ANALYSIS AT 120 MPH. 7 1 2' HOSE CLAMP 662409001 7. EST WT. 100 LBS EMPTY RIo f aF%p s r�sTsl 7.- 8 1 12' TANK FABRICATION DETAILS, REF ASME CARBON STL 630712034 REF, 2' 50 x %' THK x 2' LG ANGLEXCLI: 6 13( 0 „, 075' THK SKIRT RING 45' O ,.� � � O REF KTYP REF, LIFT LUG 3/8 REF REF, / r °� REF, 1' MNPT 0 �] I SEAM �' /V SYSTEM CONN r 1 �J—�- �T_I/1.��``\\ i- I, -----------0--, __ A.:,*SrL*,,,.N_: 12 \IntaNI a.. 3 0' Illau • MI , OD ��g.A�7r/ i I7 REF • A �_� / REF, PT-5 I 0 © REF, 1' CALIF O `I I 4 S F. 1'PORT O SIGHT PORT REF re,-,. mak v \ ® V; r #9 4) JICI THESE DRAWINGS,SPECIFICATIONS,AND THE IDEAS CONTAINED ALL UNITS HEREIN ARE THE EXCLUSIVE PROPERTY OF THE JOHN WOOD CO. ARE INCHES. THESE DOCUMENT/S SHALL NOT BE COPIED OR REPRODUCED IN PART j SCALE: OR IN FULL AS A BASIS IF DESIGN.MANUFACTIFE,OR SALEA AND �T7 THE JOHN WOOD COMPANY SHALL NOT BE USED IN ANY WAY DETRIMENTAL TO THE INTEREST 1°8 OF THIS COMPANY. THEY ARE SUBJECT TO RETURN UPON REQUEST. 3D VIEW APPROVAL RELEASE 12' DIA ASME EXPANSION BAG TANK, GEN ARRGMT, APPROVED REVISION DATE BY 24 GAL, TYPE IV, 1' MNPT TOP CONN, W/CALIF SITE GLASS SIZE BY: DR. G.S. 8-11-08 THE JOHN WOOD COMPANY k' °E APP B J W C CONFIDENTIAL DATE. VALLEY FORGE, PA. RMR-23-903 A.KOIV ®. 1/16/2014 Construction Engineering Services,LLC SEISMIC DESIGN FORCE Input: SOS= 0.697 From Spec Sec 01612 ap= 1.0 Selected from ASCE 7-05 Tables 13.5-1 or 13.6-1 Rp= 2.5 Selected from ASCE 7-05 Tables 13.5-1 or 13.6-1 1p= 1.5 From Spec Sec 01612 if RM>OTM—>No Tension on Anchors Dist to CG Moments(ft-lb) 1.3'Tension 1.3'Shear Component Wp(Ib) z/h Fp(Ib) Fp Max(Ib) Fp Min(Ib) Vert(ft) Horiz(ft) OTM RM (Ib) #Anchors (Ib) Ground Resistor 650 0.00 109 1087 204 Use Min Value 1.54 1.88 314 927 59 4 66 General Notes: Fp was determined from Section 13.3 from ASCE 7-05 Anchor points on equipment were assumed to be existing based upon contractor provided drawings or shall be provided by equipment manufacturer. CG's were assumed to be at the center of component if not provided on drawings. Anchor design values were increased by a factor of 1.3 per ASCE 7-05 Section 13.4.2a. All components assumed to be floor mounted unless noted otherwise. All anchors specified are minimum size required.large size anchors are acceptable with approval from VAK. Anchors shall be installed per manufacturers specifications Strength Design OTM=Fp'CG Vert Strength RM=(0.9-0.2'Sds]`Wp'CG Horiz U`, V:12014 11 4008 WESTERN POWER SYSTEMS DURHAM PROJECT\PHASE A SEISMIC ANCHORAGE DESIGN ICALCS\ROVSEISMICFORCE.xIs www.hlltl.us Profis Anchor 2.4.5 Company: Page: 1 - Specifier: Project: Address: Sub-Project I Pos.No.: Phone I Fax: I Date: 1/16/2014 E-Mail: Specifiers comments: . 1 Input data -t mil _ Anchor type and diameter: tgLrOV _ Effective embedment depth: h,f.aa=3.000 in.(hecon,it=-in.) Material: ASTM F 593 Evaluation Service Report: ESR-3187 Issued I Valid: 4/1/2013 1 3/1/2014 Proof design method ACI 318/AC308 Stand-off installation: -(Recommended plate thickness:not calculated) Profile: no profile Base material: cracked concrete,4000,f:=4000 psi;h=7.000 in.,Temp.short/long:32/32°F Installation: hammer drilled hole,installation condition:dry Reinforcement: tension:condition B,shear:condition B;no supplemental splitting reinforcement present edge reinforcement:none or<No.4 bar Seismic loads(cat.C,D,E,or F) yes(D.3.3.6) Geometry[in.)&Loading[lb,in.lb] Z 1S ca t 0 223 __-- _X-- A��f� 1 ° _-r�� y�- \.mss - r fi. : -. 0 0 cçj , X - Input data and results must be checked for agreement with the existing conditions and for plausibility, PROFIS Anchor(c)2003-2009 Hilli AG,FL-9494 Schaan Mild Is a registered Trademark of 11119 AG,Schaan 361 1■■111.[.T1 www.hilti.us Profis Anchor 2.4.5 Company: Page: 2 Specifier: Project: Address: Sub-Project I Pos.No.: Phone I Fax: I Date: 1/16/2014 E-Mail: 2 Load case/Resulting anchor forces Load case:Design loads Anchor reactions[lb] Tension force:(+Tension,-Compression) Anchor Tension force Shear force Shear force x Shear force y 1 59 66 -66 0 max.concrete compressive strain: -170.1 max.concrete compressive stress: -[psi] resulting tension force in(x/y)=(0.000/0.000): 0[lb] resulting compression force in(x/y)=(0.000/0.000):0[lb] 3 Tension load Load Na,[lb] Capacity,I,N,[lb] Utilization ; =N./4N„ Status Steel Strength* 59 3689 OK Bond Strength" 59 773 8 OK Concrete Breakout Strength" 59 1089 6 OK •anchor having the highest loading "anchor group(anchors in tension) 3.1 Steel Strength 114190 0.650 0.400� 3689] Nu b] 59 3.2 Bond Strength AN.[in.2] kb.[in 2] Sa,N,[in.) ccr.N.[in.] c[in.] c,,,[in.] 81.00 81.00 9.000 4.500 4.500 5.095 kc,v Tk,una,2500[Psi] Kdry Tk,a[Psi) Tk,maxcr IPSO W9•Na9 111g,Na 17 1880 1.00 1051 1186 1.000 1.000 eo1,N[in.] i ecN[in.] y,c2,Na W 0Na yed,N. 0.000 .ob0 0.000 1.000 1.000 1.000 Nag[lb] 41 rlseismic thrioncludile aN,s,ls 4)aNpq[lb] Nu,[lb) 3963 0.650 0.750 0.400 0.800 773 59 3.3 Concrete Breakout Strength AN,[in.2] ANc9[in.21 c.2ri,[in.] ca,[in.] Wc,N 81.00 81.00 4.500 5.095 1.000 1 ec1,N Ein.) Wact,N ec2,N[in.] 'l1ac2 N Wad,N c•,N k« 0.000 1.000 0.000 i.odo 1.000 1.000 17 Nb[lb] tbselarriic 4nonducae •N [lb] Nua[lb] - 5587 0. 50 0.750 0.400 1089 59 Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor(c 12003-2009 Hilti AG,FL-9494 Schism Hirai is a registered Trademark of Hilo AG,Schaan 3 7/ 1■■11L.T1 www.hilti.us Profis Anchor 2.4.5 Company: Page: 3 Specifier. Project Address: Sub-Project I Pos.No.: Phone I Fax: I Date: 1/16/2014 E-Mail: 4 Shear load Load V.[lb] Capacity IV,,[lb] Utilization Dv=V,,,4,V„ Status Steel Strength' 66 1430 5 OK Steel failure(with lever arm)' N/A N/A N/A N/A Pryout Strength(Bond Strength 66 1665 4 OK controls)** Concrete edge failure in direction x 66 674 10 OK anchor having the highest loading "anchor group(relevant anchors) 4.1 Steel Strength V.[lb] . gnonduaile IVs,[lb] Vue[lb] 5960 0.600 0.400 1430 66 4.2 Pryout Strength(Bond Strength controls) AN,[in.2] Arlo[In•2] Scr,Ne[in.] Ca Na(in.] c[in.] cec[in.] 81.00 81.00 9.000 4.500 4.500 5.095 "tip Tk,uno.,250o[psi] Kdry Tk,cr[psi] Tk,max c,[psi] WO.Nee 'lJg,Na 17 1880 1.00 1051 1186 1.000 1.000 eci,N[in.] Wec1,Na ec2,N(in.] Wec2.Na Wy•Na ilred,Ns 0.000 1.000 0.000 1.000 1.000 1.000 Na0[lb] 4 Isrric $nonduciie aN,sets 4,aVcpn[lb] Nua[lb] 3963 0.700 ts. 50 0.400 0.800 1665 66 4.3 Concrete edge failure in direction x- I,[in.] do[in.] c,[in.] Avc[in.2) Avco[in.2] 3.000 0.500 4.500 75.94 91.13 Ww,v W .t.v ecv[in.] Wec,V WO/ Wh,v 0.900 1.000 0.000 1.000 1.000 1.000 Vb[lb] Oselsrric •pnanduage 4,Vcbg[lb] V.[lb] 4276 0.700 0.750 0.400 674 66 5 Combined tension and shear loads 8N [iv S Utilization[3N,v IN Status 0.076 0.098 5/3 4 OK ow=[3N+AV<=1 Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor(c)2003-2009 Hilt!AG,FL-9494 Schoen Wlti is a registered Trademark of Hit!AG.Schaan 3 6// 1■■I1L.T1 www.hilti.us Profis Anchor 2.4.5 Company: Page: 4 Specifier: Project: Address: Sub-Project I Pos.No: Phone I Fax: Date: 1/16/2014 E-Mail: 6 Warnings • To avoid failure of the anchor plate the required thickness can be calculated in PROFIS Anchor.Load re-distributions on the anchors due to elastic deformations of the anchor plate are not considered.The anchor plate is assumed to be sufficiently stiff,in order not to be deformed when subjected to the loading! • Condition A applies when supplementary reinforcement is used.The fB factor is increased for non-steel Design Strengths except Pullout Strength and Pryout strength. Condition B applies when supplementary reinforcement is not used and for Pullout Strength and Pryout Strength.Refer to your local standard. • Design Strengths of adhesive anchor systems are influenced by the cleaning method.Refer to the INSTRUCTIONS FOR USE given in the Evaluation Service Report for cleaning and installation instructions • The present version of the software does not account for adhesive anchor special design provisions corresponding to overhead applications. Refer to the ICC-ES Evaluation Service Report(e.g.section 4.1.1 of the ICC-ESR 2322)for details. • Checking the transfer of loads into the base material and the shear resistance are required in accordance with ACI 318 or the relevant standard! • An anchor design approach for structures assigned to Seismic Design Category C,D,E or F is given in ACI 318-08 Appendix D,Part D.3.3.4 that requires the governing design strength of an anchor or group of anchors be limited by ductile steel failure If this is NOT the case,Part D.3.3.5 requires that the attachment that the anchor is connecting to the structure shall be designed so that the attachment will undergo ductile yielding at a load level corresponding to anchor forces no greater than the controlling design strength.In lieu of D.3.3.4 and D.3.3.5, the minimum design strength of the anchors shall be