Loading...
Plans (2) 7 r y g z- • EMIConsulting Engineers RECEIVED July 31, 2013 SEP 5 2013 CITY OF TIGARD BUILDING DIVISION Mr. Andrew Kraus Scott I Edwards Architecture 2525 E. Burnside St. Portland, OR 97214 RE: The Adrienne Building Tigard Oregon Dear Andrew, Attached please find calculation sheets 1 through L-55, dated July 31, 2013, which verify the structural adequacy of the Adrienne Building, as shown on drawings 50.1 through S7.3, dated August 1, 2013. The analysis is based on the requirements of the 2010 Oregon Structural Specialty Code, based on the 2009 International Building Code. If you have any questions or need further information, please call me. City of Tigard Sincerely, Ap roved Plans By Date I((5 i' � � �(.{ate-" tjv t�zc r? Michael Arellano, P.E. 11..t v. 4Q�W� pR©k OFFICE COPY MA:kw ��� �i '� �� 213043/calcs 07-31-13.docx —of 152 Ormaj V moos, 94, 21,1 'LLD L. 04(11 XPIRE8: 1231-13 111 SW Fifth Avenue, Suite 2500 Portland, Oregon 97204-3628 (503) 227-3251 Fax (503) 227-7980 Seattle Tacoma Portland Eugene San Francisco Sacramento Los Angeles Irvine San Diego Phoenix Denver St. Louis New York Consulting Engineers The Adrienne Tigard, Oregon Structural Calculations KPFF Project No. 213043 July 31,2013 Submitted to: Scott I Edwards Architecture 2525 E. Burnside St. Portland, OR 97214 Submitted by: KPFF Consulting Engineers 111 SW Fifth Avenue, Suite 2500 Portland, Oregon 97204-3628 impProject By Sheet No. The Adrienne MM 1 Location Tigard, Oregon Date Job No. Client Scott I Edwards Architecture 07/31/13 213043 Project: The Adrienne Principal: Jerry Abdie, S.E. Project Manager: Michael Arellano, P.E. KPFF Job No,: 213043 STRUCTURAL CALCULATIONS INDEX Page Number Description From To Structural Design Criteria 1 6 Gravity Design G1 G109 Lateral Design L1 L55 DIEProject By Sheet No. The Adrienne MM 2 Location Tigard, Oregon Date Job No. Client Scott I Edwards Architecture 07/31/13 213043 Structural Design Criteria Building Code: 2010 Oregon Structural Specialty Code, based upon 2009 International Building Code Reference Documents: ACI 318-08, Building Code Requirements for Structural Concrete ACI 530-08, Building Code Requirements for Masonry Structures AF&PA, NDS 2009, National Design Specification for Wood Construction AISC Steel Construction Manual 2008, 13th Edition AISI S100-08 Cold-Formed Steel Design Manual AISC 341-08, Seismic Provisions for Structural Steel Buildings ASCE 7-08, Minimum Design Loads for Buildings and Other Structures AWS D1.1-04, D1.3-98, D1.4-09, Structural Welding Codes Snow Load Analysis for Oregon 2007, with January 2011 White Paper and June 2011 Snow Load Tables, by SEAO Live Loads: Roof 25 psf+drift Roof Terrace 40 psf Residence 40 psf Stairs and Corridors 100 psf Lateral Loads: Seismic Ss = 0.949g, S, =0.34g Fa= 1.12, F,i= 1.72 Site Class D Seismic Design Category D Sos=0.708g, SDI = 0.39g Importance Factor, IE= 1.0 Wind Basic Wind Speed = 95 mph (3-second gust) Exposure Category B Enclosure Classification = Fully Enclosed Importance Factor, Iw= 1.0 Snow: Design Roof Snow Load = 25 psf Importance Factor, Is= 1.0 Project By Sheet No. • The Adrienne MAA 3 Location Tigard, Oregon Date Job No. Client Scott I Edwards Architecture 07/31/13 213043 Structural Design Criteria (cont.) Foundations: Geotechnical Engineer Report No./Date Foundation Bearing Material Native Soils or Engineered Fill as noted Spread Footing Allowable Bearing Pressures Dead + Live 2000 psf Dead + Live +Wind or Seismic 2667 psf Project By Sheet No. • The Adrienne MAA 4 Location Tigard, Oregon Date Job No. Client Scott I Edwards Architecture 07/31/13 213043 Structural Materials Concrete: ACI 318-08 Element f'c at 28 days Footings 3000 psi All Uses Unless Noted Otherwise 4000 psi Reinforcing Steel: ACI 318-08 #4 and Larger: ASTM A615, Grade 60 including Supplementary Requirements S1, Fy = 60 ksi Welding: AWS D1.4-98 Structural Steel: AISC Manual, 14th Edition Welding: AWS D1.1-04 Element ASTM No. Fy ksi Beams, Girders, Columns A36 36 A572, Grade 50 50 Tube Steel A500, Grade B 46 Pipe A53, Grade B 35 Plates A36 36 Connection Bolts A325-SC 92 Anchor Bolts F1554, Grade 36 36 Masonry: ACI 530-08 Reinforced Concrete Masonry: f'm= 1,500 psi, fully grouted Special Inspection: Yes Element ASTM No. 28 Day Strength Hollow CMU C90. Grade N-1 1,900 psi Mortar C270, Type S Grout C476 2,000 psi Wood: NDS 2005 Sawn Lumber: Douglas Fir-Larch Strength Properties (psi) Size Classification Grade Fb F, F, FOP F, E/106 Dim, Lumber 2"to 4"Thick No. 2 900 575 180 625 1,350 1.6 Beams 5"x5"and Greater No. 1 1,350 _ 675 170 625 925 1.6 Posts 5"x5"and Greater No. 1 1,200 825 170 625 1,000 1.6 T&G Decking Commercial 1,450 -- -- 625 -- 1.7 Project By Sheet No. The Adrienne MAA 5 Location Tigard, Oregon Date Job No. Client Scott( Edwards Architecture 07/31/13 213043 Sill Plates: Pressure Treated Douglas Fir-Larch No. 2 Structural Materials (cont.) Structural Glued-Laminated Timber: Douglas Fir/ Douglas Fir Grade Strength Properties (psi) Fbxt Fbxc . Ft F. Fvy FOP Fc Ex/106 Ey/106 EZI106 24F-V4 2400 1850 1100 240 210 650 _ 1650 1.8 1.6 1.7 24F-V8 2400 2400 1100 240 210 650 1650 1.8 1.6 1.7 Design Loads: Stair and Elevator Penthouse Roof Loads(psf) Roofing 2.0 Sheathing 3.0 Insulation 3.0 Ceiling 1.0 Mechanical and Electrical _ 1.0 Fire Sprinklers 1.0 Framing 4.0 Dead Load 15.0 Live Load (snow) 25.0 Total Load 37.0 Roof Terrace Loads—Wood framing (psf) Gravel Base and Concrete Pavers 30.0 Roofing 2.0 Sheathing 3.0 Insulation 3.0 Ceiling 1.0 Mechanical and Electrical 1.0 Fire Sprinklers 1.0 Framing 4.0 Dead Load 45.0 Live Load 40.0 Total Load 85.0 EffaProject By Sheet No. The Adrienne MAA 6 Location Tigard, Oregon Date Job No. Client Scott I Edwards Architecture 07/31/13 213043 3rd Floor Loads Loads—Wood framing (psf) Finish 1.0 1-1/2"Gyperete 14.0 Sheathing 3.0 Ceiling 1.0 Mechanical and Electrical 1.0 Fire Sprinklers 1.0 Framing 4.0 Dead Load 25.0 Live Load 40.0 Total Load 65.0 2nd Floor Loads—Steel with Concrete over Metal Deck(psf) Residence Finish 1.0 3 Concrete Topping on 3" Metal Deck 54.0 Decking 3.0 Framing 5.0 Ceiling 1.0 Mechanical and Electrical 1.0 Fire Sprinklers 1.0 Dead Load 66.0 Live Load 40.0 Total Load 106 Gravity Design G1 — G109 riil Floor Map RAM Steel v14.04.00 . RAMData Base: Adrienne 2nd Floor 6- (1-#1-Vi'Y-r At- -/(0-k)> — c)63,(2,- L,DA-Oz-- 07/26/13 14:19:31 Building Code: IBC Steel Code: AISC LRFD Floor Type: 2nd Floor (----\ P1 P1 .::):4 p.M4.1:".::.::ii:1:i:.ii...:.i,:;.,:.:.:::i,•*.i:i:.::;:.,.:,:.i.::.::;,::::.i::..f..*":.::::,:i:'i•;:::'!;::":.:*::•:":.M•::"::.:.•.:•:•::•::•••:1•:•:.::.•:,•'::.:•,:::.:•::••:,:•'::,:f:.i.f-.:,..:.k:i.K::.:i:.:i:'ii::i:i':ip:,.:•::•:.::i.:•.,.;::::iN.:i:...i:Ni:i•.••.:•:•....:..2:::,:i:,:,::;wi;ii•::;;".;::.::::':::::;.::•.::;:..:.1•.:,i:.:::,:*-:;4.„.;1:5;.:.,1. , m.,:".:a--t i;i4i',i,:i,.I.iii,1,"ti:!:i:::i:i,.i....t.ii.:r:'l?,.•3-iri''...:.1]'r'.:i r''.ilip'.:*pi::ilii.::iii:•iiiiiist.i....1:i.1:..'.:.g::?::M11i.1'..:'.i:.:: 1..11.:1:1:1i1'..:11:::1-.:.:":i1:]:i..•:1ii1:i::]‘:.::.,•:1:;1::1i:•:::i$iii:::ii1.1'•:',:.1'•:::.:1*:::::1-.:1.1::::. 1;:....:.1;:i.::•::: 1iii:.1:.0:.::.;:!::::;:1:.:iiii:.i...1ii...;:i...;:1::!:;:•iii1:i ::i1...;...1;:if;i i.1:.;:,;:.i1i:1i';:ii1...1;g.1.1i.iiiiiji:i;t!a;i;l:1l;:piSriliitiiiiii..ti:i...:.i:..i;:.,::1i:i::i:::i:::1::::;1::::f:i;1i:f:i0iii1i1•::i1...,:.,:..:•1i1i:;::.1.: ::.:PtM .1!..4!.3...iii!.:!•,:.ir n p i —7 VV • . r 1.3 -- : 0 :::::::::::::::::::::.: ':::::::::::.:::.::::1:::'''':::::".:iiii.1:":1::::::::4:::"ii::::"::".;.:.:1::.::::::i."iii:::1:1:::*):•:1*:.*:.1?:•.:::::15':::::S;I:1 :.:8:1.:::':.;:t::1:::::::::::Ii:I.:.?.::•:::.::%::::.:i:::.::::::1;:.:,.::.:::1.:::::;:::;:1::;::::::;:::1::K.:1:';:1;::::::::1:1:;:.;:11;:::;:1:;;I: ,•.;•.1:;:::::::"...1;;;::.;::'...1..:;.!•!..:;:i;...:;,:•;:....1;':;1;:::•::..1..1.;::;::::::::;::..1::::.:::•:::•::iiii.; ::::::::::::::::i1:::1:1:1:1:1:1:1:1:•:::•::.:::::::•:::1:1:1:1.::::::;::,.$:::::::::::::,•:: :,:.,..,•,,...,•,,,,,,:,...,:::•:;..,,,•,.......,..,..,....:i•:::.,::::::,..;1:::::::,::::,1:::,..:::::::.:,...:::.:„.:„.:::.,..,. ii:1:1:11.::::::;:,:::::::,..:;:::::,...:;,:...,,:,,...c:,:,:.:,,li,,:iilii.::::::::.::i.,::.::,.,::,.:::.:::.::::::::,::::::::::::.,5,...,:::,:::.::i:::.,:.,...::::.:xiiiiii. ii.::,:::::::::::::.,,,:,:.:„...,:..„:::,,:„.::::::....1,1:.:::.:::.:,:,..:,..1,1:1:.::,...:.....:....1....:1:::::::,::::::,::::::::.:1,::.:,:,:,.:::,,,:.:.,,:.::...,,...li:1,.::.,:;iii,::.:::.....,::: :::::;.:.:);.% ...::.::*:::::;:::::.::::::::*'*'''::::':!'::i.:".::::".;:::::::'::::::::*"'Sift *ki::::•:'*i''''N.:,'Zir::4::::::::'%:::::ii:::::';'::::.0::,:::::::::::::::::%;,:: ...,•:::;:::f...::,:::,:::,...:::::::::::::::::::;:::;:.:;:::::::*:::.:.:.:.:. ::::*:::::::;;;i::2::::::,,,:::::::•::::::::.5.,:::.: :!„::ii„,„,„„:„„:„:„„„;„,„„„„„.::::.::::„.„.::„, ;::::,,,:::::::::1**1:,..,:x,,,::::::,::m.,::::::::,:::0:.,.:„,....:,:.:::::,.. ::::..:::::,:::::.,.:.:.:.:::::.:::::.::::*,..::,::: ..,,,,,%::::::::::x:::i*:::::::,,,,,:::::::::::::: ::%::::%%%:::: ...:.:.::*:5N.:::::'''''''''''''''%%:::::'::::::'''''.:4:::.'N''' ..:::.:::'::.:',4..:',:':".:.'::':.:.:.:.:::,::::„.:.:.:7,:":'::'.:','''''''''.7 ..'i;:';°''''':5:-:":.:.:.:.:":.:":":::.:.:.A.:*'',:%:..§'." :.%.,:.:.:.:.:::$$..N.:::.W.::::°:.:::".4::: ::::::':':::::::':f.f.:::::':::':'f'..:''''.:':::::::::'''''' ::::::::::;';':.:.:**%*.:4.;.•'''i•::::::::::%:::::*::::',',::"::::'::,:.* *:•::?a •:::::,::::::::::::,:*::::::::::::::5:::::::,f.,:::::::.:::,,,,....:....:••••:••••:.:::•:::::: :::::::::::''';:: ::::::::::::'''''''''''''''''::N.:(::::''''X'N4:'''.:":'''''....::: t$:.:'.:::.*:::.::N.N.N.:.:.:.:':- :-.':...''''':!':''''''''''''''''''' ''';'''''''''''''''''''''''.•:'.."::::::,;..:,:•••:...:': .....,:;••:,•(.:::•:::>::.:•:::::::•:::::::::•:•:.,::::::::....C:::: :::::::::::;:::::.:::::::::::::::::,:f.5,:f.,:;::::::::::::::::: ..,..,..:.::::::....,:::::*:::::::A v..i::::::::„...,,,K:.„::,:„„„„..„,:„:„..„::,,, :,.::.:f:,:.:.:.:.:.:.:.:.:.,.:,::..,‘::.„....., ,:::;f.....,..::::::::::::::::::::::::::::4:.„:::::...:%z ''''':::::::::: ::i:::.:.:.'''''''''''''''''':'::.:::::''''''N''''''''''''''''2.k%-: ::''''''''''''''''''''''''''''''''''''''.::;.**:.6'''::<P... '''''''''''''''''''''''''':":*.:"::*:-k•::.."-' •71%-"'`,....:NX:•‘4.••••••:•:::::::::.:::':::•,..:•:: :::::::::•:•::::::•:.:.:•:•:•:•:.:....:...•:-......:•:;;;;;::::::::: .:.:.:::.:.:.:....,:;...,,,,:::,,,,::„..:..„,,,:.,.,„:,,i,„M.,-,,,:.,..„„„„„„...1,, :..,,:. .,:::.,„;...,:. ..i.::„.,:::,,,....t.„:„:„:„:„:„:„:„:.:„,::,,....:......::„:.: ::::.:.:::::M W*.:::.:f.."::::::".'::::::.:i*:*:.: 1** i'VP;:i*>*!*i*M... f:ii::::::.*:::..*i:':•:.%1:K:i:*:: :i.°::N',1*:*':.:**.:*:''' i*:MK:'::4:::5*::::i*RNX::*::: ::::::::00MM::?*:e•f*X::i: S:::::;:;:;;;*;:;:::::::;:::::::::::::::::::::: „::„ if..::::.,i,..*..:;:::::::z::::mmi:m.;::: m„„,:::::::„...:::.:* :i:i:i:im ,,,::::::::::::::::: :::i:i::.*i..i*,..:..,..,....:,..,,:*,...,i*::::,,,..,.:i...f.i..i......::: :.''''''''' '''''''...:":''''''''''''.l''''''N''::::::.;:.:::::';'''''''''::::.$* .:1::*:'''.::::::::::::;::::'*::•••':$:::*1*::::X:Mi:+.•">:*:::*::::::•:::%: .:.4:::.::::!.::::::•::::::::Z:::::::::ZZ:•:::•:::::.*::: :::::$::::::::::::::::::,;:,:::::::::ft„„,*,..: :..,,..,..,:„,,,,„,..„:::::,:„*::,..:: :.,:.::„,:. ::,:::,„,..,.„.::::::;,:i,.::*..m:,..:::::,n,,,,.,,,::::::,.:::.4,..:,,,,::::::::::; :,,.:.::,.::.:.:::.„,:,*.:,,,.„..,..,..f.:,,:::: :::::::.,.:,..,....„...:::::::::::::::::::::,::.;:::.,.,:::::, ::1 i'i.::::':I.:1!.,..:.1:1 :!:..iii$'....•:.::::.:.1:1iiii::::::.1::::.:',1'...:%:1:::::::'A.1:i:li i';''::]::.:1•'1]:::::....";.1::."::."11:•••:•:1:4;1:1:::::::".ii:11.illiii.:.:::1.: ;•.;:%%:::..:.:%.::...I.:1.:;•::::::•:;.•:;:•::::•:.:.:•:...:1:.:::;:::',1:1%,::1,..,:1::::.:•,.:1,:•ii,:•.:1.:'::•.:1::::.•;:::::::•':•::••;••:).',.:,11:,..1,1,.::::•:::41.:.,:::::.:4:1,.:::1,•1,::;::..::::',.:*:$1,:::::::::::11::.;::11,1.::•,1:•:,..;:,11:',.ilf.'.1:..::;:.K.?:.;.::,;::::,..ii.l.t.iii::::.::,Iiiiii.i......?...r..•:.,1......,1.:•:.c:•:.:.:1.:1::11::•,,.:%::•:.:::•:.1.:::I:::.•:.:,..:::•,:.:::.:,,:„.:Iii.ii.:. .,,,.,•:.,,,•;.,,,,.:i....:,,.:.,;,,.:.:,,....:ii;:,....;::•,.::,..::,,•:.::,•:::,•,..,.:::::.:1:::.;,..i.:.,.;:.,.:::::..:,„:::::.:...,.;.::::,,i,..,,.:?.....;:•:;:..: ,,,..:.,,..;:i.,.:::.:.1....:,..:.:,.;:.,:l.::,...:,,,,,::,::::.:::.:,..,:..:.,.:,....,,..:::,..::‘........,::.::::11:.,:.,:.:,,„.:.,.:::iii.:..i..,:iiii:.:11.,.::.:.:.:.:.i..::....::.to.t..,:::.::.::::..:,.:,.::::.:,.::.:,.:,...i iii.:::.:.,:ii,..t..,:i.,,,,,..r....es.:::‹i.::::::iiii,,..„..,:lii,:.....i.,:::.,:,.:::::.:,.:.,.:::.::::,<:.::.:,.:iii.:.:.:,:.i.l....1.,.::...,..i.:1:1...:!.:1:.:.1.1:iiti.:::,.::::.,.,..i.::.I.:,iii, ::::'':::':::':':: ..?.i:.'*:::.:*.'''-:::?.*:*::.'::::...::*:':''''''''':::.;.*'''''''''''''..:::... ...*::::''''''''''''''''''''''''''''.:::.:.:..'...:.4'...:.%%:j.:' ';':.:t.:.::":.:'''''''''''''''''''''':''''''''': '''''''''''''''':::::::::i::: :'''..".:.'''''''''...>":"":::::"*::.::::":'::::."1 .:.::::•::::::: :'f::;*:::.:.••*i*':::::::*:::::::::':%.:•:•:•e;•::•i::::::::::::::4::.: :::.:::::;;;;:::::::::..:*:::::::::::::::::;:::::::::;:i:;:;•.]:;:;::::;;:;f::::::;:::;..;:::;•.;:::::::::*:::.* ::::::::::::,,,..... -.....::::,.::::::::::::::::::::::::::,:::;:::;*i:;:i ei.x.*::::•:::;:f.::::::::::::::::::::::::::::, :::::,.*:,,,:.::::.::::::::...:::::::::::::...,:r.:•:::...„...„..,:::r::::,,,,,:i.<4.:,,,,,:,...,, .:::.:.„....:::,::*::::,.:::..,::::,:,:4.4...,iv*,....1,..:*1:4:,..*,,...:,:: f.:,5,..,..,..:::::::::::::m*::::,.;::::,::::::,:::::: ,,,,::,:,.f:.:„..,.,,*,..:,,....,:::::::,:::.::...*.::„:K*:. ..i.:....:::.:*:::::::::::.:::,,,..::::::.::::.*::::::::::::::::::::;........,,::::::::,:::::::::::*:** ,:*,,:,::.::,,:::5::,:::::,:*,,,..*:,,,,;;:*::::::::,::::::::::::::::::,,.....,,,:::i*,;:v..:::,:::::::.; ......::.i.:]:".:.:n :"•:•.::::•:;•:.::::::;.:.*:•••:,...i..:f::::::::::::::::::::::;::::............:.:••••;••::,:::•::::::.:•:., •••:•::::::.::;:.%,•:,.......ny............;.:,...:,,,,,,,..K.„,,,:,,.... .,.......,„...:,::, .. .,..,..,, 1 I r......... ..-.................''''......".'"*""""""‘.."".."..N.:"" '...../...:%".'''''''''''''''''''''''''"'''...X.*:.:.:'....*N.A.-........'''..*:....:''''''''''''...".."."."" ..--........-....................''::: .:'']..:...:.;:::/':'.''''''''''''......:••••:: ''''''''''''''''''''''!:"......."''''''..""*".."...".:':',', '.....:4•:.:',:••••••>•••;:•••••:•••••:,.:.:•:::.:.:•:•,:•:••••:.:•:...:...,,,.:......,....,..„:.; .:....,:',:;:;:::;:;: ..;:;:;:;:::;:;:;:::::;:;:::;:K•::;:;:.:::.:;:,',:;:::::;:::::;::::::::::::::Mit:2.:.4:: §:.......::;*:;:i.::::::;;;;*K;K:i::::,..,:•;:.;:fi?,;:::•::!.;;;;;::;:::•:*:•2*X:§ .iV•.:;.::2:::ki .,.,;;;;:;:,,.:i*i:i*i;,:::,*::,:ii::„:„:::.'""" ..........'"' ''''''''.'"..."."'.....".""'''''''''''''''''*`::•0:'''' ',''''''::',N.N.::,•:•:•••:•%:•:•:•:::"•::•••:::,•:•::%:),:e.0.:::::::•:•:•,:.:•:•:•,:).:14.;;;.. ,•::::•:::•.;,.x.x.,:.:.x...,,,,,,„ /44gli::::::.'::::'""iii:.:.,: : ::::':iiNg:145::;;,....* *.iir..i..-"ti:•::K*K::::::§:.:::::::::::::::.::::iii::*:;:r.::::::::::::;::ii:::;;;;;; :'..:i.:*.;:iii.:1 ;:ii;:;:::::::::•;.$;:r*:**M,*:*. %:::'...'•::::::::.::::::::::::::::::::::::::0::::*:::::::::*:::;:;:::;:Mii:::::3; :;;;;;;;;;;;;;:::§i.:::;:::::;•.::;:::;;;:;:§:i::::•*:::::0:::•,?::0.::::;::z,,K:::i *i,..,.*:,,i:;:i :.:.;:a*:;•::::iii::::iiinii:4 """ .."'''''''::.:::''.:.N.::"...":"•''''''''' '.'":4*"::'N'"t:.:::'":::':::•::::: ::::4,::::::.0 .:.•:::.:••::::::::::::::: :.X.:•:.:.*:::. •••*•:;:.:Z.:.::::::,....,,,,::::,....: ':',N,•,....:,•::::::::::.x....:::,::::::::::::::::::::::::.:.:::::::::::, ::::::::::::::::::::::•;::::::.:.;.:::.*::::::,:.:.::.:...::...?1,::„:::.:,...,,,,:::::: :::::,,,,:::: •%,.....;:t..i::„.„.,:::....„,:,%.:.:..:„...i: ......".:.:,:•...:-.....::'•:,:::!::::f.:::,::::••••..........,...........,x....-..x.x.:..................•. ...•••••••••••••••••••••••••••:•xzw...,:..st .,1..4i..:.:,...:.::;;;.,..,.. .„:„„:,..., ,..E.,,,,,„...„,.,:.„:„.:.:.:„.„:„ .....*.....:.,.....:::::,..,:.::).*:.:::::;:,:::.:::,.:::::::,:::::::::::::::::::::::•:•::::::;;;:f.::::•,::::. ::::„.,,,,,......,....„:„:„..„„„:„.„....„..,.:.,...,........,... „.„:„...,„: :„4„,„...„.„.„„,„.:.„,„:„ .,:::*:•::::::::.*:,:,::::-.,:::::::*:*:.;:::.*:•'<::::,.:::;:::;:;:;:;::•:::•;:::;:;:;::,;:,;:::::::,i; .,iiiii:iMii;i:.ii:',..,...::: :.."......:•;i::: inii.•:;:.::;i:ili*i:iiiqii;;;;;; -,iiii,iii*:•;i:',::: ';iii,,..;:iiii: :.;iii.,....;:....1i;;;;;i;;;i;1 ,,„„....„,„.........„,,,.,......a.,....fr, .:......,,,,,...:::%%*.l.,. .....:.........:::::::::::::::::::::::::::::::::::::::::::::::.......:•,.....,....:.,..,:•:.:....:.:.:.:....,,, •:.;,:•;•:::::::,$;::..,::.*,...„...,:,,..,,,,,,,:...:.,..,:::::;,:::..„..„,, i::.,,„.:;:.,„ ..:,......4„:::::..:..„..::::.:„,:„?,:f.,: :,,,.„...„„........„„.„...y._...., . ....,. r.....„:,.....„:„:,:.,::„,,„„..„„„, ;.,.:,,,,::.,:::::,:„.:.,A:,,...,„.:::......,.,....::::::%::::::::.:::::,........;.:.,...xt ,,::,,::::::::::.:::„...........„....:,:„:,,...;,::.::::;.....:........:.:,:.,.....„4.,,,:„::::;:...:, ..........------'''......."....:.:.:'''''''''''' ''''''''''''''::..:...''':4-.w''.:;:%:.....":.:''''''.% ;.:.":':;:.".'Y :::':;:.:.:.::';::;..;:':':*:a :' ::.:I::i:j•:::'•15:i;•'§§::'::':i•'§')''''..;.1::*:: :;•,Ata):•,:..:..:.:::•::::: :"...:;.:.:. .:::..::::;,:.:,:.:;;;;;.:::,:.:....:.............::..„,:.:;„;.,,,,..,.„....,:. .„..„....„..;;::;;;;;;_..„„.„„;.:,.;z::,..,.:;.:.,.......,..:..,...„..„„, ::::::::::::,:*:,:::::,:,:::::f.f.f,::,:::::::::,,:•:•:••••,:•••••••••••••••••••..........- • , 't •• •,.i•04:3:5„..5.L;X;;;;....::•.;•;:..`:: 1...*:,:!....:...:.:::.‘,.;:.?..%...x.;...:.......,:... ,. ••••••:•••,...........,.....,....•• • ........................... w"......w.....:.''''..::::::::':::''...::''::'::::*i:::::::'::::::.:::'''.::: $:.::::.:::Z: %::-:-."---...--:"-"":"...'"'" ".:.'":":.'""Ys",.".".-",-...' ' '''.'::::::%::',$,4:tft:':.:•:•:':::::::::::::::: ::::::::::::::::::::::::::::::::;:;:;:i:::::?.:,:::;;:...:;:;;;*;:::;:;:;:;:i*Ki:...:i::;•:.*:;if,:i*i; ;i:.:;i:K:K:i,*i;:.:i...i.,...„.,..;::::i..;;K:::::...,,•::::;:K:!:•,*i..!..::i:i:is ::„*:*:: ::':.':'•:':.:.;;':..i..f.•....•:',.:'.:.:::i:.::".::•*:•■..:.::•ii:::::::•:.:•:•:::::::::::.::::::.:::::::::::::::::: ;:::'.::::.:,..•::0:::X:::::::::::;:;:;e::::::::;;:;:::::%;:::....:.:...,::::::;..;,,,,, .;:r;.6„ „,...„............s.....,.....,.... ......., ....:„...„....„.„.„..„. , x.,...„„„„„„„„..„,,..s..„„......,....... ...............................,.................„.....................................% ................................,...........................i..,y.!!ili,...i...i..;.. '''...."'""...."... w.:*?.... N'''''''''''':'%5Z*Z'''';'::: "'"r‘:"'"::''''::::.::::::,':':::::::**,,,,,, ,. .1:::::::::::::::::::!:::•:::::,..x.:;:•:::+•:::::::;::::::::::: 1a .,,„:„44..„...... C-B'-') RO•%.;•••V:ii'in.'•:ig:iii:•:•..:ii::•:•:.:...:**:::::::i:Z•••••••• •••:,..r.,•:. M.:•.:•::::.:::.......:,.::......:.,:x.,, ,.;,;:,,,...,.,..:....,.„,.viir„.„.„.„:„.„.,,,.,....:„............„.......... .4,,,............7 .. ......................,.......... ....................,....,..............................., .:.... ...........''''''''''''.''''''''''''''''''.. .••."...........%::::::.N.:.....".....''''''''''..'''''Y' % '''.'''''''' ''''''''''''''"...''''''''''''''''*:',',.'•'"••*%.,:::•••:'.•:••":•••••'• •:. .::::•:::•%:...•••::::•%::•:•:•:•:••:•:",•:•:•••••••,••••::::•,:: :::.:.:.:•::%::ff.f..•.:•:;y::::::,:.,.x.x.:.:•:,:::,:f.,,,:,,,;:%;:::::::::::.: :.,,,.:•;•,,,..,....,,,;:,...,,,,,,,...„„:„:,...:::,,,,,:„„,„:.,,,,,:.,„.„,.:.,„ '-'-'-------."--'.--------"'' -.'-'''''^''''%'-'''''--'"''""'"''''''''''' '''''"'''.'"''X''''" ''''''"'..N'''''N'::''''''N .N .::: ''"'''''N'''''''N''''''N"."..X.:*:.X'%. :.:•%.:.X.X,,, ,.::::.N.:.xi.:,.:.:.:.x.:.xt::,.:.:.:.:.:.. :.:,,,,,,,,:.,.„..:,,,,,,,,„„„„:„„,„„„„...,:„..,,,.,,,,,. • • . ..... . ...... ''''''''''"'"...'"".""%%, ''''''.4,.., 'fi'eN::::':'%•0'°:.::::%'::',::',;::,.:::."•:•§Ni,..:::•:•:•':•:•:•::':::%$:',.::::: e-',',':''''......,:k:.e::::•;:::: •:::•••::••••:::•:••:::•:•:•:•:.••:. "..••••••••••••••••-•••••••,...'..'...••••••••••••••..................................... .................•••••••••••••••••••,,,,,..,:•".•::::::•:::. „:„.,.....:„:::: ::':;:::'....:%:'%::::.:":'..'iii.:;:::..-:i.'Ei.E:ii:-.:'%::'.i:.:.::':::4k›....:::.::.':.:;::.:%::':'.;.:':.:::.'.::'.:::.:::.::'.:':.:;::.:%::.::::.;?;:'::. :::1'1'1:1:1:.:::.;.'1::::1:.:::.::::::1:1:.:i:::.:':.i:%.1M.H..iiiir::%:i;':::::::.:::.ii':::%:.::::::':.:::::%:li:::"....:.:::.":".:" ii.":1:.:1"::::::1:%:: ''''X'.:.:*.:if.::..iii"....*11:::".K..1.-:::*1:.:.:%•::': ■%:%'''''.."."--"'"—sw4w....".....".....-iii .*. .;•:.:i..:•'..:.;'::::.::..:::..::.1.:-.1:';........k:ii.if•:..;.?•i.P...::•.k.::::;:::::::::1,.::; :•%:;.:...:.:::.1.:::•iiiii...i.::::::?.::.::;::::::..,::........:.::.::...:„:•••„ .„. .„••;..:....,: .,,.....,*.•,....:..:,...i...i.f.....i.ti...:i.,.........i....„,...........:.,..i.,......i....:i....i...i......i...i.........„,..f....„..,„..„...,...iii.„...i.„...%.„,,,....,..4,......„„*„.....: ,X777a7,77.7.1.77z m,*m,,,,..4,::,,,,zo,i*u: : ..,..„,......::::,.,:::.,..:...„:„:::„:..„„„„„..:„„„„„ „.„„,..„„„„„„„„„„„:„„„„„„„:::::...,::,....„,, ::::•••''''' :::•.:.;:'::".0.':§iii:::i.::::::::::::::::'':'.::::::.:**.:".:i'is&i*:::•:i:i.•in:::::::,: •:::::::::::::::::::::::::::::::::::::::::::::M:if::::.,;;:::::::•:::::::::::::.:;:::...:i:?....:...*...*::, .;:::::*:::/•:K:i .K;i:i.i::::;K•?:::.z.ti..:.?...:,...::.,, .,:v.v..............„.„I.,..,.zz,......,. , ffi.i*:.:K:i:is: ...*,.,:i:1:::iii,:siel,:i,if,, ili*i:.:*....i*:iis .,..:.:: ::;.*:...?..i..*. :*. R....i.....,.pi l: :oi,-..:iii.i.::: :: .,,.i! : i .: ...<,:„.. . ............-----'''''''''''' ''':'':'''''''''-:—....:.:.:''''''''''::::;:::::':':::':::'::: ::''''''":".":" ''''''''''''::::::::':"'":::•:::::•:: :::::::::::::::::::::::.:.:::.:.:::::::.::.1:,::::K.t ::: -:':::::-:::,:::-::::.::::::.:::::::::::;.::.:.::::.:.::::::::.::::::::::::::::::::::: ,::::.......„„:::::,::::::„,„::,::::..„.,.:.:,:.: ::::„,::„:::::::.,„::::,.::,,.,::::::::::::,....,....„....,...„.....:...,........ ., ::'':::'::-:::'•:::::,:-.:,::::::.::,:,-,:,:::::,::',-.:::-.:::::::::::::::::::::::::::::::::.::::, ::::::.:::::::::::::::::::::::::::::::::::::::::::.......,,,:::::::::::::;:;:::::::,,,,::::::::::::: :::::::::::;:*,:: ,:,..::::::::...1,„...:::::d..„,...,:,.:::,:?:.:.,-. y:y. :y,„: .?..:i.I,,_,..?1....:,.i.T :: :::_:::.._;::::::4::,,..4.:::::.:,,::.:&:.,:i::::1:,„;:::::: :::::::::::::::„:::::„„:„.„....„....::::::::::::::::::::,::::::::............,...:::.: ,......t....,...„,..,...*:.„..5,..........:::„:„....„........,.................................. ,..............: 14 ,K.3:,:::::::::::::1:...,::::: :;%::::::::',:,:::::::::,:::::::::::::::::*?;.,::::::::::::*::,,,,:::::::::::::::::::::::::::::::::: ::::::::::::::::::::::::::::::::::::::::::::::::::::•::::::::::::::::::::,:::::,:::::,,,,,, ..,:i.. .„.::iiti*:::::i: ;,,,,0::a;A:i:i::..i.eiiii:.i.i:.:....::,::::::::::§,:a...: ,.....:.:.....:,......... ,::,:::: :::: ::sK,..,:iKi::::::::::::::33,4:**i:i :i:i:i*z:i*:,. ....:,*:,:i:i:i*.,:i:i.,,...:.,::::i::::::::..5::,„;:...*?:::.:,:::::i:i...,.. :::i*:,:::,:::,..,::::*!..i*i*i:if::::,:::i*i*,:::::::::::::::::.*mo::::::iii*:::::::::, ,,:f.:.:*:.,ii:i:,.: *:,:::::::::::::::::::::::::.:.:,:;:::::::::::*.::::::.:;:;::,::,:,,,;*;:::::;::::::::::::;::::::::%, ,:•,...,i*:,•,::::,:::::::i::•.:::::::::::::::::::::::::.......*.::::i:...:;.:.::]:.::::.::.:,,....:**.:..x,•::::: ....,..,.,.,.....ff:.:: n....:.:„iff::::,.:::2;;,_:.:. .u.L: :::::::::::::.,:.::,,::,:,:::::::;:::::::::::::::•:,,:....:.:.:,:.:.:,:;:::::::::::::::::::5,,,:;:f. :::::.;•:::.;.:•:::::::::::,:.;::::::::.......,:.,:;......;:::,:,:,..,:,:,::::::::::::::,:::::::::::,:.„..:::::..: ..:...::: :k .::_:,3:-i•F_:::,.,._:_::_::_mAz5 ::'•..••••:::::.,.:.:.:,.:.,.:,:•:,.......:.x.:.:.......:.:.:.::::.:,,,,,,,....,...., .:....,.:.........,::::„.........„,„„...„...,............,:...........„:„..........„.„:„.........„:„. -.................i.i.,., ..::&.t,..::::,...,...,.,....:.....,.... .:::,:::::::.:...::,.:.......:.::....:.:.:...,...:.:.:.:.:.:.:.:.:::..:.:.:.:.:.:.:.,,,.:..,....... ,.:.:•:.:.:::.,..............................„....„,.....„.....,.....„,.....:„.....„.......„,............................ ......................... .s..._...;::_3..:.:...„:„.,..::::: :: :,',.:,,,,..:.:..':'::',':;:'''''''''''''':•:::',::.:.:5:::::'::,::':.,::.:.:,,,,,,,:!:...:::,:::- ::::::::::,..,....:,:•:•:.-.,,,,,,,,,,,,:::,...::::::;:::,,,,,,,:;,.......;.•,..,.;.:::.•,:•,::::::: ,;,........:,..:::::.::, .::,:::::,,,,,::-:..,..,...,:,...,,,,..,...:.:, '''''''''''''''''''''':"'''''''''''''',:,:',:,:::::.;';.,.:., -,,,,,,,,,,,:::::::::::::::::.,,,,•••:•:•:.:,•:,.,..:.:•:::::::::::::,:::•;•;.:., ..,....:.;;;;.......:.: ....:::*::,...,,,..E.;:.1*.i.,,,;:;,,•,:::.:.;, :,:::::::::::::,::::::::::::::::::::.::::::::::::::::::,.::;:.:, ., :.::...........:....:......:.:•,:•:.:::.:+:•:.:.:•:,......:•::•:.:,,,.:•:•:.:,, ..........,,,,,:•:,....:,,,.............:,.:•;,:•:,:.:.,:.c.,••••••••• .x.:•••:::.:::•:.: '''',.:i:•: ::..::i::::::::::.,:i::::::0::.:•ni...;.:;',,::::::::::;:::;:;:;:;:;:;:::;:;:;:;:;:;:;:,,:; :;•.;:,:::::;;;-..,:::::::::::::.:;;;;*::::::::;:,:::s,,,,••••••................— ....,..., ....:,,,,,,:,,,,,,.:,„i„...,,,,i,,,,:::,... . :::'n.::::':::::1:'''''''''''''':'''''''''if:*:::::::::,,:t:''''''' '''''''''''':%.""'..:s""::::::::f.:.,,:.:,•:.:,:-..::::::::::::,:: ::::.:•:.:•:•:•:.:.:•::•:,:,....,...,:f.::::::::,:;:f.,,.:•:::.:.,,,,::::::::::::;:;.,„4.„. „,.,,,„,„:, '''::::'''''''''':*"””..”.".:.,:.*:"' '4,',...',.-',..,,,,,-,...,::::',.;•:,..',.....,....•••••••••••:.: ...:.:.:.:.x....x.x.:.:::.:'.........:.:.:.:...:.:•:.:.:•••:•:•:•:.:•:.:.:.:..........:.:.:.:.:.:.:.:.:.x.: :•:.:.::•:.:.:.,, 1 1..............••............... .......................• .......................................,.................. ......,„., ...................„,...,....„„,,,...., ''''''''''''''''''''''''''''''''''''''''''''''''>'''';'''''''''' '':',::::::::%'''"::■tx:2:::x::':::•:•%:•::•:•:•:•:.*:.:.:::5.::::::::...: ::....:::.:•:.:•:.:.:•:•:•:.*•:::::::::::::;:f.:::::::::::::,,,,,,::::::::,,,..:;;.,,,.....,,,„ „.:„.,.,......, , ••••••••-•-•-•-•••.••.••••••••••••••••-................ ...................„......................•......,..................., ...„...............„...,........,........,........„...............„, .. :_....7: :::',.-1-.:::::.:',...,: ::.--_ ,-.."(::::.??.......??,'',.-','::::,*....,,:::'.':::::' '--:::::::--:-.:::::::::*..--:::::: :::. -.:f:::::,..,...,,,-,,,.::::::3;*i:m;:i.*:.:,: :::::::,,,,,,:..::,..,1M.:...,i:g0.-,:ff.....x: . *i:"-ii.::::::::iiiiiiiiiiii'.•':ii::ii:i:i:?.::.::::.:Mli::1K.: ::.... f".t..4.:: "4,..?1,:„,..::".::::::::::::::::::::::::::;:;::::::::::::: :::;:;;;;;,,,..;:i..;:;:i*K-.;:::::::::::::.:,i,i:i:'.:..;::::::::....„.:,,,,.:::::....................:::,....„::::::::::::, .„:„.,..:::,...::,:,.....,:: '''''''''''''''''''''''''''''''''''''''''''''''''''' '":":':::'":::::::'.-":::.."'":":::::,;::::":',:".:*.::',.:";*.:f..*,,f.f..."....,:,.."...,..,::::::..". '...,..',":".:::,.,.....;•.;."..:::::;:K:;:;*;?."....:.:::;:;..]:]..]:];•:]..:: ---.............---''''""—•—"•"•'•".•••••••••••••••. --'-.---•-----••••••.-.-.-..--•-.-----•••••••.•........................... ..........................................,...,.......... ...:'''''''::x:::'::''''''':....*:-'''':::::::::::::::..:4:. /...:'''''''':.*::'/.4'4:""'"'*:::*:*K:::::'1'.*:::::,::: i*:::,:::"::::::::::::::,.•;::::::::;:?.:*;;;:K;;;;::::::::.:;:;:;:::.*:::;:.*'....i**-mi::.*:.:::', -,:::,;,;:i:i..K,K ,:::::::::::•:::,:.:•:•:-:-::-::::•,:-:..............-xx.x. -;k:: .....:P,........:.k. .„,...:-,...:::.......,,,...... ......r....„...........:................,............,........:„...„.....:.:„.:..:.....„ .s.:55.... ..............„„, . v•—•••............ "..........:.....w".....:. —'N....4.N..%•• .•••;:•::;•-:-N:::*:::::•:•;;; :.:...:.•:,:':::"..t",,:::',%%;?::',:;:n:;;;;.:::;;;:f.....3.:..........:.::„......,:, ::::::::::„ ----'—'''-----"—"""—."---'.".•''..----.'"...... -..,....,....,...—..-------,,.-.-,,,-.....—.......,..,. ..,......................,...„„„„„„,,... ''''''''';'"'":".:';:*.,::•:::;;?::*if::.:*.:,:".*::.:i.'::::,:::::::,:::::::*:::::::::.,:::::::::::.::: ...:::::.:::::::.....;::.:;:::::;•::::::•;;;;:f.::::::?;:f;K:..,::....:....,,..,..„..„::::::::::::, :........,..:..,..:::..:,::::,;::,,,:.:::.,..,.i..i:,,,,,:::::,,,,,:::::,:::...;::::,: "''''''''''''''''''''''''''''''''''''''''''''''''''' ''''''''''''''....',..'''''''''''':':':::'*•:•X•>:•:•:•:•:•:•:•:•:•:•:%•:•• %.:::::•:.:.:•:.:.:•:.:.:-:-:•:.x.:,....:::...:..,.:.:.:.;.:.:....:.:.:.:.:.,:.:::::.::....:.............: :....:....:......,:......: III I III I '':••//,••••...1. .:::::"....:*?..::::::,:".*".*:*"-:]:::-::::'.::?::::i:.::::'•:::,:•::::.q... , . ...:: :. ..:]...•i:::.::::.:•:::,::.. .,.i.,.::, R:::::::::.:i:iiii?:::iiiiii:§:::::::::::::::::::::i>,.::::::::::::::::::::::::::::::::::::::::::::: RI.:::::::::::::::;;;;::::;:;:::::::•m;:,..:;::,;:::::::.,,,,,,,::::::: ....:,,i: -: . . ........,........ ...m.: L5 ••••..m.::::::*:K*::::::::::4'ns.::.'i''' '':*,,:::::::,:::% 4]:::::.:::::',:i*ib:::::,:........-.:*:::::::::::,:::::::::*K*:,;:,:*::::::::::::::: .:::::::::::::::::::::::::::::.]:.::::::::::::::::::::::::::::::::::::::::::: ............... :„:.:„:„..:.,, ,,,.....................,...„........„................ ....................,,,s.......................................,..................., .,....................... —::::::::::::7:3:•::":1:1:1:1:1:1:1:1:p::::::::::::::::::::::::::::::::::::::::::::::::::0 2.7 3 A ::::.,:::::::::::::::::::::*x.i:A r..::::.::::::::::::::::::*: 2.4 3.3 4 1 :::::::::::::::::::::::::::::: .:.:............. '.':.':1 n: - _ _, • FilFloor Map . RAM Steel v14.04.00 Page 2/2 DataBase: Adrienne 2nd Floor 07/26/13 14:19:31 RAM Building Code: IBC Steel Code: AISC LRFD Surface Loads Label DL CDL LL Reduction CLL Mass DL .................. psf psf psf Type psf psf ................. 2nd Floor Residence 66.0 57.0 40.0 Reducible 20.0 66.0 Line Loads Label DL CDL LL Reduction CLL Mass DL k/ft k/ft k/ft Type k/ft k/ft Li Interior Wall 1.095 0.000 1.000 Reducible 0.500 1.095 L2 Exterior Wall 1-5 0.770 0.000 0.600 Reducible 0.300 0.770 L3 Exterior Wall A-C 0.245 0.000 0.000 Reducible 0.000 0.245 L4 Stair Stringer 0.250 0.000 0.500 Unreducible 0.000 0.000 L5 Stair Wall 0.420 0.000 0.400 Unreducible 0.000 0.000 Point Loads Label DL CDL LL Reduction CLL Mass DL kips kips kips Type kips kips P1 Balcony Post 1.700 0.000 1.100 Unreducible 0.000 0.000 1• � Data Base: Adrienne 2nd Floor 07/26/2013 14:24:5E r- . . 1 r-- . . , 1 I CV 1 CO 1 S . 1 d ... ...... — c, 03 , 1 1 c; I . 03 e3 .., f ce. ! es i -,1- . , • . t-.... . c, • ,, .. . , m . m . . . '. •cs. s e> . i<xcr , .........., . (cc: rt.,-.. .......:,,....... ................„ \. A . .... ... . . _ .. . c.). . • __...... ..... ..._ .., ......., .6.) . ' '..... ( 9" ) - ,....-, ,.._. ..,..k.. "-' (1 6 ; c ,' ...