Loading...
Specifications i Structural Caldlatio JUL 2 2 2011 for CITY OF TIGARD Full Lateral & Gravity Analysi U[NGDIVISION s Uvid‘dl-A Plan A 1460 Lot 57, Summer Creek Townhomes Tigard, OR City of Tigard / p/15Taor f - ato ] 3 --. A. • _ . v - d Plans P repared for —CO 3 5 3 -t►k' Date f pulte Group —0 13 (p • April 7, 2011 • OFFICE COPY JOB NUMBER: CEN -090 ** *Limitations * ** Engineer was retained in limited capacity for this project. Design is based upon information provided by the client, who is solely responsible for the accuracy of same. No responsibility and /or liability is assumed by, or is to be assigned to the engineer for items beyond that shown on these sheets. 122 sheets total including this cover sheet. S lRUCTUR4 4 � $E� PROT (4..*GI y 12.320 9 , J N J. E0 This Packet of Calculations is Null and Void if Signature above is not Original Harper Houf Peterson I Righellis Inc. 205 SE Spokane St. Suite 200 • Portland, OR 97202 • [P] 503.221.1131 • [F] 503.221.1171 1 104 Main St. Suite 100 • Vancouver, WA 98660 • [P] 360.450.1 141 • [F] 360.750.1 141 1133 NW Wall St. Suite 201 • Bend, OR 97701 • [P] 541.318.1161 • [F] 541.318.1141 Structural CalculatiorY JUL 2 2 2011 for CITY OF TIGARD Full Lateral & Grav AnalysisnDUl ING DNISION Unit A, Front Load & Rear Load Phase 2 Summer Creek Townhomes Prepared for Pulte Group April 6, 2011 JOB NUMBER: CEN -090 ** *Limitations * ** Engineer was retained in limited capacity for this project. Design is based upon information provided by the client, who is solely responsible for the accuracy of same. No responsibility and /or liability is assumed by, or is to be assigned to the engineer for items beyond that shown on these sheets. 12 sheets total including this cover sheet. it , t eN s � '• r b P dp ' 4a This Packet of Calculations is Null and Void if Signature above is not Original • : Harper • Haut' Peterson Righellis Inc. 205 SE Spokane St. Suite 200 • Portland, OR 97202 • [P] 503.221.1131 ♦ [F] 503.221.1171 1 104 Main St. Suite 100 • Vancouver, WA 98660 • [P] 360.450.1 141 ♦ [F] 360.750.1 141 1133 NW Wall St. Suite 201 ♦ Bend, OR 97701 • [P] 541.318.1161 ♦ [F] 541.318.1 141 Design Criteria Project Scope: Full lateral & Gravity Analysis of Unit A Design Specifications: Wind Design: Basic Wind Speed (mph): 100 From Building Authority Exposure: B From Building Authority Importance, lW: 1 2009 IBC / 2010 OSSC Occupancy Category: II Residential Earthquake Design: Seismic Design Category: D From Building Authority Site Class: D Assumed, ASCE 7 -05 Ch. 20 Importance, IE: 1 ASCE 7 -05 Table 11.5 -1 Ss: 0.942 USGS Spectral Response Map Si: 0.339 USGS Spectral Response Map Dead Load: Floor: 13 psf Wall: 12 psf Wood Roof: 15 psf • Live Load: Roof: 25 psf Snow Floor. 40 psf Residential Floor Materials and Design Data: Materials: • Concrete Compressive Strength, Pc: 3000 psi Foundations & Slab on Grade Concrete Unit Weight, y 145 pcf Steel Reinforcement Yield Strength, f 60,000 psi Wood Studs (Wall Studs): Hem -Fir #2 2x & 4x Wood Beams & Posts: DF -L #2 6x & Greater Wood Beams & Posts: DF -L #1 Glulam Beams: 24F -V4 PSL Beams: Fb =2,900 psi, FV= 328psi, E =2.0 Million TS /LSL Beams: Fb =2325 psi, FV= 460psi, E =1.55 Million Design Assumptions 1. Allowable soil bearing pressure (qa) : 1500 psf Assumed 2. All manufactured trusses, joists, and flush beams u.n.o. shall be designed by others. Structural Analysis Software Used: Mathcad 11 Microsoft Excel 2000 Wood Works — Sizer version 2002 Bently RAM Advanse Harper Project: SUMMERCREEK TOWNHOMES UNIT A • , ;PiP Houf Peterson Client: PULTE GROUP Job# CEN -090 Righellis Inc. PENN C. - Designer: AMC Date: Pg. # 1 AN E06AI ANC11111 C II•a 4 •: YOHb DESIGN CRITERIA 2007 Oregon Structural Specialty Code & ASCE 7 -05 Roof Dead Load RFR := 2.5•psf Framing RPL := 1.5•psf Plywood RRF := 5 .psf Roofing RME := 1.5.psf Mech & Elec RMS := 1.psf Misc RCG := 2.5•psf Ceiling RIN := 1 •psf Insulation RDL = 15•psf Floor Dead Load FFR 3.psf Framing FPL := 4•psf Sheathing FME 1.5•psf Mech & Elec • FMS := 1.5•psf Misc FIN := .5.psf Finish & Insulation FCLG := 2.5•psf Ceiling FDL = 13•psf Wall Dead Load WOOD EX Wall := 12.psf INT Wall := 10•psf Roof Live Load RLL := 25•psf Floor Live Load FLL := 40•psf LI Harper Project: SUMMERCREEK TOWNHOMES UNIT A Righellis Inc. s Houf Peterson Client: PULTE GROUP Job # CEN -090 Designer: AMC Date: Pg. # l4tlOLCAPC A AC.ilIECf01G'ir, , I1GI1K Transverse Seismic Forces Site Class = D Design Catagory = D Building Occupancy Category: II Weight of Structure In Transverse Direction • Roof Weight Roof Area := 843 • ft RFW1• := RDL•Roof Area RFWr = 14162•lb Floor Weight Floor_Areaad := 647.ft 2 FLR r nd := FDL•Floor Area2nd FLRw = 841F lb Floor Area3rd 652.ft FLRvm := FDL•Floor Area3rd FLRwT3 = 8476.1b Wall Weight EX Wall Area := (2203)•ft INT Wall_Area:= (906).ft WALLwT := EX_Wall,„ Wall Area + INT Wall Wall_Area WALLWr = 35496•lb WTTOTAL = 66545 lb Equivalent Lateral Force Procedure(1 ASCE 7 -05) h := 32 Mean Height Of Roof l := 1 Component Importance Factor (11.5, ASCE 7 -05) ,:= 6.5 Responce Modification Factor (Table 12.2 -1, ASCE 7 -05) C := .02 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) x := .75 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) Period T := C T = 0.27 < 0.5 (EQU 12.8 -7, ASCE 7 -05) S1 := 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. (Chapter 22, ASCE 7- 05)...or S := 0.942 Max EQ, 5% damped, spectral responce acceleration at short period From Figures 1613.5 (1) &(2) F := 1.123 Acc -based site coefficient @ .3 s- period (Table 11.4 -1, ASCE 7 -05) F, := 1.722 Vel -based site coefficient @ 1 s- period (Table 11.4 -2, ASCE 7-05) L2 Harper Project: SUMMERCREEK TOWMIOMES UNIT A • Houf Peterson Righcllis Inc. . Client PULTE GROUP Job # CEN -090 �,, , �t., „spa Designer: AMC Date: Pg. II ,..unons�: W2;r +u.e.zvtrat,. SMS := Fa•Ss SMS = 1.058 (EQU 11.4 -1, ASCE 7 -05) 2 - SMS Sds := 3 Sd = 0.705 (EQU 1 1.43, ASCE 7 -05) SMl := F S1 SM 1 = 0.584 (EQU 11.42, ASCE 7 -05) Sd1 := 2 ' 3M1 Shc = 0.389 (EQU 11.4 -4, ASCE 7 -05) Cst := S� k Cst = 0.108 (EQU 12.8 -2, ASCE 7 -05) R ...need not exceed... Sd]'Jc Cs := Cs max = 0.223 (EQU 12.8 -3, ASCE 7 -05) T ...and shall not be less then... C1 := if(0.044•Sd < 0.01,0.01,0.044• 0.5•S1•L' (EQU 12.8 -5 &6, ASCE 7-05) C2: = iffS1 <0.6,0.01, R J Csmin = if (CI > C2,C1,C2) Csmin = 0.031 Cs := i f (Cst < Csmin. Csmin, if (Cst < Csmax,Cst,Csmax)) Cs = 0.108 V := CS- WTTOTAL V = 7220 lb (EQU 12.8 -1, ASCE 7-05) E := V•0.7 E = 5054 lb (Allowable Stress) �3 Harper Project: SUMMERCREEK TOWNHOMES UNIT A • ° Hoof Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. CNpdN [!Ap NIANNFRG Designer: AMC Date: Pg. LANOGCAGE APCMtrECi9 *01.111 Transverse Wind Forces (Method 1 - Simplified Wind Procedure per ASCE 7 -05) Basic Wind Speed: 100 mph (3 Sec Gust) Exposure: B Building Occupancy Category: II I := 1.00 Importance Factor (Table 6 -1, ASCE 7 -05) h = 32 Mean Roof Height X := 1.00 Adjustment Factor (Figure 6 -3, ASCE 7 -05) a2 := 2•.1.20.ft Zone A & B Horizontal Length Smaller of... (Fig 6 -2 note 10, ASCE 7 -05) a2=4 ft or 4h,;2ft a2= 25.6fi a 3.2-ft but not less than... a = Wind Pressure (Figure 6-2, ASCE 7 -05) Horizontal Pnet := 19.9.psf Pnet := 32•psf Pnet := 14.4.psf PnetzoneD 3.3•psf Vertical Pnet := — 8.8•psf PnetzoneF := —12.psf Pnet := —6.4.psf PnetzoneH —9.71psf Basic Wind Force PA := PnetzoneKivi X PA = 19.9•psf Wall I PB PnetzonarIwX PB = 3.2.psf Roof HWC P := Pnet Pc = 14.4.psf Wall Typical PD := Pnet 1e D•I N .X Pp = 3.3.psf Roof Typical PE := PnetioneE•IW P = — 8.8•psf PF := PneyoneF'IwX PF = — 12•psf PG := Pnet a Po = — 6.4.psf PH := Pnet one H•I x ,•X PH = —9.7.psf LEI Harper Project: SUMMERCREEK TOWNHOMES UNIT A HP Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. EVO,YCtM1.•,.,A„nL,,. Designer: AMC Date: Pg.# kanavcArt A RC.ttc Te• CUntrf.r OR', Determine Wind Sail In Transverse Direction WSA1LZ := (41 + 59 + 29)•ft WSAILz :_ (19 + 0 + 23)•ft WSAILZoneC := (391 + 307 + 272)•11 WSAILZ := (0 + 0 + 5)41: WA WSAILZoneA'PA WA = 2567 lb Wg := WSAILZoneB'PB WH = 134 lb WC WSAILZoneCTC WC = 13968 lb WD := WSA WD = 161b Wind_Force := WA + Wg + WC + WD Wind Forcemin := 10•psf•(WSAILz + WSAILZoneg + WSAILz + WSATLz Wind Force = 16686 lb Wind Forcemin = 11460 lb WSAILZ := 94•ft WSAII-ZoneF = 108•ft WS'�ZoneG 320..112 WSAILZoneH := 320. ft WE WSAII-ZoneE'PE WE = —827 lb WF WSJ- ZoncF'PF WF = — 1296 lb WG := WSAILZoneG'PG WG = —2048 lb WH := WSAILz WH = — 3104 lb Upliflnet WF + WH + (WE + WG) + RDL•[WSAILZoneF + WSAILzoneH + (WSAILZoneE + WSAILZoneG)]'. Uplift = 1212 lb (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN CALCULATION , Harper Project: SUMMERCREEK TOWNHOMES UNIT A �H P; ° Houf Peterson Client : PULTE GROUP Job # CEN -090 R Inc. ERr.INFPR6. PI AHHPRa Designer: AMC Date: Pg. # LATIO6 CAPP_ ARCHII E:. TS •SURYE.OH! Longitudinal Seismic Forces Site Class = D Design Category = D Building Occupancy Category: II Weight of Structure In Longitudinal Direction Roof Weight Roof Area = 944 ft RDL -Roof Area RFWr• = 14162-lb Floor Weight Floor_Area2 = 647 ft � � = FDL -Floor Area2nd FLRwT2 = 8411.1b Floor_Area3 = 652 ft • F w= FDL•Floor Area3rd FLRWT3rd = 8476-lb Wall Weight EX. Wall; Arm : = (2203)•ft INT Wall. Area = 906 ft Xegitt1bGfwc= .EX_Wall + INT Wall„ t •INT_Wall_Area WALLurr = 35496-lb WTTOTAL = 66545 lb Equivalent Lateral Force Procedure(12.8. ASCE 7 -05) h� = 32 Mean Height Of Roof I = 1 Component Importance Factor (11.5, ASCE 7 -05) R,:= 6.5 Responce Modification Factor ("Table 12.2 -1, ASCE 7 -05) • C = 0.02 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) x = 0.75 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) Period := Ct•(hn)x T = 0.27 < 0.5 (EQU 12.8 -7, ASCE 7 -05) Sr = 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. (Chapter 22, ASCE 7- 05)...or S = 0.942 Max EQ, 5% damped, spectral responce acceleration at short period From Figures 1613.5 (1)&(2) F = 1.123 Acc -based site coefficient @ .3 s- period (Table 11:4 -1, ASCE 7 -05) F„ = 1.722 Vel -based site coefficient @ 1 s- period (Table 11.4 -2, ASCE 7-05) L� Harper Project: SUMMERCREEK TOWNHOMES UNrr HP ''• Houf Peterson Client: PULTE GROUP Job # CEN -090 Righcllis Inc. L4C1!i�{_Rb. +LR4MLRS Designer: AMC Date: Pg. # 1 a11UNtq Mt 61,C*117. C19.kU9V1 (Oa! H := F Slyer = 1.058 (EQU 11.4 -1, ASCE 7 -05) 14,5„ ds 2 S S 0.705 (EQU 11.4 -3, ASCE 7 -05) 3 5:= F St S1i11 = 0.584 (EQU 11.4 -2, ASCE 7 -05) SMi Sdl = 0.389 (EQU 11.4 -4, ASCE 7 -05) nca:= S R la Cst = 0.108 (EQU 12.8 -2, ASCE 7 -05) ...need not exceed... C _ S a Csmax = 0.223 (EQU 12.8 -3, ASCE 7 -05) Ta R R ^" ...and shall not be less then... cAu := if 0.044• Sd < 0.01, 0.01, 0.044 Sd -l rr 0.5 Sl Iel (EQU 12.8 -5 &6, ASCE 7 -05) n := iflSl<0.6,0.01, J \\ a if (CI > C2,C1,C2) Cs = 0.031 := if (Cst < Cs Cs„,;„, if (Cst < Cs , Cst, Cs Cs = 0.108 := CS' WTTOTAL V = 7220 lb (EQU 12.8 -1, ASCE 7 -05) = V•0.7 E = 5054 lb (Allowable Stress) Lr Harper Project: SUMMERCREEKTOWNHOMES UNIT A HP Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. rNO,M C�nG • dLAH N[RG Designer: AMC Date: Pg. # 1•MPEC.Pr aKIIMITwcrB• ,(YORE Loneitudinal Wind Forces (Method 1 - Simplified Wind Procedure per ASCE 7 -05) Basic Wind Speed: 110 mph (3 Sec Gust) Exposure: B Building Occupancy Category: II I = 1.0 Importance Factor (Table 6 -1, ASCE 7 -05) h = 32 Mean Roof Height X = 1.00 Adjustment Factor (Figure 6 -3, ASCE 7 -05) Smaller of... = 2..1.20.11 Zone A & B Horizontal Length a2 — 4 ft (Fig 6 -2 note 10, ASCE 7 -05) or ;_ .4•h 2•ft a2 = 25.6 ft but not less than... := 3.2.11 a = Wind Pressure (Figure 6 -2, ASCE 7 -05) Horizontal PnetzoneA = 19.9 -psf Pnet = 3.2 -psf Pnet = 14.4-psf PnetzoneD = 3.3•psf Vertical PnetioncE = — 8.8•psf PnetzoneF = —12 -psf Pnet = —6.4 -psf PnCtzoneH = —9.7•psf Basic Wind Force := PnetzOneA'Iw - X P = 19.9 -psf Wall HWC = PnetzoneB'Iw-X Pg= 3.2•psf Roof HWC = Pnetzonec-Iw-X Pc = 14.4 -psf Wall Typical := PnetzOneD'Iw PD = 3.3•psf Roof Typical := PnetzoneE , -X PE = — 8.8•psf Pte:= PnetzoneF'IW'a Pg = — 12•psf := PnetzoneG'lw'X PG = — 6.4•psf Pte:= Pnet oneH-IN a PH = — 9.7•psf Harper Project: S? 1MMERCREEK TOWNHOMES UNIT A I' Houf Peterson Client: PULTE GROUP Job # C Righellis Inc. C•:G•MEERS •`tN9RhR Designer: AMC Date: Pg. # L.• +09C1•nC •. •C. •tCC Determine Wind Sail In Longitudinal Direction �wA, = ( + 59 + 40)• ft N„,§ag (10 + 0 + 44)41 NC,Sag (91 + 137 + 67).1 WSNwcit•a:= (43 + 0 + 113)11 = WSAILZoneA WA = 2925 lb N,:= WSAII- ZoneB'PB WB = 173 lb Nom, WSAILZonec'PC WC = 4248 lb NNE= WSAILZ.oneD'PD WD = 515 lb Wind •orc := WA + WB + WC + WD Wi d o ice= 10 psf (WSAILZoneA+ WSAIZoneB + WSAILZoneC + WSAILZoneD) Wind Force = 78611b Wind Force = 6520 lb NWa.74,= 148.12 A XSAII r . „:= 120.1 4C,wg, 323.1 ,j:= 252.11 := WSA WE = — 1302 lb = W SA 1 LZoneF'PF WF = - 1440 lb = WSAILZoneG'PG WG = - 2067 lb 2,14,:= WSAILZoneH'PH WH = - 2444 lb J 1, := WF + WH + (WE + WG) + RDL {WSAILzO + WSAILZoneH + (WSAILZO + WSA oneG)l Uplik = 1243 lb (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN CALCULATION L9 Harper Houf Peterson Righellis Pg #: Transverse Wind Line Shear Distribution ASCE 7 -05. section 6.4 (Method 1 - simplified) Design Criteria: Basic Wind Speed = 100 mph Wind Exposure = B (Section 6.5.6, ASCE 7 -05) Mean Roof Height, H (ft) = 32 Roof Pitch = 6 /12 Building Category= II (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psi Exterior Wall Dead Load= 12 psi X= 1.00 bar= 1.00 Wind Sail Wind Net Design Wind Pressure (psf) () Pressure (Ibs) iimmon....ir Zone A = 19.9 129 2567 Wall High Wind Zone Horizontal Zone B = 3.2 42 134 Roof High Wind Zone Wind Forces Zone C = 14.4 970 13968 Wall Typ Zone Zone D = 3.3 5 17 Roof Typ Zone Zone E = -8.8 94 -827 Roof Windward High Wind Zone Vertical Zone F = -12.0 108 -1296 Roof Leeward High Wind Zone Wind Forces Zone G = -6.4 320 -2048 Roof Windward Typ Wind Zone Zone H = -9.7 320 -3104 Roof Leeward Typ Wind Zone Total Wind Force =) 16686 lbs I Use to resist wind uplift: Roof Only Total Exterior Wall Area= 2203 ft Uplift due to Wind Forces= -7275 lbs Resisting Dead Load= 8472 lbs E=I 1197 Lbs...No Net Uplift I Wind Distribution Tributary to Diaphragms Wind Sall Tributary To Dia hragm (ft Zone A Zone B Zone C Zone D y Main Floor 41 19 391 0 Upper Floor 59 0 307 0 Main Floor Diaphragm Shear = 6507 lbs Upper Floor Diaphragm Shear = 6595 lbs Roof Diaphragm Shear = 4584 lbs Wind Distribution To Shearwall Lines MAIN FLOOR UPPER FLOOR ROOF Tributary Line Shear Tributary Line Shear Tributary Line Shear Wall Line Diaphragm (lbs) Diaphragm (lbs) Diaphragm (lbs) Width (ft) Width (ft) Width (ft) 111111101 i 1 111111•1111=11111■r INIMINNIONNOINIO wr+wr•rarrM A 13.08 1737 18 2797 19 2323 Al 24.50 3254 0 0 0 0 B 11.42 1516 18 2797 18.5 2261 £= 49 6507 36 5595 37.5 4584 Llo • • Harper Houf Peterson Righellis P9 #: • • Transverse Seismic Line Shear Distribution Seismic Design Category = D Occupancy Category = II' Site Class = D S1= 0.34 Ss = 0.94 . Importance Factor = 1.00 Table 11.5 -1, ASCE 7-05 • Structural System, R = 6.5 Table 12.2 -1, ASCE 7 -05 Ct = 0.020 Other Fa = 1.12 Fv = 1.72 Mean Roof Height, H (ft) = 32 Period (T = 0.27 Equ. 12.8 -7, ASCE 7 -05 k = 1.00 12.8.3, ASCE -7-05 S 1.06 Equ. 11.4 -1, ASCE 7 -05 5 0.58 Equ. 11:4 -2, ASCE 7=05 S 0.71 Equ. 11.4 -3, ASCE 7 -05 Sn1= 0.39 Equ. 11A-4, ASCE 7 -05 , Cs = 0.11 Equ. 12.8 -2, ASCE 7 -05 • Csmin = 0.01 Equ. 12.8 -5 & 6, ASCE 7 -05 • Csmax = 0.22 Equ. 12.8 ASCE 7 -05 Base Shear coefficient, v = 0.076 Weight:Distribution Determination to Diaphragm • • Floor 2 Diaphragm Height.(ft) = 8 Floor.3 Diaphragm.Height (ft) = 18 Roof Diaphragm Height (ft) = 32 Floor 2 Wt (Ib)= 8411 Floor 3 Wt (lb)= 8476 . Root Wt (Ib) = ,14162 . Wall Wt (Ib) = 35496 Trib. Floor 2 Diaphragm Wt (Ib) = 22609 Trib. Floor 3 Diaphragm Wt (Ib) = 22674 Trib. Roof Diaphragm Wt (Ib) = 21281 ' Vertical Dist of Seismic Forces • Cumulative % total of base shear Rho Check to`Shearwalls (lbs) I to sheaf - - .I Req'd? • Vnoor 2 (Ib) = , 720 100-0% Yes Vnoo,3 (Ib) = 1625 85.8% Yes Vice (lb) = 2709 53.6% . Yes Shear Distribution To Wall Lines • 1 . Wall Line Tributary Area Tributary.Area Tributary Area Floor 2 Line Floor 3 Line Roof Line Floor 2 Floor 3 Roof Shear Shear -Shear . . sq ft sq ft sq ft • lbs 'lbs. lbs A • 102 361 394 114 897 1266 Al 432 0 .0 481 0 0 . B .113 293 449 126 728 1443 Sum 647 654 843 720 1625 2709 Total Base•Shear* = ( 5054 LB "Basc shear assumes rho equal to 1.0: See shearwall analysis spreadsheet for confirmation of rho. L Harper Houf Peterson Righellis Pg #: ,Longitudinal Wind Line Shear Distribution ASCE 7-05, section 6.4 (Method 1 - simplified) Design Criteria: Basic Wind Speed = 100 mph Wind Exposure = B (Section 6.5.6, ASCE 7 -05) Mean Roof Height, H (ft) = 32 Roof Pitch = 6 /12 Building Category II (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf A.= 1.00 Iw= 1:00 Wind Sail Wind Net Design Wind Pressure (psf) (ft) Pressure . (Ibs) Zone A = 19.9 � Wall High Wind Zone Horizontal ' Zone B = 3.2 54 173 Roof High. Wind Zone Wind Forces Zone C = 14.4 295 4248 Wall Typ Zone Zone D = 3.3 156 515 Roof Typ Zone . Zone E = -8.8 148 -1302 Roof Windward High Wind Zone Vertical ; Zone F = -12.0 120 -1440 Roof Leeward.High Wind Zone Wind Forces Zone G = -6.4 323 -2067 Roof Windward Typ Wind Zone Zone H = - 9.7 252 - 2444 Roof Leeward Typ Wind Zone Total Wind Force=) 7861 lbs Use to resist wind uplift: Roof Only Total Exterior Wall Area= 2203 ft Uplift due to Wind Forces= -7254 lbs Resisting Dead Load= 8483 lbs £=1 1229 Lbs:..No Net:Uplift I Wind Distribution Tributary to Wind Sall Tributary To Dia hragm (ft): Zone A Zone B Zone C Zone D l C r Main Floor 48 10 91 - . 43 "- Upper Floor 59 0 137 0 Main Floor Diaphragm Shear = 2440 lbs Upper Floor Diaphragm Shear = 3147 lbs Roof Diaphragm. Shear =. _ 2275 lbs Wind Distribution To Shearwall Lines MAIN FLOOR UPPER FLOOR ROOF _ Tributary , Line Shear Tributary Line Shear Tributary Line Shear Wall Line Diaphragm (lbs) Diaphragm Diaphragm �� -Width (ft) ; ( ) Width (ft) (lbs) � Width { (lbs) 1 10 i 1220 10 1573 10 I 1137 2 10 1220 10 1573 10 _ i 1137 Z= 20 2440 20 3147 20 2275 I,. C2._ • • Harper Houf Peterson Righellis Pg #: Longitudinal Seismic Line Shear Distribution Seismic Design Category = D Occupancy Category = II Site Class = D S1 = 0.34 Ss = 0.94 Importance Factor = 1.00 Table 11.5 -1, ASCE 7 -05 Structural System, R = 6.5 Table 12.2 -1, ASCE 7 -05 Ct = 0.020 Other Fa = 1.12 Fv = 1.72 Mean Roof Height, H (ft) = 32 Period (T = 0.27 Equ. 12.8 -7, ASCE 7 -05 k = 1.00 12.8.3, ASCE 7 -05 Sm 1.06 Equ. 11.4 -1, ASCE 7 -05 S 0.58 Equ. 11.4 -2, ASCE 7 -05 Sin= 0.71 Equ. 11.4 -3, ASCE 7 -05 Spt= 0.39 Equ. 11.4-4, ASCE 7 -05 Cs = 0.11 Equ. 12.8 -2, ASCE 7 -05 Csmin = 0.01 Equ. 12.8 -5 & 6, ASCE 7 -05 Csmax = 0.22 Equ. 12.8 -3, ASCE 7 -05 Base Shear coefficient, v = 0.076 Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height (ft) = 8 Floor 3 Diaphragm Height (ft) = 18 Roof Diaphragm Height (ft) = 32 Floor 2 Wt (lb)= 8411 Floor 3 Wt (lb)= 8476 Roof Wt (Ib) = 14162 Wall Wt (Ib) = 35496 Trib. Floor 2 Diaphragm Wt (Ib) = 22609 Trib. Floor 3 Diaphragm Wt (Ib) = 22674 Trib. Roof Diaphragm Wt (Ib) = 21261 Vertical Dist of Seismic Forces Cumulative % total of base shear Rho Check to Shearwalls (lbs) I to shearwalis Req'd7 Va..,2 (Ib) = 720 100.0% Yes Vn, (Ib) = 1625 85.8% Yes V, (Ib) = 2709 53.6% Yes Shear Distribution To Wall Lines Wall Line Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line Roof Line Floor 2 Floor 3 Roof Shear Shear Shear sq ft sq ft sq ft lbs lbs lbs 1 286 291 415 318 725 1334 2 361 361 428 402 900 1375 Sum 647 652 843 720 1625 2709 Total Base Shear* = 5054 LB "Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. Harper Houf Peterson Righellis Pg #: Shearwall Analysis Based on the ASCE 7 -05 'Transvere Shearwalls Line Load Controlled By: Wind Shear H I. Wall H/L Line Load Line Load Line Load Dead V Panel Shear Panel M M Uplift Panel Lgth. From 2nd FIr. From 3rd Flr. From Roof Load Sides Factor Type T (ft) (ft) (ft) ht I k ht I k ht I k (kll) (plf) (ft -k) (0 -k) (k) - 101 Not Used 102 7 1.75 3.50 4.00 8.00 1.74 18.00 2.80 27.00 2.32 1959 Double 1.40 NG 103 7 1.75 3.50 4.00 8.00 1.74 8.00 2.80 8.00 2.32 1959 Double 1.40 NG 103a 7 4.00 4.00 1.75 ox 8.00 3.25 814 Single 1.40 IV 104 8 4.50 10.50 1.78 co( 8.00 1.52 8.00 2.80 8.00 2.26 626 Single 1.40 III 105 8 3.00 10.50 2.67 ox 8.00 1.52 8.00 2.80 8.00 2.26 626 Single 1.40 III 106 8 3.00 10.50 2.67 OK 8.00 1.52 8.00 2.80 8.00 2.26 626 Single 1.40 111 109 8 4.58 17.08 1.75 OK 8.00 1.74 18.00 2.80 27.00 2.32 401 Single 1.40 II 110 8 12.50 17.08 0.64 ox 8.00 1.74 8.00 2.80 8.00 2.32 401 Single 1.40 Il III 8 4.50 7.25 1.78 OK 8.00 1.52 8.00 2.80 8.00 2.26 907 Double 1.40 VI 112 4.75 1.38 7.25 3.45 OK 8.00 1.52 8.00 2.80 8.00 2.26 907 Double 1.40 VI 113 4.75 1.38 725 3.45 ox 8.00 1.52 8.00 2.80 8.00 2.26 907 Double 1.40 VI 201 9 3.92 10.79 230 OK 9.00 2.80 18.00 2.32 474 Single 1.40 II 201a 9 4.17 10.79 2.16 ox 9.00 2.80 18.00 2.32 474 Single 1.40 II 201b 9 2.71 10.79 3.32 ox 9.00 2.80 18.00 2.32 474 Single 1.40 II 202A 9 2.96 11.96 3.04 ox 9.00 2.80 18.00 2.26 423 Single 1.40 II 202B 9 3.00 11.96 3.00 ox 9.00 2.80 18.00 2.26 423 Single 1.40 11 203 9 3.00 11.96 3.00 ox 9.00 2.80 18.00 2.26 423 Single 1.40 U 204 9 3.00 11.96 3.00 ox 9.00 2.80 18.00 2.26 423 Single 1.40 11 301 8 3.92 13.96 2.04 ox 8.00 2.32 166 Single 1.40 302 8 5.79 13.96 1.38 OK 8.00 2.32 166 Single 1.40 1 303 8 4.25 13.96 1.88 OK 8.00 2.32 166 Single 1.40 I 304 8 2.96 5.96 2.70 ox 8.00 2.26 379 Single 1.40 11 305 8 3.00 5.96 2.67 ox 8.00 2.26 379 Single 1.40 11 Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear).- Sum of Line Load / Total L Shear Factor = Adjustment For H/L> 2:1 Mo (Overturning Moment) = Wall Shear • Shear Application ht Mr (Resisting Moment) = Dead Load • L 0.5 • (.6 wind or .9 seismic) Uplift T = (Mo-Mr) / (L - 6 in) L. `'-01. Harper Houf Peterson Righellis P9 #: _ Shearwall Analysis Based on the ASCE 7 -05 frnnsvere Shearwalls Line Load Controlled By: Seismic Shear H L Wall il/L Line Load Line Load Line Load Dead V Rho•V %Story If Panel Shear Panel M M Uplift Panel Lath, From 2nd Flr. From 3rd Flr. From Roof Load Strength Bays Sides Factor Type T (ft) (ft) (ft) ht I k ht I k ht I k (kit) (pll) (plf) (ft -k) (ft -k) (k) 101 Not Used 102 7 1.75 3.50 4.00 8.00 0.11 1 8.00 0.90 27.00 1.27 651 846 0.10 0.50 Double 0.50 NG 103 7 1.75 3.50 4.00 8.00 0.11 8.00 0.90 8.00 1.27 651 846 0.10 0.50 Double 0.50 NG 1033 7 4.00 4.00 1.75 vie 8.00 0.48 0.00 0.00 120 156 0.22 1.14 Single 1.00 1 104 8 4.50 10.50 1.78 OK 8.00 0.13 8.00 0.73 8.00 1.44 219 284 0.25 1.13 Single 1.00 11 105 8 3.00 10.50 2.67 OK 8.0n 0.13 8.00 0.73 8.00 144 219 284 0.17 0.75 Single 0.75 III 106 8 3.00 10.50 2.67 OK 8.00 0.13 8.00 0.73 8.00 1.44 219 284 0.17 0.75 Single 0.75 III 109 8 4.58 17.08 1.75 OK 8.00 0.11 18.00 0.90 27.00 1.27 134 174 025 1.15 Single 1.00 1 110 8 12.50 17.08 0.64 OK 8.00 0.11 8.00 0.90 8.00 127 134 174 NA 3.13 Single 1.00 1 111 8 4.50 7,25 1.78 OK 8.00 9.13 8.00 0.73 8.00 1.44 316 411 0.25 1.13 Single 1.00 111 112 5 138 7.25 3.45 OK 8.00 0.13 8.00 0.73 8.00 1.44 316 411 0.08 038 Double 0.58 VII 113 5 138 7.25 3.45 OK 8.00 0.13 8.00 0.73 8.00 1.44 316 411 0.08 0.58 Double 058 VII 201 9 3.92 10.79 2.30 OK ,. 0.90 18.00 1.27 200 261 0.17 0.87 Single 0.87 II 201a 9 4.17 10.79 2.16 OK 9.00 0.90 18.00 1.27 200 261 0.18 0.93 Single 0.93 II 201b 9 27l 10.79 3.32 OK 9.00 0.90 18.00 1.27 200 261 0.12 11.60 Single 0.60 III 202A 9 2.96 11.96 3.04 ox 9.00 0.73 18.00 1.44 182 236 0.13 0.66 Single 0.66 III 202B 9 3.00 11.96 3.00 OK 9.00 0.73 18.00 1.44 182 236 0.13 0.67 Single 0.67 III 203 9 3.00 11.96 3.00 oK 9.00 0.73 18.00 1.44 181 236 0.13 0.67 Single 0.67 Ill 204 9 3.00 11.96 3.00 ' OK 9.00 0.73 18.00 1.44 181 236 0.13 0.67 Single 0.67 III 301 Ii 3.92 13.96 2.04 OK 8.00 1.27 91 118 0.20 0.98 Single 0.98 1 302 8 5.79 13.96 1.38 ox - 8.00 1.27 - 91 118 0.29 1.45 Single 1.00 1 303 8 4.25 13.96 1.88 OK 8.00 1.27 ' 91 118 0.21 1.06 Single 1.00 1 304 8 2.96 5.96 2.70 OK 8.00 1.44 242 315 0.15 0.74 Single 0.74 III 305 8 3.00 5.96 2.67 OK 8.00 1.44 242 315 0.15 0.75 Single 0.75 111 Rho Calculation Does the 1st floor shearwalls resist more than 35% of the total transverse base shear? Yes Does the 2nd floor shearwalls resist more than 35% of the total transverse base shear? Yes Does the 3rd floor shearwalls resist more than 35% of the total transverse base shear? Yes Total 1st Floor Wall Length = 1800 Total 11 1st Floor Bays = r.77 Are 2 bays minimum present along each wall Ilne? No 1st Floor Rho = 1.3 Total 2nd Floor Wall Length = 23.75 Total 11 2nd Floor Bays = s Are 2 hays minimum present along each wall line? No 2nd Floor Rho = u Total 3rd Floor Wall Length - 19.92 Total g 3rd Floor Bays = s Are 2 bays minimum present along each wall line? No 3rd Floor Rho = u Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load•Rho / Total L Story Strength =L / Total Story L (Required for walls with H/L > 1.0, for use in Rho check) 0 Bays = 2•UH Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment)... Wall Shear • Shear Application ht Mr (Resisting Moment) = Dead Load * L • 0.5 • (.6 wind or .9 seismic) Uplift T - (Mo -Mr) I (L - 6 in) t`C Harper Houf Peterson Righellis Pg #: Shearwall Analysis Based on the ASCF. 7 -05 Longitudinal Shearwalls Line Load Controlled By: Wind Shear H L Wall H/L Line Load Line Load Line Load Dead V Panel Shear Panel M MR Uplift Panel Lgth. From 2nd Flr. From 3rd Flr. From Roof' Load Sides Factor Type T (ft) (ft) (ft) ht k ht k ht k (kill (pIt) (ft -k) (ft -k) (k) 107 8 15.50 15.50 0.52 oK 10.00 1.22 18.00 1.57 27.00 1.14 1.03 254 Single 1.40 1 71.21 123.49 -0.19 108 8 15.50 15.50 0.52 oK 10.00 1.22 18.00 1.57 27.00 1.14 - 1.03 254 Single 1.40 1 71.21 123.49 -0.19 1 205 9 13.00 13.00 0.69 OK 9.00 187 18.00 1.14 0.70 208 Single 1.40 ` 1 34.62 59.15 -0.07 206 9 13.00 13.00 0.69 ox r 9.00 137 18.00 1.14 0.70 208 Single I 1.40 1 34.62 59.15 -0.07 I 306 8 10.00 10.00 0.80 ox 8.00 1.14 0.29 114 Single 1.40 1 9.10 14.40 0.05 307 8 10.00 1 10.00 0.80 OK I 8.00 ' 1.14 0.29 114 Single I 1.40 1 9.10 1 14.40 0.05 I Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length _ Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load / Total L Shear Factor = Adjustment For H/L> 2:1 Mo (Overturning Moment) = Wall Shear ' Shear Application ht Mr (Resisting Moment) = Dead Load • L 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) L.6 Harper Houf Peterson Righellls Pg #: Shearwall Analysis Based on the ASCE 7 -05 LongitudinalSh0arwalls Line Load Controlled By: Seismic Shear H L Wall H/L Line Load Line Load Line Load Dead V Rho' V % Story # Panel Shear Panel M MR Uplift Panel Lglh. From 2nd Flr. From 3rd Flr. From Roof Load Strength Bays Sides Factor Type T (ft) (B) (fl) ht k ht k ht k (kl1) (plt) (plf) (ft -k) (ft -k) (k) 107 8 15.50 15.50 0.52 tur 10.00 0.32 18.00 0.73 27.00 1.33 1.09 153 153 NA 3.88 Simile 1.00 1 5225 130.70 -1.74 108 8 15.50 15.50 0.52 OK 10.00 0.40 18.00 0.90 27.00 _ 1.38 1.09 173 173 NA 3.118 Single 1.00 1 57.35 130.70 -1.40 ` 206 I 9 1 13.00 13.00 0.69 oK 1 { 9.00 0.90 1 18.00 138 0.76 175 1 175 + NA 1 2.89 1 S Single ingle 1 1.00 1 32.85 64.22 I -0.45 I ' 8.00 1.33 0.35 133 307 1 88 1 10.00 10.001 00..8800 I oK ( 1 8.00 1.38 035 138 I 138 1 NA 1 2. 0 1 Single 1 1. 1 1 1.00 1 17.40 0.06 Rho Calculation Does the let floor shearwal Is resist more than 35% of the total longitudinal base shear? Yes Does the 2nd floor shearwalls resist more than 35% of the total longitudinal base shear? Yes Does the 3rd floor shearwalls resist more than 35% of the total longitudinal base shear? Yes Total 1st Floor Wall Length = 31.00 Total # 1st Floor Bays = 7.75 Are 2 bays minimum present along each wall line? Yes 1st Floor Rho = to Total 2nd Floor Wall Length = 3600 Total # 2nd Flour flays = 6 Are 2 bays minimum present along each wall lint? Yes 2nd Floor Rho = I.e Total 3rd Floor Wall Length = 3600 Total # 3rd Floor Bays = s Are 2 bays minimum present along each wall line? Yes 3rd Floor Rho = 10 Spreadsheet Column Definitions & Formulas L= Shear Panel Length H= ShearPanel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load•Rho / Total L % Story Strength = L / Total Story L (Required for walls with HA_> 1.0, for use in Rho check) # Bays =2'1./H Shear Factor =Adjustment For H/.> 2:1 Mo (Overturning Moment) = Wall Shear • Shear Application ht Mr (Resisting Moment) = Dead Load 6 L • (.6 wind or .9 seismic) Uplift T = (Mo-Me) / (L - 6 in) Harper Houf Peterson Righellis Pg #: SHEAR WALL SUMMARY' Transvere Shearwalls Panel Wall Shear Wall Type Good For Uplift Simpson Holdown Good For V (p11) (p11) Oh) (lb) • 101 Not Used 102 Simpson Strongwall 103 Simpson Strongwall 103a 814 1/2" APA Rated Plyw'd w/ 8d Nails @ 2/12 833 104 626 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 638 105 626 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 638 106 626 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 638 109 401 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 110 401 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 111 907 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 990 112 907 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 990 113 907 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 990 201 474 1/2" APA Rated Plyw'd w/ 8d Nails A 4/12 495 201a 474 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 2016 474 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 202A 423 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 202B 423 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 203 423 1/2" APA Rated Plyw'd w/ 8d Nails A 3/12 495 204 423 1/2" APA Rated Plyw'd w/ 8d Nails @, 3/12 495 301 166 1/2" APA Rated Plyw'd w/ 8d Nails (4 6/12 339 302 166 1/2" APA Rated Plyw'd w/ 8d Nails (a7 6/12 339 303 166 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 304 379 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 305 379 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 _ NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design loads. Harper Houf Peterson Righellis Pg #: SHEAR WALL SUMMARY' Longitudinal Shearwalls Panel Wall Shear Wall Type Good For Uplift Simpson Holdown Good For V (pH) (pll) (lb) (lb) 107 254 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 -192 Simpson None 0 108 254 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 -192 Simpson None 0 205 208 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 -69 Simpson None 0 206 208 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 -69 Simpson None 0 306 133 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 242 48 Simpson None 0 I 307 138 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 242 59 Simpson None 0 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design loads. \C Transverse Wind Uplift Design . Unit A Shear H Joist L Wall Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total Total Panel Height Lgth. From 2nd From 3rd From Wall Load (not Point Point ping Moment Moment Floor Shear @ Floor Shear @ Stacking @ Stacking From From Uplift Uplift Flr. Flr. Roof Shear including Load Load Momen @ Left @ Right Left Right Left Side of @ Right Wall Wall @ Left @ floors @ Left @ t House Side of Above Above Right above if Right House @ Left @ walls Right stack) (ft) (ft) (ft) (ft) k k k k plf klf k k kft kft kft k k k k k k 102 8 1.1667 1.75 3.50 1.737 2.8 2.32 6.857 1959 0 152 0.192 0.832 27.43 0.57 1.69 21.31 20.79 21.31 20.79 103 8 1.1667 1.75 3.50 1.737 2.8 2.32 6.857 1959 0.152 0.832 0.192 27.43 1.69 0.57 20.79 21.31 20.79 21.31 103A 8 1.1667 4.00 4.00 3.254 3.254 814 0.04 2.016 1.664 26.03 8.38 6.98 6 00 6.24 _ 6.00 6.24 104 8 1.1667 4.50 10.50 1.516 . 2.8 2 26 6.576 626 0.1 0.8 0.078 25.08 4.61 1.36 5.58 6.06 5.58 6.06 105 8 1.1667 3.00 10.50 1.516 2.8 2.26 6.576 626 0.048 0.252 0.156 16.72 0.97 0.68 6.45 6.52 6.45 6.52 106 8 1.1667 3.00 10.50 1.516 2.8 2.26 6.576 626 0 048 0.156 0.252 16.72 0.68 0.97 6.52 6 45 6.52 6.45 109 8 1.1667 4.58 17.08 1.737 2.8 2.32 6.857 401 0.152 0.192 0.156 16.31 2.47 2.31 3 63 3.66 201L 201R 4.82 5.09 8.45 8.75 110 8 1.1667 12.50 17.08 1.737 2.8 2.32 6.857 401 0.096 0.156 0.192 44.52 9.45 9.90 324 3.21 201aL 201bR 4.95 4.88 8.18 8.09 III 8 1.1667 4.50 7.50 1.516 2.8 2.26 6.576 877 0.144 0 8 0.078 35.11 5.06 1.81 8.02 8.51 8.02 8.51 112 8 1.1667 1.50 7.50 1.516 2.8 2.26 6.576 877 0.048 0.252 0.234 11.70 0.43 0.41 11.44 11.46 11.44 11.46 113 8 1.1667 1.50 7.50 1.516 2.8 2.26 6.576 877 0.048 0.234 0252 11.70 0.41 0.43 11.46 11.44 11.46 11.44 201 9 1.1667 3.92 10.8 2.8 2.32 5.12 474 0.225 0.432 0.156 17.71 3.42 2.34 3.99 4.16 301L 301R 0.83 0.93 4.82 5.09 201a 9 1.1667 4.17 10.8 2.8 232 512 474 0.225 0.156 0.156 18.84 2.61 2.61 4.14 4.14 302L 302R 0.80 0.80 4.95 4.95 201b 9 1.1667 2.71 10.8 2.8 2.32 5.12 474 0.225 0.156. 0.432 1224 1.25 2.00 4.24 4.08 303L 303R 091 0.80 5.15 4.88 202A 9 1.1667 2.96 11.958333 2.8 2.26 5,06 423 0.173 0.432 0.052 11.92 2.04 0.91 3.62 3.84 304L 304R 2.60 2.75 6.21 6.59 202B 9 1.1667 3 11.958333 2.8 2.26 5.06 423 0.173 0.052 0.216 12.09 0.93 1.43 3.84 3.74 305L 305R 2.74 2.16 6.58 5.91 203 9 1.1667 3 11.958333 2.8 2.26 5.06 423 0.309 0.216 0.312 12.09 2.04 2.33 3.62 3.56 3.62 3.56 204 9 1.1667 3 11.958333 2.8 2.26 5.06 423 0.225 0.312 0.432 12.09 1.95 2.31 3.64 3.57 3.64 3.57 301 8 3.92 13.96 2.32 2.32 166 0232 0.384 0.204 5.21 3.29 2.58 0.83 0.93 0.83 0.93 302 8 5.79 13.96 2.32 232 166 0.232 0.204 0.204 7.70 5.07 5.07 0.80 0.80 0.80 0.80 303 8 4.25 13.96 232 2.32 166 0.232 0.204 0.384 5.65 2.96 3.73 0.91 0.80 0.91 0.80 304 8 2.96 5.96 2.26 2.26 379 0,232 0.384 0.136 8.98 2,15 1.42 2.60 2.75 2.60 2.75 305 8 3 5.96 2.26 2.26 379 0.232 0.136 1.104 9.10 1.45 4.36 2.74 2.16 2.74 2.16 Spreadsheet Column Definitions & Formulas L= Shear Panel Length H= Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line V (Panel Shear) = Sum of Line Load / Total L Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load * L * 0.5 * (.6 wind or .9 seismic) Uplift T= (Mo-Mr) / (L - 6 in) Transverse Seismic Uplift Design Unit A Shear H Joist L Wall Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total Total Panel Height Lgth. From 2nd From 3rd From Wall Load (not Point Point ning Moment Moment Floor Shear ® Floor Shear ® Stacking ® Stacking From From Uplift Uplift Flr. Flr. Roof Shear including Load Load Momen ® Left ® Right Left Right Left Side of ® Right Wall Wall ® Left ® floors (fft Left (a3 t House Side of Above Above Right above if Right House ® Left ® walls Right stack) (ft) (ft) (ft) (ft) k k k k plf klf k k kft kft kft k k k k k k 102 8 1.1667 1.75 3.50 0.114 0.9 1.27 2.284 653 0.152 0.192 0.832 10 40 0,57 1.69 7.91 7.11 0 0 7.91 7.11 103 8 1.1667 1.75 3.50 0.114 0.9 1.27 2.284 653 0 152 0 832 0.192 10.40 1 69 0.57 7.11 7.91 0 0 7.11 7.91 103A 8 1.1667 4.00 4.00 0.481 0.481 120 0 04 2 016 1.664 3.85 8.38 6.98 -1.06 -0.69 0 0 -1.06 -0.69 104 8 1.1667 4.50 10.50 0.126 0.73 1.44 2.296 219 0.1 0.8 0.078 8.96 4 61 1.36 1.20 1.93 0 0 1.20 1.93 105 8 1.1667 3.00 10.50 0.126 0.73 1.44 2.296 219 0.048 0.252 0.156 5.97 0.97 0.68 2.04 2.14 0 0 2.04 2.14 106 8 1.1667 3.00 10.50 0.126 0.73 1.44 2 296 219 0.048 0.156 0.252 5.97 0.68 0.97 2.14 2.04 0 0 2.14 2.04 109 _ 8 1.1667 4.58 17.08 0.114 0.9 1.27 2.284 134 0 152 0.192 0.156 5.58 2.47 2.31 0.82 0.86 201L 201R 1.13 1.54 1.95 2.40 110 8 1.1667 12.50 17.08 0.114 0.9 1.27 2.284 134 0.096 0.156 0.192 15.23 9.45 9.90 0.56 0.53 201 aL 201 bR 1.32 1.32 1.88 1.85 III 8 1.1667 4.50 7.50 0 126 0.73 1.44 2296 306 0.144 0.8 0.078 12.54 5.06 1.81 2 00 2.73 0 0 2.00 2.73 112 8 1.1667 1.50 7.50 0.126 0.73 1.44 2.296 306 0 048 0.252 0.234 4.18 0.43 0.41 3.79 3.82 0 0 3.79 3.82 113 8 1.1667 1.50 7,50 0.126 0.73 1.44 2 296 306 0.048 0.234 0.252 4.18 0.41 0.43 3.82 3.79 0 0 3.82 3.79 201 9 1.1667 3.92 10.80 0.9 1.27 2.17 201 0.225 0.432 0.156 7.63 3.42 2 34 1.16 1.41 301 L 301R -0.03 0.13 1.13 1.54 201a 9 1.1667 4.17 10.80 0.9 1.27 2.17 201 0.225 0.156 0.156 8.11 2.61 2.61 1.38 1.38 302L 302R -0.06 -0,06 1.32 1.32 201b 9 1.1667 2.71 10.80 0.9 127 2.17 201 _ 0.225 0.156 0432 5.27 1.25 2.00 1.53 1.28 303L 303R 0.10 -0.06 1.63 1.22 202A 9 1.1667 2.96 11.96 0.73 1.44 2.17 181 0.173 0.432 0.052 5.25 2.04 0.91 1,15 1.50 304L 304R 1.28 1.50 2.43 3.00 202B 9 1.1667 3.00 11.96 0.73 1.44 2.17 181 0 173 0.052 0.216 5.32 0.93 1.43 1.49 1.35 305L 305R 1.50 0.63 2.99 1.97 203 9 1.1667 3.00 11.96 0.73 1.44 2.17 181 0.309 0.216 0.312 5.32 2.04 2.33 1.16 1.08 0 0 1.16 1.08 204 9 1.1667 3.00 11.96 0.73 1.44 2.17 181 0.225 0.312 0.432 5.32 1.95 2.31 1.19 1.08 0 0 1.19 1.08 301 8 0 3.92 13.96 1.27 1.27 91 0.232 0.384 0.204 2.85 3.29 2.58 -0.03 0.13 0 0 -0.03 0.13 302 8 0 5.79 13.96 1.27 1.27 91 0.232 0.204 0.204 4.21 5.07 5.07 -0.06 -0.06 0 0 -0.06 -0.06 303 8 0 4.25 13.96 1.27 1.27 91 0232 0204 0.384 3.09 2.96 3.73 0.10 -0.06 0 0 0.10 -0.06 304 8 0 2.96 5.96 1.44 1.44 242 0.232 0.384 0.136 5.72 2.15 1.42 1.28 1,50 0 0 1.28 1.50 305 8 0 3.00 5.96 1.44 1.44 242 0.232 0.136 1.104 5.80 1.45 4.36 1.50 0.63 0 0 1.50 0.63 Spreadsheet Column Definitions & Formulas L = Shear Panel Length H= Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line J V (Panel Shear) = Sum of Line Load ! Total L Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load " L 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo-Mr) / (L - 6 in) TRANSVERSE UPLIFT CALCULATIONS - SUMMARY UNIT A Shear Controlling Total Holdown Holdown Good Control Total Holdown Good For Panel Case Uplift @ or Strap Type@ Left For ling Uplift Type@ Left Left Case @ Right k Simpson k k Simpson k 102 Wind 21.31 Holdown None 0.00 Wind 20.79 None 0.00 103 Wind 20.79 Holdown None 0.00 Wind 21.31 None 0.00 103A Wind 6.00 Holdown HDQ8 w 3HF' 6.65 Wind 6.24 HDQ8 w 3HF 6.65 104 Wind 5.58 Holdown HDQ8 w 3HF 6.65 Wind 6.06 HDQ8 w 3HF 6.65 105 Wind 6.45 Holdown HDQ8 w 31-IF 6.65 Wind 6.52 HDQ8 w 3HF 6.65 106 Wind 6.52 Holdown HDQ8 w 3HF 6.65 Wind 6.45 HDQ8 w 314F 6.65 109 Wind 8.45 Holdown HDQ8 w DF 9.23 Wind 8.75 HDQ8 w DF 9.23 110 Wind 8.18 Holdown HDQ8 w DF 9.23 Wind 8.09 HDQ8 w DF 9.23 I I I Wind 8.02 Holdown HDQ8 w DF 9.23 Wind 8.51 HDQ8 w DF 9.23 112 Wind 11.44 Holdown HDU14 14.93 Wind 11.46 HDU14 14.93 113 Wind 11.46 Holdown HDU14 14.93 Wind 11.44 HDU14 14.93 201 Wind 4.82 Strap MST48x2 5.75 Wind 5.09 MST48x2 - 5.75 201a Wind 4.95 Strap MST48x2 5.75 Wind 4.95 MST48x2 5.75 201b Wind 5.15 Strap MST48x2 5.75 Wind 4.88 MST48x2 5.75 202A Wind 6.21 Strap MST60x2 8.11 Wind 6.59 MST60x2 8.11 ro 202B Wind 6.58 Strap MST60x2 8.11 Wind 5.91 MST60x2 8.11 _, 203 Wind 3.62 Strap MST60 4.06 Wind 3.56 MST60 4.06 204 Wind 3.64 Strap MST60 4.06 Wind 3.57 MST60 4.06 301 Wind 0.83 Strap MST37 1.79 Wind 0.93 MST37 1.79 302 Wind 0.80 Strap MST37 1.79 Wind 0.80 MST37 1.79 303 Wind 0.91 Strap MST37 1.79 Wind 0.80 MST37 1.79 304 Wind 2.60 Strap MST48 2.88 Wind 2.75 MST48 2.88 305 Wind 2.74 Strap MST48 2.88 Wind 2.16 MST48 2.88 8 Y , MC DATE + aV Jos No.: c e - w 0 PROJECT: RE: 5SW a x — Ileac Load. El Li Ax"o,1 Loads. Ukili32... U u u c , j\)\ 1�ns;dc cr 3 Uca w,ht kO\\s :. Ckxia 1 %ocik.o.z W ❑ Cu\504.1 vj o F I. u fy Do vbs ver- wd.l1 ir O . W aC,'W L)Oa = 1"x31- t- acv t- a a6 = Ge5 ■■5 M = 3 LtaQ luua i a Z Z f CaAX+,c1 o f SstUa►xa = 3gLv ❑ a c lval ` CcAeat k = e ox: • o Z ❑ D O a O � c C = T x {11) r� T G , c i 1 "' I ► 5w TN ►5 LEN('Tft n.w►�e, - «►►s 1...t NI C ...-n cf:: I Wi° UP !h) RISERS I I I O O I / L 0 4) !O" TREADS D VI 'TI a te - o:r-r" --, ❑ P P N Z. d C' q 0 (J I ❑ 0...) ____ 10E2 76 At.or) t, 714-1s u Nte 0 Z JP v G • --1 q 1 (''' 0 SW 'Phs l.ENc - fTt+ c.N Rwnrc -i 71 I} LINE 0 101 -- ¢- i - -- - _ . _. _ v o I_; L C I 1 • II.. I -n � r 0 ' 0 v: r G o o 1 0 - - r �' -''' 0 lob m s - nil s Lt%Nc -rnt PO.) Wtt - e N .-. - nfis 1.fNE° c F l O t aN 11 51ki. '-')N 1 ".)' 1 c P 1° Inc 1 'e e i s .,c: .-: :.. rwnrdsswse- , `..e xrw +scr _ ; > = .P.. — — f i co c6 7- AC cA r cam► _ ..... „ t C ,i R LI . § R . ` ;) S' _] C Zh rts i _ ;oe . � 3N11 SNU- `,N01V N-1- S14t1- Ns ii L . if- 2 D G . .. : g i SW 1 L r (-tTt+ RwN C-1 5 L I 306 ----1 \, - - - 7 - - ' - - e7 , I Pi 0 C r 9-/_, _ _ D -- 0,. L.. % t. 5 0 (.7.) �� --.� �, _ -_ -;� -:..�� -,� 4 l '-�, 309- SW 'f\s LC - Cin+ PcwNc.- -n-I lS UwL-' By N\L DAT r - ? /1, O JOB NO.: ce A 1 - I A O OF PROJECT: RE: 1 c m . cu\t1Ser o - - Earn- o.F house • ❑ ❑ CE Z V L�neB = (c7.5 wi•,el (ccrnkots) b W �� o phragrr� t,ui d't}'1 = a.0 �t 1 o 2 �I► L ❑ Cu= 3a°1 pt.o" 1 re u o z COt .. c.i of u Y .ed oltaphvaom w C �a 1,4) =35ak 17 t. \ bc.t . disl* ngn� U Z NIL Na■ 1413 eA ui = a5Spc ->: )(t 4 )= 353 oIL 2 f 0 U Z . C O LL Z w ❑ O O = N D_ O U o N a.' v CD V c. "6 _ •. = S LL a 0 w , t 2V (X BY j � `'� DATE: i. v ___k/ l JOB NO . C V I v _on V OF PROJECT: . Roof a -' -8 }W RE: Des iop of f rn l block(. i (\ @ S'to ❑ ❑ OPTION Z E Z IT. O w / �/tl! n 0 W TR ►o Wii m or.) �� ► 7.F, 1q'- Viet E ❑ SOItiT = 'I 9 1,- Top pLA,-res 19' - 5 4 o 5 M x stA rt.ovk,Ntoc -, _ 0 15'• 3" AI u W D E51cJ tolNit) Pressure, 0- - fi � nn �� ,, �^ Z r — 3.0 ►t t/ QSY o F.F. a. - 3 - 1D" a De S\ op [' \o, re o20.. , S` -1': 1 '° rr`)1:'1'► lb? YIAiES g 115 u Z uji rr kind [ o 1 'AI PL � D E u 1 I ❑ c(► = N010,4 ti...- kg q°1 # Q L 0" E W (A ix = $ — z _ a 565.3 ' girl r 5 ## Ct ❑ Z a a 8 V nrs,e _ t ‘1-q°1 Ft — b - 0 t 21 ►N 1- 3.c- -1 A + ( 3s 5,Z5 s _ F,;(- ,0 - 0 ? (1.00.$)1.1S)= a3: -g,p54 < 612 . NJc _ e .0_, 1 V +,.4F — ) = ISOP5L It - ( 0). atl0 5L -) �2- . .o1L x =sp y; 0 i Nwn 1C ae -smn 2 L29 • ac1 ---)\0 ; 148 q) 1 0 b -,s- ca.t)0.1 - e . 1 117.0 X9 '1)(o'00'` X. ' 5,d'je+;10)::- ,9i t1 (1 )(O ) (O 1 )L5-0Lo. 1 1 , 0. Y 01Xcii)( -,sa 05G) = a, sE .�' 9 1D , - 3^s J 0 - y , ,�w D ° J ` A = q ?.P:1 } CS � — =�' — T = ^c t ,1, Sail . h t __ -I � o:�i _ (St'lj�z��� }ii a9 b) = 5C-14 = qg 4 ‘ 5.c.1'h = i -- 0 r C6 4 O+ S .fit :•43'0) h 1° 4 . 52'g4 LSt s 1-,e 4 .S = I ray tg,'0 z 1'1 = - ev " ,N! n F Zgt • „S - r z1 . Z , 1 / ' ': a‘..\ i + ,ry, s r.. ) � �s 1 �� Z I = O f l} m ❑ I 4 c15 1 1 - y `GJ�l j � 0 0 St--0 1— uweita w l 1 ' \ 3 • O .1k 0) `` 3 1 1 F, 0 4 1 A _, 31 d J C? dkc\ (1 uQ - p oQ Z 3 `=c1 62, = 3 .),C JC 1pulcYl u6∎SaU m z 0 m Q lip - Can _ �r}�,.x`U - aA0 J``�4 � ],MCIl x•ovv o ,ib - = J_Nto.c. Vo ;_►,i.•p:rr; a .ij ❑ 3 3 O Cl -1 '. 60rni G . )10, loo \\ ''q q Z 11 --600-! °r'z g w.' .) a •i \ Tq 9 m ❑ ❑ Z CY O( d0 :aa :1,3roud Ao 0 ) 4 -- • 1 ) ON oor Q1 ' L 1 - M : .„. -- )V\CV- 1/4:\ I WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWOrkste Sine 7.1 Dec.15, 2010 11:01:47 COMPANY ) F119JELT REBULTn by C1105P - N50a 10005 SUGGESTED SECTIONS by GROUP for LEVEL 4 - ROOF UM Trusses Not designed by request (21 200 Lumber n -ply D.Fir L No.7 1- 208 By Others Not designed by request (21 206 Lumber n -ply Nem -Fir No.2 2- 206 (31 206 Lumber n -ply Rem -Fir No.2 3- 2x6 Typ Nati Lumber stud Nan -Fir Stud 206 916.0 SUGGESTED SECTIONS by GROUP tot LEVEL 3 - FLOUR • Met Jat Not designed by raquoct Sloped Joist Lumber -soft D.Fir-L No.2 2n6 016.0 (2) 2x0 (11 Lumber n -ply D.F1t -1 No.2 1- 208 (2) 200 Lumber n -ply D.Fir-1 No.2 2- 200 By Others Hot designed by request By Other* 2 Not designed by request (21 2x12 Lumber n -ply D.Fir-L No.2 2- 2012 5.125010.5 Glulam- Unbalan. Went Species 24F -V4 Dr 5.125x10.5 4X6 Lumber -soft D.Fim -I. No.2 406 (2) 206 Lumber n -ply Hen -Fir No.2 2- 206 406 Lumber Poet Nem -Fir No.2 406 (31 206 Lumber n -ply Nem -Fir No.2 3- 206 (2) 204 Lumber n -ply Nem -Fir No.2 - 204 Typ Well Lumber Stud Nem -Pit Stud 2x6016.0 SUGGESTED SECTIONS by GROUP for LEVEL 2 - FLOOR areve .. .... . Mnf Trusses Not designed by request lint Jet Not designed by request Duck Jet Lumber -epode D.Fir-L No.2 200 P16.0 4010 Lumber -soft D.Fir-L No.2 0x10 (2) 208 Lumber n -ply D.Fir -L No.2 2- 200 3.125x9 Glulam- Unbalan. Went Speclee 24F-V4 DF 3.12509 408 Lumber -soil D.Fir-L 00.2 408 By Others Not designed by request By Others 2 Not designed by request (21 2x10 lumber n -ply D.Fir-L Me.2 1- 2010 5.125X12 GL Olulam- Uobolae. West Species 24F -V4 Dr 5.125012 • By Others 3 Not designed by request 3.125014 LOL LSL 1.3E 1760F6 3.5014 (21 206 Isurbnr n-ply Ore -Fir 00.2 2- 206 404 Lomher Post Ntsn -Flr No.2 404 406 Lumber Poet Rem -Fir No.2 406 (3) 206 Lumber n -ply Hoe -Fir No.2 3- 206 606 Timber -soft. Hem-Fir No.2 606 121 2x4 Lumber n - ply Nem -Fir No.2 2- 2n4 606 nor Timber-soft D.Fir -L Hot 606 (3) 2x4 Lumber n -ply Hem-Fir No.2 3- 2x4 Typ wall Lumber Stud Item -Fir scud 2x6 816.0 SUGGESTED. SECTIONS by GROUP for LEVxl. 1 - FLOOR Fnd - .���m Not designed by request CRITICAL NENBEPS and DESIGN CRITERIA Group Member Criterion Anelyeie /Design Values Mat Jot Self Jet Net deafened by request Deck Jar. j65 Bending 0.41 Sloped Joist j30 Bending 0.10 Floor Jet4 unknown Unkeow0 0.00 41110 - b31 Bending 0.10 (2) 200 (11 b35 Bending 0.47 (21 200 b8 Bending 0.09 3.125x9 b3 Bending 0.06 400 b37 Bending 0.22 By Others By Others Not deaigeed by request By Others 2 By Others Not designed by request (2) 2012 06 Bending 0.93 (21 2010 b1 Shear 0.70 5.125012 G1. 610 Bending 0.16 By Other. 3 By 0chers Hoc designed by request 5.125010.5 b9 Deflection 0.95 406 b20 Bending 0.00 • 3.125014 LSI. b14 Bending 0.92 (2) 2x6 c2 Axial 0.91 404 055 Axial 0.06 406 c23 Axle] 0.00 (31 2o6 029 Axial 0.75 6x1 026 Axial 0.70 r 12) 204 039 Axial 0.62 606 nor 012 Axial 0.06 13) 2x4 031 Axial 0.09 Typ Nall w14 Axial 0.40 Fed Fnd Not designed by request ee DEG101) NOTES+ _ �_ 1. Please verify that the default deflection limits ore appropriate for your application. 2. DESIGN GROUP OCCURS ON MULTIPLE LLVEL9+ the lower level result la connide.rrd the final design and appeuro in the Materials List. 3. R001 11VF. LOAD: treated as a snow loud with corresponding duration lector. Add en empty toot level Lo bypaee thle i n terpretation. 4. BEARING: the designer is renpeosiblo tor ensuring that adequate bearing in provided. 5. GLULAM: bed a actual breadth 0 neural depth. 6. Glulom deems shall be laterally supported according to the provisions of HDS Claude 3.3.3. 7. Sawn lumber bending members shall be laterally supported recording to the provratuno of NOS Clause 4.4.1. U. GUILT -UP BURNS: it is assured that each ply it a single continuous member (that la, no butt joints, are present) Fastened together securely at intervals not exceeding 4 tines the depth and that each ply in equally top - loaded. Where beams ore aide- leaded, special foetening details may be required. 9. SC1 -BEANS (Structural Composite Lumber): the nttnched SCl. selection in fie pralimioary design only. For final member design 0001.101 your local SC). manufacturer. 10. WILT -UP COLUMNS: nailed or bolted built -up columns Mull conform to the ptovsslons of 005 Clouse 15.3. 0 • WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load Wood Works® Sizer 7.1 Dec. 15, 2010 11:08:38 Concept Mode: Beam View Floor 2: 8' b31 b36 -' ' ' . . 40•-b• I LLS • .... .. . .. I u.4 b38 ILI I _ elri-b 0 .... - RAJ . 4443 ‘IS-' vb. , 1.0 7 ;3 1 1 . a . • • _ . . . 0 44 -0 SI -. - - 41-b WY - • . " - — 4LT-0 .:. ,. . , .. . . .. . Si_ . • . . - ' . L ...)0.-1.,• 51, .. • 0L.I . . .:.• t..$ b2 .ii-4D 00- ' . .:. . • - O f 00- . . . - . I:Z . • - • 23•-0- .., . . . .. . . . .. - - OS 1/•-b" OL:- - - ' • -- 01 ZLY-G &I ' b10 • ' /5 ' L.3-0-• fb• •■••••■= • ' • . . • 1 I b33I 4 1 AS ID- . '' - - - ' ' - 13 _ . • 0..•-•0 /4._ O ••'S• _ .. . . 14 ' - • - ' • ' : -- .b32 ... .. . r...17.. 'I /U ,.?:'t-- . - . - •.. -r• - b10 • . UV' " ....; M 15 . . of • • • ' ■ I -L . • • It ••0 „ 03 - 5-b 3 . .. . .. . 6 -0 o3 . 3 ..........,5 04 ." b14 •.:, Lt 01- - • ,. D -0 d ........ ■... - . . 00 63 b37 be . - . _ . . OF ' e ,....' - . . • -. 1 . . BBIB.BBC dCCC CCM= CC CGCCC C'et.:,CC‘C'..".,CDEIDD D DD DODO CODDOD D D DO CDIDD DEE EEEEEEIEEEEEIEBEEEEHIEEEF_Z '' 0 2 4' 6' 8' 10' 1214' 16' 18' 20' 27 24' 26' 28' 30' 3234' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 5860' 62' 64' 66' 68' 70'72' 74' 76' 0'12'3'45'6'78'91(11 :1 :1.1!1 trl tl 22 22:2.2072121331:33.3!3C3t3M4'4:4:4.4t414:414t5(5 • V9041 La NN) • (-12. WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorlts® Slier 7.1 Dec. 15, 2010 11:08:40 Concept Mode: Column View Floor 2: 8' c80 c14 c58 4,' -6" 1 Q ❑ 0 40 11.1,41 41 -1, 8 40.0 IUIG - - - - - I U 4a-Ty • 43.0 Iii). - c69 c2 c70 c71 c91 - 41-0 tit -. - • _ hl -b Wit).. - _ - 411 -0 5 L- c 3 - 3b._o . Vl . _ 3._b. JU-- .. .� 34'•0 0V 33-0 DO- - - 3t b • 01 31 Ai L113 . c4 - - V 3lf-b Gr -b' am.: - Ln -b tS 1 o i;a9 -' - n - t5lt' Z4 -p 1 N c82 c25 c12 c26 Gs -b" GG b r tl It,: H c72 � rr r o W -, d■� c 73 "" 1 V'-b rr . - ® _ - 1t1 -b 1 r' -p• 1 t3-0' i C7 10 . r � rU t4 -0 by i - 1.'r 0 'xc c77. _ w c. .. i L -n .... 11' ;t j � _ b • ,4i r t j c30 r 7 c32 a -a b 1 - ■t ■ 6 - - 4_n oil 1 . _ • - 3 • +b ❑ G. -0. _ I -b ■ ii U - b E[3BEBCCCCCCCCICC:Cti : CCCCCCCC C- CCGODDDEMCDNUDE .)CODtyDIMDEnrCI EEIEEEEEEE1EEEFE(EEEEZ 0' 2 4" 6' 8' t0' 12' 14' 16' 18' ?0' 22' 24' 26 28' 30 712 .. 4' 3 ?'' NI' 40' 42 44' 46' 48" 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2 4'$';'7';;y'11 1 :;71t1:i1; 111".2{22:27, 2'::f."::'F %I.*:7::;I :V.i:31': = 1 1144, 4:4.4'444'40�5155:5:5 515!6(6$:6 "66$.r6tti - 5764717'7.7 :7.7.7477'x" VCOKIT" (isetb WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Rear Load WoodWorks® Sizer 7.1 Dec. 15, 2010 11:08:61 Concept Mode: Beam View Floor 2: 8' 4:1*- 6" '104 b31 LIES -n 1u, 4: 1 v1 40 •a uu b38 . ry .03 ..0 V9. 4 -t) yb b34 ae •v ai. n . •u yb ;14 - .10-0 _i . . `JL - .1U-0 tixd b2 3" - t) s ,b 06_ . - . w: ^O if f .31 - b lib' -- - - ,Ill -0 65 1V - b 0 4' . - ._ •b -b 0..3 11 -b 6: - - Lb -0 01 10 -0 au •b10- .- 14 43 43 -b r C E . 12 -b '' 333 C 1 -0 rp I '- _ - _ - 1U-b b CT 1;1 - I •1 1 11 -b rc i -0 e 332 • lb -0 f - 10- fU 14 -b 1,3 -0 an .319115 .. - IL -0 lU -b 05 0 y b -b -b b 04 3 . f' -b c>e b 1 b 14 b -b n b30 b2 9,�-� . , k -bv L -b l -b 1 V _b EB\ BB BCCCCCCCGt cC13CCCCCCcc CCCC4CCCDDDDDDDDfDDDDDDDDDDDDDCDk7DDEEEEE EEEFEEEIEE.EEEEE WEE EZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24'26' 28' 30' 32'34'36' 38'40'42' 44' 46'48' 50' 52'54' 56' 58'60' 6Z 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'67'8'91(1 1 :1 :11 !1(11(1 22'12 2222'22 222( 33: 3: 3e3r3 13 5:5'.5.5515•615!6(6 6:6:6•606:6617(7 gt NV- 15 )(5C. D CAW WoodWorks® Sizer SOF1WARE FOR WOOD DESIGN Unit A - Rear Load WoodWorks® Sizer 7.1 Dec. 16, 2010 11:08:63 Concept Mode: Column View Floor 2; 8' 49' -6" b C79 c80 40 o I ULO � . - 44t3-e3 / 1U I 40 40-0 - - 1ui 44 -u `Jo . c82 1c8.1_ 4.e •u J/ 4 i 41 ilt3 - 4u -0 as - ... - .. 41-0 :t4 33 -U . s / -u tii c3 . . .30 -b J1 11•R yu r4 v Oa 1.1-0 shf -ti OF 4U -0 O0 ' c4 .. . .. - JU - tit) .4 ' b - l_ O -0 • n c 8 9 t/ -0 ell � c90 l.:. -0 ,, ■ C91 025 012 C26 i r ; c92 . c 2 ' C72 4 I ▪ - , /u - - . 073 to -o /9 • 10 -0 f4 t -u ! 3 1L .c3 .. IC -0 ta.0 7l • -078 - - 14-d ,u- 11 1s -:I by I L -h 04 : 5 . C77 _ - S. _h 0 on N - W -0 170 _ ` -t. • c - C76 071 - ▪ -13 0 I1 ��_ :' � I C30 C32 �,.. ■ , _ ,5, OV raw co 9 •tl a c55 c9�❑' ■ t - . - i -b i - ■ u b 881888 CC: CCCCrCICC;CCC'CCCOCCCCCd''CCCD DDEID011.:DD um)D DDrDC.7loUDE EEEEEEEEEEEKIE+EEZ 0' " 4' 6' a' 10'12'14' 16' 18' 20' 22' 24' 26' 28' 30' 3 2 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62.64' 66'68' 70' 72' 74' 76' 0 9111: 1 :1.1(I(1:1t12122:2222t22t2!3f33 :3.3a 3131414 4Zt.4.4!4(4' 4145( 55: 5: 5 .5t5(5;5i5Sit68;6:6 7',7,7'77f77' - 6' 4p61_ LoPt\:• (15 WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 Dec. 15, 2010 11:02:02 Concept Mode: Beam View Floor 3: 17' 1ra50 , 49,.0. 1 Ulf" 4t5 -O II.)...; 4 r -b 1 UL' 40 -b t U l' 4D .4 (vll 44 -b l w. b35 b6 4� d :1r �� 4"1 - b km - _ 4U -b 110 _ .. - _ _ "_ ' ' _ 3 . 4 - h J.7 3t} -O ■ ;1l. JO -b • in -b CJU J4 -O by b7 33 b JL -O • br J1 -O" t5O su -b C5D L`J t S.] Li -b bi - b40 - - - L b -b b1 L 5 -O r.a b L 3 -b its • b41 tntw b LL - r r b22 ci -b i t r . LU -O r , -b rJ "( -O i " b2 -b21 v r u.. ' if -b DO 3 -p bb" - bl 1b17 - • • L - tar ' 1 - v b b" . U - OD ;1-0 • ." b34 ,I b OL S b8 b•-b OU3 4-0 3- O L -b 1 -O w U-0 BB' B. BBCCCCCCCCICCCCCCCCCCCCCCCtCCCDDDDDDDDfDDDL `Dt D•Di st: DDDDD4DDDEEEEE :EE•EFEEEEEIEEEEE- BE 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20 24' 26'28' 30' 32' 34' 36' 38' 40' 42 4-4' 46' 48' 50'52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72'74'76' 0'1'2'3'4'5'6'7'8' -111 1 :1:1-1!1t1'1t12(222:2.22122121313 3 3 2 31314144:4 :44!4(4 414555 ;5'S4315[5'515'.6[662:6-6i6' E6'6167a7.7:7.7.7177' -6" • (1 (LO . l ( WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks®Sizer 7.1 Dec. 15, 2010 11:02:04 Concept Mode: Column View Floor 3: 17' 1050 .. -- • - • • - _ • ... 48'.6,. I Vq 40 -0 IUa - - .- • - 4/ -b IVC 4s ILK, i3 0 - ao ... c62 c81•:- : c15- - c16 41-0 via : 4V-b .. .,. . - _ .- _ ._. .. . . . - . .V.•..b ;I4 - ,1t. -*J Ji SIO �� c17 ..lb u JV - . 44 -b MY. • JS -L .4 c18 .1 i_6 as e`t IA c88 i .. �?tr a e/ az . -. . to -b a ' c87 b 4U. - c86 c39.c24 c23 e -0 it. to _ .■ J'ic59 ._. cc u rr c85 , e1 -0 /b - - I c .. /.v-s, r0 ■ I^J•tt /4 b 14..k 3 • ;. _ 9 v ii • c37w _ .. - .. _ - .. _. It 0 ID l U. - .. 4-0 i�_b w 1s-0' by : c35 to -o bl - I I -C ex, _ , iU -k is i� t. ° . y"1 ' c6 . �3 I - 0 o� • 11 , rrl c756520 c1c6c74 b' -b -- `��ei _ 4 -O -I -b L -0 ._ . . 1 -b - •■ V -0 BBIBB BCCCCCCCC1CCCCCCCCCCCG .CCCCCCDCIDDf ODDIDIDDCi )DODDDODDCODDDEEEEEEEEIEEE ,FE E€a iEfrF2 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38'40'42' 44' 46'48' 50'52' 54' 56'58' 60' 62'64' 66' 68' 70' 72'74' 76' 0'1'2' '9111'1:1:1 11 11 11 2 22:220 2213133:3:3 4A: 4 114[ 4'4F415(5 - 53:5 , 5`5[5'51516(66F:6 (66i617f7 -6" • C' WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 Dec. 15, 2010 11 :02:17 Concept Mode: Beam View Roof: 25' 105 - - - 49'-6" t U4 . 't 4b -b " tU,S - - 4/ -b I V4 r /4-0"-t) 1U1 43-0 IVO D U0 • b23 b24 44--0 br_ r -a 4I 'JO 4U -b VD 3J -b - 33 31 -n 54 . - it -b 'Jl JO -0 ny .5...14) b1 s'1 -b t10 - - - - 311-b LSD b4 1N - b4 - - -.. . - 46 -0 di GI -b b! - - V .. - - 40 -b t5 I GD b IStJ L4 -b 1S L.5 -0 I b b Lr -b r r b25 .41 -0 to zu-b I - y-13 r a - n -b . • - 3 1 -0 !U . .. . .- 4-b us s - o tit . . G -b Or t -b Ct 1U -0 tw ; b27. . b28 b -b b max' mw1W4111401 L00 0 -la DVS V -- - `F -b t- . . . I -b t • BBIBBBCCCCCCCCICCCCCCCCCCCCCCLYCCCDDDDDCDDTt DOCDcMX fDODDCDVDDF CE EE EE E1'EEE EE EE ff.ELEIEfFEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20'2Z 24' 26'26' 30' 32' 34' 36' 38'40' 42'44' 46' 48' 50' 52' 54' 56' 58' 60'62' 64'66'68'70' 72'74'76' 0'1'2'3'4'5'6'7'8'9111 1:1:1.11111:1 €1212 22: 22!2(221213(33 :3:3 =313(3.33H (44:1;4.4!414 5:5: 5. 51 5( 5 '515161662:.6-61616b1617c7 7;77.77177-6" CA5 WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 Dec. 15, 2010 11:02:19 Concept Mode: Column View Roof: 25' 1 48. -6., 1U4,..; '40 - I.J.I. 4I -U It;C 40,0 lul' _ 40-0 IISJV - 44-4 an c42 c43 c44 c45 4.1...., ., t•l 4111•11M 14 J - - , - • - au -o V0 Dsro ya .. ao a sa Ui _ 1r - 7r. SU -U y I as -o 44 -u OH yY J.;.0 on D0 - ...1/ 3I-b ar - Ju -0 n, zO - 0 03 :L - . • L0 -0 01 4:).-o • ow u c83 f4 -L r� ;.) -e r r C46 r r -45 C84 . r -o / b c47 40-0 r a V 0,0 F • - - - .- - :1-4 rU 4 -0 0t -U 4 ,1' 1 1 -G r.::: IU•a U u .0 3 c51:50, c52 c53 - - -v use r 0 13.c ."0"Cimalliseeseig S -0 L-0 - I -b V BBIBB BCCCCCCCCICiCCCCCCCCCCCCCICCCDDDDDDDDIDDDCDDD DD DMZ C1YDDDEEEEEEEEPEEEIEEiEE EEEEEEfEEEEZ 0' 7 4' 6' B' 10' 12' 14' 16' 18 20' 22' 24' 26' 28 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66'68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'3111 - 1:1 :1 111; 111212 22 .2222253 (3313 :3'3 414!5 (55:5:551515.515(666Z:6•6!6 7 -6 " • G°1 COMPANY PROJECT i WoodWorks® sornwQfroa WOOD nruax June 24.2010 12:42 b1 Design Check Calculation Sheet Sizer 7.1 LOADS (Its, pat, or pif ) Load Type Distribution Magnitude Location (ft) Units Start End Start End 1 w61 Dead Partial UD 613.2 613.2 2.50 3.00 plt 2 w61 Snow Partial UD 795.0 795.0 2.50 3.00 plf 3_c61 Dead Point 622 2.50 lbs 4 c61 Snow Point 1192 2.90 lbs 5_328 Dead Full UDL 47.7 pli 6_J28 Live Full UDL 160.0 pl 7_j33 Dead Full UDL 120.2 piE 8 -133 Live Full UDL 370.0 olE • MAXIMUM RE 1 0' 31 Dead 391 1067 Live 795 1615 Total 1186 2676 Dearing: Load Comb 112 #3 Length 0.63 1.43 Lumber n -ply, D.Fir -L, No.2, 2x10 ", 2 -Plys Self - weight of 6.59 pif included in loads; Lateral support top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Destan Value Analvsis /Design Shear fv' = 67 Fv' + 207 fv' /Fv' - 0.32 Bendinet') fb 331 Fb' 1136 fb /Fb' - 0.29 Live Defl'n 0.00 =- <1/999 0.10 = L/360 0.04 Total Defl'n 0.01 (L/999 0.15 - L/240 0.05 'The effect of point loads within a distance d of the support has been included as per DOS 3.4.3.1 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LCii E'v' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fh'+ 900 1.15 1.00 1.00 1.000 1.100 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Ervin' 0.56 million 1.00 1.00 - - - - 1.00 1.00 - 3 Shear : LC 03 = D+.75(L+S), V 2676, V design' = 1237 lbs Dcnding( +): LC 113 - 04.75(L+S). M - 1178 Ibs -ft Deflection: LC 113 a D +.75(L +S) SI= 158e06 lb -1n2 /ply Total Deflection - 1.50(Dead Load Deflection) + Live Load Deflection. (D -dead L-li.ve S -snow W=wind 1 =impact C- construction Cl.d- concentrated) (A11 LC's are Listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it Is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at Intervals not exceeding 4 times the depth and that each ply Is equally top - loaded. Where beams are side - loaded, special fastening details may be required. (O COMPANY PROJECT dl WoodWorks® SOPI ARE FOR WOOD OES /GN June 24, 2010 12:43 b3 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs. psf, or plf ) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1_j45 Dead Full UDL 17.0 plf 2 j45 Live Full UDL 25.0 pit MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : 10' 9 Dead 106 106 Live 112 112 Total 218 218 Bearing: #2 Load Comb 82 Length 0.50* 0.50* 'Min. bearing length for beams is 1/2" for exterior supports Glulam - Unbal., West Species, 24F -V4 DF, 3- 118x9" Self- weight of 6.48 plf included in loads; Lateral support: top= full, bottom = at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 10 Fv' = 265 fv /Fv' = 0.04 Bending( +) Lb = 140 Fb' = 2400 fb /Fb' = 0.06 Live Defl'n 0.01 = <L/999 0.30 = L/360 0.04 Total Defl'n 0.03 = <L/999 0.45 = L/240 0.06 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 218, V design = 182 lbs Bending( +): LC I[2 = D +L, M = 491 lbs-ft Deflection: LC #2 = D +L EI= 342e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D -dead L =live S =snow W =wind 1= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured In accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). COMPANY PROJECT - . fil Wood soFnvnpr FOR WOOD D&SIGN June 24, 2010 12:40 b6 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load 'Type Distribution Magnitude Location fftl. Units -Start End Start End 1 c44 Dead Point 445 2.00 lbs 2 Snow Point 647 2.00 lbs 3.w44 Dead Partial UD 389.2 389.2 0.00 2.00 plf 4 Snow Partial UD 431.2 431.2 0.00 2.00 plf 5 Dead Point 444 5.00 lbs 6 Snow Point .647 5.00 lbs 7 - w45 Dead Partial UD 389.2 389.2 5.00 6.00 plf 8 Snow Partial UD 431.2 431.2 5.00 6.00 plf 9 Dcad Full UUL 120.2 plf 10 i25 Live Full UDL 370.0 elf MAXIMUM REACTIONS fibs) and BEARING LENGTHS (in) : L I Cr 61 Dead 1436 1389 Live 1803 1803 Total 3239 3192 Bearing: Load Comb #3 #3 Lcnoth_ 1.73 1.70 Lumber n -ply, D.Fir -L, No.2, 2x12 ", 2 -Plys Self- weight of 8.02 pif included in loads; Lateral support top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design . Shear fv = 97 Fv' = 7.07 tv /Fv' = 0.47 Bending( +) fb = 805 Fb' = 1035 fb /Fb' = 0.78 Live Defl'n 0.03 = <L/999 - 0.20 = L/360 0.14 Total Defl'n 0.06 = <L/999 0.30 L1240 0:20 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci 'En LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1-.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Emirs' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3 Shear : LC #3 = Di.-75(L +S), V - 3239, V design = 2190 lbs Bending( +): LC #3 = D +.75(L +S), M = 4247 lbs -ft Deflection: LC 143 = D +,75(L + -S) E1= 285e06 lb -in2 /ply Total Deflection - 1.50(Dead Load Deflection) A Live Load Deflection. (U =dead L -live S -snow W=wind I= impact C =construction CLd =concentrated) (All LC's are listed in the Analysis output) Load combinations: TCC - 'ff3C DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4,4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is. no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required: COMPANY PROJECT di WoodWorks' • sonwmanummoonaxm June 24, 2010 12:50 b8 Design Check Calculation Sheet Suer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location tft) Units Start End Start End l_j14 Dead Full UDL 113.7 plf 2 114 Live Full UDL 350.0 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : l g ( Dead 357 357 Live 1050 1050 Total 1407 1407 Bearing: Load Comb 82 82 0, Length 0.75 Lumber n-ply, D.Fir -L, No.2, 2x8 ", 2 -Plys Self- weight of 5.17 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NOS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 77 Fv' = 180 fv /Fv' = 0.43 Bending(+) fb = 963 Fb' = 1080 fb /Fb' = 0.89 Live Defl'n 0.07 = <L/999 0.20 = L/360 0.33 Total Defl'n 0.10 = L/712 0.30 = L/240 0.34 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LCII Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.'00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC 82 = D+L, V = 1407, V design = 1123 lbs Bending'(+): LC 82 = D +L, M = 2110 lbs -ft Deflection: LC 82 = D+L EI= 76e06 lb -in2 /ply Total Deflection = 1.50(Dead load Deflection) + Live Load Deflection. (D=dead L =live S =snow W =wind r =impact C=construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply Is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. G13 COMPANY PROJECT 1 WoodWorks° SOFTWARE TOR WOOD D!SWCN June 24, 2010 12:40 b9 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psi, or pit ) Load Type Distribution Magnitude Location (ft) Units Start End Start End 1_j50 Dead Partial UD 113.7 113.7 0.00 1.50 p1r 2j50 Live Partial UD 350.0 350.0 0.00 1.50 plf 3j14 Dead Partial UD 113.7 113.7 3.00 9.00 plf 4 Live Partial UD 350.0 350.0 3.00 9.00 plf 5_j51 Dead Partial UD 113.7 113.7 1.50 3.00 plf j51 Live Partial UD 350.0 350.0 1.50 3.00 plf 7_j24 Dead Partial UD 120.2 120.2 0.00 3.00 plf 8 j24 live Partial UD 370.0 370.0 0.00 3.00 plf 9 Dead Partial UD 120.2 120.2 3.00 9.00 plf 170 Live Partial UD 370.0 370.0 3.00 9.00 plf 11 j26 Dead Partial UD 120.2 120.2 9.00 12.00 plf 12_j26 Live Partial UD 370.0 370.0 9.00 12.00 plf 13 Dead Partial UD 113.7 113.7 9.00 10.50 plf 14 j52 Live Partial UD 350.0 350.0 9.00 10.50 plf 15 j53 Dead Partial UD 113.7 113.7 10.50 12.00 plf 16 i53 Live Partial UD 350.0 350.0 10.50 12.00 Dlf MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : 10' 12 Dead 1478 1478 Live 4320 432U Total 5798 5798 Bearing: Load Comb 02 112 Length 1.74 _ 1.74 Glulam - Unbal., West Species, 24F -V4 DF, 5- 1/8x10 -1/2" Self- weight of 12.39 Of included in loads; Lateral support top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Dcsion Value Analysis /Design Shear fv = 1311 Fv' = 765 tv /Fv' = 0.52 Bending(T) fb 2217 Fb' 2400 fb /Fe' = 0.92 Live Defl'n 0.38 = L /301 0.40 = L/360 0.94 Total Defl'n 0.57 = L/252 0.60= L/240 0.95 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr. Cfrt Notes Cn LCII Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fo'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 • -- - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC 02 = D +L, V - 5798, V design - 4953 lbs Bending( +): LC 112 = D +L, 14 = 17395 lbs -ft Deflection: LC 112 OIL EI- 890006 lh -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S -snow W =wind 1- impact C- construction CLd =concentrated) (All LC's are listed in the Analysis output) Lcad combinations: 1CC -IBC DESIGN NOTES: • 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). COMPANY PROJECT I i I WoodWorks® SO /IMAM[ IOM WOOD DEStGh June 24, 201012:43 b10 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ihs, psi, or plf ) Load Type Distribution Magnitude Location (ft) Pat - Start End Start End tern 1 w39 Dead Partial UD 311.0 311.0 ' 0.00 4.SU No 2 w39 Live Partial UD 600.0 600.0 0.00 4.50 No 3 Dead Point 267 2.00 No 4 Live Point 822 2.00 No 5332 Dead Partial OD 120.2 120.2 0.00 0.50 No 6 Live Partial UD 370.0 370.0 0.00 0.50 No 7133 Dead Partial UD 120.2 120.2 1.00 4.00 No a - j33 Live Partial UD 370.0 370,0 1.00 4.00 No 9 Dead Partial UD 120.2 120.2 4.00 4.50 No 1U j34 Live Partial UD 3)0.0 370.0 4.00 4.50 No 11 Dead Partial UD 120.2 120.2 4.50 7.50 No 12:j35 Live Partial UD 370.0 370.0 4.50 7.50 No 13_j36 Dead Partial UD 113.7 113.7 4.50 16.50 No 14 Live Partial UD 350.0 350.0 4.50 16.50 No 15 Dead Partial UD 100.7 100.7 3.00 4.50 No 19137 Live Partial UD 310.0 310.0 3.00 4,50 No 17 Dead Partial UD 120.2 120,2 7.50 13.50 No 18 347 Live Partial UD 370.0 370 . 7.50 13.50 No L9j48 Dead Partial UD 120.7 120.2 13.50 16.50 No 20 Live Partial UD 370.0 370.0 13.50 16.50 No 21 j49 Dead Partial UD 120.2 120.2 0.50 1.00 No 22 149 Live Partial (ID 370.0 370.0 0.50 1.00 No 23_632 Dead Point 300 3.00 No 24 Livo Point 902 3.00 No MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : i • . ji Ia 4'-6" 16-61 Dead 452 4067 1180 Live 847 11291 3436 Uplift 12 Total 1300 15358 4616 Beefing: Load Comb 112 112 02 Length 0.50` 4.24 1.27 Cb 1.00 1.09 1.00 'Mrn. bearing length for beams is 112° forestenorsuppons Glulam- Unbal., West Species, 24F -V4 DF, 5- 118x12" Sell- weight of 14,16 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NOS 2005: Criterion Analysis Value Design Value Analysis/Design Shear tv = 1Sa Fe' = 265 ry /Iv' , 0.60 Bending1+1 fh = 1074 Fb' = 2400 fb /Fb' - 0,45 Bendingl-) Pb = 1396 Fb' = 1844 fb /Fb' = 0.76 Live Defl'n 0.13 = <L/999 0.40 = L/360 0.32 Total Defl'n 0.19 =- L/740 0.60 = L/240 0.32 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Ctu Cr Cftt Notes Cn LC0 Fe' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 90'+ 2400 1,00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fb'- 1050 1.00 1.00 1.00 0.997 1.000 1.00 1.00 1,00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC 82 = D+L, V = 8357. V design = 6196 lbs Bending(+): LC 112 = D +L, M = 11006 lbs -ft Bending(-): LC 112 - U +L, M = 14310 16s -ft Deflection: LC 12 = D+L EI 1328006 lh -in2 Total Deflection - 1.50(Dead Load Deflection) i Live Load Deflection. 1D -dead L=live S ■snow Y1 =wind 1- impact C =construction CLd =concentrated) (All Lt's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verity that the default deflection limits are appropriate far your application 2, Glulem design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI/ARC A190,1 -1992 3, Grades with equal bending capacity in the top and bottom edges of the beam cross - section are recommended for continuous beams, 4. GLULAM: bxd = actual breadth x actual depth. 5. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3,3 3. 6. GLULAM: bearing length based on smaller of Pep/tension), Fcp(comp'n), (en 1 '''''). COMPANY PROJECT dt WoodWorks® SOFFWARF FOR WOOD DESIGN June 24, 2010 12 :44 b13 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, Psf, or pit ) Load Type Distribution Magnitude Location (ft) Units Start End Start End 1 w58 Dead Partial UD 519.0 519.0 D.00 3.00 plf 2 w58 Snow Partial UD 505.0 505.0 0.00 3.00 pif 3 Dead Point 217 5.50 lbs 4 Live Point 668 5.50 lbs 5 Dead Point 518 5.00 lbs 6 Snow Point 778 5.00 lbs 7 Dead Point 573 3.0D lbs 8 - c68 Snow Point 942 3.0D lbs 1 Dead Partial UD 593.7 593.7 5.00 8.00 plf 10 w59 Snow Partial UD 735.0 735.0 5.00 8.00 plf 11 j37 Dead Partial UD 100.7 100.7 6.50 8.00 pif 12 Live Partial UD 310.0 310.0 6.50 8.00 plf 13 Dead Partial UD 81.2 81.2 3.50 6.50 plf 14 j30 Live Partial UD 250.0 250.0 3.50 6.50 plf 15j39 Dead Partial UD 22.7 22.7 0.00 3.50 plf 16 j39 Live Partial UD 70.0 70.0 0.00 3.50 plf 17 b15 Dead Point 126 3.50 lbs 18 - b15 Live Point 399 3.50 lbs 19 Dead Point 225 6.50 lbs 20 Live Point 693 6.50 181 MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : ,..._-7-c.----.-..... - --+-„ -- :,� +,P+= - z,"` - .�._ � �.� _-. � --.i -,� 7 :,--. • • ■ -,�G mac - -° y : ■•∎∎•- .,. � r.�� � :rs. ' -- mo•T • - e.• -i � _ 7 ••- 7S- - `. .�= - -.cam -- "1: 10' et Dead 2561 3033 Live 2699 3789 Total 5261 6822 Bearing: Load Comb )13 :13 Lenoth 1.88 2.44 LSL, 1.55E, 2325Fb, 3- 112x14" Self -weight of 15.31 plf included in loads; Lateral support top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear Tv , 157 Fv' = 358 fv /Fv' = 0.44 Bending( +) lb = 1295 Fb' 2674 fb /Fb' = 0.48 Live Defl'n 0.06 = <L/999 0.27 : L/360 0.24 Total Defl'n 0.14 = L/680 0.40 - L/240 0.35 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LCII Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 3 Ft)'-) 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 3 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 3 Emin' 0.80 million - 1.00 - - - - 1.00 - - 3 Shear : LC 113 = D +.75(L +S), V '= 6822, V design - 5122 lbs Bending( +): LC 63 = D +.75(L +S), M - 12340 lbs -ft Deflection: LC #3 = Di.75(1. +S) El- 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D -dead L =live S -snow l4 -wind 1- impact C- construction CLd- concentrated) All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. Ita COMPANY PROJECT i WoodWorks® SOFIWAR( FOR WOOD DESIGN June 24, 2010 12:43 b14 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, pef, or pit ) Load Type Distribution Magnitude Location (ft) Units Start End Start End 1 w33 Dead Partial UD 317.7 317.7 9.00 12.00 plf 2 Live Partial UD 350.0 350.0 9.00 12.00 p15 3_c19 Dead Point 357 9.00 lbs 4 Live Point 1050 9.00 lbs 5c20 Dead Point 357 3.00 lbs 6 c20 Live Point 1050 3.00 lbs 7 Dead Partial DO 317.7 317.7 0.00 3.00 plf 13 Live Partial UD 350.0 350.0 0.00 3.00 plf 9 Dead Point 165 10.50 lbs 11 c64 Snow Point 225 10.50 lbs 11 Dead Point 165 1.50 lbs 12 Snow Point 225 1.50 lbs 13 Dead Full UDL 113.7 plf 14 Live Full UDL 350.0 plf 15 Dead Partial UD 17.0 17.0 0.00 0.50 plf 16:j43 live Partial UD 25.0 25.0 0.00 0.50 pl_ 37j44 Dead Partial UD 17.0 17.0 0.50 1.50 plf 18 j44 Live Partial UD 25.0 25.0 0.50 1.50 plf 19 - j45 Dead Partial UD 17.0 17.0 1.50 10.50 plf 20 Live Partial UD 25.0 25.0 1.50 10.50 plf 21 Dead Partial UD 17.0 17.0 10.50 12.00 plf 22 - 146 Live Partial 0D 25.0 25.0 10.50 12.00 plf MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : 1 0' 12' Dead 2351 2351 Live 4350 4350 Total 6701 6701 Bearing: Load Comb #2 $2 Length 2.39 2.39 LSL, 1.55E, 2325Fb, 3- 1/2x14" Self- weight of 15.31 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis/Design Shear tv - 163 ev' = 310 fv /Fv = 0.52 Bending( +) fb - 1769 Pb ' = 2325 fb /Fb' - 0.76 Live Defl.'n 0.25 = L/573 0.40 = L/360 0.63 I Total Defl'n 0.43 = L/333 0.60 - L /240 _ 0.72 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Cl Co LCD Fv' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - 2 - Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC 82 = D +L, V - 6701, V design - 5314 lbs Bending(♦): LC 112 = D +L, M = 16851 lbs -ft Deflection: LC 112 = D+L Et= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (0 -dead L -live S =snow W =wind I= impact C- construction CLd= concentrated) (All i.C's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. /` COMPANY PROJECT l I WoodWorks® SOF7WAGE FOR WOOD DESIGN June 24, 2010 12:41 b20 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs. psf, or pif ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_130 Dead Full UDL 21.7 pit 2 130 Live Full II DL 60.0 olf MAXIMUM RFA(Tinnis Whet and RFAQwr t FN(T14C tin% • I 0' 3'4 Dead 46 46 Live 105 105 Total 151 151 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min. bearing length for beams is 112" for exterior supports Lumber -soft, D.Fir -L, No.2, 4x6" Self - weight of 4.57 Of included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 9 Fv' = 180 fv /Fv' = 0.05 Bending(+) fb = 90 Fb' = 1170 fb /Fb' = 0.08 Live Defl'n 0.00 = <L/999 0.12 = L/360 0.02 Total Defl'n 0.00 = <L/999 0.18 = L/240 0.02 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.00 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 151, V design = 111 lbs Bending( +): LC #2 = D +L, M = 132 lbs -ft Deflection: LC #2 = D +L EI= 78e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L =live S =snow W =wind I =impact C=construction CLd= concentrated) • (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. COMPANY PROJECT W oodWorks ® SOI WW R1 SOS WOOD OGVGI. June 24, 2010 12:50 b30 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, Psf, or pif Load Type Distribution Magnitude Location (ft) Units Start End Start End 1_j41 Dead Partial UD 68.0 68.0 2.00 4.00 plf 2_j41 Live Partial UD 100.0 100.0 2.00 4.00 plf 3_j42 Dead Partial UD 72.2 72.2 0.00 2.00 plf 4 142 Live Partial UD 106.2 106.2 0.00 2.00 plf MAXIMUM REACTUTNS Ilbs1 and RFARINC; 1 FN(;THS fin1 • 4 A 1 Dead 154 150 Live 209 203 Total 364 353 Bearing: Load Comb #2 #2 Length 0.50' 0.50' *Min. bearing length for beams is 1/2" for exterior supports Lumber -soft, D.Fir -L, No.2, 4x8" Self- weight of 6.03 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear Iv = 15 Fv' = 180 fv /Fv• = 0.08 Bending( +) fb 140 Fb' = 1170 fb /Fb' = 0.12 Live Defl'n 0.00 = <L/999 0.13 = L/360 0.03 Total Defl'n 0.01 = <L/999 0.20 = L/240 0.04 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC0 Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 364, V design = 253 lbs Bending( +): LC 92 = D+L, £4 = 359 lbs -ft Deflection: LC 02 = D +L EI= 178e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L =live S =snow W =wind I= impact C= construction CLd =concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 61 COMPANY PROJECT di WoodWorks® SOFl1VARE10R WOOD D GN Dec: 15, 2010 11:03 b31 (Fee.bPJT WPM) Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs. Psf, or plf ) Load Type Distribution Magnitude Location (ft) Units Start End Start End 1j65 Dead Partial UD 47.7 47.7 0.00 4.00 pit 2_j65 Live Partial UD 160.0 160.0 0.00 4.00 plf 3_j28 Dead Partial UD 47.7 47.7 4.50 7.50 plf 4_j26 Live Partial UD 160.0 160.0 4.50 7.50 plf 5_j62 Dead Partial UD 47.7 47.7 7.50 10.00 plf 6_j62 Live Partial UD 160.0 160.0 7.50 10.00 _pit 7_j66 Dead Partial UD 47.7 47.7 4.00 4.50 pli 8 j66 Live Partial UD 160.0 160.0 4.00 4.50 olf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : 10( Dead 277 277 Live 800 800 Total 1077 1077 Bearing: Load Comb 112 112 Length 0.50* 0.50* "Min. bearing length for beams is 1/2" for exterior supports Lumber -soft, D.Fir -L, No.2, 4x10" Self - weight of 7.69 Of Included In loads; Lateral support: top = full, bottom = at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 42 Fv' = 180 fv /Fv' = 0.23 Bending( +) fb = 647 Fb' = 1080 fb /Fb' = 0.60 Live Defl'n 0.10 = <L/999 0.33 = 1/360 0.29 Total Defl'n 0.15 - L /810 0.50 = L/240 0.30 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC{! Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 2 Fop' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC 112 = D +L, V = 1077, V design = 911 lbs Rending( +): LC 112 = D+L, Tt = 2693 lbs -ft Deflection: LC 112 = D +L EI= 369e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead •L =live Sr-snow W=ind I =impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 619.1 COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:42 b31 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psi, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j65 Dead Partial UD 47.7 47.7 0.00 4.00 plf 2_j65 Live Partial UD 160.0 160.0 0.00 4.00 plf 3_j28 Dead Partial UD 47.7 47.7 4.50 7.50 plf 4_j28 Live Partial UD 160.0 160.0 4.50 7.50 plf 5_j62 Dead Partial UD 47.7 47.7 7.50 11.00 plf 6_j62 Live Partial UD 160.0 160.0 7.50 11.00 plf 7j63 Dead Partial UD 47.7 47.7 11.00 17.00 plf 8_j63 Live Partial UD 160.0 160.0 11.00 17.00 plf 9_j64 Dead Partial UD 47.7 47.7 17.00 20.00 plf 10j64 Live Partial UD 160.0 160.0 17.00 20.00 plf 11_j66 Dead Partial UD 47.7 47.7 4.00 4.50 plf 12 ji66 Live Partial UD 160.0 160.0 4.00 4.50 plf MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : I0. 20 Dead 619 619 Live 1600 1600 Total 2219 2219 Bearing: Load Comb #2 # Length 0.67 0.67 Glulam - Unbal., West Species, 24F -V4 DF, 5- 118x12" Self- weight of 14.16 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 49 Fv' = 265 fv /Fv' = 0.18 Bending( +) fb = 1082 Fb' = 2400 fb /Fb' = 0.45 Live Defl'n 0.43 = L /553 0.67 = L/360 0.65 Total Defl'n 0.69 = L /350 1.00 = L/240 0.69 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, v = 2219, V design = 1997 lbs Bending(+): LC #2 = D +L, M = 11095 lbs -ft Deflection: LC #2 = D +L EI= 1328e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values am for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). Gif2C) COMPANY PROJECT 00110 I I •WoodWorks® Ja. 24, 20101315 334 SOFTWARE FOR 15000 DESIGN Design Check Calculation Sheet Wet 7.1 LOADS TO. Ittbatly.-10t It?] 15100 2'0001 01r,0. r.t.or 0.1•.• err, Lava 14" aat ' 4 • • • •11. a: T '10 • 0010 ,1; .0'I. 1%.,. GI .7. :1.00 0asitril Un 0 .00 ILO II' 0-•.s 1,Int •■•••■■ Pr, I um :73a l'tqi • .0 1..5 11.,5 intl.! N 10... 141, 010 1511,T 00. ,00 tba 1 ttzU 1:12‘.1. to. !! 0.00 . .00 • Sn, ••: Teg , Or.. f00110.. k,,1 o, f12, 1.0LI rio I IL r001111: Vt 101 .0 ■40,0 1.01' ).-1 • -a0 00,1.1 Ur :7 :1,0 11.10 1,14 Law •■_.," 11.60 t rz 10 / 11 2..L•s L..: PC OP 11, 1u .:0 .00 p:: ts, 00:t.i. • ',E. 31 G.00 $L731 I./ 110 0.131 000,0 ..■01 It'll ph' Pr. 10.: rI.. )..1: 31:0 .31 I tv• .500 o 1,0 010.1 uu 11,0 - 0; 0 1.01 nt U? : 10.5 300 1.0 pl • Z, , 0: ' !%00 plO itva ■ I a01111 00 1,0,0 1). It 11 0. an , ag:111 00 101.0 200.0 101 le Z... Frt.., 15.01 1. r1 Pa:72a. :,!.aa e_nu leu.0 13...q. I 14,3cIr. ▪ bl U3 r :1,11 :r...■• :0,00 •ale --, f 4 t V ;.01 Lye. L, 1 0,1 Fur ,t Ur •,3.• '...re' 1..7.: Ora, tia • , • 11 : 110., 11. 03 :J.(' • 1, OS + 7.3 n L0,,Itrt 00ZC 101,0 t.It 1,000 01, !S taaJ r.r.,•1 UP 41_ p. MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (In): I•3 I_IOU t.J2 •e •• ..11 11 Glulam-Bal., West Species, 24F-V8 OF, 6-118x22-1/2" Sall-weipla 4320 55,111achaled kaaN: latmal aupport kW* tungere• auppx13. Analysis vs. Allowable Stress (psi) and Deflection (in) •■,..1-n, • 1,-11•1 et 1,0 tr. • :101 1..1 1, a•• ...; 1/1, 0.11 • pit, ev 10 ADDITIONAL DATA: rECCDED CIE Ir. C. cr.. 0, CID 0 I - ses 0 j . :4 -7, I:. , 1:t 1: 0 ," F•,,,./r• tC - •• ,V-La . 7-• Co • .i0 C.ata L ILI iv, 17 I 001L1 Ian 1 :n - .In 00.1 51U5*I1N51 M` DESIGN NOTES: 1 Plara•mr6CadttodebabloCoOmfiTelaormortasOrwioanow... Z whislys alms veto matenals oxlImalg t•AITC 117.2001 old enandadund hacoaduna•dhANSUP.ITC A1O31.1R32 3 CLU1A41. bad • wlvi hr each h x Adum 641111 a-CaArn Os NOW alteaR/SuroalalattaprmIstre penskoad NOS C55, 303 &GALINA. bump wart Mee on urnal. typanagare,, FwmT9 COMPANY PROJECT di WoodWorks' sanwARr/OR WOOD MCA June 24.201012:49 b35 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs. psi, or pH Load Type Distribution Magnitude Location tftl Units Start End Start End l_j21 Dead Partial UD 120.2 120.2 0.50 1.50 plf 2_j21 Live Partial UD 370.0 370.0 0..50 1.50 plf 3_j59 Dead Partial UD 120.2 120.2 0.00 0.50 plf 4_j59 Live Partial. UD 370:0 370.0 0.00 0.50 pli 5_j60 Dead Partial UD 120.2 120.2 1.50 3.00 plf 6 960 _Lion Partial UD 370.0 370.0 1.50 3.00 pit MAXIMUM R • 31 Dead 188 188 _Live 555 555 Total 743 743 Bearing: Load Comb 02 112 Lenath 0.50' 0.50. 'Min. bearing length for beams is 112" for exterior supports Lumber n -ply, D.Fir -L, No.2, 2x8 ", 2 -Plys Self- weight of 5.17 plf Included In loads; Lateral support: top= full, bottom = at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005: . Criterion Analysis Value Design Value Analysis /Des.ian Shear fv = 31 Fw• - 140 iv /Fv' 0.17 Bending) +) fb - 254 Fb' 1080 fb /Fb' t. 0.24 :Live DeEl.'n 0.00 - <1./999 0.10 - 1/360 0.04 Total Dotl'n 0.01 - <61999 0.15 - L1240 0.04 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cu LCII Fv' 180 1.00 1.'00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.200 1.00 1.00 .1.00 1.00 - 2 Fop' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Ends' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC 112 D +L, V 743, V design '444 lbs Bending) +): LC 112 D+L, PL - 557 lbs -ft Deflection: LC 112 - D +L El- 76e06 lb -in2 /ply Total Deflection 1.50(Deed Load Doflection) t Live Load Deflection. ID -dead L-1icc S -'snow w -wind I =impact C- construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -TBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: It Is assumed that each ply is a single continuous member (that is, nO butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply Is equally top - loaded. Where beams are aide - loaded, special fastening details may be required. • 61r3(01. COMPANY PROJECT I i W oodWorks® sell MARC MAR WOOD O! WL. . June 24, 201012:51 c2 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, pst, or pif ) Load Type Distribution Magnitude Location fftj Units Start End Start End 1 bl Dead Axial 1056 (Ecc tricity = 0.00 in) 2 Rf.Live Axial 2153 (Ecc tricity = 0.00 in) MAXIMUM REACTIONS (lbs): d 8' Lumber n -ply, Hem -Fir, No.2, 2x6 ", 2 -Plys Self weight of 3.41 Of included in loads; Pinned base; Loadface = depth(d); Built -up fastener. nails; Ke x Lb: 1.00 x 0.00= 0.00 [it$ Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2006 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 196 Fc' = 980 fc /Fc' = 0.20 Axial Bearing fc = 196 Fc* = 1644 fc /Fc* = 0.12 ADDITIONAL DATA: FACTORS: F /F- CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC@ Fc' 1300 1.15 1.00 1.00 0.596 1.100 - - 1.00 1.00 2 Fe' 1300 1.15 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC il2 = D +L, P = 3236 lbs Kf = 1.00 (D=dead L=live S =snow N =wind T= impact C =construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. G 3 COMPANY PROJECT CI WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:54 c12 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 c24 Dead Axial 1478 (Eccentricity = 0.00 in) 2�c24 Live Axial 4320 (Eccentricity = 0.00 in) 3 b10 Dead Axial 4067 (Eccentricity = 0.00 in) ,4 Live Axial 11291 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): _ — - 0' 8' Timber -soft, D.Fir -L, No.1, 6x6" Self - weight of 7.19 ptf included in loads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 701 Fc' 820 fc /Fc' = 0.86 Axial Bearing fc = 701 Fc* = 1000 fc /Fc* = 0.70 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1000 1.00 1.00 1.00 0.820 1.000 - - 1.00 1.00 2 Fc* 1000 1.00 1.00 1.00 - 1.000 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 21214 lbs (D =dead L=live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. GAC COMPANY PROJECT di WoodWorks® SDI SWAN FOR WOOD DESIGN June 24, 2010 12:53 c23 Design Check Calculation Sheet Sizer 7.1 LOADS ( tbs, psf, or ptf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b9 Dead Axial 1478 (Eccentricity = 0.00 in) 2 Live Axial 4320 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): 0' 9' Lumber Post, Hem -Fir, No.2, 4x6" Self- weight of 3.98 plf included In loads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 9.00= 9.00 (it]; Ke x Ld: 1.00 x 9.00= 9.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 303 Fc' = 379 tc /FC' - 0.80 Axial Bearing fc = 303 Fc* = 1430 fc/Fc* = 0.21 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cert Ci LC1 Fc' 1300 1.00 1.00 1.00 0.265 1.100 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC @2 = D +L, P = 5834 lbs (D=dead 7. -'live $ =snow W=wind I =impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations': ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. (../ RC COMPANY PROJECT WoodWorks® SOF(WMg FOR WOOD DESIGN June 24, 2010 12:54 c26 Design Check Calculation Sheet Sizer 7.1 LOADS (Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1 c23 Dead Axial 1478 (Eccentricity = 0.00 in) 2 Live Axial 4320 (Eccentricity = 0.00 in) 3 Dead Axial 1180 (Eccentricity = 0.00 in) 4 Live Axial 3436 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): 0' Timber -soft, Hem -Fir, No.2, 6x6" Self- weight of 6.25 plf included in loads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (In) using NOS 2005 : Criterion Analysis Value Design Value Analysis /Design . Axial fc = 346 Fc' = 492 fc /Fc' = 0.70 Axial Bearing fc = 346 Fc* = 575 fc /Fc* = 0.60 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 575 1.00 1.00 1.00 0.856 1.000 - - 1.00 1.00 2 Fc* 575 1.00 1.00 1.00 - 1.000 - - 1.00 1.00 2 Axial : LC #2 D +L, P = 10465 lbs (D=dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 62,G COMPANY PROJECT di WoodWorks® . stammmrM WOOD enwm June 24, 2010 1152 c29 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs. psf, or plf ) Load Type Distribution Magnitude Location (ft) Units Start End Start End 1 b13 Dead Axial 3033 (Eccentricity = 0.00 in) 2 Rf.Live Axial 5052 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): a 8' Lumber n -pty, Hem -Fir, No.2, 2x6 ", 3-Plys Self-weight of 5.11 plf included In loads; Pinned base; Loadface = depth(d); Built -up fastener. nails; Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Repetitive factor. applied where permitted (refer to online help); Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 328 Fc' = 439 fc /Fc' = 0.75 Axial Bearing fc = 328 _ Fc* = 1644 fc /Fc• = 0.20 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC41 Fc' 1300 1.15 1.00 1.00 0.267 1.100 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC 92 = D+L, P = 8126 lbs Kf = 0.60 (D =dead L=live S =snow W=ind I =impact C= construction CLd =concentrated) (All LC's are listed in the Analysis output) Load combinations: /CC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. (712,071. COMPANY PROJECT fl WoodWorks® S mmuz/ 7'OR WQOD DLSGN June 24, 2010 12:55 c31 Design Check Calculation Sheet Seer 7.1 LOADS ( lbs. psf, or plf ) Load Type Distribution Magnitude Location (ft] Units Start End Start End 1_p13 Dead Axial 2561 (Eccentricity = 0.00 in) 2 b13 Rf.Live Axial 3599 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): Lumber n -ply, Hem -Fir, No.2, 2x4 ", 3 -Plys Self- weight of 3.25 plf included in loads; Pinned base; Loadface = depth(d); Built -up fastener. nails; Ke x Lb: 1.00 x 8.00= 8.00 (ft]; Ke x Ld: 1.00 x 8.00= 8.00 (ft); Repetitive factor applied where permitted (refer to online help); Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 393 Fc' = 443 fc /Fc' = 0.89 Axial Bearing fc = 393 Fc* = 1719 fc /Fc* = 0.23 ADDITIONAL DATA: FACTORS: £/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC11 Fc' 1300 1.15 1.00 1.00 0.258 1.150 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC 112 = D+L, P = 6186 lbs Kf = 0.60 (D =dead L =live S=snow F7=wind 1=impact C= construction CLd= concentrated) (All :LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. C..)?1?) COMPANY PROJECT di WoodWorks® SOF1WAMFFOR WOOD 0014N June 24, 20101254 c39 Design Check Calculation Sheet Sider 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location IftI Units Start End Start End 1 b21 Dead Axial 267 (Eccentricity = 0.00 in) 2 Live. Axial 822 (Eccentricity = 0.09 in) MAXIMUM REACTIONS (lbs): 9 Lumber n -ply, Hem -Fir, No.2, 2x4 ", 2 -Plys Self - weight of 2.17 Of included in loads; Pinned base; Loadface = depth(d); Built -up fastener. nails; Ke x Lb: 1.00 x 9.00= 9.00 [ft]; ICe x Ld: 1.00 x 9.00= 9.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 106 Fc' = 171 fc /Fc' = 0.62 Axial Bearing fc = 106 Fc* = 1495 fc/Fc = 0.07 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.114 1.150 - - 1.00 1.00 2 Fc' 1300 1.00 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D+L, P = 1108 lbs Sf = 0.60 (D=dead L=live S =snow W =wind I =impact C=construction CLd =concentrated) (All.LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1_ Please verify that the default deflection limits are appropriate for your application. 