Loading...
Specifications A464_2011-00150 ,. �1 a�G ��► z- 79 s w Flu-vvz kers Rd CHARTER MECHANICAL TI ROOFTOP HVAC STRUCTURAL CALCULATIONS • SHEETS MECHANICAL UNIT SUPPORT AND ATTACHMENT MM -MM 6 SKETCHES SKI & SK8 (25 PAGES TOTAL INCLUDING COVER SHEET) S K R � Cr //p ��EO PROft • PE • OREGON � ) 3 2 ° � �� Q • S D. GP EXPIRES: -// .; I • April 26, 2011 CIDA PROJECT NUMBER: 110049.01 15895 SW 72 AVE, SUITE 200 PORTLAND, OREGON 97224 (503) 226 -1285 3 fax (503) 226 -1670 E -MAIL: info@cidainc.com COMMERCIAL INDUSTRIAL DESIGN ARC[ IITECTURE P.C. CIDA INC. il t a.. r ommi n siolempo ot 4445 SW BARBUR BLVD., SUITE 200 PROJECT NAME: /k,f0/4. /hit L PRO/. No. SHEET g PORTLAND, OREGON 97239 Av�� TEL: 503.226.1285 FAX: 503.226.1670 TITLE: By: r DATE: E-MAIL: info @cidainc.com • /jNtrS e # / X%it z - AtY - 75,5" ev= W, lir = '35 ` i % 5, • U Qtoray �9 • 1 1 - 4" i✓ 0 - 7S ' • 98' ; 4111 k5 ' /7/ Is C6 I oft. 1 =/j h' 9/y w /So . • • • 186/ ARCHITECTURE • ENGINEER NG • PLANNING • INTERIORS • LANDSCAPE • ft 1 I . w 4445 SW BARBUR BLVD., SUITE 200 PROJECT NAME: PROJ. No. " SHEET Am PORTLAND, OREGON 97239 TEL: 503.226.1285 FAX: 503.226.1670 TITLE: By: DATE: E -MAIL: info@cldalnc.com ME " d am, ,9s; o►_ . ell / I I L II I AIM "111 iiiifii ' 1195!1111311 lfilillEll 1its . III i` n p/ t _ 19.1.A 111 II ms Shaer S*`E(.izi I II P-/ MEE at' -- _S" 411 4 MA - Pn IN rn, - I" 0I ' ME f !1 , / / NL — /boo ?.,/2 M EMI kr0.V V2 I%)( 11 44 Ti ( - ) 0 o ■igNIN d x / L Awe, i , si t v . co 3/0 a - IN mommin ,p- sem . 4, - III II //1111111M . III M MIRE= tl / a/< ((J eeXi; 1s 1{ Q-21111111 III ■ . III MIN_ II ARCHITECTURE • ENGINSERING • PLANNING • INT =RIORS • LANDSCAPE II ui CID/), INC. "' Title : Job # f „ �� 15895 SW 72nd Ave. Suite 200 Dsgnr. l - Portland, OR 97224 Project Desc.: 503 -226 -1285 Project Notes : 503.228 -1670 Fax _ __•. __ - -_ __ __ Pr1ded.18APH2e11, 242PM Wood Beam ENERCALC, INC.19832011, Ver, 6.1.10, N29413 • Lic. # : KW- 06006865 Licensee : Description : RTU 01 P1 w/ mach w/ added 2x12 Not and better _Material Properties _ _ _ - Calculations per IBC 2006, CBC 2007, 2005 NDS Analysis Method : Allowable Stress Design Fb • Tension 1,200.0 psi E: Modulus of Elasticity Load Combination 2006 IBC & ASCE 7 -05 Fb - Compr 1,200.0 psi Ebend- xx 1,800.0ksi Fc - Pdl 1,550.0 psi Eminbend - xx 660.0 ksi Wood Species : Douglas Fir - Larch Fc - Perp 625.0 psi Wood Grade : No.1 & Better Fv 180.0 psi Ft 800.0 psi Density 32.210pcf Beam Bracing : Beam Is Fully Braced against lateral- torsion buckling . 0(0.278) D(0.278) D(0.075)+ S(0.1704) � + v + i I . . • 1 5.0 X 11.250 ii • Span = 19.330 ft Applied Loads Service loads entered. Load Factors will be applied for calculations. Uniform Load : D = 0.0750, S = 0.1704 , Tributary Width = 1.0 ft Point Load : D = 0.2780 k @ 7.170 ft Point Load : D = 0.2780 k @ 14.0 ft DESIGN SUMMARY Crest • n OK Maximum Bending Stress Ratio = 0.989 1 Maximum Shear Stress Ratio = 0.317: 1 Section used for this span 5.0 X 11.250 Section used for this span 5.0 X 11.250 fb : Actual = 1,501.93psi fv : Actual = 65.67 psi FB : Allowable = 1,518.00psi - Fv : Allowable = 207.00 psi Load Combination +D +S +H Load Combination +D +S +H Location of maximum on span = 9.568ft Location of maximum on span = 18.480 ft Span # where maximum occurs = Span # 1 Span # where maximum occurs = Span # 1 Maximum Deflection Max Downward L +Lr +S Deflection 0.505 in Ratio = 459 Max Upward L +Lr +S Deflection 0.000 In Ratio = 0 <360 Max Downward Total Deflection 0.840 In Ratio = 276 • Max Upward Total Deflection 0.000 in Ratio = 0 <180 Maximum Forces & Stresses for Load Combinations Load Combination Max Stress Ratios . Summary of Moment Values Summary of Shear Values Segment Length Span # M _ V C d C W C r C m _ C 1 Mactual lb- design Fb-allow Vactual iv-design Fv allow +D Length =19.330 ft 1 0.502 0.159 0.900 1.100 1.000 1.000 1.000 5.25 596.77 1,188.00 0.96 25.71 162.00 +D+S +H 1.100 1.000 1.000 1.000 Length =19.330 ft 1 0.989 0.317 1.150 1.100 1.000 1.000 1.000 1320 1,501.93 1,518.00 2.46 65.67 207.00 +D+0.750L+0.750S+H 1.100 1.000 1.000 1.000 Length = 19.330 ft 1 0.840 0.269 1.150 1.100 1.000 1.000 1.000 1121 1,275.58 1,518.00 2.09 55.68 207.00 +0+0.750L+0.750S+0.750W +H • 1.100 1.000 1.000 1.000 Length = 19.330 ft 1 0.604 0.193 1.600 1.100 1.000 1.000 1.000 1121 1,275.58 2,112.00 2.09 55.68 288.00 +D+0.750L+0,750S+0.5250E +H 1.100 1.000 1.000 1.000 • Length =19.330 ft 1 0.604 0.193 1.600 1.100 1.000 1.000 1.000 1121 1,275.58 2,112.00 2.09 55.68 288.00 Overall Maximum Deflections : Unfactored Loads Load Combination Span Max. -' Defl Location in Span Load Combination - Max. '+' Defl Location in Span - D+. - § - +S - - - - 1 0.8403 9.762 0.0000 0.000 -- CIDA, INC. i' Title : Job # MA 15895 SW 72nd Ave. Suite 200 Dsgnr: Portland, OR 97224 Project Desc.: 503 - 226.1285 Project Notes : • 503 - 226.1670 Fax - -_ _- _• , _ Palled: 19 APO 2011. 2:45PM WOOd Beam . . ENERCALC, INC, 1988011, Vec 8.1.10, N28413 Lic. # : KW- 06006865 Licensee : Description : RTU #1 P2 W/ meth Material Properties _ __- Calculations per IBC 2006, CBC 2007, 2005 NDS Analysis Method : Allowable Stress Design Fb - Tension 1,500.0 psi E: Modulus of Elasticity Load Combination 2006 IBC & ASCE 7 -05 Fb - Compr 1,500.0 psi Ebend - xx 1,900.Oksi Fc - Prll 1,700.0 psi Eminbend • xx 690.0 ksi Wood Species : Douglas Fir - Larch Fc - Pep 625.0 psi Wood Grade : Select structural Fv 180.0 psi Ft 1,000.0 psi Density 32.21 Opcf Beam Bracing : Beam is Fully Braced against lateral - torsion buckling D(0.278) . D(0.278) D(0.052 S(0.177) t + + + i I 1 ( ) [� 6x12 \ Span = 19.330 ft Applied Loads Service loads entered. Load Factors will be applied for calculations. Uniform Load : D = 0.0520, S = 0.1770 , Tributary Width = 1.0 ft Point Load : D = 0.2780 k CO 7.170 ft Point Load : D = 0.2780 k @ 14.0 ft DE$IGSUMMA NRY Desi • n OK Maximum Bending Stress Ratio = 0.714 1 Maximum Shear Stress Ratio = 0.266 : 1 Section used for this span 6x12 Section used for this span 6x12 • fb : Actual = 1,230.86ps1 fv : Actual = 54.99 psi FB : Allowable = 1 ,725.00psi Fv : Allowable = 207.00 psi Load Combination +D +S +H Load Combination +D +S +H Location of maximum on span = 9.568ft Location of maximum on span = 18.460ft Span # where maximum occurs = Span # 1 Span # where maximum occurs = Span # 1 Maximum Deflection Max Downward L+Lr +S Deflection 0.423 In Ratio = 548 Max Upward L +Lr +S Deflection 0.000 in Ratio = 0 <360 Max Downward Total Deflection 0.638 in Ratio = 363 • Max Upward Total Deflection 0.000 in Ratio = 0 <180 Maximum Forces & Stresses for Load Combinations Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span # M V C d C y C r C m C t_ Mactual fb- design Fb -allow Vactual fv- design Fwallow • Length = 19.330 ft 1 0.306 0.112 0.900 1.000 1.000 1.000 1.000 4.17 413.06 1,350.00 0.76 18.07 162.00 +D+S+H 1.000 1.000 1.000 1.000 Length = 19.330 ft 1 0.714 0.266 1.150 1.000 1.000 1.000 1.000 12.43 1,230.86 1,725.00 2.32 54.99 207.00 +D+0.750L+0.750S+H 1.000 1.000 1.000 1.000 Length = 19.330 ft 1 0.595 0.221 1.150 1.000 1.000 1.000 1.000 10.37 1,026.30 1,725.00 1.93 45.76 207.00 +D+0.750L+0.7503+0.750W +H 1.000 1.000 1.000 1.000 Length = 19.330 ft 1 0.428 0.159 1.600 1.000 1.000 1.000 1.000 10.37 1,026.30 2,400.00 1.93 45.76 288.00 +D+0.750L+0.750S+0.5250E +H 1.000 1.000 1.000 1.000 Length = 19.330 ft 1 0.428 0.159 1.600 1.000 1.000 1.000 1.000 10.37 1,026.30 2,400.00 1.93 45.76 288.00 Overall Maiiimum Deflections - Unfactored Loads Load Combination Span Max ' -' Deft Location in Span Load Combination - Max. ' +' Defl Location In Span D+S - -- -- . _ ._ .._ - 0.6384 9.762 0.0000 0.000 I v 4445 SW BARBUR BLVD., SUITE 200 PROJECT NAME: PRO). NO. SHUT MI)5 PORTLAND, OREGON 97239 TEL: 503.226.1285 FAX: 503.226.1670 TITLE: BT: DATE: E-MAIL: info@cldalnc.com Ghee& , rich,/ 0 / 29f ` 6 L`' /64.k/ . d0 ) i/V= V 75oIPA 0 i r' - / 2.3�� /41 = V r � iC ma /,zi 3 JI.' Z' 7' • ri = 72, 7y ,/#-r /, S% < Af 1 �J 67'c', 2 is /9t:46rr .� ARCHITECTURE • ENGINEERINC • PLANNING • INTiRIORS • LANDSCAPE `74 t 4445 SW BARBUR BLVD., SUITE 200 PROJECT NAME: PRO!. NO. SHEET PORTLAND, OREGON 97239 TEL: 503.226.1285 FAX: 503.226.1670 TITLE: By: DATE: E -MAIL: Info ®cIdaInc.com M 4 m6'4 4/0"-/c krif z_ 2, 75" k 4 13, 6b,A4 z,a 'sye/e < sy, ' /( • / f rih . vio, r p , r,= Z95;4 6/):-.74f/44 '!--1" Gln,z , Mie Z, % ^'ai/ GS/' (� • (fp 0404 GS heif✓n l-‘ ARCHITECTURE • ENGINEERING • PLANNING • INTERIORS • LANDSCAPE *1 4 Ni F4=11:11:40.4 6147 4 SW BARBUR BLVD., SUITE 200 PROJECT NAME: PROJ. No. SHEET PORTLAND, OREGON 97239 TEL: 503.226.1285 FAX: 503.226.1670 TITLE: By: DATE: E -MAIL: Info@cidalnc.com ■■■■■■■__ 111111 I WO EIMEMINIME211111e1M fr3 - A MIM mi rodi n.--, ■■ ■■ ■■■ ■■■ MEMM■■■ __■ ■E 11111111111111111 III ,. EMIZEIM 121! t, 111111117111111111 ■ ■■■■E■ 111111111.1111111111111 ■OMB ■■■■■■■ __■■■ ■11 ■NMI 11281111.11=111 EMI EMI ME 11111111111111111111 EMI E •1■11111■■1 E�! ENZI NMI EE■1111■rE111 ■■■■■ ■ ■■ ■■ EISIENCUMIECEIZI1 pt E■ • ■■■■■ . ■■■ ■■ RENEE 7 v ■EE -- ■■ ■MM■■ ■ ■ ■■ ' IMER 's -t ■ ■ ■■ EIIMERIM1111111111 MI ■■■■E ■■■ MI 1121113ENZEIIIIMIEM p 4410f7104 ME MIME= NNE ■■ M■■■■ ■ ■ ■■ IMIC ■M EEm 3 " ■■ ■■■■■ ■■■ ■■ MIIMM , ■■■ ■■ ■U■■■ ■■■ __E■ kEE ZPi ■ ■■ • MI 1111111111111111111111111•1111111111111 ; � Ell • ■■RR■■ ■■■ ■■ kiELZKin E ■M 0 s� i.e Olraz2Ezz 1111111111111111 Mill ■ 1111 11111111111111111 11111111111 ■■ MIME= _■■■ ■■ ■■E■■■_■■ ■M - ■■ ■■■■■■ ■ ■■■ ■■ ARCHITECTURE • ENGINEERING • PLANNING • INTERIORS • LANDSCAPE v 11 CIDA, INC. `) Title : Job # M4. g 15895 SW 72nd Ave. Suite 200 Dsgnr: Portland, OR 97224 Project Desc.: 503 - 228 -1285 Project Notes : 503 - 226.1670 Fax Printed: 28 APR 2011.11:56AM [ Wood Beam • . Re: e.•ladradd�t11o049:11 charter .wile fceI ENE110ALCG MC..18B32011, yet 8,1.10,1428413 Lic. tt : KW - 06006865 Licensee : Description : BTU #3 new beam B2 wl meth Material Properties _. - _ - _ _ Calculations per IBC 2006, CBC 2007, 2005 NDS Analysis Method : Allowable Stress Design Fb • Tension 2,400.0 psi E: Modulus of Elasticity Load Combination 2006 IBC & ASCE 7 -05 Fb - Compr 1,850.0 psi Ebend- xx 1,800.0ksi Fc - Pill 1,650.0 psi Eminbend • xx 930.0 ksi Wood Species : DF/DF Pc - Perp 650.0 psi Ebend- yy 1 ,600.0ksi Wood Grade : 24F - V4 Fv 265.0 psi Eminbend • yy 830.0 ksl Ft 1,100.0 psi Density 32.210pcf Beam Bracing : Beam is Fully Braced against lateral- torsion buckling D(0.513) i -..- __ _ V I D(0.053 -...