Loading...
Plans (2) 517-02.0/3-6607-i 9 00°020/ - Oo 8`f RECEIVED Structural Calculations APR 18 2013 for CITY OF TIGARD BUILDING DIVISION 7940 Hunziker Building Addition f Tigard, Oregon Prepared for FHA Associates April 15, 2013 JOB NUMBER: FHA-05 ***Limitations*'* Engineer was retained in limited capacity for this project. Design is based upon information provided by the client,who is solely responsible for the accuracy of same. No responsibility and/or liability is assumed by, or is to be assigned to the engineer for items beyond that shown on these sheets. 66 sheets total including this cover sheet. SSaucTue44 `PROffffi 12,320 kP OREGON = '/k Y 15,1 P FN J. EN��-� EXPIRES.12-31-2013 This Packet of Calculations is Null and Void if Signature above is not Original Harper HP Houf Peterson Righellis Inc. 205 SE Spokane St. Suite 200 • Portland, OR 97202 • [P] 503.221.1131 • [F] 503.221.1171 1 104 Main St. Suite 100 • Vancouver, WA 98660 • [P] 360.450.1 141 • [F] 360.750.1 141 1 133 NW Wall St. Suite 201 • Bend, OR 97701 • [P] 541.318.1 161 • [F] 541.318.1 141 Design Criteria Project Scope: Hunziker Building Addition Design Specifications: Snow Load: 25 psf Total Roof Dead Load: 20 psf Crane Loads: 2 Ton Wind: 100 mph Exposure B Seismic: SDC D Short Period 0.945 g One Second 0.339 g R =3.0 Concrete Panels Material Data: Concrete Compressive Strength, f'c: 3000 psi Concrete Unit Weight,yc: 150 pcf Steel Reinforcement Yield Strength, fy: 60,000 psi Rolled Sections: 50 ksi A992 Plate, Channels: 36 ksi, A36 Hollow Structural Steel (HSS): 46 ksi, A500 Gr. B Glulam Beams: 24F-V4 @ Simple Spans 24F-V8 @ Cantilever & Cont.Spans Structural Analysis Software Used: Mathcad 14 Microsoft Excel 2007 Bentley RAM Elements V12.5 Woodworks Sizer r 1 E , leHarper Project: 7940 HunzikerBuildingAddition Houf Peterson Client: FHA&Associates Job# FHA-05 Righellis Inc. ENGINEERS•PLANNERS Designer: JAS Date: Feb.,2013 Pg.# LANDSCAPE ARCMITECTS•S DRVEVOPS DESIGN CRITERIA 2010 Oregon Structural Specialty Code&ASCE 7-05 Roof Dead Load ` RFR:= 4•psf Framing RMS:= 3.5•psf Misc Wall Dead Load EX_Wa11Nt:= 95 psf RPL:= 1.5•psf Plywood RCG:= 0•psf Ceiling INT_WallWi:= 10 psf RRF:= 5•psf Roofing RIN:= 1-psf Insulation Roof Live Load RLL:= 25 psf RME:= 5•psf Mech&Elec RDL=20•psf Equivalent Lateral Force Procedure(12.8,ASCE 7-05) Building Occupancy Category:II Site Class=D Design Catagory=D hn:= 30 Mean Height Of Roof Ie:= 1 Component Importance Factor (115,ASCE 7-08) zs,:= 3 Responce Modification Factor (Table 12.2-1,ASCE 7-05) Ct:_ .02 Building Period Coefficient (Table 12.8-2,ASCE 7-05) x:= .75 Building Period Coefficient (Table 12.8-2,ASCE 7-05) Period Ta:= Ct•(hn)x Ta=0.26 < 0.5 (EQU 12.8-7,ASCE 7-05) ' I S1 := 0.339 Max EQ,5%damped,spectral responce acceleration of 1 sec. (Chapter 22,ASCE 7-05)...or Ss 0.945 Max EQ,5%damped,spectral responce acceleration at short period From Figures 1613.5 (1)&(2) Fa:= 1.122 Acc-based site coefficient @.3 s-period (Table 11.4-1,ASCE 7-05) F":= 1.722 Vel-based site coefficient @ 1 s-period (Table 11.4-2,ASCE 7-05) SMS := Fa-Ss SMS = 1.06 (EQU 11.4-1,ASCE 7-05) 2.3MS Sds Sds =0.707 (EQU 11.4-3,ASCE 7-05) SMI := Fv-S1 SMI =0.584 (EQU 11.4-2,ASCE 7-05) Shc := 2 3M1 Shc =0.389 (EQU 11.4-4,ASCE 7-05) Cst:= S R CSt=0.236 (EQU 12.8-2,ASCE 7-05) - ...need not exceed... Csmax:= Shc-la Cs.=0.506 (EQ U 12.8-3,ASCE 7-05)-05) w Ta R ...and shall not be less then... 11 0.5-S1-1.) C1 := if(0.044Sds•le<0.01,0.01,0.044•Sds•Ie) C2:— if Sl <0.6,0.01, R Cs if(C >C C C ) Cs m 0.031 (EQU 12.8-5&6,ASCE 7-05) min —:= 1 2 1 2 in= Cs:= if(Cst<Csmin,Csmin,if(Cst<Csmax,Cst,Csmax)) Cs=0.236 3 i S Harper Project: 7940 Hunziker Building Addition Houf Peterson Client: FHA&Associates Job# FHA-05 Righellis Inc. Designer:•PLANNERS Designer: JAS Date: Feb.,2013 Pg.# LANOSCA•E RRC•ITECTS•SURVETORS • Transverse Seismic Forces Weight of Structure In Transverse Direction Roof Weight Roof Area:= 19800•ft2.1.0 RFwT:= RDL•Roof Area RFwT=396000-lb Wall Weight-Out of Plane EX Wall Area:= (180.15)•ft2 INT Wall_Area:= (0)1 12 WALLS-r•:= EX Wall,,„-EX Wall— Area+ INT_Wall Wt•INT_Wall_Area WALL TT=256500-lb WTTOTAL:= "WT+ WALLWTT WTTOTAL=652500 lb := CS•WTTOTAL V= 1537421b (EQU 12.8-1,ASCE 7-05) Longitudinal Seismic Forces Weight of Structure In Longitudinal Direction Wall Weight-Out of Plane a. v 1,0auck= (15.110.2)412 INT Wall Area=0 WALLWTT := EX Walk,„-EX Wall Area+ INT_Wall�„i INT_Wall_Area WALLWTT =313500-lb �L9rLv= RFwT+ WALLS — WTTOTAL=709500 lb V:= CS•WTTOTAL V= 167172 lb Total Seismic Forces AuTfvl Gi= RFN,T + WALLWTL+ WALLwTT WTTOTAL=966000 lb := CS•WTTOTAL V= 227609 lb r , • Harper Project: 7940 Hunziker Building Addition Houf Peterson Client: FHA&Associates Job# FHA-05 Righellis Inc. Designer: JAS Date: Feb.,2013 Pg.# a„USC•PE ARCRITECTS�SURVE�ORS Wind Forces (Method 1 -Simplified Wind Procedure per ASCE 7-05) Basic Wind Speed: 100 mph(3 Sec Gust) Exposure:B Building Occupancy Category:II Iw:= 1.00 Importance Factor (Table 6-1,ASCE 7-05) hn= 30 Mean Roof Height X:= 1.00 Adjustment Factor (Figure 6-3,ASCE 7-05) Smaller of... a2= 2•.1.110•ft Zone A&B Horizontal Length a2=22 ft (Fig 6-2 note 10,ASCE 7-05) or ,a2.= .4-hn•2•ft a2=24 ft but not less than... a2min 3.2-ft a2n,in=6 ft Wind Pressure (Figure 6-2,ASCE 7-05) Horizontal PnetzoneA 15.9•psf PnetzoneB 8.2•psf PnetzOnec := 10.5•psf PnetzoneD:= —4.9•psf Vertical PnetzoneE 19.1•psf PnetzoneF 10.8•psf PnetzoneG 13.3•psf PnetzoneH 8.4-psf Basic Wind Force PA:= PnetzoneA.Iµ,•X PA= 15.9•psf Wall HWC PB := Pnetzones'Iw•X PH =—8.2.psf Roof HWC Pc := Pnetzonec IWX Pc = 10.5.psf Wall Typical PD:= PnetzoneD.IWX PD=—4.9•psf Roof Typical PE:= PnetzoneE'I,u X PE=—19.1•psf PF:= PnetzoneF'Iw•X PF=—10.8•psf PG:= PnetzoneG.lw•X PG=—13.3•psf PH := PnetzoneH.Iw•X PH=—8.4•psf t Harper Project: 7940 HunzikerBuildingAddition Houf Peterson Client: FHA&Associates Job# FHA-05 Righellis Inc. Designer:lRCIREERS•pLARRER$ - De JAS Date: Feb.,2013 Pg.# LARO$CA•E ARCHITECT$•$VRY!YOPS • Determine Wind Sail In Transverse Direction 2 WSAIL'zoneA := 330•$ WSAILzneg:= 0.ft2 WSAILzonec:= 2370•ft2 W SAILzoneD:= 0412 WA= WSA11-zoneA'PA WA= 5247 lb Ws:= WSAII-zoneB'PB WB=0 We:= WSAILzonec'Pc We=24885 lb WD:= WSAILZoneD'PD WD=0 • Wind_Force:= WA+ WB + We+ WD Wind Forcen,;,t:= 10•psf•(WSAILZoneA+ WSAILzoIIeB+ WSAILzonec+ WSAILZoneD) Wind_Force=30132 lb Wind Foreem;n=27000 lb W SAILzoneE:= 1210•ft2 WSAILZoneF:= 1210•ft2 WSAILz,„IIeG:= 8690•ft2 WSAILzoneH:= 8690•ft2 WE:= WSAILZoneE'PE WE=—23111 lb • WF:= WSAILZoneF'PF WF=—13068 lb WG:= WSA Lzonej'PG WG=—1155771b WH:= WSAILZoneH'PH WH=—72996 lb Upliftnet:= WF+ WH+ RDL•(WSAILZoneF+ WSAILZoneH)'.6 Upliftnet=32736 lb (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHE ARWALL HOLDDOWN CALCULATION / I ieHarper Project: 7940 Hunziker Building Addition Houf Peterson Client: FHA&Associates Job# FHA-05 Righellis Inc. ENGINEERS•PLANNERS Designer: JAS Date: Feb.,2013 Pg.