Loading...
Specifications (5) 1 S TRUCTURAL CALCULATIONS R ECE VED I FOR MAR 1 7 2008 CITY OF TI3A R.2 • ' - : WINCO NO. 23- ADDITION eullolNG®I It��V I TIGARD, OREGON I . ' . MARCH 7, 2008 • • - - • • • . • I PROJECT # 07034 , 3CT r .&PROpi� # N ,64,0*, 1- i 19 G . %� 4,251 a° Q s TopHER S. * al 1EXPIRATION DATE:I?' I.CS i 1 PREPARED FOR: Petersen- Staggs Architects I 5200 W. State Street Boise, Idaho 83703 I PREPARED BY: r L a pley t ' - 7ngi STAPLEY ENGINEERING 1 8701 W. HACKAMORE DR. BOISE, IDAHO 83709 I OFFICE COPY I . I I I I I I I DESIGN CRITERIA 1 I I PREPARED BY: I � tepleY I I ngineering I STAPLEY ENGINEERING 8701 W. HACKAMORE DR. I BOISE, IDAHO 83709 I Il I 3/16/2007 9:54 AM 8701 W. HackamoreDr. Project : Winco Tigard tapley i I � Boise, ID 83709 Location : Tigard, Oregon ngneering (208) 375 - 8240 I i Project # : 07030 Client : PSA I Design Criteria: Building Classification: (IBC 2003) Design Code: IBC 2003 Category: 2 I Uniform Loads: Roof Dead Load : 20 psf Corridor Live Load : n/a psf Roof Live Load : 25 psf (snow) Partition Live Load : n/a psf I Floor Dead Load : n/a psf Storage Live Load : n/a psf Floor Live Load : n/a psf I Material Properties: Masonry: Structural Steel: Wood Framing: f = 1500 psi W Sections f = 50 ksi Grade: DF #2 I Grout = 2500 psi Concrete: Plates & Misc. f = 36 ksi Fb = 900 psi Tube Steel f = 46 ksi F = f = 2500 psi Glulam: F ° — psi III c = 1350 psi Reinf. Bar f = 60 ksi Grade: 24F -V8 E = 1600 ksi I Seismic Loads: Design Base Shear LRFD ASD S 1.062 1 1.00 V = C W = 0.169 W 0.121 S 0.372 SMS 1.142 Fa 1.08 S MI 0.616 Diaphragms Site Class Fv 1.66 D SDs 0.761 Fp = 0 . 2 * SDS *1 * WP = 0.152 W, 0109 SDI 0.411 Use Group 1 T 0.108 Out -of -Plane Brg and Shear Walls I Design Category D R 4.5 Ts 0.540 T 0.14 p = S F 0.4 * * Ds 1 * W w= 0.304 W 0.217 0 3 Min. C 0.033 Conc./Masonry Wall Anchorage* I Cu 1.4 TO 0.1 C5 0.169 Fp = 0.8 *S *I *W = 0.609 Ww 0.435 Max. C 0.652 p 1.0 Connections ** I F p = 0 * SDs * WP = 0.101 Wp 0.072 *(LRFD =280 plf min. ASD =200 plf min.) * *(not for collector element connections) Soil Bearing: Soil Report : I Report # : Date : I Allowable Bearing : 2000 psf Lateral Earth Pressures Native Backfill Footing Depth : in At rest Coefficient of friction: (pcf) Active (pcf): OT Safety Factor: Passive c Sliding Safety Factor: (p f)' I Soil weight (pcf): I 111 -2 1 . • Project Name = WinCo Tigard Date = Fri Mar 16 09:24:20 MDT 2007 ' Conterminous 48 States 2003 International Building Code Zip Code = 97223 Spectral Response Accelerations Ss and S1 Ss and S1 = Mapped Spectral Acceleration Values ' Site Class B - Fa = 1.0 ,Fv = 1.0 Data are based on a 0.1 deg grid spacing ' Period Centroid Sa (sec) (g) 0.2 1.062 Ss, Site Class B 1.0 0.372 S1, Site Class B Period Maximum Sa (sec) (g) 0.2 1.064 Ss, Site Class B 1.0 0.381 S1, Site Class B Period Minimum Sa (sec) (g) 0.2 1.052 Ss, Site Class B 1.0 0.365 S1, Site Class B Conterminous 48 States 2003 International Building Code ' Zip Code = 97223 Spectral Response Accelerations SMs and SM1 SMs = FaSs and SM1 = FvS1 Site Class D - Fa = 1.075 ,Fv = 1.656 ' Period Sa (sec) (g) 0.2 1.141 SMs, Site Class D ' 1.0 0.616 SM1, Site Class D Conterminous 48 States 2003 International Building Code Zip Code = 97223 ' - 3 - Site Class D - Fa = 1.075 ,Fv = 1.656 • 1 ' Period Sa (sec) (g) 0.2 0.761 SDs, Site Class D 1.0 0.411 SD1, Site Class D 1 1 I I I 1 1 I • ' Stapley Engineering • project : Winco Remodel File :07030 Subject Wind Date : 2/26/2007 111 Location : Tigard, OR Eng. : TV Simplified Procedure - Main Wind Force Resisting System I Design Wind Pressure Components (ASCE 7 -02) I Building Height = 25.33 ft I Roof Angle = 0.00 deg. Basic Wind Speed = 90.00 mph (Figure 6 -1) I Category = II (Table 1 -1) Importance Factor (I) = 1.00 (Table 6 -1) I Exposure Category = C (Open terrain) Enclosure Category = Enclosed Buildings (Constant value) Design Wind Pressure. p, Figure 6-2 - Load Case 1 I Design wind pressures and forces are determined by figure 6 -2 Location Ps30 I Adjustment Ending P (psf) Factor - (psf) Zone A 12.80 1.00 1.35 17.32 Zone B -6.70 1.00 1.35 -10.00 Zone C 8.50 1.00 1.35 11.50 I Zone D -4.00 1.00 1.35 -10.00 Zone E -15.40 1.00 1.35 -20.84 Zone F -8.80 1.00 1.35 -11.91 I Zone G -10.70 1.00 1.35 -14.48 Zone H -6.80 1.00 1.35 -10.00 Eoh -21.60 1.00 1.35 -29.23 Goh -16.90 1.00 1.35 -22.87 I I I I I I � - 5 -1 I • I • Stapley Engineering Project : Winco Remodel .ubject : Wind File : 07030 Date : 2/26/2007 I Location : Tigard, OR Eng. : TV I Simplified Procedure - Components and Cladding Design Wind Pressure Components (ASCE 7 -02) I Building Height = 25.33 ft Roof Angle = 0.00 deg. I Basic Wind Speed = 90.00 mph (Figure 6 -1) Category = II (Table 1 -1) I Importance Factor (I) = 1.00 (Table 6 -1) Exposure Category = C (Open terrain) I Constants: Kz = Velocity pressure coefficient © height z = 0.70 I Kzt = Topographic factor = 1.00 0 Kd = Wind directionality factor = 0.85 G = Gust Factor I = 0.85 Enclosure Classification = Enclosed Buildings I Design Wind Pressure, p, Figure 6 - 3 Design wind pressures and forces are determined by Figure 6 -3 Location Zone Wind Area Pnet30 ( +) Pnet30 ( -) Adjustment I Ending P( +) Ending P( -) I (psf) (psf) Factor (psf) (psf) Roof 1 10 5.90 -14.60 1.35 100 10.00 -19.76 2 10 5.90 -24.40 1.35 1.00 10.00 -33.02 I 3 10 5.90 -36.80 1.35 1.00 10.00 -49.80 Wall 4 10 14.60 -15.80 1.35 1.00 19.76 -21.38 5 10 14.60 19.50 1.35 1.00 19.76 -26.39 Overhang 2 10 -21 - 1.35 1.00 -28.42 - ' _ 3 10 _ -34.6 - 1.35 1.00 -46.82 - I I I I 1 - I , 1 ROOF FRAMING I I M I PREPARED BY: L apley — In � ' STAPLEY ENGINEERING 8701 W. HACKAMORE DR. BOISE, IDAHO 83709 1 1 BY E PROJECT i r.. r DATE /1(4. (r2 Wil aPieY - � - c - i^ ^8 1 SHEET NO. CLIENT 8701 W. HACKAMORE DR. • BOISE, IDAHO 83709 (208) 375-8240 1 I - It 'Or ail r • 1 gi ( 11.1 T,kirt -V Le 4-7-G 1 i x LC rr, r, 'i r 7c -c ' - IAA ' Grp Cw— 71-7 L L P. • r � u' ✓ �✓ 1 i 1 1 ' - I Type HSB -36 High Shear B Deck -36" Wide Verco's New Standard B Deck Acoustical Higher lateral load capacity _ I ....---r" 4 Jr t or i FF: •____H-_-----4; •______=-._,„. _ _ Vertical Webs Perforated With 5 /32" Diameter Holes Staggered x /b" C/C I 6' 13/4' �' /x 3' /x " — :n s Strips in Low Flutes Field Installed � 1 � /x" Absorption Coefficients Noise Reduction I /' 125 250 500 1000 2000 4000 Coefficient 36' ,� _ .60 99 .92 .79 43 23 .80 NRC Determined By Tests In Accordance With ASTM Designation I �,, / C423 Conducted By Riverbank Acoustical Laboratories �� ` ! Perforations do not significantly affect Properties or Shear Values Standard button punch Overlapping side lap available I side lap 24" or 30" wide — special order FACTORY MUTUAL APPROVED: STEEL ROOF DECKS, Class I Fire and 1 -60 or 1 -90 Windstorm Rated (Minimum) I Factory Mutual Approved Spans for HSBFM Roof Deck Weight (Lbs. /Sq Ft.) I +S —S Gage 22 20 18 Gage Prime Painted Galvanized (In (In (In3) Span 6' 1" 6' 7" 7'-9" I 22 20 1 8 Factory Mutual defines span as c• ine to centerline of supports See 1.9 .175 .187 .198 .216 235 .248 "Factory Mutual Approval Guide" for additional information. 2.2 2.3 18 2 8 2 9 .302 322 .335 '� 16 3 4 3 5 .377 .411 .417 VERTICAL LOADS (Lbs. /Sq. Ft.) HSB - 36 and HSB - 36 WITH SHEAR RANZ® PRIME PAINTED OR GALVANIZED I Gage - Span - 5' -0" 5' -6" 6' -0" 6' -6" 7' -0" 7' -6" 8' -0" 8' -6" 9' -O" 9' -6" 10' -0" IA 22 s 114 94 79 67 58 51 44 39 A s 92 69 53 42 34 27 22 19 20 s 143 118 99 85 i 73 64 56 49 44 Simple A 113 85 66 52 41 34 28 23 19 I Span 18 s 196 162 136 116 100 87 76 68 60 54 49 A 159 119 92 72 58 47 39 32 27 23 20 16 s 250 207 174 148 127 111 98 86 77 69 62 I A 198 149 115 90 72 59 48 40 34 29 25 22 s • 120 99 84 71 61 54 47 42 37 70 s 151 125 105 ( 89 77 67 59 52 47 42 38 I Two A — — ' 7Ut1 — — — — — 47 40 34 Spans 18 s 204 168 141 121 104 91 80 70 63 56 51 A — — — — — — — — 56 48 I 16 s 254 210 176 150 129 113 99 88 78 70 63 A — — — — — — — 70 60 22 s 150 124 105 89 77 67 59 52 46 I A — — 100 79 63 51 42 35 30 20 s 188 156 131 I 112 96 8 74 65 58 52 47 Three or A — — 124 97 78 63 52 44 37 31 27 More - I Spans 18 s 255 210 177 151 130 113 99 88 79 71 64 173 136 109 89 73 61 51 44 37 A — 16 s 317 262 220 188 162 141 124 110 98 88 79 A — — 216 170 136 111 91 76 64 54 47 I See page 14, item 1 - 9 -r to use this table. VERCO MANUFACTURING CO. • II ECONOMICAL JOIST GUIDE Combined K, VS, LH & DLH Series Load Table I Allowable Joist Allowable Joist Loads PLF Joist Allowable Allowable ads(PL Joist • ( ) Weight Joist Loads (PLF) Joist mot, �r'/ TYP Total Live (IbsJlt.) Type ( ) lbs ight Joist Loads (P i v) Weight I Type Loads YP Total Live (IbsJh.) Type Total Live (IbsJft.) TYPe Total (PLF) Weight 1.- .. _ ... Live . _.. -. (IbsJft.) 32LH11 580 343 23 ;.. 36LH12 660 441 25 36LH9 418 256 18 36LH13 776 517 28 - !' „ 36LH14 855 568 31 — d ' .m• ` 36LH15 902 598 33 36LH10 461 283 21 ,i i , .- , • 333 190 14 36LH11 503 308 22 30K12 350 199 14 36LH12 602 367 25 32LH8 411 255 16 I 36LH9 477 333 17 i 36LH13 708 430 30 36LH10 526 368 18 " 32LH14 713 374 33 "' 36LH14 780 472 34 36LH11 I 574 400 21 36LH9 434 275 18 36LH15 822 497 36 32LH11 625 385 23 I 36LH12 687 477 23 36LH13 807 559 28 36LH10 477 304 20 36LH14 890 615 30 36LH11 521 330 22 32LH11 36LH15 , 938 647 32 522 292 24 .I I; , , i , 36LH72 624 394 25 30K12 330 177 16 1.1 ,:: ,.:'I 36LH13 734 462 29 36LH9 450 296 18 - 36LH14 809 507 32 I 32LH9 463 270 19 36LH15 852 534 34 36LH10 496 327 19 36LH11 541 356 21 I " , 1 .,, I ' el: I. . - ,I l 36LH12 647 424 25 !, i.. 36LH13 761 498 28 e. 36LH14 839 547 91 i. 36LH15 885 575 34 1 l I i 32LH9 391 208 ' i1"` f- 1 . 30K11 320 179 14 :.;; i i 36LH10 454 273 21 - 30K12 343 192 15 36LH 11 495 297 22 28LH7 352 186 16 36LH12 593 354 25 32 8 397 242 16 36LH13 697 415 30 36LH9 468 320 17 ;:.:1•, 36W10 354 19 36LH14 768 456 35 36LH11 563 385 21 '_ i 36LH15 809 480 36 I 32LH11 602 363 23 36LH12 673 459 24 36LH9 426 265 18 t,..'i 36LH13 791 538 28 ;l 32LH13 801 480 36LH14 ;.