Loading...
Specifications i5 `73 I,Akt/ / o Z o j I— aln 7_ co C'zm /f -co SCog' RECEIVED JAN 3 1 2012 ENGINEERING I 11MVISION Structural Calculations JAN 112012 • PRO,. Steel Storage Racks � E iI By Pipp Mobile Storage Systems, Inc. Pipp P.O. #088296 � v` Cj The Limited Lr,;Di "3tiC'1 E��tp ,, 31.1 2 i Washington Square 9585 SW Washington Square Road, Space #B06 Portland, Oregon 97223 Prepared For: Pipp Mobile Storage Systems, Inc. 2966 Wilson Drive NW Walker, MI 49544 Please note: The calculations contained within justify the seismic resistance of the shelving racks, the fixed and mobile base supports, and the connection to the existing partition walls for both lateral and overturning forces as required by the 2010 Oregon Structural Specialty Code. These storage racks are not accessible to the general public. C` �L 155 NE RE.VE.RE. AVENUE, SUITE A, REND, OR 97701 0 ��� PHONE: (541) 389-9659 FAX: (541) 312-8708 P` Si- S WWW. ECLIPSE- ENGINEERING.COM 1ON s o 6 Eclipse Engineering, Inc. THE LIMITED 1/10/2012 Consulting Engineers PORTLAND, OR Rolf Armstrong, PE • Pipp Mobile STEEL STORAGE RACK DESIGN 2009 IBC & 2010 CBC - 2208 & ASCE 7 -05 - 15.5.3 ptf := Ib•ft i Design Vertical Steel Posts at Each Corner : psf := Ib•ft- 2 Shelving Dimensions: pcf := Ib.ft 3 Total Height of Shelving Unit - h 10.00-ft ksi := 1000•Ib•in 2 Width of Shelving Unit - w := 4.00-ft kips := 1000-lb Depth of Shelving Unit - d := 2.50.ft Number of Shelves - N := 9 Vertical Shelf Spacing - S := 15.0.in Shelving Loads: Maximum Live Load on each shelf is 50 Ibs: Weight per shelf - W := 50•Ib W = 501b Load in psf - Wry LL• :_ — LL = 5.psf w•d Design Live Load on Shelf - LL := LL LL = 5•psf Dead Load on Shelf - DL := 1.50•psf Section Properties of Double Rivet 'L' Post : Modulus of Elasticity of Steel - E := 29000 • ksi b := 1.5 in h := 1.5•in Steel Yield Stress - Fy := 33•ksi r := 0.47 in Section Modulus in x and y - S := 0.04•in r • 0.47-in Moment of Inertia in x and y - I := 0.06•in t := 0.075 in Full Cross Sectional Area - A P := 0.22 • in h := 1.42 in b := 1.42•in Length of Unbraced Post - L„ := S = 15•in L := S = 15•in L := S = 15•in Effective Length Factor - K := 1.0 K Y := 1.0 K := 1.0 Section Properties Continued: Density of Steel - psteel := 490•pcf Weight of Post - W := psteel•A W p = 7.49•Ib Vertical DL on Post - Pd := DL•w•.25d•N + Wp Pd = 41.24lb Vertical LL on Post - P LL•w•.25•d•N P 112.5 lb Total Vertical Load on Post - P := Pd + Pi P = 153.74•Ib 1 Eclipse Engineering, Inc. THE LIMITED 1/10/2012 Consulting Engineers PORTLAND, OR Rolf Armstrong, PE Floor Load Calculations : Weight of Mobile Carriage: W := 90•Ib • Total Load on Each Unit: W := 4.P + W W = 704.94 lb Area of Each Shelf Unit: A„ := w•d A„ = lOft Floor Load under Shelf: PSF := A PSF = 70•psf A NOTE: SHELVING LIVE LOAD IS CONSISTENT WITH 100 psf REQ'D FOR RETAIL FLOOR LOADING Find the Seismic Load using Full Design Live Load ASCE -7 Seismic Design Procedure: Importance Factor - IE := 1.0 Determine S and S from maps - S := 0.948 S := 0.341 Determine the Site Class - Class D Determine F and F - F := 1.121 F„ := 1.719 Determine S and SM1 SMS Fa'Ss SM1 Fv'Si SMS = 1.0627 S = 0.5862 Determine SDs and SDI _ SDS 3 'SMS SDI 3 'SM1 SDS = 0.708 SDI = 0.391 Structural System - Section 15.5.3 ASCE -7: 4. Steel Storage Racks R := 4.0 ii 2 Cd := 3.5 R := R a := 2.5 I p := 1.0 Total Vertical LL Load on Shelf - W LL•w•d W = 50 lb W Total Vertical DL Load on Shelf - Wd := DL•w•d + 4.— WP Wd = 18.33 lb Seismic Analysis Procedure per ASCE -7 Section 13.3.1: Average Roof Height - h := 20.0•ft Height of Rack Attachment - z := 0•ft (0' -0" For Ground floor) 0.4•a Seismic Base Shear Factor - V := ( 1 + 2 1 V = 0.177 Rp hr) l Ip Shear Factor Boundaries - V tn , ;n := 0 . 3 •SDS•Ip Vtmin = 0.213 Vtmax := 1 . 6 •SDS•Ip Vtmax = 1.134 V := if (V > V tmax , Vtmax , Vt) V := if (V < Vtmin > Vtmin V V = 0.213 2 Eclipse Engineering, Inc. THE LIMITED 1/10/2012 Consulting Engineers PORTLAND, OR Rolf Armstrong, PE Seismic Loads Continued : V ASD, Shear may be reduced - V := t = 0.152 1.4 Seismic DL Base Shear - Vtd := V = 25.04Ib DL Force per Shelf : Fd := V • Wd = 2.78 lb Seismic LL Base Shear - Vti := V = 68.32 lb LL Force per Shelf : F V 7.59 lb 0.67 * LL Force per Shelf : F1 := 0.67•V = 5.09 lb Force Distribution per ASCE -7 Section 15.5.3.3: Operating Weight is one of Two Loading Conditions : Condition #1: Each Shelf Loaded to 67% of Live Weight Cumulative Heights of Shelves - - H 0.0.S + 1.0.S + 2.0.S + 3.0•S + 4.0.S + 5.0.S + 6.0•S + 7.0.S + 8.0•S H: =H H =45ft Total Moment at Shelf Base - M H.Wd + H•0.67•W M 2332.221b•ft Vertical Distribution Factors for Each Shelf - Total Base Shear - Vtotai := Vtd + 0.67•Vti Vtotal = 70.81lb Wd•0.0•S + W1 0.67 0.0 S Wd•1.0•S + W 1.0.S C = 0 C2:= = 0.028 M M F1:= C1•(Vtotai) = 0 F2 := C2•(Vtotai) = 1.97 lb W + W Wd•3.0•S + W 0.67 3.0 S C3:= = 0.056 C = 0.083 M Mt F3:= C3•(Vtotal) = 3.93 lb F4 := C4•(Vtotal) = 5.9 lb Wd •4.0•S + W1.0.67.4.0•S W •5.0•S + W 0.67 5.0 S C5:= = 0.111 C6:= = 0.139 Mt Mt F5: C5•(Vtotal) = 7.87 lb F6:= C6•(Vtotal) = 9.84Ib Wd .6.0•S+ W Wd •7.0•S+ W C7 :_ = 0.167 C8 := = 0.194 M Mt F7:= C7•(Vtotal) = 11.8 lb F8: C8•(Vtotal) = 13.77 lb Wd •8.0•S + W Wd .9.0.S + W C9 :_ = 0.222 C :_ = 0.25 M Mt F9 := C9 = 15.741b Flo := C1o•(Vtotal) = 17.7Ib Wd•10.0 S + W1.0.67.10.0.S Wd•11.0•S + W1 0.67 11.0 S C11 := = 0.278 C12:- = 0.306 M M • 3 Eclipse Engineering, Inc. THE LIMITED 1/10/2012 Consulting Engineers PORTLAND, OR Rolf Armstrong, PE F11 := C11'(Vtotal) = 19.67 lb F12:= C12•(Vtotal) = 21.64 lb Wd•12.O•S + WI.0.67.12.0•S Wd •13.0•S + WI.0.67.13.0.S C13 :_ = 0.333 C14:- = 0.361 M Mt F13 := C13 = 23.6 lb F14 := C14•(Vtotal) = 25.57 lb C + C2 + C3 + C4 + C5 + C6 + +C8 +C9= 1 Force Distribution Continued : Coefficients Should total 1.0 Condition #2: Top Shelf Only Loaded to 100% of Live Weight Total Moment at Base of Shelf - M := (N - 1)•S•Wd + (N - 1)•S4/I = 6831b•ft Total Base Shear - Vtotal2 := Vtd + Fl Vtotai2 = 32.63 lb Wd•0.0•S+ 0•WI.0.0•S Wd•(N - 1).S+ Wi.(N - 1).S C1 : _ = 0 C11a :_ = 1 Mta Mta Fla := C1a'(Vtotai2) = 0 Flla := Clla•(Vtotal2) = 32.63 lb Condition #1 Controls for Total Base Shear By Inspection, Force Distribution for intermediate shelves without LL are negligible. Moment calculation for each column is based on total seismic base shear. Column at center of rack is the worst case for this shelving rack system. Column Design in Short Direction : M := --.(V + V = 14.591b.ft Bending Stress on Column - f M 1 = 4.38•ksi Allowable Bending Stress - Fb := 0.6.F = 19.8.ksi Bending at the Base of Each Column is Adequate Deflection of Shelving Bays - worst case is at the bottom bay 3 0 :_ (Vtd + Vti) S = 0.0151 • in S = 994.0224 12•E•I, 0 A := 0•(N - 1) = 0.1207•in D := 0.05•h 6-in if(O < D "Deflection is Adequate" , "No Good ") = "Deflection is Adequate" Moment at Rivet Connection: Shear on each rivet - M d d := 0.25 . in V :_ = 116.71b A :_ = 0.0491 • in 1.5.in 4 V r Steel Stress on Rivet - f := A = 2.38•ksi r 4 Eclipse Engineering, Inc. THE LIMITED 1/10/2012 Consulting Engineers PORTLAND, OR Rolf Armstrong, PE Allowable Stress on Rivet - F „ r := 0.4.80•ksi = 32•ksi RIVET CONNECTION IS ADEQUATE FOR MOMENT CONNECTION FROM BEAM TO POST Find Allowable Axial Load for Column : Allowable Buckling Stresses - 2 E Qex.x 2 = 281 • ksi (rex Qex.x = 281 • ksi Kx•Lx r Distance from Shear Center t'hc to CL of Web via X -axis e := e = 1.2706 in 4•I Distance From CL Web to Centroid - x := 0.649.in – 0.51 x = 0.6115•in Distance From Shear Center x := x + e x = 1.8821 • in to Centroid - Polar Radius of Gyration - r := J r + r + x r = 1.996. in Torsion Constant - J := 1 •(2•b1 + h1 J = 0.00063•in Warping Constant - := t b h 3 b t+ 2 h t Cw = 0.0339 • in 12 (6 b•t+ h•t ) Shear Modulus - G := 11300•ksi 1 ir • E Cw vt:= G•J+ / o• 57.3598.ksi Ap•ro 2 (Kt.Lt) 2 xo 2 3:= 1 – — p = 0.1109 r Fet 2 1 p ' + Qt) – J ( + at – 4 ' Qex'rt] Fet = 48.4039 • ksi Elastic Flexural Buckling Stress - F := if (F < (rex, Fet aex) F = 48.4039•ksi Allowable Compressive Stress - F := if F > Fy , F 1 – Fy , F F = 27.3755 •ksi 2 y 4 F Factor of Safety for Axial Comp. - • !t := 1.92 • 5 Eclipse Engineering, Inc. THE LIMITED 1/10/2012 Consulting Engineers PORTLAND, OR Roff Armstrong, PE Find Effective Area - Determine the Effective Width of Flange - Flat width of Flange - w := b - 0.5•t wf = 1.4625•in Flange Plate Buckling Coefficient - kf := 0.43 1.052 w f [ Flange Slenderness Factor - Xf :_ tE Xf = 0.9612 0.22 1 Pf •= 1 Xf Xf Pf = 0.8023 Effective Flange Width - b := if (X > 0.673, p .wf , w b = 1.1733.in Determine Effective Width of Web - Flat width of Web - w := h - t w = 1.425 • in Web Plate Buckling Coefficient - k := 0.43 w F Web Slenderness Factor - Xw := 1.052 t W E X = 0.9365 V "W r 0.221 1 Pw :_ \1- I Pw = 0.8169 l �wI �w _ Effective Web Width - h := if(x > 0.673, p w h = 1.1642 . in Effective Column Area - A := t•(h + b A = 0.1753 •in Nominal Column Capacity - P := A P,, = 4799 lb Pn Allowable Column Capacity - P :_ P = 2500 lb Check Combined Stresses - 7 r 2. E . Ix Pcrx Pcrx = 7.63 x 10 lb (Kx Lx)2 Pcr P Pcr = 76324.94 lb Magnification Factor - Sip := 1- (- a = 0.996 C := 0.85 cr Combined Stress: P + Cm'fbx = 0.25 MUST BE LESS THAN 1.0 P F Final Design: 'L' POSTS WITH BEAM BRACKET ARE ADEQUATE