____..." ( ) -----, .._,,.., • Gravity Column Design Gravity Column Design rill RAM Steel v14.04.00.00 10 RAM Steel v14.04.00.00 Page 2/14 RAM DataBase:Adrienne 2nd Floor 07/26/13 14:13:09 RAM DataBase:Adrienne 2nd Floor 07/26/13 14:13:09 Building Code:IBC Steel Code:AISC360-05 LRFD Building Code:IBC Steel Code:AISC360-05 LRFD Story level 2nd Floor, Column Line 1-C Story level 2nd Floor, Column Line l-B Fy(ksi) = 46.00 Column Size = HSS6X6X1/4 Fy(ksi) = 46.00 Column Size = HSS6X6XI/4 Orientation(deg.) = 0.0 Orientation(deg.) = 0.0 INPUT DESIGN PARAMETERS: INPUT DESIGN PARAMETERS: X-Axis Y-Axis X-Axis Y-Axis Lu(It) 14.00 14.00 Lu(ft) 14.00 14.00 K I I K I 1 Braced Against Joint Translation Yes Yes Braced Against Joint Translation Yes Yes Column Eccentricity(in) Top 5.50 5.50 Column Eccentricity(in) Top 5.50 5.50 Bottom 0.00 0.00 Bottom 0.00 0.00 CONTROLLING COLUMN LOADS-Load Case 1: CONTROLLING COLUMN LOADS-Load Case 10: Dead Live Roof Dead Live Roof Axial(kip) 20.39 13.72 0.00 Axial(kip) 38.69 13.89 0.00 Moments Top Mx(kip-ft) 1.57 0.68 0.00 Moments Top Mx(kip-ft) 3.05 1.56 0.00 My(kip-ft) -6.89 -5.10 0.00 My(kip-ft) -1.40 -4.80 0.00 Bot Mx(kip-ft) 0.00 0.00 0.00 Bot Mx(kip-ft) 0.00 0.00 0.00 My(kip-ft) 0.00 0.00 0.00 My(kip-ft) 0.00 0.00 0.00 Single curvature about X-Axis Single curvature about X-Axis Single curvature about Y-Axis Single curvature about Y-Axis CALCULATED PARAMETERS: (I.2DL+1.6LL+0.5RF) CALCULATED PARAMETERS: (1.2DL+1.6LL+0.5RF) Pu (kip) = 46.42 0.90*Pn(kip) = 153.20 Pu (kip) = 68.64 0.90*Pn(kip) = 153.20 Mux(kip-ft) = 2.98 0.90'Mnx(kip-ft) = 38.64 Mux(kip-ft) = 6.16 0.90•Mnx(kip-11) = 38.64 Muy(kip-ft) = 16.42 0.90'Mny(kip-ft) = 38.64 Muy(kip-ft) = 9.37 0.90*Mny(kip-ft) = 38.64 Rm = 1.00 Rm = 1.00 Cbx = 1.67 Cby = 1.67 Cbx = 1.67 Cby = 1.67 Cmx = 0.60 Cmy = 0.60 Cmx = 0.60 Cmy = 0.60 Pex(kip) = 290.03 Fey(kip) = 290.03 Pex(kip) = 290.03 Fey(kip) = 290.03 Blx = 1.00 Bly = 1.00 Blx = 1.00 Bly = 1.00 INTERACTION EQUA'T'ION INTERACTION EQUATION Pu/0.90'Pn = 0.303 Pu/0.90•Pn = 0.448 EgHI-la: 0.303+0.068+0.378=0.749 EgHI-la: 0.448+0.142+0.216=0.805 wl Gravity Column Design Gravity Column Design RAM Steel v14.04.00.00 Page 3/14 RAM Steel v14.04.00.00 Page 4/14 RAM DataBase:Adrienne 2nd Floor 07/26/13 14:13:09 ' Data Base:Adrienne 2nd Floor 07/26/13 14:13:09 Building Code:IBC Steel Code:AISC360-05 LRFD Building Code:IBC Steel Code:AISC360-05 LRFD Story level 2nd Floor, Column Line I-A Story level 2nd Floor, Column Line 1.6-C Fy(ksi) = 46.00 Column Size = HSS5X5X3/8 Fy(ksi) = 46.00 Column Size = HSS6X6X3/16 Orientation(deg.) = 0.0 Orientation(deg.) = 0.0 INPUT DESIGN PARAMETERS: INPUT DESIGN PARAMETERS: X-Axis Y-Axis X-Axis Y-Axis Lu(ft) 14.00 14.00 Lu(ft) 14.00 14.00 K I 1 K I 1 Braced Against Joint Translation Yes Yes Braced Against Joint Translation Yes Yes Column Eccentricity(in) Top 5.00 5.00 Column Eccentricity(in) Top 5.50 5.50 Bottom 0.00 0.00 Bottom 0.00 0.00 CONTROLLING COLUMN LOADS-Load Case 1: CONTROLLING COLUMN LOADS-Load Case 8: Dead Live Roof Dead Live Roof Axial(kip) 19.46 13.55 0.00 Axial(kip) 26.79 11.92 0.00 Moments Top Mx(kip-ft) 0.00 0.00 0.00 Moments Top Mx(kip-ft) 5.54 5.46 0.00 My(kip-ft) 7.28 5.19 0.00 My(kip-ft) 0.00 0.00 0.00 Bot Mx(kip-ft) 0.00 0.00 0.00 Bot Mx(kip-ft) 0.00 0.00 0.00 My(kip-ft) 0.00 0.00 0.00 My(kip-ft) 0.00 0.00 0.00 Single curvature about X-Axis Single curvature about X-Axis Single curvature about Y-Axis Single curvature about Y-Axis CALCULATED PARAMETERS: (1.2DL+1.6LL+0.5RF) CALCULATED PARAMETERS: (1.2DL+1.6LL+0.5RF) l'u (kip) = 45.03 0.90*Pn(kip) = 148,99 Pu (kip) = 51.23 0.90*Pn(kip) = 117.42 Mux(kip-ft) = 0.00 0.90*Mnx(kip-ft) = 36.57 Mux(kip-ft) = 15.39 0.90*Mnx(kip-ft) = 27.79 Muy(kip-ft) = 17.03 0.90*Mny(kip-ft) = 36.57 Muy(kip-ft) = 0.00 0.90*Mny(kip-ft) = 27.79 Rm = 1.00 Rm = 1.00 Cbx = 1.00 Cby = 1.67 Cbx = 1.67 Cby = 1.00 Cmx = 1.00 Cmy = 0.60 Cmx = 0.60 Cmy = 1.00 Pex(kip) = 220.06 Pey(kip) = 220.06 Pex(kip) = 226.14 Pey(kip) = 226.14 Blx = 1.26 Bly = 1.00 Blx = 1.00 Bly = 1.29 INTERACTION EQUATION INTERACTION EQUATION Pu/0.90*Pn = 0.302 Pu/0.90•Pn = 0.436 Eq I'll-1 a: 0.302+0.000+0.414=0.716 Eq HI-la: 0.436+0.492+0.000=0.929 • Gravity Column Design Gravity Column Design ,'l RAM Steel v14.04.00.00 Page 5/14 FM RAM Steel v14.04.00.00 Page 6/14 RAM DataBase:Adrienne 2nd Floor 07/26/13 14:13:09 RAM DataBase:Adrienne 2nd Floor 07/26/13 14:13:09 Building Code:IBC Steel Code:AISC360-05 LRFD Building Code:IBC Steel Code:AISC360-05 LRFD Story level 2nd Floor, Column Line 2-B Story level 2nd Floor, Column Line 2.4-C Fy(ksi) = 46.00 Column Size = HSS6X6X3/8 Fy(ksi) = 46.00 Column Size = HSS6X6X I/4 Orientation(deg.) = 0.0 Orientation(deg.) = 0.0 INPUT DESIGN PARAMETERS: INPUT DESIGN PARAMETERS: X-Axis Y-Axis X-Axis Y-Axis Lu(ft) 14.00 14.00 Lu(ft) 14.00 14.00 K 1 I K I 1 Braced Against Joint Translation Yes Yes Braced Against Joint Translation Yes Yes Column Eccentricity(in) Top 5.50 5.50 Column Eccentricity(in) Top 5.50 5.50 Bottom 0.00 0.00 Bottom 0.00 0.00 CONTROLLING COLUMN LOADS-Load Case 14: CONTROLLING COLUMN LOADS-Load Case 8: Dead Live Roof Dead Live Roof Axial(kip) 65.36 17.39 0.00 Axial(kip) 35.73 10.97 0.00 Moments Top Mx(kip-ft) 3.91 3.03 0.00 Moments Top Mx(kip-ft) -0.29 5.03 0.00 My(kip-ft) 0.03 4.94 0.00 My(kip-ft) 0.00 0.00 0.00 Bot Mx(kip-ft) 0.00 0.00 0.00 Bot Mx(kip-ft) 0.00 0.00 0.00 My(kip-ft) 0.00 0.00 0.00 My(kip-ft) 0.00 0.00 0.00 Single curvature about X-Axis Single curvature about X-Axis Single curvature about Y-Axis Single curvature about Y-Axis CALCULATED PARAMETERS: (1.2DL+1.6LL+0.5RF) CALCULATED PARAMETERS: (1.2DL+1.6LL+0.5RF) Pu (kip) = 106.26 0.90*Pn(kip) = 217.99 Pu (kip) = 60.43 0.90*Pn(kip) = 153.20 Mux(kip-ft) = 9.55 0.90*Mnx(kip-ft) = 54.51 Mux(kip-ft) = 7.70 0.90*Mnx(kip-ft) = 38.64 Muy(kip-ft) = 7.93 0.90*Mny(kip-ft) = 54.51 Muy(kip-ft) = 0.00 0.90*Mny(kip-ft) = 38.64 Rm = 1.00 Rm = 1.00 Cbx = 1.67 Cby = 1.67 Cbx = 1.67 Cby = 1.00 Cmx = 0.60 Cmy = 0.60 Cmx = 0.60 Cmy = 1.00 Pex(kip) = 400.57 Pey(kip) = 400.57 Pex(kip) = 290.03 Pey(kip) = 290.03 Blx = 1.00 Bly = 1.00 BIx = 1.00 Bly = 1.26 INTERACTION EQUATION INTERACTION EQUATION Pu/0.90*Pn = 0.487 Pu/0.90*Pn = 0.394 Eq HI-la: 0.487+0.156+0.129=0.772 Eq HI-la: 0.394+0.177+0.000=0.572 Gravity Column Design Gravity Column Design III RAM Steel v14.04.00.00 Page 7/14 Fil RAM Steel v14.04.00.00 Page 8/14 RAM DataBase:Adrienne 2nd Floor 07/26/13 14:13:09 RAM DataBase:Adrienne 2nd Floor 07/26/13 14:13:09 Building Code:IBC Steel Code:AISC360-05 LRFD Building Code:IBC Steel Code:A1SC360-05 LRFD Story level 2nd Floor, Column Line 3-C Story level 2nd Floor, Column Line 49.2Sft-0.00ft Fy(ksi) = 46.00 Column Size = HSS6X6X1/4 Fy(ksi) = 46.00 Column Size = HSS6X6X1/4 Orientation(deg.) = 0.0 Orientation(deg.) = 0.0 INPUT DESIGN PARAMETERS: INPUT DESIGN PARAMETERS: X-Axis Y-Axis X-Axis Y-Axis Lu(ft) 14.00 14.00 Lu(ft) 14.00 14.00 K 1 I K 1 1 Braced Against Joint Translation Yes Yes Braced Against Joint Translation Yes Yes Column Eccentricity(in) Top 5.50 5.50 Column Eccentricity(in) Top 5.50 5.50 Bottom 0.00 0.00 Bottom 0.00 0.00 CONTROLLING COLUMN LOADS-Load Case 12: CONTROLLING COLUMN LOADS-Load Case 8: Dead Live Roof Dead Live Roof Axial(kip) 20.05 13.83 0.00 Axial(kip) 11.89 6.37 0.00 Moments Top Mx(kip-ft) -3.31 -2.43 0.00 Moments Top Mx(kip-ft) 4.16 2.92 0.00 My(kip-ft) -4.59 -3.91 0.00 My(kip-ft) 0.00 0.00 0.00 Bot Mx(kip-ft) 0.00 0.00 0.00 Bot Mx(kip-ft) 0.00 0.00 0.00 My(kip-ft) 0.00 0.00 0.00 My(kip-ft) 0.00 0.00 0.00 • Single curvature about X-Axis Single curvature about X-Axis Single curvature about Y-Axis Single curvature about Y-Axis CALCULATED PARAMETERS: (1.213L+1.6LL+0.SRF) CALCULATED PARAMETERS: (1.2DL+1.6LL+0.5RF) Pu (kip) = 46.19 0.90'Pn(kip) = 153.20 Pu (kip) = 24.46 0.90'Pn(kip) = 153.20 Mux(kip-ft) = 7.87 0.90'Mnx(kip-ft) = 38.64 Mux(kip-ft) = 9.66 0.90'Mnx(kip-ft) = 38.64 Muy(kip-fl) = 11.75 0.90•Mny(kip-ft) = 38.64 Muy(kip-ft) = 0.00 0.90*Mny(kip-ft) = 38.64 Rm = 1.00 Rm = 1.00 Cbx = 1.67 Cby = 1.67 Cbx = 1.67 Cby = 1.00 Cmx = 0.60 Cmy = 0.60 Cmx = 0.60 Cmy = 1.00 Pex(kip) = 290.03 Pey(kip) = 290.03 Pex(kip) = 290.03 Pey(kip) = 290.03 Blx = 1.00 Bly = 1.00 Blx = 1.00 Bly = 1.09 INTERACTION EQUATION INTERACTION EQUATION Pu/0.90*Pn = 0.302 Pu/0.90'Pn = 0.160 Eq HI-la: 0.302+0.181+0.270=0.753 Eq HI-I b: 0.080+0.250+0.000=0.330 • • Gravity Column Design Gravity Column Design FIB RAM Steel v14.04.00.00 Page 9/14 El RAM Steel v14.04.00.00 Page 10/14 RAM DataBase:Adrienne 2nd Floor 07/26/13 14:13:09 RAM DataBase:Adrienne 2nd Floor 07/26/13 14:13:09 Building Code:IBC Steel Code:AISC360-05 LRFD Building Code:IBC Steel Code:AISC360-05 LRFD Story level 2nd Floor, Column Line 4-C Story level 2nd Floor, Column Line 4-B Fy(ksi) = 46.00 Column Size = HSS6X6XI/4 Fy(ksi) = 46.00 Column Size = HSS6X6X3/8 Orientation(deg.) = 0.0 Orientation(deg.) = 0.0 INPUT DESIGN PARAMETERS: INPUT DESIGN PARAMETERS: X-Axis Y-Axis X-Axis Y-Axis Lu(ft) 14.00 14.00 Lu(ft) 14.00 14.00 K 1 I K 1 1 Braced Against Joint Translation Yes Yes Braced Against Joint Translation Yes Yes Column Eccentricity(in) Top 5.50 5.50 Column Eccentricity(in) Top 5.50 5.50 Bottom 0.00 0.00 Bottom 0.00 0.00 CONTROLLING COLUMN LOADS-Load Case 12: CONTROLLING COLUMN LOADS-Load Case 16: Dead Live Roof Dead Live Roof Axial(kip) 40.56 11.89 0.00 Axial(kip) 72.59 17.57 0.00 Moments Top Mx(kip-ft) -0.90 -4.26 0.00 Moments Top Mx(kip-ft) -2.63 -6.98 0.00 My(kip-ft) -2.79 -1.19 0.00 My(kip-ft) -0.31 -1.08 0.00 Bot Mx(kip-ft) 0.00 0.00 0.00 Bot Mx(kip-ft) 0.00 0.00 0.00 My(kip-ft) 0.00 0.00 0.00 My(kip-ft) 0.00 0.00 0.00 Single curvature about X-Axis Single curvature about X-Axis Single curvature about Y-Axis Single curvature about Y-Axis CALCULATED PARAMETERS: (1.2DL+1.6LL+0.5RF) CALCULATED PARAMETERS: (1.2DL+1.6LL+0.5RF) Pu (kip) = 67.70 0.90*Pn(kip) = 153.20 Pu (kip) = 115.22 0.90'Pn(kip) = 217.99 Mux(kip-ft) = 7.90 0.90*Mnx(kip-ft) = 38.64 Mux(kip-ft) = 14.33 0.90'Mnx(kip-ft) = 54.51 Muy(kip-ft) = 5.25 0.90*Mny(kip-ft) = 38.64 Muy(kip-ft) = 2.09 0.90'Mny(kip-ft) = 54.51 Rm = 1.00 Rm = 1.00 Cbx = 1.67 Cby = 1.67 Cbx = 1.67 Cby = 1.67 Cmx = 0.60 Cmy = 0.60 Cmx = 0.60 Cmy = 0.60 Pex(kip) = 290.03 Pey(kip) = 290.03 Pex(kip) = 400.57 Pey(kip) = 400.57 B 1 x = 1.00 Bly = 1.00 B1x = 1.00 Bly = 1.00 INTERACTION EQUATION INTERACTION EQUATION Pu/0.90'Pn = 0.442 Pu/0.90'Pn = 0.529 Eq HI-la: 0.442+0.182+0.121 =0.744 EgHI-la: 0.529+0.234+0.034=0.796 Gravity Column Design Gravity Column Design V jI\ RAM Steel v14.04.00.00 Page 11/14 /0 RAM Steel v14.04.00.00 Page 12/14 RAM DataBase:Adrienne 2nd Floor 07/26/13 14:13:09 RAM DataBase:Adrienne 2nd Floor 07/26/13 14:13:09 Building Code:IBC Steel Code:AISC360-05 LRFD Building Code:IBC Steel Code:AISC360-05 LRFD Story level 2nd Floor, Column Line 4-A Story level 2nd Floor, Column Line 5-C Fy(ksi) = 46.00 Column Size = HSS5X5X3/8 Fy(ksi) = 46.00 Column Size = HSS6X6XI/4 Orientation(deg.) = 0.0 Orientation(deg.) = 0.0 INPUT DESIGN PARAMETERS: INPUT DESIGN PARAMETERS: X-Axis Y-Axis X-Axis Y-Axis Lu(ft) 14.00 14.00 Lu(ft) 14.00 14.00 K 1 I K 1 1 Braced Against Joint Translation Yes Yes Braced Against Joint Translation Yes Yes Column Eccentricity(in) Top 5.00 5.00 Column Eccentricity(in) Top 0.00 0.00 Bottom 0.00 0.00 Bottom 0.00 0.00 CONTROLLING COLUMN LOADS-Load Case I: CONTROLLING COLUMN LOADS-Load Case 1: Dead Live Roof Dead Live Roof Axial(kip) 25.70 15.18 0.00 Axial(kip) 42.17 26.43 0.00 Moments Top Mx(kip-ft) 7.77 4.89 0.00 Moments Top Mx(kip-ft) 0.00 0.00 0.00 My(kip-ft) 2.82 1.44 0.00 My(kip-ft) 0.00 0.00 0.00 Bot Mx(kip-ft) 0.00 0.00 0,00 Bot Mx(kip-ft) 0.00 0.00 0.00 My(kip-ft) 0.00 0.00 0.00 My(kip-ft) 0.00 0.00 0.00 Single curvature about X-Axis Single curvature about X-Axis Single curvature about Y-Axis Single curvature about Y-Axis CALCULATED PARAMETERS: (1.2DL+1.6LL+0.5RF) CALCULATED PARAMETERS: (1.2DL+I.6LL+0.5RF) Pu (kip) = 55.13 0.90*Pn(kip) = 148.99 Pu (kip) = 92.88 0.90*Pn(kip) = 153.20 Mux(kip-ft) = 17.14 0.90*Mnx(kip-ft) = 36.57 Mux(kip-ft) = 0.00 0.90*Mnx(kip-ft) = 38.64 Muy(kip-ft) = 5.69 0.90'Mny(kip-ft) 36.57 Muy(kip-ft) = 0.00 0.90*Mny(kip-ft) = 38.64 Rm = 1.00 Rm = 1.00 Cbx = 1.67 Cby = 1.67 Cbx = 1.00 Cby = 1.00 Cmx = 0.60 Cmy = 0.60 Cmx = 1.00 Cmy = 1.00 Pex(kip) = 220.06 Pey(kip) = 220.06 Pex(kip) = 290.03 Pey(kip) = 290.03 Blx = 1.00 Bly = 1.00 Blx = 1.47 Bly = 1.47 INTERACTION EQUATION INTERACTION EQUATION Pu/0.90*Pn = 0.370 Pu/0.90*Pn = 0.606 Eq HI-la: 0.370+0.417+0.138=0.925 Eq HI-la: 0.606+0.000+0.000=0.606 Gravity Column Design Gravity Column Design • t VRAM Steel v14.04.00.00 Page 13/14 /�A0 RAM Steel v14.04.00.00 Page 14/14 RAM IL DataBase:Adrienne 2nd Floor 07/26/13 14:13:09 MM DataBase:Adrienne 2nd Floor 07/26/13 14:13:09 Building Code:IBC Steel Code:AISC360-05 LRFD Building Code:IBC Steel Code:AISC360-05 LRFD Story level 2nd Floor, Column Line S-B Story level 2nd Floor, Column Line 5-A Fy(ksi) = 46.00 Column Size = HSS6X6XI/4 Fy(ksi) = 46.00 Column Size = HSS6X4X5/16 Orientation(deg.) = 0.0 Orientation(deg.) = 0.0 INPUT DESIGN PARAMETERS: INPUT DESIGN PARAMETERS: X-Axis Y-Axis X-Axis Y-Axis Lu(ft) 14.00 14.00 Lu(ft) 14.00 14.00 K 1 1 K 1 I Braced Against Joint Translation Yes Yes Braced Against Joint Translation Yes Yes Column Eccentricity(in) Top 0.00 0.00 Column Eccentricity(in) Top 0.00 0.00 Bottom 0.00 0.00 Bottom 0.00 0.00 CONTROLLING COLUMN LOADS-Load Case I: CONTROLLING COLUMN LOADS-Load Case 1: Dead Live Roof Dead Live Roof Axial(kip) 66.08 33.28 0.00 Axial(kip) 42.19 26.62 0.00 Moments Top Mx(kip-ft) 0.00 0.00 0.00 Moments Top Mx(kip-ft) 0.00 0.00 0.00 My(kip-ft) 0.00 0.00 0.00 My(kip-ft) 0.00 0.00 0.00 Bot Mx(kip-ft) 0.00 0.00 0.00 Bot Mx(kip-ft) 0.00 0.00 0.00 My(kip-ft) 0.00 0.00 0.00 My(kip-ft) 0.00 0.00 0.00 Single curvature about X-Axis Single curvature about X-Axis Single curvature about Y-Axis Single curvature about Y-Axis CALCULATED PARAMETERS: (I.2DL+1.6LL+0.SRF) CALCULATED PARAMETERS: (1.2DL+1.6LL+0.SRF) Pu (kip) = 132.54 0.90*Pn(kip) = 153.20 Pu (kip) = 93.22 0.90*Pn(kip) = 102.19 Mux(kip-ft) = 0.00 0.90*Mnx(kip-ft) = 38.64 Mux(kip-ft) = 0.00 0.90*Mnx(kip-ft) = 35.53 Muy(kip-ft) = 0.00 0.90*Mny(kip-ft) = 38.64 Muy(kip-ft) = 0.00 0.90*Mny(kip-ft) = 26.74 Rm = 1.00 Rm = 1.00 Cbx = 1.00 Cby = 1.00 Cbx = 1.00 Cby = 1.00 Cmx = 1.00 Cmy = 1.00 Cmx = 1.00 Cmy = 1.00 Pex(kip) = 290.03 Pey(kip) = 290.03 Pex(kip) = 251.50 Pey(kip) = 133.86 131x = 1.84 III = 1.84 Blx = 1.59 Bly = 3.29 INTERACTION EQUATION INTERACTION EQUATION Pu/0.90*Pn = 0.865 Pu/0.90*Pn = 0.912 EgHI-I a: 0.865+0.000+0.000=0.865 EgH1-1a: 0.912+0.000+0.000=0.912 CD Floor Map Vil RAM Steel v14.04.00 RAM Data Base: Adrienne 2nd Floor 07/26/13 13:37:31 Building Code: IBC Steel Code: AISC LRFD Floor Type: 2nd Floor 58 1 I 2 CO 4 ,. .1 :3 01 Csl CV VI v ,o° (0`0 N. co ...-.--.............. 2 9 20 ,_,' : 40 P 51 0 „, „ i €2 • 34 61 •Cr "7 LOC') 0) ,I) S CO CO 6 - 13 0,`° (0 N. F 33 60 .0.. 5 15 24 do 32 1 41 •k 49 m I e 11111 HSS6x4x1/4 111111167110ft/ \\ �W16x W18x35(16) •SS6x4x1/4 MO. _° x i x N O .y A A = M �=+• W14x22(12) +' W14x22(12) AD Uj f -I Q. ca. < "r, 7r---\ 0 '-+ 7r---\ ( N W18x35(19) D W18x35(20) r Cd Lo o co ¢- W14x22(12) § W14x22(12) 0 • c x GOO W18x35(17) W18x35(20) ci 49 °� W12x16(8) W12x16(8) • i io fill)a W12x16(0) W12x16(6) W12x16(10) imIl i' 0 N N mg x co rz -_.__._.._....__.__.........-..___.rim"I'W12x16(6) 18x35(20) !CS ■ lam_/ 4 5) W14x22(12) co I• rn x a, W18x35(20) co W18x35(20) A W14x22(12) Q._. W14x22(12) III W18x35(20) S W18x35(20) W8x 10(6) co x x HSS6x4x1/4 x o N W14x22(12)c=314•• W14x22(12)c=3/4" O O j (p N AX!O �O W EDi:i a I HSS6x4x1/4�" A W18x35(16) W16x26(16) J '.L. (Ji '-t 1 HSS6x4x1/4 d . Gravity Beam Design Gravity Beam Design V'l RAM Steel v14.04.00.00 Fil RAM Steel v14.04.00.00 Page 2/95 RAM DataBase:Adrienne 2nd Floor 07/26/13 14:15:56 RAM DataBase:Adrienne 2nd Floor 07/26/13 14:15:56 Building Code:IBC Steel Code:AISC LRFD . Building Code:IBC Steel Code:RISC LRFD Floor Type:2nd Floor Beam Number=I Floor Type:2nd Floor Beam Number=2 SPAN INFORMATION(ft): I-End(-3.00,37.17) J-End(-3.00,53.67) SPAN INFORMATION(ft): I-End(-3.00,37.17) .1-End(7.34,37.17) Beam Size(User Selected) = HSS6X4X1/4 Fy = 50.0 ksi Beam Size(User Selected) = HSS6X4X1/4 Fy = 50.0 ksi Total Beam Length(ft) = 16.50 Total Beam Length(R) = 10.34 Mp(kip-ft) = 35.54 Cantilever on left(R) = 3.00 LINE LOADS(k/ft): Mp(kip-ft) = 35.54 Load Dist DL LL Red% Type PartL POINT LOADS(kips): 1 0.000 0.099 0.060 0.0% Red 0.000 Dist DL RedLL Red% NonRLL StorLL Red% RootLL Red% Pant 16.500 0.099 0.060 0.000 0.000 0.82 0.49 0.0 0.00 0.00 0.0 0.00 Snow 0.00 SHEAR(Ultimate): Max Vu(1.2DL+I.6LL)=1.77 kips 0.90Vn=75.49 kips SHEAR(Ultimate): Max Vu(1.2DL+1.6LL)=1.77 kips 0.90Vn=75.49 kips MOMENTS(Ultimate): MOMENTS(Ultimate): Span Cond LoadCombo Mu rCt Lb Cb Phi Phi*Mn Span Cond LoadCombo Mu @ Lb Cb Phi Phi•Mn kip-ft ft ft kip-ft kip-ft ft ft kip-ft Center Max+ I.2DL+I.6LL 7.3 8.3 16.5 1.14 0.90 31.99 Left Max- 1.2DL+1.6LL -5.3 3.0 3.0 1.00 0.90 31.99 Controlling 1.2DL+1.6LL 7.3 8.3 16.5 1.14 0.90 31.99 Center Max- I.2DL+1.6LL -5.3 3.0 7.3 1.67 0.90 31.99 REACTIONS(kips): Controlling 1.2DL+1.6LL -5.3 3.0 7.3 1.67 0.90 31.99 Left Right REACTIONS(kips): DL reaction 0.82 0.82 Left Right Max+LL reaction 0.49 0.49 DL reaction 1.15 -0.33 Max+total reaction(factored) 1.77 1.77 Max+LL reaction 0.70 0.00 DEFLECTIONS: Max-LL reaction 0.00 -0.20 Dead load(in) at 8.25 ft = -0.272 UD = 727 Max+total reaction(factored) 2.50 -0.47 Live load(in) at 8.25 ft = -0.165 L/D = 1199 Max-total reaction 1.61 0.72 Net Total load(in) at 8.25 ft = -0.437 L/D = 453 DEFLECTIONS: Left cantilever: Dead load(in) = -0.072 UD = 996 Pos Live load(in) = -0.044 UD = 1644 - Pos Total load(in) = -0.116 UD = 620 Center span: Dead load(in) at 6.12 ft = 0.024 UD = 3647 Live load(in) at 6.12 ft = 0.015 UD = 6017 Net Total load(in) at 6.12 ft = 0.039 UD = 2271 • Gravity Beam Design Vi 1 Gravity Beam Design I� RAM Steel v14.04.00.00 Page 3/95 RAM Steel v14.04.00.00 Page 4/95 RAM DataBase:Adrienne 2nd Floor 07/26/13 14:15:56 RAM DataBase:Adrienne 2nd Floor 07/26/13 14:15:56 Building Code:IBC Steel Code:AISC LRFD Building Code:IBC Steel Code:AISC LRFD Floor Type:2nd Floor Beam Number=3 Floor Type:2nd Floor Beam Number=4 SPAN INFORMATION(ft): I-End(-3.00,53.67) J-End(7.34,53.67) SPAN INFORMATION(ft): I-End(0.00,0.00) J-End(0.00,27.33) Beam Size(User Selected) = HSS6X4X1/4 Fy = 50.0 ksi Beam Size(User Selected) = W 16X26 Fy = 50.0 ksi Total Beam Length(ft) = 10.34 Total Beam Length(ft) = 27.33 Cantilever on left(ft) = 3.00 COMPOSITE PROPERTIES(Not Shored): Mp(kip-ft) = 35.54 Left Right POINT LOADS(kips): Concrete thickness(in) 3.00 3.00 Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL Unit weight concrete(pcf) 150.00 150.00 0.000 0.82 0.49 0.0 0.00 0.00 0.0 0.00 Snow 0.00 f c(ksi) 4.00 4.00 SHEAR(Ultimate): Max Vu(1.2DL+1.6LL)=1.77 kips 0.90Vn=75.49 kips Decking Orientation perpendicular perpendicular Decking type VERCO W3 Formlok VERCO W3 Fonnlok MOMENTS(Ultimate): beff(in) = 15.11 Y bar(in) = 13.26 Span Cond LoadCombo Mu @ Lb Cb Phi Phi*Mn Mnf(kip-ft) = 303.34 Mn(kip-ft) = 297.60 kip-ft ft ft kip-ft C(kips) = 140.59 PNA(in) = 13.47 Left Max- 1.2DL+1.6LL -5.3 3.0 3.0 1.00 0.90 31.99 Jeff(in4) = 795.68 It(in4) = 818.96 Center Max- 1.2DL+1.6LL -5.3 3.0 7.3 1.67 0.90 31.99 Stud length(in) = 4.50 Stud diam(in) = 0.75 Controlling 1.2DL+1.6LL -5.3 3.0 7.3 1.67 0.90 31.99 Stud Capacity(kips) Qn = 20.1 REACTIONS(kips): #of studs: Full = 17 Partial=13 Actual=16 Left Right Number of Stud Rows=1 Percent of Full Composite Action=91.21 DL reaction 1.15 -0.33 POINT LOADS(kips): Max+LL reaction 0.70 0.00 Dist DL CDL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL CLL Max-LL reaction 0.00 -0.20 6.000 0.35 0.30 0.38 0.0 0.00 0.00 0.0 0.00 Snow 0.00 0.11 Max+total reaction(factored) 2.50 -0.47 -0.17 0.0 0.00 0.00 0.0 0.00 Snow 0.00 0.11 Max-total reaction 1.61 -0.72 • 2.000 1.70 0.00 0.00 0.0 1.10 0.00 0.0 0.00 Snow 0.00 0.00 DEFLECTIONS: LINE LOADS(k/ft): Left cantilever: Load Dist DL CDL LL Red% Type PartL CLL Dead load(in) = -0.072 L/D = 996 I 0.000 0.770 0.000 0.600 0.0% Red 0.000 0.300 l'os Live load(in) = -0.044 L/D = 1644 27.333 0.770 0.000 0.600 0.000 0.300 Pos Total load(in) = -0.116 LID = 620 2 0.000 0.034 0.029 0.020 0.0% Red 0.000 0.010 Center span: 27.333 0.034 0.029 0.020 0.000 0.010 Dead load(in) at 6.12 ft = 0.024 L/D = 3647 3 0.000 0.033 0.028 0.020 0.0% Red 0.000 0.010 Live load(in) at 6.12 ft = 0.015 L/D = 6017 6.000 0.033 0.028 0.020 0.000 0.010 Net Total load(in) at 6.12 ft = 0.039 L/D = 2271 4 6.000 0.242 0.209 0.147 0.0% Red 0.000 0.073 27.333 0.242 0.209 0.147 0.000 0.073 SHEAR(Ultimate): Max Vu(1.2DL+1.6LL)=35.83 kips 0.90Vn=105.98 kips MOMENTS(Ultimate): Span Cond LoadCombo Mu @ Lb Cb Phi Phi*Mn kip-ft ft ft kip-ft Center PreCmp+ 1.2DL+1.6LL 82.8 13.8 0.0 1.00 0.90 165.75 Init DL 1.4DL 30.2 13.9 --- --- Max+ I.2DL+1.6LL 234.7 13.6 --- --- 0.85 252.96 Controlling 1.2DL+1.6LL 234.7 13.6 --- --- 0.85 252.96 Gravity Beam Design Gravity Beam Design Fil RAM Steel v14.04.00.00 Page 5/95 Ili 1 RAM Steel v14.04.00.00 Page 6/95 RAM DataBase:Adrienne 2nd Floor 07/26/13 14:15:56 RAM DataBase:Adrienne 2nd Floor 07/26/13 14:15:56 Building Code:IBC Steel Code:AISC LRFD Building Code:IBC Steel Code:AISC LRFD REACTIONS(kips): Floor Type:2nd Floor Beam Number=5 Left Right SPAN INFORMATION(ft): I-End(0.00,0.00) J-End(7.83,0.00) Initial reaction 7.51 8.43 Beam Size(User Selected) = W 14X22 Fy = 50.0 ksi DL reaction 15.02 14.36 Total Beam Length(ft) = 7.83 Max+LL reaction 11.12 10.57 Max-IL reaction -0.13 -0.04 COMPOSITE PROPERTIES(Not Shored): Max+total reaction(factored) 35.83 34.13 Left Right Concrete thickness(in) 3.00 3.00 DEFLECTIONS: Unit weight concrete(pcf) 150.00 150.00 Initial load(in) at 13.67 ft = -0.329 UD = 996 fc Live load(in) at 13.67 ft = -0.425 UD = 772 Decking 4.00 4.00 Dg Orientation parallel parallel Post Comp load(in) at 13.67 ft = -0.876 LID = 375 Decking type VERCO W3 Formlok VERCO W3 Formlok Net Total load(in) at 13.67 ft = -1.205 UD = 272 beff(in) = 23.50 Y bar(in) = 13.54 Mnf(kip-ft) = 274.55 Mn(kip-ft) = 138.33 C(kips) = 0.00 PNA(in) = 12.71 leff(in4) = 199.00 ltr(in4) = 698.87 Stud length(in) = 4.50 Stud diam(in) = 0.75 Stud Capacity(kips) Qn = 26.8 #of studs: Max = 20 Partial=20 Actual=0 Number of Stud Rows=0 Percent of Full Composite Action=0.00 POINT LOADS(kips): Dist DL CDL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL CLL 1.000 2.34 2.02 1.42 0.0 0.00 0.00 0.0 0.00 Snow 0.00 0.71 7.344 6.40 5.53 3.91 0.0 0.00 0.00 0.0 0.00 Snow 0.00 1.94 -0.03 0.0 0.00 0.00 0.0 0.00 Snow 0.00 I.94 LINE LOADS Hat): Load Dist DL CDL LL Red% Type PartL CLL 1 0.000 0.245 0.000 0.000 0.0% Red 0.000 0.000 7.833 0.245 0.000 0.000 0.000 0.000 2 0.000 0.034 0.029 0.020 0.0% Red 0.000 0.010 0.491 0.034 0.029 0.020 0.000 0.010 3 0.492 0.034 0.029 0.020 0.0% Red 0.000 0.010 1.000 0.000 0.000 0.000 0.000 0.000 SHEAR(Ultimate): Max Vu(1.2DL+I.6LL)=14.87 kips 0.90Vn=85.08 kips MOMENTS(Ultimate): Span Cond LoadCombo Mu @ Lb Cb Phi Phi•Mn kip-ft ft ft kip-ft Center PreCmp+ 1.2DL+1.6LL 4.7 7.3 6.3 1.09 0.90 117.47 Init DL I.4DL 3.7 7.3 --- --- Max+ 1.2DL+1.6LL 8.3 4.7 --- --- 0.90 124.50 Controlling 1.2DL+1.6LL 8.3 4.7 --- --- 0.90 124.50 REACTIONS(kips): • Gravity Beam Design Gravity Beam Design /0 RAM Steel v14.04.00.00 Page 7/95 rill RAM Steel v14.04.00.00 Page 8/95 RAM DataBase:Adrienne 2nd Floor 07/26/13 14:15:56 RAM DataBase:Adrienne 2nd Floor 07/26/13 14:15:56 Building Code:113C Steel Code:AISC LRFD Building Code:IBC Steel Code:AISC LRFD Left Right Floor Type:2nd Floor Beam Number=6 Initial reaction 2.87 7.35 DL reaction 3.42 7.26 SPAN INFORMATION(ft): I-End(0.00,6.00) J-End(7.34,6.00) Max+LL reaction 1.49 3.85 Beam Size(Optimum) = W 8X10 Fy = 50.0 ksi Max-LL reaction -0.00 -0.03 Total Beam Length(ft) = 7.34 Max+total reaction(factored) 6.49 14.87 COMPOSITE PROPERTIES(Not Shored): DEFLECTIONS: Left Right Initial load(in) at 3.99 ft = -0.005 UD = 17507 Concrete thickness(in) 3.00 3.00 Live load(in) at 3.99 ft = -0.004 L/D = 24818 Unit weight concrete(pcf) 150.00 150.00 Post Comp load(in) at 3.99 ft = -0.008 UD = 11421 f c(ksi) 4.00 4.00 Net Total load(in) at 3.99 ft = -0.014 UD = 6912 Decking Orientation parallel parallel Decking type VERCO W3 Formlok VERCO W3 Formlok beff(in) = 22.03 Y bar(in) = 10.25 Mnf(kip-ft) = 110.47 Mn(kip-ft) = 72.70 C(kips) = 53.56 PNA(in) = 7.10 lefr(in4) = 129.60 ltr(in4) = 195.04 Stud length(in) = 4.50 Stud diam(in) = 0.75 Stud Capacity(kips) Qn = 26.8 #of studs: Max = 19 Partial=15 Actual=15 Number of Stud Rows=1 Percent of Full Composite Action=34.23 POINT LOADS(kips): Dist DL CDL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL CLL 1.000 0.41 0.35 0.44 0.0 0.00 0.00 0.0 0.00 Snow 0.00 0.12 -0.19 0.0 0.00 0.00 0.0 0.00 Snow 0.00 0.12 SHEAR(Ultimate): Max Vu(1.2DL+I.6LL)=1.03 kips 0.90Vn=36.22 kips MOMENTS(Ultimate): Span Cond LoadCombo Mu n Lb Cb Phi Phi'Mn kip-ft ft ft kip-ft Center PreCmp+ 1.2DL+1.6LL 0.5 1.0 6.3 1.67 0.90 32.92 !nit DL 1.4DL 0.4 1.0 -- -- Max+ 1.2DL+l.6LL 1.0 1.0 --- -- 0.85 61.80 Controlling 1.2DL+1.6LL 1.0 1.0 --- -- 0.85 61.80 REACTIONS(kips): Left Right Initial reaction 0.41 0.06 DL reaction 0.35 0.06 Max+LL reaction 0.38 0.06 Max-LL reaction -0.17 -0.03 Max+total reaction(factored) 1.03 0.16 DEFLECTIONS: Initial load(in) at 3.16 ft = -0.002 L/D = 38690 Live load(in) at 3.16 ft = -0.001 Post Comp load(in) at 3.16 ft = -0.001 Net Total load(in) at 3.16 ft = -0.003 L/D = 28945 6 Gravity Beam Design Gravity Beam Design Fi1 RAM Steel v14.04.00.00 Page 9/95 �I RAM Steel v14.04.00.00 Page 10/95 RAM DataBase:Adrienne 2nd Floor 07/26/13 14:15:56 RAM DataBase:Adrienne 2nd Floor 07/26/13 14:15:56 Building Code:IBC Steel Code:AISC LRFD . Building Code:IBC Steel Code:AISC LRFD Floor Type:2nd Floor Beam Number=7 SHEAR(Ultimate): Max Vu(1.2DL+1.6LL)=40.88 kips 0.90Vn=143.37 kips SPAN INFORMATION(ft): I-End(0.00,27.33) J-End(0.00,54.67) MOMENTS(Ultimate): Beam Size(User Selected) = W18X35 Fy = 50.0 ksi Span Cond LoadCombo Mu (a3 Lb Cb Phi Phi'Mn Total Beam Length(ft) = 27.33 kip-ft ft ft kip-ft COMPOSITE PROPERTIES(Not Shored): Center PreCmp+ I.2DL+I.6LL 100.4 13.3 0.0 1.00 0.90 249.37 Left Right Init DL I.4DL 44.2 12.9 --- -- Concrete thickness(in) Left 3.00 Max+ 1.2DL+1.6LL 285.4 12.6 -- -- 0.85 355.89 3.00 Unit weight concrete(pct) 150.00 150.00 Controlling I.2DL+1.6LL 285.4 12.6 -- --- 0.85 355.89 t'c(ksi) 4.00 4.00 REACTIONS(kips): Decking Orientation perpendicular perpendicular Left Right Decking type VERCO W3 Fonnlok VERCO W3 Formlok Initial reaction 9.83 11.09 beff(in) = 45.47 Y bar(in) = 17.35 DL reaction 17.42 17.47 Mnf(kip-ft) = 553.58 Mn(kip-ft) = 418.69 Max+LL reaction 12.46 12.45 C(kips) = 140.59 PNA(in) = 13.54 Max+total reaction(factored) 40.84 40.88 Ieff(in4) = 1160.74 ltr(in4) = 1691.99 Stud length(in) = 4.50 Stud diam(in) = 0.75 DEFLECTIONS: Initial load(in) at 13.53 ft = -0.286 LID = 1148 Stud Capacity(kips) Qn = 20.1 Live load L/D = 946 #of studs: Max = 54 Partial=16 Actual=16 in) at 13.53 ft = -0.347 Number of Stud Rows=I Percent of Full Composite Action=27.33 Net Commp p load Total load(i n n) at 13.53 ft = -0.707 L/D = 464 Net (in) at 13.53 ft = -0.993 L/D = 330 POINT LOADS(kips): Dist DL CDL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL CLL 8.833 1.24 0.00 0.00 0.0 0.80 0.00 0.0 0.00 Snow 0.00 0.00 9.833 1.15 0.99 0.70 0.0 0.00 0.00 0.0 0.00 Snow 0.00 0.35 26.333 1.15 0.99 0.70 0.0 0.00 0.00 0.0 0.00 Snow 0.00 0.35 8.833 1.70 0.00 0.00 0.0 1.10 0.00 0.0 0.00 Snow 0.00 0.00 LINE LOADS(k/R): Load Dist DL CDL LL Red% Type PartL CLL I 0.000 0.770 0.000 0.600 0.0% Red 0.000 0.300 27.333 0.770 0.000 0.600 0.000 0.300 2 0.000 0.034 0.029 0.020 0.0% Red 0.000 0.010 9.325 0.034 0.029 0.020 0.000 0.010 3 9.325 0.034 0.029 0.020 0.0% Red 0.000 0.010 9.833 0.000 0.000 0.000 0.000 0.000 4 26.334 0.000 0.000 0.000 0.0% Red 0.000 0.000 26.841 0.034 0.029 0.020 0.000 0.010 5 26.842 0.034 0.029 0.020 0.0% Red 0.000 0.010 27.333 0.034 0.029 0.020 0.000 0.010 6 9.834 0.341 0.295 0.207 0.0% Red 0.000 0.103 26.333 0.341 0.295 0.207 0.000 0.103 7 0.000 0.242 0.209 0.147 0.0% Red 0.000 0.073 9.833 0.242 0.209 0.147 0.000 0.073 8 26.334 0.242 0.209 0.147 0.0% Red 0.000 0.073 27.333 0.242 0.209 0.147 0.000 0.073 • Gravity Beam Design Gravity Beam Design Fly RAM Steel v14.04.00.00 Page 11/95 FM RAM Steel v14.04.00.00 Page 12/95 RAM DataBase:Adrienne 2nd Floor 07/26/13 14:15:56 RAM DataBase:Adrienne 2nd Floor 07/26/13 14:15:56 Building Code:IBC Steel Code:AISC LRFD Building Code:IBC Steel Code:AISC LRFD Floor Type:2nd Floor Beam Number=8 Post Comp load(in) at 7.34 ft = -0.073 L/D = 2421 Net Total load(in) at 7.34 ft = -0.295 UD = 598 SPAN INFORMATION(ft): I-End(0.00,27.33) J-End(14.69,27.33) Beam Size(User Selected) = W14X22 Fy = 50.0 ksi Total Beam Length(ft) = 14.69 COMPOSITE PROPERTIES(Not Shored): Left Right Concrete thickness(in) 3.00 3.00 Unit weight concrete(pcf) 150.00 150.00 fc(ksi) 4.00 4.00 Decking Orientation parallel parallel Decking type VERCO W3 Formlok VERCO W3 Formlok befl'(in) = 44.06 Y bar(in) = 15.13 Mnf(kip-lt) = 318.20 Mn(kip-ft) = 228.66 C(kips) = 107.12 PNA(in) = 11.51 lef(in4) = 556.81 Itr(in4) = 821.77 Stud length(in) = 4.50 Stud diam(in) = 0.75 Stud Capacity(kips) Qn = 26.8 II of studs: Full = 26 Partial=8 Actual=8 Number of Stud Rows=I Percent of Full Composite Action=33.01 POINT LOADS(kips): Dist DL CDL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL CLL 7.344 6.71 5.53 4.01 0.1 0.20 0.00 0.0 0.00 Snow 0.00 1.94 -0.14 0.5 0.00 0.00 0.0 0.00 Snow 0.00 1.94 7.344 6.61 5.71 4.01 0.1 0.00 0.00 • 0.0 0.00 Snow 0.00 2.00 -0.01 0.5 0.00 0.00 0.0 0.00 Snow 0.00 2.00 SHEAR(Ultimate): Max Vu(1.2DL+1.6LL)=1437 kips 0.9OVn=85.08 kips MOMENTS(Ultimate): Span Cond LoadCombo Mu a Lb Cb Phi Phi•Mn kip-ft ft ft kip-ft Center PreCmp+ 1.2DL+1.6LL 72.6 7.3 7.3 1.67 0.90 124.50 [nit DL 1.4DL 57.7 7.3 -- --- Max+ 1.2DL+1.6LL 107.0 7.3 --- --- 0.85 194.36 Controlling 1.2DL+1.6LL 72.6 7.3 7.3 1.67 0.90 124.50 REACTIONS(kips): Left Right Initial reaction 7.59 7.59 DL reaction 6.66 6.66 Max+LL reaction 4.11 4.11 Max-LL reaction -0.07 -0.07 Max+total reaction(factored) 14.57 14.57 DEFLECTIONS: Initial load(in) at 7.34 ft = -0.222 UD = 794 Live load(in) at 7.34 ft = -0.058 L/D = 3035 Gravity Beam Design Gravity Beam Design III RAM Steel v14.04.00.00 Page 13/95 iV RAM Steel v14.04.00.00 Page 14/95 RAM DataBase:Adrienne 2nd Floor 07/26/13 14:15:56 RAM DataBase:Adrienne 2nd Floor 07/26/13 14:15:56 Building Code:IBC Steel Code:AISC LRFD Building Code:IBC Steel Code:AISC LRFD Floor Type:2nd Floor Beam Number=9 Floor Type:2nd Floor Beam Number=10 SPAN INFORMATION(ft): I-End(0.00,36.17) J-End(7.34,36.17) SPAN INFORMATION(ft): I-End(1.00,-3.00) J-End(1.00,6.00) Beam Size(Optimum) = W8X10 Fy = 50.0 ksi Beam Size(User Selected) = I-ISS6X4XI/4 Fy = 50.0 ksi Total Beam Length(ft) = 7.34 Total Beam Length(R) = 9.00 COMPOSITE PROPERTIES(Not Shored): Cantilever on left(R) = 3.00 Left Right Mp(kip-R) = 35.54 Concrete thickness(in) 3.00 3.00 POINT LOADS(kips): Unit weight concrete(pcf) 150.00 150.00 Dist DL RedLL Red% NonRLL StorLL Red% RooILL Red% PartL fc(ksi) 4.00 4.00 LINE LOADS(k/ft): Decking Orientation parallel parallel Load Dist DL LL Red% Type PartL Decking type VERCO W3 Formlok VERCO W3 Formlok I 3.000 0.242 0.147 0.0% Red 0.000 beff(in) = 17.02 Y bar(in) = 9.82 9.000 0.242 0.147 0.000 Mnf(kip-ft) = 106.88 Mn(kip-ft) = 72.23 2 0.000 0.429 0.260 0.0% Red 0.000 C(kips) = 53.56 PNA(in) = 7.10 3.000 0.429 0.260 0.000 leff(in4) = 122.12 Itr(in4) = 182.61 Stud length(in) = 4.50 Stud diam(in) = 0.75 SHEAR(Ultimate): Max Vu(1.2DL+1.6LL)=2.79 kips 0.90Vn=75.49 kips Stud Capacity(kips) Qn = 26.8 MOMENTS(Ultimate): 4 of studs: Max = 19 Partial=8 Actual=8 Span Cond LoadCombo Mu @ Lb Cb Phi Phi*Mn Number of Stud Rows=1 I'ercent of Full Composite Action=33.86 kip-ft ft ft kip-ft POINT LOADS(kips): Left Max- I.2DL+1.6LL -4.2 3.0 3.0 1.00 0.90 31.99 Dist DL CDL RedLL Red% NonRLL StorLL Red% RooILL Red% PartL CLL Center Max+ 1.2DL+1.6LL 1.3 6.7 0.0 1.00 0.90 31.99 2.000 1.70 0.00 0.00 0.0 1.10 0.00 0.0 0.00 Snow 0.00 0.00 Max- 1.2DL+1.6LL -4.2 3.0 6.0 2.58 0.90 31.99 Controlling 1.2DL+1.6LL -4.2 3.0 6.0 2.58 0.90 31.99 SHEAR(Ultimate): Max Vu(1.2DL+1.6LL)=2.77 kips 0.90Vn=36.22 kips MOMENTS(Ultimate): REACTIONS(kips): Left Right Span Cond LoadCombo Mu @ Lb Cb Phi Phi*Mn kip-ft ft ft kip-ft DL reaction 2.34 4 0.41 Max+LL reaction 1.42 0.44 Center Init DL 1.4DL 0.0 7.3 --- --- Max-LL reaction 0.00 -0.19 Max+ I.2DL+1.6LL 5.5 2.0 --- --- 0.85 61.40 Max+total reaction(factored) 5.07 1.19 Controlling I.2DL+1.6LL 5.5 2.0 --- --- 0.85 61.40 DEFLECTIONS: REACTIONS(kips): Left cantilever: Left Right Dead load(in) _ -0.027 UD = 2693 Initial reaction 0.00 0,00 Pos Live load(in) = -0.028 UD = 2617 DL reaction 1.24 0,46 Neg Live load(in) = 0.011 UD = 6368 Max+LL reaction 0.80 0.30 Pos Total load(in) = -0.054 UD = 1327 Max+total reaction(factored) 2.77 1.03 Center span: DEFLECTIONS: Dead load(in) at 4.98 ft = 0.002 UD = 34012 Initial load(in) at 3.27 ft = -0.000 Live load(in) at 4.98 ft = 0.007 UD = 9746 Live load(in) at 3.27 ft = -0.003 UD = 26637 Net Total load(in) at 4.98 ft = 0.010 UD = 7575 Post Comp load(in) at 3.27 ft = -0.008 L/D = 10465 Net Total load(in) at 3.27 ft = -0.008 UD = 10465 , Gravity Beam Design Gravity Beam Design I RAM Steelv14.04.00.00 Page 15/95 F'l RAM Steel de:IB.00.00 page 16/95 RA DataBase:Adrienne 2nd Floor 07/26/13 14:15:56 RAm DataBase:Adrienne 2nd Floor 07/26/13 14:15:56 Building Code_IBC Steel Code:AISC LRFD Building Code:IBC Steel Code:AISC LRFD Floor Type:2nd Floor Beam Number=I I Floor Type:2nd Floor Beam Number=12 SPAN INFORMATION(ft): I-End(1.00,-3.00) J-End(14.00,-3.00) SPAN INFORMATION(ft): I-End(7.34,0.00) J-End(7.34,27.33) Beam Size(User Selected) = HSS6X4X1/4 Fy = 50.0 ksi Beam Size(User Selected) = W14X22 Fy = 50.0 ksi Total Beam Length(ft) = 13.00 Total Beam Length(ft) = 27.33 Mp(kip-ft) = 35.54 No Loads COMPOSITE PROPERTIES(Not Shored): Left Right SHEAR(Ultimate): Max Vu(1.2DL+1.6LL)=0.00 kips 0.90Vn=75.49 kips Concrete thickness(in) 3.00 3.00 MOMENTS(Ultimate): Unit weight concrete(pcf) 150.00 150.00 Span Cond LoadCombo Mu @ Lb Cb Phi Phi*Mn fc(ksi) 4.00 4.00 kip-ft ft ft kip-ft Decking Orientation perpendicular perpendicular Controlling 1.4 DL 0.0 3.0 0.0 1.00 0.90 0.00 Decking type VERCO W3 Formlok VERCO W3 Formlok beff(in) = 82.00 Y bar(in) = 16.31 REACTIONS(kips): Mnf(kip-ft) = 331.75 Mn(kip-ft) = 225,70 Left Right C(kips) = 100.42 PNA(in) = 11.22 DL reaction 0.00 0.00 leff(in4) = 600.30 Itr(in4) = 920.38 DEFLECTIONS: Stud length(in) = 4.50 Stud diam(in) = 0.75 Dead load(in) at 12.94 ft = -0.000 Stud Capacity(kips) Qn = 20.1 Live load(in) at 12.94 ft = -0.000 #of studs: Max = 27 Partial=I I Actual=12 Net Total load(in) at 12.94 ft = 0.000 Number of Stud Rows=I Percent of Full Composite Action=30.95 POINT LOADS(kips): Dist DL CDL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL CLL 6.000 0.09 0.08 0.10 0.0 0.00 0.00 0.0 0.00 Snow 0.00 0.03 -0.04 0.0 0.00 0.00 0.0 0.00 Snow 0.00 0.03 LINE LOADS(k/ft): Load Dist DL CDL LL Red% Type PartL CLL 1 0.000 0.429 0.370 0.260 0.0% Red 0.000 0.130 6.000 0.429 0.370 0.260 0.000 0.130 2 6.000 0.485 0.419 0.294 0.0% Red 0.000 0.147 27.333 0.485 0.419 0.294 0.000 0.147 SHEAR(Ultimate): Max Vu(1.2DL+1.6LL)=14.35 kips 0.90Vn=85.08 kips MOMENTS(Ultimate): Span Cond LoadCombo Mu @ Lb Cb Phi Phi*Mn kip-ft ft ft kip-ft Center PreCmp+ 1.2DL+1.6LL 68.5 13.7 0.0 1.00 0.90 124.50 !nit DL 1.4DL 54.5 13.7 --- --- Max+ I.2DL+1.6LL 97.9 13.7 --- --- 0.85 191.84 Controlling 1.2DL+1.6LL 68.5 13.7 0.0 1.00 0.90 124.50 REACTIONS(kips): Left Right Initial reaction 7.47 7.71 DL reaction 6.40 6.61 Max+LL reaction 3.91 4.01 Max-LL reaction -0.03 -0.01 Ne Gravity Beam Design lill Gravity Beam Design FRI RAM Steel v14.04.00.00 Page 17/95 RAM Steel v14.04.00.00 Page 18/95 RAM DataBase:Adrienne 2nd Floor 07/26/13 14:15:56 RAM DataBase:Adrienne 2nd Floor 07/26/13 14:15:56 Building Code:IBC Steel Code:AISC LRFD Building Code:IBC Steel Code:AISC LRFD Left Right Floor Type:2nd Floor Beam Number=13 Max+total reaction(factored) 13.94 14.35 DEFLECTIONS: SPAN INFORMATION(ft): I-End(7.34,6.00) 3-End(14.69,6.00) Initial load(in) at 13.6711 = -0.906 L/D = 362 Beam Size(Optimum) = W8XIO Fy = 50.0 ksi Live load(in) at 13.67 ft = -0.212 L/D = 1548 Total Beam Length(ft) = 7.34 Post Comp load(in) at 13.67 ft = -0.259 L/D = 1265 COMPOSITE PROPERTIES(Not Shored): Net Total load(in) at 13.67 ft = -1.165 L/D = 282 Left Right Concrete thickness(in) 3.00 3.00 Unit weight concrete(pc°) 150.00 150.00 fc(ksi) 4.00 4.00 Decking Orientation parallel parallel Decking type VERCO W3 Formlok VERCO W3 Formlok beff(in) = 22.03 Y bar(in) = 10.25 Miff(kip-ft) = 110.47 Mn(kip-ft) = 36.58 C(kips) = 26.78 PNA(in) = 11.91 left(in4) = 30.80 Itr(in4) = 195.04 Stud length(in) = 4.50 Stud diam(in) = 0.75 Stud Capacity(kips) Qn = 26.8 #of studs: Max = 19 Partial=19 Actual=0 Number of Stud Rows=0 Percent of Full Composite Action=0.00 POINT LOADS(kips): Dist DL CDL RedLL Red% NonRLL StorLL Red% RooILL Red% PartL CLL 6.656 0.4I 0.35 0.44 0.0 0.00 0.00 0.0 0.00 Snow 0.00 0.12 -0.19 0.0 0.00 0.00 0.0 0.00 Snow 0.00 0.12 SHEAR(Ultimate): Max Vu(1.2DL+1.6LL)=1.08 kips 0.90Vn=36.22 kips MOMENTS(Ultimate): Span Cond LoadCombo Mu ® Lb Cb Phi Phi•Mn kip-ft ft ft kip-ft Center PreCmp+ 1.2DL+1.6LL 0.4 6.7 6.7 1.67 0.90 32.92 'nit DL I.4DL 0.3 6.7 --- --- Max+ 1.2DL+1.6LL 0.7 6.7 --- --- 0.90 32.92 Controlling 1.2DL+1.6LL 0.7 6.7 --- --- 0.90 32.92 REACTIONS(kips): Left Right • Initial reaction 0.04 0.43 DL reaction 0.04 0.37 Max+LL reaction 0.04 0.40 Max-LL reaction -0.02 -0.18 Max+total reaction(factored) 0.11 1.08 DEFLECTIONS: Initial load(in) at 4.22 ft = -0.002 UD = 55444 Live load(in) at 4.22 ft = -0.002 UD = 44048 Post Comp load(in) at 4.22 ft = -0.002 UD = 39138 Net Total load(in) at 4.22 ft = -0.004 UD = 22943 • Gravity Beam Design Gravity Beam Design III RAM Steel v14.04.00.00 Page 19/95 FRI e� RAM Steel v14.04.00.00 Page 20/95 RAM DataBase:Adrienne 2nd Floor 07/26/13 14:15:56 RAM DataBase:Adrienne 2nd Floor 07/26/13 14:15:56 Building Code:IBC Steel Code:AISC LRFD Building Code:IBC Steel Code:AISC LRFD Floor Type:2nd Floor Beam Number=14 DEFLECTIONS: SPAN INFORMATION(ft): I-End(7.34,27.33) J-End(7.34,54.67) Initial load(in) at 13.67 ft = 0.874 L/D = 375 • Beam Size(User Selected) = W14X22 Fy = 50.0 ksi Live load(in) at 13.67 ft = -0.222 LID = 1476 Total Beam Length(ft) = 27.33 Post Comp load(in) at 13.67 ft = -0.284 L/D = 1154 Net Total load(in) at 13.67 ft = -1.158 L/D = 283 COMPOSITE PROPERTIES(Not Shored): Left Right Concrete thickness(in) 3.00 3.00 Unit weight concrete(pcf) 150.00 150.00 fc(ksi) 4.00 . 