Loading...
Plans _� 4ED I OF1CARD �� MAY D 5 2008 Condkiona9AP rovai...M.I...H. . Sat Liar ID: Folbrr t ' L CIT ` � �v1lON � ■ � � � . � �'- 41' 8.1 11 -�?' 1 �_ 11��1w ii■ III OFFICE COPY ! (NAPQ�IEST 3; ' GI lad m SCOW B et °w 5 Sw Oak Way > A Sw Oak St 1 R 1 ri , , . • F 1 ,,, 1 . . • ® PLATFORM "B " soI,-m cc .` Sw Spruce St 4. SW .-®-. `�' r�/ Sw Thorn St St i 1 I 5w Langstaff X ! 9 • -- _ ` ! g yw North Dakota St R2 a cn PLATFORM "A" Waklm Apartments 1 i ; c , E , —q -=.— c Gk CJ uer Lqy " us 5 54 Sc0 9ata Av e r 9............. T. . _. 4 , I__ . • - - - • I nyt sw Katherine st sw Wagon a Ct Dove sr c T 5. 106th Dr tA I © 2008 MpOoest Inc. )(AaMON St "F Nip Data 0 2008 N8 V TFQ Or T A as .a 1 -- N VICINITY fvAP . SCALE: NONE L01 PLANT LAYOUT - MEZZANINE / PLATFORM 4 . Scale: 1/16"=1'-0" N M J MATERIAL FLOW & CONVEYOR SYSTEMS, INC NOTES PR: teat 04.1513/ (Kg 3/11.1$112 • FAX m•a1ae wEEMS& m aaralrm. oln 0 w."mweyory wts.00n 1.0 FOR DETAILED LAYOUT OF PLATFORM "A ", SEE DRAWING 08- 0100 —L02 1 2.0 FOR DETAILED LAYOUT OF PLATFORM "B ", SEE DRAWING 08- 0100 —L03 „ �,, °" MEZZANINE PLATFORMS 3.0 ALL PLATFORMS DESIGNED FOR 125 PSF LIVE LOAD. easa0tauaa. BUILDING LAYOUT .m X* Oa tt[ coon= tlt M ruse. m0114 . - .0005 k uoue MM ONIOWS NOP= E NW O8WOMN. MAIM* k 1/a MO M SUBJECT TO ROAN ON OOWO. M1° 1N1 * I. °M1 ° RSC =,.... nom ma wo. 01101°' MATERIAL FLOW at CONVEYOR DO NOT SCALE 0 AWNO aslo N .m 11117 Mt Mt OeHtO.P0 M. MONO/ OR 07123 09 ` I o e 11 c e 1 r r 1 o e sr EDGES AND Aug 1 2-07 -07 '' 1 /16� -1' a MFO7 —01 OO 08-0100—L01 I M - • Ark C ELO1 20' -t0• ELO1 t0' -3' 10' -7' B 9 7 6' 10' 7' ELO 1 COL f, 3' -e. COL #2 C c 3 _e. COL f 6, i 4 L2 BEAM CROSS— SECTION I 12' 1•- a fY ■ fY it 5/a• PIAIE tY 12' ■ 12' : s /a' Pule Nip 12' ■ 12' . s/e PuTE T ii Mai �iii. A w 1 , 1;01. 04 COL #5 / COL /6 LI a ' - r 12" t2' a 24' -2' 3 ? . 1 6 ■ m ■ • CORNER COLUMN SIDE COLUMN J - 7 --- EXAMPLE: COL #1 EXAMPLE: COL #2 (AS SHOWN) CENTER COLUMN 12' -1' EXAMPLE: COL #6 (OPPOSITE HAND) EXAMPLE: COL #5 Cot. f7 COL $ r COL #9 ' COL /10 COL #11 COL #12 -- COL f13 4 '/2' I 1 z' -z" 2. t 1• -3. MIME OMEN , • / 4 _ 2 NUMMI' 1 , ' ^� � 2. 24' -11" . , I ^ ,1 ►'9 ilk; P� ,• rvA w J 1 • ■ 2' A A V 1 12' -9' ui , u 1 1 12• - t" --- I II MEI 1 I _ 1� 1 3 g _ - _ 1 I 4 1 -0 1/2" COL #21 COL #21 COL IA COL #23 COL #24 COL #25 I • 0 EL01 10' - 3' -- — .. — 10'-4' — - 10' 12'-6' — t5'-e' - - 14' - 3' A A ELO1 — 73' ELO1 0 L 02 PLATFORM LAYOUT Scale: 1/4 " =1' -0" 4--0-111 N MATERIAL FLOW & CONVEYOR SYSTEMS, INC NOTES L 79.W. (§wb•p Rd 1 TQ d oR W223 1.0 FOR ELEVATION VIEWS, SEE DRAWING 08- 0100 —EL01 \ 09) 41819 / (!0 362 0) 998 1 1 FAX. (00 60 WEB eR X1) es4 3 / MO) 00P4. 1 0 FAX. rn 3) 60. 133 2.0 COLUMNS TO BE 6" SQUARE TUBE WITH 12" x 12 3.0 MAIN DECK SUPPORT BEAMS TO BE 12" FORMED CHANNELS. �, ,„60.., , � �,,,�,� '"` 49' x 73' PLATFORM "A" e,�,,, • • an 4.0 DECKING TO BE 1 1/8" POLYLAM T & G DECK, GRAY TOP / WHITE uNDERSIDE DETAIL LAYOUT 5.0 PLATFORM DESIGNED FOR 125 PSF LIVE LOAD. . 7 PH (G r ° "° °°°1t"1'°°` � °D0d'eO1'" I Ire,N„n r ,y MID B SUBJECT TO RETURN ON MAO M°"" • °M1 ° RSC °' MpP "` 0° °"O°' MATERIAL FLOW & CONVEYOR DO NOT SCALE DRAWING eRe r Bur s 11GMD. ON JOS II. RQLOVE Au SHARP 6" `°"" / 08- 0100 —L02 cox - PIN wv OM o E 4 c R,• r 1 0 01 ... jr EDGES AND CORNERS 01 -01 - 08 1 4 " =1' M F08 -0100 N - 14' 12' -2 1/2' . 10' -10' 10' -1 1/2 a' -2 - 7' -5 1/Y • AIIIIII 5' -5' 4'-9 1/2' EL02 — 2.-11/2- — aI r E ': e C `- 1 E. E COL /1 COL #2 COL #3 J -1 ' - - - - _ ' BEAM CROSS— SECTION 1 T 1 I. 12' -6• 1 T �— T COL a . _ - � — - = 11 - COL h - 2a coL /5 1 12' +x' 7 12- x12- .5/e. Pure ��� 1Y x 12' z ex PLATE bli mp tYz1Y 12' -5 ill ' il —112. C ORNER COLUMN SIDE COLU 12* 11111 r ME ME EXAMP COL #1 COL /2 (as SHOW CENTS' COL MN U EXAMPLE COL /6 ( OPPO SITE HAND) EXAMPLE; COL #5 o ca. " EL02 - - - -- --- -' --- 14 ` - - -_. .4' A A EL02 -- 28 ' - EL02 L03 25' x 28' PLATFORM LAYOUT Scale: 1/2 " =1' -0" 4G—A NOTES FLOW & CONVEYOR SYSTEMS, INC N MATERIAL 11117 S. • T FA 97223 P!1 (803) 3)13 831.18131(800) 33&161 382 • FAX (503) 8842133 WES 1.0 FOR ELEVATION VIEWS, SEE DRAWING 08- 0100 —EL02 �� WEB """ "� °�°"°° " " °" `�"`", 2.0 COLUMNS TO BE 6" SQUARE TUBE WITH 12" x 12" ` \ �= 3.0 MAIN DECK SUPPORT BEAMS TO BE 12" FORMED CHANNELS. �..o. me exxxG s iACIZE lL,T Lv UMW xzz 25' x 28' PLATFORM "B" flAI • COM O VINOIS. INC. MO 6 IMMO 4.0 DECKING TO BE 1 1/8" POLYLAM T & G DECK, GRAY TOP / WHITE UNDERSIDE VMS K DETAIL LAYOUT CONFORM 5.0 PLATFORM DESIGNED FOR 125 PSF LIVE LOAD. ""�'°� '"' "° s "RETURN "" ° " 0H °°° A°" ° ` ' °� ° RSC °' 11. °T" ° 0 " °Of .. MATERIAL FLOW & CONVEYOR DO NOT SCALE DRAWING ....., Mgr DS MAO. 04 REMOVE ALL ShIARP y� 3a.[ 0 1r COMIC .. oea iav 8 sat 5. .C31IT 011 a EDGES AND CORNERS 01 -01 -08 1/2 " -l' MF08 -0100 08- 0100 —L03 M - • 25' 28' 1 1/8" TdcG POLY LAMINATE DECKING 1 1/8" T&G POLY LAMINATE DECKING r r r E . .,_ r • • 12' -8 1/8" 12' -8 1/8" 11' -r 11 ' -7 " CLEAR CLEAR 5e8" WEDGE ANCHOR / 4 EMBEDMENT (TIP.) rt rt rt 12' -8" 12' -8" 14' 14' SIDE ELEVATION VIEW - SECTION A -A FRONT ELEVATION VIEW - SECTION B -B I MATERIAL FLOW & CONVEYOR SYSTEMS, INC 111 9.W. O1. 'bI Q I0. r Tqw. OH urns \ 1 PH. (809) 8N -1B19 / MOO) 9361382 1 FAIL (503) 8845/93 WEB SITES: www.mNl.ilow Wm f www.00nwym- pum.co m ,, moo oo 0 1K E iweRY BF 3WE3NL 3m[ 25' x 28' PLATFORM m k .0 Rar 9 MOON WARM "` AS 1 MOM ELEVATION VIEWS . 90 ,,. a DIE GB1eem1 WI 11€ e. € ru oc9oa. WO • ,305 Mo Men MONO R I161 oOIROON 1L R.4,or. * 1i93 ANB 5 S68 T m WU1I BN MIND. Y°°" * Y Ms" ~ RSC 1°' "o. 1Of' "" 8w "M.' MATERIAL FLOW & CONVEYOR DO NOT SCALE DRAWING ..... DS 10•117 08 - 0100 - L02 MIRO OR REMOVE ALL SHARP .., .... oao3 I3v ■ RV OWL .[3C.1.TI5. w EDGES ANO CORNERS a . o... O1 -01 -08 ` 0 M ' 1 " m1 MFO8 -0100 08- 0100 -EL02 M - i 1 9• — 73' - 20' -9 7/8' • I I 1 1/8" T&G POLY LAMINATE DECKING I 1/8" T &G POLY LAMINATE DECKING '7 ©7 137 ®7 07 ©9 a rI1111111I11111K:1411110.11111t_r I 12 -2 1/8' 12' -2 1/8' 11' - TOP OF DECK CLEAR 5 WEDGE ANCHOR 4 EMBE (TYPJ ri _ tt f T rl fl t1 t 10' -3' I 10' -4' I 10' I 12' -8' I i3' -8' I 1 -3" 10' -6 7/8" I 10-3" FRONT ELEVATION VIEW — SECTION A —A FRONT ELEVATION VIEW — SECTION C —C 24' 24' -2' 1 1/8" T&G POLY LAMINATE DECKING 3 —RAIL GUARDRAIL PANEL It 1 W MS ,U it n r n ®7 IT n n . • =El= 12' -2 1/8" 11'-i" 11' -1" CLEAR CLEAR 1" x 1" x 16 GA FORMED ANGLE x 6" LONG • =MINN t TEK SCREW FROM BOTTOM t f f ,z' -1• I t ,z' -I" t tt t 11 -s' I l I 12' -9" OF THE RAIL & CLIP SIDE ELEVATION VIEW — SECTION B —B I 2" x 2" x 16 GA SQUARE TUBE x 55" LONG 5/8" DIA. BOLT, NUT, & WASHERS / imm=i 3/16 , TMP DRILL TEK SCREW KICKPLATE 4" x 3" x 1/4" ANGLE BRACKET TO INSIDE OF HANDRAIL POST 1 1/8" T &G POLY LAMINATE DECKING WELDED TO COLUMN 6" x 3" x 1/4" ANGLE BRACKET BOLTED TO CHANNEL BEAM 5/8" DIA. BOLT, NUT, & WASHERS WELDED TO CHANNEL GIRDER BOLTED TO CHANNEL JOIST - -- DECK LINE— KICKPLATE �I- I I � FITS UNDERNEATH DECK GIRDE BEAM, 12" DEEP 0 3 16 - 4 1/2 13 HEX BOLT, FLANGED I 3 16 , HEX NUT, & FLAT WASHER (2 —RED'D PER POST) ■Iiiiii. ■Iiimiimim 1 : - O �� NIA �� �� O O ; . O 0 , FIELD LOCATE GUARDRAIL POST "C" MEZZANINE BEAM TRANSFER DRILL THROUGH BEAM, & 11 GA FORMED C CHANNEL 11 GA FORMED "C" CHANNEL ::. OTHER STRUCTURE O O E S U JOIST BEAM, 12" DEEP GIRDER BEAM, 12" DEEP FASTEN WITH PROVIDED HARDWARE 6" x 6" x 3/16" TUBE COLUMN Nom GUARDRAIL CONNECTION DETAIL 8 X SCALE & 16 p JOIST B 2" DEEP CHANNEL Pr 11 GA FORMED "C" CHANNEL GIRDER BEAM, 12" DEEP (�/ MATERIAL FLOW &CONVEYOR SYSTEMS, TYPICAL CHANNEL BEAM —TO— CHANNEL BEAM CONNECTION " "'a'" °"°"° Tigard. 4AX 18 )68 4 � � B PE 8841813 / (800) 398.1 4 w. c 9a,) 883139 ' WE 9RE5: wvw.me6wlsM ON • r,Nw.canv STEMS, INC I 5 /8" x 12" x 12" BASE PLATE SCALE T� cwwcES * ^i ems Nemo m m TIa4 M ANG IS IC M 681 MMIM INK 49' x 73' PLATFORM �.„�"°' ELEVATION VIEWS TYPICAL COLUMN —TO— CHANNEL BEAM CONNECTION . - . .. 4 v. no MOWN M� 4 me 0 eslr O NOl ON & CONNECTION DETAILS 8 X SCALE ..m. ' MON w WA M. ' NUL NC o� R MATERIAL FLOW &CONVEYOR 0o NOT SCALE oRAw1NC o., w DS ,�, 08 - 0100 - L02 , co — — ED A N1 SHARP ° � ` '°"' / 08 0100 — EL 01 I - �. w o .> S .1f O o C 8 8 9, r r 1 o■ n EDGES ANO CORNERS Ol —01 —08 1 2 =1 ' MF08 -0100 M t _ 6 u P.. oo ?- cc 0-/--4? EL Wood Elitineetilig .:$ Associates 3903 Martin Chapel Road Springfield, TN 37172 -1235 Phone: 615-384-1485 Fax: 615- * LlLI��.�•• CEI e- mail: klwea@bellsouth.net (lvv;= vE® JUN 0 2 2008 Project Name CITY OF TIGARD ,. / . . IVISION Mat Location Tigard, OR A , 1 sis S t pil ti ,, , ,r,. . .,,,...,„.,..:„. , _,_,._. , i ., ,., r ,... `,1 it l' 4 or la,,carat - ,,,, i : ,: Project Number TD05809 These calculations review the structure being installed for structural capability. The sealing of the drawings used in conjunction with these calculations is for the structural review only. Other information is not reviewed, nor approved. cc: �� , N G IN4FR <c 6 ',5 , 0 2 66944E 9 " REGON G', ' 15 2.0 ,c0 • 9 R y ,1. tA (EXPIRATION DATE: / Z /3 / /o$ 5/30/2008 Engineering Seal Data: State Number ,' Exp D ate OR 66944PE u } x . 