- * ! c 2.5x13.5 ' 1 Span = 19.330 ft Applied Loads _ _ _ Service loads entered. Load Factors will be applied for calculations. Uniform Load : D = 0.0530, S = 0.0880 , Tributary Width =1.0 ft • Point Load: D= 0.5130k 08.0ft DESIGN SUMMARY . Desi•n OK Maximum Bending Stress Ratio = 0.47R 1 Maximum Shear Stress Ratio = 0.228 : 1 Section used for this span 2.5x13.5 Section used for this span 2.5x13.5 fb : Actual = 1,298.08 psi fv : Actual = 69.63 psi FB: Allowable = 2,760.00 psi Fv : Allowable = 304.75 psi Load Combination +D +S +H Load Combination +D +S+H Location of maximum on span = 8.505ft Location of maximum on span = 0.000 ft Span # where maximum occurs = Span # 1 Span 4 where maximum occurs = Span # 1 Maximum Deflection Max Downward L +Lr +S Deflection 0.302 in Ratio = 768 Max Upward L +Lr+S Deflection 0.000 In Ratio = 0 <360 Max Downward Total Deflection 0.603 In Ratio = 364 Max Upward Total Deflection 0.000 in Ratio = 0 <160 Maximum For4es 4 Stress#or LoadC Nina ldns Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span # M V C d C w C r C m CMaclual lb Fb - allow Vactual fv- design Fv-allow +D Length =19.330 ft 1 0.311 0.151 0.900 1 .000 1.000 1.000 1.000 4.25 672.18 2,160.00 0.81 35.99 238.50 +D+S+H 1.000 1.000 1.000 1.000 Length = 19.330 ft 1 0.470 0.228 1.150 1.000 1.000 1.000 1.000 8.21 1298.08 2,760.00 1.57 69.63 304.75 +D+0.750L+0.750S +H 1.000 1.000 1.000 1.000 Length = 19.330 ft 1 0.412 0.201 1.150 1.000 1.000 1.000 1.000 720 1,138.34 2,760.00 1.38 61.22 304.75 +D+0.750L+0.750S+0.750W+H 1.000 1.000 1.000 1.000 Length = 19.330 ft 1 0.296 0.144 1.600 1.000 1.000 1.000 1.000 720 1,138.34 3,840.00 1.38 61.22 424.00 +D+0.750L+0.750S+0.5250E+H 1.000 1.000 1.000 1.000 Length = 19.330 ft 1 0296 0.144 1.600 1.000 1.000 1.000 1.000 720 1,138.34 3,840.00 1.38 61.22 424.00 :Overall Mazlininiti - Deflections • = )irt#aclo rl loads Load Combination Span Max. -' Defl Location in Span Load Combination Max. '+' Dell Location in Span D+S -- - 1 0.6025 9.568 - 0.0000 0.000 I . n n w it 4445 SW BARBUR BLVD., SUITE 200 PROIECT NAME: PRO/. No. S HEET MA PORTLAND, OREGON 97239 TEL: 503.226.1285 FAX: 503.226.1670 TITLE: BY: DATE: E -MAIL: info @cidalnc.com KOJ , f�G g ski #7 1 4. re. D 1 1,P I P w T!d g � 711111 F - (05/�'p oef) toffr > X` l 7 3 ` p/;A : v X /3 • X451. Z - 2-t t di i (442,,P /Or/ I- H ) y7‘, ! - -- — imeg,t weir )_ • ■ ■ ARCHITECTURE • ENGIN_ERING • PLANNING • INTERIORS • LANDSCAPE ' y 11 'ft CIDA, INC. Title: Job # /lm- 15895 SW 72nd Ave. Suite 200 Dsgnr. Portland, OR 97224 Project Desc 503 - 226.1285 Project Notes : 503-226-1670 Fax Primed: 28 APR MIL 17.04PM Woo • Beam Fife: eledcad Mitchel* Tnsuijot,irRh1 cs _ . EN RCALC, INC. 1!189 2Q11, Vey 1 /f0 N1941$ Lic. N : KW - 06006865 Licensee : Description : Joist at RTU #4 w/ meth and snowdrift Material Properties _ Calculations per IBC 2008, CBC 2007, 2005 NDS Analysis Method : Allowable Stress Design Fb - Tension 1,000.0 ps E: Modulus ofEJestclty Load Combination 2006 IBC & ASCE 7 -05 Fb - Compr 1,000.0 ps Ebend- xx 1,700.0ksi Fc - Pdl 1,500.0 ps Eminbend - xx 620.0ksi Wood Species : Douglas Fir - Larch Fc - Perp 625.0 ps Wood Grade : No.1 Fv 180.0 ps Ft 675.0 ps Density 32.210pcf Beam Bracing : Beam is Fully Braced against lateral - torsion buckling Repetitive Member Stress Increase D(0.1 6 II -0 . S 0 0.056 `UVANIL 7 • l) 1 . ; • A 2 -2x8 !� Span = 17.750 ft Applied Loads Service loads entered. Load Factors will be applied for calculations. Uniform Load : D = 0.0150, S = 0.0250 , Tributary Width =1.0 ft • Point Load: D= 0.1160k @ 4.50 ft Point Load: D= 0.1160k @ 8.0 ft Varying Uniform Load : S(S,E) = 0.0- >0.0560 k/it, Extent = 4.750 - -» 17.750 ft, Trib Width = 1.0 ft DESIGN - SUMMARY Desi • n OK Maximum Bending Stress Ratio = 0.878 1 Maximum Shear Stress Ratio = 0.220 : 1 Section used for this span 2 -2x8 Section used for this span 2 -2x8 lb : Actual = 1,390.89ps1 fir : Actual = 45.61 psi FB : Allowable = 1,587.00 psi Fv : Allowable = 207.00 psi Load Combination +D +S +H Load Combination +D +S +H Location of maximum on span = 8.343ft Location of maximum on span = 17.218 ft Span # where maximum occurs = Span # 1 Span # where maximum occurs = Span # 1 Maximum Deflection Max Downward L +Lr+S Deflection 0.611 in Ratio = 348 Max Upward L +Lr +S Deflection 0.000 in Ratio = 0 <240 • Max Downward Total Deflection 1.063 In Ratio = 200 . • Max Upward Total Deflection 0.000 in Ratio = 0 <180 0401000 fArce$ & Stressesfor Load Combinations _ Load Combination Max Stress Ratios Summary of Moment Values _ _ Summary of Shear Values Segment Length Span # M V C d C # C r C m C t Machlal lb- desIgn Fb -allow Vactual tv- design Fv -allow +D Length = 17.750 ft 1 0.508 0.117 0.900 1.200 1.150 1.000 1.000 1.38 630.51 1,242.00 028 19.00 162.00 +1)+S+H 1200 1.150 1.000 1.000 Length = 17.750 ft 1 0.876 0.220 1.150 1200 1.150 1.000 1.000 3.05 1,390.88 1,587.00 0.66 45.61 207.00 +0+0.750L+0.750S+H 1.200 1.150 1.000 1.000 Length =17.750 ft 1 0.756 0.182 1.150 1200 1.150 1.000 1.000 2.63 1,199.53 1,587.00 0.55 37.77 207.00 +0+0.750L+0.7505+0.750W+H 1.200 1.150 1.000 1.000 Length =17.750 ft 1 0.543 0.131 1.600 1.200 1.150 1.000 1.000 2.63 1,199.53 2,208.00 0.55 37.77 288.00 . +0+0.750L+0.7505+0.5250E41 1200 1.150 1.000 1.000 Length = 17.750 ft 1 0.543 0.131 1.600 1200 1.150 1.000 1.000 2.63 1,199.53 2,208.00 0.55 37.77 288.00 • .r` • CIDA Mechanical Unit Attachment CDG TEL: (503) 226 -1285 Charter Mechanical TI 4/19/2011 FAX: (503)226 1670 Portland, OR 110049.01 • MECHANICAL UNIT ATTACHMENT - LATERAL FORCES Aeon R0004 4 -ton unit • W := 8901b Weight of unit W := 1201b Weight of curb W := W + W W = 10101b L := 82in Length w := 44in Width of unit h := 43.in Height of unit !l 14•in Height of curb w • = 40M Width of base h := h + h h = 57 in Total height of unit on curb SEISMIC PARTS AND PORTIONS (Portland, OR 97223) Mapped S := 0.944 site class= D Adiusted Maximum F := 1.06 Sms = Fa Ss . Sms = 1 Design 2 SDS 3 Sips = 0.667 h := 24ft I := 1.0 a := 2.5 R P := 6 • := h Air side HVAC component • 0.4•ap S DS •l p z Fp := 1 + 2• h )•W P Fp = 296.86lb 0.7•Fp = 207.8 lb Total seismic WIND LOAD: BASED ON 2009 IBC / 2010 OSSC Va := 94.5 Exposure B I := 1.0 Kd := 0.85 K:= 0.70 G := 0.85 =1.0 Cf: = 1.3 qz:= 0 . 00256 •Kh•Kzt•Kd•lw V35 F := G•Cf•(O F = 15.03 psf Pwind unit F•L•hm 1 wind unit = 368.05 lb Wind on mech unit P := F•L -h kind = 487.88 lb Total wind Controls over seismic E:ladcadd11110049.01 Charter Mechanical TllstructgateraiMECH 4 ton.mcd • CIDA Mechanical Unit Attachment Al ta TEL: (503) 226 -1285 Charter Mechanical TI 4/19/2011 FAX: (503)226 1670 Portland, OR 110049.01 OVERTURNING-Aaon R0004 HVAC UNIT )_C # 7 0.6D +W Overturning at unit to curb hm • Mot Pwind_unit' 2 M = 659.42lbft Mres := W • Wm Mres = 1631.67 Ibft Mros = 2.47 • p 2 Mot (Mot – 0.6.M) t 'p"" – W 21 F upw = –91.311b <0 no uplift m — ATTACHMENT • Deslan attachment for 370Ib sliding and Oib tension at curb to unit connection —18GA curb Try (1) 6" long 18ga clip ea side w/ (4) Screws to unit and (4) #10 screws to curb • V P " v ' d `�` V := 4741b F 91.31 lb <0 no u lift cli 2 allow cli upw = – P Per Clip Pwind unit = 368.05 lb Va = 184.02 lb U := Vlip U = 0.39 Use minimum of (1)18aa clia ea. side Vallow clip Overturning at base of curb from wind h Mot Pwind' 2 M = 1158.71bft Mres := Wt. we Mres = 1683.33 lb ft ` Mres = 1.45 — 2 Mot • (Mot – 0.6.M) F "p" s N , c F = 44.61 lb Uplift ATTACHMENT • • Design attachment for 488Ib sliding and 45Ib uplift at curb to roof connection Try #8 SCREW W/ 2" EMBED at 24" o.c.- (4) Screws Ea. Side T := 176Ib V 1191b F = 44.61 lb • Per Screw Per Screw Pwind = 487.88 lb U := + U = 0.576 Use #8 screws at 24" o.c. 8 •V . Va,i llow 4 T allow E:ladcadd11110049.01 Charter • Mechanical Tllstruct\lateralMECH 4 ton.mcd • • kW, CIDA Mechanical Unit Attachment CDG TEL: (503) 226 -1285 Charter Mechanical TI 4/26/2011 FAX: (503)226 1670 Portland, OR 110049.01 MECHANICAL UNIT ATTACHMENT - LATERAL FORCES McQuay 4 -ton unit RTU #2 & #4 W := 5851b Weight of unit W := 1101b Weight of curb W := W + We W1 = 6951b L := 75.5in Length w := 46.5in Width of unit h := 35•in Height of unit h c := 14•in Height of curb w : = 42in Width of base hmc := h + h h = 49 in Total height of unit on curb SEISMIC PARTS AND PORTIONS (Portland, OR 97223) Maimed S := 0.944 site class= D Adjusted Maximum • F 1.06 Sms := F S S = 1 Design SDS := 3 •Sms SDS = 0.667 h := 24ft I := 1.0 a := 2.5 R := 6 z := h Air side HVAC component • 0.4•aP S 1l • Fp :_ • + 2• hJ•W Fp = 195.12 lb 0.7.Fp = 136.59 lb Total seismic R P WIND LOAD: BASED ON 2009 IBC / 2010 OSSC • Va := 94.5 Exposure B I := 1.0 IC := 0.85 K := 0.70 G := 0.85 K,:= 1.0 Cr := 1.3 q 0.00256•Kh•KeKa•Iw V F := G•C •I,,, F = 15.03 psf Pwind unit F•L•h Pwin unit = 275.83 lb Wind on mach unit ' wina F•L•hmc Pwina = 386.16 lb Total wind Controls over seismic E:ladcadd11110049.01 Charter _ Mechanical Tllstruct lateralMECH 4 ton rtu2 &4- revised.mcd • CIDA Mechanical Unit Attachment CDG TEL: (503) 226 -1285 Charter Mechanical TI 4/26/2011 FAX: (503)2281670 • Portland, OR 110049.01 OVERTURNING- McQuav HVAC UNIT LC # 7 0.6D +W Overturning at unit to curb . h Mot Pwind unit• 2 M = 402.25 lb ft K Mres := W • wm M = 1133.441b ft — = 2.82 p • 2 Mot _ Mot - 0.6.M Fupw w tin Fupw = -74.92 lb <0 no uplift m — ATTACHMENT Design attachment for 276Ib sliding and Olb tension at curb to unit connection --18GA curb Try (1) 6" long 18ga clip ea side w/ (4) Screws to unit and (4) #10 screws to curb V Pad unit V •= 4741b F 74.92 lb <0 no u lift clip := 2 allow clip •- u p w = - P Per Clip Volip = 137.91 lb Pwind unit = 275.83 lb U := V`l�p U = 0.29 Use minimum of (1)18ga clip ea. side Vallow clip Overturning at bate of curb from wind := f -2- 1 h Mot .- P`YQ1d 2 M 788.41bft M Mres := We — 2 M = 1216.25 lb ft ` � = 1.54 M* Mot - 0.6•M F upw wc F = 16.76 lb Uplift ATTACHMENT Design attachment for 3871b sliding and 17Ib uplift at curb to roof connection Try #8 SCREW W/ 2" EMBED at 24" o.c.- (4) Screws Ea. Side T := 1761b V := 1191b F = 16.761b Per Screw Per Screw Pwind = 386.16 lb Pwind Fupw2 •• U :_ + U = 0.429 Use #8 screws at 24" o.c. 8 •Vallow 4 Ta uw E:ladcaddl11 10040.01 Charter Mechanical Thstruct 1ateralMECH 4 ton rtu2&4- revised.mcd 19 OS /5 r CIDA Mechanical Unit Attachment CDG TEL: (503) 226 -1285 Charter *Mechanical TI 4/26/2011 FAX: (503)226 1670 Portland, OR 110049.01 MECHANICAL UNIT ATTACHMENT - LATERAL FORCES Aeon RN013 unit RTU #3 W := 171411) Weight of unit W, := 1501b Weight of curb W := W + W W = 1864 lb L•:= 78in Length • . vi := 58in Width of unit h := 44•in Height of unit h, := 14•in Height of curb w . = 51in Width of base hmc := h + h hint = 58 in Total height of unit on curb SEISMIC PARTS AND PORTIONS (Portland, OR 97223) Mapped S := 0.944 site class= D Adjusted Maximum Sins := Fa Ss F := 1.06 S ins = pesinr • 2 SDS := 3 Sins SDS = 0.667 h := 24ft I := 1.0 a := 2.5 R := 6 z := h Air side HVAC component Fp := 0 4 •iS Ip •I 1 + 2• h I•W Fp = 571.71b 0.7-Fp = 400.191b Total seismic WIND LOAD: BASED ON 2009 IBC / 2010 OSSC Va := 94.5 Exposure B I := 1.0 ICd := 0.85 Kr, := 0.70 G := 0.85 Kit := 1.0 C := 1.3 9z 0.00256 •Kh•K F := G•Cf -qZ 1 F = 15.03 psf Pwind unit := F•L•hm Pwind unit = 358.23 lb Wind on mech unit 1 wind := F•L•h Pwin = 472.22 lb Total wind Controls over seismic E:ladcadd11110049.01 Charter Mechanical TI1structiateraIMECH rtu3- revised.mcd • MR l CIDA Mechanical Unit Attachment CDG TEL: (503) 226 -1285 Charter Mechanical TI 4/262011 FAX: (503)226 1670 Portland, OR 110049.01 OVERTURNING Aeon RN0013HVAC UNIT LC # 7 0.6D +W Overturning at unit to curb h Mot Pwind unit' 2 M = 656.76 lb ft M, 5 := Wp 2 M r�v = 4142.17 lb ft M s = 6.31 of Mot — 0.6•M Fupw w tin F, � pw , _ — 391.83 lb <0 no uplift m — ATTACHMENT Design attachment for 3601b sliding and Olb tension at curb to unit connection -18GA curb Try (1) 6" long 18ga clip ea side w/ (4) Screws to unit and (4) #10 screws to curb V pwu'a �� V := 474Ib F = —391.83 lb <0 no uplift clip �= 2 allow clip �— upw — — P Per Clip Pwind unit = 358.23 lb Volip = 179.121b U := clip U = 0.38 Use minimum of (1118aa clip ea. side Vallow clip Overtuminq at base of curb from wind E LT Mot Pwind' 2 M = 1141.19 lb ft Mres := wt 2 Mres = 3961 lb ft � = 3.47 M a Mot — 0.6•M = —290.68 lb Uplift ATTACHMENT Design attachment for 4731b sliding and Olb uplift at curb to roof connection Try #8 SCREW WI 2" EMBED at 24" o.c.- (4) Screws Ea. Side T := 1761b Vallow := 1191b F = O lb Per Screw Per Screw P = 472.22 lb • P U := + U = 0.496 Use #8 screws at 24" o.c. 8' Vallow 4 Ta llow • E:ladcadd111 \0049.01 Charter Mechanical TllstructllateralMECH rtu3- revised.mcd r I I N I i I I I I (E) GIRDERI I I --[ 0 I JI 01 I • c " i I 11 m (DI I • 101 -t4-11p II GI^11 'in' I v I IN N ti I I I IICV �I \ (N) 4x8 Z W I v t I 1 S l R U C T up �p PR F ` • I � � $ GINA , / „l 2 I 1 , .7. 