Loading...
Specifications /`/I5T'a013- 00013 13 559 5w Rose Maki M S ► 0/013 — 060 cj 5 / 5537 Su) gostM4a. Structural Calculations S CE '' for l.%D APR J 5 2 013 Full Lateral & Gravity Analysis 0 FTIGA RD P C 1 186 IN GDNISIO N Lot 85, Summer Creek Townhomes c 7 Tigard, OR Prepared for Pulte Group April 7, 2011 JOB NUMBER: CEN -090 ** *Limitations * ** Engineer was retained in limited capacity for this project. Design is based upon information provided by the client, who is solely responsible for the accuracy of same. No responsibility and /or liability is assumed by, or is to be assigned to the engineer for items beyond that shown on these sheets. 98 sheets total including this cover sheet. $I RUC TUN CA N � �e 12.320 R o 0 J V J. E1 I y - ltd 12- 31-2011 This Packet of Calculations is Null and Void if Signature above is not Original S Harper '. 1:1'x:• Houf Peterson Righellis Inc. c. nn _.`]CVC .MCwT;' Y.f I']xJ 205 SE Spokane St. Suite 200 • Portland, OR 97202 • [P] 503.221.1131 • [F] 503.221.1171 1104 Main St. Suite 100 • Vancouver, WA 98660 • [P] 360.450.1141 • [F] 360.750.1 141 1133 NW Wall St. Suite 201 • Bend, OR 97701 • [P] 541.318.1 161 • [F] 541.318.1 141 Design Criteria Project Scope: Full lateral & Gravity Analysis of Unit C Design Specifications: Wind Design: Basic Wind Speed (mph): 100 From Building Authority Exposure: B From Building Authority Importance, lW: 1 2006 IBC / 2007 OSSC Occupancy Category: II Residential Earthquake Design: Seismic Design Category: D From Building Authority Site Class: D Assumed, ASCE 7 -05 Ch. 20 Importance, IE: 1 ASCE 7 -05 Table 11.5-1 Ss: 0.942 USGS Spectral Response Map Si: 0.339 USGS Spectral Response Map Dead Load: Floor: 13 psf Wall: 12 psf Wood Roof: 15 psf Live Load: Roof: 25 psf Snow Floor: 40 psf Residential Floor Materials and Design Data: Materials: Concrete Compressive Strength, f'c: 3000 psi Foundations & Slab on Grade Concrete Unit Weight, y 145 pcf Steel Reinforcement Yield Strength, f 60,000 psi Wood Studs (Wall Studs): Hem -Fir #2 2x & 4x Wood Beams & Posts: DF -L #2 6x & Greater Wood Beams & Posts: DF -L# 1 Glulam Beams: 24F -V4 PSL Beams: Fb =2,900 psi, FV= 328psi, E =2.0 Million TS /LSL Beams: Fb =2325 psi, FV= 460psi, E =1.55 Million Design Assumptions 1. Allowable soil bearing pressure (qa) : 1500 psf Assumed 2. All manufactured trusses, joists, and flush beams u.n.o. shall be designed by others. Structural Analysis Soffware Used: Mathcad 11 Microsoft Excel 2000 Wood Works — Sizer version 2002 Bently RAM Advanse Harper Project: Summer Creek Townhomes UNIT C HP Houf Peterson Client: Pulte Group Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS — - Designer: AMC Date: June 2010 Pg. # LANDSCAPE ARCHIILCTE• SUft:'EYORS DESIGN CRITERIA 2007 Oregon Structural Specialty Code & ASCE 7 -05 Roof Dead Load RFR:= 2.5•psf Framing RPL := 1.5•psf Plywood RRF:= 5•psf Roofing RME := 1.5.psf Mech & Elec RMS := 1.psf Misc RCG := 2.5.psf Ceiling RIN := I •psf Insulation RDL = 15•psf Floor Dead Load FFR := 3.psf Framing FPL := 4.psf Sheathing FME := 1.5•psf Mech & Elec FMS := 1.5•psf Misc FIN := .5.psf Finish & Insulation FCLG := 2.5.psf Ceiling FDL = 13.psf Wall Dead Load WOOD EX_Wall := 12•psf 1NT_Wall := 10•psf Roof Live Load RLL := 25•psf Floor Live Load FLL := 40•psf • Harper Project: Summer Creek Townhomes UNIT C HP Houf Peterson Client: Pulte Group Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS - Designer: AMC Date: June 2010 Pg. # ANCSCAPE ARCHItEtTS•SURVEYORS Transverse Seismic Forces Site Class = D Design Catagory = D Building Occupancy Category: II Weight of Structure In Transverse Direction Roof Weight Roof Area := 748.ft RFWT := RDL•Roof Area RFWT = 12566.1b Floor Weight Floor_Area2 := 605•ft FLRWT2nd := FDL•Floor Area2nd FLRWT2 = 7865.1b Floor_Area3 600•ft FLRWT3rd FDL•Floor Area3rd FLRWT3rd = 7800.lb Wall Weight EX Wall Area := (2203).ft INT_Wall_Area := (906)•ft WALLWT := EX_Wall + INT Wall WALLWT = 35496- lb WTTOTAL = 63727 lb Equivalent Lateral Force Procedure(12.8, ASCE 7 -05) h := 32 Mean Height Of Roof I := I Component Importance Factor (11.5, ASCE 7 -05) 6.5 Responce Modification Factor (Table 12.2 -1, ASCE 7 -05) C := .02 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) x := .75 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) Period T := C T = 0.27 < 0.5 (EQU 12.8 -7, ASCE 7 -05) S1 := 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. (Chapter 22, ASCE 7- 05)...or S := 0.942 Max EQ, 5% damped, spectral responce acceleration at short period From Figures 1613.5 (1) &(2) F := 1.123 Acc -based site coefficient @ .3 s- period (Table 11.4 -1, ASCE 7 -05) F, := 1.722 Vel -based site coefficient @ 1 s- period (Table 11.4 -2, ASCE 7 -05) C CL— Harper Project: Summer Creek Townhomes UNIT C , HP Houf Peterson Client: Pulte Group Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: June 2010 Pg. # LANASGA ARC+1irECTS.SNRI'E' IRS S MS := F a -S s SMs = 1.058 (EQU 11.4 -1, ASCE 7 -05) 2 - SMS Sd := Sds = 0.705 (EQU 11.4 -3, ASCE 7 -05) 3 SM1 := F S1 SM1 = 0.584 (EQU 11.4 -2, ASCE 7 -05) 2- SM1 SdI := Shc = 0.389 (EQU 11.4 -4, ASCE 7 -05) 3 Sds* le Cst := Cst = 0.108 (EQU 12.8 -2, ASCE 7 -05) R ...need not exceed... Cs = say le Cs,,, = 0.223 (EQU 12.8 -3, ASCE 7 -05) max •— Ta•R ...and shall not be less then... C1 := if(0.044•Sd < 0.01,0.01,0.044- Sd ( (EQU 12.8 -5 &6, ASCE 7 -05) r 0.5. St le) Si <0.6,0.01, J C2 := if R Csmin := if(C1 > C2,C1,C2) Csmin = 0.031 . Cs := if (Cst < Csmin , Csmin, if (Cst < Csmax , Cst, Csmax)) Cs = 0.108 V := Cs WTTOTAL V = 6914 lb (EQU 12.8 -1, ASCE 7 -05) E := V -0.7 E = 4840 lb (Allowable Stress) • Harper Project: Summer Creek Townhomes UNIT C • HP Houf Peterson ' =r: Client: Pulse Group Job # CEN -090 "` Righellis Inc. rNGINCERL . ,, LANNE.75 Designer: AMC Date: June 2010 Pg. # • _ANDS :•FE AR;HIiCCE$•S,R•E"CRS Transverse Wind Forces (Method 1 - Simplified Wind Procedure per ASCE 7 -05) Basic Wind Speed: 100 mph (3 Sec Gust) Exposure: B Building Occupancy Category: II • I := 1.00 Importance Factor (Table 6 -1, ASCE 7 -05) h = 32 Mean Roof Height X := 1.00 Adjustment Factor (Figure 6 -3, ASCE 7 -05) a2 := 2•.1.16.ft Zone A & B Horizontal Length Smaller of... a2 — 3.2 ft (Fig 6 -2 note 10, ASCE 7 -05) or a2 := a2 =25.6ft but not less than... a 3-2-ft a = Wind Pressure (Figure 6 -2, ASCE 7 -05) Horizontal PnetzoneA := 19.9•psf • PnetzoneB 3.2• psf PnetzoneC 14.4•psf PnetzoneD 3.3•psf Vertical PnetzoneE 8.8•psf PnetzoneF 12•psf PnetzoneG 6.4• psf PnetzoneH 9.7•psf Basic Wind Force PA := PnetzoneA'lw PA = 19.9.psf Wall HWC PB := PnetzoneB' lw' X PB = 3.2• psf Roof HWC PC := PnetioneC'Iw'X Pc = 14.4- psf Wall Typical PD := PnetzoneD' lw' X PD = 3.3• psf Roof Typical PE := PnetzoneE' Iw' X PE _ —8.8- psf PF := PnetzoneF Iw'X PF = — I2.psf PG := PnetzoneG'Iw'X PG = —6.4. psf PH := PnetzoneH' Irv' X PH = —9.7- psf Harper Project: Summer Creek Townhomes UNIT C HP '• Houf Peterson Client: Pulte Group Job # CEN -090 Righellis Inc. 1 ENGINEERS • FLANI1ERS - Designer: AMC Date: June 2010 Pg. # I ANII5C4FI AFCNITECTS•SURVEYORS Determine Wind Sail In Transverse Direction WSAILZoneA (55 + 59 + 29)-ft WSA1LZoneB (6 + 0 + 23)•ft WSAII ZoneC (429 + 355 + 339)4ft WSAII-ZoneD (0 + 0 + 4) -ft 2 W := WSAILZoneA'PA WA = 2846 lb WB := WSAILZoneB-PB WB = 93 lb WC := WSAILZonec•PC WC = 16171 lb W := WSAILZoneD•PD WD = 13 lb Wind_Force := WA + WB + WC + WD Wind_Force := 10•psf•(WSAILZ + WSAILZoneB + WSAILZoneC + WSAILZoneD) Wind_Force = 19123 lb Wind_Force = 12990 lb WSAILZoneE 43•ft2 WSAILZoneF 43412 WSAILZoneG 334•ft2 WSAILZoneH 327 -ft W := WSAILZoneE•PE WE = -378 lb W := WSAII- ZoneF'PF WF = -516 lb W := WSAILZoneG•PG WG = -2138 lb W := WSAILZoneH•PH WH = -3172 lb Upliftnet WF + WH + (WE + WG) + RDL•[WSAILZoneF + WSAILZoneH + (WSAILZoneE + WSAILZoncG)1 1 Uplift = 1326 lb (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN CALCULATION C - 1�� Harper Project: Summer Creek Townhomes UNIT C Houf Peterson Client: Pulte Group Job # CEN -090 Righellis Inc. Eh,N«v — Designer: AMC Date: June 2010 Pg. # IANES,.F= AFCkITECTS•GL, v E +OHS Longitudinal Seismic Forces Site Class = D Design Catagory = D Building Occupancy Category: II Weight of Structure In Longitudinal Direction • Roof Weight Roof Area = 838 ft Nib:= RDL -Roof Area RFW-I- = 12566•Ib Floor Weight Floor_Area2 = 605 ft FFRRd FDL -Floor Area2nd FLRWT2nd = 7865 -lb Floor_Areaj = 600 ft F ,,:= FDL- Floor_Area3 FLRWT3rd = 7800•lb Wall Weight EX Wall Area := (2203) -ft INT Wall Area = 906 ft WAL := EX_Wall + INT_Wall WALLWT = 35496 -lb WTTOTAL = 63727 lb Equivalent Lateral Force Procedure(12.8, ASCE 7 -05) h = 32 Mean Height Of Roof l = 1 Component Importance Factor (11.5, ASCE 7 -05) R := 6.5 Responce Modification Factor (Table 12.2 -1, ASCE 7 -05) C = 0.02 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) x = 0.75 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) Period := C T = 027 < 0.5 (EQU 12.8 -7, ASCE 7 -05) S� = 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. (Chapter 22, ASCE 7- 05)...or S = 0.942 Max EQ, 5% damped, spectral responce acceleration at short period From Figures 1613.5 (1) &(2) F = 1.123 Acc -based site coefficient @ .3 s- period (Table 11.4 -1, ASCE 7 -05) F" = 1.722 Vel -based site coefficient @ 1 s- period (Table 11.4-2, ASCE 7 -05) Harper Project: Summer Creek Townhomes UNIT C HP Houf Peterson Client: Pulte Group Job # CEN -090 Righellis Inc. — E CINEERS • PLANNERS Designer: AMC Date: June 2010 Pg. # L&NCSCSPE%. PCHITFCTS•SL'NVEYORS Mme'= F S SMS 1.058 (EQU 11.4 -1, ASCE 7 -05) 2 • SMS Sds = 0.705 (EQU 11.4 -3, ASCE 7 -05) 3 § F v •S I SMI = 0.584 (EQU 11.4 -2, ASCE 7 -05) 2 SMI S 0.389 (EQU 11.4 -4, ASCE 7 -05) 3 dl= := SdR Cst = 0.108 (EQU 12.8 -2, ASCE 7 -05) ...need not exceed... Cs Shc Csmax = 0.223 (EQU 12.8 -3, ASCE 7 -05) nwA�w:— Ta -R ...and shall not be less then... C := if (0.044- Sd < 0.01,0.01,0.044•Sd s -I e ) 0.5.S1-1, 1 (EQU 12.8 -5 &6, ASCE 7 -05) (SI if <0.6,0.01, R := if (CI > C2, CI, C2) Csmin = 0.031 Cs := if (Cst < Cs < Csmax,Cst,Csmax)) Cs = 0.108 V := Cs' WTTOTAL V = 6914 lb (EQU 12.8 -1, ASCE 7 -05) E := V -0.7 E = 4840 lb (Allowable Stress) rwv • r Harper Project: Summer Creek Townhomes UNIT C HP '• Houf Peterson Client: Pulte Group Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: June 2010 Pg. # .ANCSCPPE AHCHITECTS•SURVFYCR' Longitudinal Wind Forces (Method 1 - Simplified Wind Procedure per ASCE 7 -05) Basic Wind Speed: 110 mph (3 Sec Gust) Exposure: B Building Occupancy Category: H I = 1.0 Importance Factor (Table 6 -1, ASCE 7 -05) h = 32 Mean Roof Height X = 1.00 Adjustment Factor (Figure 6 -3, ASCE 7 -05) Smaller of.. �= 2•.1.16.ft Zone A & B Horizontal Length (Fig 6 -2 note 10, ASCE 7 -05) a2 = 3.2 ft _ or 4h a2 = 25.6 ft but not less than... „,9 3-2-ft a = 6 ft Wind Pressure (Figure 6 -2, ASCE 7 -05) Horizontal PnetzoneA = 19.9•psf PnetzoneB = 3.2•psf PnetzoneC = 14.4•psf PnetzoneD = 3.1psf Vertical PnetzoneE = —8.8.psf PnetzoneF = —12 psf PnetzoneG = —6.4.psf PnetzoneH = —9.7•psf Basic Wind Force PnetzoneA PA = 19.9•psf Wall HWC P44 PnetzoneB' Ivy X PH = 3.2• psf Roof HWC PnetzoneC'Iw.X PC = 14.4.psf Wall Typical Pte:= PnetzoneD IAA/ X PD = 3.3•psf Roof Typical Pte:= PnetzoneE'Iw'X PE = — 8.8•psf ,,:= PnetzoneF'Iw'X PF = — 12•psf := PnetzoneG'Iw'X PG = — 6.4•psf Pte:= PnetzoneH'Iw'X PH = —9.7.psf LV Harper Project: Summer Creek Townhomes UNIT C HP '• Houf Peterson Client: Pulte Group Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS - - -- Designer: AMC Date: June 2010 Pg. # L ANCSCAPE ARCHI!ECIS•SURVIVORS Determine Wind Sail In Longitudinal Direction W AlL :_ (58 + 59 + 21)•ft WSA NwMNln A n (0 + 0 + 51)• 1 Jj := (98 + 99 + 34).ft WS L :_ (0 + 0 + 114).ft Wes= WSAILZoneA'PA WA = 2746 lb Wes:= WSAILZoneB'PB WB = 163 lb ^ W:= WSAILZoneC'PC WC = 3326 lb Ww= WSAILZoneD•PD WD = 376 lb Win = WA + WB + WC + WD Wind Forc = 10•psf•(WSAILZ + WSAILZoneB + WSAILZoneC + WSAILZoneD) Wind Force = 6612 lb Wind_Force = 5340 lb WWSN= 151 •ft „M,olaza := 138•ft2 WS�Gv,:= 242•ft2 WS := 216.11 W WSAILZoneE•PE WE = -1329 lb W WSAILZoneF•PF WF = -1656 lb WSAILZoneG•PG WG = -1549 lb = WSAILZoneH•PH WH = -2095 lb U li := WF + WH + (WE + WG) + RDL•[WSAILZoneF + WSAILZoneH + (WSAILZoneE + WSAILZoneG) }.6.1.12 Uplift = 901 lb (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN CALCULATION Harrier Houf Peterson Righellis P #: Transverse Wind Line Shear Distribution ASCE 7 -05, section 6.4 (Method 1 - simplified) Design Criteria: Basic Wind Speed = 100 mph Wind Exposure = B (Section 6.5.6, ASCE 7 -05) Mean Roof Height, H (ft) = 32 Roof Pitch = 6 /12 Building Category= II (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf A.= 1.00 lw= 1.00 Wind Sail (ft Wind Net Design Wind Pressure (psf) Pressure (lbs) l Zone A = 19.9 143 2846 Wall High Wind Zone Horizontal Zone B = 3.2 29 93 Roof High Wind Zone Wind Forces Zone C = 14.4 1123 16171 Wall Typ Zone Zone D = 3.3 4 13 Roof Typ Zone Zone E = -8.8 43 -378 Roof Windward High Wind Zone Vertical Zone F = -12.0 43 -516 Roof Leeward High Wind Zone Wind Forces Zone G = -6.4 334 -2138 Roof Windward Typ Wind Zone Zone H = -9.7 327 -3172 Roof Leeward Typ Wind Zone Total Wind Force =i 19123 lbs I Use to resist wind uplift: Roof Only Total Exterior Wall Area= 2203 ft Uplift due to Wind Forces= -6204 lbs Resisting Dead Load= 7517 lbs E =I 1313 Lbs...No Net Uplift I Wind Distribution Tributary to Diaphragms Wind Sail Tributary To Dia hragm (ft Zone A Zone B Zone C Zone D Main Floor 55 6 429 0 Upper Floor 59 0 355 0 Main Floor Diaphragm Shear = 7291 lbs Upper Floor Diaphragm Shear = 6286 lbs Roof Diaphragm Shear = 5546 lbs Wind Distribution To Shearwall Lines MAIN FLOOR UPPER FLOOR ROOF Tributary Line Shear Tributary Line Shear Tributary Line Shear Wall Line Diaphragm (lbs) Diaphragm Diaphragm Width (ft) � Width ft (Ibs) Width (ft) (Ibs) A 15.83 2321 6.58 1150 19.00 2773 B 19.00 2785 18.00 3143 0.00 0 C 14.92 2186 11.42 1994 19.00 2773 E= 49.75 7291 36 6286 38.00 5546 C- L_1 0 • Harper Houf Peterson Righellis Pg #. • Transverse Seismic Line Shear Distribution Seismic Design Category = D Occupancy Category = II Site Class = D S1 = 0.34 Ss = 0.94 Importance Factor = 1.00 Table 11.5 -1, ASCE 7 -05 Structural System, R = 6.5 Table 12.2 -1, ASCE 7 -05 Ct = 0.020 Other Fa = 1.12 Fv= 1.72 Mean Roof Height, H (ft) = 32 Period (T = 0.27 Equ. 12.8 -7, ASCE 7 -05 k = 1.00 12.8.3, ASCE 7 -05 SMs 1.06 Equ. 11.4 -1, ASCE 7 -05 Shim= 0.58 Equ. 11.4 -2, ASCE 7 -05 S 0.71 Equ. 11.4 -3, ASCE 7 -05 S 0.39 Equ. 11.4 -4, ASCE 7 -05 Cs = 0.11 Equ. 12.8 -2, ASCE 7 -05 Csmin = 0.01 Equ. 12.8 -5 & 6, ASCE 7 -05 Csmax = 0.22 Equ. 12.8 -3, ASCE 7 -05 Base Shear coefficient, v = 0.076 Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height (ft) = 8 Floor 3 Diaphragm Height (ft) = 18 Roof Diaphragm Height (ft) = 32 Floor 2 Wt (lb)= 7865 Floor 3 Wt (lb)= 7800 Roof Wt (Ib) = 12566 Wall Wt (Ib) = 35496 Trib. Floor 2 Diaphragm Wt (Ib) = 22063 Trib. Floor 3 Diaphragm Wt (lb) = 21998 Trib. Roof Diaphragm Wt (lb) = 19665 Vertical Dist of Seismic Forces I Cumulative % total of base shear Rho Check to Shearwalls (Ibs) to shearwalls Req'd7 Vaoor 2 (lb) = 711 100.0% Yes Vi,,,, 3 (lb) = 1595 85.3% Yes V (lb) = 2534 52.4% Yes Shear Distribution To Wall Lines Wall Line Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line Roof Line Floor 2 Floor 3 Roof Shear Shear Shear sq ft sq ft sq ft lbs lbs lbs A 124 105 326 168 314 1185 B 273 259 0 369 775 0 C 129 169 371 174 506 1349 Sum 526 533 697 711 1595 2534 Total Base Shear* = I 4840 LB *Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. CrL i Harper Houf Peterson Righellis Pg #: Longitudinal Wind Line Shear Distribution ASCE 7 -05, section 6.4 (Method 1 - simplified) Design Criteria: Basic Wind Speed = 100 mph Wind Exposure = B (Section 6.5.6, ASCE 7 -05) Mean Roof Height, H (ft) = 32 Roof Pitch = 6 /12 Building Category= II (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf A. = 1.00 Iw= 1.00 Wind Sail (ft Wind Net Design Wind Pressure (psf) Pressure (Ibs) � A = 19.9 138 2746 Wall High Wind Zone Horizontal Zone B = 3.2 51 163 Roof High Wind Zone Wind Forces Zone C = 14.4 231 3326 Wall Typ Zone Zone D = 3.3 114 376 Roof Typ Zone Zone E = -8.8 151 -1329 Roof Windward High Wind Zone Vertical Zone F = -12.0 138 -1656 Roof Leeward High Wind Zone Wind Forces Zone G = -6.4 242 -1549 Roof Windward Typ Wind Zone Zone H = -9.7 • 216 -2095 Roof Leeward Typ Wind Zone • Total Wind Force 6612 lbs I Use to resist wind uplift: Roof & Half of Upper Floor Walls Total Exterior Wall Area= 2203 ft Uplift due to Wind Forces= -6629 lbs Resisting Dead Load= 10160 lbs El 3531 Lbs...No Net Uplift Wind Distribution Tributary to Diaphragms . Wind Sail Tributary To Diaphragm (ft Zone A Zone B Zone C Zone D Main Floor 58 0 98 0 Upper Floor 59 0 99 0 Main Floor Diaphragm Shear = 2565 lbs Upper Floor Diaphragm Shear = 2600 lbs Roof Diaphragm.Shear = , 1447 lbs • Wind Distribution To Shearwall Lines . MAIN FLOOR ' UPPER FLOOR ROOF Tributary Line Shear Tributary Line Shear Tributary Line Shear Wall Line Diaphragm (lbs) Diaphragm (lbs) Diaphragm Width ft Width ft ^� Width (ft) (lbs) 1 8 1283 8 1300 8- '723 2 8 1283 8 1300 8 723 E= 16 2565 16 2600 16 • 1447 Harper Houf Peterson Righellis Pg #: _. , Longitudinal Seismic Line Shear Distribution Seismic Design Category = D Occupancy Category = II Site Class = D S1 = 0.34 Ss = 0.94 Importance Factor = 1.00 Table 11.5 -1, ASCE 7 -05 Structural System, R = 6.5 Table 12.2-1, ASCE 7 -05 Ct = 0.020 Other Fa = 1.12 Fv = 1.72 Mean Roof Height, H (ft) = 32 Period (T = 0.27 Equ. 12.8 -7, ASCE 7 -05 k = 1.00 12.8.3, ASCE 7 -05 S 1.06 Equ. 11.4 -1, ASCE 7 -05 SJM1= 0.58 Equ. 11.4 -2, ASCE 7 -05 S 0.71 Equ. 11.4 -3, ASCE 7 -05 S 0.39 Equ. 11.4 -4, ASCE 7 -05 Cs = 0.11 Equ. 12.8 -2, ASCE 7 -05 Csmin = 0.01 Equ. 12.8 -5 & 6, ASCE 7 -05 Csmax = 0.22 Equ. 12.8 -3, ASCE 7 -05 Base Shear coefficient, v = 0.076 Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height (ft) = 8 Floor 3 Diaphragm Height (ft) = 18 Roof Diaphragm Height (ft) = 32 Floor 2 Wt (lb)= 7865 Floor 3 Wt (lb)= 7800 Roof Wt (Ib) = 12566 Wall Wt (Ib) = 35496 Trib. Floor 2 Diaphragm Wt (lb) = 22063 Trib. Floor 3 Diaphragm Wt (Ib) = 21998 Trib. Roof Diaphragm Wt (Ib) = 19665 Vertical Dist of Seismic Forces I Cumulative % total of base shear I Rho Check to Shearwalls (Ibs) to shearwalls Req'd? Wow 2 (Ib) = 711 100.0% Yes Veoor 3 (lb) = 1595 85.3% Yes Vroot(lb) = 2534 52.4% Yes Shear Distribution To Wall Lines Wall Line Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line Roof Line Floor 2 Floor 3 Roof Shear Shear Shear sq ft sq ft sq ft lbs lbs lbs 1 275 270 360 323 718 1220 2 330 330 388 388 877 1315 Sum 605 600 748 711 1595 2534 Total Base Shear* = I 4840 LB *Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. C — L \'3 Harper Houf Peterson Righellis Pg #: Shearwall Analysis Based on the ASCE 7 -05 Transvere Shearwalls Line Load Controlled By: Wind Shear H L Wall Hit Line Load Line Load Line Load Dead V Panel Shear Panel M MR Uplift Panel Lgth. From 2nd FIr. From 3rd Flr. _ From Roof Load Sides Factor Type T (ft) (ft) (ft) ht k ht k ht k (kip (plf) (ft -k) (ft-k) (k) 101 8 5.17 5.17 1.55 OK 8.00 2.32 18.00 1.15 27.00 2.77 1209 Double. 