Loading...
Specifications (2) THIS S - D ADLER STRUCTURAL ENGINEERS STRUCTURAL CALCULATI GA NE for �� S Client: Kysor Panel Systems 4201 North Beach Street Fort Worth, Texas 76137 800- 633 -3426 Project: Costco #111 7850 SW Dartmount Tigard , Oregon City of Tigard The Sadler Group P Structural Engineers Bj! r ; a r t ) l l c c8 500 Main Street, Suite 707 7 (q f z o _ 66 3 r Fort Worth, Texas 76102 -3944 V 817 - 332 -1074 (Voice) 817- 338 -0335 (Fax) 08 OFFICE COPY �REO PROFF ` S � �c'� �� � N F F 1 o * 7 / 8791 ,/ IRE • 17,1 41AS SC O'`' EXPIRES: 06/30/2010 Engineer of Record Thomas R. Sadler, P.E. Oregon Registration Number: 18791 2 125° 50° 6 g 044 • , s,. • 120° <-• tS,Si r 115° i •J'C'2 1 . . 11 k 1 14 .i•S VTA )) i iii °. .fA ' ill 105° 00° •5 V J O ; 4:4h - t — ' 7 f CA i , In T loy , IT _ 1 1 1 ■ 1 . . it -Ai t. „ / II rr,r 1 9 .licmi , 11 - , --___ .....1. III ..„). , ., ,-- -. r lig • 40 1 , 11: - .. ,ff' n Lff,-, '''-' --r ---1. II 11_1011 ' it in diroi,A, 3, „tvw 0 - 2k ! wimp '', /bp VIT4P‘Nr-' ,;-,ff A %i - ,1 , I . .,... 1 ,, + 4 i l , :74yreitc. :•••••■•* 111 ,,,,- BO / i F -1 .-P.M. 'V ■ :.),‘■ .0 , ° 3 , ........4tv - Ih yy 40 . 1/4 ceet ilici ls .,■ 41.- ....... .....-- a , by i -, I _ n i T *- - 1 II I ' . 4 .....„ o :,."1:x,= 4% .' , . tolty ' - i—t.- 0 •- 31)- - . L i_ ..t.. .,•„,,,, . .... .. \ A voi 6 4 Alf I a•11111 ';.‘ ' 4,1 it' 42 0- 44. d 4 S _ lig 4 , _ i n :lbw i r t ik iirio lk i t tir _ j2 . 71 _,)„ .„1 " ‘-teitvol- • , 4 . .-(4(.. . Il i --± ill. ‘:,tov-.\. t g i, 4 410) Ill wee . i' -1 N 4-- I ...1 04 1 -f3A1 0106 'I' -t , I __ its larelli: - r „ - c i tc:‘ , Lwie ,_;. ..?„-___,""- ? '---'•, ‘ = , ‘ ' \ iti . '..e' - ,C ‘. i i., 4 611i . (HP j - LET I 11 - Kilh 1 • _ 1-- ; ' ,...\, '‘ :-.10.„ , :- ,-.....::•, 27 ' ; --- — - g ,. r-- —..— - , auM11 i . 4 ‘ l's + r • .2 •-• ,_ fea 1.1 - lidi ..,. '"x - i•_ •i ii I 1 30 r l ' 1111111111 30 022 (, ? , c I ,-(. ---- LI — v ' ... / DISCUSSION REFERENCES \ ilk. P --, 1 /1 1 1- \-:',:: „:i. , -:-,;-- X04, NHEP Rom d 2 ,-- The welcome values contoured on rho reop es for Budding Seer Seery Creed Eecmende < _&.-, F__ ,,,.... _ i _ I 4.. „, . \ .- , the mite he:one component of accelesmon For Deimos for Some Peplums for New Bedew and --1 autiP PurProes. te referee ate correco for te me other Seem, Part I - Preece FEMA 4.50 11 ,..; - \. if - .-.-; - A 1- . io to taken ea Sue Class B. ' Selected wormer have keen deleted for clanty 8 Prt im atr ' rarT lY nc RCrcatZetrew7":ord r "-- NI1 ---1--- - r, Repooal maps Awed e used wheel ackleoral eel n oder Structure Pt 2.c, - , PEMA OD • ii — , \ - - .. ...,.....d. F,....,,A, Peen, M., Mueller Cr keKer, K. Agree IL, ---/ Lep:Werke Fooke, ard &Peale (2001, 2:01) have Leyeseckek E, %moo, It, Harem, S. Craze C, -\ 1 • ' — \ preluded a CD-ROM the COMM] edam to allow Pedoe D, and Redeem K, 2007, Donmenelion for tte ,• ,,- , /_ • ,. cleterminamo of Se CI= B map values by 2/302 Update of re Newel Serene Flared Maps, US k I „,/ - - , \ '-' lantoda-longede The software on the CD comae ote Geolopeal Sevey Op-file Reos p 02-421 1 if f caefficesta that allow the we to adjust map valuta for Frankel, A, FO Meer C. NB K, Wheeler, R. Index of deeded motel map(a) at lamer beefs) I \ -P different Stte Mike Adrhticoal map al chfeene Lewd:cue l E. Wersoo K. Knee S. Cr C. amer , ' wake are also needed on te CD. The CD ea peered Perkor, C. Nod Renee K„ 2004, Sere-Hazard Maps rang de same den that used to peeve die Marren fix the Careamoous Uarted Sete; Sheet 4 - How:one I _I (-7 Ca Mounn s. w6s.. r Accelemenora2Sectorracbdg; i ---,1 \ .-: p 4) ,---T- Survey Geologic bee glen Seca, scale I 7,000,000 r r __ 1.J. - fr, .44.% .;., \ )-- 1- value, frd used so man (T ) e nere Lendeckev,E, Fornel, A, and Rukstaleo K. 2001, Senn= I K4d1 ---- -1 - 'rt ,) l' !,4( :,/ I 71\ are elso evadable Dego Panneerk U.S &eve Surny Open-lik The Cadens moon of the map es poduceportly Report 01-437. i `-- _ _ I _I pc_›. _ , 1 wee tbe Cobham Geoloped Surrey Lerrdecier, E, Bsket a A, and Rebuke. K, 2004, Seudac i Dego Paracceoe US Geroge! Survey Operile -- 'N''' re _..... ; Map prepued by US. Geologte Surrey. R.P On Mesa ' Nattonal Sersec Huard Mapper& Dope Web Sue, I ( r' , ',.- ,-4--- a' -''' pr7 Mhz freerhamore. togagov, U S Geology:al Survey \ ) .. , I ri - Ftepon I n shown =lege or 5gure 22-3 - Repon 2 o doom enlarged co figure 22-5 100° 95. • Rope 3 is shown enlarged el fig= 22:7 - Rogow 4 es ahem emerged in figure 22-9 FIGURE 22-1 MAXIMUM CONSIDERED EARTHQUAKE GROUND MOTION FOR THE CONTERMINOUS UNITED STATES OF 0.2 SEC SPECTRAL RESPONSE ACCELERATION (5% OF CRITICAL DAMPING), SITE CLASS B .• 210 ASCE 7-05 1 1.,, _ 5, ..1.4" 120 4 .. _ , 115. ,..., 4 ( 051 • 100° 45. . , . i i _ ,,,,, , _I ■---, , 1 , __ - — 4441 Da, if i v Si 6:: .. ■ „! i ' 1 - - -III / 40° 4 k ' '.‘ *1 r . 4 1 4 V ) ' a / - - . I 1 h I_ 1 ---1 1, - , -;- 1, :ln--• 4 / 74 144ii c - i - j - . 4 listit• 41 -ezt t t r Ar 4., t. ,...,..._, V i 4 ,4F q _..__.... i : 11 ... w . ir f 1 , ---1 : \: 1 ,_, 2 1 : 1 1 71_ i .--- 1: j-1--- , 1- 3 : - `4A.Iip, • _ A L. Ab>16 ....i 1 , 7 -; -- 'Ox''lk ItiiA'iL IrA.,, - . ),•,.-:, k ai '9 4 / ifl- ------9--- - . w i ----i-T-"__Li ..1._. --1,_ _ , II- ,,,„.....,,,,, , • ,,,, ,,, -- - mit lrt.t. Ni , • N.\ ,, 1 i 4 _ .,--- \ I I 1---ti- - ''=c 1 F- Li 411_1 1 _ _L ■ • . - A 6"? / - , J I- _I_ I li L_ _i_ . - -A-L-0 .--,J - \ ' , tP.4:*4evi r- -i-- — - (b ..„.44.1,..-.4..-: la. ky , 7 - • ilk --i, + 4 - . -7 ii 7 IL _ ir al ;orveil 1 ,5, . ...t.c.-:, \ ,k,‘ ) \ ..,,,,\;,„ a 0 , _ f -A • I Fr_ _I__ 1 ' 1 r i 4 _ A --. -----5 , i lk , '. I 1- I- -1-_.! I' Li . Illiralli ( I C I' cr- _ L I - _ „ . n-y_.{_ I_ f j- f_ _1 1 • ,)--. ., ,,,.... A- _ DISCUSSION REFERENCES , , e 1 ,-.• 1 1 The anaelenuton .110 corasunad on the map we for &Mora Sesame Safety Coned 2004, NEER? Recommeeded I 7 ' 1 --.- -r ---- -'''., -k — 3' the random hennaed compose of accelenhas For Proem= for Seam Rapael, for Neve Buildrags abd i . . ' - - ' .2 !---- '1 -, --- 1 . j , , i i ;; &nu corpse, the names see medium for tte map oder &ra Rut cemes, I - Provasions, PEMA 45Q , .. is to he taw as Suc Chas 11 Baden Seem Safety Comet 2004 NEHRP Ftecomeneoded r . - -- — 1 - \ —,,,.'," S . - - 7 -1 _ ..', Selected come= have ben deleted for chary. Novae. for Seise= Reradahora for New Budding. and ••, Reccora nap should Ix used when additional &tad is raterStormax, Part 2- , PEMA 45Q ----' .? I'. rl • - .. Frankel, A, PeauseA M, Muelke, C, K, Wheeler, R., ,..„4 i ' 'at, i -- _L, __. -_- -,..> ...>.. , '- ,. terocku. ik.d.o....d Radatabas OM, 20:4) have leyeadrake4 Eu Weaceu. X, Nemeth S., Came; C, ' ' _I I PA ', `,-' `• '" " . pawed a CDEDM that =ram sothuale to Wow M 11, end Rulsele, K, 2002, Drasemearaira, fra de deteamirosiou ofSde Clasai trap ladles by 2002 UFdate cite Roamed Setsmic Resod Maps, US i s , ' , ' ■ -- \ hraudo-loarattele Re aortae= on the CD omens sue Cieolopeal Survey Opea-File Report 02-4:01 ' • -1 -_1_:: .,,I.,.,,,,,--° .0.,ff,.,...6., Om th e user 10 adfrat amp value. fie ht Is. A, Peer, M, Mr C, Flall K, Wa7ler R. . , R. Md., a &wed ,vonsj uee(s) at lupe scale(s) - *Jaffee= Sue Clews Atklumel maps id &ffnera 1...l__'TA)'-- scale, me alas techalod IP th. CD Doe CD ems paw fede ed Palms, 0, rad sales, K., 2004. Selsmc d -Fbar Maps . using de saus deem that used ta prrasee de Maximum for de Coraeonnoto lineal Stem Sheet 6- Hommel - - P. Comileted Earthquake Olound Motion maps. Iff le uleoul 4e,oe Harald fAll Posect Web Site, uasI rat I Y ° US Geolorh "---- .., ' —1 , -- ..av " ' ' -:' ''S 4> - je' . Ernefkqemoneausraged, coraram electocce Suney Geolopc laueraptioe Sees, scale I 7,003,000 c'j — _ - - _I ---- i ,.*_:-, ,,,., '1 -I I • -, , I .. i uelsrata of ran ma rad othus Doane:atm madded (m ptoraess} values, era coverages used to make de one Loyendecker, E, Frankel, A., and Rramodes, K., 20)1, Some 1 a _ .. f ; , ., -,-- . ... ...-_-,-_-2/-t'',;: • _i, _ k a oho mailable Deem Patarsten, US Geoloraml Survey Opeo-Nle l. ,..... , ' . / ''/ re 1 I ce le Cahfratha pea of the map IA. prothrra edmtly Reran 0 -437 with die Cada= Geologace Survey Leredeche. E. N.J. A, and Remake, K, UK Sem. I t ! T ' Map peered by U S Geological Survey Recntt ce MM./ I • ,,, , :, a----,...).,,,, ..11 Nukes! Seimic Honed Mappuag Roject Web Sate, ,,, tatp/leqhmaslaunegov, U S Geological Survey ' \ I , • lin= I o shown enlarged in figure 22-4 - Reyna 2 s shown enlarged in Egrae 22-6 109P 95° - Region 3 a shown cohned in five 22-8 - Region 4 n shown enlarged m figure 22.9 FIGURE 22-2 MAXIMUM CONSIDERED EARTHQUAKE GROUND MOTION FOR THE CONTERMINOUS UNITED STATES OF 1.0 SEC SPECTRAL RESPONSE ACCELERATION (5% OF CRITICAL DAMPING), SITE CLASS B . . , ... 1.; 7 €7. ' 212 ASCE 7-05 - i4liet4 1 4- loads exceed the specified allowable stresses for the materials of OSHA construction. Occupational Safety and Health Administration 1.7 LOAD TESTS 200 Constitution Avenue, NW Washington, DC 20210 A load test of any construction shall be conducted when required by the authority having jurisdiction whenever there is reason to 29 CFR 1910.1200 Appendix A with Amendments question its safety for the intended occupancy or use. as of February I, 2000. Section 1.2 1.8 CONSENSUS STANDARDS AND OTHER OSHA Standards for General Industry, 29 CFR REFERENCED DOCUMENTS (Code of Federal Regulations) Part 1910.1200 • Appendix A, United States Department of Labor, This section lists the consensus standards and other documents Occupational Safety and Health Administration, which are adopted by reference within this chapter: Washington DC, 2005. TABLE 1 -1 OCCUPANCY CATEGORY OF BUILDINGS AND OTHER STRUCTURES FOR FLOOD, WIND, SNOW, EARTHQUAKE, AND ICE LOADS Nature of Occupancy Occupancy Category Buildings and other structures that represent a low hazard to human life in the event of failure, including, but not limited to • Agricultural facilities • Certain temporary facilities • Minor storage facilities All buildings and other structures except those listed in Occupancy Categories I, III, and IV II Buildings and other structures that represent a substantial hazard to human life in the event of failure, including, but not limited to' III o Buildings and other structures where more than 300 people congregate in one area • Buildings and other structures with daycare facilities with a capacity greater than 150 • Buildings and other structures with elementary school or secondary school facilities with a capacity greater than 250 • Buildings and other structures with a capacity greater than 500 for colleges or adult education facilities • Health care facilities with a capacity of 50 or more resident patients, but not having surgery or emergency treatment facilities • Jails and detention facilities Buildings and other structures, not included in Occupancy Category IV, with potential to cause a substantial economic impact and/or mass disruption of day -to -day civilian life in the event of failure, including, but not limited to: • Power generating stations° • Water treatment facilities • Sewage treatment facilities • Telecommunication centers Buildings and other structures not included in Occupancy Category IV (including, but not limited to, facilities that manufacture, process, handle, store, use, or dispose of such substances as hazardous fuels, hazardous chemicals, hazardous waste, or explosives) containing sufficient quantities of toxic or explosive substances to be dangerous to the public if released. Buildings and other structures containing toxic or explosive substances shall be eligible for classification as Occupancy Category II structures if it can be demonstrated to the satisfaction of the authonty having jurisdiction by a hazard assessment as described in Section 1.5.2 that a release of the toxic or explosive substances does not pose a threat to the public. Buildings and other structures designated as essential facilities, including, but not limited to: IV • Hospitals and other health care facilities having surgery or emergency treatment facilities • Fire, rescue, ambulance, and police stations and emergency vehicle garages o Designated earthquake, hurricane, or other emergency shelters • Designated emergency preparedness, communication, and operation centers and other facilities required for emergency response • Power generating stations and other public utility facilities required in an emergency • Ancillary structures (including, but not limited to, communication towers, fuel storage tanks, cooling towers, electrical substation structures, fire water storage tanks or other structures housing or supporting water, or other fire - suppression material or equipment) required for operation of Occupancy Category IV structures during an emergency • Aviation control towers, air traffic control centers, and emergency aircraft hangars • Water storage facilities and pump structures required to maintain water pressure for fire suppression • Buildings and other structures having critical national defense functions Buildings and other structures (including, but not limited to, facilities that manufacture, process, handle, store, use, or dispose of such substances as hazardous fuels, hazardous chemicals, or hazardous waste) containing highly toxic substances where the quantity of the material exceeds a threshold quantity established by the authority having jurisdiction. Buildings and other structures containing highly toxic substances shall be eligible for classification as Occupancy Category II structures if it can be demonstrated to the satisfaction of the authority having jurisdiction by a hazard assessment as described in Section 1.5.2 that a release of the highly toxic substances does not pose a threat to the public. This reduced classification shall not be permitted if the buildings or other structures also function as essential facilities ° Cogeneration power plants that do not supply power on the national grid shall be designated Occupancy Category II. to Minimum Design Loads for Buildings and Other Structures 3 8 xe = deflection of Level x at the center of the mass TABLE 11.4 - SITE COEFFICIENT, F at and above Level x determined by an elastic Mapped Maximum Considered Earthquake Spectral analysis, Section 12.8 -6 Response Acceleration Parameter at 1•s Period y Site Class S1 < 0.1 S = 0.2 SI = 0.3 S = 0.4 S > 0 5 B = modal deflection of Level x at the center of the A 0.8 0.8 0 8 0:8 0.8 - mass at and above Level x as determined by B 1.0 1 0 1 0 1.0 10 Section 19.3.2 J C 1.7 1 6 1 5 1 4 1.3 E, ; * (3_,.] = deflection of Level x at the center of the mass 0 2.4 2 0 I[ 1.8 1 6 IL 1.5� at and above Level x, Eqs. 19.2 -13 and 19.3 -3 E 3.5 3.2 2 8 2.4 2.4 (in. or mm) F See Section 11.4.7 9 = stability coefficient for P delta effects as deter' NOTE. Use straight -line interpolation for intermediate values of SI . i mined in Section 12.8.7 I p = a redundancy factor based on the extent of struc- tural redundancy present in a building as defined of Section 12.14 is used, the value of F shall be determined in in Section 12.3.4 accordance with Section 12.14 8.1, and the values for F,,, SMS, Ps = spiral reinforcement ratio for precast, prestressed and S M I need not be determined. piles in Sections 14 2.7.1.6 and 14.2.7.2.6 A = time effect factor 11.4.4 Design Spectral Acceleration Parameters. Design S2 = overstrength factor as defined in Tables 12.2 -1, earthquake spectral response acceleration parameter at short pe- 5.4-1, and 15.3 -1 riod, Sips, and at 1 s period, SDI, shall be determined from Eqs. 11.4 -3 and 11.4 -4, respectively. Where the alternate simplified 11.4 SEISMIC GROUND MOTION VALUES design procedure of Section 12.14 is used, the value of SDs shall be determined in accordance with Section 12.14.8.1, and the value 11.4.1 Mapped Acceleration Parameters. The parameters S for SDI need not be determined. and Si shall be determined from the 0.2 and 1.0 s spectral response accelerations shown on Figs. 22 -1 through 22 -14, respectively. 2 Where S , is less than or equal to 0.04 and Ss is lessthan or equal SDS = 3 SMS (11.4 -3) to 0.15, the structure is permitted to be assigned to Seismic Design Category A and is only required to comply with Section 11.7. 2 11.4.2 Site Class. Based on the site soil properties, the site shall SDI = 3 SM I (11.4 -4) be classified as Site Class A, B,_C, D, E, or F in accordance with . Chapter 20. Where the soil properties are not known in sufficient • Oetail to determine the site class, Site Class D shall be used unless 11.4.5 Design Response Spectrum. Where a design response the authority having jurisdiction or geotechnical data determines spectrum is required by this standard and site - specific ground Site Class E or F soils are present at the site. motion procedures are not used, the design response spectrum curve shall be developed as indicated in Fig. 11.4 -1 and as follows: 11.4.3 Site Coefficients and Adjusted Maximum Considered Earthquake (MCE) Spectral Response Acceleration Param- 1. For periods less than T the design spectral response accel- eters. The MCE spectral response acceleration for short periods eration, S shall be taken as given by Eq. 11.4 -5: (SMS) and at 1 s (SM 1), adjusted for Site Class effects, shall be (0.4+0.6 determined by Eqs. 11.4 -1 and 11.4 -2, respectively. S= SDS (11.4 -5) SMS FaSs (11.4 -1) o SM i = F„ S1 (11.4 -2) 2. For periods greater than or equal to To and less than or equal to Ts, the design spectra] response acceleration, S shall be where taken equal to SDS. Ss = the mapped MCE spectral response acceleration at short periods as determined in accordance with Section 11.4.1, and S = the mapped MCE spectral response acceleration at a period of 1 s as determined in accordance with Section 11.4.1 Sns where site coefficients F and F„ are defined in Tables 11.4 -1 m • and 11.4 -2, respectively. Where the simplified design procedure o S ° - Si, 5 TABLE 11.4 -1 SITE COEFFICIENT, F < Mapped Maximum Considered Earthquake Spectral I So, h . S S 0 T L Response Acceleration Parameter at Short Period Site Class S5 <0.25 Ss =0.5 SS =0.75 Ss =1.0 SS >1.25 A 0.8 0.8 0.8 0.8 0.8 B 1.0 1.0 1 0 1 0 1 0 C 1.2 1.2 1.1 1.0 1.0 0 1.6 1.4 1 1.1 I 1.0 r I 0 T, E 2.5 1.7 1.2 0.9 0 9 T , resod, 7Y sai F See Section 11.4 7 NOTE: Use straight -line interpolation for intermediate values of Ss. FIGURE 11.4 - DESIGN RESPONSE SPECTRUM s Minimum Design Loads for Buildings and Other Structures 115 V 3. For periods greater than Ts, and less than or equal to TL, the TABLE 11.6 -1 SEISMIC DESIGN CATEGORY BASED ON SHORT design spectral response acceleration, S shall be taken as PERIOD RESPONSE ACCELERATION PARAMETER 1 1 given by Eq. 11.4 -6: Occupancy Category Value of SDS I or II III IV SDI SDs < 0.167 A A A S = T (11 -6) 0.167 < SDs < 0.33 B B C 0.33 < SDS < 0.50 C C D 4. For periods greater than TL, S shall be taken as given by 0.50 < SDS D D D Eq. 11.4 -7: - - SDITL 11.6 SEISMIC DESIGN CATEGORY Sa = T2 (11.4 -7) Structures shall be assigned a Seismic Design Category in accor- where dance with Section 11.6.1.1. SDS = the design spectral response acceleration parameter at Occupancy Category I, II, or III structures located where the short periods mapped spectral response acceleration parameter at 1 -s period, SDI = the design spectral response acceleration parameter at S is greater than or equal to 0.75 shall be assigned to Seismic 1 -s period Design Category E. Occupancy Category IV structures located T = the fundamental period of the structure, s where the mapped spectral response acceleration parameter at 1- s period, St, is greater than or equal to 0.75 shall be assigned To = p 2 SDI to Seismic Design Category F. All other structures shall be as- SDS signed to a Seismic Design Category based on their Occupancy Category and the design spectral response acceleration parame- TS = - SDI and ters, SDS and SDI, determined in accordance with Section 11.4.4. SDS Each building and structure shall be assigned to the more se- TL = long -period transition period (s) shown in Fig. 22 -15 (Con- vere Seismic Design Category in accordance with Table 11.6 -1 or terminus United States), Fig. 22 -16 (Region 1), Fig. 22 -17 11.6 -2, irrespective of the fundamental period of vibration of the (Alaska), Fig. 22 -18 (Hawaii), Fig. 22 -19 (Puerto Rico, structure, T. Culebra, Vieques, St. Thomas, St. John, and St. Croix), Where S is less than 0.75, the Seismic Design Category is and Fig. 22 -20 (Guam and Tutuila). permitted to be determined from Table 11.6 -1 alone where all of 11.4.6 MCE Response Spectrum. Where a MCE response the following apply: spectrum is required, it shall be determined by multiplying the I. In each of the two orthogonal directions, the approximate design response spectrum by 1.5. fundamental period of the structure, T determined in ac- 11.4.7 Site - Specific Ground Motion Procedures. The site- cordance with Section 12.8.2.1 is less than 0.8 where T specific ground motion procedures set forth in Chapter 21 are is determined in accordance with Section 11.4.5. 