31- Dec -08 , INDEX Platform A Design Data 1 Seismic base shear 2 Column Loading 3 Period of vibration 4 Floor Decking Analysis 6 Floor Joist 7 Beam Analysis 9 Beam /Column Connection 11 Column Analysis 12 Baseplate Analysis 13 Anchor Bolt Analysis 17 Column Weld Analysis 18 Platform A Design Data 19 Seismic base shear 20 Column Loading 21 Period of vibration 22 Floor Decking Analysis 24 Floor Joist 25 Beam Analysis 27 Beam /Column Connection 29 Column Analysis 31 7 Baseplate Analysis 32 Anchor Bolt Analysis 36 Column Weld Analysis 37 Computer Model - Platform A M1 -M15 Computer Model - Platform B M16 -M28 Platform Design Data Material Flow Page: I 1 2007 OSSC Platform A 5/30/2008 Codes and Specifications Design Based on LRFD Method * Model Building Code: 2007 OSSC * Design based on pinned bases. * American Iron and Steel Institute (AISI) Ordinary moment frame. * American Institute of Steel Construction (AISC) * American Welding Institute (AWS) Material used in Construction Cold- formed structural steel: ASTM A446, Grade D, Fy= 50 ksi Structural Steel Tube: ASTM A500, Grade B, Fy= 46 ksi Structural steel plates: ASTM A36, Fy= 36 ksi Bolts: Grade 5 or Grade 8, shear connections. Inspection not requied. Concrete Strength Structure Size: Slab: F'c = 3000 psi Slab thickness 6 inches Width 25 Feet Soil Strength Length 28 Feet Qs = 1500 psf Height 1 11.583 Feet Height 2 0 Feet Design Loads: Total 11.58 Feet Dead Load: Floor Area 700 FeetA2 Covering 2 (per floor) Steel Deck 0 Number of stories 1 Steel Joist 2 Steel Beams 2 Total floor area 700 Ft ^2 Misc. 4 Partitions 0 Mechanical Eqpt 0 Design Check -- Load Cases Total 10 psf LRFD 1.4D Live Load: 1.2D +1.6L Floor loading 125 1.2D +.25L +E Special 0 .9D +E Misc. 0.0 Total 125.00 psf D +L = 135.00 psf L ratio.... 0.926 Seismic Design Conditions: D ratio.... 0.074 Ss 0.971 • S 1 0.347 Category I (Ordinary moment frame -OMF) Importance factor 1 Simplified Procedure per 1616.6.1 Response R 3 Soil profile D Base Shear ratio 0.2848 W ` 1a Conterminous 48 States 2005 ASCE 7 Standard Zip Code = 97223 Spectral Response Accelerations Ss and S1 Ss and S1 = Mapped Spectral Acceleration Values Data are based on a 0.05 deg grid spacing Period Centroid Sa (sec) (g) 0.2 0.944 (Ss, Site Class D) 1.0 0.340 (51, Site Class D) Period Maximum Sa (sec) (g) 0.2 0.971 (Ss, Site Class D) 1.0 0.347 (S1, Site Class D) Period Minimum So (sec) (g) 0.2 0.907 (Ss, Site Class D) 1.0 0.334 (S1, Site Class D) 4 2007 OSSC Seismic Design Data Page :I 2 Category Seismic Factor Ie Classification of Structure for Importance Factor 1 1 1604.5 Seismic use Group I .2Sec ISec 2% PE 50 yr From USGS Earthquake table by Zip Code 0.971 0.347 Spectral response cofficients Ss = I Si = 0.3 Sds = 0.712 Shc = 0.416 Soil Profile Site Class Site Class Definition Soft Soil D 1615.1.1 Basic seismic - forrce- resisting system Ordinary Moment frame of Steel (OMRF) Design base Shear V = 0.285 W Analysis procedure Simplified per 1616.6.1 Design uses a Flexible diaphragm for transfer of shear forces to vertical elements. Base Shear Analysis Section 1617.5 Simplified procedure Light- framed construction Height -feet V = CsW Number of stories 1 11.58 Cs = 1.2Sds/R Ie = ASCE 7 -02 Table 9.14.5.1.1 R = 3 1617.6.2 Fx = I.2Sds /R Wi SZ = 2 1617.6.2 Cd = ?.5 Fa= 1.1 F1 = 1.8 Sms = 1.0681 Sm I = 0.6246 Cs = 0.285 \'Vi Equation 16 -49 Fx = 0.285 Wi Minimum Design Lateral Force and Related Effects Section 1617 LRFD Design Load Qe = CsW L = 125.00 Psf W = 1.2D +.25L Seismic loading D = 10 Psf Qe = Cs(1.2D + .25L) Total 135 Psf Qe = Cs(1.2RrL + ,25L) 1.2RrL +,25L = 0.339 D Ratio dead load ratio to live Rr= 0.074 Qe = 0.0965 Li Li = Live load loading on area used for base shear calculations Column Loading by Tributary Area Page: I 3 L = 125.00 Psf B2 D = 10.00 Psf Total 135.00 Psf B I S I = 12.667 Feet S2 = 15.5 Feet b c® Bi = 11.25 Feet 132 = 12.75 Feet Si Sz Number of stories Column Plan View Full Dead +Live Load Kips Per Level Location Area Loading FtA2 Kips Location 18 169.00 22.82 Seismic Loading Qd Maximum Dead Load 2.670 Kips 3.204 0.761 Maximum Live Load 27.476 Kips 6.869 30.15 Kips 10.073 Seismic Floor Loading Li Live Load Per Level Location Area Loading Ft ^2 Kips 18.00 169.00 10.07 Qe Shear Kips Per Level Location Loading Kips 18.00 2.869 Maximum value Qe = 2.869 Kips Per level Maximum value Qe = 2.869 Kips Total base shear Section 1617 E = 2.978 Kips /level Eq 18 -28 E = - )Qe + .2SdsD Em = 5.847 Kips /level Eq 16 -29 Em = L2Qe + .2SdsD E = 2.489 Kips /level Eq 16 -30 Em = 5.358 Kips /level Eq 16 -31 Column Loading by Tributary Area Page: 3 q L = 125.00 Psf B2 D = 10.00 Psf Total 135.00 Psf B1 S t = 12.667 Feet S2 = 15.5 Feet a b c; B1 = 11.25 Feet B2 = 0 Feet Si S2 Number of stories Column Plan View 1 Full Dead +Live Load Kips Per Level Location Area Loading FtA2 Kips Location 11 79.22 10.69 Seismic Loading Qd Maximum Dead Load 0.765 Kips 0.918 0.218 Maximum Live Load 6.523 Kips 1.63075 7.29 Kips 2.54875 Seismic Floor Loading Li Live Load Per Level Location Area Loading FtA2 Kips 11.00 79.22 2.55 Qe Shear Kips Per Level Location Loading Kips 11.00 0.726 Maximum value Qe = 0.726 Kips Per level Maximum value Qe = 0.726 Kips Total base shear Section 1617 E = 0.757 Kips /level Eq 18 - 28 E = . Qe ± .2SdsD Em = 1.483 Kips /level Eq 16 -29 Em = 0.Qe + .2SdsD E = 0.617 Kips /level Eq 16 -30 Em = 1.343 Kips /level Eq 16 -31 Column Loading by Tributary Area Page: I 3.6 L = 125.00 Psf B2 D = 10.00 Psf Total 135.00 Psf B I S I = 12.667 Feet S2 = 15.5 Feet B i = 12.75 Feet B2 = 0 Feet SI S2 Number of stories Column Plan View 1 Full Dead +Live Load Kips Per Level Location Area Loading FtA2 Kips Location 24 89.78 12.12 Seismic Loading Qd Maximum Dead Load 0.918 Kips 1.1016 0.261 Maximum Live Load 8.240 Kips 2.06 9.16 Kips 3.1616 Seismic Floor Loading Li Live Load Per Level Location Area Loading FtA2 Kips • 24.00 89.78 3.16 Qe Shear Kips Per Level Location Loading Kips 24.00 0.901 Maximum value Qe = 0.901 Kips Per level Maximum value Qe = 0.901 Kips Total base shear Section 1617 E = 0.938 Kips /level Eq 18 -28 E = r)Qe + .2SdsD Em = 1.838 Kips /level Eq 16 -29 Em = OQe + .2SdsD E = 0.770 Kips /level Eq 16 -30 Em = 1.670 Kips /level Eq 16 -31 Date: Period Calculation for Mezzanine Page: 4 5/30/2008 Based on the Rayleigh Method Percent Total Load /Level contributing base shear 25 ;" /. Distribution exponent -(k) 1.51 Unfactored Live Load per floor Kx 2 Column Loading.... g.... 27.48 Kips Live Load T 1.519 seconds E *Ix Column Loading.... 2.67 Kips Dead Load 695522 Computed Distribution exponent -(k) --- - -> 1.51 Period more sensitive to height than loading Elevation Column Column Column Column Column Inches DL PL LL Tot. Load Cu. Load W W ' hAk H 139.00 2.67 0 27.48 30.15 30.15 9.54 16422.4 1.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.0 0.00 138.996 2.670 0 27.476 30.15 9.54 16422 1.00 W* Level Cum F L Pcr Delta_P Mag. Fac Delta_T Delta T "2 Fi *Delta_T 1 1.0000 138.996 88.827 1.565 1.514 2.369 53.52 2.369 2 0.0000 0.00 0.000 0.000 0.000 0.000 0.00 0.000 53.519 2.369 T = 1.519 seconds y FUNDAMENTAL PERIOD OF VIBRATION WORKSHEET Date: Page: 5 1 5/30/2008 Seismic Coeficients: Sd1 = 0.3000 Sds = 1.0000 Soil Profile Type - D Rd = 3 Moment Resistant Frame Cs = 0.2848 Non - Reduced Base Shear Coefficient... 0.2848 Qe = 0.0965 W live load Level Drift Height to Floor PA Column Guide Line for Drift Limit Only 1 6.436 138.996 61.39 Width .333 "Column Width 2 0.000 0.00 0.00 6 Column Width 2.7 Inches 0.00 Inches 6.436 Inches Column Displacement Actual I Date: Continuous Span- -Check Decking System 5/30/2008 Page:' 6 Description: 1 1/8" T &G Plywood Uniform Load Live 125 Psf Uniform Loading 6 Psf Spacing 32 Inches Decking Wgt 2 Psf 2.67 Total 133 Psf Decking System Sxp= 2.53 InA3 Check deck for 1' wide Desc. 1 1/8 Ply Sxn= 2.53 I0 ^ 3 Ix= 1.424 In ^4 Ratio 0.748 Fy 1 Ksi IIllfil I illlII IIpIIInII li illEllifIIIIIIII1IigINII lill1MIIV IMilIIIMMIIIIMIMINIiiHMENIIpIdIIIMIMEIME . __ Span ___ Span Span Ra Rb Rc Rd 141.9 390.1 390.1 141.9 1064 Reactions Ra =Rd= .4w1 Ra =Rd= 141.9 Pounds Rb =Rc= 1.1w1 Rb =Rc= 390.1 Pounds Positive Moment = .100 * wl ^2 Mp= 1134.9 In- Pounds 1518 Negative Moment= .08 *w1^2 Mn= 907.9 In- Pounds 1518 Mn = SeFb Allowable Bending Mo Ma= Mn Positive Ma= 1518 In- Pounds Ok Negative Man= 1518 In-Pounds If Design Ratio - Positive DR= 0.748 Design Ratio - Negative DR= 0.598 Delta= .0069WL U240 L /360 Deflection , = 0.002 0.133 0.089 , bar; Floor Framing Design Check Page:';__ Date: 5/30/2008 Flooring System Bending Moment Strength— 4'Mn lx = 46.49 In ^4 Se = 7.77 In ^3 X — —" 12 E = 29500 Ksi 4)b = 0.95 Fy = 55 Ksi Mn (I) 384.57 In -Kips Tk = 0.120 inches ............ C12x3x11 Joist Spacing 2.667 Feet 32 Inches Joist Qty of .... 1 Floor Loading 125 Psf -Live Load 10 Psf -Dead Load 135 Total LRFD Method of Analysis Joist Span l 15.5 Feet Load Factors 1.2D +1.6L Factored W = 565.33 PLF Floor Joist Net R = 4.38 Kips 183 Inches R 4 Span R • Bending Moment for the Simple Beam Fixed End Moment 0 0.00 0 Mb = W L ^2 / 8 - Fixed End Moment In -Kips Ft- Kips Ft -Lbs See Page Mb = 16977.67 Ft- Pounds Mb = 203.73 In -Kips < 384.57 Ok 0.53 Deflection Check for Simple Span Beam • Delta = 5 W L^4 / 384 El Delta Limit 240 W = 27.78 Pounds /Inch Delta = 0.296 Inches Dli = 0.763 Inches Ok Date: End Connection Design Check Page:( 8 5/30/2008 I ------ Beam MR .