1.40 VII 102 8 4.00 4.00 2.00 OK 8.00 2.79 8.00 3.14 1482 Double 1.40 VIII 103 8 3.83 7.33 2.09 OK 8.00 2.19 8.00 1.99 8.00 2.77 948 -Double 1.40 VI 104 8 3.50 7.33 2.29 OK 8.00 2.19 8.00 1.99 8.00 2.77 948 Double 1.40 VI 105 8 4.25 12.75 1.88 OK 8.00 2.32. 18.00 1.15 27.00 2.77 490 Single 1.40 11 • 106 8 8.50 12.75 0.94 OK 8.00 2.32 18.00 1.15 27.00 2.77 490 Single 1.40 II 107 8 1.25 1.25 6.40, a` : 8.00 2.19 18.00 1.15 27.00 2.77 4887 Double 1.40 NG 108 8 1.25 3.50 6.40 8.00 2.19 8.00 1.99 '8.00 2.77 1987 Double 1.40 NG 109 8 1.25 3.50 6.40 out 8.00 2.19 8.00 1.99 8.00 2.77 1987 Double 1.40 NG 110 8 1.00 3.50 8.00 _ 8.00 2.19 8.00 1.99 8.00 2.77 1987 Double 1.40 NG 201 9 5.58 9.17 1.61 OK 9.00 1.15 18.00 2.77 428 .Single 1.40 II 202 9 3.58 9.17 2.51 OK 9.00 1.15 18.00 2.77 428 Single 1.40 II 202A 9 3.50 ' 3.50 2.57 OK 9.00 3.14 898 Double 1.40 VI 203 9 7.00 7.00 1.29 OK 9.00 1.99 18.00 2.77 681 Single 1.40 IV 301 8 6.00 10.00 1.33 OK 8.00 2.77 277 Single 1.40 302 8 4.00 10.00 2.00 OK 8.00 2.77 277 Single 1.40 1 303 8 4.96 9.92 1.61 OK 8.00 2.77 280 Single 1.40 I 304 8 4.96 9.92 1.61 OK 8.00 2.77 280 Single 1.40 Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load / Total L Shear Factor = Adjustment For WL > 2:1 Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load " L * 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) C \v \'+- Harper Houf Peterson Righellis F'g tt. Shearwall Analysis Based on the ASCE 7 -05 fransvere Shearwalls _ Line Load Controlled By: Seismic Shear H L Wall H/L Line Load Line Load Line Load Dead V Rho• V % Story # Panel Shear Panel M MR Uplift Panel Lgth. From 2nd Flr. From 3rd Flr. From Roof Load Strength Bays Sides Factor Type T (ft) (ft) (ft) ht k ht k ht k (klf) (plf) (pH) (ft-k) (ft -k) (k) 101 8 5.17 5.17 1.55 OK 8.00 0.17 18.00 0.31 27.00 1.19 323 419 0.31 1.29 Single 1.00 III _ 102 8 4.00 4.00 2.00 OK 8.00 0.37 8.00 0.78 0.00 286 372 0.24 1.00 Single 1.00 III 103 8 3.83 7.33 2.09 OK 8.00 0.17 8.00 0.51 8.00 1.19 254 331 0.23 0.96 Single 0.96 11 104 8 3.50 7.33 2.29 OK _ 8.00 0.17 8.00 0.51 8.00 1.19 254 _ 331 0.21 0.88 Single 0.88 III 105 8 4.25 12.75 1.88 OK 8.00 0.17 18.00 0.31 27.00 1.19 131 170 0.26 1.06 Single 1.00 1 106 8 8.50 12.75 0.94 OK 8.00 0.17 18.00 0.31 27.00 1.19 131 170 NA 2.13 Single 1.00 1 107 8 1.25 1.25 6.40 8.00 0.27 18.00 0.51 27.00 1.19 1572 2044 0.08 0.31 Double 0.31 NG 108 8 1.25 3.50 6.40 8.00 0.27 8.00 0.51 8.00 1.19 561 730 0.08 0.31 Double 0.31 NG 109 8 1.25 3.50 6.40 8.00 0.27 8.00 0.51 8.00 1.19 561 730 0.08 0.31 Double 0.31 NG 110 8 1.00 3.50 8.00 8.00 0.27 8.00 0.51 8.00 1.19 561 730 0.06 0.25 Double 0.25 NG 201 9 5.58 9.17 1.61 OK 9.00 0.31 18.00 1.19 164 213 0.28 1.24 Single 1.00 I 202 9 3.58 9.17 2.51 OK 9.00 0.31 18.00 1.19 164 213 0.18 0.80 Single 0.80 II 202A 9 3.50 3.50 2.57 OK 9.00 0.78 0.00 221 288 0.18 0.78 Single 0.78 III 203 9 7.00 7.00 1.29 OK 9.00 0.51 18.00 1.19 242 314 0.36 1.56 Single 1.00 lI 301 8 6.00 10.00 1.33 OK 8.00 1.19 119 154 0.30 1.50 Single 1.00 1 302 8 4.00 10.00 2.00 OK 8.00 1.19 119 154 0.20 1.00 Single 1.00 1 303 8 4.96 9.92 1.61 OK 8.00 1.19 119 155 0.25 1.24 Single 1.00 I 304 8 4.96 9.92 1.61 OK 8.00 1.19 119 _ 155 0.25 1.24 Single 1.00 I _ Rho Calculation Does the 1st floor shearwalls resist more than 35% of the total transverse base shear? Yes Does the 2nd floor shearwalls resist more than 35% of the total transverse base shear? Yes Does the 3rd floor shearwalls resist more than 35% of the total transverse base shear? Yes Total 1st Floor Wall Length = 16.50 Total # 1st Floor Bays = 4.13 Are 2 bays minimum present along each wall line? No 1st Floor Rho = 1 � Total 2nd Floor Wall Length - 19.67 Total # 2nd Floor Bays = Are 2 bays minimum present along each wall line? No 2nd Floor Rho = 1.3 Total 3rd Floor Wall Length = 19.92 Total # 3rd Floor Bays = 5 Are 2 bays minimum present along each wall line? Yes 3rd Floor Rho = 1.o Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load•Rho / Total L % Story Strength = L / Total Story L (Required for walls with H/L > 1.0, for use in Rho check) # Bays = 2•1./H Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear • Shear Application ht Mr (Resisting Moment) = Dead Load " L' • 0.5 • (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) Harper Houf Peterson Righellis Pg #: Shearwall Analysis Based on the ASCE 7 -05 Longitudinal Shearwalls Line Load Controlled By: Wind Shear H L Wall H/L Line Load Line Load Line Load Dead V . Panel Shear Panel M MR Uplift Panel Lgth. From 2nd Flr. From 3rd Flr. From Roof Load Sides Factor Type T (ft) (ft) (ft) ht k ht k ht k (klf) (plt) (ft -k) (ft -k) (k) 105 8 12.75 12.75 .0.63 OK 10.00 1.28 18.00 1.30 27.00 0.72 1.13 259 Single 1.40 I 55.75 92.01 0.04 106 8 12.75 12.75 0.63 OK 10.00 1.28 _ 18.00 1.30 27.00 0.72 1.13 259 Single 1.40 1 55.75 92.01 _ 0.04 I 204 9 11.50 11.50 0.78 OK 9.00 1.30 18.00 0.72 0.75 176 Single 1.40 1 24.71 49.73 -0.47 205 9 11.50 11.50 0.78 OK 9.00 1.30 18.00 0.72 0.75 176 . Single 1.40 I 24.71 49.73 -0.47 305 8 10.00 10.00 0.80 OK 8.00 0.72 0.29 ' 72 Single 1.40 1 5.78 14.40 -0.30 306 8 10.00 10.00 0.80 OK 8.00 0.72 0.29 72 Single 1.40 I 5.78 14.40 _ -0.30 I Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line • , H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load / Total L Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load * L * 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) C Litz I c. Harper Houf Peterson Righellis rgw. Shearwall Analysis Based on the ASCE 7 -05 Longitudinal Shearwalls Line Load Controlled By: Seismic Shear H L Wall H/L Line Load Line Load Line Load Dead V Rho•V •/ Story # Panel Shear Panel M MR Uplift Panel Lgth. From 2nd Flr. From 3rd Flr. From Roof Load Strength Bays Sides Factor Type T (ft-k) (k) (ft) (ft) (ft) ht k ht k ht k Oaf) (plf) (plf) 105 8 12.75 12.75 0.63 OK 10.00 0.32 18.00 0.72 27.00 1.22 1.19 177 177 NA 3.19 Single 1.00 I 49.09 96.89 -0.74 106 8 12.75 12.75 0.63 OK 10.00 0.39 18.00 0.88 27.00 1.32 1.19 _ 202 202 NA 3.19 Single 1.00 1 55.17 96.89 -0.24 I 204 9 11.50 11.50 0.78 OK 9.00 0.72 18.00 1.22 0.81 169 169 NA 2.56 Single 1.00 1 28.42 53.69 -0.34 205 9 11.50 11.50 0.78 OK 9.00 0.88 18.00 1.32 0.81 191 191 NA 2.56 Single 1.00 I 31.56 53.69 -0.06 305 8 10.00 10.00 0.80 OK 8.00 1.22 0.35 122 122 NA 2.50 Single 1.00 I 9.76 17.40 -0.07 306 8 10.00 10.00 0.80 OK 8.00 1.32 0.35 132 132 NA 2.50 Single 1.00 I 10.52 17.40 0.01 Rho Calculation Does the 1st floor shearwalls resist more than 35% of the total longitudinal base shear? Yes Does the 2nd floor shearwalls resist more than 35% of the total longitudinal base shear? Yes Does the 3rd floor shearwalls resist more than 35% of the total longitudinal base shear? Yes Total 1st Floor Wall Length = 25.50 Total # 1st Floor Bays = 6J8 Are 2 bays minimum present along each wall line? Yes 1st Floor Rho = t.o Total 2nd Floor Wall Length = 23.00 Total # 2nd Floor Bays = s Are 2 bays minimum present along each wall line? Yes 2nd Floor Rho = 1 . 0 Total 3rd Floor Wall Length = 20.00 Total # 3rd Floor Bays = 5 Are 2 bays minimum present along each wall line? Yes 3rd Floor Rho = 1.0 Spreadsheet Column Definitions & Formulas L = Shear Panel Length . H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load•Rho / Total L % Story Strength = L / Total Story L (Required for walls with H/L > 1.0, for use in Rho check) # Bays = 2•L/H Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear • Shear Application ht Mr (Resisting Moment) = Dead Load • L • 0.5 • (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) C _ La, Harper Houf Peterson Righellis Pg #: SHEAR WALL SUMMARY' Transvere Shearwalls Panel Wall Shear Wall Type Good For V (pH) (Pll) 101 1209 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 1276 102 1482 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 2/12 1667 103 948 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 990 104 948 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 990 105 490 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 106 490 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 107 Simpson Strongwall 108 Simpson Strongwall 109 Simpson Strongwall 110 Simpson Strongwall 201 428 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 202 428 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 202A 898 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 990 203 681 1/2" APA Rated Plyw'd w/ 8d Nails @ 2/12 833 301 277 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 302 277 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 303 280 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 304 280 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design loads. C L� Harper Houf Peterson Righellis Pg #: , SHEAR WALL SUMMARY' Longitudinal Shearwalls Panel Wall Shear Wall Type Good For Uplift Simpson Holdown Good For V (plf) (PM) (Ib) (lb) + 105 259 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 44 Simpson None 0 106 259 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 44 Simpson None 0 204 176 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 -345 Simpson None 0 205 191 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 242 -59 Simpson None 0 305 122 1/2" APA Rated Plyw'd w/ 8d Nails a 6/12 242 -72 Simpson None 0 306 132 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 242 8 Simpson None 0 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design loads. C —L\ Transverse Wind Uplift Design Unit'C - Shear H': Joist L Wall Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total Total Panel .Height Lgth. From 2nd From 3rd From Wall Load (not Point Point ping Moment Moment Floor Shear @ Floor Shear @ Stacking @ Stacking From From Uplift Uplift Flr. Flr. Roof Shear including Load Load Momen @ Left @ Right Left Right Left Side of @ Right Wall Wall @ Left @ Floors @ Left @ t House Side of Above Above Right above if Right House @ Left @ walls - Right stack) '' (ft) ' (ft) (II) (ft) k k k k plf klf k k kft kft kft k k k k k k 101 - -8 1.1667 5.21 5.21 2.321 1.15 2.773 6.244 1 199 0.1 _ 0.192 0.208 54.53 2.36 2.44 11.28 11.27 201 L 201 R 4.97 5.11 16.25 16.38 102 8 - 1.1667 4.00 - 4.00 2.785 - 3.143 5.928 1482 0.092 0.192 51.09 1.50 0.74 14.34 14 47 14.34 14.47 103 8 1.1667 3.83 7.33 2.186 1.994 2.773 6.953 948 0.1 0.24 0.078 31.98 1.65 1.03 9.30 9.41 203R (1/2) 3.83 9.30 13.24 104 - 8 1.1667 3.50 7.33 2.186 1.994 2.773 6.953 948 0.1 0.078 0.192 29.20 0.89 1.28 9.56 9.48 9.56 9.48 : 105 • - 8 ' 1.1667 -4:58 13.08 2.321 1.15 2.773 6.244 477 0.1 0.192 0.078 19.10 1.93 1.41 4.39 4.47 201 L 201 R 4.97 5.11 9.36 9.58 106 8 1:1667 8.50 • 13.08 2.321 1.15 2.773 6.244 477 0.1 0.078 0.384 35.43 4.28 6.88 4.11 3.91 202L 202R 5.35 5.22 9.46 9.13 107 8 1.1667 1.25 4.75 2.186 1.994 2.773 6.953 1464 0.048 0.192 0.045 14.64 0.28 0.09 18.77 18.92 18.77 18.92 ' 108 ' 8 1. 1667 -1.25 • 4.75 - 2.186 1.994 2.773 6.953 1464 0.048 0.045 0.192 14.64 0.09 0.28 18.92 18.77 18.92 18.77 109 . 8 1.1667 • 1.25 4.75 2.186 1.994 2.773 6.953 1464 0.1 0.24 0.208 14.64 0.38 0.34 18.70 18.73 203R 7.65 18.70 • 26.38 110 8 1.1667 1.00 4.75 2.186 1.994 2.773 6.953 1464 0.1 0.208 0.192 11.71 0.26 0.24 19.81 19.83 304R 1.65 19.81 21.48 201 '9 111667 5.875 9.75 '1.15 2.773 3.923 402 0.172 0.432 0.156 23.22 5.51 3.88 3.39 3.56 301L 301R 1.58 1.55 4.97 5.11 .'202 ' '9 1.1667 3.875 9.75 ' 1.15 2:773 3.923 402 0.172 0.156 0.432 15.32 1.90 2.97 3.66 3 -49 302L 302R 1.69 1.72 5.35 5.22 202A• ' 9 11667 3.833 3.833 3.143 3.143 820 0.142 0.816 28.29 4.17 1.04 6.73 7.22 - 6.73 - 7.22 ' 203 '9 1.1667 7.083 7.083 1.994 2.773 4.767 673 0.172 0.468 0.192 46.14 • 7.63 5.67 5.87 6.03 303L 303R 1.65 1.62 7.52 7.65 - 301 8 - 5.958 9.916 2.773 2.773 280 0.24 0:384 0.432 13.33 6.55 6.83 1.58 1.55 1.58 1.55 • 302 -- 8 3.958 9.916 2.773 2.773 280 0.24 0.432 0.384 8.85 3.59 3.40 1.69 1.72 1.69 1.72 303 . • 8 4.958 9,916 2.773 2.773 280 0.24 0.384 0.432 11.09 4.85 5.09 1.65 1.62 1.65 1.62 304 8 4.958 • 9.916 2.773 2.773 280 0.24 0.432 0.384 11.09 5.09 4.85 1.62 1.65 1.62 1.65 • Spreadsheet - Column Definitions & Formulas L = Shear•Panel Length H •Shear Panel Height Wall_Length = Sum of Shear Panels Lengths in Shear Line V (Panel Shear) = Sum of Line Load / Total L 'Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load *L 0.5 * (.6 wind or .9 seismic) Uplift (Mo -Mr) / (L - 6 in) T N G Transverse Seismic Uplift Design Unit C Shear H Joist L Wall Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total Total Panel Height Lgth. From 2nd From 3rd From Wall Load (not Point Point ping Moment Moment Floor Shear @ Floor Shear @ Stacking @ Stacking From From Uplift Uplift FIr. Flr. Roof Shear including Load Load Momen @ Left @ Right Left Right Left Side of @ Right Wall Wall @ Left @ Floors @ Left @ t House Side of Above Above Right above if Right House @ Left @ walls Right stack) (ft) (ft) (ft) (11) k k k k plf klf k k kft kft kft k k k k k k 101 8 1.1667 5.21 5.21 0.168 0.314 1.185 1.667 320 0.1 0.192 0.208 15.08 2.36 2.44 2.75 2.74 201 L 201 R 0,65 0.85 3.40 3.59 102 8 1.1667 4.00 4.00 0.369 0.775 1.144 286 0.092 0.192 _ 0 10.06 1.50 0.74 2.49 2.68 0 0 2.49 2.68 103 8 1.1667 3.83 7.33 0.174 0.506 1.349 2.029 277 0.1 0.24 0.078 9.62 1.65 1.03 2.44 2.61 0 203R (1/2) 1.01 2.44 3.62 104 8 1.1667 3.50 7.33 0.174 0.506 1.349 2.029 277 0.1 0.078 0.192 8.78 0.89 1.28 2.66 2.54 0 0 2.66 2.54 105 8 1.1667 4.58 13.08 0.168 0.314 1.185 1.667 127 0.1 0.192 0.078 5.28 1.93 1.41 0.87 0.98 201 L 201 R 0.65 0.85 1.52 1.84 106 8 1.1667 8.50 13.08 0.168 0.314 1.185 1.667 127 0.1 0.078 0.384 9.80 4.28 6.88 0.74 0.45 202L 202R 1.22 1.02 1.97 1.47 107 8 1.1667 1.25 4.75 0.174 0.506 1.349 2.029 427 0.048 0.192 0.045 4.84 0.28 0.09 6.12 6.34 0 0 6.12 6.34 108 8 1.1667 1.25 4.75 0.174 0.506 1.349 2.029 427 0.048 0.045 0.192 4.84 0.09 0.28 6.34 6.12 0 0 6.34 6.12 109 8 1.1667 1.25 4.75 0.174 0.506 1.349 2.029 427 0.1 0.24 0.208 4.84 0.38 0.34 6.00 6.05 0 203R 2.02 6.00 8.07 110 8 1.1667 1.00 4.75 0.174 0.506 1.349 2.029 427 0.1 0.208 0.192 3.87 0.26 0.24 7.28 7.31 0 304R _ 0.21 7.28 7.52 201 9 1.1667 5.88 9.75 0.314 _ 1.185 1.499 154 0.172 0.432 0.156 8.96 5.51 3.88 0.68 0.93 301L 301 R -0.03 -0.08 0.65 0.85 202 9 1.1667 3.88 9.75 0.314 1.185 1.499 154 0.172 0.156 0.432 5.91 1.90 2.97 1.09 0.84 302L 302R 0.14 0.18 1.22 1.02 202A 9 1.1667 3.83 3.83 0.775 0.775 202 0.142 0.816 0 6.98 4.17 1.04 0.84 1.57 0 0 0.84 1.57 203 9 1.1667 7.08 7.08 0.506 1.349 1.855 262 0.172 0.468 0.192 18.27 7.63 5.67 1.61 1.86 303L 303R 0.21 0.16 1.821 2.02 301 8 0 5.96 9.92 1.185 1.185 120 0.24 0.384 0.432 5.70 6.55 6.83 -0.03 -0.08 0 0 -0.03 -0.08 302 8 0 3.96 9.92 1.185 1.185 120 0.24 0.432 0.384 3.78 3.59 3.40 0.14 0.18 0 0 0.14 0.18 303 8 0 4.96 9.92 1.349 1.349 136 0.24 0.384 0.432 5.40 4.85 5.09 0.21 0.16 0 0 0.21 0.16 304 8 0 4.96 9.92 1.349 1.349 136 0.24_ 0.432 0.384_ 5.40 5.09 4.85 0.16 0.21 0 0 0.16_ 0.21 Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line V (Panel Shear) = Sum of Line Load / Total L Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load * L 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) TRANSVERSE UPLIFT CALCULATIONS - SUMMARY UNIT C Shear Controlling Total Holdown Holdown Good Control Total Holdown Good For Panel Case Uplift @ or Strap Type@ Left For ling Uplift Type@ Left Left Case @ Right k Simpson k k Simpson k 101 Wind 16.25 Holdown HDI9 w DF 19.07 Wind 16.38 HDI9 w DF 19.07 102 Wind 14.34 Holdown HDU14 14.93 Wind 14.47 HDUI4 14.93 103 Wind 9.30 Holdown HDU14 14.93 Wind 13.24 HDUI4 14.93 104 Wind 9.56 Holdown HDU1 14.93 Wind 9.48 HDUI4 14.93 105 Wind 9.36 Holdown HDU14 14.93 Wind 9.58 HDUI4 14.93 106 Wind 9.46 Holdown HDU14 14.93 Wind 9.13 HDUI4 14.93 107 Wind 18.77 Holdown None 0.00 Wind 18.92 None 0.00 108 Wind 18.92 Holdown None 0.00 Wind 18.77 None 0.00 109 Wind 18.70 Holdown None 0.00 Wind 26.38 None 0.00 110 Wind 19.81 Holdown None 0.00 Wind 21.48 None 0.00 201 Wind 4.97 Strap MST48x2 5.75 Wind 5.11 MST48x2 5.75 202 Wind 5.35 Strap MST48x2 5.75 Wind 5.22 MST48x2 5.75 202A Wind 6.73 Strap MST60x2 8.11 Wind 7.22 MST60x2 "8.11 203 Wind 7.52 Strap MST60x2 8.11 Wind 7.65 MST60x2 8.11 301 Wind 1.58 Strap MST48 2.88 Wind 1.55 MST48 2.88 302 Wind 1.69 Strap MST48 2.88 Wind 1.72 MST48 2.88 303 Wind 1.65 Strap MST48 2.88 Wind 1.62 MST48 2.88 304 Wind 1.62 Strap MST48 2.88 Wind 1.65 MST48 2.88 n r- N • r 1 1, .. 