4.00 Decking Orientation perpendicular perpendicular Decking type VERCO W3 Fonnlok VERCO W3 Formlok beff(in) = 82.00 Y bar(in) = 16.31 Mnf(kip-ft) = 331.75 Mn(kip-ft) = 225.70 C(kips) = 100.42 PNA(in) = 11.22 Jeff(in4) = 600.30 Itr(in4) = 920.38 Stud length(in) = 4.50 Stud diam(in) = 0.75 Stud Capacity(kips) On = 20.1 II of studs: Max = 27 Partial=11 Actual=12 Number of Stud Rows=I Percent of Full Composite Action=27.16 POINT LOADS(kips): Dist DL CDL RedLL Red% NonRLL StorLL Rcd% RoofLL Red% PartL CLL 8.833 0.46 0.00 0.00 0.0 0.30 0.00 0.0 0.00 Snow 0.00 0.00 9.833 -0.33 -0.29 -0.20 1.1 0.00 0.00 0.0 0.00 Snow 0.00 -0.10 26.333 -0.33 -0.29 -0.20 1.1 0.00 0.00 0.0 0.00 Snow 0.00 -0.10 LINE LOADS(k/ft): Load Dist DL CDL LL Red% Type PartL CLL I 0.000 0.485 0.419 0.294 0.1% Red 0.000 0.147 27.333 0.485 0.419 0.294 0.000 0.147 SHEAR(Ultimate): Max Vu(1.2DL+I.6LL)=14.79 kips 0.90Vn=85.08 kips MOMENTS(Ultimate): Span Cond LoadCombo Mu @ Lb Cb Phi Phi*Mn kip-ft ft ft kip-ft Center PreCmp+ 1.2DL+1.6LL 67.0 13.8 0.0 1.00 0.90 124.50 Ink DL I.4DL 52.6 13.9 --- -- Max+ l.2DL+l.6LL 100.6 13.5 --- --- 0.85 191.84 Controlling I.2DL+1.6LL 67.0 13.8 0.0 1.00 0.90 124.50 REACTIONS(kips): Left Right Initial reaction 7.46 7.21 DL reaction 6.71 6.33 Max+LL reaction 4.21 4.11 Max-LL reaction -0.14 -0.26 Max+total reaction(factored) 14.79 14.17 Gravity Beam Design Gravity Beam Design 1E1 RAM Steel v14.04.00.00 Page 21/95 lil RAM Steel v14.04.00.00 Page 22/95 RAM DataBase:Adrienne 2nd Floor 07/26/13 14:15:56 RAM DataBase:Adrienne 2nd Floor 07/26/13 14:15:56 Building Code:IBC Steel Code:AISC LRFD Building Code:IBC Steel'Code:AISC LRFD floor Type:2nd Floor Beam Number=15 REACTIONS(kips): SPAN INFORMATION(ft): I-End(7.83,0.00) J-End(25.08,0.00) Left Right Beam Size(User Selected) = W18X35 Fy = 50.0 ksi Initial reaction 11.40 12.86 Total Beam Length(ft) = 17.25 DL reaction 19.34 18.05 Max+LL reaction 12.86 11.14 COMPOSITE PROPERTIES(Not Shored): Max-LL reaction -0.08 -0.05 Left Right Max+total reaction(factored) 43.79 39.49 Concrete thickness(in) 3.00 3.00 Unit weight concrete(pet) 150.00 150.00 DEFLECTIONS: fc(ksi) 4.00 4.00 Initial load(in) at 8.37 ft = -0.120 LID = 1728 Decking Orientation parallel parallel Live load(in) at 8.37 ft = -0.104 UD = 1998 Decking type VERCO W3 Fonnlok VERCO W3 Fomtlok Post Comp load(in) at 8.37 ft = -0.209 UD = 988 beff(in) = 30.35 Y bar(in) = 16.04 Net Total load(in) at 8.37 ft = -0.329 UD = 629 Mnf(kip-ft) = 493.05 Mn(kip-ft) = 446.47 C(kips) = 187.45 PNA(in) = 15.10 leff(in4) = 1286.83 Itr(in4) = 1508.30 Stud length(in) = 4,50 Stud diam(in) = 0.75 Stud Capacity(kips) Qn = 26.8 #of studs: Full = 31 Partial=9 Actual=18 Number of Stud Rows=I Percent of Full Composite Action=57.03 POINT LOADS(kips): Dist DL CDL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL CLL 6.167 2.34 2.02 1.42 4.3 0.00 0.00 0.0 0.00 Snow 0.00 0.71 6.854 22.24 4.92 17.26 4.3 1.02 0.00 0.0 0.00 Snow 0.00 8.56 -0.14 4.5 0.00 0.00 0.0 0.00 Snow 0.00 8.56 14.104 6.54 5.65 3.96 4.3 0.00 0.00 0.0 0.00 Snow 0.00 1.98 6.854 1.70 0.00 0.00 0.0 1.10 0.00 0.0 0.00 Snow 0.00 0.00 LINE LOADS(k/ft): Load Dist DL CDL LL Red% Type PartL CLL I 0.000 0.245 0.000 0.000 0.0% Red 0.000 0.000 17.250 0.245 0.000 0.000 0.000 0.000 2 6.675 0.034 0.029 0.020 4.3% Red 0.000 0.010 17.250 0.034 0.029 0.020 0.000 0.010 3 6.167 0.000 0.000 0.000 4.3% Red 0.000 0.000 6.675 0.034 0.029 0.020 0.000 0.010 SHEAR(Ultimate): Max Vu(l.2DL+1.6LL)=43.79 kips 0.90Vn=143.37 kips MOMENTS(Ultimate): Span Cond LoadCombo Mu @ Lb Cb Phi Phi'Mn kip-ft ft ft kip-ft Center PreCmp+ 1.2DL+l.6LL 107.8 6.9 7.3 1.24 0.90 249.37 Init DL I.4DL 49.8 6.9 --- --- Max+ l.2DL+1.6LL 289.8 6.9 --- -- 0.85 379.50 Controlling I.2DL+1.6LL 289.8 6.9 --- --- 0.85 379.50 \ • Gravity Beam Design Gravity Beam Design ,!l RAM Steel v14.04.00.00 Page 23/95 Fil RAM Steel v14.04.00.00 Page 24/95 RAM DataBase:Adrienne 2nd Floor 07/26/13 14:15:56 Ram DataBase:Adrienne 2nd Floor 07/26/13 14:15:56 Building Code:IBC Steel Code:AISC LRFD Building Code:IBC Steel Code:AISC LRFD Floor Type:2nd Floor Beam Number=17 Floor Type:2nd Floor Beam Number=18 SPAN INFORMATION(ft): I-End(14.00,-3.00) J-End(14.00,6.00) SPAN INFORMATION(ft): I-End(14.69,0.00) J-End(14.69,27.33) Beam Size(User Selected) = HSS6X4XI/4 Fy = 50.0 ksi Beam Size(User Selected) = W 1 8X35 Fy = 50.0 ksi Total Beam Length(ft) = 9.00 Total Beam Length(ft) = 27.33 Cantilever on left(ft) = 3.00 COMPOSITE PROPERTIES(Not Shored): Mp(kip-ft) = 35.54 Left Right POINT LOADS(kips): Concrete thickness(in) 3.00 3.00 Dist DL RedLL Red% NonRLL StorLL Rcd% RoofLL Red% PartL Unit weight concrete(pcf) 150.00 150.00 LINE LOADS(kilt): fc(ksi) 4.00 4.00 Load Dist DL LL Red% Type PartL Decking Orientation perpendicular perpendicular 0.000 0.429 0.260 0.0% Red 0.000 Decking type VERCO W3 Formlok VERCO W3 Formlok 3.000 0.429 0.260 0.000 beff(in) = 47.26 Y bar(in) = 17.47 2 3.000 0.242 0.147 0.0% Red 0.000 Mnf(kip-R) = 560.52 Mn(kip-ft) = 447.33 9.000 0.242 0.147 0.000 C(kips) = 180.76 PNA(in) = 14.88 Ieff(in4) = 1244.07 ltr(in4) = 1708.82 SHEAR(Ultimate): Max Vu(I.2DL+1.6LL)=2.79 kips 0.90Vn=75.49 kips Stud length(in) = 4.50 Stud diam(in) = 0.75 MOMENTS(Ultimate): Stud Capacity(kips) Qn = 20.1 Span Cond LoadCombo Mu @ Lb Cb Phi Phi*Mn #of studs: Max = 54 Partial=19 Actual=19 kip-ft ft ft kip-ft Number of Stud Rows=1 Percent of Full Composite Action=37.21 Left Max- l.2DL+1.6LL -4.2 3.0 3.0 1.00 0.90 31.99 POINT LOADS(kips): Center Max+ 1.2DL+1.6LL 1.3 6.7 0.0 1.00 0.90 31.99 Dist DL CDL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL CLL Max- I.2DL+1.6LL -4.2 3.0 6.0 2.58 0.90 31.99 6.000 0.37 0.32 0.40 0.0 0.00 0.00 0.0 0.00 Snow 0.00 0.11 Controlling 1.2DL+1.6LL -4.2 3.0 6.0 2.58 0.90 31.99 -0.18 0.0 0.00 0.00 0.0 0.00 Snow 0.00 0.11 REACTIONS(kips): 2.000 1.70 0.00 0.00 0.0 1.10 0.00 0.0 0.00 Snow 0.00 0.00 Left Right LINE LOADS(kilt): DL reaction 2.34 0.41 Load Dist DL CDL LL Red% Type PartL CLL Max+LL reaction 1.42 0.44 1 0.000 1.095 0.000 1.000 0.0% Red 0.000 0.500 Max-LL reaction 0.00 -0.19 27.333 1.095 0.000 1.000 0.000 0.500 Max+total reaction(factored) 5.07 1.19 2 0.000 0.023 0.020 0.014 0.0% Red 0.000 0.007 DEFLECTIONS: 6.000 0.023 0.020 0.014 0.000 0.007 Left cantilever: 3 6.000 0.242 0.209 0.147 0.0% Red 0.000 0.073 Dead load(in) = -0.027 L/D = 2693 27.333 0.242 0.209 0.147 0.000 0.073 Pos Live load(in) = -0.028 L/D = 2617 4 0.000 0.239 0.207 0.145 0.0% Red 0.000 0.072 Neg Live load(in) = 0.011 UD = 6368 27.333 0.239 0.207 0.145 0.000 0.072 Pos Total load(in) = -0.054 UD = 1327 SHEAR(Ultimate): Max Vu(1.2DL+1.6LL)=55.92 kips 0.90Vn=143.37 kips Center span: Dead load(in) at 4.98 ft = 0.002 UD = 34012 MOMENTS(Ultimate): Live load(in) at 4.98 It = 0.007 UD = 9746 Span Cond LoadCombo Mu @ Lb Cb Phi Phi*Mn Net Total load(in) at 4.98 ft = 0.010 UD = 7575 kip-ft ft ft kip It Center PreCmp+ 1.2DL+I.6LL 141.8 13.7 0.0 1.00 0.90 249.37 !nit DL 1.4DL 53.3 13.8 --- -- Max+ I.2DL+l.6LL 372.5 13.6 --- --- 0.85 380.23 Controlling 1.2DL+1.6LL 372.5 13.6 --- --- 0.85 380.23 Gravity Beam Design Gravity Beam Design ri i� RAM Steel v14.04.00.00 Page 25/95 0 RAM Steel v14.04.00.00 Page 26/95 RAN DataBase:Adrienne 2nd Floor 07/26/13 14:15:56 Rpm DataBase:Adrienne 2nd Floor 07/26/13 14:15:56 Building Code:IBC Steel Code:AISC LRFD Building Code:IBC Steel Code:AISC LRFD REACTIONS(kips): Floor Type:2nd Floor Beam Number=19 Left Right SPAN INFORMATION(ft): 1-End(14.69,27.33) J-End(14.69,54.67) Initial reaction 13.48 14.44 Beam Size(User Selected) = W I 8X35 Fy = 50.0 ksi DL reaction 22.24 21.61 Total Beam Length(ft) = 27.33 Max+LL reaction 18.28 17.74 Max-LL reaction -0.14 -0.04 COMPOSITE PROPERTIES(Not Shored): Max+total reaction(factored) 55.92 54.30 Left Right Concrete thickness(in) 3.00 3.00 DEFLECTIONS: Initial load(in) at 13.67 ft = -0.345 UD = 951 Unit weight concrete(pet) 150.00 150.00 Live load(in) at 13.67 ft = -0.454 L/D = 722 fe Decking 4.00 4.00 Post Comp load(in) at 13.67 ft = -0.865 UD = 379 Decking type W3 Formlok perpendicular Forlok Net Total load(in) at 13.67 ft = -1.210 L/D = 271 Decking type = VERCO W3 Formlok VERCO W3 Formlok beff(in) - 82.00 Y bar(in) = 1 8.99 Mnf(kip-ft) = 597.67 Mn(kip-ft) = 463.98 C(kips) = 200.84 PNA(in) = 15.54 leff(in4) = 1395.89 Itr(in4) = 1928.58 Stud length(in) = 4.50 Stud diam(in) = 0.75 Stud Capacity(kips) Qn = 20.1 #of studs: Max = 54 Partial=16 Actual=20 Number of Stud Rows=I Percent of Full Composite Action=39.00 LINE LOADS(k/ft): Load Dist DL CDL LL Red% Type PartL CLL I 0.000 1.095 0.000 1.000 0.0% Red 0.000 0.500 27.333 1.095 0.000 1.000 0.000 0.500 2 0.000 0.482 0.416 0.292 0.0% Red 0.000 0.146 27.333 0.482 0.416 0.292 0.000 0.146 SHEAR(Ultimate): Max Vu(1.2DL+1.6LL)=54.10 kips 0.90Vn=143.37 kips MOMENTS(Ultimate): Span Cond LoadCombo Mu @ Lb Cb Phi Phi•Mn kip-ft ft ft kip-ft Center PreCmp+ l.2DL+1.6LL 143.1 13.7 0.0 1.00 0.90 249.37 Init DL I.4DL 54.4 13.7 --- --- Max+ l.2DL+1.6LL 369.7 13.7 -- --- 0.85 394.38 Controlling 1.2DL+l.6LL 369.7 13.7 --- --- 0.85 394.38 REACTIONS(kips): Left Right Initial reaction 14.51 14.51 DL reaction 21.55 21.55 Max+LL reaction 17.66 17.66 Max+total reaction(factored) 54.10 54.10 DEFLECTIONS: Initial load(in) at 13.67 11 = -0.353 UD = 929 Live load(in) at 13.67 ft = -0.401 UD = 818 Post Conip load(in) at 13.67 ft = -0.761 L/D = 431 ,11 Gravity Beam Design Gravity Beam Design rii RAM Steel v14.04.00.00 Page 27/95 fil RAM Steel v14.04.00.00 Page 28/95 RA DataBase:Adrienne 2nd Floor 07/26/13 14:15:56 IAM DataBase:Adrienne 2nd Floor 07/26/13 14;15:56 Building Code:IBC Steel Code:AISC LRFD Building Code:IBC Steel Code:AISC1 LRFD Net Total load(in) at 13.67 ft = -1.1 14 UD = 294 Floor Type:2nd Floor Beam Number=20 SPAN INFORMATION(ft): I-End(14.69,27.33) J-End(32.54,27.33) Beam Size(User Selected) = W 18X35 Fy = 50.0 ksi Total Beam Length(ft) = 17.85 COMPOSITE PROPERTIES(Not Shored): Left Right Concrete thickness(in) 3.00 3.00 Unit weight concrete(pct) 150.00 150.00 fc(ksi) 4.00 4.00 Decking Orientation parallel parallel Decking type VERCO W3 Fonnlok VERCO W3 Formiok heft'(in) = 53.56 Y bar(in) = 17.84 Mnf(kip-ft) = 576.63 Mn(kip-ft) = 414.18 C(kips) = 133.90 PNA(in) = 13.31 Leff(in4) = 1148.51 Itr(in4) = 1762.25 Stud length(in) = 4.50 Stud diam(in) = 0.75 Stud Capacity(kips) Qn = 26.8 #of studs: Max = 94 Partial=27 Actual=27 Number of Stud Rows=1 Percent of Full Composite Action=25.26 POINT LOADS(kips): Dist DL CDL RedLL Red% NonRLL StorLL Red% RoofLL Red% PanL CLL 7.250 13.08. 11.30 7.93 17.7 0.00 0.00 0.0 0.00 Snow 0.00 3.96 14.500 39.49 8.26 33.13 17.7 0.00 0.00 0.0 0.00 Snow 0.00 16.56 SHEAR(Ultimate): Max Vu(1.2DL+1.6LL)=84.51 kips 0.90Vn=143.37 kips MOMENTS(Ultimate): Span Cond LoadCombo Mu @ Lb Cb Phi Phi*Mn kip-ft ft ft kip-ft Center PreCmp+ 1.2DL+1.6LL 135.3 7.3 7.3 1.03 0.90 223.79 Init DL 1.4DL 83.8 7.3 --- --- Max+ 1.2DL+1.6LL 283.5 14.5 --- --- 0.85 352.06 Controlling 1.2DL+1.6LL 283.5 14.5 --- --- 0.85 352.06 REACTIONS(kips): Left Right Initial reaction 13.73 26.36 DL reaction 15.19 37.38 Max+LL reaction 8.99 24.78 Max+total reaction(factored) 32.61 84.51 DEFLECTIONS: ' Initial load(in) at 9.19 ft = -0.210 UD = 1021 Live load(in) at 9.37 ft = -0.129 UD = 1662 Post Comp load(in) at 9.37 ft = -0.244 UD = 879 Net Total load(in) at 9.37 ft = -0.453 L/D = 473 Gravity Beam Design Gravity Beam Design Fil RAM Steel v14.04.00.00 Page 29/95 il�� RAM Steel v14.04.00.00 Page 30/95 RAM DataBase:Adrienne 2nd Floor 07/26/13 14:15:56 RA DataBase:Adrienne 2nd Floor 07/26/13 14:15:56 Building Code:IBC Steel Code:AISC LRFD Building Code:IBC Steel Code:AISC LRFD Floor Type:2nd Floor Beam Number=22 Floor Type:2nd Floor Beam Number=23 . SPAN INFORMATION(ft): 1-End(21.94,0.00) J-End(21.94,27.33) SPAN INFORMATION(ft): I-End(21.94,27.33) J-End(21.94,54.67) Beam Size(User Selected) = W 14X22 Fy = 50.0 ksi Beam Size(User Selected) = W 14X22 Fy = 50.0 ksi Total Beam Length(ft) = 27.33 Total Beam Length(ft) = 27.33 COMPOSITE PROPERTIES(Not Shored): COMPOSITE PROPERTIES(Not Shored): Left Right Left Right Concrete thickness(in) 3.00 3.00 Concrete thickness(in) 3.00 3.00 Unit weight concrete(pct) 1 50.00 150.00 Unit weight concrete(pct) 150.00 150.00 fc(ksi) 4.00 4.00 fc(ksi) 4.00 4.00 Decking Orientation perpendicular perpendicular Decking Orientation perpendicular perpendicular Decking type VERCO W3 Formlok VERCO W3 Formlok Decking type VERCO W3 Formlok VERCO W3 Formlok beff(in) = 82.00 V bar(in) = 16.31 beff(in) = 82.00 V bar(in) = 16.31 Mnf(kip-ft) = 331.75 Mn(kip-ft) = 238.50 Mnf(kip-ft) = 331.75 Mn(kip-ft) = 238,50 C(kips) = 120.51 PNA(in) = 12.09 C(kips) = 120.51 PNA(in) = 12.09 leff(in4) = 638.60 Itr(in4) = 920.38 leff(in4) = 638.60 ltr(in4) = 920.38 Stud length(in) = 4,50 Stud diam(in) = 0.75 Stud length(in) = 4.50 Stud diam(in) = 0.75 Stud Capacity(kips) Qn = 20.1 Stud Capacity(kips) Qn = 20.1 #of studs: Max = 27 Partial=10 Actual=12 #of studs: Max = 27 Partial=10 Actual=12 Number of Stud Rows=1 Percent of Full Composite Action=37.13 Number of Stud Rows=I Percent of Full Composite Action=37.13 LINE LOADS(k/ft): LINE LOADS(k/ft): Load Dist DL CDL LL Red% Type PartL CLL Load Dist DL CDL LL Red% Type PartL CLL I 0.000 0.478 0.413 0.290 0.0% Red 0.000 0.145 1 0.000 0.478 0.413 0.290 0.0% Red 0.000 0.145 27.333 0.478 0.413 0.290 0.000 0.145 27.333 0.478 0.413 0.290 0.000 0.145 SHEAR(Ultimate): Max Vu(1.2DL+1.6LL)=14.19 kips 0.90Vn=85.08 kips SHEAR(Ultimate): Max Vu(1.2DL+l.6LL)=14.19 kips 0.90Vn=85.08 kips MOMENTS(Ultimate): MOMENTS(Ultimate): Span Cond LoadCombo Mu @ Lb Cb Phi Phi*Mn Span Cond LoadCombo Mu @ Lb Cb Phi Phi*Mn kip-ft ft ft kip-ft kip-ft ft ft kip-ft Center PreCmp+ I.2DL+1.6LL 68.0 13.7 0.0 1.00 0.90 124.50 Center PreCmp+ I.2DL+1.6LL 68.0 13.7 0.0 1.00 0.90 124.50 Init DL I.4DL 54.0 13.7 --- --- [nit DL 1.4DL 54.0 13.7 --- --- Max+ 1.2DL+1.6LL 97.0 13.7 --- --- 0.85 202.73 Max+ I.2DL+1.6LL 97.0 13.7 --- --- 0.85 202.73 Controlling I.2DL+1.6LL 68.0 13.7 0.0 1.00 0.90 124.50 Controlling l.2DL+1.6LL 68.0 13.7 0.0 1.00 0.90 124,50 REACTIONS(kips): REACTIONS(kips): Left Right Left Right Initial reaction 7.63 7.63 Initial reaction 7.63 7.63 DL reaction 6.54 6.54 DL reaction 6.54 6.54 Max+LL reaction 3.96 3.96 Max+LL reaction 3.96 3.96 Max+total reaction(factored) 14.19 14.19 Max+total reaction(factored) 14.19 14.19 DEFLECTIONS: DEFLECTIONS: Initial load(in) at 13.67 ft = -0.899 UD = 365 Initial load(in) at 13.67 ft = -0.899 UD = 365 Live load(in) at 13.67 ft = -0.197 UD = 1668 Live load(in) at 13.67 ft = -0.197 UD = 1668 Post Comp load(in) at 13.67 ft = -0.241 L/D = 1361 Post Comp load(in) at 13.67 ft = -0.241 UD = 1361 Net Total load(in) at 13.67 ft = -1.140 UD = 288 Net Total load(in) at 13.67 ft = -1.140 UD = 288 Gravity Beam Design i Gravity Beam Design FM RAM Steel v14.04.00.00 Page 31/95 RAM Steel v14.04.00.00 Page 32/95 RAM DataBase:Adrienne 2nd Floor 07/26/13 14:15:56 I DataBase:Adrienne 2nd Floor 07/26/13 14:15:56 Building Code:IBC Steel Code:AISC LRFD Building Code:IBC . Steel Code:AISC LRFD Floor Type:2nd Floor Beam Number=24 DEFLECTIONS: SPAN INFORMATION(ft): 1-End(25.08,0.00) J-End(40.04,0.00) Initial load(in) at 6.88 ft = 0.070 UD = 2547 Beam Size(User Selected) = W16 X26 Fy = 50.0 ksi Live load(in) at 6.88 ft = -0.079 L/D = 2278 Total Beam Length(ft) = 14.96 Post Comp load(in) at 6.88 ft = -0.160 UD = 1120 Net Total load(in) at 6.88 ft = -0.231 UD = 778 COMPOSITE PROPERTIES(Not Shored): Left Right Concrete thickness(in) 3.00 3.00 Unit weight concrete(pcf) 150.00 150.00 . Pc(ksi) 4.00 4.00 Decking Orientation parallel parallel Decking type VERCO W3 Fonnlok VERCO W3 Fonnlok beff(in) - 28.44 Y bar(in) = 15.20 Mnf(kip-ft) = 359.33 Mn(kip-ft) = 283.87 C(kips) = 107.12 PNA(in) = 12.13 leff(in4) = 729.63 lir(in4) = 1006.34 Stud length(in) = 4.50 Stud diam(in) = 0.75 Stud Capacity(kips) Qn = 26.8 #of studs: Full = 41 Partial=12 Actual=18 Number of Stud Rows=I Percent of Full Composite Action=36.93 POINT LOADS(kips): Dist DL CDL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL CLL 4.104 19.75 4.13 16.56 0.0 0.00 0.00 0.0 0.00 Snow 0.00 8.28 7.458 2.03 1.75 1.23 0.0 0.00 0.00 0.0 0.00 Snow 0.00 0.62 LINE LOADS(k/ft): Load Dist DL CDL LL Red% Type PartL CLL 1 0.000 0.245 0.000 0.000 0.0% Red 0.000 0.000 14.958 0.245 0.000 0.000 0.000 0.000 2 0.000 0.034 0.029 0.020 0.0% Red 0.000 0.010 14.958 0.034 0.029 0.020 0.000 0.010 SHEAR(Ultimate): Max Vu(1.2DL+1.6LL)=41.38 kips 0.90Vn=105.98 kips MOMENTS(Ultimate): Span Cond LoadCombo Mu @ Lb Cb Phi Phi'Mn kip-ft ft ft kip-ft Center PreCmp+ 1.2DL+1.6LL 61.7 4.1 4.1 1.66 0.90 165.75 Init DL I.4DL 23.2 4.1 --- -- Max+ 1.2DL+1.6LL 166.7 4.1 --- -- 0.85 241.29 Controlling l.2DL+1.6LL 166.7 4.1 --- -- 0.85 241.29 REACTIONS(kips): Left Right Initial reaction 10.49 4.88 DL reaction 17.43 8.51 Max+LL reaction 12.79 5.31 Max+total reaction(factored) 41.38 18.71 Gravity Beam Design Gravity Beam Design Fil RAM Steel v14.04.00.00 Page 33/95 FRI RAM Steel v14.04.00.00 Page 34/95 RAM DataBase:Adrienne 2nd Floor 07/26/13 14:15:56 RAM DataBase:Adrienne 2nd Floor 07/26/13 14:15:56 Building Code:IBC Steel Code:AISC LRFD Building Code:IBC Steel Code:AISC LRFD Floor Type:2nd Floor Beam Number=25 Net Total load(in) at 13.67 ft = -1.079 UD = 304 SPAN INFORMATION(ft): 1-End(29.19,0.00) J-End(29.19,27.33) Beam Size(User Selected) = W 18X35 Fy = 50.0 ksi Total Beam Length(R) = 27.33 COMPOSITE PROPERTIES(Not Shored): Left Right Concrete thickness(in) 3.00 3.00 Unit weight concrete(pct) 150.00 150.00 fc(ksi) 4.00 4.00 Decking Orientation perpendicular perpendicular Decking type VERCO W3 Formlok VERCO W3 Formlok beff(in) = 61.13 Y bar(in) = 18.22 Mnf(kip-R) = 584.14 Mn(kip-ft) = 435.29 C(kips) = 160.67 PNA(in) = 14.21 Ieff(in4) = 1239.78 Itr(in4) = 1816.54 Stud length(in) = 4.50 Stud diam(in) = 0,75 Stud Capacity(kips) Qn = 20.1 #of studs: Max = 54 Partial=14 Actual=17 Number of Stud Rows=I Percent of Full Composite Action=31.20 LINE LOADS(k/ft): Load Dist DL CDL LL Red% Type PartL CLL 1 0.000 1.095 0.000 1.000 0.0% Red 0.000 0.500 27.333 1.095 0.000 1.000 0.000 0.500 2 0.000 0.350 0.302 0.212 0.0% Red 0.000 0.106 27.333 0.350 0.302 0.212 0.000 0.106 SHEAR(Ultimate): Max Vu(1.2DL+1.6LL)=50.20 kips 0.90Vn=143.37 kips MOMENTS(Ultimate): Span Cond LoadCombo Mu a Lb Cb Phi Phi+Mn kip-ft ft ft kip-ft Center PreCmp+ 1.2DL+1.6LL 124.4 13.7 0.0 1.00 0.90 249.37 Init DL I.4DL 39.5 13.7 --- --- Max+ I.2DL+1.6LL 343.0 13.7 --- --- 0.85 370.00 Controlling 1.2DL+1.6LL 343.0 13.7 -- --- 0.85 370.00 REACTIONS(kips): Left Right Initial reaction 12.41 12.41 DL reaction 19.75 19.75 Max+LL reaction 16.56 16.56 Max+total reaction(factored) 50.20 50.20 DEFLECTIONS: Initial load(in) at 13.67 ft = -0.257 L/D = 1278 Live load(in) at 13.67 ft = -0.423 UD = 775 Post Comp load(in) at 13.67 ft = -0.823 UD = 399 . I Gravity Beam Design fill RAM Gravity Beam Design FI RAM Steel v14.04.00.00 Page 35/95 Steel v14.04.00.00 Page 36/95 RAM DataBase:Adrienne 2nd Floor 07/26/13 14:15:56 RAM DataBase:Adrienne 2nd Floor 07/26/13 14:15:56 Building Code:IBC Steel Code:AISC LRFD Building Code:IBC Steel Code:AISC LRFD Floor Type:2nd Floor Beam Number=26 Net Total load(in) at 13.67 ft = -1.026 LID = 320 SPAN INFORMATION(ft): I-End(29.19,27.33) J-End(29.19,54.67) Beam Size(User Selected) = W 18X35 Fy = 50.0 ksi Total Beam Length(ft) = 27.33 COMPOSITE PROPERTIES(Not Shored): Left Right Concrete thickness(in) 3.00 3.00 Unit weight concrete(pct) 150.00 150.00 fc(ksi) 4.00 4.00 Decking Orientation perpendicular perpendicular Decking type VERCO W3 Formlok VERCO W3 Formlok beff(in) = 61.13 Y bar(in) = 18.22 Mnf(kip-ft) = 584.14 Mn(kip-ft) = 461.92 C(kips) = 200.84 PNA(in) = 15.54 leff(in4) = 1325.92 Itr(in4) = 1816.54 Stud length(in) = 4.50 Stud diam(in) = 0.75 Stud Capacity(kips) Qn = 20.1 8 of studs: Max = 54 Partial=14 Actual=20 Number of Stud Rows=1 Percent of Full Composite Action=39.00 LINE LOADS(k/ft): Load Dist DL CDL LL Red% Type PartL CLL 1 0.000 1.095 0.000 1.000 0.0% Red 0.000 0.500 27.333 1.095 0.000 1.000 0.000 0.500 2 0.000 0.350 0.302 0.212 0,0% Red 0.000 0.106 27.333 0.350 0.302 0.212 0.000 0.106 SHEAR(Ultimate): Max Vu(1.2DL+I.6LL)=50.20 kips 0.90Vn=143.37 kips MOMENTS(Ultimate): Span Cond LoadCombo Mu @ Lb Cb Phi Phi*Mn kip-ft ft ft kip-ft Center PreCmp+ 1.2DL+1.6LL 124.4 13.7 0.0 1.00 0.90 249.37 kilt DL 1.4DL 39.5 13.7 --- --- Max+ I.2DL+1.6LL 343.0 13.7 --- -- 0.85 392.63 Controlling 1.2DL+1.6LL 343.0 13.7 --- --- 0.85 392.63 REACTIONS(kips): Left Right Initial reaction 12.41 12.41 DL reaction 19.75 19.75 Max+LL reaction 16.56 16.56 Max+total reaction(factored) 50.20 50.20 DEFLECTIONS: Initial load(in) at 13.67 ft = -0.257 L/D = 1278 Live load(in) at 13.67 ft = -0.396 L/D = 829 Post Comp load(in) at 13.67 ft = -0.769 L/D = 426 \./-- SS Gravity Beam Design Gravity Beam Design I� RAM Steel v14.04.00.00 Page 37/95 r/``ti Steel v14.04.00.00 Page 38/95 RAM DataBase:Adrienne 2nd Floor 07/26/13 14:15:56 RAM DataBase:Adrienne 2nd Floor 07/26/13 14:15:56 . Building Code:IBC Steel Code:AISC LRFD . Building Code:IBC Steel Code:AISC LRFD Floor Type:2nd Floor Beam Number=28 Floor Type:2nd Floor Beam Number=29 SPAN INFORMATION(ft): 1-End(32.54,0.00) J-End(32.54,11.33) SPAN INFORMATION(ft): I-End(32.54,11.33) J-End(40.04,11.33) Beam Size(User Selected) = W 12X16 Fy = 50.0 ksi Beam Size(Optimum) = W8XI0 Fy = 50.0 ksi Total Beam Length(ft) = 11.33 Total Beam Length(ft) = 7.50 COMPOSITE PROPERTIES(Not Shored): Mp(kip-ft) = 36.96 Left Right No Loads Concrete thickness(in) 3.00 3.00 SHEAR(Ultimate): Max Vu(1.2DL+1.6LL)=0.00 kips 0.90Vn=36.22 kips Unit weight concrete(pcf) 150.00 150.00 fc(ksi) 4.00 4.00 MOMENTS(Ultimate): Span Cond LoadCombo Mu @ Lb Cb Phi Phi*Mn Decking Orientation perpendicular perpendicular Decking type VERCO W3 Formlok VERCO W3 Formlok kip-ft 0 5.7 0.0 1.00 0.90 0.00 ft ft kip-ft.00 Controlling 1.4DL 0.0 bef(in) = 34.00 Y bar(in) = 13.78 Mnf(kip-ft) = 215.51 Mn(kip-ft) = 149.39 REACTIONS(kips): C(kips) = 80.34 PNA(in) = 9.65 Left Right leff(in4) = 333.69 Itr(in4) = 497.98 DL reaction 0.00 0.00 Stud length(in) = 4.50 Stud diam(in) = 0.75 DEFLECTIONS: Stud Capacity(kips) Qn = 20.1 Dead load(in) at 7.46 ft = -0.000 #of studs: Max = 11 Partial=6 Actual=8 Live load(in) at 7.46 ft = -0.000 Number of Stud Rows=I Percent of Full Composite Action=34.11 Net Total load(in) at 7.46 ft = 0.000 LINE LOADS(k/ft): Load Dist DL CDL LL Red% Type PartL CLL 1 0.000 0.358 0.309 0.217 0.0% Red 0.000 0.109 11.333 0.358 0.309 0.217 0.000 0.109 SHEAR(Ultimate): Max Vu(1.2DL+1.6LL)=4.40 kips 0.90Vn=71.28 kips MOMENTS(Ultimate): Span Cond LoadCombo Mu @ Lb Cb Phi Phi*Mn kip-ft ft ft kip-ft Center PreCmp+ 1.2DL+I.6LL 8.7 5.7 0.0 1.00 0.90 75.37 Init DL I.4DL 7.0 5.7 --- ___ Max+ I.2DL+1.6LL 12.5 5.7 --- --- 0.85 126.99 Controlling 1.2DL+1.6LL 8.7 5.7 0.0 1.00 0.90 75.37 REACTIONS(kips): Left Right Initial reaction 2.37 2.37 DL reaction 2.03 2.03 Max+LL reaction 1.23 1.23 Max+total reaction(factored) 4.40 4.40 DEFLECTIONS: Initial load(in) at 5.67 ft = -0.038 L/D = 3538 Live load(in) at 5.67 ft = -0.008 LID = 16332 Post Comp load(in) at 5.67 ft = -0.010 L/D = 13332 Net Total load(in) at 5.67 ft = -0.049 LID = 2796 • • • Gravity Beam Design Gravity Beam Design T Jj\ RAM Steel v14.04.00.00 Page 39/95 FM RAM Steel v14.04.00.00 Page 40/95 RAM DataBase:Adrienne 2nd Floor 07/26/13 14:15:56 RpM DataBase:Adrienne 2nd Floor 07/26/13 14:15:56 Building Code:IBC Steel Code:AISC LRFD Building Code:IBC Steel Code:AISC LRFD Floor Type:2nd Floor Beam Number=30 Floor Type:2nd Floor Beam Number=31 SPAN INFORMATION(ft): I-End(32.54,39.00) J-End(32.54,54.67) SPAN INFORMATION(ft): I-End(40.04,0.00) J-End(40.04,11.33) Beam Size(User Selected) = W I2X 16 Fy = 50.0 ksi Beam Size(User Selected) = W 1 2X 16 Fy = 50.0 ksi Total Beam Length(ft) = 15.67 Total Beam Length(ft) = 11.33 COMPOSITE PROPERTIES(Not Shored): COMPOSITE PROPERTIES(Not Shored): Left Right Left Right Concrete thickness(in) 3.00 3.00 Concrete thickness(in) 3.00 3.00 Unit weight concrete(pet) 150.00 150.00 Unit weight concrete(pcf) 150.00 150.00 fc(ksi) 4.00 4.00 Pc(ksi) 4.00 4.00 Decking Orientation perpendicular perpendicular Decking Orientation perpendicular perpendicular Decking type VERCO W3 Formlok VERCO W3 Formlok Decking type VERCO W3 Formlok VERCO W3 Formlok bell(in) = 43.63 Y bar(in) = 14.25 beff(in) = 23.00 Y bar(in) = 12.92 Mnf(kip-ft) = 219.92 Mn(kip-ft) = 149.91 Mnf(kip-ft) = 205.72 Mn(kip-ft) = 83.75 C(kips) = 80.34 PNA(in) = 9.65 C(kips) = 0.00 PNA(in) = 9.12 left(in4) = 348,98 lir(in4) = 524.15 Ieff(in4) = 103.00 lir(in4) = 452.31 Stud length(in) = 4.50 Stud diam(in) = 0.75 Stud length(in) = 4.50 Stud diam(in) = 0.75 StudCapacity(kips) Qn = 20.1 StudCapacity(kips) Qn[1] = 20.1 Qn[2] = 16.1 Qn[3] = 13.1 #of studs: Max = 15 Partial=6 Actual=8 #of studs: Max = 11 Partial=8 Actual=0 Number of Stud Rows=I Percent of Full Composite Action=34.1 I Number of Stud Rows=0 Percent of Full Composite Action=0.00 LINE LOADS(k/ft): POINT LOADS(kips): Load Dist DL CDL LL Red% Type PartL CLL Dist DL CDL RedLL Red% NonRLL StorLL Red% RoofLL Red% l'artL CLL 1 0.000 0.358 0.309 0.217 0.0% Red 0.000 0.109 2.000 2.09 0.13 0.09 0.0 1.84 0.00 0.0 0.00 Snow 0.00 0.05 15.666 0.358 0.309 0.217 0.000 0.109 LINE LOADS(k/ft): SHEAR(Ultimate): Max Vu(1.2D1+1.6LL)=6.09 kips 0.90Vn=71.28 kips Load Dist DL CDL LL Red% Type PartL CLL 1 0.000 1.095 0.000 1.000 0.0% Red 0.000 0.500 MOMENTS(Ultimate): 11.333 1.095 0.000 1.000 0.000 0.500 Span Cond LoadCombo Mu @ Lb Cb Phi Phi*Mn kip ft ft ft kip-ft 2 0.000 0.247 0.214 0.150 0.0% Red 0.000 0.075 Center PreCmp+ 1.2DL+1.6LL 16.7 7.8 0.0 1.00 0.90 75.37 11.333 0.247 0.214 0.150 0.000 0.075 Init DL I.4DL 13.3 7.8 --- -- 3 0.000 0.304 0.262 0.184 0.0% Red 0.000 0.092 Max+ 1.2DL+1.6LL 23.8 7.8 --- --- 0.85 127.42 2.000 0.304 0.262 0.184 0.000 0.092 Controlling 1.2DL+1.6LL 16.7 7.8 0.0 1.00 0.90 75.37 4 2.000 0.033 0.028 0.020 0.0% Red 0.000 0.010 11.333 0.033 0.028 0.020 0.000 0.010 REACTIONS(kips): Left Right SHEAR(Ultimate): Max Vu(1.2DL+1.6LL)=25.64 kips 0.90Vn=71.28 kips Initial reaction 3.27 3.27 MOMENTS(Ultimate): DL reaction 2.81 2.81 Span Cond LoadCombo Mu n Lb Cb Phi Phi*Mn Max+LL reaction 1.70 1.70 kip-ft ft ft kip-ft Max+total reaction(factored) 6.09 6.09 Center PreCmp+ I.2DL+1.6LL 20.3 5.6 0.0 1.00 0.90 75.37 DEFLECTIONS: Init DL I.4DL 6.0 5.4 --- --- Initial load(in) at 7.83 ft = -0.140 UD = 1339 Max+ 1.2DL+1.6LL 62.9 5.4 -- --- 0.90 75.37 Live load(in) at 7.83 ft = 0.029 L/D = 6466 Controlling I.2DL+1.6LL 62.9 5.4 --- --- 0.90 75.37 Post Comp load(in) at 7.83 ft = -0.036 L/D = 5279 REACTIONS(kips): Net Total load(in) at 7.83 ft = -0.176 UD = 1068 N) N Gravity Beam Design Gravity Beam Design ,'V RAM Steel v14.04.00.00 Page 41/95 Fil RAM Steel v14.04.00.00 Page 42/95 RAM DataBase:Adrienne 2nd Floor 07/26/13 14:15:56 RAM DataBase:Adrienne 2nd Floor 07/26/13 14:15:56 Building Code:IBC Steel Code:AISC LRFD Building Code:IBC Steel Code:AISC LRFD Left Right Floor Type:2nd Floor Beam Number=32 Initial reaction 5.41 4.77 DL reaction 10.01 8.21 SPAN INFORMATION(ft): I-End(40.04,0.00) J-End(49.25,-0.00) Max+LL reaction 8.52 7.00 Beam Size(User Selected) = W 12X16 Fy = 50.0 ksi Max+total reaction(factored) 25.64 21.05 Total Beam Length(ft) = 9.21 DEFLECTIONS: COMPOSITE PROPERTIES(Not Shored): Initial load(in) at 5.61 ft = -0.033 L/D = 4071 Left Right Live load(in) at 5.61 ft = -0.164 L/D = 829 Concrete thickness(in) 3.00 3.00 Post Comp load(in) at 5.61 ft = -0.323 L/D = 421 Unit weight concrete(pcf) 150.00 150.00 Net Total load(in) at 5.61 ft = -0.356 LID = 382 fc(ksi) 4.00 4.00 Decking Orientation parallel parallel Decking type VERCO W3 Formlok VERCO W3 Formlok beff(in) = 18.00 Y bar(in) = 12.33 Mnf(kip-ft) = 186.33 Mn(kip-ft) = 129.78 C(kips) = 53.56 PNA(in) = 8.43 leff(in4) = 274.88 Itr(in4) = 421.23 Stud length(in) = 4.50 Stud diam(in) = 0.75 Stud Capacity(kips) Qn = 26.8 #of studs: Full = 14 Partial=4 Actual=4 Number of Stud Rows=I Percent of Full Composite Action=29.17 LINE LOADS(k/ft): Load Dist DL CDL LL Red% Type I'artL CLL 1 0.000 0.245 0.000 0.000 0.0% Red 0.000 0.000 9.208 0.245 0.000 0.000 0.000 0.000 2 0.000 0.034 0.029 0.020 0.0% Red 0.000 0.010 9.208 0.034 0.029 0.020 0.000 0.010 • SHEAR(Ultimate): Max Vu(1.4DL)=1.80 kips 0.90Vn=71.28 kips MOMENTS(Ultimate): Span Cond LoadCombo Mu @ Lb Cb I'hi Phi"Mn kip-ft ft ft kip-ft Center PreCmp+ 1.2DL+l.6LL 0.5 4.6 9.2 1.14 0.90 40.55 Ink DL 1.4DL 0.4 4.6 --- --- Max+ I.4DL 4.1 4.6 --- --- 0.85 110.31 Controlling 1.4DL 4.1 4.6 --- --- 0.85 110.31 . REACTIONS(kips): Left Right Initial reaction 0.18 0.18 DL reaction 1.28 1.28 Max+LL reaction 0.09 0,09 Max+total reaction(factored) 1.80 1.80 DEFLECTIONS: Initial load(in) at 4.60 ft = -0.002 L/D = 70416 Live load(in) at 4.60 ft = -0.000 Post Comp load(in) at 4.60 ft = -0.005 L/D = 20173 \f`� Gravity Beam Design FRI Gravity Beam Design r'V RAM Steelv14.04.00.00 Page 43/95 RAM Steel v14,04.00.00 Page 44/95 RA DataBase:Adrienne 2nd Floor 07/26/13 14:15:56 RAM DataBase:Adrienne 2nd Floor 07/26/13 14:15:56 Building Code:IBC Steel Code:AISC LRFD Building Code:IBC Steel Code:AISC LRFD Net Total load(in) at 4.60 ft = -0.007 L/D = 15681 Floor Type:2nd Floor Beam Number=33 SPAN INFORMATION(ft): I-End(40.04,2.00) J-End(49.25,2.00) Beam Size(User Selected) = WI 2X 16 Fy = 50.0 ksi Total Beam Length(ft) = 9.21 Mp(kip-ft) = 83.75 LINE LOADS(WO: Load Dist DL LL Red% Type Part". I 0.000 0.420 0.400 --- NonR 0.000 9.208 0.420 0.400 0.000 2 0.000 0.033 0.020 0.0% Red 0.000 9.208 0.033 0.020 0.000 SHEAR(Ultimate): Max Vu(1.2DL+1.6LL)=5.60 kips 0.90Vn=71.28 kips MOMENTS(Ultimate): Span Cond LoadCombo Mu @ Lb Cb Phi Phi•Mn kip-ft ft ft kip-ft Center Max+ 1.2DL+1.6LL 12.9 4.6 9.2 1.14 0.90 40.55 Controlling l.2DL+1.6LL 12.9 4.6 9.2 1.14 0.90 40.55 REACTIONS(kips): Left Right DL reaction 2.09 2.09 Max+LL reaction 1.93 1.93 Max+total reaction(factored) 5.60 5.60 DEFLECTIONS: Dead load(in) at 4.60 ft = -0.025 L/D = 4504 Live load(in) at 4.60 ft = -0.023 UD = 4858 Net Total load(in) at 4.60 ft = -0.047 UD = 2337 VGravity Beam Design El Gravity Beam Design RAM Steel v14.04.00.00 Page 45/95 RAM Steel v14.04.00.00 Page 46/95 RAM DataBase:Adrienne 2nd Floor 07/26/13 14:15:56 RAM DataBase:Adrienne 2nd Floor 07/26/13 14:15:56 Building Code:IBC Steel Code:AISC LRFD Building Code:IBC Steel Code:AISC LRFD Floor Type:2nd Floor Beam Number=34 Net Total load(in) at 4.10 ft = -0.011 UD = 9030 SPAN INFORMATION(ft): I-End(40.04,16.83) J-End(48.25,16.83) Beam Size(User Selected) = W12X16 Fy = 50.0 ksi Total Beam Length(ft) = 8.21 COMPOSITE PROPERTIES(Not Shored): Left Right Concrete thickness(in) 3.00 3.00 Unit weight concrete(pcf) 150.00 150.00 fc(ksi) 4.00 4.00 Decking Orientation parallel parallel Decking type VERCO W3 Formlok VERCO W3 Fonnlok belT(in) = 18.31 Y bar(in) = 12.37 Mnf(kip-ft) = 187.56 Mn(kip-ft) = 129.81 C(kips) = 53.56 PNA(in) = 8.43 leff(in4) = 274.60 Itr(in4) = 423.46 Stud length(in) = 4.50 Stud diam(in) = 0.75 Stud Capacity(kips) Qn = 26.8 #of studs: Full = 14 Partial=4 Actual=4 Number of Stud Rows=I Percent of Full Composite Action=28.67 LINE LOADS(k/ft): Load Dist DL CDL LL Red% Type PartL CLL I 0.000 0.250 0.000 0.500 --- NonR 0.000 0.000 8.208 0.250 0.000 0.500 0.000 0.000 2 0.000 0.033 0.029 0.020 0.0% Red 0.000 0.010 8.208 0.033 0.028 0.020 0.000 0.010 SHEAR(Ultimate): Max Vu(1.2DL+1.6LL)=4.81 kips 0.90Vn=71.28 kips MOMENTS(Ultimate): Span Cond LoadCombo Mu a Lb Cb Phi Phi•Mn kip-ft ft ft kip-ft Center PreCmp+ 1.2DL+1.6LL 0.4 4.1 8.2 1.14 0.90 49.24 . !nit DL I.4DL 0.3 4.1 --- --- Max+ I.2DL+1.6LL 9.9 4.1 --- --- 0.85 110.34 Controlling 1.2DL+1.6LL 9.9 4.1 --- --- 0.85 110.34 REACTIONS(kips): Left Right Initial reaction 0.16 0.16 DL reaction 1.16 1.16 Max+LL reaction 2.13 2.13 Max+total reaction(factored) 4.81 4.81 DEFLECTIONS: Initial load(in) at 4.10 ft = -0.001 Live load(in) at 4.10 ft = -0.007 UD = 14768 Post Comp load(in) at 4.10 ft = -0.010 UD = 9915 ■ � �sN Gravity Beam Design Gravity Beam Design lil RAM Steel v14.04.00.00 Page 47/95 fe�'l RAM Steel v14.04.00.00 Page 48/95 RAM DataBase:Adrienne 2nd Floor 07/26/13 14:15:56 RAM DataBase:Adrienne 2nd Floor 07/26/13 14:15:56 Building Code:IBC Steel Code:AISC LRFD Building Code:IBC Steel Code:AISC LRFD Floor Type:2nd Floor Beam Number=35 Net Total load(in) at 5.23 II = -0.118 UD = 1068 SPAN INFORMATION(ft): I-End(40.04,22.00) .1-End(40.04,32.46) Beam Size(User Selected) = W l2X 16 Fy = 50.0 ksi Total Beam Length(ft) = 10.46 COMPOSITE PROPERTIES(Not Shored): Left Right Concrete thickness(in) 3.00 3.00 Unit weight concrete(pcf) 150.00 150.00 fc(ksi) 4.00 4.00 Decking Orientation perpendicular perpendicular Decking type VERCO W3 Formlok VERCO W3 Formlok beff(in) = 31.37 Y bar(in) = 13.62 Mnf(kip-ft) = 213.84 Mn(kip-11) = 135.57 C(kips) = 60.25 PNA(in) = 8.74 leff(in4) = 298.27 lir(in4) = 489.04 Stud length(in) = 4.50 Stud diam(in) = 0.75 Stud Capacity(kips) Qn = 20,1 #of studs: Max = 10 Partial=6 Actual=6 Number of Stud Rows=1 Percent of Full Composite Action=25.58 LINE LOADS(k/ft): Load Dist DL CDL LL Red% Type PartL CLL 1 0.000 1.095 0.000 1.000 0.0% Red 0.000 0.500 10.458 1.095 0.000 1.000 0.000 0.500 2 0.000 0.518 0.448 0.314 0.0% Red 0.000 0.157 10.458 0.518 0.448 0.314 0.000 0.157 SHEAR(Ultimate): Max Vu(1.2DL+1.6LL)=21.12 kips 0.90Vn=71.28 kips MOMENTS(Ultimate): Span Cond LoadCombo Mu @ Lb Cb Phi Phi'Mn kip-ft ft ft kip-ft Center PreCmp+ I.2DL+1.6LL 21.7 5.2 0.0 1.00 0.90 75.37 !nit DL I.4DL 8.6 5.2 --- --- Max+ 1.2DL+1.6LL 55.2 5.2 --- --- 0.85 115.23 Controlling 1.2DL+I.6LL 55.2 5.2 --- --- 0.85 115.23 REACTIONS(kips): Left Right Initial reaction 5.78 5.78 DL reaction 8.44 8.44 Max+LL reaction 6.87 6.87 Max+total reaction(factored) 21.12 21.12 DEFLECTIONS: Initial load(in) at 5.23 ft = -0.040 L/D = 3111 Live load(in) at 5.23 ft = -0.041 UD = 3069 Post Comp load(in) at 5.23 ft = -0.077 UD = 1626 \f', b Gravity Beam Design Gravity Beam Design MI RAM Steel v14.04.00.00 Page 49/95 tip RAM Steel v14.04.00.00 Page 50/95 RAM DataBase:Adrienne 2nd Floor 07/26/13 14:15:56 RAM DataBase:Adrienne 2nd Floor 07/26/13 14:15:56 Building Code:IBC Steel Code:AISC LRFD Building Code:IBC Steel Code:AISC LRFD Floor Type:2nd Floor Beam Number=38 Net Total load(in) at 7.83 ft = -0.522 L/D = 360 SPAN INFORMATION(ft): I-End(40.04,39.00) J-End(40.04,54.67) Beam Size(User Selected) = W 12X 16 Fy = 50.0 ksi Total Beam Length(ft) = 15.67 COMPOSITE PROPERTIES(Not Shored): Left Right Concrete thickness(in) 3.00 3.00 Unit weight concrete(pct) 150.00 150.00 fc(ksi) 4.00 4.00 Decking Orientation perpendicular perpendicular Decking type VERCO W3 Formlok VERCO W3 Formlok beff(in) = 47.00 Ybar(in) = 14.38 Mnf(kip-ft) = 221.04 Mn(kip-ft) = 162.30 C(kips) = 100.42 PNA(in) = 10.56 leff(in4) = 382.83 ltr(in4) = 531.52 Stud length(in) = 4.50 Stud diam(in) = 0.75 Stud Capacity(kips) Qn = 20.1 #of studs: Max = 15 Partial=8 Actual=10 Number of Stud Rows=I Percent of Full Composite Action=42.64 LINE LOADS(k/ft): Load Dist DL CDL LL Red% Type PartL CLL 0.000 1.095 0.000 1.000 0.0% Red 0.000 0.500 15.666 1.095 0.000 1.000 0.000 0.500 2 0,000 0.551 0.476 0.334 0.0% Red 0.000 0.167 15.666 0.551 0.476 0.334 0.000 0.167 SHEAR(Ultimate): Max Vu(I.2DL+1.6LL)=32.20 kips 0.90Vn=71.28 kips MOMENTS(Ultimate): Span Cond LoadCombo Mu @ Lb Cb Phi Phi*Mn kip-ft ft ft kip-ft Center PreCmp+ 1.2DL+1.6LL 50.3 7.8 0.0 1.00 0.90 75.37 Init DL 1.4DL 20.5 7.8 --- --- Max+ I.2DL+1.6LL 126.1 7.8 --- --- 0.85 137.95 Controlling 1.2DL+1.6LL 126.1 7.8 --- --- 0.85 137.95 REACTIONS(kips): Left Right Initial reaction 8.96 8.96 DL reaction 12.90 12.90 Max+LL reaction 10.45 10.45 Max+total reaction(factored) 32.20 32.20 DEFLECTIONS: Initial load(in) at 7.83 ft = -0.216 UD = 870 Live load(in) at 7.83 ft = -0.163 UD = 1154 Post Comp load(in) at 7.83 It = -0.306 UD = 615 ElGravity Beam Design Gravity Beam Design RAM Steel v14.04.00.00 Page 51/95 �� RAM Steel v14.04.00.00 Page 52/95 RAM DataBase:Adrienne 2nd Floor 07/26/13 14:15:56 RAM DataBase:Adrienne 2nd Floor 07/26/13 14:15:56 Building Code:IBC Steel Code:AISC LRFD Building Code:IBC Steel Code:AISC LRFD Floor Type:2nd Floor Beam Number=40 Post Comp load(in) at 8.44 ft = -0.257 UD = 750 Net Total load(in) at 8.44 ft = -0.388 LID = 498 SPAN INFORMATION(ft): I-End(48.25,27.33) J-End(64.33,27.33) Beam Size(User Selected) = W18X35 Fy = 50.0 ksi Total Beam Length(ft) = 16.08 COMPOSITE PROPERTIES(Not Shored): Left Right Concrete thickness(in) 3.00 3.00 Unit weight concrete(pcf) 150.00 150.00 Pc(ksi) 4.00 4.00 Decking Orientation parallel parallel Decking type VERCO W3 Formlok VERCO W3 Formlok beff(in) = 48.25 Y bar(in) = 17.53 Mnf(kip-ft) = 564.33 Mn(kip-ft) = 413.73 C(kips) = 133.90 PNA(in) = 13.31 Ieff(in4) = 1139.96 Itr(in4) = 1717.76 Stud length(in) = 4.50 Stud diam(in) = 0.75 Stud Capacity(kips) Qn = 26.8 #of studs: Full = 56 Partial=15 Actual=16 Number of Stud Rows=1 Percent of Full Composite Action=27.21 POINT LOADS(kips): Dist DL CDL RcdLL Red% NonRLL StorLL Red% RoofLL Red% PartL CLL 1.000 20.95 5.17 17.30 18.4 0.00 0.00 0.0 0.00 Snow 0.00 8.65 1.000 6.89 0.98 5.94 18.4 0.00 0.00 0.0 0.00 Snow 0.00 197 6.583 5.00 4.32 3.03 18.4 0.00 0.00 0.0 0.00 Snow 0.00 1.51 10,583 21.77 5.87 17.79 18.4 0.00 0.00 0.0 0.00 Snow 0.00 8.89 I2.083 19.25 3.70 16.26 18.4 0.00 0.00 0.0 0.00 Snow 0.00 8.13 SHEAR(Ultimate): Max Vu(1.2DL+1.6LL)=93.54 kips 0.90Vn=143.37 kips MOMENTS(Ultimate): Span Cond LoadCombo Mu ® Lb Cb Phi Phi*Mn kip-ft ft ft kip-ft Center PreCmp+ I.2DL+1.6LL 149.0 10.6 4.0 1.08 0.90 249.37 'nit DL 1.4DL 60.0 10.6 --- Max+ I.2DL+1.6LL 339.4 10.6 --- --- 0.85 351.67 Controlling l.2DL+1.6LL 339.4 10.6 --- --- 0.85 351.67 REACTIONS(kips): Left Right Initial reaction 28.11 22.10 DL reaction 41.29 32.56 Max+LL reaction 27.49 21.70 Max+total reaction(factored) 93.54 73.80 DEFLECTIONS: Initial load(in) at 8.44 ft = -0.130 UD = 1480 Live load(in) at 8.44 ft = -0.125 UD = 1543 Gravity Beam Design Gravity Beam Design FI�V RAM