Loading...
Specifications (3) • I . AFGHAN ASSOCIATES,-INC. CONSULTING ENGINIERS 6 . I 1 STRUCTURAL CALCULATI INS • Project: Tigard Triangle Commons h Building One . (� ' �o 1 S ,- nd art Tigard, Oregon CVD -r- MAY 12 2006 ' N ` t ' WY OF 116At30 pi- * Att-- loot Cf:) 15,3 t 1 I rt. ,- `raj?., c' e f _ ,i • . ':r Y a0 Q �� 6 (2. PROJECT #: A05224.01 .I DATE: May 10, 2006 I . PE'! IT SUBMISSION 1 1 H: \Propects`Fieard Triangle Connons \Building One \Calculations \cover permit submittal 5- 8- 06.c!oc 6960 SW YARNS ST., STE. 2.00 - T!G4RD, OREGON 97223 - PHONE (503) 620 -3030 - FAX (503) 620 -5539 it AFGHAN ASSOCIATES, INC. fl CONSULTING ENGINEERS I PROJECT: Tigard Triangle Building One PROJECT #: A05224.01 I DATE: 5/8/2006 I Table of Contents: I Roof Framing . RF 1 — RF 44 1 Floor Framing . FF 1 — FF 68 Column and Footing Design . CF 1 — CF 72 Lateral Analysis L 1 — L 32 I Panel Design . . P 1 — P 77 Poe Diaphragm Analysis . D 1 — D 24 Miscellaneous M 1 — M 3 I t I I I I I H: \Projects \Tigard Triangle Commons\Building One \Calculations \Table of Contents Permit Revision.doc I 6960 SW VARNS ST. - SUITE 200 - TIGARD, OREGON 97223 - (503) 620 -3030 - FAX (503) 620 -5539 I -) . 170 _ _. ___6..i...3-A, .1602.0r , I k I . fk el 6e, •)(1- Dr1(,,,o1,05)I ) - le.t; rye v. 0-ti- Aaktctc :.1,'Gmto roe- ! v t t I [044, 1���.17 V 2/0 4,6 v 1,4 ._.-y (O 1 . I) kvp-6 v,t .. /2,67 1 — (,(9- 4.6e -a i& o- Lre*(As. , 29 , 1J , e .--y, Lick/ vc. ewe ik - . pv-outAv it 4r-tm(?-, 04 PU Y t 9 ■A o"g \4 y Ar. lN) :4- Q . t&A - 0. tp N1r4 A6 v-AI ,I '�' (CEO 6 , I wA, lec /02o) cW ovvv7 00 l Oho 11 4'( Nlalh c li '' i,,k- oar>fak ki, -1 /4o - .■„4: • 11 i v)\,,,-; 691.0 Ck: 4- 4-- 0 - 6 C} ' Ir - (' • 4) d 0 56,co.c I u uqt, �o 1 lok - lam fta ' Kad -wtr I GHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS JOB NO 6960 S.W. YARNS ST., SUITE 200 TIGARD, OREGON 97223 (503) 620 -3030, FAX 620 -5539 SHEET OF I ) ) 11 oce ?-wmior- Avzo-pkik,v\q0 wizwm, (AA .,futa-t \ ri--k, I I, (0,10 --.), ikc-Aoe; 6 t ( (.," 4,1z) , 0 M-'"--- ‘ f II yoN9W- of tr07 14L,CA irlq/) k- ti8 44 ,,, , 6 vvoll = tk i- tto ft) 1 - ___.‘fill wzoti-A4tok, vt\kr I , • • __ ----- 4 ' - 7. --- 11 (ii. , 2 ,.. ,,. -,- Il 1 11111111111111111111111 CA1CAA 1 ‘ , 47119 &,-) Ut I 1 ' if ile t.,..: 1. 1 :1 I P4 a 4' , I I _., 1 . .., -,,-- • v) 1 ::_•, , \\2,•-G4 v\ ,,,, I . 's qio I zotz,14-- .4, I 1 - -----,- ., ..„,.. -.7 , -- -777:i ' .1C2 I ..) 1 . 4 42 , 4 - I ' \ ki; -- ' v-A' ce V-4201-1 I Ov-s--Illifif f-c,1)1 I \ es IL AN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS JOB NO I . 6 r 9tU t .W. O V R A E FI G Ng N S - 9 r 2 V I TE 200 (503) 620-3030, FAX 620-5539 SKEET_________ OF ilIn NI. 0111 MN MN ant two ex EN ' AN or mot ea NE No tw wil pril\,.• Flo ap RAM Steel v9.0 Steve Youn RAIN g DataBase: A0522401R32 04/07/06 09:09:30 IbfiEPNATCNAL Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: ROOF 6 r I , �. 1 ,, ��� \i, 0. • � _; .. I , / \''. Sys G IN 1� i 44 I ,` \ �0 13 ^1 N �l r . -: / I w . 1395 ' � \s9y .. * 1, 1 43 � .P 1° n \3 o n, , 778 1 °1� ro ,4 ,15 � \` ' � y / � OX � 1� N 1 ' \ sue C' ' > & ,,, 7q ^ ti o -, m w 1 ° 9 \, \' j ,�h ��� �` m 3 0 � X3 66 ' P © v 76:9 7a� 8------------„,. {..' 1 $ a. _..._ :_...._ _....._. \� p�... ...... ,.�.. �„ ._._.. _.... 14ffi .. - _ . ..... °� _. .__... {g _.._ ......._... ......._...__ moo\ ..:.. .:.... .... _� ...... 6 ° F lq ':/°/''' � n�2 W � \j a5 s� c \ 0 ��, v^ .�° ' 1 40568 __. `-469 ... 6 w 14' ( o r. 1479 -2 . ...._..... ,... _ ._... .._.... ry .._ _ ._...._ _. ..... ..... _ ..._ P .. 'N ^:: 1 53. � _ ___._.._ _._._...... .__.._......... clo w 39 1 _ -9� 8 A ` 12 \ \� 715 1 8 to 5 0 , . L .. I rim Gravity Beam Design RAM Steel v9.0 Page 3/251 I Steve Young R A M DataBase: A0522401 R32 04/07/06 09:09:30 INTE NATIC AL Building Code: IBC Steel Code: ASD 9th Ed. I Floor Type: ROOF Beam Number = 3 SPAN INFORMATION (ft): I -End (- 156.45,22.49) J -End (-146.13,50.84) 1 Beam Size (User Selected) = W18X35 Fy = 50.0 ksi Total Beam Length (ft) = 30.17 I LINE LOADS (k/ft): Load Dist DL LL Red% Type 1 0.000 0.130 0.390 - -- NonR 1 6.333 0.130 0.390 2 6.334 0.030 0.071 - -- NonR 23.833 0.030 0.071 I , 3 6.334 0.035 0.104 - -- NonR 23.833 0.035 0.104 I 4 23.834 0.125 0.376 - -- NonR 30.166 0.125 0.376 5 6.334 0.045 0.104 - -- NonR 17.666 0.045 0.104 6 6.334 0.020 0.034 0.0% Roof Nib 17.666 0.020 0.034 7 17.667 0.065 0.152 - -- NonR 23.833 0.065 0.152 8 23.834 0.005 0.011 - -- NonR 30.166 0.005 0.011 SHEAR: Max V (DL +LL) = 7.21 kips fv = 1.43 ksi Fv = 19.13 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center Max + 52.3 15.1 0.0 1.00 10.89 33.00 10.89 33.00 Controlling 52.3 15.1 0.0 1.00 10.89 33.00 - -- - -- I REACTIONS (kips): Left Right DL reaction 1.96 1.96 I Max +LL reaction 5.23 5.25 Max +total reaction 7.19 7.21 I DEFLECTIONS: Dead load (in) at 15.08 ft = -0.164 L/D = 2210 Live load (in) at 15.08 ft = -0.418 L/D = 865 I Net Total load (in) at 15.08 ft = -0.582 L/D = 622 I I L1 ( I Fil Gravity Beam Design RAM Steel v9.0 Page 20/251 Steve Young RAM DataBase: A0522401R32 04/07/06 09:09:30 INTERNATIONAL Building Code: IBC Steel Code: ASD 9th Ed. ,I Floor Type: ROOF Beam Number = 17 I SPAN INFORMATION (ft): I -End (- 119.93,9.20) J -End (- 103.17,55.24) Beam Size (User Selected) = W24X55 Fy = 50.0 ksi Total Beam Length (ft) = 49.00 I POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% 40.584 1.00 i LINE LOADS (k/ft): Load Dist DL LL Red% Type I 1 0.000 0.143 0.429 - -- NonR 6.333 0.143 0.429 2 6.334 0.143 0.239 10.7% Roof I 38.498 0.143 0.239 3 38.500 0.143 0.334 - -- NonR 49.000 0.143 0.335 ,I SHEAR: Max V (DL +LL) = 10.79 kips fv = 1.21 ksi Fy = 18.78 ksi 0 MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center Max + 116.8 25.1 0.0 1.00 12.18 33.00 12.18 33.00 Controlling 116.8 25.1 0.0 1.00 12.18 33.00 - -- - -- REACTIONS (kips): I Left Right DL reaction 3.68 4.34 Max +LL reaction 6.64 6.45 I Max +total reaction 10.32 10.79 DEFLECTIONS: I Dead load (in) at 24.75 ft = -0.524 LID = 1121 Live load (in) at 24.75 ft = -0.772 L/D = 762 Net Total load (in) at 24.75 ft = -1.296 L/D = 454 1 I I I I I ril Gravity Beam Design RAM Steel v9.0 Page 37/251 Steve Young RAM DataBase: A0522401R32 04/07/06 09:09:30 INTERN ATONAL Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: ROOF Beam Number = 26 • SPAN INFORMATION (ft): I -End (- 99.41,65.58) J -End (- 88.58,95.34) II Beam Size (User Selected) = W18X35 Fy = 50.0 ksi Total Beam Length (ft) = 31.67 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% 8.417 1.00 1 LINE LOADS (k/ft): Load Dist DL LL Red% Type Ii 0.000 0.144 0.336 - -- NonR 10.500 0.144 0.336 2 10.500 0.144 0.240 0.0% Roof I 25.333 0.144 0.239 --- 3 25.334 0.144 0.431 NonR 31.666 0.144 0.431 I SHEAR: Max V (DL +LL) = 7.77 kips fv = 1.54 ksi Fv = 19.13 ksi 0 MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center Max + 56.9 15.0 0.0 1.00 11.86 33.00 11.86 33.00 I Controlling 56.9 15.0 0.0 1.00 11.86 33.00 - -- REACTIONS (kips): 1 Left Right DL reaction 3.01 2.54 Max +LL reaction 4.76 5.05 I Max +total reaction 7.77 7.59 DEFLECTIONS: II Dead load (in) at 15.52 ft = -0.276 L/D = 1377 Live load (in) at 15.67 ft = -0.430 L/D = 884 Net Total load (in) at 15.67 ft = -0.706 L/D = 539 I I I I I I Gravity Beam Design RAM Steel v9.0 Page 34/251 11111 Steve Young RAM DataBase: A0522401 R32 04/07/06 09:09:30 M E AT ,,^ Building Code: IBC Steel Code: ASD 9th Ed. II Floor Type: ROOF Beam Number = 24 SPAN INFORMATION (ft): I -End (- 103.17,55.24) J -End (- 86.02,49.00) I . Beam Size (User Selected) = W16X40 Fy = 50.0 ksi Total Beam Length (ft) = 18.25 I POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% 8.750 3.44 0.00 0.0 0.00 0.00 0.0 0.00 0.0 1 9.054 4.18 0.00 0.0 3.16 0.00 0.0 3.36 0.0 LINE LOADS (k/ft): , I Load Dist DL LL Red% o Type 1 0.000 0.450 0.150 NonR 18.250 0.450 0.150 I 2 0.000 0.050 0.000 - -- NonR 8.750 0.050 0.000 I SHEAR: Max V (DL +LL) = 12.99 kips fv = 2.66 ksi Fy = 20.00 ksi MOMENTS: O Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center Max + 89.9 9.1 9.2 1.75 16.68 30.00 16.68 30.00 Controlling 89.9 9.1 9.2 1.75 16.68 30.00 - -- - -- REACTIONS (kips): Left Right I DL reaction 8.33 7.93 Max +LL reaction 4.65 4.60 Max +total reaction 12.99 12.54 I DEFLECTIONS: Dead load (in) at 9.03 ft = -0.189 L/D = 1156 II Live load (in) at 9.13 ft = -0.120 LID = 1827 Net Total load (in) at 9.13 ft = -0.309 L/D = 708 I I I 1 I I Fil Gravity Beam Design RAM Steel v9.0 Page 38/251 l i Steve Young RAM DataBase: A0522401R32 04/07/06 09:09:30 INTEftNATK>NAL Building Code: IBC Steel Code: ASD.9th Ed. 1 Floor Type: ROOF Beam Number = 27 SPAN INFORMATION (ft): I -End (- 99.41,65.58) J -End (- 82.26,59.34) I Beam Size (User Selected) = W16X31 Fy = 50.0 ksi Total Beam Length (ft) = 18.25 I POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% 8.750 4.51 0.00 0.0 0.00 0.00 0.0 0.00 0.0 1 9.125 3.06 0.00 0.0 3.00 0.00 0.0 1.50 0.0 LINE LOADS (k/ft): I Load Dist DL LL Red %o Type 1 0.000 0.450 0.150 NonR 18.250 0.450 0.150 II SHEAR: Max V (DL +LL) = 11.60 kips fv = 2.81 ksi FY = 19.67 ksi MOMENTS: I Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb pao Center Max + 79.2 9.1 9.1 1.75 20.14 30.00 20.14 29.35 Controlling 79.2 9.1 9.1 1.75 - -- - -- 20.14 29.35 REACTIONS (kips): 1 Left Right DL reaction 7.98 7.80 Max +LL reaction 3.62 3.62 I Max +total reaction 11.60 11.42 DEFLECTIONS: I Dead load (in) at 9.03 ft = -0.255 L/D = 858 Live load (in) at 9.13 ft = -0.125 L/D = 1752 Net Total load (in) at 9.13 ft = -0.380 L/D = 576 I I 1 I I 1 q I I Gravity Beam Design El RAM Steel v9.0 Page 45/251 Steve Young , Ram DataBase: A0522401R32 04/07/06 09:09:30 INTERNATIONAL Building Code: IBC Steel Code: ASD 9th Ed. I Floor Type: ROOF Beam Number = 32 1 SPAN INFORMATION (ft): I -End (- 90.84,62.46) J -End (- 80.01,92.21) Beam Size (User Selected) = W16X31 Fy = 50.0 ksi Total Beam Length (ft) = 31.67 I POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% 16.995 1.02 0.00 0.0 0.56 0.00 0.0 0.74 0.0 1 8.417 1.00 LINE LOADS (k/ft): I Load Dist DL LL Red% Type 1 0.000 0.137 0.319 NonR 10.500 0.108 0.252 I 2 10.500 0.068 0.114 0.0% Roof 25.333 0.068 0.114 3 25.334 0.068 0.205 - -- NonR I 31.666 0.068 0.205 4 10.500 0.040 0.066 0.0% Roof 16.994 0.022 0.037 O. 1 5 16.995 0.000 0.000 0.0% Roof 20.414 0.070 0.117 I 6 20.415 0.070 0.117 0.0% Roof 25.333 0.057 0.095 7 25.334 0.033 0.100 - -- NonR I 26.904 0.053 0.158 8 25.334 0.024 0.039 0.0% Roof 26.904 0.000 0.000 I 9 26.905 0.053 0.158 - -- NonR 31..667 0.040 0.119 I SHEAR: Max V (DL +LL) = 7.56 kips fv = 1.83 ksi Fv = 19.67 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange I kip -ft ft ft fb Fb fb Fb Center Max + 62.9 17.0 0.0 1.00 15.99 33.00 15.99 33.00 Controlling 62.9 17.0 0.0 1.00 15.99 33.00 - -- - -- REACTIONS (kips): Left Right I DL reaction 3.06 2.64 Max +LL reaction 4.50 4.75 Max +total reaction 7.56 7.39 I DEFLECTIONS: I Dead load (in) at 15.68 ft = -0.417 L/D = 912 1 Live load (in) at 15.83 ft = -0.595 L/D = 638 Net Total load (in) at 15.83 ft = -1.012 L/D = 375 I Fil Gravity Beam Design RAM Steel v9.0 Page 81/251 Steve Young R AM DataBase: A0522401R32 04/07/06 09:09:30 UNTERNATONAI Building Code: IBC Steel Code: ASD 9th Ed. 1 Floor Type: ROOF Beam Number = 1406 SPAN INFORMATION (ft): I -End (- 61.67,49.00) J -End (- 61.67,91.67) I Beam Size (User Selected) = W18X50 Fy = 50.0 ksi Total Beam Length (ft) = 42.67 I POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% 1.160 0.22 0.00 0.0 0.22 0.00 0.0 0.21 0.1 1 10.671 0.87 0.00 0.0 0.32 0.00 0.0 0.14 0.1 1.160 1.00 I LINE LOADS (k/ft): Load Dist DL LL Red% Type 1 0.000 0.050 0.117 - -- NonR I 14.014 0.050 0.117 2 14.015 0.000 0.000 0.1% Roof 16.445 0.050 0.084 1 3 14.015 0.050 0.117 - -- NonR 16.445 0.000 0.000 OS 4 16.446 0.050 0.083 0.1% Roof 36.333 0.050 0.083 5 36.334 0.113 0.339 - -- NonR 42.666 0.113 0.339 - 6 0.000 0.029 0.068 NonR 1.159 0.034 0.079 I 7 0.000 0.041 0.069 0.1% Roof 1.159 0.037 0.061 8 1.160 0.023 0.055 - -- NonR I 2.864 0.024 0.057 --- 9 2.865 0.024 0.057 NonR 10.671 0.024 0.057 I 10 10.671 0.062 0.144 - -- NonR 11.668 0.063 0.148 11 10.671 0.009 0.014 0.1% Roof 11.668 0.007 0.011 12 11.668 0.063 0.148 - -- NonR I 12.514 0.048 0.113 13 11.668 0.000 0.000 0.1% Roof 12.514 0.022 0.037 I 14 11.668 0.007 0.011 0.1% Roof 12.514 0.000 0.000 15 12.515 0.048 0.113 - -- NonR I 14.014 0.000 0.000 16 12.515 0.022 0.037 0.1% Roof /..-V3) 14.014 0.070 0.117 1 17 14.015 0.070 0.117 0.1% Roof I Gravity Beam Design _ rim RAM Steel v9.0 Page 82 /251 Steve Young • REAM DataBase: A0522401 R32 04/07/06 09:09:30 Building Code: IBC Steel Code: ASD 9th Ed. Load Dist DL LL Red% Type 36.333 0.070 0.117 I 18 36.334 0.007 0.012 0.1% Roof 42.666 0.007 0.012 SHEAR: Max V (DL +LL) = 9.15 kips fv = 1.43 ksi Fv = 20.00 ksi I MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange I kip -ft ft ft fb Fb fb Fb Center Max + 82.3 20.4 0.0 1.00 11.10 33.00 11.10 33.00 Controlling 82.3 20.4 0.0 1.00 11.10 33.00 - -- - -- I REACTIONS (kips): Left Right 1 DL reaction 4.03 2.76 Max +LL reaction 5.12 5.33 Max +total reaction 9.15 8.09 I DEFLECTIONS: PIO Dead load (in) at 20.91 ft = -0.451 L/D = 1136 Live load (in) at 21.12 ft = -0.723 L/D = 708 Net Total load (in) at 21.12 ft = -1.174 L/D = 436 I I I I III I 1 1 4- u I I Gravity Beam Design RAM Steel v9.0 Page 96/251 16 Steve Young RAM DataBase: A0522401R32 04/07/06 09:09:30 INTERNATICNVAL Building Code: IBC Steel Code: ASD 9th Ed. I Floor Type: ROOF Beam Number = 1410 SPAN INFORMATION (ft): I -End (- 42.91,91.67) J -End (- 42.91,107.00) Beam Size (Optimum) = W8X10 Fy = 50.0 ksi Total Beam Length (ft) = 15.33 I LINE LOADS (k/ft): Load Dist DL LL Red% Type 1 0.000 0.150 0.251 0.0% Roof I 9.000 0.138 0.231 2 9.036 0.000 0.000 - -- NonR 9.143 0.069 0.208 I 3 9.144 0.070 0.211 --- NonR 15.333 0.070 0.211 1 4 9.144 0.000 0.000 - -- NonR 9.248 0.069 0.207 5 9.249 0.068 0.203 - -- NonR I 15.333 0.060 0.179 SHEAR: Max V (DL +LL) = 3.65 kips fv = 2.72 ksi FAT = 20.00 ksi OS MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb f6 Fb I Center Max + 12.6 8.1 0.0 1.00 19.35 32.70 19.35 32.70 Controlling 12.6 8.1 0.0 1.00 19.35 32.70 - -- - -- i REACTIONS (kips): ' Left Right DL reaction 1.09 1.04 I Max +LL reaction 2.05 2.61 Max +total reaction 3.14 3.65 DEFLECTIONS: I Dead load (in) at 7.67 ft = -0.192 L/D = 956 Live load (in) at 7.74 ft = -0.409 L/D = 450 I Net Total load (in) at 7.74 ft = -0.601 L/D = 306 I I I 1v I I rim Gravity Beam Design RAM Steel v9.0 Page 100/251 Steve Young lip A� DataBase: A0522401R32 04/07/06 09:09:30 INTERNW1ONAL Building Code: IBC Steel Code: ASD 9th Ed. I Floor Type: ROOF Beam Number = 451 I SPAN INFORMATION (ft): I -End (- 34.97,107.15) J -End (- 32.24,91.67) Beam Size (User Selected) = W12X14 Fy = 50.0 ksi Total Beam Length (ft) = 15.72 I LINE LOADS (k/ft): Load Dist DL LL Red% Type 1 0.000 0.059 0.178 - -- NonR 1 0.640 0.059 0.178 2 0.641 0.059 0.178 - -- NonR I 5.216 0.057 0.171 3 5.217 0.057 0.171 - -- NonR 6.333 0.000 0.000 I 4 5.217 0.002 0.004 0.0% Roof 6.333 0.043 0.072 5 6.334 0.043 0.072 0.0% Roof I 6.585 0.059 0.099 6 6.586 0.126 0.211 0.0% Roof OM° 15.724 0.138 0.230 7 0.000 0.000 0.000 - -- NonR 0.154 0.007 0.020 8 0.155 0.059 0.176 - -- NonR 1 6.333 0.067 0.200 9 6.334 0.066 0.197 - -- NonR I 6.439 0.000 0.000 SHEAR: Max V (DL +LL) = 3.32 kips fv = 1.45 ksi Fv = 18.76 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb I Center Max + 11.9 7.5 0.0 1.00 9.55 33.00 9.55 33.00 Controlling 11.9 7.5 0.0 1.00 9.55 33.00 REACTIONS (kips): I Left Right DL reaction 0.95 1.02 i Max +LL reaction 2.37 1.90 Max +total reaction 3.32 2.92 DEFLECTIONS: I Dead load (in) at 7.86 ft = -0.067 L/D = 2812 Live load (in) at 7.78 ft = -0.140 L/D = 1347 Net Total load (in) at 7.78 ft = -0.207 L/D = 911 I 1,3 I I Gravity Beam Design RAM Steel v9.0 Page 106/251 1110 Steve Young RAM DataBase: A0522401R32 04/07/06 09:09:30 I NTERNATIONAL_ Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: ROOF Beam Number = 183 I SPAN INFORMATION (ft): I -End (- 32.24,91.67) J -End (- 30.60,82.34) Beam Size (User Selected) = W14X34 Fy = 50.0 ksi Total Beam Length (ft) = 9.47 LINE LOADS (k/ft): Load Dist DL LL Red% Type 1 0.000 0.069 0.115 0.0% Roof 1 9.466 0.081 0.135 SHEAR: Max V (DL +LL) = 0.97 kips AT = 0.24 ksi Fy = 20.00 ksi I MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center Max + 2.2 4.8 0.0 1.00 0.55 33.00 0.55 33.00 Controlling 2.2 4.8 0.0 1.00 0.55 33.00 -- - -- I REACTIONS (kips): Left Right Oil° DL reaction 0.35 0.36 Max +LL reaction 0.58 0.61 Max +total reaction 0.92 0.97 I DEFLECTIONS: Dead load (in) at 4.73 ft = -0.001 L/D = 82713 Live load (in) at 4.73 ft = -0.002 L/D = 49628 I Net Total load (in) at 4.73 ft = -0.004 L/D = 31017 I I I I 1 I 1 Gravity Beam Design RAM Steel v9.0 Page 104/251 Steve Young RAM DataBase: A0522401R32 04/07/06 09:09:30 INTERNATIONAL Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: ROOF Beam Number = 468 I SPAN INFORMATION (ft): I -End (- 33.52,49.00) J -End (- 14.21,50.37) Beam Size (User Selected) = W14X34 Fy = 50.0 ksi Total Beam Length (ft) = 19.36 I POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% 7.298 2.14 0.00 0.0 0.15 0.00 0.0 3.49 40.0 1 8.721 3.04 0.00 0.0 0.10 0.00 0.0 5.01 40.0 16.681 5.20 0.00 0.0 0.02 0.00 0:0 8.66 40.0 I LINE LOADS (k/ft): Load Dist DL LL Red% Type 1 0.000 0.000 0.000 40.0% Roof I 8.721 0.005 0.008 2 8.722 0.004 0.007 40.0% Roof 16.681 0.004 0.007 I 3 0.000 0.004 0.006 40.0% Roof 7.298 0.000 0.000 O. 4 16.682 0.004 0.007 40.0% Roof 19.360 0.003 0.005 SHEAR: Max V (DL +LL) = 13.48 kips fv = 3.38 ksi Fy = 20.00 ksi I MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange • kip -ft ft ft fb Fb fb Fb Center Max + 60.0 8.7 8.0 1.23 14.81 30.00 14.81 30.00 Controlling 60.0 8.7 8.0 1.23 14.81 30.00 - -- - -- I REACTIONS (kips): Left Right I DL reaction 3.77 6.70 Max +LL reaction 3.86 6.78 Max +total reaction 7.63 13.48 I DEFLECTIONS: Dead load (in) at 9.68 ft = -0.189 L/D = 1232 Live load (in) at 9.68 ft = -0.193 L/D = 1205 I Net Total load (in) at 9.68 ft = -0.381 L/D = 609 I I qA-rk 6-2 I I Gravity Beam Design RAM Steel v9.0 Page 131/251 Steve Young III. RA M DataBase: A0522401R32 04/07/06 09:09:30 I NTEP,IJA710 1JA1 Building Code: IBC Steel Code: ASD 9th Ed. 1 Floor Type: ROOF Beam Number = 469 SPAN INFORMATION (ft): I -End (- 14.21,50.37) J -End (- 3.87,52.20) Beam Size (User Selected) = • W14X34 Fy = 50.0 ksi Total Beam Length (ft) = 10.50 I POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% 5.253 4.81 0.00 0.0 0.00 0.00 0.0 8.02 12.6 I LINE LOADS (k/ft): Load Dist DL LL Red% Type I 1 0.000 0.007 0.012 12.6% Roof 10.500 0.007 0.012 SHEAR: Max V (DL +LL) = 6.00 kips fv = 1.50 ksi Fy = 20.00 ksi I MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange I kip -ft ft ft fb Fb fb Fb Center Max + 31.3 5.3 5.3 1.75 7.72 33.00 7.72 33.00 O Controlling 31.3 5.3 5.3 1.75 7.72 33.00 - -- - -- REACTIONS (kips): Left Right I DL reaction 2.44 2.44 Max +LL reaction 3.56 3.56 Max +total reaction 6.00 6.00 I DEFLECTIONS: Dead load (in) at 5.25 ft = -0.021 L/D = 6139 I Live load (in) at 5.25 ft = -0.030 L/D = 4212 Net Total load (in) at 5.25 ft = -0.050 L/D = 2498 I I I I 4 k.tv I Gravity Beam Design RAM Steel v9.0 Page 145/251 Steve Young RA DataBase: A0522401R32 04/07/06 09:09:30 NTERNA N ^� Building Code: IBC Steel Code: ASD 9th Ed. I Floor Type: ROOF Beam Number = 470 I SPAN INFORMATION (ft): I -End (- 3.87,52.20) J -End (14.72,57.50) Beam Size (User Selected) = W14X34 Fy = 50.0 ksi Total Beam Length (ft) = 19.34 I POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% 2.684 2.85 0.00 0.0 0.02 0.00 0.0 4.74 40.0 1 9.668 3.05 0.00 0.0 0.00 0.00 0.0 5.09 40.0 10.565 3.05 0.00 0.0 0.09 0.00 0.0 5.03 40.0 I LINE LOADS (k/ft): Load Dist DL LL Red% Type 1 0.000 0.005 0.009 40.0% Roof I 9.668 0.000 0.000 2 9.668 0.005 0.009 40.0% Roof 19.335 0.000 0.000 I 3 0.000 0.003 0.005 40.0% Roof 2.684 0.004 0.007 Oil 4 2.685 0.000 0.000 40.0% Roof 10.565 0.004 0.007 5 10.565 0.000 0.000 40.0% Roof I 19.335 0.005 0.008 SHEAR: Max V (DL +LL) = 10.87 kips fv = 2.72 ksi Fy = 