1 1 " 1 . . i 10\ - . ■••••: ------" • ..' MIN' l I : . I , . . ft , LI . ' • . 11 111 l'i• • 0 • • 0 ' I •,- II I* N p tn, t •. 1 , •1 1 .1 1 1 J..; . . . , . . . _____ l'''. - • L. _- .„___:. .t 1 , . t 102 t - . • . . t, ; , ;•,!, , , .„_• , . . . t ; . ! ; , r , • . • , . - . i • i . . . . , . 1 , • , 1 , ----- ) ; . , . .... ' . " '" • , „ . . . 7 . • • - 1 ' - ' ' . ' -' • ' . . . • - i - k.ri • ,. . . r . _ . ._.. • t . ' t - ' . . ., . - t.f4P 7- - . ' • . , , • al t -- 4 --7 - - , • , ;. ; 1 - . t ; , . • - ; . .• • .• . • , . , L ..: ■ . „ ; , • . . . . . . , • . . • , . • • 1 • l • r . • , ., . 1 . - • .., i 11 - -', '. , r "•:' '. • — !,'.- `; --" i . . • - i ''' . , ... . •-.,. . • . ' '. • • ., , ; - - -- 4. - .;:`-•' - '• ' r ,, ' • ..,,,.. ,• - ,-, ...,.- ...-...,...._-..e_..tr • - • ' k•• •1"a. ' - ' • 0 — ' •,,;t •=..--..,...:.,.--, ,..,.....2 • ., ; ; ..,.. ._ . , ... ..• - - , • i ■ . .., - , j, IQL-1 1 -- . , c i . • .. • : . , • • . ,.. i _ . . a . : . .,, ' - q -.. : 1, ',' ; - , : • " : : : T • ;.;;..-:- i .-• i ...•• 1 , 17: 6_ , L . ,•19, 3 . ,, .,,, ,. . ..., ,,.. ,. '.,_-- .'-,• '--..--.' . •-•-• <AY: i= t ' biN:rioT-'' , • : • , . . i 1 i ' I • ! 1 1 : I '■ . I I I • , 105 10 to ' , 1 - " , ,,,: -- -e.-.4.7:,;•;t:.;:-.: , ,=1". , Er-ia Q c. i , < 1 - _- 1 1 , i ;.. • 1 < 1 . i - i . i • . . i • , , . I . . , . 1 1 ' 1 ' ' i ' • , t , 0 . "6141EL i J 1 o 2_ 1. . i 1 . , , i • , • _. _. . • 1 1 ' H -__ • 1 ! 1 - , • , , - i / . i • 1 - tilf --- 1 , . , ! . ' ,•,...-, _ 1 - i . OE' , e- D....:..- • . I ...) .1 . ' 1 , 1 . , . i . 1 1 , , • , I t 09' . 1 1 0 .. - , , . _____, l ow ,....,•,_,..2...„,,,, , ' UN T .. C ti c uboik I , . _ , . . • , C) ' . • F ttoo "r LO4D -7. D' a ..,.'ita, - - , • , SVJ . . - . . . . - . . . , . .. . . _ , • . Li)::- ::: ,-, ,.. : :'. ,.. ... • -: ..:.; . . - 7 1 . CO .. t 001 d _, ."iestar 7.A2 " --,"' :.,, -.,...::.,, - . . • ' ' .,.. .. . • of.,„,_7),.,.N(N • .,.,. .,. „,..., .. . . ; .,_ ,.... „.,. . , . . , " . . . , . . . • . . . . . • ,. . .. .. . ,, . ... . _ , • . .. ,. . . . , , . ... , \....., • . . • __„ . . . : . _ . , . . , . . . . .. . . . . . . , . , . . . ., . . . .1 -••. '• '''. . 111.71 •, • . •".. '' ! J•ili . I ,,, eb.e • • ,, , , :al , • - , . . , ; . . f. • . . . S ili ii Q-3 , . VI - •9, • 11 -3...- . .. . ■1 . J r . , . , • r . , •i ,' . ' ■ • .: i• i . ) .._,, ,.. , , • ,: ,, j .,i . - l, -, • •:.-..: i •:....--, „ • ■ 1 - 0 .r:... "..a2.11....N...L. ... • S . e 0e, . \ose • ,. . . . , . I • . . . t ■ . (, . ,.; • . • ■ ;• - — - • .- . . , i 30\ 302 r • r- O - It 1 NI (so C- b+ • 1 _� ` � I . r . . .. . . . , 1 , . i . 1 , . . . , .1., _ - . . ,, • 1 H . . . . - I: . . i . . i • 303 30 a . . H . . , . 0 , . . Z -„,,, ,. UNIT C - 31t'D C%-ooCk Sw LA`/ouT BY DATE \, r JOB No r -, OF PROJECT: Ned ' '' RE: 1 \ -- Dill. facjm 1 V aV 6 er ❑ ❑ ��JJ JJ 0 o W u' = '�2q 1 =. .bp- f W LINE Q,.)p9ER L1r.e B u 3143* z ��+ t N a3_O W D [_ 1 I, v ----- 7 - L L �� 1, 1 1 LujER I.wEe L■NEC -. J vi1ll (( O. r w= Nt..6pYc H -,,.-.i,,Ic.,---rs, 1. 0 P� =C7 p��An� C X15,SFt1 T-- a'_( -- 1 cc z - �iy6,�>(k.��z(\5.SIzI l,�ea — 31 43(z,s� �,nc W o a lrire C = l Lt-13 # 3112 Lo ne ) = ' -4'4Z# VOIDO I I 2L?$ \I ; 0 4, (.2 •S ' —.gm 3 " Ni...L,x -\tc4 a,5' : x < 1 S,S' ba°I - I (, .(c, x 23b avw us � 4L� ) aphro wick h =IL Ft i`v, C (JClh\OC.Ce& (1 [) Z dia CO- Y\ Caca c VT I BY k - DATE: � • . 0 " \ / O JOB No. \ I _O i . PROJECT /// RE 1 \ S I ' 2 0 3 V ; \ o k� O c H E r) 12.. - P... SE G {,--, i F--- �.i ❑ ❑ DES\<<,N SHC =Flic u O w o 2 A\. Loo L ❑ 7 wc\ \ \ \0 (QSswre. IS ") ° __I (LYTDNCo,o\z> +( -Y0 0 5( _ Q_ISa Lps D_ o W ( = 0.0G k - Ip s.L. U Z a lovo,\ _ a4(, F� cc z a 'JJO. \ \ \ (U E- same Q. - 10 ° U U.x,,,,. \1 \OCk 0.SS(�me. NY C ( i' («)(o.oIS)( Z). t(( )(0.0\SI\�) #- ab /LIz)(o BIZ) _a ,ao oL o Z (\t�(o,oZS') lcZi) t- (I6l(o oaS i = \.°t' 2 sL- 2 7o.‘a\ = 4- \\3 o ❑ hurl■ 1\0 .- 'z'N o (72r>( °,o1Z)(;) (�81C= 3,o; `) t` )(00∎S)(1) i`r (.i`�' 9z, . a.o5a, NA_ ( \t.)10,oZ,5�C∎ +-(lr.,7)(o,02S)( /2) = l,5 v... sL. Cc z T()ha1 = 3 `tea. W ❑ Z O I- a. 5A'1t1t.55 Una \\ T`19 A e ko - Or iS-V 4 _ sne., 12e1 sk, CC , \01 S&P 1 (5 - )0- 17?) .0 - 0 , 3 6 `S \ b'1 4 0.2,,G1 kOb SS I�. =r- \5 (00 0, 3!® S I b 0. a.c1 • io°1 SSl.,o\43,1e") 1 0,x,3 SOLI-Ss?; 0 . a.`t• \ \ 0 Ss .? \a;x ' _ 1 0 5 6, y 2 au. O. X4 l�J(A1\ o sk • f u \ °I `bb o ( 3 = 10" . ,3s°l t* '> \6 (,o t.36„ \01: a3Co8 At 7 tr.)60 NK-- L c 109, a.30(G t - 7 \'(,SAS i( e . g l-. il0 1\53 At & \oas -•or.. Uk∎ \ice Ups . S - y�`1{ ; . 6,JJ \ ESIC -,J SHEAR = a 3 }1.ks( - ) t-a7i . "43 _(. -aye+ kip - - l r .n,s_ Sheer \ 0,`4 ' \ . q v \ 1 ' . < , 0 : • CA-- 1.0°1 \ , t-1 -P) L \ 1. qco # 0V-- 1.1 0 0. '6 - 1(4 \OqS 0- • 0Y-- U '00, ,v-__ t),,) k..P, \tips (f. f 1 () 4 i " ?\ Lt3, 1. ° ,) c - c-t ' \ O c\. : \ 1 C �, \(\L\ c, 0, Svc t \.r C.? i ..J �J ` ; `° 0+� ; I A E I - DATE: / ` ,� , k / 1 JOB NO : coze n , ` f �} c) OF �` / U{� \V \F ! lIVVV- 77.7[7111 eL,// ! V \ /}/�l , PROJECT: RE: Dia .6`yiy-a �r �ra. ►s . r : ea aci.K ❑ ❑ - ui • Z Loac� o \�ccd A Pro-c\ t tucAVtS = C1b11)(2) = 36a #t O w -- 1);a?\nrayyy■ w iG\-ft = b F E . • • ❑ ' 3eeaa , J ` W �l = - 3.baa Y- V= I.UCS se%sv . w ( o O 4 pk.F w,nfii _ -- a ` ____ . . Cf.ks,c p( b1 UC1/4-ed dlq�ti1 ' _. - -o" - 4 pLFy ov_ ❑ . 2 • EC0 ' LL Z ❑ o • I-0 - • . , . . 1 n C J ■r I v cn .-_ I • ,-... - : -- , - . _ I • • A 1 ; , . c . . , . , . . --1--/ (O 9( .1 ) ( \l i ,1 X \o,. 01(,) . 1 )(0 --' '- i c- i i . - . , .. -J.A4 . : 1•1) . ( , ,ci )0) 1)c_o. \Icy V'I)ysy0c 05)g) = ';'‘ -I . . . . . - 1 q.S`Iit = ..... -5t':1--:1.--2— d • r i 4 — A = ^f .. te'l \ , '_ • h __+-_,_ . 6} - a .= P -. st:ifi7--iy. )# ' -...._ -, rl .S-, --i- • ''-':.- , < , . ) 4 - C l G r 4 0 4' c ) i.: S . ( '0 kr 4- 37., ''') -4 L5.-- 1.,g‘ 0) S' e 4 S'e = 7 , . N 1 F..;,...c = .1:1p : , ... . r....,-. p °', c = IN \- - • V • . 1 r. h Z = t t V 1T - --- _-_-=,),-----_-_---. 7_1 • • 7 ,, -.6<1. b N 1 9.,`r e c:: 27S ce..y 1 , \-. ' 71 z 0 0 r , • I if \Ii‘. z T m a P 0- • .st- 9 — 7 — _,___ wimemoss - „ Sit _ -4 4 4ntil; = = 1 , - . 'I - 1 1 - '1 '1 (-,-) = - --A . D (-) \ C\ j c..1 q -_-_- -D).(--.-1, 9 ,,,,--0 ,i,6% 0 z rn . o ... J '' ar-r,c \ Y. =. F. IN 1(.2. QC ks.•f4 r; Co _i_ n g 3 0 m --I ni 0 s " - e) OCR G6 7 :-) ‘ %■J 00 \ \\QO\ - Z 11 k)) cn - -1-\\n , 71, r E Z" CA Oi I ci,C) • :1D3 road , . . . . . .- t A° ob0 - N )) r•oN 901 a\ .- 7.-. \ .- 9:v ■. By t i \ ,fy 1 i \ C., DATE t — V1., —\ 0 JOB NO ( ( i' O 0 . . PROJECT: '.- 5 I RE Dec-. 4 f l'o10(....yrn @ 5:0 5 . w - OpTion) _1_ J 0 E Z . 17 i 1111111 O w /0741111,14 O 2 Mt Z Wa rit: fi 0 ! 1* . . F.F. \ t i l D - 301 kJ T - q-- Th" r-F. k-Ait. I b a Moo( svA il_ov'ttilk)( = I • . 6 • . . • iii • 6 Dc. 5 i Cn.) ',..)..) - PCCSSJCE o_ z 0 \o.,::‘, e c,. to ( cnj \-k i c•c-'. • To, vu=,-‘E. ' u ) z LOt - k - ' : F\ 1.1J k ,,'", CI W'2 (.: 1 'A I \ , I 2 O G ------ , L: ------ t. ---- C ----- c ---1, - - ' o ,rk l'‘ 0 — 0 . x 0 La IV\ f c \ Q = Ip_12: _ I 91 a(t.3s, 542.11 t-c-t - !_, S /\- L ---7 - / ---, , ---- - - • -- ;,---- . ____., 1 1--3s---i :„/ Al ( c : o 6 L - Fb'(P,)--=•(B.S7-0?,,,.:)0,(,1•S )0.1S) a < ( le2_. :- r-)(7.-.1 4` ( ) S 0 - SL PC ). = ,- 0p 5 L .) qP2-... : . ay... cc= 0 ._ •7_-_- . : : i i 0 ; , ■ 0 c) -- ii r-rn 2- • . • • • , • . . . i . ' . . , • • . , . . . , . . . . . . _ . . . ; • . , , , .• • • , , I • ' ' , - . . . . , i . . • - - - - . - . C■ LJ3 1 : . -''. . i .. . .1 • WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN UNIT C - FRONT LOAD WoodWorkse Sizer 7.1 June 28. 2010 13:26:00 COMPANY I PROJECT RESULTS by GROUP - NDS 2005 SUGGESTED SECTIONS by GROUP for LEVEL 4 - ROOF Mnf Trusses Not designed by request (2) 2x10 Lumber n -ply D.Fir -L No.2 2- 2x10 (3) 2x6 Lumber n -ply Hem -Fir No.2 3- 2x6 Typ Wall Lumber Stud Hem -Fit Stud 2x6 016.0 • SUGGESTED SECTIONS by GROUP for LEVEL 3 - FLOOR Mnf Jst Not designed by request (2) 2x8 Lumber n -ply D.Fir-L No.2 1- 208 By Others Not designed by request By Others 2 Not designed by request 4x6 Lumber -soft D.Fir -L No.2 406 1.75014 LSL LSL 1.55E 2325Fb 1.75x14 (2) 2x6 Lumber n -ply Hem -Fir No.2 2- 206 6x6 Timber -soft Hem -Fir No.2 6x6 (2) 2x4 Lumber n -ply Hem -Fir No.2 2- 2x4 (3) 2x4 Lumber n -ply Hem -Fir No.2 3- 2x4 Typ Wall Lumber Stud Hem -Fir Stud 2x6 016.0 SUGGESTED SECTIONS by GROUP for LEVEL 2 - FLOOR Mnf Trusses Not designed by request Deck Joist Lumber -soft D.Fir-L No.2 208 016.0 Mnf Jet Not designed by request Landing Lumber -soft D.Fir -L No.2 206 016.0 (2) 200 Lumber n -ply D.Fir-L No.2 2- 208 400 Lumber -soft O.Fir -L No.2 406 By Others Not designed by request 3.125x10.5 Glulam-Unbalan. West Species 24F -V4 DF 3.125x10.5 \` 5.25x14 PSL PSL 2.0E 2900Fb 5.25x14 4x6 Lumber-soft D.Fir -L No.2 4x6 (2) 2x6 Lumber n -ply Hem -Fir No.2 2- 2x6 4x4 Lumber Post Hem -Fir No.2 4x4 4x6 Lumber Post Hem -Fir No.2 • 4x6 6x6 Timber -soft Hem -Fir No.2 6x6 (2) 2x4 Lumber n -ply Hem -Fir No.2 2- 2x4 (3) 2x4 Lumber n-ply Hem -Fir No.2 3- 2x4 Typ Wall Lumber Stud Hem -Fir Stud 2x6 016.0 SUGGESTED SECTIONS by GROUP for LEVEL 1 - FLOOR _e_________n - _______ s = s_ _ s s- asse e =.sn_ Fnd Not designed by request CRITICAL MEMBERS and DESIGN CRITERIA Group Member Criterion Analysis /Design Values Deck Joist je Bending 0.41 Mnf Jst Mnf Jst Not designed by request Landing j27 Bending 0.17 (2) 200 bl Bending 0.96 4x6 b19 Bending 0.05 By Others By Others Not designed by request By Others 2 By Others Not designed by request 3.125x10.5 b12 Deflection 0.03 (2) 2x10 b6 Bending 0.85 5.25x14 PSL 618 Deflection 0.79 4x6 b21 Bending 0.88 1.75x14 LSL b23 Bending 0.71 Ftg Ftg Not designed by request • (2) 2x6 c10 Axial 0.60 4x4 c42 Axial 0.04 4x6 c50 Axial 0.25 (3) 2x6 c16 Axial 0.87 6x6 c23 Axial 0.48 (2) 2x4 c28 Axial 0.84 (3) 2x4 c12 Axial 0.41 Typ Wall w12 Axial 0.24 Fnd Fnd Not designed by request DESIGN NOTES: - "_ : : :_=____ _1. Please verify that the default deflection limits are appropriate for your application. 2. DESIGN GROUP OCCURS ON MULTIPLE LEVELS: the lower level result is considered the final design and appears in the Materials List. • 3. ROOF LIVE LOAD: treated as w load with c esponding duration factor. Add an empty roof level to bypass this interpretation. 4. BEARING: the designer is responsible for ensuring that adequate bearing is provided. 5. GLULAM: bxd = actual breadth x actual depth. 6. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 7. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. B. BUILT -UP BEAMS: it is s umed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top- loaded. Where beams are side-loaded, special fastening details may be required. 9. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 10. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. • WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN UNIT C - FRONT LOAD WoodWorks® Sizer 7.1 June 28, 2010 13:16:53 Concept b o de: Beam View Floor 2: 8' - - 49, -6:, 1� 40 -b +�1 - - -- - - -- -- - - - .. _ .. . - - - -- _ . __ .. __. _. .. .. .. ... .. ...-- 4J -0 Sb - 40 -b C / 45 -b � _ - - - - -- - - - - - 44-0 J9_.. . .. 43-b JO - 4L - b J/ - _ ... _. . -_. _. -- - _ .. _ .. . . 30 41 C -- - - - - 4U-b 9b . . __... 30 ...)/ _.. _. _ - :if -b JL - - - - - _ - - - - - - - --- - - - 00-0 .. ... _ . - . - -. -. - - - -- - .. - 3b b :10 - - ' - - _ - - 04 5 33 .. .- ... . .. .: - 3L-C 76 - - -- - - - - - - - _ is -b Jr - 3U -0 5J L`J 34 . . -: - -- -_ _ -. .. ._ .- - __ - _. - - -- - - -- -, -- • - _. . GO b L! b -- - -- - - - ' -'-- '-- - - --- - -- - '- -- --- -- - - - - LC b 3 i - - 20 -C '2, - - . - - . - ' -- -- - - - - . - - Z4 -la r GS -b ; C - - . .- _- _ • - - - - - - - - - - - - 12 - r , 21 -0 r5 _.. .. -- - -- - - - - -. !II -0 r7 _ 11.: -0 (4 _ L - - - - - -- - -- -- - - 1t5 !3 I1 -0 - - • • - - - - - - - - - - - -- - - - - 03 -0 , b21 - I - ru 4 C Dt - b10 - - - - - _ tG -u - I I -b )f I C Du - _. _. . .. a o DO ii -CO i ~ 3 b18 1 b ., DG} b -b 4 C DU ) b191b20.- _. _ . - j ■ j 11 1 -b .i i U -0 BB\BB BCCCCCCCCICCCCCCCCCCCCCCCI CCCDDDDDDDOIDDDCDDDDDDDDD CD'DDDEEEE E EE'EfEEE EE''EEEEEEE:EEEEZ 0' 2 4 6' 3' 10' 12' 14' 16' 18' 20' 22 2? 28' 28' 30' 32' 34' 35 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 6 64' 66' 68' 70' 72' 74' 76' 0' 1' 2' 3' 4' o' 6' 7'8' r1 t 11: ia li' 1Yi" 2( 22: 2' 2 2t2f313' 5:3:3 3f3' 32; 4f 44:4A 4' 4 t 4l 5( 55.5:5 6 • bT 6 '.? ,77 : 7 :; ,7 . 7 E; 7 ' - o \ ( Z.0 J T Lc) H O WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN UNIT C - REAR LOAD WoodWorks® Sizer 7.1 June 28, 2010 13:26:28 Concept de: Beam View Floor 2: 8' 1050 _ - - - - - 49'-6" IU4 40 -b IU� - - -- - -._, _.. - - - -- -... -- - -. _. __,_.. _ ... _. _ _ __ ._ - - 4 - b i UL 4, 0 -0 IUI,', 45-ID - 44 _41 99 - - --- ..__.. - b18 . . . . -- -- - - ....__ . -- -=- - - . ._ -- 4.3-b '" ialm•Igaillii .J! - - ._-- - - -- - - - - ._. 4l -b J4 • - - - • . JC-0 . -- -.. - - - - .- - - - - - - S 1 _ • J I - --- - . -. . _.. - - - ' - -- - -- - . _ 30 -0 b'L' 34 -^ r.5 .s.; -u • v/ JI -0 t._..::.. -. • ._ _ _. _ -. . • - '- - - - - - - - .5U -b 63 G: L , • . ®: - - - . . LO -b u b24. 24 n /;:_I - . _ G.;-0 Ri - - -- --. .. - - - •_ - .- - - - - . -- - - -. - LL -0 1 1 t . -0 !0 - ----._ - - - - -- - • - - , -- -- • -- - - - ZU -b 10 I -b 14 _ 1J . -. .- -... .. !1 -b hz b23 _ - . - lb 06 b10 . - t % -n 0 - _ I I -b tab - • . . - - - ... . . 11.) -0 03 `.-c 0.5' b11 __ _ b19 -- / -b O f - - - - l_ -0 P . b22111 11b20 • - • -- • • - 4 n ■ -- . _ . _ ' - - -. - - C0 ' b EE(B.B BC CC C C CC C(CCC CC CC CC C C CC CC\CC CD DD D D DD D}CDD CD DD DD D D DD CD'D D D E E E E:E EEIEEE;EEEE'EEEEEEiEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 75' 0'1'_'3'4'5'6'7'3'91(11;11 2''.2 2: 22' 2-` 2f2 4-4I(445(5 5;5:5 15t 5(5!6( �b b 5 J�J.J 66:6:6 "\--) \ .e.Ckr L 0 0- & • • C - 6 3 WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN UNIT C - FRONT LOAD WoodWorks® Sizer 7.1 June 28, 2010 13:16:55 Conr-ept Mode: Col umn View Floor 2: 8' c24 c25 i . .- - .. - 49th„ t t� 4r -o 1 1 — - - 43 -1: b 44 -b /9 . - c1 c2 . - _c38 . 43 a 16 immimpina 11 -- - -- - -- -- - - - --' -- • 41_� 50 .5:5 -b 10 14 - - - - 34 0 i.5 .5: -li _ _ -- -- - - -- - - -- - - - - - 5 -O 1U 3:: -0 5a - • }1 . . ;_o 5J c50 c51 .. .Z :5 is - - , . _ _ .. .. Gr] -47.1 }3 1 -1 - I- _ - - • - -- -- - - - -- .. • _ - GI - o 5L - 1C33. - - -- - - - - - - LO -b 5, `u -o u 5 ;I LS - o , r L I -J 1 - . -- - - f - GU -U r+ _ c34 1J _ - . _ - _ - 11 _ co-40 'L C47 I':' c19 c91 - ... 1Q -b (u IJ G c36 _ 4 0 . - 5i} la c18 -- - ' c22 1 L -l.: !1-o D■�. 1 1 I7 1 U -o -0 D4 D 4 n -b 5a r b , , c c41 b b :'U, •, ■._� „� - - - - S -b c42 c43 L _t J BBI BBBCCCCCCCCICCCCCCCCCCCCCCC\ CCCDDDDDDDDIDDDCDDDDDDDDDCD .EEEEEEE 0 2' 4' 6' 8' 10' 1 2' 14' 1 6' 18' 20' 22' 24 26' 28 30' 32 34 3E 38' 40' 42' 44` 46' 48' 50' 52' 54' 50 58' 60' 62' 64' 36' 68' 70' 72 74' 76' S 22.2‘2:2E2-22:13-3,;;:3,2,:;‘37.2W4 ' i 4' A. 4 .4! 4, 4 . 4t4 '._t5 5 :5 :5 •F t6 6:3i7G 7.7,7 - 771 - 5' • 0'1'2'3'4'5'6'7'8'91(1 1:i:i�if1(1 "1.1 2EZ' . F �.� -.. �iG. 11 .— C( L( . WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN - UNIT C - FRONT LOAD WoodWorks® Sizer 7.1 June 28; 2010 13:16:49 • . Concept Mode: Beam View Floor 3: 17' 1 - -- _ ___ -_ -_ _. __ -_ -__ __ - _. . -_ _ -. - _ _ . -._ - _ -- .. .. - 4 I - • _ 4 _�l b4 1. 4s-t °�5 - b22 - M . ._ ._ _ . . - 4.Z -::: b14 " - - . .. ..- -�' b17i _ .. _, .. - - S BBCCCCCCCCFCCCCCCC C r CG CDD ;D,r p E E r_ °r? ACC CC...C,C' r�QdC1i� :��.kC,!�OC��UOGL�i° .C'`D CEEt E_E'EtEEt:;ESEEEcEEF'.EeEJ. 3 Or _ - ' 54 - 6 73' 73 ✓ _ -3• J . ^� 1'7 ��• 16' 18' . L� 22' 24' L� ,_� `v 32' .Sf ,`L" Jc r � !.� -r_ - _. �� .� .,,. ._.. ..� ILL :.. .... ' (; ._ .7 75 :2(22;2:2 3:3;3.3!.."'A'3:3 y r --.,.. I7' E ?6 i ' � i _ v ., - 'A'�;" ., i. �'it',?�.... - 1, ��d - . .. . jl � '�r�. Lr ^•'F•rsj? I ,T.i -,'!', -- I ■ • I' . } 1 C..... -6 5 ' ' , WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN UNIT C - FRONT LOAD WoodWorks® Sizer 7.1 June 28, 2010 13:16:46 Concept Mode: Column View Floor 3: 17' . _ - 49, 6" }5 0 46-0 4 _. .. 4/ 40 -0 4 JU b 4 4 0 �_. _. .. C9 - - C10 - - . - ... .- - ... 4.3-0 J6 iiiiii NOMMEIMMENCIIMMINI 4Z -0 _. N4 - - " - - --- - _ ._ - 3230 . .. / 0 y3 -- -. _-- -- - c - - -- 30-0 .50-0 J0 J4 -0 6b .53-0 - . - 3L-0 6,p c48 c49 Jli -0 _ .. .._ _ - - - - L`J -0 b3 .. 0 _b 25 I c28 .. L O -b Go -b / 5 H 2 -b - --- -- - --- - - -- --- -- - -- --- -- - - - - - - V. _ - - - .. fL _ - - b -0 , I c26 c27 4 - b. 00 - - - - - 0/ I J i ' .b - - - - 00 ` -0 .. b -b p..1'., c39 c40 - - _ r n OL' mosemais h.memergi I° - '8-0 0U. - - -- - .... .