Steel v14.04.00.00 Page 53/95 III RAM Steel v14.04.00.00 Page 54/95 RAM DataBase:Adrienne 2nd Floor 07/26/13 14:15:56 RAM DataBase:Adrienne 2nd Floor 07/26/13 14:15:56 Building Code:IBC Steel Code:AISC LRFD Building Code:IBC Steel Code:AISC LRFD Floor Type:2nd Floor Beam Number=41 DEFLECTIONS: SPAN INFORMATION(ft): 1-End(49.25,-0.00) J-End(64.33,0.00) Initial load(in) at 7.84 ft = -0.097 L/D = 1868 Beam Size(User Selected) = W 16X26 Fy =50.0 ksi Live load(in) at 7.92 ft = -0.086 L/D = 2100 Total Beam Length(ft) = 15.08 Post Comp load(in) at 7.92 ft = -0.170 L/D = 1067 Net Total load(in) at 7.92 ft = -0.266 UD = 680 COMPOSITE PROPERTIES(Not Shored): Left Right Concrete thickness(in) 3.00 3.00 Unit weight concrete(pet) 150.00 150.00 fc(ksi) 4.00 4.00 Decking Orientation parallel parallel Decking type VERCO W3 Formlok VERCO W3 Formlok beff(in) = 28.62 Ybar(in) = 15.22 Mnf(kip-ft) = 360.07 Mn(kip-ft) = 283.91 C(kips) = 107.12 PNA(in) = 12.13 leff(in4) = 729.38 IV(in4) = 1008.25 Stud length(in) = 4.50 Stud diam(in) = 0.75 Stud Capacity(kips) Qn = 26.8 #of studs: Full = 43 Partial=12 Actual=18 Number of Stud Rows=I Percent of Full Composite Action=36.69 POINT LOADS(kips): Dist DL CDL RedLL Red% NonRLL StorLL Red% RootLL Red% PartL CLL 5.583 5.00 4.32 3.03 0.0 0.00 0.00 0.0 0.00 Snow 0.00 1.51 11.083 19.25 3.70 16.26 0.0 0.00 0.00 0.0 0.00 Snow 0.00 8.13 LINE LOADS(k/ft): Load Dist DL CDL LL Red% Type PartL CLL 1 0.000 0.245 0.000 0.000 0.0% Red 0.000 0.000 15.083 0.245 0.000 0.000 0.000 0.000 2 0.000 0.034 0.029 0.020 0.0% Red 0.000 0.010 15.083 0.034 0.029 0.020 0.000 0.010 SHEAR(Ultimate): Max Vu(1.2DL+1.6LL)=42.87 kips 0.90Vn=105.98 kips MOMENTS(Ultimate): Span Cond LoadCombo Mu @ Lb Cb Phi Phi*Mn kip-ft ft ft kip-ft Center PreCmp+ 1.2DL+1.6LL 63.7 11.1 5.5 1.06 0.90 163.22 Init DL 1.4DL 30.0 5.6 --- --- Max+ 1.2DL+1.6LL 168.6 11.1 --- --- 0.85 241.32 Controlling 1.2DL+1.6LL 168.6 11.1 --- --- 0.85 241.32 REACTIONS(kips): Left Right Initial reaction 7.11 11.15 DL reaction 10.35 18.10 Max+LL reaction 6.37 13.22 Max+total reaction(factored) 22.62 42.87 .gyp . Gravity Beam Design Gravity Beam Design FL RAM Steel v14.04.00.00 Page 55/95 til RAM Steel v14.04.00.00 Page 56/95 RAM DataBase:Adrienne 2nd Floor 07/26/13 14:15:56 RAM DataBase:Adrienne 2nd Floor 07/26/13 14:15:56 Building Code:IBC Steel Code:AISC LRFD Building Code:IBC Steel Code:AISC LRFD Floor Type:2nd Floor Beam Number=42 Net Total load(in) at 5.25 ft = -0.093 LID = 1358 SPAN INFORMATION(ft): I-End(49.25,16.83) J-End(49.25,27.33) Beam Size(User Selected) = W 12X16 Fy =50.0 ksi Total Beam Length(ft) = 10.50 COMPOSITE PROPERTIES(Not Shored): Left Right Concrete thickness(in) 3.00 3.00 Unit weight concrete(pct) 150.00 150.00 fc(ksi) 4.00 4.00 Decking Orientation perpendicular perpendicular Decking type VERCO W3 Formlok VERCO W3 Fonnlok beff(in) = 21.75 Y bar(in) = 12.79 Mnf(kip-ft) = 200.92 Mn(kip-ft) = 134.94 C(kips) = 60.25 PNA(in) = 8.74 lefT(in4) = 281.42 ltr(in4) = 445.36 Stud length(in) = 4.50 Stud diam(in) = 0.75 Stud Capacity(kips) Qn = 20.1 #of studs: Max = 10 Partial=6 Actual=6 Number of Stud Rows=1 Percent of Full Composite Action=27.16 LINE LOADS(k/ft): Load Dist DL CDL LL Red% Type PartL CLL 1 0.000 1.095 0.000 1.000 0.0% Red 0.000 0.500 10.500 1.095 0.000 1.000 0.000 0.500 2 0.000 0.217 0.188 0.132 0.0% Red 0.000 0.066 10.500 0.217 0.188 0.132 0.000 0.066 SIIEAR(Ultimate): Max Vu(1.2DL+1.6LL)=17.77 kips 0.90Vn=71.28 kips MOMENTS(Ultimate): Span Cond LoadCombo Mu @ Lb Cb Phi Phi*Mn kip-ft ft ft kip-ft Center PreCmp+ 1.2DL+l.6LL 15.6 5.3 0.0 1.00 0.90 75.37 Init DL I.4DL 3.6 5.3 --- --- Max+ I.2DL+l.6LL 46.7 5.3 --- --- 0.85 114.70 Controlling 1.2DL+l.6LL 46.7 5.3 --- -- 0.85 114.70 REACTIONS(kips): Left Right Initial reaction 3.96 3.96 DL reaction 6.89 6.89 Max+LL reaction 5.94 5.94 Max+total reaction(factored) 17.77 17.77 DEFLECTIONS: Initial load(in) at 5.25 ft = -0.017 UD = 7335 Live load(in) at 5.25 ft = -0.038 L/D = 3323 Post Comp load(in) at 5.25 ft = -0.076 UD = 1666 II Gravity Beam Design `` Gravity Beam Design • 1 RAM RAM Steel v14.04.00.00 Page 57/95 `l RAM Steel v14.04.00.00 Page 58/95 DataBase:Adrienne 2nd Floor 07/26/13 14:15:56 RAM DataBase:Adrienne 2nd Floor 07/26/13 14:15:56 Building Code:IBC Steel Code:AISC LRFD Building Code:IBC Steel Code:AISC LRFD Floor Type:2nd Floor Beam Number=43 DEFLECTIONS: SPAN INFORMATION(ft): 1-End(49.25,27.33) J-End(49.25,54.67) Initial load(in) at 13.80 ft = -0.379 L/D = 866 Beam Size(User Selected) = W I8X35 Fy = 50.0 ksi Live load(in) at 13.80 ft = -0.449 UD = 730 Total Beam Length(ft) = 27.33 Post Comp load(in) at 13.80 R = -0.855 UD = 384 Net Total load(in) at 13.80 R = -1.233 UD = 266 COMPOSITE PROPERTIES(Not Shored): Left Right Concrete thickness(in) 3.00 3.00 Unit weight concrete(pcf) 150.00 150.00 fc(ksi) 4.00 4.00 Decking Orientation perpendicular perpendicular Decking type VERCO W3 Formlok VERCO W3 Formlok beff(in) = 47.00 Y bar(in) = 17.45 Mnf(kip-ft) = 559.50 Mn(kip-ft) = 447,28 C(kips) = 180.76 PNA(in) = 14.88 teff(in4) = 1244.64 Itr(in4) = 1706.39 Stud length(in) = 4.50 Stud diam(in) = 0.75 Stud Capacity(kips) Qn = 20.1 #of studs: Max = 54 Partial=19 Actual=20 Number of Stud Rows=l Percent of Full Composite Action=37.71 LINE LOADS(k/ft): Load Dist DL CDL LL Red% Type PartL CLL 1 0.000 1.095 0.000 1.000 1.6% Red 0.000 0.500 27.333 1.095 0.000 1.000 0.000 0.500 2 0.000 0.033 0.028 0.020 1.6% Red 0.000 0.010 11.666 0.033 0.028 0.020 0.000 0.010 3 11.667 0.304 0.262 0.184 1.6% Red 0.000 0.092 27.333 0.304 0.262 0.184 0.000 0.092 4 0.000 0.316 0.273 0.192 1.6% Red 0.000 0.096 27.333 0.316 0.273 0.192 0.000 0.096 SHEAR(Ultimate): Max Vu(1.2DL+1.6LL)=56.27 kips 0.90Vn=143.37 kips MOMENTS(Ultimate): Span Cond LoadCombo Mu © Lb Cb Phi Phi'Mn kip-ft ft ft kip-ft Center PreCmp+ I.2DL+1.6LL 149.1 14.3 0.0 1.00 0.90 '249.37 /nit DL I.4DL 59.3 14.8 --- --- Max+ 1.2DL+1.6LL 374.9 14.0 --- --- 0.85 380.19 Controlling 1.2DL+1.6LL 374.9 14.0 --- --- 0.85 380.19 REACTIONS(kips): Left Right Initial reaction 13.82 15.93 DL reaction 20.95 22.76 Max+LL reaction 17.02 18.10 Max+total reaction(factored) 52.37 56.27 --r- `` Gravity Beam Design Gravity Beam Design • TM RAM Steel v14.04.00.00 Page 59/95 111 RAM Steel v14.04.00.00 Page 60/95 RAM DataBase:Adrienne 2nd Floor 07/26/13 14:15:56 RAM DataBase:Adrienne 2nd Floor 07/26/13 14:15:56 Building Code:IBC Steel Code:AISC LRFD Building Code:IBC Steel Code:AISC LRFD Floor Type:2nd Floor Beam Number=45 Floor Type:2nd Floor Beam Number=46 SPAN INFORMATION(ft): I-End(54.83,0.00) J-End(54.83,27.33) SPAN INFORMATION(ft): I-End(58.83,27.33) J-End(58.83,54.67) Beam Size(User Selected) = W14X22 Fy = 50.0 ksi Beam Size(User Selected) = W 18X35 Fy = 50.0 ksi Total Beam Length(ft) = 27.33 Total Beam Length(ft) = 27.33 COMPOSITE PROPERTIES(Not Shored): COMPOSITE PROPERTIES(Not Shored): Left Right Left Right Concrete thickness(in) 3.00 3.00 Concrete thickness(in) 3.00 3.00 Unit weight concrete(pcf) 150.00 150.00 Unit weight concrete(pcf) 150.00 150.00 re(ksi) 4.00 4.00 fc(ksi) 4.00 4.00 Decking Orientation perpendicular perpendicular Decking Orientation perpendicular perpendicular Decking type VERCO W3 Formlok VERCO W3 Formlok Decking type VERCO W3 Formlok VERCO W3 Formlok beff(in) = 66.50 Y bar(in) = 15.96 beff(in) = 74.00 Y bar(in) = 18.73 Mnf(kip-ft) = 328.08 Mn(kip-ft) = 238.00 Mnf(kip-ft) = 593.39 Mn(kip-ft) = 463.33 C(kips) = 120.51 PNA(in) = 12.09 C(kips) = 200.84 PNA(in) = 15.54 leff(in4) = 619.94 In(in4) = 889.75 left(in4) = 1372.34 ltr(in4) = 1890.86 Stud length(in) = 4.50 Stud diam(in) = 0.75 Stud length(in) = 4,50 Stud diam(in) = 0.75 Stud Capacity(kips) Qn = 20.1 Stud Capacity(kips) Qn = 20.1 #of studs: Max = 27 Partial=10 Actual=12 #of studs: Max = 54 Partial=18 Actual=20 Number of Stud Rows=I Percent of Full Composite Action=37.13 Number of Stud Rows=1 Percent of Full Composite Action=39.00 LINE LOADS(k/ft): LINE LOADS(k/ft): Load Dist DL CDL LL Red% Type PartL CLL Load Dist DL CDL LL Red% Type PartL CLL 0.000 0.366 0.316 0.222 0.0% Red 0.000 0.111 1 0.000 1.095 0.000 1.000 1.1% Red 0.000 0.500 27.333 0.366 0.316 0.222 0.000 0.111 27.333 1.095 0.000 1.000 0.000 0.500 SHEAR(Ultimate): Max Vu(1.2DL+1.6LL)=10.85 kips 0.9OVn=85.08 kips 2 0.000 0.498 0.430 0.302 1.1% Red 0.000 0.151 27.333 0.498 0.430 0.302 0.000 0.151 MOMENTS(Ultimate): Span Cond LoadCombo Mu @ Lb Cb Phi Phi*Mn SHEAR(Ultimate): Max Vu(1.2DL+1.6LL)=54.26 kips 0.90Vn=143.37 kips kip-ft ft ft kip-ft MOMENTS(Ultimate): Center PreCmp+ 1.2DL+1.6LL 52.0 13.7 0.0 1.00 0.90 124.50 Span Cond LoadCombo Mu @ Lb Cb Phi Phi'Mn Init DL 1.4DL 41.3 13.7 --- --- kip-ft ft ft kip-II Max+ l.2DL+l.6LL 74.1 13.7 --- -- 0.85 202.30 Center PreCmp+ I.2DL+1.6LL 145.4 13.7 0.0 1.00 0.90 249.37 Controlling I.2DL+1.6LL 52.0 13.7 0.0 1.00 0.90 124.50 Init DL 1.4DL 56.2 13.7 --- --- REACTIONS(kips): Max+ 1.2DL+1.6LL 370.8 13.7 --- --- 0.85 393.83 Left Right Controlling 1.2DL+1.6LL 370.8 13.7 --- --- 0.85 393.83 Initial reaction 5.83 5.83 REACTIONS(kips): DL reaction 5.00 5.00 Left Right Max+LL reaction 3.03 3.03 Initial reaction 14.77 14.77 Max+total reaction(factored) 10.85 10.85 DL reaction 21.77 21.77 DEFLECTIONS: Max+LL reaction 17.59 17.59 Initial load(in) at 13.67 ft = -0.687 LID = 477 Max+total reaction(factored) 54.26 54.26 Live load(in) at 13.67 ft = -0.155 L/D = 2118 DEFLECTIONS: Post Comp load(in) at 13.67 ft = -0.190 L/D = 1729 Initial load(in) at 13.67 ft = -0.365 L/D = 899 Net Total load(in) at 13.67 ft = -0.877 L/D = 374 Live load(in) at 13.67 ft = -0.406 LID = 808 Post Comp load(in) at 13.67 ft = -0.773 L/D = 424 VGravBeam Design Gravity Beam Design ity RAM Steel v14.04.00.00 Page 61/95 1 RAM Steel v14.04.00.00 Page 62/95 RAM DataBase:Adrienne 2nd Floor 07/26/13 14:15:56 RAM DataBase:Adrienne 2nd Floor 07/26/13 14:15:56 Building Code:IBC Steel Code:AISC LRFD Building Code:IBC Steel Code:AISC LRFD Net Total load(in) at 13.67 ft = -1.138 IJD = 288 Floor Type:2nd Floor Beam Number=47 SPAN INFORMATION(ft): I-End(60.33,-0.00) J-End(60.33,27.33) Beam Size(User Selected) = W I8X35 Fy = 50.0 ksi Total Beam Length(ft) = 27.33 COMPOSITE PROPERTIES(Not Shored): Left Right Concrete thickness(in) 3.00 3.00 Unit weight concrete(pet) 150.00 150.00 fc(ksi) 4.00 4.00 Decking Orientation perpendicular perpendicular Decking type VERCO W3 Formlok VERCO W3 Formlok bef(in) = 57.00 Y bar(in) = 18.02 Mnf(kip-ft) = 580.29 Mn(kip-ft) = 461.34 C(kips) = 200.84 PNA(in) = 15.54 leff(in4) = 1308.16 Itr(in4) = 1788.10 Stud length(in) = 4.50 Stud diam(in) = 0.75 Stud Capacity(kips) Qn = 20.1 #of studs: Max = 54 Partial=14 Actual=20 Number of Stud Rows=I Percent of Full Composite Action=39.00 LINE LOADS(k/ft): Load Dist DL CDL LL Red% Type PartL CLL I 0.000 1.095 0.000 1.000 0.0% Red 0.000 0.500 27.333 1.095 0.000 1.000 0.000 0.500 2 0.000 0.313 0.271 0.190 0.0% Red 0.000 0.095 27.333 0.313 0.271 0.190 0.000 0.095 SHEAR(Ultimate): Max Vu(1.2DL+1.6LL)=49.12 kips 0.90Vn=143.37 kips MOMENTS(Ultimate): Span Cond LoadCombo Mu Q Lb Cb Phi Phi*Mn kip-ft ft • ft kip-ft Center PreCmp+ l.2DL+1.6LL 119.2 13.7 0.0 1.00 0.90 249.37 /nit DL 1.4DL 35.4 13.7 --- Max+ 1.2DL+1.6LL 335.7 13.7 --- --- 0.85 392.14 Controlling 1.2DL+1.6LL 335.7 13.7 --- --- 0.85 392.14 REACTIONS(kips): Left Right Initial reaction • 11.83 11.83 DL reaction 19.25 19.25 Max+LL reaction 16.26 16.26 Max+total reaction(factored) 49.12 49.12 DEFLECTIONS: Initial load(in) at 13.67 ft = -0.230 UD = 1427 Live load(in) at 13.67 ft = -0.394 UD = 833 Post Comp load(in) at 13.67 11 = -0.771 UD = 426 Gravity Beam Design Gravity Beam Design FM RAM Steel v14.04.00.00 Page 63/95 Fil RAM Steel v14.04.00.00 Page 64/95 RA DataBase:Adrienne 2nd Floor 07/26/13 14:15:56 RAM DataBase:Adrienne 2nd Floor 07/26/13 14:15:56 Building Code:IBC Steel Code:AISC LRFD Building Code:IBC Steel Code:A ISC LRFD Net Total load(in) at 13.67 ft = -1.001 IJD = 328 Floor Type:2nd Floor Beam Number=48 SPAN INFORMATION(ft): I-End(64.33,0.00) J-End(64.33,27.33) Beam Size(User Selected) = W14X22 Fy = 50.0 ksi Total Beam Length(II) = 27.33 COMPOSITE PROPERTIES(Not Shored): Left Right Concrete thickness(in) 3.00 3.00 Unit weight concrete(pcf) 150.00 150.00 fc(ksi) 4.00 4.00 Decking Orientation perpendicular perpendicular Decking type VERCO W3 Formlok VERCO W3 Formlok beff(in) = 65.00 Y bar(in) = 15.92 Mnf(kip-ft) = 327.63 Mn(kip-ft) = 237.93 C(kips) = 120.51 PNA(in) = 12.09 leff(in4) = 617.81 Iv(in4) = 886.26 Stud length(in) = 4.50 Stud diam(in) = 0.75 Stud Capacity(kips) Qn = 20.1 #of studs: Max = 27 Partial=10 Actual=12 Number of Stud Rows=1 Percent of Full Composite Action=37.13 LINE LOADS(k/ft): Load Dist DL CDL LL Red% Type PartL CLL 1 0.000 0.445 0.385 0.270 0.0% Red 0.000 0.135 27.333 0.445 0.385 0.270 0.000 0.135 SHEAR(Ultimate): Max Vu(1.2DL+1.6LL)=13.21 kips 0.90Vn=85.08 kips MOMENTS(Ultimate): Span Cond LoadCombo Mu a Lb Cb Phi Phi*Mn kip-ft ft ft kip-ft Center PreCmp+ l.2DL+1.6LL 63.3 13.7 0.0 1.00 0.90 124.50 lnit DL I.4DL 50.3 13.7 --- --- Max+ 1.2DL+1.6LL 90.3 13.7 --- --- 0.85 202.24 Controlling 1.2DL+1.6LL 63.3 13.7 0.0 1.00 0.90 124.50 • REACTIONS(kips): Left Right Initial reaction 7.10 7.10 DL reaction 6.09 6.09 Max+LL reaction 3.69 3.69 Max+total reaction(factored) 13.21 13.21 DEFLECTIONS: Initial load(in) at 13.67 ft = -0.837 L/D = 392 Live load(in) at 13.67 ft = -0.189 LID = 1733 Post Comp load(in) at 13.67 ft = -0.232 L/D = 1415 Net Total load(in) at 13.67 ft = -1.069 UD = 307 V 0`` Gravity Beam Design Gravity Beam Design RAM Steel v14.04.00.00 Page 65/95 iV RAM Steel v14.04.00.00 Page 66/95 RAM DataBase:Adrienne 2nd Floor 07/26/13 14:15:56 RAM DataBase:Adrienne 2nd Floor 07/26/13 14:15:56 Building Code:113C Steel Code:AISC LRFD Building Code:IBC Steel Code:AISC LRFD Floor Type:2nd Floor Beam Number=49 Span Cond LoadCombo Mu ® Lb Cb Phi Phi*Mn Max+ I.2DL+1.6LL 339.6 9.5 --- -- 0.85 349.07 SPAN INFORMATION(ft): 1-End(64.33,0.00) 3-End(89.83,0.00) Max- 1.2DL+I.6LL -114.3 23.0 5.5 1.98 0.90 249.37 Beam Size(User Selected) = W18X35 Fy = 50.0 ksi Right PreCmp- I.2DL+1.6LL -40.3 23.0 2.5 1.00 0.90 249.37 Total Beam Length(ft) = 25.50 Max- I'2DL+I.6LL -114.3 23.0 2.5 I.00 0.90 249.37 Cantilever on right(It) = 2.50 Controlling I.2DL+1.6LL 339.6 9.5 --- --- 0.85 349.07 • COMPOSITE PROPERTIES(Not Shored): REACTIONS(kips): Left Right Left Right Concrete thickness(in) 3.00 3.00 Initial reaction 10.52 25.86 Unit weight concrete(pet) 150.00 150.00 DL reaction 16.13 40.22 Pc(ksi) 4.00 4.00 Max+LL reaction 11.33 25.77 Decking Orientation parallel parallel Max-LL reaction -1.55 -0.17 Decking type VERCO W3 Formlok VERCO W3 Formlok Max+total reaction(factored) 37.48 89.49 beff(in) = 14.36 Y bar(in) = 13.60 Mnf(kip-ft) = 410.67 Mn(kip-ft) = 410.67 DEFLECTIONS: C(kips) = 146.51 PNA(in) = 13.73 Center span: teff(in4) = 1 168.04 lir(in4) = 1168.04 Initial load(in) at 11.04 ft = -0.268 UD = 1028 Stud length(in) = 4.50 Stud diam(in) = 0.75 Live load(in) at 11.04 ft = -0.253 UD = 1092 Stud Capacity(kips) Qn = 26.8 Post Comp load(in) at 11.04 ft = -0.448 L/D = 616 #of studs: Full = 15 Partial=14 Actual=24 Net Total load(in) at 11.04 ft = -0.716 UD = 385 Number of Stud Rows=I Percent of Full Composite Action=100.00 Right cantilever: Init load(in) = 0.079 UD = 758 POINT LOADS(kips): Pos Live load(in) = -0.043 UD = 1403 Dist DL CDL RedLL Rcd% NonRLL StorLL Red% RoofLL Red% PartL CLL Neg Live load(in) = 0.083 UD = 726 9.500 22.86 6.82 1 8.45 6.6 0.00 0.00 0.0 0.00 Snow 0.00 9.22 Pos Post Comp load(in) = -0.005 UD = 12619 17.500 6.95 5.88 4.37 6.6 0.09 0.00 0.0 0.00 Snow 0.00 2.06 Neg Post Comp load(in) = 0.121 UD = 497 -0,25 7.1 0.00 0.00 0.0 0.00 Snow 0.00 2.06 Neg Total load(in) = 0.200 L/D = 300 25.500 1.70 0.00 0.00 0.0 1.10 0.00 0.0 0.00 Snow 0.00 0.00 25.500 17.74 5.40 11.99 0.0 0.62 0.00 0.0 0.00 Snow 0.00 6.00 LINE LOADS(k/ft): Load Dist DL CDL LL Red% Type PartL CLL I 0.000 0.245 0.000 0.000 0.0% Red 0.000 0.000 23.000 0.245 0.000 0.000 0.000 0.000 2 23.000 0.245 0.000 0.000 0.0% Red 0.000 0.000 25.500 0.245 0.000 0.000 0.000 0.000 3 0.000 0.034 0.029 0.020 6.6% Red 0.000 0.010 23.000 0.034 0.029 0.020 0.000 0.010 4 23.000 0.034 0.029 0.020 0.0% Red 0.000 0.010 25.500 0.034 0.029 0.020 0.000 0.010 SHEAR(Ultimate): Max Vu(1.2DL+I.6LL)=46.19 kips 0.90Vn=143.37 kips MOMENTS(Ultimate): Span Cond LoadCombo Mu @ Lb Cb Phi Phi*Mn kip-ft ft ft kip-ft Center PreCmp+ 1.2DL+1.6LL 148.0 9.5 9.5 1.66 0.90 249.37 PreCmp- 1.2DL+1.6LL -40.3 23.0 5.5 2.17 0.90 249.37 Init DL 1.4DL 66.7 9.5 --- --- • Gravity Beam Design El RAM Gravity Beam Design FRI RAM Steel v14.04.00.00 Page 67/95 Steel v14.04.00.00 Page 68/95 RAM DataBase:Adrienne 2nd Floor 07/26/13 14:15:56 RAM DataBase:Adrienne 2nd Floor 07/26/13 14:15:56 Building Code:IBC Steel Code:AISC LRFD Building Code:IBC Steel Code:AISC LRFD Floor Type:2nd Floor Beam Number=50 Floor Type:2nd Floor Beam Number=51 SPAN INFORMATION(ft): I-End(64.33,27.33) J-End(64.33,54.67) SPAN INFORMATION(ft): I-End(64.33,27.33) J-End(89.83,27.33) Beam Size(User Selected) = W 14X22 Fy = 50.0 ksi Beam Size(User Selected) = W2IX44 Fy = 50.0 ksi Total Beam Length(ft) = 27.33 Total Beam Length(ft) = 25.50 COMPOSITE PROPERTIES(Not Shored): Cantilever on right(ft) = 2.50 Left Right COMPOSITE PROPERTIES(Not Shored): Concrete thickness(in) 3.00 3.00 Left Right Unit weight concrete(pct) 150.00 150.00 Concrete thickness(in) 3.00 3.00 fc(ksi) 4.00 4.00 Unit weight concrete(pcf) 150.00 150.00 Decking Orientation perpendicular perpendicular fc(ksi) 4.00 4.00 Decking type VERCO W3 Formlok VERCO W3 Formlok Decking Orientation parallel parallel beff(in) = 74.00 Y bar(in) = 16.14 Decking type VERCO W3 Formlok VERCO W3 Fonnlok Mnf(kip-ft) = 330.05 Mn(kip-ft) = 238.27 beff(in) = 69.00 Y bar(in) = 20.42 C(kips) = 120.51 PNA(in) = 12.09 Mnf(kip-ft) = 810.59 Mn(kip-ft) = 681.65 left(in4) = 629.65 ltr(in4) = 905.68 C(kips) = 294.57 PNA(in) = 18.77 Stud length(in) = 4.50 Stud diam(in) = 0.75 leff(in4) = 2165.23 Itr(in4) = 2807.12 Stud Capacity(kips) Qn = 20.1 Stud length(in) = 4.50 Stud diam(in) = 0.75 #of studs: Max = 27 Partial=10 Actual=12 Stud Capacity(kips) Qn = 26.8 Number of Stud Rows=I Percent of Full Composite Action=37.13 #of studs: Full = 61 Partial=27 Actual=27 LINE LOADS(k/ft): Number of Stud Rows=1 Percent of Full Composite Action=45.32 Load Dist DL CDL LL Red% Type PartL CLL POINT LOADS(kips): 1 0.000 0.495 0.427 0.300 0.9% Red 0.000 0.150 Dist DL CDL RedLL Red% NonRLL StorLL Red% RooILL Red% PartL CLL 27.333 0.495 0.427 0.300 0.000 0.150 9.500 45.77 13.59 36.90 25.4 0.07 0.00 0.0 0.00 Snow 0.00 18.43 SHEAR(Ultimate): Max Vu(1.2DL+1.6LL)=14.62 kips 0.90Vn=85.08 kips 0.03 25.5 0.00 0.00 0.0 0.00 Snow 0.00 18.43 17.500 7.20 6.21 4.37 25A 0.01 0.00 0.0 0.00 Snow 0.00 2.18 MOMENTS(Ultimate): -0.02 25.5 0.00 0.00 0.0 0.00 Snow 0.00 2.18 Span Cond LoadCombo Mu @ Lb Cb Phi Phi*Mn 17.500 7.30 6.05 4.37 25.4 0.19 0.00 0.0 0.00 Snow 0.00 2.12 kip-ft R ft kip-ft -0.13 25.5 0.00 0.00 0.0 0.00 Snow 0.00 2.12 Center PreCmp+ I.2DL+I.6LL 70.3 13.7 0.0 1.00 0.90 124.50 25.500 14.65 3.46 10.66 0.0 0.08 0.00 0.0 0.00 Snow 0.00 5.31 Init DL I.4DL 55.9 13.7 --- --- -0.04 0.0 0.00 0.00 0.0 0.00 Snow 0.00 5.31 Max+ 1.2DL+I.6LL 99.9 13.7 --- -- 0.85 202.53 25.500 17.72 4.48 11.34 0.0 1.30 0.00 0.0 0.00 Snow 0.00 5.67 Controlling 1.2DL+1.6LL 70.3 13.7 0.0 1.00 0.90 124.50 SHEAR(Ultimate): Max Vu(1.2DL+1.6LL)=76.27 kips 0.90Vn=195.62 kips REACTIONS(kips): MOMENTS(Ultimate): Left Right Initial reaction 7.89 7.89 Span Cond LoadCombo Mu @ Lb Cb Phi Phi Mn - DL reaction 6.76 6.76 kip-ft ft ft kip-f[ Max+LL reaction 4.06 4.06 Center PreCmp+ 1.2DL+1.6LL 294.6 9.5 9.5 1.67 0.90 357.75 Max+total reaction(factored) 14.62 14.62 PreCmp- 1.2DL+l.6LL -67.8 23.0 5.5 2.21 0.90 357.75 Init DL 1.4DL 133.6 9.5 --- --- DEFLECTIONS: Max+ I.2DL+l.6LL 576.3 9.5 --- --- 0.85 579.40 Initial load(in) at 13.67 ft = -0.930 UD = 353 Max- 1.2DL+1.6LL -190.7 23.0 5.5 2.03 0.90 357.75 Live load(in) at 13.67 ft = -0.204 UD = 1604 Right PreCmp- 1.2DL+1.6LL -67.8 23.0 2.5 1.00 0.90 357.75 Post Comp load(in) at 13.67 R = -0.251 UD = 1307 Max- 1.2DL+I.6LL -190.7 23.0 2.5 1.00 0.90 357.75 Net Total load(in) at 13.67 R = -1.181 UD = 278 Controlling 1.2DL+1.6LL 576.3 9.5 --- --- 0.85 579.40 Gravity Beam Design Gravity Beam Design FRI RAM Steel v14.04.00.00 Page 69/95 fil RAM Steel v14.04.00.00 Page 70/95 RAM DataBase:Adrienne 2nd Floor 07/26/13 14:15:56 RAM DataBase:Adrienne 2nd Floor 07/26/13 14:15:56 Building Code:IBC Steel Code:AISC LRFD Building Code:IBC Steel Code:AISC LRFD REACTIONS(kips): Floor Type:2nd Floor Beam Number=52 Left Right SPAN INFORMATION(R): I-End(64.33,54.67) J-End(89.83,54.67) Initial reaction 20.70 46.81 Beam Size(User Selected) = W I 8X35 Fy = 50.0 ksi DL reaction 26.81 65.83 Total Beam Length(ft) = 25.50 Max+LL reaction 17.80 42.44 Cantilever on right(ft) = 2.50 Max-LL reaction -2.58 -0.13 Max+total reaction(factored) 60.66 146.90 COMPOSITE PROPERTIES(Not Shored): llEFLECT'IONS: Left Right Concrete thickness(in) 3.00 3.00 Center span: Initial load(in) at 11.04 ft = -0.332 UD = 832 Unit weight concrete(pct) 150.00 150.00 Live load(in) at 11.04 ft = -0.216 L/D = 1280 D ck in 4.00 4.00 Post Comp load(in) at 11.04 It = -0.387 UD = 714 Decking Orientation parallel parallel Net Total load(in) at 11.04 ft = -0.719 UD = 384 b Decking type = VERCO W3 ar(in)k VERCO W3 Forml 1 Right cantilever: beff(in) = 38.97 Y bar(in) = 16.86 Rigload(in) = 0.104 L/D = 577 Mnf(kip-ft) = 527.96 Mn(kip-ft) _ 476.80 Pos Live load(in) = -0.040 L/D = 1511 I (kips) - 376.81 PNA 4) = 16.88 Neg Live load(in) = 0.070 L/D = 852 left(ien) = 1376.82 St d di = 16_0.75 Pos Post Comp load(in) = -0.010 UD = 6184 Stud Capacity(in) 4.50 Stud diam(in) 0.75 Neg Post Comp load(in) = 0.100 UD = 597 #of Capacity Fulps) Qn = 26.8 #of studs: Full = 38 Partial=20 Actual=24 Neg Total load(in) = 0.204 LID = 294 Number of Stud Rows=1 Percent of Full Composite Action=60.63 POINT LOADS(kips): Dist DL CDL RedLL Red% NonRLL StorLL Red% RooILL Red% PartL CLL 25.500 1.70 0.00 0.00 0.0 1.10 0.00 0.0 0.00 Snow 0.00 0.00 9.500 22.36 6.05 18.03 8.3 0.25 0.00 0.0 0.00 Snow 0.00 8.96 -0.11 8.5 0.00 0.00 0.0 0.00 Snow 0.00 8.96 10.500 1.33 0.17 0.12 8.3 0.73 0.00 0.0 0.00 Snow 0.00 0.06 11.500 2.30 1.99 1.39 8.3 0.00 0.00 0.0 0.00 Snow 0.00 0.70 17.500 6.88 5.89 4.19 8.3 0.04 0.00 0.0 0.00 Snow 0.00 2.07 -0.06 8.5 0.00 0.00 0.0 0.00 Snow 0.00 2.07 24.500 2.40 2.07 1.45 0.0 0.00 0.00 0.0 0.00 Snow 0.00 0.73 25.500 15.25 2.72 10.24 0.0 1.02 0.00 0.0 0.00 Snow 0.00 5.06 -0.13 0.0 0.00 0.00 0.0 0.00 Snow 0.00 5.06 10.500 1.70 0.00 0.00 0.0 1.10 0.00 0.0 0.00 Snow 0.00 0.00 LINE LOADS(k/ft): Load Dist DL CDL LL Red% Type PartL CLL 1 0.000 0.245 0.000 0.000 0.0% Red 0.000 0.000 23.000 0.245 0.000 0.000 0.000 0.000 2 23.000 0.245 0.000 0.000 0.0% Red 0.000 0.000 25.500 0.245 0.000 0.000 0.000 0.000 3 24.500 0.000 0.000 0.000 0.0% Red 0.000 0.000 25.008 0.034 0.029 0.020 0.000 0.010 4 25.009 0.034 0.029 0.020 0.0% Red 0.000 0.010 25.500 0.034 0.029 0.020 0.000 0.010 5 0.000 0.034 0.029 0.020 8.3% Red 0.000 0.010 -J Gravity Beam Design Gravity Beam Design • I� RAM Steel v14.04.00.00 Page 71/95 �iV RAM Steel v14.04.00.00 Page 72/95 RAM DataBase:Adrienne 2nd Floor 07/26/13 14:15:56 RAM DataBase:Adrienne 2nd Floor 07/26/13 14:15:56 Building Code:IBC Steel Code:AISC LRFD Building Code:IBC Steel Code:AISC LRFD Load Dist DL CDL LL Red% Type PartL CLL Floor Type:2nd Floor Beam Number=53 10.991 0.034 0.029 0.020 0.000 0.010 6 10.992 0.034 0.029 0.020 8.3% Red 0.000 0.010 SPAN INFORMATION(ft): I-End(73.83,0.00) J-End(73.83,27.33) 11.500 0.000 0.000 0.000 0.000 0.000 Beam Size(User Selected) = W 18X35 Fy = 50.0 ksi Total Beam Length(It) = 27.33 SHEAR(Ultimate): Max Vu(I.2DL+1.6LL)=46.99 kips 0.90Vn=143.37 kips MOMENTS(Ultimate): COMPOSITE PROPERTIES(Not Shored): Span Cond LoadCombo Mu @ Lb Cb Phi Phi*Mn Left Right kip-ft ft ft kip-ft Concrete thickness(in) 3.00 3.00 Unit weight concrete(pcf) 150.00 150.00 Center PreCmp+ I.2DL+1.6LL 159.1 9.5 9.5 1.66 0.90 249.37 fc(ksi) 4.00 4.00 PreCmp- I.2DL+1.6LL -33.9 23.0 5.5 2.24 0.90 249.37 Decking Orientation perpendicular perpendicular Init DL 1.4DL 76.1 9.5 --- --- Decking type VERCO W3 Formlok VERCO W3 Formlok Max+ I.2DL+1.6LL 388.3 9.5 --- --- 0.85 405.28 beff(in) = 82.00 Y bar(in) = 18.99 Max- 1.2DL+I.6LL -109.2 23.0 5.5 2.17 0.90 249.37 Mnf(kip-ft) = 597.67 Mn(kip-ft) = 463.98 Right PreCmp- I.2DL+1.6LL -33.9 23.0 1.5 1.00 0.90 249.37 C(kips) = 200.84 PNA(in) = 15.54 Max- 1.2DL+1.6LL -109.2 23.0 1.5 1.00 0.90 249.37 Leff(in4) = 1395.89 It(in4) = 1928.58 Controlling 1.2DL+1.6LL 388.3 9.5 --- -- 0.85 405.28 Stud length(in) = 4.50 Stud diam(in) = 0.75 REACTIONS(kips): Stud Capacity(kips) Qn = 20.1 Left Right #of studs: Max = 54 Partial=18 Actual=20 Initial reaction 11.49 25.45 Number of Stud Rows=1 Percent of Full Composite Action=39.00 DL reaction 1 8.64 41.94 LINE LOADS(Wft): Max+LL reaction 12.65 26.74 Load Dist DL CDL LL Red% Type PartL CLL Max-LL reaction -1.51 -0.23 1 0.000 1.095 0.000 1.000 6.4% Red 0.000 0.500 Max+total reaction(factored) 42.61 93.11 27.333 1.095 0.000 1.000 0.000 0.500 DEFLECTIONS: 2 0.000 0.577 0.499 0.350 6.4% Red 0.000 0.175 Center span: 27.333 0.577 0.499 0.350 0.000 0.175 Initial load(in) • at 11.16 ft = -0.318 L/D = 867 SHEAR(Ultimate): Max Vu(1.2DL+1.6LL)=55.05 kips 0.90Vn=143.37 kips Live load(in) at 11.1611 = -0.242 UD = 1141 Post Comp load(in) at 11.16 ft = -0.442 UD = 624 MOMENTS(Ultimate): Net Total load(in) at 11.16 ft = -0.760 LID = 363 Span Cond LoadCombo Mu @ Lb Cb Phi Phi*Mn Right cantilever: kip-ft ft ft kip-ft Init load(in) = 0.100 L/D = 599 Center PreCmp+ 1.2DL+1.6LL 156.8 13.7 0.0 1.00 0.90 249.37 Pos Live load(in) = -0.036 L/D = 1672 Init DL I.4DL 65.2 13.7 --- --- Neg Live load(in) = 0.079 L/D = 761 Max+ 1.2DL+l.6LL 376.2 13.7 --- --- 0.85 394.38 Neg Post Comp load(in) = 0.120 UD = 499 Controlling I.2DL+1.6LL 376.2 13.7 --- --- 0.85 394.38 Neg Total load(in) = 0.220 L/D = 272 REACTIONS(kips): Left Right Initial reaction 16.04 16.04 DL reaction 22.86 22.86 Max+LL reaction 17.27 17.27 Max+total reaction(factored) 55.05 55.05 DEFLECTIONS: Initial load(in) at 13.67 ft = -0.424 UD = 774 Live load(in) at 13.67 ft = -0.392 UD = 837 Post Comp load(in) at 13.67 ft = -0.756 UD = 434 Gravity Beam Design Gravity Beam Design ri i� RAM Steel v14.04.00.00 Page 73/95 FIB RAM Steel v14.04.00.00 Page 74/95 RAM DataBase:Adrienne 2nd Floor 07/26/13 14:15:56 RAM DataBase:Adrienne 2nd Floor 07/26/13 14:15:56 Building Code:IBC Steel Code:AISC LRFD Building Code:IBC Steel Code:RISC LRFD Net Total load(in) at 13.67 ft = -1.180 LID = 278 Floor Type:2nd Floor Beam Number=54 SPAN INFORMATION(ft): I-End(73.83,27.33) J-End(73.83,54.67) Beam Size(User Selected) = W 1 8X35 Fy = 50.0 ksi Total Beam Length(ft) = 27.33 COMPOSITE PROPERTIES(Not Shored): Left Right Concrete thickness(in) 3.00 3.00 Unit weight concrete(pcf) 150.00 150.00 fc(ksi) 4.00 4.00 Decking Orientation perpendicular perpendicular Decking type VERCO W3 Formlok VERCO W3 Formlok beff(in) = 50.11 Y bar(in) = 17.64 Mnf(kip-ft) = 571.49 Mn(kip-ft) = 447.81 C(kips) = 180.76 PNA(in) = 14.88 left(in4) = 1237.91 ltr(in4) = 1734.03- Stud length(in) = 4.50 Stud diam(in) = 0.75 Stud Capacity(kips) Qn = 20.1 #of studs: Max = 54 Partial=21 Actual=20 Number of Stud Rows=1 Percent of Full Composite Action=35.36 POINT LOADS(kips): Dist DL CDL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL CLI. 21.333 0.95 0.39 0.42 4.9 0.32 0.00 0.0 0.00 Snow 0.00 0.14 -0.15 5.1 0.00 0.00 0.0 0.00 Snow 0.00 0.14 LINE LOADS(k/ft): Load Dist DL CDL LL Red% Type PartL CLL 1 0.000 1.095 0.000 1.000 4.9% Red 0.000 0.500 27.333 1.095 0.000 1.000 0.000 0.500 2 0.000 0.313 0.271 0.190 4.9% Red 0.000 0.095 27.333 0.313 0.271 0.190 0.000 0.095 3 0.000 0.264 0.228 0.160 4.9% Red 0.000 0.080 21.333 0.264 0.228 0.160 0.000 0.080 4 21.334 0.033 0.028 0.020 4.9% Red 0.000 0.010 27.333 0.033 0.028 0.020 0.000 0.010 SHEAR(Ultimate): Max Vu(1.2DL+I.6LL)=55.69 kips 0.90Vn=143.37 kips MOMENTS(Ultimate): Span Cond LoadCombo Mu Q Lb Cb Phi Phi'Mn kip-ft it ft kip-ft Center PreCmp+ 1.2DL+1.6LL 155.7 13.6 0.0 I.00 0.90 249.37 Init DL 1.4DL 64.3 13.6 --- --- Max+ I.2DL+1.6LL 381.8 13.7 --- -- 0.85 380.64 Controlling 1.2DL+1.6LL 381.8 13.7 --- --- 0.85 380.64 REACTIONS(kips): • Gravity Beam Design Gravity Beam Design ,IV RAM Steel v14.04.00.00 Page 75/95 Fil RAM Steel v14.04.00.00 Page 76/95 RAM DataBase:Adrienne 2nd Floor 07/26/13 14:15:56 RAM DataBase:Adrienne 2nd Floor 07/26/13 14:15:56 Building Code:IBC Steel Code:AISC LRFD Building Code:IBC Steel Code:AISC LRFD Left Right Floor Type:2nd Floor Beam Number=55 Initial reaction 15.98 15.01 DL reaction 22.91 22.36 SPAN INFORMATION(ft): I-End(73.83,48.67) J-End(81.83,48.67) Max+LL reaction 17.62 17.40 Beam Size(Optimum) = WSX10 Fy = 50.0 ksi Max-LL reaction -0.03 -0.11 Total Beam Length(ft) = 8.00 Max+total reaction(factored) 55.69 54.68 COMPOSITE PROPERTIES(Not Shored): DEFLECTIONS: Left Right Initial load(in) at 13.67 ft = -0.416 L/D = 788 Concrete thickness(in) 3.00 3.00 Live load(in) at 13.67 ft = -0.453 L/D = 724 Unit weight concrete(pcf) 150.00 150.00 Post Comp load(in) at 13.67 R = -0.870 L/D = 377 Pc(ksi) 4.00 4.00 Net Total load(in) at 13.67 ft = -1.286 WD = 255 Decking Orientation parallel parallel Decking type VERCO W3 Formlok VERCO W3 Formlok beff(in) = 24.00 Y bar(in) = 10.39 Mnf(kip-ft) = 111.47 Mn(kip-ft) = 72.83 C(kips) = 53.56 PNA(in) = 7.10 leff(in4) = 131.97 Itr(in4) = 198.97 Stud length(in) = 4.50 Stud diam(in) = 0.75 Stud Capacity(kips) Qn = 26.8 #of studs: Max = 21 Partial=8 Actual=8 Number of Stud Rows=1 Percent of Full Composite Action=30.84 POINT LOADS(kips): Dist DL CDL RedLL Red% NonRLL StorLL Red% RooILL Red% PartL CLL. 1.000 0.76 0.17 0.12 0.0 0.37 0.00 0.0 0.00 Snow 0.00 0.06 2.000 0.37 0.32 0.42 0.0 0.00 0.00 0.0 0.00 Snow 0.00 0.11 -0.19 0.0 0.00 0.00 0.0 0.00 Snow 0.00 0.11 SHEAR(Ultimate): Max Vu(1.2DL+1.6LL)=2.32 kips 0.90Vn=36.22 kips MOMENTS(Ultimate): Span Cond LoadCombo Mu @ Lb Cb Phi Phi*Mn kip-ft ft ft kip-ft Center PreCmp+ 1.2DL+1.6LL 1.1 2.0 6.0 1.67 0.90 32.92 Init DL 1.4DL 0.9 2.0 --- --- Max+ 1.2DL+1.6LL 2.9 2.0 --- --- 0.85 61.91 Controlling 1.2DL+1.6LL 2.9 2.0 --- --- 0.85 61.91 REACTIONS(kips): Left Right Initial reaction 0.53 0.14 DL reaction 0.95 0.19 Max+LL reaction 0.74 0.17 Max-LL reaction -0.15 -0.05 Max+total reaction(factored) 2.32 0.49 DEFLECTIONS: Initial load(in) at 3.48 ft = -0.006 L/D = 16139 Live load(in) at 3.48 ft = -0.002 L/D = 41850 Post Comp load(in) at 3.48 ft = -0.004 LID = 27128 O Gravity Beam Design Gravity Beam Design ,II RAM Steel v14.04.00.00 Page 77/95 FRI RAM Steel v14.04.00.00 Page 78/95 RAM DataBase:Adrienne 2nd Floor 07/26/13 14:15:56 RAM DataBase:Adrienne 2nd Floor 07/26/13 14:15:56 Building Code:IBC Steel Code:AISC LRFD Building Code:IBC Steel Code:AISC LRFD Net Total load(in) at 3.48 ft = -0.009 L/D = 10119 Floor Type:2nd Floor Beam Number=56 SPAN INFORMATION(ft): I-End(74.83,48.67) J-End(74.83,54.67) Beam Size(Optimum) = W8X10 Fy = 50.0 ksi Total Beam Length(ft) = 6.00 COMPOSITE PROPERTIES(Not Shored): Left Right Concrete thickness(in) 3.00 3.00 Unit weight concrete(pcf) 150.00 150.00 fc(ksi) 4.00 4.00 Decking Orientation perpendicular perpendicular Decking type VERCO W3 Formlok VERCO W3 Fonnlok bell(in) = 12.00 Y bar(in) = 9.15 Mnf(kip-ft) = 94.49 Mn(kip-ft) = 64.63 C(kips) = 40.17 PNA(in) = 6.31 leff(in4) = 107.41 ltr(in4) = 164.53 Stud length(in) = 4.50 Stud diam(in) = 0.75 Stud Capacity(kips) Qn = 20.1 #of studs: Max = 6 Partial=6 Actual=6 Number of Stud Rows=1 Percent of Full Composite Action=32.82 POINT LOADS(kips): Dist DL CDL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL CLL 4.000 1.70 0.00 0.00 0.0 1.10 0.00 0.0 0.00 Snow 0.00 0.00 LINE LOADS(k/ft): Load Dist DL CDL LL Red% Type PartL CLL 1 0.000 0.066 0.057 0.040 0.0% Red 0.000 0.020 6.000 0.066 0.057 0.040 0.000 0.020 SHEAR(Ultimate): Max Vu(1.2DL+1.6LL)=2.96 kips 0.90Vn=36.22 kips MOMENTS(Ultimate): Span Cond LoadCombo Mu @ Lb Cb Phi Phi*Mn kip-ft ft ft kip-ft Center PreCmp+ I.2DL+1.6LL 0.5 3.0 0.0 1.00 0.90 32.92 [nit DL 1.4DL 0.4 3.0 --- --- Max+ 1.2DL+I.6LL 5.6 4.0 --- -- 0.85 54.93 Controlling 1.2DL+1.6LL 5.6 4.0 --- --- 0.85 54.93 REACTIONS(kips): Left Right Initial reaction 0.23 0.23 DL reaction 0.76 1.33 Max+LL reaction 0.49 0.85 Max+total reaction(factored) 1.70 2.96 DEFLECTIONS: Initial load(in) at 3.18 ft = -0.002 UD = 38860 Live load(in) at 3.18 ft = -0.003 UD = 26349 • � • Gravity Beam Design Gravity Beam Design Vil RAM Steel v14.04.00.00 Page 79/95 FIB RAM Steel v14.04,00.00 Page 80/95 RAM DataBase:Adrienne 2nd Floor 07/26/13 14:15:56 RAM DataBase:Adrienne 2nd Floor 07/26/13 14:15:56 Building Code:IBC Steel Code:AISC LRFD Building Code:IBC Steel Code:AISC LRFD Post Comp load(in) at 3.18 ft = -0.006 UD = 11140 Floor Type:2nd Floor Beam Number=57 Net Total load(in) at 3.I8 ft = -0.008 UD = 8658 SPAN INFORMATION(ft): I-End(75.83,48.67) J-End(75.83,57.67) Beam Size(User Selected) = HSS6X4X 1/4 Fy = 46.0 ksi Total Beam Length(ft) = 9.00 Cantilever on right(ft) = 3.00 Mp(kip-ft) = 32.70 POINT LOADS(kips): Dist DL RedLL Red% NonRLL StorLL Red% RootLL Red% PartL LINE LOADS(k/ft): Load Dist DL LL Red% Type PartL 1 0.000 0.231 0.140 0.0% Red 0.000 6.000 0.231 0.140 0.000 2 6.000 0.429 0.260 0.0% Red 0.000 9.000 0.429 0.260 0.000 SHEAR(Ultimate): Max Vu(1.2DL+1.6LL)=2.79 kips 0.90Vn=69.45 kips MOMENTS(Ultimate): Span Cond LoadCombo Mu @ Lb Cb Phi Phi*Mn kip-ft ft ft kip-ft Center Max+ I.2DL+l.6LL 1.2 2.2 0.0 1.00 0.90 29.43 Max- 1.2DL+1.6LL -4.2 6.0 6.0 2.52 0.90 29.43 Right Max- l.2DL+1.6LL -4.2 6.0 3.0 1.00 0.90 29.43 Controlling I.2DL+1.6LL -4.2 6.0 6.0 2.52 0.90 29.43 REACTIONS(kips): Left Right DL reaction 0.37 230 Max+LL reaction 0.42 1.39 Max-LL reaction -0.19 0.00 Max+total reaction(factored) 1.12 4.99 DEFLECTIONS: Center span: Dead load(in) at 3.96 ft = 0.003 UD = 28497 Live load(in) at 3.96 ft = 0.007 LID = 9660 Net Total load(in) at 3.96 ft = 0.010 UD = 7215 Right cantilever: Dead load(in) = -0.028 UD = 2608 Pos Live load(in) = -0.028 UD = 2617 Neg Live load(in) = 0.011 UD = 6681 Pos Total load(in) = -0.055 UD = 1306 • Gravity Beam Design Gravity Beam Design V I RAM Steel v14.04.00.00 Page 81/95 El eAu RAM Steel v14.04.00.00 Page 82/95 RA RANI DataBase:Adrienne 2nd Floor 07/26/13 14:15:56 DataBase:Adrienne 2nd Floor 07/26/13 14:15:56 Building Code:IBC Steel Code:AISC LRFD Building Code:IBC Steel Code:A1SC LRFD Floor Type:2nd Floor Beam Number=58 Floor Type:2nd Floor Beam Number=59 SPAN INFORMATION(ft): I-End(75.83,57.67) J-End(88.83,57.67) SPAN INFORMATION(ft): I-End(81.83,0.00) J-End(81.83,27.33) Beam Size(User Selected) = HSS6X4X I/4 Fy =50.0 ksi Beam Size(User Selected) = W 14X22 Fy = 50.0 ksi Total Beam Length(ft) = 13.00 Total Beam Length(ft) = 27.33 Mp(kip-ft) = 35.54 COMPOSITE PROPERTIES(Not Shored): No Loads Left Right SHEAR(Ultimate): Max Vu(1.2DL+1.6LL)=0.00 kips 0.90Vn=75.49 kips Concrete thickness(in) 3.00 3.00 MOMENTS(Ultimate): Unit weight concrete(pcf) 150.00 150.00 Span Cond LoadCombo Mu @ Lb Cb Phi Phi*Mn fc(ksi) 4.00 4.00 kip-ft ft ft kip-ft Decking Orientation perpendicular perpendicular Controlling 1.4DL 0,0 6.0 0.0 1.00 0.90 0.00 Decking type VERCO W3 Formlok VERCO W3 Formlok befPcm) = 82.00 Y bar(in) = 16.31 REACTIONS(kips): Mnf(kip-ft) = 331.75 Mn(kip-ft) = 225.70 Left Right C(kips) = 100.42 PNA(in) = 11.22 DL reaction 0.00 0.00 leff(in4) = 600.30 ltr(in4) = 920.38 DEFLECTIONS: Stud length(in) = 4.50 Stud diam(in) = 0.75 Dead load(in) at 12.94 It = -0.000 Stud Capacity(kips) Qn = 20.1 Live load(in) at 12.94 ft = -0.000 #of studs: Max = 27 Partial=11 Actual=12 Net Total load(in) at 12.94 ft = 0.000 Number of Stud Rows=1 Percent of Full Composite Action=27.21 POINT LOADS(kips): Dist DL CDL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL CLL 1.000 -0.31 -0.26 -0.19 4.0 0.00 0.00 0.0 0.00 Snow 0.00 -0.09 17.500 -0.31 -0.26 -0.19 4.0 0.00 0.00 0.0 0.00 Snow 0.00 -0.09 18.500 