20.00 ksi I MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb I Center Max + 64.6 9.7 7.0 1.34 15.96 30.00 15.96 30.00 Controlling 64.6 9.7 7.0 1.34 15.96 30.00 REACTIONS (kips): I Left Right DL reaction 5.41 3.63 I Max +LL reaction 5.45 3.67 Max +total reaction 10.87 7.30 DEFLECTIONS: I Dead load (in) at 9.57 ft = -0.192 L/D = 1208 Live load (in) at 9.57 ft = -0.194 L/D = 1197 Net Total load (in) at 9.57 ft = -0.386 L/D = 601 1 I e Ct 1 Gravity Beam Design RAM Steel v9.0 Page 109/251 Steve Young R DataBase: A0522401R32 04/07/06 09:09:30 Bui lding Code: IBC Steel Code: ASD 9th Ed. Floor Type: ROOF Beam Number = 473 I SPAN INFORMATION (ft): I -End (- 27.21,63.14) J -End (- 24.83,49.62) Beam Size (User Selected) = W14X34 Fy = 50.0 ksi Total Beam Length (ft) = 13.73 I POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% I LINE LOADS (k/ft): Load Dist DL LL Red% Type 1 0.000 0.059 0.099 0.0% Roof I 13.157 0.059 0.099 2 13.158 0.059 0.099 0.0% Roof 13.730 0.000 0.000 I 3 0.000 0.047 0.078 0.0% Roof 12.922 0.063 0.105 4 12.923 0.000 0.000 0.0% Roof 1 12.957 0.063 0.105 5 12.958 0.063 0.105 0.0% Roof 13.730 0.064 0.107 SHEAR: Max V (DL +LL) = 2.11 kips iv = 0.53 ksi FIT = 20.00 ksi I MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb I Center Max + 7.2 7.0 0.0 1.00 1.78 33.00 1.78 33.00 Controlling 7.2 7.0 0.0 1.00 1.78 33.00 REACTIONS (kips): I Left Right DL reaction 0.77 0.79 Max +LL reaction 1.28 1.32 I Max +total reaction 2.05 2.11 DEFLECTIONS: I Dead load (in) at 6.87 ft = -0.009 L/D = 17707 Live load (in) at 6.87 ft = -0.016 L/D = 10624 Net Total load (in) at 6.87 ft = -0.025 L/D = 6640 I I I I I ritil Gravity Beam Design RAM Steel v9.0 Page 117/251 Steve Young REAP DataBase: A0522401R32 04/07/06 09:09:30 Building Code: IBC Steel Code: ASD 9th Ed. I Floor Type: ROOF Beam Number = 474 I SPAN INFORMATION (ft): I -End (- 24.20,91.67) J -End (- 16.89,50.18) Beam Size (Optimum) = W18X35 Fy = 50.0 ksi Total Beam Length (ft) = 42.12 I POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% 34.401 0.18 0.00 0.0 0.00 0.00 0.0 0.30 12.2 I LINE LOADS (k/ft): Load Dist DL LL Red% Type I 1 0.000 0.059 0.099 12.2% Roof 33.005 0.059 0.099 2 33.006 0.059 0.099 12.2% Roof I 34.401 0.000 0.000 3 34.401 0.020 0.033 12.2% Roof 41.931 0.020 0.033 I 4 41.932 0.020 0.033 12.2% Roof 42.124 0.000 0.000 ill. 5 0.000 0.059 0.099 12.2% Roof 42.124 0.059 0.099 SHEAR: Max V (DL +LL) = 6.15 kips fv = 1.22 ksi Fv = 19.13 ksi I MOMENTS: Span Cond Moment @ ' Lb Cb Tension Flange Compr Flange • kip -ft ft ft fb Fb fb Fb Center Max + 64.7 21.0 0.0 1.00 13.48 33.00 13.48 33.00 Controlling 64.7 21.0 0.0 1.00 13.48 33.00 - -- - -- I REACTIONS (kips): Left Right DL reaction 2.50 2.34 I Max +LL reaction 3.65 3.42 Max +total reaction 6.15 5.75 I DEFLECTIONS: Dead load (in) at 21.06 ft = -0.567 L/D = 891 Live load (in) at 21.06 ft = -0.829 L/D = 609 I Net Total load (in) at 21.06 ft = -1.397 L/D = 362 1 I 4- eT I I Gravity Beam Design El RAM Steel v9.0 Page 127/251 Steve Young Ill/ RAM DataBase: A0522401R32 04/07/06 09:09:30 INTERN -ToNA1 Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: ROOF Beam Number = 475 I SPAN INFORMATION (ft): I -End (- 16.37,92.87) J -End (- 9.04,51.28) Beam Size (Optimum) _ = W16X31 Fy = 50.0 ksi Total Beam Length (ft) = 42.22 I POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% 34.222 0.12 0.00 0.0 0.00 0.00 0.0 0.19 7.0 LINE LOADS (k/ft): Load Dist DL LL Red% Type I 1 0.000 0.000 0.000 7.0% Roof 0.924 0.039 0.066 2 0.925 0.039 0.066 7.0% Roof I 42.221 0.039 0.066 3 0.000 0.000 0.000 7.0% Roof 1.216 0.052 0.086 1 4 1.217 0.059 0.099 7.0% Roof 34.221 0.059 0.099 O. 5 34.222 0.000 0.000 7.0% Roof 35.147 0.039 0.066 6 35.148 0.039 0.066 7.0% Roof I 42.221 0.039 0.066 SHEAR: Max V (DL +LL) = 5.18 kips fv = 1.25 ksi Fv = 19.67 ksi I MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb I Center Max + 56.3 21.1 0.0 1.00 14.31 33.00 14.31 33.00 Controlling 56.3 21.1 0.0 1.00 14.31 33.00 REACTIONS (kips): Left Right DL reaction 2.03 2.02 Max +LL reaction 3.15 3.13 Max +total reaction 5.18 5.15 DEFLECTIONS: I Dead load (in) at 21.11 ft = -0.651 L/D = 778 Live load (in) at 21.11 ft = -1.009 L/D = 502 Net Total load (in) at 21.11 ft = -1.660 L/D = 305 I c7 I I Gravity Beam Design RAM Steel v9.0 Page 115/251 Steve Young Ill/ DataBase: A0522401R32 04/07/06 09:09:30 u TERNAnO�AL Building Code: IBC Steel Code: ASD 9th Ed. I Floor Type: ROOF Beam Number = 479 I SPAN INFORMATION (ft): I -End (- 24.83,49.62) J -End (- 16.24,0.96) Beam Size (User Selected) = W24X55 Fy = 50.0 ksi Total Beam Length (ft) = 49.41 I POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% 42.260 0.14 0.00 0.0 0.27 0.00 0.0 0.09 9.4 LINE LOADS (k/ft): Load Dist DL . LL Red% Type 1 0.000 0.059 0.099 9.4% Roof 44.677 0.059 0.099 2 44.677 0.000 0.000 - -- NonR 46.162 0.059 0.178 3 44.677 0.059 0.099 9.4% Roof 46.162 0.000 0.000 I 4 46.163 0.059 0.178 - -- NonR 48.017 0.059 0.178 011) 5 48.017 0.059 0.178 - -- NonR 49.413 0.000 0.000 6 0.000 0.000 0.000 9.4% Roof I 0.102 0.011 0.018 7 0.103 0.011 0.018 9.4% Roof 42.260 0.065 0.108 I 8 42.261 0.031 0.051 9.4% Roof 43.952 0.033 0.055 9 43.953 0.031 0.052 9.4% Roof I 44.677 0.000 0.000 10 43.953 0.002 0.006 --- NonR 44.677 0.034 0.102 11 44.677 0.034 0.102 - -- NonR 49.413 0.040 0.120 I SHEAR: Max V (DL +LL) = 7.25 kips fv = 0.81 ksi Fy = 18.78 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange I kip -ft ft ft fb Fb fb Fb Center Max + 79.5 26.2 0.0 1.00 8.29 33.00 8.29 33.00 I Controlling 79.5 26.2 0.0 1.00 8.29 33.00 - -- - -- REACTIONS (kips): Left Right DL reaction 2.25 2.63 Max +LL reaction 3.45 4.63 @ ,11-,t Max +total reaction 5.70 7.25 ` I Gravity Beam Design RAM Steel v9.0 Page 116/251 Steve Young Ill/ RAM DataBase: A0522401R32 04/07/06 09:09:30 ME��,,F� Building Code: IBC Steel Code: ASD 9th Ed. DEFLECTIONS: Dead load (in) at 24.95 ft = -0.346 L/D = 1712 I Live load (in) at 24.95 ft = -0.539 L/D = 1101 Net Total load (in) at 24.95 ft = -0.885 L/D = 670 I I I I I O I I I I I I I I 4 / I. n - ' I I ro Gravity Beam Design RAM Steel v9.0 Page 122/251 le Ste ve Y oung RAM DataBase: A0522401 R32 04/07/06 09:09:30 r ea`anor�nL Building Code: IBC Steel Code: ASD 9th Ed. I Floor Type: ROOF Beam Number = 85 I SPAN INFORMATION (ft): I -End (- 21.67, -0.00) J -End (20.36,7.41) Beam Size (User Selected) = W24X84 Fy = 50.0 ksi Total Beam Length (ft) = 42.68 I POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% 5.505 2.63 0.00 0.0 1.32 0.00 0.0 3.64 40.0 I 5.505 0.10 0.00 0.0 0.30 0.00 0.0 0.00 0.0 13.423 2.84 0.00 0.0 0.68 0.00 0.0 4.36 40.0 13.423 0.28 0.00 0.0 0.84 0.00 0.0 0.00 0.0 I 21.336 2.87 0.00 0.0 0.22 0.00 0.0 4.66 40.0 21.336 0.25 0.00 0.0 0.75 0.00 0.0 0.00 0.0 I 29.258 2.82 0.00 0.0 0.65 0.00 0.0 4.34 40.0 29.258 0.28 0.00 0.0 0.83 0.00 0.0 0.00 0.0 37.005 2.98 0.00 0.0 1.37 0.00 0.0 4.20 40.0 i 37.005 0.10 0.00 0.0 0.30 0.00 0.0 0.00 0.0 LINE LOADS (k/ft): 0 Load Dist DL LL Red% Type 1 0.000 0.007 0.022 - -- NonR 5.505 0.007 0.021 I 2 5.506 0.010 0.031 - -- NonR 37.004 0.010 0.031 3 37.005 0.009 0.026 - -- NonR I 42.675 0.009 0.026 SHEAR: Max V (DL +LL) = 18.64 kips fv = 1.65 ksi Fv = 20.00 ksi I MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb I Center Max + 218.2 21.3 7.9 1.06 13.36 33.00 13.36 33.00 Controlling 218.2 21.3 7.9 1.06 13.36 33.00 - -- - -- I REACTIONS (kips): Left Right DL reaction 7.66 7.90 I Max +LL reaction 10.49 10.75 Max +total reaction 18.15 18.64 DEFLECTIONS: I Dead load (in) at 21.34 ft = -0.436 L/D = 1174 Live load (in) at 21.34 ft = -0.586 L/D = 874 Net Total load (in) at 21.34 ft = -1.022 L/D = 501 {„� 3 ' k Gravity Beam Design RAM Steel v9.0 Page 163/251 1110 Steve Young RAM DataBase: A0522401R32 04/07/06 09:09:30 INTERNATIONAL B uilding Code: IBC Steel Code: ASD 9th Ed. I Floor Type: ROOF Beam Number = 121 SPAN INFORMATION (ft): I -End (14.72,57.50) J -End (23.36,8.50) I Beam Size (User Selected) = W24X55 Fy = 50.0 ksi Total Beam Length (ft) = 49.76 I POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% 15.305 1.22 0.00 0.0 0.17 0.00 0.0 1.94 19.2 I 42.327 0.23 0.00 0.0 0.40 0.00 0.0 0.15 19.2 LINE LOADS (k/ft): I Load Dist DL LL Red% Type 1 0.000 0.054 0.090 19.2% Roof 15.305 0.074 0.123 I 2 15.306 0.015 0.025 19.2% Roof 43.063 0.050 0.084 3 43.064 0.000 0.000 - -- NonR i 43.090 0.054 0.161 Oil 4 43.064 0.047 0.079 19.2% Roof 43.090 0.000 0.000 5 43.090 0.050 0.151 - -- NonR 49.755 0.059 0.177 I 6 0.000 0.065 0.109 19.2% Roof 40.758 0.066 0.110 7 40.759 0.066 0.110 19.2% Roof I 42.326 0.000 0.000 8 42.327 0.016 0.027 19.2% Roof 43.055 0.016 0.027 I 9 43.064 0.016 0.049 - -- NonR 49.755 0.016 0.049 I SHEAR: Max V (DL +LL) = 8.72 kips fv = 0.98 ksi FAT = 18.78 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange I kip -ft ft ft fb Fb fb Fb Center Max + 101.8 20.9 0.0 1.00 10.63 33.00 10.63 33.00 Controlling 101.8 20.9 0.0 1.00 10.63 33.00 I - -- REACTIONS (kips): Left Right I DL reaction 3.65 2.90 Max +LL reaction 5.07 4.85 Max +total reaction 8.72 7.75 I DEFLECTIONS: Dead load (in) at 24.13 ft = -0.479 L/D = 1247 @ @ I Live load (in) at 24.38 ft = -0.681 -1.160 L/D = 876 Net Total load (in) at 24.38 ft = L/D = 515 C - Gravity Beam Design El RAM Steel v9.0 Page 135/251 Steve Young RAM DataBase: A0522401R32 04/07/06 09:09:30 MEAT. AVAL Building Code: IBC Steel Code: ASD 9th Ed. I Floor Type: ROOF Beam Number = 1376 SPAN INFORMATION (ft): I -End (- 11.20,93.78) J -End (- 3.87,52.20) `` Beam Size (Optimum) = W18X35 Fy = 50.0 ksi Total Beam Length (ft) = 42.22 I POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% 8.250 0.16 0.00 0.0 0.00 0.00 0.0 0.26 11.1 I 16.000 0.14 0.00 0.0 0.00 0.00 0.0 0.23 11.1 LINE LOADS (k/ft): I Load Dist DL LL Red% Type 1 0.000 0.000 0.000 11.1% Roof 0.289 0.012 0.021 III 2 0.290 0.072 0.120 11.1% Roof 8.250 0.072 0.120 3 8.250 0.000 0.000 11.1% Roof I 9.308 0.045 0.075 lib 4 9.308 0.045 0.075 11.1% Roof 16.000 0.045 0.075 5 16.000 0.000 0.000 11.1% Roof 17.695 0.072 0.120 I 6 17.696 0.072 0.120 11.1% Roof 42.222 0.072 0.120 7 0.000 0.039 0.066 11.1% Roof I 41.296 0.039 0.066 8 41.297 0.039 0.066 11.1% Roof 42.222 0.000 0.000 I SHEAR: Max V (DL +LL) = 5.81 kips fv = 1.15 ksi Fv = 19.13 ksi MOMENTS: I Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb f6 Fb Center Max + 61.3 21.2 0.0 1.00 12.77 33.00 12.77 33.00 1 Controlling 61.3 21.2 0.0 1.00 12.77 33.00 - -- - -- REACTIONS (kips): I Left Right DL reaction 2.34 2.33 Max +LL reaction 3.47 3.45 I Max +total reaction 5.81 5.78 DEFLECTIONS: Dead load (in) at 21.11 ft = -0.536 L/D = 946 e 1 Live load (in) at 21.11 ft = -0.794 L/D = 638 Net Total load (in) at 21.11 ft = -1.330 L/D = 381 I I Gravity Beam Design RAM Steel v9.0 Page 143/251 16 Steve Young RAM DataBase: A0522401R32 04/07/06 09:09:30 INT eRvanor,ai Building Code: IBC Steel Code: ASD 9th Ed. 1 Floor Type: ROOF Beam Number = 1392 SPAN INFORMATION (ft): I -End (- 4.74,112.48) J -End (- 1.98,96.83) Beam Size (Optimum) = W10X12 Fy = 50.0 ksi Total Beam Length (ft) = 15.89 i LINE LOADS (k/ft): Load Dist DL LL Red% Type 1 0.000 0.000 0.000 - -- NonR 0.324 0.014 0.041 2 0.325 0.069 0.208 - -- NonR Ill 5.746 0.076 0.229 3 5.747 0.076 0.228 --- NonR 6.212 0.077 0.231 4 6.213 0.077 0.230 - -- NonR 6.333 0.077 0.231 5 6.334 0.000 0.000 0.0% Roof 6.504 0.014 0.023 6 6.334 0.077 0.231 --- Pi 6.504 0.063 0.190 7 6.505 0.014 0.023 0.0% Roof 6.615 0.078 0.131 8 6.505 0.062 0.187 - -- NonR I 6.615 0.000 0.000 9 6.616 0.077 0.129 0.0% Roof i 15.894 0.089 0.149 10 0.000 0.052 0.156 - -- NonR 0.266 0.052 0.156 I 11 0.267 0.052 0.156 - -- NonR 5.541 0.046 0.137 12 0.267 0.000 0.000 0.0% Roof 11 5.541 0.007 0.011 -- 13 5.542 0.046 0.137 NonR 5.746 0.038 0.113 I 14 5.542 0.007 0.011 0.0% Roof 5.746 0.014 0.023 15 5.747 0.038 0.114 - -- NonR r 6.333 0.000 0.000 16 5.747 0.014 0.024 0.0% Roof 6.333 0.052 0.087 l ' 17 6.334 0.052 0.087 0.0% Roof 15.894 0.052 0.087 I SHEAR: Max V (DL +LL) = 3.44 kips fv = 1.84 ksi Fy = 20.00 ksi MOMENTS: 1 Span Cond Moment @ Lb Cb Tension Flange Compr Flange I Gravity Beam Design RAM Steel v9.0 Page 144/251 to Steve Young RAM DataBase: A0522401 R32 04/07/06 09:09:30 IMERNATICNAL Building Code: IBC Steel Code: ASD 9th Ed. I kip -ft ft ft fb Fb fb Fb Center Max + 12.7 7.5 0.0 1.00 13.97 32.83 13.97 32.83 I Controlling 12.7 7.5 0.0 1.00 13.97 32.83 - -- - -- REACTIONS (kips): Left Right DL reaction 0.99 1.07 Max +LL reaction 2.45 1.98 Max +total reaction 3.44 3.05 I DEFLECTIONS: Dead load (in) at 7.95 ft = -0.121 L/D = 1582 Live load (in) at 7.87 ft = -0.252 L/D = 758 Net Total load (in) at 7.87 ft = -0.372 L/D = 512 • P 1 I I ,I I 111 Gravity Beam Design, El RAM Steel v9.0 Page 148/251 Jill Steve Young R AM DataBase: A0522401R32 04/07/06 09:09:30 INTERNATIONAL Building Code: IBC Steel Code: ASD 9th Ed. 1 Floor Type: ROOF Beam Number = 1393 I SPAN INFORMATION (ft): I -End (- 1.98,96.83) J -End (5.42,54.85) Beam Size (Optimum) = W18X35 Fy = 50.0 ksi Total Beam Length (ft) = 42.63 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% 9.656 0.21 0.00 0.0 0.00 0.00 0.0 0.34 20.8 1 17.406 0.21 0.00 0.0 0.00 0.00 0.0 0.35 20.8 LINE LOADS (k/ft): i Load Dist DL LL Red% Type 1 0.000 0.072 0.120 20.8% Roof 41.932 0.072 0.120 I 2 20.102 0.072 0.120 20.8% Roof 42.628 0.072 0.120 3 0.000 0.072 0.120 20.8% Roof t 7.960 0.072 0.120 /111111 4 7.961 0.072 0.120 20.8% Roof 9.655 0.000 0.000 5 9.656 0.027 0.045 20.8% Roof 16.768 0.027 0.045 I 6 16.769 0.027 0.045 20.8% Roof 17.405 0.000 0.000 7 17.406 0.072 0.120 20.8% Roof I 20.101 0.072 0.120 8 41.933 0.072 0.120 20.8% Roof 42.628 0.000 0.000 A SHEAR: Max V (DL +LL) = 7.12 kips fv = 1.41 ksi Fv = 19.13 ksi MOMENTS: I Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center Max + 76.3 21.3 0.0 1.00 15.89 33.00 15.89 33.00 I Controlling 76.3 21.3 0.0 1.00 15.89 33.00 - -- - -- REACTIONS (kips): I Left Right DL reaction 3.07 3.05 Max +LL reaction 4.05 4.03 Max +total reaction 7.12 7.08 I DEFLECTIONS: Dead load (in) at 21.31 ft = -0.725 L/D = 706 fi ,„„ Lie , I Live load (in) at 21.31 ft = -0.957 L/D = 535 Net Total load (in) at 21.31 ft = -1.682 L/D = 304 I I Gravity Beam Design El RAM Steel v9.0 Page 140/251 Steve Young RAM DataBase: A0522401R32 04/07/06 09:09:30 INTERNATIONAL Building Code: IBC Steel Code: ASD 9th Ed. ,1 Floor Type: ROOF Beam Number = 1394 SPAN INFORMATION (ft): I -End (- 8.43,78.02) J -End (1.04,79.69) I Beam Size (Optimum) W8X10 Fy 50.0 ksi Total Beam Length (ft) = 9.62 1 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% 6.000 0.26 0.00 0.0 0.00 0.00 0.0 0.43 0.0 il LINE LOADS (k/ft): Load Dist DL LL Red% Type 1 0.000 0.008 0.013 0.0% Roof 6.000 0.000 0.000 2 6.000 0.005 0.008 0.0% Roof I 9.616 0.000 0.000 3 0.000 0.000 0.000 0.0% Roof 9.616 0.013 0.021 111 SHEAR: Max V (DL +LL) = 0.57 kips fv = 0.42 ksi Fv = 20.00 ksi 0 MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center Max + 1.8 6.0 0.0 1.00 2.80 32.70 2.80 32.70 I Controlling 1.8 6.0 0.0 1.00 2.80 32.70 - -- - -- REACTIONS (kips): • Left Right DL reaction 0.14 0.21 Max +LL reaction 0.23 0.35 1 Max +total reaction 0.37 0.57 DEFLECTIONS: Dead load (in) at 5.10 ft -0.010 L/D 11002 Live load (in) at 5.10 ft -0.017 L/D = 6601 Net Total load (in) at 5.10 ft = -0.028 L/D = 4126 11 I II . I k vi I I Gravity Beam Design rim RAM Steel v9.0 Page 136/251 , l Steve Young ' RAIN DataBase: A0522401R32 04/07/06 09:09:30 INTERNATKONAt Building Code: IBC Steel Code: ASD 9th Ed. 1 Floor Type: ROOF Beam Number = 1395 I SPAN INFORMATION (ft): I -End (- 9.77,85.65) J -End (- 0.30,87.32) Beam Size (Optimum) = W8X10 Fy = 50.0 ksi Total Beam Length (ft) = 9.62 1 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% 6.000 0.27 0.00 0.0 0.00 0.00 0.0 0.45 0.0 ' LINE LOADS (k/ft): Load Dist DL LL Red% Type 1 0.000 0.013 0.021 0.0% Roof 9.616 0.000 0.000 2 0.000 0.000 0.000 0.0% Roof I 6.000 0.008 0.013 3 6.000 0.000 0.000 0.0% Roof 9.616 0.005 0.008 i SHEAR: Max V (DL +LL) = 0.55 kips fv = 0.41 ksi Fv = 20.00 ksi li MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center Max + 1.9 6.0 6.0 1.75 2.93 30.00 2.93 29.86 I Controlling 1.9 6.0 6.0 1.75 - -- - -- 2.93 29.86 REACTIONS (kips): I Left Right DL reaction 0.16 0.21 Max +LL reaction 0.26 0.34 1 Max +total reaction 0.42 0.55 DEFLECTIONS: Dead load (in) at 5. ft = -0.011 L/D = 10389 Live load (in) at 5 .05 ft = -0.019 L/D = 6233 Net Total load (in) at 5.05 ft = -0.030 L/D = 3896 I I ,I I @t it I Gravity Beam Design El RAM Steel v9.0 Page 156/251 t Steve Young ' RAM DataBase: A0522401R32 04/07/06 09:09:30 INTERNATIONAL Building Code: IBC Steel Code: ASD 9th Ed. 1 Floor Type: ROOF Beam Number = 115 I SPAN INFORMATION (ft): I -End (7.20,100.17) J -End (12.49,70.14) Beam Size (User Selected) = W18X35 Fy = 50.0 ksi Total Beam Length (ft) = 30.49 LINE LOADS (k/ft): Load Dist DL LL Red% Type 1 0.000 0.017 0.028 2.1% % Roof 1 20.770 0.044 0.073 2 20.771 0.116 0.193 2.1% Roof 30.491 0.128 0.214 I 3 0.000 0.072 0.120 2.1% Roof 20.770 0.072 0.120. I SHEAR: Max V (DL +LL) = 4.62 kips fv = 0.91 ksi Fv = 19.13 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange - kip -ft ft ft fb Pb fb Fb lob Center Max + 33.3 15.7 0.0 1.00 6.93 33.00 6.93 33.00 Controlling 33.3 15.7 0.0 1.00 6.93 33.00 - -- - -- REACTIONS (kips): I Left Right DL reaction 1.56 1.76 Max +LL reaction 2.54 2.86 I Max +total reaction 4.10 4.62 DEFLECTIONS: Dead load (in) at 15.40 ft = -0.143 L/D = 2561 Live load (in) at 15.40 ft = -0.233 L/D = 1570 Net Total load (in) at 15.40 ft = -0.376 L/D = 973 I I i 1 W3 ) I Fil Gravity Beam Design RAM Steel v9.0 Page 170/251 1 1 - Steve Young ,16 RANI DataBase: A0522401 R32 04/07/06 09:09:30 IN1ERNATIONAL Building Code: IBC Steel Code: ASD 9th Ed. I Floor Type: ROOF Beam Number = 1114 SPAN INFORMATION (ft): I -End (19.27,43.12) J -End (30.87,11.24) i Beam Size (User Selected) = W16X31 Fy = 50.0 ksi Total Beam Length (ft) = 33.93 LINE LOADS (k/ft): Load Dist DL LL Red% Type 1 0.000 0.060 0.100 0.0% Roof 111 27.362 0.060 0.100 - -- 2 27.363 0.000 0.000 NonR 27.392 0.063 0.190 It 3 27.363 0.057 0.094 0.0% Roof 27.392 0.000 0.000 III 4 27.393 0.060 0.180 - -- NonR 33.927 0.060 0.180 5 0.000 0.015 0.025 0.0% Roof LI 27. 