# _AMDSCAPE ARCNITECTS•SURVEVORS Determine Wind Sail In Longitudinal Direction - Wnti §a"mv:= 330.ft2 WWS wL�AVrai= 0.ft2 MAIL-490A.,:= 1320.ft2 WSf Inv.A4vAv:= 0•ft2 NV := WSAILZoneA.PA WA=5247 lb ,N := WSAILZoneB'PB WB=0 WSAILZoneC'PC WC= 13860lb WSAILzoneD'PD WD=0 ,34442949,,:= WA+ WB+ WC+ WD nAA,IsyniAiW:= 10•psf•(WSAILZ0neA+ WSAILzoneB+ WSAILzonec+ WSAILzoneD) • Wind Force= 19107 lb Wind Forcemin = 16500 lb V ,S WA = 1980.ft2 W SN A,ILy := 1980.ft2 , UUmefa,:= 7920.02 WSN ,,49 = 7920412 = WSAILzoneE'PE WE= —37818 lb ,X., WSAII ZoneF'PF WF= —21384 lb WSAILzoneG'PG WG= —105336 lb := WSAILZoneH'PH WH=—66528 lb U li c4,,:= WF+ WH+ RDL•(WSAILzoneF+ WSAILzoneH)'1.2••6 Upliftnet= 54648 lb (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN CALCULATION BY DATE. JOB NO' S OF PROJECT: RE: 01;EL p Z � o 0 Ahlif 714 � w O w Z w = O /0,1 r L, r: ce'.24EL XI,. f f or-•( Pi� roz 2w ---- 6C' 3j2 ›°' 7'` /8° ) /4,6 1 c /rn,a. /1/1 Tia 77.° IX r D g `� f/}x //e5 p_ ec j 5 D4 F • Joe No fig OF PROJECT RE ❑ ❑ 4.wa ! O w • Z • CL W D ? r ate4 2 r/G = 1, 7 , /7 - mod. '7'` /0 /6 l6() Iii Z ❑ Z 0 a /1•)17-ba F.- -" 7 ?o — / e ����� 6 S 4r- (,v , I■ c V = 2976 ( 4 (2-- _ I I O'1 4,0aoi war ch4- (_6,,,e2) a y `_ v l -- 31D`' � D. 7SX FeT f y/ s ,. �—� �� 3/3/ 22 9. 2/, re agilnA It leCi-e— re ; re-e.--d re_r- By DAE 0)// JOB NO f r OF V �� T v JT/t'J PROJECT: RE: a p--,t'JL-e___ D(O ra3' <-N :1 ! W ° � '"" y r' - - O W U Z W Z 0 arc - Sv�s� V /$ 7 )-# 7 U s 80 9 — f ? v� �a �:�. ✓_ / 3(/J � p 0 2O 2 BY DAT6 3fr / JOB NO.. ' OF PROJECT: RE: 4;o 1`1 J-l/ / k--6P l k-44CL- E J Z c 2c )+ P/ PAS/ 1eç1t ❑ ■ / ? ' 0 _I • -W,C z Z r� �. q w � a z f ,e- a if)/_ 7,6134 f O jt)p- . 2 a) fS, O 0, Harper Project: ,1,� le Houf Peterson Client: Job# FM-'AC— Client: • Righellis Inc. Designer:ENGINEER&.PLANNERS Designer: _ Date: a Pg.# LANDSCAPE ARCNITECTS•SURYETORS • Equivalent Lateral Force Procedure (12.8,ASCE 7-05) WTTOTAL:= 13359601b • ht,:= 30 Mean Height Of Roof Ie:= 1 Component Importance Factor (11.5,ASCE 7-05) A:= 4 Responce Modification Factor (Table 12.2-1,ASCE 7-05) Ct:= .02 Building Period Coefficient (Table 12.8-2,ASCE 7-05) x:= .75 Building Period Coefficient (Table 12.8-2,ASCE 7-05) Period 'I',:=:= T a=0.26 < 0.5 (EQU 12.8-7,ASCE 7-05) = C S1 := 0.339 Max EQ,5%damped,spectral responce acceleration of 1 sec. (Chapter 22,ASCE 7-05)...or SS:= 0.675 Max EQ,5%damped,spectral responce acceleration at short period From Figures 1613.5(1)&(2) Fa:= 1.122 Acc-based site coefficient @.3 s-period (Table 11.4-1,ASCE 7-05) P F„:= 1.722 Vel-based site coefficient @ 1 s-period (Table 11.4-2,ASCE 7-05) • SMS= Fa Ss Sivas =0.757 (EQU 11.4-1,ASCE 7-05) 4 Sds:= 2•SMS Sds=0.505 (EQU 11.4-3,ASCE 7-05) 3 SMt Fv.SI SMi =0.584 (EQU 11.4-2,ASCE 7-05) 2•SMl • Shc := 3 Sd1 =0.389 (EQU 11.4-4,ASCE 7-05) Sds'le Cst:= Cst=0.126 (EQU 12.8-2,ASCE 7-05) R ...need not exceed... • Csmax:= Sdi le Csmax=0.379 (EQU 12.8-3,ASCE 7-05) TaR ...and shall not be less then... C1 = if(0.044•Sds•Ie<0.01,0.01,0.044•Sds4e) r 0.5•S1•1 J (EQU 12.8-5&6,ASCE 7-05) C2:= if Si <0.6,0.01, R z Csmio:= if(Ci >C2,C1,C2) Csmir,=0.022 • Cs:= if(Cst<Csmia,Csmia,if(Cst<Csmax,Cst,Csmax)) Cs=0.126 Eh:= Cs•WTTOTAL Eh= 1686321b (EQU 12.8-1,ASCE 7-05) Ev:= 0.2•SdS.WTTOTAL Ev= 134905 lb (EQU 12.4-4,ASCE 7-05) f 8 I [7a-"c JOB NO OF .--...—\ AS 77.3 f, j1 C-- r PROJECT 1/, , i ° e& '. #.- ❑ ❑ . F W 4."t r 7: Ce-S4ift-6 ji.,1( /awl 0(1 _____.°2,) .24) : eovds • 0 J U ,u, il ''- / 6 :0 z w 0 rr CL ff Z O �� c Q _U Z 2 0 2 1/G _ , /, 7s >, a- x 'R ,,=,L, c O U ....... e3 d ":7_ , E rc o LL z Z o i ( ).‘,__eA_ pe....- G(T2______- 1 . F a Øvjj; (._ 6 a- e, ) y 14411/1„, --- TD / 7;" (e.41AseriAdri '(, -C- -----N> ep ,.., ...„ .1T7--- O U � S a. 4 xa = xa x l3 COMPANY PROJECT ffl WoodWorks® SOFTWARE FOR WOOD DESIGN Mar. 12,2013 14:40 Roof Joists GL Design Check Calculation Sheet • Sizer 8.0 LOADS: I Load Type Distribution Pat- Location [ft] Magnitude Unit tern Start End Start End Loadl Dead Full Area 20.00 (4.00)* psf Load2 Snow Full Area 25.00 (4.00)* psf Load3 Dead Point 15.00 250 _lbs *Tributary Width (ft) MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : 10' 201 Dead 862 987 Live 1000 1000 Total 1960 2085 Bearing: Load Comb #2 #2 Length 0.96 1.03 Cb 1.00 1.00 Glulam-Unbal.,West Species, 24F-V4 DF, 3-118x13-1/2" Self-weight of 9.71 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi)and Deflection (in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fb = 67 Fv' = 305 f /F ' = 0.22 Bending(+) fb = 1279 Fb' = 2760 fb/Fb' = 0.46 Live Defl'n 0.31 = L/768 0.67 = L/360 0.47 Total Defl'n 0.80 = L/301 1.00 = L/240 0.80 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D+S, V = 2085, V design = 1871 lbs Bending(+) : LC #2 = D+S, M = 10119 lbs-ft Deflection: LC #2 = D+S EI = 1153e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction Lc=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). /`( rs Bentteyx Microsoft ) P2 4-( >6 Current Date:3/12/2013 2:41 PM Units system:English File name:O:\HHPR Projects\FHA-FHA&Associates\FHA-05 7940 Bldg Addn\Calcs\Steel b1.rc \ Design Results Continuous Beam Design code AISC 360-2005 ASD GENERAL INFORMATION: Spans: Span Span length Section Material [ft] 1 44.00 W 24X55 A992 Gr50 Nodes: Distance Restraint Tx Ty Rz [ft] 0.00 Pinned 1 1 0 44.00 Pinned 1 1 0 44t -, Load conditions: Condition Description Comb. Category Duration Self Weight DL Dead Load No DL -- Yes LL Live Load No LL — — S1 DL+LL Yes Service — Yes Di DL+LL Yes Design — Yes Distributed loads on spans Y1 Y2 d1 II d2 Condition Span(s) Dist1 Dist2 Vail Va12 [ft] [ft] [Kip/ft] [Kip/ft] DL 1 0.00 44.00 -0.40 -0.40 LL 1 0.00 44.00 -0.50 -0.50 Pages /S Continuous Beam GENERAL INFORMATION: Loads summary 0 C !l1U111111111111 1111 111111111111111111 1111111111111111111111A��rt r d4 A3911 ■ .14 AVE •iuiiiiuii uiuiii iii■uiii uuininsmuiuuiiominsoliuiui,ui Reactions: Nodes Load condition Rx Ry Mz [Kip] [Kip] [KIP"fll 1 D1 0.00 21.01 0.00 2 D1 0.00 21.01 0.00 1 Min. 0.00 21.01 0.00 2 Min. 0.00 21.01 0.00 1 Max. 0.00 21.01 0.00 2 Max. 0.00 21.01 0.00 Member forces and inflection points Station Condition Distance Shear V Moment M [%] [ft] [Kip] [Kip*ft] 0 D1 0.00 21.01 0.00 50 D1 22.00 0.00 231.06 100 D1 44.00 -21.01 0.00 Critical deflections Condition Span Distance @ Deflection Allowable [ft] [%] [in] f(L) [in] S1 1 22.00 50.00 2.08337 (U253) 2.93333 Envelopes: Page2 C (� Continuous Beam GENERAL INFORMATION: Envelopes: M33 bending moment: Moments[Kip*ft], Length[ft] A ax 23' :2-7[Kip't]at 21.73{ft] from J 231.0217 • . I IIIIII i tr WCn:0.0 0 •ft]at 0.00(ft] from J V2 shear forces: Forces[Kip],Length[ft] Max:21.0052pCipi at 0.00(ft) from J 21.73 2'.