multiplied by a reduction factor per D.3.3.6. An alternative anchor design approach to ACI 318-08,Part D.3.3 is given in 18C 2009,Section 1908.1.9.This approach contains "Exceptions"that may be applied in lieu of D.3.3 for applications involving"non-structural components"as defined in ASCE 7,Section 13.4.2. An alternative anchor design approach to ACI 318-08,Part D.3.3 is given in IBC 2009,Section 1908.1.9.This approach contains "Exceptions"that may be applied in lieu of D.3,3 for applications involving"wall out-of-plane forces"as defined in ASCE 7,Equation 12.11-1 or Equation 12.14-10. • It is the responsibility of the user when inputting values for brittle reduction factors(4,r,o„dectile)different than those noted in ACI 318-08,Part 0.3.3.6 to determine if they are consistent with the design provisions of ACI 318-08,ASCE 7 and the governing building code. Selection of(t,nondwile=1.0 as a means of satisfying ACI 318-08,Part D.3.3.5 assumes the user has designed the attachment that the anchor is connecting to undergo ductile yielding at a force level<=the design strengths calculated per ACI 318-08,Part D.3.3.3 Fastening meets the design criteria! Input data and results must be checked for agreement with the existing condIions and for plausibility! PROFIS Anchor(c)2003-2009 Hilti AG,FL-9494 Schaan Hilti is a registered Trademark of Hilti AG,Schaan �` 4 —L — 3 -- r i ---- 2 1 — I`Nola Bill of Material I Jumper Type.I.a 16 ga 300 stakiess steel --^ 14rEerae. Standard Parts Sw D/W� Wire Type.S$AWG.TAW.1500 , — r•: T— ® ` C Win and atinpar types w mirwnorn PWOa _— fie �- A-^.NIaEI mill_blr.U�!,III— ' K 1 r sslowae,/6x/e'x.e•,aWmk awYMd.BDS.214 t bw1,Ini gelvePost Gbvef s I..luor,mu/ rrM I 1 m 'srbw' I NEUTRAL GROUNDING RESISTOR 3 nue.7 p45aC Y 00.56 05.mm ..,w.,.xrz w z...sn..co.a.n..m...mrorzw 4 inWelor.&land 611,3kV.OM ae. t 1 I 1 1W ENCLOSURE a.r .w rnwsu..,c , ��.� I L �f I mml I ( GROUND - <xr ri`w,.orna tC 1 S im me''''al,s6-350MCM t 2 PER LEG (711IMI1NId Palo B • P4 _ _ a... .....t.1.i3 law 1.....1.x.., 6 *AL CT mounInp t J zs rwwo:m NOn YndM Pant-'u"p0 ���f I posPxnl I j ��, mow" i.....na.. IAN/ .w. ^� ( Iw.am..w..n.eDW.sus•eoos,m.R.aua.m'aa„Irp;�._ - �� 1 1 1 7 la'my sot 10/005 and pan Saougn'roe Ior 260.5 ratio(C50 t `"1650 mml.. I I �+ a/.e0 llilrr0 Q kit M'talon emt.611 x 6w x.•D.304 30,NEMA 4X,w.paw .a Pro T ®Q 1 e ;,Nea geio' J heo mmI I5u I Im mm) I- .am i c q, o i f 0000 I I25e1.y 112t9mrnl "I FRONT VIEW c\ $ ;G c. 25n PLASTIC NUB `%5 LEFT SIDE VIEW I GROVND IOUTI C.T.SECONDARY.Xt-X. 01.00& NOTE: R.mo I uo 1 54.00 17.0 I 57.05 WIRE C.T.SECONDARY TO 50 s I'°-z.' oo.s I:I.x: 0372 m^Y I PM MI I I/.amm) SNORTING TERMINAL BLOCK 5a5;:s-x61 —.. / I (LOCATED IN JUNCTION BOX) 200 5 f xa-a5 ..so WITH efOAWG TYPE SIS WIRE. '.x5 x3-so MI l .. . I 1 n. I IraN 7.7 x'_-xa ..• iiincomgratomcg�� 1<7 niq .141)50i x1-v. .. � ls so°'S x5-x71 �+-+s 606 5 J 7t-75 j 2.00 PLASTIC NUB I ..f ;11TRAL IIN) _ llt/awl) ML•rI RA 110 C T �� S• � III-i:I 11 `' ,.a+wc i a• m sa: • • I5374 !� (EP c. a dIr €g I mm9 .. ... .. .. NEUTPU CONN re)------al 1-----. :, DIRECT f0 REy57CR ^\ 4 • •5 09/56' OItOLNOItaXon TORO i� I Sct sc.c. -Fi1v6 . Qlii.J1�11 .31, ���,GI� /�- 51r- V \./^V w '~�I ca.4c c`�:; `. i _4 R/N• . NAf{MigC7 �� TERMINAL FUWISNED 0/i. CO5 TO 10351005 A TOP VIEW BOTTOM VIEW 5/2 NDMR. o ACCEPT i A I/2 COMPPEo•c WC KN.Mr AM sew Cm Ar/sIr TITLE/DESCRIPTION, Post Glover .knosio >.KY DM /N P10n'8003"""1 resistor.neutral grounding ).Center 01 Gra+ily !S'� ,ax 859W3.29 em The ftaslslw Specialists' «son a-•w• • A OVEO- TN/center'wavily(COG)*mansions am DATE: MA MWM approxlmaa0na based on inlomiabon from a nu wlvroas.w0M•rawtnwr comma ae Nl 5.dtwr C. din.Eata.S.C.p -.HEET: 1 OF 1 3ammeonal damn.rnodoL Dmanraorr ISAWAND•1arrf.E..wor,.var rrwm�.es0v uausorla.-.1P..E REV DATE I DESCRIPTION APPROVED aroacara'r nm rinamdeau. e�ra^mnLsNeuMt r.Ia.r.aAMIN[1.r.. !DRAWN3NU.tBER REwslw REVISION HISTORY f MM I3OTHERWISE SPECJFIED.ENGINEERING STANDARDS PER DRAWING MVO.; AND ALL DIMENSIONS IN INCHES. 1 MU�Ka027A20D s{GGQIWIGA-APRVL --- 4 — — —3 1..— 2 1 V7A I mmunomeammininsenonsamserui E:IENGNEEAING\O.wvnm1(R1KCC.oaun L..s\Ndb.Ground.Pa.tl.vu0N GD27A20O-C l00G1.WM.M. 0 A.KOIV 1/17/2014 Construction Engineering Services,LLC SEISMIC DESIGN FORCE Input SOS= 0.697 From Spec Sec 01612 ap= 1.0 Selected from ASCE 7-05 Tables 13.5-1 or 13.6-1 Rp= 2.5 Selected from ASCE 7-05 Tables 13.5-1 or 13.6-1 Ip= 1.5 From Spec Sec 01612 'If RM>OTM-->No Tension on Anchors Dist to CG Moments(ft-Ib) 1.3"Tension 1.3'Shear [Component Wp(Ib) z/h Fp(Ib) Fp Max(Ib) Fp Min(Ib) Vert(ft) Horiz(ft) OTM RM (Ib) #Anchors (Ib) H/T 8 UT,Pumps, , 280 0.00 47 468 88 Use Min Value 0.92 0.38 81 80 190 2 57 General Notes: Fp was determined from Section 13.3 from ASCE 7-05 Anchor points on equipment were assumed to be existing based upon contractor provided drawings or shall be provided by equipment manufacturer. CG's were assumed to be at the center of component if not provided on drawings. Anchor design values were increased by a factor of 1.3 per ASCE 7-05 Section 13.4.2a. All components assumed to be floor mounted unless noted otherwise. All anchors specified are minimum size required,large size anchors are acceptable with approval from VAK. Anchors shall be installed per manufacturers specifications Strength Design OTM=Fp"CG Vert Strength RM=[0.9-0.2'Sds]'Wp*CG Horiz V.12014114008 WESTERN POWER SYSTEMS DURHAM PROJECTIPHASE A SEISMIC ANCHORAGE DESIGNICALCS1R0 1SEISMICFORCE.xis 1111111.Z'!'11 www.hiltl.us Profis Anchor 2.4.5 Company: Page: 1 Specifier Project: Address: Sub-Project I Pos.No.: Phone I Fax: Date: 1/17/2014 E-Mail: Specifier's comments: 1 Input data Anchor type and diameter. HIT-HY 200+HAS-R 316 1/2 `1 1°YNR4•11600 Effective embedment depth: he t = in.(h elint=-in.) •Material: ASTM F 593 Evaluation Service Report: ESR-3187 Issued I Valid: 4/1/2013 1 3/1/2014 Proof: design method ACI 318/AC308 Stand-off installation: without clamping(anchor);restraint level(anchor plate):1.0;eb=3.000 in.;t=0 250 in. Anchor plate: I,x ly x t=3.000 in.x 3.000 in.x 0.250 in.;(Recommended plate thickness:not calculated) Profile: no profile Base material: cracked concrete,4000,fc'=4000 psi;h=7.000 in.,Temp.short/long:32/32°F Installation: hammer drilled hole,installation condition.dry Reinforcement: tension:condition B,shear:condition B;no supplemental splitting reinforcement present edge reinforcement:none or<No.4 bar Seismic loads(cat.C,D,E,or F) yes(D.3.3.6) Geometry[in]&Loading[lb,in.lb] Z 45 -- �A25 x• � - f _ - s> • fiY�f' ._ rt Sy : Input data and results must be checked for agreement with the existing conditions and for plausibi tyl PROFIS Anchor(c)2003-2009 Hilti AG.FL-9494 Schaan HII6 is a registered Trademark of Hitti AG.Schoen 1■■1114111.111 www.hilti.us Profis Anchor 2.4.5 Company: Page: 2 Specifier. Project: Address: Sub-Project I Pos.No.: Phone I Fax: I Date: 1/17/2014 E-Mail: 2 Load case/Resulting anchor forces Load case:Design loads Y Anchor reactions[Ib] Tension force:(+Tension,-Compression) Anchor Tension force Shear force Shear force x Shear force y 1 190 57 57 0 max.concrete compressive strain: -[%o] (j)---1---C'x max.concrete compressive stress: -[psi] resulting tension force in(x/y)=(0.000/0.000): 190[Ib] resulting compression force in(x/y)=(0.000/0.000):0[Ib] 3 Tension load Load N1e(Ib] Capacity 4Ne(Ib] Utilization pN=N„el0Ne Status Steel Strength* 190 3689 $ OK Bond Strength” 190 773 25 OK ' Concrete Breakout Strength** 190 1089 18 OK •anchor having the highest loading "anchor group(anchors in tension) 3.1 Steel Strength Nsa[Ib] 4 4)nonducale •N55[Ib] Nue[lb] 14190 0.650 0.400 3689 190 3.2 Bond Strength AN.[in.2] AN50[in.2] scr,N.[in.] c.,,NS(in.] c[in.] cad[in.] . 81.00 81.00 9.000 4.500 4.500 5.095 kc,a Tk,una,2500[psi) Kay tkor[psi) tkmax,cr[psll 4l,,NeD 409,Ns 17 1880 1.00 1051 1186 1.000 1.000 e51N[in.] 4rec1,Na ec2,N(in.] 4/ec2.Ne W Ne ed.N. 0.000 1.000 0.000 1.000 1.000 1.00040 3963 0.650 7 0 +0.400� 0. 00 a773[lb] N5,19[0b] 3.3 Concrete Breakout Strength Ark[in.2] ANC0(in.2) cum,[in.] ca,[in.] lqN 81.00 81.00 4.500 5.095 100 b ecl,N Chi 111ec1,N_____ eczN[in.) 41ec2,N tyad,N Wcs,N ka I 0,000 1.000 0.000 1.000 1.000 1.000 17 Nb[Ib) 41 4.N.n:c 4nondumle ¢N5b9[Ib] N.[Ib] 5587 0.650 0.750 0.400 1089 190 Input data and results must be checked for agreement with the existing conditions and for plausibility/ PROFIS Anchor(a)2003-2009 HIlli AG,FL-9494 Schaan Hitt is a registered Trademark of Hlltl AG.Schaan Lt 3/ NIi6T1 www.hilti.us Profis Anchor 2.4.5 Company: Page: 3 Specifier Project: Address: Sub-Project I Pos.No.: Phone I Fax: I Date: 1/17/2014 E-Mail: 4 Shear load Load Vu„[Ib] Capacity 1V,[Ib] Utilization Pv=Vu,/oVn Status Steel Strength' 57 1430 4 OK Steel failure(with lever arm)' 57 61 94 OK Pryout Strength(Bond Strength 57 1665 4 OK controls)** Concrete edge failure in direction x+** 57 539 11 OK 'anchor having the highest loading "anchor group(relevant anchors) 4.1 Steel Strength V.