Loading...
Specifications 11o'a 5w 5A44,- J/j Z SG? MS -fol ms - r 2013-60060g Structural Calculations for Full Lateral & Gravity Analysis of Plan B 1332 Lot 65, Summer Creek Townhomes G 7 Tigard, OR Prepared for Pulte Group April 7, 2011 JOB NUMBER: CEN -090 ** *Limitations * ** Engineer was retained in limited capacity for this project. Design is based upon information provided by the client, who is solely responsible for the accuracy of same. No responsibility and /or liability is assumed by, or is to be assigned to the engineer for items beyond that shown on these sheets. 98 sheets total including this cover sheet. s /RUC 3D N ROF F ff oca EEt," i c.. 12.320 0 J V f' 1 VO Nir I V J. EIS 1 - >RES1 12-31 -2011 This Packet of Calculations is Null and Void if Signature above is not Original Harper I I :1 �:- Houf Peterson Righellis Inc. acca • '.'.� u.cac,c . x ,4Gcun.�E lO•:CXLAVf vOx6 205 SE Spokane St. Suite 200 ♦ Portland, OR 97202 ♦ [P] 503.221.1131 ♦ [F] 503.221.1171 1104 Main St. Suite 100 • Vancouver, WA 98660 • [P] 360.450.1141 ♦ [F] 360.750.1141 1 133 NW Wall St. Suite 201 ♦ Bend, OR 97701 ♦ [P] 541.318.1161 ♦ [F] 541.318.1 141 Design Criteria Project Scope: Full lateral & Gravity Analysis of Unit B Design Specifications: Wind Design: Basic Wind Speed (mph): 100 From Building Authority Exposure: B From Building Authority Importance, lw: 1 2006 IBC / 2007 OSSC Occupancy Category: 11 Residential Earthquake Design: Seismic Design Category: D From Building Authority Site Class: D Assumed, ASCE 7 -05 Ch. 20 Importance, lE: 1 ASCE 7 -05 Table 11.5-1 Ss: 0.942 USGS Spectral Response Map Sl : 0.339 USGS Spectral Response Map Dead Load: Floor: 13 psf Wall: 12 psf Wood Roof: 15 psf Live Load: Roof: 25 psf Snow Floor: 40 psf Residential Floor Materials and Design Data: Materials: Concrete Compressive Strength, f'c: 3000 psi Foundations & Slab on Grade Concrete Unit Weight, yc: 145 pcf Steel Reinforcement Yield Strength, f 60,000 psi Wood Studs (Wall Studs): Hem -Fir #2 2x & 4x Wood Beams & Posts: DF -L #2 6x & Greater Wood Beams & Posts: DF -L# 1 Glulam Beams: 24F -V4 PSL Beams: Fb =2,900 psi, FV= 328psi, E =2.0 Million TS /LSL Beams: Fb =2325 psi, FV= 460psi, E =1.55 Million Design Assumptions 1. Allowable soil bearing pressure (qa) : 1500 psf Assumed 2. All manufactured trusses, joists, and flush beams- u.n.o. shall be designed by others. j Structural Analysis Software Used: Mathcad 1 1 Microsoft Excel 2000 WoodWorks - Sizer version 2002 Bently RAM Advanse • ? r Harper Project: Summer Creek Townhomes UNIT B H P ' Houf Peterson Client: Pulte Group Job # CEN -090 Righellis Inc. L ENGINEERS PL RN KER$ _ Designer: AMC Date: June 2010 Pg. # LAHDSC.IPE ARCRIT EC I]�SUR'.'E'l ORa DESIGN CRITERIA 2007 Oregon Structural Specialty Code & ASCE 7 -05 Roof Dead Load RFR:= 2.5.psf Framing RPL := 1.5.psf Plywood RRF := 5•psf Roofing RME := 1.5•psf Mech & Elec RMS := 1 •psf Misc RCG := 2.5.psf Ceiling RIN := 1 •psf Insulation RDL = 15•psf Floor Dead Load FFR := 3-psf Framing FPL := 4 -psf Sheathing FME := 1.5•psf Mech & Elec FMS := 1.5 -psf Misc FIN := .5•psf Finish & Insulation FCLG := 2.5.psf Ceiling FDL = 13 -psf Wall Dead Load WOOD EX_Wall := 12•psf INT_Wall l0•psf Roof Live Load RLL := 25•psf Floor Live Load FLL := 40 -psf r Harper Project: Summer Creek Townhomes UNIT B ITP t• Houf Peterson Client: Pulte Group Job # CEN -090 Righel Inc. - -- _ ENGINEERS • PLANNERS Designer: AMC Date: June 2010 Pg. # LANOSC4PE AROHITECTS•SURVCYORE Transverse Seismic Forces Site Class = D Design Catagory = D Building Occupancy Category: II Weight of Structure In Transverse Direction Roof Weight Roof Area := 748•ft RFw3 -:= RDL•Roof Area RFwr = 12566•1b Floor Weight Floor_Area2 := 605•ft FLRW - r2nd := FDL•Floor_Area2nd FLRwr2 = 7865•1b Floor_Area3 60041 FLRWT3rd FDL•Floor_Area3rd FLRWT3rd = 7800-lb Wall Weight EX Wall Area := (2203)• 1 INT Wall_Area:= (906)•ft WALLwI- := EX_Wall EX_Wall_Area + INT Wall WALLw -r = 35496•1b WTTOTAL = 63727 Ib Equivalent Lateral Force Procedure(12.8, ASCE 7 -05) h := 32 Mean Height Of Roof I := 1 Component Importance Factor (11.5, ASCE 7 -05) R:= 6.5 Responce Modification Factor (Table 12.2 -1, ASCE 7 -05) C := .02 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) x := .75 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) Period x T := C T = 0.27 < 0.5 (EQU 12.8 -7, ASCE 7 -05) S1 := 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. (Chapter 22, ASCE 7- 05)...or S := 0.942 Max EQ, 5% damped, spectral responce acceleration at short period From Figures 1613.5 (1) &(2) F := 1.123 Acc -based site coefficient @ .3 s- period (Table 11.4-1, ASCE 7 -05) F" := 1.722 Vel -based site coefficient @ 1 s- period (Table 11.4 -2, ASCE 7 -05) y Harper Project: Summer Creek Townhomes UNIT B P : Hotrf Peterson , Client: Pulte Group Job # CEN -090 Righellis inc. EN ^v IN EERS RLANNERS — Designer: AMC Date: June 2010 Pg. # LANOSCAPE ARC2IItEC re• SURVEY ORS SMS := F SMS = 1.058 (EQU 11.4 -1, ASCE 7 -05) Sds 2 SMS Sds = 0.705 (EQU 11.4 -3, ASCE 7 -05) ds �= 3 S := F Sl SMl = 0.584 (EQU 11.4 -2, ASCE 7 -05) 2 •SM1 Sdl := Sdr = 0.389 (EQU 11.4-4, ASCE 7 -05) 3 Cst := Sd le Cst = 0.108 (EQU 12.8 -2, ASCE 7 -05) R ...need not exceed... Cs : Sdr•k Cs = 0.223 (EQU 12.8 -3, ASCE 7 -05) max — Ta•R ...and shall not be less then... C1 := if(0.044•Sd < 0.01,0.01,0.044•Sd (EQU 12.8 -5 &6, ASCE 7 -05) 0.5-S l 1e) C2 := if l Sl < 0.6,0.01, J R Cs := if(CI > C2,CI,C2) Cs = 0.031 Cs := if (Cst < Cs < Cs ,Cst, Cs Cs = 0.108 V := CS•WTTOTAL V = 69141b (EQU 12.8 -1, ASCE 7 -05) E := V•0.7 E = 484016 (Allowable Stress) n Harper Project: Summer Creek Townhomes UNIT B Houf Peterson Client: Pulte Group Job # CEN -090 Righellis Inc. .NGIAE EAL . ALAHSA6 Designer: AMC Date: June 2010 Pg. # LA NCS CAPE ARCHITECTS e $ URVETORE Transverse Wind Forces (Method 1 - Simplified Wind Procedure per ASCE 7 -05) - - Basic Wind. Speed: 100 mph (3 Sec Gust) Exposure: B Building Occupancy Category: II := 1.00 Importance Factor (Table 6 -1, ASCE 7 -05) • h = 32 Mean Roof Height X := 1.00 Adjustment Factor • (Figure 6 -3, ASCE 7 -05) Smaller of... a2 := 2•.1.• 16. ft Zone A & B Horizontal Length (Fig 6 -2 note 10, ASCE 7 -05) a2 =3.2ft or = .4hn2ft a2 =25.6ft but not less than... a 3.2.ft a = 6 ft • Wind Pressure • (Figure 6 -2, ASCE 7 -05) Horizontal PnetzoneA 19.9•psf PnetzoneB := 3.2• psf PnetzoneC 14.4 psf PnetzoneD : =, 3.3•psf • • Vertical PnetzoneE := —8.8•psf PdetzoneF 12•psf PnetzoneG 6.4•psf PnetzoneH := - 9.7•psf Basic Wind Force PA := PnetzoneA'Iw•X PA = 19.9 -psf Wall HWC PB := PnetzoneB'IN,•X PB = 3.2•psf RoofHWC • PC := PnetzoneC'Iw'X Pc = 14.4.psf Wall Typical PD := PnetzoneD'IH,•X PD = 3.3 - psf Roof Typical ' PE := PnetzoneE'Iw'X PE = — 8.8. psf PF := PnetzoneF'Iw•X PF = — 12•psf Pc, := PnetzoneG'Iw.X Pc, = — 6.4•psf PH := PnetzoneH'IW X PH = — 9.7•psf Harper Project: Summer Creek Townhomes UNIT B HP '• Houf Peterson Client: Pulte Group Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: June 2010 Pg. # • • LAND °_CAPE GRCNI(EC rS• SUR`JEYORS Determine Wind Sail In Transverse Direction, WSJ -ZoneA (55 + 59 + 29)•ft WSAILZoneB := (6 + 0 + 23)•ft WSAILZoneC (429.+ 355 + 339)41 WSAILZoneD: =(0 + 0 + 4)-ft • 2 W := WSAILZoneA'PA WA = 28461b WB WSAII-ZoneB'PB WB = 93 Ib WC WSAILZoneC'PC WC = 161711b WD := WSAILZoneD WD = 13 Ib Wind_Force := WA + WB + WC + WD Wind_Force := 10•psf•(WSAILZ + WSAILZoneB + WSJ ZoneC + WSAILZoneD) Wind_Force = 19123 Ib Wind_Force = 12990 Ib WSAILZoneE 43•ft2 WSJ -ZoneF := 43412 WSAILZoneG 334•ft2 WSAILZoneH 32741 WE WSAILZoneEPE WE = —3781b WF WSAILZoneFPF WF = —5161b • WG WSAILZoneG'PG WG = — 21381b WH WSAILZoneH'PH WH = — 31721b Upliftnet WF + WH + (WE + WG) + RDL•[WSAILZoneF + WSAILZoneH + (WSAILZoneE + WSAILZoneG)1. Upliftnet = 13261b (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SIIEARWALL HOLDDOWN CALCULATION Harper Project: Summer Creek Townhomes UNIT B HP ;• Houf Peterson Client: Pulte Group Job # CEN -090 Righellis Inc. ENv'II:EE RS oL,3NNe RS Designer: AMC Date: June 2010 Pg. # LAND:GiP� �RCNIYEC S���RV'EYDRS Longitudinal Seismic Forces Site Class = D Design Catagory = D Building Occupancy Category: II Weight of Structure In Longitudinal Direction Roof Weight Roof Area = 838 ft ,F := RDL•Roof Area RFC = 12566•lb Floor Weight Floor_Area2 = 605 ft = FDL•Floor Area2nd FLRWT2nd = 7865-lb Floor_Area3 = 600 ft KLR = FDL•Floor Area3rd FLRWT3rd = 7800.1b Wall Weight Ex..W.1.l.AreA. _ (2203). ft INT Wall Area = 906 ft W := EX_Wall EX_Wall_Area + INT_Wall WALLWT- = 35496- lb WTTOTAL = 63727 lb Equivalent Lateral Force Procedure(12.8, ASCE 7 -05) h = 32 Mean Height Of Roof I = 1 Component Importance Factor (11.5, ASCE 7 -05) A,:= 6.5 Responce Modification Factor (Table 12.2 -1, ASCE 7 -05) C = 0.02 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) x = 0.75 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) Period := C T = 0 < 0.5 (EQU 12.8 -7, ASCE 7 -05) SI = 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. (Chapter 22, ASCE 7- 05)...or S = 0.942 Max EQ, 5% damped, spectral responce acceleration at short period From Figures 1613.5 (1) &(2) F = 1.123 Acc -based site coefficient @ .3 s- period (Table 11.4 -1, ASCE 7 -05) F = 1.722 Vel -based site coefficient @ 1 s- period (Table 11.4 -2, ASCE 7 -05) y r Harper Project: Summer Creek Townhomes UNIT B • HP ' • Houf Peterson Pulte Group Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: June 2010 Pg. # c. ANGSC aPE i RCHITECTS• SURIE Asa F SMS = 1.058 (EQU 11.4 -1, ASCE 7 -05) 2 •SMS U,:= Sd = 0.705 (EQU 11.4 -3, ASCE 7 -05) 3 := F St SMI = 0.584 (EQU 11.4 -2, ASCE 7 -05) 2 •SM1 = Shc = 0.389 (EQU 11.4 -4, ASCE 7 -05) 3 Cst := Sds•le Cst = 0.108 (EQU 12.8 -2, ASCE 7 -05) niww R ...need not exceed... Shc'l Cs := Cs = 0.223 (EQU 12.8 -3, ASCE 7 -05) T R ...and shall not be less then... C, := if(0.044•Sd < 0.01,0.01,0.044•Sd ' 1 r 0.5• Si-l l (EQU 12.8 -5 &6, ASCE 7 -05) := if l Si < 0.6,0.01, R J C:= if(C1 > C2,Cl,C2) Csmin = 0.031 Cs := if (Cst < Cs < Csmax,Cst,Csmax)) Cs = 0.108 V := Cs• WTTOTAL V = 69141b (EQU 12.8 -1, ASCE 7 -05) E := V•0.7 E = 484016 (Allowable Stress) iwv y Harper Project: Summer Creek Townhomes UNIT B • 1. P Houf Peterson Client: Pulte Group Job # CEN -090 Righellis Inc. • ENGINEERS • PLANNERS Designer: AMC Date: June 2010 Pg. # _ANOSCAPE ARCHFTECTS•SURVEVGRS Longitudinal Wind Forces (Method 1 - Simplified Wind Procedure per ASCE 7 -05) Basic Wind Speed: 110 mph (3 Sec Gust) Exposure: B Building Occupancy Category: II I = 1.0 Importance Factor (Table 6 -1, ASCE 7 -05) h = 32 Mean Roof Height X = 1.00 Adjustment Factor (Figure 6 -3, ASCE 7 -05) Smaller of... 2:= 2•.1.16.ft Zone A & B Horizontal Length _ 3.2 ft (Fig 6 -2 note 10, ASCE 7 -05) a2 or .4-11,-2- ft a2 = 25.6 ft but not less than... 2:= 3-2-ft a2nun = 6 ft Wind Pressure (Figure 6 -2, ASCE 7 -05) Horizontal PnetzoneA = 19.9•psf PnetzoneB = 3.2•psf PnetzoneC = 14.4•psf PnetzoneD = 3.3•psf Vertical PnetzoneE = —8.8•psf PnetzoneF = —12•psf PnetzoneG = —6.4•psf PnetzoneH = —9.7•psf Basic Wind Force Pte: PnetzoneA'Iw•X PA = 19.9•psf Wall HWC Pte`= PnetzoneB'Iw' PB= 3.2•psf Roof HWC Pte= PnetzoneC'Iw'X PC = 14.4•psf Wall Typical Pte:= PnetzoneD'Iw' PD = 3.3•psf Roof Typical = PnetzoneE'Iw' PE = — 8.8•psf := PnetzoneF'Iw' PF = — 12•psf Pte:= PnetzoneG'Iw• PG, = — 6.4.psf Pte:= PnetzoneH'Iw'X PH = — 9.7•psf r7 I f Harper Project:. Summer Creek Townhomes . - UNIT B Houf Peterson Client: Pulte Group Job # CEN -090 Righellis ENGINEERS . PLANNER$ Designer: - AMC Date: June 2010 Pg. # LANDSCAPE ARCRJTE CTS S U R VEYOR S Determine Wind Sail In Longitudinal Direction SN := (58 + 59 + 21).ft . WS (0 +0 +51)41 . • W := (98.+ 99 +34).ft Wtt: =.(0 +0 + 114).ft . W WSAILZoneA•PA WA = 2746 Ib := WSAII- ZoneB•PB WB = 163 lb Wes:= WSAILZonec•PC WC = 3326 Ib Wes= WSAILZoneD•PD WD = 376 Ib Win ce = WA + WB + WC + WD Wind Forc i 10•psf•(WSAILZ + WSAILZoneB + WSAILZoneC + WSAILZoneD) Wind Force = 66121b Wind_Force = 53401b A)67 151 • ft WS w z:= 138. 2 242•ft W�:= 216•ft2 W ^ := WSAILZoneE'PE WE = — 13291b Wes:= WSAILZoneF•PF WF = — 16561b ,,W,j= WSAILZoneG•PG WG = — 15491b W:= WSAILZoneH•PH WE = — 20951b li := WF + WH + (WE + WG) + RDL•[WSAILZoneF + WSAILZoneH + (WSAILZoneE + WSAILZoneG)]••6. Uplift = 901 lb (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN CALCULATION ' r Harper Houf Peterson Righellis Pg #: Transverse Wind Line Shear Distribution ASCE 7 -05, section 6.4 (Method 1 - simplified) Design Criteria: 1 - , Basic Wind Speed = 100 mph Wind Exposure = B (Section 6.5.6, ASCE 7 -05) Mean Roof Height, H (ft) = 32 • • Roof Pitch = 6 /12 Building Category= 11 (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf • X = 1.00 Iw= 1.00 Wind Sail z Wind Net Design Wind Pressure (psf) (ft) Pressure (Ibs) Zone A = 19.9 143 2846 Wall H Wind Zone Horizontal Zone B = 3.2 29 93 Roof High Wind Zone Wind Forces Zone C = 14.4 1123 16171 Wall Typ Zone Zone D = 3.3 4 13 Root Typ Zone Zone E = -8.8 43 . -378 Roof Windward High Wind Zone . Vertical Zone F = -12.0 43 -516 Roof Leeward High Wind Zone Wind Forces Zone G = -6.4 334 -2138 Roof Windward Typ Wind Zone . Zone H = -9.7 327 -3172 . Roof Leeward Typ Wind Zone Total Wind Force =` 19123 Ibs Use to resist wind uplift: Roof Only Total Exterior Wall Area= 2203 ft Uplift due to Wind Forces= -6204 Ibs Resisting Dead Load= 7517 Ibs E =I 1313 Lbs...No Net Uplift I Wind Distribution Tributary to Diaphragms . Wind Sail Tributary To Diaphragm (ft , Zone A Zone B Zone C Zone D Main Floor ..M... . 6 �.....�.:.,�. 429 `.n.H,.. 0 — .«,�... Upper Floor 59 0 355 0 • ■ Main Floor Diaphragm.Shear = 7291 Ibs Upper Floor Diaphragm Shear = 6286 Ibs Roof Diaphragm Shear = • , . 5546 Ibs . .: Wind Distribution To Shearwall Lines MAIN FLOOR UPPER FLOOR . ROOF Tributary • Line Shear Tributary _ Line Shear Tributary Line Shear Wall Line Diaphragm ' ( lbs - Diaphragm Ibs D_ iaphragm Width (ft) ) Width (ft ) ( ) Wi dth (ft) (Ibs) A 15.83 2275 20.50 3143 21.33 _ - 2773 B 19.50 2802 0.00 0 . 0.00 .. 0 C 15.42 2215 20.50 3143 21.33 2773 E= 50.75 7291 41 • 6286 • 42.67 ' - 5546 • L Harper Houf Peterson Righellis Pg #: _ Transverse Seismic Line Shear Distribution Seismic Design Category = D - • Occupancy Category = II Site Class = D ' S1 = 0.34 . Ss = 0.94 Importance Factor = 1.00 Table 11.5 -1, ASCE 7 -05 - , Structural System, R = 6.5 Table 12.2 -1, ASCE 7 -05 Ct= 0.020 Other Fa = • 1.12 Fv = 1.72 Mean Roof Height, H (ft) = 32 Period (T = 0.27 Equ. 12.8 -7, ASCE 7 -05 k = 1.00 , - 12.8.3, ASCE 7 -05 SM5 1.06 Equ. 11.4 -1, ASCE 7 -05 . S 0.58 Equ. 11.4 -2, ASCE 7 -05 Bus= - 0.71 ' Equ. 11.4 -3, ASCE 7 -05 Sufi= 0.39 Equ. 11.4 -4, ASCE 7 -05 ' Cs = 0.11 ' Equ. 12.8 -2, ASCE 7 -05 • Csmin = • " 0.01 Equ. 12.8 -5 & 6 , ASCE 7 -05 - Csmax = 0.22 Equ. 12.8 -3, ASCE 7 -05 Base Shear coefficient v = 0.076 - Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height (ft) = 8 • Floor 3 Diaphragm Height (ft) = 18 Roof Diaphragm Height (ft) = 32 Floor 2 Wt (Ib)= 7865 Floor 3 Wt (Ib)= 7800 - ` - • Roof Wt (Ib) = 12566 Wall Wt (Ib) = 35496 - - Trib. Floor 2 Diaphragm Wt (Ib) = 22063 . Trib. Floor 3 Diaphragm Wt (Ib) = 21998 Trib. Roof Diaphragm Wt (Ib) = 19665 Vertical Dist of Seismic Forces I Cumulative % total of base shear Rho Check • • . to Shearwalls (Ibs) to shearwalls I Req'd? - Vnoor 2 (lb) = 711 100.0% Yes Wpm 3 (Ib) = 1595 85.3% Yes Vroof (lb) = 2534 52.4% Yes Shear Distribution To Wall Lines . • Wall Line Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line R oof Line ' Floor 2 Floor 3 Roof Shear Shear Shear sq ft sq ft sq ft Ibs . Ibs Ibs A 126 299 371 148 °' , 795 1257 B 282 0 0 331 0 0 C 197 301 377 231 800 1277 Sum 605 600 748 711 1595 . 