2. BUILT-UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. (12.1 COMPANY PROJECT di WoodWorks® 5W fNAYf ICY WOOD UCSH..A June 24, 2010 12:52 c55 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs. psf, or plf Load Type Distribution Magnitude Location (ft) Units Start End Start End 1 b30 Dead Axial 154 (Eccentricity = 0.00 in) 2 b30 Live Axial 209 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): • • -1 0' 8' Lumber Post, Hem -Fir, No.2, 4x4" Self - weight of 2.53 plf Included In loads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x LA: 1.00 x 8.00= 8.00 (ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using Nos 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 31 Fc' = 470 fc /Fc' - 0.07 Axial Bearing fc = 31 Fc* = 1495 fc /Fc* = 0.02 ADDITIONAL DATA: FACTORS: FIE CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC4 Fc' 1300 1.00 1.00 1.00 0.315 1.150 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1_.00 - 1.150 - - 1.00 1.00 2 Axial : LC 42 = D +L, P = 384 lbs (D=dead L=live S =snow W =wind I= impact C =construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. • C-, C C. t ') aa� = r, m �v 3 • r y CI 0 1 Z 0 ❑ O Z m 2 • 0 El n 0 0 1 0 - )�n lm G, u 3 ''�� -1 1 i �I 11 1P� � �0 SvS),y j "),WSldS << S J941 1 i p aD1.11 0 S3 � of 1/4) 1 Of I Cre 911 a rn 1-1 Wood q o k OP E 2-ore 511 ua A We . kI'C bE E..1 UA ❑ m 3 O q0 S 11V" <- °) ujocOck a 2 9 m ❑ ❑ SUUo I W3 i tw -091 I ('rt St ,Y7a0, :3a •ts3CO d 01 V O N D : ON BOA O \ 0� ova - Y - Ad 'AB COMPANY PROJECT i Woo SOF7WAD( FOR WOOD DtS(GN June 24, 2010 13:07 b6 LC1 • Design Check Calculation Sizer 7,1 LOADS ( lbs, psf, or plf ) Load Type ' Distribution Magnitude .Location Ift) Units Start End. Start End 1 c44 -. Dead Point. 444 - 2.00 lbs 2 Snow Point 647 2.00 Lbs ' 3 w44 Dead Partial UD 389.2 389.2 0.00 2.00 plf 4w44 Snow Partial UD 431.2 431.2 0.00 2.00 plf 57c45 Dead Point 444 5.00 lbs 6 Snow Point 647 5.00 lbs 7 - w45 Dead Partial UD 389.2 389.2 5.00 6.00 plf 8 Snow Partial UD 431.2 431.2 5.00 6.00 plf 9 Dead Full UDL 120.2 plf 10,j25 Live Full UDL 370.0 plf IWIND1 Wind Point B00 2 :0D Its 41INO2 Wind Point - 910 5' :00 lbs • • • MAXIMUM REACTIONSiIbs% and REARING' LENGTHS_(inl': 1 cy •61 Dead 1436 1389 .Live 2089 1803 Total 3525 3192 Bearing: - - - Load Comb 44 43 Lenath - _1.88" 1.70 Lumber n -ply, D.Fir -L, No.2, 2x12 ", 2 -Pays Self- weight of 8.02 -pit included in loads; Lateral support top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 Criterion - Analysis Value "Design ._Val,uc Analysis /Desidn Shear fv = 97 - Fv' = 207 fv /Fv' = 0.47 Bending( +) fb - 805 Fb' = 1035 fb /Fb' = 0.18 Live Defl'n 0.03 = <L/.999 0.20 = L/360 0:15 Total De'il'r, ' 0.06-= <L/999 0.30 L/240 0.21 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr - Cfrt Ci Cn LC#. Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - 1.00 1.00 - 4 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 4 Shear : LC #3 = D +.75(L. +S), V = 3239, V design = 2190 lbs Bending( +).: LC 83 = D +.75(L +S), M 424/ los -ft Deflection: I.0 ((4 = D +.75(L +S +W) EI= 285e06-lb -in2 /ply • Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L=iive S =snow W - wind 1-impact C- construction CLd=concentrated) (All LC's are listed in the Analysis output) • Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application, 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not • exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. 032- COMPANY PROJECT i WoodWorks° Son WARE FOR IVOOO MUCK June 24, 2010 13:07 b6 LC2 Design Check Calculation Sheet Stier 7.1 LOADS ( lbs, psi, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 c44 Dead Point 444 2.00 lbs 2 c44 Snow Point 647 2.00 lbs 3_w44 Dead Partial UD 369.2 389.2 0.00 2.00 plf 4 Snow Partial UD 431.2 431.2 0.00 2.00 plf 5 Dead Point 444 5.00 lbs 6 c45 Snow Point 647 5.00 lbs 7 - w45 Dead Partial UD 389.2 389.2 5.00 6.00 plf 6 Snow Partial UD 431.2 431.2 5.00 6.00 pit 9 Dead Full UDL 120.2 plf 10 j25 Live Full ODI. 370.0 pit WIND1 Wind Point -800 2.0D lbs WIND2 Wind Point 910 5.00 lbs MAXIMUM REACTIONS flhs1 and BFARING I ENGTHS (in) : et Dead 1436 1389 Live 1803 2172 Total 3239 3561 Bearing: Load Comb #3 114 Length 1.73 1.90 • Lumber n -ply, D.Fir -L, No.2, 2x12 ", 2 -Plys Self- weight of 8.02 pff included in loads; Lateral support top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analvsis /Destan Shear fv = 97 Fv' = 207 fv /Fv' _, 0.47 Bending( +) fb 805 Fb' = 1035 fb /Fb' 0.78 Live Dcfl'n 0.03 = <L/999 0.20 = t. /360 0.14 Total Dcfl'n 0.06 = <L/999 0.30 = L/240 0.20 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LCII Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3 Shear : LC 43 = D +.75 (L +S), V = 3239, V design 2190 lbs Bending( +): LC #3 = D +.75(LIS), M = 4747 lbs -ft Deflection: LC 113 - D+.75(LAS) E7- 285c06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. ID-dead L -live S =snow 14 =wind I- impact C- construction CLd =concentrated) (Ail LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. C7133 COMPANY PROJECT 1 i WoodWorks® SOOIWAY( FOR WOOD 0(0045 June 24, 2010 13:09 b14 LC1 Design Check Calculation Sheet Sizer 7.1 LOADS ( fps, pef, or pit ) Load Type Distribution Magnitude Location IftI Units Start End Start' End 1 wLa Dead Partial 110 221.7 221.7 5.00 10.10 pit • 2 Live Partial UD 350.0 350.0 9.00 10.50 plf 3 Dead Point 357 9,00 lbs 4 Live Point 1050 9.00 lbs S c20 Dead Point 357 3.00 lbs 6 Live Point 1050 3.00 lbs 7w6G Dead Partial UD 317.7 317.7 0.00 1.50 pit 8 Live Partial UD 350.0 350.0 0.00 1.50 plf 9 Dead Point 165 10.50 lbs 10 c69 Snow Point 225 10.50 lbs 11 Dead Point 165 1.50 lbs 12 Snow Point 225 1.50 lbs 13 Dead Partial UD 221.7 221.7 1.50 3.00 p11 14 Live Partial UD 35(1.0 350.0 1.50 3.00 plf 15 Dead Partial UD 317.1 317.7 10.50 12.00 plf 11w69 Live Partial UD 350.0 350.0 10.50 12.00 pit 17 j36 Dead Full UDL 113.7 plf 18:11 Live Full UDL 350.0 pit 19 j43 Dead Partial UD 17.0 17.0 0.00 (1.50 plf 20_j43 Live Partial UD 25.0 25.0 0.00 0.50 plf 21 Dead Partial UD 17.0 17.0 0.50 1.50 plf 22 Live Partial UD 25.0 25.0 0.50 1.50 Tilt 23J45 Dead Partial UD 17.0 17.0 1.50 3.00 plf 24 Live Partial UD 25.0 25.0 1.50 3.00 plf 25 Dead Partial UD 17.0 17.0 10.50 12.00 plf 26 Live Partial UD 25.0 25.0 10.50 12.00 plf 27 Dead Partial UD 17.0 17.0 3.00 9.00 plf 21 j70 Live Partial UD 25.0 25.0 3.00 9.00 pit 29 j7: Dead Partial UD 17.0 17.0 9.00 10.50 plf 30 Live Partial UD 25.0 25.0 9.00 10.50 plf 911101 Wind Point 3560 3.00 lbs WEND? Wind Point -3640 9.00 lbs wind3 Wind Point -3620 0.00 lbs wind5 Wind Point 3570 12.00 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : #a.� ^ - � --,, ... it rot ,,, .- ' ` ..�sr .,,.f:, - ""'c ,f.. .r --c---.. 121 Dead 2207 2207 Live 4350 4350 Uplift 499 479 Total G557 6557 Bearing: Load Comb 42 02 Length 2.34 _ 2.34 LSL, 1.55E, 2325Fb, 3- 1!2214" Self- weight of 15.31 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value A.nalvsis /Design Shear iv • 158 PV' = 310 tv /Fv' . 0.51 Bending l +l fb - 1735 Fb' - 2325 fb /Fn' -. 0.75 Live Defl'o 0.25 - L/573 0.40 ■ 1/360 0.63 Total Defl'n 0.42 = 21343 0.60 - L/240 0.70 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Ctu Cr Cfrt Ci Cn 1.:.0 Fly' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fop' 000 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 3.00 - - 2 Emirs' 0.00 million - 1.00 - - - - 1.00 - - - Shear : LC 42 - 1111, v - 6557, v design = 5170 lbs Bending(+): LC $2 - D+L, M 16527 lbs -ft Deflection: LC 42 DIL EL= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. ID -dead L=1ive S =snow 0 -wind 1 =impact C= construction Cud= concentrated! (All LC's are listed in the Analysts output) Load combinations: 1CC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only, For final member design contact your local SCL manufacturer. 3, Size factors vary from one manufacturer to another for SCL materials, They can be changed in the database editor. 6,13t-f COMPANY PROJECT di WoodWorks® Soflw4R/-11.10 WORD VISION June 24, 2010 13:09 b14 LC2 Design Check Calculation Sheet Sizer 7 1 LOADS ( lbs. psi, or pit) : Load Type Distribution Magnitude Location [ft) Units Start End Start End I well Dead Partial UD 221.7 221.7 9.00 10.50 plr 2 Live Partial UD 350.0 350.0 9.00 10.50 plf 3 Dead Point 357 9.00 lbs 4 - c19 Live Point 1050 9.00 lbs 5 Dead Point 357 3.00 lbs 6 Live Point 1050 3.00 lbs 7 - w66 Dead Partial (ID 317.7 317.7 0.00 1.50 plf 8 Live Partial UD 350.0 350.0 0.00 1.50 plf . 9 Dead Point 165 10.50 lbs 10 c64 Snow Point 225 10.50 lbs 11 Dead Point 165 1.50 lbs 12 Snow Point 225 1.50 lbs 13 Dead Partial UD 221.7 221.7 1.50 3.00 plf 14e67 Live Partial UD 350.0 350.0 1.50 3.00 plf 15 Dead Partial UD 3:7.7 317.7 10.50 12.00 plf 16 Live Partial UD 350.0 350.0 10.50 12.00 plf 17 Dead Full UDL 113.7 plf 18 :236 Live Full UDL 350.0 plf 19_j43 Dead Partial OD 17.0 17.0 0.00 0.50 plf 20_143 Live Partial UD 25.0 25.0 0.00 0.50 plf 21 Dead Partial DU 17.0 17.0 0.i0 1.50 plf 22 144 Live Partial UD 25.0 25.0 0.50 1.50 plf 23 Dead Partial UD 17.0 17.0 1.50 3.00 pit 24 j45 Live Partial UD 25.0 25.0 1.50 3.00 plf 25_j46 Dead Partial UD 17.0 17.0 10.50 12.00 plf 26_j46 Live Partial UD 25.0 25.0 10.50 12.00 plf 27 j70 Dead Partial UD 17.0 17.0 3.00 9.00 pit 28D70 Live Partial UD 25.0 25.0 3.00 9.00 plf 29_j71 Dead Partial UD 17.0 17.0 9.00 10.50 plf 30 j71 Live Partial UD 25.0 25.0 9.0U 10.50 pif WIHD1 Wind Point -3560 3.00 lbs WI6D2 Wind Point 3640 9.00 lbs wrnd3 Wind Point 3620 0.00 lbs winds wind Point - 3570 1 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : r .ara -.. � ter- •. --_ - a.-- t .�c+w �. a ''.+. „ Yom. . --4 - ar• ....Td� ���• �__ ti �wr� �«. -..., �_ " --- t =�..�� = ` - �.- . -._tea _ - ,..c In 1 a 12 1 Dead 22(17 2201 Live 4826 4811 Total 7033 7018 Bearing: Load Comb 04 04 Lennth 2.51 _ 2.51 LSL, 1.55E, 2325Fb, 3- 1/2x14" Self - weight of 15.31 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analvaia Value Design Value Anoivalo /De3ian Shear iv lots Iv' . 310 fv /Fv' - 0.51 Bendingt +l £b = 1/35 Pb' = 2325 fb /Fb' = 0.75 Live Defl'n 0.25 ■ L/573 0.40 - L/360 0.63 Total Defl'n 0.42. L/343 0.60 - L/240 0.70 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV au Cr Cfrt C1 Cn LCil Fe' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 kcp' HOU - - 1.00 - - - - 1.00 - - - E 1.5 eallion - 1.00 - - - - 1.09 - - 2 Lein' 0,80 million - 1.00 - - - - 1.00 - - 2 Shear : LC 112 • 012, V = 6557, V design - 5170 lbs , Bcndingl +!: LC 02 - D+L, 14 - 16527 lhs -ft Deflection: LC 112 - DIL EI- 1241e06 lb -in2 Total Deflection = 1.50 (Dead load Deflection) + Live Load Deflection. (D'dead I, live 5-snow W-wind 1- impact C =construction CLd•concentrated) All LC's are listed in the Analysis output) Lood combinations; ICC -70C DESIGN NOTES: 1, Please verify that the default deflection limits are appropriate for your application 2 SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only, For final member design contact your local SCL manufacturer, 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor C'l 3C COMPANY PROJECT di WoodWorks® ' 6OFIWARFIOR WOOD D ! 11CH June 24, 201013:11 b13 LC1 Design Check Calculation Sheet Saar 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location (ft) Units Start End Start End 1 w56 bead Partial UD 519.0 519.0 0.00 3.00 pit ' 2 Snow Partial UD 505.0 505.0 0.00 3.00 plf 3 Dead Point 217 5.50 lbs 4 c40 Live Point 668 5.50 lbs 5 Dead Point 519 5.00 lbs 6 c67 Snow Point 770 5.00 lbs 7 - c68 Dead Point 573 3.00 lbs 8 Snow Point 942 3.00 lbs 9 Dead Partial UD 593.7 593.7 5:00 8.00 pit lb w59 Snow Partial UD 735.0 735.0 5.00 8.00 plf 11 Dead Partial UD 100.7 100.7 6.50 8.00 pit 12 j37 Live Partial UD 310.0 310.0 6.50 8.00 plf 13j38 Dead Partial UD 81.2 81.2 3.50 6.50 plf 14 j30 Live Partial UD 250.0 250.0 3.50 6.50 plf 15 Dead Partial UD 22.7 22.7 0.00 3.50 p1E 16 Live Partial UD 70.0 70.0 0.00 3.50 plf 17 - h15 Dead Point 126 3.50 lbs 1B Live Point 389 3.50 lbs 19 Dead Point 225 6,50 lbs 2032 Live Point 693 6.50 lbs W1 Wind Point 6590 0.00 lbs W2 Wind Point -6590 3.00 lbs W3 Wind Point 6590 5.00 lbs W4 Wind Point -6590 8.007 111 MAXIMUM REACTIONS (lbsl and BFARIN(; I FNrakis (inl • + a.. ti `�.+ w a , w ;....-4,,,,,....-. - C. - ---.- �sa. "�wv� "'4 .,.....,..-.-,ii.,_.,-.....,-.: ... ..a .. cr---- - -�i�' �i =:.o + �� r p ar r, „ , ....., � i.. yam° - - ...Je-- Jr:.� ,� ' , fir 0 B Dead 2561 3033 Live 6406 7789 Uplift 3098 Total 8968 ' 6622 Bearing: Load Comb 84 k3 Length 3.20 2.4 LSL, 1.55E, 2325Fb, 3- 112x14" Self- weight of 15 31 ptf included In loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Csiterlon Analysis Va1ur Deslan Value Analvsilr /DeslUrl Shear Iv .- 121 FV' - 356 tv /F'v' = U.44 Rending1 +l fh = 1295 Pb' '- 2674 tb /Fb' = 0.68 Live Defl'n 0.06 , (L/999 0.27 a L/360 0.24 Total Dofl'n 0.14 a L /680 0.40 . L/240 0:35 ADDITIONAL DATA: FACTORS: F/E CD CM CL CI. CV Cfu Cr Cfrt Cl Cn LC0 Pv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 3 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 3 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 3 Damn' 0.80 million - 1.00 - - - - 1.00 - - 3 Shear : LC 93 - Dr.75(L +S), V - 6822, V design = 5122 lbs bending( +); LC 83 = D+. +5), M = 12340 lbs -ft Deflection: LC 93 - D +.75(1. +S) EI- 1241e06 2b -io2 Total Deflection = l.501uead Load Deflection) + Live Load Deflection. (U =dead L=live S -snow W =wind I= impact C =canslructlun CLd- concentrated) (All 1.C's are listed in the Analysis output) Load combinations: ICC -THC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2, SCL - BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer 3, Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. (i3 COMPANY PROJECT i WoodWorks® SOFIwAUO POP WOOD OISIGN June 24, 2010 13:11 b13 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psi, or Of ) Load Type Distribution Magnitude Location (ft) Units Start End Start End 1 w50 (lead Partial DD 519.0 519.0 0.00 7.00 pit "L w58 Snow Partial UD 505.0 505.0 0.00 3.00 plf 3 Dead Point 217 5.50 lbs 4 c40 Live Point 668 5,50 lbs 5 c67 Dead Point 518 5.00 lbs 6 Snow Point 778 5.00 lbs 7 c69 Dead Point 573 3.00 lbs 9 Snow Point 942 3,00 lbs 9 Dead Partial 11D 593.7 593.7 5.00 8.00 pit 10 w59 Snow Partial UD 735.0 735.0 5.00 8.00 plf 1] Dead Partial UD 100.7 100.7 6,50 8.00 plf 32 Live Partial UD 310.0 310.0 6.50 8,00 elf 1:1 - 338 Dead Partial UD 81.2 81.2 3.50 6.50 plf 14 Live Partial UD 250.0 250.0 3.50 6,50 plf 15;j39 Dead Partial UU 22.7 22.7 0,00 3.50 plf 16 Live Partial UD 10.0 70.0 0.00 3.50 p11 17 - b15 Dead Point 126 3.50 lhs 18 - b15 Live Point 389 3.50 lbs 19 b32 Dead Point 225 6,50 lbs 20c32 Live Point 593 6.50 lbs WI Wind Point -6590 0,00 lbs W2 Wind Point 6590 3,00 lbs W3 Wind Point -6590 5.00 lbs W4 Wind Point 6590 6.00 lbs MAXIMUM REACTIONS flhsl and 9 ARIN N GYMS Iinl : ...r.rt' . sue.-- + �'�' ° v. - +- .." "...d -e . s .. n+ -.......;..7-.1.-.... r gT'. " - s "�.�r' J --- "'"' +s r - =• ` �s . '. '�- 0T- 'r.raw.' • y- �Y. - - ----:-.- sG°.r 7 --'_ .tyres _ ' "°_r . ...7 _ a X I Cr al Dead 25hl 3033 Live 2699 7496 Uplift 3381 Total S ?61 10525 Bearing: . Load Comb 83 04 Length 1.80 3.76 LSL, 1.55E, 2325Fb, 3- 112x14" Self - weigh) 0115,31 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (In) using NOS 2005: Criterion Analysis Value Dew= Value Analvoia /Deslan Shear ' -v = 1n7 iv' - 356 tv /PV' - 0.44 Bending(*) ih = 1295 Fb' .. 2674 fb /Fb' = 0.48 Live Defl'n 0.06. <I/999 0.27 L/360 0.24 Total Defl'n 0.14 = 1/600 0.40 w L/240 0.35 ADDITIONAL DATA: FACTORS: F/E CD C14 Ct CL CV Cfu Cr Cfre Cl Cn LCA Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 3 Pb', 2325 1.15 - 1.00 1.000 1.00 - 1,00 1.00 - - 3 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 3 Ervin' 0.80 million - 1.00 - - - - 1.00 - - 3 Shear : r.0 67 = D +.75(1, +S), V - 6822, V design - 5122 lbs Bending( +): LC 03 = D+,75(LiS), M = 12340 lbs -ft Deflection: LC 03 = D+.75)L +S) E:1= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L =live S =snow W =wind 7- impact C= construction CLd= concentrated) (All LC'S arc listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only For final member design contact your local SCL manufacturer 3. Size tectors vary from one manufacturer to another for SCL materials. They can be changed in the database editor 6:i 6�3-- COMPANY PROJECT • Woodworks® June 29. 2010 13:10 I/31 LC1 sornrm a FOR WOOD DESIGN Design Check Calculation Sheet Senn 7,1 LOADS po 1.7.3 7 ',Fc 7 ^1. 1 .•, 171.0 in I 0 79 93 T3.0 J-1 3. so P.-3 • • Frz 30 7,1 (,1C I0 :12 ..r•J 1.7[1 i1 • 12,771. II 771.; 701.1." 71.01 c” G 77, 7-,G1 :or Scs.• ,1G7 7b3 Ms, I r.7G I rrq 11.111 1 '..141 -- a :LI., .I4 .C.Zi oLt 11 Lc, ft.!, 1,1:11 1111 1.7 11...7 77a, 7 on 7,o7,7 133 :17.; o h:771,1 03 I ;•77 F1 777.; ,,CG ,• - Jo iG3.1 Lire 14Ctl, - lit,. 36-.07 :•.7.7 Oi0iIi.(,fl 7 -1,3 011 L.;‘• az -a al 2 1 r ..0 I (I,0 1.7C 0..d r.:,:,,2 34 :10.: 113.2. G.73 3.‘,. Liao 7.: G., .. 7.0 ._IT Lit 27 Para: AI 727., 3.$.7 3.0c 1"_•27. Li ;1,11" 51 '.EG 51, 7 1" . "3:4 0.113 13t..al As '74_7 1.1 • Live 7,-,•1 01,.: 7,70 k. .G 1,7. ci7 1.'. 4.r2 1:3.74,13 707 LIcs izr-7.1 VD it., 4.4,G II...I 1._7. X:3E. Lira 3. „, YAW Arra Al cr.: 1 . • 7 el: Lira , 1, 11 11..a. 0,14 1.14414: th: o1; 7.17! 41 c l• 1'. Lire 2 . i7% m ' r"''0''. • I' ' ' If (I: 3, 2, c • 7"_7" "3.17, 71: 1 L17. 13:.1o1.31 1c7.1 1.7. 4.C 44.7 3, x, L 0.174 r• LIco COO 071 04111 01, 0.24 Si. -1,10 4.00 25, ;•.1; 10.4, IL: 74-1 (-•oc 17.00 MAXIMUM REACTIONS fibs) and BEARING LENGTHS fin): UV!: 1,1.1 Leal a. n1 ° . •°. • Glulam-Bel., West Species, 24F-Vil DF, 5-103x22-1/2" 5.4-endiph7 .72055 pil MAAR In Nab, Wend imppai IA 000017 27 supping Analysis vs. Allowable Stress (psi) and Deflection (in) gas mai -AT. Mal ,,,,, 1r • 13: • OW x 610.1a1s:1•1 n.• fc I., • C.*: Lion 57111 0,11, L,14 0.70 O.11•• ,s.st • 1./115 7 CO • 1,20 0.10 ADDITIONAL DATA: 1# r: .71' CI AL O. 0 4'. C: Cr-- 7e7. 171 e:. 0 3.0 •3 1.1. 1.7 (.00) . ..G. 1,03 I . : : - : .r7cie• 4.19 3411,, 1A 1 ^ • • : LT •3 • 7... Cl, G. " c 13312 ire cro,n31-1, . 0 ;I, • EG179 1,1111, . ■.tO 0,72 1,2 Lie1,o111171 • LI, 5341 II- Pot 2Lvo al.co IcL•C' C5911fl24.7Y arc Cz..s•=•rtrura tail 0,11 14., lirtel DESIGN NOTES: 1.NR:a welly MN Ihe demo= Irma Rampart:0MA Of pa Ippirelain 2 OMR. aRe5o °Oars or for aortas areormirc le n110 117-2C01 emenanulmar•da• acceniance 1411 ArtalrAITC 0700 21092 GLUUWitts3 • MINN 0..1171n110.1114•Oh I Won Beams:NW be Mealy eurpieled eccerting to Vie irarlibro 011725 CAM ) 23 GLULAM benaim knien impede07 orneno el FepOinsion), Fcp(rorretni COMPANY PROJECT 1 1111°.111114 I I WoodWorks Jove 24.20101310 h341.C2 - SOFTWARE FOR WOOL) DESIGN Design Check Calculation Sheet gat ti LOADS issio :IT. V3 r-s.IW 4: .c.112 r .1 20.,. 1. f 14.0 a-I. )47/.12.: 20 1 /05.11 L.., L Cmal Is/Ala'. .0 air ' rsr. C &&&&& C3, '20. ' 2.22. 31.0) al I - 0.0 I • 1.. I/ :I 12a 020. : •, tu It2 101 014. 1 0101 27.22 Inc2 iartia, 33 (17., 02 ,, a12 I • 10 r - Ic C-2 • I. CI 11 V Ot i 2202 0.70,31 cI2 0I 14..23 "U.) cl la Nal E.Z.: LW CI: : 610,0 2.00 if L1C4 30.0 I It, • 21 7.3.2 1.4„, r .1 I 0 S et J ;:f.0 122 fi f t. A-I Al f.2 4' fl,I1 1 .3' 1.3.• 0.041,1 1.3 1C0.0 t.f.o p0. 0c13 2 rf 1 .4.7 Ia I It. 3222221 -2 020.0 00.0 0.-3 /22 DrIa 2...rt.., 0 120.2 1.0-2 4.22 0.0. 'Or •C, it :110,21 1/70 2 I I SOC 0.12 01: Cartccl 2I0.0 1,0 ,. 3 0. .00 11:j 33 34, .• • rn • 2,•• 2 1 ,..0 2< 13 1 .44.-1 1.2 4..0 120... tca, 2272.2. 10 2. 2' , .0 C.00 4 .0..2 ,2 121 i11,41 ;. -1i, 20)1 1,71,11 . al 1ln 0.41 urf 1' 2.1. 2. 1.32 I •4, it 2 4 - s 2,, 1., (.1./ 10:1 IP Ir.a rr. t L. .22., 1-02 0) 210.2 1 3" Li! Coca ho 1. vn ILO.' U.1' 1 ..10 P-71141 1 /2 I 7. 22.0C US• 12 02221 0' ICa. • • ,f2 .1,11 .23 20.. s 0 cl, 11.e )C04 1.0.0 123 1.4r taoo.aI 1) 221,3 11,2 2.. C.; ;2.' 1112 araccl 2 'I,: ! • C22, Ta. IC, 0 . -••'" ■.. v0 20 It, .1 013,0 . 4,3 .3 .11G0 MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : 1 , 2141 -122 /XI 1.2. 0- el 11122 „. _ Glulam-Bal., West Species, 24FA/8 DF, 5-118:22-1/2° d 26 M Ircluded In reds, 1..foral support top- MI, bat.. A swoons: Analysis vs. Allowable Stress (psi) and Deflection (In) I • e re, - V■111. 0- >To- Pm"- I - cds ...40114 :c 22 • • (•04 ft • 1 1v. .114:•r. • 1 1 •- o- • 1 41 0.22I .4 • .• • , 2 ADDITIONAL DATA: FA TO 2<3 3- IL .-• ty• 1. • cc, •av L. I 1.0) 1.1' 1.002 2.012 4.011,': s, !I 1..0 - • rot - .0 I - " • %) • - • 03 II 3 n, 04, 431, V. flo'r. 3 111100.. 11012 0 0 12 . 21. 2 10., 2.0 of .4 2..0412. 0. ell, 110-30 21 f0..,10) Ti. 471M-I1 11-122 c2.1 2.- :•,2-2 a- to. ...iv: cut,/ I DESIGN NOTES: I Plufe 44sity DIM &NM dollecIsn foal. ars appoprbne fe. Paw A04.2.1.2, 2 GisAan modign yaws on lot mated5 ennitnring b Al 42 117.2031 and nuroiaduied ac3.nasn0,.411 ANSUMIC A190 1.16E2 5 GLULAN bsa ff treaSh xac044104•4411 A Cfularn Banns sha b4 bk.*? soclvlocl 42.00r0 In the waver.. of NBC Clam 333. GLULAN towing...VI 2.410 02 stroDerd Friglensbn). ) 1:;) COMPANY PROJECT (fl • i H Wood Works® Any 24. 2010 1321) WM LC2 SOFTWARE FOR W000 DESIGN Design Check Calculation Sheet Alm 7.1 LOADS 111n. pa or Of i 1 7A. .2p2P{45167, 0103.41‘..1. 1.2.7.2t2cr. 5121 1141. 1 ".•• ...... 11 ...... L.r.,,_ '....• p.m.) 2 1 .2.e/ 125.1 0.00 1.Sn ,..., ,- -..,,,. c..2: t.,,p• In. 515.) 2.11.i t.e. 1.1.C2 F.:: = " ..... 1 ',. 17 .2, 0 IC2...C. 1.1C 11.00 f It b." 1,4,2 =■,. 14.01 trz `-■:C. Sr. Iota, 51.0 Il qv., 7.701 i, 11.C3 11 St.,. IL: i - ott Ens. Pam. _.,.. tI_C, IL/ 1% ',al font 1.1 1.17 62 , ..S. 015.> 17_00 1....0 Clf. S1,7 111.,. 141211.1 C.2. "C.1.2. •1.1.1 11.0 1 t. .11 11....701 1210 lox's 1..72, 9.01 Fir 11 ,L1 haw ',let . 1.15.2 Cc- :Y (read 7 - .1A1. 6:: C.40 12., I) .: , .1=. ' SO.. 4.C1 Sr. ":'....." 1 1•■11.1 1, it-4.: C1.1... 0.00 1.." P. 1 1 .,1 31- CO '115.1 ' 11.0 4101 0 11" rF05 1.41153 7.1 .1/3.5 '11.7 15.07. m.30 ..1. Plc, easel. C, fol.: e I.,. - Z0. 0, fa' D"c.. :of IA 14 00 015.0 413.7 T.fl 1.1 .1. fl i Lit. r.,,,,/ MI :452) 172.0 21.t. 0.1 505 Oar: q.s.U.t IX Ir., 11.t 11.C: Il.'W I ' • -- It : '•" P.rea•I CC C0.0 1'. It CO 1$.O0 ..-I. . I 35.10 4 s. tints) to 0.• II. 1.62 1.1 5,57 :,..... . ...... nil 110.7) 1.3.0 11.0, 1.51 ...11 .2:.:3., 1220 1,21250 00 .1, I'. 1.00 t; . V. , 1 r 1.1.e. 1.1110 09 t1J.. 11.., ..lx IL., "IL .10. 01.43 ■510,411 12 I:3.: Ira.) 5.0 ,7, .21f It 222 Las, I•r7.142 1, 110,0 173.5. 0.1) 5.5 t 1 i 11. , • •rtu•1 1 12 Zr;.) 1,..1 l.C.1. •.", r. f 20 21 Litt P1153,0 00• 310.0 ,-. 0 4.25 1. 1 115 1110 4.0 '1') 253.: I '0.' ,..5, P.:15 05 ;:: 1.1 100,111 C., • '7 ..• ,,,,, 5., L.1 IF 3 -' L . “ 57/1 2,n1 Sr. 115 . 2c-2 7 Cl F.) :IL L.1.• 0,471.2 VC, 2 1202• . ..51 5. ,31 35 5 12. LI■ a ta.Lisi WO ,11 • ' 1 '. 1. 1 . . 21-L 557 1 1 p.... , .,L., ,r1 • 17. i 11,2 11.5 2'.20 .1, ,.." ' LIS. p.,,,,,.} 511 . 05.1 7 7.1 . 10.5.5 31.55 Sit I, ,F" 2 I •c Cr- 2. 7 15...., :.,210 2,5,1 st '.1Y, •211.14: 1 .' 1 1, 11 1 ' 1, • A.' pt= 12. ..• L.. 1 AVE a.: 15 :17.0 2 0.' c F.C, cls 1251 tass.1..,. LJ 1 51. ' 11. It.. .• 0.1 '., .0 Cis.... 11: .62.1. 1F..: 11., :1,22. LAE ra., 0161 1.•}1 t 7 0 ;;..., ,,,,, , , 11 ,3L V I(... 0 1f.., 12.1 4 C2. .21 ;67 ....a p.,,...2. C .11.., 21 I .1 , S ■ '.. I . - LIT. Cilr 0 501... 120.0 .... 0._J O.' .. CO 5c.a 530,411 I. 1.020 12,-- 1 .1 Ir.. c •! 5 •.12 Lt..) 14.22.., :t 1. Vt., 1 •,1C vo., OIL ,-.. • , : • . 5,.. 15,111 v.11 . ..21 - l'..3. - 1 1 CS' Li.. ;at :4 1. 3 1,..4 1....,, N.,, 570 r ■ 0 7 , , ;,. , 0 .. ( t , I . :14 ...I tc 1..2,2:1 or: 'CZ., 1C,20, 1.10 c., .• .15 CC 271 C... 000.450 '0 11 27.1 2. 2. c1 I' ii:, 1.1.• 74s116:122... 101. ) 105. V ' , Z., C1. 1k. .CS.; •1, 1a, ,..... 0) Var. C01111 -515, 11 Its , 21.•) 0 ' • t -1 L'' ' _ „ ......, _ 1. MAXIMUM REACTIONS (lbs) and BEARING LENGTHS fn): • . • • . . ,. • * C g . ■=.1 tr7/ 1 : - .: • 01111 ccsrir 2.2 1 3 .1..• It• _ r rl. • i • Glulam-Bal, West Species, 24F-V8 DF, 5-118x22-112° Gdk.0.1 ol MSS pi ...Ado bou■sx Weral Iroporl bp. NIL batlocn= al auppftp.; Analysts vs. Allowable Stress (psi) and Deflection lie) ,,Nos nu: Trs" ae.11,24, V.,. C., cr. V•:22. /....2 ',AO, Vs • {L. G 7 • 0.1 1:1.1..• . ■■.. ' 5lp.101271•1 $C. 1. 1, • 0104 1. • 7.. 10 10.t. 001.•.a 545 • Si.') ''.5.1. 135,0 .7.,1 7,..2 11,1 P.f 2 - .2.1 1., . / •r■c• _ ADDITIONAL DATA: ' F•. C72. M :I C1. CO 71, 0, 01)7. :1c 0.. cr. 5.1 M• • :...3e, .1..75 • . I, L0 0,0 02042 1.10 5011. ; .04 1.1L ') . .. .00 Jr.., p V: .,h • 0'7/'041I64. .... • 0251. 0.. .. 114:c ‘, 7,1;11714, I 110 • L..1 15 . 90.555 , ru, )1. 41E-0.110 1.1,..c.11 2,2,1 12021L2 - 2.2C12 2....:c l',222,21c, • 1.2., L2.21 2 1 r2c2...- ..‘2. 1.C.•, ■:1 J Lace, ir ...., .7.21. c.Lcu:' DESIGN NOTES; i Maw 2to4 atai Wet:Iasi dersesviDniv ere opp•ortie lops.. applafion, 7 CA/mn Osman raw, mem mama* conlorew 10 A1TC 117.71331 End mr....kred P. =maw. nth ANSIAITC A190 1-1002 3 GLULAIklarcl• *dog tre•A11 x ..-10.1 &Mb I MU. Warm .544 $1 222415 sumorted aost1.19100., promote et NDS Clra. 32 3 5 GLULAM:baarivIm#1,....., 1, exam of Fep(umor0, Fe40are1) CIL-10 COMPANY PROJECT i WoodWorks' sur/waurroRwf100unOlch June 24, 2010 13:23 b34 LC1 NO LL Design Check Calculation Sheet Sizer 7.1 LOADS (Ibs, pat, or plf) , Load Type Distribution Magnitude Location (ft) Units Start End Start End 1 wS7 Dead Partial UD 613.2 613.2 0.00 2.00 p1r 3w29 Dead Partial UL 617.5 611.5 7.50 11.00 plf 5 c15 Dead Point 1436 11.00 lbs 7 c16 Dead Point 1389 17.00 lbs 9w64 Dead Partial UD 617.5 617.5 17.00 18.00 pit 11 c61 Dead Point 622 7.00 lbs 13 Dead Point 622 4.00 lbs 15 w63 Dead Partial UD 613.2 613.2 2.00 4.00 plf 17 Dead Partial UD 617.5 617.5 18.00 20.00 pit 19 ^ w71 Dead Partial UD 613.2 613.2 7.00 7.50 plf 21_j64 flood Partial UD 47.7 47.7 17.00 18.00 plf 23 j28 Dead Partial UD 47.7 47.7 4.50 7.50 plf 25562 Dead Partial UD 47.7 47.7 7.50 11.00 pit 27 148 Dead Partial UD 120.2 120.2 0.00 2.00 plf 29_532 Dead Partial UD 120.2 120.2 3.50 4.00 plf 31 j33 Deod Partial UD 120.2 120.2 4.50 1.50 p1f 33 Dead Partial UD 120.2 120.2 7.50 0.00 plf 35:535 Dead Partial UD 120.2 120.2 8.00 11.00 pit 39_567 Dead Partial UD 120.2 120.2 2.00 3.50 plf 41 549 Dead Partial UD 120.2 170 -7 4.00 4.50 pif 43 Dead Partial UD 47.7 47.7 11.00 17.00 pit 45:565 Dead Partial OD 47.7 47.7 18.00 20.00 plf 47_566 bead Partial UD 47.7 47.7 4.00 4.50 pit 49 j08 Dead Partial 0D 120.2 120.2 17.00 18.00 plf 51 j69 Dead Partial UD 120.2 120.2 18.00 20.06 pit 53 j72 Dead Partial UD 47.7 47.7 2.00 4.00 plf 55 Dead Partial UD 47.1 47.7 0.00 2.00 pit W1 Wind Point 5850 0.00 lbs W2 Wind Point -5850 4.00 lbs W3 Wind Point 5850 11.00 lbs W4 Wind Point -5050 17.00 lbs 415 wind Point 5850 20.00 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : d I a _ 201 Dead 7109 6922 Live 156 302 Total 7238 7018 Bearing: Load Comb 42 1.2 Length 2.17 2.11 Glulam -Bal., West Species, 24F -V8 DF, 5- 1/8x22 -1/2" Self - weight o126.55 plf included in loads; Lateral support: top = lull, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis value Desion Value AnulyYsin /DOSIgn Shear = 74 Fv' + 230 Wry' r. 0.31 Rending(*) fb - 950 Pb' = 2030 fb /fb' ; 0.47 Live Def1'n negligible Total bril'n 0.41 - L/585 1.00 = L/240 0.41 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC4 FT' 265 0.90 1,00 1.00 - - - - 1.00 1.00 1.00 1 Fb'i 2400 0.90 1.00 1.00 1.000 0.944 1.00 1-00 1.00 1.00 - 1 Fop' 650 1.00 3.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 1 Ernie' 0.85 million 1.00 1.00 - - - - 1.00 - - 1 Sheer : LC 81 = D only, V = 7109, V design . 5674 lbs eendingl +l: LC #1 = D only, 04 = 34217 lbs-fl. Deflection: LC 81 = D only E1= 8756e06 lb -in2 Total Deflection = 1.SO(Dead Load Deflection) a Live load Deflection. (D =dead L =live S =snow W =wind 1 =impact C= construction Cl,d= concentrated) All LC's are listed in the Analysis output) Load combinations: ICC -IOC DESIGN NOTES: 1, Please verify that the default deflection limits are appropriate for your application 2 Glulam design values are for materials conforming to ARC 117 -2001 and manufactured in accordance with ANSVAITC A190,1 -1992 3. GLULAM: bad = actual breadth x actual depth, 1 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3,3,3, 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n), C4( COMPANY PROJECT I WoodWorks® VOFrwANIPON wove U1f7DN June 24, 201013:22 b34 LC2 NO LL Design Check Calculation Sheet Sizer 7,1 LOADS ( lbs. psf, or plf ) Load Type Distribution Magnitude Location [Et] Units Start End Start End 1 w62 Dead Partial UD 619.2 617.2 0.00 2.00 pit 3 w29 Deed Partial UD 617.5 617.5 7.50 11.00 plf 5 c15 Dead Point 1436 11.00 lbs 7 c16 Dead Point 1389 17.00 lbs 9 w64 Uead Partial 00 617.5 617.5 17.00 10.00 pit 1T c61 Dead Point G22 7.00 lbs 13c62 Dead Point 622 4.00 lbs 15 6 Dead Partial UD 613.2 613.2 2.00 4.00 plf 17 Dead Partial UD 617.5 617.5 18.00 20.00 plf 19 Dead Partial UD 613.2 613.2 7.00 7.50 plf . 21 Dead Partial UD 47.7 47.7 17.00 18.00 plf 23 - 228 Dead Partial UD 47.7 47.7 4.50 7.50 plf 25 Dead Partial UD 47.7 47.7 7.50 11.00 pit 27 Dead Partial UU 120.2 120.2 0'.00 2.00 plf 29_732 Dead Partial UD 120.2 120.2 3.50 4.00 plf 31_233 Dcad Partial UD 120.2 120.2 4.50 7.50 plf 33_234 Dead Partial UU 120.2 120.2 7.50 6.00 plf 35_235 Dead Partial UD 120.2 120.2 8.00 11.00 plf 2 39 67 Dead Partial UD 120.2 120.2 2.00 3.50 plf 41249 Dead Partial UD 120.2 120.2 4.00 4.50 pit 43 263 Dead Partial UD 47.7 47.7 11.00 17.00 plf 45 Dead Partial UD 47.7 47.7 18.00 20.00 plf 47 Dead Partial 110 47.7 47.7 4.00 4.50 plf 49 Dead Partial UD 120.2 120.2 17.00 16.00 plf 5f Dead Partial UD 120.2 120.2 18.00 20.00 plf 53 Dead Partial UD 47.7 47.7 2.00 4.00 plf 55_173 Dead Partial UD 47.7 47.7 0.00 2.00 pit W1 Wand Point -5850 0.00 lbs W2 Wind Point 5850 4.00 lbs W3 Wind Point -5850 11.00 lbs 174 Wind Point 5850 17.00 lOs 145 Wind Point -5850 20.00 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : la 201 Dead 7189 6822 Live Total 7189 6622 Bearing: Load Comb 01 81 Length 2.16 2.05 Glulam -Bal., West Species, 24F -V8 DF, 5- 118x22 -112" Self - woight of 26 55 plf included in loads; Lateral support: lop= full. bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value neaten Value Analysia /Design Shear tit = 74 Esc = 23U iv /iv' = 0.31 Bending( +) fb = 950 Fb' = 2038 fb /Fb' = 0.47 Live Defl'n negligible Total Defl'n 0.41 = L /595 1.00 = 1/241 0.41 ADDITIONAL DATA: FACTORS: F/E CD Q4 Ct CL CV Cfu Cr Cfrt Notes Co LC6 Fri' 265 0.90 1.00 1.00 - - - - 1.00 1.00 1.00 1 Fb'+ 2400 0.90 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - 1 Fcp' 65(1 - 1:00 1,00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - I Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 1 Shear : LC 41 = D only, V = 1189, V design = 5674 lbs Bending( +): LC 61 - D only, 14 = 34217 lbs-tt Deflection: LC v1 = D only E1= 8756e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) • Live Load Deflection. (D=dead 1,-- S =snow W =wind I =impact C =construction CLd =concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1 Please verify that the default deflection limits are appropriate for your application 2 Glulam design values oro for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSIIAITC A1110.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3,3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). Clq 1 Harper Project: • HP Hoof Peterson Client: Job # Righellis Enc. IIUIIIEERS • ✓t ANNbRG Designer: Date: Pg.11 t•MMIIG•V! •MU1111Sf bb•AbRVI YORJ Wdl = 10. 12 .8- tt -20•ft Wct �- = 1600-lb V-Gk. Ve°SigYN, ft Seismic Forces Site Class =D Design Category =D Wp = W 1.0 Component Importance Factor (Sect 13.1.3, ASCE 7-05) S = 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. S .= 0.942 Max EQ, 5% damped, spectral responce acceleration at short period z 9 Height of Component h := 32 Mean Height Of Roof F = 1.123 Ace-based site coefficient @ .3 s- period (Table 1613.5.3(1), 2006 IBC) F 1.722 Vel -based site coefficient @ 1 s- period (Table 1613.5.3(2), 2006 IBC) S F Sm l := F v . S I 2•S Sds :- Max EQ, 5% damped, spectral responce acceleration at short period 3 Exterior Elements & Body Of Connections a 1 A R := 2.5 (Table 13.5 -1, ASCE 7 -05) . Sds -Ip r z l F := Rp I 1 + 2 h I Wp EQU. 13.3 -1 Fp := 1.6•S EQU. 13.3 - F pmin' = • EQU. 13.3 -3 = if(F > Fp <Fp F = 338.5171-lb Miniumnm Vertical Force O.2 • S ds• W dl = 225.6781 -lb ClkTh H arper Project: • ' HP '• Houf Peterson Client: Job # Righellis Inc. ouAanemi Designer. Date: Pg. # 1 •IlDt1C•f+. • aentn e,s•swivr•ORD Wdl := 10 lb •841•20•ft W& = 1600•lb ft 2 Seismic Forces Site Class =D Design Category =D W W& 1p = 1.0 Component Importance Factor (Sect 13.1.3, ASCE 7 -05) S := 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. Ss := 0.942 Max EQ, 5% damped, spectral responce acceleration at short period z := 9 Height of Component ti := 32 Mean Height Of Roof F := 1.123 Ace -based site coefficient © .3 s- period (Table 1613.5.3(1), 2006 IBC) F� := 1.722 Vel -based site coefficient Q 1 s -period (Table 1613.5.3(2), 2006 IBC) Sms := F S Sml •= F v' S 1 2-S ms S ds • = 3 Max EQ, 5% damped, spectral responce acceleration at short period Exterior Elements & Body Of Connections a := 1.0 Rp := 23 (Table 13.5 -1, ASCE 7 -05) F P :_ AaP.Sds.IP (1 + 2• h)•W EQU. 13.3 - Fp := 1.6•S EQU. 13.3 - Fp := .3•Sds•Ip•Wp EQU. 13.3 -3 = if(F > Fp <Fp F =338.5171 -lb Miniumnm Vertical Force 0.2•Sd = 225.6781•lb 61L1y Hiner HP Houf Peterson Righellis inc. To FROM COMMUNICATION RECORD [] MEMO To FILE PHONE NO • PHONE CALL: Q MEETING: 0 A V m El 13 . .. o - C, LO C (I 4 II l .9 s Off. WA I # # . d t ar o la ■ it 1. 3) . ,_ o 1r{ F 4 w 4-- 0 0 0 h 9 . -AO 4 0 = 44 0 ,Z)vz) ' 'c I,Z1 - a „ -17 11 SOS V,s,sc -\ \ -;:ii ic.e. _ c 441 _ - •Ne jai CnA . 1 nN0.it.) 17 I i° 1 7 p f ■ Is1 R `• 41 f# f<2 °( � ` - A G7-Z) .Z)( )) ' i n t 1 E t L� N p 1 1 zl �;, vi, �:C S �C 6 —AIS (Z) -S(\ li P a :� S15 6)1 = (\ 1 a a E-- i . 1 - 1(A 511 " \vniI1 on I o z ❑ m ..mod 1 y-. G,�. 0 0d� o 0 3 1 —A t s1sk o_ - : — F --- ) .* N 7, oni r` D I - - - , _. -_�- X111 'DddH z in z ccs? qz 7 9 . z z 0 .I °� ' fl 1'GUJ4 tg - t6)I = (1 -1/ 4setI)` €2�•1) s. o ❑ 3 ^' m ri Lx.ir � Z r � r n 4 Z 6..1. 0` Vvr. dr1 .5.ki1Cl - :38 :133roa Y' \ ki --€.,h L) • 1F— I `' r: 1 tz hbi,L . ,7,..,...„ it E3' _ I , ry ' 4 ff Z � IF M 4 � ( A I 6�i0 S! !° p o t704-N '.' OOhZ° 7 °le NI44 00Q8 = D =1 rv'4 °Dog = < •t4 ooz (,,ob) #cod° -w . 6' 3rLD Qb01 ao. z m P O 3 El 1 -- n 152 1 ` , 01 O 1 1 U cot" -IsSa.l C b U :I::: "a5 Z n D . f o 02 00h� GH ° = Z = m •‘4 w-hg ` m 0 r 13 },� '7 ---'` ❑ 3 a r m ❑ ❑ • •.f V :103road .'oN sof : 31va Y i[ ysl 511 II V l 'tie Harper Houf Peterson COMMUNICATION RECORD 1 HP t. Righellis Inc. Top FROM 0 MEMO To FILE D ---- i7v - raiF77 - 471: - Fin" '-' --- PHONE NO • PHONE CALL: 0 MEETING: 0 # 2 o :$ 7 (---) .1- 0 II 0 al II 37 if 3 a) 93 r. -..c. d (....)...„ 0 . 0 ri 0 0 o 6 1 II # E• ,..,....).., r"..., II' C 8 LP / 1, 6 ----‘,., v 1 ti r * I ...C_ R1 I C9 —I I- 0 03 I < 1 11111MIEMIElk . ' o narper IloufPeterson COMMUNICATION RECORD Righellis Inc. To 0 FROM MEMO TO FILE 0 E, 0.1E21 : rcx•,•, ®R: .. =c1 +/rE.r — ]eoL PHONE NO.• PHONE CALL: ❑ MEETING: 0 m z P Q m n i ..c........ 3 . J � a'eg 1 P \ 2. 111111111111 N. T (r a —c p 0 —St Q C C. 1 1 r I IN .'• m v O O e ri v` � ,r- . 1 COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD EON June 8, 2009 18:27 Hand Rail Design Check Calculation Sheet Sizer 8.0 LOADS: Load Type Distribution , Pat- Location [ft] Magnitude Unit tern Start End Start End LIVE Live Point 2.50 200 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : A l- . . . . _ . ___ ._ ._ _ , 1p' 51 Dead Live 100 100 Total 104 104 Bearing: Load Comb #2 # Length 0.50* 0.50* Cb 1.00 1.00 "Min. bearing length for beams Is 1!2° for exterior supports Lumber -soft, Hem -Fir, No.2, 2x6" Self -weight of 1.7 plf Included In loads; Lateral support: top= at supports, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis/Design Shear tv = 19 Fir' = 150 fv /Fv' = 0.13 Bending( +) fb = 405 Pb' = 1048 fb /Fb' = 0.39 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.20 Total Defl'n 0.03 = <L/999 0.25 = L/240 0.14 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 150 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb 850 1.00 1.00 1.00 0.949 1.300 1.00 1.00 1.00 1.00 - 2 Fop' 405 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.3 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emirs' 0.47 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = L, V = 104, V design = 103 lbs Bending( +): LC #2 = L, M = 255 lbs -ft Deflection: LC #2 = L EI = 27e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L =live S -snow W =wind I =impact C =construction Lc =concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. (1w • ( o COMPANY PROJECT i WoodWorks® SOMME! F011 WOOD OEDON June 8, 2009 1627 Hand Rail2 Design Check Calculation Sheet Sizer 8.0 LOADS: Load Type Distribution Pat- Location [ft] Magnitude Unit tern Start End Start End LIVE Live Full UDL 50.0 Dlf MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (In) : Dead Live 125 125 Total 129 129 Bearing: Load Comb #2 #2 Length 0.50* 0.50* Cb 1.00 1.00 'Min. bearing length for beams is 1/2" for exterior supports Lumber -soft; Hem -Fir, No.2, 2x6" Self-weight of 1.7 plf included in loads: Lateral support top= at supports, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 19 Fv' = 150 fv /Fv' = 0.13 Bending( +) fb = 256 Fb' = 1048 fb /Fb' = 0.24 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.16 Total Defl'n 0.03 = <L/999 0.25 = L/240 0.11 ADDITIONAL DATA: FACTORS: FIE CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 150 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 0.949 1.300 1.00 1.00 1.00 1.00 - 2 Fop' 405 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.3 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.47 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = L, V = 129, V design 106 lbs Beading( +): LC #2 = L, M = 162 lbs -ft Deflection: LC #2 = L EI 27e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L=live S =snow W =wind I=impact C =construction Lc= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC • DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load Woodworks® Sizer 7.1 June 22, 2010 13:67:66 Concept Mode: Reactions Base of Structure View Floor 2: 8' 1050 • 46 -b 1u3 1600L W600L - 4 i - u 0 1U1 619D 619D• 4' q0 -0 1 uu° 4,, a9. `I - ' _ . . . . . . U 4 l'..). . - • .1193 L :15312404 L::. 2404 L . • 6'.,..4-0 4 i - : 625 D105911439 D ' 1394 D y° - 30-0 yL - 1 3D -O 34 -D qua ;15153 L+ 33 -b Do D -- 3L-3 t5! 31 -n Op" 3U -n D3 L`J -t7 • LO -0 315 L . zr -n Di 100E 358 D °� 96 D L3 0 !D t■* I . GL-b r 74(847 5611 L 756 L �� 15 11452 D 5546 D 9 D 1 y -b 11 , 1 625 I, 5 D 1 1 - b ii 203D 5D 1n - ID -0 ( U mo 14-b 908 L 13 -o _ \. 245 L .0-0 I r11.3. D- i50L C - - o u� c 74 b -e b 1 ,3599 87 L 587 L - . o n b 209 LD8 D -1963 D - 1963 D -- �• 0- 154 D Zia ups 1 12363 D -D • �78DiD 106D u -b E 03DBCC��c; Ce.: CCK;;, CCCCCCCCCCCCCICCCDDDDDDDDICDDCDDDDDDDDDED! DD EEEEIEEEFEIEE.'EEEEEIEEEE 0' 2' 4' 6' 8' 10'12' 14' 16' 18'20'22'24'26' 28' 30' 3734'36'38'40'42'44'46'48'50'52' 54'56'58'60'62'64'66'68'70'72' 74' 76' 0'1'2';'4'5'6'7'8'9111 - 1 :1 1 - 111!212'2:2.2.' 212 2 :2313'3:3:3 4:4(4'4(415 5:5:6 5515i 6( 66: 6 :6 -6" 70011 I•J CI L N1 UT' — Vie.0 NIT LIAD • • Fl WoodWorks® Sizer ' SOFTWARE FOR WOOD DESIGN Unit A - Rear Load WoodWorks® Sizer 7.1 June 22, 2010 13:67:37 Concept Mode: Reactions at Base of Structure View Floor 2: 8' 1 080 - \ • - 49 nj.s 600 L 1600 L 4 -0 t U'. 6190 6190 90 tiui . 4o-4 i U`�° ` _ 44 -0 � D 4 -b 4.5-b y1.- .. 4 1 -a y5 13274 L; - - -- - -: 3304 L. sa -b 7153 D ; i 7072 0 sow J3__ - 3( -b - - VG - • . y1• - - J0 - 0 in -0 vu 315 L I.) 41 tsa 358 D •`G a, ar ,11-0 tin G`! - St 315 L �` cl- 04 • a 1 100E \ 358 D ' °' `� 41 ,.." (0' • • - ' moll ■ . • ,' -'0 ti 74(84 611 L d 56 L t4,...) r 411(452 D 5546 0 • $13 0 I y n (4 625 L, - - lb -fl (, 50. - t(-4 iu 203 0 ? 3 D 13 5 ntt . 10 5,908 L - • 1s-4 a 307 D - . 1tvo On 24 / if DI , • 3599 2587 L: :7 L nu '- - 209 LD 8 D 1963 D 0 •:1963 D - • - - - - -- • s 1540 �!au 2219 _ _ a • - 1-:-.:: .1 725 L _ 0 - ; •o - ~1 78 D CO 617 D D ' BBIBSBC. CCCCCCCFCCCCCC("t,'CCCCC EIDDDODICDOCDDD11D[3DOE)r. rir, OFEEC , EEE'EFEEEEEfEE'EEEEEE1EEEE_Z 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74'76' 0' 1' 2' 3' 4' 5' 6' 7' 8 '91t11:1:1 42203133:3:3 414' 4A: 4•4! 4( 4 4t45t5555- 5(5(5 5(516166:6:6 ::7: •77177' -6" t. DOT INC t,p, ( Our • F-2._ : Bentl • Harper Houf Peterson R ighellis Inc. Cl ..rent Date: 6/24/2010 1:41 PM I system: English Fur name: O:UIHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN-090 Summer Creek Townhomes\calcs \Unit A \foundations \F1.ftd\ Design Results Reinforced Concrete Footings GENERAL INFORMATION: Global status Warnings Design Code ACI 318-05 Footing type Spread Column type Steel Geome — f12 in I + 4.2 ft 8.1 ft 4 ft 4.25 ft • Pagel Length 4.25 [ft] Width 4.25 [ft] Thickness 1.00 [ft] Base depth 1.50 [ft] Base area 18.06 [ft2] Footing volume 18.06 [ft3] Base plate length :5.50 [in] .Base plate width 5.50 [in) Column length 5.50 [in] Column. width 5.50 [in] Column location relative to:footing g.c. Centered - Materials - - Concrete, fc 300 [Kip/in2] Steel; fy 60.00 [Kip/iin2] :Concrete type Normal Epoxy coated No Concrete elasticity-modulus : 3122.02:(Kip /in2] Steel elasticity modulus :' 29000.00,[Kiptin2] Unit weight 0.15 [Kip/ft3] Soil Modulus of subgrade reaction 200.00 [Kip/ft3] Unit weight (wet) 0.11 [Kip/ft3] Footi reinforcement Free cover :. 3:00 [in] Maximum Rho/Rho'balanced ratio : 0.75 Bottom reinforcement I/ to L ()x) 644 @ 9.00" Bottom reinforcement fl to B (zz) : 644 @). (Zone .1) Load conditions to be- Included in design Service loads: SC1 DL - - S1 DL S2 DL +LL S3 DL +0.75LL Design strength loads: DC1 1.4DL • D1 1.4DL D2 1.2DL +1.6LL Loads Condition - Axial Mxx Mzz Vx Vz [K pl .[Kip"ft] : [Kip [Kip] [Kip] DL 5.55 0.00 0.00 0.00 0.00 LL 15.61 0.00 0.00 0.00 0.00 RESULTS: Status Warnings - insufficient development length,'Section 21.5.4.1 Soil.Foundation interaction Allowable stress 1.5E03 [Lblft2] Min. safety factor for sliding . 1.25 Min. safety - factor for overturning 1.25 Paget Controlling condition S2 Condition qmean qmax Amax Area in compression Overturnina FS [Lb/ft2] [Lb /ft2] [In] IR ( %) FSx FSz slip S2 1.38E03 1.36E03 0.0826 18.06 100 1000.00 1000.00 1000.00 Bending Factor 4) 0.90 Min rebar ratio 0.00180 Development length Axis Pos. Id Ihd Dist1 Dist2 [in] [in] [in] [in] zz Bot. 20.11 7.04 19.75 19.75 xx Bot 20.11 7.04 19.75 19.75 Axis Pos. Condition Mu 4)"Mn Asreq Asprov Asreq/Asprov Mu/(4)*Mn) [Kip [Kip [in2) Iin2] zz Top DC1 0.00 0.00 0.00 0.00 0.000 0.000 1 I zz Bot. D2 13.38 45.76 1.10 1.20 0.918 0.292 mr.on= xx Top DC1 0.00 0.00 0.00 0.00 0.000 0.000 I I xx Bot. D2 13.38 43.06 1.10 1.20 0.918 0.311 I + I Shear Factor 0.75 Shear area (plane zz) 3.10 [ft2] Shear area (plane xx) 2.92 [ft2] Plane Condition Vu Vc Vu /(41/n) [Kip] [Kip] xy D2 8.99 46.09 0.260 yz D2 8.88 48.88 0.237 I 1 1 Punching shear Perimeter of critical section (b... : 4.67 [ft] Punching shear area 3.31 [ft2] Column Condition Vu Vc Vu!(4'Vn) [Kip] [Kip] column 1 D2 29.25 104.29 0.374 I I I Notes Page3 Pc 7S-- • Soil under the footing is considered elastic and homogeneous. A linear soil pressure variation is assumed. • The required• flexural reinforcement considers at least the minimum reinforcement • design bending moment is calculated at the critical sections located at the support faces • Only rectangular footings with uniform sections and rectangular columns are considered. • The nominal shear strength is calculated in critical sections located at a distance d from the support face The punching shear strength is calculated in a perimetral section located at a distance d/2 from the support faces • Transverse reinforcement is not considered In footings Values shown in red are not in compliance with a provision of the code •gprom = Mean compression pressure on soil. • = Maximum compression pressure on soil. *Amax = maximum total settlement (considering an elastic soil modeled by the subgrade reaction modulus). • Mn = Nominal moment strength. • Mu /(4 )*Mn) =Strength ratio: • Vn = Nominal shear or punchure force (for footings Vn =Vc). • Vu /(4•Vn) = Shear or punching shear strength ratio. Page4 �j Plain Concrete Isolated Square Footing Design: F2 f := 2500-psi Concrete strength f := 60000-psi Reinforcing steel strength E := 29000-ksi Steel modulus of elasticity 7conc := 150•pcf Concrete density I := 100•pof Soil density gall := 1500-psf Allowable soil bearing pressure COLUMN FOOTING Reaction Total := 2659-lb Pdl:= Total Totalll := 7756-lb Pll := Totalll Pd := Pdl + Pll Pa = 10415- lb Footing Dimensions tf := 10• in Footing thickness Width := 36-in Footing width A A := Width Footing Area gnct gall — tf'1cone gnat = 1375-psf Pu Aregd gnat A = 7.575•ft 2 < A = 941 GOOD Wtdth A reg d Width = 2.75- ft < Width = 3.00 ft GOOD Ultimate Loads Pdi + tf'A' Yconc P := 1.4•Pd1 + 1.7-Pll P = 18.48-kips P qu A qu = 2.05-ksf Beam Shear b 5.5-in (4x4 post) d:= tf -2•in := 0.85 b := Width b = 36-in V „: =4:• 4 f V 16.32•kips 3 Vu qu•I b 2 toll b V = 7.83-kips < V„= 16.32-kips GOOD Two -Way Shear bs := 5.5•in Short side column width bI := 5.5•in Long side column width b 2•(bs + d) + 2•(bL + d) b 54-in ti := 1.0 V _ • r 4 + 8 l � 3 33.0 fCpsibd V =48.96 kips c V„mnx Vnmax = 32.56.kips V qu [b – (ba + d) V„ = 15.88 -kips < V = 32.56.kips GOOD Flexure Mu qu b – bcoll (I 1 b M = 4.9841-kips 2 J A„ ,:= 0.65 0.65 2 A.:= b — S = 0.2224t F := 5•�• f psi F = 162.5•psi M := S ° f = 155.47•psi< F = 162.5-psi GOOD Ise a 3'-0” x 3' -0" x 10" plain concrete footing Plain Concrete Isolated Square Footing Design: F3 f 2500•psi Concrete strength f := 600006psi Reinforcing steel strength E := 29000•ksi Steel modulus of elasticity loon := 150•pcf Concrete density --w := 106ppcf Soil density q := 150D.psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldl := 2363.1b Pdl := 7•otaldl Totitn := 4575.1b Pp Totalll Pa := Pat Pll Pti = 6938•lb Footing Dimensions tf := 10-in Footing thickness Width := 30-in Footing width Width Footing Area clnet clan — triconc %et = 1375•psf P A ' gum A = 5.046-11 < A = 6.2541 GOOD Widthrcgd Aregd Width = 2.25•ft < Width = 2.50 ft GOOD Ultimate Loads 1 ,.. ) 41,:= Pdl + tPA' P := l .4 Pdl + 1.7 -Pp P = 12.18-kips Pu qu:= A q l.95•ksf Beam Shear bcoi 5.5•in (4x4 post) d := tr — 2-in := 0.85 b := Width b = 30•in V := 4).- 3 4 (� psi•b•d V = I3.6•kips Vu gib 2 co11 b V, = 4.97-kips < V = 13.6-kips GOOD Two -Way Shear bs := 5.5.in Short sidc column width b� := 5.5• in Long side column width b := 2.(bs + d) + 2•(bL + (I) b = 54-in ac := 1.0 V — + f� psi b d Vn = 40.8-kips 3 - Vnmax V nn , ax = 27.13-kips /3,14= q, [b - (bail + d) V = 9.71 -kips < Vnmaa = 27.13-kips GOOD Flexure r l2 r 1 Mu 4u l b_ b � 1 J 11 J b M = 234. 1 -kips `� 2 2 A t:= 0.65 b 2 5,':= 6 S= 0.18541 F 5.4• is psi F 162.5-psi M u f 1 := f = 95.19 -psi < F = 162.5-psi GOOD !Jae a 2 x 2'-6" x 10" plain concrete footing ( Plain Concrete Isolated Square Footing Design: F4 f := 2500-psi Concrete strength f := 60000-psi Reinforcing steel strength E := 29000-ksi Steel modulus of elasticity "Yconc 150-pcf Concrete density "(soil 100•pcf Soil density gall := 1500-psf Allowable soil bearing pressure COLUMN FOOTING Reaction Total& := 5001 -lb Pdl := Total Totalll := 7639-lb Pll:= Totalll Ptl := P& + P11 P = 12640-lb Footing Dimensions t := 12 -in Footing thickness Width := 42-in Footing width A:= Width Footing Area net gall — tf gnet = 1350-psf Pd 9d ' A 9.363 ft < A = 12.2541 GOOD gnet regd = Width := V �'eci° Width = 3.06-ft < Width = 3.50 ft GOOD Ultimate Loads Pdl + tf'A•lconc P := 1.4•Pdl + 1.7•P11 P = 22.56-kips P chi A qu = 1.84•ksf 0 Beam Shear b coi := 5.5 -in (4x4 post) d := tf — 2-in := 0.85 b := Width b = 42-in V„ :_ c• 4 • Xpsi•b•d V, = 23.8-kips 3 (b — b V := quI 2 •b V = 9.8-kips < V = 23.8-kips GOOD Two -Way Shear b5 := 5.5• in Short side column width bI, := 5.5• in Long side column width b := 2•(bg +d) +2•(bL +d) b =62in 13 := 1 V 4 + • fupsi•b•d V = 71.4-kips — 3 3•fi Vnmax := 4). 2.66• f V = 47A8-kips qu'[b — kbw1 + d) V = 19.49-kips < Vnmax = 47.48-kips GOOD Flexure rb -b 2 r 1 Mu qu . I 2 (2) -b M = 7.45•fi•kips A 0.65 \ 2 S := b — S= 0.405.6 I := 5 •:1)• fN psi F = I62.5•psi M f := S f = 127.79•psi< F, = 162.5-psi GOOD MJse a 3'-6" x 3' -6" x 12" plain concrete footing a Plain Concrete Isolated Round Footing Design: f5 f := 3000-psi Concrete strength f '= 60000 psi Reinforcing steel strength E := 29000•ksi Steel modulus of elasticity ^ Icon 150•pcf Concrete density '(soil 120•pcf Soil density gall := 1500•psf Allowable soil bearing pressure TYPICAL FOOTING Reaction Totals, := 619-lb Pdl := Total dl Totalll := 1600-lb P11 = Totalp Pti Pdl + Pll Pil = 2219-lb Footing Dimensions t := 12-in Footing thickness Dia := 18•in Footing diameter Tr•Dia A := Footing Area 4 gnet gall — tf''Yconc net = 1350.psf _ Ptl Areqd ' A 1.644 ft 2 < A = 1.77 6 GOOD (net reqd Dia := Arcgd 4 Dia = 1.4541 < Dia = 1.50 ft GOOD IT Ultimate Loads Pdl +tf'A'"Yconc P := 1.4•Pdl + 1.7•P11 P = 3.96-kips Pu 9u = A q = 2.24•ksf 71` Beam Shear b 3.5•in (4x4 post) d.= tf -2.in := 0.85 b cos(45•deg)•Dia b = 12.73-in V o := 4 f psi•b•d V = 7.901•kips 3 Vu = q1 b bcoll b V„ = 0.91- kips < V = 7.901 -kips GOOD Two -Wav Shear bs := 3.5.in Short side column width b� := 3.5.in Long side column width b := 2 -(bs + d) + 2•(bL + d) b = 54-in a := 1.0 0•rp + S l fi psi•b d V 23.703 -kips l3 3•0 V,,,,,„ :_ 4.2.66• f V,,, = 15.76-kips q v = ,; b2 (bcol d) V„ _ —0.31 -kips < V„„ = 15.76• kips GOOD Flexure Mu := qd b - b (1 ) m = 0.18-11- kips 2 ) l2) A,:= 0.65 2 b d S= 0.123.11 F := 5•(1)• f psi F, = 178.01 -psi M f := S f = 9.9 psi < F, _ 1 78.01 psi GOOD - Use a 18" Dia. x 12" plain concrete footing • Plain Concrete Isolated Square Footing Design: F6 fc := 2500.psi Concrete strength f := 60000.psi Reinforcing steel strength E := 29000•ksi Steel modulus of elasticity 7conc 150•pcf Concrete density "soil 100•pcf Soil density ch := 1500psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldf := 7072.1b Pd1:= Totaldl Totalll := 13304-lb Pll Totalll Pd := Pdl + Pi) P 20376•lb Footing Dimensions tf := 15-in Footing thickness Width = 48.in Footing width A:= Width Footing Area %et gall — tf•'Yconc gnct = 1313•psf Pt! Areqd _ gnct Arcgd = 15.525 ft < A= 16 ft 2 GOOD Width := ■rcgd Width = 3.94-ft < Width = 4.00 ft GOOD Ultimate Loads ,P := Pdl + tf A•'Yconc P„ := 1.4 Pd1 + 1.7•P11 P = 36.72• kips P qu := — qu = 2.29•ksf 1J Beam Shear bta1:= 5.5•in (4x4 post) d:= — 2 -in := 0.85 b := Width b = 48-in V := cp 3 • f V = 3536-kips • V := q I b 2 CO �J•b V = 16.26 -kips < V„ = 35.36-kips GOOD Two-Way Shear bs := 5.5•in Short side column width bL:= 5.5 -in Long side column width b, := 2•(bs + d) + 2•(bL + d) b = 74•in p := 1.0 4 —� + 8 f� psi•b d V,. 106.08 -kips 3 3• Vnmax = $.2.66• .f Vomax = 70.54 -kips , ;= qu•[b — tbcol + d) V = 31.26 -kips < Vnmax = 70.54 -kips GOOD Flexure 2 Mu := qul . (b — 2 1, 031) (12 J b M = 14.39-ft-kips A t ,:= 0.65 2 ,§,:= b d G S =0.782-11 3 F := F = 162.5 -psi M u f := f = 127.75 -psi< F 162.5 -psi GOOD lJse a 4'-0" x 4'-0" x 15" plain concrete footing F(0 - ;Bentley Microsoft Current Date: 12!15/201011:11 AM whe un+ Units system: English Q.%p g. L pp i p 1S i43eXt. #0 %mtl-- Design Results e rear 1004 Reinforced Concrete Footings GENERAL INFORMATION: Global status OK Design Code ACI 318-05 Footing type Spread Column type Concrete Geom 1 in 12 ft ►I 7 f E ft ~l • Eft r� 12 ft r, Re., • Length .12:00 [ft] Width 7.00 [ft] Thickness 1.50 [ft] Base depth • 5.00 [ft] Base area • 84.00 [ft2] Footing volume 126.00 [ft3] Column•length 12.00 [in] • Column. width • 12.00 [in] Column location relative to footing g.c. Centered Materials Concrete, fc . 3.00 [Kip /n2] Steel, fy 60.00 [Kip /n2] Concrete type Normal Epoxy coated No Concrete. elasticity modulus : 3122.02 [Kip/iin2] Steel elasticity modulus 29000.00 [Kipfin2] Unit weight 0.15 [Kip /ft3] Soil • Modulus of.subgrade reaction . 200.00 [Kip/ft3] Unit weight (wet) 0.11 [Kip/ft3] Footing reinforcement • Free cover : 3.00 [in] Maximum Rho /Rho balanced ratio : 0.75 Bottom reinforcement // to L (xx) 945 @ 9.00" Bottom reinforcement // to B (zz) 3445.@ 13.00" (Zone 1) • Bottom reinforcement // to B (zz) .. 1244.@ 7.00" (Zone 2) Bottom reinforcement, /l to B:(zz) 345 © 13.00" (Zone 3) • Dowel bar slze Reber 1 : 844 • Free cover : 1.00 [in] Development calculated intension Bars number //to x axis 3 Bars number // to z axis 3 Stirrups : #4 @•8.00" Legs number // to.x axis : 2 • Legs number // to z axis : 2 Load conditions to be included In design Service loads: SC1 DL Design strength loads: DC1 1.4DL Loads Condition Axial Mxx Mzz Vx Vz [Kip] [Kip'ft] [Kip'ft] [Kip] [Kip] RESULTS: Status OK Soil. Foundation interaction �4�Oe Allowable stress 3E03 [Lb /ft2] Min. safety factor For sliding 1.25 Min. safety factor for overturning 1.25 Minimum safety factor for bearing capacity (uplift) : 2.50 Controlling condition SC1 Safety factor for bearing capacity (uplift) 1000.00 Condition qmean qmax Amax Area in compression Overturning FS [Lb /ft2] [Lb Ift2] [in] [ft2] ( %) FSx FSz slip SC1 0 0 0 84.00 100 1000.00 1000.00 1000.00 Bending Factor 4 0.90 Min rebar ratio 0.00180 Development length Axis Pos. Id lhd Dist1 Dist2 [in] [in] [in] [in] zz Bot. 22.90 8.01 33.00 33.00 xx Bot. 26.71 9.35 63.00 63.00 Axis Pos. Condition Mu 4, Mn Asreq Asprov Asreq/Asprov Mu/(4l Mn) [Kip * ft] [Kip [in [in2] zz Top DC1 0.00 0.00 0.00 0.00 0.000 0.000 I zz Bot. DC1 0.00 179.50 0.00 2.79 0.000 0.000 I I xx Top DC1 0.00 0.00 0.00 0.00 0.000 0.000 I 1 xx Bot. DC1 0.00 341.66 0.00 5.58 0.000 0.000 I I Shear Factor 0 0.75 Shear area (plane zz) 8.57 [ft2] Shear area (plane xx) 14.06 [ft2] Plane Condition Vu Vc Vu /(4,•Vn) ' [Kip] [Kip] xy DC1 0.00 221.83 0.000 I I yz DC1 0.00 135.15 0.000 I I Punching shear Perimeter of critical section (b.._ : 8.79 [ft] Punching shear area 10.53 [ft2] 1 L •3 Column Condition Vu Vc Vu1(4•Vn) (Kip) ;(Kip] column 1 DC1 0.00 - 332:26 0:000 I Notes • Soil under the footing Is considered elastic and homogeneous. A linear soil pressure variation is assumed. • The required flexural reinforcement considers at least the minimum reinforcement • The design bending moment is calculated at the critical sections located at the support faces • Only rectangular footings with uniform sections and rectangular columns are considered. *The nominal shear strength is calculated in critical sections located at a distanced from the support face • The punching shear strength is calculated in a perimetral section located at a distance d/2 from the support faces • Transverse reinforcement is not considered in footings • Values shown in red are not in compliance with a provision of the code •gprom = Mean compression pressure on soil. •gmax = Maximum compression pressure on soil. *Amax = maximum total settlement (considering an elastic soil modeled by the subgrade.reaction modulus). • Mn = Nominal moment strength. • Mu/( +•Mn) = Strength ratio. • Vn = Nominal shear or punchure force (for footings Vn =Vc). • Vu /(411•Vn) = Shear or punching shear strength ratio. • • • (12 Plain Concrete Isolated Square Footing Design: F7 f := 2500-psi Concrete strength fy = 60000.psi Reinforcing steel strength E := 29000.ksi Steel modulus of elasticity Icon I50•pcf Concrete density lsoil 100•pcf Soil density q j := 1500.psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldi := 1200.1b Pdl := Totaldl . Tot* := 3200.lb Pll := Total]] Pd := Pdl + PH Pd = 4400.1b Footing Dimensions t f := 10• in Footing thickness Width := 24•in Footing width A:= Width Footing Area gnet gall - tf''Yconc (net = 1375•psf Pt' Aregd '— gnat Aregd = 3.2•ft < A = 4.ft 2 GOOD Width := V " re9° Width = 1.79•ft < Width = 2.00 ft GOOD Ultimate Loads Pte:= Pdl + trA•'yconc P := 1.4•Pdi + 1.7•Pll P = 7.82.kips P qu A qu = 1.96•ksf F 0-- Beam Shear b 5.5-in (4x4 post) d .= tf — 2•in 4 := 0.85 b := Width b = 24-in V := 4, 4 • f V = I0.88-kips 3 V qu (b col b V = 3.01 -kips < V = 10.88 -kips GOOD 2 Two -Way Shear bs := 5.5-in Short side column width bL:= 5.5-in Long side column width b := 2-(bs + d) + 2•(bL + d) b = 54-in pc := 1.0 4 _ 3 3.0c + 8 fF psi•b•d V = 32.64-kips )• Vmm„ :_ 4.2.66• f Vnmax = 21.71•kips = qu [b — (b + °d) V = 5.35-kips < Vmm„x = 21.7I -kips GOOD Flexure r 1 Mu chi l b - 13, ]{}b 1 M = 1.16-11.-kips \ 2 2 ,:= 0.65 b 2 = d 6 S = 0.148.ft F := 5•ch• f F = 162.5-psi CC= M � ` � ft = 54.45-psi < F = 162.5-psi GOOD S Ilse a 2' - x 2' -0" x 10" plain concrete footing --7 ?? e 613 . ^.b`° cLS O 53' :: S 0; 'S# = g.C— � ^ 1 5 0 0 0 �� W 1s1 gfiA. 0 = W9 - p = u {w't - &-1-z)( s'..) _ G . 1za --Ica - sylsv-t'o - ( sar)' t s_ o°te - w 9 4. b = %. olo (.12 c + szu; L i i t-C1 =a 4Jcee — 1S'4S - VIE )0 1W = Vx "T J Lt - _ I 0 . 9 I � S 9S110 — I a )�1Q. c .s e1)�. L X )� )— . z L - Ad - A `e°r€ - ° o ( `e .°14.' e 4. �s z,' b)cl q..' c --+ Q i XZZ) (5' 4.X5' 1 V S r o) =1'27 w o .;J-1 1S'gS 0 o_,'1 t'1i# \\'S 7.. 1C1 o V ` 3 6u;u ),CEJanp -- )0 av 1 -- ) D 1 i - — 2 A = m J+. I z 0 0 J r II r 13 r IL 1 ❑ 3 ' 3 J F 15111•Si., ID ❑ 11l 04.:11 AP.C* ,1 Fool kUQ&i - d +►un :38 1S:1 "„ "1q 1 EL° *" 400 Tau ICmoD :.,.ad 4. Q 100 I '7 rn : oN eor 0' :MOM 1\1\1V Ae Bentley Harper Houf Peterson Righellis Current Date: 6/22/2010 10:43 AM Units system: English File name: O:\HHPR Projects\CEN - Centex Homes (309)10EN - Plans \CEN -090 Summer Creek Townhomes\calcs\Unit A\foundations\Front Load 2.etz\ M351.9 Knit] M33 - 12.19 [K p fl Y Moments t. 1 FW Eteritteu Harper Houf Peterson RigheIlis Ine� Current Data: 5/22/201D10:35 AM: Units system: English File name: 0:1HHPR ProjectslCEN - Centex Homes (309)10EN - Plans10EN -090 Summer Creek TownhomeslcalcslUnit Alfoundations1Front Load.etz\ UN IT 1 - FL- M33 =25.66 Kirft] M33= -30.27 IKip•n] e x Norm Lc? \ 1 ay. i\\\Nc. DATE 6-a0k0 JOB NO: C V M Oc o OF PROJECT: 5-\-c1 1 oo c sty__ RE: uN \ T A - R- p$9,_, Lot 2105 is D 3 30.41 k(k W 2 h Z I- W q.153k' , '}.t I O 171 L 1 v l Li i o a u 0 w r1 -4 i -1- 18 i- 11-41-4 U Z W D I ir a. a a'1 Z 0 0 Check Over-Fur z 2 MOT = 30 t t 30.414 (a,1-134)Cad) = 11c. lb la E U M = (o ,ISO - Ca)( i)(I i)Caa) +- '11S3(i) i- 1)IC3(a I) U = aaq AL >_Fb a x = aac\AL - 111..,tt , 5.442c e- s.sLc- ao •9.ob 6 1 - n►ir.x = aO AO (0 i_ ( (ao1go41.1s,sb) t A ( AS r-$F 9-rn; r, = ao,goe _ 6 (a),aoc. s is0 -,a 4s- o � ° �mi N< o : e mo.x .1.- 4 a _ 4 C ;o ,qte) 3 L'C r3-2,e) 3( acs 5 o to �nnwx : 1. ab 1 >�-s F c t5W p�F ` • C� 1C ri0: 0 X 22 F la Ben" ` Harper Houf' Peterson Rlgheflis 1nC. Current Date: 6122201010:38 AM Units system: English File name: 'O:IHHPR Projects10EN - Centex Homes '(809)leEN - Plotis EN - 090 Summer Creek Townhomes1calcs1Unit AlfoundationslRear Load.etz1 M33=13.24 [Kip'ftj M33 =45.06 [1Gp'ft) 6 M5rc\ex\ks- )L t . ��3 r ' Be Harper Heat Pe-#erson.'Rghelfis inc. . Current Date: 6/2/2010 10:43 AM Units system: English File name: 0:1HHPR Projects\CEN - Centex Homes (309)ICEN - PlansICEN -090 Summer Creek TownhomeslcalcslUnit AlfoundationstRear Load 2.etz1 M33=41.88 Molt] M33 =-46.37 ]Kirk] 1 x MGmelvk- LIZ FR, 4 _SZ3 h ! 1 c ^.. b c° Y 1 ( 6e-, o - s9cP00 1 9' 0 )b 1 0 UWe cfi1-)Cc ooEA CG fi 10) '0 = 10 —01 h I "O = S � )'o , Z\ a $} VI ( • 0 - $9(000 tj0)Ob'Q 013,5 � t2x c oo € -A r ai coon'o)) [two = b 131 @L°"'°r = m El ( 9- $9(CO c \ ' 0)Ob O ='-'r 7) ° o El (in) (poo Q'o / (000 # ocvtbt'p - zw = 'Yo 1. a 4 7 , � - 'L 3 3 q f rCrI fCV = gyp ( eob'o ----" to 0 twn �`�' ° '� ad 41uo _ y.A.o1„t z n • m O I . .. ��� \1�iL- ❑ m • rn o Z 1 3.1.J. (RI Ys x 00 - � �° 9 m ❑ ❑ `o J 000 vocri J'Oa : �a road 40 V N a :.o i eof ()KT 1 '31VO V ' AB c 17 - A . 33 *°)1 "e.f = ( Z14 c o ._sl)Q.:;Q'Q X,_t VIXJ, s 7 : i•11 �� h so CTh .-�- ya'O/ 9i !), 4" r V - q,k_-c _',\J • 70 :41 D h 4 a1 : a! x x mo t „, r4uavni.1), - a -m-V b a h h'.g< � sq' h g = -2 / - s1 cxx�'o� 1 obi() = `PIN: = 5 0 10 - g1. 0 3 LZ OO E L�'o) Qoa b2' 1 '70 �� 0 S # kni I ' tfi _ O'.' SG ' b Ci_�•0�ij��.ore -- 1t._ C,ZiZ 1)°)'0 - j1)(ocobn) (g.-E0' Y. )oh'p = ' - ‘hl m , % &s 4- r1 Zt) °)'o :-- (zh O442)t9'o) / Qaoc'ol X�kw' 1) = N0 V a o '1, gE.O = s ' -'C� 1 je.1 a 4- `i) N- .1. 1,t, '5S < . 9 pgI i.l = 7!E4 -t.'1- s1Xc 'O11tenk VC)Ob'0 = `�w0 = o ID N =cehysooEXg'orl (cAO r) o9' )i1 °i'0) --,7 v 9 o m kiZi 1* 11)5c/xIPI°1rra j . '0 1 ;1 a S it c!) ( k AI, o • g FfsV ="0 - - o 3 ( Z I Y0- 1 / E 5 d 0 V 1\110 3 Z ii 11 h0'Ofi - G- A`u11 - S 4- c3 .-4- {..\ z = m itl1 h • Q.0 0 itA. A0 m o 4 1-- 0/ --7r _ 11--A c ..).G- -c,-, le kk.1\io Ill 1'IS c+ Ci k1W) =--. t‘fik)4%\N F ,teA r "------- 1 1 z i q � r .-- ‘0,1 X1 X u ` ' 4 E o 0 C 0409i V001 A9.0,ja :3a :1o3rpad dO ON BOf 31tlp -Ae OY p DATE: ( - aO 1 ''NO' -090 OF PROJECT: RE: U y� `} A yam`{. Gx3 I x 1,7_51 1 1 1 1 1 — � \ 1 1 5� ❑ ❑ • W s.a V' �, 1' O � J 0 o a a' 4--- 11 ---- ` a'—�. W U Z W O cc d Z Check Overfvrn►vicc 0 Kor = ar.03 Mrz (&o ,►soXi s 31,4) +- 5,�( 1,LL(4.) ( +t 2 o M. : C b-00 1 lso")CAi5Y5)(4)4 - 5.aC ► LL (2) s(c, 4 t. f M 1 o� • Z " WT O a X _ M� _ 4 4 AIL -a6.o3 a e.= a. 01 et s -4 r5,2 VYTAX - C- pia . �c � > = a,s l(z -Zee) - 3(.3Y c o - Q(a,-)-o►)) coy 56 Mac A use Slah to ces■,t Oupf4urniny Mor = at, Q PAgL = (g. +3.-i;(z) 4-C(.toL +3.2�L)4- 4 D @ sc o 4 5,9 C,4-(-1 DL \ �. MX g. Cs2 - t -3.zY � ( a-- . (L 4- 3 .212.) t4 1DL OF 510,1 : 60, +-4 DL_ � 1 :cMo < M(z • 41* ItS(aLO3- q-S.otC, DL b L; - 54- foo1-,n 0 s 13e (At._ i F Too \-1N _ J9 Ct Ir MQL_ ( >+- (I,(9L+- 3,2)(5 + 3DL &D. } 301_ MQ_ (1-G t3Dl 1,M0c i\ ;2) -+-3PL b>r = (1.115 mss g. L('-- km9 x ae . x 15" DL k = M/ = 4L, ?L t -al Oz a'►. = ',}� F � - a,asi-s.z +3.2�- �,b(�t3.t> 15,5 �� 1[22 302)(L- LI22)) r -'r Br \ DATE: 1 _ V `o t O JOB No.: C I � or I � � , F � ` � `v PR W ECT: RE: - 'MOK% = 4( DL r ❑ ❑ 3CtA(. -2(e)) • E 3 rf t1 xaSC t x xS„ 'Du= a:2ip ,p D 2 , . p.A 4 ,a �- 3(a , l ,) ❑ - �c�. - — - - . \ ,t _ e— l . \3 _ \L W ono. x = �+ a ,35 P N(1 • a 3C2•'6 b- 2(1.1 > T L 3'�c Is" - 6,.35 p l,l X a 1 (� .CO35 t ma�� = l (�, b3s�_ l .q`d F dk co-r Sho vM load( r u • zz ❑ z 0 o = o ►- a GL) 14 L te • j Rib 2 C J Bentley Harper ' Houf Peterson :Rlghellis Inc,, Current Date: 6/22/2010 10:42 AM Units system: English file name: O:IHHPR Projects10EN - Centex Homes (309)10EN - Plans10EN -090 Summer-Creek- Toi mhomeslcalcslUnit AVoundationslInterior 2.etz% M3 = 23.55 nett) M33=- -17.88 lKlpiij Y l x Mame/NA-5 LC( Ber ttey 'Harper ktou Peterson Inc. Current Date: 6/22/2010 10:42 AM Units system: English, File name: O:1Mh1PR Pfa TCEW•F Centeiallantala (309)tt N' = 1 1 anglCF.i1 90 Summer Creek TownhomeslcalcslUnii Alloundationsllnterior.etzl M3 = 32.26 [Kp't] M33 =-9.27 (Kip fI • er\I s LeZ. X 30. t2A oci P . te o • .-"AQ u1v W < 4 — ZI N 0 '09 2(-£ bg.'p)Ob'O = o o ❑ (ii-)C 7C 'Q/ (900 0 = o -1 S" C4 !i # ` t ) , 'Q i� ?t # �� a n 0 y 43S°11) C Cl ib01,lo- Z1)(000foci(bbS' = AW ( 1 bpi, • 0 = 02.)(p os)g'o/ (000'o'. v3S'o ={,', o -ZN 1 baS ' 0 = S ‘ A7 C' ",A1 z a ?S0t TIV 7.. k0 a m ( / b \ -- V 0 11 51 ) 1 2 i ,g_ ❑ 3 3 0 m VV ❑ ❑ (Yr J' A.G l uI :38 :133 rad d Ao .f 'oN oar Q 1 o / -9 31v0 J \ A9 ACI 318- 05.Appendix D 1.0 ": Diameter Bar Capacity at Portal Frame Concrete Breakout Strength Stem Wall Capacity when govern by 3 edges Foundation Capacity Givens Givens fc = 3000 psi fc = 3000 psi = 3.50 inches h = 12 :00 inches (into the Fc Stem = 8.00 inches Note: hef above :is the the embedment into:or c,,, = 5.25, inches the foundation and does not consider.stem wa Fnd.Width = 36:00 inches c,,, = 2.25 inches c = 18.00 inches We.N= 1.00 cast -in -place anchor yi 1.00 . cast -in -place anchor k = 24 cast -in -place anchor k = 24 cast -in -place anchor = 0:75 strength reduction factor = 0.75 strength reduction fact Calculations Calculations ANc = 68 in` AN = 1296 in` A = 110.25 in` A = 1296 in` Nb = 8,607 pounds Nb = 55,121 pounds Wed,N = 0:8286 Wed,N = 1.00 Nth = 4,399 pounds N = 55,121 pounds ON = 3,299 pounds 4 N = 41,341 pounds Combined Capacity of Stem Wall and ol = 44,640 0.75(I)N = 33,480 Concrete Side Face Blow Out Givens Abre = 2.15 in` fc = 3000 psi ;p = 18.00 inches = 0.75 strength reduction factor Calculations Nab = 231,191 pounds 4)N, = 173,393 pounds Concrete Pullout Strength Givens Ar = 2.15 in` fc = 3000 psi = 0.75 strength reduction factor Calculations N = 51,552 pounds 4N = 38,664 pounds Steel Yield Strength Givens f 58,000 psi A = 0.606 in = 0.80, strength reduction factor Calculations N. = 35,148 pounds $Ne = 28,118 pounds < 33,480 Ductility Met Holdown Check Holdown: HDU14 Holdown Capacity= 14,930 pounds 1.6* Capacity= 23,888 pounds 23,888 < 28,118 - Holdown Checks X 32 BY DATE: JOB NO l OF • PROJECT: RE: S tem Wa11 Cook ❑ ❑ W 0 J e 5 i6es oW Qo■ Icle j s Z !L O W 0 E 'pL a asst (12$sF)= 300 ()Ls -u_om t' ❑ 8 caZ levets'Y13 S ' = a 05 ?Ls. floor 5 40. 1 650 pcON- e l cz) _ 33 p �-F 51-ern z 0 ISO pc )C w = t00 w PLC W = ,,.. cc a Z LL o 05c 2 levels `)(40 \ = f.ciO p'.F _toor 0 R- 4 U To;a1 load = ‘Li 1t- toau.) aLf.' . 7 YCD x Sbp • tS psF = tsapc.tr • Lk) o ■ l ib t + 1(0 W . FSOow „,'- - u) - 1.06 C'. n 2 C O u. Z ❑ z e reaC .4, cccmE oC bu∎ld +f\cp O I- a DL: a5Ca.1= -,co pi..F u.ti 6112 teve1s)(13L - )si - ; a � 4 PLF . \oQr- 401 N (15o?c c .1 'in. )C$1 + = 333 p'F- S 1-e ry- 0112)((SOW) MOW ClaI"+PsF) - Jb(x C 1 LL >° 060-I4-0) _ -2.0 pt_F C1b = `;-so Pt.? O U Iu 4, „ TLo a343t 1 00v t y- a = . o a3u3 +- c Ioow 1S0014) 4 11 Same as fr mire toot heels 9 TL., 13tict ir ■OuvJ w = I.00 <. os-e_ ∎ s' " e Pa( h.) 1 Ix. o a s (\i)(2) = b00 pc.+- wail (Bl(2 X13'C.z -) . L}! l.F Sloo�r' gUw(Isolxi''01L )( = 333pt.c 51-ern (I►a ts()4=100 vd LL o (5 2.")( 4o)C2> = 12510 ets= dtour TI_: d6a9 -IOOuj W = 1,i511 2 i use a4 i hi EIVED Structural Caicuiation JUL 2 2 2011 for CITY OF TIGARD Full Lateral & Gravity Analys [ I.DING DNISION L 0 Plan B 1332 Lot 58, Summer Creek Townhomes Lo-t-62,0 Tigard, OR City of Tigard m s rao � r- 0-013 z co i 3 Apt. ove. Prepared for Plant p By4oivi Date . - Pate Group _ 01:91 3 -- c 13 lv April 7, 2011 OFFICE COPY JOB NUMBER: CEN -090 ** *Limitations * ** Engineer was retained in limited capacity for this project. Design is based upon information provided by the client, who is solely responsible for the accuracy of same. No responsibility and /or liability is assumed by, or is to be assigned to the engineer for items beyond that shown on these sheets. 98 sheets total including this cover sheet. `O NR ��1 2I320 R O _ 0 : J 0 OREGON ` N J. E41 This Packet of Calculations is Null and Void if Signature above is not Original 4 Harper • Houf Peterson Righcllis Inc. 205 SE Spokane St. Suite 200 • Portland, OR 97202 • [P] 503.221.1131 • [9 503.221.1171 1104 Main St. Suite 100 • Vancouver, WA 98660 • [P] 360.450.1141 • [F] 360.750.1141 1133 NW Wall St. Suite 201 • Bend, OR 97701 • [P] 541.318.1161 • [F] 541.318.1141 Structural Calculation JUL 2 2 2011 for CITY OF TIGARD BUILDING DIVISION Full Lateral & Gravity Analys o Unit B, Front Load & Rear Load Phase 2 Summer Creek Townhomes Prepared for Pulte Group April 6, 2011 JOB NUMBER: CEN -090 ** *Limitations * ** Engineer was retained in limited capacity for this project. Design is based upon information provided by the client, who is solely responsible for the accuracy of same. No responsibility and /or liability is assumed by, or is to be assigned to the engineer for items beyond that shown on these sheets. _98 sheets total including this cover sheet. S tatic ruR -, . J'� ti� 12,320 I 9 t; , 2,, , ,,,,,,,, 0 "LI --- -":, V r, % lop _ �: c r 'EXPIRE4 -37 -207] 1 This Packet of Calculations is Null and Void if Signature above is not Original Harper 411P'• Houf Peterson Righellis Inc. 205 SE Spokane St. Suite 200 • Portland, OR 97202 • [P] 503.221.1131 • [F] 503.221.1171 1 104 Main St. Suite 100 • Vancouver, WA 98660 ♦ [P] 360.450.1141 • [F] 360.750.1141 1133 NW Wall St. Suite 201 • Bend, OR 97701 • [P] 541.318.1161 • [F] 541.318.1141 Design Criteria Project Scope: Full lateral & Gravity Analysis of Unit B Design Specifications: Wind Design: Basic Wind Speed (mph): 100 From Building Authority Exposure: B From Building Authority Importance, l : 1 2009 IBC / 2010 OSSC Occupancy Category: 11 Residential Earthquake Design: Seismic Design Category: D From Building Authority Site Class: D Assumed, ASCE 7 -05 Ch. 20 Importance, Ie: 1 ASCE 7 -05 Table 11.5 -1 Ss: 0.942 USGS Spectral Response Map Si: 0.339 USGS Spectral Response Map Dead Load: Floor: 13 psf Wall: 12 psf Wood Roof: 15 psf Live Load: Roof: 25 psf Snow Floor: 40 psf Residential Floor Materials and Design Data: Materials: Concrete Compressive Strength, f' 3000 psi Foundations & Slab on Grade Concrete Unit Weight, yc: 145 pcf Steel Reinforcement Yield Strength, f 60,000 psi Wood Studs (Wall Studs): Hem -Fir #2 2x & 4x Wood Beams & Posts: DF -L #2 6x & Greater Wood Beams & Posts: DF-L#1 Glulam Beams: 24F -V4 PSL Beams: Fb =2,900 psi, FV= 328psi, E =2.0 Million TS /LSL Beams: Fb =2325 psi, FV= 460psi, E =1.55 Million • Design Assumptions 1. Allowable soil bearing pressure (qa) : 1500 psf Assumed 2. All manufactured trusses, joists, and flush beams u.n.o. shall be designed by others. Structural Analysis Software Used: Mathcad 11 Microsoft Excel 2000 Wood Works — Sizer version 2002 Bently RAM Advanse Harper Project: Summer Creek Townhomes UNIT B • HP c• Houf Peterson Client: Pulte Grout) Job # CEN -090 Righellis lnc. LMOInflEAi • Ylatl:Lb86 Designer. AMC Date: June 2010 Pg. # 1A11(1HJCAPC AILf.1111rCT_i.hD HyL /OUP DESIGN CRITERIA 2007 Oregon Structural Specialty Code & ASCE 7 -05 Roof Dead Load RFR := 2.5.psf Framing RPL := 1.5•psf Plywood RRF := 5•psf Roofing RME := 1.5•psf Mech & Elec RMS := 1 • psf Misc RCG := 2.5.psf Ceiling RIN := 1 •psf Insulation RDL = 15•psf Floor Dead Load FFR = 3•psf Framing FPL := 4 psf Sheathing FME := 1.5•psf Mech & Elec FMS := 1.5•psf Misc FIN := .5•psf Finish & Insulation FCLG := 2.5•psf Ceiling FDL = 13•psf Wall Dead Load WOOD EX Wall := 12.psf INT Wall := l0•psf Roof Live Load RLL := 25•psf Floor Live Load FLL := 40•psf �1 Harper Project: Summer Creek Townhomes UNIT B Fl]" Houf Peterson Client: Pulte Group Job # CEN -090 Righellis Inc. eNe - ,r e a B . r, ,,,, , ,« Designer: AMC Date: June 2010 Pg. # I • NOLI: *P^ •RCN∎TEC f6. S fi YE, ORS Transverse Seismic Forces Site Class = D Design Catagory = D Building Occupancy Category: II Weight of Structure In Transverse Direction Roof Weight Roof Area := 748- f1 RFWr:= RDL-Roof Area RFpri•= 12566-lb Floor Weight Floor Area2 := 605•ft FLRwT2nd := FDL•Floor Area2 FLRgrr2 = 7865-lb Floor Area3rd FI.Rv FDL•F1oor Area3 FLRWT3 = 7800 -lb Wall Weight EX Wall Area := (2203)-ft 2 INT Wall Area:= (906)41 WALLwr := EX Wa1l .EX Wall_Area + INT Wall Wall_Area WALLw -r = 35496-lb WTTOTAL = 63727 lb Equivalent Lateral Force Procedure(12.8, ASCE 7 -05) h := 32 Mean Height Of Roof Ie := l Component Importance Factor (11.5, ASCE 7 -05) 2&,:= 6.5 Responce Modification Factor (Table 12.2 -1, ASCE 7 -05) C := .02 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) x := .75 Building Period Coefficient ("Table 12.8 -2, ASCE 7 -05) Period T := C T = 0.27 < 0.5 (EQU 12.8 -7, ASCE 7 -05) S1 := 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. (Chapter 22, ASCE 7- 05)...or S := 0.942 Max EQ, 5% damped, spectral responce acceleration at short period From Figures 1613.5 (1) &(2) F := 1.123 Acc -based site coefficient @ .3 s -period (Table 11.4 -1, ASCE 7 -05) F := 1.722 Vel -based site coefficient @ 1 s- period (Table 11.4 -2, ASCE 7 -05) LtL Ie Harper Project: Summer Creek Townhomes UNIT B • i • Houf Peterson Client: Pulte Group Job # CEN -090 Righellis Inc. Designer: AMC Date: - June 2010 Pg. # ,A,looCACt Aor111tlCUU• 011,1V1 ',MEI SMS := F Sms = 1.058 (EQU 11.4 -1, ASCE 7 -05) Sd := 2 Sds = 0.705 (EQU 11.4 -3, ASCE 7 -05) SKI := F S1 SM1 = 0.584 (EQU 11.4 -2, ASCE 7 -05) Shc := 2.S 3mi Sd1 = 0.389 (EQU 11.4 -4, ASCE 7-05) Cst := Sd 1e Cst = 0.108 (EQU 12.8 -2, ASCE 7 -05) R ...need not exceed... Csmax Sd 1 • k Cs = 0.223 (EQU 12.8 -3, ASCE 7-05) Tn R ...and shall not be less then... C1 := if(0.044•Sd -1 < 0.01, 0.01,0.044•Sd 0.5 S1.1 \ (EQU 12.8 -5&6, ASCE 7-05) C2 := if Si < 0.6, 0.01, J R Cs := if(Ci > C2,C1,C2) Cs = 0.031 Cs := if (Cst < Cs, < Cs Cst, Cs )) Cs = 0.108 X, := Cs. WTTOTAI, V = 6914 lb (EQU 12.8 -1, ASCE 7 -05) E := V•0.7 E = 4840 lb (Allowable Stress) L9) Harper Project: Summer Creek Townhomes UNIT B P Houf Peterson Client: Pulte Group Job if CEN -090 Righellis Inc. cuointtna "awu.;tao Designer: AMC Date: June 2010 Pg. if wno�a.�c All- CIOTee.c•avave'ont Transverse Wind Forces (Method 1 - Simplified Wind Procedure per ASCE 7 -05) Basic Wind Speed: 100 mph (3 Sec Gust) Exposure: B Building Occupancy Category: H 1 1.00 Importance Factor (Table 6 -1, ASCE 7 -05) h = 32 Mean Roof Height X := 1.00 Adjustment Factor (Figure 6 -3, ASCE 7 -05) a2 := 2•.1.16•ft Zone A & B Horizontal Length Smaller of .. (Fig 6 -2 note 10, ASCE 7 -05) a2. =3.2ft or .4•h 2.11 a2 =25.611 but not less than... a2min 3.2•fi a = Wind Pressure (Figure 6-2, ASCE 7 -05) Horizontal • Pnet 19•9•psf Pnet := 32•psf Pbet := 14.4•psf PnetD := 3.3•psf Vertical Pnet eE := — 8.8•psf Pnet — 12•psf Pnet , = — 6.4.psf Pnet —9.7.psf Basic Wind Force PA := Pnet X PA = 19.9•psf Wall HWC PH := Pnet X PE = 3.2•psf Roof11WC PC := Pnet e C•I m eX PC = 14.4-psf Wall Typical PD := PnetzoneD•Iw a Pp = 3.3•psf Roof Typical PE := Pnet e E•IwX PE = — 8.8 -psf PF := PnetzoneFIwX Pp = — 12•psf PG := Pnet X PG = — 6.4•psf PH := Pnet t•Iw X PH = — 9.7•psf V 1 Harper Project: Summer Creek Townhomes UNIT 13 • HP ' Houf Peterson Client: Puke Group Job # CEN -090 Righellis Inc. EUOIGECGE . VEANry[alE - Designer: AMC Date: June 2010 Pg. # a AGG:1C ;V1 AM4 „IlCG 1,. ::II MJI .IIl;t, Determine Wind Sail In Transverse Direction WSAILZoneA (55 + 59 + 29).ft WSAILz := (6 + 0 4 - 23)• ft u'SAII-ZoneC = (429 + 355 + 33).11 \VSO -ZoneD (0 + 0 + 4)41 WA WSAJL7_oncA'PA WA = 2846 lb WB := WSA WB = 931b WC WSAUZoneC WC = 16171 lb WD := WSAILZoneD'PD WD = 13 lb Wind_Force := WA + WB + WC + WD Wind_Force := 10•psf•(WSAIL nc A + WSAILZoneB + WSAIL7 + WSAILZoneD) Wind Force = 19123 lb Wind Force = :12990 lb WSAILz := 43.11 WSA1LZ := 43• ft WSAIL7 := 334.8” WSAILZoneH := 327.11 WE := WSAILZoneE WE = —378 lb WF := WSA WF = —516 lb WG := WSAILgoncG WG = —2138 lb W1.1 := WSA W1-( = —3172 lb Upliftnct WF + W11 + (WE + WG) + RDL- [WSAILZoneF + WSAILZoncH + (WSAILZoneE + WSAILponeo) }. 6.1 . 12 Uplift = 1326 lb (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN CALCULATION Lt Harper Project: Summer Creek Townhomes UNIT B Houf Peterson Client: Puke Group .Job # CEN -090 Righellis Inc. °- Designer: AMC Date: June 2010 Pg. # 'tA140:1 ,..kr Aili MI YORE Longitudinal . Seismic Forces Site Class= D Design:Catagory = D Building.OccupancyCategory: H Weight of Structure In Longitudinal Direction Roof Weight Roof .Area = 838 ft Afxx RDL -Roof Arca RFpr1• = 12566 -lb Floor Weight Floor Area2, = 605 ft g = FDL•Floor Area2 FtRwr2 = 7865 -lb Floor_Area3 = 600 ft F Ns ua r k:= FDL -Floor Area3rd FLRWr3rd = 7800 -lb Wall Weight • EX.:Wall ;At . =' (2203)•t1 INT Wall Area = 906 ft a L cTA:= EX_Wall + 1NT Wall INT WallArea WALLwr = 35496.lb WTTOTAL = 63727 lb Equivalent Lateral Force : Procedure(1 ASCE 7 -05) h = 32 Mean Height Of Roof = . Component Importance Factor (11.5, ASCE 7 -05) :_ '615 Responce Modification Factor (Table 12.2 -1, ASCE 7 -05) C = 0.02 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) x = 0.75 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) Period ,,:= C t . (h n ) x T = 0.27 < 0.5 (EQU 12.8 -7, ASCE 7 -05) S1 = 0.339 MaxEQ, 5% damped, spectral responce acceleration 4.1 sec. (Chapter 22, ASCE 7- 05)...or S = 0.942 Max'EQ, 5% damped, spectral responce acceleration at short period From Figures.1613.5 (1) &(2) F = 1.123 Acc -based site coefficient @ .3's- period (Table 11.4 -1, ASCE 7 -05) F = 1.722 Vel -based site coefficient @ 1 s- period (Table 11.4 -2, ASCE 7 -05) LL Harper Project: Summer Creek Townhomes UNIT B P 6 . Houf Peterson Client: Pulte Group Job # CEN -090 Righellis Inc. _ i YYIYY4YF • PL4YY4Hr Designer: AMC Date: June 2010 Pg. # LAWDZi:A Pi Al CMLIk C.f •!UYYL YON!. 14,:= F S = 1.058 (EQU 11.4 -1, ASCE 7 -05) 2. SMS := 3 Sds = 0.705 (EQU 11.4 -3, ASCE 7 -05) 5:= Fv. Si SMl = 0.584 (EQU 11.4 -2, ASCE 7 -05) 2 •SM1 ,d,1,,;= 3 S = 0.389 (EQU 11.4-4, ASCE 7 -05) Sd l� at,:= Cst = 0.108 (EQU 12.8 -2, ASCE 7 -05) ...need not exceed... s Shc.k Cs mar = 0.223 (EQU 12.8 -3, ASCE 7 -05) T ...and shall not be leas then... := if 0.044•Sd ( 0.5.S 1 •le (EQU 12.8 -5 &6, ASCE 7 -05) , Q A := if I S1 <0.6,0.01, J `\ R := if(CI > C2,CI,C2) Csmin = 0.031 C := if(Cst < CS Cs if(Cst < Cs, ,Cst, Cs Cs = 0.108 , V,:= Cs' WTTOTAL V= 6914 lb (EQU 12.8 - 1, ASCE 7 - 05) E := V•0.7 E = 4840 lb (Allowable Stress) Harper Project: Summer Creek Townhomes UNIT B HP " Houf Peterson Client: Pulte Group Job # CEN -090 Righcllis Inc. EMOIMEERY • PLAMMenB Designer: AMC Date: June 2010 Pg. # LARCsCAPE RRCMITECTB•SURVEYOR9 Longitudinal Wind Forces (Method 1 - Simplified Wind Procedure per ASCE 7 -05) Basic Wind Speed: 110 mph (3 Sec Gust) Exposure: B Building Occupancy Category: II 1, = 1.0 Importance Factor (Table 6 -1, ASCE 7 -05) h = 32 Mean Roof Height X = 1.00 Adjustment Factor (Figure 6-3, ASCE 7-05) Smaller of... a2;= 2•.I.16.11 Zone A & B Horizontal Lena h — 3 2R (Fig 6 -2 note 10, ASCE 7 -05) _ or 4•h,; 2• R a2 = 25.6 ft but not less than... , uukv:= 3.2•ft a2 =6ft Wind Pressure (Figure 6 -2, ASCE 7 -05) Horizontal Pnet,, = 19.9.psf PnetzoneB = 3.2•psf Pnet,,,,,pc = 14.4•psf Pnet,, = 3.3•psf • Vertical Pnet eE = —8.8 -psf Pnet e F = — 12•psf Pnet, = —6.4 -psf Pnet, e g = —9.7.psf Basic Wind Force , := Pnet e KI w •X PA = 19.9•psf Wall HWC = Pnet e n•I,„ a PB = 3.2- Roof HWC ;= I'netzoneClw'X Pc = .14.4 -psf Wall Typical Pnet -I„ X PD= 3.3•psf Roof Typical = PnetzoneE•Iw`X Pg = — 8.8•psf , ,r= Peet, nej I PF = — 12•psf := PnetzoneG•Iw a PG = — 6.4•psf , := Pn ioneH'IW PH = — 9.7•psf 1.9) s Harper Project: Summer Creek Townhomes UNIT B Houf Peterson Client: Pulte Group Job # CEN -090 Righellis Inc. „i,; « ., c „ F Designer: AMC Date: June 2010 Pg. # !ANDSCAPE AR Ci∎ITECT YRVEYCRS Determine Wind Sail In Longitudinal Direction A nMI,:= (58 + 59 + 21)•ft ylai (0 + 0 + 51).ft 2 i :_ (98 + 99 + 34)•ft V�WIL :_ (0 + 0 + 114)•ft V:= WSAIL WA = 2746 lb WSAIL2,neB•PB WB = 163 lb := WSAIL7.oneC•PC WC = 3326 lb ;= WSAILZoncD•PD WD = 376 lb := WA + WB + WC + WD 20 d orc := 10•psf•(WSAILZ WSAILZ0 + WSAILZoneC + WSAILZonCD) Wind Force = 6612 lb Wind Force = 5340lb a4 151. ft 2 138 2 -ft y := 242 -ft , := 216 -ft WSAILZoneE WE = — 13291b NWT= WSAILzoneF•PF WF = — 1656 lb ,,j= WSAILZoneG•PG WG = —1549 lb x, WSAILZoneH-PI3 WH = —2095 lb lif = WF + WH + (WE + WG) + RDL•[WSAII,ZoneF + WSAILz + (WSATLZoneE + WSAILZoneG)}•6.1.12 Uplifl = 901 lb (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL ROLDDOWN CALCULATION Lc\ Harper Houf Peterson Righellis Pg #: Transverse Wind Line Shear Distribution ASCE 7-05, section 6.4 (Method 1 - simplified) Design Criteria: Basic Wind Speed = 100 mph Wind Exposure = B (Section 6.5.6, ASCE 7 -05) Mean Roof Height, H (ft) = 32 • Roof Pitch = 6 /12 Building Category= II (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf X= 1.00 Iw= 1.00 Wind Sail Wind Net Design Wind Pressure (psf) (ft2) Pressure (lbs) Zone A = 19.9 143 2846 Wall High Wind Zone Horizontal Zone B = 3.2 29 93 Roof High Wind Zone Wind Forces Zone C = 14.4 1123 16171 Wall Typ Zone Zone D = 3.3 4 13 Roof Typ Zone Zone E = -8.8 43 -378 Roof Windward High Wind Zone Vertical Zone F = -12.0 43 -516 Roof Leeward High Wind Zone Wind Forces Zone G = -6.4 334 -2138 Roof Windward Typ Wind Zone Zone H = -9.7 327 -3172 Roof Leeward Typ Wind Zone Total Wind Force =j 19123 lbs I Use to resist wind uplift Roof Only Total Exterior Wall Area = 2203 ft Uplift due to Wind Forces= -6204 lbs Resisting Dead Load= 7517 lbs El 1313 Lbs...No Net Uplift Wind Distribution Tributary to Diaphragms Wind Sail Tributary To Dia hragm (ft Zone A Zone B Zone C Zone D Main Floor 55 6 429 0 Upper Floor 59 0 355 0 Main Floor Diaphragm.Shear = 7291 lbs Upper Floor Diaphragm Shear = 6286 lbs Roof Diaphragm Shear = 5546 lbs Wind Distribution To Shearwall Lines MAIN FLOOR UPPER FLOOR ROOF Tributary Line Shear Tributary Line Shear Tributary Line Shear Wall Line Diaphragm (lbs) Diaphragm Diaphragm e� Widt ( ft) ( ) W (lbs) Width (ft) (Ibs) A 15.83 2275 20.50 3143 21.33 2773 B 19.50 2802 0.00 0 0.00 0 C 15.42 2215 20.50 3143 21.33 2773 E= 50.75 7291 41 6286 42.67 5546 Harper Houf Peterson Righelfis Pg #: Transverse Seismic Line Shear Distribution Seismic Design Category = D Occupancy Category a II Site Class = D S1 = 0.34 Ss = 0.94 Importance Factor = 1.00 Table 11.5 -1, ASCE 7 -05 Structural System, R = 6.5 Table 12.2 -1, ASCE 7 -05 Ct = 0.020 Other Fa = 1.12 Fv = 1.72 Mean Roof Height, H (ft) = 32 Period (T = 0.27 Equ. 12.8 -7, ASCE 7 -05 k = 1.00 12.8.3, ASCE 7 -05 Sue= 1.06 Equ. 11.4 -1, ASCE 7 -05 Sit= 0.58 Equ. 11.4 -2, ASCE 7 -05 Sps= 0.71 Equ. 11.4 -3, ASCE 7 -05 SDI= 0.39 Equ. 11.4 -4, ASCE 7 -05 Cs = 0.11 Equ. 12.8 -2, ASCE 7 -05 Csmin = 0.01 Equ. 12.8 -5 & 6, ASCE 7 -05 Csmax = 0.22 Equ. 12.8 -3, ASCE 7 -05 Base Shear coefficient, v = 0.076 Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height (ft) = 8 Floor 3 Diaphragm Height (ft) = 18 Roof Diaphragm Height (ft) = 32 Floor 2 Wt (lb)= 7865 Floor 3 Wt (lb)= 7800 Roof Wt (Ib) = 12566 Wall Wt (Ib) = 35496 Trib. Floor 2 Diaphragm Wt (Ib) = 22063 Trib. Floor 3 Diaphragm Wt (lb) = 21998 Trib. Roof Diaphragm Wt (Ib) = 19665 Vertical Dist of Seismic Forces I Cumulative % total of base shear Rho Check to Shearwalls (Ibs) to shearwalls Req'd? V =2 (Ib) = 711 100.0% Yes Vrroa3 (lb) = 1595 85.3% Yes V,,,r(lb)= 2534 52.4% Yes Shear Distribution To Wall Lines Wall Line Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line Roof Line Floor 2 Floor 3 Roof Shear Shear Shear sq ft sq ft sq ft lbs lbs lbs A 126 299 371 148 795 1257 B 282 0 0 331 0 0 C 197 301 377 231 800 1277 Sum 605 600 748 711 1595 2534 Total Base Shear" = I 4840 LB 'Base shear assumes rho equal to 1.0. Sec shearwall analysis spreadsheet for confirmation of rho. L.‘ Harper Houf Peterson Righellis Pg #: Longitudinal Wind Line Shear. Distribution ASCE 7 -05, section 6.4 (Method 1 - simplified) Design Criteria: Basic Wind Speed = 100 mph Wind Exposure = B (Section 6.5.6, ASCE 7 -05) Mean Roof Height, H (ft) = 32 Roof Pitch = 6 112 Building Category= II (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf I. = 1:00 Iw= 1.00 Wind Sail Wind Net Design Wind Pressure!(psf) ( ) Pressure;(Ibs) Zone A = 19.9 138 2746 Wall High Wind Zone Horizontal Zone B = 3.2 51 163 Roof High Wind Zone Wind Forces Zone C = 14.4 231 3326 Well Typ Zone _ _ Zone D = 3.3 114 . 376 Roof Typ Zone Zone E = -8.8 151 -1329 Roof Windward .High Wind Zone Vertical 1 Zone F = -12.0 138 -1856 Roof Leeward High Wind Zone Wind Forces Zone G =• -6.4 242 -1549 Roof Windward Typ Wind Zone Zone H = -9.7 . 216 -2095 Roof Leeward Typ Wind Zone Total Wind Force=l 6612 lbs I Use to resist wind uplift: Roof & Half of Upper Floor.Walls Total Exterior Wail Area= 2203 ft Uplift due to Wind Forces= -6629 lbs Resisting Dead Load= 10160 lbs E =l '3531. ' Net Uplift i Wind Distribution Tributary to Diaphragms Wind Sail Tributary To Diaphragm (ft2): Zone A Zone B Zone C Zone D arinemmemorr ram ® sxisiossa 1■01 Main Floor _ 58 0 98 0 __ Upper Floor _ 59 - _ 0 99 0 Main Floor Diaphragm Shear = 2565 lbs Upper Floor Diaphragm Shear = 2600 lbs Roof Diaphragm Shear = 1447 lbs Wind Distribution To Shearwall Lines MAIN FLOOR UPPER FLOOR ROOF Tributary Line Shear Tributary Line Shear Tributary Line Shear Wall Line Diaphragm (Ibs) Diaphragm (lbs) Diaphragm (Ibs) -w Width ft m Wi d�L Width 1 8 - 1283 - 8 1300 8 j 723 2 8 1283 8 1300 8 723 1= 16 2565 16 2600 16 1447 • L \ L Harper Houf Peterson Righellis Pg #: Longitudinal Seismic Line Shear Distribution Seismic Design Category = D Occupancy Category = 11 Site Class = D S1= 0.34 Ss = 0.94 Importance Factor = 1.00 Table 11.5 -1, ASCE 7 -05 Structural System, R = 6.5 Table 12.2 -1, ASCE 7 -05 Ct = 0.020 Other Fa = 1.12 Fv = 1.72 Mean Roof Height, H (ft) = 32 Period (T = 0.27 Equ. 12.8 -7, ASCE 7 -05 k = 1.00 12.8.3, ASCE 7 -05 S 1.06 Equ. 11.4 -1, ASCE 7 -05 SM1= 0.58 Equ. 11.4 -2. ASCE 7 -05 S 0.71 Equ. 11.4 -3, ASCE 7 -05 SDI= 0.39 Equ. 11.4 -4, ASCE 7 -05 Cs = 0.11 Equ. 12.8 -2, ASCE 7 -05 Csmin = 0.01 Equ. 12.8 -5 & 6, ASCE 7 -05 Csmax = 0.22 Equ. 12.8 -3, ASCE 7 -05 Base Shear coefficient, v = 0.076 Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height (ft) = 8 Floor 3 Diaphragm Height (ft) = 18 Roof Diaphragm Height (ft) = 32 Floor 2 Wt (Ib)= 7865 Floor 3 Wt (Ib)= 7800 Roof Wt (Ib) = 12566 Well Wt (Ib) = 35496 Trib. Floor 2 Diaphragm Wt (Ib) = 22063 Trib. Floor 3 Diaphragm Wt (Ib) = 21998 Trib. Roof Diaphragm Wt (Ib) = 19665 Vertical Dist of Seismic Forces Cumulative % total of base shear Rho Check to Shearwalls (Ibs) I to shearwails Req'd? V 11oor2 (lb) = 711 100.0% Yes VOoor3 (Ib) = 1595 85.3% Yes Vmot (lb) = 2534 52.4% Yes Shear Distribution To Wall Lines Wall Line Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line Roof Line Floor 2 Floor 3 Roof Shear Shear Shear sq ft sq ft sq ft lbs lbs lbs 1 275 270 360 323 718 1220 2 330 330 388 388 877 1315 Sum 605 600 748 711 1595 2534 Total Base Shear` _ 1 4840 LB "Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. bri.b Harper Houf Peterson Righellis Pg #: Shearwall Analysis Based on the ASCE 7 -05 Transvere Shearwalls Line Load Controlled By: Wind Shear H L Wall H/L ' Line Load Line Load Line Load Dead V Panel Shear Panel M MR Uplift Panel Lgth. From 2nd FIr.. From 3rd Flr. From Roof Load Sides Factor Type T (ft) (ft) (ft) ht k ht k ht k (kit) (plt) (ft -k) (fl-k) (k) 101 8 5.25 5.25 1.52 ox 8.00 2.28 18.00 3.14 27.00 237 1560 Double 1.40 VIII 102 8 3.88 3.88 2.06 OK 8.00 2.80 - 8.00 0.00 723 Single 1.40 IV 103 8 4.58 8.58 1.75 OK 8.00 2.22 8.00 3.14 8.00 2.77 947 Double 1.40 VI 104 8 4.00 - 8.58 2.00 OK 8.00 2.22 8.00 3.14 8.00 2.77 947 Double 1.40 VI 107 8 4.58 13.08 1.75 ox 8.00 2.28 18.00 3.14 27.00 2.77 626 Single 1.40 UI _ 108 8 8.50 13.08 0.94 ox 8.00 2.28 18.00 3.14 27.00 2.77 626 Single 1.40 III 109 8 3.88 3.88 2.06 ox 8.00 2.80 723 Single 1.40 IV 110 8 1.25 4.50 6.40 8.00 2.22 8.00 3.14 8.00 2.77 1807 Double 1.40 NG 111 8 2.00 4.50 4.00 8.00 222 8.00 3.14 8.00 2.77 1807 Double 1.40 NG 112 8 1.25 4.50 6.40 8.00 2.22 8.00 3.14 8.00 2.77 1807 Double 1.40 NG 201 9 6.79 ' 9.79 ' 133 1 OK 9.00 3.14 18.00 2.77 604 Single 1.40 III 202 9 3.00 9.79 3.00 ox ' 9.00 3.14 18.00 2.77 604 Single 1.40 111 203 9 5.00 5.00 1.80 ox _ 9.00 3.14 18.00 2.77 1183 Double 1.40 VII ' 204 Not Used - 205 Not Used 206 Not Used 301 8 6.88 10.08 1.16 ox 8.00 2.77 275 Single 1.40 I 302 8 3.21 10.08 2.49 ox 8.00 2.77 275 Single 1.40 I 303 8 5.00 10.00 1.60 ox 8.00 2.77 277 Single 1.40 I 304 8 2.50 10.00 3.20 ox 8.00 2.77 277 Single 1.40 I 305 8 2.50 10.00 3.20 OK 8.00 2.77 277 Single 1.40 1 Spreadsheet Column Definitions & Formulas L = Shear Panel Length II= Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load / Total L Shear Factor = Adjustment For H/L > 2:I Mo (Overturning Moment) = Wall Shear • Shear Application ht Mr (Resisting Moment) = Dead Load • L • (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) X1\ 34 Harper Houf Peterson Rlghellis Pg # Shearwall Analysis Based on the ASCE 7 -05 rronsvere Sheartvalls Line Load Controlled By: Seismic Shear H L Wall WL Line Load Line Load Line Load Dead V Rho•V % Story 8 Panel Shear Panel M Mx Uplift Panel Lgth. From 2nd Fir. From 3rd FIr. From Roof Load Strength Bays Sides Factor Type T (ft) (ft) (ft) ht k bt k ht k (kit) (pif) (plt) (fl -k) (ft -k) (k) 101 8 5.25 5.25 1.52 OK 8.00 0.15 18.00 0.80 27.00 1.26 419 545 0.30 1.31 Single 1.00 IV 102 8 3.88 3.88 2.06 OK 8.00 0.33 8.00 0.00 0.00 85 111 0.22 0.97 Single 0.97 I 103 8 4.58 8.58 1.75 ox 8.00 0.23 8.00 0.80 8.00 1.28 269 350 0.26 1.15 Single 1.00 11 104 8 4.00 8.58 2.00 6K 8.00 U.23 8.00 0.80 8.00 1.28 209 350 - 0.23 1.00 Single 1,00 1i 107 8 4.58 13.08 1.75 ox 8.00 0.15 18.00 0.80 27.00 1.26 168 219 1 0.26 1.15 Single 1.00 1 108 8 8.50 13.08 0.94 ox 8.00 0.15 18.00 0.80 27.00 1.26 168 219 NA 2.13 Single 1.00 1 109 8 3.88 3.88 2.06 ox 8.00 0.33 0.00 85 III 022 0.97 Single 0.97 I 110 8 1.25 4.50 (,.40 8.00 0.23 ` 8.00 0.80 8.00 128 513 667 0.07 , , 0.31 Double 0.31 NG J I I ] 8 2.00 4.50 4.00 8.00 0.23 8.00 0.80 8.00 - 128 513 667 0.11 0.50 Double 050 NG 112 8 1.25 4.50 6.40 8.00 0.23 8.00 0.80 8.00 1.28 513 667 0.07 0.31 Double 031 NG 201 9 6.79 9.79 1.33 ox 9.00 0.211 18.00 1.26 157 205 0.46 1.51 Single 1.00 1 202 9 3.00 9.79 3.00 Ilk 9.00 0.28 18.00 1.26 157 205 - 0.20 0.67 Single 07 fl 203 9 5.00 _ 5.00 _ 1.80 ox 9.00 0.55 18.00 1.28 366 476 0.34 1.11 Single 1.00 IV 204 Not Used 205 Not Used 206 Not Used 301 8 6.88 10.08 1.16 OR 8.00 1.26 ' 125 162 0.34 1.72 Sinale 1.00 1 302 8 311 10.08 3.49 nx 8.00 - 1.26 125 162 0.16 0.80 Single 0.80 1 303 8 5.00 10.00 1.60 ox 8.00 1.28 128 166 0.25 1.25 Single 1.00 I 304 8 2.50 10.00 3.20 OK 8.00 1.28 128 166 0.12 0.63 Single 0.63 U 305 8 2.50 . 