Loading...
Plans Dan Nelson From: Ness, Bill <BNess @eeeug.com> Sent: Wednesday,June 26, 2013 12:28 PM To: Dan Nelson . Cc: Eric Christenson;Yutzy, Gordon Subject: Agilyx Tigard Permit Dan—Thank you for your phone message this morning regarding the status of the Agilyx Tigard Permit. We understand that you requested a valuation of the facility. Please note that the letter we mailed to you earlier this month included a valuation under Item D. The valuation amount is$4,181,838. Please let me know when you would like to meet and finalize the permit. Sincerely, Bill Ness, PE Senior Project Manager EVERGREEN ENGINEERING Engineering and Construction Services 1740 Willow Creek Circle CITY OF TIGARD Eugene,OR 97402 Approved. .14U ...[ Tel 541.484.4771 Ext. 117 Conditionally Approved....[ ] Fax 541.484.6759 See Letter t0:Fol IoW,...,..«,....,...[ I Cell 541.852.3545 Attached ......[ ] l www.evercreenengineerino.com Permit Number: 'COWS Address:`7Q 1 O S2.l By: Date: to Approved plans shall be on job site. OFFICE COPY REVISION Ness, Bill Mae From: Steve Conrad [steve.conrad @bccengineering.com] MAY 1 3 2013 Sent: Friday, December 21, 2012 4:02 PM To: CGarrison @agilyx.com; ECHRISTENSON @agilyx.com; Tom Miles CITY OF TIGARD Cc: Pickens, Brad; brian.voight @usmetalworks.com BUILDING DIVISION Subject: FW: Surge Bin Drawing Attachments: 12958-5110-01_v0l.pdf; 12958 Surge Bin Structural Calcs.pdf This is the drawing that we sent today to Brian at USMW showing him the final "version" of the required mods to the surge bin. I have also attached here our structural calcs on the bin and its support structure. This drawing does NOT show the modifications that we will make to the bin to replace the gearbox (with two smaller gearmotors) on the twin bin-discharge screws, which I expect will follow at the end of next week once we get the gearbox and motor issues sorted out. We have a final proposal that has been promised from Applied Industrial—which we had expected to get today. We will hassle them again 1st-thing on Wednesday if we haven't seen it before. We are attempting to use similar SMCyclo drives and (integral, not piggy-back) Baldor motors on all the conveyors. To those who I had not had the opportunity to wish it before-- Have a very Blessed Christmas! Steve Conrad BRADFORD CONRAD CROW ENGINEERING CO. steve.conrad@bccencgineering.com From: Ryan McGraw Sent: Friday, December 21, 2012 3:01 PM To: Tom Miles (tmiles @trmiles.com); Brian Voight(Brian.Voight @usmetalworks.com) ^ Cc: Steve Conrad; Robert Records Subject: Surge Bin Drawing Brian, The following is a minor revision to the surge bin. It mainly encompasses minor dimensional changes and has been assigned a drawing number in our drawing set. If you have any questions,feel free to contact us. Happy Holidays. Ryan McGraw, P.E.,S.E. BRADFORD CONRAD CROW ENGINEERING CO. 9925 S.W. Nimbus Avenue,Suite 110 Beaverton,Oregon 97008-7592 Office Phone (503)213-2013 Mobile Phone(503)989-9156 Fax (503) 213-2018 ryan.mcgraw @bccengineering.com http://www.linkedin.com/in/rvanmcgrawbe r 1 • Misc. Pumps, Equipment and Pipe Supports • All anchors were installed and torqued per manufactures specifications (attached) Sincerely, Brian Voight US Metal Works Inc. - Sandy, OR (503) 668-8036 Ext. 322 Brian.voight(ausmetalworks.com From: Pickens, Brad [mailto:BPickens(aeeeug.com] Sent: Wednesday, January 30, 2013 1:49 PM To: Brian Voight Cc: Craig Garrison; Walters, Erin Subject: CSS Anchorage Brian, This is in regards to your request for an equal replacement to the Hilti HIT-TY 150 anchors. To our knowledge other manufactures don't supply an anchor with the same load capacity. However the Hilti Kwik Bolt TZ expansion anchor is an acceptable replacement. It requires the same diameter and embedment length. Brad Pickens, BSME Project Manager EVERGREEN ENGINEERING, INC. Engineering and Construction Services Tel 541.484.4771 Fax 541.484.6759 www.evergreenengineerinq.com 2 Ness, Bill From: Craig Garrison [CGarrison @agilyx.com] Sent: Monday, May 06, 2013 4:08 PM To: Ness, Bill;Yutzy, Gordon Subject: FW: CSS Anchorage Attachments: Hilti Anchor Installation Specs.pdf More info on the anchoring. Craig Garrison, Director Technical Projects P: 503.217.3166 1 C: 503.799.8718 1 F: 503.217-3161 1 E: cgarrison @agilyx.com ait YH Reduces. Produces. Creates. Agilyx Corporation I Executive Offices 1 9600 SW Nimbus I Suite 2601 Beaverton,OR 97008 Plant Operations 1 7904 SW Hunziker Street 1 Tigard, OR 97223 1 www.aeilvx.com Please consider the environment before printing this e-mail. This email and any files transmitted with it are confidential and intended solely for the use of the individual or entity to whom they are addressed.If you are not the intended recipient you are notified that disclosing,copying,distributing or taking any action in reliance on the contents of this information is strictly prohibited. From: Brian Voight [mailto:Brian.Voight©usmetalworks.com] Sent: Monday, May 06, 2013 1:49 PM To: Craig Garrison Cc: Bill Hite Subject: FW: CSS Anchorage Craig, Here is the email from Evergreen (below)approving the use of Hilti KB TZ expansion anchors in place of Hilti HIT-HY 150 Max SD Epoxy anchors. Ultimately we used both styles as follows: Hilti HIT-HY 150 Max SD(Epoxy w/ B-7 Threaded Rod) • Metering Bin • Therma-Flite Hilti KB-TZ(Expansion Anchors) • Infeed Hopper • Primary,Transfer and Incline Conveyors • Infeed Platform • Control Platform • CSS Skid 1 l EVERGREEN ENGINEERING, INC. • Engineering and Construction Services RECEIVED June 17, 2013 JUN 18 2013 CITY OFTIGARD BUILDING DIVISION Dan Nelson Senior Plans Examiner City of Tigard Community Development 13125 SW Hall Boulevard Tigard, OR 97223 Re: Agilyx Permit BUP 2012-00233 —Additional Permit Testing and Documentation Dear Dan, A meeting was held on Monday, June 3, 2013, between Evergreen, Agilyx, and the City of Tigard to inform the City that the equipment and platforms included in the deferred submittal were constructed prior to permit approval and to determine what actions are necessary to secure proper permit approval. During this meeting, the City of Tigard requested the following documentation and inspections: A. Provide weld design and fabrication documentation for the equipment platforms included in the deferred submittal package. B. Arrange for a special inspection, performed by a third party certified welding inspector, of the welds on the equipment platforms included in the deferred submittal. C. Verify that the anchor bolts on the platforms included in the deferred submittal were properly installed. D. Provide a valuation of the installed equipment for the entire project, including labor and materials. The four items listed above have been completed and are submitted as the following attachments to this letter: EXHIBIT A—Weld Design and Fabrication Documentation EXHIBIT B —Certified Welding Inspection Report EXHIBIT C - Anchor Bolt Installation Documentation EXHIBIT D—Project Valuation P.O. Box 21530, Eugene, OR 97402-0409 (541) 484-4771 FAX (541) 484-6759 www.evergreenengineering.com r Dan Nelson City of Tigard Senior Plans Examiner June 6, 2013 Page 2 To assist the city during their review of the submitted information, the General Arrangement drawing from both the December, 2012 permit application and the constructed facility are attached for reference. The location of the deferred submittal is identified as a"clouded"area in the General Arrangement drawing from December, 2012. The equipment and support platforms that constitute the deferred submittal are shaded in yellow on the General Assembly drawing of the constructed facility revised May 14, 2013. Equipment and platforms included in the deferred submittal Receiving Hopper Primary Conveyor Metering Bin Transfer Belt Incline Belt Surge Auger Plastic Feeder PRU Gen 6 Platform We trust this letter provides the additional testing and documentation necessary for the City of Tigard to finalize the permit for the Agilyx plant in Tigard. Once you have had an opportunity to review this information, please contact me so we can set up a meeting to answer any questions you may have and determine the actions required for final permit approval. Sincerely, Bill Ness, PE Project Manager C . Dan Nelson City of Tigard Senior Plans Examiner June 6, 2013 Page 3 s General Arrangement Drawing December,2012 • . I (E) STORAGE (E) OFFICE i AREA BREAK ROOM • _ 23'-G 11'—d' 20'-0 19'-5 + _23'-61. -----t REF TYP REF . it I (E) ELEVATED CONTROL CONSOLE I I , RAKE RAIL E C = - - - - -- - -8- - - -- - - -e- - - - - - --� — — �__ _-__ }------------------- ------- ------- - -----) — — ____-- -----'t- -a - --- - 8- - - - - - - $ - - - - - - � - - - - - - =' - - - - - - o (E) ELECTRICAL CSS ± PANEL P3 GEN 5 1D c) �7 =MI ' I D-' ce !r GI�, -I II `� DEFERRED SUBMITTAL 1'-� L II ,i PRU GEN 6 4f . tl.,.')!1 6'-U' §7," � CLEAR I'1 'II t---dt==-A c. L. i II';I'11"I ••s� 8 FEED D -- - - 53 FT TRAILER b 2 i: T r.II 1� 7 l'' HOPPER " o ce I '�� - EXIST PRU & CSS AREA II i'+�' I 5 CU YD C 0. r- - ASH BIN 1 I`S�' Imo=:—_ ; V^ •1 _. I W 0 I , 16'-0' 4 b i ELECTRICAL .! b o __ __ v_—--—-- I ;�c PANEL P4 REQUIRED CLEARANCE, M M TYP UPS (E)- - - - -- - - - - - - - - - �_= - - - - - - = - - - - - - _ - - - - - - = -\- - - - - - - =I I 16'-17' REF I PRU GEN 6 ,. '4f 444 CONTROL CABINET (E) SWITCH M OVERHEAD DOOR GEAR (E) NATURAL (E) CONTROL PANEL ,v C O (E) DISTRIBUTION CAS METER (j) I PANELS c- I i °° , ° 1— (E) EMERGENCY E_ (E) COOLING GENERATOR TOWER (E) CHILLER (E) ENVIRONMENTAL Ire;, --- - - J CONTROL DEVICE wI�I� (E) PRODUCT TANK o I = 0 - // e III 'lC)°�c4./ E a (E) POWER POLE O % O • (E Ali PLAN S E v B.O. CRANE GANTRY BEAM -r----1- 4 ISSUED FOR PERMIT ISK 11/15/;2 EL 120'-3" _ T.O. STEEL LOW POINT TROLLEY _ $ a EL 118'-O" EL 118'-6 5/6' 3 REVISED EQUIPMENT LOCATIONS,ISSUED FOR R&C JAK 11/07M2 T.O. TRAILER 2 RELOCATED CSS,ADDED CONTROL PANELS IRA 10/30/ • � I EL 114'-O" 1 REVISED EQUIPMENT LOCATIONS,ISSUED FOR R&C JAK 10/26/2■II:MI":�� f-----� 53 FT TRAILER 0 ISSUED FOR REVIEW AND COMMENT JAK 10/19/ '=I'TI- I 1 .;.i . © : 8 CU YD ' I, III :i I a o NAM/� 1 b I FEED I p .. EVERGREEN ENGINEERING THIS DRAWING IS CONSIDERED �• j.11 ( HOPPER 2326.7 CONFIDENTIAL AND PROPRIETARY, • 1 , Enyinwriny and Comlrudion Sanicw T.O. CONC 1:747.117.11 11 I 'D ® Q _ _ — DUPLICATION ION OOT RS IS ' I K i EU°OIE,OREGON•114-4771 CSS PRU GEN 6 II MNN A! 10001-01 ru.10001-01 rer3.d q PROHIBITED E WITHOUT OF AGILYX RITTEN CONSENT OF AGILYX GEN 5 ash conveyor & ash bin �( ISSUED FOR AGIFIZ-1°°°L Dl filters not shown not shown A SECTION agi I yH D 10/19/2012 : I -I• I GENERAL ASSEMBLY 4 1,8.=1'-0" PERMIT I AGILYX PROJECT NUMBER: AGI14 lcusr°.tx: AGILYX . .'. ■■-'ii., i..., -. LOCATION; MUNIIKER 1=STOLEN PF°Ncr D: EVEREST AS NOTED 3AK I 1 of 1 Dan Nelson City of Tigard Senior Plans Examiner June 6, 2013 Page 4 General Arrangement Drawing May 14, 2013 Revision r (E)� (E) OFFICE 4, BREAK ROOM PROJECT - N C aim MUIR 15'-0' 61'-11' ELEVATED CONTROL . CONSOLE u. QUENCH TOWER //1'-O' . m 1 i...,-.1 - five I T CRANE RAIL 7 , NEW CONDUIT (E) ELECTRICAL a �� o n � TRENCH PANEL P3 (E) CONDUIT TRENCH i CSS—r t i N t GEN 6 - ' , 11 PLASTIC ETERING BIN c e\\.R 1 c,y. RECEMNG HOPPER o IT I FEEDER '' W j = MIM -- iiir' g. ‘'Ikl - \ .1 -4,1r, , rr L.8 u PRU GEN ; I� - X 6 INFEED I I ``M l TRANSFER BELT PRIMARY CONVEYOR PORTABLE COMPACTOR DOOR CV c - o „' =`\\\\\ i _'.. CONTAINER I Nil_: - , - - I 1 e: G� QUENCH l,. _: c I i & �I -- —�� QUENCH TOWER �_ TOWER II, i�i�=�� INCLINE BELT 2' STAND PIPE --.. L ELECTRICAL -_ PRU GEN PANEL P4 'v M� NEW CONDUIT TRENCH E SECONDARY o 6 INFEED REQUIRED CLEARANCE, AFFIX PIPE CLAMP TYP TO WALL TYP CONDENSER ` ASH / (E) UPS m • 16'-0' REF O OVERHEAD DOOR (GEC ITCH n �� (E) DISTRIBUTION ( METER (E) CONTROL PANEL • 7 a`•l`�.` PANELS / ~� (E) EMERGENCY o VACUUM (E) COOLING GENERATOR o FUMFS TOWER (E) CHILLER SLOT 8 (E) ENVIRONMENTAL (E) PRODUCT TANK 1 CONTROL DEVICE \� PLAN - I tEl ONCE LFOR ENLARGED PLAN STAND PIPE DETAIL SEE DWG 1000L03 L - -� (E) POWER " POLE 2 i B.O. CRANE GANTRY BEAM - 9 REVIEW AND COMMENT ISK 5/14/1. LOW POINT TROLLEY ° IIII PORTABLE COMPACTOR 8 REVIEW AND COMMENT 19( 3/4/131 _• + �1 - III ��CONTAINER a- Stiw �� 7 REVIEW AND COMMENT ISK 2/18/1 GTE a W / 6 REVIEW AND COMMENT ISK 1/4/13, rT -- - I I�11, 5 ISSUED FOR PERMIT WITH REVISIONS,ADDED INFEED ISK 12/14/1 _ ISSUED FOR K .!1:1_! I \ +N 4 ISSUED FOR PERMIT ISK 11/I5/1Y N PERMIT 3 REVISED EQUIPMEW LOCATIONS,ISSUED FOR R&C JAK 11/07/1i 14-Y7.1._/..s � 1 I �I., I MI • �l I ,:a_, k - -- - - 2 RELOCATED C55,ADDED CONTROL PANES IRA 10/30/1 - -- PRU GEN 6 I �� -.� ` EVERGREEN ENGINEERING s o..a 7 DRAWING IS CONSIDERED n CSS ASH CONVEYOR -- y� E CONDUIT TRENCH �' EMIa,E oa�aN COIi7DF/R11LL AND PROPRIETARr, a ' Iy - NOT L ( ) Ell d Cdfi SM E DUPUCATION OR TRANSFER,AND &FILTERS NOT SHOWN SHOWN --µ. ms w PROHIBITED WITHOUT TlE WRITTEN SECTION R B010000 IBB0t 0O Ni AGaYX O SI agiIyH D 10/19/2012 AGIH -01 I-_1 1 GENERAL ASSE ASSEMBLY 9-E AMYX PROJECT NUMBER- AGIHZ CUSTOr.ER. AGILYX _, LOCATXXt HLN2IKER CUSTOMER PROJECT U: EVEREST AS NOTED MK 1 of 1 c Dan Nelson City of Tigard Senior Plans Examiner June 6, 2013 Page 5 EXHIBIT A—Weld Design and Fabrication Documentation Evergreen Engineering Inc. and Bradford, Conrad, Crow, Inc. were both responsible for the facility design. Specific responsibility for the design of the equipment and platforms included in the deferred submittal is as follows: Design Firm Design Responsibility Evergreen Engineering PRU Gen 6 (ThermaFlite) platform Bradford, Conrad, Crow, Inc. Receiving Hopper Primary Conveyor Metering Bin Transfer Belt Incline Belt Surge Auger Plastic Feeder US Metal Works is the general contractor responsible for the procurement, fabrication, and installation of the equipment and platforms. A letter is attached from Evergreen Engineering certifying the weld design and attesting to the weld quality. Bradford, Conrad, Crow, Inc. designed the remaining equipment platforms included in the deferred submittal. A complete set of structural design calculations for these platforms, including welding design, is attached. The following documentation was provided by US Metal Works: • AWA D1.1 Weld Certifications and Inspections for Agilyx Tigard •1 ► Dan Nelson City of Tigard • Senior Plans Examiner June 6, 2013 Page 6 Evergreen Letter Weld Design for Agilyx Access Platform June 5,2012 . : • .� EVERGREEN ENGINEERING -:!�•.••. Engineering and Construction Services . June 5, 2013 Mr. Dan Nelson Senior Plans Examiner City of Tigard 13125 SW Hall Boulevard Tigard, OR 97223 Re: Weld Design for Agilyx Access Platform Dear Mr. Nelson, Evergreen Engineering has reviewed the structural support of the Equipment Platform at the Agilyx plant in Tigard, Oregon. The platform is designed for a 60psf live, taken from the 2010 Oregon Structural Specialty Code, Table 1607.1, item 39: "Walkways and Elevated Platforms". In addition, the seismic force was calculated to be 1,730 lbs using SDS 0.706 and SDI=0.389. Given these loads and the load combinations from Chapter 2.4 of American Society of Civil Engineers, "Minimum Design Loads for Buildings and Other Structures," 2005, the maximum tension/compression in any brace on the access platform is only 6381bs. The welds on the braces are 3/16" fillet welds, minimum. A 3/16" fillet weld has a design capacity of 2,7901bs/in. The welds on the access platform are OK by inspection. Sin e.rely, 6l5%3 Tit. Gene S. Cochr e, SE �� Senior Engineer 5899 ,./ 114-7 4 F�£S COG'Q` P.O.Box 21530, Eugene, OR 97402-0409 (541) 484-4771 FAX (541) 484-6759 www.evergreenengineering.com Eugene,OR •Hillsboro,OR 'Santa Clara, CA •Albany, NY Dan Nelson City of Tigard - Senior Plans Examiner June 6, 2013 Page 7 I Bradford Conrad Crow Engineering Co. Infeed Belt and Platform Design Calculations Jan 2, 2013 Bradford Conrad Crow Engineering Co. JOB TITLE Agylix Equipment Anchorage 9925 SW Nimbus Avenue Suite 110 Infeed Belt&Platform Design/Anchorage Beaverton,OR 97008 JOB NO. 12958 SHEET NO. 503-213-2013 CALCULATED BY RDM DATE 1/2/13 CHECKED BY RDM DATE 1/2/13 • CS12 Ver 2012.05.17 www.struware.com STRUCTURAL CALCULATIONS FOR Agylix Equipment Anchorage Infeed Belt & Platform Design / Anchorage Tigard, OR i V C T U R o PR Ore ss. „ION EF� i� 80539PE -7 G OREGON 13 .1,tiF 2 7, 2d 4F- °AVID MG Expires: December 31, 2014 Bradford Conrad Crow Engineering Co. JOB TITLE Agylix Equipment Anchorage 9925 SW Nimbus Avenue Suite 110 Infeed Belt&Platform Design/Anchorage Beaverton,OR 97008 JOB NO. 12958 SHEET NO. 503-213-2013 CALCULATED BY RDM DATE 1/2/13 CHECKED BY RDM DATE 1/2/13 CS12 Ver 2012.05.17 www.struware.com • Table of Contents SectionISection Description I 1 Site Location/Seismic Parameters pages 2 2 Seismic Shear,Period,and Overturning page 3-9 3 4-Bolt Platform Anchorage(SET XP Epoxy) page 10-17 4 1-Bolt Infeed Anchorage(SET XP Epoxy) page 18-22 5 RISA Model Graphic(nodes,members,unity) page 23-26 6 RISA Structural Analysis Report page 27-48 03/04/2013 www.bccengineering.com Page 1 of 48 t e _ , ,; . . a , 4 •,.. . INV j 4 __ . . . ,. ,.vi.,1100.•/ • e: \�\\ .•�`' 1 fiti /r • 4 ;1 e Y * a . ti . (:ooR(c earth • Conterminous 48 States Conterminous 48 States 2005 ASCE 7 Standard 2005 ASCE 7 Standard Latitude=45.427 Latitude=45.427 Longitude= -122.75900000000001 Longitude=-122.75900000000001 Spectral Response Accelerations Ss and S1 Design Spectral Response Accelerations SDs and Ss and S1= Mapped Spectral Acceleration SD1 Values SDs =2/3 x SMs and SD1=2/3 x SM1 Site Class B- Fa= 1.0,Fv= 1.0 Site Class D- Fa = 1.122,Fv= 1.722 Data are based on a 0.05 deg grid spacing Period Sa Period Sa (sec) (g) (sec) (g) - 0.2 0.944(Ss,Site Class B) 0.2 0.706 (SDs,Site Class D) 1.0 0.339 (S1,Site Class B) 1.0 0.389 (SD1,Site Class D) Conterminous 48 States 2005 ASCE 7 Standard Latitude=45.427 Longitude= -122.75900000000001 Spectral Response Accelerations SMs and SM1 SMs= Fax Ss and SM1 =FvxS1 Site Class D- Fa= 1.122,Fv=1.722 Period Sa (sec) (g) 0.2 1.059 (SMs, Site Class D) 1.0 0.583 (SM1,Site Class D) 03/04/2013 www.bccengineering.com Page 2 of 48 ALBRADFORD Project Job Ref CONRAO caower+eiIl ERMCco. Agilyx Equipment Anchorage Calcs 12958 G C NL'STRJCTJRIL MECMANCA f'OINEERS Section Sheet no/rev. Bradford Conrad Crow Engineering Co. 9925 SW NIMBUS AVE.,SUITE 110 Seismic Shear,Overturning,Anchorage H - BEAVERTON,OR 97008 Calc.by Date Chk'd by Date App'd by Date PH 503-213-2013 FAX:503-213-2018 RDM RDM V W F F i 7 Si i W f frpi i ."JM40004411•Y �f l t pd/A gr 5,i-,�tir�,, ,r -- (o© PI 8c�7) (b�irT.) 4 (26 ( (go-ma') + S=t_F-vJt:tGrt'— wr-cso 'fit i Z oot. f_---14.--, - $c.-ice 4 4�:1‘ { _ I FJt M.s(', ,5, r l,i 3+ %1 0 tiff + 11- — 51.F7fY V _ r q 14ffi� f 0,L17°i ) - 2/ A- _ 0001 - 27,7 4 fFo T /p ft-- 1^'fff q -- !6 tMFt4 1,_._T'_!i... 2 r!' Wf.14■3`i :umM,at� A l� ' 0.'}70 .,-- r.A�'=r�' d..) VFf-r STtf f 7':n. 2t DEA c ref/ Wl+a- t %i -,-P6,4. t No nip-r, pa e, • kTe►tiFarn - 8`�ao* + ( v9a[+1 )(1"/(laa) (LroPCF) - 11{2884 t.AL; Wri f ( $cyt % ZS -1 kid OF 71Cti0tM3 1f1iFEr7 N if) — 2a£b5°e5 Fa%)%p 2-teb'e is* 5 rta;Y kpA _ '�q'St ( s1 3►6 t - 1•1, hit I.'r1 + „ c—fivjc%AI°Fc Star a+,Atz,-t► 3w 6S (,f=1,3 SY o17t;Ns \ALtra ' it=1I\) . 0-s LI - 9120 , vsl'c 4 c.),6"0-15 VTRAr+S (.4.-c-tom r co,,- 03/04/2013 www.bccengineering.com Page 3 of 48 I 1! • ALCR BRADFORD Project Job Ref. CROW ENGINE F ROM CO. Agilyx Equipment Anchorage Calcs 12958 G CIVL•STIUCTIRK'•ECIWICK ENONEERS Bradford Conrad Crow Engineering Co. Section Sheet no/rev. 9925 SW NIMBUSAVE.,SUITE 110 Seismic Shear,Overtuming,Anchorage 103— BEAVERTON,OR 97008 Calc.by Date Chk'd by Date App'd by Date PH 503-213-2013 FAX:503-213-2018 RDM RDM 7. t# T■s4 trod 49tvelp tClcuft IA- V' La P 4 i.co L -+ (t, s) (1,1,40.1-54y)t) 4- cR E + ..b, ) 1- -' -imr)S 1t, e Pl.tiT E. ftosT l,'3 kbH+e.rr i pt+.,S+R lbrtets,5) (o.q-o.� 17 4 A + e �---- r 5 cue co toaEsr 1,34 + I. �E + 0.E-- ,_ 4,1.077 4 1,a,Q-E.- 0. VI k•Clc 41,.- • , .4., o ; ._.4 R(,0. W ' I, = 01(004 F r i(cco F, e'v'x ` 1 g 4.Ice gee poi 0:'l) , k l.o - e. 9,5' ' 13 74-6 FI- �Z l I4.I c IA �x.t 1 +� t r I. 1"-- r = 0,21} ttilh+I-1AJgR't ,ix ' Lo 0.2►■-1. ontip : !,D ,/ .-t Ii:3b 4ilit ; 1 F,, oNC.-c s t t a t a rib. Si.G m(uoici 441 CoN« t LMb ,f IN Lap) y T7-r a f7 i PPP' \ ^} b1;'' 1 V. Col- r Le q 4Tla,3 03/04/2013 www.bcoengIn.ering.com Page 4 of 48 , , ��Q BRADFORD CONRAD CROW JC'U ENGINEERING Project Job Ref. co. Agilyx Equipment Anchorage Calcs 12958 G cINE•succuRAI'MEC/WiCA ENCNEERS , Section Sheet no./rev. Bradford Conrad Crow Engineering Co. 9925 SW NIMBUS AVE,SUITE 110 Seismic Shear,Overturning,Anchorage I - BEAVERTON,OR 97008 Calc.by Date Chk'd by Date App'd by Date PH 503-213-2013 FAX:503-213-2018 RDM RDM C 2/-0 ltv6.L 'its2.901.1 (NA 11peTAIL 1.41411. 0 \, 0 114" / \ 114 ti / Qtr rfta 1 . r. R E. i ,, Fa gr, ,lei" a t2c1 -a I2(z9a30 (. -5,4.s.y 53 I el, i j6. Q � ..-.s,v.. dn. a A - A•.• ,, d' 011410' I Z Az. r . 79.,w wsr 1i -I S \ /r w (ti � r,~ d 0 - 'idv (7 = 23, 2° ' 7S7I`11.) F} 7-?-?(g4 --=e15) - ,; 17, - -TAN,. ref2 — }3'r 63S, w' 1.3 r 6h./0 F 1,19 P. l o - ?tc - ( 95 . 343 - -¢-- Y.7s F a;`.-u a-p - f - j s __4;..Liev-- —– - - _ -- _ . . nr/s c,q - 6wFsr.�s rq f� " 35s- �T�RSIaM� FA z Fa, z.--- deks17 6.)) z 1}44,4 rfit-J Et, - 2 �-rx s) 03/04/2013 www.bccengineering.com Page 5 of 48 •- BRADFORD Project CONRAD Job Ref. CROW ENOiNeeaneCO. Agilyx Equipment Anchorage Calcs 12958 CML•S7 RIJ C TURN'MECH•WCH ENONEE] Bradford Conrad Crow Engineering Co, Section Sheet no/rev. 9925 SW NIMBUS AVE,SUITE 110 Seismic Shear,Overturning,Anchorage l `f BEAVERTON,OR 97008 Calc.by Date Chk'd by Date App'd by Date PH 503-213-2013 FAX:503-213-2018 RDM RDM i \OE lb 4r or lot-wwS 50t.'T -RPia.14 ta-e -a F.L-a1'P aM _ le�f 4at d£A/AS fr �r ii 11‘-p" Misc. sop„RT g7fEL G 7•13ur k1T. _ \-Ic" = is. i 1 x 2x 13FT = 318# 5U'Po�r, f f't_ j 1 v4. 6LT 5,M1St_ ~■ X2 lo (t,US¢� ti rja�(Fal .7",_...44 X In 4 7Y Lxi 14O " �ATFok0 �"C7 , rg--, -- — n•2.xax0.44 7 .. to-14 • ga.741/f.ro 2.1( I+ FT - y 5E7* 1‘3. /p7 A Z.x 9.5 r T 2464 S4Y 2S • 03/04/2013 www.bccengineering.com Page 6 of 48 A 8WIDFORD Project Job Ref. C.ONRAO cAOwen CTU9 L ME co, Agilyx Equipment Anchorage Calcs 12958 o CIA.•ST PUCTOR AL'MECIMNCAL ENONE EP Section Sheet no./rev. Bradford Conrad Crow Engineering Co. l 9925 SW NIMBUS AVE.,SUITE 110 Seismic Shear,Overturning,Anchorage - BEAVERTON,OR 97008 Calc.by Date Chk'd by Date App'd by Date PH 503-213-2013 FAX:503-213-2018 RDM RDM 0 1sT tiVi L. .-Tr st l ii tT0.1r4✓ At510 (b):x SP .1* /I ,, 4- FruTiry x _ P I \ Flk h rl 0 ~; Az - o.006I , .T.4_ . 2s ,,, h E g1 : gy • 16011.., rIw k'A Nig, ' <<f., ^ RI. j E.. VD —RI —fat err E C,M. ~' c,R, 2:6" /'T 11.4.1.. ACe-V�s' lij ..- ` x.1.25 fT !21-fly *• 1 Q.13e51aE1 l.lexC7- F 1.1eZ ii 0.05 L� aaF�l?.. `° A" _F;...= Cs W (N° i ..,r,�uwOf A) 4.740 4,-6,) . 4 A'Y 7itare -yes,AtAL. 'F i.` " AY" /rat, r,CtfS 61- 10'10 03/04/2013 www.bccengineering.com Page 7 of 48 O W OBADFORD AL A COM1U0 CROW EItGat(ERMG CO. Ni C., OA•S„J,.,,rt•MtCwJCA_LN0SttNS O w Bradford Conrad Crow Engineering Co. Project Name: Agylix-Infeed Platform(x-direction) Data: 2/25/2013 9925 SW NIMBUS AVE..SUITE 110 Client Name: Torn Miles Designer,awn V BE:AVERTON,OR 97008 Job NO: 12958 Checker awn V PH 503-213-2013 FAX 503-213-2018 - GENERAL SEISMIC PARAMETERS s r AR BASED ON ASCE 7-05 CHAPTER 11.12.15 GENERAL INFORMATION SITE CLASS Class = D 0.2-Second Response Coef. S5 = 94.400 %g Table 11.6.1 Seismic Design Category Based On Short Period Response Coef. 1-Second Response Coef. S1 = 33.900 %g Seismc Use Group Importance Factor I. = 1 VaueofSD, I Ii III Response Modification Factor R = 1.5 (Reference Table 12.2-1 or 15.4-2 for NOS Similar to Bldg) s.,<o.1e1 A A A Overstrength Factor D, = 1 (Reference Table 12.2-1 or 15.4-2 for NBS Similar to Bldg) o.te7see0033 B B C Deflection Amplification Factor Co = 1.5 (Reference Table 12.2-1 or 15.4-2 for NBS Similar to Bldg) o33ss„•050 C C 0 - Approximate Building Period,Ta h, = 9.5 ft o.soss„ 0 D D Applies o Building Structure Type Type = I. Al other structural systems C, = 0.02 5,0070 E E F x = 075 Maximum Period T. = 0.1082 seconds, T,,,,,= 0 152 seconds Cu = 1.4 Table 11.6.2 Seismic Design Category Based On 1-Sec.Period Response Coef. O- oi c Exact Building Period T T = 0 1141 seconds(automated for single-level,first mode period) Salamis Use Group CD =co. k = 125 k/in Value ul 30, I II III m W = 15.9 kips g,<ooe7 A A A - Tt = 16 seconds(fig 22-15,ASCE 7-05) o067ss„00t33 8 B C IQ SEISMIC DESIGN CATEGORY 013380,,,020 C C D b o F. = 1 122 SOS = 0 706 SDC = D omssp, 0 0 0 awes u 3 F„ = 1 722 So, = 0 389 SDC = 0 s,t035 E E F - BASE SHEAR DETERMINATION(Equivalent Lateral Force) Table 12.8.1,Coefficient for Upper Limit on Calculating Period,T,,,, C. = S„ = 0.471 C. = 0 471 Design Spectral Response Acceleration Parameter Coefficient R/I at 1 a,Sol CM C,1„...) = SD1 = 2.273 V = C,W = 7 487 kips a 0.4 1.4 T(1) 0.3 1.4 0.2 1.5 C.I ) = 0.01 = 0.010 0.15 1.6 or 5 0.1 1.7 .44So5IE C6,�n _ 0.5S, = 0.010 Table 12.8.2,Values of Approximate Period Parameters oe, R/1 Structure Type C1 x Moment-resisting frame systems In which the frames resist 100%of BASIC SEISMIC LOAD COMBINATIONS FOR ALLOWABLE STRESS DESIGN the required seismic force and are not enclosed or adjoined by components that are more rigid and win prevent the frames from deflecting where subjected to seismic forces. ASCE 7 Eq.12.4.2.3.5 1.10 D + 0.7pQ, + H+ F •Steel Moment-Resisting Frames 0.028 0.8 l'0 ASCE 7 Eq.12.4.2.3.6 1.07 D + 0.525p0, + H+ F •Concrete Moment-Resisting Frames 0.016 0.9 ID •Eccentrically braced steel frames 0.03 0.75 rD m ASCE 7 Eq.12.4,2,3.8 0.50 D + 0.7pQ, + H+ F •All other structural systems 0.02 0.75 o_ .1=i- Co 0 CO o A.DMOFORD ? C5CWE fJ CROMENOMEEaNG CD. O G CiM.'SIWC'UNA•YtOMNC 4 lWkth, ca Bradford Conrad Crow Engineering Co. Project Name: Agylix-Infeed Platform(x-direction) Date: 2/25/2013 9925 SW NIMBUS AVE.,SUITE 110 Client Name: Tom Miles Designer::Ryan V BEAVERTON,OR 97006 Job NO: 12958 Checker:Ryan V PH 503-213-2013 FAX 503-213-2018 GENERAL SEISMIC PARAMETERS BASED ON ASCE 7 m CNARIER 11.12,15 GENERAL INFORMATION SITE CLASS Class = Cl 0.2-Second Response Coef Ss = 94.400 %g Table 11.6-1 Seismic Design Category Based On Short Period Response Coef. 1-Second Response Coef. Si = 33.900 %g Seismc Use Grouo Importance Factor IE = 1 _Value of Sos I :I ih Response Modification Factor R = 1.5 (Reference Table 12.2-1 or 15.4-2 for NBS Similar to Bldg) sa,00ie7 A A A Overstrength Factor Q, = 1 (Reference Table 12.2-1 or 15.4-2 for NBS Similar to Bldg) o161ssyso.a 8 8 C Deflection Amplification Factor CD = 1.5 (Reference Table 12.2-1 or 15.4-2 for NBS Similar to Bldg) 03383%4050 C C D Approximate Building Period,Ta ha = 9.5 ft 050:60, 0 D D AppliC, Building Structure Type Type = • All other structural systems C, = 0.02 s,1 sort E E F x =0 .75 Maximum Period T, = 0.1082 seconds, T,,,,= 0.152 seconds C❑ 1.4 Table 11.6-2 Seismic Design Category Based On 1-Sec.Period Response Coef. Cr o Exact Building Period,T T = 0.0987 seconds(automated for single-level,first mode period) , Seismic Use Group n k = 167 kIin Value of So, I II 'li o N W = 15.9 kips s„,006f A A A N T = 0.6676 O.t33 8 B C TL 16 seconds(fig 22-15,ASCE 7-05) sa•� 3 c7 SEISMIC DESIGN CATEGORY 013366„.0.20 C C 0 o F. = 1122 Sos = 0.706 SDC = D 0.20s6.i 0 0 0 A:.,,•c, r, 3 F. = 1 722 SD, = 0.389 SDC = D 5,0075 E F F BASE SHEAR DETERMINATION(Equivalent Lateral Force) Table 12.41,Coefficient for Upper Limit on Calculating Period,T,,,,, Sos Design Spectral Response Acceleration Parameter Coefficient C, = R/ m= 0.471 C, = 0 471 at 1 s,S Ca � 2:0.4 _ 1.4 C,,,„„,) = Sal = 2.628 V = C.W = 7 487 kips 0.3 1.4 T(r) 0.2 1.5 0.01 0,15 1.6 Csi' > = Dr = 0.010 _ 5 0.1 1.7 .4450015 0.55, Table 12.5-2,Values of Approximate Period Parameters Cgmw061 = R = 0.010 // Structure Type C, x Moment-resoling frame systems in which the frames resist 100%of BASIC SEISMIC LOAD COMBINATIONS FOR ALLOWABLE STRESS DESIGN the required Seismic force and am not enclosed or adjoined by components that are more rigid and win prevent the frames from deflecting where subjected to seismic forces: ASCE 7 Eq.12.4.2 3.5 1.10 D + 0.7p0, + H+ F •Steal Moment•Resisting Frames 0.028 0.8 ASCE 7 Eq.12.4.2.3.6 1.07 D + 0.525p0. + H+ F •Concrete Moment-Resisting Frames 0.016 0.9 m co •Eccentrically braced steel frames 0.03 co uo ASCE 7 Eq.12.4.2.3.8 0.50 D + 0.7p0. + H+ F •All other structural systems 0.02 0.75 o_ A co Anchor Calculations Anchor Selector (Version 4.11.0.0) Job Name : 17958-infeed-upper Date/Time : 3/4/2013 11:50:42 AM 1) Input Calculation Method : ACI 318 Appendix D For Cracked Concrete Code : ACI 318-08 Calculation Type : Analysis Code Report : ICC-ES ESR-2508 a) Layout Anchor : 5/8" SET-XP Number of Anchors : 4 Steel Grade: F1554 GR. 36 Embedment Depth : 6 in Built-up Grout Pads : Yes } Cl x sx1 cx2 c y2 ITo Vuay 0 fby2 Nua, Vuax V ey Sy1 + f ex - cy1 L-- by1 bx1 bx2 4 ANCHORS 'Nua IS POSITIVE FOR TENSION AND NEGATIVE FOR COMPRESSION. •INDICATES CENTER OF FOUR CORNER ANCHORS Anchor Layout Dimensions : cx1 : 999 in cx2 : 999 in c,,, • 999 in cy2 : 999 in bx, : 2 in bx2 : 2 in by, : 2 in bye : 2 in • sx, : 10 in sy, : 10 in ▪ NOTE: Compressive strength will be limited to 2500 psi in calculations for concrete breakout strength in tension, adhesive strength in tension,and concrete pryout strength in shear. 03/04/2013 www.bccengineering.com Page 10 of 48 b)Base Material Concrete : Normal weight fe : 4000.0 psi Cracked Concrete : Yes `l'e,V: 1.00 Condition : B tension and shear (I)F„: 2210.0 psi Thickness,he : 10 in Supplementary edge reinforcement : No Hole Condition: Dry Concrete Inspection : Continuous Temperature Range : 1 (Maximum 110°F short term and 75 °F long term temp.) c)Factored Loads Load factor source : ACI 318 Section 9.2 N. : 1050 lb Vuax: 5501b V.y : 100 lb M„x: 0 lb*ft M„y : 0 lb*ft ex : 0in ey : 0in Moderate/high seismic risk or intermediate/high design category: Yes Anchor w/sustained tension :No Anchors only resist wind and/or seismic loads : Yes Apply entire shear load at front row for breakout : Yes d)Anchor Parameters From ICC-ES ESR-2508 : Anchor Model= SETXP de=0.625 in Category= 1 he f=6 in hmi„= 9.125 in ca,= 18 in Cmi°= 1.75 in sr.=3 in Ductile=Yes 2)Tension Force on Each Individual Anchor Anchor#1 N.i =262.50 lb Anchor#2 N.2=262.50 lb Anchor#3 N u33=262.50 lb Anchor#4 N ua4=262.50 lb Sum of Anchor Tension EN.= 1050.00 lb ax=0.00 in a =0.00 in e'Nx=0.00 in e'Ny=0.00 in 03/04/2013 www.bccengineering.com Page 11 of 48 • 3)Shear Force on Each Individual Anchor Resultant shear forces in each anchor: Anchor#1 V„a1 = 139.75 lb(V.1.= 137.50 lb ,V„any=25.00 lb) Anchor#2 V„a2= 139.75 lb(V„a2x= 137.50 lb,V ua2y=25.00 lb) - Anchor#3 V.3= 139.75 lb(V ua3x= 137.50 lb ,V ua3y=25.00 lb) Anchor#4 V.4= 139.75 lb(V ua4x= 137.50 lb,V ua4y=25.00 lb) Sum of Anchor Shear EV„ax=550.00 lb,EV„ay= 100.00 lb e'vx=0.00in e'vy=0.00 in 4) Steel Strength of Anchor in Tension [Sec.D.5.1] Nsa=nA se futa [Eq. D-3] Number of anchors acting in tension,n=4 N.= 13110 lb(for each individual anchor) [ICC-ES ESR-2508 ] =0.75 [D.4.4] 4)Nsa=9832.50 lb(for each individual anchor) 5) Concrete Breakout Strength of Anchor Group in Tension [Sec. D.5.21 Ncbg=ANc/ANco'Pec,Ntlied,NTc,Nwcp,NNb [Eq• D-5] Number of influencing edges=0 hef= 6 in ANC„=324.00 in2 [Eq. D-6] ANC=784.00 in2 `l'ec,xx= 1.0000 [Eq. D-9] Tee.N Y= 1.0000 [Eq. D-9] 'I'ec,N= 1.0000(Combination of x-axis&y-axis eccentricity factors.) Smallest edge distance,ca,mu,= 999.00 in 'I'ed,N= 1.0000 [Eq. D-10 or D-11] Note: Cracking shall be controlled per D.5.2.6 = 1.0000 [Sec. D.5.2.6] 'I'cp,N= 1.0000 [Eq. D-12 or D-13] Nb=kCa v f'C hef5= 12492.40 lb [Eq. D-7] kC= 17 [Sec. D.5.2.6] Ncbg=30228.52 lb [Eq. D-5] =0.65 [D.4.4] 4)seis=0.75 (I)Ncbg= 14736.40 lb(for the anchor group) 03/04/2013 www.bccengineering.com Page 12 of 48 6)Adhesive Strength of Anchor in Tension [Sec. D.5.3 (AC308 Sec.3.3)] tk,cr=855 psi [ICC-ES ESR-2508 ] tk,max,cr=kcr het f c/(n da) [Eq. D-16i] lccr= 17 [ ICC-ES ESR-2508 ] he(unadjusted)=6 in tk,max,cr= 1060.39 psi Nao=tk,crlt dahef= 10072.73 lb [Eq. D-16f] tk,uncr=2075.00 psi for use in [Eq.D-16d] Scr,Na=min[20 da Y (tk,oncr/1450) ,3hef] = 14.953 in [Eq. D-16d] Ccr,Na=Scr,Na/2=7.477 in [Eq. D-16e] Nag=ANa/ANao'Ped,Na'Pg,NaPec,Na'Pp,NaNao [Eq.D-16b] ANao=223.60 in2 [Eq. D-16c] ANa=622.66 in2 'Pec,Nax= 1/(1+2e'Nx/scr,Na)= 1.0000 [Eq. D-16j] 'Pec,Nay= 1/(I+2e'Ny/scr,Na)= 1.0000 [Eq. D-16j] FPec,Na= 1.0000(Combination of x-axis and y-axis eccentricity factors.) Smallest edge distance,cum,=999.00 in 'I'ed,Na= 1.0000 [Eq. D-161] 'Pp,Na= 1.0000 [Sec. D.5.3.14] 'Pg,Na—'Pg,Nao+(S/scr,Na)os(1-Y'g,Nao) [Eq.D-16g] s= 10 in(largest spacing) Pg,Nao=max{ .4 n- [( n - I)(tk,ci+tk,max,cr)1 5], 1.0} [Eq. D-16h] 'Pg,Nao= 1.2760 Tg,Na= 1.0503 - Nag=29460.46 lb [Eq. D-16b] =0.65 [ ICC-ES ESR-2508 ] 4seis—0.75 (1)Nag= 14361.97 lb(for the anchor group) 7) Side Face Blowout of Anchor in Tension [Sec.D.5.4] Concrete side face blowout strength is only calculated for headed anchors in tension close to an edge,cal <0.4hef.Not applicable in this case. 8) Steel Strength of Anchor in Shear[Sec D.6.11 Vsa=7865.00 lb(for each individual anchor) Veq=Vsaay.seis [AC308 Eq. 11-27] ay.seis=0.68 [ ICC-ES ESR-2508] Veg=5348.20 lb =0.65 [D.4.4] 4,Veq= 3476.33 lb(for each individual anchor) (Veq is multiplied by 0.8 due to built-up grout pads...[Sec D.6.1.3] Veq=2781.061b(for each individual anchor) 03/04/2013 www.bccengineering.com Page 13 of 48 • . 9) Concrete Breakout Strength of Anchor Group in Shear [Sec D.6.2] Case 1: Anchor(s)closest to edge checked against total shear load In x-direction... Vcbgx=Avcx/AvcoXFec,v`Fed,v`I'c,v'1'h,v Vbx[Eq. D-22] • Cal =666.00 in(adjusted for edges per D.6.2.4) Avcx=20080.00 in2 Avcox= 1996002.00 in2 [Eq. D-23] '1'ec,V= 1.0000 [Eq. D-26] '1'ed,v= 1.0000 [Eq. D-27 or D-28] 'Fey= 1.0000 [Sec. D.6.2.7] Thy= 4 (1.5ca, /ha)=9.9950 [Sec. D.6.2.8] Vbx=7(le/da)O.21' daX fc(Cal)I 5 [Eq. D-24] le= 5.00 in Vbx=9117953.76 lb Vcbgx=916817.44 lb [Eq. D-22] =0.70 4)seis=0.75 4)Vcbgx=481329.16 lb(for the anchor group) In y-direction... Vcbgy=Avcy/AvcoyTec,v'1'ed,v'Fc,v'1'n.v Vby[Eq. D-22] Cal = 666.00 in(adjusted for edges per D.6.2.4) Avcy=20080.00 in2 Avcoy= 1996002.00 in2 [Eq. D-23] Teo,= 1.0000 [Eq. D-26] '1Jed,v= 1.0000 [Eq. D-27 or D-28] 'I'c,v= 1.0000 [Sec. D.6.2.7] `I'bv= 4 (1.5ca, /ha)=9.9950 [Sec. D.6.2.8] Vby= 7(le/da)1.211 daX V fc(cai)'s [Eq. D-24] 1e=5.00 in Vby= 9117953.76 lb Vcbg,,=916817.44 lb [Eq. D-22] =0.70 4'seis=0.75 (1)Vcbgy=481329.16 lb(for the anchor group) Case 2: Anchor(s)furthest from edge not checked Case 3: Anchor(s)closest to edge checked for parallel to edge condition Check anchors at cx, edge Vcbgx= Avcx/AvcoxPec,V'1'cd,V'1'c,VPn,V Vbx[Eq. D-22] ca, =666.00 in(adjusted for edges per D.6.2.4) Avcx=20080.00 in2 A,,cox= 1996002.00 in2 [Eq. D-23] 03/04/2013 www.bccengineering.com Page 14 of 48 `IJee,V= 1.0000 [Eq. D-26] `I'ed,V= 1.0000 [Sec. D.6.2.1(c)] `Ife,V= 1.0000 [Sec. D.6.2.7] Thy= y (1.5cei/ha)= 9.9950 [Sec. D.6.2.8] Vbx=Ale/da)(12 11 d• aX v f• e(ct o)" [Eq.D-24] 1e= 5.00 in VbX= 9117953.76 lb VebgX=916817.44 lb [Eq.D-22] Vebgy=2 * VcbgX[Sec. D.6.2.1(c)] Vebgy= 1833634.88 lb =0.70 ctiseis=0.75 4Vebgy= 962658.31 lb(for the anchor group) Check anchors at cy, edge Vcbgy=Avcy/Avcoy`Fec,v`I'ed,v`Pc,v`IIh,v Vby [Eq. D-22] Cal =666.00 in(adjusted for edges per D.6.2.4) AVey=20080.00 in2 Avcoy= 1996002.00 in2 [Eq. D-23] `I'ee,v= 1.0000 [Eq. D-26] Ped,V= 1.0000 [Sec. D.6.2.1(c)] To/= 1.0000 [Sec. D.6.2.7] `I'n,V= (1.5ca, /ha)=9.9950 [Sec. D.6.2.8] Vby=7(1e/da)0.2 4 d• ad. f• c(cal)".5 [Eq. D-24] le=5.00 in Vby=9117953.76 lb Vebgy=916817.44 lb [Eq. D-22] VbX=2 * Vcbgy [Sec. D.6.2.1(c)] VebgX= 1833634.88 lb =0.70 4)seis=0.75 4)Vebgx= 962658.31 lb(for the anchor group) Check anchors at cx2 edge VebgX=Avcx/Avcox`hec,V`Eed,V`hc,V`I`h,V VbX[Eq. D-22] ca, =666.00 in(adjusted for edges per D.6.2.4) AvcX=20080.00 in2 AvcoX= 1996002.00 in2 [Eq. D-23] Teo/= 1.0000 [Eq. D-26] `I'ed,V= 1.0000 [Eq. D-27 or D-28] [Sec. D.6.2.1(c)] Tc,V= 1.0000 [Sec. D.6.2.7] = v (1.5ca, /ha)= 9.9950 [Sec. D.6.2.8] Vbx= 7(le/da)o.2 4 d• aX 4 f• c(Cai)1.5 [Eq. D-24] 03/04/2013 www.bccengineering.com Page 15 of 48 a' . le=5.00 in Vbx= 9117953.76 lb ' Vebgx=916817.44 lb [Eq. D-22] _ Vebg,,=2 * Vebgx [Sec. D.6.2.1(c)] . Vow/= 1833634.88 lb 4)=0.70 Ceis=0.75 4)Vebgy=962658.31 lb(for the anchor group) Check anchors at cy2 edge Vcbgy=Avcy/Avcoy'Pec,v'1'ed,vPc,vPb,v Vby[Eq.D-22] cat = 666.00 in(adjusted for edges per D.6.2.4) A„ey=20080.00 in2 Avcoy= 1996002.00 in2 [Eq. D-23] '1'ee,V= 1.0000 [Eq. D-26] 'Fed,V= 1.0000 [Sec. D.6.2.1(c)] '1'e,v= 1.0000 [Sec.D.6.2.7] Thy= (1.5cai/ha)=_9..9950 [Sec. D.6.2.8] Vby= 7(le/da)02 Y daX v fc(cai)1.5 [Eq. D-24] le=5.00 in Vby= 9117953.76 lb Vebgy=916817.44 lb [Eq.D-22] Vebgx=2 * Vebgy [Sec. D.6.2.1(c)] _ Vcbgx= 1833634.88 lb =0.70 Owls=0.75 4)Vcbgx=962658.31 lb(for the anchor group) 10)Concrete Pryout Strength of Anchor Group in Shear [Sec.D.6.3] Vcpg=min[kcpNagekcPNcbg] [Eq. D-30b] kcp= 2 [Sec. D.6.3.2] e'vx=0.00 in(Applied shear load eccentricity relative to anchor group c.g.) e'vy=0.00 in(Applied shear load eccentricity relative to anchor group c.g.) '1'ec,Nx= 1.0000 [Eq. D-9] (Calulated using applied shear load eccentricity) '1'ec,Ny= 1.0000 [Eq. D-9] (Calulated using applied shear load eccentricity) '1'ec,N'= 1.0000(Combination of x-axis&y-axis eccentricity factors) Nag=(ANaa/ANa)('1'ec,N✓'1'ec,Na)Nag Nag=29460.46 lb(from Section(6)of calculations) ANa=622.66 in2 (from Section(6)of calculations) ANaa=622.66 in2(considering all anchors) - '1'ec,Na= 1.0000(from Section(6)of calculations) Nag= 29460.46 lb(considering all anchors) Ncbg=(ANca/ANc)('}'ec,N' ec,N)Ncbg Ncbg= 30228.52 lb(from Section(5)of calculations) ANe=784.00 in2(from Section(5)of calculations) 03/04/2013 www.bccengineering.com Page 16 of 48 Arica=784.00 in2(considering all anchors) Pec,N= 1.0000(from Section(5)of calculations) Ncbg= 30228.52 lb(considering all anchors) Vcpg= 58920.92 lb =0.70 [D.4.4] Leis=0.75 (IVcpg= 30933.48 lb(for the anchor group) 11)Check Demand/Capacity Ratios[Sec.D.7] Note: Ratios have been divided by 0.4 factor for brittle failure. Tension - Steel : 0.0267 - Breakout : 0.1781 - Adhesive: 0.1828 - Sideface Blowout:N/A Shear - Steel : 0.0503 - Breakout(case 1) : 0.0029 - Breakout(case 2) : N/A - Breakout(case 3) : 0.0007 - Pryout : 0.0452 V.Max(0.05)<=0.2 and T.Max(0.18)<= 1.0 [Sec D.7.1] Interaction check: PASS Use 5/8" diameter F1554 GR.36 SET-XP anchor(s)with 6 in.embedment 03/04/2013 www.bccengineering.com Page 17 of 48 . Anchor Calculations - Anchor Selector (Version 4.11.0.0) Job Name : 17958-infeed Date/Time : 1/2/2013 9:32:05 AM 1) Input Calculation Method : ACI 318 Appendix D For Cracked Concrete Code : ACI 318-08 Calculation Type : Analysis Code Report : ICC-ES ESR-2508 a) Layout Anchor : 5/8" SET-XP Number of Anchors : 1 Steel Grade: F1554 GR. 36 Embedment Depth : 6 in Built-up Grout Pads : No ex1 i cx2 T fuay Cy2 M„y `Nua by2 1 mux byi Vuax bxt co 1 ANCHOR •Nua IS POSITIVE FOR TENSION AND NEGATIVE FOR COMPRESSION. +INDICATES CENTER OF THE ANCHOR Anchor Layout Dimensions : CxI : 999 in cx2 : 999 in cy1 : 999 in Cy2 : 999 in bx1 : 2.5 in . bx2 : 2.5 in by1 : 1.5 in by2 : 3.5in 03/04/2013 www.bccengineering.com Page 18 of 48 NOTE: Compressive strength will be limited to 2500 psi in calculations for concrete breakout strength in tension, adhesive strength in tension, and concrete pryout strength in shear. b) Base Material - Concrete : Normal weight fe : 4000.0 psi Cracked Concrete : Yes 'P ,v : 1.00 Condition : B tension and shear OFP : 2210.0 psi Thickness, ha : 10 in Supplementary edge reinforcement : No Hole Condition : Dry Concrete Inspection : Continuous Temperature Range : 1 (Maximum 110°F short term and 75 °F long term temp.) c) Factored Loads Load factor source : ACI 318 Section 9.2 Nua : 477 lb Vuax : 255 lb V°ay : 0 lb M„x : 0 lb*ft May : O lb*ft ex : 0in e : 0in Moderate/high seismic risk or intermediate/high design category : Yes Anchor w/sustained tension : No Anchors only resist wind and/or seismic loads : Yes Apply entire shear load at front row for breakout : No d) Anchor Parameters From ICC-ES ESR-2508 • Anchor Model = SETXP da=0.625 in Category= 1 hef=6 in hm;° = 9.125 in cac= 18 in cm;,,= 1.75 in sm;n= 3 in Ductile=Yes 2) Tension Force on Each Individual Anchor Anchor#1 N ual =477.00 lb 03/04/2013 www.bccengineering.com Page 19 of 48 t• • • Sum of Anchor Tension EN.=477.00 lb ax=0.00 in ay= 0.00 in e'Nx=0.00 in e'Ny=0.00 in 3) Shear Force on Each Individual Anchor Resultant shear forces in each anchor: Anchor#1 V ual =255.00 lb(V ualx=255.00 lb , V.,y= 0.001b ) Sum of Anchor Shear EV„ax=255.00 lb, EVuay= 0.00 lb e'vx= 0.00 in e'vy=0.00 in 4) Steel Strength of Anchor in Tension [Sec. D.5.11 Nsa= nA se futa [Eq. D-3] Number of anchors acting in tension, n= 1 Nsa= 13110 lb (for a single anchor) [ ICC-ES ESR-2508 ] =0.75 [D.4.4] 4Nsa= 9832.50 lb(for a single anchor) 5) Concrete Breakout Strength of Anchor in Tension [Sec. D.5.2] Ncb=ANc/ANco`I'ed,N`Fc,NPcp,NNb[Eq. D-4] Number of influencing edges=0 hef= 6 in ANco= 324.00 in2 [Eq. D-6] ANc=324.00 in2 Smallest edge distance, ca,min =999.00 in 'I'ed,N = 1.0000 [Eq. D-10 or D-11] Note: Cracking shall be controlled per D.5.2.6 Pc,N= 1.0000 [Sec. D.5.2.6] '1'cp,N= 1.0000 [Eq. D-12 or D-13] Nb= k) f'c hef E5 = 12492.40 lb [Eq. D-7] = 17 [Sec. D.5.2.6] Nob= 12492.40 lb [Eq. D-4] = 0.65 [D.4.4] 4)seis= 0.75 4)Neb= 6090.04 lb(for a single anchor) 6) Adhesive Strength of Anchor in Tension [Sec. D.5.3 (AC308 Sec.3.3)] 03/04/2013 www.bccengineering.com Page 20 of 48 Zk,cr= 855 psi [ ICC-ES ESR-2508 ] '(Cr= 17 [ ICC-ES ESR-2508 ] hef(unadjusted) =6 in Nao= tk,crn dahef= 10072.73 lb [Eq. D-16f] tk,uncr=2075.00 psi for use in [Eq. D-16d] Scr,Na=min[20 da (tk,uncr/1450) , 3hef] = 14.953 in [Eq. D-16d] Ccr,Na= Scr,Na/2 = 7.477 in[Eq. D-16e] Na=ANa/ANao'Eed,Na'Ep,NaNao [Eq. D-16a] ANao= 223.60 in2 [Eq. D-16c] ANa= 223.60 in2 Smallest edge distance,Ca,rnin =999.00 in 'Eed,Na= 1.0000 [Eq. D-161] LI'p,Na= 1.0000 [Sec. D.5.3.14] Na= 10072.73 lb [Eq. D-16a] =0.65 [ ICC-ES ESR-2508 ] 4)seis= 0.75 4)Na=4910.46 lb (for a single anchor) 7) Side Face Blowout of Anchor in Tension [Sec. D.5.41 Concrete side face blowout strength is only calculated for headed anchors in tension close to an edge, Cal < 0.4hef. Not applicable in this case. 8) Steel Strength of Anchor in Shear [Sec D.6.1] Vsa= 7865.00 lb (for a single anchor) Vey=Vsaay.seis [AC308 Eq. 11-27] ay.seis=0.68 [ ICC-ES ESR-2508 ] Vey= 5348.20 lb = 0.65 [D.4.4] Vey= 3476.33 lb(for a single anchor) 9) Concrete Breakout Strength of Anchor in Shear [Sec D.6.21 Concrete breakout strength has not been evaluated against applied shear load(s)per user option. Refer to Section D.4.2.1 of ACI 318 for conditions where calculations of the concrete breakout strength may not be required. 10) Concrete Pryout Strength of Anchor in Shear [Sec. D.6.3] Vcp=min[kcpNa,kcpNcb] [Eq. D-30a] 03/04/2013 www.bccengineering.com Page 21 of 48 . kci,=2 [Sec. D.6.3.2] Na= 10072.73 lb (from Section(6)of calculations) Ncb= 12492.40 lb (from Section(5)of calculations) Vcp=20145.46 lb =0.70 [D.4.4] 4seis=0.75 OV,p= 10576.37 lb(for a single anchor) 11) Check Demand/Capacity Ratios [Sec. D.7] Note: Ratios have been divided by 0.4 factor for brittle failure. Tension - Steel : 0.0485 - Breakout : 0.1958 - Adhesive : 0.2428 - Sideface Blowout : N/A Shear - Steel : 0.0734 - Breakout : N/A - Pryout : 0.0603 V.Max(0.07) <= 0.2 and T.Max(0.24) <= 1.0 [Sec D.7.1] Interaction check: PASS Use 5/8" diameter F1554 GR. 36 SET-XP anchor(s) with 6 in. embedment 03/04/2013 www.bccengineering.com Page 22 of 48 • R Code Check Y No Calc „' .90-i1.0 .75-,90 .50-.75 Z 0:.50 Ne Ate N4G • C1 48 .09 cfl 27 �6 6. 05 400„, , • • 06 32 • 1 • §0.4 <SD 00,423 10,. .0 rn 4 30 � ° • A: 12 41: 1 h 0 a> 11 Member Code Checks Displayed Solution:Envelope BCCE SK-2 RDM Infeed Platform Mar 4, 2013 at 11:09 AM 12958 12958_Infeed_v03.r3d 03/04/2013 www.bccengineering.com Page 23 of 48 s • • Y ,� z 4160 4149 X' 3) 48 M15 ,, •_ 'NI. c :.' (fff� *`i 4, • .,4 4,'V .:,..• O� G 27 4170 00, 11110110 �. . r1,?,,:, 4 �„ s 17. 9 \1 32 •• I.§0V1111111.r- 4423 • • co 14' 30, • 1 At 12 11 • Solution: Envelope BCCE SK-2 RDM Infeed Platform Mar 4, 2013 at 11:10 AM 12958 12958_Infeed_v03.r3d 03/04/2013 www.bccengineering.com Page 24 of 48 Y - Atli z -.02ksf, , . r Mi M;,,9 '� " 36 ' . 3 at 460 a M 5r <. i.:,,, $449 V f, f M ,I 27 M1 , 1 Pr® M��. 8 lot z 32 .:. 1 416 1.40k, • , ::4 s:0, A: 23 .- 04' .•-'`'• g* 441110), 30 o., 4> 1 ipir '11 12 > a 11 Loads: BLC 1, D - Solution: Envelope BCCE SK-3 RDM Infeed Platform Mar 4, 2013 at 11:12 AM 12958 12958_Infeed_v03.r3d 03/04/2013 www.bccengineering.com Page 25 of 48 t • Y /` Z MSO MA9 X36 , ,> 48 1.616k •° 0 Zr . M15 � •ie� Mrs 0 ''00! '- 27 iiihi�p Cr P °. ..e\'‘ Ik'1;"-': PPP' .. '1 '' 419 ritifik� 1 rr4 32 M 4,23 )00,41110„ 30 0, ., 1 `> 12 o,, a. 11 R Loads: BLC 2, Qez Solution: Envelope - BCCE SK -4 RDM Infeed Platform Mar 4, 2013 at 11:13 AM 12958 12958 Infeed v03.r3d 03/04/2013 www.bccengineering.com Page 28 of 48 Company : BCCE Mar 4,2013 Designer : RDM 12:01 PM Job Number : 12958 Infeed Platform Checked By - Global Display Sections for Member Calcs 5 Max Internal Sections for Member Calcs 97 Include Shear Deformation? Yes Include Warping? Yes Trans Load Btwn Intersecting Wood Wall? Yes Increase Nailing Capacity for Wind? Yes Area Load Mesh (in^2) 144 Merge Tolerance(in) .12 P-Delta Analysis Tolerance 0.50% Include P-Delta for Walls? Yes Automaticly Iterate Stiffness for Walls? Yes Maximum Iteration Number for Wall Stiffness3 Gravity Acceleration(ft/sec^2) 32.2 Wall Mesh Size(in) 12 Eigensolution Convergence Tol. (1.E-) 4 _-- Vertical Axis Y Global Member Orientation Plane XZ Static Solver Sparse Accelerated Dynamic Solver Accelerated Solver Hot Rolled Steel Code AISC 13th(360-05): LRFD Adjust Stiffness? Yes(Iterative) RISAConnection Code AISC 13th(360-05): LRFD Cold Formed Steel Code AISI S100-07:ASD Wood Code AF&PA NDS-05/08:ASD Wood Temperature < 100F Concrete Code ACI 318-08 Masonry Code ACI 530-08:ASD Aluminum Code AA ADM1-05:ASD-Building Number of Shear Regions 4 Region Spacing Increment(in) 4 Biaxial Column Method Exact Integration Parme Beta Factor(PCA) .65 Concrete Stress Block Rectangular Use Cracked Sections? Yes Bad Framing Warnings? No Unused Force Warnings? Yes Min 1 Bar Diam. Spacing? No Concrete Rebar Set REBAR SET ASTMA615 Min%Steel for Column 1 Max%Steel for Column 8 RISA-3D Version 11.0.0 [T:\...