Loading...
Specifications /451 a0o4 / 3 S 3 sw 2osiet 42`• Structural Calculations RECEIVED for AP R 15 2013 GI Full Lateral & Gravity Analysis d#aDINGD Plan B 1332 Lot 86, Summer Creek Townhomes Tigard, OR Prepared for Pulte Group April 7, 2011 JOB NUMBER: CEN -090 ** *Limitations * ** Engineer was retained in limited capacity for this project. Design is based upon information provided by the client, who is solely responsible for the accuracy of same. No responsibility and /or liability is assumed by, or is to be assigned to the engineer for items beyond that shown on these sheets. 98 sheets total including this cover sheet. s s RUC TUR4 0 PRO/ F ff V� o Nt4 Q '�9 c• 1 2320 '= if j s Y1 ��y���2 Vt N J. Et I - IRE& 12-31 -2031 This Packet of Calculations is Null and Void if Signature above is not Original Harper • : . Houf Peterson Righellis Inc. ,, RE u,. RxfRY EwnUCwVL •4CnlEEO 1'.,SYR V(EURp 205 SE Spokane St. Suite 200 ♦ Portland, OR 97202 ♦ [P] 503.221.1131 • [F] 503.221.1171 1 104 Main St. Suite 100 ♦ Vancouver, WA 98660 ♦ [P] 360.450.1 141 • [F] 360.750.1 141 1 133 NW Wall St. Suite 201 ♦ Bend, OR 97701 • [P] 541.318.1 161 ♦ [F] 541.318.1 141 Design Criteria Project Scope: Full lateral & Gravity Analysis of Unit B Design Specifications: Wind Design: Basic Wind Speed (mph): 100 From Building Authority Exposure: B From Building Authority Importance, lW: 1 2006 IBC / 2007 OSSC Occupancy Category: II Residential Earthquake Design: Seismic Design Category: D From Building Authority Site Class: D Assumed, ASCE 7 -05 Ch. 20 Importance, IE: 1 ASCE 7 -05 Table 11.5-1 Ss: 0.942 USGS Spectral Response Map 51: 0.339 USGS Spectral Response Map Dead Load: Floor: 13 psf Wall: 12 psf Wood Roof: 15 psf Live Load: Roof: 25 psf Snow Floor: 40 psf Residential Floor Materials and Design Data: Materials: Concrete Compressive Strength, f' c: 3000 psi Foundations & Slab on Grade Concrete Unit Weight, yc: 145 pcf Steel Reinforcement Yield Strength, f 60,000 psi Wood Studs (Wall Studs): Hem -Fir #2 2x & 4x Wood Beams & Posts: DF -L #2 6x & Greater Wood Beams & Posts: DF -L# 1 Glulam Beams: 24F -V4 PSL Beams: Fb =2,900 psi, FV= 328psi, E =2.0 Million TS /LSL Beams: Fb =2325 psi, FV= 460psi, E =1.55 Million Design Assumptions 1. Allowable soil bearing pressure (qa) : 1500 psf Assumed 2. All manufactured trusses, joists, and flush beams•u.n.o. shall be designed by others. Structural Analysis Software Used: Mathcad 11 Microsoft Excel 2000 Wood Works — Sizer version 2002 Bently RAM Advanse f 1 Harper Project: Summer Creek Townhomes UNIT B H P ' Houf Peterson Client: Pulte Group Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: June 2010 Pg. # I ANDSCAPE ARCH!TEC f S• SLIRVL YORS DESIGN CRITERIA 2007 Oregon Structural Specialty Code & ASCE 7 -05 Roof Dead Load RFR:= 2.5.psf Framing RPL := 1.5.psf Plywood RRF := 5- psf Roofing RME := I.5•psf Mech & Elec RMS := 1 •psf Misc RCG := 2.5.psf Ceiling RIN := 1 •psf Insulation RDL = 15•psf Floor Dead Load FFR := 3.psf Framing FPL := 4.psf Sheathing FME := 1.5•psf Mech & Elec FMS := 1.5•psf Misc FIN := .5•psf Finish & Insulation FCLG := 2.5 -psf Ceiling FDL = 13•psf Wall Dead Load WOOD EX_Wall := 12•psf INT_Wall := 10•psf Roof Live Load RLL := 25•psf Floor Live Load FLL := 40•psf .6-L\ • Harper Project: Summer Creek Townhomes UNIT B ITP Houf Peterson Client: Pulte Group Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: June 2010 Pg. # • AN O5CAFt ARCNITEC Transverse Seismic Forces Site Class = D Design Catagory = D Building Occupancy Category: II Weight of Structure In Transverse Direction Roof Weight Roof Area := 748•ft RFWT := RDL•Roof Area RFWT = 12566.lb Floor Weight Floor_Area2 := 605•ft FLRWT2nd := FDL•Floor Area2nd FLRWT2nd = 7865•Ib Floor_Area3 600•ft FLRWT3rd FDL•Floor_Area3 FLRWT3rd = 7800•Ib Wall Weight EX Wall Area := (2203)•ft INT_Wall_Area := (906)•ft WALL := EX_Wall + 1NT Wall WALLW-r = 35496•lb WTTOTAL = 63727 lb Equivalent Lateral Force Procedure(12.8, ASCE 7 -05) h := 32 Mean Height Of Roof Ie := 1 Component Importance Factor (11.5, ASCE 7 -05) A,:= 6.5 Responce Modification Factor (Table 12.2 -1, ASCE 7 -05) C := .02 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) x := .75 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) Period T := C T = 0.27 < 0.5 (EQU 12.8 -7, ASCE 7 -05) S1 := 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. (Chapter 22, ASCE 7- 05)...or S := 0.942 Max EQ, 5% damped, spectral responce acceleration at short period From Figures 1613.5 (1) &(2) F := 1.123 Acc -based site coefficient @ .3 s- period (Table 11.4 -1, ASCE 7 -05) F„ := 1.722 Vel -based site coefficient @ 1 s- period (Table 11.4 -2, ASCE 7 -05) 8 -L1 , Harper Project: Summer Creek Townhomes UNIT B •. HP Houf Peterson Client: Pulte Group Job # CEN -090 Righcllis Inc. — — ErcGIMECR`+ • >EANrvLRy — Designer: AMC Date: June 2010 Pg. # LArv09CAPC A RC`IIiECi8•9u RVCYOR8 S MS Fa SMS = 1.058 (EQU 11.4 -1, ASCE 7 -05) 2 •SMS S := 3 Sd = 0.705 (EQU 11.4 -3, ASCE 7 -05) SMI := F SI SM1 = 0.584 (EQU 11.4 -2, ASCE 7 -05) 2 •SMI S := Shc = 0.389 (EQU 11.4 -4, ASCE 7 -05) 3 Cst := Sd le Cst = 0.108 (EQU 12.8 -2, ASCE 7 -05) R ...need not exceed... Sd I Csmax := Csmax = 0.223 (EQU 12.8 -3, ASCE 7-05) T ...and shall not be less then... C1 := if (0.044• S l < 0.01, 0.01, 0.044• Sds le) ( 0.5•S1•Ie1 (EQU 12.8 -5 &6, ASCE 7 -05) C2 := if l S1 < 0.6,0.01, J l R Csmin := if (CI > C2,C1,C2) Csmm = 0.031 Cs := if (Cst < Cs Cs if (Cst < Csmax , Cst, Csmax)) Cs = 0.108 V := Cs• WTTOTAL V = 6914 lb (EQU 12.8 -1, ASCE 7 -05) E := V.0.7 E = 4840 lb (Allowable Stress) 6 Lo) Harper Project: Summer Creek Townhomes UNIT B P Houf Peterson Client: Pulte Group Job # CEN -090 Righellis Inc. =_NciRaRL • RLau ERc -- - Designer: AMC Date: June 2010 Pg. # LANDSCAPE AR CRI7EC TS• SURVEYORS Transverse Wind Forces (Method 1 - Simplified Wind Procedure per ASCE 7 -05) Basic Wind Speed: 100 mph (3 Sec Gust) Exposure: B Building Occupancy Category: II I := 1.00 Importance Factor (Table 6 -1, ASCE 7 -05) h = 32 Mean Roof Height X := 1.00 Adjustment Factor (Figure 6 -3, ASCE 7 -05) a2 := 2•.1.16•ft Zone A & B Horizontal Length Smaller of... a2 = 3.2 ft (Fig 6 -2 note 10, ASCE 7 -05) or a2:= .4h2ft a2 =25.6ft but not less than... a 3.2.ft a = 6 ft Wind Pressure (Figure 6 -2, ASCE 7 -05) Horizontal PnetzoneA 19.9• psf PnetzoneB 3.2•psf Pnetzonec 14.4-psf PnetzoneD 3.3•psf Vertical PnetzoneE 8.8•psf PnetzoneF 12•psf PnetzoneG 6.4•psf PnetzoneH —9.7•psf Basic Wind Force PA := PnetzoneA'Iw X PA = 19.9-psf Wall HWC PB := PnetzoneB' Iw' X PH = 3.2• psf Roof HWC PC := PnetzoneC'Iw Pc = 14.4• psf Wall Typical PD := PnetzoneD'Iw'X PD = 3.3 -psf Roof Typical PE := PnetzoneE'Iw PE = — 8.8-psf PF := PnetzoneF'Iw•X PF = —12-psf PG := PnetzoneG'lw'X Pc, = —6.4-psf PH := PnetzoneH' Iw X PH = — 9.7• psf Harper Project: Summer Creek Townhomes UNIT B HP '• Houf Peterson Client: Pulte Group Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: June 2010 Pg. # LANDSCAPE ARCHI rrCi S• SURVPY ORB Determine Wind Sail In Transverse Direction WSAILZoneA (55 + 59 + 29)•ft WSAILZoneB (6 + 0 + 23)4ft WSJ -ZoneC (429 + 355 + 339) •ft WSAII-ZoneD (0 + 0 + 4).ft 2 WA WSAILZoneA'PA WA = 2846 lb WB := WSAILZoneB'PB WB = 93 lb WC WSA-ZoneC'PC WC = 161711b WD := WSAILZoneD'PD WD = 13 lb Wind_Force := WA + WB + WC + WD Wind_Force := 10•psf•(WSAILZ + WSAILZoneB + WSAILZoneC + WSJ ZoneD) Wind_Force = 19123 lb Wind_Force = 12990 lb WSAILZoneE := 43412 W SAII-ZoneF := 43 • ft WSAILZoneG 334•ft2 WSAILZoneB 327•ft2 W := WSAILZoneE'PE WE = —378 lb WF := WSAILZoneF'PF WF = —516 lb WG := WSAILZoneG'PG WG = — 2138 lb WH WSAR'ZoneH'PH WH = —3172 lb Uplift WF + WH + (WE + WG) + RDL•[WSAILZoneF + WSAILZoneH + (WSAILZoneE + WSAILZoneG)1•. Uplift = 1326 lb (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN CALCULATION 3- Harper Project: Summer Creek Townhomes UNIT B HP Houf Peterson Client: Pulte Group Job # CEN -090 Righellis Inc. ENGINEERS..LANNEPS Designer: AMC Date: June 2010 Pg. # !AND.". -AFB AR.^. MITECi5�5L'R1,'E YORS Longitudinal Seismic Forces Site Class = D Design Catagory = D Building Occupancy Category: II Weight of Structure In Longitudinal Direction Roof Weight Roof Area = 838 ft R := RDL -Roof Area RFw-I- = 12566 -lb Floor Weight Floor_Area2 = 605 ft A ktaxw m i A := FDL -Floor Area2nd FLRW = 7865 -lb Floor_Area3 = 600 ft ,j:= FDL -Floor Area3rd FLRWT3rd = 7800 -lb Wall Weight (2203)- ft INT Wall Area = 906 ft W NWNw wc> KT,A:= EX_Wall EX_Wall_Area + 1NT Wall INT_Wall_Area WALLWTr = 35496 -lb WTTOTAL = 63727 lb Equivalent Lateral Force Procedure(12.8, ASCE 7 -05) h = 32 Mean Height Of Roof Ie = 1 Component Importance Factor (11.5, ASCE 7 -05) A:= 6.5 Responce Modification Factor (Table 122 -1, ASCE 7 -05) C = 0.02 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) x = 0.75 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) Period := C T = 0.27 < 0.5 (EQU 12.8 -7, ASCE 7 -05) St = 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. (Chapter 22, ASCE 7- 05)...or S = 0.942 Max EQ, 5% damped, spectral responce acceleration at short period From Figures 1613.5 (1) &(2) F = 1.123 Acc -based site coefficient @ .3 s- period (Table 11.4 -1, ASCE 7 -05) F, = 1.722 Vel -based site coefficient @ 1 s- period (Table 11.4 -2, ASCE 7 -05) Harper Project: Summer Creek Townhomes UNIT B HP Houf Peterson Client: Pulte Group Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: June 2010 Pg. # _ANDSCAPE ARCOI:EC SS• SURVEYORS F SMs = 1.058 (EQU 11.4 -1, ASCE 7 -05) 2•SMg Sds = 0.705 (EQU 11.4-3, ASCE 7 -05) 3 F Si SMI = 0.584 (EQU 11.4 -2, ASCE 7 -05) ee 2 SMI S 0.389 (EQU 11.4 -4, ASCE 7 -05) 3 dl = st := Sd 'le Cst = 0.108 (EQU 12.8 -2, ASCE 7 -05) ...need not exceed... Shc C 0.223 (EQU 12.8 -3, ASCE 7 -05) am = Csmax : T ...and shall not be less then... Cam:= if 0.044• Sd I < 0.01 0.01, 0.044• Sd 0.5-Si • Ie (EQU 12.8 -5 &6, ASCE 7 -05) ifl S1 <0.6,0.01, R J a,:= if (CI > C2,CI,C2) Cs = 0.031 Cs := if (Cst < Cs Cs if (Cst < Csmax , Cst, Cs Cs = 0.108 V := CS•WTTOTAL V = 6914 lb (EQU 12.8 -1, ASCE 7 -05) E := V•0.7 E = 4840 lb (Allowable Stress) Lt) vw Harper Project: Summer Creek Townhomes UNIT B I P Houf Peterson Client: Pulte Group Job # CEN -090 Righellis Inc. ENDINEERS • PLANNERS Designer: AMC Date: June 2010 Pg. # LANDSGARC ARCRITEGTS•SCRVEYORG Longitudinal Wind Forces (Method 1 - Simplified Wind Procedure per ASCE 7 -05) Basic Wind Speed: 110 mph (3 Sec Gust) Exposure: B Building Occupancy Category: II I = 1.0 Importance Factor (Table 6 -1, ASCE 7 - 05) h = 32 Mean Roof Height X = 1.00 Adjustment Factor (Figure 6 -3, ASCE 7 -05) Smaller of... i2:= 2- .1.16.ft Zone A & B Horizontal Length (Fig 6 -2 note 10, ASCE 7 -05) a2 =3.2ft __ or .4 -h, 2•ft a2 = 25.6 ft b ut not less than... a 3.2.ft a2min = 6 ft Wind Pressure (Figure 6 -2, ASCE 7 -05) Horizontal PnetzoneA = 19.9•psf PnetzoneB = 3.2 -psf PnetzoneC = 14.4•psf PnetzoneD = 3.3•psf Vertical PnetzoneE = —8.8.psf PnetzoneF = — 12•psf PnetzoneG = —6.4.psf PnetzoneH = — 9.7•psf Basic Wind Force Pte:= PnetzoneA'Iw' PA = 19.9.psf Wall HWC Pte:= PnetzoneB'Iw PH = 3.2•psf Roof HWC = PnetzoneC'Iw'X PC = 14.4•psf Wall Typical Pte:= PnetzoneD'Iw PD = 3.3• Roof Typical Pte:= PnetzoneE'Iw'X PE = — 8.8 -psf := PnetzoneF'Iw'X PF = — 12 -psf P PnetzoneG-Iw. Pc, = — 6.4•psf := PnetzoneH'Iw' PH = — 9.7• �� L Harper Project: Summer Creek Townhomes UNIT B HP Houf Peterson Client: Pulte Group Job # CEN -090 Righellis Inc. CNGINEERE. PL;NNERu - - Designer: AMC Date: June 2010 Pg. # l&NOZCAPE ARCHITECTS•EURVEVORS Determine Wind Sail In Longitudinal Direction WS:= (58 + 59 + 21)41 WS := (0 +0 +51)41 WW A�:= (98 + 99 + 34)41 Mai (0 + 0 + 114).1 W4,,:= WSAILZoneA•PA WA = 2746 lb := WSAILZoneB•PB WB = 163 lb N W T := WSAILZoneC•PC WC = 3326 lb Wes= WSAILZoneD'PD WD = 376 lb Win ce = W A + WB + WC + WD Wind Forc • p= 10•psf•(WSAILZ + WSAILZoneB + WSAILZoneC + WSAILZoneD) Wind Force = 6612 lb Wind_Force = 5340 lb W AIL = 15141 WSA�:= 138•ft2 W AIL := 242•ft nA.Az 2164t ,�:= WSAII-ZoneE'PE WE = —1329 lb = WSAILZonef PF WF = — 1656 lb Wes:= WSAILZoneG'PG WG = — 1549 lb LV14,:= WSAILZoneH'PH WH = — 2 0 9 5 lb 1� := W + WH + (WE + WG) + RDL•[WSAILZoneF + WSAILZoneH + (WSAILZoneE + WSAILZoneG)]'. Uplift = 901 lb (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN CALCULATION Harper Houf Peterson Righellis Pg #: Transverse Wind Line Shear Distribution ASCE 7 -05, section 6.4 (Method 1 - simplified) Design Criteria: Basic Wind Speed = 100 mph Wind Exposure = B (Section 6.5.6, ASCE 7 -05) Mean Roof Height, H (ft) = 32 Roof Pitch = 6 /12 Building Category= II (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf A. = 1.00 Iw= 1.00 Wind Sail 2 Wind Net Design Wind Pressure (psf) (ft ) Pressure (Ibs) Zone A = 19.9 143 2846 Wall High Wind Zone Horizontal Zone B = 3.2 29 93 Roof High Wind Zone Wind Forces Zone C = 14.4 1123 16171 Wall Typ Zone Zone D = 3.3 4 13 Roof Typ Zone Zone E = -8.8 43 -378 Roof Windward High Wind Zone . Vertical Zone F = -12.0 43 -516 Roof Leeward High Wind Zone Wind Forces Zone G = -6.4 334 -2138 Roof Windward Typ Wind Zone Zone H = -9.7 327 -3172 Roof Leeward Typ Wind Zone Total Wind Force =l 19123 lbs I Use to resist wind uplift: Roof Only Total Exterior Wall Area= 2203 ft Uplift due to Wind Forces= -6204 lbs Resisting Dead Load= 7517 lbs E=) 1313 Lbs...No Net Uplift I Wind Distribution Tributary to Diaphragms Wind Sail Tributary To Dia hragm (ft Zone A Zone B Zone C Zone D Main Floor 55 6 429 0 Upper Floor 59 0 355 0 Main Floor Diaphragm. Shear= 7291 lbs Upper Floor Diaphragm Shear = 6286 lbs Roof Diaphragm Shear = 5546 lbs Wind Distribution To Shearwall Lines MAIN FLOOR UPPER FLOOR ROOF Tributary Line Shear Tributary Line Shear Tributary Line Shear Wall Line Diaphragm Ibs Diaphragm Diaphragm (lbs) (Ibs) (lbs) Wth ft � � Width ft Width (ft) I iim awe id A 15.83 2275 20.50 3143 21.33 2773 B 19.50 2802 0.00 0 0.00 0 C 15.42 2215 20.50 3143 21.33 2773 E= 50.75 7291 41 6286 42.67 5546 g -L.'0 Harper Houf Peterson Righellis Pg #: ' Transverse Seismic Line Shear Distribution Seismic Design Category = D Occupancy Category = II Site Class = D S1 = 0.34 Ss = 0.94 Importance Factor = 1.00 Table 11.5 -1, ASCE 7 -05 Structural System, R = 6.5 Table 12.2 -1, ASCE 7 -05 Ct = 0.020 Other Fa = 1.12 Fv = 1.72 Mean Roof Height, H (ft) = 32 Period (T = 0.27 Equ. 12.8 -7, ASCE 7 -05 k = 1.00 12.8.3, ASCE 7 -05 SMs 1.06 Equ. 11.4 -1, ASCE 7 -05 S 0.58 Equ. 11.4 -2, ASCE 7 -05 S 0.71 • Equ. 11.4 -3, ASCE 7 -05 S 0.39 Equ. 11.4 -4, ASCE 7 -05 Cs = 0.11 Equ. 12.8 -2, ASCE 7 -05 Csmin = 0.01 Equ. 12.8 -5 & 6, ASCE 7 -05 Csmax = 0.22 Equ. 12.8 -3, ASCE 7 -05 Base Shear coefficient, v = 0.076 Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height (ft) = 8 Floor 3 Diaphragm Height (ft) = 18 Roof Diaphragm Height (ft) = 32 Floor 2 Wt (Ib)= 7865 Floor 3 Wt (Ib)= 7800 Roof Wt (Ib) = 12566 Wall Wt (lb) = 35496 Trib. Floor 2 Diaphragm Wt (Ib) = 22063 Trib. Floor 3 Diaphragm Wt (lb) = 21998 Trib. Roof Diaphragm Wt (Ib) = 19665 Vertical Dist of Seismic Forces Cumulative % total of base shear Rho Check to Shearwalls (Ibs) I to shearwalls Req'd? Vnoor 2 (lb) = 711 100.0% Yes Vnoor 3 (Ib) = 1595 85.3% Yes Vroof (lb) = 2534 52.4% Yes Shear Distribution To Wall Lines Wall Line Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line Roof Line Floor 2 Floor 3 Roof Shear Shear Shear sq ft sq ft sq ft lbs lbs lbs A 126 299 371 148 795 1257 B 282 0 0 331 0 0 C 197 301 377 231 800 1277 Sum 605 600 748 711 1595 2534 Total Base Shear* = I 4840 LB *Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. s ,i..,,k Harper Houf Peterson Righellis Pg #: Longitudinal Wind Line Shear Distribution ASCE 7 -05, section 6.4 (Method 1 - simplified) Design Criteria: Basic Wind Speed = 100 mph Wind Exposure = B (Section 6.5.6, ASCE 7 -05) Mean Roof Height, H (ft) = 32 Roof Pitch = 6 /12 Building Category= II (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf X= 1.00 Iw= 1.00 Wind Sail Net Design Wind Pressure (psf) (ft2) Pressure (lbs) Zone A = 19.9 138 2746 Wall High Wind Zone Horizontal Zone B = 3.2 51 163 Roof High Wind Zone Wind Forces Zone C = 14.4 231 3326 Wall Typ Zone Zone D = 3.3 114 376 Roof Typ Zone Zone E = -8.8 151 -1329 Roof Windward High Wind Zone Vertical Zone F = -12.0 138 -1656 Roof Leeward High Wind Zone Wind Forces Zone G = -6.4 242 -1549 Roof Windward Typ Wind Zone Zone H = -9.7 216 -2095 Roof Leeward Typ Wind Zone Total Wind Force =I 6612 lbs I Use to resist wind uplift: Roof & Half of Upper Floor Walls Total Exterior Wall Area= 2203 ft Uplift due to Wind Forces= -6629 lbs Resisting Dead Load= 10160 lbs • El 3531 Lbs...No Net Uplift I Wind Distribution Tributary to Diaphragms Wind Sail Tributary To Dia hragm (ft Zone A Zone B Zone C Zone D Main Floor 58 0 98 0 Upper Floor 59 0 99 0 Main Floor Diaphragm Shear = 2565 lbs Upper Floor Diaphragm Shear = 2600 lbs Roof Diaphragm Shear = 1447 lbs Wind Distribution To Shearwall Lines MAIN FLOOR UPPER FLOOR ROOF Tributary Line Shear Tributary Line Shear Tributary Line Shear Wall Line Diaphragm (Ibs) Diaphragm (Ibs) Diaphragm (Ibs) Width (ft) Width (ft) Width (ft) 1 8 1283 8 1300 8 723 2 8 1283 8 1300 8 723 E= 16 2565 16 2600 16 1447 g *-- 1 4,..0 ,.