10.00 3.20 OK 8.00 1.28 128 166 0.12 0.63 Single 0.63 II _ Rho Calculation Does the 1st floor shearwalls resist more than 35% of the total transverse base sheaf? Yes Does the 2nd floor shearwalls resist more than 35% of the total transverse base shear? Yes Does the 3rd floor shearwalls resist more than 35% of the total transverse bast shear? Yes Total 1st Floor Wall Length= 17.71 Total It Ist Floor Bays = 4.43 Are 2 bays minimum present along each wall line? No 1st Floor Rho = 1.3 fatal 2nd Floor Wall Length = 14.79 Total 8 2nd Floor Bays = t Are 2 bays minimum present along each wall line? No 2nd Floor Rho = 1a Total 3rd Floor Wall Length = sop Total it 3rd Floor Bays = 5 Are 2 bays minimum present along each wall line? Yes 3rd Floor Rho = to Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length =Sum of Shear Panels Lengths in Shear Line lUL Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load•Rho / Total L % Story Strength = L / Total Story L (Required for walls with H/L > 1.0, for use in Rho check) 8 Bays = 2'UH Shear Factor = Adjustment For H/L> 2:1 Mo (Overturning Moment)- Wall Shear • Shear Application ht Mr (Resisting Moment) =Dead Load • L • 0.5 • (.6 wind or .9 seismic) Uplift T - (Mo-Mr) /(L - 6 in) L- \ 5 Harper Houf Peterson Righellis Pg Shearwall Analysis Based on the ASCE 7 -05 Longitudinal Shearwalls Line Load Controlled By: Wind Shear H L Wall H/L Line Load Line Load Line Load Dead V Panel Shear Panel M MR Uplift Panel Lgth. From 2nd Flr. From 3rd FIr. From Roof Load Sides Factor Type T (ft) (ft) (ft) In k lit k ht k (klt) (plt) (ft -k) (ft -k) (k) 105 8 12.75 12.75 0.63 ox 10.00 1.28 18.00 1.30 27.00 0.72 1.13 259 Single 1.40 1 55.75 92.01 0.04 106 8 12.75 12.75 0.63 ox 10.00 1.28 18.00 1.30 27.00 0.72 1.13 259 Single 1.40 1 55.75 92.01 0.04 I 207 9 11.50 11.50 0.78 ox 9.00 1.30 18:00 0.72 0.75 176 Single 1.40 1 24.71 49.731 -0.47 I 208 9 11.50 11.50 0.78 OK 9.00 130 18.00 0.72 0.75 176 Single 1.40 I 24.71 49.73 -0.47 306 8 10.00 10.00 00.8880 ` ox 8.00 0.72 - 0.29 72 Single 1.40 1 5.78 14.40 I -0.30 I 307 8 10.00 10.00 01 ox I 8.00 0.72 0.29 72 Single 1.40 I 5.78 14.40 -0.30 Spreadsheet Column Definitions & Formulas L = Shear Panel Length H.= Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line IilL Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load f Total L Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load * L * 0.5 • (.6 wind or .9 seismic) Uplift T = (Mo-Mr) / (L -6 in) • (....k(0 Harper Houf Peterson Righellis Pg #: Shearwall Analysis Based on the ASCE 7 -05 ..ouglludinal Shearwalls Line Load Controlled By: Seismic Shear H L Wall H/L ' Line Load Line Load Line Load Dead V ltho•V Vii Stay if Panel Shear Panel M Ma Uplift Panel Lgth. From 2nd Flr. From 3rd Flr. From Roof Load Strength Bays Sides Factor Type T (ft) (ft) (ft) ht k ht k ht k (klt) (plf) (pit) (ft-k) (ft -k) (k) 105 8 12.75 12.75 0.63 oK 10.00 0.32 18.00 0.72 27.00 1.22 1.19 177 177 NA 3.19 Single 1.00 I 49.09 96.89 -0.74 106 8 12.75 12.75 0.63 OK 10.00 039 ' 18.00 0.88 27.00 132 1.19 202 202 NA 3.19 _ Single 1.00 1 55.17 96.89 -024 I _ 207 208 I 9 1130 1 50 1 0.78 I OK , 9.00 0. 8 118 001 1.32 0.81 191 1 191 I NA 1 2.56 I Single 1 1.00 I 31.56 _ 53 69 I -0. 6 , I 307 1 8 8 10.00 10.00110.0010.801 oK1 I I 1 8.001 1.22 0.35 122 122 I NA 250 I Single 1 1.00 _ 1 9.76 117.401 -0.07 I Rho Calculation Does the 1st floor shearwalls resist more than 35% of the total longitudinal base shear? Yes Does the 2nd floor shearwalls resist more than 35% of the total longitudinal base shear? Yes Does the 3rd floor shearwalls resist more than 35% of the total longitudinal base shear? Yes Total 1st Floor Wall Length= MO Total 1! 1st Floor Bays = ass Are 2 bays minimum present along each wall line? Yes 1st Floor Rho = La Total 2nd Floor Wall Length = as 00 Total N 2nd Floor Bays = a Are 2 bays minimum present along each wall line? Yes 2nd Floor ltho = to Total 3rd Floor Wall Length = 2500 Total 63rd Floor Bays = s Arc 2 bays minimum present along each wall line? Yes 3rd Floor Rho = 1,0 Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Cheek V (Panel Shear) = Sum of Line Load•Rho / Total L Story Strength = I./ Total Story L. (Required for walls with H/L> 1.0, for use in Rho check) b Bays = 2'L/H Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear' Shear Application he Mr (Resisting Moment) = Dead Load' L • (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) I.A Harper Houf Peterson Righellis Pg #: SHEAR WALL SUMMARY' Transvere Shearwalls Panel Wall Shear Wall Type Good For V (PH) (PN 101 1560 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails na, 2/12 1667 102 723 1/2" APA Rated Plyw'd w/ 8d Nails a, 2/12 833 103 947 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 990 104 947 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 990 107 626 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 638 108 626 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 638 109 723 1/2" APA Rated Plyw'd w/ 8d Nails @ 2/12 833 110 Simpson Strongwall 111 Simpson Strongwall 112 Simpson Strongwall 201 604 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 638 202 604 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 638 203 1183 _2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails (#, 3/12 1276 204 Not Used 205 Not Used 206 Not Used 301 275 1/2" APA Rated Plyw'd w/ 8d Nails A 6/12 339 302 275 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 303 277 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 304 277 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 339 305 277 1/2" APA Rated Plyw'd w/ 8d Nails a, 4/12 339 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design loads. Harper Houf Peterson Righellis Pg #: SHEAR WALL SUMMARY' Longitudinal Shcarwalls Panel Wall Shear WaU Type Good For Uplift Simpson Holdown Good For V (plt) (p (lb) (lb) mow , air 105 259 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 44 Simpson None 0 106 259 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 44 Simpson None 0 207 176 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 .345 Simpson None 0 208 191 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 242 =59 Simpson None 0 1 306 122 1/2" APA Rated Plvw'd w/ 8d Nails (a2 6/12 242 -72 Simpson None 0 307 122 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 242 -72 Simpson None 0 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design loads. Lk"- Transverse Wind Uplift Design Unit B Shear H Joist L Wall Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total Total Panel Height Lgth. From 2nd From 3rd From Wall Load (not Point Point ning Moment Moment Floor Shear @ Floor Shear @ Stacking @ Stacking From From Uplift Uplift Flr. Flr. Roof Shear , including Load Load Momen @ Left @ Right Left Right Left Side of @ Right Wall Wall @ Left @ floors @ Left @ t House Side of Above Above Right above if Right House @ Left @ walls Right stack) (ft) (ft) ' (ft) " (ft) k k - k k ' pif klf k k ' kft ' kft left k k k k k k 101 8 - L1667 5.25 5.25 2.28 3.14 2,77 8.19 1560 0.1 0.8 0.208 72.42 5.58 2.47 14.54 14.93 14.54 14.93 102 8 1.1667 3.88 3.88 2.8 2.8 722 0.092 2.432 22.40 10.13 0.69 4.83 6.50 4.83 6.50 103 8 1.1667 4.58 8.58 2.22 3.14 2.77 8.13 948 0.1 0.078 0.078 38.40 1.41 1.41 920 9.20 203 R -12.12 -2.91 9.20 104 8 1.1667 4 8.58 2.22 3.14 2.77 8.13 948 0234 0.117 1.632 33.54 2.34 8.40 9.18 8.14 9.18 8.14 107 8 1.1667 4.58 13.08 ' 2.28 3.14 2.77 8.19. 626 0.1 0.192 0.078 25.36 1.93 1.41 5.93 6.01 201L ' 201 R 6.71 6.71 12.65 12.72 108 ' 8 1.1667 8.5 13.08 2.28 ' 3.14 2.77 8.19 626 0.1 0.078 0.384 47.06 428 6.88 5.56 5,37 202L 202R 6.77 7.24 12.33 12.60 110 8 1.1667 1.25 4.5 2,22 3.14 2.77 8.13 1807 0.1 0.384 0.078 18.07 0.56 0.18 23.00 23.30 203L 12.13 35.13 23.30 Ill 8 1.1667 2 4.5 2.22 3.14 2.77 8.13 1807 0.1 0.078 0.208 28.91 0.36 0.62 18.87 18.76 203R -12.12 6.75 18.76 112 8 1.1667 1.25 4.5, 222 3.14 2.77 8.13 1807 0.11 0.208 1.4241 18.071 0.34 1 :861 23.17 1 21,99 1 23.17 21.99 201 9 1.1667 6.79 9.79 3.14 2.77 5.91 604 '0.172 0.848 0.156 39,13 9 :72 5.02' 4.90' 5,32 30IL 3018 1.45 1.40 6.35 6.71 202 9 1.1667 3 9.79 3.14 2.77 5.91 604 0.172 0,848 0.156 17.29 3.32 1.24 5.10 5.51 3021 ' 302r 1.67 1.72 6.77 7.24 203 9 1.1667 5 5 3.14 2.77 5.91 1182 0:172 0.848 0.385 56.42 6.39 4.08 10.52' 10.80 303L '3038 ' 1.61 1.32 12.13 12.12 301 8 6.88 10.09 2.77 2:77 275 0.252 0.384 0.468 15.11 8,61 9,18 , 1.45 1.40 1.45 1.40 302 8 3.21 10.09 ' 2.77 2.77 275 0.252 0.468 0.384 7.05 2.80 2.53 1.67 1.72 1.67 1.72 303 8 5 I 2.77 2.77 277 0.252 0.384 0.858 11,08 5.07 7.44 1.61 1,32 1.61 1.32 304 8 2.5 10 ' 2.77 2.77 277 0.112 0.192 5.54 0.83 0.35 2.02 2.13 2.02 _ 2.13 305 8 2.5 10 2.77 2.77 277 0.112 0.384 5.54 0.35 1.31 2.13 1.90 2.13 1.90 Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line V (Panel Shear) = Sum of Line Load / Total L Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load * L2 . 0.5 • (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) • Transverse Seismic Uplift Design Unit B 'Shear H Joist L Wall Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total Total Panel Height Lgth. From 2nd From 3rd From Wall Load (not Point Point ning Moment Moment Floor Shear @ Floor Shear @ Stacking @ Stacking From From Uplift Uplift Flr. Flr. Roof Shear including Load Load Momen @ Left @ Right Left Right Left Side of @ Right Wall Wall @ Left @ Floors @ Left @ t House Side of Above Above Right above if Right House @ Left @ walls Right stack) (ft) (ft) (ft) (ft) k k k k plf klf k k kft kft kft k k k k k k 101 8 1.1667 525 525 0.148 0.795 1.257 22 419 0,1 0.8 0.208 19.99 5.58 2.47 3.15 3.74 3.15 3.74 102 8 1.1667 3.88 3.88 0.331 0.331 85 0.092 2.432 0 2.65 10.13 0.69 -1.91 0.60 -1.91 0.60 103 8 1.1667 4.58 8.58 0.231 0.8 1.277 2.308 269 0.1 0.078 0.078 11.15 1.41 1.41 2.42 2.42 203 R -2.99 -0.56 2.42 104_ 8 1.1667 4.00 8.58 0.231 0.8 1.277 2.308 269 0.234 0.117 1.632 9.74 2.34 8.40 2.18 0.62 2.18 0.62 107 8 1.1667 4.58 13.08 0.148 0.795 1.257 2.2 168 0.1 0.192 0.078 7.00 1.93 1.41 1.29 1.41 201L 201 (part) 1.17 0.34 2.46 1.75 108 8 1.1667 830 13.08 0.148 0.795 1.257 2.2 168 0.1 0 078 0.384 12.99 4.28 6.88 1.14 0.85 202L 202R 0.33 1.35 1.47 2.20 110 8 1.1667 125 4.50 0.231 0.8 1277 2.308 513 0.1 0.384 0.078 5.80 0.56 0.18 6.88 7.32 203L 3.00 9.87 7.32 111 8 1.1667 2.00 4.50 0.231 0.8 1.277 2308 513 0.1 0.078 0.208 9.28 0.36 0.62 5.89 5.74 20311, 304L -2.99 2.91 5.74 112 8 1.1667 125 4.50 0,231 0.8 1.277 2.308 513 0.1 0.208 1.424 5.80 0.34 1.86 7.13 5.36 7.13 5.36 201 9 1.1667 6.79 9.79 0.795 1.257 2.052 210 0.172 0.848 0.156 13.83 9.72 5.02 0.75 1.37 301L 301R -0.13 -0.20 0.62 1.17 202 9 1.1667 3.00 9.79 0.795 1.257 2.052 210 0.172 0.848 0.156 6,11 3.32 1.24 1.04 1.66 3021 302r 0.11 -0.32 1.15 1.35 203 9 1.1667 5.00 5.00 0.8 1.217 2.077 415 0.172 0.848 0.385 20.18 6.39_ 4.08 2.89 3.30 303L 303R 0.11 .0.32_ 3.00 2.99 301 8 6.88 10.09 1.257 1.257 125 0.252 0.384 0.468 6.86 8.61 9.18 -0.13 -0.20 -0.13 -0.20 302 8 3.21 10.09 1.257 1.257 125 0,252 0.468 0.384 320 2.80 2.53 0.21 0.29 0.21 0.29 303 8 5.00 10.00 1.277 1.277 128 0.252 0384 0.858 5.11 5.07 7.44 0.11 -0.32 0.11 -0.32 304 8 2.50 10.00 1.277 1.277 128 0.112 0192 0 2.55 0.83 0.35 0.72 0.90 0.72 0.90 305 8 2.50 10.00 1.277 1.277 128 0112 0 0.384 2.55 0.35 1.31 0.90 0.55 0.90 0.55 Spreadsheet Column Definitions & Formulas L = Shear Panel Length Fl = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line V (Panel Shear) = Sum of Line Load / Total L Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load * L 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo-Mr) / (L - 6 in) • TRANSVERSE UPLIFT CALCULATIONS - SUMMARY UNIT b Shear Controlling Total Holdown Holdown Good Control Total Holdown Good For Panel Case Uplift ® or Strap Type@ Left For ling Uplift Type@ Left Left Case ® Right k Simpson k k Simpson k 101 Wind 14.54 Holdown HD12 wDF 15.51 Wind 14.93 HD12 w DF 15.51 102 Wind 4.83 Holdown HDQ8 w 3HF 6.65 Wind 6.50 HDQ8 w 3HF 6.65 103 Seismic -0.56 Holdown HDQ8 w DF 9.23 Wind 9.20 HDQ8 w DF 9.23 104 Wind 9.18 Holdown HDQ8 w DF 9.23 Wind 8.14 HDQ8 w DF 9.23 107 Wind 12.65 Holdown HD12 wDF 15.51 Wind 12.72 HDI2 wDF 15.51 108 Wind 12.33 Holdown HDUI4 14.93 Wind 12.60 HDU14 14.93 110 Wind 35.13 Holdown None 0.00 Wind 23.30 None 0.00 111 Wind 6.75 Holdown None 0.00 Wind 18.76 None 0.00 112 Wind 23.17 Holdown None 0.00 Wind 21.99 None 0.00 201 Wind 6.35 Strap MST60x2 8.11 Wind 6.71 MST60x2 8.11 202 Wind 6.77 Strap MST60x2 8.11 Wind 7.24 MST60x2 8.11 203 Wind 12.13 Strap CMST12x2 18.43 Wind 12.12 CMST12x2 18.43 301 Wind 1.45 Strap MST48 2.88 Wind 1.40 MST48 2.88 302 Wind 1.67 Strap MST48 2.88 Wind 1.72 MST48 2.88 303 Wind 1.61 Strap MST48 2.88 Wind 1.32 MST48 2.88 304 Wind 2.02 Strap MST48 2.88 Wind 2.13 MST48 2.88 305 Wind 2.13 Strap MST48 _ 2.88 Wind 1.90 MST48 2.88 • ‘ -T._."--', - A°J #`S 7‘? c sS'0 ,aSdc..I fi - 4 CArk7 % i► % S V ►� - ' m u' Ql evfl Ii1.�7 -'YC #a 0% 011 A 49..1 C1 - kS i i- ii S31'4)16145 43! ) foayS roo11O 11 vrn ''mss =111 -)1 �x 44 0 ? kA51 7,11 co 'b " .. # Otc_+ ' e ✓ 1111 a it- 05..11.A > - +-A-0 0 c1 -\S . kSrQ -Al vM Z► • n, CI) '1M. x,171 Ai rhISS Sz:Q # 6 4.x St mSS 1,11 • °i'O -tt V3hX31 1 #0:. -4•S txfiZmSS t►1 c2.1 •0 #$1 cS 54..0 409M. 4_x5\(N■SS okl `ig) _ - 6Z -!4 ,4 1i.bys ° A ti `)o Je ?v1S?\` { O11'd 36 11 " SSiv9)91,S 1a-6 ' o S C2 \' S = 1' o - 11 r<1 I x ti h Q = cikah0 )(J ) m EJ - 1S Sd'-A S�`r.h• e = ZI . z 0 - XI S ` rk O Ste—e - c:11;) X0' 1 o)`tt 0.sZa 1 ) "V (?.lc �o) (,t2)4 Z lo1)1,s 1 o i o)c'b I) o 111 11br 1 n 0 _ 3 — A S.1.2.•S : ‘OA01 C "11 S4 hh•0 = <z( z - is sd, A \ %°i• _ (,Zk,)( _51(YokS•b1) 4 (s'0)`5Ao' °XS 0 -Zo Sdr 'e le- ` ( ( \ Z (z)( 51 ob)L 7 I1 , ) ( g1)-1: Z Kt) kixslo.oxt + <Z1 o1 xs\0'v)(V bl) -4 `yo)`Z1o0)( t) +t, 1tyo)`510'o)(5'1,1) _ m 111 "1"1 b z 0 S b ' 4+ O = 1%1401 A — 19 " !r2 = c s2a•o)cs'bt)x,sz•%) r o ,a 5 1 1-1 07 - < { z'< <s`o {(Lz1Q 0k2)4- L SIaaksy1))(52•i) o 3 : all "C1`dCI\ ;7001 \01x1.1 m 0 V m o z 71 El 0 `;s 91 S11S NO C-1. Z'09 '30 (`rOI- in%111.s \t1 - 173fOad 10 Q100 C : ON sof O\ Ue ` \\ \-_ - 31V0 )\N A2 —LC) O \24 1 N \S OO ' ; - C e � t cj()1 \ t'i , h‘ei 0 11 1! I Old n _ �c1I X308 k41 ❑ ❑ 0 [3 O to min II tn O O i rc C)-- _ 1 102 1' C I — millnim I i CD 0 gas (ROW_ Lo 6 )1•)\1-- N r1 P) - a.. st- VLCOg Sw LNI Ol r ___u off • 1115 v . C - j 1I NC) otei �� c, �+ • shc 190e soe Loe CD a i l I I k T I L i r II co I' I I i tot 1 02 30 1 Z0Z 0 --:'' _II 0 .'.4M a < L • r 1, I t I �ii1 F, 1.- L_— , d M 0 J ` 4^ 6_ 303 1,, 0 3U-1 `'iCl LL U N rr -G-ID L E V L sw 1- A 0 (.a AY j , t DATE. .... V^ — () JOD NO C e. ii ,yrd, o OF PROJECT: Roof a -+ - 6 W . RE. Des icy\ of r;cc\ Poloc.k srt @ 5fi4 It 5 ❑ E W ▪ - OPTIOh1 1. F O - W / ` � i 4 � O f TRtQ WIDTEI ON) ltddliWIt F.F . Iq }' Iq " Li ❑ - SOI' 1 = c 9'12�s To? PL.A;tS IB S" 0 8 max 511A t1_o Nt• _ U 0 dli m DE5IC1U Lu1fJO Pressuc cr a Z = - aa, ab pss O i-.F. q' - 3 -4 17) 11 U 'D€. 1, ' 9,0. L Q Si . ;,:x.) rte.. Si' 1 ' , lC 7 - Y_•-) 3 :1 - \ Fy Z 1? V LAI eS 5 I - Ile z (.L Y'\ i-iw t ! ors L _ 1 ° 1 pLP 0 2 o G-7--;- - ---G - ---- t T • W U ❑ , = l4 . g . i..= kg q°t 0 p'- 0" f cr o Z _ a°i15. ❑ 0 IA = $ 2 _ 3S' _ 5 ct H a Vona, - q-a°t t# — S„ NI 5 «.klt s - (3.5' )-5.2sJ 1 7 Gtfl I zi 44 /142' I- 3.5'_, Sv= V __ l�°I9_ _, (62 # A (5.---s`s. ) cia s : Fe &;\C = (bs09,C�(1,00 ,SYI.1s)= a3L1 t,��: < 61412 - P Jfi Lo CU g - g TN/ ) = ISO Vs;. (I.co -) = au0 ;L 7 qPZ . O \L • mma -, T : ,,, ., ..; NC--k l( \-) 0 e--,crn 2 L2?) Al\ OATS 5.- JOB NO : OF PROJECT: ^' RE: °P l. 10 2 ❑ ❑ • Z 16...1i1t `jp ,rn c. 2,Qo � LOOR. • E `DO,\100r) k c r e TIDO W o • ❑ - CYC o ;_kJ'dtY\ or\ ZIANIT ` 13 - Mix 1u,r..)e r , }o„( O/3£tn,N3 = 12 - rt o W U Z ofSkgt\ wtr\d. R+ e5 J E = -ao.O' [ )s F Loud` mac, \DQ\ u9 \ L O C' - O If 1- U 1 Z y7 r f R. 2 f - ] l ^ Q { q, y� cc 0 PJ 3' I1.5 W � O 1:1_ 7: x2 = Iy I $f_ 6 . L 1 I j 1`it" 12 r• � = Ct,S./1,S ? tZ t A 1,2ra y.SI N ./ A -Nis ,:,.= 5.1110 A d +. 1 tisZ a ti Or ,1 x ma_- = 6.as t a4 .s (0,51s) +- ,s !0, v3s s o t - 4 .135 ‘N% R , b F, = (so p s i.i 1 . 1,0)6 .0)(t.5)(I.0.0 - )(1.1 I} / a344‘,. S i • b = Ca3c��� s � L,Ck . 0)( ±, 6 ,°t 1.1)0.0)(1,0) t_sL 014 ?4 °\c-- L2 1 WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN • uldl B -Front Load WoodWotlu40 Sleet 7.1 Dec. 15. 2010 11:21:17 mown' I PROJFG7 RESULTS by GROUP - N115 2005 SUGGESTED SECTIONS by GROUP for LEVEL 4 - ROOF Mel Traeeee Not dooigned by request (21 208 Lumber n -ply D.Fir-L No.2 1- 206 By Other. Hot designed by request (21 2x10 1uolaet n -ply 0.711 -L No.2 2- 2x10 12) 208 Lumber n -ply Hem -Fir No.2 2- 2x4 (3) 2x6 Lumber n -ply Hem -FLr No.2 3- 206 (2) 204 Lumber n -ply Rem -Fir No.2 2- 204 (31 204 L•odler n -ply Hem-Fir No.2 3- 204 Typ Na11 Lumber Stud Hem -Fir Stud 2eG 916.0 Typ WaLl 204 Lumber Stud Ham -Fir Stud 204 016.0 SUGGESTED SECTIONS by GROUP for LEVEL 3 - FLOOR 1421E Jac lint designed by request .landing Lumber -sott D.Fir-L No.2 206 016.D 406 Lumber - soft D.Fir -I. 00.2 406 (2) 2x0 Lumber n -ply D.Fir-L No.2 1- 208 1.75014 LSL LSL 1.3E 1700Fb 1.75014 By Ocbnto Not designed by request by Others 2 Not designed by request (2) 2010 Lumbar n -ply D.Fir -L No.2 2- 2x10 (2) 206 Lumber n -ply Hem -Fir No.2 - 2x4 13) 206 Lumber n -ply Hers-Fir No.2 3- 206 121 2x4 Lumber n -ply Ham-Fit No.2 - 204 (3) 2x4 Lumber n-ply Hem-Fir No.2 3- 204 Typ Nall Lumber Stud Naze -Fla Stud 2x6 916.0 Typ Nall 204 Lumber Stud Ben-Fit Stud 2x4 016,0 SUGGESTED SECTIONS by GROUP for LEVEI. 2 - MOOR Mal Trusses Not designed by request deck joints LUMact D.Fir -L 14o.2 208 e16.o Hof Jot Not deelgncd by request 4x0 HF Lumber -soft Ham -Fit No.2 400 3.125014 LSL LSL 1.550.. 2325Fb 3.5014 0x8 Lumbec-soft 0.010 -L No.2 4x0 5.125016.5 GL Glulam- Balanced Neat Species 20F -V7 DF 5.125x16.5 (21 2010 turbot n -ply D.Fir -L No.2 2- 2010 ._ loll Lumber -salt D.Fir -L No.2 lx12 7,12501411 7.51. 1.55E 2325Fb 3.5014 (2) 2x6 Lumber n -ply Bem -Fir No.2 3- 204 (3) 206 Lumber n - ply Hen -Fir No.2 3- 206 6x6 Timber-soft Item -Fir No.2 6x6 721 204 Lumber n-ply Hem -Fir No.2 3- 204 (3) 2x4 Lumber n -ply Hem -Fir 710.2 3- 204 Typ Hall Lumber Stud Hem-Fit Stud 206 916.0 SUGGESTED SECTIONS by GROUP for LEVEL 1 - FLOOR Pnd Not designed by request �^ CRITICAL MEMBERS and DESIGN CRITERIA Group Member Criterion Analyoio /Deoign Valued deck jnaets j(2 Bending 0.41 Mbf Jet Mnf Jac Not designed by request landing 346 Bending 0.17 By Others 3 By Othere Not designed by request 406 125 Bending 0.97 12) 200 b7 Bending 0.21 1.75x14 LSL b14 Bending 0.70 • 400 NF b24 Bending 0.60 3.125014 LSL b21 Shear 0.41 408 b20 Bending 0.04 By Othats By Others Not designed by request Hy Others 2 0y Others Not designed by request 3.125010.5 unknown Unknown 0.00 5.125016.5 GT. 1126 Bending 0.21 12) 2010 b15 Bending 0.93 4012 b22 Shear 0.16 3.1250141) 023 Deflection 0.09 Fog Ftg Nnt deelgnnd by roque_xt 12) 206 e2 Axial 0.34 (3) 206 c64 Axial 0.59 606 c36 Axial 0.77 12) 204 c25 Axial 0.38 (3) 2x4 044 Axial 0.84 Typ Nall oil Axial 0.20 End End Not designed by request Typ Nail 2x4 u74 Axial 0.33 DESIGN NOTES: 1. Flamm verity toot tho default deflection limits ere appropriate for your application. 2. DESIGN GROUP OCCURS ON MULTIPLE LEVELS: the lower level result is eonaidcled the final dcolgn and appear in the Materials List. 1. ROOF LIVE LOAD: treated as a snow load with corresponding duration rector. Add an empty too/ level to bypass this anterptetatton. 4. BEARING: the designer is aeaponelblo Let ensuring that adequate bearing is provided. 5. GLULAM: bed a actual breadth x 00100l depth. G. Glulam Beams shall be laterally supported according to Cho provisions of NDS Clause 3.1.3. 7. Sawn lumber bending members shall be laterally supported according to the Irmo/Astons of N09 Clause 4.4.1. 9. BUILT -UP BEANS: it is s umed that each ply is single continuous member (that is, no butt joints are present) taetcocd together securely at intervaie not exceeding 4 Limas the depth and that comb ply in equally Lop - loaded. Where beams ate aide - loaded, octal fastontnq details arty be required. 9. SCL -BEANS (Structural Composite Lumber): the attached SCI. selection is for pceifmanaty design only. For final member design contact yaut local 9CL manufacturer. 10. BUILT -UP COLUMNS: nailnd or bolted built -up columns shall conform to the prnvksinna of NOS Clause 15.3. 61 WoodWorks®Sizer SOFTWARE FOR WOOD DESIGN Unit B - Front Load WoodWorks® Slzer 7.1 Dec. 15, 2010 11:28:05 Concept Mode: Beam View Floor 2: 8' *V-9/^QT ( (D r . .... . ... .. 1 j s .... o„� -o 11.104 - - - -' ;• -- 71-b28: • .. „ -.. _ .. . . of -0 I t - - 40-0 u Iu4, - 40-0 Ice bi 44 0 yg 40 • 04 4E -0 XV 4 1 -0 bs. ._ - - 4U-0 D ..1V -0 Jh - JO - 0 • U , JO - O 7V. .. J4.0 OW -. .3.1-1.) 4f _ - - . . . .- -.. _ _ - JI-0 as JU -0 07 •C -0 44 .. . - L0 0 0.7 L1 -0 CL - LO-0 0 1 _ E0 - 0 04../ .. - L4 -0 U LJ-U fo LL -0 et CI -0 to LU-0 e0 tl to -0 `..' I r -0 14 rc o - o l e t a - R . ' • _ - 14 0 • 1J -0 00 • IL 1. / _ I1 pV 1U -0 041 b21 - -0 O 0 vu; b b22 =b23 . - u i I L -D a -G to -1J EB' BB6CCCCCCCCrCCCCCCCCCC. :1..iCCC . CCDCD DUCUDic orma ICOLDDDIM EDDDDEFEEEEEEIEEEEEEEEEEEEEIEEEEZ 0' 2' 4' 6' 8' 10'12'14'16 '18'20'22'24'26'28'30'32'34'36 '38'40'42'44'46'48'50'52'54'56 '58'60'62'64'66'68' 0'17'3'4'5'67'8'011 1:1 :1.1:111'112222.2•221222"313 3 3: 333334 1444A- 44t4'44' 5155: 55. 55E55666..665 • 6-2,_ WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B - Front Load WoodWorks@ Sizer 7.1 Dec. 15, 2010 11:17:31 Cot60ept Mc69.e : Ccc59ir n View Floor 2: 8 ' Tg(340.7 r M 106 - _.. _ . . . `,�/ A IUi qo , b • (us - 4I 0 i UC 40 -0 � u c57 c1 c2 c46 c58 - ' . • - 44 -0 119. 0, ■ ■ - 4J -5 lC — 4_-0 .. - .. ,_ 4'I -0 `J4 - JO -V :11 . _ 33 -b WU .4 .. , c 47. - _. SL -0 Of t+l� • . l I . . _ _ .. . JU -0' uo .. c55 . c48..: i� . 4" 1 =1, r :L., -b rs! :. L0 u d c73 • .. f_ -0 I 5l a 4 _ is -b // ■ E7 c50 4 1 . 0 rt.' t:54 ,I- c66 I , e -0 f 4 c53 I 1 -. s /: • c52- •• • c51 •- to—to U .. 1 ;1 I: I - 0.:1 c7. -- c56 . . .. , s•s tvu 1<- -a h/ 1(•c WI 11 -0 kVil �'0 _ .. -- - _ I -l: 0� c40 6 5 -0 oU i 0 E. 1 4 {J ..,J. °, c39 r4 „.•Kti ■ • . ._ 1 -v BB1BB BCCCCCCCCICCCCCCCCCCCCCC C1CCCDDDDDDD6IDDDDD DD=DDODD❑EDDITIE1E E F. E EEE•EIEEEIEE ri= I.FEEEFIlEEE2 0' 2' 4' 6' 8' 10'17 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42'44' 46'48' 50' 52' 54' 56' 58'60'52' 64' 66' 68' 70' 72' 74'76' 0'1'2'3'4'5'6'7'8'91t1 1:1 :1.1!1(1111 222.22EZ2i213(33:3n 313313{4(4'4:4:44!4(4" 4141 5( 55: 5: 5•5! 5( 55( 5! 5I6E .6:6.6V6516E70'77 :7 6" (13 • WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B - Rear Load WoodWorks® Sizer 7.1 Dec. 15, 2010 11:19:46 Concept Mode: Beam View Floor 2: 8' kP LO :� S u IO DJ - 0 rL - 0 U0 b24 DU -0 IIF4 40-0 1Ua 41 - 0 I I. 40 - u� 13 b25 4 w�+ o 4J l0 - 44 - W 41 -0 yU __- 41.1-3 x10 ...1V -0 94 _ 30 - Q U? - JI-0 :JL U 1 .. - -• 30-0 111.) . - -- 34 - Q 33 0 • :ltd -- -- - --... - - . JU -0 30 - - - - - - -- LU-0 0' • - ' --- 40-0 0.1 4r -0 04 .. • O 1 _. ., • •t, 44 - 0 f:J E IC LG -0 / I 41 0 10 LC/ -0 1: _ 1 -0 1c1 10 Ir - 0 !c 10 -0 f 1 • _ - - - 10-0 ! l. ... 14 Sr: 13-0 _L - -. IL -0 0 l . . - - 1 1 -0 I V-0 00 -� y-Q 00— .3 b21 . 0� -- b6 • b26 _ ' : .. � • :.w u'` b22On=b222amirb2371C! -.. : 1■' 1 1 - - - - - - ' 1 . ERB 8iCJ.3 CCC Cr; CFCCCCCf.:CCCrGCCCUCCCDl3DDIIL OT_ Cd7CDE: i1L'f 1C 1itCDa l' OODFEEE:aEL -EICEEE 0' 2' 4' 6' 6' 10'12'14'16 '18'20'22'24'26'28'30'32'34'36 '38'40'42'44'46'48'50'52'54'56 '58'60'62'64'66'68'70'7 0' 1' 2 34'5'67'8x111 1:1:1.1:1f1 '1,11 212222. 2222.236 333.303'33A44 4 555.5515 6165677 777.7:7177 5" CltA WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B - Rear Load Woodworks® Sizer 7.1 Dec. 15, 2010 11:19:48 Concept Mode: Column View Floor 2: 8' F. F..� i"�/, s1 116 . . . . ` , l 54'.6" 1 U:1 7a -a c68 - - • •c69 �u o 1 r .. - 40-0 1V4 40 1UG 4D 1 1 u 163- • c57 %w o 9 E. . ' - - - 43 00 .. - 4,4-0 • SO - - 4U - 0 .00 ..3d -0 04 -. - 300.0 03 - , - .. - - - 3! -0 `JL 30 01 .. . . .. ., . . - 30-0 1U -- - - - -- - - - ' - - 34-0 0`1 33 -0 - C47 - -. - .- - - J4 - O1 - '- . . 31-0 1+0 _ - JU -0 c c55 148 40 o n.' EV - IT ' - - cr-0 oG - • - • G0 -0 el c72 . . 43 -0 OU ,- - - 4 -0 y Si c49 43-0 /0 G G -O 1 / - c50 - • - G 1 -0 / J 1..54 t_ .1 L :J 0 14 C 53 0-0 13 f _1 / -0 ;� c52 c51 - - -. o f7 • 4 a c T c56 .)-0 , . - . L -0 Of . .. 1 - 0 00 11-0 03 • _ 0-13 04 . 1' - . _ _ 0 - 0 03 1 01. ' c405, (C37 c62 c61 c36 - o 0U; . 111 .' .S ,1i 4-0 - 3-0 c39, • c42 G -o III 1- O - - _ .. _ . - u-0 EBBBEiCCCCCCCCICCCCUZCCCCC ;CMCCDEXIDDCDDIC EaEDC OCILl REOE: DY3DDEEEE :EEEEEEEEEE'EEEEEEEEIEEEEZ 0' 2' 4' 6' 8' 10'12'14'16 18'20'22'24'26'28'30'32'34'36 '38'40'42'44'46'48'50 '58'60'62'64'66'68'70'72'74'76' 0'1'2'3'4'5'137'8T.111 1:1 1.1.111'1 1 212 222.221222'313 3:33338 3.3!414 4:4:4 41 40'4;4515 5:5:5.5:515'55!616 6.6:666 6 66t7f/ 7.77.7:7177' -G' C'S WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B - Front Load WoodWorks® Sizer 7.1 Dec. 15, 2010 11:15:58 Concept Mode: Beam View Floor 3: 17' IU5f 90 b 1U38 - - 41 -0 1UL 40-0 1Ut 90-5 G - 44 -0 1 .0 b7 4.1-b JG 4L -b J1 __ _ - .. 41 - a0 - 3�J -0 4 _ J6 '947 - Jb -b }; 1 - 37 -b .,� 34-0 tl `J 3.3 -b 3L 0tl.. -- 4. G1 3I. -b uc su -b LV -0 OD b12 - -- Lb-0 U , s L r' -b L 530 n Lb-0 0 1 525 14 b8 �a'� 'K1 Y' 1,1,-D AC 1 -2 -b r • - I -t) 1U -b Al IJ n 1 . I8 -0 r - ra b13 1 r -b re ' - 511 lb u i 14 -b b • 1 3 -b bb 1 L -b 0 - ' II -b t0 1U -b 0-0 (14-, r -0- 4),.1 b -O" nun ■ m.. V b10 b9 .4 - 3 -0 • 1-0 U -b BBIBB BCGC CC CC ;,...1r:C.0 Cr.: CAI, C: C; CCCCC.; ICCCDu!){! DDDDODDDDD DDDDDDDEDIDDDEEEE EEEEFEEErEEIEE4EEEE EEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34'36' 38' 40' 42'44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 60 68' 70' 72'74' 76' 0'1'2'3'4'5'6'7'8'91(1 1,1:1 24221233( 33: 3: 3 , 3!3(33t33414'4A:44!4(4- 4t445(5 55:555C5'5t5!6( 66:6:6 6;557(77:77 6" 6 (.0 WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B - Front Load WoodWorks® Sizer 7.1 Dec. 15, 2010 11:16:00 Concept Mode: Column View Floor 3: 17' 1050 44,.6« M gtrb 1113 - • i -:0 1(14 w 40 •4 iuy _ • • _,.. c14 c15 44.0 J/ .. .- ... _ - . .: . 4t-0 V0 4U -b �4 - : .. Jo - a1 an -n In . . , .1a-LI :1U J4 -b on . c38 , - . - - _ . _. - - u b' I1 s1 -$ nu - -•.. 3U ,,a �� 5 Ct6 ., _ ; - -. .. en b 8.4 - n 1 -a .15.[ - - - - . - - . -. _ ., GO -b t$ r c72 C:+ u 6!i .. _ ,. iA: r...) C 1 7 �J " $ rl ■ c43 ,G . -o • i� c23' I` c67 ; � . d (•. c22 ti =r r,.. r - i i . c24,. 7 - c26 -- - n -a (U - I"1 I .. . - 4 .7 0` a -v nG _m. _ . - 1 -b '•YU U -h 0C -ti rp3 b -b 0.,: r -D U ° 1 c45 1 c44 "t' . • • ° 1 c20r19 .6.18 • - .. • . . s o . . . . . -e - 7.0 u -b 85 1 BFiBCCCCCCCC1 CCCCCCC. CCC CCCCC L: CCDDDDDoDoKDoCGDDDDGC? DQCDIDD r) EEEEEEE •EIEEEIESEEa.EEEEEIEEEi2 V 0' 2' 4' 6' 8' 10'12' 14' 15'18'20' 22' 24' 26' 28'30' 32' 34'36' 38' 40' 42' 44'46'48' 50'52' 54'56' 58'60'62' 64' 66' 68' 70' 72' 74' 76' 0'1 1;1:1 1'.111:1 t1 s2[2•f:2:2 2ci3t3 3: 3t3! 3F33t 3 4 4; 4: A• 41 4t 4 4t4.fa15 fi: 6:6.6!6t6:6;67(77.7.7.77rf7' -6" C WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B - Front Load WoodWorks® Sizer 7.1 Dec. 15, 2010 11:16:37 Concept Mode: Beam View Roof: 25' 49' -6': 10'50 40 40 � :J - - 41-0 b 4b-0 I UL / 40 -b uu -• - b15 - 44 -0 ' b9 4:1 -0 wows :Ha 4L'-0 Jb - 4U-0 Ub _ ... . . .59.-b- :1a .0 -0 .. J3. - 3/.43.. UL 3b -b V I JD -t) !JU '14 -O by 3.1' -O Or. - - az - U tit 3'1 -b 3 V-0 00 b16 . ' .z � J t3 L/ b b1 b29 • - Lb -b 6 LO b C.J . - - L4 -b LS -0 P b - - - LL -U 11'-b r/ LU -b to b27 IJ' -b , (+1 . , lb - 1. 11 -0 11 . . . - lb --0 1' 1 - _. 1 Yb /U _ - - • _ 14' -b O` 1,5'-b US _ 1 L'-b O ' -- f 1 1---0 UG 1 b W.' 11 -b r b . -U .. b 1, ' - b18 I . _ 0 -b Vi 4 b l' -0 U -b 1 EBkBl 3ERCCCCCCCC ICCCCCCCCCCCGCC PP PIG PCUDPDODDDDCC 5IDD0FEFFE EE•EIEEE:EEEEEEEEEFIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72'74' 76' 0'1'2'3; 4'5'6'7'8' 9111'1 :I :1'1'. 111: 111'2(22:2:22'' 11221213133: 3. 3 3 131331314(4'4A:441414' 5:5'.5,5:515'S( 52166: 6: 6,61ec6'61i17Q'7:7.7.T.7€77• -6" • WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B - Front Load WoodWorks® Sizer 7.1 Dec. 15, 2010 11:15:40 Concept Mode: Column View Root: 25' 1050 • - 4g-6 ft", 40 -b' lU3" -- -- .. • _ - .._ • - 47• -0• I 1.14 j - • 40 -0 UUL _ . . c27 c28 - _. 4D Y0 ®��)� - - . _ • . ' - - ... . 44-0 yt 41'-0 MO .. . 4U'-0' �b - -- . . _ . . . 3y' b - 30 •b JJ _ __ S! -b bG Sb' b: YJ'I _. . _ S0' -b 09 .}S -u" nu .. _ c29 _ - S[ -0 0 ( ST -b 04 • : ' .c70 , - - . - - - -- - • 21143 1, • c30 _... -_ - Z� -0 • 0t1 • - _ -. G4 -b r0 . . .- • Le-0 r : c66 G r -b' . _ - CU -b r y c65 1 y' -o (4 7tl -b !G _ - I17 (I 10 -it Li -9 Ltd . _ . IE =b • 0/ -- nu_ I F -4 04i i ,,t, 01; 1 _ 1 • c34'" c35 4-0 r i 110 i" G'b U-0 Ei3113BBCCCCCCCCICC: CCCCCCCCCCCCiCCCUDDDDDD SIC^ DCUDOD DD D3DLT)%t rn DE .EEEEEEE'IEEEOE.EEtEEEIElEfEEL 0' 2' 4' 6' 8' 10' 12' 14'16'18'20'22'24'26' 28'30'32'34'36'38'40'42'44'46 56' 58' 60' 62 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'67 it 1 :1 :141111; 111 212222 , 2'2E2212430 - 13 :3 f44h :44'.414 :4b4 15 - 5x.5 , 5!5(5515k76 6Z:6 , 6E16;6 1717 7774 t7f77 -6" • GT) , \ COMPANY PROJECT i WoodWorks® SOF/WARE?OR WOOD DOS CV June 28, 2010 10:34 b1 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, Psf, or pit Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w27 Dead Partial UD 539.7 539.7 0.00 2.50 plf 2 Rf.Live Partial. UD 493.7 493.7 0.00 2.50 plf 3 Dead Point 1074 2.50 lbs 4 Rf.Live Point 1601 2.50 lbs 5_j43 Dead Full UDL 47.7 plf 6 i43 Live Full UDL 160.0 plf MAXIMUM RE ia 3+ �' Dead 1048 • 1539 Live 1227 2089 Total 2275 3627 Bearing: Load Comb 112 112 Length 1.21 1.93 Lumber n -ply, D.Fir -L, No.2, 2x10 ", 2-Plys Self- weight of 6.59 plf included in loads; Lateral support top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (In) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear tv* = 127 Fv' - 20/ Iv ./Fv' = 0.62 Bending( +) fb = 581 Fb' - 1138 fb /Fb' = 0.51 Live Dcfl'n 0.01 = <L/999 0.10 = L/360 0.06 Total Defl'n 0.01 = <L/999 0.15 = L/240 0.09 *The effect of point loads within a distance d of the support has been included as per NDS 3.4.3.1 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC1 Fv' 180 1.15 1.00 1.00 - - - 1.00 1.00 1.00 2 Fb'+ 900 1.15 1.00 1.00 1.000 1.100 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - 1.00 1.00 - 2 Shear : LC 42 = D +L, V = 3627, V design* - 2356 tbs Bending( +): LC 412 = D +L, M - 2073 lbs -ft Deflection: LC 112 - D +L EI= 158e06 lb -in2 /ply Total Deflection - 1.50(Dead Load Deflection) + Live Load Deflection. (D -dead L -live S W -wind 1- impact C- construction CLd =concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application, 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. • 3. BUILT -UP BEAMS: It Is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. G9.1. COMPANY PROJECT WoodWo rks® • SOFTWARE FOR WOOD DFSJCN June 28, 2010 10:45 b7 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or pif ) Load Type Distribution Magnitude Location [ft] Units Start End Start End Loadl Dead Full UDL 13.0 plf Load2 Live Full UDL 40.0 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : L lo' 6+ Dead 54 54 Live 120 120 Total 174 174 Bearing: Load Comb #2 #2 Length 0.50* 0.50* 'Min. bearing length for beams is 1/2" for exterior supports Lumber n -ply, D.Fir -L, No.2, 2x8 ", 2 -Plys Self- weight of 5.17 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (In) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 10 Fv' = 180 fv /FV' = 0.05 Bending( +) fb = 120 Fb' = 1080 fb /Fb' = 0.11 Live Defl'n 0.01 = <L/999 0.20 = L/360 0.04 Total Defl'n 0.01 = <L/999 0.30 = L/240 0.04 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1_00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 174, V design = 139 lbs Bending( +): LC #2 = D +L, M = 262 lbs -ft Deflection: LC #2 = D +L EI= 76e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S =snow W =wind I= impact C =construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. 610 COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DE S1GW June 28, 201010:33 b8 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location (ft.) Units Start End Start End 1 c30 Dead Point 59 3.50 lbs 2_c30 Snow Point 75 3.50 lbs 3 w47 Dead Partial UD 96.0 96.0 0.00 3.50 plf 4_j13 Dead Partial UD 78.0 78.0 -0.00 5.50 plf 5_j13 Live Partial UD 240.0 240.0 0.00 5.50 plf 6_j14 Dead Partial UD 104.0 104.0 5.50 6.00 plf 7_j14 Live Partial UD 320.0 320.0 5.50 6.00 plf 8 bl? Dead Point 171 5.50 lbs 9 Live Point 469 5.50 lba MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : 10, 61 Dead 531 556 Live 761 1189 Total 1292 1744 Bearing: Load Comb 112 112 Length 0.69 0.93 Lumber n-ply, D.Fir -L, No.2, 2x10 ", 2 -Plys Self-weight of 6.59 plf Included In loads; Lateral support top-- full, bottom= at supports: Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear iv. 67 Fv' - 150 tv /Fv' • 0.37 Bending(4) fb 556 Fb' 990 fb /Fb' - 0.56 Live Defl'n 0.03 - <L/999 0.20 L/360 0.13 Total Defl'n 0.05 ,- <L /999 0.30 : L/240 0.16 *The effect of point loads within a distance d of the support has been included as per MDS 3.4.3.1 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC11 Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.100 1.00 1.00 3.00 1.00 - 2 Fcp' 625 - 1.00 "1.00 - - - - 1.00 1.00 - - 5' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Ebnin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC 82 DFL, V a 1744, V design' = 1232 lbs Rending( +): i.0 112 = DfL, M G 1984 lbs -ft Deflection: LC (12 D+L E7- 158e06 lb -in2 /ply Total Deflection 1.50(Dead Load Deflection) + Live Load Deflection. (D. L -'live S.-snow (..wind Inimpact C•construction Cl.d = concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verity that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it Is assumed that each ply Is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. , COMPANY PROJECT I WoodWo rks® S O/IWARE FOR WOOD DESIGN June 28, 2010 10:33 b9 Design Check Calculation Sheet . Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type , Distribution Magnitude Location (ft] Units Start End Start End _ 1 w51 Dead Partial 0D 96.0 96.0 2.00 3.00 plf 2 c32 Dead Point 59 2.00 lbs 3 Rf.Live Point 75 2.00 lbs Load4 Dead Full UDL 13.0 plf Loads Live Full UDL 40.0 plf MAXIMUM REpr- rirtme. Must ..wd �GAtiIhMf I M1 rIIP /:..\ • f�GG/f'�� G1 _ L1 10' 31 Dead 63 146 Live 85 110 Total 148 256 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min. bearing length for beams is 1/2" for exterior supports Lumber n -ply, D.Fir -L, No.2, 2x8 ", 2-Plys Self- weight of 5.17 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 12 FV' = 207 fv /Fv' = 0. Bending(+) fb = 82 Fb' = 1242 fb /Fb' = 0.07 Live Defl'n 0.00 = <L/999 0.10 = L/360 0.01 Total Defl'n 0.00 = <L/999 0.15 = L/240 0.01 ADDITIONAL DATA: FACTORS; F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.15 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = Di-L, V = 256, V design = 169 lbs Bending( +): LC #2 = D +L, M = 179 lbs -ft Deflection: LC #2 = D +L EI= 76e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) • (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely . at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. COMPANY PROJECT i WoodWorks FOR WOOD DESIGN June 28, 2010 10:33 b10 Design Check Calculation Sheet Sizer 7.1 LOADS (Ibs, psf, or plf ) Load Type Distribution Magnitude Location (ft) Units Start End Start End 1 c33 • Dead Point 59 1.00 lbs 2 c33 Snow Point 75 1.00 lbs 3 w52 Dead Partial UD 96.0 96.0 0.00 1.00 plf Load4 Dead Full UDL 13.0 plf Loads Live Full UDL 40.0 plf MAXIMUM REpr -nrtm • /11. -t CSC Ammar. 1 C11ii'r1J0 /i..% • 0, -- - 31 Dead 146 63 Live 82 64 Total 229 127 Bearing: #3 Load Comb 03 Length 0.50* 'Min. bearing length for beams is 112" for exterior supports Lumber n -ply, D.Fir -L, No.2, 2x8 ", 2 -Plys Self- weight of 5.17 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 10 Fv' = 207 fv /Fv' = U.0b Bending( +) fb = 72 Fb' = 1242 fb /Fb' = 0.06 Live Defl'n 0.00 = <1/999 0.10 = L/360 0.01 Total Defl'n 0.00 = <L/999 0.15 = L/240 0.01 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3 Shear : LC #3 = D +.75(L +S), V = 229, V design = 148 lbs Bending( +): LC 03 = D +.75(L +S), M = 157 lbs -ft Deflection: LC #3 = D +.75(L +S) El= 76e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. et tip COMPANY PROJECT WoodWorks® SOf7WARt FUR WOOD DOG.. June 28, 2010 10:36 b14 Design Check Calculation Sheet Sizer 7.1 LOADS (Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 j33 Dead Partial UD 78.0 78.0 0.00 1.50 plf 2_j33 Live Partial UD 240.0 240:0 0.00 1.50 plf 3 j13 .Dead Partial UD 78.0 78.0 3.00 8.50 plf 4 - j13 Live Partial UD 240.0 240.0 3.00 B.50 plf 5_j34 Dead Partial UD 78.0 78.0 1.50 3.00 plf 6 j34 Live Partial UD 240.0 240.0 1.50 3.00 plf 7_j46 Dead Partial UD 28.9 28.9 5.00 8.50 plf 8_j46 Live Partial UD 80.0 80.0 5.00 8.50 plf 9 b25 Dead Point 409 5.00 lbs 10 b25 Live Point 1080 5.00 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : • - "., -- „_,��. _- �- - 3 `�- �--�• : b ter._ • • 1, 0 8' -6 Dead 553 685 Live 1522 1878 Total 2076 2563 Bearing: Load Comb #2 42 Length 1.48 1.83 LSL, 1.55E, 2325Fb, 1- 314x14" Self- weight of 7.66 Of included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fly = 126 Fv' = 310 fv /Fv' = 0.41 Bending( +) fb = 1324 Fb' = 2325 fb /Fb' = 0.57 Live Defl'n 0.09 = <L/999 0.28 - L/360 0.31 Total Defl'n 0.14 = L /750 0.42 = L/240 0.32 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL Cv Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.00 - 1.00 1 :000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 2563, V design = 2064 lbs Bending( +): LC #2 = D +L, M = 6308 lbs -ft Deflection: LC #2 = D +L EI= 620e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. \ 4k- (r\ COMPANY PROJECT WoodWorks® S17flW f WM WOOfl DISII.N June 28, 2010 10:48 b15 Design Check Calculation Sheet Slzer 7.1 LOADS ( ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft) Units Start End Start End l_j5 Dead Full UDL 335.7 plf 2 15 RE.Live Full UDL 493.7 plf MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : 1 0 ' 6 Dead 1027 1027 Live 1481 1481 Total 2508 2508 Bearing: Load Comb .02 92 Length 1.34 1.34 Lumber n -ply, D.Fir -L, No.2, 2x10 ", 2 -Plys Self - weight of 6.59 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 101 Fv' = 207 fv /Fv' = 0.49 Bending( +) fb = 1055 Fb' = 1138 fb /Fb' = 0.93 Live Defl'n 0.05 = cL/999 0.20 = L/360 0.23 Total Defl'n 0.09 = L/776 0.30 = L/240 0.31 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Ctrt Ci Cn LC41 Tv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.15 1.00 1.00 1.000 1.100 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00' - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Ervin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC 412 = D+L, V = 2508, V design = 1864 lbs Bending(+): LC 02 = D+L, M = 3762 lbs -ft Deflection: LC 02 = D+L ET= 158e06 lb -1n2 /ply Total Deflection == 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L =live S =snow W =wind I =impact C =construction CLd =concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -TBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top- loaded. Where beams are side - loaded, special fastening details may be required. C1 6" COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 10:46 b20 Design Check Calculation Sheet Sizer 7.1 LOADS ( ibs. psf, or pif ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 j47 Dead Partial UD 42.5 42.5 0.00 2.50 plf 2 Live Partial UD 62.5 62.5 0.00 2.50 plf MAXIMUM RE, r•T'^"IO nL.,► DG A1121I■V■ I Gm• a It • I O' 34 Dead 71 53 Live 91 65 Total 162 118 Bearing: Load Comb #2 52 Length 0.50* 0.50* *Min. bearing length for beams is 1/2" for exterior supports Lumber -soft, D.Fir -L, No.2, 4x8" Self -weight of 6.03 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 6 Fv' = 180 fv /Fv' = 0.03 Bending( +) fb = 46 Fb' = 1170 fb /Fb' = 0.04 Live Defl'n 0.00 = <L/999 0.10 = L/360 0.01 Total Defl'n 0.00 = <L/999 0.15 = L/240 0.01 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 162, V design = 99 lbs Bending( +): LC #2 = D +L, M = 118 lbs -ft Deflection: LC #2 = D +L EI= 178e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 61\tie COMPANY PROJECT II 1414 1 1 WoodWorks® surnyeer we wuuo DESIGN June 28, 2010 10:34 b21 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs, ps1, or plc ) Load Type Distribution Magnitude Location IlL1 Pat - Start End Start End tern 1 wu3 Dead Partial 1.10 300.0 '300.0 5.00 MOH No 27.463 Live Partial UD 320.0 320.0 6_00 10.00 No 3 :w62 Dead Partial UD 300.0 300.0 2.00 6.00 No 4 w02 Live Partial UU 320.0 320.0 2.00 6.00 No 5'w32 Dead Partial UD 369.0 369.0 0.00 2.00 No 6 Snow Partial UD 357.5 357.5 0.00 2.00 No 7 c44 Dead Point 1940 1.50 No 0 c44 Snow Point 2853 1.50 No 4 Dead Partial UD 104.0 104.0 6.50 10.00 No lb j20 Live Partial UD 320.0 320.0 6.50 10.00 No 11 j21 Dead Partial UD 104.0 104.0 6,00 6.50 No 12j21 Live Partial UD 320.0 320.0 6.00 6.50 No 13 122 Dead Partial UD 104.0 104.0 2.00 2.50 NO 14_j22 Live Partial OD 320.0 320.0 2.00 2.50 No 15 j23 Dead Partial UD 104.0 104.0 2.50 6.00 No 16;323 Live Partial UD 320.0 320.0 2.50 6.00 No 17_j48 Dcad Partial UD 71.5 7 1.5 0.00 1.50 No 1B j4B Live Partial UD 220.0 220.0 0.00 1.50 No 19 b23 Dead Point 650 0.00 No 20 Snow Point 195 0.00 _ No MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : ---- .-...- .-..._ -t. ---. ir•..ws -+r:., -•- iu,Iii,�^• -+. - .✓"'"4!. ......._ "_ �t^ 4w -.. -" ". • • »... "- " mac " + ° 0 . 2' 101 Dead 5581 1311 Live 5266 2508 Total 10047 3019 Bearing: - Load Comb e0 93 02 Length 0.00 3.50 1.23 Cb 0.00 1.11 1.00 LSL, 1.55E, 2325Fb, 3- 112x14" Self- weight of 15.31 pit included in loads; Lateral support: lop= full, bottom= at supports. Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value AnalyYsio /Deslon shear rv• - 129 Fs,' = 0511 fv' /Se' = 0.39 Bending( +1 fh f. 717 Fo' = 2325 fb /Fb' _ 0.31 bending(-) £b = 600 Pb' = 2632 ib /Fb' = 0.23 Deflection: Interior Live 0.05 = <L/999 0.27 = L/360 0.17 Total 0.07 = <1/999 0.40 L/240 0.17 Cantil. Live -0.03 = L/690 0.13 - L /180 0.26 Total -0,03 = 1,/780 0.20 - 1 /120 0.15 The CYteci of point loads w.thin a distance d of the support has been included as per Nos 3.4.3.1 ADDITIONAL DATA: FACTORS: F /F. CD CM Ct CL CV Clu Cr Girt CS Cn LC8 Fe' 310 1.15 - 1.00 - - - - 1.00 - 1.00 4 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Pb'- 2325 1.15 - 1.00 0.984 1.00 - 1.00 1.00 - - 4 Fcp' B00 - - 1.00 - - - - 1.00 - - - 1.5 million - 1.00 - - - - 1. - - 2 fain' 0.00 million - 1.00 - - - - 1.00 - - 2 Shear : LC 04 = U'S, V = 7237, v design. - 4536 lbs 0endingl +): LC 92 = Dot„ H = 6933 lbs -ft Bendrnq( -l: LC 04 = D +S, M = 5720 lbs -ft Deflection: LC 02 = D+L El= 1241e06 lb -in2 Total Deflection : 1.501Dead Load Deflection) ' Live Load Deflection. ID .-Dead L =live S =snow w =wind 1 =impact C= construction CLd= concentrated) (Fill LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1 Please verify that the default deflection limits are appropriate for your application. 2 SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL matonals. They can be changed in the database editor. 4. The critical deflection value has been determined using maximum back -span deflection Cantilever deflections do not govern design. C-A \.4.-A--- COMPANY PROJECT i WoodWorks® SOFmARI FOR WOOD OMON June 20, 2010 10:35 b22 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or pit ) Load Type Distribution Magnitude Location (ft) Units Start End Start End 1 w69 Dead Partial UD 369.0 369.0 1.00 2.50 pir 2 Snow Partial UD 357.5 357.5 1.00 2.50 plf 3 Dead Partial UD 71.5 71.5 1.00 2.50 plf 4_548 Live Partial UD 220.0 220.0 1.00 2.50 plf 5J47 Dead Full UDL 42.5 plf 6 _147 Live Full UDL 62.5 plf 7_b23 Dead Point 700 1.00 lbs 8 h23 Snow Point 195 1.00 lbs MAXIMUM RE' -- - - • -- - - -- - - - -- - . 10' 2' -e1 Dead 683 807 Live 341 572 Total 1024 1379 Bearing: Load Comb 83 (#3 Length 0.50* _ 0.53 'Min. bearing length for beams is 1/2" for exterior supports Lumber -soft, D.Fir -L, No.2, 4x12" Self- weight of 9.35 plf included in loads; Lateral support top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NOS 2005 : Criterion Analvs.is Value Design Value Analysis /Design Shear Iv - 30 Fv' ® 207 tv /Fv' = 0.14 Bending(4) fb 159 Fb' e 1138 fb /Fb' - 0.14 Live Defl'n 0.00 = <L/999 0.08 m L /360 0.01 Total Defl'n 0.00 - <L/99q 0.13 = r,/240 0.02 ADDITIONAL DATA: FACTORS: £/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC#I Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.100 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3 Shear : LC #3 = D +.75(L +S), V = 1024, V design - 778 lbs Bending( +): LC 1i3 e D+.75(L+S), M 978 lbs -ft Deflection: LC #3 - D +.75(L +S) SI= 664006 lb -in2 Total Deflection - 1.50(Dead Load Deflection) + Live Load Deflection. (D -dead L•live S =snow W =wind I= impact C- construction CLd- concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. COMPANY PROJECT i I WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 10:35 b23 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or pif ) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1 w33 Dead Partial UD 204.0 204.0 0.00 1.50 plf 2 Dead Point 143 1.50 lbs 3 c1B Rf.Live Point 110 1.50 lbs 4 c19 Dead Point 59 4.50 lbs 5 Rf.Live Point 85 4.50 lbs 6 w34 Dead Partial UD 108.0 108.0 4.50 6.50 plf . 7 Dead Point 59 6.50 lbs 8 c20 Rf.Live Point 85 6.50 lbs 9 c21 Dead Point 143 9.50 lbs 10 c21 Rf.Live Point 110 9.50 lbs 11 Dead Partial UD 204.0 204.0 9.50 11.00 plf • MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : fr .......... to ill Dead 700 700 Live 195 195 Total 895 895 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min. bearing length for beams is 1/2" for exterior supports LSL, 1.55E, 2325Fb, 3 112x14" Self- weight of 15.31 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 20 Fv' = 356 fv /Fv' = 0.05 Bending(+) fb = 213 Fb' = 2674 fb /Fb' = 0.08 Live Defl'n 0.01 = <L/999 0.37 = L/360 0.03 Total Dcfl'n 0.05 = <L/999 0.55 = L/240 0.09 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' B00 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 895, V design = 639 lbs Bending(+): LC #2 = D +L, M = 2028 lbs -ft Deflection: LC #2 = D +L EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live 5 =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. (.1 t,A COMPANY PROJECT di WoodWorks® SOFTWARE FOP WODO OCSOGN June 28, 2010 10:47 b24 Design Check Calculation Sheet Sizer 7.1 LOADS (Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j42 Dead Partial UD 47.7 47.7 0.00 4.50 pit 2_j42 Live Partial UD 160.0 160.0 0.00 4.50 plf 3_j43 Dead Partial UD 47.7 47.7 4.50 7.50 plf 4_j43 Live Partial UD 160.0 160.0 4.50 7.50 plf 5 j44 Dead Partial UD 47.7 47.7 7.50 13.00 plf 6_j44 Live Partial UD 160.0 160.0 7.50 13.00 plf 7 j45 Dead Partial UD 47.7 47.7 13.00 16.00 plf 8 Live Partial UD 160.0 160.0 13.00 16.00 plf MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : lo' 16 Dead 442 442 Live 1280 1280 Total 1722 1722 Bearing: Load Comb #2 42 Length 0.85 0.85 Glulam- Unbal., West Species, 24F -V4 DF, 3- 1/8x10 -1/2" Self- weight of 7.55 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 70 Fv' = 265 fv /Fv' = 0.26 Bending( +) fb = 1440 Fb' = 2400 fb /Fb' = 0.60 Live Defl'n 0.43 = L/441 0.53 = L/360 0.82 Total Defl'n 0.66 = L/290 0.80 = L/240 0.83 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D+L, V = 1722, V design = 1534 lbs Bending( +): LC #2 = D +L, M = 6890 lbs -ft Deflection: LC #2 - D +L EI= 543e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). CiW COMPANY PROJECT Wood Wor k.s® SO►TWAOrf(W WOOD DISWGN Dec. 15, 20101128 b24 (ritooT L P ) Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf) Load Type Distribution Magnitude location (ft) Units Start End Start End 1_)42 Dead Partial UD 47.7 47.7 0.00 4.50 plf 2_142 Live Partial UD 160.0 160.0 0.00 4.50 plf 3 ^j43 Dead Partial UD 47.7 47.7 4.50 7.50 plf 4_j43 live Partial UD 160.0 160.0 4.50 7.50 - plf 5_j44 Dead Partial UD 47.7 47.7 7.50 8.00 plf 6 144 Live Partial UD 160.0 160.0 7.50 8.00 plf MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : l 8 4 Dead 212 212 Live 640 640 Total 852 852 Bearing: Load Comb Q2 02 Length 0.75 0.75 Lumber -soft, Hem -Fir, No.2, 4x8" Self- weight of 5.24 plf included In loads; Lateral support top= full, bottom = at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 43 Fv' = 120 fv /Fv' = 0.36 Bending( +) fb = 667 Fb' = 884 fb /Fb' = 0.75 'Live Defl'n 0.11 = L/893 0.27 = L/360 0.40 Total Defl'n 0.16 = I./597 0.40 = L/240 0.40 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LCt! Fv' 150 1.00 1.00 1.00 - - - - 1.00 0.80 1.00 2 Fb'+ 850 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 0.80 - 2 Fcp' 405 - _1.00 1.00 - - - - 1.00 1.00 - - E' 1.3 million 1.00 1.00 - - - - 1.00 0.95 - 2 Emin' 0.47 million 1.00 1.00 - - - - 1.00 0.95 - 2 Shear : LC 02 = D +L, V - 852, V design = 723 lbs Bending( +): LC 112 = D+L, M = 1704 lbs -ft Deflection: LC 02 = D +L EI- 144e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (0 -dead L=live S ®snow W wind I =impact C=construction CLd =concentrated) (All Le's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. (IZD. COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD OEUGN June 28, 2010 10:33 b25 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End Loadl Dead Full UDL 200.0 plf Load2 Live Full UDL 540.0 plf MAXIMUM REACTIONS 1lbsl and REARING LENGTHS finl 2 1 0' 4 Dead 409 409 Live 1080 1080 Total 1489 1489 Bearing: Load Comb #2 #2 Length 0.68 0.68 Lumber -soft, D.Fir -L, No.2, 4x6" Self- weight of 4.57 Of included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 89 Fv' _ 180 fv /Fv' = 0.50 Bending( +) fb = 1013 Fb' = 1170 fb /Fb' = 0.87 Live Defl'n 0.04 = <L/999 0.13 = L/360 0.30 Total Defl'n 0.06 = L/764 0.20 = L/240 0.31 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.00 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 1489, V design = 1148 lbs Bending( +): LC #2 = D+L, M = 1489 lbs -ft Deflection: LC #2 = D +L EI= 78e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D-dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. • 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. G1ak - COMPANY PROJECT i I Wood Works® SOFIIVAIlf MRWUODDIYIOA' June 28, 2010 10:57 b25 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs. pst, or pit ) Load Type Distribution Magnitude Location (111 Units Start Ind Start Ind 1 w!1 Dead Partial UO 539.7 539.7 13.00 14.1U ' pi: 2 w72 Rf.Live Partial UD 493.7 493.7 13.00 14.50 plf 3 u20 Dead Partial UD 535.5 535.5 0.00 4.50 plf 4 w28 Rf.Livc Partial UD 487.5 487.5 0.00 4.50 plf 5 Dead Point 1074 7.00 lbs 6 Rf.Live Point 1601 7.00 lbs 7 Dead Point 1074 13.00 lbs 8 Rf.Live Point 1601 13.00 lbs 9 Dead Partial UD 539.7 539,7 14.50 16.00 plf 1V w73 Rf.Live Partial UD 493.7 493.7 14.50 16.00 p1: 11_w74 Dead Partial 0D 443.7 443.7 5.50 7.00 pit 12 Rf.Live Partial UD 493.7 493.7 5,50 7.00 plf 13 Dead Partial UD 539.7 539.7 4.50 5.50 plf 14%75 Rf.Live Partial UD 493.7 493.7 4.50 5.50 plf 15 Dead Partial UD 47.7 47.7 0.60 4.50 pit 16 - j42 Live Partial 00 160.0 160.0 0.00 4.50 plf 17 Dead Partial UD 47.7 47.7 4.50 5.50 plf 18 Live Partial UD 160.0 160.0 4.50 5.50 pif 19 Dead Partial UD 47.7 47.7 7.50 13.00 plf 20 Live Partial UD 160.0 160.0 7.50 13.00 plf 2f Dead Partial U0 47.7 47.7 5.50 7.50 plf ' 22 Live Partial UD 160.0 160.0 5.50 7.50 plf 23 Dead Partial UD 47.7 47.7 13.00 14.50 plf 24 Live Partial UD 160.0 160.0 13.00 14.50 plf 25 Dead Partial UD 47.7 47.7 14.50 16.00 pif 26 Live Earth! UP 160.0 160.0 19.50 16.00 slf MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : 1.ir______________±_______ _ I R I a 161 Dead 4326 4101 Live 5296 5376 Total 9624 9477 Bearing: load Comb 02 P2 Length 2.99 _ 2.84 Glulam -Bal., West Species, 24F -V8 DF, 5- 118x15" Self- weight of 17 7 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NOS 2005 : Cricnrlon Analysis Value Damson Value AnalyYsis/Desion Sneer tv - ls, r'v' ^ .11)■ tv /1V' -. 0.52 Bending(r) fb = 2301 Fb' = 2760 fb /Pb' = 0.83 Live Def]'n 0.36 = L/528 0.53 - L /360 0.60 Total Defl'o 0.7 = L/249 0.90 = L1240 0.96 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt holes Cn LCP Fr.' 265 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - E' 1.8 million 1,00 1.00 - - - - 1.00 - - 2 Emin' 0.05 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC 02 = OfL, V = 9624, V design = 8063 lbs Rending( +): LC 02 = OfL, M = 36854 lbs -ft. Deflection: LC 92 = ESL E1= 2594e06 lb -in2 Total Deflection 1.501Dead Load Deflection) + Live Load Deflection. ID=dead L =live 5 - snow N =wind I =impact C =construction CLd =concentrated) (All LC'a are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1 Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSVAITC A190 1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smeller of Fcp(tension), Fcp(comp'n). 6 ,12.,ve,,N., . COMPANY PROJECT di WoodWorks® Son WARE FON WOOD DESIGN June 28, 2010 10:36 b26 Design Check Calculation Sheet • Sizer 7.1 LOADS ( lbs. psf, or plf ) Load Type Distribution Magnitude Location Eft] Units Start End Start End 1 w37 Dead Partial UD 535.5 535.5 10.50 11.00 plf 2 w37 Snow Partial UD 487.5 487.5 10.50 11.00 plf 3 w38 Dead Partial UD 535.5 535.5 11.00 14.00 plf 4 Snow Partial UD 487.5 487.5 11.00 14.00 plf 5 Dead Partial UD 535.5 535.5 14.00 15.50 plf 6 Snow Partial UD 487.5 487.5 14.00 15.50 plf MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : Ip 15'-6" Dead 583 2397 Live 393 2044 Total 976 4441 Bearing: Load Comb 42 #2 Length 0.50* 1.33 'Min. bearing length for beams is 12" for exterior supports • Glulam -Bal., West Species, 20F -V7 DF, 5- 1/8x16 -1/2" Self- weight of 19.47 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 54 Fv' = 305 fv /Fv' = 0.18 Bending( +) fb = 488 Fb' = 2297 fb /Fb' = 0.21 Live Defl'n 0.05 = <L/999 0.52 = L/360 0.09 Total Defl'n 0.14 = <L/999 0.77 = L/240 0.18 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2000 1.15 1.00 1.00 1.000 0.999 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.6 million 1.00 1.00 - - - - 1.00 - - 2 Emirs' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC 42 = D +S, V = 4441, V design = 3070 lbs Bending( +): LC #2 = D +S, M = 9454 lbs -ft Deflection: LC #2 = D +S E1- 3070e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). 4:13 COMPANY PROJECT I i W oodWorks® SUFI W4 .tFOR WOOD DII7f.N June 28, 2010 10:50 c2 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or pit ) Load Type Distribution magnitude Location (ft) Units Start End Start End 1_bl Dead Axial 1539 (Ecce tricity = 0.00 in) 2 bl .Rf.Live Axial 2089 (Ecce tricity = 0.00 in) MAXIMUM REACTIONS (lbs): • 0' 8' Lumber n -ply, Hem -Fir, No.2, 2x6 ", 2 -Plys Self - weight of 3.41 plf included in loads; Pinned base; Loadface = depth(d); Built -up fastener. nails; Ke x Lb: 1.00 x 0.00= 0.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 221 Fc' = 980 fc /FC' = 0.23 Axial Bearing fc = 221 Fc* = 1644 fc/Fc* _- 0.13 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LCk Fc' 1300 1.15 1.00 1.00 0.596 1.100 - - 1.00 1.00 2 Fc' 1300 1.15 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC 02 = D +L, P = 3655 lbs Kf = 1.00 (D=dead L =live S =snow W =wind I =impact C= construction CLd (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. olati COMPANY PROJECT i 1 WoodWorks® SOI1WARI MR WOOD DESIGN June 28, 2010 10:52 c25 Design Check Calculation Sheet Sorer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1 b12 Dead Axial 514 (Eccentricity = 0.00 In) 2 Live Axial 1408 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): I 0 ' 9' Lumber n -ply, Hem -Fir, No.2, 2x4 ", 2 -Pays Self - weight of 2.17 pif induded in loads: Pinned base; Loadface = depth(d); Built -up fastener. nails; Ke x Lb: 1.00 x 0.00= 0.00 FR); Ke x Ld: 1.00 x 9.00= 9.00 [ft] Analysis vs. Allowable Stress (psi) and Deflection (In) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 185 Et' = 380 fc /Fc' = 0.49 Axial Dearino fc = 185 Fc* = 1495 fc /Fc* 0.12 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LCO Fc' 1300 1.00 1.00 1.00 0.254 1.150 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC 42 = O +I„ P = 1942 lbs Kf = 1.00 (D=dead L =live S =snow W=wind I= impact C=construction CLd'concentrated) (All IC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. Cq - COMPANY PROJECT �..I WoodWorks® SOFlWAffFOR WOOD DESIGN June 28, 2010 10:51 c36 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b21 Dead Axial 5634 (Eccentricity = 0.00 in) 2 Rf.Live Axial 7021 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): 0' 8' Timber -soft, Hem -Fir, No.2, 6x6" Self- weight of 6.25 plf included in loads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 420 Fc' = 548 fc /Fc' = 0.77 Axial Bearing fc = 420 Fc* = 661 fc /Fc* = 0.64 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC4 Fc' 575 1.15 1.00 1.00 0.829 1.000 - - 1.00 1.00 2 Fc* 575 1.15 1.00 1.00 - 1.000 - - 1.00 1.00 2 Axial : LC 12 = D +L, P = 12705 lbs (D =dead L=live S =snow W=wind I= impact C= construction CLd =concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 6 ,0a(e9 COMPANY PROJECT WoodWorks® .S01.1WAQEMI WOOD DnIGV June 28, 201010:52 c44 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, pet or plf ) Load Type Distribution Magnitude Location (ft) Units Start End Start End 1 c35 Dead Axial 1940 (Eccentricity = 0.00 in) 2 c35 Rf.live Axial 2853 (Eccentricity = 0.OQ in) MAXIMUM REACTIONS (lbs): • o 9. Lumber n -ply, Hem -Flr, No2, 2x4 ", 3-Plys Self - weight of 125 ptf included in loads; Pinned base; Loadface = depth(d); Built -up fastener. nails; Ke x Lb: 1.00 x 9.00= 9:00 [ft]; Ke x Ld: 1.00 x 9.00= 9.00 [ft]; Repetitive factor applied where permitted (refer to online help); Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial is = 306 Fe' = 363 fc /Fc' = 0.84 Axial Bearing fc = 306 Fc' 1719 fc /Fct = 0.18 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC$ Fc' 1300 1.15 1.00 1.00 0.211 1.150 - - 1.00 1.00 2 Fc 1300 1.15 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC 42 = D4L, P = 4823 lbs Kf m 0.60 (D =dead L =live S =snow W =wind 1 =impact C= construction CLd= concentrated) (All IC's are listed in the Analysis output) • Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. COMPANY PROJECT I WoodWorks SOFTWARE rap WO00 OISIGN June 28, 2010 10:51 c64 Design Check Calculation Sheet Sizer 7.1 LOADS (ibs, psf; or pif ) Load Type Distribution Magnitude Location Ift) Units Start End Start End 1 c45 Dead Axial 1940 (Eccentricity = 0.00 in) 2 c45 Rf.Live Axial 2853 (Eccentricity = 0.00 in) 3 Dead Axial 807 (Eccentricity = 0.00 in) 4 Rf.Live Axial 763 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): 0' 8' Lumber n-ply, Hem -Fir, No.2, 2x6 ", 3 -Plys Self - weight of 5.11 pif included in loads; Pinned base; Loadface = depth(d); Built-up fastener. nails; Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Repetitive factor applied where permitted (refer to online help); Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 259 Fc' = 439 fc /Fc' = 0.59 Axial Bearing fc = 259 Fc* = 1644 fc /Fc* = 0.16 ADDITIONAL DATA: • FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.267 1.100 - - 1.00 1.00 2 Fc' 1300 1.15 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC 12 = D +L, P = 6404 lbs Kf = 0.60 (D=dead L=live S =snow W =wind I=impact C =construction CLd= concentrated) (All Le's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. Cab Harper HP HoufPeterson COMMUNICATION RECORD • •Righellis Inc. TO ❑ FROM O MEMO TO FILE 0 G"L!l1LI1(11 . YLI011 -4'J L FII LK CMG F. AN[HIIEPTBe pVY -rE VQR• PHONE NO.: PHONE CALL:O MEETING: 0 II .p O m Q n e s-P, r r g) 9 3 r e cn 9, r cri. g Ft_ 1) 1/41 ---, E ; f... � Q G 0 P ...T ..9— i.....t ..? (.." S 2 3 0 rb v' . , 0 ...., ,... 0 Z r....,. CTh z 6 G 0 1 COMPANY PROJECT i I WoodWorks® SOFIWARYfOR WOOD Onilt:h June 26, 2010 10:19 b25 LCI Design Check Calculation Sheet Sizer 7.1 LOADS (lbs, pst, or pit) : Load Type Distribution Magnitude Location (ftl Units Start End Start End 1 w12 Dead Partial UD 539.7 539.7 13.00 14.50 plf ?w72 Snow Partial UD 493.7 493.7 13.0 14.50 plf 3 - w28 Dead Partial UD 535.5 535.5 .0.00 4.50 plf 4 w2H Snow Partial UD 487.5 467.5 0.00 4.50 plf 5 Dead Point 1074 7.00 lbs 8c14 Snow Point 1601 7.00 lbs 1 Dead Point 1074 13.00 lbs 8 Snow Point 1601 13.00 lbs 9 Dead Partial OD 539.7 539.7 14.50 16.00 plf lb w73 Snow Partial UD 493.7 493.7 14.50 16.00 plf 11 - w74 Dead Partial UD 443.7 443.7 5.50 7.00 plf 12 Snow Partial UD 493.7 493.7 5.50 7.00 pit 13_w75 Dead Partial UD 539.7 539.7 4.50 5.50 pit 14 Snow Partial UD 493.7 493.7 4.50 5,.50 ,plf IS Dead Partial UD 47.7 47.7 0.00 4.50 pit 16 Live Partial UD 160.0 160.0 0.00 4.50 plf 17 Dead Partial UD 47.7 47.7 4.50 5.50 pit 18 Live ?altial UD 160.0 160.0 4.50 5,50 plf 19 Dead Pactial UD 47.7 47.7 7.50 13.00 plf 20_)44 Live Partial 0D 160.0 160.0 7.50 13.00 plf 21 Dead Partial UD 47.7 47.7 5.5u 7.50 plf 22 - j45 Live Partial UD 160.0 160,0 5.5 7.50 plf 23 j46 Dead Partial UD 47.7 47.7 13.00 14.50 plf 24 )46 Live Partial UD 160.0 160.0 13.00 14.50 plf 75 - j47 Dead Partial UD 47.7 47.7 18.50 16.00 plf 26 Live Partial UD 160.0 160.0 14.50 16.0 plf 20SA Wind Point 7960 0.00 lbs 203A.1 Wind Point -7960 7.00 lbs 2030.1 Wind Point 7960 13. lbs 2030.2 Wind Point -7960 16.00 lbs MAXIMUM REACTIONS (Ws) and BEARING LENGTHS (in) : 181 Dead 4328 4101 Live 7703 4096 Uplift 2458 Total 12031 8197 Bearing: Load Comb 04 46 length 3.61 2.46 Glulam -Bal., West Species, 24F -V8 DF, 5- 118x15" Self - weight of 17 7 elf included in loads: Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analys1S Value Lleslan Value Annlvsia /Dcainn Shear Iv - I3o Iv' - 305 tv /F'v' = 0.4a Bending()) Pb = 1986 Fb' " 2760 fb /Fb' = 0. Live Oefl'n 0.27 a L/704 0.53 = L/360 0.51 Total Dcfl'n 0.68 1/283 0.81 = L/240 0.85 ADDITIONAL DATA: FACTORS: F/E CD CFI Ct CL CV Cfu Cr Cfrt Notes Cn LCX FA(' 265 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 6 Fb0+ 2400 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 6 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.6 millinn 1.00 1.00 - - - - 1.00 - - 3 Emirs' 0.85 million 1.00 1.00 - - - - 1.011 - - 3 Shear : LC 96 = OrS, V - 0344, V design - G903 lbs Wending( +1: LC 46 = D +S, M o 31814 lbs -ft Deflection: LC 43 = Dt.75(Lr5) E1= 2594e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead 1."live S =snow W=wind I= impact C =construction CLd =concentrated) (All LC's are Listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI/AITC A190.1 -1992 3, GLULAM: bxd = actual breadth x actual depth 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clauso 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(lension), Fcplcomp'n) 630 COMPANY PROJECT i Woodworks® SOFTWARE FOR WOOD D25!Gr June 28. 2010 10:24 b25 LC1 NO LL Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or pif ) Load Type Distribution Magnitude location [ft) Units Start End Start End 12,72 Dead Partial UD 539.7 539.7 13.00 14.50 plf 3 w28 Dead Partial UD 535.5 535.5 0.00 4.50 plf 5 c14 Dead Point 1074 7.00 lbs 7 Dead Point 1074 13.00 lbs 9 Dead Partial UD 539.7 539.7 14.50 16.00 pit 11 w74 Dead Partial UD 443.7 443.7 5.50 7.00 plf 13 w75 Dead Partial UD 539.7 539.7 4.50 5.50 plf 15 Dead Partial UD 47.7 47.7 0.00 4.50 olf 177j43 Dead Partial UD 47.7 47.7 4.50 5.50 plf 19_j44 Dead Partial UD 47.7 47.7 7.50 13.00 plf 21 Dead Partial UD 47.7 47.7 5.50 7.50 plf 23J46 Dead Partial UD 47.7 47.7 13.00 14.50 plf 25_)47 Dead Partial UD 47.7 47.7 14.50 16.00 plf 203A Wind Point 7960 0.00 lbs 203A.1 Wind Point -7960 7.00 lbs 2036.1 Wind Point 7960 13.00 lbs 2039.2 Wind Point -7960 16.00 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : 10 161 Dead 4328 4101 Live 3300 Uplift 2458 Total 7572 4101 Bearing: Load Comb 12 91 Lenoth 2.27 1.23 Glulam -Bal., West Species, 24F -V8 DF, 5- 118x15" Self- weight of 17.7 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Desion Value Analysis /Design Shear ry = 70 Fe' = 239 tv /Fe' 0.29 Bending(+) fb = 978 Fb' = 2160 fb /Fb' -. 0.45 Live Defl'n -0.30 = L/632 0.53 L/360 0.57 Total Defl'n -0.03 = <L/999 0.00 • L /240 0.04 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LCl) Fe' 265 0.90 1.00 1.00 - - - - 1.00 1.00 1.00 1 Fb'+ 2400 0.90 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 1 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Ervin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #1 = D only, V . 4328, V design = 3577 lbs Bending( +): LC 41 = D only, M 15667 lbs -ft Deflection: LC 112 - .6D +W EI= 2594e06 lb -in2 Total Deflection - 1.00(Dead Lcad Deflection) + Live Load Deflection. (D -dead L =live S =snow W =wind T =impact. C =construction CL(1=concentrated) (A11 LC's are listed in the Analysis output.) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSIIAITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). COMPANY PROJECT i WoodWorks® SUIlwar (eoM WOOD OCS1CN June 28, 2010 1a20 b25 LC2 Design Check Calculation Sheet Sizer 7,1 LOADS I lbs. psi, or pit ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w72 Dead Partial UD 599.7 539.7 19.110 14.50 plf 2%72 Snow Partial UD 493.7 493.7 1.3.00 14.50 plf 3 Dead Partial UD 535.5 535,5 0.00 4.50 plf 4 w28 Snow Partial OD 487.5 487.5 0.00 4.50 plf 5-c]4 Dead Point 1074 7.00 lbs 6 - c14 Snow Point 1601 7.00 lbs 7 Dead Point 1074 13.00 lbs 8 Snow Point 1601 13.00 lbs 9 Dead Partial UD 539.7 539.7 14.50 16.00 plf 115 w73 Snow Partial UD 493.7 493.7 14.50 16.00 pit 11 Dead Partial UD 443.7 443,7 5.50 7.00 plf 12 Snow Partial UD 493.7 493,7 5.50 7.00 plf 13 Dead Partial UD 539.7 539.7 4.50 5.50 plf 14w75 Snow Partial UD 493.7 493,7 4.50 5.50 plf 15 Dead Partial UD 47,7 47,7 0.00 4.50 pif 16 Live Partial UD 160.0 160.0 0.00 4.50 plf 17 Dead Partial UD 47.7 47.7 4.50 5.50 plf 18 Live Partial UD 160.0 160.0 4.50 1.50 plf 19 Dead Partial UD 47.7 47.7 7.50 13.00 plf 21i 144 Live Partial UD 160.0 160.0 7.50 13.00 plf 21 345 Dead Partial UD 47.7 97,7 5.50 7.50 plf 22'345 Live Partial UD 160.0 160,0 5.50 7,50 plf 23`346 Dead Partial VU 47.7 47,7 13.00 14.50 plf 24;346 Live Partial UD 160.0 160.0 13.00 14.50 pit 25 347 Dead Partial UD 47.7 47,7 14.50 16.00 plf 2647 Live Partial UD 160.0 160.0 14.50 16.00 pit 203A Wind Point -7960 0.00 lbs ' 203A.1 Wind Point 7960 7.00 lbs 2038.1 Wind Point -7960 13.00 lbs 2038.2 Wind Point 7960 16.00 the MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (In) : L • la is' Dead 4328 4101 Live 4016 7763 Uplift 2321 Total 0344 11664 Bearing: Load Comb 06 84 Length 2.50 3.56 Glulam -Bal., West Species, 24F -V8 DF, 5- 1/8x15" Self - weight of 17 7 plf included in loads: Lateral support top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis /Design Shear tv = 136 Fv' m 305 fv /Pv' = 0.45 Bending(*) fb = 2949 Fb' = 3040 fb /En' = 0.77 Live Defl'n 0.42 = L/454 0.53 a L /360 0.79 Total Defl'n . 0.69 1/277 0.80 - 1. /240 0.07 ADDITIONAL DATA: FACTORS: F/E CU CM Ct CL CV Cfu Cr Cfrt Notes Cn LCI, F'v 265 1.15 1.00 1.00 - - - - 1. 1.00 1.00 6 Pb'-. 2400 1.60 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 4 Pep' 650 - 1.00 1.00 - - - - 1.00 - - E 1.8 million 1.00 1.00 - - - - 1.00 - - 4 Ervin' 0.85 million 1.00 1.00 - - - - 1.00 - - 4 Shear : LC 06 - D*5, V . 8344, V design = 6903 lbs Bending) *): LC 04 a D1.75(L +StW), 9 • 47228 lbs -f; Deflection: LC 04 - 0- .75(1. +S +W) ET- 2594e06 lb-in2 Total Deflection = 1.001Dead Load Deflection) 1 Live load Deflection. (D=dead L=live 5-snow W =wind I =impact C- construction CLd=concentrated) (All LC':: are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1 Please verify that the default deflection limits are appropriate for your application 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSUAITC A190 1 -1992 3. GLULAM: bad = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3 3.3. 5. GLULAM• bearing length based on smaller of Fcp(tension), Fcp(cornp'n), 632--- COMPANY PROJECT WoodWorks® SOFl1VARF FOR WOOD DESIGN June 28, 2010 10:23 b25 LC2 NO LL Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location Ift] Units Start End Start End 1 w72 Dead Partial VD 539.7 539.7 13.00 14.50 plf 3 Dead Partial UD 535.5 535.5 0.00 4.50 plf 5_c14 Dead Point 1074 7.00 lbs 7 c15 Dead Point 1074 13.00 lbs 9 Dead Partial UD 539.7 539.7 14.50 16.00 plf 11 w74 Dead Partial UD 443.7 443.7 5.50 7.00 plf 13 w75 Dead Partial UD 539.7 539.7 4.50 5.50 plf 15 j42 Dead Partial UD 47.7 47.7 0.00 4.50 plf 17_j43 Dead Partial UD 47.7 47.7 4.50 5.50 plf 19_j44 Dead Partial 0U 47.7 47.7 7.50 13.00 plf 21_j45 Dead Partial uU 47.7 47.7 5.50 7.50 plf 3 2 j46 Dead Partial UD 47.7 47.7 13.00 14.50 plf 25 j47 Dead Partial UD 47.7 47.7 14.50 16.00 plf 203A Wind Point -7960 0.00 lbs • 203A.1 Wind Point 7960 7.00 lbs 203B.1 Wind Point -7960 13.00 lbs 2038.2 Wind Point 7960 16.00 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : 1 , .. 1st Dead 4328 4101 Live 3391 Uplift 2321 Total 4328 7435 Bearing: Load Comb 41 N2 length 1.30 2.23 Glulam -Bal., West Species, 24F -V8 DF, 5- 1/8x15" Self- weight of 17.7 plf included in loads; Lateral support: top= full. bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis /Design. Shear tv = 70 Fv' = 238 Iv /Fv• 0.29 Bending( +) fb = 1905 Fh' = 3840 tb /Fb' 0.50 Live Defl'n 0.10 = (L/999 0.53 - L/360 0.18 Total Defl'n 0.37 - L /525 0.80 - L/240 0.46 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC4 Fv' 265 0.90 1.00 1.00 - - - - 1.00 1.00 1.00 1 Fb'+ 2400 1.60 1.0U 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Pep 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emirs' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC l)1 - U only, V = 4328, V design = 3577 lbs Bending( +): LC #2 = .60 +14, M = 30517 lbs -ft Deflection: LC 42 - .610+W. EI- 2594e06 lb -in2 Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (U -dead L =live S -snow W -wind I- impact C =construction CLd- concentrated) (All I.C's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSVAITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). 61 ;3 COMPANY PROJECT i 1 WoodWorks® sOIIW RtrOk WOOnOfSICN June 28, 2010 10:25 b26 LC1 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs. psf, or pit ) Load Type Distribution Magnitude Location (ft) Units Start End Start End 1 w37 Dead _ Partial UD 535.5 535.5 10.50 11.00 plf 2 Snow Partial UD 487.5 487.5 10.50 11.00 plf 3 w38 Dead Partial UD 535.5 535.5 11.00 14.00 plf 4_w38 Snow Partial UD 487.5 487.5 11.00 14.00 plf 5 Dead Partial UD 535.5 535.5 14.00 15.50 plf 6 Snow Partial UD 487.5 487.5 14.00 15.50 plf W1.1 Wind Point 13500 10.50 lbs W1.2 Wind Point -13499 15.50 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : bo. _ - .. 15'-6" Dead 583 2397 Live 4182 8392 Total 4704 10789 Bearing: Load Comb #4 #3 Length 1.41 3.24 Glulam -Bal., West Species, 20F -V7 DF, 5- 118x16 -112" Self- weight of 19.47 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear tv = 181 Fv' 424 = 0.43 Bending( +) fb = 2526 Fb' = 3195 fb /Fb' = 0.79 Live Def1'n 0.47 = L/395 0.52 = L/360 0.91 Total Defl'n 0.56 = L/331 0.77 = L/240 0.72 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LCII Fv' 265 1.60 1.00 1.00 - - - - 1.00 1.00 1.00 4 Fb'+ 2000 1.60 1.00 1.00 1.000 0.999 1.00 1.00 1.00 1.00 - 4 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.6 million 1.00 1.00 - - - - 1.00 - - 4 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 4 Shear : LC #4 = .6D +W, V = 10643, V design = 10194 lbs Bending( +): LC #4 = .6D +W, M = 48956 lbs -ft Deflection: LC #4 = .6D +W EI= 3070e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) .{ Live Load Deflection. (D=dead L =live S =snow W =wind I= impact C- construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). COMPANY PROJECT di WoodWorks® SOF)WARE FOR WOOD D[SILN June 28, 2010 10:27 b26 LC1 no II Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs. psf, or plf ) Load Type Distribution Magnitude Location (ft] Units Start End Start End 1 w37• Dead Partial UD 535.5 535.5 10.50 11.00 plf 3 Dead Partial UD 535.5 535.5 11.00 14.00 plf 5 w39 Dead Partial UD 535.5 535.5 14.00 15.50 plf W1.1 Wind Point 13500 10.50 lbs W1.2 Wind Point -13499 15.50 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : 10' 15' -6'4 Dead 583 2397 Live 4182 8247 Total 4704 10583 Bearing: - Load Comb #2 #2 Length _ 1.41 _ 3.18 Glulam -Bal., West Species, 20F -V7 DF, 5- 1/8x16 -112" Self- weight of 19.47 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 181 Fv' = 424 fv /Fv' = 0.43 Bending( +) fb = 2526 Fb' = 3195 fb /Fb' = 0.79 Live Defl'n 0.47 = L/395 0.52 = L/360 0.91 Total Defl'n 0.56 = L/331 0.77 = L/240 0.72 ADDITIONAL DATA: FACTORS: PIE CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# F'v' 265 1.60 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2000 1.60 1.00 1.00 1.000 0.999 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.6 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = .6D +W, V = 10643, V design = 10194 lbs Bending( +): LC #2 = .6D +W, M = 48956 lbs -ft Deflection: LC #2 = .6D +W EI= 3070e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. • 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). 6.1 COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 10:26 b26 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psi, or ptf Load Type Distribution Magnitude Location (ft] Units Start End Start End 1 w37 Dead Partial UD 535.5 535.5 10.50 11.00 plf 2 Snow Partial UD 487.5 487.5 10.5D 11.00 plf 3 Dead Partial UD 535.5 535.5 11.00 14.00 plf 4 w38 Snow Partial UD 487.5 487.5 11.00 14.00 pif 5 w39 Dead Partial UD 535.5 535.5 14.00 15.50 pif 6 w39 Snow Partial UI) 487.5 487.5 14.00 15.50 plf WT.1 Wind Point -13499 10.50 lbs W1.2 Wind Point 13500 15.50 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : kr 15 Dead 583 2397 Live 393 2044 Uplift 3945 7647 Total 976 4441 Bearing: Load Comb 112 42 Length 0.50. 1.33 `Min. bearing length for beams is 1/2" for extenor supports Glulam-Bal., West Species, 20F -V7 DF, 5- 118x16 -1/2" Self- weight of 19 47 plf included in loads; Lateral support top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 136 Fv' t- 424 £v /Fv' 0.32 Bendiny(+) tb = 488 Fb' = 2297 fb /Fb' 0.21 Bending( -) fb = 2193 Fb' =- 2940 fb /Fb' E> 0.75 Live Defl'n -0.51 - L/362 0.52 . L /360 0.99 'total VefI'n -0.42 = 1./44(. 0.77 L/240 0.54 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC4 Fv' 265 1.60 1.00 1.00 - - - - 1.00 1.00 1.00 4 Fb'+ 2000 1.15 1.00 1.00 1.000 0.999 1.00 1.00 1.00 1.00 - 2 Fb'- 2000 1.60 1.00 1.00 0.919 1.000 1.00 1.00 1.00 1.00 - 4 Fop' 650 - 1.00 1.00 -• - - - 1.00 - - - E' 1.6 million 1.00 1.00 - - - - 1.00 - - 4 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 4 Shear : LC N4 = .60+W, V = 7647, V design = 7647 lbs Bending(+): LC 02 - D +S, N - 9454 lbs -ft Bending( -): LC $4 = .60 +W, M - 42496 lbs -ft Deflection: LC 1f4 = .60 +W EI- 3070e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (0 -dead 4-live S =snow W =wind I= impact C= construction CLd =concentrated) (All Le's are listed in the Analysis output) Load combinations: ICC -1BC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSVAITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). 6.1'3L:7 COMPANY PROJECT i Wood Wor ks° SON WART FOR WOOD =DOI June 28, 2010 10:30 b26 LC2 no II Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or Of ) Load Type Distribution Magnitude Location (ft) Units Start End Start End 1 w37 Dead Partial UD 535.5 535.5 10.50 11.00 plf 3 w38 Dead Partial UD 535.5 535.5 11.00 14.00 plf 5 Dead Partial UD 535.5 535.5 14.00 15.50 plf W1.1 Wind Point - 13499 10.50 lbs W1.2 Wind Point 13500 15.50 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : App Dead 583 2397 Live • Uplift 3945 7647 Total 583 2397 Bearing: Load Comb #1 #1 Length 0.50* 0.72 *Min. bearing length for beams is 1/2" for exterior supports Glulam -Bal., West Species, 20F -V7 DF, 5- 118x16 -112" Self- weight of 19.47 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Desian Value Analysis /Design Shear fv = 136 Fv' = 424 fv /Fv' = 0.32 Bending( +) fb = 267 Fb' = 1797 fb /Fb' = 0.15 Bending( -) fb = 2193 Fb' = 2940 fb /Fb' = 0.75 Live Defl'n -0.51 = L/362 0.52 = L/360 0.99 Total Defl'n -0.42 = L/441 0.77 = L/240 0.54 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Ev' 265 1.60 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2000 0.90 1.00 1.00 1.000 0.999 1.00 1.00 1.00 1.00 - 1 Fb'- 2000 1.60 1.00 1.00 0.919 1,000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.6 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC 12 - .6D +W, V = 7647, V design = 7647 lbs Bending( +): LC #1 = D only, M = 5167 lbs -ft Bending( -): LC #2 = .6D +W, M = 42496 lbs -ft Deflection: LC #2 = .6D +W EI= 3070e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dcad L =live S - snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: TCC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). Harper Project: HP : Houf Peterson Client: Job # Righellis Inc. pt14111Q6Y6 , o \M1NOEY( Designer: Date: Pg. # 1,11YOCAY1 ♦YC411I CI, LIIYVI TOYS Desk Aesl cly) W dl := 10 lb 8-ft-20-ft Wd = 1600-lb ft Seismic Forces Site Class =D Design Catagory =D Wp := Wdl I - 1.0 Component Importance Factor (Sect 13.1.3, ASCE 7 -05) S := 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. S := 0.942 Max EQ, 5% damped, spectral responce acceleration at short period z 9 Height of Component h := 32 Mean Height Of Roof F a -= 1.123 Acc -based site coefficient © .3 s- period (Table 1613.5.3(1), 2006 IBC) F 1.722 Vel -based site coefficient © 1 s- period (Table 1613.5.3(2), 2006 IBC) S F Smi := F .S 2 • S ms S : = Max EQ, 5% damped, spectral responce acceleration at short period 3 Exterior Elements & Body Of Connections a := 1.0 R := 2.5 (Table 13.5 -1, ASCE 7 -05) Fp .— .4a S L p (1 + 2 h �•W p EQU. 13.3 -1 F Fp := 1.6• S Ip EQU. 13.3 -2 F pmin .3 • S ds' I p• W p EQU. 13.3 -3 4= if(F > Fpmax,Fpmax, if(F < Fpmin Fpmin,Fp)) F = 338.5171 -lb Miniumum Vertical Force 0.2• S ds . W dl = 225.6781•lb G-14% Harper Project: HP :• Houf Peterson . Client: Job # Righellis Inc. Date: 77 ��ate B • PLANNERS Designer: D: Pg. # LANDSCAPE ARCHITECLB•SDRYtYDRR W dl := 10 lb 8 ft 20 ft W& = 1600-lb ft Seismic Forces Site Class =D Design Category =D Wp := WdI I := 1.0 Component Importance Factor (Sect 13.1.3, ASCE 7 -05) S 0. 339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. S := 0.942 Max EQ, 5% damped, spectral responce acceleration at short period z := 9 Height of Component h := 32 Mean Height Of Roof F := 1.123 Acc-based site coefficient © .3 s -period (Table 1613.5.3(1), 2006 IBC) F 1.722 Vel -based site coefficient @ 1 s- period (Table 1613.5.3(2), 2006 IBC) S := F S Safi := Fv Si 2 -S S := 3 Max EQ, 5% damped, spectral responce acceleration at short period Exterior Elements & Body Of Connections a := 1.0 R := 2.5 (Table 13.5 -1, ASCE 7-05) .4ap•Sds•Ip z F := R_ • + 2 h �-W p EQU. 13.3 -1 Fp 1.6- a EQU. 13.3 -2 Fp := .3•Sds•Ip -Wp EQU. 13.3 - F if(F > Fpmax, Fp if(F < F pmim Fpmin, F F = 338.5171 -lb Miniumum Vertical Force 0.2•s = 225.6781 -lb Gig BY GATE: \ \ ,.J O 0 JOB NO : C / 0 OF &la Li BY V ♦r�lf PROJECT: RE: Fp 33 tv- o ❑ ',} z wOvr or P�KC = - 63 C \ It _ lie .a5 • E 7� F W M ❑ = (3c2IIS = l Las �k O � a z C= T = iGgSiirt s 34v 0 U o � a z so use 5lhf1t7$CK\ Lrrll FP o sue, T 0 ! / t / / / / ❑ NOule_ o z w ❑ Z 0 o z H 0. N • ko BY: f\\{\ \() , ( l \ DATE: 3i)k3 i.JI 0 JOB NO : 1 QM 69 0 0, PROJECT: RE: DEC.Y-, 1) 1 (') F' ;-.1.1_( C A P(-\CV ! N J [ W 6 VCVZ.{1J&I H W 0 2 NPkIL CPrpr 11'y (11.a C' mrrio" l El J t / o W ! 1" m o • e !, = . iZ Z rc a C APAC• {Ty _�.. • • i ° 17 ' =(I6 6<o -'In cab l �z �� * ( =) o Z Jo‘sr5 2 = 1- 4'1 pi. F o ! iF sYacino be - i - wee n ro -; \s - 3 -' ICo o Z Ca,pucs= �t ?1_:F W ❑ o . F 2 a lit.) At.ruQ.\ _ t,. pLF 1 I i =� US . (2) Sr .1 „, I 4 : C a T e..`5 a kt .-.: ( )0_2_0 R) =-_ ./ w tp+ 401r:7 l>1 iil „ L'Iccx i I h BOG k • = 3oq # (' )_X31 44IFt S" scPc\ Sry - x4'li" € iz" o!C, (2)C220 #') = 440 ii= = • o1c._ 61,4 j l ",b _14_ 74- „! hii.L - K1 . Ey=e hi: Ri ►� {704-1 COI-1'e , °? e i !IS °rG ! '4_ NI# 000$ _ -) = ry iif Doog = .f -k-- 002 „nb) #00e =W 3TAJD Qb o 0 m Z - 1l O O 3 ' ❑ r L.� n , 0 1 „ I li UOt. - 1- sa.) 01 3 +� ncii vosduaig - as() Z T rmi_S.e n • a 02 44 00h! s N'44 OQh�$ _ -1 Z o P1 P 0 ` net? )# 0 = VI r r A p ❑ 3 '. 003 ---r4. m m 2 11 ❑ ❑ v c:- ;103road L /� .'ON 80f , \' Siva !M �' J L� l a l` VVVM,O ', Harper • ■111 1 '• HoufPeterson COMMUNICATION RECORD Righellis Inc. TO ❑ FROM 0 MEMO TO FILE 0 FWbin a E7•.7Crii7i6 + ? -- —"" is -.e_,.•vx lsanrocr.,•9U 9vE VANS PHONE NO.: PHONE CALL:0 MEETING:0 23 0 RUC, 1 �j. 7 n (� . I P i. 9...) d 7 5 _ o a o 6 # Z w a 01 ,, 6 V. 4 al g It I e l 1\ T 5 1 1 I - 1 I 11 7 z rN CO 0 9. nuuper •III ' i• DH�oufPeteTr�son COMMUNICATION RECORD Righellis Inc. To ❑ FROM ❑ MEMO TO FILE ❑ � ��• E.'C EEit • PIA•:ER Lx'•D9L'.tPE 9 fd•9u%V.YDR: ---•.. •- -- •- -••• •- PHONE NO.: PHONE CALL: ❑ MEETING: ❑ P3 11 m El z m 3 '''''':(, • .,...., milins --.1. ..e. . 1 \ o ri N F i m 1 s 7 C G a C CP C. R I a r 0 m r Z 1 9 1 COMPANY PROJECT WoodWorks® sOmWAREFOR moo OESION June 8, 2009 16:27 Hand Rail Design Check Calculation Sheet Sizer 8.0 LOADS: Load Type Distribution Pat - Location (ft] Magnitude Unit tern Start End Start End LIVE Live Point 2.50 200 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : l0, 54 Dead Live 100 100 Total 104 104 Bearing: Load Comb #2 Length 0.50• 02 0.50+ Cb 1.00 1.00 `Min. bearing length for beams is 1/2" for exterior supports Lumber -soft, Hem -Fir, No.2, 2x6" Self - weight of 1.7 plf included in loads; Lateral support top= at supports, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (In) using NDS 2006 : Criterion Analysis Value Design Value Analy sis/Design shear fv = 19 Fv' = 150 fv /Fv' = 0.13 Bending( +) fb = 405 Fb' = 1048 fb /Fb' = 0.39 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.20 Total Defi'n 0.03 = <L /999 0.25 = L/240 0.14 ADDITIONAL DATA: FACTORS: P/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 150 1.00 1.00 1.00 . - - - 1.00 1.00 1.00 2 1 850 1.00 1.00 1.00 0.949 1.300 1.00 1.00 1.00 1.00 - 2 Pcp' 405 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.3 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.47 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = L, V = 104, V design - 103 lbs Bending(+): LC #2 = L, M = 255 lbs -ft Deflection: LC #2 = L EI = 27e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L=live S =snow W =wind I=impact C =construction Lc =concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. ( 0 COMPANY PROJECT 0/ WoodWorks® SOFT 455 FOR WOOD On7ON June 8, 2009 16:27 Hand Ra112 Design Check Calculation Sheet SIzer 8.0 LOADS: Load Type Distribution Pat- Location [ft] Magnitude Unit tern Start End Start End LIVE Live Full DDL 50.0 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : Icy 5 ( Dead Live 125 125 Total 129 129 Bearing: Load Comb #2 #2 Length 0.50* 0.50* Cb 1.00 1.00 "Min. bearing length for beams is 1!? for exterior supports Lumber -soft; Hem -Fir, No.2, 2x6" Self - weight of 1.7 plf Included In loads; Lateral support top= at supports, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 19 Fv' = 150 fv /Fv' - 0.13 Bending( +) fb = 256 Fb' - 1048 fb /Fb' = 0.24 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.16 Total Defl'n 0.03 = <L/999 0.25 = L/240 0.11 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 150 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb 850 1.00 1.00 1.00 0.949 1.300 1.00 1.00 1.00 1.00 - 2 Fop' 405 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.3 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.47 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = L, V = 129, V design = 106 lbs Beading( +); LC #2 = L, M = 162 lbs -ft Deflection: LC #2 = L EI 27e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L=live S =snow W =mind I= impact C- construction Lc= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: • 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. \--\ (4) Woodworks® Sizer SOFTWARE FOR WOOD DESIGN Unit B - Front Load WoodWorks® Sizer 7.1 June 22, 2010 14:13:61 Concept Mode: Reactions at Base of Structure View Roof: 25' • • I ab - 1280 L- 1280 L -• - - - • 49' I ,..gr.., 442 D 442 D 46 -b IUS' 4r -0 SW, 4D -t.) Itll 4b -b l vu - . 44 -0 L',6 , . 43 -b_ 9 ( .12272089 L_ : _ 1601 L • - 4C-0 -o ' :. 104815390 T10740 4U 4.3 Cf9 JG -b' • ...11:) • `4 I 3b -b • Nt! _ JAS -0 li! .5.5 -0 W ■ 31 -b rIl' - 3U -0 Is 75 L to n UN • ■59 D ----' /0 a Lb -0 0/ 1408L 1232L L5 . 0 51 D 55613••: L4-0 ( , LS -b �` ',' 1080L X640 L'. - /1-bb t0 • '409 D 117921 LU-0 tT -0 can I ■ 89 DD _ -°_ o -0 ., 1522 L 99 D_ r-o 0 -b. 'tu • ' 5 ■ - n 0 r;:.1 225 9 8 D 75 L 1 3 -0. U r ■ 1 1 O a b, 73 94 fl .2192 L .- - u -o tr a 1311 0 0 n „ J.' f -z, k- •i. 1220 L - „ o -0. U i 9 L 55 L • a -n 109 58 0 :7021 L 2450 D 2 1 13 5581 0 u _ �' .- 1 u EBIBBBCCCE; 'CCCtC'GCC``.:.CC!C:CCCCCC I.CCCuDtJI)11Dr1 r, L1 DDDDCOI DDDEEEE £EEEIEEEIEEIEE4EEEEEEIC[CEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32'34' 36' 38' 40' 42' 44' 46'48' 50' 52' 54' 56' 58' 60' 626466' 68' 70' 72' 74'76' 0'12' ''f'3'r ti' 10 :1•ttiEt: 11102 - 22242122 t33:33 373! 41444:4.4: 4(4'.4145355:5.5515'. 515! 6166: 6:60V6t6'367177,77•77177' -6" 3t.1toL . D Voo L p'i oQr -F Q.oi4r Loet ` WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B - Rear Load WoodWorks® Sizer 7.1 June 22, 2010 14:14:21 . Concept Mode: Reactions at Base of Structure View Floor 3: 17' • • 105• 1280 L- •1280 L • 49 Iu4 . 442 D 442 D 40-b Iu3 4/ -b i ULO 40 -G ;Ulu) 44 -b 44 - 9 1.5 -b 4L -b �di 1 65 25 2 96 L 76 L _ 4l -o ao 328 D : 4101 D 4u -b J - - - Jy :f4 _ JO -b � 3! -0 - yL So -b • • _ D"b yid J4 -b ua 33 -b Otl ...IL -I0 Or �I OO .0 -a OD 75 L Ly-0 d4 - 59 D Ld -0 03 1! -b b I I 10 36 L z; _° ts - 483'D L4 -o ra 77 D' E 10 -b ra 640E LL -o r; _ 11 -kJ Lu -o r u 08 77 L i tI -b /J r 4 AAA I 99 DO - l a -b g'..1 I -u L 1 0 20 L 99 D I b -o r I 368D ' 10-0 rU 14 -b 00 98 0 �A 75 L i u 1 �► 2d n I I -b oc 3 " O 2 L yob b4� 3 J 1 Q 1298 D tl -u bt ` �'_ �\ .. b_b °i:i.. 4L 084E ... v 4LK t 306L4 - 4 062L L 3 D1711.2515 115 D ........ 5647 ----- D-.- .b U -o BBB .BBCCCCCCCCIC .0 CC CCCCCCCCCCICC.Ci10L:7DC'. n}C13DCD73X4::1i1,111+.rD1 ]1111.10EC!EE EEE:EEE[c_ .REFEC EI 0' 2' 4' 6' 8' 1 Q' 12' 14' 16' 18'20' 22'24'26'28' 30' 32' 34' 36' 38'40'4744'46'48'50'52' 54'56' 58'60'62'64' 66'68' 70' 72'74'76' 0'1'2'3'4'5'6'7'8'51(1 1 :1 :14!1L "1;1121222 :222(221243(33: 3 :3e3513 "313N(4 4:4:44:414'43155 5:53.55(531516t6 0;6:6-W6(6'61677 '7:7:7.77(77%. 6" V 0C3II w -G,, L IN•iouT Rem Voell) c/ Plain Concrete Isolated Square Footing Design: Fl f := 2500 -psi Concrete strength f := 60000 -psi Reinforcing steel strength E := 29000•ksi Steel modulus of elasticity "Yconc 150•pcf Concrete density isoi7 100•pcf Soil density gall := 1500-psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldi := 5647 -lb := Totalm Totalu := 7062 -lb := Totalll := Pdl + Pu P = 12709 -lb Footing Dimensions tf := 12 -in Footing thickness Width := 42 -in Footing width ,:= Width Footing Area cinct gall — tf'l gnet = 1350•psf Pu Areqd gnat Aregd = 9.414 ft < A = 12.25-ft 2 GOOD Width := A reg d Width = 3.07 -ft < Width = 3.50 ft GOOD Ultimate Loads Pte:= P& + tf'A''Yconc P := + 1.7 -PU P = 22.48 -kips P clu := qu = 1.84•ksf Beam Shear b := 55-in (4x4 post) d := tj- — 2-in := 0.85 b := Width b = 42-in V„ := 4).3 e s • i•b•d V = 23.8-kips (b — b�l Vu qu'1 2 •b V = 9.77-kips < V = 23.8-kips GOOD Two -Way Shear b = 55•in Short side column width bL := 5.5-in Long side column width b 2•(b8 + d) + 2•(bL+ d) b = 62•in pc := 1.0 _ 4).