1 permitted to be used to determine ground motions for any strut- 2. In each of two orthogonal directions, the fundamental period 6 ture. A site response analysis shall be performed in accordance of the structure used to calculate the story drift is less than 1 with Section 21.1 for structures on Site Class F sites, unless the T., exception to Section 20.3.1 is applicable. For seismically isolated 3. Eq. 12.8-2 is used to determine the seismic response coef structures and for structures with damping systems on sites with ficient C. S greater than or equal to 0.6, a ground motion hazard analysis i shall be performed in accordance with Section 21.2. 4. The diaphragms are rigid as defined in Section 12.3.1 or for diaphragms that are flexible, the distance between verti- cal elements of the seismic force - resisting system does not 1 CATEGORY 11 5 IMPORTANCE FACTOR AND OCCUPANCY exceed 40 ft ! Where the alternate simplified design procedure of Section 12.14 1 11.5.1 Importance Factor. An importance factor, 1, shall be as- is used, the Seismic Design Category is permitted to be determined 4 signed to each structure in accordance with Table 11.5 -1 based from Table 11.6 -1 alone, using the value of SDS determined in 1 on the Occupancy Category from Table 1 -1. Section 12.14.8.1. I 11.5.2 Protected Access for Occupancy Category IV. Where operational access to an Occupancy Category IV structure is re- 11.7 DESIGN REQUIREMENTS FOR SEISMIC quired through an adjacent structure, the adjacent structure shall DESIGN CATEGORY A i conform to the requirements for Occupancy Category IV strut- 11.7.1 Applicability of Seismic Requirements for Seismic De- tures. Where operational access is less than 10 ft from an interior t sign Category A Structures. Structures assigned to Seismic De- lot line or another structure on the same lot, protection from po sign Category A need only comply with the requirements of tential falling debris from adjacent structures shall be provided by the owner of the Occupancy Category IV structure. TABLE 11.6 - SEISMIC DESIGN CATEGORY BASED ON 1 - 1 PERIOD RESPONSE ACCELERATION PARAMETER OCCUPANCY CATEGORY I TABLE 11.5 -1 IMPORTANCE FACTORS Value of Sol I or II III IV Occupancy Category I SDI < 0.067 A A A ! •I or II 0 0.067 < SDI < 0.133 B B C I III 1.25 0.133 < SDI < 0.20 C C D IV 1.5 0.20 < SDI D D D 116 ASCE 7 -05 :I TABLE 12.2 -1 DESIGN COEFFICIENTS AND FACTORS FOR SEISMIC FORCE - RESISTING SYSTEMS Structural System Limitations Seismic Force - Resisting System ASCE 7 Section where Response System Dellection and Building Height (H) Limit` P Detailing Requirements Modification Overstrength Amplification are Specified Coefficient, R Factor, 1 Factor, C� Seismic Design Category i 9 B C D E Fe A. BEARING WALL SYSTEMS 1. Special reinforced concrete shear walls 14.2 and 14.2.3.6 5 2 5 NL NL 160 160 100 2. Ordinary reinforced concrete shear 14.2 and 14.2.3.4 4 2 4 NL NL NP NP NP walls 3. Detailed plain concrete shear walls 14.2 and 14.2.3.2 2 2 2 NL NP NP NP NP 4. Ordinary plain concrete shear walls 14.2 and 14.2.3.1 1 2 1 NL NP NP NP NP 5. Intermediate precast shear walls 14.2 and 14.2.3.5 4 2 4 NL NL 40 40 40 6. Ordinary precast shear walls 14.2 and 14.2.3.3 3 2 3 NL NP NP NP NP 7. Special reinforced masonry shear walls 14.4 and 14.4.3 5 2 3 NL NL 160 160 100 8. Intermediate reinforced masonry shear 14.4 and 14.4.3 3 2 2 NL NL NP NP NP walls 9. Ordinary reinforced masonry shear 14 4 2 2 1 NL 160 NP NP NP walls 10. Detailed plain masonry shear walls 14.4 2 2 1 NL NP NP NP NP 11. Ordinary plain masonry shear walls 14.4 1 2 1 NL NP NP NP NP 12. Prestressed masonry shear walls 14.4 1 2 1 NL NP NP NP NP 13 Light -framed walls sheathed with 14.1, 14.1.4.2, 6 3 4 NL NL 65 65 65 wood structural panels rated for shear and 14.5 resistance or steel sheets 14. Light- framed walls with shear panels 14.1, 14.1.4.2, 0 2 NL NL 35 NP NP GO of all other materials and 14.5 15. Light -framed wall systems using flat 14.1, 14.1.4.2, 4 2 3 NL NL 65 65 65 strap bracing and 14.5 B. BUILDING FRAME SYSTEMS 1. Steel eccentrically braced frames, 14.1 8 2 4 NL NL 160 160 100 moment resisting connections at columns away from links 2 Steel eccentrically braced frames, 14 1 7 2 4 NL NL 160 160 100 non- moment - resisting, connections at columns away from links 3. Special steel concentrically braced 14.1 6 2 5 NL NL 160 160 100 frames 4. Ordinary steel concentrically braced 14.1 3 2 3 NL NL 35 35 NP) frames 5. Special reinforced concrete shear walls 14.2 and 14.2.3.6 6 2 5 NL NL 160 160 100 6. Ordinary reinforced concrete shear 14.2 and 14.2.3.4 5 2 4 NL NL NP NP NP walls 1 7. 1 Detailed plain concrete shear walls 14.2 and 14.2.3 2 2 21/2 - 2 NL NP NP NP NP 8. Ordinary plain concrete shear walls 14.2 and 14.2.3.1 1 2 1 NL NP NP NP NP 9. Intermediate precast shear walls 14.2 and 14.2.3.5 5 2 4 NL NL 40 40 40 • 10. Ordinary precast shear walls 14.2 and 14.2.3 3 4 _ 2 4 NL NP NP NP NP 11. Composite steel and concrete 14.3 8 2 4 NL NL 160 160 100 eccentrically braced frames 12 Composite steel and concrete '14.3 5 2 4 NL NL 160 160 100 ` concentrically braced frames 4 13. Ordinary composite steel and concrete 14.3 3 2 3 NL NL NP NP NP braced frames 14. Composite steel plate shear walls 14.3 61/2 21 /2 5 NL NL 160 160 100 '' 15. Special composite reinforced concrete 14.3 6 2 5 NL NL 160 160 100 shear walls with steel elements 16 Ordinary composite reinforced 14.3 5 2 4 NL NL NP NP NP concrete shear walls with steel elements 17 Special reinforced masonry shear walls 14.4 5 2 _ 4 NL NL 160 160 100 18 Intermediate reinforced masonry shear 14.4 4 2 4 NL NL NP NP NP walls 19. Ordinary reinforced masonry shear 14 4 2 2 2 NL 160 NP NP NP c walls 20. Detailed plain masonry shear walls 14.4 2 2 2 NL NP NP NP NP 21. Ordinary plain masonry shear walls 14.4 1 2 1 NL NP NP NP NP 120 ASCE 7 -05 1 STRUCTURAL DESIGN 8 SITE CLASS. A classification assigned to a site based on the D, E or Fin accordance with Table 1613.5.2. When the soil types of soils present and their engineering properties as properties are not known in sufficient detail to determine the defined in Section 1613.5.2. site class, Site Class D shall be used unless the building offi- ctal or geotechnical data determines that Site Class E or F SITE COEFFICIENTS. The values of F, and F,, indicated in Tables 1613.5.3(1) and 1613.5.3(2), respectively. soil is likely to be present at the site. 1613.3 Existing buildings. Additions, alterations modifica- 1613.5.3 Site coefficients and adjusted maximum con - tion, or change of occupancy of existing buildings shall be in sidered earthquake spectral response acceleration accordance with Sections 3403.2.3 and 3406.4. parameters. The maximum considered earthquake spectral response acceleration for short periods, S„ and at 1- second 1613.4 Special inspections. Where required by Section period, S adjusted for site class effects shall be deter - 1705.3, the statement of special inspections shall include the mined by Equations 16 -37 and 16 -38. respectively: special inspections required by Section 1705.3.1 1613.5 Seismic ground motion values. Seismic ground S =F (Equation 16 -37) motion values shall be determined in accordance with this sec- tion. SMI = F,•S, (Equation 16 -38) 1613.5.1 Mapped acceleration parameters. The parame- where: ters S, and S, shall be determined from the 0.2 and 1-second F Site coefficient defined in Table 1613.5.3(1). spectral response accelerations shown on Figures 161 3.5(1) through 1613.5(14). Where S, is less than or equal to 0.04 F„ = Site coefficient defined in Table 1613.5.3(2). and S, is less than or equal to 0 15, the structure is permitted S = The mapped spectral accelerations for short periods to be assigned to Seismic Design Category A. as determined in Section 1613.5.1. 1613.5.2 Site class definitions. Based on the site soil prop- S, = The mapped spectral accelerations for a 1- second erties, the site shall be classified as either Site Class A, B, C, period as determined in Section 1613.5.1. • TABLE 1613.5.2 SITE CLASS DEFINITIONS AVERAGE PROPERTIES IN TOP 100 feet, SEE SECTION 1613.5.5 SITE SOIL PROFILE • CLASS NAME Soil shear wave velocity, v s , (ftls) Standard penetration resistance, N Soil undrained shear strength, s , (psf) A Hard rock v > 5,000 N/A N/A B Rock 2,500 < v, < 5,000 N/A N/A C Very dense soil and soft 1,200 <v 5 2,500 rock N > 50 s„ >_ 2,000 • _ D Stiff soil profile 600 <_ v <_ 1,200 15 5 ■<_ 50 1,000 5 i „5 2,000 E Soft soil profile v, < 600 N < 15 i„ < 1,000 Any profile with more than 10 feet of soil having the following characteristics: 1. Plasticity index PI > 20, E .2. Moisture content w _> 40 %, and 3. Undrained shear strength i„< 500 psf Any profile containing soils having one or more of the following characteristics: I. Soils vulnerable to potential failure or collapse under seismic loading such as liquefiable soils, quick and highly sensitive clays, collapsible weakly cemented soils. p _ 2. Peats and /or highly organic clays (H > 10 feet of peat and /or highly organic clay where H = thickness of soil) 3. Very high plasticity clays (H >25 feet with plasticity index P1 >75) 4. Very thick soft/medium stiff clays (H > 120 feet) For SI. 1 foot = 304.8 mm, I square foot = 0.0929 m 1 pound per square foot = 0.0479 kPa. N/A = Not applicable 2006 INTERNATIONAL BUILDING CODE 303 TBB Qa1114Elt CI WIRE) J I STRUCTURAL ENGINEERS PROJECT : Costco #111 , Tigard, Oregon NO 08 -024 DATE : August 25, 2008 PAGE OF RE • Design Data ENGR • TRATT L. CHK. • Building Code International Building Code - 2006 DEAD LOADS : INSUL. PANEL ( WOOD -FRAME ; GALV. ) 3.5" THK. = 3.3 PSF 4.0" THK. = 3.7 PSF 5.0" THK. = 4.6 PSF LIVE LOADS : Roof = 10 PSF WIND LOAD : Wall = 5 PSF SEISMIC DESIGN : ASCE /SEI 7 - 05 Seismic Design Data Seismic Design Category D Spectral response coefficient ; SDS = 0.704 Spectral response coefficient ; SDI = 0.397 Site class D Seismic Base Shear , V (Section 12.8 ) V = Cs W Cs = Seismic Response Coefficient W = Total Dead Load Cs = SDS [R /IE] SDS = Design spectral response acceleration at short period ( Section 1613.5.4 : SDS = 2/3 SMS ) IE = Importance Factor ( Table 11.5 -1) = 1.0 R = Response Modification Factor ( Table 12.2 -1 / A 14 ) S ms = Fa S s , SMi = Fv Si Ss = Mapped spectral response acceleration for short period [ Figure 1613.5 (1) ] Si = Mapped spectral response acceleration for a 1- second period [ Figure 1613.5 (2) ] Fa = Site Coefficient : Table 11.4 -1 Fv = Site Coefficient : Table 11.4 -2 S Ms = Max. spectral response acceleration at short period S MI = Max. spectral response acceleration at 1 second period SDS = 2/3 SMS (= Fa S s) , SDI = 2/3 SMi (= Fv Si ) SDS = 2 x ( 0.94 ) ( 1.124) SDI = 2 x ( 1.7 ) ( 0.35 ) 3 3 SDS = 0.704 SDI = 0.397 Cs = SDS [R /IE] = 0.704 = 0.352 [2 /1.0] So V = Cs W V = (0.352) W * * * ** 75-0" 1 , MOMER,FRAMEa If If IT V ti - : V1 = (157PLF)(25.33/2) = 1,989 LBS it PO5 fi - COOL � p A I W1 ; N A .� . • - AL a n a a V1 = (157PLF)(25.33/2) W2 = 1,989 LBS V2 = (76PLF)(75/2) = 2,850 LBS V2 = 2,850 LBS W1 Wwl_ = (5PSF)(21.917/2) = 55 PLF Ws = (0.352) (4.6PSF)(75 +21.5) = 157 PLF (GOVERN) W2 Wm_ = (5PSF)(21.917/2) = 55 PLF Ws = (0.352) [(4.6PsF)(25.33+21.$)_ = 76 PLF (GOVERN) Q 11 VOVH\ RAV A 14' -0" L .6I 1 2,850 # (MAX.) W12X22 N N N N Co X X I N N ,-- N "1t ry Lvrt L C t CL. W L $MWpn Envelope The Sadler Group Tigard, OR. ( Moment Frame A ) TRATT L. Aug 26, 2008 at 11:00 AM 08 -024 Kysor#08 -024- POS Cooler , Moment Frame - A . Company : The Sadler Group Aug 26, 2008 13 Designer : TRATT L. 11:00 AM Job Number : 08 -024 Tigard, OR. ( Moment Frame A) Checked By: Global Display Sections for Member Calcs 5 Makinternal SectiorSTOII Mehlber,.Cal'cs. 9T _ . '. Include Shear Deformation Yes MergeJolerance (in`) ., _, ° i!..? 2..:12 P -Delta Analysis Tolerance 0.50% Hot Rolled Steel Code AISC: ASD 9th ColdxFor.'naed AlSI.'99:- ASD, .• Wood Code NDS 91/97: ASD Wood `Terriperatur~e ... _ . _ <;;1.'0OF : - . _ - . , Concrete Code ACI 1999 Number of Shear Regions 4 Regitir Spading :tncre?rient Concrete Stress Block Rectangular Bad Framing Warnings No Unused. °Foece Wat rsings:_. '� - . oYes:, . Footing Overturning Safety Factor 1.5 CheckCoricrefe'Bearing = s„ _ Yes .. •- • Self Wt, Overburden in DL for Design No Footing,ECoridete,Weightt'! �� ° :14'5 k /W3 ", Footing Concrete fc 3 ksi FootingtiConcrete'Eca . 40.0.0:kt Footing Steel fy 60 ksi Minirnurii `Steep: • ' _, 0:001 :8 Maximum Steel 0 0075 Footing Top Bar Cover 3.5 in Footin rBottom Bac �x ; .#4s Footing Bottom Bar Cover 3.5 in PedestalbBar _, �...... ._ �. =`` #3 =° Pedestal Bar Cover 1.5 in Hot Rolled Steel Properties Label E [ksi] G fksi] Nu Therm ( \1 E5 F) Density[k/ft ^3] Yield[ksi] 1 A36 29000 11154 .3 .65 .49 36 ; `A572Grade50. , < 2 9000' 11 u1 °54 . . , 3 :65, .49:, 50° 3 A992 29000 11154 .3 .65 .49 50 A560 42 x a -.,. - 29000.: - 111542,-, ; ::3 n :65:` .. .49' 42_ - 5 A500 46 29000 11154 .3 .65 .49 46 Hot Rolled Steel Section Sets Label Shape Design List Type Material Design Rules A [in2] I (90,27.. I (0,180).. 1 Column W12X22 Wide Flange Column A992 Typical 6.48 4.66 156 2 Beam ` W12X22` Wid'eKFlange: ' Bedm - A992 `Typical. • Member Primary Data Label I Joint J Joint Rotate(d Section /Shape Design List Type Material Design Rul... 1 M1 N1 N2 Column Wide Flange Column A992 Typical , " Col Wide?Flange' Column A992 ` 7 3 M3 N2 N4 Beam Wide Flange Beam A992 Typical RISA -2D Version 6.5 [C: \..\... \Kysor#08 -024- POS Cooler , Moment Frame - A , Tigard, OR. r2d] Page 1 14- Company : The Sadler Group Aug 26, 2008 Designer : TRATT L. 11:00 AM Job Number . 08 -024 Tigard, OR. ( Moment Frame A) Checked By: Member Advanced Data Label I Release J Release I Offsetfin] J Offsetfinl T/C Only Physical TOM Inactive 1 M1 Yes 3 M3 Yes Joint Coordinates and Temperatures Label X fftl Y fftl Tern F 1 N1 0 0 0 -0` 3 N3 14 0 0 • �uy f�t4 ":, . ,. _ ;s "'1'4. °`:r ti` A , ��1.2:5� ; _�.. x0 Joint Boundary Conditions Joint Label X k/in Y k /in Rotation k- ft/rad Footin• 1 N1 Reaction Reaction Reaction _ • - Reaction` Hot Rolled Steel Design Parameters Label Shape Length[ftl Lb- out[ftl Lb- infftl Lcomp to .Lcomp bot .. K -out K -in Cm Cb Out s.. In sway 1 M1 Column 12.5 2; ":M2' 3 M3 Beam 14 Design Size and Code Check Parameters Label Max Depthfinl Min Depthfinl Max Widthfinl Min Width[in] Max Bending Chk Max Shear Chk 1 Typical J .95 .95 Joint Loads and Enforced Displacements (BLC 9 : Dead Load) Joint Label L,D,M Direction Magnitude[k,k-ft in,rad k *s ^2 /ft] 1 N2 L Y -.5 Joint Loads and Enforced Displacements (BLC 2 : Wind Load) Joint Label L,D,M Direction Magnitude[k,k -ft in,rad k *s ^2 /ft] 1 N2 L X 2.85 Basic Load Cases BLC Description Category X Gravity Y Gravity Joint Point Distributed 1 Dead Load DL 2 2= . .``VVin`d.Load�._.z;' ri �WL` ��.. �. Load Combinations Description Sol. . PDelta SR.. BLC Factor BLC Factor BLC Factor BLC Factor BLC Factor BLC Factor BLC Factor BLC Factor 1 DL +WL DL 1 WL 1 2> IBC - 'i6=1 1`'(a) YesF `. ° :6� 1NL �:1 �. ° - - ,. RISA -2D Version 6.5 [C: \... \... \Kysor#08 -024- POS Cooler , Moment Frame - A , Tigard, OR..r2d] Page 2 15 Company : The Sadler Group Aug 26, 2008 • Designer : TRATT L. 11:00 AM Job Number : 08 -024 Tigard, OR. ( Moment Frame A ) Checked By: Envelope Joint Displacements Joint X fin] Ic Y fin] Ic Rotation [rad] Ic 1 N1 max 0 2 0 2 0 2 - -2a . -.,,, ,...�? .: -,;„ = `ruin ` :1- A ', : ;0;."'„� ;`- ,- ;,2,';‘ , :., 1 . 0 . :.:. _. -. .',,,2--,-,;,-.,, ,- . - - 1(1 - -, . -. '‘, 2 ,. 3 N2 max .14 2 0 2 - 5.967e -4 2 ::;4.3,.`-:', ... , :;,'?:;;;, ', Z.rn n ". r, ' :,1'4< a i2; .. _;0:' . °'x , , k'2. , -_ 5 967:e=4=' ... , " , ` ... '` 2 . . 5 N3 max 0 2 0 2 0 2 :: " - n_ „ .,r . - ,,: ,.'0 ::" :- = .'2n- :0" 2. '.- . , - fr, , -. _ - 0: ' -,:; , . _s':: _ ,_2 Y- 7 N4 max .139 2 -.001 2 - 5.882e -4 2 8 -:, . a, . _. :ruin -..', : 2 .. ': ,' - 5:88264 >_ , :. - 2: Envelope Joint Reactions Joint X [k] Ic Y [k] Ic Moment [k -ft] Ic 1 N1 max -1.43 2 -.76 2 10 436 2 .$12";,, -'.... _. e:,; ',;`:. :'rein'., , ... `'A 43, ., . '' 2` .,_ _- .=76 ._ 2 .. . - _.;10436.. . . _2,. 3 N3 max -1.42 2 1.36 2 10.355 2 4: : :. ,-=;x Fk° 6' r' = rrii =1 42'fT, "=.; :; ., ",' -2 °1::36- : .- . 2`_- .a. -.- :1'0:355 -.. . 2` - 5 Totals: max -2.85 2 .6 2 :::„.6 t . 1, = = : m * 1 ; . , ; i 14: iii in - 2:85 :4 ° , ;,'2;< , :',.,, , :1,5,- _ ' 6 :.; - : : - . _,',:: ''2.' >, f. ... _ ' l', , Envelope Member Section Forces Member Sec Axial[k] Ic Shear[k] Ic Moment[k -ft] Ic 1 M1 1 max - 76 2 1.43 2 10 436 _ 2 ,2. �. ','.;,: ,: ., - . ..-. ` .lrnin=. -. . - .:76'. „ `2 " ._.yt >, .', - 1 1.43`,;; , .. _ - 2 - ' ,10:436- , _ . 2 , 3 2 max -.76 2 1.43 2 5.968 2 -4 - . -, . ` .,F = - ... ..rnin' `.` = X76:;, . - i2 ,. : _ ;1:43, `°: _ : ,2: -. . ,._5:96 "8. : , v2= . 5 3 max -.76 2 1.43 2 1.5 2 6 . ,, fl. = ; -,.. '' ,'m in' _.;a . = :76 �,,, .:32 -.�: <.;.', e. ,1:43 •:;-.. <= . k2 . , ., : 1'm5. ,- ` -. 7 % , , .,_ 2= 7 4 max -.76 2 1.43 2 -2.968 2 8" ": ,, ` . - "` .' '; ; Tmin?. 76.' =:p ,. ,",: ... ,..' .1 43 ` °A `-="-- ti . ,-, -=2..i rc .- -2968 '. ..2. 9 5 max -.76 2 1.43 2 -7.436 2 01A , _. n.. - ,...::t.20 _ . . , �- niin,.: i', , . = :76=' °: _ , .= `2i. .2 .. .. ..:f2C: T-. , ..: ,. ; = 7:�436 ..._.. .. 2 "'" 11 M2 1 max 1.36 2 1.42 2 10.355 2 1 a-A,,, :: ,_ min` . 1 :36 < -, >'u' ..2- :.. ,i , . , ,;1':42:.. 2 ; 10 355. 2 13 2 max 1.36 2 142 2 5.917 2 =14�, ` ': '- ..` . ' x. �� � � � ��min -�- = �1`:�36 - 2- �� '1:42` 2 5:9:17 _ 2 15 3 max 1.36 2 142 2 1.478 2 ' 1.6 `i' .., -... ,. .1c< .; S. rriin. ;_ :1:36 _ " - 2;$ . . 1:42. :, , .. � 2,. - 1.478 1 - - . ; '2. 17 4 max 1.36 2 1.42 2 -2.96 2 . : 1 812. - _..... ° ; .. . , reins " _ra..,:f :361 ` 2 , . ',. 1e 42: ;2 - -2:96 - : • :2 19 5 max 1.36 2 1.42 2 -7.398 2 _'20` ; - `:n `' :'.'`, iiiin�Z' ".,1:365 =�- -: ..2`4�. _.. .- '' 1'42;-° ,, ' =,. 1 :2u, : = :'..'s 7:398" 2 21 M3 1 max 1.42 2 -1.06 2 -7 436 2 ,22 , > - s, 1. _ ...'-rni i - ' ,. '2 = 1'06 " "s . „ 2 -- . - 7:436'. :12.,.' 23 2 max 1.42 2 -106 2 -3.728 2 24;. "''' , r i l l ,1 ' ' 2.` . _ 06 ,, " , 2 ,. . " . =3.728' ..- . -, ,2 25 3 max 1.42 2 -1.06 2 -.019 2 26_ = r ;, ' , . ., - <ni n" . 1 - :42 , -2 . . , ' - 1°?06 _ . 2' - ' ' .. - - :019 .' . '2 27 4 max 1.42 2 -1.06 2 3.69 2 '28: . - . : , „ _ . ,.- ,,,,,. .`rr: iin''' . °42:' ';' = ,2`. - - - -,1'.06-';.1 2•'',1,.' ' ' - :3 =69:' . , ,' ,. ' .2: 29 5 max 1.42 2 -1.06 2 7.398 2 :h30 e .'. .4 ,i'..5 ',- ...=mine _; 1 =:42 '2 .. 1' :06. . ",:,121-' 4. .7':398 .. , . 2 -: • RISA -2D Version 6.5 [C: \... \... \Kysor#08 -024- POS Cooler , Moment Frame - A , Tigard, OR..r2d] Page 3 lb Company : The Sadler Group Aug 26, 2008 Designer : TRATT L. 11:00 AM Job Number : 08 -024 Tigard, OR. ( Moment Frame A ) Checked By: Envelope Member Section Stresses Member Sec Axial[ksi] Ic Shearrksi] Ic Top Bendingrksi] Ic Bottom Bendingrksit Ic 1 M1 1 max -.117 2 .447 2 -4.941 2 4.941 2 `2 .A�r , . 1 ,.t ...::,,..- ni . :z`:':' : °2.. 4; _. ' ; �2rar.., : >7r:= 4:9411.F1 ix;.. i,=''°s2 . ;k.;..:4 :941 ='° -. n , :4: 2` °1��' 3 2 max -.117 2 .447 2 -2.825 2 2.825 2 4 N r_ min; - :117.' -, ' 2. : ` =°2'` ; : -2:825 2,.: 2:'825. 2 . 5 3 max -.117 2 .447 2 -.71 2 .71 2 ;.g,�; , n''. _ , `"rein; i`. ,: - 2., ..7x.447 = -2 _. -:71 :;2: ..-,-':71'; ,, .:2 :,- 7 4 max -.117 2 .447 2 1.405 2 -1.405 2 a:8k=,. .,, _ a -` , =rriin -' - :117,- '.2�`:. '447 -° ' °2°' - '1 :405 . - - 2 =1:405 - 2 ' 9 5 max -.117 2 .447 2 3.521 2 -3.521 2 =10 `�xg2, ,,. �..'' _ .min; - n - .1.17,x "'2F.„ .;:44`7 =�` �2 -' ,,� - �: 3:�52`r1�,� �2 ;,- 3:521 = - -' ' 2: _ 11 M2 1 max .21 2 .444 2 -4.903 2 4.903 2 12=- F:.'... Z . °rnin3r :21 .< s2�s 444=s;`,-..': :2�P.X_ °' 4J0'3. : ° . , �2�:_ ___ X4:903;- .2. . 13 2 max .21 2 .444 2 -2.801 2 2.801 2 4 , 1 � a, ;.,.. `.444' :' ..r' 2x= �9:4''- . - -, ,- ,., . ,'^e ° =`. _ -� :mini �`� _ _ - :21 =��.. ,. ° 2n � ° :�' `. ..(= 2:801,r;`.�-.' 2 °.. , ,: 2801 - ..� . - r2; 4 . 15 3 max .21 2 .444 2 -.7 2 .7 2 _.1`6'°. ,`'i ._ . „ .. ;rriin. , .,: `21. �2- _ ,:444 ...'fi„ 2`:`,� -. - :7 :,H :..:.. -`2 `•., `;:77,.,. " -4rx .._ 2; 17 4 max .21 2 444 2 1.401 2 -1.401 2 - 18 . -_, ° . _ ., .. _ . fix,, ' , ' : - . , : - , , - : " . 