0.43 0.00 0.00 0.0 0.28 0.00 0.0 0.00 Snow 0.00 0.00 LINE LOADS(k/ft): Load Dist DL CDL LL Red% Type PartL CLL 1 0.000 0.528 0.456 0.320 3.3% Red 0.000 0.160 27.333 0.528 0.456 0.320 0.000 0.160 SHEAR(Ultimate): Max Vu(I.2DL+I.6LL)=15.82 kips 0.90Vn=85.08 kips MOMENTS(Ultimate): Span Cond LoadCombo Mu @ Lb Cb Phi Phi*Mn kip-ft ft ft kip-ft Center PreCmp+ l.2DL+l.6LL 73.3 13.5 0.0 1.00 0.90 124.50 Ink DL 1.4DL 57.6 13.5 --- --- Max+ l.2DL+1.6LL 107.6 13.8 --- --- 0.85 191.84 Controlling I.2DL+l.6LL 73.3 13.5 0.0 1.00 0.90 124.50 REACTIONS(kips): Left Right Initial reaction 7.95 8.18 DL reaction 6.95 7.30 Max+LL reaction 4.32 4.42 Max-LL reaction -0.24 -0.12 Max+total reaction(factored) 15.25 15.82 • Gravity Beam Design Gravity Beam Design rim RAM Steel v14.04.00.00 Page 83/95 /II e� RAM Steel v14.04.00.00 Page 84/95 RAM DataBase:Adrienne 2nd Floor 07/26/13 14:15:56 ILIUM DataBase:Adrienne 2nd Floor 07/26/13 14:15:56 Building Code:IBC Steel Code:AISC LRFD Building Code:IBC Steel Code:AISC LRFD DEFLECTIONS: (Camber=3/4) Floor Type:2nd Floor Beam Number=60 Initial load(in) at 13.67 ft = -0.959 UD = 342 SPAN INFORMATION(ft): I-End(81.83,1.00) J-End(92.83,1.00) Live load(in) at 13.67 ft = -0.233 UD = 1408 Beam Size(User Selected) = HSS6X4X1/4 Fy = 50.0 ksi Post Comp load(in) at 13.67 ft = -0.298 UD = 1100 Total Beam Length(ft) = 11.00 Net Total load(in) at 13.67 ft = -0,507 UD = 647 Cantilever on right(ft) = 3.00 Mp(kip-ft) = 35.54 POINT LOADS(kips): Dist DL RedLL Red% NonRLL StorLL Red% RooILL Red% PartL 11.000 0.82 0.49 0.0 0.00 0.00 0.0 0.00 Snow 0.00 SHEAR(Ultimate): Max Vu(1.2DL+1.6LL)=1.77 kips 0.90Vn=75.49 kips MOMENTS(Ultimate): Span Cond LoadCombo Mu @ Lb Cb Phi Phi*Mn kip-ft ft ft kip-ft Center Max- 1.2DL+1.6LL -5.3 8.0 8.0 1.67 0.90 31.99 Right Max- I.2DL+I.6LL -5.3 8.0 3.0 1.00 0.90 31.99 Controlling 1.2DL+1.6LL -5.3 8.0 8.0 1.67 0.90 31.99 REACTIONS(kips): Left Right DL reaction -0.31 1.12 Max+LL reaction 0.00 0.68 Max-LL reaction -0.19 0.00 Max+total reaction(factored) -0.43 2.44 • Max-total reaction -0.66 1.57 DEFLECTIONS: Center span: Dead load(in) at 4.60 ft = 0.029 UD = 3347 Live load(in) at 4.60 ft = 0.017 L/D = 5523 Net Total load(in) at 4,60 ft = 0.046 UD = 2084 Right cantilever: Dead load(in) = -0.077 L/D = 937 Pos Live load(in) = -0.047 UD = 1546 Pos Total load(in) = -0.123 UD = 583 \,_j"\ Gravity Beam Design Gravity Beam Design Fil RAM Steel v14.04.00.00 Page 85/95 FM RAM Steel v14.04.00.00 Page 86/95 DataBase:Adrienne 2nd Floor 07/26/13 14:15:56 RAM DataBase:Adrienne 2nd Floor 07/26/13 14:15:56 RAM Building Code:IBC Steel Code:AISC LRFD Building Code:IBC Steel Code:AISC LRFD Floor Type:2nd Floor Beam Number=61 Floor Type:2nd Floor Beam Number=62 SPAN INFORMATION(ft): 1-End(81.83,17.50) J-End(92.83,17.50) SPAN INFORMATION(ft): I-End(81.83,18.50) J-End(89.83,18.50) Beam Size(User Selected) = HSS6X4X 1/4 Fy = 50.0 ksi Beam Size(Optimum) = W8X 10 Fy = 50.0 ksi Total Beam Length(R) = 11.00 Total Beam Length(R) = 8.00 Cantilever on right(ft) = 3.00 COMPOSITE PROPERTIES(Not Shored): Mp(kip-f) = 35.54 Left Right POINT LOADS(kips): Concrete thickness(in) 3.00 3.00 Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL Unit weight concrete(pcf) 150.00 150.00 11.000 0.82 0.49 0.0 0.00 0.00 0.0 0.00 Snow 0.00 ec(ksi) 4.00 4.00 SHEAR(Ultimate): Max Vu(1.2DL+1.6LL)=1.77 kips 0.90Vn=75.49 kips Decking Orientation parallel parallel Decking type VERCO W3 Formlok VERCO W3 Formlok MOMENTS(Ultimate): beff(in) = 18.00 Y bar(in) = 9.91 Span Cond LoadCombo Mu @ Lb Cb Phi Phi'Mn Mnf(kip-ft) = 107.74 Mn(kip-ft) = 72.34 kip-ft ft ft kip-ft C(kips) = 53.56 PNA(in) = 7.10 Center Max- 1.2DL+1.6LL -5.3 8.0 8.0 1.67 0.90 31.99 leff(in4) = 123.79 ltr(in4) = 185.39 Right Max- 1.2DL+l.6LL -5.3 8.0 3.0 1.00 0.90 31.99 Stud length(in) = 4.50 Stud diam(in) = 0.75 Controlling 1.2DL+1.6LL -5.3 8.0 8.0 1.67 0.90 31.99 Stud Capacity(kips) Qn = 26.8 REACTIONS(kips): #of studs: Max = 21 Partial=8 Actual=8 Left Right Number of Stud Rows=1 Percent of Full Composite Action=36.19 DL reaction -0.31 1.12 POINT LOADS(kips): Max+LI.reaction 0.00 0.68 Dist DL CDL RedLL Red% NonRLL StorLL Red% Roo ILL Red% PartL CLL Max-LL reaction -0.19 0.00 6.000 1.70 0.00 0.00 0.0 1.10 0.00 0.0 0.00 Snow 0.00 0.00 Max+total reaction(factored) -0.43 2.44 Max-total reaction 0.66 1.57 SHEAR(Ultimate): Max Vu(1.2DL+1.6LL)=2.85 kips 0.90Vn=36.22 kips DEFLECTIONS: MOMENTS(Ultimate): Center span: Span Cond LoadCombo Mu @ Lb Cb Phi Phi'Mn Dead load(in) at 4.60 ft = 0.029 UD = 3347 kip R ft R kip-ft Live load(in) at 4.60 ft = 0.017 UD = 5523 Center Init DL l.4DL 0.0 8.0 -- --- Net Total load(in) at 4.60 ft = 0.046 UD = 2084 Max+ l.2DL+l.6LL 5.7 6.0 0.85 61.49 Right cantilever: Controlling 1.2DL+1.6LL 5.7 6.0 --- --- 0.85 61.49 Dead load(in) = -0.077 L/D = 937 REACTIONS(kips): Pos Live load(in) = -0.047 L/D = 1546 Left Right Pos Total load(in) = -0.123 L/D = 583 Initial reaction 0.00 0.00 DL reaction 0.43 1.28 Max+LL reaction 0.28 0.83 Max+total reaction(factored) 0.95 2.85 DEFLECTIONS: Initial load(in) at 4.48 ft = -0.000 Live load(in) at 4.48 R = -0.004 L/D = 24326 Post Comp load(in) at 4.48 ft = -0.010 UD = 9557 Net Total load(in) at 4.48 ft = -0.010 UD = 9557 "\ • Gravity Beam Design Gravity Beam Design FMS RAM Steel v14.04.00.00 Page 87/95 FIB RAM Steel v14.04.00.00 Page 88/95 . RAM DataBase:Adrienne 2nd Floor 07/26/13 14:15:56 RAM DataBase:Adrienne 2nd Floor 07/26/13 14:15:56 Building Code:IBC Steel Code:AISC LRFD Building Code:IBC Steel Code:AISC LRFD Floor Type:2nd Floor Beam Number=63 Left Right Max+LL reaction 4.27 4.12 SPAN INFORMATION(ft): I-End(81.83,27.33) J-End(81.83,54.67) Max-LL reaction -0.02 -0.06 Beam Size(User Selected) = W 14X22 Fy = 50.0 ksi Max+total reaction(factored) 15.48 14.85 Total Beam Length(ft) = 27.33 DEFLECTIONS: (Camber=3/4) COMPOSITE PROPERTIES(Not Shored): Initial load(in) at 13.67 R = -0.983 L/D = 334 Left Right Live load(in) at 13.67 ft = -0.213 L/D = 1543 Concrete thickness(in) 3.00 3.00 Post Comp load(in) at 13.67 ft = -0.263 UD = 1249 Unit weight concrete(pct) 150.00 150.00 Net Total load(in) at 13.6711 = -0.496 L/D = 661 Pc(ksi) 4.00 4.00 Decking Orientation perpendicular perpendicular Decking type VERCO W3 Formlok VERCO W3 Formlok betT(in) = 82.00 Y bar(in) = 16.31 Mnf(kip-ft) = 331.75 Mn(kip-ft) = 238.50 C(kips) = 120.51 PNA(in) = 12.09 leff(in4) = 638.60 Itr(in4) = 920.38 Stud length(in) = 4.50 Stud diam(in) = 0.75 Stud Capacity(kips) Qn = 20.1 #of studs: Max = 27 Partial=10 Actual=12 Number of Stud Rows=1 Percent of Full Composite Action=37.13 POINT LOADS(kips): Dist DL CDL RedLL Rcd% NonRLL StorLL Red% RooILL Red% PartL CLL 21.333 0.06 0.05 0.06 2.5 0.00 0.00 0.0 0.00 Snow 0.00 0.02 -0.02 2.7 0.00 0.00 0.0 0.00 Snow 0.00 0.02 21.333 0.19 0.10 0.12 2.5 0.05 0.00 0.0 0.00 Snow 0.00 0.04 -0.05 2.7 0.00 0.00 0.0 0.00 Snow 0.00 0.04 LINE LOADS(k/ft): Load Dist DL CDL LL Red% Type PartL CLL 1 0.000 0.528 0,456 0.320 2.5% Red 0.000 0.160 21.333 0.528 0.456 0.320 0.000 0.160 2 21.334 0.429 0.371 0.260 2.5% Red 0.000 0.130 27.333 0.429 0.371 0.260 0.000 0.130 SHEAR(Ultimate): Max Vu(1.2DL+l.6LL)=15.48 kips 0.90Vn=85.08 kips MOMENTS(Ultimate): Span Cond LoadCombo Mu a Lb Cb Phi Phi*Mn kip-ft ft ft kip-ft Center PreCmp+ l.2DL+1.6LL 74.5 13.6 0.0 1.00 0.90 124.50 Init DL I.4DL 59.2 13.6 --- --- Max+ I.2DL+l.6LL 105.8 13.7 --- --- 0.85 202.73 Controlling 1.2DL+I.6LL 74.5 13.6 0.0 1.00 0.90 124.50 REACTIONS(kips): Left Right Initial reaction 8.39 7.96 DL reaction 7.20 6.88 5 Gravity Beam Design Gravity Beam Design V/I RAM Steel v14.04.00.00 Page 89/95 Fil RAM Steel v14.04.00.00 Page 90/95 RAM DataBase:Adrienne 2nd Floor 07/26/13 14:15:56 RAM DataBase:Adrienne 2nd Floor 07/26/13 14:15:56 Building Code:IBC Steel Code:AISC LRFD Building Code:IBC Steel Code:RISC LRFD Floor Type:2nd Floor Beam Number=64 Floor Type:2nd Floor Beam Number=65 SPAN INFORMATION(ft): I-End(81.83,48.67) J-End(89.83,48.67) SPAN INFORMATION(ft): I-End(88.83,48.67) J-End(88.83,57.67) Beam Size(Optimum) = W8X10 Fy = 50.0 ksi Beam Size(User Selected) = 1-ISS6X4X1/4 Fy = 46.0 ksi Total Beam Length(ft) = 8.00 Total Beam Length(ft) = 9.00 COMPOSITE PROPERTIES(Not Shored): Cantilever on right(ft) = 3.00 Left Right Mp(kip-ft) = 32.70 Concrete thickness(in) 3.00 3.00 POINT LOADS(kips): Unit weight concrete(pcf) 150.00 150.00 Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL fc(ksi) 4.00 4.00 LINE LOADS(k/ft): Decking Orientation parallel parallel Load Dist DL LL Red% Type PartL Decking type VERCO W3 Formlok VERCO W3 Fonnlok 1 0.000 0.264 0.160 0.0% Red 0.000 beff(in) = 24.00 Ybar(in) = 10.39 6.000 0.264 0.160 0.000 Mnf(kip-ft) = 111.47 Mn(kip-ft) = 72.83 2 6.000 0.429 0.260 0.0% Red 0.000 C(kips) = 53.56 PNA(in) = 7.10 9.000 0.429 0.260 0.000 Leff(in4) = 131.97 ltr(in4) = 198.97 Stud length(in) = 4.50 Stud diam(in) = 0.75 SHEAR(Ultimate): Max Vu(1.2DL+1.6LL)=2.79 kips 0.90Vn=69.45 kips Stud Capacity(kips) Qn = 26.8 MOMENTS(Ultimate): #of studs: Max = 21 Partial=16 Actual=16 Span Cond LoadCombo Mu @ Lb Cb Phi Phi*Mn Number of Stud Rows=1 Percent of Full Composite Action=36.19 kip-ft It ft kip-ft POINT LOADS(kips): Center Max+ 1.2DL+1.6LL 1.5 2.3 0.0 1.00 0.90 29.43 Dist DL CDL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL CLL Max- 1.2DL+1.6LL -4.2 6.0 6.0 2.70 0.90 29.43 7.000 0.47 0.41 0.48 0.0 0.00 0.00 0.0 0.00 Snow 0.00 0.14 Right Max- 1.2DL+1.6LL -4.2 6.0 3.0 1.00 0.90 29.43 -0.19 0.0 0.00 0.00 0.0 0.00 Snow 0.00 0.14 Controlling 1.2DL+1.6LL -4.2 6.0 6.0 2.70 0.90 29.43 SHEAR(Ultimate): Max Vu(1.2DL+1.6LL)=1.17 kips 0.90Vn=36.22 kips REACTIONS(kips): MOMENTS(Ultimate): Left Right L Span Cond LoadCombo Mu Q Lb Cb Phi Phi*Mn reaction+ 0.47 2.40 Max kip-ft ft ft kip ft MLL on reaction 0.48 1.45 Max-LL reaction -0.19 0.00 Center PreCmp+ 1.2DL+1.6LL 0.6 7.0 7.0 1.67 0.90 32.92 Max+total reaction(factored) 1.33 5.21 Init DL 1.4DL 0.5 7.0 --- --- Max+ 1.2DL+1.6LL 1.2 7.0 --- --- 0.85 61.91 DEFLECTIONS: Controlling 12DL+1.6LL 0.6 7.0 7.0 1.67 0.90 32.92 Center span: REACTIONS(kips): Dead load(in) at 4.11 It = 0.001 UD = 53692 Live load(in) at 2.52 ft = -0.007 L/D = 9649 Left Right Net Total load(in) at 4.11 It = 0.009 L/D = 8357 Initial reaction 0.07 0.48 Right cantilever: DL reaction 0.06 0.41 Dead load(in) = -0.025 UD = 2872 Max+LL reaction 0.06 0.42 Pos Live load(in) = -0.028 UD = 2617 Max-LL reaction -0.02 -0.17 Neg Live load(in) = 0.012 L/D = 5846 Max+total reaction(factored) 0.17 1.17 Pos Total load(in) = -0.053 UD = 1369 DEFLECTIONS: Initial load(in) at 4.60 ft = -0.003 UD = 30474 Live load(in) at 4.60 ft = -0.001 Post Comp load(in) at 4.60 ft = -0.001 Net Total load(in) at 4.60 It = -0.004 UD = 23215 V" • il Gravity Beam Design Gravity Beam Design 1, RAM Steel v14.04.00.00 Page 91/95 Fil RAM Steel v14.04.00.00 Page 92/95 RAM DataBase:Adrienne 2nd Floor 07/26/13 14:15:56 RAM DataBase:Adrienne 2nd Floor 07/26/13 14:15:56 Building Code:113C Steel Code:AISC LRFD Building Code:IBC Steel Code:AISC LRFD Floor Type:2nd Floor Beam Number=66 MOMENTS(Ultimate): SPAN INFORMATION(ft): I-End(89.83,0.00) J-End(89.83,27.33) Span Cond LoadCombo Mu t Lb Cb Phi Phi*Mn Beam Size(User Selected) = W 18X35 Fy = 50.0 ksi kip-ft ft ft kip-ft Total Beam Length(ft) = 27.33 Center PreCmp+ 1.2DL+1.6LL 103.2 14.0 0.0 1.00 0.90 249.37 lnit DL 1.4DL 46.5 14.3 --- --- COMPOSITE PROPERTIES(Not Shored): Max+ 1.2DL+l.6LL 289.8 14.7 --- --- 0.85 355.89 Left Right Controlling 1.2DL+I.6LL 289.8 14.7 --- --- 0.85 355.89 Concrete thickness(in) 3.00 3.00 Unit weight concrete(pci) 150.00 150.00 REACTIONS(kips): fe(ksi) 4.00 . 4.00 Left Right Decking Orientation perpendicular perpendicular Initial reaction 11.40 10.15 Decking type VERCO W3 Formlok VERCO W3 Formlok DL reaction 17.74 17.72 bell(in) = 45.47 Y bar(in) = 17,35 Max+LL reaction 12.61 12.65 Mnf(kip-ft) = 553.58 Mn(kip-ft) = 418.69 Max+total reaction(factored) 41.47 41.50 C(kips) = 140.59 PNA(in) = 13.54 DEFLECTIONS: Ieff(in4) = 1160.74 It(in4) = 1691.99 Initial load(in) at 13.80 ft = -0.300 UD = 1092 Stud length(in) = 4.50 Stud diam(in) = 0.75 Live load(in) at 13.80 ft = -0.352 UD = 933 Stud Capacity(kips) Qn = 20.1 Post Comp load(in) at 13.80 ft = -0.714 UD = 459 #of studs: Max = 54 Partial=16 Actual=16 Net Total load(in) at 13.80 ft = -1.014 UD = 323 Number of Stud Rows=I Percent of Full Composite Action=27.41 POINT LOADS(kips): Dist DL CDL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL CLL 1.000 1.12 0.97 0.68 0.0 0.00 0.00 0.0 0.00 Snow 0.00 0.34 . 17.500 1.12 0.97 0.68 0.0 0.00 0.00 0.0 0.00 Snow 0.00 0.34 18.500 1.28 0.00 0.00 0.0 0.83 0.00 0.0 0.00 Snow 0.00 0.00 18.500 1.70 0.00 0.00 0.0 1,10 0.00 0.0 0.00 Snow 0.00 0.00 LINE LOADS(k/ft): Load Dist DL CDL LL Red% Type PartL CLL 1 0.000 0.770 0.000 0.600 0.0% Red 0.000 0.300 27.333 0.770 . 0.000 0.600 0,000 0.300 2 0.000 0.264 0.228 0.160 0.0% Red 0.000 0.080 27.333 0.264 0.228 0.160 0.000 0.080 3 18.009 0.034 0.029 0.020 0.0% Red 0.000 0.010 27.333 0.034 0.029 0.020 0.000 0.010 4 17.500 0.000 0.000 0.000 0.0% Red 0.000 0.000 18.008 0.034 0.029 0.020 0.000 0.010 5 0.000 0.034 0.029 0.020 0.0% Red 0.000 0.010 0.491 0.034 0.029 0.020 0.000 0.010 6 0.492 0.034 0.029 0.020 0.0% Red 0.000 0.010 1.000 0.000 0.000 0.000 0.000 0.000 7 1.000 0.099 0.086 0.060 0.0% Red 0.000 0.030 17.500 0.099 0.086 0.060 0.000 0.030 SHEAR(Ultimate): Max Vu(1.2DL+1,6LL)=41.50 kips 0.9OVn=143.37 kips Gravity Beam Design Gravity Beam Design �� RAM Steel v14.04.00.00 Page 93/95 �I RAM Steel v14.04.00.00 Page 94/95 RA DataBase: n6 RAM Building Code:Adrie IBne C 2nd Floor Steel C07/2ode: ISC/13 14:15:56 A LRFD Building DataBase:Code:Adrienne IBC 2nd Floor 07/26/13 14:15:56 Steel Code:AISC LRFD Floor Type:2nd Floor Beam Number=67 REACTIONS(kips): SPAN INFORMATION(ft): 1-End(89.83,27.33) 3-End(89.83,54.67) Left Right Beam Size(User Selected) = W16X26 Fy = 50.0 ksi Initial reaction 8.77 7.78 Total Beam Length(ft) = 27.33 DL reaction 14.65 15.25 Max+LL reaction 10.74 11.26 COMPOSITE PROPERTIES(Not Shored): Max-LL reaction -0.04 -0.13 Left Right Max+total reaction(factored) 34.77 36.32 Concrete thickness(in) 3.00 3.00 DEFLECTIONS: Unit weight concrete(pcf) 150.00 154.00 f c(ksi) 4.00 4.00 Initial load(in) at 13.67 ft = -0.356 UD = 921 Decking Orientation perpendicular perpendicular Live load(in) at 13.67 ft = 0.432 UD = 759 Decking type VERCO W3 Formlok VERCO W3 Formlok Post Comp load(in) at 13,67 ft = -0.884 UD = 371 beff(in) = 15.11 Y bar(in) = 13.26 Net Total load(in) at 13.67 ft = -1.240 11D = 264 Mnf(kip-ft) = 303.34 Mn(kip-ft) = 297.60 C(kips) = 140.59 PNA(in) = 13.47 leff(in4) = 795.68 Itr(in4) = 818.96 Stud length(in) = 4.50 Stud diam(in) = 0.75 Stud Capacity(kips) Qn = 20.1 #of studs: Full = 17 Partial=13 Actual=16 Number of Stud Rows=I Percent of Full Composite Action=91.21 POINT LOADS(kips): Dist DL CDL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL CLL 21.333 0.41 0.36 0.42 0.0 0.00 0.00 0.0 0.00 Snow 0.00 0.12 -0.17 0.0 0.00 0.00 0.0 0.00 Snow 0.00 0.12 25.333 1.70 0.00 0.00 0.0 1.10 0.00 0.0 0.00 Snow 0.00 0.00 LINE LOADS(k/ft): Load Dist DL CDL LL Red% Type PartL CLL 0.000 0.770 0.000 0.600 0.0% Red 0.000 0.300 27.333 0.770 0.000 0.600 0.000 0.300 2 0.000 0.264 0.228 0.160 0.0% Red 0.000 0.080 21.333 0.264 0.228 0.160 0.000 0.080 3 21.334 0.033 0.028 0.020 0.0% Red 0.000 0.010 27.333 0.033 0.028 0.020 0.000 0.010 4 0.000 0.034 0.029 0.020 0.0% Red 0.000 0.010 27.333 0.034 0.029 0.020 0.000 0.010 SHEAR(Ultimate): Max Vu(l.2DL+1.6LL)=36.32 kips 0.90Vn=105.98 kips MOMENTS(Ultimate): Span Cond LoadCombo Mu @ Lb Cb Phi Phi*Mn kip-ft ft ft kip-ft Center PreCmp+ 1.2DL+1.6LL 85.8 13.6 0.0 1.00 0.90 165.75 Ind DI.. 1.4DL 32.6 13.5 --- --- Max+ I.2DL+1.6LL 239.0 13.7 --- --- 0.85 252.96 Controlling 1.2DL+1.6LL 239.0 13.7 --- --- 0.85 252.96 c) • Gravity Beam Design ,I ' RAM Steel v14.04.00.00 Page 95/95 RAM DataBase:Adrienne 2nd Floor 07/26/13 14:15:56 Building Code:IBC Steel Code:AISC LRFD Floor Type:2nd Floor Beam Number=68 SPAN INFORMATION(ft): 1-End(92.83,1.00) J-End(92.83,17.50) Beam Size(User Selected) = HSS6X4XI/4 Fy = 50.0 ksi Total Beam Length(ft) = 16.50 Mp(kip-ft) = 35.54 LINE LOADS(k/ft): Load Dist DL LL Red% Type PartL I 0.000 0.099 0.060 0.0% Red 0.000 16.500 0.099 0.060 0.000 SHEAR(Ultimate): Max Vu(1.2DL+1.6LL)=1.77 kips 0.90Vn=75.49 kips MOMENTS(Ultimate): Span Cond LoadCoinbo Mu @ Lb Cb Phi Phi*Mn kip-R ft ft kip-ft Center Max+ 1.2DL+1.6LL 7.3 8.3 16.5 1.14 0.90 31.99 Controlling 1.2DL+1.6LL 7.3 8.3 16.5 1.14 0.90 31.99 REACTIONS(kips): Left Right DL reaction 0.82 0.82 Max+LL reaction 0.49 0.49 Max+total reaction(factored) 1.77 1.77 DEFLECTIONS: Dead load(in) at 8.25 ft = -0.272 UD = 727 Live load(in) at 8.25 ft = -0.165 UD = 1199 Net Total load(in) at 8.25 ft = -0.437 L/D = 453 rim Column Load Summary RAM Steel v14.04.00.00 C(7 J(�- f�J2' .'6--/t/ ;V f / RAM DataBase: Adrienne 2nd Floor - 07/09/13 15:28:24 Building Code: IBC Steel Code: AISC360-05 LRFD UNFACTORED COLUMN LOADS: Units: kips Column Line 1-C Level Col# Length Dead Self +Live -Live MinTot MaxTot 2nd Floor 25 14.00 16.9 0.2 11.6 -0.1 17.0 28.7 Column Line 1-B Level Col# Length Dead Self +Live -Live MinTot MaxTot 2nd Floor 24 14.00 36.2 0.2 21.1 -0.1 36.3 57.5 Column Line 1-A Level Col# Length Dead Self +Live -Live MinTot MaxTot 2nd Floor 30 14.00 16.5 0.2 11.8 0.0 16.8 28.6 Column Line 1.6-C Level Col# Length Dead Self +Live -Live MinTot MaxTot 2nd Floor 29 14.00 24.6 0.2 14.0 -0.1 24.7 38.9 Column Line 2-B Level Col# Length Dead Self +Live -Live MinTot MaxTot 2nd Floor 23 14.00 65.0 0.4 30.5 -0.1 65.3 95.9 Column Line 2.4-C Level Col# Length Dead Self +Live -Live MinTot MaxTot 2nd Floor 21 14.00 34.8 0.2 20.2 -0.0 35.0 55.2 Column Line 3-C Level Col# Length Dead Self +Live -Live MinTot MaxTot 2nd Floor 19 14.00 18.0 0.2 12.3 0.0 18.2 30.5 Column Line 49.25ft--0.00ft Level Col# Length Dead Self +Live -Live MinTot MaxTot 2nd Floor 28 14.00 10.1 0.2 5.7 0.0 10.3 16.0 Column Load Summary . �� RAM Steel v14.04.00.00 Page 2/2 DataBase: Adrienne 2nd Floor 07/09/13 15:28:24 RAM Building Code: IBC Steel Code: AISC360-05 LRFD Column Line 4-C Level Col# Length Dead Self +Live -Live MinTot MaxTot 2nd Floor 18 14.00 40.6 0.2 20.4 -1.0 39.9 61.2 Column Line 4-B Level Col# Length Dead Self +Live -Live MinTot MaxTot 2nd Floor 17 14.00 72.2 0.4 33.3 -1.4 71.2 105.9 Column Line 4-A Level Col# Length Dead Self +Live -Live MinTot MaxTot 2nd Floor 31 14.00 24.0 0.2 14.0 -1.1 23.1 38.3 Column Line 5-C Level Col# Length Dead Self +Live -Live MinTot MaxTot 2nd Floor 13 14.00 37.2 0.2 23.4 -0.2 37.2 60.8 Column Line 5-B Level Col# Length Dead Self +Live -Live MinTot MaxTot 2nd Floor 14 14.00 63.2 0.2 31.6 -0.1 63.3 95.0 Column Line 5-A Level Col# Length Dead Self +Live -Live MinTot MaxTot 2nd Floor 15 14.00 36.8 0.2 23.3 -0.2 36.8 60.4 C-Lo L J a-t rJ roc r*tr- _o ' 61\f KPFF Consulting Engineers MM 7/26/2013 KPFF Consulting Engineers MM 7/26/2013 The Adrienne IV.One-way Shear Check ACt 11.11.1.1 Vu Footing Design ACI 318-08 Grid 1-C Shear Area 1 3.33 ft2 8.1 k I.INPUT Shear Area 2 3.33 ft2 8.1 k Column Loads Conc.Col./base plate dims. ASTM Standard Reinf Bars Bar size Dia.(in.) Area(in2) DL 16.9 k L 12 in. 3 0.375 0,11 a) +Vc=m'2•SORT(fc)•bw•d bw footing width LL 11.6 k B 12 In. 4 0.5 0.2 E 0 k 1.00 5 0.625 0.31 mVc 1 32 k OK Pu 38.84 k 6 0.75 0.44 7 0.875 0.6 eVc 2 32 k OK Info for Surcharge Loads 8 1 0.79 basement height 9 1.128 1 V.Reinforcement Design slab thick. 4 in. It 10 1.27 1.27 wall thick. ft 11 1.41 1.56 a)Critical section for moment occurs©face of col,/base plate pier dims ft X ft 14 1.693 2.25 soil depth 0 ft 18 2.257 4 footing width'moment arrn2/2 Mu B'ARML2/2 4.5 11 k-ft moment about long direction Soil Properties Concrete Strength L•ARM2/2 4.5 11 k-ft moment about short direction qa 2 ksf fc 3000 psi II.Trial Footing Dimensions b)Area of steel required,j=0.9 ACI Min' •code minimum for gross concrete area Required Area L 4 ft 16 AM_ 0.34 in2 1.04 in2 B 4ft 15.85 ft2 H 1 ft AsB 0.34 in2 1.04 in2 III.Two-way Shear Check ACI 11.11.1.2 c)Trial Reinforcement Effective depth Direction No.Bars Bar Size As(in2) d 8 in. Factored Net Soil Pressure Shear Area L 5 5 1.55 qnu 2.4 ksf 13.22222 ft2 B 5 5 1.55 Vu 32.1 k a) $Vc=¢(2+4/pc)SORT(fc)•bo•d pc 1 long:short col.dim. bo 80 in +Vc 158 k OK b) eVc=$(as•d/bo+2)SQRT(Pc)'bo•d as 40 for concentrically loaded footings reVc 158 OK c) mVc=m"4*SORT(fc)•bo•d +Vc 105 OK 1of2 2of2 • KPFF Consulting Engineers MM 7/26/2013 KPFF Consulting Engineers MM 7/26/2013 The Adrienne IV.One-way Shear Check ACI 11.11.1.1 Vu Footing Design ACI 318-08 Grid 1-B Shear Area 1 11.00 ft2 23.6 k I.INPUT Shear Area 2 11.00 ft2 23.6 k Column Loads Conc.Col./base plate dims. ASTM Standard Reinf Bars Bar size Dia.(in.) Area(in 2) DL 36.2 k L 12 In. 3 0.375 0.11 a) 4Vc=0.2•SQRT(fc)•bw•d bw footing width LL 21.1 k B 12 in. 4 0.5 0.2 E 0 k 1.00 5 0.625 0.31 }A/c 1 47 k OK Pu 77.2 k 6 0.75 0.44 7 0.875 0.6 4Vc 2 47 k OK Info for Surcharge Loads 8 1 0.79 basement height 9 1.128 1 V.Reinforcement Design slab thick. 4 in. ft 10 1.27 1.27 wall thick. ft 11 1.41 1.56 a)Critical section for moment occurs©face of col./base plate pier dims ft X ft 14 1.693 2.25 soil depth 0 ft 18 2.257 4 footing width*moment am?/2 Mu B•ARM12/2 18.8 40 k-ft moment about long direction Soil Properties Concrete Strength qa • 2 ksf fc 3000 psi L•ARM2/2 18.8 40 k-ft moment about short direction II.Trial Footing Dimensions b)Area of steel required,j=0.9 ACI Min* •code minimum for gross concrete area Required Area L 6 ft 36 AsL 1.24 in2 1.56 in2 B 6 ft 32.25 ft2 H 1 fl AsB 1.24 in2 1.56 in2 III.Two-way Shear Check ACI 11.11.1.2 c)Trial Reinforcement Effective depth Direction No.Bars Bar Size As(in2) d 8 in. Factored Net Soil Pressure Shear Area L 7 5 2.17 qnu 2.1 ksf 33.22222 ft2 B 7 5 2.17 Vu 71.2 k a) $Vc=0(2+4/pc)SQRT(fc)•bo•d pc 1 long:short col.dim. bo 80 in 4Vc 158 k OK b) 4Vc=0(as•d/bo+2)SORT(fc)•bo•d as 40 for concentrically loaded footings 4Vc 158 OK c) 4Vc=0•4`SQRT(fc)•bo•d 4Vc 105 OK 1of2 2of2 KPFF Consulting Engineers MAA 7/26/2013 KPFF Consulting Engineers MAA 7/26/2013 The Adrienne IV.One-way Shear Check ACI 11.11.1.1 Vu Footing Design ACI 318-08 Grid 1-A Shear Area 1 -1.00 ft2 -2.1 k 1.INPUT Shear Area 2 4.00 f12 8.6 k Column Loads Conc.Col./base plate dims. ASTM Standard Reinf Bars Bar size Dia.(in.) Area(in 2) DL 16.5 k L 12 in. 3 0.375 0.11 a) +Vc=+•2•SORT(fc)•bw•d bw footing width LL 11.8k B 12 in. 4 0.5 0.2 E 0 k 1.00 5 0.625 0.31 +Vc 1 83 k OK Pu 38.68 k 6 0.75 0.44 7 0.875 0.6 +Vc 2 41 k OK Info for Surcharge Loads 8 1 0.79 basement height 9 1.128 1 V.Reinforcement Design slab thick. 4 in. ft 10 1.27 1.27 wall thick. ft 11 1.41 1.56 a)Critical section for moment occurs it face of col./base plate pier dims ft X ft 14 1.693 2.25 soil depth 0 ft 18 2.257 4 footing width•moment arm2/2 Mu B•ARML2/2 9.4 20 k-ft moment about long direction Soil Properties Concrete Strength qa 2 ksf fc 3000 psi L•ARM2/2 3.0 6 k-ft moment about short direction II.Trial Footing Dimensions b)Area of steel required,j=0.9 Required Area L 6 ft 18 ACI Min' •code minimum for gross concrete area B 6 ft AsL 0.36 in2 1.17 in2 16.63 ft2 H 1.5 ft AsB 0.11 in2 2.33 in2 III.Two-way Shear Check ACI 11.11.1.2 c)Trial Reinforcement Effective depth Direction No.Bars Bar Size As(in2) d 14 in. Factored Net Soil Pressure Shear Area L 6 5 1.86 PROVIDED TOP AND BOTTOM qnu 2.1 ksf 13.30556 ft2 B 5 6 2.2 PROVIDED TOP AND BOTTOM Vu 28.6 k a) +Vc=+(2+441c)SORT(fc)*bo•d (fc 1 long:short col.dim. bo 104 in +Vc 359 k OK b) +Vc=+(aced/bo+2)SORT(fc)•bo•d as 40 for concentrically loaded footings +Vc 442 OK c) +Vc=4•4•SORT(fc)"bo'd We 239 OK 1of4 2of4 KPFF Consulting Engineers MAA 7/26/2013 KPFF Consulting Engineers MAA 7/26/2013 The Adrienne IV.One-way Shear Check ACI 11.11.1.1 Vu Footing Design AC1 318-08 Grid 1.6-C Shear Area 1 6.67 ft2 13.7 k I.INPUT Shear Area 2 6.67 ft2 13.7 k Column Loads Conc.Col./base plate dims. ASTM Standard Reinf Bars Bar size Dia.(in.) Area(in 2) DL 24.2 k L 12 in. 3 0.375 0.11 a) +Vc=0'2•SORT(fc)•bw•d bw footing width LL 14 k B 12 in. 4 0.5 0.2 E 0 k 1.00 5 0.625 0.31 SVc 1 39 k OK Pu 51.44 k 6 0.75 0.44 7 0.875 0.6 4Vc 2 39 k OK Info for Surcharge Loads 8 1 0.79 basement height 9 1.128 1 V.Reinforcement Design slab thick. 4 in. ft 10 1.27 1.27 wall thick. ft 11 1.41 1.56 a)Critical section for moment occurs©face of col./base plate pier dims ft X ft 14 1.693 2.25 soil depth 0 ft 18 2.257 4 footing width•moment arm2/2 Mu B•ARM,2/2 10.0 21 k-ft moment about long direction Soil Properties Concrete Strength L•ARM2/2 10.0 21 k-ft moment about short direction qa 2 ksf fc 3000 psi 11.Trial Footing Dimensions b)Area of steel required.j=0.9 Required Area L 5 ft 25 ACI Min* 'code minimum for gross concrete area ML 0.64 in2 1.30 in2 B 5 fl 21.60 ft2 H 1 ft AsB 0.64 in2 1.30 in2 111.Two-way Shear Check ACI 11.11.1.2 c)Trial Reinforcement Effective depth d 8 in. Direction No.Bars Bar Size As(in2) Factored Net Soil Pressure Shear Area L 6 5 1.86 qnu 2.1 ksf 22.22222 ft2 B 6 5 1.86 Vu 45.7 k a) +Vc=4(2+4/pc)SORT(fc)'bo'd pc 1 long:short col.dim. bo 80 in +Vc 158 k OK b) 4Vc=4(as•d/bo+2)SQRT(fc)•bo•d as 40 for concentrically loaded footings 4Vc 158 OK c) +Vc=4•4'SORT(fc)•bo•d 4Vc 105 OK 1of2 2of2 KPFF Consulting Engineers MAA 7/26/2013 KPFF Consulting Engineers MAA 7/26/2013 The Adrienne IV.One-way Shear Check ACI 11.11.1.1 Vu Footing Design ACI 318-08 Grid 2-8 Shear Area 1 18.67 ft2 39.1 k • I.INPUT Shear Area 2 18.67 ft2 39.1 k Column Loads Conc.Col./base plate dims. ASTM Standard Reinf Bars Bar size Dia.(In.) Area(in 2) DL 65 k L 12 in. 3 0.375 0.11 a) 4Vc=4*2'SORT(fc)•bw•d bw footing width LL 35 k B 12 in. 4 0.5 0.2 E 0 k 1.00 5 0.625 0.31 0Vc 1 110 k OK Pu 134 k 6 0.75 0.44 7 0.875 0.6 4Vc 2 110 k OK Into for Surcharge Loads 8 1 0.79 basement height 9 1.128 1 V.Reinforcement Design slab thick. 4 in. ft 10 1.27 1.27 wall thick. ft 11 1.41 1.56 a)Critical section for moment occurs @ face of cot./base plate pier dims ft X ft 14 1.693 225 soil depth 0 ft 18 2.257 4 footing width•moment arm=/2 Mu B•ARML2/2 49.0 103 k-ft moment about long direction Soil Properties Concrete Strength L•ARM2/2 49.0 103 k-ft moment about short direction qa 2 ksf fc 3000 psi II.Trial Footing Dimensions b)Area of steel required,j=0.9 Required Area L 8 ft 64 ACI Min* •code minimum for gross concrete area B 8 ft ML 1.81 in2 3.11 in2 58.80 ft2 H 1.5 ft AsS 1.81 in2 3.11 in2 III.Two-way Shear Check ACI 11.11.1.2 c)Trial Reinforcement Effective depth Direction No.Bars Bar Size As(in2) d 14 in. Factored Net Soil Pressure Shear Area L 9 6 3.96 qnu 2.1 list 59.30556 ft2 B 9 6 3.96 Vu 124.2 k a) 4Vc=4(2+443c)SORT(fc)'bo•d pc 1 long:short col.dim. bo 104 in 4Vc 359 k OK b) 4Vc=0(as'd/bo+2)SQRT(f c)•bo-d as 40 for concentrically loaded footings AVc 442 OK c) +Vc=0"4*SORT(fc)"bo•d 4Vc 239 OK 1of2 2of2 KPFF Consulting Engineers MM 7/26/2013 KPFF Consulting Engineers MM 7/26/2013 The Adrienne IV.One-way Shear Check Ac111.11.1.1 vu Footing Design ACI 318-08 Grid 2.4-C Shear Area 1 11.00 ft2 22.6 k I.INPUT Shear Area 2 11.00 ft2 22.6 k Column Loads Conc.Col./base plate dims. ASTM Standard Reinf Bars Bar size Dia.(in.) Area(in 2) DL 34.8 k L 12 in. 3 0.375 0.11 a) $Vc=0'2'SORT(fc)•bw•d bw footing width LL 20.2 k B 12 in. 4 0.5 0.2 E 0 k 1.00 5 0.625 0.31 +Vc 1 47 k OK Pu 74.08 k 6 0.75 0.44 • 7 0.875 0.6 0Vc 2 47 k OK Into for Surcharge Loads 8 1 0.79 basement height 9 1.128 1 V.Reinforcement Design slab thick. 4 in. ft 10 1.27 1.27 wall thick. ft 11 1.41 1.56 a)Critical section for moment occurs @ face of col./base plate pier dims It X ft 14 1.693 2.25 soil depth 0 ft 18 2.257 4 footing width•moment arm2/2 Mu B•ARM!/2 18.8 39 k-ft moment about long direction Soil Properties Concrete Strength qa 2 ksf fc 3000 psi L•ARM2/2 18.8 39 k-ft moment about short direction • II.Trial Footing Dimensions b)Area of steel required,j=0.9 Required Area L 6 ft 36 ACI Min• 'code minimum for gross concrete area B 6 ft AsL 1.19 in2 1.56 in2 31.10 ft2 H 1 ft AsB 1.19 in2 1.56 in2 III.Two-way Shear Check ACI 11.11.1.2 c)Trial Reinforcement Effective depth Direction No.Bars Bar Size As(in2) d Bin. Factored Net Soil Pressure Shear Area L 7 5 2.17 qnu 2.1 ksf 33.22222 ft2 8 7 5 2.17 Vu 68.4 k a) 0Vc=0(2+441c)SORT(fc)•bo•d pc 1 long:short col.dim. bo 80 in $Vc 158 k OK b) OVc=0(as•d/bo+2)SORT(fc)•bo•d as 40 for concentrically loaded footings 4Vc 158 OK c) $Vc=0*4'SORT(fc)•bo•d . 0Vc 105 OK 1of2 2of2 -- KPFF Consulting Engineers MAA 7/26/2013 KPFF Consulting Engineers MAA 7/26/2013 The Adrienne IV.One-way Shear Check ACI 11.11.1.1 Vu Footing Design ACI 318-08 Grid 3-C Shear Area 1 3.33 ft2 8.6 k I.INPUT Shear Area 2 133 ft2 8.6 k Column Loads Conc.Col./base plate dims. ASTM Standard Reinf Bars Bar size Dia.(in.) Area(in 2) DL 18 k L 12 in. 3 0.375 0.11 a) 4Vc=+'2•SORT(t'c)•bw•d bw footing width LL 12.3 k B 12 in. 4 0.5 0.2 E 0 k 1.00 5 0.625 0.31 4Vc 1 32 k OK Pu 41.28 k 6 0.75 0.44 7 0.875 0.6 •Vc 2 32 k OK Info for Surcharge Loads 8 1 0.79 basement height 9 1.128 1 V.Reinforcement Design slab thick. 4 in. ft 10 1.27 1.27 wall thick. ft 11 1.41 1.56 a)Critical section for moment occurs(.@?face of col./base plate pier dims ft X ft 14 1.693 2.25 soil depth 0 ft 18 2.257 4 fooling width'moment arm2/2 Mu B•ARML2 J 2 4.5 12 k-ft moment about long direction Soil Properties Concrete Strength qa 2 ksf fc 3000 psi L•ARM2/2 4.5 12 k-ft moment about short direction II.Trial Footing Dimensions b)Area of steel required,j=0.9 ACI Min* •code minimum for gross concrete area Required Area L 4 ft 16 B 4 ft AsL 0.36 in2 1.04 in2 16.75 ft2 H 1 ft AsB 0.36 in2 1.04 in2 III.Two-way Shear Check ACI 11.11.1.2 c)Trial Reinforcement Effective depth Direction No.Bars Bar Size As(in2) d 8 in. L 5 5 1.55 Factored Net Soil Pressure Shear Area gnu 2.6 ksf 13.22222 112 B 5 5 1.55 Vu 34.1 k a) (Pic=0(2+4/6c)SORT(fc)•bo'd 6c 1 long:short col.dim. bo 80 in $Vc 158 k OK b) 4Vc=4(as'd/bo+2)SORT(fc)•bo•d as 40 for concentrically loaded footings 4Vc 158 OK c) +Vc=4•4•SORT(fc)'bo•d 4Vc 105 OK 1of2 2of2 6"' KPFF Consulting Engineers MAA 7/26/2013 KPFF Consulting Engineers MAA 7/26/2013 The Adrienne IV.One-way Shear Check ACI 11.11.1.1 Vu Footing Design ACI 318-08 Grid 3.4-C Shear Area 1 3.33 ft2 4.4 k 1.INPUT Shear Area 2 3.33 ft2 4,4 k Column Loads Conc.Col./base plate dims. ASTM Standard Reinf Bars Bar size Dia.(in.) Area(in?) DL 10.1 k L 12 in. 3 0.375 0.11 a) .pVc=.p•2•SQRT(fc)*bw*d bw footing width LL 5.7 k B 12 in. 4 0.5 0.2 E 0 k 1.00 5 0.625 0.31 +Vc 1 32 k OK Pu 21.24 k 6 0.75 0.44 7 0.875 0.6 +Vc 2 32 k OK Info for Surcharge Loads 8 1 0.79 basement height 9 1.128 1 V.Reinforcement Design slab thick. 4 in. ft 10 1.27 1.27 wall thick. ft 11 1.41 1.56 a)Critical section for moment occurs(g face of cot./base plate pier dims ft X ft 14 1.693 2.25 soil depth 0 ft 18 2.257 4 footing width•moment arm2/2 Mu B•ARML2/2 4.5 6 k-ft moment about long direction Soil Properties Concrete Strength L•ARM2/2 4.5 6 k-ft moment about short direction qa 2 ksf fc 3000 psi II.Trial Footing Dimensions b)Area of steel required,j=0,9 Required Area L 4 ft 16 ACI Min* •code minimum for gross concrete area B 4 ft AsL 0.18 in2 1.04 in2 9.50 ft2 H 1 ft AsB 0.18 in2 1.04 in2 III.Two-way Shear Check ACI 11.11.1.2 c)Trial Reinforcement Effective depth Direction No.Bars Bar Size As(in2) d 8 in. Factored Net Soil Pressure Shear Area L 5 5 1.55 qnu 1.3 ksf 13.22222 ft2 B 5 5 1.55 Vu 17.6 k a) +Vc=¢(2+4/6c)SORT(fc)•bo•d )lc 1 long:short col.dim. bo 80 in .1,Vc 158 k OK b) •Vc=a(as'd/bo+2)SQRT(fc)•bo*d as 40 for concentrically loaded footings $Vc 158 OK c) +Vc=0.4•SORT(fc)•bo•d +Vc 105 OK 1of2 2of2 KPFF Consulting Engineers MAA 7/26/2013 KPFF Consulting Engineers MAA 7/26/2013 The Adrienne IV.One-way Shear Check ACI 11.11.1.1 vu Footing Design ACI 318-08 Grid 4-C Shear Area 1 11.00 ft2 24.9 k I.INPUT Shear Area 2 11.00 ft2 24.9 k Column Loads Conc.Col./base plate dims. ASTM Standard Reinf Bars Bar size Dia.(in.) Area(in 2) DL 40.6 k L 12 in. 3 0.375 0.11 a) +Vc=+•2•SORT(fc)•bw•d bw footing width LL 20.4 k • B 12 in. 4 0.5 0.2 E 0 k 1.00 5 0.625 0.31 +Vc 1 47 k OK Pu 81.36 k 6 0.75 0,44 7 0.875 0.6 +Vc 2 47 k OK Info for Surcharge Loads 8 1 0.79 basement height 9 1.128 1 V.Reinforcement Design slab thick. 4 in. ft 10 1.27 1.27 wall thick. ft 11 1.41 1.56 a)Critical section for moment occurs©face of col./base plate pier dims ft X ft 14 1.693 2.25 soil depth 0 ft 18 2.257 4 footing width•moment amt/2 Mu B•ARK'/2 18.8 42 k-ft moment about long direction Soil Properties Concrete Strength L•ARM2/2 18.8 42 k-ft moment about short direction qa 2 ksf fc 3000 psi It.Trial Footing Dimensions b)Area of steel required,j=0.9 ACI Min" •code minimum for gross concrete area Required Area L 6 ft 36 AsL 1.31 in2 1.56 in2 B 6 ft 34.10 ft2 H 1 ft MB 1.31 in2 1.56 in2 III.Two-way Shear Check ACI 11.11.1.2 c)Trial Reinforcement Effective depth Direction No.Bars Bar Size As(in2) d 8 in. L 7 5 2.17 Factored Net Soil Pressure Shear Area qnu 2.3 ksf 33.22222 ft2 B 7 5 2.17 Vu 75.1 k a) +Vc=+(2+4/8c)SORT(fc)*bo'd pc 1 long:short col.dim. bo 80 in +Vc 158 k OK b) +Vc=+(es'd/bo+2)SORT(fc)•bo•d as 40 for concentrically loaded footings +Vc 158 OK c) +Vc=+•4•SORT(fc)•bo•d +Vc 105 OK 1of2 2of2 • KPFF Consulting Engineers MAA 7/26/2013 KPFF Consulting Engineers MAA 7/26/2013 The Adrienne IV.One-way Shear Check ACI 11.11.1.1 Vu Footing Design ACI 318-08 Grid 48 Shear Area 1 18.67 ft2 40.8 k I.INPUT Shear Area 2 18.67 82 40.8 k Column Loads Conc.Col./base plate dims. ASTM Standard Reinf Bars Bar size Dia.(in.) Area(in 2) DL 72.2 k L 12 in. 3 0.375 0.11 a) •Vc=.•2•SORT(fc)•bw'd bw footing width LL 33.3 k B 12 in. 4 0.5 0.2 E 0 k 1.00 5 0.625 0.31 +Vc 1 110 k OK Pu 139.92 k 6 0.75 0.44 7 0.875 0.6 4Vc 2 110 k OK Info for Surcharge Loads 8 1 0.79 basement height 9 1.128 1 V.Reinforcement Design slab thick. 4 in. ft 10 1.27 1.27 wall thick. ft 11 1.41 1.56 a)Critical section for moment occurs @ face of col./base plate pier dims ft X ft 14 1.693 2.25 soil depth 0 ft 18 2.257 4 footing width•moment arm2/2 Mu B•ARM12/2 49.0 107 k-ft moment about long direction Soil Properties Concrete Strength L•ARM2/2 49.0 107 k-fl moment about short direction qa 2 ksf fc 3000 psi II.Trial Footing Dimensions b)Area of steel required,j=0.9 Required Area L 8 ft 64 ACI Min* 'code minimum for gross concrete area B 8 ft AsL 1.89 in2 3.11 in2 61.55 ft2 H 1.5 ft AsB 1.89 in2 3.11 in2 III.Two-way Shear Check ACI 11.11.1.2 c)Trial Reinforcement Effective depth Direction No.Bars Bar Size As(in2) d 14 in. Factored Net Soil Pressure Shear Area L 9 6 3.96 qnu 2.2 ksf 59.30556 ft2 B 9 6 3.96 Vu 129.7 k a) +Vc=0(2+4/(3c)SQRT(fc)•bo•d pc 1 long:short col.dim. bo 104 in •Vc 359 k OK b) +Vc=0(as'd/bo+2)SQRT(fc)•bo•d as 40 for concentrically loaded footings +Vc 442 OK c) •Vc=0.4•SQRT(fc)•bo•d +Vc 239 OK 1of2 2of2 K.-) KPFF Consulting Engineers MM 7/26/2013 KPFF Consulting Engineers MM 7/26/2013 The Adrienne IV.One-way Shear Check Act 11.11.1.1 Vu Footing Design ACI 318-08 Grid 4-A Shear Area 1 -1.33 ft2 -2.8 k I.INPUT Shear Area 2 7.00 ft2 14.9 k Column Loads Conc.Col./base plate dims. ASTM Standard Reinf Bars Bar size Dia.(in.) Area(in 2) DL 24 k L 12 in. 3 0.375 0.11 a) 4Vc=4.2'SQRT(fc)*bw•d bw footing width LL 14 k B 12 in. 4 0.5 0.2 E O k 1.00 5 0.625 0.31 4Vc 1 110 k OK Pu 51.2 k 6 0.75 0.44 7 0.875 0.6 4Vc 2 41 k OK Info for Surcharge Loads 8 1 0.79 basement height 9 1.128 1 V.Reinforcement Design slab thick. 