(4 + 8 ). C psi•b•d V = 71.4-kips l 3 3•(ic J V := 4).2.66• f ps i•b•d V nn , aa = 47.48-kips V qu [b2 — ( b w l + d) V = 19.42-kips < Vnmax = 47.48-kips GOOD Flexure 2 Mu qu I b _ bcol r b M = 7.4341- kips 2 J l ,, := 0.65 1 := 1)-(1 S = 0.405•ft F := 504• f psi F = 162.5-psi M f := f = 127.36.psi< F = 162.5-psi GOOD Poe a 3'-6" x 3'-6" x 12" plain concrete footing VLk Plain Concrete Isolated Square Footing Design: F2 f := 2500-psi Concrete strength f := 60000-psi Reinforcing steel strength E := 29000•ksi Steel modulus of elasticity ry cunc := 150•pcf Concrete density ry := 100•pcf Soil density gall := 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldl := 4101-lb Pdl:= Totaldl Totalp 5376-lb Pll := Total)] P := Pdl + P11 P = 9477-lb Footing Dimensions t := 10-in Footing thickness Width := 36-in Footing width A := Width Footing Area gnet gall — tryconc net = 1375•psf Pt' A := gnet Areqd = 6.892 ft 2 < A = 941 GOOD Width Aregd Width = 2.63•ft < Width = 3.0011 GOOD Ultimate Loads '= Pdl + trA P := 1.4 -Pdl + 1.7•P11 P = 16.46-kips P qu := A qu = 1.83•ksf \7S— Seam Shear bco1:= 5.5•in (4x4 post) d := tp — 2•in := 0.85 b := Width b = 36• in V„ := 4. • f V = 16.32•kips Vu := qu (b 2 cell V = 6.97 kips < V = 16.32 kips GOOD Two-Way Shear bs :_ Short side column width En, := 5.5.in Long side column width b 2•(bs + d) + 2•(bL+ d) b 54• 13 := 1.0 .= c•( + 8 NV / f� psi b d V = 48.96 -kips 3 3 •1 3 c Vnmax := tp•2.66 f psi b d Vmnnx = 32.56•kiips ,;= qu Cb2 — (bt of + 0 V = 14.14 -kips < Vmmx = 32.56•kips GOOD Flexure rb - b 1 r I Mu q n I 2 J 'I 2) b M = 4.43.0-kips 0.65 \ 2 1:--7* bd 6 5 = 0 22241 F := 5. - f F = 162.5 -psi M $ := S f = 138.42 =psi< F = 162.5 -psi GOOD !Use a 3' -0" x 3' -0" x 10" plain concrete footing q49 Plain Concrete Isolated Square Footing Design: F2 f := 2500.psi Concrete strength f := 60000.psi Reinforcing steel strength E 29000.ksi Steel modulus of elasticity i con := 150•pcf Concrete density ''soil 100•pcf Soil density gall := 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldl:= 2515 -lb Pd1:= Total Total!' := 3606•lb Pll := Totalll P u := Pm +Pp Pd= 6121.1b Footing Dimensions t := l0.in Footing thickness Width = 30•in Footing width A:= Width Footing Area gnet gnu — tryenne gnet = 1375•psf Pg Aregd ' clnet Aregd = 4.452•f1: < A = 6.2541 GOOD Width := A Width = 2.11 .ft < Width = 2.50 ft GOOD Ultimate Loads Pdl + - tf'A'''conc := 1.4•Pdl + 1.7 -P11 P„ = 10.74-kips P qu:= A q = l.72•ksf Beam Shear bcol := 5.5. in (4x4 post) d.= if - 2•.in := 0.85 b := Width b = 30•in V tp 4 f -b•d V 13.6-kips 3 b — b V := qu 2 b V = 4.39-kips < V = 13.6-kips GOOD Two -Wav Shear bs := 5.5•in Short side column width bL := 5,5-in Long side column width b = 2.(bs + d + 2•(bL+ d) h = 54•in Ac 1.0 NV,q^ 4 + 8 f'Psi b d V = 40.8-kips 3 3 Ac) V :_ 4.2.66• f Vnmax = 27.13.kips = q,; [b — (b + d� V = 8.57•kips < V = 27.13-kips GOOD Flexure 2 Mu gu t b — bcntJ ] { _ ) . b i M = 2.24•ft.kips 2 f 1:= 0.65 2 51 := b6 S = 0.185. 1 F := 5•61)• F psi F = 162.5-psi M f := S ° f = 83.98-psi < F = 162.5-psi GOOD 11se a 2'-6" x 2'-6" x 10" plain concrete footing Br: Nqc DAT : \ I a01 0 Joo NO.:C e 0c(0 or 9.a1DS v- 4_ao51� PROJECT: �1 I RE: UIli ." Fran6 1_00.8 d.grJT.- a: v-- 5.51m t_ ■°■•` " 31 AI tiL 19.95 t' 1 " `' —r I, I- ; y1, L ❑ —j —�o }s�- 4,35 -- —1'— -8a ' L t' Q J re 6 o W U z ° eiNec,V... Ovef ivy ni Ay re a z O 0 MOT = ►q .at fi 3I�� 4 PO q = P i - ,IO5 Cl0 A, a \ Q M R = V 0. \O)(3.S t 1�5 kcl )+ a,45(1). i-tn +.5.sedri -) z ` = 'a %a.LS M 2� = (o- Lsa�C3,$ ) Ctb)CI.5)(9 ) r D. ,4s(I ) 4- a,'31(ik.s k S .Sb∎ (0 f I f a0 6 0 u - FS _ aO6 `,s .., ov- f 13%2 cc c i IL Z ❑ X el4ott e --`I,$S H B. Q a� �3 CV Y Liu 4(agt�3'r) l.14s v <<s: -dam 31-(15-2 ' 3(.3,5)01 a(4. ) o — a� ! o a T.; - C: 0 " '4".9 %Ieentley* Harper!Hoof Peterson Rig Monts Inc. Current Date: 6/22/2010 10:48 AM Units system: English File name: O: HHPR Protects \CEN - Ceniex Homes (309)10E?' - RlanskCEN S ummer Creek TwnhomerkeieslUnit BBFDMFmnt Loadielzl M33=81.13 IKP'ftl M33 =23.24 (Kip•ft) Y X VS) $ !n't@y'` HarperNouf Petersen Righellis Inc. Current Date: 6/22/2010 10:49 AM Units system: English File name: O:U-IHPR ProjectsICEN - Centex Homes (309110EN - Pians\CF_N -090 Summer Creek TownhomeslcalcslUnit B1FDN\Front Load 2.etz1 M33 =4859 [Kip'ft] M33= -54.65 [Klp'ft] l X 1 l BY: N * DATE: -- 3 1.. A /aot o JOB NO_, C , \ D OF PROJECT: RE: Fran} load, . & .B ❑ ❑ ' -� x L X \Co" ` I -- o f 1 ❑ = ON11..A'�_.5`A vet L a� , x — 4- 3 — er o W vr\i C, 83.L14 146 U z W iz a V ‘i1-1- - V U Vrri \ C. —> - 40.04 kF . 2 ON1r = 0ic∎O A sS, (C)\•?C. U ❑ � - TY n t e. to 0,c. ASc ©.Lit.,tNZ X3.sct. #}q-G� Iv Z 13& ❑ a = C0 ,( 00 1 016/3006)( 1.aa�3tN • o O • 0MW.= °AO( (901 a))65- 1 /lb3iZ., ) -1 ,306 1/4S ? Vf'. (t) s d' o c. As = l 4 to ° e 0 a (‘,o - i� - iCbo,00a) R0,6'43 •`��� = o � 2 . c� to s '` oMn = 0.-'10(.I..fl"- ��(6o,00a�(kg - D.b42is) — _ 7 4t,:a0"It�Ft C( - ) q 4.1. ) s . , 04_ ( ' IT S c to" 0,c. a = C .Z°; >(4 000) / (o, - )t3cxxi)Ca-Z = o - � -(�E, Ni N x 0Mr- 0 ,C,0 C Ii2q (oilitxx%'( o.�6b1Z� _ & 4.mss�Fk >53.y9 0t 0 s. a ' ; heosktsi� rerk o bb :0xa Try #:4 @!'2" o,G . A te _ i. sfr.; t P-- 0 '.1 ZN\i r. 0.Ct0(01SS-Y4tOitrA-f7;) 05 — C;146 17., - ) = 5 a . (b, %s7.. xi) /0,8t3.u: )(bl2) = a.aco� 1t 5 0,S 01c___ BY DATE: JOD NO, OF PROJECT: �i '(� RE, UN I- 1V ' C -Rear Load ❑ ❑ r . may I g F d 100 ❑ i • J ¢ u a 0 Mor = 54,s3 �.Ft .D.L(qO 4- a.0 f) taCIL.33) kts.34 t Mc>z . 0 0 ) 1 _ ail 11LC) + a t ( -) O I s - (./ 4 J 7 Q ` tL r L L IA DL M._ . l L 1- 1p S PvCM : Va X a K ir5� LL Z x= M t — Q 4} t q (8 . e oo Ft �� o , q-�-� ba . 1 I- EL r M va,1. + L(►2,l)(O.3') _ o.4a�s %L` S (a ) actb - < 1,s ..,oL 1S- g- ( ;,(CO Z( >� 2 6 U - ►�i v raw =. C 4 •_ 4 •13 nd- Bentley. Harper Houf Peterson Righellis Inc. Current Date: 6/2212010 10:57 AM Units system: English File name: O:IHHPR ProjectslCEN - Centex Homes (309)\CEN - Plans10EN-090 Summer Creek Townhomeslcalcs1Unit CIFDNIRear Load 2.etz1 • M33=36.82 tKip•ftl M33=-5022 [KIP'ftl VA" Y r�X AC! 318 -05 Appendix D 1.125" Diameter Bar Capacity at Standard Stem Wall • Concrete Breakout Strength Stem Wall Capacity when govern by 3 edges Foundation Capacity Givens Givens • fc = 3000 psi fc = :3000 psi h' = 17:00 inches h _ . 12.00 inches (into the Foundation) Stem = : 8.00 inches Note: hef above is the the embedment into only the the foundation and does not consider stem wall embedment Fnd Width = 36.00 inches Cmin = 2.25 inches c m;n = 18.00 inches Wc.N= 1.00 cast -in -place anchor W 1.00 cast -in -place anchor k = 24 cast -in -place anchor k = 24 cast -in -place anchor = 0.75 strength reduction factor 4) = 0.75 strength reduction factor Calculations Calculations AN = 408 !n` AN = 1296 in` ANo = 2601 in` AN = 1296 in` Nb = 92,139 pounds Nb = 55,121 pounds Wed,N = 0.7265 4'ed,N = 1.00 • Nob = 10,500 pounds NCb = 55,121 pounds 4)Neb = 7,875 pounds 4)N = 41,341 pounds Combined Capacity of Stem Wall and Foundation 4)N, = 49,216 0.754)■ = 36,912 VAC Concrete Side Face Blow Out Givens Abro = 2.75 in` fc = 3000 psi = 18.00 inches 4) = 0.75 strength reduction factor Calculations Nsb = 261,589 pounds 4)N = 196,192 pounds Concrete Pullout Strength Givens Abfs = 2.75 In` fc = 3000 psi = 0.75 strength reduction factor Calculations N = 66,000 pounds 4N = 49,500 pounds Steel Yield Strength Givens ft= 58,000 psi A = 0.763 in = 0.80 strength reduction factor Calculations N 44,254 pounds DN = 35,403 pounds < 36,912 Ductility Met Holdown Check Holdown: HD19 Holdown Capacity= 16,380 pounds 1.6* Capacity= 26,208 pounds 26,208 < 35,403 Holdown Checks ACI 318 -05 Appendix D 1.0" Diameter Bar Capacity at Portal Frame Concrete Breakout Strength Stem Wall Capacity when govern by 3 edges Foundation Capacity Givens Givens fc = 3000 psi fc = 3000 psi = 3.50 inches h = 12.00 inches (into the Fe , Stem = 8.00 inches Note: hef above is the the embedment into or Cmax = 5.25 inches the foundation and does not consider stem wi Fnd Width = 36.00 inches Cmin = 2.25 inches Cmin = 18.00 inches WGN 1.00 cast -in -place anchor WC,N= 1.00 cast -in -place anchor k = 24 cast -in -place anchor k = 24 cast -in -place anchor = 0.75 strength reduction factor 4) = 0.75 strength reduction fact' Calculations Calculations AND = 68 in` AN = • 1296 in' AND = 110.25 in' A = 1296 in Nb = 8,607 pounds Nb = 55,121 pounds Wed.N = 0.8286 1 Ved,N = 1.00 N = 4,399 pounds N = 55,121 pounds 4)Nob = 3,299 pounds 4)N = 41,341 pounds Combined Capacity of Stem Wall and Foundation �Neb = 44,640 0.754)N = 33,480 V'r Concrete Side Face Blow Out Givens Abrs = 2.15 in` fc = 3000 psi = 18.00 inches = 0.75 strength reduction factor Calculations N = 231,191 pounds 4 Neb = 173,393 pounds Concrete Pullout Strength Givens Abro = 2.15 in` fc = 3000 psi = 0.75 strength reduction factor Calculations N 51,552 pounds 4N = 38,664 pounds Steel Yield Strength Givens ft= 58,000 psi A = 0.606 in = 0.80 strength reduction factor Calculations N = 35,148 pounds 4►N = 28,118 pounds < 33,480 Ductili' Met Holdown Check Holdown: HDU14 Holdown Capacity= 14,930 pounds 1.6* Capacity= 23,888 pounds 23,888 < 28,118 Holdown Checks V V73 ■ Br ,\ 11 DATE: 01 a 1 ..re NO: C e J.,...0 Or PROJECT: RE: S\--erc, Wall ' %oobncl ❑ ❑ ▪ Z V sc c s of Boy lci r s LI F- • W ` ? Dt.. o aSct C12 ?sF \ )= 300 Pty WoM . ❑ • $ Caa levels)(1 s4') = a 05 p+.... S Ioor O J 40 Gso pGk A. X112 -) = 333 pLF s1 - em re U o o (.. t501x.F�C w = 100 UJ PL- W T t c. - -; ix. a Z LL. o (bc 2 levels' psi) = LUo p..F .3 lcor O Z Tdkal load = Iy`a 14 toOu a1. F, . 2 Thci % sip = 1So0 psF = 1S0OpLP • w 2 O 11 15 1 + 'CO LO IS v U c0= 1000)C1r x IS 0 2 0 o IL Z ❑ z e rear •, 1r -rcmc roc bu i 1d‘rop o = J- a DL: c25( ti._)::. 30., pc.F watt ( Zvevess)C = a3k1 i�LF . koor 40,3 CIso2c.F , x Viz NO = 333 pu •5 •c- (Ii2-)((5o W = IOV� '''"1 Oa 1'4 cvsf - .W36 pt. c- (&.)f LL: (q)(7.-I4-0) 1-2(-) p LG Cl2J (.2s) _ 4-So pt..F 0 U 4 TL o as43 t 100W 2 :=. cu .!.'2. o = a3y3,- loow S tsoo`u : a = Lt, x ► , 0 a1 %NI e uni v A- :. A., x e L tni 1-4.1 6 C— ::: So" e. as ,6, r11ir S oc c icc TL. 13t)Ct 1 100 t..1/4.) w = 1, oo .` • c.) -e l s' @ Pat -kk) wcU.1 I L. o sC1z.)(2) z (0o� pt.F w!4lI (a'C2 X 13x2 z y16 ?LF Slopf 4o+ lsopc i ` `Itz:Vira.) = 333pLc 51Frr1 LL o (g )C 4o )(? = 1790 P L C Slc3.r TL : a 6a9 } ioow 'V k°‘ RECEIVED JUL 22 2011 (Try ry (W IUARI BU Structural Calculation �ING DIVrsION for Full Lateral & Gravity Analysis of jQ Plan C 1 186 Lot 59, Summer Creek Townhomes Tigard, OR �, X 32 City of Tigard /tai s7'o2o r1 - c- c2 5 Ap• rov; d Plans Pr p ared for 3 By %�!� Date u G roup — O ' I 5 -- April 7, 2011 OFFICE COPY JOB NUMBER: CEN -090 ***Limitations*** Engineer was retained in limited capacity for this project. Design is based upon information provided by the client, who is solely responsible for the accuracy of same. No responsibility and /or liability is assumed by, or is to be assigned to the engineer for items beyond that shown on these sheets. 98 sheets total including this cover sheet. c1/4 14.0 PRO 12,320 y i � � oREcot� � d. E0 I 16 1 12-31 -2011 This Packet of Calculations is Null and Void if Signature above is not Original • ' Harper • Houf Peterson Rishellis Inc. 205 SE Spokane St. Suite 200 • Portland, OR 97202 • [P] 503.221.1131 • [F] 503.221.1171 1104 Main St. Suite 100 • Vancouver, WA 98660 • [P] 360.450.1 141 • [F] 360.750.1141 1 133 NW Wall St. Suite 201 • Bend, OR 97701 • [P] 541.318.1 161 • [F] 541.318.1 141 , , . RED vED Structural CalculatIon for CITY OFTIGARD BUILDING DIVISION Full Lateral & Grav Analysis of Unit C, Front Load & Rear Load Phase 2 Summer Creek Townhomes Prepared for Pulte Group April 6, 2011 JOB NUMBER: CEN -090 ** *Limitations * ** Engineer was retained in limited capacity for this project. Design is based upon information provided by the client, who is solely responsible for the accuracy of same. No responsibility and /or liability is assumed by, or is to be assigned to the engineer for items beyond that shown on these sheets. :..18 sheets total including this cover sheet. A. _ • '., ier g ZRUC TURA 4 _' ' . . . ':a.' At #1 \ ' N% G1 Nf f4 , � y 9 4 T , fi r s . 12,320 v. : zt::( • .., AT I EXPIRE41E -37 -2011 I This Packet of Calculations is Null and Void if Signature above is not Oriainal . * Harper • Hold' Peterson Righellis Inc. 4 205 SE Spokane St. Suite 200 • Portland, OR 97202 • [PJ 503.221.1131 • [F] 503.221.1171 1 104 Main St. Suite 100 • Vancouver, WA 98660 • [P] 360.450.1 141 • [F] 360.750.1141 1133 NW Wall St. Suite 201 • Bend, OR 97701 • [P] 541.318.1161 • [F] 541.318.1 141 Design Criteria Project Scope: Full lateral & Gravity Analysis of Unit C Design Specifications: Wind Design: Basic Wind Speed (mph): 100 From Building Authority Exposure: B From Building Authority Importance, lW: 1 2009 IBC / 2010 OSSC Occupancy Category: II Residential Earthquake Design: Seismic Design Category: D From Building Authority Site Class: D Assumed, ASCE 7 -05 Ch. 20 Importance, IE: 1 ASCE 7 -05 Table 11.5 -1 Ss: 0.942 USGS Spectral Response Map Si: 0.339 USGS Spectral Response Map Dead Load: Floor. 13 psf Wall: 12 psf Wood Roof: 15 psf Live Load: Roof: 25 psf Snow Floor. 40 psf Residential Floor Materials and Design Data: Materials: Concrete Compressive Strength, f' c : 3000 psi Foundations & Slab on Grade Concrete Unit Weight, yc: 145 pcf Steel Reinforcement Yield Strength, t 60,000 psi Wood Studs (Wall Studs): Hem -Fir #2 2x & 4x Wood Beams & Posts: DF -L #2 6x & Greater Wood Beams & Posts: DF -L# 1 Glulam Beams: 24F -V4 PSL Beams: Fb =2,900 psi, FV= 328psi, E =2.0 Million TS /LSL Beams: Fb =2325 psi, FV= 460psi, E =1.55 Million Design Assumptions 1. Allowable soil bearing pressure (qa) : 1500 psf Assumed 2. All manufactured trusses, joists, and flush beams u.n.o. shall be designed by others. Structural Analysis Software Used: Mathcad 11 Microsoft Excel 2000 WoodWorks - Sizer version 2002 Bently RAM Advanse Harper Project: Summer Creek Townhomes UNIT C H P ' H Peterson Cl Pulte Group Job II CEN -090 Righellis inc. -- F:N1.IN41.P+ V /ATtNGNL - _ Designer: AMC Date: June 2010 Pg. # iATIO3tAI" ANGNill f I5•OUNtri YONt DESIGN CRITERIA 2007 Oregon Structural Specialty Code & ASCE 7 -05 Roof Dead Load RFR:= 2.5•psf Framing RPL := 1.5.psf Plywood RRF:= 5.psf Roofing RME := 1.5•psf Mech & Elec RMS := 1 •psf Misc RCG := 2.5•psf Ceiling RIN := 1 •psf Insulation RDL = 15•psf Floor Dead Load FFR := 3.psf Framing FPL 4.psf Sheathing FME := 1.5.psf Mech & Elec FMS := 1.5•psf Misc FIN :_ .5•psf Finish & Insulation FCLG := 2.5•psf Ceiling FDL = 13•psf Wall Dead Load WOOD EX_Wall := 12.psf INT Wall := 10.psf Roof Live Load RLL := 25.psf Floor Live Load FLL := 40.psf L�� Harper Project: Summer Creek Townhomes UNIT C HP '• Houf Peterson Client Pulte Group Job # CEN -090 Righellis Inc. aw.4 • Pll•HPf EAS Designer: AMC Date: June 2010 Pg. # IAMf1SCAPE AN:11IiLCIS•SU0.' /OIONS Transverse Seismic Forces Site Class = D Design Catagory = D Building Occupancy Category: II Weight of Structure In Transverse Direction Roof Weight Roof Area := 748•ft RFwT := RDL.Roof Area RFw- = 12566.16 Floor Weight Floor Areaad := 60541 FLRWt•2 := FDL•Floor_Area2 FLRWT2nd = 7865.1b Floor_Area3 60041 FLRWT3rd FDL -Floor Area3 FLRVrI.3 = 7800.Ib Wall Weight EX Wall Area :_ (2203) -ft 2 INT Wall_Area := (906)4t WALLwT := EX_Wall EX_Wall_Area + 1NT Wall Wall_Area WALLW -r = 35496.1b WTTOTAL = 63727 lb Equivalent Lateral Force Procedure(12.8. ASCE 7 -05) h := 32 Mean Height Of Roof := 1 Component Importance Factor (11.5, ASCE 7 -05) A,:= 6.5 Responce Modification Factor (Table 12.2 -1, ASCE 7 -05) c :_ .02 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) x := .75 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) Period T := C T = 0.27 < 0.5 (EQU 12.8 -7, ASCE 7 -05) Si := 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. (Chapter 22, ASCE 7- 05)...or S := 0.942 Max EQ, 5% damped, spectral responce acceleration at short period From Figures 1613.5 (1) &(2) F := 1.123 Acc -based site coefficient @ .3 s- period (Table 11.4 -1, ASCE 7 -05) F, := 1.722 Vel -based site coefficient @ 1 s -period (Table 11.4 -2, ASCE 7 -05) Li- Harper Project: Summer Creek Townhomes UNIT C •' HP t. Houf Peterson Client: Pulte Group Job . CEN -090 Righellis .Inc. e N CpN■ • N. ANN nr--- Designer: AMC Date: June 2010 Pg. # ,..u.CAC' ,..,..,reC('.• ono∎yt'.•okG SMS := Fa SMS = 1.058 (EQU 11.4-1, ASCE 7 -05) 2 • SMS Sds := Sd = 0.705 (EQU 11.4 -3, ASCE 7 -05) 3 SM, := Fv S i SM, = 0.584 (EQU 11.4 -2, .ASCE 7 -05) 2•SMJ Shc := Shc = 0.389 (EQU 11.4 -4, ASCE 7 -05) 3 Sd Cst :_. Cst = 0.108 (EQU 12.8 -2, ASCE 7 -05) R ...need not exceed... ScIrie Amax := Ta R __ 0.223 (EQU 12.8-3, ASCE 7-05) R C smax ...and shall not be less then... C1 if(0.044•Sd -l <0.01,0.01,0.044-S r 0.5•S1.1� \ (EQU 12.8 -5 &6, ASCE 7 -05) C2 := if l Si < 0.6,0.01, R J Csmin := if(C > C2_, C C2) Cs = 0.031 Cs := i f (Cst < Csmin, Cs if (Cst < Cs , Cst, Cs Cs = 0.108 Cs•WTTOTAL V = 6914 lb (EQU 12.8 -I, ASCE 7 -05) E := V•0.7 E = 4840 lb (Allowable Stress) Harper Project: Summer Creek Townhomes UNIT C ° IfP Houf Peterson Client: Pulte Group Job # CEN -090 Righellis Inc. ENCNEENE • PLANNERS " Designer: AMC Date: June 2010 Pg. # LANOLOAPE AR CtlITECT134 OUNVEYONB Transverse Wind Forces (Method 1 - Simplified Wind Procedure per ASCE 7 -05) Basic Wind Speed: 100 mph (3 Sec Gust) Exposure: B Building Occupancy Category: II I := 1.00 Importance Factor (Table 6-1, ASCE 7 -05) h = 32 Mean Roof Height X := 1.00 Adjustment Factor • (Figure 6 -3, ASCE 7 -05) a2 := 2..1.16•ft Zone A & B Horizontal Length Smaller of... (Fig 6.2 note 10, ASCE 7 -05) a2 =3.2ft or _ .4•11/4•2.11 a2 =25.6 ft but not less a2 3.2•ft a2min = 6 f Wind Pressure (Figure 6 -2, ASCE 7 -05) Horizontal Pnet := 19.9•psf Pnet, := 3.2•psf Pnetmaec := 14.4.psf Pnet 3.3.psf Vertical PnetzencE :_ — 8.8•psf PnCtzoneF —12•psf Pnet := —6.4.psf Pnet e g:= — 9.7•psf Basic Wind Force PA := Pnet e A -I PA = 19.9•psf Wall BWC Pg = Pnet PH = 3.2•psf Roofl Pe := Pnet e G•I w •a Pc = 14.4.psf Wall Typical PD Pnet eD'lw'> PD = 3.3•psf Roof Typical PE := Pnet -I Pg = — 8.8.psf PF := Pnet p •Iw X PF = — 12.psf PG := Pnet e G•I, X PG = — 6.4•psf PH := Pnet X PH = — 9.7.psf Harper Project: Summer Creek Townhomes UNIT C HP '• Ilouf Peterson Client: Pulte Group Job # CEN -090 Righellis Inc. - lN4lpdbNq • P\A.No., - Designer: AMC Date: June 2010 Pg. # 1•1706r• Apt.$lltf IM • flNNVftON7. Determine Wind Sail In Transverse Direction WSALLZoneA :_ (55 + 59 + 29) -ft WSAII z e B := (6 + 0 + 23)4/ WSA := (429 + 355 + 339)4/ WSAJDg = (0 + 0 + 4)41 WA := WSAILZoneA -PA WA = 2846 lb WH WSAILZoneg•PB Wg = 93 lb WC := WSALLZ WG = 16171 lb WD := WSA WD = 13 lb Wind Force := WA + WB + WC + WD Wind Force := 10•psf•(WSAIL.L + WSAILZcmeg + WSAILz + WSAILZoneD) Wind Force = 19123 lb Wind Force = 12990 lb WSAILZoneE := 43 -ft WSAIL7oneF 4341 WSAI q meG = 33441 WSAILZo := 327•ft WE := WSAILZ WE = —378 lb WE := WSALoneF'PF WF _ —516 lb WG := WSAIL.ZoneJPG WG = —2138 lb WH := WSA Wil = —3172 lb Uplift := WF + WH + (WE + WG) + RDL•[WSA + WSAII.Zonell + (WSAILZ, + WSALLg Uplift = 1326 lb (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN CALCULATION Harper Project: Summer Creek Townhomes UNIT C ' Houf Peterson Righellis Inc. Client: Pultc Group Job # CEN -090 L„Q,REc/t..• AAM ' Designer: AMC Date: June 2010 Pg. # 1•fl Ot. AFC A SICI117EC IS OUf I Longitudinal Seismic Forces Site Class = D Design Catagory = D Building Occupancy Category: H Weight of Structure In Longitudinal Direction Roof Weight Roof Area = 838 ft FI�:= RDL•Roof Area RFATT = 12566•lb Floor Weight Floor Area2 = 605 ft g = FDL•Floor Area2 FLRwr2 d = 7865•Ib Floor_Area3 = 600 ft F,j;= FDL•Floor Area3rd FLRWD = 7800•lb Wall Weight EX W$lL.A .= (2203) -ft 2 INT Wall Area = 906 ft 20 1+= EX_Wall + INT Wall„ t •INT_Wall_Area WALLWr = 35496.lb WTTOTAL = 637271b - Equivalent Lateral Force Procedure(1 ASCE 7 - 05) h = 32 Mean Height Of Roof l = I Component Importance Factor (11.5, ASCE 7 -05) A,:= 6.5 Responce Modification Factor (Table 12.2 -1, ASCE 7 -05) C = 0.02 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) x = 0.75 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) Period 2 C T = 0.27 < 0.5 (EQU 12.8 -7, ASCE 7 -05) Si = 0.339 Max EQ, 5% damped, spectral responce acceleration of l sec. (Chapter 22, ASCE 7- 05)...or S = 0.942 Max EQ, 5% damped, spectral responce acceleration at short period From Figures 1613.5 (1) &(2) F = 1.123 Acc -based site coefficient @ .3 s -period (Table 11.4 -1, ASCE 7 -05) F„ = 1.722 Vel -based site coefficient @ 1 s- period (Table 11.4-2, ASCE 7 -05) L( Harper Project: Summer Creek Townhomes UNIT C HP Houf Peterson Client: Pulte Group Job # CEN -090 Righellis inc. Designer: AMC Date: June 2010 Pg. # •MOnC•PC' �CI'..sunvr�aus Fa Ss SMS = 1.058 (EQU 11.4 -1, ASCE 7 -05) c' v' 3 2 SMS �JWS Sds = 0.705 (EQU 11.4 -3, ASCE 7 -05) = Fv S1 SMl = 0.584 (EQU 11.4 -2, ASCE 7 -05) 2 •SMl 5:= 3 Shc = 0.389 (EQU 11.4 -4, ASCE 7 -05) Sds gs := Cst = 0.108 (EQU 12.8 -2, ASCE 7 -05) ...need not exceed... s = Sdi'lc Cs mnx = 0.223 (EQU 12.8 -3, ASCE 7-05) T ...and shall not be less then... ,:= if(0.044• Sd I < 0.01, 0.01, 0.044• Sd rr 0.5 Sl Tel (EQU 12.8 -5&6, ASCE 7 -05) := ifI S1 < 0.6,0.01, `` R J := if(C l > C2, C i , C2) Ch = 0.031 C,:= if (Cst < Cs Cs if (Cst < Cs Cst, Cs , )) Cs = 0.108 V Cs• PVT TOTAL V = 6914 lb (EQU 12.8 -1, ASCE 7 -05) Fes= V.0.7 E = 4840 lb (Allowable Stress) L H arpeT Project: Summer Creek Townhomes UNIT C HP lii.auf Peterson Client: Pulte Group Job # CEN -090 Righcllis Inc. - - £tlGWRE5H5 •PLFlNREN6 .- - Designer: AMC Date: June 2010 Pg. # LAtlu6CAVE ARr•MIf6Ci6•6u0.YEYOR,9 Longitudinal Wind Forces (Method 1 - Simplified Wind Procedure per ASCE 7 -05) Basic Wind Speed: 110 mph (3 Sec Gust) Exposure: B Building Occupancy Category: II I = 1.0 Importance Factor (Table 6 -1, ASCE 7-05) h = 32 Mean Roof Height X = 1.00 Adjustment Factor (Figure 6-3, ASCE 7 -05) Smaller of... = 2•.1.16.ft Zone A & B Horizontal Length — 3 2ft (Fig 6 -2 note 10, ASCE 7 -05) 4 h 2 8 or a2 =25.6ft but not less than... .= 3.2•ft min = 6 ft Wind Pressure (Figure 6-2, ASCE 7-05) Horizontal Pnet.„neA = 19.9•psf Pnet = 3.1psf Pnetzamec = 14.4psf Pnet = 3.3•psf Vertical Pnet,,, = — 8.8•psf Pnet = — 12•psf PnetzoneG = — 6.4psf Pnet = — 9.7•psf Basic Wind Force Pnet PA = 19.9.psf Wall HWC Pnet X PB = 3.2.psf Roof HWC PnetzoneClw> PC = 14.4•psf Wall Typical := Pnet X PD = 33•psf Roof Typical i gr A = Pnet PE = — 8.8•psf , = Pnet PF = — 12•psf _ Pnet,AneG'Iw•X PG = — 6.4•psf ,:= Pnet PH = — 9.7•psf Harper Project: Summer Creek Townhomes UNIT C HP Houf Peterson client: Pulte Group Job # CEN -090 Righellis Inc. - a Nc1riEEws : v11a11NERs — - Designer: AMC Date: June 2010 Pg. # L 11Nn SC�VE 7.NC1111EC IS, 21111VEYU119 Determine Wind Sail In Longitudinal Direction A t/Ma y. 7 4444 4J= (58 + 59 + 21)41 , h , := (0 + 0 + 51) -ft AV,i1FGn' (98 + 99 + 34)-11 NON' atr ,:= (0 + 0 + 114)41 = WSAILzoneA-PA WA = 2746 lb X14,:= WSAILzoneB WB = 163 lb = WSAILZoneC'PC WC = 3326 lb WSA1LZoneffPD WD = 376 lb ind 'orce := WA + WB + W + WD 4 1,1 804 = 10•psf•(WSAILZ + WSAILZ + WSAILZonec + WSAILZoneD) Wind Force = 6612 lb Wind_Force = 5340 lb W nNVw'v R174R4= 151 •ft titrAa 138•ft ,�17 242•ft N SIL := 216-ft = WSAZoneE-PE WE = -1329 lb A tCR,,:= WSAILZoneF'PF WF = -1656 lb = WSAII-Zoneo PG WG = - 15491b = WSAILZonei'PH WH = -2095 lb TW := WF + WH + (WE + WO) + RDL•[WSAILZoneF + WSAILZoneH + (WSAILZoneE + WSAILZoneG)] Uplift 901 lb (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN CALCULATION 1 Harper Houf Peterson Rlghellis Pg #: Transverse Wind Line Shear Distribution ASCE 7-05, section 6.4 (Method 1 - simplified) Design Criteria: Basic Wind Speed = 100 mph Wind Exposure = B (Section 6.5.6, ASCE 7 -05) Mean Roof Height, H (ft) = 32 Roof Pitch = 6 /12 Building Category= II (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf X = 1.00 Iw= 1.00 Wind Sail • Wind Net Design Wind Pressure (psi) (ft2) Pressure (Ibs) Zone A = 19.9 143 2846 Wall High Wind Zone Horizontal Zone B = 3.2 29 93 Roof High Wind Zone Wind Forces Zone C = 14.4 1123 16171 Wall Typ Zone Zone D = 3.3 4 13 Roof Typ Zone Zone E = -8.8 43 -378 Roof Windward High Wind Zone Vertical Zone F = -12.0 43 -516 Roof Leeward High Wind Zone Wind Forces Zone G = -6.4 334 -2138 Roof Windward Typ Wind Zone Zone H = -9.7 327 -3172 Roof Leeward Typ Wind Zone Total Wind Force=) 19123 lbs • Use to resist wind uplift Roof Only Total Exterior Wall Area= 2203 ft Uplift due to Wind Forces= -6204 lbs Resisting Dead Load= 7517 lbs El 1313 Lbs...No Net Uplift I Wind Distribution Tributary to Diaphragms Wind Sall Tributary To Dia hragm (ft Zone A Zone B Zone C • Zone D Main Floor 55 6 429 0 ,Upper Floor 59 0 355 0 Main Floor Diaphragm Shear = 7291 lbs Upper Floor Diaphragm Shear = 6286 lbs Roof Diaphragm Shear = 5546 lbs Wind Distribution To Shearwall Lines MAIN FLOOR UPPER FLOOR ROOF Tributary Line Shear Tributary Line Shear Tributary Line Shear Wall Line Diaphragm Diaphragm Diaphragm Width (ft) (Is) Width ft (lbs) Width (ft) (Ibs) A 15.83 2321 6.58 1150 19.00 2773 B 19.00 2785 18.00 3143 0.00 0 C 14.92 2186 11.42 1994 19.00 2773 L= 49.75 7291 36 6286 38.00 5546 L.— \ Harper Houf Peterson Righellis Pg Transverse Seismic Line Shear Distribution Seismic Design Category = D Occupancy Category = II Site Class = D S1 = 0.34 Ss = 0.94 Importance Factor = 1,00 Table 11.5 -1, ASCE 7 -05 Structural System, R = 6.5 Table 12.2 -1, ASCE 7 -05 Ct = 0.020 Other Fa = 1.12 Fv = • 1.72 Mean Roof Height, H (ft) = 32 Period (T = 0.27 Equ. 12.8 -7, ASCE 7 -05 k = 1.00 12.8.3, ASCE 7 -05 S,,,= 1.06 Equ. 11.4 -1, ASCE 7 -05 Sm= 0.58 Equ. 11.4 -2, ASCE 7 -05 Sin= 0.71 Equ. 11.4 -3, ASCE 7 -05 S 0.39 Equ. 11.4-4, ASCE 7 -05 Cs = 0.11 Equ. 12.8 -2, ASCE 7 -05 Csmin = 0.01 Equ. 12.8 -5 & 6, ASCE 7 -05 Csmax = 0.22 Equ. 12.8 -3, ASCE 7 -05 Base Shear coefficient, v = 0.076 Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height (ft) = 8 Floor 3 Diaphragm Height (ft) = 18 Roof Diaphragm Height (ft) = 32 Floor 2 Wt (lb)= 7865 Floor 3 Wt (lb)= 7800 Roof Wt (Ib) = 12566 Wall Wt (Ib) = 35496 Trib. Floor 2 Diaphragm Wt (lb) = 22063 Trib. Floor 3 Diaphragm Wt (Ib) = 21998 Trib. Roof Diaphragm Wt (Ib) = 19665 Vertical Dist of Seismic Forces Cumulative % total of base shear Rho Check to Shearwails (lbs) I to shear walls Req'd? Vfloor 2 (Ib) = 711 100.0% Yes Vfl ,r3 (Ib) = 1695 85.3% Yes V, (Ib) = 2534 52.4% Yes Shear Distribution To Wall Lines Wall Line 'Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line Roof Line Floor 2 Floor 3 Roof Shear Shear Shear sq ft sq ft sq ft lbs lbs lbs A 124 105 326 168 314 1185 B 273 259 0 369 775 0 C 129 169 371 174 506 1349 Sum 526 533 697 711 1595 2534 Total Base Shear = [ 4840 LB *Base shear assumes rho equal to 1.0. Sec shearwall analysis spreadsheet for confirmation of rho. ill Harper Houf Peterson Righellis Pg #: Longitudinal Wind Line Shear Distribution ASCE 7-05, section 6.4 (Method 1 - simplified) Design Criteria: Basic Wind Speed = 100 mph Wind Exposure = B (Section 6.5.6, ASCE 7 -05) Mean Roof Height, H (ft) = 32 • Roof Pitch = 6 /12 Building Category= II (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf X = 1.00 Iw= 1.00 Wind Sail nd Net Design Wind Pressure (psf) (ft2) Pressure (Ibs) Zone A = 19.9 138 2748 Wall High Wind Zone Horizontal Zone B = 3.2 51 163 Roof High Wind Zone Wind Forces Zone C = 14.4 231 3326 Wall Typ Zone Zone D = 3.3 114 376 Roof Typ Zone Zone E = -8.8 151 -1329 Roof Windward High Wind Zone Vertical Zone F = -12.0 138 -1656 Roof Leeward High Wind Zone Wind Forces Zone G = -6.4 242 -1549 Roof Windward Typ Wind Zone Zone H = -9.7 216 -2095 Roof Leeward Typ Wind Zone Total Wind Force =) 6612 lbs I Use to resist wind uplift: Roof & Half of Upper Floor Walls Total Exterior Wall Area= 2203 ft Uplift due to Wind Forces= -6629 lbs Resisting Dead Load= 10160 lbs 1 3531 Lbs...No Net Uplift Wind Distribution Tributary to Diaphragms Wind Sall Tributary To Dia hragm (ft Zone A Zone B Zone C Zone D Main Floor 58 0 98 0 Upper Floor 59 0 99 0 Main Floor Diaphragm Shear = 2565 lbs Upper Floor Diaphragm Shear = 2600 lbs Roof Diaphragm Shear = 1447 lbs Wind Distribution To Shearwall Lines • MAIN FLOOR UPPER FLOOR ROOF Tributary Line Shear Tributary Line Shear Tributary Line Shear Wall Line Diaphragm (lbs) Diaphragm (lbs) Diaphragm Width ( ) Width (ft) ( ) Width (ft) (lbs) 1 8 1283 8 1300 8 723 2 8 1283 8 1300 8 723 I= 16 2565 16 2600 16 1447 L\2 Harper Houf Peterson Righellis Pg #: Longitudinal Seismic Line Shear Distribution Seismic Design Category = D Occupancy Category = II Site Class = D S1 = 0.34 Ss = 0.94 Importance Factor = 1.00 Table 11.5 -1, ASCE 7 -05 Structural System, R = 6.5 Table 12.2 -1, ASCE 7 -05 Ct = 0.020 Other Fa = 1.12 Fv = 1.72 Mean Roof Height, H (ft) = 32 Period (T = 0.27 Equ. 12.8 -7, ASCE 7 -05 k = 1.00 12.8.3, ASCE 7 -05 S,. 1.06 Equ. 11.4 -1, ASCE 7 -05 S 0.58 Equ. 11.4 -2, ASCE 7 -05 S 0.71 Equ. 11.4 -3, ASCE 7 -05 SDI= 0.39 Equ. 11.4 -4, ASCE 7 -05 Cs = 0.11 Equ. 12.8 -2, ASCE 7 -05 Csmin = 0.01 Equ. 12.8 -5 & 6, ASCE 7 -05 Csmax = 0.22 Equ. 12.8 -3, ASCE 7 -05 Base Shear coefficient, v = 0.076 Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height (ft) = 8 Floor 3 Diaphragm Height (ft) = 18 Roof Diaphragm Height (ft) = 32 Floor 2 Wt (lb)= 7885 Floor 3 Wt (Ib)= 7800 Roof Wt (lb) = 12566 Wall Wt (Ib) = 35498 Trib. Floor 2 Diaphragm Wt (Ib) = 22063 Trib. Floor 3 Diaphragm Wt (Ib) = 21998 Trib. Roof Diaphragm Wt (Ib) = 19665 Vertical Dist of Seismic Forces I Cumulative % total of base shear Rho Check to Shearwalis fibs) to shearwalls Req'd? V (Ib) = 711 100.0% Yes Vn (Ib) = 1695 85.3% Yes V,c& (Ib) = 2534 52.4% Yes Shear Distribution To Wall Lines Wall Line Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line Roof Line Floor 2 Floor 3 Roof Shear Shear Shear sq ft sq ft sq ft lbs lbs lbs 1 275 270 360 323 718 1220 2 330 330 388 388 877 1315 Sum 605 600 748 711 1595 2534 Total Base Shear* = ( 4840 LB *Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. Harper Houf Peterson Righellis Pg #: Shearwall Analysis Based on the ASCE 7 -05 Transvere Shcarwalls Line Load Controlled lid- Wind Shear H L Wall H/L Line Load Line Load Line Load Dead V Panel Shear Panel M MR Uplift Panel Lgth. From 2nd Flr- From 3rd Flr. From Roof Load Sides Factor Type T (ft) (ft) (ft) ht k ht k lit k (kit) (plf) (ft -k) (11 -k) (k) 101 8 5.17 5.17 1.55 ox 8.00 2.32 18.00 1.15 27.00 2.77 1209 Double 1.40 VII 102 8 4.00 4.00 2.00 OK 8.00 2.79 8.00 3.14 1482 Double 1.40 VIII 103 8 3.83 7.33 2.09 ox 8.00 2.19 8.00 1.99 8.00 2.77 948 Double 1.40 VI 104 8 3.50 7.33 2.29 OK 8.00 2.19 - 8.00 1.99 8.00 2.77 948 Double 1.40 VI 105 8 4.25 _ 12.75 1.88 o K 8.00 2.32 I8.00 1.15 27.00 2.77 490 Single 1.40 II 106 8 8.50 12.75 0.94 ox 8.00 2.32 18.00 1.15 27.00 2.77 490 Sinele 1.40 11 107 8 1.25 1.25 6.40 8.00 2.19 18.00 1.15 27.00 2.77 4887 Double 1.40 NG 108 8 1.25 3.50 6.40 8.00 2.19 8.00 1.99 8.00 2.77 1987 Double 1.40 NO 109 8 1.25 3.50 6.40 8.00 2.19 8.00 1.99 8.00 2.77 1987 Double 1.40 NG 110 8 1.00 3.50 8.00 8.00 2.19 8.00 1.99 8.00 2.77 1987 Double 1.40 NG 201 9 5.58 9.17 1.61 OK 9.00 1.15 18.00 2.77 428 Single 1.40 II 202 9 3.58 9.17 2.51 OK • 9.00 1.15 18.00 2.77 428 Single 1.40 11 202A 9 3.50 3.50 2.57 OK 9.00 3.14 898 Double 1.40 VI 203 9 7.00 7.00 1.29 OK 9.00 1.99 18.00 2.77 681 Single 1.40 . IV 301 8 6.00 10.00 1.33 OK 8.00 2.77 277 Single 1.40 1 302 8 4.00 10.00 2.00 OK 8.00 2.77 277 Sinele 1.40 1 303 8 4.96 9.92 1.61 OK 8.00 2.77 280 Single 1.40 304 ' 8 4.96 9.92 1.61 ox 8.00 2.77 280 Single 1.40 1 Spreadsheet Column Definitions & Formulas L = Shear Panel Length II = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load / Total L Shear Factor = Adjustment For H/L> 2:1 Mo (Overturning Moment) = Wall Shear • Shear Application ht Mr (Resisting Moment) = Dead Load * L • (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) Llt-k Harper Houf Peterson Righellis Pg #. Shearwall Analysis Based on the ASCE 7 -05 fransvere Shearwells Line Load Controlled By: Seismic Shear H L Wall H/L Line Load Line Load Line Load Dead V Rho•V % Story It Panel Shear Panel Mo Ma Uplift Panel Lgth. From 2nd Fir. From 3rd FIr. From Roof Load Strength Bays Sides Factor Type T (fi) (fl) (fl) he k ht k ht k (kit) (pi) (pit) (fl -k) (ft -k) (k) 101 8 5.17 5.17 155 OK 8.00 0.17 - 18.00 031 27.10 1.19 323 419 0.31 1.29 Single 1.00 III 102 8 4.00 4.00 2.00 OK 8.00 0.37 8.00 0.78 0.00 286 372 0.24 1.00 Single 1.00 Ill 103 8 3.83 7.33 2.09 ox 8.00 0.17 8.00 0.51 8.00 1.19 254 331 023 0.96 Single 0.96 11 104 8 3.50 7.33 2.29 - ox 8.00 0.17 8.00 0.51 8.00 1.19 254 331 021 0.88 Single 0.88 III _ 105 ' 8 ' 4.25 12.75 1.88 oK 8.00 0.17 18.00 0.31 27.00 1.19 131 170 026 1.06 Single 1.00 I 106 8 850 12.75 0.94 u 8.00 0.17 18.00 0.31 27.00 1.19 - 131 170 NA 2.13 Single 1.00 1 107 8 1.25 1.25 6.40 8.00 0.27 18.00 0.51 27.00 1.19 1572 2044 0.08 0.31 Double 0.31 NG 108 8 1.25 330 6.40 8.00 0.27 8.00 0.51 _8.00 1.19 561 730 ._ 0.08 0.31 Double 0.31 NO 109 8 1.25 3.50 6.40 8.00 0.27 8.00 0.51 8.00 1.19 561 730 0.08 0.31 Double 0.31 NG 110 8 1.00 3.50 8.00 8.00 0.27 8.00 0.51 8.00 1.19 561 730 0.06 0.25 Double 025 NG - 201 9 5.58 9.17 1.61 OK 9.00 031 18.00 1.19 164 213 0.28 1.24 Single 1.00 1 202 9 3.58 9.17 2.51 OK 9.00 0.31 18.00 1.19 164 213 0.18 0.80 Single 0.80 11 202A 9 3.50 330 2.57 OK 9.00 0.78 0.00 221 2118 , 0.18 0.78 Single 0.78 III 203 9 7.00 7.00 1.29 OK 9.011 0.51 18.00 1.19 242 _ 314 _ 0.36 1.56 Single 1.00 II 301 8 6.00 10.00 1.33 ox 8.00 1.19 119 154 0.30 1.50 Single 1.00 1 302 8 4.00 10.00 2.00 OK 8.00 1.19 119 154 0.20 1.00 Single 1.00 1 303 8 4.96 9.92 1.61 OK 8.00 1.1.9 119 155 0.25 1.24 Single 1.00 I 304 8 4.96 9.92 L61 ox 8.00 1.19 119 , 155 0.25 124 Single , 1.00 1 Rho Calculation Does the 1st floor shearwalls resist more than 35% of the total transverse base shear? Yea Does the 2nd floor shearwalls resist more than 35% of the total transverse base shear? Yes Does the 3rd floor shearwalls resist more than 35% of the total transverse base shear? Yes Total 1st Floor WWI length= 1630 Total k 1st Floor Bays = 4.3 Are 2 bays minimum present along each wall line? No 1st Floor Rho = 1,3 Total 2nd Floor Wall Length = 19.67 Total 8 2nd Floor Bays= a Are 2 bays minimum present along each wall line? No Ind Floor Rho = 13 Total 3rd Floor Wall Length = 19.92 Total k 3rd Floor Bays' s Are 2 bays minimum present along each wall line? Yes 3rd Floor Rho = 1.0 Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load•Rho / Total L % Story Strength = L / Total Story L (Required for walls with H/L > 1.0, for use in Rho check) 8 Bays = 2•UH Shear Factor = Adjustment For 11/L > 2:1 Mo (Overturning Moment) = Wall Shear • Shear Application ht Mr (Resisting Moment) = Dead Load • L • (.6 wind or .9 seismic) Uplift T = (Mo-Mr) / (L - 6 in) L \ 5. Harper Houf Peterson Righellis Pg #: Shearwall Analysis Based on the ASCE 7 -05 Longitudinal Shearwalls Line Load Controlled By: Wind Shear H L Wall H/L Line Load Line Load Line Load Dead V Panel Shear Panel Mo Ma Uplift Panel Lgth. From 2nd Flr. From 3rd Flt. From Roof Load Sides Factor Type T (ft) (ft) (ft) ht k ht k ht k (klt) (plt) (ft -k) (ft-k) (k) 105 8 12.75 12.75 0.63 ox 10.00 1.28 18.00 130 27.00 0.72 1.13 259 Single 1.40 I 55.75 ' 92.01 0.04 106 8 12.75 12.75 0.63 _ ox 10.00 1.28 18.00 130 27.00 0.72 1.13 259 Single 1.40 1 55.75 92.01 0.04 I 204 9 11.50 11.501 0.78 ox 9.00 1.30 18.00 0.72 0.75 176 Single 1.40 I 24.71 49.73 J -0.47 I 205 9 11.50 11.5010.78 ox 9.00 130 18.00 0.72 0.75 176 Single 1.40 l 24.71 49.731 -0.47 305 8 10.00 10.00 0.80 ox 8.00 0.72 0.29 72 Single 1.40 1 5.76 14.40 0.30 306 [ 8 10.00 10.0010.80 1 ox 8.00 0.72 0.29 72 Single 1.40 I 5.78 14.40 -0.30 Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load / Total L Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear • Shear Application ht Mr (Resisting Moment) = Dead Load • L * 0.5 • (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) LI B Harper Houf Peterson Righellis P g # Shearwall Analysis Based on the ASCE 7 -05 Longitudinal Shearwalls Line Load Controlled By: Seismic 'Shear 11 L Wall H/L Line Load Line Load Line Load Dead V Rho•V % Story # Panel Shear Panel M MR Uplift Panel Lgth. From 2nd Flr. From 3rd Flr. From Roof Load Strength Bays Sides Factor Type T (fl) (It) (It) In k ht k ht k (ku) (plt) (plf (ft-k) (fl-k) (k) 105 8 12.75 12.75 0.63I OK 10.00 0.32. 18.00 0.72 27.00 1.22 1.19 177 177 NA 3.19 Sinale 1.00 1 49.09 96.89 -0.74 106 _ It 12.75 12.75 ' 0.63 OK 10.00 0.39 18.00 0.88 27.00 1.32 1.19 202 202 NA 3.19 Single 1.00 1 55.17 96.89 -024 I 204 205 I 9 } 11.50 11 .50 ( 0.78 I OK I_ 1 9.0 I 0.88 1 18.00 1.32 0.81 191' 191 I NA I 2.56 I Single I 1.00 1 31.56 1 53.69 -0.06 , I 330065 1 110 00 1 00..8800 I oK I I I 1 88 9 0 11 .2 3 0 0 3 3 132 I 113222 I NA I 2.50 I Single 11..0000 1 1052 1 17.40 I 0 I Rho Calculation Does the 1st floor shearwalls resist more than 35% of the total longitudinal base shear? Yes Does the 2nd floor shearwalls resist more than 35% of the total longitudinal base shear? Yes Does the 3rd floor shearwalls resist more than 35% of the total longitudinal base shear? Yes Total 1st Floor Wall Length = rasa Total ft 1st Floor Bays = 3,33 Are 2 bays minimum present along each wall line? Yes let Floor Rho = ra Total 2nd Floor Wall Length= uw Total # 2nd Floor Bays = s Are 2 bays minimum present along each wall line? Yes 2nd Floor Rho= to Total 3rd Floor Wall Length = MAO Total t 3rd Floor Bays = s Are 2 bays minimum present along each wall line? Yea 3rd Floor Rho = t Spreadsheet Column Definitions & Formulas L = Shear Panel Length II-- Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load'Rha / Total L % Story Strength =1. / Total Story L (Required for walls with H/L > 1.0, for use in Rho check) 11 Bays = 2•L/H Shear Factor - Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear • Shear Application ht Mr (Resisting Moment) = Dead Load • L • 0.5 • (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) L ` Harper Houf Peterson Righellis Pg #: SHEAR WALL SUMMARY' Transvere Shearwalls Panel Wall Shear Wall Type Good For V (plO (P� 101 1209 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails (a, 3/12 1276 102 1482 2 Layers 1/2" APA Rated Plvw'd w/ 8d Nails @ 2/12 1667 103 948 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 990 104 948 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 990 105 490 1/2" APA Rated Plvw'd w/ 8d Nails @ 4/12 495 106 490 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 107 Simpson Strongwall 108 Simpson Strongwall 109 Simpson Strongwall 110 Simpson Strongwall 201 428 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 202 428 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 202A 898 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 990 203 681 1/2" APA Rated Plyw'd w/ 8d Nails @ 2/12 833 301 277 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 302 277 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 303 280 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 304 280 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design loads. • Harper Houf Peterson Righellis Pg #: SHEAR WALL SUMMARY' Longitudinal Shearwalls Panel Wall Shear Wall Type Good For Uplift Simpson Holdown Good For V (pH) (p11) (]b) (lb) 105 259 1/2" APA Rated Plyw'd w/ 8d Nails (Za 6/12 339 44 Simpson None 0 106 259 1/2" APA Rated Plyw'd w/ 8d Nails aC3 6/12 339 44 Simpson None 0 204 176 1/2" APA Rated Plyw'd w/ 8d Nails A 6/12 339 -345 Simpson None 0 I 205 191 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 242 -59 Simpson None 0 305 122 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 242 -72 Simpson None 0 I 306 132 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 242 8 Simpson None 0 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design loads. L1 Transverse Wind Uplift Design Unit C Shear H Joist L Wall Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting Uplift From . Uplift From Wall Wall Uplift Uplift Total Total Panel Height Lgth. From 2nd From 3rd From Wall Load (not Point Point ping Moment Moment Floor Shear ® Floor Shear ® Stacking ® Stacking From From Uplift Uplift Flr. Flr. Roof Shear including Load Load Momen ® Left ® Right Left Right Left Side of ® Right Wall Wall ® Left ® floors ® Left ® t House Side of Above Above Right above if Right House ® Left ® walls Right stack) (ft) (ft) (ft) (ft) k k k k plf klf k k kft kft kft k k k k k k 101 8 L1667 5.21 5.21 2.321 1.15 2.773 6,244 1199 0.1 0.192 0.208 54.53 2.36 2.44 11.28 11.27 201 L 201 R 4.97 5.11 16.25 16.38 102 8 1.1667 4.00 4.00 2.785 3.143 5.928 1482 0.092 0.192 _ 51.09 1.50 0.74 14.34 14.47 14.34 14.47 103 8 1.1667 3.83 7.33 2.186 1.994 2.773 6.953 948 0.1 0.24 0,078 31.98 1.65 1.03 9.30 9.41 203R (1/2) 3.83 9.30 13.24 104 8 1.1667 3.50 7.33 2.186 L994 2.773. 6.953 948 0.1 0.078 0.192 29.20 0.89 1.28 9.56 9.48 9.56 9.48 105 8 1.1667 4.58 13.08 2.321 1.15 2.773 6.244 477 0.1 0.192 0.078 19.10 1.93 1.41 . 4.39 4.47 201L 201R 4.97 5.11 9.36 9.58 106 8 1.1667 8.50 13.08 2.321 1.15 2.773 6.244 477 0.1 0.078 0.384 35.43 4.28 6.88 4.11 3.91 202L 202R 5.35 5.22 9.46 9.13 107 8 1.1667 1.25 4.75 2.186 1.994 2.773 6.953 1464 0.048 0.192 0.045 14.64 0.28 0.09 18.77 18.92 18.77 18.92 108 8 1.1667 1.25 4,75 2.186 1.994 2.773 6.953 1464 0.048 0.045 0.192 14.64 0.09 0.28 18.92 18.77 18.92 18.77 109 8 1.1667 1.25 4.75 2.186 1.994 2.773 6.953 1464 0.1 0.24 0.208 14.64 0.38 0.34 18.70 18.73 203R 7.65 18.70 26.38 110 8 1.1667 1.00 4.75 2.186 1.994 2.773 6.953 1464 0.1 0.208 0.192 11.71 0.26 0.24 19.81 19.83 304R 1.65 19.81 21.48 201 9 1.1667 5.8.75 9.75 1.15 2.773 3.923 402 0.172 0.432 0.156 23.22 5.51 3.88 3.39 3.56 301L 301R 1.58 1.55 4.97 5.11 202 9 1.1667 3.875 9.75 1.15 2.773 3.923 402 0.172 0.156 0.432 15.32 1.90 2.97 3.66 3.49 302L 302R 1.69 1.72 5.35 5.22 202A 9 1.1667 3.833 3.833 3.143 3.143 820 0.142 0.816 _ 28.29 4.17 1.04 6.73 7.22 6.73 7.22 203 9 1.1667 7.083 , 7,083 1.994 2.773 4.767 673 0,172 0.468 0.192 46.14 7.63 5.67 5.87 6.03 303L 303R 1.65 1.62 7.52 7.65 301 8 5.958 9.916 2.773 2.773 280 0.24 0.384 0.432 13.33 6.55 6.83 1.58 1.55 1.58 1.55 302 8 3.958 9.916 2.773 2.773 280 0.24 0.432 0.384 8.85 3.59 3.40 1.69 1.72 1.69 1.72 303 8 4.958 9.916 2.773 2.773 280 _ 0.24 0.384 0.432 11.09 4.85 5.09 1.65 1.62 1.65 1.62 304 8 4.958 9.916 2.773 2.773 280 0.24 0.432 0.384 11.09 5.09 4.85 1.62 1.65 1.62 1.65 Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line V (Panel Shear) = Sum of Line Load / Total L Mo (Overturning Moment) = Wall Shear " Shear Application ht Mr (Resisting Moment) = Dead Load' L " 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) 7 N G . • Transverse Seismic Uplift Design Unit C Shear H Joist L Wall Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total Total panel Height Lgth. From 2nd From 3rd From Wall Load (not Point Point ning Moment Moment Floor Shear ® Floor Shear ® Stacking ® Stacking From From Uplift Uplift Fir. Fir. Roof Shear including Load Load Momen ® Left @ Right Left Right Left Side of @ Right Wall Wall ® Left ® floors @ Left ® t House Side of Above Above Right above if Right House @ Left @ walls Right stack) (ft) (ft) (ft) (ft) k k k k plf klf k k kft kft kft k k k k k k 101 8 1.1667 5.21 5.21 0.168 0.314 1.185 1.667 320 0.1 0.192 0.208 15.08 2.36 2.44 2.75 2.74 201 L 201 R 0.65 0.85 3.40 3.59 102 8 1.1667 4.00 4.00 0.369 0.775 1.144 286 0.092 0.192 0 10.06 1.50 0.74 2.49 2.68 0 0 2.49 2.68 103 8 1.1667 3.83 7.33 0.174 0.506 1.349 2.029 277 0.1 0.24 0.078 9.62 1.65 1.03 2.44 2.61 0 203R(1/2) 1.01 2.44 3.62 104 8 1.1667 3.50 7.33 0.174 0.506 1.349 2.029 277 0.1 . 0.078 0.192 8.78 0.89 1.28 2.66 2.54 0 0 2.66 2.54 105 8 1.1667 4.58 13.08 0.168 0.314 1.185 1.667 127 0.1 0.192 0.078 5.28 1.93 1.41 0.87 0.98 201L 201R 0.65 0.85 1,52 1.84 106 8 1.1667 8.50 13.08 0.168 0.314 1.185 1.667 127 0.1 0.078 0.384 9.80 4.28 6.88 0.74 0.45 202L 202R 1.22 1.02 1.97 1.47 107 8 1.1667 1.25 4.75 0.174 0.506 1349 2.029 427 0.048 0.192 0.045 4.84 0.28 0.09 6.12 6.34 0 0 6.12 6.34 108 8 1.1667 1.25 4.75 0.174 0.506 1.349 2.029 427 0.048 0.045 0.192 4.84 0.09 0.28 6.34 6.12 0 0 6.34 6.12 109 8 1.1667 1.25 4.75 0.174 0.506 1.349 2.029 427 0.1 0.24 0.208 4.84 0.38 0.34 6,00 6.05 0 203R 2.02 6.00 8.07 110 8 1,1667 1.00 4.75 0.174 0.506 1.349 2.029 427 0.1 0.208 0.192 3.87 0.26 0.24 7.28 7.31 0 3048 0.21 7.28 7.52 201 9 1.1667 5.88 9.75 0.314 1.185 1.499 154 0.172 0.432 0.156 8.96 5.51 3.88 0.68 0.93 301L 301R -0.03 -0.08 0.65 0.85 202 9 1.1667 3.88 9.75 0.314 1.185 1.499 154 0.172 0.156 0.432 5.91 1.90 2.97 1.09 0.84 302L 302R 0.14 0.18 1.22. 1.02 202A 9 1.1667 3.83 3.83 0.775 0.775 202 0.142 0.816 0 6.98 4.17 1.04 0.84 1.57 0 0 0.84 1.57 203 9 1.1667 7.08 7.08 0.506 1.349 1.855 262 0.172 0.468 0.192 18.27 7.63 5.67 1.61 1.86 303L 303R _ 0.21 0.16 1.82 2.02 301 8 0 5.96 9.92 1.185 1.185 120 0.24 0.384 0.432 5.70 6.55 6.83 -0.03 -0.08 0 0 -0.03 -0.08 302 8 0 3.96 9.92 1.185 1.185 120 0.24 0.432 0.384 3.78 3.59 3.40 0.14 0.18 0 0 0.14 0.18 303 8 0 4.96 9.92 1.349 1.349 136 0,24 0.384 0.432 5.40 4.85 5.09 0,21 0.16 0 0 0.21 0.16 304 8 0 4.96 9.92 1.349 1.349 136 0.24 0.432 0.384 5.40 ' 5.09 4.85 0.16 0.21 0 0 0.16_ 0.21 Spreadsheet Column Definitions & Formulas L = Shear Panel Length A = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line V (Panel Shear) = Sum of Line Load / Total L Mo (Overturning Moment) Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load * L ' 0,5 * (.6 wind or .9 seismic) Uplift T = (Mo-Mr) / (L - 6 in) TRANSVERSE UPLIFT CALCULATIONS - SUMMARY UNIT C Shear Controlling Total Holdown Holdown Good Control Total Holdown Good For Panel Case Uplift @ or Strap Type@ Left For ling Uplift Type@ Left Left Case @ Right k Simpson k k Simpson k - 101 Wind 16.25 Holdown HD19 w DF 19.07 Wind 16.38 HD19 w DF 19.07 102 Wind 14.34 Holdown HDU14 14.93 Wind 14.47 HDU14 14.93 103 Wind 9.30 Holdown IIDUI4 14.93 Wind 13.24 HDUI4 14.93 104 Wind 9.56 Holdown HDU14 14.93 Wind 9.48 HDUI4 14.93 - 105 Wind 9.36 Holdown HDUI4 14.93 Wind 9.58 HDUI4 14.93 106 Wind 9.46 Holdown HDU14 14.93 Wind 9.13 HDUI4 14.93 107 Wind 18.77 Holdown None 0.00 Wind 18.92 None 0.00 108 Wind 18.92 Holdown None 0.00 Wind 18.77 None 0.00 109 Wind 18.70 Holdown None 0.00 Wind 26.38 None 0.00 110 Wind 19.81 Holdown None 0.00 Wind 21.48 None 0.00 201 Wind 4.97 Strap MST48x2 5.75 Wind 5.11 MST48x2 5.75 202 Wind 5.35 Strap MST48x2 5.75 Wind 5.22 MST48x2 5.75 202A Wind 6.73 Strap MST60x2 8.11 Wind 7.22 MST60x2 '8.11 203 Wind 7.52 Strap MST60x2 8.11 Wind 7.65 MST60x2 8.11 301 Wind 1.58 Strap MST48 2.88 Wind 1.55 MST48 2.88 302 Wind 1.69 Strap MST48 2.88 Wind 1.72 MST48 2.88 303 Wind 1.65 Strap MST48 2.88 Wind 1.62 MST48 2.88 304 Wind 1.62 Strap MST48 2.88 Wind 1.65 MST48 2.88 N oaten at -1ool'a Js1 - MO n C) c I f cpko, -`i ce- .yip ,,. ,�e- , .—© 1 i <\ .. . ._,c , :,_a n N ' rrt (It � t i ---___________I t 1' ,1 1,01 _ c) F 1 . ;; i f o i' 'o I ,I ` ,, A . smi _ _____, t (") \01 . I I t I , i , 1 Io5 Into Ktimmissommor 1D2 • T 1(2.. Q rO • • fin l 109 140 10 c o s UNIT C tsr FwaR I F r Loam. am. ay sw t AYour �kk s�ei CCre c � cold 0 GN -'J 16N (1 I I! I u,cre __r . t N 1E r II ,ate \ � r~ � p � --;1 �..: eau 1 "'V 301 302 0 — .:: I= ..ii .7 - I II P' t A I . X 11 f' I i f -1 � 1 i 1 n . I I I • II H L i li I I 1 I H J/ I 1 . ., • . _ , , , . , . • fir, : --� L. .. :- ' -z I 3o 3 Soy 0 Z La,lo l)1v tS C ... 3sfl c ‘..ocnt Sw L iimo% r By / \ l DATE: J\ 1 ?oO Joe NO.: ceo....0010 OF PROJECT .••JJJ RE: On ILL'- • D;OlArtakCS l 1 ��9 v\ eC ❑ ❑ r ,l F U R2 q 1 I �Fb .b Q� o M k tg7kS N ❑ LINEP,vp9e.R 0 _. -1/Ne B user = 3142)* 03' o" W U Z G -� W O X ---5-9. 2.0,sI 1\ 5'-‘4' 3-- B R L wsp, UNIEZ LwEc..., 0 Z Li cNe cb u pPv .n;,Sers 3131 z dccetati L Ltne ,� o ypf11�t atA\∎45Se ric sde of W= 14 to 6 �c . U via r t i UYY1 ---- o 2 M8�= 0_(L tr�e C` G.SFEI a'- e „_—,} c, Z - �yb,� >C ,t.sl�' !L) L,nG a L,ne ❑ o — 3 h43(2s) 3 0 a L'reC =lL'*t 11 L\Ne = 3 -1'42## 3v060 V.23 V: 0 < (2.5' 3r - NI,.. LA -\+e9 2.$' <IS.S b2,°1- i1/41 (, . to x 23b a13p� eLtr TJ t ophraam w ia4h _IL Ft 11°541- o d - 1u2.PLF ONOIOC (2 11'2•• G� i q PhrOLc�YY\ Ca C! = ' a te - k ( ( 4) _ asa 9L - a b .g _- ), toic k ►I+I tee "d , Dt a hva Yv\ c . 0 � p � LK)r b -,, S.?(\ 1Da\,5 C71� oak \,r;\ -1 - D )f \ `DWNO >k,i l� 31)a\p S \1`— \r1j: � ?!U1 AY■riN - VOCk 1 0)6, -1O 14 Sbc) \7 '"Ifi)1. "0 011 Flo ' .' # gh {. \ 7 - 1 cZfi-A... 1 1001 - 110 4 09 31 > "-A 11 201 --- i.O # 09 '3\ 'A 1 1 • 1 -t o\ • JroayS isvca i - r d:A ' - ° = = �t L'e-+ ost'i-E t`eq.'e, - - 6 d HS riLD1s c•\ '1Ut c - 49A5 T(kin - 4.)\).3 - Ao•; o S1b01 -) #X511 o11 ` P E1 L)N ': # s111 c * 1OVe tool • . _ . .., '-)n0°Is1t Q. (:1_ 401 S CO y N 14 O < #t 1084. t x.01 o - 1 9x'10 -L\ �'�s • ts‘o TWO A%-to9 7 h'Q SbO1 t e\c'r15S 011 Qt O *silos S 'o #511\ 4 *s1cnSS t VC "0 % 1S'0 # Q921 -E..S\cr∎SS q,ol 10`2.'0 # k°11S c;)E, #-0121 k S1mSS 4_0\ ` 11 311 ' " + 16 'I -SS _ MO }110 ,AYJ�s 4Z 1�{S \z� S i �+ 3'� P\tia''lib 36 \VON) o ❑ m m -4' eS9,2, = 1aK21 0 x . 0 - 1S 2'1 = <zl ((.0'0Q\) o 'e s(3" -- `z19.21) - 1L_q1) LIXslo'oX-st) 4 C' '" ') �, Z\ --- 011 11 torn 0 o C.,11 - VI •= \okal - tis St\b' I = �z19)Ls:eo.o1) + V 1s0c5;7-Q' O)( i) Z -- -oz OL° °t°.=<Z10'0Kil 04c3\xsyr% I Z1QOXy9( a 1 ;51 aw.nsSAI 1001 Worn 0 5 0 tat 510 4\ wog -3 4o\ WOC'n D Z 1Alht _V a m -•S do, 11%30'0 ls x m o -, a sc\ 1 . e.s\ , o = (71 -4 1 1 ) -t.10'o }L —1) F o („sl - aAw,nS,0) 4.01 \1n ❑ ❑ S o 1 \ '0 \\ V u m ° Sd !A A.ccL '2 — - 6Q =a - s N91Ss 0 m . ❑ ❑ SS =N-5.d.1 L, NO Q3SlI_ ?1, Fig HS O Nok 1nsrauSla :38 !{ l3aroad J° . 87 ON Bor I V+ V \°S■ 31,10 AEI \del a b -1 w' cv P p 2 zz 0 ❑ m Z T1 O o 3 0 CT 0 1rsQS") _ o �zI1t ? buii »v t44- (71 WrPO.) ab3 o �P� Iq z te,i vtoM d1G1 1-101 M o m �Y 7iUUStiaS -A 4c)' 1 py�1 m o r p � ❑ m 3 °► =. gyp! tit wiCroau No l� o 9 q < V)(11 4:2, 1 ) — sw Vail ( rx kddb Tool ❑ ❑ i)vx.XID v_A OJ11Aab1C :3a :,u3roaa .10 C) ` t ae'D :'oN oar Q\O'C. C Ag V DATE: K U v \ •- k I \ JOB NO : C ('^ 1 ' : '`V `O 0 Oh PROJECT: RE: QPTIoti 2 ❑ ❑ Z j3ui1-. up (I'm G � 2ND FLOOR_ o • W b00M0or� t a'( ? Fwofz W o m ❑ Tr,b tu; &kih on ZRANT - 13`.79" O W O Z W a n e slgn w �n6, pr e sJr e. --= - ao .o4) ps P Z Loci d on bQl I Op o\O ck- = R11.2 bp t.F 0 F- .V 1- L 1- I (/`' z T E 0 o I "\mo x = t a c:1.'?,jz _ �-1gi�0�`?? # vk, W i ❑ Z T I- • 0- I i 1 \ t vAll 12 t r t / =G `i _ a > = a.65 1N4 - 1.5 4 v = a Lis 1..o. k 3.s'= --. A1,s = 5. IN". N d , A a.1,as,Nz ; - - E . 5 A bp ck 3,y,5,6 = 0 1tJ xxa 0 .:i 1 = G.as t a4.S(0,515) 4- 6.2, + a4 .c Co, vis)1- s•Vcs+o t a.1, t U 4- d,36+0 t. 5,36 +O r = 1- y. l3S ‘N 3 P �` Z - 4 L1. 1 ?,, v ‘1 J nn n Y= = 05 1 �b - a{( '` , L. - VbCoCMCkC.I.evC-�',.`i A evl .3-s F,; _ (850 p5,. )(1,00. o ( 1,o11.o)C .A►.o 1+ = a I );. Fb =(a3aq. ��s� Xt,00.00 , (�i(o.0,i(,- zit,,,)(,.n> �sL goicb ? -'t. o __ L50 • G BY: \(\ DATE: �i/ k^ —\ 0 JOD NO OK 1 C C E iv =C.D PROJECT, 9 - 00 F al' -5 A V . RE: Des; c. .oF nri. l blOck.xrw b @ Si o %r5 ❑ ❑ OPTION Z LL 0 W fir...r.,, ,� o 7 TcZ113 Wait ON I!P F. 11 + 11 ❑ S O 1 N T = q'- 911z" /►` To? 4LRSLS Vei 5 o 6 It M( 1 X . 5rAI' L oln , mkk -a= o W t5'•3" Mil U Z . D DESK -lk) WINO Pressure Z - - 30.4 015 psi o ¢. f. el :rib" Des\c"r\ Plc \es to Spi c1■0 ler kt - RR ?LAles 8`- W Z UJ v Ui v\ck iOat cC 'l°AlpL. F U 1‘ 1 ❑ P %= I4 tly- ■ 4 cict A 6 - 2 z F a `� 8 V ona�c - t Vrt '/- So = = 5?:l�at. x 1L F •( 5 .25 • ,t, / -k5•Z5� _ .4,,_� .. }-35 -1 5Y= 1 _ 0 .0 ) 9# 2 IIN- A (-.s`L5 � i c 2 y _ Fe NFL - ((850 a3ybpsz c �1L 2- . I N a o -= FV = ISO psi. (00 ay0 s�. 7 '2,1, • Mc_ m 0 :':4- N(:-‘ 1T 0 e U cm 2_ . L3 WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN UNIT C - FRONT LOAD WogdViolltsP) Misr 7.1 Jule 28, 2010 1328:0B OWxpANT 1 P003007 RESULTS by CROUP - (IDS 2005 SUGGESTED SECTIONS by GROUP for LEVEL 4 - ROOF Mnf Truaoea Not designed by request (2) 2018 Lurtbor n -ply D.Fir-L No.2 2- 2n10 (3) 2x6 Lumber n -ply Rem -Flt No.2 3- 2x6 Typ Nall Lumber Stud Hem-P10 Stud 2x6 816.0 SUGGESTED SECTIONS by GROUP for LEVEL 3 - FLOOR .........,® • ME Jet Not designed by requeat 12) 200 Lumber n -ply D.Fir -L No.2 1- aril By Othoce Net designed by request By Others 2 Not designed by request 406 Lumber -soft D.Fit-L No.2 406 1.75014 LSL LSL 1.55E 2325F6 1.75x14 (2) 2x6 Lumbot n-ply Ron -Fir (1o.2 2- 2x6 6x6 'amber -soft Hem -Fit No.2 606 (2) 204 Lumber n-ply Hem -Fir No.2 2- 204 (3) 2x4 Lumber n -ply Item Fir No.2 9- 2144 Typ gall Lumber Stud Hem -Fir Stud 206 816.0 SUGGESTED SECTIONS by GROUP for LEVEL 2 - FLOOR Mnf Truss _ v Not designed by request Deck Joint Lumber -soft D.Fit-L No.2 200 810.0 Hof Jot Not designed by request Landing Lumber -soft D.Fit-L No.2 2n6 816.0 (21 200 Lumber n -ply D.Fit-L Ho.2 2- 2x0 4xB Lumber -soft D.Pir-L No.2 4x8 By Others Not designed by requeat 3.125,410.5 Glulam- Unbalan. Wont Species 24F -V4 OF 3.125010.5 5.25x14 ESL FSL 2.00 2900(5 5.25x14 4x6 Lumber -soft D.P1r -L No.2 4x6 (21 Zee Lumber n -ply Non -Fir No.2 2- 2x6 404 Lumber Peat Rem -Fir Oo.2 4.4 4x6 Lumber Post Hem -Fir No.2 4x6 6x6 Timber -soft Rem -Fir No.2 6x6 (2) 2x4 Lumber n-ply Hem -Fir No.2 2- 2x4 (3) 2x4 Lumber n -ply Rem -Fir No.2 3- 2x4 Ty(, Wall Lumber Stud Hem -Fir Stud 2x6 816.0 SUGGESTED SECTIONS by Group for LEVEL 1 - P1.00R End Not designed by request CRITICAL 00IBPJ(5 and DESIGN CRITERIA Group Member Criterion Anolysia /Design Values Deck Joist 1 Bending 0.41 Mnf Jest Mnf Jet Not designed by request Landing )27 Bending 0.17 (21 208 01 Bending 0.96 400 b19 Bending 0.05 By Others By Others Not designed by request By Others 2 By ()theta Not deorgned by request 3.125610.5 612 Deflection 0.83 121 2010 06 Bending 0.05 5.25x14 PSL 010 Reflection 0.79 axe h21 Bsndtng 0.08 1.75x14 x51. 023 Bending 0.71 Ftg FCg Not designed by request 12) 2x6 c10 Axial 0.80 404 c42 Ax101 0.04 406 050 Axial 0.25 (3) 2x6 016 Axial 0.07 606 c23 Axial 0.48 (21 204 020 Axial 0.84 (3) 2x4 012 Axial 0.41 Typ Wall v12 Axial 0.24 Lind End Not designed by request ^e ee ®.....� w DESIGN NOTES: ................... 1. Please verify that the default deflection finite are appropriate for your application. 2. DESIGN GROUP OCCURS ON MULTIPLE LEVELS: the lover level reavlt as considered the final design and appears in the Materials Llat. 3. ROOF LIVE LOAD: treated an w load vita corresponding duration Teeter. Add an empty roof love! to byposa this interpretation. 4. REARING: the designer is responsible for ensuring that adequate bearing is provided. 5. GLULAM: bad a actual breadth x actual depth. 6. Glulor, Beans shell be laterally supported according to the provisions of NUS Clause 3.3.3. 7. sawn lumber bending members shall be laterally supported according to the provisions of NOS Clause 4.4.1. B. BUILT -UP BEAMS: it in assumed that ouch ply in e single continuous member (that in, no butt joints are present, fastened together securely at intervals not exceeding 4 times the depth and that each ply in equally top - loaded. Where beams are aide- loaded. special fastening details may be rcgnured. 9. SCI, -BEANS (Structural Coapoolte Lumber): the attached SCI. eeleetinn is for preliminary design only. Pot final member design contact your local Set manufacturer. 10. DUILT -UP COLUMNS: nulled or bolted Luilt -up uolumnn shell cvoform to the previsions of NDs Clauao 15.3. C 1 l l WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN UNIT C - FRONT LOAD WoodWorks® Sizer 7.1 June 28, 2010 13:16:53 or1c ept bl lode : Beam View Floor 2 : 8 ' 1050 ... . . - 49 , - IV; A0 -0 y 4 / -b 1UL 40.0 IUl _ . - - 4343 IU 'l4 - �? 4 9 b1 - _ A3-0 Q - - 44.0 4v -b 10 Ol •h SO_ . Jy -0 V U.S., J» -0 37 -0 `Jll 1 34 -U ON 33 -0 bb • ...- ..14 -0 01 J1 -b Lib • - - _ JU-0 03 , .4V -0 64 - - . . . - . . - L0 -0 0.1 L/ -0 LfL.. . am= '-' L0 0•l L3 -0 011 - .- "' - L4-0 /H LS -0 /LS LL -0 1/ 41.0 to o 1"-.0 /4 , /4 _ - . . Its -0 /., I /-0 1 _ L . - . . • _ 1 - ' 52 _ - 13 -0 /U.. _ - 14 -b J'-b b u__ b10 14-0 0/ -; i 1-0 00 1U -0 03 y-0 04 ZS -0 0.3' .b18 r .-0 CGS 0 -0 01-- b3 - . o 4) °� b19I b20 4 -0 Ji 1-0 ;y u -h 88 \6.8BCCCCCCCCICCCCCCCccCOCCCCI: a.cuoi)L1ocoDICC)D DOD L AD Dr ,E.EEEEiEE•EFEEEIEEIE£¢ffffBEEEEZ 0' 2' 4' 6' 8' 10'12'14'16 '18'20'22'24'26'28'30'32'34'36 ' '58'60'62'64'66' 0'1'2'3'4'5'6'7'8'91(1 1 :1:1 .1:111. 1 112( 222: 2. 22f2223(33:33 4s1:4.4;414 14I515 5:53.5!515'515E(66i6:6 6!66:61617g 7:7:7417(77-6" j r l-cico WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN UNIT C - REAR LOAD WoodWorks® Sizer 7.1 June 28, 2010 13:26:28 Concept mode: Beam View Floor 2: 8' 1050 ' .. _ .. 49'-6v Vn 40 -b 1VL 4b -b tU( -. 45-1 tO u 0 b18 44 -b D OM of 4L -0 �_ - - 41 -b :117 - • - - 4U " -b :14 .30 -0 7.1.1 .. ._ 3(-0 NC 30 -0 L7 - . . .. .50 :1u 34 -v tli 33'41 btl ... . . - 31-1 o 31 -b tit :: SU -b 0J Ly -b at - - _ '- LC'-0 GS - ' L! -b t_t_ air - - Lb -b CI b24 - . Z4 --0 f:e ■ LS - b' - -- LL ' -b t L1-0 ! O - - - -- GU -b !a IN-b !4 - _ 171. -0 / 6 I i •V' / ".- b23' . - _ - 1r. ! r 13-U !U 14 -r or, b10 i s m D! 1 1 -,? tb `J 4 b4. - -° - . • ti is 1.1Y ' = - b11 -- b19- r - b -b 1.-.:1: r? b2111=811)20 4 ' II ifJ . . - c 7-n. -. u -g 8m888CGCCCC .CcicCi.C4'CCCCCCCCC CC,CDOt7. DUDCIBICUpCDOIMODDIMEFI IDDEEEEEc(_cICLEEEZEitEEMEET 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'91(1 1 :1 :1'1'.1 ell il2(222;2.22E2212! 3( 33:.'i;3 444'4(45( 555: 5 5! 5( 5: 6( 5'. 6( 66Z:6 6" "?\ -e.ar Loci & (i3 WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN UNIT C - FRONT LOAD WoodWorlcst) Sizer 7.1 June 28, 2010 13:16:55 Cort 4 -ept Mode.: Col umn View Floor 2: 8' c2 c25 1050 • a 4n 6 1U4 .. - 4r'-0 1 l he 40 - 0 1 W 45 1? 44 -0 1V c1 c2 c38 _ 43-0 00 4G -0 V1 41 -0 00 - 4U -0 04 .1t1 '0 rs .. • .. - . - - .3/ u •t Sb -0 01 - ,.0 -b Ju J4 -O 00 .L S-0 a, 0 r 1-0 00 GJ u c50 c51 St/ 04 :1'I • 1 • - - .. X6-0 01 • 4 n Of Fe33,. _ . _ Gb -0 01 G )-0 0t.• I ; - - - - -- �G -n /0- .-i4.1:1) :4' c I -t• 11) - - - GU -n J 12 :4) C34 1 6 • . i. 1, 1;1c35 l0 •t it c47 I_ r.71 10-0 r u I� : LI e36 - 1 +1 ..e. 1:• C n ts I _ I c18 ' c2 2. . I: -r 0 r f I , , .. - 113 b .ri ts ' - c23 c41 , Is 4:L• D -D 0. 1 - I , I 7: . W: ii- .. - - , .. . - Z. -0 • ' c42 c43 ,f -0 • . , _. . - - _ , . . u 0 - JV, BB 18BBCCCCCCCCICGCCCCCCCCCCCCCt CCCDDDDDDODt DOD CDDDDDDDDDCD1DDDEEEE EEEEIEEEIEEEE 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40'42' 44' 46' 48' 50' 52' 54' 66' 58' 60' 62' 64' 66' 68' 70' 72'74' 76' 0'1'2'3'4'5'6'7'8'91t1 1111 !1t1 ;111 0.222:2 5:5:5.5Ef5 ; 515!616 6:6: 6 '6'.6t8:6:6±7177.7.7'7.7t77-6" L' WoodWorks® Sizer - SOFTWARE FOR WOOD DESIGN UNIT C - FRONT LOAD WoodWorke® Sizer 7.1 June 28, 2010 13:18:49 . Concept Mode: Beam View Floor 3: 17' 1050 - - .. 49'-6- 104 40 .'0. t tSb - 4i -0 IUL 4q.0 tfll' - 10.0 • 1 U1 • 44 . 09 b4 = AS -0 Kb . 1- 44-0 HI . .- • ._ .- 41-0 SD • . .. AU •G' tJ3 - . 4,V -0 !4 Jt5 .D `J4 .6U -b S :IU 34 -b 4W J3 -0 as .1 -D no -11-b o b22 29 - 0 • 4J 1.f-. n ' b24 - - - 213 •0 eu - : 23 44-0 (" <3 b ,9 21 -L t .21. -0. to zu -b' t 19-o 14 - ' 1LS - r< 'I /-.0 1 i . - b16 . - 1 b' b r ■ b14 - 10'-0 11; I !"S J - ' 1J -0 bh 14 -0 • 0 1 1 -0 tl0 I U -b 0, - - b-0 b17 - - � . - . • vc: ssismatsst 1.1(111 1 0. -0. 11 1 a-0 au: 4 -0 . _ . . _. . . . - .3 -0 L -0' BB1BB BC CCCCCCC1000CCCCCCCCCCC. CI: �CCUDC1 DODDDIODDM3 ( 1DCi MDE317 EE 0' 2' 4' 6' 8' 10'12'14' 16'18'20' 22'24' 26' 26' 30' 32' 34' 36' 38'40'42'44'46'48'50'52'54'56' 58'60' 62' 64'66' 63' 70'72'74'76' 0'1'2'3'4'5'6'7'8'9111 1;11 n (1 :1;1 02222•22t2203(31:33135(37,1314(4 4i1:4 55:5 7'777.7:7177' -6" 6-Ac WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN UNIT C - FRONT LOAD WoodWorked) Slzer 7.1 June 28, 2010 13:16:46 Concept Mode: Column View Floor 3: 17' 49 ,. 6 ' 'O5o aT ni I UJd 40 -U • ui r ,C -0 • 44-0 �' 9 c9 . 010 4. - 0 7tl 4G -is Hi �� 4 I -SI 90 • Sa -e • tut .10 -0 L.} _ 3/ -0 74 30 -b 111 30'-0 JU ' -0 t4 J 33-43 bb 3L -0 b 31 -0 JU -0 t.:.• c48 c49 L7 -o - t• 20-0 b3 I i L f -0 02 LO -b 01 C28" tb-0" rstr (1 L4 -b t _ LL .t LI-0 le LU - 0 IP iv-0 l4 C12 • _ _ _ l CS -b e:. • c11 I tt - - Ib-0 f 1 ' c26 c27 1 a -0 ru u. I, 13-0 tlt. - I L -0 01 11-0 bb. - lu-0 00 y - 0 6 -0 03.. - c39 c40 'a?. UsI �0'` b_b. -- 0-0 bu? • 4 -0 L • Ua E3BIBEF3CCCC: CCCCICCCCCCCCCCCC( CCICCCODDODDDL IEDLICDDLJCDDODDCDiDDDEEEEE !EE•EIEEEI 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62'64' 66' 68' 70' 72' 74' 76' 0'12'3'4'5'6'7'8'9111 1:1 :1.1:1(1:1 512( 2Z22 2 2E2212'.3(33:3:3 :4 55(5: 515E1 66 :6:6 -6" 61 (01 WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN UNIT C - FRONT LOAD WoodWorks® Sb_er 7.1 Juno 28, 2010 13:16:41 Concept Mode: Beam View Roof: 25' 10050: .. - _ - - - - - 49'.6 IU4 4tl.b WS . . . , . . .. 4/ -b FUG 40 -0 " IUIb_ - - _ _ _ 4,71 4) Y a 9_ b5 _ .. . ..1 b y cY 4L -0 Ins v1a 411 -0 gib.. . ... .. ., . >9 -a aa... .. . . . . s; - a 00 44 01 41-0 00- -- - . - -' . .. 311 -b 87 iU LI> •b 0.1 41 -V t1G . . Lb - 01 ly_b (J 4s -b 10 -' . _ ._ - - " G. 'Y^ I I GI•q / b. - - /_U-0 10 IU (4. . _ . . 30 - 0 / L. _ . - . . 1 0 - 0 11 .. - - - 1;a - t0 . (U.. _ . - _ in -tl t'1�J 1 • i -a 0 1 3 -0 00. 1 0 00 o at b6 - 0-11 -7 ne, a 1 a - 0 -- _ ., . 4 41 -• • . G 0 H51E1BBCCCCCCCC1CCCCCACCCCCCCCCCICCCDDO DCA i7 DiaDDDLDIGDQCEEEEEE EfEE:E'EEEE-£EWEIEEFEZ 0' 2' 4' 6' 8' 10'1Z 14' 16' 18'20' 22' 24' 26' 28' 30' 32' 34' 36' 38'40'42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62'64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'5'7'8'9111 1:1 :1.1'.1!1:111 f2212033:33 '3131414 4:4:4 5:53 7Y77.77 -u"" G WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN UNIT C - FRONT LOAD WoodWorlcs® Sizer 7.1 June 28, 2010 13:16:44 Concept Mode: Column View Root: 25' 1050 - - - - -- 45..6.. 1u u 4 v 4 6 U tU. d 40-V 11t _ lt:1-fs t i u � 013. , .c14 .. - . 44 - - 4C o to CIS .. - 41 - Str -U : .S S / -0 bJ 'JL : at - `I .. .. JO -0 UU J4-0 01S S.i -O "01 J 1 -b tSb , _ • - - 31/ -0 UJ 4 /.b b 1 t'i ' tlli , ' - 44 -L. /V LJ U !r 114^ - sal ,0 f■ _ 10 -b /J ... 1e -n 10 -U 11 15-0 14-b . : 1J-0 tab- - 1G -b V I1 -b e i s c16 c15 , - 0 Is t, U :J01 (f •'b 931SEi8C. CCCCCCCICCCCCCCCCCCCCMCCCDDDODOCIDICt? DC :DUbDQDDODCDtDDDE.EEEEEEE}EEE. EEE'EE [OEIELEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32'34' 36'38' 40' 42' 44' 46" 48' 50' 52' 54' 4' V 58' 60' 67 64' 65' 66'70' 77 16' 0'173'4'5'6'7'8'3111 1:1:1.1!111 :it I222:2:2 .22122:213(33:3 :3 4,4:44'414'41415(5 5 :5: 5.5!515515(6166:6:6'6.'6166 6 .7(7 I:7:7.77177 Cillb COMPANY PROJECT I i WoodWorks® SOAWASEFO? WOOD O!SSGN June 28, 2010 13:20 j8 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, 138f, or pif 1 Load Type Distribution Magnitude Location (ft) Units Start End Start End Loadi Live Full UDL 53.3 plf Load2 Dead Full UDL 13.3 _ plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : Ai■ lo, e Dead 64 64 -Live 213 213 Total 277 277 Bearing: Load Comb 12 #2 Length 0.50' 0.50' 'Min. bearing length for joists is 1/2" for exterior supports Lumber -soft, D.Fir -L, No.2, 2x8" Spaced at 16° c/c; Self - weight of 2.58 pif Included in loads; Lateral support: top= full. bottom= at supports; Repetitive factor: applied where permitted (refer to online help); Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 32 Fv' = 180 fv /Fv' = 0.18 Bending(+) fb = 506 Fb' = 1242 fb /Fb' = 0.41 Live Defl' -n 0.06 = <L/999 0.27 = L/360 0.24 Total Defl'n 0.09 = <L/999 0.40 = L/240 0.23 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC1 Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.200 1.00 1.15 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1_.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC 02 = D +L, V = 277, V design = 235 lbs Bending( +): LC 112 = D+L, M = 554 lbs -ft Deflection: LC 02 = D +L EI- 76e06 lb -in2 Total Deflection - 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L-live S =snow W=wind I =impact C =construction CLd=concentrated) (Ail LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. (5)11 COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD COIGN June 28, 2010 13:21 127 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psi, or ptf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End Loadl Live Full UDL 53.3 plf Load2 Dead Full UDL 17.3 plf MAXIMUM REM TtnNS (Ihnl and REARING LFNGTHS (inl o 1 Dead 39 39 Live 107 107 Total 145 145 Bearing: Load Comb #2 # Length 0.50* 0.50* 'Min. bearing length for joists is 1/2" for exterior supports Lumber -soft, D.Fir -L, No.2, 2x6" Spaced at 16" c./c; Self- weight of 1.96 Of included in loads; Lateral support: top= full, bottom= at supports; Repetitive factor. applied where permitted (refer to online help); Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 20 Fv' = 180 fv /Fv' = 0.11 Bending(+) fb = 230 Fb' = 1345 fb /Fb' = 0.17 Live Defl'n 0.01 = <L/999 0.13 = L/360 0.07 Total Defl'n 0.01 = <L/999 0.20= L/240 0.07 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.15 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 145, V design = 112 lbs Bending( +): LC #2 = D +L, M = 145 lbs -ft Deflection: LC #2 = D+L EI= 33e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L=live S =snow W=wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. • COMPANY PROJECT WoodWorks® SOn 1WA RE fOR WOOD DESIGN June 28, 2010 13:21 b1 • Design Check Calculation Sheet Sizer 7.1 LOADS ( Its, pat, or plf Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w33 Dead Partial UD 402.0 407.0 0.00 1.b0 pll 2 w33 Rf.Live Partial UD 450.0 450.0 0.00 1.50 plf 3 c9 Dead Point 985 1.50 lbs 4 Rf.Live Point 1470 1.50 lbs 5M9 Dead Full UDL 47.7 plf 6 j9 Live Full UD). 160.0 plf Load7 Live Full UDL 40.0 plf Load8 Dead Full UDL 13.0 plf MAXIMUM Re To' 3 Dead 1043 742 Live 1541 1204 Total 2585 1946 Bearing: Load Comb 82 02 Length 1.38 1.04 Lumber n -ply, D.Fir -L, No.2, 2x8 ", 2 -Plys Self- weight of 5.17 plf Included in loads; Lateral support top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis/Design Shear fv = 135 Fv' a 207 fv /Fv' 0 0.65 Bending( +) fb - 1196 Fb' 1242 fb /Fb 0.96 Live Defl'n 0.01 = <L/999 0.10 = L/360 0.14 Total Defl'n 0.03 - <L/999 0.15 = L/240 0.19 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC; Iv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Eb'+ 900 1.15 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 •- - - - 1.00 1.00 - 2 Emin' 0.50 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC H2 = D +L, V = 2585, V design = 1961 lbs Bending( +): LC ff2 - D +L, M = 2619 lbs-ft Deflection: LC 82 = D+L EI= 76e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind 7 -impact C =construction CLd- concentrated) (All LC's arc listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at Intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. COMPANY PROJECT di WoodWorks® - . SW. MARE FOR WOOD 01516.5 June 28, 2010 13:26 b11 Design Check Calculation Sheet • Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1 w56 Dead Partial UD 498.0 498.0 0.00 6.00 pit 2 w56 Rf.Live Partial 00 450.0 450.0 0.00 6.00 plf 3 c46 Dead Point 938 5.00 lbs 4 -c46 Rf.Live Point 1350 5.00 lbs MAXIMUM RFA(TIANS libel and RFARIMC: I FN(:THS /in1 • -- - - _ _ • -.`..,;�; = = - � •-�; -.:- _• -� =�' •' ""` .�; ��.. �, ,,r„`� - ...- �,. . fee � . "" �ti.d'.....,. - ._... �.�"a - 'r = 'r'- ' -'." i°� r.. 'sr vr�-m- de r- - _;-' .v? +�� So ..sue .. I 720 .... +.��. • • ``n ll . 6.: - .: - -'"."n' : -Q ��j ° '''' . ear --' -•� - 'r'- --.. 7 ' = '�": �.e' -= A 0. 64 Dead 1673 2298 Live 1575 2475 Total 3248 4773 Bearing: ' - Load Comb #2 42 Length 2.32 3.41 LSL, 1.55E, 2325Fb, 1-3/4x14" Self- weight of 7.66 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv* = 207 Fv' = 356 fv * /Fv' = 0.58 Bending( +) fb = 1159 Fb' = 2674 fb /Fb' = 0.43 Live Defl'n 0.03 = <L/999 0.20 = L/360 0.15 Total Defl'n 0.07 = L/980 0.30 = L/240 0.24 *The effect of point loads within a distance d of the support has been included as per NDS 3.4.3.1 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 4773, V design* = 3366 lbs Bending( +): LC 42 = D +L, M - 5520 lbs -ft Deflection: LC #2 = D +L El= 620e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W=wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. (...L COMPANY PROJECT 1 WoodWorks® SOPlWARFFOR WOOD DESIGN June 28, 2010 13:18 b12 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or pit ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j8 Dead Partial UD 47.7 47.7 0.00 4.50 plf 2_j8 Live Partial UD 160.0 160.0 0.00 4.50 plf 3_j9 Dead Partial UD 47.7 47.7 4.50 7.50 plf 4_j9 Live Partial UD 160.0 160.0 4.50 7.50 plf 5_j10 Dead Partial UD 47.7 47.7 7.50 16.00 plf ,6 j10 Live Partial UD 160.0 160.0 7.50 16.00 plf MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : 1 0' 16 Dead 442 442 Live 1280 1280 Total 1722 1722 Bearing: Load Comb #2 #2 Length 0.85 0.85 Glulam- Unbal., West Species, 24F -V4 DF, 3- 118x10 -112" Self - weight of 7.55 plf Included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress .(psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 70 Fv' = 265 fvfFv' = 0.26 Bending( +) fb = 1440 Fb' = 2400 fb /Fb' = 0.60 Live Defl'n 0.43 = L/441 0.53 = L/360 0.82 Total Defl'n 0.66 = L/290 0.80 = L/240 0.83 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Ervin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC 42 = D +L, V = 1722, V design = 1534 lbs Bending(+): LC #2 = D +L, M = 6890 lbs -ft Deflection: LC #2 = D +L EI= 543e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow N =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). COMPANY PROJECT i WoodWorks® SW /WARE Wit WOOD OE!)LN June 28, 2010 13:17 b17 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf) Load Type Distribution Magnitude Location (ft] Units Start End Start End 1 w49 Dead Partial UD 402.0 402.0 4.00 7.50 plf 2 Snow Partial UD 450.0 450.0 4.00 7.50 plf 3 Dead Point 938 4.00 lbs 4 c15 Snow Point 1350 4.00 lbs Load5 Dead Full UDL 13.0 plf Load6 Live Full UDL 40.0 _ plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : _,�'� ` .- - T - �•� - "a :' `:: r - ..7. - -�r..� • 10' 7'-6't Dead 843 1656 Live 997 1927 Total 1841 3584 Bearing: Load Comb #4 44 Length 1.31 2.56 LSL, 1.55E, 2325Fb, 1-3/4x14" Self- weight of 7.66 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analvsis /Design Shear fv = 162 Fv' 356 tv7Fv' = 0.45 • Bending( +) fb = 1511 Fb' = 2674 fb /Fb' = 0.57 Live Defl'n 0.06 = <L/999 0.25 = L/360 0.22 Total Def1'n 0.12 = L/722 0.37 = L/240 0.33 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 4 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 4 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 4 Min' 0.80 million - 1.00 - - - - 1.00 - - 4 Shear : LC #4 = n +S, V = 3584, V design = 2643 lbs Bending( +): LC #4 = D +S, M = 7198 lbs -ft Deflection: LC #4 = D +S E1= 620e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. I 3. Size factors vary from one manufacturer to another for SCL materials, They can be changed in the database editor. COMPANY PROJECT i WoodWorks® SOFRVABE ADM WOOD DESIGN June 28, 2010 13:51 b18 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psi, or pit ) Load Type Distribution Magnitude Location fft) Units Start End Start End 1 c16 Dead Point 938 5.00 lbs • 2 c16 Rf.Live Point 1350 5.00 lbs 3 w37 Dead Partial UD 498.0 498.0 15.00 16.00 plf 4 w37 Rf.Live Partial UD 450.0 450.0 15.00 16.00 plf 5 Dead Partial UD 498.0 498.0 14.50 15.00 plf 6_w54 Rf.Live Partial UD 450.0 450.0 14.50 15.00 plf 7 w55 Dead Partial UD 96.0 96.0 6.00 7.00 plf 8 Dead Partial UD 498.0 498.0 0.00 6.00 plf 9 Rf.Live Partial UD 450.0 450.0 0.00 6.00 plf 10 c39 Dead Point 043 7.00 lbs 11 Rf.Live Point 1147 7.00 lbs 12 Dead Point 1656 14.50 lbs 13 - c40 Rf.Live Point 2077 14.50 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : ' 1 s' Dead 3950 3630 Live 3994 3956 Total 7944 7586 Bearing: Load Comb #2 42 Length _ 2.77 2.64. Glulam- Unbal., West Species, 16F -E3 DF, 5- 118x16 -1/2" Self- weight of 19.47 plf Included in loads; Lateral support top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear iv 117 Fv' 247 fv /Fv' - 0.47 Bending( +) fb = 1443 Fb' 1831 fb /Fb' . 0.79 Live Defl'n 0.21 - L/935 0.53 - I./360 0.38 Total Defl'n 0.49 o L/391 0.80 o L/240 0.61 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 215 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 1600 1.15 1.00 1.00 1.000 0.995 1.00 1.00 1.00 1.00 - 2 Fcp' 560 - 1.00 1.00 - - - - 1.00 - - - E' 1.6 million 1.00 1.00 - - - - 1.00 - - 2 Ervin' 0.79 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = DiL, V = 7944, V design = 6613 lbs Bending( +): LC #2 n D+L, M - 27966 lbs -ft Deflection: LC #2 = D +L EI= 3070e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (0 -dead L -live S --snow W -wind 1- impact C =construction CLd =concentrated) (All I.C's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured In accordance with ANSI/AITC A190.1 -1992 3. GLULAM: teed = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). COMPANY PROJECT I WoodWorks® SOFT MARE WA WOOD DESIGN June 28, 2010 13:26 b18.1 Design Check Calculation Sheet Sizer 7.1 LOADS l lbs. psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w63 Dead Partial UD 402.0 402.0 0.00 1.00 plf 2 Rf.Live Partial UD 450.0 450.0 0.00 1.00 plf 3 Dead Point 985 1.00 lbs 4 Rf.Live Point 1470 1.00 lbs 5 c10 Dead Point 985 7.00 lbs 6 c10 Rf.Live Point 1470 7.00 lbs 7 Dead Partial UD 402.0 402.0 7.00 9.50 plf 8 Rf.Live Partial UD 450.0 450.0 7.00 9.50 plf 9_j25 Dead Full UDL 47.7 plf 10 j25 Live Full UDL 160.0 If Loadll Dead Full UDL 13.0 plf Load12 Live Full UDL 40.0 olf MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : o, 9 Dead 1977 2047 Live 3226 3189 Total 5204 5236 Bearing: Load Comb #2 #2 Length 2.56 2.58 Glulam - Unbal., West Species, 24F -V4 DF, 3- 1!8x10 -112" Self- weight of 7.55 plf included in loads; Lateral support: top= full, bottom= at supports; • Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 195 Fv' = 305 fv /Fv' = 0.64 Bending( +) fb = 2004 Fb' = 2760 fb /Fb' = 0.73 Live Defl'n 0.18 = L/627 0.32 = L/360 0.57 Total Defl'n 0.34 = L/335 0.47 = L/240 0.72 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 5236, V design = 4256 lbs Bending( +): LC #2 = D +L, M = 9589 lbs -ft Deflection: LC #2 = D +L EI= 543e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow M =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). COMPANY PROJECT Wood Works® • SonWAI l FOR WOOD DUMN June 28, 2010 13:21 b19 • Design Check Calculation Sheet S 7.1 LOADS ( lbs, psi, or plf Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j24 Dead Full UDL 51.0 plf 2 124 Live Full UDL 75.0 nlf MAXIMUM R "'••4 17GA1:1I11,If• I rwI1.un. fl.. • A 5i 10' 3f Dead 86 86 Live 112 112 Total 198 198 Bearing: Load Comb #2 #2 Length 0.50* 0.50* 'Min. bearing length for beams is 1/2" for exterior supports Lumber -soft, D.Fir -L, No.2, 4x8" Self- weight of 6.03 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 7 Fv' - 180 fv /Fv' = 0.04 Bending( +) - fb = 58 Fb' = 1170 fb /Fb' = 0.05 Live Defl'n 0.00 = <L/999 0.10 = L/360 0.01 Total Defl'n 0.00 = <L/999 0.15 = L/240 0.01 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC 62 = D +L, V = 198, V design = 118 lbs Bending( +): LC #2 = D +L, M = 149 lbs -ft Deflection: LC #2 = D +L EI= 178e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S =snow W-wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. "' V`Ic COMPANY PROJECT WoodWorks® SOP 7 WARE EOY WOOD DESIGN June 28, 2010 13:17 b23 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1_314 Dead Partial UD 78.0 78.0 0.00 7.00 plf 2_114 Live Partial UD 240.0 240.0 0.00 7.00 plf 3 129 Dead Partial UD 78.0 78.0 7.00 10.50 plf 4_129 Live Partial UD 240.0 240.0 7.00 10.50 plf 5_131 Dead Partial UD 26.0 26.0 7.00 10.50 plf 6_331 Live Partial UD 80.0 80.0 7.00 10.50 plf 7 b24 Dead Point 409 7.00 lbs 8 Live Point 1080 7.00 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : 1 0' 10' -6 Dead 601 798 Live 1667 2213 Total 2268 3012 Bearing: Load Comb #2 #2 Length 1.62 2.15 LSL, 1.55E, 2325Fb, 1-314x14" Self- weight of 7.66 pff included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value . Design Value Analysis /Design Shear fv = 154 Fv' = 310 fv /Fv' = 0.50 Bending(+) fb = 1658 Fb' = 2325 fb /Fb' = 0.71 Live Defl'n 0.18 = L/714 0.35 = L/360 0.50 Total Defl'n 0.27 = L/462 0.52 = L/240 0.52 ADDITIONAL DATA: • FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Ervin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 3012, V design = 2515 lbs Bending( +): LC #2 = D +L, M = 7897 lbs -ft Deflection: LC #2 = D +L EI= 620e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) 4 Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. COMPANY PROJECT I WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 13:17 b24 Design Check Calculation Sheet S[zer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft) Units Start End Start End Loadl Dead Full UDL 200.0 plf Load2 Live Full UDL 540.0 plf MAXIMUM RFACTI(1NS Ifhsl and RFARIN( I FNGTHS lint 10' 44 Dead 409 409 Live 1080 1080 Total 1489 1489 Bearing: Load Comb #2 • #2 Length 0.68 0.68 Lumber -soft, D.Fir -L, No.2, 4x6" Self- weight of 4.57 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 89 Fv' = 180 fv /Fv' = 0.50 Bending( +) fb = 1013 Fb' = 1170 fb /Fb' = 0.87 Live Defl'n 0.04 = <L/999 0.13 = L/360 0.30 Total Defl'n 0.06 = L/764 0.20 = L/240 0.31 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.00 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 1489, V design = 1148 lbs Bending( +): LC #2 = D +L, M = 1489 lbs -ft Deflection: LC #2 = D +L EI= 78e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. COMPANY PROJECT i Wood Work U s® �WOOD , June 28, 201013 ;22 c10 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs. Pot or pff ) • Load Type Distribution Magnitude Location [ft] Units . Start End Start End l_c14 Dead Axial 938 (Eccentricity = 0.00 in) 2_c14 Rf.Live Axial 1350 (Eccentricity = 0.00 in) 3_b4 Dead Axial 47 (Eccentricity = 0..00 in) 4 b4 Live Axial 120 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): D 0' 9' Lumber n-ply, Hem-Fir, No.2, 2x6 ", 2 -Plys Self- weight of 3.41 ptf Included in loads; Pinned base; Loadface = depth(d); Buitt-lip fastener. nails; Ke x Lb: 1.00 x 9.00= 9.00 [ft]; Ke x Ld: 1.00 x 9.00= 9.00 [ff]; Analysis vs. Allowable Stress (psi) and Deflection (In) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 151 Fc' = 172 fc /Fc' = 0.88 Axial Bearing fc = 151 _ Fc* = 1644 fc /Fc* = 0.09 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci Lei Fc' 1300 1.15 1.00 1.00 0.104 1.100 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.'00 - 1.100 - - 1.00 1.00 2 Axial : IC 42 = D +L, P = 2485 lbs Kf = 0.60 (D =dead L=live S =snow W=wind I= impact C= construction CLd =concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. COS:3 COMPANY PROJECT l WoodWorks® SOFIWARFIOR WOOD !AMON June 28, 2010'13:25 c12 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs. psf, or plf ) Load Type Distribution Magnitude Location (ft) Units Start End Start End 1 b23 Dead Axial 601 (Eccentricity = 0.00 in) 2 b23 Live Axial 1667 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): 1 0' 9' Lumber n -ply, Hem -Fir, No.2, 2x4", 3-Plys Self- weight of 3.25 plf included In loads; Pinned base; Loadface = depth(d); Built -up fastener. nails; Ke x Lb: 1_00 x 9.00= 9.00 [ft]; Ke x Id: 1.00 x 9.00= 9.00 [ft]; Repetitive factor applied where permitted (refer to online help); Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial lc = 146 Fc' = 356 fc /Fc' = 0.41 Axial Bearing fc = 146 .Fc* = 1495 fc /Fc* = 0.10 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC4 Fc' 1300 1.00 1.00 1.00 0.238 1.150 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC 42 = D +L, P = 2297 lbs Kf = 0.60 (D=dead L =live S =snow W =wind I= impact C =construction CLd =concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. Lea\ COMPANY PROJECT i WoodWorks" SOH WARE FOR WOOD 0(0G June 28, 2010 13:23 c16 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf. or plf Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b6 Dead Axial 938 (Eccentricity = 0.00 in) 2 Rf.Live Axial 1350 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): I 0 ' 17 Lumber n -ply, Hem -Fir, No.2, 2x6 ", 3 -Plys Self- weight of 5.11 plf included in loads; Pinned base; Loadface = depth(d); Built -up fastener. nails; Ke x Lb: 1.00 x 17.00= 17.00 (ft]; Ke x Ld: 1.00 x 17.00= 17.00 [ft]; Repetitive factor applied where permitted (refer to online help); Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Desian Value Analysis /Design Axial fc = 96 Fc' = 110 fc /Fc' = 0.87 Axial Bearing fc = 96 Fc* = 1644 fc /Fc* = 0.06 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.067 1.100 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 2375 lbs Rf = 0.60 (D=dead L=live S =snow W =wind I= impact C =construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. GAS L COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD OE71GN June 28, 201013:25 c23 Design Check Calculation Sheet Sizer 7.1 LOADS ( tbs, psf, or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b18 Dead Axial 3978 (Eccentricity = 0.00 in) 2 Rf.Live Axial 3994 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): 0' 8' Timber -soft, Hem -Fir, No.2, 6x6" Self - weight of 6.25 plf included in loads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 265 Fc' = 548 fc /Fc' = 0.48 Axial Bearing fc = 265 Fc* = 661 fc /Fc* = 0.40 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 575 1.15 1.00 1.00 0.829 1.000 - - 1.00 1.00 2 Fc* 575 1.15 1.00 1.00 - 1.000 - - 1.00 1.00 2 Axial : LC 42 = D +L, P = 8022 lbs (D=dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. • C \3 COMPANY PROJECT (f 1Al oodWorks® San WAvr ION WOOD armGre June 28, 2010 13:23 c28 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbe, psf, or plf ) Load Type Distribution Magnitude Location (ft] Units Start End Start End 1 b24 Dead Axial 409 (Eccentricity = 0.00 in) 2 b24 Live Axial 1080 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): 0' 9' Lumber n-ply, Hem -Fir, No.2, 2x4 ", 2 -Plys Self- weight of 2.17 plf included In loads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 9.00= 9.00 [ft]; Ke x Ld: 1.00 x 9.00= 9.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 144 Fc' = 171 tc /Fc' = 0.84 Axial Bearing fc = 144 Fc* = 1495 fc /Fcl = 0.10 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LCB Fc' 1300 1.00 1.00 1.00 0.114 1.150 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 1509 lbs Kf = 0.60 (D=dead L=live S-=snow W=wind I= impact C =construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. COMPANY PROJECT i WoodWorks® SOPIWARE UDEGIGN June 28, 2010 13:22 o42 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs. psf, or pif ) Load Type Distribution Magnitude Location (ft] Units Start End Start End 1 b19 Dead Axial 86 (Eccentricity = 0.00 in) 2 b19 Live Axial 112 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): I 0 8 , Lumber Post, Hem -Fir, No.2, 4x4" Self - weight of 2.53 plf included in loads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 18 Fc' = 470 fc /Fc' r 0.04 Axial Bearing fc = 18 Fc' = 1495 fc /Fc* = 0.01 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC@ Fc' 1300 1.00 1.00 1.00 0.315 1.150 - - 1.00 1.00 2 Fc? 1300 1.00 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC 92 = D +L, P = 218 lbs (D=dead L=live S snow U - wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: .ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application_ 6rac COMPANY PROJECT . di 'WoodWorks® SOMARE WOOD DESIGN June 28, 2010 1322 c50 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location (ft) Units Start End Start End 1_c48 Dead Axial 599 (Eccentricity = 0.00 in) 2 c48 Live Axial 1660 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): • 0' 8' Lumber Post, Hem -Fir, No.2, 4x6" Self -weight of 3.98 plf included in loads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using Nos 2005 : Criterion Analysis Value Design value Analysis /Design Axial fc = 119 Fc' = 468 fc /Fc' = 0.25 Axial Bearing fc = 119 Fe* = 1430 fc /Fe* = 0.08 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC4 Fe' 1300 1.00 1.00 1.00 0.327 1.100 - - 1.00 1.00 2 Fc• 1300 1.00 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC 42 = D+L, P = 2291 lbs (0 -dead L =live S=snow W=wind I= impact C =construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. C Harper .HIP • Hod Peterson COMMUNICATION RECORD Righellis Inc. To ❑ FROM 0 MEMO TO FILE ❑ ea.cin EE n a • PLANNEH6 .n4VBGARF A4C1+11E::rn•SL'RVEru4s ... PHONE NO PHONE CALL: 0 MEETING: ❑ m a m c." c, - p - cs) -NJ F, r S U C i 3_— E 9 c......\ . g 0 co 6 z S 0 O T COMPANY PROJECT di WoodWorks® SOFTWARE FOP WOOD DESIGN June 28, 2010 13:36 b17 LC1 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or pif ) Load Type Distribution Magnitude Location (fLi Units Start End Start End 1 w49 Dead Partial UD 402.0 402.0 4.00 7.50 plf 2 Snow Partial UD 450.0 450.0 4.00 7.50 plf 3 c15 Dead Point 938 4.00 lbs 4 c15 Snow Point 1350 4.00 lbs Loads Dead Full UDL 13.0 plf Load6 Live Full UDL 40.0 plf wind Wind Point 2240 4.00 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : "TrP is ∎ !�.. �'d . .,`� ."s . -----......•,--- .. - . +w as. !..:. -= '�► „ �+.r - . ' t- �-. �� .r..�. - w. - • 1.� .r _ m• . >.- �.�• `- CA 10' 7'-6 Dead 843 1656 Live 1645 2454 Total 2488 4110 Bearing: Load Comb #4 #4 Length 1.78 2.94 LSL, 1.55E, 2325Fb, 1-314x14" Self- weight of 7.66 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design n Value Analysis/Design Shear fv = 162 Fv - 356 fv /Fv' = 0.45 Bending( +) fb = 1511 Fb' = 2674 fb /Fb' = 0.57 Live Defl'n 0.09 = <L/999 0.25 = L/360 0.34 Total Defl'n 0.15 = L /580 0.37 = L/240 0.41 . ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fir' 310 1.15 - 1.00 - - - - 1.00 - 1.00 6 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 6 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 4 Emin' 0.80 million - 1.00 - - - - 1.00 - - 4 Shear : LC #6 = D +S, V = 3584, V design = 2643 lbs Bending( +): LC #6 - D +S, M = 7198 lbs -ft Deflection: LC #4 = D +.75(L +S +W) El= 620e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Toad Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. COMPANY, PROJECT i WoodWo r ks® SUFFWARC FOR WOOD DESIGN June 28, 2010 13:36 b17 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS Ms, psf, or plf ) Load Type Distribution Magnitude Location IftJ Units Start End Start End 1 w49 Dead Partial UD 402.0 402.0 4.00 7.50 pit 2:w49 Snow Partial UD 450.0 450.0 4.00 7.50 p1E 3 c15 Dead Point 938 4.00 lbs 4 c15 ' Snow Point 1350 4.00 lbs Load5 Dead Full UDL 13.0 plf Load6 Live Full UDL 40.0 plf wind Wind Point -2240 4.00 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : - -.-•'r r g ••••• le i _ � t-- Y. ���"�. � ,- _ mot.. � �1'_ ""CS3 °'- ^ � ` •a. ` ra -_ �,��.:r��e' - 1 - .... r � ,. •, 10' 7461 Dead 843 1650 Live 997 1927 Uplift 528 189 Total 1841 3584 Bearing: Load Comb 06 86 Length 1.31 2.56 LSL, 1.55E, 2325Fb, 1- 314x14" Self- weight of 7.66 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Deotan Value Analysts /Design Shear fv 162 rv' = 356 fv /Fv' = 0.45 Bending( +) fb = 1511 Fb' = 2674 fb /Fb' = 0.57 Bending( -) fb 4 469 Fb' = 1114 fb /Fb' = 0.42 Live Defl'n 0.06 a <L/999 0.25 = L/360 0.22 Total Defl'n 0.12 = L/722 0.37 - L/240 0.33 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LCI) Fv' 310 1.15 - 1.00 - - - -- 1.00 - 1.00 6 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 6 Fb'- 2325 1.60 - 1.00 0.299 1.00 - 1.00 3.00 - - 8 Fcp' 800 - - 1.00 - - - - 1.00 - - - 5' 1.5 million - 1.00 - - - - 1.00 - Emin' 0.00 million - 1.00 - - - - 1.00 - - 6 Shear : LC 06 = D +S, V = 3584, V design = 2643 los Bending(+): LC 116 - D +S, M 7198 lbs -ft Bending( -): LC 08 = .60 +W, M - 2235 t.bs -ft Deflection: LC 06 = D +S EI- 620e06 lb -in2 Total Deflection = 1.50Dead Load Deflection) + Live Load Deflection. (0 =dead L =live 8-snow W =wind I- impact C= construction CLd =concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1, Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer, 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. • COMPANY PROJECT i WoodWorks® SOFTWARE FOP WOOD D[SIGN June 28, 2010 13:41 b18 lei Design Check Calculation Sheet . Sizer 7.1 LOADS ( l b s, pat, or of ) Load Type Distribution Magnitude Location [It] Units Start End Start End 1 c16 Dead Point 938 5.00 lbs 2 Snow Point 1350 5.00 lbs 3 Dead Partial UD 498.0 498.0 15.00 16.00 plf 4 - w37 Snow Partial UU 450.0 450.0 15.00 16.00 plf 5 Dead Partial UD 498.0 499.0 14.50 15.00 plf 6_w54 Snow Partial UD 450.0 450.0 14.50 15.00 plf 7 Dead Partial UD 96.0 96.0 6.00 7.00 plf 8 Dead Partial UD 498.0 498.0 0.00 6.00 plf 9 Snow Partial UD 450.0 450.0 0.00 6.00 plf 10 c39 Dead Point 843 7.00 lbs 11 Snow Point 1147 7.00 lbs 12 Dead Point 1656 14.50 lbs 13 Snow Point 2077 14.50 lbs WIND1 Wind Point 8750 0.00 lbs WTND2 Wind Point -8750 7.00 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : Iv 161 Dead 3950 3630 Live 5866 3956 Uplift 1588 Total 9816 7586 Bearing: Load Comb #3 fl2 Length 2.95 2.28 Glulam- Unbal., West Species, 24F -V4 DF, 5- 116x16 -112" Self- weight of 19.47 plf Included In loads; Lateral support: top full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis value Design Value Analysis /Design Shear. fv = 117 Fv' = 305 tv /kb' = 0.38 Bending( +) fb -- 1443 Fb' = 2747 fb /Fb' = 0.53 Bending( -) fb 1354 Fb' = 2743 fb /Fb' _ 0.49 Live Defl'n -0.43 = L/446 0.53 - L/360 0.81 Total Defl'n -0.26 = L/737 0.80 = L/240 0.33 ADDITIONAL DATA: FACTORS: F/E CD CM Cc CL CV Cfu Cr Cfrt Notes Cn LCII Fv' 265 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.15 1.00 1.00 1.000 0.995 1.00 1.00 1.00 1.00 - 2 Fb'- 1850 1.60 1.00 1.00 0.927 1.000 1.00 1.00 1.00 1.00 - 4 Fey' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 4 F.min' 0.85 million 1.00 1.00 - - - - 1.00 - - 4 Shear : LC $2 = DfS, V = 7944, V design = 6613 lbs Bending( +): LC 92 = D1 - S, M - 27966 lbs -ft Bending( -): LC #4 - .6D +W, M = 26233 lbs -ft Deflection: LC 04 = .6D +W EI- 3453e06 lb -1n2 Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S -snow W-wind I= impact C- construction CLd=concentrated) (A11 LC's are listed in the Analysis output) Load combinations: ICC -18C DESIGN NOTES: 1. Please verity that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI/A1TC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). 