=(�_ � Illllili111l�II i L=44.00 -21.0052 21.73 1./in: -21.0052(K ,)at 44.00(ft) from J Vertical Translation Deflection[in],Length[ft] Max:0.000(m)at 0.00(ft) from J 0 L=44. . Kw :-2.:_3Ztn]at 22..271ft] from J Pa: 1 Continuous Beam DESIGN: Shear in major axis 33 Ratio 0.00 Capacity : 127.19[Kip] Demand 0.00[Kip] Ctrl Eq. : D1 at 0.00% --------------- Intermediate results Unit Value Reference Factored shear capacitv(Vn/S2) [Kip] 127.19 Web slenderness(?.w) - 6.94 Sec.G2 Shear area(Aw) [in2] 7.08 Web buckling coefficient(kv) - 1.20 Sec.G7 Web buckling coefficient(Cv) - 1.00 Eq.G2-3 Nominal shear strength(Vn) [Kip] 212.40 Eq.G2-1 Shear in minor axis 22 Ratio 0.13 Capacity 167.43[Kip] Reference : Sec.G2.1(a) Demand 21.01 [Kip] Ctrl Eq. : D1 at 0.00% Intermediate results Unit Value Reference ' Factored shear caoacitv(Vn/S2) [Kip] 167.43 Sec.G2.1(a) Web slenderness(Xw) - 54.63 Sec.G2 Shear area(Aw) [in2] 9.32 " Web buckling coefficient(kv) -- 5.00 Sec.G2.1(a) Web buckling coefficient(Cv) -- 1.00 Sec.G2.1(a) Nominal shear strength(Vn) [Kip] 279.60 Eq.G2-1 COMBINED ACTIONS DESIGN v Combined flexure and axial compression Ratio 0.69 Ctrl Eq. D1 at 50.00% Reference : Eq.H1-lb Intermediate results Unit Value Reference Interaction of flexure and axial force - 0.69 Eq.H1-lb Required flexural strength about strong axis(Mr33) [Kip*ft] 231.06 Available flexural strength about strong axis(Mc33) [Kip*ft] 334.33 Sec.Fl Required flexural strength about weak axis(Mr22) [Kip*ft] 0.00 Available flexural strength about weak axis(Mc22) [Kip*ft] 33.13 Sec.Fl .. Required axial compressive strength(Pr) [Kip] 0.00 Available axial compressive strength(Pc) [Kip] 15.69 Sec.El Combined flexure and axial tension Ratio 0.69 Ctrl Eq. D1 at 50.00% Reference : Eq.H1-lb • Page8 /6' ,c4-ce..1 \: • — t) ) t( c&G)- s Bentleys Microsoft ------ (.. .0,A,-1-- 1,Gtie-r---S Current Date:3/12/2013 2:41 PM Units system:English PI (-J&4----- File name:O:\HHPR Projects\FHA-FHA&Associates\FHA-05 7940 Bldg Addn\Calcs\Steel b2.rcb\ Design Results Continuous Beam U n LA. �d/` /a d Design code AISC 360-2005 ASD (, ( - GENERAL INFORMATION: W Se c a S W-e I ( Spans: Span Span length Section Material [ft] 1 8.25 W 24X62 A992 Gr50 2 55.00 W 24X62 A992 Gr50 Nodes: Distance Restraint Tx Ty Rz [ft] 0.00 Free 0 0 0 8.25 Pinned 1 1 0 63.25 Pinned 1 1 0 A 44.4t Load conditions: Condition Description Comb. Category Duration Self Weight DL Dead Load No DL -- Yes LL Live Load No LL -- Si -- DL+LL Yes Service -- Yes D1 DL+LL Yes Design — Yes Distributed loads on spans vt'Iriv2 dl I - i d2 Condition Span(s) Dist1 Dist2 Vail Va12 [ft] [ft] [Kip/ft] [Kip/ft] DL 1,2 0.00 63.25 -0.40 -0.40 LL 1,2 0.00 63.25 -0.50 -0.50 Pagel [ I 4 Continuous Beam GENERAL INFORMATION: Concentrated forces and moments P1 P2 dl d2 r Condition Span Dist P M [ft] [Kip] [Kip`ft] DL 1 0.00 -10.00 0.00 LL 1 0.00 -11.00 0.00 Loads summary 0 0 O . I111111111111 111111111111 1111111111111111111111111111111111r Reactions: Nodes Load condition Rx Ry Mz [Kip] [Kip] [Kip*ft] 1 D1 0.00 0.00 0.00 2 D1 0.00 59.12 0.00 3 D1 0.00 22.70 0.00 1 Min. 0.00 0.00 0.00 2 Min. 0.00 59.12 0.00 . 3 Min. 0.00 22.70 0.00 1 Max. 0.00 0.00 0.00 2 Max. 0.00 59.12 0.00 3 Max. 0.00 22.70 0.00 Member forces and inflection points Station Condition Distance Shear V Moment M [%] [ft] [Kip] [Kip'ft] 0 D1 0.00 -21.00 0.00 13 D1 8.25 -28.93 -205.97 13 D1 8.25 30.19 -205.97 25 D1 16.05 22.69 0.20 63 D1 39.88 -0.22 267.86 100 D1 63.25 -22.70 0.00 Critical deflections Paget 2`� Continuous Beam GENERAL INFORMATION: Critical deflections Condition Span Distance @ Deflection Allowable [ft] [%] [in] f(L) [in] S1 2 35.75 56.52 2.94570 (L/224) 3.66667 Free nodes deformations Node TY RZ [in] [Rad] Combination:S1=DL+LL 1 0.71885 -0.00665 Envelopes: M33 bending moment: Moments[Kip*ft],Length[ft] Max:267_8731[X ft]at 39.43(ft] from J 15.62 267.8731 0.000 0 L=83.25 O. -205.9725 18.01 1m:-20 .9725(t0p`ft]at 8.20[ft] from J V2 shear forces: Forces[Kip], Length[ft] Max:30.1874110p)at 8.59)ftJ from J 8.20 23.43 30.1874 0 L=a.ti.__ -21. -29.9327 -72.6575 8.59 23.82 Min:-28.9327[1(1p)at 8.20[ft] from J Page3 Continuous Beam GENERAL INFORMATION: Envelopes : Vertical Translation Deflection[in],Length[ft] Max:0.7189[m]at °A ft]ft] from J 8.20 0.7189 0 L=?;72f. 8.20 Mm :-2.96184111]at 37.48[ft) from DESIGN: Span 1 (W 24X62_A992 Gr50) Design status : OK Section information Section name: W 24X62 (US) Dimensions , tf - 1411 4k , mo t d tw —► +- - bf k bf = 7.040 [in] Width d = 23.700 [in] Depth k • = 1.090 [in] Distance k k1 = 1.063 [in] Distance k1 tf = 0.590 [in] Flange thickness tw = 0.430 [in] Web thickness Properties Section properties Unit Major axis Minor axis Gross area of the section. (Ag) [in2] 18.200 Moment of Inertia(local axes) (I) [in4] 1550.000 34.500 Moment of Inertia(principal axes) (I') [in4] 1550.000 34.500 Bending constant for moments(principal axis) (J') [in] 0.000 0.000 Radius of gyration(local axes) (r) [in] 9.228 1.377 Radius of gyration(principal axes) (r) [in] 9.228 1.377 Saint-Venant torsion constant. (J) [in4] 1.710 Page4 .22 , Continuous Beam DESIGN: Combined flexure and axial compression Ratio 0.62 Ctrl Eq. D1 at 100.00% Reference : Eq. H1-lb . Intermediate results Unit Value Reference Interaction of flexure and axial force -- 0.62 Eq.H1-lb Required flexural strength about strong axis(Mr33) [Kip*ft] -205.97 Available flexural strength about strong axis(Mc33) [Kip*ft] 331.43 Sec. Fl Required flexural strength about weak axis(Mr22) [Kip*ft] 0.00 Available flexural strength about weak axis(Mc22) [Kip*ft] 39.12 Sec. Fl Required axial compressive strength(Pr) [Kip] 0.00 Available axial compressive strength(Pc) [Kip] 360.71 Sec. El Combined flexure and axial tension Ratio 0.62 // Ctrl Eq. D1 at 100.00% Reference : Eq. H1-lb Intermediate results Unit Value Reference Required flexural strength about strong axis(Mr33) [Kip*ft] -205.97 Available flexural strength about strong axis(Mc33) [Kip*ft] 331.43 Sec. Fl Required flexural strength about weak axis(Mr22) [Kip*ft] 0.00 - Available flexural strength about weak axis(Mc22) [Kip*ft] 39.12 Sec. Fl Required axial tensile strength(Pr) [Kip] 0.00 Available axial tensile strength(Pc) [Kip] 544.91 Eq.D2-1 Combined flexure and axial compression about local axis Ratio N/A Ctrl Eq. -- Reference . Combined flexure and axial tension about local axis Ratio N/A Ctrl Eq. — Reference .