[lb] •nonductile •V, [lb] V,,,[lb] 5960 0.600 0.400 1430 57 4.2 Steel failure(with lever arm) I[in.) aM 3.375 1.00 Nu/ N, 1-N°/4,N , M;[in.lb] M,=M;(1-NA N,)[in.lbl 0. 51 0.949 903.396 856.872 Vs=aM"Ma/Ib[Ib] 4 4,nonA,cae 01[Ib] V°,[Ib] 254 0.600 0.400 61 57 4.3 Pryout Strength(Bond Strength controls) AN.[in-21 ANao lin.2) ScrNa(in.) cc,,IJ,[in.) c(in.] cac(in.] 81.00 81.00 9.000 4.500 4.500 5.095 ^c,cr Tkuna.2500[Pei] Kai Tk,cr[Psi] Tkdta:,cr IPSO] Wq,Ne0 t(19.Na 17 1880 1.00 1051 1186 1.000 1.000 ecl.N[In.] tlrect.Ne ec2N[in.] tpec2.N. W,N. WedNa 0.000 1.000 0.000 1.000 1.000 1.000 Nag[Ib] rsdtc 4,nonductile aN.as $aVop9[Ib] N.[Ib] 3963 0.700 750 0.400 0. 00 1665 57 4.4 Concrete edge failure in direction x+ I,[in.] do[in.] ct[in.] Avc[in.2] Ave)[in.2] 3.000 0.500 4.500 60.75 91.13 W.d.v Wparad.t,v ec.v(in.) Wec,v Wc,v Wtn.v 0.900 1.000 0.000 1.000 1.000 1.000 Vb[lb] 4 4,,eexic Qnonducsle 4,Vcb9[lb] V.[lb] 4276 0.700 0.750 0.400 539 57 5 Combined tension and shear loads 0 246 0.935 1.000 Utilization [°�1 Status PNV=(ON+PO/1.2<=1 Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor(c)2003-2009 Mt AG,FL-9494 Selman Mt is a registered Trademark of Hilti AG.Schaan )f L i i 1■■111..T1 www.hilti.us Profis Anchor 2.4.5 Company: Page: 4 Specifier: Project: Address: Sub-Project I Pos.No: Phone I Fax: Date: 1/17/2014 E-Mail: 6 Warnings • To avoid failure of the anchor plate the required thickness can be calculated in PROFIS Anchor.Load re-distributions on the anchors due to elastic deformations of the anchor plate are not considered.The anchor plate is assumed to be sufficiently stiff,in order not to be deformed when subjected to the loading! • Condition A applies when supplementary reinforcement is used.The Q>factor is increased for non-steel Design Strengths except Pullout Strength and Pryout strength. Condition B applies when supplementary reinforcement is not used and for Pullout Strength and Pryout Strength.Refer to your local standard. • ACI 318 does not specifically address anchor bending when a stand-off condition exists. PROFIS Anchor calculates a shear load corresponding to anchor bending when stand-off exists and includes the results as a shear Design Strength! • Design Strengths of adhesive anchor systems are influenced by the cleaning method.Refer to the INSTRUCTIONS FOR USE given in the Evaluation Service Report for cleaning and installation instructions • The present version of the software does not account for adhesive anchor special design provisions corresponding to overhead applications. Refer to the ICC-ES Evaluation Service Report(e.g.section 4.1.1 of the ICC-ESR 2322)for details. • Checking the transfer of loads into the base material and the shear resistance are required in accordance with ACI 318 or the relevant standard! • An anchor design approach for structures assigned to Seismic Design Category C,D,E or F is given in ACI 318-08 Appendix D,Part D.3.3.4 that requires the governing design strength of an anchor or group of anchors be limited by ductile steel failure.If this is NOT the case,Part D.3.3.5 requires that the attachment that the anchor is connecting to the structure shall be designed so that the attachment will undergo ductile yielding at a load level corresponding to anchor forces no greater than the controlling design strength.In lieu of D.3.3.4 and D.3.3.5, the minimum design strength of the anchors shall be multiplied by a reduction factor per 0.3.3.6. An alternative anchor design approach to ACI 318-08,Part D.3.3 is given in IBC 2009,Section 1908.1.9.This approach contains "Exceptions"that may be applied in lieu of D.3.3 for applications involving"non-structural components"as defined in ASCE 7,Section 13.4.2. An alternative anchor design approach to ACI 318-08,Part D.3.3 is given in IBC 2009,Section 1908.1.9.This approach contains "Exceptions"that may be applied in lieu of D.3.3 for applications involving"wall out-of-plane forces"as defined in ASCE 7,Equation 12.11-1 or Equation 12.14-10. • It is the responsibility of the user when inputting values for brittle reduction factors(q5c„na„,b,e)different than those noted in ACI 318-08,Part D.3.3.6 to determine if they are consistent with the design provisions of ACI 318-08,ASCE 7 and the governing building code. Selection of i nonduc5fe=1.0 as a means of satisfying ACI 318-08,Part D.3.3.5 assumes the user has designed the attachment that the anchor is connecting to undergo ductile yielding at a force level<=the design strengths calculated per ACI 318-08,Part 0.3.3.3. Fastening meets the design criteria! Input data and results must be checked for agreement with the existing conditions and for plausibility) PROFIS Anchor(c)2003-2009 Hilti AG,FL-9494 Schaan HMI is a registered Trademark of Hilti AG,Schaan i / =»a . 280 lbs. total weight with 5HP TEFC Motor, Base, Coupling. 340/360 Page 251 AURORAS MODEL Dated June 2013 344A & 364A PUMPS Supersedes Section 340/360 Page 251 Dated January 2003 ON STEEL BASES BASE SIZE HA HB HE NG , HP1 HP2 �---C APPROX— WG - -4--DH-4.- t 120 30 12 0 [ 14,i' - .� Y t 3 18X 38 18 38 16 4 4 8 1.1 4 1. 4 -41-HT' DISCHARGE — 4 18042 18 42 16 4 4 S 8 hl 4_ I• 4 r-" SUCTION 5 18044 18 44 15 4 4 S 8 1 2 MI I I jr-..., 18048 18 48 15 _ 4 4 S 8 1 li iaj e C`il 'I�Ii 7 22X60 22 60 19 4 4 S B 1 • ,:N10111=im � ���I TWO _ a DD 'D NOTE DIMENSIONS POWER 340 360 I _= ALWAYS USE THE FRAME 1 2 3 3 -l�� W6 IBS/Ib I3.13111 13.13/16 13-13/18 34O 1 SI/4 6-I/4 CASE't-- HP2 -- HP2 , BORE 9 , 614! 1 1 1 HB D tt - 1 1 1 MODE 3644 ONLY 360 7 5I/4 61/4 - - HH FOUNDATION BOLTS 3/8 NPSF MIN.DRAIN TASE 9 5-1/4 1 1 1 COUPLING GUARD BORE 11 - 7 7 1 12 - 1 1 7 MOTOR ( D BASE NUMBER ♦ROTATION COY fRAME APPROX 1/4 NPSF GAUGE 56 12 1 IAA N/A II/A DC Z TAP 1431 12 1 N/A 114A K/A 1431 13 1 A A r_ra w. an 17 t _ A N/A 1 i > 1114T _ 14 t f N/A N/A Llll Ib 5-QI 'I N/A��� 21ST 18 SI/4 2 N/A 2341 21 b-I/4 3 4 2561 23 6.1/4 N A 4 Dt 2841 24 ) N)A 5 L'I J`.J t 78415 22 7 IVA 5 2861 25 ) A S HG 28615 24 7 II/A S 3241 26 8 N/A 6 I I 1 f 31415 25 8 N/A 6 l L,—HE 316T 28 8 N(A 6 HA 32615 26 8 N/A 6 3641 29 9 A 6 STANDARD POSITION(I) usn 28 9 VA 6 - 4041S 30 10 II/A 1 PUMPS WITH THREADED CONNECTIONS PUMP SIZE 344A DH 364A DH 344A HL 364A Hl CASE FRAME FRAME FRAME FRAME FRAME FRAME FRAME FRAME FRAME FRAME DISCH SUCF BORE X Y I DC OD 1 2 3 3 1 263 1 2 3 1 2 3 ■EIL■11111/ 511YLIIIIMIII•WIIIIIIMm®MATE /NIE> NLIIEV1•IQVfi!©i,©t=r1lYMC1MCYREN EIEBEERIMILIIII WM WW1 R®M111711111 ILIUM IIIMILlMIMMLI L7L1111UMIIMM ►1INI 6.9 16 RVIINEY I m ncwviiiEr4E rois-K m wImmaimmummwievailumffrparromprimwamimirominfampampii. R®_EMMIKOMInINER®LUI®IIIIIITNE 6.9 16 R®11■Im4_____MIVa1___ >•______Em_7LIL• outrte Fr ■BBB■a • w nirnMNNEME cI .jj B-9 16 R©LI®1T1.;;. valum �ammilraw ®L•II®R®1IllR®LE Will MINIU11•R©MI '1©MM/11I7/1=n4R©l remEIENIm1■ PUMPS WITH ANSI 125 LB FLANGED CONNECTIONS 2.1 2 1 5-5 8 1.7 4-' 1. • ' •13 16 •13 16 7.13 1. 9.7 : 10-11 16 4.5 16 5.13 16 N A 6.1 . 1.1 16 N A R®i7R®mRIiE DNB RI M EMI 1202[fIPPLIIIEDLl•Rl M1137111RVisUL11111ii1 M R®L1ENI IRai IR IU MRiE1L111LTL 7•FIERER©LMIIR®MR©LIIIR©LINU R©L1111 MEMRI EMI RI1P Lf117MR©L>•R®QfLV R®LM©EUTEIR iThill ENE E IRIS/1T'! 'LMRP.1/11R1371ifRIiflremoras own rim WITAIIIIIIIIIIIIIMI R®Ll■R©R®L0R NBIEMINIIIII MMIX=IF3NIIIII MIIR©ERJR©I11111FAIIIMEI EIYLI■R©R®LI•RIAIL snyL)•R©L7•rumu ♦amro nwailR©,movim EMI MR• EIMINIIIIMIIIIM RF31fllRRE1 WAN RITHIEN7Li111MIME RIM LI•MENCU 1•RIIIIMITENIIINM UM 1/8/7111 CMM MLI=irirma al umWEIr11111R317/[fUM1110IIDR©/1111111111M117[aR1X= IMMIIIMIIIMENI RI3►4RFIIAM IF ININI37f4RITEMIROIL•Rm[11111MIIIIIMM©L111MI1114WIEN RIZIMIII=HIM EININIMIIIEM ENE WM EWE R331111R®LaBENTIENII IEFF IEWEItHYRIEVIINR®1RI!ENEMOM ItIMINEMMIIIIIEDM RIBIIE=ITIM IIR©LIRFM4MEMR©LIIIMIBINRMI ENI R®f1RIMR RIINTIU •1=1R9LMI11137E■R171 WRINIIIMII•RI7LIIIIRI UM tIMMIIII=EMI Rmanri 11fiRI;IlsRv11 musralLTIMII®11■©Li•R©L>•RI IMULM RIrLRRI®ar EMI RI37/11111NifR©LEWININ©LIIINIF•R LIINRFdIL IN/•RINIIIIR1 1L EMI RJR®4RI1f/faRI Di1:fRagya sR©L71 um®I©L7•IF RIMRFEIL>•MEIMEMU 11111•11M111 IIVIIIPTIIIIIIKIIILIMI I IEBIL121111111 IL R©L�R®tom1MMUMRPMEMI EUM Wall FIN111111•111R111MIRI;I/ IIIIII IIN=IMEIM©IIIMMIIIII 7M FM 1137L111©L111 RIL>IIIIER ♦R1117BI F3DfOIIIIIi13©LMRILl1 MIEMMICTE=I IIIIIE IIIIMMIIIKIER• 6 6 12 9.1/4 3.1/8 B-1l/16 9-11/16 10-13/16 N/A 10-1/8 N/A 13 N/A N/A 8.1/B N/A N/A 9.3/4 NOTES: 3. Not for construction purposes unless certified. I. All dunensions in inches. 4. N/A=not applicable. 2. Dimensions may vary± 1/4. S. (heck discharge position.Casing dimensions which exceed dimension"D"moy require pads for the pump and/or motor. 