\...\...1...\Sani-tech Infeed Platform\RISA Files\12958 Infeed_v03.r3d] Page 1 03/04/2013 www.bccengineering-com Page 27 of 48 Company : BCCE Mar 4,2013 - Designer : RDM 12:01 PM Job Number : 12958 Infeed Platform Checked By:- Global, Continued • Seismic Code ASCE 7-05 Seismic Base Elevation(ft) 0 Add Base Weight? Yes Ct Z .02 Ct X .02 T Z(sec)-@ _ . _ Not Entered _ T X(sec) Not Entered R Z 1 RX 1 Ct Exp.Z .75 Ct Exp.X _ .75 SD1 .6 SDS 1 S1 .6 TL(sec) 16 Occupancy Cat !or!! Seismic Detailing Code ASCE 7-05 Om Z 1 mX _ 1 Rho Z 1 Rho X 1 Hot Rolled Steel Properties Label E[ksij G[ksi] Nu Therm(11 E...Densityjk/ft... Yield[ksil Ry Fu[ksi] Rt 1 A36 Gr.36 29000 11154 .3 _ • .65 .49 36 1.5 _ 58 1.2 _ 2- A572 Gr.50 29000 11154 .3 .65 .49 50 1.1 J 65 1.1 3 A992 29000 11154 .3 .65 .49 50 1.1 65 1.1 • 4 A500 Gr.42 29000 11154 .3 .65 .49 42 1.4 58 1.3 5 A500 Gr.46 29000 11154 .3 .65 .49 46 1.4 58 1.3 Hot Rolled Steel Section Sets Label Shape Type Design List Material Design Ru es A[in2] lyy[in4] lzz[in4] J[in4] 1 MC6x15.1 MC6x15.1 , Column Channel A36 Gr.36 Tvoica 4.44 3.46 _ 24.9 _ .285 _ 2 C4x5.4 col C4x5.4 Column Channel A36 Gr.36 Typica 1.58 .312 3.85 .04 3 C12x20.7 C12x20.7 Beam Channel_A36 Gr.36 Tvoica 6.08 _ 3.86 129 .369 _ 4 C8x11.5 C8x11.5 Beam Channel A36 Gr.36 Typica 3.37 1.31 32.5 ,13 5 HSS6x6x1/4 HSS6x6x4 Column SquareTube A500 Gr.46 Tvoica 5.24 28.6 28.6 45.6 6 W8x31 W8x31 Beam Wide Flange A992 Typica 9.13 37.1 110 _ .536 7 HSS4x4x1/4 HSS4x4x4 VBrace _SquareTube A500 Gr.46 Tvoica 3.37 7.8 7.8 12.8 8 HSS3x3x3/16 HSS3x3x3 VBrace SquareTube A500 Gr.46 Typica 1.89 2.46 2.46 T 4.03 9 W8x24 W8x24 Beam_Wide Flange A992 Tvoica 7.08 _ 18.3 82.7 .346 _ 10 C4x5.4 bm C4x5.4 Beam Channel A36 Gr.36 Typica 1.58 .312 3.85 _.04 11 MC6x15.3 MC6x15.3 Column Wide Flange A36 Gr.36 Typica 4.49 4.91 _ 25.3 .223 12 L2x2x1/4 L2x2x4 VBrace Single Angle A36 Gr.36 Typica .944 .346 .346 .021 13 L6x4x3/8 L6x4x6 Beam Wide Flange A36 Gr.36 Typica 3.61 , 4.86 _ 13.4 .177 General Section Sets Label Shape Tyne Material A[in2] lyy[in4] lzz[in4] J[in4] 1 GEN1A RE4X4 Beam gen_Conc3NW 16 21.333 21.333 31.573 2 J RIGID None RIGID 1e+6 le+6 1e+6 le+6 RISA-3D Version 11.0.0 [T:\...1...1...1...1Sani-tech Infeed Platform\RISA Files112958_Infeed v03.r3d] Page 2 03/04/2013 www.bccengineering.com Page 28 of 48 Company : BCCE Mar 4,2013 Designer : RDM 12:01 PM Job Number : 12958 Infeed Platform Checked By:- Joint Coordinates and Temperatures . Label X U Y jft] Z[ft' Temp[F] Detach From Dial 1 Ni I 2.3333 0 �___ 0 0 2 N2 11.3333 0 0 0 3 N3 2.3333 9.167 0 0____ 4 N4 11.3333 9.167 0 0 5 N5 0 9.167 0 0 6 N6 7.0833 9.167 0 0 7 N7 0 9.167 3.5 _ 0 8 N8 7.0833 9.167 3.5 0 9 N9 7.0833 _ 9.167 5.2083 0 _ 10 N10 11.3333 9.167 5.2083 0 11 N11 2.3333 0 8.5 0 12 N12 11.3333 0 8.5 0 13 N13 2.3333 9.167 8.5 0 14 N14 11.3333 _ 9.167 8.5 0 15 _ N15 0 9.167 8.5 0 16 N16 0 9.167 11111A 0 _ 17 N17 _ 2.3333 9.167 11.5 0 18 N18 7.0833 9.167 11.5 0 19 N19 _ 11.3333 9.167 11.5 0 20 N20 5.0833 9.1667 11.5 0 21 N21 5.0833 9.167 8.5 0 22 N22 2.3333 9.167 3.5 0 _1 23 N23 2.3333 0 -7.7083 0 24 N24 2.3333 9.167 -7.7083 0 25 N25 3.3333 9.167 -8.2875 - 0 26 N26 -2.6403 9.167 -4.8708 0 27 N27 4.8833 _ 9.167 0 0 __ 28 , N28 4.8833 9.167 -5.5063 0 29 N29 0 9.167 14.9167 _ 0 _ 30 N30 2.3333 9.167 14.9167 0 31 N31 _ 7.0833 9.167 14.9167 0 32 N32 11.3333 9.167 14.9167 0 33 N33 5.0833 9.167 14.9167 _ 0 34 N34 7.0833 9.167 8.5 0 35 N L1 0.1771 9.167 4.64 0 36 r N L2 2.0052 9.167 3.5885 0 37 N L3 5.1771 9.167 13.2969 0 38 N L4 7 9.167 12.25 1 0 39 N39 - 0 9.167 _ 4.64 0 40 _ N40 _ 2.0052 9.167 3.5 _ 0 41_ N41 5.0833 9.167 _ 13.2969 0 42 N42 _ 7.0833 _ 9.167 12.25 0 43 N43 2.3333 9.167 -4.8708 - 0 44 N44 4.8833 9.167 -4.8708 0 _ 45 N45 2.3333 9.167 -5.5063 0 46 N46 7.0833 16.7503 5.2083 0 47 N47 T 11.3333 _ 16.7503 5.2083 0 48 N48 11.3333 16.7503 8.5 0 49 N49 7.0833 16.7503 _ 8.5 0 50 N50 11.3333 16.7503 11.5 0 _- 51 N51 _ 7.0833 16.7503 -7.5417 0 52 N52 11.3333 - 16.7503 -7.5417 - 0 - 53 N53 _ 6.8333 _ 9.167 0 0 - 54 NM I 6.8333 9.167 _ 8.5 0 RISA-3D Version 11.0.0 [T:\...\...1...1...\Sani-tech Infeed Platform\RISA Files\12958_Infeed_v03.r3d] Page 3 03/04/2013 www.bccengineering.com Page 29 of 48 Company : BCCE Mar 4,2013 Designer : RDM 12:01 PM Job Number : 12958 Infeed Platform Checked By:- • Joint Boundary Conditions Joint Label X[k/inj Y Win] Z jk/in] X Rot.[k-ft/rad] Y Rot.[k-ft/rad] Z Rot.[k-ft/rad] Footing 1 N1 Reaction Reaction Reaction 2 N2 Reaction Reaction Reaction 3 N11 Reaction Reaction _ Reaction 4 N12 Reaction Reaction Reaction 5 N23 Reaction R eaction Reaction 6 N50 Reaction Reaction __ 7 N51 Reaction Reaction Reaction Reaction Reaction Reaction L8 N52 Reaction Reaction Reaction Reaction Reaction Reaction Member Primary Data Label I Joint J Joint K Joint Rotate(de...Section/Shape Type Design List Material Design Rules 1 M1 N1 - N3 HSS6x6x1/4 Column SquareTubeA500 Gr.46 Typica 2 M2 N2 N4 HSS6x6x1/4 Column SquareTubeA500 Gr.46 Typica 3 M3 N11 _ N13 HSS6x6x1/4 Column,SquareTubeA500 Gr.46 Tvpica 4 M4 N12 N14 HSS6x6x1/4 Column SquareTubeA500 Gr.46 Typica 5 M5 N5 N4 W8x31 Beam Wide Flange, A992 Tvpica 6 M6 ,. N5 N29 W8x31 Beam Wide Flange A992 Typica 7 M7 N4 N32 W8x31 Beam Wide Flange A992 Tvpica _ 8 M9 N13 7 N22 W8x31 Beam Wide Flange A992 Typica 9 _ M10 N22 I N3 W8x31 Beam Wide Flange A992 , Tvpica 10 M11 N14 N15 W8x31 Beam Wide Flange A992 Typica 11 M11A N23 N24 HSS6x6x1/4 Column SquareTube A500 Gr.46 Tvpica 12 M12 N5 N26 W8x24 Beam Wide Flange A992 Typica 13 M13 _ N26 _ N24 W8x24 Beam Wide Flange A992 Tvpica 14 M14 N24 N25 W8x24 Beam Wide Flange. A992 Typica 15 M15 N25 _ N28 _ W8x24 Beam Wide Flange A992 Tvpica 16 M16 N28 N27 W8x24 Beam Wide Flange A992 Typica 17 M17 N3 N24 C8x11.5 Beam Channel A36 Gr.36 Typica - 18 M18 N29 N32 C8x11.5 Beam Channel A36 Gr.36 Typica 19 M19 N7 N8 � W8x31 Beam Wide Flange A992 Tvpica 20 M20 N31 N34 W8x31 Beam Wide Flange A992 Typica 21 M21 N34 N6 W8x31 Beam Wide Flange A992 Tvpica 22 M22 N30 N13 W8x31 Beam Wide Flange A992 Typica 23 M23 N33 N21 W8x31 Beam Wide Flange A992 Tvpica _ 24 M24 N16 N20 C4x5.4_bm Beam Channel A36 Gr.36 Typica 25 M25 N18 N19 C4x5.4 bm Beam Channel A36 Gr.36 Tvpica 26 M26 N39 N L1 _ RIGID None None RIGID Typica 27 M27 N40 N L2 RIGID None None RIGID Tvpica 28 M28 . N41 N L3 RIGID _ None None RIGID Typica 29 M29 N42 N L4 RIGID None None RIGID Tvpica 30 M30 N34 N49 C4x5.4_col Column Channel A36 Gr.36 Typica 31 M31 N9 N46 180 C4x5.4 col Column Channel A36 Gr.36 Typica 32 M32 N10 _ N47 180 C4x5.4 col Column, Channel_A36 Gr.36 Typica 33 . M33 N14 N48 MC6x15.3 Column Wide Flange A36 Gr.36 Typica 34 M34 N19 N50 MC6x.15.3 Column Wide Flange A36 Gr.36 Typica 35 M35 N49 T N46 _ L6x4x3/8 Beam Wide Flange A36 Gr.36 Tvpica 36 , M36 N46 N47 RIGID None None , RIGID _ Typica 37 M37 N47 N48 - L6x4x3/8 Beam Wide Flange A36 Gr.36 Tvpica 38 _ M38 . N48 N49 L6x4x3/8 Beam Wide Flange A36 Gr.36 Typica - 39 M39 N9 N49 _ _ L2x2x1/4 VBrace Single Angle A36 Gr.36 Typica 40 M40 N34 N46 L2x2x1/4 VBrace Single Angle A36 Gr.36 Typica 41 M41 N11 N30 HSS4x4x1/4 VBrace SauareTubeA5000r.46 Tvpica - 42 M42 N11 N3 HSS4x4x1/4 VBrace SquareTube A500 Gr.46 Typica 43 M43 N12 N32 _ HSS4x4x1/4 VBrace SguareTubeA500 Gr.46 Tvpica 44 , M44 N12 N4 HSS4x4x1/4 VBrace SquareTube A500 Gr.46 Typica I RISA-3D Version 11.0.0 [T:\...1...1...1...ISani-tech Infeed Platform\RISA Files112958 Infeed v03.r3d] Page 4 03/04/2013 www.bccengineering.com Page 30 of 48 Company : BCCE Mar 4,2013 Designer : RDM 12:01 PM Job Number : 12958 Infeed Platform Checked By:- Member Primary Data (Continued) Label _ I Joint J Joint K Joint Rotate(de...Section/Shaoe Type Design List Material Design Rules 45 M45 N1 N53 HSS4x4x1/4 VBrace SquareTubeA500 Gr.46 Tvpica _ 46 M46_ N2 N53 HSS4x4x1/4 VBrace SquareTube A500 Gr.46 Typica 47 M47 N11 N54 HSS4x4x1/4 VBrace SquareTubeA500 Gr.46_ Tvpica 48 M48 N12 NM HSS4x4x1/4 VBrace SquareTubeA500 Gr.46 Typica _ 49 M49 N46 N51 L6x4x3/8 ' Beam Wide Flange A36 Gr.36 Tvpica 50 M50 N47 N52 L6x4x3/8 Beam Wide Flange A36 Gr.36 Typica Member Advanced Data Label I Release J Release I Offset[n] J Offset[in] T/C Only , Physical TOM Inactive Seismic Design ... 1 M1 Yes None 2 M2 Yes None 3 M3 _ _ Yes None 4 M4 Yes None 5 M5 Yes None 6 M6 Yes ' None 7 M7 _ Yes None 8 M9 Yes None 9 M10 Yes _ None 10 M11 _ Yes . _ None 11 M11A Yes None 12 M12 T J Yes None 13 M13 _ _ Yes None 14 M14 _ Yes None 15 M15 _ Yes _ None 16 M16 _ Yes None 17 M17 Yes None 18_ M18 _ Yes None 19 M19 _ _ _ Yes None 20 M20 Yes None 21 M21 Yes None _ 22 M22 _ I Yes None 23 M23 Yes None 24 M24 _ None 25 M25 J - Yes _ None 26 M26 Yes None 27 M27 _ Yes None 28 M28 Yes None 29 M29 _ Yes None 30 M30 Yes None 31 M31 Yes _ None 32 M32 Yes None 33 M33 _ Yes None 34 M34 l Yes None 35 M35 _ Yes None 36 M36 Yes None 37 , M37 _ - _ Yes None 38 M38 Yes None 39 M39 BenPIN BenPIN Tension 0... Yes None 40 M40 BenPIN BenPIN Tension 0... Yes None 41 M41 BenPIN BenPIN Yes None 42 M42 BenPIN BenPIN Yes . None _ 43 M43 BenPIN BenPIN Yes _ None _ 44 M44 _ BenPIN _ BenPIN Yes None 45 M45 BenPIN BenPIN _Yes None 46 _ M46 BenPIN BenPIN _ Yes None 47 M47 BenPIN BenPIN Yes None RISA-3D Version 11.0.0 [T:1...\...\...1...1Sani-tech Infeed Platform\RISA Files112958_Infeed_v03.r3d] Page 5 03/04/2013 www.bccengineering.com Page 31 of 48 Company : BCCE Mar 4,2013 Designer : RDM 12:01 PM Job Number : 12958 Infeed Platform Checked By: - Member Advanced Data (Continued) Label I Release J Release I Offsetfinl J Offsetfinl T/C Only Physical TOM Inactive Seismic Design... 48 M48 BenPIN BenPIN Yes None 49 M49 BenPIN BenPIN Yes Exclude None 50 M50 BenPIN BenPIN Yes Exclude None Hot Rolled Steel Design Parameters __ Label Shape Lengthjft] Lbyy[ft] Lbzz[ftl Lcomp topjft]Loom botjft],L-torq... Kyy Kzz Cb Function 1 M1 HSS6x6x1/4 9.167 I Lateral 2 M2 HSS6x6x1/4 9.167 _ _ Lateral 3 M3 HSS6x6x1/4 9.167 _ Lateral 4 ' M4 HSS6x6x1/4 9.167 Lateral 5 M5 W8x31 11.333 _ Lateral 6 M6 W8x31 14.917 _ Lateral 7 M7 W8x31 14.917 Lateral 8 M9 _ W8x31 _ 5 _ Lateral 9 M10 W8x31 3.5 _ Lateral 10 M11 _ W8x31 11.333 Lateral 11 M11A J HSS6x6x1/4 9.167 Lateral 12 M12 W8x24 5.54 Lateral 13 M13 W8x24 5.726 Lateral 14 M14 W8x24 1.156 1 Lateral 15 M15 W8x24 ' 3.184 Lateral 16 M16 W8x24 5.506 Lateral 17 M17 C8x11.5 7.708 Lateral 18 M18 C8x11.5 11.333 Lateral 19 M19 W8x31 7.083 _ Lateral 20 M20 W8x31 6.417 Lateral " _21 M21 W8x31 8.5 _ _ Lateral 22 M22 W8x31 6.417 -1 Lateral 23 M23 W8x31_ 6.417 Lateral - 24 M24 C4x5.4_bm 5.083 Lateral 25 M25 C4x5.4_bm 4.25 Lateral 26 M30 C4x5.4_col 7.583 .9 .9 Lateral 27 M31__ C4x5.4_col 7.583 _ .9 .9 Lateral 28 M32 _ C4x5.4_col 7.583 .9 .9 Lateral 29 M33 MC6x15.3 7.583 _ ._ Lateral 30 M34 MC6x15.3 7.583_ _ Lateral 31 M35 L6x4x3/8 3.292 Lateral 32 M37 L6x4x3/8 3.292 _ Lateral- 33 M38 L6x4x3/8 4.25 _ Lateral 34 M39 L2x2x1/4 8.267 _ Lateral 35 M40 L2x2x1/4 8.267 _ _ Lateral 36 M41 _HSS4x4x1f4 11.19 _ _ _ Lateral 37 M42 HSS4x4x1/4 12.501 _ Lateral 38 M43 HSS4x4x1/4 11.19• _ Lateral 39 M44 HSS4x4x1/4 12.501 _ _ Lateral 40 M45 HSS4x4xl/4 10.212 Lateral 41 M46 HSS4x4x1/4 10.212 Lateral 42 M47 _HSS4x4x1/4 10.212 _ Lateral 43 M48 HSS4x4x1/4 10.212 _ Lateral 44 M49 L6x4x3/8 12.75 2 2 2 2 ( _ Lateral 45 , M50 L6x4x3/8 12.75 2 2 r 2 2 Lateral RISA-3D Version 11.0.0 [T:\...1...1...1...\Sani-tech Infeed Platform\RISA Files112958_Infeed_v03.r3d] Page 6 03/04/2013 www.bccengineering.com Page 32 of 48 Company : BCCE Mar 4,2013 _ Designer : RDM 12:01 PM Job Number : 12958 Infeed Platform Checked By:- Joint Loads and Enforced Displacements (BLC 1 : D) - Joint Label L,D,M Direction Magnitude[(k,k-ft,(in.rad).(k"s^2/f... _ 1 NL1 L Y -.5 2 N L2 L Y -.5 3 N L3 L Y -.75 - 4 N L4 L Y -.75 5 N19 L Y -1.25 6 N14 L Y -1.25 Joint Loads and Enforced Displacements (BLC 2: Qez) Joint Label L,D,M Direction Magnitude[(k,k-ft),(in,rad),(k's^2/f... 1 N46 L Z .4 2 N47 L Z .4 3 N49 L Z .4 4 N48 L Z .4 5 N3 L Z T 1.616 6 N4 L Z 1.616 7 N13 L Z 1.616 8 N14 L Z 1.616 Joint Loads and Enforced Displacements (BLC 3 : Qex) Joint Label L,D.M Direction Magnitude[lk.k-ft).(in.rad).(k*s^2/f... 1 N46 _ L X .4 2 N47 L X .4 3 N49 L X .4 4 N48 L X .4 5 N3 L X 1.616 6 N4 L X 1.616 _ 7 N13 L X 1.616 8 N14 L X 1 1.616 Joint Loads and Enforced Displacements (BLC 5 :X Unitary Load) - Joint Label L,D,M Direction Magnitude[(k,k-ft).(in.rad).(k`s^2/f... 1 N3 L X .5 2 N4 L X .5 3 N13 L X .5 4 N14 L X .5 Joint Loads and Enforced Displacements (BLC 6 : Z Unitary Load) Joint Label _ L.D.M Direction Magnitude[(k,k-ft).(in,rad).(k*s^2/f... 1 N3 L Z .5 2 N13 L Z .5 3 N4 L Z .5 4 N14 L Z .5 Member Distributed Loads (BLC 7: BLC 1 Transient Area Loads) Member Label _ Direction Start Magnitude[k/ft,FJ End Magnitude[k/ft,F] Start Location[ft,%] End Locationlft,%j 0 M6 Y -.019 -.019 J 3.331e-16 _ 14.917 H M7 Y -.038 -.038 2.331e-15 14.917 M9 Y -..081 -.081 0 5 H M10 Y -.076 -.076 .304 3.5 M20 Y -.076 -.076 2.442e-15 6.393 Ira M21 _ Y _._ -.095 _ -.095 0 8.5__ NM M22 _ Y -.057 -.057 3.664e-15 6.393 8 M23 Y _ -.038 -.038 2.554e-15 6.393 RISA-3D Version 11.0.0 [T:1...1...1...1...1Sani-tech Infeed Platform\RISA Files112958_Infeed_v03.r3d] Page 7 03/04/2013 www.bccengineering.com Page 33 of 48 Company : BCCE Mar 4,2013 Designer RDM 12:01 PM Job Number 12958 Infeed Platform Checked By:- Member Distributed Loads (BLC 7 : BLC 1 Transient Area Loads) (Continued) Member Label _ Direction Start Magnitude[k/ft,F] End Magnitudejk/ft.F] Start Locationtft.%] End Location[ft.%] 9 M12 Y -.021 -.025 0 1.108 10 M12 Y -.025 -.03 1.108 Z216 11 M12 Y -.03 -.035 2.216 _ 3.324 _ 12 M12 Y -.035 -.038 3.324 4.432 13 M12 ^_ Y -.038 -.041 4.432 5.54 14 M17 Y -.018 -.031 0 1.079 15 M17 Y -.031 -.039 1.079 _ 2.158 16 M17 Y -.039 -.043 2.158 3.237 17 M17 Y -.043 -.036 3.237 4.317 18 M17 Y -.036 -.015 4.317 5.396 19 M13 T_ Y -.022 -.02 _ 0 1.145 _ 20 M13 Y -.02 -.015 1.145 2.29 21 M13 Y -.015 -.009 2.29 _ 3.436__ _ 22 M13 Y -.009 -.004 3.436 4.581 23 M13 Y -.004 -.0001604 4.581 5.726 24 M17 Y -.0005798 -.017 3.854 4.625 25 M17 Y _ -.017 -.035 4.625 _ 5.396 • 26 M17 Y -.035 -.028 5.396 6.167 27 M17 _ Y -.028 -.014 6.167 6.937 28 M17 Y -.014 -.002 6.937 7.708 29 M16 Y -.025 -.025 .635 5.506 30 M17 Y -.026 -.026 1.124e-15 4.871 31 M16 Y -.026 -.026 0 .636 32 M17 Y _ -.026 r- -.026 4.871 5.506 33 M14 Y _ -.008 -.006 0 .231 34 M14 Y -.006 _ -.004 .231 .462 _ 35 M14 Y -.004 -.003 .462 .693 36 M14 Y -.003 -.001 _ .693 .925 37 M14 Y _ -.001 _ .0001212 .925 1.156 38 M15 _ Y _ -.002 _ -.009 0 .637 39 M15 Y -.009 -.015 _ .637 1.274 40 M15 Y -.015 -.017 1.274 1.91 41 M15 Y _ -.017 -.019 1.91 2.547 42 M15 Y -.019 -.022 2.547 7 3.184 43 M17 Y -.0001302 -.007 4.625 5.242 44 M17 Y -.007 -.018 5.242 5.858 45 M17 Y -.018 -.02 5.858 6.475 46 M17 Y -.02 -.017 6.475 7.092 47 M17 Y -.017 -.014 7.092 7.708 48 M35 Y -.043 -.043 0 3.292 49 M37 Y -.043 -.043 1.443e-15 3.292 50 M49 Y -.042 -.042 2.22e-15 - 12.75 51 M50 Y -.043 1_ -.043 2.304e-15 12.75 Member Distributed Loads (BLC 8 : BLC 4 Transient Area Loads) _ Member Label Direction Start Magnitude[k/ft.F] End Magnitude[k/ft,F] _ Start Location[ft.%] End Location[ft.%] 1 M6 Y -.118 -.118 3.331e-16 14.917 2 M7 Y -.236 -.236 2.331e-15 14.917 _ 3 _ M9 Y -.503 -.503 0 _ 5 4 M10 Y -.472 -.472 .304 3.5 5 M20 Y -.472 -.472 _ 2.442e-15 _ 6.393 - 6 M21 Y -.592 -.592 0 8.5 7 M22 Y -.354 -.354 3.664e-15 6.393 _ 8 M23 Y _ -.236 _ -.236 - 2.554e-15 _- 6.393 9 M12 Y -.131 -.155 0 1.108 10 M12 Y _ -.155 -.19 1.108 ( 2.216 _ 11 M12 Y -.19 -.22 L 2.216 3.324 RISA-3D Version 11.0.0 [T:1...1...1...1...1Sani-tech Infeed Platform\RISA Files112958 Infeed v03.r3d] Page 8 03/04/2013 www.bccengineenng.com Page 34 of 48 Company : BCCE Mar 4,2013 Designer : RDM 12:01 PM Job Number : 12958 Infeed Platform Checked By:- Member Distributed Loads (BLC 8 : BLC 4 Transient Area Loads) (Continued) Member Label Direction Start Magnitudefk/ft,F1 End Maanitudefk/f1F1 Start Location[ft.%1 End Locationlft,%1 - 12 M12 Y -.22 -.237 3.324 4.432 13 M12 Y -.237 -.255 4.432 5.54 14 M17 Y -.115 -.195 0 1.079 15 M17 Y -.195 -.242 1.079 2.158 16 M17 Y -.242 -.271 2.158 3.237 17 M17 Y -.271 -.228 3.237 4.317 18 M17 Y -.228 -,093 _ 4.317 5,396 19 M13 Y -.139 -.124 0 1.145 20 M13 Y -.124 -.096 1.145 2.29 21 M13 Y -.096 -.056 2.29 3.436 22 M13 _ Y -.056 -.025 3.436 4.581 23 M13 Y _ -.025 -.001 4.581 5.726 24 M17 Y -.004 _ -.107 3.854 _ 4.625 25 M17 Y -.107 -.217 4.625 _ 5.396 26 M17 Y -.217 -.173 5.3 6.167 27 M17 Y -.173 -.086 6.167 6.937 28 M17 Y -.086 -.013 6.937 7.708 29 M16 Y -.159 -.159 .635 _ 5.506 30 M17 Y -.159 -.159 1.124e-15 4.871 31 M16 Y -.159 -.159 0 .636 32 M17 Y -.159 -.159 4.871 5.506 33 M14 Y -.051 -.036 0 .231 34 M14 _ Y -.036 -.024 _ .231 .462 35 M14 Y -.024 -.017 .462 .693 36 M14 Y -.017 -.006 .693 .925 37 M14 Y -.006 .0007578 .925 1.156 38 M15 V -.011 -.057 0 .637 39 M15 _ Y -.057 -.091 .637 1.274 _ 40 M15 Y -.091 -.108 1.274 1.91 41 M15 Y -.108 -.121 _ 1.91 2.547 42 M15 Y -.121 -.135 2.547 3.184 43 M17 Y -.0008136 -.044 4.625 5.242 44 M17 Y -.044 -.114 5.242 5.858 45 M17 Y -.114 -.127 5.858 6.475 46 M17 Y -.127 -.106 6.475 7.092 47 M17 Y -.106 -.09 7.092 7.708 48 M35 Y -.266 -.266 0 3.292 49 M37 Y -.266 -.266 1.443e-15 3.292 50 _ M49 Y -.266 -.266 - 2.22e-15 12.75 51 M50 Y -.266 -.266 2.304e-15 12.75 Member Area Loads (BLC 9 : D) Joint A _ Joint B Joint C Joint D Direction Distribution Magnitude[ksf] 1 N29 � N32 N4 N5 Y A-B -.02 2 N5 N3 N43 N26 Y A-B -.02 3 _N26 _ N43 N24 Y A-B -.02 ___ 4 N3 N27 N44 N43 Y A-B -.02 5 N43 N44 N28 N45 Y A-B - -.02 6 : N45 N28 N25 N24 Y A-B -.02 7 N49 N48 N47 N46 Y A-B -.02 8 N51 N52 N47 N46 Y A-B -.02 _ Member Area Loads (BLC 4 : L) Joint A Joint B Joint C Joint D Direction Distribution M ni u _ 1 N29 N32 _._ N4 N5 I Y A-B -.125 2 N5 N3 N43 I N26 T Y A-B _ 1 -.125 RISA-3D Version 11.0.0 [T:\...\...\...\...\Sani-tech Infeed Platform\RISA Files112958_Infeed_v03.r3d] Page 9 03/04/2013 www.bccengineering.com Page 35 of 48 Company BCCE Mar 4, 2013 Designer : RDM 12:01 PM Job Number : 12958 Infeed Platform Checked By:- Member Area Loads (BLC 4 : Li (Continued) Joint A Joint B Joint C _ Joint D _ Direction Distribution MagnitudeThsfj 3 N26 N43 N24 ' Y _ A-B -.125 ^. 4 N3 N27 N44 N43 _, Y A-B -.125 5 N43 N44 N28 N45 Y A-B -.125 _ 6 N45 N28 N25 N24 Y A-B -.125 7 N49 N48 N47 N46 Y A-B _ -.125 8 N51 N52 N47 N46 Y A-B • -.125 Basic Load Cases BLC Description Category X Gray...Y Gray..Z Gray... Joint Point Distrib...Area(Memb..Surface(Plate/Wall), 1 D DL -1 6 8 2 Qez ELZ 8 3 Qex ELX _ _-- 8_ 4 L LL 8 5 X Unitary Load None 4 _ 6 Z Unitary Load None , 4 7 BLC 1 Transien... None 51 8 BLC 4 Transien... None 51 Load Combinations Description _ So...PDelta SRSS BLC Fac..BLC Fac..BLC Fac..BLC Fac..BLC Fac..BLC Fac..BLC Fac..BLC Fac... 1_____ Unitary Load-X Yes Y 5 1 -__2__ Unitary Load-Z Yes Y 6 1 3 1.4D Yes Y DL 1.4 _ 4 1.2D+1.6L Yes Y DL 1.2 LL 1.6 _ 5 Yes Y _ DL 1.2 LL 1.6 6 ASCE 5 We-a) Yes Y DL 1.2 Sa.. .2 O... 1 0... .3 LL .5 LLS 1 7 ASCE 5(os-b) Yes Y DL 1.2 Sd.. .2 0... 1 0... .3 LL .5 LLS 1 8 ASCE 5(os-c) Yes y DL 1.2 Sd.. .2 0... 1 0... .3 LL .5 LLS 1 9 ASCE 5(os-d)_ Yes Y DL 1.2 Sd.. .2 0... 1 0... .3 LL .5 LLS 1 10 ASCE 5(os-e) Yes Y DL 1.2 Sd.. .2 0... 1 0... .3 LL .5 LLS 1 11 ASCE 5(OS-f) Yes Y DL 1.2 Sd.. .2 0... 1 O... .3 LL .5 LLS 1 12 ASCE 5(os-a) Yes Y DL 1.2 Sd.. .2 0••• 1 0... -.3 LL .5 LLS 1 13 ASCE 5(os-h) Yes Y DL 1.2 Sd••, .2 0... 1 0... -.3 LL .5 LLS 1 14 ASCE 5(os-i) Yes Y DL 1.2 Sd.. .2 0... 1 0... -.3 LL .5 LLS 1 15 ASCE 5(os-i) Yes Y DL 1.2 Sd.. .2 0... 1 0... -.3 LL' .5 LLS 1 16 ASCE 5(os-k) Yes Y DL 1.2 Sd.. .2 0... 1 0... -.3 LL .5 LLS 1 17 ASCE 5(ss-I) Yes Y DL 1.2 Sd.., .2 0... 1 0... -.3 LL .5 LLS 1 18 ASCE 5(os-m) Yes Y DL 1.2 Sd.. .2 0... -1 0... -.3 LL .5 LLS 1 19 ASCE 5(os-n).__ Yes Y DL 1.2 Sd.. .2 0... -1 0..._-3 LL .5 LLS 1 20 ASCE 5(os-o) Yes y DL 1.2 Sd.. .2 0... -1 0... -.3 LL .5 LLS 1 21 ASCE 5(os-D) Yes Y DL 1.2 Sd.. .20... -1 0... -,3 LL _5 LLS 1 22 ASCE 5 los-a) Yes Y ' DL 1.2 Sd.. .2 0... -1 0... -.3 LL .5 LLS 1 23 ASCE 5(os-r) Yes Y DL 1.2 Sd.. .2 0... -1 0... -.3 LL .5 LLS 1 24 ASCE 5(os-s) Yes Y DL 1.2 Sd.. .2 0... -1 0... .3 LL .5 LLS 1 25 ASCE 5(os-t) Yes Y DL 1.2 Sd.. .2 0... -1 0... .3 LL .5 LLS 1 26 ASCE 5(os-u) Yes Y DL 1.2 Sd.. .2 0... -1 0... .3 LL .5 LLS 1 27 ASCE 51os-v) Yes Y DL 1.2 Sd.. .2 0... -1 0... .3 LL .5 LLS 1 28 ASCE 5(os-w) Yes Y DL 1.2 Sd.. .2 0... -1 0... .3 LL .5 LLS 1 29 ASCE 5(os-x) Yes Y DL 1.2 Sd.. .2 0... -1 0... .3 LL .5 LLS 1 30 ASCE 7(os-a) • Yes Y DL .9 Sd.. -.2 0... 1 0... .3 31 ASCE 7(os-b) Yes Y DL .9 Sd.. -.2 0... 1 0... .3 32 ASCE 7(os-c) Yes y_ DL .9 Sd...-.2 0... 1 0... .3 - 33 - ASCE 7(os-d) Yes y DL .9 Sd..,-.2 0... 1 0... .3 _ 34 ASCE 7(os-e) Yes Y DL .9 Sd.. -.2 0... 1 0... .3 35 ASCE 7(os-f) Yes Y DL .9 Sd_. -.2 O... 1 O.._ .3 RISA-3D Version 11.0.0 [T:1...1...1...1...1Sani-tech Infeed Platform\RlSA Files\12958_Infeed v03.r3d] Page 10 03/04/2013 www.bccengineering.com Page 36 of 48 Company : BCCE Mar 4,2013 Designer : RDM 12:01 PM Job Number 12958 Infeed Platform Checked By:- Load Combinations (Continued) Description So...PDelta SRSS BLC Fac..BLC Fac..BLC Fac..BLC Fac...BLC Fac..BLC Fac..BLC Fac..BLC Fac... 36 ASCE 7(os-a) Yes Y DL .9 Sd.. -.2 0... 1 0... -.3 37 ASCE 7(os-h) Yes Y DL .9 Sd.. -.2 0... 1 0... -.3 . 38 ASCE 7(os-i) Yes Y DL .9 Sd. -.2 0... 1 0... -.3 39 ASCE 7(os-i) Yes Y DL .9 Sd.. -.2 0... 1 0... -.3 . 40 ASCE 7(os-k) Yes Y DL .9 Sd.. -.2 0... 1 0... -.3 41 ASCE 7(os-I) Yes Y DL .9 Sd..i -.2 0... 1 0... -.3 42 ASCE 7(os-m) _Yes Y DL .9 Sd.. -.2 0... -1 0... -.3 43 ASCE 7(os-n) Yes Y DL .9 ISd.. -.2 0... -1 0... -.3 44 ASCE 7(os-o) Yes Y DL .9 Sd.. -,2 0... -1 0... -.3 , 45 ASCE 7(os-a) Yes Y DL .9 Sd.. -.2 0... -1 0... -.3 46 ASCE 7(os-a) Yes Y DL .9 Sd.. -.2 0... -1 O.._ -.3 47 ASCE 7(os-r) Yes Y DL .9 Sd.. -.2 0... -1 0... -.3 48 ASCE 7(os-s) Yes Y DL. .9 Sd.. -.2 0... -1 0... .3 49 ASCE 7(os-t) Yes Y DL .9 Sd.. -.2 0... -1 0... .3 , 50 ASCE 7(os-u) _ Yes Y DL .9 Sd.. -.2 0... -1 0... .3 51 ASCE 7(os-v) Yes Y DL .9 Sd.. -.2 0... -1 0... .3 52 _ ASCE 7(os-w) Yes, Y DL .9 •Sd.. -.2 0... -1 0... .3 53 ASCE 7(os-x) Yes y IDL .9 Sd..,-.2 0... -1 0... .3 Load Combination Design Description ASIF CD ABIF Service Hot Roll...Cold For... Wood Concrete Masonry Footings Aluminum Connect... 1 Unitary Load-X _ Yes Yes Yes Yes Yes Yes Yes Yes 2 Unitary Load-Z Yes Yes Yes Yes Yes Yes Yes Yes 3 1.4D Yes Yes Yes Yes Yes Yes Yes Yes 4 1.2D+1.6L Yes Yes Yes Yes Yes Yes Yes Yes 5 Yes Yes_ Yes Yes Yes Yes Yes Yes _6 ASCE 5(os-a) Yes Yes Yes Yes Yes Yes - 7 ASCE 5(os-b) Yes Yes Yes Yes Yes Yes 8 ASCE 5(os-c) Yes Yes Yes Yes_ Yes Yes 9 ASCE 5(os-d) Yes Yes Yes Yes Yes Yes - 10 ASCE 5(os-e) Yes Yes Yes Yes Yes Yes 11 ASCE 5(os-f) Yes Yes Yes Yes Yes Yes 12 ASCE 5(os-a)__ Yes Yes Yes Yes Yes Yes 13 ASCE 5(os-h) Yes Yes Yes Yes Yes Yes 14 ASCE 5(os-i) Yes Yes Yes Yes Yes Yes 15 ASCE 5(os-i) . Yes Yes Yes Yes Yes Yes 16 ASCE 5(os-k) Yes Yes Yes Yes Yes Yes 17 ASCE 5(os-I) _ Yes Yes Yes Yes Yes Yes 18 ASCE 5(os-m) Yes Yes Yes Yes Yes Yes 19 ASCE 5 os-n) - Yes Yes Yes Yes Yes Yes 20 ASCE 5(os-o) Yes Yes Yes Yes Yes Yes 21 ASCE 5(os-a) Yes Yes Yes Yes Yes Yes 22 ASCE 5(os-q) Yes Yes Yes Yes Yes Yes 23 ASCE 5(os-r) Yes Yes Yes Yes Yes Yes 24 ASCE 5(os-s) Yes Yes Yes Yes Yes Yes 25 ASCE 5(os-t) Yes Yes Yes Yes Yes Yes 26 ASCE 5(os-u) Yes Yes Yes Yes Yes Yes 27 ASCE 5(os-v) Yes Yes Yes Yes Yes Yes 28 ASCE 5(os-w) Yes Yes Yes Yes Yes Yes 29 ASCE 5(os-x) Yes Yes Yes Yes Yes Yes 30 ASCE 7(os-a) Yes Yes Yes Yes Yes Yes 31 ASCE 7(os-b) _ Yes Yes Yes Yes Yes Yes 32 ASCE 7(os-c) _ Yes Ye_ Yes Yes , Yes Yes 33 _ ASCE 7(os-d) Yes Yes Yes .. Yes Yes _ Yes 34 ASCE 7(os-e) Yes Yes _ __Yes Yes Yes _ Yes " 35 ASCE 7(os-f) , Yes Yes _ Yes Yes Yes Yes RISA-3D Version 11.0.0 [T:\...\...\...\...\Sani-tech Infeed Platform\RISA Files\12958 Infeed v03.r3d] Page 11 03/04/2013 www.bccengineering.com Page 37 of 48 Company BCCE Mar 4, 2013 Designer RDM 12:01 PM Job Number 12958 Infeed Platform Checked By:- Load Combination Design (Continued) Description_ _ ASIF CD ABIF erviceHot Roll...Cold For... Wood Concrete Masonry Footings Aluminum Connect... - 36 i ASCE 7(os-g) Yes , Yes Yes Yes Yes T ' Yes 37 ASCE 7(os-h) Yes Yes _ Yes Yes Yes 1 Yes 38 ASCE 7(os-i) Yes Yes Yes Yes Yes 1 Yes 39 ASCE 7(os-i) Yes Yes ' Yes , Yes Yes Yes 40 ASCE 7(os-k) Yes Yes Yes Yes Yes Yes 41 ASCE 7(os-I) Yes . Yes Yes Yes Yes Yes 42 ASCE 7(os-m)____ Yes Yes Yes Yes Yes _ Yes 43 ASCE 7(os-n) Yes Yes _ Yes Yes Yes Yes 44 . ASCE 7(os-o) , Yes Yes Yes Yes Yes Yes 45 ASCE 7(os-o) Yes Yes Yes Yes Yes Yes 46 ASCE 7(os-q) Yes Yes , Yes Yes Yes Yes 47 ASCE 7(os-r) Yes Yes Yes Yes Yes Yes 48 ASCE 7(os-s) Yes Yes _ Yes Yes Yes Yes _49 ASCE 7(os-t) Yes Yes Yes Yes Yes Yes 50 ASCE 7(os-u) _ Yes Yes Yes Yes Yes Yes 51 ASCE 7(os-v) _ Yes Yes Yes Yes Yes Yes 52 ASCE 7(os-w) __ Yes Yes - Yes Yes Yes Yes 53 ASCE 7(os-x) Yes Yes Yes Yes Yes Yes Envelope Joint Reactions Joint X[k] LC Y[k] LC Z[kJ LC MX[k- ] LC MY[k-ft] LC MZ fk-ft] LC 1 N1 max .236 4 12.635 4 .011 ! 3 ! 0 1 0 1 0 1 2 min -.493 1 -1.022 1 -.006 2 0 1 0 1 0 1 3 N2 max .07 3 2.13 4 .085 4 0 1 0 1 0 1 4 min -.501 1 -.978 2 -.006 2 0 1 0 1 0 1 5 N11 max 3.83 4 28.657 4 0 1 0 1 0 1 0 1 6 min -.5 1 -1.014 1 -.941 2 0 - 1 0 1 0 1 7 N12 max -.002 2 25.618 4 .092 3 0 1 0 1 0 1 8 min -3.733 4 .977 2 -.946 2 0 1 0 1 0 1 9 N23 max .004 2 4.097 4 .171 4 0 1_ 0 1 0 1 10 min -.141 4 _ -.022 2 , -.008 2 0 1 0 1 0 1 11 N50 max .03 4 0 1 0 1 0 1 0 1 0 1 12 • min -.002 1 0 1 -.009 4 0 1 0 1 0 1 13 N51 max 0 2 3.128 4 .955 4 0 1 0 1 0 3 14 min 0 4 0 1 -.078 2 0 1 0 1 0 4 15 N52 max 0 2 3.128 4 .082 4 0 1 0 1 0 3 16 min 0 4 0 2 -.011 2 0 1 0 1 0 4 17 Totals: .max 0 3 79.393 4 . 0 4 _ 18 min -2 1 0 1 -2 2 Envelope Member Section Forces Member Sec Axial[k] LC y Shear[k] LC z Shear[k] LC Torque[k-ft] LC y-y Momen...LC z-z Momen...LC 1 M1 1 max 11.846 4 .116 4 .011 3 .023 4 0 2 0 1 2 min -.919 2 -.003 2 . -.006 2 -.002 2 -.011 4 0 1 3 2 max 11.797 4 .116 _ 4 .011 3 .023 4 .025 3 .007 2 4 1 in -.919 2 -.003 2 -.006 2 -.002 2 -.014 2 -.266 4 5 3 max 11.748 4 .116 4 .011 3 .023 4 .05 3 .014 2 _ • min -.919 2 -.11 2 -.006 2 -.002 2 -.029 2 -. 32 4 . 7 4 max 11.699 4 .116 4 .011 3 .023 4 .076 3 .022 2 __8 i - • • 2 -.003 2 -.006 2 -.002 2 -.043 2 -.797 4 9 , 5 max 11.65 4 .116 4 .011 3 .023 4 .102 3 .029 2 , 10 min -.919 2 -.003 2 -.006 2 -.002 2 -.058 2 -1.063 4 11 M2 1 max 1.447_ 4 .006 1 .085 4 .002 2 0 2 0 1 12 min -.945 2 -.17: - -.006 2 -.041 4 -.02 4 0 1 13 , 2 max 1.398 4 .006 0 .085 4 .002 2 .175 4 .179 4 RISA-3D Version 11.0.0 [T:1...\...1...1...1Sani-tech Infeed Platform\RISA Files112958_Infeed_v03.r3d] Page 12 03/04/2013 www.bccengineering.com Page 38 of 48 • Company : BCCE Mar 4,2013 Designer : RDM 12:01 PM Job Number : 12958 Infeed Platform Checked By:- Envelope Member Section Forces (Continued) Member Sec _ Axialfkl LC v Shearfkl LC z Shearfkl LC Torauelk-ftl LC v-v Momen...LC z-z Momen...LC 14 min -.945 2 -.078 4 -.006 2 -.041 4 -.014 2 -.014 1 15 3 max 1.349 4 .006 1 .085 4 .002 2 i .37 14 .357 4 16 min -.945 2 -.078 4 , -,006 2 -.041 4 -.029 2 -.028 1 17 4 max 1.3 4 .006 1 .085 4 .002 2 .565 4 .536 4 18 min -.945 2 -.078 4 -.006 2 -.041 4 -.043 2 -.041 1 19 5 max 1.25 4 .006 1 .085 4 .002 2 .76 4 .714 4 20 min ' -.945 _2 -.078 4 -.006 2 -.041 4 -.058 2 -.055 1 21 M3 1 max 10.245 4 .017 3 0 1 0 1 0 2 .003 1 22 min -.004 1 0 2 -.038 4 -.061 4 -.007 4 -,019 4 23 2 max 10.196 4 .017 3 0 1 0 1 , 0 1 -.001 2 24 min -.004 1 0 2 -.038 4 -.061 4 -.093 4 -.043 , 3 25 3 max 10.147 4 .017 3 0 1 0 1 0 1 -.003 2 26 min -.004 1 0 2 -.038 4 -.061 4 -.179 4 -.081 3 27 4 max 10.097 4 .017 3 0 1 0 1 0 1 -.004 2 28 min -.004 , 1 0 2 -.038 4 -.061 4 -.265 4 -.12 3 29 5 max 10.048 4 .017 _3 0 1 0 1 0 1 -.005 2 30 min -.004 1 0 22---.038 4 -.061 4 -.351 4 -.158 3 31 M4 1 max 12.3 4 .032 4 .006 3 .045 4 0 2 .019 4 32 min .009 1 0 2 -.037 4 0 1 -.005 4 0 2 33 2 max 12.251 4 .032 4 .006 3 .045 4 .01 3 0 3 34 min .009 1 0 2 -.037 4 0 1 .-.09 4 -.053 4 35 3 max 12.202 4 .032 4 .006 3 .045 4 .023 3 0 2 36 min .009 1 0 2 -.037 1 4 0 1 , -.174 4 -.126 4 37 4 max 12.153 4 .032 4 .006 3 .045 4 .037 3 0 2 38 min .009 1 0 2 -.037 4 0. 1 -.259 4 -.199 4 39 5 max 12.104 4 .032 4 .006 3 .045 4 .05 3 0 2 40 min .009 1 0 2 -.037 4 0 1 l -.344 4 -.271 4 41 M5 1 max .207 4 .006 1 .017 3 0 _ 1 .012 4 .535 4 _ 42 min .005 2 -1.682 4 -.031 4 -.023 4 -.03 3 -.022 2 43 2 max .337 1 .734 4 .155 4 .045 4 .055 ' 4 5.112 4 44 min .004 2 -.003 1 0 1 0 1 -.005 2 -.037 1 _45 _ 3 max .513 1 1.134 4 .009 2 0 1 .079 4 .472 4 46 min -.105 4 -.013 1 -.545 4 -.108 4 -.001 1 -.122 2 47 4 max .06 4 .001 _ 1 .152 4 .017 4 .012 2 .927 4 48 min -.465 1 -1.676 4 -.014 3 0 3 -.222 4 -.087 2 49 _ 5 max .06 4 .001 1 .152 4 .017 4 .209 4 5.826 4 50 min -.465 1 -1.782 4 -.014 3 0 3 -.039 3 0 1 51 M6 1 max .07 3 1.286 4 .013 4 .025 4 .035 3 2.83 4 52 min -.076 4 -.014 2 -.014 3 0 2 -.018 4 -.011 1 53 2 max .055 3 1.016 4 .058 4 .095 3 .004 2 .069 2 54 min 0 2 -.003 2 0 2 0 2 -.102 4 -.716 3 3 max .055 3 -.003 1 .058 4 0 1 .116 4 .08 2 min 0 2 -.512 4 0 2 -.029 3 .001 1 -.788 4 4 max .192 4 .028 3 .007 2 .022 4 .018 3 .06 2 min .001 1 -.289 4 -.002 1 0 2 -.03 4 -.255 4 • 5 max .198 4 .01 2 .023 4 .031 4 .041 4 2.285 4 60 min .001 1 -1.139 4 -.005 3 0 2 0 1 -.016 1 61 M7 _ 1 max 0 1 2.943 4 .012 3 0 2 .156 4 3.017 4 IRE min -.932 4 -.002 2 -.033 4 -.01 4 -.05 3 -.156 3 63 _ 2 max 0 1 1.227 4 .012 3 0 2 .034 4 .017 2_ 64 min -.932 4 -.002 2 -.033 4 -.01 4 -.005 3 -4.758 4 65 3 max 0 1 0 1 .013 3 0 1 .043 3 2.451 4 66 min -.93 4 -4.307_ 4 -.033 4 -.002 4 -.088 4 -.002 1 67 4 max .173 2 2.544 4 .006 3 .001 4 .058 4 .054 2 68 min -.785 4 -.002 1 -.021 4 -.001 1 -.006 1 -1.88 4 69 5 max .169 2 .041 2 .003 1 0 1 .021 4 .386 3 70 min -.792 4 -.899 3 -.01 4 -.029 4 .002 2 -2.268 4 RISA-3D Version 11.0.0 [T:1...1...1...1...1Sani-tech Infeed Platform\RISA Files112958 Infeed v03.r3d] Page 13 03/04/2013 www.bccengineering.com Page 39 of 48 Company : BCCE Mar 4,2013 Designer : RDM 12:01 PM Job Number 12958 Infeed Platform Checked By:- - Envelope Member Section Forces (Continued) Member Sec Axialjk] LC y Shear[k] LC z Shearjkl LC Toraue[k-ftl LC y-y Momen...LC z-z Momen...LC _71 M9 1 _ max -.002 1 4.525 4 .085 4 .001 3 .015 2 6.288 4 72 j min -3.581 4 -.002 1 -.006 2 -.003 4 -.234 4 -.003 1 73 _ 2 max -.002 - 1 3.352 4 .085 4 .001 3 .007 2 1.365 4 74 min -3.581 4 -.002 1 -,006 2 -.003 4 -.128 4 0 1 75 3 max -.002 1 2.178 4 .085 4 .001 3 0 1 .078 2 76 min -3.581 4 -.002 1 -.006 2 . -.003 4 -.022 4 -2.091 4 77 4 max -.002 1 1.004 4 .085 4 .001 3 .084 4 .048 2 78 min -3.581 4 -.002 1 -.006 2 -.003 4 -.007 2 -4.08 4 79 5 max -.002 1 .406 3 .085 4 .001 3 .19 4 .018 2 80 min ' -3.581 4 -.169 4 -.006 2 -.003 4 -.015 2 -4.602 4 81 M10 1 max -.005 1 .006 2 .024 4 .037 4 .009 3 .018 2 82 min -3.573 4 -1.992 4 -.017 3 0 1 -.085 4 -4.577 4 83 2 max -.005 1 .006 2 .024 4 .037 4 .003 1 .013 2 84 .min -3.573 4 -2.508 4 -.017 3 0 -771- 1 -.064 4 -2.681 4 85 _ 3 max -.005 1 .006 2 .024 4 .037 4 0 1 .007 2 86 min -3.573 4 -3.281 4 -.017 3 0 1 -.043 4 -.352 3 87 4 max -.005 1 .006 2 .024 4 .037 4 -.003 1 3.06 4 88 min -3.573 4 -4.054 4 -.017 3 0 1 -.036 3 .002 2 89 5 max -.005 1 .006 2 .024 4 .037 4 -.002 4 6.946 4 90 min -3.573 4 -4.827 4 -.017 3 0 1 -.051 3 -.004 2 91 M11 1 max .005 4 .791 4 .098 4 .006 .069 3 .321 4 92 min -.489 1 -.002 2 -.036 3 0 2 -.191 4 -.005 2 93 2 max .005 4 .686 4 .098 4 .006 _ 4 .087 4 .015 1 94 min -.489 1 -.002 2 -.036 3 0 2 -.034 3 -1.771 4 95 3 max .492 1 .673 4 .063 3 .068 4 .097 4 .226 3 96 min -.117 4 -.004 2 -.063 4 0 1 -.011 2 -.044 4 97 4 max .489 1 .008 . 1 .06 3 0 1 .07 3 2.041 4 - 98 _ min -.12 4 -1.099 4 -.059 4 -.058 , 4 -.038 4 -.033 1 99 5 max .008 2 1.152 4 .001 1 0 2 .001 1 0 1 100 min -.055 4 .006 1 -.173 4 -.012 4 -.216 4 -.049 4 101 M11A 1 max 4.097 4 .141 4 .17 4 0 1 0 1 0 1 102 _ min -.022 2 -.004 2 -.008 2 0 1 0 1 0 1 103 . 2 max 4.048 4 .141 4 .17 4 0 1 .39 4 .01 2 104. min -.022 2 -.004 2 -.008 2 0 1 -.018 2 -.323 4 105 3 max 3.999 4 .141 4 .17 4 0 1 .781 4 .02 2 106 min -.022 2 -.004 2 -.008 2 0 1 -.035 2 -.646 4 107 4 max 3.95 4 .141 4 .17 4 0 1 1.171 4 .03 2 108 min -.022 2 -.004 2 -.008 2 0 1 -.053 2 -.969 4 109 5 max 3.9 4 .141 4 .17 4 0 1 1.562 4 .04 2 110 min -.022 2 -.004 2 -.008 2 , 0 1 -.07 2 -1.292 4 111 M12 _ 1 max -.002 2 1.035 4 .001 3 .042 4 .006 4 3.058 4 112 min -.078 4 0 1 -.001 , 4 0 2 -.005 3 -.018 1 113 2 max -.002 2 .632 4 .001 3 .042 4 .004 4 1.895 4 114 min -.078 4 0 1 -.001 4 0 2 -.003 3 -.017 1 115 3 max -.002 _ 2 .132 4 .001 3 .042 4 .002 _ 4 1.354 4 116 min -.078 4 0 1 -.001 4 0 2 -.002 3 -.016 1 117 4 max -.002 2 0 2 .001 3 .042 4 0 4 1.571 4 118 min -.078 4 -.456 ,4 -.001 4 0 2 0 3 -.015 1 119 - 5 max -.002 2 0 , 2 .001 3 .042 4 .001 3 2.642 4 120 min -.078 4 -1.101 4 -.001 - 4 0 2 -.001 4 -.014 1 121 M13 1 max .003 3 .585 4 0 4 0 1 .001 3 2.201 4 . 122 min -.005 1 0 1 0 3 -.062 4 -.001 4 -.023 2 123 2 max .003 3 .212 4 0 4 0 1 0 3 1.637 4 124 _ _ min -.005 1 0 1 0 3 -.062 4 0 4 -.024 2 125 3 max .003 3 0 2 0 4 0 1 0 3 1.556 4 126 min -.005 1 -.083 4 0 3 -.062 4 0 4 -.024 2 127 , 4 max .003 3 0 2 0 4 0 1 0 1 1.815 4 RISA-3D Version 11.0.0 [T:\...\...\...\...\Sani-tech Infeed Platform\RISA Files112958 Infeed v03.r3d] Page 14 03/04/2013 www.bccengineering.com Page 40 of 48 Company : BCCE Mar 4,2013 Designer : RDM 12:01 PM Job Number : 12958 Infeed Platform Checked By: - Envelope Member Section Forces (Continued) Member Sec , LC v Shearikl LC z Shear[kl LC Torauefk-ftl LC v-v Momen.. LC z-z Momen...LC 128 min -.005 1 -.261 4 0 3 -.062 4 - 0 , 4 -.025 2 129 5 max .003 3 0 2 0 , 4 0 1 0 1 2.258 4_ 130 min -.005 1 -.344 4 0 3 -.062-7.47 0 3 -.026 2 131 M14 1 max 0 2 .805 4 0 3 .006 2 0 4 1.756 4 132 min -.043 4 -.001 2 0 .1 -1.924 4 , 0 3 0 2 133 2 max 0 2 .775 4 0 3 .006 2 0 4 1.528 4 134 min -.043 4 -.001. 2 0 _ 1 . -1.924. . 4 • 0 3 0 2 135 3 max 0 2 .753 4 0 3 .006 2 0 4 1.308_ 4 136 � min, -.043 4 ' -.001 T 2 0 : 1 -1.924 4 0 3 0 2 137 4 Amax 0 2 .737 4 0 3 .006 2 0 4 1.093 4 13$ min -.043 4 -.001 2_ 0 1 -1.924 ' 4 0 3 0' 2___ 139 _ 5 max 0 2 .726 4 0 3 .006 2 0 4 .881 4 140 min -.043 4 -.001 2 0 1 -1.924 4 0 1 .001 1 141 M15 1 max 0 2 .609 4 0 2 .546 4 0___ 4 .732 4 142 min -.048 4 . 0 2 -.002 4 0 1 0 1 -.006 1 143 , 2 0 , 2 .53 4 0 2 .546 4 0 2 .273 4 144 min -.048 4 0 2 -.002 4 1 0 1 -.001 4 -.006 1 145 -3 max 0 2 .386 4 0 2 .546 4 0 2., .031 2 146 _ _ min -.048 4 0 2 , -.002 4 0 1 -.003 4 -.094 4 147 4 max 0 2 .207 4 0 2 .546 4 0 2 -.004 2 148 ,min -.048 4 0 ` 2 -.002 4 0 1 -.004 _ 4 -.332 4 149 5 max 0 2 .011 3 0 2 .546 4 0 2 -.003 2 150 min -.048 4_, 0 2 -.002 4 0 _ 1 -.QQ6 4 -.418 4 151 M16 1 max 0 2 .459 4 .006 1 0 2 0 2 -.001 2 152 min -.09 4 0 2 -.065 4 -.257 4 -.006 4 -1.742 4 153 2 max _ A Q 2 _2 .523 4 4 1 .002 1 _ .001 2__ 154 min -.284 4 0 1 -.001 1 -.072 , 4 -.02 4 -1.445 4 155 3 max .002 2 .09 4 .037 4 , 0 1 .031 4 0 2 156 min -.284 4 0 1 -.001 1 -.072 4 0 2 -1.867 4 1571 14 max .002 2 0 2 .037 4 0 1 .081 4 0 2 1581 min -.284 4 -.343 4 -.001 1 -.072 4 0 1 -1.693 4 159 5 max .002 2 0 2 .037 4 0 1 .132 4 0 2 160 min -.284 4 -.776 4 -.001 1 -.072 4 -,002 1 -.923 4 161 M17 1 max .238 4 1.684 4 0 1 0 4 .002 4 1.984 4 162 min -.002 1 0 1 0 4 0 1 0 2 0 1 163 2 max .238 4 .483 4 0 1 0 4 .001 4 .139 3 164 min -.002 1 0 1 0 4 0 1 0 2 -.17 4 165 3 max .238 4 0 2 ' 0 1 0 4 0 1 .291 4 166 min -.002 1 -.974 4 0 4 0 1 0 4 0 1 167 4 max .052__ 4 .415 4 0 4 0 2 0 2 -.005 1 168 min -.002 2 0 1 , 0 2_ -007_ 4 . 0 4 -2.476 4 169 5 max .052 4 0 2 0 4 0 2 0 4 -.005 1 ,P21 min -.002 2 -.37 4 0 2 -.007 4 Q . 2 -2.394 4_ 171 M18 1 max .034 4 .018 2 0 1 0 2 .041 4 .029 2 172 min_NZ__ 1 -1.758 4 -.036 4 -.002 4 0 1 -2.273 4 2 max .033 4 2.184 4 .013 3 0 2 0 4 .871 4 �i min_ .001 , 1 -.016 2 0 4 -.002 4 -.011 3, -.007 2 175 3 max .036 3 .056 4 .013 3 0 1 .001 4 .038 2 min .003 1, -.046 3_ 0 1 _ -.002 4 -.005 3 -4.094 4 4 max, .056 4 .021 2 .01 4 .004 4 0 2 .029 2 178 ;min .003 1 -1.52 4 -.001 2 0 1 -.007 4 -1.99 4 179 5 max_ 4 .021 2 .01 4 _ .004 4 .022 _ 4 2.371 4 180 min .003 1 -1.559 4 -.001 2 0 1 -.002 2 -.029 2 181 M19 1 max .046 4 .002 1 .015 3 0 2 .143 _ 4 0 2 182 min .004 2 -.658 . 4 -.094 4 -.036 4 , -.011 3 , -.089 3 183 2 max .046 4 ,002 1 .015 3 0 2 .016 3 1.169 4 184 min .004 2 -.724 4 _.094 4 -.036 4 -.024 4 -.003 1 RISA-3D Version 11.0.0 [T:1...1...1...1...\Sani-tech Infeed Platform\RISA Files112958_Infeed_v03.r3d] Page 15 03/04/2013 www.bccengineering.com Page 41 of 48 Company : BCCE Mar 4,2013 Designer : RDM 12:01 PM Job Number : 12958 Infeed Platform Checked By:- - Envelope Member Section Forces (Continued) • Member Sec Axial[k] LC y Shear[kJ LC z Shear[k] LC Toraue[k-ft] LC y-y Momen...LC z-z Momen...LC 185 13 max .107 4 .436 4 .008 2 0 1 .093 4 1.266 4 186 - ME® .004 2 . -.001 . 1 , -.087 4 .-.008 4 -.01 2 - 184 1 187 4 irirl .107 4 .37 4 .008 2 0 1 .003 2 .552 4 . 188 , ® min. '.004 2 -.001 ' 1 -.087 4 -.008 4 _-.061 4 -002 _ 1 189 max .107 4 .304 4 .008 2 0 1 .017 2 .008 3 190 min .004 2 -.001 1 -.087 4 -.008' 4 '-.214 4 -.044 4 191 M20 max ,007 , 4 - 1.537 4 .002 2 .03 4 .027 4 0 1 192 min + 3 3 -.+ • . -.+.,-, • 4 ' I 1 I .1 -.006 .4 193 m-x .007 4 ` .305 3 .002 2 .03 4 .003 2 .058 2 194 min -.013 3 -.036 2 -.03- 4 + 1 -.021 • 4 , -1.335 4 . 195 IIPM max .007 4 0 1 .002 2 + 2 .006 2 .115 2 1.96 min _ -.013 3 - -2.198 4 -.03 _ 4 +• 3 -.Q69 4 -.412 3 197 max .009 4 -.003 1 .01 4 .001 2 .003 1 4.706 4 198 min -.013 3 -3.576 4 , -.007 3 + 4 -.057 4 .002 1 199 5 max .009 4 _.003 1 , .01 4 .001 2 .009 _ 1 11.58 4 200 min -.013 3 -4.974 4 -.007 3 -Q7 4 -.04 4 .007 1 201 M21 1 max _ .165 4 7.09 4 .013 4 .008 4 .008 1 11.635 4 202 min -.112 3 .001 1 -.004 2 + 2 -.022 3 .007 1 203 2 max .165 4 4.757 4 .013 4 .008 4 .023 4 .514 3 204 min -.112 3 .001 1 -.004 2 + 2 -.017 3 -.953 _4 205 • 3 max .027 2 .468 ' 4 .008 4 .005 3 .046 4 .001 1 206 min -.783 4 -.035 2 -.003 2 + 4 -.012 3 -6.7 ' 4 207 4 max .02 2 0 1 .114 4 .015 4 .02 3 0 1 208 min -.697 4 -1.561 4 0 2 -.003 3 -.005 , 4 -5.641 4 209 5 max .02 2 r 0 1 .114 4 .015 4 .238 ,4 .156 4 - 210 min -.697 4 -3.895 ' 4 0 2 -.003 3 .006 _2 0 1 211 _ M22 1 max .038 2 1.33 4 .001 1 .06 4 .033 3 0 • 4 - _212 ' _ min-3.737 4 -.017 2 -.017 3 0 2 -.002 1 0 _3_ 213 2 max .038 2 .252 4 .001 1 _ .06 4 .014 4 .027 2 214 min -3.737 4 -.017 2 -.017 3 0 2 0 2 -1.269 4 _ 215 3 max .038 2 0 1 .001 1 .06 4 .016 4 .053 2 216 1 min -3.737 4 , -.825 4 -.017 , 3 0 2 -.02 T 3 -.81 4 217 4 max .039 2 0 1 .024 4 .079 4 .042 4 1.656 4 218 min -3.732 4 -2.102 4 -.008 3 , 0 2 -.031 3 -.002 1 219 _ 5 max .039 2 0 1 .024 4 .079 4 .08 4 5.892 4 220 min -3.732 4 -3.165 4 -.008 3 0 2 -.044 3 -.002 1 221 - M23 1 max .003 4 2.089 4 .007 4 0 _ 1 .03 3 0 3 222 _ min 0 1 0 2 -.013 3 -.06 3 0 1 0 , 1 223 2 max .003 4 1.35 4 .007 4 0 1 .012 , 4 .001 2 224 min 0 r--1 0 2 -.013 3 -.06 3 -.002 1 -2.758 4 225 3 max .003 4 0 1 .007 4 .038 . 3 .024 4 _ .003 2 226 min 0 1 -.296 3 -.013 3 0 2 -.011 3 -2.902 4 227 4 max .004 4 0 2 .004 1 .092 4 .029 4 .002 2 228 min -.003 3 -.938 4 -.028 3 0 2 -.049 3 -1.972 4 229 , 5 max .004 4 0 2 .004 1 .092 4 .034 4 .126 4 230 min -.003 3 -1.667 4 -028 3 0 2 -.094 3 0 1 231 M24 1 max .019 4 0 1 0 3 0 2 .007 4 0 2 232 min -.008 2 -.078 4 -.006 4 -.001 4 0 3 -.009 4 233 2 max .019 4 0 _ 1 0 3 0 2 0 3 .095 4 234 min -.008 2 -.086 4 -.006 4 -.001 4 0 4 0 1 235 3 max .005 1 .105 4 .003 3 0 2 0 4 .187 4 . 236 min -.015 3 0 1 0 4 -,001 4 -.003 3 0 1 237 4 max .005 1 .097 4 .003_ 3 0 _2 0 3 .061 3 238 min -.015 3 0 1 0 4 -.001 4 0 4 0 1 _ 239 5 max .005 1 .088 _ 4 .003 3 0^_ 2 .004 3 0 1 240 min -.015 3 _ 0 1 0 , 4 -.001 4 -.001 4 -.059 4 241 M25 1 max .004 2 .013 3 .002 4 0 4 0 2 .038 . 3 RISA-3D Version 11.0.0 [T:1...1...1...1...1Sani-tech Infeed Platform\RISA Files112958 Infeed v03.r3d] Page 16 03/04/2013 www.bccengineering.com Page 42 of 48 Company : BCCE Mar 4,2013 Designer : RDM 12:01 PM Job Number : 12958 Infeed Platform Checked By:- Envelope Member Section Forces (Continued) Member Sec Axialfkl LC v Shearfkl LC z Shearfkl LC Torquefk-ftl LC v-v Momen...LC z-z Momen...LC , 242 min -.04 4 -.039 4 0 2 0 2 -.004 4 -.024 . 4 243 2 max .004 _ 2 .005 - 3 .002 4 0 4 0 2 .028 3 244 min -.04 4 -.046 4 0 2 0 2 -.002 4 -.002 1 245 3 max .004 2 .004 1 .002 4 0 4 0 1 .073 4 246 min -.04 4 -.052 4 0 2 0 2 0 3 -.007 1 247 4 max .004 2 .004 1 .002 4 0 4 .002 4 .132 4 248 ,min -.04 4 -.059 4 0 2 0 2 0 2_ -.011 1 249 5 max .004 2 .004 1 .002 4 0 4 .004 4 .199 4 250 min -.04 4 -.066 4 0 2 , 0 2 0 2 1 251 M26 _, 1 max_ 0 1 .7 3 0 2 0 1 0 1 .124 3 252 min 0 2 0 1 0 1 0 1 0 2 0 1 253 2 max 0 1 .7 3 0 2 0 1 0 ^1 .093 3 254 min 0 2 0 1 0 1 0 1 0 2 0 1 255 3 max 0 1 .7 3 0 2 0 1 0 1 .062 3 256 min _ 0 2 0 1 0 1 0 1 0 2 0 1 257 4 max 0 1 .7 3 0 2 0 1 0 1 .031 3 258 min 0 2 0 1 1 0 1 0 2 , 0 1 259 5 max 0 1 .7 3 0 , 2 0 1 0 1 0 3 260 min 0 2 0 1 0 1 0 1 0 2 0 261 M27 1 max 0 1 .7 3 0 2 0 1 0 2 .062 3 262 min 0 1 0 1y 0 , 1_ 0 . 1 0 1 0 1 263 2 max 0 1 .7 3 0 2 0 1 0 2 .046 3 264 0 1 0 1 0 1 0 1 0 1_ 0 1 265 i 3 max 0 1 .7 3 0 2 0 1 0 2 .031 3 266 ' min 0 1 0 1 0 . 1 0 1 0 1 0 1 267 4 max 0 1 .7 3 0 2 0 1 0 2 .015 3 268 min 0 1 0 1 0 1 0 1 0 1 0 1 269 _ _ 5 max 0 1 .7 3 0 2 0 1 0 2 0 4 270 min 0 1 0 1 0 1 0 1 0 1 0 3 271 M28 1 max 0 1 1.05 3 0 3 0 1 0 1 .098 3 272 min 0 1 0 1 0 4 0 1 0 3 0 1 273 2 max 0 1 1.05 3 0 3 0 1 0 , 1 .074 3 274 min 0 1 0 1 0 4 0 1 0 4 0 1 275 3 max 0 1 1.05 3 0 3 0 1 0 .049 3 276 min 0 1 • 0 1 0 4 0 1 0 4 0 1 277 4 max 0 1 1.05 3 0 3_ 0 1 _ 0 3 .025 3 278 min 0 1 0 1 0 4 0 1 0 4 0 2 279 5 max 0 1 1.05 3 0 3 0 1 0 3 0 3 280 min 0 1 0 1 0 4 0 1 0 4 0 4 281 M29 1 max_ 0 1 1.05 3 0 4 0 1 0 3 .087 3 282 min 0 1 0 1 0 3 0 1 0 4 0 1 283 _ 2 max 0 1 1.05 3 0 4 0 1 1 .066 3 284 min 0 1 0 1 0 3 0 1 0 4 0 1 285 3 max 0 1 1.05 3 0 4 0 1 0 1 .044 3 286 min 0 1 0 1 0 3 0 1 0 3 0 1 287 4 max 0 1 1.05 3 0 4 0 1 0 2 .022 3 288 min 0 1. 0 1 0 3 0 1 0 3 0 2 289 5 max_ 0 1 1.05 3 0 4 0 1 0 2 0 4 290 min 0 1 0 1 0 3 0 1 0 3 0 2 291 M30 1 max 3.037 4 0 1 0 3 0 1 .005 4 .001 1 292 min 0 1 -.01 4 -.003 4 0 4 -.005 3 -.072 4 293 2 max 3.025 4 0 1 0 3 0 1 0 1 0 1 294 min 0 1 -.01 4 -.003 4 0 4 -.004 3 -.053 4 • 295 3 max 3.013 4 0 1 0 3 0 1 0 1 0 1 296 _ min , 0 1 -.01 4 -.003 4 0 4 -.007 4 -.035 4 297 fi 4 max 3.001 4 0 1 0 3 0 1 0 2 .003 3 298 , min 0 1 -.01 4 l -.003 4 _0 4 -.013 4 4 RISA-3D Version 11.0.0 [T:\...\...1...\...\Sani-tech Infeed Platform\RISA Files\12958_Infeed_v03.r3d] Page 17 03/04/2013 www.bccengineering.com Page 43 of 48 Company : BCCE Mar 4,2013 Designer : RDM 12:01 PM Job Number : 12958 Infeed Platform Checked By:- Envelope Member Section Forces (Continued) ' Member Sec Axial[k] LC y Shear[k] LC z Shear[k] LC Torque[k-ft] LC y-y Momen...LC z-z Momen...LC 299 5 max 2.988 4 0 1 0 3 0 1 .001 3 .01 3 300 min 0 1 -.01 4 _-.003 4 0 4 -.019 4 -.001 1 _301 M31 1 max' 4.118 4 .006 4 .002 4 0 4 .002 2 .036 4 302 ® 0 0 2 0 2 0 2 -.008 4 -.002 •3 303 - MI 4.106 4 .006 4 .002 4 0 4 0 .025 304 L® 0 to 0 © 0 © 0 © -.004 NI -.002 NI 305 ©1171 4.094 4 .006 4 .002 4 0 4 .001 4 .014 4 306 III►n[n 0 1 0 0 0 2 0 2 -.003 307 max 4.081 4 .006 .002 0 4 .006 4 .004 308 min 0 1 0 0 0 2 0 2 -.003 309 max 4.069 4 .006 .002 0 4 .01 4 .005 310 flmmn 0 H 0 0 0 2 -.002 2 -.008 311 max 3.818 .001 .002 _ 0_ 4 .002 2 .008 312 111 min 0 H 0 H 0 0 2 -.007 4 0 H 313 max 3.806 .001 .002 0 4 .001 2 .007 314 Mmin 0 0 0 0 2 -.002 4 0 315 max 3.794 B .001 ® .002 e 0 4 .002 4 .006 e 316 min 0 0 0 0 2 0 10°51 317 4 max 3.781 .001 .002 0 4 .006 4 318 min 0 0 0 0 2 -.001 -.004 3 319 5 max 3.769 .001 .002 0 4 .01 _.006_ 2 320 min 0 B 0 e 0 0 ® -.002 -.006 321 max 1.244 .015 012 0 .218 .047 ® �® -.034 © -.001 © E 0 © -.046 -.005 El 323 max 1.21 4 .015 .012 0 .061 .019 324 min -.034 2 -.001 -.083 0 -.033 -.003 325 max 1.175 4 .015 .012 0 0 .002 . 326 MINIM -.034 © -001 NI -.083 4 0 © -.096 [! -.009 4 ® IMII 1.14 4 .015 4 .012 © 0 4 .022 © .001 IIEI 328 III min -.034 -.001 H -.083 0 H -.253 a -.036 VU 329 max 1.105 .015 .012 0 .044 .004 331 ER 1062 .03 .009 0 ® 0 1 .2• 29 B EMI -�® 0 -.002 • 0 0 -.072 -.017 E ®- .122 in .' 4 .009 4 0 0 0 .171 4 A 334 U® 0 E -.002 NI 0 0 -.054 -.013 ® ©� .081 © .03 .009 4 0 II 0 0 .114 0 El min 0 H 337 max .041 .032 09 0 0 036 ® 05• 7 e 338 Mmmn 0 H .0O2 1 0 0 B -.018 a -.004 e 33• max 0 .03 4 .009 I 0 0 340 min 0 e -.002 e 0 0 ® 0 1 0 341 max 426 .837 0 .005 2 .162 El 342 min 0 0 -.042 0 -.097 -.022 343 max .426 .433 0 0 .085 0 344 min 0 0 -.042 0 0 -.329 345 max .426 .1 29 0 0 .131 0 346 MI min 0 H 0 H -.042 H 0 H 0 -.517 347 max .426 .004 0 0 .042 0 348 Mmmn 0 H -.374 a -.042 El 0 H 0 H -,401 349 max .426 .004 • 0 .001 .018 • 350 U min 0 El -.778 4 -.042 H 0 H -.183 -.039 . 