• Span : 2 (W 24X62_A992 Gr50) Design status OK Section information . Section name: W 24X62 (US) Page9 ) 3 Continuous Beam DESIGN: Nominal shear strength(Vn) [Kip] 249.30 Eq.G2-1 - Shear in minor axis 22 Ratio 0.15 Capacity : 203.80[Kip] Reference : Sec.G2.1(a) Demand 30.19[Kip] Ctrl Eq. : D1 at 0.00% Intermediate results Unit Value Reference Factored shear capacitv(Vn/S2) [Kip] 203.80 Sec.G2.1(a) Web slenderness(kw) — 50.05 Sec.G2 Shear area(Aw) [in2] 10.19 Web buckling coefficient(Cv) — 1.00 Sec.G2.1(a) Nominal shear strength(Vn) [Kip] 305.70 Eq.G2-1 COMBINED ACTIONS DESIGN J / Combined flexure and axial compression ✓ Ratio 0.70 Ctrl Eq. D1 at 56.25% Reference : Eq.H1-lb Intermediate results Unit Value Reference Interaction of flexure and axial force — 0.70 Eq.H1-lb Required flexural strength about strong axis(Mr33) [Kip*ft] 267.79 Available flexural strength about strong axis(Mc33) [Kip*ft] 381.74 Sec.Fl Required flexural strength about weak axis(Mr22) [Kip*ft] 0.00 Available flexural strength about weak axis(Mc22) [Kip*ft] 39.12 Sec.Fl Required axial compressive strength(Pr) [Kip] 0.00 Available axial compressive strength(Pc) [Kip] 11.90 Sec.El Combined flexure and axial tension Ratio 0,70 Ctrl Eq. D1 at 56.25% Reference : Eq.H1-lb Intermediate results Unit Value Reference Required flexural strength about strong axis(Mr33) [Kip*ft] 267.79 Available flexural strength about strong axis(Mc33) [Kip*ft] 381.74 Sec.Fl Required flexural strength about weak axis(Mr22) [Kip*ft] 0.00 Available flexural strength about weak axis(Mc22) [Kip*ft] 39.12 Sec.Fl Required axial tensile strength(Pr) [Kip] 0.00 Available axial tensile strength(Pc) [Kip] 544.91 Eq.D2-1 Combined flexure and axial compression about local axis Ratio N/A • • Ctrl Eq. -- Reference . Pagel4 ;7q' $entteya Microsoft J a 1 6,--C.Z.-‘-0 Current Date:3/12/2013 2:42 PM Units system:English File name:O:\HHPR Projects\FHA-FHA&Associates\FHA-05 7940 Bldg Addn\Calcs\Steel b2 unbalanced case 1.rcb\ Design Results Continuous Beam • Design code AISC 360-2005 ASD GENERAL INFORMATION: Spans: Span Span length Section Material [ft] 1 8.25 W 24X62 A992 Gr50 2 55.00 W 24X62 A992 Gr50 Nodes: Distance Restraint Tx Ty Rz [ft] 0.00 Free 0 0 0 . 8.25 Pinned 1 1 0 63.25 Pinned 1 1 0 NIIIIIIIIPIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIMIIIIIIIIIIIIIPIWtf 4 I. ..., i ..: Load conditions: Condition Description Comb. Category Duration Self Weight DL Dead Load No DL -- Yes LL Live Load No LL — -- S1 DL+LL Yes Service — Yes D1 DL+LL Yes Design — Yes • Distributed loads on spans Y Y1 2 d1 I I J r d2 1 Condition Span(s) Dist1 Dist2 Vail Va12 [ft] [ft] [Kip/ft] [Kip/ft] DL 1,2 0.00 63.25 -0.40 -0.40 LL 1,2 0.00 63.25 -0.50 -0.50 Pagel ,P.S- -- Continuous Beam GENERAL INFORMATION: Concentrated forces and moments P1 P2 H1 d2 r Condition Span Dist P M [ft] [Kip] [KiP"ft] DL 1 0.00 -10.00 0.00 LL 1 0.00 -5.50 0.00 Loads summary O O O y '1I111IJ111II1I1111II111111111111111II111111111MIIIHI11111117 <.. ' C.<,. YMI■■NI■EMI■■MEME ME■■EMENII IIIIIM■■■EN1111■■■■■■1111111■■■■IMEEMEMIIMMEMMEIM! Reactions: Nodes Load condition Rx Ry Mz [Kip] [Kip] [Kip"ft] 1 D1 0.00 0.00 0.00 2 D1 0.00 52.80 0.00 3 D1 0.00 23.52 0.00 1 Min. 0.00 0.00 0.00 2 Min. 0.00 52.80 0.00 3 Min. 0.00 23.52 0.00 1 Max. 0.00 0.00 0.00 2 Max. 0.00 52.80 0.00 3 Max. 0.00 23.52 0.00 Member forces and inflection points Station Condition Distance Shear V Moment M [%] [ft] [Kip] [Kip"ft] - 0 D1 0.00 -15.50 0.00 13 D1 8.25 -23.43 -160.60 13 D1 8.25 29.36 -160.60 23 D1 14.33 23.51 0.22 61 D1 38.50 0.28 287.68 100 D1 63.25 -23.52 0.00 Critical deflections Paget p�CJ� Continuous Beam GENERAL INFORMATION: Critical deflections Condition Span Distance Deflection Allowable [ft] [ ■] [in] f(L) [in] Si 2 35.75 56.52 3.27548 (U201) 3.66667 • Free nodes deformations Node TY RZ [in] [Rad] Combination:S1=DL+LL 1 1.02778 -0.00992 Envelopes: M33 bending moment: Moments[Kip'ft],Length[ft] Max:287.7126]1Crp•ft]at 38.85(ft] from J . 14.06 287.7126 0.000 0 L=63.25 0.low -160.5975 14.46 Aire:-160.5975[1Cq•ft]at 8.20(ft) from J V2 shear forces: Forces[Kip],Length[ft] Max:29.3624JKp]at 8.59[ft] from J 8.20 24.21 29.3624 0 L=63.25 -15. -23.4327 -23.5225 8.59 24.60 #tin:-23.5225(Kip]at 83.25[ft] from J Page3 7 Continuous Beam GENERAL INFORMATION: Envelopes Vertical Translation • Deflection[in],Length[ft] Max: 1.0278(nJ at 0.00[ft] from J 8.20 1.0278 0 _ =33.x'_ -3.2845 8.20 k :3.2845[InJ at 37.09[ft] from DESIGN: Span 1 (W 24X62_A992 Gr50) Design status : OK Section information Section name: W 24X62 (US) Dimensions jtf i+ft j� ------- ---- I. t d tw —� bf bf = 7.040 [in] Width d = 23.700 [in] Depth k = 1.090 [in] Distance k k1 = 1.063 [in] Distance k1 tf = 0.590 [in] Flange thickness tw = 0.430 [in] Web thickness Properties Section properties Unit Major axis Minor axis Gross area of the section. (Ag) [in2] 18.200 Moment of Inertia(local axes) (I) [in4] 1550.000 34.500 Moment of Inertia(principal axes) (I') (in4] 1550.000 34.500 Bending constant for moments(principal axis) (J') [in] 0.000 0.000 Radius of gyration(local axes) (r) [in] 9.228 1.377 Radius of gyration(principal axes) (r') [in] 9.228 1.377 Saint-Venant torsion constant. (J) [in4] 1.710 Page4 c:;-e , Continuous Beam DESIGN: Nominal shear strength(Vn) NO 249.30 Eq.G2-1 Shear in minor axis 22 - Ratio 0.14 Capacity : 203.80[Kip] Reference : Sec.G2.1(a) . Demand 29.36[Kip] Ctrl Eq. : D1 at 0.00% Intermediate results Unit Value Reference Factored shear capacity(Vn/Q) [Kip] 203.80 Sec.G2.1(a) Web slenderness(Xw) — 50.05 Sec.G2 Shear area(Aw) [in2] 10.19 Web buckling coefficient(Cv) — 1.00 Sec.G2.1(a) Nominal shear strength(Vn) [Kip] 305.70 Eq.G2-1 COMBINED ACTIONS DESIGN v• Combined flexure and axial compression Ratio 0.75 Ctrl Eq. D1 at 56.25% Reference : Eq.H1-lb Intermediate results Unit Value Reference Interaction of flexure and axial force — 0.75 Eq.H1-lb Required flexural strength about strong axis(Mr33) [Kip*ft] 287.64 Available flexural strength about strong axis(Mc33) [Kip*ft] 381.74 Sec.Fl Required flexural strength about weak axis(Mr22) [Kip*ft] 0.00 Available flexural strength about weak axis(Mc22) [Kip*ft] 39.12 Sec.Fl Required axial compressive strength(Pr) [Kip) 0.00 Available axial compressive strength(Pc) [Kip] 11.90 Sec.El Combined flexure and axial tension Ratio 0.75 Ctrl Eq. D1 at 56.25% Reference : Eq.H1-lb Intermediate results Unit Value Reference Required flexural strength about strong axis(Mr33) [Kip*ft] 287.64 Available flexural strength about strong axis(Mc33) [Kip*ft] 381.74 Sec.Fl Required flexural strength about weak axis(Mr22) [Kip*ft] 0.00 _ Available flexural strength about weak axis(Mc22) [Kip*ft] 39.12 Sec.Fl Required axial tensile strength(Pr) [Kip] 0.00 Available axial tensile strength(Pc) [Kip] 544.91 Eq.D2-1 r Combined flexure and axial compression about local axis Ratio N/A • Ctrl Eq. — Reference . Pagel4 43 IMicrosoft Current Date:3/12/2013 3:01 PM Units system:English File name:O:IHHPR Projects\FHA-FHA&Associates\FHA-05 7940 Bldg Addn\Calcs\Column bracing wall.etz\ Load condition:DL=Dead Load t/N( tLoads 1. I r // � / �/� Concentrated-Members / W V�" /� Concentrated-Nodes x=-0.52[Kip] ic" y=-0.25[Kip] `" 1[Kip] =5.5[Kip*ft] Icox=0.52[Kip] ¶y=-0.25[Kip] } nap Gentle Microsoft Current Date:3/12/2013 3:02 PM Units system:English File name: O:\HHPR Projects\FHA-FHA&Associates\FHA-05 7940 Bldg Addn\Calcs\Column bracing wall.etz\ Load condition: Eq=Wall Seismic Loads Concentrated- Nodes rx=5.8[Kip] rx=5.8[Kip] x=5.8[Kip] x=5.8[Kip] x=5.8[Kip] x=5.8[Kip] x=5.8[Kip] V � x 3 t isenttey Microsoft Current Date: 3/12/2013 3:02 PM Units system:English File name:O:\HHPR Projects\FHA-FHA&Associates\FHA-05 7940 Bldg Addn\Calcs\Column bracing wall.etz\ Load condition:LL=Crane