\ 9...... Harper Houf Peterson Righellis Pg #. Longitudinal Seismic Line Shear Distribution Seismic Design Category = D Occupancy Category = II Site Class = D S1 = 0.34 Ss = 0.94 Importance Factor = 1.00 Table 11.5 -1, ASCE 7 -05 Structural System, R = 6.5 Table 12.2 -1, ASCE 7 -05 Ct= 0.020 Other Fa = 1.12 Fv = 1.72 Mean Roof Height, H (ft) = 32 Period (T = 0.27 Equ. 12.8 -7, ASCE 7 -05 k = 1.00 12.8.3, ASCE 7 -05 SMS 1.06 Equ. 11.4 -1, ASCE 7 -05 SM1= 0.58 Equ. 11.4 -2, ASCE 7 -05 S 0.71 Equ. 11.4 -3, ASCE 7 -05 S 0.39 Equ. 11.4 -4, ASCE 7 -05 Cs = 0.11 Equ. 12.8 -2, ASCE 7 -05 Csmin = 0.01 Equ. 12.8 -5 & 6, ASCE 7 -05 Csmax = 0.22 Equ. 12.8 -3, ASCE 7 -05 Base Shear coefficient, v = 0.076 Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height (ft) = 8 Floor 3 Diaphragm Height (ft) = 18 Roof Diaphragm Height (ft) = 32 Floor 2 Wt (lb)= 7865 Floor 3 Wt (lb)= 7800 Roof Wt (lb) = 12566 Wall Wt (Ib) = 35496 Trib. Floor 2 Diaphragm Wt (Ib) = 22063 Trib. Floor 3 Diaphragm Wt (lb) = 21998 Trib. Roof Diaphragm Wt (Ib) = 19665 Vertical Dist of Seismic Forces % total of base shear Rho Check to Shearwalls (Ibs) 1Cumulative to shearwalls Recgd? Vfloor 2 (Ib) = 711 100.0% Yes Vfloor 3 (Ib) = 1595 85.3% Yes V (lb) = 2534 52.4% Yes Shear Distribution To Wall Lines Wall Line Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line Roof Line Floor 2 Floor 3 Roof Shear Shear Shear sq ft sq ft sq ft lbs lbs lbs 1 275 270 360 323 718 1220 2 330 330 388 388 877 1315 Sum 605 600 748 711 1595 2534 • Total Base Shear* = ( 4840 LB *Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. E-b,"b Harper Houf Peterson Righellis Pg #: 1 . • Shearwall Analysis B ased on the ASCE 7 -05 Transvere Shearwalls Line Load Controlled By: Wind Shear H L Wall H/L Line Load Line Load Line Load Dead V Panel Shear Panel Mo MR Uplift Panel Lgth. From 2nd Fir. From 3rd Flr: From Roof Load Sides Factor Type T (ft) (ft) (ft) . . • ht k , ht . k ht k (klf) (plf) (ft -k) • (ft -k) (k) 101 8 "5.25 5.25 1.52 OK 8.00 2:28 18.00 3.14 27.00 2.77 • 1560 Double ' 1.40 VIII 102 8. 3.88 3.88 2.06. OK 8.00 2.80 8.00 0.00 . 723 Single 1.40 IV 103 8 4.58 8.58 1.75 OK 8.00 2.22' ' 8.00 3.14 8.00 2.77 947 Double 1.40 VI • 104 8 4.00 8.58 2.00 OK 8.00 2.22 8.00 3.14 8.00 2.77 - 947 Double 1.40 VI 107 8 4.58 13:08 1.75 OK 8.00 2.28 18.00 3.14 27.00 2.77 626 Single 1.40 - III 108 8 8.50 13.08 0.94 OK 8.00 2.28 18.00 3.14 27.00 2.77 626 Single 1.40 III' . 109 8 3.88 3.88 2.06 OK 8.00 2.80 - 723 Single 1.40 _ IV 110 8 1.25 ' 4.50' '6:40 "'` . 8.00' 2.22 8.00 3.14 8.00 2.77 - 1807 Double 1.40 NG 111 8 2.00 4.50 4.00 8.00 2.22 8.00 3.14 8.00 2.77 1807 Double 1.40 . NG 112 8 1.25 4.50 6.40 . . 8.00 2.22 8.00 3.14 8.00 2.7.7 1807 Double 1.40 . NG 201 9 6.79 9.79 1.33 OK 9.00 3.14 18.00 2.77 604 Single 1.40 Ill 202 9 3.00 .9.79 3.00 OK 9.00 3.14 18.00 2.77 604 Single 1.40 III 203 9 .5.00 5.00 1.80 OK 9.00 _ 3.14 _ 18.00 . 2.77 1183 Double 1.40 VII • 204 Not Used 205 Not Used 206 Not Used ' . ' 301 8 6.88 10.08 1.16 OK 8.00 2.77 275 Single 1.40 I 302 8 3.21 10.08 2.49 OK 8.00 2.77 275 Single 1.40 I .. 303 8 5.00 10.00 1.60 OK 8.00 2.77 277 - Single 1.40 I . 304 8 2.50 10.00 3.20 OK 8.00 2.77 277 Single 1.40 I 305 _ 8 2.50 10.00 3.20 OK 8.00 2.77 277 Single 1.40 1 • Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load / Total L Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load * L * 0.5 * (.6 wind or .9 seismic) . Uplift T = (Mo -Mr) / (L - 6 in) g :._ Lk Harper,Houf Peterson, Righellis rg 7 ' , - - Shearw' alfAnalvsis '._ . _ _ -. ' ' „_ , . , -,_ . ' " . _ _ ._ .. ,. . .. . . ,. Based on the ASCE 7 -05 - Fransvere Shearwalls - Line Load Controlled By: ' Seismic , - Shear H , L Wall H/L • Line Load Line Load Line Load Dead V Rho•V ' %Story;, ;.'# - i. Panel . Shear Panel ' M ' M Uplift Panel Lgth. From 2nd Flr. ' From 3rd Flr. From Roof Load - ' Strength -Bays Sides Factor Type • T (ft) (ft) (ft) I ht k ht k ht k (klt) (PIO (plf); ,. ` (ft k) (ft k) (k) 101 , .8 . 5.25 • 5.25 1.52 OK ' ,8.00 0.15 18.00 0.80 27.00 - 1:26 • ' 419. '- 545 0.30 - 1•.31 Single : 1.00 IV ' 102 ' 8 : 3.88 3.88 2.06 ' OK 8.00 0.33 8.00 0.00 _ 0.00 .' - . '. 85 111 0.22' 0.97 Single 0.97 , ' I ., • ' • 103 t 8 •4.58 . 8.58 1.75 OK 8.00 0.23 8.00 0.80 8.00 1.28: 269 ; 350', 0.26 .1.15 Single 1.00 II -- 104 _ 8 4.00 8.58 2.00 OK 8.00 0.23 _' 8.00 0.80 8.00 1.28 ' 269' 350 -0:23 ' :1.00 • Single 1.00 II . , 107, 8 4.58 13.08 1.75 OK 8.00 0.15 18.00 0.80 27.00 1.26 'r 168' 219 0`.26 , .1.15 ' -Single 1.00 I - 108 8 8.50 13.08' 0.94 OK 8.00 0.15 18.00 0.80 27.00 1'.26- '_168 219 ': NA - ` '2.13 Single 1.00 I . .. - 109 8 -3.88 3.88 2.06 OK 8.00 0.33 0.00 '85 Ill 0.22 0.97 Single - 0.97 1 . 110 8 1.25 4.50 6.40 8.00 0.23 8.00 0.80 8.00 1.28 513 667 0.07 0.31 Double 0.31 NG • 111 8 - -2.00 4.50 4.00 8.00 0.23 8.00 0.80 8.00 1.28 513 667 0.11 0.50 Double 0.50 NG • 112 8 1.25 4.50 6.40 8.00 0.23 8.00 0.80 8.00 1.28 513 667 ' 0.07 0 -31 Double 0.31 NG 201 -9 6.79 9.79 1.33 OK 9.00 0.28 18.00 1.26 157 205 0.46 1.51 Single 1.00 I - ' ' ,. - 202 9 3.00 9.79 3.00 OK. . - 9.00 0.28 18.00 1.26 157 205 0.20 - 0.67 Single . 0.67 II , „ - ' 203 9 - -5.00 5.00 1.80 . OK - • 9.00 _ 0.55 18.00_ 1.28 366 476 0.34 1.11 Single 1.00 IV • . 204 _ Not Used , . _ ' 205 ' - - - . Not Used ' , - - ' - - - ' _ , . . - 206 .. . - Not Used . - , . - . - - 301 8 6.88 10.08 1.16 oK - - - - 8.00 1.26' - 125 162 0.34- - 1.72 - Single 1.00 1 - - - - 302 - 8- . 3.21' 10.08 2.49 oi:= •- - • • _ , _ . . _ 8.00 1.26 . 125. .,',162- 0.16._ .. 0:80 - . Single 0.80,. 1' . . - - . 303 . _ 8 . . 5.00 .10.00 1.60 - oK • . ' . . - ' 8.00 1.28 128 166 - 0.25 1.25 • ' Single , 1.00 1 . 304 - 8 2.50 10.00 3.20 OK 8.00 , 1.28' _ ' 128 .. 166 0.12 -. -0.63 ' Single 0.63 II . -- 305 ' 8 2.50 10.00 3.20 OK - • ' _ . 8.00 1.28 - - 128 , 166, 0.12. - 0.63 _ Single' 0.63 II '. Rho'Calculation - • - Does the I st floor shearwalls besiat more Mari 35% of the total transverse base shear? - - Yes • , ' Does the 2nd Floor sheatwalls'resist more than 35% of the total transverse base shear? ' ' • Yes ' • Does the 3rd floor shearwalls resist more than 35% of total transverse base shear? . Yes ' . .. . _ , . . - • • > , . . Total 1st Floor Wall Length = - 17.7i ' Total # .lsl'Floor Bays = - -cis • ' Are 2 bays minimum present along each wall line? No ' - I st Floor Rho = 13 • . Total 2nd Floor W all Length = la ' , - • Total # 2nd Floor Bays = 3 • . ' .. . . Are 2 bays minimum present along each wall line? No , 2nd Floor Rho = 1-3 ' 3„ • , I , Total 3rd Floor Wall Length= 90.05 • Total # 3rd Floor Bays = s - Are 2 bays minimum present along each wall line? Yes 3rd Floor Rho = ' 13 Spreadsheet Column Definitions & Formulas - - L = Shear Panel Length . H =.Shear Panel Height , Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check . V (Panel Shear) = Sum of Line Load!Rho / Total L ' % Story Strength = L / Total Story L' (Required for walls with H/L > 1.0; for use in Rho check) # Bays =2•L /H . Shear Factor = Adjustment For H/L > 2:1 - Mo (Overturning Moment) = Wall Shear • Shear Application ht - Mr (Resisting Moment) = Dead Load *1. 0.5 • (.6 wind or .9 seismic) . • Uplift T = (Mo-Mr) / (L - 6 in) • ' • • Harper Houf Peterson Righellis Pg #: Shearwall Analysis Based on the ASCE 7 -05 Longitudinal Shearwalls Line Load Controlled By: Wind Shear H L Wall H/L Line Load Line Load Line Load Dead V Panel Shear Panel Mo MR Uplift Panel Lgth. From 2nd FIr. From 3rd Flr. From Roof Load Sides Factor Type T (ft) (ft) (ft) ht k ht k ht k (kit) (pit) (ft -k) (ft -k) (k) 105 8 12.75 12.75 0.63 OK 10.00 k 1.28 18.00 1.30 27.00 0.72 1.13 259 Single 1.40 I 55.75 92.01 0.04 106 8 12.75 12.75 0.63 OK 10.00 1.28 18.00 1.30 27.00 0.72 1.13 259 Single 1.40 I 55.75 92.01 0.04 207 9 11.50 11.50 0.78 ox _ 9.00 1.30 18.00 0.72 0.75 176 Single 1.40 I 24.71 49.73 -0.47 208 9 11.50 11.50 0.78 ox 9.00 1.30 18.00 0.72 0.75 176 Single 1.40 I 24.71 49.73 -0.47 306 8 10.00 10.00 0.80 ox 8.00 0.72 0.29 72 Single 1.40 I 5.78 14.40 -0.30 307 8 10.00 10.00 0.80 OK 8.00 0.72 0.29 72 Single 1.40 I 5.78 14.40 -0.30 Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load / Total L Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load * L * 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) 8 .....Lue, Harper Houf Peterson Righellis , Pg #: • Shearwall Anal .. ` - - ' - ' ' Based on the ASCE 7 -05 Longitudinal Shearwalls Line Load Controlled By: Seismic . Shear H L Wall H/L Line Load Line Load • Line Load Dead V - Rlio•V %Story. •#, " Panel Shear Panel M. MR Uplift Panel - ' • ' Lgth. From 2nd Mi. From 3rd Fir: 'From Roof Load - , Strength "Bays Sides - Factor Type T (ft) (ft) (ft) ' ' ht k - ht ' k : ht . "k •• (MO (plf) . (pH) ' (ft - k) (ft (k) 105 . 8 12.75 12.75 0.63- OK 10:00 0.32 18.00 0.72' 27.00 '1.22- 1.19 177'- '•177 . NA.- -•3.19 Single - 1.00'. I 49.09 96.89 -0.74 , 106 - 8. 12.75 12.75 0.63 OK ' 10.00 0.39 18.00 0.88 27.00 1.32 1.19 _. 202 202 NA 3.19 Single' 1.00 ' 1 . 55.17 96.89 -0.24 I 207 9 11.50 11.50 0.78 OK 9.00 0.72 18.00 1.22 0.81' 169 169 • . • NA ' 2.56.. I. ' Single 1.00 1 ' . 28.42. 53.69. -0.34 208 9 11.50 11.50 0.78 OK 9.00 0.88 18.00 1.32' 0.81 191 191 ' NA ' "2.56 Single 1.00 1' ' 31':56 53.69 -0.06 . , I ' 306 8 10.00 10.00 0.80 OK 8.00 1.22 0.35 ■ 122 122 NA. 2.50 Single 1.00 1 9.76 17.40 -0.07. 307 8 - 10.00 10.00 0.80 OK I 8.00 1.22 0.35 .122.- . 122- NA 2.50 ! Single 1.00 1 ' 9.76' 1 17.40 I -0.07 Rho Calculation ' ' Does the 1st Floor shearwalls resist more than 35% of the total longitudinal base shear? Yes - • . Does the 2nd floor shearwalls'resist more than 35% of the' total longitudinal base shear? - - Yes -. • Does the 3rd floor shearwalls resist more than 35% of the total longitudinal base shear? Yes ' ' Total 1st Floor Wall Length = zsso Total # 1st Floor Bays = 6.8 Are 2 bays minimum present along each wall line? Yes 1st Floor Rho = 1.0 Total 2nd Floor Wall Length = 23.00 Total if 2nd Floor Bays = s Are 2 bays minimum present along each wall line? Yes 2nd Floor Rho = t.o Total 3rd Floor Wall Length = zo.00 Total if 3rd Floor Bays = 5 Are 2 bays minimum present along each wall line? Yes, - 3rd Floor Rho = 1.0 Spreadsheet Column Definitions & Formulas L = Shear Panel Length . H = Shear Panel Height , Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check • V (Panel Shear) = Sum of Line Load•Rho / Total L Vo Story Strength = L / Total Story L (Required for walls with H/L > 1.0, for use in Rho check) , • # Bays = 2•UH Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear • Shear Application ht Mr (Resisting,Moment) = Dead Load • L' • 0.5 • (.6 wind or .9 seismic) . Uplift T = (Mo-Mr) / (L - 6 in) • • • - •••...„.:', Harper Houf Peterson Righellis Pg #: SHEAR WALL SUMMARY' Transvere Shearwalls Panel Wall Shear Wall Type Good For V (pU) (p 101 1560 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 2/12 1667 102 723 1/2" APA Rated Plyw'd w/ 8d Nails @ 2/12 833 103 947 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 990 104 947 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 990 107 626 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 638 108 626 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 638 109 723 1/2" APA Rated Plyw'd w/ 8d Nails @ 2/12 833 110 Simpson Strongwall 111 Simpson Strongwall 112 Simpson Strongwall 201 604 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 638 202 604 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 638 203 1183 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 1276 204 Not Used 205 Not Used 206 Not Used 301 275 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 302 275 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 303 277 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 304 277 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 339 305 277 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 339 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design loads. • B Harper Houf Peterson Righellis Pg #: SHEAR WALL SUMMARY' Longitudinal Shearwalls Panel Wall Shear Wall Type Good For Uplift Simpson Holdown Good For V (pH) (PM 1 (lb) OW 105 259 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 44 Simpson None _ 0 106 259 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 44 , Simpson None 0 207 176 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 -345 Simpson None - 0 208 191 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 242 -59._ Simpson None 0 306 122 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 242 -72 : Simpson None 0 307 122 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 242 -72 Simpson None 0 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design loads. • 8 -Ua Transverse Wind Uplift Design Unit B Shear H Joist L Wall Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total Total Panel Height Lgth. From 2nd From 3rd From Wall Load (not Point Point ning Moment Moment Floor Shear @ Floor Shear @ Stacking @ Stacking From From Uplift Uplift Flr, Flr. Roof Shear including Load Load Momen @ Left @ Right Left Right Left Side of @ Right Wall Wall @ Left @ floors @ Left @ t House Side of Above Above Right above if Right House @ Left @ walls Right stack) (ft) (ft) (ft) (ft) k k k k pif klf k k kft kft kft k k k k k k 101 8 1.1667 5.25 5.25 2.28 3.14 2.77 8.19 1560 0.1 0.8 0.208 72.42 5.58 2.47 14.54 14.93 14.54 ' 14:93 102 8 1.1667 3.88 3.88 2.8 2.8 722 0.092 2.432 22.40 10.13 0.69 4.83 6.50 4.83 -' 6.50 103 8 1.1667 4.58 8.58 2.22 3.14 2.77 8.13 948 0.1 0.078 0.078 38.40 1.41 1.41 9.20 9.20 203 R -12.12 -2.91 9:20 104 8 1.1667 4 8.58 2.22 3.14 2.77 8.13 948 0.234 0.1 I7 1 ,632 33.54 2.34 8.40 9.18 8.14 9.18 8.14 107 8 1.1667 . 