0 C:' , _ I I I / , AO OREGON I I I O Zip; 6 13, 1,04644,- (N) 4x8 I iS D. OP 11 ON CURB tUNIT (EXPIRES: 6/30/13 1 . II I I I II I I (E) GIRDER 1 1 I I I 0 I I I I 1 'V — O . • Il k 0 FRAMING @ RTU #1 1/4. ” - ' — � - 1 0 CHARTER MECHANICAL TI tier FRAMUM PORTLAND, OR 04.21.11 _ 110049.01 16696 SW 72ND AVE SURE 200 PORTLAND. OREGON 97224 TEL: (603) 226 -1286 MAX: (603) 226 -1670 ARC 1-I I - I I C - 1 [JUL. • CNCIN .1-RING' • PLANNING • IN - 1 ENIORS @ 2011 CU. ANC. ALL RICERS R6QHm • (E) CONC. WALL IIIIIIIIMIMIIIII,r111MMIMMM • I I I I I i 1811 --8 "t I S�R UCTL, � I � PROff 4 G I NA, ,SfjO 6 54PE � ' 4' v 0 OREGON • NEW 585LB UNIT i LT f z �� ON CURB I /p 13. �� (N) x8 S D. GPG I I I EXPIRES: 6/30/13 i 11E41 I I (E) GIRDER • I I • O 2 FRAMING @ RTU #2 SK 1/4° = 1' -0" CHARTER MECHANICAL TI FRA1AvG PORTLAND, OR 04.26.11 c CDG 110049.01 �+' 16508 SW 72ND AVE SURE 200 PORTLAND. OREGON 57224 7E (603) 226 -1266 PAX: (6O3) 226 -1670 ANC I - I I - f - f = C I UNI= • I • PLANNING • INTI7NIONS ® 2011 am QC. ALL RICHIS RESERVED •4I r e (E) GIRDER u CN1 IV Csl g 1RUC TUR .4 � � P R OOF ' d j't . i... • ::‘" / � 4, G 1 114' � � / � / . OREGON ma c. 6 13. 2c . lilli I S D. G PG EXPIRES: 6/30/13 • • E GIRDER lir . 11111116L ill o ,a o . • like FRAMING @ RTU #3 " 1/4" = 1'- / 0 . CHARTER MECHANICAL TI arc UN T FRAMING PORTLAND, OR 04.26.11 CDG 110049.01 15895 SW 72ND AVE SURE 200 PORTLAND. OREGON 97224 TEL: (503) 226 -1255 FAX: (503) 220 - 1670 AI i CII I I F Cl UIRE • ENGINEF-RI G • PLANNING • INTERIOR''..; ® 2011 ODA, M. ALL I CWS WOWED , .4, , N NEW DUCT I I I I 1 PENETRATION I I I o I I I I I I AbD HEW 2xI3 NIA I II I II I II I II I I I I 1 I I 1 1 I TO EXISTING JOISTS 1 II 1 II I II 1 11 III I I (4)1 LOPATIJN R I U3D ; II I ij 1II I I I I I I I I I I I I I I I II 1 1 I I I 1 1 1 I 1 1 I I I 1 1 1 t II 1 II 1 1 1 1 I 1 <> I I I I I I I I I 1 1 1 1 I Jj 1 HO II I i I 1 1 1 1 1 1 I 1 I 1 1 1 1 II 1 11 1 1 II I 1 III I1 1 I 1 1 I I 1 I 1 1 1 1 I I 1 1 I I I • 1 1 1 &Tai — —I I I 1 1 1 I 1 I. I I I 1 1 1 I 11 1 II 1 11 1 11 1 1 I III 1 1 I (E)2xrl ATI 14 de. tISIS NEV' 7 5LE11 UINIIT I I ON CUB 1 I I I I I I I I I I I 1 I 1 II 1 11 I 11 1 11 1 I i 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ; 1 1 1 1 1 1 1 1 1 1 O s /RUC TUR IN■� FRAMING @ RTU #4 4 G I Nz / , 1/4" = 1' -0" OREGON 2 ee 13, Ze�q • � !EXPIRES:. 6 /30/13 • • MECH UNIT CHARTER MECHANICAL TI FRAMING PORTLAND, OR 04.21.11 � �,� CDG _ 110049.01 �+ R/� l 16697 SW 72ND AVE SURTE 200 PORMAND, OREGON 07224 TE.z (603) 226 -1288 FAX* (60.3) 226 -1670 A NC I - I 1 - 1 I_ C I U RC • IFNCINC: L:1-2ING • PLANNING • INIL ® 2011 amt INC. ALL RIMS w • n S �RUCr� q . R • ����0 P�OFF�s �j MI i OREGON NOTE: PROVIDE PROTECTION OF THE WOOD 0 23 - 5. � G ,Q T a 13. Z SCREWS TO MOISTURE AND DAMAGE IT i - � S D GP • CAULKING C ■ EXPIRES: 6/30/13 ta - n A 0 � v (4) 10x1/2" LONG TEK 7 S SCREWS PER CLIP AT 0 r BASE OF HVAC UNIT - z g 16GAx6 "CUP AT AND AT CURB (8) TOTAL EA. SIDE OF UNIT IT 1 • ° (E) WALL RIGID �� 1 T � METAL CURB PER ,,�+ INSULATION .I UNIT SUPPLIER $ o #8 SCREW AT FLASHING (16GA MIN) N EMBED O .C. WBEAM - REMOVE DECKING AS • I /----- REQ'D FOR DUCTS I • 111 T. r • , g X . K. • • 7. o '� ` (E) 2x DECKING ' 0 • SIMPSON HU48 FACE MOUNT HANGER g EA. END OF NEW 4x TYP• . ADD NEW 2x12 DFL Not AND BETTER P _ $ i TO FACE OF (E) 4x12 -- ATTACH WITH (2) ROWS OF SIMPSON 1/4 "0x4 "SDS . ' SCREWS AT 18" .0.C. STAGGER ROWS 9" o . . SECTION AT MECHANICAL UNIT 3 o -0 0 i = i . O 0 • • . • 0 g'(RUCTURq! ��,3 P ROre �C, G I N 4 ,/ 3 ,/ n 6 3354PE �' 9 711 / , - 0 5:1 " ,„ OR2GON 33 MI0 NOTE: PROVIDE PROTECTION OF THE WOOD 0 e e 13. ti�o � a- SCREWS TO MOISTURE AND DAMAGE 0: 5b n 21 m �� "S D. GP CAULKING C) C z = ' EXPIRES: 6/30/13 I ;Li 13 a M C) (4) #10x1/2" LONG TEK z o > SCREWS PER CUP AT O r BASE OF HVAC UNIT - 0 16GAx6 "CUP AT AND AT CURB (8) TOTAL z I EA. SIDE OF UNIT • P INSULATION i ,1 1 METAL CURB PER �� $ UNIT SUPPLIER - o c) o #8 SCREW AT FLASHING (16GA MIN) • Z 0 :lu 24" 0.C. W/ 2" REMOVE DECKING AS c �_ EMBED INTO BEAM /--- REVD FOR DUCTS 4 , tal K rt c K K 5 K K K K K K C C (E) 2x DECKING I '1(1 z w • - C - m O n g 1. / (E) JOIST SIMPSON HU48 FACE PER PLAN MOUNT HANGER EA. i END OF NEW 4x TYP. 0 i a i s SECTION AT MECHANICAL UNIT /J ... SK in = 1'-0" v. UI p O 0 • 0 `/ SlRUCrV q 33 2 �D PROF `. y. n z 6335'_ 4 2 OREGON NOTE: PROVIDE PROTECTION OF THE WOOD . � ' v fB 13 � Z oo ms � � SCREWS TO MOISTURE AND DAMAGE m GAT "S D. GP CAULKING c N 2 EXPIRES: 6/30/13 A Z _ . • E n V (4 ) #10x1/2" LONG TEK z o > SCREWS PER CUP AT r BASE OF HVAC UNIT - — 71 16GAx6 "CUP AT AND AT CURB (8) TOTAL Z ° I EA. SIDE OF UNIT 7 o R IGID � METAL CURB PER I • o ' INSULATION J UNIT SUPPLIER " . (16GA MIN) REMOVE DECKING AS Z o FLASHING #8 SCREW AT " REQ'D FOR DUCTS iv 24 " O.C. W/ 2 I I II °�' V ' EMBED INTO BEAM I • K c \ Cc 5 c C c C - o V \ I ri ... (E) 2x DECKING a SIMPSON A34 AT 24" z l LENGTH OF NEW BEAM • § M N SIMPSON HU48 FACE . S IMPSI�QUM3F14NGER EA. END z R 2 FACE MOUNT PPNt>J 4 - fP• 4 - (E) GLU —LAM _ I T v GIRDER BEAM ER LAM 3 r PLAN - , 1. 1 • SECTION AT MECHANICAL UNIT o c i� 1" = 1' -0" c 0 } O 0 5- ftUCTU q R ����D PRO fl 1 F. 1 L. i OREGON NOTE: PROVIDE PROTECTION OF THE WOOD. Ti 0 0 & f e 13, /SP <,' SCREWS TO MOISTURE AND DAMAGE u Mil rn T / S D. GP CAULKING C i = (EXPIRES: 6/30/13 I . .2 Z "V . M n z 8 > (4) SCREWS PER CUP AT • n r BASE OF HVAC UNIT • 0 16GAx6 "CUP AT AND AT CURB (8) TOTAL 0 EA. SIDE OF UNIT . T. ° RIGID METAL AL CURB PER g r� o INSULATION �� _ i :; UNIT SUPPLIER t $ o o #8 SCREW AT FLASHING (16GA MIN) o i . o 24" O.C. W/ 2" REMOVE SHEATHING • • j EMBED AS REQ'D FOR DUCTS 7 4 4x6 BLOCKING BETWEEN ..... z A + ` ` JOISTS lk + z,, (E) JOIST PER PLAN —I p i W/ NEW 2X8 WHERE � SHOWN I1 c_--, u , ATTACH NEW 2X TO (E) JOIST W/ (2) ROWS OF 16d NAILS OR #10x3" SCREWS 9 z i AT 18 "O.C. -- STAGGER ROWS 9" U 1 J o -i 8 SECTION AT MECHANICAL UNIT O ° SK 1" = 1 — o " la C 50 O J _ A A CC_2_ 41 I CO I so - FEl . � � II 1 I 1 DESIGN ENGINEEaING I PLANNING TECHNICAL SERVICES � MAY 0 6 2011 j RTH • By • SEISMIC RESTRAINT OF MECHANICAL EQUIPMENT • • • • FOR TENANT IMPROVEMENT • 7940 HUNZIKER ROAD : • TIGARD, OR 97223 • • . project:' 11 -122 ' • prepared for: - CHARTER MECHANICAL • • . • 9636 SW HERMAN ROAD ' • TUALATIN, OR 97062 • • 5003 CTU RA4 . 5����`p PROfFs E O . v y • ' . 12956 9 l • , 4d ;f v&.&- v d OAEGON 26. h O 6z Y Ig6 .. A / C M W O . • EXPIRES: 6ff® . . • • . - prepared by . • • . JOHN M. WORTH, P.E. /S.E. . • • • • Worth Technical Services • • . • • 3004 &E.-50th Avenue • • Portland, OR 97206 - • . May 4, 2011 - . ' • • 3004 SE 50TH AVE. PORTLAND, OREGON 97206 PHONE 503.771.8256 WRTHTEC @AOLCOM FAX 503.771.8407 Ile • • • . • • C H Ae.TE.e m EGN A o<I I C A L r 1 g 40 APJA/Z/ KEll 'oAD • 776A2 D, OR `17 zL 3 5coPL : R FC.2 S 2EL4rED To 5 E I S m i c re 25re,A lAJ F1'1 1Arcoa Eau/ Pen &Mr #Cf3a TuvAir 2 /ME.A/r uo r wT LocAri a ,J • • RTU - I 8 9 a n. IZooF .GO,e8 7Sie TOTAL - ciL5it • Pro - Z 585 Ro04 • • • Cuet • 7 re,rAc. - 4.4o • Rry - 3 /9G7v- Rcor Guk 92 TOTAL - 20S ti • R 7"u-4 zooF Guie 5 7 rbrA t - 4.60 HP- 1 /370e st. 48 ror4t, - 137ott alga -rye TAN lc TbrA L.- / 3161A. • fr (z )(5.6) = 34.6 (2)Y477(z) 6.3 = 40,9 $� 7940 HUNZIKER ROAD Date and Time: 5/3/2011 4:05:06 PM ' /4 ":. 0ZA 40.9 rY . 0z.08 46:5 %, or MCE Ground Motion - Conterminous 48 States = 3 15 4' Zip Code - 97223 Central Latitude = 45.44033 Central Longitude = - 122.776223 /ZOGA it .1331 .* 6z.4 1 7 c c Period MCE Sa /opt (sec) ( %g) 0.2 106.1 MCE Value of Ss, Site Class B • 1.0 037.2 MCE Value of S1, Site Class B Spectral Parameters for Site Class D _. • 0.2 114.6 Sa = FaSs, Fa•= 1.08 • 1.0 061.7 Sa = FvS 1, Fv = 1.66 • AAA JOB NO. l /_- / ZZ. .. DATE Macr!_ PROJECT !4 Q- - r�l2 -_p2 L-I .__vAJ , r I I I I I I l t l SUBJECT _r_ BY _ PAGE • .� DESIGN tNGINtfRING PLANNING �/�(_�- _ OF .. WORTH TECHNICAL SERVICES 1 I 41 SEISMIC ANALYSIS • Site Class - D Project - 7940 HUNZIKER • Ss := 1.061 • • date - MAY 3, 2011 Si :_ .372 Importance Factor I := 1.0 task -. RTU -1 From table 1615.1.2 • Fa := 1.08 Fv := 1.66 • Spectral Coefficients equation 16 -38 Sms := Fa•Ss Sms = 1.146 equation 16 -39. Smi := Fv•Si Smi = 0.618 • equation 16-40 Sds := ().Sms Sds = 0.764 • Mechanical and Architectural Components from tables 9.6.2.2 and 9.6.2.3 Ap := 1.0 Rp : =2.5 • Compenent weight Wp := 965 height of attachment z := 1 • • height of roof h := 1 • • Seismic Force. Fp : _ [( + C2 ) Fp = 353.848 ` J� (Rp) • Multiplier M := Fp M = 0.367 Wp Fp Maximum Fpl := 1.6•Sds•I•Wp • . Fpl = 1.179 x 10 • Ml := Fpl Ml = 1.222 Wp • Fp Minimum Fp2 := .3•Sds•I•Wp Fp2 = 221.155 . Fp2 • M2 :_ — M2 = 0.229 • Wp Allowable Strength Design Fp3 := .7-Fp Fp3 = 247.693 Fpv := .2•Sds•Wp . • M3 := W 33 M3 = 0.257 Fpv = 147.437 P • AAA JOB NO. . DATE _IMAM' 3 - (__-_ _ PROJECT Cr!aar — E. . I I i I I I I I I I ► SUBJECT .5x150 ! 2 7 2 1 _7 . _._ ... _ ... _ • • . DESIGN LNGISEERING PLANNING BY 0- __ _ PAGE Z. OF • . WORTH TECHNICAL SERVICES • A r • • • • SEISMIC FASTENER DESIGN • LATERAL LOAD LATLOAD := 248 POUNDS RTU - 1 UNIT TO CURB CONNECTION FASTENER TYPE - #10 SHEET METAL SCREWS • CAPACITY (PULL -OUT) CAPPULL := 129 POUNDS EACH CAPACITY (SHEAR) CAPSHEAR := 272 POUNDS EACH NUMBER OF EFFECTIVE FASTENERS (PULL -OUT) NUMPULL := 4 NUMBER OF EFFECTIVE FASTENERS (SHEAR) NUMSHEAR := 8 . TOTAL CAPACITY (PULL -OUT) TOTPULL = CAPPULL•NUMPULL TOTPULL = 516 TOTAL CAPACITY (SHEAR) TOTSHEAR := CAPSHEAR•NUMSHEAR TOTSHEAR = 2.176 x 10 FACTOR OF SAFETY (PULL -OUT) FSPULL := TOTPULL FSPULL = 2.081 TO 1 LATLOAD • • FACTOR OF SAFETY (SHEAR) FSSHEAR := TOTSHEAR FSSHEAR = 8.774 TO 1 LATLOAD CURB TO ROOF CONNECTION FASTENER TYPE - #10 WOOD SCREWS • CAPACITY (PULL -OUT) PULLWOOD:= 130 POUNDS EACH CAPACITY (SHEAR) CAPWOOD := 140 POUNDS EACH NUMBER OF EFFECTIVE FASTENERS NUMWOOD:= 4 TOTAL CAPACITY TOTWOOD := CAPWOOD•NUMWOOD TOTWOOD = 560 TOTAL PULL -OUT PULLTOT := PULLWOOD•NUMWOOD PULLTOT = 520 • FACTOR OF SAFETY FSWOOD:- TOTWOOD FSWOOD = 2.258 TO 1 LATLOAD FACTOR OF SAFETY (PULL) PULLFS := PULLTOT PULLFS = 2.097 TO 1 LATLOAD • NOTE - FACTORS OF SAFETY ARE BASED ON ALLOWABLE CAPACITIES • JOB NO. I / - iZ Z . _ DATE PP/4.Y 3, Z21_l PROJECT CN_4.Q?'fse - MS 1111111111111 SUBJECT 604-5111 [G._J S rg.AJ6se DESIGN ENGINEERING PLANNING BY lin _ __ PAGE 3 . WORTH TECHNICAL SERVICES • • SEISMIC ANALYSIS • Site Class - D Project - 7940 HUNZIKER Ss := 1.061 date - MAY 3, 20.1 1 Si :_ 372 • Importance Factor I := 1.0 task - RTU -2 • From table 1615.1.2 Fa := 1.08 • Fv := 1.66 • Spectral Coefficients equation 16 -38 Sms := Fa-Ss Sms = 1.146 • equation 16 -39 Smi := ().Sms FvSi Smi = 0.618 equation 16-40 Sds := Sds = 0.764 Mechanical and Architectural Components from tables 9.6.2.2 and 9.6.2.3 Ap := 1.0 Rp := 2.5 Compenent weight Wp := 660 • height of attachment z := 1 • height of roof h = 1 • • Seismic Force F _ [ (.4d5:wP)].[[i + (2. )]] Fp = 242.01 • P: ` JJ • Multiplier M := — • M = 0.367 Wp Fp Maximum Fpl := 1.6•Sds•I•Wp Fpl = 806.7 Ml := Fpl M1 = 1.222 Wp Fp Minimum Fp2 := .3•Sds•I•Wp Fp2 = 151.256 M2 := F p 2 M2 = 0.229 • Wp • Allowable Strength Design Fp3 := .7-Fp Fp3 = 169.407 Fpv := .2.Sds.Wp M3 :_ W 3 M3 = 0.257 Fpv = 100.837 Wp AAAAA NO. _ - I2Z _ ____. DATE .itt4 1 . PROJECT (.'�.iA_Q-L 4,4 TS . I I I I i I I I I I I SUBJECT �S.LG.... - DESIGN ENGINEERING PLANNING BY . 10 1 .. PAGE _. OF WOR TH TECHNICAL SERVICES I . r • SEISMIC FASTENER DESIGN LATERAL LOAD LATLOAD := 170 POUNDS RTU - 2 • UNIT TO CURB CONNECTION FASTENER TYPE - #10 SHEET METAL SCREWS CAPACITY (PULL -OUT) CAPPULL := 129 POUNDS EACH CAPACITY (SHEAR) CAPSHEAR := 272 POUNDS EACH NUMBER OF EFFECTIVE FASTENERS (PULL -OUT) NUMPULL:= 4 NUMBER OF. EFFECTIVE FASTENERS (SHEAR) NUMSHEAR := 8 TOTAL CAPACITY (PULL -OUT) TOTPULL := CAPPULL•NUMPULL TOTPULL = 516 • TOTAL CAPACITY (SHEAR) TOTSHEAR := CAPSHEAR•NUMSHEAR TOTSHEAR = 2.176 x 10 FACTOR OF SAFETY (PULL -OUT) FSPULL = TOTPULL FSPULL = 3.035 TO 1 LATLOAD FACTOR OF SAFETY (SHEAR) FSSHEAR := TOTSHEAR FSSHEAR = 12.8 TO 1 LATLOAD CURB TO ROOF CONNECTION • FASTENER TYPE - #10 WOOD SCREWS CAPACITY (PULL -OUT) PULLWOOD := 130 POUNDS EACH • CAPACITY (SHEAR) CAPWOOD := 140 POUNDS EACH NUMBER OF EFFECTIVE FASTENERS NUMWOOD := 4 TOTAL CAPACITY TOTWOOD := CAPWOOD•NUMWOOD TOTWOOD = 560 TOTAL PULL -OUT PULLTOT := PULLWOOD•NUMWOOD PULLTOT = 520 FACTOR OF SAFETY FSWOOD TOTWOOD FSWOOD = 3.294 TO 1 • LATLOAD . FACTOR OF SAFETY (PULL) PULLFS := PULLTOT PULLFS = 3.059 TO 1 LATLOAD • NOTE - FACTORS OF SAFETY ARE BASED ON ALLOWABLE CAPACITIES • . AAA JOB NO. _ /l-.IZZ _.._.