030 COMPANY PROJECT i WoodWorks® SOFT WA W( POR WOOD MIGh June 28, 2010 13:41 b18 Ic2 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or pif) : Load Type Distribution Magnitude Location (ft) Units Start End Start End 1 c16 Dead Point 938 5.00 lbs 2.c16 Snow Point 1350 5.00 lbs 3 Dead Partial UD 498.0 498.0 15.00 16.00 plf 4 w37 Snow Partial UD 450.0 450.0 15.00 16.00 plf 5 Dead Partial UD 498.0 498.0 14.50 15.00 plf 6w54 Snow Partial UD 450.0 450.0 14.50 15.00 plf 7 - w55 Dead Partial UD 96.0 96.0 6.00 7.00 plf 8 Dead Partial UD 498.0 498.0 0.00 6.00 plf 9 Snow Partial UD 450.0 450.0 0.00 6.00 plf 10 c39 Dead Point 843 7.00 lbs 11 Snow Point 1147 7.00 lbs 12 Dead Point 1656 14.50 lbs 13 - c40 Snow Point 2077 14.50 lbs WIND1 Wind Point -8750 0.00 lbs WIND2 Wind Point 8750 7.00 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : • 1 0' 161 Dead 3950 3630 Live 3994 5838 Uplift 1396 Total 7944 9468 Bearing: Load Comb 02 #3 Length 2.38 2.04 Glulam- Unbal., West Species, 24F -V4 DF, 5- 118x16 -112" Self - weight of 19.47 plf included in loads; Lateral support top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Malysis /Desion Shear ry = 168 Fv' = 424 fv /Fv' a 0.40 Bending(4) fb = 2579 Fb' = 3822 fb /Fb' . 0.67 Live Defi'n 0.41 L/467 0.53 G L/360 0.77 Total Defl'n 0.56 - L/331 0.80 L/240 0.72 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Ctu Cr Cfrt Notes Cn LC# Fv' 265 1.60 1.00 3.00 - - - - 1.00 1.00 1.00 3 Eb'+ 2400 1.60 1.00 3.00 1.000 0.995 1.00 1.00 1.00 1.00 - 3 Pap' 650 - 1.00 .1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 3 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 3 Shear : LC 03 - D+.75(S)W), V - 10637, V design - 9461 lbs Bending( +): LC 13 = D +.75(S +W), M = 49976 lbs -ft • Deflection: LC #3 - D +.7S(S +W) EI 3453o06 lb - in2 Total Deflection - 1.00(Dead Load Deflection) 4 Live Load Deflection. (D =dead L =live S =snow N -wind I= impact C= construction CLd- concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application_ 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3, 5, GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). 63 • COMPANY PROJECT i WoodWo SOFTWARE FOR WOOD DESIGN June 28, 2010 13:41 b1B Ic2 NO LL Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1 c16 Dead Point 938 5.00 lbs 2 -c16 Snow Point 1350 5.00 lbs 3 Dead Partial UD 498.0 498.0 15.00 16.00 pif 4 w37 Snow Partial UD 450.0 450.0 15.00 16.00 pit 5 Dead Partial UD 498.0 498.0 14.50 15.00 pif 6 Snow Partial UD 450.0 450.0 1.4.50 15.00 plf 7 Dead Partial UD 96.0 96.0 6.00 7.00 plf 8 Dead Partial UD 498.0 498.0 0.00 6.00 pif 10 c39 Dead Point 843 7.00 lbs 12 'Dead Point 1656 14.50 lbs WIND1 Wind Point -8750 0.00 lbs WIND2 Wind Point 8750 7.00 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : 10' 161 Dead 3950 3630 Live 960 3670 Uplift 1396 Total 4910 7300 Bearing: Load Comb ill # Length ].47 _ 2.19 Glulam - Unbal., West Species, 24F -V4 DF, 5- 118x16 -112" Self- weight of 19.47 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv - 135 Fv' - 424 fv /Fv' - 0.32 Bending( +) fb = 2202 Fb' = 3822 fb /Fb' = 0.58 Live Defl'n 0.31 = L/614 0.53 = L/360 0.59 - Total Defl'n 0.48 = L/398 0.80 a L/240 0.60 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr. Cfrt Notes Cn LC# Fv' 265 1.60 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 2400 1.60 1.00 1.00 1.000 0.995 1.00 1.00 1.00 1.00 - 4 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 3 Ervin' 0.85 million 1.00 1.00 - - - - 1.00 - - 3 Shear : LC 03 - D +.75(S +W), V = 8361, V design - 7630 lbs Bendinq(i): LC (4 - .6D +W, M = 42673 lbs -ft Deflection: LC #3 = D +.75(S +W) EI= 3453e06 lb -in2 Total Deflection 1.00(Dead Load Deflection) i Live Load Deflection. (D =dead L =live S =snow W =wind I =impact C =construction CLd- concentrated) (R 11 LC's are listed in the Analysis output) Load combinations: 1CC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension). Fcp(comp'n). 6";L COMPANY PROJECT I WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 201013:42 b18 Id NO LL Design Check Calculation Sheet Sorer 7.1 LOADS (Ibs, psf, or pit ) Load Type Distribution Magnitude Location [ft] Units • Start End Start End 1 c16 Dead Point 938 5.00 lbs 2 Snow Point 1350 5.00 lbs 3 Dead Partial UD 498.0 498.0 15.00 16.00 plf 4w37 Snow Partial UD 450.0 450.0 15.00 16.00 plf 5 Dead Partial UD 498.0 498.0 14.50 15.00 plf 6 Snow Partial UD 450.0 450.0 14.50 15.00 plf 7 Dead Partial UD 96.0 96.0 6.00 7.00 plf 8w56 Dead Partial UD 498.0 498.0 0.00 6.00 plf lb c39 Dead Point 843 7.00 lbs 12 c40 Dead Point 1656 14.50 lbs WIND1 Wind Point 8750 0.00 lbs WIND2 Wind Point -8750 7.00 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : 10' 181 Dead 3950 3630 Live 3591 1065 Uplift 1580 Total 7541 4695 Bearing: Load Comb 113 112 Length 2.7.6 1.41 Glulam - Unbal., West Species, 24F -V4 DF, 5- 118x16 -112" Self- weight of 19.47 pit included in loads; Lateral support top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Desian Value Analysis /Design Shear fv = 74 Fv' = 305 tv /Fv' = 0.24 Bending( +) fb - 933 Fb' = 2747 fb /Fb' - 0.34 Bending( -) fb - 1354 Fb' = 2743 fb/Fb' = 0.49 Live Defl'n -0.43 = L/446 0.53 - L/360 0.81 Total Defl'n -0.26 = L/737 0.80 = L/240 0.33 ADDITIONAL DATA: FACTORS: F/E CD CM CL CL CV Cfu Cr Cfrt Notes Cn LCII Fv' 265 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.15 1.00 1.00 1.000 0.995 1.00 1.00 1.00 1.00 - 2 Fb'- 1850 1.60 1.00 1.00 0.927 1.000 1.00 1.00 1.00 1.00 - 4 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 •- - - - 1.00 - - 4 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 4 Shear : LC 42 = D+S, V = 4910, V design = 4172 lbs Bending( +): LC 112 - D+S, M = 18077 lbs -ft Bending( -): LC 1)4 = .6D+W, M = 26233 lbs -ft Deflection: LC 114 = .6D+W EI= 3453e06 1b - 1n2 Total Deflection - 1.00(Dead Load Deflection) + Live Load Deflection. (D -dead L =live S =snow W =wind I =impact C- construction CLd =concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). (^1,9:3 COMPANY PROJECT i WoodWorks' SOHWARE FOR WOOD DESIGN June 28, 2010 13:43 beam under 202a LC1 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psi, or plf ) Load Type Distribution Magnitude Location (ft) Units Start End Start End dead Dead Full Area 13.00 (1.33)* psf live Live Full Area 40.00 (1.33)* psf wall Dead Partial UD 90.0 90.0 0.00 3.83 plf Windl Wind Point 7380 0.00 lbs Windt _Wind Point -7380 3.83 _ lbs . *Tributary Width (ft) MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : -a .� ....N!..aw - -- - � -.= la' 16 Dead 565 302 Live 1646 427 Uplift 1538 Total 2211 729 Bearing: Load Comb #3 #2 Length 0.84 0.50* *Min. bearing length for beams is 1/2" for exterior supports PSL, 2.0E, 2900Fb, 3- 112x14" Self- weight of 15.31 plf included in loads; Lateral support: top= at supports, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 160 Fv' = 464 fv /Fv' = 0.34 Bending( +) fb = 324 Fb' = 2433 fb /Fb' = 0.13 Bending( -) fb = 2163 Fb' = 2842 fb /Fb' = 0.76 Live Defl'n -0.46 = L /415 0.53 = L/360 0.87 Total Defl'n -0.42 = L/456 0.80 = L/240 0.53 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 290 1.60 - 1.00 - - - - 1.00 - 1.00 4 Fb'+ 2900 1.00 - 1.00 0.839 1.00 - 1.00 1.00 - - 2 Fb'- 2900 1.60 - 1.00 0.613 1.00 - 1.00 1.00 - - 4 Fcp' 750 - - 1.00 - - - - 1.00 - - - E' 2.0 million - 1.00 - - - - 1.00 - - 4 Emin' 1.04 million - 1.00 - - - - 1.00 - - 4 Shear : LC #4 = .6D +W, V = 5224, V design = 5224 lbs Bending( +): LC #2 = D +L, M = 3088 lbs -ft Bending( -): LC #4 = .6D +W, M = 20612 lbs -ft Deflection: LC #4 = .6D +W El= 1601e06 lb -in2 Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D =dead 1 =live S =snow W =wind 1= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 1 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. COMPANY PROJECT 1 WoodWorks® • SOI7WARE FOR WOOD DESIGN June 28, 2010 13:43 beam under 202a LC2 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End dead Dead Full Area 13.00 (1.33)* psf live Live Full Area 40.00 (1.33)* psf wall Dead Partial UD 90.0 90.0 0.00 3.83 plf Wind/ Wind Point -7380 0.00 lbs Windt _Wind Point 7380 3.83 lbs *Tributary Width (ft) MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : A 1 0' 16 Dead 565 302 Live 427 1696 Uplift 1380 _ Total 992 1950 Bearing: Load Comb #2 #4 Length 0.50* 0.74 *Min. bearing length for beams is 1/2" for exterior supports PSL, 2.0E, 2900Fb, 3- 112x14" Self- weight of 15.31 Of included in loads; Lateral support: top= at supports, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 181 Fv' = 464 fv /Fv' = 0.39 Bending( +) fb = 2352 Fb' = 2842 fb /Fb' = 0.83 Live Defl'n 0.44 = L/435 0.53 = L/360 0.83 Total Defl'n 0.48 = L/398 0.80 = i,/240 0.60 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 290 1.60 - 1.00 - - - - 1.00 - 1.00 4 Fb'+ 2900 1.60 - 1.00 0.613 1.00 - 1.00 1.00 - 4 Fcp' 750 - - 1.00 - - - - 1.00 - - - E' 2.0 million - 1.00 - - - - 1.00 - - 4 Emin' 1.04 million - 1.00 - - - - 1.00 - - 4 Shear : LC #4 = .6D +W, V = 6000, V design = 5909 lbs Bending(+): LC #4 = .6D +W, M = 22412 lbs -ft Deflection: LC #4 = .6D +W EI= 1601e06 lb -in2 Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D =dead L -live S=snow W-wind I impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. ( 35 COMPANY PROJECT Ili WoodWorks® SOFTWARE FOR WOOD DUMP June 28, 2010 13:44 b18 REAR LC1 Design Check Calculation Sheet Sher 7.1 LOADS ( lbs, psf, or pit ) Load Type Distribution Magnitude ' Location Ift1 Units Start End Start End 1 w63 Dead Partial UD 402.0 402.0 0.00 1.00 plf 2 w63 Snow Partial UD 450.0 450.0 0.00 1.00 plf 3 c9 Dead Point 905 1.00 lbs 1 c9 Snow Point 1470 1.00 lbs 5_c10 Dead Point 985 7.00 lbs 6_c10 Snow Point 1470 7.00 lbs 7_w64 Dead Partial UD 402.0 402.0 7.00 9.50 plf 8 w64 Snow Partial UD 450.0 450.0 7.00 9.50 p11 9_925 Dead Full UDL 47.7 plf 10_325 Live Full 001 160.0 plf Loadll Dead Full UOL 13.0 plf Load12 Live Full UDL 40.0 plf WI Wind Point 6190 1.00 lbs W2 Wind Point -6190 7.00 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : 10 9.1 Dead 1977 2047 Live 5352 2391 Uplift 2667 Total 7329 4439 Bearing: Load Comb Ad 83 ' Length 3.61 - 2.19 Glulam- Unbal., West Species, 24F -V4 DF, 3- 118x10 -1/2" Seltweight of 7.55 pit included In loads; Lateral support top= full, bottom= at supports; . Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS zoos : Criterion Analysis Value Design Value Analysis /Desion Shear fv - 297 Fv' n 424 tv /Fv' 0.70 Bending( +) fb ' 1693 Fb' - 2760 fb /Fb' - 0.61 Bending( -) fb o 1580 Fb' - 2844 fb/Fb' a 0.56 Live Defl'n 0.14 a L/837 0.32 n 1/360 0.43 Total Defl'n 0.29 L/386 0.47 - L/240 0.62 ADDITIONAL DATA: FACTORS: F/E CD CM Cl CL CV Cfu Cr C£rt Notes Cn LCN Fv' 265 1.60 1.00 1.00 - - - - 1.00 1.00 1.00 4 Fb'+ 2400 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 3 Fb'- 1850 1.60 1.00 1.00 0.961 1.000 1.00 1.00 1.00 1.00 - 0 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 3 Min' 0.85 million 1.00 1.00 - - - - 1.00 - - 3 Shear : LC N4 = D+.75(1. +S +41), V a 7329, V design -- 6491 lbs Bending( +): LC 113 = 0+.75(1. +51, K e 8104 lbs -ft Bending( -).: LC 08 = .6D +W, M . 7558 ibs - €t Deflection: LC 03 04.75(1 +S) E1' 543e06 lb-in2 Total Deflection 1.50(Dead Load Deflection) 4 Live Load Deflection. (D:dead L -live S =snow W -wind I-- impact C =construction CLd (All IC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 - 2001 and manufactured in accordance with ANSUAITC A190.1 - 1992 3. GLUL.AM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tenslon), Fcp(comp'n). 63� COMPANY PROJECT i WoodWorks® SOF! WAIF FOR WOOD DESIGN June 28, 2010 13:44 b18 REAR LC2 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psi, or pit) : Load Type Distribution Magnitude Location [fL_I Units Start End Start End 1 w63 Dead Partial UD 402.0 402.0 0.00 1.00 pit 2 Snow Partial UD 450.0 450.0 0.00 1.00 plf . 3 cS Dead Point 985 1.00 lbs 4 Snow Point 1470 1.00 lbs - 5 Dead Point 985 7.00 lbs F_ Snow Point 1470 7.00 lbs 7 w 64 Dead Partial UD 402.0 402.0 7.00 9.50 plf 8 Snow Partial UD 450.0 450.0 7.00 9.50 plf 9 j25 Dead Full UDL 47.7 plf 10 j25 Live Full UDL 160.0 plf Loadll Dead Full (1DL 13.0 plf Loadl2 Live Full UDL 40.0 plf W1 Wind Point -6190 1.00 lbs W2 Wind Point 6190 7.00 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : 1 0' 0..61 Dead 1977 2047 Live 2420 5324 Uplift 2709 Total 4397 7371 Bearing: Load Comb 43 44 Length 2.16 3.61 Glulam - Unbal., West Species, 24F -V4 DF, 3- 1/8x10 -112" Self- weight of 7.55 plf included in loads; Lateral support top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion . Analysis Value IDesian Value Analysis /Design Shear iv = 299 Fv' - 424 iv/Tv = 0.70 Bending( +) fb = 3225 Fb' = 3840 • fb /Fb' = 0.84 Live Defl'n 0.24 = L/468 0.32 = L/360 0.77 Total Defl'n 0.40 = L/283 0.47 = L/240 0.85 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC4 Fv' 265 1.60 1.00 1.00 - - - - 1.00 1.00 1.00 4 Fb'+ 2400 1.60 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 4 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 4 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 4 Shear : LC 44 = Dt.75(L +SiW), V - 7371, V design = 6533 lbs bending(-1): LC 44 = D +.75(L +S +W), M - 15434 lbs -ft Deflection: LC 44 = D +.75(L+SIW) ET= 543e06 lb -in2 Total Deflection = i.50(Dead Load Deflection) + Live Load Deflection. (D -dead L =live S -snow W -wind I impact C- construction Cid- concentrated) (A11 LC's are listed in the Analysis output) Load combinations: 1CC -18C DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2, Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). Grs+- Harper Project: H P Houf Peterson Client Job # Righellis Inc. Designer: Date: Pg. # uu�RCAFL nH Cn;i, CT,. U,tVFtOHO Wdl 10 lb 8•f3.20•ft Wdl = 1600•lb ft Seismic Forces Site Class =D Design Catagory =D W p W dl I 1.0 Component Importance Factor (Sect 13.1.3, ASCE 7 -05) S := 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. S 0.942 Max EQ, 5% damped, spectral responce acceleration at short period z := 9 Height of Component h := 32 Mean Height Of Roof F := 1.123 Acc -based site coefficient © .3 s- period (Table 1613.5.3(1), 2006 IBC) F 1.722 Vel -based site coefficient @ 1 s- period (Table 1613.5.3(2), 2006 IBC) S .= F • Sml := F 2.S ms Sds := Max EQ, 5% damped, spectral responce acceleration at short period 3 Exterior Elements & Body Of Connections a := 1.0 R := 2.5 (Table 13.5 -1, ASCE 7 - 05) .4a F P := � 1 + 2 h)•Wp EQU. 13.3 -1 R p F pmax := 1.6.Sds.Ip.Wp EQU. 13.3 -2 F pmin • W p EQU. 13.3 - = if(F > Fp < Fpmin,Fpmin, F = 338.5171•lb Miniumum Vertical Force 0.2 • S ds •W dl = 225.6781•Ib GS5 Harper Project: HP "• Houf Peterson Client: Job # Righellis Inc. EN f•INEF4b� L:.NNF.MS Designer: Date: Pg. # L 4NYCAGi ARCNITf Ci50(. 'q :i1 Y(iq Wd1:= 10• lb 8 ft-20-ft Wdl = 1600-lb ft Seismic Forces Site Class =D Design Catagory =D W := W P d1 I 1.0 Component Importance Factor (Sect 13.1.3, ASCE 7 -05) S := 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. S := 0.942 Max EQ, 5% damped, spectral responce acceleration at short period z := 9 Height of Component h := 32 Mean Height Of Roof F • -= 1.123 Acc -based site coefficient @ .3 s- period (Table 1613.5.3(1), 2006 IBC) F 1.722 Vel -based site coefficient @ 1 s -period (Table 1613.5.3(2), 2006 IBC) S • = F -S S in] := F -S 2-S ms S ;= 3 Max EQ, 5% damped, spectral responce acceleration at short period Exterior Elements & Body Of Connections a := 1.0 R := 2.5 (Table 13.5 -1, ASCE 7 -05) .4ap S ds - r F :_ I 1 + 2 h I•W EQU. 13.3 -1 F pmax := 1.6•S W EQU. 13.3 -2 F pmin .3.S -l p• W p EQU. 13.3 -3 2A:= if (F > F pmax , Fpmax, if (F < F pmin , Fpmin, F F = 338.5171-lb Miniumum Vertical Force 0.2•S = 225.6781•lb G36\ Harper JHP • HoufPeterson COMMUNICATION RECORD Righellis .Inc. TO ❑ FROM G MEMO TO FILE D A;_ r:avaF rt� PHONE NO.:. PHONE CALL: 0 MEETING: M z m El g we n li ..F 0 ti _.4 I -1 ; (b - J z 3 35 7'' n A W ii it ./ 11 e v IN 11 G rn 4- 0 �� 'I 0 G I 1 O P A z) O � _ Y 0 BY (p DATE: ' 1 \ t j 1 ,, JOB N6 ; � .�, ' L 1 !1 1 L i v PROJECT: RE' D EC.!G, ,) P N f;?- Pk ►� C A PI\c_ \I - v ❑ ❑ _-- AL t W f f NPM. C PcPgc tr bd y (I C'omrnc31\> o s (1.333)(laatinai 0 I( t /Wait o w I ° w o • e 3' 1 Z ¢ a Z • • a CAPPtC. IT 'I -L-1" (` 1b2a.6I.'t 141nai . i ,1 t Z r--- Q lbrN Fk \srS 2 \<-- Jo I pL c _____/ 0 o iF 5pacin5 \oeA l Y.a' 1= = 3'' I:o,e. Z CaPcx 6 (0 1 pt.....- . W ❑ o . P- a w fc C ri_)al • l(r. p I. c4Th i P • , i \) = l., .as ivr_ . , 1 1 o -' >> Us CZ) Slrfl \ on S!7'3' :.`1'rz_ i r i d a _.4 , , Z i� w C T a ° 1 = ( a 1'fk z )(Z2 -0K) c5 FS tP(F�<4o ical r f C _. 1>i :,,I is , i e1rUV 1 : 1oa c& • = 3o ■ 4 ( z Q31 *tii-t- v11 cpc■ 505 x 4 ' 1 J - [V' 0.C. . (2(22 0 t* = 4 40 4# = - OIL Sy: f\fl Nyi DATE: � \S) Do t , JOB NO.: CE C.) 0 PROJECT: (''' RE: c. ., \`ras. - C-�, v t��`c ' a \ ❑ ❑ /� H W L`d� SAW a $ • 2 f-- �. 2 A w ❑ 0 j M= aooAt( 4a" • w • .= SW3 � o it u Z Z T=- 8400 it,N s aH 00 3. ZIP.) _U z u 5i�rnSor1 1-1Ou 4 z To re5� 5t. ke+nsor� ( 1._____..> T 2 ` }se 0 O I C 0 f . O 11 Z w ❑ D 1 - LORI CA C a, 1- d M = aoO# ( zoo t I = BOW o f T=C = B000 #iti -aa8 j 3e5" G aa,56 c a&-loo H-D04 y L s o�, 4 4 ,; b A. N §1 A% q -- t - a � _z� RV • (f\k-P- Harper 6 1. L t' HoufPeterson COMMUNICATION RECORD Righellis Inc. TO ❑ FROM ❑ MEMO To FILE ❑ LA •+e:++tra +110::np17_ .Iu . PHONE NO.• PHONE CALL: 0 MEETING: (] M s C 7 ---I g rta (1, x 11 i - l ) o .r-- g;;* 0 01 11 ft 9v 9.) d Q. § 6 1 4 # 7 c 0 1 i It 6 �S n 2_,) r; (.. I . < Cl 4___ 1 0 0 O r narper Houf Peterson COMMUNICATION RECORD Righellis Inc. To [] FROM ED . MEMO TO FILE 0 I1P9H,.PLER LA AmclitrecTs•u. PHONE NO • PHONE CAW El MEETING: 0 M 11 T !" m 2 - g :Al. .. ---- . 8 p , ...i _,.(..7 ■ '\ 1111111M. —1 _ . N c •-• F C---N 0 ._...., .4 4.. )'.. -c- -\ r L.) 'c -..11(c..1 r- E 0 7 C a ,.......0 I" %-- c 1 --1 LiN > r 11 t....; V C.. r\ 1 I • - k.--....- 1 r n 1 (.... 1 1 z 9 0 CI: ' - e (.1 --.....- 1 r'N ,---- \ 0 o 11% le - I COMPANY PROJECT di WoodWorks® SOFTWARE FOR WOOD orS,ON June 8. 2009 16:27 Hand Rail Design Check Calculation Sheet Sizer 8.0 LOADS: Load Type Distribution Pat- Location [ft] Magnitude Unit tern Start End Start End LIVE Live Point 2.50 200 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : la si Dead Live 100 100 Total 104 104 Bearing: Load Comb #2 #2 Length 0.50* 0.50* Cb 1.00 1.00 "Min. bearing length for beams is 1/2" for exterior supports Lumber -soft, Hem -Fir, No.2, 2x6" Self- weight of 1.7 pff included in loads; Lateral support: top= at supports, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear IV = 19 Fv' = 150 fv /Fv' = 0.13 Bending( +) fb = 405 Pb' = 1048 fb /Fb' = 0.39 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.20 Total Defl'n 0.03 = <L/999 0.25 = L/240 0.14 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 150 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 0.949 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 405 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.3 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emir' 0.47 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = L, V = 104, V design = 103 lbs Bending( +): LC #2 = L, M = 255 lbs -ft Deflection: LC #2 = L EI = 27e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I =impact C =construction Lc =concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 61 8 ID COMPANY PROJECT (ii WoodWorks® mmno fra4waoDassmN June 8, 2009 16:27 Hand Ra112 Design Check Calculation Sheet Slzer 8.0 LOADS: Load Type Distribution Pat - Location [ft] Magnitude Unit tern Start End Start End LIVE Live Full UDL 50.0 plf MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : i0' 5 Dead Live 125 125 Total 129 129 Bearing: Load Comb #2 #2 Length 0.50* 0.50* Cb 1.00 1.00 'Min. bearing length for beams Is 1/2' for exterior supports Lumber -soft, Hem -Fir, No.2, 2x6" Self - weight of 1.7 plf Included In loads; Lateral support top= at supports, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis/Design Shear fv = 19 Fv' = 150 fv /Fv' = 0.13 Bending( +) fb = 256 Fb' = 1048 fb /Fb' = 0.24 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.16 Total Defl'n 0.03 = <L/999 0.25 = L/240 0.11 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 150 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 0.949 1.300 1.00 1.00 1.00 1.00 - 2 Fop' 405 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.3 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.47 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear i LC #2 = L, V = 129, V design = 106 lbs Bending( +): LC #2 = L, M = 162 lbs -ft Deflection: LC #2 = L EI 27e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead Iwlive S =snow W =wind I= impact C =construction Lc =concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC • DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. CA,L.1(c WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN UNIT C - FRONT LOAD WoodWorks® Sizer 7.1 June 22, 2010 14:24:15 boncept Mode: Reactions at Base of Structure View Floor 2: 8' 106 - ; Iva . 1280 L ' 1280 L 4.6 -t' u5-' - ' 442 D' 4 D 4 I UVa - - _ .. - 44 -b 76 4t -b • ti 0 • - • .: ::-..15411204 L L - • � - - - -- .. -. au o y -- : - -1047746 D) :992 D • - -- ..1b 30 -0 Vr - 1 . _.. - - ab b Nl . .. • 40 4) V U 34 - 0 ay s; -n 0 1 31-0' 60:• - - • oU-0 4 b'j ca -u' b :: - ' 11660 L • .553 L . to - o tiu. _ 599 D 200 D - . - .. 24-4 ra 409D - ' 640 L - ei-0 rb• _ 208:D - • N-o r0 - IJ-U r4. . 10 -b 11 - b rt ... 1667.E 1b-0 iU ... 300 U 14-0 b ' 1100L98DL 1 J - b btf. ___ IL or 409 D 409 D 24 D 1 1 b tat � t3J - V -4 ova b -4 w b -b 4, 113 L _ !-'- - ;.n ': 633 013386 D • . • 1 _ "'I U -b BB1B BBCCCCCCCCICCCCCCCCCCCCC DIM CD U7C !UD1.IDUCUi , UUE EEL- "EE- EIEEChE:E'FEE1f1LFEEZ 0' 2 4' 6' 8' 10' 12'14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66'68' 70' 72' 74' 76' 0'1'2'33'4'5'67'8'9111 1:1 :14!10 :10 02222.2QQ t213(33;33 4. 4! 4 ( 4 '.4)45(55S543515'506(66:6:6 V6V.70 7 yoc 00 --0..)C LS k-- WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN UNIT C - REAR LOAD WoodWorIcs® Sizer 7.1 June 22, 2010 14:22:33 Concept Mode: Reactions at Base of Structure View Floor 2: B' 105 lam. 1280L 49' -6' u5ts . 442 D - ., t '- -..... -442D .. 41 -0 + +r -r 44 -0 1U u 1, 4.1. H 9. - 4..1-19 WS 44 -u V) � ~ 26W '31891 . . gv -o J 4 • ' -- , - _ 1977 D0 . - .2047 D - -- - ' on b -,, ai 1 . _ - _ sr -o JL • .5r -b :11 .50 -0 a U - _ 34 -o lsa 33 -b bf .5 i -b MO .ls -b C:J • LY O 64 - . - 20 -b 0.3 • L! -b n L 42068 L ' 689 L Lb -n 0 u . 731 D 244 D G4 b / GA. «b ff 4090 208D el e0 . . LU-o r :.) t1 -I) (4 tS -h 1a 480L f-V IL ' 1776 L _ b -u U . 300 U - . • 4 b bU- 1080 L98 DI L J-0 o f ' 409 D .409 D 75 L . 1 -d bb - / ` ' 24D u -o to 1.0-43 t14). . , . , 6-0 bay . /-b OL, b -b' i 113" L _ 11 L50 Lr2077 L µ ' 113 L 38113 Li23 Di8 D1656 D .5-t, . ;6 D.D0•86 D - - 1 -e ..., u -o EBIE3BSCCCGCCCCKU CCCCCCCCCCCcCICCCDDDI JIMDDLL`�DDCDDC C0DDDDCD'DDDEEEEEEE-E}EEERE r EfEEEEEIEEEEZ 0' 2• 4' 6' 8' 10' 12' 14' 15' 18' 20' 22' 24' 26 30' 32' 34' 36 38'40' 42' 44' 46 48' 50' 52' 54 56' 58' 60 62' 64 66' 68' 70' 72' 74' 76' 0'123'4'56'7'8'5111 1:1. 11''1t1'.2122.?:2.2.2t22 0:5_;f2344 4Q444: 4tdil t4`5,{55:5:5.55'..a�(; +!fitBE f. 7 :,';i•77 ,77 -6' \ \_oo4 i olo.\■1\5 \--Pdot j ` °P2__ _ Plain Concrete Isolated Square Footing Design: F2 f := 2500.psi Concrete strength f := 60000-psi Reinforcing steel strength E := 29000•ksi Steel modulus of elasticity -y := 150•pcf Concrete density /so;t := 100.-pccf Soil density gaff := 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Total &t = 3978-lb Pdt := Totaldi Totalu := 3994•lb Pty := Totalp P := Pdt + Pj PU = 7972.1b Footing Dimensions tf := 10•in Footing thickness Width := 30.in Footing width ,A:= Width Footing Area gnat := gall — tf'" me net = 1375•psf Areqd %net A = 5.798.11 < A = 6.25 ft 2 GOOD Widthregd := Arcgd Width ,, = 2.4141 < Width = 2.50 ft GOOD • Ultimate Loads U = Pdl + tf•A''yconc P := 1.4•Pdt + 1.7•P11 P = I3.45 -kips P qu := A q = 2.15 -ksf 4F3 Beam Shear b 5.5 -in (4x4 post) d .= tF — 2-in := 0.85 b := Width b = 30 -in V, := 4 - f V 13.6 -kips 3 V 9u-(b 2 colt b V = 5.49•kips < V = 13.6 -kips GOOD Two-Way Shear bs 5.5• in Short side column width bL := 5.5 -in Long side column width b := 2•(bs + d) + 2•(bL + d) b = 54 -in 3 = 1.0 N V := 0 4 + f V = 40.8 -kips 3 3 Rc Vi m= = Vmnax = 27.13•kips A ymn:= 9u'[b ` (bcol + d) V = 1033 -kips < Vmm„a = 27.13 -kips GOOD Flexure Mn 9n I b 2 / 2 b � t � 11 J b M = 2.8 -fi -kips \\ := 0.65 S 2 'a"• _ 6 bd S= 0.185.11 F := 5••:1 f psi F, = 1625 -psi M := S ° f f = 105.14 -psi< F = 162.5•psi GOOD Pse a 2' -6" x 2'-6" x 10" plain concrete footing P- BY' A\I\c, GATE )3 ac)(0 JOB NO C J. M _ 09. O OF PROJECT: RE: S \-err WW1 ca0bn3 €. Sc des U P BVi ktar os w 0 E � � o aSCL(1zg&F)- 300 PIS ulcA\1 ❑ S cb(2 levets)63 s0 = a Ob p� Sloor c 4o") (►SO?cF�(,' % %7) ( ILZ�_ 333 P� sleet 8 Z (, w = 100w Pu w °x cr a c6 Ievels)(40 (AO _Door 0 T012,1 toad. = 1 561 } (00u) PLf. . 2 YYb x sbp = 1SOO psF = 1SOOpLF • w 0 1115 + IOcDw OOW • w = 1 0'00 & o Z ❑ z e rear c4cmt by ►1d■\op O F a DL: 05'01_1 = 300 ELF u.r�t� (gAZtevels)(13 - 0,34 91.F- �kWc' 4010 (Isopc X `1�z (f �> = 333 P 05I12 to w = loOw CI81 11 ?SC = %Clb (k. G Cock F LL a (9)(2.)C4-o> = 1-2L) C1t>C2s) _ 4-s PUP O U ` P. 4 J TL 100 V.) ,. a o a3u3 r 100w IS00t4) a w x 1,( *° 0,,1 ‘N @ urn► t Pi e u 6 7 = Same as t► 1ocr loads TL,° 13ebq t- 1000) W = 1.00 OS-E. tS` e Pa( ivvwc t l ntr 0 ,s(.172.)(2.) = (;oo pt- via t 1 ( 8)(2 t3‘1.3. = 416 t,F Sloa'- 4ot►a(i5t�ptlg('I1z ('gliv� = 333pLG Si ern (i(u )(t5() u) =100 w LL ( .2.0 4o"Cz.L = \ o - c Stour Tl. 0,63.9 {- too u.) W = L,se nA . _ . 0 ,.., • :i 5. .-..., 1 .. i= b M ,___., •,x., 0 ro, e, 0 c (z -4€)-l2 -Ao 0 . - bV• - (s cif, -1 -:. x -6 Si b • a I 0 4,t - Lo ° -_ t2- b'S ci9 1 l i.. t: vat U- m ❑ sue/ Z -Ti o 7,O . . S'1 < 'CO .:::: �./ —a 3 V� ❑ d + ' � -01 -� i id', + b 9 S St °? n) = It _ o <ti) " 4, -F -L).+--11 b (' )1a ,as' +7C EILGr oS.1'0) _ ,'w C Z 49'4,11 - Qs" eC)-If Q% .\ A 01'11 1011% 4 Or Gil = -i °W 0 cwiluinoan0 -'ay@ Z 13 = m ItV501 ---\'‘F-VA 0 A-- 511 -1-sk; 1 1 n xi D ii ° Oil I 1 711091 3 0 iligrrtk ‘51;177' rill 1) 1 „cal A „1- x i g1 2 7 ❑ ❑ St'8 r kup-la 7 D -Vvin -ki . :173road d0 060—Ng) : ON Oor O1 q (n)• -3iv0 V V V ,9 Bend4, . el Harper liosf Peterson Righellis Inc. Current Date: 6127I2O1Q 10:53 AM Units system: English File name: 'O:1HHPR ProjectslCEN - Centex Homes (309)ICEN - PlanslCEN -090 Summer Creek TownhomeslcalcstUnit CIFDN1FrOnt Load.etzl M33 =83.44 ()Wig - M33 =12.21 (Kira) • • Bentte r Harper. Houf Peterson Righellis Inc, Current Date: 6/22/2010 10:54 AM Units system: English File name: O:IHHPR Projects10EN - Centex Homes (309)10EN - Plans \CEN -090 Summer Creek TownhomeslcalcslUnit C1FDN1Front Load 2.etz1 M33 =43.5 [Kip•ftj • M33= -40.04 [Kip'ft] X (e), -` BY: DATC 1 1 1 ao m -o90 OF PROJECT: C RE: UM ?; C \ 1 � � — Reo Load W Z si1: suct Li O 2400 1000 $ E i ,. 11 W O • • u Jr a O Mor = 54,s3 y.ft Me., _IaLCo + a. (4, ,3u) t (iL,33) _ 45.34 tq c. Mcm: qi))_ - a0t,L0+ a (t.121> = a ,. LL � S(Sq. s3�. a` . LC, twDL OL_ ,I2L )s Atca• = is' x a 1, 5/ X = f LI •34 t ° C8 . �� _ �` e = om Ft � 1 • 2 o ❑ a.1 • a. gL 4. ti — L (zX(i$) aCttby <I,5 ..off • • I ` • �. g C b_A 53 Bentley, Harper Houf Peterson R49heIlls Inc. Current Date: 6/22/2010 10:57 AM Units system: English File name: O:IHHPR Pro]ects%CEN - Centex Homes (309)10EN - 'Pians10EN= 090 ,SammerCreak Townhomes1calcs1Unit C\FDN1Rear Load 2.etz1 M33=36.8211613111 M33= -50.22 [KipYt) x F:Io LIY n ^ ! 0- 1 ` t ^ �q t � CelkfrOeio U � OLD /�J� JOB NO.: OF PROJECT: RE: l� n C - \r u Jar SLJ o 2 0 W O T 2 o cr 6 - 6 r % o W c Chen_ Over n l ng a O Kr .7- 5l,0.9 kCE !,`L(� )+ DLCu) ay.3t�t�DL, Kg.% ' ?121( 4- 1.(31,(1)i-4-DL . 41;.52 i-4 DLr U I,5MbT < R i l3L fi-4 nL DL_ 13,09- kt Arta. = /x4.a5'7tas' ° t,t+G.c2.4-ii35- O a J.- Q4 rna-x L Ick 4(14.1.1) 0.0% 34, X.sV X I .S 3L (13 2 c) 34125 )(& - 2(o.'& ) L C GJ N a�t L i• G " S = C I ' ' ` H arper :Ho of Petepson Righellis Inc. Current Date: 6122/2010 1:17 PM Units system: English File name: O: HHPR Projects10EN - Centex Homes (309)ICEN - Plans\CEN -090 Summer Creek Townhomeslcalcs \Unit CUDNUnterior.etz\ M3 = 60.31 lKIp ftl M3343.58E -1$ 1 flj -- — — — — — — M33=-18.91E-10 Moll] M33 — 21.22'lKGp•ftl \i x Z —► Bentley Harper Houf Peterson Righellis Inc. Current Date: 612212010 1:1 T PM Units system: English File name: O:IHHPR Projects10EN - Centex Homes (309)10EN - Plans \CEN -090 Summer Creek TownhomescaloslUnft CIFDMInterior 2.etz� • M33 =55.84 [Wit] • M3345:111-11 (Kip'tt] – – — — – — M33= 21.46E -17 lwP•ftl M33 =25.6 (KiP'tt] Y x t3 BY A DATE: 1 o j JOB NO : n -e A 9 ' c( OF -- A,( 1 ) PROJECT: Re: .l.nVerior 1'C A 1c 5 7( 4 .1-3' 30 rr _ fi 3t kck � W YyN i Y! — ' rs O S cc V W • O Tr`6 (,� #_S t2`` o,c. - _- A -= ) .a3uN 0 0 f 60,Gc O) /o,b L •ZSxtz) = 0 . 6O Z PINIn Oi O(1 - -°1103 I , r � V•■C >(0 T0i) (►) 0_ c,c. . As= O,,SSb u- LL Z a = (01s4Xbo /o.5($0oo){ asx t� = 0. - a - 1 - 3 f--) Awn, = , 006,000)6.1 �z = L .ara��� ". OIL • CL u�Ctii . = , , 33X- ' } ,2 ) = e q ,3�1 kCt Am,r, _ a oobd = (a,s`�C.4,2s �s (NJ A sprov - ?ro' c e. 13• As • 80,a1a 4 .b1 , 19 0 U Use (,) 4 e !rv`' TO p loci rn a. o e' x3'• x x a :v � ,� 4 g [a" o,C , f\ 0,393 (NZ a=-) co,3g3 000 r y 0,S(S000)( 3xv2 ) 0�,� r■ r 0, qo:(o. aa31 (AOOa)(a 1- o,2--3/2) 3(v .bc\ k �� 'c ft (2) bottvrr• o +c Try L I ) \3ars a T o p A 0 . 5 2 1 9 2 q 0. SS�'1(t,o,006) � (O,$x3[)o0)(3):12') = Or 'I � O ° ' /J 0 M r, °AO ,Sbg)(c0000�(a - o =SS". we) k{ V6 30.M+n = 3.3 LO, 3) : - o x \, \L-\- BY DATE: ./L at° JOB Cem-octo OF PROJECT: RE: �1 F�� � • � ' ❑ ❑ A 0 c%W - Cunt J Z O f 2 t C I:Ude. Cow el-e- v.eethb Mot-= ,09 I • ° (4).(A)C ►2),∎so z i e Lu r a M RL._ 441.3,42) +6 . (o6f-3.al%) t DLC4) U � I .CM T /9 o 9— cc 0 0 $` X 3 1.- 4 11)( a bL= - 4 - ea t_ to.2) 5L0ct = 4,54 Ft Q ; + 1, A- '3,a,(7..) e_ oos4Ft BL ( 5 N (3 ("3Y c h I.. xxr� u� W G • 6 ACI 318-05 Appendix D 1.0" Diameter Bar Capacity at Portal Frame Concrete Breakout Strength Stem Wall Capacity when govern by 3 edges Foundation Capacity Givens Givens fc = 3000 psi fc = 3000 psi hi = 3.50 inches hef = 12.00 inches (into the Fc Stem = 8.00 inches Note: hef above is the the embedment into or = 5.25 inches the foundation and does not consider stem xra Fnd Width = 36.00 inches = 2.25 inches c„i = 18.00 inches Wo•N= 1.00 cast -in -place anchor W 1.00 cast -in -place anchor k = 24 cast -in -place anchor k = 24 cast -in -place anchor = 0.75 strength reduction factor 4> = 0.75 strength reduction fact Calculations Calculations ANc = 68 ln` AN = 1296 in' A = 110.25 in' AN = 1296 in` Nb = 8,607 pounds Nb = 55,121 pounds Wed,N = 0.8286 Wed,N ° 1.00 Ntb • = 4,399 pounds Nth = 55,121 pounds 4)N = 3,299 pounds 4)Ntb = 41,341 pounds Combined Capacity of Stem Wall and Foundation �Ntb = 44,640 0.754)N = 33,480 • Concrete Side Face Blow Out Givens Ab,a = 2.15 in` fc = 3000 psi s = 18.00 inches = 0.75 strength reduction factor Calculations N, = 231,191 pounds 0, = 173,393 pounds Concrete Pullout Strength Givens A 2.15 in` ft = 3000 psi = 0.75 strength reduction factor Calculations N = 51,552 pounds 4)N = 38,664 pounds Steel Yield Strength Givens ft= 58,000 psi A = 0.606 in = 0.80 strength reduction factor Calculations Ns = 35,148 pounds $N 28,118 pounds < 33,480 ©uctility:Met . Holdown Check Holdown: HDU14 Holdown Capacity= 14,930 pounds 1.6* Capacity= 23,888 pounds 23,888 < 28,118 Holdown Checks AC1 318 -05 Appendix D 1.125" Diameter Bar Capacity at Standard Stem Wall Concrete Breakout Strength Stem Wall Capacity when govern by 3 edges Foundation Capacity Givens Givens fc = 3000 psi fc = 3000 psi h' = 17.00 inches = 12.00 inches (into the Foundation) Stem = 8.00 inches Note: hef above is the the embedment into only the the foundation and does not consider stem wall embedment Fnd Width = 36.00 inches c m;n = 2.25 inches ;ran = 18.00 inches wh,N= 1.00 cast -in -place anchor yr 1.00 cast -in -place anchor k = 24 cast -in -place anchor k = 24 cast -in -place anchor = 0.75 strength reduction factor 4 = 0.75 strength reduction factor Calculations Calculations ANc = 408 in' AN = 1296 in` ANo = 2601 in` ANo = 1296 in` Nb = 92,139 pounds Nb = 55,121 pounds yw = 0.7265 Wed = 1.00 N = 10,500 pounds N = 55,121 pounds 4,N = 7,875 pounds 4,N , = 41,341 pounds Combined Capacity of Stem Wall and Foundation 44. = 49,216 0.754,N = 36,912 • Concrete Side Face Blow Out Givens Abre = 2.75 in` fc = 3000 psi C,= 18.00 inches = 0.75 strength reduction factor Calculations Nsb = 261,589 pounds 4)Nt = 196,192 pounds Concrete Pullout Strength Givens Ab, = 2.75 in` fc = 3000 psi = 0.75 strength reduction factor Calculations Np = 66,000 pounds 4N = 49,500 pounds Steel Yield Strength Givens f, = 58,000 psi A = 0.763 in = 0.80 strength reduction factor Calculations N. = 44,254 pounds DN = 35,403 pounds < 36,912 Ductility Met Holdown Check Holdown: HD19 Holdown Capacity= 16;380 pounds 1.6* Capacity= 26,208 pounds 26,208 < 35,403 Holdown Checks 1 V .- > r " jn� so 0 p a A p < —... on' CD co r © � t ` N 48-00-00 I I 38 -00-00 I 0-00-00 I I 3I , g , 34-00-00 1 DRAG LOAD OF 750 PLF ON THIS TRUSS DRAG LOAD OF 750 PLF ON THIS TRUSS ,� r q 2-F7 1 p 3-FT II .4 2-FT r c ` ' 3-FT " i+� .1 oz. to 2_,, ' ■ ii -I 1 Pi 3-Fr 1 2 - I Illi n 2-FT % I % ,SFT QE O 1 z W - Lus4a � zD 2-FT N -1 - - - — --------1 OM I I • . I • MI / E X 2. V :I 91 w D N I d � ' g it 9 -n b � it � '� � 6 - ii 11M-101. $z li 4-_s'- i i t ii iii i l ! 1IIiIii! mo o -03 -0e O z $ • • g 1 § _ 1 -0Y -00 ' E l 1—,,,00 o i1. • rc III 11111 A g oz $ i 0 ml 4, 1 4-09-08 3-04 -00 1 , 11 -09-00 18-01 -08 1 8.00-00 i 1 t°I 41 0-00 1 50-00-00 f • I n m® 3: $ H P gim °C l i �a bbb $z O 55? � J! 4 - N1 1W ��n P58. £ II>rl a rt`1 el) 73 r.,, to XI C. q 4 ° § g � `� O •- � �n g E ' ° 111111 .•3 .. A ; • o A TM i "" '2 2N Mi l v -1 a Lun a. 1 g 4 xa -IT ` ' —".. _.__.. .._ ._ �. G F di s8 O Qe_. Y gq3 4$ o°za g % m ° - i E ��m ; � 0 U8: i s m t THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. T1.___ ____ __._ .. 15877 SE 98th Ave These trusses are designed as individual building components to be incorporated into the building design TCLL (PSF): 40 Clackamas, OR 97015 at the specification of the building designer. See the TCDL (PSF): 10 Pt Phone: 1-503-557 -8404 individual design sheets for each truss design identified ( F) on the placement drawing. The building designer is BCLL (PSF): 0 responsible for temporary and permanent bracing of the BUILDER: Pulte Homes DATE: SCALE: roof and floor system and for the overall structure. The BCDL (PSF): 5 5/20/2011 NTS design of the truss support structure including headers, TL (PSF): 55 beams, walls, and columns is the responsibility of the PROJECT: Wind Sp eed: 0 DRAWN JOB #: building designer. For general guidance regarding C S n ummercreek Phase II, BY: Subodh N B 1106182 bracing, consult "Bracing of wood trusses" available LL DEFL: L/360 l3 Dl - -1 ' -7 from the Truss Plate Institute, 583 D'Onifrio Drive; ADDRESS: Ti gara� -1-/ Madison, WI 53179 N E MI® MI I MiTek° POWER r'o PBRRORM.'" MiTek Industries, Inc. 7777 Greenback Lane Suite 109 Citrus Heights, CA, 95610 Telephone 916/676 -1900 Re: B 1 106182 Fax 916/676 - 1909 Pulte Homes - Building 17 Main Floor The truss drawing(s) referenced below have been prepared by MiTek Industries, Inc. under my direct supervision based on the parameters provided by ProBuild West (Clackamas ,OR). Pages or sheets covered by this seal: 833134010 thru 833134033 My license renewal date for the state of Oregon is December 31, 2012. Important Notice: If visually graded lumber is used for the trusses covered by these designs, see "SPIB Important Notice, Dated July 28, 2010" (reprinted at www.mii.com) before use. MiTek does not warrant third -party lumber design values. • ( GINEF ' A OPE OP `-T ORE ! ' SOON Digital Signature EXPIRATION DATE: 12 -31 -12 May 23,2011 Ong, Choo Soon The seal on these drawings indicate acceptance of professional engineering responsibility solely for the • truss components shown. The suitability and use of this component for any particular building is the responsibility of the building designer, per ANSI /TPI 1. Job Truss Truss Type Qty Ply Pulte Homes - Building 17 Main Floor R33134010 B1106182 10 -FTGE Floor Truss 1 1 lob Reference Iootional) Pro -Build Clackamas Truss, Cladkamas,OR 97015 -1129 7.250 s May 11 2011 MiTek Industries, Inc. Mon May 23 08:37:02 2011 Page 1 ID:La5k9S VHOam6f17gihmpNzHOhy- t3AMPv851DTCsj4z5NTRy87PbPpFyyb511CBuZzzDeZV o- 01_ f Scala . 1 354 = 5.6 = 3.4 = 1 2 3 4 5 6 7 a 9 10 11 12 13 556 = 14 I . Y li It Y Y Y 1 r' I I -1 V 11 I y y PI PI PI PI 1 PI V V la %11 lit i �� i1l1 29 27 26 25 24 23 22 21 20 19 19 17 16 15 5.6 = 456 11 3.4 II 459 = I 17 -7 -8 1 17 -7.1 Plate Offsets (X.Y): [2:0- 1- 8.Edge]. [13:0- 1- 8.Edge]. [14:0- 1- 8.Edge]. [15•Edge 0 -1 -8]. [29:0- 1- 8.0 -1 -8j, [30:0- 1- 8.0 -1 -81 LOADING (psf) SPACING 2 -0-0 CSI DEFL in (loc) I /deft L/d PLATES GRIP TCLL 40.0 Plates Increase 1.00 TC 0.24 Vert(LL) n/a - n/a 999 MT20 220/195 TCDL 10.0 Lumber Increase 1.00 BC 0.24 Vert(TL) n/a - n/a 999 BCLL 0.0 Rep Stress Incr YES WB 0.64 Horz(TL) 0.01 21 n/a n/a BCDL 5.0 Code IRC2009/TPI2007 (Matrix) Weight: 76 lb FT = 0 %F, 0 %E LUMBER BRACING TOP CHORD 4 X 2 DF No.18Btr G TOP CHORD Structural wood sheathing directly applied or 6 -0-0 oc purlins, except BOT CHORD 4 X 2 DF No.18Btr G end verticals. WEBS 4 X 2 DF Std G BOT CHORD Rigid ceiling directly applied or 6 -0-0 oc bracing, Except: OTHERS 4 X 2 DF Std G 10-0 -0 oc bracing: 21 -22. REACTIONS All bearings 17 -7 -8. QUALIFIED BUILDING DESIGNER OR PROJECT ENGINEER SHALL REVIEW THE INPUT 9 LENGTH AND PLACEMENT OF CONNECTION TO TRANSFER LATERAL FORCES TO THE (lb) - Max Horz 28 =31(LC 2) SUPPORTING STRUCTURE AS STATED IN THE DRAG LOAD NOTE BELOW. Max Uplift All uplift 100 lb or less at joint(s) except 28=- 1761(LC 2), 15=- 1458(LC 3), 27=- 1659(LC 3), 16=- 1348(LC 2) Max Gray All reactions 250 lb or less at joint(s) 26, 25, 24, 23, 22, 21, 20, 19, 18, 17 except 28= 1868(LC 3), 15= 1592(LC 2), 27= 1953(LC 2), 16= 1690(LC 3) FORCES (lb) - Max. Comp. /Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1 -2 =- 289/284, 2- 3=- 1834/1817, 3-4 =- 1501/1483, 4 -5= 1167/1150, 5- 6=- 834/817, 6.7 =- 501/483, 8-9 =- 517/499, 9-10 =- 850/833, 10- 11=- 1183/1166, 11- 12=- 1517/1499, 12- 13=- 1850/1833,13 -14 =- 363/356 BOT CHORD 27 -28 =- 2104/2121, 26- 27=- 1832/1850, 25 -26 =- 1499/1516, 24- 25=- 1166/1183, 23-24=-832/850, 22-23=-499/516, 20-21=-484/501, 19-20=-817/834, 18-19=-1150/1168, 17-18=-1484/1501, 16-17=-1817/1834, 15-16=-2155/2172 WEBS 2- 27=- 1939/1673,13 -16 =- 1674/1364,2 -28 =- 2797/2781,13.15 =- 2686/2673 NOTES 1) Unbalanced floor live loads have been considered for this design. 2) All plates are 2x4 MT20 unless otherwise indicated. 3) Gable requires continuous bottom chord bearing. 4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). 5) Gable studs spaced at 1 -4 -0 oc. t Y3 PR OF F 6) A plate rating reduction of 20% has been applied for the green lumber members. ���' G1 N s; 7) This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and referenced \ F Q standard ANSI/TPI 1. 2, 8) This truss has been designed for a total drag load of 250 plf. Lumber DOL= (1.33) Plate grip DOL= (1.33) Connect truss to resist dra : 3640P � r loads bottom chord from 0-0-0 to 17-7-8 for p. r 9) "Fix heels els o onlly" " Member Member enn model fixity model l was in the a used in the analysis and design of this truss. / 10) Recommend 2x6 strongbacks, on edge, spaced at 10-0 -0 oc and fastened to each truss with 3 -10d (0.131" X 3 ") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. W • LOAD CASE(S) Standard 0 y , L e OREG 0 1 20 � i 0 yO q RY 2/` O SOOV1 Digital Signature EXPIRATION DATE: 12 -31 -12 May 23,2011 4 1 A WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED NITER REFERENCE PAGE MI 7473 rco. 10'08 BEFORE USE. Design valid for use only with MOck connectors. This design is based only upon parameters shown. and 6 for an individual budding component. Applicabilly of design param enters and proper incorporation of component is responsibility of budding designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the MiTek' erector. Additional permanent bracing of the overall structure is the responsibility of the buiding designer. For general guidance regarding — fabrication. quality control. storage. delivery. erection and bracing, consult ANSI/TPI1 quality Criteria, DSB -89 and SCSI Building Component 7777 Greenback Lane. Suite 109 Solely Information available from Truss Plate Institute. 281 N. Lee Street. Suite 312, Alexandria. VA 22314. Citrus Heights. CA. 95610 Job Truss Truss Type Qty Ply Pulle Homes - Building 17 Main Floor R33134011 81106182 11 -FT Floor Truss 3 1 .foh Reference (optional) Pro -Build Clackamas Truss, Clactramas,OR 97015 -1129 7.250 s May 11 2011 MiTek Industries, Inc. Mon May 23 08:37:03 2011 Page 1 ID:La5k9S VH0am6fl7gihmpNzHOhy- LGkIdF8j2Xb3Utf9f4 _gVMgVgp0Uh1CS sxR5PzDeZU 0-1 -8 H I 76-0 1 I 1 -1 -0 11 1 -4-0 I odd ScfY•1:285 244 11 2.4 11 344 = 2a4 II 414 = 244 11 4410 = 354 = 2 4i10 = 3 4 5 3s8 = 8 7 8 Zil sofas x Ell 111 iii AIM II I WIWI Mil ■■■ ►i a 13 12 n 10 4510 = 244 1 x4 11 4s10 = 418 = 448 = 1 8 - - 1 7 - 0-8 na -n 1 7 -1 1 . 0 I 15 -11 -0 I a8-7-11 80 Plate Offsets (X,Y): [4:0- 1- 8,Edge], [5:0- 1- 8,Edge], [8:0- 1- 8,Edge], [9:Edge,0 -1 -8], [10:0- 3- 12,Edge], [11:0- 1- 8,0 -0-0), [12:0- 1- 8,Edge), [13:0- 4- 8,Edge], [14:Edge,0 -1 -8], [15:0 -1 -8 0- 1- 81.f16:0- 1- 8.0 -1 -8) LOADING (psf) SPACING 2 -0-0 CSI DEFL in (loc) Ildefl lid PLATES GRIP TCLL 40.0 Plates Increase 1.00 TC 0.53 Vert(LL) - 0.20 10-11 >959 360 MT20 220/195 TCDL 10.0 Lumber Increase 1.00 BC 0.75 Vert(TL) -0.34 10-11 >553 240 BCLL 0.0 Rep Stress Incr NO WB 0.65 Horz(TL) 0.06 9 n/a n/a BCDL 5.0 Code IRC2009/TPI2007 (Matrix) Weight: 80 lb FT = 0%F, 0 %E LUMBER BRACING TOP CHORD 4 X 2 DF No.18Btr G TOP CHORD Structural wood sheathing directly applied or 6 -0-0 oc purlins, except BOT CHORD 4 X 2 DF No.18Btr G end verticals. WEBS 4 X 2 DF Std G BOT CHORD Rigid ceiling directly applied or 10-0 -0 oc bracing. REACTIONS (lb /size) 14= 855/0 -3 -8 (min. 0 -1 -8), 9= 855/0 -3-8 (min. 0-1 -8) FORCES (lb) - Max. Comp. /Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2- 3=- 2914/0, 3-4 =- 2911/0, 4 -5 =- 3199/0, 5-6= 2947/0, 6-7 =- 2947/0 BOT CHORD 13- 14= 0/1756, 12- 13= 0/3196, 11- 12= 0/3199, 10- 11= 0/3200, 9-10= 0/1754 WEBS 2 -14= 1901/0, 2 -13= 0/1239, 4 -13 =- 636/55, 7 -9 =- 1898/0, 7 -10= 0/1277, 6-10=-306/0, 5-10 =- 566/83 NOTES 1) Unbalanced floor live loads have been considered for this design. 2) A plate rating reduction of 20% has been applied for the green lumber members. 3) This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. . 4) "Fix heels only" Member end fixity model was used in the analysis and design of this truss. 5) Recommend 2x6 strongbacks, on edge, spaced at 10-0 -0 oc and fastened to each truss with 3-10d (0.131" X 3 ") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. LOAD CASE(S) Standard ���E P R O,cF • �g GINE�c / �� 8364�PE y r . "y ORE c� & -- ° o � c, O SOON Digital Signature EXPIRATION DATE: 12 -31 -12 May 23,2011 t • A WARNI NG - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE 6011.7473 rev. I0 - BEFORE USE MI Design valid for use only with Milek connectors. Th's design h based only upon parameters shown, and is for an individual budding component. Applicability of design param enters and proper incorporation of component is responsibility of budding designer - not truss designer. Bracing shown h for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the MiTek' erector. Additional permanent bracing of the overall structure Is the responsibility of the budding designer. For general guldunce regaid'sng . fabrication, qualify conhol, storage. delivery. erection and bracing. consult ANSI /TPIt quality Criteria, 058.89 and SCSI Building Component 7777 Greenback Lane, Suite 109 Safety information available from Truss Plate Institute. 281 N. Lee Street. Suite 312, Alexandria. VA 22314. - Citrus Heights, CA, 95810 Job Truss Truss Type thy Ply Pulte Homes - Building 17 Main Floor R33134012 81106182 12 -FT Floor Truss 4 1 Job Reference (optional) Pro -Build Clackamas Truss, Clackamas,OR 97015 -1129 7.250 s May 11 2011 MiTek Industries, Inc. Mon May 23 08:37:03 2011 Page 1 ID: La5k9S_ VH0am6f17gihmpNzHOhy- LGkIdF8j2Xb3Utt9f4 gVMgXhp29h7YS sxR5PzDeZU 0.1.8 H I 7 -0 -0 I I 1 -11 -17 I 14 -0 I I 0-9 -8 I Scale • 126 1 254 II 354 = 356 = 254 II 458 = 254 II 354 II 1 2 3 4458= 5 8 7 0 458= 9 I 17 �,� 1111 1■ ■ it�`11 gem MI j1I.,1t ∎N II NII,. 4 . - W. 7 . is r , 13 12 11 459 = '' 254 II 254 II 458 = 358 = 458 = 458 = I 5-9-4 1 8-0-0 1 8 k1-0 -0 0-8-0 -9-0 t 04 -0 I 15-7 -8 I 5-0-4 2 -2 -12 11-48 Plate Offsets (X.Y): [4:0- 2- 12.Edge). [5:0- 1- 8.Edge]. [6'0.1- 8.Edge]. [8:0- 1- 14.Edg_e). [10:Edge.0 -1 -8]. (12:0- 1- 8.0 -0 -01 [13:0 -1 -8 Edge]. 114:0- 1- 12.Edgej. 117:0 -1 -8 0.1 -8) LOADING (psf) SPACING 2 -0-0 CSI DEFL in (lac) 1 /deft L/d PLATES GRIP TCLL 40.0 Plates Increase 1.00 TC 0.41 Vert(LL) -0.07 11 -12 >999 360 MT20 220/195 TCDL 10.0 Lumber Increase 1.00 BC 0.58 Vert(TL) -0.15 10-11 >796 240 BCLL 0.0 Rep Stress Incr YES WB 0.31 Horz(TL) 0.02 10 n/a n/a BCDL 5.0 Code IRC2009/TP12007 (Matrix) Weight: 75 lb FT = 0%F, 0%E LUMBER BRACING TOP CHORD 4 X 2 DF No.18Btr G TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except BOT CHORD 4 X 2 DF No.1 &Btr G end verticals. WEBS 4 X 2 DF Std G BOT CHORD Rigid ceiling directly applied or 10.0 -0 oc bracing, Except: 6-0-0 oc bracing: 14 -15. REACTIONS (lb /size) 16= 260/0 -3 -8 (min. 0 -1 -8), 10= 507/0 -3-8 (min. 0 -1 -8), 14= 91810.3 -8 (min. 0 -1 -8) Max Grav16= 282(LC 5), 10= 515(LC 3), 14= 918(LC 1) FORCES (lb) - Max. Comp. /Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 4- 5= 0/274, 5-6 =- 877/0, 6-7 =- 1206/0, 7- 8=- 1214/0 BOT CHORD 15- 16= 0/408, 13- 14= 0/873, 12- 13= 0/877, 11- 12= 0/888, 10 -11 =0/983 WEBS 6-12= 282/0, 4 -14 =- 528/0, 2 -16 =- 433/0, 2 -15 =- 445/0, 3-15 =- 289/0, 4 -15 =0 /604, 5-14=-1197/0, 8 -10 =- 1057/0, 7 -11= 31510, 6-11 =0 /555 NOTES 1) Unbalanced floor live loads have been considered for this design. 2) A plate rating reduction of 20% has been applied for the green lumber members. 3) This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 4) "Fix heels only" Member end fixity model was used in the analysis and design of this truss. 5) Recommend 2x6 strongbacks, on edge, spaced at 10-0 -0 oc and fastened to each truss with 3-10d (0.131" X 3 ") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. 6) CAUTION, Do not erect truss backwards. LOAD CASE(S) Standard 5 jr 8364•PE 9 r ` i ORE ! sr O SOO Digital Signature EXPIRATION DATE: 12 -31 -12 May 23,2011 1 d ■ WARNING Verily design parametaa and READ NOTES ON THIS AND INCLUDED JIITERR®ERENCE PAGE MU 7473 rev. 10 1 08 BEFORE USE. �'� Design valid for use only with Mifek connectors. This design Is based only upon parameters shown, and is for on Individual budding component. Applicability of design {scram enters and proper incorporation of component Is responsibility of buid'eng designer - not truss designer. Bracing shown k for lateral support of individual web members only. Additional temporary bracing to insure stabiity during construction is the responsibility of the MiTek" erector. Additional permanent bracing of the overall structure is the responsibility of the budding designer. For general guidance regarding — fabrication, quality control. storage. delivery, erection and bracing. consult ANSI /1P11 quality Criteria, DSB -89 and SCSI Building Component 7777 Greenback Lane. Suite 109 Safety Information avaiable from Truss Plate Institute, 281 N. Lee Street, Suite 312. Alexandria. VA 22314. Citrus Heights, CA, 95810 Job Truss Truss Type Qty Ply Pulte Homes - Building 17 Main Floor R33134013 B1106182 13 -FT Floor Truss 2 1 Joh Refnrenrn lnntinn8t) Pro -Build Clackamas Truss, Clackamas,OR 97015 -1129 7.250 s May 11 2011 MiTek Industries, Inc. Mon May 23 08:37:05 2011 Page 1 ID:La5k9S VH0am6fl7gihmpNzHOhy- IesV2xAza8rnjBpYmVlBanitBd kd9111RAOYAIzDeZS at -8 H I 248-0 1 VI I 1 -11-17 I I 1 -4-0 I 10.9-8 I . Scale •1.261 2w II 3s4 = 3.6 = 24 II 455 • 2r4 11 3r4 11 1 2 3 4 49 = 5 6 454 = 7 9 456 = 9 In 21.16" 17 X it �� ,dill/ ,� I I I I II I. ,ZR 15 a—. 13 12 11 a 4s6 = — 2.4 11 714 11 456 = 34 = 1s8 = • 458 = I 5-94 1 8-0-0 1 8-8.0 I t 15-7 -8 1 5-9-4 2.2-12 0.8.0 0-8-0 8.7-8 e j 1 - •r ' e .1 -8 6 ' 1 -8 i : •! - . 0 1 . - 1- -: _'1 -: 1 1-1 '0- ..- •' _ _ • ' 1 - -: 0- -8 LOADING (psf) SPACING 2 -0-0 CSI DEFL in (loc) I /deft Lid PLATES GRIP TCLL 40.0 Plates Increase 1.00 TC 0.41 Vert(LL) -0.07 11 -12 >999 360 MT20 220/195 TCDL 10.0 Lumber Increase 1.00 BC 0.58 Vert(TL) -0.15 10-11 >796 240 BCLL 0.0 Rep Stress Incr YES WB 0.31 Horz(TL) 0.02 10 n/a n/a BCDL 5.0 Code IRC2009/TPI2007 (Matrix) Weight: 75 lb FT = 0 %F, 0 %E LUMBER BRACING TOP CHORD 4 X 2 DF No.18Btr G TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except BOT CHORD 4 X 2 OF No.18Btr G end verticals. WEBS 4 X 2 OF Std G BOT CHORD Rigid ceiling directly applied or 10-0 -0 oc bracing, Except: 6-0-0 oc bracng: 14 -15. REACTIONS (lb /size) 16= 260/0 -3 -8 (min. 0 -1 -8), 10= 507/0 -3-8 (min. 0-1-8), 14= 918/0 -3-8 (min. 0 -1 -8) Max Gray 16= 282(LC 5), 10= 515(LC 3), 14= 918(LC 1) FORCES (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 4- 5= 0/274, 5-6 =- 877/0, 6-7 =- 1206/0, 7 -8 =- 1214/0 • BOT CHORD 15- 16= 0/408, 13- 14= 0/873, 12 -13= 0/877, 11- 12= 0/888, 10 -11 =0/983 WEBS 6-12= 282/0, 4 -14 =- 528/0, 2 -16= 433/0, 2 -15= 445/0, 3-15 =- 289/0, 4 -15 =0 /604, 5-14 =- 1197/0, 8 -10 =- 1057/0, 7 -11= 315/0, 6-11 =0 /555 NOTES 1) Unbalanced floor live loads have been considered for this design. . 2) A plate rating reduction of 20% has been applied for the green lumber members. 3) This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 4) "Fix heels only" Member end fixity model was used in the analysis and design of this truss. 5) Recommend 2x6 strongbacks, on edge, spaced at 10-0 -0 oc and fastened to each truss with 3-10d (0.131" X 3 ") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. - 6) CAUTION, Do not erect truss backwards. LOAD CASE(S) Standard 3 6 83641 PE 9 • ` ' ORE sr �y� �A - ► OT C? Ns O SOON Digital Signature EXPIRATION DATE: 12 -31 -12 May 23,2011 t • ® WARNING- Verify drn na ign pram M ds and READ NOTES ON THIS AND INCLUDED NITER REFERENCE FAGS MI! -74 ra. 10'08 BEFORE US& MI Design valid for use only with Tek connectors. This design Is based only upon parameters shown, ands loran individual buiding component. Applicabitty of design paramen tors and proper Incorporation of component Is responsibiity of buiding designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stablily during construction's the responsibility of the MiTek' erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, ereclion and bracing, consult ANSI/TPI1 Overtly Criteria, 058.89 and SCSI Building Component 7777 Greenback Lane, Suite 109 Safety Information avaiable from Truss Plate Institute. 281 N. Lee Sheet, Suite 312. Alexandria, VA 22314. Citrus Heights, CA, 85610 • • Job Truss Truss Type Qty Ply Pulte Homes - Building 17 Main Floor R33134014 B1106182 14 -FT Floor Truss 2 1 Job Referpnrm (antinnvll Pro -Build Clackamas Truss, Clackamas,OR 97015 -1129 7.250 s May 11 2011 MiTek Industries, Inc. Mon May 23 08:37:08 2011 Page 1 ID: La5k9S_ VHOam6fl7gihmpNzHOhy- mrQIFHBbLSzeLKOkKCYN7 _IOE02suVEugg96ikzDeZR 0-1-8 H I 7A -0 I 7 -0.9 I I 2.4 -8 I I 1 -9-7 0.9-8 Scar • 1:26,1 2,4 11 324 = 326 = 324 II 428 = 2,4 II 324 II 1 2 3 4 5 424 = 7128 = 8 ,s ■ il �`� 11 II IN II ��i 1t II �I- II N I II 5. ►A ► . 1:11 12 11 10 9 214 I I 2,4 1 1 428 = 328 = 4210 = 4,8 = 4 - 11 - 9.0 8.9 I 94 - 0 I 15.7 - 8 4 -11.1 3.n-IS 0 0 8 -46 Plate Offsets (X Y) [4'0 -1 -8 Edge] [5'0 -1 -8 Fdge] [7:0- 3- 2.Edge149:Edge.0 -1 -81 (11:0- 1- 8.0 -0.0]. [12:0- 1- 8.Edge]. (13:0- 3- 8.Edael. [15:0- 1- 8.0 -1 -81 LOADING (psf) SPACING 2 -0-0 CSI DEFL in (loc) 1 /deft Ud PLATES GRIP TCLL 40.0 Plates Increase 1.00 TC 0.52 Vert(LL) -0.11 10-11 >999 360 MT20 220/195 TCDL 10.0 Lumber Increase 1.00 BC 0.71 Vert(TL) -0.19 10-11 >666 240 BCLL 0.0 Rep Stress Incr YES WB 0.25 Horz(TL) 0.02 9 n/a n/a BCDL 5.0 Code IRC2009/TPI2007 (Matrix) Weight: 73 lb FT = 0 %F, 0 %E LUMBER BRACING TOP CHORD 4 X 2 DF No.18Btr G TOP CHORD Structural wood sheathing directly applied or 6 -0-0 oc purlins, except BOT CHORD 4 X 2 DF No.18Btr G end verticals. WEBS 4 X 2 DF Std G BOT CHORD Rigid ceiling directly applied or 10-0.0 oc bracing. REACTIONS (lb /size) 14= 242/0 -3 -8 (min. 0 -1 -8), 9= 575/Mechanical, 13=867/0-3-8 (min. 0-1 -8) Max Grav14= 287(LC 5), 9= 579(LC 3), 13= 867(LC 1) FORCES (lb) - Max. Comp. /Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 4- 5=- 1239/0, 5-6 =- 1524/0, 6- 7=- 1533/0 BOT CHORD 13- 14= 0/417, 12- 13= 0/1237, 11 -12= 0/1239, 10- 11= 0/1250, 9-10= 0/1143 WEBS 5-11= 266/0, 2 -14 =- 442/0, 2 -13 =- 447/0, 4 -13 =- 1337/0, 7 -9 =- 1230/0, 7 -10= 0/420, 6 -10 =- 316/0, 5-10 =0/483 NOTES 1) Unbalanced floor live loads have been considered for this design. 2) A plate rating reduction of 20% has been applied for the green lumber members. 3) Refer to girder(s) for truss to truss connections. 4) This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 5) "Fix heels only" Member end fixity model was used in the analysis and design of this truss. 6) Recommend 2x6 strongbacks, on edge, spaced at 10-0 -0 oc and fastened to each truss with 3-10d (0.131" X 3 ") nails. Srongbacks to be attached to walls at their outer ends or restrained by other means. 7) CAUTION, Do not erect truss backwards. LOAD CASE(S) Standard c;, ' , G N EF s 836 O P E v 1- • ,` OREGOA Cy Ciy RY O SOON • Digital Signature EXPIRATION DATE: 12 -31 -12 May 23,2011 A WARNING • Verify dc4ign parameter and READ NOTES ON THIS AND INCLUDED IrT7 PAGE 8111 7473 rev. 10 '08 BEFORE US& �.x Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual budding component. Applicability of design paramenten and proper incorporation of component is responsibility of budding designer - not buss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stablity during construction is the responsibility of the MiTek' erector. Additional permanent bracing of the overall structure is the responsibility of the budding designer. For general guidance regarding - fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/M1 quality Criteria, 058.89 and 9C51 Building Component 7777 Greenback Lane, Suite 109 Safety Inlormatlon evadable from Truss Plate Institute. 281 N. Lee Street, Suite 312, Alexandria. VA 22319. Citrus Heights, CA, 95810 Job Truss Truss Type thy Ply Pulte Homes - Building 17 Main Floor R33134015 B1106182 15 -FT Floor Truss 1 1 Job Referenrre (optional) Pro -Build Clackamas Truss, Cladkamas,OR 97015 -1129 7.250 s May 11 2011 MiTek Industries, Inc. Mon May 23 08:37:07 2011 Page 1 ID:La5k9S VH0am6fl7gihmpNzHOhy- E1_ FTdCE6m5VyUyxuw3cfCgC3QTDdyxlvUvfEAzDeZQ I 760 I 1a -e I l 1.4.0 11 7 -3-17 I I 2 -3-0 11 1as I I 1 -7-8 1 alb Seale • 1 26,9 254 11 354 II 4.6 = 214 II 354 II 456 = 2.4 II 314 = 1 2 w LiJit 3 4 LIJLi 3 � 4 mu � / a 16 15 14 a 12 11 ice' 3■4 = 254 II 254 II 354 = 4B= 4.16= 45B= I 7 -11 -12 I 16-1 -0 I 7 -11 -12 x-1.4 Plate Offsets (X,Y): [1:Edge,0 -1 -8], [2:0 -2 -7, Edge], [3:0- 1- 8,Edge], [4:0- 1- 8,Edge], [6:0- 1- 8,Edge], [7:0- 1- 8,0 -0-0], [8:0- 1- 14,Edge], [9:0- 1- 8,Edge], [10:Edge,0 -1 -8], [11:0 -1 -8 .Edge]. [12:0- 1- 8.Edael. 113:0 -4 -8 Edge]. ( 14:0.1- 8.0-0- 0)415 :0- 1- 8.Edge]. [16:Edge.0 -1 -8]. (17:0- 1- 8.0 -1 -8] LOADING (psf) SPACING 2 -0-0 CSI DEFL in (loc) I /deli Ud PLATES GRIP TCLL 40.0 Plates Increase 1.00 • TC 0.45 Vert(LL) -0.08 15-16 >999 360 MT20 220/195 TCDL 10.0 Lumber Increase 1.00 BC 0.44 Vert(TL) -0.14 15-16 >672 240 BCLL 0.0 Rep Stress Incr NO WB 0.22 Horz(TL) 0.02 10 n/a n/a BCDL 5.0 Code IRC2009/TPI2007 (Matrix) Weight: 74 lb FT = 0 %F, 0 %E LUMBER BRACING TOP CHORD 4 X 2 DF No.1 &Btr G TOP CHORD Structural wood sheathing directly applied or 6 -0-0 oc puffins, except _ BOT CHORD 4 X 2 DF No.1 &Btr G end verticals. WEBS 4 X 2 DF Std G BOT CHORD Rigid ceiling directly applied or 10-0 -0 oc bracing. REACTIONS (lb /size) 16= 485/Mechanical, 10= 436/0 -3 -8 (min. 0 -1 -8), 13= 913/0 -3-8 (min. 0-1 -8) Max Grav16= 550(LC 7), 10= 458(LC 4), 13= 913(LC 1) FORCES (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 2- 3=- 1173/0, 3-4 =- 117710, 6- 7=- 91710, 7- 8= -91610 BOT CHORD 15-16= 0/1065, 14- 15= 0/1177, 13- 14= 0/1175, 12- 13= 0/916, 11- 12= 0/917, 10-11 =0/852 WEBS 2-16=-1145/0, 4 -13 =- 1101/0, 8- 10=- 909/0, 6- 13= -817/0 NOTES 1) Unbalanced floor live loads have been considered for this design. 2) A plate rating reduction of 20% has been applied for the green lumber members. 3) Refer to girder(s) for truss to truss connections. 4) This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 5) "Fix heels only" Member end fixity model was used in the analysis and design of this truss. 6) Recommend 2x6 strongbacks, on edge, spaced at 10-0 -0 oc and fastened to each truss with 3 -10d (0.131" X 3 ") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. 7) CAUTION, Do not erect truss backwards. 8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 179 lb down at 4 -0-4 on top chord. The design /selection of such connection device(s) is the responsibility of others. 9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). LOAD CASE(S) Standard � PR OFF S 1) Floor: Lumber Increase =1.00, Plate Increase =1.00 , NGINe&.. S i m Uniform Loads (plf) C.. 9 Vert: 10-16=-10, 1-9=-100 ` / : 4 OPE r Concentrated Loads (Ib) � Vert: 3=-99(B) _ ' Off y y OREG• . O de" (.4i 2 - If O SOON Digital Signature ( EXPIRATION DATE: 12 -31 -12 May 23,2011 1 ■ A WARNING - Verify design parameters and REM u NOTES ONT S AND INCLUDED bIITEK rah PAGE 8811.7473 r 10 BEFORE ILSE. !'� Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for on indtvidual budding component. ® ` Applicability of design paramenters and proper incorporation of component Is responsibility of bidding designer - not truss designer. Bracing shown 6 for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the MiTek erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage. delivery. erection and bracing, consult ANSI /TPI1 Quality Criteria. 096 -89 and BCSI Building Component 7777 Greenback Lane, Suite 109 Safety Information available from Truss Plate Institute, 281 N. Lee Street. Suite 312, Alexandria, VA 22314. Citrus Heights, CA, 95810 Job Truss Truss Type Qty Ply Pulte Homes - Building 17 Main Floor R33134016 81106182 16 -FT Floor Truss 16 1 .lob Reference (optional) Pro -Build Clackamas Truss, Clackamas,OR 97015 -1129 7.250 s May 11 2011 MiTek Industries, Inc. Mon May 23 08:37:07 2011 Page 1 ID: La5k9S_ VH0am6fl7gihmpNzHOhy- E1_FTdCE6m5VyUyxuw3dCgEe0R dxVlvUvfEAzDeZO 0-1 -B H I 243-0 I 1 -3-8 I I 1-4 -0 I I 1.1.0 I su 1:x0,1 be = OD = h4 II he II 1 be II 2 3 4 3a4 = 5 be II 5 Qe = 7 ■4 = 0 I II il q 1 M —'7 I . 11I N ►��� X11 .� r �lt�itif✓• Iii. 1 —, 11 10 9 3[0= =; ''_ ex{ = 214 II 4x10 = 410 = I 4 -0-8 412 -D 4 -10.0 I 5-8-0 I 17 -1 -0 4 -0-fl n-1- 0-8-8 0-8-0 8.7 -n Plate Offsets (X,Y): [2:0- 3- 2,Edge], [3:0.1- 8,Edge), [4:0- 1- 8,Edge), [6:0- 2- 2,Edge], [7:0- 1- 8,Edge), [8:Edge,0 -1 -8], [10:0- 1- 8,Edge), [11:0- 1- 8,Edge), [12:Edge,0 -1 -8], [13:0 -1 -8 .0- 1- 8],114:0.1 - 8.0.1 -8] LOADING (psf) SPACING 2 -0-0 CSI DEFL in (loc) l /defl Lid PLATES GRIP TCLL 40.0 Plates Increase 1.00 TC 0.35 Vert(TL) - 0.09 9-10 >999 360 MT20 220/195 TCDL 10.0 Lumber Increase 1.00 BC 0.52 Vert(TL) -0.18 8 -9 >800 240 BCLL 0.0 Rep Stress Incr YES WB 0.31 Horz(TL) 0.03 8 n/a n/a BCDL 5.0 Code IRC2009ITPI2007 (Matrix) Weight: 56 lb FT = 0 %F, 0 %E LUMBER BRACING TOP CHORD 4 X 2 DF No.18Btr G TOP CHORD Structural wood sheathing directly applied or 6 -0-0 oc purlins, except BOT CHORD 4 X 2 DF No.18Btr G end verticals. WEBS 4 X 2 DF Std G BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (Ib /size) 12= 64510 -5 -8 (min. 0 -1 -8), 8= 645/0 -3-8 (min. 0-1 -8) FORCES (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 2- 3=- 1728/0, 3-4 =- 1735/0, 4- 5=- 1877/0, 5-6=-1882/0 BOT CHORD 11- 12= 0/1329, 10- 11= 0/1735, 9-10= 0/1739, 8- 9= 0/1320 WEBS 3-11= 257/0, 2- 12=- 1421/0, 2- 11= 0/607, 6-8 =- 1414/0, 6-9= 0/606, 5 -9 =- 271/0, 4 -9 =- 144/327 NOTES 1) Unbalanced floor live loads have been considered for this design. 2) A plate rating reduction of 20% has been applied for the green lumber members. 3) This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 4) "Fix heels only" Member end fixity model was used in the analysis and design of this truss. 5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3 ") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. LOAD CASE(S) Standard ma c, G N F9 S/ 2 Al : 3640 yr ,IIIIIIIIIIII Air ^7 OREGO.. 7 Ili 0 C,S,O( i gRY 2 �@ • O SOON Digital Signature EXPIRATION DATE: 12 -31 -12 j May 23,2011 • 5 A WARNING Verily design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE WI 7473 rev. 10'08 BEFORE US& El Design valid for use onty with Mirek connectors. This design design based only upon parameters shown, and k for an individual balding component. Applicability of design paramenters and proper Incorporation of component is responsibility of building designer - not truss designer. Bracing shown Is for lateral support of individual web members only. Additional temporary bracing to Insure stablity during construction is the responsibility of the MiTek erector. Additional permanent bracing of the overall structure is the responsibility of the budding designer. For general guidance regarding fabrication, quality control, storage. delivery, erection and bracing, consult ANSI /TPI1 Quality Criteria. D58 -89 and SCSI Building Component 7777 Greenback Lane, Suite 109 Safety Information available from Truss Plate Institute, 281 N. Lee Sheet, Suite 3)2, Alexandria. VA 223 )4. Citrus Heights, CA, 95610 • Job Truss Truss Type Qty Ply Pulte Homes - Building 17 Main Floor R33134017 B1106182 17 -FTGE Floor Truss 2 1 Job Referenrw fnptinnnl) Pro -Build Clackamas Truss, Clackamas,OR 97015 -1129 7.250 s May 11 2011 MiTek Industries, Inc. Mon May 23 08:37:08 2011 Page 1 I D: 3umL9ETmSMOLe91XuK9PoyzEIXp -iDYegzC st3DMaeX7SdarC PNRagswM FgB88eCmdzDeZP oft altP Sale. 1:26,1 3r4 = 5x6 = 6x6 = 3x4 = 1 2 3 4 5 6 - 7 6 9 10 11 12 13 A 1r1 A n ■- �' ■ 25 /1 I I I I I I I .* Yew ∎Ymo+n■1i1mmommmnis■minows■pio■ V ∎1r -mimmaim5 •■■■11 ■■■■■■■14■74 IIKKKKKKK ONIIK KIM_KKIeK•K�4KKK *I K•4�■■■■■14 IIKK•• ■■■■■■■■■■Ii ' 28 25 24 23 22 21 20 19 to 17 16 15 14 5x6 = 456 II 5x6 II $4 = I 157 -8 147 -8 Plate Offsets /X Y); [2:0- 1- 8.EdgeLJl3•0- 1 8.Edge). [14:Edge 0- 1- 81127:0 -1 -8 0.1 -8). [28:0- 1- 8.0 -1 -8j LOADING (psf) , SPACING 2 -0-0 CSI DEFL in (roc) I /deft Ud PLATES GRIP TCLL 40.0 Plates Increase 1.00 TC 0.21 Vert(LL) n/a - n/a 999 MT20 220/195 TCDL 10.0 Lumber Increase 1.00 BC 0.22 Vert(TL) n/a - n/a 999 BCLL 0.0 Rep Stress Incr YES WB 0.82 Horz(TL) 0.01 20 n/a n/a BCDL 5.0 Code IRC2009/TPI2007 (Matrix) Weight: 68 lb FT = 0 %F, 0 %E • LUMBER BRACING TOP CHORD 4 X 2 DF No.18Btr G TOP CHORD Structural wood sheathing directly applied or 6 -0-0 oc purlins, except BOT CHORD 4 X 2 DF No.18Btr G . end verticals. WEBS 4 X 2 DF Std G BOT CHORD Rigid ceiling directly applied or 6 -0-0 oc bracing. OTHERS 4 X 2 DF Std G QUALIFIED BUILDING DESIGNER OR PROJECT ENGINEER SHALL REVIEW THE INPUT REACTIONS All bearings 15 -7 -8. LENGTH AND PLACEMENT OF CONNECTION TO TRANSFER LATERAL FORCES TO THE (lb) - Max Horz 26 =31(LC 2) SUPPORTING STRUCTURE AS STATED IN THE DRAG LOAD NOTE BELOW. Max Uplift All uplift 100 lb or less at joint(s) except 26=- 1661(LC 2), 14=- 2218(LC 3), 25=- 1562(LC 3), 15=- 2123(LC 2) ' - Max Gray All reactions 250 lb or less at joint(s) 24, 23, 22, 21, 20, 19, 18, 17, 16 except 26= 1771(LC 3), 14= 2293(LC 2), 25= 1853(LC 2), 15= 2359(LC 3) FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1 -2 =- 289/284, 2- 3=- 1720/1700, 3-4 =- 1387/1366, 4 -5= 1054/1033, 5 -6 =- 720/700, 6-7=-387/366, 7-8=-300/280, 8-9=-634/613, 9-10=-967/946, 10-11=-1300/1280, 11 -12 =- 1634/1580 BOT CHORD 25 -26 =- 1987/2008, 24 -25 =- 1715/1736, 23 -24 =- 1382/1403, 22- 23=- 1049/1069, 21-22=-715/736, 20-21=-382/403, 19-20=-264/285, 18-19=-597/618, 17-18=-931/951, 16 -17 =- 1264/1285, 15 -16 =- 1597/1618, 14 -15 =- 1785/1806 WEBS 2-25=-1839/1576, 12 -15 =- 2347/2135, 2 -26 =- 2646/2626, 12- 14=- 2923/2894 NOTES 1) Unbalanced floor live loads have been considered for this design. 2) All plates are 2x4 MT20 unless otherwise indicated. 3) Gable requires continuous bottom chord bearing. 4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). 5) Gable studs spaced at 1-4 -0 oc. cz o PR °P 6) A plate rating reduction of 20% has been applied for the green lumber members. fit;, s 7) This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and referenced �� \�� 4' G[ N� 9 s N._ standad ANSI/TPI 1. 8) This truss has been designed for a total drag load of 250 plf. Lumber DOL= (1.33) Plate grip DOL= (1.33) Connect truss to resist drag •/ $36 �. P E loads along bottom chord from 0 -0-0 to 15-7 -8 for 250.0 plf. � 9) "Fix heels only" Member end fixity model was used in the analysis and design of this truss. / 10) Recommend 2x6 strongbacks, on edge, spaced at 10-0 -0 oc and fastened to each truss with 3-10d (0.131" X 3 ") nails. Strongbacks ' to be attached to walls at their outer ends or restrained by other means. _n . a LOAD CASE(S) Standard • ":= ` OREGO 6 qRY' 00 Digital Signature EXPIRATION DATE: 12 -31 -12 May 23,2011 t r a WARNING • Verify design parameters and READ NOTES ON MIS AND INCLUDED MTTEKRBPERENCB PdGB 161.7473 rev. 10+08 BEFORE USB. �� Design valid for use only with MlTek connectors. This design b based only upon parameters shown, and is for an individual buiding component. Appllcabdity of design paramenters and proper Incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of Individual web members only. Additional temporary bracing to insure slabilty during construction is the responsatlity of the MiTek' erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage. delivery. erection and bracing, consult ANSI/TPI1 Quality Criteria, DSB - 99 and SCSI Building Component 7777 Greenback Lane, Suite 109 Safety Inlomtaflon available from Truss Plate Institute, 281 N. Lee Street. Suite 312. Alexandria. VA 22314. Citrus Heights. CA, 95010 Job Truss Truss Type Qty Ply Pulte Homes - Building 17 Main Floor R33134018 B1106182 19 -FT Floor Truss 2 1 lob RAferanrn (optional) Pro -Build Clackamas Truss, Clackamas,OR 97015 -1129 7.250 s May 11 2011 MiTek Industries, Inc. Mon May 23 08:37:09 2011 Page 1 I D: La5k9S_VH0am6f17gihmpNz HOhy- AQ5OtIDUeNMDCo6J ?L54IdvZ4DA75rxKMoOmJ3zDeZ0 0-1 -8 1 I 2 -0 -0 I 0-11 -a I I 1.4-0 I Scale • 1:17 8 47-8 = 37-4 = 1 Safi = 2 32■4 II 4 224 II 5 458 = 8 37-4 II • a III MI MP to „ 9 8 h4 7 4N = 4x10 = 459 = °-44 ell I 109-0 61 163.12 67-12 Plate Offsets (X.Y): [3:0- 1- 8.Edge] 14:0-1-8 Edge]. [5:0 -3-2, Edge]. [7:Edge.0-t$], [8 :0 -1 -8- Edge]. [9:0- 1- 8- 6Age]. [10:Edge- 0 -1 -8], [11:0- 1- 8.0 -1 -8] LOADING (psf) SPACING 2 -0-0 CSI DEFL in (hoc) I /deft Lid PLATES GRIP TCLL 40.0 Plates Increase 1.00 TC 0.42 Vert(LL) -0.09 7 -8 >999 360 MT20 220/195 TCDL 10.0 Lumber Increase 1.00 BC 0.35 Vert(TL) -0.24 7 -8 >525 240 BCLL 0.0 Rep Stress Incr YES WB 0.25 Horz(TL) 0.02 7 n/a n/a BCDL 5.0 Code IRC2009/TP12007 (Matrix) Weight: 50 lb FT = 0 %F, 0 %E LUMBER BRACING TOP CHORD 4 X 2 DF No.1 &Btr G TOP CHORD Structural wood sheathing directly applied or 6 -0-0 oc purlins, except BOT CHORD 4 X 2 DF No.1 &Btr G end verticals. WEBS 4 X 2 DF Std G BOT CHORD Rigid ceiling directly applied or 10-0 -0 oc bracing. REACTIONS (Ib /size) 10= 560/0 -5 -8 (min. 0 -1 -8), 7= 573 /Mechanical FORCES (Ib) - Max. Comp. /Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 2- 3=- 1405/0, 3-4=- 1413/0, 4 -5 =- 1411/0 BOT CHORD 9-10= 0/1176, 8- 9= 0/1413, 7- 8= 0/1126 WEBS 5-7 =- 1211/0, 2- 10=- 1241/0, 5-8= 0/429, 2- 9= 0/489, 3-9= -285/0 NOTES 1) Unbalanced floor live loads have been considered for this design. 2) A plate rating reduction of 20% has been applied for the green lumber members. 3) Refer to girder(s) for truss to truss connections. 4) This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 5) "Fix heels only" Member end fixity model was used in the analysis and design of this truss. 6) Recommend 2x6 strongbacks, on edge, spaced at 10-0 -0 oc and fastened to each truss with 3-10d (0.131" X 3 ") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. 7) CAUTION, Do not erect truss backwards. LOAD CASE(S) Standard 2 jd 8364• 9 r t 6...- -7„ ORE • 0 4 .r , @ y °° soot °C Digital Signature EXPIRATION DATE: 12 -31 -12 May 23,2011 4 • Q WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITER RBPBRBNCB PAGE MB 7473 rev, 10 1 08 BEFORE MB, Design valid for use only with MOek connectors. This design h based only upon parameters shown, and h for an individual building component. MI Appllcabiity of design param enters and proper Incorporation of component is responsibility of buidsrg designer - not truss designer. Bracing shown is for lateral support of Individual web members only. Additional temporary bracing to insure stabiily during construction is the responsibility of the MFTek' erector. Additional permanent bracing of the overall structure Is the responsibility of the buiding designer. For general guidance regarding fabrication, quality control, storage, delivery. erection and bracing, consult ANSI/TPI1 Quality Crtterla, 009.89 and SCSI Building Component 7777 Greenback Lane. Suite 109 Safety Information avaiable from Truss Plate Institute, 281 N. Lee Street. Suite 312. Alexandria, VA 22314. Citrus Heights, CA, 95810 Job Truss Truss Type Oty Ply Pulte Homes - Building 17 Main Floor R33134019 B1106182 1 -FTGE Floor Truss 1 1 -lob Reference (nntional) Pro -Build Clackamas Truss, Cladtamas,OR 97015 -1129 7.250 s May 11 2011 MiTek Industries, Inc. Mon May 23 08:37:10 2011 Page 1 I D: La5k9S_VH0am6f17grhmpNz HOhy- ecf05eE6PhU4gyhVZ2dJHgSmOdX LqC VUbS7JrVzDeZN ° it ale Scala • 1'30,3 3.4 = 5x6 = 5a8 = 314 = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 " ••••1■1∎•fin■■A ∎A ∎•••∎• ■-A- 'A -I4t- AAA- A- A -A1•A .111 NW 1 li i li 1 i II i l if 211 1 11FL 32 Y4t_Y.m.■ V- V- 1i4- VI- 1i4- V -V -V -V O V - \...■. V t•Y 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 5,6 = 4a6 II 4.6 = 5,6 = I 18.1 -8 10.1.8 Plate Offsets (X.YI: [210- 1- 8.Edgg]. [14:0 - 2- 12.Edge], 115:0 -1 -8 Edge].[16:Edge.0 -1 -81• [18:0 -1 -8- Edge]. [31:0- 1- 8.0 -1 -81, [32:0.1 -8 0-1-81 LOADING (psi) SPACING 2 -0-0 CS1 DEFL in (lac) I /deft Lid PLATES GRIP TCLL 40.0 Plates Increase 1.00 TC 0.28 Vert(LL) nla - nla 999 MT20 220/195 TCDL 10.0 Lumber Increase 1.00 BC 0.22 Vert(TL) n/a - n/a 999 BCLL 0.0 Rep Stress Incr YES WB 0.61 Horz(TL) 0.01 24 n/a n/a BCDL 5.0 Code IRC2009/TPI2007 (Matrix) Weight: 81 lb FT = 0 %F, 0%E LUMBER BRACING TOP CHORD 4 X 2 DF No.18Btr G TOP CHORD Structural wood sheathing directly applied or 6 -0-0 oc purlins, except BOT CHORD 4 X 2 DF No,18Btr G end verticals. WEBS 4 X 2 DF Std G BOT CHORD Rigid ceiling directly applied or 6 -0-0 oc bracing. OTHERS 4 X 2 DF Std G QUALIFIED BUILDING DESIGNER OR PROJECT ENGINEER SHALL REVIEW THE INPUT REACTIONS All bearings 18 -1 -8. LENGTH AND PLACEMENT OF CONNECTION TO TRANSFER LATERAL FORCES TO THE (Ib) - Max Horz30 =31(LC 2) SUPPORTING STRUCTURE AS STATED IN THE DRAG LOAD NOTE BELOW. Max Uplift All uplift 100 lb or less at jolnt(s) 17 except 30=- 1699(LC 2), 16= 1142(LC 3), 29=- 1590(LC 3), . 18=- 1108(LC 2) Max Grav All reactions 250 lb or less at joint(s) 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 17 except 30= 1799(LC 3), 16= 1251(LC 2), 29 =1892(LC 2), 18=1446(LC 3) • FORCES (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. . TOP CHORD 1 -2 =- 289/284, 2 -3 =- 1754/1745, 3 -4 =- 1420/1412, 4 -5= 1087/1078, 5 -6 =- 754/745, 6-7 =- 420/412, 7 -8 =- 255/246, 8 -9 =- 588/580, 9-10 =- 922/913, 10 -11 =- 1255/1246, 11 -12 =- 1588/1580, 12- 13=- 1922/1913, 13 -14 =- 2255/2246 . BOT CHORD 29 -30 =- 2032/2041, 28- 29=- 1761/1769, 27- 28=- 1427/1436, 26- 27=- 1094/1103, 25- 26=- 761/769, 24 -25 =- 427/436, 22 -23 =- 564/573, 21- 22=- 897/906, 20- 21=- 1231/1239, 19- 20=- 1564/1573, 18- 19=- 1897/1906, 17- 18=- 571/625, 16 -17 =- 721/775 . WEBS 2-29=-1878/1605, 2-30=-2691/2686, 14-16=-1468/1369, 14-18=-2106/2048 • NOTES 1) Unbalanced floor live toads have been considered for this design. 2) All plates are 2x4 MT20 unless otherwise indicated. 3) Gable requires continuous bottom chord bearing. 4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). 5) Gable studs spaced at 1-4 -0 oc. C EO PRQp 6) A plate rating reduction of 20% has been applied for the green lumber members. s 7) This truss is designed in accordance.with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and referenced ��- G ] N E F 9 ` stand ANSI/TPI 1. 8) This truss has been designed for a total drag load of 250 p11. Lumber DOL= (1.33) Plate grip DOLe (1.33) Connect truss to resist drag • / 8361. • P E 9 loads along bottom chord from 0 -0-0 to 18 -1 -8 for 250.0 p11. 9) "Fix heels only" Member end fixity model was used in the analysis and design of this truss. _ ,// / 10) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3 ") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. • ■ -7 OREGO9vA LOAD CASE(S) Standard C1 O °q • ti O SOON • Digital Signature • ( EXPIRATION DATE: 12 -31 -12 May 23,2011 4 1 A WARNING • Verify deign parameters and READ NOTES ON THIS AND INCLUDED KITES' REFERENCE PAGE BIII.74 rae. 10•'08 BEFORE USE Design valid for use only with Mitch connectors. Tha design is based only upon parameters shown, and is for an individual budding component. Dili Applicability of design perms enters and propel Incorporation of component is responsibility of budding designer - not truss designer. Bracing shown is for lateral support of Individual web members only: Additional temporary bracing to insure stability during construction is the responsdldlity of the MiTek' erector. Additional permanent bracing of the overall structure is the responsibility of the budding designer. For general guidance regarding fabrication. quality control, storage. delivery, erection and bracing, consult ANSI /TPI1 Quality Criteria, DSB -89 and SCSI Building Component 7777 Greenback Lane, Suite 109 Safety Information evadable from Truss Plate Institute, 281 N. Lee Street, Suite 312. Alexandria, VA 22314. Citrus Heights, CA, 95610 • Job Truss Truss Type Qty Ply Pulte Homes - Building 17 Main Floor R33134020 81106182 20 -FT Floor Truss 1 1 .lob Referenrn (optional) Pro -Build Clackamas Truss, Clackamas,OR 97015 -1129 7.250 s May 11 2011 MiTek Industries, Inc. Mon May 23 08:37:11 2011 Page 1 ID: La5k9S_ VH0am6f17gihmpNzHOhy- 6oDmI_FkA_cxR6Gi7m8Yg2 ?pF1wK ZoBdg6ttNyzDeZM I 2 -5.8 I l 1 axe = 6 2 244 II Scab • 1:106 IIj 344 = A, MAME 344 II 31 = 2 - 11 - B 7 -11.8 Plate Offsets (XY): [2 1- 8.Edge]. [4•Edge.0 -1 -8]. [5:0 -1 -8 0-1 -8] LOADING (psf) SPACING 2 -0-0 CSI DEFL in (roc) I /deft L/d PLATES GRIP TCLL 40.0 Plates Increase 1.00 TC 0.82 Vert(LL) 0.00 4 """• 360 MT20 220/195 TCDL 10.0 Lumber Increase 1.00 BC 0.05 Vert(TL) - 0.01 3-4 >999 240 BCLL 0.0 Rep Stress Incr NO WB 0.01 Horz(TL) 0.00 3 n/a n/a BCDL 5.0 Code IRC2009TTPI2007 (Matrix) Weight: 16 lb FT = 0 %F, 0 %E LUMBER BRACING TOP CHORD 4 X 2 DF No.18Btr G TOP CHORD Structural wood sheathing directly applied or 2 -11 -8 oc purlins, except BOT CHORD 4 X 2 DF No.18Btr G end verticals. WEBS 4 X 2 DF Std G BOT CHORD Rigid ceiling directly applied or 10-0 -0 oc bracing. REACTIONS (lb /size) 4= 199 /Mechanical, 3= 231/0 -3-8 (min. 0-1 -8) FORCES (Ib) - Max. Comp. /Max. Ten. - All forces 250 (Ib) or less except when shown. NOTES 1) A plate rating reduction of 20% has been applied for the green lumber members. 2) Refer to girder(s) for truss to truss connections. 3) This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 4) "Fix heels only" Member end fixity model was used in the analysis and design of this truss. 5) Recommend 2x6 strongbacks, on edge, spaced at 10-0 -0 oc and fastened to each truss with 3-10d (0.131" X 3 ") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. 6) CAUTION, Do not erect truss backwards. 7) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 138 lb down at 1 -10-4 on top chord. The design /selection.of such connection device(s) is the responsibility of others. 8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). LOAD CASE(S) Standard 1) Floor: Lumber Increase =1.00, Plate Increase =1.00 Uniform Loads (pit) Vert: 3- 4 = -10, 1 -2= -100 Concentrated Loads (Ib) Vert: 6=-138(F) �p PRQFe � �\� ; /p � 8364.410E -17 • / A pt - OREGO�� 0y U- RY �/'r" O SOO Digital Signature EXPIRATION DATE: 12 -31 -12 May 23,2011 4 mi A WARNING • Ver(fy design pararnetcrs and READ NOTES ON TENS AND INCLUDED MITER REFERENCE PAGE N!B1 -74 rea. 10 '08 BEFORB USE, •MA Design valid for use only with MiTek connectors. The design is based only upon parameters shown, and k for an individual bulding component. Applicabtity of design paramenters and proper Incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsbtlity of the MiTek' erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding ,".a.. fabrication, quality control, storage. delivery. erection and bracing, consult ANSI /TPI1 Quality Criteria, DSB -89 and SCSI Building Component 7777 Greenback Lane, Suite 109 Safely Information available from Truss Plate Institute. 281 N. Lee Street, Suite 312, Alexandria, VA 22314. Citrus Heights, CA. 95610 14 Job Truss Truss Type Oty Ply Pute Homes - Building 17 Main Floor R33134021 B1106182 21 -FT Floor Truss 1 1 .Inh Referenrw Inntinnall Pro -Build Clackamas Truss, Clackamas,OR 97015 -1129 7.250 s May 11 2011 MiTek Industries, Inc Mon May 23 08:37:11 2011 Page 1 ID: La5k9S_VH0am6fl7gihmpNzHOhy-6oDml FkA_ cR6Gi7m8Yg2 ?xvltdZmmdg6ttNyzDeZM I 1 -0-12 I 7 -0-0 I I 1-4 -0 I I 1 -0-4 I Scale 41199 449 = 1344 II 3344 = 3 374 II 4 5 2 II 6 446 = 7354 II poi '0 11W 111111 _ I � I 4 12 10 9 344 2x4 II 356 = 446 = 446 = 1 3-11-4 I 11-11-0 1 7-11 -4 7 -11 -12 • - • ise _ . . r- - 8 ''f . 0- -: r r • 6-1 - ..e . r . - rr -8 _ ..e . 0- LOADING (psf) SPACING 2 -0-0 CSI DEFL in (loc) 1 /deft L/d PLATES GRIP TCLL 40.0 Plates Increase 1.00 TC 0.27 Vert(LL) -0.04 8 -9 >999 360 MT20 220/195 TCDL 10.0 Lumber Increase 1.00 BC 0.22 Vert(TL) -0.08 8 -9 >999 240 • BCLL 0.0 Rep Stress Incr YES WB 0.16 Horz(TL) 0.01 8 n/a n/a BCDL 5.0 Code IRC2009/TPI2007 (Matrix) Weight: 57 lb FT = 0 %F, 0 %E LUMBER BRACING TOP CHORD 4 X 2 DF No.18Btr G TOP CHORD Structural wood sheathing directly applied or 6 -0-0 oc purlins, except BOT CHORD 4 X 2 DF No.18Btr G end verticals. WEBS 4 X 2 DF Std G BOT CHORD Rigid ceiling directly applied or 10-0 -0 oc bracing, Except: 6-0-0 oc bracng: 11 -12. REACTIONS (lb /size) 12= 171/Mechanical, 8= 413/0 -3-8 (min. 0 -1 -8), 11= 699/0 -3-8 (min. 0-1-8) Max Gray 12= 238(LC 5), 8= 413(LC 1), 11= 699(LC 1) FORCES (lb) - Max- Comp. /Max. Ten. - All forces 250 (lb) or less except when shown. • TOP CHORD 4 -5 =- 706/0, 5-6= -708/0 BOT CHORD 10- 11= 0/706, 9-10= 0/706, 8 -9 =0/728 WEBS 3-11=-289/0, 2 -11 =- 305/0, 2 -12 =- 314/20, 6-8 =- 782/0, 4- 11= -865/0 NOTES 1) Unbalanced floor live loads have been considered for this design. 2) A plate rating reduction of 20% has been applied for the green lumber members. 3) Refer to girder(s) for truss to truss connections. 4) This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 5) "Fix heels only" Member end fixity model was used in the analysis and design of this truss. 6) Recommend 2x6 strongbacks, on edge, spaced at 10-0 -0 oc and fastened to each truss with 3-10d (0.131" X 3 ") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. 7) CAUTION, Do not erect truss backwards. LOAD CASE(S) Standard 2 14 8364# PE 9r y • C�y O RE ( . O T C? O SOON Digital Signature EXPIRATION DATE: 12 -31 -12 May 23,2011 4 r ® WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE 1411-7473 res. 10.3-8 BEFORE USE Design valid for use only with Milek connectors. This design is based only upon parameters shown- and 6 for an individual building component. Appllcabiity of design paramenters and proper incorporation of component Is responsibility of budding designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibdlity of the MiTek' erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication. quality control. storage, delivery, erection and bracing, consult ANSI /TPI1 OualIfy Cdteda, 059 -89 and SCSI Building Component 7777 Greenback Lane, Suite 109 Safety Information available from Truss Plate Institute, 281 N. Lee Street. Suite 312. Alexandria. VA 22314. Citrus Heights, CA, 95610 Job Truss Truss Type Qty Ply Pulte Homes - Building 17 Main Floor R33134022 B1106182 22 -FT Floor Truss 1 1 Job Referenra (optional) Pro -Build Clackamas Truss, Cladcamas,OR 97015 -1129 7.250 s May 11 2011 MiTek Industries, Inc. Mon May 23 08.37:12 2011 Page 1 I D: La5k9S_ VH0am6B7gihmpNzHOhy- a_n8WKFMxIko3FruhTfnM FXOQRBW I8Pn2mcOvOzDeZL 0-1 -e H I 28 -0 1 I 1.7.0 I Bc5l. • ,:19,9 30 = 2r4 II 4r5 = 244 II 2 4>r13 = 3 4 214 II 12 5 8 3x4 II w 31 IIIIIIIIIIIII 11111 .11lll lllllllll� ° iw w 1 .II %� 1 Il_ ....•••••• " Ar l iiiiiiiii __ , % 11%%%% 114 Mil 1 II IN Eil WI Ng - 7r8 = • II 9 B 7 I id = 488 = tr8= 1 11 -11 -0 1 11 -11 -0 Plate Offsets (X.Y): [2:0 -3 -8 Edge]. [3:0- 1- 8.Edge]. [4:0-1-8.Edge]. [5:0- 3- 8.Edge] [7:EAge.0 -1 -8], [8:0 -1 -8 Edge], [9:0- 1- 8.Edge]. [10:Edge.0 -1 -8]. [11:0- 1- 8.0 -1 -8] LOADING (psf) SPACING 2 -0-0 CSI DEFL in (loc) I /deft Lid PLATES GRIP TCLL 40.0 Plates Increase 1.00 TC 0.67 Vert(LL) -0.14 7 -8 >996 360 MT20 220/195 TCDL 10.0 Lumber Increase 1.00 BC 0.56 Vert(TL) -0.29 7 -8 >486 240 BCLL 0.0 Rep Stress Incr NO WB 0.46 Horz(TL) 0.03 7 n/a n/a BCDL 5.0 Code IRC2009/TPI2007 (Matrix) Weight: 62 lb FT = 0%F, 0 %E LUMBER BRACING TOP CHORD 4 X 2 DF No.1&Btr G TOP CHORD Structural wood sheathing directly applied or 6 -0-0 oc purlins, except BOT CHORD 4 X 2 DF No.1 &Btr G end verticals. WEBS 4 X 2 DF Std G BOT CHORD Rigid ceiling directly applied or 10-0 -0 oc bracing. REACTIONS (lb /size) 10= 672/0 -3 -8 (min. 0 -1 -8), 7= 733 /Mechanical FORCES (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 2- 3=- 2029/0, 34=- 2033/0, 4 -12 =- 2030/0, 5-12 =- 2030/0 BOT CHORD 9-10= 0/1324, 8- 9= 0/2033, 7- 8= 0/1482 WEBS 5-7 =- 1610/0, 2 -10 =- 1432/0, 5-8= 0/630, 2 -9 =0/901 NOTES 1) Unbalanced floor live loads have been considered for this design. 2) A plate rating reduction of 20% has been applied for the green lumber members. 3) Refer to girder(s) for truss to truss connections. 4) This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 5) "Fix heels only" Member end fixity model was used in the analysis and design of this truss. 6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3 ") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. 7) CAUTION, Do not erect truss backwards. 8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 208 lb down at 8 -5-12 on top chord. The design /selection of such connection device(s) is the responsibility of others. 9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). LOAD CASE(S) Standard 1) Floor: Lumber Increase =1.00, Plate Increase =1.00 e op PR OFF Uniform Loads (plf) .` s s Vert: 7-10=-10, 1 -6= -100 � , " 5 _ ;, GIIVEF / 0 Concentrated Loads (Ib) Vert:12=- 128(B) ' 836 4.• P E r // -, • I -v OREGO 0 4,, _ , RY O SOON • Digital Signature EXPIRATION DATE: 12 -31 -12 May 23,2011 6 • Q WARNING - Vars fj design parameters and READ NOTES ON THIS AND INCLUDED MAPS REFERENCE PAGE 6IIr 7973 rev. IO -'08 BEFORE USE. MINIMA Design valid for use only with MiTek connectors. This design k based only upon parameters shown, and is for an individual buiding component. Applicability of design paramenters and proper incorporation of component is responsibility of budding designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibdlity of the MiTek" erector. Additional permanent bracing of the overall structure is the responsibility of the budding designer. For general guidance regarding • fabrication, quality control. storage, delivery. erection and bracing, consult ANSI /TPI1 Qualify Criteria, 059 -89 and SCSI Building Component 7777 Greenback Lane, Suite 109 Safety Information available from Truss Plate Institute, 281 N, Lee Street. Suite Alexandria, VA 22314. Citrus Heights, CA, 95810 Job Truss Truss Type Qty Ply Pulte Homes - Building 17 Main Floor R33134023 81106182 23 -FT Floor Truss 1 1 ,lob Reference (optional) Pro -Build Clackamas Truss, Cladkamas,OR 97015 -1129 7.250 s May 11 2011 MiTek Industries, Inc Mon May 23 08:37:12 2011 Page 1 ID:La5k9S VHOam6fl7gihmpNzHOhy- a_ n8WKFMxIko3FruhTfnMFX8dRFMIFun2mcQvOzDeZL 1.8-0 T LI A 3r4 II 2 3s4 = 3 b4 II Sage. tie 6 6 "5.; f 3s4 = 5 3>r6 = 3r6 = 1 3-10-0 3 -10-0 Plate Offsets (X.Y): [1•Edge.0 -1 -8]. [3:0- 1- 8.Edge] [6:0- 1- 8.0 -1 -8] LOADING (psf) SPACING 2 -0-0 CSI DEFL in (lac) I /del Lid PLATES GRIP TCLL 40.0 Plates Increase 1.00 TC 0.14 Vert(LL) 0.00 5 "•• 360 MT20 220/195 TCDL 10.0 Lumber Increase 1.00 BC 0.12 Vert(TL) -0.04 4 -5 >999 240 BCLL 0.0 Rep Stress I ncr NO WB 0.04 Horz(TL) 0.00 4 n/a n/a BCDL 5.0 Code IRC2009/TPI2007 (Matrix) Weight: 20 lb FT = 0 %F, 0 %E LUMBER BRACING TOP CHORD 4 X 2 DF No.18Btr G TOP CHORD Structural wood sheathing directly applied or 3 -10-0 oc purlins, except BOT CHORD 4 X 2 DF No.1&Btr G end verticals. WEBS 4 X 2 DF Std G BOT CHORD Rigid ceiling directly applied or 10-0 -0 oc bracing. REACTIONS (lb /size) 5= 228/Mechanical, 4=221/0-3-8 (min. 0-1 -8) FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. WEBS 2 -4=- 274/0, 2 -5= -279/0 NOTES 1) A plate rating reduction of 20% has been applied for the green lumber members. 2) Refer to girder(s) for truss to truss connections. 3) This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 4) "Fix heels only" Member end fixity model was used in the analysis and design of this truss. 5) Recommend 2x6 strongbacks, on edge, spaced at 10-0 -0 oc and fastened to each truss with 3-10d (0.131" X 3 ") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. 