2534 Total Base Shear = ( 4840 LB. 1 . *Base shear assumes rho equal to 1.0. See sheanvall analysis spreadsheet for confirmation of rho.. eJ i t l.. ' 4 Harper Houf Peterson Righellis • Pg #: • Longitudinal Wind Line Shear Distribution ASCE 7 -05, section 6.4 (Method 1 - simplified) Design Criteria: Basic Wind Speed = 100 mph Wind Exposure = B (Section 6.5.6, ASCE 7 -05) • Mean Roof Height, H (ft) = 32 Roof Pitch = 6 /12 • Building Category= , 11 (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf • Exterior Wall Dead Load= 12 psf X _ 1.00 Iw= 1.00 Wind Sail ft2 Wind Net Design Wind Pressure (psf) ( ) Pressure (Ibs) Zone A = 19.9 138 2746 Wall High Wind Zone Horizontal Zone B = 3.2 51 163 Roof High Wind Zone Wind Forces Zone C. = 14.4 231 3326 Wall Typ Zone Zone D = 3.3 114 376 Roof Typ Zone Zone E = -8.8 151 -1329 Roof Windward High Wind Zone Vertical Zone F = -12.0 138 • -1656 - Roof Leeward High Wind Zone Wind Forces Zone G = -6.4 242 -1549 Roof Windward Typ Wind Zone Zone H = -9.7 216 • -2095 Roof Leeward Typ Wind Zone Total Wind Force =l 6612 Ibs I Use to resist wind uplift: Roof & Half of Upper Floor Walls Total Exterior Wall Area= 2203 ft Uplift due to Wind Forces= -6629 Ibs Resisting Dead Load= 10160 Ibs E =I 3531 Lbs...No Net Uplift I Wind Distribution Tributary to Diaphragms _ Wind Sail Tributary To Diaphragm (ft Zone A Zone B Zone C Zone D Main Floor 58 0 98 0 Upper Floor 59 0 99 0 • Main Floor Diaphragm Shear = 2565 Ibs Upper Floor Diaphragm Shear = 2600 Ibs Roof Diaphragm Shear 1447 Ibs. Wind Distribution To Shearwall Lines MAIN FLOOR . UPPER FLOOR - ROOF Tributary Line Shear Tributary Line Shear Tributary Line Shear Wall Line Diaphragm Diaphragm Diaphragm Width ft (Ibs) Width ft (Ibs) Width ft (Ibs) 1 8 1283 8 1300 . 8 723 2 8 1283 8 1300 8 723 E= 16 2565 - 16 2600' 16 • - 1447 " /2 1 . • n .- Harper Houf Peterson Righellis Pg #: Longitudinal Seismic Line Shear Distribution Seismic Design Category = D Occupancy Category = II Site Class = D S1 = 0.34 Ss = 0.94 Importance Factor = 1.00 Table 11.5 -1, ASCE 7 -05 Structural System, R = 6.5 Table 12.2 -1, ASCE 7 -05 Ct = 0.020 Other Fa = 1.12 Fv = 1.72 Mean Roof Height, H (ft) = 32 Period (T = 0.27 Equ. 12.8 -7, ASCE 7 -05 k = 1.00 12.8.3, ASCE 7 -05 SMS 1.06 Equ. 11.4 -1, ASCE 7 -05 S 0.58 Equ. 11.4 -2, ASCE 7 -05 Sp 0.71 Equ. 11.4 -3, ASCE 7 -05 S 0.39 Equ. 11.4 -4, ASCE 7 -05 Cs = 0.11 Equ. 12.8 -2, ASCE 7 -05 Csmin = 0.01 Equ. 12.8 -5 & 6, ASCE 7 -05 Csmax = 0.22 Equ. 12.8 -3, ASCE 7 -05 Base Shear coefficient, v = 0.076 Weight Distribution Determination to Diaphragm • Floor 2 Diaphragm Height (ft) = 8 Floor 3 Diaphragm Height (ft) = 18 Roof Diaphragm Height (ft) = 32 Floor 2 Wt (Ib)= 7865 Floor 3 Wt (Ib)= 7800 Roof Wt (Ib) = 12566 Wall Wt (Ib) = 35496 Trib. Floor 2 Diaphragm Wt (Ib) = 22063 Trib. Floor 3 Diaphragm Wt (Ib) = 21998 Trib. Roof Diaphragm Wt (Ib) = 19665 Vertical Dist of Seismic Forces % total of base shear Rho Check to Shearwalls (lbs) 1Cumulative to shearwalls Req'd? V Floor2 (Ib) = 711 100.0% Yes Vnoor 3 (Ib) = 1595 85.3% Yes Vroot (lb) = 2534 52.4% Yes Shear Distribution To Wall Lines Wall Line Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line Roof Line Floor 2 Floor 3 Roof Shear Shear Shear sq ft sq ft sq ft lbs Ibs Ibs 1 275 270 360 323 718 1220 2 330 330 388 388 877 1315 Sum 605 600 748 711 1595 2534 Total Base Shear* = ( 4840 LB *Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. Pr7 y b Harper Houf Peterson Righellis Pg #: • Shearwall Analysis - Based on the ASCE 7 -05 Transvere Shearwalls Line Load Controlled By: ' . Wind - • Shear H L Wall ' I-I/L Line Load . Line Load - Line Load - Dead V - 'Panel Shear Panel M MR Uplift Panel . - Lgth. From 2nd Fir. From 3rd Fir. From Roof - Load Sides Factor Type - T (ft) (ft) (ft) ht k ht k- ht -k . - (klf) - (plf) • (ft -k) (ft -k) (k) 101 8 5.25 5.25 1.52 OK 8.00 2.28 18.00 3.14 27.00 .2.77 • 1560 Double 1.40 . VIII • 102 8 3.88 3.88 2.06 OK 8.00 2.80 8.00 0.00 • 723 Single 1.40 - IV 103 8 4.58 8.58 .1.75 OK 8.00 2.22 8.00 3.14 8.00 2.77 947 Double 1.40 VI • , 104 8 . 4.00 8.58 2.00 ox- 8.00 2.22 8.00 3.14 8.00 2.77 . 947 Double 1.40 VI • 107 8 4.58 13.08 1.75 ox , 8.00 2.28 18.00 3.14 , 27.00 2.77 626 Single 1.40 III 108 .8 8.50 13.08 0.94 OK 8.00 2.28 18.00 3.14 27.00 2.77 626 Single 1.40 III ' 109 8 3.88 188 2.06 OK 8.00 2.80 _ t 723 Single 1.40 IV 110 .8 1.25 4.50 6.40 8.00 2.22 8.00 3.14 8.00 2.77 1807 Double 1.40 NG 111 8 2.00 4.50 4.00 8.00 2.22 8.00 3.14 8.00 2.77 1807 Double 1.40 NG 112 8 1.25 4.50 6.40 8.00 2.22 8.00 3.14 8.00 2.77 1807 Double 1.40 NG ' 201 9 6.79 9.79 1.33 OK 9.00 3.14 18.00 2.77 604 Single 1.40 III 202 9 3.00 9.79 3.00 OK 9.00 3.14 18.00 2.77 604 Single 1.40 III • 203 9 5.00 5.00 1.80 OK 9.00 _ 3.14 18.00 2.77 1183 Double 1.40 VII 204 Not Used 205 .. . Not Used 206 • . Not Used ' 301 8 6.88 10.08 1.16 OK 8.00 2.77 275 Single 1.40 I 302 8 3.21 10.08 2.49 OK 8.00 2.77 275 Single 1.40 I 303 8 5.00 10.00 1.60 OK 8.00 2.77 277 Single 1.40 I 304 8 2.50 10.00 3.20 OK 8.00 2.77 277 Single 1.40 I 305 8 2.50 10.00 3.20 OK 8.00 2.77 277 Single 1.40 I Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Pan el Shear) = Sum of Line Load / Total L Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load * L 0.5 * (.6 wind or .9 seismic) • Uplift T = (Mo -Mr) / (L - 6 in) • 0 t - ■ . Harper.Hoof Peterson Righellis Pg #. •--, t.' a :•••••• ; •••• ,..: •:•••••• , • . „ . .. . , . -Shea&Vall-A-nallisi - Based on the:ASCE'7-05 •"; .•-• ' ••••••.• "I` ,9 '. ql: 7 ' • . ? • ' ' • ' i . . i . . . • . . . .. :i TranavereShearwalts • •• :Line Load Coritrolled By: •• Seismic •.. i Shear 7 •`H ' : L : Wall H/L ' ' " 'Line Load Line Load ' . chi "-. Dead' -:'• - ..Vi . , -- . :Rhow - Wsioty', V ti'' - "Palier-7'She4r panel -: "..1 . V10 - " ' - von Panel --;-,,,,, ..';`::, I.:gth.. ••• • 7 • ;^ FrOm-2rTel•Fir "Frorii 3id FIE. 7, Ffin ROof r' . L , ..• - 7:: " Strength -- Bays • ^"Sidei Factor. Type ••• ' * ',-. •, ; T (ft) -, , _.(ft) ' ..- . .: 'fit ; , 7, li ht :.• '1( 21 ht, .. ..,(0,IV ; (ITO_ ' (pv) : ' . . . '1 (ft-k) (11-k) ... ;(1i) . ' •••' . 101 ''. 8 • - 5.25 '5.25 1.52: - .0i ' 800 :10.15 ', 18.00 0.80 , 27.00 ?'' l.26. --.-",--•:: , •419 - 545 7 t -, 131' . : Single , - 1.00 ' IV : - . • i . . - - • - :102 ' ' - 8 "" , .3.88 , -1. 3.88 .2.06 •_ OK .: , 8.00 -033: 800 OMO : IMO` •...:' 2, , - •••:,. "Er ',85 •". • ':1 1 I ) ' ' '022 • "` 07."' ;Single •; ,07.._ . ••• : ! . : T, '• I 7-- . 103 L , ' .48 -`" ',4.58 :8.58 1.75 ' OK . 8.00 0.23. ".8.00 0.80 8.00 • 1.28 '''''' : :. 269 • :350' ",026' 7 : '. r.15 -. - Single , .' 1:00 . • 'ill •••• 1! .!.• I • I i, 1 104 "._ 8 . ' - .4.00 '8.58 2.00. OK 8.00 0.23- 8.00. 0.80 8.00 1.28 • .•:•‘" -: :.-• 269 , :350 ' ::•.0.23 '••-• 1.00 .r Single ._ '1.00 , • ., II ',- -,-. ., , • - , , •• t, • - 107 '' ••-' 8: 4.58 13.08 1.75 OK 8.00 0.151 18.00 . 0.80 27.00 126 " 168 219 , 1 0.26. , • • 1.15 ' L." . Single 1.00- . -. 1.:. .1 - ,-1. ';. 'L ''• 'i ''.. '108 - .'.• 8 •'' 8.50- -13.08 0.94 ' OK 8.00 0.15, -18.00 0.80 27.00 ' 1.26 : •' 'JOS'', '' 219 ,.'7":' NA "••'• 7- 2.13 ' .Single • 1.00 .• -1 •-• .1 • I,' • 1 `;;" • .' . •„ . i „•• ' .109- - 8 3.88 3.88 2.06 OK 8.00 0.33 - 0.00 - -- • '-_, ' ' '",". t .85 ' - 111- • 0.22.: 0.97 Single • 0.97 1 - . - 110 - ' 8- . 1.25' ;4.50 6.40 1. .., - .....• 8.00 0.23 ' 8.00 ;0.80 • 8.00 ' .1.28 •".. - i'.• , 513 667.; 0.07 0.31 " " 0.31 . NG .. ' i' _III • . , 8' ' 200 • '4.50 4M0 . ,, o, :i 4 8M0 0.23" ' 800 - 0.80 800 • '128 •• 7,;513 . 667 . 0.11 '' ' 0.50 ,. -Double' 0.50 'NG , , •_"4. ' i .-it „•!... , . '112 ■ • 8. - 1.25 .4.50 ' 6.40 '.. , : 8.00 0.23- 8.00 • 0.80: 8.00, .1.28 , ‘' '513- 667: ' 0.07 - 0.31 . ' . Double 0.31 : NG ,:".• -,.". ••,1 .•-•;.r.... 201 • 9- .- 639 ,979 133 OK '.`, ..' ...",'..;',"---_ ., 900 • , 028 1800 ..126 _ "..,-"_:... 157" -, 205 _•• 046 ' •.• 1.51 Single' ••• _ IMO, ••• 1 2- .1 . 1- - _- , _'....r 1 - : •.•202 _ • 9;7. :3.00 09.79 3.00 OK '-r: • . -:-'- '....:' '9.00 •:' 0.28 18.00 1.26 ".. ',:•,•• - 157 . 205 -• -:". 0.20; ,•, 1'70.67 Single',. '0.67., II -•• -A'. -...••• ."'c' ::. I .. I • ' , :203 ••• 9 • :5.00 '5.00' '1.80 OK ' ■ , , . .7 .9.00 - 0.55:' 18.00 • 128: •. : 366 ' 4761. •" '-`. - .1.11 Single ,1.00 "AV •- - ,". ' : 7 '. '''-' - ••• - '''1 ■ • •, . i", • .204, .2 -. . „ : .-t. - 1, ,••• 7.., '-••-- - .'. 1 _ 'z' -,••-,;',,,, .•.-_------;..-•:- -.-;---, "-- "-•;-". •.' t .-.. ' .. Not Used - "- ".. •_,.„.„:"_, - _ - : ; _ - 2._ . . ...L.:„...., . - • - t.: . - - ":" -,. :---y-• `--..:;'... •::,-.--:._ .: ' : ... , • 205-' ' .;:-..::,,,--, ',. --.• '-' .... - .. - '.',!----_ s _!_ , _ . _''. . ".... - • . USed.„,''• 1 4 : . :206.. . . ., .... ! _;2.,.._ ....L. ' . _ . , 1..`...„: 3 , fr f_i_ ,r....,.., :','T ''. , _. ',." ' ' • I .. .., . .V:•' , ' :, ; ,!. 7 Not Used • l'.,•: ,..., ' ! ,!,;:•. .";1 ..`;',.., v: !.,!, '...!■.. 7 j• ' •• ; • -..,;......,. • - . .,•i, .. _ . . _ _. _ . . ... .. . _ .. . . . . .. . .. .. . _. . . .. . . _ .. '301-• r 8•--:' -6.88 10.08' 1.16 . r. of.--'• •,-;•••• •••". ••• - ; ••'■ -• . •••- • ' • •••••••••, 8M0 • 1.26 .7 . 1 - Al25'1' ";,1624- - -0.34.- - •-I.72.r. ",•:Sinale••;" 1..l100:- ' •,:r P-9, .-• ... .. . . ri..302.-• ' --- .'.. ; 3,21, 10.08 - 2.49 , :::- °ie.', '......1....• 4.,7- .. -..- ...... -, - 8:00.. •1',1.26.:, 7 _ .125._ ...162 7 . • 0.16 , 0.80 _. .Sink, .... . 0.80: ::71.;_, . :1._ „'_::': ,•••‘." . •:. • .303.: ,.. _8 .-.7 .,5.00 .-10.00 -1:60 : .1 Ir. ._____,.... -_- . -. _ ,.___, .. .8.00.7-1128 128 166.- 0.25 1.25 Single . 1.00 '1 1.. !..1.- - .. :304 - ..8 - '2.50' .10.00 3.20 '. ore,: . - . . - 8.00- 1 1:28. • 128 166 0.12 0.63 Single . 0.63 •11.. i. - .1 ; -305 - --- 8- „ 250-„10M0. 320 "..7 OK ,...'-,_-,'--; ---•,....-•;,-; ----"...-- -i'l- 800, ;--128. ,--., . -128,• -,..0. •, ..03 :' . 03_. -2,11 .7.• ._,, „. .;•,•_!.....,...., A , . ,... ..,,......::::,!_,,-, ..-• .. ,,-.-- 1:- . '....1.:'.......i.. ='.:.! ' ''..:. ' ...•'.'....t....- -.........: 2. . . .! „ „. - ":. ' -. - • 1 .'".- • ;, '--Rho C alculation - . . 4. ''..,".:. •-■ „; ° . , 1 .. . • '? - Does the 1st fldol'ibearwalls resist more than 3°, of the total traiiiV base shear? ' ' ' ' Yes .•,... • .• ., Does the 2nd floor more than 35% ofthe toinl traliverse'liase shear?• "',. •-• Yes . . Does the,3rd floashear.Valls resist more than' 35% of the,total transverse base shear? ., -• . Yea . . • -- . - , ' " - Total 1st Floor Wall:Length = -.17 . .. . Total # 1 s t . Flonr Bay i = 4.43 ■ . Are 2 bays minimum present along each wall line? No - • . '''' - • ' • 1st Floor Rho = , 1.3 , 7 • Total 2nd Floor Wall Length = 14.79 , , • , - - Total # 2nd•Floor Bays = 3 . , , • . , ., ,- • Are bays minimum present along each wall line? No _ 2nd Floor Rho = ' 1.3 . • . . . , Total 3rd Floor Wall Length = 20.03 - . . . , Total 3rd Floor Bays = 5 ■ _ Are 2 bayi•minimum present along each wall line? Yes • " • •• . 3rd Floor Rho = 1-3 - - Spreadsheet Column Deriiirtiowik Formulas . . .. ....... . .. .. . ., . . • , L = Shear Panel Length H Shear Panel Height Wall Length = Suiii of Shear Panels Lengths in Shear Line 11/L Ratio = Hight to Width Ratio Check • V .(Panel Shear) =Sum of Line Load*Rho / Total L • • %Story'Strength = L / Total Story L (Required for walls with H/L > 1.0, for use in Rho check) 'filiays= . . • . . Shear Factor =Adjustment For H/L > 2:1 . - .MO(dvertilming Moment) = Wall Shear * Shear Application ht Mr '(Resisting Moment) • Dead Load * L. 0.5 • (.6 wind or .9 seismic) Uplift T =.(Mo-Mr)/ (I., 6 in) • . . . . • • .. . . • . • ' . .. . k • '' 'Ll ‘ 1 L- - - : • • Harper Houf Peterson Righellis • Pg #` ' " ' • Shearw Analysis 1 Based on the ASCE 7 -05 w._. '.� �� � � - " ` ' t ' - Longitudinal Shearwalls - '; ' Y_ . Line Load Controlled By: , -, , 'Wind', • _� a ` ' ; y 1 . , =`J I . - ` l - .. I Shear H "L' Wall H/L Line Load, • Line Load " ' Line' Load ,• ' - Dead ' -V -r' Panel Shear Panel M MR ' Uplift Panel. V ` :Lgth: : . - • From. 2nd Firs From 3rd FI , , � From : , Roof -Load ' ; Sides - Factor -Type °•�;: - - T• �= - - -(ft) `'(ft)3 ;:(ftj- 's 't -• 'ht - k .' ht "k" ' - ,11r-` k - ) (iffy (plfj:, s�' ,(ft -k), •.(ft-k) (k), 105' %8_ 12:75: -12:75 -0.63 `:OK`s 10.00 = • 1 - .28 , 18:00 : 27.00 " 0:72: ;1.13 259 Single, 1.40 1 ' 55.75 92.01 • t 0.04 .' i - - 106 , 12.75 12:75 0.63 ''ok' 10 :00 ;1.287 -18.00' ',1.30. '' :27.00 0.72' :1.13 259•. Single, 1.40. 55.75 92.01 .. 0.04 • r 207':, ` i 9.' -, 11.50 11':50 0.78 ;OK „r; "- ' _ 9.00 , , i1 :.0 30' 18.00 : .72. -.0.75 176 „ Single 1.40 - 1 24.71 49.73 -0.47 , •_208 _ •-9'_: 11 :50 11 :50 0.781 -;oic_ . .,'., - .__..i,; » -9.00 . :1.30= . 18 :00 :_0.72 0.75 176 ,. - Single 1.40 1 24.71 49.73 • -0.47 I 306 - 8 10.00 10:00 0.80 Mc - 8.00 ''0.72 • 0.29 '72 Single :1.40 ..1 -5.78 14.40 -0.30 307 8: 10.00 10.00 0.80 OK 8.00 '0 :72' =:0.29 .72 Single -'- -1.40 -.1 °5.78 ' -14.40 -0.30 ,'I Spreadsheet Column Definitions & Formulas t,-= Shear Panel Length H = Shear Panel Height . Wall Length = Sum of Shear Panels Lengths in Shear Line - , . H/L Ratio = Hight to Width Ratio Clieck . V (Panel Shear) = Sum of Line Load / Total L • 9 - Shear Factor = Adjustment For I-1/L > 2:1 Mo (Overturning Moment) = Wall Shear * Shear Application hr - Mr (Resisting Moment) = Dead Load * L 0.5 * (.6 wind or .9 seismic) F Uplift T = (Mo -Mr) / (L - 6 in) • s • a , • • • • • . .. tr -., .' '• _ • . • Harper Houf Peterson Righellis Pg #: • ‘, '' • ''- ' SlieliVAI ' Aiial*41i -'' ----- ---.'"---"' - .--- ...- - -.-- -- • &,/ •,.', ,TN, ,.• . 1:: !t C . ' • 1 Based on the ASCE 74)5 ' - . , L.ongitudinal Shearwalls • - Line Load Controlled By:" 'Seismic ' ; . Shear ' 4 FL L' - 'Wall H/L Line Load Line Load ' . ' "Line Loac17 - Dead' :7r. 121M\. :%.Stiii5 '‘a#"" `‘Parel °' Shear Panel 1M6 ] : M Panel - ,-,• - •-' : Litth* '''' ' -- ,."'":- + From 2nd Fli:' inniiiid Fir .- "`From Roof Load "--"--' '''•:". ?- Strength - -Bays ' :Sides '••-• Factor Type -• ' ;•••-:- ' T i - ' -1 • (ft) t, 41) OIL ,• '' ht - k .. - ht .- k ht " k -,- (klf) '-(plfr_ , (pi!) , .., , (ft k) 4? , 149 r', : . • '105 :' -:8: '-• 12:75 12.75 .0.63 - 111C .10.00 1•"0.32': 18.00 . 0:72 27.00 1.22 -, ••.1.19 ;177 " " -,177 - • '-"•--3.19 . Single' . , 1.00l. .. I ;49.09 96.89 '474 • ' , '' • 106' . , KI 8 :12.75 12.75 0.63 -O 10.00 , 0.39 , 18.00 0.88 27.00 -l32 119 ,, 202: ' . &202 / NA, • • 3.19 . Single' ;_1.00:" .•;-1 :55:17 96.89 . -0.24 .• , 207 9 11.50 11.50, 0.78 OK • •.• " ",...,•,"' 9.00 0.72 18.00 1.22 0.81 •'169._ • „169 - ,-- ""NA - ,2.56, ' • Single. --- 1.00 - 11:: .28:42, - .53.69: "-0.34 r - 208 ' 9 '11.50 11.50 0.78 - OK • "- ' ', • 9.00' • 0.88 18.00 1.32 .0.81 191 . 191 • -, NA „., 2.56 Single 1.00 I :•- 31:56 53.69 .. +0.06 ' ' 306 8 10.00 10.00 0.80 OK - -, • '. ', ., . i' • 7' . -,, • ..... -8.00 1.22 0.35 ••:.. 122 "- "122. =':•• NA-: .2.50 "- Single : ,- 1.00 &I, • 9.76. '17.40' , -1:107. . t. r. . 307 • 8 10.00 10.00 0.80 - ' - OK - 1 - •.L-r- lor" '. - .-.• 8.00 1.22 0.35- '-• 122" - -122 - : T - NA - - ' - '2.50% - _. „Single. , 1.00. , : I; 9:76 '17.40 , "41.07 I • . " . `' .- f' 4 " - ft'•=:- -6-5 - 2,'..t,l z •:- L'';.- -' •:•-1-7 :••=":"..„,_ . -:- _,' :.7:- ";". •_;&_-_:.:::-..,, ' -,-.1,. --,:.;'.".