____._ DATE )19 _3 7A/.I__ _ PROJECT &t_l_Aar r2- "_. _ IECA1 _UA/JTS._-.... _ • 1 1 I I 1 I 1 I I 1 1 I 1 SUBJECT 5 le. A95 4Q,. DESIGN ENGINEERING PLANNING BY _r/77A/__..._ ___ PAGE S . OF .__ _ .. WORTH TECHNICAL SERVICES • • • • • • • SEISMIC ANALYSIS • Site Class - D Project - 7940 HUNZIKER Ss := 1.061 Si .:= .372 date - MAY 3, 20 :11 • Importance Factor I := 1.0 task - RTU -3 From table 1615.1.2 • • Fa := 1.08 Fv := 1.66. • • Spectral Coefficients equation 16 -38 Sms := Fa•Ss Sms = 1.146 equation 16 -39 Sini := Fv•Si Smi = 0.618 equation 16-40 Sds :_ (}Sms Sds = 0.764 Mechanical and Architectural Components • from tables 9.6.2.2 and 9.6.2.3 Ap := 1.0 • Rp := 2.5 Compenent weight Wp := 2059 height of attachment z := 1 height of roof h := 1 Seismic Force Fp :- [(4.AP.ScJs.WP)][[ .+ (2.)]] Fp = 754.997 • Multiplier M.:= Fp M = 0.367 • Wp Fp Maximum Fpl := 1.6 Sds I Wp Fpl = 2.517 x 10 • • • Ml = Fpl M1 = 1.222 Wp Fp Minimum Fp2 = .3•Sds•I•Wp Fp2 = 471.873 • M2 = Fp2 M2 = 0.229 Wp • Allowable Strength Design Fp3 := .7•Fp Fp3 = 528.498 Fpv := .2•Sds•Wp M3 := W 3 M3 = 0.257 Fpv = 314.582 P AAA . JOB NO. !i' _. DATE _/n.AY3 o// _._. PROJECT _(,AMA TLR - N1 N .uN!r$__: _ III 1 1 1 1 1 1 1 1 I i SUBJECT S/rtlC '~ ! TV 3 . _.___.._ _ __ DESIGN ENGINEERING PLANNING BY J PAGE _4___ OF WORTH TECHNICAL SERVICES • • SEISMIC FASTENER DESIGN LATERAL LOAD LATLOAD := 529 POUNDS RTU - 3 UNIT TO CURB CONNECTION FASTENER TYPE - #10 SHEET METAL SCREWS CAPACITY (PULL -OUT) CAPPULL := 129 POUNDS EACH CAPACITY (SHEAR) CAPSHEAR := 272 POUNDS EACH NUMBER OF EFFECTIVE FASTENERS (PULL -OUT) NUMPULL := 6 NUMBER OF EFFECTIVE FASTENERS (SHEAR) NUMSHEAR := 12 TOTAL CAPACITY (PULL -OUT) TOTPULL := CAPPULL-NUMPULL TOTPULL = 774 TOTAL CAPACITY (SHEAR) TOTSHEAR := CAPSHEAR•NUMSHEAR TOTSHEAR = 3.264 x 10 FACTOR OF SAFETY (PULL -OUT) FSPULL ;= TOTPULL FSPULL = 1.463 TO 1 LATLOAD FACTOR OF SAFETY (SHEAR) FSSHEAR := TOTSHEAR FSSHEAR = 6.17 TO 1 LATLOAD CURB TO ROOF CONNECTION • • FASTENER TYPE - #10 WOOD SCREWS CAPACITY (PULL -OUT) PULLWOOD:= 130 POUNDS EACH • • CAPACITY (SHEAR) CAPWOOD := 140 POUNDS EACH • NUMBER OF EFFECTIVE FASTENERS NUMWOOD := 6 TOTAL CAPACITY TOTWOOD := CAPWOOD•NUMWOOD TOTWOOD = TOTAL PULL -OUT PULLTOT := PULLWOOD•NUMWOOD PULLTOT = 780 FACTOR OF SAFETY FSWOOD:- TOTWOOD. FSWOOD = 1.588 TO 1 LATLOAD FACTOR OF SAFETY (PULL) PULLFS PULLTOT PULLFS = 1.474 TO 1 LATLOAD NOTE - FACTORS OF SAFETY ARE BASED ON ALLOWABLE CAPACITIES • AAA JOB NO. / i / 1- _ . DATE /!1' 3, awl_.__ PROJECT c.thq. _erg.12 - Awe/4 _._ _thzer_S i I I I I I I t I SUBJECT 5�4 Ism,c /�ASr��t/- .�.5__- _�e 3 . _ . DESIGN ENGINEERING PLANNING BY - PAGE 7 , _ OF ,. -_ -- WORTH TECHNICAL SERVICES v • q • to SEISMIC ANALYSIS Site Class - D Project - 7940 HUNZIKER Ss := 1.061 date - MAY 3, 20 if • Si :_ .372 • Importance Factor I := 1.0 task - RTU-4 From table 1615.1.2 Fa := 1.08 • Fv := 1.66 • Spectral Coefficients equation 16 -38 Sms := Fa. Ss Sms = 1.146 equation 16 - Smi := Fv•Si Smi = 0.618 • equation 16 -40 Sds := (}Srns Sds = 0.764 Mechanical and Architectural Components from tables 9.6.2.2 and 9.6.2.3 • Ap := 1.0 Rp := 2.5 Compenent weight Wp := 660 height of attachment z := 1 • • height of roof h := 1 • • • Seismic Force • Fp [ (.4.AP . s:s.wP)][[i + (2.)]] Fp = 242.01 • Multiplier M := W M = 0.367 P • Fp Maximum Fpl := 1.6 Sds I Wp Fpl = 806.7 • M1 := FPl M1 = 1.222 Wp Fp • Fp2 :_ .3 Sds I Wp Fp2 = 151.256 M2 := F p 2 M2 = 0.229 • Wp Allowable Strength Design Fp3 := .7-Fp Fp3 = 169.407 Fpv := .2•Sds• Wp M3 W 3 M3 = 0.257 • Fpv = 100.837 P AAA. - JOB NO. J_/_- lZZ_ DATE _ //Mg . • PROJECT G0.01. - _. [Al. is . ' ( 1 1 1 1 1 1 1 1 1 1 1 1 SUBJECT ISWG _! -,4' . . .. _ DESIGN ENGINEERING PLANNING BY %V PAGE g . OF .. WORTH TECHNICAL SERVICES y y • • • • SEISMIC FASTENER DESIGN • • LATERAL LOAD LATLOAD := 170 POUNDS RTU - 4 UNIT TO CURB CONNECTION • • FASTENER TYPE - #10 SHEET METAL SCREWS CAPACITY (PULL -OUT) • CAPPULL := 129 POUNDS EACH CAPACITY (SHEAR) CAPSHEAR := 272 POUNDS EACH NUMBER OF EFFECTIVE FASTENERS (PULL -OUT) NUMPULL := 4 NUMBER OF EFFECTIVE FASTENERS (SHEAR) NUMSHEAR := g TOTAL CAPACITY (PULL -OUT) TOTPULL := CAPPULL•NUMPULL TOTPULL = 516 • TOTAL CAPACITY (SHEAR) TOTSHEAR := CAPSHEAR•NUMSHEAR • TOTSHEAR = 2.176 x 10 • • FACTOR OF SAFETY (PULL -OUT) FSPULL := TOTPULL FSPULL = 3.035 TO 1 LATLOAD FACTOR OF SAFETY (SHEAR) FSSHEAR := TOTSHEAR FSSHEAR = 12.8 TO 1 LATLOAD CURB.TO ROOF CONNECTION • FASTENER TYPE - #10 WOOD SCREWS CAPACITY (PULL -OUT) PULLWOOD:= 130 POUNDS EACH • CAPACITY (SHEAR) CAPWOOD := 140 POUNDS EACH NUMBER OF EFFECTIVE FASTENERS NUMWOOD := 4 TOTAL CAPACITY TOTWOOD := CAPWOOD•NUMWOOD TOTWOOD = 560 TOTAL PULL -OUT PULLTOT := PULLWOOD•NUMWOOD PULLTOT = 520 • FACTOR OF SAFETY FSWOOD TOTWOOD FSWOOD = 3.294 TO 1 • LATLOAD FACTOR OF SAFETY (PULL) PULLFS := PULLTOT PULLFS = 3.059 TO 1 LATLOAD • NOTE - FACTORS OF SAFETY ARE BASED ON ALLOWABLE CAPACITIES A •AA JOB NO. DATE ../$10.7. /t__ PROJECT cEAl2r'>>rd2 I?1E,C/�,F vaJ / T. S I1I1IiI1I1III .- . SUBJECT - .5!►'if /546.77641_442.S. - ¢ DESIGN ENGINEERING PLANNING BY ,jyl� PAGE OF ___._._. WORTH TECHNICAL SERVICES SEISMIC ANALYSIS • Site Class - D Project - 7940 HUNZIKER Ss := .1.061 • • Si :_ .372 date - MAY 3, 2011 Importance Factor I = 1.0 task - HP -1 From table 1615.1.2 Fa := 1.08 Fv := 1.66 • Spectral Coefficients ' equation 16 -38 Sms := Fa•Ss Sms = 1.146 • equation 16 -39 Smi := FvSi Smi = 0.618 • Sd ().Sms Sds = 0.764 • equation 16-40 Mechanical and Architectural Components • from tables 9.6.2.2 and 9.6.2.3 • • • Ap := 1.0 Rp := 1.5 (shallow) Compenent weight . Wp := 1370 • height of attachment z := 0 height of roof h := 1 • Seismic Force Fp : _ [(.4.AP + 12 ill Fp = 279.085 \ JJJ • Multiplier M := W M = 0.204 P Fp Maximum Fpl := 1.6•Sds•I•Wp Fpl = 1.675 x 10 M1 := Fpl M1 = 1.222 • Wp Fp Minimum Fp2 := .3 Sds I Wp Fp2 = 313.971 M2 := F p 2 M2 = 0.229 Wp • Allowable Strength Design Fp3 := .7•Fp Fp3 = 195.36 • Fpv := .2.Sds.Wp M3 :_ 3 M3 = 0.143 Fpv = 209.314 AILAA JOB NO. 1 /- 1Z Z DATE P'AI" 3 (._ _ PROJECT :ale -Me ^ . »'1EC T_S° .. i l i I i I I l i I, j SUBJECTS 5Pll_G, - HP I DESIGN ENGINEERING PLANNING BY _ - _ _ PAGE ....IA_ _ OF . WORTH TECHNICAL SERVICES • •. + . • • Wpmax • CGh Wpmin • • • • • • BASE DIMENSIONS Fpa CG minimum demens = Width 31.5 CO • other dimension - Depth = 59 vert. center of gravity - CGv :. 37 A width B horizontal center of gravity Width y - CGh := • • 2 number of effective anchors - Ne := 4 • Wpmax := Wp +Fpv Wpmax = 1.579 x 10 Wpmin := .6Wp — Fpv Wpmin = 612.686 • Fpa := Fp2..7 ASD Fpa = 219.78 SUMMATION OF MOMENTS - (max) reaction at B Bmax := I(CGv Fpa) + (CGh Wpmax)] • Bmax = 1.048 x 10 • Width • reaction at A Amax = Wpmax — Bmax Amax = 531.503 If Arriax is a positive v - there is no bolt tension . SUMMATION OF MOMENTS - (min) rection at B Bmin ;_ [(CGv Fpa) + (CGh Wpmin)] 13min = 564.497 • Width reaction at A Amin := Wpmin — Bmin Amin = 48.189 If Amin is a positive value - there is no bolt tension . For Shear Design Shear per anchor Vb; F p a Vb = 54.945 Ne • • • • • • AAA JOB NO. it ' I L.__ .._ DATE .MAC PROJECT C it-IALi'E _: eCF•6 . ave. I I I I I I I SUBJECT SL /. *21.c_ .... _. . . • - . - DESIGN ENGINEERING PLANNING BY f/yf� ._._ ... PAGE __.. 11 _. OF ... _ WORTH TECHNICAL SERVICES 1 • • • • • SEISMIC ANALYSIS • Site Class - D • Project - 7940 HUNZIKER Ss := 1.061 Si :_ .372 date - • MAY 3, 20'11 Importance Factor I := 1.0 task - WATER TANK • • From table 1615.1.2 Fa := 1.08 Fv := 1.66 • • Spectral Coefficients equation 16 -38 Sms := Fa•Ss Sms = 1.146 • equation 16 -39 Smi := Fv•Si Smi = 0.618 equation 16-40 Sds := ().Sms Sds = 0.764 Mechanical and Architectural Components from tables 9.6.2.2 and 9.6.2.3 • Ap := 1.0 Rp : 2.5 • Compenent weight • Wp := 1396 • height of attachment z := 0 • height of roof h := 1 Seismic Force Fp : _ [(.4.AP + (2. Fp = 170.629 Multiplier M := Fp M = 0.122 Wp Fp Maximum Fpl := 1.6 Sds I Wp Fpl = 1.706 x 10 Ml := F P 1 Ml = 1.222 Wp • Fp Minimum Fp2 := .3•Sds•I•Wp Fp2 = 319.93 M2 := Fp2 M2 = 0.229 Wp Allowable Strength Design Fp3 := .7•Fp Fp3 = 119.44 Fpv := .2•Sds•Wp M3 := 3 M3 = 0.086 Fpv = 213.286 Wp AAAk JOB NO. _ _/1. - . /2Z - -__ -- DATE ZD -- PROJECT (sli(/_Ar . - _. nt4c4 . fJ A) / r5. i l i l l l l i l l SUBJECT 5 5 ,ae_ uA.rg - - DES IGN ENGINEERI PLANNING BY TIVW - __ _ ____ PAGE __(Z OF WOR TH TECHNICAL SERVICES ti • • • • ANCHOR DESIGN - SHEAR - PER ACI 318 APPENDIX D CONCRETE IS ASSUMED TO BE CRACKED POWERS WEDGE BOLT JOB REFERENCE - 7940 HUNZIKER DATE - MAY 3, 2011 • DESIGN PARAMETERS anchor diameter d := .375 area Ase:= .103 • number of anchors N := 1 • edge distance C := 5 spacing . S = 0 depth of concrete H := 5 concrete stength fc := 3500 'psi min. embedment depth: Hef := 2.125 min. depth of concrete Hmin := 4 . minimum edge distance Cmin 1.75 minimum anchor spacing Smin := 2.5 • • Minimum depth of hole Ho := 2.5 steel strength . SS := 4825 tensile strength Futa := 10300 psi reduction factor - shear theta2 := concrete factor - craked - cast -place 24 concrete factor - post - installed -17 concrete factor Kc := 17 • BASED ON VALUES FROM ESR - 2526 • • AAA" JOB NO. _ 1 '1Z Z . DATE M4!1f_ _ .3, Lott PROJECT G'f,EA __. t & AI_ rS .._._... 1 1 1 1 1 1 1 1 1 1 1 1 1 SUBJECT _CG4l.C1e!¢!"__ DISIGN ENGINEERING PLANNING BY jfl _ _ PAGE 15. ._ ,•_• _ __ . OF WOR TH TECHNICAL SERVICES • • • • job reference - 7940 HUNZIKER • date. - MAY 3, 2011 SHEAR DESIGN • • • CALCULATE STEEL STRENGTH • • Vs := N• 1000 Vs = 4.825 kips • Vsf := theta2.Vs Vsf = 2.895 kips • • CALCULATE BREAKOUT STRENGTH IN SHEAR Avo := 4.5.(C Avo = 112.5 sq in second edge distance at a corner C2 := 0 make entry Avl := 2•(1.5•C)•H Avl =75 sq in • Av2 := 1.50(1.5.0 + C2) Av2 = 56.25 sq in Av3 := [2.(1.5.C) + S].H Av3 = 75 sq in • modification for eccentricity e2 := 0 make entry • Wecs :_ _ 1 Wecs = 1 CI _( • • modification for edge effect • • Weds := .7 + [.3.[ 2 -1] Weds = 0.7 if C2 is greater than 1.5C use 1.0 • • enter appropriate value Wedsa•:= 1 make entry Wcr := 1 concrete is cracked L Hef • • • AAAAA JOB NO.. ../.I- /ZZ___. DATE A :__3,TAt ( _ _ PROJECT CEfRR f.Ode . vN / T,$ 1 1 1 1 1 1 1 1 1 1 1 1 1 SUBJECT _.00.V 1�_ ./e44De S _......__ —_ • DESIGN ENGINEERING PLANNING By - .17414./ .. _.._ PAGE 14' _ OF _,.. ._ _ WORTH TECHNICAL SERVICES E s. it • job reference - 7940 HUNZIKER • date - MAY 3, 2011 • [7-[( dd.5} lfc 5l ( J Vb : Vb = 4.011 kips 1000 • • Vcb Avl l W� Wedsa•Wcr•Vb Vcbgl = 2.674 g ( Avo ) • Vcb A Vcb = 2.006 ( A vo ) . wecs.wedsa.wcr.vb Vcbg3 := ().wecs.wedsa.wcr.vt Vcbg3 = 2.674 Avo enter appropiate value Vcb := 3.515 • Vcbf := theta2•Vcb Vcbf = 2.109 kips Ultimate shear of steel Vsf = 2.895 kips enter controling value Vu := 2.109 make entry Va := Vu Va = 1.506 ' . ADS . 1.4 • • • • AAA JOB NO. _l&' /L Z _ DATE 0104 / 1 _ 3 .1.2. 0 112---- PROJECT CWA /Z ._- _ .fih6 L_._t/jc! /TS _ _ I � I 1 I I' 1 1 1 SUBJECT Oat/ G2Fd �9NcrccQ�s ....__ ,_ DESIGN ENGINEERING PLANNING BY �� ._.._. PAGE 15 __. OF _ WORTH TECHNICAL SERVICES • • ALLOWABLE TENSION • • • . steel strength in tension Nsa := 10300 • • reduction factor theta3 := .65 • • steel strength Nsag :_ (theta3 N Nsa) 1000 Area 1 Anco := 9•Hef 2 Area 2 Anc:= [(1.5•Hef) + C]•[(3•Hef) + C] eccentricity Wee := 1 edge distance Wed := 1 • cracked concrete We := 1 Wcp := 1 • • • Nb (Kc•fc•5)•(Hef 1.5) • group of anchors Not apn Anc _ C J•Wec• Wed •Wc Wcp-Nb breakout strength Ncbg A"co g g 1000 ' • Steel strength Nsag = 6.695 kips Break out strength Ncbg = 7.139 • • • Enter controling value Ncon := 6.695 • Allowable tension Nallow := Ncon . Nallow = 4.782 kips 1.4 • Allowable shear Va = 1.506 kips • actual tension actual shear JOB NO. I1 -12.Z DATE _An Y__31242/ ). PROJECT e$MeTE4 '.f ff -41-!VI I 1 I 1 I 1 1 1 I l l 1 1 - SUBJECT 6taiCAL.Irla DESIGN ENGINEERING PLANNING BY - �m- �- - - - - -- PAGE :lb -- •OF - - - -• - -- WORTH TECHNICAL SERVICES • Front Left Back Left •) • • Corner: Corner: . 