FOR REQD COMBINED AXIAL AND BENDING LOADS NOTE: P is the total vertical load on post, not 67% live load, so the design is conservative 6 Eclipse Engineering, Inc. THE LIMITED 1/10/ Consulting Engineers PORTLAND, OR Rotf Armstrong, PE STEEL STORAGE RACK DESIGN PER 2009 IBC & 2010 CBC - 2208 & ASCE 7 -05 - 15.5.3 Find Overturning Forces : Total Height of Shelving Unit - H := h = 10ft Width of Shelving Unit - w = 4ft Depth of Shelving Unit - d = 2.5 ft WORST CASE Number of Shelves - N = 9 Vertical Shelf Spacing - S = 15-in Height to Top Shelf Center of G - h top := H h top = 10 ft Height to Shelf Center of G - h :_ (N Z 1) .s h = 6.25.ft From Vertical Distribution of Seismic Force previously calculated - Controlling Load Cases - . Weight of Rack and 67% of LL - W := (W + 0.67•W W = 466.44 lb Seismic Rack and 67% of LL - V := Vtd + 0.67•Vti V = 70.81 lb Ma := F1.0.0•S + F + F + F + F + F6.5.0•S + F + F8.7.0•S Mb := F9.8.0•S Overturning Rack and 67% of LL - M := M + Mb = 501.6lb•ft Weight of Rack and 100% Top Shelf - W := W •N + W W = 214.94 lb Seismic Rack and 100% Top Shelf - V := Vtd + F V = 32.63 lb Overturning Rack and 100% Top Shelf - M := V + F M = 232.41 Ib•ft Controlling Weight - W := if (W > W , W , W W, = 466.44 lb Controlling Shear - V := if(V > V V, V V = 70.81 Ib Controlling Moment - M := if(M > M M, M M = 501.61b•ft Wc Tension Force on Column Anchor - T := Mot - 0.60.— T = 60.7 lb per side of shelving unit d 2 T := if(T < 0•1b, 0•Ib,T) T = 60.7lb V Shear Force on Column Anchor - V :_ V = 35.41 lb 2 USE: HILTI KWIK BOLT TZ ANCHOR (or equivalent) - USE 3/8"4) x 2" embed installed per the requirements of Hilti Allowable Tension Force - T := 1006-lb For 2500psi Concrete Allowable Shear Force - V := 999•Ib Combined Loading - (1.0 T + 1.0 V _ 0 .096 MUST BE LESS THAN 1.20 I l Ta ) Va 7 Eclipse Engineering, Inc. THE LIMITED 1/10/2012 Consulting Engineers PORTLAND, OR Rolf Armstrong, PE STEEL ANIT -TIP CLIP AND ANTI -TIP TRACK DESIGN Tension (Uplift) Force on each side - T = 60.7 lb Connection from Shelf to Carriage = 1/4" diameter bolt through 14 ga. steel: Capacity of #12 screw (smaller than 1/4" diam. bolt) 349.1b in 16 ga. steel (thinner than 14 ga. posts and clips) - '_ if(T < 2.Z "(2) 1/4" Bolts are Adequate" , "No Good ") = "(2) 1/4" Bolts are Adequate" Use 3/16" Diameter anti -tip device for connection of carriage to track Yield Stress of Angle Steel - F := 36.ksi Thickness of Anti -tip Head - t := 0.090.in Width of Anti -tip Rod + Radius - b := 0.25.in Width of Anti -tip Head - b := 0.490.in Width of Anti -tip Flange - L := ba 2 br L = 0.12 • in Tension Force per Flange leg - 1 := 0.57 T = 30.35 lb Bending Moment on Leg - m1:= T'2La M = 0.15.ft.lb b 2 Section Modulus of Leg - S 6 S1= 0.001. in M� Bending Stress on Leg - f := S f = 2.75•ksi f b Ratio of Allowable Loads - = 0.102 MUST BE LESS THAN 1.0 0.75. Fy Width of Anti -Tip track - L:= 5.1.in Thickness of Aluminum Track - t 0.33.in Average Thickness Spacing of Bolts - Stb := 22.5 • in L•tt Section Modulus of Track - S := 6 S = 0.0926 • in T•Stb Design Moment on Track - M := 8 M = 14.23lb.ft for continuous track section Bending Stress on Track - f 9 b := f = 1.84•ksi Allowable Stress of Aluminum - Fb := 21.ksi Ratio of Allowable Loads - fb.Fb 1 = 0.0878 MUST BE LESS THAN 1.0 ANTI -TIP CLIP STEEL CONNECTION AND TRACK ARE ADEQUATE 8 • Eclipse Engineering, Inc. THE LIMITED 1/10/2012 Consulting Engineers PORTLAND, OR Rolf Armstrong, PE STEEL 'Z' CLIP AND ANTI -TIP STEEL ANGLE DESIGN Tension (Uplift) Force at Corner - T = 60.7 lb • Connection from Shelf to Carriage = 1/4" diameter bolt through 14 ga. steel: Capacity of #12 screw (smaller than 1/4" diam. bolt) 349.1b in 16 ga. steel (thinner than 14 ga. posts and clips) - k '_ if (T < 2 . Z , "(2) 1/4" Bolts are Adequate" , "No Good ") = "(2) 1/4" Bolts are Adequate" Yield Stress of angle aluminum - F Y := 29.ksi Use 11 gage aluminum angle - Thickness of Angle - t := 0.12•in Width of Angle Leg - L := 1•in Length of Angle Section - b := 2•in • Worst Case Width of Clip Distance out to Tension Force - L := 0.75.in Section Modulus of Angle Leg - S := 0.0075 • in Design Moment on Angle - M := T.L M = 3.79lb.ft Stress on Angle - f M Bending 9 b := fb = 6.07•ksi S Allowable Bending Stress - Fb := 0.75. Fb = 21.75.ksi For Flat Rectangular Sections Ratio of Allowable Loads - f • F 1 = 0.28 MUST BE LESS THAN 1.0 ANTI -TIP CLIP STEEL ANGLE IS ADEQUATE, SO 'Z' RAIL IS ADEQUATE BY INSPECTION BOLT CONNECTION FOR 'Z' RAIL : Check Prying Action on Anchor - Distance From Angle Tip to Uplift Load - L := 1.50.in Distance From Angle Tip to Face of Bolt - Lb := 0.50•in T•L Prying Force on Bolt - T := Lb T = 182.11 lb Allowable Tension Force in Bolt - T aii := 1066•Ib Since the Z -rail is continuous with exp. bolts evenly spaced, assume that a min. (2) exp. bolts will resist the prying action because the stiffness of the rail is adequate to distribute the load. T Ratio of Allowable to Design Loads - p = 0.09 MUST BE LESS THAN 1.0 2-Tan NOTE: THE Z -RAIL AND ANTI -TIP CLIP SYSTEM IS ADEQUATE TO RESIST OVERTURNING FORCES 9 Eclipse Engineering, Inc. THE LIMITED 1/10/2012 Consulting Engineers PORTLAND, OR Rolf Armstrong, PE Connection from Steel Racks to Wall • Seismic Analysis Procedure per ASCE -7 Section 13.3.1: Average Roof Height - h = 20 ft Height of Rack Attachments - z := z + h = 10 ft At Top for fixed racks connected to walls 0.4•a z Seismic Base Shear Factor - V := 129 1 + 2• V = 0.354 r Ip Shear Factor Boundaries - Vtmin := 0 . 3 •SDS•Ip Vtmin = 0.213 Vtmax 1 . 6 • SDS•Ip Vtmax = 1.134 V := if (V > Vtmax , Vtmax , Vt) Vt := if (V < Vtmin , Vtmin V V = 0.354 Seismic Coefficient - V = 0.354 Number of Shelves - N = 9 Weight per Shelf - W = 50 lb Total Weight on Rack - WT := 0.667.4.P WT = 410.17 lb 0 . 7. Vt• WT Seismic Force at top and bottom - T„ := 2 T = 50.85 lb Connection at Top: Standard Stud Spacing - Sstud := 16•in Width of Rack - w = 4ft Number of Connection Points - N := floor H 1 N = 3 on each rack Sttud J T V Force on each connection point - F := F = 16.95 lb N c Capacity per inch of embedment - W := 135. lb — in F Required Embedment - d := W d = 0.126•in For Steel Studs: s Pullout Capacity in 20 ga T20 := 84•Ib For #10 Screw - per Scafco studs - per Scafco MIN #10 SCREW ATTACHED TO EXISTING WALL STUD IS ADEQUATE TO RESIST SEISMIC FORCES ON SHELVING UNITS. EXPANSION BOLT IS ADEQUATE BY INSPECTION AT THE BASE 10 Eclipse Engineering, Inc. THE LIMITED 1/10/2012 Consulting Engineers PORTLAND, OR Rolf Armstrong, PE Conterminous 48 States 2005 ASCE 7 Standard Latitude = 45.45 Longitude = - 122.78125 - Spectral Response Accelerations Ss and S1 Ss and S1 = Mapped Spectral Acceleration Values Site Class B - Fa = 1.0 ,Fv = 1.0 Data are based on a 0.05000000074505806 deg grid spacing Period Sa (sec) (g) 0.2 0.948 (Ss, Site Class B) 1.0 0.341 (S1, Site Class B) Conterminous 48 States 2005 ASCE 7 Standard Latitude = 45.45 Longitude = - 122.78125 Spectral Response Accelerations SMs and SM1 SMs =Fax Ss and SM1 =FvxS1 Site Class D - Fa = 1.121 ,Fv = 1.719 Period Sa (sec) (g) 0.2 1.062 (SMs, Site Class D) 1.0 0.586 (SM1, Site Class D) Conterminous 48 States 2005 ASCE 7 Standard Latitude = 45.45 Longitude = - 122.78125 Design Spectral Response Accelerations SDs and SD1 SDs = 2/3 x SMs and SD1 = 2 /3xSM1 Site Class D - Fa = 1.121 ,Fv = 1.719 Period Sa (sec) (g) 0.2 0.708 (SDs, Site Class D) 1.0 0.390 (SD1, Site Class D) • Eclipse Engineering, Inc. THE LIMITED 1/10/2012 Consulting Engineers PORTLAND, OR D Fasteners (Screws and Welds) S teel Stud Manufacturing Ca. Screw Table Notes 1. Screw spacing and edge distance shall not be less than 3 x D. (D = Nominal screw diameter) 2. The allowable screw values are based on the steel properties of the members being connected, per AISI section E4. 3. When connecting materials of different metal thicknesses or yield strength, the lowest applicable values should be used. 4. The nominal strength of the screw must be at least 3.75 times the allowable loads. 5. Values include a 3.0 factor of safety. 6. Applied loads may be multiplied by 0.75 for seismic or wind loading, per AISI A 5.1.3. 7. Penetration of screws through joined materials should not be less than 3 exposed threads. Screws should be installed and tightened in accordance with screw manufacturer's recommendations. Allowable Loads for Screw Connections (lbs/screw) • - - - - o , No 10 No. 8 . No. 8 Steel Thickness ! I St•el!Propeitl Dle`.i='O:2i81(I )j • ; 1pia:: =1O 190)(lin)1 ; ; Dia )) l• ;;= :0:1641(iin 'Dla =10'.138( _ ;_MIS_ ,011iii nt(In)�! ;IFy1(ksl)'� FuI(ket)L ; .._Shear _. 1Pullout' . - Shea%-- _IiiiiOiitl.i .. Sham -.__:Pullout__ I._ -Shea`r_ - _P.ulloittL _ 18 0.0188 33 45 66 39 60 33 27 0.0283 33 45 121 59 111 50 30 0.0312 33 45 151 76 141 65 129 55 33 • 0.0346 33 45 177 • 84 164 72 151 61 43 0.0451 33 45 280 124 263 109 244 94 224 79 54 0.0566 33 45 394 156 370 137 344 118 68 0.0713 _ 33 45 557 156 523 17 . Weld Table Notes 1. Weld capacities based on AISI, section E2. 2. When connecting materials of different metal thickness or tensile strength (Fu), the lowest applicable values should be used. 3. Values include a 2.5 factor of safety. 4. Based on the minimum allowance load for fillet or flare groove welds, longitudinal or transverse loads. 