- 872 591 31 36LH15 920 622 33 I, , 36LH10 469 293 21 rs. 36LH11 512 319 23 n _ 36LH12 613 380 25 I 36LH9 442 285 18 32LH9 447 256 19 36LH13 720 44 5 30 " 36LH 10 486 315 19 ' '" '' 32LH14 738 395 33 I 361H11 = 36LH12 531 343 635 409 22 361H14 794 489 34 36LH15 837 515 35 32LH9 379 198 19 - 25 440 260 20 1 36LH13 747 479 29 i. 36LH10 : 36LH11 480 283 23 36LH14 824 527 32 36LH12 575 338 25 36LH15 868 554 34 36LH13 675 395 30 I 28K12 325 165 15 30K12 336 184 15 36LH14 755 434 35 28LH7 339 176 16 36LH15 795 464 36 32LH8 383 229 16 36LH9 459 308 18 i I 361J-t1O 505 340 19 36LH11 552 370 21 I NLJC to - l 111 V ULCRAFT - GROUP ' r 1 I WALL DESIGN I I I I PREPARED BY: 1 tapley ngineenng ' STAPLEY ENGINEERING 8701 W. HACKAMORE DR. BOISE, IDAHO 83709 -11- -&) PROJECT ( ve■ BY. b ineefing DATE • SHEET NO. CLIENT 8701 W HACK Op DR. • BOISE, IDAHO 83709 (208) 375-8240 r e" _ — •c•:.:60 - 0 _ kJ.:' au. 6 \,r_ Syr tc " - 4 ' ( r e Cc e- I Stepley Engineering Title : Job # 8701 W. Hackamore Dr. Dsgnr: Date: 2:51PM, 16 MAR 07 Boise, ID 83709 Description I 208 - 375 -8240 Scope : i Rev. 580001 _ - -- -� User. KW- 0602481. Ver 580, 1.Doc -2003 Slender Masonry Wall Page 1 I (c)1983 -2003 ENERCALC Engineering Software • > rr wino tigard remodel.ecw Calculations `. Description Bearing Wall Design I General Information Calculations are designed to 97- UBC /03- IBC /03 -NFPA Requirements Wall Height 21.33ft I'm 1,500.0 psi Thickness 8.0 in fy 60,000.0 psi I Rebar Size 6 Wall Wt Multiplier 1.00 Rebar Spacing 24 in Medium Weight Block Rebar Location Center Fr = 2.5 • (f m)^ 5 2.50 Solid Grouted Seismic Factor 0.217 I !Loads Vertical Loads... Wind Load (full height) 26.40 psf Uniform Eccentric Load... Lateral Loads... Dead Load 576 00 #/ft I Live Load 625.00 #/ft Point Load 0.00 lbs Eccentricity 2.00 in @ height 0.00 ft Roof Seismic Concentric Load... Distributed Load 0.00 #/ft I Dead Load 0.00 #/ft Dist. to Top 0.00 ft Live Load 0.00 #/ft Dist. to Bottom 0.00 ft Roof Seismic Summary 1 Wall Design OK I 21.33ft high, 8.00in thick w/ #6 bars at 24.00in on center at , MedWt Block fm = 1,500.0psi, Fy = 60,000.0psi, Special Inspection Req'd, Solid Grouted Factored Load Bending : Wind Load Governs Service Load Deflection : Wind Load Governs 0 Maximum Iterated Moment • Mu 30,098.42 in -# Maximum Iterated Deflection Deflection Limit 1.172 in Moment Capacity 39,102.93 in # 1.792 in Seismic Wind Mn • Phi . Moment Capacity 39,102.9 in-# 39,102.9 in-# I Mu: ( 0 .9D +1.0E),(1.2D +1.3W +f1'L +.SLr) 18,500 5 in # 30,098.4 in -# Mu: (1 2D +f1'L +1.OE),(1 2D +1.6Lr +.8W) 18,500.5 in -# 18,807.3 in -# Overstress Precentage 0.00 0.00 Allow Deflection: 0.007 • Height 1.792 in 1.792 in I Max Iterated Service Load Deflection 0.274 in 1.172 in Actual Deflection Ratio 934.1 218 5 Actual Reinforcing Percentage 0.0048 0.0048 Allowable Max. Reinf. Percent = 0.5 *Rho Bal 0.0053 0.0053 I Actual Axial Stress : (Pw + Po ) / Ag 15.44 psi 15.44 psi Allowable Axial Stress = 0.04 • fm 60.00 psi 60.00 psi P -Delta Analysis - - -- • I Factored Load Analysis Seismic Wind Basic Moment without P -Delta 16,862.89 in-# 24,737.99 in-# Basic Deflection without P -Delta 0 78 in 1 69 in Moment in excess of Cracking Moment 5,604.06 in-# 13,479.16 in -# I Max. Iterated Wall Deflection 0.97 in 2 32 in Max. Iterated Wall Moment 18,500.46 in-# 30,098.42 in -# Service Load Analysis Seismic Wind Basic Moment without P -Delta 12,127.21 in -# 18,592.76 in-# I Basic Deflection without P -Delta 0.23 in 0.98 in Moment in excess of Cracking Moment 868.38 in -# 7,333.94 in -# Max. Iterated Wall Deflection 0 27 in 1.17 in Max. Iterated Wall Moment 12,512.99 in -# 20,242.15 in -# I I I - 1 3 - I Stapley Engineering Title : Job # 8701 W. Hackamore Dr. Dsgnr: Date: 2:51PM, 16 MAR 07 • Boise, ID 83709 Description I 208 - 375 -8240 Scope : 1 Rev User. 580001 - - -- - - - - -- - - -- - -- - -- - -- - - -- - - - -- , KW � 2 - 0602481,Ver580, 1- Dec -2003 Slender Masonry Wall Page : -! I (c)1983-2003 ENERCALC Engineenng Software Des . r .., wince Tigard remodel eLw•Galalahons Description Bearing Wall Design I [Load Summary Vertical Load Summary... Lateral Load Summary... DL @ Max. Mom Loc. 1,407.87 lbs 1.3 • Wind Load 34.32 psf LL @ Max. Mom Loc. 0.00 lbs 1.7 • Wind Load 44.88 psf 0.9 • Dead Load 1,267.08 lbs Seismic Factor ' Wall Wt. 23.70 psf 1.05 'Dead Load 1,478.26 lbs 1.43 'Seismic Weight 33.89 psf 1.275 * Live Load 0.00 lbs 1.87 • Seismic Weight 44.31 psf • I Wall Weight 78.00 psf Rebar "d" Distance 3.81 in Wall Weight' Seismic Factor 23.70 psf [Analysis Values I Phi 0.80 Mn = Phi • As -eff * Fy • (d -a /2) Equivalent Solid Thickness 7.60 in Wind 39,102.93 in-# Gross Area 91.20 in Seismic 39,102.93 in-# A -steel 0.22 in2 Em = 900 ' fm 1350000.00 psi I As - Percent 0.0048 n = 29E6 / Em 21.48 As- Effective = (Pu + As ' Fy) / Fy Fr = 2.5 • (f m) ^.5 96.82 ps As -eff :Wind 0.245 in2 Sgross 116.28 in As -eff : Seismic 0.245 in2 Mcracking = Sgross * Fr 11,258.83 in I 'a' : Compression Block I -Gross 443.32 in4 'a' : Wind 0.96 in I- Cracked - Wind 43.53 in4 'a' : Seismic 0.96 in I- Cracked - Seismic 43.53 in4 Phi: Wind 0.800 Phi: Seismic Rod 0L =576.0. LL =6281 0Esc =200m 0 Sketch & Diagram r I I -0 20122psl -0 22ps1 •26 411 . . 1 - I 21 ]3R Seismic Factor = 0 217 Fy = 60 000ps, NI = 1,500psi - - I" Using #6 @ 24 00,n I Thick = 6 00in i -0 22PS1 1 26 4psf t Seismic Load Wind load I I I - 14 - � „. �- _ . . ' , - • ii I Stapley Engineering T itle : Job # 8701 W. Hackamore Dr. Dsgnr: Date: 6:22AM, 7 MAR 08 Description : Boise, Idaho 83709 S - Z LEY ph. 208 - 375 -8240 Scope : 4 4 . E °' "` fax: 208- 375 -8257 ' Rev 580001 I User KW-0602481, Ver580, 1- Dec -2003 Slender Masonry Wall Page 1 L I . (c)1983 -2003 ENERCALC Engineering Software : �� - wilco tiger.] remodel ecw Calculations Sd,: £17.1 1,..,sunt^s Z:ss3t..v;.34Y .r.5 .....- -,,, .¢ 1122S..1*29.T,, £:2'.�.a ' dS_.,,,,R,,INC,.. -7,[ Sid' .17..., ...J:a � iZL392 ,,,vs=C.s.st.L'Ir..GS17,,,z.R'* PV3...3SI.; Descri Bearing Wall Design GA - o // q L c .-8 HT = 2 z.33 ' General Information Calculations are designed to 97 UBC /03- IBC /03 NFPA Requirements I 117-3r ...a .... 3.ny�l t ,.,,.. sti r ' 14: ,,..., .M. ',...a..... • 5 w+. :.. 7:. .- 4 Wall Height 23.33ft I'm 1,500.0 psi • - Thickness 8 Din fy - 60,000.0 psi - I Rebar Size 6 Wall Wt Multiplier 1 00 . Rebar Spacing 24 in Medium Weight Block Rebar Location Center Fr = 2.5 ' (fm) ^.5 2.50 Solid Grouted Seismic Factor 0.217 - . Loa ds R ' T � Loa t Vertical Loads... Wind Load (full height) - 21.00 psf Uniform Eccentric Load... Lateral Loads... Dead Load 576.00 # /ft • I Live Load 625 00 #/ft Point Load 0.00 lbs Eccentricity 2.00 in @ height 0.00 ft Roof Seismic Concentric Load... Distributed Load 0 00 #/ft Dead Load 0.00 #/ft Dist. to Top 0.00 ft I Live Load 0.00 #/ft • Dist. to Bottom 0.00 ft Roof Seismic' 07 Summary a e_,2 . Wall Design OK I 23.33ft high, 8.00in thick w/ #6 bars at 24.00in on center at , MedWt Block Pm = 1,500.0psi, Fy = 60,000.0psi, Special Inspection Req'd, Solid Grouted Factored Load Bending : Wind Load Governs Service Load Deflection : Wind Load Governs 0 Maximum Iterated Moment : Mu 30,338.30 in-# Maximum Iterated Deflection 1.320 in Moment Capacity 39,289.33 in # Deflection Limit 1 960 in Seismic Wind Mn * Phi : Moment Capacity 39,289.3 tn-# 39,289.3 in-# I Mu: (0.9D +1.0E),(1.2D +1 3W +f1 *L +.5Lr) 23,280.5 in-# 30,338.3 in # Mu: ( 1 .2D +f1'L +1.0E),(1.2D +1.6Lr +.8W) 23,280.5 in-# 18,705.0 in -# Overstress Precentage 0.00 0.00 Allow Deflection: 0.007 • Height 1 960 in 1.960 in I Max Iterated Service Load Deflection 0.740 in 1 320 in Actual Deflection Ratio • 378.2 212 0 Actual Reinforcing Percentage - 0.0048 0.0048 Allowable Max. Reinf. Percent = 0.5 ' Rho Bal 0.0053 0.0053 I Actual Axial Stress : (Pw + Po) / Ag 16.29 psi 16.29 psi Allowable Axial Stress = 0.04 * fm 60.00psi 60.00 psi I P Delta Analysis e T' ,,5.,. R,,, :4 o7,- . -..... ,,,,,,,,?= mFx,.. Sr.,,,,,e,... .,.. ..7..,..,. Y ,a,....srm, _£'.fi•..- ,,,,z,,...,, VAIN rn, -.., ... :. .. -.r: r :...1,,,,, a....'... .?0..., FF. •,,, f.,:- ,,,, I Factored Load Analysis Seismic Wind Basic Moment without P -Delta 20,037.73 in-# 23,604 82 ink Basic Deflection without P -Delta 1.37 in 1.86 in Moment in excess of Cracking Moment 8,778.91 in-# 12,346.00 in-# Max. Iterated Wall Deflection 1.82 in 2.80 in I Max. Iterated Wall Moment 23,280.53 in -# 30,338.30 in-# Service Load Analysis Seismic Wind Basic Moment without P -Delta 14,394.95 in-# 17,721.09 in-# ' I Basic Deflection without P -Delta 0.59 in 1.05 in _ I Moment in excess of Cracking Moment 3,136.12 in-# 6,462.27 in # Max. Iterated Wall Deflection 0.74 in 1.32 in • Max. Iterated Wall Moment 15,494.99 in-# 19,683.05 in-# I I ,. I - 1 5 - Stapley Engineering Title : Job # lib 8701 W. Hackamore Dr. Dsgnr: Date: 6:22AM, 7 MAR 08 • Boise, Idaho 83709 Description : I : STAPLEY ph. 208 - 375 -8240 Scope : fax: 208 - 375 -8257 Rev' 580001 User KW-0602481 Ver5.B.0.1- Dec-2003 Slender Masonry Wall Page 2 t • (c)1983 -2003 ENERCALC Engineering Software wino tigard remodel ecwCalalat,ons .Y. ?::..- :vJ; -'a.>. : 1' - _'... ni.': ".v:A:v.� ::'.• -i:A_. ......1 .:.� <S-lS: VI.: SI.. JL� ".Y:x�;i:{::..:4L'vtl.'.fv -.. .l.. .C.w:.;�. 4. #2e1- .^^5..�.: L, �e•_..._K..rl:�;,.+. -G.F ,.P..4 - ....Jt � .. I.0 _ . :. �Y- .xiCl_:.:.33i:e .vS^ - Description Bearing Wall Design: I I I Load Summary • µ . Vertical Load Summary... Lateral Load Summary... . DL @, Max. Mom Loc. 1,485.87 lbs - 1.3 ' Wind Load 27.30 psf LL @ Max. Mom Loc. 0.00 lbs 1.7 ' Wind Load 35.70 psf 0:9 * Dead Load 1,337.28 lbs Seismic Factor' Wall Wt. 23.70 psf 1.05 `bead Load 1,560.16 lbs 1.43' Seismic Weight 33.89 psf 1.275' . 0.00 lbs 1.87' Seismic Weight 44.31 psf . Wall Weight ' , _ . 78.00 psf Rebar "d" Distance 3.81 in Wall Weight ' Seismic Factor 23.70 psf - Analysis Values • ,,ncca_r, -, zc, ,s,,,,,-c.- su_.e, ,,,,.. x,74sa n _ . •- ,, . .. , ,-^s ...E_rria ,,,,,_i,. a.:;.7ca:_ :,mow•,. ti_isss z::_sr ,A..14 -¢ '•a acne.^ w,, rr.,:..,- ,..4• .v,r.- .•alsn ,e Phi 0.80 Mn = Phi ' As-eff ' Fy ' (d -a /2) I. Equivalent Solid Thickness 7.60 in Wind 39,289.33 in-# Gross Area 91.20 in Seismic 39,289.33 in-# A -steel 0.22 in2 Em = 900 ' I'm 1350000.00 ,psi I As - Percent 0.0048 n = 29E6 / Em 21.48 As- Effective = (Pu + As ' Fy) / Fy . Fr = 2.5 ' (fm) ^.5 96.82 ps As-eff : Wind 0.246 in2 Sgross 116.28 in As -eff : Seismic 0.246 in2 Mcracking = Sgross ' Fr 11,258.83 in , 'a' : Compression Block I -Gross 443.32 in4 I a' : Wind 0.96 in 0.96 in I- Cracked - Wind 43.66 in4 'a' : Seismic I- Cracked - Seismic 43.66 in4 Phi: Wind 0.800 Phi: Seismic Roof 0L= 5760 U. 605 C Ecc= 200m Sketch 8 Diagram I. -1122(100 61 -0 22ps1 -21 r� y 23 ]311 • f� + • Seisms Factor = 0 217 • 1-.- Fy = 60.000ps1 . fm = 1.500psi Using 06 6 24 00m - • • Thick =BOO,n - ' • i I - 22psr - •41ps1 O Seismic Load 14/Ind Load I I I - 16- . I., Stapley Engineering Title : ,lob'# • 8701 W. Hackamore Dr. Dsgnr: Date: 2:51PM, 16 MAR 07 • ' Boise, ID 83709 Description 1 . 208 - 375 -8240 Scope: I Rev: 580001 - -- User. KW- 0602481,Ver580.1 -Dec -2003 Slender Masonry Wall Page 1 (c)1983 -2003 ENERCALC Engineering Software winco tigard remodel ecw:CaIalalions I Description Non Bearing Wall Design General Information _ Calculations are designed to 97- UBC /03- IBC /03 -NFPA Requirerrieilts• a• • - Wall Height 21.33ft fm 1,500.0 psi Thickness 8.0 in fy 60,000.0 psi I Rebar Size 6 Wall Wt Multiplier 1.00 Rebar Spacing 24 in Medium Weight Block Rebar Location Center Fr = 2.5 ' (fm) ^.5 2.50 Solid Grouted • Seismic Factor 0.217 Loads Vertical Loads... Wind Load (full height) 26.40 psf Uniform Eccentric Load... Dead Load 70.00 #/ft Lateral Loads... Live Load 75.00 #/ft Point Load 0.00 lbs M Eccentricity 5.25 in @ height 0.00 ft Roof Seismic Concentric Load... Distributed Load 0.00 #/ft Dead Load 0.00 #/ft Dist. to Top 0.00 ft Live Load 0.00 #/ft Dist. to Bottom 0.00 ft • Roof Seismic 1 Summary Wall Design OK I 21.33ft high, 8.00in thick w/ #6 bars at 24.00in on center at,, MedWt Block fm = 1,500.0psi, Fy = 60,000.0psi, Special Inspection Req'd, Solid Grouted 0 Factored Load Bending : Wind Load Govems Service Load Deflection `Wind Load Governs Maximum Iterated Moment : Mu 26,009.51 in -# Maximum Iterated Deflection 1.064 in Moment Capacity 37,885.25 in -# Deflection Limit 1.792 in Seismic Wind Mn • Phi : Moment Capacity 37,885.2 in-# 37,885.2 in-# • I Mu: ( 0 .9D +1.0E),(1.2D +1.3W +f1'L +.5Lr) 17,306 3 in # 26,009.5 in-# Mu: ( 1 .2D +f1'L +1.OE),(1.2D +1.6Lr +.8W) 17,306.3 in-# 15,741.6 in-# Overstress Precentage 0.00 0.00 I Allow Deflection: 0.007' Height 1 792 in 1.792.in Max Iterated Service Load Deflection 0 207 in 1.064 in Actual Deflection Ratio 1,237.3 240.5 Actual Reinforcing Percentage 0 0048 0 0048 Allowable Max. Rent. Percent = 0 5 • Rho Bal 0 0053 0.0053 I Actual Axial Stress : (Pw + Po ) / Ag 9.89 psi 9.89 psi Allowable Axial Stress = 0.04 ' fm _ 60 00 psi 60.00 psi P -Delta Analysis - I Factored Load Analysis . Seismic Wind Basic Moment without P -Delta 16,392.19 in-# 23 839.16 rn # . • Basic Deflection without P -Delta 0.74 in 1 62 in Moment in excess of Cracking Moment 5,133 36 in-# 12,580.34 in-# Max. Iterated Wall Deflection 0.84 in 1.88 in Max. Iterated Wall Moment 17,306.30 in-# 26,009.51 in -# Service Load Analysis • Seismic Wind - • Basic Moment without P -Delta . 