6) CAUTION, Do not erect truss backwards. LOAD CASE(S) Standard 1) Floor: Lumber Increase =1.00, Plate Increase =1.00 Uniform Loads (plf) Vert: 4- 5 = -10, 1 -3= -100 Concentrated Loads (Ib) Vert: 2=-61 �ED PR cl 5 GINE.e ° 4, :3640 I. 9 OREGO ti & RY 2 Z: 4 , SOON Digital Signature EXPIRATION DATE: 12 -31 -12 May 23,2011 Q WARNING • Verify/ design parameters and READ NOTES ON THIS AND INCLUDED HITBK RBPNRBNCB PAGE 61.7473 ran. 10 BEFORE USE. Design valid for use only with Mitek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design param enters and proper Incorporation of component is responsibility of building designer - not truss designer. Bracing shown h for lateral support of individual web members only. Additional temporary bracing to insure stability during construction's the responsbeity of the MiTek" erector. Additional permanent bracing of the overall structure is the responsibility of the budding designer. For general guidance regarding ... fabrication, quality control, storage. delivery. erection and bracing, consult ANSI /TPI1 Quality Criteria, DSB -89 and SCSI Building Component 7777 Greenback Lane, Suite 109 Safety Information available from Truss Plate Institute, 281 N. Lee Street. Suite 312, Alexandria, VA 22314. Citrus Heights, CA, 95610 Job Truss Truss Type 0ty Ply Pulte Homes - Building 17 Main Floor R33134024 B1106182 25 -FT Floor Truss 1 1 Joh Reference (nptinnall Pro -Build Clackamas Truss, Cladsamas,OR 97015 -1129 7.250 s May 11 2011 MiTek Industries, Inc. Mon May 23 08:37:13 2011 Page 1 ID: La5k9S_ VHOam6f17gihmpNzHOhy- 3BLXjgG_icsthPO4 EAAOvT4KArbM 1 i0wHQMzSgzDeZK a1 -8 H 2,14111 1-4 -17 2 35 = 3 354 I I Scale .1:m 1 1 6 I I os II ■■MME!: 5" 4 356 = 3•6 = 3.3 -8 1 1-4-11 Plate Offsets (X.YI: (6:0.1- 8.0 -1 -8) LOADING (psf) SPACING 2 -0-0 CSI DEFL in (lac) 1 /deft Lid PLATES GRIP TCLL 40.0 Plates Increase 1.00 TC 0.09 Vert(LL) 0.00 5 "" 360 MT20 220/195 TCDL 10.0 Lumber Increase 1.00 BC 0.07 Vert(TL) -0.02 4 -5 >999 240 BCLL 0.0 Rep Stress !nor YES WB 0.02 Horz(TL) 0.00 4 n/a n/a BCDL 5.0 Code IRC2009/TPI2007 (Matrix) Weight: 18 lb FT = 0 %F, 0 %E LUMBER BRACING TOP CHORD 4 X 2 DF No.1&Btr G TOP CHORD Structural wood sheathing directly applied or 3 -3-8 oc purlins, except BOT CHORD 4 X 2 DF No.1&Btr G end verticals. WEBS 4 X 2 OF Std G BOT CHORD Rigid ceiling directly applied or 10-0 -0 oc bracing. REACTIONS (lb /size) 5= 161/0 -3-8 (min. 0 -1 -8), 4= 167/Mechanical FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES 1) A plate rating reduction of 20% has been applied for the green lumber members. 2) Refer to girder(s) for truss to truss connections. 3) This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 4) "Fix heels only" Member end fixity model was used in the analysis and design of this truss. 5) Recommend 2x6 strongbacks, on edge, spaced at 10-0 -0 oc and fastened to each truss with 3-10d (0.131" X 3 ") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. 6) CAUTION, Do not erect truss backwards. LOAD CASE(S) Standard (c 0.ED P R OFF G(NEr. `s�0 9 • tr 8 . %PE y OREGON. 0 O (✓ g RY i�.7/� O SOON Digital Signature EXPIRATION DATE: 12 -31 -12 May 23,2011 1 I Q WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE Mil -74 rcc. 10 BEFORE USG. l'' Design valid for use only with MiTek connectors. This design B based only upon parameters shown, and is for an individual budding component. Applicability of design paramenters and proper incorporation of component Is responsibility of budding designer - not truss designer. Bracing shown k for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsdodlity of the MiTek' erector. Additional permanent bracing of the overall structure Is the responsibility of the budding designer. For general guidance regarding re fabrication, quality control, storage, delivery, erection and bracing. consult ANSI /TPI1 Quality Criteria, DSB -89 and BCSt Building Component 7777 Greenback Lane, Suite 109 Safely Information available from Truss Plate Institute. 281 N. Lee Street. Suite312. Alexandria, VA 22310. Citrus Heights, CA, 95810 115 Job Truss Truss Type Qty Ply Pulle Homes - Building 17 Main Floor R33134025 B1106182 2 -FT Floor Truss 9 1 Job Reference (optional) Pro Clackamas Truss, Clackamas,OR 97015 r 7.250 s Mar 23 2011 MiTek Industries, Inc. Mon May 23 10:23:19 2011 Page 1 ID: La5k9S _VH0am6fl7gihmpNzHOhy -14i94 DK8TRXdO6n PYb7 WAAk4N086bm nx8rRgtrzDd ?s 0.1 -8 H I 2.6 -0 I O f t 7 -10.8 I 0-0 Scala = 1:30.1 • 2x4 II 244 II 344 = 4x10 = 2x4 II 5x8 = 244 II 4x10 = 344 = 1 .2 • 3 4 5 8 408 7 8 9 Er ;Tr ►� ►i ►z� 14 13 12 11 MI 448 = 4410 = 5x8 = 2x4 II 4x10 = 4x8 = 9-0.12 1 9-1-8 8-p10 1 9-10 -8 1 18.1.8 I 8-1 -8 0.1 - 0-9-12 8-3.0 0-9-12 Plate Offsets (X,Y): 15:0- 3- 0,Edge1, 16:0- 1- 8,Edoe1, 19:0- 1- 8,Edgel, f10:Edoe,0 -1 -81. 112:0- 1- 8,0 -0 -01, 113:0- 1- 8,Edge1, f15:Edge,0 -1 -81, 116:0 -1- 8,0-1- 81.117:0 -1- 8,0.1 -81 LOADING (psf) SPACING 2 -0-0 CSI DEFL in (lac) 1/deft Lid PLATES GRIP TCLL 40.0 Plates Increase 1.00 TC 0.68 Vert(LL) -0.28 12 -13 >766 360 MT20 220/195 TCDL 10.0 Lumber Increase 1.00 BC 0.75 Vert(TL) -0.49 12 -13 >435 240 BCLL 0.0 Rep Stress Incr YES WB 0.38 ' Horz(TL) 0.09 10 n/a n/a BCDL 5.0 Code IRC2009/TPI2007 (Matrix) Weight: 97 lb FT = 0 %F, 0 %E LUMBER BRACING TOP CHORD 4 X 2 DF No.18Btr G TOP CHORD Structural wood sheathing directly applied or 6 -0-0 oc purlins, BOT CHORD 4 X 2 DF No.18Btr G except end verticals. WEBS 4 X 2 DF Std G BOT CHORD Rigid ceiling directly applied or 10-0 -0 oc bracing. REACTIONS (lb /size) 15= 977/0 -5 -8 (min. 0 -1 -8), 10= 977/0-5 -8 (min. 0-1 -8) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 15 -16 =- 105/0, 1 -16 =- 104/0, 10- 17=- 106/0, 9 -17 =- 106/0, 1- 2 =-6 /0, 2 -3 =- 3449/0, 3-4= 3490/0, 4 -5 =- 4174/0, 5-6=-4174/0, 6 -7 =- 3490/0, 7 -8 =- 3450/0, 8- 9 = -6/0 BOT CHORD 14- 15= 0/2149, 13- 14= 0/4171, 12- 13= 0/4174, 11- 12= 0/4174, 10-11= 0/2149 WEBS 5-13=-651/494, 6-12=-60/95, 2 -15 =- 2305/0, 2 -14= 0/1418, 3 -14 =- 260/0, 4 -14 =- 845/0, 4 -13 =- 565/754, 8 -10 =- 2305/0, 8 -11= 0/1418, 7 -11 =- 303/1, 6-11 =- 1015/0 NOTES 1) Unbalanced floor live loads have been considered for this design. 2) A plate rating reduction of 20% has been applied for the green lumber members. 3) This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 4) "Fix heels only" Member end fixity model was used in the analysis and design of this truss. 5) Recommend 2x6 strongbacks, on edge, spaced at 10-0 -0 oc and fastened to each truss with 3-10d (0.131" X 3 ") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. LOAD CASE(S) Standard .c-v° PR °Fes ■ GINEF > :3640 9 t- if -9 OREGO . C 2 C • SOO Digital Signature EXPIRATION DATE: 12 -31 -12 May 23,2011 4 1 ® WARNING - Verify deign parameters and READ NOTES ON MIS AND INCLUDED NITER REF ERENCB PAGE MI17473 rru, 10-'08 BEFORE US& Design valid for use only with MiTek connectors. Thh design '¢ based only upon parameters shown, and is for an individual budding component. Applicability of design param enters and proper incorporation of component is responsibility of budding designer - nol truss designer. Bracing shown is for lateral supporl of Individual web members only. Additional temporary bracing to Insure slabdity during construction h the responsibility of the MiTek' erector. Additional permanent bracing of the overall structure is the responsibility of the budding designer. For general guidance regarding fabrication. quality control, storage. delivery, erection and bracing, consult ANSI/TM qualify Criteria, 05B -89 and BCSI Building Component 7777 Greenback Lane, Suite 109 Safety Information available from Truss Plate Institute, 281 N. Lee Street, Suite 312, Alexandria, VA 22314. Citrus Heights, CA, 95810 Job Truss Truss Type Qty Ply Pulte Homes - Building 17 Main Floor R33134026 61106182 3 -Fr Floor Truss 6 1 .lob Referenrw (optional) Pro -Build Clackamas Truss, Cladlamas,OR 97015 -1129 7.250 s May 11 2011 MiTek Industries, Inc. Mon May 23 08:37:14 2011 Page 1 ID:La5k9S VH0am6fl7gihmpNzHOhy- XNwxOHdTv _VIZ7HouhFSgdOgEnCm4R3W45X _GzDeZJ 0-1 -8 H F 2-8.0 I I 1.1.8 I I 1 -4-0 I 11.4 I 2 -1.8 I 1:3ox 2.4 II 2.4 11 314 = 4.10 = 2.4 II 3.8 = 2.4 II _ 2.4 II 4.10 = 3r4 = 1 2 3 4 5 8 4x8 a_`\ 7 8 9 I III 17. 1114 \irail■ II MVO/ 1144%4411 rte, 14 13 12 11 f.♦ 448 = 400 = 3.4 = 2.4 II 400 = 418 = 900 5.J.9.9-8 114.5430 I 18-1-0 9-0-0 n. - 0-a-0 7 -7-8 Plate Offsets (X,Y): (4:0- 3- 13,Edge], (5:0- 1- 8,Edge], [6:0 -1 -8, Edge], [9:0- 1- 8,Edge], [10:Edge,0.1 -8], [12:0- 1- 8.0 -0-0], [13:0 -1 -8, Edge], [15:Edge,0.1 -8], (16:0.1 - 8,0.1 -8], [17:0 -1 -8 0-1 -8] LOADING (psf) SPACING 2 -0-0 CSI DEFL in (lac) I /deft Ud PLATES GRIP TCLL 40.0 Plates Increase 1.00 TC 0.55 Vert(LL) -0.29 13-14 >736 360 MT20 220/195 TCDL 10.0 Lumber Increase 1.00 BC 0.74 Vert(TL) -0.52 13-14 >415 240 BCLL 0.0 Rep Stress Incr YES WB 0.36 Horz(TL) 0.09 10 n/a n/a BCDL 5.0 Code IRC2009/TPI2007 (Matrix) Weight: 97 lb FT = 0 %F, 0 %E LUMBER BRACING TOP CHORD 4 X 2 DF No.18Btr G TOP CHORD Structural wood sheathing directly applied or 6 -0-0 oc purlins, except BOT CHORD 4 X 2 DF No.18Btr G end verticals. WEBS 4 X 2 DF Std G BOT CHORD Rigid ceiling directly applied or 10-0 -0 oc bracing. REACTIONS (Ib /size) 15= 975/0 -5 -8 (min. 0 -1 -8), 10= 975/0 -3-8 (min. 0-1 -8) FORCES (Ib) - Max. Comp. /Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 2- 3=- 3442/0, 3-4 =- 3482/0, 4 -5 =- 4134/0, 5-6= 4134/0, 6-7 =- 3457/0, 7- 8=- 3424/0 BOT CHORD 14- 15= 0/2145, 13- 14= 0/4136, 12- 13= 0/4134, 11- 12= 0/4133, 10- 11= 0/2145 WEBS 2 -15= 2301/0, 2 -14= 0/1414, 3-14 =- 25910; 4 -14 =- 699/0, 4 -13 =- 300/394, 8 -10 =- 2301/0, 8 -11= 0/1394, 7 -11 =- 268/12, 6-11 =973/0 NOTES 1) Unbalanced floor live loads have been considered for this design. 2) A plate rating reduction of 20% has been applied for the green lumber members. 3) This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 4) "Fix heels only" Member end fixity model was used in the analysis and design of this truss. 5) Recommend 2x6 strongbacks, on edge, spaced at 10-0 -0 oc and fastened to each truss with 3-10d (0.131" X 3 ") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. LOAD CASE(S) Standard lc N E�c ` S /O 2 83 •��P v 1- 1 y y OREG� � c O SOON Digital Signature EXPIRATION DATE: 12 -31 -12 May 23,2011 . A WARNING - Verify deign parameters and READ NOTES ON MIS AND INCLUDED MITER REFERENCE PAGE MR 7473 roe, 10 '08 BBFORB rASB. � Design valid for use only with Mitek connectors. This design design based only upon parameters shown, and k for an individual budding component. Applicability of design paramenters and proper incorporation of component is responsib5ily or budding designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsbslity of the MiTek' erector. Additional permanent bracing of the overall structure is the responsibility of the budding designer. For general guidance regarding .. fabrication. quality control, storage. delivery, erection and bracing, consult ANSI/7P11 Quality Criteria, DSB•89 and BCSI Building Component 7777 Greenback Lane, Suite 109 Safety information available from Truss Plate Institute, 281 N. Lee Street. Suite 312. Alexandria, VA 22314. Citrus Heights, CA. 95610 Job Truss Truss Type Oty Ply Pulte Homes - Building 17 Main Floor R33134027 B1106182 4 -FT Floor Truss 25 1 Job Rnfprpnrn (optional) Pro -Build Clackamas Truss, Cladkamas,OR 97015 -1129 7.250 s May 11 2011 MiTek Industries, Inc. Mon May 23 08:37:15 2011 Page 1 ID: La5k9S _VHoam6fl7gihmpNzHOhy- 7ZTH8M I FED6MwjaTMbC U_u9b3e8LVS9DIkr4 WIzDeZI 0-1.8 H I 2 -8-0 I I 1-4-0 I I 1.1.0 I a 6c b • 1265 24 II 2.411 314= 2.411 316 = 214 II 4.10 = 3.4= 1 2 4.10= 3 4 5 444 = 6 7 B I5 .11 �� r e 1S Y t irieri/11111111111M1111111111■WW. . II R4170 Ik4 IA 12 11 10 a 4.10 13 12 = a4 II a4 II 4510 = 458 = 458 = I 15 -11 -0 1 15-11 -n Plate Offsets (X,Y): [4:0- 1- 8,Edge], [5:0- 1- 8,Edge], [8:0- 1- 8,Edge], [9:Edge,0 -1 -8], [10:0- 4- 0,Edge], [11:0- 1- 8,0 -0-0], [12:0- 1- 8,Edge], [13:0- 4- 12,Edge], [14:Edge,0 -1 -8], [15:0 -1 -8 .0- 1- 8].[16:0- 1- 8.0 -1 -8] LOADING (psf) SPACING 2 -0-0 CSI DEFL in (lac) 1/deft Ud PLATES GRIP TCLL 40.0 Plates Increase 1.00 TC 0.45 Vert(LL) -0.20 12 -13 >960 360 MT20 220/195 TCDL 10.0 . Lumber Increase 1.00 BC 0.68 Vert(TL) -0.34 12 -13 >553 240 BCLL 0.0 Rep Stress Incr YES WB 0.65 Horz(TL) 0.06 9 n/a n/a BCDL 5.0 Code IRC2009/TPI2007 (Matrix) - Weight: 80 lb FT = 0 %F, 0 %E LUMBER BRACING • TOP CHORD 4 X 2 DF No.18Btr G TOP CHORD Structural wood sheathing directly applied or 6 -0-0 oc purlins, except BOT CHORD 4 X 2 DF No.18Btr G end verticals. WEBS 4 X 2 DF Std G BOT CHORD Rigid ceiling directly applied or 10-0 -0 oc bracing. REACTIONS (lb /size) 14= 855/0 -3 -8 (min. 0 -1 -8), 9=855/0-3-8 (min. 0-1-8) . FORCES (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 2 -3 =- 2946/0, 3-4 =- 2947/0, 4 -5 =- 3199/0, 5-6= 2911/0, 6-7 =- 2915/0 BOT CHORD 13- 14= 0/1751, 12- 13= 0/3200, 11- 12= 0/3199, 10- 11= 0/3196, 9-10= 0/1759 WEBS 2 -14= 1896/0, 2 -13= 0/1279, 3-13 =- 306/0, 4 -13 =- 566/82, 7 -9 =- 1904/0, 7 -10= 0/1236, 5-10 =- 636/54 NOTES 1) Unbalanced floor live loads have been considered for this design. 2) A plate rating reduction of 20% has been applied for the green lumber members. 3) This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and referenced • standard ANSI/TPI 1. 4) "Fix heels only" Member end fixity model was used in the analysis and design of this truss. 5) Recommend 2x6 strongbacks, on edge, spaced at 10-0 -0 oc and fastened to each truss with 3-10d (0.131 "X 3 ") nails. Strongbacks . to be attached to walls at their outer ends or restrained by other means. LOAD CASE(S) Standard �� - �,GO PR R . „\ . ; .G[N�F.9 /02 ' � 8364. I P E 9 r • J . - 4 0 y O &g R Y O SOON Digital Signature EXPIRATION DATE: 12 -31 -12 May 23,2011 4 A WARNING - Verify design parameters and READ NOYES ON THIS AND INCLUDED MITER REFERENCE PAGE ICU 7473 re.% 10'08 BEFORE USG 4...., Design valid for use only with Mnek connectors. Ths design is based only upon parameters shown, and Is for an individual budding component. I Applicability of design param enters and proper incorporation of component Is responsibility of building designer -not truss designer. Bracing shown Is for lateral support of individual web members only. Additional temporary bracing to Insure stabaily during construction c the responstalily of the M iTek' erector. Additional permanent bracing of the overall structure Is the responsibility of the beading designer. For general guidance regarding fabrication, qualify control, storage. delivery, erection and bracing, consult A NSI /TPI1 puatlty Cdterla, DSB -89 and BCSI Building Component 7777 Greenback Lane, Suite 109 Safety Information avaiable from Truss Plate Institute. 281 N. Lee Street, Suite 312. Alexandria, VA 22314. Citrus Heights, CA, 95810 Job Truss Truss Type Qty Ply Pulte Homes - Building 17 Main Floor R33134028 81106182 4 -FTA Floor Truss 2 1 .lob Reference (pptionall Pro-Build Clackamas Truss, Cladsamas,OR 97015 - 1129 7.250 s May 11 2011 MiTek Industries, Inc. Mon May 23 08:37:18 2011 Page 1 ID: La5k9S_ VH0am6f17gihmpNzHOhy- TmOflilt_X EDYt8fwJiX5ii U2VnExDMzOad39zDeZH 0-1 -e H I 2A -0 1 1 1 -3.8 1 I 1.013 1 1 1 -4-0 I I 1 -1-3 I 0.1� b• 1285 254 11 254 11 354 = 4510 = 294 II 294 II 2314 II 4r8 = 3s4 = I 2 3 4 558 = 5 8 4a8 = 7 8 9 11 ill \ al=t 1�\ f� 11 o j � ∎ . . 1 . .♦ i. ∎ ∎� A� a 12 11 1 598 = 254 11 458 = 458 = 294 II 4510 = 455 = 1 7 -11 -13 1 8-7-13 1 9-3.13 I 15.11.0 1 7-1 0-8-0 n-q-n 8.7.3 Plate Offsets (X,Y): [2:0- 4- 8,Edge], [4:0- 3.8,Edge], [5:0- 1- 8,Edge], [6:0- 1- 8,Edge], [8:0- 3- 8,Edge], [9:0- 1- 8,Edge], [10:Edge,0 -1 -8], [12:0- 1- 8,0 -0-0], [13:0- 1- 8,Edge], (14:0-4-8 .Edge] [16'Edge.0 -1 -8], [17:0 -1- 8.0-1- 81.118:0- 1- 8.0 -1 -8] LOADING (psf) SPACING 2 -0-0 CSI DEFL in (loc) 1 /deb Lid PLATES GRIP TCLL 40.0 Plates Increase 1.00 TC 0.60 Vert(LL) -0.12 11 -12 >999 360 MT20 220/195 TCDL 10.0 Lumber Increase 1.00 BC 0.54 Vert(TL) -0.18 11 -12 >778 240 BCLL 0.0 Rep Stress Incr YES WB 0.53 Horz(TL) 0.03 10 n/a n/a BCDL 5.0 Code IRC2009/TP12007 (Matrix) Weight: 88 lb FT = 0 %F, 0 %E LUMBER BRACING TOP CHORD 4 X 2 DF No.1 &Btr G TOP CHORD Structural wood sheathing directly applied or 6 -0-0 oc purlins, except BOT CHORD 4 X 2 DF No.1 &Btr G end verticals. WEBS 4 X 2 DF Std G BOT CHORD Rigid ceiling directly applied or 6 -0-0 oc bracing. QUALIFIED BUILDING DESIGNER OR PROJECT ENGINEER SHALL REVIEW THE INPUT REACTIONS All bearings 4 -3-8 except (jt= length) 10=0-3-8. LENGTH AND PLACEMENT OF CONNECTION TO TRANSFER LATERAL FORCES TO THE (Ib) - Max Horz 16 =19(LC 9) SUPPORTING STRUCTURE AS STATED IN THE DRAG LOAD NOTE BELOW. Max Uplift All uplift 100 lb or less at joint(s) 10 except 16=- 997(LC 7), 15=- 233(LC 9), 14=- 356(LC 8) Max Gray All reactions 250 lb or less at joint(s) 15 except 16= 1062(LC 8), 10 =758(LC 7), 14= 1817(LC 2) FORCES (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 1- 2=- 976/968, 2- 3=- 2559/3413, 3-4 =- 1896/2861, 4-5=-3212/1797, 5 -6 =- 2797/1319, 6-7 =- 2930/1032, 7-8=-2486/478, 8 -9= 918/911 BOT CHORD 15 -16 =- 2195/1989, 14 -15 =- 3680/3480, 13- 14=- 1544/2312, 12- 13=- 1042/2520, 11-12=-1034/2521, 10-11=-192/1529 WEBS 5-13 =- 495/104, 6-12=-345/88, 2 -16 =- 2562/2792, 2 -15 =- 216/287, 2 -14 =- 2194/1379, 8-10=-1654/210, 8 -11 =- 377/985, 7 -11 =- 396/29, 6-11= 463/976, 4 -14 =- 1944/157, 4 -13=- 230/1151 NOTES 1) Unbalanced floor live loads have been considered for this design. 2) A plate rating reduction of 20% has been applied for the green lumber members. 3) This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 4) This truss has been designed for a total drag load of 380 plf. Lumber DOL= (1.33) Plate grip DOL= (1.33) Connect truss to resist drag loads along bottom chord from 0-0-0 to 4 -3-8 for 1409.2 plf. 5) "Fix heels only" Member end fixity model was used in the analysis and design of this truss. 0 P 6) Recommend 2x6 strongbacks, on edge, spaced at 10 -0-0 oc and fastened to each truss with 3-10d (0.131" X 3 ") nails. Strongbacks "<<;(% r�� to be attached to walls at their outer ends or restrained by other means. s 3 ' NEF / 0 LOAD CASE(S) Standard :3640P 9r- 7 IN y OREGOI 0 6 , , RY 2 . ` - ■ O SOON Digital Signature I EXPIRATION DATE: 12 -31 -12 May 23,2011 1 9 ■ A WARNING - Verify datparameters sdatiparameters UD a and READ NOTES ON THIS AND INCLUDED MITEKREFERENCE PAGE MR 7473 10'08 BEFORE USE. � Design valid for use only with MiTek connectors. Th's design is based only upon parameters shown, and is for an individual budding component. Applicablily of design paramen tern and proper Incorporation of component Is responsibility of budding designer - not truss designer. Bracing shown h for lateral support of Individual web members onty. Additional temporary bracing to insure stability during construction's the responsibility of the MiTek' erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storoge, delivery, erection and bracing, consult ANSI/TPI1 Quality Criteria. DS8 -89 and BCSI Building Component 7777 Greenback Lena, Suite 109 Solely Information avadoble from Truss Plate institute. 281 N. Lee Street, Suite 312. Alexandria, VA 22314. Citrus Heights, CA, 95810 f IN Job Truss Truss Type Qty Ply Pulte Homes - Building 17 Main Floor R33134029 81106182 5 -FTGE Floor Truss 3 1 Inh Referenrn fnntinnnl) Pro -Build Clackamas Truss, Clackamas,OR 97015 -1129 7.250 s May 11 2011 MiTek Industries, Inc. Mon May 23 08:37:17 2011 Page 1 ID: La5k9S_VH0am607gihmpNzHOhy -xyal Z2JVIgM491 j5TOFy3JFz0 Sy6z NxWC2KBbbzDeZG OW 01,43 Seale . 1:76 5 354 = 556= 5s8= 354= 1 2 3 4 5 6 7 8 9 n0 I1 12 13 `■•∎!\ -A -A -A -AAA �'A ∎A -A ∎I___ -Ale II 27 len ' / /.1 r r r r r r r r 115 HI III 111 II I II 111 III i a il MNy ■IIIMINII V ■1111•INIMYmiNii■lit∎ V wiwi■ Hillial■mYmimMiliMinN- PIY■imY 1 *T4 ■• �T.WC •14. •• ■∎∎∎ ■∎ ■7 ••7•14TW •7•1•Ie • •• •• �7��� ••7•T•7•NeWT• 4Ker• ••7.7• ••1.14 •• •• . ...7�7•7•1474 ■117• ••7• 26 255 24 23 22 21 20 19 18 17 16 15 14 55e = 4s6 II 456 II Safi = I 1511 -0 15.11 -0 Plate Offsets (X.Y): (2:0- 1- 8.Edge]. (13'0.1- 8.Edgel [14:Edge.0 -1 -8]. j27:0- 1- 8.0 -1 -81. (28:0- 1- 8.0 -1 -8) LOADING (psf) SPACING 2 -0-0 CSI DEFL in (lac) I /deft Lid PLATES GRIP TCLL 40.0 Plates Increase 1.00 TC 0.20 Vert(LL) n/a - n/a 999 MT20 220/195 TCDL 10.0 Lumber Increase 1.00 BC 0.21 Vert(TL) n/a - n/a 999 BCLL 0.0 Rep Stress Incr YES WB 0.63 Horz(TL) 0.01 20 n/a n/a BCDL 5.0 Code IRC2009/TPI2007 (Matrix) Weight: 69 lb FT = 0 %F, 0 %E LUMBER BRACING TOP CHORD 4 X 2 DF No.18Btr G TOP CHORD Structural wood sheathing directly applied or 6 -0-0 oc puffins, except BOT CHORD 4 X 2 OF No.18Btr G end verticals. WEBS 4 X 2 DF Std G BOT CHORD Rigid ceiling directly applied or 6 -0-0 oc bracing. OTHERS 4 X 2 DF Std G QUALIFIED BUILDING DESIGNER OR PROJECT ENGINEER SHALL REVIEW THE INPUT LENGTH AND PLACEMENT OF CONNECTION TO TRANSFER LATERAL FORCES TO THE REACTIONS All bearings 15 -11 -0. SUPPORTING STRUCTURE AS STATED IN THE DRAG LOAD NOTE BELOW. (lb) - Max Horz 26 =31(LC 2) Max Uplift All uplift 100 lb or less at joint(s) except 26=- 1622(LC 2), 14=- 1734(LC 3), 25=- 1522(LC 3), 15=- 1636(LC 2) Max Gray All reactions 250 lb or less at joint(s) 24, 23, 22, 21, 20, 19, 18, 17, 16 except 26= 1731(LC 3), 14= 1836(LC 2), 25= 1814(LC 2), 15= 1916(LC 3) FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (Pb) or less except when shown. TOP CHORD 1 -2 =- 289/284, 2- 3=- 1674/1654, 3-4 =- 1340/1321, 4 -5= 1007/988, 5-6 =- 674/654, 6-7 =- 340/321,7 -8 =- 346/326,8 -9 =- 679/660, 9-10 =- 1012/993, 10- 11=- 1346/1326, 11 -12 =- 1679/1660, 12- 13=- 268/264 BOT CHORD 25- 26=- 1942/1961, 24 -25 =- 1670/1689, 23- 24=- 1337/1356, 22 -23 =- 1003/1023, 21- 22=- 670/689, 20 -21 =- 337/356, 19- 20=- 311/330, 18- 19=- 644/663, 17 -18 =- 977/997, ' 16- 17=- 1311/1330, 15- 16=- 1644/1663, 14 -15 =- 1897/1917 ' WEBS 2- 25= 1800/1536, 12- 15=- 1902/1850, 2 -26 =- 2585/2566, 12- 14=- 2648/2628 NOTES , • 1) Unbalanced floor live loads have been considered for this design. 2) All plates are 2x4 MT20 unless otherwise indicated. 3) Gable requires continuous bottom chord bearing. 4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). 5) Gable studs spaced at 1 -4 -0 oc. co PR ° FF 6) A plate rating reduction of 20% has been applied for the green lumber members. �, s 7) This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and referenced . . ;,' NE 4 9 S/ standard ANSIITPI 1. ,N 2 8) This truss has been designed for a total drag load of 250 plf. Lumber DOL= (1.33) Plate grip DOL= (1.33) Connect truss to resist drag e/ 836 • PE 9 loads along bottom chord from 0 -0-0 to 15 -11 -0 for 250.0 plf.. � 9) "Fix heels only" Member end fixity model was used in the analysis and design of this truss. / 10) Recommend 2x6 strongbacks, on edge, spaced at 10-0 -0 oc and fastened to each truss with 3 -10d (0.131" X 3 ") nails. Strongbacks _ IF to be attached to walls at their outer ends or restrained by other means. J LOAD CASE(S) Standard O D &1RY ti SOON Digital Signature EXPIRATION DATE: 12 -31 -12 May 23,2011 4 t Q WARNING - Verify design paralndern and READ NOTES ON THIS AND INCLUDED MITER* REFERENCE PAGE M11-7473 rev. IO•+08 BEFORE USE. Design valid for use only with Mitch connectors. This design Is based only upon parameters shown. and is for an Individual budding component. MI Applicability of design param en ters and proper incorporation of component is responsibility of budding designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction 4 the responsibility of the MiTek' erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, qualify control, storage, delivery, erection and bracing, consult ANSI /TPI1 Quality Criteria, DSB -89 and BCSI Building Component 7777 Greenback Lane, Suite 109 Safely Information evadable from Truss Plate Institute, 281 N. Lee Street. Suite 312, Alexandria, VA 22314. Citrus Heights, CA, 95810 Job Truss Truss Type Oty Ply Pulte Homes - Building 17 Main Floor R33134030 B1106182 6 -FT Floor Truss 2 1 .lob Reference (nptinnan Pro -Build Clackamas Truss, Clarkamas,OR 97015 -1129 7.250 s May 11 2011 MiTek Industries, Inc. Mon May 23 08.37:19 2011 Page 1 I D: La5k9S_VH0am6fl7gihmpNz HOhy -ILioJ LIHScoP KtEbRHQ9kKF7FTtRLSp(MpIfUzDeZE 0-1.8 H I 1 -34 I 7 -5-4 I I 7 -5-4 I 1 1 -4.0 1 1 1 -1 -0 1 1 2.6.0 I Tao tie. 1:265 254 II 254 II 354 = 3r6 = 3 5 4 I I 254 I I 254 I I 354 = 1 2 3 4 "B = 5 67 556 = 6 9 456 = 10 I '1 III �I I � \ I i I MAME Mal 1i rY i /, ■■• CI Pra 0 7 ,A2 , 4 13 12 459 = 254 II 356 = +', 358 = 4510 = 458 = I 4-0-12 I 15-11-0 I 4 -0-17 11 -10-4 Plate Offsets (X,Y): [4:0-3- 12,Edge], [5:0- 1- 8,Edge], [7:0- 1- 8,Edge], [9:0- 3- 2,Edge], (10:0- 1- 8,Edge], [11:Edge,0 -1 -8], [13:0 -1- 8,0.0 -0], (14:0- 1- 8,Edge], [17:0 -1- 8,0.1 -8], [18:0 -1 -8 .0-1 -8] LOADING (psf) SPACING 2 -0-0 CSI DEFL in (roc) 1 /deft L/d PLATES GRIP TCLL 40.0 Plates Increase 1.00 TC 0.51 Vert(LL) -0.10 12 -13 >999 360 MT20 220/195 TCDL 10.0 Lumber Increase 1.00 BC 0.77 Vert(TL) -0.17 12 -13 >820 240 BCLL 0.0 Rep Stress Ina NO WB 0.37 Horz(TL) 0.02 11 n/a n/a BCDL 5.0 Code IRC2009/TPI2007 (Matrix) Weight: 78 lb FT = 0 %F, 0 %E LUMBER BRACING TOP CHORD 4 X 2 DF No.1 &Btr G TOP CHORD Structural wood sheathing directly applied or 6 -0-0 oc purlins, except BOT CHORD 4 X 2 DF No.1 &Btr G end verticals. WEBS 4 X 2 DF Std G BOT CHORD Rigid ceiling directly applied or 1440 oc bracing, Except: 6-0-0 oc braang: 15-16. REACTIONS (lb /size) 16= 88/0-3 -8 (min. 0-1 -8), 11=579/0-3-8 (min. 0 -1 -8), 15=1034/0-5-8 (min. 0 -1 -8) Max Upliftl6= -67(LC 3) Max Grav16= 175(LC 2), 11= 580(LC 3), 15= 1034(LC 1) FORCES (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 2 -3= 0/459, 3-4= 0/501, 4 -5 =- 1324/0, 5 -6 =- 1333/0, 7 -8 =- 1557/0, 8 -9= 1561/0 BOT CHORD 14- 15= 0/743, 13- 14= 0/1333, 12- 13= 0/1354, 11- 12= 0/1163 WEBS 2 -15= 527/0, 9-11 =- 1245/0, 9-12= 0/428, 7- 12= 0/332, 7 -13 =- 258/0, 6-7 =- 1333/0, 4 -15= 1339/0, 4- 14= 0/735, 5-14 =- 271/0, 3-15= -290/0 NOTES 1) Unbalanced floor live loads have been considered for this design. 2) A plate rating reduction of 20% has been applied for the green lumber members. 3) This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 4) "Fix heels only' Member end fixity model was used in the analysis and design of this truss. 5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3 ") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. 6) CAUTION, Do not erect truss backwards. LOAD CASE(S) Standard RD P �co G NE�c `j 2 : 36400 y r - OREGOI� C�, 2 no O SOON Digital Signature EXPIRATION DATE: 12 -31 -12 • May 23,2011 4 • A WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE MU 7473 rev. 10 '08 BEFORE USE. � • Design valid for use only with Mitch connectors. this design is based only upon parameters shown, ands for an individual budding component. Applicability of design paramenlers and proper incorporation of component is responsibility of budding designer - not Truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsbdlity of the MiTek' erector. Additional permanent bracing of the overall structure Is the responsibility of the budding designer. For general guidance regarding .a• fabrication, quality control. storage. derrvery. erection and bracing, consult ANSI /TPI1 Quality Criteria, 055 -99 and BCSI Building Component 7777 Greenback Lane, Suite 109 Safety Information avaiable from Truss Plane Institute. 281 N. Lee Street. Suite312. Alexandria. VA 22314. Citrus Heights, CA. 95610 i `` Job Truss Truss Type Oty Ply Pulte Homes - Building 17 Main Floor R33134031 61106182 7 -FT Floor Truss 1 1 Joh Referenrx+ (notional) Pro -Build Clackamas Truss, Cladkamas,OR 97015 -1129 7.250 s May 11 2011 MiTek Industries, Inc. Mon May 23 08:37:19 2011 Page 1 ID: La5k9S VHOarn6fl7gihmpNzHOhy- tLioJLIHScoPKtEbRHO9kKFZFUmRKmpfMplfUzDeZE a1 -e H I 2-4-14 I 2 -54 1 1 1-2-13 1 1.3-9 1 1 1-4 -0 1 1 1 -1 -0 1 I 24-0 1 us s� -1.2ss 254 11 254 II 3s4 = 356 = 354 II 456 = 254 11 454 = 2s4 II 354 = 1 2 3 4 5 67 8 r ii 9456 = 10 i 1 a 14 13 12 7 w. 1 � 456 = 254 II 356 = y� 356 = 4510 = 456 = I 5 - 10 I 1 - 5 5-2.10 10.13-1 1 - e 1 - . ' 5'1 -c . - r s -; • 0- k -1. 110:0- 1- 8.Edge].111:Edge- 0-1 -8] (13:0- 1- 8.0 -0-0]. (14:0.1- 8.Edge], [17:0- 1- 8,0 -1 -8]. [18:0- 1- 8.0 -1 -8] LOADING (psf) SPACING 2 -0-0 CSI DEFL in (lac) I /dell Lid PLATES GRIP TCLL 40.0 Plates Increase 1.00 TC 0.48 Vert(LL) -0.10 12 -13 >999 360 MT20 220/195 TCDL 10.0 Lumber Increase 1.00 BC 0.71 Vert(TL) -0.17 12 -13 >756 240 BCLL 0.0 Rep Stress Incr YES WB 0.42 Horz(TL) 0.02 11 n/a n/a BCDL 5.0 Code IRC2009/TPI2007 (Matrix) Weight: 74 lb FT = 0 %F, 0 %E LUMBER BRACING TOP CHORD 4 X 2 DF No.18Btr G TOP CHORD Structural wood sheathing directly applied or 6 -0-0 oc purlins, except BOT CHORD 4 X 2 DF No.18Btr G end verticals. WEBS 4 X 2 DF Std G BOT CHORD Rigid ceiling diredly applied or 10-0.0 oc bracing, Except: 6-0-0 oc bracing: 15-16. REACTIONS (Ib /size) 16= 228/0 -3 -8 (min. 0 -1 -8), 11= 548/0 -3-8 (min. 0 -1 -8), 15= 924/0 -7 -3 (min. 0 -1 -8) Max Grav16= 262(LC 5), 11= 553(LC 3), 15= 924(LC 1) FORCES (Ib) - Max. Comp. /Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 2- 3= 0/273, 3-4= 0/277, 4 -5 =- 1145/0, 5-6 =- 1155/0, 7- 8=- 1422/0, 8 -9=- 1426/0 BOT CHORD 15 -16 =- 9/349, 14- 15= 0/517, 13- 14= 0/1155, 12- 13= 0/1180, 11- 12= 0/1095 WEBS 2-15=-529/0, 2 -16 =- 371/11, 9-11 =- 1171/0, 9 -12= 0/357, 7 -12= 0/375, 7 -13 =- 280/0, 6-7 =- 1155/0, 4 -15 =- 838/0, 4- 14= 0/821, 5-14= -320/0 NOTES 1) Unbalanced floor live loads have been considered for this design. 2) A plate rating reduction of 20% has been applied for the green lumber members. 3) This truss is designed in accordance with the 2009 International Residential Code sedions R502.11.1 and R802.10.2 and referenced ' standard ANSI/TPI 1. 4) "Fix heels only" Member end fixity model was used in the analysis and design of this truss. 5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3 ") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. 6) CAUTION, Do not erect truss backwards. LOAD CASE(S) Standard .c�� PROFESS, s g � GINEF9 /02 i 83. . P 9 r III OF y y OREG . �� O SOON Digital Signature EXPIRATION DATE: 12 -31 -12 May 23,2011 4 t A WARNING • Verify design parameters and READ NOTES ON THIS AND INCLUDED BITTER REFERENCE PAGE 081.74 rat. 10'08 BEFORE USE. �'' Design valid for use only with MiTek connectors. Thk design is based only upon parameters shown, and Is for an individual building component. Applicability of design poramenters and proper Incorporation of component Is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to Insure stability during construction is the responsibility of the MiTek' erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regard fabrication. quality control, storage. delivery, erection and bracing, consult ANSI/TPII Quality Criteria, 059.89 and SCSI Building Component 7777 Greenback Lane, Suite 109 Safety Information available from Truss Plate Institute. 281 N. Lee Sheet, Suite 312• Alexandria, VA 22314. Citrus Heights, CA, 95610 . Job Truss Truss Type Qty Ply Pulte Homes - Building 17 Main Floor R33134032 B1106182 8 -FT Floor Truss 1 1 ,Inb Reference (optional) Pro -Build Clackamas Truss. Cladcamas,OR 97015 -1129 7.250 s May 11 2011 MiTek Industries, Inc. Mon May 23 08.37:20 2011 Page 1 I D: La5k9S_V H0am6f17gihmpNzHOhy- LXGAB3M N21k fOUSQ99ofhxtOhfgzAnmyu ?YrCwzDeZD 0-1 -B B� H I 1.11 -12 I 7 -5-4 I I 1.58 -& I 12 I I 1-4 -0 I I 1.1 11 2 .6.0 I at bt 1,265 244 II 244 11 3r4 = 3x6 = 314 II 448 = h4 II 4x4 = h4 II 344 = I 2 3 4 5 67 5 9 446 1s '.E-fir• w ∎w ∎A -i��A / 4 6 1 � 11 ��` 11 1� r ��� 11 'Q 11� II � II �I .. ' .� MOS `1 1( �4g `.,1 is IIMI 14 13 12 Y=, 4x8 = 23[4 II 3x6 = 3x6 = 4x10 = 4,8 = I 4 -9-8 I 1511 -0 I 4.0-9 11 -1 -6 Plate Offsets (X,Y): [5:0- 1- 8,Edge], [7:0.1- 8,Edge], [9:0- 1- 2,Edge], (10:0- 1- 8,Edge), [11:Edge,0 -1 -8], (13:0 -1 -8,0 -0-0), [14:0- 1- 8,Edge], [15:0- 4- 8,Edge], [17:0- 1- 8,0 -1 -8), [18:0.1 -8 .0-1-81 LOADING (psf) SPACING 2 -0-0 CSI DEFL in (loc) 1 /deft L/d PLATES GRIP TCLL 40.0 Plates Increase 1.00 TC 0.45 Vert(LL) -0.10 12 -13 >999 360 MT20 220/195 TCDL 10.0 Lumber Increase 1.00 BC 0.72 Vert(TL) -0.17 12 -13 >775 240 BCLL 0.0 Rep Stress Incr YES WB 0.43 Horz(TL) 0.02 11 n/a n/a BCDL 5.0 Code IRC2009/TPI2007 (Matrix) Weight: 74 lb FT = 0 %F, 0 %E LUMBER BRACING TOP CHORD 4 X 2 DF No.18Btr G TOP CHORD Structural wood sheathing directly applied or 6 -0-0 oc purlins, except BOT CHORD 4 X 2 DF No.1&Btr G end verticals. WEBS 4 X 2 DF Std G BOT CHORD Rigid ceiling directly applied or 10-0 -0 oc bracing, Except: 6-0-0 oc bracing: 15-16. REACTIONS (lb /size) 16=176/0-3-8 (min. 0 -1 -8), 11= 562/0 -3-8 (min. 0 -1 -8), 15= 962/0 -7 -3 (min. 0 -1 -8) Max Gray 16= 226(LC 5), 11= 565(LC 3), 15= 962(LC 1) FORCES (Ib) - Max. Comp. /Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 2 -3= 0/360, 3-4= 0/362, 4 -5 =- 1224/0, 5-6 =- 1233/0, 7- 8=- 1482/0, 8 -9= 1486/0 BOT CHORD 15 -16 =- 73/262, 14- 15= 0/532, 13- 14= 0/1233, 12- 13= 0/1256, 11- 12= 0/1125 WEBS 2 -15= 524/0, 2 -16 =- 287/83, 9-11 =- 1204/0, 9 -12= 0/389, 7 -12= 0/355, 7 -13 =- 273/0, 6-7 =- 1233/0, 4 -15 =- 966/0, 4- 14= 0/854, 5-14= -302/0 • NOTES 1) Unbalanced floor live loads have been considered for this design. 2) A plate rating reduction of 20% has been applied for the green lumber members. 3) This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 4) "Fix heels only" Member end fixity model was used in the analysis and design of this truss. 5) Recommend 2x6 strongbacks, on edge, spaced at 10-0 -0 oc and fastened to each truss with 3-10d (0.131" X 3 ") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. 6) CAUTION, Do not erect truss backwards. LOAD CASE(S) Standard 9.,„5 G EE i it :3640 57, y OREGO • N C Z • O SOO Digital Signature EXPIRATION DATE: 12 -31 -12 May 23,2011 9 • A WARNING - Verify design parameters and READ NOTES ON 7711S AND INCLUDED MITER REFERENCB PAGE 61117473 rev, 10'08 BEFORE USE. Design valid for use only with M7ek connectors. This design 9 based only upon parameters shown. and 9 for an individual building component. Applicability of design paramenlers and proper incorporation of component is responsibility of budding designer - not truss designer. Bracing shown 9 for lateral support of individual web members only. Additional temporary bracing to insure stability during construction 9 the responsibdlity of the MiTek' erector. Additional permanent bracing of the overall structure is the responsibility of the budding designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI /TPII quality Criteria, D58.89 and BCSI Building Component 7777 Greenback Lane, Suite 109 Safety InlormatIon available from Truss Plate Institute, 281 N. Lee Street, Suite 312, Alexandria, VA 22314. Citrus Heights, CA, 95610 Job Truss Truss Type Qty Ply Pulte Homes - Building 17 Main Floor R33134033 B1106182 9 -FT Floor Truss 1 1 Jnh Referenra (nntinnall Pro -Build Clackamas Truss, Cladkamas,OR 97015 -1129 7.250 s May 11 2011 MiTek Industries, Inc. Mon May 23 08:37:21 2011 Page 1 ID: La5k9S_VH0am6fl7gihmpNz HOhy- gjgYPPM0p3sWee1 di sJuE8Pb_39AvDV57flOkMzDeZC 0-1.8 H I 1 -34 I 2.5-1 I I 14.13 I 1 -10.6 1 1 14.0 11 1.1.0 I I 2-8 -0 I o-' 211265 b4 II b4 II be = 358 = 354 II 4510 = he II be II 354 = 1 2 3 4 5 67 8 9456— 1D' `4•'•r•5w ∎w1■111111ra■orvelleJel ter__ n i I ,rte 111 /I� I l IN ■ to l Ill I I I . 111 :'; NU N.1.17 II Mel!! 711 1 4= 14 13 12 �+7, 4:8 = ■4 II 356 = 303= 4512 = 458 = I 4 -0-13 4 -}0 15-11 -0 I 4-0-13 M1 3 11 -10-0 Plate Offsets (X,Y): [2:0- 2- 1,Edge], [4:0- 4- 10,Edge], [5:0- 1- 8,Edge], [7:0- 1- 8,Edge], [9:0- 2- 14,Edge], (10:0- 1- 8,Edge], [11:Edge,0 -1 -8], [13:0- 1- 8,0-0-0], [14:0- 1- 8,Edge], [15:0 -5-4 .Edge]. 117:0- 1- 8.0 -1 -8]. [18:0- 1- 8.0 -1 -8] LOADING (psf) SPACING 2 -0-0 CSI DEFL in (lac) 1/dell L/d PLATES GRIP TCLL 40.0 Plates Increase 1.00 TC 0.48 Vert(LL) -0.10 12 -13 >999 360 MT20 220/195 TCDL 10.0 Lumber Increase 1.00 BC 0.78 Vert(TL) -0.17 12 -13 >810 240 BCLL 0.0 Rep Stress Incr NO WB 0.47 Horz(TL) 0.02 11 . n/a n/a BCDL 5.0 Code IRC2009/TP12007 (Matrix) Weight: 74 lb FT = 0 %F, 0 %E LUMBER BRACING TOP CHORD 4 X 2 OF No.1&Btr G TOP CHORD Structural wood sheathing diredly applied or 6 -0-0 oc purlins, except BOT CHORD 4 X 2 DF No.1&Btr G end verticals. WEBS 4 X 2 DF Std G BOT CHORD Rigid ceiling directly applied or 10-0 -0 oc bracing, Except: 6-0.0 oc bracing: 15-16. REACTIONS (lb /size) 16= 63/0 -3-8 (min. 0 -1 -8), 11= 584/0 -3-8 (min. 0-1-8), 15= 1054/0 -5-10 (min. 0-1 -8) Max Uplifll6= -86(LC 3) ' Max Grav16= 162(LC 2), 11= 585(LC 3), 15= 1054(LC 1) FORCES (lb) - Max. Comp. /Max. Ten. - All forces 250 (lb) or less except when shown. ' TOP CHORD 2- 3= 0/539, 3-4= 0/540, 4- 5=- 1358/0, 5-6 =- 1365/0, 7- 8=- 1579/0, 8 -9= 1583/0 BOT CHORD 14- 15= 0/563, 13- 14= 0/1365, 12- 13= 0/1385, 11- 12= 0/1175 WEBS 2-15=-582/0, 9-11 =- 1257/0, 9-12= 0/440, 7- 12=- 1/326, 7-13=-262/0, 6-7 =- 1365/0, • 4 -15= 1217/0, 4- 14= 0/919, 5-14 =- 283/0, 3-15= -263/0 NOTES 1) Unbalanced floor live loads have been considered for this design. 2) A plate rating reduction of 20% has been applied for the green lumber members. 3) This truss is designed in accordance with the 2009 International Residential Code sections R502:11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 4) "Fix heels only" Member end fixity model was used in the analysis and design of this truss. - 5) Recommend 2x6 strongbacks, on edge, spaced at 10-0 -0 oc and fastened to each truss with 3 -10d (0.131" X 3 ") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. 6) CAUTION, Do not erect truss backwards. LOAD CASE(S) Standard szo PROFF��S, � GI NE - o 00 � :364 r 't, 0 9� OREGO I. y0 RY O SOON Digital Signature ' ( EXPIRATION DATE: 12 -31 -12 May 23,2011 1 J ® WARNI NG - Ver design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE 6911.74 ma. 1O•'O8 BEFORE USE. �� 1ij11 • Design valid for use only with MTek connectors. This design's based only upon parameters shown, and h for an individual building component. Applicability of design param enters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction h the responsibility of the MiTek' erector. Additional permanent bracing of the overall structure Is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/7PIl Quality Criteria, 056 -89 and BCSI Building Component 7777 Greenback Lane, Suite 109 Safety Information available from Truss Plate Institute, 281 N. Lee Sheet, Suite 312. Alexandria, VA 22314. Ciws Heights, CA, 95810 L• • • Symbols Numbering System ® General Safety Notes PLATE LOCATION AND ORIENTATION 3 Center plate on joint unless x, y Failure to Follow Could Cause Property offsets are indicated. 6 -4-8 dimensions shown in ft -in- sixteenths Damage or Personal Injury MEI .Dimensions are in ft -in- sixteenths. I I (Drawings not to scale) 1% Apply plly lates embed to both sides teeth of truss 1. Additional stability bracing for truss system, e.g. diagonal or X- bracing, is always required. See BCSI. 1/2. 2. Truss bracing must be designed by an engineer. For 0 1 2 3 wide truss spacing, individual lateral braces themselves 1 TOP CHORDS may require bracing, or alternative T, I, or Eliminator _ bracing should be considered. III ■ RIMAlp 4 3. Never exceed the design loading shown and never 11111, stack materials on inadequately braced trusses. p 4. Provide copies of this truss design to the building For 4 x 2 orientation, locate designer erection supervisor, property owner and O U all other interested parties. plates 0- nd' from outside edge of truss. 0 07 C6 C5 0 5. Cut members to bear tightly against each other. BOTTOM CHORDS 6. Place plates on each face of truss at each This symbol indicates the joint and embed fully. Knots and wane at joint required direction of slots in 8 7 6 5 locations are regulated by ANSI/TPI 1. connector plates. 7. Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1. ' Plate location details available in MiTek 20/20 software or upon request. 8. Unless otherwise noted, moisture content of lumber JOINTS ARE GENERALLY NUMBERED /LETTERED CLOCKWISE shall not exceed 19% at time of fabrication. AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO PLATE SIZE THE LEFT 9 Unless expressly noted, this design is not applicable for use with lire retardant, preservative treated, or green lumber. The first dimension is the late CHORDS AND WEBS ARE IDENTIFIED BY END JOINT P 10. Camber Is a non - structural consideration and is the 4 x 4 width measured perpendicular NUMBERS /LETTERS. responsibility of truss fabricator. General practice is to to slots. Second dimension is comber for dead load deflection. the length parallel to slots. 11. Plate type, size, orientation and location dimensions LATERAL BRACING LOCATION PRODUCT CODE APPROVALS indicated are minimum plating requirements. ICC - Reports: 12. Lumber used shall be of the species and size, and in all respects, equal to or better than that , Indicated by symbol shown and /or ESR -1311, ESR -1352, ER -5243, 96048, specified. by text in the bracing section of the 95 -43, 96 -31, 9667A 13. Top chords must be sheathed or purlins provided at output. Use T, I or Eliminator bracing NER -487, NER -561 spacing indicated on design. if indicated. 95110, 84 -32, 96-67, ER -3907, 9432A 14. Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted. BEARING 15. Connections not shown are the responsibility of others. Indicates location where bearings 16. Do not cut or alter truss member or plate without prior (supports) occur. Icons vary but © 2006 MiTel aAll Rights Reserved approval of an engineer. reaction section indicates joint ( number where bearings occur. ∎� O 17. Install and load vertically unless indicated otherwise. ® 18. Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use. Industry Standards: ANSI /TPII : National Design Specification for Metal 19. Review all portions of this design (front, back, words Plate Connected Wood Truss Construction. i �e IC® and pictures) before use. Reviewing pictures alone DSB -89: Design Standard for Bracing. is not sufficient. BCSI: Building Component Safety Information, 20. Design assumes manufacture in accordance with Guide to Good Practice for Handling, POWER ro PERFORM.% ANSI/TPI 1 Quality Criteria. Installing & Bracing of Metal Plate Connected Wood Trusses. MiTek Engineering Reference Sheet: MII -7473 rev. 10-'08 I I O r a 1 ^ _ I -- 48-00-00 1 , J �N b 1 38-00-00 y 8-00 -00 j o u b X I 34-00-00 1 ` f 0 DRAG LOAD OF 250 PLF ON THIS TRUSS DRAG LOAD OF 250 PLF ON THIS TRUSS --- ,OFTGE ii T:TGt T 3-FT 11 2 -Fr t O 2 15 PN. Oz 3Fr �r1 2-FT i o ' 2 -F7 ti —I — 3FT 1; cri V D 2 -FT I 7r 2-FT g 15-FT I . 2-FT . , Is $ 22 1 1 m om ... 2-FT W N $ I z I LUS i 11 2 D a �/ o Iiilill -.onvc 11 /` �•+^ 11 Z xi 2-FT yy g . ?VA ° Z 7 1LP -CIT L Q C.. 2 = LUSrS -OTY3 O -. E :tee. :�1 - . T -_– �D m r 1 Cn – . lialMMMMM. a 1 'i i T ar fa t 8 g — I .■,r.* a,� a 1 ' i fi E D Z 3 i 2 t L LUSh • STY IUP) - I 7 X 5 7-FT LU9� - OTV6 _ 4 —� — g G) g 2 1 -0 .8 s rc F. v Q z Q j • - - '� y _ _ - _ G Z 0 1. A 2 ;;� � a t. N --I - 8 0 _ ` GI , � � r — , . _ a e • a < T g m1 X ZD I3/ r%14 I— V sz e . . . - i 1 g l; I Z G °' / t t 7I '1 1 1. t °A I. 11[ �. �r, 1 1 34-00-00 f II dd 38 -00-0 -00-0 0 I 80 I 48-00-00 1 1111 o8w° 8, � Z r en 1, $ o_z� al�S PSm�S' ��� b8�� �o "o 9g ". (hi o �� $A g w Q�m� 4 tt�'88 iye �w� g ; 8i $0 - 5. N6~ . 1 C yN i� � fPn' i���� xic � �g� ° ; y o c F *_ . r XI R6 a 8E - ge › 2 . yE . 2>.,-. 229 gg 2 sA gi ° S ' i t P,' , .g, `mpx ° X : 6 ° ° E �g p � F ° g ^t'1 v $' r0.3 3p 2.Vh ii ° o 288 o % d E b mZ z on' X2'2" 60 ' Rip. a 3k 9. O °$ oo_ A g� w f '� : c 111 m a u THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. T1.___ ____ ._ s 1 d 15877 SE 98th Ave These trusses are designed as individual building components to be incorporated into the building design TCLL (PSF): 40 Clackamas, OR 97015 at the specification of the building designer. See the TCDL S individual design sheets for each truss s design identified (PSF): 10 Phone: 1- 503 - 557 -8404 on the placement drawing. The building designer is BCLL (PSF): 0 ' y BUILDER: DATE: SCALE: responsible for temporary and permanent bracing of the BCDL (PSF): 5 P ulte Homes roof and floor system and for the overall structure. The 5/20/2011 NTS design of the truss support structure including headers, TL (PSF): 55 beams, walls, and columns is the responsibility of the PROJECT: DRAWN JOB #: beams, designer. For general guidance regarding Wind Speed: 0 M --+ Summercreek Phase BY: Subodh N B1106182 -A bracing , consult "Bracing of wood trusses" available g g LL DEFL: L/360 --1 from the Truss Plate Institute, 583 D'Onifrio Drive; ADDRESS: Tigard and l � —/ Madison, WI 53179 i MiTek® POWER TO PERFORM.'" MiTek Industries, Inc. 7777 Greenback Lane Suite 109 Citrus Heights, CA, 95610 Telephone 916/676 -1900 Re: B 1 106182 - Fax 916/676 -1909 Pulte Homes - Building 17 Upper Floor The truss drawing(s) referenced below have been prepared by MiTek Industries, Inc. under my direct supervision based on the parameters provided by ProBuild West (Clackamas ,OR). Pages or sheets covered by this seal: R33134078 thru R33134100 • My license renewal date for the state of Oregon is June 30, 2012. Important Notice: If visually graded lumber is used for the trusses covered by these designs, see "SPIB Important Notice, Dated July 28, 2010" (reprinted at www.mii.com) before use. MiTek does not warrant third -party lumber design values. � PROFF CC 1 :/ •'i' fi t' OREG -96" R � ��i. -a F /q g . - O Digital Signature EXPIRATION DATE: 06/30/12 May 23,2011 Tingey, Palmer The seal on these drawings indicate acceptance of professional engineering responsibility solely for the truss components shown. The suitability and use of this component for any particular building is the responsibility of the building designer, per ANSI /TPI 1. Job Truss Truss Type Qty Ply Pulte Homes - Building 17 Upper Floor R33134078 81106182 -A 10 -FTGE Floor Truss 1 1 ,lob Reference (optional) Pro -Build Clackamas Truss, Cladcamas,OR 97015 -1129 7.250 s May 11 2011 MiTek Industries, Inc Mon May 23 08:45:38 2011 Page 1 ID:La5k9S VH0am6f17gihmpNzHOhy- mLMRILNmmmU? mOX8KkkRtyVbNPwzszgFPUBBg3zDeRR 0 0-T scar. 1'295 354 = 556 = 3s4 - 1 2 3 4 5 8 7 8 9 10 11 12 13 5" _ 14 ' O Y ' , r y' y ° Y Y I. 1I 10 ii 29 ii .... I Le a l; ,i, vi 28 27 26 25 24 23 22 21 20 19 to 17 16 15 558 = 4,6 II 354 11 458 = 1 17.7.8 1 17 -7.8 Plate Offsets (X.Y): [2:0- 1- 8.Edge], [13'0- 1- 8.Edge]. (14:0-1-8.Edgel. (15:Edge.0 -1 -8], .129:0- 1- 8.0 -1 -8]. [30:0- 1- 8.0 -1 -8] LOADING (psf) SPACING 2 -0-0 CSI DEFL in (loc) 1/deb L/d PLATES GRIP TCLL 40.0 Plates Increase 1.00 TC 0.24 Vert(LL) n/a - n/a 999 MT20 220/195 TCDL 10.0 Lumber Increase 1.00 BC 0.24 Vert(TL) n/a - n/a 999 BCLL 0.0 Rep Stress Incr YES WB 0.64 Horz(TL) 0.01 21 n/a n/a BCDL 5.0 Code IRC2009/TPI2007 (Matrix) Weight: 76 lb FT = 0 %F, 0 %E LUMBER BRACING TOP CHORD 4 X 2 DF No.18Btr G TOP CHORD Structural wood sheathing directly applied or 6 -0-0 oc puffins, except BOT CHORD 4 X 2 DF No.1&Btr G end verticals. WEBS 4 X 2 DF Std G BOT CHORD Rigid ceiling directly applied or 6 -0-0 oc bracing, Except: OTHERS 4 X 2 DF Std G 10-0 -0 oc bracing: 21 -22. QUALIFIED BUILDING DESIGNER OR PROJECT ENGINEER SHALL REVIEW THE INPUT REACTIONS All bearings 17 -7 -8. LENGTH AND PLACEMENT OF CONNECTION TO TRANSFER LATERAL FORCES TO THE (lb) - Max Horz 28 =31(LC 2) SUPPORTING STRUCTURE AS STATED IN THE DRAG LOAD NOTE BELOW. Max Uplift All uplift 100 lb or less at joint(s) except 28=- 1761(LC 2), 15=- 1458(LC 3), 27=- 1659(LC 3), 16=- 1348(LC 2) Max Grav All reactions 250 lb or less at joint(s) 26, 25, 24, 23, 22, 21, 20, 19, 18, 17 except 28= 1868(LC 3), 15= 1592(LC 2), 27= 1953(LC 2), 16= 1690(LC 3) FORCES (lb) - Max. Comp. /Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1 -2 =- 289/284, 2 -3 =- 1834/1817, 3 -4 =- 1501/1483, 4 -5= 1167/1150, 5 -6 =- 834/817, 6-7 =- 501/483, 8- 9=- 517/499, 9-10=-850/833, 10- 11=- 1183/1166, 11 -12 =- 1517/1499, 12- 13=- 1850/1833, 13 -14 =- 363/356 BOT CHORD 27- 28=- 2104/2121, 26 -27 =- 1832/1850, 25 -26 =- 1499/1516, 24 -25 =- 1166/1183, 23- 24=- 832/850, 22 -23 =- 499/516, 20- 21=- 484/501, 19- 20=- 817/834, 18-19=-1150/1168, 17- 18=- 1484/1501, 16- 17=- 1817/1834, 15 -16 =- 2155/2172 WEBS 2 -27= 1939/1673, 13- 16=- 1674/1364, 2- 28=- 2797/2781, 13 -15 =- 2686/2673 NOTES 1) Unbalanced floor live loads have been considered for this design. 2) All plates are 2x4 MT20 unless otherwise indicated. 3) Gable requires continuous bottom chord bearing. 4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). 5) Gable studs spaced at 1 -4 -0 oc. e,ED PR OFF 6) A plate rating reduction of 20% has been applied for the green lumber members. �•` GI s s, 7) This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and referenced �� 6N 6 9 Q standard ANSI/TPI 1. 8) This truss has been designed for a total drag load of 250 plf. Lumber DOL= (1.33) Plate grip DOL= (1.33) Connect truss to resist drag 1 ,,•91 loads along bottom chord from 0 -0 -0 to 17 -7 -8 for 250.0 plf. / 9) "Fix heels only" Member end fixity model was used in the analysis and design of this truss. 10) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3 ") nails. Strongbacks /1 / to be attached to walls at their outer ends or restrained by other means. -' � 0" DREG"•' J LOAD CASE(S) Standard T C � /I,/ e , - '/'<(/ 1, Digital Signature EXPIRATION DATE: 06/30/12 May 23,2011 4 8 A WARNING Verify design parameters and READ NOTES ON MS AND INCLUDED MITER REFERENCE PAGE 1161/7473 rev. 10 '08 BEFORE USE MI Design valid for use only with MBek connectors. Thfs design is based only upon parameters shown, and is for an individual budding component. A pplicabiity of design paramenters and proper Incorporalion of component is responsibiity of budding designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stabiily during construction is the responsibility of the MiTek' erector. Additional permanent bracing of the overall structure is the responsibility of the budding designer. For general guidance regarding POrgla TO fabrication, quality control, storage, delivery, erection and bracing, consult ANSI /IPI1 Quality Criteria, 056.69 and BCSI Building Component 7777 Greenback Lane, Suite 109 Safely Information avaiable trans Truss Plate Institute, 281 N. Lee Street. Suite 312. Alexandria, VA 22314. Citrus Heights, CA, 95810 • • Job Truss Truss Type Qty Ply Pulte Homes - Building 17 Upper Floor R33134079 81106182 -A 11 -FT Floor Truss 9 1 .Inh Raferenre• (nptinnal) Pro -Build Clackamas Truss, Cladkamas,OR 97015 -1129 7.250 s May 11 2011 MiTek Industries, Inc. Mon May 23 08:45:39 2011 Page 1 ID: La5k9S_ VH0am6f17gihmpNzHOhy- EXwpwh0OX4cs0A5KuSFgQA1klpBpbUPPe8wkCVzDeRQ I 7 -84 1 1-1-8 11 1-4-0 I I 1 -14 I 0 1 1 Scale • I;19 8 458 = 254 II 254 II 1 351 II 2 3 4 354 = 5254 II 8 1 - 11 58 = 351 = wa..., n I' "� I I l �` 13 b 1111 WI II WAWA I\IU r " 5to= II 10 9 3.8 = II 454 = 254 II 4510 = I 4 -0-0 14 -e-9 I 04.00 I 11-11-4 I • 4 -On o-e-0 ae-s 97-4 Plate Offsets (X,Y): [1:Edge,0 -1 -8], [2:0- 3- 3,Edge], [3:0- 1- 8,Edge], [4:0- 1- 8,Edge], [6:0- 2- 6,Edge], [7:0- 1- 8,Edge], [8:Edge,0 -1 -8], [10:0- 1- 8,0 -0-0], [11:0- 1- 8,Edge], [12:Edge .0- 1- 8].[13:0- 1- 8.0 -1 -8] LOADING (psf) SPACING 2 -0-0 CSI DEFL in (loc) 1 /deft Ud PLATES GRIP TCLL 40.0 Plates Increase 1.00 TC 0.37 Vert(LL) - 0.09 9-10 >999 360 MT20 220/195 TCDL 10.0 Lumber Increase 1.00 BC 0.52 Vert(TL) -0.18 8 -9 >798 240 BCLL 0.0 Rep Stress Ina YES WB 0.30 Horz(TL) 0.03 8 n/a n/a BCDL 5.0 Code IRC2009/fP12007 (Matrix) Weight: 56 lb FT = 0 %F, 0%E LUMBER BRACING TOP CHORD 4 X 2 DF No.18Btr G TOP CHORD Structural wood sheathing directly applied or 6 -0-0 oc purlins, except BOT CHORD 4 X 2 DF No.18Btr G end verticals. WEBS 4 X 2 DF Std G BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (lb /size) 12= 643/0 -3 -8 (min. 0-1-8), 8= 637/0 -3.8 (min. 0-1 -8) FORCES (lb) - Max. Comp- /Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2- 3=- 1669/0, 3- 4=- 1677/0, 4- 5=- 1838/0, 5-6=-1843/0 BOT CHORD 11- 12= 0/1318, 10- 11= 0/1677, 9- 10= 0/1682, 8- 9= 0/1300 WEBS 3-11= 275/0, 2- 12=- 1416/0, 2 -11 =0/587, 6-8 =- 1392/0, 6-9= 0/586, 5 -9 =- 273/0, 4 -9 =- 123/339 NOTES • 1) Unbalanced floor live loads have been considered for this design. 2) A plate rating reduction of 20% has been applied for the green lumber members. 3) This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 4) "Fix heels only" Member end fixity model was used in the analysis and design of this truss. . 5) Recommend 2x6 strongbacks, on edge, spaced at 10-0 -0 oc and fastened to each truss with 3-10d (0.131 "X 3 ") nails. Strongbacks . to be attached to walls at their outer ends or restrained by other means. 6) CAUTION, Do not erect truss backwards. . LOAD CASE(S) Standard C�����NG PNR FFSS /e �� 16:'• 9 f • • IP �: •REGr " M . S I \ � • Digital Signature EXPIRATION DATE: 06/30/12 May 23,2011 8 i ■_ ' A rk WARNING - Verti/y design parameters and READ NOTES ON THIS AND INCLUDED TATTER REFERENCE PAGE ME-7473 rev. 10'08 BEFORE USE. Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual buiding component. MI Appllcabtity of design param enters and proper incorporation of component Is responsibility of butding designer - not truss designer. Bracing shown ������i c for lateral support of individual web members only. Additional temporary bracing to Insure stability during construction is the responsibility of the MiTek' • . erector. Additional permanent bracing of the ovet an shoo lure is the responsibility of the butding designer. For general guidance regarding lobricalion: quality control. storage. delivery, erection and bracing consult ANSI/TPI1 Quality Crlterta, 008.89 and BCSI Building Component 7777 Greenback Lane, Suite 109 Safety Information avaiable from Truss Plate Institute, 281 N. Lee Sheet. Suite 312. Alexandria, VA 22314. Citrus Heights, CA, 85810 Job Truss Truss Type thy Ply Putte Homes - Building 17 Upper Floor R33134080 81106182 -A 12 -FT Floor Truss 8 1 .lab Rnfnrence (nptinnall Pro - Build Clackamas Truss, Clackamas,OR 97015 - 1129 7.250 s May 11 2011 MiTek Industries, Inc. Mon May 23 08:45.40 2011 Page 1 ID:La5k9S VHOam607gihmpNzHOhy- iITB71POlNkj 'KgXR9mvyNaukDT4KsWYtogHlxzDeRP 0-1 -8 H I 7-6-0 1 I 1 -4-0 0-948 Scab • 1261 254 II 354 = 214 11 354 = 254 II 4.10 = 354 11 1 2 4110 = 3 4 5 414= 6 7 6 ul 0 • III W; 11.i Ji 13 12 11 10 9 450 = 214 II 254 II 4510 = 418 = 418 = 1 21 - I &8 - 0 19 -4 -0 I 157 -8 1 9 -0.0 0.8-0 n-B-s 6 - 3.9 Plate Offsets (X Y): [4:0- 1- 8.Edge], [5:0- 1- 8.Edge],19:Edge.O.1 -81. [11'0- 1- 8.0 -0-0]. (12:0- 1- 8.Edge]. (13:0- 3- 8.Edge). [14:Edge 0 -1 -81. [15:0 -1 -8 0-1 -8] LOADING (psf) SPACING 2 -0-0 CSI DEFL in (roc) 1 /deb lid PLATES GRIP TCLL 40.0 Plates Increase 1.00 TC 0.44 Vert(LL) -0.19 12 -13 >984 360 MT20 220/195 TCDL 10.0 Lumber Increase 1.00 BC 0.71 Vert(TL) -0.32 12 -13 >569 240 BCLL 0.0 Rep Stress Incr YES WB 0.63 Horz(TL) 0.05 9 n/a n/a BCDL 5.0 Code IRC2009/TPI2007 (Matrix) Weight: 80 lb FT = 0 %F, 0 %E LUMBER BRACING TOP CHORD 4 X 2 DF No.18Btr G TOP CHORD Structural wood sheathing directly applied or 6 -0-0 oc purlins, except BOT CHORD 4 X 2 DF No.18Btr G end verticals. WEBS 4 X 2 DF Std G BOT CHORD Rigid ceiling directly applied or 10-0.0 oc bracing. REACTIONS (lb /size) 14= 839/0 -3 -8 (min. 0 -1 -8), 9= 846 /Mechanical FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2- 3=- 2868/0, 3-4 =- 2868/0, 4 -5 =- 3073/0, 5-6=-2835/0, 6-7 =- 2839/0 BOT CHORD 13-14= 0/1713, 12- 13= 0/3074, 11- 12= 0/3073, 10-11= 0/3068, 9-10= 0/1723 WEBS 2 -14= 1855/0, 2 -13= 0/1236, 3-13 =- 306/0, 4 -13 =- 519/103, 7-9=-1871/0, 7 -10= 0/1193, 5-10 =- 634/80 NOTES 1) Unbalanced Boor live loads have been considered for this design. 2) A plate rating reduction of 20% has been applied for the green lumber members. 3) Refer to girder(s) for truss to truss connections. 4) This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 5) "Fix heels only" Member end fixity model was used in the analysis and design of this truss. 6) Recommend 2x6 strongbacks, on edge, spaced at 10-0 -0 oc and fastened to each truss with 3-10d (0.131" X 3 ") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. 7) CAUTION, Do not erect truss backwards. LOAD CASE(S) Standard .<<, O PR OFF,, , � N(''INE 2_ 16- fr • ORE •� •• M S.1% Digital Signature EXPIRATION DATE: 06/30/12 May 23,2011 4 ■ A WARNING Vcs4 Jydesign parameters and READ NOTES ON THIS AND INCLUDED PETER REFERENCE PAGE MD7473 rev. 10128BEFOR 's BEFORE? USE. � Design valid for use only With MRek connectors. This design based only upon parameters shown, and is for an individual building component. A pplicability of design paramenters and proper incorporation of component is responsibiity of budding designer • not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure slabiily during construction is the responsibility of the MiTek* • erector. Additional permanent bracing of the overall structure is the responsibility of the bulding designer. For general guidance regarding povr44 - : A K fabrication, quality control. storage. delivery. erection and bracing, consult ANSI /TPI1 Quality Criteria, DSB•89 and BCSI Building Component 7777 Greenback Lane, Suite 109 Safety Information available from Truss Plate Institute, 281 N. Lee Street. Suite312, Alexandria, VA 22314. Citrus Heights, CA. 95610 Job Truss Truss Type Qty Ply Pulte Homes - Building 17 Upper Floor R33134081 B1106182 -A 15 -FT Floor Truss 1 1 Jnb Reference (optional) Pro -Build Clackamas Truss, Cladramas,OR 97015 -1129 7.250 s May 11 2011 MiTek Industries, Inc. Mon May 23 08:45:41 2011 Page 1 ID:La5k9S VHOam6t17gihmpNzHOhy- BwlZLNQe3hsadUFj ?tH9Vb74Acw63Qrh5SPrHOzDeRO 0-1 -8 H I 243 -0 1 0 -11 -12 1 1 1.4 -0 I I 1.4 -0 1 1 1-3-4 I o- 5< x 1270 244 II 2.4 II 354 = 446 = 244 II 344 II 4x8 = 244 II 456 = 344 = 1 2 3 4 418 = 5 6 7 5 9 e 17 2 111 101A1_I I _ � �D� I,. IB Mil ►e� ICI 04 a 15 14 01 12 11 M. 244 = 2x4 II 214 II 344 = 44.6 = 4410 = 448 = I 7.11.4 I 16-7-0 l 7.11.4 P -2 -17 Plate Offsets (X,Y): [2:0- 2- 8,Edge], [3:0.1- 8,Edge], [4:0- 1- 8,Edge], [6:0- 1- 8,Edge], [7:0- 1- 8,0 -0 -0], [8:0- 2- 3,Edge], [9:0- 1- 8,Edge], [10:Edge,0 -1 -8], [11:0 -1 -8, Edge], [12:0 -1 -8 .Edge]. (14:0- 1- 8.0 -0-0], [15:0 -1 -8 Edge] [16:Edge 0 -1 -8], [17'0.1- 8.0 -1 -81 (18:0.1- 8.0 -1 -81 LOADING (psf) SPACING 2-0-0 CSI DEFL in (loc) I /deft Ud PLATES GRIP TCLL 40.0 Plates Increase 1.00 TC 0.33 Vert(LL) -0.05 10-11 >999 360 MT20 220/195 TCDL 10.0 Lumber Increase 1.00 BC 0.27 Vert(TL) -0.11 10-11 >892 240 BCLL 0.0 Rep Stress Incr NO WB 0.17 Horz(TL) 0.02 10 n/a n/a BCDL 5.0 Code IRC2009/TPI2007 (Matrix) Weight: 74 lb FT = 0 %F, 0 %E LUMBER • BRACING TOP CHORD 4 X 2 DF No.18Btr G TOP CHORD Structural wood sheathing directly applied or 6 -0-0 oc purlins, except BOT CHORD 4 X 2 DF No.18Btr G end verticals. WEBS 4 X 2 DF Std G BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (lb /size) 16= 402/0 -3 -8 (min. 0 -1 -8), 10=419/0-3-8 (min. 0-1-8), 13= 918/0 -3-8 (min. 0 -1 -8) Max Gray 16=421(LC 7), 10= 438(LC4), 13= 918(LC 1) FORCES (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 2 -3 =- 778/0, 3-4 =- 778/0, 6-7= 832/0, 7- 8= -832/0 BOT CHORD 15- 16= 0/764, 14- 15= 0/778, 13- 14= 0/778, 12- 13= 0/832, 11- 12= 0/832, 10 -11 =0 /800 WEBS 5-13= 276/0, 2 -16 =- 814/0, 4 -13 =- 875/0, 8- 10=- 853/0, 6-13= -925/0 NOTES 1) Unbalanced floor live loads have been considered for this design. 2) A plate rating reduction of 20% has been applied for the green lumber members. 3) This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 4) "Fix heels only" Member end fixity model was used in the analysis and design of this truss. 5) Recommend 2x6 strongbacks, on edge, spaced at 10-0 -0 oc and fastened to each truss with 3 -10d (0.131" X 3 ") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. 6) CAUTION, Do not erect truss backwards. LOAD CASE(S) Standard ��PED PR °Fen C�� C3 � NGINF � �o Q 16 %t '_ 4 111 0 , 4 ON r 9 � M F R S. , � � Digital Signature EXPIRATION DATE: 06/30/12 May 23,2011 ® WARNING - Vcrrhj design parameters and READ NOTES ON TTIlS AND INCLUDED BITTEN REFERENCE PAGE 8II1 .7473 r. 10'08 BEFORE US& iT/Y am Design valid for use only with Mitch connectors. This design is based only upon parameters shown, and h for an individual building component. Applicability of design param enters and proper Incorporation of component is responsibility of building designer - not truss designer. Bracing shown h for lateral support of individual web members only. Additional temporary bracing to insure stability during constructions the responsibility of the MiTek' erector. Additional permanent bracing of the overoll structure is the responsibility of the budding designer. For general guidance regarding - fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI1 Quality Criteria, DSB -69 and BCSI Building Component 7777 Greenback Lane, Suite 109 Safety Information evadable from Truss Plate Institute. 281 N. Lee Street, Suite 312, Alexandria. VA 22314. - Citrus Heights, CA, 95810 Job Truss Truss Type Otte Ply Pulte Homes - Building 17 Upper Floor R33134082 B1106182 -A 16 -FT Floor Truss 7 1 Job Refcreore (optional) Pro -Build Clackamas Truss, Claekamas,OR 97015 -1129 7.250 s May 11 2011 MiTek Industries, Inc. Mon May 23 08:45:42 2011 Page 1 ID: Le5k9S _VH0am6fl7gihmpNzHOhy- febyYjQGg7 OFdgvZaoOlofFYOCSor ?rK690pgzDeRN o-1 -a H I 7.8 -0 I 1.3-3 I I 1 -4.0 I I 1.1 -5 o� S[e 1:70,1 33,4 = 4.8 = 2x4 II 23,4 II 1 2z4 11 2 3 4 33,4 = 5 23,4 II 6 43,8 = 7 354 = 13 � �i ��� Ir IIr. �� I. 4 � - 3s9 = 1 - 11 to s +, 43,4 = 2x4 4410 = 4410 = 4 -0-3 4111 4 -9-11 5 -5-11 17 -1 -0 4 -0-3 0-1 -9 0-4-0 11-4-0 8 -7.5 Plate Offsets (X,Y): [2:0- 3- 2,Edgej, [3:0- 1- 8,Edge], [4:0- 1- 8,Edge], [6:0- 2- 2,Edge], [7:0- 1- 8,Edge], [8:Edge,0 -1 -8], [10:0- 1- 8,Edge], [11:0- 1- 8,Edge), [12:Edge,0 -1 -8), [13:0 -1 -8 .0- 1- 8).[14:0- 1- 8.0 -1 -8j LOADING (psf) SPACING 2 -0 -0 CSI DEFL in (loe) 1 /deft L/d PLATES GRIP TCLL 40.0 Plates Increase 1.00 TC 0.36 Vert(LL) -0.09 9 -10 >999 360 MT20 220/195 TCDL 10.0 Lumber Increase 1.00 BC 0.52 Vert(TL) -0.18 8 -9 >798 240 BCLL 0.0 Rep Stress Incr YES WB 0.31 Horz(TL) 0.03 8 n/a n/a BCDL 5.0 Code IRC2009/TPI2007 (Matrix) Weight: 56 lb FT = 0 %F, 0 %E LUMBER BRACING TOP CHORD 4 X 2 DF No.18Btr G TOP CHORD Structural wood sheathing directly applied or 6 -0-0 oc purlins, except BOT CHORD 4 X 2 DF No.18Btr G end verticals. WEBS 4 X 2 DF Std G BOT CHORD Rigid ceiling directly applied or 10-0 -0 oc bracing. REACTIONS (lb /size) 12=645/0-5-8 (min. 0-1-8), 8= 645/0 -3-8 (min. 0-1-8) FORCES (Ib) - Max. Comp. /Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 2- 3=- 1724/0, 3-4 =- 1732/0, 4- 5=- 1878/0, 5-6=-1882/0 BOT CHORD 11- 12= 0/1330, 10- 11= 0/1732, 9-10= 0/1736, 8- 9= 0/1320 WEBS 3-11= 261/0, 2- 12=- 1422/0, 2- 11= 0/607, 6-8 =- 1413/0, 6-9= 0/606, 5 -9 =- 271/0, 4- 9=- 142/328 NOTES 1) Unbalanced floor live loads have been considered for this design. 2) A plate rating reduction of 20% has been applied for the green lumber members. 3) This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 4) "Fix heels only" Member end fixity model was used in the analysis and design of this truss. 5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10c1 (0.131" X 3 ") nails. Srongbacks to be attached to walls at their outer ends or restrained by other means. LOAD CASE(S) Standard �(< ;3G PROF 167-'0" ' 9r 4 GREG• Digital Signature EXPIRATION DATE: 06/30/12 May 23,2011 A WARNING Verify design parameters and READ NOTES ON MIS AND INCLUDED MITER REFERENCE PAGE MII 7473 rep. .10 , 08 BEFORE USE. s Design valid for use only with MiTek connectors. Ths design is based only upon parameters shown, and 'e for an individual building component. Applicability of design paramenters and proper incorporation of component is responsibility of budding designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the MiTek' erector. Additional permanent bracing of the overall structure Is the responsibility of the budding designer. For general guidance regarding - fabrication, qualify control, storage, delivery, erection and bracing, consult ANSI /TPI1 Quality Crlterta, DSB -89 and SCSI Building Component 7777 Greenback Lane. Suite 109 Safety Information available from Truss Plate Institute. 281 N. Lee Street. Suite 312. Alexandria. VA 22314. Citrus Heights, CA, 95010 Job Truss Truss Type Qty Ply Pulte Homes - Building 17 Upper Floor R33134083 61106182 -A 19-FT Floor Truss 2 1 Job Reference (optional) Pro-Build Clackamas Truss, Clackamas.OR 97015 -1129, r 7.250 sMar 232011 MiTek Industries, Inc. Mon May 23 10:18:35 2011 Page 1 ID: La5k9S_ VH0am6f17gihmpNzHOhy- MSYnU6u ?LAIwxS4gvylvfH a7XDD3L08rfeowJzDd4I 0-1 -8 H I 2-6 -0 I I 1 -6 -0 I I 1 -1 -0 I I' Scae- 1:18.0 2x4 II 2x4 II 3x4 = 4x8 = 2x4 II 3x4 = 1 2 3 4x4 = 4 5 408 = 6 12 Ell �1 IN IC °12-411.11411....M:: ,: ' I,I I _Mill . • I 1111 N �1r� r I � , f�_I , 1m, 10 9 B P/ 2x4 II 2x4 II 4x6 = 4x8 = 4x8 = I 3-0-8 1 3-8 -8 14 -4-8 I 10-11-8 I 3-0-8 0-8 -0 0-8 -0 6-7-0 Plate Offsets (X,Y): [2:0- 1- 8,Edge), [3:0- 1- 8,Edge], [5:0- 3- 2,Edge], [6:0- 1- 8,Edge], [7:Edge,0 -1 -8], [9:0- 1- 8,0 -0-0], [10:0- 1- 8,Edge], (11:Edge,0 -1 -8], [12:0- 1- 8,0 -1 -8], [13:0 -1 -8 ,0 -1 -81 LOADING (psf) SPACING 2-0-0 CSI DEFL in (loc) 1 /deft L/d PLATES GRIP TCLL 40.0 Plates Increase 1.00 TC 0.55 Vert(LL) -0.11 8 -9 >999 360 MT20 220/195 TCDL 10.0 Lumber Increase 1.00 BC 0.72 Vert(TL) -0.17 8 -9 >748 240 BCLL 0.0 Rep Stress Ina NO WB 0.26 Horz(TL) 0.02 7 n/a n/a BCDL 5.0 Code IRC2009/TP12007 (Matrix) Weight: 51 lb FT = 0 %F, 0 %E LUMBER BRACING TOP CHORD 4 X 2 DF No.18Btr G TOP CHORD Structural wood sheathing directly applied or 6 -0-0 oc purlins, BOT CHORD 4 X 2 DF No.1&Btr G except end verticals. WEBS 4 X 2 DF Std G BOT CHORD Rigid ceiling directly applied or 10-0 -0 oc bracing. REACTIONS (lb /size) 11= 583/0 -5 -8 (min. 0 -1 -8), 7=583/0-3-8 (min. 0-1 -8) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 11 -12 =- 106/9, 1 -12 =- 106/9, 7 -13 =- 103/0, 6-13 =- 103/0, 1- 2 = -6/1, 2 -3 =- 1297/0, 3-4 =- 1577/0, 4 -5 =- 1583/0, 5- 6 = -6/0 BOT CHORD 10-11=0/1294, 9- 10= 0/1297, 8- 9= 0/1303, 7- 8= 0/1165 WEBS 2- 10= 0/170, 3-9 =- 230/0, 2- 11=- 1384/0, 5-7 =- 1246/0, 5-8= 0/450, 4 -8 =- 299/0, 3 -8 =- 27/472 NOTES 1) Unbalanced floor live loads have been considered for this design. 2) A plate rating reduction of 20% has been applied for the green lumber members. 3) This truss is designed In accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 4) "Fix heels only Member end fixity model was used in the analysis and design of this truss. 5) Recommend 2x6 strongbacks, on edge, spaced at 10 -0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. LOAD CASE(S) Standard ��,i3O PR QFFSS � . LNG/ R /o29 Q ' 1 1*•PE , r ..-4'Y / ; R S. Digital Signature EXPIRATION DATE: 06/30/12 May 23,2011 ■ ■ ® WARMING - Verify design parameters and READ NOTES ON 71118 MID INCLUDED MATE REFERENCE PAGE bIII.74 rev. 10-'08 BEFORE USE i� - - ' Design valid for use only with MiTek ek connectors. This design based only upon parameters shown, and 's for an individual budding component. Applicability of design commenters and proper Incorporation of component is responsibility of buiding designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to Insure stabiity during construction is the responsibility of the MiTek" erector. Additional permanent bracing of the overall structure is the responsibility of the buiding designer. Par general guidance regarding fabrication. qualify control, storage, delivery, erection and bracing. consult ANSI/TPI1 Quality Cdteda, 059.89 and BCSI Building Component 7777 Greenback Lane, Suite 109 Safety Information avaloble from Truss Plate Institute. 281 N. Lee Street, Suite 312. Alexandria, VA 22314. Citrus Heights, CA, 95610 , • Job Truss Truss Type Qty Ply Pulte Homes - Building 17 Upper Floor R33134084 81106182 -A 1 -FTGE Floor Truss 1 1 Job Reference (Optionall Pro -Build Clackamas Truss, Clackamas,OR 97015 -1129 7.250 s May 11 2011 MiTek Industries, Inc. Mon May 23 08:45:43 2011 Page 1 ID: La5k9S_ VH0am6f17gihmpNzHOhy- 719Km3Rubl6 HsnP57HKda0C RYQdNX DU_ZmuyLGzDeRM ale o - sraN • 1:303 344 = 546 = 546 = 344 = 1 2 3 4 5 6 7 6 9 10 11 12 13 14 15 0 3 � _ Y 1 1 fi 11 II II N N. 27 28 24 23 22 21 20 19 18 17 18 548 = 448 II 446 = 516 = I 18.1.8 1 19-1.8 Plate Offsets (X.Y): [2:0- 1- 8.EdgeJ. [14:0- 2- 12.Edgel, [15:0- 1 -8.Edg 116:Egge,0 -1 -8]. [18:0.1- B.Edge], [31:0-1-8.0-1-81.132:0-1-8.0-1-81 LOADING (psf) SPACING 2 -0-0 CSI DEFL in (lac) I /deft Lid PLATES GRIP TCLL 40.0 Plates Increase 1.00 TC 0.28 Vert(LL) n/a - n/a 999 MT20 220/195 TCDL 10.0 Lumber Increase 1.00 BC 0.22 Vert(TL) n/a - n/a 999 BCLL 0.0 Rep Stress Incr YES WB 0.61 Horz(TL) 0.01 24 n/a n/a BCDL 5.0 Code IRC2009/TPI2007 (Matrix) Weight: 81 lb FT = 0 %F, 0 %E LUMBER BRACING TOP CHORD 4 X 2 DF No.1 &Btr G TOP CHORD Structural wood sheathing directly applied or 6 -0-0 oc purtins, except BOT CHORD 4 X 2 DF No.1&Btr G end verticals. WEBS 4 X 2 DF Std G BOT CHORD Rigid ceiling directly applied or 6 -0-0 oc bradng. OTHERS 4 X 2 DF Std G QUALIFIED BUILDING DESIGNER OR PROJECT ENGINEER SHALL REVIEW THE INPUT REACTIONS All bearings 18 -1 -8. LENGTH AND PLACEMENT OF CONNECTION TO TRANSFER LATERAL FORCES TO THE (Ib) - Max Horz30 =31(LC 2) SUPPORTING STRUCTURE AS STATED IN THE DRAG LOAD NOTE BELOW. Max Uplift All uplift 100 lb or less at joint(s) 17 except 30=- 1699(LC 2), 16= 1142(LC 3), 29=- 1590(LC 3), 18=- 1108(LC 2) Max Gray All reactions 250 lb or less at joint(s) 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 17 except 30= 1799(LC 3). 16= 1251(LC 2). 29= 1892(LC 2), 18= 1446(LC 3) FORCES (Ib) - Max. Comp. /Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 1- 2=- 289/284, 2- 3=- 1754/1745, 3-4 =- 1420/1412, 4-5=-1087/1078, 5 -6 =- 754/745, 6-7 =- 420/412, 7 -8 =- 255/246, 8- 9=- 588/580, 9-10 =- 922/913, 10.11 =- 1255/1246, 11 -12 =- 1588/1580, 12 -13 =- 1922/1913, 13 -14 =- 2255/2246 BOT CHORD 29 -30 =- 2032/2041, 28- 29=- 1761/1769, 27- 28=- 1427/1436, 26 -27 =- 1094/1103, 25-26=-761/769, 24-25=-427/436, 22-23=-564/573, 21-22=-897/906, 20-21=-1231/1239, 19- 20=- 1564/1573, 18- 19=- 1897/1906, 17- 18=- 571/625, 16- 17=- 721/775 WEBS 2 -29= 1878/1605,2 -30 =- 2691/2686,14 -16 =- 1468/1369,14 -18 =- 2106/2048 NOTES 1) Unbalanced floor live loads have been considered for this design. 2) All plates are 2x4 MT20 unless otherwise indicated. 3) Gable requires continuous bottom chord bearing. 4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). 5) Gable studs spaced at 1 -4 -0 oc. ��Q PR OFF 6) A plate rating reduction of 20% has been applied for the green lumber members. -S s s 7) This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and referenced � �\ � N GI % F /O2 standard ANSI/I 1. 8) This truss has been designed for a total drag load of 250 plf. Lumber DOL= (1.33) Plate grip DOL= (1.33) Connect truss to resist drag 4 .C — • • • PE � I -- jr loads along bottom chord from 0 -0 -0 to 18 -1 -8 for 250.0 plf. 9) "Fix heels only" Member end fixity model was used in the analysis and design of this truss. 10) Recommend 2x6 strongbacks, on edge, spaced at 10-0 -0 oc and fastened to each truss with 3-10d (0.131" X 3 ") nails. Strongbacks . ; to be attached to walls at their outer ends or restrained by other means. ' / J . LOAD CASE(S) Standard 2\ • • � � MF s IN Digital Signature EXPIRATION DATE: 06/30/12 May 23,2011 t, • A WARNING • VerI y design paranwtc.m and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE 8111 7473 rev. 10'08 BEFORE USE, �.s NOTES Design valid for use only with MITek connectors. The design 6 based only upon parameters shown, and B for an individual buiding component. Applicability of design poram enters and proper incorporation of component is responsibility of budding designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stubbly during construction's the responsibility of the MiTek' erector. Additional permanent bracing of the overall structure Is the responsibility of the budding designer. For general guidance regarding ,o. .. fabrication. quality control, storage, delivery. erection and bracing, consult ANSI/TPI1 Quality Criteria. DSB -89 and BCSI Building Component 7777 Greenback Lane, Suite 109 Safety Information avaiabie from Truss Plate Institute. 281 N. Lee Street, Suite 312. Alexandria, VA 22314. Citrus Heights, CA, 95610 Job Truss Truss Type Qty Ply Pulte Homes - Building 17 Upper Floor . R33134085 61106182 -A 21 -FT FLOOR TRUSS 1 1 .lab Rafaranno Optional) Pro -Build Clackamas Truss, Cladkamas,OR 97015 -1129 7.250 s May 11 2011 MiTek Industries, Inc. Mon May 23 08:45:44 2011 Page 1 ID: La5k9S_VH0am607gihmpNz HOhy- bVjizPSXMcE8Ux _Ig ?rs6DIZ5gw7GIN8nQeVujz DeRL 0-1.8 H I 2.5-4 I I 0-11.8 I I 1 -4-8 I I 2 -5-0 I I 78.0 I I 14 -0 I I 1 -3-4 1 0-,B L. sdd -rro 2.4 11 h4 11 314 = 46 = 5.8 = 3.4 I I 4.6 = 2.4 I I 456 = 3.4 = 1 2 3 4 4.6 = 5 6 7 6 9 "� I is ' i� is i-1 L Ell r i Sill MOO ►� r 1' 16 15 14 12 11 )�j 4.4= 2:411 5.6= 2.411 3.4= 456 = 4x12 = 4x6 = I 7 - 9 - 0 1 7 - 11.4 I 16 - 2.a.0 42-4 6 -2 -12 Plate Offsets (X,Y): [2:0- 1- 8,Edge], [3:0- 3- 0,Edge], [4:0.1- 8,Edge], [6:0- 1- 8,Edge], [7:0- 1- 8.0 -0-0], [9:0- 1- 8,Edge], [10:Edge,0 -1 -8], [11:0- 1- 8,Edge], [12:0- 1- 8,Edge], [14:0.2 -8 .Edge1,116:0- 1- 8.Edge] [17:Edge.0 -1 -8], [18:0- 1- 8.0 -1 -8]. [19:0 -1- 8.0.1 -8] LOADING (psf) SPACING 2 -0-0 CSI DEFL in (lac) I /deft Ud PLATES GRIP TCLL 40.0 . Plates Increase 1.00 TC 0.48 Vert(LL) -0.06 10-11 >999 360 MT20 220/195 TCDL 10.0 Lumber Increase 1.00 BC 0.45 Vert(TL) -0.13 10-11 >743 240 . BCLL 0.0 Rep Stress Inc" NO WB 0.32 Horz(TL) 0.03 10 n/a n/a BCDL 5.0 Code IRC2009/TPI2007 (Matrix) Weight: 89 lb FT = 0 %F, 0 %E LUMBER BRACING TOP CHORD 4 X 2 DF No.18Btr G TOP CHORD Structural wood sheathing directly applied or 6 -0.0 oc purlins, except BOT CHORD 4 X 2 DF No.18Btr G end verticals. WEBS 4 X 2 DF Std G BOT CHORD Rigid ceiling directly applied or 10-0 -0 oc bracing, Except: 6-0-0 oc bracing: 12- 13,11 -12. REACTIONS (lb /size) 10= 348/0 -3 -8 (min. 0 -1 -8), 17= 856/0 -3-8 (min. 0 -1 -8), 13= 1535/0 -3-8 (min. 0-1 -8) Max Grav10= 399(LC 3), 17= 888(LC 5), 13= 1535(LC 1) FORCES (Ib) - Max. Comp. /Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 2 -3 =- 1962/0, 3 -4 =- 1659/0, 4 -5= 0/754, 5-6= 0/756, 6 -7 =- 657/100, 7 -8 =- 658/97 BOT CHORD 16- 17= 0/1942, 15- 16= 0/2420, 14- 15= 0/2420, 13- 14= 0/1641, 12- 13=- 100/657, 11 -12 =- 100/657, 10 -11 =0/699 WEBS 5-13= 272/0, 2 -17 =- 2082/0, 4 -13 =- 2306/0, 2 -16= 0/493, 4 -14= 0/622, 8 -10 =- 744/0, . 6-13= 1152/0, 3- 14=- 1037/0, 3-16=-651/0 NOTES 1) Unbalanced floor live loads have been considered for this design. 2) A plate rating reduction of 20% has been applied for the green lumber members. 3) This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANS I/TPI 1. 4) "Fix heels only" Member end fixity model was used in the analysis and design of this truss. 5) Recommend 2x6 strongbacks, on edge, spaced at 10-0 -0 oc and fastened to each truss with 3-10d (0.131" X 3 ") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. 6) CAUTION, Do not erect truss backwards. 7) Hanger(s) or -other connection device(s) shall be provided sufficient to support concentrated load(s) 1000 lb down at 3 -10-4 on top chord. The design /selection of such connection device(s) is the responsibility of others. 8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). <<- OD PR OFF LOAD CASE(S) Standard e' MA R / F dl /qt. 1) Floor: Lumber Increase =1.00, Plate Increase =1.00 tV Uniform Loads (plf) 1 ,. 9 F r Vert: 10- 17 = -10, 1 -9= -100 / Concentrated Loads (Ib) . Vert: 3=-1000 . A - OREG'r - 5 7 FMB - - % �. MF 1 qr1 Digital Signature 1 EXPIRATION DATE: 06/30/12 . May 23,2011 ■ , ■ WARNING - Verify design parameters and READ NOTES ON MIS AND INCLUDED MITER REFERENCE PAGE P411-7473 rcn. 10 -'08 BEFORE USE. �tY Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual buBding component. Applicability of design paramenters and proper incorporation of component is responsibtity of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the MiTek' . erector. Additional permanent bracing of the overall structure Is the responsibility of the building designer. For general guidance regarding - - fabrication, quality control. storage. delivery. erection and bracing, consult AN51 /1PI1 Quality Cdteda, D5B' -89 and SCSI BulldIng Component 7777 Greenback Lane, Suite 109 Safety Information available from Truss Plate Institute. 281 N. Lee Street. Suite 312. Alexandria, VA 22314. Citrus Heights, CA, 95810 Job Truss Truss Type Qty Ply Pulte Homes - Building 17 Upper Floor R33134086 81106182 -A 22 -FT Floor Truss 1 1 Job Referenra fQptinnall Pro -Build Clackamas Truss, Cladkamas,OR 97015 -1129 7.250 s May 11 2011 MiTek Industries, Inc Mon May 23 08:45:45 2011 Page 1 ID:La5k9S VH0am6f17gihmpNzHOhy- 3hH4AkT97wM? 65ZUEiM5IRHjiEHw ?DUHO4N2Q9zDeRK 0-1.8 Hi I 1.8.0 1 0-103 1 1 1 -4-3 I I alas I 011: Scab, •1-187 4,8 = I 2,4 II 2 8 2,4 I1 a 2,4 11 6 4,6 = 62,6 II 11 . . I. ir ,...., ,. 1. 12 r N I I II 3,4 = ME 4,8= 3,6= 4,8= 1 6-106 I 1410-8 Plate Offsets (X,Y): [2:0.2- 12,Edge], [3:0- 1- 8,Edge], [4:0- 1- 8,Edge), [5:0- 1- 5,Edge], [6:0- 1- 8,Edge], [7:Edge,0-1 -8], [8:0- 1- 8,Edge], [9:0- 1- 8,Edge], (10:Edge,0-1 -8), [11:0 -1 -8 .0-1-8]. [12:0-1-8.0-1-8] LOADING (psf) SPACING 2 -0-0 CSI DEFL in (lac) I /deft Lid PLATES GRIP TCLL 40.0 Plates Increase 1.00 TC 0.49 Vert(LL) -0.06 7 -8 >999 360 MT20 220/195 TCDL 10.0 Lumber Increase 1.00 BC 0.35 Vert(TL) -0.11 7 -8 >551 240 BCLL 0.0 Rep Stress lncr NO WB 0.20 Horz(TL) 0.01 7 n/a n/a BCDL 5.0 Code IRC2009/TPI2007 (Matrix) Weight: 42 lb FT = 0 %F, 0 %E LUMBER BRACING TOP CHORD 4 X 2 DF No.1&Btr G TOP CHORD Structural wood sheathing directly applied or 6 -0-0 oc purlins, except BOT CHORD 4 X 2 DF No.1&Btr G end verticals. WEBS 4 X 2 DF Std G BOT CHORD Rigid ceiling directly applied or 10-0 -0 oc bracing. REACTIONS (lb /size) 10= 388/5 -0 -8 (min. 0-1 -8), 7= 455/0 -5-8 (min. 0 -1 -8), 9= 231/5 -0-8 (min. 0-1 -8) Max Grav10= 430(LC 5), 7= 508(LC 5), 9= 231(LC 1) FORCES (lb) - Max. Comp- /Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2 -3 =- 956/0, 3-4 =- 970/0, 4-5=-968/0 BOT CHORD 9-10= 0/803, 8- 9= 0/970, 7 -8 =0/972 WEBS 5-7 =- 1037/0, 2 -10 =- 855/0, 2- 9= 0/377, 3-9= -317/0 NOTES 1) Unbalanced floor live loads have been considered for this design. 2) A plate rating reduction of 20% has been applied for the green lumber members. 3) This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 4) "Fix heels only" Member end fixity model was used in the analysis and design of this truss. 5) Recommend 2x6 strongbacks, on edge, spaced at 10-0 -0 oc and fastened to each truss with 3-10d (0.131" X 3 ") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. 6) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 218 lb down at 5 -2-4 on top chord. The design /selection of such connection device(s) is the responsibility of others, 7) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). LOAD CASE(S) Standard 1) Floor: Lumber Increase =1.00, Plate Increase =1.00 p PR OFF Uniform Loads (plf) .`< ss Vert: 7- 10=- 10,1 -6= -100 �<0 OAGINE. -,9 X0 Concentrated Loads (lb) Vert: 4=-138(B) Q • 9 9 • FMB yL fitr G(/ MF R S 1\N Digital Signature EXPIRATION DATE: 06/30/12 May 23,2011 1 • Q WARNING- Verify deign parameters and READ NOTES ON THIS AND INCLUDED /IIITERREFERENCE PAGE MU 7473 rm. 10 '08 BEFORE US& �° Design valid for use only with MiTek ek connectors. Thb design based only upon parameters shown, and is for an individual budding component. Appricabtity of design paramenters and proper incorporation of component is responsibility of building designer - not Truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction's the responsibility of the MiTek erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding .K fabrication, quality control, storage. delivery. erection and bracing, consult ANSI /TPI1 Quality Criteria, DSB -89 and BCSI Building Component 7777 Greenback Lane, Suite 109 Safety Information avaiabte from Truss Plate Institute, 281 N. lee Sheet, Suite 312. Alexandria, VA 22314. Citrus Heights, CA, 95610 Job Truss Truss Type Qty Ply Pulte Homes - Building 17 Upper Floor R33134087 B1106182 -A 23 -FT Floor Truss 1 1 .Inb Referenrw lootinnnll Pro -Build Clackamas Truss, Cladcamas,OR 97015 -1129 7.250 s May 11 2011 MiTek Industries, Inc. Mon May 23 08:45:46 2011 Page 1 ID: La5k9S_ VH0am607gihmpNzHOhy- XtrSO4TnuDUsjF8goQtKCegzvdgZkj5RFk7cybzDeRJ 1 -8 -0 I 1i t are II 2 3„ = 3 be II Seale • 1:106 a 374= - T 6 r� 3r6 = 3r6 = 3-10.0 9.1n-0 Plate Offsets (X.Y): [1:Edge.0 -1 -8). [3:0- 1- 8.Edge]. [6:0- 1- 8.0 -1 -8j LOADING (psf) SPACING 2 -0-0 CSI DEFL in (lest) I /dell L/d PLATES GRIP TCLL 40.0 Plates Increase 1.00 TC 0.14 Vert(LL) 0.00 5 "" 360 MT20 220/195 TCDL 10.0 Lumber Increase 1.00 BC 0.13 Vert(TL) -0.04 4 -5 >999 240 BCLL 0.0 Rep Stress Incr NO WB 0.05 Horz(TL) 0.00 4 n/a n/a BCDL 5.0 Code IRC2009/TPI2007 (Matrix) Weight: 20 lb FT = 0 %F, 0 %E LUMBER BRACING TOP CHORD 4 X 2 DF No.18Btr G TOP CHORD Structural wood sheathing directly applied or 3 -10-0 oc purlins, except BOT CHORD 4 X 2 DF No.18Btr G end verticals. WEBS 4 X 2 DF Std G BOT CHORD Rigid ceiling directly applied or 10-0 -0 oc bracing. REACTIONS (lb /size) 5= 238/Mechanical, 4= 231/0 -3-8 (min. 0 -1 -8) FORCES (lb) - Max. Comp. /Max. Ten. - All forces 250 (lb) or less except when shown. BOT CHORD 4 -5 =0/258 WEBS 2-4 =- 294/0, 2 -5= -299/0 NOTES 1) A plate rating reduction of 20% has been applied for the green lumber members. 2) Refer to girder(s) for truss to truss connections. 3) This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 4) "Fix heels only" Member end fixity model was used in the analysis and design of this truss. 5) Recommend 2x6 strongbacks, on edge, spaced at 10-0 -0 oc and fastened to each truss with 3-10d (0.131" X 3 ") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. 6) CAUTION, Do not erect truss backwards. 7) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 81 lb down at 1 -10-4 on top chord. The design /selection of such connection device(s) is the responsibility of others. 8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). LOAD CASE(S) Standard 1) Floor: Lumber Increase =1.00, Plate Increase =1.00 Uniform Loads (plf) , O PROP Vert: 4-5=-10, 1 -3= -100 Concentrated Loads (lb) ��(, t5 3 �+ Vert: 2=-81(F) 1/4/ CO NGI OREG• r ME S . N Digital Signature EXPIRATION DATE: 06/30/12 May 23,2011 � r A WARNING - Verify design parameters and READ NOTES ON T IDE AND INCLUDED MITER REFERENCE PAGE 1411.7473 rea, 10518 BEFORE USE, Design valid for use only with Mteek conhectors. This design h based only upon parameters shown, ands for an individual butding component. Applicabtily of design paramenters and proper Incorporation of component is responsibtity of budding designer - not truss designer. Bracing shown h for lateral support of individual web members only. Additional temporary bracing to insure stabtity during construction is the responsibility of the MiTek' erector. Additional permanent bracing of the overall structure is the responsibility of the budding designer. For general guidance regarding .. fabrication, quality control. storage. delivery, erection and bracing, consult ANSI /TP11 Quality Criteria, DSB -89 and SCSI Building Component 7777 Greenback Lane. Suite 109 Safely Information evadable from Truss Plate Institute, 281 N. Lee Street, Suite 312. Alexandria. VA 22314, Citrus Heights, CA, 95810 Job Truss Truss Type Qty Ply Pulte Homes - Building 17 Upper Floor R33134088 81106182 -A 25 -FT Floor Truss 1 1 .lab Reference (optional) Pro -Build Clackamas Truss, Cladcamas,OR 97015 -1129 7,250 s May 11 2011 MiTek Industries, Inc. Mon May 23 08:45:46 2011 Page 1 ID:La5k9S VH0am6f17gihmpNzHOhy- XtrSO4 _DdglkjMRFk7cybzDeRJ 1.8-4 r 3s4 II 2 3e4 = 3 2r4 II Scale • 1:ro e 111111 1111 11 !I II 3.4= MEM A, VIM it are = 3103 = 3 I 1-RA Plate Offsets (X.YI: [1:Edge.0 -1 -8]. [3'0- 1- 8.Edge]. [6:0- 1- 8.0 -1 -8] LOADING (psf) SPACING 2-0-0 CSI DEFL in (Ioc) I /deft Lid PLATES GRIP TCLL 40.0 Plates Increase 1.00 TC 0.12 Vert(LL) 0.00 5 aaaa 360 MT20 220/195 TCDL 10.0 Lumber Increase 1.00 BC 0.10 Vert(TL) -0.03 4 -5 >999 240 BCLL 0.0 Rep Stress Incr NO WB 0.03 Horz(TL) 0.00 4 n/a n/a BCDL 5.0 Code IRC2009/TP12007 (Matrix) Weight: 19 lb FT = 0 %F, 0 %E LUMBER BRACING TOP CHORD 4 X 2 DF No.1&Btr G TOP CHORD Structural wood sheathing directly applied or 3 -6-8 oc purlins, except BOT CHORD 4 X 2 DF No.1&Btr G end verticals. WEBS 4 X 2 DF Std G BOT CHORD Rigid ceiling directly applied or 10-0 -0 oc bracing. REACTIONS (lb /size) 5= 181 /Mechanical, 4= 175/0 -3 -8 (min. 0-1 -8) FORCES (lb) - Max. Comp. /Max. Ten. - All forces 250 (lb) or less except when shown. NOTES 1) A plate rating reduction of 20% has been applied for the green lumber members. 2) Refer to girder(s) for truss to truss connections. 3) This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/I 1. 4) "Fix heels only" Member end fixity model was used in the analysis and design of this truss. 5) Recommend 2x6 slrongbacks, on edge, spaced at 10-0 -0 oc and fastened to each truss with 3-10d (0.131" X 3 ") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. 6) CAUTION, Do not erect truss backwards. LOAD CASE(S) Standard PR QF FS 0 I N EF9 ,/, , • l�f %' E o T OREG •• • M F R S. � \N Digital Signature EXPIRATION DATE: 06/30/12 May 23,2011 • A WARNING Verifij design parameters and READ NOTES ON TIES AND INCLUDED MITER REFERENCE PAGE MU rca, 10 '08 BEFORE USE. �A if' rj Design valid for use only with Mitch connectors. Thh design Is based only upon parameters shown, and is for an individual budding component. A pplicability of design param enters and proper incorporation of component is responsibility of budding designer - not truss designer. Bracing shown k for lateral support of Individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the MiTek' erector. Additional permanent bracing of the overall structure is the responsibility of the budding designer. For general guidance regarding — ni -- w fabrication, quality control, storage. delivery. erection and bracing. consult ANSI/1191 Quality Criteria, 058 -89 and SCSI Building Component 7777 Greenback Lane, Suite 109 Safety Information evadable from Truss Plate Institute, 281 N. Lee Street, Suite 312. Alexandria. VA 22314. Citrus Heights, CA, 95610 Job Truss Truss Type Qty Ply Pulte Homes - Building 17 Upper Floor R33134089 81106182 -A 26 -FTGE Floor Truss 2 1 Jnb Reference (optional) Pro -Build Clackamas Truss, Clackamas,OR 97015 -1129 7.250 s May 11 2011 MiTek Industries, Inc. Mon May 23 08:45:47 2011 Page 1 ID: La5k9S_ VHoam6fl7gihmpNzHOhy- ?3PrbQUPfXcjLPjtM70ZksN6b1zGT NaU0s9U1zDeRI °1i • ° Scale =1:182 6x6 = • 1 354 = 2 3 4 5 6 7 8 9 354 = rl II NM 1 IA II IN �A I I I.. tl1111 IY ∎111I- iI111•11111■IY=1111111■Y■11111M1il•11•111111111111101111111r, 18 17 16 15 14 13 12 11 10 • 5s8 = 55e II 354 = I 10-11 -8 I 10-11 -8 Plate Offsets (X.Y): [2:0- 1- 8.Edge] [9:0- 1- 8.Edge]. [18•Edge.0 -1 -8]. [19:0- 1- 8.0 -1 -8]. [20:0- 1- 8.0 -1 -8] LOADING (psf) SPACING 2 -0-0 CSI DEFL in (roc) I /deft Lid PLATES GRIP TCLL 40.0 Plates Increase 1.00 TC 0.27 Vert(LL) n/a - n/a 999 MT20 220/195 TCDL 10.0 Lumber Increase 1.00 BC 0.29 Vert(TL) n/a - n/a 999 BCLL 0.0 Rep Stress Incr YES WB 0.81 Horz(TL) 0.02 10 n/a n/a BCDL 5.0 Code IRC2009/TP12007 (Matrix) Weight: 47 lb FT = 0%F, 0 %E LUMBER BRACING TOP CHORD 4 X 2 DF No.1 &Btr G TOP CHORD Structural wood sheathing directly applied or 6 -0-0 oc purlins, except BOT CHORD 4 X 2 DF No.1 &Btr G end verticals. WEBS 4 X 2 DF Std G BOT CHORD Rigid ceiling directly applied or 6 -0-0 oc bracing. OTHERS 4 X 2 DF Std G QUALIFIED BUILDING DESIGNER OR PROJECT ENGINEER SHALL REVIEW THE INPUT REACTIONS All bearings 10 -11 -8. LENGTH AND PLACEMENT OF CONNECTION TO TRANSFER LATERAL FORCES TO THE (Ib) - Max Harz 18 =31(LC 2) SUPPORTING STRUCTURE AS STATED IN THE DRAG LOAD NOTE BELOW. Max Uplift All uplift 100 lb or less at joint(s) except 18=- 2224(LC 2), 17=- 2111(LC 3) Max Gray All reactions 250 lb or less at joint(s) 10, 16, 15, 14, 13, 12, 11 except 18= 2323(LC 3), 17= 2414(LC 2) FORCES (Ib) - Max. Comp. /Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 1- 2=- 290/284, 2- 3=- 2363/2356, 3-4 =- 2029/2023, 4- 5=- 1696/1689, 5- 6=- 1363/1356, 6-7 =- 1029/1023, 7-8=-696/689, 8 -9 =- 363/356 BOT CHORD 17 -18 =- 2643/2650, 16-17=-2372/2378, 15- 16=- 2038/2045, 14 -15 =- 1705/1712, 13 -14 =- 1372/1378, 12- 13=- 1038/1045, 11- 12=- 705/712, 10 -11 =- 371/378 WEBS 2- 17=- 2400/2126, 2 -18 =- 3495/3493 NOTES 1) Unbalanced floor live loads have been considered for this design. 2) All plates are 2x4 MT20 unless otherwise indicated. 3) Gable requires continuous bottom chord bearing. - - . 4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). 