5. Allowable loads based on E60xx electrodes 6. For material less than or equal to .1242" thick, drawings show nominal weld size. For such material, the effective throat of the weld shall not be less than the thickness of the thinnest connected part. Allowable Loads For Fillet Welds And Flare Groove Welds l>e`.I ; IliSt ellefaerle ` i ck' - ' - - iE60Xectiades 0l Thickness Yield TeTslls' ,� . .. :Mil..____._ _Jin::._ _ :'..__IksL_...- ...�ksi�. -. _.._�ibsfln -__._ 43 0.0451 33 45 609 54 0.0566 33 45 764 68 0.0713 33 45 963 97 0.1017 33 45 1373 118 0.1242 33 45 1677 54 0.0566 50 65 1104 68 0.0713 50 65 1390 97 0.1017 50 65 1983 118 0.1242 50 65 2422 r C 48 Eclipse Engineering, Inc. THE LIMITED 1/10/2012 - Page 11 of 14 ESR -1917 - Consulting Engineers PORTLAND, OR Rolf Armstrong, PE TABLE 9-KB-TZ CARBON AND STAINLESS STEEL ALLOWABLE SEISMIC TENSION (ASD), NORMAL - WEIGHT CRACKED CONCRETE, CONDITION B (pounds) _ Concrete Compressive Strength' Nominal Embedment Pc = 2,500 psi Pc = 3,000 pal Pc = 4,000 psi Pc = 8,000 psi Anchor Depth he Diameter (in.) Carbon Stainless Carbon Stainless Carbon Stainless Carbon Stainless steel steel steel steel steel steel steel steel _ 3/8 2 1,006 1,037 1,102 1,136 1,273 1,312 1,559 1,607 2 1,065 1,212 1,167 1,328 1,348 1,533 1,651 1,878 1/2 31/4 2,178 2,207 2,386 2,418 2,755 2,792 3,375 3,419 31/8 2,081 2,081 2,280 2,280 2,632 2,632 3,224 3,224 5/8 4 3,014 2,588 3,301 2,835 3,812 3,274 4,669 4,010 3 3/4 2,736 3,594 2,997 3,937 3,460 4,546 4,238 5,568 3/4 4 3/4 3,900 3,900 4,272 4,272 4,933 4,933 6,042 6,042 For Si: 1 ibf = 4.45 N, 1 psi = 0.00889 MPa For pound -Inch units: 1 mm = 0.03937 inches 'Values are for single anchors with no edge distance or spacing reduction. For other cases, calculation of Rd as per ACI 318-05 and conversion to ASD In accordance with Section 4.2.1 Eq. (5) is required. 2 Values are for normal weight concrete. For sand - lightweight concrete, multiply values by 0.80. 'Condition B applies,where supplementary reinforcement in conformance with ACI 318-05 Section D.4.4 Is not provided, or where pullout or pryout strength governs. For cases where the presence of supplementary reinforcement can be verified, the strength reduction factors associated with Condition A may be used. TABLE 10 -KB-TZ CARBON AND STAINLESS STEEL ALLOWABLE SEISMIC SHEAR LOAD (ASD), (pounds)' Nominal Allowable Steel Capacity, Seismic Shear Anchor Diameter Carbon Steel Stainless Steel - 3/8 999 1,252 1/2 2,839 3,049 5/8 4,678 5,245 3/4 6,313 6,477 For SI: 1 Ibf = 4.45 N 'Values are for single anchors with no edge distance or • spacing reduction due to concrete failure. 573 Wa4i W.9( 6 u-i°20 //- Ovzco /mee_zo / / -a 56 r PAUL J. FORD AND COMPANY RECEIVED • STRUCTURAL ENGINEERS 250 East Broad Street, Suite 1500 • Columbus, Ohio 43215 JAN 31n9 CITY OF TIGARD BUILDING DIVISION Washington Square Limited Tigard, Oregon PJF Comm. Number A35011 -0084 January 23, 2012 Structural Calculations for Storefront Framing and Interior Partitions PROp r N4 '6268 9PE'Q r �, N o �ti \ OREGOJ 7 n 23 2.° S ti � ` � F pN P. J RHO aP • EXPIRATION DATE (C30 I COLUMBUS, OHIO • ATLANTA, GEORGIA • ORLANDO, FLORIDA 614 -221 -6679 706 -3h9 -1212 407 - 898 -9039 FAX 614- 221 -2540 FAX 706 -: -0044 FAX 407 - 897 -3662 FOO PAGE / OF STRUCT J. URAL RD ENGINEERS &CMPANY BY C. DATE J 250 E. BROAD ST. SUITE 1500 PROJECT COLUMBUS, OH 43215 CLIENT PRO.J # Se.ish e.. LUc.CI' fc-r- s = Q. ri Z � ' 4 7 5 wP Fc R p/sp ti 3d' ( Roof Let04 I� Zittl E.4 o.r7, kip Z . 5)) F s F ze 1/4 t4p7 Z,s!) o . Z 3 Al „ /. s (V /.is b✓ r�,� = 0.3 S s Z W o, z Z W 45d w,4 F� /, i F) .- 0 :I.__ I 0' z3 Wp 1, . C:). G✓ (A �r► "DesignMaps" Summary Report https: / /geohazards.usgs.gov/ secure /designmaps /us /summary.php ?te... n P "DesignMaps" Summary Report • User - Specified Input • Building Code Reference Document 2009 NEHRP Recommended Seismic Provisions (which makes use of 2008 USGS hazard data) Site Coordinates 45.44712 °N, 122.78223 °W (AJA "9585 s.w. washington square road, portland, or" / 1 t N LL. Site Soil Classification Site Class D - "Stiff Soil" / / n 4r-d Ore Site Risk Category Risk Category II - "Other" C ( o gel _ • . -` yrr _et :� ': `•sri d -4 •'" • We st'Slope- s'`` 2e � -• - _ • ?ieatq ' Sieights�= ! `�!.• ;r 0 8 f Souttiv�est.liitls', :'s; - - C) - eaver ton x y �2t7 'Raleigh Hills- i _ ; t . Beaverton' ,` .. ,Gard o� S eated Home -4 X ord - . ,�3 cc. - c1tv�. _ - . fountain ` - - •Perk -t:. 7y;tgni R 1: - •t4 { von I Ce�pertolaun;ain _y�• South "' ;�.(vletzg2f" .. • --- Fccesi •,,� �' : • a;: ; _.' ,. '` 04 oha $ autni Beaverton • ferr ti . Tigarei' ; fi _ t .ti ; a; • ';, Sterk's Tvrin, I - � , :a � _., z - "- Cl - Oaks �•Irparl4 - ''S',;. '. ,RulS i; ,�; . "" _ - :� ; ~ ' � .lcunteirr , I ' : -.fix r ,.. MEdlv3 `. !' '` „ I �''F iUrilted'Sta`tes Kin ,Ci l_.:...;. I 1 TvAi Rsver. , , • . hl = -•: - Damon "> :T t. `' ' . :. ; :.` \ „•.• Wdli:ziReeiig !-obcauRi ...'..... .s ._ RrverarC USGS- Provided Output S = 0.976 g S Ms = 1.083 g S os = 0.722 g S = 0.425 g S 0.669 g S pl = 0.446 g For information on how the S and S values above have been calculated from probabilistic (risk- targeted) and deterministic ground motions in the direction of maximum horizontal response, please view the detailed report. MCE Spectrum Sa Vs T Design Response Spectrum 0 99 110 090 0.99 0.72 0.92 0.64 0.77 0.56 0.66 0i 0 49 055 I 0.40 r 0.44 0.32 r 0.33 024 0.22 0.16 0.11 0.09 0.00 0.00 ' 0.00 0.20 0.40 0.50 0.90 1.00 1.20 1.40 1.50 1.90 2.00 0.00 0.20 0.40 0.50 0.90 1.00 1.20 1.40 1.50 1.90 2.00 Period, T (sec) Period, T (sec) For PGA M , T C and C R, values, please view the detailed report. - - - - - ' --- - - - - -- Although this information is El product of the U.S. Geological Survey, we provide no warranty, expressed or implied, as to the accuracy of 1 oft 1/19/2012 2:31 PM 1 i • X IS' A Leg /hectneSvle4 Vs /1 ./e e q/c) " o • COSTING METAL STUD DEMISING WALL. I R.5 i' DEEP, 20 GA STRUCTURAL METAL /� . J (e J STUDS WITH I 1 FLANGE AT OC T TOP OF U U] V I W I 7 FLOOR W TN DIAGONAL AT .-V BRACING FINISH �SGENA TENANT - ►Q Q Y I SPACED AT 0' ALONG TOP OF WALL_ 1 CRAW -.= . 66 w w ..r e. r 1 r n Ago 1 ,.;.- ; . pi WINE , [ ,, CO o o n^ n C o— _ ;s, I c, Ts..' I u r 1 �, I i� iiiiii � � .._ ; � =.'� MIN �k . - <I, /� 1 i ��� L it �1 � I �f� r, „r 1'” T s M I 1 ( .cJ J if 1 I� �_�G- i.4 y- A I �a W I ES-9 k = t m '7,:',7-41, € - - �:� �` i:r -- E. Kam �) 1 r I. I � n 0 Al 0 p L. - -....... -I. .g - ..1 : ii , . I ., "' V� i ' �i i�i�iiii�i� i�ii�i�J �6 �� , 1 1 , . ' ; pit I�iiii�iii� 111 It/ _ -,M_ MI ' am - La --- 'ha -- t.: i r 1 r r..IrT 1,1, nrr r,rr .. I i ka .r r, I I I COSTING G IETAL STUD SALES/ I UGH METAL STUD DEMISING WALL CI' o p ! 1 "'� I ^ "� i TT'"" j '.... Ve r NON -SALE $ PARTITION WALL I E nm - PuE ABJACFNT I I 5 RUCTURAL STUDS WITH I I /S' DLORD ,N CONTRACT SHALL FIELD MEASURE I - - I ka za va r„. - - ' 1 II ,i- COSTING L STUDS (SIZE, I • FLANGE AT Ii' OC TOP OF WALL A : .v I 1 I r -� v1' I I I W' -O' ABOVE FINISH FLCO7 WITH -� '�� i w� I�� THICHNFSS SPACING, BRIDGING) AND • DIAGONAL BRACING SPACED AT 45' I DIAGONAL BRACING AND FORWARD TO I I I k, - -- , i a , �ti== =t ti - = =T I a Y I 1 -__® STRUCTUR1L ENGI FOR REVIEW I ALONG TOP OF WALL I I 1 " 1 I AND WRI EN APPROVAL I I W a I I I ... rr f I - - T' - - i' - 1P� - -T -r -- • I I I I AI q • e \J. /� N � / \ t VIED E 5 A 72.64) /75 L. - rozA L rL ocs R Pi,a ,tl C___t, —d w i , -` " PAUL J. FORD & COMPANY PAGE OF STRUCTURAL ENGINEERS BY DATE 250 E. BROAD ST. SUITE 1500 PROJECT COLUMBUS, OH 43215 CLIENT PROJ # fM T 2 ►oR PA RTI p l o k/ h g s, J 2.1 PAUL J. FORD & COMPANY PAGE P1 OF STRUCTURAL ENGINEERS BY DATE 250 E. BROAD ST. SUITE 1500 PROJECT COLUMBUS, OH 43215 CLIENT PROJ # ' . . Le i le\ TI\ . 4 rict r- . /4(4/- s cdo .5 . . ._ . rp :--' C7- / 4 kJ/ 4 ki, 4. c-) -,) � G oe /hl n,M �,� / '� f A.) P :-7: ps .. -T.-_ . r . € .∎ ...c As ir i c / / r / /aid ' � ' s`r w q // /r4 - lc�c 6.,, S/,c`v,n �G�,.. /c P nG .1 v --)E, 'pl c, 4./e. c� f h/, = .� st .). /-4 = 3 /,'_ s _ _51 /e,.5 W //, - Pc J` ra.Vi e i.-7 . 1 w .1 4 /.', / / .A1 .o.,Z Afd. ;, `f + G3 �cr <o, ' / ,4 - o d /J G., i g . Sr( I si � .. � ,�o '' s e: f - diS GJ &sio ; A <4 r�4, �, s. Le tye, 4 . 4� sI".� keJ ' A - / 1 1 in � 94 �-" A Gc:3 <.eel i‘`P eel /i ' ;d 4 0 r-- c.)ci,7A /sue c -, e49 / c, q n /3 A 1 1\ skt /r s / O'1 en/ 44in lS u se° 4 Y /l 4.2.5. g .� / �j / S . � r�3 � / /.=:)- ;� ` des'1 i c)1 4 /h es , -1i 16© 11s . 4/oii - S /e W // �• Tke-se A.)c /4 i a is c.n.,.� c 1-e. a re rr in, _ j h e.. e--‘4 is's/m . c<- � & ' s LffirY 14 4 ` ' ,, c, re..,,,,,,,,,,, / or �.e. slur / s4a(t,.h w,li .6e. Aid -- S Q ( & . G om'clof 4)41)S, . 8 c c/(.\ r Co yn £ ��.Fi(. C V/)5 — E 1C %S1 /n G rt 54c 4;c i lcb►ti . P � � > 2 PAUL J. FORD & COMPANY PAGE PD._ OF STRUCTURAL ENGINEERS BY DATE 250 E. BROAD ST. SUITE 1500 PROJECT COLUMBUS, OH 43215 CLIENT PROD # S I_ ic s . _ievi i,V_412_, — '----- - XAS* - 1/ 1 1, I / .71 frit'l ..._. . ' '. 4 /,S A- /.. -71 •=: 5 r e--ilie 4e..-,:) ,.:p /e.. ✓1 n c , Y1— / &S S&eli,dn i 9n, i 2G9v i'k w g /l C.- c../1 S ii�ci/o, 1 r,$ vet k✓1 cd c �;A G> r\o -/e A4s ,le.e.✓v e.-&-P on t...) A C>z / • ci �� � '// fig /Zti / / iy15ir-vc_ /M ry� G.c=e 1.