336 0.051 0.085 ;� 6 27.337 0.054 0.091 0.0% Roof IP. 27.362 0.000 0.000 7 27.337 0.000 0.000 - -- NonR 27.362 0.048 0.144 8 27.363 0.051 0.154 - -- NonR ,1 33.927 0.060 0.180 SHEAR: Max V (DL +LL) = 5.66 kips AT = 1.37 ksi Fy = 19.67 ksi S' MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb i Center Max + 39.2 18.0 0.0 1.00 9.95 33.00 9.95 33.00 Controlling 39.2 18.0 0.0 1.00 9.95 33.00 - -- - -- REACTIONS (kips): Left Right DL reaction 1.53 1.78 1 Max +LL reaction 2.64 3.88 Max +total reaction 4.17 5.66 I DEFLECTIONS: Dead load (in) at 17.13 ft = -0.267 L/D = 1524 Live load (in) at 17.30 ft = -0.482 L/D = 845 ,� Net Total load (in) at 17.30 ft = -0.749 L/D = 544 s' I I - Gravity Beam Design RAM Steel v9.0 Page 158/251 le. Steve Young RAM DataBase: A0522401R32 04/07/06 09:09:30 INTERNATIONAL Building Code: IBC Steel Code: ASD 9th Ed. ., Floor Type: ROOF Beam Number = 1493 . SPAN INFORMATION (ft): I -End (9.37,100.96) J -End (23.96,60.87) 11 Beam Size (Optimum) = W18X35 Fy = 50.0 ksi Total Beam Length (ft) = 42.67 1 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% 23.250 0.35 0.00 0.0 0.14 0.00 0.0 0.05 9.9 r' 32.917 0.43 0.00 0.0 0.26 0.00 0.0 0.09 9.9 41.417 0.34 0.00 0.0 0.12 0.00 0.0 0.04 9.9 a LINE LOADS (k/ft): IF Load Dist DL LL Red% Type 1 0.000 0.069 0.115 9.9% Roof I 20.859 0.069 0.115 2 20.860 0.069 0.114 9.9% Roof 21.166 0.069 0.115 3 21.181 0.051 0.085 9.9% Roof 1 23.250 0.051 0.085 4 21.181 0.018 0.042 - -- NonR 23.250 0.018 0.042 5 23.251 0.045 0.075 9.9% Roof il 41.416 0.045 0.075 6 23.251 0.006 0.013 - -- NonR 41.416 0.006 0.013 I 7 41.417 0.051 0.085 9.9% Roof 42.666 0.051 0.085 8 41.417 0.018 0.042 - -- NonR 42.666 0.018 0.042 9 0.000 0.017 0.029 9.9% Roof 20.455 0.044 0.074 10 20.455 0.045 0.074 9.9% Roof 20.859 0.045 0.075 11 20.860 0.045 0.075 9.9% Roof i 42.666 0.074 0.123 SHEAR: Max V (DL +LL) = 7.44 kips fv = 1.47 ksi Fy = 19.13 ksi I MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb I Center Max + 71.2 23.1 0.0 1.00 14.83 33.00 14.83 33.00 Controlling 71.2 23.1 0.0 1.00 14.83 33.00 - -- - -- II REACTIONS (kips): Left Right DL reaction 2.42 3.24 1 is Max +LL reaction 3.44 4.20 et 43 `i FRI Gravity Beam Design RAM Ste ve Young Steel v9.0 Page 159/251 le RAM DataBase: A0522401R32 04/07/06 09:09:30 �FRNpA Building Code: IBC Steel Code: ASD 9th Ed. I Left Right Max +total reaction 5.86 7.44 DEFLECTIONS: Dead load (in) at 21.76 ft = -0.660 L/D = 776 Live load (in) at 21.55 ft = -0.899 LID = 569 Net Total load (in) at 21.55 ft = -1.560 L/D = 328 1 I III i 11 !1 1 1 Fil Gravity Beam Design RAM Steel v9.0 Page 180/251 RAM Steve Young lip DataBase: A0522401R32 04/07/06 09:09:30 INTERNATIONAL Building Code: IBC Steel Code: ASD 9th Ed. I Floor Type: ROOF Beam Number = 1491 SPAN INFORMATION (ft): I -End (26.60,107.23) J -End (41.19,67.14) ill' Beam Size (User Selected) = W18X50 Fy = 50.0 ksi Total Beam Length (ft) = 42.67 I POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% 31.667 4.64 0.00 0.0 1.77 0.00 0.0 0.51 0.0 31.667 2.62 0.00 0.0 1.22 0.00 0.0 0.00 0.0 23.250 1.00 LINE LOADS (k/ft): Load Dist DL LL Red% Type 1 0.000 0.109 0.327 - -- NonR I 6.333 0.109 0.327 2 6.334 0.047 0.078 0.0% Roof 21.204 0.047 0.078 • ® 3 21.227 0.047 0.109 - -- NonR L 31.666 0.047 0.109 4 31.667 0.376 0.000 - -- NonR PIIP 42.666 0.376 0.000 5 0.000 0.007 0.011 0.0% Roof 6.333 0.007 0.011 6 6.334 0.069 0.115 0.0% Roof 21.179 0.069 0.115 7 21.181 0.073 0.122 0.0% Roof 21.204 0.000 0.000 8 21.181 0.000 0.000 - -- NonR 1 21.204 0.048 0.112 9 21.209 0.069 0.160 - -- NonR 31.666 0.069 0.160 I SHEAR: Max V (DL +LL) = 16.32 kips fv = 2.55 ksi Fv = 20.00 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center Max + 159.4 28.0 0.0 1.00 21.52 33.00 21.52 33.00 Controlling 159.4 28.0 0.0 1.00 21.52 33.00 REACTIONS (kips): Left Right DL reaction 5.16 10.89 Max +LL reaction 5.90 5.43 Max +total reaction 11.06 16.32 DEFLECTIONS: (Camber = 3/4) f + Dead load (in) at 22.83 ft = -1.243 L/D = 412 Live load (in) at 22.40 ft = -0.934 L/D = 548 I • 1 Gravity Beam Design RAM Steel v9.0 Page 168/251 Steve Young g RQ� D Building Code: IBC Steel Code: ASD 9th Ed. 1 Floor Type: ROOF Beam Number = 1492 I SPAN INFORMATION (ft): I -End (17.98,104.09) J -End (32.57,64.00) Beam Size (Optimum) = W21X44 Fy = 50.0 ksi Total Beam Length (ft) = 42.67 1 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% 23.250 0.98 0.00 0.0 0.38 0.00 0.0 0.13 0.4 J 31.667 0.66 0.00 0.0 0.31 0.00 0.0 0.00 0.0 32.917 1.20 0.00 0.0 0.72 0.00 0.0 0.25 0.4 41.417 0.95 0.00 0.0 0.34 0.00 0.0 0.12 0.4 LINE LOADS (k/ft): Load Dist DL LL Red% Type , 1 0.000 0.036 0.060 0.4% Roof 6.333 0.036 0.060 2 0.000 0.033 0.098 - -- NonR I 6.333 0.033 0.098 lib 3 6.334 0.069 0.115 0.4% Roof 21.179 0.069 0.115 4 21.181 0.000 0.000 - -- NonR 21.204 0.071 0.166 i 5 21.181 0.058 0.096 0.4% Roof 21.204 0.000 0.000 6 21.209 0.069 0.160 - -- NonR 31.666 0.069 0.160 7 31.667 0.055 0.128 - -- NonR 42.666 0.055 0.128 8 0.000 0.069 0.115 0.4% Roof 20.859 0.069 0.115 9 20.860 0.069 0.115 0.4% Roof I 21.166 0.069 0.114 10 21.181 0.052 0.122 - -- NonR 23.250 0.052 0.122 1 11 21.181 0.017 0.028 0.4% Roof 23.250 0.017 0.028 12 23.250 0.018 0.042 - -- NonR 41.416 0.018 0.042 13 41.417 0.052 0.122 - -- NonR I 42.666 0.052 0.122 14 41.417 0.017 0.028 0.4% Roof 42.666 0.017 0.028 I SHEAR: Max V (DL +LL) = 11.09 kips fv = 1.60 ksi Fv = 18.99 ksi MOMENTS: I Span Cond Moment @ Lb Cb Tension Flange Compr Flange I Gravity Beam Design El RAM Ste ve Young Steel v9.0 Page 169/251 RAM DataBase: A0522401 R32 04/07/06 09:09:30 INTERNATIONAL Building Code: IBC Steel Code: ASD 9th Ed. I kip -ft ft ft fb Fb fb Fb Center Max + 109.5 23.3 0.0 1.00 16.10 33.00 16.10 33.00 Controlling 109.5 23.3 0.0 1.00 16.10 33.00 - -- - -- REACTIONS (kips): Left Right 11' DL reaction 3.61 4.97 Max +LL reaction 5.60 6.12 Max +total reaction 9.21 11.09 I DEFLECTIONS: Dead load (in) at 21.76 ft = -0.608 L/D = 842 I Live load (in) at 21.76 ft = -0.833 L/D = 615 Net Total load (in) at 21.76 ft = -1.441 L/D = 355 I I lio i $ I ,, I I a I Gravity Beam Design i Fl RAM Steel v9.0 Page 193/251 N Steve Young R AM DataBase: A0522401R32 04/07/06 09:09:30 BERN ^TO�A1 Building Code: IBC Steel Code: ASD 9th Ed. :1 Floor Type: ROOF Beam Number = 1499 SPAN INFORMATION (ft): I -End (37.43,77.47) J -End (49.17,81.75) Beam Size (User Selected) = W16X26 Fy = 50.0 ksi Total Beam Length (ft) = 12.50 5 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% 5.667 4.92 0.00 0.0 0.82 0.00 0.0 0.00 0.0 1 6.250 2.22 0.00 0.0 2.08 0.00 0.0 1.01 0.0 LINE LOADS (k/ft): I Load Dist DL L Red% Type 1 5.667 0.450 0.150 NonR 12.500 0.450 0.150 SHEAR: Max V (DL +LL) = 8.24 kips fv = 2.20 ksi FIT = 17.89 ksi MOMENTS: I Span Cond Moment @ Lb Cb Tension Flange Compr Flange lib kip -ft ft ft fb Fb fb Fb Center Max + 39.8 6.3 6.3 1.75 12.43 30.00 12.43 30.00 Controlling 39.8 6.3 6.3 1.75 12.43 30.00 - -- - -- REACTIONS (kips): Left Right DL reaction 4.64 5.57 Max +LL reaction 2.28 2.67 • Max +total reaction 6.92 8.24 DEFLECTIONS: Dead load (in) at 6.25 ft = -0.073 L/D = 2049 Live load (in) at 6.25 ft = -0.037 L/D = 4064 Net Total load (in) at 6.25 ft = -0.110 L/D = 1362 I I I I 1 ek 1 2 / g 2 I I Fil Gravity Beam Design R AM Steel v9.0 Page 194/251 I Steve Young RA M DataBase: A0522401R32 04/07/06 09:09:30 iN TERNATKAVAL Building Code: IBC Steel Code: ASD 9th Ed. .1 Floor Type: ROOF Beam Number = 350 SPAN INFORMATION (ft): I -End (38.34,111.51) J -End (49.17,81.75) Beam Size (User Selected) = W16X31 Fy = 50.0 ksi Total Beam Length (ft) = 31.67 I POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% 23.250 1.00 1 LINE LOADS (k/ft): Load Dist DL LL Red% Type I 1 0.000 0.068 0.204 - -- NonR 5.011 0.068 0.204 2 5.011 0.068 0.204 - -- NonR 11 6.333 0.057 0.172 3 5.011 0.000 0.000 0.0% Roof 6.333 0.011 0.018 I 4 6.334 0.068 0.114 0.0% Roof 21.238 0.068 0.114 ON 5 21.246 0.000 0.000 - -- NonR O 21.263 0.063 0.146 6 21.246 0.032 0.053 0.0% Roof 21.263 0.000 0.000 1 7 21.273 0.068 0.159 - -- NonR 31.666 0.068 0.159 I 8 0.000 0.047 0.141 - -- NonR 6.333 0.047 0.141 9 6.334 0.047 0.078 0.0% Roof 1 21.221 0.047 0.078 - -- 10 21.246 0.047 0.109 NonR 31.666 0.047 0.109 I SHEAR: Max V (DL +LL) = 6.35 kips fv = 1.54 ksi Fy = 19.67 ksi MOMENTS: 1 Span Cond Moment Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb 1 Center Max + 46.3 16.8 0.0 1.00 11.78 33.00 11.78 33.00 Controlling 46.3 16.8 0.0 1.00 11.78 33.00 REACTIONS (kips): I Left Right DL reaction 2.09 2.55 Max +LL reaction 4.03 3.79 I Max +total reaction 6.12 6.35 DEFLECTIONS: I Dead load (in) at 16.31 ft = -0.315 L/D = 1206 -- q Live load (in) at 15.99 ft = -0.466 L/D = 816 I Gravity Beam Design RAM Steel v9.0 Page 203/251 Steve Young M DataBase: A0522401R32 04/07/06 09:09:30 MEN ^L Building Code: IBC Steel Code: ASD 9th Ed. .1 Floor Type: ROOF Beam Number = 356 SPAN INFORMATION (ft): I -End (46.29,116.24) J -End (57.71,84.85) 1 Beam Size (Optimum) = W16X31 Fy = 50.0 ksi Total Beam Length (ft) = 33.40 I POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% 24.979 1.00 I LINE LOADS (k/ft): Load Dist DL LL Red% Type 1 0.000 0.068 0.204 - -- NonR 3.433 0.068 0.204 2 3.434 0.068 0.204 - -- NonR 1 6.739 0.000 0.000 3 3.434 0.000 0.000 0.0% Roof 6.739 0.068 0.113 I 4 6.740 0.068 0.114 0.0% Roof 22.992 0.068 0.114 5 23.029 0.068 0.159 - -- NonR 33.395 0.068 0.159 6 0.000 0.000 0.000 - -- NonR I 1.728 0.036 0.107 7 1.729 0.068 0.204 - -- NonR 6.739 0.068 0.204 I 8 6.740 0.000 0.000 0.0% Roof 8.062 0.044 0.073 9 6.740 0.068 0.204 - -- NonR I 8.062 0.025 0.074 10 8.063 0.068 0.114 0.0% Roof 22.967 0.068 0.114 I 11 22.975 0.066 0.110 0.0% Roof 22.992 0.000 0.000 12 22.975 0.000 0.000 - -- NonR 1 22.992 0.026 0.061 13 23.002 0.068 0.159 - -- NonR 1 33.395 0.068 0.159 SHEAR: Max V (DL +LL) = 7.71 kips fv = 1.87 ksi Fv = 19.67 ksi MOMENTS: I Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb I Center Max + 59.2 17.5 0.0 1.00 15.04 33.00 15.04 33.00 Controlling 59.2 17.5 0.0 1.00 15.04 33.00 REACTIONS (kips): rt I Gravity Beam Design RAM Steel v9.0 Page 204/251 Steve Young III. RAM DataBase: A0522401R32 04/07/06 09:09:30 INTERNnr A� Building Code: IBC Steel Code: ASD 9th Ed. I Left Right DL reaction 2.44 3.02 I I Max +LL reaction 4.72 4.69 Max +total reaction 7.16 7.71 DEFLECTIONS: I Dead load (in) at 17.03 ft = -0.435 LID = 921 Live load (in) at 16.86 ft = -0.674 L/D = 595 Net Total load (in) at 16.86 ft = -1.109 L/D = 361 I 1 I 0 I I 4 1 1 I I ;I 4- i1 I Gravity Beam Design RAM Steel v9.0 Page 206/251 16 Steve Young RAM DataBase: A0522401 R32 04/07/06 09:09:30 rreRNarOiv ^� Building Code: IBC Steel Code: ASD 9th Ed. I Floor Type: ROOF Beam Number = 143 SPAN INFORMATION (ft): I -End (49.17,81.75) J -End (66.24,87.96) I Beam Size (User Selected) = W16X31 Fy = 50.0 ksi Total Beam Length (ft) = 18.17 I POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% 8.167 3.15 0.00 0.0 0.00 0.00 0.0 0.00 0.0 1 9.083 3.02 0.00 0.0 3.04 0.00 0.0 1.65 0.0 LINE LOADS (k/ft): I Load Dist DL LL Red% o Type 1 0.000 0.450 0.150 NonR 18.167 0.450 0.150 I 2 8.167 0.050 0.000 - -- NonR 18.166 0.050 0.000 I SHEAR: Max V (DL +LL) = 11.17 kips fv = 2.71 ksi Fv = 19.67 ksi MOMENTS: 0 Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center Max + 73.8 9.1 9.1 1.75 18.77 30.00 18.77 29.48 Controlling 73.8 9.1 9.1 1.75 - -- - -- 18.77 29.48 REACTIONS (kips): Left Right 1 DL reaction 7.47 7.37 Max +LL reaction 3.71 3.71 Max +total reaction 11.17 11.08 I DEFLECTIONS: Dead load (in) at 8.99 ft = -0.229 L/D = 950 I Live load (in) at 9.08 ft = -0.127 L/D = 1717 Net Total load (in) at 9.08 ft = -0.356 L/D = 612 I r I 1 4- 4/1 - - 1 I Gravity Beam Design RAM Steel v9.0 Page 208/251 Steve Young 116 RAM DataBase: A0522401R32 04/07/06 09:09:30 RN ATION ^� Building Code: IBC Steel Code: ASD 9th Ed. r Floor Type: ROOF Beam Number = 145 SPAN INFORMATION (ft): I -End (52.93,71.41) J -End (70.01,77.62) I Beam Size (User Selected) = W16X40 Fy = 50.0 ksi Total Beam Length (ft) = 18.17 I POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% 8.167 4.40 0.00 0.0 0.00 0.00 0.0 0.00 0.0 I 9.083 4.17 0.00 0.0 3.15 0.00 0.0 3.34 0.0 LINE LOADS (k/ft): II Load Dist DL T % ype 1 0.000 0.450 0.150 LL Red NonR 18.167 0.450 0.150 1 SHEAR: Max V (DL +LL) = 13.20 kips fv = 2.70 ksi Fv = 20.00 ksi MOMENTS: 1 Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb po Center Max + REACTIONS (kips): ( ) 91.1 9.1 9.1 1.75 16.90 30.00 16.90 30.00 Controlling 91.1 9.1 9.1 1.75 16.90 30.00 - -- - -- i I Left Right DL reaction 8.59 8.15 Max +LL reaction 4.61 4.61 I Max +total reaction 13.20 12.75 DEFLECTIONS: Dead load (in) at 8.99 ft = -0.196 L/D = 1115 1 Live load (in) at 8.99 ft = -0.118 L/D = 1852 Net Total load (in) at 8.99 ft = -0.313 L/D = 696 I 1 r I 1 i f of- I ) 1 -! - O - Vaze Kom tor N I r w \0p a - l;c t g j 'Vw -HQ( f. 1 I I r_). I I z, , 1 -2, lfr 4-1A tA) 0.91(9 C/a 0 `c z a � ti��� 0.1.0 pi ." , , ott,A , om, 444i h ( 1 , 1/4.(p 4 ✓v J t u..L e, 1 ' -o‘.ote k 5.1 ( ti-'' ac e,' 9 k 2,011k t., ( 1x.1,,_ ` � N ' . � 1( 7 r X21 kr4,1 e6C44;)= tit.Mt . I' 4 _ c�ix 66",)w* -) - �, �iq �,-„, ovio I vii ., 07 C lioCe. o-- Q, )(-11). -1., =mac. I it GHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS JOB NO I 6960 S.W. VARNS ST., SUI 200 TIGARD, OREGON 97223 pppp'���� ������iiiiii (503) 620 -3030, FAX 620 -5538 TE SHEET grOF '' I ) _, ) l f701,0 oWei vf41■ k tN22r- i,kk m,t✓(., t t>toN ' - Kitt° I ‘ v . I cfi9 ` I (*ell> ) nrcAYw \ l Wt419 tom' 0 r I A2k, f LL 0 � P 00 titto ti W-6bcetJ I f`Cl I 10 I 1 1 I I I GHAN ASSOCIATES, MC. BY DATE _ CONSULTING ENGINEERS I 6960 S.W. VART., SUI JOB NO TIGARD, OREGON NS S 97223 (503) 620 -3030, FAX 620.5 TE 539 200 SHEET R .-- OF in 1111111 lin MI MI am WI MI Ill. 1r NM 111111 1111111 Ilia INN 111111 ... - Fl o ap prm RAM Steel v9.0 Steve Young RAIN DataBase: A0522401R32 04/07/06 09:09:30 IN I ERN ArICNAL Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: SECOND . . , ' • a , 4 • 20 - ,,, .- 'I '' .\ `" '3°' , 0 , 0 • • • c4 • ::.-' . Tn \• ,.0,. , -7 ?a 0 , \ r) z - 49 • C , .. ' - . ' P• io R ; ".°, ' 511 ' ki ■1` 4 ' C ' 7 0 , ., . *.t■ '''''' : ' a .• . c■ ,. ■ /8' - / " ''' ' . 387 ' ' es 'a 2 10 9 , 29 441 1 \ 2 st '"---- / 20 24 : 22 el \ I Fil Gravity Beam Design RAM Steel v9.0 le Steve Young RAM DataBase: A0522401R32 04/07/06 09:09:30 INTERNATK)NAl Building Code: IBC Steel Code: ASD 9th Ed. I Floor Type: SECOND Beam Number = 3 SPAN INFORMATION (ft): I -End (- 156.45,22.49) J -End (- 146.13,50.84) I Beam Size (User Selected) = W24X55 Fy = 50.0 ksi Total Beam Length (ft) = 30.17 I COMPOSITE PROPERTIES (Not Shored): Left Right Concrete thickness (in) 2.50 2.50 1 Unit weight concrete (pcf) 145.00 145.00 fc (ksi) 4.00 4.00 Decking Orientation . perpendicular perpendicular I Decking type VERCO W3 Formlok VERCO W3 Formlok beff (in) = 90.50 Y bar(in) = 22.00 I Seff (in3) = 156.45 Str (in3) _ 183.79 Ieff (in4) 2977.05 Itr (in4) 4043.63 Stud length (in) = 4.50 Stud diam (in) = 0.75 I Stud Capacity (kips) q = 10.0 # of studs: Max = 60 Partial = 20 Actual = 28 PIO Number of Stud Rows = 1 Percent of Full Composite Action = 36.31 LINE LOADS (k/ft): Load Dist DL CDL LL Red% Type CLL 1 1 0.000 0.737 0.563 0.693 9.4% Red 0.433 30.166 0.737 0.563 0.693 0.433 SHEAR: Max V (DL +LL) = 20.59 kips fv = 2.31 ksi Fv = 18.78 ksi I MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange • kip -ft ft ft fb Fb fb Fb Center PreCmp+ 113.4 15.1 0.0 1.00 11.83 33.00 11.83 33.00 Max + 155.3 15.1 - -- - -- I Mmax /Seff 11.91 33.00 = =_ __= Mconst /Sx +Mpost /Seff 13.68 45.00 Controlling 155.3 15.1 - -- - -- 11.91 33.00 - -- - -- I fc (ksi) = 0.24 Fc = 1.80 REACTIONS (kips): I Left Right Initial reaction 15.03 15.03 DL reaction 11.11 11.11 I Max +LL reaction 9.47 9.47 Max +total reaction 20.59 20.59 I DEFLECTIONS: Initial load (in) at 15.08 ft = -0.266 L/D = 1360 Live load (in) at 15.08 ft = -0.136 L/D = 2670 I Post Comp load (in) at 15.08 ft = -0.173 L/D = 2093 Net Total load (in) at 15.08 ft = -0.439 L/D = 824 C e 3 I Gravity Beam Design RAM Steel v9.0 Steve Young RAM DataBase: A0522401 R32 04/07/06 09:09:30 INTERNATIONAL Building Code: IBC Steel Code: ASD 9th Ed. I Floor Type: SECOND Beam Number = 12 SPAN INFORMATION (ft): I -End (- 131.55,65.57) J -End (- 127.50,76.69) I Beam Size (User Selected) = W12X26 Fy = 50.0 ksi Total Beam Length (ft) = 11.83 I LINE LOADS (k/ft): Load Dist DL LL Red% Type 1 0.000 0.689 0.649 0.0% Red 1 11.832 0.689 0.648 SHEAR: Max V (DL +LL) = 7.91 kips fv = 2.82 ksi Fv = 20.00 ksi I MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange III kip -ft ft ft fb Fb fb Fb Center Max + 23.4 5.9 0.0 1.00 8.41 33.00 8.41 33.00 Controlling 23.4 5.9 0.0 1.00 8.41 33.00 - -- - -- I REACTIONS (kips): Left Right o DL reaction 4.08 4.07 Max +LL reaction 3.84 3.84 Max +total reaction 7.91 7.91 I DEFLECTIONS: Dead load (in) at 5.92 ft = -0.051 L/D = 2765 Live load (in) at 5.92 ft = -0.048 L/D = 2937 I Net Total load (in) at 5.92 ft = -0.100 L/D = 1424 I I I I I I 1 r ifr I ril RAM Steel v9.0 Steve Young Gravity Beam Design 10 RAM DataBase: A0522401R32 04/07/06 09:09:30 MER,,AL Building Code: IBC Steel Code: ASD 9th Ed. I Floor Type: SECOND Beam Number = 17 SPAN INFORMATION (ft): I -End (- 119.93,9.20) J -End (- 103.17,55.24) I Beam Size (User Selected) = W24X84 Fy = 50.0 ksi Total Beam Length (ft) = 49.00 I COMPOSITE PROPERTIES (Not Shored): Left Right Concrete thickness (in) 2.50 2.50 I Unit weight concrete (pcf) 145.00 145.00 fc (ksi) 4.00 4.00 Decking Orientation perpendicular perpendicular Decking type VERCO W3 Formlok VERCO W3 Formlok beff (in) , = 99.61 Y bar(in) = 21.16 I Seff (in3) = 262.33 Str (in3) = 286.11 Ieff (in4) = 5081.95 Itr (in4) = 6053.97 Stud length (in) = 4.50 Stud diam (in) = 0.75 I Stud Capacity (kips) q = 10.0 # of studs: Full = 120 Partial = 22 Actual = 46 pp Number of Stud Rows = 1 Percent of Full Composite Action = 54.19 LINE LOADS (k/ft): Load Dist DL CDL LL Red% Type CLL 1 0.000 0.706 0.540 0.664 22.4% Red 0.415 1 49.000 0.706 0.540 0.664 0.415 SHEAR: Max V (DL +LL) = 29.91 kips AT = 2.64 ksi Fy = 20.00 ksi I MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange I kip -ft ft ft fb Fb fb Fb Center PreCmp+ 286.5 24.5 0.0 1.00 17.54 33.00 17.54 33.00 Max + 366.4 24.5 - -- - -- I Mmax/Seff 16.76 33.00 =__ ___ Mconst /Sx +Mpost /Seff 19.27 45.00 Controlling 286.5 24.5 0.0 1.00 17.54 33.00 - -- - -- 1 fc (ksi) = 0.43 Fc = 1.80 REACTIONS (kips): • Initial reaction Left Right 23.39 23.39 DL reaction 17.29 17.29 I Max +LL reaction 12.62 12.62 Max +total reaction 29.91 29.91 DEFLECTIONS: (Camber = 3/4) I Initial load (in) at 24.50 ft = -1.018 L/D = 577 Live load (in) at 24.50 ft = -0.454 L/D = 1297 I Post Comp load (in) at 24.50 ft = -0.600 L/D = 981 r Net Total load (in) at 24.50 ft = -0.868 L/D = 677 C V. v) gil RAM Steel v9.0 Gravity Beam Design 10 Steve Young RAM DataBase: A052240 R32 04/07/06 09:09:30 N Building Code: IB Steel Code: ASD 9th Ed. 1 Floor Type: SECOND Beam Number = 26 I SPAN INFORMATION (ft): I -End (- 99.41,65.58) J -End (- 88.58,95.34) Beam Size (User Selected) = W24X55 Fy = 50.0 ksi Total Beam Length (ft) = 31.67 I COMPOSITE PROPERTIES (Not Shored): Left Right Concrete thickness (in) 2.50 2.50 I Unit weight concrete (pcf) 145.00 145.00 fc (ksi) 4.00 4.00 Decking Orientation perpendicular perpendicular I Decking type VERCO W3 Formlok VERCO W3 Formlok beff (in) = 92.79 Y bar(in) = 22.09 I Seff (in3) = 156.14 Str (in3) _ 184.13 Ieff (in4) 2971.60 Itr (in4) 4068.25 Stud length (in) = 4.50 Stud diam (in) = 0.75 I Stud Capacity (kips) q = 10.0 # of studs: Max = 62 Partial = 20 Actual = 28 Number of Stud Rows = 1 Percent of Full Composite Action = 35.41 pp LINE LOADS (k/ft): Load Dist DL CDL LL Red% Type CLL I 1 0.000 0.709 0.542 0.667 9.7% Red 0.417 31.666 0.709 0.542 0.667 0.417 SHEAR: Max V (DL +LL) = 20.75 kips fv = 2.33 ksi Fv = 18.78 ksi I MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange I kip -ft ft 0.0 fb Fb fb Fb ft Center PreCmp+ 120.2 15.8 0.0 1.00 12.54 33.00 12.54 33.00 Max + 164.3 15.8 - -- - -- I Mmax /Seff 12.63 33.00 =_= =__ MconstJSx +Mpost /Seff 14.49 45.00 Controlling 164.3 15.8 - -- - -- 12.63 33.00 - -- - -- I fc (ksi) = 0.25 Fc = 1.80 REACTIONS (kips): I Left Right Initial reaction 15.18 15.18 DL reaction 11.22 11.22 I Max +LL reaction 9.53 9.53 Max +total reaction 20.75 20.75 I DEFLECTIONS: Initial load (in) at 15.83 ft = -0.311 L/D = 1222 Live load (in) at 15.83 ft = -0.158 L/D = 2404 I Post Comp load (in) at 15.83 ft = -0.202 L/D = 1882 Net Total load (in) at 15.83 ft = -0.513 L/D = 741 1 Gravity Beam Design RAM Steel v9.0 I Steve Young R DataBase: A0522401 R32 04/07/06 09:09:30 I NTER NATIONAL Building Code: IBC Steel Code: ASD 9th Ed. I Floor Type: SECOND Beam Number = 32 SPAN INFORMATION (ft): I -End (- 90.84,62.46) J -End (- 80.01,92.21) I Beam Size (User Selected) = W21X44 Fy = 50.0 ksi Total Beam Length (ft) = 31.67 I COMPOSITE PROPERTIES (Not Shored): Left Right Concrete thickness (in) 2.50 2.50 I Unit weight concrete (pcf) 145.00 145.00 fc (ksi) 4.00 4.00 Decking Orientation perpendicular perpendicular I Decking type VERCO W3 Formlok VERCO W3 Formlok beff'(in) = 63.07 Y bar(in) = 19.17 I Seff (in3) = 115.16 Str (in3) _ 131.83 Ieff (in4) 1968.03 Itr (in4) 2526.61 Stud length (in) = 4.50 Stud diam (in) = 0.75 I Stud Capacity (kips) q = 10.0 # of studs: Max = 62 Partial = 16 Actual = 28 Number of Stud Rows = 1 Percent of Full Composite Action = 44.65 pip POINT LOADS (kips): Dist DL CDL RedLL Red% NonRLL StorLL Red% RoofLL Red% CLL I 16.995 3.88 2.97 3.65 12.8 0.00 0.00 0.0 0.00 0.0 2.28 LINE LOADS (k/ft): Load Dist DL CDL LL Red% Type CLL I 1 0.000 0.388 0.297 0.365 12.8% Red 0.228 31.666 0.388 0.297 0.365 0.228 2 0.000 0.388 0.297 0.365 12.8% Red 0.228 1 16.994 0.125 0.096 0.118 0.073 3 16.995 0.000 0.000 0.000 12.8% Red 0.000 I 20.414 0.399 0.305 0.376 0.235 4 20.415 0.399 0.305 0.376 12.8% Red 0.235 31.667 0.225 0.172 0.212 0.133 1 SHEAR: Max V (DL +LL) = 22.65 kips fv = 3.27 ksi Fy = 18.99 ksi MOMENTS: I Span Cond Moment @ Lb Cb Tension Flange fb Fb Compr Flange kip -ft ft ft