351 M36 max 0 .008 4 .005 .267 0 .025 352 Mmin -.121 B -.004 H -.01 a -.06 2 -.159 -.008 353 max 0 .008 .005 .267 4 0 .016 354 min -.121 B -.004 H -.01 4 -.06 2 -.17 111 -.004 355 3 max 0 .o 08 .005 2 .267 4 0 .007 RISA-3D Version 11.0.0 [T:1...1...1...1...1Sani-tech Infeed Platform\RISA Files112958 Infeed v03.r3d] Page 18 03/04/2013 www.bccengineering.com Page 44 of 48 Company : BCCE Mar 4,2013 Designer : RDM 12:01 PM Job Number : 12958 Infeed Platform Checked By:- Envelope Member Section Forces (Continued) Member Sec Axial k LC hear k LC z h-arilsl L T.rsu-fk-ftl. LC - Momen...LC z-z Momen...LC 356 Mmin -.121 H -.004 -.01 4 -.06 2 -.181 a -.001 ii 357 max 0 .008 .005 2 .267 4 0 .004 358 min -.121 4 -.004 -.01 -.06 2 -.191 -.005 359 max 0 1 .008 .005 .267 4 .005 .009 360 min -.121 4 -.004 -.01 -.06 2 -.202 -.011 361 M37 max 0 1 .749 .053 0 2 0 .014 362 W® -.07 4 0 El 0 © 0 © -.172 4 -.11 El 363 ©MII 0 El .345 4 .053 4 0 2 .051 4 .012 364 Mmin -.07 e 0 1 0 ® 0 3 0 ® -.503 B 365 0 .003 2 .053 0 2 .139 .01 MI.:I -.07 • 4 -.159 El 0 El 0 © 0 © -.592 4 R4 - 0 � .003 .053 0 © .092 4 .007 FM MOM -.07 4 -.463 4 0 E • © 0 © -.378 4 369 ©INITI 0 El .003 2 .053 4 0 © 0 0 .14 4 370 MIMI -.07 4 -.867 4 0 © 0 © -.092 4 • El ® M38 0CM .006 © .036__© 0 4 0 .001 © .019 4 372 min -.009 H 0 H -.01 0 -.037 H 0 373 max .006 .018 0 0 0 0 374 MO= -.009 4 0 MI -.001 0 © -.026 4 -.019 375 ©ITEI .006 © .001 2 0 4 0 4 .002 © 0 El 377 flmmn max .006 3 .001 ® 001 H 0 e 022 8 027 H 378 in -.009 4 -.019 © -.001 2 0 © -.025 4 -.017 LI 379 -�max .006 © .001 © 0 4 0 0 0 .023 380 flmmn -.009 a -.037 H -.001 H 0 -.034 H -.006 381 M39 max 0 .006 0 0 0 0 0 1 0 H 83 I Mmmn max -2.359 B 03 0 ® 0 B _ .007 4 0 384 Mmin -2.367 H 0 H 0 4 0 H 0 1 -.007 H - 385 max 0 0 0 1 _0 .009 4 0 386 387 f max 0 0 B 0 Hg B - 388 I 0 Hg 8 0 H - H 389_ max 0 0_ 390 fl =.006 El 0 Hg e 0 8 0 H 391 M40 max 0 0 0 0 0 0 II 0 II 392 393 ©max 0 0 Hg 0 II 0 0 394 ill min -.191 II 0 III 0 0 II 0 11 0 395 max 0 0 0 0 0 0 396 min -191 0 0 0 0 0 El 397 �� 0 Elio Q 0 0 MI 0 1 O El FM min -.191 • 399 0 0 0 0 0 40+ Umaxo mi -.191 • 0 0 ® 0 • 401 M41 GM 6.64 4 .052 0 .067 4 0 0 0 II 402 min -.062 ® 0 ® 0 e -.002 H 0 H 0 B 403 max 6.609 .026 0 .067 0 0 404 ® -.062 © 0 ME 0 NE -.002 0 0 El -.108 MI 405 6.577 4 0 0 nu .067 4 0 0 . 0 0 406 MUM -.0.2 El o El oo i1 -.so El 0 0 0• 0 407 4 - 6.546 4 0 El 409 Mmmn max 6 5114 026 ® 0 1 -.002 067 e 0 0-.108 ® • 410 ME® -.062 © -.052 _© 0 -.002 0 0 0 0 _ 0 411 _ M42 1 - 6.854 4 .068 © o El .028 4 0 0 0 _En _ 412 _ min -.002 E 0 0 0 1 -.001 2 , 0 1 , Q _El RISA-3D Version 11.0.0 [1":1--.\...\...\...\Sani-tech Infeed Platform\RISA Files\12958_Infeed_v03.r3d1 Page 19 03/04/2013 www.bccengineering.com Page 45 of 48 • Company : BCCE Mar 4,2013 Designer : RDM 12:01 PM Job Number : 12958 Infeed Platform Checked By:- ' Envelope Member Section Forces (Continued) • Member Sec Axial[kl LC y Shear[k] LC z Shear[k] LC Torque[k-ft] LC y-y Momen...LC z-z Momen...LC 413 2 max 6.823 4 .034 3 0 1 .028 4 0 1 0 1 414 min -.002 1 0 1 0 1 -.001 2 0 1 -.16 3 415 3 max 6.791 4 0 1 0 1 .028 4 0 1 0 1 416' min -.002 . 1 0 1 0 1 -.001 2 - 0 1 -.213 3 , 417 4 max 6.76 4 0 1 0 1 .028 4 0 1 0 1 418 min -.002 1 -.034 3 0 1 -.001 2 0 1 -.16 3 419 5 max 6.728 4 0 . 1 0 1 .028 4 0 , 1 0 1 420 min -.002 1 -,068 3 0 1 -.001 • •2 0 1 0 1 421 M43 1 max 3.639 4 .052 3 0 1 0 2 0 1 0 1 422 min -,058 2_ 0 • 1 0 . 1 -.053 4 0 1 0 1 423 2 max_ 3.607 4 .026 3 0 1 0 2 0 1 0 1 424 min -.058 2 0 1 0 1 -.053 4 0 1 -.108 3 425 3 max 3.576 4 0 1 0 1 0 2 0 _ 1 0 1 426 min -.058 2 0 1 0 1 -.053 4 0 1 -.144 3 427 4 max 3.544 4 0 1 0 1 , 0 2 0 1 0 1 428 min -.058 2 -.026 3 0 1 -.053 4 0 1 -.108 3 429 5 max 3.513 4 0 1 0 1 0 2 0 1 0 1 430 min -.058 2 -.052 3 0 1 -.053 4 0 1 0 1 431 M44 1 max 3.631 4 .068 3 0 1 .003 1 0 1 0 1 432 min 0 1 0 1 0 1 -.016 4 0 , 1 0 1 433 2 max 3.6 4 .034 3 0 1 .003 1 0 1 0_ 1 434 min 0 1 0 1 0 1 -.016 4 0 1 -.16 3 435 3 max 3.568 4 0 1 0 1 .003 1 0 1 0 1 436 min 0 1 0 1 0 1 -.016 4 0 1 -.213 3 437 4 max 3.537 4 0 1 0 1 .003 1 0 1 0 1 438 min 0 1 -.034 3 0 1 -.016 4 0 1 -.16 3 _439 5 max 3.505 4 0 1 0 1 _.003 1 0 1 0 _ 1 - 440 min 0 1 -.068 3 0 1 -.016 4 0 1 0 1 441 M45 1 max .863 4 .036 _3 0 1 .002 2 0 1 0 1 442 min -1.106 1 0 1 0 r -.025 4 0 1 0 1 _ 443 2 max .831 4 .018 3 0 1 .002 2 0 1 0 1 444 min -1.106 1 0 1 0 1 -.025 4 0 1 -.069 3 445 3 max .8 _ 4 0 1 0 1 .002 2 0 1 0 1 446 min -1.106 1 0 1 0 1 -.025 4 0 1 -.092 3 447 4 max .768 4 0 1 0 1 .002 2 0 1 0 1 448 min -1.106 1 -.018 3 0 _ 1 -.025 4 0 1 -.069 3 449 5 max .737 4 0 1 0 1 .002 2 0 1 0 1 450 min -1,106 1 -.036 3 0 1 . -.025 4 0 , 1 0 1 451 M46 _1 max 1.122 1 .036 3 0 1 .046 4 0 1 0 1 452 min -.037 2 0 1 0 1 -.002 2 0 1 0 1 453 2 max 1.122 1 .018 3 0 1 .046 4 0 1 0 1 454 min -.056 3 0 1 0 1 -.002 2 0 1 -.069 3 455 3 max 1.122 1 0 1 0 1 .046 4 0 1 0 1 - 456 min -.093 3 0 1 0 1 -.002 2 0 1 -.092 3 457 4 max 1.122 1 0 1 0 1 .046 4 0 1 0 1 458 min -.13 3 -.018 3 0 1 -.002 2 0 1 -.069 _ 3 459 5 max 1.122 1 0 1 0 1 .046 4 0 1 0 1 460 min -.167 3 -.036 3 0 1 -.002 2 0 1 0 1 461 M47 1 max 8.766 4 .036 3 0 1 .002 2 0 1 0 1 462 min -1,122 1 0 1 0 1 -.016 4 0 1 0 1 463 2 max 8.734 4 .018 3 0 1 .002 2 0 1 0 1 46 min -1.122 . 1 0 , 1 0 1 -.016 4 0 1 -.069 465 3 max 8.703 4 0 1 0 1 .002 2 0 1 0 1 466 min -1.122 1 0 1 0 1 -.016 4 0 1 -.092 3 467 4 max 8.671 4 0 1 0 1 .002 2 0 1 0 1 468 min -1.122 1 -.018 3 0 1 -.016 4 0 1 -.069 `3 469 5 max 8.64 4 0 1 0 1 .002 2 l_ 0 1 . 0 1 RISA-3D Version 11.0.0 [T:\...\...\...\...1Sani-tech Infeed Platform\RISA Files112958 Infeed v03.r3d] Page 20 03/04/2013 www.bccengineering.com Page 46 of 48 Company BCCE Mar 4,2013 Designer RDM 12:01 PM Job Number 12958 Infeed Platform Checked By:- Envelope Member Section Forces (Continued) - Member Sec Axialfkl LC v Sh?arjkl LC z Shearfkl LC Torauefk-ffl LC v-v Momen..,LC z-z Mornen...LC_ - 470 min -1.122 1 -.036 3 0 1 -.016 4 0 1 . 0 1 _- 471 M48 . 1 max 8.461 , 4 .036 3 _ 0 1 .011 4_ 0 , 1 _ 0 1 472 min .004 2 0 1 0 1 -.002 2 0 1 0 1 ,473 2 max 8.43 4 .018 3 0 1 .011 4 0 1 0 1 , 474 ., min .004. 2 0 1 0 1 `-.002 2 _ 0 1 -.069 3 475 _ 3 max 8.398 4 0 1 0 1 .011 4 0 1 0 1 476 ,min .004 2 0 1 . 0 1 -.002_ 2 0 1 -.092 ,3 477 4 max 8.367 _ 4 0 _ 1 0 1 .011 4 0 1 0 1 478 •min .004 2 . -.018 3 0 __ 1 -.002 -2 0 1 -.069 3 479 5 max_ 8.335 4 . 0 1 0 1 _ .011 4 0 1 0 1 _ 480 min .004 2 -.036 _ 3 0 1 -.002 2 0 1 0 1 Envelope AISC 93th(360-05): LRFD Steel Code Checks Member Sha•e Code C...Loc ft LC Shear... Locft Dir LC •hi"Pnc jki •hi*Pnt k .hi'Mn -....hi•Mn z-...Cb E•n 0 M1 HSS6x6x4 .060 9.167 4 .003 0 11 4 186.879 216.936 38.64 38.64 In H1-lb 2 M2 HSS6x6x4 .041 9.167 El .003 0 RH 186.879 216.936 38.64 38.64 Hl-lb 3 M3 HSS6x6x4 .038 9.167 .003 0 186.879 216.936 38.64 38.64 H1-1b u• H 6x•x4 .1• • • • i ti»flhI;I :1A1E' 1;t141 F 1 nni 1-1• NIFAW8x31 .059 11.333 4 .056 6.847 4 294.542 410.85 52.791 113.877 SE Hl-lb IW:x31 E R D '29 1L1fl I.: M! .7•1 1 3.:7 EN .1-1. Wii M7 W8x31 .062 8.391 4 .070 :.391NH 1 4 230.833 410.85 52.791 113.877 in H1-lb 385.08 410,85 52.791 113.877 8 M9 W8x31 9 M10 W8x31 .073 3.5 Ei .071 3.5 398.014 410.85 52.791 113.877 Hl-lb 10 M11 W8x31 .032 4.25 Ei .221 4.486 Fi 294.542 410.85 52.791 113.877 81 H1-1b 11 M11A HSS6x6x4 .084 9.167 .103 I 186.879 216.936 38.64 38.64 H1-lb 12 M12 W8x24 .045 0 El .019 5.54 Fi 281.153 318.6 32.138 86.625 011H1-lb 13 M13 W8x24 .041 5.726 .010 .179 278.767 318.6 32.138 86.625 H1-lb - I 4 u • W:x24 .130 M» I 7afftjii 4E'1 1:.• 32.1 : :6.625 En H1-1• ® M15 W8x24 .090 0 4 .041 1. 92© 4 05.711 318.• 32.138 86.625 En H1-lb 16 M16 W8x24 .080 0 4 .021 .631 RH 281.584' 318.6 32.138 86.625 1... H1-lb _ 17 M17 C8x11.5 .111 5.46 4 .052 4.818 34.588 109.188 3.353 26.001 12... Hl-lb 8 M18 C8x11.5 .210 Lt' s 4 .067 mane 16.001 119 1:: Minn 20.496 En H1-lb I 1• M19 W8x31 _ .020 2.361 I 2.287 4 360.765 410.85 52.791. 113.877 1...,Hl-lb 20 M20 W8x31 _114 6.417 .073 6.417 y 4 369.276 410.85 52.791 113.877 NI H1-lb 21 M21 W8x31 .104 0 .104 0 4 340.707 410.:5 52.791 113.877 Hl-lb 2 M22 _ W;x31 .07 ..41 4 W:•.4 711 4 &I*. 4 410.: 5 .7• =MEM Hl-1b Ell M23 W8x31 C4x5.4 .037 1.604 '12 .3831 v II 3169.276 510.82 521 2 1 11 1837 H1-lb 25 M25 C4x5.4 .0 9 4.25 .008 2.701 111a 25.58' 51.192 1.2 6.183 in Hl-lb 26 3' C4x5.4 .303 0 4 .0. 3.79 11 0 J 8 1.192 1.2 6.183 in H1-la 27 M31 C4x5.4 .403 0 4 010 3.79211 4 10.5$: 51.192 1.2 6.18 ni Hl-la Etii i 3 4x .4 . 70 1 4 .001 penri 4 ' : 1 1• 1 2 5.701 BEM 29 M33 M 6x15.3 .056 7.583 4 .002 0 ©n 97..47 145.476 8.658 26.757 F�C�7 4 MC6x15. N.0 4 m t» •7.6. 14 •7. 1111MMI 6.757 OEM HL6x4x6 .069 1.61 4 0 RI 4 96.578 116.964 4.973 13.618 UM ® L6x4x6 .072 1.646 4 .024 wine 4 ••.578 116 •64 4.973 13.572 in . -1 ® M38 L6x4x6 .009 0 n .001 , 11 4 90.411 116.964 5.108 15.351 3 H2-1 FM 39 L2x2x4 .178 8.2.7 .101 8. • en 3.2'6 F51-4131 .•91 1.273 . - ® M40 L2x2x4 .006 0 © .000 0 © 3.246 30.586 .691 1.224 0 H2-1 IF�� HSS4x4x4 .0' 4 ; 4 .117 t. II : .6 5 IibP1.1 1 6.18 6. 81 n H1-1b ® M42 HSS4x4x4 .058 6.12 4 .004 12.501 rj 4 72.539 139.518 16.181 16.181 in H1-lb 38 M43 HSS4x4x4 .029 5.478 4 .006 11.191113 82.615 139.518 16.181 16.181 11 H1-1b 39 M44 HSS4x4x4 .036 6.12 4 .003 12.501 72.539 139.51: 16.181 16.181 H1 71b W!1 u4 H S4x4x4 .'s• OM • •' 10.212lif ;s ] 1. 181 1.. :1 in H1-1. 41 M46 HSS4x4x4 .009 4.893 .005 10.212 rj 90.175 139.518 16.181 16.181 H 1-1 b - 42 M47 HS 4x4x4 .053 ]� .1$2 10.21211 •".17 ignin 16.181 16.181 amIlEa7 RISA-3D Version 11.0.0 [T:\...\...\...\...\Sani-tech Infeed Platform\RISA Files\12958_Infeed_v03.r3dI Page 21 03/04/2013 www.bccengineering.com Page 47 of 48 Company BCCE Mar 4,2013 Designer : RDM 12:01 PM Job Number : 12958 Infeed Platform Checked By:- ' Envelope AISC 13th(360-05): LRFD Steel Code Checks (Continued) Member Shape Code C...Loc[ft1 LC_Shear... Loc[ft] Dir LC phi*Pnc[k] phi'Pnt[k]phi*Mn y-.,,phi*Mn z-...Cb Eon 43 I M48 HSS4x4x4 .051 4.893.4_ .002 10.2121 y_4 1 90.175 1 139.5181 16.181 1 16.181 11...1H1-11) Envelope Drift Report Story Joint X-Drift[in] LC Ht[%j Joint Y-Drift[inj LC Ht[%] Joint Z-Drift[in] LC Ht[%] No Data to Print... Material Takeoff Material Size Pieces Length[ft] _ Weight[K] 1 _ General L 2 RIGID 5 4.7 0 3 Total General 5 4.7 0 4 5 Hot Rolled Steel 6 A36 Gr.36 C4x5.4 5 32.1 .2 7 A36 Gr.36 C8x11.5 2 19 .2 8 A36 Gr.36 MC6x15. 2 15.2 .2 _ 9 A36 Gr.36 L6x4x6 5 36.3 .4 10 A36 Gr.36 L2x2x4 _ 2 16.5 0 11 A500 Gr.46 HSS4x4x4 8 88.2 1 _ 12 A500 Gr.46 HSS6x6x4 5 45.8 .8 13 A992 W8x24 _ 5 21.1 - .5 14 A22 W8x31 11 _ 95.8 3 15 Total HR Steel 45 370.2 6.4 RISA-3D Version 11.0.0 [T:\...\...\...\...\Sani-tech Infeed Platform\RISA Files\12958 Infeed v03.r3d] Page 22 03/04/2013 www.bccengineering.com Page 48 of 48 C . Dan Nelson City of Tigard - Senior Plans Examiner June 6, 2013 Page 8 Bradford Conrad Crow Engineering Co. Surge Bin Structural Mod and Anchorage Design Calculations Jan 2, 2013 Bradford Conrad Crow Engineering Co. JOB TITLE Agylix Equipment Anchorage 9925 SW Nimbus Avenue Suite 110 Surge Bin Structural Mod and Anchorage Beaverton,OR 97008 JOB NO. 12958 SHEET NO. 503-213-2013 CALCULATED BY RDM DATE 12/12/12 • CHECKED BY RDM DATE 12/12/12 CS12 Ver 2012.05 17 www.struware.com STRUCTURAL CALCULATIONS FOR Agylix Equipment Anchorage Surge Bin Structural Mod and Anchorage Tigard, OR 1A`irt/ auCTo ��p P RopEs MG' 4C�G1NE4k p- f 8053 I I y .J vow +OREGON41 1 F 27, 1.15 GQ-� DAVID MG EXPIRES:DEC.31,2012 Bradford Conrad Crow Engineering Co. JOB TITLE Agylix Equipment Anchorage 9925 SW Nimbus Avenue Suite 110 Surge Bin Structural Mod and Anchorage - Beaverton,OR 97008 JOB NO. 12958 SHEET NO. 503-213-2013 CALCULATED BY RDM DATE 12/12/12 - CHECKED BY RDM DATE 12/12/12 CS12 Ver 2012.05.17 www.struware.com Table of Contents Section'Section Description 1 Site Location/Seismic Parameters pages 2 2 Seismic Shear,Period,and Overturning page 3-4 3 Base Plate Detail page 5 4 ACI 318-08 App.D Anchorage-Set XP Epoxy page 6-15 5 Surge Bin RISA Graphics page 16-17 6 Surge Bin RISA Calculations Report page 18-27 7 Surge Bin Built-Up Column Calculations page 28-30 8 Surge Bin Reinforcing Shear Flow Calc's page 31 9 Surge Bin Reinforcing Details page 32-35 www.bccengineering.com Page 1 of 35 12958 Surge Bin ji ..„ : • . ' * - . , , , , • . .. - Nit . • ice' illkii ! . Q \ , - alli + 3 7 = k �• , x , ao., t 4 4 . S s< •, s - C,00k, earth Conterminous 48 States Conterminous 48 States 2005 ASCE 7 Standard 2005 ASCE 7 Standard Latitude=45.427 Latitude=45.427 Longitude= -122.75900000000001 Longitude=-122.75900000000001 Spectral Response Accelerations Ss and S1 Design Spectral Response Accelerations SDs and Ss and S1= Mapped Spectral Acceleration SD1 Values SDs=2/3 x SMs and SD1=2/3 x SM1 Site Class B - Fa= 1.0,Fv= 1.0 Site Class D - Fa = 1.122,Fv= 1.722 Data are based on a 0.05 deg grid spacing Period Sa Period Sa . (sec) (g) (sec) (g) 0.2 0.944(Ss,Site Class B) 0.2 0.706 (SDs,Site Class D) 1.0 0.339 (S1,Site Class B) 1.0 0.389 (SD1,Site Class D) Conterminous 48 States 2005 ASCE 7 Standard Latitude=45.427 Longitude= -122.75900000000001 Spectral Response Accelerations SMs and SM1 SMs= Fa x Ss and SM1= Fv x S1 Site Class D- Fa = 1.122,Fv= 1.722 Period Sa (sec) (g) 0.2 1.059 (SMs,Site Class D) 1.0 0.583 (SM1,Site Class D) www.bccengineering.com Page 2 of 35 12958 Surge Bin ALBRADFORD C ONRAD NRAD CROW ENGNroject Job Ref.CO,CQ. Agilyx Equipment Anchorage Calcs 12958 G CIVIL•STRUC1UR Pl.•MEOAMCN.ENOINEERS Section Sheet noJrev. Bradford Conrad Crow Engineering Co. 3 9925 SW NIMBUS AVE.,SUITE 110 Seismic Shear,Overtuming,Anchorage BEAVERTON,OR 97008 Cale.by Date Chk'd by Date App'd by Date PH 503-213-2013 FAX:503-213-2018 RDM JFB • 111 __ M1c. ('A4•AMF'1 F a r — A'"'rzx . L AT= `1 ,4 2.10°,,I 1.onU 122.757 14 I� 1 - 6r7 -. °r"v� A o,11 1 ' ,- ' 0,1$5 ` 1.1 I�/Id = t Q.�j isq 1-k l l' 1 ` 0.12 11-1..^7 - 09 11,_t_. - 0,50se_cv,i5 es ) F= /..0 eMr` AX-rd-e river 7 s DII /i:A;-, 1,.,"c, E2:,;r::, c;:.fr<< ,--. CiAr: 1s-4 -I 45.c E-1/ r2i ALRRARAORD Project Job Ref. CONRAD CROW er�rfEEnNG co. Agilyx Equipment Anchorage Calcs 12958 (± CM.•STMJCTU X•NECNJWCK ENOWEER6 Section Sheet no.hev. . Bradford Conrad Crow Engineering Co. t{ 9925 SW NIMBUS AVE.,SURE 110 Seismic Shear,Overturning,Anchorage - BEAVERTON,OR 97008 Calc.by Date Chk'd by Date App'd by Date PH 503-213-2013 FAX:503-213-2018 RDM JFB ill PffY t1a1,1 6.10 e i_r'A•z .) AT ■7 it. N�=4ce39 -L Mw / 4 )( r ,r mommonimmummi MI E.1. Ontg ) A.k/Gtil9C.S 67!T-OT 41,,,\) °e (4 N F.W, log�. j, I�i a ,r• 17i4cco Ft--;0. t 2'5.110 x.7f.r• 1to.0f714— rr --(1.5•+f°)(‘.1Z.,)61 + it9.0 0,a3) . �,l2 P(' (r.11 1 Z.2 11' K 3,9fo , M.afrtz,J,>,L I. c..Te rr..jw www.bccengineering.com Page 4 of 35 12958 Surge Bin - 1 I 1 1 1 I 1 C co 01 OI 7 a LL] 1'-2" co N ._ C2" 2 1/2" 3" 3" 1 1/2" 2" 1 o m • / EXISTING SURGE BIN ABOVE / , (/, oN _ r / / ;' / i W a CV ( / /% / /i if 111 3/4"0 HOLES FOR 5/8"o x 6" EMBED (3" M PROJ) F1554 GR. 36 ANCHOR RODS w/NUT o AND WASHER. INSTALL w/SIMPSON SET-XP �/�/�� I- J EPDXY PER SIMPSON (ICC ES 2508) a AV c-4 e,yr M N s 3" 1 O 3/4" PL. c 1 I g m 8'-0" OUT-TO-OUT t OF (E) SURGE BIN m c L a� U U 1 Anchor Calculations Anchor Selector (Version 4.11.0.0) Job Name : 12958-bin Date/Time : 12/17/2012 2:06:44 PM 1) Input Calculation Method : ACI 318 Appendix D For Cracked Concrete Code : ACI 318-08 Calculation Type : Analysis Code Report : ICC-ES ESR-2508 a) Layout Anchor : 5/8" SET-XP Number of Anchors : 4 Steel Grade: F1554 GR. 36 Embedment Depth : 6 in Built-up Grout Pads : No cx1 Sx1 cx2 c y2 �C Vuay C �by2 3 Muy 3ux Vuax ey s y 1 ex L__:° by1 cy1 b bx2 4 ANCHORS 'Nue IS POSITIVE FOR TENSION AND NEGATIVE FOR COMPRESSION. •INDICATES CENTER OF FOUR CORNER ANCHORS Anchor Layout Dimensions : cx1 : 999 in cic2 : 999 in c , : 999 in cy2 : 999 in bx1 : 2 in bx2 : 2in by, : 2 in by2 : 2in www.bccengineering.com Page 6 of 35 12958 Surge Bin SxI : 10 in syi : 10 in NOTE: Compressive strength will be limited to 2500 psi in calculations for concrete breakout strength in tension, adhesive strength in tension, and concrete pryout strength in shear. b) Base Material Concrete : Normal weight fc : 4000.0 psi Cracked Concrete : Yes 'I'c.V : 1.20 Condition : B tension and shear ()FP : 2210.0 psi Thickness, ha : 10 in Supplementary edge reinforcement : No Hole Condition : Dry Concrete Inspection : Continuous Temperature Range : 1 (Maximum 110°F short term and 75 °F long term temp.) c) Factored Loads Load factor source : ACI 318 Section 9.2 N. : 4630 lb Vuax : 4000 lb Vuay : 0 lb M. : 0 lb*ft May : O lb*ft ex : 0in ey : 0 in Moderate/high seismic risk or intermediate/high design category : Yes Anchor w/sustained tension : No Anchors only resist wind and/or seismic loads : Yes Apply entire shear load at front row for breakout : No d)Anchor Parameters From ICC-ES ESR-2508 • Anchor Model= SETXP da=0.625 in Category= 1 hef=6 in ham,;° = 9.125 in cac= 18 in cm;u= 1.75 in su,;,, = 3 in Ductile=Yes 2) Tension Force on Each Individual Anchor www.bccengineering.com Page 7 of 35 12958 Surge Bin Anchor#1 N = 1157.50 lb Anchor#2 N„a2 = 1157.50 lb Anchor#3 N ua3 = 1157.50 lb Anchor#4 N ua4 = 1157.50 lb Sum of Anchor Tension EN.=4630.00 lb ax = 0.00 in ay= 0.00 in e'N„=0.00 in e'Ny=0.00 in 3) Shear Force on Each Individual Anchor Resultant shear forces in each anchor: Anchor#1 V uaI = 1000.00 lb(V ualx= 1000.00 lb , V uaiy=0.00 lb ) Anchor#2 V ua2 = 1000.00 lb (V ua2x= 1000.00 lb , V ua2y=0.00 lb ) Anchor#3 V ua3 = 1000.00 lb(V ua3x= 1000.00 lb ,V ua3y=0.00 lb) Anchor#4 V ua4 = 1000.00 lb (V ua4x= 1000.00 lb ,V uagy=0.00 lb ) Sum of Anchor Shear EVuax =4000.00 lb, EVuay=0.00 lb e'vx = 0.00 in e'vy= 0.00 in 4) Steel Strength of Anchor in Tension [Sec.D.5.1] Nsa =nA se f„,a [Eq. D-3] • Number of anchors acting in tension, n=4 Nsa= 13110 lb (for each individual anchor) [ ICC-ES ESR-2508 ] = 0.75 [D.4.4] 4)Nsa=9832.50 lb (for each individual anchor) 5) Concrete Breakout Strength of Anchor Group in Tension [Sec. D.5.21 Ncbg= ANc/ANco` ec,NTed,NTc,Nwcp,NNb [Eq. D-5] Number of influencing edges =0 hef=6 in ANco= 324.00 in2 [Eq. D-6] ANc = 784.00 in2 `I'ec,Nx= 1.0000 [Eq. D-9] TeC,Ny= 1.0000 [Eq. D-9] Tec,N = 1.0000(Combination of x-axis& y-axis eccentricity factors.) Smallest edge distance, ca,min=999.00 in wed,N = 1.0000 [Eq. D-10 or D-11] www.bccengineering.com Page 8 of 35 12958 Surge Bin Note: Cracking shall be controlled per D.5.2.6 Tc,N = 1.0000 [Sec. D.5.2.6] Tcp,N= 1.0000 [Eq. D-12 or D-13] Nb=kek f' c he11.5 = 12492.40 lb [Eq. D-7] kc= 17 [Sec. D.5.2.6] Ncbg= 30228.52 lb [Eq. D-5] =0.65 [D.4.4] 4)seis= 0.75 4)Ncbg= 14736.40 lb (for the anchor group) 6) Adhesive Strength of Anchor in Tension [Sec. D.5.3 (AC308 Sec.3.3)] tk,cr= 855 psi [ ICC-ES ESR-2508 ] tk,max,cr= kcr 4 het 4 f c/(ir da) [Eq. D-16i] kcr= 17 [ ICC-ES ESR-2508 ] hef(unadjusted) = 6 in Tk,max,cr= 1060.39 psi Nao= 'kern dahef= 10072.73 lb [Eq. D-16f] Tk,uncr=2075.00 psi for use in [Eq. D-16d] scr,Na= min[20 da (Tk,ur,cr"1450) , 3hef] = 14.953 in [Eq. D-16d] Ccr,Na= Scr,Na/2 = 7.477 in [Eq. D-16e] Nag=ANa/ANaoYed,Na'Pg,NaPec,NaTp,NaNao [Eq. D-16b] • ANao= 223.60 in2 [Eq. D-16c] ANa= 622.66 in2 `Eec,Nax = 1/(1+2e'Nx/scr,Na) = 1.0000 [Eq. D-16j] `1`ec,Nay= 1/(1+2 e'Ny/Scr,Na)= 1.0000 [Eq. D-16j] `I'ec,Na = 1.0000 (Combination of x-axis and y-axis eccentricity factors.) Smallest edge distance, ca,min = 999.00 in q'ed,Na= 1.0000 [Eq. D-161] ` r,,Na= 1.0000 [Sec. D.5.3.14] �g,Na=Tg,Nao+(S/Scr,Na)1'5(1-'g,Nao) [Eq. D-16g] s= 10 in(largest spacing) 'I'g Nao max{ n - [( *NI n - 1)(Tk,cr/Tk,max,cr)1'5], 1.0} [Eq. D-16h] Pg,Nao= 1.2760 Pg,Na= 1.0503 Nag=29460.46 lb [Eq. D-16b] www.bccengineering.com Page 9 of 35 12958 Surge Bin = 0.65 [ ICC-ES ESR-2508 ] 4seis= 0.75 4Nag= 14361.97 lb (for the anchor group) 7) Side Face Blowout of Anchor in Tension [Sec. D.5.4] Concrete side face blowout strength is only calculated for headed anchors in tension close to an edge, cal < 0.4hef. Not applicable in this case. 8) Steel Strength of Anchor in Shear [Sec D.6.1] Vsa= 7865.00 lb (for each individual anchor) Veq =Vsaay.seis [AC308 Eq. 11-27] ay.seis=0.68 [ ICC-ES ESR-2508 ] Vim,= 5348.20 lb = 0.65 [D.4.4] Veq= 3476.33 lb (for each individual anchor) 9) Concrete Breakout Strength of Anchor Group in Shear [Sec D.6.2] Case 1: Anchor(s) closest to edge checked against sum of anchor shear loads at the edge In x-direction... Vcbgx =Avcx/AvcoxVec,v'Fed,V'Yc,v'Fh,V Vbx [Eq. D-22] cat = 666.00 in (adjusted for edges per D.6.2.4) A,,cx= 20080.00 in2 Avcox = 1996002.00 in2 [Eq. D-23] Teo/= 1.0000 [Eq. D-26] 'f'ed,v= 1.0000 [Eq. D-27 or D-28] To/ = 1.2000 [Sec. D.6.2.7] Thy= (1.5cai /ha) =9.9950 [Sec. D.6.2.8] Vbx = 7(le/da )0.2-V dak fc(cat)1.5 [Eq. D-24] le= 5.00 in Vbx= 9117953.76 lb Vcbgx= 1100180.93 lb [Eq. D-22] = 0.70 4)seis =0.75 4)Vcbgx = 577594.99 lb(for the anchor group) In y-direction... Vcbgy=Avcy/AvcoyTec,VPed,v' c,v'I'h,v Vby [Eq. D-22] www.bccengineering.com Page 10 of 35 12958 Surge Bin Cal = 666.00 in(adjusted for edges per D.6.2.4) Agcy=20080.00 in2 Ave.),= 1996002.00 in2 [Eq. D-23] `Eec,v = 1.0000 [Eq. D-26] Ped,v= 1.0000 [Eq. D-27 or D-28] Pc,v= 1.2000 [Sec. D.6.2.7] Thy = (1.5cai /ha) =9.9950 [Sec. D.6.2.8] Vby= 7(le/da)O.2 da? fc(cai)is [Eq. D-24] le= 5.00 in Vby=9117953.76 lb Vcbgy = 1100180.93 lb [Eq. D-22] = 0.70 4)seis= 0.75 4)Vcbgy= 577594.99 lb(for the anchor group) Case 2: Anchor(s) furthest from edge checked against total shear load In x-direction... Vcbgx =Avcx/Avcox`Eec,v`Eed,v`Ec,v`Yb,v Vbx [Eq. D-22] cal = 666.00 in (adjusted for edges per D.6.2.4) Avcx= 20080.00 in2 AVe°X = 1996002.00 in2 [Eq. D-23] `I'ec,v = 1.0000 [Eq. D-26] `Eed,v= 1.0000 [Eq. D-27 or D-28] `Yc,v = 1.2000 [Sec. D.6.2.7] Thy= (1.5cai /ha) =9.9950 [Sec. D.6.2.8] Vbx = 7(le/da )O.2 4 dak fc(cai)i.s [Eq. D-24] 1e= 5.00 in Vbx= 9117953.76 lb Vcbgx = 1100180.93 lb [Eq. D-22] =0.70 4)seis=0.75 4)Vcbgx = 577594.99 lb (for the entire anchor group) In y-direction... Vcbgy=Avcy/Avcoy`I'ec,v`Yed,vPc,v'I'h,v Vby [Eq. D-22] cal = 666.00 in(adjusted for edges per D.6.2.4) A,,ey= 20080.00 in2 www.bccengineering.com Page 11 of 35 12958 Surge Bin A,,coy = 1996002.00 in2 [Eq. D-23] �eC v= 1.0000 [Eq. D-26] '1'ed,V = 1.0000 [Eq. D-27 or D-28] Tex= 1.2000 [Sec. D.6.2.7] '1'h,V = (1.5cai /ha)= 9.9950 [Sec. D.6.2.8] Vby= 7(1e/da )0.2 daX' fc(cai)1.5 [Eq. D-24] 1e= 5.00 in Vby=9117953.76 lb Vcbgy= 1100180.93 lb [Eq. D-22] = 0.70 (Owls =0.75 4)Vcbgy= 577594.99 lb(for the entire anchor group) Case 3: Anchor(s) closest to edge checked for parallel to edge condition Check anchors at cxi edge Vcbgx =Avcx/AvcoxPec,V'1'ed,v'Ec,V'1'h,v Vbx [Eq. D-22] cal = 666.00 in (adjusted for edges per D.6.2.4) Avcx=20080.00 in2 Avcox = 1996002.00 in2 [Eq. D-23] '1'ec,v= 1.0000 [Eq. D-26] '1'ed,v = 1.0000 [Sec. D.6.2.1(c)] `1'c,V= 1.2000 [Sec. D.6.2.7] `l'h,V= (1.5cai /ha)=9.9950 [Sec. D.6.2.8] Vbx= 7(le/da )0.2 daX" fc(Cai)1'S [Eq. D-24] le= 5.00 in Vbx= 9117953.76 lb Vebgx= 1100180.93 lb [Eq. D-22] Vcbgy=2 * Vcbgx [Sec. D.6.2.1(c)] Vcbgy=2200361.86 lb = 0.70 4lseis = 0.75 Vcbgy= 1155189.97 lb(for the anchor group) Check anchors at cyi edge Vcbgy=Avcy/Avcoy'Fec,VPed,VPc,v`Ph,v Vby [Eq. D-22] Cal =666.00 in (adjusted for edges per D.6.2.4) A,,ey= 20080.00 in2 www.bccengineering.com Page 12 of 35 12958 Surge Bin Avcoy= 1996002.00 in2 [Eq. D-23] Tec,v = 1.0000 [Eq. D-26] Teo/= 1.0000 [Sec. D.6.2.1(c)] Tc,v= 1.2000 [Sec. D.6.2.7] Thy= (1.5cat /ha)= 9.9950 [Sec. D.6.2.8] Vby= 7(le/da)0.24 dak4 fc(cal)'.5 [Eq. D-24] le= 5.00 in Vby=9117953.76 lb Vcbgy= 1100180.93 lb [Eq. D-22] Vcbgx=2 * Vcbgy [Sec. D.6.2.1(c)] Vcbgx = 2200361.86 lb = 0.70 Oseis= 0.75 •Vcbgx = 1155189.97 lb (for the anchor group) Check anchors at cx2 edge Vcbgx=Avcx/Avcox'Pec,vPed,v''c,v'Ph,v Vbx [Eq. D-22] Cal =666.00 in(adjusted for edges per D.6.2.4) Avcx= 20080.00 in2 Avcox= 1996002.00 in2 [Eq. D-23] `i'ec,v = 1.0000 [Eq. D-26] Teo/ = 1.0000 [Eq. D-27 or D-28] [Sec. D.6.2.1(c)] `1'c,v = 1.2000 [Sec. D.6.2.7] Thy = (1.5ca1 /ha) = 9.9950 [Sec. D.6.2.8] Vbx= 7(1e/da )0.211 ciao/ fc(cai)i.5 [Eq. D-24] le= 5.00 in Vbx = 9117953.76 lb Vcbgx = 1100180.93 lb [Eq. D-22] Vcbgy=2 * Vcbgx [Sec. D.6.2.1(c)] Vcbgy= 2200361.86 lb =0.70 4seis=0.75 fVcbgy= 1155189.97 lb(for the anchor group) Check anchors at cy2 edge - Vcbgy=Avcy/AvcoyPec,vPed,v`Yc,v`i'h,v Vby [Eq. D-22] Cal =666.00 in(adjusted for edges per D.6.2.4) www.bccengineering.com Page 13 of 35 12958 Surge Bin A,,cy=20080.00 in2 Avcoy= 1996002.00 in2 [Eq. D-23] 'Eec,v= 1.0000 [Eq. D-26] `l`ed,v= 1.0000 [Sec. D.6.2.1(c)] `1'c,v = 1.2000 [Sec. D.6.2.7] Thy = (1.5cai /ha)= 9.9950 [Sec. D.6.2.8] Vby= 7(1e/da)O.2 4 da? 1 fc(cai)1.5 [Eq. D-24] le= 5.00 in Vby= 9117953.76 lb Vcbgy= 1100180.93 lb [Eq. D-22] Vcbgx=2 * Vcbgy [Sec. D.6.2.1(c)] Vcbgx =2200361.86 lb = 0.70 4)seis=0.75 (1)Vcbgx = 1155189.97 lb (for the anchor group) 10) Concrete Pryout Strength of Anchor Group in Shear [Sec. D.6.31 Vcpg=min[kcpNag,kcpNcbg] [Eq. D-30b] kcp= 2 [Sec. D.6.3.2] e'vx= 0.00 in (Applied shear load eccentricity relative to anchor group c.g.) e'vy= 0.00 in(Applied shear load eccentricity relative to anchor group c.g.) '1'ec,Nx= 1.0000 [Eq. D-9] (Calulated using applied shear load eccentricity) `l'ec,Ny= 1.0000 [Eq. D-9] (Calulated using applied shear load eccentricity) 'ec,N'= 1.0000 (Combination of x-axis & y-axis eccentricity factors) Nag= (ANaa/ANa)\kijec,N'/lljec,Na)Nag Nag=29460.46 lb (from Section(6)of calculations) ANa= 622.66 in2 (from Section(6) of calculations) ANaa= 622.66 in2 (considering all anchors) `1'ec,Na= 1.0000 (from Section(6)of calculations) Nag= 29460.46 lb(considering all anchors) Ncbg= (ANca/ANc)� ■ec,N'/'Pec,N)Ncbg Ncbg=30228.52 lb (from Section(5)of calculations) ANc= 784.00 in2 (from Section(5)of calculations) ANca= 784.00 in2 (considering all anchors) '1'ec,N = 1.0000 (from Section(5)of calculations) Ncbg=30228.52 lb (considering all anchors) Vcpg= 58920.92 lb www.bccengineering.com Page 14 of 35 12958 Surge Bin = 0.70 [D.4.4] 4)seis=0.75 OVcpg=30933.48 lb (for the anchor group) 11) Check Demand/Capacity Ratios [Sec. D.71 Note: Ratios have been divided by 0.4 factor for brittle failure. Tension - Steel : 0.1177 -Breakout : 0.7855 -Adhesive : 0.8059 - Sideface Blowout : N/A Shear - Steel : 0.2877 - Breakout (case 1) : 0.0087 - Breakout(case 2) : 0.0173 - Breakout(case 3) : 0.0043 - Pryout : 0.3233 T.Max(0.81)+ V.Max(0.32) = 1.13 <= 1.2 [Sec D.7.3] Interaction check: PASS Use 5/8" diameter F1554 GR. 36 SET-XP anchor(s) with 6 in. embedment www.bccengineering.com Page 15 of 35 12958 Surge Bin r . 1 Y y 1 Z X M2k 11 9 c 40 co 6 M Atik.' �i0 ,, Gew ,: r 12 , 2i'LO 4' 5 /9 Allih'1 1 iro4„.,,i6 s '''' 0, M m s D ,,::, .`7 4 4 r- M 44 I10 Solution: Envelope BCCE SK- 1 RDM Surge Bin -Agylix Dec 12, 2012 at 10:08 AM 12958 Surge Bin - Members and Nodes untitled.r3d www.bccengineering.com Page 16 of 35 12958 Surge Bin • Y /� Z x - -.63k/ft /011 iii II iiiiii ii - 0011111 øØøkI!IIIIIIIIIIIhj,.I 119 1 3.•.��II ii, „, .63•' �,, 6 -.63k/ftiiiik, �tiu► 21 II ,! �„� 23 01015140111111iiiii VIII..2oi�iiiil��0 ., � ii i,�.IIII 4111,'�� I i gall t .� op. 11i11 ►II ,�I��� 11iiili iiiiiOPP 000' � � - 24 11P' 5 -.63 II . __ ,,. II � Ir, . 22 112 VIII i1/0i1i IIII iii4111 � III iiiii rill 16 111 IN �� ��. , I�IL iiiiii ,� iII c1 1' 0 I 11 4 I 71Ci7 t I ! , '410 Loads: LC 3, 1.34D+Qex Results for LC 3, 1.34D+Qex BCCE SK -2 RDM Surge Bin-Agylix Dec 13, 2012 at 8:56 AM 12958 Rendered Bin "Rings”with Seismic Force 1.34D+Eh 12958 Surge Bin.r3d www.bccengineering.com Page 17 of 35 12958 Surge Bin Company BCCE Dec 17,2012 Designer : RDM 2:05 PM Job Number : 12958 Surge Bin-Agylix Checked By: RDM Global Display Sections for Member Calcs 5 Max Internal Sections for Member Calcs 97 Include Shear Deformation? Yes Include Warping? Yes Trans Load Btwn Intersecting Wood Wall? Yes Increase Nailing Capacity for Wind? Yes Area Load Mesh (in^2) _ 144 Merge Tolerance(in) .12 P-Delta Analysis Tolerance 0.50% Include P-Delta for Walls? _Yes Automaticly Iterate Stiffness for Walls? Yes _ Maximum Iteration Number for Wall Stiffness3 Gravity Acceleration(ft/sec^2) 32.2 Wall Mesh Size(in) 12 Eigensolution Convergence Tol.(1.E-) 4 Vertical Axis - _ Y Global Member Orientation Plane XZ Static Solver Sparse Accelerated Dynamic Solver Accelerated Solver Hot Rolled Steel Code AISC 13th(360-05): LRFD _ Adjust Stiffness? Yes(Iterative) RISAConnection Code _ AISC 13th(360-05): LRFD _ Cold Formed Steel Code AISI S100-07:ASD Wood Code AF&PA NDS-05/08:ASD Wood Temperature < 100F Concrete Code ACI 318-08 Masonry Code ACI 530-08:ASD • 'Aluminum Code AA ADM1-05:ASD-Building Number of Shear Regions 4 _ Region Spacing Increment(in) 4 Biaxial Column Method Exact Integration Parme Beta Factor(PCA) .65 Concrete Stress Block Rectangular Use Cracked Sections? Yes Bad Framing Warnings? _ No — Unused Force Warnings? Yes Min 1 Bar Diam. Spacing? No Concrete Rebar Set REBAR SET ASTMA615 Min %Steel for Column 1 Max%Steel for Column 8 RISA-3D Version 10.0.1 [T:1...1...1...1Calcs Struc\Surge Bin Calcs\RISA Files112958 Surge Bin.r3d] Page 1 www.bccengineering.com — Page 18 of 35 12958 Surge Bin Company : BCCE Dec 17,2012 Designer : RDM 2:05 PM Job Number : 12958 Surge Bin-Agylix Checked By: RDM Global, Continued Seismic Code ASCE 7-10 Seismic Base Elevation(ft) Not Entered - Add Base Weight? Yes Ct Z 1-6-2 Ct X .02 . T Z(sec) Not Entered T X(sec) Not Entered RZ -3 RX 3 Ct Exp.Z .75 Ct Exp. X .75 SD1 1 _ SDS 1 S1 11 TL(sec) 5 Risk Cat I or II Seismic Detailing Code ASCE 7-05 Om Z 1 Om X 1 Rho Z 1 Rho X 1 Hot Rolled Steel Properties Label E[ksi] G[ksij , Nu Therm(11E.,,Density[k/ft... Yield[ksi] Ry Fu[ksi] Rt__ 1 A36 Gr.36 29000 11154 .3 .65 _ .49 36 1.5 58 1.2 _ 2 A572 Gr.50 29000 11154 T .3 .65 .49 50 1.1 65 1.1 3 A992 29000 11154 .3 .65 .49 50 1.1 65 1.1 4 A500 Gr.42 29000 11154_ .3 .65 .49 42 1.4 58 1.3 5 _ A500 Gr.46 29000 11154 , .3 .65 .49 46 1.4 58 1.3 Hot Rolled Steel Section Sets Label Shape Type Design List Material Design R I- A in2] , Ivy[in4] _lzz[in4] J[in4), 1 Ring HSS4x3x4 Beam Tube J A500 Gr.46 T •ical 2.91 3.91 6.15 7.96 _ 2 LEG HSS6x3 c�6, Column Tube A500 Gr.46 WWII 5.48 7.48 22.7 19.3 3 _. Brace _HSS3x3x4: VBrace . Tube A500 Gr.46 Typical 2.44 3.02 3.02 5.08 i General Section Sets Label Shape Type Material A[in2) lyy[in4] Izz[in41 J[in4 . 1 BU Column HSS6x3x3+HS... Beam_ qen Steel ,_ 8.867 , 30.071 31.18 25.94 2 RIGID None RIGID 1e+6 1e+6 1e+6 1e+6 Joint Coordinates and Temperatures Label - X Lfti Y[ft] Z[ft] Temp[F] Detach From Dia 1 N7 0 _ 0 8.6667 0 2 N8 0 8.25 8.6667 0 _ 3 N9 0 13.1 8.6667 0 4 N10 8.6667 0 8.6667 0 5 N11 8.6667 8.25 8.6667 0 _ 6 N12 8.6667 13.1 8.6667 0 7 N14 4.3333 8.25 _ 8.6667 0 8 N18 4.3333 13.1 8.6667 0 ` 9 N22 4.3333 9.84 8.6667 0 - RISA-3D Version 10.0.1 [T:\...1...1...1Calcs Struc\Surge Bin Calcs\RISA Files112958 Surge Bin.r3d] Page 2 www.bccengineering.com - Page 19 of 35 12958 Surge Bin - Company : BCCE Dec 17,2012 Designer : RDM 2:05 PM Job Number : 12958 Surge Bin-Agylix Checked By:RDM Joint Coordinates and Temperatures (Continued) Label _X ift] Y Iftl Z Eft] Temp(F] Detach From Diao... 10 , N15 0 8.25 4.33335 0 11 N16 8.6667 8.25 4.33335 0 12 , N19 0 13.1 4.33335 0 - 13 N20 8.6667 _ 13.1 4.33335 0 14 N23 0 9.84 4.33335 0 15 N24 _ 8.6667 9.84 4.33335 0 16 N1 0 0 0 0 17 _ N2 0 8.25 0 0 18 . N3 0 13.1 0 0 _ 19 N4 8.6667 0 _ 0 _ 0 20 N5 _ 8.6667 _ 8.25 0 0 21 N6 8.6667 13.1 0 0 22 N13 4.3333 8.25 0 0 23 N17 4.3333 13.1 0 0 N21 4.3333 9.84 0 - 0 Joint Boundary Conditions Joint Label X[kiln] Y[kin] Z[Win] X Rot.[k-ft/radl_Y Rot.[k-ft/radj Z Rot.jk-ft/radj Footing 1 - N1 Reaction Reaction - Reaction _ Reaction Reaction Reaction 2 N4 Reaction Reaction Reaction Reaction Reaction Reaction 3 N7 Reaction Reaction Reaction Reaction _ Reaction Reaction 4 N10 Reaction . Reaction Reaction Reaction Reaction Reaction Member Primary Data • Label I Joint J Joint K Joint Rotate(de...Section/Shape Type Design List Material Design Rules 1 M1 N1 N2 BU Column Beam None gen_Steel DR1 2 * M2 N2 N3 BU Column Beam None gen_Steel DR1 _ 3 M3 N4 N5 BU Column Beam None gen_Steel DR1 4 M4 N5 N6 BU Column Beam_ None gen_Steel DR1 5 M5 _ N7 N8 BU Column Beam None gen_Steel DR1 6 M6 N8 N9 BU Column. Beam None gen_Steel DR1 7 M7 _ N10 N11 BU Column Beam None gen_Steel DR1 8 M8 N11 N12 _ BU Column Beam , None gen_Steel DR1 1 9 M9 N8 N11 90 Rinq Beam Tube A500 Gr.46 Tvpica 10 M10 N11 N5 90 Ring Beam , Tube A500 Gr.46 Typica 11 M11 _ N5 N2 90 Ring Beam . Tube A500 Gr.46 Tvpica 12 M12 N2 N8 Ring Beam Tube A500 Gr.46 Typica 13 M21 -_ N9 N12 _ 90 Ring , Tube A500 Gr.46 Tvpica 14 M22 N12 N6 90 Ring Beam Tube A500 Gr.46 Typica 15 M23 N6 N3 90 Rinq Beam Tube A500 Gr.46 Tvpica 16 M24 _ N3 N9 90 Ring Beam , Tube A500 Gr.46 Typica 17 M25 N8 N18 Brace VBrace Tube A500 Gr.46 Tvpica 18 M26 N11 , N18 Brace VBrace Tube /500 Gr.46 Typica 19 M27 N11 N20 - _ Brace VBrace Tube jA500 Gr.46 Typica 20 M28 N5 N20 Brace VBrace Tube _A500 Gr.46 Typica 21 M29 N5 , N17 Brace VBrace Tube A500 Gr.46 Tvpica 22 M30 N2 N17 Brace VBrace Tube A500 Gr.46 Typica 23 M31 N2 N19 Brace VBrace Tube A500 Gr.46 Tvpica - 24 M32 N8 N19 Brace VBrace Tube A500 Gr.46 Typica 25 M33 N14 N18 RIGID None None RIGID Tvpica 26 M34 N16 N20 RIGID None None RIGID Typica 27 M35 N13 N17 RIGID None None RIGID Tvpica 28 M36 N15 N19 RIGID None None RIGID Typica 29 M37 N23 N22 RIGID None None RIGID Tvpica 30 M38 ' N22 N24 RIGID None None RIGID Typica RISA-3D Version 10.0.1 [T:1...\...\...1Calcs Struc\Surge Bin Calcs\RISA Files112958 Surge Bin.r3d] Page 3 www.bccengineering.com - Page 20 of 35 12958 Surge Bin Company : BCCE Dec 17,2012 Designer : RDM 2:05 PM Job Number : 12958 Surge Bin-Agylix Checked By:RDM Member Primary Data (Continued) . Label _ I Joint J Joint K Joint Rotate(de...Section/Shape Type Design List __. Material Design Rules 31 M39 _ N24 _ N21 RIGID None None RIGID Typical 32 M40 N21 N23 _ RIGID None None RIGID Typical Member Advanced Data L.•-I I R-1-. e J Release I Offset[in] J Offsetjinj TIC Only Physical TOM Inactive Seismic Design... 1 M1 BenPIN Yes None 2 M2 Yes None 3 M3 B-nPIN _ Yes None H M4 Yes None M5 BenPIN Yes _ None M6 Yes None M7 BenPIN Yes _ None 8 M8 Yes None 9 M9 Yes None 10 M10 Yes None 11 M11 , Yes i None ® M12 Yes Exclude None M21 Yes None INM22 Yes None M23 Yes None LM24 __ . ' Yes _ None M25 f Yes _ None 6 _ Yes None M27 1- Yes + None 20 M28 Yes _ Nonce_ ® M29 _ Yes _ _ None ® 0 Yes None • NM31 Yes None M32 _ Yes _ _ None N M33 BenPIN BenPIN Yes Exclude None M34 BenPIN BenPIN Yes Exclude None MBBenPIN BenPIN Yes Exclude None BenPIN BenPIN Yes Exclude None 29 M37 BenPIN BenPIN _ Yes Exclude None 30 M38 BenPIN BenPIN Yes Exclude None 31 M39 BenPIN BenPIN Yes Exclude None 32 M40 1 BenPIN BenPIN Yes Exclude None 1 Hot Rolled Steel Design Parameters Label Shape ,Lengthfftj_ Lbyyjftl _ Lbzz[ft] Lcomp top[ft]Lcomp bot[ft] L-tors... Kvy Kzz Cb Function 1 M9 Ring 8.667 Lateral 2 M10 Ring 8.667 Lateral 3 M11 Ring 8.667 _ Lateral 4 M12 Rlitg ' -8.667 Lateral 5 M21 Ring 8.667 _ — �_T Lateral 6 .M22 . Ring 8:667 Lateral 7 M23 Ring - 8.667 Lateral 8 •M24 Ring 8.667 lateral 9 M25 Brace 6.504 Lateral 10 M26 Brace 6.504 Lateral 11 M27 _ Brace 6.504 _ Lateral 12 M28 Brace 6.504 Lateral 13 M29 Brace 6.504 Lateral • 14 M30 Brace . 6.504 Lateral 15 M31 Brace _ 6.504 _ _ Lateral RISA-3D Version 10.0.1 F:\...1...1...1Calcs_Struc\Surge Bin Calcs\RISA Files112958 Surge Bin.r3d] Page 4 www.bccengineering.com – Page 1 of 35 12958 Surge Bin - Company : BCCE Dec 17,2012 Designer : RDM 2:05 PM Job Number : 12958 Surge Bin-Agylix Checked By: RDM Hot Rolled Steel Design Parameters (Continued) Label Shape Lenothfftl Lt yy[f L Lbzzlftl Lcomp topfftl Lcomp bot[ftl L-torq... Kvv Kzz Cb Function r 16 M32 I Bra_ce 6.504 1 Lateral - Joint Loads and Enforced Displacements (BLC 1 : Unitary Load) Joint Label L.D.M Direction Magnitudel(k.k-ft).(in.rad).(k*s"2/ft.k*ft^2)] 1 _ N23 L __- __- X .25 2 N22 L X - .25 3 N21 L X _.25 4 N24 L X .25 Joint Loads and Enforced Displacements (BLC 3 : Qe(0 deg)) Joint Label L.D,M Direction Magnitude[(k.k-f).(in.rad).(k*s^2/ft.k*ft^2)] 1 N23 L X 3.93 2 N22 _ L f X 3.93 • _ 3 N21 L X 3.93 _ r 4 N24 L L X 3.93 _, Joint Loads and Enforced Displacements (BLC 4 : Qe(90 deg)) Joint Label L.D,M Direction Magnitude[(k.k-ft), tin,r-ad),(k`s^2/ft, k*ft^2)1 __ 1_ N23 L Z 3.93 2 N22 L _ Z 3.93 3 N21 L Z 3.93 43 1 N24 L Z 3.93 . Member Distributed Loads (BLC 2 : D) Member Label Direction Start Magnitudelk/ft.F] End Magnitude[k/ft.F] Start Location[ft.%] End Locationfft.%] 1 M9 Y -.47 -.47 0 _ 0 . 2 M10 Y -.47 -.47 0 0 3 M11 Y -.47 -.47 _ 0 0 4 M12 Y -.47 -.47 0 0 5 M21 -- Y -.47 -.47 0 0 6 M22 _- Y -, -.47 -.47_ _ 0 0 7 M23 Y r -.47 - -.47 0 0 8 M24 , Y -.47 -.47 0 0 — Member Area Loads Joint A Joint B Joint C Joint D Direction Distribution Magnitude[ksf] No Data to Print... Basic Load Cases BLC Description Category X Gravity Y Gravity Z Gravity Joint Point Distribu...Area(M...Surface... 1 Unitary Load None 4 I 2 D DL -1 8 3 Qe(0 deq) ELX 4 . 4 Qe(90 deo) ELZ , 4 Envelope Joint Reactions Joint X]k) LC Y[k] LC Z[k] LC MX[k-ft] LC MY[k-ft] LC MZ[k-ft] LC hr 1-- Ni max 3.753 5 21.251 5 .038 2 0 1 .083 3 0 1 2 _ min 1 -4.112 4 -2.499 4 0 1 0 1 I -.082 5 0 1 RISA-3D Version 10.0.1 [T:\...1...1...1Calcs_Struc\Surge Bin Calcs\RISA Files112958 Surge Bin.r3d] Page 5 www.bccengineering.com Page-22 of 35 12958 Surge Bin 1 Company : BCCE Dec 17,2012 Designer : RDM 2:05 PM Job Number : 12958 Surge Bin-Agylix Checked By: RDM Envelope Joint Reactions (Continued) Joint X[kl_ LC Y[k] LC Z[k] LC MX[k-ft] , LC MY[k-ft] LC MZ[k-ft] LC 3 - N4 max 4.112 21.251 3 , .037 2 0 1 .074 i 3 0 1 4 rain -3.753 3 -2.499 6 0 1 , 0 1 -.073 5 0 1 _ 5 N7 max 3.753 5 21.251 5 0 1 0 1 .082 5 0 1 6 min -4.112 4 -2.499 4 -.038 2 0 1 -.083 3 0 1 7 N10 max 4.112 6 21.251 3 0 1 0 1 .073 5 I 0 1 8 min -3.753 3 -2.499 6 -.037 , 2 0 1 -.074 3 0 1 9 Totals: max 15.72 5 49.4 2 0 5 10 min -15.72 3 0 1 0 3 Envelope Member Section Forces Member Sec Axialjk] LC Shear[k] LC z Shear[ki LC Torauejk-ft] LC y-y Momen...LC z-z Momen...LC 1 M1 1 max 21.251 5 4.158 3 .038 2 .083 3 0 1 0 _1__ 2 n min_ -2.499 4 -4.231 5 0 1 -.082 5 0 1 0 1 3 2 max 21.167 5 4.158 3 .038 2 .083 3 .079 2 8.726 . 5 4 min -2.546 4 -4.231 5 0 1 -.082 5 0 1 -8.575 3 5 3 max 21.084 5 4.158 3 .038 2 .083 3 .159 2 17.453 5 6 min -2.593 4 -4.231 5 0 1 -.082 , 5 0 1 -17.15 3 7 _4 max 21 5 4.158 3 .038 2 .083 3 .238 2 26.179 5 8 . min -2.641 4 -4.231 5 0 1 -.082 5 0 1 -25.725 3 9 5 max 20.917 5 4.158 TT .038 2 .083 3 .318 2 34.906 5 10 min -2.688 4 -4.231 , 5 0 , 1 -.082 5 0 1 -34.301 11 M2 1 max 3.625 3 5.644 5 .392 2 , .089 5 .001 1 26.697 5 12 min .036 1 -6.387 3 0 1 -.091 3 -.853 2 . -28285 . 3 13 2 max 3.576 3 5.644 5 .392 2 .089 5 0 1 19.854 5 14 min .036 1 -6.387 3 Q 1 -.091 3 -.377 2 -20.541 3 15 3 max 3.527 3 5.644 5 .392 2 .089 5 .103 3 _13.011 , 5 _ _ min .036 1 -6287 3_ 0 , 1 -.091 3 0 1 -12.797 3 _ 17 4 max _ 3.478 3 5.644 5 .392 2 .089 5 .574 2 6.168 _ 5 18 min .036 1 -6,387 3 0 1 -.091 3 0 1 -5.136 4 19 5 max 3.429 3 5.644 5 .392 2 .089 5 1.049 2 2.69 3 20 min .036 1 -6.387 3 0 1 -.091 3 _0 1 -1.063 6 21 M3 1 max 21.251 3 4.231 , 3 .037 2 .074 3 0 1 0 1 22 min -2.499 6 -4.158 5 0 1 -.073 5 0 1 0 1 23 2 max 21.167 3 4.231 3 .037 12 .074 3 .077 2 8.576 5 24 min -2.546 6 -4.158 5 0 1 -.073 5 0 . 1 -8.727 3 25 3 max 21.084 3 4.231 3 .037 .074 3 .153 2 17.151 26 min -2.593 6 -4.158 5 0 1 -.073 5 0 1 -17.454 3 27 4 max 21 3 4.231 3 .037 2 .074 3 .23 2 25.727 5 , 28 min -2.641 6 -4.158 5 0 1 -.073 5 0 1 -26.18 3 29 5 max 20.917 3 4.231 3 .037 2 .074 3 .307 2 34.302 5 30 min -2.688 6 -4.158 5 0 1 -.073 5 0 1 -34.907 3 31 M4 1 max 3.625 5 6.386 5 .388 2 .073 5 -.001 1 28.282 5 32 , min -.036 1 -5.643 3 0 1 -.073 . 3 -.833 2 -26.696 3 33 2 max 3.576 5 6.386 5 .388 , 2 .073 5 , 0 1 20.54 5 34 min -.036 1 ' -5.643 3 0 1 -.073 3 -.362 2 49_853 3 35 3 max 3.527 5 6.386 5 .388 2 .073 5 .111 5 12.797 5 36 _ min -.036 1 -5.643 3 0 1 -.073 3 • 0 1 -13.011 r- - 37 4 max 3.478 5 6.386 5 .388 2 .073 5 .578 2 5.137 6 38 , min -.036 1 -5.643 3 0 1 -.073 3 0 1 6168. 3 39 5 max 3.429 5 6.386 5 .388 2 .073 5 1.049 2 1.062 4 40 min -.036 1 -5.643 3 0 1 -.073 3 0 1 -2.689 5 41 M5 1 max 21.251 5 4.158 3 0 1 .082 5 0 1 0 1 42 min -2.499 4 -4.231 5 -.038 2 -.083 3 0 1I 0 1 43 2 max 21.167 5 4.158 3 0 1 .082 5 0 1 8.726 5 44 .min -2.546 _ 4 -4.231 5 -.038 2 -.083 3 -.079 2 . -8.575 3 45 3 max 21.084 5 4.158 3 0 , .082 5 0 1 17.453 5 RISA-3D Version 10.0.1 [T:1...1...1...1Calcs_Struc\Surge Bin CaIcs1RISA Files112958 Surge Bin.r3d] Page 6 w ww.bccengineering.com Page-23 of 35 12958 Surge Bin Company : BCCE Dec 17,2012 Designer : RDM 2:05 PM Job Number : 12958 Surge Bin-Agylix Checked By RDM Envelope Member Section Forces (Continued) Member Sec Axialfkl LC v Shearfkl LC , Shearfkl LC To sue k-ft - M.men... _ - M•men...L 46 min -2.593 4 -4.231 5 -.038 2 -.083 III -.159 2 -17.15 47 4 ,max 21 5 4.158 3 0 1 .082 0 1 26.179 48 min -2.641 4 -4.231 5 -.038 2 -.083 ii -.238 2 -25.725 49 5 max, 5 4.158 ,,,,3 . 0 1 .082 0 1 34.906 50 min ' -2.688 4 -4.231 5 , -.038 2 -.083 -.318 2 -34.301 3 51 _ M6 1 max 3.625 3 5.644 5 0 1 .091 .853 2 26.697 5 52 _ min .036 1 -6.387 3 -.392 ,_ -.1:9 -.001 1 -2:.285 53 2 max 3.576 3 5.644 5 0 1 .091 ri .377 2 19.854 5 54 , min .036 1 -6.387 3 -.392 2 , -.089 IN 0 - s. 1 ri 55 3 max 3.527 3 5.644 5 0 1 .091 © 0 1 13.011 Ire 56 _ , min .OAC3 __ f ,_-6.387 3 -.392 2 -.089 111 -.103 3 -12.797 3 57 4 max 3.478 3 5.644 5 0 1 .091 0 1 6.168 5 58 min .I ■ 1 -6.387 3 , -.392 2 -.089 -. 74 2 -5.136 4 59 5 max 3.429 3 5.644 5 0 _ 1 .091 ri 0 1 2.69 3 60 min. .036 MN -6.387 3 -.392 2 -.I:• um -1.049 2 -1.1.3 6 61 M7 1 max 21.251 in 4.231 3 0 1 .073 1 0 ni 62 min -2.4•A! El -4.158 5 -.037 2 -.174 1 63 2 max 21.167 © 4.231 3 0 1 .073 © 0 1 ' 8.576 IN 64 min -2.546 6 -4.158 5 -037 2 -.074 © -.077 2 -8.727 EN 65 3 max 21.0.4 © 4.231 3 0 1 .073 © 0 1 17.151 66 min -2.593 6 -4.158 5 -.037 2 -.074 3 -.153 2 -17.454 67 4_max 21 3 4.231 3 0 1 .073 5 0 1 25.727 El 68 _ min -2.641 • -4.158 5 -.037 2_ -.074 3 -.23 2 -26.18 69 5 max 20.917 4.231 3 0 1 .073 0 1 34.302 ,_5_ 70 min -2.688 -4.158 5 -.037 2 -.074 3 -.307 2 -34.907 I 71 M8 1 max 3.625 6.386 5 _ 0 1 .073 3 .833 2 28.283 5 72 ,min -.036 1111 -5.643 3 -.388 2 -.073 5 1 .001 1 -26.696 3 73 2 max 3.576 6.386 5 0 1 .073 3 .362 2 20.54 5 74 min -.036 ® -5.643 3 -.388 2 -.073 i 5 0 1 -19.853 3 75 3 max 3.527 6. :6 5 0 1 .073 3 0 1 12.797 5 - 76 min -.036 II -5.643 3 -.388 2 -.073 5 -.111 5 -13.011 3 77 4 .max 3.478 6.386 5 0 1 .073 3 0 1 5.137 6 78 min -.036 1 -5.643 3 w -.388 2 -.073 II -.578 2 -6.168 3 79 5 max 3.42. 5 6.386 { 5 0 1 .073 0 1 1.062 4 80 min_ -.036 1 -5.643 3 -.388 2 , -.073 Ei -1.049 2 -2.689 5 81 M9 1 max .783 6 .084 5 .044 1 0 4.286 5 .282 5 82 min -5.562 3 -.063 ,_4 -2.175 5 0 5 -2.504 4 -.235 4 83 2 max .783 6 .084 5 .699 3 0 4 1.264 6 .1 5 84 min -5.562 1 3 -.063 4 -.781 5 0 5 -2.123 3 -.102 , 3 85 3 max .761 _ 4 .05 6 .044 1 0 4 .942 2 .019 6 86 mi -5 4 MI -.072 3 -2.092 5 0 5 0 Tr -.16 87 , 4 max .761 0 .05 6 .781 3 0 4 1.263 4 .094 3 88 min -5.534 -.072 3 -.699 5 0 -2.123 5 . -.092 5 89 5 max .761 .05 6 , 2.175 3 0 4.286 3 .25 3 90 min -5.534 -.0 _ .0, , 1 .1' - :504 6 -.199 6 91 M10 1 max .004 1 .12 5 0 1 0 1.125 2 .328 5 92 min, -2.918 2 -.095" 4_, -1,498 2_ 0 • 0_ 1 -.274 4 93 2 max .004 1 .12 5 0 1 0 0 1 .069 5 94 min -2.•1: -.0. 4 -.042 2' 0 gil - -3 -.1 95 . 3 max .004 .095 4 1.414 2 0 .943 2 .139 4 96 min -2.918 -:12 5 -1.354 3 0 0 1 -.191 5 97 4 max .004 .095 4 .042 2 0 0 1 .069 5 _98 min -2.•1: -.12 5 0 1 0 -.543 2 -.07 ' 3 99 5 max_ .004 ill .095 4 1.498 2 0 1.125 2 .328 5 • , 100 , min -2.918 -.12 5 0 1 0 0 1 -.274 4 101 M11 1 I max .761 4 .072 , 3 -.044 1 0 © 4.286 3 .25 3 102 - min -5.534 5 -.05 6 _ -2.175 3 , 0 EN -2.504 6 -.199 6 s RISA-3D Version 10.0.1 [T:\...1...1...1Calcs_StruclSurge Bin Calcs1RISA Files112958 Surge Bin.r3d] Page 7 www.bccengineering.com Page 4 of 35 12958 Surge Bin Company : BCCE Dec 17,2012 Designer RDM 2:05 PM Job Number 12958 Surge Bin-Agylix Checked By:RDM Envelope Member Section Forces (Continued) , Member Sec Axial kJ LC Shear k LC z Sh-ar k LC Tor•ue k-f LC - Momen...LC z-z Momen...L 103 2 WI .761 ' 4 .072 N .699 WE 0 © 1.263 4 .094 © • 104 NE® -5.534 5 -.0 -.781 Fl 0 Fl -2.123 © -.092 FE 105 ©EM -.164 1 .072 © 2.092 © 0 © .942 © .003 106 =® - 562 © -.084 © -2 0'2 Fl 0 4 0 0 -.181 - 107 - 4 .783 .063 .781 131 0 © 1.264 6 108 EMI in - . 62 -.084 -.699 FM 0 4 -2.123 © -.102 Fl Uri WM max .783 6 .063 4 2.175 5 0 in 4.286 WE .282 WM 110 min -5.562 -.084 5 -.044 1 0 II -2.504 4 -.235 111 M21 III max 6.394 .025 5 -.036 1 0 2.625 3 .106 112 min -5.625 -.005 -2.019 ® -.017 II -.978 6 -.061 11 max 6.394 .025 .586 0 .017 1 .0 1 114 min -5.625 -.005 -.626 ® -.017 3 -.822 5 -.052 115 3 max 6.397 0 -.036 .017 1.956 3 .037 MN =®EM111111 -.013 Fly» 0 El -.464 Fl -.0: 117 4 MI 6.397 © 0 Ell .626 © .017 -.017 0 .053 3 118 min -5.628 -.013 ® -.586 0 -.822 fl -.052 iii 119 5 max 6.397 0 2.019. .017 2.625 .0: 120 min -5.628 -.013 5 -.036 0 -.977 4 -.035 121 M22_ 1 max .401 .016 _ 3 0 .068 1.064 2 .048 _ 122 min 0 1 0 1 -1.476 -.093 0 1 -.005 123 2 max .401 2 .016 3 0 .068 0 1 .029 124 ©min 0 ® 0 1 -.02 -.093 3 -.556 ® -.029 3 125 max .401 .009 5 1.373 .068 6 .978 .02 6 inl =® • Ell -.016 - • • -.093 © 0 1 -.1.4 Fll ® 4 Ell .401 _© 0 1 - .02 © .093 3 0 1 .029 5 IF ME M 0 0 i 3 ' 0 El -.0.8 0 -.556 ® -.0.9 3 129 max .401 0 1 1.476 .093_ © 1.064 .048 5 1 • min • -.016 0 -.068 in I 0 -.105 - ® M23 1 1i-. 6.397 .013 © .036 0 0 0 -2.625 A .08 132 min -5.628 0 1 -2.019 -.017 II -.977 -.035 133 2 max 6.397 .013 5 .586 0 -.017 .053 Eim 111111® -5..28 © 0 1 -.626 -.017 FM - :22 ©EW7111© ® ©max 6.397 in .012 3 1.979 © .017 3 1.956 © .003 IF I i7 -. : _ 0 -.025 © -1 • 9 © -.01. © -.061 ® 4 - 6.394 © .005 4 .626 © .017 r .017 MI .051 138 ® -5.625 © -.025 © -.586 © 0 0 -.822 n -.052 in Irn i 139 -W- 6.394 .005 4 2.019 © .017 © 2.625 .106 5 140 liMII® -5.625 -.025 WNI .036 El 0 0 -.•78 E6 -.061 4 iii 141 - .406 © .021 © 0 0 .069 4 1.065 © .039 142 ® -.001 U • O -1.476 © -.094 • 0 • 0 143 max .40• © .021 © 0 El .069 0 .028 144 min -.001 0 -.02 -.094 -.556 -.028 E M 145 max .406 .021 1.436 .094 .978 .027 14. min -.0.1 -.005 - 3 -5 - r i _ -+1:- 147 mirromi .416 © 0 R .02 WI .094 © 0 �':� MI 11111= 70 0 -.