2 1 : " . , - , - , ; ' 6 ' .2 ..... 7 :444_ , .2 : - ..'.A,1 401Y ': ,.- - . 1 ,2- :': „..:.. - _ `1 :: . 2, .- 19 5 max .21 2 .444 2 3.503 2 -3.503 2 20a 1,.. _ : °' - ` 'Viilin , , ' 21. ; ?: 7 2' T -,' -' , :444:`' - , z - , s2::. .'350`3 ' - <,' . °:2'��: : '3':503,',,, 2 . . 21 M3 1 max .219 2 -.331 2 3.521 2 -3.521 2 22 'I'°. _ °.. -, ° , = *:,. - ;:rriin; . '.219 =x...''2� ° ''V- .33"1�.' .. 2 - 1'' •.._3L521'1, ,2 %' _ 3:521- ,- ,. , 2... - 23 2 max .219 2 -.331 2 1.765 2 -1.765 2 24 , ., ., ;3..: amiril , , - ..21`9 >1"; ;x2,,• .'_`•,°'x,:331:: w" ::.2: _ ..e,1':765. - , _ `2 ' :,.... 1;765=`,, :. :2; 25 3 max .219 2 -.331 2 .009 2 -.009 2 26 °. - ` n . ,ruin ', - `2:19= 4F "_.. -'2 - 33.vsTis x 2; °� ,. ''.009' -. <" , = . ' „62' -:009:= , • . .2 ;. :'. 27 4 max .219 2 -.331 2 -1.747 2 1.747 2 :28: , ` _ . 4 mi6 7 '.. - :2.1`9 =�,- :`2:°: -.. 1 =.331- ' 2:'., :'. -`:. -1 :747 -` - 12 . _ - .-=1..747` , '2 . 29 5 max 219 2 -.331 2 -3.503 2 3.503 2 '' . _ . ..,. m ,_ .. "'ruin:. 1- ' :2.19 - ' - f- - °2 . :s .,,'331r .': 2� :''V t'=3.'503:;- .. E •2 - , t . 3 :503. '-.,.'-= 2 Envelope Member Section Deflections Member Sec x [in] Ic y [inl Ic Uy Ratio Ic 1 M1 1 max 0 2 0 2 NC 2 2 « min r , ' 0;, .. 2 : "t° _ 0 -2 �N 3 2 max 0 2 -.018 2 8206.923 2 (- . - ':r _ , . , .... _ .` ,C !.: Amin ' ,- 0 °2 =: `, . , ._.. - :0`18'`: ' , . ...2 -°. °x...:;8206 923 ~. ', . ;'; :. 5 3 max 0 2 -.059 2 2550.403 2 6 °_ ._, X :'„ - , a'' , _iniri";' x. -. ,0 _:',f. . '2:'_=: . `. x- 059 °_-'' , . r2'', .2550;403 �,2 7 4 max 0 2 -.105 2 1429.321 2 , :8 =`-.. ,, , <'• �.-_ , _,. °.. - - ruin -a;... .0i .- ,- :1'.. ..,, X1'05` . :2 . -- 1429:321- , 2 9 5 max 0 2 -.14 2 1071.403 2 10 ,- _ . - . ,. ` ., _. : - . _ .mmiv'-° ` _',:0: e. 2�" . = :.14 - '2 ,1 - 2- 11 M2 1 max 0 2 0 2 NC 2 - 124 ,, ,' :. : , , mina - -" ;0 ':°E,° -, 2 ._ ?, ' ,. 2 NC .. _, 2- 13 2 max 0 2 -.018 2 8271.501 2 -14' _ -, - -,,. -. '` " --rmin x =: ' -. ,-'0 ,..° .__2 . :01 :8` ., 2- ... 8271.50i . _ .'2=- 15 3 max 0 2 -.058 2 2571.201 2 ;16`'- - ..`e' . . ,...n .;.; , ::muffs; ;' . :0 =s, - _ 2 :058 =, .'2i: ,- . 2571::201 :- ..'1'': 17 4 max 0 2 -.104 2 1441.523 2 '18 ",` ._ , , -. x °- iiin,'::: m ". ; .,, '' ; - .104`; •2: -, . ;1'44°1`.523' _ '.2 '- 19 5 max -.001 2 -.139 2 1081.209 2 20 , . - : r=rnin., -: ° . = '001 ...2 - - :139 -- .,2'' ' 108:9`.209' '2 21 M3 1 max .14 2 0 2 NC 2 .22._ - .., - M „ . .'min:=: .:14; -.".,2. ,.. :- .`0' ,:[2:„..:: _ ANC - : 2' RISA -2D Version 6.5 [C: \... \... \Kysor#08 -024- POS Cooler , Moment Frame - A , Tigard, OR..r2d] Page 4 Company : The Sadler Group Aug 26, 2008 1 Designer : TRATT L. 11:00 AM Job Number : 08 -024 Tigard, OR. ( Moment Frame A) Checked By: Envelope Member Section Deflections (Continued) Member Sec x in Ic y [in] Ic L/y Ratio Ic 23 2 max .14 2 -.009 2 NC 2 '24:`, r .,.: , _, F :., _! 1 . _ :14; . ;2'. ,'-`:-,:2-,':.'009Y::'' .;�2° :NC• :. , 2' 25 3 max .139 2 0 2 NC 2 262- ._ ,,.. - _.,. - r.,, Y,: in ' .139....- ,', L -2 ;�:. ..'0",i': ",:-. ' ,_ .., '_ '--,;--. - '2 � NC'- 2,: 27 4 max .139 2 .008 2 NC 2 28a ... - .:._ . =k' _ : . ,;.k , r _ ; : = ^min „: , x :=139 : :y' • - f ,'008 : __ _ °2 .. �NC' :;: : >m. fa.- , -� 2 = °:' - - 29 5 max .139 2 -.001 2 NC 2 , :30. , .... - °.,: a ruin., 1'39 °'N--:' ... .2• , e :00t 2 :ANC ==, y Envelope AISC ASD Steel Code Checks Me... Shape Code Check Loc[ft] Ic Shear C Loc[ft] Ic Fa [ksil Ft [ksi] Fb lksi] Cb Cm ASD Eqn 1 M1 W12X22 .193 0 2 .022 0 2 4.773 30 25.601 2.3 .315 H1-3 x' 2 «_ M2 :' \W 12X22 -i <=� - - . 1'98` _, e . _ , ., : 0 ,2 ' . '. 022:' `' 0 2 4 :773- ° 30 ' ' 25:601= -2':3: . .314 . H 1' -2' 3 M3 W12X22 .161 0 2 .017 0 2 3.805 30 22.858 2.3 .202 H1-2 RISA -2D Version 6.5 [C: \... \.. \Kysor#08 -024- POS Cooler , Moment Frame - A , Tigard, OR..r2d] Page 5 M =7.436 FT. -K USE #14 X 1 1/2" ®" 0 HX 3 " O.C. SCREWS 14' - 0" 2850 clisiamm C1 = (7 436X12)(1000) 6 W12 X 22 I -BEAM = 14,872 2,850 (MAX.) TENSION FOR EACH BOLT IFF • = 14.871 = 7,436# 1 1/2" x 1 1/2" 2 14 GA GALV ANGLE 5/8 "0A325N BOLT vl O M E U T FRAME A BOTH SIDES il C2 = (2850)(12.5) (14) = 2545# CD 1 I -BEAM FRAME �J W12x22 @ SLIDING DOOR END WALL I I I I (2) - EA. 3/4" HILTI KBTZ a3 I �� 4 3/4" MIN EMBED (FROM REACTION) C2 C2 20 DETAIL- MOMENT FRAME A c3 S AIDLIBIE CIRGIDOID iq Structural Engineers PROJECT: - r■ciAr1 p ) NO: DATE: C;13 - 2 b -06 PAGE OF RE: ?O5 C (90 11 - • ENGR: T L CHK. 1 1 I 1 I 1 I 1 , I ! - 1 1 1 .1 1 I i 1 1 i 1 - - 1 - --, --441 , 1 --- - 1 I _ _ 1 ; I\ I- i.,0c,) i'.(i__I lila Mi s i Des il c1.6- 0.,1 < &i -- ... --)i ' 7 -1 1- 41-•- : 1---- t i ; 1 • i -- - . -- --t1 I J. , .,..._.1._ i .1 1.5], A g• 9_Ln IN I AP 1 5 ' -I 1 1 i I ir -- ; i ---- 1 1-------±----1--- --- - 1 i 1 . ; ALLcoc,)IA Lri i_ ski:Ai ,1 1(040 Lt C4)1 : 1 1 -- - t . I I I ! I I I 1 1 I I i 1 L - 1 t 1 1; I i 1 I s 1 I 5i to 410;> 2S50 bkiF ' P -- -- -1---- — ....; _ ...._, __,.. 1 ! 1 t 1 -- -- - - I i - I, 1 I -LI 1 , , 1 ! 1 ; i I 1 IA LA, 01 cs) A Lf::; ; I li--: r0 Si • s - I 15159 jborr 1 4 -1- I- , 1 , , 1 I I 1- b' SOO --i 1 i,43b , - t - - I ' I 1 1 i - 1 - 1 1 , I 1 •,h- ,___ , - i - 1, -, 1H I LI 1 , c il' 7 C 1":4 i-li 0 i / 1 - eYYi • 1 1 , ; ; ; I 1 I j I ! 1 1 1 1 . -- 1_ --+ 1 ■ i I ---i- , , 1 41141 (2 1 ■ I- E. A qd. 7 131 - r i ) 1 : : 1 i . I 1 • , . 1 I . - t ---: - • ■ .i i i I 1 -1 - • - -4 - _ . ' I , i- I _ 11262b ? 11436 iokT 1 . i ! , ., , . , H -i--- I -- ; ' 1 A L IL-CVA (1.. TIE-0 510/\) j- 4 42 4 132 ! i P,OL ( ) 1 . L I 1 1 -- - 1 ■ 1 . 1 _ I I 1 i f I 41 i 1 1 • .4-, ofcy -! 1 , 1 i . , I ; • 1 ; ■ I I 1 ; I 1 -, — _t_ ; . 1 1 1 ; 1 I 1 1 1 1 i . - 1 : - - --1-- --;----; : I - – I 1 1 i 1 1 1 1 1 ; 1 I : - -- -1 ' I i 1 ' ; _ . . . 1 ._1_ 1.. 1 . +.. 1. .1 ; -1 i 1 .: • ; r I --- i 1 1 1 [ ' 1 ; . : P 1 ; , i : 1 1 i 20 VOVH\ HRAVL B 8' -10" 2,850 r � W6X9 X X b CD cp 1 ] 95Y_,, M3 �t Loa. LC. 1 DO L Sauion EmNOpe The Sadler Group Tigard, OR. ( Moment Frame B ) TRATT L. Aug 26, 2008 at 11:04 AM 08 -024 Kysor#08 -024- POS Cooler , Moment Frame - B 22 Company : The Sadler Group Aug 26, 2008 Designer : TRATT L. 11:04 AM Job Number : 08 -024 Tigard, OR. ( Moment Frame B) Checked By: Global Display Sections for Member Calcs 5 rMakiritennelrSections forrMember_ :Cale& ` >97 • Include Shear Deformation Yes P -Delta Analysis Tolerance 0.50% Hot Rolled Steel Code AISC: ASD 9th C,old� ForrriedRSteel >Code `�: ,u� �.�, . °,:� .` - _ AISI�.99:•.ASDx;.`r " Wood Code NDS 91/97: ASD Wood.Tetrnpetatuce Concrete Code ACI 1999 Number of Shear Regions 4 Region Spacing?increment:(in)S. :! ', Concrete Stress Block Rectangular Use Bad Framing Warnings No Unus'ed:Force-W.arnings: :; ,Yes Footing Overturning Safety Factor 1.5 Check Concrete :8earirig: Self Wt, Overburden in DL for Design No Footing Concrete Weighty - = x.145-k /ft"3 Footing Concrete fc 3 ksi Footing= _ConcrefexEc - _ _: 4000ksi:� = -. Footing Steel fy 60 ksi MiriimUm;FSteel `0 x018 ` Maximum Steel 0.0075 FootingTopaBar�`` : #3x,�' . Footing Top Bar Cover 3.5 in Footing ;BottornB`ar:'<`:. " °:'r.. � _1. = Footing Bottom Bar Cover 3.5 in Pedestal Bar Cover 1.5 in Ped'estalaTieS ,. .. Hot Rolled Steel Properties Label E [ksi] G [ksij Nu Therm ( \1 E5 F) Densityrk /ft ^3] Yieldjksff 1 A36 29000 11154 .3 .65 .49 36 • 2 A572Grade50. " 29000:: 11154 3 A992 29000 11154 .3 .65 .49 50 4 . A500 '42 29000 1:1:154. 3`.° .65r, 5 A500 46 29000 11154 .3 .65 49 46 Hot Rolled Steel Section Sets Label Shape Desi.n List Type Material Design Rules A[in2] I (90.27 I (0,180) 1 Column W6X9 Wide Flange Column A992 Typical 2.68 2.19 16.4 �2; °,`Bearri` W6X9' Bearn, A992 Typical ' 2.68 2.1 • 16.4 Member Primary Data Label I Joint J Joint Rotate(d .. Section /Shape Design List Type Material Design Rul.. 1 M1 N1 N2 Column Wide Flange Column A992 Typical 2 -'M2`: , `'N3 "'`N4`"' `Coliarrin , - ,Wide,Flange Column" A992` .-Typical, 3 M3 N2 N4 Beam Wide Flange Beam A992 Typical RISA -2D Version 6 5 [C: \... \... \Kysor#08 -024- POS Cooler , Moment Frame - B , Tigard, OR..r2d] Page 1 Company : The Sadler Group Aug 26, 2008 23 Designer : TRATT L. 11:04 AM Job Number : 08 -024 Tigard, OR. ( Moment Frame B) Checked By: Member Advanced Data Label I Release J Release I Offset[inl J Offset[inl T/C Only Physical TOM Inactive 1 M1 Yes _,2. M2 ; .x t • -:n .° .;, , Ye "s_' }F. -r 3 M3 Yes Joint Coordinates and Temperatures Label X [ftl Y [ft] Temp [F] 1 N1 0 0 0 3 N3 8.833 0 0 Joint Boundary Conditions Joint Label X [kiln] Y [k /in] Rotation[k- ft/radl Footing 1 N1 Reaction Reaction Reaction 2 °:; _ �N3�. r` ° °" „ xr��' "z�,Re'action�� >�_,. ��= Reactionx,.. ��- "":Reaction Hot Rolled Steel Design Parameters Label Sha•e Len•th ft Lb -out ft Lb -in ft Loom. to.. Lcom• bot... K -out K -in Cm Cb Outs . In swa 1 M1 Column 8 3 M3 Beam 8.833 Design Size and Code Check Parameters Label Max Depthfin] Min Depthfinl Max Widthfin] Min Widthfinl Max Bending Chk Max Shear Chk 1 Typical .95 .95 Joint Loads and Enforced Displacements (BLC 1 : Dead Load) Joint Label L,D,M Direction Magnitudejk,k-ft in,rad k`s ^2 /ft] 1 N2 L Y -.112 Joint Loads and Enforced Displacements (BLC 2 : Wind Load) Joint Label L,D,M Direction Magnitude[k,k -ft in,rad k*s ^2 /ft] 1 N2 L X 2.85 Basic Load Cases BLC Description Category X Gravity Y Gravity Joint Point Distributed 1 Dead Load DL 2 . %WitidtLoad \f ' 1 - - Load Combinations Description Sol . PDelta SR .. BLC Factor BLC Factor BLC Factor BLC Factor BLC Factor BLC Factor BLC Factor BLC Factor 1 DL +WL DL 1 WL 1 2.I80 1'6-1:1 (a) D12',".6'" WL F.1 . RISA -2D Version 6.5 [C: \... \... \Kysor#08 -024- POS Cooler , Moment Frame - B , Tigard, OR..r2d] Page 2 Company : The Sadler Group Aug 26, 2008 Designer : TRATT L. 11:04 AM Job Number : 08 -024 Tigard, OR. ( Moment Frame B) Checked By: Envelope Joint Displacements Joint X [in] Ic Y fin) Ic Rotation [rad] Ic 1 N1 max 0 2 0 2 0 2 2 �' . ,, . ,_. ;rxriin' 0' :_ ..,, , .`2z:' 0:: , ; 2 .. _ _ _ , " _ `_0'i _ . . _ - _ 2:. • _ 3 N2 max .344 2 .001 2 - 2.267e -3 2 :''4; y.9. : ',• - _x, _ ' ' :. ,. :min` : . , ,: :34'4'; ".' 2..... 001.' , a2t - - . . " . 2:267e-'3 ;- `2. - 5 N3 max 0 2 0 2 0 2 6.> . ' . ' 'r 'mm x i..... 0 ; ; 2 01.'- ,, . LL 2=_ .. 0" , .. 2' 7 N4 max .342 2 -.001 2 - 2.246e -3 2 : =8 , : ,:: '.° , , Nil in °:x4::3427 ,;2,f,. ,,.';''g"::."001'....,":':-;,= . ; - . . = 2.246e -3 ... , -.%,..`-,. -- - 2; Envelope Joint Reactions Joint X fkl Ic Y [k] Ic Moment [k -ft] Ic 1 N1 max -1.428 2 -1.012 2 6.647 2 :2`..., zi.'4.7, . ..A,; ` ", ,._ VminF: ., ' -.1 "428 ` . ..':2_ n _., , 1:012 > '2 - 6.647' - 2 3 N3 max -1.422 2 1.147 2 6.616 2 .4' __ „:. „ ._ . , .'a a. ; . min'' , 4:422` _ 2 ' : - 1:147 - -. 4 1 - . 'fi: :616'; 2 5 Totals: max -2.85 2 .134 2 us , _ ;> ' ..:. _.' :1.34I.. , =2 Envelope Member Section Forces Member Sec Axialikl Ic Shear[k] Ic Momentjk -ft] Ic 1 M1 1 max -1.012 2 1.428 2 6.647 2 '° r,` :2' ' „ :x - 2 , -;! , -,:::' . 1 , -'.'... .6 °647 , 2. 3 2 max -1.012 2 1.428 2 3.792 2 4: f =: '" =4`c , , h. - ,'', = Zrriin .' , =1 :012= f. -2 :: , ';. :1 :428' - : `_2r ._ '' . '3'.792 ' • - 5 3 max -1.012 2 1.428 2 .936 2 =6; Q ., -_, ._ .... - Zhiin : :f; 1- :012:7 .," t ,2 , 1:428`- : , 2 -, : - ' .936 - ' . 2 7 4 max -1.012 2 1.428 2 -1.92 2 <8':'. . ,. F '..° „` , , :_ +_ . _ .. mi ia- _ . -fi1 t01.2z - . _ 2.:.:, - t'428":: -, =, .. 2:, 1 2 .. 9 5 max -1.012 2 1.428 2 -4.776 2 ,.,'1,0 >.; __ � ` , , -, ,I '1 :: =min ° ^ 7"`f- 1 : - . ,Irf, -, .. , 1 -'428; , . . :a2 r _ , .'- 4"=776x` == " :; . _,2 , -- 11 M2 1 max 1147 2 1.422 2 6.616 2 1.2s x. , _,, , gip :: "`min !' :...: :1 :147.: .:2,.; ._ x .4 . :1'422:: °;: , :2 " .: °661'6', 2,--' 13 2 max 1.147 2 1.422 2 3.771 2 ;-' H,, w14` ._ _ , :�, . .._ N . �'-`i�� �� min :'r 'I :x1,4:7�'u= �= `2'�. <� .,: , = 11.422 . , , ,-Rc. °, ,2" ,,,,.. ...3:771F'",. ::' ' 2 15 3 max , 2 1.422 2 .927 2 '16_. -. .. _. _. - -.:min.. - .1:14P- .7 ' ' ' ' 1.422: „ _ - . - :2 - :927 ... 2- 17 4 max 1.147 2 1.422 2 -1.917 2 18 ' ` . -: ` :min.:. 1'. -147 ' '2>>... , '1 :422 '- , . 2 - 1:91.7 ". - 2' 19 5 max 1.147 2 1.422 2 -4.761 2 20. , . ,.. •ruiii.: : . ' 1 . 1 4 7 . ° : - . : : =2, -- :. ., :'1..422. ;' ` ; , ;.2_ , .. 4:781' 2 . 21 M3 1 max 1.422 2 -1.08 2 -4.776 2 22' ,,, ,.., ` .,_ `; 'hiin ' ,.,`:1:422:° ' . 2= , .. ', ._. 1 1 1 :08 , , . " -in , -: 2,2;,;:: 4 :776 TH : `. 2 23 2 max 1.422 2 -1.08 2 -2.392 2 x-24 _ .. : - :..:;;`,1: - 1 .1 7, 61111` x . : •:`1':422` ... ':.2." J :=.a 1:.08 . ' :2 : _ '''.‘ -2 :392 .., = " --7 . 2,. 25 3 max 1.422 2 -108 2 -.008 2 �. x -2'.:1;.08' 26;- . - • . -:. _ ._.., , . -- .min:- ' _ ° .1�422,v. -, :: � s =2;` , - - ,,,2 _ . . , - -:008 _ , �2 . 27 4 max 1.422 2 -1.08 2 2.377 2 .,28.` ".." .. "w . -. :., .x ':". Irni'ii ...‘,1'.422,"..')..: . 2' 1 :08. -. ' ' -_ . 2' - • ' 2-.377 . - .2 29 5 max 1.422 2 -1.08 2 4.761 2 30e,,, ' ..- .. . '" " -" min ., . =1°:422 " . 2'. . .. - 1:08` " , ' .2 - 4;761- _, . • ' 2 R1SA -2D Version 6.5 [C: \... \... \Kysor#08 -024- POS Cooler , Moment Frame - B , Tigard, OR..r2d] Page 3 Company • The Sadler Group Aug 26, 2008 Designer : TRATT L. 11:04 AM Job Number : 08 -024 Tigard, OR. ( Moment Frame B ) Checked By: Envelope Member Section Stresses Member Sec Axial[ksil Ic Shearfksil Ic Top Bendingfksi] Ic Bottom Bendingfksil Ic 1 M1 1 max -.378 2 1.424 2 - 14.349 2 14.349 2 >,'z2! _ _ . -_ ,_ ,. �, 1': ;niin'_ '';'- .:r378 :.�E 1 .2 1:424 " - ''''',','2, " 14`3'49' ` ' • 2 :14:349: - : `.2 3 2 max -.378 2 1.424 2 -8.184 2 8.184 2 , , =4'. ,�'x ' °,., mini.. - :378:: 2 -:° 1'424_ _ ._ °�2�. 8: =184 _ ; 2�; .''� 8:'1�84 ` 2-,,, 5 3 max -.378 2 1.424 2 -2.02 2 2.02 2 `6F =. ''' _•-... w.. > . Y-min ty ..'4378.x: : ° u,2- , `:1:424,_.: :c: '2-...: ;-2:02 2' ,. ,. 2:023 ; '• . : 7 4 max -.378 2 1.424 2 4.145 2 -4.145 2 ;min _ .X _ :378' �2t' V..1s424:':; = ;2: " " • <4145� ' 2° = 41 45V: x 2 9 5 max _ -.378 2 1.424 2 10.309 2 - 10.309 2 10" ▪ i. . . ' ' ' , ,4'. .:. :- ?; = z rriin: , . -:378` x -;: '2 j .: - `1:424 - 2i'' ,' . ,. ', ! , � :_'-10.-309 . -::'':2 11 M2 1 max .428 2 1.418 2 -14.28 2 14.28 2 12'� .- . - 'irriinr •• _- :428: ".. ,247. 1 ".418" 2 _ -= 14:28 - 2_ - : - - '.14':28. 2 , , - - 2 ' 13 2 max .428 2 1.418 2 -8.141 2 8.141 2 1141,, . .. -- ; : ':min‹ " <r'.:42$ N,, ,,ri : ,.1.4'1'8--V T 2`: .:41.141x: .: .. 8:14V : _ . ' .2 ' - 15 3 max .428 2 1.418 2 -2.002 2 2.002 2 i,6 ?I sN= _1u ....._,. L _'iniin I _ ,:428 - '2�x .. _ „q`. "4.1.8`x"=_ . - 2f , , . , ?=2. °002_ =� `= ". � � :�, ° , , .. _ , 2.002 x ' K.': , 2x° . 17 4 max .428 2 1.418 2 4.137 2 - 4.137 2 = 1 - '8'i-;.., • _ . ,R..-r`v` �rriim ZN, `�4�284P1 .2' ='. _..,A=:418 °'- f''''�, a2::, °.er!- 7 . ; _ . - 2= � _,. ";= .4°137=':: ,_ ' 2 19 5 max .428 2 1.418 2 10.277 2 - 10.277 2 20 riiin, ,' ' X428 _ _ .., 2..:,c =- . -1 41.8;' - 2 • - - =_'.1'0:277 � 2..:! -', ` . • ,.,;- 10':277 m- ` :. - 2 - . 21 • M3 1 max .531 2 -1.076 2 10.309 2 - 10.309 2 , 22� ,, _,, .-..- ' ` ;min '9 ': °:531`" s2'. _ -. .1;.076 - . -2":. . • 10:309.. -- :''''• .2. .3=1 ° 0 :309'' 2 - 23 2 max .531 2 -1.076 2 5.163 2 -5.163 2 24n`:i.- , ., .. _ _ . "'. - - ,iimin ` ', • ."531 - c, - -2 - .: , -1 ,076 : 2 ° ,- 5:163 - _; ..2_ . -5;163 .2' - 25 3 max .531 2 -1.076 2 .016 2 -.016 2 *26'' _ a..._ . _ 1 - nine ::531° . 2$ 'r °� - 1 ,. a . 1.2 '.- :1016` -.. -:. - . ' :016. ' . 2 27 4 max .531 2 -1.076 2 -5.13 2 5.13 2 21, _. {_ 4.,_ , Min- _F ..531 -'- _ . ``2'': - 1`.'076: -- 2 .-.._-- 5:1 , _ ,_ °2:'E '_ 5.1.3 ' ` ' 29 5 max .531 2 -1.076 2 - 10.277 2 10.277 2 30 ._ - .: - - ▪ niin ,: , =` :53':1 2 10 277::... ; 7 '. it; 2i.. -w , 1 F .:''2� ?:. Envelope Member Section Deflections Member Sec x fin] Ic y [in] Ic Uy Ratio Ic 1 M1 1 max 0 2 0 2 NC 2 2 =` °s: _ z;__; .. �`ix,iint' -0. -02F` 0 ° : NC: 2 3 2 max 0 2 -.045 2 2145.501 2 :4' ...2. _ , ) __.ruin °','. - , .0 _ 2,- '.., . -.045 -. , -2-- . ' _2.145:501 2. 5 3 max 0 2 -.145 2 663.928 2 .6n r' , .. 1' .. _ •_ -, 4riin. _ :: . .•.0'sh z.: ~ 'i.. ' . 2 -.145 , , : ' 2.'°. '663 >928. - 2 , 7 4 max 0 2 -.258 2 372.032 2 8 : ' , a , _ .. , ° ' . , , .i v ' ., - . • > , - 6 0 :, ' , a2R _ , J, -s'2 � ° ',! _ .,T 58�-° '2° •37.2:;032° ` 2; , >: 9 5 max .001 2 -.344 2 279.407 2 -10 - -.. ..`r:,. ._ _ ,.::rxriiii= ,, 001 - 2. -344 ° '.. 2 .2,9'..4.01.:' . 11 M2 1 max 0 2 0 2 NC 2 -12. ,'; ,:r _ _ ▪ ., : :'min.,. °` -0, - .. 2 . -..,_ .,.A:; 9 2 ° ;'NC' 2 13 2 max 0 2 -.045 2 2155.959 2 :, -14 - . ,. ' . >::. ', ', 'mine --, a ,: 0 °.. : 2-.: ...045 . ' , 2 -- `2.155.959, .2. 15 3 max 0 2 -.144 2 667.281 2 16` x , [him' -- . : 0:� , . , •2: _... , ,' ',,2•_ a 667.281 , r 17 4 max -.001 2 -.257 2 374 2 . 18 :. ,- ., . . 1111i ' - :001•' -,: - , 2 ''A 4 : ' = :257 ,, '. 2'' . ".),:374: 2 19 5 max -.001 2 -.342 2 280.993 2 20'. - .., .. , -, = _ . -Min - : = _ - .= ,2:001:'. , ,2 =` w`' ..._>�- :342 °T ._2 - 6:,.`-:,280:991 ' .--2.- . 21 M3 1 max .344 2 .001 2 NC 2 22 ;;.---7-"-: ▪ , : - = i _. ",....` .i7----,1"" •nain _z - >:344` .,.... _2':__. _ - :001 U.,, _ =2 , _.'- • ei . < ::`NC 4,.:"`: ', 2 RISA -2D Version 6.5 [C: \... \... \Kysor#08 -024- POS Cooler , Moment Frame - B , Tigard, OR..r2di Page 4 Company : The Sadler Group Aug 26, 2008 2(0 Designer : TRATT L. 11:04 AM Job Number : 08 -024 Tigard, OR. ( Moment Frame B) Checked By: Envelope Member Section Deflections (Continued) Member Sec x [in] Ic y [in] Ic Uy Ratio Ic 23 2 max .343 2 -.021 2 4971.11 2 24- _ : :,, '.1.':,, '3,.„.2;-: " r „ _ .3 ,thin: =:- 3437:- 2 <�`, ... az_:021' , ::2:;.: ,,.497x1:11. '' 2 25 3 max .343 2 0 2 NC 2 _�26 w..,' . V' ' ., -. 1 _ l.... 'rrtin' , : - r '343, , '2e .. -70. s..,�,. �:2 . �:. NC'. S - ,:2'; 27 4 max .342 2 .02 2 5066.807 2 28�� ;'".. 7_,,.`.rr►in.' ;;342 >:_ 2. `:� : 02: . , .2 -` _ 5066:807; 2`. 29 5 max .342 2 -.001 2 NC 2 ;1,30'. ... . , = itirf . - .:342; , . . .`‘ 2,'''',! -. -:001 . ' . 2 , ';'t.; NC r , , 2' . Envelope AISC ASD Steel Code Checks Me . Shape Code Check Loc[ft] Ic Shear C.. Loc[ft] Ic Fa usaii Ft [ksi] Fb [ksi] Cb Cm ASD Eqn 1 M1 W6X9 .491 0 2 .071 0 2 13 238 30 30 2.3 .313 H2 -1 2wr.KM24xvW6X9 �.; <� 2 - >::` ' e `'0 :, `2" ':07 `, - A 0 w: °' 2 ;/_1'3:238 , 30 ' 4.:F30a ,2 3" :312 ‘i',Hi-2 3 M3 W6X9 .361 0 2 .054 0 2 10.861 30 30 2.3 .201 H1-2 • RISA -2D Version 6.5 [C: \... \... \Kysor#08 -024- POS Cooler , Moment Frame - B , Tigard, OR..r2d] Page 5 2r1 M = 4.776 FT. -K USE #14 X 1 1/2" HX HD SCREWS © 3" 0.C. # o 0 2850 \\_ C1 = (4.148X12)(1000) Cl Cl W6 X 9 I -BEAM 6 t = 9,552# 4 TENSION FOR EACH BOLT 6" = 9.552 # = 4,776# 1 1/2" x 1 1/2" 2 14 GA GALV ANGLE ______/\r__ BOTH SIDES BOLT BOTH SIDES S Q w m 1 -BEAVI PRAV1E W6x9 @ R/I DOOR END WALL Cl = (6.647X12)(1000) 24 M = 6.647 ET. - K = 3,324# FP 1 /2" X 5" X 21" C2 1428 (FROM REACTION) 1 1 5" il' 24" / (2) - 3/4 "0 HILTI KBTZ ( MIN. EMBED - 4 3/4" ) C I 9, DETAIL- MOMENT FRAME B TOE EAMILEIE 28 10112.11D1IUY Structural Engineers PROJECT: TI&Al2-0 ) 011 NO: DATE: 0 C3 -2 PAGE OF __ RE: 12 °5 0 ENGR: TRAIT L CHK. i 1 ii , , I I I I I , I — 1 1 ; 10 14 •1___ 11 ttD. G kr.) „5 4.._ 1 _ _ H- 1 , 4 1_ 1 -i- 1 ! i 1 1 . . -- i 1- I _L. 1 t - ' - - r - - 1-- 1 1 1 12,i54 (.b) 1 1 , --t- 1 I 1 1 i --- 1 i t 1 I I i I i I ! I 1 .1 ,: 1 - -4 1 I ! I ' 1 I I I :).,'il 2 9) A gi3o ky! i 1 - 1 5- i '--) -; . 1 . , i - i ._4 ___i i 1 : , i , ; -1- 1 .11 1 I I 1 1 ! .51 A t• 2_15 j r\.) 1 1 5 I , -,J-, i 1 r --- 1 1 , 1 I i 1 I 11,1; ; , , I j , , 1 i . _ . , _L_ ! __ A L Laittc,01AQ7L. 5 11EA 1 1 . _ . - , I -- - — 1 1 i (04 1 Lt c4 )1 ; i it 1 , 1---i- --H 1 i _. -I I 1 , __ : 1 : A 1 i 1 i 1 --3,-- ----------- 1 , 1 i 1 s" I i I I 1 i - - + 1 : 1 14 L LIE_ TIE-6• S IO 7 ' l l 5 i _7 1 ( 1 ) 1 , • , - , I - t - 1 1 , 1 1 i 4 i : ' I : - --I--- - -- - 1 1 ----- 1 -- ----. I 1 1 fl j I 1,514 H 1 L.. 1 icl 7 C l'h ■ - . 1,_e_w_____,2_. = • /f 1 1 , __,_ , , - 1-'41' ; - , 1 i I I 1 .4,L 1 i 1 I 1 1 VT 1 1 ! I i i i i I 1 1 i b ■ 1 ! - -I- -- 1 I , 1 .4- 1 2(02(6 >. 1G' , 014 --- -i- 142 -, 4 - , — - 1 - --i 1 1-- '- 1 .._ 4 J r -- - 11 I )7 : _ I__ .i_ 1 14..0t. A( ,,.11, . i T ( P.) 1,- , --t-2 7/ 2! 1 p)f9L (y i 1_ ,. r : 1 . ._ .1 . . i, I I T- ___ .. ...._ 4f. i I I 1. ) 3 1- 00 I , ili 1 r 1 i i . . , . . 1 I 2 I , 1 1 I 1 ! i 1 1 -1-- - ! - -,- r - 1 1 , I- 1 - i - - ] ' . , : — •1 - i-- . t 1 i . 1 , i , i 1 i - 1- 1 -4 I i 1 1 1 : 1 1 4 1 1 1 I 1 ' 1 1 1 i i 1 1 . i 1 -.1 , - - i -I I i 4 ,_ , : .,, . 1 1 t ; I I 1 1 1 1 ] 1 t 1 " 1 - 1 - - 1 - 1 - - - . . 