4 in. ft 10 1.27 1.27 wall thick, ft 11 1.41 1.56 a)Critical section for moment occurs©face of col./base plate pier dims ft X ft 14 1.693 2.25 soil depth 0 ft 18 2.257 4 footing width•moment arm2/2 Mu B•ARMi2/2 18.4 39 k-ft moment about long direction Soil Properties Concrete Strength L•ARM2/2 4.0 9 k-ft moment about short direction qa 2 ksf fc 3000 psi II.Trial Footing Dimensions b)Area of steel required,j=0.9 ACI Min* •code minimum for gross concrete area Required Area L 8 ft 24 AsL 0.69 in2 1.17 in2 B 3ft 22.30 ft2 H 1.5 ft AsB 0.15 in2 3.11 in2 III.Two-way Shear Check ACI 11.11.1.2 c)Trial Reinforcement Effective depth Direction No.Bars Bar Size As(in2) d 14 in. L 8 5 2.48 PROVIDED TOP AND BOTTOM Factored Net Soil Pressure Shear Area qnu 2.1 ksf 19.30556 ft2 B 5 6 2.2 PROVIDED TOP AND BOTTOM Vu 41.2 k a) 4Vc=4(2+4/)lc)SORT(fc)'bo•d (fc 1 long:short col.dim. bo 104 in 4Vc 359 k OK b) 4Vc=4(as•d/bo+2)SORT(fc)•bo•d as 40 for concentrically loaded footings 4Vc 442 OK c) 4Vc=4'4"SORT(fc)•bo•d 4Vc 239 OK 1of4 2of4 KPFF Consulting Engineers MAA 7/26/2013 KPFF Consulting Engineers MAA 7/26/2013 As TOTAL 4.96 4.4 3of4 4of4 KPFF Consulting Engineers MAA 7/26/2013 KPFF Consulting Engineers MAA 7/26/2013 The Adrienne IV.One-way Shear Check ACI 11.11.1.1 vu Footing Design ACI 318-08 Grid 5-C Shear Area 1 11.00 ft2 25.1 k I.INPUT Shear Area 2 11.00 ft2 25.1 k Column Loads Conc.Col./base plate dims. ASTM Standard Rein/Bars Bar size Dia.(in.) Area(in 2) DL 37.2 k L 12 in. 3 0.375 0.11 a) 4Vc=0*2'SORT(fc)•bw•d bw footing width LL 23.4 k B 12 in. 4 0.5 0.2 E 0 k 1.00 5 0.625 0.31 ¢Vc 1 47 k OK Pu 82.08 k 6 0.75 0.44 7 0.875 0.6 4Vc 2 47 k OK Info for Surcharge Loads 8 1 0.79 basement height 9 1.128 1 V.Reinforcement Design slab thick. 4 in. ft 10 1.27 1.27 wall thick. ft 11 1.41 1.58 a)Critical section for moment occurs face of col./base plate pier dims ft X ft 14 1.693 2.25 soil depth 0 ft 18 2.257 4 footing width'moment arm2/2 Mu B•ARIA!)2 18.8 43 k-ft moment about long direction Soil Properties Concrete Strength L•ARM2/2 18.8 43 k-ft moment about short direction qa 2 ksf f c 3000 psi II.Trial Footing Dimensions b)Area of steel required,j=0.9 Required Area L 6 ft 36 ACI Min' "code minimum for gross concrete area AsL 1.32 in2 1.56 in2 B Eft 33.90 ft2 H 1 ft AsB 1.32 in2 1.56 in2 III.Two-way Shear Check ACI 11.11.1.2 c)Trial Reinforcement Effective depth Direction No.Bars Bar Size As(in2) d 8 in. Factored Net Soil Pressure Shear Area L 7 5 2.17 qnu 2.3 ksf 33.22222 ft2 B 7 5 2.17 Vu 75.7 k a) 4iVc=4(2+4/pc)SORT(fc)•bo•d )pc 1 long:short col.dim. bo 80 in 4Vc 158 k OK b) 4Vc=0(as'd/bo+2)SORT(f c)'bo'd as 40 for concentrically loaded footings +Vc 158 OK c) QVc=4'4•SORT(fc)*bo•d $Vc 105 OK 1of2 2of2 KPFF Consulting Engineers MAA 7/26/2013 KPFF Consulting Engineers MAA 7/26/2013 The Adrienne IV.One-way Shear Check ACI 11.11.1.1 Vu Footing Design ACI 318-08 Grid 5-B Shear Area 1 18.67 ft2 36.9 k I.INPUT Shear Area 2 18.67 ft2 36.9 k Column Loads Conc.Col./base plate dims. ASTM Standard Relnf Bars Bar size Dia.(in.) Area(in 2) DL 63.2 k L 12 in. 3 0.375 0.11 a) +Vc=+'2'SQRT(fc)•bw•d bw footing width LL 31.6 k B 12 in. 4 0.5 0.2 E 0 k 1.00 5 0.625 0.31 We 1 110 k OK Pu 126.4 k 8 0.75 0.44 7 0.875 0.6 +Vc 2 110 k OK Info for Surcharge Loads 8 1 0.79 basement height 9 1.128 1 V.Reinforcement Design slab thick. 4 in, ft 10 1.27 1.27 wall thick. ft 11 1.41 1.56 a)Critical section for moment occurs it face of col./base plate pier dims ft X ft 14 1.893 2.25 soil depth 0 ft 18 2.257 4 footing width•moment armz/2 Mu B•ARM1212 49.0 97 k-ft moment about long direction Soil Properties Concrete Strength L•ARM'/2 49.0 97 k-ft moment about short direction qa 2 ksf fc 3000 psi II.Trial Footing Dimensions b)Area of steel required,j=0.9 ACI Min* •code minimum for gross concrete area Required Area L 8 ft 64 ASL 1.71 in2 3.11 in2 B 8ft 56.20 ft2 H 1.5 ft AsB 1.71 in2 3.11 in2 III.Two-way Shear Check ACI 11.11.1.2 c)Trial Reinforcement Effective depth Direction No.Bars Bar Size As(in2) d 14 in. Factored Net Soil Pressure Shear Area L 9 6 3.96 qnu 2.0 ksf 59.30556 ft2 B 9 6 3.96 Vu 117.1 k a) +Vc=+(2+4/pc)SORT(fc)•bo•d (ic 1 long:short col.dim. bo 104 In We 359 k OK b) +Vc=+(as•d/bo+2)SORT(fc)*bo•d as 40 for concentrically loaded footings +Vc 442 OK c) +Vc=+'4•SORT(fc)•bo•d +Vc 239 OK 1 of 2of2 KPFF Consulting Engineers MAA 7/26/2013 KPFF Consulting Engineers MAA 7/26/2013 The Adrienne IV.One-way Shear Check ACI 11.11.1.1 Vu Footing Design ACI 318-08 Grid 5-A Shear Area 1 11.00 ft2 24.9 k I.INPUT Shear Area 2 11.00 ft2 24.9 k Column Loads Conc.Cot./base plate dims. ASTM Standard Reinf Bars Bar size Dia,(in.) Area(in 2) DL 36.8 k L 12 in. 3 0.375 0.11 a) 4Vc=0.2•SQRT(fc)•bw•d bw footing width LL 23.3 k B 12 in. 4 0.5 0.2 E 0 k 1.00 5 0.625 0.31 $Vc 1 47 k OK Pu 81.44 k 6 0.75 0.44 7 0.875 0.6 •Vc 2 47 k OK Info for Surcharge Loads 8 1 0.79 basement height 9 1.128 1 V.Reinforcement Design slab thick. 4 in. ft 10 1.27 1.27 wall thick. ft 11 1.41 1.56 a)Critical section for moment occurs©face of col./base plate pier dims ft X ft 14 1.693 2.25 soil depth 0 ft 18 2.257 4 footing width•moment arm2/2 Mu B•ARML2/2 18,8 42 k-ft moment about long direction Soil Properties Concrete Strength qa 2 ksf fc 3000 psi L•ARM2/2 18.8 42 k-ft moment about short direction II.Trial Footing Dimensions b)Area of steel required.j=0.9 Required Area L 6 ft 36 ACI Min* 'code minimum for gross concrete area B 6 ft AsL 1.31 in2 1.56 in2 33.65 ft2 H 1 ft MB 1.31 in2 1.56 in2 III.Two-way Shear Check ACI 11.11.1.2 c)Trial Reinforcement Effective depth Direction No.Bars Bar Size As(in2) d 8 in. Factored Net Soil Pressure Shear Area L 7 5 2.17 qnu 2.3 ksf 33.22222 ft2 B 7 5 2.17 Vu 75.2 k a) 4Vc=4(2+443c)SORT(fc)•bo•d (3c 1 long:short col.dim. bo 80 in }Vc 158 k OK b) 4Vc=¢(as'd/bo+2)SORT(fc)•bo•d us 40 for concentrically loaded footings 4Vc 158 OK c) •Vc=0•4•SORT(rc)•bo•d OVc 105 OK 1of2 2of2 6-t- Wil vl,i■I ls-It/ • 3219 1-t-0®2 0 0 0 MY., 0 0 S I E A SCOTTISGWAR05 ARCHITECTURE ALP 1526 E.Seat.St.Pe.Wn4 OR PM 4 © © © �,,, © © r.r° © NSW. X:,65.. X5 PNe»:D0511xw»....».nP.»., WISLNI 0 IMO. .... f ;T TI Cr x IS INK-.a.tr.. o .1tK.Tap..c A : d Mme' �a !!!c///tt���\\\ 4 i I YTV.. a OL SEW ��� 4 I 11'A•TAg Iwo... 1RVTA•M... . x 11%•MI Me. " , .... ,tiL'Tao,r.s I v r Q Q t�•//�///•/•••//•/•••/� 11x•TAO Ire. Q The Adrienne /9 H t1 r PWGONID.OREGON© : Q A BEM. PORTLAND.OREGON 97113 O ne m. ` A mpa... O� NO S%/. I/l//////� `./1 x O 1 C .-_- 13 ler TRIO Ire. 1, /� • 1 © A- P 1 /%Q Consulting Engineers• ' ■R.A.TAO tr... :;A4 I I �m O -— 1I41:11111111111:11IIInlR.l::11111:D:1111::0010:NOD::1:,11 111111::1--":11:', I........l:::1::itlIItII1:1100l0 0:II::::4 111011:11..-......111 t III1::::::l:Io.::.I:II:::::,o::r 1::1:110::I1:II:1O1:fliedMINI::l::II:140IIR:IRRIi;iliil:llU:0iliii. - ..Om, Frn A .+� © �© e' a ©I d Q ryP�©� © (Di a m� b ly Ott' 11Y.'TA•N•e.. �' R M O O� b5a.,_... o w_. />/ , �TYr. 4 v TOr too Ir..c © Il;r EA01E•.t .1%.TH ES w.. - © CWTAOtra. /<> ,TIW TA SOP es • 0L KAN j Ara .1 a.,m I gym. e 0 A x ____. 4> ,11111' I _© awl w12,. �;�� - t„1 + — i, ' _ X655.. m© I WN.11 of P 4 ® 4 © 4 4 a 4 4 moo 416511, HSttx m T�E Drawing: THIRD FLOOR FRAMING PLAN NDTES FOR 00ERAL STIIDCTUML NOTES MO L. OEKATES 2.STWSEAMUO WALL r. 0�.1 IIpCA1EE 6PM01RECtIOXDE Y.' A POST TO OCCUR AT ALL CL SEW 50.2 ARO 30.2. REF.STIR PLYWOOOMAj'ITYINIA.ATTACX REARM LOCATIONS AT REARM *1101 MILS IF AA AT PLYWOOD WALLS.REF PLAN 2. REF.ARCM.OROS.FOR WALL E... ' MDICATosr s0LUOROUTEO CAW E60E5 me 11•e.ATIMEMIEOATE, LOCATIONS AM OPENINGS S12E5 SEAPoIIOWKL.AV.6(41004 summon.RI?1101. STRUCTUML XOTES FOR REMf. Job No'. 1310 I REF ST I AND$22 root TYINC.L w000 REF MOM.CMOS FOR LOCATIONS ANC S 0-4 IOCATE5 SPAN DIRECTION OF 2',X5 DETAILS. OPEM � NGS. OA net W WA./2•CONCRETE Oste: 6-10-13 'tame.I WW?INS W I.4A'l1. — •.e EL.cow INOCAISS 1000s StAS ELEVAIWN Shoot No: 0 THIRD FLOOR FRAMING PLAN .® S2.3 • lrL L l /.� i/`G n1 a„,,,,,_ 0 0 0 0 o Sr:E„, A Kr IY�4R * 1S Vt 1•Y.• 2S4 SCOTT I FOM/.[D3 MiCHI1 Ear.x.I., x515 F_R.e�...Sy Perm 0.27214 � FIB—E�n m..riT....,�om1 O „J - S -- —. II J J N ^�idr TAO ll•wa �/�7 I`O ii ∎r . A��■d „ A®TV.. - 40:'1ROIr•e I 110'110 N'e<. H FtVTJ10Fru. ' ^ IIjWTAOM••A DiF•GOiree. u 110.'1x0,xuc I The Adrienne H u sw GO010EE r d CO m® hl0 i/1 PORTWREGON 0]22] LI n?„y� 'Ad('TV7�x � o J d�fn m.� IA - d ! roM A u t, O I•:� . Cong Enginaon R rn• ' .r vN•�ne r•L �. 1 k k !o o - - N n N � I I nN .01r•e ng wplr.c n%rRpmec nN•Taew••< • mQlr•F. n; r.0ls.e H n;•r.OIr.c I n R 1372 3,77) m tl N N O. .._ O1 N r - ■ 11 ---- •• - ■Oh ROOF FRAMING PLAN NOTES' ES REF E. �T .AKMfs,.000105 Of)r' Sox 0M0 SOX LIRUGTM4t 0/01 hrRO00S00FSNErn 31.0 000 LO ve IP IONS 0 L••e..T Rwg00 LOGOS X REF MGR OMwENOP FOR ROOF AND■r•.•M MERRFO4.STE SUPPORTS EEEVMOOM ONO SLOPES REF.141 i Jo0 No: 1310 3 arc SI I/No tx>toRT3000 w00o e , , . FS VIER MK .LEVw 0/' OET.RS 5GS1 D. 0/1113 4 63 EEAII771' MOC/.TES TOP O•$.4•7nwGfl.vgN. shoot No 0 ROOF FRAMING PLAN .® S2•4 • • Project #� n t� �j.r _ By 45 Sheet N o. Location TT C44 L oR Effiri Consulting Engineers Date 1/0/ 13 Co. Client Revised Job No. Portland.Oregon "7 1�j©q j Date •3 Y 5ns � ►� 7s# -I-- 4--(}aa = 8 pe 7616/4 "1 40z vjL S [S� �j�i� 0760i lot- 9 Crti�av — ►G� � (�) 1 O V 4'1 Q'� cu.() • �y l () Cf.��> Jl+d,!� �,i•�''�i..l'. �5 rY'" rs 50 760 firtl-EP‘."(70 C>0)Ci$a o.9) (;; , i ics '16 fn/)‹. f' _1 xx 3, (2-5 --, �`'- Q 1 - - v ii ) lt� 1/f° /i TOP 62) J y F (,,r 3 � Cry �r C 5` ((.o)a,. )C.r•o Clfi o� � a p�p `sl,�,GU .(_-§- •^' '�o ;,ry) J,-•'nJ (©s- I` 5a 98 1V1,;1i ` 076 1/6#1:1L- � q!n 1,1f ,..„,k `� o j ► j 64-i— J L-1 25i 9,qtr+ — Project '?"s-I C A-D fk.LE N N E By 1"jA--c..:) Sheet No. Consulting Engineers Location R.�J O (Z Dote 7/f b y r5, Client Revised Job No. Portland.Oregon Dote F 3 ( 9ocztb7 I�"�, � p�° —1 < K a(3 ►�s`� 7s,� /� <)1\g, 7,�i F-—Vg.) 3rS 17P. I RE n 5�1f: 3'7" x 7- %;...\ -5 zG- — 3 4 x -c.I 1S" 3 1/S•, i 3r-i/ _ ST-2 Yg`X t'f•� T;P. 3 ft P. —S 1 2 E" = 31' ' io-% _ =-3 3= FL Ty)), TY P.#- - ST-2E = 3 v >< 1Zy - SY E = 3 vg K 13-V-.2 3J Fc_ PO. r- = Ti{ T — g E.0 SPA;N — 9 9 „ Pr4N —5 =3 1/e,‘‘)(z 3— `/z /21 T 4-4 PA),/ F '`(P., _ spAv = 19,r - 2E. _ 3 1/8" X" --- Ty 4' 3 N = i i-t`b " y If " >C , .2\" • t i 1 Project BY Dios- Sheet NO. Locatbn RD Q fZ Dote %/76/1 T Consulting Engineers UU Client Revised Job Na' Porrkaid.areoon Date -1-1(r.LCrt l.- ;`r ci rd�.P-10eI _lcc tin i)(,_ ps-r(►h,asF-t -_ ?S 1, 1b/42.,;- 610 16144- Sr“.1:74_1._ 10{p4- -Trib � t�i� - 1`oln6a5�}- Lo ,n DL = 2-$154-0'2-,6a5-)� 31 C.G�S ►6/P- LL W $FC1�> 6as4r� So5 Ib Sp L- L1) 3r9 Sre, 1-60,M,*: Q►- =a5p541-(9 375407)= '43Ho rte/ (9,375 ft) = 37S IbJp-a- 5f eCI L-. 7j r 440/x! L G a j u e .- GC. ,OV F) Sp -z. ,...,1RftL ► 5,25 DL 351.', 5 ►b/PL- (.40, 'G►O IbJ rtvPrc t- I F --SPAN— / --"il7b �: DL �l 5p0 C fs-p- SI0 Iblf-r 71;P:1:641.- `.. Qoop o M� Lfor c,( t5 44) = 610 /10-*-- PCLrAL 3 RCX)r —SPAN s- I mot p� I-Go�:nc�e DL 4.5psY 516/4,4-- QQ Li. 10 rs (.la.62-s4 = 50.3 fb/i sPEC_TAL #4) ROOF- -5� 1a� . 5F1 qq((��_ W (�51-1 .�-. /03 ✓.43- L-1- 4 1-10f C99 3750= '2,75 r 6 fP-- ?C-crA-L N-5.) PLO „„V:to ,a5- ! \ Lo-r� ' o DL = ,p5r)C1�r c^S !. uG.,g.s.tb/r or LI_ o a$.0 c s•0.5frf') :r 5io E(0ji+- Project Sheet No. r fl ,-AI ITBy BY � 5 IMOLocation A _) G P. Date 7/ I o f J 3 2'3 Consulting Engineers Job No. Client Revised Portland.o « r 3 � 0 ,3 1 r Dote • i• DL g5pst^)( "9-,y ► _:_ 3 r6/fir G (4opsf;: ,if F. 2?4 ∎&/ t--- I1-1o 7 ..717+-1 7- e e v — �y{S ( 2 P-t` -a- 1 i( .s ) _ /03 try/-E i t = 6i(o (12-P"-) 8o Ls/�T ) COMPANY PROJECT KPFF Consulting Engineers The Adrienne ' I WoodWo rks® July 10,2013 12:07 Job 213043 J Gravity Calculations SOFTWARE FOR WOOD DESIGN 3rd floor TYP 1 Design Check Calculation Sheet Sizer 7.0 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location (ft) Units Start End Start End Dead Dead Full UDL 318.7 plf Live Live Full UDL 510.0 plf MAXIMUM REACTIONS (lbs) and BEARING LENGTHS(in) : - 0' 7i Dead 1135 1135 Live 1785 1785 Total 2920 2920 Bearing: Load Comb #2 #2 Length 1.44 1.44 Glulam-Bal.,West Species, 24F-V8 DF, 3-1/8x7-1/2" Self-weight of 5.4 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 153 Fv' = 265 fv/Fv' = 0.58 Bending(+) fb = 2093 Fb' = 2400 fb/Fb' = 0.87 Live Defl'n 0.14 = L/602 0.23 = L/360 0.60 Total Defl'n 0.27 = L/308 0.35 = L/240 0.78 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265• 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D+L, V = 2920, V design = 2398 lbs Bending(+) : LC #2 = D+L, M = 5109 lbs-ft Deflection: LC #2 = D+L EI= 198e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). COMPANY PROJECT WoodWo( Lc® KPFF Consulting Engineers Adrienne July 10,2013 12:10 Job Job 213043 Gravity Calculations SOrMWARE FOR WOOL Lrsfcx 3rd floor TYP 2 Design Check Calculation Sheet Sizer 7.0 LOADS (lbs, psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End Dead Dead Full UDL 381.2 plf Live Live Full UDL 610.0 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) 10' 114 Dead 2150 2150 Live 3355 3355 Total 5505 5505 Bearing: Load Comb #2 #2 Length 2.71 2.71 Glulam-Bal.,West Species, 24F-V8 DF, 3-118x13-112" Self-weight of 9.71 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value .Design Value Analysis/Design Shear fv = 156 Fv' = 265 fv/Fv' = 0.59 Bending(+) fb = 1914 Fb' = 2400 fb/Fb' = 0.80 Live Defl'n 0.17 = L/757 0.37 = L/360 0.48 Total Defl'n 0.34 = L/386 0.55 = L/240 0.62 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D+L, V = 5505, V design = 4379 lbs Bending(+) : LC #2 = D+L, M = 15140 lbs-ft Deflection: LC #2 = D+L EI= 1153e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-20b1 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). COMPANY PROJECT WoodKPFF - � Consulting Engineers The Adrienne (� Works® July 10,2013 13:16 Job 213043 (j Gravity Calculations SOF MARI FOR WOOD DES/GK 3rd floor TYP 3 Design Check Calculation Sheet Sizer 7.0 LOADS (Ibs, psf,or plf) Load Type Distribution Magnitude Location [ft) Units Start End Start End Dead Dead Full UDL 315.6 plf Live _Live Full UDL _ 505.0 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : 101 Dead 1616 1616 Live 2525 2525 Total 4141 4141 Bearing: Load Comb #2 #2 Length 2.04 2.04 Glulam-Bal.,West Species, 24F-V8 DF, 3-118x10-112" Self-weight of 7.55 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs. Allowable Stress(psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 156 Fv' = 265 fv/Fv' = 0.59 Bending(+) fb = 2163 Fb' = 2400 fb/Fb' = 0.90 Live Defl'n 0.21 = L/573 0.33 = L/360 0.63 Total Defl'n 0.41 = L/292 0.50 = L/240 0.82 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D+L, V = 4141, V design = 3416 lbs Bending(+) : LC #2 = D+L, M = 10352 lbs-ft Deflection: LC #2 = D+L EI= 543e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3. GLULAM:bxd=actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM:bearing length based on smaller of Fcp(tension), Fcp(comp'n). �"tj�C COMPANY PROJECT I %VoodV\'o Works The Adrienne Job 213043 (J Gravity Calculations SOFTWARE FOR WOOD DESIGN 3rd floor TYP 4.wwb July 19,2013 13:21 Design Check Calculation Sheet Sizer 7.0 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location (ft] Units Start End Start End Dead Dead Full UDL 234.4 pif Live Live Full UDL 375.0 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : 10' 12'-6'I Dead 1519 1519 Live 2344 2344 Total 3863 3863 Bearing: Load Comb #2 #2 Length 1.90 1.90 Glulam-Bal.,West Species,24F-V8 DF, 3-118x12" Self-weight of 8.63 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 130 Fv' = 265 fv/Fv' = 0.49 Bending(+) fb = 1931 Fb' = 2400 fb/Fb' = 0.80 Live Defl'n 0.25 = L/589 0.42 = L/360 0.61 Total Defl'n 0.50 = L/299 0.63 = L/240 0.80 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D+L, V = 3863, V design = 3245 lbs Bending(+) : LC #2 = D+L, M = 12071 lbs-ft Deflection: LC #2 = D+L EI= 810e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). COMPANY PROJECT The Adrienne f� 1 Woodworks® Job 213043 1/y Gravity Calculations UU QQ som,AAE FOR WOOD DESIGN 3rd floor TYP 5.wwb July 19,2013 13:28 Design Check Calculation Sheet Sizer 7.0 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End Dead Dead Full UDL 381.2 plf Live Live Full UDL 610.0 plf MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : I 0' 9'-9'( Dead 1901 1901 Live 2974 2974 Total 4874 4874 Bearing: - Load Comb #2 #2 Length 2.40 2.40 Glulam-Bal.,West Species, 24F-V8 DF, 3-1!8x12" Self-weight of 8.63 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 155 Fv' = 265 fv/Fv' = 0.58 Bending(+) fb = 1901 Fb' = 2400 fb/Fb' = 0.79 Live Defl'n 0.15 = L/764 0.33 = L/360 0.47 Total Defl'n _ 0.30 = L/390 0.49 = L/240 0.62 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D+L, V = 4874, V design = 3875 lbs Bending(+) : LC #2 = D+L, M = 11881 lbs-ft Deflection: LC #2 = D+L EI= 810e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension), Fcp(comp'n). COMPANY PROJECT woo d Wo r k s® KPFF Consulting Engineers The Adrienne July 10,2013 13:17 Job 213043 �f Gravity Calculations SOFIWAR!FOR WOOD DESIGN Roof TYP 1 Design Check Calculation Sheet Sizer 7.0 LOADS (lbs,psf,or plf} Load Type Distribution Magnitude Location [ft] Units Start End Start End Dead Dead Full UDL 573.7 plf Live Live Full UDL 510.0 plf MAXIMUM REACTIONS (Ibs)and BEARING LENGTHS (in) : I 0 71 Dead 2031 2031 Live 1785 1785 Total 3816 3816 Bearing: Load Comb #2 #2 Length 1.88 1.88 Glulam-Bal.,West Species, 24F-V8 DF, 3-1/8x9" Self-weight of 6.48 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 160 Fv' = 265 fv/Fv' = 0.60 Bending(+) fb = 1899 Fb' = 2400 fb/Fb' = 0.79 Live Defl'n 0.08 = <L/999 0.23 = L/360 0.35 Total Defl'n 0.22 = L/384 0.35 = L/240 0.62 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D+L, V = 3816, V design = 2998 lbs Bending(+) : LC #2 = D+L, M = 6678 lbs-ft Deflection: LC #2 = D+L EI= 342e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). COMPANY PROJECT The Adrienne I_ %Vood'Afo�^ C`� Job 213043■ 1 s® Gravity Calculations SOFTWARE FOR WOOD DESIGN Roof TYP 2.wwb July 19,2013 13:20 Design Check Calculation Sheet Sizer 7.0 LOADS (ibs,psf,or plf) Load Type Distribution Magnitude Location (ft) Units Start End Start End Dead Dead Full UDL 686.3 plf Live Live Full UDL 610.0 _ plf MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : 10' 114 Dead 3834 3834 Live 3355 3355 Total 7189 7189 Bearing: Load Comb #2 #2 Length 3.54 3.54 Glulam-Bal.,West Species, 24F-V8 DF, 3-118x15" Self-weight of 10.79 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 178 Fv' = 265 fv/Fv' = 0.67 Bending(+) fb = 2024 Fb' = 2400 fb/Fb' = 0.84 Live Defl'n 0.13 = <L/999 0.37 = L/360 0.35 Total Defl'n 0.34 = L/382 0.55 = L/240 0.63 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D+L, V = 7189, V design = 5555 lbs Bending(+) : LC #2 = D+L, M = 19770 lbs-ft Deflection: LC #2 = D+L EI= 1582e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension), Fcp(comp'n). COMPANY PROJECT 1 Woo dworks' The Adrienne Job 213043 Gravity Calculations SOFTWARE FOR WOOD DESIGN Roof TYP 3.wwb July 19,2013 13:21 Design Check Calculation Sheet • Sizer 7.0 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End Dead Dead Full UDL 568.1 plf Live Live Full UDL 505.0 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : l p' 101 Dead 2884 2884 Live 2525 2525 Total 5409 5409 Bearing: Load Comb #2 #2 Length 2.66 2.66 Glulam-Bal.,West Species, 24F-V8 DF, 3-1/8x12" Self-weight of 8.63 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value .Analysis/Design Shear fv = 173 Fv' = 265 fv/Fv' = 0.65 Bending(+) fb = 2163 Fb' = 2400 fb/Fb' = 0.90 Live Defl'n 0.14 = L/855 0.33 = L/360 0.42 Total Defl'n 0.38 = L/315 0.50 = L/240 0.76 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D+L, V = 5409, V design = 4327 lbs Bending(+) : LC #2 = D+L, M = 13522 lbs-ft Deflection: LC #2 = D+L EI= 810e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM: bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM: bearing length based on smaller of Fcp(tension),Fcp(comp'n). COMPANY PROJECT ' Wood Works®r ksO KPFF Consulting Engineers Job Adrienne I July 10,2013 13:19 Job 213043 (Z Gravity Calculations SOf7WARF FOR WOOD O!SIG'. Roof TYP 4 Design Check Calculation Sheet Sizer 7.0 LOADS (Ibs,psf,or plf) Load Type Distribution Magnitude Location [ft) Units Start End Start End Dead Dead Full UDL 421.9 plf Live Live Full UDL 375.0 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : 1 0. 12'-61 Dead 2698 2698 Live 2344 2344 Total 5041 5041 Bearing: Load Comb #2 #2 Length 2.48 2.48 Glulam-Bal.,West Species, 24F-V8 DF, 3-1/8x13-1/2" Self-weight of 9.71 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 147 Fv' = 265 fv/Fv' = 0.55 Bending(+) fb = 1992 Fb' = 2400 fb/Fb' = 0.83 Live Defl'n 0.18 = L/839 0.42 = L/360 0.43 Total Defl'n 0.49 = L/308 0.63 = L/240 0.78 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D+L, V = 5041, V design = 4134 lbs Bending(+) : LC #2 = D+L, M = 15754 lbs-ft Deflection: LC #2 = D+L EI= 1153e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). COMPANY PROJECT %Vood\'\fo r ks° KPy F Consulting Engineers The Adrienne Jul 10,2013 13:19 Job 213043 Gravity Calculations SOFFWARI FOR WOOD DIMS' Roof TYP 5 Design Check Calculation Sheet Sizer 7.0 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location (ft] Units Start End Start End Dead Dead Full UDL 686.3 plf Live Live Full UDL 610.0 _ plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS(in) : Dead 3393 3393 Live 2974 2974 Total 6367 6367 Bearing: Load Comb #2 #2 Length 3.13 3.13 Glulam-Bal., West Species, 24F-V8 DF, 3-1/8x13-112" Self-weight of 9.71 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs. Allowable Stress (psi)and Deflection (in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 174 Fv' = 265 fv/Fv' = 0.66 Bending(+) fb = 1962 Fb' = 2400 fb/Fb' = 0.82 Live Defl'n 0.11 = <L/999 0.32 = L/360 0.33 Total Defl'n 0.29 = L/401 0.49 = L/240 0.60 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D+L, V = 6367, V design = 4898 lbs Bending(+) : LC #2 = D+L, M = 15519 lbs-ft Deflection: LC #2 = D+L EI= 1153e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). COMPANY PROJECT The Adrienne (It %VoodVvo rks' Job 21{ J Gravity Calculations SOFTWARE FOR WOOD DESIGN Roof TYP 6.wwb July 19,2013 13:14 Design Check Calculation Sheet Sizer 7.0 LOADS (lbs,psf,or plf) : Load Type Distribution Magnitude Location [ft) Units Start End Start End Dead Dead Full UDL 333.0 plf Live Live Full UDL 296.0 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : I0' 171 Dead 2989 2989 Live 2516 2516 Total 5505 5505 Bearing: Load Comb #2 #2 Length 1.25 1.25 Glulam-Bal.,West Species, 24F-V8 DF, 6-314x12" Self-weight of 18.65 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 90 Fv' = 265 fv/Fv' = 0.34 Bending(+) fb = 1733 Fb' = 2385 fb/Fb' = 0.73 Live Defl'n 0.32 = L/641 0.57 = L/360 0.56 Total Defl'n 0.70 = L/293 0.85 = L/240 0.82 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 0.994 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D+L, V = 5505, V design = 4857 lbs Bending(+) : LC #2 = D+L, M = 23396 lbs-ft Deflection: LC #2 = D+L EI= 1750e06 lb-in2 Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). • i1j COMPANY PROJECT e ienne Job 043 Wo o d Wo r ks GravCalcuations SOFTWARE FOR WOOD DESIGN Roof TYP 7.wwb / July 19,2013 13:09 Design Check Calculation Sheet Sizer 7.0 LOADS (Ibs, psf,or plf) Load Type Distribution Magnitude Location (ft] Units Start End Start End Dead Dead Full UDL 143.0 plf Live Live Full UDL 80.0 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : ,L 10' 14'-6'1 Dead 1099 1099 Live 580 580 Total 1679 1679 Bearing: Load Comb #2 #2 Length 0.83_ 0.83 Glulam-Bal., West Species, 24F-V8 DF, 3-1/8x12" Self-weight of 8.63 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 58 Fv' = 265 fv/Fv' = 0.22 Bending(+) fb = 974 Fb' = 2400 fb/Fb' = 0.41 Live Defl'n 0.10 = <L/999 0.48 = L/360 0.20 Total Defl'n 0.26 = L/611 0.73 = L/240 0.39 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D+L, V = 1679, V design = 1448 lbs Bending(+) : LC #2 = D+L, M = 6088 lbs-ft Deflection: LC #2 = D+L EI= 810e06 lb-in2 Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). COMPANY PROJECT i I411 n/ The Adrienne I Wood V V orks° Gravity Calculations Parapet Header.wwb %0 SOFTWARE FOR WOOD DFS1C% July 30,2013 11:26 Design Check Calculation Sheet Sizer 7.0 LOADS (lbs,psf,or pif) Load Type Distribution Magnitude Location [ft] Units Start End Start End Parapet Live Full UDL 50.0 plf MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : • s Ti y � :.+�.. `!Yt �.,.,,.�cs-yam.... . yp x s • • 10' 174 Dead Live 425 425 Total 425 425 Bearing: Load Comb #2 #2 Length 0.50* 0.50* 'Min.bearing length for beams is 1/2"for exterior supports Timber-soft, D.Fir-L, No. 1,7-112x5-112" Lateral support:top=at supports,bottom=at supports; WARNING:this CUSTOM SIZE is not in the database.Refer to online help. Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 15 Fv' = 170 fv/Fv' = 0.09 Bending(+) fb = 573 Fb' = 1200 fb/Fb' = 0.48 Live Defl'n 0.56 = L/361 0.57 = L/360 1.00 Total Defl'n 0.56 = L/361 0.85 = L/240 0.66 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 170 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 1200 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.00 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = L, V = 425, V design = 402 lbs Bending(+) : LC #2 = L, M = 1806 lbs-ft Deflection: LC #2 = L EI= 166e06 lb-in2 Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 0 L002 COMPANY PROJECT II t(� KPFF Consulting Engineers The Adrienne I Wood V//��v O r 1(s July 30,2013 11:29 Gracity Calculations Gravity Post at Beam Type 1.wwc SOFTWARE FOR WOOD DESIGN Design Check Calculation Sheet Sizer 7.0 LOADS (Ibs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units _ Start End Start End Dead Dead Axial 3166 (Eccentricity = 0.00 in) Live Live Axial 3570 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): ► - .' F�".. �' '`" f f. rte'-+ .. r`i" t ',' —,.,I.+ i r'`a•P- @����`iw+�x:_�.9�^�". ��rSi�,�ae:z� � .z ...��..` .. _.,.. .T�'' .. •�f"'" �'t�ia"+�3,r'z�-��isvttYemi"a�+n�3,,� • 0. 10' Timber-soft, D.Fir-L, No.1, 3-1/2x5-112" Self-weight of 4.57 plf included in loads; Pinned base;Loadface=width(b);Ke x Lb: 1.00 x 10.00=10.00[ft];Ke x Ld: 1.00 x 0.00=0.00[ft]; WARNING:this CUSTOM SIZE is not in the database. Refer to online help. WARNING:your custom section may be too thin to use the properties of this TIMBER database. Use a database containing LUMBER sizes instead. Analysis vs.Allowable Stress(psi)and Deflection (in) using Nos 2005: Criterion Analysis Value Design Value Analysis/Design Axial fc = 352 Fc' = 368 fc/Fc' = 0.96 Axial Bearing fc = 352 Fc* = 1100 fc/Fc* = 0.32 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1000 1.00 1.00 1.00 0.335 1.100 - - 1.00 1.00 2 Fc* 1000 1.00 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D+L, P = 6782 lbs (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. • COMPANY PROJECT The Adrienne I woo d Wo r ks Gravity Calculations Gravity Post at Beam 2.wwc S OF7WARF FOR WOOD OFSIG.V July 30, 2013 11:28 Design Check Calculation Sheet Sizer 7.0 LOADS (Ibs,psf,or pif) Load Type Distribution Magnitude Location [ft] Units Start End Start End Dead Dead Axial 5980 (Eccentricity = 0.00 in) Live Live Axial 6710 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 10' Glulam-Axial, West Species, 3 (DF L2D), 3-1!8x9" Self-weight of 6.48 plf included in loads; Pinned base; Loadface=width(b); Ke x Lb: 1.00 x 10.00= 10.00[ft]; Ke x Ld: 1.00 x 0.00=0.00[ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Axial fc = 454 Fc' = 541 fc/Fc' = 0.84 Axial Bearing fc = 454 Fc* = 2300 fc/Fc* = 0.20 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CV Cfu Cr Cfrt Notes LC# Fc' 2300 1.00 1.00 1.00 0.235 - - - 1.00 - 2 Fc* 2300 1.00 1.00 1.00 - - - - 1.00 - 2 Axial : LC #2 = D+L, P = 12755 lbs (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3. GLULAM: bxd=actual breadth x actual depth. COMPANY PROJECT ` KPFF Consulting Engineers The Adrienne `? i I 1 WoodWorks® July 30,2013 11:29 Gravity Calculations Gravity Post at Beam 3.wwc i Of7WYARE FQR WOOD DFSIGV Design Check Calculation Sheet Sizer 7.0 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location (ft] Units Start End Start End Dead Dead Axial 4499 (Eccentricity = 0.00 in) Live Live Axial 5050 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 0' 10' Glulam-Axial,West Species, 3 (DF L2D), 3-118x7-112" Self-weight of 5.4 plf included in loads; Pinned base:Loadface=width(b); Ke x Lb: 1.00 x 10.00= 10.00[ft];Ke x Ld: 1.00 x 0.00=0.00[ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Axial fc = 410 Fc' = 541 fc/Fc' = 0.76 Axial Bearing fc = 410 Fc* = 2300 fc/Fc* = 0.18 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CV Cfu Cr Cfrt Notes LC# Fc' 2300 1.00 1.00 1.00 0.235 - - - 1.00 - 2 Fc* 2300 1.00 1.00 1.00 - - - - 1.00 - 2 Axial : LC #2 = D+L, P = 9603 lbs (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. /, COMPANY PROJECT I 1 Wood Works° KPFF Consulting Engineers Gravity Adrienne 1 v July 30,2013 11:30 Gravity Calculations SOPl1YARE FOR WOOD DE57GY Gravity Post at Beam Type 4.wwc Design Check Calculation Sheet Sizer 7.0 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End Dead Dead Axial 4213 (Eccentricity = 0.00 in) Live Live Axial 4688 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): D•-'�Sz'xm ' "tfw-i!.+ Tt ^'.�' 7- ry ..a' • 0. 0' Timber-soft, D.Fir-L, No.1, 6x6" Self-weight of 7.19 plf included in loads; Pinned base; Loadface=width(b); Ke x Lb: 1.00 x 10.00=10.00[ft];Ke x Ld:1.00 x 0.00=0.00[ft]; Analysis vs.Allowable Stress(psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Axial fc = 297 Fc' = 692 fc/Fc' = 0.43 Axial Bearing fc = 297 Fc* = 1000 fc/Fc* = 0.30 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1000 1.00 1.00 1.00 0.692 1.000 - - 1.00 1.00 2 Fc* 1000 1.00 1.00 1.00 - 1.000 - - 1.00 1.00 2 Axial : LC #2 = D+L, P = 8973 lbs (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. COMPANY PROJECT , KPFF Consulting Engineers The Adrienne Q %Voodv\/orks® July 30,2013 11:30 Grans Gravity Post at Beam Type 5.wwc SOFTWARE FOR WOOD DES/O.% Design Check Calculation Sheet Sizer 7.0 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End Dead Dead Axial 5291 (Eccentricity = 0.00 in) Live Live Axial 5948 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 0 10' Timber-soft, D.Fir-L, No.1, 6x6" Self-weight of 7.19 plf included in loads; Pinned base; Loadface=width(b);Ke x Lb: 1.00 x 10.00=10.00[ft]; Ke x Ld: 1.00 x 0.00=0.00[ft]; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Axial fc = 374 Fc' = 692 fc/Fc' = 0.54 Axial Bearing fc = 374 Fc* = 1000 fc/Fc* = 0.37 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1000 1.00 1.00 1.00 0.692 1.000 - - 1.00 1.00 2 Fc* 1000 1.00 1.00 1.00 - 1.000 - - 1.00 1.00 2 Axial : LC #2 = D+L, P = 11311 lbs (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 'CST- COMPANY PROJECT KPFF Consulting Engineers The Adrienne ' ' 1, WoodWorks' July 15,2013 10:28 Wood Calculations 3rd FL Gravity Post at Beam 2.wwc SOFTWARE FOR WOOD DESIGN Design Check Calculation Sheet Sizer 7.0 LOADS (lbs,psf,or pif) Load Type Distribution Magnitude Location (ft] Units Start End Start End Dead Dead Axial 3830 (Eccentricity = 0.00 in) Live Live Axial 3355 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 10' Glulam-Axial,West Species, 3 (DF L2D), 3-118x6" Self-weight of 4.32 plf included in loads; Pinned base;Loadface=width(b); Ke x Lb: 1.00 x 10.00= 10.00[ft];Ke x Ld:1.00 x 0.00=0.00(ft]; Analysis vs.Allowable Stress(psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Axial fc = 386 Fc' = 541 fc/Fc' = 0.71 Axial Bearing fc = 386 Fc* = 2300 fc/Fc* = 0.17 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CV Cfu Cr Cfrt Notes LC# Fc' 2300 1.00 1.00 1.00 0.235 - - - 1.00 - 2 Fc* 2300 1.00 1.00 1.00 - - - - 1.00 - 2 Axial : LC #2 = D+L, P = 7228 lbs (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. ,--i I E MEMBER REPORT 2nd Floor, 2nd Floor 11 foot span PASSED `�'' 1. piece(s) 11 7/8" TJI® 210 @ 16" OC Overall Length: 11'7" I + + 0 0 11 — X X 0 All locations are measured from the outside face of left support(or left cantilever end).All dimensions are horizontal. I Design Results Actual @ Location Allowed Result LDF Load:Combination(Pattern) System:Floor Member Reaction(Ibs) 493 @ 2 1/2" 1134(2.25") Passed(43%) 1.00 1.0 D+ 1.0 L(All Spans) Member Type:Joist Shear(Ibs) 477©3 1/2" 1655 Passed(29%) 1.00 1.0 D+1.0 L(All Spans) Building Use:Residential /Moment(Ft-Ibs) 1351 @ 5'9 1/2" 3795 Passed(36%) 1.00 1.0 D+1.0 L(All Spans) Building Code:IBC Live Load Defl.(in) 0.067 @ 5'9 1/2" 0.279 Passed(1/999+) -- 1.0 D+ 1.0 L(All Spans) Design Methodology:ASD Total Load Den.(in) 0.110 @ 5'9 1/2" 0.558 Passed(L/999+) -- 1.0 D+1.0 L(All Spans) TJ-Pro"'Rating 63 40 Passed -- -- j • Deflection criteria:LL(L/480)and TL(1)240). • Bracing(Lu):All compression edges(top and bottom)must be braced at 5'5 13/16"o/c unless detailed otherwise.Proper attachment and positioning of lateral bracing is required to achieve member stability. •A structural analysis of the deck has not been performed. • Deflection analysis is based on composite action with a single layer of 23/32"Panel(24"Span Rating)that Is nailed down. •Additional considerations for the T3-Pro""Rating include:1/2"Gypsum ceiling,pour flooring overlay. Bearing Length Loads to Supports(Ibs) Supports Total Available Required Dead Floor Total Accessories Live 1-Stud wall-DF 3.50" 2.25" 1.75" 193 309 502 1 1/4"Rim Board 2-Stud wall-DF 3.50" 2.25" 1.75" 193 309 502 1 1/4"Rim Board •Rim Board is assumed to carry all loads applied directly above it,bypassing the member being designed. Dead Floor Live ,Loads Location Spacing (0.90) (1.00) Comments 1-Uniform(PSF) 0 to 11'7" 16" 25.0 40.0 Residential-Uving Areas Shear(lbs) Moment(Ft-Ibs) Deflection(in) Location Analysis Actual/Allowed/LDF Actual/Allowed/LDF Live Load/Total Comments 1-5'9" 4/1655/1.00 1351/3795/1.00 0.067/0.110 I Weyerhaeuser Notes l SUSTAINABLE FORESTRY INITIATIVE Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software.Refer to current Weyerhaeuser literature for installation details. (www.woodbywy.com)Accessories(Rim Board,Blocking Panels and Squash Blocks)are not designed by this software.Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction.The designer of record,builder or framer is responsible to assure that this calculation is compatible with the overall project.Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable i forestry standards. The product application,input design loads,dimensions and support information have been provided by Forte Software Operator Forte Software Operator Job Notes I 7:31/2013 8:37:51 AM — ------------.---._._.----.------___._....._._.._.__..-----------.--------°..___. Forte v4.1,Design Engine:V5.7.0 245 Michael Arallano • KPFF Consulting Engineers JO/STC-1.4TE 503)227-3251 m,chael.arellano@kpff.com Page 1 of 1 • MEMBER REPORT 2nd Floor,2nd Floor 15 foot span PASSED �) " 1 piece(s) 11 7/8" TM® 210 @ 16" OC • i Overall Length: 15'7" + + o — a 15' X 8 All locations are measured from the outside face of left support(or left cantilever end).All dimensions are horizontal. Design Results Actual 0 Location Allowed Result LDF Load:Combination(Pattern) System:Floor Member Reaction(Ibs) 666 @ 2 1/2" 1134(2.25") Passed(59%) 1.00 1.0 D+1.0 L(All Spans) Member Type:Joist Shear(Ibs) 650 @ 3 1/2" 1655 Passed(39%) 1.00 1.0 D+1.0 L(All Spans) Building Use:Residential Moment(Ft-Ibs) 2492 @ 7'9 1/2" 3795 Passed(66%) 1.00 1.0 D+1.0 L(All Spans) Building Code:IBC Live Load Defl.(in) 0.206 @ 7'9 1/2" 0.379 Passed(L/882) -- 1.0 D+1.0 L(All Spans) Design Methodology:ASD Total Load Defl.