•_1 0 WE -.069 4 -: 56 IS 149 max .406 0 1.476 .094 1.065 .039 150 min -.001 -.021 0 -.069 0 0 151 M25 max 15.701 .573 .009 .019 .097 2.546 152 min -9.584 -.514 -.02 -.021 -.055 -2.479 153 max 15.688 .561 .009 .019 .064 1.624 1 • min -9.592 - 2. -.0' -.021 -.041 -1.634 - ® ©� 15.674 .549 © .009 6 .019 © 03 © .721 In I MEM -'.6 -. FM -..2 © -.021 Fl.i f I -. 69 FM 157 max 15.661 .537 .009 6 .019 .001 4 .121 4 - 158 min -9.607 -.55 -.02 3 -.021 -.016 5 -.162 5 159 max 1 .•-7 .525 .009 6 .019 .003 6 1.019 3 RISA-3D Version 10.0.1 [T:\...\...\...\Calcs_Struc\Surge Bin Calcs\RISA Files\12958 Surge Bin.r3dI Page 8 www.bccengineering.com Page-25 of 35 12958 Surge Bin - Company : BCCE Dec 17,2012 Designer : RDM 2:05 PM Job Number : 12958 Surge Bin-Agylix Checked By: RDM Envelope Member Section Forces (Continued) Member Sec Axi.I k LC Shear k LC z Shearjkl LC Torouefk-ftl LC -y Momen...L z-z Momen...LC 160 min -9.615 -.562 II -.02 3 -.021 5 -.036 3 -1.025 IR 161 M26 1 max 15.701 .573 .017 5 .02 3 .044 4 2.546 162 = min -9.585 -.514 Ell -0 07 e -.018 1111 -.081 ® -2.478 IIII 163 max 15.688 .561 .02 .033 1.624 164 min -9.592 -.526 -.006 -.018 5 -.053 -1.633 li 165 max 15.674 .549 .017 .02 3 .023 .721 Q1 - NM mi -9.• • - : -.006 • -.018 El -.02 -.769 167 E max 15.661 3 .537 © .017 © .02 © .016 3 .121 6 I1 ax © e• 4 -.11: -.611 6 -.162 El 169 ' ©'mi ax 15.647 3 .525 © .017 © .02 © .03 5 1.019 5 170 _ -9 615 6 -. .2 © -.006 4 -.0 © 0 1 -1.025 FM 171 M27 nq 3.8.5 2 .031 2 .265 © .393 © 1.544 _ 5 .034 FM ® ��7 0 MI 0 0 -.278 n -.394 5 -1.49• 3_ 0 0 173 max 3.881 © .018 .265 .393_ 3 1.092 5 _ 0 0 174 mi • 0 0 -.278 ©yak• ' -1.168 -.017 175 max 3.867 2 .006 © .265 .393 © .639 5 0 1 ' 176 min 0 1 1 0 -.278 - •4 -.6 6 -..2 2 ® langi 3.853 H 0 1 .265 © .393 3 .187 5 0 1 178 0 -.007 © -.278 5 -.394 5 -.205 3 -.023 FM 179 ©EM 3.839 © 0 NM .265 3 .393 © .228 4 0 4 180 MI® 0 0 -.02 © -.278 © -.394 © -. 6• -.002 5 181 M28 1 max 3.895 .031 .278 .394 5 1.499 .034 5 182 . ["n 0 0 -.265 -.39 © -1.544 © 0 1 183 2 m-x 3.8:1 .018 © .278 El .3.4 1.068 © 0 1 184 min 0 0 ® -.265 ® -.393 -1.092 a -.007 3 185 3 max 3.867 .016 .278 .394 .636 0 1 186 min 0 0 -.265 -.393 -.639 -.025 21 - 187 4 max 3.:5 0 B .278 ® .394 .20 ®_ 0 1 188 0 1.89 ii 3.839 -.007 ® 2-.265 8 ® .394 26-.187 5 -.0023 4 190 min 0 -.02 -2 -.265 3 -.393 ® -.228 4 -.002 5 191 M29 1 max 15.701 . 73 ' 3 .006 4 .018 .081 5 2.546 3 192 �® -9.585 • - 14 © -.017 WI -.• FM -.044 4 -2.478 FM 193 max 15.688 © �© 006 4 .018 5 .053 WI 1.624 194 min -9.592 6 -.526 -.017 -.02 -.033 -1.633 5 195 max 15.674 3 .549 .006 .018 ® .025 .721 3 196 min -9.6 -.538 ii -.017 -.02 iii -.023 -.769 5 197 max 15.661 .537 .006 .018 .001 .121 6 198 min -9.608 -.55 -.017 -.02 El -.016 3 -.162 3 199 max 15.647 .525 006 .018 0 ' 1 1.019 5 -.56 MEM -.•2 © -.03 NI -1.1 Fil 201 M30 0M 15.701 © .573 131 .02 © .021 © .055 6 2.546 El 202 IIII min -9.584 -.514 3 -.009 6 -.019 iti -.097 3 -2.479 II 203 max 15.688 .561 5 .02 3 .021 .041 6 1.624 204 mi c -9.592 -.526 3 -.009 . 6 •-.01• - e•. 3 - .634 205 206 ©mix 15.674 -5 8 ii .02 3 .021 ® .026 Ei .721 IN -.019 6 -.01 -.03 -.7,• 207 15.661 Hui .02 © .021 © .016 R .121 H ve i L c -9.•e 7 I -.009 WI -.0 9 cN -.e e l -.1.2 209 ©� 15.647 © © .02 © .021 I .036 1.019 FM 210 MOM -...1 I WI -.009 WI -.0 © 211 M31 MIMI 3.866 © .03 © .264 © .394 © 1.537 © .032 FM ® ME® 0 0 0 II -.277 Q -.395 El -1. 94 © 0 0 111 - 214 III min 3.0052 111 .017 7 1 -277 111 -395 Ei -1.064 IN -.008 215 _ 3 max 3.838 2 .005 3 .264 5 .394 5 .636 3 0 216 min 0 1 0 1 -.277 3 -.39 3 -.634 5 -.025 RISA-3D Version 10.0.1 [T:\...1...\...\Calcs Struc\Sure Bin Calcs\RISA Files112958 Surge Bin.r3d] Page 9 www.bccengineering.com - Page-26 of 35 12958 Surge Bin Company BCCE Dec 17,2012 Designer : RDM 2:05 PM Job Number 12958 Surge Bin-Agylix Checked By RDM Envelope Member Section Forces (Continued) Member Sec Axiajk LC y Shear[kl LC z Shearjk] LC Torque[k-ftj LC y-y Momen...LC z-z Momen..,LC 217 4 max 3.824 2 0 1 .264 5 .394 5 .185 3 0 1 218 min 0 1 -.008 5 -.277 3 -.395 3 -.204 5 -.023! 2 219 5 max 3.81 _ 2 0 1 .264 5 .394 5 .228 6 .001 5 220 min 0 1 -.02 2 -.277 3 -.395 3 -.265 3 -.001 3 221 M32 _1 max 3.866 2 .03 2 .277 3 .395 3 1.494 5 .032 3 222 min 0 1 0 1 -.264 5 -.394 5 -1.537 3 0 1 223 2 max 3.852 2 .017 2 .277 3 .395 3 1.064 5 0 1 224 min 0 1 0 1 -.264 5 -.394 5 -1.087 3 -.008 5 225 3 max 3.838 2 .005 3 .277 3 .395 3 .634 5 0 1 226 min 0 1 0 1 -.264 5 -.394 5 -.636 3 -.025 2 227 _ 4 max 3.824 2 0 1 .277 3 T .395 3 .204 5 0 1 228 min 0 1 -.008 5 -.264 5 -.394 5 -.185 3 -.023 2 229 5 max 3.81 2 0 1 .277 .395 3 .265 3 .001 5 2301 min 0 , 1 -.02 2 -.264 5 -.394 5 -.228 6 -.001 3 Envelope A/SC 13th(360-05): LRFD Steel Code Checks Member Shape Code C...Loc[ftl LC Shear... Locjftj Dir LC phi'Pnc[k] ohi'Pnt[k]phi*Mn v-...phi'Mn z-...Cb Eon 1 M9 HSS4x3x4 .421 0 5 .082 0 z 5 70.101 120.474 10.764 13.144 2.... H1-1b 2 M10 HSS4x3x4 .137 8.667 5 .056 8.667 z 2 70.101 120.474 10.764 13.144 2.••-H1-lb 3 M11 HSS4x3x4 .421 8.667 5 , .082 8.667 z 5 70.101 120.474 10.764 13.144 2... H1-1b 4 M21 . HSS4x3x4 .293 0 3 .078 r 0 z 3 : 70.101 120.474 10.764 13.144_,1 Hi-lb 5 M22 HSS4x3x4 .104 8.667 2 .065 ,8.667 z 3 70.101 120.474 10.764 13.144 1.9 H1-1b 6 M23 HSS4x3x4 .293 8.667 3 .078 8.667 z 3 70.101 120.474 10.764 13.144 1.••, H1-1b 7 M24 HSS4x3x4 .104 0 2 .065 8.667 z 5 70.101 120.474 10.764 13.144 1.... H 1-lb 8 M25 HSS3x3x4 .486 0 5 .025 0 y 5 72.547 101.016 8.556 8.556 2.... H1-1a 9 _ M26 HSS3x3x4 .4(35 0 3 .025 0 v 3 72.546 101.016, 8.556 8.556 2.... H1-1a 10 M27 HSS3x3x4 .210 0 5 .080 0 z 5 72.546 101.016. 8.556 8.556 1.... H1-1b 11 M28 HSS3x3x4 .210 0 5 .080 0 z 5 72.546 101.016 8.556 8.556 1..., H1-lb 12 M29 HSS3x3x4 .485 0 3 .025 0 y 3 72.546 101.016 8.556 8.556 2.... H1-1a 13 M30 HSS3x3x4 .486 0 5 .025 0 v 5 72.547 101.016 8.556 8.556 2.... H1-la 14 M31 HSS3x3x4 .209 0 3 .080 0 z 3 72.546 101.016 8.556 8.556 1.... H1-1b 15 M32 HSS3x3x4 .209 0 3 .080 0 z 3 72.546 101.016 8.556 8.556 1.... H1-lb Material Takeoff Material Size Pieces Length[ft] Weight[K] 1 General 2 gen_Steel HSS6x3x3+HSS3x3x3 , 8 52.4 1.6 3 RIGID _ 8 43.9 0 4 Total General 16 _ 96.3 1.6 5 6 Hot Rolled Steel 7 A500 Gr.46 HSS3x3x4 8 52 .4 _ 8 A500 Gr.46 HSS4x3x4 8 -69.3 .7 9 Total HR Steel 16 121.4 1.1 RISA-3D Version 10.0.1 [T:\...\...1...\Calcs Struc\Surge Bin Calcs\RISA Files\12958 Surge Bin.r3d] Page 10 www.bccengineering.com - Page-27 of 35 12958 Surge Bin Ryan McGraw Built Up column Engr Properties Bradford Conrad Crow Engineerin... 2.903 in 4.097 in Z .276 in , ---., ')1 7.000 in Cl 724 in , 7.000 in Overall Dimensions Polar Properties Width 7.000 in 5� yE 440,4 Ip 74.803 in04 IMOUNNEMMENWSffin Height 7.000 in rp 2.629 in Perimeter 43.272 in INEMENERVENWEIME Principal Properties Geometric Properties 12 29.902 inA4 ly 36.309 in^4 311111111011ENIMMINEEMIk 11 44.901 in^4 ' Ix 38.493 in^4 I Ixy -7 420 in^4 ry 1.832 in Theta ;AL 40.814 deg ;" rx 1.886 in ` A 10.820 in72 " ' Sy Right 18.863 in^3 Sy Left 112.5071nA3 Sx Bottom 14.131 in^3 SxTop 9.002 in^3 -4 5 .;,'" Centroid Y -0.780 in Centroid X 0.364 in • . Material Properties E 29000.000 Ksi - Plastic Properties Fy Base 46.000 Ksi - x ad.9 ' ..p-. -,-F- ". ' r..Yr+ri::n... ." ' .e Zy 14.923 in^3 Zx 16.326 in^3 'r .';'x*rs-° ".tom.' : ' --- ! S ' PNA-Y -0.803 in 1 PNA-X 0.404 in W!1l4,!1•p5k"a '`.:7! 1_icy+ uAyxti ;: lvrfaargig, 1- ` ro ,+v577s71— 17 i IES Sha u118��fee n ri i�gWeb.com Page 28 of 35 12958 Sur P COMT112 03:11 PM A\ CONRADRD Project Job Ref. LCONNAO CROM/ENGMEERNG CO. Agilyx Equipment Anchorage Calcs 12958 G CMOSTNCTUN/L•MECHNICPL ENGINEERS Section Sheet no./rev. q Bradford Conrad Crow Engineering Co. 2 - 9925 SW NIMBUS AVE.,SUITE 110 Seismic Shear,Overtuming,Anchorage BEAVERTON,OR 97008 Calc.by Date Chk'd by Date App'd by Date PH 503-213-2013 FAX:503-213-2018 RDM JFB a Non►-1311arilr•cr �-rfrif7cnel. o (Its-A>~ er- NJtcT-uP cXt444A) pss�, —...- le-- Q f omi2oLLt'A, 1_,0,6.r>s o = '' 4.C1 II*.= 416,6 "-r--- `1:1.'4 4-4%, 1)4 : X 1 .3 �r m t (t.,L. siv ss(r..p„. rec` �� Y zf.! 1-,,It- 1,17 :-s1 J �r y,, 1{'Fc� ' 1=uNC`i"ro�J 0t ? - 10 f,7- r M0 7-0 P JV- '7' 7,0 ,e : e.25 If 9( /ei tfr?-f .>r Pik, r r - vn�.K. 1.631.,1 4,Fr r%. ' 18,n le!,l (1Arsa 1 .11-) El r---.. °pt- 21.3 0.0;2. I 1 r n. 1.o5 ' U Z(it3,last,\ �'1"�R. 18,8 2 r� -I\1 .c f.0 N I. ( 6 - 0 y12,S IC.- ,' �ta,� = o, �8--�-- AssJMwL.- A 30% O'4oe I25,(� M Fi ,C,,, t-I)(,-lu>(iq,'12' i ct s t-Dpi:. f An,r- H V = Z 4.9(1(,)(11 -r + t'\J z. all, L I.° 12.5.16, c 0. 18 2 re 5 • x � '»`�aFi x 4z q is c c Ar*Oix- --P-A__E t i F� s _Y .--C'Z- I b 0 n" .- 1.o ( g'12-'5 ) I MA 2 PI 2 ( - el.--0 loiq 1Fn le Pet-' loiq�� •M &4f ( j '` 'l 0- I 1,.,-.2—j 13 � .31 www.bccengineering.com Page 29 of 35 12958 Surge Bin ALBRADFORD Project Job Ref. CONRAD caoweNSweeaNe co, Agilyx Equipment Anchorage Calcs 12958 MAL•STRUCIURA,•LEGWiCX EMMENS Section Sheet no./rev.Conrad Crow Engineering Co. 30 9925 SW NIMBUS AVE.,SUITE 110 Seismic Shear,Overturning,Anchorage BEAVERTON,OR 97008 Cala by Date Chk'd by Data App'd by Date PH 503-213-2013 FAX:503-213-2018 RDM RDM I I` Z P,r r P m t t 1,31 " 1 1 r 28'.e ct Fe,2 Mr L 1.7i 1 ,4—4 r,t.7. HI.L. t VSr 111 QVANTIT`f 1-1,,i r 1,,F"' - t r (4)(37,., ) _ 21(.( 1-- 0 1 4 ti 4111% (z, )( ') Mr_ 1")Z'l,a (23,10 N 7:Il) 410 V- o.b9-b fr17.7 • r. M 1 G q �- .k ' 1�J�, + I'LL. C. 7 f d, (/�D 4, �Z�G,1�i�J� ._ f�, f c._/ , 2re, , r r, (/C.' isC, 1x-7r7' ! + ur - ?,- A y 4-. Ltt*,.: iy6.-.f1 Fdl g.ilk-I-- vr, c o,r.,,.J (e;r::irrG..+ .-1.. r..) £ r fs- Ppicp a 1,1 cF An g www.bccengineering.com Page 30 of 35 12958 Surge Bin ALCOONRAD Project Job Ref. CROW ENGINEERMGCO. Agilyx Equipment Anchorage Calcs 12958 ri Cr L•STRJCTURPL•MECWNCAL ENGINEERS Section Sheet no./rev.Conrad Crow Engineering Co. • 9925 SW NIMBUS AVE.,SUITE 110 Seismic Shear,Overturning,Anchorage BEAVERTON,OR 97008 Calc.by Date Chk'd by Date App'd by Date PH 503-213-2013 FAX:503-213-2018 RDM RDM a AF,I---e rw.! ei Mb1t.i 1-us.ward. 4- \/( v . � .‘› „ l 3.39 C�� = ( 7- . I-I.5>� L ,20 (.4+ 1152-iiAJ I't.c �, F42-774L Fb 1cvt4. cAmovf wzi:r� AssoM1,Jk A it RAMIVS N a ()S\ FA c'rlvf "1'W;'4-1 %2T-to d,U19 5' Is As-sVMC £7o r.`rte 'rates "70412.-6-;.? Atz, D.°I 5 (2_1x 1.c) = 67. 4.)4 �II� I)Si ', I6 ,4Jo1h ht.. L J c T tAL At7u►.Il, ust, z,N L'NCr 540" PAk-i7'L F -BE 'E L SAIL c--r> >Ptie i✓ FFEcR V a"'i y/ 54Y /2 4,7e www.bccengineering.com Page 31 of 35 12958 Surge Bin RM Ask, 1 5U1. 62,----si .....U�� i 0 • i1110111 1011111 ,., ° ..11,1.- L(Pt s■V ic.,.i) 96.0000 ii,,12n 4 o" 41554. •1y d . I y o i '—r— Cs.3%lj `',TfF-f . (% ryFR slirps.> �_ ONE) ,_^ I 1 11594.1.1 q eh C3x3.5 (12 PLCS) (ERis-nN(r LA v' NEW 01 3/16 X 10 FORMED CHANNEL (3" TOP FLANGE, 4" BTM FLANGE V g,�w, _s^ I ,,ANGLE 4 x 4 x 1/4 4ssetAsc( �?kIaT1�1(z 6RAte 5 1, � � 0 LJ - 1 www.bccengineering.com Page 32 of 35 12958 Surge Bin ALaONRADaR Project Job Ref. CONNAD clwwENCtlret A1ne co. Agilyx Equipment Anchorage Calcs 12958 /, CP&'ST RUCTURN.a NEOWICK ENQINEERS Section Sheet no./rev. Bradford Conrad Crow Engineering Co. - 9925 SW NIMBUS AVE.,SUITE 110 Seismic Shear,Overtuming,Anchorage BEAVERTON,OR 97008 Colo.by Date Chk'd by Date App'd by Date PH 503-213-2013 FAX:503-213-2018 RDM JFB i ►.vine.,NP rA.=--n'E LA- ...;-7 E. / 4,_44. � FroP-nnE D CN/wuff. _._ w t:75‹: 344 14Nv2-:3 51-1c-C-. lt. (ASO 1 \ TYrie-xl(., 7-- n4c." EA.. snag (4 y1TA0 $ I WAIL. or 131 1 • t n 1 S6cTIoNI 2 `„ 21: 7M Tn. INN Sut2r.-E 51^) 3/I)WALL.- ly I3 4 - Nil i, _ _ _ _ _14(5/1u) 3-(e I W 7,___. �l 1 i 1 L 5X 3x 3,5 EA. FAcF; .�-�� ► 6%. t A, Co„if t? (4,..tr,),7 •:) Af3a v to - E I) C -Anit.C.C. 1A6k3k 3/q, t 143,014 4V8 _ DETAIL. 'A 311-1 �- - A?E.` 1.0 TAreR. Teice4_ Coum40 Ass ,ict 4 S t*PC 3 11.4 :11M L A LA.. iwTArc-rte ','I LNkitKII+ ANIl,LE (CrtiSIu. ) 7(11(1 3-1e I 171;1 A1t i7 www.bccengineering.com Page 33 of 35 12958 Surge Bin Y AL CONaRAD° Pro>a� Job Ref. • CROW ENGINE ERaeCO. Agilyx Equipment Anchorage Calcs 12958 clri'67 RUCTUR,L'IECIWICPL ENGINEERS Section Sheet no.hev. Bradford Conrad Crow Engineering Co. Seismic Shear,Overturning,Anchorage 9925 SW NIMBUS AVE.,SUITE 110 - BEAVERTON,OR 97008 Cale.by Date Chk'd by Date App'd by Date PH 503-213-2013 FAX:503-213-2018 RDM JFB ii Tire 14,, 3 N __________L u kw op ____ 4k54/k3eYq Ty? 4 Tr. 3/14, 3'U 1 TA1` E pEt.Jv tvpw H-sc 4 k 3x 744 f 1..,...,� S Iuhwow FM. � or Tr fsla Ehif,*J ? II Nssq„ ,„ � �: doe FIB TOP of 1r 1 �k�9T�Cr I -TD UrR ST! E L. g� ! WALL. (ix) - -t IV Wa.0 �, b� 1 rmi., ‘.v6 it) l La.JER- ���L 3-1 Z 14 3—/Z-- „i:w ship I't �3-ft 14/A Pt:TAIL II D I PE-1-4 1-.A N www.bccengineering.com Page 34 of 35 12958 Surge Bin ALBRADFORD Project Job Ref. CONRAD CROW ENGINEERING CO. Agilyx Equipment Anchorage Calcs 12958 n CML•Si FUC7UR IL'MECIONIC K ENGINE tRR Section Sheet no./rev. Bradford Conrad Crow Engineering Co. - 9925 SW NIMBUS AVE.,SUITE 110 Seismic Shear,Overturning,Anchorage BEAVERTON,OR 97008 Calc.by Date Chk'd by Date App'd by Date PR 503-213-2013 FAX:503-213-2018 RDM JFB . — I._ l' �y - AO c3�,s 1 ` 1 /e 5-` I 1 Ig r 6, i. Yry/3 T-Sr, t-rAIL 'I' 1 ► C50.5 STIF t"7 N FR, • I 7 --k-------V se....7. ,e1,,_„,s, www.bccengineering.com Page 35 of 35 12958 Surge Bin • I r. a • a • . . EQUIPMENT UST NOreS .vitro owe "'•• ..) ~ van b ,.1 r.n..0.�o.n son o r o en,rx 1w. .r.•1 i.. -- V cot.--- ..ye r n.r,.•.CO,..u.. TRAUMA 1e.. o� !' 0.AY o,o"o[b..wrr...n(,a[r r.wr rNm pr ©� -p1 !a rK for ., ai»v MOW, nr.12 Oluc in 1 .1A( 0.' an'anr mono.[ u) ,11.-p1 1 on rums.,an■•.a mamma...aa,n•..coons sum rw in 71112a, e ROM,Mt.r-110(0 in sa I nr(r;,w.a 01.n•wa s,1.. 0. raw,n iurvr mar s,s-e_ wa VW II-4 VW / i i/ \ \ • „A j \ ■\ `mss' \ ;Niiicj 11 j \ n \ \ \ \ II I _117_ la-714 . . _ . _ . _ __ ..._ i 1:;.,.....46,.......,1,, 1•- \ / '-r 4 U., fif I . ,.......•...... or 0 \DTI, ` r - -4 II3P2,4 . , I I f 1 . —_T;— — — — 1 �a—Cif— — uL: Ir: .1 1 _ alb NE�14 1I: 1 ! /I I 11 s,�!�!' +—�� I I DETAIL 1/2" PLATE ANCHOR 1 I�pN:t. I MII_a1cMI E'1Ia ,�i�l�l ° Tj w.c:a_r-° c/e1RmD ANC iAik, T,1T' I 1 I 1 ,� j r i 1 I 1 //I ....IV" _ .w' •-r 1K' I r.W r4 rK r.yr 4.• r„r/ I j --_ - _—._ F1 1 i I I o I DETAIL 3/4" PLATE ANCHOR O b o—i o b FOR CLIENT DESIGN RE�1(W SCALE �,-0- (0)0E00 11RYW1-NY id ONSIRICIIBI PLAN wrza=tma. .1: _ SCALE ,/2•.,'-0- fi '4'''',01'4" :::34":194'.6'X49- -- - - ----, RRADCORD T.R. MILES :"1•'O 'e" �-'�i'E.=c-�.i A"el ' .. ___.. �� CONRAD ro.rw°.MG. ___ �}}pp S�Lo• .sl+gwra� Q CROW nun.ENGINEERING• awa..o CO. -- - • i' 9�r (1.71�°.P. ! °�'°�, row•,° - G -; owns GEN-6 PEED SYSTEM 1 4� { _ N �1 w ANCHOR LOCATION ANCHOR BOLT SETTING PLAN Ei 4111.5474.,:ei ` rionr, .I oA ,1.^.,L'i to,4"1.°"0.2 ,.. ,w,, o.w w T:- ..:00 A.x.....w.an400.PM.n.n=MIN F o�w.......>...,.n O,ahW\ na m w.. ,a2.m s .+,. ...,pae.pmn.mo-x_ .,nv+in Rv w RAa I I I%:=ra'1_03.0.;;E.,3 1'12958-1020-05 I A Dan Nelson City of Tigard - Senior Plans Examiner June 6, 2013 Page 9 AWA D1.1 Weld Certifications and Inspections for Agilyx Tigard A • r • Dr4=71 Information / J ToBuild On linginetmktg Testing MGgVM`7A WELDING QUALIFICATION TEST Project Number: 0689697 SEP 1 1 2012 L WPS Number: B2.1-1-016-94 B Y: Tested For: U.S. Metal Works Inc. Date: August 15, 2012 Spec. Code: AWS D1.1-10 Report No: 0689697-lb Welders Name: Andy Newton SSN: 3068 Filler Metal: AWS A5.1, E7018, F4 Flux: N/A Base Metal Spec.: ASTM A-36 Preheat: 70°F Plate or Pipe: Pipe Thickness: 3/8" Inches: 6" Sch 40 Type of Joint: V-Groove Fig. No.: 4.31 Backing: Yes Single/Double Welded: Single Process: SMAW Single/Multiple Pass: Multiple Amp: - Current: DC Progression: Uphill Volt: - Polarity: Reverse GROOVE WELD TESTS Position; Radioorapnic Bend Tests ppsiti�t►s Thickness D ametet ocess Tested lest Roof face Side Qt alified Qpak(ied Qualified Qualified 1-2-3G 3G Passed Passed 1/8"to 3/4" 24"& Up SMAW 1-2-3F Visual Inspection (4.8.1) Acceptable:YES X NO City of Portland# N/A Welding Test Conducted/Witnessed By: U.S. Metal Works Inc. Mechanical Tests Conducted By: Professional Service Industries, Inc. -144Zrz4 Date: August 28, 2012, 2012 Steve Moore,Lab Supervisor,Mechanical Testing Services We certify that the statements in this record are correct and that the test coupons were prepared, welded, and tested in accordance with AWS D1.1-10. Organization: U.S. Metal Works Inc. Date: August 15, 2012 Services performed for this project have been conducted with that level of care and skill ordinarily exercised by members of the profession currently practicing in this area under similar budget and time restraints. No warranty,expressed or implied, is made. The included test results apply only to the specific samples tested and may not represent the entire product.Reports may not be reproduced,except in full,without written permission of PSI. Ora 068969710910-1 b.doc Professional Service Industries,Inc.•6032 N.Cutter Circle,Suite 480•Portland,OR 97217•Phone 503/289-1778•Fax 503/289-1918 GCB License*176269 • • City of pgrdand k: WELDERS CERTIFICATION Expiration Dale: • NIA NIA FTT PORTLAND•EUGENE•MEDFORD,OREGON • 4. NAME ANDY NEWTON__ SOCIAL SECURITY NO. 3068 SPECIFICATION CODE AWS D1.1-10 DATE TEsTED 08/15/2012 Rooms SMAW ASTri A36 MATt TYPE— _FILLER METAL E7018 YES POSITIONS QUALIFIED 1-2-3G. 1-2-3F RACK UP . lfirl4" THICKNESS QU IF __9_3—/ _...-- RAT. NO-- EXAMINER: , CCP. I76269 • • • • • AWS D1.4/D1-4M:2011 Sample Welder Qualification Test Record • Welder's Name& ID No. Ve�ek 4LV�M2 Date /0-3i-0 r�0AZ Welding Procedure S pecification No. / yi24 4 2 " / Revision No. Process: Material Specification: ❑1-Joint[Figure 6.5(B)] GMAW ❑FCAW Bar ®Direct Butt[Figure 6.5(A)] ❑SMAW GMAW-S Structural Steel ❑Indirect Butt[Figure 6.5(C)&(D)] ❑Fillet'Figure 6.6(D)] Backing: Position: Material Specification: ®Yes ❑No ❑Vertical Up ❑OH Bar to Bar-4R3/o -5136 Egl Horizontal ❑Flat Bar to Structural Steel FILLER METAL AWS Specification No. P)- Pi SF ' ,L AWS Classification Di. Electrode _ •03g- O L•d Wire- Diameter/F No. •035 Shielding Gas__ Trade Name TEST RESULTS Visual Weld Appearance:(Clause 4.4) Tensile Strength,psi:(Subclause 6.3.7.2) 1., Pass ❑Fail 1. a P1et 2. ❑Pass [___]Fail 2. Macroetch Test Results:(Subclause 6.3.7.3) Fillet Weld Test: (Subclause 6.3.7.4) 1. ®Pass ❑Fall 1. gj Pass ❑Fail 2. C Pass ❑Fall 2. ❑Pass n Fall Interpreted by Test No. 04896,F Organization P5 I- Date 10-.1,7-AO/2 RADIOGRAPHIC TEST RESULTS Film Film Identification Results Remarks Identification Results Remarks N//9 -- - — Interpreted by — Test No. Organization Date We,the undersigned,certify that the statements in this record are correct and that the welds were prepared and tested in accordance with the requirements of AWS D1.4/D1.4M:2011,Structural Steel. l Welding Code—Reinforcing Stee Manufacturer or Contractor ac.5 , 7€i- / •l 67� — Authorized by �J1 ! � Date /Q-,3 G')//�- QUALIFICATION RESULTS The Welder/Operator identified above 54DOES ❑DOES NOT meet the performance qualifications specified in the AWS Dl.4/D1.4M:2011 code for the variables stated. Form A-3 57 j�, '� Information 11412 21 .To Build On Engineering• •> - WELDING QUALIFICATION TEST Project Number: 0689697 - WPS Number: MiG-2 Tested For: U.S. Metal Works Inc. Date: October 25,2012 Spec. Code: AWS D1.1-10 Report No: 0689697-2c Welders Name: Derek Alvernaz (1292) SSN: 4229 Filler Metal: AWS A5.18, ER70S-6, F6 Flux: 95%Argon/ 5%CO2 Base Metal Spec.: ASTM A-36 Preheat: 70°F Plate or Pipe: Plate Thickness: 3/8" Inches: 7"x 7" Type of Joint: V-Groove Fig. No.: 4.31 Backing: Yes Single/Double Welded: Single Process: GMAW Single/Multiple Pass: Multiple Amp: - Current: DC Progression: N/A Volt: - Polarity: Reverse GROOVE WELD TESTS Be Tets Posii140 ?Raidt graphic n s Posit Thickness Diameter Pftess Tested ICS Root Fate Side i."4.01040 Qualified OoollOod Qualified 1-2G 2G Passed Passed 1/8"to 3/4" 24" &Up GMAW 1-2F Visual Inspection (4.8.1) Acceptable:YES X NO City of Portland# 7977 Welding Test Conducted/Witnessed By: U.S. Metal Works Inc. Mechanical Tests Conducted By: Professional Service Industries, Inc. l '� Date: October 26, 2012 Steve Moore, Lab Supervisor,Mechanical Testing Services We certify that the statements in this record are correct and that the test coupons were prepared, welded, and tested in accordance with AWS D1.1-10. Organization: U.S. Metal Works Inc. By: �� y g - GO Date: October 25, 2012 Services performed for this project have been conducted with that level of care and skill ordinarily exercised by members of the profession currently practicing in this area under similar budget and time restraints. No warranty, expressed or implied,is made.The included test results apply only to the specific samples tested and may not represent the entire product.Reports may not be reproduced,except in full,without written permission of PSI. p:\g roups1689\Proj ects\20 1 21068 969 7\1029.2c.do c Professional Service Industries,Inc.•6032 N.Cutter Circle,Suite 480•Portland,OR 97217•Phone 503/289-1778•fax 503/289-1918 COB License 4176269 • • • • • • I s i t f . 1Mj .. i $ • • 142;9E,15, , • ;AWS Di14�{ 10{fit. . t 51A36 �f8 • ec�stueiws -23 Aoktit i7$ • t c . • • • • • • • • • • • • • •7- • AWS 01.4/D1.4M:2011 Sample Welder Qualification Test Record Welder's Name&ID No. PAIR C S T/4 ND[.E f' Date /0'3/ ?Ore_ Welding Procedure Specification No. /'!-4t –P Revision No. _ Q Process: Material Specification: ❑T-Joint[Figure 6.5(B)] GMAW ❑FCAW Bar [g Direct Butt[Figure 6.5(A)] ❑SMAW GMAW-S Structural Steel ❑Indirect Butt[Figure 6.5(C)&(D)] [Ti Fillet[Figure 6.6(D)] Backing: Position: Material Specification: ❑Yes ❑No ❑Vertical Up ❑OH Bar to Bar 5143/0 - SR -.76 Horizontal ❑Flat Bar to Structural Steel FILLER METAL AWS Specification No. P-I/II-) SFR 515 AWS Classification 27/-f' Electrode •035 301,Cd -Z'i zf_ Diameter/F No. •03-5 Shielding Gas Trade Name TEST RESULTS Visual Weld Appearance:(Clause 4.4) Tensile Strength,psi: Subcla .a6.3.7.2) 1. ®Pass [Fail 1. d / 2. ®Pass ❑Fail 2._.___ Macroetch Test Results:(Subclu 6.3.7.3) Fillet Weld Test:(Subclause 6.3.7.4) 1. IX Pass ❑Fail 1. ®Pass OF-ail 2. ix Pass El Fail 2. X Pass ❑Fail Interpreted by Test No. 0 GB96 97 -- Organization P51 Date A0-.243 20/.2 RADIOGRAPHIC TEST RESULTS Film Film Identification Results Remarks Identification Results Remarks ,v/0 ,_.• Interpreted by Test Na — Organization _ — Date We,the undersigned,certify that the statements in this record are correct and that the welds were prepared and tested in accordance with the requirements of/AWS Dl.4/D1.4M2�0_111,,Structural Welding Code—Reinforcing SteeL Manufacturer or Contractor (/r� ���'�f !�t/Cyk5 /4(2 - Authorized by LT►/ QiD Date /0-3/-940/e__ QUALIFICATION RESULTS The Welder/Operator identified above DOES ❑DOES NOT meet the performance qualifications specified in the AWS D1.4/D1.4M:2011 code for the variables stated. Form A-3 57 1.7"4=1 Information we"'! .To Build On ertgineering Co •Tinting ' WELDING QUALIFICATION TEST Project Number: 0689697--R WPS Number: MiG-2 Tested For: U.S. Metal Works Inc. Date: October 25, 2012 Spec. Code: AWS D1.1-10 Report No: 0689697-2c Welders Name: Patrick Strandly (1286) SSN: 0609 Filler Metal: AWS A5.18, ER70S-6, F6 Flux: 95% Argon/ 5% CO2 Base Metal Spec.: ASTM A-36 Preheat: 70°F Plate or Pipe: Plate Thickness: 3/8" Inches: 7" x 7" Type of Joint: V-Groove Fig. No.: 4.31 Backing: Yes Single/Double Welded: Single Process: GMAW Single/Multiple Pass: Multiple Amp: - Current: DC Progression: N/A Volt: - Polarity: Reverse GROOVE WELD TESTS Position RaditygtopftiO:'. Bend Tests Positions Thickness Diameter P# cess Tested Test Raol , Face Side; Qualified Qtralified Qualified - Qualified 2G Passed Passed 1-2G 1/8"to 3/4" 24"& Up GMAW -2G Passed Passed 1-2F Visual Inspection (4.8.1) Acceptable:YES X _ NO City of Portland# 7978 Welding Test Conducted/Witnessed By: U.S. Metal Works Inc. Mechanical Tests Conducted By: Professional Service Industries, Inc. Date: October 29, 2012 Steve Moore, Lab Supervisor,Mechanical Testing Services We certify that the statements in this record are correct and that the test coupons were prepared, welded, and tested in accordance with AWS D1.1-10. Organization: U.S. Metal Works Inc. By: 4i Date: October 26, 2012 Services performed for this project have been conducted with that level of care and skill ordinarily exercised by members of the profession currently practicing In this area under similar budget and time restraints. No warranty,expressed or implied, is made. The included test results apply only to the specific samples tested end may not represent the entire product.Reports may not be reproduced,except in lull,without written permission of PSI. p:1g roups16891P raj ects\2012\06896 97\1029-2d.doc Professkwial Service Industries,Inc.•6032 N.Cutter Circle,Suite 480•Portland,OR 91217•Phone 5031289-1778•Fax 50309-1918 CCB License#176269 erra71 Information 1 re! .To Build On Engineering• Consulting• Meting WELDING QUALIFICATION TEST Project Number: 0689697 WPS Number: B2.1-1-016-94 Tested For: U.S. Metal Works Inc. Date: August 15, 2012 Spec. Code: AWS 01.1-10 Report No: 0689697-1a Welders Name: Shirmon McNair SSN: 5452 Filler Metal: AWS A5.1, E7018, F4 Flux: N/A Base Metal Spec.: ASTM A-36 Preheat: 70°F Plate or Pipe: Pipe Thickness: 3/8" Inches: 6" Sch 40 Type of Joint: V-Groove Fig. No.: 4.31 Backing: Yes Single/Double Welded: Single Process: SMAW Single/Multiple Pass: Multiple Amp: - Current: DC Progression: Uphill Volt: - Polarity: Reverse GROOVE WELD TESTS Position Radiographic Bend Tests Positions Thickness Diameter Process Tested Test Root Face Side Qualified Qualified Qualified Qualified 3G Passed Passed 1-2 3G 1/8"to 3/4" 24" & Up SMAW 1-2-3F Visual Inspection (4.8.1) Acceptable:YES X NO City of Portland# N/A Welding Test Conducted/Witnessed By: U.S. Metal Works Inc. Mechanical Tests Conducted By: Professional Service Industries, Inc. Date: August 28, 2012, 2012 Steve Moore, Lab Supervisor, Mechanical Testing Services We certify that the statements in this record are correct and that the test coupons were prepared, welded, and tested in accordance with AWS D1.1-10. Organization: U.S. Metal Works Inc. By: Date: August 15, 2012 Services performed for this project have been conducted with that level of care and skill ordinarily exercised by members of the profession currently practicing in this area under similar budget and time restraints. No warranty, expressed or implied,is made.The included test results apply only to the specific samples tested and may not represent the entire product.Reports may not be reproduced,except in lull,without written permission of PSI. p:1g rcu ps',689\Pr of ects12012\0689697\0910-1 a.doc Professional Service Industries,Inc.•6032 N.Cutter Circle,Suite 480•Portland,OR 97217•Phone 503/269-1778•Fax 503/289-1918 CCB License#176269 �I'' A' Information LNG! .To Build On - Engineering•Consulting•testing WELDING QUALIFICATION TEST Project Number: 0689697 WPS Number: B2.1-1-016-94 Tested For: U.S. Metal Works Inc. Date: August 15, 2012 Spec. Code: AWS D1.1-10 Report No: 0689697-1b Welders Name: Andy Newton SSN: 3068 Filler Metal: AWS A5.1, E7018, F4 Flux: N/A Base Metal Spec.: ASTM A-36 Preheat: 70`F Plate or Pipe: Pipe Thickness: 3/8" Inches: 6" Sch 40 Type of Joint: V-Groove Fig. No.: 4.31 Backing: Yes Single/Double Welded: Single Process: SMAW Single/Multiple Pass: Multiple Amp: - Current: DC Progression: Uphill Volt: - Polarity: Reverse GROOVE WELD TESTS Position Radiographic Bend Tests Positions Thickness Diameter Process Tested Test Root Face Side Qualified Qualified Qualified Qualified 1 1-2-3G 3G I Passed Passed 1/8"to 3/4" 24"& Up SMAW 1-2-3F Visual Inspection (4.8.1) Acceptable:YES X NO City of Portland# N/A Welding Test Conducted/Witnessed By: U.S. Metal Works Inc. Mechanical Tests Conducted By: Professional Service Industries, Inc. .y -€ Date: August 28, 2012, 2012 Steve Moore, Lab Supervisor,Mechanical Testing Services We certify that the statements in this record are correct and that the test coupons were prepared, welded, and tested in accordance with AWS D1.1-10. Organization: U.S. Metal Works Inc. By: Date: August 15, 2012 Services performed for this project have been conducted with that level of care and skill ordinarily exercised by members of the profession currently practicing in this area under similar budget and time restraints. No warranty, expressed or implied,is made.The included test results apply only to the specific samples tasted and may not represent the entire product.Reports may not be reproduced,except in full,without written permission of PSI. p:\groups\6891P rojects\2012\0689697\0910-1 b.doc Professional Service Industries,Inc.•6032 N.Cutter Circle,Suite 480•Portland,OR 97217•Phone 503'289.1778•Fax 503/289-1918 CCB License*176269 Dan Nelson City of Tigard Senior Plans Examiner June 6, 2013 Page 10 EXHIBIT B—Certified Welding Inspection Report Neil Shannon, a certified welding inspector from Carlson Testing, performed a special inspection of the equipment platforms, including anchorage and welding, on June 11, 2013. The report is attached for reference. The report categorized the platforms in the deferred submittal as "West Side" and"East Side" as listed below: West Side Equipment Platforms Surge Auger Support Structure Plastic Feeder Support Structure PRU Gen 6 (ThermaFlite) Support Structure East Side Equipment Platforms Receiving Hopper Primary Conveyor Support Structure Metering Bin Support Structure Transfer Belt Support Structure Incline Belt Support Structure Carlson Testing Special Inspection Report Conclusions (June 11, 2013) "In most cases components were fully welded and weld appearance was good. " "The remaining portions of the platforms, ladders and guard rails appeared complete and of general good workmanship." The five specific items noted in the report have, or currently are, being corrected. • - Bend Office (541)330-915 Geotechnical Office (503)601-8250 Carlson Testing, Inc. Eugene Office (541)345-0289 Salem Office (503)589-1252 Tigard Office (503)684-3460 June 11, 2013 T1308622 • Permit N°: BUP2012-00233 City of Tigard STRUCTURAL STEEL - FIELD DATES COVERED: June 11, 2013 PROJECT: Agylix— Equipment Installation ADDRESS: 7904 SW Hunziker St., Tigard, Oregon INSPECTOR: N. Shannon—AWS#98060018,ACI#00952896, ICC#0887203-B5/-10/-89/-49/-86/-841-60/-B3/-S1/-S2, OBOA#321 06/11/13 - Structural Steel Field On site as requested and met with Plant Manager Steve Anderson. At the direction of the Structural Engineer, Bill Ness of Evergreen Engineering Carlson Testing was asked to evaluate the construction of personnel and equipment platforms provided for the equipment. No design plans were available for review and the structure was painted. The Engineer of Record has asked us to provide a review of the as-built conditions for his consideration and determination if additional work is required to expose the work for inspection. Observation Platform (west side equipment platform) The observation platform consisted of grey, painted structural box tube, channel and angle iron shapes. In most cases components were fully welded and weld appearance was good. Platform legs and stairs were securely anchored to the concrete. High strength (A325) bolts were used to anchor the primary structural steel, no match marking was noted so a snug tight condition is assumed. Standard A307 machine bolts were in place for the hand rails and stairs. Areas of note during this platform inspection were as follows: • NE post of observation platform (next to north stair) (see photo #1). One anchor bolt could not be installed due to edge of concrete. A separate plate has been added and contractor reports that the intension was to weld the plate. It has not been welded yet. • South frame mounted to platform for electrical racking (see photo #2). High strength bolts are used to anchor to the perimeter channel however wedge washers have not been installed to adjust for the sloped surface. • Supporting frame for expanded metal floor(below and to the west of the electrical rack noted above (see photos 3, 4 and 5) Significantly less weld support this frame than other areas. Typical has bottom leg welded top and bottom plus added weld on the vertical. This location has weld top side of channel leg only. • Supporting frame for expanded metal floor (north side of observation platform)(see photo 6) No support has been provided along the edge of the equipment panel. Contractor reports that it is the intent to install some supporting structure below. At the east side equipment platforms it was noted that the platforms have been assembled using SAE grade 6 bolts instead of A325 bolts. Again, no match marking was observed, snug tight condition is assumed. Areas of note during this platform inspection were as follows: • At the high (north) platform there is a bump out on the west side for ladder access)(see photos 7 & 8). The horizontal channels supporting the platform have been welded one side only on the exterior vertical surface. Engineering review is suggested. The remaining portions of the platforms, ladders and guard rails appeared complete and of general good workmanship but, again, no permit or plans were available for review. This inspector is no able to address issues of member size or placement requirements. If conformation of member size and locations are required please provide design drawings for comparison. Prior to departure these inspection observations were shared with Steve Anderson and a sub-contractor providing the installation. 06-11-13 fr 600(NS)DRAFT T1308622.docT1308622 *** CHECK ONE BOX ONLY*** YES NO 1. This is a preliminary inspection only. —OR— 2. The work inspected conforms to acceptance criteria listed above. If"No,"the portions of the work that are non-conforming items are clearly stated above and will be added to the NCL. Remaining portions ❑ ❑ of the work,which are not preliminary in nature, are to be considered as conforming. Our reports pertain to the material tested/inspected only. Information contained herein is not to be reproduced, except in full, without prior authorization from this office. Under all circumstances, the information contained in this report is provided subject to all terms and conditions of CTI's General Conditions in effect at the time this report is prepared. No party other than those to whom CTI has distributed this report shall be entitled to use or rely upon the information contained in this document. If there are any further questions regarding this matter, please do not hesitate to contact this office. Respectfully submitted, CARLSON TESTING, INC. Neil S. Shannon Project Manager 06-11-13 fr 600(NS)DRAFT T1308622 docT1308622 . f -,. gipp . ' 4 t . viii, , 4111010-' 1 \r ' ■ f • a+..is t 'P IIIII It 1 It 111\ ill \" ... y s n s. dr r. y Ale . - Y ■ ,,,,,,,44 .. Y y4 . . J • .py,i-. t I� X w.� e 4 4 k , - ` R :yam • • •-•.• „, , . OP_ Viligiiiill019$. „. . , ar. r f t\' r4' a.• 111.1111111111, « w 1614 ,r Art rV f /w • • 1 • • • • 4.. w,.. ■ .s.-',. °°. �-- ■ ■ ■ ■ 10 I iiii - I liti 0 . , , _ ... - 7 • . . 111111111111111111.110111, 0.111r $411111 41411111010, .. -'- le .. . 4 /- - . , , .... '14 111410.011.1014. . , . .441111.111P . , - '• -.it 4,,, : w...,- .. :. .... ., .. t t * ' ■ t • .. . 3 . • . . , . . . . . . . . .1,.. . , ., 1 .000100,j1k 1 I t .t t * i , ,i 5 • ,,. . , ,_, f t ' 11111111.-" I ,.... ., ; St 1, to" ; i , r . .. ir it 7, 4„,$, *. . . ..e .'i .. ■ ,. --r P.'- . • 4 ' a., kiditaihmototowsowt trr- . 44111.00 . t , t .,.,....,. ,,.. • ..', "2-: 441'1) ._..,.. -.1- oltootiiiii ( I 001 ii( i (01; 01411 , iii�l���« Iltll 1111110 ,111,1 111111111t . 1,11111,1111 Dan Nelson City of Tigard Senior Plans Examiner June 6,2013 Page 11 EXHIBIT C- Anchor Bolt Installation Documentation Both wedge anchors(Hilti KB-TZ) and epoxy anchors(Hilti HIT-HY 150 Max SD) were used on this project as follows: Hilti HIT-HY 150 Max SD (Epoxy w/B-7 Threaded Rod) • Metering Bin • Therma-Flite Hilti KB-TZ(Expansion Anchors) • Infeed Hopper • Primary, Transfer and Incline Conveyors • Infeed Platform • Control Platform • CSS Skid • Misc. Pumps, Equipment and Pipe Supports A special inspection of the wedge anchor bolts installed on the control platform (part of the original permit)was conducted by Carlson Testing on February 12. 2013. These anchors were approved, as indicated by the attached inspection report from Carlson Testing. The anchor bolts on the deferred equipment package were inspected during the special inspection conducted by Carlson Testing, Inc. on June 11,2013 that was referenced in and attached to EXHIBIT B. Carlson Testing Special Inspection Report Conclusions(June 11,2013) Platform legs and stairs were securely anchored to the concrete. High strength (A325) bolts were used to anchor the primary structural steel, no match marking was noted so a snug tight condition is assumed. " On May 6, 2013, US Metal Works certified that"All anchors were installed and torqued per manufactures specifications"in the attached email. The Hilti installation specifications for wedge and epoxy anchors as well as the ICC requirements for both types of anchors are attached for reference. Dan Nelson City of Tigard ' Senior Plans Examiner June 6, 2013 Page 12 .t Carlson Testing Special Inspection Report June 11, 2013 Bend Office (541)330-9155 Geotechnical Office (503)601-8250 Carlson Testing, ugene Office (541)345-0289 Salem ng, Inc.Inc• Eugene ffice (503)5891252 Tigard Office (503)684-3460 Daily Report of Proprietary Anchors Client: GROW CONSTRUCTION LLC Project: AGYLIX - REMODEL CTI Job#: T1307805. Address: 7904 SW HUNZIKER RD TIGARD OR Jurisdiction: TIGARD CTI representative R. BATY OBOA 411 was on site this date Feb. 12, 2013 to perform Special Inspection for: Permit BtIP2012-00233 DFS#(s) PO Number: SCOPE OF INSPECTION Location of proprietary anchors inspected [to include grid lines,elevations (floors)and drawing details]: 1. Checked in with superintendent or client representative. MONITORED INSTALLATION OF 5/8" DIA X 8-1/2" Name: BILL KB-TZ ANCHORS WITH 4" MINIMUM EMBED. THIS WAS Company: AGYLIX PER EMAIL 02/12/13 11:41AM. 2.Inspection was "IBC" © Continuous Periodic AFTER SOME WAIT FOR CORE DRILLING FOR A COUPLE OF ANCHORS. WORK CONFORMED WITH THE EMAIL AND PROPRIETARY ANCHORS WAS TORQUED WITH THE COMPANY'S WRENCH. Yes No N/A 1.Reviewed previous inspection reports? x 2.Reviewed evaluation report? _ x Verified following items meet manufacturer's REPORT SUMMARY published installation instructions. 3.Verified minimum embedment depth of the 1.Work inspected was: ® Completed 0 In progress anchors. x 4.Verified installation of the anchors. 2.Completed work inspected was in compliance with x ® Approved plans and specifications n Shop drawings 5.Verified anchor diameter. x 6.Verified steel grade. x n RFI El Design change E Submittal N/A 7.Verified hole diameter. • x Document#(s) Dated: 8.Verified type of drill bit used. 9.Verified hole cleaning method. • x 3.Noncompliance item(s)were noted this date,details on 10.Verified adhesive application. X following page(s). 0 Yes El No ® N/A 11.Verified edge distance. x 4.Noncompliance item(s)were reinspected this date, details 12.Verified spacing. x on following page(s). fl Yes El No © N/A 13.Verified installation torque. _ x El Conform 0 Remain in progress Evaluation report number&date: Report(s)findings were discussed and left with ESR-1917 (05/2011) BILL of AGYLIX Name of product being installed KB-TZ Batch Number Expiration Date - Based on the Code, approval is required from the Building Official before the SPECIAL INSPECTED items noted above can be covered. Carlson Testing has no authority to direct work of contractors or subcontractors. 0 See additional report page(s). E Distribute attachments. Page 1 of - 1_ Bend Office (541)330-9155 Geotechnical Office (503)601-8250 Carlson Testing, Inc. Eugene Office (541)345-0289 Salem Office (503)589-1252 Tigard Office (503)684-3460 February 21, 2013 T1307805 Permit N2: BUP2012-00233 FIELD INSPECTION REPORT DATES COVERED: February 18, 2013 - PROJECT: Agylix- Remodel ADDRESS: 7904 SW Hunziker Rd -Tigard, OR INSPECTOR: J. Piland-OBOA#282,AWS#92080531, ICC#870262 02/18/13 - Proprietary Anchor 1, As requested, CTI representative was on site per IBC section 17 requirements. The following anchors were installed and torqued per ICC 1917 (05/01/11) requirements. Control platform-Plan drawing 1. (20) 12 m X 7'long X 4 1 embed obtained (4"embed per 2/No 1) per detail 2/No 1, 02/06/13 revised changed to Hilti KB-TZ wedge anchors per attached email from Brad Pickens with Evergreen Engineering, dated 02/12/13. Holes were drilled, cleaned, anchored per ICC requirements. The following non-complying item was added - See Incompleted Items List(NCL) attached: • NCL#2: Need the approval for 1/2" m anchors (email from B. Pickens (02/12/13) approves 5/8.1 on different equipment). ""CHECK ONE BOX ONLY*" YFS NO 1. This is a preliminary inspection only. —OR— ❑ 2. The work inspected conforms to acceptance criteria listed above. If"No,"the portions of the work that are non-conforming items are clearly stated above and will be added to the NCL. Remaining portions of ® ❑ the work,which are not preliminary in nature, are to be considered as conforming. Our reports pertain to the material tested/inspected only. Information contained herein is not to be reproduced, except in full, without prior authorization from this office. Under all circumstances, the information contained in this report is provided subject to all terms and conditions of CTI's General Conditions in effect at the time this report is prepared. No party other than those to whom CTI has distributed this report shall be entitled to use or rely upon the information contained in this document. If there are any further questions regarding this matter, please do not hesitate to contact this office. Respectfully submitted, CARLSON EST NG, INC. Neil S. Shannon Project Manager JP/ck Attachment cc: Grow Construction LLC City of Tigard Building Division 02-18.13 fr 618(JP).doc Carlson Testing, Inc. Incompleted Items List (NCL) Jun 07,2013 TI 307805. Project Name: AGYLIX - REMODEL Project Address: 7904 SW HUN2IKER ST TIGARD OR Permit No: BUP2012-00233 P.O. No: Project Manager: NEIL S. SHANNON Item# Insp. Date Item Description Compliance CTI Sign_Of Date Corrected 1 EG 01/29/2013 ENGINEER APPROVED MIX DESIGN NOT ON SITE. CTI HAS RECEIVED THE NEIL S. SHANNON 02/06/2013 APPROVED MIX DESIGN. 2 JP 02/18/2013 NEED THE APPROVAL FOR 1/2" DIAMETER ANCHORS THE AS-BUILT CONDITION NEIL S. SHANNON 02/22/2013 (EMAIL FROM B. PICKENS (02/12/13) APPROVES 5/8" HAS BEEN APPROVED BY THE DIA ON DIFFERENT EQUIPMENT) . ENGINEER OF RECORD. CC:GROW CONSTRUCTION LLC CITY OF TIGARD BUILDING DIVISION EVERGREEN ENGINEERING - BILL NESS AGYLIX Page: 1 Dan Nelson City of Tigard Senior Plans Examiner June 6, 2013 Page 13 US Metal Works—Anchor Bolt Certification May 6, 2013 Ness, Bill - From: Craig Garrison [CGarrison @agilyx.com] Sent: Monday, May 06, 2013 4:08 PM To: Ness, Bill; Yutzy, Gordon Subject: FW: CSS Anchorage Attachments: Hilti Anchor Installation Specs.pdf More info on the anchoring. Craig Garrison, Director Technical Projects P: 503.217.3166 1 C: 503.799.8718 F: 503.217-3161 I E: cgarrisonPagilyx.com agi l Reduces. Produces. Creates. Agilyx Corporation I Executive Offices 19600 SW Nimbus 1 Suite 260 1 Beaverton, OR 97008 Plant Operations 17904 SW Hunziker Street 1 Tigard, OR 97223 1 www.agilvx.com BA Please consider the environment before printing this e-mail. This email and any files transmitted with it are confidential and intended solely for the use of the individual or entity to whom they are addressed.If you are not the intended recipient you are notified that disclosing,copying,distributing or taking any action in reliance on the contents of this information is strictly prohibited. _ From: Brian Voight [mailto:Brian.Voight @usmetalworks.com] Sent: Monday, May 06, 2013 1:49 PM To: Craig Garrison Cc: Bill Hite Subject: FW: CSS Anchorage Craig, Here is the email from Evergreen (below) approving the use of Hilti KB TZ expansion anchors in place of Hilti HIT-HY 150 Max SD Epoxy anchors. Ultimately we used both styles as follows: Hilti HIT-HY 150 Max SD (Epoxy w/B-7 Threaded Rod) • Metering Bin • Therma-Flite Hilti KB-TZ(Expansion Anchors) • Infeed Hopper • Primary,Transfer and Incline Conveyors • Infeed Platform • Control Platform • CSS Skid 1 • Misc. Pumps, Equipment and Pipe Supports All anchors were installed and torqued per manufactures specifications (attached) - Sincerely, - Brian Voight US Metal Works Inc. Sandy, OR (503) 668-8036 Ext. 322 Brian.voight @usmetalworks.com From: Pickens, Brad [mailto:BPickens @eeeug.com] Sent: Wednesday, January 30, 2013 1:49 PM To: Brian Voight Cc: Craig Garrison; Walters, Erin Subject: CSS Anchorage Brian, This is in regards to your request for an equal replacement to the Hilti HIT-TY 150 anchors. To our knowledge other manufactures don't supply an anchor with the same load capacity. However the Hilti Kwik Bolt 17 expansion anchor is an acceptable replacement. It requires the same diameter and embedment length. _Brad Pickens, BSME Project Manager EVERGREEN ENGINEERING, INC. Engineering and Construction Services Tel 541.484.4771 Fax 541.484.6759 www.evercreenengineerinq.com 2 Dan Nelson City of Tigard Senior Plans Examiner June 6, 2013 Page 14 Anchor Bolt Documentation 1■■11`TI Attached are page(s) from the 2011 Hilti North American Product Technical Guide. For complete details on this product, including data development, product specifications, general suitability, installation , corrosion , and spacing & edge distance guidelines, please refer to the Technical Guide, or contact Hilti . • Hilts, Inc. 5400 South 122nd East Avenue Tulsa, OK 74146 1-800-879-8000 www.hilt'.corn .. Mechanical Anchoring Systems KWIK Bolt TZ Expansion Anchor 3.3.4 3.3.4.1 KWIK Bolt TZ Product Description 3.3.4.1 Product Description The KWIK Bolt TZ(KB-TZ)is a torque Product Features 3.3.4.2 Material Specifications controlled expansion anchor which is • Product and length identification 3.3.4.3 Technical Data especially suited to seismic and cracked marks facilitate quality control after 3.3.4.4 Installation Instructions concrete applications.This anchor line installation. 