fb Fb Center PreCinp+ 147.8 17.0 0.0 1.00 21.74 33.00 21.74 33.00 I Max + Mmax /Seff 199.0 17.0 - -- - -- 20.73 33.00 - -- - -- Mconst /Sx +Mpost /Seff 24.31 45.00 - -- - -- I Controlling 17.0 0.0 1.00 21.74 33.00 - -- - -- fc (ksi) = 0.48 Fc = 1.80 I ri Gravity Beam Design RAM Steel v9.0 Page 2/2 Steve Young III RAM DataBase: A052240IR32 04/07/06 09:09:30 I NTERNATIONAL B uilding Code: IBC Steel Code: ASD 9th Ed. I REACTIONS (kips): Left Right I Initial reaction 16.61 16.83 DL reaction 12.28 12.44 Max +LL reaction 10.07 10.21 I Max +total reaction 22.35 22.65 DEFLECTIONS: I Initial load (in) at 15.99 ft = -0.589 L/D = 645 Live load (in) at 15.99 ft = -0.271 L/D = 1404 Post Comp load (in) at 15.99 ft = -0.348 L/D = 1091 I Net Total load (in) at 15.99 ft = -0.937 L/D = 405 I I IP 111 I I I I 1 I I I fl--?2 I rim Gravity Beam Design RAM Steel v9.0 le Steve Young R A M DataBase: A0522401R32 04/07/06 09:09:30 MER NA�AL Building Code: IBC Steel Code: ASD 9th Ed. I Floor Type: SECOND Beam Number = 511 SPAN INFORMATION (ft): I -End (- 85.02,78.43) J -End (- 75.02,78.43) I Beam Size (User Selected) = W14X22 Fy = 50.0 ksi Total Beam Length (ft) = 10.00 I POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% 2.762 4.70 4.43 0.0 0.00 0.00 0.0 0.00 0.0 I LINE LOADS (k/ft): Load Dist DL LL Red% Type 1 0.000 0.000 0.000 0.0% Red 10.000 0.137 0.129 2 0.000 0.043 0.040 0.0% Red I 2.762 0.000 0.000 3 2.763 0.112 0.105 0.0% Red 10.000 0.000 0.000 I SHEAR: Max V (DL +LL) = 7.53 kips fv = 2.51 ksi Fv = 18.96 ksi p MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb I Center Max + 20.5 2.8 0.0 1.00 8.49 33.00 8.49 33.00 Controlling 20.5 2.8 0.0 1.00 8.49 33.00 - -- - -- REACTIONS (kips): I Left Right DL reaction 3.88 1.97 Max +LL reaction 3.65 1.85 I Max +total reaction 7.53 3.82 DEFLECTIONS: I Dead load (in) at 4.55 ft = -0.027 L/D = 4444 Live load (in) at 4.55 ft = -0.025 L/D = 4722 Net Total load (in) at 4.55 ft = -0.052 L/D = 2290 I I I I at I Gravity Beam Design F RAM Steel v9.0 Steve Young I. RA M DataBase: A0522401 R32 04/07/06 09:09:30 �Enrio " ^� Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: SECOND Beam Number = 512 SPAN INFORMATION (ft): I -End (- 82.26,59.34) J -End (- 82.26,78.43) I Beam Size (User Selected) = W 14X22 Fy = 50.0 ksi Total Beam Length (ft) = 19.09 I COMPOSITE PROPERTIES (Not Shored): Left Right Concrete thickness (in) 2.50 2.50 I Unit weight concrete (pcf) 145.00 145.00 fc (ksi) 4.00 4.00 Decking Orientation 70.0 deg 70.0 deg I Decking type VERCO W3 Formlok VERCO W3 Formlok beff (in) = 57.27 Y bar(in) = 15.01 I Seff (in3) = 44.77 Str (in3) = 53.04 Jeff (in4) 590.66 Itr (in4) 796.03 Stud length (in) = 4.50 Stud diam (in) = 0.75 I Stud Capacity (kips) q = 10.0 # of studs: Max = 17 Partial = 11 Actual = 16 Number of Stud Rows = 1 Percent of Full Composite Action = 43.04 pp LINE LOADS (k/ft): Load Dist DL CDL LL Red% Type CLL 0.000 0.364 0.279 0.343 0.0% Red 0.214 Ii 18.085 0.117 0.090 0.110 0.069 2 18.086 0.117 0.090 0.110 0.0% Red 0.069 I 19.090 0.000 0.000 0.000 0.000 Red 3 0.000 0.308 0.235 0.290 0.0% 0.181 19.090 0.308 0.235 0.290 0.181 I SHEAR: Max V (DL +LL) = 10.84 kips fv = 3.62 ksi Fv = 18.96 ksi MOMENTS: I Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center PreCmp+ 33.4 9.2 0.0 1.00 13.83 33.00 13.83 33.00 I Max + 48.0 9.2 - -- - -- Mmax /Seff 12.85 33.00 - -- - -- Mconst /Sx +Mpost /Seff 15.61 45.00 - -- - -- I Controlling 33.4 9.2 0.0 1.00 13.83 33.00 - -- - -- fc (ksi) = 0.23 Fc = 1.80 I REACTIONS (kips): Left Right Initial reaction 7.55 6.36 I DL reaction 5.58 4.70 Max +LL reaction 5.26 4.43 Max +total reaction 10.84 9.13 I t k:' ' Gravity Beam Design RAM Steel v9.0 Page 2/2 Steve Young RANI DataBase: A0522401R32 04/07/06 09:09:30 INTERNATK'JA1 Building Code: IBC Steel Code: ASD 9th Ed. DEFLECTIONS: Initial load (in) at 9.45 ft = -0.214 L/D = 1068 ' Live load (in) at 9.45 ft = -0.089 LID = 2576 Post Comp load (in) at 9.45 ft = -0.111 L/D = 2061 Net Total load (in) at 9.45 ft = -0.326 L/D = 704 P 1 1 1 1 1 1 1 i i 1 1 1 1 1� L� I Gravity Beam Design RAM Steel v9.0 Ile Steve Young RAM DataBase: A0522401R32 04/07/06 09:09:30 INTERNATIONAL Building Code: IBC Steel Code: ASD 9th Ed. 1 Floor Type: SECOND Beam Number = 27 I SPAN INFORMATION (ft): I -End (- 99.41,65.58) J -End (- 82.26,59.34) Beam Size (User Selected) = W21X44 Fy = 50.0 ksi Total Beam Length (ft) = 18.25 I COMPOSITE PROPERTIES (Not Shored): Left Right Concrete thickness (in) 2.50 2.50 I Unit weight concrete (pcf) 145.00 145.00 fc (ksi) 4.00 4.00 Decking Orientation parallel parallel I Decking type VERCO W3 Formlok VERCO W3 Formlok beff (in) = 33.38 Y bar(in) = 18.02 I Seff (in3) = 108.71 Str (in3) = 123.93 Ieff (in4) 1733.50 Itr (in4) 2233.36 Stud length (in) = 4.50 Stud diam (in) = 0.75 I Stud Capacity (kips) q = 13.3 # of studs: Full = 36 Partial = 10 Actual = 14 Number of Stud Rows = 1 'Percent of Full Composite Action = 41.02 NO POINT LOADS (kips): Dist DL CDL RedLL Red% NonRLL StorLL Red% RoofLL Red% CLL 9.125 12.28 9.39 11.55 0.0 0.00 0.00 0.0 0.00 0.0 7.22 I LINE LOADS (k/ft): Load Dist DL CDL LL Red% Type CLL I 1 0.000 0.042 0.032 0.040 0.0% Red 0.025 18.250 0.042 0.032 0.040 0.025 I SHEAR: Max V (DL +LL) = 12.67 kips fv = 1.83 ksi Fv = 18.99 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange 1 kip -ft ft ft fb Fb fb Fb Center PreCmp+ 78.2 9.1 9.1 1.75 11.50 30.00 11.50 28.81 Max + 112.2 9.1 - -- - -- I Mmax /Seff 12.38 33.00 - -- - -- Mconst /Sx +Mpost/Seff 14.00 45.00 - -- - -- I Controlling 78.2 9.1 9.1 1.75 - -- - -- 11.50 28.81 fc (ksi) 0.38 Fc = 1.80 REACTIONS (kips): I Left Right Initial reaction 8.83 8.83 DL reaction 6.53 6.53 I Max +LL reaction 6.14 6.14 Max +total reaction 12.67 12.67 I ekti ' q Gravity Beam Design RAM Steel v9.0 Page 2/2 Steve Young RAM DataBase: A0522401R32 04/07/06 09:09:30 INTERNATK;NAL Building Code: IBC Steel Code: ASD 9th Ed. DEFLECTIONS: Initial load (in) at 9.13 ft = -0.087 L/D = 2507 1 Live load (in) at 9.13 ft = -0.052 L/D = 4189 Post Comp load (in) at 9.13 ft = -0.065 L/D = 3351 Net Total load (in) at 9.13 ft = -0.153 L/D = 1434 1 1 1 1 I rim Gravity Beam Design RAM Steel v9.0 1 Steve Young RAM DataBase: A0522401 R32 04/07/06 09:09:30 INTERNATIONAL Building Code: IBC Steel Code: ASD 9th Ed. I Floor Type: SECOND Beam Number = 24 I SPAN INFORMATION (ft): I -End (- 103.17,55.24) J -End (- 86.02,49.00) Beam Size (User Selected) = W18X50 Fy = 50.0 ksi Total Beam Length (ft) = 18.25 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% 9.054 19.00 17.88 5.5 0.00 0.00 0.0 0.00 0.0 LINE LOADS (k/ft): Load Dist DL LL Red% Type 1 1 0.000 0.042 0.040 5.5% Red 18.250 0.042 0.040 SHEAR: Max V (DL +LL) = 18.83 kips fv = 2.95 ksi Fy = 20.00 ksi I MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange I kip -ft ft ft fb Fb fb Fb Center Max + 167.2 9.1 9.2 1.75 22.57 30.00 22.57 30.00 Controlling 167.2 9.1 9.2 1.75 22.57 30.00 - -- - -- REACTIONS (kips): Left Right I DL reaction 9.96 9.81 Max +LL reaction 8.86 8.73 Max +total reaction 18.83 18.55 DEFLECTIONS: Dead load (in) at 9.13 ft = -0.184 L/D = 1192 Live load (in) at 9.13 ft = -0.164 L/D = 1339 Net Total load (in) at 9.13 ft = -0.347 L/D = 631 I I I I I El Gravity Beam Design RAM Steel v9.0 Ste ve Y le oung R DataBase: A0522401 R32 04/07/06 09:09:30 MER N�n�^ Building Code: IBC Steel Code: ASD 9th Ed. I Floor Type: SECOND Beam Number = 257 SPAN INFORMATION (ft): I -End (- 94.52,25.65) J -End (- 84.52,25.65) I Beam Size (User Selected) = W16)(26 Fy = 50.0 ksi Total Beam Length (ft) = 10.00 I POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% 1.741 6.79 6.40 0.0 0.00 0.00 0.0 0.00 0.0 I LINE LOADS (k/ft): Load Dist DL LL Red% Type 1 1 0.000 0.000 0.000 0.0% Red 10.000 0.137 0.129 2 0.000 0.027 0.025 0.0% Red I 1.740 0.000 0.000 3 1.741 0.128 0.120 0.0% Red 10.000 0.000 0.000 I SHEAR: Max V (DL +LL) = 11.94 kips fv = 3.18 ksi Fy = 17.89 ksi MOMENTS: pp Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center Max + 20.7 1.7 0.0 1.00 6.47 33.00 6.47 33.00 I Controlling 20.7 1.7 0.0 1.00 6.47 33.00 - -- - -- REACTIONS (kips): Left Right DL reaction 6.15 1.88 Max +LL reaction 5.79 1.77 1 Max +total reaction 11.94 3.64 DEFLECTIONS: Dead load (in) at 4.45 ft = -0.018 L/D = 6744 ,I Live load (in) at 4.45 ft = -0.017 L/D = 7166 Net Total load (in) at 4.45 ft = -0.035 L/D = 3474 I I I Fil Gravity Beam Design RAM Steel v9.0 I . Steve Young M M DataBase: A0522401R32 04/07/06 09:09:30 ,�� Building Code: IBC Steel Code: ASD 9th Ed. I Floor Type: SECOND Beam Number = 262 SPAN INFORMATION (ft): I -End (- 92.78,0.00) J -End (- 92.78,25.65) I Beam Size (User Selected) = W16X31 Fy = 50.0 ksi Total Beam Length (ft) = 25.65 I COMPOSITE PROPERTIES (Not Shored): Left Right Concrete thickness (in) 2.50 2.50 1 Unit weight concrete (pcf) 145.00 145.00 f c (ksi) 4.00 4.00 Decking Orientation 70.0 deg 70.0 deg I Decking type VERCO W3 Formlok VERCO W3 Foiinlok beff (in) = 67.58 Y bar(in) = 16.48 Seff (in3) = 69.60 Str (in3) = 81.08 I Ieff (in4) = 1010.51 Itr (in4) = 1336.33 Stud length (in) = 4.50 Stud diam (in) = - 0.75 I Stud Capacity (kips) q = 10.0 # of studs: Max = 48 Partial = 14 Actual = 22 Number of Stud Rows = 1 Percent of Full Composite Action = 43.70 01) LINE LOADS (k/ft): Load Dist DL CDL LL Red% Type CLL 1 0.000 0.416 0.318 0.391 0.0% Red 0.244 25.012 0.074 0.057 0.070 0.044 2 25.013 0.074 0.057 0.070 0.0% Red 0.044 I 25.646 0.000 0.000 0.000 0.000 Red 3 0.000 0.000 .0.000 0.000 0.0% 0.000 3.006 0.351 0.268 0.330 0.206 I 4 3.007 0.351 0.268 0.330 0.0% Red 0.206 25.646 0.351 0.268 0.330 0.206 I SHEAR: Max V (DL +LL) = 15.19 kips fv = 3.68 ksi Fv = 19.67 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange I kip -ft ft ft fb Fb fb Fb Center PreCmp+ 65.6 12.2 0.0 1.00 16.67 33.00 16.67 33.00 Max + 94.1 12.2 - -- - -- I Mmax /Seff 16.22 33.00 - -- - -- Mconst /Sx +Mpost /Seff 19.26 45.00 - -- - -- Controlling 65.6 12.2 0.0 1.00 16.67 33.00 - -- - -- I fc (ksi) = 0.32 Fc = 1.80 REACTIONS (kips): Left Right Initial reaction 10.59 9.19 DL reaction 7.83 6.79 • I Max +LL reaction 7.37 6.40 kla Gravity Beam Design RAM Steel v9.0 Page 2/2 Steve Young RAM DataBase: A0522401R32 04/07/06 09:09:30 INTERNATIONAL Building Code: IBC Steel Code: ASD 9th Ed. 1111 Left Right Max +total reaction 15.19 13.19 DEFLECTIONS: Initial load (in) at 12.69 ft = -0.402 L/D = 765 Live load (in) at 12.69 ft = -0.184 L/D = 1675 Post Comp load (in) at 12.69 ft = -0.230 L/D = 1340 Net Total load (in) at 12.69 ft = -0.632 L/D = 487 I T I I I PIP I I e � 11 I Fil Gravity Beam Design RAM Steel v9.0 Steve Young RAM DataBase: A0522401R32 04/07/06 09:09:30 INTERNATIONAL Building Code: IBC Steel Code: ASD 9th Ed. 1 Floor Type: SECOND Beam Number = 404 SPAN INFORMATION (ft): I -End (- 52.04,91.67) J -End (- 52.04,107.00) I Beam Size (User Selected) = W12X14 Fy = 50.0 ksi Total Beam Length (ft) = 15.33 1 COMPOSITE PROPERTIES (Not Shored): Left Right Concrete thickness (in) 2.50 2.50 I Unit weight concrete (pcf) 145.00 145.00 fc (ksi) 4.00 4.00 Decking Orientation perpendicular perpendicular I Decking type VERCO W3 Formlok VERCO W3 Formlok beff (in) = 46.00 Y bar(in) = 13.87 II Seff (in3) = 27.23 St (in3) = 31.16 Ieff (in4) = 349.25 Itr (in4) = 432.19 Stud length (in) = 4.50 Stud diam (in) = 0.75 I Stud Capacity (kips) q = 10.0 # of studs: Max = 15 Partial = 6 Actual = 12 PIO Number of Stud Rows = 1 Percent of Full Composite Action = 57.54 LINE LOADS (k/ft): Load Dist DL CDL LL Red% Type CLL 1 1 0.000 0.818 0.626 0.770 0.0% Red 0.481 15.333 0.818 0.626 0.770 0.481 SHEAR: Max V (DL +LL) = 12.18 kips fv = 5.32 ksi Fy = 18.76 ksi I MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center PreCmp+ 32.5 7.7 0.0 1.00 26.20 33.00 26.20 33.00 Max + 46.7 7.7 - -- - -- I Mmax /Seff 20.57 33.00 = -= _ -- Mconst /Sx +Mpost /Seff 27.27 45.00 Controlling 32.5 7.7 0.0 1.00 26.20 33.00 - -- - -- ,I fc (ksi) = 0.35 Fc = 1.80 REACTIONS (kips): j Left Right Initial reaction 8.49 8.49 DL reaction 6.27 6.27 i Max +LL reaction 5.90 5.90 Max +total reaction 12.18 12.18 DEFLECTIONS: Initial load (in) at 7.67 ft = -0.303 L/D = 608 Live load (in) at 7.67 ft = -0.095 L/D = 1946 Post Comp load (in) at 7.67 ft = -0.118 L/D = 1557 `t l I Net Total load (in) at 7.67 ft = -0.421 L/D = 437 I , Gravity Beam Design RAM Steel v9.0 t Fil Steve Young grERA DataBase: A0522401R32 .04/07/06 09:09:30 Building Code: IBC Steel Code: ASD 9th Ed. ,I Floor Type: SECOND Beam Number = 185 I SPAN INFORMATION (ft): I -End (- 34.86,106.55) J -End (- 32.24,91.67) Beam Size (User Selected) = W12X26 Fy = 50.0 ksi Total Beam Length (ft) = 15.12 I COMPOSITE PROPERTIES (Not Shored): Left Right Concrete thickness (in) 2.50 2.50 I Unit weight concrete (pcf) 145.00 145.00 fc (ksi) 4.00 4.00 Decking Orientation 100.0 deg 100.0 deg 1 Decking type VERCO W3 Formlok VERCO W3 Fonnlok beff (in) = 45.35 Y bar(in) = 12.83 Seff (in3) = 45.97 Str (in3) = 58.02 1 Ieff (in4) = 480.07 Itr (in4) = 744.61 Stud length (in) = 4.50 Stud diam (in) = 0.75 Stud Capacity (kips) q = 10.0 I # of studs: Max = 28 Partial = 12 Actual = 12 011P° Number of Stud Rows = 1 Percent of Full Composite Action = 26.08 LINE LOADS (k/ft): Load Dist DL CDL LL Red% Type CLL 1 0.000 0.000 0.000 0.000 0.0% Red 0.000 I 4.617 0.380 0.291 0.358 0.223 2 4.617 0.380 0.291 0.358 0.0% Red 0.223 I 15.117 0.380 0.291 0.358 0.223 Red 3 0.000 0.316 0.242 0.297 0.0% 0.186 15.117 0.426 0.326 0.401 0.251 I SHEAR: Max V (DL +LL) = 11.11 kips fv = 3.96 ksi Fy = 20.00 ksi MOMENTS: I Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center PreCmp+ 28.1 7.8 0.0 1.00 10.11 33.00 10.11 33.00 Max + 40.4 7.8 - -- - -- Mmax /Seff 10.53 33.00 - -- - -- Mconst /Sx +Mpost /Seff 12.10 45.00 - -- - -- ll Controlling 40.4 7.8 - -- - -- 10.53 33.00 - -- - -- fc (ksi) = 0.24 Fc = 1.80 I REACTIONS (kips): Left Right Initial reaction 6.42 7.74 1 DL reaction 4.75 5.72 Max +LL reaction 4.47 5.39 Max +total reaction 9.22 11.11 �411' I fl Gravity Beam Design RAM Steel v9.0 Page 2/2 Steve Young RAM DataBase: A0522401R32 04/07/06 09:09:30 INTERNATIONAL Building Code: IBC Steel Code: ASD 9th Ed. DEFLECTIONS: Initial load (in) at 7.63 ft = -0.110 L/D = 1651 Live load (in) at 7.63 ft = -0.057 LID = 3156 Post Comp load (in) at 7.63 ft = -0.072 L/D = 2525 Net Total load (in) at 7.63 ft = -0.182 L/D = 998 I I r I I I I I I Gravity Beam Design RAM Steel v9.0 Steve Young RAID DataBase: A0522401R32 04/07/06 09:09:30 INTERNATIONAL Building Code: IBC Steel Code: ASD 9th Ed. 2� Floor Type: SECOND Beam Number = 468 SPAN INFORMATION (ft): I -End (- 24.83,49.62) J -End (- 16.24,0.96) I Beam Size (User Selected) = W24X76 Fy = 50.0 ksi Total Beam Length (ft) = 49.41 I COMPOSITE PROPERTIES (Not Shored): Left Right Concrete thickness (in) 2.50 2.50 1 Unit weight concrete (pcf) 145.00 145.00 f c (ksi) 4.00 4.00 I, Decking Orientation 100.0 deg 100.0 deg Decking type VERCO W3 Formlok VERCO W3 Formlok beff (in) = 80.54 Y bar(in) = 20.54 Seff (in3) = 238.98 Str (in3) = 254.65 Ieff (in4) 4607.23 Itr (in4) 5231.25 Stud length (in) = 4.50 Stud diam (in) = 0.75 Stud Capacity (kips) q = 10.0 # of studs: Full = 85 Partial = 19 Actual = 46 Number of Stud Rows = 1 Percent of Full Composite Action = 64.11 LINE LOADS (k/ft): Load Dist DL CDL LL Red% Type CLL 1 0.000 0.336 0.257 0.317 16.5% Red 0.198 I 48.017 0.336 0.257 0.317 0.198 2 48.017 0.336 0.257 0.317 16.5% Red 0.198 1 49.413 0.000 0.000 0.000 0.000 Red 3 0.000 0.000 0.000 0.000 16.5% 0.000 0.398 0.234 0.179 0.220 0.138 4 0.399 0.234 0.179 0.220 16.5% Red 0.138 49.413 0.234 0.179 0.220 0.138 SHEAR: Max V (DL +LL) = 25.09 kips fv = 2.39 ksi Fv = 20.00 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange II kip -ft ft ft fb Fb fb Fb Center PreCmp+ 235.5 24.7 0.0 1.00 16.06 33.00 16.06 33.00 Max + 310.9 24.7 - -- - -- I Mmax /Seff 15.61 33.00 - -- - -- Mconst /Sx +Mpost /Seff 18.00 45.00 - -- - -- Controlling 235.5 24.7 0.0 1.00 16.06 33.00 - -- - -- fc (ksi) = 0.45 Fc = 1.80 REACTIONS (kips): 1 Left Right ill Initial reaction 19.00 18.75 DL reaction 14.05 13.86 I Max +LL reaction 11.04 10.90 1 Gravity Beam Design RAM Steel v9.0 Page 2/2 Steve Young RA M DataBase: A0522401R32 04/07/06 09:09:30 I NTERNA M AL Building Code: IBC Steel Code: ASD 9th Ed. Left Right Max +total reaction 25.09 24.76 DEFLECTIONS: (Camber = 3/4) Initial load (in) at 24.71 ft = -0.960 L/D = 617 Live load (in) at 24.71 ft = -0.450 L/D = 1317 Post Comp load (in) at 24.71 ft = -0.585 L/D = 1014 Net Total load (in) at 24.71 ft = -0.795 L/D = 746 I r I I ,I I Gravity Beam Design RAM Steel v9.0 I Steve Young RAM DataBase: A0522401 R32 04/07/06 09:09:30 INTERNATIONAL Building Code: IBC Steel Code: ASD 9th Ed. I Floor Type: SECOND Beam Number = 48 SPAN INFORMATION (ft): I -End (- 61.67,91.67) J -End (- 23.16,91.67) I Beam Size (User Selected) = W30X108 Fy = 50.0 ksi Total Beam Length (ft) = 38.50 1 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% 3.242 15.05 14.17 39.6 0.00 0.00 0.0 0.00 0.0 9.626 6.27 5.90 39.6 0.00 0.00 0.0 0.00 0.0 11.542 15.05 14.17 39.6 0.00 0.00 0.0 0.00 0.0 19.252 6.16 5.80 39.6 0.00 0.00 0.0 0.00 0.0 i 19.842 15.05 14.17 39.6 0.00 0.00 0.0 0.00 0.0 28.142 10.96 10.32 39.6 0.00 0.00 0.0 0.00 0.0. 