-:- ' - .. r • - • - ::::,:: ,-,-,° . -,:•-' - 7'1, - _I ' ': :-..: ... .: • t 1 ' Rho Calculation ' 1 1': f; ; • ,' •• , • • _ ':', : ',',' , ,-,:•,!) • '. - 4 1 •-• ,1 •,j• v s - Does iha 1st floor shearwalls resist Moreihan 35% 'of the total longitudinal b,ase,.shear? ■ ‘ . es •' • . :,-•-• ., , -,/ • ° ' * 'Does the 2nd lionr shearwall?reSiSi more fttLi3 of theMMIfeagitUdinal base Ma'? `• ' Yes' ' ' ' ' - - .-- . ' Does the 3rd floor sh resist more than 35% of the total longitudinal base shear? Yes .. IL":y::_e 4 '. ' , . .,,"- - • -•-• ;.--.....: r; • '2 Total 1st Floor Wall Length = 2530 • / • Total # 1st Floor Bays = ' 633 Are 2 bays minimum present along each wall line? Yes 1st Floor Rho = 1.o • Total 2nd Floor Wall Length = 23.00 . . • l # ' Total 2nd Flooritays = s . , . . • Are 2 bays minimum present along each wall line? Yes • . 2nd Floor Rho = 1.0 • . , • • ' - . . Total 3'rd FIcic1r Wall Length = 2000 '.. . ' Total 14 3rd Floor Bays = Are 2 Vajis mininium present along each wall line? , yes, ... ., ...... __ , ,,, . .„„.. _ - - . - .- _ - , .. . • -- . • ... , • 3rd Floor Rho = • Spreadsheet Column Definitions & Formulas , . L - ;:Shear Panel Length . H =Shear Panel Height' • Wall Length Sum of Shear Panels Lengths in Shear Line HIL Ratio = Hight to Width Ratio Check • ,.' V (Pane! Shear) -.--- Sum oiLine,Load*Rho 1 Total L • Yo'Stor3Strengtft = L / Total Story L (Required for walls with I-/L> 1.0, for use in Rho chcck) 'ft Bays 2*L/H • , . Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Walkhear * Shear Application ht . Mr (Resistingyoment)= Dead Load '' L.' • 0.5 • (.6 wind or .9 seismic) Uplift T '(Mo-Mr) / (L .6 in) • • . . . . . . . . • . • ,, • . , . , • . . . . , . • , • , • • . , • , . • • . . . . . . . . , ' • . , • • ' • ' • • , • , -- , . , . • , . . V LA (\,.. - . Harper Houf Peterson Righellis Fig #: SHEAR WALL SUMMARY' Transvere Shearwalls Panel Wall Shear Wall Type Good For V (ptf) (p 101 1560 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 2/12 1667 102 723 1/2" APA Rated Plyw'd w/ 8d Nails @ 2/12 833 103 947 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 990 104 947 - 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 990 107 626 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 638 108 626 1/2 ", APA Rated Plyw'd w/ 8d Nails @ 3/12 638 , 109 723 1/2" APA Rated Plyw'd w/ 8d Nails @ 2/12 833 • 110 Simpson Strongwall 111 Simpson Strongwall 112 Simpson Strongwall 201 604 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 638 202 604 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 638 203 1183 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 1276 204 Not Used 205 Not Used 206 Not Used 301 275 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 302 275 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 303 277 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 304 277 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 339 305 277, 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 339 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design loads. e . r -- - - - - ----- - -. ■ - Harper Peterson Righellis , , ,,, ,,Pg #: . _ .... SHEAR WALL SUMMARY' ...-....z 1 •-• ''' - . Longitudinal Shearivalls _ . „ _ . . Yaael Wall Shear '. . , Wall Type ' Good For Uplift Simpson Hclldow#1' Good Eoi : : ," - (PLO . OW ', = ' 00_ „ • 105 259 1/2" AfiA Rated t'lyw'd 8d Nails 0 6/12,' • , 339. : :-.:, 44 Simpson : !;None :i ' 0 ., 106 259_ , 1/2" APA Rated Ply:, . t , , , / 8d Nails g 6/12 - , .. , ' 339 ' ' 44 SimPOn' ':. None ' . 0 . -- 207 176 1/2"APA kated Plyw'd w/ 8d Nails g 6/12 7 -I' --: ' -,•-•.= 339 !t345_ , Simpson _ ' . 208 .'191 .:. 1/2!' 'APA Rated PlyW'd w/ 8d Nails @ 6/12 ' '':::, - r. ."; . 242 : 7 59, 7 Simpson :,- Mine_ ' - :'. 0, 306 - - 122 -:-.- ' 1/2', APA Rated Plyw' Cv/Sd Nails 0 6/12': ' ::-•-: : -2 '.242 :12 ., , , Siitipson" : - NOne : :` 0. - 301; — 122 - 1/2" APA kated'Plp;v'd ■;./±8d Nails @ 6/12 - -1- - , ,242 ' . -72 ' Simpson - ''None . -.. - 0 - , . .. i. NOTE: - • ' -:-. - ' - — _— - . _ - ' . 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design loads.- . : .. ., • , _ --_- • • ,- _ • ,, ,..._ ., „, ,.. ... . . _ . . ... _.• . . , •• . ! • „. . . . . . . . ., . . . _ . . . . • .. _ , . . _ . . . _. - _ • .. ' . , . • - - - ! . , i . - . . . , ' - • • ' - i Transverse Wind Uplift Design Unit B Shear H Joist L Wall Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total Panel Height Lgth. From 2nd From 3rd From Wall Load (not Point Point ning Moment Moment Floor Shear @ Floor Shear a Stacking @ Stacking From From Uplift Flr. Flr. Roof Shear including Load Load Momen a Left @ Right Left Right Left Side of @ Right Wall Wall @ Left floors n Left @ t House Side of Above Above above if Right House @ Left @ • walls Right stack) (ft) '(ft) (ft) (ft) k k k k plf kif k k kft kft kft k k k k k 101 8 1.1667 5.25 5,25 . 2.28 3.14 2.77 8.19 1560 0.1 0.8 0.208 72.42 5.58 2.47 14.54 14.93 14.54 102 8 1.1667 3.88 3.88 - 2.8 2.8 722 0.092 2.432 22.40 10.13 0.69 4.83 6.50 4.83 • } - 103 8 1.1667 4.58 8.58 2.22 3.14 2.77 8.13 948 0.1 0.078 0.078 38.40 1,41 1.41 9.20 9.20 203 R -12.12 -2.91 104 8 1.1667 4 8.58 2.22 3.14 2.77 8.13 948 0.234 0.117 1.632 33.54 2.34 8.40 9.18 8.14 9.18 { 107 8 9,1667 4.58 13.08 2.28 3.14 2.77 8.19 626 0.1 0.192 0.078 25.36 1.93 1.41 5.93 6.01 201L 201 R 6.71 6.71 12.65 { 108 8 1.1667 8.5 13.08 2.28 3.14 2.77 8.19 626 0.1 0.078 0.384 47.06 4.28 6.88 5.56 5.37 202L 202R 6.77 7.24 12.33 110 8 1.1667 1.25 4.5 2.22 3.14 2.77 8.13 1807 0.1 0.384 0.078 18.07 0.56 0.18 23.00 23.30 203L 12.13 35.13 { 1119 - 8 ('1667 2 4 :5 ' 2.22 ' 3.14 2.77 8.13 1807 0.1 0.078 0.208 .28.91 - 0.36 0.62 18.87 18.76' 203R -12.12 .6.75 - 1 12 . .8 ` 1'.1667 . 1.25 ' 4.5 2.22 3.14 ' 2.77 - 8:13 1807 0.1 ' 0.208 1.424 ' 18.07 0.34 1.86 23.17 . • 21.99 23.17 .201 9 .1:1667 6:79 9.79 3.14 2.77 5.91 604 0.172 0.848. 0.156 39.13 9.72 5.02 4.90 5.32 • 301 L 301R- 1.45 L40 ' 6.35 ' -202 9 - 1.1667 '3 9.79 3.14 2.77 5.91 604 0.172 0.848 0.156 17.29 3.32 1.24 5.10 • 5.51 3021 302r . 1.67 - 1.72 6.77 - 203_ 9 1.1667 '5 5 3.14 2.77 5.91 1182 0.172 0.848 0.385 56.42 6.39 4.08 10.52 10.80 303L ' 303R 1.61 -1.32 12.13 • . _'301 ' 8 - - 6.88 10.09 2.77 2.77 275 0.252 0.384 0.468 15.11 8.61 9.18 ' 1 .45 1.40 ' 1.45 • • 302 8 3.21 10.09 2.77 2.77 275 '0.252 0.468 0.384 7.05 2.80 2.53 • 1.67 ' 1.72 1.67 I i .- .303 ..8 ' ' - `5 10 - 2.77 . 2.77 277 0.252 0.384 0.858 - 11.08 5.07 7.44 1.61 1.32 - 1.61 - 304 "8 .: 2.5 10 2.77 2.77 277 0.112 12 0.192 '5.54 0.83 0.35 ' 2.02 2.13 - - - 2.02 • - -305 8 ' 2.5 10 2.77 2.77 277 0.112 ' 0.384 5.54 0.35 1.31 2.13 1.90 2.13 I I - .Spreadsheet Column Definitions& Formulas C L Shear Panel. Length ' C • H'= Shear Panel Height - Wall Length.= "Sum of Shear Panels Lengths in Shear Linc { V,(Panel Shear)'= Sum of Line Load / Total L - j Mo'(Overturning,Moment) = Wall Shear.* Shear Application ht Mr (Resisting Moment) =Dead Load * L * (.6 wind or .9 seismic) II i - Uplift = (Mo -Mr) / (L - 6 in) � I . . - . 1 { Transverse Seismic Uplift Design . Unit B ' Shear H Joist L Wall Line Load Line Load Line • Total V Dead Dead Dead Overtur Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total 1 { Panel Height Lgth. From 2nd • From 3rd From Wall Load (not Point Point ning Moment Moment Floor Shear @ Floor Shear @ Stacking @ Stacking From From Uplift L Flr. Flr. Roof Shear including Load Load Momen @ Left @ Right Left • Right Left Side of @ Right Wall Wall @ Left floors @ Left @ t House Side of Above Above P above if Right House @ Left @ walls Right . stack) _ (ft) (ft) "(ft) • (ft) k k k k plf. klf ' k k kft kft kft k k k . k k 101 " - 8 .,1.1667 -5.25 . _ , 5,25 0.148 0.795 1.257 2.2 '419 0.1 0.8 0.208 19.99 5.58 2.47 3.15 3.74 • 3.15 ,102 8 1.1667 • 3.88.. 3.88 0.331. 0.331 85 0.092 2.432 0 2.65 10.13 0.69 -1.91 0.60 -1.91 103 8 - 1.1667 4.58 , 8.58 0.231 •. 0.8 1.277 2.308 269 0.1 0.078 0.078 11.15 1.41 1.41 2.42 2.42 203 R • -2.99 -0.56 104 • . 8 1.1667 4.00 8.58 ' 0.231 0.8 1'.277 2.308 269 ' 0.234 0.117 1.632 9.74 2.34 8.40 2.18 0.62 ' 2.18 :107. 8 1.1667 4.58 13.08 0.148 0:795 .1.257 2.2 168 0.1 0.192 0.078 7.00 1.93 1.41 1.29 1.41 201L 201 (part) 1 :17 '0.34 2.46 , 108 -•8 1.1667 - 8.50 13108 0.148 0.795 1.257 2.2 168 0.1 0.078 0.384 12.99 4.28 6.88 1.14 0.85 202L 202R 0.33 1.35 '1:47 ' - I'10 8 1.1667 ' 1.25 4.50 0.231 0.8 1.277 2.308 513 0.1 0.384 0.078 5.80 0.56 0.18 6.88 7.32 203L 3.00 , 9.87 ' • 11 f 8 1.1667 2.00 ' ' • ' 4.50 0.231 ' • 0.8 1.277 - 2.308 513 '' - . 0.1 0.078 0.208 9.28 " " 0.36 0.62 - 5.89 , 5.74 203R, 304L - ' -2.99 ' - 2.91 112 ..8 1;1667 ; . 1.25 - 4.50 0.231 0.8 1.277 2.308 • 513 . - 0.1 0.208 1.424 5.80 ' ' 0:34 _ - 1.86 7.13 5.36 - - ' 7.13 ,201 ' .9 .1.1667 • ..6.79 ' - . 9:79 • . - - 0.795 1.257 . -2.052 210 . .- 0:172 0.848 0.156 13.83 . 9.72 5.02 0.75 1.37 301 L , ._ 301 R -0.13 -0.20 0.62 ` 202 9 1.1667 3.00 . 9.79 0.795 1.257 ' 2.052 .. -210 . - 0.172 0.848 0.156 6.11 3.32 ' 1.24 1.04 ' 1.66 3021 302r 0.11 -0.32 1.15 203 , 9 '1.1667 5.00 5.00 • 0.8 1.297 2.077 415 0.172 0.848 0.385 20.18 . 6.39 4.08 2.89 3.30 303L 303R ' 0.11 -0.32 3.00 - 301 8 6.88 . 10.09 . . , ' 1.257 1.257 , ' 125 - 0.252 0.384 0.468 6.86 8.61 ' 9.18 -0.13 • -0.20 • . -0.13 • `.302 8 3.21 - . 10.09 • -.- - -- 1.257 - 1.257 ' • 125. 0.252 0.468 0.384 3.20 ' 2.80 - ' 2.53 0.21 0.29 0.21 -303 . 8 ' 5.00 : 10.00 , ' ' ' 1.277 1.277 - .128 0.252 ' 0.384 0.858 5.'11 . 5.07 7.44 0.11 -0.32 0.11 " 304 ' 8 2.50 . 10.00 " - ' ' 1.277 1.277 128 0.112 0.192 0 2.55 0.83 0.35 0.72 0.90 ' 0.72 ' ' 305 - '8 . .. 2.50 - 10.00 - • '.1.277 1 :277 128 - 0.112 0 0.384 2.55 ' 0.35 .1.31 , 0.90. 0.55 - - 0.90 • Sp "Column Definitions & Formulas . 1.. Shear Panel 'Length , : - - H = Shear Panel Height - - - - - Wall Length ='Sum of Shear Panels Lengths in Shear Line - - V- (Panel Shear) =Sum of Lin e•Load7 Total L • • • - - Mo (Overturning Moment) = Wall'Shear * Shear Application ht - - . - Mr (Resisting Moment) = Dead•Load * L 0.5 * (.6 wind or .9 seismic Uplift T = (Mo -Mr) / (L - 6 in) • . I • c TRANSVERSE UPLIFT CALCULATIONS - SUMMARY UNIT b Shear Controlling Total Holdown Holdown Good Control Total Holdown Good For Panel Case Uplift .. or Strap Type@ Left For ling Uplift Type@ Left Left Case a Right � I I l k • Simpson k k Simpson k 101 Wind 14.54 Holdown - • HDI2 w DF 15.51 Wind 14.93 HDI2 w DF 15.51 • j 102 Wind 4.83 Holdown HDQ8 w 3HF 6.65 Wind 6.50 HDQ8 w 3HF 6.65 103 Seismic • -0.56 Holdown HDQ8 w DF 9.23 Wind ' 9.20 HDQ8 w DF 9.23 104 Wind 9:18 Holdown HDQ8 w DF 9.23 Wind • 8.14 HDQ8 w DF 9.23 107 Wind 12.65 Holdown HDI2 w DF 15.51 Wind 12.72 HDI2 w DF 15.51 108 Wind 12.33 Holdown' HDUI4 14.93 Wind 12.60 HDUI4 14.93 110 Wind • 35.13 Holdown None 0.00 Wind 23.30 None 0.00 111 Wind 6.75 Floldown None 0.00 Wind 18.76 None 0.00 I I 112 Wind '23.17 Holdown None 0.00 Wind 21.99 None 0.00 201 Wind 6.35 Strap MST60x2 8.11 Wind 6.71 MST60x2 8.11 202 Wind ' 6:77 Strap MST60x2 8.11 Wind 7.24 MST60x2 = 8.11 :203 Wind 12.13 Strap CMSTI2x2 18.43 Wind 12.12 CMST12x2 18.43 • 301 Wind 1.45 Strap MST48 2.88 Wind 1.40 MST48 2.88 -302 Wind • 1.67 Strap MST48 2.88 Wind 1.72 MST48 2.88 303 Wind 1.61 Strap MST48 2.88 Wind 1.32 MST48 • 2.88 304 Wind 2.02 Strap • MST48 ' 2.88 Wind 2.13 MST48 2.88 - 305 Wind 2.13 Strap MST48 2.88 Wind _ 1.90 MST48 2.88 - 1 • • • 1 . ' i 1 if, \- • C /) .. t -1°- 4` Si 17 4 S'0 - gsoc. l t7`z'o A% 0-17-174p I1, \J" .,m - tcr..431 1`e e'0 °f°)1 G. 1 ce.•0 09` 1 011 - 0 _L K. le mSS = 1 \\ 51 . z == O w :. -0 4 OVc S 7 5 111 = 7 7, A* 0-e_.1(._\ > -# -- t.1S ' i o 0 ?a1 • N= %1 "0 _` 1S L, Olgl t x SI MSS Ztl • 6 ) '0 -it b `3h ( 31 1 . • 9 **CAS t x 1 Z m,SS t 11 Q1 . 0 -4 '17 I ..-S 54.'0 G a9gl k.xSAN■SS Ott '43. lx = .... -4 i x,us =1, ti' c\ JaZV ?\()\ no\\'d 36 .1 "1 IA Ss auk 1 +S \a?! sj' ` }S y � / = � S f �Z ''V 1 yy ' f S �L = 1`� nl 1 0 -- )7 s'8 1� 11 I°0 \ZA ` ho1r))C - 1,,) ,, \\ s\ Z 71 1Q St `• St's _ c 1\ )L l0'0)Zi + 0 -1 0 i 6)(, +O'o)`-krt.) 4 (Zi io'o)c'►0I2 ❑ : 7,\1 \\bin n 0 'A 2.1._. S 7. \11{ c 0 1S Sd , --A \ q L ° = (zk,� S "b1) 4 (S' 0)( > 0 -- to c d `ete' 7-7 (7) 'ro)(Zit +) 4 C /z3L -k- Z k1111Xsto'ox'je) +cti -4 `5'0)`Ztoo)c7k..Z) +Q3S.-'qA�t0'0)Q5' z n \\\ . dt's\ m 0 Sa !-i1 i �o'S. = 1hk01. 0 A • - 1S - A lic • \ _ cziaLszo•o)(5'bI)) -- <(s P 0 -1Q s6 * 0 _.'1 cZI <l z.1 o'o)<{ 4 (sto'o)(s'b 4 - V (Sta oxs'b1)x52•I) E 3 • 011 r t :' 0 cri \blx ■j m 0 P1 0 r QyQ z r Sd g�e:'B — �d -iS N` Q -- m tS ^TAa j11.; !vO Ci?i • ---- 9HS -ip (NO1- 1-1)S1- 1i.S \Q 38 • :1031088 l / '�f 10/'� 1 b A9 • 0 ` ` V O �� J ON 90f I� l \ 1 31VO \N ��7 Cie , . . . , . . , , , .. ti • 0 . 11,1 ' 011 I ; :s- -,--- - . t;r: . ii A , • • �. 0 I ( . y • • rJ • • • ��' 0 • s < , o 1 1 1 1 1 1 ,�1,... y _ ../ _„ -, 1: 1 - :i , 1i .I . - Ei _ _ 0 �. s _ter, I 0 . ." ,.• . . ' • 1 • . I t 111•111111:i g ( , i ; .; y , . S Gl d;1�S ?I (bIX I Qs'8l1! ` CI (jil) �L( til Is .. . , . , , . . , . i • . . 1 _ .. .L___, . __... . , . . , .1 .. . ' - ■ . . . , . • .4 • _ - • , . . • . . . . . . . . • 0 • . . ' *4 - . 7477 '-s.o.....":-..7..11.5.1.-i."Litr..f.7:47.-.7 . .0 - ...-.■ , i . . r . ,. .1; 5 " . ' ' . ' . • . • . • , ' ' , . I . . " I ' I .1 I ■ 1 .N.1' . . . . - . - , . . , <‘ -1 -I. ...!... .! -1 17 . N (i , ''... , :_..,. -- -c-:', - i , ]'-'• .- ''' :, ...-- --,.. ' - () 7 -`;':. ;- .. . . • - - -' ' V . r . j i i I I .i: ; ; I T" i TR r A r 5- i • ' ..., ., , . -- • , , . ! - 5... . -Ai ,.., 1 r -- -=. =11 ----- - - , EL. - , . .... .. , 1 rl .: I . ' -Y . ., ,..-'■ - rj, • , . - .0., . . . 1•.........)'.1' . Iiiiin 1 . . ; - •-•41 ' ."1.....- " ''....'' ' , • • , - - - . . , ' 4,1, i '.,•'• . . - 1'1,7' i'Z' z:tc ,t , . 1mi . L • 1 1;! , . . • „ ... ... , . . ' ' ' • ' ' - ''' - • - ''.,1 T t .....) • :••••^" !,•. ` ..,,4-. • — '. :. — ..:--. : .,-, 7 '-',.•= - . r-.---:-..z.,;.,:„..-4-a--7....,7, 3 ' , ' 30 . . . . - . . . . . . . . . _ • • i t ' ' • • • • • , . . . ., . . . . - . • BY DATE: 8 ''. JOB NO.. ( . NI (D 0 I PROJECT: }�A s; ) lr � /� RooF a�'- 8 }1sh. RE: Des a� f +rn { '010'- '4-..i. =t) @ Sto s -J Op 1. . J_ Ii F l'.=-011 O W _ /1/tlA I- • 2 1 8113 WIDTH 01 klb-P-- ► F.F, 1 } 2 • n SO 1 , ' , -=:" 9 9'lz" 10? - 9 , ..A - 15 5" 0 ma 5+'R I�LOPk.mAx --, _ O w ‘sl- di u z 0 CL DE 51 (._--,Ni i.kjli\JID Pressure CC Z ao. O_`O Q5C . O c: F. 9' _ 3 1. 16 , TD° 9\o co 5 , r 14, - \ A Top ?,.AZ ,S 5' -17g'' Z L' - , 1'i\, ;f -, <, C} 1°Alpt.� D 2 R\ = MCi°V y.z= 1y 9'1 0 - 0" o LL z W r = $ z _ -I q SO5•a5T . 5 #Ct Z D 1 ,' rY - l y-c1 __ S M 5 Z'1 F x \2 .�"�= _ Vii.. .:;-' � � .. ~' X 1 6 ° / • ∎ (5 0 �_ -- - 6 t1 I a s v _ ,,,1 _ ► _ o cat I, N2- A (-2 r Fb ('r ; - (BS0 ?$A1.LX i 1 : > a3L1 < () if ;? a - r,, - - � = ISO psL (i,o) = at-1o 7 c"2-......_ •• 0`,4. E - == __ 4 N(,, `1 0 eIc on 2 • - I D 1 c c 1 X . - z' To'0 0 ' 1 � ' 01X \2)_ l qi '� Vigo ' fit= x.44 <1 ° 1)0 ' 1 ,, 1)(o kio -. 05g) = a s 4 .5,....._:„.....i: _ s..\-4 \ c�,t .h t = T 04vlz.!3 4 c, 4- ' `S.+ _ 0 0 E 1` 4 0T i 4c r , ic^. 06 , i'�� Stf� (��c'}�p 4 �'� = T 11�� C ff y� _. ry/a� Z �i 1 I� �+ r 'ti-. -,_,.tati _ `t v n 7 1,N1 5L'S s''c'4, r .,.Ni --- d _f. = t Z _ 1 - 7 t- eC T' \ S RI J` a wi s r +� l v Di ... .7' 5' 7 1 1 f reql se.°9 £ z -, 1 = n .. 3 o , St 0 I o 3 X5`11' -'6 1 _ 1 n M l H 0 z n m o 00-;c,1 = IN ICS: ` 0 yi - p` rr coal u 3 3 0 m -I ' "ZM ni C - ') \-U .'.) 4 V,00 1 \ 9 z "s e.1 3. C-1 NZ 2 1.1j. `_j do 1 1 ! Z �1 m I, • T. cIOLLdC? :3a =103 roa d ` ! l J 1 ) .-oN eor OJ --Z--- 1 - g '3 V\i A9 ..'