21.5 Ws 202 lbs 4 4 "— . . --„------Z=:-..---- le.====ncrnaen ■ ,1 e - .4,'"wl 0 HI , \ / i i 1. i :Hi a I .0 1 i: „ n , y ,•• SLi 8 ,.... 1.••• 11 1,4 ' N I 0 f...• : 1 : • , _.=...--=.1..-..._ . ....•••••:••._. .._-z.z...4•_ ---------------- . i .1:: %.!': trilt . i s ' - ',14 17 ';... 1 - 1 i ■ I L Z,..,..j Front Right 1 D'+X Back Right . • Corner: Corner: 244 U3S . 0' • 82" 229 lbs CGx: 39.7' CGy: 20.5' Total We;ght: /390 lbs COIL suPewcafvER . . .. .. . . . _ „..- # t ...• .... ...---1 - - \ / I 193 • . _ ( • / 318 48- r • —.,-- -• o I•M'/IIIIIIIIIIIIII INOMIIIIIMIODEOI ea i — I • Ku. toomc 5Z-4- r -- A 52J 1 ll .. i unvic Luc \ CAI (Al4) (4 CORNCRS) \ / • lag ..-/ AT= strfaNiraiSZE — Or umturAcruRCR FOR ORAiN co:in/CCM. DETAIL A .3... rop. :: .,„ 1...11 (2 ,.,..... i SEC DETAIL ..... • f I I LW l itcht .. . e.. .... : I 14/ di .Y.°).- / rt, i Iii I I • \ p.m L'WYW I Ng .1,4 slohlyAbutri me m .. a aa 73 xp— 6 ir . .s3. ''. I — — I SE Dt1alt. p MG muse MMHO . . _ ...t; - .. j ..- ,.. ....- Eezt F aa •A• II? _—_,.3_—, 4 -..-3,g 9 --1 -• 61 DISTAOL 83 VIEW . I —I— • FRONT FRONT i I - real RIGHT MC VIEW 411 44 r r 4.— ROV FILTER ER COIL ik svIrci Is ., i ONTROLS AND . i n HEATER 4 I COMPRESSOR :N ISMIRIIIN. I-I ACCESS ACCESS \ 11111 6 L i nut !pi III 1 ii wrd,• . I.' OUTSIDE ,..._ I=I I--; .0::■111■_.„ „, NMI 111111=1•Mi :1111 AIR • L-- - ---401--17d SUPPLY WW1 oirot BASC PK 7. 131 a" tom . 14 .. 82 _ &MX 11AtI RA. • OISISCC SW RNL R0-00007 NEW 03/16/10 SJS : • NOTE: ALT DILIENSTONS ARC IN INCHES ,• • AAA JOB NO. a'/Ze- DATE MA.Y__3.,_Wi I. . . PROJECT de_oi.ot-ri&_e_7_" ___!_tfegg.....4 TS . • I 1 I i I 1 1 1 I i I . SUBJECT .i.drs — gra-/ DESIGN INGINFIRING• PLANNING BY _•thins). . ___ • PAGE OF _._ _ 1 1 WORTH TECHNICAL SERVICES • • • • • • • 74112in1.D. I T I t: I 7 7/8 in 183/4 in SA 10114 in 25118 in 361 /4 in 34118 RA in ID . I- AL A • I • PLAN • II I I , ELEVATION 1 Weight 751bmass Knocked down Roof curb TC-5 Aaon RQ 002 -006 Standard I PT nailer • AAA . . JOB NO. _ .. _ DATE MAY__ A. 2 ( PROJECT et[ enE.R. _ G EL — . v'V %TS___.__..._.. _ 1 1 1 I' 1 I 1 I 1 I 1 1) SUBJECT (4.1.1_ L..__. .,.._.. DESIGN ENGINEERING PLANNING ' � _ • _. WORTH TECHNICAL SERVICES BY �.__.._._. PAGE O r F ., , I CORNER WEICIIMBT PEACE/RADE p • 27•13A I xI! E II C zM 201 1 • • I tIaI m) r8 1 ��0�' 1191A v x .: = . FLUE OUTLET <p - % ,1„)... ` . 4 L _ \\ SUPPLYO/3 /r�( / `�j���l� A ENTRY ( mn l NPT •, - .1 .A . • \off L21 • (MI 1181 men) (889 mm) • a n INLE T oa � `\ \ • � � I II it , . / • 16 2 1 4 0 .4 Allf DISCONNECT - III Ij ' rI IV' i ' SUPALISO WNN �l4 \'e POWER ENTRY ms • BURNER CONTROL ENTRY • _ EsSO I4 i ACCESS LS 17 9.37 y � 1238 rRm) (233 Rlmt • �/ \ \ DAS6EIZTR10At • ENTRY OMEGAS . „a • I ops,. I ib III Ill I. 1 .. , (tee.' v j*;�, 1 a (SIEMI)• i ` , • ' � �\ 4 � +�j�` lasi 1 9 • \.� �0 \ yam` IReismN • (112t mmI � I - 2.0 . 19 . I Unit Description: McCluay Model Number: MPS004B • I Unit Dimensions & Weights: Unit Length: 75.5 In - Unit Height: .35.0 in • Unit Width: 48.5 in vi Unit Weight: 585 lb AAA . JOB NO. . _JL_IZZ__... _._ . DATE NA'fV . 31 ZA/ I . PROJECT . & m u t e 4...' ._ 1 E _ C a _ _ . . . . .- I I I I I I I SUBJECT ..St/SS /DL?1..5___.- _.._1QT0_7 - ..-- -..... DESIGN ENGINEERING PLANNING BY �/1(U______. ___ PAGE . H.._ OF WORTH TECHNICAL SERVICES • d; r • TC -5 Non - Insulated Roof Curb for McQuay Units • ' ThyCurb ,.___ ' by the fabricating division of �� Thybar Corporation MPS 003A -006A • 1 . w® MP 003B -005B • • • / 38 1.D. 67� g I.D. \ � • ;�� 13 20 • • A I I 4;%, :,..- ...%, ie. --..„.....,:>,...„_...-- • �\ I -- 13 + 8 \ i • _ ,- 1 4 (TYF ) • r 1 I 2016 I ii . j____.11 _._...._. • 7 Supply Duct Size T 2x4 Wood Nailer I I - A - 4 1 I ..... ......... Gaiv. Steel is Construction 201 16 i; Typical TC-5 Section • If pitched, please Indicate amount of pitch, ditectlon and minimum height on drawing. (Refer to General Information section for Roof Curb Pitch Information) - Qty McQuay ThyCurb # A B H Tag • MPS 003- 005A,B MQ5RC01062 22 37 7/8 12. Li* MPS 008A MQ5RCO2275 27 518 43 3/8 2110 . AAAA JOB NO. 1I_/ZZ .. - -- -- DATE .W1. . -. _ PROJECT .4#/ zr ,Q /#4.414 _ vIV/fs - -_.. -- I I I I I I- I I I I I J SUBJECT _ U'. ...._( .. .. _..._ ___ . DESIGN ENGINEERING PLANNING fl l /_ BY _ _ � /�(�(,/- ---- - - - - -- PAGE - 2.4.___ OF ... _..... WORTH TECHNICAL SERVICES' •. I t • • • 7 1222 L ZS FORCED UP eo. 0U751Q AIA\ 24 • • KAU:! •.11ft•AR• 17 DETAIL B ♦..0 -- I • . 2325 102244 t, CCL • 72125 fA°!M!a•M4 cc]: • • r u n 213 NUMBER OF CONDENSER FANS ':'• . 8-10 TON - 1 FAN 13-15 TON - 2 FANS 4 Lb _t 9 Ca l • 1 2.281~ 911 ' um 12271• 4.552 87294 •t"tt.•,, 4 ul.mec.t°•.t.ct 7175 Ecor.°IttA �I Q IN _ Kenn UV • tstu ACCESS TO CONTROLS _ �bCQ /P9ESSORAND ,3,,. •�._ 1 ;�Ir 1 .�1. {4302 t1EAT2tO VESTIBULE ! "101 � 7 � l�p•4t .LR l ` ��` � im .• ,w lam', ' na Y°" mot. ° 1 _______ 2375 °. • 27.527 20375 mu, 'a... tvc 1 • ttiGLIM1p /9184 /u20.0.iI 77.75 t.•rumst KA It l• •VSVp COf�� DAIP 4! 211 110T25.: E cwsay2TTU Lgar CW1ZZCRDY. • AU. DV / ES1077S T000TSI DE I ALLOW .02$' SCREW CLEARANCE AROUND UNNDERSIDE OP SASE. • Tag: RTU -3 Job Information Unit Information Job Name: Charter Medi Offirec Approx. Op./Ship Weights: 1067 / 19671ba. Job Number: Job #18 Supply CFM/ESP: ' 3200 / 1.5 in. Ntg. Site Altitude: O fl Final-Filter PV/ Qty: 23040 fp n / 4 Refrigerant R••110A Exhaust CFM/ESP/TSP: 3000 / 0.50 / 0.72 in. Ng. . Outside CFM: 1030 Ambient Temperature: 95 °FDB / 75 711'B • • . AAA . JOB NO. 1.1 'qZL .___.___ . DATE mi4f__5 .2.0l1.. . PROJECT C n i € _;_..i?j ILL. elate r'S • - - -•- ' - • I I I i I i I I II 1 1 I •SUBJECT _OUTS. 47.inf. 6 - 2TU 3 • DESIGN ENGINEERING PLANNING BY .N/2id PAGE ,__ZI .- OF ._ --- WORTH TECHNICAL SERVICES • • 0 a C — -I • = _ y 4 I 3 2 m I 1 n • • 72 7/8 in Curb ID x n — • • nT _— o 0 r Z N A> 13 SA g 0 / _ 0 15/16 in �' 32 3/8 In n_ 3915/16 In � 0 p / O B < z �, _ SA O _ A -,--- ----- - r• • 1 \\ � � v 15 5/16 in 18 7/8 In -C C O 115 {16In • Q O � C Z 4 . ;. , -I .... - [... 14121n-'j -- 221/41n 2212 in -1-13 5/8 In R ; . [ I KNOCKDOWN -1 I-.-112in 1 11 SECTION A,A ' x 4 Wood Nailer • ; • i . 1— 12 in ( 48 7/8 in 12 in — 1 I 14 In 18 Ga. GaN. :1 A Steal A •L la In 0 06 1 • • o • I 1 send 25 FT t 1/T x VC Gask aing/rure SECTION B - Approx. Corporation N ; 1 r.5 style Root cure Approx. Approx. curb Weight Toro �, I. �. .a • ' Form tnaita��s•cownct 921b Qtr �roen: bixattn3rzoos ❑ . A1 t 1.'t 4 Dawn Bymesek • I 3 2 own. No.RCo4Y13.id,v CI O 12. • I 1 • • . 1 , i . • • CORNER W MUM BY PERCENTAGE • * • • q C 12w 1 ! 1 M 1 26% (1186 mm) • < qP ' 's 4 X qi- 711.61 0618 n6r4 • FLUE OUTLET � '�a ■ . SO O ` � SC - ENTRY G� ��%5 A !/ 113 . m 1183 m) �! i i (B69•roNni \�� i I I AAIRINLET ON �. t i ll 1 i . 24.2- �\ i (8KM mml � <` ` i 11111 011 � j , / DISCONNECT `� ii I II! lI iII • PIJ SUP b WfuNIT \I' �' , , S'� � �POWER ENTRY BURNER ACCESS � I, • CONTROL ENTRY CONTROL BOX B 8.37 1457MM ACCESS 1233 .1 [2311 mm) . IrASE E ICAL • FMRY x A I ~ . I �. 1 r i • � ii • . �3at . / � . \� Ill" lea6 mm) e�� 20A0 �- 0 i505mmJ s �• i � 40 13.11 201 2p � (339 mm) �'' �) i51mm) ie o . �� ` -00 �� � ` i. 14.4 �•' a7m 9.57 ( zm) 6.81 (1nmrRJ \ � ��al 73.24 gq 1 (183SmmJ • (11 21. ` ` ` y ' 0 . • 4 \ ..--- a01 (51 mm) [Unit Description: I McQuay Model Number: MPS004B Unit Dimensions & Weights: I Unit length: 75.5 In • • Unit Height: 35.0 in i - Unit Width: 46.5 in . Unit Weigh!: 585 lb • • AAA JOB NO. .// Ji2_ - :. .. DATE /.'!1l¢ ._3 p.D./ J . __ PROJECT eNogTeL - =- C-1`iec . t/.vir _ . _... . I I I I. I I I I I I I I. I SUBJECT GtJTS_A_L!X ... le..TV __ ___ .___.__.. ... OE S I GN ENGINEERING PLANNING _ BY .._find . ____.. .. PAGE Z ✓_ OF _ WORTH TECHNICAL SERVICES • •`t • 0 - 1 N x n z _ m — . - - - --' ---- -- x = — Z n n - T a 7n as N _ T ^ A - 67( LE. _e_ i n z _ - 29E--1 rDUCTCOLlAR — 6 — — m [1 I _ Z r Q Er O Et. zg 42a 382 5 g t 0o cn v c- s • -<c 73 O ? al Q W L L L aK4PRPSSURE m 24• W TREATED NAILER n 0 p - -{ PP ViFW �►C PLAN VIEW 7 18 GA. PRIME GALV. I� i 24 7g 1-- ^t ',l lu - i- oucrLINER ! C 1'p `_ it - _ !� II INSULATED FLOOR PAN ! ,ID 01 II j� �9G.�� ! A 1 11 24 -121` r 11 I I I 11 • TYP, SECTION VIEW P 0 p FVATUIN VIEW m `' m SUBMITTAL ONLY i KNOCK DOWN CONSTRUCTION FOR SHIPPING . gy p i • �k DIMENSIONS TO BE VERIFIED • 1 .I2 4126 MOVED HORIZONTAL OPG LOCA LOCATION O C. Horizontal Supply Rev. Int I Date 0 TI I pply �'� Un4nsulated Roof Curb For l Plies ,� A NIcQuay MPS0048 Thybar Corporation • No Return Air Tag RTtld ThyCurb • • otrl wt,e: loafaarlent ❑ ®81dp1GD Drawn By: JZIMMER Sheet of ❑ We A,sOn. Dwg Na 111149 RC Suhndto! ❑ • r , . . • • 4.0 Jo' SINGLE MODULE T ROTH: Y r----- --- ASP-10/.152 A9 -76Y ASP -702 I. NOOBSTRUCRONS ALLOWED ABOVE DU1 IMMERSER FANS. WWII r w ti{ ♦■ A I 57 7/8" 7Y 84. 3 .RFWI@EOAIRINtAxECLEARANt><42:' 8 59 7/ 78 • I 88• 4. REQUIRED QEARAhYEFpnN ANY HIGIVOIW�PANEi l2' . ^j; ii! C 174 7/e' : 77 ,/Y .aa s/,a' S. REOWREDCIEARAKE FROM ANY mOLLIEDWALL:38: = 'Er 0 31 I/r ae• .35• it NO CLEARANCE MIMED MROM „ .:QM* • ii • ■IIMI•111.11\11■11• 11•0•0111.1.11 • 1 L 1 t t, 4 ROln t -- -- / \ — .•\ / I X I , /" I --sr SCUM q- P �\'i 0 win \I 1 mamma "•` �/• �' 10118Nf10rJ1 ' • r •• \� / — ill ,>C: .\ A -- EQOIflVtY 8I88T5IOO5 r REARVIERF • 'Now IrinadFatknlsIn a pha nos vans TAW air Wks than madakr, pkasewawa A ulusi Ld1rdearaam General Data Table of Air Cooled Standard —X Modules . Compressor ASP -10X ASP -15X ASP -20X ASP -30X ASP -60X ASP -61X ' Type SCROLL SCROLL SCROLL SCROLL SCROLL SCROLL Nominal Capadty (per compressor) 5 7_5 10 15 30 30 . Qua " 2- TANDEM 2- TANDEM 2- TANDEM 2- TANDEM 2- TANDEM 2-TANDEM • Evaporator ASP -10X ASP -15X ASP -20X ASP -30X ASP -60X ASP Type BRAZED PLATE BRAZED PLATE BRAZED PLATE BRAZED PLATE BRAZED PLATE BRAZED PLATE Weight 54.4 63.8 I 83.7 100 214.4 214.4 Eva p Water Storage (gallons each) 1.08 1.4 I 2.03 2.54 5.86 5.86 - Quantity 1 1 I 1 1 1 1 1 Header Storage (gallons per header) 3.2 3.2 6.24 10,5 18.2 18.2 RefrigerantType 410 410 410 410 410 410 Number of Circuits 1 1 1 1 1 1 Condenser Fans ASP -10X ASP-15X ASP -20X ASP-30X ASP -60X ASP -61X • i Motor Type Totally Endosed Totally Enclosed Totally Endosed I Totally Enclosed Totally Enclosed Totally Endosed ! HP 1 I 1 2 I 2 2 15 Quantity 2 2 I I 2 4 1 Fan Type Axial Axial Axial Axial Axial Axial Fan Material Composite Composite Composite Composite Composite Composite Air How dm rmodule 6 8 16 22 000 44 000 44 000 Condenser Cogs* ASP -10X ASP-1511 ASP-20X ASP-30X ASP -60X ASP -61X Fin Material Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Tube Material • Copper Copper Copper Copper I Copper Copper Tube Diameter (in.) 3/8 I 3/8 3/8 3/8 I 318 3/8 Number ofRows 4 I 6 6 6 I 6 6 • Coil Dimensions (Quantity) 32 x 51 (2) I 30 x 49 (2) 30 x 611/2 (2) 42 x 731/2(2) 142 x 731/2 (4) 42 x 7316 (4) Free Cooling Coil Water Volume (gallons) 33 I 3.5 4.6 4.6 I 7.2 7.2 Module Dry Weight (lb.) _ 1370 I 1400 I 1700 2100 I 4,000 I 5,400 • *On Free Cool Modules, coils are utilized as water precoolers rather than for refrigerant condensing. • NP- JOB NO. t " / _ _ __.. DATE ../NAB 3 vv. PROJECT dRQriete. — •N7 (4J,T ,$_ I I I l I I I t I I I I I SUBJECT W.TS /.n1.5 - . - . ... .- . • DESIGN . ENGINEERING PLANNING BY 'P /--- • -_ —.•_ -_ __ PAGE !� _ -, OF _,____ ,_ WORTH TECHNICAL SERVICES PPI !!! Y • • • • 1 • AIM - - . . -;" .3 , t i . r.