4.58 , 13.08 2.28 3.14 2.77 8.19 626 0.1 0.192 0.078 25.36 1.93 1.41 5.93 6.01 201 L 201 R 6.71 6.71 12.65 • 12.72 108 8 1.1667 8.5 13.08 2.28 3.14 2.77 8.19 626 0.1 0.078 0.384 47.06 4.28 6.88 5.56 5.37 202L 202R 6.77 7.24 12.33 12.60 110 8 1.1667 1.25 4.5 2.22 3.14 2.77 8.13 1807 0.1 0.384 0.078 18.07 0.56 0.18 23.00 23.30 203L 12.13 35.,13 23.30 :111 8 1:1667 2 ,4.5 2.22 3.14 2.77 8.13 1807 0.1 0.078 0.208 28.91 0.36 0.62 18.87 18.76 203R -12.12 - _ ,6:75 18.76 12 - 8 ' 1.1667 1.25 4.5 2.22 3.14 2.77 8.13 1807 0:1 0.208 1.424 18.07 0.34 1.86 23.17 21.99 _ 23.17 21.99 .. 201 9 1.1667 6.79 9.79 3.14 2.77 5.91 604 0.172 0.848 0.156 . 39.13 9.72 5:02 - 4.90 5.32 301 L 301 R - 1.45 1.40 - 6.35 - .6:71 202 9 1.1667 3 .9.79 3.14 2.77 5.91 .604 • 0.172 0.848 0:156 17.29 3.32 1.24 5.10 5.51 3021 • - 302r , 1.67 • 1.72 -6:77 ". 7.24 203 _9 1.1667 5 5 3.14 2.77 5.91 - 1182 0.172 0.848 0.385 56.42 6.39 4.08 10.52 • 10.80 303L 303R A.61 , 1.32 . 1213 - 12.12 301 8 6.88 10.09 2.77 2.77 275 0.252 0.384 0.468 15.11 - 8.61 9.18 - 1.45 1.40 _ . . -.1.45 - .1-.40 302 8 . . 3.21 10.09 2.77 2.77 275 0.252 0.468 0.384 7.05 2.80 2.53 1.67 1.72 1.67 1.72 _ 303 8 5 10 2.77 2.77 277 0.252 0.384 0.858 .1 1.08 5.07 7.44 _ 1.61 1.32 - ' -1.61 -- -1 -.32 304 - 8 2.5 10 2.77 2.77 277 0.112 0.192 5.54 0.83 0.35 2.02 2.13 2.02 ' -2.13 305 8 - 2.5 10 2.77 2.77 277 0.1'12 0.384 5.54 0.35 1.31 2.13 1.90 2,13 ' ;1.90 Spreadsheet Column :Definitions'& Formulas Q L = Shear Panel Length H Shear Panel Height . Wall Length = Sum of Shear Panels Lengths in Shear Line V (Panel Shear) = Sum of Line Load / Total L - Mo (Overtuming Moment) '= Wall Shear * Shear Application ht �" Mr (Resisting'Moment) ='Dead Load * 0 *'0.5 * (.6 wind or .9 seismic) " Uplift ,T = (Mo -Mr) / (L - 6 in) • Transverse Seismic Uplift Design Unit B Shear H Joist L Wall Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total Total Panel Height Lgth. From 2nd From 3rd From Wall Load (not Point Point ping Moment Moment Floor Shear @ Floor Shear @ Stacking @ Stacking From From Uplift Uplift Flr. FIr. Roof Shear including Load Load Momen @ Left @ Right Left Right Left Side of @ Right Wall Wall @ Left @ floors @ Left @ t House Side of Above Above Right above if Right House @ Left @ walls Right stack) (ft) (ft) (ft) (ft) k k k k plf klf k k kft kft kft k k k k k k 101 8 1.1667 5.25 5.25 0.148 0.795 1.257 2.2 419 0.1 0.8 0.208 19.99 5.58 2.47 3.15 3.74 3.15 3.74 102 8 1.1667 3.88 3.88 0.331 0.331 85 0.092 2.432 0 2.65 10.13 0.69 -1.91 0.60 -1.91 0.60 103 8 1.1667 4.58 8.58 0.231 0.8 1.277 2.308 269 0.1 0.078 0.078 11.15 1.41 1.41 2.42 2.42 203 R -2.99 -0.56 2.42 104 8 1.1667 4.00 8.58 0.231 0.8 1.277 2.308 269 0.234 0.117 1,632 9.74 2.34 8.40 2.18 0.62 2.18 0.62 107 8 1.1667 4.58 13.08 0.148 0.795 1.257 2.2 168 0.1 0.192 0.078 7.00 1.93 1.41 1.29 1.41 201L 201 (part) 1.17 0.34 2.46 1.75 108 8 1.1667 8.50 13.08 0.148 0.795 1.257 2.2 168 0.1 0.078 0.384 12.99 4.28 6.88 1.14 0.85 202L 202R 0.33 1.35 1.47 2.20 110 8 1.1667 1.25 4.50 0.231 0.8 1.277 2.308 513 0.1 0.384 0.078 5.80 0.56 0.18 6.88 7.32 203L 3.00 9.87 7.32 I I I 8 1.1667 2.00 4.50 0.231 0.8 1.277 2.308 513 0.1 0.078 0.208 9.28 0.36 0.62 5.89 5.74 203R, 304L -2.99 2.91 5.74 112 8 1.1667 1.25 4.50 0.231 0.8 1.277 2.308 513 0.1 0.208 1.424 5.80 0.34 1.86 7.13 5.36 7.13 5.36 201 9 1.1667 6.79 9.79 0.795 1.257 2.052 210 0.172 0.848 0.156 13.83 9.72 5.02 0.75 1.37 301L 301R -0.13 -0.20 0.62 1.17 202 9 1.1667 3.00 9.79 0.795 1.257 2.052 210 0.172 0.848 0.156 6.11 3.32 1.24 1.04 1.66 3021 302r 0.11 -0.32 1.15 1.35 203 9 1.1667 5.00 5.00 0.8 1.297 2.077 415 0.172 0.848 0.385 20.18 6.39 4.08 2.89 3.30 303L 303R 0.11 -0.32 3.00 2.99 301 8 6.88 10.09 1.257 1.257 125 0.252 0.384 0.468 6.86 8.61 9.18 -0.13 -0.20 -0.13 -0.20 302 8 3.21 10.09 1.257 1.257 125 0.252 0.468 0.384 3.20 2.80 2.53 0.21 0.29 0.21 0.29 303 8 5.00 10.00 1.277 1.277 128 0.252 0.384 0.858 5.11 5.07 7.44 0.11 -0.32 0.11 -0.32 304 8 2.50 10.00 1.277 1.277 128 0.112 0.192 0 2.55 0.83 0.35 0.72 0.90 0.72 0.90 305 8 2.50 10.00 1.277 1.277 128 0.112 0 0.384 2.55 0.35 1.31 0.90 0.55 0.90 0.55 Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line V (Panel Shear) = Sum of Line Load / Total L Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load * L * 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) TRANSVERSE UPLIFT CALCULATIONS - SUMMARY UNIT b Shear Controlling Total Holdown Holdown Good Control Total Holdown Good For Panel Case Uplift @ or Strap Type@ Left For ling Uplift Type@ Left Left Case @ Right k Simpson k k Simpson k 101 Wind 14.54 Holdown HD12 w DF 15.51 Wind 14.93 HD12 w DF 15.51 102 Wind 4.83 Holdown HDQ8 w 3HF 6.65 Wind 6.50 HDQ8 w 3HF 6.65 103 Seismic -0.56 Holdown HDQ8 w DF 9.23 Wind 9.20 HDQ8 w DF 9.23 • 104 Wind 9.18 Holdown HDQ8 w DF 9.23 Wind 8.14 HDQ8 w DF 9.23 107 Wind 12.65 Holdown HDI2 w DF 15.51 Wind 12.72 HD12 w DF 15.51 108 Wind 12.33 Holdown HDUI4 14.93 Wind 12.60 HDU14 14.93 110 Wind 35.13 Holdown None 0.00 Wind 23.30 None 0.00 Ill Wind 6.75 Holdown None 0.00 Wind 18.76 None 0.00 112 Wind 23.17 Holdown None 0.00 Wind 21.99 None 0.00 201 Wind 6.35 Strap MST60x2 8.11 Wind 6.71 MST60x2 8.11 202 Wind 6.77 Strap MST60x2 8.11 Wind 7.24 MST60x2 8.11 203 Wind 12.13 Strap CMST12x2 18.43 Wind 12.12 CMSTI2x2 18.43 301 Wind 1.45 Strap MST48 2.88 Wind 1.40 MST48 2.88 302 Wind 1.67 Strap MST48 2.88 Wind 1.72 MST48 2.88 303 Wind 1.61 Strap MST48 2.88 Wind 1.32 MST48 2.88 304 Wind 2.02 Strap MST48 2.88 Wind 2.13 MST48 2.88 305 Wind _ 2.13 _Strap MST48 2.88_ Wind 1.90 MST48 2.88 M � J BY \ A A DATE: 3 \ L ^ o `O JOB NO Ct 1 v O c t D ., , OF PROJECT: RE: D\ - 1 ZtSUTtO K) Oc- 61- 1EFf9..._ 13R o .l 5T\F r►•lc,sS ❑ ❑ W SIC -,t.) Sr►EP19 _ $.asb . .ps C J Z F O w W Ax; a\ LooX \N R\- . Ito ; t ❑ (I.15)R19.SNCO.01S)t(2- x ((Ia,s'(oo,$) A-t2"})(oA4C _ 3 =0 k ys DL o j (A.zs'X(14s�(o.vz)) s a (Ct 9,s7(o.°Ls>1.90 =- 1.3t4 1L 5L Total 3.o14-k -;�S \MALL \1\ tii 1 ( kg,$)(o,oG`)(o. = 5rt) (1 t (►.$)(6,o\s1(12)+ (a1Q.Xo.o►si1t►2.)( Z fi(ts)(o.01"?.. 2 1 Z . t ( "12.)(aot3)(Z1?..)(z.)---: a.at v,;ps oL 0 F- a (tq.5 - )(o , S - ) fi (tq.sXo,oZSY = a.($ ■ lo ps 51_ 0 (``(210.0 _ 0.+-4LI Vps LL T()a\ 5,333 2 0 " Od \\ 1\ 2 . ❑ rlg.5>(o.01 s1C ° I2)i - (z- )(o,0 .)(2. r0 A ( "11)(o /2..(Z.) = d , -a,5 tA, -- D� & o (\ ) ° I = a.a3 v-,95 s Li. Z ❑ o ( "0(o.o o (2), = 0.44. 1e-I ps LL 0 1 Tv1G1 = S.1Z"1 7 k 1 5 GGvNes tZe1 5.1i (Fr-e s s W ALL T'YN. Pr11Uv h \e Shtar OciFT k_shextIr P+ ?..R = * 1 v*. 1\o SSw \s'x"t 15(00# 0,35 531.eb O. 1 83 11 t 5Sw24 ),'-+ 5 0.-1 \ b t17.3k1- 0- c I !J I' 112 Ssw 1S x 019 # 0.35 531 1* 041)3 a°_Itt 1,o _v• 1z12... \i\J PI LL DDk_, Sh.r oo 6 11 o -,5 '4" G \'r 30 # .: \11 5 y aS- ( 51-'30 # ; a . � 1 t2 \51 < \S�o i L -. s i O . / i = f:e xu iv 111 = Sswa1x" : wo.■\ allow shear A(i E t 4 r -sS Qe l S �1I> n i s V x \►o 0. 3` p a t$ 1 '�, bo 51 W,-}h, . sip to 4- 4 0 - ;4 13c?S 0,SSfn 4L as. # =01_ 112 Az 60#" 0,3'(, 1 0 aa1 tai I. -4- • g L-1a#'3 1 ❑ ❑ • v•. 10 1 '' 'oa'• . • ._- Li_ :CS:_ :a3aeTZs• 47 It I , • ti t 1 °1/1.7 • _- ' • 110 \ 1 2 n 0 .02 .inokNo .ms• Jrct - 5 • WI 0 • - . 6 • . i '' 20 .1 _ a0a i , j • a if,..' .. .. • 111 CO 1 .. . . .. , _ 4 ... .... . . . _ . . . _ F.:, .. _.... . _ •..:. • . . �!: . . . ' [-- -, . . . ,. . • .. .., • , ,:......2. ''.....,...... . r ff , - • I. , 6 ar_a._ i I -. u "rte - I� . . 1 �i ; • M - ■ . { o . 1 aa1 L aos'' aoe - _ . NoT uSC.V, - . , _ti'U �_-i -- .� aw.a „pc a..;.:: =Sw .L'Woixn . . E- - UNIT 3 (t...p • L 'J E 1. - LA' /o BY A l DATE. '. 1 —` JOB NO.. IC n PROJECT: . 9 .° 0 v a } -8}/ RE: Des ��rN og. r∎ m i blOc.'i- `rt 5'ra If 5 ❑ _ opTION. Z C i*Za D 2 IRIZ WIDTH ON) ri �� F.F. Iq -" 14 2 = 3o l t`J T = 9 9 � ; o P -PLr� s l8'- 5 `' ❑ , MU�c 5;1I atoPl:.�i; , _±C -. _ Q o W 1s`-1D" ti U z . DE 5 1 - CL , ..t.) ! :. P(essuc e z ' - 040. Crt p+sC o y c- F. 9 U �'?� ,3-1,- \, 9 1 : : `e' .. :'r c- '\ _ s w - i TOP ?LAI - 6 '- I le 0 2 o V ---- L t. I, V 1 , ' I') ' i-zmcr Yz =iLI cV 0` -0" m °0 o 1- V rr a:x = t y-a " _ V� S M s is - 4c - . x 0- !p ( t. . .a J� 5•i 1 ; 1 — 6 c! i 2 . 4 / '- / 1-3.S.--., 5 = F : = (Bs )(t.�� {` s ) o ,.‘s ) = a1-i;o.;)_. ,Li 1--2_ r g _„ - _ iyppsi- fs',, _ , a 0 ;_-il 7 qtr . 0 - 7 : \• 1 0 6( 2_ 8 ...._ L -2 ?..). • 1 /// ��� • ^ I kO Joe No. C K i'"� 1 1 v c r DATE 1 C/_ ( C v „ BY. `1 V PROJECT: RE: r p I 101,i 2 7 El U; j (r ri, i=: 21.3i) F'_Jotom. o w VU \\ 00'f1 j 3 ' t o , i.c.e_ 'P D D T o12, ,- W t c \0 V..,.?- C 0 C4 41-V = V) \-0' ■ U O w U Z \ 'i tJJ!m \d. pr'°s.T+=E- _ -ao.Q?9 p, Z LOU d_ c-c, \0::\ \ 1,_ \ c.. .v... - do ,, 0 ii U - 'I' Z T ff t- I R. f 3f �l.S" • j �` ' 0.1.5' Er z re.C+x = It.o Sta 4 F • W f 3 � o 3 r I X$ �. t t 1� ' 1 1' ��o 1-1._ .- 3 .� . � ; _ ! _ . + y 2 } QS 1K) . A 3,a „ r ' .1 1 Q”. U - a —_ a I „ C. ,.Y a t,) to = =Ce=_ Jo = -,.as t. «`t,7(0,51S)+ - b.? ,, + a; c (:), j }-i- S .c +0'° ,,69... , f o i 4-- s,- 4- r.; f 0 i ; 4.13 \N Tb _ 1t- = tqlkotl #C k'i►-. 6:4L - 5) ._.. 1 ( 40R - p.b L - 4 t-i.i"3S r \'1 S _ b = (5 So p5, J(1.0(1A)(t.Slt.o (t.o 1i- . a 34-(.,.. \D S L fi b ` = (a3aS.) z Xt,C)A t,6)(i,(-) t, 0)(),0) E - qot9:; P'L 8 - L2 . WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B - Front Load WoodWorks® Sizer 7.1 June 28, 2010 10:52:50 COMPANY I PROJECT RESULTS by GROUP - NDS 2005 SUGGESTED SECTIONS by GROUP for LEVEL 4 - ROOF ss assaaa- -ass sss 9csass- sss�s.a= Met Trusses Not designed by request (2) 2x8 Lumber n -ply D.Fir-L No.2 1 - 2x8 By Others Not designed by request (2) 2x10 Lumber n -ply D.Fir -L No.2 2- 2x10 (2) 2x6 Lumber n -ply Hem -Fir No.2 2- 206 (3) 2x6 Lumber n-ply Hem -Fir No.2 3- 2x6 • (2) 2x4 Lumber n -ply Hem -Fir No.2 2- 204 (3) 2x4 Lumber n-ply Hem -Fir No.2 3- 2x4 Typ Wall Lumber Stud Hem -Fir Stud 2x6 @16.0 Typ Wall 2x4 Lumber Stud Hem -Fir Stud 2x4 @16.0 SUGGESTED SECTIONS by GROUP for LEVEL 3 - FLOOR a === ==a = == =aaas�z__asssa by request r s' a= sass_ Met .st Not designed landing Lumber -soft D.Fir-L No.2 2x6 @16.0 4x6 Lumber-soft D.Fir-L No.2 4x6 (2) 2x8 Lumber n -ply D.Fir-L No.2 1- 2x8 1.75x14 LSL LSL 1.55E 2325Fb 1.75014 By Others Not designed by request By Others 2 Not designed by request (2) 2x10 Lumber n -ply D.Fir -L No.2 2- 2x10 (2) 2x6 Lumber n-ply Hem -Fir No.2 2- 2x6 (3) 2x6 Lumber n -ply Hem -Fir No.2 3- 2x6 (2) 2x4 Lumber n -ply Hem -Fir No.2 3- 2x4 (3) 2x4 Lumber n -ply Hem -Fir No.2 3- 2x4 Typ Well Lumber Stud Hem -Fir Stud 2x6 @16.0 Typ Wall 2x4 Lumber Stud Hem -Fir Stud 2x4 @16.0 SUGGESTED SECTIONS by GROUP for LEVEL 2 - FLOOR "usse : : : : :____ emu: : Mnf Trusses Not designed by request deck joists Lumber -soft D.Fir -L No.2 200 @16.0 Mnf Jst Not designed by request 3.125014 LSL LSL 1.55E 2325Fb 3.5014 405 Lumber -soft D.Fir -L No.2 4x8 3.125x10.5 Glulam- Unbalan. West Species 24F -V4 DF 3.125x10.5 5.125x16.5 GL Glulam- Balanced West Species 20F -V7 DF 5.125x16.5 (2) 2x10 Lumber n -ply D.Fir-L No.2 2- 2x10 4012 Lumber -soft D.Flr-L No.2 4X12 3.125x141) LSL 1.55E 2325Fb 3.5x14 (2) 2x6 Lumber n -ply Hem -Fir No.2 3- 2x6 (3) 2x6 Lumber n -ply Hem -Fir No.2 3- 2x6 6x6 Timber -soft Hem -Fir No.2 6x6 (2) 2x4 Lumber n -ply Hem -Fir No.2 3- 2x4 (3) 2x4 Lumber n -ply Hem -Fir No.2 3- 2x4 Typ Wall Lumber Stud Hem -Fir Stud 2x6 @16.0 SUGGESTED SECTIONS by GROUP for LEVEL 1 - FLOOR rrr =- _z :ssa==: arra Fnd Not designed by request CRITICAL MEMBERS and DESIGN CRITERIA Group Member Criterion Analysis /Design Values deck joists j42 Bending azss :mars : :rr :r rrrr : : � Mnf Jot Mnf Jot Not designed by request landing j46 Bending 0.17 By Others 3 By Others Not designed by request 4x6 b25 Bending 0.87 (2) 208 b7 Bending 0.21 1.75x14 LSL 614 Bending 0.57 3.125014 LSL b21 Shear 0.41 408 b20 Bending 0.04 By Others By Others Not designed by request By Others 2 By Others Not designed by request 3.125010.5 b24 Deflection 0.83 5.125x16.5 GL 626 Bending 0.21 (2) 2x10 b15 Bending 0.93 4012 b22 Shear 0.16 3.1255141) b23 Deflection 0.09 Ftg Ftg Not designed by request (2) 2x6 c2 Axial 0.34 (3) 2x6 c64 Axial 0.59 606 c36 Axial 0.77 (2) 2x4 c25 Axial 0.35 (3) 2x4 c44 Axial 0.84 Typ Wall w15 Axial 0.28 Fnd Fnd Not designed by request Typ Wall 2x4 w40 Axial 0.33 = DESIGN NOTES: = :r :� ��� :� ...... 1. Please s- e r r a verify that the default deflection limits are appropriate foryourapplication. 2. DESIGN GROUP OCCURS ON MULTIPLE LEVELS: the lower level result is considered the final design and appears in the Materials List. 3. ROOF LIVE LOAD: treated as snow load with corresponding esponding duration factor. Add an empty roof level to bypass this interpretation. 4. BEARING: the designer is responsible for ensuring that adequate bearing is provided. 5. GLULAM: bxd a actual breadth x actual depth. 6. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 7. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. B. BUILT -UP BEAMS: it is assumed umed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. 9. SCL-BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 10. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. g t t, , WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B - Rear Load WoodWorks® Sizer 7.1 June 28, 2010 10:56:39 Concept b24Dde: Beam View Floor 2: 8' • • 49 6. _ 50 U4 40 -b 4 b IU6 'J - - -- -- - - -- -- '-- - -- - - WI 4a -b tULb . _ .. 4 WU b 43 -b tb - - "- - _. 41 -b __ .__ • ____ . _.__ .___ 4U-a - -- - .. - 3b-C) - -- - - --- -- --- - _ - ' --- - - y[ - 3b -b . - 34-0 '‘...1 33 -b ut - -- -- _ - ..3Z -0 bb GV -G 6J '- - - ' - - -. _ - ---" ---_. ..--- ' - - Lib -b b4 - - -- - -- - _ L/ -b bJ - - - -. -- -- -- - - - -- - . • -- L0 -0 0 _ - -- -'- - - - - _ .-• - - - -' - L4 tlU L3 -b H L - -- - - - - - LO -0 0 I 47 rb (n. _. _ _. _ .. ___ _. _ ___. ._.. _ ..- _- .. "._ _ Id - - ! ( _a /3 - - .. - - Ib 1 i - - - - .. „ 14 -a by - IL -0 00 .. _ - . -- - _ _ - - - .. .. -- 1 I -b G - _ 10-0 -" - - --- - - -- - -- '- - -U 03 04) - _ b21 -- - - - - - - - -_. - - - .. ._ - - - -- n . a3 a -b 3 G[, • -b6 - b26 -:: v_� - - - -- - - - bu . b20b22 b23 .. - - - - - - G._b.. - 13618.8 BCCCCCCCCiCCCCCCCCCCCCCCCICC DDDFDDD CDDD= DDDDDDCD`•DD EEE E EE EFEEEEE!EE'EEEEFEtEEEEL 0' 2' 4' 6' 8` 10' 12' 14' 16' 18' 20 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 43' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'67'8'9111 1: :1 t 11(112(2 222 2,i3.4 (4 4:4:44!4i 414 ±515 5 :5 :5 6 :6.6(6(6'6 6i7G7:7;r , 7 f7t7 7 -6 ' / -. eC2.■ WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B - Front Load WoodWorks® Sizer 7.1 June 28, 2010 10:04:32 Concept b24Dde : Beam View Floor 2: 8 ' I! • 1050 49' -6" 1V4 - 40 -b IUJO o f _O. IUL .. O-0 IUI, CIO -0 u I vu b T - : - . .. 44 -J 99 -- 4u -o V0 .. • - • -- 4L -O &f -- ' - - - - -. _ ._ _ -- - '- -- . 4 1 - 0 • VD 14 - - - - sty -0 9.1 V1 �, -0 :71 - .. .. - - - - - 3D-0 U 34 -D 6V 3.3 -0 - - - - - .J1.; -0 00 LU 0 04 . .- : Lti -O 33 _ L(b 0 1 LO -0 U ° .: -o , - 15 - - - .. _... _.__ - - --• - - -- .. _ .. . . .. __ !b !� -' - i - 7 I ., 10 ' /U - . _. .. _ .._ . . .. -- - - - - - - - - '- - - 14 0V 1 3 -0 C:S . _ _ _. .. - I2 -0 0I - : f -j Cb . -- IJ 03 - U -0 b .. b21. - i; -u JJ, l -b CL' 0 - :,v7 b20 = u b22 b 23 4 - £ b" U -0 EBIBEBCCCCCCCCICCCCCCCCCCCCCCC' CCCDDDDDD DD1CDDCDDDDDDDDDCD1DDDE ,EEEE`EEEFEEEEE.EEEEEEEEIEEEEZ V 0' 2' 4' 6' 8 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2 3'4'5'6'7'8'21t1 1 :1 :1 1'1:1 2( 222 . 