29.427 7.88 7.42 39.6 0.00 0.00 0.0 0.00 0.0 SHEAR: Max V (DL +LL) = 69.33 kips fv = 4.27 ksi Fv = 20.00 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center Max + 681.7 19.8 8.3 1.13 27.36 33.00 27.36 33.00 Controlling 681.7 19.8 8.3 1.13 27.36 33.00 - -- - -- REACTIONS (kips): I Left Right DL reaction 44.21 32.22 II Max +LL reaction 25.12 18.31 Max +total reaction 69.33 50.53 DEFLECTIONS: 1 Dead load (in) at 19.06 ft = -0.861 L/D = 536 Live load (in) at 19.06 ft = -0.489 L/D = 944 Net Total load (in) at 19.06 ft = -1.351 L/D = 342 , 1 I .1 I I I Gravity Beam Design RAM Steel v9.0 Page 2/94 1 Steve Young RAM DataBase: A0522401R32 04/07/0609:09:30 INTERNATIoNk Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: SECOND Beam Number = 185 I SPAN INFORMATION (ft): I -End (- 34.86,106.55) J -End (- 32.24,91.67) Beam Size (User Selected) = W12X26 Fy = 50.0 ksi Total Beam Length (ft) = 15.12 I COMPOSITE PROPERTIES (Not Shored): Left Right Concrete thickness (in) 2.50 2.50 ill Unit weight concrete (pcf) 145.00 145.00 fc (ksi) 4.00 4.00 I Decking Orientation 100.0 deg 100.0 deg Decking type VERCO W3 Formlok VERCO W3 Formlok beff (in) = 45.35 Y bar(in) = 12.83 I Seff (in3) = 45.97 Str (in3) = 58.02 Ieff (in4) 480.07 Itr (in4) 744.61 Stud length (in) = 4.50 Stud diam (in) = 0.75 Stud Capacity (kips) q = 10.0 # of studs: Max = 28 Partial = 12 Actual = 12 NO Number of Stud Rows = 1 Percent of Full Composite Action = 26.08 LINE LOADS (k/ft): Load Dist DL CDL LL Red% Type CLL 1 0.000 0.000 0.000 0.000 0.0% Red 0.000 4.617 0.380 0.291 0.358 0.223 2 4.617 0.380 0.291 0.358 0.0% Red 0.223 I 15.117 0.380 0.291 0.358 0.223 3 0.000 0.316 0.242 0.297 0.0% Red 0.186 15.117 0.426 0.326 0.401 0.251 .I SHEAR: Max V (DL +LL) = 11.11 kips fv = 3.96 ksi Fv = 20.00 ksi MOMENTS: 1 Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center PreCmp+ 28.1 7.8 0.0 1.00 10.11 33.00 10.11 33.00 Max + 40.4 7.8 - -- Mmax /Seff 10.53 33.00 - -- - -- Mconst /Sx +Mpost /Seff 12.10 45.00 - -- - -- I Controlling 40.4 7.8 - -- - -- 10.53 33.00 - -- - -- fc (ksi) = 0.24 Fc = 1.80 1 REACTIONS (kips): Left Right Initial reaction 6.42 7.74 1 DL reaction 4.75 5.72 Max +LL reaction 4.47 5.39 Max +total reaction 9.22 11.11 ' ? '7.i4 i Gravity Beam Design RAM Steel v9.0 Page 3/94 Steve Young RAM DataBase: A0522401R32 04/07/06 09:09:30 INTERNATIONAL Building Code: IBC Steel Code: ASD 9th Ed. DEFLECTIONS: Initial load (in) at 7.63 ft = -0.110 L/D = 1651 Live load (in) at 7.63 ft = -0.057 L/D = 3156 Post Comp load (in) at 7.63 ft = -0.072 L/D = 2525 Net Total load (in) at 7.63 ft = -0.182 L/D = 998 r 1 I I rim Gravity Beam Design RAM Steel v9.0 Page 7/94 I Steve Young RAM DataBase: A0522401R32 04/07/06 09:09:30 • INTERNATIONAL Building Code: IBC Steel Code: ASD 9th Ed. 1 Floor Type: SECOND Beam Number = 183 SPAN INFORMATION (ft): I -End (- 32.24,91.67) J -End (- 30.60,82.34) I Beam Size (User Selected) = W12X26 Fy = 50.0 ksi Total Beam Length (ft) = 9.47 II COMPOSITE PROPERTIES (Not Shored): Left Right Concrete thickness (in) 2.50 2.50 Unit weight concrete (pcf) 145.00 145.00 fc (ksi) 4.00 4.00 Decking Orientation 100.0 deg 100.0 deg I Decking type - VERCO W3 Formlok VERCO W3 Formlok beff (in) 25.37 Y bar(in) = 11.38 Seff (in3) = 44.79 Str (in3) = 55.03 I Ieff (in4) = 426.47 Itr (in4) = 626.27 Stud length (in) = 4.50 Stud diam (in) = 0.75 1 Stud Capacity (kips) q = 10.0 # of studs: Max = 18 Partial = 7 Actual = 7 Number of Stud Rows = 1 Percent of Full Composite Action = 27.11 No LINE LOADS (k/ft): Load Dist DL CDL LL Red% Type CLL 1 0.000 0.434 0.332 0.408 0.0% Red 0.255 9.466 0.502 0.384 0.473 0.296 SHEAR: Max V (DL +LL) = 4.41 kips fv = 1.57 ksi Fy = 20.00 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center PreCmp+ 7.1 4.8 0.0 1.00 2.55 33.00 2.55 33.00 Max + 10.2 4.8 - -- - -- Mmax /Seff 2.73 33.00 - -- - -- Mconst /Sx +Mpost /Seff 3.09 45.00 - -- - -- Controlling 10.2 4.8 - -- - -- 2.73 33.00 - -- - -- fc (ksi) = 0.09 Fc = 1.80 REACTIONS (kips): I Left Right Initial reaction 2.92 3.07 DL reaction 2.16 2.27 I Max +LL reaction 2.03 2.14 Max +total reaction 4.19 4.41 DEFLECTIONS: I Initial load (in) at 4.73 ft = -0.011 L/D = 10391 Live load (in) at 4.73 ft = -0.006 L/D = 17649 Post Comp load (in) at 4.73 ft = -0.008 L/D = 14120 /1 / I 1 Net Total load (in) at 4.73 ft = -0.019 L/D = 5986 ls'J Fil Gravity Beam Design RAM Steel v9.0 Page 8/94 Steve Young RAM DataBase: A0522401R32 04/07/06 09:09:30 Nrensryvw Building Code: IBC Steel Code: ASD 9th Ed. i Floor Type: SECOND Beam Number = 175 SPAN INFORMATION (ft): I -End (- 30.60,82.34) J -End (- 27.21,63.14) 1 Beam Size (Optimum) = W12X16 Fy = 50.0 ksi Total Beam Length (ft) = 19.50 I COMPOSITE PROPERTIES (Not Shored): Left Right Concrete thickness (in) 2.50 2.50 1 Unit weight concrete (pcf) 145.00 145.00 fc (ksi) 4.00 4.00 Decking Orientation 100.0 deg 100.0 deg It Decking type VERCO W3 Formlok VERCO W3 Fonnlok beff (in) = 30.72 Y bar(in) = 12.89 Seff (in3) = 28.22 Str (in3) = 34.18 Ieff (in4) = 322.70 Itr (in4) = 440.58 Stud length (in) = 4.50 Stud diam (in) = 0.75 1 Stud Capacity (kips) q = 10.0 # of studs per stud segment: Max = 5,13 NIP Partial = 5,6 Actual = 5,6 Number of Stud Rows = 1 Percent of Full Composite Action = 42.36 POINT LOADS (kips): Dist DL CDL RedLL Red% NonRLL StorLL Red% RoofLL Red% CLL 5.499 2.89 2.21 2.72 0.0 0.00 0.00 0.0 0.00 0.0 1.70 I LINE LOADS (k/ft): Load Dist DL CDL LL Red% Type CLL 1 0.000 0.380 0.291 0.358 0.0% Red 0.223 I 3.923 0.380 0.291 0.358 0.223 2 3.924 0.380 0.291 0.358 0.0% Red 0.223 5.499 0.000 0.000 0.000 0.000 i 3 5.499 0.042 0.032 0.040 0.0% Red 0.025 19.500 0.042 0.032 0.040 0.025 ,1 4 0.000 0.123 0.094 0.115 0.0% Red 0.072 19.500 0.264 0.202 0.249 0.155 SHEAR: Max V. (DL +LL) = 10.70 kips fv = 4.05 ksi Fv = 20.00 ksi I MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Coinpr Flange II kip -ft ft ft fb Fb fb Fb Center PreCmp+ 30.7 5.8 0.0 1.00 21.54 33.00 21.54 33.00 Max + 44.0 5.7 - -- - -- I Mmax /Seff 18.73 33.00 - -- - -_ Mconst /Sx +Mpost /Seff 23.52 45.00 - -- - -- Controlling 30.7 5.8 0.0 1.00 21.54 33.00 - -- - -- I fc (ksi) = 0.42 Fc = 1.80 ff- 11 I Gravity Beam Design rim RAM Steel v9.0 Page 9/94 Ste ve Young RAM DataBase: A0522401R32 04/07/06 09:09:30 INTERNATIONAL Building Code: IBC Steel Code: ASD 9th Ed. 1 REACTIONS (kips): Left Right III Initial reaction 7.46 4.78 DL reaction 5.51 3.53 Max +LL reaction 5.19 3.32 II Max +total reaction 10.70 6.85 DEFLECTIONS: Initial load (in) at 9.26 ft = -0.383 L/D = 610 Live load (in) at 9.26 ft = -0.151 L/D = 1554 Post Comp load (in) at 9.26 ft = -0.188 L/D = 1243 I Net Total load (in) at 9.26 ft = -0.572 L/D = 409 I 1 0 11. I I I I I I I I e „be, I Fil Gravity Beam Design RAM Steel v9.0 Page 12/94 Steve Young R AM DataBase: A0522401R32 04/07/06 09:09:30 ANT R NAT.NAL Building Code: IBC Steel Code: ASD 9th Ed. 1 Floor Type: SECOND Beam Number = 490 SPAN INFORMATION (ft): I -End (- 29.64,76.93) J -End (- 14.05,79.68) I Beam Size (User Selected) = W14X22 Fy = 50.0 ksi Total Beam Length (ft) = 15.83 I COMPOSITE PROPERTIES (Not Shored): Left Right Concrete thickness (in) 2.50 2.50 I Unit weight concrete (pcf) 145.00 145.00 f c (ksi) 4.00 4.00 Decking Orientation parallel parallel i Decking type VERCO W3 Formlok VERCO W3 Formlok beff (in) = 29.75 Y bar(in) = 13.90 Seff (in3) = 42.26 Str (in3) = 49.71 I , Ieff (in4) = 514.06 Itr (in4) = 691.12 Stud length (in) = 4.50 Stud diam (in) = 0.75 Stud Capacity (kips) q = 13.3 # of studs: Full = 30 Partial = 10 Actual = 12 OP Number of Stud Rows = 1 Percent of Full Composite Action = 37.94 POINT LOADS (kips): Dist DL CDL RedLL Red% NonRLL StorLL Red% RoofLL Red% CLL I 8.939 4.33 3.31 4.08 0.0 0.00 0.00 0.0 0.00 0.0 2.55 11.335 1.63 1.25 1.54 0.0 0.00 0.00 0.0 0.00 0.0 0.96 LINE LOADS (k/ft): I Load Dist DL CDL LL Red% Type CLL 1 0.000 0.000 0.000 0.000 0.0% Red 0.000 8.938 0.067 0.051 0.063 0.039 I 2 8.939 0.000 0.000 0.000 0.0% Red 0.000 15.833 0.052 0.039 0.049 0.030 3 0.000 0.042 0.032 0.040 0.0% Red 0.025 11.334 0.042 0.032 0.040 0.025 4 11.335 0.034 0.026 0.032 0.0% Red 0.020 15.833 0.000 0.000 0.000 0.000 SHEAR: Max V (DL+LL) kips 7.99 ki s fv = 2.66 ksi FFAT = 18.96 ksi I MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb I Center PreCmp+ 31.4 8.9 8.9 1.75 13.00 30.00 13.00 26.47 Max + 45.1 8.9 Mmax /Seff 12.80 33.00 - -- - -- Mconst /Sx +Mpost /Seff 15.10 45.00 - -- - -- Controlling 31.4 8.9 8.9 1.75 - -- 13.00 26.47 fc (ksi) = 0.32 Fc = 1.80 ^ ,,, I lil Gravity Beam Design RAM Steel v9.0 Page 13/94 i Steve Young �M DataBase: A0522401 R32 04/07/06 09:09:30 WTERNATOVAL Building Code: IBC Steel Code: ASD 9th Ed. 1 REACTIONS (kips): Left Right I Initial reaction 3.91 5.57 DL reaction 2.89 4.11 Max +LL reaction 2.72 3.87 I Max +total reaction 5.60 7.99 DEFLECTIONS: 1 Initial load (in) at 8.31 ft = -0.117 L/D = 1620 Live load (in) at 8.31 ft = -0.056 L/D = 3399 Post Comp load (in) at 8.31 ft = -0.070 L/D = 2719 I Net Total load (in) at 8.31 ft = -0.187 L/D = 1015 I I 0 11. I I I I I I I I I f� I Fil Gravity Beam Design RAM Steel v9.0 Page 14/94 Steve Young RAM DataBase: A0522401R32 04/07/06 09:09:30 INTERNATIONAL Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: SECOND Beam Number = 473 SPAN INFORMATION (ft): I -End (- 27.21,63.14) J -End (- 24.83,49.62) I Beam Size (User Selected) = W12X26 Fy = 50.0 ksi Total Beam Length (ft) = 13.73 I COMPOSITE PROPERTIES (Not Shored): Left Right Concrete thickness (in) 2.50 2.50 1 Unit weight concrete (pcf) 145.00 145.00 fc (ksi) 4.00 4.00 Decking Orientation 100.0 deg 100.0 deg i Decking type VERCO W3 Formlok VERCO W3 Formlok beff (in) = 41.19 Y bar(in) = 12.60 Seff (in3) = 46.31 Str (in3) = 57.58 Ieff (in4) 482.49 Itr (in4) 725.76 Stud length (in) = 4.50 Stud diam (in) = 0.75 Stud Capacity (kips) q = 10.0 I, # of studs: Max = 26 Partial = 11 Actual = 11 011° Number of Stud Rows = 1 Percent of Full Composite Action = 27.78 LINE LOADS (k/ft): Load Dist DL CDL LL Red% Type CLL I I 0.000 0.336 0.257 0.317 0.0% Red 0.198 13.157 0.336 0.257 0.317 0.198 2 13.158 0.336 0.257 0.317 0.0% Red 0.198 I 13.730 0.000 0.000 0.000 0.000 Red 3 0.000 0.264 0.202 0.249 0.0% 0.155 13.730 0.364 0.278 0.343 0.214 I SHEAR: Max V (DL +LL) = 8.71 kips fv = 3.10 ksi Fy = 20.00 ksi MOMENTS: I Span Cond Moment @ Lb Cb Tension Flange Cornpr Flange kip -ft ft ft fb Fb fb Fb Center PreCmp+ 20.7 7.0 0.0 1.00 7.45 33.00 7.45 33.00 I Max + 29.8 7.0 - -- - -- Mmax /Seff 7.71 33.00 - -- - -- Mconst /Sx +Mpost /Seff 8.88 45.00 - -- - -- I Controlling 29.8 7.0 - -- - -- 7.71 33.00 - -- - -- fc (ksi) = 0.19 Fc = 1.80 11 REACTIONS (kips): Left Right • Initial reaction 5.89 6.07 1 DL reaction 4.35 4.49 Max +LL reaction 4.10 4.22 Max +total reaction 8.45 8.71 171 i I Gravity Beam Design RAM Steel v9.0 Page 15/94 Steve Young DataBase: A0522401R32 04/07/06 09:09:30 REPNATIONAL Building Code: IBC Steel Code: ASD 9th Ed. DEFLECTIONS: Initial load (in) at 6.87 ft = -0.067 L/D = 2451 Live load (in) at 6.87 ft = -0.035 L/D = 4711 Post Comp load (in) at 6.87 ft = -0.044 L/D = 3768 Net Total load (in) at 6.87 ft = -0.111 L/D = 1485 IPS I I I 1 r I 1 1 i I I Gravity Beam Design RAM Steel v9.0 Page 16/94 I Steve Young RAIN DataBase: A0522401R32 04/07/06 09:09:30 INTEP,NAnONA Building Code: IBC Steel Code: ASD 9th Ed. I Floor Type: SECOND Beam Number = 493 SPAN INFORMATION (ft): I -End (- 27.21,63.14) J -End (- 11.62,65.89) I Beam Size (User Selected) = W14X22 Fy = 50.0 ksi Total Beam Length (ft) = 15.83 I COMPOSITE PROPERTIES (Not Shored): Left Right Concrete thickness (in) 2.50 2.50 I Unit weight concrete (pcf) 145.00 145.00 f c (ksi) 4.00 4.00 Decking Orientation 170.0 deg parallel I Decking type VERCO W3 Formiok VERCO W3 Fonuilok beff (in) = 29.75 Y bar(in) = 13.83 I Seff (in3) 43.60 Str (in3) _ 49.82 Ieff (in4) 542.44 Itr (in4) 688.71 Stud length (in) = 4.50 Stud diam (in) = 0.75 I Stud Capacity (kips) q = 13.3 # of studs: Full = 26 Partial = 8 Actual = 12 pi Number of Stud Rows = 1 Percent of Full Composite Action = 49.18 POINT LOADS (kips): Dist DL CDL RedLL Red% NonRLL StorLL Red% RoofLL Red% CLL 1 7.917 4.67 3.57 4.39 0.0 0.00 0.00 0.0 0.00 0.0 2.74 11.333 1.56 1.19 1.47 0.0 0.00 0.00 0.0 0.00 0.0 0.92 LINE LOADS (k/ft): I Load Dist DL CDL LL Red% Type CLL 1 0.000 0.042 0.032 0.040 0.0% Red 0.025 11.333 0.042 0.032 0.040 0.025 1 2 11.334 0.000 0.000 0.000 0.0% Red 0.000 15.833 0.034 0.026 0.032 0.020 3 0.000 0.059 0.045 0.056 0.0% Red 0.035 I 7.917 0.000 0.000 0.000 0.000 4 7.918 0.059 0.045 0.056 0.0% Red 0.035 1 15.833 0.000 0.000 0.000 0.000 SHEAR: Max V (DL +LL) = 7.55 kips fv = 2.52 ksi Fv = 18.96 ksi I MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb I Center PreCmp+ 32.6 7.9 7.9 1.75 13.48 30.00 13.48 27.96 Max + 46.8 7.9 Mmax /Seff 12.87 33.00 - -- - -- I Mconst /Sx +Mpost /Seff 15.42 45.00 - -- - -- Controlling 32.6 7.9 7.9 1.75 - -- - -- 13.48 27.96 fc (ksi) = 0.33 Fc = 1.80 I f 7) ;,. Gravity Beam Design RAM Steel v9.0 Page 17/94 Steve Young RAM DataBase: A0522401R32 04/07/06 09:09:30 INTERNATON41 Building Code: IBC Steel Code: ASD 9th Ed. REACTIONS (kips): Left * Right Initial reaction 4.56 5.26 DL reaction 3.37 3.89 Max +LL reaction 3.17 3.66 1 Max +total reaction 6.54 7.55 DEFLECTIONS: Initial load (in) at 8.08 ft = -0.123 L/D = 1540 Live load (in) at 8.08 ft = -0.056 L/D = 3412 Post Comp load (in) at 8.08 ft = -0.070 L/D = 2729 Net Total load (in) at 8.08 ft = -0.193 L/D = 985 P I 1 I I I I I i I I Gravity Beam Design F RAM Steel v9.0 Page 22/94 1116 Steve Young DataBase: A0522401R32 RAM Building 09:09:30 ��E �,A� Building Code: IBC Steel Code: ASD 9th Ed. I Floor Type: SECOND Beam Number = 78 SPAN INFORMATION (ft): I -End (- 24.99,102.01) J -End (- 11.41,104.40) I Beam Size (User Selected) = W12X26 Fy = 50.0 ksi Total Beam Length (ft) = 13.79 I POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% 3.447 3.35 3.15 0.0 0.00 0.00 0.0 0.00 0.0 I 6.894 3.71 3.49 0.0 0.00 0.00 0.0 0.00 0.0 10.320 3.35 3.15 0.0 0.00 0.00 0.0 0.00 0.0 I LINE LOADS (k/ft): Load Dist DL LL Red% Type 1 _ 0.000 0.026 0.024 0.0% Red 1 3.446 0.023 0.022 2 3.447 0.026 0.024 0.0% Red 10.320 0.026 0.024 I 3 10.320 0.023 0.022 0.0% Red 13.787 0.026 0.024 ONO SHEAR: Max V (DL +LL) = 10.45 kips fv = 3.72 ksi Fv = 20.00 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange I kip -ft ft ft fb Fb fb Fb Center Max + 48.4 6.9 3.4 1.14 17.40 33.00 17.40 33.00 I Controlling 48.4 6.9 3.4 1.14 17.40 33.00 - -- - -- REACTIONS (kips): Left Right . I DL reaction 5.38 5.3 7 Max +LL reaction 5.06 5.05 Max +total reaction 10.45 10.42 I DEFLECTIONS: Dead load (in) at 6.89 ft = -0.136 L/D = 1215 Live load (in) at 6.89 ft = -0.128 L/D = 1291 Net Total load (in) at 6.89 ft = -0.264 L/D = 626 I I I 1 I El Gravity Beam Design RAM Steel v9.0 Page 23/94 I Steve Young RAM DataBase: A0522401 R32 04/07/06 09:09:30 INTERNATIONAL Building Code: IBC Steel Code: ASD 9th Ed. I Floor Type: SECOND Beam Number = 468 I SPAN INFORMATION (ft): I -End (- 24.83,49.62) J -End (- 16.24,0.96) Beam Size (User Selected) = W24X76 Fy = 50.0 ksi Total Beam Length (ft) = 49.41 I COMPOSITE PROPERTIES (Not Shored): Left Right Concrete thickness (in) 2.50 2.50 I Unit weight concrete (pcf) 145.00 145.00 fc (ksi) 4.00 4.00 Decking Orientation 100.0 deg 100.0 deg I Decking type VERCO W3 Formlok VERCO W3 Formlok beff (in) = 80.54 Y bar(in) = 20.54 I Seff (in3) = 238.98 Str (in3) = 254.65 Ieff (in4) = 4607.23 It (in4) = 5231.25 Stud length (in) = 4.50 Stud diam (in) = 0.75 I Stud Capacity (kips) q = 10.0 # of studs: Full = 85 Partial = 19 Actual = 46 1010 Number of Stud Rows = 1 Percent of Full Composite Action = 64.11 L INE LOADS (k/ft): Load Dist DL CDL LL Red% Type CLL I i 0.000 0.336 0.257 0.317 16.5% Red 0.198 48.017 0.336 0.257 0.317 0.198 2 48.017 0.336 0.257 0.317 16.5% Red 0.198 I 49.413 0.000 0.000 0.000 0.000 Red 3 0.000 0.000 0.000 0.000 16.5% 0.000 0.398 0.234 0.179 0.220 0.138 I 4 0.399 0.234 0.179 0.220 16.5% Red 0.138 49.413 0.234 0.179 0.220 0.138 I SHEAR: Max V (DL +LL) = 25.09 kips fv = 2.39 ksi Fv = 20.00 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange I kip -ft ft ft fb Fb fb Pb Center PreCmp+ 235.5 24.7 0.0 1.00 16.06 33.00 16.06 33.00 Max + 310.9 24.7 - -- - -- I Mmax /Seff 15.61 33.00 - -- - -- Mconst /Sx +Mpost /Seff 18.00 45.00 - -- - -- I Controlling 235.5 24.7 0.0 1.00 16.06 33.00 - -- - -- fc (ksi) = 0.45 Fc = 1.80. REACTIONS (kips): I Left Right Initial reaction 19.00 18.75 DL reaction 14.05 13.86 I Max +LL reaction 11.04 10.90 24, I Gravity Beam Design RAM Steel v9.0 Page 24/94 Steve Young RAM DataBase: A0522401 R32 04/07/06 09:09:30 I NTERNATIONAL Building Code: IBC Steel Code: ASD 9th Ed. I Left Right Max +total reaction 25.09 24.76 I DEFLECTIONS: (Camber = 3/4) Initial load (in) at 24.71 ft = -0.960 L/D = 617 Live load (in) at 24.71 ft = -0.450 L/D = 1317 I Post Comp load (in) at 24.71 ft = -0.585 L/D = 1014 Net Total load (in) at 24.71 ft = -0.795 L/D = 746 I I I I P ill I I I 1 I I I 1 1 IA I Gravity Beam Design El RAM Steel v9.0 Page 30/94 Steve Young RAM DataBase: A0522401R32 04/07/06 09:09:30 INTERNATIONAL Building Code: IBC Steel Code: ASD 9th Ed. I Floor Type: SECOND Beam Number = 83 I SPAN INFORMATION (ft): I -End (- 22.46,107.53) J -End (- 19.77,92.27) Beam Size (User Selected) = W8X18 Fy = 50.0 ksi Total Beam Length (ft) = 15.50 I Cantilever on left (ft) = 5.00 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% 1 0.000 0.42 0.39 0.0 0.00 0.00 0.0 0.00 0.0 LINE LOADS (k/ft): Load Dist DL LL Red% Type 1 0.000 0.146 0.138 0.0% Red 4.392 0.146 0.138 I 2 4.393 0.146 0.138 0.0% Red 5.000 0.000 0.000 3 5.000 0.146 0.138 0.0% Red 1 14.892 0.146 0.138 4 14.893 0.146 0.138 0.0% Red O 15.500 0.000 0.000 5 0.000 0.000 0.000 0.0% Red 5.000 0.131 0.123 I 6 5.000 0.000 0.000 0.0% Red 5.607 0.146 0.138 7 5.608 0.146 0.138 0.0% Red I 15.500 0.146 0.138 SHEAR: Max V (DL +LL) = 3.72 kips fv = 1.99 ksi Fs' = 20.00 ksi I MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Left Max - -8.7 5.0 5.0 1.00 6.84 30.00 6.84 30.00 Center Max + 5.7 11.0 0.0 1.00 4.54 33.00 4.54 33.00 Max - -8.7 5.0 10.5 1.75 6.84 30.00 6.84 30.00 I Controlling -8.7 5.0 10.5 1.75 6.84 30.00 - -- - -- REACTIONS (kips): Left Right DL reaction 3.35 1.07 Max +LL reaction 3.15 1.41 I Max -LL reaction 0.00 -0.40 Max +total reaction 6.51 2.47 I DEFLECTIONS: Left cantilever: Dead load (in) _ -0.038 L/D = 3175 I Pos Live load (in) = -0.099 L/D = 1208 `Z Neg Live load (in) 0.064 L/D = 1881 I riil Gravity Beam Design RAM Steel v9.0 Page 31/94 1110 Steve Young RAM DataBase: A0522401R32 04/07/06 09:09:30 A NTE JAPONAL Building Code: IBC Steel Code: ASD 9th Ed. I Left cantilever: Pos Total load (in) = -0.137 L/D = 875 I Neg Total load (in) = 0.026 L/D = 4613 Center span: Dead load (in) at 10.62 ft = -0.015 L/D = 8132 I Live load (in) at 10.62 ft = -0.042 L/D = 3025 Net Total load (in) at 10.62 ft = -0.057 L/D = 2205 I I I 1 I I I I I I I 1 I Fil Gravity Beam Design RAM Steel v9.0 Page 41 /94 Ste ve Young I °ERN4 01,11 '1AL DataBase: A0522401R32 04/07/06 09:09:30 Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: SECOND Beam Number = 488 SPAN INFORMATION (ft): I -End (- 16.37,92.86) J -End (- 9.04,51.28) I Beam Size (User Selected) = W24X68 Fy = 50.0 ksi Total Beam Length (ft) = 42.22 I COMPOSITE PROPERTIES (Not Shored): Left Right Concrete thickness (in) 2.50 2.50 I Unit weight concrete (pcf) 145.00 145.00 fc (ksi) 4.00 4.00 Decking Orientation 80.0 deg 100.0 deg I Decking type VERCO W3 Folinlok VERCO W3 Formlok beff (in) = 54.00 Y bar(in) = 19.22 Seff (in3) = 213.76 Str (in3) = 219.76 I Ieff (in4) = 4005.07 Itr (in4) = 4223.43 Stud length (in) = 4.50 Stud diam (in) = 0.75 I Stud Capacity (kips) q = 10.0 # of studs: Full = 74 Partial = 17 Actual = 40 Oil Number of Stud Rows = 1 Percent of Full Composite Action = 65.38 POINT LOADS (kips): Dist DL CDL RedLL Red% NonRLL StorLL Red% RoofLL Red% CLL 7.500 2.48 1.90 2.33 26.1 0.00 0.00 0.0 0.00 0.0 1.46 1 13.391 4.11 3.15 3.87 26.1 0.00 0.00 0.0 0.00 0.0 2.42 16.833 2.79 2.14 2.63 26.1 0.00 0.00 0.0 0.00 0.0 1.64 I 27.390 7.93 6.07 7.47 26.1 0.00 0.00 0.0 0.00 0.0 4.67 LINE LOADS (k/ft): Load Dist DL CDL LL Red% Type CLL l 1 0.000 0.000 0.000 0.000 26.1% Red 0.000 1.215 0.586 0.448 0.551 0.345 2 1.216 0.293 0.224 0.276 26.1% Red 0.172 1 7.499 0.293 0.224 0.276 0.172 3 7.500 0.000 0.000 0.000 26.1% Red 0.000 I 8.293 0.191 0.146 0.180 0.113 4 8.294 0.191 0.146 0.180 26.1% Red 0.113 16.833 0.191 0.146 0.180 0.113 I 5 16.833 0.000 0.000 0.000 26.1% Red 0.000 18.111 0.308 0.235 0.290 0.181 6 18.112 0.308 0.235 0.290 26.1% Red 0.181 I 27.390 0.308 0.235 0.290 0.181 7 27.391 0.000 0.000 0.000 26.1% Red 0.000 28.786 0.673 0.515 0.633 0.396 I 8 28.787 0.673 0.515 0.633 26.1% Red 0.396 42.221 0.673 0.515 0.633 0.396 9 1.216 0.293 0.224 0.276 26.1% Red 0.172 1 13.390 0.293 0.224 0.276 0.172 I Gravity Beam Design RAM Steel v9.0 Page 42/94 Steve Young I RAM DataBase: A0522401 R32 04/07/06 09:09:30 INTERNATIONAL Building Code: IBC Steel Code: ASD 9th Ed. I Load Dist DL CDL LL Red% Type CLL 10 13.391 0.000 0.000 0.000 26.1% Red 0.000 I 14.183 0.191 0.146 0.180 0.112 11 14.184 0.191 0.146 0.180 26.1% Red 0.112 27.390 0.191 0.146 0.180 0.113 ' SHEAR: Max V (DL +LL) = 34.13 kips fv = 3.65 ksi Fv = 19.79 ksi MOMENTS: I Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center PreCmp+ 313.8 22.0 0.0 1.00 24.45 33.00 24.45 33.00 I Max + Mmax /Seff 393.3 22.0 - -- 22.08 33.00 - -- - -- Mconst /Sx +Mpost /Seff 25.94 45.00 - -- - -- I Controlling 22.0 0.0 1.00 24.45 33.00 - -- - -- fc (ksi) = 0.77 Fc = 1.80 I REACTIONS (kips): Left Right 01) Initial reaction 26.83 27.23 DL reaction 19.83 20.13 Max +LL reaction 13.80 14.00 Max +total reaction 33.63 34.13 I DEFLECTIONS: (Camber = 3/4) Initial load (in) at 21.11 ft = -1.083 L/D = 468 I Live load (in) at 21.11 ft = -0.450 L/D = 1125 Post Comp load (in) at 21.11 ft = -0.602 L/D = 841 Net Total load (in) at 21.11 ft = -0.935 L/D = 542 I I I I I I kk I I rill Gravity Beam Design RAM Steel v9.0 Page 50/94 Steve Young I m DataBase: A0522401R32 04/07/06 09:09:30 INTERNATIONAL Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: SECOND Beam Number = 494 SPAN INFORMATION (ft): I -End (- 11.62,65.89) J -End (2.65,68.41) I Beam Size (User Selected) = W14X22 Fy = 50.0 ksi Total Beam Length (ft) = 14.49 I COMPOSITE PROPERTIES (Not Shored): Left Right Concrete thickness (in) 2.50 2.50 I Unit weight concrete (pcf) 145.00 145.00 fc (ksi) 4.00 4.00 Decking Orientation parallel parallel I Decking type VERCO W3 Fonnlok VERCO W3 Forn�lok beff (in) - 43.47 Y bar(in) = 14.65 Seff (in3) = 43.36 Str (in3) = 51.43 I leff (in4) = 553.93 Itr (in4) = 753.41 Stud length (in) = 4.50 Stud diam (in) = 0.75 I Stud Capacity (kips) q = 13.3 # of studs: Full = 29 Partial = 9 Actual = 12 OD Number of Stud Rows = 1 Percent of Full Composite Action = 40.81 POINT LOADS (kips): Dist DL CDL RedLL Red% NonRLL StorLL Red% RoofLL Red% CLL 7.245 3.05 2.33 2.87 0.0 0.00 0.00 0.0 0.00 0.0 1.80 1 7.918 4.67 3.57 4.39 0.0 0.00 0.00 0.0 0.00 0.0 2.74 LINE LOADS (k/ft): I Load Dist DL CDL