�� c. -ac hle - I ,5cr.a si e e-Vdgie 1, Gva /J Go 4K ✓ iN - "r I` cd1;0 �' Thy 6 " ( Gr p /yam <" -Iar r& iii 4 / he ,/ . � ( i5i/ wq'/ w < /,' ..b& c✓1 1 ze- d `T� 5 r f e.4-, ) re f w c 4, re/ .ro r"c_l n / M G 4/ i � ricspv / // w ;iI � � rw Q rye c ' /...) `� /A 6 rI rin p. a c� S p I /1 S .2.4.1; cs iN i ili 14 / ral c) yY1 3 98, � Z ® 7 d 54 /..,./ /6 oG ter, pc�e g c) ,i/ V � , 411j FO 8 O PAGE P3 OF STRU CTURAL ENGINEERS CMPANY BY DATE 250 E. BROAD ST. SUITE 1500 PROJECT r . , COLUMBUS, OH 43215 CLIENT PROJ # il) e 5 i ' /YI-. S itu _ 4, ,i /s Sv vrIi%1 S h, 4,, Sko,,?. 4 / , " i . A r- (\ i 7Z e�v(a / P/ )15 GS // -f - 5 /, -viii T� 1 e r , . '1 /7 .sue Gr4 e A e, /4G{- , - 6 ! - , Z cam _ Je ,s /4 e=<-)// s /4 /- a, P Gt)A T c- f) s .(4,e,,wq// f 14 -- o' 4.FF . - 3 / / ? , ZG7q, s ,1� . c. ic '' o�., A.),:, oPQ7ah </ 41 rc ddi. 5 Q r ` _ rr, =4 / /3 -- /, k S a+ic iS e4 vt1,� r on � ..� 1' U 9/ r' is G.®►a c-.4. 1/14e,,, si 6c 4..,J a e'cli / IVA 12./) 4gpi,'x 4 x // 414 / I R raG ../ - 1:17 / -- &. 4��,.z_ . / V i- C. c)1,1 o = I G�flSweal /v. l 56 l 1 .; l i f _ _ L 9 / f ` 1 4 - 1 / z ) = h _ `t ' e � s i ____,. °)1 I 4 e , r ke .,,.. _- `'- s �/� E C . . C C ewviliw . _ . .x: )( / % , l / / • E, z 4 /� ,a � 3 �� $ / Z o /4 1o S ec Pc e Pi �, 4- S � Ps P7 110>r A I1... fl, a A1.. s %5 . .•. P - • - Sid1161Wt 3W3155. 06. W220 L sl•19100. AMMO MI mu mc.vv.S..0 e 51.MIURY WAD 5. WL5111V11.5. ON MI6... 0.106 to 0 MY 1114-303-4110 ` : .,.y KM 14111 01.121 022.712 11•21.00 AT 11.011 e i a. " 5 + ti a... 4/772 o a I ,a c0 cu: swCSO..w °` 6,... � N1 • • I . ILi..O J e ▪ v , e 1111 J • • Z 3§ 0 _ 1111 Idlt�! • 41!I� _ _ Leo MUMS .� , 1 1 �,; - ,` i - , i ■ ^1 i o " 2 9 e 0 !Ann 0 . 1. ee� 1'1 ` 1 1 . . ` p .q, ■ gip, .Fl, LI 8 000 MU 4-- �' - -11 i 1111 - ._ a li ` : 6 " a �, �.o.. ^.a ' 1111 o 1111. t I "ii843 4 �+� y i TO 41112 �. � 0001 b1.110 ALMS, WW1 ��i Al1 ;fill , It N ! i {i I`��ti !;g0 I • dill .:.i .;tl • s�� � 1�11 !I Illlej i y �y hi, .� .iji ... o 11/0 1S egrZIE 017121V12 THESE DETAILS ARE • FOR REFERENCE ONLY r„ IL HANGBAR WALL - ELEVATION I I r::_.:. B 5 HANGBAR WALL - SECTION (7) .-.. rt on r once 122 1 �- 1.111 0x..0.0 FAT W r Ceg ! � M. .r [.^1T 2-41 AO O lio W 16 i 22500.2.41,241„71,S2 ra+m.a 61021 J=�tls • PM RIfND m F.W HW Y +W f-. W - F.W F. W a i it 3lr1 RSl 0 SECTION S — -- - - ` -- - - -- - 1 - - ..• :.. a ...,„.., . 014113 W 1 1. T :n 0 rl I... a. —i , . —•-■ WIN Saf 10 OM. ,� �� .. t .-uv n.mo WII 631@ 1 ,/30/x01 (MOW) 1 PLWALD A V. 1 0! ubw Oi000 Ia THESE DETAILS ARE RANI. bAH 1 an NALL ■133 7 WOO SOUS FOR REFERENCE ONLY WALL ODETAIL ....TYCO el "m .e DETAILS DIM= 01005■ HANGBAR BRACKET MOUNTING DTL.I "L,:;:IK HANGBAR WALL - PLAN DETAIL r * - A A1O.1 1 5r SMD[I&SxO[X .DCllnE DC MUD i ' .DDC[CI DIDD 3 SDNWDT ROAD IMIER•11. OH 33051 • W ua vun an ° a : ,- 11_/ ∎ii7 ...o ,l, — 17.11 • i . • 'I' \ ° . .e. , °a4 h ['4 F. 61,04 Y MOO MUD ,I , N 9 0 ` O n . L 1 i . �� Uwu F i n L < �a III vJ HA' COMM MI .i. ec b ri� Ma perm • • TO LOOM RAM 6.666 f6•86. ,,,,, ., ..-° w n1.'i �I .r [0RI ' .°r Gx. 3110 _ � . mi., : ` � ;D :"°'w...,' J I : C t ,..,... ,, 1 , , D. GI [ • • :� !!..G 19 il `,;, mom room To O. 0 . Al UV L : ; IW :.. ; mA a� r r • w- er�1 °^� llffllolllll -- I' I I % /LC ' 1667L•I 1 . CO win ° ai . FIXED SHELF FIXED SHEL [L O BALES AREA ONE O ^ BALES AREA TWO g FIXED SHELVES SALES AREA ONE - ELEVATION r;'.. ° H FIXED SHELVES - SECTION Y„ - E FIXED SHELVES SALES AREA TWO - ELEVATION j 1 , - ,.1 ° ,, 9a 1 1..., Ci w .OI 3 A TO .KF..i W Im <>m et, 1� N oc or FV( I.°, DDII., 0 4P W -➢-- •( \ - V L /,• ✓, ... 130 •074.10 ��� "DC OW) U. 7•111/ =AU. eI I! ! .7 pR ti I \ ' YY•l 00 D.ns.c ic'1 ... mna. VA II , Ow �� a C J �° J " ____„_1,1 UMW 1 1 ' 40.1 / I �l le, � g Gr: �° �w t W y , rum . cum [fr **id f:1:2‘.%''7:1'4 " MrANI.111.11.1M11..1.1110.1 l liri LI I 111111111111111111= II • 1111M1 ill V : 1 1-x1. ng 111=11•1■111111111iw.:! ., lip 4 1 IMMIPRIMUMY , I iiima . II I i " — 110 1 , iod 1 11111! mimmtm ialmm■ — VW srl0 .,.GG . . aG .ars,.. e.. C m I xJI ..... . ox >e D G. WA. ... q��p q / � �p • , o...Dl .. r. [L. . - Ii - �� cx[cx m DxD m Ma,.xa r.,w.... `J � °naidw M • ORM V UN DO Co FIXED e�G..,... moo Moo .x.na+� � . oe . a ET �- .. -� 0 ) DETAILS &AI or r ..w. Al tom 00 / 0311013 x3110[. FIXED SHELF FRAMING DETAIL !G FIXED SHELVES - PLAN DTL. D FIXED SHELVES - PLAN DETAIL r; ^D. A A10.2 IT 11 SHf.mloar MONISTS. 01C Cll. < ....mca ..o.mr NM S. L.YYOT <o.° � �..,m Km[MIt. OH U0< ' miniu m um 0 a DM S 0 0 0140477 0• ^+ / • ...GI. OL ,.[.a Mali a WY 07417.0. DM TM V OMIT 011011710 , ° __ - - Te 0� ^ ■ avow. � V_ • 1 W, .fu • .y ..- . • i '. •0 ri �_ \'.. - ..--.1-11.71 .. - ... _ .- .:..:„ ti'!..7, ' -:' ,...:_, 0 Tan TM A. Dorm a W. I. 11731 I .( O _ F i g ui lo .44- 0.4..�x • = .I W.. < ° .�... $ of o L 0.4 n120.071.1 !(i1 ,, , — 0 '11 6 ' CABINET -TRIM PIECE DETAIL ={M p Q F e r.000.0 .nr...aT ! L O I . _ T � � ..� �.r� I la ilL i! =PM, ,leaa MS..... � T ••f ! 6311 1 140 .a .. . am TO m I I I ®I� 1(< P 1 1 ■ y ( . r . . I , ;, rmm - --- --- IIIth oho 10� 1 .r. r A •••-.4.1 ® o I ea o = se MI e,m ao a ga P. CABINET - JAMB DETAIL ,,„',' L CABINET - SECTION I r H CABINET - ELEVATION r, B yy S. W q 071 TO T ,... 01301 OF 4 .6. �� .00 Lag MA. <.dl 4..x. 0000 3 wa . nr... °D' 0-0 .e .a F 4 a .14 A cr .. ..V, 1• 1 71 erg VI (00101001 IMMO - 1101.• TO 4:1010C1101 li I I J ` r' ? r+ Q nvrsmxa I tom `jj �' C.ra.. I••.4 1,—.U-4 ......rmm.,. Tan MO DATE m it /so /m�1 1171 m: 1:1 nom am m MI r OHM ara �v CABINET (I` DETAILS a.. , « MAIM IONOfl CABINET - HEAD SECTION 1' , — K CABINET - BASE TRIM SECTION ' 1, G CABINET - PLAN DETAIL I Ln * A A10.3 s1NL•aan ARCRIIICLl. NC. WAD t DIYWItlV YGIILCI 3130 3 SUMWIII .GAD ftvn ,~ o luw t '<�ilo Mml) / / / III-333-630 <lN 0 K... • C.< !10110 ,�; A•+u.m.c. A • 1 I -a. o ▪ D6 •I m ' OWLET . ' • I I V 4 4) + D.A rs SOU ! � P • �' Ia..a. mR.T C nK.. ^ J ' ' me u°io K 0° ... . . YWCA MIL 11 '--- f 1 � --- , � J-_ --- / M. n,r. on... In I nl-. ,I.r•r.. lt.r. c • m W.. KM MO Rim - ` y �O�i • I l.somsrw w•1A i •177 . � ,' •M•• ' uu .rl o : a• ` , 0 ' T. .. R m wI ro•KM, .=, / °W •11 720: w <T - -- i _ - -- I CK ANCHOR - NON FOIE -RATED OFFI ECTION TRACK ImAa[! O°E ° .• • ' .A. 0 • _ c n a t ' 1..•., la SIB MVO 6•41 10 RAW 0 1 24/0 w o ' v�. � w s.•. N, D 4 MOO, TM ,. ,. a ". "° / / / //% 20 20 W111i► 1 ���� .D ; „ Ill LU / %% / �// C7 it JI N irs1 L a TOP TRACK SPLICE 1 - 7 ' M j DETAIL AT DEFLECTION PLATE IZ' J NON -RATED PARTITION (NON - SALES) l'•.'...: °- -HR. RATED PARTITION - U.L. #U465 f..'uA•'°T-0 —. � R; MP _ , A li I illiil � l...m 1 d oe !,; ., �~: R l 0 r.� I o CLOT DOD IDZ• Me. ,,, .. .,. � •,e w <1 ® n 2020. tl, ":! hill RUA= EXTERIOfl sou 11613® Walla= 1LIII jIII' 3 1 I f 3; �II ! ' 1 1I� • m Iwiao.l �- m,,.•,.,e l,.... Lill i • 7.1- 3� 11_ .1 - "M�d ..d n.---- '"° r I!�ill I l j p 1 31 ,1 „ L 1 Mill HMI i _ • 4 tee. ; ��_ - o - CO � ,• �.� r m e,M <,.e,e•,oe 2020• .,a..en.,•.•, ' IMO .i.,l.�e M ALI s*FRE ens :Art= gAr Lt + Il i A w aa .r ° .1AA,v .. 11}} ATTACHED TO TOP OF :I "' m UL I H WOOD TO V.C.T. FULL I E EXIS TING SALES/ NON -SALES WALL ��' 5 ;VINYL TO SERVICE DOOR - THRESHOLD F pp Imo. I] 1 ILI � •a. ,p 1. a <DE•. . , a o. a °' P o G NOIR TO 21•000.•063 ��� ::=:., TO . • "° :d Ana'° m o =.70. .. .r.•.,,a< a —I = . G 0.61Li t loll, •m r..,:. b,•fa.1 �� I K •� 2020 1 / c W =a. '•'',:4:4 alt a0•I e,.0 °'R°” a" Ir.olD •.<.< I •�'° kill y r.1..0 .c.. I n ®2020. •11.0. ..raw. 2020 Q ,® _ v - w !r I -- - - ' s.0 , 9 3 8 OR �\ .....vs 20,20 o•. r ,2020.... 1 w <,• m 00,20 I Q —3LVlmis, .•rI GIAf Q4L BRACING 012x4* • rtl , �� *1 •, W. e.tl 11•11••<,aa� rR.•I•. l,utll a Rte . St 33* L 0*3CC IL•M.]t 1 WAIN e.. . - tL9 � ® 'mom I K r r. �loi'u�•1 '" ".... 20 GA 13 . __ .- Bilallifilit N4110 y mIYY.. lIW m .GI W. II I II III 2020•• I — ��� \ ' . 'AL air I . Tlm,✓um I 20 fa 1_v — //1 I , ,I liL1I1 Lll� ►- �a !! ��� .w•...va.mf..,.v. / `- v.n � 1 • « O • S� rwu - - 1 _ _< r•n r � 2020«• .. u. n,• ,..a .n, DAN 0x10: 11/30/301 ylpy A - 1 31.113t e - J 13.1.. - _ v c / / rums.. nw f•••0172. 'D/ - ro rw•rt LS }.1. 1011.01 _ _ I I 1 V •• Kan AT fwn loos a v. Dawn n: Li :re¢AaDUav MOM ro 1wne w.1 .x201 As n,.1 I 1..a I.... ram •I. . 11 K,,•• m w nom Tve /iar // � MGM n. MI l .,.M..a,l..,.•..6•.. •ul 6i••" ., .l.m•I r°°'"` M. 31111 .u„1. , /� / A V* PARTITION 8 FLOORING DETAILS SEISMIC DESIGN CATEGORIES D. E & F ° A' IarallM TO° .