11,734.96 in-# 18,200.51 in-# I Basic Deflection without P -Delta 0.18 in 0.95 in. Moment in excess of Cracking Moment 476.13 in -# 6,941.69 in # Max. Iterated Wall Deflection 0.21 in 1.06 in Max. Iterated Wall Moment 11,921.53 in-# 19,160.31 in-# I I I _1 Stapley Engineering Title : Job # 8701 W. Hackamore Dr. Dsgnr: Date: 2:51 PM, 16 MAR 07 Boise, ID 83709 Description I 208 - 375 -8240 Scope : Rev: 580001 - - - -- _ _ User. xw -0602481. Ver58.0, 7 -Dec -2003 Slender Masonry Wall Page 2 ' I (c)1983 -2003 ENERCALC Engineering Software wmco Tigard remodel erw.Calalatons Description Non Bearing Wall Design Load Summary -- - Vertical Load Summary... Lateral Load Summa DL @ Max. Mom Loc. 901.87 lbs Summary... 1.3 Wind Load 34.32 psf LL © Max. Mom Loc. 0.00 lbs 1.7 'Wind Load 44.88 psf 0.9 'Dead Load 811.68 lbs Seismic Factor • Wall Wt 23.70 psf 1.05 'Dead Load 946.96 lbs 1.43 ' Seismic Weight 33.89 8 p sf P 1 275 • Live Load 0.00 lbs 1.87 • Seismic Weight 44.31 psf I Wall Weight 78.00 psf Rebar "d" Distance Wall Weight' Seismic Factor 23.70 psf 3.81 in [Analysis Values I Phi 0.80 Mn = Phi • As -eff • Fy • (d -a /2) 1 Equivalent Solid Thickness 7.60 in Wind 37,885.25 in-# Gross Area 91.20 in Seismic 37,885.25 in-# A -steel 0.22 in2 Em = 900 ' fm 1350000.00 si I As - Percent 0.0048 n = 29E6 / Em P As- Effective = (Pu + As • Fy) / F (fm)^.5 96.82 ( Y) Y Fr = 2.5 ' 96.82 ps As-eff : Wind 0.236 in2 Sgross 116.28 in As-eff : Seismic 0.236 in2 Mcracking = Sgross • Fr 11.258.83 in 'a' : Compression Block I -Gross 443.32 in4 I 'a' : Wind 0.92 in I- Cracked - Wind 42.68 in4 a' : Seismic 0.92 in I- Cracked - Seismic 42.68 in4 Phi: Wind 0.800 Phi: Seismic Roof 0 L = LL =75 mg = 525m 0 Sketch & Diagram I -0 80aps1 -0 22p01 .26 4 .51 I II I ' 1 i 21 338 • ' Se,sm,c Factor = 0 217 I Fy= 60.00005. , fm = 1.500ps4 • ' Using 06 @ 24 004n I Thry =BOOm ' • I -0 22051 46 apsl • Sesma Load Wind Load I I - 18 - BY 41A PROJECT -1-1 ye 6aFdey in ine l) DATE (( SHEET NO. CLIENT 8701 W. HACKAMORE DR. • BOISE, IDAHO 83709 (208) 375-8240 ( z \ ,.r• 4 -- 7 L i4 • - C 2 00 1/__ 7 "11._ 1 4 Li /./C I I - 19 - — ,--•.. , PROJECT - "N ' t y -{ \-: - k- - . l� n I gineering DATE 7 .7 (I lr,� ('G"} �a SHEET NO. v CLIENT � 8701 W. HACKAMORE DR. • IDAHO 8370: i .. _ - -- .. __.— - -•— -- ------ - -- --- -- - - - - ---- (208) 375 —= - -- -- -- -- i 6x1 B earinc P Iaie �iesl_► I I Check Bending 1 t ' t =1" • F = 0.75(36) = 27ksi S = (1.0) = 1.0in' I bt , • 0= = t - = (0.5)'= 0.2.5 6 ! mom = 27(1.0) = 370004 —in I M < F = 27(0.25) = 667504 —in = 2700 W' =1653 16.33 LP (7)2 W (7) I 2 - - M = 6 = 16.33w W. < . M � 1?_5(1653) = 20.6k 16.33 I IV — 6750 =413/ 16.33 m I (14) • P =W( —)+ (14)+ _ 12.SW =5.lk t =11 - 4 s - = 1_56 t.- 5. 8 • M27(1.56) = 42,1884 —in I S = (0.625) = 0.3906 _ 42188 W ox — = 75834/ 16.33 1 to M.27(0.3906)•= 10547# —in 1.1 = 32.2 k l� — 10547 = 646 4 . max 16.33 in I R= 12.5(6.46) =7.7 t= 3 4 n � S = (0.75)` = 0.5625in �� I M max= 27(0.5625) =151884—in �� yP = 15188 = 93„,.,..y . - - /J 1 max n 16.33 R = 12.5(930) . =11.6 k I I Property of Stapley Engineering - -20- DATE (; ! G bPley I (-7-4-0 �'Ci ngineering SHEET NO. CLIENT ` - r L, 8701 W. HACKAMORE DR. • BOISE. IDAHO 837 (208) 375 -8240 • Check Masonni B ea ri ng ------ - -- - -- F =0.26f in • 1" Inspected F Non - Inspected I - 1500 390 P ^ 19j Psi / 2 3404in 1170;` in 2000 • 520 Psi 130.in 260 Psi/ 660 R ma: OLDS) I t 1500 Inspected 2000 ( I 1600 Nan - Inspected • 2000 '72" I 51 6/0" I 5'1 5.1 5.1 %„ 7.7 7.7 11.6 7.7 I 11.6 11.6 11.6 1 It I 20.6 20.6 4.6 • � � 19.5 1/ 29.2 32 1.4.6 - 19.5 • 0 Check Shear I F,, = 0.40F, = 0.40(36) =14.4 ksi - F;.A 14.4( x 6) . . I TT - _ - . = 28.8 k m� 1.6 1.6 • R = 2x1 7 =57.6 k)R m ., wok . I I . I • 1 • I Property oI Stapley Engineering I - - 21- • I. � LATERAL DESIGN PREPARED BY: r 'IIeWeY ngineenng 1 STAPLEY ENGINEERING 8701 W. HACKAMORE DR. BOISE, IDAHO 83709 �I ' zz .. . • .• . ' I BY t -.• PROJECT — 71 .,-.•• t -k ,..-, topley DATE ngineering I SHEET NO. CLIENT 8701 W. HACKAMORE DR. • BOISE, IDAHO 83709 (208) 375-8240 I - L--;1 • - ■.■ -.. ..-•:.,- I ‘, • ..+- 1 J.' -1 . -- z.-.." ' /4 I 1 1 , / I ..4 ,., .., I I -- . P • A V , II< A 6 v .\ 1 7(; , - - 1 1 X P. I &- cif I r e- 0 ‘. /A I "GC ":- /-:-::'-. \ -.( I ti01 , '^: ( ii . / CZ • --; :•'---, q \ .‹, - •: 7 \ I - . -,.,. . v t, 1, ,- - 4 -._ \ - I S 7 \ -- -3 . •."--, -v ' ( CO t 7 " 1r '' env= "I r:c \ - 2: ( , -v- I It 0 \0(7- --.', 7 - 7 - 3 .11, ON/ :•-• a,i-k (z-k.-,(1:: Ab.. I l--7(t/..7 k 1 6 ‘'.-"i t'k." r:' • •-•€--- I I I . BY , PROJECT s ILW in .ng l) . DATE !(.2 SHEET NO. CLIENT 8701 W. HACKAMORE DR. • BOISE, IDAHO 83709 (208) 375-8240 -X (..- -=-,(-; - . O. 1 2- I -■• Arr. C (i k v. C. 1111 LA- kj, V(--c 1 \ e 3- IF-A .t2Cr‘ ((V- P ye.) -7 v-- C z7 ;,-7 . =:].;1.- - • 06-46 I Type HSB-36 II DIAPHRAGM SHEAR VALUES (q) (Lbs/L.F.) AND FLEXIBILITY FACTORS (F) PRIME PAINTED OR GALVANIZED -.... . I pan , Side Lap - ::\v.40.r; ge .i: - 6'-0" T-0" 8 I Connection -:- --.--_- ..:... ;i x.: : --.44b.:. - ....',44:9 - , - , .7-; '3,7Q - -.;*. 340 - 220 . - BP @ 24" c/c F 6 5.0 + 6.9+ 6.1+ 8.4+ 7.5 10.3+ 9 3+ 124+ 11.4+ 14.9+ 13 8+ 155.9R 56.18 1308 46.8R 1118 40.18 97.4R 35.18 86.6R 31.2R 77.9R 28 1R I BP @ 12" c/c 9,_---- . :...'... t. , -•. - •=r480...:- . ...3 . 011; ,.. /1611.;. -300 _ :.-;40 . - 290 430 • 290 400 - 280 -.. 360 F 5.0+ 4J + 6 0+ 5.7+ 7.3+ 6.9+ 8.7+ 8.4+ 104± 10.1+ 12.4+ 122+ 155 9R 56.18 1308 46.8R 1118 40.18 97.4R 35.18 86.6R 31.2R 77 9R 28 18 22 . 1 - : . - - . 4 . - A0 -:;_ :-:- :430 : --. 510 • . , 1500. ; 420 - 490 410 490 380 480 I TSW @ 24" c/c F 5.8+ 5.3+ 6.3+ 5.8+ 6.5+ 6.-i- 6.6+ 6 5+ 6 6+ 6 8+ 6.6 + 69+ 15598 56.1R 1308 46.8R 111R 40.18 97 4R 35.1R 86.6R 31.28 77.9R 28.1R 0 , . ..4600,. , :.:§q - - 600 .:: =zoo- :-630 - = ::.: - 700 690 740 660 - ,760 TSW @ 12" c/c 52+ 5.1 5.3+ .2 5.31 5.4+ 5.2+ 5.4+ 5.1+ 5.4+ 5 0 + 5.4+ I F 155.9R 56.1R 130R 46.8R 111R 40.1R 97 4R 35.1R 86.6R 31.2R 77.9R 28.1R - • c i • .:- - ..IPT.; 67. .9 7. '4 :. 1 :9: 1 -- ,'4 6 9'.: ' --- '.. :1,50 470 : 320 420 290 380 BP @ 24" c/c _ F 5.7+ 4.5 + 6.6+ 5 7+ 8.2+ 7 2+ 10.2+ 9.0+ 12.5+ 11.2+ 15 1 + 13.7+ 90.08 32.4R 75R 27R 64.38 2 . 56.3R 20 311 50R 18R ' 45.0R 16.28 :i_git V. I or g 12" ‘,/, - 0 -. . .: ;',.". - ,::-...mik: '..- 1 ::16911:r ....-.:4*. job , ,,:-„. ._ 420 530 380 480 350 440, F D..3 + 4.13 + 5.9+ 5.4+ 72+ 8.8+ 8.3+ 107+ 10.1+ 12 8 + 123+ 90.0R 32.4R 75R 27R 64.3R 23...2R 56.3R 20.38 508 18R 45 OR 16 2R 20 -- 0 . - ,46261._ - -'.1,90 : ..:;;540 ;• - - - - 520 . 610 540 610 520 610 I TSW @ 24" c/c F 5.4+ 4.9+ 5.9+ 5.4+ 6.2+ 5 6 3+ 6 2+ 6.3+ 6.4+ 63 + 6 6+ 90 OR 32.4R 75R 27R 64.3R 23.2R 56 3R 20.3R 508 188 45 OR 16.2R 0 - - - . `-:itg 74r::::-`'EP3t 5 '-- '.420 -860 j 880 900 .. 880 _ .666 • TSW @ 12 c/c F 4.9+ 4.6+ 4.9+ 4.8+ 4.9+ 5.0+ 4.9+ 5.1+ 48± 5.1+ 4.6+ 5 1+ I 90.0R 32.4R 75R 27R 64.3R 23.2R 56 3R 20.3R 508 18R 45 OR 16 2R ,-- -)- 0 . :, -F-= - h. :•.r,f(I4 7.,..',§:f1,0F.: . )- - 0.2;,.. , e5 - 18:614 - :: abily --: Top ,....: z•.63 . 59011 400- . • - ••Ag0y BP @ 24" c/c F 5.3 -I- 4.5+ 62+ 5.3+ 7.9+ 6.8+ 10.0+ 8.7+ 12 5+ 10.9+ 15.3+ 13.6+ 7.fo i BP @ 12" c/c 38.2R 13.7R 31.8R 11.4R 27.3R 9.8R 23.8R 8.6R 21.2R 7.69 1 9 . 0 g .1R 6.9ft. - .- - -.--. : iTyTiT - '5ciir:'1 7 7g651 7 ,VT-T6V:1 - -Holi - . .., :- ''t ...: .500. 640', ._ 450 ' : 580 ‘ F 5.0 + 4.4+ 5.7+ 5.0+ 7.2+ 6.4+ 90+ 8.1+ 11 1+ 10.2 + 13.6+ 12.6+ ,. 38.2R 13.7R 31 8R 11 4R 27.3R 9.8R 23.8R 8.6R 21 2R 7.6R 19.18 6.98 A .". . c 1 ;; --: :1 :,730 830 ; '- '756 ./4810:', I TSW @ 24" c/c F 4.9+ 4 3+ 5.5+ 4 9+ 5 8+ 5.4+ 6.0+ 5.8+ 6.0+ 6.1+ 6 0+ 6.3+ 38.2R 13.7R 31 8R 11.4R 27 3R 9.8R 23 8R 8 21.2R 7 6R _ 19.18 6 18 - -''"-- •9 . - ---..:':-:;' - -iiii 2 g*i.. 3 1 7 1).=:t4PgiF,5i'l.g. 1 - 2 i;:** ROE - ‘:...t , .Q§02- - - , -. , ;q* ,.-_. 81 930 - 7 - : •;870 • SSW @24" c/c F 6.7+ 6.1+ 6 1 + 5.3 + 5 + 5.2 + 5.7 + 5 5.5 + 4.9 + 5.4 + 4.8 + I 38.2R 13.7R 31.4R 11.3R 26.9R 9.7R 23.58 8.5R 20.9R 7 5R 18.8R 6.8R q ---,-: - ' ii,i-110;.(0 f:::fig; , .:50.70:3; :qiji:t_ii,':' .40;g6 • . 1 i 54 ; 4160 11.90 • • 1250 1280 TSW @ 12" c/c F 4.4 + 4.1+ 4 5+ 4.4+ 4 5+ 4.6+ 4.5+ 4.7+ 4 4+ 4.7+ 4.3+ 4.7+ 38.2R 13.7R 31 8R 11.4R 27.3R 9.8R 23.8R 8.6R 21.2R 7 6R 19.1R 6.9R I SSW @ 12" c/c , 0 . - 1 570.1- - , --,t1660.i -1390 • - 4 1 5 p.. • 1330 • 1 460 - - 1280 1390 1240 1340 - F .-.., ..-..},.............4..._ ....t .....,..-.0,, 1 . !,....,......,.` a .5 - - , a : --. 5.4 + 5.1+ 4 7+ 4.5+ 4.5+ 4.4 + 4 3+ 4.2+ 4.2 + 4.1 + 4.0 + 4 0+ 38.2R 13 7R 31.4R 11.3R 26.9R 9.7R 23 5R 8.5R 20.9R 7.5R 18.8R 6.8R I q - 100 1 ., :-820 . - -110: g ii o. , --- Asso. .620 840 550 750 500 680 BP @24" c/c F - 5.4+ 4 5+ 60+ 5 7.8+ 6.5+ 99+ 85+ 125+ 108+ 15.5+ 135+ 19.5R 7.0R 16.2R 5.88 13.9R 5.0R 12 2R 4.4R 10 8R 3 9R 9 7R 3.5R .0 . . . 1(11'.4. 1 - ,,;:,,941k„ ;; ;, - 1;8:1.._, .i.Ze . .890. 610 800 560 - 720 I BP @12" c/c F 5.1+ 4.4 + ' 5.5+ 4.8+ 7.2+ 6.2+ 9.1+ 80+ 11 4+ 10.2+ 14.1+ 12.8+ 19.5R 7.0R 16 2R' 5.8R 13.9R 5.08 12.2R 4.4R 10 811 3 9R 9 7R 3.5R - i 0 . - Ala' -1440 - . 71970 -: - 1:2. - 2 - 0i 920 112T '100 - 1070 910 1040 930 1040 TSW @ 24" c/c . F 5.0+ 4 4+ 27- 4.6+ 576+ 5.1+ 5 8+ 5 5+ 5.9+ 5.9+ 6.0+ 6.1+ I 16 q - SSW @ 24" c/c 19.5R 7.0R 16.2R 5.8R 13.9R 5.0R 12.2R 4.4R 10 8R 3 9R 9.78 3.58 "i4fiii..: _ 1890 " 142 1780 1310 10 68 1240 1520 1180 1440 1140 1370 F 4.9+ 4 4 + 4.S+ 4.0 + 4.2 + 3 9 + 4.0 + 3.8 + 3.9 + 3 8 + 3.8 + 3.7+ 19 5R 7 OR 16 1R 5.8R 13.8R 5.0R 12.1R 4.38 10.7R 3.9R 9.7R 3.5R I 0 TSW @ 12" c/c F 4330 1590 1280 1460 . 1&) . T1420 1350 1430 1420 1470 1520 1540 4.5 + 4 + 4.3+ 4.1+ 4.44- 4.34- 4 3+ 4.5+ 4.3+ 4 6 + 4.2+ 4.6+ 19.5R 7 OR 16.2R 5_8R 13.9R 5.0R 12.2R 4 4R 10.8R 3 9R 9 7R 3.5R 0 2150 - 2420 . .2020 2410 7100: - - 1860 - 2180 1810 2110 . 1780 2060 I F SSW @ 12" c/c 3 8+ 3.7+ 3.6+ 3.4 + 3.5 + 3.3 + 3.3 + 3.2 + 3.2 + 3 2 + 3.1 + 3.1+ I 19.58 _ 7.0R 16.18 5.8R 13.8R 5 OR 12.1R 4 3R 10.78 3.9R 9.7R 3.58 WELD PATTERN TO SUPPORTS I • • • • _ - 2 5 - • • . • •Fli- 5 _„ . .. VERCO MANUFAC9 .1;0. BY . PROJECT - DATE ls� 1 �1 oPley t, �(.' ng SHEET NO. CLIENT 8701 W. HACKAMORE DR. • BOISE, IDAHO 83709 (208) 375-8240 (L f I L. C = �� �� �� r i �' z \ . \ 1 • `� o .l� z 1, 4. O I �r { A • 9 1 I I 1 1 1 - 26- I BY . -- A) PROJECT 1 i ., f rf) V ( .1 l play i DATE n ing . -1 -'7 , ,h;.- I -,--„,;-a t-----47-3-z-) I SHEET NO. CLIENT -1:.7' 8701 W. HACKAMOFtE DR. • BOISE, IDAHO 83709 (208) 375-8240 • A ■..‘.. 6-\Acv ci 6 C- I "" ,-).- •-z C , ( :.,,-....,...-.3., --..- - -. /...--i- 1 l •,, ., ( I z fi . I C I ( -. ' ! I I. GL- z b I U . V- I V k-a i ( lv r • f ' "IR - C- .; _!...- C- L- I t■. Cll,... .; , r , ./ % _)-- •:-, .c... ,. „._.,.,...:,,.,,...: ..=.,_ 1 -r--_ v- - e 111 0 ,,, . .( ,.. I -IF (Ai-2c- e li....A2(j T-- .ft-- - 4 1- k 0 6- 4. ,%. -se_ I li 1 - c% "7 W. C. -- 111 0 cui c 1. 0 Z Z', :- , ks -- ' Cc(r I 7 (-) I . I I I CMU EMBED PLATE DESIGN 3/16/2007 3:35 PM Designer: BW Project: WinCo Tigard Remodel Member: Bearing Wall 5 Load Cases IF • 1. - DL-+ LL 2. - DL + VLAT Parallel to Wall (Roof Diaphragm Shear) 3. - DL + VL Perpendicular to Wall (Anchorage Forces) 1VIinimum Plate Dimensions . 