LL Red% Type CLL 1 0.000 0.054 0.042 0.051 0.0% Red 0.032 7.244 0.000 0.000 0.000 0.000 I 2 7.245 0.054 0.042 0.051 0.0% Red 0.032 14.489 0.000 0.000 0.000 0.000 3 0.000 0.000 0.000 0.000 0.0% Red 0.000 I 7.918 0.059 0.045 0.056 0.035 4 7.919 0.000 0.000 0.000 0.0% Red 0.000 1 14.489 0.049 0.038 0.046 0.029 SHEAR: Max V (DL +LL) = 8.66 kips fv = 2.89 ksi FY' = 18.96 ksi I MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb I Center PreCmp+ 38.2 7.9 6�6 1.75 15.82 30.00 15.82 30.00 Max + 54.9 7.9 Mmax /Seff 15.18 33.00 - -- - -- I Mconst /Sx +Mpost /Seff 18.15 45.00 - -- - -- Controlling 37.7 7.2 7.2 1.75 15.61 29.53 fc (ksi) = 0.30 Fc = 1.80 I r RAM Steel v9.0 Gravity Beam Design Page 51/94 Steve Young RAM DataBase: A0522401R32 04/07/06 09:09:30 INTERNAl1ONAL Building Code: IBC Steel Code: ASD 9th Ed. ' REACTIONS (kips): Left Right Initial reaction 5.47 6.04 DL reaction 4.05 4.46 Max +LL reaction 3.81 4.20 ' Max +total reaction 7.85 8.66 DEFLECTIONS: Initial load (in) at 7.39 ft = -0.119 L/D = 1466 Live load (in) at 7.39 ft = -0.052 L/D = 3316 Post Comp load (in) at 7.39 ft = -0.066 L/D = 2653 Net Total load (in) at 7.39 ft = -0.184 L/D = 944 1 1 1 Tifil Gravity Beam Design RAM Steel v9.0 Page 58/94 ND Steve Young RAIN DataBase: A0522401 R32 04/07/06 09:09:30 N TE��� „� Building Code: IBC Steel Code: ASD 9th Ed. I Floor Type: SECOND Beam Number = 100 SPAN INFORMATION (ft): I -End (- 9.59,94.06) J -End (26.60,107.23) I Beam Size (User Selected) = W30X108 Fy = 50.0 ksi Total Beam Length (ft) = 38.50 I COMPOSITE PROPERTIES (Not Shored): Left Right Concrete thickness (in) 2.50 2.50 I Unit weight concrete (pcf) 145.00 145.00 fc (ksi) 4.00 4.00 Decking Orientation parallel parallel 1 Decking type VERCO W3 Formlok VERCO W3 Formlok beff (in) = 115.51 VERCO bar(in) = 26.65 Seff (in3) = 365.03 Str (in3) = 425.85 1 Ieff (in4) = 8050.53 Itr (in4) = 11349.02 Stud length (in) = 4.50 Stud diam (in) = 0.75 I Stud Capacity (kips) q = 13.3 # of studs: Full = 130 Partial = 34 Actual = 36 ONO Number of Stud Rows = 1 Percent of Full Composite Action = 27.09 POINT LOADS (kips): Dist DL CDL RedLL Red% NonRLL StorLL Red% RoofLL Red% CLL 7.715 17.68 13.52 16.64 39.6 0.00 0.00 0.0 0.00 0.0 10.40 ,' 17.860 21.33 16.31 20.08 39.6 0.00 0.00 0.0 0.00 0.0 12.55 25.908 16.12 12.33 15.17 39.6 0.00 0.00 0.0 0.00 0.0 9.48 1 28.878 6.43 4.92 6.05 39.6 0.00 0.00 0.0 0.00 0.0 3.78 33.956 14.59 11.16 13.73 39.6 0.00 0.00 0.0 0.00 0.0 8.58 SHEAR: Max V (DL +LL) = 65.86 kips fv = 4.05 ksi Fv = 20.00 ksi 1 MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center PreCmp+ 583.2 17.9 10.1 1.22 23.41 30.00 23.41 30.00 Max + 676.3 17.9 - -- - -- Mmax/Seff 22.23 33.00 - -- - -- Mconst/Sx +Mpost /Seff 24.63 45.00 - -- - -- Controlling 583.2 17.9 10.1 1.22 23.41 30.00 - -- - -- fc (ksi) = 0.40 Fc = 1.80 REACTIONS (kips): Left Right Initial reaction 46.25 56.79 DL reaction 34.18 41.98 I Max +LL reaction 19.44 23.88 Max +total reaction 53.62 65.86 ki' 1 Gravity Beam Design RAM Steel v9.0 Page 59/94 Steve Young 11 4, RAM DataBase: A0522401R32 04/07/06 09:09:30 INTER ATC'NJAL Building Code: IBC Steel Code: ASD 9th Ed. I DEFLECTIONS: Initial load (in) at 19.44 ft = -0.658 L/D = 702 I Live load (in) at 19.44 ft = -0.272 L/D = 1700 Post Comp load (in) at 19.44 ft = -0.384 L/D = 1202 Net Total load (in) at 19.44 ft = -1.042 L/D = 443 1 1 1 1 1 O 1 1 1 1 1 1 1 `l 1 Gravity Beam Design RAM Steel v9.0 Page 67/94 14, Steve Young R AM DataBase: A0522401R32 04/07/06 09:09:30 I NTERNAT'OINAI Building Code: IBC Steel .Code: ASD 9th Ed. 1 Floor Type: SECOND Beam Number = 467 SPAN INFORMATION (ft): I -End (- 3.87,52.20) J -End (14.72,57.50) 1 Beam Size (User Selected) = W24X55 Fy = 50.0 ksi Total Beam Length (ft) = 19.34 1 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% 2.684 20.99 19.75 28.1 0.00 0.00 0.0 0.00 0.0 1 10.645 22.00 20.71 28.1 0.00 0.00 0.0 0.00 0.0 LINE LOADS (k/ft): I Load Dist DL LL Red% Type 1 0.000 0.008 0.008 28.1% Red 2.684 0.000 0.000 I 2 2.685 0.024 0.023 28.1% Red 10.644 0.024 0.023 3 10.645 0.026 0.025 28.1% Red 1 19.335 0.026 0.025 4 0.000 0.016 0.015 28.1% Red 2.684 0.024 0.023 SHEAR: Max V (DL +LL) = 47.29 kips fv = 5.30 ksi FIT = 18.78 ksi MOMENTS: 1 Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center Max + 220.9 10.6 8.0 1.25 23.05 30.00 23.05 29.11 1 Controlling 220.9 10.6 8.0 1.25 - -- - -- 23.05 29.11 REACTIONS (kips): 1 Left Right DL reaction 28.20 15.27 Max +LL reaction 19.08 10.34 1 Max +total reaction 47.29 25.61 DEFLECTIONS: I Dead load (in) at 9.57 ft = -0.201 L/D = 1153 Live load (in) at 9.57 ft = -0.136 L/D = 1704 Net Total load (in) at 9.57 ft = -0.337 L/D = 688 1 1 1 1 I Gravity Beam Design RAM Steel v9.0 Page 70/94 Steve Young DataBase: A0522401R32 04/07/06 09:09:30 M ERJAT NJAL Building Code: IBC Steel Code: ASD 9th Ed. M I Floor Type: SECOND Beam Number = 109 SPAN INFORMATION (ft): I -End (- 2.34,96.70) J -End (2.65,68.41) 1 Beam Size (User Selected) = W21X50 Fy = 50.0 ksi Total Beam Length (ft) = 28.73 , I COMPOSITE PROPERTIES (Not Shored): Left Right Concrete thickness (in) 2.50 2.50 I Unit weight concrete (pcf) 145.00 145.00 fc (ksi) 4.00 4.00 Decking Orientation 80.0 deg 80.0 deg 1 Decking type VERCO W3 Formlok VERCO W3 Formlok beff (in) = 63.02 Y bar(in) = 18.81 Seff (in3) = 129.47 Str (in3) = 149.14 I Ieff (in4) = 2149.47 Itr (in4) = 2804.94 Stud length (in) = 4.50 Stud diam (in) = 0.75 1 Stud Capacity (kips) q = 10.0 # of studs: Max = 56 Partial = 18 Actual = 24 010 Number of Stud Rows = 1 Percent of Full Composite Action = 33.55 POINT LOADS (kips): Dist DL CDL RedLL Red% NonRLL StorLL Red% RoofLL Red% CLL 8.840 2.36 1.81 2.22 12.5 0.00 0.00 0.0 0.00 0.0 1.39 1 18.174 2.93 2.24 2.76 12.5 0.00 0.00 0.0 0.00 0.0 1.72 LINE LOADS (k/ft): I Load Dist DL CDL LL Red% Type CLL 1 0.000 0.425 0.325 0.400 12.5% Red 0.250 28.730 0.425 0.325 0.400 0.250 I 2 0.000 0.323 0.247 0.304 12.5% Red 0.190 7.500 0.323 0.247 0.304 0.190 3 7.501 0.323 0.247 0.304 12.5% Red 0.190 1 8.840 0.000 0.000 0.000 0.000 4 8.841 0.141 0.108 0.133 12.5% Red 0.083 I 17.587 0.141 0.108 0.133 0.083 5 17.588 0.141 0.108 0.133 12.5% Red 0.083 18.173 0.000 0.000 0.000 0.000 I 6 18.174 0.308 0.235 0.290 12.5% Red 0.181 27.452 0.308 0.235 0.290 0.181 7 27.453 0.308 0.235 0.290 12.5% Red 0.181 I 28.730 0.000 0.000 0.000 0.000 SHEAR: Max V (DL +LL) = 22.52 kips fv = 2.85 ksi Fy = 20.00 ksi I MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange 41 1 Gravity Beam Design . RAM Steel v9.0 Page 71/94 11 11. Steve Young RAM DataBase: A0522401 R32 04/07/06 09:09:30 r rrezN v� cxNAL Building Code: IBC Steel Code: ASD 9th Ed. 1 kip -ft ft ft fb Fb fb Fb Center PreCmp+ 123.8 15.2 0.0 1.00 15.72 33.00 15.72 33.00 Max + 166.9 15.2 - -- - -- Mmax /Seff 15.47 33.00 - -- - -- Mconst /Sx +Mpost /Seff 17.87 45.00 - -- - -- I Controlling 123.8 15.2 0.0 1.00 15.72 33.00 - -- - -- fc (ksi) = 0.39 Fc = 1.80 REACTIONS (kips): 1 Left Right Initial reaction 16.71 16.38 I DL reaction 12.35 12.11 Max +LL reaction 10.17 9.97 Max +total reaction 22.52 22.08 I DEFLECTIONS: Initial load (in) at 14.37 ft = -0.368 L/D = 938 Live load (in) at 14.37 ft = -0.181 L/D = 1901 I Post Comp load (in) at 14.37 ft = -0.233 L/D = 1479 Net Total load (in) at 14.37 ft = -0.601 L/D = 574 0 I 1 1 1 I 1 1 1 I Oles II Gravity Beam Design RAM Steel v9.0 Page 83/94 Steve Young R� DataBase: A0522401R32 04/07/06 09:09:30 NTER ,� Building Code: IBC Steel Code: ASD 9th Ed. I Floor Type: SECOND Beam Number = 553 SPAN INFORMATION (ft): I -End (9.15,89.10) J -End (18.55,92.52) 1 Beam Size (User Selected) = W16X26 Fy = 50.0 ksi Total Beam Length (ft) = 10.00 t POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% 1.930 7.96 7.49 0.0 0.00 0.00 0.0 0.00 0.0 1 SHEAR: Max V (DL +LL) = 12.47 kips iv = 3.32 ksi Fv = 17.89 ksi MOMENTS: 1 Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center Max + 24.1 1.9 8.1 1.75 7.52 30.00 7.52 28.62 I Controlling 24.1 1.9 8.1 1.75 - -- - -- 7.52 28.62 REACTIONS (kips): 1 Left Right DL reaction 6.42 1.54 Max +LL reaction 6.05 1.45 O. Max +total reaction 12.47 2.98 I DEFLECTIONS: Dead load (in) at 4.35 ft = -0.018 L/D = 6512 Live load (in) at 4.35 ft = -0.017 L/D = 6919 Net Total load (in) at 4.35 ft = -0.036 L/D = 3355 1 I 1 1 I 1 1 1 ./. 6r.6\ 1 Gravity Beam Design RAM Steel v9.0 Page 84/94 140 1 Steve Young A DataBase: A0522401R32 04/07/06 09:09:30 NT Building Code: IBC Steel Code: ASD 9th Ed. 1 Floor Type: SECOND Beam Number = 554 SPAN INFORMATION (ft): I -End (10.96,89.76) J -End (21.77,60.07) 1 Beam Size (Optimum) = W16)(26 Fy = 50.0 ksi Total Beam Length (ft) = 31.60 I . COMPOSITE PROPERTIES (Not Shored): Left Right Concrete thickness (in) 2.50 2.50 I Unit weight concrete (pcf) 145.00 145.00 fc (ksi) 4.00 4.00 Decking Orientation perpendicular perpendicular 1 Decking type VERCO W3 Formlok VERCO W3 Formlok beff (in) = 70.11 Y bar(in) = 16.82 Seff (in3) 56.33 Str (in3) = 68.14 I Ieff (in4) 810.70 Itr (in4) 1146.20 Stud length (in) = 4.50 Stud diam (in) = 0.75 Stud Capacity (kips) q = 10.0 # of studs: Full = 48 Partial = 15 Actual = 15 PO Number of Stud Rows = 1 Percent of Full Composite Action = 33.83 LINE LOADS (k/ft): Load Dist DL CDL LL Red% Type CLL 1 0.000 0.425 0.325 0.400 0.4% Red 0.250 II 31.595 0.662 0.506 0.623 0.389 SHEAR: Max V (DL +LL) = 17.84 kips fv = 4.75 ksi Fy = 17.89 ksi 1 MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center PreCmp+ 91.9 16.4 0.0 1.00 28.71 33.00 28.71 33.00 Max + 131.6 16.4 - -- - -- I Mmax /Seff 28.02 33.00 - -- - -- ' Mconst/Sx +Mpost /Seff 33.19 45.00 - -- - -- Controlling 91.9 16.4 0.0 1.00 28.71 33.00 - - -- I fc (ksi) = 0.46 Fc = 1.80 REACTIONS (kips): Left Right Initial reaction 10.77 12.46 DL reaction 7.96 9.21 I Max +LL reaction 7.46 8.63 Max +total reaction 15.43 17.84 DEFLECTIONS: (Camber = 3/4) I Initial load (in) at 15.96 ft = -1.067 L/D = 355 Live load (in) at 15.96 ft = -0.486 L/D = 780 I Post Comp load (in) at 15.96 ft = -0.608 L/D = 624 .® Net Total load (in) at 15.96 ft = -0.925 L/D = 410 1 Gravity Beam Design RAM Steel v9.0 Page 88/94 Steve Young 1.0 RAM DataBase: A0522401R32 04/07/06 09:09:30 INTERNATIONAL Building Code: IBC Steel Code: ASD 9th Ed. , Floor Type: SECOND Beam Number = 121 SPAN INFORMATION (ft): I -End (14.72,57.50) J -End (23.36,8.50) 1 Beam Size (User Selected) = W24X84 Fy = 50.0 ksi Total Beam Length (ft) = 49.76 1 COMPOSITE PROPERTIES (Not Shored): Left Right Concrete thickness (in) 2.50 2.50 I Unit weight concrete (pcf) 145.00 145.00 fc (ksi) 4.00 4.00 Decking Orientation 80.0 deg 80.0 deg I Decking type VERCO W3 Fonnlok VERCO W3 Fonnlok beff (in) = 65.32 Y bar(in) = 19.45 I Seff (in3) = 261.73 Str (in3) = 275.56 Ieff (in4) 4839.42 Itr (in4) 5358.69 Stud length (in) = 4.50 Stud diar (in) = 0.75 Stud Capacity (kips) q = 10.0 # of studs: Full = 113 Partial = 22 Actual = 46 OD Number of Stud Rows = 1 Percent of Full Composite Action = 54.70 POINT LOADS (kips): Dist DL CDL RedLL Red% NonRLL StorLL Red% RoofLL Red% CLL 14.393 7.19 5.50 6.77 24.9 0.00 0.00 0.0 0.00 0.0 4.23 LINE LOADS (k/ft): Load Dist DL CDL LL Red% Type CLL I 1 0.000 0.314 0.240 0.295 24.9% Red 0.185 14.392 0.419 0.320 .0.394 0.246 2 14.393 0.081 0.062 0.076 24.9% Red 0.048 1 49.755 0.338 0.258 0.318 0.199 3 0.000 0.367 0.281 0.346 24.9% Red 0.216 48.786 0.367 0.281 0.346 0.216 11 4 48.787 0.367 0.281 0.346 24.9% Red 0.216 49.755 0.134 0.102 0.126 0.079 1 SHEAR: Max V (DL +LL) = 35.54 kips AT = 3.14 ksi Fv = 20.00 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb f6 Fb Center PreCmp+ 318.7 20.9 0.0 1.00 19.51 33.00 19.51 33.00 1 Max + Mmax /Seff 402.1 20.9 - -- - -- 18.44 33.00 - -- - -- Mconst/Sx+Mpost /Seff 21.21 45.00 - -- - -- I Controlling 318.7 20.9 0.0 1.00 19.51 33.00 - -- - -- fc (ksi) = 0.63 Fc 1.80 1 IT 6\ 1 Gravity Beam Design RAM Steel v9.0 Page 89/94 Steve Young RAM DataBase: A0522401R32 04/07/06 09:09:30 • INTERNATIONAL Building Code: IBC Steel Code: ASD 9th Ed. 1 REACTIONS (kips): Left Right Initial reaction 28.16 23.29 DL reaction 20.82 17.22 Max +LL reaction 14.72 12.18 Max +total reaction 35.54 .29.39 DEFLECTIONS: (Camber = 3/4) I Initial load (in) at 24.13 ft = -1.177 L/D = 507 Live load (in) at 24.13 ft = -0.533 L/D = 1120 Post Comp load (in) at 24.13 ft = -0.711 L/D = 840 1 Net Total load (in) at 24.13 ft = -1.138 L/D = 525 1 1 111 1 1 1 1 Gravity Beam Design RAM Steel v9.0 Page 92/94 I. Steve Young R DataBase: A0522401R32 04/07/06 09:09:30 MER ANT PI Building Code: IBC Steel Code: ASD 9th Ed. I Floor Type: SECOND Beam Number = 549 SPAN INFORMATION (ft): I -End (17.22,43.33) J -End (26.62,46.75) i . Beam Size (User Selected) = W18X35 Fy = 50.0 ksi Total Beam Length (ft) = 10.00 1 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% 1.930 8.92 8.39 0.0 0.00 0.00 0.0 0.00 0.0 1 SHEAR: Max V (DL +LL) = 13.97 kips fv = 2.76 ksi Fv = 19.13 ksi MOMENTS: I Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center Max + 27.0 1.9 8.1 1.75 5.61 30.00 5.61 30.00 1 Controlling 27.0 1.9 8.1 1.75 5.61 30.00 - -- - -- REACTIONS (kips): I Left Right DL reaction 7.19 1.72 Max +LL reaction 6.77 1.62 PI° Max +total reaction 13.97 3.34 I DEFLECTIONS: Dead load (in) at 4.35 ft = -0.012 L/D = 9852 Live load (in) at 4.35 ft = -0.011 L/D = 10468 Net Total load (in) at 4.35 ft = -0.024 L/D = 5075 1 1 1 I I 1 1 1 @ 1 FRI Gravity Beam Design RAM Steel v9.0 Page 5/27 Steve Young RAM DataBase: A0522401R32 04/07/06 09:09:30 INTERNATIONAL Building Code: IBC Steel Code: ASD 9th Ed. I Floor Type: SECOND Beam Number = 356 SPAN INFORMATION (ft): I -End (46.29,116.24) J -End (57.71,84.85) 1 Beam Size (User Selected) = W21X50 Fy = 50.0 ksi Total Beam Length (ft) = 33.40 I COMPOSITE PROPERTIES (Not Shored): Left Right Concrete thickness (in) 2.50 2.50 1 Unit weight concrete (pcf) 145.00 145.00 fc (ksi) 4.00 4.00 Decking Orientation perpendicular perpendicular 1 Decking type VERCO W3 Fonnlok VERCO W3 Formlok beff (in) = 100.19 Y bar(in) = 20.39 Seff (in3) = 131.53 Str (in3) = 154.56 I Ieff (in4) = 2319.78 Itr (in4) = 3150.92 Stud length (in) = 4.50 Stud diam (in) = 0.75 I Stud Capacity (kips) q = 10.0 # of studs: Max = 66 Partial = 21 Actual = 30 Number of Stud Rows = 1 Percent of Full Composite Action = 38.00 Op LINE LOADS (k/ft): Load Dist DL CDL LL Red% Type CLL 1 0.000 0.386 0.295 0.363 13.5% Red 0.227 I 33.395 0.386 0.295 0.363 0.227 2 0.000 0.000 0.000 0.000 13.5% Red 0.000 I 1.728 0.202 0.154 0.190 0.119 3 1.729 0.386 0.295 0.363 13.5% Red 0.227 33.395 0.386 0.295 0.363 0.227 I SHEAR: Max V (DL +LL) = 23.37 kips fv = 2.96 ksi Fy = 20.00 ksi MOMENTS: I Span Cond Moment kip -ft @ Lb Cb Tension Flange fb Fb Compr Flange ft ft fb Fb Center PreCmp+ 145.4 16.7 0.0 1.00 18.46 33.00 18.46 33.00 I Max + 194.9 16.7 - -- -- Mmax /Seff 17.78 33.00 - -- - -- Mconst /Sx +Mpost /Seff 20.72 45.00 - -- - -- I Controlling 16.7 0.0 1.00 18.46 33.00 - -- - -- fc (ksi) = 0.32 Fc = 1.80 i REACTIONS (kips): Left Right Initial reaction 16.79 17.43 I DL reaction 12.41 12.88 Max +LL reaction 10.10 10.49 Max +total reaction 22.51 23.37 1 �'t Gravity Beam Design RAM Steel v9.0 Page 6/27 Steve Young RAM DataBase: A0522401R32 04/07/06 09:09:30 � ERN,AL Building Code: IBC Steel Code: ASD 9th Ed. 1 DEFLECTIONS: Initial load (in) at 16.70 ft = -0.578 L/D = 694 Live load (in) at 16.70 ft = -0.261 L/D = 1536 Post Comp load (in) at 16.70 ft = -0.336 L/D = 1192 Net Total load (in) at 16.70 ft = -0.914 L/D = 438 1 1 1 1 1 1 1 1 1 1 1 1 1 rim Gravity Beam Design RAM Steel v9.0 Page 12/27 Steve Young RAM DataBase: A052240 04/07/06 09:09:30 II� Bu ilding Code: IBC Steel Code: ASD 9th Ed. 1 Floor Type: SECOND Beam Number = 145 SPAN INFORMATION (ft): I -End (52.93,71.41) J -End (70.01,77.62) 1 Beam Size (User Selected) = W18X50 Fy = 50.0 ksi Total Beam Length (ft) = 18.17 I POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% 9.083 18.92 17.80 5.3 0.00 0.00 0.0 0.00 0.0 1 LINE LOADS (k/ft): Load Dist DL LL Red% Type 1 0.000 0.042 0.040 5.3 % Red 1 18.166 0.042 0.040 SHEAR: Max V (DL +LL) = 18.62 kips fv = 2.91 ksi Fy = 20.00 ksi 1 MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange 111 kip -ft ft 9.1 fb Fb fb Fb Center Max + 165.8 9.1 9.1 1.75 22.38 30.00 22.38 30.00 p Controlling 165.8 9.1 9.1 1.75 22.38 30.00 - -- - -- REACTIONS (kips): Left Right I DL reaction 9.84 9.84 Max +LL reaction 8.77 8.77 Max +total reaction 18.62 18.62 I DEFLECTIONS: Dead load (in) at 9.08 ft = -0.180 L/D = 1208 Live load (in) at 9.08 ft = -0.161 L/D = 1355 1 Net Total load (in) at 9.08 ft = -0.341 L/D = 639 1 1 1 1 1 I f ‘‘a 1 Frio Gravity Beam Design RAM Steel v9.0 Page 13/27 16 Steve Young RAM DataBase: A0522401 R32 04/07/06 09:09:30 INTERNATIONAL Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: SECOND Beam Number = 146 SPAN INFORMATION (ft): I -End (53.69,122.45) J -End (66.24,87.96) II Beam Size (User Selected) = W24X62 Fy = 50.0 ksi Total Beam Length (ft) = 36.70 I COMPOSITE PROPERTIES (Not Shored): Left Right Concrete thickness (in) 2.50 2.50 I Unit weight concrete (pcf) 145.00 145.00 fc (ksi) 4.00 4.00 Decking Orientation 70.0 deg perpendicular I Decking type VERCO W3 Formlok VERCO W3 Formlok beff (in) - 60.74 VERCO bar(in) = 20.07 Seff (in3) = 181.20 Str (in3) = 198.89 1 Ieff (in4) = 3348.24 Itr (in4) = 3991.27 Stud length (in) = 4.50 Stud diam (in) = 0.75 I Stud Capacity (kips) q = 10.0 # of studs: Max = 72 Partial = 18 Actual = 34 Number of Stud Rows = 1 Percent of Full Composite Action = 51.53 Opp POINT LOADS (kips): Dist DL CDL RedLL Red% NonRLL StorLL Red% RoofLL Red% CLL 21.929 5.92 4.53 5.57 15.6 0.00 0.00 0.0 0.00 0.0 3.48 1 LINE LOADS (k/ft): Load Dist DL CDL LL Red% Type CLL I 1 0.000 0.100 0.076 0.094 15.6% Red 0.059 21.928 0.399 0.305 0.376 0.235 2 21.929 0.044 0.034 0.042 15.6% Red 0.026 I 36.701 0.246 0.188 0.232 0.145 3 0.000 0.000 0.000 0.000 15.6% Red 0.000 3.306 0.386 0.295 0.363 0.227 1 4 3.306 0.386 0.295 0.363 15.6% Red 0.227 36.701 0.386 0.295 0.363 0.227 I SHEAR: Max V (DL +LL) = 25.80 kips fv = 2.53 ksi FY = 20.00 ksi MOMENTS: I Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center PreCmp+ 204.3 21.1 0.0 1.00 18.57 33.00 18.57 33.00 I Max + 271.0 21.1 - -- - -- Mmax /Seff 17.95 33.00 - -- - -- Mconst/Sx +Mpost /Seff 20.80 45.00 - -- - -- I Controlling 21.1 0.0 1.00 18.57 33.00 - -- - -- fc (ksi) = 0.54 Fc = 1.80 111 W91 I rio Gravity Beam Design RAM Steel v9.0 Page 14/27 Steve Young lip RANI DataBase: A0522401R32 04/07/06 09:09:30 I NTERNATIONAL B uilding Code: IBC Steel Code: ASD 9th Ed. 1 REACTIONS (kips): Left Right I Initial reaction 17.17 19.45 DL reaction 12.69 14.38 Max +LL reaction 10.09 11.43 1 Max +total reaction 22.78 25.80 DEFLECTIONS: I Initial load (in) at 18.53 ft = -0.590 L/D = 746 Live load (in) at 18.53 ft = -0.286 L/D = 1541 Post Comp load (in) at 18.53 ft = -0.370 L/D = 1189 1 Net Total load (in) at 18.53 ft = -0.961 L/D = 458 1 I O. . 