__ - - -. .. _ _.. _ L . . .. -. . _ ._. . . -.. I -b 0 -c E Bt8 BBCCCCCCCCICCCCCCCCCCCCCCMCCDDDDDDDDIEDDCDDDDODODDEDIDDDE :EEEEEE °E1-EEE EEEE'EEEEEEIEEEEZ 0' 2' 4' 6 3' 10' 1 2 ' 1 4' 16' 18' 20' 22' 24 26' 23' 30' 32' :,4' 36' 38' 40 42' 44' 46' 4 8' 50' 52' 54' 56' 58' 60'62' 64' 66' 68 70' 72'74' 7 6' 0'1'2'3'4'5 0 7 6'S i '1 1.1:1.1 !'1 +11 t1'2i2 2 :2,2 3.33 4:4 :44:4f4'4 :4!5(5 5:5:5.5.'5(5 a3 :6.6'.@(6 :6 657;7 7 ?;7,7:777-6 • C — C. WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN UNIT C - FRONT LOAD • WoodWorks® Sizer 7.1 June 28, 2010 13:16:41 Concept Mode: Beam View Roof: 25' 1050 - 49' -6" 4D -b IU4� 47-0 IU3 - - .. ._ -- - - - 40 -0 RM 40 -b .VU - ' 4 3- b 9 b5 . . - -,,. _..._ 4L D yv ® 4i -b JI . -- _ ._ - .. _ _ -- At../ -t3 +b 3a -b :13 - - - - -.... -- - - -- - - -_ - .- . - . _ .. ..... .. . . .. 30 -0 t.74 3 f -b - iD b 1 L -- _.:.- - 34-0 0 V 33 -b 0: - -. - — - .. . _ - - -- bL-0 O - - - - " - 3 I -b Gb _ .G - 04 - - - : -- --' .. - - - Lr -b G3 - . - - -- -. _ . .--'- LO - _ -' - GD - b . - L3 -0 r .' - - -' - --' -- -- .. - LL -O I r - _. - - - - GU -b /b - - - 121 -0 '4 i0 -0 '4 _.. _ : -- - -.. - - I f -0 3 !b l !L . _. . - -- - - - ... _.. - - - — - - -- - - -' -- -_-.._ _ _. - - - 10 -0 e _ _ "14-b fU - - - . 0 b:i i G -b b0 .. - - - - _ .. - _ - - - : I -b ,D _ 14 -b , DO - _ . .. __. - . - _ '- .. -- - _. ._ - 03 A -b 03, b6 -b b n l_ ' -- - ..- - - . _ . - — - -- - - - '. 3 ;1 • BB\B B BC CC C C CC CICCC CC CCCC C C CC CC1CC CD DD D D DD DICDD DD DD DD D D DD CDID D DE E E E E EE DEEEEEIE EEEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44` 46' 48' 50' 52' 54' 56' 58' 60' 62' 64 66' 68' 70' 72' 74' 76' 1'2'3 4'5'3 * 1 :1.1 ' 1 1 02222 3':3:3.3:3 3 F 5f5 ^t u rr7' -5" C. — (n c 5 :5:5•b:54.' � 6 6,�::6�.3(6'6''647G'7:7:7�7 1 1 WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN UNIT C - FRONT LOAD WoodWorks® Sizer 7.1 June 28, 2010 13:16:44 Concept Mode: Column View Roof: 25' - 4J' -6, 1050. IU4 40 -b - -. .. 4/ -C _ I U I 4 7 -ID IUVC- - . -. _.._ - - -- -- - - - - 4 - e - •{9 . - . ... _ .. c13. c14 - - - - J0 42 -o u/ - -'- - - - -- - - - - -- 4'1 -0 yb .- - - • -- - - 4 -0 yb _: _ .. -. - --- - - - -. . . . .- - - 3 b y 4 ., .. _ _ - -- - --- ._ - - 30 -0 &J 31 -0 d2 --- - 60 -0 ` - - - - - -. . - - - -- - - - - - - .::,-.t) JU :,4 -0 - �y 3.,0, 06 - _ . -_ _ - - - - _. - - - ._ - _ 6/ 3I -b 6b • - - - - . - _ - - • U - 05 2y -0 04- . _ - _ _ _ ._ _- .. _.__ - _ .___ _ • _ - - - - - 26 -0 63 21 -b 6L -. _ - • - - - - - - - .. - -- - - - -- - Lb - 0 i 27 -0 CU - - • - - -. - -. - - - - - - - - L4 -J jr. - - - - - _. _ .. LL -0 H 2, -C 1_ • _. _ - _ -. _ - - 5 -b / i / -C r._ _ _ -. .- - _ - 0,. I - - - - - 3 - C. U _ - - - - -' - -' - - -- 4-b 06 - - - - - - - L -0 0 ' ' -0 Cb _ . . _- _ _. U-C t30 - - - - -0 J CO - c16 - - c15 - / -b 25 b -b ,- -- Cu; 4 0 - - V - - - - - ,. - - - - - - -- - - -- -' 1 -0 ..- .- _ - U-C 0 BB}B B BCCCCCCCCECCC CCCCCCCCCC CC'CCCDDDDDDDDiDDD CDDD DDDDDD CDIDDDE E EE EEE EEEEEEEEE'EEEEEEEEEEEZ 0' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42 44' 46' 48' 50 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72'74' 76' 0'1'2'3'4'5'6 7'8'61(1'1:1:1 - 1:1(1'.1 112(22;2:2.2!2(2'2!2' -3(33 :3;3/3 :3E33 4174 :4 4?4E4 5 1 6 "0 'E7%' -6 • c fia'o�6'. 6.6_ C._ Celt) COMPANY PROJECT ■ WoodWorks SOFTWARE FOR WOOD DCSIGN June 28, 2010 13:20 j8 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End Loadl Live Full UDL 53.3 plf Load2 Dead Full UDL 13.3 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : A 0 8 A Dead 64 64 Live 213 213 Total 277 277 Bearing: Load Comb #2 #2 Length 0.50 * 0.50* 'Min. bearing length for joists is 1/2" for exterior supports Lumber -soft, D.Fir -L, No.2, 2x8" Spaced at 16" c/c; Self- weight of 2.58 plf included in loads; Lateral support: top= full, bottom= at supports; Repetitive factor: applied where permitted (refer to online help); Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 32 Fv' = 180 fv /Fv' = 0.18 Bending( +) fb = 506 Fb' = 1242 fb /Fb' = 0.41 Live Defl'n 0.06 = <L/999 0.27 = L/360 0.24 Total Defl'n 0.09 = <L/999 0.40 = L/240 0.23 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.200 1.00 1.15 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 277, V design = 235 lbs Bending( +): LC #2 = D +L, M = 554 lbs -ft Deflection: LC #2 = D +L EI= 76e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wipd I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. e,C\ COMPANY PROJECT i l 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 13:21 j27 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End Loadl Live Full UDL 53.3 plf Load2 Dead Full UDL 17.3 plf MAXIMUM REACTIONS fibs) and BEARING LENGTHS (in) : A N- A. 10' 4 Dead 39 39 Live 107 107 Total 145 145 Bearing: Load Comb #2 #2 Length 0.50* 0.50* 'Min. bearing length for joists is 1/2" for exterior supports Lumber -soft, D.Fir -L, No.2, 2x6" Spaced at 16" c/c; Self- weight of 1.96 plf included in loads; Lateral support: top= full, bottom= at supports; Repetitive factor: applied where permitted (refer to online help); Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 20 Fv' = 180 fv /Fv' = 0.11 Bending( +) fb = 230 Fb' = 1345 fb /Fb' = 0.17 Live Defl'n 0.01 = <L/999 0.13 = L/360 0.07 Total Defl'n 0.01 = <L/999 0.20 = L/240 0.07 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.15 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 145, V design = 112 lbs Bending( +): LC #2 = D +L, M = 145 lbs -ft Deflection: LC #2 = D +L EI= 33e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. ...-- 61 n COMPANY PROJECT i I WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 13:26 b11 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_w56 Dead Partial UD 498.0 498.0 0.00 6.00 plf 2_w56 Rf.Live Partial UD 450.0 450.0 0.00 6.00 plf 3_c46 Dead Point 938 5.00 lbs 4 c46 Rf.Live Point 1350 5.00 lbs MAXIMUM RE • CTIfNS /lhsl and RFARIN(. I FN(,THS lint • _ ._...s. �.: 1.. mac .= . fir - w'^c..c.. �, �...� .:� - -.. ' ..�. _+"- -► _ .0.ter "ti,- - .� -.+ _ _ .._-� - te r.-r -.. - • W Ilit.- 1 0. 61 Dead 1673 2298 Live 1575 2475 Total 3248 4773 Bearing: Load Comb #2 #2 Length 2.32 3.41 LSL, 1.55E, 2325Fb, 1- 314x14" Self- weight of 7.66 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv* = 207 Fv' = 356 fv * /Fv' = 0.58 Bending( +) fb = 1159 Fb' = 2674 fb /Fb' = 0.43 Live Defl'n 0.03 = <L/999 0.20 = L/360 0.15 Total Defl'n 0.07 = L/980 0.30 = L/240 0.24 *The effect of point loads within a distance d of the support has been included as per NDS 3.4.3.1 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 4773, V design* = 3386 lbs Bending( +): LC #2 = D +L, M = 5520 lbs -ft Deflection: LC #2 = D +L EI= 620e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. c_- Cak,Z COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD Df51C5 June 28, 2010 13:21 b1 Design Check Calculation Sheet Sizer 7.1 . LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1 w33 Dead Partial UD 402.0 402.0 0.00 1.50 plf 2_w33 Rf.Live Partial UD 450.0 450.0 0.00 1.50 plf 3_c9 Dead Point 985 1.50 lbs 4 c9 Rf.Live Point 1470 1.50 lbs 5 j9 Dead Full UDL 47.7 plf 6_j9 Live Full UDL 160.0 plf Load? Live Full UDL 40.0 plf Load8 Dead Full UDL 13.0 plf MAXIMUM RI _ ^,'� " sj _ - i. 'f_ .-s. :k ;r oy aP, 3 ' 0 ^ _ rte ',r_ 7: ;; : rya?^«;c�t'.'G'.'ij ,o ' ,i, z , r w,r : i, ' : lF 1 . n .g _ c sky, ^t `°ec . ,.:..,1 [+ Y ! "" fit. ' - -L ,', ;. z a., ' t'_.a. a.( ".- - ' .• , . . ,,, :'t .& `.- ,. t 1. .,, :�_.• s*.w. a•i! .. _ +� •_ -1 ,r ; T ti i vy 9� y; ,k .a - 3. ' • • T eh- . •i R - �J � F'� ♦:: < l e' i l .Fa V ~ V 4 , ♦w �. 4'' ,'-''-'<- ° �- '. + °µ Y y; t� 4S+ ,,. � > 1: }� -, o � :' , 4 . .i F �� - - y +�. »_ _ 'A. -- -. ■ '' ''.:1•".7;7',. �,,..; b v,�r r i t� ..:1 _ - �=..'�';F+.17y� - A - r { 1 . • _7-.,.A a f ° i% F. • ,.1 ' •xt .` ' .z; - -' [, P ♦ 4b( .7`.:' F . .( _ i ,-• Y Kl, ,_ 7 f C 4v if L:n'w _Y . .$, A (!fJ'` i 2" �. • ^ , r } •� r a f i , 1 ] : . J .'iS •• "' • I 0, 31 Dead 1043 742 Live 1541 1204 Total 2585 1946 Bearing: Load Comb #2 #2 Length 1.38 1.04 Lumber n -ply, D.Fir -L, No.2, 2x8 ", 2 -Plys Self- weight of 5.17 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design • Shear fv = 135 Fv' = 207 fv /Fv' = 0.65 Bending( +) fb = 1196 Fb' = 1242 fb /Fb' = 0.96 Live Defl'n 0.01 = <L/999 0.10 = L/360 0.14 Total Defl'n 0.03 = <L/999 0.15 = L/240 0.19 • ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.15 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 2585, V design = 1961 lbs Bending( +): LC #2 = D +L, M = 2619 lbs -ft Deflection: LC #2 = D +L SI= 76e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that • each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. C- 6/A • COMPANY PROJECT i I WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 13:18 b12 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j8 Dead Partial UD 47.7 47.7 0.00 4.50 plf 2_j8 Live Partial UD 160.0 160.0 0.00 4.50 plf 3_j9 Dead Partial UD 47.7 47.7 4.50 7.50 plf 4_j9 Live Partial UD 160.0 160.0 4.50 7.50 plf 5_j10 Dead Partial UD 47.7 47.7 7.50 16.00 plf 6 110 Live Partial UD 160.0 160.0 7.50 16.00 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : l0' 16+ Dead 442 442 Live 1280 1280 Total 1722 1722 Bearing: Load Comb #2 #2 Length 0.85 0.85 Glulam - Unbal., West Species, 24F -V4 DF, 3- 118x10 -112" Self- weight of 7.55 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 70 Fv' = 265 fv /Fv' = 0.26 Bending( +) fb = 1440 Fb' = 2400 fb /Fb' = 0.60 Live Defl'n 0.43 = L/441 0.53 = L/360 0.82 Total Defl'n 0.66 = L/290 0.80 = L/240 0.83 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 1722, V design = 1534 lbs Bending( +): LC #2 = D +L, M = 6890 lbs -ft Deflection: LC #2 = D +L EI= 543e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 13:17 b17 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w49 Dead Partial UD 402.0 402.0 4.00 7.50 plf 211449 Snow Partial UD 450.0 450.0 4.00 7.50 plf 3 Dead Point 938 4.00 lbs 4_c15 Snow Point 1350 4.00 lbs Load5 Dead Full UDL 13.0 plf Load6 Live Full UDL 40.0 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : __ =• - ` j.R MTV 7 � _ _ - •c'~ - ". c am- ".III.1 ��.^� i i -� l - �,.�, . ^' ' � `+- _ , AJ A t 0' 7' -6'1 Dead 843 1656 Live 997 1927 Total 1841 3584 Bearing: #4 Load Comb #4 Length 1.31 2.56 LSL, 1.55E, 2325Fb, 1- 314x14" Self- weight of 7.66 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 162 Fv' = 356 fv /Fv' = 0.45 Bending( +) fb = 1511 Fb' = 2674 fb /Fb' = 0.57 Live Defl'n 0.06 = <L/999 0.25 = L/360 0. Total Defl'n 0.12 = L/722 0.37 = L/240 0.33 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 4 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 4 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - 4 Emin' 0.80 million - 1.00 - - - - 1.00 - - 4 Shear : LC #4 = D +S, V = 3584, V design = 2643 lbs Bending( +): LC #4 = D +S, M = 7198 lbs -ft Deflection: LC #4 = D +S EI= 620e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. C - Ct ik COMPANY PROJECT i 1 WoodWorks' SOFTWARE FOR WOOD DESIGN June 28, 2010 13:51 b18 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 c16 Dead Point 938 5.00 lbs 2 c16 Rf.Live Point 1350 5.00 lbs 3 w37 Dead Partial UD 498.0 498.0 15.00 16.00 plf 4 w37 Rf.Live Partial UD 450.0 450.0 15.00 16.00 plf 5 w54 Dead Partial UD 498.0 498.0 14.50 15.00 plf 6_w54 Rf.Live Partial UD 450.0 450.0 14.50 15.00 plf 7_w55 Dead Partial UD 96.0 96.0 6.00 7.00 p1f 8 w56 Dead Partial UD 498.0 498.0 0.00 6.00 plf 9 w56 Rf.Live Partial UD 450.0 450.0 0.00 6.00 plf 10 c39 Dead Point 843 7.00 1bs 11 c39 Rf.Live Point 1147 7.00 lbs 12_c40 Dead Point 1656 14.50 lbs 13 c40 Rf.Live Point 2077 14.50 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : 10' 16 Dead 3950 3630 Live 3994 3956 Total 7944 7586 Bearing: Load Comb #2 #2 Length 2.77 2.64 Glulam - Unbal., West Species, 16F -E3 DF, 5- 118x16 -112" Self- weight of 19.47 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 117 Fv' = 247 fv /Fv' = 0.47 Bending( +) fb = 1443 Fb' = 1831 fb /Fb' = 0.79 Live Defl'n 0.21 = L/935 0.53 = L/360 0.38 Total Defl'n 0.49 = L/391 _ 0.80 = L/240 0.61 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 215 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 1600 1.15 1.00 1.00 1.000 0.995 1.00 1.00 1.00 1.00 - 2 Fcp' 560 - 1.00 1.00 - - - - 1.00 - - - E' 1.6 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.79 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 7944, V design = 6613 lbs Bending( +): LC #2 = D +L, M = 27966 lbs -ft Deflection: LC #2 = D +L EI- 3070e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C- construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). ( - G,'"---- COMPANY PROJECT III WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 13:26 b18.1 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_w63 Dead Partial UD 402.0 402.0 0.00 1.00 plf 2_w63 Rf.Live Partial UD 450.0 450.0 0.00 1.00 plf 3_c9 Dead Point 985 1.00 lbs 4_c9 Rf.Live Point 1470 1.00 lbs 5_c10 Dead Point 985 7.00 lbs 6_c10 Rf.Live Point 1470 7.00 lbs 7_w64 Dead Partial UD 402.0 402.0 7.00 9.50 plf 8 w64 Rf.Live Partial UD 450.0 450.0 7.00 9.50 plf 9_j25 Dead Full UDL 47.7 plf 10_j25 Live Full UDL 160.0 plf Loadll Dead Full UDL 13.0 plf Load12 Live Full UDL 40.0 plf MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : 10' g-6 Dead 1977 2047 Live 3226 3189 Total 5204 5236 Bearing: Load Comb #2 #2 Length 2.56 2.58 Glulam - Unbal., West Species, 24F -V4 DF, 3- 118x10 -112" Self- weight of 7.55 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 195 Fv' = 305 fv /Fv' = 0.64 Bending( +) fb = 2004 Fb' = 2760 fb /Fb' = 0.73 Live Defl'n 0.18 = L/627 0.32 = L/360 0.57 Total Defl'n 0.34 = L/335 0.47 = L/240 0.72 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 5236, V design = 4256 lbs Bending( +): LC #2 = D +L, M = 9589 lbs -ft Deflection: LC #2 = D +L EI= 543e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). . -• COMPANY PROJECT (II Wood Works® SOFTWARE FOR WOOD DFDGN June 28, 2010 13:21 b19 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 j24 Dead Full UDL 51.0 plf 2 - j24 Live Full UDL 75.0 plf MAXIMUM REV.T1t11.10 111....1 ......11 DC A 011Alts I CAI's Jr-. • :..r:.•,..%3:1:.:4.,:.=',;'--5,=:,44v.i::;,,s-'-t=1;,47-5.,v,i-1.7,!'ii.gz--,F)414:5-g:,-7-,t41--:--:;:17r44:; (.,>•,,,,,:.,-.- -.,,..,,,.....4,..,,, :,,,,, .,„:„-..,, . -t.„, 4,"..;4:1;_i,..p % -1 - '..",, ..:, ,. r -- - .-- , , , ,s ...: .4,. :'-':'■ -1,Y . '. 'IL•r ' " '?"'' ; ' •,' - "•,.. 'eV: , w'''. - :' , - • - •' - S V4';+-,C-'1- 1-. ' ' ... .-.;'.: "t 4 .41-. V.4 '...hz..W •;: ,....,- ■-,■ W ' ....--"..4.0 .-.U,Z,..yr„ , '.' ' ' '.::./4",.....:',44 . ) , 4 , ,, ,'4, ,•4;= -1,:■;i■I'''''71 •;7e •: , ',,,- "'.'Z ,, r3r." -,''?--- .'7. ' C ; ;7: 2 ,..,.• ..6.•••-•V--q I • '''' ' • , i .i 4 T.. , ' . - :,:p, .; ,.?; f. :-,....2,- .,t ...f _.... t. - - . ': - - 'f...'' .... 2 , ,,1 - , , :,...., c , .,.-:77; .:1, ::= rr ;,,i_,,,1::--!"..i .,*,..:,..--i , - :;: - .,-; ).:74` .:,.,,.,...........„ ...._„',-.-•,/,-, , ._.-,, .... ---,- , . 'I 1 •:t;i4 ..:,,;,, ,,-.--- -,,-.----- .,:, ,,.:-._ : .. - --i,lz1..„:,....:., - ,, ,-;,-. ' 7 -:_,,. -, 7, z• • • • . -1. r;,,., ,," - ' 4 • - - :7' . •!3W ve--;;;.;:r 7 i.--' r - - ...? ' i.4 = -...;.' -7, 4•••, ,,,,'. •;',"*.f,. ', •: ''".:-•;: ' ,.'. ==;t •-•‘ ,, , , -3 , -,4..; , -: , .•.\ , ..i, ,, ' , .".T.-"' I cr • 31 Dead 86 86 Live 112 112 Total 198 198 Bearing: Load Comb #2 #2 Length 0.50* 0•50* 'Win. bearing length for beams is 1/2" for exterior supports Lumber-soft, D.Fir-L, No.2, 4x8" Self-weight of 6.03 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis/Design Shear fv = 7 FY' = 180 fv/Fv = 0.04 Bending(+) fb = 58 Fb' = 1170 fb/Fb' = 0.05 Live Defl'n 0.00 = <L/999 0.10 = L/360 0.01 Total Defl'n 0.00 = <L/999 0.15 = L/240 0.01 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 . Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D+L, V = 198, V design = 118 lbs Bending(+): LC #2 = D+L, M = 149 lbs-ft Deflection: LC #2 = D+L EI= 178e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W =wind I=impact C =construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. C- COMPANY PROJECT di WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 13:17 b23 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j14 Dead Partial UD 78.0 78.0 0.00 7.00 plf 2_j14 Live Partial UD 240.0 240.0 0.00 7.00 plf 3_j29 Dead Partial UD 78.0 78.0 7.00 10.50 plf 4_j29 Live Partial UD 240.0 240.0 7.00 10.50 plf 5_j31 Dead Partial UD 26.0 26.0 7.00 10.50 plf 6_j31 Live Partial UD 80.0 80.0 7.00 10.50 plf 7_b24 Dead Point 409 7.00 lbs 8 Live Point 1080 7.00 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : - . ���+.r ;. ,,t .• - -. - �.,- �:../r � -= r_,- ..,� .. - .. te - fi � a . ,.:�"�!a- ."