3.3.4.5 Ordering Information is available in carbon steel,type 304 • Through fixture installation and and type 316 stainless steel versions. variable thread lengths improve Impact Section The anchor diameters range from 3/8- productivity and accommodate (Dog Point) various base plate thicknesses. and 3/4-inch in a variety of lengths. Type 316 Stainless Steel wedges •Applicable base materials include provide superior performance in normal-weight concrete,structural cracked concrete. Nut— lightweight concrete,and lightweight • Ridges on expansion wedges Washer— concrete over metal deck. provide increased reliability. Guide Specifications • Mechanical expansion allows immediate load application. Red — Torque controlled expansion anchors • Raised impact section(dog point) Mark shall be KWIK Bolt TZ(KB-TZ)supplied prevents thread damage during by Hilti meeting the description in installation. Anchor_ Federal Specification A-A 1923A, • Bolt meets ductility requirements Thread type 4.The anchor bears a length of ACI 318 Section Dl. identification mark embossed into Installation the impact section(dog point)of the Drill hole in base material to the anchor surrounded by four embossed Anchor— appropriate depth using a Hilti carbide Body notches identifying the anchor as a Hilti tipped drill bit. Drive the anchor into KWIK Bolt TZ in the installed condition. the hole using a hammer.A minimum Anchors are manufactured to meet one of four threads must be below the of the following conditions: fastening surface prior to applying Stainless • The carbon steel anchor body, installation torque.Tighten the nut to Steel nut,and washer have an electro- the installation torque. Expansion— plated zinc coating conforming to Sleeve ASTM B633 to a minimum thick- (Wedges) ness of 5 pm.The stainless steel expansion sleeve conforms to type 316. • Stainless steel anchor body, nut and washer conform to type 304. Expansion Cone Stainless steel expansion sleeve Listings/Approvals conforms to type 316. Stainless steel anchor body, nut, ICC-ES 1 R (International Code Council) • washer,and expansion sleeve con- FM(Factory Mutual) form to type 316 stainless steel. Pipe Hanger Components for Automatic Sprinkler Systems(3/8" -3/4") UL(Underwriters Laboratories) Pipe Hanger Equipment for Fire Supplemental Design Provisions for ACI 318 Appendix D Protection Services(3/8"-3/4") Design strengths are determined in accordance with ACI 318 Appendix D and ICC Evaluation Service ESR-1917 Hilti KWIK Bolt TZ Carbon and Stainless Steel Anchors FM c p in Concrete.The relevant design parameters are reiterated in Tables 1,2,and 3 of • this document. Supplemental provisions required for the design of the KB-TZ are Independent Code Evaluation enumerated in Section 4.0 of ESR-1917(DESIGN AND INSTALLATION). Note that IBC®/IRC®2009(AC 193/ACI 355.2) these design parameters are supplemental to the design provisions of ACI 318. IBC®/IRC®2006 .a ,V... .:M 41011111.- Hilts,Inc.(US)1-800-879-8000 I www•us.hilti.com I en espahol 1.800.879-5000 I Hit(Canada)Corp.1.800-363-4458 I www.hilti.ca I Anchor Fastening Technical Guide 2011 267 Mechanical Anchoring Systems 3.3.4 KWIK Bolt TZ Expansion Anchor 3.3.4.2 Material Properties Carbon steel with electroplated zinc • Carbon steel KB-TZ anchors have the following minimum bolt fracture loads' Anchor Diameter Shear Tension (in.) (Ib) (Ib) 3/8 NA 6,744 1/2 7,419 11,240 5/8 11,465 17,535 3/4 17,535 25,853 • Carbon steel anchor components plated in accordance with ASTM B633 to a minimum thickness of 5pm. • Nuts conform to the requirements of ASTM A 563, Grade A, Hex. • Washers meet the requirements of ASTM F 844. • Expansion sleeves(wedges)are manufactured from type 316 stainless steel. Stainless steel • Stainless steel KB-TZ anchors are made of type 304 or 316 material and have the following minimum bolt fracture loads' Anchor Diameter Shear Tension (in.) (Ib) (Ib) 3/8 5,058 6,519 1/2 8,543 12,364 5/8 13,938 19,109 3/4 22,481 24,729 • All nuts and washers are made from type 304 or type 316 stainless steel respectively. • Nuts meet the dimensional requirements of ASTM F 594. • Washers meet the dimensional requirements of ANSI B18.22.1,Type A, plain. • Expansion Sleeve(wedges)are made from type 316 stainless steel. 1 Bolt fracture loads are determined by testing in jig as part of product QC.These loads are not intended for design purposes.See Tables 2 and 3. 268 Hilti,Inc.(US)1-800-879-8000 I www.us.hilti.com I en espanol 1-800-879-5000 I Hilti(Canada)Corp.1-800-363-4458 I www.hilti.ca I Anchor Fastening Technical Guide 2011 Mechanical Anchoring Systems KWIK Bolt TZ Expansion Anchor 3.3.4 3.3.4.3 Technical Data Table 1 — KWIK Bolt TZ Specification Table Setting Symbol Units( Nominal anchor diameter(in.) Information 3/8 1/2 5/8 3/4 Anchor O.D. d° in. 0.375 0.5 0.625 0.75 (mm) (9.5) (12.7) (15.9) (19.1) Nominal bit diameter da, in. 3/8 1/2 5/8 3/4 Effective minimum h in. 2 2 3-1/4 3-1/8 4 3-3/4 4-3/4 embedment °' (mm) (51) (51) (83) (79) (102) (95) (121) in. 2-5/8 2-5/8 4 3-3/4 4-3/4 4-5/8 5-3/4 Min.hole depth h° (mm) (67) (67) (102) (95) (121) (117) (146) in. 1/4 3/4 1/4 3/8 3/4 1/8 1-5/8 Min.thickness of fixture' t (mm) (6) (19) (6) (9) (19) (3) (41) in. 2-1/4 4 2-3/4 5-5/8 4-3/4 4-5/8 3-5/8 Max.thickness of fixture t '"a" (mm) (57) (101) (70) (143) (121) (117) (92) ft-lb 25 40 60 110 Installation torque Tng (Nm) (34) (54) (81) (149) Minimum diameter in. 7/16 9/16 11/16 13/16 of hole h (mm) (11.1) (14.3) (17.5) (20.6) in. 3 3-3/4 5 3-3/4 4-1/2 5-1/2 7 4-3/4 6 8-1/2 10 5-1/2 8 10 Available anchor lengths t' h (mm) (76) (95) (127) (95) (114) (140) (178) (121) (152) (216) (254) (140) (203) (254) Threaded length in. 7/8 1-5/8 2-7/8 1-5/8 2-3/8 3-3/8 4-7/8 1-1/2 2-3/4 5-1/4 6-3/4 1-1/2 4 6 including dog point ('ArBB° (mm) (22) (41) (73) (41) (60) (86) (178) (38) (70) (133) (171) (38) (102) (152) in. 2-1/8 2-1/8 3-1/4 4 Unthreaded length (w„r (mm) (54) (54) (83) (102) in. 2-1/4 2-3/8 3-5/8 3-5/8 4-1/2 4-3/8 5-3/8 Installation embedment h "°" (mm) (57) (60) (92) (92) (114) (111) (137) 1 The minimum thickness of the fastened part is based on use of the anchor at minimum embedment and is controlled by the length of thread. If a thinner fastening thickness is required,increase the anchor embedment to suit. - Figure 1 — KWIK Bolt TZ Installed 1�_t ethread dh _ — t t , • b • MP eanch 1 . �'• eunthr het hnom ho do 1.1 IA 1 _ A II - Hilti,Inc.(US)1-800-879-8000 I www.us.hilti.com I en espaitol 1-800-879-5000 I Hilti(Canada)Corp.1-800-363-4458 I www.hIttLca I Anchor Fastening Technical Guide 2011 269 Mechanical Anchoring Systems 3.3.4 KWIK Bolt TZ Expansion Anchor Table 2 - Carbon Steel KWIK Bolt TZ Strength Design Information Setting Symbol Units Nominal anchor diameter Information 3/8 1/2 5/8 3/4 Anchor O.D. d in. 0.375 0.5 0.625 0.75 (mm) (9.5) (12.7) (15.9) (19.1) Effective minimum in. 2 2 3-1/4 3-1/8 4 3-3/4 4-3/4 embedment' (mm) (51) (51) (83) 79 ( ) (102) (95) (121) - in. 4 5 4 6 6 8 5 6 8 6 8 8 Min.member thickness hm (mm) (102) (127) (102) (152) (152) (203) (127) (152) (203) (152) (203) (203) in. 4-3/8 4 5-1/2 4-1/2 7-1/2 6 6-1/2 8-3/4 6-3/4 10 8 9 Critical edge distance c" (mm) (111) (102) (140) (114) (191) (152) (165) (222) (171) (254) (203) (229) in. 2-1/2 2-3/4 2-3/8 3-5/8 3-1/4 4-3/4 4-1/8 Min.edge distance ce.ml° (mm) (64) (70) (60) (92) (83) (121) (105) for s z in. 5 5-3/4 5-3/4 6-1/8 5-7/8 10-1/2 8-7/8 (mm) (127) (146) (146) (156) (149) (267) (225) in. 2-1/2 2-3/4 2-3/8 3-1/2 3 5 4 S Min.anchor spacing m,° (mm) (64) (70) (60) (89) (76) (127) (102) for c a in. 3-5/8 4-1/8 3-1/2 4-3/4 4-1/4 9-1/2 7-3/4 (mm) (92) (105) (89) (121) (108) (241) (197) Min.hole depth in in. 2-5/8 2-5/8 4 3-7/8 4-3/4 4-5/8 5-3/4 concrete (mm) (67) (67) - (102) (98) (121) (117) (146) Min.specified yield lb/in2 100,000 84,800 84,800 84,800 strength 18 (N/mm2) (690) (585) (585) (585) Min.specified ult.strength f lb/in2 125,000 106,000 106,000 106,000 Re (N/mm2) (793) (731) (731) (731) Effective tensile in.2 0.052 0.101 0.162 0.237 stress area A� (mm2) (33.6) (65.0) (104.6) (152.8) Steel strength lb 6,500 10,705 17,170 25,120 in tension (kN) (28.9) (47.6) (76.4) (111.8) Steel strength lb 3,595 5,495 8,090 13,675 in shear �, (kN) (16.0) (24.4) (36.0) (60.8) Steel strength in lb 2,255 5,495 7,600 11,745 shear,seismic eQ (kN) (10.0) (24.4) (33.8) (52.2) Steel strength in shear, lb 2,13010 3,000 4,945 4,6001° 6,0401° concrete on metal deck° V„.deck NP (kN) (9.5) (13.3) (22) (20.5) (26.9) Pullout strength lb 2515 5,515 9,145 8,280 10,680 uncracked concrete' NPP'', (kN) (11.2) NA (24.5) NA (40.7) (36.8) (47.5) Pullout strength lb 2270 4,915 cracked concrete' NP.- (kN) (10.1) NA (21.9) NA NA Pullout strength concrete N lb 1,460 1,460 2,620 2,000 4,645 on metal deck' PC1i dB `, (kN) (6.5) (6.5) (11.7) (8.9) (20.7) NP Anchor category' 1 Effectiveness factor kur,„uncracked 24 concrete Effectiveness factor ku cracked concretes 17 W,.N-k w,/k,,' 1.41 Coefficient for pryout strength,k.. 1.0 _ 2.0 Strength reduction factor m for tension,steel failure modes' 0.75 Strength reduction factor c for shear,steel failure modes' 0.65 Strength reduction factor cD for tension,con- crete failure modes,Condition B° 0.65 Strength reduction factor m for shear, 0.70 concrete failure modes 1 See Fig. 1. 7 See ACI 318 D.5.2.6. 2 NP(not permitted)denotes that the condition is not supported. 8 The KB-TZ is a ductile steel element as defined by ACI 318 D.1. 3 NA(not applicable)denotes that this value does not control for 9 For use with the load combinations of ACI 318 Chapter 9 Section design. 9.2.Condition B applies where supplementary reinforcement in - 4 NP(not permitted)denotes that the condition is not supported. conformance with ACI 318 D.4.4 is not provided,or where pullout Values are for cracked concrete.Values are applicable to both or pryout strength governs. For cases where the presence of sup- static and seismic load combinations. plementary reinforcement can be verified,the strength reduction 5 See ACI 318 0.4.4. factors associated with Condition A may be used. 6 See ACI 318 0.5.2.2. 10 For seismic applications,multiply the value of V54 deck for the 3/8-inch-diameter by 0.63 and the 5/8-inch-diameter by 0.94. 270 Hilti,Inc.(US)1-800-879-8000 I www.us.hilti.com I en espanol 1-800-879-5000 I Hilt■(Canada)Corp.1-800-363-4458 I www.hilti.ca I Anchor Fastening Technical Guide 2011 Mechanical Anchoring Systems KWIK Bolt TZ Expansion Anchor 3.3.4 Table 3-Stainless Steel KWIK Bolt TZ Strength Design Information Setting Symbol Units Nominal anchor diameter Information 3/8 1/2 5/8 3/4 Anchor O.D. d in. 0.375 0.5 0.625 0.75 ° (mm) (9.5) (12.7) _ (15.9) (19.1) . Effective minimum in. 2 2 3-1/4 3-1/8 4 3-3/4 4-3/4 embedment' (mm) (51) (51) (83) (79) (102) (95) (121) M in. 4 5 4 6 6 8 5 6 8 6 8 Min.member thickness h y„ (mm) (102) (127) (102) (152) (152) (203) (127) (152) (203) (152) (203) Critical edge distance c. in. 4-3/8 3-7/8 5-1/2 4-1/2 7-1/2 6 7 8-7/8 6 10 7 9 (mm) (111) (98) (140) (114) (191) (152) (178) (225) _ (152) (254) (178) (229) in. 2-1/2 2-7/8 2-1/8 3-1/4 2-3/8 4-1/4 4 c°""" (mm) (64) (73) (54) (83) (60) (108) (102) Min.edge distance for s a in. 5 5-3/4 5-1/4 5-1/2 5-1/2 10 8-1/2 (mm) (127) (146) (133) (140) (140) (254) (216) in. 2-1/4 2-7/8 2 2-3/4 2-3/8 5 4 s„. (mm) (57) (73) (51) (70) (60) (127) (102) Min.anchor spacing for c a in. 3-1/2 4-1/2 3-1/4 4-1/8 4-1/4 9-1/2 7 (mm) (89) (114) (83) (105) (108) (241) (178) Min.hole depth in in. 2-5/8 2-5/8 4 3-3/4 4-3/4 4-5/8 5-3/4 concrete (mm) (67) (67) (102) (95) _ (121) (117) (146) Min.specified yield lb/in2 92,000 92,000 92,000 76,125 strength rY. (N/mm2) (634) (634) (634) (525) lb/in2 115,000 115,000 115,000 101,500 Min.specified ult.strength f° (N/mm2) (793) (793) (793) (700) Effective tensile in2 0.052 0.101 0.162 0.237 stress area Ax (mm2) (33.6) (65.0) (104.6) (152.8) Steel strength lb 5,980 11,615 18,630 24,055 in tension (kN) (26.6) (51.7) (82.9) (107.0) Steel strength lb 4,870 6,880 9,350 12,890 in shear V. (kN) (21.7) (30.6) (41.6) (57.3) Steel strength in lb 2,735 - tension,seismic' N''' (kN) NA (12.2) NA NA NA Steel strength in lb 2,825 6,880 11,835 14,615 shear,seismic' V" (kN) (12.6) (30.6) (52.6) (65.0) Pullout strength lb 2,630 5,760 12,040 uncracked concrete' NP'''' (kN) (11.7) NA (25 6) NA NA (53.6) Pullout strength lb 2,340 3,180 5,840 8,110 cracked concrete' N"' (kN) (10.4) (14.1) NA NA (26.0) (36.1) NA Anchor category' 1 2 1 Effectiveness factor k ° uncracked 24 concrete Effectiveness factor k_cracked concrete` 17 24 17 17 17 24 17 4i,., =k„„/k,.5 1.41 1.00 1.41 1.41 1.41 1.00 1.41 Coefficient for pryout strength,k,, 1.0 2.0 Strength reduction factor m for tension,steel 0.75 failure modes6 Strength reduction factor 0 for shear,steel 0.65 0.55 0.65 failure modes6 Strength reduction factor 0 for tension,con- 0.65 crete failure modes,Condition B' Strength reduction factor 0 for shear, 0.70 concrete failure modes 1 See Fig.1. 2 NA(not applicable)denotes that this value does not control for design. 3 See ACI 318 D.4.4. 4 See ACI 318 D.5.2.2. - 5 See ACI 318 D.5.2.6. 6 The KB-TZ is a ductile steel element as defined by ACI 318 D.1. 7 For use with the load combinations of ACI 318 Chapter 9 Section 9.2.Condition B applies where supplementary reinforcement in - conformance with ACI 318 D.4.4 is not provided,or where pullout or pryout strength governs.For cases where the presence of supplementary reinforcement can be verified,the strength reduction factors associated with Condition A may be used. Hilt,Inc.(US)1-800-879-8000 I www.us.hilti.com I en espahol 1-800.879.5000 I Hilti(Canada)Corp.1-800-363-4458 I www.hifi.ca I Anchor Fastening Technical Guide 2011 271 Mechanical Anchoring Systems 3.3.4 KWIK Bolt TZ Expansion Anchor Figure 2 — Interpolation of Minimum Edge Distance and Anchor Spacing Sdesign Cdr,sign I+ I– ■. Ina lel 1.0l - C at s >_ _ %1--1i/%l--ii a.min •7 ,-_ �'iJ 'ft•�_ •am` • ._• S di S at c Z =• • I.... o isoz=;e. � h?hmin •�l1!•� t l IC A r �Tali +r;�; Cdesign edge distance c ••.7 �. • ∎1 'fir �I i • •I..-...- .� 1►• ••• • • •'i •• • -.II: ,. • - •• •-•s Table 4 — Mean Axial Stiffness Values(1,000 lb/in.)for KWIK Bolt TZ Carbon and Stainless Steel Anchors in Normal-Weight Concrete' Concrete condition carbon steel KB-TZ,all diameters stainless steel KB-TZ,all diameters uncracked concrete 700 120 cracked concrete 500 90 1 Mean values shown.Actual stiffness may vary considerably depending on concrete strength,loading and geometry of application. - Figure 3 — Installation in Concrete over Metal Deck Floor Min.5/8"Typical 1 _ _ • t m •• a••• ••••4T•.'S.,- • Min.3000 •psi Normal or Sand- �•. �;• e- E • '.tea ■� i•MI•• Na '•�4M• Lightweight Concrete a. el. .�•. c. • • I:•_ 0 S••I�I'• • •�- I •11• I a••aI•:• • • Q - •••••1.1.••' 4% ••••"w • •••• ••1- •� •�• ;') ►♦ •„...• — 1♦ •n■i ..so WM Upper •0. ..ro • g ;0;' /i" 1q&.i. OE Flute �•e'�i.';'�.. WI .�•, i� �•��• (Valley) _••�:,�� Minimum -.. ..• _ a. No.20 Gauge _ Min.4-1/2" roe I Min.4 4-1/2' I Steel Deck Lower Flute —..-I Max. 1"Offset Typical (Ridge) 272 Hilti,Inc.(US)1-800-879-8000 I www.us.hilti.com I en espanol 1-800-879-5000 I Hilti(Canada)Corp.1-800-363-4458 I www.hilti.ca I Anchor Fastening Technical Guide 2011 Mechanical Anchoring Systems KWIK Bolt TZ Expansion Anchor 3.3.4 Allowable Stress Design Design values for use with allowable stress design(working stress design)shall be established as follows: R,ilOW Asc=ad where Rd =(1) R,represents the limiting design strength in tension(0 Nn)or shear((P V )as calculated according to ACI 318 D.4.1.1 and D.4.1.2 Table 5- KWIK Bolt TZ Carbon and Stainless Steel Allowable Nonseismic Tension(ASD), Normal-Weight Uncracked Concrete(Ib)''2'3,4'5'6 Concrete Compressive Strength Diameter he,(in.) f'c=2,500 psi f',=3,000 psi 1',=4,000 psi f',=6,000 psi Carbon Stainless Carbon Stainless Carbon Stainless Carbon Stainless Steel Steel Steel Steel Steel Steel Steel Steel 3/8 2 1,168 1,221 1,279 1,338 1,477 1,545 1,809 1,892 2 1,576 1,576 1,726 1,726 1,993 1,993 2,441 2,441 1/2 3-1/4 2,561 2,674 2,805 2,930 3,239 3,383 3,967 4,143 3-1/8 3,078 3,078 3,372 3,372 3,893 3,893 4,768 4,768 5/8 4 4,246 4,457 4,651 4,883 5,371 5,638 6,578 6,905 3-3/4 3,844 4,046 4,211 4,432 4,863 5,118 5,956 6,268 3/4 4-3/4 4,959 5,590 5,432 6,124 6,272 7,071 7,682 8,660 1 Single anchors with no edge or anchor spacing reductions and no supplementary reinforcement(Condition B). 2 Concrete determined to remain uncracked for the life of the anchorage. 3 Strength design load combinations from ACI 318 Section 9.2.ASD load combinations from ASCE 7-05,Section 2. 4 For strength design,the required strength=1.2D+ 1.6L.For ASD,the factored load= 1.OD+ 1.0L.Conversion factor a is calculated by dividing the ACI 318 required strength by the ASCE 7 factored load. 5 Assuming a 50%dead and 50% live contributions,a=(1.2•0.5+1.6.0.5)/(1.0•0.5+ 1.0•0.5)= 1.4 6 ASD=mcnncre,e•N, /a=0.65•N, /1.4 Table 6- KWIK Bolt TZ Carbon and Stainless Steel Allowable Nonseismic Tension(ASD), Normal-Weight Cracked Concrete(Ib)'•23,4,5 Concrete Compressive Strength Diameter hp,(in.) f =2500 psi f' =3000 psi f =4000 psi f',.=6000 psi Carbon Stainless Carbon Stainless Carbon Stainless Carbon Stainless Steel Steel Steel Steel Steel Steel , Steel Steel 3/8 2 1,054 1,086 1,155 1,190 1,333 1,374 1,633 1,683 2 1,116 1,476 1,223 1,617 1,412 1,868 1,729 2,287 1/2 , 3-1/4 2,282 2,312 2,500 2,533 2,886 2,886 3,535 3,582 • 5/8 3-1/8 2,180 2,180 2,388 2,388 2,758 2,925 3,377 3,377 4 3,157 2,711 3,458 2,970 3,994 3,430 4,891 4,201 3-3/4 2,866 3,765 3,139 4,125 3,625 4,763 i 4,440 5,833 3/4 4-3/4 4,085 4,085 4,475 4,475 5,168 5,168 6,329 6,329 1 Single anchors with no edge or anchor spacing reductions and no supplementary reinforcement(Condition B). 2 Strength design load combinations from ACI 318 Section 9.2.ASD load combinations from ASCE 7-05,Section 2. 3 For strength design,the required strength= 1.2D+ 16L.For ASD,the factored load=1.OD+ 1.OL.Conversion factor a is calculated by divid- ing the ACI 318 required strength by the ASCE 7 factored load. 4 Assuming a 50%dead and 50%live contributions,a=(1.2•0.5+1.6•0.5)/(1.0.0.5+ 1.0•0.5)= 1.4 5 ASD=mCOncrete•Nr c,/a=0.65•NP /1.4 HiIti,Inc.(US)1-800-879-8000 I www.us.hiiti.com I en espanol 1-800-879-5000 I Hilt(Canada)Corp.1-800-363-4458 I www.hilti.ca I Anchor Fastening Technical Guide 2011 273 Mechanical Anchoring Systems , 3.3.4 KWIK Bolt TZ Expansion Anchor Table 7 - KWIK Bolt TZ Carbon and Stainless Steel Allowable Nonseismic Shear(ASD),Steel(Ib)1'2'3'4'°'6 Allowable Steel Capacity,Shear Diameter(in.) Carbon Steel Stainless Steel 3/8 1,925 2,530 1/2 2,945 3,685 5/8 4,335 5,290 3/4 7,325 8,415 1 Single anchors with no edge or anchor spacing reductions and no supplementary reinforcement(Condition B). 2 Strength design load combinations from ACI 318 Section 9.2.ASD load combinations from ASCE 7-05,Section 2. 3 For strength design,the required strength=1.2D+ 1.6L.For ASD, the factored load- 1.OD+ 1.OL.Conversion factor a is calculated by dividing the ACI 318 required strength by the ASCE 7 factored load. 4 ASD=m51ee1•V,„/a=0.75-V,,/1.4 Table 8- KWIK Bolt TZ Carbon and Stainless Steel Allowable Seismic Tension(ASD), Normal-Weight Cracked Concrete(Ib)1'2,3,4,5 Concrete Compressive Strength' Diameter he,(in.) f'c= 2500 psi f = 3000 psi f'c= 4000 psi f = 6000 psi Carbon Stainless Carbon Stainless Carbon Stainless Carbon Stainless Steel Steel Steel Steel Steel Steel Steel Steel 3/8 2 774 882 937 966 1,082 1,115 1,225 1,366 2 906 1,198 992 1,312 1,146 1,515 1,297 1,856 1/2 3-1/4 1,852 1,876 2,028 2.055 2,342 2,373 2,651 2,907 5/8 3-1/8 1,769 1,769 1,938 1,938 2,238 2,238 2,533 2,741 4 2,562 2,200 2,806 2,410 3,240 2,783 3,668 3,408 3/4 3-3/4 2,325 3,055 2,547 3,347 2,941 3,865 3,330 4,733 4-3/4 3,315 3,315 3,632 3,632 4,193 4,193 4,747 5,136 1 Single anchors with no edge or anchor spacing reductions and no supplementary reinforcement(Condition B). 2 Strength design load combinations from ACI 318 Section 9.2.ASD load combinations from ASCE 7-05,Section 2. 3 For strength design,the required strength= 1.2D+ 1.0E.For ASD,the factored load = 1.OD+0.7E.Conversion factor a is calculated by dividing the ACI 318 required strength by the ASCE 7 factored load. 4 Assuming a 50%dead and 50%earthquake contributions,a=(1.2 0.5+ 1.0•0.5)/(1.0•0.5+0.7•0.5)= 1.294 5 ASD=cpCCrie,,•� 'N, /a=0.65.0.75•N /1.294 Table 9- KWIK Bolt TZ Carbon and Stainless Steel Allowable Seismic Shear(ASD),Steel(lb)1'2'3,4,5 Allowable Steel Capacity,Shear Diameter(in.) Carbon Steel Stainless Steel 3/8 1,565 1,915 1/2 2,390 2,590 5/8 3,515 4,005 3/4 5,945 6,375 1 Single anchors with no edge or anchor spacing reductions and no supplementary reinforcement(Condition B). 2 Strength design load combinations from ACI 318 Section 9.2. ASD load combinations from ASCE 7-05,Section 2. 3 For strength design,the required strength= 1.2D+ 1.0E.For ASD, the factored load= 1.0D+0.7E.Conversion factor a is calculated by dividing the ACI 318 required strength by the ASCE 7 factored load. 4 Assuming a 50%dead and 50%earthquake contributions, a=(1.2.0.5+ 1.0.0.5)/(1.0.0.5+0.7.0.5)= 1.294 5 Seismic ASD=cL,•(1) „•VeQ/a=0.75•0.75•Veq/1.294 274 Hitti,Inc.(US)1-800-879-8000 I www.us.hilti.com I en espanol 1-800-879-5000 I Hitti(Canada)Corp.1-800-363-4458 I www.hilti.ca I Anchor Fastening Technical Guide 2011 Mechanical Anchoring Systems KWIK Bolt TZ Expansion Anchor 3.3.4 Table 10-KWIK Bolt TZ Allowable Tension and Shear Loads(ASD),Installed into the Underside of Lightweight Concrete over Metal Deck Slab12 Nominal Embedment Tension Tension Shear Shear Anchor Depth he, Nonseismic3.45 Seismic76B Nonseismic34,6 Seismic'•e.'° Diameter (in.) (Ib) (Ib) (Ib) (Ib) 3/8 2 680 550 1,140 930 1/2 2 680 550 1,607 1,310 1/2 3 1/4 1,215 990 2,650 2,155 5/8 31/8 929 755 2,465 2,005 5/8 4 2,157 1,755 3,235 2,635 1 Single anchors with no edge or anchor spacing reductions and no supplementary reinforcement(Condition B). 2 Strength design load combinations from ACI 318 Section 9.2.ASD load combinations from ASCE 7-05,Section 2. 3 For strength design,the required strength= 1.2D+1-6L.For ASD,the factored load=1.0D+1.0L.Conversion factor a is calculated by dividing the ACI 318 required strength by the ASCE 7 factored load. 4 Assuming a 50%dead and 50%live contributions,a=(1.2 0.5+1.6•0.5)/(1.0•0.5+1.0•0.5)=1.4 5 ASD=mco nc 2t.•N9,dearCr/a=0.65•NP kr/1.4 6 ASD=�s�eei•V:.aeck/a=0.75•VCk/1.4 7 For strength design,the required strength=1.2D+1.0E.For ASD,the factored load=1.0D+0.7E.Conversion factor a is calculated by dividing the ACI 318 required strength by the ASCE 7 factored load. 8 Assuming a 50%dead and 50%earthquake contributions,a=(1.2•0.5+1.0•0.5)/(1.0•0.5+0.7•0.5)=1.294 9 ASD= rem•CD., •Np. .tt/a=0.65•0.75-Np.ae�k,or/1.294 10 10.Seismic ASD=mob•m •V:.e«k/a=0.75-0.75•Vs tleck/1.294 Table 11 - KWIK Bolt TZ Length Identification System Length ID marking on A B C D E F G H I J K L M N O P Q R S T U VW bolt head Length From 11/2 2 21/2 3 31/2 4 41/2 5 51/2 6 61/2 7 71/2 8 81/2 9 91/2 10 11 12 13 14 15 - of anchor, Up to but not 2 21/2 3 31/2 4 41/2 5 51/2 6 61/2 7 71/2 8 81/2 9 914 10 11 12 13 14 15 16 (i " n.) including Figure 4 - Bolt Head with Length Identification Mark and KWIK Bolt 17 Head Notch Embossment Hitti,Inc.(US)1-800-879-8000 I www.us.hilti.com I en espanol 1-800-879-5000 I Hilti(Canada)Corp.1-800-363-4458 I www.hiltl-ca I Anchor Fastening Technical Guide 2011 275 Mechanical Anchoring Systems 3.3.4 KWIK Bolt TZ Expansion Anchor TABLE 12- KWIK Bolt TZ Design Information in accordance with CSA A23.3-04 Annex D1 IN Design Symbol Units Nominal anchor diameter Ref. . Parameter 3/8 1/2 5/8 3/4 A23.3-04 Anchor O.D. d mm 9.5 12.7 15.9 19.1 ° (in.) 0.375 0.5 0.625 0.75 Effective min. h mm 51 51 83 79 102 95 121 e,mr embedment depth (in.) 2 2 3-1/4 3-1/8 4 3-3/4 4-3/4 Min.member thickness hm,° mm 102 127 102 152 152 203 127 152 203 152 203 203 Critical edge distance c= mm 111 102 140 114 191 152 165 222 171 254 203 229 Minimum edge distance Cac mm 64 70 60 92 83 121 105 fors> mm 127 146 146 156 149 267 225 s mm 64 70 60 89 76 127 102 _ Minimum anchor spacing for c> mm 92 105 89 121 108 241 197 Minimum hole depth h mm 67 67 102 98 121 117 146 in concrete Min.edge distance 1,2 or 3 1 D.5.4c Concrete material resis- ca 0.65 8.4.2 tance factor for concrete Steel embedment material resistance Os 0.85 8.4.3 factor for reinforcement Strength reduction factor for tension,steel failure R 0.80 D.5.4a modes Strength reduction factor for shear,steel R 0.75 D.5.4a failure modes Strength reduction R Cond.A 1.15 D.5.4c factor for tension, R Cond.B 1.00 D.5.4c concrete failure modes Strength reduction R Cond.A 1.15 D.5.4c factor for shear, concrete failure modes R Cond.B 1.00 D.5.4c Yield strength of MPa 690 585 585 585 anchor steel /r - Ultimate strength of MPa 862 731 731 731 anchor steel f Effective cross-sectional A mm2 33.6 65.0 104.6 152.8 area 5P Coefficient for factored concrete breakout k 7 D.6.2.6 resistance in tension Modification factor for resistance in tension to 1 q D.6.2.6 account for uncracked =N concrete Factored Steel N kN 19.7 32.3 52.0 76.0 D.6.1.2 Resistance in tension Factored Steel V kN 10.2 18.2 29.9 45.2 D.7.1.2c Resistance in shear sr Factored Steel Resistance in shear, Vs 5Qi5TiC kN 6.4 18.2 29.9 40.4• seismic Factored Steel Resistance in shear, Vs deck kN 6.0 8.5 14.0 13.0 17.1 Not Permitted concrete on metal deck Factored pullout resistance in 20 MPa Na�_ kN 7.8 N/A 17.1 N/A 28.4 25.7 33.2 D.6.3.2 uncracked concrete Factored pullout resistance in 20 MPa Np,_, kN 7.1 N/A 15.3 N/A N/A D.6.3.2 cracked concrete 20 MPa cracked N kN 4.5 4.5 8.1 6.2 14.4 Not Permitted D.6.3.2 cr concrete a,deck 1 For more information,please visit www.hilti.ca and navigate Service/Downloads,then Technical Downloads and open the Limit States Design Guide. 276 Hilti,Inc.(US)1-800-879-8000 I www.us.hilti.com I en espanol 1-800-879-5000 I Hilti(Canada)Corp.1-800-363-4458 I www.hilti.ca I Anchor Fastening Technical Guide 2011 • .. ._ ,. . Mechanical Anchoring Systems KWIK Bolt TZ Expansion Anchor 3.3.4 TABLE 13 - KWIK Bolt RTZ Design Information in accordance with CSA A23.3-04 Annex D1 lel Design Nominal anchor diameter Ref. Parameter Symbol Units 3/8 1/2 5/8 3/4 A23.3-04 . Anchor O.D. d mm 9.5 12.7 15.9 19.1 o (in.) 0.375 0.5 0.625 0.75 Effective min. mm 51 51 83 79 102 95 121 embedment depth he'.m°, (in.) 2 2 3-1/4 3-1/8 4 3-3/4 4-3/4 Min.member thickness hmp mm 102 127 102 152 152 203 127 152 203 152 203 203 Critical edge distance cao mm 111 98 140 114 191 152 178 225 152 254 178 229 c mm 64 73 54 83 60 108 102 Minimum edge distance fors> mm 127 146 133 140 140 254 216 srrsn mm 57 73 51 70 60 127 102 Minimum anchor spacing for c> mm 89 114 83 105 108 241 178 Minimum hole depth in h mm 67 67 102 98 121 117 146 concrete Anchor category 1,2 or 3 1 D.5.4c Concrete material resis- tance factor for concrete 0.65 8.4.2 Steel embedment mate- rial resistance factor for cps 0.85 8.4.3 reinforcement Strength reduction factor for tension,steel failure R 0.80 D.5.4a modes Strength reduction factor for shear,steel R 0.75 D.5.4a failure modes Strength reduction R Cond.A 1.15 D.5.4c factor for tension, R Cond.B 1.00 D.5.4c concrete failure modes Strength reduction factor R Cond.A 1.15 D.5.4c for shear,concrete failure modes R Cond. B 1.00 D.5.4c _ Yield strength of anchor MPa 634 634 634 525 steel f Ultimate strength of MPa 793 793 793 700 PI anchor steel f Effective cross-sectional A mm2 33.6 65.0 104.6 152.8 area 5e Coefficient for factored concrete breakout k 7 10 7 7 10 7 D.6.2.6 resistance in tension Modification factor for resistance in tension to 1.40 1.00 1.40 1.40 1.00 1.40 D.6.2.6 account for uncracked concrete Factored Steel N kN 18.1 35.1 56.4 72.7 D.6.1.2 Resistance in tension Factored Steel V kN 13.8 19.5 33.6 56.9 D.7.1.2c Resistance in shear s Factored Steel Resistance in shear, Vs,sewers kN 8.0 19.5 33.6 41.4 seismic Factored pullout resistance in 20 MPa N Pr. kN 8.2 N/A 17.9 N/A N/A 37.4 D.6.3.2 Cr uncracked concrete Factored pullout resistance in 20 MPa Np,.or kN 7.3 9.9 N/A N/A 18.1 25.2 N/A D.6.3.2 cracked concrete - 1 For more information,please visit www.hilti.ca and navigate Service/Downloads,then Technical Downloads and open the Limit States Design Guide. HMI,Inc.(US)1-800-879-8000 I www.us.h8tl.com I en espanol 1-800-879-5000 I Hilti(Canada)Corp.1-800-363-4458 I www.hilti.ca I Anchor Fastening Technical Guide 2011 277 Mechanical Anchoring Systems - - - .. 111.4111.11Mit 3.3.4 KWIK Bolt TZ Expansion Anchor 3.3.4.4 KWIK Bolt TZ Anchor Installation Instructions into normal-weight and lightweight concrete ,.;.; .. .. % v al.0 . ,`,114,....,-.....r_. ,detk P.,. Ise.v.....-.1.4,11.■,:GT Ath.b,I:*! G ji ...,.:. „...„.. 410.0:it'• . louvri .\.1k:•■ ■-• 6-4111p . • • •0 ,.i dii if 1. Hammer drill a hole to the same 2. Clean hole. nominal diameter as the KWIK Bolt TZ. The minimum hole depth must conform with the instructions for use adhered to the packaging and the ICC-ES evaluation report, if applicable. The fixture may be used as a drilling template to ensure proper anchor location. +''f' •lb:•"%: �-7' wt,'•■t.••t.1 4a—. . •ir,"4- .-•-• ... •'• ice• _ 4 :• ice•0:a► 4 • tea►.'.• ••11111 �� .�'....•..•�. ..�,I •4Mb0,.r •"Ills 4'.: ••.-••-.••..+.. `I 6C 1i�6:/• % • % 1 ��:/1-•-.•.•� ... 1 X11/ AiIt_a I4. A _• ∎∎V 3. Drive the KWIK Bolt TZ into 4. Tighten the nut to the the hole using a hammer. The installation torque. anchor must be driven until at least 4 threads are below the surface of the fixture. 278 Hilti,Inc.(US)1-800-879-8000 I www.us.hilti.com I en espanol 1-800-879-5000 I HIM(Canada)Corp.1.800.363-4458 I www.hlltl.oa I Anchor Fastening Technical Guide 2011 Mechanical Anchoring Systems KWIK Bolt TZ Expansion Anchor 3.3.4 3.3.4.5 KWIK Bolt TZ Anchor Ordering Information Description Length(in.) Threaded Length(in.) Box Quantity KB-TZ 318x3 MINEINNOMMIONSOMOS l 7/8 50 . KB-TZ 3/8x3-3/4 3-3/4 1-5/8 50 KB-TZ 3/8x5 EVERMEN., 5 1111.11.Mien 2-7/8 50 KB-TZ 1/2x3-3/4 3-3/4 1-5/8 20 KB-TZ 1/2x4-1/2 MitiagiMMIC 4-1/2 magysaimme 2-3/8 20 KB-TZ 1/2x5-1/2 5-1/2 3-3/8 20 KB-TZ 1/2x7 if XI;. -.1i". +.. * 7 4-7/8 20 KB-TZ 5/8x4-3/4 4-3/4 1-1/2 15 KB-TZ 5/8x6 6 2-3/4 15 MUM KB-TZ 5/8x8-1/2 8-1/2 5-1/4 15 KB-TZ 5/8x10 10 War 6-3/4 15 KB-TZ 3/4x5-1/2 5 1/2 1-1/2 10 KB-TZ 3/4x8 8 4 10 KB-TZ 3/4x10 10 6 10 KB-TZ SS304 3/8x3 3 7/8 50 KB-TZ SS304 3/8x3-3/4 3-3/4 1-5/8 50 KB-TZ SS304 3/8x5 5 2-7/8 50 KB-TZ SS304 1/2x3-3/4 3-3/4 1-5/8 20 KB-TZ SS304 1/2x4-1/2 4-1/2 2-3/8 20 KB-TZ SS304 1/2x5-1/2 5-1/2 3-3/8 20 KB-TZ SS304 1/2x7 7R+x `',. 4-7/8 20 KB-TZ SS304 5/8x4-3/4 4-3/4 1-1/2 15 KB-TZ SS304 5/8x6 4044-.40.141t, 6 "lam, 2-3/4 atanaga 15 KB-TZ SS304 5/8x8-1/2 8-1/2 5-1/4 15 KB-TZ SS304 5/8x10` 10 anallite'S 6-3/4 latillanit 15 KB-TZ SS304 3/4x5.1/2 5-1/2 1-1/2 10 KB-TZ SS304 3/4x8 • ; - , -8 INIMIMIROSSI 4 10 KB-TZ SS304 3/4x10 10 6 10 KB-TZ SS316 3/8x3 ° -=rr,,.-",.-- ''' ```d ;3 anentrigk 7/8 4`4- '•, 50 KB-TZ SS316 3/8x3-3/4 3-3/4 1-5/8 50 KB TZ SS316 1/2x3-3/4 ' atiy. 3-3/4 y 1-5/8 aganant. 20 KB-TZ SS316 1/2x4-1/2 4-1/2 2-3/8 20 KB-TZ SS316 1/2x5-1/2 5-1/2 inessit. 3-3/8 MOIRMINIM 20 KB-TZ SS316 5/8x4-3/4 4-3/4 1-1/2 15 KB-TZ SS316 5/8x6 inalar 6 --11111r - 2-3/4 Y- 15 KB-TZ SS316 3/4x5-1/2 5-1/2 1-1/2 10 KB-TZ SS316 3/4x10 111PROMONNIIIMEIMPI 10 1111MINIPPRIPPY 6 iimmomppi 10 Hilti,Inc.(US)1-800-879-8000 I www.us.hitti.com I en espanol 1-800-879-5000 I Hilti(Canada)Corp.1-800-363-4458 I www.hllti.ca I Anchor Fastening Technical Guide 2011 279 SICC EVALUATION SERVICE Most Widely Accepted and Trusted ICC-ES Evaluation Report ESR-1917 • Reissued May 1, 2013 This report is subject to renewal May 1, 2015. www.icc-es.org I (800)423-6587 I (562) 699-0543 A Subsidiary of the International Code Council® DIVISION: 03 00 00—CONCRETE Section1908 of the 2012 IBC and Section 1911 of the 2009 Section: 03 16 00—Concrete Anchors and 2006 IBC. The anchors may also be used where an engineered design is submitted in accordance with Section REPORT HOLDER: R301.1.3 of the IRC. HILTI, INC. 3.0 DESCRIPTION 5400 SOUTH 122ND EAST AVENUE 3.1 KB-TZ: TULSA,OKLAHOMA 74146 KB-TZ anchors are torque-controlled, mechanical (800)879-8000 expansion anchors. KB-TZ anchors consist of a stud www.us.hilti.com (anchor body), wedge (expansion elements), nut, and HiltiTechEnqaus.hilti.com washer. The anchor (carbon steel version) is illustrated in Figure 1. The stud is manufactured from carbon steel or EVALUATION SUBJECT: AISI Type 304 or Type 316 stainless steel materials. Carbon steel KB-TZ anchors have a minimum 5 pm HILTI KWIK BOLT TZ CARBON AND STAINLESS STEEL (0.0002 inch)zinc plating. The expansion elements for the ANCHORS IN CRACKED AND UNCRACKED CONCRETE carbon and stainless steel KB-TZ anchors are fabricated from Type 316 stainless steel. The hex nut for carbon steel 1.0 EVALUATION SCOPE conforms to ASTM A563-04, Grade A, and the hex nut for Compliance with the following codes: stainless steel conforms to ASTM F594. • 2012, 2009 and 2006 International Building Code®(IBC) The anchor body is comprised of a high-strength rod • 2012, 2009 and 2006 International Residential Code threaded at one end and a tapered mandrel at the other (IRC) end. The tapered mandrel is enclosed by a three-section expansion element which freely moves around the Property evaluated: mandrel. The expansion element movement is restrained Structural by the mandrel taper and by a collar. The anchor is installed in a predrilled hole with a hammer. When torque 2.0 USES is applied to the nut of the installed anchor, the mandrel is The Hilti Kwik Bolt TZ anchor (KB-TZ) is used to resist drawn into the expansion element, which is in turn static, wind, and seismic tension and shear loads in expanded against the wall of the drilled hole. cracked and uncracked normal-weight concrete and sand- 3.2 Concrete: lightweight concrete having a specified compressive strength, fc, of 2,500 psi to 8,500 psi (17.2 MPa to 58.6 Normal-weight and sand-lightweight concrete must MPa). conform to Sections 1903 and 1905 of the IBC. The 3/8-inch- and 1/2-inch-diameter (9.5 mm and 12.7 3.3 Steel Deck Panels: mm) carbon steel KB-TZ anchors may be installed in the Steel deck panels must be in accordance with the topside of cracked and uncracked normal-weight or sand- configuration in Figures 5A, 5B and 5C and have a lightweight concrete-filled steel deck having a minimum minimum base steel thickness of 0.035 inch (0.899mm). member thickness, hmin,deck, as noted in Table 6 of this Steel must comply with ASTM A653/A653M SS Grade 33 report and a specified compressive strength, fc, of 3,000 and have a minimum yield strength of 33,000 psi (228 psi to 8,500 psi (20.7 MPa to 58.6 MPa). MPa). The 3/8-inch-, 1/2-inch- and 5/8-inch-diameter (9.5 mm, 4.0 DESIGN AND INSTALLATION 12.7 mm and 15.9 mm) carbon steel KB-TZ anchors may be installed in the soffit of cracked and uncracked normal- 4.1 Strength Design: weight or sand-lightweight concrete over metal deck 4.1.1 General: Design strength of anchors complying having a minimum specified compressive strength, fc, of with the 2012 IBC as well as Section R301.1.3 of the 2012 3,000 psi(20.7 MPa). IRC, must be determined in accordance with ACI 318-11 The anchoring system complies with anchors as Appendix D and this report. described in Section 1909 of the 2012 IBC and Section Design strength of anchors complying with the 2009 IBC 1912 of the 2009 and 2006 IBC. The anchoring system is and Section R301.1.3 of the 2009 IRC must be determined • an alternative to cast-in-place anchors described in in accordance with ACI 318-08 Appendix D and this report. ICC-ES Evaluation Reports are not to he construed as representing aesthetics or any other attributes not specifically addressed,nor are they to be construed i.__ as an endorsement o f the subject of the report or a recommendation for its use.There is no warranty by ICC Evaluation Service,LLC,express or implied,as to any finding or other matter in this report,or as to any product covered by the report. gir= =2S Copyright©2013 Page 1 of 12 ESR-1917 I Most Widely Accepted and Trusted Page 2 of 12 Design strength of anchors complying with the 2006 IBC and Section R301.1.3 of the 2006 IRC must be in NP.f' =Np,uncr 17 Z (N, MPa) accordance with ACI 318-05 Appendix D and this report. Where values for Np,c,or Np,,,,,c,are not provided in Table Design parameters provided in Tables 3, 4, 5 and 6 of 3 or Table 4, the pullout strength in tension need not be this report are based on the 2012 IBC (ACI 318-11)unless evaluated. noted otherwise in Sections 4.1.1 through 4.1.12.The strength design of anchors must comply with ACI 318 The nominal pullout strength in cracked concrete of the D.4.1, except as required in ACI 318 D.3.3. carbon steel KB-TZ installed in the soffit of sand- lightweight or normal-weight concrete on steel deck floor Strength reduction factors, 0, as given in ACI 318-11 and roof assemblies, as shown in Figures 5A and 5B, is D.4.3 and noted in Tables 3 and 4 of this report, must be given in Table 5. In accordance with ACI 318 D.5.3.2, the used for load combinations calculated in accordance with nominal pullout strength in cracked concrete must be Section 1605.2 of the IBC and Section 9.2 of ACI 318. calculated in accordance with Eq-1, whereby the value of Strength reduction factors, p, as given in ACI 318-11 D.4.4 Np.deck,c,must be substituted for Np,c,and the value of 3,000 must be used for load combinations calculated in psi (20.7 MPa) must be substituted for the value of 2,500 accordance with ACI 318 Appendix C. An example psi (17.2 MPa) in the denominator. In regions where calculation in accordance with the 2012 IBC is provided in analysis indicates no cracking in accordance with ACI 318 Figure 7. The value of f, used in the calculations must be 5.3.6, the nominal strength in uncracked concrete must be limited to a maximum of 8,000 psi (55.2 MPa), in calculated according to Eq-2, whereby the value of accordance with ACI 318-11 D.3.7. Np,deck,unc, must be substituted for Np,, c,and the value of 4.1.2 Requirements for Static Steel Strength in 3,000 psi (20.7 MPa) must be substituted for the value of Tension: The nominal static steel strength, N,a of a single 2,500 psi (17.2 MPa) in the denominator. The use of anchor in tension must be calculated in accordance with stainless steel KB-TZ anchors installed in the soffit of ACI 318 D.5.1.2. The resulting Ma values are provided in concrete on steel deck assemblies is beyond the scope of Tables 3 and 4 of this report. Strength reduction factors o this report. corresponding to ductile steel elements may be used. 4.1.5 Requirements for Static Steel Strength in Shear: 4.1.3 Requirements for Static Concrete Breakout The nominal steel strength in shear, V,a of a single anchor Strength in Tension: The nominal concrete breakout in accordance with ACI 318 0.6.1.2 is given in Table 3 and strength of a single anchor or group of anchors in tension, Table 4 of this report and must be used in lieu of the Nch or N,h9, respectively, must be calculated in accordance values derived by calculation from ACI 318-11, Eq. D-29. with ACI 318 D.5.2, with modifications as described in this The shear strength Vsa,deck of the carbon-steel KB-TZ as section. The basic concrete breakout strength in tension, governed by steel failure of the KB-TZ installed in the soffit Nb, must be calculated in accordance with ACI 318 of sand-lightweight or normal-weight concrete on steel D.5.2.2. using the values of he,and kc, as given in Tables deck floor and roof assemblies, as shown in Figures 5A 3, 4 and 6. The nominal concrete breakout strength in and 5B. is given in Table 5. tension in regions where analysis indicates no cracking in accordance with ACI 318 D.5.2.6 must be calculated with 4.1.6 Requirements for Static Concrete Breakout kunc,as given in Tables 3 and 4 and with (Pc.N= 1.0. Strength in Shear: The nominal concrete breakout strength of a single anchor or group of anchors in shear, For carbon steel KB-TZ anchors installed in the soffit of Vcb or Vcbg, respectively, must be calculated in accordance sand-lightweight or normal-weight concrete on steel deck with ACI 318 D.6.2, with modifications as described in this floor and roof assemblies, as shown in Figures 5A and 5B, section. The basic concrete breakout strength, Vb,must be calculation of the concrete breakout strength is not calculated in accordance with ACI 318 D.6.2.2 based on required. the values provided in Tables 3 and 4.The value of le used 4.1.4 Requirements for Static Pullout Strength in in ACI 318 Eq. D-24 must be taken as no greater than the Tension: The nominal pullout strength of a single anchor lesser of he or 8da. in accordance with ACI 318 D.5.3.1 and D.5.3.2 in cracked For carbon steel KB-TZ anchors installed in the soffit of and uncracked concrete, Np,c,and Np,,,,,c,, respectively, is given in Tables 3 and 4. For all design cases 4,,,p= 1.0. In sand-lightweight or normal-weight concrete on steel deck accordance with ACI 318 D.5.3, the nominal pullout floor and roof assemblies, as shown in Figures 5A and 5B, strength in cracked concrete may be calculated in calculation of the concrete breakout strength in shear is not accordance with the following equation: required. 4.1.7 Requirements for Static Concrete Pryout Np,1 = Np,cr 2,soo (lb, psi) (Eq-1) Strength in Shear: The nominal concrete pryout strength of a single anchor or group of anchors, Vcp or VcP9, respectively, must be calculated in accordance with ACI N N j` (N, MPa) 318 D.6.3, modified by using the value of kg, provided in P,f' — p,cr 77.2 , MPa Tables 3 and 4 of this report and the value of kb or Ncbg as In regions where analysis indicates no cracking in calculated in Section 4.1.3 of this report. accordance with ACI 318 D.5.3.6, the nominal pullout For carbon steel KB-TZ anchors installed in the soffit of strength in tension may be calculated in accordance with the following equation: sand-lightweight or normal-weight concrete over profile steel deck floor and roof assemblies, as shown in Figures 5A and 5B, calculation of the concrete pry-out strength in Np I, = Np,uncr Jz soo (Ib, psi) (Eq-2) accordance with ACI 318 D.6.3 is not required. ESR-1917 I Most Widely Accepted and Trusted Page 3 of 12 4.1.8 Requirements for Seismic Design: installed in accordance with Figure 5A or 5B and shall 4.1.8.1 General: For load combinations including have an axial spacing along the flute equal to the greater seismic, the design must be performed in accordance with of 3he/or 1.5 times the flute width. ACI 318 D.3.3. For the 2012 IBC, Section 1905.1.9 shall 4.1.11 Requirements for Critical Edge Distance: In be omitted. Modifications to ACI 318 D.3.3 shall be applied applications where c< cac and supplemental reinforcement under Section 1908.1.9 of the 2009 IBC, or Section to control splitting of the concrete is not present, the 1908.1.16 of the 2006 IBC. The nominal steel strength and concrete breakout strength in tension for uncracked the nominal concrete breakout strength for anchors in concrete, calculated in accordance with ACI 318 D.5.2, tension, and the nominal concrete breakout strength and must be further multiplied by the factor 1PcpN as given by pryout strength for anchors in shear, must be calculated in Eq-1: accordance with ACI 318 D.5 and D.6, respectively, taking into account the corresponding values given in Tables 3, 4 iycpN = (Eq-3) and 5 of this report. The anchors may be installed in Seismic Design Categories A through F of the IBC. The whereby the factor (Pcp N need not be taken as less anchors comply with ACI 318 D.1 as ductile steel elements 1.5h,,, and must be designed in accordance with ACI 318-11 than . For all other cases, Wop,N = 1.0. In lieu of D.3.3.4, D.3.3.5, D.3.3.6 or D.3.3.7, ACI 318-08 D.3.3.4, using ACI 318 D.8.6, values of cac must comply with D.3.3.5 or D.3.3.6, or ACI 318-05 D.3.3.4 or D.3.3.5. as Table 3 or Table 4 and values of cac,deck must comply with applicable. Table 6. 