4:4,4�4:4t4 5:5 6:6'.6 5- (•"1 - WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B - Front Load WoodWorks® Sizer 7.1 June 28, 2010 10:04:34 Co:c60ept Mode: Ccc59>mn View Floor 2: 8' 10050 _ - - -- - .. ... _ 4 9 -b i U4 J . - - _ ._ .. ... '- . . - . 41-0 I 11 5 2 40-0 U 40 -b 1U 1 _ - - ._. _ - uu c57 c1 c2 - c46 c58 44 -0 4J - 0 J9 _ - ■ 111 III 4G -0 `0 - 4 1 —0 '2/ - - - - . . _ --- --- -- - 4U — -- - -- -- - ..- - -- --- - -- Jt5 -0 ,. _ .. - -- - - .s 1 -b i.. - - - - - -- - ... 60 0 yL J5 -b •,-..11. .. ---- --- - - - - - -- - - _ -- -- - --- - --- -- X4-0 �'U JJ -0 C47- -- -' -- - - - - ,5 1 -b O I. - - - -- JU - 00 - G`9-0 00 c'4 - - ti —0 bJ a .. - - - -- - --- - "- - -- - - - c0 -0 L 4 -l- 0ti c - - - - - - -- [J -a �' - 1] _ C49 _- _ - - -- - - - - - - -- - - -. _ - - - -- LL -O L1 -0 << CI c50 - C54 17 c68 . J U 0 t5 - 0 ' c52 - - - -c51-- - -- - - -- - -- • - - - o -b r1 ru . . I7 c7 C1 c56 _ _ _ _ 4 -0 J —0 J G -O o! lU -0 0` ._ - _ .. _ __ 04 � -0 3- - - - - - - - - - - - - ! -0 OJ 0 -b ° I) - - c36 - - - . . . . u -0 r,U - S G L 0 c39 _e� - - - . - - . BB!B BCCCCCCCCICCC CC CCCCCCCCCC1CCCDDDDDDDDtDDDCD DD D D CD!DDDE,E E E E EEEIEEE;EEEE EEEEEEEEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1 '2'3'4'5'67'8 910 1 :1 :1 t 1 "1 1'1 :2±2 22 4:4.4 /045i5 5: 5' 55.' 5(5 7:7:7 8 ..-- (AL\ . . WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B - Front Load Woodworks® Sizer 7.1 June 28, 2010 10:04:29 Concept Mode: Beam View Floor 3: 17' 105a ..... .. - .. 49' 1 0.5 y : -. 4r o 1L17 40 -1.5 43 -o t ® 4 L -U 41 AD . e: - .: . _.. : - - -- _. .- -- - -.. _ ..- -- -- -- -- _ - -. -- - -- _ . .5`;.) -0 1.1 O0 -O 1. .. -- --- - - -- - -- - - - - - _ - it -b �G - _ -- - - - J0 - b C: .54 --0 • 5 SJ - 023 -- ... ..... .... . .• __ - _ - - _.. - - - _ _ _. _- .. _ - .- - ..5Z -0 0 .il -b 0b - - - - - -- - ' - --- - _ .. - -- - - - - -- - _ - - - - -- 00 2sµ b12 , -- - ._ -- ... __ _ . . La a 6.5 - L/ -0 OL b8 Lb _b 0 I b25 [1 - - - - GO -b � 14 - -. _. rc; L -b L!- b / : i I -b �b. --- - -• . - - - -- . . . - _ -. - - - - L U -b f 0 RI - 0 i s b13 iii b ii ' b11.:. - IC /U _ .. . -- --- . ? I -- - - -- - - - - - _ _. .- - - - -- , 4-0 LJ - - .- _ ._ ,3-b a� . -- - _ - ILb .) - C1b_._. - . _ .-- - - - -- -- -' - - - .. -- - - - - - .. .. IU b 00 y -b baf - _ _ .- _ -- - - - _ _ - 6-b OJ - - f - -b - CL .. _ b -b . e_� b10 b9 4 • Cb U b BB \B BCCCCCCCCI CC CCCC CCCC CCICCCDDDDD DDDICDD CD DD DDDDDDEDIDDDE.E E E E EEEEEE.EEEE EEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70 72' 74' 7 6' 6'1'2'3'4'5'6'7'8'91(1 1,1:1 22: 222 (2 1213(3 4:4:4 - 4: 414315 5:53 :515 - 5151616 6'6:6.6:6(63(6(7 17 7:77 8.....6.15- , WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B - Front Load WoodWorks® Sizer 7.1 June 28, 2010 10:04:27 Concept Mode: Column View Floor 3: 17' -- - - -- 49' -6 46 -CI iu41 - - - -' —' - '- - - .- - _. - - 41 -0 'U4 0 i' 40 't, 1 11.1 1,, / 44 -n luu - ' c14 , � �c15 - ' - - �-- - - 43 h 9._ ® _ 4Z -0 :!d - - - c 1 -'J Vb . - -- - - J:1-0 • 6 . : -_ - - ._. - - -: - - - --- - 30-0 :?4 - - - - - J(-0 - - - - - - - ._ . -- - - - .. --- - .. JO -0 yL _ _ ... JD -b yU 33 -b do cy n -- - 04 • c25 c16 tn -n dJ 1 =1. 4 - C i - - -- -- - -- - L4 -u du c61. _ - - -- - ..s -b C7 C17. • - - - L E' -u r r • c43 43 - - -- - - - LU-b tb c23 • C IL' -n ! 4 _ c22 - 11 - - - • - - -. - i n _ Ti lb -b. • r4 . c24 c26 - ID -0 l t 14 0 Ili I:1 - - . .. - .. _ I 13 4- 0 cc _.. - - - - - - - . - II -n �/ - - - 'U - c _. `J - O OD b -n 0 J? - - - - n . - - - c45 : -' - c44 4 -n w c21 c20r19 08 4•-1.3 - EStE 8 8CCCCCCCC1CCC CCCCCCCCCC CCICCCDDDDDDDDIDDD CD DD'DDD DDDCDIDD DEEE E E EE EFEEE:EE,EEIEEEEEE1EEEEZ 0' 2' 4' 6' 8' 10' 12' 14 16' 18' 20' 22' 24' 23'' 28' 30' 32' 24' 36' 38' 40' 42` 44' 46' 48' 50' 32' 54' 56' 58' 60' 62' 6' 66' 68' 70' 72' 74' 76' 0'1'23'4'5'6'7'8'91(1 1; 11, 1! 1?1' 1 1122 222.22E222 :3 , 32(3'313!4(44:4:4.4!4:4 . 414 1 5 (55 '... 5 : 5,5 ! 5(5 ' ,5,566-3 ; 6 : 6,15 ! (= . 11.6-6 g 37177,7:7,7:7(77'-6 !' i gi .._e-ic, WOOdWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B - Front Load WoodWorks® Sizer 7.1 June 28, 2010 10:04:23 Concept Mode: Beam View Roof: 25' '1051 - .. - .,.. .._- - -- - -- - - - -- ........- -- - - . -- - - . - . - - -- - - - -- - . ..__. . _ _ • _. •c,_6" ' J� b15 a � -0 v u, -n - 7 , . - - - -. - .;ti .:.-,Z p - ..... - __ _ _ -0 t`v; .7,.-. ..- .. - - - - .. _ .- ... - - _. U_ b16 V ,L1 • _ - • a b27 ` , . (•,: �t< -, r .) = .. ty b IL _ ' . • - b18 • • . -, ESBtSEECCCCCCCCtCC-. CCC• C CCC: CCC O DID DDDDDD[DOD DE. EE=EEEEJEEDEEEEE5-EHEiEEEE7_ 0' 2 4' 0 0 1 Q' 12' 14 16' 1 22: . 2 5 2S' 30' 3: 2 38' 40' 42. 11' 46' ' 50 5, �� 54 566 30' 60i' ( 6 :-1h• 70' _ 7. ' 2 _ " - :111 - :2 - ;2:2 2:2 21 2« 3 _t3 3:3:4;4'4:4:44:4.e- .4 v -,_ '•_•4.,515 5 l� 1, 111. l� "c .G -_. i2 _ 't. ,, �'J;� f�.' F'f.:,-'',..,''"fp. , -• i Il : U j ..U1_. �'i(i {.���. .. ...., -t'�. 7.:?.".._ ,^iiaJ,.- ..0 :J:`J' �• , ' 7 '! /'`" WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B - Front Load WoodWorks® Sizer 7.1 June 28, 2010 10:04:25 Concept Mode: Column View Roof: 25' • - -- 49 -6.: U4 �" - - - - —' - - - '- -- -- - - - - - - 4r 0 U3, _ -. .-- - . _., _. u.. L uu - - c27 c28._- . as -b CS - _ .. ■ - - 4 I -0 -" -- -- _. .. - y b • • 3`J .b 30 -b fit- - i. _. ' „- _ .,. - - -_ .- 34 -'J b9 - - - ._ ._ -- -- - -- -- " .:.;2 -b a c29 - 3 I -b tSl SU 0 00 , ._ .. _ ._' - - - - '- - - - - - Ld- 03 2/ -0 . , _ _ .. Lo -0 Oi - . _ - _ _ . 1_4 -b -- - - - - L3-0 f 0 - .. - - - - - -- - - - ' -- - - LL-0 H - - - - -c6 .. - -- - - - - - - - LL- , -" - " --- --- - ' U -b /; c65 lb -b - - -" - - . I r -0 / .J - _ _ _ 10-0 fL- - -- - - - - - -- - - !0 -0 14 -0 fU._ - - - 13-0 7 - - I L b 03 - 1 I _ V/ I -b b _ -.. J V 4 00 ' _ _ _ 0 -b 0.3 2 _ - --- ' . ._. . U b I� c34 I c35' 0U. w ® - -- - - - - - •- - -•- - -- -- - - - -- -- -• 3 -b e e I - b V EE?'B.B BCCCCCCC MCC CCCCCCCCCCCC ICCCDDDDDDDDIDDDCD DD' DDDDDDCDS DDDEEEEEEEEiEEE :EE:EEIEEEEEE;EEEEZ 0' 2' 4' 5' 8' 10' 12' 14' 16' 18' 20 24' 26' 28' 30'32' 34' 36 38' 40' 42'44'46' 43' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4 5'6'7'8'510 1:1 :1 [ 1 :111 2:22-202 3.3:33:3;3' . "3;At4 4;4:4.4''4t4'4W5(5 s;5:555(55566:6 , 6'6t6'oi6S7(7717:7 , 7:7s.77'-6" ( 62...__ co\90 COMPANY PROJECT 4i WoodWorks° • SOFTWARE FOR WOOD D£5'1LN June 28, 2010 10:34 b1 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w27 Dead Partial UD 539.7 539.7 0.00 2.50 plf 2w27 Rf.Live Partial UD 493.7 493.7 0.00 2.50 plf 3 _ c14 Dead Point 1074 2.50 lbs 4 c14 Rf.Live Point 1601 2.50 lbs 5 j43 Dead Full UDL 47.7 plf 6 143 Live Full UDL 160.0 plf MAXIMUM RE :. - 1 . ig v • ''n ^ i s c , ;, _: �✓ ±; c, . v ti. - ._.. _ - - -�- 't: .:f..._ _ e ;, -a__�_ :vZ•a 'tr "� r: s: >. .F. :HF • � - w' `���� � " .` `� <'�i�,' f fi r. '�.. _ S� _ th.. . n- �..x , via S.. - ' -.� , •r .' - s, • �, - . +.r':a.'V:.�•+y.. sri', ,`a .. •a. •'r� "C.y. ,y r Yv f ,rd'e -:� .e�' , y , -` -, '' ''t` '` °• *• ,•'t y , ',i; _ w`i• , ,L_'- `.C; + "°, - 1 !;�•'�- '.�` %,'�"�v' -'•?�t +�x;^,u�'»'.•y,�'�"` `� � F . .i t " ` -` �''yfi' t 37� " x - -� _ r i . _ s r . �' ' ' ` e +� " «. ;1 .J ,.F „..;s.. , . ..:1 ;^.'a. �.+`�a ` •..-b.^ _r,� Y�. :` M 4: , i y' �Sa+S {� � �a'I4 :m:ia^x:,•.a <�i.. ��.• -• .••� r "�v�'�,'r'i y �r � � •'�.,� µ _w., ,:.i -•. .'a'r. ..±.- ( Ae..♦ .;c x I 1 " i•� , 4-Yia ... � �e . ., t " ' _s , .. r.1l.vco- .• : - �, - .,' "N,r'` :• r y ova: "'+�•� - �.l`' -`i » tA,` •r. •_<:1 =s'' " i. •i : 4 r ! - •_1 .. T " " t` .. ' u - .t}r . '�• • "j ��a . J3. ,ti `I r � ' tii nn._ . .. Pi •.:- '�t�-'( • _ ice:.. • - ,.L -.i:: 0' 3 Dead 1048 • 1539 Live 1227 2089 Total 2275 3627 Bearing: Load Comb #2 #2 Length 1.21 1.93 Lumber n -ply, D.Fir -L, No.2, 2x10 ", 2 -Plys Self- weight of 6.59 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv* = 127 Fv' = 207 fv * /Fv' = 0.62 Bending( +) fb = 581 Fb' = 1138 fb /Fb' = 0.51 Live Defl'n 0.01 = <L/999 0.10 = L/360 0.06 Total Defl'n 0.01 = <L/999 0.15 = L/240 _ 0.09 *The effect of point loads within a distance d of the support has been included as per NDS 3.4.3.1 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.15 1.00 1.00 1.000 1.100 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 3627, V design* = 2356 lbs Bending( +): LC #2 = D +L, M = 2073 lbs -ft Deflection: LC #2 = D +L EI= 158e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC - IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. x- COMPANY PROJECT WoodWorks SOFTWARE FOR WOOD DCSJGN June 28, 2010 10:45 b7 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End Loadl Dead Full UDL 13.0 plf Load2 Live Full UDL 40.0 _ plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : A s "A 10 , 54 Dead 54 120 Live 120 174 Total 174 Bearing: #2 Load Comb #2 0.50* Length 0.50* *Min. bearing length for beams is 1/2" for exterior supports Lumber n -ply, D.Fir -L, No.2, 2x8 ", 2 -Plys Self- weight of 5.17 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 10 Fv' = 180 fv /Fv' = 0.05 Bending( +) fb = 120 Fb' = 1080 fb /Fb' = 0.11 Live Defl'n 0.01 = <L/999 0.20 = L/360 0.04 Total Defl'n 0.01 = <L/999 0.30 = L/240 0.04 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 174, V design = 139 lbs Bending( +): LC #2 = D +L, M = 262 lbs -ft Deflection: LC #2 = D +L EI= 76e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. g-6\t'o • COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESJCN June 28, 2010 10:33 b8 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location (ft) Units Start End Start End 1 c30 Dead Point 59 3.50 lbs 2 c30 Snow Point 75 3.50 lbs 3_w47 Dead Partial UD 96.0 96.0 0.00 3.50 plf 4_j13 Dead Partial UD 78.0 78.0 0.00 5.50 plf 5_j13 Live Partial UD 240.0 240.0 0.00 5.50 plf 6_j14 Dead Partial UD 104.0 104.0 5.50 6.00 plf 7 j14 Live Partial UD 320.0 320.0 5.50 6.00 plf 8 b12 Dead Point 171 5.50 lbs 9 b12 Live Point 469 5.50 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : . , . • _ - �� - -' �,�Y -L - . \I' rI:' i ii .' ,. -Y, •Y•w .. +�' r -V - ,. Y.' c if - - - _ _ ., • . ' e . - _ Dead 531 556 • Live 761 1189 Total 1292 1744 Bearing: Load Comb #2 #2 Length 0.69 0.93 Lumber n -ply, D.Fir -L, No.2, 2x10 ", 2 -Plys Self- weight of 6.59 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv* = 67 Fv' = 180 fv * /Fv' = 0.37 Bending( +) fb = 556 Fb' = 990 fb /Fb' = 0.56 Live Defl'n 0.03 = <L/999 0.20 = L/360 0.13 Total Defl'n 0.05 = <L/999 0.30 = L/240 0.16 *The effect of point loads within a distance d of the support has been included as per NDS 3.4.3.1 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.100 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - Shear : LC #2 = D +L, V = 1744, V design* = 1232 lbs Bending( +): LC #2 = D +L, M = 1984 lbs -ft Deflection: LC #2 = D +L EI= 158e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D -dead L =live S =snow W =wind I- impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: • 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. 8-6i , l : , ` ` 3 _, COMPANY ... RO � Woo dworks ' SOFTWARE FOR WOOD DESIGN • _ , June 28, 2010 10:33 b9 D e s ign C Calculation Sheet S iz e r 7 LOADS ( Ibs, psf, or plf) Load .Type ' Distribution - Magnitude - '' Location,[ft] .Units, Start End Start End' 1_w51 Dead Partial UD , 9 6 . 0 : 96.0 , 2'.00 - 3.00 ' ' - plf 2_c32 Dead Point 59 2`'.00 lbs '' , • 3_c32 Rf.Live Point b 75, 2.00 , 'ls Load4 Dead Full UDL 13.0' ' plf - Load5 ' Live Full UDL ,- .40.0 - plf : • MAXIMUM REPi -ritik'rc iIk..t .....a QcAeipai • i c1rt+7-uc .:..► • . • • • _ :_ _ a pt I ZS Dead 63 - 146 . 1 • 'Live' ' 85 . 110 Total- -148 - _256 Bearing;. #2 • Load Comb #2 ,, Length 0 .50* ,4 ,;n 0.50* *Min. bearing length for beams is 1/2" for exterior supports - - Lumber n-ply; Fir- L, -No .2; 2x8' ,.2 -Plys ;' - Self- weight of 5 =17, plf included:in loads; ` - - . Lateral support; top =.full; bottom = :at supports; ' Analysis vs. Allowable Stress (psi) and'.Deflection•(in) u 2605: • • . Criterion Analysis Value Design. Value Analysis /Design . Shear • fv:= 12 Fv' =- 20.7 "' - ' fv /FV" _" 0.06' Bending( +) fb = 82 Fb' = 1242 . 'fb /Fb' = 0.07 . Live 'Defl'n. 0.00.= <L/999 0.10 = L/360 0.01 Total Defl'n 0.00'= <L/999 0.15 = L/2'40 0.01 - - ADDITIONAL DATA': - 1 FACTORS: F/E CD CM ' Ct CL CF Cfu Cr Cfrt C i • Cn LC #' • Fb' • -180: 1.15 1.00 1.00 - - - - _1.00 1.00'• 1.00.-' 2 . Fb'+ 900 1.15 1.00 1.00 1.000 1.200 1.00 1:00 1.00. l'.00 ",' 2 • Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - • - ' E'' 1.6 million 1.00 1:00 - Emin.'' • ' 0.58 million 1.00 1.00 - - • - - .1.b0 1.00, = 2 ' - . ' Shear : LC #2 = = D ±L, V = 256, V design 169 lbs Bending ( +) : LC #2 = D +L, M = 179 `lbs =ft ' ' • ' - Deflection: LO' #2 = D ±L •EI= 76e06 lb -in2 /ply Total Deflection' = 1.5,0'(Dead Load Deflection) + Live Load Deflection:.•: c ; , • - r: ,i _ (D =dead L =live S =snow W =wind •1I =impact= "C =construct_ion`, CLd =concentrated);1 - (All' `LC s 'are:- list in the ?Analysis °output)' �• =•: ' Load' combinations: ICC -IBC „ DESIGN'NOTES:' T 1: P lease verify, that;the default deflection ,limits are appropriate for your application. . 2. Sawn lumber bending members shall be, laterally supported' according to the provisions of NDS,Clause 4.4.1. 3. BUILT=UP, BEAMS: it is assumed that each ply, is a single, continuous member (that is no'bud joints are present) fastened together securely at intervals "not exceeding 4 times the depth .and,th'at' . each ply is equally top, loaded:,Where beams ;areside- loaded, .special fastening details may be 'required. • • t COMPANY PROJECT i WoodWorks ° ,. _ . • , ' 'SOFWARE FIR WOOD DESIGN June 28, 2010 10:33 b10 r Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf) : Load Type Distribution Magnitude Location [ft] Units Start End Start- End 1_c33 Dead Point - 59 1.00 lbs 2_c33 Snow Point 75 1.00 Ibs 3_w52 Dead Partial UD 96.0 96.0 0.00 1.00 plf Load4 Dead Full UDL 13.0 plf Loads Live Full UDL 40.0 - plf MAXIMUM RE''' e n4..A ....A oeAniwr( I cr.irruc EG..A • - - 10' 34 Dead 146 . 63 . Live 82 .- 64 • Total 229 127 Bearing: Load Comb . #3 - #3 • ,Length 0.50* 0.50* `Min. bearing length for beams is 1/2" for exterior supports • Lumber n -ply, D.Fir -L, No.2 2x8 ", 2 -Plys Self- weight of 5.17 plf included in loads;. Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005: • y 4 Criterion Analysis Value Design Value Analysis /Design ' • _. • ' Shear fv = 10 • Fv' _ 207 fv /Fv' = 0.05 - - Bending(+) fb = 72 Fb' = 1242 fb /Fb' = 0.06 ' Live Defl'n 0.00 = <L/999 0.10 = L/360 0.01 . , Total Defl'n 0.00 = <L/999 0.15 = L/240 0.01 ADDITIONAL DATA: . FACTORS:'F /E CD . CM Ct CL CF Cfu Cr Cfrt Ci .Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 , Fb'+ 900 1.15 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 3 • Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - '3 Einin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3 Shear : LC #3 = D +.75(L +S), V = 229, V design = 148 lbs ' ' Bending( +): LC #3 = D +.75(L +S), M = 157 lbs -ft , Deflection: LC #3 = D +.75(L +S) EI= 76e06 lb -in2 /ply " Total Deflection = 1.50(Dead Load Deflection) ,+ Live Load.Deflection. J. (D =dead L =live S =snow W =wind I= impact C= construction CLd =concentrated) (All LC's are listed in the Analysis output) .. - Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application._ . ; . ' 2. Sawn lumber bending members shall be laterally" supported according to the provisions of NDS Clause 4.4.1.,_, ,. . - 3. BUILT -UP BEAMS it is assumed that each ply is a single continuous member (that is no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth.and that , ; , 11 - • • ' • ' -, : , •., each I is equally to loaded: Where beams are side - loaded s fastening details may be re uired. -, , • , ' . . PY 4 Y P P g y Q . , . •r el , COMPANY PROJECT di WoodWorks® SOFTWARE FOR WOOD DFSJGN June 28, 2010 10:36 b14 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j33 Dead Partial UD 78.0 78.0 0.00 1.50 plf 2_j33 Live Partial UD 240.0 240.0 0.00 1.50 plf 3_j13 Dead Partial UD 78.0 78.0 3.00 8.50 plf 4_j13 Live Partial UD 240.0 240.0 3.00 8.50 plf 5_j34 Dead Partial UD 78.0 78.0 1.50 3.00 plf 6_j34 Live Partial UD 240.0 240.0 1.50 3.00 plf 7_j46 Dead Partial UD 28.9 28.9 5.00 8.50 plf 8_j46 Live Partial UD 80.0 80.0 5.00 8.50 plf 9 b25 Dead Point 409 5.00 lbs 10 b25 Live Point 1080 5.00 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : _� '�_�..ti ��e• • _ r- fi ' -� - �..�.�w:..rr.... - �"`� mss.. - -.- . - -�'.'' - -- -"`"" - -:ri -.,� . - �- .c �P- Tar - '< wi R _ sue' - _-.r _ -�-�.++= 7--..".7 �• -=� � . = -..._ ,.J. --y - .. ►_ I Cr 8 ' 6 t Dead 553 685 Live 1522 1878 Total 2076 2563 Bearing: Load Comb #2 #2 Length - 1.48 1.83 LSL, 1.55E, 2325Fb, 1- 3/4x14" Self- weight of 7.66 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 126 Fv' = 310 fv /Fv' = 0.41 Bending( +) fb = 1324 Fb' = 2325 fb /Fb' = 0.57 Live Defl'n 0.09 = <L/999 0.28 = L/360 0.31 Total Defl'n 0.14 = L /750 0.42 = L/240 0.32 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 2563, V design = 2064 lbs Bending( +): LC #2 = D +L, M = 6308 lbs -ft Deflection: LC #2 = D +L EI= 620e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. s (A1,4 COMPANY PROJECT i W - . SOFTWARE FOR WOOD DESIGN . June 28, 2010 10:48 b15 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf) : . Load Type Distribution Magnitude .Location [ft] Units Start End Start End - • 1 j5 Dead Full UDL 335.7 plf 2 j5 Rf.Live Full UDL 493.7 plf MAXIMUM REACTIONS (lbs) an LENGTHS (in) : . 1 0' 61 Dead 1027 • 1027 Live 1481 1481 Total 2508 2508 Bearing: . Load Comb #2 #2 - Length 1.34 . 1.34 Lumber n -ply, D.Fir -L, No.2, 2x10 ", 2 -Plys Self- weight of 6.59 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection ( in) using NDS 2005 : Criterion Analysis Value Design Value' Analysis /Design.- ' Shear fv = 101 Fv' = 207 fv /Fv'.. =, 0.49 . Bending( +) • fb = 1055 Fb' = 1138 . .fb /Fb' = '0.93 , Live Defl'n 0.05 = <L/999 0.20 = L/360 0.23 ' • Total Defl'n 0.09 = L/776 0.30 = L/240 0.31 - , ADDITIONAL DATA: FACTORS: F/E CD CM' Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - • - 1.00 1.00 1.00 2 Fb'+ 900 1.15 1.00 1.00 1.000 1.100 1.00 1.00 1.00 1:00 = 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00' - - E' 1.6 million 1.00 1.00 - - - - 1.00 '1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00, - 2 Shear : LC #2 = D +L, V = 2508, V design = 1864 lbs . Bending( +): LC #2 = D +L, M = 3762 lbs -ft Deflection: LC #2 = D+L EI= 158e06 lb -in2 /ply . Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) , (All LC's are listed in the Analysis output) _ • , Load combinations: ICC -IBC DESIGN NOTES: • 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally. supported, according to the provisions of NDS Clause 4.4.1-. . 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints - are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded special fastening details may be required: .. . �� C • COMPANY PROJECT di WoodWorks - t, „ , ,,, .. SOFTWARE FOR WOOD DESIGN - June 28, 2010 10:46 b20 • besign Check Calculation;Sheet ' Sizer 7.1 - LOADS ( ibs, psf, or plf) : • Load Type Distribution • Magnitud'e Location [ft] •Units S End Start` End . 1_j47 Dead Partial UD ' 42 -:5' ' "42.5'" ' 0.00 - 2.50 plf 2 j47 Live .Partial UD 62.5. 62.5 0.00 2.50 plf. - MAXIMUM REP •.. vInAI° /Mum% •••• C1C A13IAIl' I CAI•TLIC /: ..► • , _ 10' 3 Dead - 71 53 Live 91 65 Total 162 „ . • 118 Bearing : #2 Load Comb #2 . •- Length 0.50* :_ __ 0.50* *Min. bearing length for beams is 1/2" for exterior supports • • • Lumber -soft D.Fir -L, N o.2 , 4 , Self- weight of 6.03 plf_included:in loads; • Lateral support: top= full, Bottom= at Analysis vs. Allowable Stress (psi) and Deflection using OS . 200 Criterion Analysis Value Design Value Analysis /D'esign Shear' - 'fv = -- ' '6 ' Fv' = 180 ' • fv /Fv' = 0.03 Bending(+) fb = 46 Fb' = 1170 fb /Fb' = 0.04 Live Defl'n 0.00 = <L/999 0.10 = L/360 0.01 Total Defl'n 0.00 = <L/999 0.15 = L/240 0.01 ADDITIONAL DATA: • , FACTORS: F/E co CM Ct CL CF Cfu - Cr Cfrt Ci Cn • LC# • Fv' 18,0 1.00 1.00 1.00 - - - - 1.00 1.00 1.00' 2 Fb'+ 900 1:00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - 1 -.00 ' - • i E'' 1.6 million 1.00 1.00 - - - - 1.00 1..00 2 , Emin' 0.58 million 1.00 1.00 - - - - : 1.00 1.00':- - 2 • Shear : LC #2 .= D +L; V- = - - 162, V "design = 99- lbs • Bending('+): LC #2 = D +L, M = 118 lbs -ft Deflection: LC #2 = D +L EI= 178e06 lb -in2 • Total Deflection = 1.50(Dead Load + Live Load Deflection (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) ;. (All LC's are listed in the Analysis output) : Load combinations: ICC - IBC , A. 1 D ESIGN NOTES: . 1. Please verify that the default deflection limits are appropriate, for your application: , , . • , ., „ , 1.-Sawn lumber bending members shall be. laterally supported according to the provisions of. NOS Clause 4.4.1. g r v 1 Y COMPANY PROJECT I i Wood Works® SOFTWARE FOR WOOD OE9CN June 28, 2010 10:34 b21 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location (ft) Pat- . Start End Start End tern 1_w63 Dead Partial UD 308.0 308.0 6.00 10.00 No 2_w63 Live Partial UD 320.0 320.0 6.00 10.00 No 3_w62 Dead Partial UD 308.0 308.0 2.00 6.00 No 4_w62 Live Partial UD 320.0 320.0 2.00 6.00 No 51w32 Dead Partial UD 369.0 369.0 0.00 2.00 No 6 w32 Snow Partial UD 357.5 357.5 0.00 2.00 No 7 Dead Point 1940 1.50 No 8 c44 Snow Point 2853 1.50 No 9 j20 Dead Partial UD 104.0 104.0 6.50 10.00 No 10_j20 Live Partial UD 320.0 320.0 6.50 10.00 No 11 j21 Dead Partial UD 104.0 104.0 6.00 6.50 No 12 Live Partial UD 320.0 320.0 6.00 6.50 No 13 j22 Dead Partial UD 104.0 104.0 2.00 2.50 No 14_j22 Live Partial UD 320.0 320.0 2.00 2.50 No 15_j23 Dead Partial UD 104.0 104.0 2.50 6.00 No 16_j23 Live Partial UD 320.0 320.0 2.50 6.00 No 17 j48 Dead Partial UD 71:5 71.5 0.00 1.50 No 18_j48 Live Partial UD 220.0 220.0 0.00 1.50 No 19 b23 Dead Point 658 0.00 No 20 Snow Point 195 0.00 No MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : _ _� - �.,�-- i.- e,.� �.r.. 40,-- = .=..._ • o' 2' 101 Dead 5581 1311 Live 5266 2508 Total _ 10847 3819 Bearing: - Load Comb #0 #3 42 Length 0.00 3.50 1.23 Cb 0.00 1.11 1.00 LSL, 1.55E, 2325Fb, 3- 112x14" Self- weight of 15.31 plf included in loads; . Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis /Design Shear fv` = 139 Fv• = 356 fv• /Fv' = 0.39 Bending( +) fb = 717 Fb' = 2325 fb /Fb' = 0.31 Bending( -) fb = 600 Fb' = 2632 fb /Fb' - = 0.23 - Deflection: • Interior Live 0.05 = <L/999 0.27 = L/360 0.17 Total 0.07 = <L/999 0.40 = L/240 0.17 Cantil. Live -0.03 = L/698 0.13 = L /180 0.26 Total -0.03 = L /788 0.20 = L /120 0.15 • The effect of point loads within a distance d of the support has been included as per NDS 3.4.3.1 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.09 - - - - 1.00 - 1.00 4 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fb'- 2325 1.15 - 1.00 0.984 1.00 - 1.00 1.00 - - 4 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #4 = D +S, V = 7237, V design' = 4536 lbs Bending( +): LC #2 = D +L, M = 6833 lbs -ft Bending( -): LC #4 = D +S, M = 5720 lbs -ft Deflection: LC #2 = D +L EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W=wind I= impact C= construction CLd= concentrated) All LC's are listed in the Analysis output) Load combinations: ICC -IBC , DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. 4. The critical deflection value has been determined using maximum back -span deflection. Cantilever deflections do not govern design. , • • ' - - . ., CO PROJECT W oodW orks ® .•. _. . .„.„, -,• .• .,, • : ..". .,.._. ,., . • sOF(WAR(FOAWOOD DFS4 N ' - June 28, 2016105 ' b22 Design CheckZalculation Sheet Slier 7.1 LOADS ( lbs, psf, or plf ) : . Load Type Distribution Magnitude Location ift] 'Units t Start End : ' "Start . End 1 w69 Dead Partial UD 369.0 369.0 1:00 2.50 plf 2 Snow Partial UD 357.5 357.5 1.00 2.50 plf _ 3 Dead Partial UD 71.5 71.5 1.00, 2.50 plf • 4 • Live Partial UD 220.0 220.0 1.00 2.50 plf - • . 5_j47 Dead Full UDL 42.5 plf 6_j97 Live Full UDL 62.5 • plf • 7 Dead Point 700 1.00 • lbs 8 b23 ' Snow Point 195 1:00( lbs • MAXIMUM RE - - - - - -- -.. . ' - - - - - --- - - • . • . _ ',',--,','"-':'“,-7-,'":.7-.".'47.4'''_:.7- - Y 4. R '',".4.,,,,-.,,, ,,, `' a' ' • : ( .{ : tea '.(. •-, - '' . � • :,. '-z.'74,„.- n .f t t - t ry " ' ', fix- -`^ -' - • u . � � _ J,. "`�, 1 -. _ ;� - -,;7.1-.',.....-:•.0::.,z 1-t • ,h ; • • t • .�^,. _ _ _ , .4 ti +.�i:' 3° _ ��i' ` 't : . %c" C • . t ,.- �' nom' tom. ° - -' A „ ., • • Dead 663 2' Live 391 572 1379 Total 10 - - - , - Bearing: #3 •Load COinb ' #3 . Length 0.50* ,;,•,,. 7.,••:-...' : .. • 0.63 'Min. bearing length for beams is 1/2" for exterior supports Lumber -soft, D.Fir. -L; No.2; 4x12" • • Self- weight of 9.35 plf included in loads; Lateral support: top= full, bottom= at supports; . • Analysis vs. Allowable Stress (psi) and Defle (in) usin N DS - 2 005 : Criterion Analysis•Valiie Design Value Analysis /Design • Shear fv = 30 Fv' = 207 fv /Fv = 0.14 -1 Bending( +) fb = 159 Fb = 113 fb /Fb' 0.14 - .. - - __ Live - Defl'n 0.00 = <L/999 0.08 = L/360 0.01 Total•' Defl' • n'r. "- 0.00 = <L/.999' - - '0•:13 = L/240 - - . - , 0.02- - - : . ' AD DATA: . • . FACTORS: F/E .CD CM Ct C L CF Cfu Cr Cfrt Ci Cn LC# , • Fv'` . 180 1.15 1.00 1.00 - - - - .1.00 1.00 1.00 3 . • Fb'+ 900 1.15 1.00 1.00 1.000 1.100. 1.00 1.00 1.00 1.00. - 3 ` Fcp' 625 - 1.00 1.00 - - - - • 1.00 1.00 • - _ . . E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3' Emin' 0.58 million 1.00 1.00 - - - - .1.00 1.00 - 3 Shear : LC #3 = •D +.75(L +S), V = 1024, V design = 778 lbs • Bending( +): LC #3 = D +.75(L +S), M = 978 lbs-ft ' Deflection: IC #3 = D +. -L +S) EI= 664e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. • ' - (D =dead L =live 5 =snow W =wind I= impact C =construction CLd= concentrated) - .(All LC;s are. listed, in -the Analysis output) . _ ' Load,combinations: ICC -IBC DESIGN -..: i, c , , . , ', p.�: . • ,, ..,. ;: , 1: Please vefrify that the default deflection limi a ap for your a pplication . . I ?•!- + ` " ' L ■ ''�' ' •• .> I ' 2: m Sawn lumber bending members shall be laterally supported the e p rov sions of NDS Gla 4 s ( fi t . . . . . Y . . • ,. COMPANY PROJECT di WoodWorks® soFIWARE FOR WOOD DESIGN June 28, 2010 10:35 b23 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_w33 Dead Partial UD 204.0 204.0 0.00 1.50 plf 2_c18 Dead Point 143 1.50 lbs 3_c18 Rf.Live Point 110 1.50 lbs 4_c19 Dead Point 59 4.50 lbs 5 c19 Rf.Live Point 85 4.50 lbs 6 w34 Dead Partial UD 108.0 108.0 4.50 6.50 plf 7 Dead Point 59 6.50 lbs 8 c20 Rf.Live Point 85 6.50 lbs 9 c21 Dead Point 143 9.50 lbs 10c21 Rf.Live Point 110 9.50 lbs 11 w35 Dead Partial UD 204.0 204.0 9.50 11.00 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : d r.�.. � . - �� �. y. =rye T-t,. �� - Y -- � _ _ = te -.++r ~r � - �..�'c ^ 10. 11 Dead 700 700 Live 195 195 Total 895 895 Bearing: Load Comb #2 # Length 0.50* 0.50* 'Min. bearing length for beams is 1/2" for exterior supports LSL, 1.55E, 2325Fb, 3- 112x14" Self- weight of 15.31 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 20 Fv' = 356 fv /Fv' = 0.05 Bending( +) fb = 213 Fb' = 2674 fb /Fb' = 0.08 Live Defl'n 0.01 = <L/999 0.37 = L/360 0.03 Total Defl'n 0.05 = <L/999 0.55 = L/240 0.09 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 895, V design = 639 lbs Bending( +): LC #2 = D +L, M = 2028 lbs -ft Deflection: LC #2 = D +L EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. g __ wok COMPANY PROJECT 041§ WoodWorks® SOFTWARE FOR WOOD OES:GN June 28, 2010 10:47 b24 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j42 Dead Partial UD 47.7 47.7 0.00 4.50 plf 2_j42 Live Partial UD 160.0 160.0 0.00 4.50 plf 3_j43 Dead Partial UD 47.7 47.7 4.50 7.50 pif 4 j43 Live Partial UD 160.0 160.0 4.50 7.50 plf 5_j44 Dead Partial UD 47.7 47.7 7.50 13.00 plf 6_j44 Live Partial UD 160.0 160.0 7.50 13.00 plf 7 j45 Dead Partial UD 47.7 47.7 13.00 16.00 plf 8 Live Partial UD 160.0 160.0 13.00 16.00 _ plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : Ip' 16 Dead 442 442 Live 1280 1280 Total 1722 1722 Bearing: Load Comb #2 #2 Length 0.85_ 0.85 Glulam - Unbal., West Species, 24F -V4 DF, 3- 118x10 -112" Self- weight of 7.55 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 70 Fv' = 265 fv /Fv' = 0.26 Bending( +) fb = 1440 Fb' = 2400 fb /Fb' = 0.60 Live Defl'n 0.43 = L/441 0.53 = L/360 0.82 Total Defl'n 0.66 = L/290 0.80 = L/240 0.83 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 1722, V design = 1534 lbs Bending( +): LC #2 = D +L, M = 6890 lbs -ft Deflection: LC #2 = D +L EI= 543e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). 8 -6w COMPANY PROJECT i i 1 WoodWorks® SOFTWARE FOR WOOD OfSIGN June 28, 2010 10:33 b25 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End Loadl Dead Full UDL 200.0 plf Load2 Live Full UDL 540.0 plf MAXIMUM REACTIONS /lhsl and BEARING I FNGTHS lint _ -- �. _. r 1 0' 4 Dead 409 409 Live 1080 1080 Total 1489 1489 Bearing: Load Comb #2 #2 Length 0.68 0.68 Lumber -soft, D.Fir -L, No.2, 4x6" Self- weight of 4.57 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 89 Fv' = 180 fv /Fv' = 0.50 Bending( +) fb = 1013 Fb' = 1170 fb /Fb' = 0.87 Live Defl'n 0.04 = <L/999 0.13 = L/360 0.30 Total Defl'n 0.06 = L/764 0.20 = L/240 0.31 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.00 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 1489, V design = 1148 lbs Bending( +): LC #2 = D +L, M = 1489 lbs -ft Deflection: LC #2 = D +L EI= 78e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. k g --G a. \,.. . COMPANY PROJECT 1 WoodWorks° SOFT WARE FOR WOOD DESIGN June 28, 2010 10:57 b25 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psi, or pit ) Load Type Distribution Magnitude Location (ft] Units Start End Start End 1 w72 Dead Partial UD 539.7 539.7 13.00 14.50 plf 2 Rf.Live Partial UD 493.7 493.7 13.00 14.50 plf 3 Dead Partial UD 535.5 535.5 0.00 4.50 plf 4 Rf.Live Partial UD 487.5 487.5 0.00 4.50 plf 5 Dead Point 1074 7.00 lbs 6 c14 Rf.Live Point 1601 7.00 lbs 7 Dead Point 1074 13.00 lbs 8 c15 Rf.Live Point 1601 13.00 lbs 9 Dead Partial UD 539.7 539.7 14.50 16.00 plf 10_w73 Rf.Live Partial UD 493.7 493.7 14.50 16.00 plf 11 Dead Partial UD 443.7 443.7 5.50 7.00 plf 12_w74 Rf.Live Partial UD 493.7 493.7 5.50 7.00 plf 13 Dead Partial UD 539.7 539.7 4.50 5.50 plf 14 Rf.Live Partial UD 493.7 493.7 4.50 5.50 plf 15 Dead Partial UD 47.7 47.7 0.00 4.50 plf 16 Live Partial UD 160.0 160.0 0.00 4.50 plf 17 Dead Partial UD 47.7 47.7 4.50 5.50 plf 18 Live Partial UD 160.0 160.0 4.50 5.50 plf 19 Dead Partial UD 47.7 47.7 7.50 13.00 plf 20 Live Partial UD 160.0 160.0 7.50 13.00 plf 21j45 Dead Partial UD 47.7 47.7 5.50 7.50 plf 22 _ j45 Live Partial UD 160.0 160.0 5.50 7.50 plf 23_j46 Dead Partial UD 47.7 47.7 13.00 14.50 plf 24 j46 Live Partial UD 160.0 160.0 13.00 14.50 plf 25 Dead Partial UD 47.7 47.7 14.50 16.00 plf 26 Live Partial UD 160.0 160.0 14.50 16.00 pif MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : 0 161 Dead 4328 4101 Live 5296 5376 Total 9624 9477 Bearing: Load Comb 42 q2 Length 2.89 2.64 Glulam -Bal., West Species, 24F -V8 DF, 5- 118x15" Self- weight of 17.7 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 157 Fv' = 305 fv /Fv• = 0.52 Bending(+) fb = 2301 Fb' = 2760 fb /Fb' = 0.83 Live Defl'n 0.36 = L /528 0.53 = L/360 0.68 Total Defl'n 0.77 = L/249 0.80 = L/240 0.96 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC 42 = D +L, V = 9624, V design = 8063 lbs Bending( +): LC 92 = D +L, M = 36854 lbs -ft Deflection: LC #2 = D +L EI= 2594e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live 0 =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). 