* FEATURES: • ' • Heavy gauge steel construction f at°uon ice_ • Baked epoxy coating on both interior and exterior t -Y • Epoxy coating complies with F.D.A. ". '''' t' ''''' : - • Tested to 100 psig (air) h ��l lop - : • Maximum working pressure - 75 psig T $ aI • 3 Year limited warranty . . i I Epoxy Retention Tanks I , i ; 1 `? Model No. Volume Tank Dimensions (in inches) System Drawdown I �, (Gallons) Acceptance Volume (Gallons) I. /f ) A B C D E F G 20/40 30/50 40/60 50/70 ERT42T 42 16 53 14 9 29 46 100% 6.5 4.2 3.0 2.2 t 5 ERT42S 42 20 36 17.8 8.5 20 28 100% 6.5 4.2 3.0 2.2 ' - ::-:1 - y FRTAO AO . 90 A4 17 A A S 74 51 S . 100% 124 A1 54 A2 T f jl ERT120 120 24 66 22.1 6.5 32 56 100% 18.6 12.1 8.6 6.3 ERT220 220 30 77 6.5 36.5 14 7 100% 34.1 22.2 15.8 11.7 1 _ ERT315 315 36 78 6 5 36.5 14 7 100% 48.8 32.0 22.7 16.7 -- 11/4 FNPT A.''' 1 1/4' FNPT • • '. ` 1/4 FNPT �� ri ss>�� pp 12'FNPi(SQ 0 AAA / 4" FNPrtz) I It "F' 1 1/4 FNPT (3) q1111 . or II" 0 WWI "D" 2" FNPT Will 1 1 'C"---ii PLUG 1' NPT PLUG I ERT42T, 42S. 80 & 120 I I ERT220 & 315 I • • " AAA. . JOB NO. /1- /ZZ _.__.... . DATE if AY_ ._ ? �.. , ZO /l PROJECT e.4g -- - -- FC/'e - Cl_-'V! - ______ • l 1 I I I I I i I 1 I 1 I SUBJECT Pill 5 _ •• ..s/./4. - ri.2 77 1r ! .... .. ___...- DESIGN ENGINEERING PLANNING BY PAGE 4.(v_ __ OF - _- _. -.._ WORTH TECHNICAL SERVICES r :.SUGGESTED ALLOWABLE PULLOUT AND SHEAR VALUES FOR SCREWS IN PbUNDS' • #6 SCREW #8 SCREW #10 SCREW #12 SCREW ' GAUGE THICKNESS, DIA. = .135 IN. MIN. DIA. = .161 IN. MIN. DIA. = .183 IN. MIN. DIA. = .209 IN. MIN. INCHES PULLOUT, SHEAR, PULLOUT, SHEAR, PULLOUT, SHEAR, PULLOUT, SHEAR, • LBS LBS LBS LBS LBS LBS LBS LBS u 25 0.0188 37 137 N/A N/A N/A N/A N/A N/A 22 0.0283 52 161 66 194 N/A N/A N/A N/A • 20 0.0346 85 207 96 251• 129 272 121 287 18 0.0451 136 274• 149 327• 184 371• 192 421 ' 16 0.0566 183 320 184 366 241 499 267 625 14 0.0713 N/A N/A N/A N/A 349 517 370 657 • 12 0.1017 N/A N/A N/A N/A 404 547 509 718 • ' NOTES: 1. Values for 25 and 22 gauge are based on ultimate values divided by a safety factor of three. Values for 20 through 12 gauge based on lesser of the ultimate value divided by a safety factor of 3 and the allowable bearing capacity per AISI Para. E3.3 for single shear and no washer. Pa = Fp•dia.•thickness /2.22 . Fu = 45 ksi for 25, 22, 20 and 18 gauges and Fu = 65 ksi for 16, 14 and 12 gauges. 2. Values with asterik (•I indicates bearing capacity governs. Those with N/A indicate screw is not typically used with that gauge thickness. 3. Suggested minimum of 0.50" edge margin and spacing for #6, #8 , #10 and #12 screws. Distances based on AISI paragraph E3.1 . 4. Engineer should confirm screws ultimate failure data and the appropriate factor of safety for a particular loading condition. 5. When joining materials of different gauges the value for the thinner material shall be used. SUGGESTED ALLOWABLE FILLET AND FLARE GROOVE WELD LOADS IN LBS/INCH - • . GAUGE THICKNESS WELD ALLOWABLE LOAD • SIZE 20 0.0346 1/8" 467 lb / in ' 18 0.0451 t/8" 609 lb / in 16 0.0566 1/8" 1104 Lb / in • . 14 0.0713 1/8" 1390 lb / in 12 0.1017 5/32' 1983 lb / in NOTES: 1. Values may be increased by 1.33 for wind or seismic. 2. When joining materials of different gauges the value for the thinner material shall be used. • 3. Values are based upon Fu, the ultimate tensile strength of the material, with the allowable load = 0.75(t)(Fu)/2.5 per AISI Section E2. • 4. Fy = 33 ksi and Fu = 45 ksi for 20 and 18 gauge. Fy = 50 ksi and Fu = 65 ksi for 16, 14 and 12 gauge. r' I • _JOB NO. // DATE may 3 20/ ( PROJECT GVf/AtrG2 - tract./ 14.), re, 1 1 1 1 1' 1 1 1 1 1 1( SUBJECT 547- raf • ....g.09./.4./ 64 P4cd r /6-5 DESIGN ENGINEERING PLANNING BY :Tel < PAGE 2 1 OF WORTH TECHNICAL SERVICES JJJ ID • • J — I i i Fag and Connections 5 59 • I • I j - -- : � I—,- ALLOWABLE LATERAL LOADS FOR WOOD SCREWS :I :- I l l - i !-4 t —,..; I 1 . _ � - i i . --i- . _; For one wood screw under normal duration of loading installed in side grain of seasoned wood i • • -- • • -' ? 1 1 : •- - : " - -:!-•• and embedded approximately 7D in the member receiving the point. See Table 5.1 for species ' ! - "'" ' " - ""' ' --" I. r - • - - , - - - f . : ----- in each group. I , .--1--. _____ -.- . .. t 1. -i ' 1,000 = _ _ _ - - - -_- _ 1_1_1. _ *_. - ..._ • i .1.--:- ._ . '� i 800 - --- - +-� -r ! ' i-�-� i - • I_ 1 i ° ...... ii Eiin •• � • . —• I I • - -... 600 = _ _ _ _................._ L I I .. _ — — - 1 r • j 500 E. E. _ - -_- _ - =c .. - __ '�_ . ;_f i _ � �.._.1 400 = - ..1x.11 ,..'... ...._ . ____ I . I . - - • I . = ,, --- i • :r i I._:_ , I 111,1. ■•1 ■. 1 - - ; -- ' I • -- 1 I — 1,,.111 — ,. ' - + ' -' 1 • I 1 3 - m,nna1 _ uuuuu • - I f .__ 250 - - -, • -• —•- - f - t 7 -1-1- - -- I I l i i - -� I • 1.4_ .... ..1....1-1. . a 200 ' == - - r: F ' I- ■ I J 0 '� . .. I 150: 'rte• r m • ■ n un R• I uunuum y I ' T 1 i EIr Siuuu1L111111 uu1111111111 J 1 III uEDleun111111111 ^ > 1 i — °— 1 ; ■uuauusilln 111111111 — I r - r" ,• - - 1 . • 1 0 ■•NIIuIllI , ■16101111 r 1111111111111111 ! ■u•UuU11111 /1,,111:111 /4 1111111111IIIIIIIIII111111111111111111111111111111111 .— . . I • I ' I a 100IIII• •■ 1r 11111111111111IIIIII11 M11nmm�lrunnllm111 _ - . . _ 1 ' ...1 70 C.:: '':.:..,,..., : _j I i t-T+ 1 ' = UrLI/M 1 1 1 ' 1 - — . i .. 60 . .....,, E...... ■' . ■. 1 1 I =_ =_ i 50 - - � • ,__ 1., • ,I 1 . : _ . I I ..n I -i I , .. ..' ! l.. - • I t - 1 1 25 = _ Gage of screws EEcE = :: : : : : : : : : : : : : : : :,.,,._ - r !-; 1 ___ 12 14 16 18 20 24 • • ' • 0.01 , 0.15 . -.. 020 0.25 ... .25 "� 0.30 0.40 0.50 0.70 T - • ' 1 • Shank diameter of screw, D, in. -- • 1 I__r._ S 1 --- .. _ I ! • 1 1 r- T I 1 -1.• • • . . ..._ __ .. ( I'"'' _._ _ _ • 1 _�. .._. __ I ._ • 1 _ .. I i t 1. `. ' I -�•• ..:. I-_ i -_ .. I - i• - I i : _. 1 ; i - ` 1 -. . 1 . -- • .. _ . I_ _. -• -'. - _ _..._i_- I ._ -. -.� __ -•� ' I I. ! I 1 _ . _ -.,-- ! - --... —. JOB NO. L / /Z Z DATE NAY 3 j 2 i ( - - - - PROJECT 64-A, -TES - MEG#cI av r TS I : I .:. I ..: ' :: I I :. • I :;.._ I I I I 1 I SUBJECT 4)00 5GpA CAP/964 r DESIGN ENGINEERING PLANNING • BY ; J))114 J PAGE OF WORTH TECHNICAL SERVICES - . ,.. . . . . . • • . . • HUBBARD ••.allfYrIAPPoiScs.lt•••,. _. . _ _ , .. I STRAPc' 1 20 Water le' ater Restraints. ...odd* OS 1215 1 . -"'"""IIIIIIIIIIIIIIIIIIIIIIII : . ...:i • 11 Galvanized Steel Straps • - for Water Heaters , • . , - L. u L p to 120 Gallons I ::_ . _ , . , ......, :: 1 4,,..:1 .-,N. --„..4..._021.. ;..: • I _,......-.......- 3 11,7 r I i ■11110 ra. InstruccioneS EX I Espanol -,.iiiri 1. i . .--,..z.i.A., 141-Toca Indus Francais ljail HUBBARD ENTERPRISES Toll Free (E-00) 321.0318 ' www.toldrlte.corn ,,_....; . . • . . • • AAA JOB NO. ...11-.. /22- . DATE /7ftf' 3L242i_t__ PROJECT dkigler'F.4.7:..10.6.C./4 (lairs . _ . . I SUBJECT ..50/SV./G. . i4./4_77E,4., 7:74Afx,_ _ ... .. . DE SIGN ENGINEER INC PLANNING BY ...riyed._. PAGE OF WORTH TECHNICAL SERVICES . . . . • • : ' . . • . • .0,11 411 00TS • .1r1..0 *110111/4.40 /0.112 • !irill IIII " i . tril I M 1r r Iiii;.!wi 1 • MM. P. . .....!..1-A 0.4...13 1 l'7,0-,4./N1; .4'44 summit:6Y PM I ii 4. .4 - - .1 'I III f./..4 404.4 MOS* egt ' " . 743 ..... 4 • Inn Texp.1-4.3 -IN . • N., - - -.-.1. - .- 11111111111 • . . • - . - . . 1 P i (I - elM/WZNi'' . ---'--- T _ I - __ _______ . -__ = .._—_ _._ _ - _ - _= _-_ _ __ ._- - - - 4 - -=_—..---.=-----•----• . i3 p 9 . I 1 t. 1 ....—.=--.— ..—• --- , _— - -= . 5 . –, -. . – -- _ I a ( 1 ----------- . 1 - . - - - i .. 14.1 I 10.8 *TO 4 ._. 7. . _ = - ' i . i 1 0 , 1 ■ 7 ; t ..: 1 1 1 . a g , rt 1 •••% 00 -- - .00 WA •••■14017•91 -.--f — F, _ 4 4 4 4 i m ■ ....... z ,- . .8. • Vt t IP i (1) I * M i d . t 1 4 . . ' RI I : 4 a ki % IL a .C1 I( -. - r t , : c ..... '0 i } - - - _ 1 .... i .__(,._, .... Oki 3 (_ . _ . ........ fD 1 1 1 i i 1 . . . . . . r P 1 1 I 01 t - - •r... - - 1 1 n al : f. f a L . , I i 5 i 11 i . r i . i ...1' 1 .1 i X : 1 t r A - 1 - - fD A r .1 - i ti .1 Li t t ,. , 1 • A . . • d • , ' 1 4 4 it f I '• 1 t it•. • .P ' t D 1 I n) I = (A — • -,,,, ... 1 -H. - - -1- - - ,, - FT ._ , i r-- 7 ! 1,. ) - (D 9 9 / 1 1 r■ 5 I { . . 1 _ I CJ= ( 3) - - - .. — — •..7-....- .910 rt . .' 1•••4 gill . ---- i i 1 j s . .11 li 111 • C • . ) . • 1 • 1 4 1 . 4 .. 4. • • 41 „. . — . 6 R• 1 • h % ' . -. i r I _ f I [ ......... . ....... _ - - - ( { h. to ..H,, - 1 .... - 1. - j rai - I — 1 1 CD fD 44 ."" ' 0 1 1 1 f ---H . -"'''' t ; 4 --1..... -- -1-- ...,... [ 1 , 1 J. 61 1 1 I = . 5 li el g ,I t i r-P . liqqW { ..V.1 dig (2-')-- I-- - "'I - 1 -- ] i ----w ‘l 1--i-i- -I-- — ' 1 1 1 azza. Hg a, k ;4 "1 • '-', i' , d - • 4 ........., 1 _h_l 1_ ,.. •.. tair412 • fi I' f .".„1 c _ a q ,,, i l l . ir 1 , ... , ..1 1 tP.1A , il crill... - INI 1 , 1 .., o.t ( 9 i • .... 1 - . i .--• 1 7 I. .4 . . ,, , : .1 - . l ir, f 1 H 1.1••• ,., , , , 1 C) h. dd 4 d 4 4 . I : ... . . - ) ; I .. F • a 5 H a - H . 9 a v . ti r: . — 11 i ra 1 A i• I .1 3 1. . AZIjitt:LS " II I #°° ,-- t 9 ) ..... ..,_ . ii,, „__.___,...._..._,._................; .„_______._-, .!111n_i____ . _ . , ( t 5 ) ., - :1111 =m7=- wen d'A ••••• 4.314.4,1 _ (E..) c .,. (Z) -.. t I .. • so • •. •• es • RTU BOTTOM FLANGE OF CURB (6) #10 WOOD SCREWS _ CUB FLANGE TOP 16 GA STRAP W /(4) #10 SHT MTL SCREWS (4) PLACES RTU FRONT / SIDE 2x12 T &G INSTALATION DETAILS FOR RTU -I RTU -2 RTU -4 Worth Technical Services 3004 SE 50 Ave. SCALE: 1/2" ° I' 0" Portland, OR 97206 a • s * RTU BOT FLANGE OF C URB (6) #10 WOOD SCREWS THRU CUB FLANGE e va TOP 16 GA STRAP W /(4) #10 SHT MTL SCREWS AL (6) PLACES RTU -3 / uw , co CX1 [XI CURB FRONT SIDE INSTALATION DETAILS FOR RTU -3 SCALE: VT - r 0- Worth Technical Services . 3004 SE 50 Ave. Portland, OR 97206 t HEAT PUMP —HOUSE KEEPING •, PAD TOP , HEAT PUMP SIDE (2) #IO SHT MTL SCREWS EA CLIP SUPERSTRUT AB -252 -I 1166i 1 FRONT HOUSE KEPPING POWERS WEDGEBOLT+ PAD SCREW ANCHOR INSTALATION DETAILS FOR 3/8" DIAM - 2 1/8" EMBED HP -I 5" MIN EDGE DISTANCE Worth Technical Services SCALE: 1/2" = I' 0" 3004 SE 50 Ave. Portland, OR 97206 .` • POWERS WEDGEBOLT+ SCREW ANCHOR 3/8" DIAM - 2 I /8" EMBED 5" MN EDGE DISTANCE TOP (4) PLACES 120 GAL WATER TANK HUBBARD (co o (NI QUICK STRAP 120 OR EQUAL N FRONT INSTALATION DETAILS FOR 120 GAL WATER TANK SCALE: 1/2" = r O" Worth Technical Services " 3004 SE 50''' Ave. Portland, OR 97206 CHAPTER 12 HYDRONIC PIPING SECTION 1201 TABLE 1202.4 — continued GENERAL HYDRONIC PIPE 1201.1 Scope. The provisions of this chapter shall govern the MATERIAL STANDARD (see Chapter 15) construction, installation, alteration and repair of hydronic pip - Lead pipe FS WW-P-325B ing systems. This chapter shall apply to hydronic piping sys- Polybutylene (PB) plastic pipe ASTM D 3309 tems that are part of heating, ventilation and air - conditioning and tubing systems. Such piping systems shall include steam, hot water, ASTM D 2513; ASTM D 3035; chilled water, steam condensate and ground source heat pump Polyethylene (PE) pipe, tubing ASTM D 2447; ASTM D 2683; loop systems. Potable cold and hot water distribution systems and fittings (for ground source ASTM F 1055; ASTM D 2837; shall be installed in accordance with the Plumbing Code. heat pump loop systems) ASTM D 3350; ASTM D 1693 1201.2 Pipe sizing. Piping for hydronic systems shall be sized Polyvinyl chloride (PVC) ASTM D 1785; ASTM D 2241 for the demand of the system. plastic pipe Steel pipe ASTM A 53; ASTM A 106 SECTION 1202 Steel tubing ASTM A 254 MATERIAL 1202.1 Piping. Piping material shall conform to the standards 1202.5 Pipe fittings. Hydronic pipe fittings shall be approved cited in this section. for installation with the piping materials to be installed, and Exception: Embedded piping regulated by Section 1209. shall conform to the respective pipe standards or to the stan- 1202.2 Used materials. Reused pipe, fittings, valves or other dards listed in Table 1202.5. materials shall be clean and free of foreign material's and shall TABLE 1202.5 