° Al . ;.. - . ,r ° • — — -- T • — — — T = C Joist � . 3 X = 2.40 Inches -- '. . * $ - 0 ._ . — ._ . _ _ _._ .6667X 1.597 Inches -.M M.1: ; „ Y= 1.597 Inches i ; . ., ',4 X .667X "C +YT =M 1 T = 6.17 Kips 4 't= 67.5 Ksi Tu= 20.72 Kips Vertical Shear on Bolts Ok 4.38 Bolts Used in Connection Vv = R / N Kips 4.5 R = End Reaction 5/8" Dia. Grade 5 N = Numnber of Bolts in Connection N = 3 4)Fv = 36 Ksi Vv = 1.46 Kips Anet = 0.307 Horizontal Shear on Bolts Design Shear Strength Bearing Ru = 11.05 kips 11.77 Vh = M / Y Tu = 20.72 kips M = rotational moment M = 19.72 In -Kips Ra = 11.05 kips Y = distance between bolts Y = 3 Inches Th = 3.29 kips Vr = Th/Tu +Vv /Ru Design Ratio Dr = 0.29 Ok Date: Floor Beam - -Strut Page: 9 5/30/2008 C Section Section Properties -LRFD Strengths Number of Members Used... 2 Main Section Description Section ID C12x3x11 Beam Note -1 In some cases there are 2 beams connected to the column. There could be one on each side of the column. Q value= AISI Fy = 55 Ksi E = 29500 Yaxi Column Section Properties : 2 j 4 Column= Special Reinforcement I. T = 0.1196 In. Rod 2/3 Gross Area Ag= 2.2712 InA2 0 I 6' Net Area An= 2.271 Inn Rod 4/5 Depth ♦ - -X axis Ix = 45.50 In. ^4 0 12 I Sx = 7.58 In. ^3 Rx = 4.48 In. Web I j Flange ly = 2.44 In. ^4 Reinforce. 3; 5 � 1 Min. S 1.08 In. ^3 0 Section Wgt /Ft. j Ry = 1.04 In. Elme 6 7.72 j I Zx = 11.85 InA3 1 -- -4- Torsional Properties Xo I.j Width M= 1.21 Xo = -1.89 3 Cw = 74.40 Cross Section Ro = 4.97 J = 0.01 0 = 0.86 Sx eff = 7.58 In. ^3 Critical Buckling Values Current Edition 1996 AISI LRFD crex = (rr^2E(KxIX /Rxr2) Eq. C3.1.2 -7 40505.3 (Jey =( Tr^2E(KyLy /Ry) ^2) Eq. C3.1.2 -8 2174.6 aet = (1 /ARo^2)'(GJ +7^2Cw /(KtLt)^2) Eq. C3.1.2 -9 2686.1 Fe = (1/2(3)'(( uex +ut) -(( aex +at) ^2- 4(3exut) ^.5 Eq. C4.2 -1 2659.1 Lx = 12.00 . Inches Ly = 12 , Inches Lt = 12 Inches Kx = 1 Ky = 1 Kt = 1 Concentrically Loaded Compression Members Section C4 Fe = 2174.6 Fy = 55.00 For X < 1.5 Fri = Fy * .658^( X ^2) Fn= 54.42 Ksi A = 0.159 For A > 1.5 Fn = Fy * .877/(X ^2) (1)1 105.06 Kips `l' = 0.85 Section Strength Mp = 417.08 in-Kips My = Sx ' Fy Lateral Buckling Strength Section c3.1.2 My = 417.07 Mn= Sx eff (Mc /Sx) `ib= 0.9 Me = 27267.98 Me = Cb Ro A(creyut) ^.5 Cb =1.00 Mc = 417.07 - Mc = Crit. Moment See Note 1 above Mn = 417.1 In -Kips For Me > 2.78'My Mc = My Single section `I'Mn = 375.4 In -kips For .56 *My< Me < 2.78 "My Mc = (10My /9)(1- 10 "My /(36 *Me)) 62.56 Ft -kips For Me < .56 *My Mc = Me Load case 1.2D +1.6L 750.73 In -kips 1 298.872 In -Kips Ratio 0.398 Ok Model Output Page /'YJ 7 Moment from model 24.906 Ft -Kips MUX= 149.436 In -Kips Date: Design Check--Contd. Page: 10 5/30/2008 Section C5 Combined Axial Load and Bending Design Ratio Dr = Pu / (i)c Pno + CmMux / (ktMnx nx <= 1.0 Cm = .85 aex= ( 1- Pu / Pe) 4)c= .85 (1)b=.9 First Beam Level H1= 12.00 Pe = 7r^2Elb / ( Kb Lb )^2 From Model P1 = 18.67 M1 = 149.44 Kb = 1 Kips In-Kips Pe = 91994.39 Nominal Axial Strength Pn = 105.06 Kips from previous page Dead + Live Load Pu unfactored Puf = 9.34 Kips 1.2D + E Seismic Factored Pu = 10.01 Kips Compression in strut from seismic Nominal Flexural Strength (() Mnx = 375.37 In-Kips Required Mux unfactored Muxf= 149.44 In-Kips Magnification factor = 0.85 Seismic moment factored Mux = 149.44 In-kips Factor= 1.000 Seismic-UBC97 Total factored moment 149.44 In-kips Pu / (Pc Pn 0.095 Mf • MOO Mn)= 0.338 0.338 Dr = design ratio (axial term + bdg. term) Dr = 0,434 Ok Design Check For Dead Load + Live Load Only Column Load Pc = 9.3365 Kips Factored Axial Load Pu = 10.01 Kips Nominal Axial Strength (1)13n= 105.06 Kips (I)c = 0.85 Design Ratio Pu l4CcPn = 0.095 Ok Main Beam to Column Connection page:( 11 Pmax Pma = 31352 pounds I I 1 mT \ 7 T H .. 4 «�aA } i .3A :TF :::=.11", • _ I � ta � � j Beam ID R " Beam ID i ; e = 139 11.583 RI Rr Inches Feet Span 0 ,I, Span 153 12.75 Inches Feet Inches Mc 90.516 In -Kips 7.543 Ft -Kips Main Beam to Column Connection Moments based on Portal Method V = Mc! (Li +L2) MI = 0.00 In -Kips RI= 0.000 Kips V = 0.5916 kips Mr = 90.52 In -Kips Rr= 31.352 kips 90.52 In -Kips 31.352 Kips I I �� �( x_bar A A*x_bar d �," • 3 0 2 0 3.600 Ti — i . ,.. 1 3 0.600 i ( Y 6 1 6 2.400 T2 _ f i -} 9 1 9 5.400 a i 18 5 18 I 90.52 — I : y1 A•dA2 25.92 .36 In -Kips T2 X_bar= 3.600 • ( $ Yi 0 Ix= 18.788 Ti — — ~ —I — 5.76 Bolt Stress 26,015.3 ksi i _ y2 29.16 Due to B ending No. of Bolts *" 61.2 T1= 7.987 kip 3 " 31.352 Kips Worst Case for Bolts V = 10.451 Kips • Bolts Used in Connection Table J3.2 A490 thds. In shear plane Vn= 60 Ksi Vr = (Ti ^2 + V "2) ".5 ep = 0.75 Try 5/8" Dia Av= 0.307 van= Ok Vr = 13.15 Kips Main Beam to Column Connection page; llA Pmax Pmax = 1364 pounds I I ''';'-':; '5 t�cg xF' i.a [,;n�+Wa Y 8i xN� rt�s -+x- � ��� 5z a � .a.. �„sf t 7 . , - a<, :, Y {11 7;1 ` 7: :7 1 a $s" . � � -n il � tA` 3' 1� { Y iS: Sit MI , : , 1. -� ; , ' , p ,mot Mr T , -.o- �..'s wuc vuac t t r � kn v " „ s �r ' I ha.T a I , iT � Beam ID x 1 Beam ID "` 139 11.583 RI Rr Inches Feet tirfrt: > ��i Span 0 1 153 12.75 Inches ! Inches Feet t -Kips Mc 67.224 In -Kips 5.602 F Main Be am to Column Connection Moments ba sed on Portal Method V = Mc! (L1 +L2) MI = In -K RI= 0.000 Kips V = 0.4394 kips Mr = 67. In -Kips ips Rr= 13.643 kips 67. In -Kips 13.643 Kips I I Summation of Moments about a Ti ; 2 " Y2`T2 + 2 "(Y1 +Y2rT1 = MI Y1 T2 = y2 /(y1 +y2 71 T2 � ) a ilk. r y1 = 3 In 67.22_ — y2 Y2 = 0 Inches In -Kips T2 i : Sr� Y1 T2= 0.0000 Ti Ti — „ T1 = M /(2 "y2 "T2 +2y1 +2y2) No. of Bolts ;t 3 ' t Ti = 11.20 kips , ? k V= R /(no.ofbolts) 13.643 Kips Worst Case for B otts V = 4.548 Kips Bolts Used in Connection Table J3.2 A490 thds. In shear plane Vn 60 Ksi Vr = (T1 "2 + V "2) ^.5 0.75 Try 5!8" Dia Ay= 0.307 Val!= 13.82 Ok Vr = 12.09 Kips Date: Tubular Column Design Check Page:1 12 5/30/2008 ID No. 18 Column Description: Loading Column Wall Tk. Sect. Factored Pull= 47.340 Kips 1.2D +1.6L 6x6x3/16 0.188 6x6x3/16 Unfactored Pu= 30.146 Kips D +L 1 14.447 From Model Mux= 5.717 " Ft -Kips Md+Ml+Me E = 29500 El= 695521.5 Design for 2 /3Mux= 45.74 In -Kips Q value AISI Yield Fy= 50.00 Ksi Ag = 4.249 AISC Sec -C2 4 A net = 4.249 Kx = 2 Ix= 23.577 K 2 Face X -axis - .- -- • d • - • - • - 0 Sx= 7.859 y 6.00 1 Metal Tk Rx= 2.356 Lx = 139.00 , 0.188 J = 40.5 Ly = 139.00 i i ly= 23.577 ..,..,N,....,, i Sy= 7.859 I Y -axis Ry= 2.356 Section Wgt/Ft Zx = 9.51 14.447 Depth 1 .44 6.00 LRFD Design 1996 Edition Cross Section Critical Buckling Values AISI Specifications Eq. C4.1 -1 Fe= 3.1416A2 *E/(KUR)A2 KxLx/Rx= 117.99 Fe= 20.907 Ksi KyLy /Ry= 117.99 A = 1.546 Eq. C4 -1 4c =.85 Pn= AeFn Eq. C4 -2 if A < 1.5 then Fn = Fy • .658 Eq. C4 -3 if A > 1.5 then Fn = Fy • (.877/A62) Section strength Mp = 475.3 In -Kips Eq. C4 -2 Fn= 18.335 Ksi My =SgFy 392.949 Eq.C4 -3 Mn =SeFy Ob =.95 Eq. C4 -1 Pn= 77.90 Kips Mn= 392.95 In -Kips ■hcPn= 66.22 Kips <AbMn= 373.30 In -Kips Design Check for both Axial Load And Combined Axial + Seismic Eq.C5 -1 Pu /[>cPn + CmMux/( (hbMnxihnx) <= 1.08 Pe= 7 /(KbLb)A2 Pe= 88.827 Kips- Factored Pu /(1)CPn= 0 'I>nx= (1- Pu /Pe) In -Kips CmMux/(0MnOnx)= 0.223 'l>nx= 0.467 . Orthogonal .3Me .3CmMuy /(4 bMny44ny)= 0.000 Effects 0 Factored Design Ratio = 0.938 Ok Dead + Live Load Only Design Check 0 = 2 AISC 8 Pd +Pl +()Pe = 49.22 Kips Static Load only Pu / 0.715 Ok Seismic Pu /1iPn 0.743 Ok Column Capacity 46,370 Pounds Unfactored Date: Tubular Column Design Check Page: 12 q 5/30/2008 ID No. 18 Column Description: Loading Column Wall Tk. Sect. Factored Pull= 30.337 ! Kips 1.2D +L +E ; 6x6x3/16 0.188 6x6x3/16 Unfactored Pu= I 30.146 ! Kips D +L 5 14 447 ........