---- � V S r . ' -WOOdWOrkS ®-Sizer • • SOFTWA -FOR WOOD DE Unit B - Front Load . WoodWorks® Sizer 7.1 June 28, 2010 10:52:50 . COMPANY I PROJECT RESULTS by GROUP - ND5 2005 SUGGESTED SECTIONS by GROUP for LEVEL 4 - ROOF am Mnf Trusses t Not designed by request �� = = � (2) 280 Lumber n -ply D.Fir -L No.2 1- 288 By Others Not designed by request ' (2) .2x10 Lumber n -ply D.Fir -L No.2 2- 2x10 • (2) 206 Lumber n -ply Hem -Fir No.2 2- 2x6 - (3) 2x6 Lumber n -ply Hem -Fir No.2 3- 2x6 , (2) 2x4 Lumber n -ply Hem -Fir No.2 2- 204 (3)204 Lumber n -ply Hem -Fir No.2 3- 2x4 ` Typ Wall Lumber Stud Hem -Fir Stud 2x6 016.0 Typ Wall 2x4 Lumber Stud Hem -Fir Stud 2x4 016.0 SUGGESTED SECTIONS by GROUP for LEVEL 3 - FLOOR . Mnf Jst = -� L � Not designed by request � :=s= landing Lumber -soft D.Fir -L No.2 2x6 016.0 4x6 Lumber -soft D.Fir -L No.2 4x6 ' (2) 2x8 Lumber n -ply D.Fir-L No.2 1- 208 1.75x14 LSL LSL 1.55E 2325Fb 1.75x14 • By Others Not designed by request By Others 2 Not designed by request (2) 2x10 Lumber n -ply D.Fir -L 00.2 2- 2x10 (2) 2x6 Lumber n -ply Hem -Fir 00.2 2- 2x6 (3) 2x6 Lumber n-ply Hem -Fir No.2 3- 2x6 (2) 2x4 Lumber n -ply Hem -Fir No.2 3- 204 (3) 2x4 Lumber n -ply Hem -Fir No.2 3- 2x4 Typ Wall Lumber Stud Hem -Fir Stud 206 016.0 Typ Wall 204 Lumber Stud Hem -Fir Stud 2x4 @16.0 SUGGESTED SECTIONS by GROUP for LEVEL 2 - FLOOR c Mnf Trusses Not designed by request y sue' 'tea - deck joists Lumber -soft D.Fir -L No.2 208 016.0 Mnf Jot Not designed by request ' 3.125x14 LSL L51 1.55E 232586 3.5x14 408 Lumber -soft D.Fir -L No.2 408 3.125x10.5 Glulam- Unbalan. West Species 24F -V4 DF 3.125x10.5 5.125x16.5 GL Glulam- Balanced West Species 20F -V7 OF 5.125x16.5 (2) 2x10 Lumber n -ply D.Fir-L No.2 2- 2x10 - 4012 Lumber -soft D.Fir -L No.2 4x12 . 3.1250141) 157. 1.55E 232586 3.5x14 (2) 2x6 Lumber n -ply Hem -Fir No.2 3- 2x6 (3) 2x6 Lumber n -ply Hem -Fir No.2 3- 2x6 . 6x6 Timber -soft Hem -Fir No.2 6x6 (2) 2x4 Lumber n -ply .Hem -Fir No.2 3- 2x4 (3) 2x4 Lumber n -ply Hem-Fir No.2 3- 2x4 • Typ Wall Lumber Stud Hem -Fir Stud 2x6 @16.0 _ SUGGESTED SECTIONS by GROUP for LEVEL 1 - FLOOR Fnd __ - - - -w =sue-- � 3a --- Not designed by requst CRITICAL MEMBERS and DESIGN CRITERIA Group Member Criterion Analysis /Design Values - deck joists j42Bending FS 0.41 Mnf Mnf Jst Mnf .706 Not designed by request landing j46 Bending 0.17 By Others 3 By Others Not designed by request 4x6 b25 Bending 0.87 (2) 2x8 b7 Bending 0.21 1.75x14 LSL b14 Bending 0.57 3.125x14 LSL b21 Shear 0.41 408 b20 Bending 0.04 By Others By Others Not designed by request • By Others 2 By Others Not designed by request 3.125x10.5 b24 Deflection 0.83 5.125x16.5 GL b26 Bending 0.21 (2) 2x10 615 Bending 0.93 4x12 b22 Shear 0.16 • . 3.125x141) b23 Deflection 0.09 Ftg Ftg Not designed by request (2) 2x6 c2 Axial 0.34 (3) 2x6 c64 Axial 0.59 6x6 c36 Axial 0.77 (2) 2x4 c25 Axial 0.35 (3) 2x4 c44 ' Axial 0.84 Typ Wall w15 Axial 0.28 . Fnd Fnd Not designed by request Typ Wall 2x4 w40 , Axial 0.33 DESIGN NOTES�= === ==a��� 1. Pleases verify that =t - = the default deflection limits are appropriate for your application. 2. DESIGN GROUP OCCURS ON MULTIPLE LEVELS: the lower level result is considered the final design and appears in the Materials List. 3. ROOF LIVE LOAD: treated as a snow load with corresponding esponding duration factor. Add an empty roof level to bypass this interpretation. 4. BEARING: the designer is responsible for ensuring that adequate bearing is provided. • 5. GLUIJU4: bxd = actual breadth x actual depth. 6. Glulam Beams shall be laterally supported according to the provisions of ND5 Clause 3.3.3. 7. Sawn lumber bending members shall be laterally supported according to . the provisions of NOS Clause 4.4.1. 8. BUILT -UP BEAMS: it is s umed that each ply is ingle continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side- loaded, : special fastening details may be required. 9. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 10. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of ND5 Clause 15.3. 't I 1 WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B - Rear Load WoodWorks® Sizer 7.1 June 28, 2010 10:56:39 Conceptb24Dde: Beam View Floor 2: 8' • a 49.-6" IU4 1050 • . , 40 -b 4/ -0 • lus h . : - . , . _ - - -`: -- -- -,. - . --'.- - -:"- - - -- - - - - - _ - - -- 40 - b IUL . : - - - ' : - - - 40-0 uv b25 : _ . 4s -o yg - 42 -0" ;. ._ .: - ' - - -- - - - - - - - - - - ' - - - - - ' - - - - - - -- -- " " - - --- '- -- -`- _ - " - - - - - - - - L I U y5 _ --- .: : - ...._ - _ - .76 -0 3 - . _ _- _ -- - - 34 -0 yU ' . 33 -b ,7 I -b' ' -'- ----.' -- '- - --' -- -"--. -._ .. _ - - --- - .311-0 _ Ly-0-. - --'---'- •---- - - -_ " -' - _ _ L` - 0 LO 01 20 -0 0U . b LL b - /! LI -0 y-0 (4 125 -a t - - - - lb -0 11 14 -0 bt5 I I -b 0 , - 1U -0 OU 00 : 3 b21 0 n 52. - 0 -0 0r� _ :_ b6 - -b26: : 4 U, -- 4201 b22 - b23 - --• - ---- - - - - -- --_- ._ • s -b - -- - -- - - . - -- -- -- - .._ _ - - - -- -- - - -- - --- . f ll i _ , v -� _ . . .. _ . _ U - I BB\BB BCCCCCCCC} CCCCCCCCCCCCCCC ICCCDDDDDDDD"tCDDCDDD DODDDDCD'DDDE EE E E EEEtEEE:EEEE EEEEEEIEEEEZ 0' 2' 4' 66' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 35' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64 66' 68' 70' 72' 74' 76' 0'1'2';'4'5'6'7'8'9111 "1:1 :1 2(22 :22 <22122i2'.3(33:3:3,3'.3;3- 313(4(44:4:4,4!4{4 " 4145155:5:5,5!5(5.5:5!6{68 :6 :640'6(6'0'6'71'7:77,77f77'-6 ' WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B - Front Load WoodWorks® Sizer 7.1 June 28, 2010 10:04:32 Concept b24Dde : Beam View Floor 2: 8 ' • • -- - 49' -6„ .. . . -_ . -- -_ - -- - -- - - - - - -- - 41 -0 f V" 40 -0 L b 1 ▪ -b - - - - - - - — - _ 4,3 -0 - «I gti -to y4 37 -0 J3 - - - - - - .. --- .il -b ,1 3 ^-0 :34 • .:J 06 - - - - _ . - - - _ .- .- .- - - - - - ▪ J d0, - -- - • -- - - - - - - - - - - U -0 r_ a-0 "4 - -- - - - - - - - - - - -- - — ' - - - - - -- - - -- - - L2.1 -0 OJ L/ 0 1 L7 iii - - - . - - _ - _ L4 -b a G.i -0 G 1 -0 I'] -- - - -- - -- ... - - - - - L'J -U !y - ! d -0 _ - - -- - - -- - -- -- - 1 f - G • - - - - • - - - - - - - - - - 15 - !'1 r ! _ - I0-0 (U .1 '4 - 0 -. . - . _. f -U -tom - - .- - - _ iU-' F ; -o c, b21 0 -0 CC b26 - - -- u -o ' b20-b22 b23 - - -b ll �i L -r u BB`'B B BC CCCCCC CfCCC CC CCCCC C CC CUCC CD DOD D CD DEDD GD DD COD DDDGDIDDOE.E E E EEEEIEEE EE EE•EEEEEEIEEEEZ i 2 4` 6' 8 1 0 ' 12 14' 1 ; 18 20 22 _ -' 26' 28' 2.0 '32' - 36 38' 40' 42 44' 46 4 3' 50' 52' 54 55' 53' 60' 62 6 66' 68' 70 i2' 74' 76 77.7.77 �; i2._ - .i'7 t.' _ 'I. i. -,.'1 1i1'tc' Lit° LZ< 2C4{^ �, 7. 3: 3 i<' . 3t. �- �1 4_ 4.'z4i4Sd bi8t7lC '�.O CJ^.r .,6J 1, ,/ ,7, 77 -. • WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B - Front Load WoodWorks® Sizer 7.1 June 28, 2010 10:04:34 Co:c60ept Mode : Ccc59imn View Floor 2 : 8 ' iC5 4�- 1U4 - - . _ - - - - - - - - - - "- - _ - - - 4 -o IUS - - --- - 40 -O 101 . _ • a4 - b iUU _ - c57 C1- c2 c46 c58 43- 0 . _ b - - -- - -- . ' - - -- -- --- - -- - -- - - -- - -- - - - � 3� i1y 00 c47 >sr r( 6 i t7b -- -- - -- - - - - - -- -- - - - - - -- -- - - - - .5 -0 64 c55 u5 cA8 _ L -b di e r - -- - _ _ - - -- - 01 b Od - ..._C63 - - - . - - - - -- -- - - - - - - - - -- -- - - - - L4 -0 !ii Ll ` c49 ZS -0 ! l_1 c50 L ` -0 -_ ._ LU - t3 ` y c54 c I7-0 c53 - -- I:1 10 .7: 1/- " --• c52 . - - - - c51- - -- - __ - - - in ( i • 14 O - 1.3 -0 pr (DO _ o 043 . -_ r - 0 nL b -b 01; _ _ - c40 - - :c64 - -- . - -- - c36-: -- - - • - -- : - - - • - - - - -- - -- --- -- - - - - - � -1. _. b C39 r49 - . L - U 43 BBBE. BCCCCCCCC `CCCCCCCCCCCC DDDDIDDDCD DD DDDDDDCD E E EE EFEEE;EE,EE' 0' 2' 4' 6' 8' 10' 12 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 30' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1 2'3'4'5'6 7'8'91(1 1:1 :1 2(2 22:2 4:44 t4(4 5'5:5 6:6(6 '7:77 -6' • ,/7 i , 1 WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B - Front Load WoodWorks® Sizer 7.1 June 28, 2010 10:04:29 Concept Mode: Beam View Floor 3: 17' 105 -- - - - -- -- -- - .. , • Jz{ Q y 40 -o � - - - - - - - - - - nr I ._O I - . - - - --- . _ -- - -- -- - - - q: -0 yJ - - -- - - - - - -- 4L -- -.. _ - - - - .. -- - - - - --- - ; q I -b yC ^v - J D. .. 1,` -0 '-.J4 _._ - __ _ _. _ __ .. _ .__ _ - J I -O :7. • v 1-Jt - . - - - - -- - - - .- - -- _ . - - - ._ JO -o ... -- J=G -0 7( I! 51 0O •~ -0 u n - - - -- - b12 ' - • - : __ -- - -za -b 233 . - - - L / -o 6L -- - -� -.b8' - - -- - -- -- - • - -- - - - -. - - - �o -o � ` b2 5 0 j ' DU - 14 - - -- - .. - - - - - - - • Z4 -c ('a =} . - -- -- -- - - - - - -- - -ZL -c r r Z :tr _ ._. ._ . - ... r4_ - . - - . - . - i 0-0 :.3 b13 . I - =r -0 r ` b11 to -o t ' 17-9 u I - . . . . _.. ':4 -0 - 00 _ : - - - IL-0 I -O I J -o 0J 1 -0 u�' 0 ® 111 b10 - •b9 Al • - • . - - - -- 0 -0 BB?BBBCCCCCCC'C1CCCCCCC '' CCCCCCC\ CCCD DDDDDDDI LDDCDDDDDDDODCD 0' 2' 2' 1 4 .1 8' I ' 22' 24 ' 7 ' 3 e' 3 ' 44 ' 5 0 52' 56 ' T 2' 38' r 0 72' 74' - 4' 6 8' 10'1 15 23 "L6 8'30'32 .,-, 36' 's8'4C`42 `4t'4� L' 'S� � 0 °'60'5 5 6 ^` ro 0' 3'4'5'6' 7 '3'5111 1_1:14 ; , (1'1,i 2 2 22:2 22(.4'.4 4 4: 4In 5;51551E15515 3 :6'6 816•6 -.7 :7,77177' -6" WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B - Front Load WoodWorks® Sizer 7.1 June 28, 2010 10:04:27 Concept Mode: Column View Floor 3: 17' 105 - - - -_. - - - - - - -- - - 4 Uri. l U.i„ - - - - - _ .. __- - - - - • -. _ ==',D - 0 WC J -t; vu c14 - c15 4..--t-_-, yr' ®s cs iTh® _ S -9 r. e 1 -b -U yD .. - - - - - J:'-O LO -9 fl 3_r-9 a■ - - c38 - - -o u! _ _.- _ 00 4 - • c25 c16 2 0 -G %? -o ! (t- LF ZS -9 c . -,r., c17 -G c43 21-.1 f c c23 e' c67 ; -o s c22 - - ' - , f c24 c26 i� e 1 G" o i) c44 - c45 I :Du J 4 -D 4 -gip-. EE` EEECCCCCCC' CC CC CCCCCCCCCDCCCODDDDCDDiD• DDCDDDC= DDSDDCD .EEEE'EEEEE HEEEEZ 4' 6 8• 10' 12 1 '8, 18' 20' 22 L4' 25' 28' 30' 32 24' 3 +6 33' 40' 42' 44' •5 43' 50 32' 5 56' 56 50' 64' 55' 55' 7 5' , 74' 56 3 G1;' 1',1 :1 11 t : 2;2 L.' _. t •� 3 J._J ,3; :J ^^� . 4'��..•• -'F , s 2' -4!i 41!r 5:::-.:6,6 "-. ._ r 5i E - 6 `:. ti 7 . ` � 5 ... ' ., ��' � 7 7 'G 47 / _1 - . Wood Works® Sizer SOFTWARE FOR WOOD DESIGN Unit B - Front Load Wood Works® Sizer 7.1 June 28, 2010 10:04:23 Concept Mode: Beam View Roof: 25' 135n 49'-6" ,;, U.._, 41-0 - - - 0 1 t2L a0 -0 b15 =r4 -,-, 9 - Emil= IIIIIIIINEMIE 4 6 -0 4C -0 4 1 -O ‘J•C, . '40-0 1 - _ 2 3: -0 5:_ -b ,,..n ,:. -0 4 .; -0 00 .S,L -n n• 1 -r." 00 _ 30-0 03 b16 04 - - - - - tZ- _ _ ZO -0 00 i 24 -0 (41 i0 ' b27 Z2 -0 1 ' r 0 10 0-0 (U 1 14-0 . 041 00 _ Di ; ■ -._) I 0 ',)a-- 5 04? 0 -0 - b18- I _ .: -s. 4:-) !Is le " li 6 IIIII .P. . EB'ES BC COCC CCOCCC CC CC CCC CD DD DOD DDDED EEE E EE EFEEE EE EE EEREEiEEEEZ 0' 2 4 6 8 10' 1Z 14 13 18 7 0 22 24' 96 23' 30' 32 24 3E 38' 40' 42' 44' - 4'3 50 525 56' 58' 60' 62 6 65' 33' 7 0' 72' 7 4' 75 0 1 2 34- s - 3''''..;111',1 :1 f 11 I :2'22'2:2 - 0:3 3-3!3i3'32c 'A 4;444-3 4 :EL5 5.5:5 531i E .7 f 7 :7 7,717'77'-3 WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B - Front Load WoodWorks® Sizer 7.1 June 28, 2010 10:04:25 Concept Mode: Column View Roof: 25' X040 _ 40 0 4 IU I .- _ Q 45 b luUa ® ^ c27- c28' :. .. - - 43-0 V0 - _ 4 I -a V0 - - - - - - - - - - - - 40 b yb = . ' .i f -a S -G V].- y u a4 a n S 253 .. - . - •• -- • C29: . ---- -- -__, --- ------ - - -- - - - . -- - • L a 01 JI b 27b - .. .. .---- - ----- - - - - - - . 3U -0 254 - - � - -- � - � _ .. _. -- - - -� - � Lb -0 tsc c30 _ . Ll b Lo b 01 - - - - - - _ L3 -0 2SU - - -- - _ - - Z.5 -0 c66 - - 4I -b rb /7 r c65 - • y b (4 ..__ - -- - - - - - -- - -- - -- - -- - - - -- - • ---- . b b 1 S ._ - a-b IL ..- _ - -- ' --- -- - - -- . -- - - - - -- - _ .- ._.- -- - -- - ( U . -- , - . 4 b .- - - -- - .3 -0 U b - ! _ r .. 0..3, - , ' -b OZ:' . • b 1, c34 c35 u a big' . - ---- - --- _ •) a ®g r e e L b • e Cs�l a ■ -o _ 6E +B.6 BCCC C C CC C 1CCC CC CCCC C C CC CC +.CC CD DD D D DD DFDDDCD DD'DD D D DD CDTDD DE,E E EE.E E'EtE EE.EEE E!EEEEEEiEEEEZ 0' 2' 4' e 3' 10' 12' 14' 16' 18' 20' 22'24'26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 666' 68' 70' 72'74' 76' 0'1'2'3'4'5'6'7'8'61(1 1 :1 :1 :1 t11N2(22:2:2 3,3!3; 3 :5 :5 5 'J6 :b :D∎6 ?5te ?gT 6" • COMPANY PROJECT 1 WoodWorks® • SOFTWARE FOR W000 DESIGN June 28, 2010 10:34 b1 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1 w27 Dead Partial UD 539.7 539.7 0.00 2.50 plf 2 w27 Rf.Live Partial UD 493.7 493.7 0.00 2.50 plf 3 c14 Dead Point 1074 2.50 lbs 4 c14 Rf.Live Point 1601 2.50 lbs 5 j43 Dead Full UDL 47.7 plf 6 j43 Live Full UDL 160.0 plf MAXIMUM RE °J SA - .uL ' .if'^ - � i :s., *. �:. -, - 2 "^n' ,t * �'-� r K n _ r , -L 3 .3; •, �9, _ L - .... k. c., : , `.C ,�. ter. .• . } , ti ' _G''%J. c _ -', _ *• ..� - �� 3 _ a 'S" , +'• .,-� �;. F ' _-z tr - ri g. fi t ,� � _ _ '- �� -`t" ",'•� >y r ; i� r - 7.7 r ' - - -- y s - , 4 y 7 "' - :i .� :.,ti _ ;__ " - r „1. re - `J- - -- - - Tz•. %w:; _ _ {';:'�•� - , i -- _: k Tai • a ' Q - I o' 31 Dead 1048 • 1539 Live 1227 2089 Total 2275 3627 Bearing: Load Comb 62 _ 82 Length 1.21 1.93 Lumber n -ply, D.Fir -L, No.2, 2x10 ", 2 -Plys Self- weight of 6.59 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv* = 127 Fv' = 207 fv * /Fv' = 0.62 Bending( +) fb = 581 Fb' = 1138 fb /Fb' = 0.51 Live Defl'n 0.01 = <L/999 0.10 = L/360 0.06 Total Defl'n 0.01 = <L/999 0.15 = L/240 0.09 *The effect of point loads within a distance d of the support has been included as per NDS 3.4.3.1 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.15 1.00 1.00 1.000 1.100 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC 62 = D +L, V = 3627, V design* = 2356 lbs Bending( +): LC 62 = D +L, M = 2073 lbs -ft Deflection: LC 62 = D +L EI= 158e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (A11 LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. • COMPANY PROJECT I I WoodWorks° - SOFTWARE FOR WOOD DESIGN June 28, 2010 10:45 b7 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location (ft] Units Start End Start End Loadl Dead Full UDL 13.0 plf Load2 Live Full UDL 40.0 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : A 6 ° Dead 54 54 Live 120 120 Total 174 174 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min. bearing length for beams is 1/2" for exterior supports Lumber n -ply, D.Fir -L, No.2, 2x8 ", 2 -Plys Self- weight of 5.17 plf included in Toads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 10 Fv' = 180 fv /Fv' = 0.05 Bending( +) fb = 120 Fb' = 1080 fb /Fb' = 0.11 Live Defl'n 0.01 = <L/999 0.20 = L/360 0.04 Total Defl'n 0.01 = <L/999 0.30 = L/240 0.04 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Ervin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 174, V design = 139 lbs Bending( +): LC #2 = D +L, M = 262 lbs -ft Deflection: LC #2 = D +L EI= 76e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. 6"7 / I -� COMPANY PROJECT di WoodWorks® SOF/WRAF FOR WOOD DESIGN June 28, 2010 10:33 b8 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 c30 Dead Point 59 3.50 lbs 2 c30 Snow Point 75 3.50 lbs 3 w47 Dead Partial UD 96.0 96.0 0.00 3.50 plf 4 j13 Dead Partial UD 78.0 78.0 0.00 5.50 plf 5 j13 Live Partial UD 240.0 240.0 0.00 5.50 plf 6_j14 Dead Partial UD 104.0 104.0 5.50 6.00 plf 7_j14 Live Partial UD 320.0 320.0 5.50 6.00 plf 8 b12 Dead Point 171 5.50 lbs 9 b12 Live Point 469 5.50 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : A 10' 61 Dead 531 556 • Live 761 1189 Total 1292 1744 Bearing: Load Comb #2 92 Length 0.69 0.93 • Lumber n -ply, D.Fir -L, No.2, 2x10 ", 2 -Plys Self- weight of 6.59 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv* = 67 Fv• = 180 fv * /Fv' = 0.37 Bending( +) fb = 556 Fb' = 990 fb /Fb' = 0.56 Live Defl'n 0.03 = <L/999 0.20 = L/360 0.13 Total Defl'n 0.05 = <L/999 0.30 = L/240 _ 0.16 *The effect of point loads within a distance d of the support has been included as per NDS 3.4.3.1 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.100 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 1744, V design* = 1232 lbs Bending( +): LC #2 = D +L, M = 1984 lbs -ft Deflection: LC #2 = D +L EI= 158e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. COMPANY PROJECT i WoodWorks SOFTWARE FOR WOOD DESIGN June 28, 2010 10:33 b9 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w51 Dead Partial UD 96.0 96.0 2.00 3.00 plf 2_c32 Dead Point 59 2.00 lbs 3_c32 Rf.Live Point 75 2.00 lbs Load4 Dead Full UDL 13.0 plf Load5 Live Full UDL 40.0 plf MAXIMUM REV-Tit-1"c "L.w► .....1 D ADIMf• 1 CAI(•TLIC /:••► • 1 Dead 63 . 