be approved by the code official for reuse. HYDRONIC PIPE FITTINGS 1202.3 Material rating. Materials shall be rated for the operat- MATERIAL STANDARD (see Chapter 15) ing temperature and pressure of the hydronic system. Materials Brass ASTM F 1974 shall be suitable for the type of fluid in the hydronic system. Bronze ASME B16.24 1202.4 Piping materials standards. Hydronic pipe shall con- ASME B16.15; ASME B16.18; form to the standards listed in Table 1202.4. The exterior of the Copper and copper alloys ASME B16.22; ASME B16.23; pipe shall be protected from corrosion and degradation. ASME B16.26; ASME B16.29 Gray iron ASTM A 126 Malleable iron ASME B 16.3 TABLE 1202.4 HYDRONIC PIPE ASTM D 2466; ASTM D 2467; Plastic ASTM D 2468; ASTM F 438; MATERIAL STANDARD (see Chapter 15) ASTM F 439; AM77 l Acrylonitrile butadiene styrene ASTM D 1527; ASTM D 2282 ASME B16.5; ASME 6 - 9; J (ABS) plastic pipe Steel ASME B16.11; ASME B16.28; Brass pipe ASTM B 43 ASTM A 420 Brass tubing ASTM B 135 Copper or copper -alloy pipe ASTM B 42; ASTM B 302 1202.6 Valves. Valves shall be constructed of materials that are Copper or copper -alloy tube ASTM B 75; ASTM B 88; compatible with the type of piping material and fluids in the (Type K, L or M) ASTM B 251 system. Valves shall be rated for the temperatures and pres- Chlorinated polyvinyl chloride ASTM D 2846; ASTM F 441; sures of the systems in which the valves are installed. (CPVC) plastic pipe ASTM F 442 1202.7 Flexible connectors, expansion and vibration com- Cross- linked polyethylene/ pensators. Flexible connectors, expansion and vibration con - aluminum/cross- linked ASTM F 1281; trol devices and fittings shall be of an approved type. polyethylene (PEX- AL -PEX) CSA CAN /CSA -B- 137.10 pressure pipe Cross - linked polyethylene ASTM F 876' STM F 877 (PEX) tubing (continued) kd 1 i 0 2007 OREGON MECHANICAL SPECIALTY CODE 95 6 HYDRONIC PIPING • SECTION 1203 1203.3.8 Mechanically formed tee fittings. Mechanically JOINTS AND CONNECTIONS extracted outlets shall have aheight not less than three times 1203.1 Approval. Joints and connections shall be of an the thickness of the branch tube wall. approved type. Joints and connections shall be tight for the 1203.3.8.1 Full flow assurance. Branch tubes shall not pressure of the hydronic system. restrict the flow in the run tube. A dimple/depth stop shall be formed in the branch tube to ensure that penetra- 1203.1.1 Joints between different piping materials. _ Joints between different piping materials shall be made with tion into the outlet is of the correct depth. For inspection approved adapter fittings. Joints between different metallic purposes, a second dimple shall be placed 0.25 inch (6.4 piping materials shall be made with approved dielectric fit- mm) above the first dimple. Dimples shall be aligned with the tube run. tings or brass converter fittings. 1203.3.8.2 Brazed joints. Mechanically formed tee fit - 1203.2 Preparation of pipe ends. Pipe shall be cut square, tings shall be brazed in accordance with Section reamed and chamfered, and shall be free of burrs and obstruc- 1203.3.1. tions. Pipe ends shall have full -bore openings and shall not be undercut. 1203.4 ABS plastic pipe. Joints between ABS plastic pipe or fittings shall be solvent - cemented or threaded joints conform- 1203.3 Joint preparation and installation. When required by ing to Section 1203.3. Sections 1203.4 through 1203.14, the preparation and installa- 1203.5 Brass pipe. Joints between brass pipe or fittings shall tion of brazed, mechanical, soldered, solvent- cemented, be brazed, mechanical, threaded or welded joints conforming • threaded and welded joints shall comply with Sections to Section 1203.3. 1203.3.1 through 1203.3.7. • 1203.6 Brass tubing. Joints between brass tubing or fittings 1203.3.1 Brazed joints. Joint surfaces shall be cleaned. An shall approved flux shall be applied where required. The joint 2 Secctt ion n 103.3. 2 0zed, mechanical or soldered joints conforming to shall be brazed with a filler metal conforming to AWS A5.8. Section 1203.7 Copper or copper -alloy pipe. Joints between copper 1203.3.2 Mechanical joints. Mechanical joints shall be or copper -alloy pipe or fittings shall be brazed, mechanical, installed in accordance with the manufacturer's instruc- soldered, threaded orr welded joints conforming to Section tions. 1203.3. . 1203.3.3 Soldered joints. Joint surfaces shall be cleaned. A 1203.8 Copper or copper -alloy tubing. Joints between cop - flux conforming to ASTM B 813 shall be applied. The joint per or copper -alloy tubing or fittings shall be brazed, mechani- shall be soldered with a solder conforming to ASTM B 32. cal or soldered joints conforming to Section 1203.3 or flared • 1203.3.4 Solvent - cemented joints. Joint surfaces shall be joints conforming to Section 1203.8.1. clean and free of moisture. An approved primer shall be 1203.8.1 Flared joints. Flared joints shall be made by a tool applied to CPVC and PVC pipe joint surfaces. Joints shall designed for that operation. be made while the cement is wet. Solvent cement conform- 1203.9 CPVC plastic pipe. Joints between CPVC plastic pipe • ing to the following standards shall be applied to all joint or fittings shall be solvent - cemented or threaded joints con - surfaces: forming to Section 1203.3. 1. ASTM D 2235 for ABS joints. 1203.10 Polybutylene plastic pipe and tubing. Joints . 2. ASTM F 493 for CPVC joints. between polybutylene plastic pipe and tubing or fittings shall 3. ASTM D 2564 for PVC joints. be mechanical joints conforming to Section 1203.3 ' or heat- fusion joints conforming to Section 1203.10.1. CPVC joints shall be made in accordance with ASTM D 1203.10.1 Heat - fusion joints. Joints shall be of the 2846. • socket - fusion or butt - fusion type. Joint surfaces shall be 1203.3.5 Threaded joints. Threads shall conform to clean and free of moisture. Joint surfaces shall be heated to ASME B1.20.1. Schedule 80 or heavier plastic pipe shall be melt temperatures and joined. The joint shall be undisturbed threaded with dies specifically designed for plastic pipe. until cool. Joints shall be made in accordance with ASTM D • Thread lubricant, pipe joint compound or tape shall be 3309. applied on the male threads only and shall be approved for 1203.11 Cross -linked polyethylene (PEX) plastic tubing. . application on the piping material. Joints between cross -linked polyethylene, plastic tubing and fit - 1203.3.6 Welded joints. Joint surfaces shall be cleaned by tings shall conform to Sections 1203.11.1 and 1203.11.2. . an approved procedure: Joints shall be welded with an Mechanical joints shall conform to Section 1203.3. approved filler metal. 1203.11.1 Compression -type fittings. When compres- . 1203.3.7 Grooved and shouldered mechanical joints. sion -type fittings include inserts and ferrules or 0-rings, the I Grooved and shouldered mechanical joints shall conform to fittings shall be installed without omitting the inserts and the requirements of ASTM F 1476 and shall be installed in ferrules or 0-rings. accordance with the manufacturer's installation instruc- 1203.11.2 Plastic -to -metal connections. Soldering on the tions. • metal portion of the system shall be performed at least 18 96 2007 OREGON MECHANICAL SPECIALTY CODE • HYDRONIC PIPING inches (457 mm) from a plastic - to-metal adapter in the same SECTION 1205 water line. VALVES 1203.12 PVC plastic pipe. Joints between PVC plastic pipe 1205.1 Where required. Shutoff valves shall be installed in and fittings shall be solvent- cemented or threaded joints con- hydronic piping systems in the locations indicated in Sections forming to Section 1203.3. 1205.1.1 through 1205.1.6. 1203.13 Steel pipe. Joints between steel pipe or fittings shall 1205.1.1 Heat exchangers. Shutoff valves shall be be mechanical joints that are made with an approved installed on the supply and return side of a heat exchanger. elastomeric seal, or shall be threaded or welded joints conform- Exception: Shutoff valves shall not be required when ing to Section 1203.3. heat exchangers are integral with a boiler; or are a com- 1203.14 Steel tubing. Joints between steel tubing or fittings ponent of a manufacturer's boiler and heat exchanger hall be mechanical or welded joints conforming to Section packaged unit and are capable of being isolated from the shall b. hydronic system by the supply and return valves. 1205.1.2 Central systems. Shutoff valves shall be installed 1203.15 Polyethylene plastic pipe and tubing for ground on the building supply and return of a central utility system. source heat pump loop systems. Joints between polyethylene plastic pipe and tubing or fittings for ground source heat pump 1205.1.3 Pressure vessels. Shutoff valves shall be installed loop systems shall be heat fusion joints conforming to Section on the connection to any pressure vessel. 1203.15.1, electrofusion joints conforming to Section 1205.1.4 Pressure- reducing valves. Shutoff valves shall • 1203.15.2, or stab -type insertion joints conforming to Section be installed on both sides of a pressure- reducing valve. 1203.15.3. 1205.1.5 Equipment and appliances. Shutoff valves shall 1203.15.1 Heat - fusion joints. Joints shall be of the be installed on connections to mechanical equipment and socket - fusion, saddle- fusion or butt- fusion type, fabricated appliances. This requirement does not apply to components in accordance with the piping manufacturer's instructions. of a hydronic system such as pumps, air separators, meter - Joint surfaces shall be clean and free of moisture. Joint sur- ing devices and similar equipment. faces shall be heated to melt temperatures and joined. The joint shall be undisturbed until cool. Fittings shall be manu- 1205.1.6 Expansion tanks. Shutoff valves shall be factured in accordance with ASTM D 2683. installed at connections to nondiaphragm -type expansion tanks. 1203.15.2 Electrofusion joints. Joints shall be of the 1205.2 Reduced pressure. A pressure relief valve shall be electrofusion type. Joint surfaces shall be clean and free of installed on the low- pressure side of a hydronic piping system moisture, and scoured to expose virgin resin. Joint surfaces that has been reduced in pressure. The relief valve shall be set at • shall be heated to melt temperatures for the period of time the maximum pressure of the system design. The valve shall be I I specified by the manufacturer. The joint shall be undis- installed in accordance with Section 1008. turbed until cool. Fittings shall be manufactured in accor- dance with ASTM F 1055. 1203.15.3 Stab -type insert fittings. Joint surfaces shall be SECTION 1206 clean and free of moisture. Pipe ends shall be chamfered and PIPING INSTALLATION inserted into the fittings to full depth. Fittings shall be manu- 1206.1 General. Piping, valves, fittings and connections shall factured in accordance with ASTM D 2513. be installed in accordance with the conditions of approval. 1206.1.1 Prohibited tee applications. Fluid in the supply SECTION 1204 side of a hydronic system shall not enter a tee fitting through PIPE INSULATION the branch opening. 