6. Conduit box is shown in opproximale location.Dimensions are not specified os they vary with each motor monufarlurer * Dim'HT°may vary lir TO I . ©2013 Pentair Ltd. f D Dimension of 5 x 6 x 11,5 x 6 x 12,b x 6 x 11 and 6 x 6 x 12 pump with 213T thru 3261 motor is 8". + PENTAIR AURORA" ..'tf 3 Section 340/360 Page 206 N AURORA MODEL 344A & 364A i I Dated MARCH 2004 PUMPS Supersedes Section 340/360 Page 206 7 - 9 Dated JANUARY 2003 WG -- OH DC-I- DISCHARGE Y 1/4 NPSF GAUGE KEY rem TAP SUCTION 0 OA , % Vii` 1a�r " D U I pp '� �E „rE y IL- -- ' " MODEL�I I 1 1 1 1 1 iffill 1/2 `� r►' A1 (1 LA STANDARD POSITION(1) E 1/2(13) 1 --V•'- I (4)5/8(16) Pte{ 364 SLOTS I 3/8 NPSF MN.DRAIN ---AD ;-*--F L -.E2A~E2.,i DISCHARGE . 8 r—A2 i FRAME CASE BORE 7 9 it 1 514 5.14 (1331 (133) 0) 2 6.14 l (158) (111) DC (111) i r BORE MODEL 314A NO.).POWER FRAME 0.6'114- POSITION(4) 344A 364A 344A 364A FRAME Al At B B E1 b F F P U V AD WG KEY I 10-3/4 1-3/8 8-1/16 95/16 4-1/8 2 5/8 5.13/16 7.1/16 1-5/16 7/8 2-1/8 51/8 105/16 3/16 SO 11.3/8 1_0 (2131 ((81) (205) , (237) (105) 167) (148) (119) (33) (22) (54) 0301 (2621 2 13.1/4 1 10-25/32 12 5-1/8 21/2 713/32 621/32 3/4 1-1/8 3.1/8 111/16 13-13/16 1/4 SO 11.3/410 (331) (118) 1274) (305) (130) (64) (188) (220) (19) (29) (79) (1951 1351) 3 13-1/4 1 10.25/32 12 5.1/8 21/2 713/32 821/32 3/4 1-1/8 3.1/8 1.11/16 1313/16 1/4 SO K 1.3/4 LG (337) (118) _ 12741 1325) (130) (64) (188) 1220) (19) (29) (79) (1951 (351) r PUMPS WITH THREADED CONNECTIONS PUMP SIZE 344 DH 364 DH 3444 l 364A I CASE X Y Z DC DD FRAME FRAME FRAME FRAME FRAME FRAME FRAME FRAME DISCHARGE SUCTION BORE 1 2 8 3 1 2 8 3 1 2 8 3 I 2 8 3 I-I/4 1.1/2 7 5.1/4 2-7/16 4.3/16 4.15/16 5.3/16 7.3/16 N/A 101/4 N/A 7.9/16 N/A 9-3/8 N/A (133) (62) (1061 (125) (132) (183) (260) (192) 1238) 1-1/4 1.1/2 9 6.5/8 2.9/16 53/8 6-3/16 63/8 7.1/4 N/A 10-5/16 N/A 7-5/8 N/A 9-1/16 N/A (168) (65) (137) (157) 1162) (184) (262) (194) (240) 1.1/2 2 7 5-3/8 2.1/2 4.5/16 5-1/8 5.3/8 7-5/16 N/A 10-3/8 N/A 7.11/16 N/A 9.1/2 N/A (264) 1 12411 r 7.1/8 9-9/16 8-3/4 WO (671 r E (181) (243) (222) F F E 1; 1 r , 1. E F 1 E r (1841 (511 (1511 (1111 111341 (178) 1 4 9 7.1/2 2.1/8 6-1/8 6-1/8 7.7/16 1-I/4 8-1/4 N/A 11.1/8 6-5/8 7 N/A 8-5/8 (191) (54) (156) (115) 1189) (184) (210) (283) (168) (178) (219) 4 4 7 6.1/2 2-1/2 5-1/2 6-7/16 7-5/16 1.15/16 8-15/16 11 11-13/16 7-5/16 7-11/16 9-1/8 9-5/16 1 (165) (641 (140) 1(64) (186) 12021 (221) (279) (300) (186) (195) (232) (237) 4 S 9A 7.1/4 3.1/8 5-3/4 6.11/16 7-3/8 N/A 9-3/8 N/A 12.1/4 N/A 8-1/8 N/A 9.3/4 (184) (71) (146) (170) (181) (2381 (311) (206) (248) 4 5 9B 7.3/4 2.5/8 6-5/8 8-1/16 8-11/16 N/A 9 N/A 11.7/8 N/A 1-3/4 N/A 9-3/8 (197) (67) (168) (205) 1221) (229) (302) 1197) (239) 6 6 9 8-1/4 2-3/4 7 8 9 N/A 9-1/4 N/A 12-1/8 N/A 8 N/A 9-5/8 (210) (70) (118) (203) (229) (235) (308) (203) (244) NOTES: I. All dimensions in inches and(mm). 4. N/A=Nol Applicable. 2. Dimensions may vary x 1/4(6). 5. Check discharge position,casing dimensions which exceed CA p A U R O R A 3. Nct for construction purposes unless certified. dimension"D"may require pods for the pump and/or motor. Pentair Pump Group L/ -7! AURORA MODEL �� Section 340/360 Page 251 Dated January 2003 344A & 364A PUMPS Supersedes Section 340/360 Page 251 ON STEEL BASES Dated October 1996 BASE SIZE HA HD HE HG NH HP1 HP7 art uzc C APPROX-- -0—WG—o—-0—DH-0- I I 2X30 2 30 , 9 3 2 5 B 15 - ► Y r T /X 49 / 39 5 ! 4 5 -1-IC4 1-1j4 -0- BHT' DISCHARGE 3 BX38 8 38 6 4 4 58 1.154 1-1/4 ��. 4 8 X 42 8 42 6 4 q 5 8 1.1 4 1.1/4 SUCTION 5 8 X 44 8 44 5 4 4 1 I iii ��r'I MI ll' I J b 8 X 48 8 48 5 4 / 8 1 1 - _I -1'`�_` 1 22 X 60 21 60 9 4 4 5)8 _ 1 L I = 1,� = ` :I�-I 4 • .I + NOTE WHEN TWO• `=J DD D"DIMENSIONS POWER 340 360 -- — ARE INDICATED FRAME 1 2 3 3 el I __ ALWAYS USE THE WG 145/I6 1313/14 1313/16 1314/16 IGET 340 1 5-I/4 64/1 EASE 9—i 1-'9— � — HP2 HP1rHt v BORE Il 6- 7 1 1 HB 1 12 - 7 7 7 MODEL 364A ONLY 360 7 5.1/4 6.1/4 - - EASE 4 51/4 7 1 7 HH FOUNDATION BOLTS COUPLING GUARD 3/8 NPSF MIN.DRAIN BORE 11 - 7 7 7 12 - 7 7 7 MOTOR C ♦ROTATION CCW FRAME APPROX D 1/4 NPSF GAUGE 56 2 1 WA WA WA DC j TAP N/ 1451 2 1 WA N/A WA 1451 3 1 WA WA �w — 3 182T 3 I N/A WA 7 X L 1841 4 I I WA WA 1131 6 5.1/1 2 N/A wAt 2141 B 6.1/4 3 WA 2541 I 6.1/4 3 D1I 1641 4 6/4 WA L�1�J`�J / 28615 2S WA - rHG 3241 24 N/A T T 3241 26 1�/A 1 1 32415 25 WA k'--- HE—0-1 3261 21 N/A +---HA—0- 326A 16 !A 3641 ' 29 A 36475 27 STANDARD POSITION(1) 3 51S 21 N/A 4048 30 1 NIA PUMPS WITH THREADED CONNECTIONS PUMP SIZE 344A DH 364A DH 344A HL 364A HL CASE FRAME FRAME FRAME FRAME FRAME FRAME FRAME FRAME FRAME FRAME DISCH SUCT BORE X Y Z DC DD 1 283 1 2 8 3 1 2 3 1 2 3 I.14®M0 WIMINIS'41/I1MMIT IMEF1i[IE lE•iIIrlQ>•117I3111•QrII14UL=IZI NLI©EIM©E=MI IM©LM©IIIN -1 4 ®fl•KNIT•117/111 �1aMETAME♦©1'11117113©1'1371♦©21111©L' 6.916 ©A u1/2•M 1Ufl••i•E)•®�®�EMta�Qf�I8-9�i6 ©MIBATI©1=IINEM EMI C1,10/111©LINI I.12 ©1® ®1•®14_____ 1�1EPTIII©11•®1117111111mall©11•LT= 114ITE1• PUMPS WITH ANSI 125 LB FLANGED CONNECTIONS 2 2-1/2 7 5-5/8 1.7/8 4-9/16 5-3/8 5.13116 6-13/16 7.13/16 9.1/8 10-11/16 4-5/16 5-13/16 N/A 6.1/8 7-7/16 N/A 2 2-1/2 9 7 1-7/8 5.11/16 6.1/2 6.7/8 6-3/4 7-3/4 9.13/16 l0.-/8 4-1/4 N/A 5.3/4 6-1/16 N/A 7-3/8 2 -12 12 1.78 7.316 8-316 B-I A • 8 A 10.34 N A 5- ' NA N 7.1 N A 2 3 11 MINI MIN MN_IINK•17/2=EITAN©1=MPTIIII1'_1TIEN'117111111®mom 2.1 2 3 7 ®4© Q_®_E_11♦®_IEMIIMP4IIIINDIEM__1__i11'EFLIN®I1©/111•1 2-1 3 9 NMI©X117[E71_i_11_i_IIMIIMIL7LM1371111115 1117/M _____�WP17i6_1_ 2.12 3 12 ml■©i_7 4_j:1•1711•�.7L_INj:1•L7L_�1117M N©____lam®11■®1� 3 4 9 ®fl•®4�D11•IME®itfINDIE[ ►1�L7�1III14[EIL!•[�RNIM11I•NYLUIibllT•NKIII 3 4 11 itrsmEssma_1I7ru14©DINE_______�I,7L♦II��©l1♦©____ _ 3 4 12 �4®_♦_iG_El________©____711•I9L7•f1I1SIIU_7L_�11■[_1_IITEMIN � 4 7 �1_®�EI1__ ®1_®��LO11=11®71®1/11111317113©L_®4I0M11 KOMI 4 5 94 ®t•®1NI®1J■11117dfiT1F71:1•©L31•1LFENIERM III!)•©L•®1'♦®a©L>•11M1111 1MM 4 5 9B ®1EIFEBIF9___3'off_Qf©l_�©L7•®4©Lo�©____rum rum FIRE 4 5 11 �©®1I■i_Q1f_10©L>•��©IEDNIEL,®1•©L'•©L_l11317/111©IN 4 5 12 X11■®4®ID�1llMI©L7•EIF1'•©lam®©L7•®IIMIEN©L 111ENZ■WNW 5 6 II EMIFITIM[1511N EMI KIM rE7•iIIII/11©L11•1®©LM®1•®L•©LL7•EREMEN 5 6 12 _ IIM111III•1 ______�4©L'11©©L•iA�N®a©L7.�1I■E1I• 6 9 BL♦®11■ [1• ©L 7•M•©L=®•r7Lm ®1s u>•©Ll• E1 ©L! 6 6 11 X11•®MI 1117/11111M0IIIIFIE©LMMITTE■©L7•______ MEM 117121111111E1111X111 6 6 12 9-1/4 3-1/8 B-11/16 9.11/16 10.13/I- N/A 10.1/8 N/A 13 N/A N/A 8-1/8 N/A N/A 9-3/4 NOTES: 3. Not for construction purposes unless certified. I. All dimensions in inches. 4. N/A=not applicable. 2. Dimensions may vary± 1/4. 5. Deck discharge position.Casing dimensions which exceed dimension'V may require pods for the pump and/or motor. 6. Conduit box is shown in approximate location.Dimensions are not specified as they nary with each motor manufatlurer G p AURORA`' # Dim"HT"may vary 1/B"TO 1'. Pentair Pwnp Group I D Dimension of 5 x 6 x 1 1,5 x 6 x 12,6 x 6 x 11 and 6 x 6 x 12 pump with 2131 Ihru 3261 motor is 8'. lib • A.KOIV 1/17/2014 Construction Engineering Services,LLC SEISMIC DESIGN FORCE Input: SOS= 0.697 From Spec Sec 01612 ap= 1.0 Selected from ASCE 7-05 Tables 13.5-1 or 13.6-1 Rp= 2.5 Selected from ASCE 7-05 Tables 13.5-1 or 13.6-1 Ip= 1.5 From Spec Sec 01612 11 RM>OTM—>No Tension on Anchors Dist to CG Moments(ft-lb) 1.3'Tension 1.3'Shear [Component Wp(Ib) z/h Fp(Ib) Fp Max(lb) Fp Min(Ib)I Vert(ft) Horiz(ft) OTM RM (Ib) #Anchors (Ib) Radiator :; 4200 0.00 703 7026 1317 Use Min Value 8.75 4.80 11527 15340 381 4 428 General Notes: Fp was determined from Section 13.3 from ASCE 7-05 Anchor points on equipment were assumed to be existing based upon contractor provided drawings or shall be provided by equipment manufacturer. CG's were assumed to be at the center of component if not provided on drawings. Anchor design values were increased by a factor of 1.3 per ASCE 7-05 Section 13.4.2a. All components assumed to be floor mounted unless noted otherwise. All anchors specified are minimum size required,large size anchors are acceptable with approval from VAK. Anchors shall be installed per manufacturers specifications Strength Design OTM=Fp'CG Vert Strength RM=[0.9-0.2*Sds]*Wp*CG Horiz \ 0 V:12 1 411 4 0 08 WESTERN POWER SYSTEMS DURHAM PROJECTIPHASE A SEISMIC ANCHORAGE DESIGN1CALCSVROISEISMICFORCE.IdS n Radiator Wind Load Caics Length of Unit, L= 174.5 in Height of Unit, H = 133 in Vertical CG = 105 in Diameter of Unit, D= 121.5 in Weight,W= 4200 lb Anchor Spacing,S1 = 115.25 in Anchor Spacing,S2 168.5 in Height Exposed, h= 57 in Unit Exposed Area,At= 69.1 sf Design Wind Load Kz= 0.98 Kzt= 1 Kd = 0.9 V= 85 mph I = 1.15 qz= 18.76 psf ASCE 7-05 Eq. 6-15 G = 0.85 Cf= 1.3 F= 1432 lb ASCE 7-05 Eq.6-28 Factored Wind Load, 1.6F= 2291.0 Wind Load Overturning= 240560 lb-in Wind Load Riding= 3780 lb-in Total Number of Anchors= 4 Anchor Tension = 1044 lb Anchor Shear= 573 lb 1■■111 .'1191 www.hilti.us _ Profis Anchor 2.4.5 Company: Page: 1 Specifier. Project Address: Sub-Project I Pos.No.: Phone I Fax: I Date: 1/17/2014 E-Mail: Specifier's comments: 1 Input data F Anchor type and diameter Effective embedment depth: her,"=5.000 in.