_.._., From Model Mux= I 16.480 Ft -Kips Md +MI +Me E = 29500 El= 695521.5 Design for 2/3Mux= 131.85 In -Kips Q value AISI I 0 0 Yield Fy= 50.00 Ksi Ag = 4.249 AISC Sec -C2 I I A net = 4.249 Kx = 2 i i i Ix= 23.577 Ky = 2 Face X -axis ' -1 ,0 — • — • — • -- - - - Sx= 7.859 6.00 09 Metal Tk Rx= 2.356 Lx = i 139.00 1 J 0.188 J = 40.5 Ly = 139.00 I ly= 23.577 1 i y, Sy= 7.859 I Y -axis Ry= 2.356 Section Wgt/Ft Zx = 9.51 14.447 Depth 6.00 LRFD Design 1996 Edition Cross Section Critical Buckling Values AISI Specifications Eq. C4.1 -1 Fe= 3.1416 ^2•E /(KL/R) ^2 KxLx/Rx= 117.99 Fe= 20.907 Ksi KyLy /Ry= 117.99 A _= 1.546 Eq. C4-1 , Pc =.85 Pn= AeFn Eq. C4 -2 if A < 1.5 then Fn = Fy • .658^(A ^2) Eq. C4 -3 if A > 1.5 then Fn = Fy • (.877/202) Section strength Mp = 475.3 In -Kips Eq. C4 -2 Fn= 18.335 Ksi My =SgFy 392.949 Eq.C4 -3 Mn =SeFy Ob =.95 Eq. C4 -1 Pn= 77.90 Kips Mn= 392.95 In -Kips (I)CPn= 66.22 Kips fibMn= 373.30 In -Kips Design Check for both Axial Load And Combined Axial + Seismic Eq.C5 -1 Pu /'CPn + CmMux/( (14bMnx <= 1.08 Pe= 7 /(KbLb) ^2 Pe= 88.827 Kips- Factored Pu /lt)cPn= 0.458 , Pnx =(1- Pu /Pe) In -Kips CmMux/(0bMnx,Pnx)= 0.456 `i'nx= 0.658 Orthogonal .3Me .3CmMuy /(4bMny0Pny)= 0.000 Effects 0 Factored Design Ratio = 0.914 Ok Dead + Live Load Only Design Check Q = 2 AISC 8 Pd +PI +S ?Pe = 49.22 Kips Static Load only Pu /'kcPn= 0,458 Ok Seismic Pu /<PPn 0.743 Ok Column Capacity 46,370 Pounds Unfactored Date: BASE PLATE SLAB /SOIL ANALYSIS Page:1 13 I 5/30/2008 Location 18 r---- Pact Is the tributary area greater than 150 ft ^2 Yes 0 —4 Column Loading= 47.34 Kips Worst Column ASD Unfactored 24.65 Case m v Fc' = 3000 Psi 9 ' x "" 4P Qs = 1500 Psf 10.42 : ,r 44.4 . a ;aa lab Ttiick. A ----, sk . ) Thick. = 6 ! In. Base Plate I 4 * 4 Be IN Aw ►II Footer Profile Under Column Top View of Footer Slab Section 4----*1 Be A Sx 1'T ^2 /6 pvr 'l s , \ T X Sx = 6.000 In. ^3 tss 4� �.a�; ' Y i 3 { a I es St y 4 14^' 1 4 1 1n. :e Bw Enter Base Plate Size Dw= 1 12 Bw=E_ 12 _ _ Effective Area Ae = (2 *Be +Bw) *Dw +(2 *Be) *Bw +3.14 *Be ^2 Be = ( 8'Sx'Fct / Qs) A .5 Fct = 87.6 Psi Fct= 1.6 *(Fc' ) ^.5 Seismic Increase 1 Be= 20.10 In. Yes = 1.333 No = 1 • Affective Area Ae= 2376.6 In. ^2 16.5 Ft. ^2 Maximum Column Load Pmax = 24,756 Pounds 24.8 Kips Allowable Actual Loading on Column Pmax = 24,651 Pounds 24.65 Kips Slab Design Ratio 0.996 Ok Date: Check Bearing Pressure 5/30/2008 Page' 14 Width Depth Actual Base Plate Size 12 12 Column Width Depth Base Plate 6 6 assumption Area of Plate under column 32.49 Inches ^2 Using 95% rule Effective Pmax 47.34 Kips Per Column lc' = Concrete Assume .... 3000 Psi '13 Pp LRFD Nc= 0.6 Pp = 1.7fc'Aeffective Pp= 99.42 Kips Ok Date: BASE PLATE ANALYSIS AND DESIGN Page :( - 15 5/30/2008 Location r 18 Pmax = 24.65 Kips Fc = 3000 Ksi Unactored I, Solve For Tension In Anchor Bolt Slab il ___.._— ._._._ _ I Mb = i 0.00 ;In -Kips T = (Mb - Pmax'Ec) / Eb Unfactored .iiiiiiiiiir,./ iii iiii " 11111111I�1I1 , 4 T = 14.09 Kips { r, , ,- 1 ', a ti F 0 If Negative No Tension In Anchor Bolt ., e+ . `? x> Special I II Thick.= 0.625 Inches Check Maximum Stress on Slab ! 333X F1= Pmax/ Base Plate Area i Fl = 0.171 Ksi 1.5 ! Eb = 10.5 Inches F2 = Stress Due To Moment Inches T X = Base Plate Width /1.667 Ec = 6 Inches X= 7.199 Inches Base Plate idth = 12 Inches Sum Moments About Axis b Base Plate Depth = 12 Inches C =Mb /2(.67X) C= 0.000 Kips Lix a Ct = C /Base Plate Depth ' Ct= 0.000 Kips /In p ! ♦ F2 =2•CUX From Pmax F2= 0.000 Ksi 1. A Fl Finax =F1 +F2 Finax= 0.171 Ksi Actual Ok ' • Fall = 1.800 Ksi From Mb I • F2 Allnwable Axis b---0-1 i X ' . 4 ''I Base Plate Size Pressure On Slab From Base Plate Width = 12 Inches Depth = 12 Inches Thickness 0.625 Inches e Date: CHECK BA__SE__PLATE THICKNESS Page: 16 5/30/2008 Location r 18 1 Check Bending In Base Plate Pmax = 24.651 Kips Fe = Fl +( Ovh / X)'F2 ' '-� Fe = 0.171 Kips I # ' Mb = 0.00 P1= Ovh' Fe Column �t , t In -Kips P1= 0.514 Kips 6 p r Ovh = 3 Thick. = I 0.625 ""e ". p1 P2 =( Fmax -Fe)' Ovh /2 it Overhang P2 = 0.000 from moment at base Mb p11111IIIII I'll��lN {I11 Fl Bending Moment In Base Plate Overhang- -About Axis a ° ' iii°111111 IIIIIII11 Ftc axis al F2 Mbp = P1 + P2'S2 S1= Ovh /2 = 1.5 Inches p S2= Ovh -.333X 12 S2 = 0.603 Inches * i" Mbp = 0.770 In -Kips Base Plate Loading Properties Of Base Plate Section Modulus Sx= 1" • TA2 /6 x -axis - fr Wgz'i j - Sx= 0.0651 In.A3 L O 1" J 0.625 Allowable Bending Stress Fb= .75' Fy AISC Fy = I 36 1 Ksi i Fb = t __27 ( Ksl Allowable Bending Moment Mall =Sx *Fb Mall = 1.758 In -Kips Mbp= Mactual = 0.770 In -Kips Design Ratio Rd = Mactual /Mallowable Design Ratio Rd = 0.438 <= 1.000 Ok Date: CHECK ANCHOR BOLTS FOR SHEAR /TENSION Page:; 17 5/30/2008 Check Bolt For Combined Shear And Pull -Out Tension from computer model D +fL +E Ft= 0.000 From model ........ ... Longitudnal - - -- Base Shear Per Column Vlt = 1.920 Kips From model Transverse Base ShearPer Column VU 1.920 Kips From model Allowable Values For Expansion Anchors Manfac: Redhead Concrete fc' = 3000 Psi Anchor bolt Desc. 3 .75 3 1/4 LRFD Example: 3000 psi 3/4 Dia x 3 1/4 Vallowable Allowable Shear Fas= 2530 Pounds Embd. Length Tallowable Allowable Tension Ft= 890 Pounds ER -1372 Values Resulting Combined Load Check Fr= (Tactual / Tallowable)A5 /3 + (Vactual / Vallowable)A5 /3 <= 1.00 Vactual= Vtc / No. of Anchor Bolts Per Column No. of Bolts 4 Vactual Vtc= 0.480 Kips Per column Tactual = Ftb / No. of Anchor Bolts Per Column Tactual Ttb= 0.000 Kips T Ratio = 0.000 V Ratio = 0.190 Fr= 0.063 <= 1 Ok Tension On Bolt Tactual Vactual Embedment Length Shear on Bolt % "-I % - a +f e t 4f st ze e :0 x¢ ex P sF 3.25 r- 14 ' z , t 4 Concrete Slab t o.' r t� M 3/4" Dia. X 3 1/4 Embd. Date: Column Welds To Base Plate Page: 18 5/30/2008 Weld patterm on column Pfac= 47.34 Kips E6 E7 1 _ Factored E5 " - i E8 4 r *_ Mb = 0.00 In -Kips • • • ' • • - Section - -A Slab r. Factored E4 g '. El A t "' 1.920 Kips E3 E2 Ref. Axis , ; 4 i Factored "tY y x ,i 4, +,+ ` Base Shear Weld Section k s ' 6 ° } . $ ' Length Dimensions Weld C.G. El 1.5 1 6 0 Base Plate Width = 12 E2 1.5 6 1 0.75 Base Plate Depth = 12 E3 1.5 5.25 E4 ! 1.5 i 6 Allowable Weld Stress Section Modulus of Weld Pattern E5 1.5 1 6 Eq. E2.4 -1 E2.4 -2 E6 1.5 • 1 5.25 E7 1.5 0.75 Pna= .4125 • Tm • Lw • Fu Longitudinal E8 I - ... 1.$ -_ 0 Pnb =.6 • Tm • Lw • Fu Transverse Fillet Weld Size Tw= 0.1875 Inches Weld Fu= 70 i Ksi Pna= 65.0 Longitudinal Sx= 5.34 ry In ^3 Pnb= 94.5 Transverse 42.00 Lw= 12 Length of weld Aw= 2.25 In ^2 Mc= Sx • Fu Liong= 6 Inches Mc= 374.06 In -Kips Ltran= 6 Inches 4 = . 6 Ac= 4.249 In ^2 tMc= 224.44 In -Kips Fa= Pmax / Ac Fa= 11.14 Ksi If Fb > Fa If Fb <Fa Fv = 0 Fb= Mmax / Sx Fb= 0.00 Ksi Ft= -11.14 Ksi Fv= Vs / Aw Fv= 0.85 Ksi Design Ratio Check Desing Ratio Dr= Ft / Pnb + Fv / Pna = 1.03 Dr one= -0.265 Dr two= 0.013 Dr= 0.000 Ok Platform Design Data Material Flow Page: 19 I 2007 OSSC Platform B 5/30/2008 Codes and Specifications Design Based on LRFD Method * Model Building Code: 2007 OSSC * Design based on pinned bases. * American Iron and Steel Institute (AISI) Ordinary moment frame. * American Institute of Steel Construction (AISC) * American Welding Institute (AWS) Material used in Construction Cold- formed structural steel: ASTM A446, Grade D, Fy= 50 ksi Structural Steel Tube: ASTM A500, Grade B, Fy= 46 ksi Structural steel plates: ASTM A36, Fy= 36 ksi Bolts: Grade 5 or Grade 8, shear connections. Inspection not requied. Concrete Strength Structure Size: Slab: F'c = 3000 psi Slab thickness 6 inches Width 25 Feet Soil Strength Length 28 Feet Qs = 1500 psf Height 1 12.083 Feet Height 2 0 Feet Design Loads: Total 12.08 Feet Dead Load: Floor Area 700 Feet ^2 Covering 2 (per floor) Steel Deck 0 Number of stories 1 Steel Joist 2 Steel Beams 2 Total floor area 700 Ft ^2 Misc. 4 Partitions 0 Mechanical Eqpt 0 Design Check -- Load Cases Total 10 psf LRFD 1.4D Live Load: 1.2D +1.6L Floor loading 125 1.2D +.25L +E Special 0 .9D +E Misc. 0.0 Total 125.00 psf D +L = 135.00 psf L ratio.... 0.926 Seismic Design Conditions: D ratio.... 0.074 Ss 0.971 S 1 0.347 Category I (Ordinary moment frame -OMF) Importance factor I Simplified Procedure per 1616.6.1 Response R 3 Soil profile D Base Shear ratio 0.2848 W 2007 OSSC Seismic Design Data Page: 20 Category Seismic Factor le Classification of Structure for Importance Factor 1 1 1604.5 Seismic use Group I .2Sec ISec 2% PE 50 yr From USGS Earthquake table by Zip Code 0.971 0.347 Spectral response cofficients Ss = I S1 = 0.3 Sds = 0.712 Shc = 0.416 Soil Profile Site Class Site Class Definition Soft Soil D 1615.1.1 Basic seismic - forrce- resisting system Ordinary Moment frame of Steel (OMRF) Design base Shear V = 0.285 W Analysis procedure Simplified per 1616.6.1 Design uses a Flexible diaphragm for transfer of shear forces to vertical elements. Base Shear Analysis Section 1617.5 Simplified procedure Light- framed construction Height -feet V = CsW Number of stories 1 12.08 Cs = 1.2Sds/R le = 1 ASCE 7 -02 Table 9.14.5.1.1 R = 3 1617.6.2 Fx = 1.2Sds /R Wi (2 = 2 1617.6.2 Cd = 2.5 Fa= 1.1 Fl = 1.8 Sms = 1.0681 Sm 1 = 0.6246 Cs = 0.285 Wi Equation 16 - 49 Fx = 0.285 Wi Minimum Design Lateral Force and Related Effects Section 1617 LRFD Design Load Qe = CsW L = 125.00 Psf W = 1.2D +.25L Seismic loading D = 10 Psf Qe = Cs(1.2D + .25L) Total 135 Psf Qe = Cs(1.2RrL + .25L) I.2RrL +.25L = 0.339 D Ratio dead load ratio to live Rr= 0.074 Qe = 0.0965 Li LI = Live load loading on area used for base shear calculations Column Loading by Tributary Area Page: ( 21 1 I , L = 125.00 Psf I I ; B2 D = 10.00 Psf Total 135.00 Psf BI SI = 14 Feet _._._ S2= 14 Feet a bi c; Bi = 12.5 Feet B2 = 12.5 Feet Si Sz Number of stories Column Plan View 1 Full Dead +Live Load Kips Per Level Location Area Loading FtA2 Kips Location 5 175.00 23.63 Seismic Loading Qd Maximum Dead Load 2.741 Kips 3.2892 0.781 Maximum Live Load 27.987 Kips 6.99675 30.73 Kips 10.28595 Seismic Floor Loading Li Live Load Per Level Location Area Loading FtA2 Kips • 5.00 175.00 10.29 Qe Shear Kips Per Level Location Loading Kips 5.00 2.930 Maximum value Qe = 2.930 Kips Per level Maximum value Qe = 2.930 Kips Total base shear Section 1617 E = 3.041 Kips /level Eq 18 - 28 E = Qe + .2SdsD Em = 5.971 Kips /level Eq 16 - 29 Em = OQe + .2SdsD E = 2.539 Kips /level Eq 16 -30 Em = 5.469 Kips /level Eq 16 -31 Date: Period Calculation for Mezzanine Page: 22 5/30/2008 Based on the Rayleigh Method Percent Total Load /Level contributing base shear 25 % Distribution exponent -(k) 1.59 Unfactored Live Load per floor Kx 21 Column Loading.... 