146 Live 85 110 Total 148 256 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min. bearing length for beams is 1/2" for exterior supports Lumber n -ply, D.Fir -L, No.2, 2x8 ", 2 -Plys Self- weight of 5.17 plf included in Toads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 12 Fv' = 207 fv /Fv' = 0.06 Bending( +) fb = 82 Fb' = 1242 fb /Fb' = 0.07 Live ' Defl'n 0.00 = <L/999 0.10 = L/360 0.01 Total Defl'n 0.00 = <L/999 0.15 = L/240 0.01 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.15 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 256, V design = 169 lbs Bending( +): LC #2 = D +L, M = 179 lbs -ft Deflection: LC #2 = D +L EI= 76e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. COMPANY PROJECT II II WoodWorks' SOFTWARE FOR WOOD DF5IGN June 28, 2010 10:33 b10 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_c33 Dead Point 59 1.00 lbs 2_c33 Snow Point 75 1.00 lbs 3_w52 Dead Partial UD 96.0 96.0 0.00 1.00 plf Load4 Dead Full UDL 13.0 plf Loads Live Full UDL 40.0 plf MAXIMUM REP o 1114.•` ...,a QCA[ MAU". 1 CP.irTUC i:..l • 10' 3' Dead 146 63 Live 82 64 Total 229 127 Bearing: Load Comb #3 #3 Length 0.50* 0.50* *Min, bearing length for beams is 1/2" for exterior supports Lumber n -ply, D.Fir -L, No.2, 2x8 ", 2 -Plys Self- weight of 5.17 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 10 Fv' = 207 fv /Fv' = 0.05 Bending( +) fb = 72 Fb' = 1242 fb /Fb' = 0.06 Live Defl'n 0.00 = <L/999 0.10 = L/360 0.01 Total Defl'n 0.00 = <L/999 0.15 = L/240 0.01 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3 Shear : LC #3 = D +.75(L +S), V = 229, V design = 148 lbs Bending( +): LC #3 = D +.75(L +S), M = 157 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 76e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. COMPANY PROJECT I I WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 10:36 b14 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location (ft] Units Start End Start -End 1_j33 Dead Partial UD 78.0 78.0 0.00 1.50 plf 2_j33 Live Partial UD 240.0 240.0 0.00 1.50 plf 3_j13 Dead Partial UD 78.0 78.0 3.00 8.50 pif 4_j13 Live Partial UD 240.0 240.0 3.00 8.50 plf 5_j34 Dead Partial UD 78.0 78.0 1.50 3.00 plf 6_j34 Live Partial UD 240.0 240.0 1.50 3.00 plf 7_j46 Dead Partial UD 28.9 28.9 5.00 8.50 pif 8_j46 Live Partial UD 80.0 80.0 5.00 8.50 plf 9 b25 Dead Point 409 5.00 lbs 10 b25 Live Point 1080 5.00 _ lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : .r�.w. .!4ri� � - ..,.._..._, e _ _.R+ -° ' +_ Or d - yr�� + _. �_ �. s - � f _ � y -5: '--• _ - _ma- - - ••• 1, • 10' 8'-6'1 Dead 553 685 Live 1522 1878 Total 2076 2563 Bearing: Load Comb #2 #2 Length 1.48 1.83 LSL, 1.55E, 2325Fb, 1- 3/4x14" Self- weight of 7.66 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 126 Fv' = 310 fv /Fv' = 0.41 Bending( +) fb = 1324 Fb' = 2325 fb /Fb' = 0.57 Live Defl'n 0.09 = <L/999 0.28 = L/360 0.31 Total Defl'n 0.14 = L /750 0.42 = L/240 0.32 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 2563, V design = 2064 lbs Bending( +): LC #2 = D +L, M = 6308 lbs -ft Deflection: LC #2 = D +L EI= 620e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. COMPANY PROJECT WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 10:48 b15 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j5 Dead Full UDL 335.7 plf 2 j5 Rf.Live Full UDL 493.7 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : 0 6 Dead 1027 1027 Live 1481 1481 Total 2508 2508 Bearing: Load Comb #2 #2 Length 1.34 _ 1.34 Lumber n -ply, D.Fir -L, No.2, 2x10 ", 2 -Plys Self- weight of 6.59 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 101 Fv' = 207 fv /Fv' = 0.49 Bending( +) fb = 1055 Fb' = 1138 fb /Fb' = 0.93 Live Defl'n 0.05 = <L/999 0.20 = L/360 0.23 Total Defl'n 0.09 = L/776 0.30 = L/240 0.31 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.15 1.00 1.00 1.000 1.100 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 2508, V design = 1864 lbs Bending( +): LC #2 = D +L, M = 3762 lbs -ft Deflection: LC #2 = D +L EI= 158e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. COMPANY PROJECT . di Wood Works® . SOFTWARE FOR WOOD DESIGN June 28, 2010 10:46 b20 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j47 Dead Partial UD 42.5 42.5 0.00. 2.50 plf 2 j47 Live Partial UD 62.5 62.5 0.00 2.50 plf MAXIMUM REAr• I II. .r.% ...... A MC A 1311Alf" 1 Ckle.TLIC /:...1 • ...---.:•:',-...: '7 7:= 7 ;7 7 2:1- 3 : - ' "-4 ,;, ' -., ':':_'• L .a..1 - ,.. ' ---". '' ,''' . q .'', !;:.,' "--' -, , , , ---,:- :, , .:,,! , .,, .. 2, ;,-: ,-.; :.-_-,' .:. ,_ - 2 • ,, '„ .r.,..,:,.; e... .. , -,,-.. "-,'....! 4 ; , ".,-- ' .; .,, '. ; ,,,„' -.:-':,-...' ",..!..' .-' , ?...:-- .,, .: '--, - . - ▪ .,-:'., -:: ..':-' . ' .'' -- -",.... •:•-; •-- "' '' : : -,' - ' - - _ , _ ,:: ...--... • .....: N .... lu 3 Dead 71 53 Live 91 65 Total 162 118 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min. bearing length for beams is 1/2" for exterior supports ' Lumber-soft, D.Fir-L, No.2, 4x8" Self-weight of 6.03 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis/Design Shear fv = 6 Fv' = 180 fv/Fv' = 0.03 Bending(+) fb = 46 Fb' = 1170 fb/Fb' = 0.04 Live Defl'n 0.00 = <L/999 0.10 = L/360 0.01 Total Defl'n 0.00 = <L/999 0.15 = L/240 0.01 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp 625 - 1.00 1.00 - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - 1.00 1.00 - 2 Shear : LC #2 = D+L, V - 162, V design = 99 lbs Bending(+): LC #2 = D+L, M = 118 lbs-ft Deflection: LC #2 = D+L EI= 178e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W =wind I=impact C -construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR W000 OFSIGh June 28, 2010 10:34 b21 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Pat - Start End Start End tern 1 w63 Dead Partial UD 308.0 308.0 6.00 10.00 No 2 w63 Live Partial UD 320.0 320.0 6.00 10.00 No 3 w62 Dead Partial UD 308.0 308.0 2.00 6.00 No 4 w62 Live Partial UD 320.0 320.0 2.00 6.00 No 5 Dead Partial UD 369.0 369.0 0.00 2.00 No 6 Snow Partial UD 357.5 357.5 0.00 2.00 No 7 Dead Point 1940 1.50 No 8 c44 Snow Point 2853 1.50 No 9 Dead Partial UD 104.0 104.0 6.50 10.00 No 10_j20 Live Partial UD 320.0 320.0 6.50 10.00 No 11 j21 Dead Partial UD 104.0 104.0 6.00 6.50 No 12 Live Partial UD 320.0 320.0 6.00 6.50 No 13_j22 Dead Partial UD 104.0 104.0 2.00 2.50 No 14_j22 Live Partial UD 320.0 320.0 2.00 2.50 No 15_j23 Dead Partial UD 104.0 104.0 2.50 6.00 No 16_j23 Live Partial UD 320.0 320.0 2.50 6.00 No 17 j48 Dead Partial UD 71.5 71.5 0.00 1.50 No 18 j48 Live Partial UD 220.0 220.0 0.00 1.50 No 19 b23 Dead Point 658 0.00 No 20 Snow Point 195 0.00 No MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : _ r'.' _ ., =r „� a :..c- - r , � . - � = 4 -te r, r r,�r -- ±..-0e `_ .- _ - . " � __"- .fie...„,_ =yfa.� ..te r - +..'... - 1!_`...." K +T„� a.-� ` -- 4 ..m_ -n: .�- t, �� -� ,...-a '��- TR i g j A. 0' 2' 101 Dead 5581 1311 Live 5266 2508 Total 10847 3819 Bearing: Load Comb #0 03 #2 Length 0.00 3.50 1.23 Cb 0.00 1.11 1.00 LSL, 1.55E, 2325Fb, 3- 1/2x14" Self- weight of 15.31 plf included in loads; . Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fir. = 139 Fv' = 356 fv` /Fv' = 0.39 Bending( +) fb = 717 Fb' = 2325 fb /Fb' = 0.31 Bending( -) fb = 600 Fb' = 2632 fb /Fb' = 0.23 Deflection: Interior Live 0.05 = <L/999 0.27 = L/360 0.17 Total 0.07 = <L/999 0.40 = L/240 0.17 Cantil. Live -0.03 = L/698 0.13 = L /180 0.26 Total -0.03 = 1 /788 0.20 = L /120 0.15 .The effect of point loads within a distance d of the support has been included as per NDS 3.4.3.1 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 4 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fb'- 2325 1.15 - 1.00 0.984 1.00 - 1.00 1.00 - - 4 Fcp' 800 - - 1.00 - - - - 1.00 - - - . E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC 04 = D +S, V = 7237, V design. = 4536 lbs Bending( +): LC 02 = D +L, M = 6833 lbs -ft Bending( -): LC 04 = D +5, M = 5720 lbs -ft Deflection: LC 02 = D +L E1= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC • DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. ( 4. The critical deflection value has been determined using maximum back -span deflection. Cantilever deflections do not govem design. COMPANY PROJECT 1 WoodWorks® . . SOFIWARE FOR WOOD DFSIGN June 28, 2010 10:35 b22 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psi, or plf ) : Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w69 Dead Partial UD 369.0 369.0 • 1.00 2.50 plf 2 w69 Snow Partial UD 357.5 357.5 1.00 2.50 plf 3 j48 Dead Partial UD 71.5 71.5 1.00 2.50 plf 4 j48 Live Partial UD 220.0 220.0 1.00 2.50 plf 5 j47 Dead Full UDL 42.5 plf 6_j47 Live Full UDL 62.5 plf 7_b23 Dead Point 700 1.00 lbs 8 b23 Snow Point 195 1.00 lbs MAXIMUM RE,- - -• - - -- - -- . - --- - -• - --- • - - - - -. -- - e_ ''' .. .. .4: ro� , � -, ' fit. J y ! l ..r j . � e � , . • t '� t. z. ..i - ,: = ^4 - _ _ _ tea- . _ • 0, 12 1 11 Dead 683 807 Live 341 572 Total 1024 1379 Bearing: Load Comb #3 63 _ Length 0.50* 0.63 'Min. bearing length for beams is 1/2" for exterior supports Lumber -soft, D.Fir -L, No.2, 4x12" Self- weight of 9.35 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 30 Fv' = 207 fv /Fv' = 0.14 Bending( +) fb = 159 Fb' = 1138 fb /Fb' = 0.14 Live Defl'n 0.00 = <L/999 0.08 = L/360 0.01 Total Defl'n 0.00 = <L/999 0.13 = L/240 0.02 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.100 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3' Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3 Shear : LC #3 = D +.75(L +S), V = 1024, V design = 778 lbs Bending( +): LC 43 = D +.75(L +S), M = 978 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 664e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D -dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC • DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 1 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 6 / I0, COMPANY PROJECT i I WoodWorks® SOFTWARE FOR WOOD DESGN June 28, 2010 10:35 b23 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w33 Dead Partial UD 204.0 204.0 0.00 1.50 plf 2 c18 Dead Point 143 1.50 lbs 3_c18 Rf.Live Point 110 1.50 lbs 4_c19 Dead Point 59 4.50 lbs 5 c19 Rf.Live Point 85 4.50 lbs 6 w34 Dead Partial UD 108.0 108.0 4.50 6.50 plf 7 Dead Point 59 6.50 lbs 8 c20 Rf.Live Point 85 6.50 lbs 9 c21 Dead Point 143 9.50 lbs lo 0_c21 Rf.Live Point 110 9.50 lbs 11 Dead Partial UD 204.0 204.0 9.50 11.00 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : sue, �_-- _ :._� �- --_-- - r"a' y-_ •'�' '�` = ,^r-'- ea-�' : ..- __' -7. r`-- . - . -.,---;- .,rte rr-� - mot + -Gr�w� _ . . -- y 'ids w� 4.-- s a......-.. _ ----- -�� ■ l0. 111 Dead 700 700 Live 195 195 Total 895 895 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min. bearing length for beams is 1/2" for exterior supports LSL, 1.55E, 2325Fb, 3- 112x14" Self- weight of 15.31 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 20 Fv' = 356 fv /Fv' = 0.05 Bending( +) fb = 213 Fb' = 2674 fb /Fb' = 0.08 Live Defl'n 0.01 = <L/999 0.37 = L/360 0.03 Total Defl'n 0.05 = <L/999 0.55 = L/240 0.09 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 895, V design = 639 lbs Bending( +): LC #2 = D +L, M = 2028 lbs -ft Deflection: LC #2 = D +L EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. COMPANY PROJECT 1 Wo od Wor k s® • SOFTWARE FOR WOOD DESIGN • ' June 28, 2010 10:47 b24 Design Ch Calculation Sheet ,Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude " Location [ft] Units Start End Start End 1_j42 Dead Partial UD. 47:7 47.7: 0.00 4.50 plf 2_j42 Live Partial UD 160.0 160.0 0.00 4.50 plf 3_j43 Dead Partial UD 47.7 47.7 4.50 7.50 plf 4_j43 Live Partial UD 160.0 160.0 4.50 7.50 plf 5_j44 Dead Partial UD 47.7 47.7 7.50 13.00 plf 6_j44 Live Partial UD 160.0 160.0 7.50 13.00 plf 7_j45 Dead Partial UD 47.7 47.7 13.00. 16.00 plf _ 8 j45 Live Partial UD _ 160.0 160.0 13'.00 16.00 plf' MAXIMUM REACTIONS (Ibs) and ,BEARING LENGTHS (in) : . . • 10. 16( ' Dead 442 442 Live 1280 . . 1280 Total 1722 - , 1722 Bearing: Load Comb #2 #2 Length _ . 0.85 0.85 Glulam- Unbal., West Species, 24F -V4 DF, 3- 1/8x10 -1/2" Self- weight of 7.55 pif included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 70 Fv' = 265 fv /Fv' = 0.26 Bending( +) fb = 1440 Fb' = 2400 fb /Fb' = 0.60 Live - Defl'n 0.43 = L/441 0.53 = L/360 0.82 Total Defl'n 0.66 = L/290 0.80 = L/240 0.83 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - .- - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 1722, V design = 1534 lbs Bending( +): LC #2 = D +L, M = 6890 lbs -ft Deflection: LC #2 = D +L EI= 543e06 lb -in2 • Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). . • COMPANY PROJECT • II 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 10:33 b25 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End Loadl Dead Full UDL 200.0 plf Load2 Live Full UDL 540.0 plf MAXIMUM REACTIONS final and RFARIN(; I EN(;THS linl 0' 41 Dead 409 409 Live 1080 1080 Total 1489 1489 Bearing: Load Comb #2 #2 Length 0.68 0.68 Lumber -soft, D.Fir -L, No.2, 4x6" Self- weight of 4.57 plf included in Toads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 89 Fv' = 180 fv /Fv' = 0.50 Bending( +) fb = 1013 Fb' = 1170 fb /Fb' = 0.87 Live Defl'n 0.04 = <L/999 0.13 = L/360 0.30 Total Defl'n 0.06 = L/764 0.20 = L/240 0.31 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.00 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 1489, V design = 1148 lbs Bending( +): LC #2 = D +L, M = 1489 lbs -ft Deflection: LC #2 = D +L EI= 78e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. . 1 . •- COMPANY PROJECT �� Woo dW orks ,. .. . . ,. ., . . , . • .1I1 SOFfWAREFOR WOOD DESIGN , June 28, 2010 10:57 b25 . -- - • - Design Check' Calculation Sheet • .Siier 7.1 LOADS ( lbs, psi, or pif) : , ,. Load Type Distribution - Magnitude Location [ft] Units Start End Start End 1 w72 Dead Partial UD 539.7 539.7 13.00 14.50 plf• 2 w72 Rf.Live Partial UD 493.7 493.7 13.00 14.50 plf-• - - i 3 w28 Dead . Partial UD '535.5 535.5 0.00 4.50 plf 4 w28 Rf.Live Partial UD 487.5 487.5 0.00 4.50 plf '.� 5 c14 Dead Point 1074 ' 7:00 - • • - - - - - 6 c 1 4 c14 Rf.Live Point 1601 7.00 - lbs ; 7 c15 Dead Point _1074 13.00 t lbs ' 8 c15 Rf.Live Point 1601 13.00 lbs ' 9 w73 Dead Partial UD 539.7 539.7 14.50 16.00 plf 10'w73' Rf.Live Partial'UD 493.7 '493.7 -- 14.50 16.00 -pit ._ - - . '• 11 w74 Dead Partial UD' 443.7 443.7 5.50 7.00 - plf . - 12 w74 Rf.Live - Partial' UD 493.7 493.7 5.50 - 7.00 plf - - . . -• . • 13w75 Dead Partial UD 539.7 539.7 ' 4.50 5.50 plf • - - 14 Rf.Live _'Partial UD 493.7 493:7 4.50 5.50 plf - . . - 15 j42 Dead Partial UD 47.7 '47.7 0.00 4.50 plf - 16 j42' • Live t Partial UD 160.0 160.0 0.00 4.50 plf - - - , 17 Dead - Partial UD 47.7 . 47.7 4'.50 5.50 plf - 18 j43 Live Partial UD 160.0 160.0 4.50 -13.00 5.50 plf - . 