(ti 1,,,t=-in.) Material: ASTM F 593 Evaluation Service Report: ESR-3187 Issued I Valid: 4/1/2013 1 3/1/2014 Proof: design method ACI 318/AC308 Stand-off installation: -(Recommended plate thickness:not calculated) Profile: no profile Base material: cracked concrete,4000,fc=4000 psi;h=12.500 in.,Temp.short/long:32/32°F Installation: hammer drilled hole,installation condition:dry Reinforcement: tension:condition B,shear:condition B:no supplemental splitting reinforcement present edge reinforcement none or<No.4 bar Seismic loads(cat.C,D,E,or F) yes(D.3.3.6) Geometry[in.]&Loading[lb,in.lb] Z t' 1 0 12a 0 _ g t - X Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor(c)2903.2009 H4ti AG.FL-9494 Schean HAM is a registered Trademark of Hill AG,Schaan 1. 11`T1 www.hilti.us Profis Anchor 2.4.5 Company: Page: 2 Specifier: Project: Address: Sub-Project I Pos.No.: Phone I Fax: I Date: 1/17/2014 E-Mail: 2 Load case/Resulting anchor forces Load case:Design loads Anchor reactions[lb] Tension force:(+Tension,-Compression) Anchor Tension force Shear force Shear force x Shear force y 1 1044 573 573 0 max.concrete compressive strain: -[%a] max.concrete compressive stress: -[psi] resulting tension force in(x/y)=(0.000/0.000): 0[lb] resulting compression force in(x/y)=(0.000/0.000):0[lb] 3 Tension load Load N„,[lb] Capacity„[lb] Utilization 13,=No./0„ Status Steel Strength' 1044 133 8 OK Bond Strength" 1044 1914 55 OK Concrete Breakout Strength" 1044 1620 65 OK •anchor having the highest loading "anchor group(anchors in tension) 3.1 Steel Strength NJ,.[ib] . filnonductile 4,Nsa[lb] Nua[lb] 51485 0.650 0.400 13386 1044 3.2 Bond Strength Alw[in.2] AN.o[in.2] s«,N.[in.] co,,,..[in.] c[in.] cac[in.] 169.00 225.00 15.000 7.500 t 5.500 6.804 1 "c.a TIC,undr,2y00[Psi) Kdry Tk,c (psi] Tk,mex,cr[psi] _ 1l/o,Nee VJ19,Ne 17 1880 1.00 904 765 1.000 1.000 ec1.N[in.] yrect,N. ea.N[in.] Wec2.N. wpNa w.d.Ns • 0.000 1.000 0.000 1.000 1.000 0.920 New[Ib] eelemc �nonducme CONeae 4,aNag[lb] Nu.[lb] 14205 0.650 0.750 0.400 1.600 1914 1044 3.3 Concrete Breakout Strength ANc[in 2] ANcg[in.2] ;min[in-1 c.c[In.l wc.N 169.00 225.00 5.500 6.804 1.000 ec1.N[in.] 1 ec1,N ea,N[in] yrec2,N wed,N yrcp,N kcr 0.000 1.000 0.000 1.000 0.920 1.000 17 N5[(b] �a.%rye (bonductiis 4)Ncbp[lb] Nua[lb) 12021 0.6¢50 0.750 0.400 1620 1044 Input data and results must be checked for agreement with the existing conditions and for plausibility) PROFIS Anchor(c)2003-2009 Hilt AG,FL-9494 Schwan 11119 is a registered Trademark of Hilt AG,Schwan is-z,./ 1.11 ■T1 www.hilti.us Profis Anchor 2.4.5 Company: Page: 3 Specifier: Project Address: Sub-Project I Pos.No.: Phone I Fax: I Date: 1/17/2014 E-Mail: 4 Shear load Load V.[Ib] Capacity,V„[Ib] Utilization[v=Vh,e/4Ve Status Steel Strength* 573 5190 12 OK Steel failure(with lever arm)' N/A N/A N/A N/A Pryout Strength(Concrete Breakout 573 3489 17 OK Strength controls)** Concrete edge failure in direction x+" 573 1241 47 OK 'anchor having the highest loading "anchor group(relevant anchors) 4.1 Steel Strength V.[Ib] 4) $nonductik ---- •Vsa[lb] V.[Ib]- 21623 0.600 0.400 5190 573 4.2 Pryout Strength(Concrete Breakout Strength controls) ANC[in.2] ANco(in.2] camn[in.] kcp car[in.] Wc.N 169.00 225.00 5.500 2 6.804 1.000 ecl.v[in.] lyaci.v ec2,v[in.] Weu,v W•d,N Wcp,N ku 0.000 1.000 0.000 1.000 0.920 1.000 17 Nb[Ib) Qaeis ric 4)nonducwe •Vcpg[lb] V„„11b] 12021 0.700 0.750 0.400 3489 573 4.3 Concrete edge failure In direction x+ le[in.] dg[in.] GI[in.] Avc[in.21 Ave,(in2] 5.000 1.000 5.500 113.44 136.13 Wed.V yrperellel,v ec,v[in.] Wec,V tyc,v Iph,v 0.900 1.000 0.000 1.000 1.000 1.000 Vb[lb] 4) 4)selsmhc $nonducsae 4iVcbg(Ib] V.[Ib] 7879 0.700 0.750 0.400 1241 573 5 Combined tension and shear loads pN pv C Utilization pN,v(%] Status 0.645 0.462 5/3 76 OK [w-pN+pv`-1 • Input data and results must be checked for agreement with the existing conditions end for ptauslbihtyl PROFIS Anchor(c)2003-2009 Hilti AG,FL-9494 Schaan Hilg is a registered Trademark of Hilli AG,Schaan S3/ www.hilti.us _ Profis Anchor 2.4.5 Company: Page: 4 Specifier: Project: Address: Sub-Project I Pos.No.: Phone I Fax: j Date: 1/17/2014 E-Mail: 6 Warnings • To avoid failure of the anchor plate the required thickness can be calculated in PROFIS Anchor.Load re-distributions on the anchors due to elastic deformations of the anchor plate are not considered.The anchor plate is assumed to be sufficiently stiff,in order not to be deformed when subjected to the loading! • Condition A applies when supplementary reinforcement is used.The 0 factor is increased for non-steel Design Strengths except Pullout Strength and Pryout strength. Condition B applies when supplementary reinforcement is not used and for Pullout Strength and Pryout Strength.Refer to your local standard. • Design Strengths of adhesive anchor systems are influenced by the cleaning method.Refer to the INSTRUCTIONS FOR USE given in the Evaluation Service Report for cleaning and installation instructions • The present version of the software does not account for adhesive anchor special design provisions corresponding to overhead applications. Refer to the ICC-ES Evaluation Service Report(e.g.section 4.1.1 of the ICC-ESR 2322)for details. • Checking the transfer of loads into the base material and the shear resistance are required in accordance with ACI 318 or the relevant standard! • An anchor design approach for structures assigned to Seismic Design Category C,D,E or F is given in ACI 318-08 Appendix D,Part D.3.3.4 that requires the governing design strength of an anchor or group of anchors be limited by ductile steel failure.If this is NOT the case,Part D.3.3.5 requires that the attachment that the anchor is connecting to the structure shall be designed so that the attachment will undergo ductile yielding at a load level corresponding to anchor forces no greater than the controlling design strength.In lieu of D.3.3.4 and D.3.3.5, the minimum design strength of the anchors shall be multiplied by a reduction factor per D.3.3.6. An alternative anchor design approach to ACI 318-08,Part D.3.3 is given in IBC 2009,Section 1908.1.9.This approach contains "Exceptions"that may be applied in lieu of D.3.3 for applications involving"non-structural components"as defined in ASCE 7,Section 13.4.2. An alternative anchor design approach to ACI 318-08,Part D.3.3 is given in IBC 2009,Section 1908.1.9.This approach contains "Exceptions"that may be applied in lieu of D.3.3 for applications involving"wall out-of-plane forces"as defined in ASCE 7,Equation 12.11-1 or Equation 12.14-10. • It is the responsibility of the user when inputting values for brittle reduction factors(�wnductlle)different than those noted in AC!318-08,Part D.3.3.6 to determine if they are consistent with the design provisions of ACI 318-08,ASCE 7 and the governing building code. Selection of ynonductiie=1.0 as a means of satisfying ACI 318-08,Part D.3.3.5 assumes the user has designed the attachment that the anchor is connecting to undergo ductile yielding at a force level<=the design strengths calculated per ACI 318-08,Part D 3.3.3. Fastening meets the design criteria! Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor(c)2003-2009 Huh AG,FL-9494 Schaan HiS is a registered Trademark of Hilti AG.Schaan S—C1/ 1"J, 1-it ft ii i id ii t El is{wwq Li ir2 ' I ii ---_ - ----T II! . 111 = i 11 aill 11 0. --I ex: Ill ill H I I I Rpili era - I - A.67� K ON ou.x „s, I ��� M c;,.-;.%,.:, Ii___Ez G cidatii lgodi iH 1 L =6 1i T- iii■ 0 A i I 1 — `� di iiii IVIS I ... 4. i. „AI ai gon MOM WI SO i ri:Ir.4:11 :;: ill;II\ T J el s R ii cz-a `� 1�, S g f 4 I 3 1 2 I 1 REV DATE REVISION BY D 10.5 142 10.5 OUTLET VIEW 014 _ 7 0,4 C FLOW ° C ■ - \,. %1 4— / RINPLUG 14' ASA FLANGE 21'O.D. 18,75'B.C, 12-1.1250 HOLES THRU B EQUALLY SPACED B ENGINE: CFM' FPM+ KW: WT' "ESSURE DROF f: ; F S us ; H2O UNLESS OTHERWISE SPECIFIED— HARCO ENGINE -RfDUCTS — 1) DIMENSIONS ARE IN INCHES HARCO MANUFACTURING CO. 2) TOLERANCES ARE' 1000 INDUSTRIAL PARKWAY, NOTES .XXXt .010 ANGLES± 1/2• NEWBERG, OR, 97132-7071, USA .XX± .030 SURFACE FINISH (503)537-0600 FAX(503)-537-0601 .X± .062 THIS DRAWING, IN DESIGN AND DETAIL, IS 1. MATERIAL: ALL 304 S.S. FRACTIONS ± 7- MAX. PROPERTY OF HARCO MANUFACTURING COMPANY. A APPROVALS DATE TITLE A EXTREME GRADE DRAWN JI 9/5/13 36142EXT 14 SP CHECKED SCALE CAD NO. SHEET 1:26 95131414 APPROVED PLOTTED DWG. NO. VI ITEM QTY DESCRIPTION CUSTOMER APPROVED DWG: A ,��. 