Load Loads Concentrated-Nodes • • x=15[Kip] y=-7.2[Kip] =-15[Kip] r Bentt 'y. Microsoft Current Date:3/12/2013 3:04 PM Units system:English File name:O:IHHPR Projects\FHA-FHA&Associates\FHA-05 7940 Bldg Addn\Calcs\Column bracing wall.etz1 Steel Code Check Report: Summary-For all selected load conditions - Load conditions to be included in design: id0=DL+0.7Eq id1=DL-0.7Eq id2=0.6DL+0.7Eq id3=0.6DL-0.7Eq id4=DL+LL id5=DL+0.525Eq+0.7LL id6=DL-0.525 Eq+0.7 LL Description Section Member Ctrl Eq. Ratio Status Reference HSS_SQR 10X10X5_8 1 id0 at 50.00% 0.70 OK Eq.H1-lb id1 at 46.59% 0.70 OK Eq.H1-lb id2 at 50.00% 0.69 OK Eq.H1-1b id3 at 46.59% 0.69 OK Eq.H1-lb id4 at 66.48% 0.34 OK Eq.H1-lb id5 at 26.70% 0.58 OK Eq.H1-lb id6 at 66.48% 0.69 OK Eq.H1-lb Pagel BentleyT Microsoft Current Date:3/12/2013 3:00 PM Units system:English File name: 0:1HHPR Projects\FHA-FHA&Associates\FHA-05 7940 Bldg Addn\Calcs\Column w Jib Crane.etz1 Load condition:id0=DL+CL Loads NI Concentrated-Member1 / /fi Irr16-r 0(t4 n i✓ Concentrated Nodes e { x=15.52[Kip] - U) y=-7.45[Kip] 11[Kip] to 7a w x co x 4 ^' 3=-15.52[Kip] y=-0.25[Kip] Y • A4 ?G nd., Bentley* Microsoft Current Date:3/12/2013 3:00 PM Units system:English File name:O:\HHPR Projects\FHA-FHA&Associates\FHA-05 7940 Bldg Addn\Calcs\Column w Jib Crane.etz\ Steel Code Check Report: Summary-Group by section Load conditions to be included in design: idO=DL+CL Description Section Member Ctrl Eq. Ratio Status Reference HSS_SQR 8X8X1_2 1 id0 at 66.67% 0.75 OK 1,7 Eq.H1-lb Pagel ( 6,-.&r-e)-d-- cciLLs Bentley' Microsoft —'—`�`°" '�`" � Current Date:3/12/2013 2:51 PM Units system:English File name:O:\HHPR Projects\FHA-FHA&Associates\FHA-05 7940 Bldg Addn\Calcs\Tilt Up Panel w man door.tup\ • Design Results - Tilt-Up Wall GENERAL INFORMATION: Global status : OK Design code ACI 318-0$ Geometry: Total height 32.00[ft] Total length 27.50[ft] Base support type Continuous Wall bottom restraint Pinned Materials: Material C 3-60 Steel tension strength(Fy) 60[Kip/in2] Concrete compressive strength(fc) 3[Kip/in2] Steel elasticity modulus(Es) 29000[Kip/in2] Concrete modulus of elasticity(E) 3122.02[Kip/in2] Concrete unit weight 0.149818[Kip/ft3] Number of stories: 1 Story Story height Wall thickness [ft] [in] 1 30.00 7.25 Openings: Reference X Coordinate Y Coordinate Width Height [ft] [ft] [ft] [ft] Lower left 19.75 0.00 4.00 10.00 Load conditions: ID Comb. Category Description DL No DL Dead Load SL No SNOW Snow Load WL No WIND Wind Load EQ No EQ Seismic SC1 Yes DL DC1 Yes 1.4DL D2 Yes 1.2DL+0.5SL D3 Yes 1.2DL+1.6SL D4 Yes 1.2DL+0.5WL D5 Yes 1.2DL+1.6SL+0.5WL D6 Yes 1.2DL+1.6WL D7 Yes 1.2DL+0.5SL+1.6WL D8 Yes 1.2DL+0.2SL Pagel 76' D9 Yes 1.2DL+EQ • D10 Yes 1.2DL+0.2SL+EQ D11• Yes 0.9DL+1.6WL D12 Yes 0.9DL+EQ Consider Self Weight: Load condition DL In-plane seismic weight: Load condition Coefficient EQ 0.28 Distributed loads: Story Condition Direction Magnitude Eccentricity [Ki p ] [ft] 1 DL Vertical 0.20 0.54 1 SL Vertical 0.25 0.54 Out-of-plane perssure loads: Story Condition Magnitude [Kiplft2] 1 WL 0.02 Out-of-plane seismic weight: Load condition Coefficient EQ 0.28 TILT-UP WALLS DESIGN: Status OK (// Paget 3 ? 0 ,,,, 0 Gawa t 4 N r a _ 4 4 1 1 r -a- .. r a y 1 1 I i I IMiiil - Geometry: Segment X Coordinate Y Coordinate Width Height . [ft] [ft] [ft] [ft] 1 0.00 -1.00 19.75 1.00 2 19.75 -1.00 4.00 1.00 3 23.75 -1.00 3.75 1.00 4 0.00 0.00 19.75 10.00 5 23.75 0.00 3.75 10.00 6 0.00 10.00 19.75 20.00 7 19.75 10.00 4.00 20.00 8 23.75 10.00 3.75 20.00 9 0.00 30.00 19.75 1.00 10 19.75 30.00 4.00 1.00 11 23.75 30.00 3.75 1.00 Vertical reinforcement: ---------- (_, --'6-(fi - Reinforcement layers 1 Segment B�ate_ ^n rm Ld [in] [in] - 1 1645 15.00 27.39 2 4-#5 15.00 27.39 3 3-#5 15.00 27.39 4 1645 15.00 27.39 5 3-#5 15.00 27.39 6 1645 15.00 27.39 7 4-#5 15.00 27.39 8 3-#5 15.00 27.39 9 1645 15.00 27.39 Page3 ?6-4/'41;-) 10 4-#5 15.00 27.39 11 3-#5 15.00 27.39 Vertical reinforcement Segment Condition Pu Pu/Ag 0.06•f'c Ratio [Kip] [Kip/in2] [Kip/in2] - 1 DC1 (Top) 0.000 0.000 0.180 0.00 I I 2 DC1 (Top) 0.000 0.000 0.180 0.00 I I - 3 DC1 (Top) 0.000 0.000 0.180 0.00 I 1 4 DC1 (Max) 90.413 0.053 0.180 0.29 5 DC1 (Max) 28.498 0.087 0.180 0.49 6 D10(Max) 40.371 0.023 0.180 0.13 • 1 7 D5(Max) 6.103 0.018 0.180 0.10 t.- I 8 D5(Max) 9.778 0.030 0.180 0.17 9 DC1 (Top) 0.000 0.000 0.180 0.00 1 1 10 DC1 (Top) 0.000 0.000 0.180 0.00 I I 11 DC1 (Top) 0.000 0.000 0.180 0.00 1 I Intermediate results for axial-bending Segment Condition Ase a c d 4 Kb [in2] [in] [in] [in] [Kip] 1 DC1 (Top) 4.96 0.49 0.58 3.63 0.90 1566482.00 2 DC1 (Top) 1.24 0.61 0.72 3.63 0.90 317262.20 3 DC1 (Top) 0.93 0.49 0.57 3.63 0.90 297433.30 4 D11 (Bottom) 5.97 0.59 0.70 3.63 0.90 1111.41 5 D11 (Bottom) 1.24 0.65 0.77 3.63 0.90 203.04 6 D11 (Max) 5.36 0.53 0.63 3.63 0.90 1740.54 . 7 D7(Max) 1.33 0.65 0.77 3.63 0.90 352.51 8 D11 (Max) 1.03 0.54 0.63 3.63 0.90 330.48 9 DC1 (Top) 4.96 0.49 0.58 3.63 0.90 1566482.00 10 DC1 (Top) 1.24 0.61 0.72 3.63 0.90 317262.20 11 DC1 (Top) 0.93 0.49 0.57 3.63 0.90 297433.30 Inertias Segment Condition Ig Icr le [in4] [in4] [in4] 1 DC1 (Top) 7526.29 442.74 7526.29 2 DC1 (Top) 1524.31 103.38 1524.31 3 DC1 (Top) 1429.04 83.32 1429.04 4 D11 (Bottom) 7526.29 502.28 4805.87 5 D11 (Bottom) 1429.04 101.21 877.99 6 D11 (Max) 7526.29 467.33 7526.29 7 D7(Max) 1524.31 107.96 1524.31 8 D11 (Max) 1429.04 89.51 1429.04 9 DC1 (Top) 7526.29 442.74 7526.29 10 DC1 (Top) 1524.31 103.38 1524.31 - 11 DC1 (Top) 1429.04 83.32 1429.04 Combined axial flexure Page4 ( Segment Condition Pu Mua Mu •*Mn Mu/ •*Mn [Kip] [KKiP*ftl [KIP*ft] [KIWI] 1 DC1 (Top) 0.00 0.00 0.00 75.38 0.00 I 2 DC1 (Top) 0.00 0.00 0.00 18.52 0.00 I ' 1 3 DC1 (Top) 0.00 0.00 0.00 14.15 0.00 I I 4 D11 (Bottom) 60.79 83.68 90.26 90.96 0.99 ■ 5 D11 (Bottom) 18.83 16.14 18.41 18.92 0.97 ■ 6 D11 (Max) 24.16 -48.16 -49.07 81.61 0.60 Mil 7 D7(Max) 5.20 -7.56 -7.71 19.82 0.39 8 D11 (Max) 6.08 -9.22 -9.45 15.72 0.60 ■ 9 DC1 (Top) 0.00 0.00 0.00 75.38 0.00 I I 10 DC1 (Top) 0.00 0.00 0.00 18.52 0.00 I I 11 DC1 (Top) 0.00 0.00 0.00 14.15 0.00 I J Cracking moment Segment Condition Pu Mua Mcr 4*Mn Mcr/+*Mn [Kip] [Kip*ft] [KiP*ft] [KIWI] 1 D12(Bottom) 0.00 0.00 71.07 75.38 0.94 El 2 DC1 (Top) 0.00 0.00 14.39 18.52 0.78 NMI 3 DC1 (Top) 0.00 0.00 13.50 14.15 0.95 ■ / 4 D11 (Top) 44.73 -23.59 71.07 86.91 0.82 =I 5 D12(Top) 15.78 -3.98 13.50 18.17 0.74 6 D11 (Top) 8.09 -1.64 71.07 77.46 0.92 7 D11 (Top) 0.34 -0.33 14.39 18.61 0.77 NM 8 D12(Top) 3.03 -0.33 13.50 14.93 0.90 mi 9 D12(Bottom) 0.00 0.00 71.07 75.38 0.94 IN 10 DC1 (Top) 0.00 0.00 14.39 18.52 0.78 ■ 11 DC1 (Top) 0.00 0.00 13.50 14.15 0.95 U Interaction diagrams,P vs.M: P vs.M(Segment 4) P vs.!A{Segment 5) M:0 - 1111 11111 MI ME off ,■ i •:40 -190 0 LO 160 240 6C -w -20 0 20 40 GO 1 Axial compression Pages 6.1/ 5 1 Segment Condition Pu +*Pn Pu/4*Pn [Kip] [Kip] 1 DC1 (Top) 0.00 2271.82 0.00 I 2 DC1 (Top) 0.00 459.80 0.00 I 3 DC1 (Top) 0.00 431.37 0.00 I 4 DC1 (Bottom) 94.56 2271.82 0.04 I 1 5 DC1 (Bottom) 29.29 431.37 0.07 I 1 6 DC1 (Bottom) 62.59 2271.82 0.03 7 DC1 (Bottom) 10.66 459.80 0.02 8 DC1 (Bottom) 14.21 431.37 0.03 I I 9 DC1 (Top) 0.00 2271.82 0.00 I 10 DC1 (Top) 0.00 459.80 0.00 I 11 DC1 (Top) 0.00 431.37 0.00 I Axial tension Segment Condition Pu VP Pu/4*Pn [Kip] [Kip] 1 DC1 (Top) 0.00 267.84 0.00 1 I 2 DC1 (Top) 0.00 66.96 0.00 I 3 DC1 (Top) 0.00 50.22 0.00 I 4 DC1 (Top) 0.00 267.84 0.00 I I 5 DC1 (Top) 0.00 50.22 0.00 I 6 DC1 (Top) 0.00 267.84 0.00 I I 7 DC1 (Top) 0.00 66.96 0.00 I I 8 DC1 (Top) 0.00 50.22 0.00 I 9 DC1 (Top) 0.00 267.84 0.00 I I 10 DC1 (Top) 0.00 66.96 0.00 I I 11 DC1 (Top) 0.00 50.22 0.00 I 1 Shear Segment Condition Vu 41*Vn Vul4'Vn [Kip] [Kip] 1 DC1 (Top) 0.000 70.584 0.00 I 2 DC1 (Top) 0.000 14.296 0.00 I 3 DC1 (Top) 0.000 13.402 0.00 I 4 D7(Bottom) 14.406 70.584 0.20 -I 5 D7(Bottom) 2.775 13.402 0.21 O 6 D11 (Top) 8.208 70.584 0.12 ■ 7 D7(Bottom) 1.475 14.296 0.10 ■ 8 D11 (Top) 1.566 13.402 0.12 t 9 DC1 (Top) 0.000 70.584 0.00 I I 10 DC1 (Top) 0.000 14.296 0.00 I I 11 DC1 (Top) 0.000 13.402 0.00 I I Deflection - Page6 q ( Segment Condition A Amax A/Amax [in] [in] 1 SC1 (Top) 0.000 0.080 0.00 t I • 2 SC1 (Top) 0.000 0.080 0.00 I I 3 SC1 (Top) 0.000 0.080 0.00 1 I 4 SC1 (Bottom) 0.008 2.400 0.00 I I 5 SC1 (Bottom) 0.008 2.400 0.00 I I 6 SC1 (Top) -0.015 2.400 0.01 L 7 SC1 (Top) -0.015 2.400 0.01 ( I 8 SC1 (Top) -0.015 2.400 0.01 I 1 9 SC1 (Top) 0.000 0.080 0.00 I i • 10 SC1 (Top) 0.000 0.080 0.00 I I 11 SC1 (Top) 0.000 0.080 0.00 I I SHEAR WALL DESIGN: Status OK I I I I I ■ I I I • II II• Ili MIMI NMI il NI• MflBIIB M MIMI -- a Mi Mi .. NMI — — — — —— — — — — — —• —• —• —• —• — NfffffffffffI >, r .r ili .+� icy* (I) S4 NENE r I MINI e i , 3 i , , ! alms Geometry: Segment X Coordinate Y Coordinate Width Height Classification [ftl [ft] [ft] [ft] 1 0.00 0.00 19.75 10.00 Shear wall 2 23.75 0.00 3.75 10.00 Shear wall 3 0.00 10.00 27.50 20.00 Shear wall Reinforcement: Page7 Reinforcement layers 1 Vertical reinforcement Horizontal reinforcement Segment Bars Spacing Ld Bars Spacing Ld [in] [in] [in] [in] 1 1645 15.00 27.39 845 15.00 35.60 2 345 15.00 27.39 8-#5 15.00 35.60 - 3 1645 15.00 27.39 1645 15.00 35.60 445 15.00 27.39 1645 15.00 35.60 3-#5 15.00 27.39 1645 15.00 35.60 - Intermediate results for axial-bending Segment Condition c d [in] [in] 1 DC1 (Top) 21.25 189.60 2 DC1 (Top) 4.15 36.00 3 DC1 (Top) 25.45 264.00 Combined axial flexure Segment Condition Pu Mu 4*Mn Mu/4*Mn [Kip] [Kip*ft] [Kip*ft] 1 DC1 (Top) 69.58 -37.30 3061.25 0.01 ( I 2 DC1 (Top) 24.54 6.30 129.98 0.05 1 • I _ 3 DC1 (Top) 17.82 -26.43 5234.16 0.01 I I Interaction diagrams,P vs.M: P vs.IA(Segment 1) P vs.M(Segment 2) me 4' .- ■ moot, so A ism. _ _ --- n wac - -sac ec a -xca 0 30:k SCcc∎stem 4c0 -2X1 o 2o0 aco raw-:K o:, raor.xsc"WV Axial compression - Page8 Segment Condition Pu +*Pn Pu/+*Pn [Kip] [Kip] 1 DC1 (Bottom) 94.56 2271.82 0.04 I 2 DC1 (Bottom) 29.29 431.37 0.07 L I 3 DC1 (Bottom) 87.46 3163.00 0.03 I I Axial tension Segment Condition Pu $*Pn Pu/4*Pn [Kip] [Kip] 1 DC1 (Top) 0.00 267.84 0.00 2 DC1 (Top) 0.00 50.22 0.00 I I 3 DC1 (Top) 0.00 385.02 0.00 I Shear Segment Condition Vu $*Vn Vu/d*Vn [Kip] [Kip] 1 DC1 (Top) 0.744 248.950 0.00 I 2 DC1 (Top) 0.744 49.218 0.02 I 3 DC1 (Top) 0.000 292.695 0.00 I 1 STABILITY RESULTS: Status OK Global stability: Safety factor 1.5 Condition Location RM OTM FS [Kip*ft] [KiP*ft] SC1 Left corner -1092.11 0.00 — SC1 Right corner 1150.04 0.00 — Notes: "Pu =Axial load *Pn =Nominal axial load *Mua=Moment at section "Mu =Magnified moment at section *Mcr=Cracking moment at section *Mn =Maximum nominal moment *Vu =Design shear force *Vn =Nominal shear force Page9 Bentley Microsoft Current Date:3/12/2013 2:52 PM Units system:English File name:O:\HHPR Projects\FHA-FHA&Associates\FHA-05 7940 Bldg Addn\Calcs\Tilt Up Panel w Large Door.tup\ Design Results Tilt-Up Wall GENERAL INFORMATION: Global status : OK Design code ACI 318-05 Geometry: Total height 32.00[ft] Total length 27.50[ft] Base support type Continuous Wall bottom restraint Pinned Materials: Material C 3-60 Steel tension strength(Fy) 60[Kip/in2] Concrete compressive strength(fc) 3[Kip/in2] Steel elasticity modulus(Es) 29000[Kip/in2] Concrete modulus of elasticity(E) 3122.02[Kip/in2] Concrete unit weight 0.149818[Kip/ft3] Number of stories: 1 Story Story height Wall thickness [ft] [in] 1 30.00 7.25 Openings- Reference X Coordinate Y Coordinate Width Height [ft] [ft] [ft] [ft] Lower left 5.75 0.00 16.00 16.00 Load conditions: ID Comb. Category Description DL No DL Dead Load SL No SNOW Snow Load WL No WIND Wind Load EQ No EQ Seismic SC1 Yes DL DC1 Yes 1.4DL D2 Yes 1.2DL+0.5SL D3 Yes 1.2DL+1.6SL D4 Yes 1.2DL+0.5WL D5 Yes 1.2DL+1.6SL+0.5WL D6 Yes 1.2DL+1.6WL D7 Yes 1.2DL+0.5SL+1.6WL D8 Yes 1.2DL+0.2SL Pagel D9 Yes 1.2DL+EQ D10 Yes 1.2DL+0.2SL+EQ D11 Yes 0.9DL+1.6WL D12 Yes 0.9DL+EQ Consider Self Weight: • Load condition • DL Distributed loads: Story Condition Direction Magnitude Eccentricity [Kip/ft] [ft] 1 DL Vertical 0.20 0.54 1 DL Vertical 0.16 0.75 1 SL Vertical 0.25 0.54 Out-of-plane perssure loads: Story Condition Magnitude [Kip/ft2] 1 WL 0.02 Out-of-plane seismic weight: Load condition Coefficient EQ 0.28 TILT-UP WALLS DESIGN: Status : OK Page2 //b f 1 1 .S, I .:1G, {11• _ r. _ _ _ _ _ I -6 • / _ \ / V \ / \ / a 164 t. / 1 / . I Iii , . , 1 . I , i 1 Geometry: - Segment X Coordinate Y Coordinate Width Height [ft] [ft] [ft] [Ml 1 0.00 -1.00 5.75 1.00 2 5.75 -1.00 16.00 1.00 3 21.75 -1.00 5.75 1.00 4 0.00 0.00 5.75 16.00 5 21.75 0.00 5.75 16.00 6 0.00 16.00 5.75 14.00 7 5.75 16.00 16.00 14.00 8 21.75 16.00 5.75 14.00 9 0.00 30.00 5.75 1.00 10 5.75 30.00 16.00 1.00 11 21.75 30.00 5.75 1.00 Vertical reinforcement: Reinforcement layers 1ons..` Segment Bars Spacing Ld [in] 1 12-#6 6.00 32.86 - 2 32-#5 6.00 27.39 3 12-#6 6.00 32.86 4 12-#6 6.00 32.86 - 5 1246 6.00 32.86 6 1246 6.00 32.86 7 1645 12.00 27.39 8 1246 6.00 32.86 9 1246 6.00 32.86 G/Page3 10 1645 12.00 27.39 11 1246 6.00 32.86 Vertical reinforcement Segment Condition Pu Pu/Ag 0.06•f"c Ratio • [Kip] [Kip/in2] [Kip/in2] 1 DC1 (Top) 0.000 0.000 0.180 0.00 I I - 2 DC1 (Top) 0.000 0.000 0.180 0.00 I I 3 DC1 (Top) 0.000 0.000 0.180 0.00 1 I 4 DC1 (Max) 51.905 0.104 0.180 0.58 MEM 5 DC1 (Max) 51.905 0.104 0.180 0.58 MUM 6 D5(Max) 24.201 0.048 0.180 0.27 7 D7(Max) 9.420 0.007 0.180 0.04 I . I 8 D5(Max) 24.201 0.048 0.180 0.27 9 DC1 (Top) 0.000 0.000 0.180 0.00 I I 10 DC1 (Top) 0.000 0.000 0.180 0.00 I I 11 DC1 (Top) 0.000 0.000 0.180 0.00 1 I Intermediate results for axial-bending Segment Condition Ase a c d 4 Kb [in2] [in] [in] [in] [Kip] 1 DC1 (Top) 5.28 1.80 2.12 3.63 0.66 456064.40 2 DC1 (Top) 9.92 1.22 1.43 3.63 0.87 1269049.00 - 3 DC1 (Top) 5.28 1.80 2.12 3.63 0.66 456064.40 4 D7(Bottom) 6.08 2.07 2.44 3.63 0.65 182.33 5 D7(Bottom) 6.08 2.07 2.44 3.63 0.65 182.33 6 D7(Bottom) 5.67 1.93 2.27 