1 . . .. I A .._ j. . i . _ . _ !.. ... _ . __,_ . .I :... ... I 1 1 , : : 1 1 : - I 1 -h- 1 , 1 , , 1 _, , '4_ i 1 i I - i 1 , I " . I ; ; 1 • 1 1 75'-0" �MpAERi ERAMEB —u -►' t V1 = (157PLF)(27.667/2) = 2,172 LBS 105 1 W1 d I. �_ MOMERT fRMC B u V1 = (157PLF)(27.667/2) W2 = 2,172 LBS V2 = (80PLF)(75/2) = 3,000 LBS V2 = 3,000 LBS W1 Wm_ = (5PSF)(21.917/2) = 55 PLF Ws = (0.352) (4.6PSF)(75 +21.5) = 157 PLF (GOVERN) W1 Wwt = (5PSF)(21.917/2) = 55 PLF Ws = (0.352) (4.6PSF)(27.67 +21.5)1 = 80 PLF (GOVERN) 30 VOVH\. HHAVH A 14' -0" 3000 (MAX.) r � I W12X22 N (N N N - CO X X I N N N ua Lam Lo t c1'wt $ n E,.Nape The Sadler Group Tigard, OR. ( Moment Frame A ) TRATT L. Aug 26, 2008 at 11:14 AM 08 -024 Kysor#08 -024- POS Freezer , Moment Frame - .. C.T� 32 Company : The Sadler Group Aug 26, 2008 Designer : TRATT L. 11 AM Job Number : 08 -024 Tigard, OR. ( Moment Frame A) Checked By: Global Display Sections for Member Calcs 5 Magic lnternaf Sections.fo:Mem6er.:Calcs;.: `.' 9,7 > _ - ? s ,° ,. _ , Include Shear Deformation Yes P -Delta Analysis Tolerance 0.50% Hot Rolled Steel Code AISC: ASD 9th Cold. Forred-Steel:Code '` ;,, 'AIS1= 99:'xASD ` • Wood Code NDS 91/97: ASD Wood;.Terriperature; ° : ; - _ _ , . - • ` <a100F ;. ,., �: ' .....< Concrete Code ACI 1999 Number of Shear Regions 4 Regd*Spacinq l`ncrernent'(iii •. , Concrete Stress Block Rectangular Yes Bad Framing Warnings No Footing Overturning Safety Factor 1.5 Check - Concrete Bearing_ : ..- Yes- '1,!4`.; . . . Self Wt, Overburden in DL for Design No Footing Concrete fc 3 ksi Footing Steel fy 60 ksi Maximum Steel 0.0075 Footing Top Bar Cover 3 5 in Footing Bottom Bar Cover 3.5 in #3' Pedestal Bar Cover 1.5 in Hot Rolled Steel Properties Label E [ksi] G [ksi] Nu Therm ( \1 E5 F) Densitv[k/ft ^3] Yield[ksi] 1 A36 29000 11154 .3 .65 .49 36 .. 2 = `°'A572Grade50 m 29000•:::= ` .11'154 3 A992 29000 11154 .3 .65 .49 50 ;`4 A500` 42: ';: • : :29000 ;, .. 11154. ` . .'a;" :65:.: .49- 42:.: - 5 A500 46 29000 11154 3 .65 .49 46 Hot Rolled Steel Section Sets Label Shape Design List Type Material Design Rules A [1n2] I (90,27... I (0,180)... 1 Column W12X22 Wide Flange Column A992 Typical 6.48 4.66 156 2 << Beaiii ' =: -:._ F` °W12X22` Wide'Flange F`eBeam'. A992` Member Primary Data Label I Joint J Joint Rotate(d.. Section /Shape Design List Type Material Design Rul. 1 M1 N1 N2 Column Wide Flange Column A992 Typical 2` " `M2 °N3 ":; N4: `- 'Column f WideFlange `Column ;:A992 ' - Typical 3 M3 N2 N4 Beam Wide Flange Beam A992 Typical RISA -2D Version 6.5 [C: \.. \... \Kysor#08 -024- POS Freezer , Moment Frame - A , Tigard, OR..r2d] Page 1 33 Company : The Sadler Group Aug 26, 2008 Designer : TRATT L. 11:14 AM Job Number : 08 -024 Tigard, OR. ( Moment Frame A) Checked By: Member Advanced Data Label I Release J Release I Offset[inj J Offset[inj T/C Only Physical TOM Inactive 1 M1 Yes 2'�w= �11/j2� :� _ _ _ '. .�;. ' " Ye`s . . . 3 M3 Yes Joint Coordinates and Temperatures Label X [ft] Y [ftj Temp [F] 1 N1 0 0 0 r ",- ,. _`0�;:. . ' 12:5 . 0°, , , 3 N3 14 0 0 Joint Boundary Conditions Joint Label X [k/in] Y [k /in] Rotation[k - ft/rad] Footing 1 N1 Reaction Reaction Reaction , _ , React]on- • - nReactio °n• • - Hot Rolled Steel Desiqn Parameters Label Shape Length[ftl Lb- out[ft] Lb- mitt] Lcomp top..Lcomp bot... K -out K -in Cm Cb Out s.. In sway 1 M1 Column 12.5 0 a - , <., ,:� . - :.�a _ . 3 M3 Beam 14 Design Size and Code Check Parameters Label Max Depth[inl Min Depthfinl Max Width[m] Min Width[in] Max Bending Chk Max Shear Chk 1 Typical .95 .95 Joint Loads and Enforced Displacements (BLC 1 : Dead Load) Joint Label L,D,M Direction Magnitude[k,k-ft in,rad k *s ^2 /ft] 1 N2 L Y -.5 Joint Loads and Enforced Displacements (BLC 2 : Wind Load) Joint Label L,D,M Direction Magnitude[k,k -ft in,rad k*s ^2 /ftj 1 N2 L X 3 Basic Load Cases BLC Description Category X Gravity Y Gravity Joint Point Distributed 1 Dead Load DL 2 `2 ; _ �Wi'rdxLoad ,WL= • • .. ' . Load Combinations Description Sol. . PDelta SR . BLC Factor BLC Factor BLC Factor BLC Factor BLC Factor BLC Factor BLC Factor BLC Factor 1 DL +WL DL 1 WL 1 2 - IBC 1 6= 1'1'j(a) Yes '� . `DL ..6..:. WL'1� = c 7 RISA -2D Version 6.5 [C. \... \... \Kysor#08 -024- POS Freezer , Moment Frame - A , Tigard, OR..r2d] Page 2 U- Company : The Sadler Group Aug 26, 2008 Designer : TRATT L. 11:14 AM Job Number : 08 -024 Tigard, OR. ( Moment Frame A ) Checked By: Envelope Joint Displacements Joint X [in] Ic Y [in] Ic Rotation [rad] Ic 1 N1 max 0 2 0 2 0 2 12= d 45 _ ...��s�_ .- rrlfni' n 0, . - ° 52 =;,,',;:« . „Ov . 2,` - „ ,'; - ',:,= v . O,tP. _ ..-2„; 3 N2 max .147 2 0 2 -6.281e-4 2 ;�4' '. inm'r: .:147 ';' , °2 =: .. ',J,-.;:0:;:2,•?, • 4,. 0`:2 ?.° H 2 . • , 6;281e -4 " 21 5 N3 max 0 2 0 2 0 2 7 N4 max .146 2 - 001 2 -6.191e-4 2 .` :. w. ,: , , , . .. ' , rriin': . •.5.46•: "2 '-:001= .. - . - ' = = 6.1,916 -4 - - 2`, - . Envelope Joint Reactions Joint X [k] Ic Y [k] Ic Moment [k -ft] Ic 1 N1 max -1.505 2 -.815 2 10.985 2 ;2' - - , _ .1 1 ;'„ ,� . -,.a .. ' ` °' im m ": '- L -, . T . =1 "505; ' 2 =; . 'a" „ , :� :8:15: '. -.„ :, -, ...., ",.,: . - .. ,:....,2r: 3 N3 max -1.495 2 1.415 2 10.9 2 .4,.; . • ,e: ... ',,min �, * ' - - 1:495 ^ -,_ , . . '2r.• ° ' . _ -1 41.5° •h, := 2; . -. -. - ` .x10 :9'° '' -- -.n_ , 2` - 5 Totals: max -3 2 .6 2 6'' ,„„r r -.. :: :min ;_ : , 1, ''', ,v - =3 . „: , .. , .2,T.; -:`... , -- .6 -: a..,2 . - w`.:aF -_ 'rr -.= Envelope Member Section Forces Member Sec Axialfkl Ic Shear[k] Ic Momentjk -ft] Ic 1 M1 1 max -.815 2 1.505 2 10.985 2 :2 '4 � ... - .., - 1 "'rri in� - - = 81'5` ., - 2�, , 1.505 -� , =2� . , . _ , '2 ' 3 2 max J -.815 2 1.505 2 6.282 2 `4 _„ ,u,, - ,1 ,. , .,;', ;min �:- • .815" !,' =`2' ` -- . 'x1`:505`' . �.- : =;2'° _ . ;.. 6.282 : - ` ; . ' _ ° 5 3 max -.815 2 1.505 2 1.579 2 ' . .:6;. : _... - 6�:� -, � ;�kV ...-m 4x- „ 8 =55�= :;: `,2:. , ,. ; ° ;1' • 505 : - �:.: -2 - _- - �1:579�� ° .:, ., ; 2:' - , 7 4 max -.815 2 1.505 2 -3.125 2 ;8„- .., n , ' tia" „-... j,-.- .;:rriin:.t ▪ - - • 6815;. ,'` _a .. .:.1:505- .._... "- . ='2 =, ,.°4- ,- 3:125:`'< :`,,. -.: • 9 5 max -.815 2 1.505 2 -7.828 2 111;;e _ �. , 2:.,. ,.w -min .. -:815 2- .4 1`:505 _ 2: „_ 7.828' 2 11 M2 1 max 1.415 2 1.495 2 10.9 2 12= ' , �• ; .4. m:1.•_ ° ''°< ,r`'`rc ,- , . r '- =rrt ii..k'2.i 415;' 24i` 2,2:2 , r1:495:-.„-:,;- . -.: :'2 .. • `. - 10 '.9; :. _ . , .:2 13 2 max 1.415 2 1.495 2 6.228 2 x;14- min., X 1:41=5`..`2 _ 1 - , F. w, x 6 228�`- . -- �= 2' 15 3 max 1.415 2 1.495 2 1.556 2 _161:' • - '.rriin - '.1 , :415 4 .2r, ,,. '1= :495::' '2 -= , ',ff . ..1.55fi ",_ ` . , ,:2,° 17 4 max 1.415 2 1.495 2 -3.116 2 18. _ , ' ,.. mmns1"', x,1:41.5' , 2 <'� : . ._. "1:495: , :.2.- x- ,.'. ` 1 "2 , 1 .. 19 5 max 1.415 2 1.495 2 -7.788 2 ,20 . , • _ n `' - '''.f.,''"`-1::495,..;--... , , : , ' _ . -min- '.1.4`15• ',2 = -tax . - 7,.788' - . 2 _ 21 M3 1 max 1.495 2 -1.115 2 -7.828 2 22" -_ 4x,._ -,ss° ;, -: ' , , '. min ;� ' 1:',A; ,' 4195: , ' , :2 . ° " = 1:1;1`5 f= - , . ''2 . ,. ". - 7:828. " -. - ' 2 23 2 max 1.495 2 -1.115 2 -3.924 2 '24;: . ,. :. ra`: }min , 1.495' ' ,.2--,- . -1.115 - . .2 . ' =3.924 ,2 25 3 max 1495 2 -1.115 2 -.02 2 26.. - . .., „. _ , .' .. , :min: . - 1.495, . - . 2sf ., .. - 1' 2 -.02: ... . 2 27 4 max 1.495 2 -1.115 2 -28 3.884 2 - :.r��. � . : . .� - `niin _ - :149'5, 2,, _. - = 1:115=• "'. ..2F••: , .. . , . :3:884': -T :/: 2' 29 5 max 1.495 2 -1.115 2 7.788 2 x-30 ` =,,. , °- rYiini . .:1,:495' :_ 22 n°: e. '-1:. ,2.- : T ..-:-7 :788:. - : . „ '2 • RISA -2D Version 6.5 [C: \..\... \Kysor#08 -024- POS Freezer , Moment Frame - A , Tigard, OR..r2d] Page 3 35 Company : The Sadler Group Aug 26, 2008 Designer : TRATT L. 11:14 AM Job Number : 08 -024 Tigard, OR. ( Moment Frame A ) Checked By Envelope Member Section Stresses Member Sec Axialfksi] Ic Shear[ksi] Ic Top Bendindfksil Ic Bottom Bendingfksit Ic 1 M1 1 max -.126 2 .47 2 -5.201 2 5.201 2 4 ;r : j, : :', f -'rniri . '126: ,!.` t-2:.. 4 ,47Z,- �,. = - 4` '2. _. - 5:201:-. - -arf. ,-:,2- _._;:5:201 !° -,. 2 ' 3 2 max -.126 2 .47 2 -2.974 2 2.974 2 _s;4y,! ,'":t , `; '.1'frnin = 126 r_ ;'2' , '' .471:-.,: <..2.` ._ 2: -974`' .. , - _2•. • :..2:974. -2 5 3 max -.126 2 .47 2 -.747 2 747 2 :6`Y,,_' r` , . ; : InifY. � ':- :126: . 2' :47.= • `2:' : :747- - ,' 2 : _ .. _ :747. . -_ , < 2 7 4 max -.126 2 .47 2 1.479 2 -1.479 2 . _ :1 , . ':min` -, . ;126= . _ < =2s. , ,- 47 : •_ ,. '2 "1.479 .:2 1 ,-• : `2 - 9 5 max -.126 2 .47 2 3.706 2 -3.706 2 , i1 :0 .. .; ;7 - . ;; ,. ,.: =, - :126x. _ 2 3 . . 1 .472'-= :. -•2k .: , `' ;$3 ra706.,: - '2:`.: ^, . = 3:706''x} -, . 2 . 11 M2 1 max .218 2 .467 2 -5.161 2 5.161 2 =12' - : ,z . hmin. ..,- :2188 ;= , Ni.' =2 4,. 467 ,, :.._.:2 4 ' ,i4; : f=5 1 . _-:" ` 2_" ; - - ; 51461 . -2=='` . 13 2 max .218 2 .467 2 -2.949 2 2.949 2 ,, r, - g ...1,. " :�. _ _;., -.,, X14` _. �,... ... .�;. :';niin ���- ..:21 =�" - .•.2sa - .:467:.:_ =;.�,a =, 2:�,� -_ . �2:949?.� - =2� .: .r2:949':�;`'Y_ _ �2 . 15 3 max .218 2 .467 2 -.737 2 .737 2 ','1,6":?, ..., - F -_ _ x` rriins= :r :218'x. 2 ,;467 , _ ,'2.:;_ - :737.;` _ • . 2 : .'':737: - - ; :2 17 4 max .218 2 .467 2 1.475 2 -1.475 2 v - 1'8= , ti . , ,x. -. • min; _ .218 ''' - . =2 - .:467 .-'-'•: "2 , • „1.475 ' 2 , _ 1:475". : -- - 2 19 5 max .218 2 .467 2 3 687 2 -3.687 2 20u _ min:` . :21 "8° 2" n ::467:= = 2 •3:687 2 '.-; = 4687 2``. 21 M3 1 max .231 2 -.348 2 3.706 2 -3.706 2 =`22, ._,- m k ;,1,:231`,.. i < - . -348. s _2 ', : . ▪ "�3:706;;.r_- ._ m, = =:2; . , ...",:," 3:706: 2`'F 23 2 max .231 2 -.348 2 1.858 2 -1.858 2 `24:x. _ - . .:,-.. , ' : min' ...z E X:23:1; x: s,, . 2 ..: :, "348 , A 4: �z2 ,, . ,` 1:8'58" v' . 2; -1:858 e, -', 2 25 3 max .231 2 -.348 2 .009 2 -.009 2 :0092 _ 2' . =:009 ' - 2. ;° a26 ' , , _ ' :,'_ F "rein. .. .231_ - -; _ �2;` ._ =:348 _- -,2m �. , - , .- 27 4 max .231 2 -.348 2 -1.839 2 1.839 2 28 _ ` .'Min'. '. " x:231" = - ,`'2: . :34 A. ' ;- 4.839..- , • 2_ -. 1:839'' . - .. ' 2 - 29 5 max .231 2 -.348 2 -3.687 2 3.687 2 30`" .- , . :. . min' .'.,- :231'_ , ' 2' - = 2 :348.-. - 2', ..- _3 :687` . ' . , '2: ' - 3:687 -. - 2 Enve lope Member Section Deflections Member Sec x fin] Ic y fin] Ic Uy Ratio Ic 1 M1 1 max 0 2 0 2 NC 2 2 1,- - , , , mi`n•cR,.< -x "0:;":" . 2x.. -'. . .. <i0 ,. ; 1NCs ,v. 2" 3 2 max 0 2 -.019 2 7796.577 2 '4 ,,.'!; ur . 4 -x ; - . . 'rriin .. -. _. ,-0 _ . . :2 - " ~01 :99 _ - . 2`:., L 77,96 577 '2 . 5 3 max 0 2 -.062 2 2422.882 2 6> , - . <x - _ . ,. - >`rnin _,0n= = °2.,- - .062 , .'2 .. 2422882 _ _2_ 7 4 max 0 2 -.11 2 1357.855 2 ' . , 8 : = : - , w . _ _ , c. - K =, :.- , - ,min =" .- - ' 2' . :A 1': " . - 2. ' . 1357 :855 • 2 9 5 max 0 2 -.147 2 1017.833 2 S0:1 - , . -,"z:. .. • -«` F,.. '= .;:, _ r`nin % =;�x" ��0�: _ n ! P d,- . = X147:. „ - , 2":: :::=16:17:13'33'Z,. `2: 11 M2 1 max 0 2 0 2 NC 2 -122 ,.,�.. ` , -` :' - 7.r 4 c-. . - mini; -,flu. -_... , >.2_<. • , _ .:,= "0r,. -,, ...s.2 . FA` . i, :''NC ".. ' =2:: 13 2 max 0 2 -.019 2 7857.926 2 :',14 ' ; mini . , :. = 0, ` 2 ", , ,.. - :0:19 . -.- 2 1 °7857926; , . 2. x 15 3 max 0 2 - 061 2 2442.641 2 '16: -..., , - .. ' : _ ;' - u >. ; ' - . -- 'miri: •. - , . "=-'..0 -... -, - 2= -.. :064;'. .x2 , ' 24.42 =641 :: -' `2: 17 4 max 0 2 - 11 2 1369 447 2 - 18 :, ,,, . - - .... - 17 4 - nine' . . `_ . • '_ - , . - • " 10 : �2� :�1�1� �2 �1369.a47 `2 19 5 max -.001 2 -.146 2 1027.148 2 - 20'. . ...; , -- min: '1 _ - - .001.. :2 °- ' -:146 - ' 2, , '1027.148 2 21 M3 , 1 max .147 2 0 _ 2 NC 2 ,..22,..,•:,-5741-:7.1-.i:',2„':::1-- '- =-,�, . _a, - _ , ►iirP 1'14:7r � - 2 e =x'', . _ .''.':,, • - 7-2 , . _ -- NC'5. , ;2, RISA -2D Version 6.5 [C: \.. \ .. \Kysor#08 -024- POS Freezer , Moment Frame - A , Tigard, OR..r2d] Page 4 3b Company : The Sadler Group Aug 26, 2008 Designer • TRATT L. 11:14 AM Job Number : 08 -024 Tigard, OR. ( Moment Frame A) Checked By: Envelope Member Section Deflections (Continued) Member Sec x [in] Ic y [in] Ic Uy Ratio Ic 23 2 max .147 2 -.009 2 NC 2 , _ ,_ ;24., n� .. .,___, ' - „ „ :., - ''.-'n ,.. - , ', .:2`=5= : °„ - - :009=; : , _ .,2t -f, NC - -. - -.2'; 25 3 max .147 2 0 2 NC 2 26n` �K.�. miri:, °, , 14;7 . .; :2.:',,` :.. , 4w 0; 2 , 'NC. =.' . 2 27 4 max .146 2 .008 2 NC 2 .28 2 '' - _-:<::.'''-_-' , -,,,, , ;-:-- , 2'_ _ -:' : -J ._� , :1 :46` . ,'';2 - : ,:008 ,', -.:: .7 ,, , ._ r • -,: =w,. 29 5 max .146 2 -.001 2 NC 2 .30 . _ e.:... , ,m in r'..... . 146'-7 ._ . 1., :`z_.. :00`1.. ._'2 ,-., ;1 &-"'-- _ _;=2` ' Envelope A /SC ASD Steel Code Checks Me... Shape Code Check Loc[ft] Ic Shear C .. Loc[ft] Ic Fa fksi] Ft [ksi __ Fb fksil Cb Cm ASD Eqn 1 M1 W12X22 .203 0 2 .024 0 2 4.773 30 25.601 2.3 .315 H1 -3 - "2 s •,M2' W12X22 ., ', :209 ,.. _''; : `2< ' - '`':02 3 - - 0; - 2 ` 4:'773 - 30 '25:601 :2 :3 .314 H1 -2 3 M3 W12X22 .170 0 2 .017 0 2 3.805 30 22.858 2.3 .202 H1-2 RISA -2D Version 6.5 [C: \... \... \Kysor#08 -024- POS Freezer , Moment Frame - A , Tigard, OR..r2d] Page 5 M = 7.828 FT. -K USE #14 X I 1 /2" HX HO SCREWS 14' - 0 " ®3 "0C 3000 inizimm C1 = (7.828X12)(1000) 6 W12 X 22 I -BEAM = 15,656 _ _ 3,000 (MAX.) TENSION FOR EACH BOLT or 152 14 56� = 7,828# 1 GA GALV ANGLE I 5/8 "0A325N BOLT V1 0 Vl E N T FR A V E A BOTH SIDES I C2 = (3000)(12.5) Q (14) = 2679# CD I -BEAM FRAME N W12x22 © SLIDING DOOR END WALL I V 1 1 1 (2) - EA. 3/4" HILTI KBTZ Isos 7� - 4 3/4" MIN EMBED (FROM REACTION) C2 C2 20 DETAIL- MOMENT FRAME A 10 --- A111LER 0 III Y 38 Structural Engineers PROJECT: I GA (2- Q ) of2 ; NO: DATE: °9 -2 b -0 9 PAGE OF , RE: 17 o 5 - n - 1" - r L - ENGR: 2 A - , . CHK. , . ■ ' 1 I i I H 1_ 1 i 1 -,- -,- ; . , , 1,4 14 * 4 E IAD. C fZiEJ■4_.$ . 1 .,,,_ 4 - I 1 I I I 1 1 , 1 -,- I -4-- 1 7 ----- _. : + ' , „, ■ --4- - ----- i • 1 T - i i I 1 . t -1 5- ic"F . ,i,p2q I ; 3o , _4 I ...i ;.. ...;. . ; 1 1 1 : . , 1 ; -- ; I ■ - 0 1 i ' 1 . .1 1[5 , I I [ 1 1 i I 1-- L 1 -i r 1 I i 1 i 1 . --■ - I — ■ I i 1 IA L LOQ,JADL 11[..:A 7 I (°4 ° LT d4 ) 1 I 1 1 _ 1 •i- ---. -- t ' 1 i I i 1 f 1 --- --I---- i I i I -- -1 ' i -:.' i , , . I ,--1 .i... , 1 i i . ; . ..._ , ; 1 1 i 1 [ ! 1 1 i I - ; i 1 , , HI , _i , , : .1. - 1 ' I A (Li,dc-Ji/A.o- Lc: - 1 - 1 - - - :rio 6110 5-1 151 5 io 1 b0 1 -11 i l__ , . f, i I -1- I J I SO° > r i l v7 i31 2 S' I ! I 1 -- r i 1 1 - 1 i 1 I I 1 1 1 1 ; . 4 J t I ) ] i , 1 I 1 i 1 1 . ' 1 I , I , ___ 1 1 1 i 1 1 I 1 1 1_ 1 I -, - r - ■ Trl 1 1 :\ 1 1 i 1 , A LiLoc.--.) A ti)L i iLi. H 1:: Aq..-1 7 ! 1 I 1 1 ( 2 ) I I 1 . . -i-- • I t t 4, I I-- ' I 1 I 4 _ I 1 - I ' I I : it i t i -- I . . „ t - I F I 1 1 2 2( i) 1 15c2 ! QKY, i : 1 I . ' i 1 , ■ i 1 ! . . . , . . " ikLk'GJA (Lti I T(E-NSII0P 1 , J, 4-2 11)3 cr () ! 1 , --I- 1 : ) , 1 , I 1 , 1 I T , 1 I 1 i t -1 J I 1 I I t I t 1 ■ 1 1 , 3 1 , 1 I 1 , • 1 ' ! i , . • ; -, I • . I ! 1 I I 1 I ! I 1 j, I 1 r , I i 1 ' I : I 1 1 ■ 1 " : ; - . - - 1 - ---{ I I 4 - ,. , : 1 1 i , , : • i : I , I ' ■ 1 i 1 _ i 1 1 , I ' ' ' i 1 1 i ! 1 ■ I 7 j 1 1 ! 1 - ■ ; 1 . 1 1 I ! 1 I 1 1 1 I j i 1 1 ' - I - ' i I 1 ' 1 ) 1 I { 1 t 7 I 1 : i - 1 ; , , 1 ; ; 1 ! , : i I ! ! , ; ; . .! ' .i 1 . 4 . f - -I ,- - t - 1 d - I I 1 --i• i- i- i ----,- ; - 1 , : 1 , : , , , , , i ; 1 1 1 ! ,1 i 1 1 , . ! 1 1 , 1 , ! ; ! i , --- 1------1-- -1-- -1---- -i ----I ■ I , I i , : 1 . i I 1 i • ' 1 . I ■ I • I 1 i ■ , r 1 1 ' I ! 1 , ' ■ ; 1 i ■ , , 1 ! ; . yl VOV \T HRAVH B 8' -10" 3,000 # (MAX.) I W6X9 rn o >< x � c fl c o I 3k__ to.m!ci OUWI Sawon Enrtlne The Sadler Group Tigard, OR. ( Moment Frame B ) TRATT L. Aug 26, 2008 at 11:15 AM 08 -024 Kysor#08 -024- POS Freezer , Moment Frame - 41 Company : The Sadler Group Aug 26, 2008 Designer : TRATT L. 11:16 AM Job Number : 08-024 Tigard, OR. ( Moment Frame B) Checked By: Global Display Sections for Member Calcs 5 Max 97 '1_2' !‘, Include Shear Deformation Yes , MergeToleraftelih), P-Delta Analysis Tolerance 0.50% Hot Rolled Steel Code AISC: ASD 9th Al SF 99: Wood Code NDS 91/97: ASD Wood Temperature <100F Concrete Code ACI 1999 Number of Shear Regions 4 RegibrfSPacing,:lribrernent(in)7- - Concrete Stress Block Rectangular UseCeacked — Yes- - - - Bad Framing Warnings No Footing Overturning Safety Factor 1.5 _ - Self Wt, Overburden in DL for Design No FbOtihcf,Con. 45; k/ft3 Footing Concrete ft 3 ksi Footiri4,Cdrideet6fe':;:, Footing Steel fy 60 ksi Maximum Steel 0.0075 = -#3 Footing Top Bar Cover 3.5 in Footing Bottom Bar #4. Footing Bottom Bar Cover 3.5 in PedetalBar #3 Pedestal Bar Cover 1.5 in Hot Rolled Steel Properties Label E [ksi] G [ksi] Nu Therm (\1 E5 F) Density[kJft^3] Yield[ksi] 1 A36 29000 11154 .3 65 .49 36 - 29000 I - 11154- '.3 - .65 - - 50 3 A992 29000 11154 .3 .65 .49 50 '4:- ' A 500 42 29000; , 49 . 42 5 A500 46 29000 11154 .3 .65 .49 46 Hot Rolled Steel Section Sets Label Shape Design List Type Material Design Rules A [in2] I (90.27.. I (0.180)... 1 Column W6X9 Wide Flange Column A992 Typical 2.68 2.19 16.4 • Bearri Typical ' 2.68 2.19 16.4 Member Primary Data Label I Joint J Joint Rotate(d Section/Shape Design List Type Material Design Rul.. 1 M1 Ni N2 Column Wide Flange Column A992 Typical 'Wide fang 6 Coliimn, 3 M3 N2 N4 Beam Wide Flange Beam A992 Typical , RISA-2D Version 6.5 [C:\...\ ..\Kysor#08-024- POS Freezer , Moment Frame - B , Tigard, OR..r2d] Page 1 4.2 Company : The Sadler Group Aug 26, 2008 Designer : TRATT L. 11:16 AM Job Number : 08 -024 Tigard, OR. ( Moment Frame B) Checked By: Member Advanced Data Label I Release J Release I Offsetfin] J Offset[in] T/C Only Physical TOM Inactive 1 M1 Yes 3 M3 Yes Joint Coordinates and Temperatures Label X [ft] Y [ft] . Temp jF] 1 N1 0 0 0 N2 =0`. ' 8 . "0 3 N3 8 833 0 0 N4 8. Joint Boundary Conditions Joint Label X [kiln] Y Win] Rotation[k- ft/rad] Foottag 1 N1 Reaction Reaction Reaction Reactio`n.. . . Hot Rolled Steel Desiqn Parameters Label Shape Length[ft] Lb- outfftl Lb- in[ftl Lcomp top..Lcomp bot .. K -out K -in Cm Cb Out s. In sway 1 M1 Column 8 _ ,k. 3 M3 Beam 8.833 Design Size and Code Check Parameters Label Max Depth[in] Min Depthfin] Max Widthfin] Min Width[inj Max Bending Chk Max Shear Chk 1 Typical .95 .95 Joint Loads and Enforced Displacements (BLC 1 : Dead Load) Joint Label L,D,M Direction Magnitude[k,k -ft in,rad k *s ^2 /ft] 1 N2 L Y -.112 Y` ' Joint Loads and Enforced Displacements (BLC 2 : Wind Load) Joint Label L,D,M Direction Magnitude[k,k -ft in,rad k *s ^2 /ft] 1 N2 L X 3 Basic Load Cases BLC Description Category X Gravity Y Gravity Joint Point Distributed 1 Dead Load DL 2 Load Combinations Description Sol... PDelta SR... BLC Factor BLC Factor BLC Factor BLC Factor BLC Factor BLC Factor BLC Factor BLC Factor 1 DL +WL DL 1 WL 1 2 ?, IBC 16=1°1 (a) Yes _ r DL= ..6 WL -1 ,.. _ ... _ RISA -2D Version 6.5 [C. \... \... \Kysor#08 -024- POS Freezer , Moment Frame - B , Tigard, OR..r2d] Page 2 43 Company : The Sadler Group Aug 26, 2008 Designer : TRATT L. 11:16 AM Job Number : 08 -024 Tigard, OR. ( Moment Frame B) Checked By: Envelope Joint Displacements Joint X [n] Ic Y fin) Ic Rotation [rad] Ic 1 N1 max 0 2 0 2 0 2 '2 ". .. :.;, .... .mi °0,. <<:: _ 2 .. .. .. ,0 .�,-.�.��:�..� - Y' - 2 � �� ,._. .�`':;�=.. , - °0 "`': ` , _ ' i.� :2' "_q .. 3 N2 max 362 2 .001 2 - 2.386e -3 2 -.4' , , s r 'niin` -i _ 3621. , °2, 001°; „ 2 ° :• :� °1 -. 42 :386e'= 3', - 7-2: `,-7,- 5 N3 max 0 2 0 2 0 2 �:, °6 -� u . � . _.:.. °�����r = = , ,''rri`in -e��- x�� - 0 -44` ":'. .x�2; - . , . "0. • =' _ 2•::. °. •_ • ' ' , 0`'. ' : .. '2:: a _- 7 N4 max .36 2 -.001 2 - 2.365e -3 2 -.8:x, - - :' :36 `: , ','12.2:" - - -:00.1 - - _`2�'':' • .'-233' w, - 2- Envelope Joint Reactions Joint X [k] Ic Y [k] Ic Moment [k -ft] Ic 1 N1 max -1.503 2 -1.069 2 6.997 2 ° _ . : 6:997: _. , 2 2� =" F'� °��3�; �r= ..,,. ° `1�; ,N , � - �:.'min�r., . -. - ....:`�zrj� = 1:503 =: �.:��,,:: � 2� s` ..� : .�,- 1':069M °z.: ''''''2' -. E , � . s: , 3 N3 max -1.497 2 1.204 2 6.964 2 °4 . ., ; p , ; v° 'mine: _ .. •=_1:= 497;=. •_ •2.;:; . iW =:1 <;204:.:. -.. - •2 ;6'964':, 2. 5 Totals: max -3 2 .134 2 6:n. .K. :�;_ -.,.,.-. .rain- - =3 , ; =2 ` -- ', 1.34 .`° . ' -2, `"'' ' - ''.. - - Envelope Member Section Forces Member Sec Axialfkl Ic Shearfkl Ic Moment[k -ft] Ic 1 M1 1 max -1.069 2 1.503 2 6.997 2 .2'71::', -g< -. :::-'1, ., iiin==' x -, := =1, :069 _:i; ,g ',: 1'503 "2`' .. . - 4:99:U- , - r . '2 3 2 max -1.069 2 1.503 2 3.991 2 4 •:hx.+ :` "• 3` " =.. `",:=x ,min W. -� 1':069°' 2- ¢ 1-.503' _, u u, . 21 .. i:3491 _, ;„ 2.- 5 3 max -1.069 2 1.503 2 .985 2 - -, 64 , , ': : t;; , ,: Z . :min :: Z" ., <2a;, :TM 41.503'` . - - 2 . : - ' - '.98 .;. ' -2= 7 4 max -1.069 2 1.503 2 -2.021 2 8 'e. 1,° _ ,t. u; Fr:mm 1.069`0.x . :2 ° -:r ,, : . _,...1 , 503; ;; •_ . :2- - , • -2' 2, _ .0 1 2 9 5 max -1.069 2 1.503 2 -5.027 2 ' .,'F''. _ ;. , h __ . . . , a , : J.1% 1 ? ' . , - 1:069:x : ' - °:2x :_ : _ 1 1 503' ° =- , 12` -5:027=;-: .