4 1 3 7 2 1 A.KOIV ' 1/17/2014 Construction Engineering Services,LLC SEISMIC DESIGN FORCE Input SDS= 0.697 From Spec Sec 01612 ap= 2.5 Selected from ASCE 7-05 Tables 13.5-1 or 13.6-1 Rp= 6.0 Selected from ASCE 7-05 Tables 13.5-1 or 13.6-1 Ip= 1.5 From Spec Sec 01612 "If RM>OTM-->No Tension on Anchors Dist to CG Moments(ft-lb) 1.3'Tension 1.3"Shear Component Wp(Ib) z/h Fp(Ib) Fp Max(Ib) Fp Min(Ib) Vert(ft) Horiz(ft) OTM RM (Ib) #Anchors (Ib) SwitChgear;;1 3750 0.00 653 6273 1176 Use Min Value 3.83 0.99 4509 2821 1821 4 382 General Notes: Fp was determined from Section 13.3 from ASCE 7-05 Anchor points on equipment were assumed to be existing based upon contractor provided drawings or shall be provided by equipment manufacturer CG's were assumed to be at the center of component if not provided on drawings. Anchor design values were increased by a factor of 1.3 per ASCE 7-05 Section 13.4.2a. All components assumed to be floor mounted unless noted otherwise. All anchors specified are minimum size required,large size anchors are acceptable with approval from VAK. Anchors shall be installed per manufacturers specifications Strength Design OTM=Fp•CG Vert Strength RM=10.9-0.2"Sds]"Wp"CG Hohz L.r l V:12014414008 WESTERN POWER SYSTEMS DURHAM PROJECTIPHASE A SEISMIC ANCHORAGE DESIGNICALCSaR01SEISMICFORCE.xls I1.11IL■T1 www.hilti.us Profis Anchor 2.4.5 Company: Page: 1 Specifier: Project Address: Sub-Project I Pos.No.: Phone I Fax: Date: 1/17/2014 E-Mail: Specifier's comments: 1 Input data Anchor type and diameter: �� s • ,,.,,,�,,,.,.:°,v., -,; Effective embedment depth: hef,ea=8.000 in.(hewn',=-in.) Material: ASTM F 593 Evaluation Service Report: ESR-3187 Issued I Valid: 4/1/2013 1 3/1/2014 Proof design method ACI 318/AC3O8 Stand-off installation: -(Recommended plate thickness:not calculated) Profile: no profile Base material: cracked concrete,4000,fc'=4000 psi;h=10.000 in.,Temp.short/long:32/32°F Installation: hammer drilled hole,installation condition:dry Reinforcement: tension:condition B,shear:condition B;no supplemental splitting reinforcement present edge reinforcement none or<No.4 bar Seismic loads(cat.C,D,E,or F) yes(0.3.3.6) Geometry[in.]&Loading[lb,'nib] Z N 1.2* x I nput data and results must be checked for agreement with the existing conditions and for plausibIlityl PROFIS Anchor(c)2003-2009 Hdti AG,FL-9494 Schaan Hill Is a registered Trademark of HIS AG,Schaan (6/ 5 www.hiltius Profis Anchor 2.4.5 Company: Page: 2 Specifier. Project Address: Sub-Project I Pos.No.: - Phone I Fax: [ Date: 1/17/2014 E-Mail: 2 Load case/Resulting anchor forces Load case:Design loads Anchor reactions[Ib] Tension force:(+Tension,-Compression) Anchor Tension force Shear force Shear force x Shear force y 1 1821 382 -382 0 max.concrete compressive strain: -[^fie] max.concrete compressive stress: -[psi] resulting tension force in(x/y)=(0.000/0.000): 0[lb] resulting compression force in(x/y)=(0.000/0.000):0[Ib] 3 Tension load Load N,,,[Ib] Capacity+N.[Ib] Utilization pm=N„,/sN„ Status Steel Strength' 1821 5876 31 OK Bond Strength" 1821 2097 87 OK Concrete Breakout Strength" 1821 2268 81 OK •anchor having the highest loading "anchor group(anchors in tension) 3.1 Steel Strength N„[lb] 0 +nonducale 4N„,[Ib] N„„[Ib] 22600 0.650 0.400 5876 1821 3.2 Bond Strength AN,[in.2] A,. (in.2] sor.Na[in.] Ccr.Na[in.) c[in.] ca,[in.] 172.03 202.54 14.232 7.116 6.000 21.591 kc,cr Tk.uner.2500[psi) Kdry Tk,a[psi] Tk,msx,er[Pi] Wg,N■0 web 17 1880 1.00 1057 1549 1.000 1.000 eCa,N[in.] W.ct,N. ea,N fin.) Wec2 Na W.N. .d,Na 0.000 1.000 0.000 1.000 1.000 0.953 N.0[Ib] gnonductils i2N saia m 0Nsg[Ib] Nua[Ib] 13287 0.650 0.750 0.400 0.600 2097 1821 3.3 Concrete Breakout Strength ANC[in.2) AN.o[in.2) C;.mm(in.] ca,[in.] WC.N 324.00 576.00 6.000 21.591 1.000 ec,.N(in.) W.uf.N a 2N[in.] Wec2.N Wed.N Wcp,N k5 0.000 1.000 0.000 1.000 0.850 1.000 17 Nb[Ib] ()conducing Oa,[Ib] Nu,[Ib] • _ 24328 0.650 ()seismic 7750 0.400 2268 1821 Input data and results must be checked for agreement with the existing conrations and for plausibetyl PROFIS Anchor(e)2003-2009 Hilti AG.FL-9494 Schaan Hilo is a registered Trademark of Huth AG,Schwan —G/ 1111■III6Tl www.hlltl.us Profis Anchor 2.4.5 Company: Page: 3 Specifier: Project: Address: Sub-Project I Pos.No.: - Phone I Fax: I Date: 1/17/2014 E-Mail: 4 Shear load Load V.[lb] Capacity+V„[lb] Utilization tiv=V„./fV„ Status Steel Strength' 382 2278 17 OK Steel failure(with lever arm)' N/A N/A N/A N/A Pryout Strength(Bond Strength 382 4517 9 OK controls)" Concrete edge failure in direction x-" 382 1228 32 OK anchor having the highest loading "anchor group(relevant anchors) 4.1 Steel Strength V.[lb] IP Nonducsle 4V..[lb] Vua[lb] 9492 0.600 0.400 2278 382 4.2 Pryout Strength(Bond Strength controls) AN.(in.2) ANa0(in.2] Scr.N,(in.) coo.[in.] c[in.] c.[in.] 172.03 202.54 14.232 7.116 6.000 21.591 kc,a _ Tk,unc,2500[p00] Keg Tk,ot[psi] TIonexa[psi] Wg,Na° Wri la 17 1880 1.00 1057 1549 1.000 1.000 ec1.N[in.] ylect,Ne er2,N[in.] +�.ezNa Wp.Na yred.N. 0.000 1.000 0.000 1.000 1.000 0.953 N.0[lb] Qsesame tkonduaae aN.sels 0 aVopg[lb] N.[lb] 13287 0.700 0.750 0.400 0.800 4517 382 4.3 Concrete edge failure in direction x- i.[in.] do[in.] c1(in.] Ave[in.21 Ave)(in.21 5.000 0.625 6.000 135.00 162.00 Wad.V typaraeel.V ec.v(in.] Wscv Wc,v Wh.v 0.900 1.000 0.000 1.ob0 1.000 1.000 Vb[lb] Q tpsetsmic tnmducale •Vcby[lb] V.[lb] 7797 0.700 0.750 0.400 1228 382 5 Combined tension and shear loads pN (3v C Utilization No,(%) Status 0.868 0.311 5/3 94 OK (3NV=04+pv<=1 Input data and results must be Checked for agreement with the existing conditions and for plausibility) PROFIS Anchor(c)2003.2009 Heti AG.FL-9494 Schaan Hid is a registered Trademark of Hit AG.Schaan 10'^ 0/ I■■IIi�T� www.hilti.us Profis Anchor 2.4.5 Company: Page: 4 Specifier: Project: Address: Sub-Project I Pos.No.: Phone I Fax: Date: 1/17/2014 E-Mail: 6 Warnings • To avoid failure of the anchor plate the required thickness can be calculated in PROFIS Anchor.Load re-distributions on the anchors due to elastic deformations of the anchor plate are not considered.The anchor plate is assumed to be sufficiently stiff,in order not to be deformed when subjected to the loading! • Condition A applies when supplementary reinforcement is used.The 9 factor is increased for non-steel Design Strengths except Pullout Strength and Pryout strength Condition B applies when supplementary reinforcement is not used and for Pullout Strength and Pryout Strength.Refer to your local standard. • Design Strengths of adhesive anchor systems are influenced by the cleaning method.Refer to the INSTRUCTIONS FOR USE given in the Evaluation Service Report for cleaning and installation instructions • The present version of the software does not account for adhesive anchor special design provisions corresponding to overhead applications. Refer to the ICC-ES Evaluation Service Report(e.g.section 4.1.1 of the ICC-ESR 2322)for details. • Checking the transfer of loads into the base material and the shear resistance are required in accordance with ACI 318 or the relevant standard! • An anchor design approach for structures assigned to Seismic Design Category C,D,E or F is given in ACI 318-08 Appendix D,Part D,3.3.4 that requires the governing design strength of an anchor or group of anchors be limited by ductile steel failure.If this is NOT the case,Part D.3.3.5 requires that the attachment that the anchor is connecting to the structure shall be designed so that the attachment will undergo ductile yielding at a load level corresponding to anchor forces no greater than the controlling design strength.In lieu of D.3.3.4 and D 3.3.5, the minimum design strength of the anchors shall be multiplied by a reduction factor per D.3.3.6. An alternative anchor design approach to ACI 318-08,Part D.3.3 is given in IBC 2009,Section 1908.1.9.This approach contains "Exceptions"that may be applied in lieu of D.3.3 for applications involving"non-structural components"as defined in ASCE 7,Section 13.4.2. An alternative anchor design approach to ACI 318-08,Part D.3.3 is given in IBC 2009,Section 1908.1.9.This approach contains "Exceptions"that may be applied in lieu of D.3.3 for applications involving"wall out-of-plane forces"as defined in ASCE 7, Equation 12.11-1 or Equation 12.14-10. • It is the responsibility of the user when inputting values for brittle reduction factors(4,nonducale)different than those noted in ACI 318-08, Part D.3.3.6 to determine if they are consistent with the design provisions of ACI 318-08,ASCE 7 and the governing building code. Selection of jinondiei1e=1.0 as a means of satisfying ACI 318-08,Part D.3.3.5 assumes the user has designed the attachment that the anchor is connecting to undergo ductile yielding at a force level<=the design strengths calculated per AC1 318-08,Part D.3.3.3. Fastening meets the design criteria! Input data and results must be checked for agreement will the existing conditions and for plausibility) PROFIS Anchor(Cl 2005.2009 Hilti AG,FL-9494 Schaan Hilti is a registered Trademark of Hiiti AG,Schaan I . a , .t s 1 18 I 17 [ 16 15 6 14 13 12 11 NOrFS I I L44005 0400C RNA x0.AEW..T nE[.,4 'E P a..ETE0 MAW,nw k/e nor. ,.]uPl*NALL En.oWN.n n• O.BnET .,11 BE MED KW.0 10W cowsmc Mx MN WRSEEI x ALL,P.0 CONE., a! PUs PW+MO a.wT.e aEAR D CE.04 CKCLE s.)s*oo cn.MA OWE«.n0 P A.