(in) 0.335 @ 7'9 1/2" 0.758 Passed(L/543) -- 1.0 D+1.0 L(All Spans) T]-Pro"Rating 51 40 Passed -- -- • Deflection criteria:LL(L/480)and TL(1/240). • Bracing(Lu):All compression edges(top and bottom)must be braced at 4'7/16"o/c unless detailed otherwise.Proper attachment and positioning of lateral bracing is required to achieve member stability. •A structural analysis of the deck has not been performed. • Deflection analysis is based on composite action with a single layer of 23/32"Panel(24"Span Rating)that is nailed down. •Additional considerations for the TI-Pro"Rating include:1/2"Gypsum ceiling,pour flooring overlay. Bearing Length Loads to Supports(Ibs) Supports Total Available Required Dead Floor Total Accessories Live 1-Stud wall-DF 3.50" 2.25" 1.75" 260 416 676 1 1/4"Rim Board 2-Stud wall-DF 3.50" 2.25" 1.75" 260 416 676 1 1/4"Rim Board •Rim Board is assumed to carry all loads applied directly above it,bypassing the member being designed. Dead Floor Live Loads Location Spacing (0.90) (1.00) Comments 1-Uniform(PSF) 0 to 15'7" 16" 25.0 40.0 Residential-Living Areas Shear(Ibs) Moment(Ft-Ibs) Deflection(in) Location Analysis Actual/Allowed/LDF Actual/Allowed/LDF Live Load/Total Comments 1-7'9" 4/1655/1.00 2492/3795/1.00 0.206/0.335 /� Weyerhaeuser Notes - ( )SUSTAINABLE 1ORES RY INITIATWE Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. `YYY� Weyerhaeuser expressly disclaims any other warranties related to the software.Refer to current Weyerhaeuser literature for installation details. (www.woodbywy.com)Accessories(Rim Board,Blocking Panels and Squash Blocks)are not designed by this software.Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction.The designer of record,builder or framer is responsible to assure that this calculation is compatible with the overall project.Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. The product application,input design loads,dimensions and support information have been provided by Forte Software Operator Forte Software Operator Job Notes 1 7131/2013 8:39:03 AM ____..._�__ Forte v4.1,Design Engine:V5.7.0.245 Michael Arallano I g' I KPFF Consult na Engineers I JOISTC-1.4TE 1503)227-3251 i michael.areilano©kpff corn Page 1 of 1 MEMBER REPORT 2nd Floor, 2nd Floor 16 foot span PASSED �I 1 piece(s) 11 7/8" T]I® 210 @ 16" OC i Overall Length: 16'7" �) • + + O 0 • — 16' X II El All locations are measured from the outside face of left support(or left cantilever end).All dimensions are horizontal. Design Results Actual @ Location Allowed Result LDF Load:Combination(Pattern) System:Floor Member Reaction(lbs) 710 @ 2 1/2" 1134(2.25") Passed(63%) 1.00 1.0 D+1.0 L(All Spans) Member Type:3oist Shear(lbs) 693 @ 3 1/2" 1655 Passed(42%) 1.00 1.0 D+1.0 L(All Spans) Building Use:Residential Moment(Ft-lbs) 2831 @ 8'3 1/2" 3795 Passed(75%) 1.00 1.0 D+1.0 L(All Spans) Building Code:IBC live Load Defl.(in) 0.262 @ 8'3 1/2" 0.404 Passed(11740) -- 1.0 D+1.0 L(All Spans) Design Methodology:ASE) Total Load Defl.(in) 0.426 @ 8'3 1/2" 0.808 _Passed(11455) -- 1.0 D+ 1.0 L(All Spans) _ 1-3-Pro""Rating 48 40 Passed -- -- • Deflection criteria:LL(1/480)and TL(1/240). • Bracing(Lu):All compression edges(top and bottom)must be braced at 3'9 7/16"o/c unless detailed otherwise.Proper attachment and positioning of lateral bracing is required to achieve member stability. •A structural analysis of the deck has not been performed. • Deflection analysis is based on composite action with a single layer of 23/32"Panel(24"Span Rating)that is nailed down. •Additional considerations for the T3-Pro'"Rating include:1/2"Gypsum ceiling,pour flooring overlay. Bearing Length Loads to Supports(Ibs) Supports Total Available Required Dead Floor Total Accessories 1-Stud wall-DF 3.50" 2.25" 1.75" 276 442 718 1 1/4"Rim Board 2-Stud wall-DF 3.50" 2.25" 1.75" 276 442 718 1 1/4"Rim Board •Rim Board is assumed to carry all loads applied directly above it,bypassing the member being designed. Dead Floor Live Loads Location Spacing (0.90) (1.00) Comments 1-Uniform(PSF) 0 to 16'7" 16" 25.0 40.0 Residential-Living Areas Shear(Ibs) Moment(Ft-lbs) Deflection(in) Location Analysis Actual/Allowed/LDF Actual/Allowed/LDF Live Load/Total Comments 1-8'3" 4/1655/1.00 2831/3795/1.00 0.262/0.426 Weyerhaeuser Notes SUSTAINABLE FORESTRY INITIATIVE Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software.Refer to current Weyerhaeuser literature for installation details. (www.woodbywy.com)Accessories(Rim Board,Blocking Panels and Squash Blocks)are not designed by this software.Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction.The designer of record,builder or framer is responsible to assure that this calculation is compatible with the overall project.Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. The product application,input design loads,dimensions and support information have been provided by Forte Software Operator Forte Software Operator Lob Notes i 7131/2013 8:40:54 AM —_-- I _..__....-------------_—_-.-- -+ Forte v4.1,Design Engine: V5.7.0.245 Michael Arellano l KPFF Consulting Engineers JOlSTC-1 4TE (503)227-3251 • michael.areflanc kpff corn i Page 1 of 1 MEMBER REPORT Roof Terrace,Roof 9 foot span with MECH PASSED ®I 1 piece(s) 11 7/8" TJI® 210 @ 12" OC Overall Length: 11'7" (6iJ + + O 0 4' t r 4' 0 All locations are measured from the outside face of left support(or left cantilever end).All dimensions are horizontal. Design Resifts Actual @ Location Allowed Result LDF Load:Combination(Pattern) System:Floor Member Reaction(Ibs) 768 @ 2 1/2" 1417(2.25") Passed(54%) 1.25 1.0 D+1.0 Lr(All Spans) Member Type:Joist I Shear(Ibs) 743 @ 3 1/2" 2069 Passed(36%) 1.25 1.0 D+1.0 Is(All Spans) Building Use:Residential Moment(Ft-Ibs) 2104 @ 5'9 1/2" 4744 Passed(44%) 1.25 1.0 D+1.0 is(All Spans) Building Code:IBC Live Load Defl.(in) 0.051 @ 5'9 1/2" 0.279 Passed(L/999+) 1.0 D+1.0 Li-(All Spans) Design Methodology:ASD Total Load Deft.(in) 0.174 @ 5'9 1/2" 0.558 Passed(L/772) -- 1.0 D+ 1.0 U-(All Spans) TJ-Pro'"Rating 65 40 Passed -- -- •Deflection criteria:LL(L/480)and TL(1)240). • Bracing(LU):All compression edges(top and bottom)must be braced at 4'4 3/4"o/c unless detailed otherwise.Proper attachment and positioning of lateral bracing is required to achieve member stability. •A structural analysis of the deck has not been performed. • Deflection analysis is based on composite action with a single layer of 23/32"Panel(24"Span Rating)that is nailed down. •Additional considerations for the Ti-Pro"Rating include:1/2"Gypsum ceiling. Bearing Length Loads to Supports(Ibs) Supports Total Available Required Dead V�vef Total Accessories 1-Stud wall-OF 3.50" 2.25" 1.75" 550 232 782 1 1/4"Rim Board 2-Stud wall-DF 3.50" 2.25" 1.75" 550 232 782 1 1/4"Rim Board •Rim Board is assumed to carry all loads applied directly above it,bypassing the member being designed. Dead Roof Live Loads Location Spacing (0.90) (non-snow:1.25) Comments 1-Uniform(PSF) 0 to 11'7" 12" 45.0 40.0 Residential-Deck Area 2-Uniform(PSF) 0 to 11'7" 12" 50.0 - Shear(Ibs) Moment(Ft-Ibs) Deflection(in) Location Analysis Actual I Allowed/LDF Actual/Allowed/LDF Live Load/Total Comments 1-5'9" 6/2069/1.25 2104/4744/1.25 0.051/0.174 I Member Notes Typical member Supporting HVAC Unit //�� Weyerhaeuser Notes (@SUSTAINABLE FORESTRY INITIATIVE Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. ll Weyerhaeuser expressly disclaims any other warranties related to the software.Refer to current Weyerhaeuser literature for installation details. (www.woodbywy.com)Accessories(Rim Board,Blocking Panels and Squash Blocks)are not designed by this software.Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction.The designer of record,builder or framer is responsible to assure that this calculation is compatible with the overall project.Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. The product application,input design loads,dimensions and support information have been provided by Forte Software Operator I Forte Sofhvare Operator Job Notes i 7131/2013 8:47:08 AM---..__---- --- .__....._._.__.r. -_-......_.__.._...--__......-_._-...._.._.-..— Forte v4.1,Design Engine:V5.7.0.245 I Michael Arailano g g KPFF Corsuliino Eromeers JOISTC-1.4TE •(503)22:-3251 michaei.areliano@kpff corn Page 1 of 1 • FOR• MEMBER REPORT Roof Terrace, Roof 11 foot span PASSED ;�I T 1 piece(s) 11 7/8" TJI® 210 @ 16" OC • Overall Length: 11'7" 14 0 11' X: D 0 All locations are measured from the outside face of left support(or left cantilever end).All dimensions are horizontal. Design Results Actual @ Location Allowed Result LDF Load:Combination(Pattern) System:Floor Member Reaction(Ibs) 645 @ 2 1/2" 1417(2.25") Passed(45%) 1.25 1.0 D+1.0 Lr(All Spans) Member Type:Joist Shear(Ibs) 623 @ 3 1/2" 2069 Passed(30%) 1.25 1.0 D+1.0 Is(All Spans) Building Use:Residential Moment(Ft-lbs) 1767 @ 5'9 1/2" 4744 Passed(37%) 1.25 1.0 D+1.0 Lr(All Spans) Building Code:IBC Live Load Dell.(in) 0.067 @ 5'9 1/2" 0.279 Passed(11999+) -- 1.0 D+1.0 Lr(All Spans) Design Methodology:ASD Total Load Dell.(in) 0.143 @ 5'9 1/2" 0.558 Passed(11935) -- 1.0 D+1.0 Lr(All Spans) TJ-Pro'"Rating 63 40 Passed • Deflection criteria:LL(L/480)and TL(L/240). • Bracing(Lu):All compression edges(top and bottom)must be braced at 4'9 9/16"o/c unless detailed otherwise.Proper attachment and positioning of lateral bracing is required to achieve member stability. •A structural analysis of the deck has not been performed. • Deflection analysis is based on composite action with a single layer of 23/32"Panel(24"Span Rating)that is nailed down. •Additional considerations for the T.1-Pro'"Rating include:1/2"Gypsum ceiling. Bearing Length Loads to Supports(Ibs) Supports Total Available Required Dead Love Total Accessories 1-Stud wall-DF 3.50" 2.25" 1.75" 348 309 657 1 1/4"Rim Board 2-Stud wall-DF 3.50" 2.25" 1.75" 348 309 657 1 1/4"Rim Board •Rim Board is assumed to carry all loads applied directly above it,bypassing the member being designed. Dead Roof Live Loads Location Spacing (0.90) (non-snow:1.25) Comments 1-Uniform(PSF) 0 to 11'7" 16" 45.0 40.0 Residential-Roof Deck Shear(lbs) Moment(Ft-lbs) Deflection(in) Location Analysis Actual/Allowed/LDF Actual/Allowed/LDF Live Load/Total Comments 1-5'9" 5/2069/1.25 1766/4744/1.25 0.067/0.143 Weyerhaeuser Notes SUSTAINABLE FORESTRY INITIATIVE Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software.Refer to current Weyerhaeuser literature for installation details. (www.woodbywy.com)Accessories(Rim Board,Blocking Panels and Squash Blocks)are not designed by this software.Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction.The designer of record,builder or framer is responsible to assure that this calculation is compatible with the overall project.Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. The product application,input design loads,dimensions and support information have been provided by Forte Software Operator • Forte Software Operator Job Notes 7/3112013 8:50:07 AM 65ti',22I AraYano Forte v4.1.Design Engine:V5.7.0.245 KPFF Consulting Eng.neers JOISTC-I.4TE 1503)22_-3251 michsel.aretlanu @t.pff corn Page 1 of 1 MEMBER REPORT Roof Terrace, Roof 15 foot span PASSED • .iF � RTE 1piece(s) 117/8" T)I® 210 @12" OC Overall Length: 15'7" 0D + + o D - 15' 0 Ei All locations are measured from the outside face of left support(or left cantilever end).All dimensions are horizontal. Design Results Actual @ Location Allowed Result LDF Load:Combination(Pattern) System:Floor Member Reaction(Ibs) 653 @ 2 1/2" 1417(2.25") Passed(46%) 1.25 1.0 D+1.0 Lr(All Spans) Member Type:Joist Shear(Ibs) _ 638 @ 3 1/2" 2069 Passed(31%) 1.25 1.0 D+ 1.0 Lr(All Spans) Building Use:Residential Moment(Ft-lbs) 2444 11 7'9 1/2" 4744 Passed(52%) 1.25 1.0 D+ 1.0 Lr(All Spans) Building Code:IBC Live Load Defl.(In) 0.158 @ 7'9 1/2" 0.379 Passed(L/999+) -- 1.0 D+1.0 Lr(All Spans) Design Methodology:ASD Total Load Deft.(in) 0.335 @ 7'9 1/2" 0.758 Passed(L/543) -- 1.0 D+1.0 if(All Spans) Ti-Pro'"Rating 56 40 Passed -- -- • Deflection criteria:LL(11480)and TL(11240). • Bracing(Lu):All compression edges(top and bottom)must be braced at 4'15/16"o/c unless detailed otherwise.Proper attachment and positioning of lateral bracing is required to achieve member stability. •A structural analysis of the deck has not been performed. • Deflection analysis is based on composite action with a single layer of 23/32"Panel(24"Span Rating)that is nailed down. •Additional considerations for the T3-Pro"Rating include:1/2"Gypsum ceiling. Bearing Length Loads to Supports(Ibs) Supports Total Available Required Dead Roof Total Accessories Live 1 1-Stud wall-OF 3.50" 2.25" 1.75" 351 312 663 1 1/4"Rim Board 2-Stud wall-DF 3.50" 2.25" 1.75" 351 312 663 1 1/4"Rim Board I •Rim Board is assumed to carry all loads applied directly above it,bypassing the member being designed. Dead Roof Live Loads Location Spacing (0.90) (non-snow:1.25) Comments 1-Uniform(PSF) 0 to 15'7" 12" 45.0 40.0 Residential-Deck Area 1 Shear(Ibs) Moment(Ft-Ibs) Deflection(in) Location Analysis Actual/Allowed/LDF Actual/Allowed/LDF Live Load/Total Comments . 1-7'9" 4/2069/1.25 2444/4744/1.25 0.158/0.335 Weyerhaeuser Notes 0 SUSTAINABLE FORESTRY INITIATIVE Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software.Refer to current Weyerhaeuser literature for installation details. (www.woodbywy.com)Accessories(Rim Board,Blocking Panels and Squash Blocks)are not designed by this software.Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction.The designer of record,builder or framer is responsible to assure that this calculation is compatible with the overall project.Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. The product application,input design loads,dimensions and support information have been provided by Forte Software Operator Forte Software Operator Job Notes 7/31/2013 8:51:13 AM Fortev4.1,Design Engine:V5.7.0.245 Michael Arelleno KPFF Consulting Engineers JOISTC-1.4TE (5031227-3251 i .m:chaerarehan�@kpffcam Page 1 of 1 C A� MEMBER REPORT Roof Terrace, Roof 16 foot span PASSED I� �J 1 piece(s) 11 7/8" T]I® 210 @ 12" OC Overall Length: 16'7" —( 16' o o All locations are measured from the outside face of left support(or left cantilever end).All dimensions are horizontal. Design Results Actual CO Location Allowed Result LDF Load:Combination(Pattern) System:Floor Member Reaction(lbs) 696 @ 2 1/2" 1417(2.25") Passed(49%) 1.25 1.0 D+ 1.0 Lr(All Spans) Member Type:Joist Shear(lbs) 680©3 1/2" 2069 Passed(33%) 1.25 1.0 D+ 1.0 Lr(All Spans) Building Use:Residential Moment(Ft-lbs) 2777 @ 8'3 1/2" 4744 Passed(59%) 1.25 1.0 D+ 1.0 U-(All Spans) I Building Code:IBC Live Load Defi.(in) 0.200 @ 8'3 1/2" 0.404 Passed(L/969) -- 1.0 D+ 1.0 Is(All Spans) Design Methodology:ASD Total Load Def.(in) 0.426 @ 8'3 1/2" 0.808 Passed(1)456) -- 1.0 D+ 1.0 Is(All Spans) T.1-Pro'"Rating 53 40 Passed -- -- • Deflection criteria:LL(L/480)and TL(L/240). • Bracing(Lu):All compression edges(top and bottom)must be braced at 3'9 15/16"o/c unless detailed otherwise.Proper attachment and positioning of lateral bracing is required to achieve member stability. •A structural analysis of the deck has not been performed. • Deflection analysis is based on composite action with a single layer of 23/32"Panel(24"Span Rating)that is nailed down. •Additional considerations for the T3-Pro""Rating include:1/2"Gypsum ceiling. Bearing Length Loads to Supports(Ibs) SUppOitS Total Available Required Dead Roof Total Accessories Live 1-Stud wall-DF 3.50" 2.25" 1.75" 373 332 705 1 1/4"Rim Board 2-Stud wall-OF 3.50" 2.25" 1.75" 373 332 705 1 1/4"Rim Board •Rim Board is assumed to carry all loads applied directly above it,bypassing the member being designed. . Dead Roof Live Loads Location Spacing (0.90) (non-snow:L25) Comments 1-Uniform(PSF) 0 to 16'7" 12" 4511 40.0 Residential-Deck Area Shear(lbs) Moment(Ft-lbs) Deflection(in) Location Analysis Actual/Allowed/LDF Actual/Allowed/LDF Live Load/Total Comments 1-8'3" 4/2069/1.25 2777/4744/1.25 0.200/0.426 Weyerhaeuser Notes ()SUSTAINABLE FORESTRY INITIATIVE Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software.Refer to current Weyerhaeuser literature for installation details. (www.woodbywy.com)Accessories(Rim Board,Blocking Panels and Squash Blocks)are not designed by this software.Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction.The designer of record,builder or framer is responsible to assure that this calculation is compatible with the overall project.Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. The product application,input design loads,dimensions and support information have been provided by Forte Software Operator ------ --------------- Forte Software Operator —_ — Job Notes __— _ 7/31/2013 8:51:58 AM i Forte v4.1,Design Engine:V5.7.0.245 Michael Arellano I KPFF Consulting Engineers i JOISTC-1.4TE (503)227-3251 inichaetarellano dkpff corn Page 1 of 1 Lateral Design L1 — L55 Project THE ADRIENNE By MAA Sheet No. •En II Consulting Engineers Location TIGARD,OR Date 6/20/2013 LEI Client SCOTT EDWARDS ARCHITECTURE LLP Revised Job No. Portland,Oregon 213043 Date WIND LOAD (ASCE 7—05) TEDDS calculation version 1.2.03 Classification summary Structure is a building Structure is Rigid Mean roof height h = 36.0 ft Horizontal dimension parallel to wind L= 90.0 ft Horizontal dimension normal to wind B = 55.0 ft Roof angle 0 =0.0 deg Wind force resisting element is part of main wind force resisting system Structure is enclosed Structure is low rise Procedure Occupancy category(table 1-1) Category= 2 Basic wind speed (sect. 6.5.4) V= 95.0 mph Region Non-Hurricane Prone Importance factor(table 6-1) I = 1.00 Exposure category(sect. 6.5.6) B Wind directionality factor Kd=0.85 Topographic factor Kzt= 1.00 Design procedure-analytical procedure(Method2) Velocity pressure at mean roof height`h'(ASCE 7-05, cI. 6.5.10) Case of loading system (table 6-3) Case = 1 Velocity pressure exposure coefficient Kh=0.74 Velocity pressure at mean roof height'h' qh= 0.00256 x Kr, x Kit x Kd x V2 x I x 1 psf/mph2= 14.45 psf Design wind pressure for MWFRS of low-rise enclosed and partially enclosed buildings (alternative procedure) Velocity pressure at mean roof height'h' qh= 14.45 psf External and internal pressure coefficients (fig. 6-5) Positive internal pressure coefficient GCpl_pds= 0.18 Negative internal pressure coefficient GCpi_neg = -0.18 Building surface 1 External pressure coeff. for surface 1 (fig. 6-10) GCpf_1 = 0.40 With positive GCpi p, s1 = qh x ((GCpf_1) -(GCpi_pos)) = 3.18 psf With negative GCpi p2_si = qh x ((GC0_1) -(GCpi neg)) = 8.38 psf Building surface 2 External pressure coeff. for surface 2 (fig. 6-10) GC0_2= -0.69 With positive GCpi pl_s2= qh x ((GCpt_2)-(GCpi_pos)) _ -12.57 psf Project THE ADRIENNE By MAA Sheet No. EffraConsulting Engineers Location TIGARD,OR Date 6/2012013 Client SCOTT EDWARDS ARCHITECTURE LLP Revised Job No. Portland,Oregon 213043 Date With negative GCpi p2_s2= qh x ((GCpr_2) -(GCpi_neg)) = -7.37 psf Building surface 3 External pressure coeff. for surface 3 (fig. 6-10) GCpf_3= -0.37 With positive GCpi p1_s3=qh x ((GCpf3) - (GCpiyos)) =-7.95 psf With negative GCp; p2_s3=qh x ((GCpf 3) -(GCpi_neg)) = -2.75 psf Building surface 4 External pressure coeff. for surface 4 (fig. 6-10) GCpf_4= -0.29 With positive GCpi p1_s4=qh x ((GC1,r_4) -(GCpi.pos))= -6.79 psf With negative GCpi P2_S4=qh x ((GCpr 4) -(GCpi_neg)) = -1.59 psf Building surface 5 External pressure coeff. for surface 5 (fig. 6-10) GCpfs= -0.45 With positive GCp; pl_s5=qh x ((GCpf_5)- (GCpi_pos)) = -9.11 psf With negative GCpi p2_s5=qh x ((GCpf_5)- (GCpi_neg))= -3.90 psf Building surface 6 External pressure coeff. for surface 6 (fig. 6-10) GCpi 6= -0.45 With positive GCpi P1_56=qh x ((GCpf_6) -(GCpi.pos)) =-9.11 psf With negative GCpi p2_s6=qh x ((GCpf 6) -(GCpi_neg)) = -3.90 psf Building surface 1 E External pressure coeff. for surface 1E (fig. 6-10) GCpf 1E = 0.61 With positive GCp, p1_s1E=qh x ((GCpf_1E)-(GCpi_pos)) = 6.22 psf With negative GCpi p2_s1E =qh x ((GCpf 1E)-(GCpi_neg)) = 11.42 psf Building surface 2E External pressure coeff. for surface 2E (fig. 6-10) GCpf _ -1.07 With positive GCpi p1 s2E= qh x ((GCpi 2E) -(GCpi_pos)) = -18.07 psf With negative GCp; p2_s2E = qh x ((GCpf 2E) -(GCpi_neg)) = -12.86 psf Building surface 3E External pressure coeff. for surface 3E (fig. 6-10) GCpf_3E = -0.53 With positive GCpi p1_s3E=qh x ((GCpf 3E) -(GCpi_,os)) = -10.26 psf With negative GCpi p2 53E = qh x ((GCpf_3E) -(GCpi_neg)) _ -5.06 psf Building surface 4E External pressure coeff. for surface 4E (fig. 6-10) GCpf_4E_ -0.43 With positive GCpi p1_s4E =qh x ((GCpf 4E)-(GCpi_pos)) = -8.82 psf With negative GCpi p2_s4E = qh x ((GCpr 4E)- (GCpi_neg)) = -3.61 psf Note: •As per Section 6.1.4.1, the wind load to be used in the design of the MWFRS shall be not less than 10 psf multiplied by the area of the building or structure projected onto a vertical plane normal to the wind direction. Project THE ADRIENNE By MAA Sheet No. N Consulting Engineers 0Location TIGARD,OR Date 6120/2013 ) • Client SCOTT EDWARDS ARCHITECTURE LLP Revised Job No. Portland,Oregon 213043 Date c� p 0 c. p O Cl s. r I � D r i � " R p e i �e A gam_ _ft er4% A r gA S A'ice Reference Comer Reference Caner C�i s iii' 0 ii ?'iii, 0 T''� fir: 1 G� /:-: 0 Q1 �� O 03 /i. • © •:�i p © ,:�D Reference Caner B� • OB O O �Pfp A �9{qr ee'444 "44F1IS A Basic Load Cases -Transverse Direction Zane 2l3 BwMe Crowe 0 Zone 213 BouMa . 0 El 0 41 ��—_/,` \S•los ©. � _`:D B � � d e=< © d° Reference E.*A Caner A Reference Corner Reference Zone 2,3 Bound 0 Zone 2l3 Bound• C firre. o B © B O d S A (• A Basic Load Cases-Longitudinal Direction Project THE ADRIENNE By MA Sheet NO 4 • Inn CG?SUIIiR(J Engineers Location TIGARD,OR Date 6!2012013 Client SCOTT EDWARDS ARCHITECTURE LLP Revised Job No. Portland,Oregon 213043 Date 1111011"11'..y 41111hlll. o it wiP 0 Ml 0 1 ... I II i1� y 11 I°� ols � . ~� p ii o a 'RS Reference Reference Corner Corner Torsional Load Case Transverse Direction Longitudinal Direction Project t l$ _ f.13 NIA By )444-0r- .. Sheet No. n location T 6-40-0 02 Date qui/3 Consulting Engineers �,�.,.,� Job No. Client W P‘a Revised Pornantl.Oregon T ( .. f Date I Z t 3 o4{' W;AI E...0 �5� r w a rJ artF 0, !-(vueGS 0 p _ (?. 4- Cz. = 15,2_ &si V — (�s,z ems} (4S-51)( S.s') - 3Z.2_ k P - ,N V = (16-,Z r )(.101 )(_se.c-)= 's - k d �IS � c1 t0 - l0. Project Name = The Adrienne Conterminous 48 States 2009 International Building Code Latitude = 45.4288 Longitude = -122.7506 Spectral Response Accelerations Ss and S1 Ss and S1 = Mapped Spectral Acceleration Values Site Class B - Fa = 1.0 ,Fv = 1.0 Data are based on a 0.05 deg grid spacing Period Sa (sec) (g) 0.2 0.949 (Ss, Site Class B) 1.0 0.340 (S1, Site Class B) Conterminous 48 States 2009 International Building Code Latitude = 45.4288 Longitude = -122.7506 Spectral Response Accelerations SMs and SM1 SMs = Fa x Ss and SM1 = Fv x S1 Site Class D - Fa = 1.12 ,Fv = 1.721 Period Sa (sec) (g) 0.2 1.063 (SMs, Site Class D) 1.0 0.585 (SM1, Site Class D) Conterminous 48 States 2009 International Building Code Latitude = 45.4288 Longitude = -122.7506 Design Spectral Response Accelerations SDs and SD1 SDs = 2/3 x SMs and SD1 = 2/3 x SM1 Site Class D - Fa = 1.12 ,Fv = 1.721 Period Sa (sec) (g) 0.2 0.708 (SDs, Site Class D) 1.0 0.390 (SDI, Site Class D) • Project BY u Sheet No. Effirri Location �r � Date r/24/IS Consulting Engineers F i Job NO. Client f��r „()L J Revised Portland.Oregon 2t 3b ) Date Cr /. -o . G-5 -At_ G� •:'�_fL! Ar Sgz = 0,402 ?.c't i' v-L Y3.32.-- 1.0 (i. n 2,-.1.9 v.r L.) o) 9CA-P11-0-A,-(rm wc0p t” .- ' (r• , - • • — ✓a2)-F 0 0f %)t-, S' - 32>o f- Y2L. C24- Pe + No ?t e rc,sJ ) (.tof x55" = (43.3 It - 30-$9 ee-v`')(t c t)(egO' -E- f of = 3/. 3 2D ( Pte')( !! )(1 -4-1.2. 92-P -1 . rzy Ak_ ['231. pk. ? -*-Vo f4&th J)(,9.d -- 2_14,p f tr k c..i 4t L. tm P t CE t ' (I g©t+ t E of) si set 2 3 7 * C4& (V+ f ) t i s )(Vol -f Fzt ft, ror* y 434' k L.-Yr_ - -g 1� . 3 A-4 ..- y - A V = 4 ' vU t2 .$- I ) 0. k LA2_ (-%$s G.ov tom, oft w ,01 N ,G crt«4- ..14.424-44140/..1S Project T+ _ By s-t 4-4 Sheet No. Consulting Engineers Location 1-)1,412.4?/ eta- Date wzoh .s Job No. Client i47. 42s..- . Revised Portland,Oregon i 0113 Date Le AT° -TV Pi",p-r-ra-PS4TIS,,) o-F- fratt. 11.13,-b vo- • V \es._ L&-' (-PT) Cne)L k) 43 4- I I 6?0.4-c 5 1 cocfr 2Z2 . 1 3S,33' 11 0,40 5-0 ) A., I Sheet No. Projectii �J�` _ I By Pt I ffli Location T (ie(�d /OZ Dote (_ zo//2J Consulting Engineers W( j Client NT-647 j(+17—.9 la Revised Job NO. .; Portbnd.Oregon 01S043 Dote 12-4&J 1-7K2,O it-'t.c4-42 ,vo'i-fl1 Jnt J -i 0 ' / ritrarii raaauaraa�.0 i.�r�aa.aa.. lo' /4".6' 1Pr1_+ y3j ��— rra�n=.._:e.ry eeraaaanaa a a�aaarrraraaa>• - { j 1 aatlRrA 11■111aaatvaaa Ow/OW R Slig MIL .A.a 11111rMIN of • /0' /w. /p/ ZNP C -4-1 L !.41C4' sHiR,z Ltd 14-1,c_ 6,41.-9 6 / 1®.53 I 3y, A 3, k l S3 ' TT �u:T (#.4,--44-- c-A2 2 ; Ci000' : Ll PLf �c t (2-) 15/32-" St{,F -h r 1 Cr w �c� C. o, c. O LA) Arl L SpPwt a - Vt;2Fp 41( PLF ' V.( eta 014- - J pL■(-7 OR - V• lZci -�-P (to ' i ( 3ce)( 10.33' 000 = u-k. w � < (j4s-10.4 )(Set')(E./(1-)/foot) = Z , k �LPOC A) (4- )(&-t'/L ) = I Z3 k-Fr �i KF J i{PJ 2-Sp ,2.S pFt - © .9 21'l _ /8,3 k - 'r T - 1469 LS i_r3 ©tc� A 2 Project 1A46-- Sheet No. By fl���_-ll � • Location -1-)(7412'" O Date !_� /is (9 Ma Consulting Engineers' t �- `E' � Client iS n n5 Revised Job No. Portrontl.Oregon -t 30 Z Date CtO d 2 ,V—', 9 t Lw4ts . C,12D 7 -/ l � ) . /2.5- k s3' ' _ v I r �c4F,i'trt_ f -cv..2. - v = y,S C c 000 ) = Zq-Z L� t`.+ 7." ytom.-* `ttJ` C�J�$c� N�}+t.s� , / e, ro~o c. e V L. o = 442 PLC PLf- 61.4--// vet. F r - Io' Pate 1�Jt.J4tL = to P -1((0 ) 4ti.V/000 = 1, 4 W 20of _ (45-i€7(-- Xt0' )( $/tz)/i000 12... ht - /, (co/j ) = g k -f T b t`t — ©.5 2_11 2.0, k--F-T i = 2-0 244° 70' Pia rJ H 02 - 2-.5 Tel t zn Lo Las 014, . n/ rte.,:©f 5 i{dt_ooc.)ed 4-1 L PRAS( A0.AT t-44,tP 4 ) 1 1 Sheet No. Project �/.� ����� By r, NN Location ��d%' A Date /./7 n/1?J Consulting Engineers !�' Job No Client t OT T Q Revised �} Portland.Oregon 13aHL Date -rte 2D 4 t 2 ns- s 9 -t-+ NJ \ (I coo) _ 24, 13-2,'' S14.6 fi^,•t- w/s I A k'L C 6'0. 'P- Q w41L eL z?-2 QL� Pt.;f-r — O' r -,4-..-&. Pf - v. L - IZ.S' (_L°__. )(/0,53').= Z7.8 k-f-r A6,s )2..R. r I.i- (r o`/a,)= F-�- (pn - o.ck 2M =. ZL.rs k- -r T = Z©.? _ 2070 L 3 rc.D hiPsons 14 9v 2- SQ5 2.5" 1x.,(1 = 3407-S Lg ? 2.,D20 L3 1�1 P&c,._s 'U e 02,0 1+15uppLoro C9-44''P 1 Sheet No. Project 11+16 Ap NF By A4 MaLocation 1"-i-6-4..(2_p, pet_ Dote zob Consulting Engineers Client Gj�rjTT &QLU�p cJ Job No. Revised Pornond.Oregon Date cJT 1+6A-(2-- Z-rtfl 9`r2- . 'r-OOH = ZS tL NI 34-9 , 1 s43 J 1(' 2n q _ L)a,r s(45z_ rarer-L — 2� ., 5-5S" PLC (2') _._) 5A-2:` e, a( -0.L. Q w A-LL \I o = Goi? ou// — 11PL; j - o M (ZS/zt(Zt.33' ).+ (3.s/Z )(l/) 36-f - c-i- ww.4-LL. = (to )(3°l )(u•33")/ /000 = $.3 k 1A) hoc = 2.3 k kiv3af, = I. 3 k e2 M = ( 8.3 f- 2 ,34- )(3°t/2 ) = 232 k- �— art - y = (( . 2 = 4 to$ Ls *3c N-Pu 4 -Sfl'Z,S t J( _ 115 5 L3 > tog 0 V% Sheet No. Project 'y14 — APR- rj By {4'74- XliLocation T';'(,414...D oIL,. Date (o I T.f�f 7J Consulting Engineers Client �� L J A rL�[� Revised Job Na. Portland.Oregon 2t 3O kl Date ' c_..)4i.L N, frtoo' 11.) 91'/.--Ln° �ldf. 2 c Jar;•.. 6-4:0 At- V/4.00 /0.33 V 34_9 _ `P.zs jp !tl 2.09 �, I 0' / /6-5' / 11,5 -- U"';-r 5 c be-42 >cD2 car- .l = /2,5- 1- I..F T,`I.Z S 4�3 P 7 I /5/32 5'f�iEf-+�t>^�!r w�S� A✓Ao't 4t"0,L, i" P 0 w44-1._ l V L2FD (:› PLF Lf 014 PL;F-T- - lo' a v. k. - /Z.c(td (z(.33) ,- 9.Z •(2_9_, )(if 4-b ./ >L-fir 1/1/43.1/414LL : 2.1 \NJ /Lopr` 9.3 t: L.) .34-p = 0r /� (Z-El }-o ,413- )( 1°l Z) = /314--F-1- S,`*1-P40-1 lfOcJ S-552,5 ol-t - ©.°7 2M= Z� -fT T= 65-2 T.-t( = ;13 r,3 or-.// -- 16.E P 1`'t V. k. — /2.5-06,5- 2.5'(1 - 112-(.3;) + '15-06,5- 1(0 /32 Jt IN LA-cam 3.5k_ W 11-oaf- — ©,sit &)9 2 .3 &z i2 M r ( 4-, )( tC. - 3 S k-f-r PPDA) t190 8-Sp. Z.'7 DM -- 0,`t ?tit - ioO.5- k -i-r r T,.// = 7-97-o otey e-i;f-t L Art 1b t 6.5' et, 4 i`K f$4t3 t{9 v - 5o Project Tt46 A-p4416..., 444 By 141/A Sheet No. Location ritv.A.a.C:I Oft,. Date 02/24 Ii Englar Consulting Engineers Client :Se-4547 64)kll44 4:1 L Revised Job No. Portland,Oregon Date '2,-1 SOWS PP;4.)-14 2-"J.2 I-Loe 11).-S Ise2 .LAS^.1 1/4).442 6-12-;3, fi•ob-c- •••-•-- 1 2.5 k (0,”1 S_dp____N/ • S 2.5 1 / /0 ON■T FO 12,5 *41. - 46 0 rut 4-6.5.- • q5z:' agel e ow4v_k_ 6 ' 4 GI o t+--ck.- - 16 e + c( )( ') Pr v\-) kA) t 0.%) LO312-19 0,2. • ra- G it--PI- 14-Po 8 —,e13,52.4 roat 4c) >4.5-,201-- 14, 5,4 o v N".4' • • I Sheet No. Project n.4,fj_ A ` � By H4-4 . . Location r�� Date z 73 l/, ( Consutting Engineers f l r Job No. Client c 1OI.tt P Gay Revised �y ! _ Portlorul.degon tr[ O k 3 Date -Ih., e1LJ4M .-*10-4J 2 f-1.-QaZw. I F F1e...,T`-c.,.ti i P iL ..t1'0.- 0 • !--10"1(;) Zr1 " Q ^3Y 0 z-3' A , 1 i IV al i 1 9_S b.5' b�, . c.c. ET 13 f 9.5' 19.5' ;Vii Zr ii?„, 3 j �. 9 0, N', I 34.7 'tc 1.04-11 L 9J f ,,4541-1.w4t L G- Dh. 1 I S y 1Y�43 Z-y w.'PTY ' f©2 .?. G,0 7,5-I ? I I v - 5t t (4".5%/io') - 4,2,k. - v T It-e3..0,4__ Fat V = 4,2- C I co 0) 22-4- pi-f / ,5' 15k " ► ,.a41-1-∎'`X-- AJ/ec1 P 6 '©,c., 'r`iP,- 0 wet-- vLe,,9= If IC, 7 Z2.1- Dk// -- v iP(r;-(-T - G.6' P gl-^ --1,-,f2._ Al-t,..5_ HioL 98 ce)KJ P-on- 1•22 P r4r4-L. 0M - v• 1.-- - A .z_ (cV i's5 ) ((o.33' ) _ IS k-- F i WW'-LL ( to )( , ,5' Xvo ,33`)1tcoo, = 0. 7- i W .c,0m,__ _ (Pe, r' -)CI-.c' )(.,6 .5 ' V1000 = 2 ,2- k 1+9 O(A,Jti! )2 rt = 2 Ake-k e- ( .c' (z ) _ 4. '/ k - (-T 4/ifietra to t+90 2-.5.952.5- pil - 0.9/L !rt r: .c k- FT T = l06(y L 1 t- 3D 1.6 ale-/ Project 'n{y_ t__t By H445„. Sheet No. rigliLocution ��1" 0 �}''�'.... Dote 7103143 �Q Consulting Engineers Job No. Client A42_9 Revised Portland,Oregon 7 `/ r Date Zt3o lf'3 WALL Pf*:&li TZd,'20 Ftot9 - -►n1 IJ�2 Ui Or' v /9.33 F�2 £I. cow l`►' '� ,3 , /3/ 1 `52� ti ( (`t'/cto` ) � S k_ - -Fa 1. 'v . € C 1000), _ Soo P�F 1532" �it�1�1�},`.J(r w/Sci NA-.`5 ca- " oec.. (P.� O w4-LL V L.r2. -a l-t qr, +PLC- > O PL-f- O It._ PL:.F- �.. p N( = V • 1. = 3,ct k ((o. 3' ) = /-/o. k - \,J w4a1 = ( Ito i3s )(1- x(o. 3)//000 • /, 3 W2oo� = (ASP X.t31 )( !3 ' )//000 = $.2_k_ (2_M k.-- i-- X/0 �° loon F a it L, t+0 t-PO W cJ (-4-902,-S19 Project Tl n n \16— By Ft 2 Sheet No. Location j 641?-42 OZ Dote i' �J/l 7 (1 Ii�ria©Consulting Engineers Job No. Client '50DIT W f._/2p. Revised Portland.o,eg« 213o4 3 ) Dote N/74..4Q T l k"r''2-t e 2 6--1/Q 0?2, /0,73 f�•2 �4, 1.049 /2.5 \( fit'(I2.5"fr = �•�! t4-6-FM.. Foncj V 6,9t C ‘000 - 3 Pi_f t`t ' 5t _,a-'IVKsi-rr (,.)/$C.i 1°4;6- C bo.� i7 9=-- ®i WA-L L tiLv., pv� — JPL,FT l-t = V 3.5►c [.•�w�lL = (to P -)Cc.S' )( O.S'2,`)//004:-.) = 0,SR L Gv et-00 = �'�P5e-V q,S'90Z.S',)/ /coo p K — 6.`'t /L N = q.2, k.---&r 94-g t_6 (4-9,1z -s'5Z.45.- TcJi ER- t.r 7 g4-8 Zg OIL ► • ['bt a0w Project Trte.... Apt2,7'fivritt, BY /4 11-4" Sheet No. alliConsulting Engineers Location 77-64,24)/ Date 3-- // Jo b N Client lart.044.0,7, Revised PortIond.Oregon Dote 2-( 11,6A14.- 44-t- PI-44 6-.) rn-ks OeQvJ 5t2 f-- 4-1t._ 64-49S t 3. CAI riatt_ git A-LL 1/0.; ILY/4411--1 V771- AC/2 A-0 /0.51 - 2-1r Ay-0 ( /0.5/ 0)L- 5,1? k u 214- t9 .. (:) LL ..=- 2_Sta. e tjf r 0 ‘./ = Gt.) 4° .f")(zi-f90o.3W/otho -z•- 2-5 k rL (2-4112. ) Z■94t 14--C-7- 0/1 oect 4o Iti-fr OPL`A-7 it/On%/At- 172/..51OI-J,L) 1-f-P.) SP52_.4.5- -6-440 1-134...._ By u rl Sheet No. Project l�2;�rJ� /2 MaLocation '�‘ -P / CA- Dote '-/23/i t 1 Consulting Engineers Job No. Client rc Revised Portland.Oregon ; Dote 2t3c 3 A-U-. 01-174.7-0 TI4h`2p &002 -W p Ala 1'4 N i)P4217 t✓.'J77 " J _ cjb (t2.51go)_ 6. q k - `)a:r 7(4�s1i-2 f- 'u.c-- = (c.9 (loop)• _ 260 Pt_f 15732.e .4,0.6 4)-},,ti.s-cr /sd /J th‘45 'o.`., -t-Yet Q 1-sA1.c, U o = J4 t 6 Pty 7 26:s) ft"- o'G// e� �r `7.5' P/4-nv4A, ofrt v . IA, G.ct ( .45 /yG.S)(/o.33') Z7 v-fr w LJA« ` (to el )(9.$)(/o.�3')1/12©0 = / k.. IrJ top �! �'�� fq/2.5')//000 = 5; k ( 4512- ) L- F- ,- - 0,9 2M _ --/,3 k- �i J,`OX A) ;IQ 4t I LOow:kJ u 2.5 A-r PAJF.t- p Project Ar.94_;7.6.4■J pit By /4 A-A- Sheet No. EfflaConsulting Engineers Location rci-412--D, °Pa' Dote 1/2,3b Job No. Client Revised PoflordOregon Dote 2.-(3 o4-3 LI-)44 0-446-d -ruhvz...p .f-t-ocyt_ t -v.) p:0_6(-11"0,,s •5t)PfJx/L- GitaL &a9 4.5 /03/ . 10 I M 114,5,1' r u t•-) .5141-1141— ((000 . - #oo /7/, , /1,5 /3 '' co/gel g 0,c 't-ct D LL Nii...i2J- 1JI ey eLl-- 7 ci-co P cf)ti_fi OPU-C-r- — 6,6' (74,,,14..-L. ) DI-f .-g (cv.s-if q,5 )(r,9,33' 26.1 lc - )00,33)//coo t'5P--)(6,59(14-Vono / t Z. _ flg5 6,5- e' 0") sve, 25 1—.J( 3S C > Dcze t°c2-0,11`vi— 11-tx-Poc-).3 0D7-711- • Sheet No. Project -(�.F Arpeg f..40^ By . I Location d2 Date 7/v/JJ/3. Consulting Engineers Client c�C D r- 4W 1.a Revised Job No. Porflano.Oregon Date �f 3 04-3 51 42 w 4-t-L P6,7(6-4 2JP # oo2_ F-W P 2 h 1-tf-41-- 1,0 A-t-k, 6-11-1‘91 I S U1.00f / ' otrF k t0 33t qo uNir V r ; rc_, 1 1.2— = i. t`71'52-`' SJi. r7hi c.> $c1 e 6'o.G , P -O c..141 L Vt_0,A. 41(0 'L f P t-f- p�� — 'JPI;-- - 5' (9 ^t L - O . r F-494 12.1 P M A,z(6).54g.$)(V.33) + (1.5/4.45)611) 43.5 k- F-r- (A.) w4t t, - (t e5f-)(C.596-1,s3 ) 1, Li) 3 24? = / Z 1c nM = ( 1, 4- t2,2. ft.-z)(4,5/2_) /5.6 -c-r F1 - 02 `1 = 261.5' 14--ET-- ( J v 1-0.(( c 5 L6 Z4' Otef J Project nf,t, Ag-P4 ri By tk 44. 1 Sheet No. / I �Y ing Location �k /L�r 2 Date /Z 3 r 7a Consulting Engineers Client jLflTI w 4-P S Revised Job No. Portland.Oregon Date 2.1;taw3 14 t,J AAA, ‘26416-1-1 2 -F-LOSn_ .6----vJ Po ) &14-6,-4-e- c.,14-t. . c3-4-4 2_ v2ooF I ./4.00.A. _ 'T,$ k f i r tai V p- r ( to/q0)- 5. k. Vie Ott { l 1� % V /3 / 3 - u a 1 r `:t i6.A,-'a-- •P02C6 v Z r 3 + s , _ 623 e 1_F- /3` +tat _ 1 5132-1' Vi—f-4 i+I,J& Gt1/Or/ rvA-,i.9 & if-if ac, )7e5.-- ® w 4u_ --.,, tiL Lt.9 = fo©$ vLf 62.3 Pt_.. - Lt yG1L JPt...:fe-T 0 r V ‘ t-t. _ 1-,$ 02/, 33') -I- 5,13 Lill ._. //s k- r---r- "2- 2- WL4LL = 2,i W 200 = i,Zit G) 3.4? 4.S IL ✓L t`l = (2.1 -i- 8,2_ -4- 4-,5-)0V2_ ) = /00,F 5 k-c r o ft -0.°1 4 he = 26- k- F"-r 1 = Zs _ /9Z3 L3 'e',eito O,t) tfpv Z -sP52.5 r41( 3a i s tc/2.3 L.3 ©b`// i 1 Project Tl�, ��� ay it Sheet No. Location 4.4) D 2 Date `, 2 h 3 ECM 6..A4.4)6..A4.4)+'� Consulting Engineers j I Revised Client ••• '(„gyp'[`j' �,J r -t2 c Job No. Portland.Oregon I3 Y13 Date 1 t!7 20 0 F(.,o o - t# kL_w+4-t- 6,2.,1p 2..5 V 200 6 E4.3 V 32D = --11(12-.514°) 2- 1r, t � u'-' :r s}- Ft'2c-f-- V a +-s.z = 637- PLF fg' 15137.." w/gel 41A-7sc,S r✓ 3 "o,a. `j Pti 0 w c L 7-84- Puf 7 0v.--// — Ctrl v — ( '.33) i (t ) _ /02 k -Fr (, 3ouzo = '5,3 (.034-0 = 14-3,0 l (2-,i.L C2+S-13 )C .S. /2 ) 4-0.cT k -4 r- C tr _ 0,1 2 Nt = - -Fr L3 r C P S 0 c o WD U " D2 2, To_t( 3 7 5S`T 5 L—S 0 14 Sheet No. Project .4 xp BY RA-Or Location r'(-- 41 _0 04- Date 1./2,5*7// "MI Consulting Engineers. r 3 Client i,Lp Tr:f_pW 412_�( Revised Job No. Pantl.oregon 2(301+-3 Date X1 1 Zrr9 f-LOo2- 6-44WS 3 4 s. ChA1, 2- A-t..L v,2.O V 200. — S s v3i2-0- (").9 4,3 !c v6 .0 ` _ go 1 101 Z•'P — v ' 'f 4, -fv w V S.j? 4-11,S _ 421 oL� Zy r 15 /;z ►F,. tf C�r c...>(d 1,-10!".1.4> �i�`,O L 7`(P i w a t t VL fl _ 4l6tuF Mit PL1- 0144/ U PLC f-r- pm _ v. 1", -- Sr$ (2-r,3- ) -I- y, .;( tc) _ /41 1 Ic- IN 4.00 = (.-z k LJ 3,2.E ?� k ✓L1`t _ (fir ( +6.Z 4- 5,4 )(2A/z) = 14-6, 4 k-Fr ©t-[ /2. 2 L r = 12.Z _ 25/o �3 Z�- �;rtPSo� I+PU rat' = ;075 i!-3 > (o L-2 ot,4 ) t Sheet No. Eliffli Project 1- ¢ APILn i Jfi By M.Arlar ,�l/ Location • ‘ Dote !/� Consulting Engineers G-Al2.4) t O� 712,4 !3 •/ Client Revised Job No. Ponnond.Oregon 1J ( 0 Dote c46-44.. 21•319 FLO'L. -vd n .[,V6rJ �1 � W A-« G4-t'D 5.1- v Loos-, 103` 2OeF ; 6.9 k. 37-(iz- 5) M '5", t k. elm j' 9.5/ /�. — L std ice 6.1 4-S---‘ r = 115 PLt ZIQ.S '5732.2' -14.4-r)i,`rsCr CO/8cj e 4"0. c . rreb 2. t.. )4.LL— J ic.F r 60$ e c..F ? l-fcS 'L — f-r - �l•S' PA�� 0n - V. 6.9 (/;s72(9.0(2-/.3'3) +- S. ! (q,5126.5)(it) l.V w = 2 tti 20coi _'5".. 5 le- 4J 3.e) lc- t2-/-t = (2--+5,3 + )(4,5/2. ) = 0.9 oh - d.5Qh - Z$,9tc - F-7 . # _40*0 3 t+9uZ - 595 2.5 Tall = 307-5 c-3 > ;Du-Z I3 0111 0 i Sheet No. Project �}' Q ^F��N E By 2 Location Ti'6,A42_42 t 0 Date /Zq J,3 20 Consulting Engineers Client Revised Job No. Portland,Oregon `iC.�'ET �AC.J A-2o S Date 24 3©43 2E49 vaoaF- 34.4) . , vas = 34-Ottieto)- s k_ "4 t ,-3 9 11/6•s I i lit 4, $ --5r-2 6g P1-f /g.s- 1S/3 Sri-+� ►�1tr co/gc1 NA44,S e vox_ , 't/P 0 w4LL tJPLUF'I — 6.5� V. k - .$ (6.51/c1.6y2 r,33) 5-"8 (6.54°t,5)(c j) W"q*... ), N lJ em_rt J4u1 ' /. a-It (td 047 4)-6-2 't 11`e)r411-4 LJ 0.430c- = 4. t V W 32t; /2-Ft ( + +14 ,1 + 2.3)(6.5/2-) 5o.1 k-fir Oft - 0.9 2M '-1S -fir (" �$r�t /6,5' = 7-s2z L-5 V 8 -5DSZ.s- TG..