=2 - 11 M2 1 max 1.204 2 1.497 2 6.964 2 '',F . ,,:n , '. :2'. ,--. .-11`; ,--. .-11`; .. . . -. i � , . _ _r . _ 'ii rrnt =. - 1- : <204, :'8 y2, ,, .1�:497> xn,: y 2 �: � . '�'t. '6:964 . - 13 2 max 1.204 2 1.497 2 3.97 2 = , �• : . , .... . - r'ninr" c.. 1 204 , �zv .=°� . `.2' ` .1`.497- ` -' _ '";,,,,.;; 2: , •_ =3:97- ,� - �r: '2°- 15 3 max 1.204 2 1.497 2 .976 2 •.16 -- . -;i,'. ,., - _ . tin- , -d,1 :204;7 ' •'2' . y 1:497-' 2. :976'` _<. , 2'- 17 4 max 1.204 2 1497 2 -2.018 2 18 -,_..', : ' •: : . :.--,::.!•' "niin- .1 .204'`: _ 2 ", • ' ' ' 1 .497° ° ,. - ' • - : --_ - .2 , ' •••`• - 2.01.8' • ,2 • A 19 5 m ax 1.204 2 1.497 2 -5.011 2 --:20~ .;- . , irnin°.` , '1' 2 ` . _ , 1:497'~ _. _ 21 .- , = 5:011: , • - 2 21 M3 1 max 1.497 2 -1.137 2 -5.027 2 '22" '�: - ,. ,�; . .)min = : °'. - ..1-.497. . ..." ..- , , -. =1 ,137.°'" '',2 . ._ . _ ' . - 5`.027 . 2 23 2 max 1.497 2 -1.137 2 -2.518 2 - 24'. :'. ,.... .'' 'irrii 1'i497� , .,..2 . ...i. - 1::1'37,;_ . ._.22".;. _. •• - 2 :518Hx ' .2..- 25 3 max 1.497 2 -1.137 2 -.008 2 26' , _ " : ?, x .'`x ` P . - i'ininix • 1 '497 =. .'2' - ._ -1:`1,37; ., - <, - 008_ -� : , _ :,;.- 2 27 4 max 1.497 2 -1.137 2 2.502 2 _ 28 .. _ .� __ , ''gin r . :.F ` £.�min , ..:'1 = =497 . k.. 17,: 2'; _ - - 1,:f1'37, Y� � • 2. _ 2 ',.' _ - 2.. 29 _ 5 max 1.497 2 -1.137 2 5.011 2 30 ". - - „ - - - ... ', - Min - 1 = 2 - ., 4.13V:=1, •:,-.: ' 2 . ' 5 :011:= ` 2 RISA -2D Version 6.5 [C: \... \... \Kysor#08 -024- POS Freezer , Moment Frame - B , Tigard, OR..r2d] Page 3 44- Company : The Sadler Group Aug 26, 2008 Designer . TRATT L. 11:16 AM Job Number : 08 -024 Tigard, OR. ( Moment Frame B ) Checked By: Envelope Member Section Stresses Member Sec Axialfksil Ic Shearfksil Ic Too Bendingfksii] Ic Bottom Bendingfksil_ Ic 1 M1 1 max -.399 2 1.499 2 - 15.104 2 15.104 2 u 2` °• '-';. ,` -. , .a : - - . �,' , ... � -_ �:399a �2,. :1�.499 -2 = 15: >1�04� 2 : x15. 104 = 2 , 3 2 max -.399 2 1.499 2 -8.615 2 8.615 2 :4.'` , 4;`,. 4 `4"x s - `-min _ . - :x399 :Ci 2 `1:`499 "P• . , 2.:" 8:615.',. k,- H'2 , 8:615' . - 2 - • 5 3 max -.399 2 1.499 2 -2.126 2 2.126 2 -ufi - ' . ,. :., Amin" .:'x < ;399`; -_,,`: x.2 : ,. .,:1:499 = a .,, :2> I k: =2 .126' 1 10= _.2 <. - . - .:2:;126: - , ;.,. i. 2 7 4 max -.399 2 1.499 2 4.363 2 -4.363 2 < B•;o -•••''. -; < =iiimn:, , (3 "99 ` . _ =2z , 1.499".; -'.: . - 2 ..5 --4 363:.; n, :2. . "4:363'•;.' .. 2 ' . - 9 5 max -.399 2 1.499 2 10.852 2 - 10.852 2 ,1 :0`.. " °`.. "� °. ` .mini: : °:1` - :399" .'922= `1 499;,'.. "2 �- 10'852R''';,. , '2` = 1`0:852 ._; " - `.2�" 11 M2 1 max .449 2 1.492 2 - 15.032 2 15.032 2 ,1,2- x .`.. , . -`',' nin`...: - = :r449- .- . 2 . 1 "492 ' . °2: - , .: -1.5:032 . -,.._, . "2 . °- 151i32.' . < •.'2`- 13 2 max .449 2 1.492 2 -8.569 2 8.569 2 °•14 _u, �r':: ; :.min':... -. 449 `2:.. <1:492=_ 27 .. - 8:569.1. -, :22;',::_`. - :'-• - '•- 2. . 15 3 max .449 2 1.492 2 -2.107 2 2.107 2 x,1'64 ,r?-.'! " :, !` :. - Kt.: :mini .. "''449'.; " .:,2 !. .'',A,'• ; _ _ 2z:: u - 2:y107 F ,.,.., .''. �2, .'. :', 2 107<,, ... -L,,. e2' =`.:. 17 4 max .449 2 1.492 2 4.355 2 -4.355 2 1 '18 ,._ '24,.., :1°` 1 ' , , mini ..': '-`:449:". >; -e. ,:2.:' -; F•2', . '4:355" , g ' , _ ' 2 -e _ - 4 -355 °4,;' , . -'2. 19 5 max .449 2 1.492 2 10.817 2 - 10.817 2 ' ;ias", : ;r N , :. 'Z ''"•, - min`- ,::::Y r - 2, -;:11492 >'r ;a r `2 ';‘,. , . .'f :: -- _ 2= : . � = 10 24i , - 21 M3 1 max .559 2 -1.133 2 10.852 2 - 10.852 2 22, , y .'i' r t'.. -t, - ; ,:'7 , .'''.._ - ' , "rilirf - ,::;''z: :559;: - -=''`: s2<`, 1'.133.'x . 2` :: 110:852 , „/ , -- « _ - 1:0.852` - 3- '_ - ~ 'f .'2.: 23 2 max .559 2 -1.133 2 5.435 2 -5.435 2 24- < t:' '..=-'. , _ , - rnin'' '';� "559,. n °-'2 :. . - 1133 ° , 2 • ,_ :•:"-:5 . ' . " - 2: _ 5':435' 2 - 25 3 max .559 2 -1133 2 .017 2 -.017 2 264 , d":� - 4 .. _. ,... „ Turin ,A`559- if . " - "2`" : 1: ::133'. . 2- . :: ., , .01 =7 ., ' :'2,' - - - :017 - -, ' 2 - 27 4 max .559 2 -1.133 2 -5.4 2 5.4 2 °28�- :1�= , .< e ,, _i rnin'-; 1 .:559.. E =�2;:' = 1 ~ - 2.,, _ =5 *:;::`._.- - _ . -2''° • .r . 5*_', t,. -:•:2' ., •. 29 5 max .559 2 -1.133 2 - 10.817 2 10.817 2 z . _. 30 r , - ... 'mm ;559 ° , ;2� . " :. =1. -133 ` _ • 2 ' A _ =1'0 :81'7: - - : 2� - • .. ° 1 . 0 : 8 1 7 ; . - _ . - , ;2' `. • Envelope Member Section Deflections Member Sec x Fin Ic y [in] Ic L/y Ratio Ic 1 M1 1 max 0 2 0 2 NC 2 _ 3 :74 2 max 0 2 -.047 2 2038 226 2 " < : .�; „ • a .. . ' -; fix, , `,...:4 ...7riin: - f0=; „ :< 2 -:047- _ 2' ` 2038.226 2 "- 5 3 max 0 2 -.152 2 630.732 2 6 - ° < . a , ;�, r - ._ , - ::i urn ,'0 . 2 -:152 2 630:732 2 7 4 max 0 2 -.272 2 353.43 2 : '8 .- '`_ -a ...;. . . _ 'min` -, - � 0:°`. ' . ' .",, , =272; - .2:`•: ,; -: 2,. 9 5 max .001 2 -.362 2 265.437 2 1i0, . ,.: -4'3 ,,` • '` ° - , 41 ,. - :001-',: • °2_4.4•, a - :362 , , 2 1: =265 =437`• x . -2,..: 11 M 2 1 max 0 2 0 2 NC 2 12< . i , F, a • -.,, _. , . .2.: rains., 0 .,.,,, - .• - ,2Y'< . ':,.'0::: v,. , .2 .•;. .TNC3 =. '1, =2 13 2 max 0 2 -.047 2 2048.161 2 14 - - • . ,.; ,. _ : :min •. - Alp`, , i.... 2 . :047 = - 2 ._ a 2048.16.1 , ,., 2";, • 15 3 max 0 2 -.151 2 633.917 2 .16; . ,;`.:" ..., ' - '.:.w . 3 ,f,%min:.. o',' - - . 2 - -- ' :151 - < - r 633::91'7. , 2 . 17 4 max -.001 2 -.27 2 355.3 2 `; ; L.27. ' 355.3;; : 2. `�18:: x - -�: ,:,•,-,-„-, , '., . - . , � min , - ,: . - .001r, , ,�_ 2; - , .- " �"2.. :�a 19 5 max -.001 2 -.36 2 266.943 2 . <, -',; -z,.,. , .. r'•E', ., rain - - , - :00:1_- =:2� F - : -36 _ 2'; - .. X266.943 <..F ' j2 . . .20 _ 21 M3 1 max .362 2 .001 2 NC 2 22• °. '' °.:, - , inin: , __., < <':362''' , , - :001 , _ ;2',,,, . -. ., 'NC;',. '', - 2; RISA -2D Version 6.5 [C: \... \.. \Kysor#08 -024- POS Freezer , Moment Frame - B , Tigard, OR..r2d] Page 4 Company : The Sadler Group Aug 26, 2008 Designer : TRATT L. 11:16 AM Job Number . 08 -024 Tigard, OR. ( Moment Frame B) Checked By: _ Envelope Member Section Deflections (Continued) Member Sec x finl Ic y [inj Ic Uy Ratio Ic 23 2 max .361 2 -.022 2 4722.554 2 24 -. _ ', , - - . -. _ Thi11:: ' ' "„ . ` :. :2 . . -.022 - - '2 ' .. '4722:554:' - - . ' 2 25 3 max .361 2 0 2 NC 2 .'26- , ,_ - _ _', ... ". : _ `thin .,T , ' :361-, ' -'` 2.. T" , . 2" : =NC' ',-- -.' , . 72.:. 27 4 max .36 2 .021 2 4813.467 2 28= a F.,;min . , . , .. _.: s36 = : _ 2. , .021; 2;. .. 4813467;'; 2 29 5 max .36 2 -.001 2 NC 2 -30':,''; :1 ..,., .x.' :, ' I _ ..., ini61. : 36. - • = n 2 _001''- -2 , . NC .. 2.. Envelope AISC ASD Steel Code Checks Me... Shape Code Check Loc[ft] Ic Shear C... Locfftl Ic Fa [ksi] Ft [ksi] Fb [ksil Cb Cm ASD Eqn 1 M1 W6X9 .517 0 2 .075 0 2 13.238 30 30 2.3 .313 H2 -1 - 2 ''P `M2 :,;'W6X9`F= 7 ; ' :::.1''''; 516' ;.: - 0:: 2 ' .0751" '.0:: : • .2' = 13:: -238` - • 30 2'30. 2:3° :312' .: H1° -2: 3 M3 W6X9 .380 0 2 .057 0 2 10 861 30 30 2.3 .201 H1-2 RISA -2D Version 6.5 [C: \... \.. \Kysor#08 -024- POS Freezer , Moment Frame - B , Tigard, OR r2d] Page 5 4(0 M = 5.027 FT. -K USE #14 X 1 1/2" HX HD SCREWS 3" 0.C. # 0 0 3000 Cl = (5 027X12)(1000) W6 X 9 I -BEAM 6 = 10, 054# TENSION FOR EACH BOLT ii i = 10.054# = 5,027# , 1 1 /2" x 1 1 /2" 2 14 GA GALV ANGLE 5/8 "0A325N BOLT BOTH SIDES Q w I I-BEAM FRAME W6x9 @ R/I DOOR END WALL Cl = (6.997X12)(1000)M = 6.997 FT. - K 24 = 3,499# II R 1/2" X 5" X 21" C2 # _ 1503 (FROM REACTION) 1 1 5" ,' 2 4" ,i' (2) - 3/4 "0 HILTI KBTZ ( MIN. EMBED = 4 3/4" ) 1 DETAIL- MOMENT FRAME B S MILER 41 [EGDODY Structural Engineers PROJECT: - TI GAV , 012-. , NO: DATE: C'e - PAGE OF. RE: PoS Ze-v-- ENGR: -1-9 L CHK. 1 IIL ,11 1 1 i [ 1 1 i I _J , - 1 , IT- 14 A , 1 a s ),; E D. s clat:.R.,J$ I I I I --- - -i-- I , , . 1 '-[ 1 1 , 4 4 - 1 - I --I- ---4, 1 • • I 0 ift; b 1.-i __ __ _L.,..y. czk..) __1_ 1 1 4 . I : : 1 _; -41 -5$2. ■ > oc;. 0 4:Ff 2) I , - - - I ■ ' 1 . 1 ------t- --7-----T-t--, lw A Q-16_ IN _JP jIT5 -1- 7 ; 1 1-- - - 1 - I 1 L±-- ...1_. —1 1 , . -- - • 1 -- I ( 1 1 1 _ 1 I I I 1 i s ! 251 toC70 ti ) 1b00 b OKI? I I i 1 I - - I IF: 6 r 515 0. o , _[._ ---:-? i 1 - /1- I 1 - --- - ! • 1 - 1 1 1 • • 1 1 1 1 1 1 : ' 1 i• 1 1 1 - i 1 1 • 1 1 I 1 1 - -i ■ 1 ' — I — , i I I 1 1 ■ I — 1 — ! 1 — I I 1 , i , 1 i 1 1 i • ! ni I 1 I ■ 1 ! I 1 1 ' 1 2 6210 b. 1 1 s i Oil `i . , . . [ . I- , 1 io1/44..oGiAu..1.._ ,, 4-2 Ti2; i f)ott () I 1 I 1 . I -, - 1 - - - }- tr....1- r ;, I # i- ' .. I I 1 B5 ,'b4q-1 y 1 , 1 1 I i _ r 1 °ic ! j 1 . - I ' ; : -- i - - i • , ■ _ i I ' ' I 4 . 1 - -I i -1-- , . , , , 1 i i I -4 1 I , ■ , ' I i ' I I 1 I I I i 1 1-- t t i 1 . , , I i , i ! 1 1 i , , 1 , , ,, . 83' -11" V2 V3 V4 V5 16' -7 1/4" i t . 15' -8 15/16" 15' -8 3/4" 19' -7 15/16" s t . 16' -2 1/8" ... t . W2 , . . . 1 . . . 1 . , 0 . 1 . . . . 1 . . - —V1 = 306 LBS • ® © - V1 = 306 LBS WAL- L.- W1 WWL = (5PSF)(10.5 /2) = 27 PLF Ws = (0.352) [(4.6Psr)(83.9i7+io.o83)_ = 153 PLF (GOVERN) W2 WWL = (5PSF)(10.5 /2) = 27 PLF (GOVERN) Ws = (0.352) (4.6PSF)(4 +10.083) = 23 PLF V1 = (153PLF)(4/2) = 306 LBS V2 = (27PLF) (16.604 +15.745)/2] = 437 LBS V3 = (27PLF) (15.745 +15.729)/2 = 425 LBS V4 = (27PLF) (15.729 +19.662)/2] = 478 LBS V5 = (27PLF) (19.662 +16.177)/21 = 484 LBS t TOE MIILIER 401 E.V I Structural Engineers l PROJECT: T (GA )' 00-- • NO: DATE: OS - 2- PAGE OF RE: OA L L t— 2 ►_ EZ 112 ENGR: TRAIT L. CHK. I___ ! I 1 I I 1 C E I St A R wA t- 0! i I . k4 a sn.b r 1 300 \ V; { I I '''--Q i I l • I I o i Q2) - 1 ,---][ 1 1 ; T t 1 1---!'! - - - I ' ' 0 �ISN t? S 300 Md d h I _ I I _ .1.) ,.-_), S H V. ._1 rd, i) tf i - 1 - I - i 1 1 ; _i_ , , I ; M ' , � .,5 I o.oO p 1 i I ' � i 4,[0P5( 7 -)(1aost14. r y { s , )C� (1) + 0 C2i 3e)(1t4b �) 1 25 ) 12 jj (i Z c9oo r_ -- ! I �� °� — i ( i -- - 1 1 1s 2© # M O ' 1 1 I i I ` ______ __ 1 _ 1 -_ _ I- , _ - - U_ -- __ - __- __ -___ ___ __ -_ _. _..._- ._.... ____....__ -_,.__ _ H __ __ _ . __. -_ 1 I 1 1 1,i 1 , 1 I � . , i . I 1 1 1 r - - , i - i- i - 1 I I 1 ; 1 J 1 1 I 1 I + r i i r 1 f ' , I I I I 1 1 TIE S AIDLEIE 50 URCIDODOD Structural Engineers PROJECT: T I GA 1 1) 2 .. 012 NO: DATE: ° " C2 g PAGE OF RE: k'N ALL f 1 1 :- - 9- ENGR: TPA T T L. CHK. 1 . i i 1 ,, -1 1 - , i I I ; 1 1 ■ 1 I 1 ! 1 ! ; 1 j IINSUk_. _WM_L I 1 1 1PANL PLOOD' TONU I I 1 I • : I ; ' , -1 : YWt '; ([ INSTALLED) L - O 1 1 1 1 1 ! i -- I - 1 1 --- - 1 j#14X1;TROSSLj , i I 1 ! ! 1 1 , : i 1 1/2 X Ci 18 1 1 12- 0.C-. - r ---;•-- -43°4 -1 28-1 - 06:-A.i-S S INON 1 ,-STDi r 1- f 1 ; -- ! 1 i i 1 1 1 bA OVER 3/41 pLywoop I 1 ! ' 1 I ! I - /- ' - I- i ! ; ! GAI j -' ; ■■••,... A I t : I ! ; ■ OrTe- ' / I I ; I ■ INS UL FLOOR i : ; I - I ( - - --r- - T 4 1 1 i i = ! 1 ! I i f I i ' 'ilivesAr. AI , , 1 ---; - --, / ..,,i1 #-; ; • -- j ; — •i ": -; 1.- 0 .i : I i' - , 1 r-----4---;-----1-----7-- ---- - - ; - I -- 1 . ----1 I ! 1/4' X 113/4i' , I BUTYL I 1 j TAP 1 CONS 1 : -7 , - SEA! ANT I i : ! ; • I : 1 1 @120C.1 I --;- ;,- t t- I ! l• - 1 --- 1 .: 1 1. ; ' ! I : i • , I -1 -' ; --- ' 1410-DiT-AiLH FEEZ#R F4OOR'i I ; . i • i I 1 1 1 I i 1 I 1 i ' r I 1 J. I , -1 14: i i i I I .1. 1 ; i , . , I 1- 11 - - - - - .../IN ! PI. 1 2 •LI3 ! _ t4` (8p)1.____1_. i _. ... 1 1 ; ; I , ; ; , , ; , 1 ... ; 1 ; 1 ! - - I ! - ; --; , 1 ; I : --• 1 C? ( 2;1 ! Po ! oKy _ I : -.)- -r- - -!-/. ' I ' I I 1 i ■ : : 1 • i 1 • 1 I ' - - i • I - - ,- I - ■ ';b pi 1 - - I - : 1 ! 1 1 ; - ; • 1 /44- 1( I j< 1 , ! ; IF! , ; 1 1 1 1 1 \ 1- 17: -- ALL() A rb t!i c 2-I 00 7 25).(4;Svi q) ; 1 . 4-- ' I I 5 4(0 / ;C. l ( ( 5) / ' ! 1 ; I 1 I I ; I • ; ' 1 ' i I ' ' ' I 1 i r ! I I I - - ' • ;-; --- 1 - -- ' 4 + - . ' I 4 4 I - - I,+) I 1 --; i •,- i 7 „1,1_____; 1 ;_.. , , ; 1 "- 7 - - - - : -- j ---! ■ - ! ! 1 f I -1- I , ! ALL ALL IT (\) siod 5; (0, 2. 5) ( '11 40 ) I _i_ .1 • • i , , • 1- i 1 , -- 1 , , , s'' I 2 I / 5c--( i" 9 ) , ; !. , , ; , . , f . . 1 I ■ , I , j . ' 1 • ' ! . J 4 I ' 4 ; -- 14 - 1 - M ' 2+ z2s > , .: ) ; 1 I , , - ! , i 1 ,-- ; ,- i -, - ,-- -,-- -, --„ 1 ! ; f - • • :- - i I -• - ■ I I 1 : I I : CHECK SHEAR WALL© P =93# P =93 37-8' 46' -3' 83' -11' -6 3/4' -6 3/4- ( -6 3/4' / 6 3/4' / 6 3/4" � 8 3/4" ( ..-8 3/4' I 8' -4 1/2' I I 8' -4 1/2 11 8' -4 1/2' I 8' -4 1/2' ,2' -3 � 8' -4 1/2' I I B'-4 1/2' I I -4 1/2' I I -4 1/2 I I 8' -4 1/r 1 ' y 306 # -� : ><<><>< h ■ ® V 1 .1 Tin CANCER LRoaIJOD Structural Engineers /� r1 p 'l PROJECT: TIGA 2 D OI NO: DATE: — L / - O 3 PAGE OF RE: W ALL. FR-L- I.=ZLfL ENGR: - WATT L- CHK. , 1 CH F ,,Ii-- .17 f-I EA IL'Aik LIL 0 ( COO . ) _____ __ ,1_____ _I _IL , I -- S I - I -f- 1 i j 1 ; i '\ rf s - ( x) 1(3 • �l s ; ' ■ : I , 30 -q2 � t j '�-- -- ( � � 1 V r , 1. � , i � �■ CI090) ; z 1 , Ito; I S 1 0 1 ,� �M : I , J 1 4 w 1 00 ()P [` 1 �� j r t w__ , 0 _- H( �- 1 (3d')Cp , - - 1 S - (1 1 v`i 2) +(d.5b x`1)+(2.2 i) E � ._ �, MGMEN�T -- — 1 C�.3 ), 5 0. ? tst' f } , I 1 1 I L - 1 — F ' ! 1 1 ; ■ I , I ' I r I _ s 1 1 s a 2) 02 i s s i .. .. ,..., _ __ _ , . __, _ . _ s ,s 1---r---1 ! 1 ' Ct00o) ■ i , • i AAnn 1 1 -, 1"tir 1 . s 406 C4.ro 5 F-) C ' �, 2 (110) X7(0.5 ) 01.210 1 + P I , 63 I . ! , (16°9) E i I _ _i___i_.__,_____,_____, _ ..,_.;._.1.__________, ..,_. I I I f r 1 1 ( F ! I 1 I f f I ! 1 f I { - ; ; _ i I ! SAIOL 513 EIt I1BU CD [P Structural Engineers '9 - PROJECT: T I (,A9--D , OIL. NO: DATE: OS — 2'7 -c9g PAGE OF RE: \A A LL FgLI_Z I`2 ENGR: TPA TT L. CHIC . I t - , , , . J ,- i , , i 1 { � , .1,, . , 1 T -- I : - N : 1 i -, © �0 r 1 L _l_ ; , i_ - -- - - - I I - Mv - s 10 fi (¢ b P SF ( • 1 T11 ._ , __ $3. .11 - 1 ; i - t o 21 ' 1,q 1 ! 1 i 1 .____, , , i „' — i i j .,______,____ 1 I i, - ---f , __„_ , _ , , , , , i -_ -, i � — ir: 1 — I — t , , , I ! I . j •._,_____, , , , , ' I - - ! -. ......,_ , • { 1 I . , , I f I 1 I 1 1 1 , , - --- , - - p - - ; I 1 I 1 1 1 i -[ 1 I 1 Li 1 1 I 1 , i ■ 1 ' , ' -I 7 . _ 3 r j i i , , , ' ' 1 s i f I ; 1 1 j I i , 1 1 VAIIIILEIE DR007 _ GA Structural Engineers 1 PROJECT: T GAT D i ©1 • NO: DATE: Q 'i " (9 3 PAGE OF RE: tv`) A L L F ( I=Z i.2 ENGR: T( T T L. CHK I 1 it I _ ___ __ I i i I H ' INSU W I LL PLYOODTQN UE'; - I 1 PA L' ( ACTORY INSTA�LE--- ! -L�_� - - 4 i I I " D' I 1 X T1 ROSS I I I I i { t # H p - 5 REWS ® " -- O . 0 - I - #304 - 18G-A - S - S: iNON -STD; -- E — I OVER 3/4' PLYWOOD i — L 1 11 /2" X 6'1 1 S GA ! j ! i 1-' IN UL F LOOR , 1 41, 7 1 ''''l ____I_____:_r____,.. — ---i- ti'&(//fAr -4---1 — e 1 1 a 1 a 1. o I ! 1/4' X 1 I f BUT L Q f - � P CONS _ -- SEALANT � - { •DftT-A - F400RI- -- -- --•- - - - - - - -- -4- - - - ' ---- ! A e NI � i _ #�114- -X1 H 5 R I i , i I L ) ± . - - O'W L L I ? T 3 I �� ft I %50(0 � K t , i - i - � - � 4 r 1 i' TA p' CQN S. i ; t . I I i I 4-bq d �1 0 (5) s I I i '3 q �,� 3pb K I _ / -1 LOQAA&LF _ z f t QPJ s , Ca12rJ' _( '14o i j '', i 1 ' t 1 2. / 9c,1--(.73 i v'. ) ! ' ( 124 -��2 " ' C� I I i " 1 - ' _ _ _ i I , -I { I_. I t— i ! I i I j I I f j ! , 55 484 0 I 0 1 1/2" 15" 1 1/2" K L_JDFTAL- S SVl C BRAG lam. 5 4, The Sadler Group Tigard, OR. ( SEISMIC BRACE ) TRATT L. Aug 28, 2008 at 5:49 PM 08 -024 Kysor#08 -024- Wall Freezer , Seis .. Company : The Sadler Group Aug 28, 2008 Designer : TRATT L. 5:49 PM Job Number : 08 -024 Tigard, OR. ( SEISMIC BRACE) Checked By: Global Display Sections for Member Calcs 5 MaX ° =Sections" -fci Mernber - . * . ,. Include Shear Deformation Yes Merge;Tolerance(.in) =' __ - _ • :1 °2 " _ , . ' . P -Delta Analysis Tolerance 0.50% Hot Rolled Steel Code AISC: ASD 9th Cold:F'ormedSteel :Code. <'; =' - ,AISl99::'ASDx Wood Code NDS 91/97: ASD Wood; _� '' _ : < :i 00F . Concrete Code ACI 1999 Number of Shear Regions 4 Region-SpacingAncrernent (in); - t' 4. Concrete Stress Block Rectangular UerOtadked :Sections,..: Yes; _ Bad Framing Warnings No Unusetl'ForceWarning . ,c Footing Overturning Safety Factor 1.5 Check.ConcreteBearin�' °gin" `, +� ` -° Yes': ' Self Wt, Overburden in DL for Design No Footing Concrete fc 3 ksi Footing :Concrete :Ec . , Footing Steel fy 60 ksi Nlinirrium,S'teel':' _ .. 0.0018 ", Maximum Steel 0.0075 Footing,Top•Bar- _ • Footing Top Bar Cover 3.5 in Footing. °B•ottoin Bar.x- : _ m ° #4x' Footing Bottom Bar Cover 3.5 in Pe'destalt ar' „ . , - • #3' " - . Pedestal Bar Cover 1.5 in PedestaltTies'1 " x #3T • - Hot Rolled Steel Properties Label E [ksi] G [ksi] Nu Therm ( \1 E5 F) Densitylk/ft ^31 Yield[ksi] 1 A36 29000 11154 .3 .65 .49 36 2 ° "' A572'G`r.'ade50 " - -.'3 :° F:65 ' .49 3 A992 29000 11154 .3 65 .49 50 29000_ .. 11154 .. 3: :65. 4 "9' 42 5 A500 46 29000 11154 .3 .65 49 46 Hot Rolled Steel Section Sets Label Shape Design List Tvpe Material Design Rules A [in2] I (90.27. I (0.180). 1 Column L3.5X3.5X4 Single Angle Column A36 Typical 1.69 2.01 2.01 .L3 : Single Angle. :Beam A36 '.r Typical' :1.69 2.01 - 2.01 3 Diagonal Brace L3.5X3.5X4 Single Angle VBrace A36 Typical 1.69 2.01 2.01 Member Primary Data Label I Joint J Joint Rotate(d Section /Shape Design List Type Material Design Rul . 1 M1 N1 N2 Column Single Angle Column A36 Typical Andle. `Bearri: - :`A36 Typical, RISA -2D Version 6.5 [C: \... \... \Kysor#08 -024- Wall Freezer , Seismic Brace 2, Tigard, OR..r2d] Page 1 5e Company • The Sadler Group Aug 28, 2008 Designer . TRATT L. 5:49 PM Job Number . 08 -024 Tigard, OR. ( SEISMIC BRACE) Checked By: Member Primary Data (Continued) Label I Joint J Joint Rotate(d... Section /Shape Design List Type Material Design Rul. . 3 M3 N3 N6A Diagonal Brace Single Angle VBrace A36 Typical Member Advanced Data Label I Release J Release I Offset[in] J Offsetfml T/C Only Physical TOM Inactive 1 M1 Yes 2' M2 .. r _ 3 M3 Yes Joint Coordinates and Temperatures Label X fftl Y [ft] Temp [F] 1 N1 0 0 0 3 N3 1.5 0 0 . ;1'25 5 N6 1.375 0 0 Joint Boundary Conditions Joint Label X [k /in] Y fk/inl Rotation[k- ft/rad] Footing 1 N5 Reaction Reaction Reaction 2 -Reaction 1, ,Reaction :Reaction - Hot Rolled Steel Design Parameters Label Shape Length[ftl Lb- out[ft] Lb -mfftl Lcomp top. Lcomp bot K -out K -in Cm Cb Out s...In swa 1 M1 Column 10 7 - 3 M3 Diagonal Brace 7.159 Design Size and Code Check Parameters Label Max Depth[in] Min Depth[in] Max Widthfinl Min Width[in] Max Bending Chk Max Shear Chk 1 Typical .95 .95 Joint Loads and Enforced Displacements (BLC 1 : Dead Load) Joint Label L,D,M Direction Magnitude[k,k-ft m,rad k *s ^2 /ft] 1 N2 L Y -.058 Joint Loads and Enforced Displacements (BLC 2 : Wind Load) Joint Label L,D,M Direction Magnitudejk,k-ft in,rad k *s ^2 /ft] 1 _ N2 L X .484 Member Point Loads (BLC 1 : Dead Load) Member Label Direction Magnitude[k,k -ft] Location[ft, %] 1 M2 Y -.009 .75 ' Y ` : °042: 4:579L RISA -2D Version 6.5 [C ..\ .. \Kysor#08 -024- Wall Freezer , Seismic Brace 2, Tigard, OR..r2d] Page 2 So) Company : The Sadler Group Aug 28, 2008 Designer : TRATT L. 5:49 PM Job Number : 08-024 Tigard, OR. ( SEISMIC BRACE) Checked By: Basic Load Cases BLC Description Category X Gravity Y Gravity Joint Point Distributed 1 Dead Load DL 1 2 , Load Combinations Description Sol PDelta SR .. BLC Factor BLC Factor BLC Factor BLC Factor BLC Factor BLC Factor BLC Factor BLC Factor 1 DL+WL DL 1 WL 1 WE , .. .;' '''': ',..,::'.:- ...'''',-,?? -.-`):::,,,:. ,,,' „ --: ' ''''"' , ,, • - 1, ' ,.. ',.' : '` ' ', Joint Deflections (By Combination) LC Joint Label X [in] Y [in] Rotation [rad] 1 2 Ni 0 0 3.575e-6 Q":" `.. : .:` , --2- 1, : - .E.,'" -,-- '-'''`.,`''''', ''.., ", '‘.- 7 i''' : : : 353',1':'.- :- -'---=';.', ':::',-:,:,' ::007 '- .,:.,,';:-, ,---:' ..: 3 2 N3 0 0 4.021e-6 `4` ': '''''-,:'2'''''-'''' q': - ;', 4 . - : ' , 5-: - - , :::,•-:;N5...":!;': , ...: , ]. , - .. - '`--',,:t,,:--_ - •; . :;: - , ,i',. - •..;.= ';'' . ^ ' ,,() : "7 : ,, j - ssh',.;;=-'-'fp -:- .;k! , ,2 41' .,'-, ','-''. '': .=. ' -''..-- ' ; .,": ' 5 2 N6 0 0 0 J2 --',, --,:, f.': - . :,.=_"-,-'":',;:' - ‘:: '- ;064:: .,' ,,:',•,-. .,,,'-',-.:''.-' 'i . „‘i-i,v',, -'''''-'.,.'„-. ' . 9-1C 1 UNA FT Joint Reactions (By Combination) LC Joint Label X Ell . MZ [k-ft] 1 2 N5 .138 vc -3.48. .207 '''-',2: !=7 •:2-'• ,!''''''.--.' .' ' - .. , -N6'-',;: , ... i')' ,'...:1C:.. ,. ':.::.-- -,'-'..:'.' :'--:622- '''''' '''::::".''''. :.':, .-.- -_'''; :,. 2:',',.. ' . :.-c1;;' '-'' ." '-' .208" ` ' :''' '- 3 2 Totals: .065 2',.",-; - L '':=:.al: :My , '''-: -- . : ," 'SI ..'' ..•""- .,.,` .`X:351 ' '''',:. J -"':.::.';' 667:"-•= ',. -:.0:";';' ..,-; • _ , l'''' .:- ' " „ - Member Section Forces (By Combination) LC Member Label Sec Axiallk] Shear[k] Moment[k-ft] _ 1 2 M1 1 -3.489 -.138 -.257 2o. .: :':a• f- i::, ..'--,', c'."•_H 7. i-i'' - •‘.,.., - , - • • -i: : 2 :.". .. , ,': - .489 , ' , ,-:;: 7 --- - , -' --.•=438 - .. - ,.'''' : - -- 3 3 - 3.489 - .138 .516 4 ''.-:;',. '--',", ;-•'-.,,• ' . :':Z•,L , i , k.;... , „ , )_'''."-' 1 ..Y.