-"' -.y��= e� la 10' -0 Dead 601 798 Live 1667 2213 Total 2268 3012 Bearing: Load Comb #2 #2 Length 1.62 2.15 LSL, 1.55E, 2325Fb, 1- 3/4x14" Self- weight of 7.66 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 154 Fv' = 310 fv /Fv' = 0.50 Bending( +) fb = 1658 Fb' = 2325 fb /Fb' = 0.71 Live Defl'n 0.18 = L/714 0.35 = L/360 0.50 Total Defl'n 0.27 = L/462 0.52 = L/240 0.52 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 3012, V design = 2515 lbs Bending( +): LC #2 = D +L, M = 7897 lbs -ft Deflection: LC #2 = DEL EI= 620e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. CT CP\b • COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 13:17 b24 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or pit )' Load Type Distribution Magnitude Location [ft] Units Start End Start End Loadl Dead Full UDL 200.0 plf Load2 Live Full UDL 540.0 plf • MAXIMUM REACTIONS Ilhs► and BFARING LENGTHS 1in1 • I 0 41 Dead 409 409 Live 1080 1080 Total 1489 1489 Bearing: Load Comb #2 #2 Length 0.68 0.68 Lumber -soft, D.Fir -L, No.2, 4x6" Self- weight of 4.57 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 89 Fv' = 180 fv /Fv' = 0.50 Bending( +) fb = 1013 Fb' = 1170 fb /Fb' = 0.87 Live Defl'n 0.04 = <L/999 0.13 = L/360 0.30 Total Defl'n 0.06 = L/764 0.20 = L/240 0.31 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.00 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 1489, V design = 1148 lbs Bending( +): LC #2 = D +L, M = 1489 lbs -ft Deflection: LC #2 = D +L EI= 78e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. COMPANY PROJECT I 1141 I WoodWorks® SOFTWARE FOR WOOD MUCH June 28, 2010 13:22 c10 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_c14 Dead Axial 938 (Eccentricity = 0.00 in) 2_c14 Rf.Live Axial 1350 (Eccentricity = 0.00 in) 3_b4 Dead Axial 47 (Eccentricity = 0.00 in) 4 Live Axial 120 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 1 0' 9' Lumber n -ply, Hem -Fir, No.2, 2x6 ", 2 -Plys Self- weight of 3.41 plf included in loads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 9.00= 9.00 [ft]; Ke x Ld: 1.00 x 9.00= 9.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 151 Fc' = 172 fc /Fc' = 0.88 Axial Bearing fc = 151 _ Fc* = 1644 fc /Fc* = 0.09 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.104 1.100 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 2485 lbs Kf = 0.60 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. • COMPANY PROJECT • 1, WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 13:25 c12 . . Design Check Calculation Sheet Sizer LOADS (lbs. psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b23 Dead Axial 601 (Eccentricity = 0.00 in) 2 b23 Live Axial - 1667 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): crqtkrAV=inrOVV.4VATF4RWWW479X-AMaPROlgerEWW 0' 9' • Lumber n-ply, Hem-Fir, No.2, 2x4", 3-Plys Self-weight of 3.25 plf included in loads; . • Pinned base; Loadface = depth(d); Built-up fastener: nails; Ke x Lb: .1.00 x 9.00= 9.00 [ft]; Ke x Ld: 1.00 x 9.00= 9.00 [ft]; Repetitive factor: applied where permitted (refer to online help); Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis/Design Axial fc = 146 Fc' = 356 fc/Fc' = 0.41 Axial Bearing fc = 146 Fc* = 1495 fc/Fc* = 0.10 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.238 1.150 - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.150 - 1.00 1.00 2 Axial : LC #2 = D+L, P = 2297 lbs Kf = 0.60 (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. • 2. BUILT-UP COLUMNS: nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. • ') COMPANY PROJECT WoodWorks° SOFTWARE FOR WOOD DESIGN June 28, 2010 13:23 c16 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location (ft] Units Start End Start End 1 b6 Dead Axial 938 (Eccentricity = 0.00 in) 2 Rf.Live Axial 1350 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 0' 17 Lumber n -ply, Hem -Fir, No.2, 2x6 ", 3 -Plys Self- weight of 5.11 plf included in loads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 17.00= 17.00 [ft]; Ke x Ld: 1.00 x 17.00= 17.00 [ft]; Repetitive factor: applied where permitted (refer to online help); Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 96 Fc' = 110 fc /Fc' = 0.87 Axial Bearing fc = 96 Fc* = 1644 fc /Fc* = 0.06 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.067 1.100 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 2375 lbs Kf = 0.60 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. • COMPANY PROJECT WoodWorks - -- SOFTWARE FOR WOOD DESIGN June 28, 2010 13:25 c23 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End l b18 Dead Axial 3978 (Eccentricity = 0.00 in) 2 Rf.Live Axial 3994 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): .: ' �•: -,. .,.. -...,- .. • F� „�,....�,.� �"' ..7^ =ear4. `:. a .:.•+ ..+ y • 0' 8' Timber -soft, Hem -Fir, No.2, 6x6" Self- weight of 6.25 plf included in loads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 265 Fc' = 548 fc /Fc' = 0.48 Axial Bearing fc = 265 Fc* = 661 fc /Fc* = 0.40 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 575 1.15 1.00 1.00 0.829 1.000 - - 1.00 1.00 2 Fc* 575 1.15 1.00 1.00 - 1.000 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 8022 lbs (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: • • 1. Please verify that the default deflection limits are appropriate for your application. C (_\P COMPANY PROJECT • AI WoodWorks® SOFT WARF FOR WOOD DESIGN June 28, 2010 13:23 c28 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf) : Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b24 Dead Axial 409 (Eccentricity = 0.00 in) 2 b24 Live Axial 1080 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs , >':�. -` : _ `^' ".:i -�:= ��se_,�:r..a � _ _K'�^ a�°n u'.4t �' TA: �:-. 1�":+ �t. af�+; "t.; ;etci:7'- ?� c -�°::. s.+;lrc ':F �.' _ {+L" ��.`, �.J..:�,'„+" ""'. . 4 ! n;�1 �c� _ n a ,� `l r } �.�:::d�....� >>:snr.<A�° -.:: i��., r �'ti� ` �'s �,j' � �,'�t."' �"i` -ter Y,t''ii..� -A^ � .,,.�,e,�•`: 7�'.rF,.'a.';.;�`ih:. ' L..k.: ��`�.. n'_ _ ._� . � =a �fvr. _ _ .a�.. V 9 i=. .h• r�U., ._. -Bw �'�`2%`.J.+si;?� . 0' 9, Lumber n -ply, Hem -Fir, No.2, 2x4 ", 2 -Plys Self- weight of 2.17 plf included in loads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 9.00= 9.00 [ft]; Ke x Ld: 1.00 x 9.00= 9.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis /Design, Axial fc = 144 Fc' _- 171 fc /Fc' = 0.84 Axial Bearing fc = 144 Fc* = 1495 fc /Fc* = 0.10 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.114 1.150 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 1509 lbs Kf = 0.60 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES:. 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. 64 • • COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 13:22 c42 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b19 Dead Axial 86 (Eccentricity = 0.00 in) 2 Live Axial 112 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 0' 8' Lumber Post, Hem -Fir, No.2, 4x4" Self- weight of 2.53 plf included in loads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 18 Fc' = 470 fc /Fc' = 0.04 Axial Bearing fc = 18 Fc* = 1495 fc /Fc* = 0.01 ADDITIONAL DATA: . FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.315 1.150 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 218 lbs (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. • • COMPANY PROJECT di WoodWorks SOFTWARE FOR WOOD DESIGN June 28, 2010 13:22 c50 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 c48 Dead Axial 599 (Eccentricity = 0.00 in) 2 Live Axial 1660 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 1 0' 8 ' Lumber Post, Hem -Fir, No.2, 4x6" Self- weight of 3.98 plf included in loads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 119 Fc' = 468 fc /Fc' = 0.25 Axial Bearing fc = 119 Fc* = 1430 fc /Fc* = 0.08 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.327 1.100 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 2291 lbs (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. . _ BY ' \ �` 'D A TE: (� ` ,.,, �� (� ■ .... 'p C j • .„-b..' i4d x -v. ..1: ( 'PROJECT: ` 7; ^. t' : I ,: _ n I , a, .i. . . 13 - -i- , . , . _..,..,::., . , 11 (' � J rr'! . { b 1 - A-- watk Say , ► . 0 W • w [1 b1a ‘k ak 3 . J Q J l i O w 1 Z • ' W d 3 \1 - \(,:e_., )i1 i. r � 0 ' Se ► u C ( : 3 c-- _ .. ° ``�'�C 1, �, ! `';—' • t Q .', i •... ` is "+ _ .( _ - �.i: _,�. . _ I "::: � _ _ r1 r ..- _ 1. • it U , , F ,_ ^ f= � �1 2 J O Y _ f ... _ »�.. .. , t ' • �` Z . .- . S • o .. I- d . • t'I ' a °' f� . , , ; d ,w' ;�.. tI I 1 f • . - b - - • I,t 'i .- :i k , ,... 1 ';_ - i l'. _. ' ! ... . ..... _ f, L C I .; .i, f ' I • �- 1i,T: 4TS -* .- • l i ; G -; I ` ii 1 ..,. _. . ' , - ' - , • .i' _I d;,- ; hi 1 .. ,,. ?1 - - -. , n j-. r ,, ,..:.. _ :, , - ' . - % . g jj j rr .{- V. _ 1 ..: �_. - .1 :.. - _' _ l..l _ , - ;:f. , {•_ lii +-.: �: ., __ _� �.k. .1 `_ _ __i •._ o::L;j'; r.9 -.mac.' ,..•__'k'Z 1 _ - .. y . h • COMPANY PROJECT , di WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 13:36 b17 LC1 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w49 Dead Partial UD 402.0 402.0 4.00 7.50 plf 2 Snow Partial UD 450.0 450.0 4.00 7.50 plf 3 c15 Dead Point 938 4.00 lbs 4 c15 Snow Point 1350 4.00 lbs Load5 Dead Full UDL 13.0 plf Load6 Live Full UDL 40.0 plf wind Wind Point 2240 4.00 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : 1 ' " a��. -rte- _ 10' 7 Dead 843 1656 Live 1645 2454 Total 2488 4110 Bearing: Load Comb #4 #4 Length 1.78 2.94 LSL, 1.55E, 2325Fb, 1- 314x14" Self- weight of 7.66 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 162 Fv' = 356 fv /Fv' = 0.45 Bending( +) fb = 1511 Fb' = 2674 fb /Fb' = 0.57 Live Defl'n 0.09 = <L/999 0.25 = L/360 0.34 Total Defl'n 0.15 = L /580 0.37 = L/240 0.41 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 6 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 6 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 4 Emin' 0.80 million - 1.00 - - - - 1.00 - - 4 Shear : LC #6 = D +S, V = 3584, V design = 2643 lbs Bending( +): LC #6 = D +S, M = 7198 lbs -ft Deflection: LC #4 = D +.75(L +S +W) EI= 620e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. C -C�,2h i COMPANY PROJECT f fl W SOP?WAR? FOR WOOL) DESIGN June 28, 2010 13:36 b17 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_w49 Dead Partial UD 402.0 402.0 4.00 7.50 plf 2_w49 Snow Partial UD 450.0 450.0 4.00 7.50 plf 3_c15 Dead Point 938 4.00 lbs 4 c15 Snow Point 1350 4.00 lbs Load5 Dead Full UDL 13.0 plf Load6 Live Full UDL 40.0 plf wind Wind Point -2240 4.00 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : �..a� �s pay e s,��� - t�a.�.�_-�►.w7 �--i - L .y � rim � -� r�� - L 1 0' 7-6 Dead 843 1656 Live 997 1927 Uplift 528 189 Total 1841 3584 Bearing: Load Comb #6 #6 Length 1.31 2.56 LSL, 1.55E, 2325Fb, 1- 3/4x14" Self- weight of 7.66 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 162 Fv' = 356 fv /Fv' = 0.45 Bending( +) fb = 1511 Fb' = 2674 fb /Fb' = 0.57 Bending( -) fb = 469 Fb' = 1114 fb /Fb' = 0.42 Live Defl'n 0.06 = <L/999 0.25 = L/360 0.22 Total Defl'n 0.12 = L/722 0.37 = L/240 0.33 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 6 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 6 Fb'- 2325 1.60 - 1.00 0.299 1.00 - 1.00 1.00 - - 8 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 6 Emin' 0.80 million - 1.00 - - - - 1.00 - - 6 Shear : LC #6 = D +S, V - 3584, V design = 2643 lbs Bending( +): LC #6 = D +S, M = 7198 lbs -ft Bending( -): LC #8 = .6D +W, M = 2235 lbs -ft Deflection: LC #6 = D +S EI= 620e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. 621 COMPANY PROJECT 4i WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 13:41 b18 Ic1 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1 c16 Dead Point 938 5.00 lbs 2 Snow Point 1350 5.00 lbs 3 Dead Partial UD 498.0 498.0 15.00 16.00 plf 4 - w37 Snow Partial UD 450.0 450.0 15.00 16.00 plf . 5 Dead Partial UD 498.0 498.0 14.50 15.00 plf 6_w54 Snow Partial UD 450.0 450.0 14.50 15.00 plf 7 Dead Partial UD 96.0 96.0 6.00 7.00 plf 8 Dead Partial UD 498.0 498.0 0.00 6.00 plf 9 Snow Partial UD 450.0 450.0 0.00 6.00 plf 10_c39 Dead Point 843 7.00 lbs 11 Snow Point 1147 7.00 lbs 12 c40 Dead Point 1656 14.50 lbs 13 c40 Snow Point 2077 14.50 lbs WIND1 Wind Point 8750 0.00 lbs WIND2 Wind Point -8750 7.00 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : 164 3630 10' 3630 Dead 3950 3630 Live 5866 3956 Uplift 1588 Total 9816 Bearing: #2 Load Comb #3 2.#2 Length 2.95 Glulam - Unbal., West Species, 24F -V4 DF, 5- 118x16 -112" Self- weight of 19.47 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 117 Fv' = 305 fv /Fv' = 0.38 Bending( +) fb - 1443 Fb' = 2747 fb /Fb' = 0.53 Bending( -) fb = 1354 Fb' = 2743 fb /Fb' = 0.49 Live Defl'n -0.43 = L/446 0.53 = L/360 0.81 Total Defl'n -0.26 = L/737 0.80 = L/240 0.33 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes. Cn LC# Fv' 265 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.15 1.00 1.00 1.000 0.995 1.00 1.00 1.00 1.00 - 2 Fb'- 1850 1.60 1.00 1.00 0.927 1.000 1.00 1.00 1.00 1.00 - 4 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 4 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 4 Shear : LC #2 = D +S, V = 7944, V design = 6613 lbs Bending( +): LC #2 = D +S, M = 27966 lbs -ft Bending( -): LC #4 = .6D +W, M = 26233 lbs -ft Deflection: LC #4 = .6D +W EI= 3453e06 lb -in2 Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. • 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). ( - 030 . 8 COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 13:41 b18 Ic2 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1 c16 Dead Point 938 5.00 lbs 2 Snow Point 1350 5.00 lbs 3 w37 Dead Partial UD 498.0 498.0 15.00 16.00 plf 4 w37 Snow Partial UD 450.0 450.0 15.00 16.00 plf 5_w54 Dead Partial UD 498.0 498.0 14.50 15.00 plf 6 w54 Snow Partial UD 450.0 450.0 14.50 15.00 plf 7 w55 Dead Partial UD 96.0 96.0 6.00 7.00 plf 8 w56 Dead Partial UD 498.0 498.0 0.00 6.00 plf 9 w56 Snow Partial UD 450.0 450.0 0.00 6.00 plf 10 c39 Dead Point 843 7.00 lbs 11_c39 Snow Point 1147 7.00 lbs 12 c40 Dead Point 1656 14.50 lbs 13 c40 Snow Point 2077 14.50 lbs WIND1 Wind Point -8750 0.00 lbs WIND2 Wind Point 8750 7.00 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : I A 1 0 , 161 Dead 3950 3630 Live 3994 5838 Uplift 1396 Total 7944 9468 Bearing: Load Comb #2 #3 Length 2.38 2.84 Glulam - Unbal., West Species, 24F -V4 DF, 5- 1/8x16 -112" Self- weight of 19.47 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 168 Fv' = 424 fv /Fv' = 0.40 Bending( +) fb = 2579 Fb' = 3822 fb /Fb' = 0.67 Live Defl'n 0.41 = L/467 0.53 = L/360 0.77 Total Defl'n 0.58 = L/331 0.80 = L/240 0.72 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.60 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 2400 1.60 1.00 1.00 1.000 0.995 1.00 1.00 1.00 1.00 - 3 Fcp' 650 - 1.00 1.00 - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 3 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 3 Shear : LC #3 = D +.75(S +W), V = 10637, V design = 9461 lbs Bending( +): LC #3 = D +.75(S +W), M = 49976 lbs -ft Deflection: LC #3 = D +.75(S +W) EI= 3453e06 lb -in2 Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D-dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). L- 6,t COMPANY PROJECT '~ WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 13:41 b18 Ic2 NO LL Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 c16 Dead Point 938 5.00 lbs 2 c16 Snow Point 1350 5.00 lbs 3 w37 Dead Partial UD 498.0 498.0 15.00 16.00 plf 4 Snow Partial UD 450.0 450.0 15.00 16.00 plf 5 w54 Dead Partial UD 498.0 498.0 14.50 15.00 plf 6_w54 Snow Partial UD 450.0 450.0 14.50 15.00 plf 7 Dead Partial UD 96.0 96.0 6.00 7.00 plf 8 Dead Partial UD 498.0 498.0 0.00 6.00 plf 10_c39 Dead Point 843 7.00 lbs 12 c40 .Dead Point 1656 14.50 lbs WIND1 Wind Point -8750 0.00 lbs WIND2 Wind Point 8750 7.00 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : K 10' 161 Dead 3950 3630 Live 960 3670 Uplift 1396 Total 4910 7300 Bearing: Load Comb #2 #3 Length 1.47 2.19 Glulam - Unbal., West Species, 24F -V4 DF, 5- 118x16 -1/2" Self- weight of 19.47 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 135 Fv' = 424 fv /Fv' = 0.32 Bending( +) fb = 2202 Fb' = 3822 fb /Fb' = 0.58 Live Defl'n 0.31 = L/614 0.53 = L/360 0.59 Total Defl'n 0.48 = L/398 0.80 = L/240 0.60 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.60 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 2400 1.60 1.00 1.00 1.000 0.995 1.00 1.00 1.00 1.00 - 4 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 3 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 3 Shear : LC #3 = D +.75(S +W), V = 8361, V design = 7630 lbs Bending( +): LC #4 = .6D +W, M = 42673 lbs -ft Deflection: LC #3 = D +.75(S +W) EI= 3453e06 lb -in2 Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). ---. (.1.;L COMPANY PROJECT 1 I WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 13:42 b18 Ic1 NO LL Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or pit ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 c16 Dead Point 938 5.00 lbs 2_c16 Snow Point 1350 5.00 lbs 3 w37 Dead Partial UD 498.0 498.0 15.00 16.00 plf 4 w37 Snow Partial UD 450.0 450.0 15.00 16.00 plf 5 w54 Dead Partial UD 498.0 498.0 14.50 15.00 plf 6_w54 Snow Partial UD 450.0 450.0 14.50 15.00 plf 7 Dead Partial UD 96.0 96.0 6.00 7.00 plf 8 w56 Dead Partial UD 498.0 498.0 0.00 6.00 plf 10 c39 Dead Point 843 7.00 lbs 12 c40 Dead Point 1656 14.50 lbs WIND1 Wind Point 8750 0.00 lbs WIND2 Wind Point -8750 7.00 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : 10. 