8 ...._ 6.11,--.4„_, COMPANY PROJECT di WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 10:36 b26 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w37 Dead Partial UD 535.5 535.5 10.50 11.00 plf 2_w37 Snow Partial UD 487.5 487.5 10.50 11.00 plf 3_w38 Dead Partial UD 535.5 535.5 11.00 14.00 plf 4 Snow Partial UD 487.5 487.5 11.00 14.00 plf 5 w39 Dead Partial UD 535.5 535.5 14.00 15.50 plf 6 w39 Snow Partial UD 487.5 487.5 _ 14.00 15.50 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : 0' 15-6' Dead 583 2397 Live 393 2044 Total 976 4441 Bearing: Load Comb #2 #2 Length 0.50* 1.33 'Min. bearing length for beams is 1/2" for exterior supports Glulam -Bal., West Species, 20F -V7 DF, 5- 1/8x16 -112" Self- weight of 19.47 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : • Criterion Analysis Value Design Value Analysis /Design Shear fv = 54 Fv' = 305 fv /Fv' = 0.18 Bending( +) fb = 488 Fb' = 2297 fb /Fb' = 0.21 Live Defl'n 0.05 = <L/999 0.52 = L/360 0.09 Total Defl'n 0.14 = <L/999 0.77 = L/240 0.18 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2000 1.15 1.00 1.00 1.000 0.999 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.6 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +S, V = 4441, V design = 3070 lbs Bending( +): LC #2 = D +S, M = 9454 lbs -ft Deflection: LC #2 = D +S EI= 3070e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). S..-- 61r34.3 COMPANY PROJECT di Wood W orks® SOFTWARE FOR WOOD DESIGN ' June 28, 2010 10:50 c2 Design Check Calculation Sheet Sizer 7.1 • LOADS ( lbs, psf, or pif) : . Load Type Distribution Magnitude Location [ft] Units Start End Start End l bl Dead Axial 1539 (Eccentricity = 0.00 in) 2 bl Rf.Live Axial 2089 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 0' 8 ' Lumber n -ply, Hem -Fir, No.2, 2x6 ", 2 -Plys Self- weight of 3.41 plf included in loads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 0.00= 0.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 221 Fc'- = 980 fc /Fc' = 0.23 Axial Bearing fc = 221 Fc* = 1644 fc /Fc* = 0.13 ADDITIONAL DATA: . FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.596 1.100 - - 1.00 1.00 2 • Fc* 1300 1.15 1.00 1.00. 1.100 - 1.00 1.00 2 Axial : LC #2 = D +L, P = 3655 lbs Kf =,1.00 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC - DESIGN NOTES: • 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. • • • COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 10:52 c25 Design Check Calculation Sheet Sizer 7.1 LOADS (Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End l b12 Dead Axial 514 (Eccentricity = 0.00 in) 2 Live Axial 1408 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): • 0' 9 Lumber n -ply, Hem -Fir, No.2, 2x4 ", 2 -Plys Self- weight of 2.17 plf included in loads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 0.00= 0.00 [ft]; Ke x Ld: 1.00 x 9.00= 9.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 185 Fc' = 380 fc /Fc' = 0.49 Axial Bearing fc = 185 Fc* = 1495 fc /Fc* = 0.12 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.254 1.150 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 1942 lbs Kf = 1.00 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. • COMPANY PROJECT WoodWorks® SOFT WARE FOR WOOD DESIGN June 28, 2010 10:51 c36 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b21 Dead Axial 5634 (Eccentricity = 0.00 in) 2 Rf.Live Axial 7021 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): - . 0' 8' Timber -soft, Hem -Fir, No.2, 6x6" Self- weight of 6.25 plf included in loads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 420 Fc' = 548 fc /Fc' = 0.77 Axial Bearing fc = 420 Fc* = 661 fc /Fc* = 0.64 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 575 1.15 1.00 1.00 0.829 1.000 - - 1.00 1.00 2 Fc* 575 1.15 1.00 1.00 - 1.000 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 12705 lbs (D =dead L =live S =snow W =wind I= impact C=constructiOn CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 10:52 c44 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location (ft] Units Start End Start End 1 c35 Dead Axial 1940 (Eccentricity = 0.00 in) 2 Rf.Live Axial 2853 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 0' 9' Lumber n -ply, Hem -Fir, No.2, 2x4 ", 3 -Plys Self- weight of 3.25 plf included in loads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 9.00= 9.00 [ft]; Ke x Ld: 1.00 x 9.00= 9.00 [ft]; Repetitive factor: applied where permitted (refer to online help); Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 306 Fc' = 363 fc /Fc' = 0.84 Axial Bearing fc = 306 Fc* = 1719 fc /Fc* = 0.18 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.211 1.150 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 4823 lbs Kf = 0.60 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. 6.1„pc._ COMPANY PROJECT • II 1 WoodWorks SOFTWARE FOR WOOD DESIGN June 28, 2010 10:51 c64 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End l_c45 Dead Axial 1940 (Eccentricity = 0.00 in) 2 c45 Rf.Live Axial 2853 (Eccentricity = 0.00 in) 3 b22 Dead Axial 807 (Eccentricity = 0.00 in) 4 b22 Rf.Live Axial 763 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 0' 8' Lumber n -ply, Hem -Fir, No.2, 2x6 ", 3 -Plys Self- weight of 5.11 plf included in loads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Repetitive factor: applied where permitted (refer to online help); Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 259 Fc' = 439 fc /Fc' = 0.59 Axial Bearing fc = 259 Fc* = 1644 fc /Fc* = 0.16 • ADDITIONAL DATA: • FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.267 1.100 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 6404 lbs Kf = 0.60 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. • • 8._ 6i2b . , _ . • '• . .• . 1 • . . .. . , Harper _ -- •, . . .. . .._ u • HP ". Houf Peterson COMMUNICATION RECORD • r . • . - - Righellis - Inc. • To 0 FROM 0 'MEMO FILE 0- . . • 1,7.17 • I., , A, r; , R S ._ ' .. .• 1,0795(71 /11-3E.1.1171 . . —.. -----...- ...—.-.- --• --,...— - .. - . ... . •• '7 PHONE NO. PHONE CALL: 0 MEETING: 0 li , 1 I ! . , ; ? • • f ' ' J , • ..; - 1.7 - t •••"- ''- -' 7 3 r /.• - •,- ' ;• 1.._ 3_ . ;,- -- _ . • ; : i . . _ _ - . - . ; . , . , -- , - :-: ,; •';' . . i. I x m m • ; -: , - , . . . . . ..-... . .. . t . ..;— . . 7 1 (1 „... • . . 337 • . ; • ' I . • . ' I : 8 c.--r , .... • r . ...... • ..! . . 1 i - . • 1 r r . • . • ' 't • , r.: .. . 1 . . i .,..1......- ..,- . f . ! . .• , -. _ .. - . _ _ - f • : 4 ' .. are, . 1 i ',. • ; - . ; : ' - - • ' ;;'; • • .- . i . , , ■ --: ,,, r • . ; 9 •, - • , • e • . r. . ! f • , . , _4 ...9;.‘3 4 :-R _ . . _ • _ . .„ - - -- I , _. !.. 4. __, ..,,,. • ,:„_,....„....1:... -., . _ „..- • :r.:•" ," 1 ' _ ' - • •• • , ' \) • ."". r -- r -- . - t - ''-`- '' - .' L - ; : ; • • . I . ,;;„ ._ 4 : • • ;.-_:-;_ , - ..,. --,...,=••-•- ; .--) v E . , '-' : , 1- ' ' . • ; .:. , - ; .; ri 9-1' 2 — 0 - - r • ,-; . "---, --'' • • • , ..... . . --;:, -: : , 1 . , ; • • • . - .,-;-'-' . - , r --; : : . , . • I. , , ' j • . . , , Ls . :c 1 :.:\ -': . - - . . I 1,' - • ....... . -. 63 1 i : i - r .. , _ _7,. C 1 • ■. ' ''''. ',:. i ' - .9 '''. . ; ; 4.4 . • I . • i 7 : • . . ( .4.... . • . , ',:...,.. I • ' • I • • ;V. . . • : . . . . 0 + : ' I: g ith ■ , . , , , , . . - 1 • • - I i: 'i .- • .";.' . • ....._ 7 • • j , 7 ' • . , ., , . • ; 7 ,.• , 7 ' ; • . •-• ! • • • • • ■ ••••7 - V'. ; • . -•-• - . -• ... . —1- ....74 " : '7•7 : Pi , . , ,. .' ,_ _ ,... ......i. _ 4 - •-: •, -.•-•', :._ - . ..-.- I . I . 4 . . ("D ' , , . , ,;„ • : , 1,.. , . _:-,_I__ .4_,...-1...._,__ . ...,, - - • ... -.... .... ; ... • 2_c.:„... • • . , - I • . i I • ,, i ! - . --- •_ .4' ... , , ,. - , .-- ; - -‘,.. • , ; - .4 : . ". - --r ; . . , I - 7 , 4 ......,, .,. .L--.. 0 _ _ - ---;-- ---- - w I - ' 1 .. i .• . ; - - • .i' - ,. 1 - — ; — ! - - - r. - - 4 • _ 2 ._ "._.__-,L.. _ .1 ,. .._ '-. •' : _ L , . , -., i . - . -. .. t .. , _. .. ,_ . 1 ' : 1 • ., . ). 4 ■ t i • 1 " 1 , i :.,- , 4- { , .. „ . . , ' : • ...,......:,. , '..::'•r."-..r.' 1 .--- r -- i • ---•'---•'-. 1 --•• - 1- , - -.:-.- i -:1 . 1 ' 7 f- 7: -, - - - t - . ' . • . . • 1. . , 1 - . L • 7 1_ •_',•••••1_- _•,_,' „.';:. 4 . I ' r i . ' . • , - - - . . • I .... ; .,• , , (, I I ,• __..____,____,-...1..........,.....- _ ..,.... __...! ,_......„.::,..._,...,,,__,_.._, ,... . ....... _.i. _, . _,. _ - ' . .,..- .,--,.:- .--„- • 1,.. J ._ • _ :.._,,',I. ,.•_!-...,-.-___ •_ .., .1 :: 1 -, , _ I , ; , . . r I , .'‘,„; • , ." ', ---.. fl . 'J', -': 4 , • • . .. • i . . . ; • . - r__71-2 7 - 1 . . 2 . ; . I . 1, .7.: i• j - ' i ' . ' ' . 1 . • ' ---- : 4 • • •. 4 - • . - i . . _•,.' . j,_ .' , . : I .1 - I '''.. • ' ■ • 4 ■ • . , • • ., '` : .' .: . - - 4 , . 4-.4.4.4 • t . . _ . . i '• ' - ' - F - . if ;, , --- - - "I - - 7 ; 7 : - i , ' :-. ' ; - 'r -- r - - 1 ---. - - -1-- - - i . _ , I. ;_..:. .t._: ,—, _-_, -,-;,..-- -....-± • - '.;.. ' -. -------- - - - -.. ,. -, ,. -- :-. - -.-- . , 1 L - _ . _ i. .. . . , I .. . . . . • . - ! , . . . - . - . . . • . .r.. r . . . • , . COMPANY PROJECT , . di WoodWorks° SOFTWARE FOR WOOD DESIGN June 28, 2010 10:19 b25 LC1 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, pst, or pit ) Load Type Distribution Magnitude Location ]ft] Units Start End Start End 1 w72 Dead Partial UD 539.7 539.7 13.00 14.50 plf 2 Snow Partial UD 493.7 493.7 13.00 14.50 plf 3 w28 Dead Partial UD 535.5 535.5 0.00 4.50 plf 4 Snow Partial UD 487.5 487.5 0.00 4.50 plf 5 c14 Dead Point 1074 7.00 lbs 6 c14 Snow Point 1601 7.00 lbs 7 Dead Point 1074 13.00 lbs B cl5 Snow Point 1601 13.00 lbs 9 w73 Dead Partial UD 539.7 539.7 14.50 16.00 plf 1 Snow Partial UD 493.7 493.7 14.50 16.00 plf 11 w74 Dead Partial UD 443.7 443.7 5.50 7.00 plf 12 Snow Partial UD 493.7 493.7 5.50 7.00 plf 13 w75 Dead Partial UD 539.7 539.7 4.50 5.50 plf 14_w75 Snow Partial UD 493.7 493.7 4.50 5.50 plf • 15_j42 Dead Partial UD 47.7 47.7 0.00 4.50 plf 16 j42 Live Partial UD 160.0 160.0 0.00 4.50 plf 17_j43 Dead Partial UD 47.7 47.7 4.50 5.50 plf 18 j43 Live Partial UD 160.0 160.0 4.50 5.50 plf 19 j44 Dead Partial UD 47.7 47.7 7.50 13.00 plf 20J44 Live Partial UD 160.0 160.0 7.50 13.00 plf 21_j45 Dead Partial UD 47.7 47.7 5.50 7.50 plf 22_j45 Live Partial UD 160.0 160.0 5.50 7.50 plf 23_j46 Dead Partial UD 47.7 47.7 13.00 14.50 plf 24 j46 Live Partial UD 160.0 160.0 13.00 14.50 plf 25 j47 Dead Partial UD 47.7 47.7 14.50 16.00 plf 26_j47 Live Partial UD 160.0 160.0 14.50 16.00 plf 203A Wind Point 7960 0.00 lbs 203A.1 Wind Point -7960 7.00 lbs 2038.1 Wind Point 7960 13.00 lbs 2038.2 Wind Point -7960 16.00 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : 161 l a 4101 Dead 4328 4096 Live 7703 2458 Uplift 8197 Total 12031 Bearing: #6 Load Comb #4 2.46 Length 3.61 Glulam -Bal., West Species, 24F -V8 DF, 5- 118x15" Self- weight of 17.7 pit included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 136 Fv' = 305 fv /Fv' = 0.45 Bending( +) fb = 1986 Fb' = 2760 fb /Fb' = 0.72 Live Defl'n 0.27 = L/704 0.53 = L/360 0.51 Total Defl'n 0.68 = L/283 0.80 = L/240 0.85 . ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 6 Fb'+ 2400 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 6 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 3 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 3 Shear : LC #6 = D +S, V = 8344, V design = 6983 lbs Bending( +): LC #6 = D +5, M = 31814 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 2594e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C =construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI/AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). S „...- 6,119-0 • COMPANY PROJECT i 1 WoodWorks° SOFTWARE FOR WOOD DESIGN June 28, 2010 10:24 b25 LC1 NO LL Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location (ft) Units Start End Start End 1 w72 Dead Partial UD 539.7 539.7 13.00 14.50 plf 3_w2B Dead Partial UD 535.5 535.5 0.00 4.50 plf 5 c14 Dead Point 1074 7.00 lbs 7 c15 Dead Point 1074 13.00 lbs 9 Dead Partial UD 539.7 539.7 14.50 16.00 plf 11 w74 Dead Partial UD 443.7 443.7 5.50 7.00 plf 13 w75 Dead Partial UD 539.7 539.7 4.50 5.50 plf 15 j42 Dead Partial UD 47.7 47.7 0.00 4.50 plf 17 j43 Dead Partial UD 47.7 47.7 4.50 5.50 plf 19 j44 Dead Partial UD 47.7 47.7 7.50 13.00 plf 21 j45 Dead Partial UD 47.7 47.7 5.50 7.50 plf 23 Dead Partial UD 47.7 47.7 13.00 14.50 plf 25 Dead Partial UD 47.7 47.7 14.50 16.00 plf 203A Wind Point 7960 0.00 lbs 203A.1 Wind Point -7960 7.00 lbs 2038.1 Wind Point 7960 13.00 lbs 2038.2 Wind Point -7960 16.00 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : L 1 0. 161 Dead 4328 4101 Live 3300 Uplift 2458 Total 7572 4101 Bearing: Load Comb #2 #1 Length 2.27 1.23 Glulam-Bal., West Species, 24F -V8 DF, 5- 1/8x15" Self- weight of 17.7 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 70 Fv' = 238 fv /Fv' = 0.29 Bending( +) fb = 978 Fb' == 2160 fb /Fb' = 0.45 Live Defl'n -0.30 = L/632 0.53 = L/360 0.57 Total Defl'n -0.03 = <L/999 0.80 = L/240 0.04 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 0.90 1.00 1.00 - - - - 1.00 1.00 1.00 1 Fb'+ 2400 0.90 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 1 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emirs' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #1 = D only, V = 4328, V design = 3577 lbs Bending( +): LC #1 = D only, M = 15667 lbs -ft Deflection: LC #2 = .6D +W EI= 2594e06 lb -in2 Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). (PA27)\ COMPANY PROJECT I WoodWorks° SOFtWARE KIR WOOD DESIGN June 28, 2010 10:20 b25 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs. pst, or p11) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w72 Dead Partial UD 539.7 539.7 13.00 14.50 plf 2 w72 Snow Partial UD 493.7 493.7 13.00 14.50 plf 3w28 Dead Partial UD 535.5 535.5 0.00 4.50 plf 4w28 Snow Partial UD 487.5 487.5 0.00 4.50 plf 5_c14 Dead Point 1074 7.00 lbs 6 c14 Snow Point 1601 7.00 lbs / Dead Point 1074 13.00 lbs 8 Snow Point 1601 13.00 lbs 9 w73 Dead Partial UD 539.7 539.7 14.50 16.00 plf 10_w73 Snow Partial UD 493.7 493.7 14.50 16.00 plf 11 w74 Dead Partial UD 443.7 443.7 5.50 7.00 plf 12 Snow Partial UD 493.7 493.7 5.50 7.00 plf 13 w 75 Dead Partial UD 539.7 539.7 4.50 5.50 plf 14 - w75 Snow Partial UD 493.7 493.7 4.50 5.50 plf 15 j42 Dead Partial UD 47.7 47.7 0.00 4.50 plf 16_j42 Live Partial UD 160.0 160.0 0.00 4.50 plf 17 j43 Dead Partial UD 47.7 47.7 4.50 5.50 plf 18 j43 Live Partial UD 160.0 160.0 4.50 5.50 plf 19j44 Dead Partial UD 47.7 47.7 7.50 13.00 plf 20 j44 Live Partial UD 160.0 160.0 7.50 13.00 plf 21 j45 Dead Partial UD 47.7 47.7 5.50 7.50 plf 22 j45 Live Partial UD 160.0 160.0 5.50 7.50 plf 23 j46 Dead Partial UD 47.7 47.7 13.00 14.50 plf 24 j46 Live Partial UD 160.0 160.0 13.00 14.50 plf 25 j47 Dead Partial UD 47.7 47.7 14.50 16.00 plf 26 - j47 Live Partial UD 160.0 160.0 14.50 16.00 plf 203A Wind Point -7960 0.00 lbs ' 203A.1 Wind Point 7960 7.00 lbs 2039.1 Wind Point -7960 13.00 lbs 203B.2 Wind _ Point 7960 16.00 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : I 1 l a 161 4101 Dead 4328 7763 Live 4016 Uplift 2321 11864 Total 8344 Bearing: 09 Load Comb #6 3.56 Length 2.50 Glulam -Bal., West Species, 24F -V8 DF, 5- 1/8x15" Self- weight of 17.7 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 136 Fv' = 305 fv /Fv' = 0.45 Bending( +) fb = 2949 Fb' = 3840 fb /Eb' = 0.77 Live Defl'n 0.42 = L/454 0.53 = L/360 0.79 Total Defl'n 0.69 = L/277 0.80 = L/240 0.87 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 6 Fb'+ 2400 1.60 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 4 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 4 Emirs' 0.85 million 1.00 1.00 - - - - 1.00 - - 4 Shear : LC 06 = 0 +0, V = 8344, V design = 6983 lbs Bending( +): LC #4 = D +.75(L +S +W), M = 47228 lbs -ft Deflection: LC #4 = D +.751L +S +W) EI= 2594e06 lb -in2 Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSIJAITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). 