-- 1 -,e,r• - '! - , ' "..::- ' ,.: - .; - -::,---7- 1-.484':: : ',. .:: ''.:---- :. '7: 1 356'' 5 5 .035 .484 .013 .-. - ':::' V. '''..t.',' *---,1; ', ''',",:- -138 :a.489:::: .!'.: , '..,;, ' " - `. 7 2 0 .003 0 -- - " '':, `- :i.: :'' ::. "-:..---,;"!-',- ' ' ,. '''-' :-'3'-_. ''''',,, :-3.': : ':' _ . 9 4 0 -.003 0 ..;':1'0 ,;'', ;',-,, -' "i"' -.; :, - - ''-: , ;-" , ":' , 4. - ':''' ,, ,,' '''' ' '"-- '' -' '-','', 5' =-'; '-! --- - ' -622'.-- ' . -',- :' 6.549, • ' ': ' ..., 11 2 M3 1 3.6 -.136 -.261 :- 4.-•-,... ' '''', . 2 ''''": ;-' : -, - ' -' . - ' ` " -- 2-';' :, - : .•`' 16' ''',----' - ' :- ' -- L.136 13 3 3.6 -.136 .281 i4 - ' I'S .: ,, - ''.' . ' - -'' `. L ' ., , ' 4: - - ' <.. : - . --.1V.:'= ','-'•,- : ,'" : : ,:546 - --. - 15 5 3.576 -.13 .811 Member Section Stresses (By Combination) LC Member Label Sec Axial ksi Shear ksi To. Bendin. ksi Bot Bendin• ksi 1 2 M1 1 -2.064 -.189 2.299 -2.299 2-''', ';'-----.: :,`,"-..,."'„ 4 '."----,'r• - :' - ..":::,, ''.=:1:2:;2. ' :' '''': 3 : 664 ' = '' =. -.169'-`.: , .. '4.157 . - . .:-.' , 1.157- 3 3 -2.064 -.189 -4.613 4.613 4 - .-r?„, :' ,;":"- .'_'' 4 02,1', ' , ' ':664` -. . - -12116 . " - 12.116 5 5 .021 .664 -.112 112 RISA-2D Version 6.5 [C:\...\...\Kysor#08-024- Wall Freezer , Seismic Brace 2, Tigard, OR .r2d] Page 3 100 Company : The Sadler Group Aug 28, 2008 Designer : TRATT L. 5:49 PM Job Number • 08-024 Tigard, OR. ( SEISMIC BRACE) Checked By: Member Section Stresses (By Combination) (Continued) LC Member Label Sec Axialfksil ShearIksil Too Bendinqfksil Bot Bendincifksil 6'N 2-.:, ..'!t ;• „ 'Ir •:',' - rr.'47-85:"--- '' ::::' -- - ..1--?-: • 1: - .526:". - - 7 2 0 .004 -.001 .001 ..8y4 ''''-:-::: $:':--,'. ..'''.'•-: -, 0': ----' ."` , :1 -=.:- - - ,.. "T : ::006 ' 7. .::,' . " -. _ - :',... -- '4.005'"., - - • 9 4 0 -.004 -.001 .001 4 0 ' ‘-- ''' i'''! ='}`: '''':,' . ' '..-,. 5 1 "'" ''' '-, : ''-.68' - E: - -' -- :-' :'' ' '4.565: ; - '' ' 11 2 M3 1 213 -.186 2.335 -2.335 - , :,;;:.:‘!-' >: '--"..',;;:: ‘2 -1!4 ..--: .-. 2.:13 -,--,: : . ..,.186..:,. - . r : .. -•', .-.'• ',,, •:', * :,• - : • '.080 : ,::•,' rr - 13 3 2.13 -.186 -2.513 2.513 14 -, :::,,, "`i- 1,,: •' " . 'ir 2116 r.,: :` - ,: , .. , 1 ,. - ,% . ...: - , :::.4`.B77 - , . 15 5 2.116 - .179 - 7.241 7.241 Member Section Deflections (By Combination) LC Member Label Sec x [in] y [in] (n) Uy Ratio 1 2 M1 1 0 0 NC 2'-' `, , :, -.--,: - .„;M: &",.A.i,i:;':',: r .., ----:; '' ..." r' -,2 " ' ,. :!=. ''.- ::003 r:rih •-: :011, ':-' ' - 1 ;' , ..': - -'.' '--,:',. x-INO.,;'-' 3 3 .005 .002 NC . 4= >.' n , ''.' ..,' ''-' ''%-.: ',--: :: c .-' ' ''', -4: :": :. S' ;c. - ? ;":.::":4 ' :`....:: '1.. - .=', : 007 :';'", :'.4-.: i .;, °I, '. - :k , :='..:096--:' :, '',:' 1 '-, i 125121 5 5 .007 - 353 339.95 6 4= =: _. ' '',i ',' „.. ,.,,:';'`,; r i \A 2' :: :',:-.: -'1'..1::' '..;r' °-- ., ".`-.'..:-, ,. -4. :1,,(I;Y! .: ,‘'.i, V, 4:,:'" 7 ,7: ,IL, - :' ',7 ; ::,:-,, ': - .:'"' '' 7 2 0 0 NC 0 ;''..ii . .,, ' ,':i,'qN.IC..•''': 9 4 0 0 NC -.. 40 r -...".F. :Ar •r..:: xr r'r ,:r ..!, .! -^r.:": .' ' 5 ''. :;-:::: - '... '-:,..:.f , 0 ' -a : ;''','" i' :'',= ::- ,;.' '. '7.. i. 0 Z,;;: : ' '- -!'!' ".::' :, 7' ::::' ' NO' 11 2 M3 1 0 0 NC ,12 :,e=": --' '..-::.'''''=`,-'-':' ''lL':: ' ' -• '" -,---'- . 2 '-' -- ----.-' '-..:;.002''''=, .1='; -::,',-,,: • ;,--- , .008 - ;•.;''..7 - :.: ,.,.. , i.:=:' -- ' - . - ' - ,NC••• 13 3 -.004 .015 5745.073 1 4 :--- „*,, ::: • - r=:602; ...! - • :I. . 15 5 - .007 - .064 1335.945 Member AISC ASD Steel Code Checks (By Combination) LC Member Shape UC Max Loc[ft] Shear UC Loc[ft] Fa[ksi] Ft[ksi] Fb[ksi] Cb Cm Eqn 1 2 M1 L3 5X3.5X4 096 0 .046 7.083 4.995 21.6 - Code 2, 22.-, , ,:r.--:! - JM27 - :-‘7 IL3,:$),e - r - •:r - 1r. - 338.,.:-••= 1375 19533 -21 3 2 M3 L3 5X3 5X4 .220 0 .013 0 97 21.6 - Code . RISA-2D Version 6.5 [C:\...\...\Kysor#08-024- Wall Freezer , Seismic Brace 2, Tigard, OR..r2d] Page 4 TOE CAIDLEIE (01 EP [RED OD I Structural Engineers ) PROJECT: 111C71(1, 0( / NO: DATE: ( n - 27 - 013 PAGE OF ______ RE: kf Elle:62.E V- ENGR: 11 T L - CHK. , . 1 i t " ! 1 t -jr- H r -I i -/ - -1- - I 1 1 / --- I, - CE - 1 ' 1 #0,6* x - 1 EX HEIAD * I 1 ! -1 1 1 f ', CR-E-W .._ -t--- t I (8 E ) 1 ! I ■ 1.. „ : I 1 I I - , I i i z I 0 _ I ; 1 1 1 .`- ■ .1_ ... ; T i 1 . I 1 i 1 I .. ,.. I 2 () - r A.....3/4" I-IILII KBT T I 0) A NIGLE15 ! 1 1 118" 1 Iii X '3 i /2: X T ) 1 4 3/4'1 MIN [I‘ABED ; , - - i 1 ; , h -, : -- ]( : ;8) CiE TIAI Li- - SEI BM ICTBRIACT 1 r - r 1 1 i 1 i , 1 1 I 1 1 _____ 1 _ __ _. i _.1 : -I.- i _ 1_ 14. ). 1 1. t 1 , ' 1 , ; = :1-. -- 4 ' -f- LI- 1" ; -- : 4 , [ pit L,LoCAA LAI ,ioN! 11641' iset2-tii, (), I . , 4 1e 1 ! L.s-, 414 O32 i 1 > 4- 0 _i C urz • 1 i i 11 :_i i 1 1 : 44 -i- 7 1 i - -4- 1 1 1 i 1 , 1 1 ■ I 1 12; loi \> (922 ; Olt,' - r , I , i , , , i . t-- --- , ,-- I. 1 : 14 , ,_____ 1 ! ' A Lto c,\YA LE_ 1 Nisi opq 5- 4/2:1 i P)0C-i - C1 ) 1 ---------- -- 1 - - 1 - I - ; - 1 , — — -.------1 I 1 1 ' ' , ) ) .1.___ _i i__ I__ i ' I 4- : i 1 1 1 : 1 j 1 1 I -1 I I i -- - -:- 1 -- - - -[ i 1 ---- 1 -- i - - ---- i - [ ', 1 , 1 -t- i i 1 I - --1- - - Iiiilli 11 I ; 1 i ii,i;i , 1 . i litIPLISIL 02 1; CIRCIDOJ T Structural Engineers PROJECT: NO: DATE: PAGE OF _____ RE: ENGR:TRATT L. CHIC ; ; i I I -- 1_ - a - 1 , 1 if _ . i ---! -; - 1 I i : ,-- -1, ; ! I ! ! . 11- ...lot -- 1 RUSS, Ili ,A5), 5c..2. v i . ; I -1 1 • . ; . ., - -,-- - - . _ , , 1 _ __ , . - 1 . -1 - ; -- - - 5HeAR ' CA`PAC‘I TY : . . . f : - . ' ; ■ „ 7 i i ■ 1 Voj ; - r41S /1 I i i . . .. , ; ' 4• i2 ct.,• t )i. ,„2 ' • ,i, it ii.oi - - -- I , ' -: - 2:/ A -''. . !. : : , 1 . i . ... ; 1 . : , , . , : . 1 _ _ .. , • ; - A L.A.0 L A,. LE 1.1 '. A 1 :Pop j.sc.;gek i 1, - i - - - - - 1 : !1..\ktit 4.1 HEAR SI r2,EK)Grr.H : Pac2 [Sc , -1- ,- I-- -, - i 144 ' FACTOR bt=; sA Fe - rf Y ' z- 3,:p I _, - ',. —,- f -- I 1 --,--- --- - I - :-- I - 1 - 1 I , .1. ; • L tr-(14,-. (F !V ACT 11T\i CONt !vo/ , i-re 8 r T D.:' 1 - - • - i - 1 ; 7 i ■ i - - i - - I . i . R .1 : - -I 1 1 ... i-o ... O F keP.16E ft NO -r • i t\i fi'r , ,,4 1 k-4/ c./2 1-(EAD 2ti Ga _1 .,tI F , 7 EN,) I LE i .Spz Ei, NOTH :. 0 ti 1 (.F(''.113Ef. i'N.q00T/Ndi /.*P7CE i 1 ! 1 . : i • i , • : F s TE(* 11-f 5 TrReNGTH: () P' E2 . NOT, 119 .013/9t/Act 4 .-4 sd..aEO lAD. I : , i , . , , _ , _ • _ , . , ; 1 I ;---- , - -1-- - 6 2..0 117 ) . 42) - (58)((o'00)' • , 1 -- -, - --- i - . . ' ._ . _... /11,1i:: ,,! • i , s,a12..E60 i , , , ; ! ; • ! , i -- ; • ; . : :•. • I i :, il . . . . . , • ! I • , ! ; .. , , . • ; , : • . 1 -• ; .; .. . . -. , , : I • , , . . . , . . . . , . _ ...._. . . , . , . . _ ' . . • I , I ■ .. . , , i . .. „ .. : . : . .• , „ . . • , I . . . . I , . , . ! i i 1 I , . , ■ , , 1 ,- -', - 1 -- ; - H . I -1--- --,- -- ;- - - --, - - , . i TIM WAIILLIE 0 ' 2 3 opuRcpuJID Structural Engineers ) PROJECT: NO: DATE: PAGE OF _ RE: ENGR: CHK. I I I I I I I 1 1 I , - - ----- — — -- , Disc --; --1 - 1 7 _ 711,7_- (4 I 0 (■)!, Of.AM 1 r, es 4i tir24(ri , 1 I i Paf P' t , 1 _., , 1 . , --- -i -1 1 , 1 ,__' • i , : 1 , r. : 1-------i , __ ..i. I _ I it\ L L(2c:.) A 1311 T7 1: (\, SI l, L I.) 61,2-1- L.,_ 1 SI LE- 67 c -1- i7F1 - , , -, T - r - ; :. HAT i_sHAL.Lt_(Y:: TAN) AT-1 , 1 P4ibt AN PA4fr I ' , 1 ■ i ----- 1 PUL Li 0 U ...c) 1 --, - ' , ' , 1 I R) L L -1_ ii ET F(91 95- L 1 4 --1 ■ i .4- t_ I- N P' V..)( 0 ) -Eix CIL c c (0.2 i I t. _ 41-11 CKIN tE..cs5i OF i ll Ei t G.-42.. 1 cD f E-,1 — I- ---,--- ,_, 1 --- , - 1 i I I T 5- TH t',":-V-1\)QS3; 0 Er t•d \ lt- V \ ( 1 (Z. 0 0 71 c6rsilA Cll Ct1 1PC(:_, 40217 -----1-• - - - - - ----, -1 -- 1 1 c r 1 1 ) ' J. F . , 1 3 tF iN)S111-6 Si f 1-1 OF- ; V) Et wite- 2 I I N !CO TAc, 5p2t,"-:w I 1 . j pivi- , N,..5_1 1 --. 1 .---- , - al/ t- 0 6 : -it (-_ 0, o7 [N: c4mTAor 1 , 1 i i , c'S G C 55 5157_ j_ 1 1 _ ____ ___i 'T ! , 1 i : 1 10.9,StcL. , : ! , -r ' ' ( - - -- - -- ' H - _ _ 1. I - ; .L.. i ' . , 1 , I I I P 7 1 t . .D • .1)■.1 i i 'I -I-- I , 7 1 1 1 t i i 1 1 T 1 I i I , 1 I I , - - - - I - - i IL I 1 1 :III 1 , 1 Qt I.-- , 52,(2 L ....._, , , ,, 1 , i - •, I -I- I , 1 1 I - 1 IIIII I i l l ill; 1 i TOE S(°4 �It� oRGDUD IP Structural Engineers PROJECT: T1 &Al2 O , 0 a • NO: DATE: ®6'2 (e� ~ 0 9 PAGE OF I RE: ENGR: T L, CHK. —� _ ■ _... _ - - - - -- - -I - - -- - - - I _ - - I I -_ ____ - -- ____________ - __ -i - -- Standard - Stalguard Plated Tapcon Concrete Screw - -- -_ ( ULTIMATE HOLDING VALUES* , l i 3320 1500 - -.- - _ . -.__- PSI PSI Hollow Anchor Anchor Depth Pull- Concrete Pull- Block T Diameter Length Of Out Shear Out Shear Head ;- f Inches Inches Drill Bit Embed. Lbs, Lbs. Lbs. Lbs. Style y ' I Flat or '- - -- --- - - -- - -- - - -- - 3/16 1 -1/4 5/32 1 480 823 Hex - — Flat or - - - -- - - - - -- -- 1 -3/4 1 -1/4 756 829 520 938 Hex -- ' t- 1 2 -114 1 -1/2 856 1022 Flat or 1 Hex i s -- ' - - -1 I 2 -3/4 1 -3/4 1124 1075 Flat or -, - � - , Hex 3 -1/4 Flat or i - Flat or l 3 -3/4 Hex 4 Flat or dISSIU i, Hex i - - - - .4 CI 1 -1/4 3/16 1 936 1479 Flat or - _ _ _ Hex i - (- - - i 1 -1/4 illt 873 1590 Hex or , __ -I Flat or - I 2 -1/4 1 -1/2 1480 1859 Hex • ' Flat or 3 1/4 1 314 1932 1901 Flat or - - i Flat or c Hex Hex - -- __ _- t 3 3!4 � — __ -- -- - -- 4 Flat or i I Hex - -__f - ! 5 Hex I 1 - -- 6 Flat or I -- Hex j a — I t -- - - -- 1 l . . ,.... _ - - — • - — —'. -.. ,.-__ • t - -— ' -- —' — -- --- , I 1 – - t— j I } - { - I I - 1 - - — 1 -- i i I 1 I I I I - ES ESR -1917 (6 Reissued September 1, 2007 This report is subject to re- examination in two years. ICC Evaluation Service, Inc. Business/Regional Office • 5360 Worlvnan Mill Road, Whittier, California 90601 • (562) 699-0543 Regional Office • 900 Montdair Road, Suite A, Birmingham, Alabama 35213 • (205) 599 -9800 www.icc-es.org Regional Office • 4051 West Flossmoor Road, Country Club Hills, Illinois 60478 • (708) 799 -2305 DIVISION: 03— CONCRETE stainless steel. The hex nut for carbon steel conforms to Section: 03151 — Concrete Anchoring ASTM A 563 -04, Grade A, and the hex nut for stainless steel conforms to ASTM F 594. REPORT HOLDER: The anchor body is comprised of a high- strength rod threaded at one end and a tapered mandrel at the other end. HILTI, INC. The tapered mandrel is enclosed by a three - section 5400 SOUTH 122 EAST AVENUE expansion element which freely moves around the mandrel. TULSA, OKLAHOMA 74146 The expansion element movement is restrained by the • (800) 879 -8000 mandrel taper and by a collar. The anchor is installed in a www.us.hilti.com predrilled hole with a hammer. When torque is applied to the HiltiTechEnq0.us.hilti.com nut of the installed anchor, the mandrel is drawn into the expansion element, which is in turn expanded against the wall EVALUATION SUBJECT: of the drilled hole. Installation information and dimensions are set forth in HILTI KWIK BOLT TZ CARBON AND STAINLESS STEEL Section 4.3 and Table 1. ANCHORS IN CONCRETE Normal- weight and structural lightweight concrete must 1.0 EVALUATION SCOPE conform to Sections 1903 and 1905 of the IBC and UBC. Compliance with the following codes: 4.0 DESIGN AND INSTALLATION • 2006 International Building Code (IBC) 4.1 Strength Design: • 2006 International Residential Code (IRC) 4.1.1 General: Design strengths must be determined in accordance with ACI 318 -05 Appendix D and this report. • 1997 Uniform Building Code TM (UBC) Design parameters are provided in Tables 3 and 4 Strength Property evaluated: reduction factors 0 as given in ACI 318 D.4.4 must be used for load combinations calculated in accordance with Section Structural 1605.2.1 of the IBC or Section 1612.2 of the UBC. Strength 2.0 USES reduction factors 0 as given in ACI 318 D.4.5 must be used for load combinations calculated in accordance with ACI 318 The Hilti Kwik Bolt TZ anchor (KB -TZ) is used to resist static, Appendix C or Section 1909.2 of the UBC. Strength reduction wind, and seismic tension and shear loads in cracked and factors 0 corresponding to ductile steel elements may be uncracked normal- weight concrete and structural sand used. An example calculation is provided in Figure 6. lightweight concrete having a specified compressive strength, f',, of 2,500 psi to 8,500 psi (17.2 MPa to 58.6 MPa); and 4.1.2 Requirements for Static Steel Strength in Tension: cracked and uncracked normal- weight or structural sand The steel strength in tension must be calculated in lightweight concrete over metal deck having a minimum accordance with ACI 318 D.5.1. The resulting N values are specified compressive strength, f' of 3,000 psi (20.7 MPa). provided in Tables 3 and 4 of this report. The anchoring system is an alternative to cast -in -place 4.1.3 Requirements for Static Concrete Breakout anchors described in Sections 1911 and 1912 of the IBC and Strength in Tension: The basic concrete breakout strength Sections 1923.1 and 1923.2 of the UBC. The anchors may in tension must be calculated according to ACI 318 Section also be used where an engineered design is submitted in D.5.2.2, using the values of h and k as given in Tables 3 accordance with Section R301.1.3 of the IRC. and 4 in lieu of h and k, respectively The nominal concrete 3.0 DESCRIPTION breakout strength in tension in regions where analysis indicates no cracking in accordance with ACI 318 Section KB -TZ anchors are torque - controlled, mechanical expansion D.5.2.6 must be calculated with 4/ as given in Tables 3 and anchors. KB -TZ anchors consist of a stud (anchor body), 4. For carbon steel KB -TZ installed in the soffit of structural wedge (expansion elements), nut, and washer. The anchor sand lightweight or normal- weight concrete on steel deck floor (carbon steel version) is illustrated in Figure 1. The stud is and roof assemblies, as shown in Figure 5, calculation of the manufactured from carbon or stainless steel materials with concrete breakout strength may be omitted. (See Section corrosion resistance equivalent to Type 304 stainless steel. 4.1.5.) Carbon steel KB -TZ anchors have a minimum 5 pm (0.00002 inch) zinc plating. The expansion elements for the carbon and 4.1.4 Requirements for Critical Edge Distance: In stainless steel KB -TZ anchors are fabricated from stainless applications where c < c and supplemental reinforcement to steel with corrosion resistance equivalent to Type 316 control splitting of the concrete is not present, the concrete REPORTS- are not to be construed as representing aesthetics or any other attributes not specifically addressed, nor are they to be construed as an endorsement of the subject of the report or a recommendation for its use There is no warranty by ICC Evaluation Service, Inc , express or implied, as to any ANSI finding or other matter in this report, or as to any product covered by the report ra.m.mw n.W.m momcr Lim Copyright © 2007 Page 1 of 14 Page 2 of 14 ESR -1917 "' L breakout strength in tension for uncracked concrete, lightweight or normal- weight concrete on steel deck floor and calculated according to ACI 318 Section D.5.2, must be roof assemblies, as shown in Figure 5, is given in Table 3. further multiplied by the factor as given by the following equation: 4.1.7 Requirements for Static Concrete Breakout Strength of Anchor in Shear, Vcb or V Static concrete c breakout strength shear capacity must be calculated in wcP,N = � ( accordance with ACI 318 Section D.6.2 based on the values provided in Tables 3 and 4. The value of / used in ACI 318 Equation (D -24) must taken as no greater than h whereby the factor WcPN need not be taken as less 4.1.8 Requirements for Static Concrete Pryout Strength 1.5h of Anchor in Shear, V„ or V 99 : Static concrete pryout than . For all other cases, W cpN = 1.0. Values for the csc strength shear capacity must be calculated in accordance critical edge distance cec must be taken from Table 3 or Table with ACI 318 Section D.6.3, modified by using the value of k 4. provided in Tables 3 and 4 of this report and the value of Nib or N ob9 as calculated in Section 4.1.3 of this report. For 4.1.5 Requirements for Static Pullout Strength in anchors installed in the soffit of structural sand lightweight or Tension: The pullout strength of the anchor in cracked and normal- weight concrete over profile steel deck floor and roof uncracked concrete, where applicable, is given in Tables 3 assemblies, as shown in Figure 5, calculation of the concrete and 4. In accordance with ACI 318 Section D.5.3.2, the pry -out strength in accordance with ACI 318 Section D.6.3 is nominal pullout strength in cracked concrete must be not required. calculated according to the following equation: 4.1.9 Requirements for Minimum Member Thickness, Minimum Anchor Spacing and Minimum Edge Distance: Np " = NP 2 500 (Ib psi) (2) In lieu of ACI 318 Section D.8.3, values of c and s as given in Tables 2 and 3 of this report must be used. In lieu of ACI 318 Section D.8.5, minimum member thicknesses h as given in Tables 3 and 4 of this report must be used. Additional combinations for minimum edge distance cm," and spacing s„," f may be derived by linear interpolation between the given = N p�, 1117.2 (N, MPa) boundary values. (See Figure 4.) The critical edge distance at corners must be minimum 4h in accordance with ACI 318 Section D.8.6. In regions where analysis indicates no cracking in 4.1.10 Requirements for Seismic Design: For load accordance with ACI 318 Section D.5.3.6, the nominal pullout combinations including earthquake, the design must be strength in tension must be calculated according to the performed according to ACI 318 Section D.3.3 as modified by following equation: Section 1908.1.16 of the IBC, as follows: _ I f: CODE ACI 318 D.3.3. CODE EQUIVALENT N = AI 2,500 (Ib, psi) (3) SEISMIC REGION DESIGNATION Moderate or high Seismic Design IBC and IRC seismic risk Categories C, D, E, and F I Moderate or high Seismic Zones N ",.. = N "�,.I f ` (N, MPa) U seismic risk 2B, 3, and 4 VVV 17.2 The nominal steel strength and the nominal concrete Where values for N or N are not provided in Table 3 breakout strength for anchors in tension, and the nominal uncr p concrete breakout strength and pryout strength for anchors in or Table 4, the pullout str in tension need not be shear, must be calculated according to ACI 318 Sections D.5 evaluated. and D.6, respectively, taking into account the corresponding The pullout strength in cracked concrete of the carbon steel values given in Tables 3 and 4. The anchors comply with ACI KB -TZ installed in the soffit of sand lightweight or normal- 318 D.1 as ductile steel elements and must be designed in weight concrete on steel deck floor and roof assemblies, as accordance with ACI 318 Section D.3.3.4 or D.3.3.5. The shown in Figure 5, is given in Table 3. In accordance with ACI nominal pullout strength N ,,,,,, and the nominal steel strength 318 Section D.5.3.2, the nominal pullout strength in cracked for anchors in shear Vs,se,s must be evaluated with the values concrete must be calculated according to Eq. (2), whereby given in Tables 3 and 4. The values of N 581 ,, must be adjusted the value of Npd,Ck,c, must be substituted for N The use of for concrete strength as follows: stainless steel KB -TZ anchors installed in the soffit of fc concrete on steel deck assemblies is beyond the scope of this report. In regions where analysis indicates no cracking in Np,se,s,rc = Np,sers 2,500 (Ib, psi) (4) accordance with ACI 318 Section D.5.3.6, the nominal pullout strength in tension may be increased by k-Pc,N as given in Table 3. w cp is 1.0 for all cases. Minimum anchor spacing N p,se - N p s VVV I - f ( N, MPa ) along the flute for this condition must be the greater of 3.0h 17 2 or 1 times the flute width. 4.1.6 Requirements for Static Steel Shear Capacity V In If no values for Np,se,s or VS,Se,5 are given in Table 3 or Table lieu of the value of V as given in ACI 318 Section D.6.1.2(c), 4, the static design strength values govern. (See Sections the values of V given in Tables 3 and 4 of this report must be 4.1.5 and 4.1.6.) used. The shear strength Vs,deck as governed by steel failure 4.1.11 Structural Sand Lightweight Concrete: When of the KB -TZ installed in the soffit of structural sand structural lightweight concrete is used, values determined in Page 3 of 14 ESR -1917 V accordance with ACI 318 Appendix D and this report must be installations into the soffit of concrete on steel deck modified by a factor of 0.60. assemblies, see Figure 5. 