1 1 1 1 1 1 1 1 1 Fil Gravity Beam Design RAM Steel v9.0 Page 15/27 Steve Young RAM DataBase: A0522401R32 04/07/06 09:09:30 INTERNATIONAL Building Code: IBC Steel Code: ASD 9th Ed. I Floor Type: SECOND Beam Number = 562 SPAN INFORMATION (ft): I -End (55.61,124.06) J -End (84.42,89.72) 1 Beam Size (Optimum) = W21X50 Fy = 50.0 ksi Total Beam Length (ft) = 44.82 I COMPOSITE PROPERTIES (Not Shored): Left Right Concrete thickness (in) 2.50 2.50 I Unit weight concrete (pcf) 145.00 145.00 fc (ksi) 4.00 4.00 Decking Orientation perpendicular perpendicular I Decking type - VERCO W3 Fonnlok VERCO W3 Formlok beff (in) 97.30 VERCO bar(in) = 20.29 Seff (in3) = 145.49 Str (in3) = 154.26 1 Ieff (in4) = 2815.37 Itr (in4) = 3130.35 Stud length (in) = 4.50 Stud diam (in) = 0.75 I Stud Capacity (kips) q[1] = 10.0 q[2] = 8.0 # of studs: Max = 88 Partial = 61 Actual = 61 Number of Stud Rows = 2 Percent of Full Composite Action = 67.73 Op POINT LOADS (kips): Dist DL CDL RedLL Red% NonRLL StorLL Red% RoofLL Red% CLL 20.606 0.74 0.56 0.69 19.6 0.00 0.00 0.0 0.00 0.0 0.43 1 LINE LOADS (k/ft): Load Dist DL CDL LL Red% Type CLL I 1 0.000 0.352 0.269 0.331 19.6% Red 0.207 44.824 0.352 0.269 0.331 0.207 2 0.000 0.106 0.081 0.100 19.6% Red 0.063 I 20.606 0.425 0.325 0.400 0.250 3 20.606 0.378 0.289 0.356 19.6% Red 0.222 44.824 0.378 0.289 0.356 0.222 1 SHEAR: Max V (DL +LL) = 28.84 kips fv = 3.65 ksi Fv = 20.00 ksi MOMENTS: I Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center PreCmp+ 249.8 22.3 0.0 1.00 31.72 33.00 31.72 33.00 1 Max + 324.3 22.3 - -- - -- Mmax /Seff 26.75 33.00 - -- - -- I Mconst /Sx +Mpost /Seff 33.03 45.00 =_= ___ Controlling 249.8 22.3 0.0 1.00 31.72 33.00 fc (ksi) = 0.53 Fc = 1.80 1 REACTIONS (kips): Left Right Initial reaction 19.92 22.21 (t (t I DL reaction 14.72 16.41 1 Gravity Beam Design RAM Steel v9.0 Page 16/27 Steve Young RAM 116 DataBase: A0522401R32 04/07/06 09:09:30 INTERNAi1NAL Building Code: IBC Steel Code: ASD 9th Ed. 1 Left Right Max +LL reaction 11.14 12.42 Max +total reaction 25.86 28.84 1 DEFLECTIONS: (Camber = 1 -1/4) Initial load (in) at 22.41 ft = -1.770 L/D = 304 I Live load (in) at 22.41 ft = -0.612 L/D = 879 Post Comp load (in) at 22.41 ft = -0.803 L/D = 670 Net Total load (in) at 22.41 ft = -1.322 L/D = 407 1 1 1 1 0 11) 1 1 1 1 1 1 1 1 rim Gravity Beam Design RAM Steel v9.0 Page 17/27 Steve Young RANI DataBase: A0522401R32 04/07/06 09:09:30 INTERNATIONAL Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: SECOND Beam Number = 576 SPAN INFORMATION (ft):, I -End (61.19,101.84) J -End (68.85,108.27) 1 Beam Size (User Selected) = W16X26 Fy = 50.0 ksi Total Beam Length (ft) = 10.00 I POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% 1.107 6.66 6.27 0.0 0.00 0.00 0.0 0.00 0.0 1 SHEAR: Max V (DL +LL) = 11.50 kips fv = 3.06 ksi Fy = 17.89 ksi MOMENTS: I Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb Center Max + 12.7 1.1 8.9 1.75 3.97 30.00 3.97 27.60 1 Controlling 12.7 1.1 8.9 1.75 - -- - -- 3.97 27.60 REACTIONS (kips): I Left Right DL reaction 5.92 0.74 PIP Max +LL reaction 5.57 0.69 Max +total reaction 11.50 1.43 DEFLECTIONS: I Dead load (in) at 4.25 ft = -0.009 L/D = 13065 Live load (in) at 4.25 ft = -0.009 L/D = 13881 Net Total load (in) at 4.25 ft = -0.018 L/D = 6730 1 1 1 1 1 1 1 1 (4“041/ 1 Fil Gravity Beam Design RAM Steel v9.0 Page 21/27 Steve Young RAIN DataBase: A0522401R32 04/07/06 09:09:30 NTERNA11C Ai Building Code: IBC Steel Code: ASD 9th Ed. 1 Floor Type: SECOND Beam Number = 577 SPAN INFORMATION (ft): I -End (62.04,102.55) J -End (77.61,84.00) 1 Beam Size (User Selected) = W16X31 Fy = 50.0 ksi Total Beam Length (ft) = 24.22 I COMPOSITE PROPERTIES (Not Shored): Left Right Concrete thickness (in) 2.50 2.50 I Unit weight concrete (pcf) 145.00 145.00 fc (ksi) 4.00 4.00 Decking Orientation perpendicular perpendicular I Decking type VERCO W3 Formlok VERCO W3 Formlok beff (in) = 60.60 VERCO bar(in) = 16.20 Seff (in3) = 69.20 Str (in3) = 80.48 1 Ieff (in4) = 988.71 Itr (in4) = 1303.34 Stud length (in) = 4.50 Stud diam (in) = 0.75 I Stud Capacity (kips) q = 10.0 # of studs: Max = 48 Partial = 14 Actual = 22 Number of Stud Rows = 1 Percent of Full Composite Action = 43.42 Op LINE LOADS (k/ft): Load Dist DL CDL LL Red% Type CLL 1 0.000 0.425 0.325 0.400 0.0% Red 0.250 1 24.218 0.800 0.611 0.753 0.470 SHEAR: Max V (DL +LL) = 15.86 kips fv = 3.84 ksi Fy = 19.67 ksi 1 MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange 1 kip -ft ft ft fb Fb fb Fb Center PreCmp+ 60.9 12.7 0.0 1.00 15.48 33.00 15.48 33.00 Max + 87.4 12.7 - -- - -- 1 Mmax /Seff 15.15 33.00 = == _ == Mconst /Sx +Mpost/Seff 17.93 45.00 Controlling 60.9 12.7 0.0 1.00 15.48 33.00 - -- - -- 1 fc (ksi) = 0.32 Fc = 1.80 REACTIONS (kips): . Left Right Initial reaction 9.01 11.05 DL reaction 6.66 8.17 1 Max +LL reaction 6.27 7.69 Max +total reaction 12.93 15.86 DEFLECTIONS: 1 Initial load (in) at 12.23 ft = -0.333 L/D = 872 Live load (in) at 12.23 ft = -0.156 L/D = 1868 1 Post Comp load (in) at 12.23 ft = -0.195 L/D = 1494 Net Total load (in) at 12.23 ft = -0.528 L/D = 551 �� 1 rim Gravity Beam Design RAM Steel v9.0 Page 24/27 I I. Steve Young RAM DataBase: A0522401R32 04/07/06 09:09:30 M eaNnno Nni Building Code: IBC Steel Code: ASD 9th Ed. Floor Type: SECOND Beam Number = 154 SPAN INFORMATION (ft): I -End (70.01,77.62) J -End (86.76,31.58) I Beam Size (User Selected) = W24X84 Fy = 50.0 ksi Total Beam Length (ft) = 49.00 I COMPOSITE PROPERTIES (Not Shored): Left Right Concrete thickness (in) 2.50 2.50 I Unit weight concrete (pcf) 145.00 145.00 fc (ksi) 4.00 4.00 Decking Orientation 70.0 deg perpendicular I Decking type - VERCO W3 Formlok VERCO W3 Formlok beff (in) 60.74 Y bar(in) = 19.15 Seff (in3) = 265.88 Str (in3) = 273.58 1 Ieff (in4) = 4955.44 It (in4) = 5240.08 Stud length (in) = 4.50 Stud diam (in) = 0.75 I Stud Capacity (kips) q = 10.0 # of studs: Full = 63 Partial = 16 Actual = 46 Number of Stud Rows = 1 Percent of Full Composite Action = 80.49 Op POINT LOADS (kips): Dist DL CDL RedLL Red% NonRLL StorLL Red% RoofLL Red% CLL 26.232 5.32 4.07 5.01 22.4 0.00 0.00 0.0 0.00 0.0 3.13 1 LINE LOADS (k/ft): Load Dist DL CDL LL Red% Type CLL I 1 0.000 0.041 0.031 0.039 22.4% Red 0.024 26.232 0.399 0.305 0.376 0.235 2 26.233 0.044 0.034 0.042 22.4% Red 0.026 49.000 0.355 0.272 0.334 0.209 3 0.000 0.386 0.295 0.363 22.4% Red 0.227 49.000 0.386 0.295 0.363 0.227 1 SHEAR: Max V (DL +LL) = 31.21 kips fv = 2.76 ksi Fv = 20.00 ksi MOMENTS: 1 Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb I Center PreCmp+ 332.0 26.2 0.0 1.00 20.33 33.00 20.33 33.00 Max + 424.7 26.2 Mmax /Seff 19.17 33.00 - -- - -- Mconst /Sx +Mpost /Seff 22.19 45.00 = =_ = == Controlling 332.0 26.2 0.0 1.00 20.33 33.00 fc (ksi) = 0.71 Fc = 1.80 1 REACTIONS (kips): Left Right 1 Initial reaction 22.36 24.40 L bb( DL reaction 16.52 18.04 1 Gravity Beam Design RAM Steel v9.0 Page 25/27 Steve Young III. RA DataBase: A0522401R32 04/07/06 09:09:30 Building Code: IBC Steel Code: ASD 9th Ed. 1 Left Right Max +LL reaction 12.07 13.17 Max +total reaction 28.59 31.21 1 DEFLECTIONS: (Camber = 3/4) Initial load (in) at 24.50 ft = -1.121 L/D = 525 I Live load (in) at 24.50 ft = -0.512 L/D = 1148 Post Comp load (in) at 24.50 ft = -0.677 L/D = 869 Net Total load (in) at 24.50 ft = -1.048 L/D = 561 1 1 1 1 O 1 1 1 1 1 1 1 1 1 CI CO 1 Gravity Beam Design , y . RAM Steel v9.0 Page 27/27 Steve Young Ill M ON DataBase: A0522401R32 04/07/06 09:09:30 MEPNA„ ^� Building Code: IBC Steel Code: ASD 9th Ed. I Floor Type: SECOND Beam Number = 158 SPAN INFORMATION (ft): I -End (74.80,114.06) J -End (90.76,95.04) I Beam Size (User Selected) = W18X40 Fy = 50.0 ksi Total Beam Length (ft) = 24.82 I COMPOSITE PROPERTIES (Not Shored): Left Right Concrete thickness (in) 2.50 2.50 I Unit weight concrete (pcf) 145.00 145.00 fc (ksi) 4.00 4.00 Decking Orientation perpendicular perpendicular I Decking type VERCO W3 Formlok VERCO W3 Fonnlok beff (in) - 67.24 Y bar(in) = 17.42 Seff (in3) - 95.10 Str (in3) = 111.49 1 Ieff (in4) = 1436.22 Itr (in4) = 1942.12 Stud length (in) = 4.50 Stud diam (in) = 0.75 I Stud Capacity (kips) q = 10.0 # of studs: Max = 48 Partial = 16 Actual = 22 Number of Stud Rows = 1 Percent of Full Composite Action = 38.40 Op LINE LOADS (k/ft): Load Dist DL CDL LL Red% Type CLL 1 0.000 0.564 0.432 0.531 0.0% Red 0.332 1 24.824 0.564 0.432 0.531 0.332 SHEAR: Max V (DL +LL) = 13.60 kips fv = 2.41 ksi FAT = 20.00 ksi 1 MOMENTS: Span. Cond Moment @ Lb Cb Tension Flange Compr Flange Il kip -ft ft ft fb Fb fb Fb Center PreCmp+ 58.8 12.4 0.0 1.00 10.32 33.00 10.32 33.00 Max + 84.4 12.4 - -- - -- ' Mmax /Seff 10.65 33.00 = == =_= Mconst /Sx +Mpost/Seff 12.29 45.00 Controlling 84.4 12.4 - -- - -- 10.65 33.00 - -- - -- I fc (ksi) = 0.24 Fc = 1.80 REACTIONS (kips): Left Right Initial reaction 9.48 9.48 DL reaction 7.00 7.00 1 Max +LL reaction 6.59 6.59 Max +total reaction 13.60 13.60 DEFLECTIONS: 1 Initial load (in) at 12.41 ft = -0.208 L/D = 1434 Live load (in) at 12.41 ft = -0.109 L/D = 2734 Post Comp load (in) at 12.41 ft = -0.136 L/D = 2187 C (r0 1 Net Total load (in) at 12.41 ft = -0.344 L/D = 866 1 rim Gravity Beam Design RAM Steel v9.0 Steve Young RA� DataBase: A0522401R32 04/07/06 09:09:30 ME, ^t Building Code: IBC Steel Code: ASD 9th Ed. I Floor Type: SECOND Beam Number = 154 SPAN INFORMATION (ft): I -End (70.01,77.62) J -End (86.76,31.58) 1 Beam Size (User Selected) = W24X84 Fy = 50.0 ksi Total Beam Length (ft) = 49.00 I COMPOSITE PROPERTIES (Not Shored): Left Right Concrete thickness (in) 2.50 2.50 I Unit weight concrete (pcf) 145.00 145.00 fc (ksi) 4.00 4.00 Decking Orientation 70.0 deg perpendicular 1 Decking type VERCO W3 Formlok VERCO W3 Formlok beff (in) = 60.74 Y bar(in) = 19.15 Seff (in3) = 265.88 Str (in3) = 273.58 1 Ieff (in4) = 4955.44 Itr (in4) = 5240.08 Stud length (in) = 4.50 Stud diam (in) = 0.75 I Stud Capacity (kips) q = 10.0 # of studs: Full = 63 Partial = 16 Actual = 46 Number of Stud Rows = 1 Percent of Full Composite Action = 80.49 POINT LOADS (kips): Dist DL CDL RedLL Red% NonRLL StorLL Red% RoofLL Red% CLL 26.232 5.32 4.07 5.01 22.4 0.00 0.00 0.0 0.00 0.0 3.13 1 LINE LOADS (k/ft): Load Dist DL CDL LL Red% Type CLL I 1 0.000 0.041 0.031 0.039 22.4% Red. 0.024 26.232 0.399 0.305 0.376 0.235 2 26.233 0.044 0.034 0.042 22.4% Red 0.026 49.000 0.355 0.272 0.334 0.209 3 0.000 0.386 0.295 0.363 22.4% Red 0.227 49.000 0.386 0.295 0.363 0.227 1 SHEAR: Max V (DL +LL) = 31.21 kips fv = 2.76 ksi Fy = 20.00 ksi MOMENTS: Span Cond Moment @ Lb Cb Tension Flange Compr Flange kip -ft ft ft fb Fb fb Fb 1 Center PreCmp+ 332.0 26.2 0.0 1.00 20.33 33.00 20.33 33.00 Max + 424.7 26.2 Mmax /Seff 19.17 33.00 - -- - -- Mconst /Sx +Mpost/Seff 22.19 45.00 =__ _ =_ Controlling 332.0 26.2 0.0 1.00 20.33 33.00 fc (ksi) = 0.71 Fc = 1.80 1 REACTIONS (kips): Left Right 1 Initial reaction 22.36 24.40 ,��� r DL reaction 16.52 18.04 ��' b l 1 El Gravity Beam Design RAM Steel v9.0 Page 2/2 Steve Young RA M DataBase: A0522401R32 04/07/06 09:09:30 n re��FnoNAL Building Code: IBC Steel Code: ASD 9th Ed. 1 Left Right Max +LL reaction 12.07 13.17 Max +total reaction 28.59 31.21 1 DEFLECTIONS: (Camber = 3/4) Initial load (in) at 24.50 ft = -1.121 L/D = 525 I Live load (in) at 24.50 ft = -0.512 L/D = 1148 Post Comp load (in) at 24.50 ft = -0.677 L/D = 869 Net Total load (in) at 24.50 ft = -1.048 L/D = 561 1 1 1 1 O 1 1 1 1 1 1 1 I 1 1 6 1 BUILDING ONE ' COLUMN DESIGN COLUMN HSS 6 x 6 x 3 / 16 : COMBINED LOADING (MAX AXIAL): Kstrong 1 EFFECTIVE LENGTH FACTOR Kweak := 1 Lstrong:= 15•ft UNSUPPORTED COLUMN LENGTH Lweak:= 15•ft 1 KLstrong = 15 ft EFFECTIVE COLUMN LENGTH KLweak = 15 ft 1 LOADING: Ax:= 18•k Mz:= 5.0.k.ft M 2.35 -k•ft 1 PROPERTIES: HSS 6x6x3/16 1 = 4.27•in bf:= 6•in tf:= 0.1875•in d := 6•in Af := bf•tf Af = 1.125in I 23.841 ly:= 23.8•in 4 Sz = 7.93 in Sy = 7.93 in rz= 2.36in ry= 2.36in rmin = 2.36 in 1 KLweak 1l SRmin := max((KLstrong I I SRmin = 76.2 SLENDERNESS FACTOR IN PLANE OF BENDING r r J J 1 2 12.x .E Fe 1 2 23•SRmin Fe = 25.69ksi EULER STRESS DIVIDED BY FACTOR OF SAFETY 2 I 2 n Es SRmin ( 1 2•R 12•�c E Cc := C� = 112 R F := if R < 0.500, ft non 2 Cc 3 + — 4R — R 23 SRmin I Ax fa := A fa = 4.22ksi AXIAL STRESS Fa = 18.7ksi ALLOWABLE AXIAL STRESS I fbz:= S fbz= 7.56ksi BENDING STRESS Fb 27.6ksi ALLOWABLE BENDING STRESS 1 Mz z STRONG AXIS M fby := fby = 3.55ksi BENDING STRESS Fb = 27.6ksi ALLOWABLE BENDING STRESS Sy WEAK AXIS INTERACTION = 0.71 1 C-f 1 1 .6 1 BUILDING FOUR i COLUMN DESIGN NOT USED f COLUMN HSS 6 x 6 x 3 / 16 : COMBINED LOADING (MAX COMBINED STRESS): I 1 1 EFFECTIVE LENGTH FACTOR = 1 I Adz= 15•ft UNSUPPORTED COLUMN LENGTH L= 15•ft KLstrong = 15 ft EFFECTIVE COLUMN LENGTH KLweak = 15 ft 1 LOADING: Ate= 30.5.k MA/= 0•k•ft= 4.02•k•ft 1 PROPERTIES: HSS 6x6 x3/16 1 � = 4.27•in = 6•in = 0.1875•in d� :-- 6•in Ate= bf•tf. Af= 1..125in = 23.8 in = 23.8•in OP SZ = 7.93in Sy = 7.93in rz= 2.36in ry= 2.36in rmin= 2.36in 1 (('KLst KLweak 11 Ste= max r z ry JJ SRmin = 76.2 SLENDERNESS FACTOR IN PLANE OF BENDING 1 12•sc 1 23 SRmin2 Fe = 25.69ksi EULER STRESS DIVIDED BY FACTOR OF SAFETY 2 2 n •Es SRmin (1 - 12•n Es Cam= ft Cc = 112 R:= 2 CC = if R < 0.500, 5 3 ' 4 2 3 2 1 3 : 2 :2 - 3 SRmin I A = A f = 7.14ksi AXIAL STRESS Fa = 18.7ksi ALLOWABLE AXIAL STRESS 11 Mz = SZ fbz= 0ksi BENDING STRESS Fb 27.6ksi ALLOWABLE BENDING STRESS STRONG AXIS 1 My f = fby = 5.08ksi BENDING STRESS Fb = 27.6ksi ALLOWABLE BENDING STRESS Sy WEAK AXIS 1 INTERACTION = 0.69 1 c.f ti 1 l 1 BUILDING ONE 1 COLUMN DESIGN COLUMN HSS 6 x 6 x 3 / 16 : COMBINED LOADING (MAX AXIAL): I AXIAL LOADING K:= 1.00 EFFECTIVE LENGTH FACTOR 1 L := 15•ft COLUMN LENGTH 1 KL:= K•L KL= 15 ft EFFECTIVE COLUMN LENGTH COLUMN LOAD: I PC1 := f•(10 8 18).k I USE HSS 6x6x3/16 Pallow : = IC:= PC1 IC = (0.13 0.1 0.23:)'' Pallow = 6•in d 6•in COLUMN DIMENSIONS BASEPLATE DESIGN: U N:=r12.in B: =12.in fp .— PC10 2 fp = 125 psi < Fp = 1785psi 1 }IN I m = min((N — 0.95•do 6 — 0.8.bf)) 2 m= 3.15in 1 31p• m treqd 0.75•fs treqd = 0.32 in 1 1= 0.375 USE 5/8" X 12" X 1' -0" BASEPLATE WITH (4) 5/8" DIAMETER ANCHOR BOLTS 1 1 1 Cif 1 1 BUILDING ONE COLUMN .DESIGN COLUMN HSS 6 x 6 x 3 / 16 : COMBINED LOADING (MAX AXIAL): I qa := 3 DESIGN SOIL PRESSURE (ksf) - SEE NOTES ON FOUNDATION PLAN 1 PC1 = (10 8 18)k COLUMN LOADS ( P I b := round5 1 ga 0' 2/ •ft b = 2.5 ft WIDTH OF FOOTING b 4.5•ft • Afootg := b 1. Afootg = 20.25 ft AREA OF FOOTING 1.2PC1 0 + 1.6 -PC1 1 Qu qu = 1.22 ksf FACTORED PRESSURE Afootg kb . h := 12•in DEPTH OF FOOTING d = 9 in DEPTH TO CENTROID OF REINFORCEMENT STEEL b0 := 2•[N + B + 2.(d - m)] b = 71 in CRITICAL SHEAR PERIMETER (PUNCHING SHEAR) 1 Ao:= (N +d- m)•(B +d -m) A 319in I PUNCHING SHEAR: Vu qu•(Afootg - Ao) Vu = 22.1 k 1 V 4Vc= 4s• OVc =120k IC := � c IC =0.18 1 ONE -WAY SHEAR: I b bf m xows 2 - 2 - 2 - d xows = 13.4 in 1 Vim,'•= Qu V = 6.2k V 4s2fbodPSi +Vc =60k IC:= (Wu IC= 0.1 1 k 1 BUILDING ONE 1 COLUMN DESIGN COLUMN HSS 6 x 6 x 3 / 16 : COMBINED LOADING (MAX AXIAL): I BENDING: b bf m d x: 2 Z 2 x= 17.9in 2 9u•b•x M := 2 M = 6 ftk FLEXURE 1 M u III R:= R = 19psi FLEXURAL RESISTANCE FACTOR 4f•b•d p = 0.0018 STEEL RATIO As.REQD = 1.1661n AREA OF STEEL REQUIRED barno := 4 REINFORCEMENT SIZE (DIAMETER) nbar = 7 NUMBER OF BARS REQUIRED As :_ Mbar Abar A = 1.41n AREA OF REINFORCEMENT STEEL I . A s• f y Mu OW Of•As•fy d - 1.7•fc•b) (I)Mn = 54.778ft•k NIC:= (I)Mn = 0.11 I USE 4' -6" X 4' -6" X 12" DEEP FOOTING WITH (7) #4 EACH WAY 1 ii . I.. G Vc ' 111 RAM Steel v9.0 Steve Young Gravity Column Design i - RAM DataBase: A0522401R29 02/17/06 07:26:28 'NiERNATK?NAl Building Code: IBC Steel Code: ASD 9th Ed. I Story level SECOND FLOOR, Column Line - 24.99ft - 102.O1ft Fy (ksi) = 46.00 Column Size = HSS6X6X3 /16 Orientation (degrees) = 10.0 INPUT DESIGN PARAMETERS: I X -Axis Y -Axis Lu (ft) 15.00 15.00 I K 1 1 Braced Against Joint Translation Yes Yes Column Eccentricity (in) Top 6.00 6.00 Bottom 0.00 0.00 CONTROLLING COLUMN LOADS - Load Case 14: I Axial (kips) Dead Live Roof 9.80 7.79 0.00 II Moments Top Mx (kip -ft) 2.36 2.60 0.00 My (kip -ft) 1.02 1.30 0.00 P I° Bot Mx (kip -ft) 0.00 0.00 0.00 My (kip -ft) 0.00 0.00 0.00 Single curvature about X -Axis Single curvature about Y -Axis I CALCULATED PARAMETERS: (DL + LL + R ) 1 fa (ksi) = 4.42 Fa (ksi) = 18.75 fbx (ksi) = 8.02 Fbx (ksi) = 27.60 thy (ksi) = 3.75 Fby (ksi) = 27.60 I KL/Rx = 76.04 KL/Ry = 76.04 F'ex = 25.82 F'ey = 25.82 Cmx = 0.60 Cmy = 0.60 INTERACTION EQUATION I fa/Fa = 0.24 � 'Eq H1-1: 0.236 + 0.210 + 0.098 = 0.545 Eg H1 -2: 0.160 + 0.291 + 0.136 = 0.587 I I, � � 6 1 rim RAM Steel v9.0 Steve Young Gravity Column Design 16 RAM DataBase: A0522401R29 02/17/06 07:29:46 "' Building Code: IBC Steel Code: ASD 9th Ed. I Story level SECOND FLOOR, Column Line = 11.41ft - 104.40ft Fy (ksi) = 46.00 Column Size = HSS6X6X3 /16 Orientation (degrees) = 10.0 I 6V to S c 1 `A " INPUT DESIGN PARAMETERS: X -Axis Y -Axis Lu (ft) 15.00 15.00 K 1 1 I Braced Against Joint Translation Yes Yes Column Eccentricity (in) Top 6.00 6.00 Bottom 0.00 0.00 CONTROLLING COLUMN LOADS - Load Case 15: Dead Live Roof Axial (kips) 10.06 7.51 0.00 Moments Top Mx (kip -ft) -2.18 -2.59 0.00 My (kip -ft) 0.76 1.16 0.00 Bot Mx (kip -ft) 0.00 0.00 0.00 My (kip -ft) 0.00 0.00 0.00 Single curvature about X -Axis Single curvature about Y -Axis CALCULATED PARAMETERS: (DL + LL + RF) fa (ksi) = 4.41 Fa (ksi) = 18.75 fbx (ksi) = 7.72 Fbx (ksi) = 27.60 Thy (ksi) = 3.11 Fby (ksi) = 27.60 KL/Ry = 76.04 KL/Ry = 76.04 F'ex = 25.82 Fey = 25.82 I Cmx = 0.60 Cmy = 0.60 INTERACTION EQUATION I fa/Fa = 0.24 Eq H1 -1: 0.235 + 0.203 + 0.082 = 0.520 1 Eq H1-2: 0.160 +0.280 +0.113 =0.553 I I Of 1 I I i r BUILDING ONE COLUMN DESIGN I COLUMN HSS 6 x 6 x 1 / 4 : COMBINED LOADING (MAX AXIAL): Kstrong 1 EFFECTIVE LENGTH FACTOR Kweak 1 Lstrong 15.ft UNSUPPORTED COLUMN LENGTH Lweak 15•ft 11 KLstrong = 15 ft EFFECTIVE COLUMN LENGTH KLweak = 15 ft I LOADING: Ax := 43.5•k Mz := 1.35•k•ft M 2.6•k•ft N PROPERTIES: HSS 6 x6 x1 / 4 = 5.59-in 2 bf:= 6•in tf:= 0.25•in d := 6•in Af := bf•tf Af = 1..5in I Iz:= 30.341 ly:= 30.341 p S = 10.1 in S = 10.1 in r = 2.33in ry= 2.33in rmin= 2.33in I ( (KLstrong KLweak 11 SRmin := max SRmin = 77.3 SLENDERNESS FACTOR IN PLANE OF BENDING rz r y JJ 12•1c Fe 2 Fe = 24.98ksi EULER STRESS DIVIDED BY FACTOR OF SAFETY 23 •SRmin 1 2 / 21 - 2 a •Es SRmin 1 - 2•R •ff 12•n •E Cc:- Cc= 112 R:= Fa := i R < 0.500, 5 I ft ^^^ 2•Co 3•R 3 2 3 + 4 - R 23 •SRmin 2 1 Ax fa := A fa = 7.78 ksi AXIAL STRESS Fa = 18.5 ksi ALLOWABLE AXIAL STRESS II Mz fbz:= S z fbz= 1.6ksi BENDING STRESS Fbz= 30.36ksi ALLOWABLE BENDING STRESS STRONG AXIS M fby := y fby = 3.09 ksi BENDING STRESS Fby = 30.36ksi ALLOWABLE BENDING STRESS S Y WEAK AXIS INTERACTION = 0.64 0 c3 1 I la ,I BUILDING ONE I COLUMN DESIGN COLUMN HSS 6 x 6 x 1 / 4 : COMBINED LOADING (MAX COMBINED STRESS): \ I . K:= 1 EFFECTIVE LENGTH FACTOR = 1 �= 15•ft UNSUPPORTED COLUMN LENGTH hi= 15•ft I i KLstrong = 15 ft EFFECTIVE COLUMN LENGTH KLweak = 15 ft LOADING: I A U= 30•k M 1.20•k•ft M.= 9.20•k•ft PROPERTIES: HSS 6x6x1/4 NV \ 1 = 5.59•in A t = 6•in= 0.25 in � d = 6•in Ate= bf•tf At= 1..5in n1 7o+i := 30.3•in I n�ia := 30.3•in P IO Sz= 10.1in Sy= 10.1in r = 2.33 in ry = 2.33 in rmin = 2.33 in I (r KLstrong KLweakll Sni= max(( r z ry J I SRmin = 77.3 SLENDERNESS FACTOR IN PLANE OF BENDING 12.1t 2 .Es _ 23 SRmin2 Fe = 24.98ksi EULER STRESS DIVIDED BY FACTOR OF SAFETY 2•n 2 •Es SRmin (1 — 2•R 12•.rc II C n / = ft Co = 112 R := 2 CC = if R < 0.500, 5 3 R 2 3 + 4 — R 3 23 SRmin I Ax = A f = 5.37 ksi AXIAL STRESS F = 18.5 ksi ALLOWABLE AXIAL STRESS J M = SZ fbz= 1.43 ksi BENDING STRESS Fb 30.36ksi ALLOWABLE BENDING STRESS STRONG AXIS M f= y fby = 10.93ksi BENDING STRESS Eb = 30.36ksi ALLOWABLE BENDING STRESS S y WEAK AXIS INTERACTION = 0.81 of 1 I I le ,, BUILDING ONE COLUMN DESIGN COLUMN HSS 6 x 6 x 1 / 4 : COMBINED LOADING (MAX AXIAL): I AXIAL LOADING K := 1.00 EFFECTIVE LENGTH FACTOR I L := 15•ft COLUMN LENGTH KL:= K•L KL= 15 ft EFFECTIVE COLUMN LENGTH COLUMN LOAD: 'I PC1 := f•(30 18 48).k PC1 USE HSS 6x6x1 /4 p allow := 104•k IC := IC = (0.29 0.17 0:46 ) Pallow PI = 6•in do:= 6-in COLUMN DIMENSIONS BASEPLATE DESIGN: I N = 12•in B:= 12•in I fp:= P B.N'2 fp = 333 psi < Fp = 1785psi min((N — 0.95•do B — 0.8•bf)) I rn:= 2 m= 3.15in 3•fp•m treqd treqd = 0.51 in 0.75•f = 0.625 I t USE 3/4" X 12" X 1' -0" BASEPLATE WITH (4) 5/8" DIAMETER ANCHOR BOLTS I i G f .11 lip ,I BUILDING ONE I COLUMN DESIGN COLUMN HSS 6 x 6 x 1 / 4 : COMBINED LOADING (MAX AXIAL): I qa := 3 DESIGN SOIL PRESSURE (ksf) - SEE NOTES ON FOUNDATION PLAN PC1 = (30 18 48) k COLUMN LOADS / \ b := round5 PC1 � ' 2 ft b = 4.5 ft WIDTH OF FOOTING b := 5.5.ft q a Ann 2 III Afootg b Afootg = 30.25 ft 2 AREA OF FOOTING 1.2•PC10 0 + 1.6•PC10 1 qu := q = 2.14 ksf FACTORED PRESSURE I Afootg PI° h := 16•in DEPTH OF FOOTING d = 12.5 in DEPTH TO CENTROID OF REINFORCEMENT STEEL I bo := 2.[N + B + 2.