<In e.ul. 1241 .01111 MOW 131 TYPICAL DIAGONAL BRACING lwateimel K MAT TO WOOD /CERAMIC TILE ;;n•, MALL FLOOR TO WOOD /CERAMIC TILE " ';;; A Al2.1 I D NON - RATED PARTITION , 2001 North American Specification w/2004 Supplement ASD DATE: 1/24/2012 P 5 p� SECTION DESIGNATION: 6005162 -33 Single INPUT PROPERTIES: Web Height = 6.000 in Steel Thickness = 0.0346 in Top Flange = 1.625 in Inside Corner Radius = 0.0765 in Bottom Flange = 1.625 in Yield Stress, Fy = 33.0 ksi Stiffening Lip = 0.500 in Fy With Cold -Work, Fya = 33.0 ksi Punchout Width = 1.500 in Punchout Length = 4.000 in Wall Solver Design Data - Simple Span Wall Height 14.00 ft Deflection Limit U120 Lateral Pressure 7.00 psf Axial Load 196 lb Stud Spacing 12.0 in Check Flexure Load Multiplier for Flexural Strength = 1.00 Flexural Bracing: KyLy = 48.0 in Cb =1.00 Me = 3336 Ft -Lb My = 1643 Ft -Lb 0.56 My < Me < 2.78 My Mc = 1576 Ft -Lb Sc /Sf = 0.97 Mmax = 172 Ft -Lb <= Ma = 918 Ft -Lb Check Deflection Deflection Limit: U120 Load Multiplier for Deflection = 1.00 Maximum Deflection = 0.1 14 in Deflection Ratio = U1468 Check Shear Vmax = 49 lb (Including Flexural Load Multiplier) Shear capacity not reduced for punchouts near ends of member Va = 638 lb >= Vmax Check Web Crippling Rmax = 49 lb (Including Flexural Load Multiplier) Web Crippling capacity not reduced for punchouts near ends of member End Bearing Length = 1.00 in Ra = 153 lb >= Rmax, stiffeners not required Check Axial Interactions P = 196 lb (Including Axial Load Multiplier) Axial Loads Multiplied by 1.00 for Interaction Checks Max unbraced length, KyLy and KtLt = 48.0 in Max KL/r = 83 Allowable Pure Axial Load, Pa = 2406 lb : Axial Load Ratio, P /Pa = 0.081 P /Pa < =0.15 Therefore, Check Equation C5.2.1 -3 Equation C5.2.1 -3 = 0.268 < =1.0 2001 North American Specification w /2004 Supplement ASD O DATE: 1/24/2012 • P P7 SECTION DESIGNATION: 362S162-33 Single INPUT PROPERTIES: Web Height = 3.625 in Steel Thickness = 0.0346 in Top Flange = 1.625 in Inside Corner Radius = 0.0765 in Bottom Flange = 1.625 in Yield Stress, Fy = 33.0 ksi Stiffening Lip = 0.500 in Fy With Cold -Work, Fya = 33.0 ksi Punchout Width = 1.500 in Punchout Length = 4.000 in Wall Solver Design Data - Simple Span Wall Height 14.00 ft Deflection Limit U120 Lateral Pressure 7.00 psf Axial Load 196 lb Stud Spacing 12.0 in Check Flexure Load Multiplier for Flexural Strength = 1.00 Flexural Bracing: KyLy = 48.0 in Cb = 1.00 Me = 1824 Ft -Lb My = 836 Ft -Lb 0.56 My < Me < 2.78 My Mc = 811 Ft -Lb Sc /Sf = 0.89 Mmax = 172 Ft -Lb <= Ma = 431 Ft -Lb Check Deflection Deflection Limit: L/120 Load Multiplier for Deflection = 1.00 Maximum Deflection = 0.372 in Deflection Ratio = L/451 - Check Shear Vmax = 49 lb (Including Flexural Load Multiplier) Shear capacity not reduced for punchouts near ends of member Va = 1024 lb >= Vmax Check Web Crippling Rmax = 49 lb (Including Flexural Load Multiplier) Web Crippling capacity not reduced for punchouts near ends of member End Bearing Length = 1.00 in Ra = 165 lb >= Rmax, stiffeners not required Check Axial Interactions P = 196 lb (Including Axial Load Multiplier) Axial Loads Multiplied by 1.00 for Interaction Checks Max unbraced length, KyLy and KtLt = 48.0 in Max KUr = 116 Allowable Pure Axial Load, Pa = 1519 lb : Axial Load Ratio, P /Pa = 0.129 P /Pa < =0.15 Therefore, Check Equation C5.2.1 -3 Equation C5.2.1 -3 = 0.527 < =1.0 PAUL J. FORD & COMPANY PAGE r �� OF STRUCTURAL ENGINEERS BY DATE 250 E. BROAD ST. SUITE 1500 PROJECT COLUMBUS, OH 43215 CLIENT PRO.J # ,8 G 5 i, V ti / S. 7 o,, s G P is <;i Sea- q�� _ Pal c' � P ��,g f .� r��.,n . �v ,� {ice P r i � � 4S - Fro,� P 3 , �/1 xis v, �,s / cp-r eminii>, lcvc>.") -- z?-2/1,.., S for & . i-c),/1 - rroni P 6s , iv], s > 4./ M vy,-, 5&/. / /d se--, ¢) ci, �1.13. / 6r"9.4.C. = ISi Gc. 4 /r Iii4 lUsc., = L7? (Ls , SQ7 Zecb /Is . ICJ iS av1 / D r ' ;, .e._-f, r �.c 5 aC��1 G1`e✓� I iov-i,., � car- ce) . n c- ` ,6 is <. 4 d. e,i c-6. 4 a ►1 /./154 5 .a, P,e.s Pi - P17 .Po1-- ci rN s =17 SJ� - �-P r\ei`7 1 Ne' Ci /i cy i . . k • • P PI/ • • 2'x2'x0-6' LG, • 12 GA FRAMING CLIP W/(3) - #12 SCREWS EA LEG CENTER -- CONTINUOUS TRACK DIAGONAL OVER (GAGE TO MATCH VERTICAL STUD _ WALL STUD, EXCEPT USE 20 GAGE MIN AT DIAGONAL, TRACK) ATTACH TRACK TO WALL STUD w/(2) -#8 SCREWS EACH SIDE. WALLS WHERE afau DIAGONAL IS ATTACHED TO TOP OF CONNECT TO EXISTING ` WALL STRUCTURE PER DETAIL E/503.1 o� O, o 9 NOTE: FOR DOUBLE STUD DIAGONALS, 'SECOND' STUD SHALL END AS CLOSE AS POSSIBLE TO END CONNECTION, TOP 4 BOTTOM. 1‘ CONTINUOUS TRACK (GAGE TO MATCH WALL STUD, EXCEPT USE 20 GAGE MIN TRACK) VIEWS A-A` + 13-B, t C -C- I • `II CONNECT TRACK TO VERT STUDS • W/(I) -#8 SCREW IN EACH FLANGE OF EACH. STUD, EXCEPT. INSTALL (4) - #12 SCREW (2) -#8 SCREWS IN EACH FLANGE AT VERT 5TUD5 WITH DIAGONALS • WALL OR STOREFRONT STUD. DIAGONAL BRACING OPTIONS • 20 GA. DIAGONAL BRACE OPTIONS: DIAGONAL LENGTH- DIAGONAL LENGTH- DIAGONAL LENGTH- J8' -I' TO 26' -0' * UP TO 10' -0 10' -I' TO 18' -0' DBL 3 5/8', 20 GA. STUDS WITH • SINGLE 3 5/8', DBL 3 5/8 ", 20 GA. STUDS 1 5/8' WIDE FLANGES AND 3 5/8', 20 GA. DIAGONAL WITH 1 5/8' WIDE FLANGES 18 GA. DEEP LEG TRACKS (2' FLANGE) 5/8 "1 1 5/8 ° � t I 2 1/4" #8 SCREWS @ #8 SCREWS 12 ° dc I2'c/c • VIEW A -A VIEW B -B VIEW C -G SPACING OF DIAGONAL BRACING *CONTACT STRUCTURAL ENGINEER FOR LENGTHS INTERIOR PARTITIONS - 48' O.C. MAX LONGER THAN 26' -0'. STOREFRONT FRAMING - 48' O.C. MAX • SEISMIC DESIGN CATEGORIES D, E & F • TYPICAL DIAGONAL BRACING I 1 O 1 A11B OODS031A11BRAC K T1), •1) 1 t ;/ /-S c /-.So toGxdidel , A/501 CFS Version 6.0.4 Pa. - 1 Section: (1) 3.625 in 20ga stud.sct Paul J Ford and Company Channel 3.625x2x0.625- 20Gage Paul J Ford and Company P Piz_ Rev. Date: 1/24/2012 8:08:57 AM By: Paul J Ford and Company • Printed: 1/24/2012 8:09:51 AM • yD Ohs G. (Ice. k. Section Inputs • CFS Version 6.0.4 P age -2 Section: (1) 3.625 in 20ga stud.sct Paul J Ford and Company /- °` Channel 3.625x2x0.625- 20Gage Paul J Ford and Company P P I Rev. Date: 1/24/2012 8:08:57 AM By: Paul J Ford and Company • Printed: 1/24/2012 8:09:51 AM Material: A570 Grade 33 Apply strength increase from cold work of forming. Modulus of Elasticity, E 29500 ksi Yield Strength, Fy 33 ksi Tensile Strength, Fu 52 ksi Warping Constant Override, Cw 0 in "6 Torsion Constant Override, J 0 in • Stiffened Channel, Thickness 0.0346 in (20 Gage) Placement of Part from Origin: X to center of gravity . 0 in Y to center of gravity 0 in Outside dimensions, Open shape - Length Angle Radius Web k Hole Size Distance (in) (deg) (in) Coef. (in) (in) • 1 0.5000 270.000 0.076400 None 0.000 0.0000 0.2500 2 1.6250 180.000 0.076400. Single 0.000 0.0000 0.8125 3 3.6250 90.000 0.076400 Single 0.000 1.5000 1.8125 4 1.6250 0.000 0.076400 Single 0.000 0.0000 0.8125 5 0.5000 - 90.000 0.076400 None 0.000 0.0000 0.2833 Member Check - 2007 North American Specification - US (ASD) • Material Type: A570 Grade 33, Fy =33 ksi Design Parameters: • Lx 10.0000 ft Ly 10.0000 ft Lt 10.0000 ft Kx 1.0000 'Ky 1.0000 Kt 1.0000 Cbx 1.0000 Cby 1.0000 ex - 0.500000 in Cmx 1.0000 Cmy 1.0000 ey 0.000000 in - Braced Flange: None , Red., Factor, R: 0 Stiffness, k4: 0 k Loads: : P Mx • . Vy • • • My Vx • ' (k) •(k -in) (k) (k -in) _ (k), • ,'Entered 0.4500 0.0000 0.0000 0.0000 0.0000 Applied 0.4500 0.0000 0.0000 - 0.2250 0.0000 Strength 0.6064 2.2342 0.5213 1.5841 1.2015 Effective section properties at applied loads: Ae 0.26212 in Ixe 0.55125 in "4 Iye 0.09936 in Sxe(t) 0.30414 in "3 Sye(1) 0.18504 in "3 Sxe(b) 0.30414 in "3 Sye(r) 0.09132 in "3 Interaction Equations • NAS Eq. 05.2.1 -1 (P, Mx, My) 0.742 + 0.000 + 0.238 = 0.980 <= 1.0 NAS Eq. C5.2.1 -2 (P, Mx, My) 0.142 + 0.000 + 0.142 = 0.284 <= 1.0 ' NAS Eq. C3.3.1 -1 (Mx, Vy)- Sgrt(0.000 + 0.000)= 0.000 <= 1.0 NAS Eq. C3.3.1 -1 (My, Vx) Sgrt(0.020 + 0.000)= 0.142 <= 1.0 �/L��s � / M4ra iiS. G t . ' CFS Version 6.0.4 Page 1 Section: (2) 3.625IN x 1.625 FLANGE STUD 20ga (33 mil) (I- shaped).sct Paul J Ford and Company Double Channel 3.625x1.625x1.625 -20 Gage Paul J Ford and Company Piz/- Rev. Date: 10/14/2010 11:11:42 AM By: Paul J Ford And Company Printed: 1/20/2012 2:50:32 PM I A clokiAL r�.e. r Suction Inputs • CFS Version 6.0.4 Page 2 Section: (2) 3.625IN x 1.625 FLANGE STUD 20ga (33 mil) (l- shaped).sct Paul J Ford and Company Double Channel 3.625x1.625x1.625 -20 Gage Paul J Ford and Company Rev. Date: 10/14/2010 11:11:42 AM By: Paul J Ford And Company Printed: 1/20/2012 2:50:32 PM • Material: A653 SS Grade 33 No strength increase from cold work of forming. Modulus of Elasticity, E 29500 ksi Yield Strength, Fy 33 ksi Tensile Strength, Fu 45 ksi Warping Constant Override, Cw 0 in Torsion Constant Override, J 0 in Connector Spacing 12 in • Right Channel, Thickness 0.0346 in (20 Gage) Placement of Part-from Origin: X to left edge 0 in Y to center of gravity 0 in Outside dimensions, Open shape Length Angle Radius Web k Hole Size Distance (in) (deg) (in) Coef. (in) (in) 1 0.6250 270.000 0.093750 None 0.000 0.0000 . 