161 Dead 3950 3630 Live 3591 1065 Uplift 1588 Total 7541 4695 Bearing: Load Comb #3 #2 Length 2.26 1.41 Glulam - Unbal., West Species, 24F -V4 DF, 5- 1/8x16 -1/2" Self- weight of 19.47 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 74 Fv' = 305 fv /Fv' = 0.24 Bending( +) fb = 933 Fb' = 2747 fb /Fb' = 0.34 Bending( -) fb = 1354 Fb' = 2743 fb /Fb' = 0.49 Live Defl'n -0.43 = L/446 0.53 = L/360 0.81 Total Defl'n -0.26 = L/737 0.80 = L/240 0.33 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.15 1.00 1.00 1.000 0.995 1.00 1.00 1.00 1.00 - 2 Fb'- 1850 1.60 1.00 1.00 0.927 1.000 1.00 1.00 1.00 1.00 - 4 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 4 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 4 Shear : LC #2 = D +S, V = 4910, V design = 4172 lbs Bending( +): LC #2 = D +S, M = 18077 lbs -ft Bending( -): LC #4 = .6D +W, M = 26233 lbs -ft Deflection: LC #4 = .6D +W EI= 3453e06 lb -in2 Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). COMPANY PROJECT I WoodWorks® : SOFTWARE FOR WOOD DESIGN June 28, 2010 13:43 beam under 202a LC1 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End dead Dead Full Area 13.00 (1.33)* psf live Live Full Area 40.00 (1.33)* • psf wall Dead Partial UD 90.0 90.0 0.00 3.83 plf Wind/ Wind Point 7380 0.00 lbs Windt Wind Point -7380 3.83 lbs *Tributary Width (ft) MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : - �r,-= � -,,-_, -;: =F� - -. _ - - - - - --7, ��:e 2. : '- --vim = -,. -z - 1 16 Dead 565 302 Live 1646 427 Uplift 1538 729 Total 2211 Bearing: Load Comb #3 • 0.502 #2 Length 0.84 *Min. bearing length for beams is 1/2" for exterior supports PSL, 2.0E, 2900Fb, 3- 1/2x14" Self- weight of 15.31 plf included in loads; Lateral support: top= at supports, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 160 FY' = 464 fv /Fv' = 0.34 Bending( +) fb = 324 Fb' = 2433 fb /Fb' = 0.13 Bending( -) fb = 2163 Fb' = 2842 fb /Fb' = 0.76 Live Defl'n -0.46 = L /415 0.53 = L/360 0.87 Total Defl'n -0.42 = L/456 0.80 = L/240 0.53 . ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# • Fv' 290 1.60 - 1.00 - - - - 1.00 - 1.00 4 Fb'+ 2900 1.00 - 1.00 0.839 1.00 - 1.00 1.00 - - 2 Fb'- 2900 1.60 - 1.00 0.613 1.00 - 1.00 1.00 - - 4 Fcp' 750 - - 1.00 - - - - 1.00 - - E' 2.0 million - 1.00 - - - - 1.00 -. - 4 Emin' 1.04 million - 1.00 - - - - 1.00 - - 4 Shear : LC #4 = .6D +W, V = 5224, V design = 5224 lbs Bending( +): LC #2 = D +L, M = 3088 lbs -ft Bending( -): LC #4 = .6D +W, M = 20612 lbs -ft Deflection: LC #4 = .6D +W EI= 1601e06 lb -in2 Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) • Load combinations: ICC -IBC DESIGN NOTES: • 1. Please verify that the default deflection limits are appropriate for your application. ' - 2 SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. COMPANY PROJECT • Woo SOFTWARE FOR WOOD DESIGN . June 28, 2010 13:43 beam under 202a LC2 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End dead Dead Full Area 13.00 (1.33)* psf live Live Full Area 40.00 (1.33)* psf wall Dead Partial UD 90.0 90.0 0.00 3.83 plf Windl Wind Point -7380 0.00 lbs • Wind2 Wind Point 7380 3.83 lbs *Tributary Width (ft) MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : •-- ..fie - , u - - . ..._; -,, { `.- y '._.,_, �' �= 's�-'- �� " �,r a ,, % w . :e=^ , _ .-- mo .. -. �;, ' _ .te a � -__ �� �--+:. - ma y. _ '^:s: -^ :�_. -. r . _. ` 0 164 Dead 565 302 Live 427 1696 Uplift 1380 Total 992 1950 Bearing: . Load Comb #2 #4 . Length 0.50* 0.74 *Min. bearing length for beams is 1/2" for exterior supports PSL, 2.0E, 2900Fb, 3- 112x14" Self- weight of 15.31 plf included in loads; Lateral support: top= at supports, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design ' Shear fv = 181 Fv' = 464 fv /Fv' = 0.39 Bending( +) fb = 2352 Fb' = 2842 fb /Fb' = 0.83 Live Defl'n 0.44 = L/435 0.53 = L/360 0.83 Total Defl'n 0.48 = L/398 0.80 = L/240 0.60 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 290 1.60 - 1.00 - - - - 1.00 - 1.00 4 •Fb'+ 2900 1.60 - 1.00 0.613 1.00 - 1.00 1.00 - - 4 Fcp' 750 - - 1.00 - - - - 1.00 - - - E' 2.0 million - 1.00 - - - - 1.00 - - 4 Emin' 1.04 million - 1.00 - - - - 1.00 - - 4 Shear : LC #4 = .6D +W, V = 6000, V design = 5909 lbs Bending( +): LC #4 = .6D +W, M = 22412 lbs -ft • Deflection: LC #4 = .6D +W EI= 1601e06 lb -in2 Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. • l 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. ,i _r C 6- S'''---- COMPANY PROJECT 1 WoodWorks® SOfTVARf FOR WOOD DESIGN June 28, 2010 13:44 b18 REAR LC1 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location Ifti Units Start End Start End 1 w63 Dead Partial UD 402.0 402.0 0.00 1.00 plf 2_w63 Snow Partial UD 450.0 450.0 0.00 1.00 plf 3_c9 Dead Point 985 1.00 lbs 4 c9 Snow Point 1470 1.00 lbs 5 Dead Point 985 7.00 lbs 6 c10 Snow Point 1470 7.00 lbs 7 w64 Dead Partial UD 402.0 402.0 7.00 9.50 plf 8 Snow Partial UD 450.0 450.0 7.00 9.50 plf 9 Dead Full UDL 47.7 plf 10 j25 Live Full UDL 160.0 plf Load11 Dead Full UDL 13.0 plf Load12 Live Full UDL 40.0 plf W1 Wind Point 6190 1.00 lbs W2 Wind Point -6190 7.00 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : I 0 96{ Dead 1977 2047 Live 5352 2391 Uplift 2667 Total 7329 4439 Bearing: Load Comb #4 #3 Length 3.61 2.19 Glulam- Unbal., West Species, 24F -V4 DF, 3- 1/8x10 -1/2" Self- weight of 7.55 plf included in loads: Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 297 Fv' = 424 fv /Fv' = 0.70 Bending( +) fb = 1693 Fb' = 2760 fb /Fb' = 0.61 Bending( -) fb = 1580 Fb' - 2844 fb /Fb' - 0.56 Live Defl'n 0.14 = L/837 0.32 = L/360 0.43 Total Defl'n 0.29 = L/386 0.47 = L/240 0.62 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.60 1.00 1.00 - - - - 1.00 1.00 1.00 4 Fb'+ 2400 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 3 Fb'- 1850 1.60 1.00 1.00 0.961 1.000 1.00 1.00 1.00 1.00 - 8 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 3 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 3 Shear : LC #4 = D +.75(L +S +W), V = 7329, V design = 6491 lbs Bending( +): LC #3 = D +.75(L +S), M = 8104 lbs -ft Bending( -): LC #8 = .6D +W, M = 7558 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 543e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). C - (13(,,, • COMPANY PROJECT 1 WoodWorks® SOFT WARF FOR WOOD DESIGN June 28, 2010 13:44 b16 REAR LC2 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or pif ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w63 Dead Partial UD 402.0 402.0 0.00 1.00 plf 2_w63 Snow Partial UD 450.0 450.0 0.00 1.00 plf 3_c9 Dead Point 985 1.00 lbs 4 c9 Snow Point 1470 1.00 lbs 5 c10 Dead Point 985 7.00 lbs 6 c10 Snow Point 1470 7.00 lbs 7 w64 Dead Partial UD 402.0 402.0 7.00 9.50 plf 8 w64 Snow Partial UD 450.0 450.0 7.00 9.50 plf 9 j25 Dead Full UDL 47.7 plf 10_j25 Live Full UDL 160.0 plf Loadll Dead Full UDL 13.0 plf Load12 Live Full UDL 40.0 plf W1 Wind Point -6190 1.00 lbs W2 Wind Point 6190 7.00 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : o 10' Dead 1977 2047 Live 2420 5324 Uplift 2709 Total 4397 7371 Bearing: Load Comb #3 #4 Length 2.16 3.63 Glulam - Unbal., West Species, 24F -V4 DF, 3- 1/8x10 -1/2" Self- weight of 7.55 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 299 Fv' = 424 fv /Fv' = 0.70 Bending( +) fb = 3225 Fb' = 3840 fb /Fb' = 0.84 Live Defl'n 0.24 = L/468 0.32 = L/360 0.77 Total Defl'n 0.40 = L/283 0.47 = L/240 0.85 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC11 Fv' 265 1.60 1.00 1.00 - - - - 1.00 1.00 1.00 4 Fb'+ 2400 1.60 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 4 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 4 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 4 Shear : LC #4 = D +.75(L +S +W), V = 7371, V design = 6533 lbs Bending( +): LC 14 = D +.75(L +S +W), M = 15434 lbs -ft Deflection: LC #4 = D +.75(L +S +W) EI= 543e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). Harper Project: HP 11 - Houf Peterson Client: Job # Righellis Inc. ENGINEERS * PLANNERS Designer: Date: Pg. # LANDSCAPE ANGNjI FC rS•SORV'CVORS 'fie Oc_ S)-es t cer1 W 10 .— 8 ft•20•ft W = 1600•Ib ft Seismic Forces Site Class =D Design Catagory =D Wp •= Wdl I 1.0 Component Importance Factor (Sect 13.1.3, ASCE 7 -05) S := 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. S • .= 0.942 Max EQ, 5% damped, spectral responce acceleration at short period z := 9 Height of Component h := 32 Mean Height Of Roof F := 1.123 Acc -based site coefficient @ .3 s- period (Table 1613.5.3(1), 2006 IBC) F := 1.722 Vel -based site coefficient @ 1 s- period (Table 1613.5.3(2), 2006 IBC) S := F Sml := F 2-S Sds ms Max EQ, 5% damped, spectral responce acceleration at short period 3 Exterior Elements & Body Of Connections a •= 1.0 RR __ := 2.5 (Table 13.5 -1, ASCE 7 -05) 4apRSds •lp \ h) F • 1 + 2 h W P p EQU. 13.3 - 1 Fpmax:= 1.6• S I EQU. 13.3 -2 Fpmin . EQU. 13.3 -3 F, := if(F > Fpmax Fpmax, Uf(F < Fpmin F pmin° Fp)) F = 338.5171-lb Miniumum Vertical Force 0.2. S ds . W dl = 225.6781 • lb ( GI 3P) . • Harper Project: • HP '• Houf Peterson Client: Job # Righellis Inc. ENGINEERS PLANNENS Designer: Date: Pg. # LANDSCAPE ARCH! ICC IS• SNNVEYCRS W dl := 10• lb •8•ft•20•ft Wdl = 1600-lb ft Seismic Forces Site Class =D Design Catagory =D W p : W dl 1 :_ 1.0 Component Importance Factor (Sect 13.1.3, ASCE 7 -05) S := 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. S := 0.942 Max EQ, 5% damped, spectral responce acceleration at short period z := 9 Height of Component h := 32 Mean Height Of Roof F : = 1.123 Acc -based site coefficient @ .3 s- period (Table 1613.5.3(1), 2006 IBC) F := 1.722 Vel -based site coefficient @ 1 s- period (Table 1613.5.3(2), 2006 IBC) S • = F S S ml := F S 2-S ms S := Max EQ, 5% damped, spectral responce acceleration at short period 3 Exterior Elements & Body Of Connections a p := 1.0 __ := 2.5 (Table 13.5 -1, ASCE 7 -05) FP • = .Ra Sd 1p C 1 + 2 RP h I Wp EQU. 13.3 -1 J F pmax := 1-6-Sds'1p'Wp EQU. 13.3 -2 F pmin := • EQU. 13.3 -3 F if(F > Fpmax,Fpmax,if(Fp < Fpmin,Fpmin,Fp)) F = 338.5171•1b Miniumum Vertical Force 0.2 = 225.6781•1b c- (q31(3\ BY DATE: '' 0 OtO JOB No Ce...k1 - j 9 O OF . . I PROJECT: • RE: ?= '3 -4- • EI n • w - Cd ovr Of; PUN "-.0C- = - 63 ° 1 4 j 0 — --__ ----- 1 . ?N-1 G: z P • 2 . O 0 w 1- w o 2 (3 ° )(ST. ' 0 1:- Li a LI C.■ t 1 Lq 5 Kt. iici it z . ■O■ C lc; . 0 go use 54 Lm . . . co ‘)et...L . -7- - C // / / i / 2 ' O " cr ci u_ Z . . w 0 6 O 1 1- O_ . . . • . . , = , , I ...., -.z., .-.-1 . .1 . ) W.) :•' • •-, :,_ 7. > < : r . . . . . . 1. . , • , I . r . . r . _ .. . .. _ , 1 . . . . - . . ' • „ • r . 1 • , r . • , , . , . A ' . I . • , . . . . . • - - v a d 0 ON 801 - AO 4 at, _ (04 • ) 'o 1,21 m-r 1, i7 x a)117.,,) 44 1002 °0 1 C nA +J) u � r � csvp-oc-T-0 '* 71 7.1 P 4 err t°)1 (I ` tt l)Qq.q 1) ,c = S��'•0� 3IVQ Sb11 ttf , � _ � ' r � i _7,2 Y) 4„ � Z Lj ;, z1 �. , o;w 1 .` 0 kS (z -a-S 0 0 M C �a N4 O CA) OCAS t iii fit _ 1.1.1)1d;dD :3a :103roil At3 co CD n r c C ❑ :ON11331/4 ❑ :11VO 3NOHd ❑ woa ❑ of ❑ 311J Ol OW3W AI !1 1 1 N •1 I NI in Iwl Iwl fl l ON 3NOHd BY: RII)V1 0 DATE: . ' ' Y ."... - ‘ JOB NO.• .i . PROJECT: . . RE: O ........_ 0 0 J 0 a iz Lo C A I: '`-' — ...L.. . o w 1- w O 2 ZOOt# ,., k_... Li' • 0 .1i ) 0 ( 4a . < u o z w 0 T= C RL100 < u i u, 51ry\coor• NDu4 —,--- 7 2 To fes-,5k, ie-V 2 c t2 5" 0 U x • cc 0 ta 0 6 0 . L.C)Pri" 1_ ... M,_ aoo# (40" 200 ti Bow 4t-thj T-= C r-- 2b00 stifQ e ,'-i019 -", 1+D34 i O • d ; 1-.. Oke--Ti at ,--, ••> • .-. 0. = •2'. C g 10 '•' ‘ . RV 1 --> - 1 ---- C 61XL Harper 0 HP Houf Peterson Righellis Inc. To COMMUNICATION RECORD El 111 MEMO TO FILE ❑ EfGINEEP" • PLAnaE tAre ec ac:t A rseen *Eer.■.;u:•vev.r • PHONE NO.: PHONE CALL: ❑ MEETING: ❑ X U m ,e rn 7 n r,f' CA '' I 37 rf 3 ' v sv d L -C O n O 6 .# - W . 7 ► 6 la CD 01 m ice - FP, T I i _ 6 0 j m . ! z P Houf Peterson V HP Righellis Inc. To 0 FROM 0 COMMUNICATION RECORD . MEMO TO FILE El EHr:INEE1i1:.PLA LA 47,C1■ITECTS•51.1;,/,;YOR.: PHONE NO.: PHONE CALL: 111 MEETING: 0 . 13 11 01 P1 XI -4 2 P1 n 7: .., •S ---.1 U ' t...3 -. V , , CA n \S N ..\ =MO ....."( . C....\ 0 m - s, V CA c c . r r i ‘......; ‘.. , (..., r it P 0 13 Z 0 " 1 i .■ s , . . , . ,---, cts ;..., •.) ‘.1 I. COMPANY PROJECT WoodWorks® SOFTWARE FOR WOOD DEVON June 8, 2009 16:27 Hand Rail Design Check Calculation Sheet Sizer 8.0 LOADS: Load Type Distribution Pat- Location [ft] Magnitude Unit tern Start End Start End LIVE Live Point 2.50 200 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : la 5 Dead Live 100 100 Total 104 104 Bearing: Load Comb #2 #2 Length 0.50* 0.50* 1 Cb 1.00 1.00 *Min. bearing length for beams is 1/2" for exterior supports Lumber -soft, Hem -Fir, No.2, 2x6" Self - weight of 1.7 plf included in loads; Lateral support: top= at supports, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 19 Fv' = 150 fv /Fv' = 0.13 Bending( +) fb = 405 Fb' = 1048 fb /Fb' = 0.39 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.20 Total Defl'n 0.03 = <L/999 0.25 = L/240 0.14 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 150 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 0.949 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 405 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.3 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.47 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = L, V = 104, V design = 103 lbs Bending( +): LC #2 = L, M = 255 lbs -ft Deflection: LC #2 = L EI = 27e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction Lc= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. (1- 6145 ( COMPANY PROJECT l WoodWorks® SOFTWARE FOR WOOD DESIGN June 8, 2009 16:27 Hand Rai12 Design Check Calculation Sheet Sizer 8.0 LOADS: Load Type Distribution Pat- Location [ft] Magnitude Unit tern Start End Start End LIVE Live Full UDL 50.0 plf MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : l 5 1 Dead Live 125 125 Total 129 129 Bearing: Load Comb #2 # Length 0.50* 0.50* Cb 1.00 1.00 *Min. bearing length for beams is 1/2" for exterior supports Lumber -soft, Hem -Fir, No.2, 2x6" Self- weight of 1.7 plf included in loads; Lateral support: top= at supports, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 19 Fv' = 150 fv /Fv' = 0.13 Bending( +) fb = 256 Fb' = 1048 fb /Fb' = 0.24 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.16 Total Defl'n 0.03 = <L/999 0.25 = L/240 0.11 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 150 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 0.949 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 405 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.3 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.47 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = L, V = 129, V design = 106 lbs Bending( +): LC #2 = L, M = 162 lbs -ft Deflection: LC #2 = L EI = 27e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction Lc= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. G\Lkc WOOdWorkS® Sizer SOFTWARE FOR WOOD DESIGN UNIT C - FRONT LOAD WoodWorks® Sizer 7.1 June 22, 2010 14:24:15 Concept Mode: Reactions at Base of Structure View Floor 2: 8' }��,,. .. _. -- - - - _ .. _ - .. .. .. - - ___ _.- - - -__ - .... .. . 4'.."-2,%-6" i't 1280 L 1280 L �u - _ i � ' 442 D- ... 442 D " -c - (t;l -A , 15411204 L 1470 L -- . . -- .. ' - 1047746 D) 992 D. -. _ - - - s „_ tb - .. .... ... .. . . . - . ▪ -0 F J -O' ▪ 11660E '553 L ” - - - . , .. . _ .... • -c 599D 200D '2., -. -n 1080 L _ 640 L " • 409 D ,. ., 208 D z"!' -„ - - - -- 480 E - " ... . _ . - . . , _ .... ,?.2-:•-t-., • -'J f ` 1667 L - : -" -- • ._.. _ .. . . _ ..... __ ,1,-_,- 300 U :, _.) - 1100 L98 D+ L - 0 , D 409 D 409 D c Hsu e , . 24D... . ..... . ._.. . .. . a4 .. , - ice h . , ii_ 994 3956 L ' 113L_... ( 3978 8113E \ -3658D .. . . • 8633 D'3386 D .: BB\ RB BC CC, CCC; CCI CCCCCC ;CCCCCCCCCICCCDDDDDLZDC=DD CDDDDDDDDCCD''DDDE. EE EI E 7 Etc'Ec'EtC�E Lt= c'�EFE_ E�.E`c._E._ 0' 4' 6' 3' 1 0 12 1 •' - -' 15' 8' 20' 22' 24' 26' 28' 20' 32' 35 36' 4 42 44' ' 43' 5 4' 55 ' 6 ;' 6a, _ _,, 70. ,1 7,6' �. �2 5 _ 0 ' 0- o�' _ ' J - c 7;7:77 - _ 5- .. _ - :0' `68 :, 7;77 . l.i' _ .�.,- ,�,�,. 1:1 .. -'' it 1 �+ i1`. �`[. 2. 2. . �;��� - y<�1?f`.�,'....,.��.i'., i ,. .,,`�i3��G.- ^- r ..1'C! -�1L _.., .:'; r �. c(01\ V ()cg • A- CO 7 V\i Lo..0 Li "--- WoodWorks® Sizer . SOFTWARE FOR WOOD DESIGN UNIT C - REAR LOAD WoodWorks® Sizer 7.1 June 22, 2010 14:22:33 Concept Mode: Reactions at Base of Structure View Floor 2: 8' iJ5 _ .. _.. . -_ .- - . I u4 1280 L . . - .1280 L. : u "' - : .442 D , : - % • s u , 442 D -- : � I cr! 26U 4 3189L . mo... ' 1977 D�OJD_ -: =-2047 D v -:; - 2068 L 689 L fi 244 D _. ' • ■x, D . ,'a - . . 1080 L .. ' ,640E - - _ - - .409 D 208 480 L : ' 1776 L - ' -- - v -_ r 300 U _.." .. ' , 1080L98D L 06 75 L ' ` - 409 D 409 D' i n`' is u ._ 24 D. V_ 171- ... I60 LSO L2077 L. • • • ' - -•- - -- -- - - - - - • -- .E113LD 113Lp3D18D1656D _ . . .. 4 n 113E38113L. ...: .., ... -. .- 1 - - D86 D Dg86 D -- . _ : . BB1BBBCCCCCCCCCKr. CCCCCCCCCCCCCICC•( 3tDC' DDDUDS' DDCiEDD DDDIDDDDEDIDDDE EEEE.EEDEEE:EE.EE EEEEE[IEEEEZ Q' 2: , 1' _ 6' 10' 12' 'IL' 16' 18' 20` 22' 24' 26' 28'1'0' 32' 34' 3{'' 2'8` 40' 42' 44' ' =5' 48' 50' 52' 54 56' 53' 60' 62' 64' _ 8' T (i' 72' 4' 76' n/ - ,� � _.• .; l 7 7:77 , , ' 2 .u, ,:.3'n';;1 ,..:1 , 1i1 c1'1i1s2(22:2:2 , 2 .2f2'212�3i3': .3:3: .,,.�C.,, - :i�1:4f4 .:5: -. \' \ • . 0(*sk1\ LFi °�T Plain Concrete Isolated Square Footing Design: F2 f := 2500-psi Concrete strength f := 60000•psi Reinforcing steel strength E := 29000.ksi Steel modulus of elasticity 1conc 150 •pcf Concrete density 'Ysoil 100•pcf Soil density gall := 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldi := 3978-lb Pd1:= Totaldi Totalll := 3994-lb P11 := Totalll Pt] Pdl + P11 Pti = 7972• lb Footing Dimensions t := 10.in Footing thickness Width := 30.in Footing width A := Width Footing Area clnet := gall — tf''Yconc net = 1375•psf Ptl Areqd gnet A red= q 5.798 ft < A = 6.25 ft GOOD Widthregd A req d Widthregd = 2.41•ft < Width = 2.50 ft GOOD Ultimate Loads ,:= Pal + tf'A•'1'conc P„ := 1.4•PdI + 1.7•P11 P„ = 13.45-kips P q — q„= 2.15•ksf A c- Beam Shear • bco1:= 5.5•in (4x4 post) d := tf — 2•in := 0.85 b := Width b = 30•in V :_ 3 f psi•b•d V = 13.6.kips Vu 9u r b - 2 t oll b V = 5.49-kips < V = 13.6•kips GOOD Two -Way Shear bs := 5.5-in Short side column width bL := 5.5.in Long side column width b 2.