1 a =' - 3 i e R • © - I` L= 6 in 4 , = 1/2 in 8" T� LAT a l = 4.625 in O �■m.—.._ I Ab 0.20 i 4" lb VLAT WDL = 0 plf wLL = 0 plf q = 88 plf roof shear F = 523 plf anchorage force (per p p g (p IBC 1620.2.1) s = 2 ft spacing of embed plates it fm= 1500 psi Fy = 60000 psi yeild strength of anchor I Anchor Capacities • Bvm 1450 lbs = 350 *(A * (ACI 530 2 -5) I or B = 1414 lbs = 0 * Ab * F y (ACI 530 2 -6) V 1414 lbs = smaller of B„ and B Btm = 1301 lbs . = 0.5 *A *(fm) n (ACI 530 2 -1)' • Ap = 67 in = n *1 , . - . (AC1 530 2 -3). • or I . B = 2356 lbs = 0 . 2 * Ab * F y (ACI 530 2 -2) Tali = 1301 lbs • = smaller of B and B I • - 1 (c) STAPLEY ENGINEERING I - 28 - Z: \Standard Calculations \CMU embed plateABC.x!s j_i Designer: BW 3/16/2007 Project: WinCo Tigard Remodel 3:35 PM I Member: Bearing Wall I t CASE 1 - DL + LL R TR = 0 lbs _ + 0.00 < 1.0OK I 2 *V ale Tau T = (R *e) /L = O lbs • CASE 2- DL + Vr A T • (RDL2 +VLAT2)0.5 + TDL = • 0.07 < 1.33 OK RDL = 0 lbs • 2 *V Tau TDL = (RDL *e) /L = 0 lbs V LAT = 176 pif It CASE 3 - DL +T AT R DL + T DL +T I = 0 27 < 1.33 OK RDL - 0 lbs I 2 * Va Tau TDL = .( *e) /L = 0 lbs TLAT = 1046 lbs I 1 RDL + T2 = Tl = 2 *TLAT /6 = 349 lbs 2 * Nall T all 0 80 < 1.33 OK T 2 — — LAT — T 1046 lbs Angle Design M = w *e = O lb - in 11 Fb = 0.75F = 27000 psi e } w • ( —/ `min = ( t,) 5 = 1/4 in A 1' A = 0.000 in • M = w *s /10 = 0 lb - in USE L 4x4x1/4 Fb = 0.60F = 21600 psi I Smin = 0.00 in Attachment of Angle to Plate V V all = 0.930 *4 *3 *2 *4 /3 = 29.8 kips L I Vapplied = 0.1 kips < Vail OK T I • Tapp lied = 1.05 kips < Vall OK 1/4 1 I (c) STAPLEY ENGINEERING I 29 - Z: \Standard Calculations \CMU embed plate IBC.xls ' 1 CMU EMBED PLATE DESIGN 3/16/2007 I 3:36 PM Designer: BW Project: WinCo Tigard Remodel I Member: Non Bearing Wall Load Cases I 1. -DL+LL 2. - DL + VLAT Parallel to Wall (Roof Diaphragm Shear) I 3. - DL + V LAT Perpendicular to Wall (Anchorage Forces) Minimum Plate Dimensions I e= 3 in e R L = 6 in © • � = 1/2 in 8" T LAT l = 4.625 in O I.__ I IN_ Ab — 0.20 in2 4 " 1 I WDL = 60 plf -, b r V LAT wit = 75 plf I q = 516 plf roof shear F = 523 plf anchorage force (per IBC 1620.2.1) s = 2 ft spacing of embed plates fm= 1500 psi F = 60000 psi yeild strength of anchor I Anchor Capacities B yrn = 1450 lbs = 350 *(Ab * fm) ' /4 (ACI 530 2 -5) I or B „s = 1414 lbs = 0.12 *Ab *Fy (ACI 530 2 -6) I V a ii = 1414 lbs = smaller of B„ and B I Btm = 1301 lbs = 0.5 *Ap *(fm)I (ACI 530 2 -1) A = 67 in = n *i (ACI 530 2 -3) or I B t. , = 2356 lbs = 0.2 *Ab *Fy (ACI 530 2 -2) T ail = 1301 lbs = smaller of B and B I I I (c) STAPLEY ENGINEERING I I - 30 - Z: \Standard Calculations \CMU embed plate IBC.xls Designer: BW 3/16/2007 Project: WinCo Tigard Remodel . 3:36 PM I Member: Non Bearing Wall CASE 1 - DL + LL I ' R + _ T _ R = 270 lbs 0.21 < 1.0 OK p ; • 2 *Vau Tau T = (R *e)/L = 135 lbs • • CASE 2 - DL + Vr AT • ' R 2 +V 2 o.s I DL *v AT) + TDL = 0.45 < 1.33 OK RDL _ 120 lbs • au Tall TDL = (RDL * e)/L= 60 lbs V LAT = 1032 plf II CASE 3 DL +T AT R DL + TDL +Ti RDL = 120 lbs * = 0 <1.33OK I 2 V Tau TDL = (RDL * e) /L = 60 lbs TLAT = 1046 lbs I RDL + T2 = = 0 < 1.33 OK T' 2 *T = 349 lbs 2 * V all Tall T2 = TLAT = 1046 lbs I Angle Design M =w *e= 341b -in I Fb = 0.75F = 27000 psi e 1 w I '•min = (6 *M/Fb)o 5 = 1/4 in A = 0.007 in ' „„=„s2,10= 648 lb - in USE L 4x4x 1 /4 Fb = 0.60F = 21600 psi Smin = 0.03 in • . . Attachment of Angle to Plate • 1 II IV V a l1 = 0.930 *4 *3 *2 *4 /3 = 29.8 kips . • I V app1ied = 1.04 kips < Vall OK T +---- L • Tapplied = 1.05 kips < Vall OK 1/4 V3" I . I (c) STAPLEY ENGINEERING I : - 31 - Z: \Standard Calculations \CMU embed plate 1BC.xls I BY • PROJECT N (; E0 aPlaY ngin • DATE 7/ \'\ (& ' � ' �' < r � ing I SHEET NO. CLIENT ''%!i` 8701 W. HACKAMORE DR. • BOISE, IDAHO 83709 (208) 375-8240 - k" I i I , , ➢; P P 0 . 1 N h 12.- 7L - `k ( .e� & ry�'\C�I c I L.L, r L.•- ._ (I \z.rz ,z \C -C.: 7 L.,- 1 Q • •©,-c7 C_Z C z 0.(f - 7,A a XG Nc I A T 1. 1 w L Cr ' . 0'C- - '— c- ',_7_,,.::---AA G 1 I I I. I - 3 2 - we me NE um ow MI Ns me ma we NE me mg EN um HJ • • T Y ° N13 N18 . I■17 1 N9 N16 . I■111 I ig ( 4.) 414 417 415 4 415 Solution. Envelope Stapley Engineering WinCo Tigard Moment Frame . _ . . . BW Mar 20, 2007 at 10:15 AM 07030.00 [moment frame r3d I= IN I= MN NM NM • MI • MI MO MI I= OM MI 11•11 11•11 MI MS T Y ----_— -- I M17 M10 M23 M11 M12 M13 M20 M14 M15 I 1 — I I I c.1 (. g E R g 1 I Lo M18 M24 M6 M7 M8 M21 M9 I 1.11. ... .. AL AL AL • AL A. Solution Envelope Stapley Engineering VVinCo Tigard Moment Frame BW Mar 20, 2007 at 10:15 AM 07030.00 moment trame.r3d EN IN. No NE =I wis am mil NE ill Ns Is =I ma I= NE NE los NE - - - - • - - - • - - — — . - - - .-- - - - - -. -- - - - . - - - --- - . _ . _ . I y - -- - - - --- - -.84k/ft _- 84k/ft - 84k/ft - 84k/ft - 84k/ft - 84k/ft - 84k/ft - 84 KM - 84k/ft 111 I I 1 ■ 1 • 11 d111 I WWI I I I 1 i 1 1 1 I I I I I 1 ■11/ /II \1/1/1/j/1/11/1/LA/VJA/Vii // \l/VIVV \i/V1 1 LLI/Vili \I4 \l/V4Ali \IA '' `14 \ i'‘1 \i/VIAll \l/\i/ \14 \IA/ \ IA Al/ \i/\1/ \1A1/ ‘14 \l/ \l/ \III \l/ \ / \l/ - 9k/fl -_9k/ft 9k/ft - 9k/fl - 9k/f _ :. 91 - 9k/ft - I - , . '' ." , - I 1 I i i l ; 1 I 11 I I ! 1 i \ AAA/VV\ AMA) AAAAN \AA A AA ' \ AAA /VVVV \ Aj V \ \ A/ ,04/ \ , W,Iii ` I; \ :,T-, \NA Al, A. Ai\ , ( co ( oi I Loads: BLC 1, DL Solution* Envelope Stapley Engineering WinCo Tigard Moment Frame __ _. _ __. • Mar 20, 2007 at 10:17 AM 07030.00 moment frame r3d 111.-- EN =I No I= ow as I= NE Ns Ili NE Ns INE I= I= me No T y - -1.05k/ft -1 05k/ft -1 05k/ft -1.05k/ft -1 05k/ft -1 05k/ft -1 05k/ft r.rrini. 05Ift_ -1 05k/ft _ LAA • LA AAAAAAAA •••AAA•A • ••A •AA AA '` • A A \ AAA \ \• c •A• &NAP Ch Loads. BLC 2, LL Solution Envelope Stapley Engineering WinCo Tigard Moment Frame BW Mar i672007 at 10:17 AM 07030.00 moment __ frame.r3d ________ . _ - - - MI 1.111 MO INII • MI MO NM me ill I= Ell MN IIIN MI • • I= NM _ ._ __. _ _ _ _ _ . _ . . ___ . . ._ . . . _ .___. _ . . _ .___ ____ ____ ....._ _ I - T Y til..X • ----- --- -- 1 I i 25.1 I I lip k lipk p 25.1k p 251k 2poik 210 O I 1 _1 1 I I I A. ( \I Loads: BLC 3. EQ Solution Envelope - . - ------ Stapley Engineering WinCo Tigard Moment Frame ! BW Mar 20, 2007 at 10:17 AM _ .... 07030.00 moment frame.r3d . _ I Company : Stapley Engineering Mar 20, 2007 Designer : BW 10:19 AM Job Number : 07030.00 WinCo Tigard Moment Frame Checked By: I Joint Coordinates and Temperatures __ Label X [ft] Y [ft] Z [ftl Temp [F] Detach From Diap. ' 1 N1 71.5 • 0 0 0 I 2 N2 108.5 0 0 0 3 N3 142.5 0 0 0 4 N4 188 I 0 I 0 0 5 N5 222 0 0 0 I 6 I N6 0 25 0 • 7 ! N7 71.5 25 0 0 8 N8 108.5 25 0 0 9 1 N9 142.5 1 25 0 : 0 I 10 11 N10 N11 I 188 I 222 25 25 I 0 0 0 .___ I i 0 12 I N12 265.5 25 0 0 13 N13 21 25 0 ! 0 14 I N14 21 I 0 I 0 0 _ 15 N15 I 165.75 0 0 I 0 16 N16 I 165.75 1_251 0 ._ I 0__ 17 N17 46.25 + 0 0 0 I 18 L_ N18 46.25 I _ 25 I 0 I 0 �_. —_ I Member Primary Data Label I Joint J Joint K Joint Rotate(deg) Section /Shape Design List Type Material Design Rules ', 1 I M1 N1 ! N7 I COLUMN1 Wide Flange' Beam ' HR STL I Tvpica I I 2 I M2 I N2 I N8 I COLUMN1 Wide Flange Beam I HR STL I Typica 3 M3 N3 • N9 COLUMN1 Wide Flange I Beam ' HR STL ; Typica I 4 I M4 I N4 N10 COLUMN1 Wide Flange Beam I HR STL I Typica 5 ' M5 I N5 I N11 COLUMN1 Wide Flange, Beam I HR STL I Tvpica ' 6 7 M6 Ni N2 GRADEBEAM None Beam IGEN_CO... Typica M7 N2 N3 GRADEBEAM None Beam ! GEN_CO.. Typica - 8 : M8 N3 N15 GRADEBEAM None Beam IGEN_CO... I Typica 9 M9 N4 N5 GRADEBEAM None Beam IGEN_CO... Typica I 10. M10 I 11 M11 N13_ . I N18 . BEAM1. Wide Flange Beam HR STL Typica N7 I N8 BEAM1 Wide Flange Beam ' HR STL Tvpica 12 _ I M12 I N8. ___ N9 _ _ ._ BEAM1 Wide_Flange I Beam I HR STL Typica 13 ! M13 N9 I N16 BEAM1 Wide Flange I Beam I HR STL I Typica I 114 I M14 I N10 I N11 I BEAM1 Wide Flange I Beam I HR STL I Typica 15 M15 N11 1 N12 I BEAM1 Wide Flange � Beam � HR STL i Typica � 16 M16 I N14 I N13 I COLUMN1 (Wide Flange I Beam HR STL I Typica - I I 17 18 M17 N6 i N13 beam2 Wide FlangeI Beam I HR STL Typica M18 N14 I N17 GRADEBEAM • None I Beam IGEN_CO... Typica 19 M19 N15 I N16 , COLUMN1 Wide Flange! Beam ! HR STL Typica 20 I M20 I N16 N10 BEAM1 Wide Flange I Beam I HR STL I Typica I 21 22 M21 ! N15 N4 I GRADEBEAM None I Beam IGEN_CO..I Typica I M22 I N17 I N18 COLUMN1 Wide Flange I Beam I HR STL I Typica 23 ' M23 N18 i N7 BEAM1 Wide Flange! Beam ' HR STL' Tvpica 1 24 I M24 I N17 I N1 I GRADEBEAM None I Beam IGEN_CO... I Typica Hot Rolled Steel Properties I 1 Label E [ksil G fksi] Nu Therm ( \1 E5 F) Density[k/ft"3] Yield[ksi] , HR STL I 29000 11154 .3 .65 .49 50 i I 2 I HR_CONCRETE 3500 I 11154 I .3 .65 I .49 I 46 1 3 : HR3 I 29000 i 11154 I .3 .65 RISA -3D Version 5.5 [X: \07030 \calcs \moment fray^ 3 g'l Page 1 r Company : Stapley Engineering Mar 20, 2007 Designer : BW 10:19 AM Job Number : 07030.00 WinCo Tigard Moment Frame Checked By: 1 I Member Distributed Loads (BLC 1 : DL) Member Label Direction Start Magnitude[k/ft,d..End Magnitudefk /ft,d... Start Location[ft, %] End Location[ft, %1_ 1 M10 ' Y -.84 ! -.84 I 0 ! 0 I 2 I mu 1 I Y -.84 I -.84 I 0 I 0 ' 3 M12 Y -.84 ! -.84 0 0 4 I M 13 I Y -.84 -.84 I 0 I 0 5• M14 Y -.84 -.84 1 0 ! 0 I 6 M 1 5 I Y -�84 �84 I 0 I 0 i 7 M6 Y -.9 -.9 0 0 -1 M7 Y -.9 _ -.9 0 0 9 i M8 Y - ' -.9 -.9 i 0 0 M9 1 1 M17 Y -.84 ! 84 0 0 12 I M20 _) - Y -.84 - 1 -.84 0 0 13 i M21 Y -.9 -.9 ! 0 0 I 14 I 15 M23 M24 Y ' _ -.84 -.84 -.9 I 0 0 0 - 1 Y -.9 ! 0 16 I M18 I Y - -- -.9 -.9 I 0 - -� 0 I I Member Distributed Loads (BLC 2 : LL) Member Label Direction Start Magnitude[k/ft.d...End Magnitude[k/ft,d... Start Location[ft, %] End Location[ft261_ ! M10 Y -1.05 -1.05 i 0 ! 0 I i 2 I M11 I Y -1.05 -1.05 0 I 0 3! M12 ! Y 1 -1.05 -1.05 0 I 0 4 M13 I Y I -1.05 -1.05 0 I 0 I 5 M14 ! Y -1.05 -1.05 0 I 0 I 6' M15 Y -1.05 -1.05 0 I 0 7 M17 I Y ; -1.05 -1.05 0 0 8 M20 Y I -1.05 -1.05 0 0 I I 1 9 M23 Y I -1.05 -1.05 0 0 _- Joint Loads and Enforced Displacements (BLC 3 : EQ) I Joint Label L.D.M Direction MagnitudeLk,k -ft in,rad k's ^2 /ft]_ 1 1 N13 L X I 25.1 ' •'2 I - N18 - - L - • X • - • - - - - -- 25. :1=- - - - - -- - - I 3 N7 L ----- X -- 25.1 N8 1 L X 25.1 - 5 1 N9 L X 25.1 6 N16 L X 25.1 1 7 N10 L X 25.1 _ - I Load Combinations Description So. P.. S... BLCFac..BLCFac..BLCFac..BLCFac BLCFac ..BLCFac..BLCFac..BLCFac. 1 1 DL 1Yesi ' ' 1! 1 ! I I 1 I I 1 ! I I i . 2 I LL IYes I 1 2 I 1 I I I I I I I i I I 3 ! EQ !Yes, Y I ! 3 I 1 r ! i I 1 ! I ! i I 4 I -EQ IYes Y 3 -1 ` I I 1 I I I 5 1 .9DL +EQ :Yes! Y! ! 1 i .9 . 3 1 1 '; I ! . 6 I .9DL-EQ IYesI Y 11 I .9 3 -1 I i I ! I I I . 7 DL +LL I' 1 ' 1 1 2! 1 ` I ! ! 8 I 1.2D +0.5L +3.08E 1 � 1 11.2 2 .5 1 3 3 1 1 T I I I I I RISA -3D Version 5.5 [X: \07030 \calcs \moment fray^39 - Page 2 r Company : Stapley Engineering Mar 20, 2007 Designer : BW 10:19 AM Job Number : 07030.00 WinCo Tigard Moment Frame Checked By: 1 I Envelope Joint Reactions Joint X [kJ Ic Y [k] Ic Z fk] Ic MX 1k-ft] Ic MY [k -ft] Ic MZ jk IC ' 1 i N3 max 1 23.371 1 4 1 57.027 i 6' 0 ' 1 1 0 . 1 1 0 • 1 ' 0 1 1 I I I 2 min - 24.848 5 - 11.607 1 3 I 0 1 1 I 0 11 1 0 1 0 1 3 N4 , max, 25.195 • 6 I 55.448 ; 5 0 1 0 1 1 0 1 i 0 1 1 4 I I min I -23 991 1 3 I -10 039 14 I 0 1 1 I 0 1 1 0 Ti I 0 1 1 • 5 N5 I max 16.419 1 4 64.228 , 5 0 ' 1 0 1 0 1 1 0 1 I 1 6 I min - 16.984 I 5 - 16.724 I 4 I 0 I 1 I 0 . _j_ 0 � 1 I 0' 1 1 7 Ni I max 24.233 1 6 I 59.957 1 5 ' 0 1 1 ' 0 11 0 1 0 1 I 8 I min - 22.767 I 3 I- 10.273 14 I 0 11 I 0, 1 I 0 1 0 1 • 9 N2 I max l 21.443 i 4 63.882 ! 