3.63 0.65 343.01 7 D7(Max) 5.12 0.63 0.74 3.63 0.90 1410.05 8 D7(Bottom) 5.67 1.93 2.27 3.63 0.65 343.01 9 DC1 (Top) 5.28 1.80 2.12 3.63 0.66 456064.40 10 DC1 (Top) 4.96 0.61 0.72 3.63 0.90 1269049.00 11 DC1 (Top) 5.28 1.80 2.12 3.63 0.66 456064.40 Inertias Segment Condition Ig Icr le [in4] [in4] [in4] 1 DC1 (Top) 2191.20 329.95 2191.20 2 DC1 (Top) 6097.25 631.11 6097.25 3 DC1 (Top) 2191.20 329.95 2191.20 4 D7(Bottom) 2191.20 412.93 788.41 5 D7(Bottom) 2191.20 412.93 788.41 6 D7(Bottom) 2191.20 366.35 1483.21 7 D7(Max) 6097.25 421.93 6097.25 8 D7(Bottom) 2191.20 366.35 1483.21 9 DC1 (Top) 2191.20 329.95 2191.20 - 10 DC1 (Top) 6097.25 413.52 6097.25 11 DC1 (Top) 2191.20 329.95 2191.20 Combined axial flexure Page4 4 Segment Condition Pu Mua Mu +*Mn Multi*Mn [Kip] [KIP*ft] [Kip*ft] IKIP*ft] 1 DC1 (Top) 0.00 0.00 0.00 60.77 0.00 1 I 2 DC1 (Top) 0.00 0.00 0.00 134.63 0.00 I . I 3 DC1 (Top) 0.00 0.00 0.00 60.77 0.00 I I 4 D7(Bottom) 47.87 34.75 53.47 67.25 0.80 MN 5 D7(Bottom) 47.87 34.75 53.47 67.25 0.80 MIII - 6 D7(Bottom) 23.17 -24.37 -26.78 66.16 0.40 7 D7(Max) 9.42 -16.70 -16.85 76.43 0.22 8 D7(Bottom) 23.17 -24.37 -26.78 66.16 0.40 9 DC1 (Top) 0.00 0.00 0.00 60.77 0.00 1 I 10 DC1 (Top) 0.00 0.00 0.00 74.09 0.00 I I 11 DC1 (Top) 0.00 0.00 0.00 60.77 0.00 I 1 Cracking moment Segment Condition Pu Mua Mcr .*Mn Mcd4*Mn [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 1 D12(Bottom) 0.00 0.00 20.69 60.77 0.34 2 D12(Bottom) 0.00 0.00 57.58 134.63 0.43 3 D12(Bottom) 0.00 0.00 20.69 60.77 0.34 4 D12(Top) 27.13 -21.55 20.69 66.33 0.31 CI V 5 D12(Top) 27.13 -21.55 20.69 66.33 0.31 6 D12(Top) 9.98 -1.13 20.69 65.57 0.32 7 DC1 (Top) -4.57 -5.11 57.58 72.96 0.79 8 D12(Top) 9.98 -1.13 20.69 65.57 0.32 9 D12(Bottom) 0.00 0.00 20.69 60.77 0.34 10 DC1 (Top) 0.00 0.00 57.58 74.09 0.78 MN 11 D12(Bottom) 0.00 0.00 20.69 60.77 0.34 . Interaction diagrams,P vs.M: P vs.M(Segment 4) P vs.1,1{Segment 5) WO I m0 a°imimiii . .. 11 239���� � A BOG II I -.2:c; 41111111121-mop- _-� � � ter- _ All -90 40 •10 0 30 60 K -90 50 -30 0 50 60 90 61c'1e :+cc Mawr:Ka-'ti Axial compression Page5 W Segment Condition Pu *Pn Pu/4*Pn [Kip] [Kip] 1 DC1 (Top) 0.00 656.33 0.00 I I 2 DC1 (Top) 0.00 1832.64 0.00 I 3 DC1 (Top) 0.00 656.33 0.00 I •J 4 DC1 (Bottom) 53.84 656.33 0.08 I 1 5 DC1 (Bottom) 53.84 656.33 0.08 I 1 6 DC1 (Bottom) 25.72 656.33 0.04 I . I 7 D5(Bottom) 24.17 1839.22 0.01 I 1 8 DC1 (Bottom) 25.72 656.33 0.04 I • I 9 DC1 (Top) 0.00 656.33 0.00 I I 10 DC1 (Top) 0.00 1839.22 0.00 L I 11 DC1 (Top) 0.00 656.33 0.00 I Axial tension Segment Condition Pu 4)*Pn Pu/4*Pn [Kip] [Kip] 1 DC1 (Top) 0.00 285.12 0.00 I I 2 DC1 (Top) 0.00 535.68 0.00 I I 3 DC1 (Top) 0.00 285.12 0.00 I I 4 DC1 (Top) 0.00 285.12 0.00 I I 5 DC1 (Top) 0.00 285.12 0.00 I 1 6 DC1 (Top) 0.00 285.12 0.00 I 7 DC1 (Top) 4.57 267.84 0.02 f 8 DC1 (Top) 0.00 285.12 0.00 I 9 DC1 (Top) 0.00 285.12 0.00 I 10 DC1 (Top) 0.00 267.84 0.00 I J 11 DC1 (Top) 0.00 285.12 0.00 I 1 Shear Segment Condition Vu $*Vn Vu/4)*Vn [Kip] [Kip] 1 DC1 (Top) 0.000 20.550 0.00 I I 2 DC1 (Top) 0.000 57.182 0.00 I 3 DC1 (Top) 0.000 20.550 0.00 I 4 D7(Bottom) 5.352 20.550 0.26 5 D7(Bottom) 5.352 20.550 0.26 6 D11 (Top) 3.066 20.550 0.15 • I 7 D7(Bottom) 4.397 57.182 0.08 I I 8 D11 (Top) 3.066 20.550 0.15 • I 9 DC1 (Top) 0.000 20.550 0.00 I I 10 DC1 (Top) 0.000 57.182 0.00 I 11 DC1 (Top) 0.000 20.550 0.00 I I Deflection Page6 ç7:.7 Segment Condition A Amax A&Amax [in] [in] 1 SC1 (Top) 0.000 0.080 0.00 I 2 SC1 (Top) 0.000 0.080 0.00 I 3 SC1 (Top) 0.000 0.080 0.00 I 4 SC1 (Bottom) 0.034 2.400 0.01 I I 5 SC1 (Bottom) 0.034 2.400 0.01 I . 6 SC1 (Top) -0.032 2.400 0.01 I 7 SC1 (Top) -0.031 2.400 0.01 I I 8 SC1 (Top) -0.032 2.400 0.01 L 9 SC1 (Top) 0.000 0.080 0.00 I 10 SC1 (Top) 0.000 0.080 0.00 I 11 SC1 (Top) 0.000 0.080 0.00 I Notes: *Pu =Axial load *Pn =Nominal axial load . *Mua=Moment at section *Mu =Magnified moment at section *Mcr=Cracking moment at section 'Mn =Maximum nominal moment *Vu =Design shear force *Vn =Nominal shear force Pagel s....--1 np- Bet . Microsoft Current Date:3/12/2013 2:52 PM Units system:English File name:O:IHHPR Projects\FHA-FHA&Associates\FHA-05 7940 Bldg AddnlCalcs\Tilt Up Panel w Large Door Transverse Wall.tupl Design Re - Tilt-Up Wall GENERAL INFORMATION: Global status : OK Design code ACI 318-05 Geometry: Total height 32.00[ft] Total length 19.10[ft] Base support type Continuous Wall bottom restraint Pinned Materials: Material C 3-60 Steel tension strength(Fy) 60[Kip/iin2] Concrete compressive strength(fc) 3[Kip/in2] Steel elasticity modulus(Es) 29000[Kip/in2] Concrete modulus of elasticity(E) 3122.02[Kip/in2] Concrete unit weight 0.149818[Kip/ft3] Number of stories: 1 Story Story height Wall thickness [ft] [in] 1 30.00 7.25 Openings: Reference X Coordinate Y Coordinate Width Height [ft] [ft] [ft] [ft] Lower left 3.75 0.00 12.00 12.00 Load conditions: ID Comb. Category Description DL No DL Dead Load SL No SNOW Snow Load WL No WIND Wind Load EQ No EQ Seismic SC1 Yes DL DC1 Yes 1.4DL D2 Yes 1.2DL+0.5SL D3 Yes 1.2DL+1.6SL D4 Yes 1.2DL+0.5WL D5 Yes 1.2DL+1.6SL+0.5WL D6 Yes 1.2DL+1.6WL D7 Yes 1.2DL+0.5SL+1.6WL D8 Yes 1.2DL+0.2SL Pagel D9 Yes 1.2DL+EQ 010 Yes 1.2DL+0.2SL+EQ D11 Yes 0.9DL+1.6WL D12 Yes 0.9DL+EQ Consider Self Weight: Load condition DL Distributed loads: Story Condition Direction Magnitude Eccentricity [Kip/ft] [ft] 1 DL Vertical 0.04 0.54 1 SL Vertical 0.05 0.54 Out-of-plane perssure loads: Story Condition Magnitude [Kip/ft2] 1 WL 0.02 Out-of-plane seismic weight: Load condition Coefficient EQ 0.28 TILT-UP WALLS DESIGN: Status OKfr Paget �� NOS ado® • 1 1 1 1 OtN6l _ _ :.7� ,1�'. r11' _ •_ WYE .T -s.aa 194 7 3 4 • 71- i% 1 1 ! s 1 1 1 � f• Geometry: Segment X Coordinate Y Coordinate Width Height [ft] [ft] [ft] [ft] 1 0.00 -1.00 3.75 1.00 2 3.75 -1.00 12.00 1.00 3 15.75 -1.00 3.35 1.00 4 0.00 0.00 3.75 12.00 5 15.75 0.00 3.35 12.00 6 0.00 12.00 3.75 18.00 7 3.75 12.00 12.00 18.00 8 15.75 12.00 3.35 18.00 9 0.00 30.00 3.75 1.00 10 3.75 30.00 12.00 1.00 11 15.75 30.00 3.35 1.00 Vertical reinforcement: Reinforcement layers • 1 Segment Bars Spacing Ld [in] [in] 1 11-#6 4.00 32.86 2 8-#6 18.00 32.86 3 10-#6 4.00 32.86 4 11-#6 4.00 32.86 5 10-#6 4.00 32.86 Page3 .5-`( ■ 6 11-#6 4.00 32.86 7 1245 12.00 27.39 8 10-#6 4.00 32.86 9 11-#6 4.00 32.86 10 1245 12.00 27.39 11 1046 4.00 32.86 Vertical reinforcement Segment Condition Pu Pu/Ag 0.06"f"c Ratio . [Kip] [Kip/in2] [Kip/in2] 1 DC1 (Top) 0.000 0.000 0.180 0.00 I I 2 DC1 (Top) 0.000 0.000 0.180 0.00 I 1 3 DC1 (Top) 0.000 0.000 0.180 0.00 I IV// 4 DC1 (Max) 35.199 0.108 0.180 0.60 mIN 5 DC1 (Max) 33.901 0.116 0.180 0.65 =III •••,::°..../. 