27.99 Kips Live Load T 1.683 seconds E Ix Column Loading.... 2.74 Kips Dead Load 695522 Computed Distribution exponent -(k) - - -> 1.59 Period more sensitive to height than loading Elevation Column Column Column Column Column Inches DL PL LL Tot. Load Cu. Load W W * hAk H 145.00 2.74 0 27.99 30.73 30.73 9.74 26608.2 1.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.0 0.00 144.996 2.741 0 27.987 30.73 9.74 26608 1.00 W* Level Cum F L Pcr Delta_P Mag. Fac Delta_T Delta_TA2 Fi *Delta_T 1 1.0000 144.996 81.628 1.776 1.604 2.849 79.02 2.849 2 0.0000 0.00 0.000 0.000 0.000 0.000 0.00 0.000 79.020 2.849 T = 1.683 seconds FUNDAMENTAL PERIOD OF VIBRATION WORKSHEET Date: Page: 23 5/30/2008 Seismic Coeficients: Sd1 = 0.3000 Sds = 1.0000 Soil Profile Type • D Rd = 3 Moment Resistant Frame Cs = 0.2848 Non - Reduced Base Shear Coefficient... 0.2848 Qe = 0.0965 W live load Level Drift Height to Floor PA Column Guide Line for Drift Limit Only 1 7.901 144.996 76.94 Width .333 *Column Width 2 0.000 0.00 0.00 6 Column Width 2.7 Inches 0.00 Inches 1 7.901 Inches w Column Displacement Actual Date: Continuous Span - -Check Decking System 5/30/2008 Page: 24 Description: 1 1/8" T &G Plywood Uniform Load Live 125 Psf Uniform Loading 6 Psf Spacing 32 Inches Decking Wgt 2 Psf 2.67 Total 133 Psf Decking System Sxp= 2.53 In ^3 Check deck for 1' wide Desc. 1 1/8 Ply Sxn= 2.53 I03 Ix= 1.424 InA4 Ratio 0.748 Fy= 1 Ksi I11IIIIIIIIIIpIIVii�iIpIUIIIIII2nIUIIIIiiIIIIIIMMIgiIMMGiHHUNMENIMMEINIi> IIIpNpitliIIIIIIIIIIIIIII111IiII1110 inIIIIIIiIIIMMpinlE Span Span Span Ra Rb Rc Rd 141.9 390.1 390.1 141.9 1064 Reactions Ra =Rd= .4w1 Ra =Rd= 141.9 Pounds Rb =Rc= 1.1w1 Rb =Rc= 390.1 Pounds Positive Moment = .100 * w1^2 Mp= 1134.9 In- Pounds 1518 Negative Moment= .08 * wl ^2 Mn= 907.9 In- Pounds 1518 Mn = SeFb Allowable Bending Mo Ma= Mn Positive Ma= 1518 In- Pounds Ok Negative Man= 1518 In-Pounds Design Ratio - Positive DR= 0.748 Design Ratio- Negative DR= 0.598 Delta= .0069WL ^4/384E1 L/240 L/360 Deflection A = 0.002 0.133 0.089 Floor Framing Design Check Page:; 25 Date: 5/30/2008 Flooring System Bending Moment Strength -- 4Mn Ix = 46.49 In ^4 Se = 7.77 In ^3 X — 1 2 E = 29500 Ksi cPb = 0.95 Fy = 55 Ksi (I) Mn = 384.57 In -Kips Tk = 0 120 inches C12x3x11 Joist Spacing 2.667 Feet 32 Inches i Joist Qty of .... 1 Floor Loading 125 'Psf -Live Load 10 Psf -Dead Load 135 Total LRFD Method of Analysis Joist Span 12.5 j Feet Load Factors 1.2D +1.6L Factored W = 565.33 PLF Floor Joist Net R = 3.53 Kips 147 Inches R Span R Bendina Moment for the Simple Beam Fixed End _.___ ____ _ 0.00 0 Mb = W L ^2 / 8 - Fixed End Moment In -Kips Ft-Kips -1 Ft -Lbs See Page 1 Mb = 11041.67 Ft- Pounds Mb = 132.50 In -Kips < 384.57 Ok 0.34 Deflection Check for Simple Span Beam - Delta = 5 W L^4 / 384 El Delta Limit 1 360 W = 27.78 Pounds /Inch Delta = 0.123 Inches Dli = 0.408 Inches Ok .. . ~ Date: End Connection Design Check Page: 26 5/30/2008 / Beam _�� __ '_ T=c Joist 71 x x= 2.40 Inches .6667x 1.597 Inches 41--A � v= 1�or Inches — X � .esrxc+rr w . 1 T~ 4.98 Kips • *l~ 67.5 Ksi U , x= 20.72 Kips Vertical Shear on Bolts Ok 3.53 Bolts Used in Connection Vv=R/N xiFm .4 *.5 • n~ s"unoacnvn 5/8" Dia. Grade 5 N = Numnber of Bolts in Connection N = 3 (I)rv= 36 Ksi Vv = 1.18 Kips Anet = 0.307 Horizontal Shear on Bolts Shear Strength Bearing Ru = 11.05 kips 11J7 vo=w/Y Tu = 20.72 kips M rotational moment w= 15.90 in-Kips Ra = 11.05 kips ¥ = distance between bolts v= 3 Inches Th = 2.65 kips v,=Th/Tu+vwnu Design Ratio Dr = 0.23 Ok r' • w. Date: Floor Beam- -Strut Page: 27 • 5/30/2008 C Section Section Properties -LRFD Strengths Number of Members Used... 2 Main Section Description Section ID C12x3x11 Beam Note -1 In some cases there are 2 beams connected to the column. There could be one on each side of the column. Q value= AISI Fy = 55 Ksi E = 29500 _ Yaxi Column Section Properties I 2 j 4 Column= Special Reinforcement I T = 0.1196 In. Rod 2/3 Gross Area Ag= 2.2712 In ^2 0 I 6' - Net Area An 2.271 InA3 Rod 4/5 Depth - - f X axis lx = 45.50 In. ^4 0 12 I Sx = 7.58 In. ^3 Rx = 4.48 In. Web • I j Flange ly = 2.44 In. ^4 Reinforce. v 3 5 11 Min. Sy = 1.08 In. ^3 0 Section WytiFt. j -- Ry = 1.04 In. Elme 6 7.72 j I 11.85 InA3 j L ---- - - -. -� Torsional Properties Zx = Xo o.. Width M= 1.21 Xo = -1.89 I 3 Cw = 74.40 Cross Section Ro = 4.97 J = 0.01 ( = 0.86 Sx eff = 7.58 In. ^3 Critical Buckling Values - -- Current Edition 1996 AISI LRFD aex = (7^2E(KxIX /Rx) ^2) Eq. C3.1.2 -7 40505.3 tr ey = (-rr^2E(KyLy /Ry) ^2) Eq. C3.1.2 -8 2174.6 rret = (1 /ARo^2)•(GJ +7r^2Cw /(KtLt) ^2) Eq. C3.1.2 -9 2686.1 Fe =(1/213)*(( aexi-at)-((aex-- ut) ^2- 40exat) ^.5 Eq. C4.2 -1 2659.1 Lx = 12.00 Inches Ly = 12 Inches Lt = 12 ! Inches Kx 1 KY= 1 Kt= 1 Concentrically Loaded Compression Members Section C4 Fe = 2174.6 Fy = 55.00 For A < 1.5 Fn = Fy • .658 ^(. ^2) Fn= 54.42 Ksi X = 0.159 For A > 1.5 Fn = Fy • .877/(X^2) 4'Pn= 105.06 Kips N = 0.85 Section Strength Mp = 417.08 in -Kips My = Sx • Fy - Lateral Buckling Strength Section c3.1.2 My = 417.07 Mn= Sx eff (Mc /Sx) ( I ) b= 0.9 Me = 27267.98 Me = Cb Ro A(aeyut) ^.5 Cb =1.00 Mc = 417.07 - Mc = Crit. Moment See Note 1 above Mn = 417.1 In -Kips For Me > 2.78•My Mc = My Single section 4)Mn = 375.4 In -kips For .56*My< Me < 2.78•My Mc = (10My /9)(1- 10•My /(36`Me)) 62.56 Ft -kips For Me < .56*My Mc = Me Load case 1.2D +1.6L 750.73 In -kips 1 296.76 In -Kips Ratio 0.395 Ok Model Output Page .Moment from model 24.73 Ft -Kips MUX= 148.38 In -Kips Y ' Date: Design Check -- Contd. Page: 28 5/30/2008 Section C5 Combined Axial Load and Bending Design Ratio Dr = Pu / (i)c Pno + CmMux / 4 >bMnx fi nx <= 1.0 Cm = .85 rrex = (1- Pu / Pe) (I )c= .85 4>b =.9 First Beam Level H1= 12.00 Pe = 7r^2Elb / ( Kb Lb ) ^2 From Model P1 = 21.20 M1 = 148.38 Kb = 1 Kips In -Kips Pe = 91994.39 Nominal Axial Strength Pn = 105.06 Kips from previous page Dead + Live Load Pu unfactored Puf = 10.60 Kips 1.2D + E Seismic Factored Pu = 11.36 Kips Compression in strut from seismic Nominal Flexural Strength (p Mnx = 375.37 In -Kips Required Mux unfactored Muxf= 148.38 In -Kips Magnification factor = 0.85 Seismic moment factored Mux = 148.38 In -kips Factor= 1.000 Seismic -UBC97 Total factored moment 148.38 In -kips Pu / 4 >c Pn = 0.108 Mf Mu/(4) Mn)= 0.336 0.336 Dr = design ratio (axial term + bdg. term) Dr = 0.444 Ok Design Check For Dead Load + Live Load Only Column Load Pc = 10.6005 Kips Factored Axial Load Pu = 11.36 Kips Nominal Axial Strength 4)13n= 105.06 Kips 4>c = 0.85 Design Ratio Pu /4cPn = 0.108 Ok Ma Beam to Column Connection Page. I 29 Pmax Pmax = 14575 pounds I I ".'3;.%-' � hx" *t r ` ter- '17, t MI ,' ' s l: ."� -� � ce Mr r °l sE -� E -f � x* n ® . ' �we , - -s . . ..., ..,.. ,. 1 4 , s Beam ID p . Beam ID 139 12.083 RI , > Rr Inches Feet Span 0 D. i Span 168 14 Inches 1 Inches Feet Mc 67.572 In -Kips 5.631 Ft -Kips Main Beam to Column Connection Moments based on Portal Method V = Mc / (L1 +L2) MI = 67.57 0.00 In -Kips RI= 0.000 Kips V = 0.4022 kips Mr = In -Kips Rr= 14.575 kips 67.57 In -Kips 14. 575 Kips l , Summation of Moments ab a Ti NI , 2`Y2'T2 + 2 `(y 1 +y2)•T1 = MI Y1 T2 = y2 /(y1 +y2)' T1 T2 —a 2 Y1 = 3 Inches IN 67.57 .® s�� y2 y2 = 0 Inches In -Kips T2 — • ; y1 T2= 00 Ti — T1= M/(2 "y2'T2 +2y1 +2y2) No. of Bolts 3 T1 = 11.26 0.00 kips T1 gym ; � V= R /(no.ofbo Its ) 14.575 Kips Worst Case for Bolts V = 4.858 Kips Bolts Used in In Connection Table J3.2 A490 thds. plane Vn= 60 Ksi Vr = (Ti A2 + V "2 ) ^ . 5 4= 0.75 Try 518" Dia Av= 0.307 Vall= 13.82 Ok Vr = 12.27 Kips Y Main Beam to Column Connection Page, I 30 I Pmax Pmax = 31277 • pounds I € I II71 [1 . , - � Mr , M w 3C ID 139 Beam ID Beam ; 12.083 RI Rr 168 Inches Feet tzc.:€i�..�.r Span 0 ��� Span 14 Inches I Inches Feet Mc 94.836 In -Kips 7.903 Ft Main Beam to Column Connection Moments based on Portal Method V = Mc / (L1 +L2) 0.5645 kips MI = 0.00 In -Kips RI= 0.000 Kips V = Mr = 94.84 In -Kips Rr= 31.277 kips -Kips 94.84 In -Kips 31.277 Kips I I x_bar A A *x_bar d 0 2 0 3.600 T1 3 1 3 0.600 t� y1 6 1 6 2.400 T2 _ 9 1 9 5.400 a 18 5 18 I • 94.84 _ I ■ y1 A *dA2 In -Kips T2 — f c 25.92 X _bar= 3.600 ( y1 0.36 Ix= 18.788 Ti — —' 5.76 Bolt Stress 27,256.9 ksi y2 29.16 Due to Bending No. of Bolts 61.2 T1= 8.368 kip 3 1� 31.277 Kips Worst Case for Bolts V = 10.426 Kips Bolts Used in Connection Table J3.2 A490 thds. In shear plane Vn= 60 Ksi Vr = (T1 "2 + V "2) ^ . 5 = 0.75 Try 518" Dia Av= 0.307 Vall= 13.82 Ok Vr = 13.37 Kips s Date: Tubular Column Design Check Page:l 31 5/30/2008 ID No. 5 Column Description: Loading Column Wall Tk. Sect. Factored Pull= 48.254 Kips 1.2D +1.6L 6x6x3/16 0.188 6x6x3/16 Unfactored Pu= 30.728 Kips D +L 1 14.447 From Model Mux= 6.605 Ft -Kips Md+Ml+Me E = 29500 El= 695521.5 Design for 2/3Mux= 52.84 In -Kips Q value AISI I Yield Fy= 50.00 Ksi 1 Ag = 4.249 AISC Sec -C2 4 A net = 4.249 Kx = r 2 _.._._. 