1206.2 System drain down. Hydronic piping systems shall be 1204.1 Insulation characteristics. Pipe insulation installed in designed and installed to permit the system to be drained. buildings shall conform to the requirements of the Building Where the system drains to the plumbing drainage system, the I Code, shall be tested in accordance with ASTM E 84, using the installation shall conform to the requirements of the Plumbing specimen preparation and mounting procedures of ASTM E Code. 2231; and shall have a maximum flame spread index of 25 and a • smoke - developed index not exceeding 450. Insulation installed 1206.3 Protection of potable water. The potable water system in an air plenum shall comply with Section 602.2.1. shall be protected from backflow in accordance with the Plumbing Code. Exception: The maximum flame spread index and smoke - developed index shall not apply to one- and two - family 1206.4 Pipe penetrations. Openings for pipe penetrations in dwellings. walls, floors or ceilings shall be larger than the penetrating pipe. Openings through concrete or masonry building elements 1204.2 Required thickness. Hydronic piping shall be insu- shall be sleeved. The annular space surrounding pipe penetra- lated to the thickness required by the Building Code. tions shall be protected in accordance with the Building Code. 2007 OREGON MECHANICAL SPECIALTY CODE 97 HYDRONIC PIPING 1206.5 Clearance to combustibles. A pipe in a hydronic pip- pressure loss testing shall be performed and the actual flow ing system in which the exterior temperature exceeds 250 °F rates and pressure drops shall be compared to the calculated (121 °C) shall have a minimum clearance of 1 inch (25 mm) to design values. If actual flow rate or pressure drop values dif- combustible materials. fer from calculated design values by more than 10 percent, 1206.6 Contact with building material. A hydronic piping the problem shall be identified and corrected. system shall not be in direct contact with building materials 1208.1.2 Cross - linked polyethylene (PEX) tubing sys- that cause the piping material to degrade or corrode, or that terns. Before a continuous looped systems using PEX tub - interfere with the operation of the system. ing is embedded or concealed, the assembled system shall 1206.7 Water hammer. The flow velocity of the hydronic pip- be pressure tested at 100 psi (689 kPa) for 30 minutes with ing system shall be controlled to reduce the possibility of water no observed leaks. hammer. Where a quick- closing valve creates water hammer, an approved water - hammer arrestor shall be installed. The SECTION 1209 arrestor shall be located within a range as specified by the man- EMBEDDED PIPING ufacturer of the quick - closing valve. 1209.1 Materials. Piping for heating panels shall be stan- 1206.8 Steam piping pitch. Steam piping shall be installed to dard- weight steel pipe, Type L copper tubing, cross - linked drain to the boiler or the steam trap. Steam systems shall not polyethylene (PEX) tubing, cross - linked polyethylene /alumi- have drip pockets that reduce the capacity of the steam piping. num/cross - linked polyethylene (PEX -AL -PEX) pressure pipe 1206.9 Strains and stresses. Piping shall be installed so as to or polybutylene rated at 100 psi (689 kPa) at 180 °F (82 °C). prevent detrimental strains and stresses in the pipe. Provisions 1209.2 Pressurizing during installation. Piping to be embed - shall be made to protect piping from damage resulting from ded in concrete shall be pressure tested prior to pouring con - expansion, contraction and structural settlement. Piping shall crete. During pouring, the pipe shall be maintained at the be installed so as to avoid structural stresses or strains within proposed operating pressure. building components. I 1209.3 Embedded joints. Joints of pipe or tubing that are 1206.9.1 Flood hazard. Piping located in a flood hazard embedded in a portion of the building, such as concrete or plas- area shall be capable of resisting hydrostatic and hydrody- ter, shall be in accordance with the requirements of Sections I namic loads and stresses, including the effects of buoyancy, 1209.3.1 through 1209.3.5. I during the occurrence of flooding to the design flood eleva- 1209.3.1 Steel pipe joints. Steel pipe shall be welded by lion. electrical arc or oxygen/acetylene method. 1206.10 Pipe support. Pipe shall be supported in accordance with Section 305. 1209.3.2 Copper tubing joints. Copper tubing shall be • joined by brazing with filler metals having a melting point 1206.11 Condensation. Provisions shall be made to prevent of not less than 1,000 °F (538 °C). the formation of condensation on the exterior of piping. 1209.3.3 Polybutylene joints. Polybutylene pipe and tub- • ing shall be installed in continuous lengths or shall be joined SECTION 1207 by heat fusion in accordance with Section 1203.10.1. TRANSFER FLUID 1209.3.4 Cross- linked polyethylene joints. PEX pipe shall 1207.1 Flash point. The flash point of transfer fluid in a be joined using cold expansion, insert or compression fit - hydronic piping system shall be a minimum of 50 °F (28 °C) tings. above the maximum system operating temperature. 1209.3.5 Cross - linked polyethylene/aluminum /cross- 1207.2 Makeup water. The transfer fluid shall be compatible linked polyethylene. PEX- AL-PEX pipe shall be joined by with the makeup water supplied to the system. mechanical, crimp /insert fittings. 1209.4 Not embedded related piping. Joints of other piping in cavities or running exposed shall be joined by approved meth- SECTION 1208 ods in accordance with manufacturer's installation instructions TESTS and related sections of this code. >I 1 1208.1 General. Hydronic piping systems shall be tested hydrostatically at one and one half times the maximum system design pressure, but not less than 100 psi (689 kPa). The dura- tion of each test shall be not less than 15 minutes. Ground - source heat pump loop systems and cross - linked poly- ethylene (PEX) tubing systems shall be tested in accordance with Sections 1208.1.1 and 1208.1.2. 1208.1.1 Ground source heat pump loop systems. Before connection (header) trenches are backfilled, the assembled loop system shall be pressure tested with water at 100 psi (689 kPa) for 30 minutes with no observed leaks. Flow and 98 2007 OREGON MECHANICAL SPECIALTY CODE R Ca. l F7t Pn • C` z . 4, .. �� 1 411° . . I . 1 &Rat f:';_ :; L H 1 x c 4 . '� 'z' 1 - itsior,,,. a� _ • I Radiant Heating and Cooling Systems x. . Y :" I `a+ 3 `. W .,r. _ 'i •� ` ... .. - r r '� i « .- ' I ii - cY +,,,..:. 4 ..R* . • . '' * -,, t,' < " r, — �r. •S 1 a •: 40, , _ . • , _.:,. - . - 1 . • • - 1 cvww. uponorpro.c•, i� OO 321.4739 39 =r, 1 '; • , Radiant Heating and Co , *ystenis 7 Uponor Radiant Heating and Cooling Systems Barrier Tubing r - � T o , Wirsbo hePEXTM Tubing, Coil Wirsbo hePEXT"' tubing, featuring our pate - pending oxygen barrier and tested to DIN 4726, is intended c for closed -loop hydronic radiant heatin d cooling applications. It is compatible with Uponor's ProPEX o and QS -style fittings and is manufactur in full compliance to ASTM F876 -09 (including dimensional t ° , i requirements for barrier tubing) d F8 .,Tubing is rated and listed by the Hydrostatic Stress Board of PPI -a at 200 ° F at 80 psi, 180 ° F at 100 p and73.4 ° F at 160 psi. c m rn .: oat Part No. Part Description Coils /Pallet list Price /Ea. c ;, A1140313 Vie" Wirsbo hePEX, 100-ft. coil 30 $102.25 v A1180313 Vie" Wirsbo hePEX, 250 -ft. coil 40 $255.60 a S Al220313 Vie" Wirsbo hePEX, 1,000-ft. coil 12 $1,022.30 El c , 4 A1140375 Sib' Wirsbo hePEX, 100 -ft. coil 28 $111.35 Ic fa Al210375 %" Wirsbo hePEX, 400 -ft. coil 18 $445.35 cc Al220375 3/4" Wirsbo hePEX, 1,000-ft. coil 12 $1,113.40 A1140500 'h" Wirsbo hePEX, 100-ft. coil 22 $108.55 0 Al250500 th" Wirsbo hePEX, 300-ft. coil 18 $325.60 0 Al260500 1" Wirsbo hePEX, 500-ft. coil 12 $542.60 El Al220500 'h" Wirsbo hePEX, 1,000 -ft. coil 8 $1,085.20 0 A1140625 %" Wirsbo hePEX, 100 -ft. coil 15 $140.05 Al250625 4b" Wirsbo hePEX, 300 -ft. coil . 12 $420.05 Al220625 4 " Wirsbo hePEX, 1,000-ft. coil 5 $1,400.05 A1140750 3 Wirsbo hePEX, 100-ft. coil 11 $166.50 Al250750 3/4" Wirsbo hePEX, 300 -ft. coil 12 $499.35 Al240750 3 /4" Wirsbo hePEX, 500 -ft. coil 8 $832.30 A1141000 1" Wirsbo hePEX, 100 -ft. coil 12 $283.35 Al251000 1" Wirsbo hePEX, 300 -ft. coil 5 $850.10 Al241000 1" Wirsbo hePEX, 500 -ft. coil 6 $1,416.80 A1141250 1 Wirsbo hePEX, 100-ft. coil 7 $471.85 Al251250 1W Wirsbo hePEX, 300 -ft. coil 2 $1,415.50 A1141500 11" Wirsbo hePEX, 100 -ft. coil 7 $644.90 Al251500 11/2" Wirsbo hePEX, 300 -ft. coil 2 $1,934.70 A1142000 2" Wirsbo hePEX, 100 -ft. coil 5 $935.25 Al252000 2" Wirsbo hePEX, 300 -ft. coil 2 $2,805.70 Al252500* 21/2" Wirsbo hePEX, 300 -ft. coil 1 $4,245.30 Al253000* 3" Wirsbo hePEX, 300 ft. coil 1 $6,010.20 A1143500* 31/2" Wirsbo hePEX, 100-ft. coil 1 $2,846.10 A1144000* 4' Wirsbo hePEX, 100 -ft. coil 1 $3,699.40 *Wirsbo hePEX coils for 2 ", 3 ", 31/2" and 4" tubing and other non - standard lengths are available on a made -to -order basis. Allow six weeks for delivery. Call Uponor Customer Service at 888.594.7726 for availability and pricing. Wirsbo hePEX 21/2", ", 3 ", 31/2" and 4" tubing uses WIPEXTM fittings (see page 69 for a listing of WIPEX fittings). U Price reduced 8 Radiant Heating and Cooling Systems www.uponorpro.com 800.321.4739 . a Uponor Radiant Heating and Cooling Systems v E TruFLOW Manifold Assemblies u, T Ln o, TruFLOW Jr. Assembly The TruFLOW Jr. Assembly with Balancing Valves and Valveless manifold comes fully assembled and ready °— with Balancing Valves / for installation. The manifold body (1" barrel diameter) ends have R32 unions and the loop outlets have c and Valveless Q520 male threads. Maximum recommended flow to the manifold based on manifold body diameter is u 14 gallons per minute (gpm). c Part No. Item Description Dim. (Body - Outlets -Body) Each Qty. List Price /Ea. m Cr ' A2660200 TruFLOW Jr. Assembly, Balancing Valves and R32- R20 -R32 1 $26730 ..� y 1 1 Valveless, 2 -loop m 67 42660300 TruFLOW Jr. Assembly, Balancing Valves and R32- R20 -R32 1 $325.75 2 c 1 Valve 3 -loop 1 '_° A2660400 TruFLOW Jr. Assembly, Balancing Valves and R32- R20 -R32 1 $387.50 Valveless, 4 -loop t A2660500 TruFLOW Jr. Assembly, Balancing Valves and R32- R20 -R32 1 $497.55 ' Valveless, 5 -loop 42660600 TruFLOW Jr. Assembly, Balancing Valves and R32- R20 -R32 1 $555.60 Valveless, 6 -loop A2660700 TruFLOW Jr. Assembly, Balancing Valves and R32- R20 -R32 1 $636.45 Valveless, 7 -loop A2660800 TruFLOW Jr. Assembly, Balancing Valves and R32 -R20 -R32 1 $675.40 Valveless, 8 -loop . LOW Jr. and Classic The TruFLOW Assembly with Balancing and Isolation Valves manifold comes fully asserted and ready for Assem .. • s with Balancing installation. The manifold assembly is shipped with the appropriate number of TruFLdW Manifold Actuator and Isolatio alves Adapters (A2630028). Maximum recommended flow to the manifold is 14 gprri for Jr. (1" barrel diameter) and 21 gpm for Classic (1'/4" barrel diameter). Part No. Item Description Dim. (Body - Outlets) Each Qty. List Price /Ea. IV,e A2660201 TruFLOW Jr. Assembly, B &I, 2 -loop R32 -R20 1 $341.10 • •■ .•1301 TruFLOW Jr. Assembly, B &I, 3 -loop R32 - R20 1 $420.95 4 1 • (_ A266040 TruFLOW Jr. Assembly, B &I, 4 -loop R32 -R20 1 $493.75 42660501 Tru - ■ Jr. Assembly, BM, 5 -loop R32 -R20 1 $634.00 1 1 42660601 TruFLOW Jr. •. -mbly, B &I, 6 -loop R32 -R20 1 $707.95 r 42660701 TruFLOW Jr, Assemb , ' : 1 7 R32 - R20 1 $784.35 42660801 TruFLOW Jr. Assembly, B &I, 8 • . R32 - R20 1 $885.30 A2610200 TruFLOW Classic Assembly, B &I, 2 -loop R32 -R20 1 $383.30 Il , A260300 TruFLOW Classic Assembly, B &I, 3 -loop R32 -R20 1 $476.40 r 42610400 TruFLOW Classic Assembly, B &I, 4 -loop 's. • 0 1 $569.60 a = I I A2610500 TruFLOW Classic Assembly, B &I, S -loop R32 -R20 1 $687.90 alb •r 42610600 TruFLOW Classic Assembly, B &I, 6 - loop R32 - R20 $781.25 1 • 42610700 TruFLOW Classic Assembly, B &I, 7 -loop R32 -R20 1 :74.60 _ - 42610800 TruFLOW Classic Assembly, B &1, B -loop R32 - R20 1 $1,00 '. r Sr tiP 42611000 TruFLOW Classic Assembly, B &I, 10 -loop R32 -R20 1 $1,239.55 w 42611200 TruFLOW Classic Assembly, B &I, 12 -loop R32 -R20 1 $1,416.90 14 Radiant Heating and Cooling Systems www.uponorpro.com 800.321.4739 [Page Too Large for OCR Processing] [Page Too Large for OCR Processing] [Page Too Large for OCR Processing] [Page Too Large for OCR Processing] [Page Too Large for OCR Processing]