4.1.12 Structural Sand Lightweight Concrete over Metal 4.4 Special Inspection: Deck: Use of structural sand lightweight concrete is allowed Special inspection is required, in accordance with Section In accordance with values presented in Table 3 and 1704.13 of the IBC and Section 1701.5.2 of the UBC. The installation details as show in Figure 5. special inspector must be on the jobsite continuously during 4.2 Allowable Stress Design: anchor installation to verify anchor type, anchor dimensions, 4.2.1 General: Design resistances for use with allowable concrete type, concrete compressive strength, hole stress design load combinations calculated in accordance dimensions, hole cleaning procedures, anchor spacing, edge with Section 1605.3 of the IBC and Section 1612.3 of the distances, concrete thickness, anchor embedment, and UBC, must be established as follows: tightening torque. R 5.0 CONDITIONS OF USE R d (5) allow,ASD = a The Hilti KB -TZ anchors described in this report comply with the codes listed in Section 1.0 of this report, subject to the where Rd = 0 R represents the limiting design strength in following conditions: tension (") or shear (OV „) as calculated according to ACI 5.1 Anchor sizes, dimensions and minimum embedment 318 Sections D.4.1.1 and D.4.1.2 and Section 4.1 of this depths are as set forth in this report. report. For load combinations including earthquake, the value R in Equation (5) must be multiplied by 0.75 in accordance 5.2 The anchors must be installed in accordance with the with ACI 318 Section D.3.3.3. Limits on edge distance, manufacturer's published instructions and this report. In anchor spacing and member thickness, as given in Tables 3 case of conflict, this report governs. and 4 of this report, must apply. Allowable service loads for 5.3 Anchors must be limited to use in cracked and single anchors in tension and shear with no edge distance or uncracked normal - weight concrete and structural sand spacing reduction are provided in Tables 6 through 9, for lightweight concrete having a specified compressive illustration. These values have been derived per Equation (5) strength, f' of 2,500 psi to 8,500 psi (17.2 MPa to 58.6 using the appropriate strength reduction factors ofrom Tables MPa), and cracked and uncracked normal - weight or 3 and 4 and the a factors provided in Section 4.2 of this structural sand lightweight concrete over metal deck report. having a minimum specified compressive strength, f' The value of a must be taken as follows: of 3,000 psi (20.7 MPa). REFERENCE FOR STRENGTH a 5.4 The values of f' used for calculation purposes must not REDUCTION FACTORS Including Excluding exceed 8,000 psi (55.1 MPa). Seismic Seismic 5.5 Loads applied to the anchors must be adjusted in ACI 318 Section D.4.4 1.1 1 4 accordance with Section 1605.2 of the IBC and ACI 318 Section D.4.5 1.2 1 55 Sections1612.2 or 1909.2 of the UBC for strength design, and in accordance with Section 1605.3 of the 4.2.2 Interaction: In lieu of ACI 318 D.7.1, D.7.2 and D.7.3, IBC and Section 1612.3 of the UBC for allowable stress interaction must be calculated as follows: design. For shear loads V s 0.2 - Vallow,ASD, the full allowable load in 5.6 Strength design values must be established in tension Ta „ow,ASD may be taken. accordance with Section 4.1 of this report. For tension loads T < 0.2 Tellow,ASD' the full allowable load 5.7 Allowable design values are established in accordance in shear Valrow,ASD may be taken. with Section 4.2. For all other cases: 5.8 Anchor spacing and edge distance as well as minimum member thickness must comply with Tables 3 and 4. T V + <_ 1.2 (6) 5.9 Prior to installation, calculations and details T allow,ASD V allow,ASD demonstrating compliance with this report must be submitted to the code official. The calculations and details must be prepared by a registered design 4.3 Installation: professional where required by the statutes of the Installation parameters are provided in Table 1 and in Figure jurisdiction in which the project is to be constructed. 2. The Hilti KB -TZ must be installed according to 5.10 Since an ICC -ES acceptance criteria for evaluating data manufacturer's published instructions and this report. Anchors to determine the performance of expansion anchors must be installed in holes drilled into the concrete using subjected to fatigue or shock loading is unavailable at carbide - tipped masonry drill bits complying with ANSI this time, the use of these anchors under such B212.15 -1994. The nominal drill bit diameter must be equal conditions is beyond the scope of this report. to that of the anchor. The drilled hole must exceed the depth of anchor embedment by at least one anchor diameter to 5.11 Anchors may be installed in regions of concrete where permit over - driving of anchors and to provide a dust collection cracking has occurred or where analysis indicates area as required. The anchor must be hammered into the cracking may occur (f > f,), subject to the conditions of predrilled hole until at least four threads are below the fixture this report. surface. The nut must be tightened against the washer until 5.12 Anchors may be used to resist short-term loading due to the torque values specified in Table 1 are achieved. For wind or seismic forces, subject to the conditions of this installation in the soffit of concrete on steel deck assemblies, report. the hole diameter in the steel deck not exceed the diameter of the hole in the concrete by more than'/, inch (3.2 mm). For 5.13 Where not otherwise prohibited in the code, KB -TZ member thickness and edge distance restrictions for anchors are permitted for use with fire- resistance -rated Page 4 of 14 ESR -1917 Vg construction provided that at least one of the following 6.0 EVIDENCE SUBMITTED conditions is fulfilled: 6.1 Data in accordance with the ICC -ES Acceptance • Anchors are used to resist wind or seismic forces only. Criteria for Mechanical Anchors in Concrete Elements • Anchors that support a fire - resistance -rated envelope (AC193), dated January 2007 (ACI 355.2). or a fire- resistance -rated membrane are protected by 6.2 A quality control manual. approved fire - resistance- rated materials, or have been evaluated for resistance to fire exposure in 7.0 IDENTIFICATION accordance with recognized standards. The anchors are identified by packaging labeled with the • Anchors are used to support nonstructural elements. manufacturer's name (Hilti, Inc.) and contact information, 5.14 Use of zinc- coated carbon steel anchors is limited to anchor name, anchor size, evaluation report number(ICC -ES dry, interior locations. ESR- 1917), and the name of the inspection agency (Underwriters Laboratories Inc.). The anchors have the letters 5.15 Special inspection must be provided in accordance with KB -TZ embossed on the anchor stud and four notches Section 4 4. embossed into the anchor head, and these are visible after 5.16 Anchors are manufactured by Hilti AG, in Schaan, installation for verification. Liechtenstein, under a quality control program with inspections by Underwriters Laboratories Inc. (AA -637). Page 5 of 14 ESR -1917 (9oi UNC thread 1%i, mandrel filipl ( ' dog point expansion setting assist element collar washer hex nut bolt FIGURE 1 —HILTI CARBON STEEL KWIK BOLT TZ (KB -TZ) TABLE 1 —SETTING INFORMATION (CARBON STEEL AND STAINLESS STEEL ANCHORS) SETTING Nominal anchor diameter (in.) INFORMATION Symbol Units 3/8 1/2 5/8 3/4 In. 0.375 0.5 0 625 0.75 Anchor O.D. do (mm) (9.5) (12.7) (15.9) (19.1) Nominal bit diameter do„ In. 3/8 1/2 5/8 3/4 Effective min. In. 2 2 3 -1/4 3 -1/8 4 3 -3/4 4 -3/4 embedment h e/ (mm) (51) (51) (83) (79) (102) (95) (121) In. 2 -5/8 2 -5/8 4 3 -7/8 4 -3/4 4 -5/8 5 -3/4 Min hole depth ho (mm) (67) (67) (102) (98) (121) (117) (146) Min. thickness of In 1/4 3/4 1/4 3/8 3/4 1/8 1 -5/8 fastened part' tmm (mm) (6) (19) (6) ( (19) (3) (41) ft -lb 25 40 60 110 Installation torque Tint (Nm) (34) (54) (81) (149) Min. dia. of hole in In. 7/16 9/16 11/16 13/16 fastened part dh (mm) (11.1) (14.3) (17.5) (20,6) Standard anchor In. 3 3 -3/4 5 3 -3/4 4 -1/2 5 -1/2 7 4 -3/4 6 8 -1/2 10 5 -1/2 8 10 lengths tench (mm) (76) (95) (127) (95) (114) (140) (178) (121) (152) (216) (254) (140) (203) (254) Threaded length In. 7/8 1 -5/8 2 -7/8 1 -5/8 2 -3/8 3 -3/8 4 -7/8 1 -1/2 2 -3/4 5 -1/4 6 -3/4 1 -1/2 4 6 (incl. dog point) thread mm (22) (41) (73) (41) (60) (86) (124 ( ) (124) (38) (70) (133) (171) (38) (102) (152) m, In. 2 - 1/8 2 -1/8 3 -1/4 4 Unthreaded length Yun (mm) (54) (54) (83) (102) The minimum thickness of the fastened part is based on use of the anchor at minimum embedment and is controlled by the length of thread. If a thinner fastening thickness is required, increase the anchor embedment to suit Page 6 of 14 ESR -1917 '1. 70 1a1 (thread dh Z44*- � t ( anch tunthr d 1 ■ 1 het Fl t h FIGURE 2 —KB -TZ INSTALLED TABLE 2— LENGTH IDENTIFICATION SYSTEM (CARBON STEEL AND STAINLESS STEEL ANCHORS) Length ID marking A B C D E F G H I J K L M N O P Q R S T U V W on bolt head Length of From 1 Y 2 21 3 3 Y 4 4 5 5 Y 6 61z 7 7'h 8 8 Y 9 9'h 10 11 12 13 14 15 anchor, Up to but !a "` not 2 21/2 3 31/2 4 41/2 5 51/2 6 61/2 7 71 8 81/2 9 91/2 10 11 12 13 14 15 16 (inches) including s e u FIGURE 3 — BOLT HEAD WITH LENGTH IDENTIFICATION CODE AND KB -TZ HEAD NOTCH EMBOSSMENT Page 7 of 14 ESR -1917 1 TABLE 3- DESIGN INFORMATION, CARBON STEEL KB -TZ Nominal anchor diameter DESIGN INFORMATION Symbol Units 3/8 1/2 5/8 3/4 Anchor O.D. d" In. 0.375 0.5 0.625 0.75 (mm) (9.5) (12 7) (15.9) (19.1) Effective min. embedment' h,, In. 2 2 3 -1/4 3 -1/8 4 3-3/4 4 -3/4 (mm) (51) (51) (83) (79) (102) (95) (121) Min. member thickness h,"„ In. 4 5 4 6 6 8 5 6 8 6 8 8 (mm) (102) (127) (102) (152) ,(152) (203) (127) (152) (203) (152) (203) (203) Critical edge distance cep In. 4 -3/8 4 5 -1/2 4 -1/2 7 -1/2 6 6 -1/2 8 -3/4 6 -3/4 10 8 9 (mm) (111) (102) (140) _ (114) (191) (152) (165) (222) (171) (254) (203) (229) In. 2 -1/2 2 -3/4 2 -3/8 3 -5/8 3 -1/4 4 -3/4 4 -1/8 Min. edge distance c "'" (mm) (64) (70) (60) (92) (83) (121) (105) for s 2 In. 5 5 -3/4 5 -3/4 6 -1/8 5 -7/8 10 -1/2 8 -7/8 (mm) (127) (146) (146) (156) (149) (267) (225) In 2 -1/2 2 -3/4 2 -3/8 3 -1/2 3 5 4 Min. anchor spacing s "" (mm) (64) (70) (60) (89) (76) (127) (102) for c >_ In. 3 -5/8 4 -1/8 3 -1/2 4 -3/4 4 -1/4 9 -1/2 7 -3/4 (mm) (92) (105) (89) (121) (108) (241) (197) Min. hole depth in concrete ho In 2 -5/8 2 -5/8 4 3 -7/8 4 -3/4 4 -5/8 5 -3/4 (mm) (67) (67) (102) (98) (121) (117) (146) lb/in' 100,000 84,800 84,800 84,800 Min. specified yield strength f, (N /mm (690) (585) (585) (585) lb /in' 125,000 106,000 106,000 106,000 Min. specified ult. strength f (N /mm (862) (731) (731) (731) In' 0 052 0.101 0.162 0.237 Effective tensile stress area Asa (mm (33.6) (65.0) (104 6) (152.8) Steel strength in tension N lb 6,500 10,705 17,170 25,120 (kN) (28.9) (47.6) (76.4) (111.8) Steel strength in shear VS lb 3,595 6,405 10,555 15,930 (kN) (16.0) (28.5) (47.0) (70.9) Steel strength in shear, lb 2,255 6,405 10,555 14,245 seismic VS „ ' s (kN) (10 0) (28 5) (47 0) (63 4) Steel strength in shear, lb 2130 3,000 4,945 4,600 6,040 concrete on metal deck" V S' tl " (kN) (9.5) (13 3) (22) (20.5) (26.9) NP NP Pullout strength uncracked lb 2,515 NA 5,515 NA 9,145 8,280 10,680 concrete N P' ° "" (kN) (11 2) (24.5) (40 7) (36.8) (47.5) Pullout strength cracked lb 2,270 NA 4,915 NA NA NA NA concrete N ° '" (kN) (10.1) (21.9) Pullout strength concrete on lb 1,460 1,460 2,620 2,000 4,645 NP NP metal decks N ck,,, (kN) (6 5) (6 5) (11.7) (8 9) (20 7) Anchor category' 1 Effectiveness factor k,,,,,,, uncracked concrete 24 Effectiveness factor k,,, cracked concrete 17 1 1 .) C,N= k,"c,/kcr 9 1.41 Coefficient for pryout strength, k 1 0 2.0 Strength reduction factor 0 for tension, steel 0 75 failure modes Strength reduction factor 0 for shear, steel failure 0 65 modes' Strength reduction 0 factor for tension, concrete 0.65 failure modes or pullout, Condition B" Strength reduction 0 factor for shear, concrete 0 70 failure modes, Condition B" For SI: 1 inch = 25.4 mm, 1 Ibf = 4.45 N, 1 psi = 0.006895 MPa For pound -inch units 1 mm = 0.03937 inches. 'See Fig. 2. 2 For structural light- weight concrete over metal deck, see Figure 5 3 See Section 4.1.10 of this report ° See Section 4.1.6 NP (not permitted) denotes that the condition is not supported by this report. 'See Section 4.1 5 of this report NA (not applicable) denotes that this value does not control for design. 6 See Section 4.1.5 of this report. NP (not permitted) denotes that the condition is not supported by this report. Values are for cracked concrete Values are applicable to both static and seismic load combinations 'See ACI 318 -05 Section D.4.4. 'See ACI 318 -05 Section D 5.2.2 'See ACI 318 -05 Section D.5.2.6. 70 The KB -TZ is a ductile steel element as defined by ACI 318 Section D.1. "For use with the load combinations of ACI 318 Section 9 2 Condition B applies where supplementary reinforcement in conformance with ACI 318 -05 Section D.4 4 is not provided, or where pullout or pryout strength governs For cases where the presence of supplementary reinforcement can be verified, the strength reduction factors associated with Condition A may be used Page 8 of 14 ESR -1917 72 TABLE 4- DESIGN INFORMATION, STAINLESS STEEL KB -TZ Nominal anchor diameter DESIGN INFORMATION Symbol Units 3/8 1/2 5/8 3/4 Anchor O D do in. 0 375 0 5 0.625 0.75 (mm) (9 5) (12.7) (15.9) (19.1) Effective min. embedment' he in. 2 2 3 -1/4 3 -1/8 4 3-3/4 4 -3/4 (mm) (51) (51) (83) (79) (102) 95) (121) Min member thickness hm," in 4 5 4 6 6 8 5 6 8 6 8 8 (mm) (102) (127) (102) (152) (152) (203) (127) (152) (203) (152) (203) (203) Critical edge distance cep in. 4 -3/8 3 -7/8 5 -1/2 4 -1/2 7 -1/2 6 7 8 -7/8 6 10 7 9 (mm) (111) (98) (140) (114) (191) (152) (178) (225) (152) (254) (178) (229) in. 2 -1/2 2 -7/8 2 -1/8 3 -1/4 2 -3/8 4 -1/4 4 Min. edge distance cm '" (mm) (64) (73) (54) (83) (60) (108) (102) for ? in. 5 5 -3/4 5 -1/4 5 -1/2 5 -1/2 10 8 -1/2 (mm) (127) (146) (133) (140) (140) (254) (216) in. 2 -1/4 2 -7/8 2 2 -3/4 2 -3/8 5 4 (mm) (57) (73) (51) (70) (60) (127) (102) Min. anchor spacing for c? in. 3 -1/2 4 -1/2 3 -1/4 4 -1/8 4 -1/4 9 -1/2 7 (mm) (89) (114) (83) (105) (108) (241) (178) Min hole depth in concrete h" in. 2 -5/8 2 -5/8 4 3 -7/8 4 -3/4 4 -5/8 5 -3/4 (mm) (67) (67) (102) (98) (121) (117) (146) lb /in 92,000 92,000 92,000 76,125 Min specified yield strength fr (N/mm (634) (634) (634) (525) Min specified ult Strength f lb /in 115,000 115,000 115,000 101,500 (N/mm (793) (793) (793) (700) in 0 052 0.101 0.162 0.237 Effective tensile stress area Asa (mm (33.6) (65.0) (104.6) (152.8) Steel strength in tension NS lb 5,968 11,554 17,880 24,055 (kN) (26 6) (51 7) (82.9) (107.0) Steel strength in shear VS lb 4,870 6,880 11,835 20,050 (kN) (21 7) (30 6) (52.6) (89.2) Pullout strength in tension, Ib NA 2,735 N NA NA NA seismic2 sa s (kN) (12 2) Steel strength in shear, lb 2,825 6,880 11,835 14,615 seismic2 V5B1$ (kN) (12 6) (30.6) (52 6) (65.0) Pullout strength uncracked lb 2,630 5,760 12,040 concrete3 N " c , NA NA NA (kN) (11 7) (25.6) (53 6) Pullout strength cracked lb 2,340 3,180 5,840 8,110 concrete3 N NA NA NA (kN) (10 4) (14.1) (26.0) (36.1) Anchor category 1 Effectiveness factor k„ " uncracked concrete 24 Effectiveness factor k,, cracked concrete 17 24 17 17 17 24 17 4'c,N = k „ ",/k 1.41 1.00 1.41 1.41 1.41 1.00 1.41 Strength reduction factor 0 for tension, steel 0.75 failure modes' Strength reduction factor 0 for shear, steel failure 0.65 modes' Strength reduction 0 factor for tension, concrete 0 65 failure modes, Condition B Coefficient for pryout strength, k 1.0 2.0 Strength reduction 0 factor for shear, concrete 0.70 failure modes, Condition B For SI: 1 inch = 25 4 mm, 1 lbf = 4 45 N, 1 psi = 0.006895 MPa For pound -inch units 1 mm = 0 03937 inches 'See Fig. 2 'See Section 4.1.10 of this report NA (not applicable) denotes that this value does not control for design 'See Section 4 1.5 of this report. NA (not applicable) denotes that this value does not control for design. ° See ACI 318 -05 Section D 4.4. 'See ACI 318 -05 Section D.5.2.2 6 See ACI 318 -05 Section D.5.2.6. 'The KB -TZ is a ductile steel element as defined by ACI 318 Section D.1. 8 For use with the load combinations of ACI 318 -05 Section 9.2 Condition B applies where supplementary reinforcement in conformance with ACI 318 -05 Section D.4 4 is not provided, or where pullout or pryout strength governs. For cases where the presence of supplementary reinforcement can be verified, the strength reduction factors associated with Condition A may be used Page 9 of 14 ESR -1917 J sdesi I Cdesign N • C 5 _ hm,n a cmin at s IIUI 1111 - H S d es j gfl - s at c Y� Y: h > hn,,n • a a I I I I I f 1 C design edge distance c FIGURE 4- INTERPOLATION OF MINIMUM EDGE DISTANCE AND ANCHOR SPACING TABLE 5 -MEAN AXIAL STIFFNESS VALUES R FOR KB -TZ CARBON AND STAINLESS STEEL ANCHORS IN NORMAL - WEIGHT CONCRETE (10 /in.) Concrete condition carbon steel KB -TZ, all diameters stainless steel KB -TZ, all diameters uncracked concrete 700 120 cracked concrete 500 90 'Mean values shown, actual stiffness may vary considerably depending on concrete strength, loading and geometry of application TABLE 6 -KB -TZ CARBON AND STAINLESS STEEL ALLOWABLE STATIC TENSION (ASD), NORMAL - WEIGHT UNCRACKED CONCRETE, CONDITION B (pounds)1'2' 3 Concrete Compressive Strength Nominal Embedment fc = 2,500 psi f'c = 3,000 psi fc = 4,000 psi f'c = 6,000 psi Anchor Depth h Diameter (in ) Carbon Stainless Carbon Stainless Carbon Stainless Carbon Stainless steel steel steel steel steel steel steel steel 3/8 2 1,168 1,221 1,279 1,338 1,477 1,545 1,809 1,892 2 1,576 1,576 1,726 1,726 1,993 1,993 2,441 2,441 1/2 31/4 2,561 2,674 2,805 2,930 3,239 3,383 3,967 4,143 31/8 3,078 3,078 3,372 3,372 3,893 3,893 4,768 4,768 5/8 4 4,246 4,457 4,651 4,883 5,371 5,638 6,578 6,905 3 3/4 3,844 4,046 4,211 4,432 4,863 5,118 5,956 6,268 3/4 4 3/4 4,959 5,590 5,432 6,124 6,272 7,071 7,682 8,660 For SI: 1 Ibf = 4 45 N, 1 psi = 0.00689 MPa For pound -inch units 1 mm = 0.03937 inches 'Values are for single anchors with no edge distance or spacing reduction For other cases, calculation of Rd as per ACI 318 -05 and conversion to ASD in accordance with Section 4 2 1 Eq (5) of this report is required. 2 Values are for normal weight concrete. For sand - lightweight concrete, multiply values by 0.60 'Condition B applies where supplementary reinforcement in conformance with ACI 318 -05 Section D 4 4 is not provided, or where pullout or pryout strength governs. For cases where the presence of supplementary reinforcement can be verified, the strength reduction factors associated with Condition A may be used. Page 10 of 14 ESR -1917 74 TABLE 7 -KB -TZ CARBON AND STAINLESS STEEL ALLOWABLE STATIC TENSION (ASD), NORMAL- WEIGHT CRACKED CONCRETE; CONDITION B (pounds)1'2' 3 Concrete Compressive Strength Nominal Embedment fc = 2,500 psi f'c = 3,000 psi fc = 4,000 psi f'c = 6,000 psi Anchor Depth h Diameter (in.) Carbon Stainless Carbon Stainless Carbon Stainless Carbon Stainless steel steel steel steel steel steel steel steel 3/8 2 1,054 1,086 1,155 1,190 1,333 1,374 1,633 1,683 1/2 2 1,116 1,476 1,223 1,617 1,412 1,868 1,729 2,287 31/4 2,282 2,312 2,500 2,533 2,886 2,925 3,535 3,582 31/8 2,180 2,180 2,388 2,388 2,758 2,758 3,377 3,377 5/8 4 3,157 2,711 3,458 2,970 3,994 3,430 4,891 4,201 3 3/4 2,866 3,765 3,139 4,125 3,625 4,763 4,440 5,833 3/4 4 3/4 4,085 4,085 4,475 4,475 5,168 5,168 6,329 6,329 For SI 1 lbf = 4 45 N, 1 psi = 0 00689 MPa For pound -inch units: 1 mm = 0.03937 inches 'Values are for single anchors with no edge distance or spacing reduction. For other cases, calculation of Rd as per ACI 318 -05 and conversion to ASD in accordance with Section 4 2.1 Eq. (5) is required. 