0.3125 2 1.6250 180.000 0.093750 Single 0.000 0.0000 0.8125 3 3.6250 90.000 0.093750 Double 0.000 1.5000 1.8125 4 1.6250 0.000 0.093750 Single 0.000 0.0000 0.8125 5 0.6250 - 90.000 0.093750 None 0.000 0.0000 0.3125 Left Channel, Thickness 0.0346 in (20 Gage) Placement of Part from Origin: X to right edge 0 in Y to center of gravity 0 in Outside dimensions, Open shape Length Angle . Radius Web k Hole Size Distance (in) (deg) (in) - Coef. (in) (in) 1 0.6250 4 - 90.000 0.093750 None 0.000 0.0000 0.3125 2 1.6250 0.000 0.093750 Single 0.000 0.0000 0.8125 3 3.6250 90.000 0.093750 Double 0.000 1.5000 1.8125 4 1.6250 180.000 0.093750 Single 0.000 0.0000 0.8125 5 0.6250 270.000 0.093750 None 0.000 0.0000 0.3125 • • • • CFS Version 6.0.4 • • Page 3 Section: (2) 3.625IN x 1.625 FLANGE STUD 20ga (33 mil) (I- shaped).sct Paul J Ford and - - Company Double Channel 3.625x1.625x1.625 -20 Gage Paul J Ford and Company / ,n / • Rev. Date: 10/14/2010 11 :11 :42 AM J C� By: Paul J Ford And Company Printed: 1/20/2012 2:50:32 PM Member Check - 2007 North American Specification - US (ASD) Material Type: A653 SS Grade 33, Fy =33 ksi Design Parameters: Lx 18.000 ft Ly 18.000 ft Lt 18.000 ft - Kx 1.0000 Ky 1.0000 Kt 1.0000 Cbx 1.0000 Cby 1.0000 ex 0.0000 in Cmx 1.0000 Cmy 1.0000 ey 0.0000 in Braced Flange: None Red. Factor, R: 0 Stiffness, k4: 0 k Loads: P Mx • Vy My Vx • (k) (k -in) (k) (k -in) (k) Entered ' 0.5000 0.2100 0.0290 0.0000 0.0000 Applied 0.5000 0.2100 0.0290 0.0000 0.0000 Strength 0.9438 2.4297 - 1.0235 3.5904 2.3435 Effective section properties at applied loads: Ae 0.53948 in'2 Ixe 1.1227 in Iye 0.3918 in Sxe(t) 0.61940 - in A 3 Sye(1) 0.24.112 in Sxe(b) 0.61940 in Sye(r) 0.24112 in Interaction Equations NAS Eq. C5.2.1 -1 (P, Mx, My) 0.530 + 0.099 + 0.000 = 0.629 <= 1.0 NAS Eq. C5.2.1 -2 (P, Mx, My) 0.076 + 0.086 + 0.000 = 0.163 <= 1.0 NAS Eq. C3.3.1 -1 (Mx, Vy) Sqrt(0.000 + 0.001)= 0.034 <= 1.0 NAS Eq. C3.3.1 -1 (My, Vx) Sqrt(0.000 + 0.000)= 0.000. < = 1.0 KL /r exceeds 200. G in .G // � /5 l69.6 '� g. • • • • • • • CFS Version 6.0.4 Page 1 Section: (2) 3.625IN x 1.625IN STUD 20GA with (2) 3.625IN x 1.25IN Track 20GA (double box).sct Paul J Ford and Company Dbl Box 3.625- 20 gax1.625x0.5 -20 ga Paul J Ford and Company • Rev. Date: 1/24/2012 10:25:12 AM P r By: Paul J Ford and Company J Printed: 1/24/2012 10:26:07 AM • Sec` )n Inputs CFS Version 6.0.4 Page 2 Section: (2) 3.625IN x 1.625IN STUD 20GA with (2) 3.625IN x 1.251N Track 20GA (double box).sct Paul J Ford and Company ' DbI Box 3.625- 20 gax1.625x0.5 -20 ga Paul J Ford and Company \, _ . "7 - ` r Rev. Date: 1/24/2012 10:25:12 AM P� Pi O - By: Paul J Ford and Company Printed: 1/24/2012 10:26:07 AM Material: A570 Grade 33 No strength increase from cold work of forming. Modulus of Elasticity, E 29500 ksi Yield Strength, Fy 33 ksi Tensile Strength, Fu 52 ksi Warping Constant Override, Cw 0.005127 in'6 Torsion Constant Override, J 1.75 in Connector Spacing 0 in Left Channel, Thickness 0.0346 in (20 Gage) Placement of Part from Origin: X to right edge 1.63 in Y to center of gravity 0 in Outside dimensions, Open shape Length Angle Radius Web k Hole Size Distance (in) (deg) (in) Coef. (in) (in) 1 0.5000 270.000 0.076400 None 0.000 0.0000 0.2500 2 1.6250 180.000 0.076400 Single 0.000 0.5000 0.8125 3 3.6250 90.000 0.076400 Single 0.000 0.0000 1.8125 4 1.6250 .0.000 0.076400 Single 0.000 0.5000 0.8125 5 0.5000 - 90.000 0.076400 None 0.000 0.0000 0.2500 Right Channel, Thickness 0.0346 in (20 Gage) Placement of Part from Origin: X to left edge 0.42 in Y to center of gravity 0 in Outside dimensions, Open shape Length Angle Radius Web k Hole Size Distance (in) • (deg) (in) Coef. (in) (in) 1 1.2500 0.000 0.076400 Single 0.000 0.5000 0.6250 2 3.7100 90.000 0.076400 Single 0.000 0.0000 1.8550 3 1.2500 180.000 0.076400 Single 0.000 0.5000 0.6250 Left track, Thickness 0.0346 in (20 Gage) .r • • Placement of Part from Origin: X to center of gravity -1.4 in Y to center of gravity 0 in Outside dimensions, Open shape Length Angle Radius Web k Hole Size Distance (in) (deg) (in) Coef. (in) (in) 1 1.2500 180.000 0.076400 Single 0.000 0.5000 0.6250 2 3.7100 90.000 0.076400 Single 0.000 0.0000 1.8550 3 1.2500 0.000 0.076400 Single 0.000 0.5000 0.6250 LEFT STUD, Thickness 0.0346 in (20 Gage) Placement of Part from Origin: X to center of gravity -0.54 in Y to center of gravity 0 in Outside dimensions, Open shape Length Angle Radius Web k Hole Size Distance (in) (deg) (in) Coef. (in) (in) 1 0.5000 270.000 0.076400 None 0.000 0.0000 0.2500 2 1.6250 0.000 0.076400 Single 0.000 0.5000 0.8125 3 3.6250 90.000 0.076400 Single 0.000 0.0000 1.8125 4 1.6250 180.000 0.076400 Single 0.000 0.5000 0.8125 5 0.5000 - 90.000 0.076400 None 0.000 0.0000 0.2:•00 CFS Version 6.0.4 Page 3 Section: (2) 3.625IN x 1.625IN STUD 20GA with (2) 3.625IN x 1.25IN Track 20GA (double box).sct Paul J Ford and Company • • Dbl Box 3.625- 20 gax1.625x0.5 -20 ga Paul J Ford and Company Rev. Date: 1/24/2012 10:25:12 AM Po P/' . By: Paul J Ford and Company `-z Printed: 1/24/2012 10:26:07 AM Member Check - 2007 North American Specification - US (ASD) Material Type: A570 Grade 33, Fy =33 ksi Design Parameters: Lx 26.000 ft Ly 26.000 ft Lt 26.000 ft Kx 1.0000 Ky 1.0000 Kt 1.0000 Cbx 1.0000 Cby 1.0000 ex 0.0000 in Cmx 1.0000 Cmy 1.0000 ey 0.0000 in Braced Flange: None Red. Factor, R: 0 Stiffness, k4: 0 k Loads: P Mx Vy My Vx (k) (k -in) (k) (k -in) (k) Entered 0.5000 0.410 0.0600 0.000 0.0000 Applied 0.5000 0.410 0.0600 0.000 0.0000 Strength 1.5360 14.192 4.0444 9.856 4.3537 Effective section properties at applied loads: Ae 0.94362 in Ixe 1.9459 in Iye 1.2352 in Sxe(t) 1.0490 in Sye(1) 0.7400 in Sxe(b) 1.0490 in Sye(r) 0.7401 in Interaction Equations NAS Eq. C5.2.1 -1 (P, Mx, My) 0.326 + 0.034 + 0.000 = 0.360 <= 1.0 NAS Eq. C5.2.1 -2 (P, Mx, My) 0.054 + 0.029 + 0.000 = 0.083 <= 1.0 NAS Eq. C3.3.1 -1 (Mx, Vy) Sgrt(0.001 + 0.000)= 0.032 <= 1.0 NAS Eq. C3.3.1 -1 (My, Vx) Sqrt(0.000 + 0.000)= 0.000 <= 1.0 KL /r exceeds 200. B r c.._ 6 G Tcte..",-/ i s cz; i i q4 L _ Z w iji PAUL J. FORD & COMPANY PAGE OF STRUCTURAL ENGINEERS BY DATE 250 E. BROAD ST. SUITE 1500 PROJECT COLUMBUS, OH 43215 CLIENT PROJ # S i oR F2,oMT tgSIcy 1 P AUL J. FORD AND COMPANY Page s/ Of STRUCTURAL ENGINEERS By .74.4 Date /A-ph . www.pjfweb.com Project L i4i , t I " 6- /sj�i/ ... Client 9Theru, Comm. No. k ia,11-'ty ie Ck 'a # i `-, /6 f_3e0 d R 7e; e – '..5 !-- 41 4...1 be.. d , --P e rcaurq- cake) Vie.- 513 w 4 Gip 4.10 1 .041 5 zkt.f s :af4 )f/') 6-14"t",•-v (tr 4.2.) r.- tia„,_, fa C i?. e 4;;. ... Val it- ., ,10, /4 4p. / 9.4f /1" P e It-i... v... ,1%. 1 e.,A .-y ax: C \ ,„, riA v de v 4 ‘, ti 4....) ::- ge t \f > / �� `L Qv //� — op 1 & 4 I C '',.,.: ., v o 1 r9 ;r3 p- tch.I. ,.., ';` 6e, " D r a CrA - — 'C✓l+ �t 4 .art... . _ S 4. G PG S7 °e 2 ( (Lvet5-e/./4-41/e_) 'roc' �60i if- U �� '44.1c S�-D fl, L m 1,4% ,pq R - -Ceez Pier r • SL CFS Version 6.0.4 Page 1 Section: (2) 8IN x 1.625IN Stud 18GA with (2) 3.5IN x 1.25IN Track HEADER.sct Paul J Ford and Company Paul J Ford and Company • Rev. Date: 11/10/2010 9:39:49 AM By: Paul J Ford And Company Printed: 1/20/2012 1:45:12 PM • • • • • Section Inputs • ••. S3 CFS Version. 6.0.4 . Page 2 Section: (2) 81N x 1.6251N Stud 18GA with (2) 3.51N x 1.251N Track HEADER.sct Paul J Ford and ' Company Paul J Ford and Company • • Rev. Date: 11/10/2010 9:39:49 AM - By: Paul J Ford And Company , ' Printed: 1/20/2012 1:45:12 PM , Material: A653 SS Grade 33 No strength increase from cold work of forming. Modulus of Elasticity, E 29500 ksi Yield Strength, Fy 33 ksi Tensile Strength, Fu 45 ksi ' Warping Constant Override, Cw 0 in ^ 6 ' Torsion Constant Override, J 0 in Connector Spacing 0 in Left Channel, Thickness 0.0451 in (18 Gage) Placement of Part from Origin: X to right edge 0 in ' Y to center of gravity 0 in Outside dimensions, Open shape Length Angle Radius Web k Hole Size Distance (in) (deg) (in) Coef. (in) (in) 1 0.5000 270.000 0.071200 None 0.000 0.0000 0.2500 2 1.6250 180.000 0.071200 Single 0.000 0.0000 0.8125 3 8.0000 90.000 0.071200 Single 0.000 0.2500 4.0000 4 1.6250 0.000 0.071200 Single 0.000 0.0000 0.8125 5 0.5000 - 90.000 0.071200 None 0.000 0.0000 0.2500 . Right Channel, Thickness 0.0451 in (18 Gage) Placement of Part from Origin: X to left edge 0 in Y to center of gravity 0 in Outside dimensions, Open shape Length Angle Radius Web k Hole Size Distance (in) • (deg) (in) Coef. (in) (in) 1 0.5000 - 90.000 0.071200 None 0.000 0.0000 0.2500 ,2 1.6250 0.000 0.071200 Single 0.000 0.0000 0.8125 ' 3 . 8.0000 90.000 0.071200 Single 0.000 0.2500 4.0000 4 1.6250 180.000 0.071200 - Single 0.000 0.0000 0.8125 5 -0.5000 270.000 0.071200 None' 0.000 0.0000 0.2500 Top Track, Thickness 0.0451 in (18 Gage) , Placement of Part from Origin: X to left edge -1.67 in • Y to center of gravity 3.78 in Outside dimensions, Open shape • Length Angle Radius Web k Hole Size Distance , (in) (deg) (in) Coef. (in) (in) . 1 1.2500 90.000 0.071200 None 0.000 0.2500 0.6250 . 2 3.3500 0.000 0.071200 None 0.000 0.0000 1.6750 3 1.2500 - 90.000 0.071200 None 0.000 0.2500 0.6250 ' Bottom Track, Thickness 0.0451 in (18 Gage) - Placement of Part from Origin: X to center of gravity 0 in Y to center of gravity . -3.78 in • Outside dimensions, Open shape . . Length Angle Radius Web k Hole Size Distance • (in) (deg) (in) Coef. (in) (in) 1 1.2500 - 90.000 0.071200 None 0.000 0.2500 0.6250 2 3.3500 0.000 0.071200 None 0.000 0.0000 1.6750 3, 1.2500 90.000 0.071200 None 0.000 0.2500 0.6250 . cc CFS Version 6.0.4 Page 3 Section: (2) 8IN x 1.625IN Stud 18GA with (2) 3.5IN x 1.25IN Track HEADER.sct Paul J Ford and Company Paul J Ford and Company • Rev. Date: 11/10/2010 9:39:49 AM By: Paul J Ford And Company Printed: 1/20/2012 1:45:12 PM Member Check - 2007 North American Specification - US (ASD) Material Type: A653 SS Grade 33, Fy =33 ksi Design Parameters: Lx 14.000 ft Ly 14.000 ft Lt 4.000 ft Kx 1.0000 Ky 1.0000 Kt 1.0000 Cbx 1.0000 Cby 1.0000 ex 0.0000 in Cmx 1.0000 Cmy 1.0000 ey 0.0000 in Braced Flange: None Red. Factor, R: 0 Stiffness, k4: 0 k Loads: P Mx Vy My Vx (k) (k -in) (k) (k - in) (k) Entered 0.0000 23.800 0.5670 0.000 0.0000 Applied 0.0000 23.800 0.5670 0.000 0.0000 Strength 8.6102 54.115 2.1019 16.726 3.1085 Effective section properties at applied loads: • Ae 1.58644 in ^ 2 Ixe 16.662 in"4 Iye 2.927 in Sxe(t) 4.0959 in Sye(1) 1.7467 in ^ 3 Sxe(b) 4.0959 in Sye(r) 1.7432 in Interaction Equations NAS Eq. C5.2.1 -1 (P, Mx, My) 0.000 + 0.440 + 0.000 = 0.440 <= 1.0 NAS Eq. C5.2.1 -2 (P, Mx, My) 0.000 + 0.440 + 0.000 = 0.440 <= 1.0 NAS Eq. C3.3.1 -1 (Mx, Vy) Sgrt(0.142 + 0.073)= 0.464 <= 1.0 V NAS Eq. C3.3.1 -1 (My, Vx) Sqrt(0.000 + 0.000)= 0.000 <= 1.0 k - 4, r . 