1 I y lx= 23.577 Ky = 2 1 Face X -axis — • — — •—�—. —, —• —% Sx= 7.859 i I i 6.00 , i Metal Tk Rx= 2.356 Lx = ' 145.00 1 j r 0.188 J = 40.5 Ly = 145.00 i I ly= 23.577 , 0 Sy= 7.859 I Y -axis Ry= 2.356 Section Wgt/Ft Zx = 9.51 14.447 Depth 4 6.00 LRFD Design 1996 Edition Cross Section Critical Buckling Values AISI Specifications Eq. C4.1 -1 Fe= 3.1416 ^2'E /(KUR) ^2 KxLx/Rx= 123.09 Fe= 19.212 Ksi KyLy /Ry= 123.09 A _= 1.613 Eq. C4 -1 4I3c =.85 Pn= AeFn Eq. C4 -2 if k < 1.5 then Fn = Fy' .658 ^(A^2) Eq. C4 -3 if A > 1.5 then Fn = Fy' (.877/A ^2) Section strength Mp = 475.3 In -Kips Eq. C4 -2 Fn= 16.849 Ksi My =SgFy 392.949 Eq.C4 -3 Mn =SeFy Ob =.95 Eq. C4 -1 Pn= 71.59 Kips Mn= 392.95 In -Kips 1'cPn= 60.85 Kips 4bMn= 373.30 In -Kips Design Check for both Axial Load And Combined Axial + Seismic Eq.C5 -1 Pu /4hcPn + CmMux/( (FbMnx46nx) <= 1.08 Pe= 7 "2EIb /(KbLb) ^2 Pe= 81.628 Kips- Factored Pu /0CPn= 0 4:nx= (1- Pu /Pe) In -Kips CmMux/ClbMnxq'nx)= 0.294 4Pnx= 0.409 Orthogonal .3Me .3CmMuy /(4 bMny4trny)= 0.000 Effects 0 Factored Design Ratio = 1.087 Ok Dead + Live Load Only Design Check i' = 2 AISC 8 Pd +PI +r.?Pe = 50.20 Kips Static Load only Pu /4:cPn= 0.793 Ok Seismic Pu/<l'Pn 0.825 Ok Column Capacity 42,611 Pounds Unfactored Date: Tubular Column Design Check Page: 31a 5/30/2008 ID No. 5 Column Description: Loading, Column Wall Tk. Sect. Factored Pull= ! 31.277 Kips 1.2D +L +E 6x6x3/16 0.188 6x6x3/16 Unfactored Pu= 30.728 Kips D +L 5 14 447 From Model Mux= 15.919 Ft -Kips Md +Ml +Me E = 29500 El= 695521.5 Design for 2 /3Mux= 127.36 In -Kips Q value AISI I y Yield Fy= 50.00 Ksi Ag = 4.249 AISC Sec -C2 A net = 4.249 Kx = i 2 lx= 23.577 Ky = 1 2 Face X- axis ;— — •— •-- 4--- -. —• — Sx= 7.859 5 6.00 5 � Metal Tk Rx= 2.356 Lx = 145.00 i o 0.188 J = 40.5 Ly = 145.00 i I ly= 23.577 y Sy= 7.859 I Y -axis Ry= 2.356 Section Wgt/Ft Zx = 9.51 14.447 Depth 4 6.00 LRFD Design 1996 Edition Cross Section Critical Buckling Values AISI Specifications Eq. C4.1 -1 Fe= 3.1416 ^2 *E /(KUR) ^2 KxLx /Rx= 123.09 Fe= 19.212 Ksi KyLy/Ry= 123.09 A — 1.613 Eq. C4 -1 'c =.85 Pn= AeFn Eq. C4-2 if A < 1.5 then Fn = Fy * .658 ^(a ^2) Eq. C4 -3 if A > 1.5 then Fn = Fy * (.877002) Section strength Mp = 475.3 In -Kips Eq. C4 -2 . Fn= 16.849 Ksi My =SgFy 392.949 Eq.C4.3 Mn =SeFy Ob =.95 Eq. C4 -1 Pn= 71.59 Kips Mn= 392.95 In -Kips cPcPn= 60.85 Kips ipbMn= 373.30 In -Kips Design Check for both Axial Load And Combined Axial + Seismic Eq.C5 -1 Pu RpcPn + CmMux/( NbMnxohnx) <= 1.08 Pe= r ^2EIb /(KbLb) ^2 Pe= 81.628 Kips- Factored Pu / <I 0.514 'l nx= (1- Pu /Pe) In -Kips CmMux/RbMnx(hnx)= 0,470 Ehnx= 0.617 Orthogonal .3Me .3CmMuy /(4 0.000 Effects 0 Factored Design Ratio = 0.984 Ok Dead + Live Load Only Design Check t 1 = 2 AISC 8 Pd +Pl +1 ?Pe = 50.20 Kips Static Load only Pu PlcPn= 0.514 Ok Seismic Pu /4'Pn 0.825 Ok Column Capacity 42,611 Pounds Unfactored • Date: BASE PLATE SLAB /SOIL ANALYSIS Page:I 32 I 5/30/2008 Location L 5 r--- Pact Is the tributary area greater than 150 ft"2 Yes 08 Fit ` Column Loading= 48.25 Kips Worst Colum ASD Unfactored 25.13 Case ir 9 , `" , w --$- Fc' = 3000 Psi F f ` ' Os = 1500 Psf 10.42 • a 11 r y44'';' lab Vick. �' 3 g ' : r. £ Thick. = 6 In. Base Plate 41 1 41- Be 4 0 Aw Footer Profile Under Column Top View of Footer Slab Section B Sx =1 *T ^2/6 Dw a . \ T X Sx = 6000 In. ^3 L ` , i►I k 1 In. :e Bw Enter Base Plate Size Dw= [ ---- 1 -- i -- 12 1 Bw= ___ 12 W A V I Effective Area Ae = (2 *Be +BW)`DW +(2 *Be) *Bw +3.14 *Be ^2 Be = (8 *Sx`Fct / Os) " .5 Fct = 87.6 Psi Fct= 1.6'(Fc' )".5 Seismic Increase 1 -----: 1 - 71 Be= 20.10 In. Yes = 1.333 No = 1 Affective Area Ae= 2376.6 In. ^2 16.5 Ft. ^2 Maximum Column Load Pmax = 24,756 Pounds 24.8 Kips Allowable Actual Loading on Column Pmax = 25,131 Pounds 25.13 Kips Slab Design Ratio 1.015 Ok Date: Check Bearing Pressure 5/30/2008 Page 33 Width Death Actual Base Plate Size 12 12 Column Width Depth Base Plate 6 6 assumption Area of Plate under column 32.49 Inches "2 Using 95% rule Effective Pmax 48.25 Kips Per Column fc' = Concrete Assume .... 3000 Psi 'DPP LRFD <hc= 0.6 Pp = 1.7fc'Aeffective Pp= 99.42 Kips Oh Date: BASE PLATE ANALYSIS AND DESIGN Page _ 34 . _ v � 5/30/2008 Location 5 I '� Pmax = 25.13 Kips Fc = 3000 Ksi Unactored Solve For Tension In Anchor Bolt Slab 14 E ' Mb = 0.00 ;In -Kips T = ( Mb - Pmax'Ec) / Eb .. t' -' Unfactored iii/ iiiiiiiiiiii iii / 4 i vItl 1411 ���jjij ` T = -14.36 Kips `° y " r " If Negative No Tension In Anchor Bolt - ga ^+ x 1 " t c'+ 41 ,''"1 a .' _ ",r Special ' pi Thick.= 0.625 Inches Check Maximum Stress on Slab 333X Fl= Pmax/ Base Plate Area Fl = 0.175 Ksi 1.5 I _ Eb = 10.5 Inches F2 = Stress Due To Moment Inches T X = Base Plate Width /1.667 4 Ec = 6 Inches X= 7.199 Inches Base Plate idth = 12 Inches Sum Moments About Axis b Base Plate Depth = 12 Inches C =Mb /2(.67X) C= 0.000 Kips ix a Ct = C /Base Plate Depth Ct= 0.000 Kips /In pp v F2= 2 *Ct/X R From Pmax R F2= 0.000 Ksi 11 11 A Fl Fmax = F1 + F2 Finax= 0.175 Ksi Actual Ok Fall = 1.800 Ksi From Mb II F2 Allnwahle Axis b—►{ ; II X ' • Base Plate Size Pressure On Slab From Base Plate Width = 12 Inches Depth = 12 Inches Thickness 0.625 Inches Date: CHECK BASE PLATE THICKNESS Page: 35 ...- ....... 5/30/2008 Location 5 Check Bending In Base Plate Pmax = 25.131 Kips Fe = Fl +( Ovh I X)'F2 ' L Fe = 0.175 Kips ' 4 Mb= 0.00 P1= Ovh 'Fe Column , ,, In -Kips P1= 0.524 Kips 6 , .e 4 Ovh = 3 Thick. = 0.6 t ` p1 P2 =( Fmax -Fe)' Ovh /2 Overhang P2 = 0.000 from moment at base Mb Fl Bending Moment In Base Plate Overhang —About Axis a Ftc axis a 1 -` F2 Mbp = P1'S1 + P2*S2 S1= Ovh /2 = 1.5 Inches p S2= Ovh -.333X 12 S2 = 0.603 Inches .4 0' Mbp = 0.785 In -Kips Base Plate Loading Properties Of Base Plate Section Modulus Sx= 1" * T ^2 /6 x -axis h;'%L uj A Sx= 0.0651 In."3 I _ Bending es r, 1" 0.625 Allowable Bendin St Fb= .75 • Fy AISC Fy = 36 Ksi Fb = 27 ; Ksi Allowable Bending Moment Mall = Sx * Fb Mall = 1.758 In -Kips Mbp= Mactual = 0.785 In -Kips Design Ratio Rd = Mactual /Mallowable Design Ratio Rd = 0.447 <= 1.000 Ok Date: CHECK ANCHOR BOLTS FOR SHEAR /TENSION Page:■ 36 _ 5/30/2008 Check Bolt For Combined Shear And Pull -Out Tension from computer model D+fL +E Ft= 0.000 From model Longitudnal-- ---- -- Base Shear Per Column Vlt = I 1.978 'Kips From model Transverse --- - -- Base ShearPer Column Vtt 1.978 Kips From model Allowable Values For Expansion Anchors Manfac: Redhead Concrete fc' = 3000 Psi Anchor bolt Desc. 3 75 3 1/4 LRFD Example: 3000 psi 3/4 Dia x 3 1/4 Vallowable Allowable Shear Fas= 2530 Pounds Embd. Length Tallowable Allowable Tension Ft= 890 Pounds ER -1372 Values Resulting Combined Load Check Fr= (Tactual I Tallowable) ^5 /3 + (Vactual / Vallowable)^5/3 <= 1.00 Vactual= Vtc / No. of Anchor Bolts Per Column No. of Bolts 4 Vactual Vtc= 0.495 Kips Per column Tactual = Ftb I No. of Anchor Bolts Per Column Tactual Ttb= 0.000 Kips T Ratio = 0.000 V Ratio = 0.195 Fr= 0.066 <= 1 Ok Tension On Bolt Tactual Vactual Embedment Length SEA Shear on Bolt • t :4 -th4r e x/ �F ice'° t t, FBdxa rt �'�3'E g 3.25 v 4 sari '� ; t £ nt�it!9 Concrete Slab ,11.° .;,.. P ff ' ' .x 3/4" Dia. X 3 1/4 Embd. Date: Column Welds To Base Plate Page: 37 5/30/2008 Weld patterm on column Pfac= 48.25 Kips E6 E7 1 Factored E5 E8 ■ Mb = 0.00 In -Kips - - -' - ' • -' -' Section - -A Slab � Factored ' E4 E1 A I. '?: 1.978 Kips E3 E2 _ Ref. Axis iiiiiiiiiiiii27 , iiiiiiiii e x Factored 4+ T,0,� * � rr, e Base Shear Weld Section Length Dimensions Weld C.G. El , 1.5 6 i 0 Base Plate Width = 12 E2 1.5 6 0.75 Base Plate Depth = 12 E3 1.5 5.25 E4 1.5 6 Allowable Weld Stress Section Modulus of Weld Pattern E5 1.5 6 Eq. E2.4 -1 E2.4 -2 E6 1.5 5.25 E7 1.5 0.75 Pna= .4125' Tm' Lw' Fu Longitudinal E8 1.5 0 Pnb=.6 * Tm * Lw' Fu Transverse Fillet Weld Size Tw= 0.1875 Inches Weld Fu= 1 70 j Ksi Pna= 65.0 Longitudinal Sx= 5.34 In ^3 Pnb = 94.5 Transverse 42.00 Lw= 12 Length of weld Aw= 2.25 In ^2 Mc= Sx * Fu Liong= 6 Inches Mc= 374.06 In -Kips Ltran= 6 Inches 4 1 = .6 Ac= 4.249 In ^2 d Mc= 224.44 In -Kips Fa= Pmax / Ac Fa= 11.36 Ksi If Fb > Fa If Fb <Fa Fv = 0 Fb= Mmax / Sx Fb= 0.00 Ksi Ft= -11.36 Ksi Fv= Vs / Aw Fv= 0.88 Ksi Design Ratio Check Desing Ratio Dr= Ft / Pnb + Fv / Pna = 1.03 Dr one= -0.270 Dr two= 0.014 Dr= 0.000 Ok r il ROBOT v 18.0.6 ©RoboBAT 1996 -2004 Author: File: Platform A - Column Line 11.rtd View - Reaction forces(kip), Cases: 1 (DL1) i 1 1 1 1 1 1 1 1 I 1 1 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I 1 I I I 1 I 1 1 -4.0 -2.0 -0.0 2. 0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 22.0 24.0 26M 28.0 30.0 32.0 0 o 0 s - !I1 �_ . I 5 I - - r t t i t . 1 t i e _ 0 0 0 e 9 , - - o r 2, c m o - - a n c v a _ o N N _ O 7 F.44:4.9.4 0 rk . 