(bs + d) + 2•(bL+ d) b = 54•in (3 := 1.0 _ • 4 + 8 •b•d V = 40.8-kips ( KT) 3 3•(3 Vnmax := 2.66 f psi b d V = 27.13•kips = 4u'[b — (bc01 + d) V = 10.73-kips < Vnmax = 27.13.kips GOOD Flexure r 2 Mu 9u' I b — bcoll (1 1 b M = 2.8•ft•kips 2 J 2 ) A,:= 0.65 _ b d 2 S = 0.185•ft F := 5•1:1)• f psi F 162.5-psi M :_ —° f = 105.14•psi< F = 162.5.psi GOOD S 'Use a 2' -6" x 2'-6" x 10" plain concrete footing BY. A DATE: 1 \ ao(0 M-09.0 O F PROJECT: RE: S *e m wan COob 3 ❑ ❑ deS B01 106 F • 2 t_ asGt.(12 ?5F) 300 Pte= mail • ❑ $ ct(21evels>(13 sc = aob pLc Sloor 0 401N (15opcCX"ii �l tz)= m 333 puP 5k-e O z (N11)050 ?CO( w = 1 00 w PL-c= W o F ,. _ • a LL ; Cf3c levets (9u0 toor Z 0 TT loo = 14 I +- (Gov.) aLF . 7 Moo( Sbp = vsoo , 6C -- tSOOpLP • W 0 1 15 I+ (Co W G isoow O - W= 1,0( C t: IS" ❑ 2 O • 0 LL Z ❑ o C feat c sr o- i kd k YtiCp o ✓ a DL, aSC IL1°- 3W pLF wu�t (g Y eveis)( psF kooc" -- g01,1(tso F X'1rz C r2) = 33'J pLF s Oitz)(150 W = toOuj (l811"3psc '0 p f P ( )(1)(A-oi= I-2U LG O • 6 g a 3 13 r 100 w 1SoO Gu a 4 e u S I; L = Booms.. cks 1s rntr too loads TL: \' ct 1 1 OO LJ W 1 F t +,e t asC1-71)(2) = c.a.) 17 u-ict ti (B)(2 X isy„7 - _Flo ?(,,F S loos I►ayk,5-0 U)> e 100 Lv LL o Cb >(q -0)(2. 125to el.s= dtour- fL a639 --IOOw W = L ,4�`�`�- : 2 3 � �► - • use (:)/Lt - ice BY N • ( DATE: 10V ao JOB NO 1\jiLl OF • P ROJECT: \ '` RE: O 1 ,� t } C - f ink !k Dac1 ❑ ❑ 1 �, lnkGk � $ i x 3 1 -1 : x lb" 16. 10kFi 16.1D � ►C �, ka.580 o lC,N W • ❑ C z F-- o 15 -k- 4,5 0, �,5 --�' �i - w D • d CV■ecL OvCY+u`n IY O . V10 r o U.,t0 + 1fv, 101 1(,1C� � 12sab k Oa ,$) = Il3.bv MiZL = (O. (C0)(10( V STA , ol C �� 4-4 -e}) ¥ 4,0(.=(t7 MAR = (0.1C U itt ) ( - 6.(;)(16)(q) (.01(1 - 0 -1 4.0 1') a�s�a ❑ tS— M _ 00). > 1,5 ; . OkL c o Nb1 F- a as .ais m.exx .±(22.uair) OPa Y_sc 3 L(g - 2.c) 3(3,5)05-2(3,n)) ' O dn : CL, x - . C- -Pc ntlev Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:53 AM Units system: English • File name: O: \HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs\Unit C \FDN \Front Load.etz\ . • M33 =83.44 [Kip' ft] • • • M33= -12.21 [Kip`ft] y —► 1 • aw Bentley Harper Houf Peterson Righellis Inc. „ . Current Date: 6/22/2010 10:54 AM Units system: English File name: O: \HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit C \FDN \Front Load 2.etz\ M33 =43.5 [Kip *ft] • M33 = -40.04 [Kip'ft] i X • • 0 . , ::: 0 X 2 Z o 0) CD b CD a n o 710 �: 1 > S r i) �e Csi ��z) _ 1-2..�! 2 • 111 O O 3 Sdy,\ iZ1 ', _ "kC C } :111p,. `C.S'h.S)S'I 0 3 '\c b -t 1'°) - ctcy�) � 4.01'10 4 lc b = 1`1 z 1(1104 fiS _ <CA'11)e LK,'9) -r (b) =. 4W Irk .S'+,S = sow o Z _ -u m 2 0 O 11 D ✓ o I I ' r � m O -I Q9 0�Z fJ1 -I 11 Z .iliCS•IcS 6/ m pop Yoai- D ci •1.1Nn :3a 173 road ObO ' Q e -ON9Or Q i Q J \ DC :31V° :AB • ' • ../..... n Bentley Harper Houf Peterson Righellis Inc. • Current Date: 6/22/2010 10:57 AM Units system: English File name: O: \HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit C\FDN \Rear Load 2.etz\ • M33 =36.82 [Kip'ft] M33= -50.22 [Kip`ft] • x • z - C_ . • %° _ _ 0 co co �co co • n 0 J - AQ • S' 1 is � y - I AI k_4.'0 - 0 - fit ti - 7S' _ -F � C Vil z 0 - 1C.lh +Z.S')b 7Q Z 2 4 71 ' 1 �.�. 1 - ) 4°),'h'e h) +( -)Ty( � 3 � bO 'I S = . 0 L,f I W l- )dr,O 0 pp p 1. r p n m p m 'OA 601S :173road 1- � ran -�f' • V.11 ' \ / � J } �`/ \1 I Q 7� i`�1� ON CRT ` '31VO ' J V v \^IIr ' -' I ' Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 1:17 PM Units system: English File name: O:\HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit C \FDN \Interior.etz\ • M33 =60.31 [Kip'ft] M33= 63.58E - 12 LRi ft] - - - - — - — - - - -- M33=-18.91E-10 [KiP'ft] M33= -21.22 [Kip *ft] X Bentley Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 1:17 PM Units system: English File name: O: \HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit C \FDN \Interior 2.etz\ M33 =55.84 [Kip•ft] M33 = 65.17E -11 [Kip *ft] — — -- — — - - - - — M33= 21.46E -11 [Kip - ft] M33 = -25.6 [Kip' ft] X • 3 . , , . ■ i ' ' . .. . 1 : ‘ . 1 . 1 { ' • ; I - i .. _ . . . . , 1 t • . : (Q ' 1 • : ,,,... ,-' ' - - -- - , .; .. ---- J -5 1 -1.- 2) V1 " , r.,/ , 6 oh )0 ( \- 0 7 9 AT --4 (Z) : :4 1 '., .-t Q ( , 0 - 1 \ 000CP,M)U- 1-0 TIOlo ( 0 - - : S S � -; 00'(b T. " 0? = (-- ',0 ,= , Er › 1 1c' 0 .i:i. .-,,. • cr7i ° l'' . . ,- - • , • • - - :-• - =-. - I •?....= -0 -, A/0400 d i o st a 47 -44- ( "an . r ..z . • • - • = loce:10g \ el , 0 g d :‘ A0-.) s • . ck)o'ol , C'''' . ' • . ' 431 b' b ": Qv CifC- ' ) .:" \ ' . j `el 'te) . 0 2 0 m 9g '0/ (000 -7 / V z m o xi .. o :15 . ')() „ a -- ti. - ‘ 'c,1) vr41. o n W2 , 0 c tY ' 0 - "Z- c / 67■9 66C 0 g ' 0/ (PTO C W: 1: 1 ) t NCI > 3 2'0 „21 a s ci) . n m 0 n , ( Z i. ') ;". ) el- ff r A ) 0 b 0 7.7'U WO . > ✓ 0 b g - - ' • m 0 j m z - 4S 1 'Q m • D E :1031 , ;1 a • , . rr) ' OiThp—ill.:Yor..E.or . . . . - . I . I • „ 1 ! . 1 ' . ! . ! . '- • I i I ' . I ' ' I ! : . -- - - . — - - - — -•• - • • - - 1 - ' - -' • : - • -: - ■.' • i - — i - - ', . - J • - , 1 .. .. . . - . . . .. _ ..... . ‘ , _ _ . ,.- . ' . - . _ .. . ., . • _ . . . . _ .. . . . . . . ' I . .. . • . - i - • . '7 • ' • 1,..., = i • . 1 .'. .0 ■ - n, • 'i•I , 1•.1-i . . , . . . . ' 7: - , - :i • PZ = I . . . . - ir 6 0 . . . . .. :•:_:! ,..•= -0 , , , . , . :, 7,• n . . • . . . . . , . --'\ --? 5. ° ' ; ; I C A . '1 . ... . . _ _ .. . ) - -,— LI' 5 ' 3 9 . , - --re'S1 - ' . - • , . . _ ._. . • _, . _ : . . , . . . - (tqe.° t 4 . if-Pljt I- '..- AD - -- - -- . . , . ; •--_i -Ka _ _ _ b o . , ( s - cz-k)-.1-i 4- c).S' 1 ; :W • , . . _ • . . . . -a -, , . i 0 z o , . . . . PI . . ■ ' . t ° t • ' '' x . . . Ii , . , P • , , . .. _ " K , i • 6 -7 A _l . ,-..... . • E , n b' )0. - Q00 1_5 ' 1 c . . , • . ) g , . . ... . . • _ . _ .. ,. _ . . ---' , . . . , . 2 . , ' . . . . . F . ., . , . D. . ■ 17'1)--A (7-'k 1,V.(4 , : _ - , ' ' - I - F 1 lo: 02 . ■ - 0 M , I 2 M i z n a rn 0 !: 0 ) 0 g 10 0 ' C 5 :-- .1`)1Al . 24q40 . ' ., - Glxvpui rn -I -1 !! z 11 • 0 r i „Ui7)— Ci'\ JO 0 -N. 1' .. rn 0 , . . . . . . • . . :. . . . . , -. D. k...., • . '. ' ,- ;: i ,' , ■ • 4 - I • . • , , I : 103 rip 1,:1 • . . . . • . . . 1 . . . . I • ! i • , . . . ■ f . Q t 9---- c\J ) :.oN ear ' CA OE 1. 1 C :31Va . VI .\:( • I r • ;AEI • ...d0 ACI 318 -05 Appendix D 1.0" Diameter Bar Capacity at Portal Frame Concrete Breakout Strength Stem Wall Capacity when govern by 3 edges Foundation Capacity Givens Givens fc = 3000 psi fc = 3000 psi h' = 3.50 inches hef = 12.00 inches (into the Fe Stem = 8.00 inches Note: hef above is the the embedment into or cmax = 5.25 inches the foundation and does not consider stem wz Fnd Width = 36.00 inches c min = 2.25 inches e = 18.00 inches Wc,N= 1.00 cast -in -place anchor W 1.00 cast -in -place anchor k = 24 cast -in -place anchor k = 24 cast -in -place anchor = 0.75 strength reduction factor 4 = 0.75 strength reduction fact' Calculations Calculations A Nc = 68 in` AN = 1296 in` — AN = 110.25 in` AN = 1296 in` Nb = 8,607 pounds Nb = 55,121 pounds Wed,N = 0.8286 Wed,N = 1.00 N = 4,399 pounds Ncb = 55,121 pounds 4)N = 3,299 pounds 4'N = 41,341 pounds Combined Capacity of Stem Wall and Foundation 4'N = 44,640 0.754)N = 33,480 ��� • Concrete Side Face Blow Out Givens A brg = 2.15 in fc = 3000 psi Cmin = 18.00 inches = 0.75 strength reduction factor Calculations Nsb = 231,191 pounds 4N = 173,393 pounds Concrete Pullout Strength Givens Abrg = 2.15 in fc = 3000 psi = 0.75 strength reduction factor Calculations N = 51,552 pounds 4 N = 38,664 pounds Steel Yield Strength Givens f = 58,000 psi A = 0.606 in = 0.80 strength reduction factor Calculations N = 35,148 pounds 4)Ns = 28,118 pounds < 33,480 Ductility Met Holdown Check Holdown: HDU14 Holdown Capacity= 14,930 pounds 1.6* Capacity= 23,888 pounds 23,888 < 28,118 Holdown Checks -T% ACI 318 -05 Appendix D 1.125" Diameter Bar Capacity at Standard Stem Wall Concrete Breakout Strength Stem Wall Capacity when govern by 3 edges Foundation Capacity Givens Givens fc = 3000 psi fc= 3000 psi h' = 17.00 inches h = 12.00 inches (into the Foundation) Stem = 8.00 inches Note: hef above is the the embedment into only the the foundation and does not consider stem wall embedment Fnd Width = 36.00 inches cmin = 2.25 inches cmin = 18.00 inches lll 1.00 cast -in -place anchor Wc,N= 1.00 cast -in -place anchor k = 24 cast -in -place anchor k = 24 cast -in -place anchor = 0.75 strength reduction factor = 0.75 strength reduction factor Calculations Calculations A Nc = 408 in' AN = 1296 in` ANo = 2601 in` ANo = 1296 in' Nb = 92,139 pounds Nb = 55,121 pounds Wed,N = 0.7265 Wed,N = 1.00 N = 10,500 pounds N = 55,121 pounds N = 7,875 pounds 4N = 41,341 pounds Combined Capacity of Stem Wall and Foundation olcb = 49,216 0.754)N = 36,912 \■5 Concrete Side Face Blow Out Givens Ab = 2.75 in` fc = 3000 psi cmin = 18.00 inches = 0.75 strength reduction factor Calculations Nsb = 261,589 pounds 4)Nsb = 196,192 pounds Concrete Pullout Strength Givens Abrg = 2.75 in` fc = 3000 psi = 0.75 strength reduction factor • Calculations N = 66,000 pounds 4)N = 49,500 pounds Steel Yield Strength Givens f, = 58,000 psi A = 0.763 in = 0.80 strength reduction factor Calculations N = 44,254 pounds DNS = 35,403 pounds < 36,912 Ductility Met Holdown Check Holdown: HD19 Holdown Capacity= 16,380 pounds 1.6* Capacity= 26,208 pounds 26,208 < 35,403 Holdown Checks . . RECEIVED E ,G:E . ESIGN u z APR 15 2013 CITY OFTIGARD BUILDING DIVISION April 16, 2010 Centex Homes 11241 Slater Avenue NE, Suite 100 Kirkland, WA 98033 Attention: Mr. Tom Brown Report of Geotechnical Engineering Services and Reliance Letter Proposed Tigard Residential Development Tigard, Oregon GeoDesign Project: Centex -16 -01 INTRODUCTION • This report presents the results of our geotechnical engineering services for the proposed residential development located at the southwest corner of the intersection of SW Scholls Ferry Road and SE 135th Avenue in Tigard, Oregon. We understand the site encompasses approximately 8.5 acres and includes 88 individual lots. The lots are currently vacant but are developed with utilities, curbs, and paved roadways for future residential development. GeoDesign assumed the role of geotechnical engineer of record for the project and provided construction observation services to Integrity Development during earthwork; our involvement began in July 2007 and continued until March 2008. A geotechnical report for the property was completed by GeoPacific Engineering, Inc. on January 13, 2006 entitled Preliminary Geotechnical Engineering Report, Scholls Ferry Townhomes, SW Barrows and SW Scholls Ferry Road, Washington County, Oregon. In addition, GeoDesign previously prepared supplemental recommendations for use in design of gravity retaining walls in a letter entitled Geotechnical Engineering Services, The Village at Summer Creek, SW Barrows Road and SW Scholls Ferry Road, Tigard, Oregon, dated June 6, 2007. The current plan is to construct residential structures on the 88 lots that have been prepared. Foundation loads were unknown at the time of this report; we have assumed that they will be typical of one- to four -story, wood -frame residential structures. We further understand that some site grading will take place to accommodate design elevations. Cuts and fills are not expected to exceed 5 feet, respectively. A site plan showing existing improvements and our hand -auger explorations is shown on Figure 1. \ � � - 1 5575 SW Sequo}a Pkwy • Suite 100 I Portland, OR 97224 1 off 503.968.8787 I Fax 503.9683068 1 . SCOPE OF SERVICES The purpose of our work was to confirm that our previous work is in conformance with the geotechnical engineering report and to provide supplemental recommendations for use in design and construction of the proposed development. Specifically, we completed the following scope of services: • Reviewed in -house files for existing information on subsurface conditions in the site vicinity, prior earthwork, and the previous geotechnical report for the site. • Visited the site and completed a visual surface reconnaissance to confirm that no additional earthwork has been conducted since completion of the project. • Completed eight hand augers to a maximum depth of 7 feet below ground surface (BGS). • Prepared this report, which also serves as a reliance letter, that presents our findings and provides updates to the conclusions and recommendations provided in the previous geotechnical report. SITE CONDITIONS SURFACE CONDITIONS We completed a visual surface reconnaissance at the site. During our visit, we observed that the ground surface is slightly sloped down towards the south from the north. As discussed above, the lots have been developed with associated utilities, sidewalks, curbs, retaining walls, and asphalt -paved roadways to allow access to the lots. The Tots are covered by grass, with small patches of blackberry brush near the proposed playground area at the east portion of the property. Areas of ponded water were observed on Lots 5, 9, 10, 35, and 30 through 32. While on site, we observed the cracks in the asphalt roadway on SW Coriander lane. As noted in our field reports, the asphalt was reheated during placement using propane torches, which may have contributed to the cracking. SUBSURFACE CONDITIONS We completed eight shallow hand -auger borings (HA -1 through HA -8) at selected locations across the site. The approximate boring locations are shown on Figure 1. Based on our explorations, the shallow subsurface conditions in the area generally consist of compacted fill that is medium stiff to stiff silt with varying amounts of clay, sand, and gravel. The fill generally ranges in thickness from 0.2 foot to 2 feet BGS. The fill was encountered in most of the borings except for HA -5 and HA -6, which were completed near the proposed playground area at the east portion of the property. A thin layer of loose gravel with silt and sand was encountered at the surface in HA -6. Native alluvium consists of medium stiff silt with some clay and trace organics. In HA -2, we encountered loose sand with minor gravel and encountered refusal on concrete at approximately 6 inches BGS. We drilled four more borings within a 10 -foot radius of HA -2 and encountered concrete at 3 to 6 inches BGS. The area of the sand fill over concrete appears to extend over Lots 47 through 49. The approximate area is shown on Figure 1. . G EODESIGN= 2 Centex -16- 01:041610 r Based on our explorations, the average depth of stripping in lightly vegetated areas will be approximately 1 to 2 inches. Stripping activities should be completed as recommended in the previous geotechnical report. CONCLUSIONS AND RECOMMENDATIONS In general, we anticipate that the geotechnical recommendations provided in the previous geotechnical report are still applicable to the site with the exception of the additional 1 to 2 inches of stripping anticipated at the site and our revised shallow foundation recommendations. WET WEATHER/WET SOIL GRADING The silty soils at the site are easily disturbed during the wet season and when they are moist. If not carefully executed, site preparation, utility trench work, and roadway excavation can create extensive soft areas and significant subgrade repair costs can result. If construction is planned when the surficial soils are wet or may become wet, the construction methods and schedule should be carefully considered with respect to protecting the subgrade to reduce the need to over - excavate disturbed or softened soil. The project budget should reflect the recommendations below if construction is planned during wet weather or when the surficial soils are wet. If construction occurs when silty, wet soils are present, site preparation activities may need to be accomplished using track - mounted excavating equipment that loads removed material into trucks supported on granular haul roads. The thickness of the granular material for haul roads and staging areas will depend on the amount and type of construction traffic. Generally, a 12- to 18 -inch -thick mat of imported granular material is sufficient for light staging areas and the basic building pad but is generally not expected to be adequate to support heavy equipment or truck traffic. The granular mat for haul roads and areas with repeated heavy construction traffic typically needs to be increased to between 18 to 24 inches. The actual thickness of haul roads and staging areas should be based on the contractor's approach to site development and the amount and type of construction traffic. The imported granular material should be placed in one lift over the prepared, undisturbed subgrade and compacted using a smooth -drum, non - vibratory • roller. In addition, a geotextile fabric may be required as a barrier between the subgrade and imported granular material in areas of repeated construction traffic. The Imported granular material should be pit- or quarry-run rock, crushed rock, or