6 D5(Max) 13.489 0.041 0.180 0.23 NORM 7 D5(Max) 7.170 0.007 0.180 0.04 I I 8 D5(Max) 12.750 0.044 0.180 0.24 9 DC1 (Top) 0.000 0.000 0.180 0.00 I I 10 DC1 (Top) 0.000 0.000 0.180 0.00 I I 11 DC1 (Top) 0.000 0.000 0.180 0.00 I I Intermediate results for axial-bending Segment Condition Ase a c d 4 Kb [in2] [in] [in] [in] [Kip] - 1 DC1 (Top) 4.84 2.53 2.98 3.63 0.65 297433.30 2 DC1 (Top) 3.52 0.58 0.68 3.63 0.90 951786.50 - 3 DC1 (Top) 4.40 2.58 3.03 3.63 0.65 265707.10 4 D7(Bottom) 5.36 2.80 3.30 3.63 0.65 154.40 5 D7(Bottom) 4.90 2.87 3.37 3.63 0.65 144.34 6 D11 (Max) 5.00 2.62 3.08 3.63 0.65 284.83 7 D7(Max) 3.83 0.63 0.74 3.63 0.90 1057.54 8 D11 (Max) 4.55 2.67 3.14 3.63 0.65 255.08 9 DC1 (Top) 4.84 2.53 2.98 3.63 0.65 297433.30 10 DC1 (Top) 3.72 0.61 0.72 3.63 0.90 951786.50 11 DC1 (Top) 4.40 2.58 3.03 3.63 0.65 265707.10 Inertias Segment Condition Ig Icr le [in4] [in4] [in4] 1 DC1 (Top) 1429.04 414.74 1429.04 2 DC1 (Top) 4572.94 299.09 4572.94 3 DC1 (Top) 1276.61 387.18 1276.61 4 D7(Bottom) 1429.04 543.14 667.66 5 D7(Bottom) 1276.61 517.70 624.16 6 D11 (Max) 1429.04 451.14 1231.64 7 D7(Max) 4572.94 316.15 4572.94 8 D11 (Max) 1276.61 423.35 1102.98 9 DC1 (Top) 1429.04 414.74 1429.04 - 10 DC1 (Top) 4572.94 310.14 4572.94 11 DC1 (Top) 1276.61 387.18 1276.61 Page4 .57C- Combined axial flexure Segment Condition Pu Mua Mu 4*Mn Mu/4*Mn [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 1 DC1 (Top) 0.00 0.00 0.00 33.10 0.00 I I 2 DC1 (Top) 0.00 0.00 0.00 52.85 0.00 L 1 3 DC1 (Top) 0.00 0.00 0.00 30.61 0.00 I I 4 D7(Bottom) 31.22 25.96 35.54 46.23 0.77 MI 5 D7(Bottom) 30.02 23.20 32.10 41.48 0.77 NM 6 D11 (Max) 9.77 -14.55 -15.25 37.29 0.41 7 D7(Max) 6.73 -17.63 -17.78 57.24 0.31 8 D11 (Max) 9.24 -13.01 -13.67 34.65 0.39 9 DC1 (Top) 0.00 0.00 0.00 33.10 0.00 I 1 10 DC1 (Top) 0.00 0.00 0.00 55.57 0.00 I ' i 11 DC1 (Top) 0.00 0.00 0.00 30.61 0.00 I I Cracking moment Segment Condition Pu Mua Mcr •*Mn Mcrl4,*Mn [Kip] [Kip*ft] [Kip*ft] [Kip*ft] 1 D12(Bottom) 0.00 0.00 13.50 33.10 0.41 ■ 2 DC1 (Top) 0.00 0.00 43.18 52.85 0.82 MI 3 DC1(Top) 0.00 0.00 12.06 30.61 0.39 4 D11 (Top) 19.58 -13.79 13.50 41.49 0.33 C 5 D11 (Top) 19.07 -12.33 12.06 38.94 0.31 6 D12(Top) 5.19 -0.04 13.50 35.33 0.38 /1(....-- 7 DC1 (Top) -6.06 -0.36 43.18 54.06 0.80 MI 8 D11 (Top) 5.15 -0.02 12.06 32.86 0.37 9 D12(Bottom) 0.00 0.00 13.50 33.10 0.41 CII 10 DC1 (Top) 0.00 0.00 43.18 55.57 0.78 mI 11 DC1 (Top) 0.00 0.00 12.06 30.61 0.39 Interaction diagrams,P vs.M: P vs.M(Sigma*4) P vs.M(Segment 5) . mon xe co OMNI tikialimill . g g i j INN........ : IL1IIIJI w 1 _. 1 _4 0 F , i I 400 J i -e0 r0 -X C S 40 5C -40 •20 0 70 40 6C 1hrie-::{v-:! Hor-a-E?S..Y Axial compression Pages5.------ 2 Segment Condition Pu 4*Pn Pu/4*Pn [Kip] [Kip] 1 DC1 (Top) 0.00 426.19 0.00 I I 2 DC1 (Top) 0.00 1379.68 0.00 I 3 DC1 (Top) 0.00 380.63 0.00 I ' 4 DC1 (Bottom) 36.15 426.19 0.08 I I 5 DC1 (Bottom) 34.75 380.63 0.09 I I 6 DC1 (Bottom) 16.63 426.19 0.04 I _. I . 7 DC1 (Bottom) 21.29 1379.41 0.02 I I . 8 DC1 (Bottom) 15.65 380.63 0.04 I 1 9 DC1 (Top) 0.00 426.19 0.00 I I 10 DC1 (Top) 0.00 1379.41 0.00 I I 11 DC1 (Top) 0.00 380.63 0.00 I I Axial tension Segment Condition Pu 4)•Pn Pu/4'Pn [Kip] [Kip] 1 DC1 (Top) 0.00 261.36 0.00 I 2 DC1 (Top) 0.00 190.08 0.00 I I 3 DC1 (Top) 0.00 237.60 0.00 I 4 DC1 (Top) 0.00 261.36 0.00 I I 5 DC1 (Top) 0.00 237.60 0.00 I . I 6 DC1 (Top) 0.00 261.36 0.00 I I 7 DC1 (Top) 6.06 200.88 0.03 l I 8 DC1 (Top) 0.00 237.60 0.00 I I . 9 DC1 (Top) 0.00 261.36 0.00 I • I 10 DC1 (Top) 0.00 200.88 0.00 I I 11 DC1 (Top) 0.00 237.60 0.00 I I . Shear Segment Condition Vu VW Vu/i'Vn [KIN [Kip] 1 DC1 (Top) 0.000 13.402 0.00 I 2 DC1 (Top) 0.000 42.887 0.00 I I 3 DC1 (Top) 0.000 11.973 0.00 I I 4 D7(Bottom) 4.129 13.402 0.31 ■ 5 D7(Bottom) 3.690 11.973 0.31 MI 6 D11 (Top) 1.981 13.402 0.15 • I 7 D7(Bottom) 3.899 42.887 0.09 I I 8 D11 (Top) 1.770 11.973 0.15 • I 9 DC1 (Top) 0.000 13.402 0.00 I I 10 DC1 (Top) 0.000 42.887 0.00 I 11 DC1 (Top) 0.000 11.973 0.00 I I Deflection Page6 S7 Segment Condition A Amax A/Amax [in] [in] 1 SC1 (Top) 0.000 0.080 0.00 I 2 SC1 (Top) 0.000 0.080 0.00 3 SC1 (Top) 0.000 0.080 0.00 I I 4 SC1 (Bottom) 0.003 2.400 0.00 I 1 5 SC1 (Bottom) 0.003 2.400 0.00 I I 6 SC1 (Top) -0.003 2.400 0.00 I I 7 SC1 (Top) -0.003 2.400 0.00 I I 8 SC1 (Top) -0.003 2.400 0.00 I I 9 SC1 (Top) 0.000 0.080 0.00 I I 10 SC1 (Top) 0.000 0.080 0.00 I I 11 SC1 (Top) 0.000 0.080 0.00 I I Notes: *Pu =Axial load *Pn =Nominal axial load •Mua=Moment at section •Mu =Magnified moment at section *Mcr=Cracking moment at section Mn =Maximum nominal moment *Vu =Design shear force *Vn =Nominal shear force Page7 5-6 By T:4'S DATE. I r /I JOB NO / 7 OF PROJECT:livtd 40.1 r RE.w 0 Z U Z t7 � � d / E- er -- 6‘10e-, 3 4 1Ct f 7- /5T SE‘Si :■ ). •"/ � ' a- o �� ❑ Z = 3G x / = r x /so,ac.l-= , 7 kd = I. 62- )r /oe° #�- 44v .3° /?- / e0i/e 111 :; Mo /d, ' ilAait7 "1 /3ks : /2 /(KL2i.`Cl) (A) S4, li oo�o�s, k, r M� � AS -= & tJ) ,1 Vv (J`' /.0) ()- 72-51 =--. v 0)6 );-■ /a2- / , ‘/ "= ( By Ttel-S DATE / g JOB N° OF PROJECT: geaTee,t) & /%r �C V •i/ ,( .❑ ❑ - - it! (14 6 x COrtis-- I 1 I W L7 ?,c- fc,,f-- 0 a O D ✓ � � C� / � �VV �(- � ere fSvre...-- U_ 41J = v 42ie eaV / 0- / 6(3c,shcif,p)-2+ 2, 1�/gx3b2 � G� 3 1 '� ' My ° 34 ; x/d 'c.-84-e A / / 7 a pi;_. e ze) 17/ A/1/ oth7:3 :6o 4 e 10) of .0 -2 ,e (.2 2)sV, /) " a C. JOB NO OF BY DATE PROJECT: RE: ,� o 7 /1 U Pow l W � • U O w Z O • 2 Er a ( Li� O li Z / Z G 0 r a GL piTrs I /Ca//i 1.; - re‘v = . X ?.). ,eS x a X / o2 a 8 /4 ' 02 = 6( 2f6 w =-- 6, 3 "// , " 4//max 3Lc1 6, _ OM > &.&-- (; ) �'�'S �� cC '4 r r ��� ///��� ��^^ ///���� / JOB NO.: OF i ♦ V �� DATE ! frn PROJECT: / v RE: O 1 V 11_p_ ' .❑ ❑ `/ v VV " _F w o � w w O f ° °441 / 7 V, ll D U 0 W g� a Z e ✓ Gv�� = �, 11 U x 3 k- ,/ = G�GYM SS-> 0 U + GIO Z D<StSn x Sr 2. e-/ /(.1 "- P 1/Ga. C4;) .0--ol (I; CoAr\gc..4- 6-, L. g i=w � G161 z-oa d ,a r = 7 ;_,1k- ga r)-e - 4). i/ _2. 2 _> v.c9p 44 4 a, L- rr3 1-7a/) p ( Cr 1 '9 j0 //2 v' / 7/4 ' c e/ ,e L $ o Q '9 £li2 'Q $c2% ,0 '' 3 ?Q1 '9 'Q ile9/,(117/ 4-5 t / 71,11 v � -71 fr4S 'CC x h/ (214 / ; 4 / v�Oc) wit -71 - (1 " S''404 --2."✓ 11/r0% s N--eJ I ; i f O j of �- — ON eof 1// :3a 173 road :DN11331A1 LI:,1Y:3NOHd ❑311d 01 O1/431N NO11V INfV V 0D DATE / � i • BY JOB No �/'/r/J/l/� � OF PROJECT. F2E t It I/\ r e 47S �5 7c_ - 1� • J Z � � W r — a .6 Sm s .L DL roc G, 27 o kr � a O m L- = C/6 O W Ac op 04- ( Q ) 4� f C, crov■r‘■-a tj er-t-G Ott/7 tr Z .2-0 /Pc /1‹ -2 /;_ K/s-o09 -1/40)_ nrj- = 6' �5 ��, mil-1 (per 11--cs-‘ " 1 ) 2-89 811 5r2L ) .4) :O v x _ `_ - rz-p_ 7 A�� A7/ e,Lei" 6? Ie � � 1L 69 BY DATE. JOB NO OF PROJECT: A-4 De RE: Q1 kt9A, L I VY vJ G� �/ S/ l J Z V P = 2�/. # ?a, '?-- - . r }- w V . O f f w ❑ ME , f CE u .., r-+ 3�J &7ar O w U z 11 d1 Z Pry Les O U „ GG / Z i s L 66,c x 57G x V AG 2 / V 2 Y --::— 41//07 °:-. 0/rr; ‘;;-- 4 , id r ".. cc 6 LL z z O ,ela l7. o CI 1-- . 0 E'cr/-r>-- 7----- g2 4 : . :--- .7, f 4/ „ 7-61 y O U r a 0. y El i2 x 65.- "7" 4'1_5 )v /(7 '41 V �� %g).'(1/°7 / 51-, 17--5 "/� r l - cJ A, 'n ' 5 /2( ��� •fill O o .9; p,/ —�► s,a.)l Pi, a I'J r� stir – � ge2ii CILT -e• 4- 4e7, 0/ ir1 dri O 3a 133 road 0 z m Z 0 1 IVD 3NOHd 0 ❑. 0 ❑ m 3 m 0 z r ❑ ❑. NOIIVOINf1W WO0 A9 • I I 1