4i0 , 1 0 i 0 N . - O • o cases.' A _ Q v� kip 4`' kiR'8 4 1 0 I l 0 I -1.0 1 2 1 0 1 4 1 0 1 6 1 0 I 8 I 10.0 1 19.0 1 11.0 1 11.0 I 11.0 1 24.0 1 29.0 1 21.0 I 21.0 1 21.0 I 30.0 1 32.0 Date : 30/05/08 Page : 1 8 r 4 1 tr il ROBOT v 18.0.6 © RoboBAT 1996 -2004 Author: File: Platform A - Column Line 11.rtd View - Reaction forces(kip), Cases: 2 (LL1) I I 1 1 1 I I 1 I I I I I I I I 1 I I I I I 1 1 I I I ■ 1 I I I 1 I 1 I I - -2.0 .0 0 2.0 40 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 22.0 240 26.0 28.0 30.0 32.0 o O roe - v o - - N O N — 0 0 e 9 , _ 0 0 _ O m m 0 m '' f T O V O _ O n N _ o fk 90 3 k -0. „ - - o %8230 �. P a ,t.' , 4 FZ 47 4. , 0 l } Y I - — V N — O O V — 4. 1 ,.1 ... 7 :aY'.2!LLI) r \_V`_ L kilx t ` - 1 4 I -2 I 1.0 I 2 I 4 1 6 I 8 I 10.0 1 1 Z.0 11.0 I 11.0 1 1$.0 1 1-0 I 22 0 1 21.0 I 290 I 9.0 I 9 0 I 320 Date : 30/05/08 Page : 2 1, c _ , rill ROBOT v 18.0.6 © RoboBAT 1996 -2004 Author: File: Platform A - Column Line 11.rtd — -View - Reaction forces(kip), Cases: 5 (D +L) I I I 1 I i I I I 1 I 1 I 1 I 1 ■ I I I T 1 I 1 I 1 1 I 1 I I 1 I I - -20 -00 2. 0 4 0 6.0 8.0 10.0 12 -0 14.0 16.0 18.0 20.0 22 -0 24.0 26.0 28.0 30 0 32.0 0 0 r O o e • e • r 1 a a L. - 0=4t0:. N _ O 0 0 E9 0 0 o 0 o o _ o •D w v m b A o — ‘ c O FX= 0.425 .0.150y" Y - F — — o FZ- 9.159' FX = 1EZ S1.�31$ l td b — 9 O - r ' — N N O O Lox IuP o 1 1 2(0 1 - 1.0 I 2 1 0 1 4 1 0 6 1 0 1 8 1 0 1 1 9 0 I 12.0 - I 11.0 I 1 4.0 16 0 I 2 1 9.0 1 2j.0 1 21.0 21 0 I 310 I 32. Date : 30/05/08 Page : 3 RI ROBOT v 18.0.6 © RoboBAT 1996 -2004 Author: File: Platform A - Column Line 11.rtd View - Reaction forces(kip), Cases: 3 (SEIS1) I I I! 1 1 I l I l l f 1 1 I I I II -4.0 -2 -0 -0.0 2.0 4.0 6 0 8.0 10.0 12.0 140 16 0 16 0 20.0 22.0 24.0 26.0 28.0 30.0 32.0 0 — 0 0 FX =0.938 3 - X- '2.928. 5 "' O O - .14r O 0_ rn o — v ° 0 - G O FX_.l .4345.. o FZ .2 98.2~% t #. x .> — 4 _ o O lV N C Casea: ?(SETS 11 1►^ kip _ -4[0 'Z0 -Q0 2 I 4 6 8 1Q.0 11.0 i 11.0 ! 11.0 18.0 20.0 21.0 21.0 ! 26 - 21.0 31.0 ! 9.0 Date : 30/05/08 Page : 4 • RI ROBOT v 18.0.6 © RoboBAT 1996 -2004 Author: File: Platform A - Column Line 11.rtd View - Reaction forces(kip), Cases: 4 (SEIS2) I ' I I I I I I III 1 1 1 1 1 1 1 1 1 1 1 1 - 40 -2.0 -0.0 2 0 4 0 6 0 8.0 10 0 12 0 14.0 16 0 18.0 20.0 22.0 24.0 26.0 28.0 30.0 32.0 `,3 p1 — — — FX =1838 3 6X =5.847 I 5 � N O _ O _ O O W _ v A _ O N O X =-2814 FXp3468 o .F- X 7 2.814 - 430T -:� FZ - 0072._ — o - N N — O — P — O Case :: 4 {8E192} L x- Q -4 -2 I .0 0 2 4 6 I 8 19.0 1z.0 1 14.0 19.0 19 0 290 9.0 2j.0 29.0 28.0 39.0 32.0 Date : 30/05/08 Page : 5 0 V�Y ROBOT v 18.0.6 © RoboBAT 1996 -2004 Author: File: Platform A - Column Line 11.rtd View - MY,Reaction forces(kip), Cases: 5 (D +L) IIIIIIIIIIII -4.0 -2.0 -0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 22.0 24.0 26.0 28.0 30.0 32.0 a - u m 0 0 d a _ 0 WO 0 4301:. 3 .. .:8.271 ` 5 - _ f- ----- $''; �' o 'c''; I 6 - I L o - 0 •7,1i6$� -i e1454': 1 2380 '. - - OD _ c ■ - D ' 4. D N Y m c NI- a o N N O - F7g04 25. I fX 415Q - 0 0.003 $F21• r'Z+30,14 $.00 4 4- o _ ; o 14 _ o I4 - S;HUph - Mw 15.895 - Min--5.823 L - v�h (� 1.� `. Cases; 5 (13.L) 1 Q ��►►»- q 10 l 2 I -01.0 1 2 1 0 1 4 1 0 1 8 1 0 1 8 1 0 1 1.0 1 11.0 ; 1 11.0 1 11.0 1 1$0 1 90 I 9.0 1 21.0 1 210 I 21 .0 I 1.0 32.0 I Date : 30/05/08 Page : 6 • . EI ROBOT v 18.0.6 © RoboBAT 1996 -2004 Author: File: Platform A - Column Line 11.rtd View - MY,Reaction forces(kip), Cases: 6 (1.2D +1.6L) I I I I I I 1 I I I I I 1 I I 1 I I I I 1 I I I I I I 1 I 1 I I I I 1 -4.0 -2.0 -0 .0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 22.0 24.0 26.0 28.0 30.0 32.0 0 r - 0 0 0 'a _ 0 _ 0 9, - 3 ,4.429"I - l -,� 5 _. A N_ _- +`� 15.469., �` o - 1 O 0 _ _ I I 0 N C F'Si=0666 ' 0 - F kf4 , - 4 F..�y9' P1 . - '6.9. e o _ o o � I II I I _ - N 1 % '� N I 0 My 50Ltott Mez =24 905 0. - • M41°•9 125 4. o "1 4 1 0 I -210 1 1 I 2 1 0 I 4 1 0 I 6 1 0 1 8 1 0 I 19.0 1 19.0 11 11.0 1 11.0 1 11.0 1 9.0 1 9.0 1 21.0 1 1.0 1 9.0 1 30.0 I 32.0 Date : 30/05/08 Page : 7 r il ROBOT v 18.0.6 © RoboBAT 1996-2004 Author: File: Platform A - Column Line 11.rtd View - MY,Reaction forces(kip), Cases: 9 (1.2D+I-+E) i 1 I 1 I i 1 J I F I ' 1 I I i 1 I I 1 1 1 1 I i I I I 1 I I I I I I I I -40 -20 -0.0 20 4 0 60 80 10.0 12.0 14.0 16. 18.0 20.0 22.0 240 260 28_0 30.0 32.0 - 6 6 ..... - ;': a _ 6 - o 1 1 3 INNEN 44 " 1 Illra.- ',201 4 IV __...■,,- -...wwwaimm■I ..- 6 _ I _ ! S a _ _ ;,- :10110 PA _..., ___, - .- 1 I F. _ _ 6 I I 1 _ o - 0. I . - - cm I _ H.r.„:42H.., FX=-1751 1 0 - 9 _ o - - 1 1 1 I - o My 50Iort Max-24 454 - 0 klin=-7 372 / t - _ L x Costs. '1 (1 .M.....E) (o - - 4 1 0 1 -2 I -0 1 2 j 4 1 810 1 8 j 110 j li.0 11 0 t 110 i 2 0 j / 0 1 21.0 i 9.0 1 9.0 i 31 0 1 / 0 Date : 30/05/08 Page : 8 I t Ell ROBOT v 18.0.6 © RoboBAT 1996 -2004 Author: File: Platform A - Column Line 11.rtd View - MY,Reaction forces(kip), Cases: 13 (1.2D +L -E) I I I 1 I I r I I i I I 1 I 1 I I I I I I 1 I 1 I I I I 1 -2. 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 22.0 24.0 26.0 0 — v A _ o o .0404 3 "WIC 1885, r""-- 5 3.640 I _- o _ / 6 9 , r _ J o_ o • — - Ao128 S I v m 1 0 1 _ I I A - I _ O 1 I I N_ O - yI I ! _ o 4''' 11 . »-. Fx ;70 1 — q Fa « i .a b _ O /i MY 501uph 1 Mai- 18.837 — I Min.-16.021 N <' N _ O Cases. 13(1.20.1.-E) _ C\ -20 I 0 I 2 1 0 1 4 1 6 I 8 1 10.0 1 1z.0 1 10 1 11.0 1 11.0 I 29.0 ' 29.0 ' 24.0 29.0 1 ��� 1 Date : 30/05/08 Page : 9 i =1 r , • , B A T ... ROBOT v 18.0.6 © RoboBAT 1996-2004 Author: File: Platform A -Column Line 11.rtd --View - MY,Reaction forces(kip), Cases: 17 (1.2D+L+Ec) i -4.0 -2.0 -0.0 20 40 60 80 100 120 14.0 16.0 18.0 20.0 22.0 24.0 260 28.0 30 0 32 0 0 - — : o _ 41 _ — a .4020 - o -33/14 . 1 ;4.; 3 - ' ". I. ''',...4..: „_. 5 mall ------ ' F; 1 gni 1.' 20:40 A -,,.A111, - _,..._ .t.„-.7, _ IMP -1.s. Ili 9._ •,, ._ a - __ o II ... _ I I b — 1 If _ ‘s, iii .. .., b - U I _ , .:1 — I b 0 I I I My %Mph - I fMs-'33.252 - — 9 I Mow-10 469 0. — 1 "\,.... _ Lx cues 17t1.20 C.). - - 4 1 .0 I - 2,0 0 0 20 410 6 0 810 I I f I I I I I 1 I 11 0 1 11.0 1 11.0 I 11 0 1 1 0 , 2r 1 21.0 1 210 1 21.0 1 21.0 1 31.0 1 3/.0 Date : 30/05/08 Page : 10 ROBOT v 18.0.6 © RoboBAT 1996 -2004 Author: File: Platform A - Column Line 11.rtd View - MY,Reaction forces(kip), Cases: 18 (1.20 +L -Ec) I 1 1 1 1 I i I 1 1 1 I 1 1 I I 1 1 1 1 1 1 1 r I I I I 1 -2.0 0.0 2.0 4.0 6 0 8 0 10.0 12.0 14.0 16.0 18-0 20.0 220 24.0 26.0 0 O 4 1 4.111. _.�1 �_.. ll _ 5 .0 48 : :1 ,. _ — ,'��mm�` - MN 7026L. �r�: ' ' - / N — -gm 4 – e Fi A —' 0 _ , 1-46, — '.. t: co It o — o — �O ^ N V W _ 0 ~ O P _ O 's ' r 0 1 _ q. x q ( o _ 1 ' 1 I My 501441 1 b I Mo-2 7 .575 _ — � L Mn =2d 452 ` \�e ♦— \ V N _ a 1_ 4g 2Q Casex 18,1.2D-L•E.) 2� 20 I 00 I 2 1 0 I 4 1 0 I 6 1 8 I 1Q I 120 i I 14.0 1 110 I I 1 10 I 1 1 21.0 I 1 1 1 Date : 30/05/08 Page : 11 Y�Y ROBOT v 18.0.6 ©RoboBAT 1996 -2004 Author: File: Platform A - Column Line 11.rtd Detailed Analysis - MY,Reaction forces(kip), Cases: 18 (1.2D +L -Ec) -7.376 _.■117 -3.688 ., My (1 9 3.688 _ 7.376 141 II Ivo Cases: 16 (12D +L-Et) a- 111 -�-.�- L1 L.� -PZ,, kip kiplft kip Bar. 3 2 C12x3x11ga, Length: 12.750(ft), Case: 18 (1.2D +L -Ec) Values Bar / Point (ft) MY (kip -ft) Current value 4.791 for bar: 3 in point: x =0.0 (ft) 3 ! origin 4.791 3 / auto x=3.500 ( -) { - 4.745 3 / auto x =3.500 ( +) 1 - 4.146 3 / auto x=9.250 ( -) 1.588 3 / auto x =9.250 (+) 2.165 3 / end j - 7.479 N Date : 30/05/08 Page : 12 t • 51 ROBOT v 18.0.6 © RoboBAT 1996 -2004 Author: File: Platform A - Column Line 11.rtd — Detailed Analysis - MY,Reaction forces(kip), Cases: 18 (1.2D +L -Ec) 1 - - 36.88 -18.44 _ M ,on; 0 - -■.••■0.ra111111l�� 18.44 - lllllll' - 36.88 Cases. ,s i, 2o+L -ect 1 I I 1 1 1 I 1 ! t l i I -E7, kip s i e t •tai - -: e 9 . - - -- ..�+ *'�`.183 ::d 7; kip'h kip Bar: 5 2 C12x3x11ga, Length: 11.250(ft), Case: 18 (1.2D +L -Ec) Values Bar / Point (ft) MY (kip -ft) Current value 0.369 for bar: 5 In point: x =0.0 (ft) 5 / origin 0.369 5 / auto x =3.500 ( -) - 10.033 5 / auto x =3.500 ( +) -9.582 5 / auto x =7.750 ( -) 27.463 5 / auto x =7.750 (+) 27.575 5 /end - 5.602 vV Date : 30/05/08 Page : 13 e 0 V'Y ROBOT v 18.0.6 © RoboBAT 1996 -2004 Author: File: Platform A - Column Line 11.rtd — Detailed Analysis - MY,Reaction forces(kip), Cases: 17 (1.2D +L +Ec) — _36.88 -18.44 _ MV tuft; '- 18.44 _ 36.88 _ III 11 Cases: 17 (1.20+L.Ec) 488': ,`�, 1 k . I wpm kip Bar: 3 2 C12x3x11ga, Length: 12.750(ft), Case: 17 (1.2D +L +Ec) Values Bar / Point (ft) MY (kip - ft) urrent value - 5.584 or bar. 3 x =0.0 (ft) / origin -5.584 / auto x =3.500 ( - 33.742 a / auto x =3.500 (+) 33.752 a / auto x =9.250 ( - -9 / auto xr9.250 ( +) - 10.469 / end 0.857 Date : 30/05/08 Page : 1 i • V"Y ROBOT v 18.0.6 © RoboBAT 1996 -2004 Author: File: Platform A - Column Line 11.rtd — Detailed Analysis - MY,Reaction forces(kip), Cases: 17 (1.2D +L +Ec) 1 — 7.376 -3.688 - MY tk 0 111111ll1.1111m■m.r11011111■___ _�r�. ,► _ 3.688 - `' 7.376 -ea Cases: 17 (1. +1.+Ec( I w I { kip/ft kip Bar. 5 2 C12x3x11ga, Length: 11.250(ft), Case: 17 (1.2D +L +Ec) Values 1 ° Bar! Point (ft) MY (kip -ft) Current value - 7.543 for bar: 5 In point: i x =0.0 (ft) 5 /origin - 7.543 5 / auto x =3.500 ( -) -1.577 5 / auto x =3.500 ( +) -2.255 5 / auto x=7.750 ( -) -7.480 5 / auto x =7.750 (+) - 8.020 5 / end 4.848 Date : 30/05/08 Page : 2 51 ROBOT v 18.0.6 © RoboBAT 1996 -2004 Author: File: Platform B - Column Line 4- 5 -6.rtd —View - Reaction forces(kip), Cases: 1 (DL1) . — 11 I I 1 1 1 1 1 I 1 1 1 1 I I I I 1 I I I 1 I 1 I 1 I 1 I I I I I I I I -4.0 -2.0 -0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 22.0 24.0 26.0 28.0 300 32.0 0 m 0 0 ; Z= -0.12$ 7 o • 0 6 e — a 0 m m o - — b - N a m b v A. _ b . N _ O 4� " # _ o M41:5' . q f7C$ Q Ot4 a — 4 -8.0,895, g _ i O O N O - V Cases.. 