6)._ X32_ • COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 10:23 b25 LC2 NO LL Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1 w72 Dead Partial UD 539.7 539.7 13.00 14.50 plf 3 w28 Dead Partial UD 535.5 535.5 0.00 4.50 plf 5 c14 Dead Point 1074 7.00 lbs 7_c15 Dead Point 1074 13.00 lbs 9 w73 Dead Partial UD 539.7 539.7 14.50 16.00 plf 11 w74 Dead Partial UD 443.7 443.7 5.50 7.00 plf 13 w75 Dead Partial UD 539.7 539.7 4.50 5.50 plf 15_j42 Dead Partial UD 47.7 47.7 0.00 4.50 plf 17_j43 Dead Partial UD 47.7 47.7 4.50 5.50 pif 19_j44 Dead Partial UD 47.7 47.7 7.50 13.00 plf 21_j45 Dead Partial UD 47.7 47.7 5.50 7.50 plf 23_j46 Dead Partial UD 47.7 47.7 13.00 14.50 plf 25 j47 Dead Partial UD 47.7 47.7 14.50 16.00 plf 203A Wind Point -7960 0.00 lbs 203A.1 wind Point 7960 7.00 lbs 203B.1 Wind Point -7960 13.00 lbs 203B.2 Wind Point 7960 16.00 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : A lo' 161 Dead 4328 4101 Live 3391 Uplift 2321 Total 4328 7435 Bearing: Load Comb #1 # Length 1.30 2 Glulam -Bal., West Species, 24F -V8 DF, 5- 118x15" Self- weight of 17.7 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 70 Fv' = 238 fv /Fv' = 0.29 Bending( +) fb = 1905 Fb' = 3840 fb /Fb' = 0.50 Live Defl'n 0.10 = <L/999 0.53 = L/360 0.18 Total Defl'n 0.37 = L /525 0.80 = L/240 0.46 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 0.90 1.00 1.00 - - - - 1.00 1.00 1.00 1 Fb'+ 2400 1.60 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #1 = D only, V = 4328, V design = 3577 lbs Bending( +): LC #2 = .6D +W, M = 30517 lbs -ft Deflection: LC #2 = .6D +W EI= 2594e06 lb -in2 Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). COMPANY PROJECT i I WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 10:25 b26 LC1 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location (ft) Units Start End Start End 1 w37 Dead Partial UD 535.5 535.5 10.50 11.00 plf 2_w37 Snow Partial UD 487.5 487.5 10.50 11.00 plf 3_w38 Dead Partial UD 535.5 535.5 11.00 14.00 plf 4 w38 Snow Partial UD 487.5 487.5 11.00 14.00 plf 5 w39 Dead Partial UD 535.5 535.5 14.00 15.50 plf 6 w39 Snow Partial UD 487.5 487.5 14.00 15.50 plf W1.1 Wind Point 13500 10.50 lbs W1.2 Wind Point -13499 15.50 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : 1 15'-6 Dead 583 2397 Live 4182 8392 Total 4704 10789 Bearing: Load Comb #4 #3 Length 1.41 3.24 Glulam -Bal., West Species, 20F -V7 DF, 5- 118x16 -112" Self- weight of 19.47 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 181 Fv' = 424 fv /Fv' = 0.43 Bending( +) fb = 2526 Fb' = 3195 fb /Fb' = 0.79 Live Defl'n 0.47 = L/395 0.52 = L/360 0.91 Total Defl'n 0.56 = L/331 0.77 = L/240 0.72 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.60 1.00 1.00 - - - - 1.00 1.00 1.00 4 Fb'+ 2000 1.60 1.00 1.00 1.000 0.999 1.00 1.00 1.00 1.00 - 4 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.6 million 1.00 1.00 - - - - 1.00 - - 4 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 4 Shear : LC #4 = .6D +W, V = 10643, V design = 10194 lbs Bending( +): LC #4 = .6D +W, M = 48956 lbs -ft Deflection: LC #4 = .6D +W EI= 3070e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). g COMPANY PROJECT WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 10:27 b26 LC1 no II Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_w37 Dead Partial UD 535.5 535.5 10.50 11.00 plf 3 w38 Dead Partial UD 535.5 535.5 11.00 14.00 plf 5 w39 Dead Partial UD 535.5 535.5 14.00 15.50 plf W1.1 Wind Point 13500 10.50 lbs W1.2 Wind Point -13499 15.50 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : A ' 15' -6'l Dead 583 2397 Live 4182 8247 Total 4704 10583 Bearing: Load Comb #2 #2 Length 1.41 3.18 Glulam -Bal., West Species, 20F -V7 DF, 5- 118x16 -112" Self- weight of 19.47 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 181 Fv' = 424 fv /Fv' = 0.43 Bending( +) fb = 2526 Fb' = 3195 fb /Fb' = 0.79 Live Defl'n 0.47 = L/395 0.52 = L/360 0.91 Total Defl'n 0.56 = L/331 0.77 = L/240 0.72 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.60 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2000 1.60 1.00 1.00 1.000 0.999 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.6 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = .6D +W, V = 10643, V design = 10194 lbs Bending( +): LC = .6D +W, M = 48956 lbs -ft Deflection: LC #2 = .6D +W EI= 3070e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). COMPANY PROJECT I 14 1 I WoodWorks® SOF!WARE FOR WOOD DFSIGN June 28, 2010 10:26 b26 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w37 Dead Partial UD 535.5 535.5 10.50 11.00 plf 2 w 37 Snow Partial UD 487.5 487.5 10.50 11.00 plf 3 w 38 Dead Partial UD 535.5 535.5 11.00 14.00 plf 4 Snow Partial UD 487.5 487.5 11.00 14.00 plf 5 w39 Dead Partial UD 535.5 535.5 14.00 15.50 plf 6 w 39 Snow Partial UD 487.5 487.5 14.00 15.50 plf W1.1 Wind Point -13499 10.50 lbs W1.2 Wind Point 13500 15.50 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : A 16-61 Dead 583 2397 Live 393 2044 Uplift 3945 7647 Total 976 4441 Bearing: Load Comb #2 #2 Length 0.50* 1.33 'Min. bearing length for beams is 1/2" for exterior supports Glulam -Bal., West Species, 20F -V7 DF, 5- 1/8x16 -1/2" Self- weight of 19.47 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 136 Fv' = 424 fv /Fv' = 0.32 Bending( +) fb = 488 Fb' = 2297 fb /Fb' = 0.21 Bending( -) fb = 2193 Fb' = 2940 fb /Fb' = 0.75 Live Defl'n -0.51 = L/362 0.52 = L/360 0.99 Total Defl'n -0.42 = L/441 0.77 = L/240 0.54 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.60 1.00 1.00 - - - - 1.00 1.00 1.00 4 Fb'+ 2000 1.15 1.00 1.00 1.000 0.999 1.00 1.00 1.00 1.00 - 2 Fb'- 2000 1.60 1.00 1.00 0.919 1.000 1.00 1.00 1.00 1.00 - 4 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.6 million 1.00 1.00 - - - - 1.00 - - 4 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 4 Shear : LC #4 = .6D +W, V = 7647, V design = 7647 lbs Bending( +): LC #2 = D +S, M = 9454 lbs -ft Bending( -): LC #4 = .6D +W, M = 42496 lbs -ft Deflection: LC #4 = .6D +W EI= 3070e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). 23 311>to • 1. COMPANY PROJECT WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 10:30 b26 LC2 no II Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1w37 Dead Partial UD 535.5 535.5 10.50 11.00 plf 3__w38 Dead Partial UD 535.5 535.5 11.00 14.00 plf 5 w39 Dead Partial UD 535.5 535.5 14.00 15.50 plf W1.1 Wind Point -13499 10.50 lbs W1.2 Wind Point 13500 15.50 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : A 10' Dead 583 2397 Live Uplift 3945 7647 Total 583 2397 Bearing: Load Comb #1 #1 Length 0.50* 0.72 'Min. bearing length for beams is 1/2" for exterior supports Glulam -Bal., West Species, 20F -V7 DF, 5- 118x16 -112" Self- weight of 19.47 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 136 Fv' = 424 fv /Fv' = 0.32 Bending( +) fb = 267 Fb' = 1797 fb /Fb' = 0.15 Bending( -) fb = 2193 Fb' = 2940 fb /Fb' = 0.75 Live Defl'n -0.51 = L/362 0.52 = L/360 0.99 Total Defl'n -0.42 = L/441 0.77 = L/240 0.54 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.60 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2000 0.90 1.00 1.00 1.000 0.999 1.00 1.00 1.00 1.00 - 1 Fb'- 2000 1.60 1.00 1.00 0.919 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.6 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = .6D +W, V = 7647, V design = 7647 lbs Bending( +): LC #1 = D only, M = 5167 lbs -ft Bending( -): LC #2 = .6D +W, M = 42496 lbs -ft Deflection: LC #2 = .6D +W EI= 3070e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). 8-67)Zt-+- Harper Project: HP i•, Houf Peterson Client: Job # Righellis Inc. ENGINEERS. PLANNERS Designer: Date: Pg. # 1 AN SGAPE aRLN11EC ISS11R[YGR� O WL best (05n W dl := 10• lb 8•ft•20•ft W = 1600•Ib ft Seismic Forces Site Class =D Design Catagory =D Wp : = W 1 1.0 Component Importance Factor (Sect 13.1.3, ASCE 7 -05) S := 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. S := 0.942 Max EQ, 5% damped, spectral responce acceleration at short period z := 9 Height of Component h := 32 Mean Height Of Roof F a .= 1.123 Acc -based site coefficient @ .3 s- period (Table 1613.5.3(1), 2006 IBC) F v := 1.722 Vel -based site coefficient @ 1 s- period (Table 1613.5.3(2), 2006 IBC) S • = F a •S s Sml := F 2 • S ms S := Max EQ, 5% damped, spectral responce acceleration at short period 3 Exterior Elements & Body Of Connections a := 1.0 R := 2.5 (Table 13.5 -1, ASCE 7 -05) F p F : = 4ap ds •lp r l + 2• h I •Wp E 13.3 -1 I \ J Fpmax := 1.6. S W EQU. 13.3 -2 F Pmin := . EQU. 13.3 -3 if(F > Fpmax,Fpmax,if(Fp < Fpmin,FPmin,Fp)) F = 338.5171•lb Miniumum Vertical Force 0.2• S ds • W dl = 225.6781 • lb rl les Harper Project: HP :• Houf Peterson Client: Job # Righellis Inc. - - -_— ENGINEERS•,LANNENS - -- Designer: Date: Pg. # LAHDSCAPE ARCHITCC IS• SERVE VCR_- W dl := 10. lb •8•ft•20•ft W = 1600.Ib ft Seismic Forces Site Class =D Design Catagory =D Wp := Wdl 1.0 Component Importance Factor (Sect 13.1.3, ASCE 7 -05) 1 :- - S : = 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. S := 0.942 Max EQ, 5% damped, spectral responce acceleration at short period z := 9 Height of Component h := 32 Mean Height Of Roof F • = 1.123 Acc -based site coefficient @ .3 s- period (Table 1613.5.3(1), 2006 IBC) F := 1.722 Vel -based site coefficient @ 1 s- period (Table 1613.5.3(2), 2006 IBC) S F S := F .S 2.S ms S ds := Max EQ, 5% damped, spectral responce acceleration at short period 3 Exterior Elements & Body Of Connections a := 1.0 R := 2.5 (Table 13.5 -1, ASCE 7 -05) 4a • z FP := P R •(1 + 2• h I • WP EQU. 13.3 -1 P J Fpmax 1.6•S EQU. 13.3 -2 F Pmin := .3.S ds' 1 p' W p EQU. 13.3 -3 ,:= if(F > F pmax , FPmax, if(F < F pmin , Fpmin, F F = 338.5171.1b Miniumum Vertical Force 0.2 • S ds• W dl = 225.6781•lb -67) BY DATE \ , 30 ( 0 JOB NO C 0 PROJECT: RE: F? WOvror: PL J2: = _ - \L.0,s y Z 2.0 O w f M (33q 5V >= ( tvgs -Pt J Q J CC O w C = T= 1 OS ti 't sit U Z a. Z s V Sf c5l � r1W5011 LT'rl U �rQ Z t— • — 'i u«� J T C ' op,, ° ! / ! t ° x o Z El z 0 0 a O 6 — N ;. 0 d0 a _= x - • g-6 ° . .1 i • DATE: Acre4)0( 4 � ii1l 1) ;/.D1 C ' �(p\ 11f �//+ 1 /f -� LPr By : \ �v 0 JOB NO.: 1 ti/ l V -O ` V PROJECT: RE: c k 1 }) 1-i Y' i.J. `t,?_ IA r . V (- t°` l --1(.- \.�� 7 u_ El 0 Z Decxsrrr1 O w d- w I 0 X NRn,k- CPCPAC. ITy (u0 C'3rnn;oi L ❑ o ( 1.333)(laa,lr�ad E) T I�a..C? />10 +t -� o Z w °x • e — 31 Z a CAPIAC. IT-11 • --1" Z • = l 1 b a,. b (DI * Inct .X312 I . (zc O I b % -F z Sa\sr3 . v --- 4 0 U ` u ❑ J w ❑ a fA I 4 l d P ° e e p 6 O c .; V s-e_. (22) s\ S x40, te______A_,_4 I - • j C T gx - Po C-iftw i ., 1.0a& = Sowi4 ( vi Iv.) a31 4trF- 5\ 1 , S CK 3)54- x/412_ - 11 0, c , = ( N ) X 4 40 -- 0 g (I ct- c i, t) 9 -s -1--- L • 74 2 L.;;. D -,• 0 ) 1 .... . = ) 3 '1 fl cla +t • . ' 0 0 I-7e *) a) cite e 1 i itSDE rs41-i+ 0009 ---- 3 c-Odcri . o 2 0 z -n P (,) • • m 0 n o 3 ■1 1 ■ 4 ..A(.) \ in 1 f "; 5■3'. 01 r \AsduAlg --n c z (7; > rvls '2, a N,4,.0„,,,=-D,_,. z m § n N CD-liq 11--- rn 0 F 0 El 4#‘ OCYZ ----) : rn o 4 ,, T. Enld D r ■-1) 0-1 -I z 11 a r .. rn 0 0 - ------.. _ "7rre '''‘ j .. "-)t 'D CI_ • .3 N :103 road , 3 .'ON ElOr 0 Itpe frlOLBJ.Va Ur.41:623 fi -..*.V :A8 Harper • .1 II' 1 ‘• Houf Peterson COM MUNICATION RECORD Righellis Inc. TO ❑ FROM MEMO TO FILE • E:•IGINEEr' 1 • PLAI;:■ERS LAf.L _.= qP °_4FCrIITF CTd•sUnvEVO PHONE NO.: PHONE CALL: ID MEETING: L ;U -0 to m I/ I 0 o ro 2 n f(rn II 11 P 0 g; d • 0,5 i 1$ 03 ? a 1 , .... N „._r. m , ..,,) -c-- n -t `S s' T 9 lq ) c a . . _____ I cs_ =1 0 i I . ... z 0 1 0 ..d HP Peterson COMMUNICATION RECORD Righellis Inc. To ❑ FROM E MEMO TO FILE El E 'GINEER:' • PLAFI;IER: LA An`LNITECT5.5U ?V =VOR: PHONE NO.: PHONE CALL: 0 MEETING: El .M - 0 w F.1 M O n 1 g .3 R---- al l 1 - s, muns H. Z6 S a m CN, .._._.-t—.--l_._._._._ li 1 r o co i N m Z' 1 O COMPANY PROJECT l,; WoodWorks® • SOFTWARE FOR WOOD DESIGN June 8, 2009 16:27 Hand Ra1l2 Design Check Calculation Sheet Sizer 8.0 LOADS: Load Type Distribution Pat- Location [ft] Magnitude Unit tern Start End Start End LIVE Live Full UDL 50.0 plf MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : l0' 5 Dead Live 125 125 Total 129 129 Bearing: Load Comb #2 #2 Length 0.50* 0.50* Cb 1.00 1.00 *Min. bearing length for beams is 1/2" for exterior supports Lumber -soft; Hem -Fir, No.2, 2x6" Self- weight of 1.7 plf included in loads; Lateral support: top= at supports, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis/Design Shear fv = 19 Fv' = 150 fv /Fv' = 0.13 Bending( +) fb = 256 Fb' = 1048 fb /Fb' = 0.24 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.16 Total Defl'n 0.03 = <L/999 0.25 = L/240 0.11 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 150 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 0.949 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 405 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.3 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.47 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = L, V = 129, V design = 106 lbs Bending( +): LC #2 = L, M = 162 lbs -ft Deflection: LC #2 = L EI = 27e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction Lc= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. C \-\ (61 COMPANY PROJECT 1 WoodWorks SOFTWARE FOR WOOD DESIGN June 8, 2009 16:27 Hand Rail Design Check Calculation Sheet Sizer 8.0 LOADS: Load Type Distribution Pat- Location [ft] Magnitude Unit tern Start End Start End LIVE Live Point 2.50 200 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : la 51 Dead Live 100 100 Total 104 104 Bearing: Load Comb #2 #2 Length 0.50* 0.50* Cb 1.00 1.00 *Min. bearing length for beams is 1/2" for exterior supports Lumber -soft, Hem -Fir, No.2, 2x6" Self- weight of 1.7 plf included in loads; Lateral support: top= at supports, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis/Design Shear fv = 19 Fv' = 150 fv /Fv' = 0.13 Bending( +) fb = 405 Fb' = 1048 fb /Fb' = 0.39 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.20 Total Defl'n 0.03 = <L/999 0.25 = L/240 0.14 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 150 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 0.949 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 405 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.3 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.47 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = L, V = 104, V design = 103 lbs Bending( +): LC #2 = L, M = 255 lbs -ft Deflection: LC #2 = L EI = 27e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction Lc= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 8- C1 . WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B - Front Load WoodWorks® Sizer 7.1 June 22, 2010 14:13:51 Concept Mode: Reactions at Base of Structure View Roof: 25' • • 105 0 _ 1280 L. _ 1280 L - - - - - - 49. - 6" use.