19_44 - - Dead Partial UD 47.7 - 47.7 7.50 ' - plf , 20_j44 • Live ' Partial UD 160.0 160.0 7.50 13.00 plf L 21_j45 Dead Partial UD 47.7 ' 47.7 5.50 7.50 plf 22_j45 Live Partial UD 160.0 160.0 5.50 7.50 plf - 23_j46 Dead Partial UD 47.7 47.7 13.00 14.50 plf 24_j46 Live.' Partial UD -160.0 160.0 13.00 14.50 plf - 25 j47 Dead Partial UD 47.7 47.7 14.50 16.00 plf , 26 j47 Live Partial -UD 160.0 160.0 14.50 16.00 plf MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) :. . -- - , • . 161 4 0' • . 7 4101 Dead 4328 - Live 5296 - "' 5376 • 9977 Total 9624 - . _ _ _ - . - _ . • Bearing: - • g2 Load Comb 82 _ .. 2.84 Length 2.89 . - - Glulam -Bat., West Spe 24F -V8 DF, 5- 118x15" . Self- weight of 177 plf included in loads; _ _ Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005: _ Criterion Analysis Value Design Value Analysis /Design - Shear fv = 157 Fv' = 305 fv/Fv' _ - 0.52 Bending( +) fb = 2301 Fb' = 2760 fb /Fb' = 0.83 Live Defl'n 0.36 = L/528 0.53 = L/360 0.68 Total Defl'n 0.77 = L/249 0.80 = L/240 • • 0.96 - ' ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.15 1.00 1.00 - - - - 1.00 1.00 1.00• 2 Fb'+ 2400 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2. . • Emin' 0.85 million 1.00 1.00 - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 9624, V design = 8063 lbs - Bending( +): LC #2 = D +L, M = 36854 lbs -ft - ' Deflection: LC 02 = D +L EI= 2594e06 lb -in2 , Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L =live S= snow - •W =wind I= impact C= construction CLd= concentrated) (All LC's'are listed in the Analysis output) Load combinations: ICC -IBC ` DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. . 2. Glulam design values are for materials conforming to ARC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). • i • COMPANY PROJECT . • WoodWorks : ' , - SOFTWARE FOR WOOD DESIGN 1 June 28, 2010 10:36 b26 Design Ch Calcula Sheet Slier 7.1 LOADS ( lbs, psf, or pif) Load Type Distribution Magnitude Location [ft] Units Start - End Start End. _ 1 w37 Dead Partial UD 535.5 535.5 10.50 11.00 plf 2_w37 Snow Partial UD 487.5 487.5 10.50 11.00 plf 3_w38 Dead Partial UD 535.5 535.5 11.00 14.00 plf 4_w38 Snow Partial UD 487.5 487.5 11.00 14.00 plf 5_w39 Dead Partial UD 535.5 535.5 14.00 15.50 plf 6 w39 Snow . Partial UD 487.5 487.5 14.00 15.50 plf • MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : 10'.. 15' -6'i - Dead 583 2397 Live 393 - . 2044 Total 976 -- 4441 Bearing: Load Comb #2 #2 Length 0.50* 1.33 *Min. bearing length for beams is 1/2" for exterior supports ' Giulam -Bal., West Species, 20F -V7 DF, 5- 118x16 -112" Self- weight of 19.47 plf included in loads; Lateral support: top= full, bottom = at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design ' Value Analysis /Deign Shear fv = 54 Fv' = 305 fv /Fv' = 0.18 Bending( +) fb = 488 Fb' = 2297 fb /Fb' = 0.21 . Live Defl'n 0.05 = , <L/999.. •0.52 = L/360 0.09 . Total Defl'n . 0.14_= <L/999 0.77 = L/240 . . 0.18 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2000 1.15 1.00 1.00 1.000 0.999 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.6 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +S, V = 4441, V design = 3070 lbs Bending( +): LC #2 = D +S, M = 9454 lbs -ft Deflection: LC #2 = D +S EI= 3070e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Giulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Giulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). . . •._ r- -- — - -- - -- - - — - _ -- - ;^ a, COMPANY PROJECT ifl . W oo dW orks ® ,, • SOFTWARE FOR WOOD DESIGN -. - .... -„ ,}1 _ _ �,. „,%, 1 June 28, 2010 10:50 c2 • Design, Check Calculation Sheet s Sizer 7,1 - ' LOADS ( lbs, psf, or plf) Load Type Distri_but'ion , Magnitude,. •Locatioin'(ftl : ! _ . . ..Start.: - , ><End Star.t._ End - ! 1bl Dead : Axial : - " "," "1539..- ' (Eccentricity: 0.,00 in) -- ;, ; . 2 7 bl. Rf.Live , Axial + . 2089.'. ,(Eccentricity = .0.00'in) ,.. 1 ■ ) MAXIMUM REAC (lbs): ` - _ , . _ • 'Lumber n -ply; Hem-Fir, ''No. 2;; 2x6 "; 2 -PIys . + Self - weight of 3:41 plf included in loads; "'! Pinned base; Loadface = depth(d); Built- up.fastener: nails; Ke x Lb: 1.00 x 0 0 [ ft ] ; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; . ro .Analysis'vs. Allowable•.Stress (psi) and Deflection (in) using NDS 2005: ' ! "' Criterion Analysis Value .'Design. °Value • Analysis /Design Axial - -• - fc = -221 -Fc', = 980... : :fc /Fc.' 0.23 • !'Axial Bearing 'fc =. 221 Fc* 1644 fc /Fc* = 0.13 ADDITIONAL DATA: ' FACTORS: F/E •CD CM Ct CL /CP CF Cfu Cr Cfrt . Ci LC# • Fc' " :'1300 1:15 1.00 - 1 - .00 - 0.596 `1.100 • -- 1.00- 1.00 • 2 Fc* 1300 1.15 1.00 K- 1.00:' , " ` 1 :100 " ;-, r' -i :.; ;1' . ;1. . 00 ... 2 Axial : LC #2 = D +L P = 3655 lbs 1 Kf_ 1.00 (D =dead L =live S =snow W =wind I= impact - C =cohstruction CI:d= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC -'• - - ' ' • . ' ` - DESIG NOTES: • . • 1. Please verif that the default deflection limits are appropriate for your application..' ' 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to.the provisions of NDS Clause 15.3. - , • -r -- -. - -- . 7 /%,'/-\ a.1 COMPANY PROJECT di WoodWorks® SOFIWAREFO8 WOOD DESIGN • June 28, 2 10:52 c25 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or pif ) Load Type bistribution Magnitude Location [ft] Units Start- End Start End 1 b12 Dead Axial 514 (Eccentricity = 0.00 in) 2 b12 Live Axial 1408 (Eccentricity -= 0.00 in) MAXIMUM REACTIONS (Ibs): 0' 9' Lumber n -ply, Hem -Fir, No.2, 2x4 ", 2 -Plys Self- weight of 2.17 pif included in loads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 0.00= 0.00 [ft]; Ke x Ld: 1.00 x 9.00= 9.00 [ft]; • Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 185 Fc' = 380 fc /Fc' = 0.49 Axial Bearing fc = 185 Fc* = 1495 fc /Fc* = 0.12 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.254 1.150 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 1942 lbs Kf = 1.00 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. • • • COMPANY PROJECT i WoodWorks® SOFlWARE FOR WOOD DESJCN June 28, 2010 10:51 c36 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b21 Dead Axial 5634 (Eccentricity = 0.00 in) 2 Rf.Live Axial 7021 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): - 0' 8' Timber -soft, Hem -Fir, No.2, 6x6" Self- weight of 6.25 plf included in Toads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 420 Fc' = 548 fc/Fc' = 0.77 Axial Bearing fc = 420 Fc* = 661 fc /Fc* = 0.64 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 575 1.15 1.00 1.00 0.829 1.000 - - 1.00 1.00 2 Fc* 575 1.15 1.00 1.00 - 1.000 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 12705 lbs (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. �, �. . • • COMPANY PROJECT • i Wood Works® SOFTWARE FOR woos DESIGN June 28, 2010 10:52 c44 Design Check Calculation Sheet Sizer7.1 LOADS ( lbs, psf, or plf) : • Load Type Distribution Magnitude Location [ft] Units Start End Start End . 1 c35 Dead Axial 1940 (Eccentricity = 0.00 in) 2 Rf.Live Axial 2853 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 0' 9' Lumber n -ply, Hem -Fir, No.2, 2x4 ", 3 -Pays Self- weight of 3.25 plf•included in loads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 9.00= 9.00 [ft]; Ke x Ld: 1.00 x 9.00= 9.00 [ft]; Repetitive factor: applied where permitted (refer to online help); Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 306 Fc' = 363 . fc /Fc' = 0.84 Axial Bearing fc = 306 Fc* = 1719 fc /Fc* = 0.18 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# • Fc' 1300 1.15 1.00 1.00 0.211 1.150 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 4823 lbs Kf = 0.60 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. et) l COMPANY PROJECT ' i I %VoodVVorks SOFTWARE W000 DESIGN ;..1 , . June 28, 2010 10:51 c64 Design Check Calculation Sheet ■ S i z er 7 . 1 _ • • ' LOADS ( lbs, psf, or pif) : Load Type Distribution Magnitude' Location [ft] 'Units : • .Start -End -Start ', End ) 1 1 c45 Dead Axial - -1940 ', y - - (Eccentricit 0.00in)_ -. 2 c45 Rf.Live Axial 2853 (Eccentricity = 0.00 inj 3_b22 Dead Axial " 807 • (Eccentricity = -- -0:00 in) ' -` - 9 b22 Rf:Live Axial 763 (Eccentricity = .0.00 in) - • MAXIMU REACTIONS Obi): - ' - . ' • • - - ' - - - _ Cr 8r Lumber n: ply, Hem -Fir, No.2; 2x6 ", 3 =PIys . . -Self- weight of 5.11.plf included in loads;'. . Pinned base; Loadface = .depth(d); Built -up fastener: nails; Ke'x Lb: too x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00 =.8.00 [ft]; Repetitive factor: _applied where permitted (refer to online help);- . . . Analysis v Allowable Stress (psi) and Deflection. (in) using NUS 2005: - ' Criterion Analysis - Value- Design •- Value .Analysis /Design.___ ' . Axial fc = 259 Fc' = 439 fc /Fc' = 0.59 - , Axial Bearing fc = 259 Fc *.= 1644, - fc /Fc* = 0.16 A DDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# ' Fc' 1300 1.15 1.00 1.00 0.267 1.100 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.100 - - 1.00 1.00 2 • Axial : LC #2 = D +L, P = 6404 lbs Kf = 0.60 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) • (All LC's are listed in the Analysis output) • Load combinations: ICC IBC . . . • DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate, for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. • 99 i • B • DATE ao 10 JOB NO C t N ' cA. 0 PROJECT: 1 RE \►\S W! LaVeroA Reach _I z , cam ae u \' ao 3 O w 0 � U • w SI Ylc e W111& > ksm; L 3 ^r 0 ir CL W = 0 O 2 Cr O LL Z J z 0 O 2 F d c O cj • — - cts O I • COMPANY ' PROJECT A I .I Wo o d Works .. ,SOFTWA FOR W000 DESIGN June 28, 2010 10.19 b25 LC1 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ins, psf, or ptf) : Load Type Distribution Magnitude Location lot] Units Start End Start End 1 w72 Dead Partial UD 539.7 539.7 13.00 14.50 plf 2 w72 Snow Partial UD 493.7 493.7 13.00 14 :50 plf 3 w28 Dead Partial UD 535.5 535.5 0.00 4 ".50 plf• 4 w28 Snow Partial UD 487.5 487.5 0.00 4.50 plf 5 c14 Dead Point 1074 7.00 lbs 6 c14 Snow Point 1601 7.00 lbs 7 c15 Dead Point 1074 13.00 lbs 8 Snow Point 1601 13.00 lbs • . 9 w73 Dead Partial UD 539.7 539.7 14.50 16.00 plf . 10w73 Snow Partial UD 493.7 493.7 14.50 16.00 plf 11 _ w74 Dead Partial UD 443.7 443.7 5.50 7.00 plf 12 w74 Snow Partial UD 493.7 493.7 5.50 7.00 plf 13 w75 Dead Partial UD 539.7 539.7 4.50 5.50 plf 14_w75 Snow Partial UD 493.7 493.7 4.50 5.50 plf ' 15_j42 Dead Partial UD 47.7 47.7 0.00 4.50 plf 16_j42 Live ' Partial UD 160.0 160.0 0.00 4.50 plf 17_j43 Dead Partial UD 47.7 47.7 4.50 5.50 plf 18 j43 Live Partial UD 160 -0 160.0 4.50 5.50 plf 19 Dead Partial UD 47.7 47.7 7.50 13.00 plf 20 j44 Live Partial UD 160.0 160.0 7.50 13.00 plf 21j45 Dead Partial UD 47.7 47.7 5.50 7.50 plf 22 _ j45 Live Partial UD 160.0 160.0 5.50 7.50 plf 23 j46 Dead Partial UD 47.7 47.7 13.00 14.50 plf 24 Live Partial UD 160.0 160.0 13.00 14.50 plf 25 j47 Dead Partial UD 47.7 47.7 14.50 16.00 plf 26 j47 Live Partial UD 160.0 160.0 14.50 16.00 plf • 203A Wind Point 7960 0.00 lbs 203A.1 Wind Point -7960 7.00 lbs 2038.1 Wind Point 7960 13.00 lbs 2038.2 Wind Point -7960 16.00 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : I o' 4101 Dead 4328 4096 Live 77 03 2458 Uplift 8197 Total 12031 Bearing: #6 Load Comb #4 Length 3.61 2.46 Glulam -Bal., West Species, 24F -V8 DF, 5- 1/8x15" Self- weight of 17.7 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear tv = 136 Fv• = 305 fv /Fv' - 0.45 Bending( +) fb = 1986 Fb' = 2760 fb /Fb' = 0.72 Live Defl'n 0.27 = L/704 0.53 = L/360 0.51 Total Defl'n 0.68 = L/283 0.80 = L/240 0.85 • ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes .Cn LC# Fv' 265 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 6 Fb'+ 2400 1.15 1 -00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 6 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 3 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 3 Shear : LC 06 = D +S, V = 8344, V design = 6983 lbs Bending( +): LC #6 = D +S, M = 31814 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 2594e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D dead L =live 5-snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. • 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n) - . - -- - - - - - - - • , • . . , .. • •. COMPANY PROJECT .. , . . . 4 ill WoodWorIs® ,,• ..., . . . • , , .-. .-- . . . - SOFFIVAitE F OR Wool', otsics- _ _ June 28, 2010 10:24 b25 LC1 NO LL Design Check Calculation Sheet Sizer 7.1 . _ . . LOADS ( lbs, pstorplf) : _ Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w72 Dead Partial UD 539.7 539.7 13.00 14.50 plf 3 w28 Dead Partial UD 535.5 535.5 0.00 4.50 pif 5c14 Dead Point 1074 7.00 lbs 7c15 Dead Point 1074 13.00 lbs 9 w73 Dead Partial UD 539.7 539.7 14.50 16.00 plf 11w74 Dead Partial UD 443.7 443.7 5.50 7.00 plf 13w75 Dead Partial UD 539.7 539.7 4.50 5.50 plf 15j42 Dead Partial UD 47.7 47.7 0.00 4.50 plf 17j43 Dead Partial UD 47.7 47.7 4.50 5.50 plf 19_j44 Dead Partial UD 47.7 47.7 7.50 13.00 plf 21_j45 Dead Partial UD 47.7 47.7 ' 5.50 7.50 plf . 23_j46 Dead Partial UD 47.7 47.7 13.00 14.50 plf 25_j47 Dead Partial UD 47.7 47.7 14.50 16.00 plf 203A Wind Point 7960 0.00 lbs 203A.1 Wind Point -7960 7.00 lbs 203B.1 Wind Point 7960 13.00 lbs 2038.2 Wind Point -7960 16.00 lbs . . MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : . _ _ - - - - • - . • - . _ • • , Icy. ' • . 161 • . . Dead 4328 • . 4101 Live' ' 3300 - . ' • Uplift - . . 2458 Total 7572 4101 Bearing: Load Comb 42 41 Length 2.27 . 1.23 • Glulam-Bal., West Species, 24F-V8 DF, 5-1/8x15" Self-weight of 17.7 plf included in loads; Lateral support: top= full, bottom= at supports; . . Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 70 Fv' = 238 fv/Fv' = 0.29 Bending(+) fb = 978 Fb' - 2160 fb/Fb' - 0.45 Live Defl'n -0.30 = L/632 0.53 - L/360 0.57 ' . . Total Defl'n -0.03 = <L/999 0.80 - L/240 0.04 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv 265 0.90 1.00 1.00 - - - 1.00 1.00 1.00 1 Fb'+ 2400 0.90 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 1 Fcp' 650 1.00 1.00 - - - 1.00 - - E' 1.8 million 1.00 1.00 - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - 1.00 - - 2 Shear : LC #1 = D only, V = 4328, V design = 3577 lbs Bending(+): LC 41 = D only, M = 15667 lbs-ft Deflection: LC #2 = .6D+W EI= 2594e06 lb-1n2 Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AFTC A190.1-1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). _ . . - COMPANY PROJECT 1.... ioo'dW ®rks® • .. .. • .. . ,. roFIWARE FOR W000oarrn June 28, 2010 10:20 b25 LC2 Design Check Calculation Sheet - . - • • Siier 7.1 . .' ' LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location (ft) Units ' Start End Start End • 1 w72 Dead Partial UD 539.7 539.7 13.00 14.50' plf 2_w72 Snow Partial UD 493.7 493.7 13.00 14.50 plf ' 3 Dead Partial UD 535.5 535.5 0.00 4.50 plf 4-w28 Snow Partial UD 487.5 487.5 0.00 4.50 plf 5 c14 Dead Point 1074 7.00 lbs 6 Snow Point 1601 7.00 lbs 7 c15 Dead Point 1074 13.00 1ba 8 c15 Snow Point 1601 13.00 lbs 9 w73 Dead Partial UD 539.7 539.7 14.50 16.00 plf . 10w73 Snow Partial UD 493.7 493.7 14.50 16.00 plf 11 w74 Dead Partial UD 443.7 443.7 5.50 7.00 plf • 12 Snow Partial UD 493.7 493.7 5.50 7.00 plf 13 Dead Partial UD 539.7 539.7 4.50 5.50 plf 14 Snow Partial UD 493.7 493.7 4.50 5.50 plf 15 Dead Partial UD 47.7 47.7 0.00 4.50 plf 16 j42 Live Partial UD 160.0 160.0 0.00 4.50 plf • 17 Dead Partial UD 47.7 47.7 4.50 5.50 plf 18 Live Partial UD 160.0 160.0 4.50 5.50 plf 19 j44 Dead Partial UD 47.7 47.7 7.50 13.00 plf 20_j44 Live Partial UD 160.0 160.0 7.50 13.00 plf 21_745 Dead Partial UD 47.7 47.7 5.50 7.50 plf 22 j45 Live Partial UD 160.0 160.0 5.50 7.50 plf 23 j46 Dead Partial UD 47.7 47.7 13.00 14.50 plf 24_j46 Live Partial UD 160.0 160.0 13.00 14.50 plf 25 j47 Dead Partial UD 47.7 47.7 14.50 16.00 plf 26 Live Partial UD 160.0 160.0 14.50 16.00 plf' , 203A Wind Point -7960 0.00 _ lbs . - 203A.1 Wind Point 7960 7.00 lbs , 2038.1 Wind Point - 79 60 13.00 lbs - 2038.2. Wind Point .'7960 - • • 16.00 - .