4.1.8.2 Seismic Tension: The nominal steel strength 4.1.12 Sand-lightweight Concrete: For ACI 318-11 and and nominal concrete breakout strength for anchors in 318-08, when anchors are used in sand-lightweight tension must be calculated in accordance with ACI 318 concrete, the modification factor Aa or A, respectively, for D.5.1 and ACI 318 D.5.2, as described in Sections 4.1.2 concrete breakout strength must be taken as 0.6 in lieu of and 4.1.3 of this report. In accordance with ACI 318 ACI 318-11 D.3.6 (2012 IBC) or ACI 318-08 D.3.4 (2009 D.5.3.2, the appropriate pullout strength in tension for IBC). In addition the pullout strength N �, Np,uncr and Np,eq seismic loads, Np,eq, described in Table 4 or Np deck cr must be multiplied by 0.6, as applicable. described in Table 5 must be used in lieu of Np, as applicable. The value of Np,eq or Np deck cr may be adjusted For ACI 318-05, the values Nb. Np or, Np.,,,,cr, Np,eq and Vb by calculation for concrete strength in accordance with determined in accordance with this report must be Eq-1 and Section 4.1.4 whereby the value of Np,deck,cr must multiplied by 0.6, in lieu of ACI 318 D.3.4. be substituted for Np,er and the value of 3,000 psi (20.7 MPa) must be substituted for the value of 2,500 psi For carbon steel KB-TZ anchors installed in the soffit of (17.2 MPa) in the denominator. If no values for Np,eq are sand-lightweight concrete-filled steel deck and floor and given in Table 3 or Table 4, the static design strength roof assemblies, this reduction is not required. Values are values govern. presented in Table 5 and installation details are show in Figures 5A and 5B. 4.1.8.3 Seismic Shear: The nominal concrete breakout strength and pryout strength in shear must be calculated in 4.2 Allowable Stress Design (ASD): accordance with ACI 318 D.6.2 and D.6.3, as described in Sections 4.1.6 and 4.1.7 of this report. In accordance with 4.2.1 General: Design values for use with allowable ACI 318 D.6.1.2, the appropriate value for nominal steel stress design (working stress design) load combinations strength for seismic loads, Vsa,eq described in Table 3 and calculated in accordance with Section 1605.3 of the IBC, Table 4 or V a deck described in Table 5 must be used in lieu must be established as follows: of Vsa,as applicable. Tallowable,ASD = oNn 4.1.9 Requirements for Interaction of Tensile and a Shear Forces: For anchors or groups of anchors that are subject to the effects of combined tension and shear �v forces, the design must be performed in accordance with Vallowable.ASD - a ACI 318 D.7. a 4.1.10 Requirements for Minimum Member Thickness, where: Minimum Anchor Spacing and Minimum Edge Distance: In lieu of ACI 318 D.8.1 and D.8.3,values of Sr, Tanowab,e,ASD = Allowable tension load (lbf or kN). and cm;c as given in Tables 3 and 4 of this report must be Va,lowable,ASD = Allowable shear load (lbf or kN). used. In lieu of ACI 318 D.8.5, minimum member thicknesses hm, as given in Tables 3 and 4 of this report ON„ = Lowest design strength of an anchor must be used. Additional combinations for minimum edge or anchor group in tension as distance, cm,n, and spacing, saw may be derived by linear determined in accordance with ACI interpolation between the given boundary values as 318 D.4.1, and 2009 IBC Section described in Figure 4. 1908.1.9 or 2006 IBC Section For carbon steel KB-TZ anchors installed on the top of 1908.1.16, as applicable (lbf or N). normal-weight or sand-lightweight concrete over profile 014 = Lowest design strength of an anchor steel deck floor and roof assemblies, the anchor must be or anchor group in shear as • installed in accordance with Table 6 and Figure 5C. determined in accordance with ACI For carbon steel KB-TZ anchors installed in the soffit of 318 D.4.1, and 2009 IBC Section sand-lightweight or normal-weight concrete over profile 1908.1.9 or 2006 IBC Section steel deck floor and roof assemblies, the anchors must be 1908.1.16,as applicable(lbf or N). ESR-1917 I Most Widely Accepted and Trusted Page 4 of 12 = Conversion factor calculated as a 5.1 Anchor sizes, dimensions, minimum embedment weighted average of the load factors depths and other installation parameters are as set for the controlling load combination. In forth in this report. addition, a must include all applicable 5.2 The anchors must be installed in accordance with the factors to account for nonductile manufacturer's published instructions and this report. failure modes and required over- In case of conflict,this report governs. strength. 5.3 Anchors must be limited to use in cracked and The requirements for member thickness, edge distance uncracked normal-weight concrete and sand and spacing, described in this report, must apply. An lightweight concrete having a specified compressive example of allowable stress design values for illustrative strength, fc, of 2,500 psi to 8,500 psi (17.2 MPa to purposes in shown in Table 7. 58.6 MPa), and cracked and uncracked normal- 4.2.2 Interaction of Tensile and Shear Forces: The weight or sand-lightweight concrete over metal deck interaction must be calculated and consistent with ACI 318 having a minimum specified compressive strength, fC, D.7 as follows: of 3,000 psi(20.7 MPa). For shear loads Vapphed<_ 0.2 Vallowable,ASD, the full allowable 5.4 The values of used for calculation purposes must load in tension must be permitted. not exceed 8,000 psi (55.1 MPa). For tension loads Tapplied<O.2Taiowable.ASD,the full allowable 5.5 Strength design values must be established in load in shear must be permitted. accordance with Section 4.1 of this report. For all other cases: 5.6 Allowable design values are established in Tayyuec Vaypllea accordance with Section 4.2. Tallowable,ASD+Vallowable,ASD �.2 (Eq-4) 5.7 Anchor spacing and edge distance as well as 4.3 Installation: minimum member thickness must comply with Tables 3,4,and 6, and Figures 4, 5A, 5B, and 5C. Installation parameters are provided in Tables 1 and 6 and 5.8 Prior to installation, calculations and details Figures 2, 5A, 5B and 5C. Anchor locations must comply demonstrating compliance with this report must be with this report and plans and specifications approved by the code official. The Hilti KB-TZ must be installed in submitted to the code official. The calculations and accordance with manufacturer's published instructions and details must be prepared by a registered design this report. In case of conflict, this report governs. Anchors professional where required by the statutes of the must be installed in holes drilled into the concrete using jurisdiction in which the project is to be constructed. carbide-tipped masonry drill bits complying with ANSI 5.9 Since an ICC-ES acceptance criteria for evaluating B212.15-1994. The minimum drilled hole depth is given in data to determine the performance of expansion Table 1. Prior to installation, dust and debris must be anchors subjected to fatigue or shock loading is removed from the drilled hole to enable installation to the unavailable at this time, the use of these anchors stated embedment depth. The anchor must be hammered under such conditions is beyond the scope of this into the predrilled hole until h„o,,, is achieved. The nut must report. be tightened against the washer until the torque values 5.10 Anchors may be installed in regions of concrete specified in Table 1 are achieved. For installation in the where cracking has occurred or where analysis soffit of concrete on steel deck assemblies, the hole indicates cracking may occur (ft > 14, subject to the diameter in the steel deck not exceed the diameter of the conditions of this report. hole in the concrete by more than 1/8 inch (3.2 mm). For member thickness and edge distance restrictions for 5.11 Anchors may be used to resist short-term loading due installations into the soffit of concrete on steel deck to wind or seismic forces in locations designated as assemblies, see Figures 5A and 5B. Seismic Design Categories A through F of the IBC, 4.4 Special Inspection: subject to the conditions of this report. Periodic special inspection is required in accordance with 5.12 Where not otherwise prohibited in the code, KB-TZ Section 1705.1.1 and Table 1705.3 of the 2012 IBC, or anchors are permitted for use with fire-resistance Section 1704.15 of the 2009 IBC and Table 1704.4 or rated construction provided that at least one of the Section 1704.13 of the 2006 IBC, as applicable. The following conditions is fulfilled: special inspector must make periodic inspections during • Anchors are used to resist wind or seismic forces anchor installation to verify anchor type, anchor only. dimensions, concrete type, concrete compressive strength, Anchors that support a fire-resistance-rated •anchor spacing, edge distances, concrete member envelope or a fire- resistance-rated membrane thickness, tightening torque, hole dimensions, anchor are protected by approved fire resistance rated embedment and adherence to the manufacturer's printed materials, or have been evaluated for resistance installation instructions. The special inspector must be to fire exposure in accordance with recognized present as often as required in accordance with the standards. "statement of special inspection." Under the IBC, additional requirements as set forth in Sections 1705, 1706 and 1707 • Anchors are used to support nonstructural must be observed,where applicable. elements. 5.0 CONDITIONS OF USE 5.13 Use of zinc-coated carbon steel anchors is limited to The Hilti KB-TZ anchors described in this report comply dry, interior locations. with the codes listed in Section 1.0 of this report, subject to 5.14 Special inspection must be provided in accordance the following conditions: with Section 4.4. ESR-1917 I Most Widely Accepted and Trusted Page 5 of 12 ' 5.15 Anchors are manufactured by Hilti AG under an 7.0 IDENTIFICATION approved quality control program with inspections by The anchors are identified by packaging labeled with the UL LLC (AA-668). manufacturer's name (Hilti, Inc.) and contact information, 6.0 EVIDENCE SUBMITTED anchor name, anchor size, evaluation report number 6.1 Data in accordance with the ICC-ES Acceptance (ICC-ES ESR-1917), and the name of the inspection agency (UL LLC). The anchors have the letters KB-TZ Criteria for Mechanical Anchors in Concrete Elements (AC193),dated March 2012 (ACI 355.2-07). embossed on the anchor stud and four notches embossed into the anchor head, and these are visible after installation 6.2 Quality control documentation. for verification. TABLE 1—SETTING INFORMATION(CARBON STEEL AND STAINLESS STEEL ANCHORS) SETTING Nominal anchor diameter(in.) INFORMATION Symbol Units 3/8 1/2 5/8 3/4 do In. 0.375 0.5 0.625 0.75 Anchor 0.D. (d02 (mm) (9.5) (12.7) (15.9) (19.1) Nominal bit diameter do;, In. 3/8 1/2 5/8 3/4 Effective min. In. 2 2 3-1/4 3-1/8 4 3-3/4 4-3/4 embedment her (mm) (51) (51) (83) (79) (102) (95) (121) Nominal in. 2-5/16 2-3/8 3-5/8 3-9/16 4-7/16 4-5/16 5-9/16 embedment h"°'" (mm) (59) (60) (91) (91) (113) (110) (142) In. 2-5/8 2-5/8 4 3-3/4 4-3/4 4-1/2 5-3/4 Min.hole depth ho (mm) (67) (67) (102) (95) (121) (114) (146) Min.thickness of In. 1/4 3/4 1/4 3/8 3/4 1/8 1 5/8 fastened art' "" P (mm) (6) (19) (6) (9) (t9) (3) (41) Required ft-lb 25 40 60 110 Installation torque 7,,s(q (Nm) (34) (54) (81) (149) Min.dia.of hole in In. 7/16 9/16 11/16 13/16 fastened part dh (mm) (11.1) (14.3) (17.5) (20.6) Standard anchor In. 3 3-3/4 5 3-3/4 4-1/2 5-1/2 7 4-3/4 6 8-1/2 10 5-1/2 8 10 lengths tench (mm) (76) (95) (127) (95) (114) (140) (178) (121) (152) (216) (254) (140) (203) (254) Threaded length In. 7/8 1-5/8 2-7/8 1-5/8 2-3/8 3-3/8 4-7/8 1-1/2 2-3/4 5-1/4 6-3/4 1-1/2 4 6 (incl.dog point) thfead (mm) (22) (41) (73) (41) (60) (86) (124) (38) (70) (133) (171) (38) (102) (152) In. 2-1/8 2-1/8 3-1/4 4 Unthreaded length 1,"u,. (mm) (54) (54) (83) (102) 1The minimum thickness of the fastened part is based on use of the anchor at minimum embedment and is controlled by the length of thread. If a thinner fastening thickness is required,increase the anchor embedment to suit. 2The notation in parenthesis is for the 2006 IBC. ESR-1917 I Most Widely Accepted and Trusted Page 6 of 12 UNC thread mandrel '1!!.110.1 1''1 i' !'' " �'i`" -- to dog point expansion collar hex nut element bolt washer FIGURE 1—HILTI CARBON STEEL KWIK BOLT TZ(KB-TZ) Ii, j (thread dh _ _ h. 1 (anch tunthr da her hnom ho � 1 FIGURE 2—KB-TZ INSTALLED TABLE 2—LENGTH IDENTIFICATION SYSTEM(CARBON STEEL AND STAINLESS STEEL ANCHORS) Length ID marking A B C D E F G H I J K L M N O P Q ' R S T U V W on bolt head Length of From 1% 2 2% 3 314 4 4'A 5 5% 6 6% 7 7 Y: 8 8% 9 9% 10 11 12 13 14 15 anchor, Up to but tench not 2 2Y 3 3% 4 4% 5 5% 6 6% 7 7% 8 8% 9 9% 10 11 12 13 14 15 16 (inches) including jjjlll FIGURE 3—BOLT HEAD WITH LENGTH IDENTIFICATION CODE AND KB-TZ HEAD NOTCH EMBOSSMENT ESR-1917 I Most Widely Accepted and Trusted Page 7 of 12 TABLE 3-DESIGN INFORMATION,CARBON STEEL KB-TZ Nominal anchor diameter DESIGN INFORMATION Symbol Units 3/8 1/2 5/8 3/4 Anchor O.D. da(do) in. 0.375 0.5 0.625 0.75 . (mm) (9.5) (12.7) _(15.9) (19.1)_ Effective min.embedment' ha, in. 2 2 3-1/4 3-1/8 4 3-3/4 4-3/4 (mm) (51) (51) (83) (79) (102) (95) (121) Min.member thickness2 /7,,,,,, in. 4 5 4 6 6 8 5 6 8 6 8 8 (mm) (102) (127) (102) (152) (152) (203) (127) (152), (203) (152) (203) (203) Critical edge distance ca in. 4-3/8 4 5-1/2 4-1/2 7-1/2 6 6-1/2 8-3/4 6-3/4 10 8 9 (mm) (111) (102) (140) (114) (191) (152) (165) (222) (171) (254) (203) (229) In. 2-1/2 2-3/4 2-3/8 3-5/8 3-1/4 4-3/4 4-1/8 c„,,, (mm) (64) (70) (60) 92 Min.edge distance } ( ) (83) (121) (105) for s z in. 5 5-3/4 5-314 6-1/8 5-7/8 10-1/2 8-7/8 (mm) (127) (146) (146) (156) (149) (267) (225) in. 2-1/2 2-3/4 2-3/8 3-1/2 3 5 4 Min.anchor spacing sr„,, (mm) (64) (70) (60) (89) (76) (127) (102) for c 2 In. 3-5/8 4-1/8 3-1/2 4-3/4 4-1/4 9-1/2 7-3/4 (mm) (92) (105) (89) (121) (108) (241) (197) Min.hole depth in concrete ho in. 2-5/8 2-5/8 4 3-3/4 4-3/4 4-1/2 5-3/4 (mm) (67) (67) (102) (98) (121) (117) (146) Min.specified yield strength f), lb/in 100,000 84,800 84,800 84,800 (N/mm2) (690) (585) (585) (585) Min.specified ult.strength f„, lb/in2 125,000 106,000 106,000 106,000 (N/mm2) (862) (731) (731) (731) Effective tensile stress area Ase.N In�Z 0.052 0.101 0.162 0.237 (mm) (33.6) (65.0) (104.6) (152.8) Steel strength in tension Nsa lb 6,500 10,705 17,170 25,120 (kN) (28.9) (47.6) (76.4) (111.8) Steel strength in shear Vsa lb 3,595 5,495 8,090 13,675 (kN) (16.0) (24.4) (36.0) (60.8) Steel strength in shear, lb 2,255 5,495 7,600 11,745 seismic' V"89 (kN) (10.0) (24.4) (33.8) (52.2) Pullout strength uncracked u" lb 2,515 NA 5,515 NA 9,145 8,280 10,680 concrete` ° (kN) (11.2) (24.5) (40.7) (36.8) (47.5) Pullout strength cracked lb 2,270 4,915 - concrete' NP" (kN) (10.1) NA (219) NA NA NA NA Anchor category' 1 Effectiveness factor k„",.,uncracked concrete 24 Effectiveness factor k,.,cracked concrete6 17 'P,iv=k"c/k,,7 1.0 Coefficient for pryout strength, k,7 1.0 2.0 Strength reduction factor 0 for tension,steel failure modes' 0.75 Strength reduction factor 0 for shear,steel failure modes' 0.65 Strength reduction 0 factor for tension,concrete failure modes or pullout,Condition B9 0.65 Strength reduction 0 factor for shear,concrete failure modes,Condition 139 0.70 Axial stiffness in service load A",., lb/in. 700,000 range'° fit, lb/in. 500,000 For SI: 1 inch=25.4 mm, 1 lbf=4.45 N, 1 psi=0.006895 MPa. For pound-inch units: 1 mm=0.03937 inches. 'See Fig.2. `For sand-lightweight concrete over metal deck,see Figures 5A,5B and 5C and Table 6. 'See Section 4.1.8 of this report. 'For all design cases P,.,=1.0. NA(not applicable)denotes that this value does not control for design. See Section 4.1.4 of this report. . 5See ACI 318-11 D.4.3. 'See ACI 318 D.5.2.2. 'For all design cases 1Pc,N=1.0.The appropriate effectiveness factor for cracked concrete(k,.,)or uncracked concrete(k„",,)must be used. 'The KB-TZ is a ductile steel element as defined by ACI 318 D.1. _ 9For use with the load combinations of ACI 318 Section 9.2.Condition B applies where supplementary reinforcement in conformance with ACI 318-11 D.4.3 is not provided,or where pullout or pryout strength governs.For cases where the presence of supplementary reinforcement can be verified,the strength reduction factors associated with Condition A may be used. '°Mean values shown, actual stiffness may vary considerably depending on concrete strength, loading and geometry of application. ESR-1917 I Most Widely Accepted and Trusted Page 8 of 12 TABLE 4-DESIGN INFORMATION,STAINLESS STEEL KB-TZ DESIGN INFORMATION Symbol Units Nominal anchor diameter 318 112 518 3/4 Anchor O.D. d,(d°) in. 0.375 0.5 0.625 0.75 • (mm) (9.5) (12.7) (15.9) (19.1) _ Effective min.embedment' her in. 2 2 3-1/4 3-1/8 4 3-3/4 4-3/4 (mm) (51) (51) (83) (79) (102) (95) (121) -- Min.member thickness h in. 4 5 4 6 6 8 5 6 8 6 8 8 (mm) (102) (127) (102) (152) (152) (203) (127) (152) (203) (152) (203) (203) Critical edge distance cep in. 4-3/8 3-7/8 5-112 4-1/2 7-1/2 6 7 8-7/8 6 10 7 9 (mm) (111) (98) (140) (114) (191) (152)_. (178) (225) (152) (254) (178) (229) in. 2-1/2 2-7/8 2-1/8 3-1/4 2-3/8 4-1/4 4 cm'" (mm) (64) (73) (54) (83) (60) (108) (102) Min.edge distance in. 5 5-3/4 5-1/4 5-1/2 5-1/2 10 8-1/2 fors 2 (mm) (127) (146) (133) (140) (140) (254) (216) in. 2-1/4 2-7/8 2 2-3/4 2-3/8 5 4 sm'" (mm) (57) (73) (51) (70) (60) (127) (102) Min.anchor spacing in. 3-1/2 4-1/2 3-1/4 4-1/8 4-1/4 9-1/2 7 for c z (mm) (89) (114) (83) (105) (108) (241) (178) Min.hole depth in concrete h° in. 2-5/8 2-5/8 4 3-3/4 4-3/4 4-1/2 5-3/4 (mm) (67) (67) (102) (98) (121) (117) (146) lb/ire 92,000 92,000 92,000 76,125 Min.specified yield strength fr (N/mm2) (634) (634) (634) (525) Min.specified ult.Strength f�, lb/in2 115,000 115,000 115,000 101,500 (N/mm2) (793) (793) (793) (700) Effective tensile stress area As,N in`2 0.052 0.101 0.162 0.237 (mm ) (33.6) (65.0) (104.6) (152.8) lb 5,968 11,554 17,880 24,055 Steel strength in tension Ns, (kN) (26.6) (51.7) (82.9) (107.0) lb 4,720 6,880 9,870 15,711 Steel strength in shear Vs, (kN) (21.0) (30.6) (43.9) (69.9) Pullout strength in tension, lb 2,735 seismic2 NP.9 (kN) NA (12.2) NA NA NA Steel strength in shear, lb 2,825 6,880 9,350 12,890 seismic2 V58•°9 (kN) (12.6) (30.6) (41.6) (57.3) Pullout strength uncracked lb 2,630 NA 5,760 NA NA 12,040 concrete' NP "" (kN) (11.7) (25.6) (53.6) - Pullout strength cracked lb 2,340 3,180 NA NA 5,840 8,110 NA concretes NP" (kN) (10.4) (14.1) (26.0) (36.1) Anchor category' 1 2 1 Effectiveness factor k,,,,uncracked concrete 24 Effectiveness factor k„cracked concretes 17 24 17 17 17 24 17 1C,N=kunc/kcr6 1.0 Strength reduction factor O for tension,steel failure modes' 0.75 Strength reduction factor 0 for shear,steel failure modes' 0.65 Strength reduction 0 factor for tension,concrete 0.65 0.55 0.65 failure modes,Condition B e Coefficient for pryout strength,kg, 1.0 2.0 Strength reduction 0 factor for shear,concrete failure modes,Condition B8 0.70 Axial stiffness in service load f, , lb/in. 120,000 range' Qc, lb/in. 90,000 For SI: 1 inch=25.4 mm, 1 lbf=4.45 N,1 psi=0.006895 MPa For pound-inch units: 1 mm=0.03937 inches. 'See Fig.2. 2See Section 4.1.8 of this report.NA(not applicable)denotes that this value does not control for design. 3For all design cases 1'c.p=1.0.NA(not applicable)denotes that this value does not control for design.See Section 4.1.4 of this report. "See ACI 318-11 D.4.3. - SSee ACI 318 D.5.2.2. 6For all design cases Wc,N=1.0.The appropriate effectiveness factor for cracked concrete(kr,)or uncracked concrete(kunc,)must be used. 'The KB-TZ is a ductile steel element as defined by ACI 318 D.1. BFor use with the load combinations of ACI 318 Section 9.2.Condition B applies where supplementary reinforcement in conformance with ACI - 318-11 D.4.3 is not provided,or where pullout or pryout strength governs.For cases where the presence of supplementary reinforcement can be verified,the strength reduction factors associated with Condition A may be used. 9Mean values shown,actual stiffness may vary considerably depending on concrete strength,loading and geometry of application. ESR-1917 I Most Widely Accepted and Trusted Page 9 of 12 VJ Saes,gr Cdesgn v hmin- as cminats� 1111 1111 - i I II . 'design - smin at c> Yh �� N II h?h,,,, i I 1 I I t I design edge distance c T FIGURE 4-INTERPOLATION OF MINIMUM EDGE DISTANCE AND ANCHOR SPACING TABLE 5-HILTI KWIK BOLT TZ(KB-TZ)CARBON STEEL ANCHORS TENSION AND SHEAR DESIGN DATA FOR INSTALLATION IN THE UNDERSIDE OF CONCRETE-FILLED PROFILE STEEL DECK ASSEMBLIES''6.7.8 Loads According to Figure 5A Loads According to Figure 5B DESIGN INFORMATION Symbol Units Anchor Diameter Anchor Diameter 3/8 1/2 5/8 3/8 1/2 5/8 Effective Embedment Depth he, in. 2 2 3-1/4 3-1/8 4 2 2 3-1/4 3-1/8 Minimum Hole Depth hr in. 2-5/8 2-5/8 4 3-3/4 4-3/4 2-5/8 2-5/8 4 3-3/4 Pullout Resistance, uncracked Node k lb. 2,060 2,060 3,695 2,825 6,555 1,845 1,865 3,375 4,065 concrete) Pullout Resistance(cracked Np,decksr lb. 1,460 1,460 2,620 2,000 4,645 1,660 1,325 3,005 2,885 concrete)3 . Steel Strength in Shear4 Vsa.deck lb. 2,130 3,000 4,945 4,600 6,040 2,845 2,585 3,945 4,705 - Steel Strength in Shear, Vse.deck.eq lb. 1,340 3,000 4,945 4,320 5,675 1,790 2,585 3,945 4,420 Seismic _ - 'Installation must comply with Sections 4.1.10 and 4.3 and Figure 5A and 5B of this report. 2The values listed must be used in accordance with Section 4.1.4 of this report. 3The values listed must be used in accordance with Section 4.1.4 and 4.1.8.2 of this report. °The values listed must be used in accordance with Section 4.1.5 of this report. 5The values listed must be used in accordance with 4.1.8.3 of this report.Values are applicable to both static and seismic load combinations. 6The values for Op in tension and the values for O e in shear can be found in Table 3 of this report. 'The characteristic pullout resistance for concrete compressive strengths greater than 3,000 psi may be increased by multiplying the value in the table by(fy3,000)112 for psi or(P720.7)112 for MPa. 'Evaluation of concrete breakout capacity in accordance with ACI 318 D.5.2,D.6.2,and D.6.3 is not required for anchors installed in the deck soffit. TABLE 6-HILTI KWIK BOLT TZ(KB-TZ)CARBON STEEL ANCHORS SETTING INFORMATION FOR INSTALLATION ON THE TOP OF CONCRETE-FILLED PROFILE STEEL DECK ASSEMBLIES ACCORDING TO FIGURE 5C1'2'1' Nominal anchor diameter DESIGN INFORMATION Symbol Units 3/8 1/2 Effective Embedment Depth he, in. 2 2 Minimum concrete thickness' hmin.deck in. 3-1/4 3-1/4 Critical edge distance cec,deck,,op in 9 9 Minimum edge distance cmin.deck.top in. 3 4-1/2 Minimum spacing smm,deck,top in. 4 6-1/2 'Installation must comply with Sections 4.1.10 and 4.3 and Figure 5C of this report. 2For all other anchor diameters and embedment depths refer to Table 3 and 4 for applicable values of h,6,,c,,,in,and s,, . 'Design capacity shall be based on calculations according to values in Table 3 and 4 of this report. 4Applicable for 3'/4-in<_h„„,deck<4-in.For h,,,;0,deck a 4-inch use setting information in Table 3 of this report. 'Minimum concrete thickness refers to concrete thickness above upper flute. See Figure 5C. ESR-1917 I Most Widely Accepted and Trusted Page 10 of 12 z zp ' MN 3 000 PSI NORMAL OR SAND- Z : � ti ,rr , UGHTWEIGHTCONCRETE 1t ' 7 I II I p ! UPPER r ' *t J Yi tVLUTN1E rr) Y i0r .i • ,• P ... .. • MM 20 GAUOE 1 111 STEEL W-DECK - MIN 4-112' ' "N 4.1r2" 1 1 MIN 17 TIP. 1 LOWER FLUTE ....-...-01 14--MA%.Y ' (RIDGE) OFFSET. TVP. FIGURE 5A—INSTALLATION IN THE SOFFIT OF CONCRETE OVER METAL DECK FLOOR AND ROOF ASSEMBLIES' 'Anchors may be placed in the upper or lower flute of the steel deck profile provided the minimum hole clearance is satisfied. Anchors in the lower flute may be installed with a maximum 1-inch offset in either direction from the center of the flute. hg zi � i i _ .+ MM.3,000 PSI NORMAL DR SAND- LIGHTWEIGHT CONCRETE i- UPPER ifs FLUTE (VALLEY) MIN.20 GUAGE _MIN MAX 317 STEEL W-DECK 'MIN.2-112' 3/4'MIN. MIN tP TYP - LOWER FLUTE - (RIDGE) FIGURE 5B—INSTALLATION IN THE SOFFIT OF CONCRETE OVER METAL DECK FLOOR AND ROOF ASSEMBLIES-B DECK''' 'Anchors may be placed in the upper or lower flute of the steel deck profile provided the minimum hole clearance is satisfied, Anchors in the lower flute may be installed with a maximum'18-inch offset in either direction from the center of the flute.The offset distance may be increased proportionally for profiles with lower flute widths greater than those shown provided the minimum lower flute edge distance is also satisfied. 2Anchors may be placed in the upper flute of the steel deck profiles in accordance with Figure 5B provided the concrete thickness above the upper flute is minimum 3'/4-inch and the minimum hole clearance of 518-inch is satisfied. ,ss, i Y °• MIN.3.000 PSI NORMAL DR SAND.' AND- _ ` LKaHTWEIGHTCONCRETE _. a4 •� 2 N • UPPER a 4. MMI i AEY) �� — MM.20 GUAGE 11!4•' IUN 31/2' STEEL W-DECK MIN.2-1/2' MIN t)-TYP LOWER FLUTE (RIDGE) - FIGURE 5C—INSTALLATION ON THE TOP OF CONCRETE OVER METAL DECK FLOOR AND ROOF ASSEMBLIES.° 'Refer to Table 6 for setting information for anchors in to the top of concrete over metal deck. - 2Applicable for 3-1/4-in s hr„,,,<4-in.For h,n;,Z 4-inch use setting information in Table 3 of this report. • ESR-1917 I Most Widely Accepted and Trusted Page 11 of 12 TABLE 7—EXAMPLE ALLOWABLE STRESS DESIGN VALUES FOR ILLUSTRATIVE PURPOSES Allowable tension(lbf) Carbon Steel Stainless Steel Nominal Anchor f =2500 psi diameter(in.) Embedment depth(in.) Carbon Steel Stainless Steel 3/8 2 1105 1155 2 1490 1260 1/2 3-1/4 2420 2530 3-1/8 2910 2910 5/8 4 4015 4215 3-3/4 3635 3825 3/4 4-3/4 4690 5290 For SI: 1 lbf=4.45 N, 1 psi=0.00689 MPa 1 psi=0.00689 MPa. 1 inch=25.4 mm. 'Single anchors with static tension load only. 2Concrete determined to remain uncracked for the life of the anchorage. 'Load combinations from ACI 318 Section 9.2(no seismic loading). °30%dead load and 70%live load,controlling load combination 1.2D+ 1.6 L. 6Calculation of the weighted average for o=0.3'1.2+0.7'1.6= 1.48. 6f'c=2,500 psi(normal weight concrete). Cat=c2 2 Cac 8h?hm 9Values are for Condition B where supplementary reinforcement in accordance with ACI 318-11 D.4.3 is not provided •: '•• 'Lam • ..s•..• •gi► •'• • •r": • s•.•••••....lo!•sir/A •+.••�•N• ii♦ 1:11• _• 71111!: % 1.Hammer drill a hole to the same nominal 2Clean hole. diameter as the Kwik Bolt 17. The hole depth must equal the anchor embedment listed in Table 1.The fixture may be used as a drilling template to ensure proper anchor location.MEM w•�•••rM�,�••••• �� • .+•• .•� •'`r• .• _ 111.1 ila !NA:v:1641i It ..... •. .1.114 3.Drive the Kwik Bolt TZ into the hole using 4.Tighten the nut to the required a hammer The anchor must be driven installation torque. until the nominal embedment is achieved. FIGURE 6—INSTALLATION INSTRUCTIONS ESR-1917 I Most Widely Accepted and Trusted Page 12 of 12 Given: A t T.ly,�A Two 1/2-inch carbon steel KB-TZ anchors under static tension ICI • load as shown. �� 1.5 hd he,=3.25 in. .. Normal weight concrete,f c=3,000 psi .1.0%‘. �^y','• -,� - No supplementary reinforcement(Condition B per ACI 318-11 '� Ir Assume cracked concrete since no other information is available. . ? I r �iaiL L.A__.......:_.-mgm..1.-...: mil 1.5 hl Needed:Using Allowable Stress Design(ASD)calculate the allowable tension load for this configuration. 1.5 he c=4' AA Calculation per ACI 318-11 Appendix D and this report. Code Ref. Report Ref. Step 1.Calculate steel capacity: ON =0nA f =0.75 x 2 x 0.101 x 106,000=16,059Ib D.5.1.2 §4.1.2 Check whether fete is not greater than 1.9f,and 125,000 psi. D.4.3 a Table 3 Step 2.Calculate concrete breakout strength of anchor in tension: N = AN` N cbg rec,NYed,Nrc,NYcp,N n D.5.2.1 §4.1.3 A Nco Step 2a.Verify minimum member thickness,spacing and edge distance: hm„,=6 in.5 6 in. .'.Ok sr.. 2.375,5.75 2.375-5.75 D.8 Table 3 slope= =-3.0 Fig.4 3.5-2.375 For cif,;n=4in� 2.375 controls 3.5,2.375 sm„=5.75-[(2.375-4.0)(-3.0)J=0.875<2.375in<6in.•.ok 0.875 4 Com Step 2b.For AN check 1.5h., =1.5(3.25)=4.88 in>C 3.0he, =3(3.25)=9.75 in>s 0.5.2.1 Table 3 - Step 2c.Calculate ANCO and AN,for the anchorage: A5,0=9141=9 x(3.25)2=95.1in.2 D.5.2.1 Table 3 ANC=(1.5het+c)(3he f+s)=[1.5 x(3.25)+4][3 x(3.25)+6]=139.8in 2<2ANco..ok Step 2d.Determine Vec,N: eN=0 +Vec,N=1.0 D.5.2.4 - Step 2e.Calculate Nb:Nb =k,A T hef =17 x 1.0 x 3,000 x 3.251.5=5,456 lb D.5.2.2 Table 3 Step 2f.Calculate modification factor for edge distance: Wed,N=0.7+0.31 5(3 25)=0.95 D.5.2.5 Table 3 Step 2g.Calculate modification factor for cracked concrete: yic N=1.00(cracked concrete) D.5.2.6 Table 3 Step 2h.Calculate modification factor for splitting: =1.00(cracked concrete) §4.1.10 w`0'N Table 3 Step 2i.Calculate 4 Nag:0 Nag=0.65 x 139.8 x 1.00 x 0.95 x 1.00 x 5,456=4,952 lb D.5.2.1 §4.1.3 95.1 D.4.3 c) Table 3 3000 D.5.3.2 §4.1.4 Step 3.Check pullout strength:Table 3, 0nN°,,,P,=0.65 x 2 x 5,515 lb x 2,800=7,852 lb>4,952 .'.OK D.4.3 c) Table 3 Step 4.Controlling strength:0 Nag=4,952 lb<on/V,„,<t6N,.. 4Nebg controls D.4.1.2 Table 3 Step 5.To convert to ASD,assume U=1.2D+1.6L: T.,1„,= 4, -1.13 952=3,346 lb. - §4.2 FIGURE 7-EXAMPLE CALCULATION Adhesive Anchoring Systems minares,' 3.2.3 HIT-HY 150 MAX-SD Adhesive Anchoring System 3.2.3.5 Installation Instructions Adhesive anchoring system for fastenings in concrete recommended for borehole depth 10 inch(250 mm)and • required for borehole depth> 10 inch(250 mm). Prior to use of product,follow instructions for use and • Continue with borehole cleaning as described in recommended safety precautions.Check expiration date:See Method 1. expiration date imprint on foilpack manifold.(Month/Year).Do not use 0 Insert foil pack in foil pack holder.Never use damaged an expired product. foil packs and/or damaged or unclean foil pack holders. Foil pack temperature:Must be between 32'F and 104'F(0'C and Attach new mixer prior to dispensing a new foil pack(snug 40 C)when in use. fit). p Tightly attach Hilti HIT-RE-M mixer to foil pack Base material temperature at time of installation:Must be between manifold.Do not modify the mixer in any way.Make sure 14 'F and 104°F(-10°C and 40°C). the mixing element is in the mixer.Use only the mixer Instructions for transport and storage:Keep in a cool,dry and dark supplied with the anchor adhesive. place between 41 °F to 77'F(5'C to 25°C). ® Insert foil pack holder with foil pack into HIT-dispenser. Push release trigger,retract plunger and insert foil pack Material Safety Data Sheet:Review the MSDS before use. holder into the appropriate Hilti dispenser. Installation instructions:Follow the illustrations on page 34 for the El Discard initial anchor adhesive.The foil pack opens sequence of operations and refer to tables on page 35-36 for setting automatically as dispensing is initiated. Do not pierce the details.For any application not covered by this document,contact foilpack manually(can cause system failure).Depending Hilti. on the size of the foil pack an initial amount of anchor adhesive has to be discarded.See pictogram 8 for discard D Drill hole to the required depth h0 with a hammer-drill set in quantities.Dispose discarded anchor adhesive into the rotation hammer mode using an appropriately sized carbide empty outer packaging. If a new mixer is installed onto a drill bit.For holes drilled with other drill types contact a Hilti previously-opened foil pack,the first trigger pulls must also representative. be discarded as described above. For each new foil pack a ©-0 Clean hole:Cleaning method has to be decided based on new mixer must be used. El borehole condition.Just before setting an anchor/rebar, -m Inject anchor adhesive from the back of the borehole the borehole must be free of dust,water and debris by one without forming air voids: of the following methods: • Injection method—for borehole with depth 10 Method 1 —for dry or water saturated concrete(refer inch/250 mm: to pictograms):Compressed air cleaning is permissible for Inject the anchor adhesive starting at the back of the all diameters and embedment depths. hole(use the extension for deep holes),slowly withdraw •Blow from the back of the borehole with oil-free the mixer with each trigger pull.Fill holes approximately compressed air(min.90psi at 3.5 CFM(6 bar at 6 m3/h)) 2/3 full,or as required to ensure that the annular gap fully retracting the air extension 2 times until return air between the anchor/rebar and the concrete is completely stream is free of noticeable dust. filled with anchor adhesive along the embedment length. • Brush 2 times with the specified Hilti HIT-RB brush After injection is completed,depressurize the dispenser size(brush d)z bore hole d)by inserting the round steel by pressing the release trigger.This will prevent further brush to the back of the borehole in a twisting motion anchor adhesive discharge from the mixer. and removing it.The brush should resist insertion into • Piston plug injection — is recommended for borehole the borehole—if not,the brush is too small and must be depth> 10 inch/250 mm.The installation overhead is replaced with a brush of appropriate brush diameter, only possible with the aid of piston plugs.Assemble • Blow again with compressed air 2 times until return air HIT-RE-M mixer,extension(s)and appropriately sized stream is free of noticeable dust. piston plug.Insert piston plug HIT-SZ/lP to back of the If required use extensions for air nozzle and brushes to hole,and inject anchor adhesive as described in the reach back of deep hole. injection method above.During injection the piston plug Method 2—for standing water(e.g.water flows into will be naturally extruded out of the bore hole by the cleaned borehole): anchor adhesive pressure. • Flush hole 2 times by inserting a water hose(water-line ® Insert anchor/rebar into bore hole.Mark and set anchor/ pressure)to the back of the borehole until water runs rebar to the required embedment depth.Before use, clear. verify that the anchor/rebar is dry and free of oil and other •Brush 2 times with the specified Hilti HIT-RB brush size contaminants.To ease installation,anchor/rebar may be (brush v?borehole 4v)by inserting the round steel brush slowly twisted as they are inserted.Use only Hilti anchor to the back of the borehole with a twisting motion and rods or equivalent.After installing an anchor/rebar,the removing it.The brush should resist insertion into the annular gap must be completely filled with anchor adhesive. borehole—if not,the brush is too small and must be Attention!For overhead applications take special care replaced with a brush of appropriate brush diameter. when inserting the anchor/rebar.Excess adhesive will be • Flush again 2 times until water runs clear.Remove all forced out of the borehole—take appropriate steps to standing water completely(i.e.vacuum,compressed prevent it from falling onto the installer.Position the anchor/ air or other appropriate procedure).To attain a dried rebar and secure it from moving/falling during the curing borehole,a Hilti HIT-DL air nozzle attachment is time(e.g.wedges). 90 Hilti,Inc.(US)1-800-879-8000 I www.us.hilti.com I en espanol 1-800-879-5000 I Hilti(Canada)Corp.1-800-363-4458 I www.hilti.ca I Product Technical Guide 2011 • Adhesive Anchoring Systems HIT-HY 150 MAX-SD Adhesive Anchoring System 3.2.3 Figure 5 — Instructions fpr use(IFU)as provided with product packaging(continued) IM Observe the gel time"c,which varies according to ; temperature of base material.Minor adjustments to the '%%%% anchor/rebar position may be performed during the gel time. 94;:e�����■\■\ See table 12.Once the gel time has elapsed,do not disturb f.■iy the anchor/rebar until the curing time"L re"has elapsed. /:,/,';', %' M Apply designed load/torque after"t< has passed,and j;','. 7; "" r, �4 b the fixture to be attached has been positioned.See table 13. yia'/., ,;;;� x ..a jo,�,r/.d Partly used foil packs must be used up within four weeks.Leave f f '� ' ,�� 15" ,///,% '. , 'i' 3'■CHI the mixer attached on the foil pack manifold and store under the ` ',,,, ., recommended storage conditions.If reused,attach a new mixer and discard the initial quantity of anchor adhesive as described by point 8 ,� 1 ) 2 , Safety instructions: `•i, � (� '� For industrial use only.Keep out of the reach of children. �` ' 1 See the Material Safety Data Sheet for this product before • ` handling. �� Caution:Irritating to eyes and skin.May 9 ( g � ♦� cause sensitization in susceptible individuals. LJ +ice: nml•ta tea liatee0 sir.L' Contains:dibenzoyl peroxide. n. Precautions:Avoid contact with skin/eyes. I •I<41.F(5'c)=4x ooa� it Always wear impermeable gloves and eye y j�� protection when using product.Store in a �yyyye�~ 1 P g P d , I . dose r�r>>— 1 4 ` ` cool,dry area.Keep from freezing.Do not store in direct sunlight. i s'�'y�oye� First Aid:Eyes—Immediately flush with water for 15 minutes,contact '';':%401 .yop � a physician.Skin—Wash with soap and water.launder contaminated clothing before reuse.If irritations occurs,contact physician.Ingestion - -Do not induce vomiting unless directed by a physician.Contact a physician immediately.Inhalation—Move to fresh air,give oxygen if "' breathing is difficult.contact a physician if symptoms persist. K='�a (Ingredient CAS Number Ingredient CAS Number .; , + I 1 Part A:(Large aide) Part B:(Small side) :;,7,1#1, \ NJ Trade Secret Registry 19136100-5001 Quartz Sand 14808-60-7 1 Please refer to technical literature (approvals,setting instructions)for detail - Quartz Sand 14808-60-7 Water 07732-18-5 1 Voir IlttErat re technique(agrements,me eels d'utlllsation produils)pour plus de detail NJ Trade Secret Registry 19136100-5003 Dibenzoyl peroxide 00094-36-0 7 Por faser'vease la referenda tbaiica(normative y manuales de uso)pare mas delalle NJ Trade Secret Registry 1 91 361 00-5004 Aluminum oxide 01344-28-1 NJ Trade Secret Registry 19136100-5005 Amorphous silica 07631-86-9 ,, ry, � �. Iii � �. ,:7%i.i \ Amorphous silica 67762-90-7 1,2.3-Propantriol 00056-81-5 y 01 Igo e y„� r..,r e q '�� Tau NJ Trade Secret Registry 19136100-5002 'Q,Q_'Q�� 4∎• %�O.Od s.> v . %../44. I NJ Trade Secret Registry 19136100-5017 R' NJ Trade Secret Registry 19136100-5019 r,,��,i�� pro �,, , . r5;; ; (�' NJ TSNR=New Jersey Trade Secret Registry Number '' 4, ,;;;;;;x, 7,,,A4� ■ ® u In Case of Emergency,call Chem-Trec:1-800-424-9300(USA, 3 i ez h n 25 40 min 23 P.R.,Virgin Islands,Canada) •02 20 mire 32 2h 41 6min j. 41 15 En cas d'urgence,telephoner Chem-Trec:1-800-424-9300(USA, a■ 5 min 1 63 30 min P.R.,Virgin Islands,Canada) 101 2min 104 some En Caso de Emergencia,Ilame Chem-Trec:001-703-527-3887 (other countries/autres pays/otros paises) Made in Germany Net contents:11.1 fl.oz(330 ml)/16.9 fl.oz(500 ml) Net weight:20.3 oz(575 g)/31.0 oz(880 g) Warranty:Refer to standard Hilti terms and conditions of sale for warranty information. Failure to observe these installation instructions,use of non-Hilti anchors, poor or questionable concrete conditions,or unique applications may affect the reliability or performance of the fastenings.For full set of installation instructions see literature supplied with product packaging. Hitti,Inc.(US)1-800-879-8000 I www.us.hiltl.com I en espanol 1-800-879-5000 I Hitti(Canada)Corp.1-800-363-4458 I www.hlltl.ca I Product Technical Guide 2011 91 Adhesive Anchoring Systems 3.2.3 HIT-HY 150 MAX-SD Adhesive Anchoring System Figure 5 — Instructions fpr use(IFU)as provided with product packaging(continued) HAS Rebar HIT RB HIT SZ(IP) HIT-DL 11 - -oo I ii 0[mm] 0[mm] 0[mm] HIT-RB HIT-SZ HIT-DL 12 10 8 12 12 12 14 12 10 14 14 14 : _ 16 16 12 16 16 16 18 , 14 18 18 18 Or 20 16 20 20 20 22 M20 18 SS 22 22 1111MAIIIII 24 24 - 24 24 25 - 20 kiii, 25 25 25 28 - 22 28 28 - 32 25 32 32 32 �m-�_ xrt 0[in.] 0[in.] Size HIT RB 111, , HIT IP HIT-DL 7/16 3/8 - 7/16" - 1/2 - #3 1/2" a.:._'y.. � r: � , .., 1/2" 1/2- 9/16 1/2 10M 9/16" 9/16" 9/16•' - 5/8 - #4 5/8" • 5/8" Am -Aiiiiikitiorriiiiim- 3/4 5/8 #5&15M 3/4" 3/4•' 3/4" 7/8 3/4 #6 7/8" 7/8 _ a 1 7/8 #7&20M 1" 1" 1" 1-1/8 1 #8 1-1/8" ria 1-1/8" 1-1/4 - 25M 1-1/4" 1-1/4" - Drill bits must conform to tolerances in ANSI 8212-1994. Les meches de forage doivent etre conformes a ANSI B212-1994. Brocas deben cumplir con el estandar ANSI 6212.1994. 92 Hilti,Inc.(US)1-800-879-8000 I www.us.hilti.com I en espanol 1-800-879-5000 I Hilti(Canada)Corp.1-800-363-4458 I www.hilti.ca I Product Technical Guide 2011 =1 P- V$1111.01MPROMPORILI Adhesive Anchoring Systems HIT-HY 150 MAX-SD Adhesive Anchoring System 3.2.3 Figure 5 — Instructions fpr use(IFU)as provided with product packaging(continued) Setting Details of Hilti HIT-HY 150 MAX-SD with threaded rod Setting Details of Hilti HIT-HY 150 MAX-SD with d reinforcement bars (/,// / / / / /// 0/ t d do /f!►nIIVNIILIIIIIiHllllllllllglilllll9illlll'dlllllfillllllllllllllllll11111i,1111 la do PZ t�z�L 1 '', / /// ; , / �i & .A= /.,/ hef=h0 40 WII1M1.1 hmin d do he}min-max Tmax* df hmin d do hey min max hmin [inch] [inch] [inch] [ft-lb] [inch] [inch] US rebar [inch] [inch] [inch] 3/8 7/16 2-3/8 to 7-1/2 15 7/16 he,+ 1-1/4 #3 7/16 2-3/8 to 7-1/2 he,+ 1-1/4 1/2 9/16 2-3/4 to 10 30 9/16 #4 5/8 2-3/4 to 10 5/8 3/4 3-1/8 to 12-1/2 60 11/16 #5 3/4 3-1/8 to 12-1/2 3/4 7/8 3-1/2 to 15 100 13/16 h 0+2dr, #6 7/8 3-1/2 to 15 he,+ 2d0 7/8 1 3-1/2 to 17-1/2 125 15/16 #7 1 3-1/2 to 17-1/2 1 1-1/8 4to20 150 1-1/8 #8 1-1/8 4 to 20 [mm] [mm] [mm] [Nm] [mm] [mm] M10 12 60 to 200 20 12 Rebar [mm] [mm] [mm] he, +30 [mm] • M12 14 70 to 240 40 14 10 14 60to200 he + 30 M18 18 80 to 320 80 18 12 16 70 to 240 _ M20 24 90 to 400 150 22 he,+2dc 14 18 75 to 280 M24 28 96 to 480 200 28 16 20 80 to 320 he,+2d, 20 25 90 to 400 25 32 100 to 500 CA rebar [inch] [inch] [inch] 10 M 9/16 2-3/4 to 8-7/8 h ,+ 1-114 15 M 3/4 3-1/8 to12-1/2 20M 1 3-1/2 to 15-3/8 h ,+ 2d, 25 M 1-1/4 4 to 19-7/8 *Tmax: Edge Distance co,<(5 x d) Maximum Edge Distance ca, Anchor Spacing smin Torque 5xd5 s < 16in. 0.3xTm, (406 mm) 1.75 in. (45 mm)<_ce1< 5xd - sm,e? 16in. 0.5xT,n (406 mm) Me. Hilti,Inc.(US)1-800-879-8000 1 www.us.hilti.com I en espanol 1-800-879-5000 I Hilti(Canada)Corp.1.800-363-4458 I www.hilti.ca I Product Technical Guide 2011 93 E� ICC EVALUATION S SERVICE Most Widely Accepted and Trusted ICC-ES Evaluation Report ESR-3013 Reissued April 1, 2013 This report is subject to renewal April 1, 2014. www.icc-es.orq I (800) 423-6587 I (562) 699-0543 A Subsidiary of the International Code Council® DIVISION: 03 00 00—CONCRETE The Hilti HIT-HY 150 MAX-SD Adhesive Anchoring Section: 03 16 00—Concrete Anchors System may be used with continuously threaded steel rods, or deformed steel reinforcing bars. The primary REPORT HOLDER: components of the Hilti Adhesive Anchoring System are shown in Figure 3 of this report. HILTI, INC. Np Installation information and parameters, as included with 5400 SOUTH 122ND EAST AVENUE each adhesive unit package, are shown in Figure 5 of this TULSA, OKLAHOMA 74146 report. (800)879-8000 www.us.hilti.com 3.2 Materials: HiltiTechEnq(&.us.hilti.com 3.2.1 Hilti HIT-HY 150 MAX-SD Adhesive: Hilti HIT-HY 150 MAX-SD Adhesive is an injectable hybrid adhesive EVALUATION SUBJECT: combining urethane methacrylate resin, hardener, cement and water. The resin and cement are kept separate from HILTI HIT-HY 150 MAX-SD ADHESIVE ANCHORING the hardener and water by means of a dual-cylinder foil SYSTEM FOR CRACKED AND UNCRACKED CONCRETE pack attached to a manifold. The two components combine and react when dispensed through a static mixing nozzle 1.0 EVALUATION SCOPE attached to the manifold. Hilti HIT-HY 150 MAX-SD is Compliance with the following codes: available in 11.1-ounce (330 ml), 16.9-ounce (500 ml), and 47.3-ounce (1400 ml) foil packs. The manifold attached to • 2009, 2006, 2003 and 2000 International Building each foil pack is stamped with the adhesive expiration Code®(IBC) date. The shelf life, as indicated by the expiration date, • 2009, 2006, 2003 and 2000 International Residential applies to unopened foil packs that are stored in Code®(IRC) accordance with the Instructions for Use, as illustrated in Figure 5 of this report. Property evaluated: 3.2.2 Hole Cleaning Equipment: Hole cleaning Structural equipment, comprised of steel wire brushes and air 2.0 USES nozzles, is described in Figure 5 of this report. The Hilti HIT-HY 150 MAX-SD Adhesive Anchoring System 3.2.3 Dispensers: Hilti HIT-HY 150 MAX-SD must be is used to resist static, wind, or earthquake (Seismic dispensed with manual dispensers, pneumatic dispensers, Design Categories A through F)tension and shear loads in or electric dispensers provided by Hilti. cracked or untracked normal-weight concrete having a 3.2.4 Anchor Elements: specified compressive strength, f of 2,500 psi to 8,500 3.2.4.1 Threaded Steel Rods: The threaded steel rods psi (17.2 MPa to 58.6 MPa). The anchor system is an must be clean, continuously threaded rods (all-thread) in alternative to anchors described in Sections 1911 and diameters as described in Tables 2 and 3 of this report. 1912 of the 2009 and 2006 IBC and Sections 1912 and Steel design information for common grades of threaded 1913 of the 2003 and 2000 IBC. The anchor systems may rod and associated nuts are provided in Tables 5 and 8 of also be used where an engineered design is submitted in this report, and instructions for use are shown in Figure 5. accordance with Section R301.1.3 of the 2009, 2006 and Carbon steel threaded rods must be furnished with a 2003 IRC, or Section R301.1.2 of the 2000 IRC. 0.0002-inch-thick (0.005 mm) zinc electroplated coating in 3.0 DESCRIPTION accordance with ASTM B 633 SC 1; or must be hot-dipped 3.1 General: galvanized in accordance with ASTM A 153, Class C or D. Threaded rods must be straight and free of indentations or The Hilti HIT-HY 150 MAX-SD Adhesive Anchoring System other defects along their length. The ends may be stamped is comprised of the following components: with identifying marks and the embedded end may be blunt • Hilti HIT-HY 150 MAX-SD adhesive, packaged in foil cut or cut on the bias(chisel point). packs. 3.2.4.2 Steel Reinforcing Bars: Steel reinforcing bars • Adhesive mixing and dispensing equipment. are deformed reinforcing bars. Table 11, Table 14 and Table 17, along with the instructions for use shown in • Hole cleaning equipment. Figure 5 of this report, summarize reinforcing bar size ICC-ES Evaluation Reports are not to be construed as representing aesthetics or any other attributes not specifically addressed.nor are they to he construed is as an endorsement of the subject of the report or a recommendation for its use. There is no warranty by ICC Evaluation Service,LLC,express or implied,as to any finding or other matter in this report,or as to any product covered by the report. = Copyright©2013 Page 1 of 29 ESR-3013 I Most Widely Accepted and Trusted Page 2 of 29 ranges. Table 4 provides properties of common reinforcing Add ACI 318 Section D.4.1.4 as follows: bar types and grades. The embedded portions of D.4.1.4—For adhesive anchors subjected to tension reinforcing bars must be straight, and free of mill scale, resulting from sustained loading, a supplementary check rust, mud, oil, and other coatings that may impair the bond shall be performed using Eq. (0-1). whereby Nua is with the adhesive. Reinforcing bars must not be bent after determined from the sustained load alone, e.g., the dead installation, except as set forth in Section 7.3.2 of ACI 318 load and that portion of the live load acting that may be with the additional condition that the bars must be bent cold, and heating of reinforcing bars to facilitate field considered as sustained and ON„is determined as follows: bending is not permitted. 