__- . 442 D 442 D _ _ _ 4� - d IUL .. - - - --" - - - - ._ .._ 40 -D IU 1 _ _ 40 -b 1'.1',J .. - _ - 44 -0 "9. -. •. • _ _ ._.. . .. _.., . _ _ . -. _ _.. 4i -0 u :i -_ 12272089 L -1601 L. . _. 4 1 -u `,:S0 10481539 D ,1074 D `u -" ;In - -- - - -- " - - -- - -- 3y 0 y4 3,D -D :J3 - -- -- -- -. —. it -0 `.".Z - - - - - - - - - -- - - - - . -. 317 -U 111 ...1 5 -0 9U - - - 34 -D 0. 33 -b • 6 31 -0 nb- .. - ._ _ .. _ _ . . . ..-- • -- - - -- - - - -. _. 3 b� 75 L ea -a 64 59D - _ . - . . - - - 26 -0 33 G/ -0 b t 1408 L G5 -0 ou • 514 D " -- • 556 D - _ • ., - - - G4 -0 1,`7.1 . 53-0 r - 1080 L • - 640 L -,..--- - - - - • -- - . - • .G.2 -0 L' 1 -0 r b • 409 D - - 792 L - - - - - - - - - G u -u '4 -- - - • - 4Rn1 99 DD. - -- -- - -- - .. - • : - is -6 1� 1522L 99 9D :.: . 1 0 --0 553 D i-0 (6 225 75 L - o 73 D : �d n - - G - 3b 2192 L.. iu -a uo 1311 D b� n 033 - -- . -. - .. _ L - 5581 D.. :- u n BBIB.B BCCCC CCCI CCC: CCCCCC CC+ CCCDDDD .EEEEEEEFEEE:EEEE 0' 2' 4' 6' 8' 10' 12' 1 4 ' 16 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44'46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'67'8' 1‘1 "1;1:1 11:111'.2(2 22;2 - 2 23133:3 ;3 •313;414 4:0:4 5:5 :5 5i5'.6t6 3;6:6 , 6:6(6:6071 77 :7'7777 -6' 3(.1 to L a131 D FOOTIN L or • _F QOi.'C LCDP-t g_. i.\ WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B - Rear Load WoodWorks® Sizer 7.1 June 22, 2010 14:14:21 Concept Mode: Reactions at Base of Structure View Floor 3: 17' • ■ 49' 6" 1050 - 1280E 1280 L • - - - 49 -b lu4 442 D. - - .44 D - . IVU 2 _ 43 -0 � 1 1-0 yb - 376 L 4I -b �. 5296 L. • - - - - -- - ' • y 4328 D 4101 D au b J4 3 -b :... 30 b 1 .;0 -b yJ j• 13 b6 -. - . ._ _ - 3Z. -0 OCR - - __ - - - - - ' - - - 31 -0 bf • __ _ - 31.; -0 b5 75 L 41.3 -0' .. Lb -b bL 765 10 36 L .- - ca a ' nu - 483 D . --- . - L. - (3 , ,,f - 277 D - - - b 9U 640E cL -o �0 208 -- - 774 1- - _.. - _ - LU - o f a - assn ( - - 99 DD.. . _ - - - , - - - - , , -0 3 1020 L i 17 -0 b -' ii 990.. -_ - - . . . - - ' r 1 368 D 14 -b 0 y 2 25 98 D 75 L 1 3 - O f - 73 -- - -` V.. Sa -- . - _ . . - -. - - 11 -o 00 _ _ ` 'a 2186 L �U-b ' 1298 D --- b -b u: 1.5 / b . 3 .. buy 4 L 0 84 L - 94 L). i 306 L4 D. 4 ' 062 L L -o 73D'7E2515D5D 5647 D" a -b v BBIB, BBCCCCCCCC( CCCCCCCCCCCCCCCI CCCDDDDDDDDt CDD CDDDDDDDDDCDI DDDE ,EEEEEEDEEEIEEIEEEEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 6o 68' 70' 72' 74' 76' 0 1 :111 :1(1'1( 142(2'2.2:2-2: 2(2'21213(3 - 3:3:3 , 3:313 . 3 1 314 ( 4 4:4 :4- 4!414'4J4,53 5.515 :616 fi 6:6 *77(77' -6 ' V 00- kNC-„ LP%/OuT R €p Lam) B _col ______ r. Plain Concrete Isolated Square Footing Design: F1 fc :- 2500.psi Concrete strength f: = 60000.psi Reinforcing steel strength E := 29000•ksi Steel modulus of elasticity "Yconc := 150:pcf Concrete density 'Ysoil := 100•pcf Soil density gall := 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Total := 5647.1b Pd1:= Totaldi Totahl :_ 7062-lb P11 := Totalll Ptl = Pdl + Pll Ptl = 12709•lb Footing Dimensions tf := 12• in Footing thickness Width := 42•in Footing width A := Width Footing Area cl net := gall — tf'1'conc cl = 1350•psf • Ptl Aregd == gnet A red = q 9.414•ft < A = 12.25•ft GOOD • Widthreqd := Arid Widthreqd = 3.07- ft < Width = 3.50 ft GOOD Ultimate Loads = Pd1 + tf•A•"Yconc P := 1.4•Pdl + 1.7•P11 P = 22.48.kips P qu := A q = 1.84•ksf • 4'3 Beam Shear bccd := 5.5 -in (4x4 post) d := tg – 2 -in := 0.85 b := Width b = 42 -in V„ := 9-- 4 f V„ = 23.8 -kips 3 Vu := qu (b – bcoll b V = 9.77 -kips < V, = 23.8-kips GOOD 1 2 J Two -Way Shear bg := 5.5.in Short side column width bL := 5.5 -in Long side column width b,:= 2-(bS + d) + 2.(bL + d) b = 62 -in (3 := 1.0 A;_ 4 + 8 f b d V = 71.4 -kips (3 3. 0c Vmmax := •2.66 f psi b d Vnmax = 47.48 -kips = qu•[b – + d) V = 19.42 -kips < Vnmax = 47.48 -kips GOOD Flexure 2 b – 2 bcoi 1 M := chi-ft . M = 7.43 ft kips := 0.65 b•d _ S = 0.405 -ft 3 S : F := 5.9- f psi F = 162.5 -psi M ft := — f = 127.36 -psi< F = 162.5 -psi GOOD .Jse a 3' -6" x 3' -6" x 12" plain concrete footing gL\ 27 • Plain Concrete Isolated Square Footing Design: F2 f := 2500. psi Concrete strength f := 60000. psi Reinforcing steel strength E := 29000•ksi Steel modulus of elasticity -y eouc := 150•pcf Concrete density / := 100- pcf Soil density g := 1500-psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldi := 4101-1b := Totaldi Totalll := 5376-lb P11 := Totalll Pt! := Pdl pll P = 9477-lb Footing Dimensions t := 10-in Footing thickness Width := 36•in Footing width A := Width Footing Area net := clall trIconc lnet = 1375•psf Pt' A := — A = 6.892- ft 2 < A = 9- ft 2 GOOD clnet Width := Ar,. Width = 2.63-ft < Width = 3.00 ft GOOD Ultimate Loads Pdl trA'iconc Pu := 1 • 4 d1+ 1 - 7 •P11 P = 16.46-kips Pu q:= — A q = 1.83-ksf °V7S-- Beam Shear bcol 5.5.in (4x4 post) d := t• – 2-in := 0.85 b := Width b = 36•in V :_ 0. 3 • f psi b d V = 16.32 -kips Vu := Qu r b – bcoll b V = 6.97•kips < V = 16.32•kips GOOD II \\ 2 J Two -Way Shear bg := 5.5.in Short side column width bL := 5.5•in Long side column width b := 2 -(bg + d) + 2•(bL + d) b = 54 -in (3 := 1.0 4 + 8 f V = 48.96•kips (3 3 '1c Vnm» ck•2.66• f psi•b•d Vnmax = 32.56•kips ,= qu [b – (bcol + d)2] V = 14.14-kips < V = 32.56•kips GOOD Flexure L 2 (b – 2 col 1 M := qu . I l .(_}b M = 4.43-ft-kips `2/ A t:= 0.65 2 S:= b6 S= 0.222•ft F := 54• f F = 162.5•psi M f :_ — f = 138.42 -psi< F = 162.5•psi GOOD S 'Use a 3' -0" x 3' -0" x 10" plain concrete footing 6- •V'(00) Plain Concrete Isolated Square Footing Design: F2 f := 2500-psi Concrete strength f := 60000 -psi Reinforcing steel strength E := 29000-ksi Steel modulus of elasticity 'Yconc 1501pcf Concrete density 'Ysoil := 100-pcf Soil density gall := 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldi := 2515•Ib Pdl Totaldi Totalll := 3606 -lb Pll := Totalll Ptl := Pdl + Pll P = 6121.1b Footing Dimensions t := 10 -in Footing thickness Width := 30-in Footing width A := Width Footing Area clnet gall — tf•"Yconc q uet = 1375 - psf Pt' Areqd gnet A q 4.452-ft 2 < A = 6.25 ft 2 GOOD Widthreqd Areqd Width = 2.11 .ft < Width = 2.50 ft GOOD Ultimate Loads = Pdl + tf • A•'Yconc P := 1.4 Pdl + 1.7•P11 P = 10.74 -kips Pu qu A qu = 1.72 -ksf Beam Shear bcol := 5.5 -in (4x4 post) d := t• — 2 -in := 0.85 b := Width b = 30•in V:= 3 fc •psi•b•d V„ = 13.6 -kips V := qu . ( — bcol I V = 4.39 -kips < V = 13.6 -kips GOOD 2 J Two -Way Shear bs := 5.5. in Short side column width bL := 5.5 -in Long side column width b := 2-(bs + d) + 2•(bL + d) b = 54 -in (3 := 1.0 li 9• 4 + 8 f psi b d V = 40.8-kips C3 3.(3c Vrm,ax := 4,.2.66- f psi -b -d Vnmax = 27.13-kips qu•[b — �bcol + d)2] V = 8.57 -kips < V,,,,„ = 27.13 -kips GOOD Flexure 2 rl Mu := 9u [( - 2 bcol M = 2.24 ft kips 2 A,:= 0.65 13-d S:_ S = 0.185 -ft F := 5- - f psi F = 162.5 -psi M f := S f = 83.98 -psi < F = 162.5-psi GOOD 'Use a 2' -6" x 2' -6" x 10" plain concrete footing V I i ' '; . . H " ‘ E r.. : _ o � n C -1 - o . - n 0 . (�- sq'b)- ��1xS' • (- .b he • o ° S `.' h ' QtA' t1 m 1t` bti - _S`l' e h - 77 = x m m O ..., S'\ 7../ bill "'' `)c;G _' S. 0 • cl0 ^ 0 C \1 :1- . .<'")k ` -4 ('{' 1 ) t -4 ( 3 Z c -L\ )vz S' S-' � S'))c- 'e (` *(1X9 11 - cab 051 °0 W I ' e 'b n1 S' 4 6' 4 t.b E ' b1 s° o Gv i Uirtk) a n0 - A UcD m �. z n m O n A D r 0 r 1 t0 1 3 0 m -1 m p II 1- . 2 _l_____7177-1--- 4 z b•bl ilAtbl£ �9b'b ` uQ� / ' 9 0 1 C -4 1 un 3a 1,5b �, i. 1 :103 rOdd b • -AS ' - A SO'e:V oho-n%)),...,, o t0 1 0c 31va J W\ . • „ . • : _•P Be nt le t.1 Harper Houf Peterson Righellis Inc. , , • n Current Date: 6/22/2010 10:48 AM - Units system: English File name: O:\HHPR Projects\CEN - Centex Homes (309)\CEN - Plans\CEN-090 Summer Creek Townhomes\calcs\Unit B\FDN\Front Load.etz\ • • M33=81.13 [Kip•ft] ' ‘• '\ , . • \ N N M33=-23.24 [Kiplt] • 1 x • ' • . . , _ _ .. Bentte y n-d - • , • - •_ • ..._ . • - Harper Hout•Peterson.Righellit Inc. • - - .. . • Current Date: 6/22/2010 10:49•AM - Units system: English ' - • , . .. File name: OAHHPR Projects\CEN - Centex Homes (309)\CEN - Plans\CEN-090 Summer Creek Townhomes\calcs\Unit B\FDN\Front Load 2.etz\ ' _ .• ._ , • . • , • . . • • , . . • . - • • • • , . ' • • . ,. • ., , . ' • ' . • , . . - • , . • . . , , . . . . • • . . . ' , • . , • . . • . . . • • . • /M33=48.59 [Kip•ttl-- , '. ' ' • . . . . •, . . . ; 1 • • . , . . . . . • ' - . . . . . . . ., . , . • . , , . . , • . . . , . ' . • • . : . . _ • - , . . . _ . ,„ , , . -- -. ..„- ,- ,- • -... • , • .- , / .../: • . , . . . ;7 • ,, i , • • . ' • . ' x; • /'• ' t t• / , , ' • _ '- / f ' J i • : '•-' 1 7 . •-(i__ '. ./ L 1 ' i • I - /' '' . : ,. i (. • ' 1 r -. , ' , . - 1/' - - . ' . • • i , . . , , i • . . ... .- I , , . . . „ . • .. • , . , . . • • , . , • • • . • , • . , I ' • r . ' • M33=-54.65 [Kip`ft] ` H . - • . -. , • , . , I : ..,.X , . • • ' . • • ' . ) • - . . . _ . . , - • . :: , , . . . . . ' . , . • . . . • ' ' - - , .. , • > ' • • . . . .. . ' • . . . . . . • . • , . , ' • • • . . ' . ' • . . • ' • .. • f ' . . . . . , . . . . . .. . , . • , : - Y .,' II, ` ' • .. ...... • . • , • ., , . . . , . ;• . . , . .. . .• . . , , . - . - - ' - - - - - - - - To '. Z1,6 _`£....`1)°il'eS va o a - cu N Caclit 0 0 €� x{3 L004 Off)( \) _ V D,p ) 01 0 3 .#. ( n.a-1 y...7 IN "a - $l)LooO'o1)(a- .0".t)o�`0 -u w0 / � 74 &S ( -11 1 1 . 0 L - `zi7 OOO2 0'O) / c��pp ` W'o. `o p / y � O' \ l / �V = '` 0 • Z Q k O 1 = S ..D'O E' `,1 a s Y- `( 1 1 / vu.3. O ° N ' Z . 1 � c »)(0005 go / L 0 Q °11 °) 40) - b - u pi „7 i 0 k# -13S°_,)( Z N1 ° •0.51 '0'0 ) , ° l Z S 1. -1'1 01,1- C V J 0 C1 Sgr01 CT5v --7-\0 3 l ji fi CY oth - <- "D A \.. -Ii 5111S- 4 "t'`0 Z -4` . — - k `'() .7-_- ` \kk ▪ z = m z 0 P' h h' 2•g G D A!u0 • 0 i,� i 1 - 11--A b� G c } \V ^ - X \ 1 ❑ m 3 0 O • tei 0 :103COLld 3 ° . 01/ -° N .-3 ,...., oiot CloS_ :.iva ')U\cl :A. BY DATE' JOB NO.: PROJECT: RE: n 3 C - Reif Load J Z 5 o W 1C-1 g w i 0 7 \fIY 0 u w o a,4t1a. a O Mor = 54,53 Nc.ct NIA_ L(q) 4- Q. (6,34) i (DCit..33) _ q -5 .34 1--c1 pt_ U tca∎ xa's z CL (ix t�� - 4 a a v.sC ivin, to b t , _ o asC7 5 ( tr. Z(I O 6 L a - Yi YL Yiy • Bentteg AMP Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:57 AM Units system: English File name: O:\HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit C \FDN \Rear Load 2.etz\ M33 =36.82 [Kip'ft] M33= -5022 [Kip'ft] A • • 8 V1* �`X ACI 318 -05 Appendix D 1.125" Diameter Bar Capacity at Standard Stem Wall Concrete Breakout Strength Stem Wall Capacity when govern by 3 edges Foundation Capacity Givens Givens fc = 3000 psi fc = 3000 psi h'ef = 17.00 inches h = 12.00 inches (into the Foundation) Stem = 8.00 inches Note: hef above is the the embedment into only the the foundation and does not consider stem wall embedment Fnd Width = 36.00 inches C min = 2.25 inches Cmin = 18.00 inches Wc,N= 1.00 cast -in -place anchor Wc,N= 1.00 cast -in -place anchor k = 24 cast -in -place anchor k = 24 cast -in -place anchor = 0.75 strength reduction factor = 0.75 strength reduction factor Calculations Calculations ANc = 408 in` AN = 1296 in AND = 2601 in` AN = 1296 in` Nb = 92,139 pounds Nb = 55,121 pounds Wed,N = 0.7265 Wed,N = 1.00 Nib = 10,500 pounds N = 55,121 pounds ONDb = 7,875 pounds 4NDb = 41,341 pounds Combined Capacity of Stem Wall and Foundation oNeb = 49,216 0.754N = 36,912 • f 9 • Concrete Side Face Blow Out Givens Ab = 2.75 in` fc = 3000 psi c mjn = 18.00 inches = 0.75 strength reduction factor Calculations N = 261,589 pounds 4)N = 196,192 pounds Concrete Pullout Strength Givens A br9 = 2.75 in fc = 3000 psi = 0.75 strength reduction factor Calculations N = 66,000 pounds 4'N = 49,500 pounds Steel Yield Strength Givens f = 58,000 psi A = 0.763 in = 0.80 strength reduction factor Calculations N = 44,254 pounds +N = 35,403 pounds < 36,912 Ductility Met Holdown Check Holdown: HD19 Holdown Capacity= 16,380 pounds 1.6* Capacity= 26,208 pounds 26,208 < 35,403 Holdown Checks • , ACI 318 -05 Appendix D 1.0" Diameter Bar Capacity at Portal Frame • Concrete Breakout Strength Stem Wall Capacity when govern by 3 edges Foundation Capacity Givens Givens fc = 3000 psi fc = 3000 psi h'ef = 3.50 inches h = 12.00 inches (into the Fe Stem = 8.00 inches Note: hef above is the the embedment into or c = 5.25 inches the foundation and does not consider stem WE Fnd Width = 36.00 inches e = 2.25 inches c min = 18.00 inches W 1.00 cast -in -place anchor W 1.00 cast -in -place anchor k = 24 cast -in -place anchor k = 24 cast -in -place anchor = 0.75 strength reduction factor = 0.75 strength reduction fact' Calculations Calculations ANc = 68 in` AN = 1296 in` ANo = 110.25 in` AN = 1296 in` Nb = 8,607 pounds Nb = 55,121 pounds Wed,N = 0.8286 Wed.N = 1.00 Ncb = 4,399 pounds N = 55,121 pounds (I)N = 3,299 pounds 4■ = 41,341 pounds Combined Capacity of Stem Wall and Foundation (iNcb = 44,640 0.754 N = 33,480 Concrete Side Face Blow Out Givens Abrg = 2.15 in` fc = 3000 psi C = 18.00 inches = 0.75 strength reduction factor Calculations Nsb = 231,191 pounds 4)Nsb = 173,393 pounds Concrete Pullout Strength Givens Ab = 2.15 in` fc = 3000 psi = 0.75 strength reduction factor Calculations N = 51,552 pounds 4)N = 38,664 pounds Steel Yield Strength Givens f = 58,000 psi A = 0.606 in = 0.80 strength reduction factor Calculations N = 35,148 pounds cl)N = 28,118 pounds < 33,480 Ductility Met Holdown Check Holdown: HDU14 Holdown Capacity= 14,930 pounds 1.6* Capacity= 23,888 pounds 23,888 < 28,118 Holdown Checks BY DATE T U \ L '01° C ( J\ Joe No. O PROJECT: RE: S \--e n\ Wall ' C00-1--rn3 ❑ ❑ e Sides c Bvi Icii J_ . 0 2 tL° aSEt(a?sF )= 300 PLC u_ ❑ • S TL(Z levels ')(13 $ ) = a 05 pt..� laor u 4o1N ('1i �11z�_ 3 pu; stem ° o (SItZ )(ts0 pc.0(w = 100w PLC W x a Z L.L. ° 03c0 (2. !ev -e1s' \ "sc) a (O pA.F -31o0r 0 Z TO1/4 t 0C1.- = 1 i" 1(7UU) PLr' . 2 Mo.% Sbp _ \soo psCr = 1SocpLp • W 118 I+ (Cep LO G CSOOw - cu= 1 o0(a C -,--,-, tG o • o Z ❑ z e rear -i, c-fvrk. or bL)i tOkIrtic. O 2 F DL: as CIO : -. -;oo pLp 00CAU (q Z.levels)(L1 y , = X34 PLR- .P koor- 401,0 (Iso?cF i' /I2.Cbf a) = a3..7 LF- Sl-e (61‘2.)(4so w) 7: (001A.) P � • (i81 1 FS = 306 pk_ P fa) F L L : (9 j(,4 -o V = 1-2L) p LrG C1..a>(2s) _ 4 PL.F O c j ; , "TL o ',"(4 =� t- ► DOLL) a, CI o • = a3u3 r 100w lS00(A ) : x a : _ U.) I' a,1 \ry @ Link V Pr A4 = Save e c,,s fk mtr�� loc- tocwf ., T L \ - )Al cA } ‘ GU uJ W • I.00 t u5-e_ tS @ Pa(k,,wcAt Nx- a as(\t)(2)= (00 p4 vac', u1 ( 5)(2 Xc3.C2 - = (.4 Il=' c,F S loo t` 401 al so ix, F 'l1a)( ) _ 33 51 rT) (111)(k5() w) 100 u> LL ° (6)',..2,')(4O)( .) = 17A0 etx- tour TL: a6a9 - 10ow CA) = 1 `b - • 2311.) us-e at-t tN