7 6, 4 PAUL J. FORD AND COMPANY Page S Of S T R U C T U R A L E N G I N E E R S By Ita Date 03/h �. www.pjfweb.com Projectl;,.:1 -„0 Oda 4.1. Client 5 Se4Peap Comm. No. .aq��eV .t.)3 S 'V/ Vi 4-it, k .e q q p EA`, ?. +. T"3 73 �' 4 ,1 4a ViNds U I ,°? ` (.34, i ac s• �+ 4q - P' . Z ?9 a » °A) F u .� ` t "+ �/ • i . • h 7 Sew Fars' SC- g ik 5,4 ve -k :,/t s,f.s f 0, 5C,7 1 3 a6 0,4;;-2y = (Grcl1 3 ee.•,)% 11- » g(- C l\hlk t c, IV 0 -10 � r ,�. � (z) L /1 4 0372 V • GIsge-`k �J {c4�..c O p rwre..G c.T .S im(Z,'I roe`T' 1 (L.= 2 �/y -) (�zo +� J�► X1 7 - t IL I t `9,—r (n- *g 4•vrt £ errc,..s •. Jr..) (TA v . I� ) l - z +Z \to \TA ✓ S P� P i o£ �® /lam ��� P.Q e of c a n c)K CFS Version 6.0.4 Page 1 Section: (2) 3.6251N x 1.6251N STUD 20GA with (2) 3.6251N x 1.251N Track 20GA.sct Paul J Ford and Company Paul J Ford and Company S G Rev. Date: 1/24/2012 10:27:27 AM By: Paul J Ford and Company Printed: 1/24/2012 10:28:02 AM ri 414617 's 61 ve • II II II Section Inputs CFS Version 6.0.4 Page 2 Section: (2) 3.625IN x 1.625IN STUD 20GA with (2) 3.625IN x 1.25IN Track 20GA.sct Paul J Ford and Company ` Paul J Ford and Company • s n Rev. Date: 1/24/2012 10:27:27 AM - By: Paul J Ford and Company Printed: 1/24/2012 10:28:02 AM Material: A653 SS Grade 33 No strength increase from cold work of forming. Modulus of Elasticity, E 29500 ksi Yield Strength, Fy 33 ksi Tensile Strength, Fu 45 ksi Warping Constant Override, Cw 0.01099 in Torsion Constant Override, J 3.7512 in Connector Spacing 0 in Left Channel, Thickness 0.0346 in (20 Gage) Placement of Part from Origin: X to right edge -0.15 in Y to center of gravity 0 in Outside dimensions, Open shape - Length Angle Radius Web . k Hole Size Distance (in) (deg) (in) Coef. (in) (in) 1 0.2500 270.000 0.093750 None 0.000 0.0000 0.1250 ••- '2 i ;250._ . 180.000 0.093750 Single 0.000 0.2500 0.8125 3 3.6250 90.000 0.093750 Cee 0.000 0.2500 1.8125 4 1.6250 0.000 0.093750 Single 0.000 0.2500 0.8125 5 0.2500 - 90.000 0.093750 None 0.000 0.0000 0.1250 Right Channel, Thickness 0.0346 in (20 Gage) Placement of Part from Origin: X to left edge 0.15 in Y to center of gravity 0 in Outside dimensions, Open shape Length Angle Radius Web k Hole Size Distance (in) • (deg) (in) Coef. (in) (in) 1 0.2500 - 90.000 0.093750 None 0.000 0.0000 0.1250 2 1.6250 0.000 0.093750 Single 0.000 0.2500 0.8125 3 3.6250 90.000 0.093750 Cee 0.000 0.2500 1.8125 4 1:6250• 180.000 0.093750 Single 0.000 0.2500 0.8125 5 0.2500 270.000 0.093750 None 0.000 0.0000 0.1250 Part 3, Thickness-0.0346 in (20 Gage) Placement of Part from Origin: X to center-9f gravity 0 in Y to center of gravity -1.58 in Outside dimensions; Open shape .Length Angle Radius Web k Hole Size Distance (ijn) • (deg) (in) Coef. (in) (in) 1 1.25d0 270.000 0.093750 None 0.000 0.2500 0.6250 2 3.6250 0.000 0.093750 None 0.000 1.5000 1.8125 3 1.2500 90.000 0.093750 None 0.000 0.2500 0.6250 Part 4, Thickness 0.0346 in (20 Gage) Placement of Part from Origin: X to center of gravity 0 in Y to center of gravity 1.58 in Outside dimensions, Open shape Length Angle Radius Web k Hole Size Distance (in) (deg) (in) Coef. (in) (in) 1 1.2500 90.000 0.093750 None 0.000 0.2500 0.6250 2 3.6250 0.000 0.093750 None 0.000 1.5000 1.8125 3 1.2500 270.000 0.093750 None 0.000 0.2500 0.6250 CFS Version 6.0.4 Page 3 Section: (2) 3.625IN x 1.625IN STUD 20GA with (2) 3.625IN x 1.25IN Track 20GA.sct Paul J Ford and Company ` Paul J Ford and Company s Rev. Date: 1/24/2012 10:27:27 AM - By: Paul J Ford and Company Printed: 1/24/2012 10:28:02 AM Member Check - 2007 North American Specification - US (ASD) Material Type: A653 SS Grade 33, Fy =33 ksi Design Parameters: Lx 12.000 ft Ly 12.000 ft Lt 12.000 ft Kx 1.0000 Ky 1.0000 Kt 1.0000 Cbx 1.0000 Cby 1.0000 ex 2.00000 in Cmx 1.0000 Cmy 1.0000 ey 1.00000 in Braced Flange: None Red. Factor, R: 0 Stiffness, k4: 0 k Loads: P Mx Vy My Vx (k) (k -in) (k) (k -in) (k) Entered 1.1300 0.000 0.0000 0.000 0.0000 Applied 1.1300 1.130 0.0000 2.260 0.0000 Strength 4.7314 12.066 2.0472 10.071 2.3435 Effective section properties at applied loads: Ae 0.90004 in ^ 2 Ixe 2.1132 in Iye 1.7930 in Sxe(t) 1.1407 in Sye(1) 0.9893 in "3 Sxe(b) 1.1407 in Sye(r) 0.9893 in'3 Interaction Equations NAS Eq. C5.2.1 -1 (P, Mx, My) 0.239 + 0.101 + 0.244 = 0.584 <= 1.0 NAS Eq. C5.2.1 -2 (P, Mx, My) 0.176 + 0.094 + 0.224 = 0.494 <= 1.0 NAS Eq. C3.3.1 -1 (Mx, Vy) Sqrt(0.009 + 0.000)= 0.094 <= 1.0 NAS Eq. C3.3.1 -1 (My, Vx) Sqrt(0.050 + 0.000)= 0.224 <= 1.0 • 13' -6 I/16" 10' -5 1/2" 1 12' -9 13/16" I 4-p 0 ATTACH BEAM TO - ATTACH BEAM TO _ COLUMN PER COLUMN PER "L DETAIL C /507 © DETAIL C/507 0 c?' �� 0 • • • • )J • • \ \ / \\.\\>\ \ • 41 00, 3 5/0' DIAL BRACE SEE DETAIL A/5031 3 5/5' DIAC BRACE SEE DETAIL A/503I 1 Yd'e0'-6' LG, 1 2 GA FRAMING CLIP ( S) - SCREWS EA \LEG METAL SCREWS, as \ \, (SEE DETAIL RAM 1 OI I II a . In FOR SCREW SIZE) Min METAL (SEE DETAIL R/ SCREWS, SOI TTP I O 1111N— .111. INIIIMI FOR SCREW SRE) 7 _ O I ■ i I,�r III II . 4 1 0 \ N, 3 S/13 20 GA. (MIN) I I I___.L '..\ is UNLESS NOT DE : � 1 • �E, I—;—/ 3 5 /B 20 GA (MIN) NOTE. SEE DRAWING 501.1 11 15' do TTP SEE DRAWING SRI I FOR CODED NOTES UNLESS NOTED FOR CODED NOTES STOREFRONT SECTION '.`._ °- H STOREFRONT SECTION H' " ° ' -0 " D 411 11 !".1 1 I/2'AI GA FRAMING CLIP (LENGTH TO MATCH CAA BEAM WIDTH) W(2) -A10 PANCAKE READ SCREWS EACH LEG (TTP, TOP 1 BOTTCII OF BEAM) MI • ' STOP FULL LENGTH TRACKS OF /L BUILT -UP COLUMN SNORT OF BASE TRACK IG GA TRACK W/(3) -20 PANCAKE BEAD SCREWS EACH FLANGE (TRACK LENGTH TO MATCH BEAM DEPTH) CONNECT TRACK TO COLUMN W(6) -e10 SCREWS NOT USED :: G BEAM TO COLUMN CONNECTION - - C • CODED NOTES: OI NOT USED ® DBL 8" DP, 18 GA BEAM WITH 3 5/8 ", 20 GA TRACK TOP 4 BOTTOM #8 SCREW @ 1 -f- - 12 "c /c ® NOT USED ® NOT USED ® NOT USED ® BUILT -UP BOX COLUMN - DBL 3 5/8" DP, #8 SCREW @ 20 GA STUDS WITH 3 5/8 " 20 GA 12 c/c TRACK, EA SIDE. ATTACH BOX COLUMN TO BEAM PER DETAIL C /503.1, UNLESS NOTED. CODED NOTES :: L 1 Si z NOTE. SEE CODED NOTES L /501.1 FOR BEAMS REQUIRING WEB STIFFENERS AT BEARING POINTS 4 SEE PLAN li t SECTIONS FOR BUILT -UP T BOX BEAM 1 : JP:-.NN_ 18 GA TOP TRACK (TRACK DEPTH SHALL MATCH STUD 18 GA. PLATE DEPT1 -1). EACH SIDE y WITH EAD STOP FULL LENGTH PAN HEAD SCREWS. TRACKS OF 4 BUILT -UP COLUMN SNORT OF TOP TRACK 4 3 5/8" OR 6" DEEP 3 5/8" OR 6" DEEP STUDS AS REQUIRED TRACK AS REQUIRED BY OTHER SECTIONS �' BY OTHER SECTIONS AND DETAILS AND DETAILS LIGNTGAGE BOX BEAM TO COLUMN CONNECTION '�� (TYP, UNLESS NOTED) 1 ; - STOP FULL LENGTH TRACKS OF BUILT -UP COLUMN SNORT OF BASE TRACK r 18 GA BASE (2) -tt6 PAN HEAD SCREWS EACN SIDE — (TRACK DEPTH SHALL MATC1a STUD DEPTH). 10° LIGNTGAGE BOX COLUMN BASE CONNECTION (TYP, UNLESS NOTED) SCREWS DIA CONCRETE LIGHTGAGE BOX COLUMN DETAIL OOD „_r-o C ■ S031COOCOLM `/573 W ", 57 G�aa/l -c�7-Cp / (� lite_2 c1 //— cm Sear COMcheck Software Version 3.9.0 Interior Lighting Compliance Certificate Oregon Energy Efficiency Specialty Code Section 1: Project Information Project Type: New Construction Project Title : LIMITED Construction Site: Owner /Agent: Designer /Contractor: WASHINGTON SQUARE LIMITED STORES, LLC SHREMSHOCK ENGINEERING INC 9585 SW WASHINGTON SQUARE ROAD 7775 WALTON PARKWAY 6130 S. SUNBURY RD PORTLAND, OR 97223 NEW ALBANY, OH 43054 WESTERVILLE, OH 43081 Section 2: Interior Lighting and Power Calculation A B C D Area Category Floor Area Allowed Allowed Watts (ft2) Watts l ft2 (B x C) Retail:Sales Area (Ceiling Height 11 ft.) 3897 1.5 5846 Allowance: Furniture, clothing, cosmetics highlighting / Fix. ID: TRACK 2125(a) 1.4 2975(b) Allowance: Furniture, clothing, cosmetics highlighting / Fix. ID: Fl 1 125(a) 1.4 175(b) Allowance: Furniture, clothing, cosmetics highlighting / Fix. ID: F10 250(a) 1.4 256(b) Warehouse:Medium /Bulky Material Storage (Ceiling Height 14 ft.) 1545 0.81 1251 Total Allowed Watts = 10503 (a) Area claimed must not exceed the illuminated area permitted for this allowance type. (b) Allowance is (B x C) or the actual wattage of the fixtures given in Section 2, whichever is less. (e) Additional controls/switching allowances are based on number of fixtures or wattage controlled, not floor area of allowance. Section 3: Interior Lighting Fixture Schedule A B C D E Fixture ID : Description / Lamp I Wattage Per Lamp / Ballast Lamps/ # of Fixture (C X D) Fixture Fixtures Watt. Retail:Sales Area (3897 sq.ft.) Track lighting 1: TRACK: Wattage based on circuit breaker capacity (40 amps x 120 volts) 0 0 0 4800 Incandescent 1: PP5: LED / Other 1 72 5 360 Linear Fluorescent 4: F11: 35° T5 21W / Electronic 1 16 25 400 Linear Fluorescent 5: F10: 46" T5 28W / Electronic 1 8 32 256 Compact Fluorescent 1: A5: Triple 4 -pin 26W / Electronic 1 10 32 320 Halogen 1: A9: Other 1 27 17 459 Incandescent 2: P12: Incandescent 30W 6 1 180 180 Incandescent 3: P13: Incandescent 25W 3 1 75 75 Warehouse:Medium /Bulky Material Storage (1545 sq.ft.) Linear Fluorescent 1: 4' STRIP: EXISTING / 48" T8 32W / Electronic 1 17 32 544 Linear Fluorescent 2: 4' WRAP: EXISTING / 48° T8 32W / Electronic 2 1 58 58 Linear Fluorescent 3: FG /FR: 48° T8 32W / Electronic 1 2 32 64 Total Proposed Watts = 7516 Section 4: Requirements Checklist In the following requirements, the relevant code section reference is shown in (3. ' +' denotes that more details exist in the specified code section. Checkboxes identify requirements that the applicant has not acknowledged as being met. Check marked requirements identify those the applicant acknowledges are met or excepted from compliance. 