1 0 ' 1 i 0 1 i 0 1 1 0 : 1 I 10 I min I -22.232 I 5 1 -1.879 13__]__ 0 I 1 1 0 1 I 0 11 I 0 1 11 ! N6 •maxi 0 : 1_I 11025 ' 2_ 0 1 • 0 1 I 0 1 I 0 1 1 12 I min I 0 1 1 0 4 T 0 -- Fr! 0 11 0 11 _ i 1 . I 13 1 N7 'max' 0 1 1 0 1 0 1 i 0 11 i 0 .; 1 i 0 : 1 ' 14 min 0 11 0 L1 f_ 0 0 0 0 0 1 0 ii 15 ' N10 maxl 0 ' 1 1 0 1• 0 • 1 , 0 1 1 0 1 1 0 1 i 16 min 0 0 0 0 0 1 0 1 0 0 0 1 1 I 17 ; N14 max 19.083 ' 6, 56.711 1 6. 0 1 0 ;___1 0 11 0 1 18 ® - 17.534 © - 30.993 © 0 0 0 0 0 0 0 1 I 19 N 12 max 0 1 1 1 18.02 ' 2: 0 • 1 , 0 1 1 0 , 1 0 i 1 20 ® 0 0 -1.573 4 0 in 0 0 0 1 0 1 1 I 21 22 N13 max 0 ' 1 0 1 1 1 0 • 1 0 1 0 0 0 i 1 111111 0 0 0 0 0 0 0 IN 0 IN 0 1 23 N15 max 24.767 14 1 35.229 11 , 0 i 1 0 0 0 1 0 1 II 24 min - 25.237 © -1.025 © 0 0 0 0 0 IN 0 1 25 N17 25.442 4 46.831 1 5 ' 0 1 1 0 l 1 0 1 0 1 26 ®- 26.309 © -6.899 4 0 0 0 0 0 0 0 1 27 N9 WEI 0 0 0 1 I 0 11 0 0 0 11 0 0 I 28 ® 0 0 o 0 0 0 0 0 0 0 29 Totals: �R- 175.7 4 403.92 1 I 0 1 � -� � 30 ® -175.7 © 0 © 0 0 -� -� - MI I Envelope Joint Displacements Joint X in Ic Y in Ic Z in c X Rotation . Ic Y Rota ion ... Ic Z - otation .. Ic 1 N1 max 0 3 1 0 4 i 0 : 1 I 0 i 1 0 1 1.436e -3 4 2 min 0 6 0 5 I 0 11 I 0 11 0- 1 -1.702e-3 5 ' 3 N2 max 0 1 5 0 3 0 1 I 0 1 0 1 1.687e-3 I 6 4 min 0 4 0 (1 I 0 11 0 1 1 0 1 -1.618e-3I 3 1 I 1 5 N3 max 0 5 0 i i i 0 1 I 0 1 1 0 1 1.455e -3 6 6 min 0 14 0 16 0 1 I 0 1 0 1- 1.312e -3 3, 7 N4 max_ 0 I 3 1 0 ' 4 0 11 I 0 1 0 1 1 1.139e-31 4 8 I min 0 1 6 I 0 1 5 I 0 1 1 I 0 1 0 . 1 - 1.492e -3I 5 I i 9 1 N5 max 0 I 5 1 0 1 4 1 0 1 0 1 0 I 1 3.453e -3 6 1 1 0 min 0 4 0 5 11 0 I 1 I 0 I 1 - 2.583e -3 3 11 N6 maxi 1.326 5; 0 i 4 0 ; 1 I 0 ' 1 I 0 1 1 11.235e-51 3 I 12 - I min -1.304 . 4 I 0 - 1 2 I 0 11 I 0 1 1 1 0 1 -2.169e-3 1 2 I . 13 , N7 1 max 1.321 5! .001 1 4 0 1 1 ; 0 i 1 I 0 1 1 1.32e -3 ! 4 14 1 min -1.299 4 1 -.007 1 2 I 0 1 1 I 0 1 0 1 1 -1.543e-3I 5 15 N8 max 1.316 ' 5! 0 3 0 ' 1 1 0 1 1 0 1 1 11.511e-31 6 ' 116 I min -1.295 14 I -.008 1 2 I 0 11 0 1 1 0 I 1 - 1.458e -3 3 i 17 I N9 'max 1.31 1 5 1 .001 i 3 i 0 1 0 1 0 1 1 1.363e -3 6 18 I min -1.29 4 -.006 I 2 I 0 1 1 I 0 1_ 0 1 -1.226e-3 1 3 I i 19 ! N10 I max 1.303 1 5! .001 ' 4 ! 0 , 1 i 0 ! 1 i 0 1 1 1 1.184e -3 1 4 I 201 min -1.282 I 4 I -.006 1 2 I 0 1 0 1 I _ 1 - 1.234e -3 5 21 N11 max 1.296 5 .001 ! 4 0 1 0 ! 1 I 0 + 1 , 1.674e -3 4 1 122 , min - -1.275 4 1 -.0'1 1 2 I 0 1 1 0 1 1 0 1- 2.456e -3 5 1 I RISA -3D Version 5.5 [X: \07030 \calcs \moment frarr _ 4 - 0 1 Page 3 I Company : Stapley Engineering Mar 20, 2007 , Designer : BW 10:19 AM I Job Number : 07030.00 WinCo Tigard Moment Frame Checked By: Envelope Joint Displacements (Continued) I Joint X [in] Ic Y [in] _ Ic Z [in] Ic X Rotation _,Ic Y Rotation _ Ic Z Rotation I. Ic 23 N12 • max 1 1.296 1 5. 0 ; 4 , 0 1. 0 , 1 0 . 1 ! 3.548e -3 2 24 min -1.275 4, 0 2 0 0 0 1 0 11 I- 8.229e -4 4 i I 25 - 1_2_6__ j_ N 13 maxi 1.326 1 5' .003 3 1 0 1 1 0 1 0 112.021e-31 4 min I -1.304 14 _I -.006 1 6 1 0 1 1 f 0 1 1 1_11_ 1 1 I- 2.28e -3 5 • 27 • N14 max ! 0 1 3 1 0 f 3 1 0 ! 1! 0 • 1! 0 . 1 ! 2.143e-3 4 28 1 min 0 1 6 1 0 { 6 0 1 _L_ 0 1 1 I 0 1 1 - 2.45e -3 5 I 29 1 N15 - 'maxi 0 1 5 0 1 3 0 1 0 1 0 1 1.151e-31 6 1_39_ _ _ min 0 4 0 0 0 1 0 1 1_1 0 .L 1 L1.109e -3 3 ' 31 N16 !max 1.306 1 5 i 0 i 3 i 0 ; 1 0 • 1 0 ! 1 1 1.046e -3 4 32 L_ min -1.286 1 4 I -.004 L 0 1 1 I 0_ 1 1 _l0 1 1 - 1.076e -3 5 33 N17 maxi 0 5 0 ! 4 • 0 1 0 1: 0 1 1.142e -3! 6 34 _ I min 0 �� 0 15 0 11 i_ 0 1_1 J 0 _DJ - 1.068e -3 3 35 __ N 18 1 max' 1.323 5 1 0 4 0 1 _ 0 1 0 1 1 1.071 e -3 6 LL 1 min -1.301 T4 1 -.005 [ 2_ I 0 « 1 1 0 J 0 J- 1.019e -3 3 Envelope AISC ASD Steel Code Checks I Member Shape Code C.. Loc[f ] Ic Shear C . Loc[ft]_._ Dir Ic Fa ksi] Ft [ksiJ Fb vim_[.. Fb z -z L. Cb Crnv. Cmz ASD Eqn 1 , M1 1 W 14X176 .335 1 25 1 6' .072 ' 0 i y' 6 :26.757 . 39.99 '49.987 39.99 1 ..3+ .6 .85 i H1-2 2 M2 1W14X176 .314 25 5 .066 0 1 y 15 26.757 39.99 149.9871 39.99 12.3 .6 .85 H1-2 I • 3 M3 i W14X176 .342 25 15 .074 0 ' v 1 5 26.7571 39.99 149.9871 39.99 12.3 .6 1.85 H1 -2 I 4 M4 1 w14X176 .350 0 6 .075 0 I y 6 26.7571 39.99 49.9871 39.99 2.3 .6 .85 H1-2 1 5 : M5 W14X176 .271 25 6 .051 0 I v 5 26.757 39.99 149.9871 39.99 2.3 .6 .85 H1 -2 6 I M10 W21X122 .270 0 6 .076 25.25I y 5 18.365 39.99 149.987 39.99 2.3 :6 .85 H2 -1 I 7 M11 i W21X122 .252 37 5 .077 37 I v 2 8.579 39.99 1 49.987 39.99 2 .. .6 .85 H1 -2 8 I M12 W21X122 .250 0 6 .072 0 y 2 10.159 39.99 49.9871 39.99 2.... .6 .85 H2 -1 1 9 M13 , W21X122 .240 0 6 .066 0 y 6 20.903 39.99 49.9871 39.99 2.3 .6 .85 H2 -1 10 M14 I W21X122 .318 34 5 ' .080 34 y 2 10.159 39.99 149.9871 39.99 - 2.. .6 .85 H1 -2 I 11 M15 1W21X122 .307 0 2 .106 0 v 2 4.656 30 1 37.5 ! 30 1.... .6 .85 H1 -2 12 I M16 W14X176 .273 25 6 .057 0 y 6 26.757 39.99 49.9871 39.99 12.3 .6 .204 H1 -2 13 i M17 W16X67 .300 10.5 2 .085 0 v 2 14 114 30 37.5 19.847 1 1 .6 1 H1-1 14 I M19 W14X176 .345 25 5 - .075 0 y 5 26.757 39.99 49.987 39.99 2 - .6 .2 H1-2 I 15 M20 16 M22 W21X122 .232 22.25 5 .067 22.25 v 5 22.116 39.99 49.987 39.99 2.31 .6 .85 H1 -2 1 W 14x176 .364 25 5 .078 0 y 5 26.757 39.99 49.987 39.99 2.31 .6 .201 H1-2 , 17 1 M23 , W21X122 .245 25.25. 5 .065 25.25 y 5 18.365 39.99 149.987 39.99 1231 .6 .85 H1 -2 I I I I I I RISA -3D Version 5.5 [X: \07030 \calcs \moment fray_ 4-jJ' Page 4 I BY r.> PROJECT 1 t r ' DATE 9(- - I mo- y . y- Mi I SHEET NO. CLIENT %' 8701 W. HACKAMORE DR. • BOISE, IDAHO 83709 (208) 375-8240 I .4( 1 1 'C71,kk•(1_,.. L l%., G' UJ- t fir... .J, r r" 'r,yr t: .. I I \ L. T \(.::. % t,-- Flt.' I 1,-- - ' 1CJtw .. C , I 4 I '14 Z .\ Z- (_ IF --G- ‘,-,, I LA C,-- G.P• 1 • `.I I,i� ( I.I \ ,( '9v - 4 t.r ( V \ ? I 4Z '&Z kc'l,— V im ' ( 1C\ (t M . ' l ' - l 1 7 ' - k V K y ` ( 1 \ V . - - . k L\ k l , ( \i - ( \ LA i t,. 2 jr, G \ Z ‘k•-•-- .. C.1 k.': I z l-l \tc- L �.L ! O %C.Z0 \G \v,� 7 � UZ�I \� \■� • 1 t.k - 0 0 (V. k ( • I ' \ 6 t L '\` - b 1�•\,._•� yam_.( �\c ° ' - Y - L� lit` t r�i-t" . L' t Ii9 (tc_ 4 41' 4' 4 -Le '' \ If ii 1/ - _ / ' (10 (k.r. Z‘. ..k.------.C\L- I 1` 2 (i 1 4 1 ‘. k t \._. . , lJl ‘ - \ LA.— I I - 4 2 - I BY _ 0 PROJECT — I\ r n v F • DATE - 4--- , ! f t I i23 J - rapky y i) ng in eer in g I SHEET NO. CLIENT 'f A- ` 8701 W. HACKAMORE DR. • BOISE, IDAHO 83709 (208) 375 -8240 I P', rA),1 C \; k .1 • 4 v OAP- f. v v....e.-C- C O a,- 4-rN -7 -z,�, Lt, � L i ,,, ` Ie43 r ZC, - LvZ tcl LI ; --I- . itL I LtJ= \, -\ 1 1 }z Y 'Jj,` ∎1 ,.__ I t '-b-4 t t."- -_ L r ( I i ( 1 L,-- k \ Q . , ,- ' 1 -\ .- I l--. i L . - f D _- ca d t x 1 { act-/V Z =F 1 \_,___A-( 0 ,a1rf• ,� ic e , (- • 1 ,,� = G ›(: S Z I w Gl , - z -E - L \ ‘.- - 1 .el - 4 , 1, z Zr- ' ■ \,,___ I Z 1`'- I .6 .x.. �l 1,. _ A; verik ,f tti (,..(0.(,) "c ,( 6 (e w - t- I 'C = (y ,i (Zfl 1 ' 1 4' t 1A- � ` sicg Z I 6,-1 (o.c2`l X' � > , Z7 - 'f c ` ` � � „ ZC .1 el , •,i. `\2 I f 1 `1 , �� L 4 0 e .( 6`� r C9U vL of ei - Z- 1 , I I I - 4 3 - I BY ^.) PROJECT r�iA ta '1 • DATE /57�k. 1 e5 C)' "�--{7 ng in eer ing I SHEET NO. CLIENT Vi 1 8701 W. HACKAMORE DR. • BOISE, IDAHO 83709 (208) 375-8240 I t ( &). -7 . I f 0 IA D. ` {- ' GJ s fir- 1Z -z-- iv, - -1. v I\,— I U t I -E c 1.'h\ " k V.— 'L Gr.\;k - C c`:cc tsc L,.,. r I "i 2 v - o.V k b c_ 0 ova ; I . I I I I I I I -44- ir . .1 , . Recommended Seismic Design , Criteria for New Steel FEMA -350 0' Moment -Frame Buildings Chapter 3: Connection Qualification Lff a tbf I 1 I —� . b 41 T _ L _: O.SV 51 I . • T, 0.5V • • db • L7 I Figure 3 -10 Schematic of the Forces for Design of•the Free Flange Shear Tab Table 3 -5 Prequalification Data for WFP Connections • I General Applicable systems OMF, Hinge location distance s d + 1 s' 2•7. Ca- N\..- I Critical Beam Parameters Maximum depth W36 and shallower wZ k ; - 12k.-- Minimum span -to -depth ratio OMF: 5 I SMF: 7 - t2, N..,,._ Flange thickness OMF: 1- 1 /2 "or less I • 1" rid less - Permissible material specifications A572. Grade 50, • :7(- 92, A913 Grade 50/S75 • Critical Column Parameters ' _ Depth OMF: Not limited SMF: W •2 14 Permissible material specifications 572 Grade 5 A913 Grade 50 or 65, A992 • I Beam/Column/Flange Plate (FP) Relations Panel Zone strength Section 3.3.3.2 Q.,c,v '9fsv »t-c» '� Column/beam bending strength ratio, Section 2.9.1 Mgr /Mr t v 1(',F �- ,-'c„ \A - • oL I Connection Details Flange plate size Section 3 5.4.1 t «` x \' - y Flange plate material Grade 50 ✓ . Flange welding Fig. 3 -11 --4- /it;' 1 K , u_7;k Flange plate filler metals Section 3.3.2.4 ov- Web connection Section 3.5.4.3 and Figure 3 -11 bY--- I Web welding parameters Section 3.3.2.4 pt'- Continuity plate thickness Sec 3.3.3.1, Consider dimensions of beam flange to be equal to dimension of flange plate. ? - 45 - • Recommended Seismic Design FEMA 350 • Criteria for New Steel Chapter 3: Connection Qualification Moment -Frame Buildings 1 • 0 • a 1 • o • P P i . F I W A. • • I ,. N\ oR <o o. • to <o 0 i I D <o i . o �_ o . ______,c_` N oR <O Notes 1. Flange plate. See Section 3.5.4.1, Steps 1 -4, for sizing requirements. Plates shall be fabricated with rolling direction parallel to the beam. 2. CJP groove weld: single or double bevel. Weld in shop or field. When using single -bevel groove weld, remove backing after welding, back - gouge, and reinforce with 5/16 " - minimum fillet weld. When using I double bevel weld, back -gouge first weld before welding other side. Weld QC /QA Category AH/T. If plates are shop welded to column, care must be exercised in locating and leveling plates, as shimming is not allowed between the plates and the beam flanges. If plates are field- welded to column after connecting to beam, weld access holes of sufficient size for weld backing and welding' access shall be - - I provided. 3. Fillet welds at edges of beam flanges to plate. Size welds according to the procedure in Section 3.5.4.1, Step 5. Welds may be shop or field. Provide weld tabs at end to provide full weld throat thickness to the - I end of the plate. Remove weld tabs and grind the end of the weld smooth. Use care to avoid grinding marks on the beam flange. Weld: QC /QA Category BH/L. 4. Fillet weld at end of flange plate to beam flange Welds may be shop or field. Maintain full weld throat thickness to within 1" of the edge of the flange. Weld: QC /QA Category BH/T. I 5. Shear tab of length equal to d b - 2k - ". Shear tab thickness should match that of beam web. 6. Erection bolts: number, type, and size selected for erection loads. 7. Full depth - partial penetration from far side. Weld: QC /QA Category BM/T. 8. Fillet weld both sides. Fillet on side away from beam web shall be same size as thickness of shear tab. .- ' • - !- I Fillet on the side of the beam web shall be 1/4". Weld: QC /QA Category BH/T. 9. Fillet weld shear tab to beam web. Weld size shall be equal to the thickness of the shear tab minus 1/16 ". Weld: QC /QA Category BH/L. I 10. For continuity plates and web doubler plates see Figure 3 -6. For calculation of continuity plate requirements, use flange plate properties instead of beam flange properties. Figure 3 -11 Welded Flange Plate (WFP) Connection 1 - 46-6 I . Recommended Seismic Design I Criteria for New Steel FEMA -350 Moment Frame Buildings Chapter 3: Connection Qualification I Commentary: The WFP connection was tested at the University of California at Berkeley. Several similar connections had been tested by private parties prior to testing under this project. The connection has similarities to both the cover I plated connection, which has been extensively used, and to the WUF - connection. Its performance is comparable to that of the WUF -W. This connection, rather than the cover - plated connection commonly used from 1994 I until publication of FEMA -267A, has been recommended for use in new buildings, because the welding of a single thickness of plate is considered to be more reliable than the welding of the combination of the beam flange and a I cover - plate. A CJP groove welded web connection is required for use in this prequalified I connection, since such a web connection was used in the tested connections. Tests using bolted webs have not been reported. I The reader is referred to FEMA -355D, State Of the Art Report on Connection Performance, for more information on the testing and performance of this type of . I connection. 