(( = 87-o L3 7 4-512- Ira atJ/ Lt �t� uPL�F� — 43t f4+.j V• t� � ,$ �t3/c`25 )�243'��-l- 5-id(t3i(ct.sYt1)= /53 k -�� C,,, 20 0 4. = Q ,7 k C.J goo = 64:6 k >21`1 (z 41.2- I-.6 )(t3/ ) = /0/, k-41.-- ) D.°i2F( _ (, - k- - T = Gkl-/c3 1-.11-50 - KP a N 14-0Q 2,S 7.„1( 1-81-o 1-11-5"o r u�� • Project ���, A* BY K SheetN/ot�. Mil /Z //..2-Consulting Engineers locution Dote Client Revised Job No. Portland.Oregon 24;0143 „) ( Dote p 6,04-11A.6-f-1 A-t-c t — toed- PM #4 641 7, 4/0V74- -*-9i)Ttt J 'ell r' o w w =,L ` Wc.to` 2 1 5 rF , i_ -�� _ _ ,z.�r< vs 1-ZS- k 5�Z.s I-a L f 6 L.,..,4-LL «[ 4- 6-4-> ... _ 8' V 5 /2 h- _ J(p0 Pub �/1 1.i ay 14v00,0 6,..,,-7-7{ l cep/ 4-)4,1-- e. a ,r0.C_ • (U Ai Luc u c v,t,o<t:.v 4 S W) Pt. ( t..s,_ o' ) CA -- VL,a„f-9 = a.i ( 70) = 45G PLC Z2 ! Pt,i Dv, ...1'. , i - t. -er r 9.11-6,t.. i�9 Ai 0 0 Ci) CO ® w= 5b _ b teLf- , ...r ......1 A. .4\ " 2:,,,. i 4•1_1" 14•g 16.5 1`6,e rs.s 16,1 14.2 'r/t.t 3 V M aac. t3 1 A _ 4.2.14. W A-A.L. L J tom(- s- 4,5'5' v 'I, a _ 2z...1- ?t_f 5 r 3M'4' Pt-v w 1l1- l©d ,,,,s4-7`1.--7 e (' o.c. (c)4) 1.0(. ) \j ,.,ok; \_ - 1-4 SO PLi- Ci.- 4:111404-6-9) 4-5.f...Z Vi,G.Z--fl 0.6 (430)+ 4-4- etc ? 22.4 -r-f- 8+L rrr • Table 4.2B Nominal Unit Shear Values for Wood-Frame Diaphragms Unblocked Wood Structural Panel Diaphragms °•b A B Minimum Minimum SEISMIC WIND Fastener Nominal Minimum Edge Nail Spacing:6 inches Edge Nail Spacing:6 inches Sheathing Grade Common Penetration in Panel Nominal Case 1 Cases 2,3,4,5,6 Case 1 Cases 2,3,4,5,6 N Nail Size Framing Framing Thickness Width v_s G a v_s G a v_w v_w 0 (inches) (Inches) (dt) (idpsM) (pm (kips/in) fpm (pm 2 330 6.5 250 4.5 460 350 1"XI 6d 1 1/4 5I16 3 370 7.0 280 4.5 520 390 71 Structural I` 8d 1 3/8 3/8 2 480 8.5 360 6.0 670 505 G 3 530 7.5 400 5.0 740 560 Cl) 10d 1 1/2 15/32 2 570 14.0 430 9.5 800 600 ,3 3 640 12.0 480 8.0 895 670 13 5/16 2 300 9.0 220 6.0 420 310 F' 6d 1 1/4 3 340 7.0 250 5.0 475 350 M 3/8 2 330 7.5 250 5.0 460 350 m 3 370 6.0 280 4.0 520 390 Z 3/8 2 430 9.0 320 6.0 600 450 ...4 3 3 480 7.5 360 5.0 670 505 m Sheathing and Single- 8d 1 3/8 7/16 2 460 8.5 340 5.5 645 475 fn A Floor` 3 510 7.0 380 4.5 715 530 'fl 2 480 7.5 360 5.0 670 505 m Z 15/32 3 530 6.5 400 4.0 740 560 2 m 2 510 15.0 380 10.0 715 530 r X 15/ 32 3 580 12.0 430 8.0 810 600 co10d 1 1/2 19/32 2 570 13.0 430 8.5 800 600 a en 3 640 10.0 480 7.0 895 670 cn $ a. Nominal unit shear values shall be adjusted in accordance with 4.2.3 to determine ASD allowable unit shear capacity and LRFD factored unit resistance. For general construction requirements see 4.2.6. For mspecific requirements,see 4.2.7.1 for wood structural panel diaphragms. b. For framing grades other than Douglas-Fir-Larch or Southern Pine.reduced nominal unit shear capacities shall be determined by multiplying the tabulated nominal unit shear capacity by the Specific Gravity ciii Adjusunent Factor=j 1-(O.5-G)],where G=Specific Gravity of the framing lumber from the NDS. The Specific Gravity Adjustment Factor shall not be greater dian I. ti 0 c. Apparent shear stillness values,G_a,are based on nail slip and panel stiffness values for diaphragms constructed with OSB panels. When plywood panels arc used,diaphragm deflections should be calculated D in accordance with the.-ISD I Food Structural Panels Supplement. N -i Case 1 Case 2 Case 3 p Z 7-Framing Framing Blocking,If used-.\ Z Z•• IlltasillrenifemMii ...... l•� 1 MI LiiFkJi II 1111 Ii , -_ii- 2 ®� ® . ®®111�11®1i� ------ -_--_ 1 a• Diaphragm boundary co N Case 4 Case 5 Case 6 RI Load Blocking,if used II\ `Framing 3 ®® ' ®®® l ... ...----- ■---- `1 ` ('-j= C) ®®® ME EMI= - .._-_ ®�®®® Iglil® lealli 11.1111111111111 ' 4 e . ®®i�E �®®�1®. iuII. ii Continuous panel joints- Continuous panel joints 1' V SIN3ISAS JNIISISRN-an)n-I 1W)l Iwl !-7 Project n f 6i A" By )4 .44 Sheet No. 9.1)Locotlon Dote V26 --//?� Consulting Engineers Client Revised Job No. Portlond.Oregon r Dote Cfl.i n'uq-(� 2NP leLA&L 46.40t44 "° OV 6.12-ht`'e 5-"lr''+ LO 49 N 1'12,0 '1 f fz91.-0 )A) * it s r1 c r4-t_ LOA 44 ! 0 P_ `ot) 12 r .2_ + 0r Z fly ,p . - S'2 o et£. -+-1_ `x`95. _ 0•403 1. 3 4 j + Z. cQ.A L. = 2- - c A4-5k 2.5" t-bt-P egtz#.1 t-E� 5 GLE7hi to Kfb:. PAIN Li tA,t z4-- Cu. /,4#5- 1, 2... c'. +t.(Q LL. C4) t ..E- --17 1.- L- wilt.. = i1 . 4 s 1,3v1,Gfli- • L` _ / . ZtZ L O \ ©,-58 kLF Q z- PF ( z- _ ."4-,3 LJig x5S CZ°, A- .c ). Gravity Beam Design RAM SBeam v5.0 The Adrienne - Overstrength Check 0 RAM Critical Shear Wall Support Beam Grid 2.5 07/30/13 15:17:39 STEEL CODE: AISC 360-05 LRFD SPAN INFORMATION (ft): I-End (0.00,0.00) J-End (27.33,0.00) Beam Size (User Selected) = W18X35 Fy = 50.0 ksi Total Beam Length (ft) = 27.33 Distance to Adjacent Beam on Left (ft) = 4.5 Distance to Adjacent Beam on Right (ft) = 7.0 COMPOSITE PROPERTIES (Not Shored): Left Right Concrete thickness (in) 3.00 3.00 Unit weight concrete (pcf) 150.00 150.00 fc (ksi) 4.00 4.00 Decking Orientation perpendicular perpendicular Decking type ASC 3W ASC 3W beff(in) = 67.99 Y bar(in) = 18.51 Mnf(kip-ft) = 589.51 Mn (kip-ft) = 431.66 C (kips) = 155.07 PNA (in) = 14.02 Ieff(in4) = 937.51 Itr(in4) - 1858.60 Stud length (in) = 4.50 Stud diam (in) = 0.75 Stud Capacity(kips) Qn = 17.2 Rg = 1.00 Rp = 0.60 # of studs: Max = 54 Partial= 18 Actual=20 Number of Stud Rows= 1 Percent of Full Composite Action= 30.11 Top flange braced by decking for Composite condition. Top flange braced by decking for Pre-composite condition. POINT LOADS (kips): Flange Bracing Dist (ft) DL CDL LL CLL Top Bottom 4.000 0.00 0.00 -7.40 0.00 No No 13.500 0.00 0.00 7.40 0.00 No No LINE LOADS (k/ft): Load Dist (ft) DL CDL LL CLL 1 0.000 1.614 0.000 0.758 0.000 27.330 1.614 0.000 0.758 0.000 SHEAR (Ultimate): Max Vu (1.2DL+1.6LL) = 49.03 kips 1.00Vn = 159.30 kips MOMENTS (Ultimate): Span Cond LoadCombo Mu @ Lb Cb Phi Phi*Mn kip-ft ft ft kip-ft Center Init DL 1.4DL 0.0 0.0 --- --- Max+ 1.2DL+1.6LL 374.9 13.5 --- --- 0.90 388.49 Controlling 1.2DL+1.6LL 374.9 13.5 --- --- 0.90 388.49 REACTIONS (kips): Left Right Initial reaction 0.00 0.00 DL reaction 22.06 22.06 ri Gravity Beam Design RAM SBeam v5.0 Page 2/2 The Adrienne - Overstrength Check RAM Critical Shear Wall Support Beam Grid 2.5 E 07/30/13 15:17:39 Left Right Max +LL reaction 14.10 14.01 Max -LL reaction -6.32 -1.08 Max +total reaction (factored) 49.03 48.89 DEFLECTIONS: Initial load (in) at 13.94 ft = -0.000 Live load (in) at 13.66 ft = -0.550 L/D = 596 Post Comp load (in) at 13.66 ft = -1.295 L/D = 253 Net Total load (in) at 13.66 ft = -1.295 L/D = 253 Project cml A10/21,6„1/4.4.v,4 BY AA" Sheet No. Location T-1`0_4,2.47 0 2- Date /Z le= Consulting Engineers ' Client .5c.6,71-- �c.J A Qj.S Revised Job No. Ponbno.Otegon } Dote 2.130I c,.J4-Lk_ P ,16-t1 Cr20 tJ ? , LA-L.COLA—t`6, ck J JL +Bi- A.,,c=, D5-it'l wts-;c-rfr only 20 Z23 k 0 0 © 0 4-(7 2 31 0 0 O o 2-svp 3 k o 0 p w4-1.t. A- 25 k -r Z - - 30o (0•7s- 4,4-cc 4.5 /0 k. - 43-5 1/.S //S k�r 4 4-t c- 2.`� /lo k- - t Z -- 2. -3t -ter wA L 34, 4 - S $.5 -2o ti-Fr 34 k-t<r w kA_ 3, 4 k _ S -/Qc -3o k-v-r -63 -ter t �A �t- 3.3 ZZ►� �F —4- $$ k-Fr -15- et k.-Fr Tail-t_ 1/3 1144.. = 57s- • , K . cfrt„ _ W.)/ = : 5 - 0.55 ' 9i3 w �c 675- .2_ tA., 9/1 Sheet No. Project 77176.,- 41141''6-11//t/#'-=.-- By EMI Consulting Engineers Location T?' r>4-4- , 0 n. Date I./24 33 Job No. Client . 6.-1)Tr 6-P(4.412.-P g,---, Revised Porliond,Oregon Dote 2,1;0 4 ) 11Q01-.2_ k,..)41/4- fb-4(& (rto )M7 Pt... — CJ{J 4f.A2.... L.J44-LC‘. ..n-- . c_A-t_c_o LA-it.. c4..)-?.C.A._ 04- tv4-UL fr1/-:":-. i 4 I j11-LL 0 alop) /..t.,■)G-T11- 14,/L- P- X X.IlL 'I Y. 4-- 4 A 11 31 v 4/24,7 I.86 4. o o 4.5 X '&51 o.is i.154- o o 11,5" 23,0 . ,,. 0,5 43.0 —I 2 —(o0 0 0 3 4.: Y 4' 2,0 0.2(...- —5 - 1, , o 0 S ic, Y lir I. z4- 0.,833 -s- - 4 a. 0 0 3 3 Y 3g.5' o.3 1.2 5 I-1- St(. 0 0 -33.1 U _ -/3.9 e, n_ t • yc.,/1_ ....:, rz.. •y _...._ 13.-5 L.-- IS'.0' ----- ----- O---- '3 .'S'(0 I - , , ,.....,, 1 e_.-f-vi-a 2 ©c- q4 k N✓J Fv . of ai'Crr r,7 . 0 0 0 Ea. 0 0 S I E A , 13,10x• 2553.• 2ea3• 210 seofiEDWAIDE MONOECT1JRE U.P ,P MS E.avowal*51.PeINnd,OR 77211 a. Q P f• 0110a*OM 137- 7.......Ra..x pe sa1 .+o , €o ,P4' I 8. FP / ' rP co`' ,c Vim. �j° O ' , 1.2.0.7.71 heal 0 I1411 G . 2. I ZI�t`/r9.o'� II I • ' • /�i3�-( _ 1.331 _ 15301_ a •^'- , 3 n/iiiiiiiuun 0, //A.,- C'.7,,, The Adrienne 11- -�i, o s I I .1 SW CONZRCA STREET 0 °I f; © Ig' '�aaYEMENi PORTLAND.OREGON 97223 ## 0 RU.CM. A a I1€ : I e I 00AW.30a A m r $, I'����\y ,, I m I I comma JOWL 5 15 LIIII LOn3Nxlg Enpuw I /�� I Ma 5 ,5._ I a 1, I „11,.,„,I ,fir I e �O,tl��, i ' j I D . °'3°n ' ,___J off-- --J ,~.� _ , oL_ _ o ...., F. '//.//.� 1431 1:31 3 4 r' - G s 1(1---1 I€ ((7.SS�D.00I3' i I. �c\ ./y d 4 a•N OM OM O E a 1 i I I AT OFW I/ A B el.aa 00 ° i I I nle• IS.ar.• I o. r/__, I--- 1 r_ _ or I 0 _F 4 ®,..., ' O al_ ' 1.75.31 0 3401 1 O aza`1� 0 O• DOWN TT. �.V:%•a;.& 3401 14 a1 rNMn`,' i-00503T1053 Pun Ip6. FpOIIOIRLE1ROClW300TE372?10 2N10102 S.&EL.rot 7307-3311 TOP 63W 131137303. 0 )7]T_ 01243103 CIIM0E MNEEVAATION•T` 10 , 00.1E31rIPJMl 143 R1.+013.350110E2µ3 E 371130..041434.;4EVAT233111.PWW13WKE I Mf 53.1.00332 FOR TV CONCMIE OETMS II 5..----.5 0301-*R3 14 000011 0EEEV3T4M.REF 01351. SLOPE;0443.E TC.MM MCI STECT WE ORAW.35 POOR 10{741 O300M111VC14N. +.=.54...003TEO SO GROUTE0rW1MEARa°WM. II. ALLfALlE10NI.21.13E0RM0YI1ls REQUIRE ' T. 0,RU.Lall1OCTW IO MOtb 00MM. OCRE14NME3W. Jul.NO' 1310 L 0 .304A105F001■0 TYPE.Mf.103.13013 aCEOLLE. O.N4.RU.ARCH OMWMOS ma L0C314N3allo °MOWS 12. AU.ARCH..NECK.AND ELEC.3R0WM3 FOR SLEEVES. Oslo: 6-1017 S5*&CTIA14OTIER IMAMS*COORO0.2141 0. OM=I 31pCAWf CORM OI FOOT.°ELEVa11011. a Rn.SHEE253.330M 11' CAW DETAILS. SIROCTIIIML ORAWE°3. 53e01 Na, O FOUNDATION PLAN =EDI S2• 1 Sheet No I Project A.,A ,� �{, By H 4_ � . Location i- 61 , ®4..• J Date / /d,3 5*"Consulting Engineers! Job No. Client T r- .6(24044-p Revised Portland.Oregon �r�l Date . -M- CJ l�-,� Pte!& 6-20 NP -FL -cis() t - w - .� . L Ar t fbort- A-N9 lZ 2h;0nJ X- 2F' -t1Q+, c,N-S Pt-A-N V = ('Z(v k-. f.• - V - YL.x. � 2X 32t - O ok 't°E: r -2t (9,4 fr = r ci gt2ciL T = Z� ti ( iet '-. 4,6 3` ) 23 is k- Fr /. -F6 - 8' 14.9 //9 66.g 3y 94.8 4. — 1.ctq - — — — 7 /1J,0 98 GT.2 3 2.2 /q.2 — 5 -l o — 50 5-bo — l/S.z II S, 3 0.243 -2 — D. 1, 1 — /, Z. /. Z 3 b r9.S33 - Z — /. 3.3 — 3.ct 3 5 3. — irlS G — y4.4 26q — lo9.z Io 9.7_ 3,g( f i3.11 `l1D wM I,S , N-5 F,Q W AAA, A = C//• L- # V)Ark 4.S = 4 k- / 2 k k 3 6 = 3.`r k P;(A--1 -4 f '2- -4 111-4r 1---c2 i ) ,9f--,S;c,-#J (J Are-)0 -F9 J n19 Arti?Off ) GcK P ro 6.4 , -vJ Project Tt-tf— By M TT Sheet No. Consulting Engineers arocotlon ti. r I Date 4125`/3 31/ Client " c_or a-ptijAQ o. Revised Job No. Porliand,Oregon I Date Z(�O . ice. o i s r2s:04 — eaf—C-It .) —vv t. , .sue PLA- = t2-to oJ-5-- m Iv -7- V- (-C'2C x.- 1-0 IlDe2.4 c r i- � . 2 •\ T = 12..‘ k ( 4 •S r - 57c> k—F-r J y A- 1 b - - $ III 11' - $,4 $.4 - - -a- /4.o q4 -- •.ct 3-.q '5 —t o sbo z8,2 3.Z 3-3 -- 0;333 -Z - A 3,$ 7.S vYh4 /.1) $.c 3 zB et 7—r. / ?h.�- ¢_J 94.uS 8bi /3. loos- TO Li .... w . A- = 15, k 43 -LL. 2. - 3, L.. c_ = Z. 7- k. e.�A-LL 3 b = ,S` k A " 9 f9 c to o 43 ,Ato Pr i-164, , At_. KPFF Consulting Engineers MM 7/26/2013 KPFF Consulting Engineers MM 7/26/2013 The Adrienne c)Shear Reinforcement As 0.22 in"2 As=Vn/Fy distributed over height of wall Earthquake Design-N-S DIRECTION CMU SHEAR WALLS No.bars 2 ACI 530.01-08 Bar size 4 Wall Grid A-6ft Pier As 0.4 in^2 Spacing 48.0 in Total 1.40 in"2 OK 1.GENERAL Pier fixity 0 1=fixed or 0=cantilever V.FLEXURAL CHECK ASTM Standard Reinf Bars II.PROPERTIES AND GEOMETRY Bar size Dia.(in.) Area(in?) fm 2,000 psi Ern 1,800,000 psi AO section 1.8 a)Jamb Reinforcement and Steel Ratios 3 0.375 0.11 4 0.5 Fs 24,000 psi n 16.1 No.bars ze 2 5 0.625 0..41 31 Es 29,000,000 psi Bar size 8 6 0.75 0.44 h 14 ft $_1:;=` v M - f_ V As 1.58 in^2 7 0.875 0.6 / ?Ifs := p 0.00324 p=p=As/bd 8 1 0.79 L7.625 �_ s ? np 0.052 9 1.128 1 r=-°;,; _ d 64.0 in 10 1.27 1.27 deft 64.0 in d=L-8" „z -M'fr , . d' 8 in 11 1.41 1.56 I 237168 in^4 „,.......1..„,1 M..112nV d M.hV 14 1.693 2.25 18 2.257 4 Ill.APPLIED LOADS b)Calculate Coefficients V 13.2 k M 4iSV 11 M _ by h Vaiues of k m2+2 m { M m 0.153 q ," Pot 13.9 k Vd -Vd - 2d Ve ve d q 0.065 A,jd PLL 3.2 k Mammy shear wtli MMsowy.h,,*411 k 0.238 Procedure;Compute m and u; IlIad ten and bottom. hood ii bel:am Only. Ie Mo 184.8 k-ft SIMrr wall wlw.en non,,. On..t„ty canel.Wrwall, select k•values in which t”, k Location of Compression Resultant =- F k igure 2.Shear wall fixilies p' 1 n 1-m IV.SHEAR CHECK (2n-1)As/kbd 0.425 (k-d'id) d'/kd 0.525 d' P,-2f, a)Calculate Allowable Shear Stress 1-d'/kd 0.475 np.-p 12n 21' 1y d (1-ki M/(V'd) 2.33 For fixed piers=h/2d t„ • For cantilever piers=h/d z 0.388 i 1 For M/(V•d)<1 Fv=(1/3)14-(MN d)j'SORT(fm) psi ACI 2-21 e i'• � ' not to exceed Fv=80-45(MNd) psi Moment Arm 101 •• g0 .. .. :.. _. ._. ___.. j=1-zk 0.908 a trG'•' For M/(V•d)>1 Fv=SORT(fm) psi ACI 2-22 i r I not to exceed Fv=35 psi se , c)Calculate Stresses -.->•"C V 'l Pte.- 59.6 Psi ; l� Fv max" 46.7 psi "includes 1/3 increase for wind and earthquake combinations Tensile Stress in Steel "•'nOd i n Fv 46.7 psi fs=M!(As'j'd) 1 { (2 -1IA, x d' 0 \I d' b)Applied Shear Stress M=V'h/2(fixed pier)or VI,(cantilever pier)-0.9'DL•L/2 z fv 24.0 psi fv=V/td OK M 147.27 k-ft 2 + (2n km A', x(1 _ _d:"1 fs 19257 psi OK ` / 1of3 2of3 W • KPFF Consulting Engineers MAA 7/26/2013 Compressive Stress in Masonry fb=fs/n•(k/1-k) 1— —ne Zkd r°+ fb 373 psi ° L Resultant of Fb" 878 psi OK Compression Forces Fb=0.33•fm'1.33 ACI Section 2.3.3.2.2 • "includes 1/3 increase for wind and earthquake combinations Figure 3.Design Coefficients and Diagrams VI.AXIAL CHECK a)Axial Stress due to gravity loads fa= TOTAL/A fa 44 psi Fa" 666.66667 psi OK Fa=0.25 fm x 1.33 psi ACI 2-17 for non-slender piers "includes 1/3 increase for wind and earthquake combinations b)Axial Stress due to wall panel overturning fb=Mo•c/In fb 337 psi Fb 878 psi OK VII.COMBINED STRESS CHECK fa/FA+fb/Fb<1.0 0.45 < 1.0 OK 3of3 KPFF Consulting Engineers MAA 7/26/2013 KPFF Consulting Engineers MM 7/26/2013 The Adrienne c)Shear Reinforcement As 0.33 in"2 As=VnIFy distributed over height of wall Earthquake Design-N-S DIRECTION CMU SHEAR WALLS No.bars 2 ACI 530.01-08 Bar size 4 Wall Grid A-9ft Pier As 0.4 in^z Spacing 48.0 in Total 1.40 in^2 OK I.GENERAL Pier fixity 0 1=fixed or 0=cantilever V.FLEXURAL CHECK ASTM Standard Rein(Bars II.PROPERTIES AND GEOMETRY Bar size Dia.(in.) Area(in 2) a)Jamb Reinforcement and Steel Ratios 3 0.375 0.11 rm 2,000 psi Ern 1,800,000 psi ACI section 1.8 0.2 Fs 24,000 psi n 16.1 4 0.5 .31 Es 29,000,000 psi Bar size 2 5 0.625 0.41 Bar size 8 6 0.75 0.44 V M v As 1.581n^2 7 0.875 0.6 h 14 ft a;:_}+-1 - - •c: - t 7.625 in = y _��-= p 0.00207 p=p=As 1 bd 8 1 0.79 A_�_: �=`?r np 0.033 9 1.128 1 L 108 in 41.1% " �r ^ hz� d 100.0 in 10 1.27 1.27 deft 100.0 in d=L-8" -_- =i_ d' Bin 11 1.41 1.56 I 800442 in^4 �-a M.1/2 by d j M-"V 14 1.693 2.25 III.APPLIED LOADS 18 2.257 4 b)Calculate Coefficients M V 19.8k M _Knv_ h M by h m 0098 Vaiuesofk=sJm q-m 1,. -- Pa 20.5 k Idd 'Cie- 2d Vd� Vd d` q 0.039 Asjd Ptt 4.9 k Mmomy show%well Masonry Mom roll k 0.196 Procedure:Compute in and u. (hod lop.nd bo lem, hoed la bOltonl o Is. Mo 277.2 k-11 9h..,wolf baweee none, one May mndl•wr wail. f, k Location of Compression Resultant select k-values in which f,,' _ _ Figure 2.Shear wall fxities m=nil-F M.(2n- 1) n I-k IV.SHEAR CHECK (2n-1)A's/kbd 0.329 (k--d'1d) d'/kd 0.407 qy npep i2n --1) d r _21" a)Calculate Allowable Shear Stress 1-d'/kd 0.593 d (t-k{ M/(V'd) 1.56 For fixed piers=h/2d 1„ . For cantilever piers=h/d z 0.354 -i-, I•.. b Z, r...-• •ro. For M/(V'd)<1 Fv=(1/3)[4-(MNd)]'SORT(fm) psi ACI 2-21 Si v. OuP 0.not to exceed Fv=80-45(MNd) psi Moment Arm ,. • NO j=1-zk 0.930 e • ...:140. .}...•.i.. _ . For M/(V'd)>1 Fv=SORT(fm) psi ACI 2-22 i e not to exceed Fv=35 psi c)Calculate Stresses l _. _/ r j_. ,_Y Fv" 59.6 psi • , (yn ,•Fv max" 46.7 psi "includes 1/3 increase for wind and earthquake combinations Tensile Stress in Steel "•`-- Fv 46.7 psi fs=MI(As'j'd) 1 + 12n-IIA'a x d' x `/I_d^) b)Applied Shear Stress M=V'h/2(fixed pier)or V'h(cantilever pier)-0.9'DL'L/2 6 kbd kd \ kd z=- fv 24.0 psi fv=V/td OK M 194.175 k-ft 2+ (2n kbdA, x(1 kd) fs 15850 psi OK 1of3 2of3 \.-/-- KPFF Consulting Engineers MAA 7/26/2013 Compressive Stress in Masonry l;n fb=fs/n'(k/1-k) + rkd fb 240 psi x - —Resultant of ,Fb" 878 psi OK Compression Fumes Fb=0.33•fm'1.33 ACI Section 2.3.3.2.2 includes 1/3 increase for wind and earthquake combinations • Figure 3.Design Coefficients and Diagrams VI.AXIAL CHECK a)Axial Stress due to gravity loads fa= TOTAL/A fa 44 psi Fa" 666.66667 psi OK Fa=0.25 fm x 1.33 psi ACI 2-17 for non-slender piers "includes 1/3 increase for wind and earthquake combinations b)Axial Stress due to wall panel overturning lb=Mo•c/In fb 224 psi Fb 878 psi OK VII.COMBINED STRESS CHECK fa/FA+fb/Fb<1.0 0.32 < 1.0 OK 3 of 3 KPFF Consulting Engineers MM 7/26/2013 KPFF Consulting Engineers MM 7/26/2013 The Adrienne c)Shear Reinforcement As 1.62 in"2 As=Vn/Fy distributed over height of wall Earthquake Design-N-S DIRECTION CMU SHEAR WALLS No.bars 2 ACI 530.01-08 Bar size 4 Wall Grid A.5 As 0.4 in^2 Spacing 32.0 in Total 2.10 in^2 OK I.GENERAL Pier fixity 0 1=fixed or 0=cantilever V.FLEXURAL CHECK ASTM Standard Reinf Bars II.PROPERTIES AND GEOMETRY Bar size Dia.(in.) Area(in 2) a)Jamb Reinforcement and Steel Ratios 3 0.375 0.11 I'm 2,000 psi Em 1,800,000 psi ACI section 1.8 4 0.5 0.2 Fs 24,000 psi n 16.1 No.bars 4 5 0.625 0.31 Es 29.000,000 psi Bar size 8 6 0.75 0.44 h 14 ft �ti_�3ads: v M v As 3.18 in"2 7 0.875 0.6 a p 0.00211 p=p=As!bd 8 1 0.79 t 7.625 in ,_--_-_-Wiz_"`_-u h i-.c np 0034 9 1.128 1 L 204 in 1i_ v- d 196.0 in 10 1.27 127 deft 196.0 in d=L-8" -,n7„?_ �i ---{_ _ -�_ _ r ?`�, d' 8 in 11 1.41 1.58 I 5394474 in^4 a , M-lI2 by e M-hV 14 1.693 2.25 III.APPLIED LOADS 18 2.257 4 b)Calculate Coefficients V 97.4 k M 101V h M h_v_ n Values of k= m f2r m M Pa 29.2 k VC 'Va ' 2d Ve ve d 4 0'1� 1 A,id 0.037 PLL 26.7 k Mohan,Ohm moll Masonry m../hMl • k 0.189 Procedure:Compute in and a; lix.d wit end bottom. had 01 bottom only. Mo 1363.6 k-ft Slwar..al between hums. One Mary o.ndlev.r wen. 1a Location of Compression Resultant sated k•values in which f _ _ Figure 2.Shear wall fixities m p=n ;•P.(2n- 1 i n 1-k IV.SHEAR CHECK (2n-1)A's/kbd 0.349 (k-dyd) d'/kd 0.216 q no e p'{2n --l) J I',`2f, a)Calculate Allowable Shear Stress 1-d'/kd 0.784 d (t-kl M/(V•d) 0.82 For fixed piers=h/2d t„ For cantilever piers=h/d z 0.292 ,, i I 4-tr _■ For M/(V'(1)<1 Fv=(1/3)(4-(MN - g djJ'SORT(Pm) psi ACI 2-21 .../ ,•,(4 7 i 4 ,- not to exceed Fv=80-45(MNd) psi Moment Arm ,c ,,� j=1-zk 0.945 .. 1 .. For M/(V•d)>1 Fv=SORT(fm) psi ACI 2-22 �' -. not to exceed Fv=35 psi is c)Calculate Stresses i r Fv" 63.1 psi _i yn - Fv max" 57.3 psi "includes 1/3 increase for wind and earthquake combinations Tensile Stress in Steel A.•Food Fv 57.3 psi fs=M/(As'j'd) 1 (2n-iiA', x d' x 1-dd' b)Applied Shear Stress M=V'h/2(fixed pier)or VII(cantilever pier)-0.9'DL•U2 z'13 kbd kd kd j fv 62.6 psi fv=V/Id -57.3 psi OK M 1140.22 k-ft 1 . (2n•11 A. x(1 - d 1 fs 23381 psi OK 2 kbd ` kd 1of3 2of3 KPFF Consulting Engineers MM 7/26/2013 Compressive Stress in Masonry fm u fb=fs/n•(k/1-k) zkd fb 338 psi 2 —Resur tan iof Fb** 878 psi OK Compression FO/<e% Fb=0.33•t'm•1.33 ACI Section 2.3.3.2.2 '•includes 1/3 increase for wind and earthquake combinations Figure 3.Design Coefficients and Diagrams VI.AXIAL CHECK a)Axial Stress due to gravity loads fa=PTOTAL/A fa 49 psi Fa" 666.66667 psi OK Fa=0.25 fm x 1.33 psi ACI 2-17 for non-slender piers includes 1/3 increase for wind and earthquake combinations b)Axial Stress due to wall panel overturning fb=Mo•c/In fb 309 psi Fb 878 psi OK VII.COMBINED STRESS CHECK fa/FA+fb/Fb<1.0 0.43 < 1.0 0K 3 of 3 KPFF Consulting Engineers MM 7/26/2013 KPFF Consulting Engineers MM 7/26/2013 The Adrienne c)Shear Reinforcement As 1.92 in^2 As=Vn/Fy distributed over height of wall Earthquake Design-N-S DIRECTION CMU SHEAR WALLS No.bars 2 ACI 530.01-08 Bar size 4 Wall Grid 2.7 As 0.4 in^2 Spacing 32.0 in I.GENERAL Total 2.10 in^2 OK Pier fixity 0 1=fixed or 0=cantilever V.FLEXURAL CHECK ASTM Standard Reinf Bars II.PROPERTIES AND GEOMETRY Bar size Dia.(in.) Area(in 2) fm 2.000 psi Em 1,800,000 psi ACI section 1.8 a)Jamb Reinforcement and Steel Ratios 3 0.375 0.11 4 0.5 Fs 24,000 psi n 16.1 .No.bars ze 3 5 0.625 031 Es 29,000,000 psi .41 Bar size 7 6 0.75 0.44 v "+ _ v As 1.8 in"2 7 0.875 0.6 h 14 ft 1 7.625 in MX-y , p 0.00072 p=p'=As/bd 8 1 0.79 L 336 in "� h c;Rz np 0.012 9 1.128 1 deft 328.0 in d=L-8" :{- d 326.0 in 10 1.27 1.27 -r d' 8 in 11 1.41 1.58 I 24103296 In 54 - d M-V2hV d u-hv 14 1.893 2.25 III.APPLIED LOADS 18 2.257 4 b)Calculate Coefficients M V 115.2 k M spiv h M nv h m 0.034 Values of k' J m -m PDL 45.9 k ■d VT - se Vd� vd d` q 0.012 .=A,id P ^^".O^ry'h•xrw"1j k 0.125 Procedure;Compute In and❑; LL 42 k Whiney Otto won hint top and warm honor noon. Doi to Wltarn nnry. Mo 1612.8 k-fl snw.w.0 1»rw•"n Ong dery oanu»wr wall. Location of Compression Resultant select k-values in which f� x k Figure 2.Shear wall fxities " I- IV.SHEAR CHECK (2n-1)A's/kbd 0.179 m.np+ p'l2n- 1) d'l kd 0.194 d' f',-2f, (k-d/d) a)Calculate Allowable Shear Stress 1-d'/kd 0.806 q no 4,p t2n I I d (I-lc) M/(V•d) 0.50 For fixed piers=h/2d r„ For cantilever piers=h/d z 0.302 i, TA', 's ■ .. For M/(V•d)<1 Fv=(1/3)(4-(MNd)]'SQRT(f m) psi ACI 2-21 not to exceed Fv=80-45(MNd) psi Moment Arm ...• , � • L ]=1-zk 0.962 n For M/(\'d)>1 Fv=SORT(fm) psi ACI 2-22 not to exceed Fv=35 psi ol c)Calculate Stresses r __, _, r-:- Fv" 69.6 psi ,t `ri, Fv max" 76.7 psi "includes 1/3 increase for wind and earthquake combinations Tensile Stress in Steel ^r"nod Fv 69.6 psi 1s=M/(As']"d) 1 + an-1)A', x x 1-d- b)Applied Shear Stress M=V'h/2(fixed pier)or V'h(cantilever pier)-0.9•01.-L/2 n" kbd kd kd z= fv 45.0 psi fv=V/td OK M 1034.46 k-ft 2+ (2n k11 A, x(1 d fs 21854 psi OK 1of3 2of3 ■JJ • KPFF Consulting Engineers MM 7/26/2013 Compressive Stress in Masonry fm fb=fs/n'(k/1-k) j 1.-- � n}.o' r-_ rkd lb 195 psi x CResutsantot Fb" 878 psi OK Compression Forces Fb=0.33•fm*1.33 ACI Section 2.3.3.2.2 "includes 1/3 increase for wind and earthquake combinations • Figure 3.Design Coefficients and Diagrams VI.AXIAL CHECK a)Axial Stress due to gravity loads fa=PTOTA./A fa 47 psi Fa** 666.66667 psi OK Fa=0.25 fm x 1.33 psi ACI 2-17 for non-slender piers "includes 1/3 increase for wind and earthquake combinations b)Axial Stress due to wall panel overturning ib=Mo•c/In fb 135 psi Fb 878 psi OK VII.COMBINED STRESS CHECK fa/FA+fb/Fb<1.0 0.22 < 1.0 0K 3 of 3 KPFF Consulting Engineers MAA 7/26/2013 KPFF Consulting Engineers MAA 7/26/2013 The Adrienne C)Shear Reinforcement As 0.05 in"2 As=Vn/Fy distributed over height of wall Earthquake Design-E-W DIRECTION CMU SHEAR WALLS No.bars 2 ACI 530.01-08 Bar size 4 Wall Grid 3-7'Pier As 0.4 in"2 Spacing 32.0 in Total 2.10 in^2 OK I.GENERAL Pier fixity 0 1=fixed or 0=cantilever V.FLEXURAL CHECK ASTM Standard Reinf Bars II.PROPERTIES AND GEOMETRY Bar size Dia.(in.) Area(in 2) fm 2,000 psi ern 1,800,000 psi ACI section 1.8 a)Jamb Reinforcement and Steel Ratios 3 0.375 0.11 4 0.5 Fs 24,000 psi n 16.1 .31 Es 29,000,000 psi No.size 1 5 0.625 0.41 Bar size 6 6 0.75 0.44 h 14 ft -_nh _v_ .M v As 0.44 in"2 7 0.875 0.6 ff' p 0.00076 p=p=As/bd 6 1 0.79 l 7.625 in =.:-"::m. D np 0.012 9 1.128 1 L 84 in a= n E{ice_ " ` _sl"? •, d 76.0 in 10 1.27 1.27 doff 76.0 in d=L-8" x''4. -__ I 376614 in"4 d' 8 in 11 1.41 1.56 `p M-1/SnV d M^hV 14 1.693 2.25 III.APPLIED LOADS f. 18 2.257 4 b)Calculate Coefficients V 2.7 k M sshv h M -- -N "� " m 0.036 Values of k=�m 2q m la= .--.- POL 20.7 k ■o ^vii- sa va ve e' q 0.015 A.id Pu 3.4 k i = i .all Mahoney Owee rolI k 0.139 Procedure:Compute m and a: rixw sop and hnswm. Maul at bottom nniy. Mo 37.8 k-ft Shan,waft bat, n,,floor+• 0=..nory undl..K,well, select k-values in which f <f` Location of Compression Resultant n (._.t_) t k Figure 2.Shear wall fixities m.rip i-p'(2n- 11 IV.SHEAR CHECK (2n-1)A's/kbd 0.170 (k-d',/d) d'/kd 0.755 q nprp'f2n - 11 d r'°21• a)Calculate Allowable Shear Stress 1-d'/kd 0.245 d I t-k) M/(V'd) 2.00 For fixed piers=h/2d stn _ . For cantilever piers=h/d z 0.368 - 1 For M/(V•d)<1 Fv=(1/3)[4-(MNd)]"SQRT(fm) psi ACI 2-21 not to exceed Fv=80-45(MNd) psi Moment Arm 9 1=1-zk 0.949 . ....`.:. ..... .....r._... For M/(V•d)>1 Fv=SQRT(fm) psi ACI 2-22 not to exceed Fv=35 psi c)Calculate Stresses Fv" 59.6 psi • �L... • 'Yn Fv max" 46.7 psi "includes 1/3 increase for wind and earthquake combinations Tensile Stress in Steel A.-t=d Fv 46.7 psi fs=M/(As•)'d) 1 (2n-I)A'a x d' x 1-c' b)Applied Shear Stress M=V•h/2(fixed pier)or VII(cantilever pier)-0.9.OL"U2 z-6 kbd kd kd/ fv 4.2 psi fv=V/Id OK M -27.405 k-ft 1 r (2n 11 A'. x(I - d )1 fs -10363 psi NO NET TENSION 2 ktxi kd 1of3 2of3 • KPFF Consulting Engineers MAA 7/26/2013 Compressive Stress in Masonry b nx-onu fb=fs/n'(k/1-k) • f -jrwn fb -104 psi Y Resultant at Fb** 878 psi OK compression Forces Fb=0.33*Tm•1.33 ACI Section 2.3.3.2.2 includes 1/3 increase for wind and earthquake combinations Figure 3.Design Coefficients and Diagrams VI.AXIAL CHECK a)Axial Stress due to gravity loads fa= TOTAL/A fa 50 psi Fa** 666.66667 psi OK Fa=0.25 fm x 1.33 psi ACI 2-17 for non-slender piers includes 1/3 increase for wind and earthquake combinations b)Axial Stress due to wall panel overturning fb=Mo'c/In fb 51 psi Fb 878 psi OK VII.COMBINED STRESS CHECK fa/FA+fb/Fb<1.0 0.13 < 1.0 OK 3 of 3 KPFF Consulting Engineers MM 7/26/2013 KPFF Consulting Engineers MM 7/26/2013 The Adrienne c)Shear Reinforcement As 0.14 in"2 As=Vn/Fy distributed over height of wall Earthquake Design-E-W DIRECTION CMU SHEAR WALLS No.bars 2 ACI 530.01-08 Bar size 4 Wall Grid 3-11'Pier As 2.0 in^z Sparing 32.0 in Total 2.10 in"2 OK I.GENERAL Pier fixity 0 1=fixed or 0=cantilever V.FLEXURAL CHECK ASTM Standard Rein?Bars II.PROPERTIES AND GEOMETRY Bar size Dia.(in.) Area(in 2) 3 fm 2,000 psi E'm 1,800,000 psi ACI section 1.8 a)Jamb Reinforcement and Steel Ratios 4 0.375 0.5 0.11 0.2 Fs 24,000 psi n 16.1 No.bars 1 5 0.625 0.31 Es 29,000,000 psi Bar size 6 6 0.75 0.44 V M - V As 0.44 in^2 7 0.875 0.6•h 14 ft t 7.625 in ,-_ P 0.00047 p=p'=As i bd 8 1 0.79 _ ?'-, np 0.007 9 1.128 1 L 132 in - _ v:; h d 124.0 in 10 1.27 1.27 doff 124.0 in d=L-8" `„M`ti A; =z__=__ d 8 w 11 1,41 1,56 1 1461438 in^4 e I M-vxhV 1d J1 M-nv 14 1.693 2.25 '� 1 18 2.257 4 III.APPLIED LOADS b)Calculate Coefficients V 8.5k M low b M M ^v h m 0.022 Values of k=�f m+2q m -_--- Pot 6 k ve Va - za ltd vd d q A,id 0,008 PIL 5.3 k Mammy show wan Masonry en.,.amll k 0.110 Procedure:Compute m and q. find UM and honor, bond at bottom enty. Mo 119 k-ft Shoot wan b.1wMm Ohms. Om story oontil,wr wall. t, k Location of Compression Resultant select k-values in which fr -,_ _ Figure 2.Shear wall xities m.,rip i p'12n- 11 n 1.1-6 f IV.SHEAR CHECK (2n-1)A's/kbd 0.132 d'/kd 0.588 d' f',•2t, (k-dYrr) a)Calculate Allowable Shear Stress 1-d'/kd 0.412 i .. nP n'12n- t 1 d 11-k1 M/(V'd) 1.27 For fixed piers=h/2d i„, For cantilever piers=h/d z 0.358 i 1 i' For M/(V'(1)<1 Fv=(1/3)(4-(MNd)j•SORT(fm) psi ACI 2-21 i 3 ." r not to exceed Fv=80-45(MNd) psi Moment Arm a,•',6a 9 i j=1-zk 0.961 ...� �_..... For M/(V'd)>1 Fv=SORT(fm) psi ACI 2-22 I IN a not to exceed Fv=35 psi tat ' c)Calculate Stresses i�L' Fv" 58.6 psi .1 'Yn ^ Fv max" 46.7 psi "includes 1/3 increase for wind and earthquake combinations Tensile Stress in Steel ^,-ted Fv 46.7 psi fs=M/(As'j'd) d 1 + (2n-t!A'a x d a 1-- b)Applied Shear Stress M=V'h/2(fixed pier)or V'h(cantilever pier)-0.9'DL'U2 z mti kbd kd kd hr 8.4 psi fv=V/td OK M 89.3 k-ft 2 + (2n k11 A', x(1 - kd} bd fs 20445 psi OK 1of3 2of3 • KPFF Consulting Engineers MAA 7/26/2013 Compressive Stress in Masonry a fm b �.. -Af•aba fb=fs/n'(k/1-k) —�—�- --1 rke [` fb 156 psi °x `Rerultant of Fb•• 878 psi OK Compression Forces Fb=0.33•fm•1.33 ACI Section 2.3.3.2.2 ••includes 1/3 increase for wind and earthquake combinations Figure 3.Design Coefficients and Diagrams VI.AXIAL CHECK a)Axial Stress due to gravity loads fa=Prow/A fa 24 psi Fa•• 666.66667 psi OK Fa=0.25 fm x 1.33 psi ACI 2-17 for non-slender piers ••includes 1/3 increase for wind and earthquake combinations 0)Axial Stress due to wall panel overturning fb=Mo•c/In fb 64 psi Fb 878 psi OK VII.COMBINED STRESS CHECK fa/FA+fb/Fb<1.0 0.11 < 1.0 OK 3 of 3 KPFF Consulting Engineers MM 7/26/2013 KPFF Consulting Engineers MM 7/26/2013 The Adrienne c)Shear Reinforcement As 1.82 in"2 As=Vn/Fy distributed over height of wall Earthquake Design-N-S DIRECTION CMU SHEAR WALLS No.bars 2 ACI 530.01-08 Bar size 4 Wall Grid 3.3 As 0.4 in^2 Spacing 32.0 in Total 2.10 in^2 OK I.GENERAL Pier fixity . 0 1=fixed or 0=cantilever V.FLEXURAL CHECK ASTM Standard Reinf Bars II.PROPERTIES AND GEOMETRY Bar size Dia.(in.) Area(in 2) fm 2,000 psi Em 1,800,000 psi ACI section 1.8 a)Jamb Reinforcement and Steel Ratios 3 0.375 0.11 4 0.5 0.2 Fs 24,000 psi n 16.1 Es 29,000,000 psi No.bars 2 5 075 0.31 Bar size ze 7 6 0.75 0.44 h 14 ft �R�a v M _ v As 1,2 in"2 7 0.875 0.6 t 7.624 1t q p 0.00035 p=p=As/bd 8 1 0.79 L 462 in '_' �- np 0.006 9 1.128 1 .. '`- " " d 454.0 in 10 1.27 1.27 Jeff 454.0 in d=L-6" - ;_.ter: d' 8 in 11 1.41 1.56 I 62659154 in^4 ____Li I M.ttzbv a M-hV 14 1.693 2.25 �1 18 2.257 4 III.APPLIED LOADS b)Calculate Coefficients V 109.2 k M 54OV h ,. n M "� " m 0.016 Values of k=�m 2rt•-m r,n ---- P01. 50.4 k VW-ve - id vd Vii d` q 0.006 A,jd Pu 46.2 k MaOnty Omar wall Mammary slaw wall k 0.092 Procedure:Compute in and ra: load ton and bottom, toad at Mean Only. I Mo 1528.8 k-ft shat wall bnw..o noon. Ora.tnrynaodr.w.wall. select k-values in which _ Location of Compression Resultant to,-'-f Figure 2.Shear wall fixities mnnplp'(2n- 1) n \1-k IV.SHEAR CHECK (2n-1)A's/kbd 0.117 (k-d.,d) d'/kd 0.191 q nprn(2n --1) d 1,' •21, a)Calculate Allowable Shear Stress 1-d'/kd 0.809 d (i-k) M/(V•d) 0.36 For fixed piers=h/2d 1-, For cantilever piers=h/d z 0.311 f t' For M/(V-d)<1 Fv=(1/3)[4-(MNd))•SORT(fm) psi ACI 2-21 not to exceed Fv=80-45(MNd) psi Moment Arm ,` „, „ 1=1-zk 0.971 e ,iide"'fine . i.. .......... :........ For M/(V•d)>1 Fv=SORT(fm) psi ACI 2-22 : /. not to exceed Fv=35 psi c)Calculate Stresses 4� .. I_ Fv" 72.3 psi --�-. _ eyn • Fv max'" 84.8 psi "includes 1/3 increase for wind and earthquake combinations Tensile Stress in Steel A,-tad Fv 72.3 psi fs=M/(As'j'd) 1 * (2n-1}A', x d x {(d' b)Applied Shear Stress M=V'h/2(fixed pier)or V•h(cantilever pier)-0.9'DL'U2 b kbd kd \ kd/ z= fv 31.0 psi fv=V/td OK M 655.62 k-ft 1 i, (2n•11 A', x 1 _ d' fs 14867 psi OK 2 kUd kd 1of3 2of3 • KPFF Consulting Engineers MAA 7/26/2013 Compressive Stress in Masonry fm b �....-� A; 0.1,1 fb=fs/n•(k/1-k) rod fb 94 psi 3 Resultant at Fb** 878 psi OK CmmPresdon Forces Fb=0.33•fm•1.33 ACI Section 2.3.3.2.2 ••includes 1/3 increase for wind and earthquake combinations Figure 3.Design Coefficients and Diagrams VI.AXIAL CHECK a)Axial Stress due to gravity loads fa=PTOTAL/A fa 40 psi Fa— 666.66667 psi OK Fa=0.25 fm x 1.33 psi ACI 2-17 for non-slender piers ••includes 113 increase for wind and earthquake combinations b)Axial Stress due to wall panel overturning fb=Mo•c/In fb 68 psi Fb 878 psi OK VII.COMBINED STRESS CHECK fa/FA+fb/Fb<1.0 0.14 < 1.0 OK 3 of 3 v 7 KPFF Consulting Engineers MM 7/26/2013 The Adrienne • Earthquake Design �1 CMU Shear Wall Footings N-S EQ - Wall Grid A I. INPUT 2nd Floor Load 3rd and Roof Loads DL 66 psf 70 psf LL 40 psf 80 psf Tributary Width 13.5 ft 2 ft Seismic Load Shear,Ve 94.8 k Elevations T/Footing 0 ft OA 14 ft T/Wall 14 ft RA 31.5 ft B/Deck 14 ft Wall Dimensions Footing Dimensions Slab+ Soil Length 43 ft Length 63 ft Width 1.5 ft CMU thickness 8 in Width 3 ft Thick 4 in Height 14 ft Depth 1.5 ft Vu Soil Properties •0 -- Tw ALL D+L EQ qa 2 2.67 ksf II. OVERTURNING CHECK Dead Loads tv Floor Load 65.0 k Wall 50.568 k Slab 3.225 k Footing 42.525 k R A TTOOTING TOTAL 161.3 k --- Overturning Moment 1327.2 k-ft Restoring Moment 4572.0 k-ft OK III. SOIL BEARING CHECK Footing section 1984.5 ft^3 q floor 0.34 ksf q wall+footing 0.75 ksf q overturning 0.47 ksf TOTAL 1.56 ksf OK 1 of 1 • KPFF Consulting Engineers MAA 7/26/2013 . The Adrienne Earthquake Design (Z CMU Shear Wall Footings ll N-S EQ - Wall Grid A.5 I. INPUT 2nd Floor Load 3rd Floor and Roof Return Walls DL 66 psf 70 psf 84 psf LL 40 psf 80 psf Tributary Width 13.5 ft 13.5 ft 8 ft Seismic Load Shear,Ve 97.4 k Elevations T/Footing 0 ft OA 14 ft T/ Wall 14 ft RA 13.25 ft B/Deck 14 ft Wall Dimensions Footing Dimensions Slab+Soil Length 16.5 ft Length 26.5 ft Width 6 ft CMU thickness 8 in Width 6 ft Thick 12 in Height 14 ft Depth 1 ft Yu 0 TWALL Soil Properties ---> • D+L EQ qa 2 2.67 ksf II. OVERTURNING CHECK Dead Loads W Floor Load 48.7 k Wall 19.404 k Slab + Soil 13.365 k Footing 23.85 k `R •A __ T:FOOTING TOTAL 105.3 k --- Overturning Moment 1363.6 k-ft Restoring Moment 1395.1 k-ft OK III. SOIL BEARING CHECK Footing section 702.25 ft^3 q floor 0.31 ksf q wall+footing 0.57 ksf q overturning 1.36 ksf TOTAL 2.24 ksf OK 1 of 1 KPFF Consulting Engineers MAA 7/26/2013 The Adrienne • Earthquake Design (� CMU Shear Wall Footings N-S EQ - Wall Grid 2.7 I. INPUT 2nd Floor Load 3rd Floor and Roof Loads DL 66 psf 70 psf LL 40 psf 80 psf Tributary Width 12.5 ft 12.5 ft Seismic Load Shear, Ve 115.2 k Elevations T/Footing 0 ft OA 14 ft T/Wall 14 ft RA 16 ft B/Deck 14 ft Wall Dimensions Footing Dimensions Slab+Soil Length 28 ft Length 32 ft Width 3 ft CMU thickness 8 in Width 4 ft Thick 12 in Height 14 ft Depth 1 ft Vu Soil Properties ----> • 0 -- T.WALL D+L EQ qa 2 2.67 ksf II. OVERTURNING CHECK Dead Loads W Floor Load 54.4 k Wall 32.928 k Slab 10.5 k Footing 19.2 k R A VFOOTING TOTAL 117.0 k --- Overturning Moment 1612.8 k-ft Restoring Moment 1685.2 k-ft OK III. SOIL BEARING CHECK Footing section 682.6667 ft"3 q floor 0.43 ksf q wall+footing 0.56 ksf q overturning 1.65 ksf TOTAL 2.64 ksf OK 1 of 1 KPFF Consulting Engineers MAA 7/26/2013 7 The Adrienne t'l Earthquake Design CMU Shear Wall Footings N-S EQ - Wall Grid 3.3 I. INPUT 2nd Floor Load 3rd Floor and Roof Loads DL 66 psf 70 psf LL 40 psf 80 psf Tributary Width 10 ft 10 ft Seismic Load Shear, Ve 115.2 k Elevations T/Footing 0 ft OA 14 ft T/Wall 14 ft RA 21.25 ft B/Deck 14 ft Wall Dimensions Footing Dimensions Slab + Soil i Length 38.5 ft Length 42.5 ft Width 4 ft 1 CMU thickness 8 in Width 4 ft Thick 12 in Height 14 ft Depth 1 ft Vu 0 TWALL Soil Properties —> • --- D+L EQ qa 2 2.67 ksf II. OVERTURNING CHECK Dead Loads ly Floor Load 57.8 k Wall 45.276 k 1 Slab 19.25 k Footing 25.5 k .R •A -- TFOOTING TOTAL 147.8 k --- Overturning Moment 1612.8 k-ft 1 Restoring Moment 2827.2 k-ft OK III. SOIL BEARING CHECK Footing section 1204.167 ft^3 q floor 0.34 ksf q wall+footing 0.58 ksf q overturning 0.94 ksf TOTAL 1.86 ksf OK 1 of 1 KPFF Consulting Engineers MAA 7/26/2013 The Adrienne Earthquake Design � ) CMU Shear Wall Footings E-W EQ - Wall Grid 3a - 7' Pier I. INPUT 2nd Floor Load 3rd Floor and Roof Loads Shaft Wall DL 66 psf 70 psf 84 psf LL 40 psf 80 psf 29 ft Tributary Width 4 ft 4 ft Seismic Load Shear, Ve 2.7 k Elevations T/Footing 0 ft OA 14 ft T/WaII 14 ft RA 4.5 ft B/Deck 14 ft Wall Dimensions Footing Dimensions Slab + Soil Length 7 ft Length 9 ft Width 4 ft CMU thickness 8 in Width 4 ft Thick 12 in Height 14 ft Depth 1 ft Vu 0 T WALL Soil Properties --> • --- D+L EQ qa 2 2.67 ksf II. OVERTURNING CHECK Dead Loads W Floor Load 4.9 k Wall 25.284 k Slab 3.5 k Footing 5.4 k R A T FOOTING TOTAL 39.1 k --- Overturning Moment 37.8 k-ft Restoring Moment 158.3 k-ft OK III. SOIL BEARING CHECK Footing section 54 ft^3 q floor 0.14 ksf q wall+footing 1.22 ksf q overturning 0.49 ksf TOTAL 1.85 ksf OK 1 of 1