0.4.1.4.1—For single anchors, ON„ =0.75¢Nao 3.2.4.3 Ductility: In accordance with ACI 318 Appendix 0.4.1.4.2—For anchor groups, Eq. (D-1) shall be D, in order for a steel element to be considered ductile, the satisfied by taking ON, = 0.750N80 for that anchor in an tested elongation must be at least 14 percent and anchor group that resists the highest tension load. reduction of area must be at least 30 percent. Steel elements with a tested elongation of less than 14 percent 0.4.1.4.3—Where shear loads act concurrently with the or a reduction of area of less than 30 percent, or both, are sustained tension load, the interaction of tension and shear considered brittle. Values for various steel materials are shall be analyzed in accordance with D.4.1.3. provided in Tables 2 through 4 of this report. Where values Modify ACI 318 D.4.2.2 in accordance with 2009 IBC are nonconforming or unstated, the steel must be section 1908.1.10 as follows: considered brittle. 3.3 Concrete: D.4.2.2 - The concrete breakout strength requirements for anchors in tension shall be considered satisfied by the Normal-weight concrete must comply with Sections 1903 design procedure of D.5.2 provided Equation D-8 is not and 1905 of the IBC. The specified compressive strength used for anchor embedments exceeding 25 inches. The of the concrete must be from 2,500 psi to 8,500 psi (17.2 concrete breakout strength requirements for anchors in MPa to 58.6 MPa). shear with diameters not exceeding 2 inches shall be 4.0 DESIGN AND INSTALLATION considered satisfied by the design procedure of D.6.2. For 4.1 Strength Design: anchors in shear with diameters exceeding 2 inches, shear anchor reinforcement shall be provided in accordance with 4.1.1 General: The design strength of anchors under the the procedures of D.6.2.9. 2006 IBC and 2006 IRC must be determined in accordance with ACI 318-05 Appendix D and this report. 4.1.2 Static Steel Strength in Tension: The nominal static steel strength of a single anchor in tension, Nsa, in The design strength of anchors under the 2009, 2003, accordance with ACI 318 D.5.1.2 and strength reduction and 2000 IBC as well as Section 301.1.2 of the 2000 IRC factor. 0, in accordance with ACI D.4.4 are given in the and Section 301.1.3 of the 2009 and 2003 IRC, must be tables outlined in Table la for the corresponding anchor determined in accordance with ACI 318-08 Appendix D steel. and this report. 4.1.3 Static Concrete Breakout Strength in Tension: A design example according to the 2006 IBC is given in The nominal static concrete breakout strength of a single Figure 4 of this report. anchor or group of anchors in tension, kb or Ncb9, must be Design parameters are based on the 2009 IBC (ACI 318- calculated in accordance with ACI 318 D.5.2 with the 08) unless noted otherwise in Section 4.1.1 through 4.1.12 following addition: of this report. D 5.2.10(2009 IBC) or D 5.2.9 (2006 IBC)—The limiting The strength design of anchors must comply with ACI concrete strength of adhesive anchors in tension shall be 318 D.4.1, except as required in ACI 318 D.3.3. calculated in accordance with D.5.2.1 to D.5.2.9 under the Design parameters are provided in Tables 5 through 2009 IBC or D.5.2.1 to D.5.2.8 under the 2006 IBC where Table 19. Strength reduction factors, 0, as given in ACI the value of k,to be used in Eq. (D-7)shall be: 318 D.4.4 must be used for load combinations calculated kc,cr where analysis indicates cracking at service load in accordance with Section 1605.2.1 of the IBC or Section levels in the anchor vicinity(cracked concrete). The values 9.2 of ACI 318. Strength reduction factors, 0, as given in of kc,cr are given in the Tables 6, 9, 12, 15, and 18 of this ACI 318 D.4.5 must be used for load combinations report. calculated in accordance with ACI 318 Appendix C. kcuncr where analysis indicates no cracking at service The following amendments to ACI 318 Appendix D must load levels in the anchor vicinity(uncracked concrete). The be used as required for the strength design of adhesive values of kc,u„cr are given in the Tables 6, 9, 12, 15, and 18 anchors. In conformance with ACI 318, all equations are of this report. expressed in inch-pound units. Modify ACI 318 Section D.4.1.2 as follows: The basic concrete breakout strength of a single anchor in tension, Nb, must be calculated in accordance with ACI 0.44.2—In Eq. (D-1) and (D-2), ON„ and ¢V„ are the D.5.2.2 using the values of he,, kccr, and kc,u„cr as described lowest design strengths determined from all appropriate in the tables of this report. The modification factor"A” shall failure modes. ¢N„ is the lowest design strength in tension be taken as 1.0. Anchors shall not be installed in of an anchor or group of anchors as determined from lightweight concrete. The value of fc used for calculation consideration of ryNsa, either{GN0 or ONa9 and either¢Ncb or must be limited to 8,000 psi (55 MPa) in accordance with 0•cbg• 014 is the lowest design strength in shear of an ACI 318 0.3.5. anchor or a group of anchors as determined from 4.1.4 Static Pullout Strength in Tension: In lieu of consideration of. OVsa, either OVcb or OVcbg, and either OVcP determining the nominal static pullout strength in or OVcP9. For adhesive anchors subjected to tension accordance with ACI 318 D.5.3, nominal bond strength in resulting from sustained loading, refer to D.4.1.4 for tension must be calculated in accordance with the additional requirements. following sections added to ACI 318: ESR-3013 I Most Widely Accepted and Trusted Page 3 of 29 0.5.3.7—The nominal bond strength of a single adhesive — 1 <1•0 anchor, Na, or group of adhesive anchors. Nag, in tension �ec,Na—1+2e'N (0-16j) shall not exceed Scr,Na (a) for a single anchor Eq. (D-16j)is valid for e NOz Na_ANa �ed,Na 4p,Na'Na (0-16a) If the loading on an anchor group is such that only Nao certain anchors are in tension, only those anchors that are (b) for a group of anchors in tension shall be considered when determining the eccentricity e'N for use in Eq. (0-16j). ANa Nag qN Q cued,Na Wg,Na Wec,Na wp,Na Nap (D-16b) In the case where eccentric loading exists about two orthogonal axes, the modification factor CJec,Na shall be where: computed for each axis individually and the product of ANa is the projected area of the failure surface for the these factors used as glec,Na in Eq. (D-16b). single anchor or group of anchors that shall be 0.5.3.12—The modification factor for the edge effects for approximated as the base of the rectilinear geometrical a single adhesive anchor or anchor groups loaded in figure that results from projecting the failure surface tension is outward a distance, CcrNa. from the centerline of the anchor, or in the case of a group of anchors, from a line 4ied,Na = 1.0 when Ca.min?Ccr.Na (0-161) through a row of adjacent anchors. ANa shall not exceed nANao where n is the number of anchors in tension in the or group. In ACI 318 Figures RD.5.2.1a and RD.5.2.1b, the = p 7+0 3 °emia <1 0 when Gamin <Ccr,Na (D 16m) IP terms 1.5he, and 3.0he, shall be replaced with cc,,Na and ed,Na ( cc,,nre - Scr.Na respectively. D.5.3.13—When an adhesive anchor or a group of ANao is the projected area of the failure surface of a adhesive anchors is located in a region of a concrete single anchor without the influence of proximate edges in member where analysis indicates no cracking at service accordance with Eq. (D-16c): load levels, the nominal strength, Na or Nag, of a single Z (D-16c) adhesive anchor or a group of adhesive anchors shall be ANaO=(se,Na) calculated according to Eq. (D-16a) and Eq. (D-16b) with with Tk.uncr substituted for Tk,cr in the calculation of the basic scr Na =as given by Eq. (D-16d). strength Nao in accordance with Eq. (D-161). The factor Wg,Nao shall be calculated in accordance with Eq. (D-16h) D.5.3.8—The critical spacing sc,,Na and critical edge whereby the value of Tkmax,unc, shall be calculated in distance Cu.Na shall be calculated as follows: accordance with Eq. (D-16n) and substituted for Th,max.cr in Ir 1 Eq. (D-16h). =20-d. l k'un"5 3hef (D-16d) Scr,Na— V ,450 _kc,uncr / Tk,max,uncr— ,..r d y het"'c (D-16n) Scr,Na c`,Na (D-16e) 2 0.5.3.14—When an adhesive anchor or a group of 0.5.3.9—The basic strength of a single adhesive anchor adhesive anchors is located in a region of a concrete in tension in cracked concrete shall not exceed: member where analysis indicates no cracking at service load levels, the modification factor gip,Na shall be taken as: NaO=Tk,cr"TT'd•her (0-16!) tpp,Na= 1.0 when Ca,min_?car (D-16o) where: W maxlca,min;Ccr.Nal when c (D-16p) Tk.cr is the bond strength in cracked concrete p,Na cac a min <ca, 0.5.3.10—The modification factor for the influence of where: the failure surface of a group of adhesive anchors is: ca, shall be determined in accordance with Section [(scrNa)0.5 4.1.10 of this report. cug,Na-cug,NaO+ S '(1WgNao)) (D-16g) For all other cases: ipp Na = 1.0 (e.g. when cracked where concrete is considered). [( i).(_Tk,cr j1Additional information for the determination of nominal )1.51 bond strength in tension is given in Section 4.1.8 of this W 'Nao- - J? re p ort. 1.0 (D-16h rk,max,cr where 4.1.5 Static Steel Strength in Shear: The nominal static steel strength of a single anchor in shear as governed by n = the number of tension-loaded adhesive the steel, Vsa, in accordance with ACI 318 D.6.1.2 and anchors in a group. strength reduction factor, 0, in accordance with ACI 318 k D.4.4 are given in the tables outlined in Table la of this ccr - Tk,max,cr= ,nd lief./c (D-16i) report for the corresponding anchor steel. The value of f'c shall be limited to a maximum of 8,000 4.1.6 Static Concrete Breakout Strength in Shear: The psi(55 MPa)in accordance with ACi 318 D.3.5. nominal static concrete breakout strength of a single anchor or group of anchors in shear, Vcb or Vcog, must be 0.5.3.11—The modification factor for eccentrically calculated in accordance with ACI 318 D.6.2 based on loaded adhesive anchor groups is: information given in the tables outlined in Table 1a of this ESR-3013 I Most Widely Accepted and Trusted Page 4 of 29 report for the corresponding anchor steel. The basic cover requirements for reinforcement in 7.7. For adhesive concrete breakout strength of a single anchor in shear, Vh, anchors that will be torqued, the minimum edge distance must be calculated in accordance with ACI 318 D.6.2.2 and spacing are given in Tables 6, 9, 12, 15, and 18 of this - using the values of d given in the tables outlined in Table report. la for the corresponding anchor steel in lieu of (la (IBC For edge distances cal and anchor spacing sa, the 2009) and do (IBC 2006). In addition, he, must be maximum torque T'max shall comply with the following • substituted for 1,.. In no case shall her exceed 8d.The value of f, shall be limited to a maximum of 8,000 psi (55 MPa) requirements: in accordance with ACI 318 D.3.5. REDUCED INSTALLATION TORQUE T,,„FOR EDGE 4.1.7 Static Concrete Pryout Strength in Shear: In lieu DISTANCES c„<(5 x d) of determining the nominal static pryout strength in EDGE DISTANCE, 'MINIMUM ANCHOR =>MAXIMUM _ accordance with ACI 318 D.6.3.1, the nominal pryout ca SPACING,s„ TORQUE,Tmax strength in shear must be calculated in accordance with 1.75 in.(45 mm)<ca, 5 x d S.se,< 16 in. 0.3 x T,,,ax the following sections added to ACI 318: <5 x d se,>_16 in.(406 mm) 0.5 x T,,, D.6.3.2—The nominal pryout strength of an adhesive anchor or group of adhesive anchors shall not exceed: 4.1.10 Critical Edge Distance cap: In lieu of ACI 318 D.8.6,cat must be determined as follows: (a) for a single adhesive anchor: 0.4 Na/ (D 30a c =h 1160 max 3.1 0.7-; 1.4 Eq. 4-1 V,=min/k„•Na;kg)' ) ac- of( ) e q ( ) (b)for a group of adhesive anchors: where Tk,uncr is the characteristic bond strength in min/k� • N k� Ncbg/ (D 30b) uncracked concrete, h is the member thickness, and he,is V`P9 n Nag; p the embedment depth. where rk.unc, need not be taken as greater than: k„= 1.0 for her<2.5 inches (64 mm) / kunr�N her: kip =2.0 for he,>2.5 inches(64 mm) rkuncr= ird Na shall be calculated in accordance with Eq. (D-16a) 4.1.11 Design Strength in Seismic Design Categories Nag shall be calculated in accordance with Eq. (D-16b) C, D, E and F: In structures assigned to Seismic Design Category C, D, E or F under the IBC or IRC, the design Ncb and Ncbg shall be determined in accordance with D.5.2. must be performed according to ACI 318 Section D.3.3, and the anchor strength must be adjusted in accordance 4.1.8 Bond Strength Determination: Bond strength with 2009 IBC Section 1908.1.9 or 2006 IBC Section values are a function of the concrete compressive strength, 1908 1.16. For brittle steel elements, the anchor strength whether the concrete is cracked or uncracked and the must be adjusted in accordance with ACI 318-05 D.3.3.5 or - installation conditions (dry, water-saturated concrete). The ACI 318-08 D.3.3.5 or D.3.3.6. The nominal steel shear resulting characteristic bond strength must be multiplied by strength, Vsa, must be adjusted by ayseis as given in the the associated strength reduction factor c,nas follows: tables summarized in Table 1a for the corresponding ASSOCIATED anchor steel. An adjustment of the nominal bond CONCRETE PERMISSIBLE BOND STRENGTH strength rk,c, by aN.se,s is not necessary since UN.se,s= 1.0 in TYPE INSTALLATION STRENGTH REDUCTION all cases. CONDITIONS FACTOR 4.1.12 Interaction of Tensile and Shear Forces: For Dry rkenc, Od designs that include combined tension and shear. the Untracked interaction of tension and shear loads must be calculated Water-saturated rk.enc, Ows in accordance with ACI 318 D.7. Dry rk.c, Od 4.2 Allowable Stress Design: Cracked Water-saturated rk.c, Ow, 4.2.1 General: For anchors designed using load combinations in accordance with IBC Section 1605.3 Figure 2 of this report presents a bond strength design (Allowable Stress Design), allowable loads must be selection flowchart. Strength reduction factors for established using Eq. (4-2)or Eq. (4-3): determination of the bond strength are given in the tables _ n outlined in Table la of this report.Adjustments to the bond Tallowable,ASD—o Eq. (4-2) strength may also be taken for increased concrete compressive strength. These factors are given in the and corresponding tables as well. _On 4.1.9 Minimum Member Thickness, hmir, Anchor Vallowab/e,ASD—a Eq. (4-3) spacing, Sm/,,,and Edge Distance, Cmi,,: In lieu of ACI 318 where: _ D.8.3, values of cm,n and sm,,, described in this report must be observed for anchor design and installation. In lieu of Tallowable,ASO=Allowable tension load (Ibf or kN) ACI 318 D.8.5, the minimum member thicknesses, h,,,,,, Vallowabro,asO=Allowable shear load (lbf or kN) described in this report must be observed for anchor - design and installation. In determining minimum edge ¢Nn = Lowest design strength of an anchor or anchor distance, cm,„, the following section must be added to ACI group in tension as determined in accordance with ACI 318 318: Appendix D with amendments in this report and 2009 IBC D.8.8—For adhesive anchors that will remain untorqued, Sections 1908.1.9 and 1908.1.10 or 2006 IBC Section the minimum edge distance shall be based on minimum 1908.1.16, as applicable. ESR-3013 I Most Widely Accepted and Trusted Page 5 of 29 OV„ = Lowest design strength of an anchor or anchor 5.0 CONDITIONS OF USE group in shear as determined in accordance with ACI 318 The Hilti HIT-HY 150 MAX-SD Adhesive Anchoring System Appendix D with amendments in Section 3.3 of this criteria described in this report complies with, or is a suitable and 2009 IBC Sections 1908.1.9 and 1908.1.10 or 2006 alternative to what is specified in, those codes listed in IBC Section 1908.1.16,as applicable. Section 1.0 of this report, subject to the following • u = Conversion factor calculated as a weighted average conditions: of the load factors for the controlling load combination. In 5.1 The Hilti HIT-HY 150 MAX-SD Adhesive Anchoring addition, a must include all applicable factors to account System must be installed in accordance with the for non-ductile failure modes and required over-strength. manufacturer's published installation instructions, as included in the adhesive packaging and described in Limits on edge distance, anchor spacing and member Figure 5 of this report. thickness described in this report must apply. 5.2 The anchors must be installed in cracked or Example calculations for derivation of Tallowable.ASD are uncracked normal-weight concrete having a specified provided in Table 1b. compressive strength f' =2,500 psi to 8,500 psi (17.2 MPa to 58.6 MPa). 4.2.2 Interaction of Tensile and Shear Forces: In lieu of ACI 318 D.7.1, D.7.2 and D.7.3, interaction must be 5.3 The values of f' used for calculation purposes must calculated as follows: not exceed 8,000 psi (55 MPa). 5.4 Anchors must be installed in concrete base materials For shear loads V<_0.2 • Vauow.ASD, the full allowable load in holes predrilled in accordance with the instructions in tension Ta,low,ASD may be taken. provided in Figure 5 of this report. For tension loads T<_ 0.2 • Tallow,ASD, the full allowable load 5.5 Loads applied to the anchors must be adjusted in in shear Va11ow.ASD may be taken. accordance with Section 1605.2 of the IBC for strength design and in accordance with Section For all other cases: 1605.3 of the IBC for allowable stress design. T + 51.2 Eq. (4-4) 5.6 Hilti HIT-HY 150 MAX-SD adhesive anchors are Tallowable.ASD Vallowable,ASD recognized for use to resist short- and long-term loads, including wind and earthquake, subject to the 4.3 Installation: conditions of this report. Installation parameters are illustrated in Figure 1 of this 5.7 In structures assigned to Seismic Design Category C, report. Anchor locations must comply with this report and D, E or F under the IBC or IRC, anchor strength must the plans and specifications approved by the code official. be adjusted in accordance with 2009 IBC Section Installation of the Hilti HIT-HY 150 MAX-SD Adhesive 1908.1.9 or 2006 IBC Section 1908.1.16. Anchor System must conform to the manufacturer's 5.8 Hilti HIT-HY 150 MAX-SD adhesive anchors are published installation instructions included in each unit permitted to be installed in concrete that is cracked or package, as provided in Figure 5 of this report. that may be expected to crack during the service life 4.4 Special Inspection: of the anchor, subject to the conditions of this report. Periodic special inspection must be performed where 5.9 Strength design values must be established in required in accordance with Sections 1704.4 and 1704.15 accordance with Section 4.1 of this report. of the 2009 IBC or Section 1704.13 of the 2006, 2003 and 5.10 Allowable stress design values must be established in 2000 IBC, whereby periodic special inspection is defined in accordance with Section 4.2 of this report. Section 1702.1 of the IBC and this report. The special 5.11 Minimum anchor spacing and edge distance as well inspector must be on the jobsite initially during anchor as minimum member thickness must comply with the installation to verify anchor type, anchor dimensions, values given in this report. concrete type, concrete compressive strength, hole 5.12 Prior to anchor installation, calculations and details dimensions, hole cleaning procedures, anchor spacing, demonstrating compliance with this report shall be edge distances, concrete thickness, anchor embedment, submitted to the code official. The calculations and and tightening torque.The special inspector must verify the details must be prepared by a registered design initial installations of each type and size of adhesive professional where required by the statutes of the anchor by construction personnel on the site. Subsequent jurisdiction in which the project is to be constructed. installations of the same anchor type and size by the same construction personnel are permitted to be performed in 5.13 Anchors are not permitted to support fire-resistive the absence of the special inspector. Any change in the construction. Where not otherwise prohibited by the anchor product being installed or the personnel performing code, the Hilti HIT-HY 150 MAX-SD Adhesive the installation requires an initial inspection. For ongoing Anchoring System is permitted for installation in fire- installations over an extended period, the special inspector resistive construction provided that at least one of the must make regular inspections to confirm correct handling following conditions is fulfilled: and installation of the product. •Anchors are used to resist wind or seismic forces Continuous special inspection is required for all cases only. where anchors installed overhead (vertical up) are •Anchors that support gravity load-bearing structural designed to resist sustained tension loads. elements are within a fire-resistive envelope or a fire-resistive membrane, are protected by approved Under the IBC, additional requirements as set forth in fire-resistive materials, or have been evaluated for Sections 1705, 1706 or 1707 must be observed, where resistance to fire exposure in accordance with applicable. recognized standards. ESR-3013 I Most Widely Accepted and Trusted Page 6 of 29 •Anchors are used to support nonstructural 5.19 Hilti HIT-HY 150 MAX-SD adhesive is manufactured elements. by Hilti GmbH, Kaufering, Germany, with quality 5.14 Since an ICC-ES acceptance criteria for evaluating control inspections by Underwriters Laboratories Inc. data to determine the performance of adhesive (AA 668). anchors subjected to fatigue or shock loading is 6.0 EVIDENCE SUBMITTED unavailable at this time, the use of these anchors Data in accordance with the ICC-ES Acceptance Criteria - under such conditions is beyond the scope of this for Post-installed Adhesive Anchors in Concrete (AC308), report. dated November 2009, including but not limited to tests 5.15 Use of zinc-plated carbon steel threaded rods or steel under freeze/thaw conditions(Table 4.2, test series 6). reinforcing bars is limited to dry, interior locations. 7.0 IDENTIFICATION 5.16 Use of hot-dipped galvanized carbon steel and 7.1 The adhesives are identified by packaging labeled stainless steel rods is permitted for exterior exposure with the manufacturer's name (Hilti Corp.) and or damp environments. address, product name, a lot number, the expiration 5.17 Steel anchoring materials in contact with preservative- date, the evaluation report number (ICC-ES ESR- treated and fire-retardant-treated wood must be of 3013), and the name of the inspection agency zinc-coated carbon steel or stainless steel. The (Underwriters Laboratories Inc). minimum coating weights for zinc-coated steel must 7.2 Threaded rods, nuts, washers, and deformed comply with ASTM A 153. reinforcing bars are standard elements and must 5.18 Periodic special inspection must be provided in conform to applicable national or international accordance with Section 4.4 of this report. Continuous specifications as set forth in Tables 2, 3 and 4 of this special inspection for overhead installations (vertical report. up)that are designed to resist sustained tension loads must be provided in accordance with Section 4.4 of this report. ESR-3013 I Most Widely Accepted and Trusted Page 7 of 29 c • riitr ALL-THREAD — T,, OR REBAR s d r— — . hr, THREADED ROD/REINFORCING BAR FIGURE 1—INSTALLATION PARAMETERS TABLE 1a—DESIGN TABLE INDEX THREADED ROD DEFORMED REINFORCEMENT DESIGN STRENGTH' U.S. EU Canadian Fractional Metric (imperial) (metric) (metric) Steel Nsa, Vsa Table 5 Table 8 Table 11 Table 14 Table 17 Concrete kb, kb9, V<b, Van, Vco, VM,7 Table 6 Table 9 Table 12 Table 15 Table 18 Bondi Na,N49 Table 7 Table 10 Table 13 Table 16 Table 19 'Design strengths are as set forth in ACI 318 D.4.1.2. 'See Section 4.1 of this report for bond strength information. Cracked/Uncracked Concrete Hammer Drilled Water Dry Saturated (D) (WS) (1'D (I)WS (D) (WS) Tk,uncr or Tk•cr FIGURE 2—FLOWCHART FOR ESTABLISHMENT OF DESIGN BOND STRENGTH ESR-3013 I Most Widely Accepted and Trusted Page 8 of 29 TABLE 1b-EXAMPLE ALLOWABLE STRESS DESIGN VALUES FOR ILLUSTRATIVE PURPOSES NOMINAL ANCHOR EFFECTIVE EMBEDMENT , DIAMETER DEPTH p. k°„4, a / N, ALLOWABLE TENSION LOAD /N,da d he, (in.) (in.) (psi) (-) (-) (-) (Ib) (Ib) 3/8 23/8 2,500 24 1.48 0.65 4,392 1,928 - 1/2 23/4 2,500 24 1.48 0.65 5,472 2,403 5/e 31/8 2,500 24 1.48 0.65 6,629 2,911 3/4 31/2 2,500 24 1.48 0.65 7,857 3,450* 7/8 31/2 2,500 27 1.48 0.65 8,839 3,882 1 4 2,500 27 1.48 0.65 10,800 4,743 For SI: 1 lb=4.45 kN,1 psi=0.00689 MPa,1 in.=25.4 mm,°C=[(°F)-32)/1.8 Design Assumptions: 1. Single anchor with static tension load only;ASTM A 193 Grade B7 threaded rod,ductile. 2. Vertical downward installation direction. 3. Inspection Regimen=Periodic. 4. Installation temperature=14-104°F. 5. Long term temperature=75°F. 6. Short term temperature=104°F. 7. Dry hole condition-carbide drilled hole. 8. Embedment depth=h,,,,,, 9. Concrete determined to remain uncracked for the life of the anchorage. 10. Load combination from ACI 318 Section 9.2(no seismic loading). 11. 30 percent Dead Load(D)and 70 percent Live Load(L);Controlling load combination 1.2 D+1.6 L. 12. Calculation of a based on weighted average:a=1.2 D+1.6 L=1.2(0.30)+1.6(0.70)=1.48. 13. Normal weight concrete: f°=2,500 psi 14. Edge distance:c„=c,2>c,° 15. Member thickness:h 2 h„„,. * Verify capacity Capacity ACI 318 Formula Calculation 0 0N° reference Steel D.5.1 N5,=nA4„Nf,4, N„=0.3345• 125,000 0.75 31,360 lb Concrete D.5.2 N,5=k°�,°,(f°)°5 h,,'•5 N,,=24•(2,500)°5•3.515 0.65 5,107 lb Bond D.5.3** N.=n d h,, 71,,.n4r N.=n•3/4•3.5• 1,710 0.65 9,166 lb 5,107 lb -■concrete breakout is decisive;hence the ASD value will be calculated as =3,450 lb 1.48 Design equation provided in Section 4.1.4 as new section ACI 318 D.5.3.9,Eq.(D-16f). ESR-3013 I Most Widely Accepted and Trusted Page 9 of 29 TABLE 2—TENSILE PROPERTIES OF COMMON CARBON STEEL THREADED ROD MATERIALS' MINIMUM MINIMUM SPECIFIED MINIMUM SPECIFIED MINMUM YIELD REDUCTION SPECIFICATION THREADED ROD SPECIFICATION ULTIMATE STRENGTH fura/fra ELONGATION, OF AREA FOR NUTS' • STRENGTH 0.2% PERCENT , PERCENT fur., OFFSET,fvA ASTM A 1932 Grade B7 psi 125,000 105,000 5 21/2 in.(5 64 mm) 1.19 16 50 ASTM A194 (MPa) (860) (725) ASTM F 568M3 Class 5.8 MPa 500 400 DIN 934(8-A2K) M5(1/4 in.)to M24(1 in.) 1.25 10 35 (equivalent to ISO 898-1) (psi) (72,500) (58,000) ASTM A563 Grade DI-17 MPa 500 400 ISO 898-1°Class 5.8 1.25 22 - DIN 934(Grade 6) (psi) (72,500) (58,000) MPa 800 640 ISO 898-1°Class 8.8 1.25 12 52 DIN 934(Grade 8) (psi) (116,000) (92,800) 1 Hilti HIT-HY 150 MAX-SD adhesive may be used in conjunction with all grades of continuously threaded carbon steel rod(all-thread)that comply with the code reference standards and that have thread characteristics comparable with ANSI B1.1 UNC Coarse Thread Series or ANSI B1.13M M Profile Metric Thread Series.Values for threaded rod types and associated nuts supplied by Hilti are provided here. 2 Standard Specification for Alloy-Steel and Stainless Steel Bolting Materials for High-Temperature Service Standard Specification for Carbon and Alloy Steel Externally Threaded Metric Fasteners 4 Mechanical properties of fasteners made of carbon steel and alloy steel–Part 1:Bolts, screws and studs 'Based on 2-in.(50 mm)gauge length except ASTM A 193,which are based on a gauge length of 4d and ISO 898 which is based on 5d. 6 Nuts of other grades and styles having specified proof load stresses greater than the specified grade and style are also suitable.Nuts must have specified proof load stresses equal to or greater than the minimum tensile strength of the specified threaded rod. 'Nuts for fractional rods. TABLE 3—TENSILE PROPERTIES OF COMMON STAINLESS STEEL THREADED ROD MATERIALS' MINIMUM I MINIMUM SPECIFIED MINIMUM SPECIFIED MINIMUM YIELD REDUCTION SPECIFICATION THREADED ROD SPECIFICATION ULTIMATE STRENGTH fura/fva ELONGATION, OF AREA, FOR NUTS4 STRENGTH 0.2% PERCENT PERCENT furs OFFSET,frA ASTM F 5932 CW1 (316) psi 100,000 65,000 /°l0 5/4 in. 1.54 20 — F 594 (MPa) (690) (450) ASTM F 5932 CW2(316) psi 85,000 45,000 3/4 to 11/2 in. 1.89 25 — F 594 (MPa) (585) (310) ISO 3506-13 A4-70 MPa 700 450 1.56 40 — ISO 4032 M8–M24 (psi) (101,500) (65,250) 'Hilti HIT-HY 150 MAX-SD may be used in conjunction with all grades of continuously threaded stainless steel rod(all-thread)that comply with the code reference standards and that have thread characteristics comparable with ANSI 81.1 UNC Coarse Thread Series or ANSI B1.13M M Profile Metric Thread Series.Values for threaded rod types and associated nuts supplied by Hilti are provided here. 2 Standard Steel Specification for Stainless Steel Bolts,Hex Cap Screws. and Studs 3 Mechanical properties of corrosion-resistant stainless steel fasteners–Part 1:Bolts, screws and studs °Nuts of other grades and styles having specified proof load stresses greater than the specified grade and style are also suitable. Nuts must have specified proof load stresses equal to or greater than the minimum tensile strength of the specified threaded rod. ESR-3013 I Most Widely Accepted and Trusted Page 10 of 29 TABLE 4—TENSILE PROPERTIES OF COMMON REINFORCING BARS REINFORCING BAR SPECIFICATION MINIMUM SPECIFIED MINIMUM SPECIFIED YIELD • ULTIMATE STRENGTH,f„,. STRENGTH,fy, psi 90,000 60,000 ASTM A 615'Gr.60 (MPa) (620) (415) psi 60,000 40,000 ASTM A 6151 Gr.40 (MPa) (415) (275) MPa 550 500 DIN 4882 BSt 500 (psi) (79,750) (72,500) MPa 540 400 CAN/CSA-G30.18'Gr.400 (psi) (78,300) (58,000) 'Standard Specification for Deformed and Plain Carbon Steel Bars for Concrete Reinforcement 2 Reinforcing steel;reinforcing steel bars;dimensions and masses 'Billet-Steel Bars for Concrete Reinforcement ESR-3013 I Most Widely Accepted and Trusted Page 11 of 29 TABLE 5-STEEL DESIGN INFORMATION FOR FRACTIONAL THREADED ROD' NOMINAL ROD DIAMETER(inches) DESIGN INFORMATION SYMBOL UNITS 'la '/2 Sla 'ls ale 1 in. 0.375 0.5 0.625 0.75 J 0.875 1 • Rod O.D. d (mm) (9.5) (12.7) (15.9) (19.1) (22.2) (25.4) in.' 0.0775 0.1419 0.2260 0.3345 0.4617 0.6057 Rod effective cross-sectional area A1, (mm2) (50) (92) (146) (216) (298) (391) Ibf 5,620 10,290 16,385 24,250 33,470 43,910 N1a Nominal strength as (kN) (25.0) (45.8) (72.9) (107.9) (148.9) (195.3) 6 governed by steel strength lbf 2,810 6,175 9,830 14,550 20,085 26,345 w N V„ U (kN) (12.5) (27.5) (43.7) (64.7) (89.3) (117.2) rnReduction for seismic shear ays,,, - 0.7 c Strength reduction factor 0 for tension' 0 0.65 Strength reduction factor 0 for shear? 0 - 0.60 Ibf 9,690 17,740 28,250 41,810 57,710 75,710 Nsa Nominal strength as (kN) (43.1) (78.9) (125.7) (186.0) (256.7) (336.8) governed by steel strength Ibf 4,845 10,640 16,950 25,090 34,630 45,425 m V,a rn (kN) (21.5) (47.3) (75.4) (111.6) (154.0) (202.1) Q Reduction for seismic shear ay.se,s - 0.7 I- co Q Strength reduction factor 0 - for tension' 0.75 - Strength reduction factor 0 - for shear' 0 0.65 Ibf 7,750 14,190 22,600 28,430 39,245 51,485 - N,a y Nominal strength as (kN) (34.5) (63.1) (100.5) (126.5) (174.6) (229.0) E governed by steel strength lbf 3,875 8,515 13,560 17,060 23,545 30,890 in V.,a (kN) (17.2) (37.9) (60.3) (75.9) (104.7) (137.4) 0 SI Reduction for seismic shear a,,,,, - 0.7 in LL Strength reduction factor 0 I- for tension? 0 0.65 Q Strength reduction factor 0 for shear? 0 0.60 For SI: 1 inch=25.4 mm, 1 lbf=4.448 N, 1 psi=0.006897 MPa. For pound-inch units: 1 mm=0.03937 inches, 1 N=0.2248 lbf, 1 MPa= 145.0 psi. 'Values provided for common rod material types based on published strengths and calculated in accordance with ACI 318 Eq.(D-3)and Eq. (D-20).Other material specifications are admissible,subject to the approval of the code official. Nuts and washers must be appropriate for the rod strength. 2 For use with the load combinations of IBC Section 1605.2.1 or ACI 318 Section 9.2 as set forth in ACI 318 D.4.4. If the load combinations of ACI 318 Appendix C are used,the appropriate value ofOmust be determined in accordance with ACI 318 D.4.5.Values correspond to a brittle steel element. 3 For use with the load combinations of IBC Section 1605.2.1 or ACI 318 Section 9.2 as set forth in ACI 318 D.4.4.If the load combinations of ACI 318 Appendix C are used,the appropriate value of a must be determined in accordance with ACI 318 D.4.5.Values correspond to a ductile steel element. . , ESR-3013 I Most Widely Accepted and Trusted Page 12 of 29 TABLE 6—CONCRETE BREAKOUT DESIGN INFORMATION FOR FRACTIONAL THREADED ROD' NOMINAL ROD DIAMETER(inches) - DESIGN INFORMATION SYMBOL UNITS 315 112 518 314 755 1 - Effectiveness factor for uncracked in-lb 24 24 24 24 27 27 k concrete `'""" (SI) (10) (10) (10) (10) (11.3) (11.3) _- Effectiveness factor for cracked in-lb 17 17 17 17 17 17 concrete k`,�, (SI) (7) (7) (7) (7) (7) (7) _ in. 1'/8 21/2 3'/8 33/4 43/8 5 Min.anchor spacing4 sm;,, (mm) (48) (64) (79) (95) (111) (127) in. 17/5 21/2 3'/8 33/4 43/8 5 Min.edge distance4 cm;,, (mm) (48) (64) (79) (95) (111) (127) in. h„+11/4 Minimum member thickness h,,,,,, he,+2d'3) (mm) (h,,+30) Critical edge distance–splitting See Section 4.1.10 of this report. - (for uncracked concrete) °eC Strength reduction factor for tension,concrete failure modes, 0 - 0.65 Condition B2 Strength reduction factor for shear, concrete failure modes,Condition 0 - 0.70 B2 For SI:1 inch=25.4 mm,1 lbf=4.448 N, 1 psi=0.006897 MPa. For pound-inch units: 1 mm=0.03937 inches,1 N=0.2248 lbf, 1 MPa=145.0 psi. 'For additional setting information,see installation instructions in Figure 5. 2 Values provided for post-installed anchors with category as determined from ACI 355.2 given for Condition B.Condition B applies without supplementary reinforcement or where pullout(bond)or pryout govern,as set forth in ACI 318 D.4.4,while condition A requires supplemental reinforcement. Values are for use with the load combinations of IBC Section 1605.2.1 or ACI 318 Section 9.2 as set forth in ACI 318 D.4.4.If the load combinations of ACI 318 Appendix C are used,the appropriate value of 0 must be determined in accordance with ACI 318 D.4.5. ado=hole diameter. _ `For installations with 13/4 inch edge distance,refer to Section 4.1.9 for spacing and maximum torque requirements. ESR-3013 I Most Widely Accepted and Trusted Page 13 of 29 TABLE 7-BOND STRENGTH DESIGN INFORMATION FOR FRACTIONAL THREADED ROD' NOMINAL ROD DIAMETER(IN.) DESIGN INFORMATION SYMBOL UNITS 3l5 1'2 518 314 '/e 1 - Characteristic bond psi 1,985 1,985 1,850 1,710 1,575 1,440 strength in uncracked rk.unc, concrete (MPa) (13.7) (13.7) (12.7) (11.8) (10.9) (9.9) A Characteristic bond psi 696 763 821 881 889 896 strength in cracked rk c, concrete' (MPa) (4.8) (5.3) (5.7) (6.1) (6.1) (6.2) cc Characteristic bond psi 1,610 1,610 1,495 1,385 1,275 1,170 a strength in uncracked rk.,,nc, d concrete (MPa) (11.1) (11.1) (10.3) (9.6) (8.8) (8.1) a B Characteristic bond psi 561 615 662 711 717 723 a strength in cracked rk.c, E concrete' (MPa) (3.9) (4.2) (4.6) (4.9) (4.9) (5.0) ~ Characteristic bond psi 930 930 865 805 740 675 strength in uncracked rk, concrete (MPa) (6.4) (6.4) (6.0) (5.5) (5.1) (4.7) C Characteristic bond psi 321 352 379 407 410 414 strength in cracked rk.c, concrete' (MPa) (2.2) (2.4) (2.6) (2.8) (2.8) (2.9) in. 23/8 23/4 31/8 31/2 31/2 4 Minimum anchor embedment depth he,,n,n (mm) (60) (70) (79) (89) (89) (102) in. 71/2 10 12'/2 15 171/2 20 Maximum anchor embedment depth he1m, (mm) (191) (254) (318) (381) (445) (508) m c cn O C Anchor Category 1 y m :° Dry concrete&Water- E u 12 saturated concrete a c U Od& os 0.65 For SI: 1 inch a 25.4 mm, 1 lbf=4.448 N. 1 psi=0.006897 MPa. For pound-inch units: 1 mm=0.03937 inches, 1 N=0.2248 lbf, 1 MPa= 145.0 psi. 'Bond strength values correspond to concrete compressive strength range 2,500 psi<_f<<_4,500 psi. For 4,500 psi<f'<_6,500 psi,tabulated - characteristic bond strengths may be increased by 6 percent. For 6,500 psi<fc<_8,000 psi,tabulated characteristic bond strengths may be increased by 10 percent. 2 Temperature range A:Maximum short term temperature= 104°F(40°C),maximum long term temperature=75°F(24°C). Temperature range B:Maximum short term temperature= 176°F(80°C),maximum long term temperature= 122°F(50°C). Temperature range C:Maximum short term temperature=248°F(120°C),maximum long term temperature=162°F(72°C). Short term elevated concrete temperatures are those that occur over brief intervals,e.g.,as a result of diurnal cycling.Long term concrete temperatures are roughly constant over significant periods of time. 'For structures assigned to Seismic Design Categories C, D, E or F, bond strength values are multiplied by ass.s= 1.0=>no reduction. ESR-3013 I Most Widely Accepted and Trusted Page 14 of 29 TABLE 8—STEEL DESIGN INFORMATION FOR METRIC THREADED ROD' NOMINAL ROD DIAMETER(mm) , DESIGN INFORMATION SYMBOL UNITS 10 12 16 20 24 mm 10 12 16 20 24 Rod O.D. d (in.) (0.39) (0.47) (0.63) (0.79) (0.94) mm2 58 84.3 157 245 353 Rod effective cross-sectional area Asa 2 (in. ) (0.090) (0.131) (0.243) (0.380) (0.547) kN 29.0 42.2 78.5 122.5 176.5 Nsa co Nominal (6,520) (9,475) (17,650) (27,540) (39,680 Nominal strength as governed by ( ) ( 20) (9,475 ) (27,540 (39,680) N Vs„ steel strength kN 14.5 25.3 47.1 73.5 105.9 V (Ib) (3,260) (5,685) (10,590) (16,525) (23,810) - Reduction for seismic shear aysa,s - 0.7 W co Strength reduction factor 0for 0.65 O tension2 co Strength reduction factor 0for - 0.60 shear kN 46.4 67.4 125.6 196.0 282.4 Nsa co Nominal strength as governed by (Ib) (10,430) (15,160) (28,235) (44,065) (63,485) 0 steel strength kN 23.2 40.5 75.4 117.6 169.4 m Vs. U (Ib) (5,215) (9,100) (16,940) (26,440) (38,090) - Reduction for seismic shear ayse,s - 0.7 00 Strength reduction factor 0 for 0.65 O tension2 co Strength reduction factor 0for 0.60 shear' kN 40.6 59.0 109.9 171.5 247.1 0 Nominal strength as governed by Nsa (Ib) (9,130) (13,263) (24,703) (38,555) (55,550) Q steel strength kN 20.3 35.4 65.9 102.9 148.3 Vsa (Ib) (4,565) (7,960) (14,825) (23,135) (33,330) co 0 Reduction for seismic shear ay..,. - 0.7 AStrength reduction factor Ofor 0.65 g3 tension2 • Strength reduction factor 0for - 0 0.60 — shear For SI: 1 inch=25.4 mm, 1 lbf=4.448 N, 1 psi=0.006897 MPa. For pound-inch units: 1 mm=0.03937 inches, 1 N=0.2248 lbf, 1 MPa=145.0 psi. 'Values provided for common rod material types based on published strengths and calculated in accordance with ACI 318 Eq.(D-3)and Eq. (D-20).Other material specifications are admissible,subject to the approval of the code official.Nuts and washers must be appropriate for the rod strength. 2 For use with the load combinations of IBC Section 1605.2.1 or ACI 318 Section 9.2 as set forth in ACI 318 D.4.4.If the load combinations of ACI 318 Appendix C are used,the appropriate value of0 must be determined in accordance with ACI 318 D.4.5.Values correspond to a brittle steel element. A4-70 Stainless(M10-M24 diameters). . , ESR-3013 I Most Widely Accepted and Trusted Page 15 of 29 TABLE 9—CONCRETE BREAKOUT DESIGN INFORMATION FOR METRIC THREADED ROD' NOMINAL ROD DIAMETER(mm) DESIGN INFORMATION SYMBOL UNITS 10 12 16 20 24 Effectiveness factor for uncracked SI 10 10 10 10 11.3 • concrete kC,,,,k' (in-lb) (24) (24) (24) (24) (27) Effectiveness factor for cracked concrete C. SI 7 7 7 7 7 k (in-lb) (17) (17) (17) (17) (17) mm 50 60 80 100 120 Min.anchor spacing sm, (in.) (2.0) (2.4) (3.2) (3.9) (4.7) Min.edge distance' cm, mm 50 60 80 100 120 (in.) (2.0) (2.4) (3.2) (3.9) (4.7) Minimum member thickness h„„„ mm he,+30 he +2d0(3i (in.) (het+ 11/4) Critical edge distance–splitting ce See Section 4.1.10 of this report. - (for uncracked concrete) Strength reduction factor for tension, concrete failure modes,Condition B2 0 0.65 Strength reduction factor for shear, concrete failure modes,Condition 82 0 - 0.70 For SI: 1 inch=25.4 mm, 1 lbf=4.448 N, 1 psi=0.006897 Mpa For pound-inch units: 1 mm=0.03937 inches, 1 N=0.2248 lbf, 1 MPa= 145.0 psi. 'For additional setting information,see installation instructions in Figure 5. 'Values provided for post-installed anchors with category as determined from ACI 355.2 given for Condition B.Condition B applies without supplementary reinforcement or where pullout(bond)or pryout govern,as set forth in ACI 318 D.4.4,while condition A requires supplemental reinforcement. Values are for use with the load combinations of IBC Section 1605.2.1 or ACI 318 Section 9.2 as set forth in ACI 318 D.4.4. If the load combinations of ACI 318 Appendix C are used,the appropriate value of0 must be determined in accordance with ACI 318 D.4.5. 3d0=drill bit diameter. "For installations with 13/4 inch edge distance,refer to Section 4.1.9 for spacing and maximum torque requirements. . • ESR-3013 I Most Widely Accepted and Trusted Page 16 of 29 TABLE 10-BOND STRENGTH DESIGN INFORMATION FOR METRIC THREADED ROD' NOMINAL ROD DIAMETER(mm) , DESIGN INFORMATION SYMBOL UNITS - 10 12 16 20 24 Characteristic bond strength in MPa 13.7 13.7 12.7 11.8 10.9 uncracked concrete r"tIn°' (psi) (1,985) (1,985) (1,850) (1,710) (1,575) A Characteristic bond strength in MPa 4.9 5.1 5.7 6.1 6.2 cracked concretes r"" (psi) (705) (744) (822) (884) (893) c MPa 11.1 11.1 10.3 9.6 8.8 m Characteristic bond strength in ct uncracked concrete r"," (psi) (1,610) (1,610) (1,500) (1,390) (1,275) m B `0 Characteristic bond strength in MPa 3.9 4.1 4.6 4.9 5.0 a) E cracked concrete' r"" (psi) (569) (600) (663) (712) (720) t- MPa 6.4 6.4 6.0 5.5 5.1 Characteristic bond strength in uncracked concrete r"°"" (psi) (930) (930) (865) (805) (740) C Characteristic bond strength in MPa 2.2 2.4 2.6 2.8 2.8 cracked concrete' r"` (psi) (326) (343) (379) (408) (412) mm 60 70 80 90 96 Minimum anchor embedment depth herm,,, (in.) (2.4) (2.8) (3.1) (3.5) (3.8) mm 200 240 320 400 480 Maximum anchor embedment depth he,m, (in.) (7.9) (9.4) (12.6) (15.7) (18.9) I o c Anchor 1 N m:° Dry concrete&Water- Category E 5 c saturated concrete N o aEU 0a & ris,,5 - 0.65 For SI: 1 inch=25.4 mm, 1 Ibf=4.448 N, 1 psi=0.006897MPa. For pound-inch units: 1 mm=0.03937 inches,1 N=0.2248 lbf. 1 MPa=145.0 psi. ' Bond strength values correspond to concrete compressive strength range 2,500 psi<_f,<_4,500 psi. For 4,500 psi<f,<_6,500 psi,tabulated characteristic bond strengths may be increased by 6 percent. For 6,500 psi<f,<_8,000 psi,tabulated characteristic bond strengths may be increased by 10 percent. 'Temperature range A:Maximum short term temperature= 104°F(40°C),maximum long term temperature=75°F(24°C). _ Temperature range B:Maximum short term temperature= 176°F(80°C),maximum long term temperature= 122°F(50°C). Temperature range C:Maximum short term temperature=248°F(120°C),maximum long term temperature= 162°F(72°C). Short term elevated concrete temperatures are those that occur over brief intervals,e.g.,as a result of diurnal cycling.Long term concrete temperatures are roughly constant over significant periods of time. 'For structures assigned to Seismic Design Categories C, D, E or F.bond strength values are multiplied by aN,seis=1.0=>no reduction. ESR-3013 I Most Widely Accepted and Trusted Page 17 of 29 TABLE 11-STEEL DESIGN INFORMATION FOR U.S.IMPERIAL REINFORCING BARS' BAR SIZE DESIGN INFORMATION SYMBOL UNITS _ No.3 No.4 No.5 No.6 No.7 No.8 in. '/8 1/3 5/8 3/0 7/8 1 . Nominal bar diameter d (mm) (9.5) (12.7) (15.9) (19.1) (22.2) (25.4) in.' 0.11 0.2 0.31 0.44 0.6 0.79 Bar effective cross-sectional area Asa (mm2) (71) (129) (200) (284) (387) (510) lb 6,600 12,000 18,600 26,400 36,000 47,400 - N,a c) Nominal strength as governed (kN) (29.4) (53.4) (82.7) (117.4) (160.1) (210.9) by steel strength lb 3,960 7,200 11,160 15,840 21,600 28,440 0 Via In (kN) (17.6) (32.0) (49.6) (70.5) (96.1) (126.5) `O Reduction for seismic shear ay.,e,s - 0.7 a 2 Strength reduction factor 0 for - in 0.65 tension a Strength reduction factor 0 for - shear 0 0.60 lb 9,900 18,000 27,900 39,600 54,000 71,100 N,a oo Nominal strength as governed (kN) (44.0) (80.1) (124.1) (176.2) (240.2) (316.3) by steel strength lb 5,940 10.800 16,740 23,760 32,400 42,660 0 Vs„ Ln (kN) (26.4) (48.0) (74.5) (105.7) (144.1) (189.8) cD Reduction for seismic shear aV,,e„ - 0.7 a 2 Strength reduction factor 0 for - tension 0 in 0.65 a Stren th reduction factor 0for shear 0.60 For SI: 1 inch=25.4 mm, 1 lbf=4.448 N, 1 psi=0.006897MPa. For pound-inch units: 1 mm=0.03937 inches, 1 N=0.2248 lbf, 1 MPa= 145.0 psi. !Values provided for common rod material types based on published strengths and calculated in accordance with ACI 318 Eq.