3.5.4.1 Design Procedure I Step 1: Select preliminary length of flange plate. Step 2: Choose the width of the flange plate, b based on beam flange width. I Step 3: Calculate M M and M according to Section 3.2.6. Step 4: Calculate t based from the equation: , , t p — M (3 -13) .f + 1" +tP1 I F YP [ d b + 2 . � where: I b = Width of flan a late at column face. Ta ered plates should be checked for p g P P P the critical section t and t are the thicknesses of the top and bottom flange plates, respectively. Pit b I Step 5: Calculate the length and thickness of the weld of the flange plate to the beam flange using the equation: I l t M w 0.707FW (3 -14) I where: I . - 47 • Recommended n Seismic Design S S c FEMA =350 Criteria for New Steel Chapter 3: Connection Qualification Moment -Frame Buildings I = total length of weld including end weld (see Fig. 3 -11). • F = nominal design strength of weld from AISC -LRFD = 0.60Fexx' ' r T- si - ) inch ' If plate dimensions do not permit sufficient weld, return to Step 1 and select a longer plate length. • Step 6: Determine the' required panel zone thickness according to the methods of Section . ' • : - 3.31.2. For purposes of this calculation, substitute d 1- 0 for d and the " • quantity d - t P'` 2 1 PIb for db - t Step 7: Determine continuity plate requirements according to Section 3.3.3.1, For this Y1? q 8 , purpose, use the plate as the quantity bf. Step 8: Detail, the connection as shown in Figure 3 -11. ' 3.5.5 Reduced Beam Section Connections This section provides procedures for design of fully restrained, Reduced Beam Section (RBS) I connections. These connections utilize circular radius cuts in both top and bottom flanges of the beam to reduce the flange area over a length of the beam near the ends of the beam,span. Welds of beam flanges.to column are complete joint penetration groove welds, meeting the ' requirements of FEMA -353, Recommended Specifications and Quality Assurance Guidelines for. Steel Moment Frame Construction for Seismic Applications. In this type of connection, no reinforcement, other than weld metal, is used to join the flanges of the beam to the column. Web • ' joints for these connections may be either complete penetration groove welds, or bolted or welded shear tabs. Table 3 -6 provides limitations and details of the prequalification. Figure 3- . 12 provides typical details for this connection type. These connections are prequalified for use in ' Special Moment Frame or Ordinary Moment Frame systems within the limitations indicated in Table 3 -6. When this type of connection is used, the elastic drift calculations should consider the effect of the flange reduction. In lieu of specific calculations, a drift increase of 9% may be ' applied for flange reductions ranging to 50% of the beam flange width, with linear interpolation for lesser values of beam flange reduction. Commentary: This type of connection has performed adequately in tests with both welded and bolted web connections. While a welded web connection is more I costly.than the more conventional bolted web connection, it.is believed that 'the • welded web improves the reliability of the connection somewhat. The welded web provides for more effective force transfer through the web connection, thereby reducing stress levels at the beam flanges and beam flange groove welds. 1 ' - 48 -38 • • • INN • - MI I= Ell INN WI IIIII MI MI MI NIB - NIB NM ME . I:1.. ... Ill 328 I 2 191 M. 701 /I I 25 10 4 f----- , 114....—._ MIII■ 11111■ 1111■..._ 111.111■.._ i I — ••••■ifi —....... — "MN ■11111 —. ....111.1111111111 iv 2 28 a 28 • nJ 32 0 --- ---..I ,.., 72 7 no . . a o , la 2 111 I50 111 75 ir 7 I ■___ ._____......e. ___.....r---- --I— _____., 1 '4 : 9 Ill .77 .P II • 7 5 • ! I I Ramot. ke LC /.0L•LL Monew vit.. 'ems PO Stapley Engineering BW VVinCo Tigard Moment Frame ! .. _ i Mar 21, 2007 at 10:25 AM 07030.00 ; i moment frame.r3d I IIIIII • IIIII 1•11 MI NE MI MI • 11111 MI II•11 Ell MI MI MI MI MIll NIB Ill 7 114 / , I. . : .....°1"....-- .,....,-., ----__ __.-,■-- 13 21 4 7: A 4?) 4 I SI F " On 2 —.0S , Ul — --,..— ‘,..--. , , -. ----. ----- .. M I -447 CI, Pa*. kw LC , Ll•LL Yomblo 4 Basin, IWO AA - — ---- — - — - ..--- -- — _ Stapley Engineering WinCo Tigard Moment Frame . [ - _ . .. .. BW I Mar 20, 2007 at 10:21 AM 07030.00 1 moment frame.r3d 111111 MI =I I= MI MS Ell NM — MI MI IIIII1 111011 NM OM all MI MO I= . . _ . ._ _. _____ .. -- - • -- - - - . . . . - . I IA.. al 0 11 .1 _ r I 31 4 19 3 3, : sa a I CTI li 4 16: i -WI R....0v LC 0. 01..Lt a IC ' (...3 — — ■ . _ .. — . --.. • Stapley Engineering VVinCo Tigard Moment Frame BVV I Mar 20, 2007 at 10:21 AM 07030.00 1 moment frame.r3d No Es mu I. Ns ow imi um am ill ma ND I= I= Ns NIB NM Ili OM _ . . . . LI.. ._.. 4 00,3 $ T; I ■11111 .../ JIM ------- PUS 4503 -.3 0. I SIMI 5,11 SIS 0 470 1 . 0:1 W1 dILI ----- _-...000/1111111 /Id (xi ! . - - . . _— I I - 1 1 Rasa.. WS I 21}0 SL•3 Oil wow I 41.1.4 Mem. NA ----- . _ ---- - ---_ - -- - Stapley Engineering VVi . nCo Tigard Moment Frame I BVV . i Mar 20, 2007 at 10:22 AM • 07030.00 1 moment frame r3d • IIII I= MI I= =I NM MI IIIIIII MI INNI MO • INIII MI MS MI MI NM _ -- -- — - -- _ L 427 , / 4// • r am a 7 /On / .,, 5 / - a., 7 M7 . • • / / . • • / ,'■••/ L1 / (417 IA /••, 4 I z Ci...) an.* kw LC I 1 20.0 5.3 055 vamp. s IMmano ...... It A — - —__ L I Stapley Engineering WinCo Tigard Moment Frame , — BW Mar 20, 2007 at 10:22 AM 07030.00 1 moment frame.r3d I NM =I Ell =I • NM — NM MN ill — WM I= I= — • I= NM NE - - -- - -- - - -- - - - - - - I L. I . 1 7 7 ! 1 i i 1 1 i , 1 I I . ■ t2L A I Tr ! (.71 I Nowil* to le 6. I 21).1-SL • 3 OW • Weling ■131K• Faces 0) Stapley Engineering WinCo Tigard Moment Frame .1311\/ ! Mar 20, 2007 at 10:22 AM : - 07030.00 i . moment frame r3d MN EN um um EN um um NE NIN ill NE me mil No me NE =I ma EN _ _. .... . .. .._._. . _ .... . .___ ._ .5 14 1 .6 13 I . 1 - -- i ■•••11.111111.r1.111111.1111111111011111111111111111 --______ 31: ..4 3' 6 50] 1 -615 .1 , ( ul .. ....-._ .... -.-. ( cri 41 1 4P i i I . all. k■ IC 3, 1 20.0.2.3W Monte, Aos Few CO — - – . - -- Stapley Engineering VVinCo Tigard Moment Frame 1________ .. . . BW I Mar 20, 2007 at 10:22 AM ; t--- 07030.00 ._i moment frame.r3d 1 • 1 I. . FOUNDATION DESIGN PREPARED BY: i STAPLEY ENGINEERING 8701 W. HACKAMORE DR. BOISE, IDAHO 83709 1 - I -56- BY - 1. PROJECT 11. ri tapley - DATE -1. 21 -4 ( ngineering SHEET NO. CLIENT 8701 W. HACKAMORE DR. • BOISE, IDAHO 83709 (208) 375-8240 c • ,-;‘ `) ' .vc_‘ (e r Lt " Cci CA / r ■ 7 Z. 'C. .V%-jc Z 1 - 1 7 C4, • Lt- ,x,C • C.'. ( ' \. ' ' - f 1 2c C- 6 u - 5 7 - I 3/212007 4 PM I Property Line Footing Designer: BW Project: WinCo Tigard I Location: New Bearing Wall Wall Weight (w,,,,) 1500 plf @ center line of wall P Wall Width (E) 8 in Additional Load (P) 1.125 lbs Eccentricity (e) 4 in `v W+ Footing Width (B) 5.5 ft e Footing Length (A) 1 ft 4--••• Footing Thickness (C) 12 in ' I Concrete Weight 150 pcf • / Soil Depth (D) 2 ft , Soil Weight 110 pcf \ I Lateral Earth Pressure 0 pcf E a? Lateral Load (w 0 plf D d , \ q„ 2000 psf t r 2500 psf 1 I CASE 1 - w,,,,, +P +Soil gall 2370 psf \ q,, 2237 psf OK \ 4 - I Um psf OK C a (a) 4.17 0 Resultant Force (R) 4,660 lbs ` Force Location (x) 1.39 ft A 0 plf 1 B CASE 2 - w,,,, +P +Soil +wta, x gall 3160 psf I q,,a„ 2237 psf OK q 0 psf OK I a (a) 4.17 ft I Resultant Force (R) 4,660 lbs Force Location (x) 1.39 ft Overturning I OTM 0 lb -ft RM 10500 lb -ft Factor of Safety #DIV /0 WON 1 I I I I I STAPLEY ENGINEERING (c) t 000 2 \Standard Calculation Footing.xls I — 5 8 - I Stap Engineering n Title : lob # 8701 W. Hackamore Dr. Dsgnr: Date: 4:49PM, 21 MAR 07 Description : • Boise, ID 83709 . I 208-375-8240 — — -- - -- Scope = - - f. ACI -- 0 - - -- Code Ref. C 318 -02, 1997 UBC, 2003 IBC, 2003 NFPA 5000 Rev 580018 User. KW-0602481.Ver5801- Dec -2003 Cantilevered Retaining Wall Design Page 1 (c)1983 -2003 ENERCALC Engmeenng Software vnnco hoard remodel eca Calculations I I Description WinCo Tigard Retaining Wall I Criteria f- = ti Soil Data - [� Footing Strengths & Dimensions Retained Height 4 00 ft Allow Soil Bearing 2,000 0 psf fc = 2,500 psi. Fy = 60,000 psi Wall height above soil = 0.33 ft Equivalent Fluid Pressure Method Min As % = 00014 I = Heel Active Pressure = 35.0 psf /ft Toe Width — 1 00 ft • Slope Behind Wall 0 00:1 Toe Active Pressure 0 0 psf /ft Heel Width 2.00 Height of Soil over Toe = 24 00 in Passive Pressure 250 0 psf /ft Total Footing Width 3.00 Soil Density • = 110 00 pcf Water height over heel = - 0 0 ft Footirig Thickness • = - 12 00 in , • . FootingIlSoil Friction = 0 300 I _ = Key Width _ 0.00 m' - Wind on Stem 0.0'psf • - Soil height•to ignore Key Depth 0 00 in for passive pressure 0.00 in Key Distance from Toe = 0 00 ft Cover @ Top = 3 00 in @ Btm = 3.00 in I 1 Axial Load App lied to Stem Axial Dead Load Axial Live Load 75.0 lbs = 1,560.0 lbs Axial Load Eccentricity = 0 0 in Design Summary v Stenstructi Top Stem I r.,s.- ;n =qu:,xr,.sm <r . a.• s,- :.�*s,,r,,:s�,.,.,.ue,:•.r.:vs m Co - Stem OK Total Bearing. Load lbs Design height ft = 0 00 resultant ecc 2 17 in Wall Material Above "Ht" = Concrete Soil Pressure @ Toe = 1•,564 psf OK Thickness = 8 05 Rebar Size = # 5 • Soil Pressure @ Heel = 734 psf OK Rebar Spacing 16.00 - — — Allowable Allowable e psf So Rebar Placed at Center Soil Pressure Less Than Allowabl Design Data ACI Factored @ Toe = 2,122 psf Ib /FB + fa /Fa = 0.163 ACI Factored @ Heel = 996 psf Total Force @ Section lbs = 476 0 III Footing Shear @ Toe 4.4 psi OK Moment. . Actual ft-# = 634 7 • Footing Shear @Heel 12.8 psi OK Moment.... Allowable = 3,898.0 • Allowable = 85.0 psi Wall Stability Ratios Shear.... Actual psi = 9.9 I Overturning Sliding = 7 10 OK Shear.... Allowable psi = 85 0 4.88 (Vertical Co Bar Develop ABOVE Ht. in = 23 40 Sliding Calcs (Vertical Component Used) Bar Lap /Hook BELOW Ht. in = 6.00 Lateral Sliding Force = 437.5 lbs Wall Weight = 100.0 I less 100% Passive Force= - 1,125.0 lbs Rebar Depth 'd' in = 4.00 less 100% Friction Force= - 1,011.5 lbs Masonry Data Added Force Req'd = 0 0 lbs OK psi = Fs psi = I ....for 1 5 : 1 Stability = 0.0 lbs OK Solid Grouting Footing Desig n Results Special Inspection Modular Ratio 'n' = Toe Heel Short Term Factor = Factored Pressure = 2,122 996 psf Equiv. Solid Thick. = • I Mu' : Upward 998 0 ft -# Masonry Block Type = Normal Weight Mu' : Downward 259 1,011 ft # Concrete Data Mu: Design = 739 1,011 ft-# fc psi = 2,500 0 Actual 1 -Way Shear = 4.43 12.83 psi Fy psi = 60.000 0 I Allow 1 -Way Shear = 85.00 85.00 psi Other Acceptable Sizes & Spacings Toe Reinforcing = # 5 @ 18 00 in Toe' Not req'd, Mu < S * Fr Heel Reinforcing = # 5 @ 18.00 in Heel: Not req'd, Mu < S • Fr Key Reinforcing = None Spec'd Key: No key defined I • I ,1 I - 59 - ,' Stopl Engineering Title ; ..., Job # 8701 W. Hackamore Dr. Dsgnr: Date: 4 49PM, 21 MAR 07 Boise, ID 83709 Description : I 208 - 375 - 8240 = - -- Scope Code Ref ACI 318 -02, 1997 UBC, 2003 IBC, 2003 NFPA 5000 f Rev 580018 — -- — - - -- — User. KW -0602481,Ver 580. 