1(GL1) a _ O �(L�J -P' kiD �►" V kip* - 10 1 -2 I 10 I 2 1 4 1 0 I 8 I 10.0 I 12.0 I 11.0 I 11.0 1 11.0 1 1.0 1 22.0 I 2j.0 1 1.0 I 9 0 1 31.0 I 1 0 Date : 30/05/08 Page : 1 El ROBOT v 18.0.6 © RoboBAT 1996 -2004 • Author: File: Platform B - Column Line 4- 5 -6.rtd View - Reaction forces(kip), Cases: 2 (LL1) 1 I 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 II 1 1 1 1 1 1 1 1 1 1 1 1 -40 -20 -0.0 20 40 60 8.0 10.0 12 14.0 16.0 18.0 20.0 22.0 24.0 26.0 28.0 30.0 32.0 0 — m O 6 > — °p — _ o — — N_ Fk90.40 e — 9 � l ;FF -7 888r o _ 11 ' 0 — N N O o � - — Cases' 2 111) kipe11 J 10 I 1 1 I 2 1 0 4 1 0 I 6 1 0 8 1 0 I 19.0 I 1.0 I 1 I 110 I 1.0 1 2.0 9.0 I 21.0 1.0 I 28.0 1 10 9.0 Date : 30/05/08 Page : 2 T , ` PM ROBOT v 18.0.6 © RoboBAT 1996 -2004 Author: File: Platform B - Column Line 4- 5 -6.rtd View - Reaction forces(kip), Cases: 5 (D +L) 11 I 1 I I I r 1 1 1 1 I 1 I I 1 1 1 1 I 1 I 1 I I 1 I 1 I I I I I I I I -4.0 -2.0 -0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 22.0 24.0 26.0 28.0 30.0 32.0 0 01 — O 9 4iIrr ■ s.1.563 o i 1 ,__L__ � - N 0 6 A 9 -> - - o o-. c m m b - 7 N V O O _ O it - N _ O - n.g9i - 4. ' ,,. „:491 j O o ffff - tV j IV - O _ O I Casa' 5 (0+:.) A _ - -F_ Z Mop 2. WI _ '�►' ^ . -4 I -2 I 0 1 210 1 4 1 6 I 8 1 110 1 1i.0 1 14.0 1 110 1 19.0 I 210 1 9.0 I 21.0 I 26.0 ` 2$.0 I 30. 32.0 Date : 30/05/08 _ Page : 3 11 p 11 ROBOT v 18.0.6 © RoboBAT 1996 -2004 Author: File: Platform B - Column Line 4- 5-6.rtd View - Reaction forces(kip), Cases: 3 (SEIS1) I I I I 1 I I I I I I I I I I I I I I I I I I 1 l I I I I I 1 1 1 1 -4.0 -2.0 -0 .0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18 -0 20.0 22.0 24.0 26.0 28.0 30.0 32.0 — a _ c ' 3 h 2.440 5 FX 11206 -1Pr m m o — tD N m — c _ a N N _ O 1 a3S!76�1 478 4 a FZ 6�7 c _ 0 — C O O C,1ei. 3 (3EIS r`�` X kU �1 4 -2 0 210 I 4 6 8 1 11.0 I 12.0 1 11.0 16.0 1$.0 I 29.0 9.0 24.0 1 21.0 2 1.0 3Q.0 I 390 Date : 30/05/08 Page : 4 1 1 > Y11 ROBOT v 18.0.6 © RoboBAT 1996 -2004 Author: File: Platform B - Column Line 4- 5 -6.rtd -View - Reaction forces(kip), Cases: 4 (SEIS2) - I I I I 1 I 1 11 I I I 1 1 1 I I I I I I 1 1 I II I II I l l f l l -4.0 -2.0 -0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 22.0 24.0 26.0 28.0 30.0 32.0 - 0 a _ 0 ° 2,368 -. 3 FX= 4;793_.. 5 FX =2,z366 o c - m � o - _ o v � 0_ _ o N N_ - Q €C'= a. b 0 0 - fV N O O , 1, ti 0 -2 -00 2 I 4 6 I 8 I 11.0 I 9.0 11.0 11.0 1$.0 20.0 22.0 21.0 1.0 9.0 3o.0 32.0 Date : 30/05/08 Page : 5 r 4 ir RI ROBOT v 18.0.6 © RoboBAT 1996 -2004 .6 Author: File: Platform B - Column Line 4- 5 -6.rtd —View - MY,Reaction forces(kip), Cases: 5 (D +L) 1 1 1 I I I 1 I I 1 l I I I I I I 1 I I 1 I I 1 I I I I [ I I I 1 1 1 - -2.0 -0.0 2. 40 6 0 8.0 10.0 12.0 14.0 16.0 18 0 20.0 22.0 24.0 26.0 28.0 30.0 32.0 o m _ 0 0 — v 0 o, a.296. 3 ...4111111.1 Ga "...+++.∎ — Me \ 5 1 -- __ 1-_ o 0 1 — o 6 P -4217 1 0001 ki I 0 m I n v or e o I _ c? N o FX?0.401., FX - 0001. 4 3: 091 F7 ..783 " o 1 1 o I— N I V _ O My 50141 0 Max - 15.785 ° Min= -6.568 _ — L (\�\\ °4- - Co,. as 5 117rL) ` _ 1 0 z a z I 10 1 10 I �0 1 2 1 0 I 4 1 0 I 6 1 0 I 8 1 0 1 1 9 0 1 1 1 0 1 11.0 1 11.0 1 1.0 I 21. 1 21.0 I 24.0 1 26.0 1 2$.0 1 30.0 32.0 I Date : 30/05/08 Page : 6 r II A r • Dil ROBOT v 18.0.6 c O RoboBAT 1996 -2004 Author: File: Platform B - Column Line 4- 5 -6.rtd - -View - MY,Reaction forces(kip), Cases: 6 (1.2D +1.6L) 1 1[ 1 1 1 11 I 1 1 f I I 1 I 1 I I I 1 I 1 I 1 I 1 I I I 1 1 I I 1 -40 -20 -0 20 4.0 60 8 10.0 12.0 14.0 16.0 18.0 20 -0 22.0 24.0 26.0 28.0 30.0 32.0 0 w _ o 0 — Q _ r ° — 0 - o ` ti,474 ( 3 I- OOti:� - 'T� — \ 5 'P$1 _ _ a > o 0 - 6 1% l i n.oqu i coos C i — m I o Ps I — — _ ■ `V v — 0 _ o a I P — O ,-- N N +"- 7 [{ - :'=, ,- 1-:4:: - ii` & o 1 1 — o + SSS} I 0 r t 1 1 0 — MY 504Wt — Mex =24 730 — v ktin = 990 -14 9 o 0 Cases 6 (1.20 *1 61,) — 4f0 1 1 I 1 I 210 i 4 1 0 I 6 1 0 I 8 1 0 I 1010 I 1 /.0 I 14.0 I 11.0 I 1$.0 1 21.0 ' 9.0 1 21.0 1 9.0 t 9.0 I 9.0 1 3z0 Date : 30/05/08 Page : 7 II • • Y"Y ROBOT v 18.0.6 © RoboBAT 1996 -2004 Author: File: Platform B - Column Line 4- 5 -6.rtd View - MY,Reaction forces(kip), Cases: 7 (1.2D +L) I I 1 1 1 1 1 I 1 I 1 1 1 t 1 I 1 I 1 I l 11 1 1 1 I 1 1 I 1 1 1 1 I I 1 -4.0 -2. -0.0 2. 4. 0 6.0 8. 10. 12.0 14.0 16.0 18.0 20.0 22.0 24.0 26.0 28.0 30.0 320 0 6 0 — v A — 0 .: 0.72/ _ Q _ -0302. 3 Ig) ; ,.. 1 ems r � , -.mix 5 0:2 „I • - -- f ------- -.18.049 I-- YJ I 6 _ — o ^ o 0 .2118. m m o — b N T ox 0 o A O t. 1 _ N M' G — 4 3 ° f g 0,000 OSbG . 8 .962 ,: b t o i LT A — r N — I I G '- my 501ipG — 0 Max-16.044 Agin= 4 . 727 `^`l e a Cases :7( 2D +LI �' o 40 0 0 1 .4. 1 . 1 .0 0 21.0 2� .0 2g.0 3p.0 r � � � -° r 1 2 1 0 I 410 1 80 1 1 e 1 0 I 0 9 1 1 0 3 I 10 t � 0 i � i� 1� .0 1 2.0 1 1 1 I I l i 9 Date : 30/05/08 Page : 8 r I r Plii ROBOT v 18.0.6 • © 1996 -2004 Author: File: Platform B - Column Line 4- 5 -6.rtd View - MY,Reaction forces(kip), Cases: 8 (E) I I I 1 1 I I I I I I I I I I 1 l I I I I 1 I 1 1 1 I 1 I 1 I I I I 1 1 1 -4.0 -2.0 -0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 22.0 24.0 26.0 28.0 30.0 32.0 0 0 0 - v P _ O 4414 _ o M. _ 3 -4,484 �- - - "4.14 4:211 + • r _� 2.766 -: I_ '7; - ,JIi�� t 1 0 o 0 '� 6 A -i A 1\ o o - 17691 I 12.1, ►. o • . - � o v P - O N Co r - fxa1479 _ e ' 2. 0 77' t85S" FX=i -479 - _ 4 .. ` s'0 F2- 2.077 P _ 0 tV N _ - M1 50 H18.4'15 919 - v Mrr-10745 P _ b Cases: 8SEI 1.0 I • 1 I 1 1 2 1 0 1 4 1 0 1 6 1 0 1 8 1 0 I 19.0 1 12.0 I 14.0 1 1.0 1 1 -0 t 10 1 22.0 1 21.0 1 26.0 I 28.0 1 1 1 9.0� Date : 30/05/08 Page : 9 • •. r r • El ROBOT v 18.0.6 © RoboBAT 1996 -2004 Author: File: Platform B - Column Line 4- 5 -6.rtd View - MY,Reaction forces(kip), Cases: 9 (1.2D +L +E) 1 I I 1 I I 1 I 1 1 1 I I 1 1 I i r I I I 1 1 I I I I 1 I I I 1 I I I I -4.0 .20 -0.0 2.0 4 0 6 0 8.0 10 0 12.0 14.0 16.0 18.0 20 0 22.0 24.0 26.0 28.0 30.0 32.0 O o _ o s — 0 — o \ - Ori69: 3 / ' : , : : + B -��_ _� r 5 i -:' 's — :- 4 — ti 6 ir - IL Q ...03 I • 15.21.9".1 PA _ 1 o- `1 0 7 ° a I _ y N o 9 Fz . .1 1Oi i - O — O - O I --- — 1 I O — My 50RWo8 — — o Mex =23694 ` — Mar =- 13.794 p — Gases. 3(1.20 +1*EI (NJ 1 I � I 1 l 2 1 0 I 4 1 0 1 8 1 0 I 8 1 0 I 111 1 9.0 l 14 0 l 110 1> 0 I 211 0 1 22.0 1 21.0 1 21 1 20.0 I 31 0 1 3Q.0 �\ - Date : 30/05/08 Page :10 a 41 r • El ROBOT v 18.0.6 © — — — O RoboBAT 1996 -2004 Author: File: Platform B - Column Line 4- 5 -6.rtd View - MY,Reaction forces(kip), Cases: 17 (1.2D +L +Ec) I I I I 1 I } I I I I 1 1 I 1 I 1 I I I 1 I I I 1 I I 1 1 I I I I 1 I 1 1 -4.0 -2 0 -0.0 2 0 4 6 0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 22.0 24.0 26.0 28.0 30 0 32.0 0 0 0 — v ^ A — O - '•'i x&.631! 11;;y ' 3 - 47 6 , ..1- iibri4 :,:«' . . 1177 6 — \ - // ^ o .. , .. 1..µ 4.340 0 : a' ', ..- - — — IF o —' r r _ ,.„ 1 N O — FX.- 2 . 4 03 c em ; - o FZ-t 887 .k s 0 b_ 4 a 0 — r1 I ■ t O — IV N — . — My S0k.ph _ o Ma.A=34.787 I Y Wm-17.851 rt - 17.851 A — — t' C - .1 0 z , Cases. 1 (i �D*L +Ecj ` v 1 I 1 I Q l 0 1 2 1 0 I 4 1 0 1 6 1 1 8 1 0 I 1 1 0 1 1z.0 I 14.0 1 16.0 1 1$_0 1 24.0 1 9.0 1 24.0 1 28.0 1 28.0 1 30.0 I 3 2.0 Date : 30/05/08 Page : 11 - - - - • I .II , I Y51 ROBOT v 18.0.6 r © RoboBAT 1996 -2004 Author: File: Platform B - Column Line 4- 5 -6.rtd Detailed Analysis - FZ,MY,Reaction forces(kip), Cases: 17 (1.2D +L +Ec) -36.88_ -18.44 - , _ My 11,41, 0 ...1....„ 18.44 • i [I 36.28_ 16. 86 _MIR 8.43 Fr Ikryi 0 1 - ... 1 1 - 1 ---- T-- .._ -8.43 . "' ... "II .11 11.111 i _ 16.85 _ Cases: 17 i1.2D +L.Ec) I I I 1 - . 0,1 _per kip z ) I ar,e t' _`.a 4--"� —a $.,.:s i � ' ±1[+ ,: I ! .. 3 kipYt kip Bar: 3 2 C12x3x11ga, Length: 14.000(h). Case: 17 (1.2D +L +Ec) Values Bar / Point (ft) MY (kip -ft) FZ (kip) urrent value -5.631 14.575 or bar: 3 n point: x =0.0 (ft) / origin - 5.631 14.575 3 / auto x =3.500 ( -) 34.773 8.513 3 / auto x =3.500 ( +) 34.787 - 1.401 3 /auto x =10.500 ( - ) - 17.455 - 13.525 3 / auto x= 10.500 ( +) - 17.851 8.377 3 /end 0.858 2.315 N 1 Date : 30/05/08 Page : 12 ,r, r MY ROBOT v 18.0.6 © RoboBAT 1996 -2004 Author: File: Platform B - Column Line 4- 5-6.rtd — Detailed Analysis - FZ,MY,Reaction forces(kip), Cases: 18 (1.2D +L -Ec) _. -7. 376_ -3.688 _ My I,,y I; 8 3.688 . 7.376 11 . 24 3.62 . -5.62. __� ■.'. �..���. � .._ - ._........�_1-- .1._._® -I 1 .29 — Cases: 18 (121)+L - Ec) 1 1 1 I 1 l 1 p• " F L ' i• . ; k1pt kip Bar: 3 2 C12x3x11ga, Length: 14.000(ft), Case: 18 (1.2D +L -Ec) Values Bar / Point (ft) MY (kip -ft) FZ (kip) Current value 5.187 -0.568 for bar: 3 in point: x =0.0 (ft) 3 / origin 5.187 -0.568 3 / auto x =3.500 ( -) -7.409 -6.630 3 / auto x =3.500 ( +) -6.820 6.750 3 / auto x= 10.500 ( -) -2.000 -5.373 3 / auto x= 10.500 ( +) I -1.308 1.147 3/end j -7.903 -4.915 Date : 30/05/08 Page : 13 --