5) Gable studs spaced at 1 -4 -0 oc. 6) A plate rating reduction of 20% has been applied for the green lumber members. ' 7) This truss is designed In accordance with the 2009. International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.. Ep PR O FF 8) This truss has been designed for a total drag load of 250 plf. Lumber DOL= (1.33) Plate grip DOL= (1.33) Connect truss to resist drag "\((' S'S loads along bottom chord from 0 -0-010 10 -11 -8 for 250.0 plf. S. 0 .4G[ F,9 / p ' 9) "Fix heels only" Member end fixity model was used in the analysis and design of this truss. 10) Recommend 2x6 strongbacks, on edge, spaced at 10-0 -0 oc and fastened to each truss with 3-10d (0.131" X 3 ") nails. Strongbacks ' ,, : • 8 • 9 r to be attached to walls at their outer ends or restrained by other means. LOAD CASE(S) Standard / 49 - fi i, s. -04 Digital Signature EXPIRATION DATE: 06/30/12 May 23,2011 ■ • A WARNING • Verify deign parameters and READ NOTES ON 711IS AND INCLUDED MITER REFERENCE PAGE 101.74 rra. 10 '08 BEFORE US& MI Design valid for use only with MiTek connectors. This design based only upon parameters shown, and h for an Individual building component. Applicability of design paramenters and proper Incorporation of component is responsibility of building designer - not truss designer. Bracing shown . is for lateral support of Individual web members only. Additional temporary bracing to insure stability during construction is the responsibillity of the MiTek' erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding . . fabrication. quality control, storage, delivery, erection and bracing, consult ANSI /TPI7 Quality Criteria. 058 -89 and SCSI Building Component 7777 Greenback Lane, Suite 109 Safety Intormatlon available horn Truss Plate Institute, 281 N. Lee Street. Suite 312. Alexandria, VA 22314. Citrus Heights, CA, 951310 Job Truss Truss Type Oty Ply Pulte Homes - Building 17 Upper Floor R33134090 81106182 -A 27 -FTGE Floor Truss 1 1 .lob Reference rnntionall Pro -Build Clackamas Truss, Cladtamas,OR 97015 -1129 7.250 s May 11 2011 MiTek Industries, Inc. Mon May 23 08:45:48 2011 Page 1 ID:La5k9S VH0am6f17kyhmpNzHOhy- TGyDpmV10rkazYl3vrvoH3vIJRKaCVgji2cj1UzDeRH om kP4 Scab "1:145 5r6 = I 2.4 II 2 3 254 II 4 214 II 5 2,4 II 6 2,4 II 7 2x4 II 11 0 0 .. 15 EM A -IN Is .. 3x4 I I I I 111 3,4 = Bar a a a a 5 14 13 12 11 10 9 0 456 = 4,4 II 2,4 II 254 II 254 II 2,4 II 354 = I 7- &0 1 7.4.0 Plate Offsets (X Y)' [2:0.1- 8.E.gej. [7:0- 1- 8.EdgeJ. [15:0-1-8.0-1-81.116:0-1-8.0-1-8] LOADING (psf) SPACING 2 -0-0 CSI DEFL in (roc) I /dell Lid PLATES GRIP TCLL 40.0 Plates Increase 1.00 TC 0.21 Vert(LL) n/a - n/a 999 MT20 220/195 TCDL 10.0 Lumber Increase 1.00 BC 0.22 Vert(TL) n/a - n/a 999 BCLL 0.0 Rep Stress lncr NO WB 0.54 Horz(TL) 0.01 8 n/a n/a BCDL 5.0 Code IRC2009/TPI2007 (Matrix) Weight: 35 lb FT = 0 %F, 0 %E LUMBER BRACING TOP CHORD 4 X 2 OF No.1 &Btr G TOP CHORD Structural wood sheathing directly applied or 6 -0-0 oc purlins, except BOT CHORD 4 X 2 DF No.1 &Btr G end verticals. WEBS 4 X 2 DF Std G BOT CHORD Rigid ceiling directly applied or 6 -0-0 oc bracing. OTHERS 4 X 2 DF Std G QUALIFIED BUILDING DESIGNER OR PROJECT ENGINEER SHALL REVIEW THE INPUT REACTIONS All bearings 7 -8 -0. LENGTH AND PLACEMENT OF CONNECTION TO TRANSFER LATERAL FORCES TO THE (Ib) - Max Horz 14 =31(LC 2) SUPPORTING STRUCTURE AS STATED IN THE DRAG LOAD NOTE BELOW. Max Uplift All uplift 100 lb or less at joint(s) except 14=- 1519(LC 2), 13=- 1406(LC 3) Max Gray All reactions 250 lb or less at joint(s) 8, 12, 11, 10, 9 except 14= 1614(LC 3), 13= 1712(LC 2) FORCES (Ib) - Max. Comp. /Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 1 -2 =- 289/284, 2- 3=- 1538/1535, 3-4 =- 1205/1201, 4 -5= 871/868, 5 -6 =- 538/535 BOT CHORD 13 -14 =- 1822/1825, 12- 13=- 1550/1553, 11- 12=- 1217/1220, 10.11 =- 884/887, . 9-10= 550/553 WEBS 2 -13= 1698/1420, 2- 14=- 2406/2408 NOTES 1) Unbalanced floor live loads have been considered for this design. 2) Gable requires continuous bottom chord bearing. 3) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). 4) Gable studs spaced at 1 -4 -0 oc. 5) A plate rating reduction of 20% has been applied for the green lumber members. 6) This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 7) This truss has been designed for a total drag load of 250 plf. Lumber DOL= (1.33) Plate grip DOL= (1.33) Connect truss to resist drag loads along bottom chord from 0 -0 -0 to 7 -8 -0 for 250.0 plf. 8) "Fix heels only Member end fixity model was used in the analysis and design of this truss. �t PR °FF 9) Recommend 2x6 strongbacks, on edge, spaced at 10 -0-0 oc and fastened to each truss with 3 -10d (0.131" X 3 ") nails. Strongbacks - lobe attached to walls at their outer ends or restrained by other means. �� 0 ( G N , 4 , 9 X 2 9 LOAD CASE(S) Standard CC � L 1 • !'' r i i V t OR -. :1 R S I C� Digital Signature EXPIRATION DATE: 06/30/12 May 23,2011 I r A WARNING Verify design parameters and READ NOTES ON MIS AND INCLUDED NITER' REFERENCE PAGE BID 74 res. 10'08 BEFORE USE. i�Y Design valid for use only with M7ek connectors. This design's based only upon parameters shown, and is for on individual buiding component. Applicability of design paramenters and proper Incorporation of component is responsibility of buid'sng designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the MiTek" erector. Additional permanent bracing of the overall structure Is the responsibility of the building designer. For general guidance regarding .r< fabrication, quality control, storage. delivery, erection and bracing, consult ANSI/7911 quality Criteria, DSB -89 and SCSI Building Component 7777 Greenback Lane, Suite 109 Safety Information available from Truss Plate Institute, 281 N. Lee Street, Suite 312. Alexandria, VA 22314. Citrus Heights, CA. 95610 Job Truss , Truss Type Qty Ply Pulte Homes - Building 17 Upper Floor R33134091 61106182 -A 28 -FTGE Floor Truss 1 1 ' lob Refernnca fnptinnall Pro -Build Clackamas Truss, Cladkamas,OR 97015 -1129 7.250 s May 11 2011 MiTek Industries, Inc. Mon May 23 08:45:48 2011 Page 1 ID:La5k9S VH0am687gihmpNzHOhy- TGyDpmV1QrkazYl3vrvoH3vJ fRKyCWgji2cjlUzDeRH D OA ° PM scar -1135 456 = . 214 11 1 214 II 2 3 214 II 4 214 II 5 244 II 6 7 214 II 14 En En' _ IjI, V 1111 1 i 1 13 12 11 10 . 9 8 416 = 3a4 II 244 II 2.4 II 214 II 316 = I 7 -1 -0 I 7 -1 -n Plate Offsets KY): 12:0- 1- 8.EdgeL [7:0- 1- 8.Edgej. [14:0- 1- 8.0 -1 -8]. [15:0- 1- 8.0 -1 -8] LOADING (psf) SPACING 2 -0-0 CSI DEFL in (roc) I /deft L/d PLATES GRIP TCLL 40.0 Plates Increase 1.00 TC 0.19 Vert(LL) n/a - n/a 999 MT20 220/195 TCDL 10.0 Lumber Increase 1.00 BC 0.20 Vert(TL) n/a - n/a 999 BCLL 0.0 Rep Stress Incr NO WB 0.49 Horz(TL) 0.01 8 n/a ' n/a BCDL 5.0 Code IRC2009/TP12007 (Matrix) Weight: 34 lb FT = 0 %F, 0 %E LUMBER BRACING TOP CHORD 4 X 2 DF No.18Btr G TOP CHORD Structural wood sheathing directly applied or 6 -0-0 oc purlins, except BOT CHORD 4 X 2 DF No.18Btr G end verticals. WEBS 4 X 2 DF Std G BOT CHORD Rigid ceiling directly applied or 6 -0 -0 oc bracing. OTHERS 4 X 2 DF Std G QUALIFIED BUILDING DESIGNER OR PROJECT ENGINEER SHALL REVIEW THE INPUT LENGTH AND PLACEMENT OF CONNECTION TO TRANSFER LATERAL FORCES TO THE REACTIONS All bearings 7 -1 -0. SUPPORTING STRUCTURE AS STATED IN THE DRAG LOAD NOTE BELOW. (Ib) - Max Horz 13 = -3(LC 3) Max Uplift All uplift 100 lb or less at joint(s) except 13=- 1341(LC 2), 12=- 1264(LC 3) Max Gray All reactions 250 lb or less at joint(s) 8, 11, 10, 9 except 13= 1470(LC 3), 12= 1536(LC 2) FORCES (Ib) - Max. Comp. /Max. Ten. - All forces 250 (Ib) or less except when shown. , TOP CHORD 1 -2 =- 289/284, 2- 3=- 1370/1328, 3-4 =- 1037/995, 4 -5 =- 704/661, 5-6 =- 370/328 BOT CHORD 12 -13 =- 1587/1629, 11 -12 =- 1315/1357, 10 -11 =- 982/1024, 9-10 =- 648/691, 8 -9 =- 315/357 WEBS 2 -12= 1522/1278, 6-8 =- 317/82, 2 -13= 2184/2135 NOTES 1) Unbalanced floor live loads have been considered for this design. 2) Gable requires continuous bottom chord bearing. 3) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). ' 4) Gable studs spaced at 1 -4 -0 oc. 5) A plate rating reduction of 20% has been applied for the green lumber members. 6) This truss is designed in accordance with the 2009 International Residential Code sedions R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 7) This truss has been designed for a total drag load of 250 plf. Lumber DOL= (1.33) Plate grip DOL= (1.33) Connect truss to resist drag loads along bottom chord from 0 -0-0 to 7 -1 -0 for 250.0 plf. 8) "Fix heels only" Member end fixity model was used in the analysis and design of this truss. 9) Recommend 2x6 strongbacks, on edge, spaced at 10-0 -0 oc and fastened to each truss with 3-10d (0.131" X 3 ") nails. Strongbacks 6I O PR OFF to be attached to walls at their outer ends or restrained by other means. \0 NG I NE � s s � /0 LOAD CASE(S) Standard ( Z ) , v" 7 'Y 1- ► v� : , ...0 �•� • R c • t ,�O, -9 • R • . - �� R S. �� • Digital Signature EXPIRATION DATE: 06/30/12 May 23,2011 I i ® WARNING • Verify design parameters and READ NOTES ON MIS AND INCLUDED MITER REFERENCE PAGE 1A11 -7473 res. 10'08 BEFORE USE, � s Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an Individual budding component. Applicability of design param enters and proper Incorporation of component Is responsibility of building designer - not truss designer. Bracing shown !s for lateral support of individual web members only. Additional temporary bracing to insure stability during construction c the responvbility or the MiTek' erector. Additional permanent bracing of the overall structure Is the responsibility of the balding designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI /TPII Quality Criteria, 058.89 and SCSI Building Component 7777 Greenback Lane, Suite 109 solely Information available from Truss Plate Institute. 281 N. Lee Street. Suite 312, Alexandria, VA 22314. Citrus Heights, CA, 95810 Job Truss Truss Type Qty Ply Pulte Homes - Building 17 Upper Floor R33134092 81108182 -A 2 -FT Floor Truss 9 1 Job Reference (optional) Pro Clackamas Truss, Clackamas,OR 97015 r 7.250 s Mar 232011 MiTek Industries, Inc. Mon May 2310:20:232011 Page 1 ID: La5k9S_VHDam6fl7gihmp NzHOhy- BD3c82BIvMMbu2KaEdz E 13SOo34wMAD1 gSp Wi2z Dd2c 0-1 -8 H I 2-8-0 I 004 I 1 -10-8 1 0-1r8 Scald = 1:30.1 2x4 II 2x4 II 3x4 = 4x10 = 2x4 II 5x8 = 2x4 II 4x10 = 3x4 = 1 2 3 4 5 8 4x8 = 7 8 9 r 131 . ill ��`I/ iii �` M ; . ,7 4 1 -' 14 13 12 11 ea 4x8 = 4x10 = 5x8 = 2o4 II 4x10 = 4x8 = 9-0-12 I 8-1 -8 8.)1 19.10 -8 1 18-1 -8 I 8-1 -8 0.1.8 0-9-12 8-3-0 0.9 -12 Plate Offsets (X.Y): 15:0- 3- 0,Edee1,16:0- 1- 8,Edgel .19:0-1- 8,Edgel,110:Edge,0 -1 -81, 112:0- 1- 8,0 -0 -01, 113:0- 1- 8,Edge1, 115:Edae,0 -1 -81, 116:0- 1- 8,0 -1 -8L 117:0- 1- 8,0 -1 -81 LOADING (psf) SPACING 2 -0-0 CSI DEFL in (lac) Ildefl Ud PLATES GRIP TCLL 40.0 Plates Increase 1.00 TC 0.68 Vert(LL) -0.28 12 -13 >766 360 MT20 220/195 TCDL 10.0 Lumber Increase 1.00 BC 0.75 Vert(TL) -0.49 12 -13 >435 240 BCLL 0.0 Rep Stress Incr YES WB 0.38 Horz(TL) 0.09 10 n/a n/a BCDL 5.0 Code IRC2009/TPI2007 (Matrix) Weight: 97 lb FT = 0 %F, 0 %E LUMBER BRACING TOP CHORD 4 X 2 DF No.1 &Btr G TOP CHORD Structural wood sheathing directly applied or 6 -0-0 oc puffins, BOT CHORD 4 X 2 DF No.1&Btr G except end verticals. WEBS 4 X 2 DF Std G BOT CHORD Rigid ceiling directly applied or 10-0 -0 oc bracing. REACTIONS (lb /size) 15=977/0-5-8 (min. 0 -1 -8), 10= 977/0 -5-8 (min. 0-1 -8) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 15 -16 =- 105/0, 1 -16 =- 104/0, 10.17 =- 106/0, 9 -17 =- 106/0, 1- 2 =6 /0, 2 -3 =- 3449/0, 3-0= 3490/0, 4 -5 =- 4174/0, 5-6 =- 4174/0, 6 -7 =- 3490/0, 7 -8 =- 3450/0, 8- 9 = -6/0 BOT CHORD 14- 15= 0/2149, 13- 14= 0/4171, 12- 13= 0/4174, 11- 12= 0/4174, 10-11= 0/2149 WEBS 5.13= 651/494, 6-12= 60/95, 2 -15 =- 2305/0, 2 -14= 0/1418, 3 -14 =- 260/0, 4 -14 =- 845/0, 4 -13 =- 565/754, 8 -10 =- 2305/0, 8 -11= 0/1418, 7 -11 =- 303/1, 6-11 =- 1015/0 NOTES 1) Unbalanced floor live loads have been considered for this design. 2) A plate rating reduction of 20% has been applied for the green lumber members. 3) This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 4) "Fix heels only" Member end fixity model was used in the analysis and design of this truss. 5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3 ") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. LOAD CASE(S) Standard ' G N p9 s /,, cc 1;;: "-E • l ik i - o • .4o ,z FM B : -- �� MFRS Digital Signature EXPIRATION DATE: 06/30/12 May 23,2011 4 I A WARNING Verify design parameters and READ NOTES ON TINS AND INCLUDED NITER' REFERENCE PAGE 1411 7473 rev. 10 BEFORE USE. ' Design valid for use only with MiTek connectors. This design Is based only upon parameters shown, and is for an individual building component. Applicability of design paramenters and proper Incorporation of component Is responsibility of building designer - not truss designer. Bracing shown B for lateral support of individual web members only. Additional temporary bracing to insure stability during construction Is the responsibdlity of the MiTek' erector. Additional permanent bracing of the overall structure is the responsibility of the budding designer. For general guidance regarding Wiwi/ -._— - - fabrication, quality conhol, storage, delivery, erection and bracing. consult ANSI /TPII Quality Criteria, 059 -89 and SCSI Building Component 7777 Greenback Lane, Suite 109 Safety Information available from Truss Plate Institute, 281 N. Lee Sheet. Suite 312, Alexandria, VA 22314. Citrus Heights. CA, 95810 Job Truss Truss Type . Qty Ply Pulte Homes - Building 17 Upper Floor • R33134093 61106182 -A 3 -FT Floor Truss 6 1 Jnh Raferenrw (optional) Pro -Build Clackamas Truss, Clackamas,OR 97015 -1129 7.250 s May 11 2011 MiTek Industries, Inc. Mon May 23 08:45:50 2011 Page 1 ID: La5k9S_ VHOam6 07gihmpNzHOhy- Qe4zESXHxS? ICsRS1GyGMU _ZNFucgS20AM5p5MzDeRF 0 - 1.8 H I ' -o I 9.ial I 14 -0 1 1 0-7 -8 I ao-y98 , a -1:307 244 II 456 = 254 II 344 = 410 = 244 II 2+4 II 244 II 448 = 224 II 4410 = 354 = 1 2 3 4 5 fi 7 8 9 10 A 7 -a v gal Iii 18 114 II DMA 15 14 13 12 O M 448 = 4,10 = 4s4 = 97• = 4510 = 455 = 9 - 10.0 I 8-40 MI -0a au1-8 18-4.0 8 -w siA0 -en I o-aa0. 8-0.0 Plate Offsets (X,Y): [4:0- 2- 9,Edge], [5:0.1- 8,Edgej, [6:0- 1- 8,0 -0-0], [7:0- 1- 15,Edge), [10:0- 1- 8,Edge], [11:Edge,0 -1 -8J, [13:0- 1- 8,Edge], [14:0- 1- 8,Edge], (16:Edge,0 -1 -8], [17:0 -1 -8 .0- 1- 8).[180- 1- 8.0 -1 -81 LOADING (psf) SPACING 2 -0-0 CSI DEFL in (lac) I /dell Ud PLATES GRIP TCLL 40.0 Plates Increase 1.00 TC 0.56 Vert(LL) -0.29 13-14 >742 360 MT20 220/195 TCDL 10.0 Lumber Increase 1.00 BC 0.76 Vert(TL) -0.51 13-14 >424 240 BCLL 0.0 Rep Stress !nor NO WB 0.37 Horz(TL) 0.09 11 n/a n/a BCDL 5.0 Code IRC2009/TPI2007 (Matrix) Weight: 99 lb FT = 0 %F, 0 %E LUMBER BRACING TOP CHORD 4 X 2 DF No.1 &Btr G TOP CHORD Structural wood sheathing directly applied or 6 -0-0 oc purlins, except BOT CHORD 4 X 2 DF No.1 &Btr G end verticals. WEBS 4 X 2 DF Std G BOT CHORD Rigid ceiling directly applied or 10-0 -0 oc bracing. . REACTIONS (lb /size) 16= 988/0 -5 -8 (min. 0 -1 -8), 11= 988/0 -5-8 (min. 0-1 -8) FORCES (Ib) - Max. Comp. /Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 2 -3 =- 3505/0, 34=- 3545/0, 4- 5=- 4274/0, 5-6= 4277/0, 6-7 =- 4275/0, 7 -8 =- 3547/0, 8 -9 =- 3506/0 BOT CHORD 15- 16= 0/2177, 14- 15= 0/4254, 13- 14= 0/4277, 12- 13= 0/4248, 11- 12= 0/2177 WEBS 5-14=-471/322, 6-13= 334/222, 2 -16= 2335/0, 2 -15= 0/1448, 3 -15 =- 262/0, 4 -15 =- 818/0, 4 -14 =- 367/558, 9-11=-2336/0, 9-12= 0/1449, 8-12=-263/0, 7-12=-774/0, 7 -13 =- 287/452 NOTES 1) Unbalanced floor live loads have been considered for this design. 2) A plate rating reduction of 20% has been applied for the green lumber members. 3) This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 4) "Fix heels only" Member end fixity model was used in the analysis and design of this truss. 5) Recommend 2x6 strongbacks, on edge, spaced at 10-0 -0 oc and fastened to each truss with 3-10d (0.131" X 3 ") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. LOAD CASE(S) Standard �<cQ` D PR oF FS Q� LNG[/ 9 S /or 16'40- v i l .0 / -o OREG • v FM:.,-- ,� Digital Signature EXPIRATION DATE: 06/30/12 May 23,2011 ® WARNING - Verify design parameters and READ NOTES ON MS AND INCLUDED NITER' REFERENCE PAGE 8111.7473 rev. 10.08 BEFORE IJS& Design valid for use only with Mifek connectors. This design Is based only upon parameters shown. and is for an individual building component. MI Applicability of design paramenters and proper incorporation of component Is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to Insure stability during construction is the responsibility of the MiTek' erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. Poi general guidance regarding ,a fabrication, quality control. storage. delivery, erection and bracing, consult ANSI /TPI1 Qualify Criteria, DSB.89 and 801 Building Component 7777 Greenback Lane, Suite 109 Safety Information available from Truss Plate Institute, 281 N. Lee Street, Suite 312, Alexandria, VA 22314. Citrus Heights. CA, 95610 Job Truss Truss Type Oty Ply Pulte Homes - Building 17 Upper Floor R33134094 B1106182 -A 4 -FT Floor Truss 28 1 ,lob Referenre (optional) Pro -Build Clackamas Truss, Cladcamas,OR 97015 -1129 7.250 s May 11 2011 MiTek Industries, Inc. Mon May 23 08:45:51 2011 Page 1 I D: La5k9S_ VHOam6f17gihmpNzHOhy- ureLRoXwim 79go0ebzTVviXmreF3PquA00gNdpzDeRE 0-1.e H I 2$.0 I I 1-4-0 i F 1-1-0 I o'p 6c le • 1.29 5 254 II 254 11 354 = 254 II 356 = 254 II 4110 = 354 = t • 2 4110 = 3 4 5 414 = 6 7 9 e 1 h �� I i l 4 1 Pk4 33 13 12 I I 10 4510 = 254 II 254 II 4510 = 456 = 456 = 1 15-11 -0 I 15-11-0 Plate Offsets (X,Y): [4:0- 1- 8,Edgej, [5:0- 1- 8,Edge], [8:0- 1- 8,Edge], [9:Edge,0 -1 -8], (10:0- 4- 0,Edgej, [11:0- 1- 8,0 -0-0], [12:0- 1- 8,Edgej, [13:0- 4- 12,Edge], [14:Edge,0.1 -8], (15:0 -1 -8 .0- 1- 8].[16:0 -1- 8,0.1 -8j LOADING (psf) SPACING 2-0-0 CSI DEFL in (loc) I /deft L/d PLATES GRIP TCLL 40.0 Plates Increase 1.00 TC 0.45 Vert(LL) -0.20 12 -13 >960 360 MT20 220/195 TCDL 10.0 Lumber Increase 1.00 BC 0.68 Vert(TL) -0.34 12 -13 >553 240 BCLL 0.0 Rep Stress Incr YES WB 0.65 Horz(TL) 0.06 9 n/a n/a BCDL 5.0 Code IRC2009/TP12007 (Matrix) Weight: 80 lb FT = 0 %F, 0 %E LUMBER BRACING TOP CHORD 4 X 2 DF No.18Btr G TOP CHORD Structural wood sheathing directly applied or 6 -0-0 oc purlins, except BOT CHORD 4 X 2 DF No.18Btr G end verticals. WEBS 4 X 2 DF Std G BOT CHORD Rigid ceiling directly applied or 10-0 -0 oc bracing. REACTIONS (lb /size) 14= 855/0 -3 -8 (min. 0 -1 -8), 9= 855/0 -3-8 (min. 0-1 -8) FORCES (Ib) - Max. Comp. /Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 2 -3 =- 2946/0, 3-4 =- 2947/0, 4 -5 =- 3199/0, 5-6= 2911/0, 6-7 =- 2915/0 BOT CHORD 13- 14= 0/1751, 12- 13= 0/3200, 11- 12= 0/3199, 10- 11= 0/3196, 9- 10= 0/1759 WEBS 2 -14 =- 1896/0. 2 -13= 0/1279, 3-13=-306/0, 4 -13 =- 566/82, 7 -9 =- 1904/0, 7 -10= 0/1236, 5-10 =- 636/54 NOTES 1) Unbalanced floor live loads have been considered for this design. 2) A plate rating reduction of 20% has been applied for the green lumber members. 3) This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 4) "Fix heels only" Member end fixity model was used in the analysis and design of this truss. 5) Recommend 2x6 strongbacks, on edge, spaced at 10-0 -0 oc and fastened to each truss with 3-10d (0.131" X 3 ") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. LOAD CASE(S) Standard �� 0 P R °Fen �� � NG]NE - 9, /g2 CC 168 a ., la A • ON V , r q� A_ M 4cj' M F R S. 1 Digital Signature EXPIRATION DATE: 06/30/12 May 23,2011 4 ■ A WARNING - Verify deign parameters and READ NOTES ON T717S AND INCLUDED MITER REFERENCE PAGE Mil 74 T3 rev, 10 BBPORB USB. IMIIMIA Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual budding component. MI Applicablily of design paramenters and propel incorporalion of component is responsibility of budding designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the MiTek erector. Additional permanent bracing of the overall structure is the responsibility of the budding designer. For general guidance regarding .. fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI1 qualify Criteria, DSB -B9 and BCSI Building Component 7777 Greenback Lane, Suite 109 Safety Information evadable from Truss Plate Institute, 281 N. Lee Street, Suite 312, Alexandria, VA 22314. Citrus Heights, CA, 95610 Job Truss Truss Type Qty Ply Pulte Homes - Building 17 Upper Floor 833134095 B1106182 -A 4 -FTA Floor Truss 1 1 .lob RAN (optional) Pro -Build Clackamas Truss, Cladkamas,OR 97015 -1129 7.250 s May 11 2011 MiTek Industries, Inc. Mon May 23 08:45:52 2011 Page 1 ID :La5k9S_VH0am6fl7gihmpNzHOhy -M1 Cke8YYT3FOSAbg8g _kRv4th2cd8JmJdgawAFzDeRD 0-1 -9 H I 7A.0 1 1.5-0 1 1 2 -5-13 1 1.1 -0 I I 1-4.0 I I 1.1.3 I 0.� w-r255 254 II 254 II 354 = 458 = 244 I I 254 I I 254 II 458 = 354 = 1 2 3 4 558 = 5 8 458 7 8 9 .- � lair• /��'/1 .� A 11 %\ X1`1 1114.1a. '� (1 gm \ 1% -. 11 wroi III In :r4 ,: 41. A, 4 0b. �A ∎A ∎Al∎ •• ■4 a 12 is y � 558 = m II 458 = 458 = 4510 = 458 = 1 7.11.13 1 9- - 13 1 9 - - I 15-11 -0 I 7.11 -13 (4R 0.8 -0 1 -1 Plate Offsets (X,Y): [2:0-3- 8,Edge], [4:0- 3- 8,Edge], [5:0- 1- 8,Edge], [6:0.1- 8,Edge], [8:0- 3- 8,Edge], [9:0- 1- 8,Edge], [10:Edge,0 -1 -8], [12:0- 1- 8,0 -0-0], [13:0- 1- 8,Edge], [14:0 -4 -0 .Edge]. [15:Edge.0 -1 -8]. (16:0-1-8.0-1-81,117:0-1-8.0-1-81 LOADING (psf) SPACING 2 -0-0 CSI DEFL in (loc) I /deft L/d PLATES GRIP TCLL 40.0 Plates Increase 1.00 TC 0.70 Vert(LL) -0.12 11 -12 >999 360 MT20 220/195 TCDL 10.0 Lumber Increase 1.00 BC 0.60 Vert(TL) -0.18 11 -12 >767 240 BCLL 0.0 Rep Stress Incr NO WB 0.55 Horz(TL) 0.03 10 n/a n/a BCDL 5.0 Code IRC2009/TPI2007 (Matrix) Weight: 87 lb FT = 0 %F, 0 %E LUMBER BRACING TOP CHORD 4 X 2 DF No.1 &Btr G TOP CHORD Structural wood sheathing directly applied or 6 -0-0 oc puffins, except BOT CHORD 4 X 2 DF No.1 &Btr G end verticals. WEBS 4 X 2 DF Std G BOT CHORD Rigid ceiling directly applied. REACTIONS (lb /size) 15= 57/4 -3-8 (min. 0 -1 -8), 10= 563/0 -3-8 (min. 0 -1 -8), 14= 1591/4 -3-8 (min. 0 -1 -8) Max Horz 15 =30(LC 9) QUALIFIED BUILDING DESIGNER OR PROJECT ENGINEER SHALL REVIEW THE INPUT Max Uptift15=- 1039(LC 7), 10= -44(LC 8), 14=- 137(LC 8) LENGTH AND PLACEMENT OF CONNECTION TO TRANSFER LATERAL FORCES TO THE Max Gravl5= 1108(LC 8), 10= 759(LC 7), 14= 2343(LC 2) SUPPORTING STRUCTURE AS STATED IN THE DRAG LOAD NOTE BELOW. FORCES (Ib) - Max. Comp. /Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 1 -2 =- 955/947, 2 -3 =- 2598/3418, 3 -4 =- 1907/2875, 4 -5= 3251/1834, 5 -6 =- 2829/1348, 6-7 =- 2956/1053, 7- 8=- 2512/499, 8-9=-918/911 BOT CHORD 14 -15 =- 3338/3710, 13- 14=- 1554/2322, 12 -13 =- 1050/2530, 11 -12 =- 1042/2531, 10- 11=- 194/1533 WEBS 5 -13a- 499/97, 6-12 =- 341/85, 2 -15 =- 2615/2856, 2 -14= 2261/1435, 3 -14 =- 711/0, 4 -14= 1913/148, 8 -10 =- 1658/212, 8 -11 =- 378/990, 7 -11 =- 399/28, 6-11 =- 457/980, 4 -13= 220/1147 NOTES 1) Unbalanced floor live loads have been considered for this design. 2) A plate rating reduction of 20% has been applied for the green lumber members. • 3) This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 4) This truss has been designed for a total drag load of 380 plf. Lumber DOL= (1.33) Plate grip DOL= (1.33) Connect truss to resist drag loads along bottom chord from 0-0-0 to 4 -3 -8 for 1409.2 plf. 5) "Fix heels only" Member end fixity model was used in the analysis and design of this truss. no PR OFF 6) Recommend 2x6 strongbacks, on edge, spaced at 10-0 -0 oc and fastened to each truss with 3-10d (0.131" X 3 ") nails. Strongbacks s to be attached to walls at their outer ends or restrained by other means. „ OA F6:9 s � Q 2 7) Hanger(s) or other connection device(s) shall be provided suffident to support concentrated load(s) 500 lb down at 4 -3-8 on top ( V chord. The design /selection of such connection device(s) is the responsibility of others.. Q a ' E ' 9 8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). / LOAD CASE(S) Standard �i 1) Floor: Lumber Increase =1.00, Plate Increase =1.00 �� d Uniform Loads (plf) a ��• • ' .. O Vert: 10- 15 = -10, 1 -9= -100 ,/ Concentrated Loads (Ib) '9y J= E it ,?� Vert: 3=-500(F) M R S ( \N Digital Signature EXPIRATION DATE: 06/30/12 May 23,2011 ■ • A WARNI NG - Verify design parameters and READ NOTES ON TINS AND INCLUDED KITES REFERENCE PAGE 557174 73 10•'08 BEFORE USE. �.s Design valid for use only with Mitek connectors. This design h based only upon parameters shown, and k for an individual budding component. Applicability of design param enters and proper incorporation of component Is responsibiity of budding designer - not truss designer. Bracing shown h for lateral support of Individual web members only. Additional temporary bracing to insure stability during construction is the responsitdlity of the MiTek" erector. Additional permanent bracing of the overall structure Is the responsibility of the budding designer. For general guidance regarding fabrication, quality control. storage, delivery. erection and bracing, consult ANSI/IPI1 Quality Criteria, 009.89 and SCSI Building Component 7777 Greenback Lane, Suite 109 Safety Information evadable from Truss Plate Institute, 281 N. Lee Street. Suite 312, Alexandria, VA 22314. Citrus Heights, CA, 95610 Job Truss Truss Type Qty Ply Pulte Homes - Building 17 Upper Floor R33134096 81106182 -A 5 -FT Floor Truss 2 1 ,Mb Reference (ontional) Pro -Build Clackamas Truss, Clackamas,OR 97015 -1129 7.250 s May 11 2011 MiTek Industries, Inc. Mon May 23 08:45:53 2011 Page 1 ID: La5k9S_ VHOam6f17gihmpNzHOhy -qDm6sUZAENNt3KA0i0VZ 7c ?iSrvtoUTsJJTihzDeRC 0.1 -8 H I 743 -0 1 143-0 I I 1-0-0 1 1 1.4 -0 1 1 1.1.0 I 0 Sc 41'285 2.4 II 2x4 11 3x4 = 4110 = 254 II 4,4 = 20 II 2.4 II 4.10 = 3,4 = 1 2 3 4 5 6 5x8 = I 8 9 Ali \ •' f •� Y %� Ii till 1 113 I►_' ► i 1;' 14 13 12 11 ; 14 44 = 424 = 244 11 5.10 = 4x8 = 4.6 = I 0 I n -A-n &0 19 I 1811 1 8.n-f1 0 -7 -11 Plate Offsets (X,Y): [4:0- 1- 8,Edge], [5:0- 1- 8,Edge], [6:0- 1- 8,Edge], [9:0- 1- 8,Edge], (10:Edge,0 -1 -8], [12:0- 1- 8,0 -0-0], (13:0- 1- 8,Edge], (15:Edge,0-1-81, [16:0- 1- 8,0 -1 -8], [17:0 -1 -8 .0 -1 -8] LOADING (psf) SPACING 2 -0-0 CSI DEFL in (lac) I /deft Ud PLATES GRIP TCLL 40.0 Plates Increase 1.00 TC 0.87 Vert(LL) -0.27 13 -14 >704 360 MT20 220/195 TCDL 10.0 Lumber Increase 1.00 BC 0.98 Vert(TL) -0.48 13-14 >394 240 BCLL 0.0 Rep Stress Incr NO WB 0.39 Horz(TL) 0.08 10 n/a n/a BCDL 5.0 Code IRC2009/TP12007 (Matrix) Weight: 87 lb FT = 0 %F, 0 %E LUMBER BRACING TOP CHORD 4 X 2 DF No.18Btr G TOP CHORD Structural wood sheathing directly applied or 5 -6-0 oc puffins, except BOT CHORD 4 X 2 OF No.18BIr G end verticals. WEBS 4 X 2 DF Std G BOT CHORD Rigid ceiling directly applied or 10-0 -0 oc bracing. REACTIONS (lb /size) 15=1222/0-3-8 (min. 0 -1 -8), 10= 989/0 -3-8 (min. 0-1 -8) FORCES (Ib) - Max. Comp. /Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 2- 3=- 3967/0, 3-4=- 4034/0, 4- 5=- 4105/0, 5-6= 4099/0, 6-7 =- 3490/0, 7 -8 =- 3479/0 BOT CHORD 14- 15= 0/2707, 13- 14= 0/4325, 12 -13= 0/4099, 11- 12= 0/4094, 10- 11= 0/2184 WEBS 5-13= 127/280, 2 -15= 2915/0, 2- 14= 0/1527, 3-14 =- 691/0.4 -14 =- 505/0, 8- 10=- 2344/0, 8- 11= 0/1409. 6-11 =- 1019/0, 4 -13= 548/239 NOTES 1) Unbalanced floor live loads have been considered for this design. 2) A plate rating reduction of 20% has been applied for the green lumber members. 3) This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 4) "Fix heels only" Member end fixity model was used in the analysis and design of this truss. 5) Recommend 2x6 strongbacks, on edge, spaced at 10-0 -0 oc and fastened to each truss with 3-10d (0.131 "X 3 ") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. 6) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 500 lb down at 4 -3-8 on top chord. The design /selection of such connection device(s) is the responsibility of others. 7) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). LOAD CASE(S) Standard 1) Uniform Lumber L sp�f) � I( ase =1.00, Plate Increase =1.00 ��EQ PR -, S Vert: 10- 15 = -10, 1- 9 = -100 C∎ � �N /0 2 Concentrated Loads (Ib) Vert: 3=-500(F) CC 16: � 9 -- 9 8 • •RE v. C� ME s -��� Digital Signature EXPIRATION DATE: 06/30/12 May 23,2011 4 1 Q WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED NITER REFERENCE PAGE MIT 7473 rca. 10 '08 BEFORE USE, �'� Design valid for use only with Meek connectors. Tha design i s based only upon parameters shown, and is for an individual budding component. 111 I Applicability of design paramenters and proper Incorporation of component Is responsibility of budding designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stobdity during construction is the responsbdlity of the MiTek• erector. Addilbnal permanent bracing of the overall structure Is the responsibility of the budding designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI /TPII Quality Criteria. DSB -89 and SCSI Building Component 7777 Greenback Lane, Suite 109 Safety Information evadable from Truss Plate Institute, 281 N. Lee Street, Suite 312, Alexandria, VA 22314. Citrus Heights, CA, 95810 Job Truss Truss Type Qty Ply Pulte Homes - Building 17 Upper Floor R33134097 81106182 -A 5 -FTGE Floor Truss 3 1 renal (optional) Pro -Build Clackamas Truss, Cladcamas,OR 97015 -1129 7.250 s May 11 2011 MiTek Industries, Inc. Mon May 23 08:45:54 2011 Page 1 ID:La5k9S VH0am6fl7gihmpNzHohy- IQKU3pao? hVjhTIDG5OCWK9KwsN3cCxc5z31E7zDeRB alp 6-Itf Scala • 1:26,5 3•4 = 5•6 = 5.6 = 354 = 1 2 3 4 5 6 7 6 9 10 11 12 13 1.111.0 i I .........W74 MN ..............., 26 25 24 23 22 21 23 19 If 17 16 15 14 586 = 455 I I 455 II 5s6 = I 15 -11 -0 I 15.11 -n Plate Offsets (X.Y): (2'0- 1- 8.Edge]. [13:0- 1- 8.Edgej. (14:Edge.0 -1 -8). (27:0- 1- 8.0 -1 -8]. [28:0- 1- 8.0 -1 -81 LOADING (psi) - SPACING 2 -0-0 CSI DEFL in (roc) I /deft Lid PLATES GRIP TCLL 40.0 Plates Increase 1.00 TC• 0.20 Vert(LL) n/a - n/a 999 MT20 220/195 TCDL 10.0 Lumber Increase 1.00 BC 0.21 Vert(TL) n/a - n/a 999 BCLL 0.0 Rep Stress Incr YES WB 0.63 Horz(TL) 0.01 20 nla n/a • BCDL 5.0 Code IRC2009/TPI2007 (Matrix) Weight: 69 lb FT = 0 %F, 0 %E LUMBER BRACING TOP CHORD 4 X 2 DF No.18Btr G TOP CHORD Structural wood sheathing directly applied or 6 -0.0 oc purlins, except BOT CHORD 4 X 2 DF No.18Btr G end verticals. WEBS 4 X 2_ DF Std G BOT CHORD Rigid ceiling directly applied or 6 -0-0 oc bracing. OTHERS 4 X 2 DF Std G QUALIFIED BUILDING DESIGNER OR PROJECT ENGINEER SHALL REVIEW THE INPUT REACTIONS All bearings 15 -11 -0. LENGTH AND PLACEMENT OF CONNECTION TO TRANSFER LATERAL FORCES TO THE (Ib) - Max Horz 26 =31(LC 2) SUPPORTING STRUCTURE AS STATED IN THE DRAG LOAD NOTE BELOW. Max Uplift All uplift 100 lb or less at joint(s) except 26=- 1622(LC 2), 14=- 1734(LC 3), 25=- 1522(LC 3), 15=- 1636(LC 2) , Max Gray All reactions 250 lb or less at joint(s) 24, 23, 22, 21, 20, 19, 18, 17, 16 except 26= 1731(LC 3), 14= 1836(LC 2), 25= 1814(LC 2), 15= 1916(LC 3) FORCES (Ib) - Max. Comp. /Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 1 -2 =- 289/284, 2 -3 =- 1674/1654, 3-4 =- 1340/1321, 4 -5= 1007/988, 5-6 =- 674/654, 6-7 =- 340/321, 7- 8=- 346/326, 8 -9 =- 679/660, 9 -10 =- 1012/993, 10 -11 =- 1346/1326, , 11-12=-1679/1660, 12-13=-268/264 BOT CHORD 25 -26 =- 1942/1961, 24 -25 =- 1670/1689, 23 -24 =- 1337/1356, 22 -23 =- 1003/1023, 21 -22 =- 670/689, 20- 21=- 337/356, 19 -20 =- 311/330, 18 -19 =- 644/663, 17 -18 =- 977/997, 16-17=-1311/1330, 15 -16 =- 1644/1663, 14 -15 =- 1897/1917 WEBS 2 -25= 1800/1536, 12- 15=- 1902/1650, 2- 26=- 2585/2566, 12 -14 =- 2648/2628 NOTES . 1) Unbalanced floor live loads have been considered for this design. 2) All plates are 2x4 MT20 unless otherwise indicated. 3) Gable requires continuous bottom chord bearing. 4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). 5) Gable studs spaced at 1 -4 -0 oc. 6 s O PR OFF 6) A plate rating reduction of 20% has been applied for the green lumber members. <G s s 7) This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and referenced �N GI F9 C? /0 2 standard ANSI/TPI 1. ( 8) This truss has been designed for a total drag load of 250 plf. Lumber DOL= (1.33) Plate grip DOL= (1.33) Connect truss to resist drag C �. • !'= r 9 r loads along bottom chord from 0 -0-0 to 15-11-0 for 250.0 plf. 9) "Fix heels only" Member end fixity model was used in the analysis and design of this truss. 10) Recommend 2x6 strongbacks, on edge, spaced at 10-0 -0 oc and fastened to each truss with.3 -10d (0.131" X 3 ") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. �% ' ' OR - " LOAD CASES) Standard 'O �F • E R S. 1\ Digital Signature EXPIRATION DATE: 06/30/12 j May 23,2011 4 • ® WARNING • Verify design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE Mrl•7473 rest. 10.+08 BEFORE USG � Design valid for use only with MiTek connectors. This design Is based only upon parameters shown. and is for an individual buiding component. Applicability of design paramenters and proper incorporation of component is responsibility of budding designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stabdily during construction Is the responsibility of the - MiTek' erector. Additional permanent bracing of the overall structure is the responsibility of the budding designer. For general guidance regarding fabrication, quality control. storage, delivery, erection and bracing, consult ANSI /TPt1 Quality Crlleda, DSB -89 and SCSI Building Component 7777 Greenback Lane, Suite 109 Safety Information available from Truss Plate Institute. 281 N. Lee Street. Suite 312. Alexandria, VA 22314. Citrus Heights, CA, 95610 Job Truss Truss Type Qty Ply Pulte Homes - Building 17 Upper Floor R33134098 B1106182 -A 6 -FT Floor Truss 2 1 .lob Refprpnra (nptinnatl Pro -Build Clackamas Truss, Clackamas,OR 97015 -1129 7.250 s May 11 2011 MiTek Industries, Inc. Mon May 23 08:45:55 2011 Page 1 ID: La5k9S_ VH0am6f17gihmpNzHOhy- mctsH9aQm_daJdKPgpX R3YTaGeQ LjylJdoamazDeRA 243-0 i 1 -3-8 I I 1 -4-0 I I 1 -1 -0 01.4 Seale • 1.201 244 II 244 II 1 3.4 11 2 m8 = 3 4 204 = 5 244 II 8 448 = 7 3.4 = ' itw wi x y w � .1111111111� . mires MRI.M1 • 3.8 = 12 11 10 9 484 = 244 11 488 = Iris = 4-7.0 I 4-1 RR I 5 '5t I 17 -1 -0 1 4 -2 -n M1R-n n-a-11 8 -7 -n Plate Offsets (X,Y): [1:Edge,0 -1 -8], [2:0- 3- 8,Edge], [3:0- 1- 8,Edge], [4:0- 1- 8,Edge], [6:0.2- 2,Edge], [7:0- 1- 8,Edge], [8:Edge,0 -1 -8], (10:0- 1- 8,Edge], [11:0- 1- 8,Edge], [12:Edge .0.1 -8] [13:0- 1- 8.0 -1 -8] LOADING (psf) SPACING 2 -0-0 CSI DEFL in (roc) I /deft L/d PLATES GRIP TCLL 40.0 Plates Increase 1.00 TC 0.34 Vert(LL) - 0.09 9-10 >999 360 MT20 220/195 TCDL 10.0 Lumber Increase 1.00 BC 0.53 Vert(TL) -0.17 8 -9 >815 240 BCLL 0.0 Rep Stress Incr YES WB 0.33 Horz(TL) 0.03 8 n/a n/a BCDL 5.0 Code IRC2009/TP12007 (Matrix) Weight: 60 lb FT = 0 %F, 0 %E LUMBER BRACING TOP CHORD 4 X 2 DF No.18Btr G TOP CHORD Structural wood sheathing directly applied or 6 -0 -0 oc purlins, except BOT CHORD 4 X 2 DF No.18Btr G end verticals. WEBS 4 X 2 DF Std G BOT CHORD Rigid ceiling directly applied or 10 -0-0 oc bracing. REACTIONS (Ib /size) 8= 645/0 -3-8 (min. 0 -1 -8), 12= 651/Mechanical FORCES (Ib) - Max. Comp. /Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 2- 3=- 1728/0, 3- 4=- 1736/0, 4- 5=- 1877/0, 5-6=-1882/0 BOT CHORD 11- 12= 0/1269, 10- 11= 0/1736, 9- 10= 0/1740, 8 -9= 0/1320 WEBS 2 -12= 1376/0, 2 -11= 0/641, 6-8 =- 1414/0, 6-9= 0/606, 5-9 =- 271/0, 4 -9 =- 147/329 NOTES 1) Unbalanced floor live loads have been considered for this design. 2) A plate rating reduction of 20% has been applied for the green lumber members. 3) Refer to girder(s) for truss to truss connections. 4) This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 5) "Fix heels only" Member end fixity model was used in the analysis and design of this truss. 6) Recommend 2x6 strongbacks, on edge, spaced at 10 -0-0 oc and fastened to each truss with 3-10d (0.131" X 3 ") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. 7) CAUTION, Do not erect truss backwards. LOAD CASE(S) Standard ‘1,0 PR OFFS �� E NGINE ,9 L? 2 1.: • •••T �r P6 ,, OR "-Oh No) ,‘ Cc ' 2 \ 4 Rs.04 Digital Signature EXPIRATION DATE: 06/30/12 May 23,2011 • A WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE 644 7473 rco. 10 '08 BEFORE USE. Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and Is for on individual building component. 141 I Applicability of design param enters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stablity during construction is the responsibility of the MiTek' erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding ' 1•01.14 ec.roe. fabrication. quality control, storage, delivery, erection and bracing, consult ANSI /TPI1 Quality Criteria. DSB -89 and BC51 Building Component 7777 Greenback Lane, Suite 109 Safely Information available from Truss Plate Institute. 281 N. Lee Street. Suite 312. Alexandria. VA 22314. Citrus Heights, CA, 95610 • Job Truss Truss Type Qty Ply Pulte Homes - Building 17 Upper Floor R33134099 81106182 -A 7 -FT Floor Truss 1 1 .lob Reference (nptional) Pro -Build Clackamas Truss, Cladkamas,OR 97015 -1129 7.250 s May 11 2011 MiTek Industries, Inc. Mon May 23 08:45:55 2011 Page 1 ID:La5k9S VH0am6fl7gihmpNzHOhy-rnctsH9aQm_ daJdKPgpXR3YiWZGiuLnKlJdoamazDeRA 1 -7 -10 I I 1-4-0 1 488 = Scar • 1:122 1 384 I I 2 3 489 = 4 284 I I • 9 384 = e ♦♦ e 31411 384 II A. 8 7 B �' 488 = 489 = 5-7.4 5.7-4 Plate Offsets (X.Y): [1:Edge.0 -1 -8]. [2:0- 3- 0.Edge].13:0- 3- 0.Edgej. [4:0- 1- 8.Edge]. [5:Edge.0 -1 -8]. [8:Edge.0 -1 -8]. [9:0- 1- 8.0 -1 -8] LOADING (psf) SPACING 2 -0-0 CSI DEFL in (loc) 1 /deft L/d PLATES GRIP TCLL 40.0 Plates Increase 1.00 TC 0.14 Vert(LL) -0.02 7 >999 360 MT20 220/195 TCDL 10.0 Lumber Increase 1.00 BC 0.30 Vert(TL) -0.03 7 >999 240 BCLL 0.0 Rep Stress Incr NO WB 0.11 Horz(TL) 0.01 5 n/a n/a BCDL 5.0 Code IRC2009/TPI2007 (Matrix) Weight: 35 lb FT = 0 %F, 0 %E LUMBER BRACING TOP CHORD 4 X 2 DF No.1 &Btr G TOP CHORD Structural wood sheathing directly applied or 5 -7-4 oc purlins, except BOT CHORD 4 X 2 OF No.1&Btr G end verticals. WEBS 4 X 2 OF Std G BOT CHORD Rigid ceiling directly applied or 10-0 -0 oc bracing. REACTIONS (lb /size) 8= 845/Mechanical, 5=839/0-3-8 (min. 0-1 -8) Max Grav8= 902(LC 2), 5= 896(LC 3) FORCES (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 2 -3 =- 1356/0 BOT CHORD 7 -8= 0/1358, 6-7= 0/1356, 5-6= 0/1357 WEBS 2- 8=- 1578/0, 3-5 =- 1572/0 NOTES 1) Unbalanced floor live loads have been considered for this design. 2) A plate rating reduction of 20% has been applied for the green lumber members. 3) Refer to girder(s) for truss to truss connections. 4) This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 5) "Fix heels only" Member end fixity model was used in the analysis and design of this truss. 6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3 ") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. 7) CAUTION, Do not erect truss backwards. 8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 631 lb down at 1 -10-4, and 631 lb down at 3 -10-4 on top chord. The design /selection of such connection device(s) is the responsibility of others. 9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). LOAD 1)) Fl oC Lumber ncrease =1.00, Plate Increase =1.00 <<��D %N QF Uniform Loads (plf) '43 � ':.' Vert: 5- 8 = -10, 1- 4 = -100 Concentrated Loads (Ib) Q 168 % e Via Vert: 2=- 551(F) 3=- 551(F) ir � . , • ON 4i - T 'KBE' , O � MF S . � Digital Signature EXPIRATION DATE: 06/30/12 May 23,2011 ® WARNING - Verify design parameters and RAW NOTES ON THIS AND INCLUDED IBTEK REFERENCE PAGB ByI -T473 roe. 10 -'08 BEFORE USE. Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design param enters and proper incorporation of component Is responsibility of building designer - not truss designer. Bracing shown is for lateral support of Individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the MiTek erector. Additional permanent bracing of the overall structure is the responsibility of the but ding designer. For general guidance regarding .o fabrication, quality control, storage. delivery, erection and bracing, consult ANSI/TPI1 Quality Crlterfa, 008.89 and BCS1 Building Component 7777 Greenback Lane, Suite 109 Safety Information available from Truss Plate Institute. 281 N. Lee Sheet, Suite 312. Alexandria. VA 22314, Citrus Heights, CA, 95810 4 Job Truss Truss Type Qty Ply Pulte Homes - Building 17 Upper Floor R33134100 81106182 -A 8 -FT Floor Truss 1 1 Job_ RefpO'nrs (optional) Pro -Build Clackamas Truss, Cladcamas,OR 97015 -1129 7.250 s May 11 2011 MiTek Industries, Inc. Mon May 23 08:45:56 2011 Page 1 ID:La5k9S VH0am6fl7qihmpNzHOhy- FoREUVb2XIIRwnvbNW2gdEaxfxf48hvYHYBJOzDeR9 0.1 -e H I 2-6-0 1 1.1 -0 1 1 2-4-2 I 1-5-s I I 1 -0.0 I I 1.146 1 Wale • 1:269 2r4 II 2r4 II 3r4 = 3r4 II use = 2■4 II 2s4 II 4510 = 3,14 = 1 24x12= 3 4 5 8 5:8 = 7 e 9 �- -A I 1I 1I 11 I %� 1 im 14 13 12 11 M. 8 :12 = 54 = 34 II x:12 = 518 = 5■e= I 7 -11 -10 1 e -7 -10 1 8.3 - 10 1 15-11-0 I 7 -11 -10 It-A 0-140 8 -7-e Plate Offsets (X,Y): [4:0- 3- 4,Edge], [5:0- 1- 8,Edge], [6:0- 1- 8,Edge], [9:0- 1- 8,Edge], [10:Edge,0 -3-0], [12:0- 3- 0,0 -0-0], (13:0- 1- 8,Edge], [14:0- 4- 4,Edge], [15:Edge,0 -3 -0], [16:0-1-8 .0- 1- 8].[17:0- 1- 8.0 -1 -8] LOADING (psf) SPACING 2 -0-0 CSI DEFL in (roc) 1 /deft Lid PLATES GRIP TCLL 40.0 Plates Increase 1.00 TC 0.62 Vert(LL) -0.24 13-14 >800 360 MT20 220/195 TCDL 10.0 Lumber Increase 1.00 BC 0.72 Vert(TL) -0.42 13-14 >453 240 BCLL 0.0 Rep Stress Ina NO WB 0.49 Horz(TL) 0.05 10 n/a n/a BCDL 5.0 Code IRC2009/TP12007 (Matrix) Weight: 113 lb FT = 0 %F, 0 %E LUMBER BRACING TOP CHORD 4 X 2 DF No.1 &Btr G TOP CHORD Structural wood sheathing directly applied or 5 -10-4 oc purlins, except BOT CHORD 4 X 2 DF No.1 &Btr G end verticals. WEBS 4 X 2 DF Std G BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (Ib /size) 15= 1461/0 -3-8 (min. 0 -1 -8), 10= 1052/0 -3 -8 (min. 0-1 -8) FORCES (Ib) - Max. Comp. /Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 2- 3=- 500310, 3- 4=- 4918/0, 4-5=-4821/0,.5-6=-4821/0, 6-7 =- 3976/0, 7 -8 =- 3953/0 BOT CHORD 14- 15= 0/3439, 13- 14= 0/5124, 12- 13= 0/4821, 11- 12= 0/4809, 10- 11= 0/2464 WEBS 6-12= 0/509. 2 -15 =- 3681/0, 2 -14= 0/1910. 3-14 =- 1019/0, 8 -10 =- 2623/0, 8 -11= 0/1608, 6-11 =- 1325/0, 4 -13= -650/0 NOTES 1) Unbalanced floor live loads have been considered for this design. 2) A plate rating reduction of 20% has been applied for the green lumber members. 3) This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 4) "Fix heels only Member end fixity model was used in the analysis and design of this truss. 5) Recommend 2x6 slrongbacks, on edge, spaced at 10-0 -0 oc and fastened to each truss with 3-10d (0.131" X 3 ") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. 6) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 882 lb down at 3 -11 -12 on top chord. The design /selection of such connection device(s) is the responsibility of others. 7) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). LOAD CASE(S) Standard 1) Floor: Lumber Increase =1.00, Plate Increase =1.00 Uniform Loads (pIQ Q, EO PR OF. Vert: 10.15 = -10, 1- 9 = -100 <C s s Concentrated Loads (Ib) \ LNG F i g X 0 2 Vert: 3=- 802(B) �� • , . 9 r . Q � CI ' AO T ... 4. 9T ° � g, • 2 M FR s .VN Digital Signature 1 EXPIRATION DATE: 06/30/12 May 23,2011 4 4 ■ WARNING Verify design parameters and READ NOTES ON MS AND INCLUDED MITEK REFERENCE PAGE M7! 7473 rev. 10 D8 BEFORE USE �.r Design valid for use only with MiTek ek connectors. inn design based only upon parameters shown. and is for an individual budding component. Applicabdily of design paramenters and proper incorporation of component is responsibiily of budding designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stabiity during construction is the responsbdlity of the MiTek' erector. Additional permanent bracing of the overall structure Is the responsibility of the budding designer. For general guidance regarding .e. - -- fabrication. quality control- storage, delivery, erection and bracing, consult ANSI/TPI1 quality Crlterla, D5B -B9 and BCSI Building Component 7777 Greenback Lane, Suite 109 Safety Information available from Truss Plate Institute, 291 N. Lee Street. Suite 312, Alexandria- VA 22314. Citrus Heights, CA, 95610 Symbols Numbering System ® General Safety Notes PLATE LOCATION AND ORIENTATION Failure to Follow Could Cause Property 3/4" Center plate on joint unless x, y u Damage or Personal Injury are indicated. 6 -4 -8 dimensions shown in ft- in- sixteenths g J ry WM Dimensions are in ft -in- sixteenths. I I (Drawings not to scale) h I Apply fully plates to embed both sides teeth of truss 1. Additional stability bracing for truss system, e.g. diagonal or X- bracing, is always required. See Bcsl. 2. Truss bracing must be designed by an engineer. For 0- 1 2 3 wide truss spacing, individual lateral braces themselves 1 TOP CHORDS may require bracing, or alternative T, I, or Eliminator AMIENE _ bracing should be considered. . 111M III - 3111EIMMIIME211111441 4 3. Never exceed the design loading shown and never stack materials on inadequately braced trusses. !(2) p O 4. Provide copies of this truss design to the building or 4 x 2 orientation, locate designer, erection supervisor, property owner and plates 0 U all other interested parties. edge of truss. O C7-8 C6-7 C5-6 O 5. Cut members to bear tightly against each other. BOTTOM CHORDS 6. Place plates on each face of truss at each This symbol indicates the 8 7 6 5 joint and embed fully. Knots and wane at joint required direction of slots in locations are regulated by ANSI/TPI 1. connector plates. 7. Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1. Plate location details available in MiTek 20/20 software or upon request. 8. Unless otherwise noted, moisture content of lumber JOINTS ARE GENERALLY NUMBERED /LETTERED CLOCKWISE shall not exceed 19% at time of fabrication. AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO PLATE SIZE THE LEFT 9 Unless expressly noted, this design is not applicable for use with fine retardant, preservative treated, or green lumber. The first dimension is the plate CHORDS AND WEBS ARE IDENTIFIED BY END JOINT 10. Camber is a non- structural consideration and is the 4 x 4 NUMBERS /LETTERS. width measured perpendicular responsibility of truss fabricator. General practice is to to slots. Second dimension is camber for dead load deflection. the length parallel to slots. 11. Plate type, size, orientation and location dimensions PRODUCT CODE APPROVALS indicated are minimum plating requirements. LATERAL BRACING LOCATION ICC -ES Reports: 12. Lumber used shall be of the species and size, and in all respects, equal to or better than that ir Indicated by symbol shown and /or ESR -131 1, ESR -1352, ER -5243, 9604B, specified. by text in the bracing section of the 95 -43, 96 -31, 9667A 13. Top chords must be sheathed or purlins provided at output. Use T, I or Eliminator bracing NER -487, NER -561 spacing indicated on design. if indicated. 95110, 84 -32, 96-67, ER 3907, 9432A 14. Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted. BEARING 15. Connections not shown are the responsibility of others. Indicates location where bearings 16. Do not cut or alter truss member or plate without prior (supports) occur. Icons vary but © 2006 MiTekO All Rights Reserved approval of an engineer. reaction section indicates joint number where bearings occur. ■■ O 17. Install and load vertically unless indicated otherwise. ® 18. Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use. Industry Standards: ANSI /TPII : National Design Specification for Metal 19. Review all portions of this design (front, back, words Plate Connected Wood Truss Construction. • O Q and pictures) before use. Reviewing pictures alone DSB -89: Design Standard for Bracing. FVI I T e is not sufficient. s BCSI: Building Component Safety Information, 2 0 . Design assumes manufacture in accordance with ' Guide to Good Practice for Handling, POWER TO PERFORM.'" ANSI/TPI 1 Quality Criteria. Installing & Bracing of Metal Plate Connected Wood Trusses. MiTek Engineering Reference Sheet: MII -7473 rev. 10 -'08 i Li 1 o 1 1 1 Q 0 w a C' ■3 - 41 -00 -00 y N 3 -00 -00) 36 -00-00 y 0 0 - NM -- ---- --- ---- ------ $HE}1R COIKb 250'----------- - - - --- Al Fr IIi �_ N 0 D A2 o - 1 __ c o - m A2 -_ o MO 0 CO Z m,7 A2 m A2 0 'i i - J3 � " � i i i m /7 411 111d .. - -COMM- lei minst ✓ 9° J4 N A3 ; _a O N 7 J4 o I , 4 A3 co ° J4 2 --- A3 I 1 10 10 _ z Ai O 81 SHEAR LOAD 250 ▪ , B2 m ° I i L U 4,9_ .1 B3 l II N.0 B3 1 o m P m _7. p B3 O x c _ N D o P o __ _ I c0 2 B3 O . .g 4 m I co cee m N -1 B3 i B3 B4 - --- – 1 X01 10 ' ice_ -_ _— .__���__ �_ �= -� - - ' — �_ � = �- ---- - - _ °- -- 1 -1 I V 1 i SHEAR LOAD 250 A' ■�1 C (F O ,F I illi , C2 j I C2 + c I 5-00 I0':w C2 H b I 0 rt o Q C2 -0 O_ O F 0 ° C2 iii C2 B SHEAR LOAD 250 t I r , I B2 -• 0 + "If m � LUS 4 o ; 1 � B3 - ,- B3 v. rn, - s 0 •63 ; o W -• D' N N 7 I co f -. ( c 0 Q � O z B3 4 0':. _ o B3 cn 83 SHEAR LOAD 250 f 7' 41 -00 -00 I 5 ') b o I 42 -00 -00 1 : a = gi t • ,,:. THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. Ti.___ ____ __._ Lp 158 77 SE 98th Ave These trusses are designed as individual building com onents to be inco orated into the bu desi g - � P rP ildin g B^ TCLL (PSF): 25 °a Clackamas OR 97015 at the specification of the building designer. See the individual design sheets for each truss design identified TCDL (PSF): 7 Phone: 1- 503 -557 -8404 on the placement drawing. The building designer is BCLL (PSF): 0 y BUILDER: DATE: SCALE: responsible for temporary and permanent bracing of the BCDL S 10 S ummer Creek Phase II roof and floor system and for the overall structure. The (PSF): 05/20/2011 NTS design of the truss support structure including headers, TL (PSF): 42 beams, walls, and columns is the responsibility of the PROJECT: DRAWN II: building designer. For general guidance regarding Wind Speed: 105 Building 17 Roof BY: Vilas G. B 1106182 -B bracing, consult "Bracing of wood trusses" available LL DEFL: 1J240 from the Truss Plate Institute, 583 D'Onifrio Drive; ADDRESS: Ti gard Madison WI 53179 _■ Mil MiTek® POWER TO PERFORM,'" MiTek Industries, Inc. 7777 Greenback Lane Suite 109 Citrus Heights, CA, 95610 Telephone 916/676 -1900 Re: B1 106182 -B Fax 916/676 - 1909 Pulte Homes - Building 17 Roof The truss drawing(s) referenced below have been prepared by MiTek Industries, Inc. under my direct supervision based on the parameters provided by ProBuild West (Clackamas ,OR). Pages or sheets covered by this seal: R33134257 thru R33134282 My license renewal date for the state of Oregon is June 30, 2012. Important Notice: If visually graded lumber is used for the trusses covered by these designs, see "SPIB Important Notice, Dated July 28, 2010" (reprinted at www.mii.com) before use. MiTek does not warrant third -party lumber design values. PEO PR oF CI LNG /. Fq 9 it 1.,: -E • ORE 1 41: R 2 6<Ci M FR S.T\ Digital Signature EXPIRATION DATE: 06/30/12 May 23,2011 Tingey, Palmer The seal on these drawings indicate acceptance of professional engineering responsibility solely for the truss components shown. The suitability and use of this component for any particular building is the responsibility of the building designer, per ANSI /TPI 1. J Job Truss Truss Type Qty Ply Pulte Homes - Building 17 Roof R33134257 B1106182 -B Al Special Truss 1 1 Job Reference (optional) Pro -Build Clackamas Truss, Clarkamas,OR 97015 -1129 7.250 s May 11 2011 MiTek Industries, Inc. Mon May 23 09:02:07 2011 Page 1 ID:pM0FdeJHd3WcFjeuzw57 EXzHOW E- JccJHW L7se4gw ?dDmyzNS WyXj4 P54M RggsFOuEz DeC_ I 17.0.0 I 34-0-0 150.0 17.0.0 17.0.0 1.0-0 Scab • 1.680 4,4 = m 600 1lII11L 317 2 _ I f 30-6 = 37 36 35 34 33 32 31 30 29 28 27 28 25 24 23 22 21 he 30-8 = 3,6 = I 34-0-0 4 340-0 Plate Offsets (X,Y): 11:0- 7- 3,0 -1 -81. 11:0.8- 7,Edge1, f5:0 -3-0.0 -3-41, (16:0- 3- 0,Edgel, 119:0- 8- 7,Edge1. 119:0- 7- 3,0 -1 -81 LOADING (psf) SPACING 2 -0-0 CSI DEFL in (hoc) 1 /deft Lid PLATES GRIP TCLL 25.0 Plates Increase 1.15 TC 0.56 Vert(LL) 0.00 20 n/r 180 MT20 220/195 TCDL 7.0 Lumber Increase 1.15 BC 0.51 Vert(TL) 0.00 20 n/r 180 BCLL 0.0 ' Rep Stress Incr YES WB 0.14 Horz(TL) 0.05 29 n/a n/a BCDL 10.0 Code IRC2009/TP12007 (Matrix) Wind(LL) 0.00 20 n/r 90 Weight: 198 lb FT = 10% LUMBER BRACING TOP CHORD 2 x 4 DF No.18Btr G TOP CHORD Structural wood sheathing directly applied or 2 -11 -9 oc purlins. BOT CHORD 2 x 4 DF No.18Btr G BOT CHORD Rigid ceiling directly applied or 3 -2 -14 oc bracing. OTHERS 2 x 4 DF Std G WEBS 1 Row at midpt 10-29 WEDGE MiTek recommends that Stabilizers and required cross bracing Left: 2 X 6 SYP No.2, Right: 2 X 6 SYP No.2 be installed during truss erection, in accordance with Stabilizer Installation guide. REACTIONS All bearings 34 -0-0. (Ib) - Max Horz 1=- 150(LC 17) Max Uplift All uplift 100 lb or less at joint(s) 31, 32, 33, 34, 35, 36, 28, 27, 26, 24, 23, 22 except 1=- 2192(LC 17), 37=- 145(LC 16), 21=- 127(LC 17), 19= 2220(LC 18) Max Gray All reactions 250 lb or less at joint(s) 29, 31, 32, 33, 34, 35, 36, 28, 27, 26, 24, 23, 22 except 1= 2293(LC 10), 37= 303(LC 25), 21= 284(LC 28), 19= 2370(LC 9) FORCES (Ib) - Max. Comp. /Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 1- 2=- 4957/4779, 2-3=-4030/3976, 3-4 =- 3429/3434, 4 -5 =- 2850/2910, 5-6 =- 2804/2868, 6-7 =- 2274/2367, 7-8=-1715/1841, 8- 9=- 1154/1315, 9-10 =- 602/790, 10 -11 =- 611/793, 11- 12=- 1164/1303,12 -13 =- 1724 / 1814,13 -14 =- 228312326,14 -15 =- 2842/2851, 15-16=-3067/3049, 16- 17=- 3399/3378, 17 -18 =- 3971/3924, 18 -19 =- 4894/4767 BOT CHORD 1- 37=- 4215/4405, 36- 37=- 3489/3655, 35 -36 =- 2989/3155, 34 -35 =- 2489/2655, 33- 34=- 1989/2155, 32- 33=- 1489/1655, 31 -32 =- 989/1155, 30- 31= -489/655, 29 -30 =- 239/405,28 -29 =- 497/663,27 -28 =- 997/1163,26 -27 =- 1497/1663, 25 -26 =- 1747/1913, 24 -25 =- 199712163, 23 -24 =- 2497/2663, 22- 23=- 2997/3163, 21 -22 =- 3497/3663, 19 -21 =- 4174/4412 QUALIFIED BUILDING DESIGNER OR PROJECT ENGINEER SHALL REVIEW THE INPUT LENGTH AND PLACEMENT OF CONNECTION TO TRANSFER LATERAL FORCES TO THE NOTES SUPPORTING STRUCTURE AS STATED IN THE DRAG LOAD NOTE BELOW. 1) Unbalanced roof live loads have been considered for this design. P R 2) Wind: ASCE 7 -05; 105mph; TCDL= 4.2psf; BCDL= 6.Opsf; h =25ft; Cat. II; Exp B; enclosed; MWFRS (low -rise) gable end zone; �E� opF cantilever left and right exposed ; Lumber DOL =1.33 plate grip DOL =1.33 �� NGIN,. ss /q2 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry 9 Gable End Details as applicable, or consult qualified building designer as per ANSUTPI 1 -2002. �7 1 4) All plates are 2x4 MT20 unless otherwise indicated. 1 ., PE 5) Gable requires continuous bottom chord bearing. 6) Gable studs spaced at 2 -0-0 oc. / 7 / ) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. ;- ,' 8) 'This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2 -0-0 wide V. • - EG J will fit between the bottom chord and any other members. ,p T .- 1‘ 9) A plate rating reduction of 20% has been applied for the green lumber members. � FArJ 2\ �((. 10) This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and \ referenced standard ANSI/TPI 1. F $ . 11) This truss has been designed for a total drag load of 250 plf. Lumber DOL= (1.33) Plate grip DOL= (1.33) Connect truss to resist Digital Signature drag loads along bottom chord from 0 -0-0 to 34 -0-0 for 250.0 plf. Continued on page 2 ( EXPIRATION DATE: 06/30/12 May 23,2011 1 t A WARNING Vcrlt fy design parameters and READ NOTES ON THIS AND INCLUDED 141111K REFERENCE PAGE WI 7473 rev. 10 '08 BEFORE USE. ' Design valid for use only with MiTek connectors. Trio design 6 based only upon parameters shown, and is for an individual buiding component. MI Applicablity of design paramenters and proper incorporation of component is responsibiity of buiding designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stabiity during construction is the responsibility of the MiTek" erector. Additional permanent bracing of the overall structure is the responsibility of the buiding designer. For general guidance regarding -• - ,o fabrication. quality control, storage, delivery, erection and bracing, consult ANSI /TPI1 Quality Criteria, DSB -89 and BCSI Building Component 7777 Greenback Lane, Suite 109 Safety Information avaiable from Truss Plate Institute, 281 N. Lee Street. Suite312. Alexandria. VA 22314. Citrus Heights, CA, 95610 • Job Truss Truss Type Oty Ply Pulte Homes - Building 17 Roof R33134257 81106182 -B Al Special Truss 1 1 Job Reference (optional) Pro -Build Clackamas Truss, Cladkamas,OR 97015 -1129 7.250 s May 11 2011 MiTek Industries, Inc. Mon May 23 09:02:07 2011 Page 2 ID:pM0FdeJHd3WcFjeuzw57EXzH0W E- JccJHW L7se4gw ?dDmyzNS WyXj4 P54M RggsFOu EzDeC_ NOTES 12) "Fix heels only Member end fixity model was used in the analysis and design of this truss. LOAD CASE(S) Standard • • • • A WARNING parameters y design parameters and READ NOTES ON THIS AND INCLUDED OSTEK REFERENCE PAGE MIT 74 rco. 10'08 BEFORE USE IM S Design valid for use only with MiTek connectors. The design is based only upon parameters shown, and is for an individual budding component. Applicability of design paramenters and proper incorporation of component is responsibility of budding designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to Insure stability during construction Is the responsibility of the MiTek' erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding POWER .e rellroane fabrication, quality control, storage, delivery. erection and bracing, consult ANSI /TPI1 Quality Criteria, D5B -89 and BCSI Building Component 7777 Greenback Lane, Suite 109 Safety Information evadable from Truss Plate institute, 281 N. Lee Street. Suite 312, Alexandria, VA 22311. Citrus Heights, CA, 95810 • Job Truss Truss Type Qty Ply Pulte Homes - Building 17 Roof R33134258 B1106182 -B A2 Special Truss 6 1 Job Reference (optional) Pro -Build Clackamas Truss, Clackamas,OR 97015-1129 7.250 s May 11 2011 MiTek Industries, Inc. Mon May 23 09:02:09 2011 Page 1 ID :pMOFdeJHd3WcFjeuzw57EXzHOWE -F k4iCNNOFLO9JnctMOrXx1piu2LYCS7HAI7y7zDeBy I 8-6-0 I 7.0-0 I 2560 I aaao aasa31 BB -0 8-8-0 8-6-0 8-6-0 5 -QO Scab • 1.65 0 454 = Eke P T64 3x6 C 41111 11111111111111 454 % 3 1 1� 4x4 2 C 1 7 U rai WY i et 8 . B l� r _ • 3x0 = 13 72 11 10 9 3x8 •— 254 II 3 x 8 = 356 = 34 = 214 II 1343-0 I 17 -4-0 I 25-63 I 34-0.0 I 88-0 8-8 -0 8-6-0 8-6-0 Plate Offsets (X,Y): 11:0 -4- 12,0 -1- 81.16:0 -0- 0,0-0- 01,17:0 -4- 12,0 -1 -81 LOADING (psf) SPACING 2 -0-0 CSI DEFL in (loc) I /dell L/d PLATES GRIP TCLL 25.0 Plates Increase 1.15 TC 0.79 Vert(LL) -0.14 1 -13 >999 • 240 MT20 220/195 TCDL 7.0 Lumber Increase 1.15 BC 0.59 Vert(TL) -0.43 1 -13 >946 180 BCLL 0.0 • Rep Stress Incr YES WB 0.43 Horz(TL) 0.13 7 n/a n/a BCDL 10.0 Code IRC2009/TPI2007 (Matrix) Weight: 146 lb FT = 10% LUMBER BRACING TOP CHORD 2 x 4 DF No.1 &Btr G TOP CHORD Structural wood sheathing directly applied or 2 -2 -0 oc purlins. BOT CHORD 2 x 4 DF No.1 &Btr G BOT CHORD Rigid ceiling directly applied or 9-4 -14 oc bracing. WEBS 2 x 4 DF Std G WEBS 1 Row at midpt 2 -11, 6-11 MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide. REACTIONS (lb /size) 1=1407/0-5-8 (min. 0 -1 -8), 7= 1489/0 -5-8 (min. 0-1 -9) Max Horz 1=- 136(LC 6) Max Upliftl=- 295(LC 5), 7=- 356(LC 6) FORCES (ID) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1 -2 =- 2578/528, 2- 3=- 1706/367, 3-4 =- 1557/392, 4- 5=- 1557/394, 5-6 =- 1705/369, 6-7 =- 2569/519 BOT CHORD 1 -13= 473/2200, 12 -13 =- 473/2200, 11 -12 =- 473/2200, 10-11= 338/2191, 9-10 =- 338/2191, 7 -9 =- 338/2191 WEBS 2- 13= 0/362,2 -11 =- 914/382,4 -11 =- 153/969,6.11 =- 903/373,6.9 =0/361 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7 -05; 105mph; TCDL= 4.2psf; BCDL= 6.0psf; h =25ft; Cat. II; Exp B; enclosed; MWFRS (low -rise) gable end zone; cantilever left and right exposed ; Lumber DOL =1.33 plate grip DOL =1.33 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) ' This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2 -0-0 wide will fit between the bottom chord and any other members. 5) A plate rating reduction of 20% has been applied for the green lumber members. 6) This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and referenced PR standard ANSI/TPI 1. ��ED OF6- , 7) "Fix heels only" Member end fixity model was used in the analysis and design of this truss. C ?� � L NG E' - ' - LOAD CASE(S) Standard 41 / � • . E 9 9� dEle'�� M RS. �� ' Digital Signature EXPIRATION DATE: 06/30/12 May 23,2011 4 • A WARNING Verify deign parameters and READ NOTES ON THIS AND INCLUDED N EKREFERENCEPAGEDill- 7973rcc.10'08BEFOREUSE. �, Design valid for use only with MiTek connectors. Th6 design's based only upon parameters shown. and 6 for an individual budding component. Applicability of design paramenters and proper incorporation of component is responsibility of budding designer - not truss designer. Bracing shown 6 for lateral support of individual web members only. Additional temporary bracing to insure stability during construction's the responsbtlity of the MiTek' erector. Additional permanent bracing of the overall structure is the responsibility of the budding designer. For general guidance regarding *e PearowT, fabrication, quality control, storage. delivery. erection and bracing. consult ANSI /TPII Quality Criteria, DSB -89 and SCSI Building Component 7777 Greenback Lane, Suite 109 Safely Information available from Truss Plate Institute, 281 N. Lee Sheet, Suite 312. Alexandria. VA 22314. Citrus Heights, CA, 95810 Job Truss Truss Type thy Ply Pulte Homes - Building 17 Roof R33134259 81106162 -B A3 Special Truss 3 1 Job Reference (optional) Pro -Build Clackamas Truss, Clackamas,OR 97015 -1129 7.250 s May 11 2011 MiTek Industries, Inc. Mon May 23 09:02:10 2011 Page 1 ID: pMOFdeJHd3WcFjeuzw57EXzHOWE- jBISvYO ?9ZTFnTMoR4X44Ba SHP1HfkGWgUgUZzDeBx 1 0 0 68 -0 1 17 -5-o I 25.6-0 I 34-0.0 I t 5- 5-o 1 1 .0.0 6 6 -0 8-8-0 8.6 -5 68.0 1.0.0 Scale • 1.65 0 454 = 6 1 5 • 356 35fi 454 1 4 6 454 3 7 a 2 /` g lot 6 -- 131 —� ii\ i 356 = 14 13 12 11 _ 10 356 = 254 II 36-8 356 = 3,6 254 II I 6 - I 17-0.0 I 25-6-0 I 34-0.0 I 8-6 -0 8-6 -0 8-8 -0 68 -0 Plate Offsets (X,Y): 12:0 -4- 12,0 -1- 81,17:0 -0- 0,0-0- 01,18:0 -4- 12,0 -1 -81 LOADING (psf) SPACING 2 -0-0 CSI DEFL in (lest) I /deft Ud PLATES GRIP TCLL 25.0 Plates Increase 1.15 TC 0.79 Vert(LL) -0.13 2 -14 >999 240 MT20 220/195 TCDL 7.0 Lumber Increase 1.15 • BC 0.56 Vert(TL) -0.41 2 -14 >987 180 BCLL 0.0 • Rep Stress Inc( YES WB 0.43 Horz(TL) 0.13 8 n/a n/a BCDL 10.0 Code IRC2009/TPI2007 (Matrix) . Weight: 148 lb FT = 10% LUMBER BRACING TOP CHORD 2 x 4 DF No.1 &Btr G TOP CHORD Structural wood sheathing directly applied or 2 -2 -0 oc purlins. BOT CHORD 2 x 4 DF No.1 &Btr G BOT CHORD Rigid ceiling directly applied or 9 -7-4 oc bracing. WEBS 2 x 4 DF Std G WEBS 1 Row at midpt 3-12, 7 -12 MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide, REACTIONS (lb /size) 2= 1487/0 -5 -8 (min. 0 -1 -9), 8= 1487/0 -5-8 (min. 0-1 -9) Max Horz 2= 126(LC 5) Max Uplift2=- 358(LC 5), 8=- 358(LC 6) FORCES (Ib) - Max. Comp. /Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 2 -3 =- 2567/518, 3-4 =- 1703/366,4 -5 =- 1554 / 391, 5-6 =- 1554/391,6 -7 =- 1703/366, ,7 -8 =- 2566/518 BOT CHORD 2-14=-463/2189, 13 -14 =- 463/2189, 12- 13= 463/2189, 11 -12= 337/2188, , 10 -11 =- 337/2188, 8 -10 =- 337/2188 WEBS 3-14= 0/361, 3-12 =- 904/373, 5-12 =- 150/966, 7 -12 =- 903/373, 7 -10 =0/361 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7 -05; 105mph; TCDL= 4.2psf; BCDL= 6.Opsf; h =25ft; Cat. 11; Exp B; enclosed; MWFRS (low -rise) gable end zone; . cantilever left and right exposed ; Lumber DOL =1.33 plate grip DOL =1.33 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) • This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2 -0-0 wide will fit between the bottom chord and any other members. 5) A plate rating reduction of 20% has been applied for the green lumber members. 6) This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. (< 5,EO PR OFF 7) "Fix heels only" Member end fixity model was used in the analysis and design of this truss. C? 0.4G) F9 (Vo LOAD CASE(S) Standard * 2. 1 . i A �•� OR •, 9 00011 'V • l - R S. -04(1. Digital Signature 1 EXPIRATION DATE: 06/30/12 j May 23,2011 1 • A WARNING - Verify design parameters and READ NOTES ON TT/IS AND INCLUDED MITER" RBFERENCB PAGB Mil- 7473 rev. 10-'08 BEFORE USE. I Design valid for use only with Mlrek connectors. This design is based only upon parameters shown, and is for an individual buiding component. Applicability of design param enters and proper incorporation of component Is responsibfity of buiding designer - not truss designer. Bracing shown Ls for lateral support of individual web members only. Additional temporary bracing to Insure stability during construction Is the responsibility of the MiTek' erector. Additional permanent bracing or the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control. storage, delivery. erection and bracing, consult ANSI /TP11 Quality Criteria, 058.89 and SCSI Building Component 7777 Greenback Lane, Suite 109 Safety Information available from Truss Plate Institute- 2B1 N. Lee Street. Suite 312. Alexandria. VA 22314. Citrus Heights, CA, 95610 a Job Truss Truss Type Qty Ply Pulte Homes - Building 17 Roof R33134260 B1106182 -B A4 Special Truss 1 1 Job Reference (optional) Pro -Build Clackamas Truss, Cladcamas,OR 97015 -1129 7.250 s May 11 2011 MiTek Industries, Inc. Mon May 23 09:02:19 2011 Page 1 ID: pMOFdeJHd3WcFjeuzw57EXzHOWE- yvLsodVfl KbzMrYXTTBBs2SajwV ?uaPbbjAflYzDeBo 1 -0-0 17 -0-a I 34-0-0 soo 1 1 -0-0 17-0-0 17-0.0 -0-0 Seely • 1.69 9 4x4 = I1 800 12 10- 12 9 17 e 14 15 Sae NS 6 8 5x8 5 17 87,,,,a1.- A - 19 2 34e — 38 37 36 35 14 33 32 31 30 29 29 V 26 25 24 23 a axe — 3c8 = 346 = I 34.0.0 I 34.0-0 Plate Offsets (X,Y): 12:0- 7- 3.0 -1 -81, 12:0-8- 7,Edciel. 15:0- 3- 0.Edoel. 117:0.3- 0,Edgel, f20:0- 8- 7,Edge1. 120:0- 7- 3,0 -1 -81 LOADING (psf) SPACING 2 -0-0 CSI DEFL in (loc) I /deft Ud PLATES GRIP TCLL 25.0 Plates Increase 1.15 TC 0.56 Vert(LL) 0.00 21 n/r 180 MT20 220/195 TCDL 7.0 Lumber Increase 1.15 BC 0.50 Vert(TL) 0.00 21 n/r 180 BCLL 0.0 • Rep Stress Incr YES WB 0.14 Horz(TL) 0.05 30 n/a n/a BCDL 10.0 Code IRC2009/TPI2007 (Matrix) Wind(LL) 0.00 21 n/r 90 Weight: 199 lb FT = 10% LUMBER BRACING TOP CHORD 2 x 4 DF No.18Btr G TOP CHORD Structural wood sheathing directly applied or 2 -11 -8 oc purlins. BOT CHORD 2 x 4 DF No.18Btr G BOT CHORD Rigid ceiling directly applied or 3 -3-1 oc bracing. OTHERS 2 x 4 DF Std G WEBS 1 Row at midpt 11 -30 WEDGE MiTek recommends that Stabilizers and required cross bracing Left: 2 X 6 SYP No.2, Right: 2 X 6 SYP No.2 be installed during truss erection, in accordance with Stabilizer Installation guide. REACTIONS All bearings 34 -0-0. (Ib) - Max Horz2= 126(LC 15) Max Uplift All uplift 100 lb or less at joint(s) 32, 33, 34, 35, 36, 37, 29, 28, 27, 25, 24, 23 except 2=- 2211(LC 11), 38=-125(LC 16), 22=-127(LC 17), 20=-2218(LC 18) Max Gray All reactions 250 lb or less at joint(s) 30, 32, 33, 34, 35, 36, 37, 29, 28, 27, 25, 24, 23 except 2= 2365(LC 10), 38= 282(LC 25), 22= 284(LC 28), 20= 2368(LC 9) FORCES (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 2- 3=- 4941/4806, 3-4=- 4018/3963, 4 -5 =- 3416/3423, 5.6 =- 3108/3045, 6-7 =- 2837/2898, 7 -8 =- 2278/2371, 8-9=-1719/1845, 9- 10=- 1159/1320, 10- 11=- 606/794, 11 -12= 607(789, 12- 13=- 1159/1299, 13- 14=- 1719/1810, 14 -15 =- 2278/2322, 15- 16=- 2838/2847, 16 -17 =- 3062/3044, 17- 18=- 3395/3373, 18 -19 =- 3967/3919, 19- 20=- 4890/4762 BOT CHORD 2 -38= 4219/4409, 37 -38 =- 3492/3659, 36 -37 =- 2992/3159, 35 -36 =- 2492/2659, 34 -35 =- 1992/2159, 33 -34 =- 1492/1659, 32 -33 =- 992/1159, 31- 32= 492/659, 30 -31 =- 242/409, 29- 30= 493/659, 28 -29 =- 993/1159, 27 -28 =- 1493/1659, 26- 27=- 1743/1909, 25.26 =- 1993/2159, 24 -25 =- 2493/2659, 23- 24=- 2993/3159, 22-23=-3493/3659, 20-22=4170/4409 QUALIFIED BUILDING DESIGNER OR PROJECT ENGINEER SHALL REVIEW THE INPUT NOTES LENGTH AND PLACEMENT OF CONNECTION TO TRANSFER LATERAL FORCES TO THE 1) Unbalanced roof live loads have been considered for this design. SUPPORTING STRUCTURE AS STATED IN THE DRAG LOAD NOTE BELOW. 2) Wind: ASCE 7 -05; 105mph; TCDL=4.2psf; BCDL= 6.Opsf; h =25ft; Cat. II; Exp B; enclosed; MWFRS (low -rise) gable end zone; ��vC1 PR °FF cantilever left and right exposed ; Lumber DOL =1.33 plate grip DOL =1.33 \�� NGI 4.9 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry q 2 Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1 -2002. �� II 9 4) All plates are 2x4 MT20 unless otherwise indicated. 5) Gable requires continuous bottom chord bearing. / 6) Gable studs spaced at 2 -0-0 oc. 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. « 8) ' This truss has been designed for a live load of 20.Opsf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2 -0-0 wide • / •• O c will fit between the bottom chord and any other members. •O •T• \ -- 9) A plate rating reduction of 20% has been applied for the green lumber members. I • •; 2 s e7„.<0 10) This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and / y N N referenced standard ANSI/TPI 1. E S S. 11) This truss has been designed for a total drag load of 250 plf. Lumber DOL= (1.33) Plate grip DOL= (1.33) Connect truss to resist Digital Signature drag loads along bottom chord from 0 -0-0 to 34 -0-0 for 250.0 plf. Continued on page 2 ( EXPIRATION DATE: 06/30/12 May 23,2011 9 4 A WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEKREFERENCE PAGE WI 7473 res. 10 '08 BEFORE USE. MIt Design valid For use only with Mgek connectors. This design is based only upon parameters shown, and is for an individual buiding component. Applicabiity of design param enters and proper incorporation of component is responsibiity of buiding designer - not truss designer. Bracing shown is for lateral support of Individual web members only. Additional temporary bracing to Insyre stabiity during construction is the responsibility of the MiTek' erector. Additional permanent bracing of the overall structure is the responsibility of the buiding designer. For general guidance regarding fabrication. quality control, storage. delivery, erection and bracing, consult ANSI/lPI1 Quality Criteria, 05B -89 and SCSI Building Component 7777 Greenback Lane. Suite 109 Safety Information avaiable from Truss Plate Institute, 2131 N. Lee Street. Suite 312. Alexandria. VA 22314. Citrus Heights, CA, 95610 • Job Truss Truss Type Qty Ply Pulte Homes - Building 17 Roof • R33134260 81106182 -B A4 Special Truss 1 1 Job Reference (optional) Pro -Build Clackamas Truss, Clackamas,OR 97015 -1129 7.250 s May 11 2011 MiTek Industries, Inc. Mon May 23 09:02:20 2011 Page 2 ID:pM0FdeJHd3WcFjeuzw57EXzH0W E- R6vE?zVHodjq_ ?7j0Ai0 U F ?ISJgEdFfkpNvCq_z DeBn NOTES 12) "Fix heels only Member end fixity model was used in the analysis and design of this truss. LOAD CASE(S) Standard • • • • ■ A WARNING- Verify design parameters and READ NOTES ON TT/ IS AND INCLUDED MITER REFERENCE PAGE MR -7473 rm. 10-r08 BEPORB USE ■.'' Design valid for use only with Mir ek connectors. This design is based only upon parameters shown, and k for an individual building component. Applicability of design param enters and proper Incorporation of component Is responsibillly of building designer - not truss designer. Bracing shown 6 for lateral support of Individual web members only. Additional temporary bracing to insure stability during conshuction Is the responsibility of the MiTek' erector. Additional permanent bracing of the overall structure Is the responsibility of the building designer. For general guidance regarding fabrication, quality control. storage. delivery, erection and bracing, consult ANSI /TPI1 Quality Criteria, DSB -B9 and BCSI Building Component 7777 Greenback Lane, Suite 109 Safety Information available from Truss Plate Institute, 281 N. Lee Street, Suite 312, Alexandria, VA 22314. Citrus Heights. CA, 95610 1. Job Truss Truss Type Qty Ply Putte Homes - Building 17 Roof R33134261 81106182 -B B1 GABLE 2 1 Job Reference (optional) Pro -Build Clackamas Truss, Clackamas,OR 97015 -1129 7.250 s Nov 19 2010 MiTek Industries, Inc. Mon May 23 10:34:49 2011 Page 1 I D:pM0FdeJHd3 WcFjeuzw57EXzH0 WE -kG0 e0X EPztnSZ3wVGZUAMgJ ?m9gDGuT VpBaL6sz Dcr4 -Q -0 19.8 -0 I 39-0-0 i0-0-0 1 -0-o 19.6 -0 i 9 -6-0 1 -0-0 Scale = 1:69.5 5x6 = 12 . 6.00 ip III 13 11 10 14 9 15 8 - - 16 r? 5x12 MT18H c*:- 7 - - 17 5x12 MT18H 19 20 d 8 8 5 - - 4 ,� _ -. hi 3 21 M 2 s��/ - - - - 22 m 4x12 = 4x12 = 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 3x6 = I 39-0-0 I 39-0 -0 Plate Offsets (X,Y): (2:0- 0- 10,Edge), 15:0- 6- 0,Edge), (19:0.6- 0,Edge), (22:0- 0- 10,Edge) LOADING (psf) SPACING 2 -0-0 CSI DEFL in (loc) 1 /deft Ud PLATES GRIP TCLL 25.0 Plates Increase 1.15 TC 0.65 Vert(LL) 0.00 23 n/r 180 MT20 220/195 TCDL 7.0 Lumber Increase 1.15 BC 0.58 Vert(TL) 0.01 23 n/r 180 MT18H 220/195 BCLL 0.0 ' Rep Stress Incr YES WB 0.14 Horz(TL) 0.06 33 n/a n/a BCDL 10.0 Code IRC2009/TP12007 (Matrix) Wind(LL) 0.00 23 n/r 90 Weight: 239 lb FT = 10% LUMBER BRACING TOP CHORD 2 x 4 DF No.18Btr G TOP CHORD Structural wood sheathing directly applied or 2 -8 -12 oc purtins. BOT CHORD 2 x 4 DF No.18Btr G BOT CHORD Rigid ceiling directly applied or 3 -0-1 oc bracing. OTHERS 2 x 4 DF Std G WEBS 1 Row at midpt 12 -33, 11 -34, 13-31 WEDGE Left: 2 x 4 DF Std, Right: 2 x 4 DF Std QUALIFIED BUILDING DESIGNER OR PROJECT ENGINEER SHALL REVIEW THE INPUT LENGTH AND PLACEMENT OF CONNECTION TO TRANSFER LATERAL FORCES TO THE REACTIONS All bearings 39-0-0. SUPPORTING STRUCTURE AS STATED IN THE DRAG LOAD NOTE BELOW. (Ib)- Max Horz 2= 142(LC 15) Max Uplift All uplift 100 lb or less at joint(s) 34, 35, 36, 37, 38, 39, 40, 31, 30, 29, 28, 27, 26, 25 except 2=- 2522(LC 11), 41=- 141(LC 16), 24=- 143(LC 17), 22=- 2523(LC 18) Max Gray All reactions 250 lb or less at joint(s) 33, 34, 35, 36, 37, 38, 39, 40, 31, 30, 29, 28, 27, 26, 25 except 2= 2692(LC 10), 41= 323(LC 25), 24= 325(LC 28), 22= 2695(LC 9) FORCES (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 2- 3=- 5666/5508, 3-4= 4594/4529, 4 -5 =- 3993/3984, 5-6 =- 3722/3726, 6-7 =- 3403/3459, 7 -8 =- 2837/2932, 8 -9 =- 2278/2406, 9 -10 =- 1719/1879, 10 -11 =- 1159/1355, 11 -12 =- 606/828, 12 -13 =- 607/823, 13 -14 =- 1159/1334, 14 -15 =- 1719/1844, 15 -16 =- 2278/2357, 16 -17 =- 2837/2875, 17 -18 =- 3397/3401, 18 -19 =- 3666/3668, 19-20=-3953/3932, 20-21=-4536/4478, 21-22=-5608/5458 BOT CHORD 241=4841/5056, 40 -41 =- 3992/4180, 39 -40 =- 3492/3680, 38- 39=- 2992/3180, 37 -38 =- 2492/2680, 36 -37 =- 1992/2180, 35 -36 =- 1492/1680, 34 -35 =- 992/1180, €_s?, PR �FFS 33 -34 =- 492/680, 31- 32=- 493/681, 30 -31 =- 993/1181, 29 -30 =- 1493/1681, 28- 29=- 1993/2181, F 27- 28=- 2493/2681, 26 -27 =- 2993/3181, 25- 26=- 3493/3681, 24 -25 =- 3993/4181, c GI 1S j 22- 24=- 4814/5055 �C e / FR s 9 C C' JOINT STRESS INDEX 1 49 2 = 0.79, 3 = 0.34, 4 = 0.34, 5 = 0.52, 6 = 0.34, 7 = 0.34, 8 = 0.34, 9 = 0.34, 10 = 0.34, 11 = 0.34, 12 = 0.18, 13 = 0.34, 14 = 0.34, 15 = 0.34, •= 1.34,1 4. 4 '8 =0.34 ,19= 0.52,20= 0.34,21 = 0.34,22 =0 .79,24 = 0.34,25 = 0.34,26 = 0.34,27= 0.34,28 = 0.34,29= 0. 34, 30 = 0.34,31 = 0.34,32 = 0.15,33 =0.3' 4 =0.4, • 0.34,36 = 0.34,37 = 0.34,38= 0.34,39 = 0.34,40 =0.34 and 41 = 0.34 ��� Jr NOTES '9 ' /' 1) Unbalanced roof live loads have been considered for this design. , 418 • • �G� 2) Wind: ASCE 7 -05; 105mph; TCDL= 4.2psf; BCDL= 6.Opsf; h =25ft; Cat. II; Exp B; enclosed; MWFRS (low -rise) gable end zone; M cantilever left and right exposed ; Lumber DOL =1.33 plate grip DOL =1.33 FR S S. 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see MiTek "Standard Digital Signature Gable End Detail" d os plates unless otherwise indicated. ( EXPIRATION DATE: 06/30/12 May 23,2011 4 • Q WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITRE REFERENCE PAGE Mr! 7473 rev. 10'08 BEFORE USE. _'� Design valid for use only with MiTek connectors. The design is based only upon parameters shown, and a for an individual budding component. Applicability of design param enters and proper Incorporation of component is responsibility of budding designer - not Truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction a the responsibility of the MiTek erector. Additional permanent bracing of the overall structure is the responsibility of the budding designer. For general guidance regarding POWSI fabrication, qualify control, storage, delivery, erection and bracing, consult ANSI /IPI1 Quality Crllerla, DSB -89 and SCSI Building Component 7777 Greenback Lane. Suite 109 Safety Information available from Truss Plate Institute. 281 N. Lee Street. Suite 312. Alexandria. VA 22314. Citrus Heights, CA, 95810 • • Job Truss Truss Type Oty Ply Pulls Homes - Building 17 Roof • R33134261 81106182 -B B1 GABLE 2 1 Job Reference (optional) Pro -Build Clackamas Truss, Clackamas,OR 97015 -1129 7.250 s Nov 19 2010 MiTek Industries, Inc. Mon May 23 10:34:50 2011 Page 2 ID :pMOFdeJHd3WcFjeuzw57EXzHOWE -CS OdtFlkBvJADVhgH ?PvusAWZOS ?KjflrKuelzDcr3 NOTES 5) All plates are 2x4 MT20 unless otherwise indicated. 6) Gable requires continuous bottom chord bearing. 7) Gable studs spaced at 2 -0-0 oc. 8) This truss has been designed for a 10.0 psi bottom chord live toad nonconcurrent with any other live loads. 9) ' This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2 -0-0 wide will fit between the bottom chord and any other members. 10) A plate rating reduction of 20% has been applied for the green lumber members. 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 34, 35, 36, 37, 38, 39, 40, 31, 30, 29, 28, 27, 26, 25 except (jt =lb) 2 =2522, 41 =141, 24 =143, 22 =2523. 12) This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 13) This truss has been designed for a total drag load of 250 plf. Lumber DOL= (1.33) Plate grip DOL= (1.33) Connect truss to resist drag loads along bottom chord from 0-0-0 to 39-0-0 for 250.0 plf. 14) "Fix heels only Member end fixity model was used in the analysis and design of this truss. LOAD CASE(S) Standard • • • • $ ® WARNING - Verify design parameters and READ NOTES ON 71118 AND INCLUDED DBMS' REFERENCE PAGB 191.7473 res. 10-'08 BEFORE USE. Design valid for use only with MiTek connectors. Thk design is based only upon parameters shown, and is for an individual budding component. Applicability of design param enters and proper incorporation of component is responsibility of budding designer - not truss designer. Bracing shown k for lateral support of individual web members only. Additional temporary bracing to insure stability dur construction is the responsdodlity of the MiTek' erector. Additional permanent bracing of the overall structure Is the responsibility of the building designer. For general guidance regarding fabrication. quality control, storage, delivery, erection and bracing, consult ANSI/TPI1 Quality Criteria, DSB -89 and SCSI Building Component 7777 Greenback Lane, Suite 109 Safety Information available from Truss Plate Institute. 281 N. Lee Street. Suite 312, Alexondrla, VA 22314. Citrus Heights, CA, 95610 Job Truss Truss Type Qty Ply Pulte Homes - Building 17 Roof R33134262 B1106182 -B B2 Common Truss 2 1 Job Reference (optional) Pro -Build Clackamas Truss, Clackamas,OR 97015 -1129 7.250 s May 11 2011 MiTek Industries, Inc. Mon May 23 09.02:28 2011 Page 1 I D:pMOFdeJHd3 WcFjeuzw57EXzHOW E- CeOFhiclv5khxEk FUsrIpxK68YUZVkPwfdrd7 WzDeBf -1 -0-0 5 -7d 13.0-0 1960 26-0-0 I 33-4-13 l 39-0-0 90-0-9 I -0-o . 674 74.13 6.6.0 6-6-0 7.4 -12 5-7 -3 1-0-0 Scab • 1:74 1 5x6 = 8 i i 600 IT 3,4 3a, 5 7 318 i 3x6 b 2,4 * 3 4' 2 w l0 11 / 14 15 16 17 IB 12 ','\ 3010 = 3,4 = 13 3x4 = 3,10 = 5010 = 9-9-11 1960 292 -5 390.9 9911 9-8-5 9.94 9-9-11 Plate Offsets (X,Y): 12:0 -10- 0,0-0- 101.[7:0-0- 0,0-0- 01,18:0 -0-0,0 -0. 01,19:0 -0-0,0 -0. 01,[10:0.10- 0,0-0- 101,113:0 -5.0,0 -3-41 LOADING (psf) SPACING 2 -0-0 CSI DEFL in (loc) I /deb Ud PLATES GRIP TCLL 25.0 Plates Increase 1.15 TC 0.52 Vert(LL) -0.36 13-14 >999 240 MT20 220/195 TCDL 7.0 Lumber Increase 1.16 BC 0.79 Vert(TL) -0.74 13-14 >629 180 BCLL 0.0 • Rep Stress Incr YES WB 0.67 Horz(TL) 0.18 10 n/a n/a BCDL 10.0 Code IRC2009/TPI2007 (Matrix) Weight: 185 lb FT = 10% LUMBER BRACING TOP CHORD 2 x 4 DF No.18Btr G TOP CHORD Structural wood sheathing directly applied or 3 -3-10 oc purlins. BOT CHORD 2 x 4 DF No.18Btr G BOT CHORD Rigid ceiling directly applied or 8 -2 -13 oc bracing. WEBS 2 x 4 DF Std G WEBS 1 Row at midpt 5-13, 7 -13 MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide. REACTIONS (lb /size) 2= 1850/0 -5 -8 (min. 0 -2 -0), 10= 1850/0 -5-8 (min. 0-2 -0) Max Horz 2= 142(LC 5) Max Uplift2=- 402(LC 5), 10=- 402(LC 6) FORCES (lb) - Max. Comp. /Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2- 3=- 3403/676, 3- 4=- 3077/540, 4 -5 =- 2975/566, 5-6 =- 2164/471, 6-7 =- 2164/471, 7 -8 =- 2974/566, 8- 9=- 3076/540, 9-10=-3401/676 BOT CHORD 2-14=-647/2969, 14 -15 =- 404/2421, 15 -16 =- 404/2421, 13 -16=- 404/2421, 13 -17 =- 291/2420, 17 -18 =- 291/2420, 12 -18 =- 291/2420, 10- 12=- 506/2967 WEBS 3-14 =- 380/ 273, 5-14= 29/558, 5-13 =- 840/355, 6-13 =- 275/1517, 7 -13 =- 840/354, 7-12=-29/557, 9-12 =- 379/273 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7 -05; 105mph; TCDL= 4.2psf; BCDL= 6.Opsf; h =25ft; Cat. II; Exp B; enclosed; MWFRS (low -rise) gable end zone; cantilever left and right exposed ; Lumber DOL =1.33 plate grip DOL =1.33 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) ' This truss has been designed for a live load of 20.Opsf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2 -0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.Opsf. 5) A plate rating reduction of 20% has been applied for the green lumber members. o o 6) This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and referenced C�(1F OF FS standard ANSI/TPI 1. \ C " NG) N ' . , `S 7) "Fix heels only" Member end fixity model was used in the analysis and design of this truss. 2 LOAD CASE(S) Standard 16 0- -37 v - • 4ORE Digital Signature EXPIRATION DATE: 06/30/12 J May 23,2011 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE MN 7473 rev. 10-08 BEFORE USE �N Design valid for use only with MiTek connectors. Th6 design' based only upon parameters shown, and is for an Individual budding component. Applicability of design param enters and proper Incorporation of component is responsibility of budding designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction u the responss1ttity of the MiTek• erector. Additional permanent bracing of the overall structure is the responsibility of the budding designer. For general guidance regarding +_ fabrication, quality control, storage. delivery, erection and bracing, consult ANSI/IPI1 quality Cdterla, DSB -89 and SCSI Building Component 7777 Greenback Lane. Suite 109 Safety Information available from Truss Mole Institute. 281 N. Lee Street, Suite 312. Alexandria, VA 22311. Citrus Heights, CA, 95610 • Job Truss Truss Type Oty Ply Pulte Homes - Building 17 Roof R33134263 B1106182 -B B3 Common Truss 12 1 Job Reference (optional) Pro -Build Clackamas Truss, Clackamas,OR 97015 -1129 7.250 s May 11 2011 MiTek Industries, Inc. Mon May 23 09:02:30 2011 Page 1 ID: pMOFdeJHd3WcFjeuzw57EXzHOWE- 81V060dYRi PAYuecHumuMPSeLA3zetD6xKkBPzDeBd I 5-7-4 I 13.0.0 I 19.60 I 260.0 I 33-4-13 I 39-0.0 10.0. 1 5.7-4 74 -13 6.6 -0 8 -6-0 7.4 -12 5-7.3 5 -0.0 ScuN.1:74 546 = s ej 60012 344 i 344 4 6 346 346 C 244 3 7 244 4..4 6 y i5 13 14 15 12 16 17 11 3410 3410 = 344= 5410 = 3.4 = I 9 - 9 - 11 I 19.6-0 I 29.2 -5 I 39-0-0 I 9.9-11 9.8-5 9-8-4 9-411 Plate Offsets (X,Y): 11:0- 10-0,0 -0- 101,16:0.0- 0,0-0- 01,18:0 -0- 0,0-0- 0),19:0 - 10.0,0 -0. 101,112:0 -5- 0,0.3 -41 . LOADING (psf) SPACING 2 -0-0 CSI DEFL in (hoc) I /deft L/d PLATES GRIP TCLL 25.0 Plates Increase 1.15 TC 0.52 Vert(LL) -0.36 11 -12 >999 240 MT20 220/195 TCDL 7.0 Lumber Increase 1.15 BC 0.79 Vert(TL) -0.74 11 -12 >628 180 BCLL 0.0 • Rep Stress Incr YES WB 0.67 Horz(TL) 0.18 9 n/a n/a . BCDL 10.0 Code IRC2009/TP12007 (Matrix) Weight: 183 lb FT = 10% LUMBER BRACING TOP CHORD 2 x 4 DF No.18Btr G TOP CHORD Structural wood sheathing directly applied or 3 -3-10 oc purlins. BOT CHORD 2 x 4 DF No.1■Btr G BOT CHORD Rigid ceiling directly applied or 8 -1 -14 oc bracing. WEBS 2 x 4 DF Std G WEBS 1 Row at midpt 4 -12, 6-12 . MiTek recommends that Stabilizers and required cross bracing ' be installed during truss erection, in accordance with Stabilizer Installation guide. REACTIONS (lb /size) 1= 1770/0 -5 -8 (min. 0- 1 -14), 9= 1851/0 -5-8 (min. 0-2 -0) Max Horz 1=- 152(LC 6) Max Upliftl=- 339(LC 5), 9=- 402(LC 6) FORCES (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 1- 2=- 3417/689, 2- 3=- 3088/550, 3-4=- 2985/575, 4 -5 =- 2167/472, 5-6 =- 2167/474, 6-7 =- 2977/567, 7- 8=- 3079/541, 8 -9 =- 3403/677 BOT CHORD 1-13=-662/2984, 13 -14 =- 409/2426, 14 -15 =- 409/2426, 12-15=-409/2426, 12 -16 =- 293/2423, 16 -17 =- 293/2423, 11- 17=- 293/2423, 9-11=-507/2969 WEBS 2-13=-388/280, 4 -13= 36/566, 4- 12=- 844/358, 5-12 =- 277/1519, 6-12 =- 840/355, 6-11= 29/557, 8 -11 =- 379/273 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7 -05; 105mph; TCDL= 4.2psf; BCDL= 6.Opsf; h =25ft; Cat. II; Exp B; enclosed; MWFRS (low -rise) gable end zone; cantilever left and right exposed ; Lumber DOL =1.33 plate grip DOL =1.33 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) • This truss has been designed for a live load of 20.Opsf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.Opsf. 5) A plate rating reduction of 20% has been applied for the green lumber members. PR 6) This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and referenced ��t °Fen standard ANSI/TPI 1. \C' A GING S�' 7) "Fix heels only" Member end fixity model was used in the analysis and design of this truss. � 9 2 � - 9 LOAD CASE(S) Standard 1 • : • •'� • P i 4,OR :04 ,� 0 5 •- 1 R S. Digital Signature EXPIRATION DATE: 06/30/12 May 23,2011 4 1 ■ WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGB 6III•7473 rev. 10-'08 BEFORE USE �'s Design valid for use only with MiTek connectors. The design is based only upon parameters shown, and 8 for an individual building component. Applicability of design paramenlers and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is far lateral support of individual web members only. Additional temporary bracing to insure slablify during construction is the responsibility of the MiTek' erector. Additional permanent bracing of the overall structure is the responsibility of the bulding designer. For general guidance regarding ...- fabrication. quality control, storage. delivery. erection and bracing, consult ANSI /TPI1 quality Criteria, 058 -89 and BCSI Building Component 7777 Greenback Lane, Suite 109 Safely Inlormallon available from Truss Plate Institute, 281 N. Lee Street, Suite 312. Alexandria. VA 22314. Citrus Heights, CA, 95610 Job Truss Truss Type Qty Ply Pulte Homes - Building 17 Roof R33134264 81106182 -B B4 GABLE 1 1 Job Reference (optional) Pro -Build Clackamas Truss, Clackamas,OR 97015 -1129 7.250 s May 11 2011 MiTek Industries, Inc. Mon May 23 09:02:35 2011 Page 1 ID:pMOFdeJHd3WcFjeuzw57EXzHOW E- U HJmbPgUxbQ6HLMwO e1 TyGD2VsczDeBY I 11.0. � I 19fl 0 I 39.0.0 460 a99 19-6 -0 19.6-0 -0-0 Suds • 1:75 3 546 = 11 12 9 i3 ii .r. 6 14 546 NB 4 7 15 6 16 • 5 5412 MTr6H 11 4 i i3. - 0 3 ill'a 9 4412 = 40 39 36 37 36 35 34 33 3231 30 29 26 27 26 25 24 23 4412 = 346 = I 393-0 I 3960 Plate Offsets (X,Y): [1:Edge,0- 3-141,15:0- 3- 0,Edgel. 