(D-3)and Eq. (D-20).Other material specifications are admissible,subject to the approval of the code official.Nuts and washers must be appropriate for the rod strength. For use with the load combinations of IBC Section 1605.2.1 or ACI 318 Section 9.2 as set forth in ACI 318 D.4.4.If the load combinations of ACI 318 Appendix C are used,the appropriate value of0 must be determined in accordance with ACI 318 D.4.5.Values correspond to a brittle steel element. , ESR-3013 I Most Widely Accepted and Trusted Page 18 of 29 TABLE 12—CONCRETE BREAKOUT DESIGN INFORMATION FOR U.S.IMPERIAL REINFORCING BARS' BAR SIZE DESIGN INFORMATION SYMBOL UNITS No.3 No.4 No.5 No.6 No.7 No.8 _ Effectiveness factor for uncracked in-lb 24 24 24 24 24 24 concrete k`'"^" (SI) (10) (10) (10) (10) (10) (10) Effectiveness factor for cracked in-lb 17 17 17 17 17 17 concrete k`" (SI) (7) (7) (7) (7) (7) (7) in. 12/8 21/2 31/8 33/4 43/8 5 Min.bar spacing' s,^,^ - (mm) (48) (64) (79) (95) (111) (127) in. 12/8 21/2 31/8 33/4 43/8 5 Min. edge distance" cm,„ (mm) (48) (64) (79) (95) (111) (127) in. h,,+1'/4 Minimum member thickness 11444 hs,+2d0131 (mm) (h44+30) Critical edge distance–splitting See Section 4.1.10 of this report. (for uncracked concrete) c,. Strength reduction factor for tension,concrete failure modes, 0 - 0.65 Condition B2 Strength reduction factor for shear, concrete failure modes,Condition 0 - 0.70 B2 For SI: 1 inch=25.4 mm, 1 Ibf=4.448 N,1 psi=0.006897MPa. For pound-inch units:1 mm=0.03937 inches, 1 N=0.2248 Ibf,1 MPa=145.0 psi. 'For additional setting information,see installation instructions in Figure 5. 2 Values provided for post-installed anchors with category as determined from ACI 355.2 given for Condition B.Condition B applies without supplementary reinforcement or where pullout(bond)or pryout govern,as set forth in ACI 318 D.4.4,while condition A requires supplemental reinforcement. Values are for use with the load combinations of IBC Section 1605.2.1 or ACI 318 Section 9.2 as set forth in ACI 318 D.4.4.If the load combinations of ACI 318 Appendix C are used,the appropriate value of0 must be determined in accordance with ACI 318 D.4.5. ado=drill bit diameter. "For installations with 13/4 inch edge distance,refer to Section 4.1.9 for spacing and maximum torque requirements. e ESR-3013 I Most Widely Accepted and Trusted Page 19 of 29 TABLE 13—BOND STRENGTH DESIGN INFORMATION FOR U.S.IMPERIAL REINFORCING BARS' DESIGN INFORMATION SYMBOL UNITS BAR SIZE No.3 I No.4 No.5 No.6 No.7 I No.8 Characteristic bond psi 1,290 • strength in uncracked rk.,,,°r A concrete MPa (8.9) Characteristic bond psi 696 763 821 881 889 896 strength in cracked rk,cr concrete3 MPa (4.8) (5.3) (5.7) (6.1) (6.1) (6.2) c Characteristic bond psi 1,045 cc strength in uncracked rk,,,,,°r 2 concrete MPa (7.2) = B m Characteristic bond psi 561 615 662 711 717 723 a strength in cracked rk,°r E concrete3 MPa (3.9) (4.2) (4.6) (4.9) (4.9) (5.0) o ~ Characteristic bond psi 605 strength in uncracked Tk.,mp C concrete MPa (4.2) Characteristic bond psi 321 352 379 407 410 414 strength in cracked rk,a concrete3 MPa (2.2) (2.4) (2.6) (2.8) (2.8) (2.9) in. 23/8 23/4 31/8 31/2 31/2 4 Minimum anchor embedment depth he, (mm) (60) (70) (79) (89) (89) (102) Maximum anchor embedment in. 7112 10 121/2 15 171/2 20 depth he,mex epth (mm) (191) (254) (318) (381) (445) (508) m c w Anchor - 1 N'io° Dry concrete&Water- Category 2,o saturated concrete co a —O q,,&¢., - 0.65 For SI: 1 inch=25.4 mm, 1 lbf=4.448 N,1 psi=0.006897MPa. For pound-inch units:1 mm=0.03937 inches, 1 N=0.2248 Ibf,1 MPa=145.0 psi. 1 Bond strength values correspond to concrete compressive strength range 2,500 psi s re 5 4,500 psi.For 4,500 psi<f,5 6,500 psi,tabulated characteristic bond strengths may be increased by 6 percent.For 6,500 psi<t',5 8,000 psi,tabulated characteristic bond strengths may be increased by 10 percent. 'Temperature range A:Maximum short term temperature=104°F(40°C),maximum long term temperature=75°F(24°C). Temperature range B:Maximum short term temperature=176°F(80°C),maximum long term temperature= 122°F(50°C). Temperature range C:Maximum short term temperature=248°F(120°C),maximum long term temperature=162°F(72°C). Short term elevated concrete temperatures are those that occur over brief intervals,e.g.,as a result of diurnal cycling.Long term concrete temperatures are roughly constant over significant periods of time. 3For structures assigned to Seismic Design Categories C,D,E or F,bond strength values are multiplied by aN,seis=1.0=>no reduction. ESR-3013 I Most Widely Accepted and Trusted Page 20 of 29 TABLE 14-STEEL DESIGN INFORMATION FOR EU METRIC REINFORCING BARS' BAR SIZE . DESIGN INFORMATION SYMBOL UNITS 10 12 14 16 20 25 mm 10.0 12.0 14.0 16.0 20.0 25.0 Nominal bar diameter d (in.) (0.394) (0.472) (0.551) (0.630) (0.787) (0.984) - mm2 78.5 113.1 153.9 201.1 314.2 490.9 - Bar effective cross-sectional area A,a (. 2) ( ) ( ) ( ) ..rn. (0.122) (0.175) (0.239) (0.312) (0.487) (0.761) kN 43.2 62.2 84.7 110.6 172.8 270.0 °C Nominal strength as governed by N„ (Ib) (9,710) (13,985) (19,035) (24,860) (38,845) (60,695) ' in steel strength kN 25.9 37.3 50.8 66.4 103.7 162.0 V„ (Ib) (5,830) (8,390) (11,420) (14,915) (23,310) (36,415) OS Reduction for seismic shear av,,,;, - 0.7 co v Strength reduction factor 0 for Z tension2 0.65 5 Strength reduction factor tfor shear 0.60 For SI:1 inch=25.4 mm,1 Ibf=4.448 N,1 psi=0.006897MPa. For pound-inch units:1 mm=0.03937 inches,1 N=0.2248 lbf,1 MPa=145.0 psi. 'Values provided for common rod material types based on published strengths and calculated in accordance with ACI 318 Eq.(D-3)and Eq. (D-20).Other material specifications are admissible,subject to the approval of the code official.Nuts and washers must be appropriate for the rod strength. 2 For use with the load combinations of IBC Section 1605.2.1 or ACI 318 Section 9.2 as set forth in ACI 318 D.4.4.If the load combinations of ACI 318 Appendix C are used,the appropriate value of0 must be determined in accordance with ACI 318 D.4.5.Values correspond to a brittle steel element. TABLE 15-CONCRETE BREAKOUT DESIGN INFORMATION FOR EU METRIC REINFORCING BARS' BAR SIZE DESIGN INFORMATION SYMBOL UNITS 10 12 14 I 16 20 25 Effectiveness factor for uncracked SI 10 12.6 concrete k'""" (in-Ib) (24) (30) Effectiveness factor for cracked SI 7 concrete k`•" (in-Ib) (17) mm 50 60 70 80 100 125 Min.bar spacing4 s,,,;,, - (in.) (2) (2.4) (2.8) (3.1) (3.9) (4.9) mm 50 60 70 80 100 125 Min. edge distance.' c„;„ (in.) (2) (2.4) (2.8) (3.1) (3.9) (4.9) mm h,,,+30 Minimum member thickness h,,,,,, (in.) (h +1'/4) her+2d0(3)n ,, Critical edge distance-splitting (for uncracked concrete) c,,, - See Section 4.1.10 of this report. Strength reduction factor for tension, - 0.65 concrete failure modes,Condition B2 0 Strength reduction factor for shear, 0.70 concrete failure modes,Condition B2 For SI: 1 inch=25.4 mm, 1 lbf=4.448 N,1 psi=0.006897MPa. For pound-inch units:1 mm=0.03937 inches,1 N=0.2248 Ibf,1 MPa=145.0 psi. 'For additional setting information,see installation instructions in Figure 5. 2 Values provided for post-installed anchors with category as determined from ACI 355.2 given for Condition B.Condition B applies without supplementary reinforcement or where pullout(bond)or pryout govern,as set forth in ACI 318 D.4.4,while condition A requires supplemental reinforcement. Values are for use with the load combinations of IBC Section 1605.2.1 or ACI 318 Section 9.2 as set forth in ACI 318 D.4.4.If the load combinations of ACI 318 Appendix C or are used,the appropriate value of0 must be determined in accordance with ACI 318 D.4.5. 3d0=drill bit diameter. 4For installations with 13/4 inch edge distance,refer to Section 4.1.9 for spacing and maximum torque requirements. - ESR-3013 I Most Widely Accepted and Trusted Page 21 of 29 ' TABLE 16-BOND STRENGTH DESIGN INFORMATION FOR EU METRIC REINFORCING BARS' BAR SIZE DESIGN INFORMATION SYMBOL UNITS , 10 12 14 16 20 25 Characteristic bond MPa 8.9 . strength in uncracked rk,,,,,c, concrete (psi) (1,290) A Characteristic bond MPa 4.9 5.1 5.4 5.7 6.1 6.2 strength in cracked rk.c, concrete3 (psi) (705) (744) (783) (822) (884) (895) "a.) - c Characteristic bond MPa 7.2 ix strength in uncracked rk,,n°, a concrete (psi) (1,045) B m Characteristic bond MPa 3.9 4.1 4.4 4.6 4.9 5.0 a strength in cracked rk°, F concrete3 (psi) (569) (600) (631) (663) (712) (722) a ~ Characteristic bond MPa 4.2 strength in uncracked rk.,,,,,, concrete (Psi) (605) C Characteristic bond MPa 2.2 2.4 2.5 2.6 2.8 2.9 strength in cracked rk.c, concrete' (psi) (326) (343) (361) (379) (408) (413) mm 60 70 75 80 90 100 Minimum anchor embedment depth hetm;n (in.) (2.4) (2.8) (3.0) (3.9) (3.1) (3.5) (3.9 mm 200 240 280 320 400 500 Maximum anchor embedment depth he!ma. (i n.) (7.9) (9.4) (11.0) (12.6) (15.7) (19.7) 76 c c Anchor 1 y m :° Dry concrete&Water- Category E 76 I' saturated concrete N c O D. _ 0 ¢a&0., - 0.65 For SI: 1 inch=25.4 mm, 1 lbf=4.448 N,1 psi=0.006897MPa. For pound-inch units: 1 mm=0.03937 inches, 1 N=0.2248 Ibf, 1 MPa= 145.0 psi. 'Bond strength values correspond to concrete compressive strength range 2,500 psi<_I',5 4.500 psi. For 4,500 psi<fs<_6,500 psi,tabulated characteristic bond strengths may be increased by 6 percent. For 6,500 psi<f,5 8,000 psi,tabulated characteristic bond strengths may be increased by 10 percent. . 2Temperature range A:Maximum short term temperature= 104°F(40°C),maximum long term temperature=75°F(24°C). Temperature range B:Maximum short term temperature= 176°F(80°C),maximum long term temperature= 122°F(50°C). Temperature range C:Maximum short term temperature=248°F(120°C),maximum long term temperature=162°F(72°C). Short term elevated concrete temperatures are those that occur over brief intervals,e.g.,as a result of diurnal cycling.Long term concrete temperatures are roughly constant over significant periods of time. 'For structures assigned to Seismic Design Categories C,D,E or F, bond strength values are multiplied by aN.se,,=1.0=>no reduction. ` ESR-3013 I Most Widely Accepted and Trusted Page 22 of 29 TABLE 17-STEEL DESIGN INFORMATION FOR CANADIAN METRIC REINFORCING BARS' BAR SIZE , DESIGN INFORMATION SYMBOL UNITS 10M 15M 20M 25M mm 11.3 16.0 19.5 25.2 Nominal bar diameter d • (in.) (0.445) (0.630) (0.768) (0.992) mm2 100.3 201.1 298.6 498.8 Bar effective cross-sectional area A„ (in.2) (0.155) (0.312) (0.463) (0.773) kN 54.2 108.6 161.3 269.3 8 Nominal strength as Ni.. (Ib) (12,175) (24,410) (36,255) (60,550) - v governed by steel strength kN 32.5 65.1 96.8 161.6 6 V„ co (Ib) (7,305) (14,645) (21,755) (36,330) c Reduction for seismic shear a,,,r;c - 0.7 c..) 9 Strength reduction factor 0 0.65 < for tension2 0 Strength reduction factor 0 for shear2 0 - 0.60 For SI: 1 inch=25.4 mm,1 lbf=4.448 N,1 psi=0.006897MPa. For pound-inch units:1 mm=0.03937 inches,1 N=0.2248 lbf, 1 MPa=145.0 psi. 'Values provided for common rod material types based on published strengths and calculated in accordance with ACI 318 Eq.(D-3)and Eq. (D-20).Other material specifications are admissible,subject to the approval of the code official.Nuts and washers must be appropriate for the rod strength. 2 For use with the load combinations of IBC Section 1605.2.1 or ACI 318 Section 9.2 as set forth in ACI 318 D.4.4.If the load combinations of ACI 318 Appendix C are used,the appropriate value of0 must be determined in accordance with ACI 318 D.4.5.Values correspond to a brittle steel element. TABLE 18-CONCRETE BREAKOUT DESIGN INFORMATION FOR CANADIAN METRIC REINFORCING BARS' BAR SIZE DESIGN INFORMATION SYMBOL UNITS 10 M 15 M 20 M 25 M Effectiveness factor for uncracked SI 10 10 10 11.3 concrete k`"" " (in-Ib) (24) (24) (24) (27) Effectiveness factor for cracked SI 7 7 7 7 concrete k`" (in-Ib) (17) (17) (17) (17) mm 57 80 98 126 Min.bar spacing' sm; (in.) (2.2) (3.1) (3.8) (5.0) mm 57 80 98 126 Min. edge distance° c,,,,,, (in.) (2.2) (3.1) _ (3.8) (5.0) mm ha,+30 h,r+2d'� Minimum member thickness hm,n (in.) (he+1'I°) Critical edge distance-splitting (for uncracked concrete) ca, - See Section 4.1.10 of this report. Strength reduction factor for tension,concrete failure modes, 0 - 0.65 Condition B2 Strength reduction factor for shear,concrete failure modes, 0 - 0.70 Condition B2 For SI:1 inch=25.4 mm,1 lbf=4.448 N, 1 psi=0.006897MPa. For pound-inch units:1 mm=0.03937 inches, 1 N=0.2248 Ibf,1 MPa=145.0 psi. 'For additional setting information,see installation instructions in Figure 5. 2 Values provided for post-installed anchors with category as determined from ACI 355.2 given for Condition B.Condition B applies without supplementary reinforcement or where pullout(bond)or pryout govern,as set forth in ACI 318 D.4.4,while condition A requires supplemental reinforcement. Values are for use with the load combinations of IBC Section 1605.2.1 or ACI 318 Section 9.2 as set forth in ACI 318 D.4.4. If the load combinations of ACI 318 Appendix C are used,the appropriate value of0 must be determined in accordance with ACI 318 D.4.5. _ ado=drill bit diameter. °For installations with 13/°inch edge distance,refer to Section 4.1.9 for spacing and maximum torque requirements. • ESR-3013 I Most Widely Accepted and Trusted Page 23 of 29 TABLE 19—BOND STRENGTH DESIGN INFORMATION FOR CANADIAN METRIC REINFORCING BARS' BAR SIZE DESIGN INFORMATION SYMBOL UNITS 10M 15M 20M 25M Characteristic bond MPa 8.9 . strength in uncracked rk.u„c, concrete (Psi) (1,290) A - Characteristic bond MPa 4.9 5.7 6.0 6.2 strength in cracked rk Cr -a) concrete' (psi) (705) (822) (884) (895) cc Characteristic bond MPa 7.2 cC strength in uncracked rk,un°r e concrete (psi) (1,045) = B m Characteristic bond MPa 3.9 4.6 4.9 5.0 n strength in cracked rk.cr E concrete' (psi) (569) (663) (712) (722) ~ Characteristic bond MPa 4.2 strength in uncracked rk,,,,c, C concrete (psi) (605) Characteristic bond MPa 2.2 2.6 2.8 2.9 strength in cracked rk, concrete' (psi) (326) (379) (408) (412) mm 60 80 90 101 Minimum anchor embedment depth ho,„,„ (in.) (2.4) (3.1) (3.5) (4.0) Maximum anchor embedment mm 226 320 390 504 depth he/mex (in.) (8.9) (12.6) (15.4) (19.8) TD c o Category Anchor - 1 N m Dry concrete&Water- E m 2 saturated concrete o o- — U Od &0.s - 0.65 For SI: 1 inch=25.4 mm, 1 lbf=4.448 N, 1 psi=0.006897MPa. For pound-inch units:1 mm=0.03937 inches, 1 N=0.2248 lbf, 1 MPa= 145.0 psi. ' Bond strength values correspond to concrete compressive strength range 2,500 psi<_f<<_4,500 psi.For 4,500 psi<r<<6,500 psi,tabulated characteristic bond strengths may be increased by 6 percent. For 6,500 psi<r,<_8,000 psi,tabulated characteristic bond strengths may be increased by 10 percent. 'Temperature range A:Maximum short term temperature=104°F(40°C),maximum long term temperature=75°F(24°C). Temperature range B:Maximum short term temperature= 176°F(80°C),maximum long term temperature= 122°F(50°C). Temperature range C: Maximum short term temperature=248°F(120°C),maximum long term temperature= 162°F(72°C). Short term elevated concrete temperatures are those that occur over brief intervals,e.g.,as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time. 'For structures assigned to Seismic Design Categories C, D, E or F,bond strength values are multiplied by aN,seis= 1.0=>no reduction. ■(-- 111111111111111111111111111110 ESR-3013 I Most Widely Accepted and Trusted Page 24 of 29 Given: (2) 1/2 inch diameter HIT-HY 150 MAX-SD Al ,12-4N A193 B7 N I A Au. f . adhesive anchors ALL-THREAD — T A c ,„,11 subjected to a "t tension load as - nn ,- -, /^. 1 • shown. -- , , Dui -, fi •• t H .• s/2 - Design objective: d E --1 t— s Calculate the design 1 1 hN 3/2 tension resistance • h , i ,., - for this configuration ' 1 1 i ��' i. + in accordance with • L--- ----i the 2006 IBC. dam, c;. I cam„,, . ce ,„ 1 If A-A Dimensional Specifications/Assumptions: Parameters: ASTM A 193 B7 all-thread rods, UNC thread,A 563 Grade HD hex nuts; n=2 her =9 in. Normal weight concrete,fc=4,000 psi s =4 in. Seismic Design Category(SDC)B ca,m,n =2.5 in. No supplementary reinforcing in accordance with ACI 318 D.1 h = 12 in. Assume maximum short term(diurnal)base material temperature<-100°F d = 1/2 in. Assume maximum long term base material temperature<-75°F Assume installation in dry concrete and hammer-drilled holes Assume concrete will remain untracked for service life of anchorage Calculation per ACI 318 Appendix D and this report ACI 318 Code Report Ref. Ref. cm;,,=2.5 in.5.ca,min =2.5 in. Ok - Table 6 s,,,;,,=2.5 in.5 s=4 in. ok - Table 6 hm,n=her+1.25 in. =9 in.+ 1.25 in.= 10.25 in.s h= 12 in. ok - Table 6 her,m,,,<-he 5 helmax 2-3/4 in.5 9 in.<- 10 in, ok - Table 7 . - tr D.5.1.2 A193 B7 rods are considered ductile in accordance with ACI 318-05 D.1. .•.0=0.75 •••Y' 'Nsa =0.n'Ase •J u,a Table 2 =0.75.2.0.1419in2 .125,000 psi=26,606/b Eq.(D-3) Table 5 or,using Table 5, .'.O•N. =0.75.2.17,74016=26,610/b , _ a Nerg A,vc .Wec.,v -V/ed,N •K,N '0'cv,N :Al b Eq.(D-5) ANC =(3'hef +S)•(1.5•her +Gamin) =(27 in.+4in.)•(13.5 in.+2.5in.)=496in2 Calculation in accordance with ACI 318 Appendix D and this report ACI 318 Code Report Ref. Ref. ANc, =9•(hef)2 =9•(9 in)2 =729 in2 Eq. (D-6) - r y ESR-3013 I Most Widely Accepted and Trusted Page 25 of 29 Wec,N= 1.0 no eccentricity with respect to tension-loaded anchors D.5.2.4 - Ca,min 1.5•lief ca„in =2.5<1.5 9 in.=13.5 in. 0.5.2.5 • 2.5in. Eq.(D-11) - Wed,N =0.7+0.3• c( a,min _0.7+0.3 =0.756 1.5 lief J 1.5.9in. Wc•N = 1.0 uncracked concrete assumed,(kc•uner=24) D.5.2.6 Table 6 Determine cagy: h 12 in. = 1.33 her gin. Section 4.1.10 Interpolate between 1.3 and 2.0 to get value of multiplier=2.45. Cac =2.45•het =2.45.9 in.=22.1 in. For ca min<Cac maxlca,min;1.5•he,I max12.5in.;1.5 9 in.1 D.5.2.7 I1cp•N = c 22.1in. =0.61 Eq.(D-13) )� ac Nn =Kc.�mc, ' .1.1-f717 (h )'s D.5.2.2 Table 6 =24•./4,000 psi •(9 in.)15 =40,983 lb Eq. (D-7) 496 in2 D.5.2.1 Ncbg = 729 in2 1.0.0.756.1.0.0.611.40,983Ib=12,8801b Eq. (D-5) - Ncb9=0.65.12,880Ib=8,372Ib D.4.4(c) - Step . o d strength _ • • - -'• ANa Section 4.1.4 Nag - A Wed,Na Vg,Na'Wec,Na'Wp,Na'Nao ' Eq.(D-16b) rScr,Na =min 20•d• k,uncr ;3 he 1,450 psi r Section 4.1.4 1,985 psi D.5.3.8 =20.0.5 in. =11.7 in. Eq. (D-16d) 1,450 psi Table 7 3•her = 27 in.>_ 11.7 in. ••• =11.7 in. Scr,Na C S Cr Na 11.7 in. =5.85 in. Section 4.1.4 cr,Na = 2 = 2 D.5.3.8 ( l (( l Eq.(D-16e) ANa =(2'Ccr,Na +s) (Ccr,Na +Ca,min) _ Section 4.1.4 = (2.5.85 in.+4in.).(5.85in.+2.5in.)=131.1 in2 D.5.3.7 A Nao =(s cr,Na)2 = (11.7 in.)2 in2= 136.9in - Section D5.3714 Eq.(D-16c) • FIGURE 4-SAMPLE CALCULATION(Continued) ESR-3013 I Most Widely Accepted and Trusted Page 26 of 29 • Calculation in accordance with ACI 318-05 Appendix D and this report ACI 318 Code Report Ref. Ref. For ca.min<ccr.Na • Section 4.1.4 Ca,min 2.5 in. - D.5.3.11 Wed,Na =0.7+0.3 =0.7+0.3. 5.85 in. 0.828 Eq.(D-16m) • cr,Na T = kc,uncr it 1, Section 4.1.4 k,max,uncr d of c D.5.3.10 24 Eq. (D-16n) rt•0.5in. •.J9 in.•4,000 psi =2,899psi Table 6 \1.5^ n — (J1 —11 Tk,uncr _ g,Nao fl �1 fl / Section 4.1.4 Tk,max,uncr) _ D.5.3.10 Eq. (D-16h) =.‘h-— (�_1). 1,985 psi 1.5 1 1 =1.18 Table 7 2,899 psi 0.5 S (r l Wg,Na =Wg,Nao + .(1—Wg,Nao 1 Scr,Na Section 4.1.4 - D.5.3.10 4 in. X0.5 Eq.(D-16g) [(11.7 in., =1.18+ •(1-1.18) =1.075 Section 4.1.4 W ac Na =1.0 no eccentricity-loading is concentric - D.5.3.11 Eq. (D-16j) max Ca,min;Ccr,Nal max 2.5 in.;5.85 in.l Section 4.1.4 Wp,Na = = =0.265 - D.5.3.14 Cac 22.1in. Eq. (D-16p) Section 4.1.4 •d.het = 1,985 psi •7t•0.5 in.•9 in. =28,062 lb - D.5.3.9 Nao = Tk,uncr • Eq.(D-16f) Nag = ANa 'sred,Na 'Wg,Na 'sec Na 'Wp,Na 'Nao ANao Section 4.1.4 - D.5.3.7 131.1in2 Eq. (D-16b) Nag = 136.9in2 •0.828.1.075.1.0.0.265.28,0621b=6,3391b (I)d =0.65 - Table 7 •Nag =0.65.6,3391b=4,1201b - - Steel Strength in Tension 0•Nsa =26,610 lb Concrete Breakout Strength in Tension 0•Nth, =8,372 lb Bond Strength in Tension 0•Nag =4,120 lb Controls=clNn N = Nn = 4,120 lb = 2,784 lb - Eq.(4-1) allow,ASD a 1.48 • FIGURE 4—SAMPLE CALCULATION(Continued) ESR-3013 I Most Widely Accepted and Trusted Page 27 of 29 - - Rills HIT-lilt 150 MAX-SD . Hilti o",'�' •".s r""°""" 1 HIT-HY 150 MAX-S) •wrwn:�rrr.... 7 :. �, ,Olio Monommf ow m.o.Amon now Wo■Wo Own.W OWN... oa40.2eX frk//14 X ...b Inslrueti005 for use on �1�PYM� pjv ............... Mr de d'emplei fr .••▪ •a.:.: Instruccmnes de list) e: ilk 2 Mrrrrrrrrr.r•. • 4..r....w...r�.r. .r•rw 'N.1111 .�r.r...•-....•r X11.1 L4t=21 N.b•r rw.r..wwwr.ral•r•r r •r.rr.....w r...r...•..maw.rw III 1132./100 N.b. ✓4.r.r•r.rrr.•■•..•..rr. 'T 441'F arc).4x :0 I...r.®. y' —ri=1C 9Ar � lit*.....w web*.r..d•...+..sr N.'1 y 1.171-0-f1/4r I «�............as r•... ..•_ .. �cwxsoso I rr...r..r s..._...,s•...w.r..m... �A� * O 4.� � 71--r''—' 1 1 k est I '!Please refer ro lechnial keratin(approvals,setting mstructiau)for detal ► ')Voir itteratre technique fagrements,'muds duolsatlon profits)pour plus de derail 'I Po,raver vease la relerrnaa ttrnca(mmnativa y marurales de use)part)mas detale A Q 7 ` "''' 811 7I 0 12 Q© .y a mi . R 14 -10 3h t]n 1 23 4 4c 4h 92 0 2:min 2h 41 5 e n,n t h Y 20 5 nw, 30 in r, M b 3m.n 30 mh 161 40 2min 23 m.. • FIGURE 5—INSTRUCTIONS FOR USE(IFU)AS PROVIDED WITH PRODUCT PACKAGING r ESR-3013 I Most Widely Accepted and Trusted Page 28 of 29 HUll HIT-11Y 150 MAX-SD Hilt HIT-11Y 150 MAX-SD HAS Reber HIT-193 HIT-SZ PI HIT-01 Setting Details of Hid HIT-HY 150 MAX-SD with threaded rod d I [///////// / di Jr do �� l� • �/'//////,//7/\ \1 nun 0[mm[ HIT-RA Ibmno. i 162432'Awn no. HIT-DL 1 Item no. (141:ho III 10 8 12 336548 I 12 336022 12 1 671716 I4drt - 14 12 10 14 3365*1 14 335023 14 371716 16 12 16 336550 I 16 335024 16 371717 18 16 14 18 336551 18 33502.5 18 371718 20 16 20 3311552 I 20 1 395025 20 371719 22 18 22 370773 22 ' 380927 20 371719 het CIMIll 24 I 20 24 990918 I 24 ( 380923 20 371719 4,, in in+rlall j In'n'r. 25 20 25 314553 25 335027 25 ' 371720 �:...2�I®B�__ IIMI D• (Z12 28 I 24 22 28 360919 I 28 380924 26 1 371720 ■ ?1:1111119771 E � 91 11� 32 , 25 32 338554 • 32 335029 32 371721 ��t� �� 1 i �:. �7 4116.7'_357 ifs_ ..:... li oIoNT O[utch1 Sin HR-Re ltaalno. WT-1P Item no.I HR-DL I A4m no. _t _ Ly_9 40'22. 7/16 316 7116' 2732133 I - i - I - 0® g1tbill 1/2 43 4/2' 273204 1/2' 274019 1/2' 38737 =1•11■10•11M al•- Vu 1/2 113.4 916' 273205 1 9/16' 774020 9/16' 1 98238 alb© 111=•∎®i1111111111•�' ®■ - 111111M 6/84 676 114 518' 273207 5'8' 274021 9/16' 39238 -F^MME L4 34 IS115M 3]4' 273210 I 314' 274023 314' l 38240 MI) 21.-;��-: �: 716 314 II N8' 273211 7/3' 274024 72' } 38241 © . 1 718 y7.2044 1• 2732)2 I I' 274025 I. 1 38242 Ate.'; • Wilt a...7..: cr--amomm 'ommoma F 11/6 I 118 I 1,8' 773214 • t 178' 274026 1' 38242 1114 2584 1 11/4' I 273214 I 1 1/4'J_274027 1' 1 38242 D1l bits must conlorrt lo loierorlces in ANSI 6212-1994 '1,_.Edge Dhtann cy c(5 n 8) Lea miches de forage(Went fire corlHrmes 9 ANSI 8272 1994 B/ocas*ben o,nplr con 6 estandar ANSI 6212-1994 Edge Distance c. Anelar Spadna A., Mnlmum Torque 6•d.4.-4 1I Iw I4a4 a4n 0541.4. r>,■■!.rnr.I.,..Sad --- 1.,.:14un.14t1M16 Us T.. Setting Details of HMI HIT-HY 150 MAX-SD with rentorcentert bars •d 99 #cam.-- a��t he/ 4 4 marnrs do h,,, 111110=1.11LLSHMEMNIMIIIIIMIIIIII.1222 =iT1MII1IMMI3115171. M.t w 51? 2 3,4 tO - 7.0 �I�fil _ ].1 710 5 __ X41.241 _____ �tIIHHI T tR 1.1 4.20 MM.=MINIIMINIII Hd1R= ttilrr wer 1.5:131MI© . I .I.. .... .... InCh_._�.t 111 GL. .... h.'•2 d; 1111:1ME MEN FIGURE 5—INSTRUCTIONS FOR USE(IFU)AS PROVIDED WITH PRODUCT PACKAGING(Continued) ESR-3013 I Most Widely Accepted and Trusted Page 29 of 29 HIM HIT-HY 150 MAX-SD HiHi HR-HY 150 MAX-SD Adhesive anehatng system for tastanings In concrete Safety Instnactions: Prior to use of product,follow instructions p use and recommended salary precautions. For unreel tree Doty.keep our of the read of dara.n. Check expiration dale:See expiration dale Imprint on lidpack ma!dolc IMonth'Yeari Do not See are Mowed Satwy Data Sheet for Or product boron Noodling. use an expired product Caution:enting lo ryes and dam May caw wOrafnn n Foil pack tenhperanue:Must be between 32 1 and 104•F(0°C and JO"C)when In use susdpade molded so ) Base material tempereture at time of Instal/bore Must be between 1I'f and 104•F Contahm:alba,evel proud J Inst°C and 40 Cl° Mates a e eye protection d cried with sees p ra Allwyo,e cost lr Instructions for trarnport and sbrayde keep In a cad dry and dark plate Between 41•F to 9��'�R prodactan whin whip pro0.tt Sane n a cool. 77°F 15•C to 25•Ci dry area keep from earns Co rem sore in end suape Material Safety Data Sheet:Review Ire MSOS Defoe use Fiat did:eyes-MrNdeOrh flush wan area lot 15 niaels. cane- Installation kidnactlwa:Follow Ow ausnabnns on 1 for are anted bons mint a shoran ern en.arse-m ft ea mop sod amen bonder cmta- ard refer to tables on pane ano t lre9 • ss a realms twee.sorted physician page 2-3 br setting detals For any apploahon no(covered by this eeteseen-Do not nice wiring unless directed M a physician Cmlad a phyaicnn mnethatery tluumen',control Nike. ',halation-Mae b ewer err,pan now 4 bean°a deka a contact a etresinan 1 eyntennu tonal II MI hole to the sacred depth hp writ a trammer•drlI set lh rotation hammer mode using an appropriately aired carbide drel bit For holes drilled with other drd types can- legredieet CAS Womb.. Ingrochrr CAS Nwwbor tact a Hilt reproaerdatte Pat A(Wee Wdel Pan B.(Sawa side) ©-p Clean hole:Cleaning method has to be decided based on borehole cendloec w trade Sere Regar y No.19136100.5001 :tee:t Seed 14aoe-bo 7 .lost before Setthq an anchor/tame Vt baretiule must be tree of dust wrier and Wertz Sand 14106-80-7 'walr 07732-183 debrta by one ol to'Mowing methods: NIT.*Satre Rigsby Nu.10136100-5003 0la:ruyi P ro 00091-36 a1 Method 1•101 try a water laatatld concrete(role b pictograms): SU trade Saud ry No 1513 61 00-5001 Aluminum over 0763146-9 341-26 t Cargresnad air deanng it permissible 0r al diawneters and embelmor% W trade Secret Revery be 17762-90.500.h 1.2,3 Pro rule:,) •Blew hen the back d the borehole wits al-tree compressed en neon 9( Amorphous Secret cig 67762 100-5 7 i.3 Fapewmul 00056-07 5 CFM(6 be.al 6 m3/h)full retracin the ao extenshm 2 Drres cote return ar 3 5 NJ trade Seam Ramsey No.ID136100.5017 Y 0 Ramsey No 10136100.5017 stream Is Ire*Of noticeable dust N7 Trade Soar Napery No 191361003019 •Brush 2 times with the specified HID r5T-RB hush size Ibrsah 0 bore hole Ot by -NJTSW•Itrha Jersey Trade Seuel Registry Rumba inserting he round steel brush to the back of the borehole In a twisting motion and remerng t.The brush should read insert=Into the break-B rot the brush as n Caw el 4wpney tae Can.-Doc 1400J11e10o Nan P.R.wren Nana.Carew tar small and must be reOtacel with a MUSK of appropriate brush darnete' In as eww.00 wean.an.tnC. 1-100-1244000 eta 9A.wee Morals.ceraal •Blew agar with compressed at 2 Ames until return an stream Is het o•nntrc:eatie t.Cat a t.rq.acr.Nan owrra.. at-1t7-527-twr learn warvom.•aerv•►e pea., OuSt It required use extension Ian ale 0or2re end brushes to reach back of deep hole. Made or Germany Method 2-for standing water tea water flows kilo donned borehole): •F l u s h hole 2 tines by nsnrh'h4 a wri=te hose(water Inc peesseel to the back at the net ammo I t.n 1.12(330 et ilia 1.u 000 nil ld Walt 203 u(I75 Ur31A re tee to borehole utbl water ems dear. •Brush 2 tines with the speared Hilt HIT-RB bush sue Pant 0 •barerhde Or try wanrasy:Rehr to caned HM loom and mndlsee of maim Ia vim*Infonnerhon insert%Pe rand steel DM:a to the tack d the Wattle with a tomato motion ere removing r The truth ancuid resist blatant Otto the borehole if rho ew brush is too Swum to Wen+sea alaaewe Inftwellow um of reeeaio Nhmao mar quosHWkoseaebee lime. erne and mood be replaced With a hush of appropriate brush diameter or swim awae•sas ear sled Oro riway a Romero of Be bewpk •Fkaab again 2 tidies inhl water runs dear Pewee at standn7 water completely he - yacwm.oernpressed be v other appropriate procedure)To attain a dried borehole a Hot HR-01 ate noule attachment is recommended Ice Week:depth<10 inch 1250 mmi and reekamd br borehole delft.>10 not(250 mm). •Continue with boeehde craning as described in Method 1. ® Insert loll pace it toil pack holder.teener use damaged VI redo anaa damaged Or reclean foil pads holders Attach new nut re WI to 6spenshga new tea pads(snug ht © Tightly attach H8b HIT-RE-11 mixer to toil pack manifold.Do not madly he mixer r any way.Make sore he mbeng dement n In the Amer Use only he Rite&poked with the anchor adheswe to Insert loll pack holder with toil pack into MT-dispenser.Push reease ttggor.re- tract plunger and Inert toil pad hole Yr ode the appropriate HIS dspyenssr. El Discard initial anchor adhesive.The toil pack open artanaacaay as doperning is kxbated.Do not pierce the kdlpadc min,"(can cause system tailurel Dependrg on the size of the lot pads in mu amo.nt of anchor adhesive has to be discarded See pictogram 8 kx discard quantities Dispose discarded anchor adhesive Ma the empty outer packaging d a new mike Is Installed onto a deviously-opened toil pack,the frst trigger puts must also be dscarced as described above.Err each new lot pack a new meter must be Used ▪-W Infect ardor adhesive horn the back of the bomb*without farming air robs: •Infection seethed-tor borehole with depth 510 MdV28o mm: Infect the anchor adhesere darting it Ow back of the thole fuse he abeam tor deep holes)slowly withdraw the mixer with each Wager het FN!boles approximalehy 2/3 hal,or as required to ensure that he annular gap between he anchor/nib.and the Concrete is completely filled with anchor adhesive ekng the embedment length After injection ie completed,depressurize he dspenser by pressing the release trigger This all prevent further antra adhesive disdhage Iran the miser. •Piston plug Infection•is recommended for borehole depth or 10 inch/250 mm. The Installation overhead Is ady possible with the aid of piston pigs. Assemble 11T-REM mixer.extension's'and apprpriately sized palm plug Insert piston plug HIT-SZ/IF to back of the tide.and treed ardor adhesive as described In the injection method above During infection the piston plug will be naturals extru- ded out ol he bore hole by Ore anchor ad enrve pressure tE insert anchoryrebar isle bore bole.Mark and set anchor/retie'to the required embedment depth.Before use,verily that the anchor/nbar s dry and tree of al and other contaminants To ease esstalaban,andna/rebar may be slowly twisted as they are inserted Use only Mit anchor rods or equivalent Alter Instating an anchor) rebar,he amuler gap must be completely ttllee with anchor adhesive Attention!Fx overhead applicatbns take special care when kterhng the a0000t1 mbar.ER OSS a lieslve will be laced out of the borehole-take appropriate steps to prevent R from laing onto the Installer.Potion the anchor/rata(and secure B from novngTalhng during the pang toe leg.wedges). m Observe the gel time t ",which vanes attache to temperature or base material. Minor Ma ad)asttnents b ��nCl /rebar position may be performed during he gel Dme. See table 12.Once the gel toe has elapsed,do not disturb the anchor/mbar until the curing time'Ipso"has elapsed. (L' Apply desiglwet loadlbrque albs"1 per"has passed.and he rodure to be attached has been pxuttioned See lathe 13 Partly used loll packs must be used up Minn bar weeks.Leave the now attached on the lad pack manitdd and store under the recomme ded storage casdban tt reused attach a new mixer arid discard Ore Initial quantity of antra adhesive as deserted by p0ht 8. FIGURE 5—INSTRUCTIONS FOR USE(IFU)AS PROVIDED WITH PRODUCT PACKAGING(Continued) fa- ICC EVALUATION SERVICE Most Widely Accepted and Trusted ICC-ES Evaluation Report ESR-3013 Supplement* Reissued April 1, 2013 This report is subject to renewal April 1, 2014. www.icc-es.org I (800) 423-6587 I (562) 699-0543 A Subsidiary of the International Code Council DIVISION: 03 00 00—CONCRETE Section: 03 16 00—Concrete Anchors REPORT HOLDER: HILTI, INC. 5400 SOUTH 122ND EAST AVENUE TULSA, OKLAHOMA 74146 (800) 879-8000 www.us.hilti.corn HiltiTechEnq(a�us.hilti.com EVALUATION SUBJECT HILTI HIT-HY 150 MAX-SD ADHESIVE ANCHORING SYSTEM FOR CRACKED AND UNCRACKED CONCRETE 1.0 REPORT PURPOSE AND SCOPE Purpose: The purpose of this evaluation report supplement is to indicate that the HILTI HIT-HY 150 MAX-SD Adhesive Anchoring System for Cracked and Uncracked Concrete, recognized in ICC-ES master evaluation report ESR-3013, has also been evaluated for compliance with the codes noted below. Applicable code editions: • 2010 Florida Building Code—Building • 2010 Florida Building Code—Residential 2.0 CONCLUSIONS The Hilti HIT-HY 150 MAX-SD Adhesive Anchoring System for cracked and uncracked concrete, as described in Sections 2.0 through 7.0 of the master report ESR-3013 complies with the 2010 Florida Building Code—Building and the 2010 Florida Building Code—Residential, provide the design and installation is in accordance with the International Building Code® (IBC) provisions noted in the master evaluation report under the following conditions: • Design wind loads must be based on Section 1609 of the 2010 Florida Building Code—Building or Section 301.2.1.1 of the 2010 Florida Building Code—Residential, as applicable. • Load combinations must be in accordance with Section 1605.2 or Section 1605.3 of the 2010 Florida Building Code— Building, as applicable. • The modifications to ACI 318 as shown in the 2009 IBC Sections 1908.1.9 and 1908.1.10, as noted in 2009 IBC Section 1912.1, do not apply to the 2010 Florida Building Code. Use of the Hilti HIT-HY 150 MAX-SD Adhesive Anchoring System for cracked and uncracked concrete described in the master evaluation report, for compliance with the High-Velocity Hurricane Zone provisions of the 2010 Florida Building Code—Building and the 2010 Florida Building Code—Residential has not been evaluated, and is outside the scope of this supplement. For products falling under Florida Rule 9N-3, verification that the report holder's quality assurance program is audited by a quality assurance entity approved by the Florida Building Commission for the type of inspections being conducted is the responsibility of an approved validation entity (or the code official when the report holder does not possess an approval by the Commission). This supplement expires concurrently with the master evaluation report issued on April 1,2013. ICC-ES Evaluation Reports are not to be construed as representing aesthetics or any other attributes not specifically addressed,nor are they to be construed �„ A✓NS� as an endorsement of the subject oldie report or a recommendation for its use.There is no warranty by ICC Evaluation Service,LLC,express or implied,as a it to any finding or other matter in this report.or as to any product covered by the report. uxcouid Copyright©2013 Page 1 of 1 a Y Dan Nelson City of Tigard Senior Plans Examiner June 6, 2013 Page 15 EXHIBIT D—Project Valuation Description Cost Pyrolyzer (ThermaFlite PRU Gen 6) $1,678,137 In-Feed System $ 340,549 Feedstock Storage and Distribution $ 251,187 Cameras and Spectraphotometer $ 158,050 CSS $1,059,891 Facility Design, Permitting, and Installation $ 694,024 Total $4,181,838 4/ (E) STORAGE (E) OFFICE AREA BREAK ROOM PROJECT RECEIVED • N 13-0 - 61'-11- • ELEVATED CONTROL _p- MAY 1 3 2013 CONSOLE QUENCH TOWER 'T , ...,,t—i L____ I (E) CRANE RAIL, CITY OF TIGARD i i.�� BUILDING DIVI -----L--- ------- -- - -- ---- -------- © --------- . -------- © -------- 0 - - - 1. - I; I ` - - - - - �------ _---- _1.l., ------- — — 0 -------- © — — 54 — — o — F CRANE RAIL w (E) ELECTRICAL n1. � TRENCH PANEL PANEL P3 1 - (E) CONDUIT TRENCH v A css�_ paili N GEN 6 --lir — ; ! PLASTIC , I e IT •1 FEEDER 108 _ _ e - NN _ _ (IZO) r v 1. I"' ■ —__ - � '\_. - I I ' 102 4 I C W I -0� t 1j Vii•- ! . - - _MI --- - __-. __ - _ - w o.st emr ...__ . • PRU GEN t, 1 Iii ® DOOR o,, : 6 INFEED ��. r. I �� — `"> j' II�a �l� I\` �\\��\\\\\— CONUINERCOMPACTOR o 1 o i : _4 it +I ■i ;�,`∎\v=\ _� . B. E3 QUENCH _'IIIII1I =em��\\;i� '-- —■ UENCH TOWER _:17,,,, ,,,A1:_ tla _ TOWER �_I ���I� a> —- - mF =• ____�_ !�■� 2' STAND PIPE '7_,L__ Ya I�°- I��� NEW CONDUIT TRENCH " ,"o ,.- ELECTRICAL - —1 Q `- a w PRU GEN .: PANEL P4 _ - \J NFEED REQUIRED CLEARANCE, FFIX PIPE CLAMP (E) SECONDARY ° " 2'-3• I Q — TYP ( AFFIX TYP CONDENSER w w I _r_ ©REF 0 - (E) UPS _ ❑ --- __ T a;�-I- -- - - --- W o --- — n _n d T_ -.._ K _ _ = 16'-0• REF - OVERHEAD DOOR r 20'-21x• j 10'-0• s0 v�{ ��, U_, (GEC SWITCH (E) NATURAL (E) CONTROL PANEL • v i (0) DISTRIBUTION GAS METER PANELS .'�I (E) EMERGENCY GENERATOR -r VACUUM (E) COOLING - - i� I'�� PUMPS TOWER (E) CHILLER SLOT (E) ENVIRONMENTAL 1.1 o+ I �►.J� (E) PRODUCT TANK CONTROL DEVICE i/ 1r;., PLAN ►_•. 1/8°=1'-0" B.O. CRANE GANTRY BEAM - STAND PIPE DETAIL LOW POINT TROLLEY __ T.O. STEEL C%�s_ 1� �} -._i1. 7. V EL 118.-6 5/8" �Il�_ 1u1I CONTAINER COMPACTOR 1 -1 -0 --.,; 1,, GTL . ■ w ,ir,-/LI 1 r p r I I P t it b� 'Bask , 0 I .�;■IK I i.,- _, \\ -0 8 REVIEW AND COMMENT ISK 3/4/13 N c0 ... �\I c 1 •, „., I.� +l■i�I, I-- \ c., 7 REVIEW AND COMMENT ISK 2/18/13 -I. —1;—- I = ' 6 REVIEW AND COMMENT ISK 1/4/13 ���I` I T.O. CONC ITr = ► : '...•,,-t�.=,� 1 ��` 5 IssumFOR PeRMMITwm+RevcuoNS,aL1oEDrH�m IsK 12,14/1.2 \ L ___J - L .1 .Ay _ 4 ISSUED FOR PERMIT ISK 11/15/12 EL 100 0" L C§-§ PRU GEN 6 ' I I 1 GEN S6 ASH ASH BIN 1' EL 96.-0" L �\�k_JI NOMINAL CONDUIT TRENCH 2 REVISED� LOCATIONS,CONTROL FOR R&C JRA AK 11/07/12 10/30/12 FILTERS NOT SHOWN NOT SHOWN/� REVIEW & COMMENT OSECTION - 1 REVISED EQUIPMENT LOCATIONS,ISSUED FOR R&C JAK 10/26/12 ,/8".,.-0. a se MAMA EVERGREEN ENGINEERING THIS DRAWING IS CONSIDERED ■ 1.i Englnaaring and Consirucfion Servic•t 2326.7 CONFIDENTIAL AND PROPRIETARY, ' I P EUGENE.OREGON DUPLICATION OR TRANSFER,AND f'-.+)..-.n: Oa fs.+I a.-nft Oft JSR COMMUNICATION TO OTHERS IS ` - ......•�..,w....y..., NP: PROHIBITED WITHOUT THE WRITTEN a mow Winfk 10001.01 u!C V fe AGIHD-1000L01A.g CONSENT OF AGILY% age lyK D 10/19/2012 AGIH2-1000L-01 8 GENERAL ASSEMBLY AGI1Ax PROJECTNUreerrU AGIHZ AGILY% - EOCADON HUNZIKER 4MnEP vu,..,U'1 D EVEREST AS NOTED JAK 1 Of 1 -- -- - - BILL OF MATERIALS— 111 0..CR�TCM DRA'MNC MO. ® RECEMNG HOPPER 182 USMW 4 ti STORI■AREA i ©p mown'CONVEYOR 0 USYW ;ii MIMESNG AUGER i09 i,l' DETERS 3 1 METERING BIN 0 USIA,/ y.;. ELEVATED I W-4• 1---11, PY --_ _-__ 4 1 TRANSFER BELT 112 7112-01 7 C1 I 1g I I , Ill I nm PERMANENT IMGNET&SUPPORT STRUCTURE ® 7113-01 :5'0• l 1- Wd• I INCLNE BELT 114 7114-01 / F I i i CRANE RM.. ammo SURGE AUGER 118 7118-01 1'-C I dl: TYPICAL SAWYER SYSTEMS PLASTICS FEEDER AG-33(100 (. 7 - _ _ L g _ ■ I II _ EWNPMENT SUPPORT FlL1ME NO 06120A l� 5120-01 I NEW —� BURIED cONDLRr � ERECTWCAL� , ilill, TRENCH 3 FT DEEP aa1UMENO IMPS. PANEL P3 i MAY 1 3 CLEM 'CSS 11T)11 ' 1.t1 - r--10 r �� I CITYOFTIG:91 FUTURE I�Ia?pa! Q i j: . PRIMARY CONVEYOR I(8 —I ,kI"2. D�UIStON NOTES: PRIM PUTFDPo, — co4 s }p� OPTIONAL SEE NOTE 4 it 1.BILL of MATERIALS 6 FOR REFERENCE ONLY. I + .�Ta C'( I I PLATFORM Q III 9..---'--- .{ G OPTIONAL © - 2.AU.EPDXY ANCHORS SHOULD BE NO CLOSER THAN :- IF•• 1 Ij!_:' ^I I .�, .-.:11m4.. _ 1:. , I 9"TO ANY SAW CUT EDGE. ''.'•vI ;11/-' ..s` 111 I11�11 7r 3. S/a"DNMETER EPDXY ANCHORS TO HAVE LI•MINIMUM EMBED III Ali 1 11,.•,�1:�� 1 �s+� , b 3"PROD)F1554 CR 38 ANCHOR RODS./NUT AND WASHER. l f 4� MP -- — --� 4- --- wsrAU./s4�soN SET-XP EPDXY PER slMPSON Hcc Es 2508 •N 5 �. .:: ,.ti. 'E o' II; D 'e®l�I----- -- --— illq -� 1= c _ � �I.•. a a,�• •i_' _. ::_.� — --- i iN �— — — _ —• 4. PRIMARY CONVEYOR ERNE PLATFORM ACCESS BY BRIDGE 7 P. ∎••' ��- -V -- ,I. A`_ ., ACROSS FROM MAAlTp4WCE PLATFORM AT INCLINE CONVEYOR. :11v,:, : E.!I • _I– – j T:U, „, . – �� i - 5. DESIGN OF PRIMARY CONVEYOR 106 87(,SAW.SUPPORT.DRIVE d. AND MAINTENANCE ACCESS SHORN FOR REFERENCE ONLY. 3,-0• r;, I 0 i s` 1 :ABOVE : �` 101 BELT JS'TIROUGM O I 4 • _ L. IDLERS,WITH MAGNET TO , t1AI �\ �I..' • 0 1 r. -� • -. I:. j j / REMOVE TRAMP METAL 1 4 _ ... .7 N.: '4I'd i�l ∎ 4 i`::®:i - gin srtR _ — I j 1:r:::-:. -- j I 1 TeYx rf�I r-- ! I: _ L,GEC O BA.GMT I,.E �Mf,E„,„D I r IRIFEED m _ �F—�� iI.OLD FR of _ • NOTE:CENTER MAL?,ET «D,�,, I■m. BE,W�]I BELT IDLER ROLLS.0 _.:..:—= —_ -- -I'ELr c�L,,L GL�Rw4cE —SECON. - Mkt " Ii1 - CON. 1T TRENCH fa�I PANEL P4'r '•Y...: a\ A.1iI_ I(114) i S 11111 MU QTI 6 \ CONTROL PANEL •I ■� _ _ „� - -•-3 -VT 13.-0• GEM `NATl1RAL GAS RETELL - II *_- - .... a - i — it 0- PANELS I]ISTRIBUfON 0 0 O 1 — ---- ' ' e— - , —• EMERGENCY iGENERATOR — _-_____ — SECTION ECD 11.7:•et I-I PRODUCT TANK 000UNG ssfEr SCALE: 1/8"=1'-O" Op 'nu1, PLAN SCALE: 1/8"-1'-0" ORNE TF1IIr� CLEARANCE UNE W-3• 34'-4 7/C QFJIIUBICE LIE BY USMW 1101E B FOR GANTRY BEAM 1 CROSS OVER BRIM FDR MOW WM -Ii lY-0• : -.. --_ 2-1II 2/V it-e• AATEORI - CLEMOCE -I'- 'BIN 420-1 1 - ` TOP OF M=S1OPPER 1 - :Y-10•CD y20'-1 �7. I 2D-1 1 / T NG BIN + -'`�I1111 (20) O ��II T/P}LTFQRMI -M095 0 NOTES ..!1:•..._ \41 i I Q ■ �. i T I �__--_'� ® 0 ti T/STEEL =T� ` �f =1=1`� V : f IE I �` ,wil» i :, cu', r e _ii, k (f Y 1 / \" RBI llL1' Aii ' ::: �0 '_: C i \I li •� ��e--6 I = Ri. \�• �y/¢/� 0 T/MCR � " .•t T 0 \_...un. ' ki,„_,,,. . c0HOJ1T TRENCH F'-43/IF 7•-0• IF-1 I/4" IF-0• SECTION II'-0' It-4' W-o' SCALE: 1/8.=1'-O- O 3 MR5 SECTION g SECTION A SCALE: 1/8"=1'-0• O SCALE: 1/8•.1 -0" O Issued for Construction Dots: 02-07-2013 YTSYEP Ao C 6/WO GENERAL REVISION (SAWYER PLASTICS FEEDER) RAN THU Gluwlno HAS aTEEN RE-PLOTTED FROM w BRADFORD T.R. MILES -t'.* ',' aN F R TRANSFER BELT WAS WEIGH BELT PAR MOp/k lE ELECTRONIC COPY AND THEREFORE IS NOT Tq,V15 AIO 1GY aR nc DESaa N1p �tG'c,• ':�'•. ..� p4,3 CONRAD PORTLAND, OREGON A�EGf OIR AT AFIV OTHER TIVJIE„�p�Np+101�'�•�q•'`” -- - --- THE ORIGINAL DRAWING PREPARED 8Y BRADFORD ORMINC T74F a CGRRAD M n IS t • a ro eE E 11/8/1] UPDATE SURGE AUGER, PLATTCO VALVES& CONCRETE PAR Gq,w,,,CROW EHc,..w.NG co. (EnaNEER). CHANGES �� CROW ENGINEERING CO- . -FEMOa a�ar�coruiu__ oR CFwla Ma.Ron D NAN EXTEND PLATFORM FOR MAINTENANCE ACCESS OR ADDInoNS MAY HAVE BEEN MADE wrtHOVT r.RE G CNL•STRUCTURAL •Y[duMCAL MINCERS GEN-6 FEED SYSTEM 1 x old" co. ET HXIRTS ENGINEER'S KNOWLEDGE OR CONSENT. THE ENGINEER GENERAL ARRANGEMENT g, SWR THE,,,wIR.UR r..,, 00 APT'1uArXIM of�•FEIY J ft/f1/13 REMOVE HOLD FROM SECTIONS B. C N PUN - WI C IMO UPDATE DIMENSIONS ON SAKI-TECH COMPACTOR mu_NOT ASSUME ARY LN$UTY FOR CHANGES MADE W!T NOR EY AU.W R I WA OF.0 ----- -- NOR SHALL ENGINEER ASSUME MIY UAd1UlY IF THIS 707%.SR MIIWUS NE 9.rE 110• WAIIEA OR f1Y0F7091 PLAN AND SECTIONS ALB!TO PnO°ORLY"LL WEN oivleES�w��oMw'wp'N AND Ca I 0T/b/U REVISE PLATFORM ACCESS, USMW PRIMARY CONVEYOR B t1/8/D RAISE SANE-TECH COMPACTOR 24" Fav PH( 213-2013 FAX(w3)213-2DIS w.so�k> cGM THE OPOMTORS UPON THE APPUCATCN. T11E ���ppIp, DRAWING IS USED IN WHOLE OR IN PART FOR ANY nn�3 iN7 n�W7TEAU,5t EQlITMi3/T cI6arR GR a SISLE 11 081 Les N IftI/D REVISE FEEDER, EXTEND SURGE AUGER A 11/11/4 GENERAL UPDATE PHO..ECr OTHER THAN THE PROJECT FOR WHICH THE PLOT:82/22/8\1] 1:15:54 RI MR DRAWN CHECKED SCALE I DATE ORAWIND NO. REV. OF All STATE ASO LEGAL WET,'RCEGULA ENTSCMRRIIM CONS RuCOON. REV. OAIE OESGRIPOON BY REV. DALE OESCRIPTON DRAWING WAS ORIGINALLY PREPARED. SAVE;T:�I29S6�lOOD�192D-04 Y1D.� „y.0/1J�]Q1�M IGR RAR 1pr=1'11 1z-ne-1r; 12958-1020-04 J , , , .., RECEIVED , , ,. - 1.. 1Z" ; �IEIJ v9 MAY 13 2013 .I �itttttttEttttt••i TYr,>,/9 V3-4 \5ukccE fr...) y/„e,,,��w waw µss.lRa,•��w• CITY OF TIGARD 41 A-4:11.1 -• "� V Vl " BUILDING DIVISION . il: _ �l�('/u)I\Z/'to I< 3� 11P e4.J EAAA6��I� N55�r34�(. i (�X x'�j EA, cAcE i if ---'± (1....,.....,,,..-:,, 11-- 14515 Tv.If r�---' Pa , d` i:A.Cn0..4.«.. LD.vie =loeT(r '1"R tN6A �� F L K. _ ..� -_- � sA'4/� 1;r1Aw !-� i&l WIV_ V.L. 3-17- el• 3-c. —:.r __ ,..'A � (thy 3_,t y �rN(�J`� 1 'K -4 S.!'-1 r—YA' i°TA-Fa A '�-1L A�kw huh '� ♦ "I�frlcA,E_ C.oL1AP1F..t ILS• Atiyl•�( SuP^..,TE ae, ��r"Atw IVtU_ .Y■�1�_.•111•.__._ - , lid Ei'FAPF1l. 1 651 1 11111111 II`Ill ,b T �a�M Z ,� © r L.,114.1+ ANIZt.E (hue p y,c� 5, SECTION 1 ` ,(.'I~ '3-4 DETAIL 'D' & 'E' SCALE: N.T.S. O SCALE: N.T.S. 1 l. `+rte s, "q csok. 4MA.I �' DETAIL 'A' & 'B' r 21/: y y 11/2 2 T f$TEFL - - r _____1_ SCALE: N.T.S. i OWING SUM epl ABOVE 19EI1112R sE5 Z I CER as sT1ff (3 itA said a .,4 GA9 '�� ( y 3/4 xOLLS FOR MN■r OM(3 %■i PROD 11554 GE 31 ANCHOR RODS./NT ni y MO 1 1/Y•WASKFR.NMI./SRPSON tR w i ) Q - - , Y_, stT-r EPDXY PER SIMPSw(ICC ES now) ) va 1 _ L__ ���4 1...r 0 / 0. µss�6y+9 I I rP: XT r • .��.RIR�. 0 �W waw �, # ® I/p�� po 3 )(12 PLCS) �� I gall 'T + I-I'OUT-TO-DR VlA/ r Atli . IC. v' -re 1.4:,© .'I_p 3/16 X 10 FORMED 1xTAI€ 0 :. i , . CHANNEL (3" TOP FLANGE, DETAIL 'G' auw-f 4" BTM FLANGE SCALE "1'-0" DETAIL 'C' 1 4 41/2 ANGLE 4x4x1 4 SCALE: N.T.S. • ,'1/2 • �" / 3" ' co....A/.1 QN4FSWt1E Ba1.ct s I Leo 1 WI Ilk 11St A6 b01-o11 • t ii' n�o d .� I"6$°01 AL4DWLD I .B,u • CIII V; I i r r ALE: 3"=1'-0' IIIII Sp'•mon NuT,TIP. F mho-F0RI BttwA1IA- °II IIIII F. 61>4o14r I I*I 0's AGES 1OR s/eY.C OM(3. PROD F1554 GI 31 ANCHOR RODS./NR MO 1 1/2'P WASHER.MUD CIFAI.DRY • VIRIPSON SET-XP EPDXY FIX SIMPSON ELEVATION Oa E5 SCALE: N.T.S. DETAIL 'H' il SCALE: 3"=1'-0" 4 TINY 5 AND SPECNIGigNNgS M1O THE FORD N!D WORN tRiICX M PEIfRN0.ARE rpUNS A� pE�C��nDNSO RXE7�NE AD AXD W AM tREND2 srx APPEAfaNC DN TN�s , P F l y )Y AL BRADFORD T.R. MILES {-' L,,,,,, ECf OR AT N11'LOGipM Of1ER�E PRQNLTC� ON THE PROFESSIONAL ENGINEER'S TMB COALING rs TH IRIOfORD �CROW Mo co. R Is Nm B ro eE �ONLY ro THE CRO ENGINEERING PORTLAND, OREGON a�pp�i�tq� ,�N WORK AS SHOWN ON THIS •� CROW ENGINEERING CO. ENGNEN PE CO.AND SIMLL BE R DRiF OR M NR DRAWING FOR THE ORIGINAL EST. �E D IDEAS sHDWN oN �R�pFpRp L' '� :, �� OPTION 1 EllSm, 0111 � wNOIE OR N � r r.R► G CIVIL•STRUCTURAL•MECHANICAL ENGINEERS WRRITEN PFf01 ION. 201 RTr BRADFOR7DIpR�C�ONRAD DIMING CO. All Po �� �sµ/,�pE�EO�E '.�PoT�EpDyFpN 7pN� TITLE BLACK DESIGNATION. OREGON STRUCTURAL SECTIONS AND DETAILS F- ERAlORS 11P T011 11E SDLE�LRT pFN^CM,EimV AMY AITEM TON oR REUSE Of '� •L'3 ro25 sw NNIBOS M£tRI11C tto� RGYFIRpI.OR SMO!-T%1 DR r NL urrol DR SuPoLOUNGKC E a EDUR�Lx THIS oaAWING C6 U THE 4:4'.4.2T 1°ae� P"cew>z -Nr FN EIDS)3%-m+e W1N'acc "AgAN+ncaN SURGE BIN MODIFICATIONS Lp� T^'� SH41 �pEE�NYL MA NiD '^,� lZSS4R!ro PPoYfECT TIC WRITTEN CONSENT OF THE DAM V'T' PLOT:1$/20/2012 431:15 PN RN DRAWN CHECKED SCALE DATE DRAWING NA. REV. ;^ `^N1�A APW lDCJ1 ��1^"NCN Po R � REV, DATE DESCRIPTION BT REV. DATE DESCRIPTION �, ENGINEER IS PROHIBITED. M S.DEC,51,3011 SAW'T:\12958\5000\511T-01_40.. 12/20/12 411:12P1 RDY RDMI I N.T.S.112/12/12 1 12958-51 10-01 l K