1- Dec -2003 Cantilevered Retaining Wall Design Page 2 ' (01983 -2003 ENERCALC Engineering Software winco tigard remodel ecw Calculations I Description WinCo Tigard Retaining Wall ,. ' Summa of Overturnin • & Resistin • Forces & Moments , OVERTURNING RESISTING - Force Distance Moment • - Force Distance Moment Item • - lbs — ft ft-# — - lbs ft ft-# II Heel Active Pressure 437 5 1.67 729 2 Soil Over Heel 586 7 2 33 1,368.9, Toe Active Pressure Sloped Soil Over Heel = . Surcharge Over Toe = • Surcharge Over Heel = - . . Adjacent Footing Load = Adjacent Footing Load I Added Lateral Load = Axial Dead Load on Stem= 1,560 0 1 33 2,080.0 Load •@ Stem Above Soil = Soil Over Toe = 220 0 0 50 110 0 SeismicLoad = Surcharge Over Toe = I --- -- Stem Weight(s) = 433 0 1 33 577.3 Total 437.5 O.T.M. = 729.2 Earth @ Stem Transitions= Resisting /Overturning Ratio = 7.10 Footing Weight = 450 0 1 50 675.0 Vertical Loads used for Soil- Pressure = 3,446.6 lbs Key Weight I . Vert. Component 121 9 ' 3.00 365.8 Vertical component of active pressure used for soil pressure T otal = 3,371.6- lbs R.M. = 5,177.0 I I • I I I I I I • • I - 60 - I Stapley Engineering Title : Job # 8701 W. Hackamore Dr. Dsgnr: Date: 6:22AM, 7 MAR 08 Description : Boise, Idaho 83709 I STAPLEY ph. 208 -375 -8240 Scope : EX4•" EY14G fax: 208 - 375 - 8257 Code Ref: ACI 318 -02, 1997 UBC, 2003 IBC, 2003 NFPA 5000 Rev: 580018 User KW-0602481. Ver 5 8 0. 1-Dec-2003 Cantilevered Retaining Wall Design Page 1 I _ (c)1983 -2003 ENERCALC Engineenng Software remodel ecw Calculations WinCo Tigard Retaining Wall 6' ant ,g e. 1 ,„ 07t) , £" 6 ' ,, canto tigard / . /4-- Tee # w 4-Ic = it -O " rsr.4-A • I Criteria F Soil Data . * F Footing Strengths & Dimensions RI Retained Height = 6.00 ft Allow Soil Bearing = 2,000.0 psf f'c = 2,500 psi Fy = 60,000 psi Wall height above sod = 0 00 ft I Equivalent Fluid Pressure Method Min. As % = 0 0014 = Heel Active Pressure = 35.0 psf /ft Toe Width = 2.50 ft 1.50 Slope Behind Wall 0.00:1 Toe Active Pressure 0.0 psf/ft Heel Width Height of Soil over Toe = 24.00 in Passive Pressure 250.0 psf /ft Total Footing Width = 4.00 Soil Density = 110.00 pcf Water height over heel = 0.0 ft Footing Thickness = - 12.00 in I FootingliSoil Friction = 0.300 Key Width = 0.00 in Wind on Stem = 0.0 psf Soil height to ignore Key Depth = 0.00 in for passive pressure = 0.00 in Key Distance from Toe = 0.00 ft I - Cover @ Top = 3.00 in = @ Btm.= 3.00 in ;Ax Load Applied to Stem Axial Dead Load 1,560.0 lbs Axial Load Eccentricity 0.0 in �� . ,,, , ,w.,...,_ ._ _ % , p , „: ...,.� _ = Axial Live Load 75.0 Ibs Design Summary I Stem Construction 1 Top Stem I i, .. Stem OK Total Bearing Load 4,174 Ibs Design height ft = 0.00 ..resultant ecc. 2.29 in Wall Material Above "Ht" = Concrete Soil Pressure @ Toe = 744 psf OK Thickness = 8.05 Soil Pressure @ Heel 1,343 psf OK Rebar Size # 5 Allowable 2,000 psf Rebar Spacing 16.00 Soil Pressure Less Than Allowable Rebar Placed at Center ACI Factored @ Toe = 986 psf Design Data fblFB + fa/Fa = - 0.550 II ACI Factored @ Heel = 1,779 psf Total Force @ Section lbs = 1,071.0 Footing Shear @ Toe 11.3 psi OK Moment....Actual ft-# = 2,142.0 Footing Shear @ Heel 13.2 psi OK Moment Allowable = 3,898.0 Allowable = 85.0 psi Shear Actual psi = 22.3 I Ov l ert umbing Ratios = 5.46 OK Shear Allowable psi = 85.0 9 Sliding 2.75 (Vertical Co Bar Develop ABOVE Ht. in = 23.40 Sliding Calcs (Vertical Component Used) Bar Lap /Hook BELOW Ht. in = 6.00 Lateral Sliding Force = 857.5 lbs Wall Weight = 100.0 I less 100% Passive Force= - 1,125.0 lbs Rebar Depth 'd' in = 4.00 f less 100% Friction Force= - 1,229.7 lbs Masonry Data psi = Added Force Req'd = 0.0 lbs OK Fs psi = I ....for 1.5:1 Stability = 0.0 lbs OK Solid Grouting i Footing Design Results € Special Inspection Modular Ratio 'n' = Toe Heel Short Term Factor = I Factored Pressure = 986 1,779 psf Equiv. Solid Thick. = Mu' : Upward 3,599 0 ft -# Masonrete ry Block Data Type = Normal Weight Mu' :Downward 1,619 732 ft-# Conc Mu: Design = 1,980 732 ft-# ft psi = 2,500.0 Actual 1 -Way Shear = 11.35 13.25 psi Fy psi = 60,000.0 I Allow 1 -Way Shear = 85.00 85.00 psi Other Acceptable Sizes & Spacings Toe Reinforcing = None Spec'd Toe: Not req'd, Mu < S • Fr Heel Reinforcing = None Spec'd Heel: #4@ 12.75 in, #5@ 19.75 in, #6@ 28.25 in, #7@ 38.25 in, #8© 48.25 in, #9© 4 Key Reinforcing = None Spec'd Key: No key defined I I I I - 6 1 - I 111111 Stapley Engineering Title : Job # 8701 W. Hackamore Dr. Dsgnr: Date: 6:22AM, 7 MAR 08 Description : Boise, Idaho 83709 I STAPLEY ph. 208 -375 -8240 Scope : e +cIN.e eaicc fax: 208 - 375 -8257 Code Ref: ACI 318 -02, 1997 UBC, 2003 IBC, 2003 NFPA 5000 Rev 580018 User KW- 0602481. Ver5B0. 1- Dec -2003 Cantilevered Retaining Wall Design Page 2 1 I , (c)1983 -2003 ENERCALC Engineenng Software Description WinCo Tigard Retaining Wall 6' wince (Gard remodel ecwCalailations Summary of Overturning & Resistin. Forces & Moments OVERTURNING RESISTING Force Distance Moment Force Distance Moment I Item = lbs ft ft -# = lbs ft ft -# Heel Active Pressure 857.5 2 33 2,000.8 Soil Over Heel 550.0 3.58 1,970.8 Toe Active Pressure = Sloped Soil Over Heel = Surcharge Over Toe = Surcharge Over Heel = I Adjacent Footing Load = Adjacent Footing Load = Added Lateral Load Axial Dead Load on Stem= 1,560.0 2.83 4,420.0 Load @ Stem Above Soil = Soil Over Toe = 550.0 1.25 687.5 SeismicLoad = Surcharge Over Toe = I Stem Weight(s) 600.0 2.83 1,700.0 Total 857.5 O.T.M. = 2,000.8 Earth @ Stem Transitions= Resisting/Overtuming Ratio = 5.46 Footing Weight = 600.0 2.00 1,200.0 I Vertical Loads used for Soil Pressure = 4,174.0 lbs Key Weight = Vert. Component 239.0 4.00 956.0 Vertical component of active pressure used for soil pressure Total = 4,099.0 lbs R.M.= 10,934.3 I I I I I I I I I - 6 2 - I Stapley Engineering Title : Job # 8701 W. Hackamore Dr. Dsgnr: Date: 6.22AM, 7 MAR 08 . 11111 Boise, Idaho 83709 Description I STAPLEY ph. 208 - 375 -8240 Scope : " " " " " "` fax: 208 - 375 - 8257 Code Ref: ACI 318 -02, 1997 UBC, 2003 IBC, 2003 NFPA 5000 Rev 580018 User Kw-0602481,Ver580,1- Dec -2003 Cantilevered Retaining Wall Design Page 1 L( c ) 19 83 -200.3 ENERCAI.0 Engineering Software mow Nand remodel ecw Calculations Description RAMP WALL - �x 7 , S o ' ...A4-c, /1-.v r - cAPt? ' 2 '- 3' - ' - Criteria Soil Data Footing Stre &Di mensions Retained Height = 5.00 ft Allow Soil Bearing = 2,000.0 psf fc = 2,500 psi Fy = 60,000 psi Wall height above soil = 0.00 ft Equivalent Fluid Pressure Method Min. As % = 0.0014 I _ Heel Active Pressure = 35.0 psf /ft Toe Width 0.00 ft Slope Behind Wall 0.00:1 Toe Active Pressure 0.0 psf /ft Heel Width 3.67 Height of Soil over Toe = 0.00 in Passive Pressure 250.0 psf/ft Total Footing Width = 3.67 Soil Density = 110.00 pcf Water height over heel = 0.0 ft Footing Thickness = 12.00 in I - FootingliSoil Friction 0.300 - Key Width 0.00 in Wind on Stem 0 0 psf Soil height to ignore Key Depth 0 00 in for passive pressure 0.00 in Key Distance from Toe = 0.00 ft Cover @ Top = 3.00 in © Btm.= 3.00 in Design Summary , Stem Construction ¶ Top Stem E PS., - , . V, ; _.. - . R -= " 2. ,..: ,,,,„,-� � e. ,,�P Stem OK Total Bearing Load = 2,861 lbs Design height ft= 0.00 ...resultant ecc = 4.67 in Wall Material Above "Ht" = Concrete Soil Pressure @ Toe = 1,275 psf OK Thickn = 8.00 Soil Pressure @ Heel 284 psf OK Rebar Size # 5 Allowable = 2,000 Rebar Spacing = 16.00 psf Rebar Placed at = Center I Soil Pressure Less Than Allowable - ACI Factored @ Toe 1,676 psf ACI Factored @ Heel 373 psf Design Data fb/FB + fa/Fa 0.318 Total Force @ Section lbs = 743.8 Footing Shear @ Toe = 0.0 psi OK Moment Actual ft-# = 1,239.6 II Footing Shear @ Heel = 31.8 psi OK Moment Allowable Shear Actual psi = = 3,898.0 Allowable 85.0 psi 15.5 Overturning Ratios Shear Allowable psi = 85.0 9 = 4.28 OK Sliding = 1.56 (Vertical Co Bar Develop ABOVE Ht. in = 23.40 I Sliding Calcs (Vertical Component Used) Bar Lap /Hook BELOW Ht. in = 6.00 Lateral Sliding Force 630.0 lbs Wall Weight 96.7 less 100% Passive Force= - 125.0 lbs Rebar Depth 'd' in = 4.00 less 100% Friction Force= - 858.4 lbs Masonry Data Added Force Req'd = 0.0 lbs OK fm psi = Fs psi = ....for 1.5 : 1 Stability 0.0 lbs OK Solid Grouting = I Footing Design Re sults Special Inspection = I - Modular Ration' = Toe Heel Short Term Factor Factored Pressure 1,676 373 psf Equiv. Solid Thick. Mu' : Upward = 0 0 ft-# Masonry Block Type = Normal Weight Mu' : Downward = 0 5,316 ft-# Concrete Data I Mu: Design = 0 5,316 ft fc psi = 2,500.0 Actual 1 -Way Shear = 0.00 31.78 psi Fy psi = 60,000.0 Allow 1 -Way Shear = 0.00 85.00 psi Other Acceptable Sizes & Spacings Toe Reinforcing = None Spec'd Toe: Not req'd, Mu < S * Fr I Heel Reinforcing = None Spec'd Key Reinforcing = None Spec'd Heel: #4@ 12.75 in, #5@ 19.75 in, #6@ 28.25 in, #7@ 38.25 in, #8@ 48.25 in, #9@ 4 Key: No key defined I I I I - 63- • I i Stapiey Engineering Title : Job # 8701 W. Hackamore Dr. Dsgnr: Date: 6:22AM, 7 MAR 08 ' Boise, Idaho 83709 Description I STAPLEY ph. 208- 375 -8240 Scope : ` " " " " °' "` fax: 208 - 375 - 8257 Code Ref: ACI 318 -02, 1997 UBC, 2003 IBC, 2003 NFPA 5000 Rev 580018 User. KW- 0602481,Ver 580, 1- Dec -2003 Cantilevered Retaining Wall m nng Software wi Design Page 2 1 ' I (c)1983 -2003 ENERCALC Engee ttgard remodel ecw.Calalations V. es . Description RAMP WALL I • . i Summa of Overturnin. 8Resistin. Forces & Moments � , OVERTURNING • RESISTING Force Distance Moment Force ' Distance Moment I ' ' Item • lbs ft ft-# - • lbs ft • ft-# Heel Active Pressure 630.0 2 00 1,260.0 Soil Over Heel 1,651.8 2.17 3,581.7 . Toe Active Pressure = ' Sloped Soil Over Heel = . Surcharge Over.Toe = - Surcharge Over Heel - = '. - II Adjacent Footing Load = .Adjacent Footing Load . = _ _ • Added Lateral Load , - _ . Axial Dead Load on Stem= . 0 00 . Load @ Stem Above Soil = Soil Over Toe = SeismicLoad = Surcharge Over Toe = I Stem Weight(s) 483.3 0.33 161.1 Total, 630.0 O.T.M. = 1,260.0 Earth @ Stem Transitions= Resisting/Overtuming Ratio = 4.28 Footing Weight = 550.5 1.84 1,010 2 I Vertical Loads used for Soil Pressure = 2,861.2 lbs Key Weight = Vert. Component 175.6 3.67 644.4 Vertical component of active pressure used for soil pressure Total = 2,861.2 lbs R.M.= 5,397 4 I I I . I I I I I I I I - 64- I III Staple Engineering Title : Job # 8701 W. Hackamore Dr. Dsgnr: Date: 5 30PM, 21 MAR 07 Boise, ID 83709 Description : I 208 - 375 -8240 Scope : , Rev 5E -- -- -- - - - -- - -- -- - - -- - - -- -- - - -- -- - -- - - - - - - -- - - - - - - - -- -- -- - - - - - -- - - - - - -- - - -- - - -- - - Rev 580000 � User KW-0602481, Ver 5,8.0, 1-Dec-2003 Square Footing Design Page 1 I I (c)1983 - 2003 ENERCALC Engineering Software winco hoard remodel ecw Calculations ` aIMIIM IKEVA u¢ea r. ,,, , WsaLt n �wr.erourr DRIa rt+vaavu a�amrue evx!»nare►. a ..5 �s.N .4.3” m 2^1,V smmTR elliniVatar re •... x lei Nrm+ -ass.umnermrrs[wa surRa+mrramc Description Typical Ftg @ Column I ! General Information Ref A 318-02, 1997 NFPA 500 45.330 Code Re CI 318 UBC, 2003 IBC, 2003 NF 0 n wca .. AL • G.IrMY}Z•.