118:0- 3- 6,Edgel, (21:0.0- 10,Edgel LOADING (psf) SPACING 2 -0-0 CSI DEFL in (hoc) I /deft Lid PLATES GRIP TCLL 25.0 Plates Increase 1.15 TC 0.65 Vert(LL) 0.00 22 nlr 180 MT20 220/195 TCDL 7.0 Lumber Increase 1.15 BC 0.59 Vert(TL) 0.01 22 n/r 180 MT18H 220/195 BCLL 0.0 • Rep Stress Incr YES WB 0.14 Horz(TL) 0.06 31 n/a n/a BCDL 10.0 Code IRC2009/TP12007 (Matrix) Wind(LL) 0.00 22 n/r 90 Weight: 239 lb FT = 10% LUMBER BRACING TOP CHORD 2 x 4 DF No.1&Btr G TOP CHORD Structural wood sheathing directly applied or 2 -8 -12 oc purlins. BOT CHORD 2 x 4 DF No.1 &Btr G BOT CHORD Rigid ceiling directly applied or 2 -11 -13 oc bracing. OTHERS 2 x 4 DF Std G WEBS 1 Row at midpt 11 -31, 10-33, 12 -30 WEDGE MiTek recommends that Stabilizers and required cross bracing Left: 2 X 4 SYP No.3, Right: 2 X 4 SYP No.3 be installed during truss erection, in accordance with Stabilizer Installation guide. REACTIONS All bearings 39 -0-0. (lb) - Max Horz 1=- 152(LC 18) Max Uplift All uplift 100 lb or less at joint(s) 33, 34, 35, 36, 37, 38, 39, 30, 29, 28, 27, 26, 25, 24 except 1=- 2499(LC 17), 40=- 159(LC 16), 23=- 143(LC 17), 21=- 2523(LC 18) Max Gray All reactions 250 lb or less at joint(s) 31, 33, 34, 35, 36, 37, 38, 39, 30, 29, 28, 27, 26, 25, 24 except 1= 2616(LC 10), 40= 342(LC 25), 23= 325(LC 28), 21= 2695(LC 9) FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1 -2 =- 5668/5507, 2-3=-4592/4530, 3-4 =- 3993/3984, 4 -5 =- 3403/3459, 5-6 =- 3025/2975, 6-7 =- 2837/2932, 7-8=-2278/2406, 8 -9 =- 1719/1879, 9-10 =- 1159/1355, 10 -11 =- 606/828, 11 -12 =- 607 /823,12 -13= -1159 /1334,13 -14 =- 1719/1844,14 -15 =- 2278/2357, 15 -16 =- 2837/2875, 16 -17 =- 3397/3401, 17- 18=- 3458/3435, 18- 19=- 3953/3932, 19-20=-4536/4478, 20-21=-5608/5458 BOT CHORD 1 -40=- 4841/5056, 39 -40 =- 3992/4180, 38 -39 =- 3492/3680, 37- 38=- 2992/3180, 36.37 =- 2492/2680, 35- 36=- 1992/2180, 34 -35 =- 1492/1680, 33 -34 =- 992/1180, 32- 33=- 492/680, 30 -31 =- 493/681, 29 -30 =- 993/1181, 28 -29 =- 1493/1681, 27- 28=- 1993/2181, 26 -27 =- 2493/2681, 25 -26 =- 2993/3181, 24- 25=- 3493/3681, 23 -24 =- 3993/4181, 21 -23 =- 4814/5055 QUALIFIED BUILDING DESIGNER OR PROJECT ENGINEER SHALL REVIEW THE INPUT LENGTH AND PLACEMENT OF CONNECTION TO TRANSFER LATERAL FORCES • - NOTES SUPPORTING STRUCTURE AS STATED IN THE DRAG LOAD NOTE BELOW PR 1) Unbalanced roof live loads have been considered for this design. �(t, �FF 2) Wind: ASCE 7 -05; 105mph; TCDL= 4.2psf; BCDL= 6.Opsf; h =25ft; Cat. II; Exp B; enclosed; MWFRS (low -rise) gable end zone; \ c� . NFE s cantilever left and right exposed ; Lumber DOL =1.33 plate grip DOL =1.33 c 9 2 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry kr y Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1 -2002. ‘C- 6 . jr E 4) All plates are MT20 plates unless otherwise indicated. I / 5) All plates are 2x4 MT20 unless otherwise indicated. i� 6) Gable requires continuous bottom chord bearing. (/ 7) Gable studs spaced at 2 -0 -0 oc. . • OR :- 0 \ 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. ,O ). 9) • This truss has been designed for a live load of 20.Opsf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2 -0 -0 wide Ti -; E - �<( will fit between the bottom chord and any other members. 10) A plate rating reduction of 20% has been applied for the green lumber members. F R S N 11) This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and Digital Signature referenced standard ANSI/TPI 1. Continued on page 2 ( EXPIRATION DATE: 06/30/12 May 23,2011 4 1 A WARRING Ver(fy dolgn parameters and READ NOTES ON TEES AND INCLUDED MITER REFERENCE PAGE Mil 7473 rev. 10 V8 BEFORE US& �' Design valid for use only with MiTek connectors. This design based only upon parameters shown, and is for an individual building component. Applicability of design paramentea and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the MiTek' erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding +o fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TP11 Quality Criteria. 008.89 and SCSI Building Component 7777 Greenback Lane, Suite 109 Safety Information available from Truss Plate Institute, 281 N. Lee Sheet, Suite 312, Alexandria, VA 22314. Citrus Heights, CA, 95610 • Job Truss • Truss Type Qty Ply Pulte Homes - Building 17 Roof R33134264 81106182 -B B4 GABLE 1 1 Job Reference (optional) Pro -Build Clackamas Truss, Clackamas OR 97015 -1129 7.250 s May 11 2011 MiTek Industries, Inc. Mon May 23 09:02:36 2011 Page 2 ID:pMOFdeJ Hd3WcFjeuzw57EXzHOW E- zBsHMRiJ 1 YkYuTLoyX ?A7dfS5mGdN Uj5Vtn2P3zDeBX NOTES 12) This truss has been designed for a total drag load of 250 plf. Lumber DOL= (1.33) Plate grip DOL= (1.33) Connect truss to resist drag loads along bottom chord from 0-0-0 to 39 -0 -0 for 250.0 plf. 13) "Fix heels only" Member end fixity model was used in the analysis and design of this truss. LOAD CASE(S) Standard • • • • • • • ■ A WARNING • Vert& design parameters and READ NOTES ON MIS AND INCLUDED NTT3K REFERENCE PAGE Mff•7473 roe. 10 BEFORE USE. IIM^ Design valid for use only with MiTek connectors. This designs based only upon parameters shown, and is for an individual building component. - Applicabdity of design param enters and proper Incorporation of component is responsibiity of budding designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the MiTek erector. Additional permanent bracing of the overall structure Is the responsibility of the building designer. For general guidance re garding .o fabrication. quality control, storage, delivery. erection and bracing, consult ANSI /TPI1 Quality Criteria. DSB -89 and BCSI Building Component 7777 Greenback Lane. Suite 109 Safety Information avaiable from Truss Plate Institute. 2131 N. Lee Sheet. Suite 312. Alexandria. VA 22314. Citrus Heights, CA. 95810 • Job Truss Truss Type Oty Ply Pulte Hanes - Building 17 Roof R33134265 81106182 -B 65 GABLE 1 1 Job Reference (optional) Pro -Build Clackamas Truss, Clatlramas,OR 97015 -1129 7.250 s May 11 2011 MiTek Industries, Inc. Mon May 23 09:02:41 2011 Page 1 ID:pMOFdeJ Hd3WcFjeuzw57 EXzHOW E- J8gAO8mS s4 Nr G0D0B5 I 19-6-s 1 3300 o-0-) 196-0 19-6.0 -00 Suds •1.753 5,6 = 11 "'FT 10 f3 13 9 3 6 14 546 W64 15 6 16 5,12 MTIBH 5 4 171e ` � � 19 1alga „ _. .. 31 71 412 = 4112 = 40 39 313 37 36 35 34 33 3231 30 29 R 27 26 25 24 23 3,6 = I 3940 I 390.0 Plate Offsets (X,Y): I1:Edoe.0- 3-141, 15:0- 3- 0,Edgel, 118 :0- 3- 6,Edge),121:0- 0- 10,Edgel LOADING (psf) SPACING 2 -0-0 CSI DEFL in (loc) I(def Ud PLATES GRIP TCLL 25.0 Plates Increase 1.15 TC 0.65 Vert(LL) 0.00 22 n/r 180 MT20 220/195 • TCDL 7.0 Lumber Increase 1.15 BC 0.59 Vert(TL) 0.01 22 n/r 180 MT18H 220/195 BCLL 0.0 ' Rep Stress Ina YES WB 0.14 Horz(TL) 0.06 31 n/a n/a BCDL 10.0 Code IRC2009/TPI2007 (Matrix) Wind(LL) 0.00 22 n/r 90 Weight: 239 lb FT = 10% LUMBER BRACING TOP CHORD 2 x 4 DF No.18Btr G TOP CHORD Structural wood sheathing directly applied or 2 -8 -12 oc purtins. SOT CHORD 2 x 4 DF No.18Btr G BOT CHORD Rigid ceiling directly applied or 2 -11 -13 oc bracing. OTHERS 2 x 4 OF Std G WEBS 1 Row at midpt 11 -31, 10-33, 12 -30 WEDGE MiTek recommends that Stabilizers and required cross bracing Left: 2 X 4 SYP No.3, Right: 2 X 4 SYP No.3 be installed during truss erection, in accordance with Stabilizer Installation guide. REACTIONS All bearings 39 -0-0. (lb) - Max Horz 1=- 152(LC 18) Max Uplift All uplift 100 lb or less at joint(s) 33, 34, 35, 36, 37, 38, 39, 30, 29, 28, 27, 26, 25, 24 except 1=- 2499(LC 17), 40=- 159(LC 16), 23=-143(LC 17), 21=- 2523(LC 18) Max Gray All reactions 250 lb or less at joint(s) 31, 33, 34, 35, 36, 37, 38, 39, 30, 29, 28, 27, 26, 25, 24 except 1= 2616(LC 10), 40= 342(LC 25), 23= 325(LC 28), 21= 2695(LC 9) FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1- 2=- 5668/5507, 2-3=-4592/4530, 3-4 =- 3993/3984, 4 -5 =- 3403/3459, 5-6 =- 3025/2975, 6-7 =- 2837/2932, 7-8=-2278/2406, 8 -9 =- 1719/1879, 9-10 =- 1159/1355, 10- 11=- 606/828, 11-12=-607/823, 12-13=-1159/1334, 13-14=-1719/1844, 14-15=-2278/2357, 15 -16 =- 2837/2875, 16.17 =- 3397/3401, 17- 18=- 3458/3435, 18 -19 =- 3953/3932, 19 -20 =- 4536/4478, 20- 21=- 5608/5458 BOT CHORD 1- 40= 4841/5056, 39 -40 =- 3992/4180, 38 -39 =- 3492/3680, 37 -38 =- 2992/3180, 36 -37 =- 2492/2680, 35- 36=- 1992/2180, 34 -35 =- 1492/1680, 33 -34 =- 992/1180, 32- 33= 492/680, 30- 31= 493/681, 29 -30 =- 993/1181, 28- 29=- 1493/1681, 27- 28=- 1993 /2181,26 -27 =- 2493/2681,25 -26 =- 2993/3181,24 -25 =- 3493/3681, 23 -24 =- 3993/4181, 21-23=4814/5055 QUALIFIED BUILDING DESIGNER OR PROJECT ENGINEER SHALL REVIEW THE INPUT NOTES LENGTH AND PLACEMENT OF CONNECTION TO TRANSFER LATERAL FORC ' - 1) Unbalanced roof live loads have been considered for this design. SUPPORTING STRUCTURE AS STATED IN THE DRAG LOAD NOTE BELO �� PR °Fe 2) Wind: ASCE 7 -05; 105mph; TCDL= 4.2pst; BCDL= 6.0psf; h =25ft; Cat. II; Exp B; enclosed; MWFRS (low -rise) gable end zone; 5� \AGIN •. - L cantilever left and right exposed ; Lumber DOL =1.33 plate grip DOL =1.33 c, , 'G 9 ' . 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry '9 Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1 -2002. 1 j• -' 4 P E r 4) All plates are MT20 plates unless otherwise indicated. 5) All plates are 2x4 MT20 unless otherwise indicated. / 6) Gable requires continuous bottom chord bearing. .• .;,, 7) Gable studs spaced at 2 -0 -0 oc. / 8) This truss has been designed for a 10.0 psi bottom chord live load nonconcurrent with any other live loads. ,p � _. 9) • This truss has been designed for a live load of 20.Opsf on the bottom chord in all areas where a rectangle 3 -6-0 tall by 2 -0-0 wide '9 . is 4, will fit between the bottom chord and any other members. M vi 10) A plate rating reduction of 20% has been applied for the green lumber members. F R S. 11) This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and Digital Signature referenced standard ANSI/TPI 1. Continued on page 2 ( EXPIRATION DATE: 06/30/12 May 23,2011 4 4 A WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MIMIC REF ERENCE PAGE MD 7473 rev. 10 108 BEFORE UEA Design valid for use only with Weir connectors. Thh design h based only upon parameters shown, and h for an individual budding component. Mil Applicability of design paramenters and proper Incorporation of component Is responsibility of budding designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to Insure stability during construction h the respondbilhity of the MiTek' erector. Additional permanent bracing of the overall structure is the responsibility of the budding designer. For general guidance regarding ,a IMNIORN fabrication, quality control. storage, delivery, erection and bracing, consult A NSI /1PI1 Quality Cdtmla, D58 -89 and SCSI Building Component 7777 Greenback Lane, Suite 109 Safely Information available from Truss Plate Institute. 281 N. Lee Sheet, Stele 312. Alexandria, VA 22314. Citrus Heights, CA, 95810 Job Truss Truss Type . Qty Ply Pulte Homes - Building 17 Roof R33134265 81106182 -B B5 GABLE 1 1 Job Reference (optional) Pro -Build Clackamas Truss, Cladkamas,OR 97015 -1129 7.250 s May 11 2011 MiTek Industries, Inc. Mon May 23 09:02:41 2011 Page 2 ID: pM0FdeJHd3WcFjeuzw57EXzHOWE- J8gAO8mSs4Nr ?EEII5aLghMJgnzo2kyqe8Vp4GzDeBS NOTES 12) This truss has been designed for a total drag load of 250 plf. Lumber DOL= (1.33) Plate grip DOL= (1.33) Connect truss to resist drag loads along bottom chord from 0-0-0 to 39-0 -0 for 250.0 plf. 13) "Fix heels only" Member end fixity model was used in the analysis and design of this truss. LOAD CASE(S) Standard • • • • EMMA 1 s ® WARNING - Ver(/jy design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE MII1.7473 rev. 10-'08 BEFORE IRE. Design valid for use only with MiTek connectors. The design h based only upon parameters shown, ands for an indtutdual budding component. Applicabdily of design param enters and proper Incorporation of component is responsibiity of budding designer - not truss designer. Bracing shown h for lateral support of individual web members only. Additional temporary bracing to insure stabdily during construction is the responsibility of the MiTek' erector. Additional permanent bracing of the overall structure is tho responsibility of the budding designer. For general guidance regarding I. fabrication, quality control, storage. delivery. erection and bracing, consult ANSI/TPIT Quality Criteria, DSB•89 and BCSI Building Component 7777 Greenback Lane, Suite 109 Solely Information available from Truss Plate Institute. 281 N. Lee Street. Suite 312. Alexandria. VA 22314. Citrus Heights, CA, 95610 Job Truss Truss Type Qty Ply Pulte Homes - Building 17 Roof R33134266 81106182 -8 C1 Special Truss 1 1 Job Reference (optional) Pro -Build Clackamas Truss, Cladcamas,OR 97015 -1129 7.250 s May 11 2011 MiTek Industries, Inc. Mon May 23 09:02:47 2011 Page 1 ID:pMOFdeJHd3WcFjeuzw57EXzHOWE -811 RgCgDRw7 ?j9hv6Lh14ycLgC1 rSS1j14y8M2DeBM 1 1990 I 36-0.0 7 -o-9 1 1 -0-0 190-0 18-0.0 1 -0.0 Seel.. 1 697 sr6 = n ii 600 Its 10. - 12 9 17 6 10 i d 15 60.6 17 9 2 III 1111111111111111 20 .11111 WO = 5x6 = WO = 36 35 34 33 n 31 30 a 28 n 26 n 24 23 22 1 390.0 1 36-0-0 Plate Offsets (X,Y): f2:0- 0- 7,Edge1, 15:0- 3- 0,Edgel, 117:0- 3- 0,Edgel, 120:0- 0- 6,Edge1,129:0 -3 -0,0 -3-01 LOADING (psf) SPACING 2 -0-0 CSI DEFL in (hoc) I /deft Ud PLATES GRIP TCLL 25.0 Plates Increase 1.15 TC 0.61 Vert(LL) 0.01 21 n/r 180 MT20 220/195 TCDL 7.0 Lumber Increase 1.15 BC 0.55 Vert(TL) 0.01 21 nlr 180 BCLL 0.0 • Rep Stress Incr YES WB 0.16 Horz(TL) 0.06 29 n/a n/a BCDL 10.0 Code IRC2009/TPI2007 (Matrix) Wind(LL) 0.00 20 n/r 90 Weight: 212 lb FT= 10% LUMBER BRACING TOP CHORD 2 x 4 DF No.18Btr G TOP CHORD Structural wood sheathing directly applied or 2 -10-2 oc purlins. BOT CHORD 2 x 4 DF No.18Btr G BOT CHORD Rigid ceiling directly applied or 3 -1 -9 oc bracing. OTHERS 2 x 4 DF Std G WEBS 1 Row at midpt 11 -29 WEDGE MiTek recommends that Stabilizers and required cross bracing Left: 2 X 4 SYP No.3, Right: 2 X 4 SYP No.3 be installed during truss erection, in accordance with Stabilizer Installation guide. REACTIONS All bearings 36 -0-0. (Ib) - Max Horz2= 161(LC 16) Max Uplift All uplift 100 lb or less at joint(s) 30, 31, 32, 33, 34, 35, 28, 27, 26, 25, 24, 23 except 2=- 2334(LC 17), 36=- 148(LC 16), 22=- 149(LC 17), 20= 2341(LC 18) Max Gray All reactions 250 lb or less at joint(s) 29, 30, 31, 32, 33, 34, 35. 28, 27, 26, 25, 24, 23 except 2= 2520(LC 10), 36= 358(LC 25), 22= 359(LC 28), 20= 2517(LC 9) FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2- 3=- 5242/5106, 3-4=-4024/3993, 4 -5 =- 3434/3458, 5-6 =- 3391/3417, 6-7 =- 2843/2918, 7 -8 =- 2282/2391, 8 -9= 1724/1864, 9- 10=- 1164/1339, 10 -11 =- 611/813, 11 -12= 602/798, 12- 13=- 1154/1308, 13- 14=- 1714/1819, 14 -15 =- 2273/2331, 15 -16 =- 2833/2854, 16 -17 =- 3333/3352, 17 -18 =- 3404/3393, 18- 19=- 3981/3935, 19- 20=- 5177/5047 BOT CHORD 2-36=-4458/4659, 35 -36 =- 3483/3659, 34 -35 =- 2958/3159, 33 -34 =- 2483/2659, 32 -33 =- 1983/2159, 31- 32=- 1483/1659, 30 -31 =- 983/1159, 29- 30=- 483/659, 28- 29=- 502/678, 27 -28 =- 1002/1178, 26- 27=- 1502/1678, 25 -26 =- 2002/2178, 24 -25 =- 2502/2678, 23 -24 =- 2953/3178, 22 -23 =- 3502/3678, 20- 22= -4452/4677 WEBS 3-36 =- 259/177, 19 -22 =- 261/178 QUALIFIED BUILDING DESIGNER OR PROJECT ENGINEER SHALL REVIEW THE INPUT LENGTH AND PLACEMENT OF CONNECTION TO TRANSFER LATERAL FORCES TO THE NOTES 1) Unbalanced roof live loads have been considered for this design. SUPPORTING STRUCTURE AS STATED IN THE DRAG LOAD NOTE BELOW. 2) Wind: ASCE 7 -05; 105mph; TCDL= 4.2psf; BCDL= 6.Opsf; h =25ft; Cat. II; Exp B; enclosed; MWFRS (low -rise) gable end zone; C� P E 't PR OFF, cantilever left and right exposed ; Lumber DOL =1.33 plate grip DOL =1.33 c " N E '5 > 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry c ' E 9 ' . Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1 -2002. kr - 9 4) All plates are 2x4 MT20 unless otherwise indicated. ` 6:p- E r 5) Gable requires continuous bottom chord bearing. / / 6) Gable studs spaced at 2 -0-0 oc. i� 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 8) * This truss has been designed for a live load of 20.Opsf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2 -0-0 wide .. OR .0 � CO will fit between the bottom chord and any other members. ,O T's / - 9) A plate rating reduction of 20% has been applied for the green lumber members. - 9 4 , E " � � 10) This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and �f N ref standard ANSI/TPI 1. FR $ S. 11) This truss has been designed for a total drag load of 250 plf. Lumber DOL= (1.33) Plate grip DOL= (1.33) Connect truss to resist Digital Signature drag loads along bottom chord from 0 -0-0 to 36-0 -0 for 250.0 plf. Continued on page 2 ( EXPIRATION DATE: 06/30/12 May 23,2011 I t A WARNING Verify deign parameters and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE MR 7473 re. 10 '08 BEFORE USE. -- Design valid for use only with MOck connectors. This design is based only upon parameters shown, and k for an individual building component. Applicablity of design param enters and proper incorporation of component is responsibiily of butding designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsrbtlily of the MiTek erector. Additional permanent bracing of the overall structure is the responsibility of the butding designer. For general guidance regarding .� .... fabrication, quality conhol, storage, delivery, erection and bracing, consult ANSI/TPI1 Quality Criteria, 058 -89 and BCSI Building Component 7777 Greenback Lane, Suite 109 Safety Information makable from Truss Plate Institute, 281 N. Lee Street. Suite 312, Alexandria, VA 22314. Citrus Heights, CA, 95810 Job Truss Truss Type Qty Ply Pulte Homes - Building 17 Roof R33134266 B1106182 -B C1 Special Truss 1 1 Job Reference (optional) Pro -Build Clackamas Truss, Clactamas,OR 97015 -1129 7.250 s May 11 2011 MiTek Industries, Inc. Mon May 23 09:02:48 2011 Page 2 ID: pM0FdeJHd3WcFjeuzw57EXzH0WE- cVbpuYrrCEFrLJG5f3C d99WacN4BvGsFkhhciMzDeBL NOTES 12) "Fix heels only Member end fixity model was used in the analysis and design of this truss. LOAD CASE(S) Standard • • • • • • • • • • A WARNI NG - Verify design parameters and READ NOTES ON THIS AND INCL UDED MflT3R REFERENCE PAGE 151.74 73 ma. 10.'08 BEFORE USE. Design valid for use only with MTek connectors. Thk design is based only upon parameters shown- and k for an individual budding component. Applicability of design param enters and proper incorporation of component Is responsibility of budding designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responslsdlity of the MiTek• erector. A dditional permanent bracing of the overall structure is the responsibility of the budding designer. For general guidance regarding Plawlil .n AAAAAA 14 fabrication, quality control, storage. delivery, erection and bracing, consult ANSI /TP11 Quality Criteria, 050 -89 and BCSI Building Component 7777 Greenback Lane, Suite 109 Safely Inlormatlon available from Truss Plate Institute. 281 N. Lee Street. Suite 312. Alexandria, VA 22314. Citrus Heights, CA, 95810 • Job Truss Truss Type Qty Ply Pulte Homes - Building 17 Roof • R33134267 81106182 -B C2 Special Truss 7 1 Job Reference (optional) Pro -Build Clackamas Truss, Cladcamas,OR 97015 -1129 7.250 s May 11 2011 MiTek Industries, Inc. Mon May 23 09:02:49 2011 Page 1 ID: pM0FdeJHd3WcFjeuzw57EXzH0WE -4h9C 5usTzYNiy Srl DmkD9Nikv0hHwFt ?UO REMozDeBK )1 - ao a -0-0 1 12 -7 -3 I 18-0-0 I 23.4 -13 I 29-7 -13 I 38-0 -0 7 -0-9 1 - 0-0 8-4-4 8-3-0 5 -4.13 5-4-13 8 -2 -15 8-4 -3 -o-o s<...1687 5,6 = 6 600 17 3106 3N� 5 7 3,5 G y ^ 3N d 2.4 \\ 1 8 2144 a•` •0 9 2 10 I • =' p , 4 1 y r0- M 11 l a 14 15 18 17 18 12 - \ 13 3v8 = 334 = 5r10 = 354 = 30-8 = I 9 -0-8 1 18-0-0 1 28 -11 -9 I 38-0-0 t 9 -0-e 8-11.9 8-11 -8 9-0-8 Plate Offsets (X,Y): 12:0-8- 0,0 -0- 61,17:0 -0-0,0- 0- 01,l9:0 -0- 0.0-0- 01,(10:0- 8- 0,0 -0- 61,113:0 -5- 0,0.3 -01 LOADING (psf) SPACING 2 -0-0 CSI DEFL in (loc) I /deb Ud PLATES GRIP TCLL 25.0 Plates Increase 1.15 TC 0.39 Vert(LL) -0.28 13-14 >999 240 MT20 220/195 TCDL 7.0 Lumber Increase 1.15 BC 0.68 Vert(TL) -0.58 13-14 >739 180 BCLL 0.0 ' Rep Stress Incr YES WB 0.62 Horz(TL) 0.15 10 n/a n/a BCDL 10.0 Code IRC2009/TP12007 (Matrix) Weight: 170 lb FT = 10% LUMBER BRACING TOP CHORD 2 x 4 DF No.1&Btr G TOP CHORD Structural wood sheathing directly applied or 3 -5-1 oc puffins. BOT CHORD 2 x 4 DF No.1&Btr G BOT CHORD Rigid ceiling directly applied or 9 -0-0 oc bracing. WEBS 2 x 4 DF Std G WEBS 1 Row at midpt 5-13, 7 -13 MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide. REACTIONS (Ib /size) 2= 1705/0 -5 -8 (min. 0- 1 -13), 10= 1705/0 -5 -8 (min. 0 -1 -13) Max Horz2= 132(LC 5) Max Uplift2=- 376(LC 5), 10=- 376(LC 6) FORCES (Ib) - Max. Comp. /Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 2 -3 =- 3079/585, 3-4=-2820/528, 4-5=-2729/549, 5-6 =- 1975/436,6 -7 =- 1975/436, 7 -8 =- 2728/549, 8 -9 =- 2819/528, 9-10= 3078/585 BOT CHORD 2-14=-547/2656, 14 -15 =- 345/2152, 15- 16=- 345/2152, 13-16=-345/2152, 13 -17 =- 253/2151,17 -18 =- 253/2151,12 -18 =- 253/2151,10 -12 =- 415/2655 WEBS 3 -14 =336/ 241, 5-14= 85/601, 5-13 =- 730/317, 6-13 =- 267/1414, 7 -13 =- 730/317, 7 -12= 85/600, 9-12 =- 336/241 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7 -05; 105mph; TCDL= 4.2psf; BCDL= 6.Opsf; h =25ft; Cat. II; Exp B; enclosed; MWFRS (low -rise) gable end zone; cantilever left and right exposed ; Lumber DOL =1.33 plate grip DOL =1.33 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) • This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6 -0 tall by 2 -0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 5) A plate rating reduction of 20% has been applied for the green lumber members. P R 6) This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and referenced �(�E� OFF standard ANSI/rPl 1. co NGINE oz, 7) "Fix heels only" Member end fixity model was used in the analysis and design of this truss. c, t R LOAD CASE(S) Standard " 1 • : t4.' 4 - � o • R E c • is � Oj ( M RS.1‘ � C " Digital Signature EXPIRATION DATE: 06/30/12 j May 23,2011 4 1 A WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MUER REFERENCE PAGE Mil 7473 res. 10 '08 BEFORE USE. Design valid for use only with Mirek connectors. This design 6 based only upon parameters shown, and is for an individual building component. Applicability of design param en ters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown Is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the MiTek' erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding - -- --_ fabrication. quality control, storage, delivery, erection and bracing. consult ANSI/IPI1 Quality Criteria, D58 -89 and BCSI Building Component 7777 Greenback Lane, Suite 109 Solely Information available from Truss Plate Institute, 281 N. Lee Street. Suite 312 Alexandria, VA 22314. Citrus Heights, CA. 95610 Job Truss Truss Type Qty Ply Pulte Homes - Building 17 Roof R33134268 81106182 -B C3 GABLE 1 1 ' Job Reference (optional) Pro -Build Cladcamas Truss, Cladcamas,OR 97015 -1129 7.250 s May 11 2011 MiTek Industries, Inc. Mon May 23 09:02:54 2011 Page 1 ID: pMOFdeJHd3WcFjeuzw57EXzHOWE- Rey58bwco47? 3EjF0JJOsQPY61QVbdlleg8710zDeBF t7 -00 18-0.0 I 36-0.0 7 -09 1 -0-0 16-0.5 16-00 4.0-0 64414. 1.69-7 546 = ' 11 600 112 t0 12 . . 4%, 17 8 4 15 446 G Q fi 1111,1..7 6 J 5 4 B 0 2 410 = 548 — 36 35 N 33 32 31 30 29 29 27 28 25 24 23 22 4410 I 38-00 3000 I . Plate Offsets (X,Y): 12:0.0- 7,Edge1, 15:0- 3- 0,Edgel, 117:0- 3- 0,Edge1, f20:0- 0- 6,Edge1, 129:0 -3 -0,0 -3-01 LOADING (psi) SPACING 2 -0-0 CSI DEFL in (lac) I /deft Ud PLATES GRIP TCLL 25.0 Plates Increase 1.15 TC 0.61 Vert(LL) 0.01 21 n/r 180 MT20 220/195 TCDL 7.0 Lumber Increase 1.15 BC 0.55 Vert(TL) 0.01 21 n/r 180 BCLL 0.0 • Rep Stress lncr YES WB 0.16 Horz(TL) 0.06 29 n/a n/a BCDL 10.0 Code IRC2009/TPI2007 (Matrix) Wind(LL) 0.00 20 n/r 90 Weight: 211 lb FT = 10% LUMBER BRACING TOP CHORD 2 x 4 DF No.18Btr G TOP CHORD Structural wood sheathing directly applied or 2 -10-4 oc puffins. . BOT CHORD 2 x 4 DF No.1 &Btr G BOT CHORD Rigid ceiling directly applied or 3 -1 -9 oc bracing. OTHERS 2 x 4 DF Std G WEBS 1 Row at midpt 11 -29 WEDGE MiTek recommends that Stabilizers and required cross bracing Left: 2 X 4 SYP No.3, Right: 2 X 4 SYP No.3 be installed during truss erection, in accordance with Stabilizer Installation guide. REACTIONS All bearings 36-0-0. (Ib) - Max Horz 2= 132(LC 15) Max Uplift All uplift 100 lb or less at joint(s) 30, 31, 32, 33, 34, 35, 28, 27, 26, 25, 24, 23 except 2=- 2325(LC 17), 36=- 148(LC 16), 22=- 149(LC 17), 20 — 2337(LC 18) Max Gray All reactions 250 lb or less at joint(s) 29, 30, 31, 32, 33, 34, 35, 28, 27, 26, 25, 24, 23 except 2= 2510(LC 10), 36= 358(LC 25), 22= 359(LC 28), 20= 2512(LC 9) FORCES (Ib) - Max. Comp. /Max. Ten. - All forces 250 (Ib) or less except when shown. . TOP CHORD 2- 3=- 5219/5084, 3 -4 =- 4001/3972, 4 -5 =- 3412/3436, 5-6 =- 3034/2986, 6-7 =- 2837/2911, 7 -8 =- 2277/2385, 8 -9 =- 1718/1858, 9- 10=- 1158/1333, 10 -11 =- 606/807, 11 -12= 607/802, 12- 13=- 1159/1313, 13- 14=- 1720/1824, 14 -15 =- 2278/2336, 15 -16 =- 2838/2858, 16 -17 =- 2988/2987, 17 -18 =- 3393/3383, 18 -19 =- 3971/3925, 19- 20=- 5166/5037 BOT CHORD 2- 36= 4467/4668, 35 -36 =- 3492/3667, 34 -35 =- 2967/3167, 33 -34 =- 2492/2667, 32- 33=- 1992/2167, 31- 32=- 1492/1667, 30 -31 =- 992/1167, 29- 30= 492/667, ' 28 -29 =- 493/668, 27 -28 =- 993/1168, 26 -27 =- 1493/1668, 25 -26 =- 1993/2168, 24 -25 =- 2493/2668, 23- 24=- 2944/3168, 22 -23 =- 3493/3668, 20 -22 =- 4443/4668 WEBS 3-36= 260/177, 19 -22 =- 261/179 QUALIFIED BUILDING DESIGNER OR PROJECT ENGINEER SHALL REVIEW THE INPUT NOTES LENGTH AND PLACEMENT OF CONNECTION TO TRANSFER LATERAL FORCES TO THE 1) Unbalanced roof live loads have been considered for this design. SUPPORTING STRUCTURE AS STATED IN THE DRAG LOAD NOTE BELO 2) Wind: ASCE 7 -05; 105mph; TCDL= 4.2psf, BCDL= 6.0psf; h =25ft; Cat. II; Exp B; enclosed; MWFRS (low -rise) gable end zone; t ` Q � 0 PR QFFS cantilever left and right exposed ; Lumber 001 =1.33 plate grip DOL =1.33 ' s /AG)N _ c$'/ 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry � � ' 0 Gable End Details as applicable, or consult qualified building designer as per,ANSI/TPI 1 -2002. y 4) All plates are 2x4 MT20 unless otherwise indicated. 16: '' ) 5) Gable requires continuous bottom chord bearing. 6) Gable studs spaced at 2 -0-0 oc. /- . 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. y ' 8) • This truss has been designed for a live load of 20.Ops1 on the bottom chord in all areas where a rectangle 3-6-0 tall by 2 -0-0 wide w • REG r will fit between the bottom chord and any other members. 9) A plate rating reduction of 20% has been applied for the green lumber members. '91‘ v' l'6'4/ AA-- : / gel.. 10) This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and S': �N� referenced standard ANSI/TPI 1. 11) This truss has been designed for a total drag load of 250 plf. Lumber DOL= (1.33) Plate grip DOL= (1.33) Connect truss to resist Digital Signature drag loads along bottom chord from 0 -0-0 to 36-0 -0 for 250.0 plf. Continued on page 2 ( EXPIRATION DATE: 06/30/12 May 23,2011 1 A WARNING , Verify design parameters and READ NOTES ON THIS AND INCLUDED PIT= REFERENCE PAGE MD•7473 rep. 10-'08 BEFORE USE - -' Design valid for use only with Mgek connectors. This design is based only upon parameters shown, ands for an individual budding component. Applicability of design param enters and proper incorporation of component Is responsibility of budding designer - not truss designer. Bracing shown is for lateral support of Individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the MiTek' erector. Additional permanent bracing of the overad structure Is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delNery. erection and bracing. consult ANSI/TPIl Quality Criteria. DSB -89 and BCSI Building Component 7777 Greenback Lane, Suite 109 Safety Information evadable from Truss Plate Institute. 281 N. Lee Street. Suite 312. Alexandria. VA 22314. Citrus Heights, CA, 95810 • • Job Truss Truss Type Qty Ply Pulte Homes - Building 17 Roof R33134268 • B1106182 -B C3 GABLE 1 1 Job Reference (optional) Pro -Build Clackamas Truss, Cladsamas,OR 97015 -1129 7.250 s May 11 2011 MiTek Industries, Inc. Mon May 23 09:02:55 2011 Page 2 ID:pMOFdeJ Hd3 WcFjeuzw57EXzHOW E- vrWTMxwEZO7sgN IRa 1 gdPexjsQmkK4 ?usKuZaSzDeBE NOTES 12) "Fix heels only Member end fixity model was used in the analysis and design of this truss. LOAD CASE(S) Standard • • ® WARNING • Verify design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE D111 •7473 rca. 10'08 BEFORE USE Design valid for use only with MiTek connectors. This design k based only upon parameters shown. and is for an individual budding component. Applicabtily of design paramenters and proper Incorporation of component Is responsibility of budding designer - not truss designer. Bracing shown b for lateral support of individual web members only. Additional temporary bracing to insure stability during construction's the responsbtlity of the MiTek erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication. quality control, storage, delivery, erection and bracing. consult ANSI /TP11 Ouallly CrIlerla, 058.89 and BC51 Building Component 7777 Greenback Lane, Suite 109 Safety Information available from truss Plate Institute, 281 N. Lee Street, Suite 312, Alexandria, VA 22314. Citrus Heights. CA, 95610 • Job Truss Truss Type Qty Ply Pulte Homes - Building 17 Roof R33134269 B1106182 -B El Hip Truss 1 1 Job Reference Motional) Pro -Build Cladcamas Truss, Cladcamas,OR 97015 -1129 7.250 s May 11 2011 MiTek Industries, Inc. Mon May 23 09:02:56 2011 Page 1 ID:pM0FdeJHd3WcFjeuzw57EXzHOW E -N 14rZHxsJh Fj IXte7kMsxrUz2gB83X ?15_d66uzDeBD I .1.0-0 1 4-5-12 I 7-6-4 I 12 -0-0 I 13.0-0 I 1 -o0- 4 -5-12 3-043 4.5-12 1-0-0 376 = Scale • 1.28 7 474 274 II 5 6 T a iii 7 274 II 806 12 2 7 4 0 3 ' 1 3 6 2 i1 N N N b. a N N N Y Mt 9 0- 1 ‘ 4 13 12 11 10 576 = 274 II 274 II 274 II 274 II 476 Ii I 12 -0.0 I 12.0.0 Plate Offsets (X,Y): (4:0 -1- 14,0 -1 -101, 16:0-3-5.Eclael, 18:0 -3-0,0 -1-41 LOADING (psf) SPACING 2 -0-0 CSI DEFL in (lac) 1 /defi Ltd PLATES GRIP TCLL 25.0 Plates Increase 1.15 TC 0.26 Vert(LL) 0.00 8 n/r 180 MT20 220/195 TCDL 7.0 Lumber Increase 1.15 BC 0.22 Vert(TL) 0.01 9 n/r 180 BCLL 0.0 • Rep Stress Incr YES W8 0.18 Horz(TL) 0.01 11 n/a n/a BCDL 10.0 Code IRC2009/TPI2007 (Matrix) Wind(LL) 0.00 8 riff 90 Weight: 53 lb FT = 10% LUMBER BRACING TOP CHORD 2 x 4 DF No.18Btr G TOP CHORD Structural wood sheathing directly applied or 4 -6-6 oc purlins, except BOT CHORD 2 x 4 DF No.18Btr G 2 -0-0 oc purlins (6-0-0 max.): 4 -6. OTHERS 2 x 4 DF Std G BOT CHORD Rigid ceiling directly applied or 5 -2 -0 oc bracing. WEDGE MiTek recommends that Stabilizers and required cross bracing Left: 2 x 4 DF Std, Right: 2 x 4 DF Std be installed during truss erection, in accordance with Stabilizer Installation guide. REACTIONS All bearings 12 -0-0. (lb) - Max Horz 2=- 101(LC 3) Max Uplift All uplift 100 lb or less at joint(s) except 2=- 1295(LC 15), 8=-1006(LC 18), 12= -445(LC 16), 13=- 219(LC 16), 11=- 181(LC 13), 10= 232(LC 17) Max Gray All reactions 250 lb or less at joint(s) except 2= 1432(LC 27), 8= 1142(LC 9), 12= 572(LC 9), 13= 328(LC 9), 11= 264(LC 27), 10= 400(LC 28) • FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2- 3=- 2204/2143, 3-4= 1330/1295, 4- 5=- 535/562, 6-7 =- 498/489, 7- 8=- 1680/1585 BOT CHORD 2 -13= 1723/1829, 12- 13=- 1103/1209, 11 -12 =- 603/709, 10- 11= 447/553, 8 -10= 1327/1433 WEBS 4-12=-531/468, 3-13=-275/245, 7 -10= 327/264 QUALIFIED BUILDING DESIGNER OR PROJECT ENGINEER SHALL REVIEW THE INPUT LENGTH AND PLACEMENT OF CONNECTION TO TRANSFER LATERAL FORCES TO THE NOTES SUPPORTING STRUCTURE AS STATED IN THE DRAG LOAD NOTE BELOW. 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7 -05; 105mph; TCDL= 4.2psf; BCDL= 6.0psf; h =25ft; Cat. II; Exp B; enclosed; MWFRS (low -rise) gable end zone; cantilever left and right exposed ; Lumber DOL =1.33 plate grip DOL =1.33 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1 -2002. 4 ) Provide adequate drainage to prevent water ponding. tL�� r PR O F F is Gable requires continuous bottom chord bearing. 6) Gable studs spaced at 2 -0-0 oc. C " NG I NE • 1 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. c /' 9 0 2 8) ' This truss has been designed for a live load of 20.Opsf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2 -0-0 wide 9 will fit between the bottom chord and any other members. 16'4' B P 9) A plate rating reduction of 20% has been applied for the green lumber members. i f 10) This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 11) This truss has been designed for a total drag load of 250 plf. Lumber DOL= (1.33) Plate grip DOL= (1.33) Connect truss to resist • -� B , drag loads along bottom chord from 0 -0-0 to 12 -0-0 for 250.0 plf. • T 12) "Fix heels only" Member end fixity model was used in the analysis and design of this truss. 19 FMB �, � 13) De assumes 4x2 (flat orientation) purlins at oc spacing Indicated, fastened to truss TC w/ 2 -10d nails. - M F R S . -� N LOAD CASE(S) Standard Digital Signature EXPIRATION DATE: 06/30/12 May 23,2011 4 t A WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITER" RBPERENCB PAGE 6171.74 rca. 1008 BEFORB USE. - Design valid for use only with Mild( connectors. This design is based only upon parameters shown, and is for an Individual budding component. Applicability of design paramenlers and proper Incorporation of component is responsibiily of budding designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsib0ity of the MiTek erector. Additional permanent bracing of the overall structure Is the responsibility of the balding designer. Fe, general guidance regarding fabrication, quality control, storage. delivery, erection and bracing. consult ANSI /TPII Quality Criteria. DSB -89 and BCSI Building Component 7777 Greenback Lane. Suite 109 Safely Information available from Truss Plate Institute, 281 N. Lee Street, Suite 312. Alexandria, VA 22314. Citrus Heights, CA, 95610 s Job Truss Truss Type Qty Ply Pulte Homes - Building 17 Roof R33134270 81106182 -B E2 COMMON TRUSS 1 2 Job Reference (optional) Pro -Build Clackamas Truss, Cladcamas,OR 97015 -1129 7.250 s May 11 2011 MiTek Industries, Inc. Mon May 23 09:02:57 2011 Page 1 ID: pMOFdeJHd3WcFjeuzw57EXzHOWE- rDeDmdyU4 ?OawhSghSt5U31A EOUosIBKeNgeLzDeBC -I -o o I 3 -0-0 1 6 -0 -0 I 9 -0-0 I 12 -0.0 13-0.0 1 1 -o-0 3-0-0 3 -0-0 3 -0-0 3-0-0 1 -0-0 • 1.6 II Scala • 1:33 7 /t 800 U 2a1 \\ ,/ // 3 . Ak\O\ , 4 11 Al I. e f/ -M r r °M- �� 10 5 I1 B 12 �� Spacial sae = Spacial sae = Special La = 3ae = Special Spacial I 4.0.0 l 8-0-0 I 12 -0-0 I 4 -0-0 4•0.0 4-0-0 Plate Offsets (X•Y): 12:0- 8- 0.0 -0. 131.14:0 -2- 8.0-2- 01.16:0 -8- 0.0-0- 131,18:0 -4- 0.0-4- 121.19:0- 4 -0.0 -4 -121 LOADING (psf) SPACING 2 -0-0 CSI DEFL in (roc) I /dell Ud PLATES GRIP TCLL 25.0 Plates Increase 1.15 TC 0.19 Vert(LL) -0.05 8 -9 >999 240 MT20 220/195 TCDL 7.0 Lumber Increase 1.15 BC 0.79 Vert(TL) -0.11 8 -9 >999 180 BCLL 0.0 • Rep Stress Incr NO WB 0.69 Horz(TL) 0.03 6 n/a n/a BCDL 10.0 Code IRC2009/TPI2007 (Matrix) Weight: 132 lb FT = 10% LUMBER BRACING TOP CHORD 2 x 4 OF No.18Btr G TOP CHORD Structural wood sheathing directly applied or 6 -0-0 oc purlins. BOT CHORD 2 X 6 DF No.2 G BOT CHORD Rigid ceiling directly applied or 10-0 -0 oc bracing. WEBS 2 x 4 DF Std G REACTIONS (lb /size) 2= 4009/0 -5 -8 (min. 0 -2 -2), 6= 4054/0 -5-8 (min. 0-2 -3) Max Horz 2=- 133(LC 3) Max Uplift2=- 924(LC 5), 6=- 934(LC 6) FORCES (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 2- 3=- 5382/1170, 3-4= 5258/1193, 4- 5=- 5255/1192, 5-6 =- 5379/1169 BOT CHORD 2 -10= 927/4270, 9-10 =- 927/4270, 9- 11=- 584/2975, 8 -11 =- 584/2975, 8- 12=- 887/4268, 6-12= 887/4268 WEBS 4 -8 =- 709/3108, 5-8 =- 98/266, 4 -9 =- 710/3114, 3-9 =- 98/268 NOTES 1) 2 -ply truss to be connected together with 10d (0.131 "x3 ") nails as follows: Top chords connected as follows: 2 x 4 - 1 row at 0-9 -0 oc. Bottom chords connected as follows: 2 X 6 - 2 rows at 0-6-0 oc. Webs connected as follows: 2 x 4 - 1 row at 0-9-0 oc. 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. 3) Unbalanced roof live loads have been considered for this design. 4) Wind: ASCE 7 -05; 105mph; TCDL= 4.2psf; BCDL= 6.0psf; h =25ft; Cat. II; Exp B; enclosed; MWFRS (low -rise) gable end zone; cantilever left and right exposed ; Lumber DOL =1.33 plate grip DOL =1.33 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) • This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2 -0-0 wide will fit between the bottom chord and any other members. ,�.D PR OFF 7) A plate rating reduction of 20% has been applied for the green lumber members. K, s 8) This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and referenced N �/ standard I1. 9) "Fix heels only" M s only" Member end fixity model was used in the analysis and design of this truss. �� 1 /f� • ;, � E 10) Hanger(s) or other connection device(s) shall be provided suffident to support concentrated load(s) 1387 lb down and 307 lb up at / 2 -0-12, 1387 lb down and 307 lb up at 4 -0 -12, 1387 lb down and 307 lb up at 6 -0-12, and 1387 lb down and 307 lb up at 8 -0-12, and 1387 lb down and 307 lb up at 10 -0 -12 on bottom chord. The design /selection of such connection device(s) is the responsibility .I r of others. or q � , LOAD CASE(S) Standard • 1'6 FM 1) Regular: Lumber Increase =1.15, Plate Increase =1.15 . B Uniform Loads (plf) F R S. I N Vert: 1- 4 = -64, 4- 7 = -64, 2 -6 = -20 Digital Signature Continued on page 2 ( EXPIRATION DATE: 06/30/12 May 23,2011 • ■ ® WARNING • Verify design parameters and READ NOTES ON 71115 AND INCLUDED MITER" REFERENCE PAGB MR-7473 res. 10'08 BEFORE MB. � Design valid for use only with MTek connectors. Thh design's based only upon parameters shown. and is for an individual budding component. Applicability of design param enters and propel incorporation of component is responsibility of budding designer - not truss designer. Bracing shown is for lateral support or individual web members only. Additional temporary bracing to Insure stability during construction h the responsibdlity of the MiTek' erector. Additional permanent bracing of the overall structure is the responsibility of the budding designer. For general guidance regarding fabrication. quality control. storage. delivery, erection and bracing, consult ANSI /TP11 Quality Cdterlu. DSB•89 and SCSI Building Component 7777 Greenback Lane, Suite 109 Safety Information available from Truss Plate Institute. 281 N. Lee Street. Suite312. Alexandria. VA 22314. Citrus Heights, CA, 95610 • Job Truss Truss Type Qty Ply Pulte Homes - Building 17 Roof R33134270 81106182 -B E2 COMMON TRUSS 1 2 Job Reference loptio�r alt Pro -Build Clackamas Truss, Ctackamas,OR 97015 -1129 7 250 s May 11 2011 MiTek Industries, Inc. Mon May 23 09:02:57 2011 Page 2 ID: pMOFdeJHd3WcFjeuzw57EXzHOWE- rDeDmdyU4? OawhSghSt5U31A _EOUosIBKeNgeLzDeBC LOAD CASE(S) Standard Concentrated Loads (lb) Vert: 8=-1387(B) 9=-1387(B) 10=-1387(B) 11=-1387(B) 12=-1387(B) • • • 1 t ® WARNING - Verify y deign parameters and READ NOTES ON THIS AND INCLUDED MITER RBFERENCB PAGE MII.7473 rev. 10'08 BEFORE USE. -.Y..x Design valid for use only with Mack connectors. This design b based only upon parameters shown, and a for an Individual buiding component. Applicability of design paramenlers and proper incorporation of component Is responsibility of buiding designer - not truss designer. Bracing shown is for lateral support of Individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the MiTek, erector. Additional permanent bracing of the overall structure Is the responsibility of the buiding designer. For general guidance regarding POWER To ff fabrication, quality control, storage. delivery, erection and bracing consult ANSI/TPI1 Quality Criteria, DSB -89 and BCSI Building Component 7777 Greenback Lane, Suite 109 Safely Information available from Truss Plate institute. 281 N. Lee Street. Suite 312, Alexandria, VA 22314. - Citrus Heights, CA, 95810 Job Truss Truss Type Oty Ply Pulte Homes - Building 17 Roof R33134271 81106182 -B Fl Common Truss 2 1 Job Reference (optional) Pro -Build Clackamas Truss, Clackamas,OR 97015 -1129 7.250 s May 11 2011 MiTek Industries, Inc. Mon May 23 09:03:00 2011 Page 1 ID: pMOFdeJHd3 WcFjeuzw57FJ(zHOW E -GoJM Pe_N Nwm8n9BPMaO o6hfO RZU ?LfdObb KFgz DeB9 - 1-0 - 0 I 5 - 12 10.11.8 • 11 -11 -8 1 - SS-12 5-5-12 1 - 444 = Scale = 1:72 8 0-4 11 0-1 1l e00 S � 7 et P _ Ilk■s! f+ r r 1 WI 7 IS 9 e me II 254 11 0-4 II 2s4 II Ixe II 10-11 - 8 10-11.9 Plate Offsets (X,Y): 12:0 3 -0,0 -1 41,16:0 3 0,0 -1 4) LOADING (psi) SPACING 2 -0-0 CSI DEFL in (roc) I /deft Ud PLATES GRIP TCLL 25.0 Plates Increase 1.15 TC 0.24 Vert(LL) 0.00 7 n/r 180 MT20 220/195 TCDL 7.0 Lumber Increase 1.15 BC 0.19 Vert(TL) 0.01 7 n/r 180 BCLL 0.0 Rep Stress Incr YES WB 0.07 Horz(TL) 0.01 9 n/a n/a BCDL 10.0 Code IRC2009/TPI2007 (Matrix) Wind(LL) 0.00 6 n/r 90 Weight: 49 lb FT = 10% LUMBER BRACING TOP CHORD 2 x 4 DF No.18Btr G TOP CHORD Structural wood sheathing directly applied or 5 -0-6 oc puffins. BOT CHORD 2 x 4 DF No.18Btr G BOT CHORD Rigid ceiling directly applied or 5 -8 -14 oc bracing. OTHERS 2 x 4 DF Std G MiTek recommends that Stabilizers and required cross bracing WEDGE be installed during truss erection, in accordance with Stabilizer Left 2 x 4 DF Std, Right: 2 x 4 DF Std Installation guide. REACTIONS All bearings 10-11-8. (lb) - Max Horz 2=- 124(LC 12) Max Uplift All uplift 100 lb or less at joint(s) except 2=- 1051(LC 15), 6= 1064(LC 18), 10=- 163(LC 16), 8=- 162(LC 17) Max Gray All reactions 250 lb or less at joint(s) 9 except 2= 1192(LC 10), 6= 1192(LC 9), 10= 315(LC 9), 8= 315(LC 10) FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2- 3=- 1771/1751, 3-4=-668/695, 4 -5 =- 668/689, 5-6 =- 1766/1708 BOT CHORD 2 -10= 1388/1465, 9- 10=- 518/595, 8 -9 =- 518/595, 6-8= 1338/1465 NOTES QUALIFIED BUILDING DESIGNER OR PROJECT ENGINEER SHALL REVIEW THE INPUT LENGTH AND PLACEMENT OF CONNECTION TO TRANSFER LATERAL FORCES TO THE 1) Unbalanced roof live loads have been considered for this design. SUPPORTING STRUCTURE AS STATED IN THE DRAG LOAD NOTE BELOW. 2) Wind: ASCE 7 -05; 105mph; TCDL= 4.2psf; BCDL= 6.Opsf; h =25ft; Cat. II; Exp B; enclosed; MWFRS (low -rise) gable end zone; cantilever left and right exposed ; Lumber DOL =1.33 plate grip DOL =1.33 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1 -2002. 4) Gable requires continuous bottom chord bearing. 5) Gable studs spaced at 2 -0 -0 oc. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) ' This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6 -0 tall by 2 -0-0 wide PR OFF will fit between the bottom chord and any other members. .c+ 8) A plate rating reduction of 20% has been applied for the green lumber members. L N G I N - 9) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 2. 10) This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and � � 1 r . referenced standard 1. 11) This truss has been designed for a total drag load of 250 plf. Lumber DOL= (1.33) Plate grip DOL= (1.33) Connect truss to resist drag loads along bottom chord from 0 -0 -0 to 10 -11 -8 for 250.0 plf. 12) "Fix heels only" Member end fixity model was used in the analysis and design of this truss. � LOAD CASE(S) Standard e N R Digital Signature EXPIRATION DATE: 06/30/12 May 23,2011 A WARNING Verify design p0-,amc[ers and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE nII1 -7473 rco. 10 OS BEFORE USE. 11111 Design valid for use only with Mnek connectors. The design is based only upon parameters shown, and is for an individual buiding component. Applicabiity of design param enters and proper Incorporation of component Is responsiblity of buiding designer - not truss designer. Bracing shown B for lateral support of individual web members only. Additional temporary bracing to insure stabiity during construction's the responsibility of the MiTek' erector. Additional permanent bracing of the overall structure is the responsibility of the buiding designer. For general guidance regarding POW. R +e ms fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/T1 Quality Criteria, 058 -89 and 8C51 Building Component 7777 Greenback Lane, Suite 109 Safety Information avaiable from Truss Plate Institute. 281 N. Lee Street, Suite 312. Alexandria. VA 22314. Cities Heights, CA, 95610 Job Truss Truss Type Qty Ply Pulte Homes - Building 17 Roof R33134272 B1106182 -B F2 COMMON TRUSS 2 2 Job Reference (optional) Pro -Build Clackamas Truss, Cladcamas,OR 97015 -1129 7.250 s May 11 2011 MiTek Industries, Inc. Mon May 23 09:03:01 2011 Page 1 ID: pMOFdeJHd3WcFjeuzw57EXzHOWE- k?tkc_ ? ?8Eu ?OlmbwHxl evBpnrj7kdWnFFLtn6zDeB8 -1 -ao l 2 -8-14 1 5 -5-12 I 8-2 -10 I 1071 -8 1 11 -n -8 1 1 -o a 2 -8.14 2 -8-14 2.8-14 2 -8.14 1.0 -0 scale • 1:31.5 4,8 11 4 Pk 800 17 Isd h4 // 3 5 i 1 i 2 r �■� B 1" ' a Special Specs! e.e = s b ®I e.e = Special 4.8c. d.e. Saml 3.7 -13 1 7 -3.11 1 10-11.8 1 3-7-13 3-7 -13 3 -7 -13 Plate Offsets(X,Y): 12:0- 1- 9,0 -2- 01,16:0 -1- 9,0.2- 01,18:0 -4- 0,0.4- 121,19:0- 4 -0,0 -4 -121 LOADING (psf) SPACING 2 -0-0 CSI DEFL in (loc) 1/defi Ud PLATES GRIP TCLL 25.0 Plates Increase 1.15 TC 0.26 Vert(LL) -0.05 8 -9 >999 240 MT20 220/195 TCDL 7.0 Lumber Increase 1.15 BC 0.93 Vert(TL) -0.11 8 -9 >999 180 BCLL 0.0 * Rep Stress Incr NO WB 0.80 Horz(TL) 0.03 6 n/a n/a BCDL 10.0 Code IRC2009/TP12007 (Matrix) Weight: 121 Ib FT = 10% LUMBER BRACING TOP CHORD 2 x 4 DF No.1 &Btr G TOP CHORD Structural wood sheathing directly applied or 5 -7 -2 oc purlins. BOT CHORD 2 X 6 DF No.2 G BOT CHORD Rigid ceiling directly applied or 10-0 -0 oc bracing. WEBS 2 x 4 DF Std G REACTIONS (Ib /size) 2= 5210/0 -5 -8 (min. 0- 2 -12), 6= 4581/0 -3-8 ,(min. 0-2 -7) Max Horz 2 =122(LC 4) . Max Uplift2=- 1093(LC 5), 6=- 964(LC 6) FORCES (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 2 -3 =- 6045/1204, 3-4 =- 5911/1220, 4- 5=- 5993/1239, 5-6 =- 6107/1218 BOT CHORD 2-10=-949/4786, 10- 11=- 949/4786, 9-11 =- 949/4786, 9-12 =- 613/3373, 8 -12 =- 613/3373, 8 -13= 935/4890, 6-13 =- 935/4890 WEBS 4 -8 =- 749/3623, 5-8 =- 88/256, 4 -9 =- 715/3466, 3-9 =- 100/325 NOTES . 1) 2 -ply truss to be connected together with 10d (0.131 "x3 ") nails as follows: ' Top chords connected as follows: 2 x 4 - 1 row at 0-9 -0 oc. Bottom chords connected as follows: 2 X 6 - 2 rows at 0-4 -0 oc. Webs connected as follows: 2 x 4 - 1 row at 0.9-0 oc. 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. 3) Unbalanced roof live loads have been considered for this design. 4) Wind: ASCE 7 -05; 105mph; TCDL= 4.2psf; BCDL= 6.0psf; h=25ft; Cat. 11; Exp B; enclosed; MWFRS (low -rise) gable end zone; cantilever left and right exposed ; Lumber DOL =1.33 plate grip DOL =1.33 5) This truss has been designed for a 10.0 psf bottom chord live Toad nonconcurrent with any other live loads. 6) • This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2 -0-0 wide will fit between the bottom chord and any other members. � ��0 PR 7) A plate rating reduction of 20% has been applied for the green lumber members. s � / 8) This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and referenced �, \ (GN G)NE 0 2 standard ANSI/TPI 1. �•• 9) "Fix heels only" Member end fixity model was used in the analysis and design of this truss. Q 16: " 9 9 r 10) Hanger(s) or other connection device(s) shall be provided suffident to support concentrated load(s) 1750 Ib down and 351 Ib up at 1 -1 -4, 1750 Ib down and 351 Ib up at 3-1 -4, 17501b down and 351 Ib up at 5-1 -4, and 1750 Ib down and 351 Ib up at 7 -1-4, and ' 1750 Ib down and 351 Ib up at 9-1-4 on bottom chord. The design /selection of such connection device(s) is the responsibility of �/ others. Y °. • REGr' 1 LOAD CASE(S) Standard T F M� � '� 1) Regular: Lumber Increase =1.15, Plate Increase =1.15 � ,i� :::��� Uniform Loads (plf) F.. s •(% Vert: 1-4 =-64, 4-7 =-64, 2-6 = -20 , Digital Signature Continued on page 2 ( EXPIRATION DATE: 06/30/12 May 23,2011 ■ • ■ WARNING - Veri f)/ design parameters and READ NOTES ON MIS AND INCLUDED MITER REFBRENCB PAGE NR-7473 res. 10'08 BEFORE USS. _' Design valid for use only with MTek connectors. This design n based only upon parameters shown, and a for an individual building component. Applicability of design param enters and proper incorporation of component is responsibility of budding designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction's the responsibdllty of the MiTek erector. Additional permanent bracing of the woad structure is the responsibility of the budding designer. For general guidance regarding fabrication, quality control. storage. delivery. erection and bracing, consult ANSI /TPI1 Quality Criteria, 059.99 and BC51 Building Component 7777 Greenback Lane, Suite 109 Safety Information avaiable from Truss Plate Institute. 281 N. Lee Street. Suite 312, Alexandria. VA 22314. Citrus Heights, CA, 95610 Job Truss Truss Type Oty Pty Pulte Homes - Building 17 Roof R33134272 B1106182 -B F2 COMMON TRUSS 2 Job Reference (optional) Pro -Build Clackamas Truss, Cladkamas,OR 97015-1129 7.250 s May 11 2011 MiTek Industries, Inc Mon May 23 09:03:01 2011 Page 2 ID: pM0FdeJHd3WcFjeuzw57EXzH0WE- k ?tkc_ ? ?8Eu?OlmbwHxl evBpnrj7kdWnFFLtn6zDeB8 LOAD CASE(S) Standard Concentrated Loads (lb) Vert: 8=-1750(B) 10=-1750(B) 11 =-1750(B) 12=-1750(B) 13=-1750(B) t WARMNG - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEKRSPERENCB PAGE MD-7473 rev. 10•'08 BEFORE USE Design valid for use only with MiTek connectors. This design is based only upon parameters shown. and Is for an individual building component. Applicability of design paramenters and proper incorporation of component Is responsibility of building designer - not truss designer. Bracing shown b for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsib8lity of the MiTek' erector. Additional permanent bracing of the overall structure is the responsibility of the butding designer. For general guidance regarding .o. ..- Fabrication. quality control, storage. delNery. erection and bracing, consult ANSI/1911 Quality Criteria, 0S8-89 and BCSI Building Component 7777 Greenback Lane, Suite 109 Safely Information available from Truss Plate Institute, 281 N. Lee Street, Suite 312. Alexandria. VA 22314. Citrus Heights, CA, 95610 Job Truss Truss Type Qty Ply Pulte Homes - Building 17 Roof R33134273 B1106182 -B H1 Common Truss 2 1 Job Reference (optional) Pro -Build Clackamas Truss, Cladkamas,OR 97015 -1129 7.250 s May 11 2011 MiTek Industries, Inc. Mon May 23 09:03:02 2011 Page 1 ID: pMOFdeJHd3WcFjeuzw57EXzHOWE- CBR6gKOdvXOsOSLnU ?TGB6k1 EFH7TGRwTv4RJYzDeB7 2 -10-12 I 5.9.8 I 8 -a8 I 2 -10-12 2 -10.12 1.0 Scar- 1:20.9 4: _ 2 A N S L Im r 6 3:fi II 52. 1 3x4 = 3:4 = 3 :6 11 I 2 -10.12 I 5 - 9 - 8 I 2.10-12 2 -10-12 Plate Offsets (X,Y): 11:0-0- 11,0 -4 -51, 11:Edae,0 -0 -121, 13:0 - 0-0,0- 0-121, 13:0 -0- 11,0 -4 -51 - LOADING (psf) SPACING 2 -0-0 CSI DEFL in (loc), I /deft Ud PLATES GRIP TCLL 25.0 Plates Increase 1.15 TC 0.09 Vert(LL) -0.00 5 >999 240 MT20 220/195 TCDL 7.0 Lumber Increase 1.15 BC 0.05 Vert(TL) -0.01 1 -5 >999 180 BCLL 0.0 • Rep Stress Incr YES WB 0.05 Horz(TL) 0.00 3 n/a n/a BCDL 10.0 Code IRC2009/TP12007 (Matrix) Weight: 23 Ib FT = 10% LUMBER BRACING TOP CHORD 2 x 4 DF No.18Btr G TOP CHORD Structural wood sheathing diredly applied or 5 -9 -8 oc purlins. BOT CHORD 2 x 4 DF No.18Btr G BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. WEBS 2 x 4 DF Std G MiTek recommends that Stabilizers and required cross bracing WEDGE be installed during truss erection, in accordance with Stabilizer Left: 2 x 4 DF Std, Right: 2 x 4 DF Std Installation guide. REACTIONS (lb /size) 3= 315/0-5 -8 (min. 0-1 -8), 1= 219/0-3 -8 (min. 0-1-8) Max Horz1= -77(LC 3) Max Uplift3=- 115(LC 6), 1= -42(LC 5) FORCES (Ib) - Max. Comp. /Max. Ten. - All forces 250 (Ib) or less except when shown. NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7 -05; 105mph; TCDL= 4.2psf; BCDL= 6.Opsf; h =25ft; Cat. II; Exp B; enclosed; MWFRS (low -rise) gable end zone; cantilever left and right exposed ; Lumber DOL =1.33 plate grip DOL =1.33 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) • This truss has been designed for a live load of 20.Opsf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2 -0-0 wide will fit between the bottom chord and any other members. 5) A plate rating reduction of 20% has been applied for the green lumber members. 6) This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and referenced . standard ANSI/TPI 1. 7) "Fix heels only" Member end fixity model was used in the analysis and design of this truss. LOAD CASE(S) Standard <(51' O PR Qp l , r 4 . • - .,) ., 'yF s.1% • Digital Signature EXPIRATION DATE: 06/30/12 May 23,2011 4 8 ® WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED PETER REFERENCE PAGB 8QF7473 ma. 10-'08 BEFORE USE. Design valid for use only with MTek connectors. This design is based only upon parameters shown. and 6 for an indkridual buBding component. MIII Applicabiify of design paramenters and proper incorporotion of component is responsibility of budding designer - not truss designer. Bracing shown - 6 for lateral support of Individual web members only. Additional temporary bracing to insure stability during construction 6 the responsib8lily of the MiTek' erector. Additional permanent bracing of the overall structure is the responsibility of the budding designer. For general guidance regarding fabrication, quality control, storage. delivery, erection and bracing. consult ANSI /TPI1 Quality Cdterlo, DSB -89 and BCSI Building Component 7777 Greenback Lane, Suite 109 Safely Information available from Truss Plate Institute. 281 N. Lee Street. Suite 312, Alexandria, VA 22314. Citrus Heights. CA. 95810 • Job Truss Truss Type fly Ply Pulte Homes - Building 17 Roof R33134274 81106182 -B H2 Common Truss 1 1 Job Reference (optional) Pro -Build Clackamas Truss, Cladkamas,OR 97015 -1129 7.250 s May 11 2011 MiTek Industries, Inc. Mon May 23 09:03:03 2011 Page 1 ID: pMOFdeJHd3WcFjeuzw57EXzHOWE- gN ?U1g1 Fgr8jecv _2i_VkKHBBfcvCjF3iZq_s_zDeB6 2.10.12 5- 94 6 -9-8 2 -10.12 2 -10-12 1.0 Scab • 1:21,1 4.4= 2 800 12 r1 3 ►/ ■ 1\ r I 11111111111111 ■ 4 la s 346 11 244 II 348 11 l 5-9.8 1 5-9-8 Plate Offsets (X,Y): 11:0- 3- 0,0 -0- 41,13:0 -3-0,0 -0-41 LOADING (psf) SPACING 2 -0-0 CSI DEFL in (loc) I /deft Ud PLATES GRIP TCLL 25.0 Plates Increase 1.15 TC 0.14 Vert(LL) 0.01 4 n/r 180 MT20 220/195 TCDL 7.0 Lumber Increase 1.15 BC 0.08 Vert(TL) 0.01 4 n/r 180 BCLL 0.0 Rep Stress Ina YES WB 0.02 Horz(TL) 0.00 5 n/a n/a BCDL 10.0 Code IRC2009/TPI2007 (Matrix) Wind(LL) -0.00 4 n/r 90 Weight: 23 Ib FT= 10% LUMBER BRACING TOP CHORD 2 x 4 DF No.18Btr G TOP CHORD Structural wood sheathing directly applied or 5 -9-8 oc purlins. BOT CHORD 2 x 4 DF No.18Btr G BOT CHORD Rigid ceiling directly applied or 6 -0-0 oc bracing. OTHERS 2 x 4 DF Std G MiTek recommends that Stabilizers and required cross bracing WEDGE be installed during truss erection, in accordance with Stabilizer Left: 2 x 4 DF Std, Right: 2 x 4 DF Std Installation gui r e. REACTIONS (Ib /size) 3= 211/5 -9-8 (min. 0 -1 -8), 5= 204/5 -9 -8 (min. 0 -1 -8), 1=136/5-9-8 (min. 0-1 -8) Max Horz1= -77(LC 12) Max Uplift3=- 646(LC 18), 1=- 577(LC 15) Max Grav3= 742(LC 9), 5= 204(LC 9), 1= 667(LC 10) FORCES (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 1 -2 =- 888/849, 2- 3=- 996/928 BOT CHORD 1- 5=- 663/700, 3-5 =- 663/700 QUALIFIED BUILDING DESIGNER OR PROJECT ENGINEER SHALL REVIEW THE INPUT LENGTH AND PLACEMENT OF CONNECTION TO TRANSFER LATERAL FORCES TO THE NOTES SUPPORTING STRUCTURE AS STATED IN THE DRAG LOAD NOTE BELOW. 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7 -05; 105mph; TCDL= 4.2psf; BCDL= 6.Opsf; h =25ft; Cat. II; Exp B; enclosed; MWFRS (low -rise) gable end zone; cantilever left and right exposed ; Lumber DOL =1.33 plate grip DOL =1.33 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1 -2002. 4) Gable requires continuous bottom chord bearing. 5) Gable studs spaced at 2 -0-0 oc. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) ' This truss has been designed for a live load of 20.Opsf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2 -0-0 wide will fit between the bottom chord and any other members. 8) A plate rating reduction of 20% has been applied for the green lumber members. �E� PR OF� 9) This truss is designed in accordance with the 2009 Intemational Residential Code sedions R502.11.1 and R802.10.2 and referenced �� s�f' standard ANSI/TPI 1. r " � N C ' IN X 0 2 10) This truss has been designed for a total drag load of 250 plf. Lumber DOL= (1.33) Plate grip DOL= (1.33) Connect truss to resist drag loads along bottom chord from 0 -0-0 to 5-9-8 for 250.0 plf. 16: 'tr. 9 11) "Fix heels only" Member end fixity model was used in the analysis and design of this truss. LOAD CASE(S) Standard ' • T E •� � M FR OR S. -0 Digital Signature EXPIRATION DATE: 06/30/12 May 23,2011 • A WARNING Vcr((U design parameters and READ NOTES ON MIS AND INCLUDED MITER REFERENCE PAGE 11I1 74 73 rev. 10 '08 BEFORE USE 1111 I Design valid for use only with with MiTek rs ek connectors. This design k based only upon paramete shown. and • s for an individual balding component. Applicability of design param enters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the MiTek' erector. Additional permanent bracing of the overall structure 0 the responsibility of the building designer. For general guidance regarding - -- fabrication, quality control, storage. delivery, erection and bracing, consult ANSI/TPI1 Ouallly Criteria, DSB•89 and SCSI Building Component 7777 Greenback Lane, Suite 109 Safety Information available from Truss Plate Institute. 281 N. Lee Street, Suite 312, Alexandria. VA 22314. Citrus Heights, CA, 95810 Job Truss Truss Type Qty Ply Pulte Homes - Building 17 Roof R33134275 81106182 -B 11 Common Truss 1 1 Job Reference (optional) Pro -Build Clackamas Truss, Clackamas,OR 97015 -1129 7.250 s May 11 2011 MiTek Industries, Inc. Mon May 23 09:03:05 2011 Page 1 ID:pM0FdeJHd3WcFjeuzw57 EXzHOW E -an7 FSM2 VCSO Rtw3M970zpIMXISHQgdnMALI5wtzDeB4 I -1 -0-0 I 2 -9-4 I 543 I 6a - I 1.0 2.9.4 2 -9.4 1 -0-0 444 = Scale • 1',21,0 3 • rb a00 12 1 2 , m , 4 e 04= 244 II 444 = 30 II 340 II 1 5-8.8 1 5.6.8 Plate Offsets (X,Y): (2:0 -0 -0,0 -1-41, ►2:0- 1- 15,Edge), 14:Edge,0 -1-41, 14:0- 1- 15,Edgel LOADING (psf) SPACING 2 -0-0 CSI DEFL in (loc) I /deft Ltd PLATES GRIP TCLL 25.0 Plates Increase 1.15 TC 0.14 Vert(LL) 0.00 5 n/r 180 MT20 220/195 • TCDL 7.0 Lumber Increase 1.15 BC 0.08 Vert(TL) 0.01 5 n/r 180 BCLL 0.0 • Rep Stress Incr YES WB 0.02 Horz(TL) 0.00 6 n/a n/a BCDL 10.0 Code IRC2009/TPI2007 (Matrix) Wind(LL) -0.00 4 n/r 90 Weight: 24 Ib FT = 10% LUMBER BRACING TOP CHORD 2 x 4 DF No.18Btr G TOP CHORD Structural wood sheathing directly applied or 5 -6-8 oc purlins. BOT CHORD 2 x 4 DF No.18Btr G BOT CHORD Rigid ceiling directly applied or 6 -0-0 oc bracing. OTHERS 2 x 4 DF Std G MiTek recommends that Stabilizers and required cross bracing WEDGE be installed during truss erection, in accordance with Stabilizer • Left: 2 x 4 DF Std, Right: 2 x 4 DF Std Installation guide. REACTIONS (lb /size) 2= 203/5 -6-8 (min. 0 -1 -8), 4= 203/5 -6-8 (min. 0 -1 -8), 6= 187/5 -6 -8 (min. 0-1 -8) Max Horz 2= -67(LC 11) Max Uplift2=- 614(LC 15), 4=- 622(LC 18) Max Grav2= 713(LC 10), 4= 713(LC 9), 6= 187(LC 9) FORCES (Ib) - Max. Comp. /Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 2 -3 =- 950/899, 3-4 =- 950/887 BOT CHORD 2- 6=- 633/672, 4 -6 =- 633/672 QUALIFIED BUILDING DESIGNER OR PROJECT ENGINEER SHALL REVIEW THE INPUT LENGTH AND PLACEMENT OF CONNECTION TO TRANSFER LATERAL FORCES TO THE NOTES SUPPORTING STRUCTURE AS STATED IN THE DRAG LOAD NOTE BELOW. 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7 -05; 105mph; TCDL= 4.2psf; BCDL= 6.Opsf; h =25ft; Cat. II; Exp 8; enclosed; MWFRS (low -rise) gable end zone; cantilever left and right exposed ; Lumber DOL =1.33 plate grip DOL =1.33 3) Truss designed for wind loads In the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1 -2002. 4) Gable requires continuous bottom chord bearing. 5) Gable studs spaced at 2 -0-0 oc. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live Toads. 7) • This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2 -0-0 wide will fit between the bottom chord and any other members. 8) A plate rating reduction of 20% has been applied for the green lumber members. Q � � PR () Fe 9) This truss designed in accordance with the 2009 International Residential Code sedions R502.11.1 and R802.10.2 and referenced .1' ,Y s s standard ANSI/TPI 1. ' �N �i 10) This truss has been designed for a total drag Toad of 250 plf. Lumber DOL= (1.33) Plate grip DOL= (1.33) Connect truss to resist �� drag loads along bottom chord from 0-0-0 to 5-6-8 for 250.0 plf. Q 1/f ; "E ' i t 11) "Fix heels only" Member end fixity model was used in the analysis and design of this truss. LOAD CASE(S) Standard Pi/ � -o OREG J.• 1,e Fiy .,' J l�, ,yFR S 1 \14C' Digital Signature EXPIRATION DATE: 06/30/12 May 23,2011 4 _ 0 _ A WARNING - Vcrify &sign parvmders and READ NOTES ON 2117S AND INCLUDED MITER REFERENCE PAGE Mfr -74 rat. 10'08 BEFORE USE. ' Design valid for use only with MiTek connectors. Thk design is based only upon parameters shown, and k for an individual budding component. MI Applicability of design param enters and proper incorporation of component is responsibility of budding designer - not truss designer. Bracing shown b for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the . MiTek erector. Additional permanent bracing of the overall structure Is the responsibility of the budding designer. For general guidance regarding fabrication, quality control. storage. delivery, erection and bracing. consult ANSI /TPI1 quality Cdteda, 058.89 and BCSI Building Component 7777 Greenback Lane, Suite 109 Safely Information available from Truss Plate Institute. 281 N. Lee Street, Suite 312, Alexandria. VA 22314. Citrus Heights, CA, 95610 • Job Truss Truss Type Qty Pty Pulte Homes - Building 17 Roof R33134276 81106182 -B 12 Common Truss 1 1 Job Reference (optionall Pro -Build Clackamas Truss, Clackamas,OR 97015 -1129 7.250 s May 11 2011 MiTek Industries, Inc. Mon May 23 09:03:05 2011 Page 1 ID:pMOFdeJHd3WcFjeuzw57EXzHOW E- an7FSM2 VCSO Rtw3M970zpIMYcS IzgdHMAtJ5wtzDeB4 1 2 -94 I 4.11 -8 1 2 -9-4 2-2-4 494 = Seale• 1:18,0 2 4 iIh 1 „RAI • .4- 6 ■ 4 i k 3x5 II 5 2.4 11 '/ 394 = 398 II 29-4 l 4118 1 2 -94 2-2-4 Plate Offsets (X,Y): 11:0 -0- 11,0 -4- 51,11:0 -0- 0,0.0- 12),14:0 -5- 14,0 -0-81 LOADING (psf) SPACING 2 -0-0 CSI DEFL in (loc) I /deal Ud PLATES GRIP TCLL 25.0 Plates Increase 1.15 TC 0.08 Vert(LL) -0.00 5 >999 240 MT20 220/195 TCDL 7.0 Lumber Increase 1.15 BC 0.04 Vert(TL) -0.00 1 -5 >999 180 BCLL 0.0 ' Rep Stress Incr YES WB 0.05 Horz(TL) 0.00 4 n/a n/a BCDL 10.0 Code IRC2009/TPI2007 (Matrix) Weight: 22 Ib FT = 10% LUMBER BRACING TOP CHORD 2 x 4 DF No.1 &Btr G TOP CHORD Structural wood sheathing directly applied or 4 -11 -8 oc puffins. BOT CHORD 2 x 4 DF No.1 &Btr G BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. WEBS 2 x 4 DF Std G MiTek recommends that Stabilizers and required cross bracing WEDGE be installed during truss erection, in accordance with Stabilizer Left: 2 x 4 DF Std SLIDER Right 2 X 6 DF No.2 -G 1 -8 -12 Installation guide REACTIONS (Ib /size) 4= 202/Mechanical, 1= 202/0 -3-8 (min. 0-1 -8) Max Horz 1= -65(LC 3) Max Up1ift4= -37(LC 6), 1= -40(LC 5) FORCES (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7 -05; 105mph; TCDL= 4.2psf; BCDL= 6.0psf; h =25ft; Cat. II; Exp B; enclosed; MWFRS (low -rise) gable end zone; cantilever left and right exposed ; Lumber DOL =1.33 plate grip DOL =1.33 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) • This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2 -0-0 wide will fit between the bottom chord and any other members. 5) A plate rating reduction of 20% has been applied for the green lumber members. 6) Refer to girder(s) for truss to truss connections. 7) This truss is designed in accordance with the 2009 International Residential Code sedions R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 8) "Fix heels only Member end fixity model was used in the analysis and design of this truss. LOAD CASE(S) Standard ED PROFF c� � 0NG1 i F ' 9 /0 2 cc 1 i -o ;� OREG.r•' J M FR S . 1\ N Digital Signature EXPIRATION DATE: 06/30/12 May 23,2011 1 ■ A WARNING - Ver(fy doign parameters and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE MII 7473 ran. 10 538 BEFORE US& �'� Design valid tor use only with MiTek connectors. This design is based only upon parameters shown. and a for an individual building component. Applicability of design param enters and proper incorporation or component is responsibility of balding designer - not truss designer. Bracing shown is for lateral support of individual web members only. A dditionat temporary bracing to insure stablily during construction 6 the responsb8ity of the MiTek erector. Additional permanent bracing of the overall structure is the responsibility of the balding designer. For general guidance regarding Power, m '- -- fabrication, quality control, storage, delivery. erection and bracing, consult ANSI/11'11 Ouallly Crlterta, 058 -139 and SCSI Building Component 7777 Greenback Lane, Suite 109 Safety Information available from Truss Plate Institute, 281 N. Lee Street. Suite 312, Alexandria, VA 22314. Citrus Heights, CA, 95810 Job Truss Truss Type Qty Ply Pulte Homes - Building 17 Roof R33134277 81106182 -B J1 Monopitch Truss 1 1 Job Reference (optional) Pro -Build Clackamas Truss, Clackamas,OR 97015 -1129 7.250 s May 11 2011 MiTek Industries, Inc. Mon May 23 09:03:06 2011 Page 1 I D:pM0FdeJ Hd3WcFjeuzw57EXzHOW E- 4yhdfi38zm W IV4eZjrXC LyvkyseVP4G WOX2eSJzDeB3 -1 -0-0 2 - 0 - 0 1 - 0 - 0 2 214 I I Scale • 111.9 3 600 12 2 ■ g ' ■ 4 3c. 2.411 2.60 2 -0-0 LOADING (psf) SPACING 2 -0-0 CSI DEFL in (hoc) I /deft Lid PLATES GRIP TCLL 25.0 Plates Increase 1.15 TC 0.04 Vert(LL) 0.00 1 n/r 180 MT20 220/195 TCDL 7.0 Lumber Increase 1.15 BC 0.02 Vert(TL) -0.00 1 n/r 180 BCLL 0.0 • Rep Stress Ina YES WB 0.00 Horz(TL) 0.00 n/a n/a BCDL 10.0 Code IRC2009/TPI2007 (Matrix) Wind(LL) -0.00 1 n/r 90 Weight: 8 Ib FT = 10% LUMBER BRACING TOP CHORD 2 x 4 DF No.18Btr G TOP CHORD Structural wood sheathing directly applied or 2 -0-0 oc puffins, except BOT CHORD 2 x 4 DF No.188tr G end verticals. WEBS 2 x 4 DF Std G BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide. REACTIONS (Ib /size) 4=61/2-0-0 (min. 0 -1 -8), 2= 159/2 -0-0 (min. 0-1 -8) Max Horz 2 =68(LC 5) Max Uplift4= -14(LC 5), 2= -77(LC 5) FORCES (Ib) - Max. Comp. /Max. Ten. - All forces 250 (Ib) or less except when shown. NOTES 1) Wind: ASCE 7 -05; 105mph; TCDL= 4.2psf; BCDL =6.0psf; h =25ft: Cat. II; Exp B; enclosed; MWFRS (low -rise) gable end zone; cantilever left and right exposed ; Lumber DOL =1.33 plate grip DOL =1.33 • 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1 -2002. 3) Gable requires continuous bottom chord bearing. 4) Gable studs spaced at 2-0-0 oc. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. • 6) • This truss has been designed for a live load of 20.Opsf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2 -0-0 wide will fit between the bottom chord and any other members. 7) A plate rating reduction of 20% has been applied for the green lumber members. 8) This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 9) "Fix heels only" Member end fixity model was used in the analysis and design of this truss. LOAD CASE(S) Standard PNF F6- S 0 - / 0 odr 9 Q 16j '4; f A 1'6, ORE •. ) es/ A Digital Signature EXPIRATION DATE: 06/30/12 May 23,2011 ® WARNING - Verify design parameters and READ NOTES ON TINS AND INCLUDED PETER REFERENCE PAGE 8171.7473 rep. 10•'08 BEFORE USE. MA Design valid for use only wilh Mnek connectors. Thh design is based only upon parameters shown, and h for an individual budding component. • Applicability of design param enters and proper incorporation of component Is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction h the responsibility of the MiTek' erector. Addilbnal permanent bracing of the overall structure Is the responsibility of the building designer. For general guidance regarding .o fabrication, quality control, storage. delivery, erection and bracing. consult ANSI /TPI1 Quality Criteria, 058.89 and SCSI Building Component 7777 Greenback lane, Suite 109 Safety Information avadoble from Truss Plate Institute, 281 N. Lee Street. Suite 312. Alexandria, VA 22314. Citrus Heights, CA, 95810 • i • Job Truss Truss Type Qty Ply Pulte Homes - Building 17 Roof R33134278 81106182 -B J2 Monopitch Truss 5 1 Job Reference (optional) Pro -Build Clackamas Truss, Cladkamas,OR 97015 -1129 7.250 5 May 11 2011 MiTek Industries, Inc. Mon May 23 09:03:06 2011 Page 1 I D:pMOFdeJHd3WcFjeuzw57EXzHOW E- 4yhdfi38zm W lV4eZirXC Lyvi ?sdwP4G WOX2eSJzDeB3 .1 -0-0 2-0-0 1-0-0 I 2-0-0 Scale • 1.11.9 3 600 12 2 ' 3se 20.0 2 -0-0 Plate Offsets (X,Y): 12:0 -2- 10,0 -1 -81 • LOADING (psf) SPACING 2 -0-0 CSI DEFL in (roc) I /deg L/d PLATES GRIP TCLL 25.0 Plates Increase 1.15 TC 0.17 Vert(LL) -0.00 2 -4 >999 240 MT20 220/195 TCDL 7.0 Lumber Increase 1.15 BC 0.12 Vert(TL) -0.01 2-4 >999 180 BCLL 0.0 • Rep Stress Incr YES WB 0.00 Horz(TL) 0.00 n/a n/a BCDL 10.0 Code IRC2009/TPI2007 (Matrix) Weight: 7 Ib FT = 10% LUMBER BRACING TOP CHORD 2 x 4 DF No.18Btr G TOP CHORD Structural wood sheathing directly applied or 2 -0-0 oc purlins. BOT CHORD 2 x 4 DF No.18Btr G BOT CHORD Rigid ceiling directly applied or 10-0 -0 oc bracing. MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide. REACTIONS (Ib /size) 2= 167/0 -5-8 (min. 0 -1 -8), 4= 64/Mechanical Max Horz 2 =88(LC 5) Max Uplift2= -91(LC 5), 4= -37(LC 5) FORCES (Ib) - Max. Comp. /Max. Ten. - All forces 250 (Ib) or less except when shown. NOTES 1) Wind: ASCE 7 -05; 105mph; TCDL= 4.2psf; BCDL= 6.Opsf; h =25f1; Cat. 11; Exp B; enclosed; MWFRS (low -rise) gable end zone; cantilever left and right exposed ; Lumber DOL =1.33 plate grip DOL =1.33 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live Toads. 3) • This truss has been designed for a live load of 20.Opsf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2 -0-0 wide will fit between the bottom chord and any other members. 4) A plate rating reduction of 20% has been applied for the green lumber members. 5) Refer to girder(s) for truss to truss connections. 6) This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 7) "Fix heels only" Member end fixity model was used in the analysis and design of this truss. LOAD CASE(S) Standard t< 4. O P R°Fec, ��'\ NGIN /02 QC 16y % P • M s . \v ca Digital Signature EXPIRATION DATE: 06/30/12 May 23,2011 ® WARNING -Verijj design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE DM 7473 rev. 10'08 BEFORE USE Design valid for use only with Meek connectors. This design k based only upon parameters shown. and '¢ for an individual building component. Applicability of design param enters and proper incorporation of component is responsibility of budding designer - not truss designer. Bracing shown k for lateral support of individual web members only. Additional temporary bracing to insure stability during construction k the responsibility of the MiTek erector. Additional permanent bracing of the overall structure is the responsibility of the buiding designer. For general guidance regarding +oP fabrication. quality control, storage. delivery, erection and bracing. consult ANSI/TPI1 Quality Criteria, DSB.89 and SCSI Building Component 7777 Greenback Lane, Suite 109 Safely Information available from Truss Plate Institute, 781 N. Lee Street, Suite 312, Alexandria, VA 22314. Citrus Heights, CA, 95810 • • 1G Job Truss Truss Type Qty Ply Pulte Homes - Building 17 Roof 833134279 81106182 -B J3 MonopitclTruss 1 1 Job Reference (optional) Pro -Build Clackamas Truss, Cladcamas,OR 97015 -1129 7.250 s May 11 2011 MiTek Industries, Inc. Mon May 23 09:03:07 2011 Page 1 ID:pMOFdeJHd3WcFjeuzw57EXzHOW E- Z8E ?t14mk4e96DDI HY2 RuARtuGzO8XVfdBoB7mzDeB2 .1-0-0 4 - 1-0.0 I 4 - 0.0 2.44 II Scab • 1.18 3 Pi 60017 Z 1111 • 3a4 = 2s4 11 4.0.0 4 -o-0 LOADING (psf) SPACING 2 -0-0 CSI DEFL in (loc) I /deb Ud PLATES GRIP TCLL 25.0 Plates Increase 1.15 TC 0.16 Vert(LL) 0.00 1 n/r 180 MT20 220/195 TCDL 7.0 Lumber Increase 1.15 BC 0.11 Vert(TL) 0.01 1 n/r 180 BCLL 0.0 • Rep Stress Incr YES WB 0.00 Horz(TL) 0.00 n/a n/a BCDL 10.0 Code IRC2009/TP12007 (Matrix) Wind(LL) -0.01 1 n/r 90 Weight: 16 Ib FT = 10% LUMBER BRACING TOP CHORD 2 x 4 DF No.1 &Btr G TOP CHORD Structural wood sheathing directly applied or4 -0-0 oc purlins, except BOT CHORD 2 x 4 DF No.1 &Btr G end verticals. WEBS 2 x 4 DF Std G BOT CHORD Rigid ceiling directly applied or 10-0 -0 oc bracing. MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide. REACTIONS (lb /size) 4= 154/4 -0-0 (min. 0 -1 -8), 2= 234/4 -0-0 (min. 0 -1 -8) Max Horz 2= 110(LC 5) Max Uplift4= -55(LC 5), 2= -79(LC 5) FORCES (Ib) - Max. Comp. /Max. Ten. - All forces 250 (Ib) or less except when shown. NOTES 1) Wind: ASCE 7 -05; 105mph; TCDL= 4.2psf; BCDL= 6.Opsf; h =25ft; Cat. II: Exp B; enclosed; MWFRS (low -rise) gable end zone; cantilever left and right exposed ; Lumber DOL =1.33 plate grip DOL =1.33 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1 -2002. 3) Gable requires continuous bottom chord bearing. 4) Gable studs spaced at 2 -0 -0 oc. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) • This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2 -0-0 wide will fit between the bottom chord and any other members. • 7) A plate rating reduction of 20% has been applied for the green lumber members. 8) This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. • 9) "Fix heels only" Member end fixity model was used in the analysis and design of this truss. LOAD CASE(S) Standard <0.‘E PR OF6.0 u. LN / E 9 1 :gar • i 4.1* ;�, ORE ' eir -9‘MB- % G �i MF S. Digital Signature EXPIRATION DATE: 06/30/12 • May 23,2011 4 ■ ® WARNING - Verify deign parameters and READ NOTES ON THIS AND INCLUDED PETER REFERENCE PAGE N l 7473 rce. 10'08 BEFORE US& ■' Design valid for use only with MiTek connectors. The design h based only upon parameters shown. and 4 for an individual budding component, Applicability of design paramenters and proper incorporation of component is responsibility of budding designer - not truss designer. Bracing shown is for lalero1 support of individual web members only. Additional temporary bracing to insure slablity dur rg construction 4 the responsibility of the MiTek' erector. Additional permanent bracing of the overall structure is the responsibility of the budding designer. For general guidance regarding fabrication. qualify coned, storage, delivery. erection and bracing. consult ANSI /TP11 Quality Crlferla, DS8.89 and BCSI Building Component 7777 Greenback Lane, Suite 109 Safely Information available from Truss Plate Institute, 281 N. Lee Street, Suite 312. Alexandria. VA 22314. Citrus Heights, CA, 95610 , Job Truss Truss Type Qty Ply Pulte Homes - Building 17 Roof R33134280 B1106182 -B J4 MonopitclTruss 4 1 Job Reference (optional) Pro -Build Clackamas Truss, Cladkamas,OR 97015 -1129 7.250 s May 11 2011 MiTek Industries, Inc. Mon May 23 09:03:07 2011 Page 1 ID:pMOFdeJ Hd3 WcFjeuzw57EXzHOW E- Z8E ?t14mk4e96DDIHY2 RuARgTGxF8XVfdBoB ?mzDeB2 1 -1 -ao 1 6.0-0 1 -ao 6.0-0 Scale ",252 h4 11 0 - MI 800 FY • 2 w . a.4= 244 II 1 6 -0-0 1 6-0-0 LOADING (psf) SPACING 2 -0-0 CSI DEFL in (loc) I /deft Ud PLATES GRIP TCLL 25.0 Plates Increase 1.15 TC 0.38 Vert(LL) -0.05 2-4 >999 240 MT20 220/195 TCDL 7.0 Lumber Increase 1.15 BC 0.25 Vert(TL) -0.14 2-4 >482 180 BCLL 0.0 • Rep Stress Incr YES WB 0.00 Horz(TL) 0.00 n/a n/a BCDL 10.0 Code IRC2009/TPI2007 (Matrix) Weight: 23 Ib FT = 10% LUMBER BRACING TOP CHORD 2 x 4 DF No.18Btr G TOP CHORD Structural wood sheathing directly applied or 6 -0-0 oc purtins, except BOT CHORD 2 x 4 DF No.1&Btr G end verticals. WEBS 2 x 4 DF Std G BOT CHORD Rigid ceiling directly applied or 10-0 -0 oc bracing. MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide REACTIONS (Ib /size) 4= 228 /Mechanical, 2= 324/0 -5-8 (min. 0-1 -8) Max Horz2= 152(LC 5) Max Uplift4= -86(LC 5), 2= -98(LC 5) FORCES (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. NOTES 1) Wind: ASCE 7 -05; 105mph; TCDL= 4.2psf; BCDL= 6.0psf; h =25ft; Cat. II; Exp B; enclosed; MWFRS (low -rise) gable end zone; cantilever left and right exposed ; Lumber DOL =1.33 plate grip DOL =1.33 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 3) • This truss has been designed for a live load of 20.Opsf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2 -0-0 wide will fit between the bottom chord and any other members. 4) A plate rating reduction of 20% has been applied for the green lumber members. 5) Refer to girder(s) for truss to truss connections. 6) This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 7) "Fix heels only" Member end fixity model was used in the analysis and design of this truss. • LOAD CASE(S) Standard �� � .0 P R °Fe ,kS �:c 0N GINE i / O Q 168 %f', iti � -o T • ON ve 1 9 E' F4 1 « ' MF S. Digital Signature EXPIRATION DATE: 06/30/12 May 23,2011 4 i ■ WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED 6DTEK REFERENCE PAGE MIT 7473 rev. 10'08 BEFORE UJS& � ^ Design valid for use only with Mlek connectors. Th4 design 4 based only upon parameters shown. and 1 for an individual budding component. Applicabiily of design paramenters and proper incorporation of component is responsibility of budding designer - not truss designer. Bracing shown h for lateral support of individual web members only. A dditional temporary bracing to insure stability during construction h the responsibility of the MiTek' erector. Additional permanent bracing of the overall structure 1 the responsibility of the budding designer. For general guidance regarding fabrication. quality control. storage. delivery, erection and bracing, consult ANSI/TPI1 Quality Criteria, DSB -89 and BCSI Building Component 7777 Greenback Lane, Suite 109 Safely information avaiable from Truss Plate Institute, 281 N. Lee Street. Suite 312. Alexandria. VA 22314. Citrus Heights, CA, 95810 Job Truss Truss Type City Ply Pulte Homes - Building 17 Roof R33134281 81106182 -B M1 Common Truss 1 1 Job Reference (optional) Pro -Build Cladcamas Truss, Clackamas,OR 97015 -1129 7.250 s May 11 2011 MiTek Industries, Inc. Mon May 23 09:03:08 2011 Page 1 ID :pMOFdeJHd3WcFjeuzw57EXzHOWE -1 LoN4N5OVNmOkNoxgFZgQN 33gKat_VosrXIXCzDeB1 I -1-a - I 2-94 I 5-8-8 1 e -8-8 I 1 -0-0 2-9-4 2.9-4 1.0-0 ma = Seale "1.20,4 3 0 Baa ■ - 4 2 5 111111111111111111.1111111111111111 la _ . 1 _ . _ •. _ . _ •. _ . _ .. _ . _ . _ . _ . _ . _ . _ . _ 6 3•4 = 214 II 3v4 = I se -8 I 5.8 -8 • LOADING (psf) SPACING 2 -0-0 CSI DEFL in (Ioc) Ildefi Ud PLATES GRIP TCLL 25.0 Plates Increase 1.15 TC 0.07 Vert(LL) 0.00 5 n/r 180 MT20 220/195 TCDL 7.0 Lumber Increase 1.15 BC 0.05 Vert(TL) 0.01 5 n/r 180 BCLL 0.0 • Rep Stress Incr YES WB 0.02 Horz(TL) 0.00 4 n/a n/a BCDL 10.0 Code IRC2009/TPI2007 (Matrix) Wind(LL) 0.00 4 n/r 90 Weight: 22 Ib FT = 10% LUMBER BRACING TOP CHORD 2 x 4 DF No.18Btr G TOP CHORD Structural wood sheathing directly applied or 5 -6-8 oc purlins. BOT CHORD 2 x 4 DF No.18Btr G BOT CHORD Rigid ceiling directly applied or 10-0 -0 oc bracing. OTHERS 2 x 4 DF Std G MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide. REACTIONS (lb /size) 2= 201/5 -6-8 (min. 0 -1 -8), 4= 201/5 -6-8 (min. 0 -1 -8), 6= 192/5 -6 -8 (min. 0-1 -8) Max Horz 2 =63(LC 4) Max Uplift2=- 106(LC 5), 4=- 114(LC 6) FORCES (lb) - Max. Comp. /Max. Ten. - All forces 250 (lb) or less except when shown. NOTES 1) Unbalanced roof live Toads have been considered for this design. 2) Wind: ASCE 7 -05; 105mph; TCOL=4.2psf; BCDL= 6.Opsf; h =25ft; Cat. 11; Exp 8; enclosed; MWFRS (low -rise) gable end zone; cantilever left and right exposed ; Lumber DOL =1.33 plate grip DOL =1.33 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry , Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1 -2002. 4) Gable requires continuous bottom chord bearing. 5) Gable studs spaced at 2 -0-0 oc. 6) This truss has been designed for a 10.0 psf bottom chord live Toad nonconcurrent with any other live Toads. 7) " This truss has been designed for a live Toad of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2 -0-0 wide will fit between the bottom chord and any other members. 8) A plate rating reduction of 20% has been applied for the green lumber members. 9) This truss is designed in accordance with the 2009 International Residential Code sedions R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 10) "Fix heels only" Member end fixity model was used in the analysis and design of this truss. LOAD CASE(S)' Standard `�Q` P �S �NGI F Wo 1 ;i9 9 i -O 2 ORE 1 /r- , M F R S .1% Digital Signature EXPIRATION DATE: 06/30/12 May 23,2011 ■ • MIII et ® WARNING - Verify design parameters and READ NOTES ON MIS AND INCLUDED IIIITERREPBRBNCS PAGE 8611.74 rev. 10.'08 BEFORE USE. MI valid for use only with MiTek connectors. This design k based only upon parameters shown, and k for an kldNidual building component. i � Applicability of design param enters and proper incorporation of component is responsibility of budding designer - not truss designer. Bracing shown 5 for lateral support of individual web members only. Additional temporary bracing to Insure stability during construction 5 the responsibdlity of the MiTek erector. Additional permanent bracing or the overall structure is the responsibility or the building designer. For general guidance regarding fabrication. quality control, storage, delivery. erection and bracing, consult ANSI/TPI1 Quality Criteria, 056.89 and BCSI Building Component 7777 Greenback Lane, Suite 109 Solely Information available from Truss Plate Institute, 281 N. Lee Street, Suite 312. Alexandria. VA 22314. Citrus Heights, CA, 95810 Job Truss Truss Type Oty Ply Pulte Homes - Building 17 Roof R33134282 B1106182 -B M2 Common Truss 1 1 Job Reference (optional) Pro -Build Clackamas Truss, Cladkamas,OR 97015 -1129 7.250 s May 11 2011 MiTek Industries, Inc. Mon May 23 09:03:09 2011 Page 1 I D: pMOFdeJ Hd3WcFjeuzw57 EXzHOW E- VXMIIj50GhutMXN80z5vzbXF _4gvcRGy4VH13ezDeBO -1-0-0 2.9 4 -11 -9 1 - 0 - 0 2.9.4 2-2 4r4 = Seale .1181 3 r1 4 3x4 50012 r ` 5 FE 1 8 2,4 II 314 = 3x8 II 2 -94 1 4 -11 -8 2-9-4 2-2-4 Plate Offsets (X,Y): f5:0 -3- 15,0 -0-51 LOADING (psf) SPACING 2 -0-0 CSI DEFL in (hoc) I/defi L/d PLATES GRIP TCLL 25.0 Plates Increase 1.15 TC 0.06 Vert(LL) -0.00 6 >999 240 MT20 220/195 TCDL 7.0 Lumber Increase 1.15 BC 0.04 Vert(TL) -0.00 2 -6 >999 180 BCLL 0.0 • Rep Stress Incr YES WB 0.05 Horz(TL) 0.00 5 n/a n/a BCDL 10.0 Code IRC2009/TPI2007 (Matrix) Weight: 21 Ib FT = 10% LUMBER BRACING TOP CHORD 2 x 4 DF No.1 &Btr G TOP CHORD Structural wood sheathing directly applied or 4 -11 -8 oc purlins. BOT CHORD 2 x 4 DF No.18Btr G BOT CHORD Rigid ceiling directly applied or 10-0 -0 oc bracing. WEBS 2 x 4 DF Std G MiTek recommends that Stabilizers and required cross bracing SLIDER Right 2 x 4 DF Std -G 1 -7-4 be installed during truss erection, in accordance with Stabilizer Installation guide. REACTIONS (lb /size) 5= 193/Mechanical, 2= 284/0 -3-8 (min. 0-1 -8) Max Horz 2 =73(LC 4) Max Uplift5= -35(LC 6), 2=- 108(LC 5) FORCES (Ib) - Max. Comp. /Max. Ten. - All forces 250 (Ib) or less except when shown. NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7 -05; 105mph; TCDL= 4.2psf; BCDL= 6.0psf; h =25ft; Cat. II; Exp B; enclosed; MWFRS (low -rise) gable end zone; cantilever left and right exposed ; Lumber DOL =1.33 plate grip DOL =1.33 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) • This truss has been designed for a live load of 20.Opsf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2 -0-0 wide will fit between the bottom chord and any other members. 5) A plate rating reduction of 20% has been applied for the green lumber members. 6) Refer to girder(s) for truss to truss connections. 7) This truss is designed in accordance with the 2009 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 8) "Fix heels only" Member end fixity model was used in the analysis and design of this truss. LOAD CASE(S) Standard .01% P R °Fen e' N /9 16� 0" ' .oT . /� OREG• MF s . Digital Signature EXPIRATION DATE: 06/30/12 May 23,2011 A WARNING • Forth design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE MU 7473 rm. 10'08 BEFORE USE, i1 Y , Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design paramenters and proper incorporation of component is responsibility at budding designer - not truss designer. Bracing shown S for lateral support of individual web members only. Additional temporary bracing to Insure stability during construction S the responsibility of the MiTek' erector. Additional permanent bracing of the overall structure Is the responsibility of the budding designer. For general guidance regarding fabrication, quality control. storage. delivery, erection and bracing. consult ANSI/TPI1 Quality Criteria, DSB -89 and BCSI Building Component 7777 Greenback Lane, Suite 109 Safety Information evadable from Truss Plate Institute. 251 N. Lee Street• Suite 312, Alexandria. VA 22314. Citrus Heights, CA, 95610 Symbols Numbering System ® General Safety Notes PLATE LOCATION AND ORIENTATION 3 Center plate on joint unless x, y Failure to Follow Could Cause Property offsets are indicated. 6 -4 -8 dimensions shown in ft- in- sixteenths Damage or Personal Injury r ��= Dimensions are in ft-in-sixteenths. I I (Drawings not to scale) �� and f Apply ully plates em to bed both sides teeth of truss 1. Additional stability bracing for truss system, e.g. diagonal or X-bracing, Is always required. See BCSI. 1 „ 2. Truss bracing must be designed by an engineer. For 1 2 3 wide truss spacing, individual lateral braces themselves 1 TOP CHORDS may require bracing, or alternative L I, or Eliminator Mrigiff bracing should be considered. ■ 4 3. Never exceed the design loading shown and never stack materials on inadequately braced trusses. O O 0 4. Provide copies of this truss design to the building For 4 x 2 orientation, locate designer, erection supervisor, property owner and O= all other interested parties. plates 0- nd' from outside ILI:11E11E1 U edge of truss. c7 a C6-7 C5-6 O 5. Cut members to bear tightly against each other. r BOTTOM CHORDS 6. Place plates on each face of truss at each This symbol indicates the 8 7 6 5 joint and embed fully. Knots and wane at joint required direction of slots in locations are regulated by ANSI/TPI 1. connector plates. 7. Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1. * Plate location details available in MiTek 20/20 software or upon request. 8. Unless otherwise noted, moisture content of lumber JOINTS ARE GENERALLY NUMBERED /LETTERED CLOCKWISE shall not exceed 19% at time of fabrication. AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO PLATE SIZE THE LEFT 9 Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber. The first dimension is the late CHORDS AND WEBS ARE IDENTIFIED BY END JOINT p 10. Camber is a non - structural consideration and is the 4 x 4 width measured perpendicular NUMBERS /LETTERS. responsibility of truss fabricator. General practice is to to slots. Second dimension is camber for dead load deflection. the length parallel to slots. 11. Plate type, size, orientation and location dimensions LATERAL BRACING LOCATION PRODUCT CODE APPROVALS indicated are minimum plating requirements. ICC-ES Reports: 12. Lumber used shall be of the species and size, and - in all respects, equal to or better than that , Indicated by symbol shown and /or ESR -1311, ESR -1352, ER -5243, 9604B, specified. by text in the bracing section of the 95 -43, 96 -31, 9667A 13. Top chords must be sheathed or purlins provided at output. Use T, I or Eliminator bracing NER -487, NER -561 . spacing indicated on design. if indicated. 95110, 84 -32, 96 -67, ER -3907, 9432A 14. Bottom chords require lateral bracing at 10 ft. spacing, BEARING or less, if no ceiling is installed, unless otherwise noted. 15. Connections not shown are the responsibility of others. Indicates location where bearings 16. Do not cut or alter truss member or plate without prior (supports) occur. Icons vary but © 2006 MiTela All Rights Reserved approval of an engineer. reaction section indicates joint ® number where bearings occur. ■■ © 17. Install and load vertically unless indicated otherwise. I t • 18. Use of green or treated lumber may pose unacceptable environmental health or performance risks. Consult with project engineer before use. Industry Standards: - ANSI /TPI1: National Design Specification for Metal 19. Review all portions of this design (front, back, words Plate Connected Wood Truss Construction. ■ ® and pictures) before use. Reviewing pictures alone DSB -89: Design Standard for Bracing. T 1<: is not sufficient. ± BCSI: Building Component Safety Information, 20. Design assumes manufacture in accordance with Guide to Good Practice for Handling, POWER To PERFORM.'" ANSI/TPI 1 Quality Criteria. Installing & Bracing of Metal Plate Connected Wood Trusses. MiTek Engineering Reference Sheet: MII -7473 rev. 10 -'08