• n P 12,130.E E.)sw`rirtt.Waa'o OE us,cn-u+aa ul s r)f nro 94001.CoeCuir PD 14‘.101.wf• [� . ANT A.0 OUT Bs SAY,BE On LATEECOM. I KIM m"=c nwW m �..c En11.4.. ncR m.InnnI wc MCAT e I MAME Pa.w INS TM•ATE0 I . �•� w■ -_� 1 L Y+'..:Y.r.�.. C S' ` D no v,. A I a —• r As POSS.It AKA v0 o xxx ON .o I WAVE rcu wv.EwT OEM COrtR n.,C ! aon n aosm xE D,a 4..c wo+ac. i I son wnum.MEND,a wPCD e•Su CAME .�;Ikc k.,-k-.' k-'1:...<-C P aI. .'.;I. . .s4.50...:i`[.)o-*-G :t €.."Yet".....1: r' ' k '.>'s kl"iiti cs NNW BE,s vwa ; �' ski F PP yk .1 , ..sT o.oEC rr CAIMANS Lc gg at r�� x n o 0 ®U U IS rr-!"�urc n�.,E r�U P Evn,w[�,. 1.7.-.1 r ) M. I 0 Q Q O i? Q --u 0 Q �---il Q d Ea en en En I: i f®tea ' C I••0 COBB w 0 0 ®wo®12[A.13 Q Q ®88�q��8cp, 0 ®O 0 ®OE106 Q 0 o®oe Ts' A V 1 5 O 1 A m•A e 49 Z 4a'NJ A A le®V o rt A A V A ' _a � �LO o ° Lo L _o 0 . 0 �. Q 0 0 0 0 . 0 �0 a Q _� 1 o o $ 0 _o w. 0.;_ e BM � 0 a 0 Q 0 n c- a a R.-� Q _ o- . a Q� �.x� _ a < C, n.. >o_ .w ._ >ur law MR >v L�. FRONT view I 40004 RAIN 131O5.5 P[WE•I]WIRE.4.00.1.C.00 RR BRACBO AT I00E.UC 4000A RAIN Bus.D PRASE.3 RIM 4600AC.80 la.BRACED AT I00IUIC 1 Le-4 l' IBC 7 gi4.4. 1-1.'41C 71, ;, Ie. #ET's — �K[� w.. :T4 fl i J WC 1 # +----I 1 ! K(0 Al • • --.-.a• r,R'•v!il$Npv •' s[..ru s OA,E TITLE.0O..OIT.'sx I GE WAVEPRO NOT CERTIFIED „ 5�....� u 4a "` .--•o °i[^^W P"-'QT Y DRAW—OUT BREAKERS FOR CONSTRUCTION (4) � e ti Kt..s, cm FIRST ,,,n ors..a...•SRRR 1 r 0.A.KO.,, 005 Ax0.E5, a.l W-..,3 MK MR'a mnr WWI REV ISI0w5 [c y En wa*Rru4 we cnsw[.rt,.w 000). ' ..x0 n0 n.w-s.wr-o-r A[v ECw ............. RsEW[Prp[ 0.*[ ` V+ �3) GE Zenith Controls `.:' : �,,�. °' rah( ..E. a. ,� w.w SCALE E• i Pee r TPe i r • 3 • 18 I 17 I 16 15 14 13 12 I 11 D r. r. r. r. r. r, r. r. r. \k I v' \ I '-, \./ W' I "" X x `., X_ f—' MANN 0.11.411.6 WIMP 00....1 w....< .........n..1 11...-..5.1 •�.........< .v....1 C P.n Mar MR.CdWi;� Km.meal 1 IR'm,m.:, N.rO.COMM 10 alKul, IR1P RR RP/ "mon mom a� �..,. a: 1111, w"..ro .a. .�.: . .ao .. 1111,. 1... wv.:1e • "" 1--0.0411ti—.1 1.--81102,1•03 I I —....n,.>--I I--....1,..—.I l—..1.1.1.,E 1-21302.1..,-11—d..1..,-1 L—s...m,—I 1.-3.01,30,-1 o- war .,___fa• ,, „_1 ao• ' —I— , iur , _a.r . _ vr , _alr , — vr ° 1vr ° _s —ssor sue=d 1 aarr-- as—•.-a— — ,i — i"11 mm ,5 1 5*__ _.r j 1 .'' S a 1 1 C 1 1 1i r•' a 't a '1 \ a -/ '' B ..-- tom/ %`J ty ,.i j' ,t, ■y..: ty \L'': — It _11 n _ n c s • ry I ,,'G''' .,..3,®n FLOOR PLAN & CABLE SPACE DETAIL .e1.1._. • '`f `'L'' a .m A -- ....:.aa..a oarzu:I"- Rartw.. o.1c TITL6DIw......a.o4 GE WAVEPRO NOT CERTIFIED "'°'°°°"'"°'°° J, "-9 al'1...E w.c i�, DRAW-OUT BREAKERS FOR CONSTRUCTION `� - 1p as s. .ozo I----._e___..- — - 1111_. ..IO FIRST N.mica/norm swot 1111._11__11... 1111_.-. -. 10.RCM,. 005 MR 11.435. I-11-.) KOK MR.On sr R.....awe. REVISIONS 1a wo..na1..s m.mE0,na w.../.1 .R.CTITS 1 L.. rw n•«-ooa-A-, MC (5. 01..EDI aWVTp IM .N1ao ' 49"ACT.` iW...t1rat4:T-`.Y': rINISn ./ DvG No.+..0 aawus GE Controls '�L ;. � _ �1��aaal..m+Ie I I,., r "" " �C�.'�. autoCod;,e.wratetl '"O'i 9" o„Km.a wSCAIE, ISIEET sza W A.KOIV 4-1:0' 1/17/2014 Construction Engineering Services,LLC SEISMIC DESIGN FORCE Input: SDS= 0.697 From Spec Sec 01612 ap= 1.0 Selected from ASCE 7-05 Tables 13.5-1 or 13.6-1 Rp= 2.5 Selected from ASCE 7-05 Tables 13.5-1 or 13.6-1 1p= 1 5 From Spec Sec 01612 *If RM>OTM-->No Tension on Anchors Dist to CG Moments(ft-lb) 1.3'Tension 1.3•Shear Component Wp(Ib) z/h Fp(Ib) Fp Max(Ib) Fp Min(Ib) Vert(ft) Horiz(ft) OTM RM _ (Ib) #Anchors (Ib) Vapor Phase 7885 0.00 1319 13190 2473 Use Min Value 7.08 1.13 17518 6747 3826 4 804 General Notes: Fp was determined from Section 13.3 from ASCE 7-05 Anchor points on equipment were assumed to be existing based upon contractor provided drawings or shall be provided by equipment manufacturer. CG's were assumed to be at the center of component if not provided on drawings. Anchor design values were increased by a factor of 1.3 per ASCE 7-05 Section 13.4.2a. All components assumed to be floor mounted unless noted otherwise. All anchors specified are minimum size required,large size anchors are acceptable with approval from VAK. Anchors shall be installed per manufacturers specifications Strength Design OTM=Fp*CG Vert Strength RM=[0.9-02*Sds]'Wp*CG Horiz V,\2014114008 WESTERN POWER SYSTEMS DURHAM PROJECT\PHASE A SEISMIC ANCHORAGE DESIGN\CALCS\RO\SEISMICFORCE.xis www.hiltl.us Profis Anchor 2.4.5 Company: Page: 1 Specifier: Project: Address: Sub-Project I Pos.No.: Phone I Fax: I Date: 1/17/2014 • E-Mail: • Specifier's comments: 1 Input data t i►4trrrr • I. Anchor type and diameter: Effective embedment depth: h 10.000 in. h in. Material: ASTM F 593 Evaluation Service Report: ESR-3187 Issued I Valid: 4/1/2013 3/1/2014 Proof: design method ACI 318/AC308 Stand-off installation: -(Recommended plate thickness:not calculated) Profile: no profile Base material: cracked concrete,4000,f5=4000 psi;h=15.000 in.,Temp.short/long:32/32°F Installation: hammer drilled hole,installation condition:dry Reinforcement: tension:condition B,shear:condition B;no supplemental splitting reinforcement present edge reinforcement none or<No.4 bar Seismic loads(cat.C,D.E,or F) yes(D.3.3.6) Geometry[In.]&Loading[Ib,in.lb] Z b w X3.5« O �/-- • Input data and results must be checked for agreement with the existing conditions and for plaustitityl • PROFIS Anchor(c)2003-2009 Hilti AG,FL-9494 Schaan Hitt is a registered Trademark of Hilti AG,Schaan W J� L 14 116111.11.I www.hilti.us Profis Anchor 2.4.5 Company: Page: 2 Specifier. Project: Address: Sub-Project I Pos.No.: - Phone I Fax: I Date: 1/17/2014 - E-Mail: 2 Load case/Resulting anchor forces Load case:Design loads Anchor reactions[Ib] Tension force:(+Tension,-Compression) Anchor Tension force Shear force Shear force x Shear force y 1 3826 804 -804 0 max.concrete compressive strain: -[%e] max.concrete compressive stress: -[psi) resulting tension force in(x/y)=(0.000/0.000): 0[Ib] resulting compression force in(x/y)=(0.000/0.000):0[Ib] • 3 Tension load Load Naa[Ib] Capacity$Nn[Ib] Utilization 13N=Naal$N„ Status Steel Strength* 3826 10204 38 01( Bond Strength" 3826 4826 80 OK Concrete Breakout Strength" 3826 4881 79 OK anchor having the highest loading "anchor group(anchors in tension) 3.1 Steel Strength Nse[lb] $ $nonducale $Nsa[Ib) Nun[Ib] 39245 0.650 0.400 10204 3826 3.2 Bond Strength Alva[in.2] ANad[in.2] SorNs[in.) calve[in.] c[in.] cae[in.) 396.99 396.99 19.925 9.962 12.000 24.144 kc,cr Tk.uncr,2500[psi/ Kdry Tk,cr[psi] Tk,max,cr[psi] t17Q,Ns0 441.Na 17 1880 1.00 900 1237 1.000 1.000 ect.N Iin.] ty•ct,NS ee2.N(in.) tlrec2.Na W,Na yredNa 0.000 1.000 0.000 1.000 1.000 1.000 Nno[Ib) $ $seismic $nonducals aN,sels $aNag[lb) Nun[Ib] 24748 0.650 0.750 0.400 1.000 4826 3826 3.3 Concrete Breakout Strength Ark[in.2) A'kg[in.2] cumin[in.] en[in.] tyc,N het[in.) 650.25 729.00 12.000 24.144 1.000 9.000 ect.N[in.] 1(/ect,N eau(in.] tyac24N +yadN Wcp.N kcr 0.000 1.000 0.000 1.000 0.967 1.000 17 Nb[Ib] ¢ $seismic $nonduculs $N [Ib) Na.[Ib] - 29030 0.650 0.750 0.400 4881 3826 Input data and results must be checked for agreement with the existing conditions and for plauseiityl PROFIS Anchor(c)2003.2009 Hilti AG,FL-9494 Schaan Hill is a registered Trademark of HIM AG,Schaan Ut.G/ 1■■111..IT1 www.hiiti.us Profis Anchor 2.4.5 Company: Page: 3 Specifier: Project' Address: Sub-Project I Pos.No.: ' Phone I Fax: 1 Date: 1/17/2014 E-Mail: 4 Shear load Load Vaa[lb] Capacity 4Vn[lb] Utilization pq=V.J.V. Status Steel Strength' 804 3956 21 OK Steel failure(with lever arm)* N/A N/A N/A N/A Pryout Strength(Bond Strength 804 10394 8 OK controls)" Concrete edge failure in direction x-'" 804 3331 25 OK *anchor having the highest loading "anchor group(relevant anchors) 4.1 Steel Strength Vw[lb] 7_ Ononduab 0V4a[lb] Vua[lb] 16482 0.600 0.400 3956 804 4.2 Pryout Strength(Bond Strength controls) AN.[in?] ANe0[in 2] sor,N,[in.] cam[in.] c[in.] c,.[in.] 396.99 396.99 19.925 9.962 12.000 24.144 kc,cr Lk,una,2500(Psi] Kd�y Sk,cr[Psi] Sk,mex,a[PSI] Wg Nat lyg,Na 17 1880 1.0`� 900 1237 1.400 1.000 ec1,N[in.] y.cl,Na eC2,N[in.] gxeca,Na 4Vv.Na y/edNa 0.000 1.000 0.000 1.000 1.000 1.000 N.0[1b] tQ el,mc +nondudlle aN,sels 0 aV [lb] NW[lb] 24748 0.700 0.750 0.400 1.000 10� 804 4.3 Concrete edge failure in direction x- 1.