2 Values are for normal weight concrete For sand - lightweight concrete, multiply values by 0 60 3 Condition B applies where supplementary reinforcement in conformance with ACI 318 -05 Section D.4.4 is not provided, or where pullout or pryout strength governs. For cases where the presence of supplementary reinforcement can be verified, the strength reduction factors associated with Condition A may be used TABLE 8 -KB -TZ CARBON AND STAINLESS STEEL ALLOWABLE STATIC SHEAR LOAD (ASD), (pounds) Nominal Allowable Steel Capacity, Static Shear Anchor Diameter Carbon Steel Stainless Steel 3/8 1,669 2,661 1/2 2,974 3,194 5/8 4,901 5,495 3/4 7,396 9,309 For SI 1 lbf = 4.45 N 'Values are for single anchors with no edge distance or spacing reduction due to concrete failure. Page 11 of 14 ESR -1917 7S TABLE 9 -KB -TZ CARBON AND STAINLESS STEEL ALLOWABLE SEISMIC TENSION (ASD), NORMAL - WEIGHT CRACKED CONCRETE, CONDITION B (pounds)''`" Concrete Compressive Strength' Nominal Embedment f c = 2,500 psi f'c = 3,000 psi f c = 4,000 psi f'c = 6,000 psi Anchor Depth h Diameter (in.) Carbon Stainless Carbon Stainless Carbon Stainless Carbon Stainless steel steel steel steel steel steel steel steel 3/8 2 1,006 1,037 1,102 1,136 1,273 1,312 1,559 1,607 2 1,065 1,212 1,167 1,328 1,348 1,533 1,651 1,878 1/2 31/4 2,178 2,207 2,386 2,418 2,755 2,792 3,375 3,419 31/8 2,081 2,081 2,280 2,280 2,632 2,632 3,224 3,224 5/8 4 3,014 2,588 3,301 2,835 3,812 3,274 4,669 4,010 O 3 3/4 2,736 3,594 2,997 3,937 3,460 4,546 4,238 5,568 4 3/4 3,900 3,900 4,272 4,933 4,933 6,042 6,042 For SI: 1 lbf = 4.4 1 psi = 0 00689 MPa For pound -inch u . mm = 0 03937 inches 'Values are for single anchors with no edge distance or spacing reduction. For other cases, calculation of Rd as per ACI 318 -05 and conversion to ASD in accordance with Section 4.2 1 Eq. (5) is required. 'Values are for normal weight concrete. For sand - lightweight concrete, multiply values by 0.60. 'Condition B applies where supplementary reinforcement in conformance with ACI 318 -05 Section D.4 4 is not provided, or where pullout or pryout strength governs For cases where the presence of supplementary reinforcement can be verified, the strength reduction factors - associated with Condition A may be used. TABLE 10 -KB -TZ CARBON AND STAINLESS STEEL ALLOWABLE SEISMIC SHEAR LOAD (ASD), (pounds)' Nominal Allowable Steel Capacity, Seismic Shear Anchor Diameter Carbon Steel Stainless Steel 3/8 999 1,252 1/2 2,839 3,049 5/8 4,678 5,245 CIP 6,31 6,477 For 1 Ibf = 4.45 N 'Values are for single anchors with no edge distance or spacing reduction due to concrete failure Page 12 of 14 ESR -1917 i(0 TABLE 11 —KB -TZ CARBON STEEL ALLOWABLE TENSION AND SHEAR LOADS (ASD), INSTALLED INTO THE UNDERSIDE OF A STRUCTURAL SAND LIGHTWEIGHT CONCRETE OVER METAL DECK SLAB (pounds) NOMINAL EMBEDMENT TENSION TENSION SHEAR SHEAR ANCHOR DEPTH, he SEISMIC NONSEISMIC SEISMIC NONSEISMIC DIAMETER (inches) 3/8 2 709 743 944 989 1/2 2 709 743 1,330 1,393 1/2 3-1/4 1,272 1,333 2,192 2,296 5/8 3-1/8 971 1,017 2,039 2,136 5/8 4 2,255 2,362 2,677 2,804 For SI: 1 plf = 4.45 N, 1 inch =25.4 mm. 'Pullout strength values N are for anchors installed in structural sand lightweight concrete having a minimum 2,500 psi compressive strength at the time of installation. See Table 3. The values listed in Table 11 have been calculated assuming a minimum 3,000 psi concrete compressive strength. The pullout strengths may be adjusted for other lightweight concrete compressive strengths in accordance with Section 4.1.5 using the following reduction equation: Np,deck,tc = Np,deck f, (lb, psi)* 2,500 Np,deck ,tc = Np,deck f- (N, MPa)* 17.2 *This equation can be used for structural sand lightweight concrete compressive strengths between 2,500 psi and 4,000 psi (17 MPa and 28 MPa). 2 Minimum anchor spacing along the flute shall be the greater of 3.0h or 1.5 times the flute width in accordance with Section 4.1.4. 3 Anchors in the lower flute may be installed with a maximum 1 -inch offset in either direction. See Figure 5. 'Allowable seismic tension and shear loads are calculated by multiplying Np,deck and V by the strength reduction 1 factor of 0.65, the seismic reduction (I) factor of 0.75 according to ACI 318 D3.3.3, and the dividing by an a of 1.1 in accordance with Section 4.2.1. 5 Allowable nonseismic tension and shear loads are calculated by multiplying N and V by the strength reduction 'D factor of 0.65 and dividing by an a of 1.4 in accordance with Section 4.2.1. Allowable nonseismic loads are calculated assuming the lightweight concrete over metal deck is cracked. Page 13 of 14 ESR -1917 17 J Q NV z 1 ( V 11J . .......,...../......... p :: O ;' •• ' '• MIN 3000 PSI NORMAL OR SAND - Z U .' LIGHTWEIGHT CONCRETE _ UPPER X F LUTE , fl (VAL LEY) ; MIN. 20 GAUGE fi � STEEL W -DECK ff 1 MINA -1/2" I I MIN 4 -1/2" r r ► I I I_ MIN. 12" TYP I LOWER r FLUTE MAX. 1" I (RIDGE) OFFSET, TYP. FIGURE 5— INSTALLATION IN THE SOFFIT OF CONCRETE OVER METAL DECK FLOOR AND ROOF ASSEMBLIES Page 14 of 14 ESR -1917 7g Given:'',' Two'/ i nch KB -TZ anchors under . t TO ar e N4 z allow t . . iS 1.5h static tension load as shown. ,.d �,1:4! - Ino het= 3.25 in. : , > . ` " u .. tif Normal wt. concrete, f c = 3,000 psi ` „,; 7- No supplementary reinforcing. I 5 , Assume uncracked concrete. Riff I. s = 6" ;, 1 � M Condition B per ACI 318 D.4.4 c) <-..: � ,.,,<°._:,,,,,..,.. =(j•• - - - Calculate the allowable tension load for .: ;:7:.?,-,;',.( i ' • '� 2' `: this configuration. 1.5h figuration. ,.. -'% ! i ,,, ,; ,..:,,,,,,,t 1 ' i , ,. ,.c(.1L,^ ��rrK .,Y.f .,, ,.; { , e 1 . Z - .',,•, `,A` V`../ -i A - A Calculation per ACI 318 -02 Appendix D and this report Code Report Ref. Ref. Step 1 Calculate steel capacity: 0N = OnA = 0.75 x 2 x 0.101 x 106,000 = 16,0591b D.5.1.2 Check whether f„ i is not greater than 1.9f and 125,000 psi. D.4.4 a) Table 3 Step 3. Calculate concrete breakout strength of anchor in tension: § 4.1.2 Ncbg = ANC �ec,NY1ed,NV�c,NWcp,NNb D.5.2.1 § 4.1.3 "'NCO Step 3a. Verify minimum member thickness, spacing and edge distance: D.8 Table 3 s � e 2 375, 5 75 Fig. 4 h„,,,, = 6 in. 5 6 in. ... ok 9• 2.375 - 5.75 slope = = -3.0 3.5 - 2.375 For C = 4 in 2 375 controls 3 5, 2 375 s,,,,, = 5.75 - [(2.375 - 4.0)( -3.0)] = 0.875 < 2.375in < 6in ok 0 875 4 cm,, Step 3b. For AN check 1.5h = 1.5(3.25) = 4.88 in > c 3.0h = 3(3.25) = 9.75 in > s Table 3 D.5.2.1 Step 3c. Calculate AN. and AN for the anchorage: A. = 9he, = 9 x (3.25) = 95.11n D.5.2.1 Table 3 A = (1.5h + c)(3h + s) = [1.5 x (3.25)+ 4][3 x (3.25)+ 6] = 139.8 in < 2 A ... ok Step 3d. Determine y'ec,N : eN = 0 ••. V ec,N =1 0 D.5.2.4 - Step 3e. Calculate Nb: Nb = kuncr g h 5 =17 x.3,000 x 3.25 5 = 5,456 lb D.5.2.2 Table 3 Step 3f. Calculate modification factor for edge distance: Wed, N =07 +0.3 1 4 5(3.25) = 0 95 D.5.2.5 Table 3 Step 3g. y' N =1.41 (uncracked concrete) D.5.2.6 Table 3 c,1.5her 4 1.5(3 25) Step 3h Calculate modification factor for splitting: y' = max check. = 0.53; =0.65 c 7. 5 7 _ § 4.1.3 I 5h Table 3 0 65>0.53... controls cac Step 31. Calculate cN : DN 0.65 x 139.8 x 1.00 x 0.95 x 1.41 x 5,456 x 0.65 = 4,539 lb D.5.2.1 § 4.1.2 95.1 D.4.4 c) Table 3 Step 4 Check pullout strength: Per Table 3, onNpn,rc = 0.65x2x5,515 lb 13,000 = 7,852 lb >4539 .'. OK D.5.3.2 § 4.1.5 112,500 D.4.4 c) Table 3 Step 5. Controlling strength: 4 N = 4,539 lb < clnN < DN :. 4 N controls D.4.1.2 Table 3 Step 6. Convert value to ASD: Tallow = 4,539 = 3,242 lb. - § 4 1 .4 FIGURE 6- EXAMPLE CALCULATION PAN ELS TOPS WALLS IN OUTSIDE INSIDE OUTSIDE 1n a SIDE Includes 2 PSF for Membrane or Standing Seam Roof,add 10 PSF for ballasted ASCE 7 -98 EXP. B, <30' OAH 3sec Gusts M z 0 J Design based on deflection criteria: L/240 Design based on deflection criteria: 1/180 Z 6 ' . LIVE LOADS - PSF LIVE LOADS - PSF F o c, 90 100 110 120 130 140 150 10 20 30 40 50 60 70 80 90 100 5 MPH MPH MPH MPH MPH MPH MPH 14 17 20 24 29 33 38 SOFTNOSE THERMA -CORE 2.2 -POUND DENSITY Fc =l8ps ALUM 4" 1.73 32 13' -5" 10'-6" 9' -4" 8' -7" 8' -0" 7' -7" 7'-3" 6' 4i" 6' -8" 6' -5" 21' -10" 13' -6" 12' -4" 11' -11" 11' -3" 10' -6" 10' -2" 9' -6" GALV 4" 2.64 32 _ 15' -4" 12' -6" 11' -0" 10' -0" 9' -0" 8' -10" 8' -6" 8' -2" 7' -10" 7' -6" _ 22' -10" 16' -0" 14' -10" 14' -l" 13' -3" 12' -3" _ 11' -5" 10' -5" WOOD FRAME (TST) THERMA- STRUCTURE 2.2-POUND DENSITY Fc= laps ALUM 2 1 /2" 1.88 20 11' -0" 8' -6" 7' -6" 7' -0" 6' -6" 6' -2" 5' -10" 5' -8" 5' -6" 5' -3" 15' -6" 11' -0" 10' -4" 9' -11" 9'-4" 8' -7" 8' -0" 7' -4" 3 1 /2" 2.34 28 15' -0" 11' -4" 10' -0" 9' -2" 8' -6" 8' -1" 7' -9" 7' -S" 7' -l" 6' -10" 19' -0" 14' -3" 13' -9" 13' -0" 12' -2" 11' -6" 11' -0" 10' -4" 4" 2.98 32 15' -6" 12' -0" 10' -6" 9' -6" 9' -0" 8' -6" 8' -l" 7' -9" 7' -6" 7' -2" 21' -6" 15' -2" 14' -6" 13' -7" 12' -10" 12' -0" 11' -4" 10' -8" 5" 3.73 40 21' -0" 15' -10" 14' -0" 13' -0" 12' -0" 11' -4" 10' -10" 10' -5" 9' -11" 9' -8" 26' -0 "* 20' -6" 19' -0" 18' -0" 17' -2" 16' -3" 15' -5" 14' -5" GALV 2 1/2" 2.32 20 12'-0" 9' -3" 8' -2" 7' -6" 7' -0" 6' -8" 6' -5" 6' -1" 5' -10" 5' -8" 15' -8" 12' -1" 11' -3" 10' -8" 10' -0" 9'-4" 8' -10" 8' -3" 3 1/2" 3.25 28 16' -0" 12' -4" 11' -0" 10' -0" 9' -3" 8' -g" 8' -4" 8' -0" 7' -8" 7' -5" 22' -0" 15' -8" 14' -10" 14' -l" 13' -3" 12' -4" 11' -7" 10' -9" 4" 3.71 32 16' -6" 13' -0" 11' -6" 10' -6" 9' -9" 9' -l" 8' -8" 8' -4" 8' -0" 7' -9" 23' -0" 16' -5" 15' -3" 14' -8" 13' -9" 12' -11" 12' -4" 11' -8" 5" 4.64 40 22' -0" 17' -0" 15' -2" 14' -0" 13' -0" 12' -3" _ i1' -8" 11' -2" 10' -9" 10' S" 26' 0 "* 22' -0" 20' -8" 19' -8" _ 18' -6" 17' -4" 16' -6" 15' -6" INSUL -FRAME (HDR) THERMA - STRUCTURE II 2.2 -POUND DENSITY Fc =l8ps ALUM 3 1.99 28 14' -i" 10' -10" 9' -8" 8' -10" 8' -S" 7' -9" 7' -5" 7' -1" 6' -10" 6' -8" 18' -10" 14' -0" 13' -0" 12' -5" 11' -9" 11' -0" 10' -4" 9' -7" 4" 2.63 32 14' -11" 11' -4" 10 -0" 9' -2" 8' -7" 8' -0" 7' -8" 7' -5" 7' -l" 6' -10" 20' -6" 14' -8" 13' -9" 13' -0" 12' -3" 11' -6" 10' -11" 10' -3" 5" 3.34 40 20' -0" 15' -0" 13' -7" 12' -3" 11' -6" 10' -10" 10' -4" 9' -11" 9' -7" 9' -3" 26' -0 "* 19' -6" 18' -4" 17' -7" 16' -6" 15' -4" 14' -6" 13' -6" GALV 3 1 /2" 2.9 28 15' -6" 11' -8" 10'-4" 9' -6" 8' -10" 8' -4" 7' -11" 7' -8" 7' -4" 7' -1" 21' -0" 15' -0" 14' -0" 13' -4" 12' -8" 11' -10" 11' -2" 10' -6" 4" 3.36 32 16' -1" 12' -2" 10' -10" 9 -11" 9' -3" 8' -9" 8' -4" 7' -11" 7' -8" 7' -5" 22' -0" 15' -8" 14' -8" 14' -0" 13' -3" 12' -4" 11' -8" 11' -0" 5" 4.25 40 _ 21' -0" 16' -3" 14' -7" 13' -4" 12' -5" 11' -9" _ 11' -2" 10' -9" 10' -4" 10' -0" _ 26' -0 "* 21' -3" 19' -10" 18' -10" _ 17' -9" 16' -7" 15' -8" 14' -7" LAMINATED EXPANDED POL (EPS) THERMA -SEAL 1 -POUND DENSITY Fc=12ps ALUM 2" 1.11 9 10' -6" 8' -0" 7' -0" 6' -6" 6' -0" 5' -9" 5' -6" 5' -3" 5' -0" 4' -10" 14' -4" 10' -1" 9' -6" 9' -1" 8' -7" 8' -0" 7' -7" 7' -1" 4" 1.33 17 15' -0" 12' -0" 10' -8" 9' -8" 9 -0" 8' -7" 8' -1" 7' -10" 7' -7" 7' -3" 20' -6" 15' -2" 14' -3" 13' -6" 12' -7" 11' -li" 11' -6" 11 -0" 6" 1.45 25 18' -6" 14' -7" 13' -0" 11' -10" 11' -0" 10' -5" 9' -11" 9' -6" 9' -2" 8' -10" 26' -0" 18' -7" 17' -6" 16' -6" 15' -7" 14' -9" 14' -2" 13' -6" 8" 1.57 34 21' -0" 17' -3" 15' -0" 14' -0" 13' -0" 12' -4" 11' -9" 11' -3" 10' -10" 10' -7" 30' -0 "* 22' -1" 19'11" 19' -5" 18' -6" 17' -4" 16' -6" 15' -6" 10" 1.69 42 23' -6" 19' -8" 17' -6" 16' -0" 15' -0" 14' -2" 13' -6" 12' -11" 12' -5" 12' -0" 30' -0 "* 25' -9" 24' -0" 22' -9" 21' -6" 20' -3" 29' -4" 18' -2" GALV 2" 2.12 9 11 -0" 8' -6" 7' -6" 7' -0" 6'-6" 6' -2" 5' -10" 5' -8" 5' -6" 5' -3" 15` -6" 11' -10" 10' -4" 9 -11" 9' -4" 8' -7" 8' -0" 7' -4" 4" 2.24 17 16' -0" 13' -0" 11'-4" 10' -6" 9' -6" 9' -2" 8' -9" 8' -5" 8' -1" 7' -10" 22' -10" 16' -6" 15' -9" 14' -9" 13' -10" 13' -1" 12' -6" 11' -10" 6" 2.36 25 20' -0" 15' -10" 13' -10" 12' -8" 11' -10" 11' -3" 10' -8" 10' -3" 9' -10" 9' -7" 28' -10" 20' -4" 19' -0" 18' -0" 17' -1" 16' -0" 15' -3" 14' -3" 8" 2.48 34 22' -6" 18' -3" 16' -6" 15' -0" 14' -0" 13' -3" 12' -8" 12' -1" 11' -8" 11' -3" 30' -0 "* 24' -0" 22' -6" 21' -4" 20' -1" 18' -9" 17' -10" 16' -8" 10" 2.6 42 25' -0" 21' -0" 18' -10" 17' -4" 16' -0" 15' -3" 14' -6" 13' -10" 13' -4" 12' 4l" _ 30' -0 "* 27' -5" 25' -9" 24' -5" _ 23' -0" 21' -6" 20' -5" 19' -l" LAMINATED URETHANE THERMA -SEAL 2 -POUND DENSITY Fc =24psi ALUM 4" 1.66 32 14' -0" 10 -0" 9' -0" 8' -0" 7' -0" 6' -6" 6' -0" 5' -8" 5'-4" 5' -0' 17' -7" 12' -5" 11' -6" 11 -0" 10' -4" 9' -8" 9' -3" 8' -6" 6" 2 48 14' -0" 10'-0" 9' -0" 8'-0" 7' -0" 6' -6" 6' -0" 5' -8" 5' -4" 5' -0" 17' -7" 12' -5" 11' -6" 11' -0" 10' -4" 9' -8" 9' -3" 8' -6" 8" 2.33 66 14' -0" 10' -0" 9' -0" 8' -0" 7' -0" 6' -6" 6' -0" 5' -8" 5' -4" 5' -0" 17' -7" 12' -5" 11' -6" 11 -0" 10' -4" 9' -8" 9' -3" 8' -6" 10" 2.66 83 14' -0" 10 -0" 9' -0" 8' -0" 7' -0" 6' -6" 6' -0" 5' -8" 5' -4" 5' -0" 17' -7" 12' -5" 11' -6" 11' -0" 10' -4" 9' -8" 9' -3" 8' -6" GALV 4" 2.57 32 14' -0" 11' -6" 10 -0" 9' -0" 8 -0" 7' -6" 7' -0" 6' -8" 6'-4" 6' -0" 18' -6" 13' -4" 12' -6" 12' -0" 11' -3" 10' -4" 9' -7" 8' -8" 6" 2.91 48 14' -0" 11' -6" 10' -0" 9' -0" 8' -0" 7' -6" 7' -0" 6' -8" 6' -4" 6' -0" 18' -6" 13' -4" 12' -6" 12' -0" 11' -3" 10' -4" 9' -7" 8' -8" 8" 3.24 66 14' -0" 11' -6" 10' -0" 9' -0" 8' -0" 7' -6" 7' -0" 6' -8" 6' -4" 6' -0" 18' -6" 13' -4" 12' -6" 12' -0" 11' -3" 10' -4" 9' -7" 8' -8" 10" 3.57 83 14' -0" 11' -6" 10' -0" 9' -O" 8' -O" 7' -6" 7' -0" 6' -8" 6' -4" 6' -0" 18' -6" 13' -4" 17' -6" 17' -0" 11' -3" 10' -4" 9' -7" 8' -8" *MAX SPAN IS BASED ON MANUFACTURING LIMITATION. FOR TOP PANELS SPANING 20 FEET AND LONGER, A STABILIZER (HANGER) IS RECOMMENDED. ICYSO R PANEL SYSTEMS RECOMMENDED FLOOR FOOT TRAFFIC: METAL OVER FOAM - UNIFORM LOAD = 600 PSF DESIGN HAND TRUCK: 1/2" PLYWOOD UNDER METAL - UNIFORM LOAD = 900 PSF ENGINEERING BULLETIN NO.: 900 PALLET JACK: 1 /2" PLYWOOD UNDER METAL WITH FIELD APPLIED 3/16" ADT - UNIFORM LOAD = 2500 PSF PANEL SPAN CHART DATE: August 2 1994 FOR SEISMIC ZONE 4: CHECK WITH ENGINEERING WHEN HEAVY ROOF LOADS EXIST. REV.: December 9, 2004 go - r � - r HEADQUARTERS: 2402 Daniels Street, Madison, WI 53704 • Ph: 608/221 -3361 • Fax: 608/221 -2084 • Quality Assurance Council: PFS TEST REPORT #94-27 Bernard E. Cabelus R & D SHEAR TESTS OF PANEL CONNECTORS Past President NCSBCS William L. Kralj, P.E. FOR Past President BOCA Gerald P. Marx, P.E. KYSOR /NEEDHAI`'I Safety and Buildings Division FORT WORTH, TEXAS WI Dept. of Industry, Labor and Human Relations Vird Morrison Vice President Wausau Insurance Ed S tarostovic, P.E, Ex Officio President, PFS & TECO Regional Offices. Bloomsburg, PA. 717/784 -8396 Dallas, TX. 214/620 -7012 Eugene, OR. 503/746 -8271 Los Angeles, CA. 310/559 -7287 vladison, WI. 308/221 -3361 2aleigh, NC. )19/981 -0552 ihreveport, LA. 318/686 -2989 BY: PFS CORPORATION 2402 DANIELS STREET Quality Control, MADISON, WISCONSIN esting, Inspection and :errification Services to he Building Industry 91 HEADQUARTERS: 2402 Daniels Street, Madison, WI 53704 • Ph: 608/221 -3361 • Fax: 608/221 -2084 C E C� PFS Test Report: #94-27 Test Dates: 07/26 -27/94 Report Date: 07/29/94 Page 1 of 3 Quality Assurance Council: Bernard E. Cabelus PFS TEST REPORT #94 -27 Past President NCSBCS R & D SHEAR TESTS OF PANEL CONNECTORS William L. Kralj, P.E. FOR Past President BOCA Gerald P. Marx, P.E. KYSOR /NEEDHAM Safety and Buildings Division FORT WORTH, TEXAS WI Dept. of Industry, Labor and Human Relations Vird Morrison GENERAL Vice President Wausau Insurance Ed Starostovic, P.E., Ex Officio Research & Development shear tests of panel connectors were conducted on July 26 -27, President, PFS & TECO 1994, at PFS Corporation of Madison, Wisconsin. A PFS Corporation representative was present during the manufacturing of the panel test specimens. The testing was performed according to the client instructions. The purpose of the testing was to determine the weaker Regional Offices: of two different orientations of the test panel connector and to perform additional test trials Bloomsburg, PA. with the panel connector in the weaker mode. 717/784 -8396 DESCRIPTION Dallas, TX. 214/620 -7012 The client submitted ten pairs of 2- ft.- by -1 -ft. metal skin, foam core panels with a pin and Eugene, OR. hook interlocking panel connector. Five pairs were constructed with urethane foam framing 503/746 -8271 p and the other five pairs were constructed with a wood perimeter framing. Each pair Los Angeles, CA. consisted of one panel with the hook component installed and the other panel had the pin 310/559 -7287 component installed. Madison, WI. 608/221 -3361 TEST PROCEDURES 2aletgh, NC. Each pair of p X19/981 -0552 anels were connected together by the secure engagement of the pin and hook interlocking mechanism. The connected panels were tested in a compression shear mode ihreveport, LA. utilizing the Baldwin Universal Test Machine. With the panel's interface vertical, the pin 318/686 -2989 panel was held in a fixed position while the hook panel was subjected to a gradually increasing load applied in a direction parallel to the interface. The shear loading continued until the connector failed The test machine crosshead speed was approximately 0.500 in. per minute. Quality Control, eshng, Inspection and 2ere6cahon Semces to he Building Industry ez PFS Test Report: x`94 -27 Test Dates: 07/26 -27/94 Report Date: 07/29/94 Page 2 of 3 • • TEST RESULTS The first two pairs of panels, of each type construction, were subjected to the test with the pin and hook interlock positioned in two different orientations. These initial tests indicated the panel's relative displacements to either moye the hook further toward the pin or move the hook off the pin. The maximum force measurement indicated the ?'weaker mode was to move the hook off the pin. The remaining three pairs of panel samples were tested in the weaker mode. See enclosed photos of typical test set -up and failures. URETHANE FOAM FRAMED PANELS I Test No. Load (lb.) Failure 1 520 Pin assembly separated. 2 625 Pin assembly compressed in foam. 3 645 Pin assembly compressed in foam. 4 945 Pin assembly compressed in foam. 5 680 Pin assembly compressed in foam. 3475/5 FA C 172 c , SP FE - Ty _ , 53 /2 - S = 27 " J PFS Test Report: #94 -27 • Test Dates: 07/26 -27/94 Report Date: 07/29/94 Page 3 of 3 WOOD FRAMED PANELS Test No. Load (lb.) Failure 1 2125 Hook partial sheared. 2 2145 Hook partial sheared. 3 2045 Hook partial sheared. 4 2760 Hook partial sheared. 5 2180 Hook partial sheared. //255 /S = 2 2S/' Tests Conducted and Tests Witnessed and Report Prepared By: Report Reviewed By: Re.: eviewed : • 2 �---� t VGA L!� V 0))11 / Allan Adams s Van Schoyck I 1 Ronald H. Reindl Lab Technician , A.I.A. Manager Vice President -Lab *09/14/94* 94 -27 /pb \A/ 4 " , c( r c 77 72 sA:FE.7 - 7- = -7 9 �co p- Go/ //k/ec T 02- Y 1 , '� J 84 Y 1 PFS TEST REPORT #94 -27 . • . - ,i. KYSOR /NEEDhAM .1!' 1. Typical compression ` shear setup. • . 1010004. • r.. ..,. 1 , NOTE: The weaker orienta- tion is shown. The "hook panel" (on right) moves :LF . upward as "pin panel" . • - is stationary. I i . . . ./.......---- . . ._. .= _..„.....,..,...,,.., ,.... .-...7* .qs, ,,,,_ .. . , . , r ir. . • • :',.. -- , ;, :■ ::. ; ..i... - : \ r u... z4 - . - '. ; . '. •- - • ' '.1 -�= 1 - w • • • ht• • ... � " I . a � + .- .! ryi s ..c:�' � .r DFS TEST pORT 4 'c `- �5,� iYSOR /NEED: u r-. 4 -27 �� ==Y o -: Typical failure wood , `ranee panel. NOTE: Partial shear indicated rt by crack in metal at bottom ;. edge of hook. • y . \ :M ,. Al ,. ,..• , - , '1g ,k1r.c.114> \ g5 7 ' - s ' AI -I • . 1 ! . Se . . ; \ . • .• • I) '% : , Ii• .0 -- 4 - • t ii, - to ■—.:,. . • • N° II ,7 ■ - : , G • a , * 7 : :: .. • • , .• ' eo. • - ,-. - • .., :,..- .,. . .. .- . . . , 6 . •• I S.Y . ... u. ' • . • .• • .... , . - 0 . ,.. • • . . o - C 4 •.e . .. . . •777-n .. • -‘ ' - - el • • 14- . • •!.;."' .. ' :3.".4. - .. -. . • • 'S. P; . • : • . a • OD . • t 4 0 : . ,.. ---.; - ...- • • • 4e. • •• _ ,,•.4. . . • .. .. • ' ° • 11 % ' :": .:. i O I . ._ • . e • ... --- • .. • b . t .. -. - ' . ... .0 .. *. . . • e-40. , O. 4 • • t ..% . 1 • 16.7 •-. .. -. . '' • -. -, NOS . • •- • . ... . . .. ... .. r.. .' .. '‘. 0 • . .. . . ..; • ' ft; . 10' . . • * ' .. • • . . V ."' • t • ••• - '. . • " . • . . . .: . • . . . . .. . . • . . . . . PFS TEST REPORT #94-27 KYSOR/NEEDEAM 3. Typical failure urethane foam framed panels. -....-- - - --„., -... V : - S =--- . . ..-. -. ,... . . ' S. o p • • . .... . . - - .9 .9-... • i A : 4 / 74. ,P0 ,-1 *P.„4.. . 4* . • . _ ..... - • e• . ,.. ?FS TEST REPORT #94-27 • ... ' •.-,..-4 KYSOR/NEEDF.Ali V". • 4. Unusual failure cam ibefop , . split urethane foam 41 1.4( .‘ • 0 . framed panel. , Nip . i . ,. „..., _ .....:. ..". - *0 . •• 1% . ,, . . - . .. . :,...:-... :,_. • Z . ... . . 7. ,.:' ..... . ' t t :: : ■ . s ' , • ..&E - .., • ' . 1 .. • - - - --- ---gi_r---' TUE EABLER 0(91 wean JD Structural Engineers PROJECT: " ° f4 NO: DATE: PAGE OF __ ) RE: Ii2ANE L TOPS. ENGR: I I Z A T T CHK. _ ____ --------- ___ IIM L — 1111 ■ /- , r . - _ . ----1 - 1 _1_ _ r - _ / . ) - 1 -- — ) 4- 711Y - 2_, 1 M 4 L - 1 ,.,.. --- T II _.. — --L.-- - - - I I _ R I I ouvot tole - lie.air C ei\Loj Fya/vvie _ . . _ 1-- f - --I— 5- 4.s- () . I I - - -1 ____V ----1--- - F -----F- 5111_ ___ l. CONNEC 12.5) T 1 ii I- a____ I- t OW 0I C. -10 Si k ea v• C 1 Y'6 .1 J I _______t_ .._ __ i - - ---- A s- I. Z.7, — -- - - - _ r - ______L___ ____s_ 210)3q_ C5_coNiNta Torz a i 1 - -1-- _ — — ---7-----------1-- ,) _____________ -------- ------------- — --1--- 4 --1, _