+9f.LGZf . _ .Y.IlL>Ie ACI PA 500 Dead Load 45.330 k Footing Dimension 8.000 ft Live Load 56 670 k Thickness 20.00 in I Short Term Load 0 000 k # of Bars 8 Seismic Zone 4 Bar Size 8 Overburden Weight 0 000 psf Rebar Cover 3.250 Concrete Weight 145 00 pcf fc 2,500.0 psi - I LL & ST Loads Combine FY 60,000.0 psi Load Duration Factor 1 000 Column Dimension 0.00 in Allowable Soil Bearing 2,000 00 psf I Note: Load factoring supports 2003 IBC and 2003 NFPA 5000 by virtue of their references to ACI 318 -02 for concrete design. Factoring of entered loads to ultimate loads within this program is according to ACI 318 -02 C 2 I Reinforcing p, ocAl.. :M.nn -r ,r_n_-s, „,,a.omrr•,+ .1,03. aasccewnv - .ar.'raeau>.:0461eroF,AV V,e.r ,.n+^rrr.•., vru I rr rnf aassr.aar sur:asxc+rrK,r +rvraz u.,,,,Ki..., as 11,1 s,a!wuw . .aa - ae earA I Rebar Requirement Actual Rebar "d" depth used 16.250 in As to USE per foot of Width 0 432 in2 200 /Fy 0 0033 Total As Req'd 3 456 in2 As Req'd by Analysis 0.0016 in2 Min Allow % Reinf 0.0014 Min. Reinf % to Req'd 0.0022 % Summary Footing OK I 8.00ft square x 20 Oin thick with 8- #8 bars Max. Static Soil Pressure 1,835.42 psf Vu : Actual One -Way 38.47 psi Allow Static Soil Pressure 2,000.00 psf VnePhi : Allow One -Way 85.00 psi I Max. Short Term Soil Pressure 1,835.42 psf Vu : Actual Two -Way 166.87 psi Allow Short Term Soil Pressure 2,000.00 psf Vn'Phi • Allow Two -Way 170.00 psi I Mu : Actual Alternate Rebar Selections .. 22.68 k -ft / ft 18 # 4's 12 # 5's 8 # 6's Mn 'Phi Capacity 54.45 k -ft / ft 6 # 7's 5 # 8's 4 # 9's 3 # 10's I 1 I I I I I - 65- J 1 BYti7 PROJECT "1" rAV ropley BATE '�'G1 (C (�- jZJ <:�J e SHEET NO. CLIENT ''x 8701 W. HACKAMORE DR. • BOISE, IDAHO 83709 (208) 375-8240 1 L -- r', ,,,,n , 0n u)._ — ;:6:--/:. - - , ` - -- -- i7o,� ( I ,K \7_ W.gg I / L `1� __ = 1 0 � � v�e�` Z (O.' t -- c (_ ') I i'lj U- . v V-) `e- -` = r(' ', ' .) qq < tic = ZED L • (A C 1 <t `, < .. ' e ' \ W. C \" ! , r - r G , <. Q 7 -,- _ 1 .. • _ vCI I •"; Uk ` t ((,c,( a ,-1.i ,2 ■ , 1 -I . -- 4 , -- 1, (, L III --t . c., << 1:',:7.- , -a. _ , I .-- . z -..t'5 IL.. C kG- Ur OK mac. 1( 11 .= -= I c • u G : /". /a5 C> -..-7-.3-(x.: z 0 ! � �s .' 1 '4 0z - c i -r�-, L. U IM G K- 1 u` 1 V- C: • ! I L l ; i ! 2 (I C G‘ Z '= � lr _ . u. IG - 7 U 0(4.- 1 `� 1u o 12- 1 I - 6 6 - V b ab :b V , • • Flown bLCS, 90.4O • Walter Smv MI .Stapley Engineering WinCo Tigard Moment Frame BW V ; Mar 21, 2007 at 6:12 PM 07030.00 moment frame rid • I= Ell NM • MI I= - NM NM NI INNI NM I= MI I= I= ION I= NMI -- -- - __ .. _ _______ --- _________ ___________ _________ __ - - . .. . • ..7 .X • 3 5 744 711 77 :7 V 72 7 5 I .------- 1111.11.1.11■1111111.1.2■-__ r ---------------------- 1 -.-----.------ ( ON • . ' is _ 44 100 I 1 i Rm. 7a LC I MAO I.IIIN• I Shot Venn 07 Stapley Engineering WinCo Tigard Moment Frame i I BW I Mar 21, 2007 at 6:12 PM i 07030.00 i _ moment frame r3d i INN - NM NM NM NM OM I= OM III IMII 1101 MI UM MN NM =I MI MO . . lit .1 I . . - — 1 2003 ill :54 :No 72 .3 100 :, • i C C:iN ' '..--- allr■-- . • cal • --..---- I c ■1) Vir'41. •,.., -1): 7 SE 'I IS) 4 w J 'GAS I . I 1 i i I I 4••••• .0 le S. 14:4.40 i VW* 4 ......M 0 --------- --- -- -- - — - -- -- - ---- -- - - - - - -- ------ - - --- ... - _ _. . ._ . -._ I Stapley Engineering VVinCo Tigard Moment Frame BW ' Mar 21, 2007 at 5:59 PM 1 07030.00 ; moment frame r3d _ ___ ____.._____ _.__ _ .._ ___ _ _ ._. .._ ___ _ _ _ _ _ ■ _, - - - um EIN mil am as um NE. I= I= III sim N. I= NE ma I= sim NE — - - - _ . .. . - . ■ 1..-i.. 1 : I - 7113 :0: ,a„ ,F . 213, e ... lits■-_ 111■.— ill■—_ — . — bal Zr ( •-.4 — 0 .4 .■,___..._ . I CD • .0 3 071., 44 A VP 6 1 ZIT • i ! i ...SW LC. 31:0A0 DA.Ila i Band% Mawr+. 1.1 Stapley Engineering WinCo Tigard Moment Frame BW : Mar 21, 2007 at 5:59 PM 07030.00 moment frame r3d I BY 6 y '• PROJECT "r lopley BATE �A 10 (, 1r -t ng in eer ing I SHEET NO. CLIENT WiiPc 8701 W. HACKAMORE DR. • BOISE, IDAHO 83709 (208) 375-8240 . (r\. ' C'ft J.ti- . r_v' " . .. .. 0 z ": 4 - _. , - ' 4 (I . Z 2zv_ 10 k I 17c = 1 0 (' \ Z'`fr µ5 ct , 7 - C -.._ (> , `,C1yz' 'i=14;.^.;; `z__ • r v„ �r•pT., 1 1 -- ' Z.' #.-•,> (1--pt,Y ', 1 ,, -J. ‘L is { l.IC_( s7-'4 a 1L1 (.f 1G_ I :- , - j. z U V_ - 1 (s V- , 1Z•L{ L' k I Z CP �— �1,11L 7�` �1v0 a.i 2 I — 4 . Z le__ I I / ! l2,4 k x 4.1 -' Z. Vi ('-t k q,7 -->C I i (ti -2• (D) [- c1_• I I I I I I - 7 1 - I Stapley Engineering Title : Job # 8701 W. Hackamore Dr. Dsgnr: Date: 8 02AM, 6 MAR 08 Description : Boise, Idaho 83709 I STAPLEY ph. 208 - 375 - 8240 Scope : ' " " " ° ° °' "° fax: 208 - 375 - 8257 Code Ref: ACI 318 -02, 1997 UBC, 2003 IBC, 2003 NFPA 5000 Rev 580018 Page 2 User. KW-0602481, Ver580, 1- Dec-2003 Cantilevered Retaining Wall Design 9 I _ (c)1983 -2003 ENERCALC Engineering Software Description screewall at rear of bldg- existing wince tigard remodel.ecwCalwlations I Summary of Overturning& Resisting Forces & Moments OVERTURNING RESISTING Force Distance Moment Force Distance Moment I Item _ = lbs ft ft -# _ = lbs ft ft- # Heel Active Pressure 280.0 1.33 373 3 Soil Over Heel 440.1 2.17 955.1 Toe Active Pressure = Sloped Soil Over Heel = Surcharge Over Toe = 1.50 Surcharge Over Heel = I Adjacent Footing Load = Adjacent Footing Load = Added Lateral Load 88.0 7.67 675.0 Axial Dead Load on Stem= 800.0 1.09 869.3 Load @ Stem Above Soil = 36.7 4.84 177 6 Soil Over Toe = 147 4 0 34 49.4 SeismicLoad = Surcharge Over Toe = 33 5 0.34 11.2 I Stem Weight(s) 564.3 1 09 613.2 Total 404.7 O.T.M. = 1,225.9 Earth @ Stem Transitions= Resisting/Overtuming Ratio = 2.71 Footing Weight = 425.5 1.42 603.6 I Vertical Loads used for Soil Pressure = 2,488 9 lbs Key Weight = Vert. Component 78.0 2.84 221.4 Vertical component of active pressure used for soil pressure Total = 2,488.9 lbs R.M.= 3,323.3 I I I I I I I I I I I - 7 2 - I Stapley Engineering Title : Job # 8701 W. Hackamore Dr. Dsgnr: Date: 8:02AM, 6 MAR 08 Boise, Idaho 83709 Description l STAPLEY ph. 208 - 375 -8240 Scope : ° " " » " °' "` fax: 208 - 375 -8257 Code Ref: ACI 318 -02, 1997 UBC, 2003 IBC, 2003 NFPA 5000 Rev 580018 Page 1 User KW- 0602481, Ver 580, 1- Dec-2003 Cantilevered Retaining Wall Design e I ` (c)1983 -2003 ENERCALC Engineenng Software Description screewall at rear of bldg- existing wmco agard remodel.ecwCaiuIaaons I : Criteria Soil Data Footin Stre ngths 8 Di mensions Retained Height = 3 00 ft Allow Soil Beanng = 2,000.0 psf fc = 2,500 psi Fy = 60,000 psi Wall height above soil = 1 67 ft Equivalent Fluid Pressure Method Min As % = 0.0014 I Slope Behind Wall = 0 00:1 Heel Active Pressure Toe Active Pressure 35.0 psf /ft 0.0 psf /ft = Toe Width Heel Width 0.67 ft 2.17 Height of Soil over Toe = 24.00 in Passive Pressure 250.0 psf /ft Total Footing Width = = 2.84 Soil Density = 110 00 pcf Water height over heel = 0.0 ft Footing Thickness = 12.00 in I _ FootingllSoil Fnction = 0.300 Key = Width 0.00 in Wind on Stem 22.0 psf Soil height to ignore Key Depth 0.00 in for passive pressure = 0 00 in Key Distance from Toe = 0.00 ft Cover @ Top = 3.00 in © Btm.= 3.00 in I I Schar Loads L ateral Load Applie to Stem . j ur Axial Load Applied to Stem Surcharge Over Heel = 0.0 psf Lateral Load = 22.0 #/ft Axial Dead Load = 800.0 lbs Used To Resist Sliding & Overturning ...Height to Top = 8.67 ft Axial Live Load = 0.0 lbs I Surcharge Over Toe = 50.0 psf Used for Sliding & Overturning Height to Bottom = 4.67 ft Axial Load Eccentricity = 0.0 in Design Summary Stem Construction J Top Stem Stem OK I Total Bearing Load ...resultant ecc. = 2,489 lbs 6.91 in Design height ft = 0.00 Wall Material Above "Ht" = Concrete Soil Pressure @ Toe = 1,969 psf OK Thickness = 10.04 Rebar Size = # 4 Soil Pressure @ Heel = 0 psf OK I = 2,000 psf Rebar Spacing = Edge 16.00 Allowable Rebar Placed at Soil Pressure Less Than Allowable Design Data ACI Factored © Toe = 2,670 psf fb /FB + fa/Fa = 0.276 ACI Factored @ Heel = 0 psf I - Total Force © Section lbs = 479.8 Footing Shear © Toe 0.0 psi OK Moment....Actual ft = 1,505.1 Footing Shear @Heel 10.1 psi OK Moment Allowable 5,449.3 Allowable = 85.0 psi Wall Stability Ratios Shear Actual psi = 4.8 I Overturning Sliding = 2.71 OK Shear Allowable psi = 85.0 5.53 (Vertical Co Bar Develop ABOVE Ht in = 18.72 Sliding Calcs (Vertical Component Used) Bar Lap /Hook BELOW Ht. in = 6.00 Lateral Sliding Force = 404.7 lbs Wall Weight = 120 8 I less 100% Passive Force= - 1,491.7 lbs Rebar Depth 'd' in = 8.25 less 100% Friction Force= 746.7 lbs Masonry Data psi = fm Added Force Req'd = 0.0 lbs OK Fs psi = ....for 1.5:1 Stability = 0.0 lbs OK I [Footin Design Results q Solid Grouting Special Inspection = Modular Ratio 'n' Toe Heel Short Term Factor = Factored Pressure = 2,670 0 psf Equiv. Solid Thick. = I Mu' :Upward 546 0 ft # ry Block Type = Normal Weig Mu' : Downward 132 775 ft # Concrete Mason Data ht Mu: Design = 414 775 ft-# fc psi = 2,500.0 Actual 1 -Way Shear = 0.00 10.09 psi Fy psi = 60,000.0 I Allow 1 -Way Shear = 85.00 85.00 psi Other Acceptable Sizes & Spacings Toe Reinforcing = # 4 @ 18.00 in Toe: Not req'd, Mu < S ' Fr Heel Reinforcing = # 4 @ 18.00 in Heel: Not req'd, Mu < S • Fr Key Reinforcing = None Spec'd Key: No key defined I I I - 73 - I BY E PROJECT pt D ATE tw e i neer ine I SHEET NO. CLIENT / / 1 8701 W. HACKAMORE DR. •BOISE, IDAHO 83709 (208) 375 -8240 1 • . : flz2L 2 .12 " /i2 #— ',4/ As ZI/z - .Q267y ' al I 4.1-q.3. I 1 1.41 f < 4$ - , o 7-8 I -_�- ✓! =24-$ k= . z s5 2 .61 0 r w', , ,Q G. 001 J , ______ j . ;:, = /c) I/ .5. "'t.)f." all I Z /VI p_ 2 2• (� r q - I -. 2 - id o ? kg = 5 5 Y iX j - 2 I 4 - e, - O. 0 35 °•' r 5 E S.4 0, c- I I I I • I . I - 7 4 - . . 1 I BY PROJECT w /, -tee,— T t y e),. ! i i to iey ' DATE "8' '"e I SHEET NO. CLIENT , W 8701 w HncxnMORE DR. • BOISE, IDAHO 83709 (208) 375-8240 I EX SIT' 5 c.4- 4- ,,,, f --1 - 1 - M G • S 6x7. 1 • a I 4- a O I r • - Gv•8 y • yd a I Gv 2oPsF I - T. 4 • > �D 4 c , c. e ,t- w-z 4%' 1 A t o - /6. I¶,? 5 2a , . I I I • I I I 1 I I ' I . I - 7 5 - BY r PROJECT w ime-..- r %IA, y bP�Y 'DATE ngieeerin9 I SHEET NO. CLIENT t � 8701 W. HACKAMORE DR. • BOISE, IDAHO 83709 'ra rr i. . r _0"e,« We'll (208) 375 -8240 I _ c --- r I I i • . 1 i i I. . . i . . . . . . . 1 . . . 1 O Th'I _ ZZ. •86 • ( ÷. ) = (o I r7 ,, //�� 5 T e >. c Kt .4 I ^/� • = I fo• 3./ •/,5 + . 83• y, 6 7,/50 • bog 60. - / I = 1 5Y2 I 5 F - z - 1 . = 1, ti t ? /, 5 ok /Olb I X -7 -- 1 ce-t2- - /oP$ = o , Nlz I ZTf I et= I, z 3 - ' g- ----v = 124 •3 = zo s 6 : 200 ok 1 - _ O rob -L.-: 7 - • 8,67( 0.6 7- 4_I, /6 Z /00e l5 f- .8•9•6 4- 60•({ - 1,4g I it 74 - V2-11-> /S Yz - vk I 1 I - 76- I BY PROJECT • /4JZ's✓ °' T - rli/I . Itrileyno GAT E ^ f+9 I SHEET NO. CLIENT P 5.°11 8701 W. HACKAMORE DR. • BOISE, IDAHO 83709 (208) 375 -8240 I N elk) 51‹r Girmr Gl f k , Ai 04-k ■ p -g ft 0. 1 I , I 6 : a-0.c. t - _____r_L______Li_. . I r x , „..._ t t scrtir C a,a 6 _ /Q - 7 ` 3. F T .,____, I. 1 3 3 PL- -F II : , W 2. I ((��" I F • M4.14 I z n4 ' 8 13kCr- • 1E3 - ;b N !ter (2.... z. 8- /SD 9'. 8 I5 I / 31 7 - - - `?•8 '. - •1 3 `��/�f.. P l I / 5 3 ,.4 . 6x x 6 II H 2 t( ° ' Z. / so e". b 6 6 q. .N,yy' x ^ � z. 0-t • - 77 -, 5 5 �b T �I I - 1 - 13 = 2 °,, X22. 8 aid I BY « PROJECT /4.40 r e l qi I Iap�ey DATE ng in eer ing I SHEET NO. CLIENT `r" 8701 W. HACKAMORE DR. • BOISE, IDAHO 83709 (208) 375 -8240 ? 3 2 t /0 - . I zO • 6 - . / G �9 0,3 — 2? ,4,40 • 6"1 13 • 612* - b ra ?4x« , P3 , 24Kia0 •,l, s ' • o c-1.6 = ct 2 -b LiiPe r- 66 't ' r M, Fo A L L4y� /I X q-x t 1 t 1 1 ' - 78