[in.] do[in.) Cl[in.] Avc[in.2] Ave,(in.21 7.000 0.875 10.000 382.50 450.00 tyed,v Wperalel,V ee,9[in.] hyec,V tfISV why 0.940 1.000 0.000 1.000 1.000 1.000 19850 0.7700 750 �0 400b +3�1b] V804 j 5 Combined tension and shear loads ON pv C Utilization jN,v[%] Status 0.793 0 241 5/3 78 OK j3N=(sN+pv<=1 Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor(c)2003-2009 Ndti AG,FL-9494 Schaan Nilti Is a registered Trademark of'WAG,Schaan /rn ( 7/ I www.hilti.us Profis Anchor 2.4.5 Company: Page: 4 Specifier: Project Address: Sub-Project I Pos. No.: Phone I Fax: i Date: 1/17/2014 E-Mail: 6 Warnings • To avoid failure of the anchor plate the required thickness can be calculated in PROFIS Anchor.Load re-distributions on the anchors due to elastic deformations of the anchor plate are not considered.The anchor plate is assumed to be sufficiently stiff,in order not to be deformed when subjected to the loading! • Condition A applies when supplementary reinforcement is used.The m factor is increased for non-steel Design Strengths except Pullout Strength and Pryout strength. Condition B applies when supplementary reinforcement is not used and for Pullout Strength and Pryout Strength.Refer to your local standard. • Design Strengths of adhesive anchor systems are influenced by the cleaning method Refer to the INSTRUCTIONS FOR USE given in the Evaluation Service Report for cleaning and installation instructions • The present version of the software does not account for adhesive anchor special design provisions corresponding to overhead applications. Refer to the ICC-ES Evaluation Service Report(e.g.section 4.1.1 of the ICC-ESR 2322)for details. • Checking the transfer of loads into the base material and the shear resistance are required in accordance with ACI 318 or the relevant standard! • An anchor design approach for structures assigned to Seismic Design Category C,D,E or F is given in ACI 318-08 Appendix D,Part D.3.3.4 that requires the governing design strength of an anchor or group of anchors be limited by ductile steel failure.If this is NOT the case,Part D.3 3.5 requires that the attachment that the anchor is connecting to the structure shall be designed so that the attachment will undergo ductile yielding at a load level corresponding to anchor forces no greater than the controlling design strength.In lieu of D.3.3.4 and D.3.3.5, the minimum design strength of the anchors shall be multiplied by a reduction factor per 0.3.3.6. An alternative anchor design approach to ACI 318-08,Part D.3.3 is given in IBC 2009,Section 1906.1.9.This approach contains "Exceptions"that may be applied in lieu of D.3.3 for applications involving"non-structural components"as defined in ASCE 7,Section 13.4.2. An alternative anchor design approach to ACI 318-08,Part D.3.3 is given in IBC 2009,Section 1908.1.9.This approach contains "Exceptions"that may be applied in lieu of D.3.3 for applications involving"wall out-of-plane forces"as defined in ASCE 7,Equation 12.11-1 or Equation 12.14-10. • It is the responsibility of the user when inputting values for brittle reduction factors(inond„ctite)different than those noted in ACI 318-08,Part D.3.3.6 to determine if they are consistent with the design provisions of ACI 318-08,ASCE 7 and the governing building code. Selection of cnonductla=1.0 as a means of satisfying ACI 318-08,Part D.3.3.5 assumes the user has designed the attachment that the anchor is connecting to undergo ductile yielding at a force level<=the design strengths calculated per ACI 318-08,Part D.3.3.3. Fastening meets the design criteria! Input data and results must be checked for agreement wth the existing conditions and for plausibility! PROFIS Anchor(c)2003-2009 Hilli AG,FL-9494 Schaan Hllli is a registered Trademark of Huai AG,Schaan 66/ ..r.,A Y:-_-.- I AwoeA.77.rA1w,m,.c.oK W AM O "` ow"' °' 77: .O r M MR I Z1 MO. m e. 0.7 Y-4,0 .'0! . L sairws./.-A S.S. ..arc ex.., /x I / • • - SM tD.117 SxmC x0ew KSSR[/• .\ I Q I S I II_ T lilt I\ . ---- .. -Hr ' 1 i_1 011-•A1. IF `��.1 ,.�"" • @__... - ! I I . PLANwVIEW UM 0001 070. I I I • . I I .ME. R - ' .77,/....."... // O Y$ 10 .ue -� I O 017.00•M.A.10 R GENERAL NOTES:a.m. I I I S L KG1.s3K• A 7.10rt ac0.. 54-301-70 MOS... I i I K I MM.STES - . I wee.AVER oo 09 I ..as s-s1-4 ns on v-.04 w• MCA 0-M. MINd•11 WATER TED.. 2501 I n.1 me.0�TRK710 0.0 00.0.SF,.0. I I I 1K'AM1.c suM.0 111 e 0 .wail m �a.."A'nuro no a w.s• MO I KM.�c SOREACC 1'- SO *01ER soul R 0007 0109701. 700 MO I ya'.111Y00c I.EAn.c So) _.rAC r m FT.ExR1. IO I 00.se re--p-.s 0010010C G• -19/n1,/50 Md. r60.O A�uR: 1 ----- - -_ Iw.1.A1x Ra1EF s 50001. zsSR,B/xx1 :WM 7 ."`.. Z r•- . d.i/ i- j I (YEA.BUILT s sERK.0. X31._1.-1 00. pm x. 1 1!�S7000As MOIM I e I IKS c1 I p RAMC B0.rIXfs 70 AMO xWU K fR x/. WM0117.010M AI(S..1 1.in.1 37(11.7.0 •1(Or.11 1. (� MOCCRI.I T MIT• OM 0 01 7 I © Al. WRO.0.7(`On00001 NTTw.0 x, a NOLi�E SG11€011LEvv=et a xKAD..0gG10.3 r01 y.x7w. ri•-- J N1 OTT sq RATMG TTPE SE.RCE © A 1 14 1259 DR P1,FLG. E%.AV50 INLET �.^0y..�d a�'xS •I TJTIl �E�LTA B 1 2.- 1259 DR PL FLO E01ASUST OUTLET `�'"' �r""".r i.��+�mi..e�"^" St I •J"' '"•'•I 1 C 1 3' 1501 ANSI WATER INLET w `/T 1 l _0 1 }' ISO/ ANO WATER OUTLET REV, OATS OAK OESCRIPrON KILKIN4 OEH ER.MC. A101M![9.40 ` +x01•Y 0.e. E I 2' SC11.AO NRTK SAr'EtT/RELIEF vaRORRwSE ONILON ,{�, UMW 'p�Ault i0(fRNICE$NOT SPECIFlGLIr LISTED / /� 025 Ee.l Co..Ave. Y F S 2' }coop n9TF .2.2„ R./R0:012,®..22. ....r. C 1/Y 30009 NR1F WATER SIDE DRAM w/0.05 ST.LOWS. 261-47I 631.1 FJ.RYATION 0 00 7.e 3r M 1 if 5CN.40 *PM GAS SEX DRAM r" (St{)261-2,266 °'weernA O• "` " } , 3°001 NP" newS`1B`co"rt'" EXHAUST WASTE HEAT RECOVERY SILENCER '*0 r1[W SO[OM•.WAS K 3 A- 30009 NOT. 401 roo.LW 511001 CONK L 3/A- 30009 11PTF 407 0R.W000L OWN COW. ""°`°°"°°"° MODEL ECXWV-3490-2.0 SPCL r 1- 5GN.w NPTK LO.am run an-01F ca1K F R HOT WATER K I .t . . EL1A. G15 SOf ACCESS N7. a°°°' 5/ SERVICE SCALE NDKE OwT'E 2S(IS REy rt.� WN KVW R REN D-KV-1169-S 0 9 3354-I N. 6 Z 03356A.dgn 2013105\30 CH2MHILL PROJECT NO. 422389 4 1/2" MIN ALL AROUND 3" MIN ALL AROUND EQUIPMENT BASE #4@12" E W I I 1 1/2" l' ANCHOR BOLT, SEE NOTES ' 1 & ANCHOR BOLT DETAILS 1 1/2" FLUID MAX NON-SHRINK GROUT 3/4" CHAMFER, TYP ii/AWAI8"AL prowl _ 2 - #4 @TOP OF PAD NN� _/° Z lii ADDL #4 @6" SEE NOTE 7 • JE �2 FOR PAD.HT > 10"•L • , : 4 : • IL . ' 1 ANCHOR BOLT SLEEVE #4 @12"l MIN 4 PER PAD SUSPENDED SLAB OR SLAB (#5©12" FOR AB 3/4" DIA ON GRADE; FOR REINF AND OR LARGER) THICKNESS NOT SHOWN SEE PLANS CONSTRUCTION JOINT TYPE A GENERAL NOTE: FOR GENERAL NOTES SEE DETAIL 9 OF 9. CONCRETE EQUIPMENT PAD - TYPE A NTS DETAIL 1 OF 9 CH2M HILL CLEAN WATER SERVICES ( 3356 DURHAM AWWTF PHASE 5D2 CH2MHlLL . { = ' to 03356L.dgn 2013\05\30 CH2MHILL PROJECT NO. 422389 NOTES: 1. PAD SIZE SHALL BE MINIMUM INDICATED OR AS SHOWN ON THE PLANS OR AS INDICATED BY THE MANUFACTURER AND APPROVED BY THE ENGINEER. 2. THE SIZE, NUMBER, TYPE, LOCATION, AND THREAD PROJECTION OF THE ANCHOR BOLTS SHALL BE DETERMINED BY THE EQUIPMENT MANUFACTURER AND AS APPROVED BY THE ENGINEER. ANCHOR BOLTS SHALL BE HELD IN POSITION WITH A TEMPLATE OR OTHER ACCEPTABLE MEANS, MATCHING THE BASE PLATE, WHILE PAD IS BEING PLACED. 3. ANCHOR BOLT SLEEVES SHALL BE USED TO PROVIDE MINIMUM ANCHOR BOLT MOVEMENT OF 1/2" IN ALL HORIZONTAL DIRECTIONS. THE MINIMUM SLEEVE LENGTH SHALL BE 8 TIMES THE BOLT DIAMETER. 4. ANCHOR BOLT SLEEVES SHALL HAVE A MINIMUM INTERNAL DIAMETER 1" GREATER THAN BOLT DIAMETER AND A MAXIMUM INTERNAL DIAMETER 3" GREATER THAN ANCHOR BOLT DIAMETER. SLEEVES SHALL BE FILLED WITH NON-SHRINK GROUT AFTER BOLTS ARE ALIGNED. SEE WM . 5. EQUIPMENT BASES SHALL BE INSTALLED LEVEL UNLESS INDICATED OTHERWISE. 6. WEDGES, SHIMS, OR LEVELING NUTS SHALL BE USED TO SUPPORT THE BASE WHILE THE NON-SHRINK GROUT IS PLACED. WEDGES OR SHIMS THAT ARE LEFT IN PLACE SHALL NOT BE EXPOSED TO VIEW. 7. HEIGHT OF PADS SHALL BE MINIMUM REQUIRED FOR ANCHOR BOLT CLEARANCE TO KEEP ANCHOR BOLT ABOVE SUPPORTING SLAB (SEE TABLE BELOW). WHERE EQUIPMENT OR PIPING ELEVATION REQUIRE A PAD HEIGHT LESS THAN THE MINIMUM SHOWN, USE TYPE "B" EQUIPMENT PAD WITH BLOCKOUT. 8. TYPE "D" PAD SHALL BE USED ONLY WHERE SPECIFICALLY INDICATED. PLACE THE SURROUNDING FLOOR SLAB AFTER THE EQUIPMENT PAD. 9. AT CONTRACTOR'S OPTION, CONCRETE ANCHORS MAY BE USED IN LIEU OF CAST-IN-PLACE ANCHOR BOLTS FOR EQUIPMENT ANCHOR BOLTS LESS THAN 3/4" DIAMETER WHEN APPROVED BY THE EQUIPMENT MANUFACTURER AND APPROVED BY THE ENGINEER. ANCHORS SHALL BE INSTALLED WITH 4" MINIMUM EDGE DISTANCE IN EACH DIRECTION. AB DIA (IN.) 1/2 5/8 3/4 7/8 1 1 1/4 1 3/8 1 1/2 1 3/4 2 MIN PAD HT (IN.) 7 8 1/2 10 11 12 1/2 15 16 1/2 18 21 24 CONCRETE EQUIPMENT PAD - NOTES NTS ����� ��� DETAIL 9 OF 9 CLEAN WATER SERVICES ( 3356 DURHAM AWWTF PHASE 5D2 ,CH2MHILL