- lbs • MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : I o' 4101 Dead 4328 7763 Live 4016 Uplift 2321 11864 Total 8344 - Bearing: #4 Load Comb #6 3.56 Length 2.50 Glulam-Bal., West Species, 24F -V8 DF, 5- 1/8x15" Self- weight of 17.7 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005: 'Criterion Analysis Value Design Value Analysis /Design - Shear • fv = 136 Fv' = 305 fv /Fv' = 0.45 Bending( +) fb = 2949 Fb' = 3840 fb /Fb' = 0.77 Live Defl'n 0.42 = L/454 0.53 = L/360 0.79 Total Defl'n 0.69 = L/277 0.80 = L/240 0.87 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 6 Fb'+ 2400 1.60 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 4 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 4 Erin' 0.85 million 1.00 1.00 - - - - 1.00 - - 4 Shear : LC #6 = D +S, V = 8344, V design = 6983 lbs Bending( +): LC #4 = D +.75(L +S +W), M = 47228 lbs -ft Deflection: LC #4 = D +.75(L +S +W) EI= 2594e06 lb -in2 , Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D =dead L =live 5-snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC . ' - DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. . , . . - • . . 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). . •-% t COMPANY PROJECT ill WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 10:23 b25 LC2 NO LL Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w72 Dead Partial UD 539.7 539.7 13.00 14.50 plf 31w28 Dead Partial UD 535.5 535.5 0.00 4.50 pif 5 c14 Dead Point 1074 7.00 lbs 7_c15 Dead Point 1074 13.00 lbs 9 w73 Dead Partial UD 539.7 539.7 14.50 16.00 plf 11 w74 Dead Partial UD 443.7 443.7 5.50 7.00 plf 13 Dead Partial UD 539.7 539.7 4.50 5.50 plf 15 Dead Partial UD 47.7 47.7 0.00 4.50 plf 17 j43 Dead Partial UD 47.7 47.7 4.50 5.50 pif 19 j44 Dead Partial UD 47.7 47.7 7.50 13.00 plf 21 j45 Dead Partial UD 47.7 47.7 5.50 7.50 plf 23 j46 Dead Partial UD 47.7 47.7 13.00 14.50 plf 25 j47 Dead Partial UD 47.7 47.7 14.50 16.00 plf 203A Wind Point -7960 0.00 lbs 203A.1 Wind Point 7960 7.00 lbs 2030.1 Wind Point -7960 13.00 lbs 203B.2 Wind Point 7960 16.00 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : A 161 Dead 4328 4101 Live 3391 Uplift 2321 Total 4328 7435 Bearing: Load Comb #1 # Length 1.30 2.23 Glulam-Bal., West Species, 24F -V8 DF, 5- 1/8x15" Self- weight of 17.7 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 70 Fv' = 238 fv /Fv' = 0.29 Bending( +) fb = 1905 Fb' = 3840 fb /Fb' = 0.50 Live Defl'n 0.10 = <L/999 0.53 = L/360 0.18 Total Defl'n 0.37 = L /525 0.80 = L/240 0.46 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 0.90 1.00 1.00 - - - - 1.00 1.00 1.00 1 Fb'+ 2400 1.60 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #1 = D only, V = 4328, V design = 3577 lbs Bending( +): LC #2 = .6D +W, M = 30517 lbs -ft Deflection: LC #2 = .6D +W EI= 2594e06 lb -in2 Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). • ' COMPANY PROJECT 1 1 WoodWorks° SOFTWARE FOR WOOD DESIGN June 28, 2010 10:25 b26 LC1 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or pif ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w37 Dead Partial UD 535.5 535.5 10.50 11.00 plf 211437 Snow Partial UD 487.5 487.5 10.50 11.00 plf 3 w38 Dead Partial UD 535.5 535.5 11.00 14.00 plf 4_w38 Snow Partial UD 487.5 487.5 11.00 14.00 plf . 5 w39 Dead Partial UD 535.5 535.5 14.00 15.50 plf 6 w39 Snow Partial UD 487.5 487.5 14.00 15.50 plf W1.1 Wind Point 13500 10.50 lbs W1.2 Wind Point -13499 15.50 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : ,i, 10 , 15' -6 Dead 583 2397 Live 4182 8392 Total 4704 10789 Bearing: Load Comb #4 #3 Length 1.41 3.24 Glulam -Bal., West Species, 20F -V7 DF, 5- 118x16 -112" Self- weight of 19.47 plf included in Toads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 181 Fv' = 424 fv /Fv' = 0.43 Bending( +) fb = 2526 Fb' = 3195 fb /Fb' = 0.79 Live Defl'n 0.47 = L/395 0.52 = L/360 0.91 Total Defl'n 0.56 = L/331 0.77 = L/240 0.72 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.60 1.00 1.00 - - - - 1.00 1.00 1.00 4 Fb'+ 2000 1.60 1.00 1.00 1.000 0.999 1.00 1.00 1.00 1.00 - 4 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.6 million 1.00 1.00 - - - - 1.00 - - 4 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 4 Shear : LC #4 = .6D +W, V = 10643, V design = 10194 lbs Bending( +): LC #4 = .6D +W, M = 48956 lbs -ft Deflection: LC #4 = .6D +W EI= 3070e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). r) •• " t 1 • . .• . _ .. . . . . • . .. . . . COMPANY PROJECT . . . . . , . ea:woo Wor s® . .. . SOFTWARE !OR W00)DEsic)! - June 28, 2010 10:27 b26 LC1 no 11 Design Check Calculation Sheet Sizer 7.1 • LOADS ( lbs, psf, or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w37 Dead Partial UD 535:5 535.5 10.50 11.00 plf 3w38 Dead Partial UD 535.5 535.5 11.00 14.00 plf 5w39 Dead Partial UD 535.5 535.5 14.00 15.50 plf W1.1 Wind Point 13500 10.50 lbs W1.2 Wind Point -13499 15.50 . lbs - . . . . MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) :.- • A 10' • . - 15,6 Dead 583 2397 Live 4182 8247 Total 4704 10583 Bearing: Load Comb #2 #2 Length 1.41 - 3.18 Glulam-Bal., West Species, 20E-V7 DF, 5-118x16-1/2" Self-weight of 19.47 plf included in loads; Lateral support: top= full, bOttom= at supports; . . _ Analysis vs. Allowable Stress (psi) and Deflection (in) tising'NDS 2605 : - .. Criterion Analysis Value Design Value Analysis/Design . . Shear fv = 181 Fv' = 424 fv/Fv' = 0.43 Bending(+) fb = 2526 Fb' = 3195 fb/Fb' = 0.7.9 Live Defl'n 0.47 = L/395 0.52 = L/360 0.91 Total Defl'n 0.56 = L/331 0.77 = L/240 0.72 • _ ADDITIONAL DATA: • . FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.60 1.00 1.00 - - 1.00 1.00 1.00 2 Fb'+ 2000 1.60 1.00 1.00 1.000 0.999 1.00 1.00 1.00 1.00 -_ 2 Fcp' 650 1.00 1.00 - - - 1.00 - - - E' 1.6 million 1.00 1.00 - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - 1.00 - - 2 . Shear : LC #2 = .6D+W, V = 10643, V design = 10194 lbs Bending(+): LC'#2 = .6D+W, M = 48956 lbs-ft Deflection: LC #2 = .6D+W EI= 3070e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D-dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC . . DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application., ,. 2. Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3:3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'h). d" ., '.. - . COMPANY PROJECT i I WoodWorks® - SOFTVARF FOR WOOD DESIGN June 28, 2010 10:26 b26 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS (Ibs, psf, or pif ) Load Type Distribution Magnitude Location (ft] Units Start End Start End 1 w37 Dead Partial UD 535.5 535.5 10.50 11.00 pif 2w37 Snow Partial UD 487.5 487.5 10.50 11.00 pif 3 _ w38 Dead Partial UD 535.5 535.5 11.00 14.00 pif 4 w38 Snow Partial UD 487.5 487.5 11.00 14.00 pif 51w39 Dead Partial UD 535.5 535.5 14.00 15.50 pif 6 w39 Snow Partial UD 487.5 487.5 14.00 15.50 pif W1.1 Wind Point -13499 10.50 lbs W1.2 Wind _ Point 13500 15.50 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : • i A O 1 5' -6'1 2397 Dead 583 2094 Live 393 7697 Uplift 3945 4497 Total 976 Bearing: #2 Load Comb #2 1.33 Length 0.50" 'Min. bearing length for beams is 1/2" for exterior supports Giulam -Bal., West Species, 20F -V7 DF, 5- 118x16 -1/2" Self- weight of 19.47 pif included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 136 Fv' = 424 fv /Fv' = 0.32 Bending( +) fb = 488 Fb' = 2297 fb /Fb' = 0.21 Bending( -) fb = 2193 Fb' = 2940 fb /Fb' = 0.75 Live Defl'n. -0.51 = L/362 0.52 = L/360 0.99 Total Defl'n -0.42 = L/441 0.77 = L/240 0.54 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.60 1.00 1.00 - - - - 1.00 1.00 1.00 4 Fb'+ 2000 1.15 1.00 1.00 1.000 0.999 1.00 1.00 1.00 1.00 - 2 Fb'- 2000 1.60 1.00 1.00 0.919 1.000 1.00 1.00 1.00 1.00 - 4 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.6 million 1.00 1.00 - - - - 1.00 - - 4 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 4 Shear : LC #4 = .6D +W, V = 7647, V design = 7647 lbs Bending( +): LC 82 = D +S, M = 9454 lbs -ft Bending( -): LC #4 = .6D +W, M = 42496 lbs -ft Deflection: LC #4 = .6D +W EI= 3070e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Giulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Giulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). /- PI I L, ____ - ____._ -. `___-_____..______.._ _____-_____. COMPANY PROJECT 1 %ioodW orks.. sorr MEEOB WOOD DESIGN June 28, 2010 10:30 b26 LC2 no II • Design Check Calcula Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w37 Dead Partial UD 535.5 535.5 10.50 11.00 plf 3_w38 Dead Partial UD 535.5 535.5 11.00 14.00 plf 5 w39 Dead Partial UD 535.5 535.5 14.00 15.50 plf W1.1 Wind Point -13499 10.50 lbs W1.2 Wind Point 13500 . .15.50 lbs '. . MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) 1 0' 15' -6' Dead 583 . 2397 Live • Uplift 3945 7647 Total 583 2397 Bearing: . Load Comb #1 #1 Length 0.50* - 0 *Min, bearing length for beams is 1/2" for exterior supports Glulam -Bal., West Species, 20F -V7 DF, 5- 118x16 -112" Self- weight of 19.47 plf included in loads; Lateral support: top= full, bottom= at supports; . Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 136 Fv' = 424 fv /Fv' = 0.32 Bending( +) fb = 267 Fb' = 1797 fb /Fb' = 0.15 Bending( -) fb = 2193 Fb' = 2940 fb /Fb' = 0.75 Live Defl'n -0.51 = L/362 0.52 = L/360 0.99 Total Defl'n -0.42 = L/441 0.77 = L/240 0.54 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.60 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2000 0.90 1.00 1.00 1.000 0.999 1.00 1.00 1.00 1.00 - 1 Fb'- 2000 1.60 1.00 1.00 0.919 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.6 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = .6D +W, V = 7647, V design = 7647 lbs Bending( +): LC #1 = D only, M = 5167 lbs -ft Bending( -): LC #2 = .6D +W, M = 42496 lbs -ft Deflection: LC #2 = .6D +W EI= 3070e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the An output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). Harper ? Project: • HP :• Houf Peterson Client: Job # Righellis Inc. ENGINEERS. PLANNERS - Designer: Date: Pg. # LANfl9CAPE PRCH•TECTS• SUR':EYCRS , • pe gh W dl := 10.- -8-ft-20-ft W = 1600-lb ft - Seismic Forces Site Class =D Design Catagory =D Wp •= W I := 1.0 Component Importance Factor (Sect 13.1.3', ASCE 7 -05) Si := 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. S := 0.942 Max EQ, 5% damped, spectral responce acceleration at short period z := 9 Height of Component h := 32 Mean Height Of Roof F := 1.123 Acc -based site coefficient @ .3 s- period (Table 1613.5.3(1), 2006 IBC) F 1.722 Vel -based site coefficient @ 1 s- period (Table 1613.5.3(2), 2006 IBC) S • = F S : = F - S 2 Sms S ds • Max EQ, 5% damped, spectral responce acceleration at short period 3 Exterior Elements & Body Of Connections a := 1.0 R := 2.5 (Table 13.5 -1, ASCE 7 -05) F – .4a RP l S ds I I 1 + 2 ? hJ I Wp EQU. 13.3 - F Fpmax:= 1.6•Sds•Ip• EQU. 13.3 - 2 F pmin • W p EQU. 13.3 - = if(F > Fpmax,Fpmax,if(Fp < Fpmin,Fpmin, Fp)) F = 338.5171•lb Miniumum Vertical Force • 0.2 • S ds• W dl = 225.6781•lb Harper Project: HP 1 . Houf Peterson Client: Job # Righellis Inc. ENGINEERS • ,LAN.•IE45 Designer: Date: Pg. if LANOSCAVE ARCH, TEC LS• SURVEYORS Wdl 10 lb •8•ft•20•ft Wdl = 1600.1b ft Seismic Forces Site Class =D Design Catagory =D W p W dl i 1.0 Component Importance Factor (Sect 13.1.3, ASCE 7 -05) S : = 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. S • = 0.942 Max EQ, 5% damped, spectral responce acceleration at short period z := 9 Height of Component h := 32 Mean Height Of Roof F : = 1.123 Acc -based site coefficient @ .3 s- period (Table 1613.5.3(1), 2006 IBC) F := 1.722 VeI -based site coefficient @ 1 s- period (Table 1613.5.3(2), 2006 IBC) S • = F - S s Smi := F S 2S ms Sds := Max EQ, 5% damped, spectral responce acceleration at short period 3 Exterior Elements & Body Of Connections a := 1.0 R := 2.5 (Table 13.5 -1, ASCE 7 -05) 4a • r z F := P R I 1 + 2 h EQU. 13.3 -1 P Fpmax 1.6- S -I EQU. 13.3 -2 F pmin .3- S ds' I p' W p EQU. 13.3 -3 4 if(F > F pmax , Fpmax, if(F < F pmin , F pmin , Fp)) F = 338.5171-lb Miniumum Vertical Force 0.2- S ds• W dl = 225.6781 -lb • xx 0 2) y . • 0 0 = 0 Z m Z T1 0 0 3 7Sf�Zj �i ❑ / J / 1 / / 1/ 7 1 lo1-1, 1 VnS� asn o9 0 a Z z n bg 4 -4 1Sb, 1 =1 =D 0 A SID1 SG)Qo 2.) 7 : - -)Al rT, O m rri `` a q Q� E sb- l — �L C^ = ��b1d JC lnO� c� m F Z ❑ ❑ 102 = di 3a :j road /, 1 1 o 'e 1� _______________________._ . — ___.• _____ _ __ •_ ___ — , ---- ------ - ---- -- - - ---- - - 1 . ., ...), : \, . .. . : . . , p : G . .. . JOB NO.: i t 9 0 ki - BY , , r" C DATE ':,' t ,,.. ) .. 3 N ii ... __... .._ • PROJECT: . • RE: --.- 7 — --:- [ 2L DOLINC.- ...i 0 LL 0 E • 1- w , 0 2 NPckk._ CR - PqC_ t 7-9 ( 1(.44 C.-3T-f•rrn.A) I L i i 0 , Li (53)(gg*irY3k! i ). if Wiroi/ " ■I _.. 0 , < cr 0 = • 0 w L I L. O z . a w 0 Er a_ • Z a . . . CAPRC. iT `If • ' , 4-' z _ - O - R ' -_= (1 (ia "a, la la * ino.i tb_1_2. .■19L1 * (2 boaraS) ' . 0 N ... z jo sr-5 0 U IC pC.I,C._ !fig \DC kW ee r„ -0.0,; '‘,,,..... ._ 7,4 . ICO3c. _ El . J 2 8 C a po ct jtu - (0 . il- Z ' • i - L., • 0 6 1 i 1 I p E f uo l i 1 1 :, 00 i I , . . LEUI 17 _)E ‘.C--,f.■ j \) - \ ( C) 15- 'Fl...r ; ) , s cu • — . 1-. 01.., = -.: • C T , . .... . E -go' .,...... ( )( 2 .... ? 2_ a r K '-') :::: (7-: Sc 1 ' ( Ft t: 40 7 • -- 3oel 4 (m = S\■(Ni\?5cPcN 305'14- x _ e_ 12." ( i4-) = 440 * :- 014- ..-, ..-, . . 14- ; , 1 - --iz- ;-„. s 1 „ . 1 . . z )N - 170a+t '.' oore •7 caee 1 hs°2 1 tr = 1 1 INI44 0008 =1_ 111-4 cmg 7- 14...._, -ft poz tx>v) ttcoe -w "0 -I I 0 9 0 p, Z 7 1 P • - m :cie 0 'D Z - T - „get n o t,„Ar:`,,%c'•›‘..Aei.l. 1 & Ya.)■ 01 i.. •-- I nki 3 : 0 1:u■s ci '6-1 z (7, › rvi_s 2 .4,400he - NI4#00h9 ----- D=_i_ 6 z -0 m 0 • z 0 N14* w-hg - . 0 . , , • 0 . 0 g E al p a r .. m . 0 0 . _ . 0 —" . :.1-031-0thd . . ON ElOf 0 0 CI Q "°3 leCkjjkl . •A El e Harper i, HOUfPeterSOn COMMUNICATION' RECORD Righellis Inc. To ❑ FROM 0 MEMO To FILE L EOGINEEP: • PLAII;IE?V Lnr.es::. v:: AacrnrEer.;.,uavcvuw PHONE NO PHONE CALL: fl MEETING: E A A CO RI o rn _ g :::: 0 I:rn �� 11 3 L t � 4 1t 1 , vi =� 1 m Z . 