'Plans reference page /section' identifies where in the plans/specs the requirement can be verified as being satisfied. Lighting Wattage: Project Title: LIMITED Report date: 12/05/11 Data filename: B:\LTD\11645 LTD - Washington Square Tigard, OR \04_Consultant Coordination \MEP \11645_00_LED.cck Page 1 of D • 1. [505.1 +] Total proposed watts must be less than or equal to total allowed watts. Allowed Wattage: 10503 Proposed Wattage: 7516 Complies: YES Mandatory Requirements: ✓ 2. [505.4] Exit signs. Internally illuminated exit signs shall not exceed 5 watts per side. Plans reference page /section: 1;02.3 ✓ 3. [505.2.2.3 +] Daylight zone control. All daylight zones are provided with individual controls that control the lights independent of general area lighting in the non -daylight zone. In all individual daylight zones larger than 350 sq.ft., automatic daylight controls is provided. Automatic daylight sensing controls reduce the light output of the controlled luminaires at least 50 percent, and provide an automatic OFF control, while maintaining a uniform level of illumination. Contiguous daylight zones adjacent to vertical fenestration may be controlled by a single controlling device provided that they do not include zones facing more than two adjacent cardinal onentations (i.e., north, east, south, west). Daylight zones under skylights shall be controlled separately from daylight zones adjacent to vertical fenestration. Plans reference page /section: ✓ 4. [505.2.1 +] Interior lighting controls. At least one local shutoff lighting control has been provided for every 2,000 square feet of lit floor area and each area enclosed by walls or floor- to-ceiling partitions. The required controls are located within the area served by the controls or are a remote switch that identifies the lights served and indicates their status. Plans reference page /section: E03.1. E05.1 • 5. [505.2.3 +] Sleeping unit controls. Master switch at entry to hoteUmotel guest room. Plans reference page /section: N/A ✓ 6. [505.2.1.1] Egress lighting. Egress illumination is controlled by a combination of listed emergency relay and occupancy sensors to shut off during periods that the building space served by the means of egress is unoccupied. Plans reference page /section: E03.1 • 7. [505.2.2 +] Additional controls. Each area that is required to have a manual control shall have additional controls that meet the requirements of Sections 505.2.2.1 and 505.2.2.2. • Plans reference page/section: E05.1 ✓ 8. [505.2.2.1 +] Light reduction controls. Each space required to have a manual control also allows for reducing the connected lighting load by at least 50 percent by either 1) controlling (dimming or multi-level switching) all luminaires; or 2) dual switching of altemate rows of luminaires, altemate luminaires, or alternate lamps; or 3) switching the middle lamp luminaires independently of other lamps; or 4) switching each luminaire or each lamp. Plans reference page /section: E03.1. E05.1 ✓ 9. [505.2.2.2] Buildings larger than 2,000 square feet are equipped with an automatic control device to shut off lighting in those areas. This automatic control device shall function on either. 1) a scheduled basis, using time-of -day, with an independent program schedule that controls the interior lighting in areas that do not exceed 10,000 square feet and are not more than one floor, or 2) an occupant sensor that shall tum lighting off within 30 minutes of an occupant leaving a space; or 3) a signal from another control or alarm system that indicates the area is unoccupied. Plans reference page/section: A000 • 10.[505.2.2] Occupancy sensors in rooms that include daylight zones are required to have Manual ON activation. Plans reference page /section: E03.1 • 11.[505.2.2] An occupant sensor control device is installed that automatically turns lighting off within 30 minutes of all occupants leaving a space. Plans reference page /section: F03.1 ✓ 12.[505.2.2] Additional controls. An occupant sensor control device that automatically turns lighting off within 30 minutes of all occupants leaving a space or a locally activated switch that automatically turns lighting off within 30 minutes of being activated is installed in all storage and supply rooms up to 1000 square feet. Plans reference page /section: E03.1 ✓ 13.[505.2.2.2.1] Occupant override. Automatic lighting shutoff operating on a time-of -day scheduled basis incorporates an override switching device that: 1) Is readily accessible, 2) is located so that a person using the device can see the lights or the area controlled by that switch, or so that the area being lit is annunciated, 3) is manually operated, 4) allows the lighting to remain on for no more than 2 hours when an override is initiated, and 5) controls an area not exceeding 2,000 square feet. Plans reference page /section: E03.1 Project Title: LIMITED Report date: 12/05/11 Data filename: B: \LTD \11645 LTD - Washington Square Tigard, OR \04_Consultant Coordination \MEP \11645_00_LED.cck Page 2 of • 14.[505.2.2.2.2] Holiday scheduling. Automatic lighting shutoff operating on a time -of -day scheduled basis has an automatic holiday scheduling feature that turns off all loads for at least 24 hours, then resumes the normally scheduled operation. Plans reference page /section: E05.1 ✓ 15.[505.2.4 +] Exterior lighting controls. Lighting not designated for dusk- to-dawn operation shall be controlled by either a combination of a photosensor and a time switch, or an astronomical time switch. Lighting designated for dusk- to-dawn operation shall be controlled by an astronomical time switch or photosensor. Plans reference page /section: N/A ✓ 16.[505.3] Tandem wiring. The following luminaires located within the same area shall be tandem wired: 1. Fluorescent luminaires equipped with one, three or odd- numbered lamp configurations, that are recess - mounted within 10 feet center- to-center of each other. 2. Fluorescent luminaires equipped with one, three or any odd- numbered lamp configuration, that are pendant- or surface - mounted within 1 foot edge- to -edge of each other. Plans reference page /section: E03.1 • 17 [505.5.1 +] Medical task lighting or art/history display lighting claimed to be exempt from compliance has a control device independent of the control of the nonexempt lighting. Plans reference page /section: N/A • 18.[505.7 +] Each dwelling unit in a building is metered separately. Plans reference page /section: ,E05.1 ., r {Lighting PASSES Desi 8 n _ Interio ;gn /o 6etter Section 5: Compliance Statement Compliance Statement: The proposed lighting design represented in this document is consistent with the building plans, specifications and other calculations submitted with this permit application. The proposed lighting system has been designed to meet the Oregon Energy Efficiency Specialty Code requirements in COMcheck Version 3.9.0 and to corn.ly with the mandatory requirements in the Requirements Checklist. REECE A. PRATHER - PRINCIPAL/P.E., ,,,,/ 7 ELECTRICAL 2/ _ th - Name - Title Signature Date Project Title: LIMITED Report date: 12/05/11 Data filename: B: \LTD \11645 LTD - Washington Square Tigard, OR \04_Consultant Coordination \MEP \11645_00_LED.cck Page 3 of [Page Too Large for OCR Processing] [Page Too Large for OCR Processing] [Page Too Large for OCR Processing] [Page Too Large for OCR Processing] [Page Too Large for OCR Processing] [Page Too Large for OCR Processing] [Page Too Large for OCR Processing] [Page Too Large for OCR Processing] [Page Too Large for OCR Processing] [Page Too Large for OCR Processing] [Page Too Large for OCR Processing] [Page Too Large for OCR Processing] [Page Too Large for OCR Processing] [Page Too Large for OCR Processing] [Page Too Large for OCR Processing] [Page Too Large for OCR Processing] [Page Too Large for OCR Processing] [Page Too Large for OCR Processing] [Page Too Large for OCR Processing] [Page Too Large for OCR Processing] [Page Too Large for OCR Processing] [Page Too Large for OCR Processing] [Page Too Large for OCR Processing] [Page Too Large for OCR Processing] [Page Too Large for OCR Processing] [Page Too Large for OCR Processing] [Page Too Large for OCR Processing] [Page Too Large for OCR Processing] [Page Too Large for OCR Processing] [Page Too Large for OCR Processing] [Page Too Large for OCR Processing] [Page Too Large for OCR Processing] [Page Too Large for OCR Processing] [Page Too Large for OCR Processing] [Page Too Large for OCR Processing] [Page Too Large for OCR Processing] [Page Too Large for OCR Processing] [Page Too Large for OCR Processing] [Page Too Large for OCR Processing] [Page Too Large for OCR Processing] [Page Too Large for OCR Processing] [Page Too Large for OCR Processing] [Page Too Large for OCR Processing] [Page Too Large for OCR Processing] [Page Too Large for OCR Processing]