crushed gravel and sand and should meet the requirements set forth in the 2008 Oregon Standard Specifications for Construction (OSSC) 00330.14 (Selected Granular Backfill) and OSSC 00330.15 (Selected Stone Backfill). The placement of the imported granular fill should be done in conformance with the specifications provided in OSSC 00331 (Subgrade Stabilization). The geotextile should meet the specifications provided in OSSC 02320.20 (Geotextile Property Values) for soil separation. The geotextile should be installed in conformance-with the specifications provided in OSSC 00350 (Geosynthetic Installation) material should be fairly well - graded between coarse and fine material and have Tess than 5 percent by dry weight passing the U.S. Standard No. 200 Sieve. GEODESIGN= 3 Centex-16- 01:041610 FOUNDATION SUPPORT Dimensions and Capacities Continuous footings for stud bearing walls should be at least 15 inches wide. The bottom of exterior footings should be at least 18 inches below the lowest adjacent exterior grade. The bottom of interior footings should be established at least 12 inches below grade. Footings bearing on subgrade prepared as recommended above should be sized based on an allowable bearing pressure of 2,500 pounds per square foot. This is a net bearing pressure; the weight of the footing and overlying backfiil can be ignored in calculating footing sizes. The recommended allowable bearing pressure applies to the total of dead plus long -term live loads and can be increased by one -third for short -term loads (such as those resulting from wind or seismic forces). Based on our analysis and experience with similar soils, total post - construction settlement should be less than 1 inch, with differential settlement of less than 1/2 inch over a 50 -foot span. Resistance to Sliding Lateral loads on footings can be resisted by passive earth pressure on the sides of the structures and by friction on the base of the footings. Our analysis indicates that the available passive earth pressure for footings confined by on -site soils and structural fills is 350 pounds per cubic foot, modeled as an equivalent fluid pressure. Adjacent concrete slabs, pavements, or the upper 12 -Inch depth of adjacent, unpaved areas should not be considered when calculating passive resistance. In addition, in order to rely upon passive resistance, a minimum of 10 feet of horizontal clearance must exist between the face of the footings and adjacent down slopes. For footings in contact with the on -site native material, a coefficient of friction equal to 0.30 may be used when calculating resistance to sliding. This value should be increased to 0.40 for crushed rock or imported granular fill. Foundation Drains Foundation drains should be considered on the outside of the perimeter footings of all buildings and routed to a suitable discharge because of the potential for shallow groundwater. The foundation drains should consist of 4- inch- diameter, perforated drainpipe embedded in a minimum 2- foot -wide zone of drain rock. Drain rock should consist of angular, granular material with a maximum particle size of 2 inches and should meet OSSC 00430.11 (Granular Drain Backfifl Material). The material should be free of roots, organic matter, and other unsuitable materials; have less than 2 percent by dry weight passing the U.S. Standard No. 200 Sieve (washed analysis); and have at least at least two mechanically fractured faces. Drain rock should be wrapped in a geotextile fabric that meets the specifications provided in OSSC 00350 ( Geosynthetic Installation) and OSSC 02320 (Geosynthetics) for drainage geotextiles. CONSTRUCTION CONSIDERATIONS All footing and floor subgrades should be evaluated by the project geotechnical engineer or their representative to confirm suitable bearing conditions. Observations should also confirm that all G EODESIGN= 4 Centex- 16.01:041610 loose or soft material, organics, unsuitable fill, prior topsoil zones, and softened subgrades (if present) have been removed. Localized deepening of footing excavations may be required to penetrate deleterious materials. If footing excavations are conducted during wet weather conditions, we recommend that a minimum of 3 inches of granular material be placed and compacted until well -keyed at the base of the excavations. The granular material reduces subgrade disturbance during placement of forms and reinforcement and provides clean conditions for the reinforcing steel. ♦♦♦ We appreciate the opportunity to be of continued service to you. Please call if you have questions concerning this report or if we can provide additional services. Sincerely, GeoDesign, Inc. } PROOF • . r t Viola C. Lai, P.E., G.E. �+' . 4� Project Engineer 40, •REG!N • s, 41/4 o�• . Brett A. Shipton, P.E., G.E. F q sk\V Principal Engineer / EXPIRES:6 '.. ' Zo/ O VCL•BAS:kt Attachments Two copies submitted Document ID: Centex- 16 -01- 041610- geolr.doc © 2010 GeoDesign, Inc. All rights reserved. GEO DES I G N= s Centex -16- 01:041610 • i • - W - - • • LL LI • • y • • • • • • • • • • • • • • • • , : = = • � m hinted Iv cdaela 1 hint Oale: 4/16,2010 I:SS:19 Pet Plie Nan. } \0eedesl0n. local\ lllee\leleAA -D \Ce Mee\ Ceeuc- 16 \Cenlee.I GO1\06utes \CMACetnea•14.01.SPOI.d q 1 layout: rIGV41 1 1 1 +1 ■ l l 1 II r Ii j ( { > J 'i / '> \,,,,, II i 11 , 1 1 1 1 l ' /4, //)'‘‘' • F -, �, �; o 1 1/ I I e e+ .., 19 � 4 L . .. 4 " i / 1 ' 1 1 /k. "' '' . : f. / ./. `',-' it, I i i i j �i' �a _ / t / --I d f . JJ �a` •' /./ ` - —f 00.;;;t," ,` • —� � 'ol ,ar Jr • If P'" 1 N 1`L c ` • s• \ , ........ ../ l'' ... . * . ' nog ` �� 111 / n. `�j � � D � / ' O YYY , . \ \ o ni f / / / PI v, 4^ 0 � m ����,"yy��l!+ly��y n O w G{q D O x� 164��JJII ev U 8 a pc, ° v 2 m a . 2 W p Z Z D �+ v v z �,� A N n = oz * m o n >o A O _ z N O O O G EC) DESIGN= CENTEX -16.01 SITE PLAN of tl3w YaseY ea•,.ry -S.tY ICO a" APRIL 2010 PROPOSED TIGARO RESIDENTIAL DEVELOPMENT FIGURE i Off wl.lw Po ha 1014030LS TIGARO, OR ATTACHMENT FIELD EXPLORATIONS GENERAL We explored subsurface conditions by performing eight hand -auger borings (HA -1 through HA -8) to depths ranging from 0.5 foot to 7.0 feet BGS on April 9, 2010. We obtained representative samples of the various soils encountered in the exploration. Classifications and sampling intervals are presented on the exploration logs included in this attachment. The approximate locations of our explorations are shown on Figure 1. The locations of the explorations were determined in the field by pacing from existing site features. This information should be considered accurate only to the degree implied by the methods used. SOIL CLASSIFICATION The soil samples were classified in accordance with the "Exploration Keh (Table A -1) and "Soil Classification System" (Table A -2), which are included in this attachment. The exploration Togs indicate the depths at which the soils or their characteristics change, although the change could be gradual. A horizontal line between soil types indicates an observed (visual or drill action) change. If the change occurred between sample locations and was not observed or obvious, the depth was interpreted and the change is indicated using a dashed line. Classifications and sampling intervals are presented on the exploration logs included in this attachment. • G E DESIGN= A -1 Centex -16- 01:041610 • 1 r SYMBOL SAMPLING DESCRIPTION Location of sample obtained in general accordance with ASTM D 1586 Standard Penetration Test with recovery Location of sample obtained using thin -wall Shelby tube or Geoprobe® sampler in general 1 accordance with ASTM D 1587 with recovery Location of sample obtained using Dames & Moore sampler and 300 -pound hammer or pushed with recovery Location of sample obtained using Dames & Moore or 3- inch -O.D. split -spoon sampler and 140 - pound hammer or pushed with recovery Graphic Log of Soil and Rock Types Location of grab sample Observed contact between soil or rock units ° (at depth indicated) Rock coring interval • Inferred contact between Water level during drilling soil or rock units 9 9 (at approximate depths — — - indicated) .t -1, Water level taken on date shown GEOTECHNICAL TESTING EXPLANATIONS ATT Atterberg Limits P Pushed Sample CBR California Bearing Ratio PP Pocket Penetrometer CON Consolidation P200 Percent Passing U.S. Standard No. 200 Sieve DD Dry Density RES Resilient Modulus DS Direct Shear SIEV Sieve Gradation HYD Hydrometer Gradation TOR Torvane MC Moisture Content UC Unconfined Compressive Strength MD Moisture- Density Relationship VS Vane Shear OC Organic Content kPa Kilopascal ENVIRONMENTAL TESTING EXPLANATIONS CA Sample Submitted for Chemical Analysis ND Not Detected P Pushed Sample NS No Visible Sheen PID Photoionization Detector Headspace SS Slight Sheen Analysis ppm Parts per Million MS Moderate Sheen HS Heavy Sheen 1S Eo DES IG Nz EXPLORATION KEY TABLE A -1 1 SS75 SW Sequoia Parkway -State 100 Portland OR 97724 Off 303.963 87117 Fax 503 968.306R • u RELATIVE DENSITY - COARSE - GRAINED SOILS Relative Density Standard Penetration Dames & Moore Sampler Dames & Moore Sampler Resistance (140 -pound hammer) (300 -pound hammer) Very Loose 0 -4 0 -11 0 -4 Loose 4 - 1 0 1 1 - 26 4 - 10 Medium Dense 10 - 30 26 - 74 10 - 30 Dense 30 - 50 74 - 120 ' 30 - 47 - Very Dense More than 50 More than 120 More than 47 CONSISTENCY - FINE- GRAINED SOILS Consistency Standard Penetration Dames & Moore Sampler Dames & Moore Sampler Unconfined Compressive Resistance (140-pound hammer) (300 -pound hammer) Strength (tsf) Very Soft Less than 2 Less than 3 Less than 2 Less than 0.25 Soft 2 -4 3 -6 2 -5 0.25 -0.50 Medium Stiff 4 -8 6 -12 5 -9 0.50 -1.0 Stiff 8 -15 12 -25 9 -19 1.0 -2.0 Very Stiff 15-30 25 -65 19 -31 2.0 -4.0 Hard More than 30 More than 65 More than 31 More than 4.0 PRIMARY SOIL DIVISIONS GROUP SYMBOL GROUP NAME CLEAN GRAVELS GW or GP GRAVEL GRAVEL (< 5% fines) (more than 50% of GRAVEL WITH FINES GW -GM or GP -GM GRAVEL with silt coarse fraction 5% and 5 12% fines) GW -GC or GP -GC GRAVEL with clay COARSE - GRAINED retained on GRAVELS WITH FINES GM silty GRAVEL SOILS No. 4 sieve) (> 12% fines) GC clayey GRAVEL GC -GM silty, clayey GRAVEL (more than 50% CLEAN SANDS retained on SW or SP SAND No. 200 sieve) SAND ( <5 % fines) (50% or more of SANDS WITH FINES SW -SM or SP -SM SAND with silt coarse more (z 5% and _< 12% fines) SW -SC or SP -SC SAND with clay passing SM silty SAND No. 4 sieve) SANDS WITH FINES SC clayey SAND (> 12% fines) SC -SM silty, clayey SAND ML SILT FINE - GRAINED CL CLAY SOILS Liquid limit Tess than 50 CL -ML silty CLAY (50% or more SILT AND CLAY OL ORGANIC SILT or ORGANIC CLAY passing Liquid limit 50 or MH SILT No. 200 sieve) greater CH CLAY • OH ORGANIC SILT or ORGANIC CLAY HIGHLY ORGANIC SOILS PT PEAT MOISTURE ADDITIONAL CONSTITUENTS CLASSIFICATION Secondary granular components or other materials Term Field Test such as organics, man -made debris, etc. Silt and Clay In: Sand and Gravel In: very low moisture, Percent Fine - Grained Coarse- Percent Fine- Grained Coarse - dry dry to touch Soils Grained Soils Soils Grained Soils moist damp, without < 5 trace trace < 5 trace trace visible moisture 5 - 12 minor with 5 - 15 minor minor wet visible free water, > 12 some silty /clayey 15 - 30 with with usually saturated ,,, = -'-: t M . T't 4 > 30 sandy /gravelly sandy /gravelly GEO ESIGN? SOIL CLASSIFICATION SYSTEM TABLE A -2 15575 SW &Noon Parkway • &ore 100 Penland 00 97224 Off 503.948.8787 Fax 505,968.3068 •• • z o g 2 Z w • BLOW COUNT DEPTH u MATERIAL DESCRIPTION > a • MOISTURE COMMENTS FEET a �, ¢ CONTENT % o w F VI u HA-1 0 so 100 o.o Medium stiff to stiff, light brown with - orange and gray mottled SILT (ML), - some clay, trace gravel, milled wood, red plastic fragments, organics (rootlets), and charcoal; moist (1 -inch- r 18 - thick root zone) - FILL. 2.s Medium stiff, light brown SILT (ML), some clay, trace organics (rootlets); moist (alluvium). - becomes stiff at 3.5 feet • stiff to very stiff, orange mottles at 4.0 ® Surface elevation was not \feet r 4.5 measured at the time of 5.0 Exploration completed at a depth of 4.5 exploration. feet. • • 7.5 — HA -2 0 50 100 0.0 o so 100 Loose, gray -brown SAND (SP), trace to Hand angered tour borings within - \minor gravel; wet - FILL. 0.5 a 10 - foot radius of HA - 2 and Ex Exploration terminated due to refusal encountered concrete at 0.25 to p 0.5 foot. on concrete at 0.5 foot. Surface elevation was not measured at the time of exploration. o 2.5— z Z E2 u - z u • 5.0 — W V a- L.1 •o a o - 7.5 — K N 0 50 100 v DRILLED BY: GeoDesign Inc. staff LOGGED BY: JPW COMPLETED: 04109/10 9 BORING METHOD: hand -auger (see report text) BORING BIT DIAMETER: 3-Inch 3' m 0 G:E "DESIGN? CENTEX -16 -01 HAND AUGER Z 15575 SW Sequoia Parkway - Suite 100 PROPOSED TIGARD RESIDENTIAL DEVELOPMENT $ Portland OR97224 APRIL 2010 FIGURE A -1 00 503.968.8787 Fax 503.968.3068 TIGARD, OR • BLOW COUNT J o ~ a Z a • MOISTU DEPTH FEET a MATERIAL DESCRIPTION w OW I- m CONTENT% COMMENTS oC w F– V i V HA -3 0 so 100 0.0 Stiff, brown SILT (ML), some clay, trace - organics (rootlets) and gravel; moist — - - inch -thick root zdne) - FILL. i 1.0 Soft to medium stiff, brown SILT (ML), N - - trace clay and organics (roots and f- 1.6 - \ rootlets); moist (buried topsoil). I 2.5— Medium stiff, Tight brown with orange _ mottled SILT (ML), some clay, trace _ organics (rootlets); moist (alluvium). becomes stiff at 3.5 feet stiff, light brown mottles at 4.0 feet ® Surface elevation was not Exploration completed at a depth of 4.5 4.5 measured at the time of 5.0— feet. exploration. 7.5 — HA-4 0 50 100 0.0 0 50 100 Stiff, brown SILT (ML), trace clay, t - organics (rootlets), gravel, and asphalt - fragments; moist (1 - inch -thick root zone) - FILL. sr stiff to medium stiff, light brown at 1.5 - feet • 2.5 Stiff, gray SILT (ML), trace fine sand, - 3.0 0 ,. - organics (rootlets), and gravel; moist, ° - low plasticity - FILL. 2 u - grades to gray and light brown at 4.5 o 5.0— feet u — - - with orange mottles at 5.0 feet ,- s.s n. Stiff to medium stiff, light brown SILT (ML), some day, trace organics '' - (rootlets); moist (alluvium). Surface elevation was not o Exploration completed at a depth of 7.0 7.0 measured at the time of p p p exploration. 8 7.5— feet. 1— Li w u a • - L. W a - • 1- 0 50 100 z 7 O DRILLED BY: GeoOesign, Inc. staff LOGGED 6Y: JPW COMPLETED: 04/09/10 3 5 BORING METHOD: hand -auger (see report text) BORING BIT DIAMETER: 3 -Inch 3 z u CENTER -16 01 HAND AUGER 0 G E o ES I G N? (continued) a 15575 SW Sequoia Parkway -Suite 10 0 PROPOSED TIGARD RESIDENTIAL DEVELOPMENT = Off 503.9688787 Fax 958.3068 APRIL 2010 TIGARD, OR FIGURE A -2 A r 1 ■ p O J • BLOW COUNT D FEET d MATERIAL DESCRIPTION o a O MOISTURE COMMENTS 2 CONTENT % 4 c 1— < HA -5 0 50 100 0'0 Medium stiff to stiff, brown SILT (ML), minor clay, trace organics (rootlets); moist (2- inch -thick root zone). 2.5 — Surface elevation was not measured at the time of 4 0 Exploration completed at a depth of 4.0 exploration. feet. 5.0 — 7.5 — • • • 0 HA -6 5U ' °° 0 50 100 0.0 1° 1 Loose GRAVEL with silt and fine sand – 0.2 x(GP) (2 inches) - FILL. 1 - Stiff, Tight brawn SILT (ML), some clay, ▪ _ trace organics (rootlets); moist. El with orange and gray mottles at 2.0 • 2.5 — feet Surface elevation was not Exploration completed at a depth of 3.0 3.0 measured tion. at the time of explora - feet. u - z u oo • 5.0 — W u a co - o - • 7.5 — LS U w - - ce • ry z 0 SO 100 u • DRILLED BY: GooDesign, Inc. staff LOGGED BY: JPW COMPLETED: 04/09/10 O BORING METHOD: hand-auger (see report text) BORING BIT DIAMETER: 3inch GEO �> u CENTEX -16 -01 HAND AUGER DES I G N ? (continued) O Q 15S73 SW Sequoia Parkway - Suite 100 PROPOSED TIGARO RESIDENTIAL DEVELOPMENT = Portland OR 97224 APRIL 2010 FIGURE A -3 Off 503.968.8707 fax 503968.3058 TIGARD, OR P - • ... lz p 1J w ♦ BLOW COUNT DEPTH = MATERIAL DESCRIPTION °• Z a • • MOISTURE COMMENTS FEET a CI m ¢ CONTENT% vi u HA -7 o 50 100 0.0 Medium stiff to stiff, brown SILT (ML), - some clay, trace organics (rootlets), El - gravel, and concrete fragments; moist (1- inch -thick root zone) - FILL. T Very stiff, light brown -gray with 2.0 2.5 -- orange mottled SILT (ML), some clay, - trace gravel; moist - FILL. - Stiff, light brown with gray mottled SILT 33 (ML), some clay, trace organics (roots); moist (alluvium). Surface elevation was not 5.0 \sand at 5.0 feet ` s.o ® measured at the time of - Exploration completed at a depth of 5.0 exploration. _ feet. 7.5 — HA -8 0 50 100 0.0 o 50 100 Stiff, brown SILT (ML), minor clay, trace - organics (rootlets) and gravel; moist — (1- inch -thick root zone) - FILL. 0 ai a Medium stiff to stiff, Tight brown with 2.0 - 2.5— orange and gray mottled SILT (ML), a El — some clay, trace organics (rootlets); moist (alluvium). a u - z ® Surface elevation was not O 0 5.0 measured at the time of w Exploration completed at a depth of 5.0 5 exploration. a - feet. 0 co - N • 7.5 — F z W V V a o_ - a g 0 SO 100 u DRILLED BY: GeoDesign, Inc. staff LOGGED BY: JPW COMPLETED: 04109/10 3 0 m BORING METHOD: hand -auger (see report text) BORING BIT DIAMETER: 3-Inch 3 a l tr - - u CENTEX-16-01 HAND AUGER 0 G Eo ES I G N? (continued) a 15575 SW Sequoia Parkway • Suite 100 PROPOSED TIGARD RESIDENTIAL DEVELOPMENT = Off 503.968.8 87 Fax 503 %89068 APRIL 2010 TIGARD, OR FIGURE A -4