1 C.. rEirper COMMUNICATION i. P Houf Peterson Righellis Inc. To 0 FROM 0 ) RECORD MEMO TO FILE 0 E.,-..., • PLAPINER,S LAND'LCIPE ArCilITECTS.SU.'VE,131i.: PHONE NO.: PHONE CALL: 0 MEETING: 0 13 13 03 In A 2 m 0 7.1 ..? g .S M . ,....i (Ji ' '■ '... `\MIIIIIIIII4 CA 1 :3 . c...... N., f N 1 E c-1 - . c . Li 0 1 • r -0 z CP. - - 1 r ■3 1 CO • Z 1 0 •••••() ‘ 0 • • 4 • COMPANY PROJECT / tit WoodWor SOFIWARE FOR WOOD DESIGN June 8, 2009 16:27 Hand Rai12 Design Check Calculation Sheet Sizer 8.0 LOADS: Load Type Distribution Pat- Location [ft] Magnitude Unit tern Start End Start End LIVE Live Full UDL 50.0 plf MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : . .._ - 41 is lo' 51 Dead Live 125 125 Total 129 129 Bearing: Load Comb #2 #2 Length 0.50* 0.50* Cb 1.00 1.00 'Min. bearing length for beams is 1/2" for exterior supports Lumber -soft, Hem -Fir, No.2, 2x6" Self- weight of 1.7 pif included in Toads; Lateral support top= at supports, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis/Design Shear fv = 19 Fv' = 150 fv /Fv' = 0.13 Bending( +) fb = 256 Fb' = 1048 fb /Fb' = 0.24 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.16 Total Defl'n 0.03 = <L/999 0.25 = L/240 0.11 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 150 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 0.949 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 405 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.3 million 1.00 1.00 - - - - 1.00 1.00 - 2 Ervin' 0.47 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = L, V = 129, V design = 106 lbs Bending( +): LC #2 = L, M = 162 lbs -ft Deflection: LC #2 = L EI = 27e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction Lc= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. . I • COMPANY PROJECT WoodWorks® SOFTWARE FOR WOOD OESION - June 8, 2009 16:27 Hand Rail Design Check Calculation Sheet Sizer 8.0 LOADS: Load Type Distribution Pat - Location [ft] Magnitude Unit tern Start End Start End LIVE Live Point 2.50 200 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : :s- l0' 5 Dead Live 100 100 Total 104 104 Bearing: - Load Comb #2 #2 Length 0.50* 0.50* Cb 1.00 1.00 *Min. bearing length for beams is 1/2" for exterior supports Lumber -soft, Hem -Fir, No.2, 2x6" Self- weight of 1.7 pif included in loads; Lateral support: top= at supports, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design - Shear fv = 19 Fv' = 150 fv /Fv' = 0.13 Bending( +) fb = 405 Fb' = 1048 fb /Fb' = 0.39 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.20 Total Defl'n 0.03 = <L/999 0.25 = L/240 0.14 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 150 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 0.949 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 405 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.3 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.47 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = L, V = 104, V design = 103 lbs Bending( +): LC #2 = L, M = 255 lbs -ft Deflection: LC #2 = L EI = 27e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction Lc= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN • Unit B - Front Load WoodWorks® Sizer 7.1 June 22, 2010 14:13:51 Concept Mode: Reactions at Base of Structure View Roof: 25' • • 105 -- 1280 L - • 1280 L - 49' Ivey - 442 D - - - - 442 D - - -- - - - - - - - - 4u -0 4 tLJ 40 - D 1'J' _ _ ei' -0 ., - - - - - 44 -D yt' • f * 46-b :i r _ . - 12272089 L 1601 L 44: -b r - 10481539 D 1074 D 4l/ -n ' i - . • _ .i r -b `�` - -. - - - - - - _- ,i0 -0 U! . 34 C 0 ! -b �r - - - - - JU -b D;) L e 6 59 D -- - Lis -u c= 1 232 E -- _ LD-0 ai 1408E 20 - 0 13u • 514 D - 556 D - - L3-0 r ,- 10801 - 175 640 L Lc -0 1 ' - b ., 6 - : 409 D • - • 792 L - - - LU - b ly -C 4Rn 1 - 99 DJ - - -- 1.; -0 1522 L 99 D . - - - - - ' I 553 D -- - - . ii; ■••- _ 14 -0 � ' 225 98 D - 75 L 1. -D D ,1 I L -{D or 73 ._ 9d n bb _ 2192 L - - ! u -� bn 1311 D , 01 CI ) �20 L - e L - _,)- L 55 L_ G 109 58 D • _ 021 L b 11112450 27 1 D - - .5581 D - - - - -- - -- - - - - ' - - v - 0 EB CCC1CCCCCCCCCCCCCCC` CCCDDDDOCCDiCCOCDDDBDDDODCDODDFEEEEEE .EFEEEEE'EEEEEEEEiEEEEZ 0' 2 4' 6' 8' ' 0' 1 2 ' 1 4 ' 1 6 18' 20' 22' 24' 2 6 6 28' 3 0' 32' 3 4' 36' 33' 40' 42' 44' 46' 4 8 50' 52' 5 4. 56' 38 52' 5 66' 58' 70' 72' 74' 75 r I "9 :1:1 ; s r 2:2:2 :4r d'4 s s 15tg 5:5:5•5:;75•5;5,6t6 ' - 6c6:6 t 8' 7 -:7,75' 77 ." .2'3'4'5'57'8' ; 2 7 r i �1.. '1 f , .2.2 1. 4:..- ,.4�4'� 4..:w �,3•:5•�' �.,.3.6.7,r � •. .. -., 3(.1 io 1- X 31 D FOO "7 \ t■J c., L Peci 00 r — FQ.O4t.yr Lop-t WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN - Unit B - Rear Load WoodWorks® Sizer 7.1 June 22, 2010 14:14:21 Concept Mode: Reactions at Base of Structure View Floor 3: 17' 1050 1280 L ..._. _... :, 1280 L . 4'3 -b u� � .. 442 D __ ._... : 442 D 40 -o iUL� uti b 11 - l j 41-..)-t., a9 L o ar_ 5296 L ' - - - - - - -- = 376 L . - - = -: _ __ ab 4328 D - -- 4101 D 3`J -o yam -'-- -- �_' -- - -- - -. __-- --.. _..-- � -- tir3 -b yU - - - - - --- - -- -- 33-b t3?3 3L -b oc • - 31 b t i t = Le.-ti 0,, 59 D z r -b b3 - - - '-- - - - - - --- _.,. - - - .- - -- LO -0 ZS I 1036 L L o -b ll ZS 277 D'- - 483 D - - - 1.3 -0 r a 9D _. . - - 208 - 774 L I s . U 2Rfl 1 = . .. 99DD._ i 10 0 L _ - . 99D =_ 368 D _ 4 - o .. : - 98 .. .- 640L- 75 L I L -b o/ 9d n = u b _ V P 2186E ._. --- - -- - - --- - - - - -- - - - -- - --'- - -- - -- a-o b3 a` � ° 1298 D ol: b L 4 L 084 L. _ 0 4 -0 94 LA T 306L4D.4 - 062L ' - 73 Di7E2515 D5 D' - '5647 D : -0 BB\BB BC CCC C CC CFCCC CC CCCCC C CC CCC C CD DD D D DD DICDD CD DD DD D D DD CDDD DE.E E E EEEEFEEE ?EEE E'EEEEEEIEEEEZ 0` 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46'48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1 2'3'4'5'6'7'8'9111 '1 :1 :1 11 i :1112r2222 4;4:4.4`414'4 141515 5.5:5 5: 6 :6 :616'6151717'77,7 -6" V WV k1 \ L P, 1 0 u 1.1 Rep Lop Plain Concrete Isolated Square Footing Design: F1 f 2 Concrete strength f := 60000-Psi Reinforcing steel strength E := 29000•ksi Steel modulus of elasticity "fume 150•pcf Concrete density =Ysoi1 100•pcf Soil density gall : 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldl:= 5647-lb Pd1 Totaldl Totalll :=. 7062.lb Pll := Total!! Ptt Pd1 + Pp P j = 12709- lb Footing Dimensions t := 12-in Footing thickness Width := 42,in Footing width A,:= Width Footing Area chid 9a11 — tf•'l'conc gnet = 1350•psf PtI Areqd gnet Areqd = 9.414 ft < A = 12.25 ft 2 GOOD Width A req d Widthreqd = 3.07.ft < Width = 3.50 ft GOOD Ultimate Loads Pdl + tf•A''Yconc P := 1.4•1 + 1.7•Pll P = 22.48-kips P q,:= A q = 1.84•ksf Beam Shear bcol := 5.5•in (4x4 post) d := tf — 2•in := 0.85 b := Width b = 42•in V„ :_ (0-- 4 • f V = 23.8•kips Vu := qu (13 — bcoll b V = 9.77•kips < V = 23.8•kips GOOD 2 / I Two -Way Shear bs := 5.5-in Short side column width b := 5.5•in Long side column width b := 2-(bs + d) + 2•(bL + d) b = 62-in (3 := 1.0 _ 4)•(- + 8 JPSIbc1 V = 71.4•kips 3 3 • (3 Vnmax := x• 2.66• f Vnmax = 47.48-kips 1/ qu•[b — ( bcol + d)2] V = 19.42•kips < Vnmax = 47.48-kips GOOD Flexure 2 Mu qu (b — 2 /f bcoll 2 J 1 b M = 7.43•ft•kips I \ ,:. 0.65 2 1:= = b d S = 0.405.ft 6 F := 5.41• f F 162.5•psi M ft := s f = 127.36•psi< F = 162.5•psi GOOD hJse a 3' -6" x 3'-6" x 12" plain concrete footing Plain Concrete Isolated Square Footing Design: F2 • f := 2500-psi Concrete strength , f := 60000 -psi Reinforcing steel strength .E := 29000•ksi Steel modulus of elasticity - sic . Om 150•pcf Concrete density - 1soi1 = 100•pcf Soil density gait : 1500•p - Allowable soil bearing pressure • ' •. COLUMN FOOTING Reaction Totaldl:= 4101•Ib Pd,:= Totaldl •Total11:= 5376.lb Pp := Totalll . Ptl Pd1 + Pll Ptl = 9477•Ib Footing Dimensions t = 10. in Footing thickness • Width := 36 Footing width • A := Width • F ooting Area • clnet 9a11 – tf''Yconc net = 1375•psf Ptl Areqd gnet A = 6.89241 < A = 9 ft GOOD •Widthregd A reg d Widthregd = 2.63•ft < Width = 3.00 ft GOOD Ultimate Loads ,•= Pdl + tf'A'"Yconc P� := 1.4 -Pdl + 1.7•P11 P = 16.46 -kips P gu:= — q = 1.83 -ksf A • -- -- - - -- - -- Beam Shear boa! := 5.5•in (4x4 post) d := tf — 2.in := 0.85 b := Width b = 36 -in • V„ :_ 0 - -4 • f -d V = 16.32-kips •3 Vu := qu' b 2 col 1•b V = 6.97•kips ;< V = - 16.32•kips GOOD C / Two -Way Shear b := 5.5 -in Short side column width 13L:= L :_ 5.5•in Long side column width b,:= 2 -(bs + d) + 2•(bL + d) b = 54 -in (3 := 1.0 ^ V -= 0•r + 8 1• f -d V = 48.96-kips 3 3•3cJ := x•2.66• f psi -b -d Vnmar = 32.56 -kips = q, [b — (b + d) V = 14.14 -kips < V,„,,, = 32.56 -kips GOOD Flexure 2 b — bcol r1 Mu qu I —) M = 4.43 -ft -kips 2 2 0.65 2 S := b6 S = 0.222•ft F := 5.4)- f F = 162.5 -psi M f := — f = 138.42 -psi< F = 162.5 -psi GOOD S 'Use a 3' -0" x 3' -0" x 10" plain concrete footing Plain Concrete Isolated Square Footing Design: F2 f := 2500 -psi Concrete strength f • 60000•psi Reinforcing steel strength E := 29000•ksi Steel modulus of elasticity "(cone 150•pcf Concrete density ^Isoil 100•pcf Soil density gall 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldl:= 2515-lb Pdl:= Totaldl Total!! := 3606-lb P11 := Totalll Pd Pdl + PIl P = 6121-lb Footing Dimensions tf:= 10.in Footing thickness Width := 30-in Footing width A := Width Footing Area gnet gall ' tf• net = 1375•psf PtI Areqd gnet Areqd = 4.452 ft 2 < A = 6.25 ft 2 GOOD Widthregd Areqd Widthregd = 2.11 -ft < Width = 2.50 ft GOOD Ultimate Loads ,wPd1.:= 1 tf - A•'Yconc P := 1 . 443 d1+ 1.7•P11 P = 10.74-kips P qu A q = 1.72•ksf Beam Shear bc01: =, 5.5•in (4x4 post) d := tf — 2•in _ (I): =0.85 b := Width b = 30•in • V :_ 4 f psi b d V = 13.6•kips 3 (b — bcol V 4.39-kips V = 13.6-kips GOOD V = Gu'I �'b u = n 2 Two -Way Shear bs := 5.5•in Short side column width bL := .5.5•in Long side column width b,:= 2•(bs + d) + 2 -(bL + d) b = 54 -in (3 := 1.0 Viv44,= 4)-( + 8 f psi b d V = 40.8-kips 3 343cl V� :_ •2.66 f psi -b•d Vnmax = 27.13 -kips N V„ = qu'[b — (bcol + d)2] v.. 8.57-kips < unmax = 27.13•kips GOOD Flexure b — bcol 1 M = 2.24 ft kips Mu qu C ].(}b 2 ,:= 0.65 b d S = 0.185•ft 3 S :_ F := 5.4)• f F = 162.5•psi Mu f := S f = 83.98-psi < F = 162.5•psi GOOD 'Ise a 2' -6" x 2' -6" x 10" plain concrete footing • =--=: 0 x 2 = oo =-a c b ` CD - = 72 CD o . ( 3'b) -ca1.x ''9e -Z ca) _ o �• 1 -isl sfi 1 ( b' t ' b = x' A9 Sq'h ---- h � g El �t't) t'ttvt1- _STeh� = x o 0 Z't 7t0 '.- S'i =., th'I c- c;6) = Sa. I o '� 0 c‘)\%S•S}c t'C 4(4tl)Sh't --I (6)Q512013c.S'f-X0S1 p)= ' /) W 3 SG) ° eve, _ , I 'e' b = ( Sat 4 14 4 to 1 01 = 1°W b Z t v ) a -na -- A 7d'1D o m Z n n m op E O 1_2_15k:1 i St:g1 - 1 1 ± - 1 5{:b --- ° - h i -1 D g pi H m p i�t E -1)41;0 'b �b bt 3 Sb'C', 9 '(3C1 1 UCLki — �' '+ " n 38 1 1 loaroad a --AS0e-b -A Sae b ( /�) 1 ���+� CI �� .N .or � lo ) Cc 31V4 - )V N AB • r � - HarperHouf Peterson Righellis Inc. Current Date: 6/22/2010 10:48 AM' Units system: English File name: O:\HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes\calcs \Unit B\FDN \Front Load.etz\ • • M33 =81.13 [Kip`ft] • • \` i \ _ • I -- - M33= -23.24 [Kip`ft] • 1 • • • • • - :a Bentley' -Harper Hoof Peterson Righellit Inc. - Current Date: 6/22/2010 10:49 AM Units system: English • • File name: O:\HHPR Projects\CEN - Centex Homes (309)\CEN - Plans\CEN-090 Summer Creek Townhomes\calcs\Unit B\FDN\Front Load 2.etz\ • • • • • M33=48.59 [Ki Wit] • / • / / I f r / • / • • • / • • • • M33=-54.65 [Kip*ft] • 4 • • • • ■•- t BY Nnu DATE: T \ f L omo Joe No .: ( �' d ] I r PROJECT: e '11. ---1:.„). c z , • w 1 41- o J - t1 \k_Z .-3 i3.1...� e �t O a y4 v U l�l�i� .C'� Q13 O w U z - w il • a Z n rnw, = UN`t - aJ.ate"v- UnOr i- -5 60 k -* U_ \n;kC - 1 -40.04 -t. Z 2 OJ\ = O.c O A 5 . E -c o a` A sh. r o ct,32 f 1 C1 1 T' J e O ac, 1\, 0.btt0 \NZ. X3e5 TL # @ c z • ° (3�5 z a.�, CO. \c01.�(10 QcOT')3�/S o 4? - \- o i 0 a 0 M = O,. ° (0e{9 A ) �pQ k 'J5 1 i '� ? 3 d 7, ) l'et CO it s e gal 0.:... As = 1 to m , „z ( 0 .j a, (\,o-- io o) /(o,6 00042- -- o. - t. 42. , a ‘- s,@ a2' . 0 M = 0 ,oto L:,01-15 L.o,000 6 5 - o. (041 iz”) — 1.k , -aoiat. .D . 3 = 4 -r4) 61 - • alb Tr - S @ 1o" o,C. As = t ,'d,q . ±J? a= (1.2°\�C�o, DOOM / Co,b7C3O96)(w-27 = 0 ` - tl o S e N C 0N1r,= 0,Cti0(1(°1 -. } (1 ‘S 9 ,-1-1/-i) _ 8 4.5 t_Gk )53:4 • o y er1n L x = == 1- r v A- q, @ re o , C. • Pis O.')-z7`5 11\1 a (0,ftO1- - ) /O45 Mz) - O. qt.:4 kN 4 0- i\t\r‘ 1.-: 0 ' US ° o Jut 61.1 = 5 3 . ‘4,1,,, ji Sig .1 L, (1, 3 = 6q,52 0 L. BY DATE: JOB NO PROJECT: RE: V `, C Ni VT 1 -R Load ❑ ❑ z o w o 1�UV 2400 W Cc ❑ J • 1 � uj Cc a O Mor = 34,5.3 \c-Et Iv1Q� ]L(.q) 4- a. (6 > t- (U. :33) = 45.34 t°I DL Me. : OWL a [,L0+ aCt,(7-' = co ,LL -c10L 1 <--aC.LL tcttL . IV, \- $ ❑ cw = Ii x $ o l a • � c L � 52 L • u a o • riP 43P3 `'Leg Harper Houf Peterson Righellis Inc. . Current Date: 6/22/2010 10:57 AM Units system: English File name: O:\HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit C \FDN \Rear Load 2.etz\ • • M33 =36.82 [Kip•ftl M33= -5022 [Kip ft] • • • Ir I ACI 318 -05 Appendix D 1.125" Diameter Bar Capacity at Standard Stem Wall Concrete Breakout Strength Stem Wall Capacity when govern by 3 edges Foundation Capacity Givens Givens fc = 3000 psi fc = 3000 psi h' = 17.00 inches h = 12.00 inches (into the Foundation) Stem = 8.00 inches Note: hef above is the the embedment into only the the foundation and does not consider stem wall embedment Fnd Width = 36.00 inches cmin = 2.25 inches c = 18.00 inches W 1.00 cast -in -place anchor W 1.00 cast -in -place anchor k = 24 cast -in -place anchor k = 24 cast -in -place anchor = 0.75 strength reduction factor 4' = 0.75 strength reduction factor Calculations Calculations AN = 408 in` AN = 1296 in` AN = 2601 in` A = 1296 in` Nb = 92,139 pounds Nb = 55,121 pounds Wed,N = 0.7265 Wed,N — 1.00 Ncb = 10,500 pounds Ncb = 55,121 pounds 4)N = 7,875 pounds 4)N, = 41,341 pounds Combined Capacity of Stem Wall and Foundation 4,N = 49,216 0.754)N = 36,912 — —_. — Concrete Side Face Blow Out , Givens ' Abrg = 2.75 In` fc = 3000 psi c mjn = 18.00 inches = 0.75 strength reduction factor Calculations Nsb = 261,589 pounds 4N 196,192 pounds - • . Concrete Pullout Strength, , . Givens A brg = 2.75 In` fc = 3000 psi = 0.75 strength reduction factor, Calculations • • • N = 66,000 pounds 4 N = 49,500 pounds _ • . Steel Yield Strength • Givens f = 58,000 psi • A = 0.763 in = 0.80 strength reduction factor Calculations N = 44,254 pound DNS = 35,403 pounds < 36,912 Ductility Met Holdown Check Holdown: HD19 Holdown Capacity= 16,380 pounds 1.6 Capacity= 26,208 pounds 26,208 < 35,403 ' Holdown Checks • r S tip ACI 318 -05 Appendix' D 1.0" Diameter Bar Capacity at Portal Frame • Concrete Breakout Strength Stem Wall Capacity when govern by 3 edges Foundation Capacity Givens Givens • fc = 3000 psi fc = _ 3000 _ psi h'ef = 3.50 inches hef =, 12.00 inches (into the Fc Stem = 8.00 inches Note: hef above is the the embedment into or Cmax = 5.25 inches the foundation and does not consider stem wi Fnd Width = 36.00 inches C m;n = 2.25 inches Cmin = 18.00 inches Wc.N= 1.00 cast -in -place anchor Wc,N= 1.00 cast -in -place anchor k = 24 cast -in -place anchor k = 24 cast -in -place anchor ( = 0.75 strength reduction factor 4) = 0.75 strength reduction fact • Calculations Calculations • ANc = 68 in` AN = 1296 in` ANo = 110.25 in A = 1296 in` Nb = 8,607 pounds Nb = 55,121 pounds Wed,N — 0.8286 Wed,N = 1.00 Ncb = 4,399 pounds N = 55,121 pounds 4)Neb = 3,299 pounds (K = 41,341 pounds Combined Capacity of Stem Wall and Foundation 4)N = 44,640 0.750 = 33,480 • • • • - s. Concrete Side Face Blow Out Givens A brg = 2.15 in` fc = 3000 psi c m;n = 18.00 inches = 0.75 strength reduction factor Calculations Nsb = 231,191 pounds 4Nsb = 173,393 pounds Concrete Pullout Strength Givens Ab = 2.15 in` fc = 3000 psi = 0.75 strength reduction factor Calculations N = 51,552 pounds 4 N = 38,664 pounds Steel Yield Strength Givens f, = 58,000 psi A = 0.606 in = 0.80 strength reduction factor Calculations N = 35,148 pounds 4)N, = 28,118 pounds < 33,480 Ductility Met Holdown Check Holdown: HDU14 Holdown Capacity = 14,930 pounds 1.6* Capacity= 23,888 pounds 23,888 < 28,118 Holdown Checks . r, _ • °` . BY: k e DATE 5 3 \ , A ^ JOB No C e � J PROJECT: RE: S Ve m Ujah coo 3 ❑ ❑ . i des F B.v loLon5s O w • 2 T)1_ ° asct C 1Z ?sF )- 300 P u • ❑ '1(2 leve.ls>(13 a ob p .S locr o�N C�sopc � l�z�_ 3 s1-ern ° W ( ) = 100w P u = W O a LL o ((t=C (2. lev- ls pk.F 1oor 0 TTka1 oo.t3 = 1 i- 100ua aLr . ` mo.x sbp = \Soo pC- = 1s0opc_ ° w 2 O 1 `y -4- L rsoow v (u - � 1 000 .. x 1 0 cc 0 Z CI 6 O DLo a5Ctl_1- f)LF wait ( q 1.[.1eve = a34 PLF \opt 4o l N (t so x F X'1 � )c h1, = 33?a pLF 're-. U-)) — Wow w 081 I"4 (NSF =SobpL COO F LL: C IL',4o p c _ O TL d X3(4 t )00 v\-) a o a3k-v r ioow IsooLu a w L(09- L w - G ►�L' U Y1� } 7 U c = Same cks marl lacx` 1c S W 1,00 ! . , e C Paf iwol.11 ( B)(2 x (3X2 _ 1 21,..F .. ' loocr 4 r o r)C /.∎z >C e 11 - 1 51t,n) CaIl2.XA5 =100‘-v LL ° \220 PLC- lcyjr TL : a6ag +- ioow