(d – m)] bo = 85in CRITICAL SHEAR PERIMETER (PUNCHING SHEAR) I Ao:_(N +d– m)•(B +d –m) Ao= 456in f PUNCHING SHEAR: Vu := qu•(Afootg – Ao) V = 58k 1 V u Wc:= (I)s•41f OVc = 199k IC:= IC = 0.29 (I)Vc .11 ONE -WAY SHEAR: b bf m xows := 2 — — — 2 – d xows = 15.9 in Zski= qu•(b•xows) V = 15.6k Vu = Os.2•V7c•bo•d•psi OVc = 99k IC := — IC = 0.16 tWo & f L1 I . I Nil I BUILDING ONE 1 COLUMN DESIGN COLUMN HSS 6 x 6 x 1 / 4 : COMBINED LOADING (MAX AXIAL): 1 . BENDING: - b bf m d x:= 2 2 - 2 - - 2 x =22.2 in 4u•b•x Mu 2 Mu = 20 ftk FLEXURE Mu 1 R:= R = 26 psi FLEXURAL RESISTANCE FACTOR 4f•b•d p = 0.0018 STEEL RATIO As.REQD = 1.901 in AREA OF STEEL REQUIRED pill barno:= 5 REINFORCEMENT SIZE (DIAMETER) nbar = 7 NUMBER OF BARS REQUIRED I As nbar Abar As = 2.17 in 2 AREA OF REINFORCEMENT STEEL l A5 ' f y Mu 4 Mn �f As fy d - 1.7 f -b) 4 Mn = 118.285ft•k I IC = 0.17 c +M i USE 5' -6" X 5' -6" X 16" DEEP FOOTING WITH (7) #5 EACH WAY 1 I I c 1,1 I 1 Fil Gravity Column Design RAM Steel v9.0 Steve Young RAM DataBase: A0522401R29 02/17/06 07:22:38 NA AL Building Code: IBC Steel Code: ASD 9th Ed. 111 • Story level SECOND FLOOR, Column Line 2.65ft - 68.41ft Fy (ksi) = 46.00 Column Size = HSS6X6X1 /4 Orientation (degrees) = 10.0 I OV1ac k, `S J c INPUT DESIGN PARAMETERS: I X -Axis Y -Axis Lu (ft) 15.00 15.00 K 1 1 a Braced Against Joint Translation Yes Yes Column Eccentricity (in) Top 6.00 6.00 Bottom 0.00 0.00 I CONTROLLING COLUMN LOADS - Load Case 12: Dead Live Roof Axial (kips) 20.92 11.36 0.00 Moments Top Mx (kip -ft) -0.06 -1.53 0.00 I My (kip -ft) -6.05 -4.15 0.00 Bot Mx (kip -ft) 0.00 0.00 0.00 My (kip 0.00 0.00 0.00 Single curvature about X -Axis Single curvature about Y -Axis CALCULATED PARAMETERS: (DL + LL + RF) I fa (ksi) = 6.16 Fa (ksi) = 18.58 fbx (ksi) 2.00 Fbx (ksi) = 30.36 fby (ksi) = 12.83 Fby (ksi) = 30.36 I KL /Rx = 77.05 KL/Ry = 77.05 F'ex = 25.16 Fey = 25.16 I Cmx = 0.60 Cmy = 0.60 INTERACTION EQUATION III fa/Fa = 0.33 Eq H1 -1: 0.331 + 0.052 + 0.336 = 0.720 Eq H1-2: 0.223 + 0.066 + 0.423 = 0.712 I I I I FR Gravity Column Design RAM Steel v9.0 Steve Young RAM DataBase: A0522401R29 02/17/06 07:22:38 . /NTERNAWNAt Building Code: IBC Steel Code: ASD 9th Ed. 111 I Story level SECOND FLOOR, Column Line - 82.26ft - 59.34ft Fy (ksi) = 46.00 Column Size = HSS6X6X1 /4 Orientation (degrees) = 70.0 ' Z f�7 C INPUT DESIGN PARAMETERS: I X -Axis Y -Axis Lu (ft) 15.00 15.00 K 1 1 Braced Against Joint Translation Yes Yes Column Eccentricity (in) Top 6.00 6.00 Bottom 0.00 0.00 I CONTROLLING COLUMN LOADS - Load Case 1: Axial (kips) Dead Live Roof 29.73 16.74 0.98 Moments Top Mx (kip -ft) 0.84 0.65 0.00 I My (kip -ft) -1.63 -1.27 0.00 Bot Mx (kip -ft) 0.00 0.00 0.00 Oil My (kip -ft) 0.00 0.00 0.00 Single curvature about X -Axis Single curvature about Y -Axis I CALCULATED PARAMETERS: (DL + LL + RF) I fa (ksi) = Fa (ksi) = 18.58 fbx (ksi) 1.87 Fbx (ksi) = 30.36 I thy (ksi) = 3.65 Fby (ksi) = 30.36 KL/Rx = 77.05 KL /Ry = 77.05 F'ex = 25.16 Fey = 25.16 Cmx = 0.60 Cmy = 0.60 INTERACTION EQUATION 1 fa/Fa = 0.49 Eq H1 -1: 0.487 + 0.058 + 0.113 = 0.658 Eq H1-2: 0.328 + 0.062 + 0.120 = 0.510 I I I 1 . 16 ,I BUILDING ONE 1 COLUMN DESIGN COLUMN HSS 6 x 6 x 3 / 8 : COMBINED LOADING (MAX AXIAL): J Kstrong 1 EFFECTIVE LENGTH FACTOR Kweak 1 Lstrong 15•ft UNSUPPORTED COLUMN LENGTH Lweak 15•ft r KLstrong = 15 ft EFFECTIVE COLUMN LENGTH KLweak = 15 ft LOADING: A := 57.k M 2.6•k•ft M 3.7•k•ft ' PROPERTIES: HSS 6x6x3/8 111 A = 8.08 in bf:= 6•in tf:= 0.375•in d := 6•in Af:= bf•tf Af= 2:25in I := 41.6•in ly := 41.6•in Sz = 13.87in Sy = 13.87in rz = 2.27 in ry= 2.27in rmin = 2.27 in • (CKLstron rz KLweak jj ry SRmin := max SRmin = 79.3 SLENDERNESS FACTOR IN PLANE OF BENDING I 12• II Fe 2 F = 23.73ksi EULER STRESS DIVIDED BY FACTOR OF SAFETY 23. SRmin 2 2•n •Es SRmin (1 - 2•R 12•7r 2 •Es Cc := Co = 112 R := Fa := if R < 0.500, . ft A '''' C 2•C 5 3•R 3 ' 2 — 3 + 4 - R 23 •SRmin Ax _ fa := A fa = 7.05 ksi AXIAL STRESS Fa = 18.2 ksi ALLOWABLE AXIAL STRESS I Mz fbz:= Sz fbz= 2.25 ksi BENDING STRESS Fb 30.36ksi ALLOWABLE BENDING STRESS STRONG AXIS I M fby := y fby = 3.2 ksi BENDING STRESS Fb = 30.36ksi ALLOWABLE BENDING STRESS ,:. - S Y WEAK AXIS INTERACTION = 0.64 I • I .1 BUILDING ONE COLUMN DESIGN COLUMN HSS 6 x 6 x 3 / 8 : COMBINED LOADING (MAX AXIAL): I AXIAL LOADING K := 1.00 EFFECTIVE LENGTH FACTOR I L := 15•ft COLUMN LENGTH I KL:= K.L KL= 15 ft EFFECTIVE COLUMN LENGTH COLUMN LOAD: PC1: =f.(38 25 63)•k I USE HSS 6x6x3/8 Pallow : = IC:= PC1 IC = (0.26 0.17 0.43) IP Pallow = Gin dc:= 6•in COLUMN DIMENSIONS BASEPLATE DESIGN: N:= 12•in B:= 12•in fp := P B N' fp = 438 psi < Fp = 1785psi min((N — 0.95•dc B — 0.8•bf)) I m:= 2 m= 3.15in 3•fp.m treqd treqd = 0.59 in 0.75 . fg t = 0.625 I USE 3/4" X 12" X 1' -0" BASEPLATE WITH (4) 5/8" DIAMETER ANCHOR BOLTS I I I I BUILDING ONE I COLUMN DESIGN COLUMN HSS 6 x 6 x 3 / 8 : COMBINED LOADING (MAX AXIAL): ' qa := 3 DESIGN SOIL PRESSURE (ksf) - SEE NOTES ON FOUNDATION PLAN 1 PC1 = (38 25 63) k COLUMN LOADS , i I P b := round5 ga �' 2 / ft b = 5 ft WIDTH OF FOOTING b := 6.5•ft Afootg b Afootg = 42.25 11 AREA OF FOOTING 1.2-PC1 0 + 1.6•PC10 1 I qu Afootg qu = 2.03ksf FACTORED PRESSURE h := 16•in DEPTH OF FOOTING d = 12.5in DEPTH TO CENTROID OF REINFORCEMENT STEEL b := 2•[N + B + 2.(d — m)] b = 85in CRITICAL SHEAR PERIMETER (PUNCHING SHEAR) I Ao:= (N +d— m)•(B +d —m) Ao= 456in I PUNCHING SHEAR: Vu qu•(Afootg — Ao) Vu = 79.2k l Vu OVo:= •s•4•jo•b (Wo =199k IC:= IC = 0.4 (I)c ONE -WAY SHEAR: b bf m xows := 2 — 2 — 2 — d xows = 21.9 in I qu•(b•xows) V = 24.1k V = Os•2. •bo•d•psi IV = 99k IC := �v IC = 0.24 I I I BUILDING ONE COLUMN DESIGN COLUMN HSS 6 x 6 x 3 / 8 : COMBINED LOADING (MAX AXIAL): 11 BENDING: b bf m d I x 2 2 2 2 x =28.2 in 9ubx 2 Mu 2 M = 36 ftk FLEXURE .1 M I R:= R = 40psi FLEXURAL RESISTANCE FACTOR $f•b•d I p = 0.0018 STEEL RATIO As.REQD = 2.246in AREA OF STEEL REQUIRED 101. bar 5 REINFORCEMENT SIZE (DIAMETER) nbar = 8 NUMBER OF BARS REQUIRED 1 As nbar Abar As = 2.48in AREA OF REINFORCEMENT STEEL i A s• f y Mu I Mn $f As fy d — 1.7•f •b / OMn = 135.326ft•k I�C— 0Mn IC = 0.27 c I USE 6' -6" X 6' -6" X 16" DEEP FOOTING WITH (8) #5 EACH WAY I I I G I Fria RAM Steel v9.0 Gravity Column Design Steve Young 10 RAM DataBase: A0522401R29 02/17/06 07:25:45 I^ ��" ^I Building Code: IBC Steel Code: ASD 9th Ed. I Story level SECOND FLOOR, Column Line 49.17ft - 81.75ft Fy (ksi) = 46.00 Column Size = HSS6X6X3 /8 Orientation (degrees) = 20.0 INPUT DESIGN PARAMETERS: I X -Axis Y -Axis Lu (ft) 15.00 15.00 K 1 1 I Braced Against Joint Translation Yes Yes Column Eccentricity (in) Top 6.00 6.00 Bottom 0.00 0.00 I CONTROLLING COLUMN LOADS - Load Case 1: I Dead Live Roof Axial (kips) 37.68 21.25 2.29 Moments Top Mx (kip -ft) 1.71 1.16 0.00 I My (kip -ft) -2.46 -1.67 0.00 Bot Mx (kip -ft) 0.00 0.00 0.00 1.1) My (kip -ft) 0.00 0.00 0.00 Single curvature about X -Axis I Single curvature about Y -Axis CALCULATED PARAMETERS: (DL + LL + RF) I fa (ksi) = 8.08 Fa (ksi) = 18.26 fbx (ksi) = 2.63 Fbx (ksi) = 30.36 thy (ksi) = 3.78 Fby (ksi) = 30.36 I KL/Ry = 78.95 KL/Ry = 78.95 F'ex = 23.96 Fey = 23.96 Cmx = 0.60 Cmy = 0.60 INTERACTION EQUATION I fa/Fa = 0.44 Eq H1-1: 0.442 +0.078 +0.113 = 0.633 Eq H1 -2: 0.293 + 0.087 + 0.125 = 0.504 I I I LI I I I 1 BUILDING ONE I COLUMN DESIGN COLUMN HSS 8 x 8 x 1 / 4 : COMBINED LOADING (MAX AXIAL): I Kstrong 1 EFFECTIVE LENGTH FACTOR Kweak 1 Lstrong 15•ft UNSUPPORTED COLUMN LENGTH Lweak 15•ft I KLstrong = 15 ft EFFECTIVE COLUMN LENGTH KLweak = 15 ft I LOADING: Ax:= 98•k Mz := 6.6•k•ft My := 1.95•k•ft I PROPERTIES: HSS 8x8x1/4 = 7.59.in 2 bf:= Bin tf:= 0.25•in d := 8-in Af:= bf•tf Af= 2in Iz := 75.1 •in Iy := 75.1 • in S = 18.78in 3 OP S = 18.78in 3 rz= 3.15in r 3.15in rmin= 3.15 in I rr KLstrong KLweak SRmin max 1 SRmin = 57.2 SLENDERNESS FACTOR IN PLANE OF BENDING `l r z r y /i I 12•n Fe :_ 23•SR 2 Fe = 45.6 ksi EULER STRESS DIVIDED BY FACTOR OF SAFETY min - - 2 n 2 Es SRmin (1 - 2•R 12•zc I Cc := ft Cc = 112 R := 2.Cc Fa if R < 0.500, " ^ 5 3•R 4 3 ' 2 3 + - R 23 •SRmin II Ax fa := A fa = 12.91 ksi AXIAL STRESS Fa = 21.7 ksi ALLOWABLE AXIAL STRESS I Mz fbz Sz fbz = 4.22 ksi BENDING STRESS Fbz= 27.6 ksi ALLOWABLE BENDING STRESS STRONG AXIS M I fby y fb = 1.25 ksi BENDING STRESS Fb = 27.6 ksi ALLOWABLE BENDING STRESS WEAK AXIS INTERACTION = 0.87 I I BUILDING ONE I COLUMN DESIGN COLUMN HSS 8 x 8 x 1 / 4 : COMBINED LOADING (MAX COMBINED STRESS): I i A,A 5,0, tax := 1 EFFECTIVE LENGTH FACTOR = 1 c= 15•ft UNSUPPORTED COLUMN LENGTH ni;).;= 15•ft I KLstrong = 15 ft EFFECTIVE COLUMN LENGTH KLweak = 15 ft I LOADING: = 93.k M,= 9.0•k•ft Ac= 0.05•k•ft I PROPERTIES: HSS 8x8x1/4 1 AM = 7.59 in A= 8•in= 0.25•in MA Sz 8•in= bf•tf Af= 2in = 75.1•in ,v I Yi� := 75.1•in Sz = 18.78in Sy = 18.78in rz= 3.15in ry= 3.15in rmin= 3.15in I r KLstrong KLweak 1l S = max(( r z ry J I SRmin = 57.2 SLENDERNESS FACTOR IN PLANE OF BENDING I 12•rr 2 F = 45.6 ksi EULER STRESS DIVIDED BY FACTOR OF SAFETY I 23 •SRmin - 2 •n 2 •Es SRmin (1 - 2•R 12• I ft Co =112 R:= 2Cc = ifR <0.500, 5 3•R R3 3 + 4 - R 23 •SRmin - I Ax ik= A fa = 12.25ksi AXIAL STRESS Fa = 21.7ksi ALLOWABLE AXIAL STRESS M = SZ fbz= 5.75ksi BENDING STRESS Fb 27.6ksi ALLOWABLE BENDING STRESS Z STRONG AXIS M I = y fby = 0.03 ksi BENDING STRESS Fb = 27.6 ksi ALLOWABLE BENDING STRESS S y WEAK AXIS INTERACTION = 0.85 Gt- 11 I BUILDING ONE COLUMN DESIGN COLUMN HSS 8 x 8 x 1 / 4 : COMBINED LOADING (MAX AXIAL): AXIAL LOADING K := 1.00 EFFECTIVE LENGTH FACTOR L:= 15•ft COLUMN LENGTH ' KL := K•L KL= 15 ft EFFECTIVE COLUMN LENGTH COLUMN LOAD: PC1: =f•(68 40 108).k USE HSS 8x8x1/4 P PC1 allow 165•k IC:= PaIIow IC =(0.41 0.24 0.65) bf:= Bin d 8•in COLUMN DIMENSIONS BASEPLATE DESIGN: AA := 14•in B:= 14•in fp := PC1 2 B•N fp = 551 psi < Fp = 1785psi min((N — 0.95-dc B — 0.8.bf)) ' m:= 2 m = 3.2in 3•fp.m tregd 0.75 fs treqd = 0.67 in ' t = 0.75 USE 3/4 " X 14" X 1' -2" BASEPLATE WITH (4) 3/4 " DIAMETER ANCHOR BOLTS i _ I G e 1 I BUILDING ONE I COLUMN DESIGN COLUMN HSS 8 x 8 x 1 / 4 : COMBINED LOADING (MAX AXIAL): I qa := 3 DESIGN SOIL PRESSURE (ksf) - SEE NOTES ON FOUNDATION PLAN I PC1 = (68 40 108) k COLUMN LOADS I b := round5 P ga k' 2\ •ft b = 6.5 ft WIDTH OF FOOTING = 6.5•ft I Afootg b Afootg = 42.25 ft AREA OF FOOTING I qu 1.2•PC10 0 Afootg + 1.6•PC1 1 qu = 3.45 ksf FACTORED PRESSURE 101) h := 16•in DEPTH OF FOOTING d = 12.5 in DEPTH TO CENTROID OF REINFORCEMENT STEEL b := 2.[N + B + 2.(d — m)] b = 93in CRITICAL SHEAR PERIMETER (PUNCHING SHEAR) I Ao:= (N +d— m).(B +d —m) A 543in I PUNCHING SHEAR: Vu qu•(Afootg — Ao) Vu = 132.6k i . V +V s •4• f bo.d•psi cVc = 217k IC:_ (1) IC = 0.61 ONE -WAY SHEAR: I b bf m xows 2 — 2 — 2 — d xows = 20.9 in I = qu•(b• xows) V = 39k V = dis.2•A•b (1) Vc = 108k IC := u IC = 0.36 (i)Vc I (I 13 I 16 . BUILDING ONE I COLUMN DESIGN COLUMN HSS 8 x 8 x 1 / 4 : COMBINED LOADING (MAX AXIAL): I BENDING: I b bf m d x: 2 - 2 - 2 2 x= 27.1in I qubx Mu := 2 Mu = 57 ft k FLEXURE Mu R:= M R = 63psi FLEXURAL RESISTANCE FACTOR Of b•d I p = 0.0018 STEEL RATIO As.REQD = 2.2461n AREA OF STEEL REQUIRED bar := 5 REINFORCEMENT SIZE (DIAMETER) I nbar = 8 NUMBER OF BARS REQUIRED I As nbarAbar As = 2.48 in 2 AREA OF REINFORCEMENT STEEL As•fy Mu I (1)Mn bf•As•fy d - 1.7•f�•b) IIIMn = 135.326ft•k NIC:- IIIMn IC = 0.42 1 USE 6' -6" X 6' -6" X 16" DEEP FOOTING WITH (8) #5 EACH WAY I I 1 I . 6E- 24 i I El RAM Steel v9.0 Gravity Column Design Steve Young RAM DataBase: A0522401R29 02/16/06 16:04:11 I N T ENAIDNAL Building Code: IBC Steel Code: ASD 9th Ed. Story level SECOND FLOOR, Column Line - 86.02ft - 49.00ft Fy (ksi) = 46.00 Column Size = HSS8X8X1 /4 1 Orientation (degrees) = 70.0 INPUT DESIGN PARAMETERS: I X -Axis Y -Axis Lu (ft) 15.00 15.00 I K 1 1 Braced Against Joint Translation Yes Yes Column Eccentricity (in) Top 7.00 7.00 I Bottom 0.00 0.00 CONTROLLING COLUMN LOADS - Load Case 1: I Dead Live Roof Axial (kips) 67.04 32.46 6.95 I Moments Top Mx (kip -ft) -4.67 -2.55 0.00 My (kip -ft) 1.38 0.75 0.00 Bot Mx (kip -ft) 0.00 0.00 0.00 0 My (kip -ft) 0.00 0.00 0.00 Single curvature about X -Axis I Single curvature about Y -Axis CALCULATED PARAMETERS: (DL + LL + RF) III fa (ksi) = 14.99 Fa (ksi) = 21.71 fbx (ksi) = 4.89 Fbx (ksi) = 27.60 I fby (ksi) = 1.44 Fby (ksi) = 27.60 KI /Rx 57.04 KL/Ry 57.04 F'ex = 45.90 F'ey = 45.90 1 Cmx = 0.60 Cmy = 0.60 INTERACTION EQUATION ' fa/Fa = 0.69 EgH1 -1: 0.691 +0.158 +0.047 =0.895 I Eq H1 -2: 0.543 + 0.177 + 0.052 = 0.773 I 1 / Gravity Column Design RAM Steel v9.0 Steve Young ND RAM DataBase: A0522401R29 02/16/06 15:27:52 ItsfrERNATONAI Building Code: IBC Steel Code: ASD 9th Ed. Story level SECOND FLOOR, Column Line - 9.59ft - 94.06ft Fy (ksi) = 46.00 Column Size = HSS8X8X1 /4 I Orientation (degrees) = 10.0 0 I, OW V , III INPUT DESIGN PARAMETERS: X -Axis Y -Axis Lu (ft) 15.00 15.00 I K 1 1 Braced Against Joint Translation Yes Yes Column Eccentricity (in) Top 7.00 7.00 Bottom 0.00 0.00 in CONTROLLING COLUMN LOADS - Load Case 1: Dead Live Roof Axial (kips) 62.33 28.56 10.72 I Moments Top Mx (kip -ft) 6.54 3.31 0.00 My (kip -ft) -0.04 -0.02 0.00 PO Bot Mx (kip -ft) 0.00 0.00 0.00 My (kip -ft) 0.00 0.00 0.00 Single curvature about X -Axis I Single curvature about Y -Axis I CALCULATED PARAMETERS: (DL + LL + RF) fa (ksi) = 14.31 Fa (ksi) 21.71 fbx (ksi) = 6.68 Fbx (ksi) = 27.60 I fby (ksi) = 0.04 Fby (ksi) = 27.60 KL/Rx 5 7.04 KL/Ry = 57.04 F'ex = 45.90 Fey = 45.90 I Cmx = 0.60 Cmy = 0.60 I INTERACTION EQUATION fa/Fa = 0.66 Eq H1-1: 0.659 +0.211 +0.001 =0.871 Eq H1-2: 0.519 + 0.242 + 0.001 = 0.762 1 I 1 Fo RAM Steel v9.0 Steve Young Gravity Column Design Ile RAM DataBase: A0522401R29 02/16/06 15:27:52 NTEN A I K"AL Building Code: IBC Steel Code: ASD 9th Ed. Story level SECOND FLOOR, Column Line - 23.16ft - 91.67ft Fy (ksi) = 46.00 Column Size = HSS8X8X1 /4 I Orientation (degrees) = 10.0 bk < WC lQ INPUT DESIGN PARAMETERS: I X -Axis Y -Axis Lu (ft) 15.00 15.00 K 1 1 Braced Against Joint Translation Yes Yes Column Eccentricity (in) Top 7.00 7.00 I Bottom 0.00 0.00 CONTROLLING COLUMN LOADS - Load Case 1: I Dead Live Roof Axial (kips) 62.05 28.33 10.39 I Moments Top Mx (kip -ft) -5.97 -3.01 0.00 My (kip -ft) 0.52 0.27 0.00 Bot Mx (kip -ft) 0.00 0.00 0.00 0.00 My (kip -ft) 0.00 0.00 - Single curvature about X -Axis Single curvature about Y -Axis I CALCULATED PARAMETERS: (DL + LL + RF) fa (ksi) = 14.19 Fa (ksi) 21.71 fbx (ksi) = 6.08 Fbx (ksi) = 27.60 I fby (ksi) = 0.54 Fby (ksi) = 27.60 KL/Rx 57.04 KL/Ry 57.04 F'ex = 45.90 F'ey = 45.90 I Cmx = 0.60 Cmy = 0.60 I INTERACTION EQUATION fa/Fa = 0.65 EgH1 -1: 0.654 +0.191 +0.017 =0.862 I Eq H1-2: 0.514 +0.220 +0.019 =0.754 1 C 21 I 1 rim RAM Steel v9.0 Gravity Column Design Steve Young RAM I l DataBase: A0522401R29 02/16/06 15:27:52 A� Building Code: BC Steel Code: ASD 9th Ed. Story level SECOND FLOOR, Column Line - 14.21ft - 50.37ft Fy (ksi) = 46.00 Column Size = HSS8X8X1 /4 I Orientation (degrees) = 100.0 D - \, 1 INPUT DESIGN PARAMETERS: I X -Axis Y -Axis Lu (ft) 15.00 15.00 K 1 1 I Braced Against Joint Translation Yes Yes Column Eccentricity (in) Top 7.00 7.00 Bottom 0.00 0.00 CONTROLLING COLUMN LOADS - Load Case 1: Dead Live Roof Axial (k _ 56.47 25.26 9.48 Moments Top Mx (kip -ft) 0.00 0.00 0.00 I M y (kip -ft) -3.03 -1.62 0.00 Bot Mx (kip -ft) 0.00 0.00 0.00 PIP My (kip -ft) 0.00 0.00 0.00 -- Single curvature about X -Axis I Single curvature about Y -Axis CALCULATED PARAMETERS: (DL + LL + RF) I fa (ksi) = 12.85 Fa (ksi) = 21.71 fbx (ksi) = 0.00 Fbx (ksi) = 27.60 II thy (ksi) = 3.16 Fby (ksi) = 27.60 KL /Rx 57.04 KL/Ry 57.04 F'ex = 45.90 Fey = 45.90 I Cmx = 0.00 Cmy = 0.60 INTERACTION EQUATION fa/Fa = 0.59 Eq H1-1: 0.592 + 0.000 + 0.095 = 0.687 Eq H1 -2: 0.465 + 0.000 + 0.114 = 0.580 I G 2ci2 I I Gravity Column Design eev. 1, Steve Young RAM DataBase: A0522401R29 02/16/06 16:03:56 N Building Code: IBC Steel Code: ASD 9th Ed. 1 Story level SECOND FLOOR, Column Line -3.87ft - 52.20ft Fy (ksi) = 46.00 Column Size = HSS8X8X1 /4 i Orientation (degrees) = 100.0 ( 17,C,, INPUT DESIGN PARAMETERS: I X-Axis Y -Axis Lu (ft) 15.00 15.00 K 1 1 111 Braced Against Joint Translation Yes Yes Column Eccentricity (in) Top 7.00 7.00 I Bottom 0.00 0.00 CONTROLLING COLUMN LOADS - Load Case 1: I Axial (kips) Dead Live Roof 56.40 25.03 9.88 Moments Top Mx (kip -ft) 0.00 0.00 0.00 I My (kip -ft) 2.89 1.55 0.00 Bot Mx (kip -ft) 0.00 0.00 0.00 IIII) My (kip -ft) 0.00 0.00 0.00 Single curvature about X -Axis I Single curvature about Y -Axis CALCULATED PARAMETERS: (DL + LL + RF) I fa (ksi) = 12.86 Fa (ksi) = 21.71 fbx (ksi) = 0.00 Fbx (ksi) = 27.60 I thy (ksi) = 3.01 Fby (ksi) = 27.60 KL /Rx 57.04 KL/Ry 57.04 F'ex = 45.90 F'ey = 45.90 I Cmx = 0.00 Cmy = 0.60 INTERACTION EQUATION ' fa/Fa = 0.59 Eq H1 -1: 0.592 + 0.000 + 0.091 = 0.683 Eq H1-2: 0.466 + 0.000 + 0.109 = 0.575 I 1 I Gravity Column Design Steve Young I 4M I RAM Steel v9.0 DataBase: A0522401R29 02/16/06 16:04:36 L Building Code: IBC Steel Code: ASD 9th Ed. ir Story level SECOND FLOOR, Column Line 52.93ft - 71.41ft Fy (ksi) = 46.00 Column Size = HSS8X8X1 /4 I Orientation (degrees) = 20.0 (0 7 C INPUT DESIGN PARAMETERS: X -Axis Y -Axis Lu (ft) 15.00 15.00 K 1 1 Braced Against Joint Translation Yes Yes Column Eccentricity (in) Top 7.00 7.00 Bottom 0.00 0.00 • CONTROLLING COLUMN LOADS - Load Case 1: ,, Dead Live Roof Axial (kips) 49.75 25.66 4.99 f I Moments Top Mx (kip -ft) 2.87 1.74 0.00 My (kip -ft) 4.81 2.91 0.00 Bot Mx (kip -ft) 0.00 0.00 0.00 NO° ,. My (kip -ft) 0.00 0.00 0.00 -- Single curvature about X -Axis Single curvature about Y -Axis I CALCULATED PARAMETERS: (DL + LL + RF) fa (ksi) = 11.33 Fa (ksi) = 21.71 fbx (ksi) = 3.12 Fbx (ksi) = 27.60 • fby (ksi) = 5.23 Fby (ksi) = 27.60 KL /Rx = 57.04 KL/Ry = 57.04 F'ex = 45.90 F'ey = 45.90 I Cmx = 0.60 Cmy = 0.60 I INTERACTION EQUATION fa/Fa = 0.52 Eq H1 -1: 0.522 + 0.090 + 0.151 = 0.763 I EqH1-2: 0.410 +0.113 +0.190 =0.713 I I 1 I I BUILDING ONE 1 COLUMN DESIGN COLUMN HSS 8 x 8 x 3 / 8 : COMBINED LOADING (MAX AXIAL): 1 Kstrong 1 EFFECTIVE LENGTH FACTOR Kweak 1 I Lstrong 15•ft UNSUPPORTED COLUMN LENGTH Lweak 15•ft KLstrong = 15 ft EFFECTIVE COLUMN LENGTH KLweak = 15 ft 1 LOADING: A := 120•k Mz := 5.1•k•ft M 17.6•k.ft I PROPERTIES: HSS 8 x 8 x 3/ 8 '1 := 11.10•in bf:= 8•in tf:= 0.375•in d := 8•in Af bf•tf Af= 3 in Iz := 106• in l := 106• in Sz = 26.5in S = 26.5 in rz= 3.09in ry= 3.09in rmin= 3.09in I 7 KLstrong KLweak SRm := max SRmin = 58.2 SLENDERNESS FACTOR IN PLANE OF BENDING rz r y , 1 2 12•n •E 1 Fe 2 F = 44.01 ksi EULER STRESS DIVIDED BY FACTOR OF SAFETY 23 •SRmin Il 2 n Es Fa (1 - 2•R 12•n E Cc f Cc= 112 R = F := if R < 0.500, t 2•Cc 3 + 34R - R 23 •SRmin 2 1 Ax fa A fa = 10.81 ksi AXIAL STRESS Fa = 21.5 ksi ALLOWABLE AXIAL STRESS I Mz fbz := Sz fbz = 2.31 ksi BENDING STRESS Fbz = 30.36ksi ALLOWABLE BENDING STRESS STRONG AXIS I M fby S y y fby = 7.97 ksi BENDING STRESS Fby = 30.36 ksi ALLOWABLE BENDING STRESS WEAK AXIS U I INTERACTION = 0.95 1 1f BUILDING ONE COLUMN DESIGN COLUMN HSS 8 x 8 x 3 / 8 : COMBINED LOADING (MAX AXIAL): AXIAL LOADING K := 1.00 EFFECTIVE LENGTH FACTOR L := 15•ft COLUMN LENGTH KL:= K•L KL= 15 ft EFFECTIVE COLUMN LENGTH • COLUMN LOAD: PC1: =f-(78 56 134).k USE HSS 8x8x3/8 Pallow 238•k IC:= PC1 '1 IC = (0.33 0.24 0.56)°:. Pallow OP!! bf:= 8•in d Bin COLUMN DIMENSIONS BASEPLATE DESIGN: I N : = 14•in B := 14•in P fp B.N'2 fp = 684 psi < Fp = 1785psi • min((N — 0.95•do B — 0.8.130) m:= 2 m= 3.2in 3•fp•m tregd 0.75•fs tregd = 0.75 in 1 t = 0.75 USE 7/8 " X 14" X 1' -2" BASEPLATE WITH (4) 3/4 " DIAMETER ANCHOR BOLTS 1 1 1 I BUILDING ONE I COLUMN DESIGN COLUMN HSS 8 x 8 x 3 / 8 : COMBINED LOADING (MAX AXIAL): qa 3 DESIGN SOIL PRESSURE (ksf) - SEE NOTES ON FOUNDATION PLAN PC1 = (78 56 134) k COLUMN LOADS 1 i I b := round5 J Oak PC10'2 I -ft b = 7 ft WIDTH OF FOOTING := 8.0.ft I Afootg b 2 Afootg = 64 ft AREA OF FOOTING II 1.2•PC1 0 +1.6•PC10 1 4u : Afootg qu = 2.86 ksf FACTORED PRESSURE OOP 20•in DEPTH OF FOOTING d = 16in DEPTH TO CENTROID OF REINFORCEMENT STEEL I b := 2.[N + B + 2.(d - m)] b = 107in CRITICAL SHEAR PERIMETER PUNCHING SHEAR) AR) I Ao:= (N +d- m)•(B +d -m) Ao= 718in i PUNCHING SHEAR: Vu qu•(Afootg - Ao) V = 168.9k I V (N := rps•4•\�c-bo•d•psi $Vc = 319k IC := Vu IC = 0.53 (I)Vc I ONE -WAY SHEAR: I b bf m xows 2 - 2 - 2 - d xows = 26.4 in I Vim)= qu•(b•xows) V = 50.4k V V = �s•2• f .b OV = 160k IC IC = 0.32 Vu I ..' 4Vc 613 I tl BUILDING ONE I COLUMN DESIGN COLUMN HSS 8 x 8 x 3 / 8 : COMBINED LOADING (MAX AXIAL): i . BENDING: . b bf m d I x:= z - 2 - - 2 2 x= 34.4in I qubx M := 2 Mu = 94 ft FLEXURE ii M u R := R = 51 psi FLEXURAL RESISTANCE FACTOR 4f b•d 2 It = 0.0018 STEEL RATIO As.REQD = 3.456in AREA OF STEEL REQUIRED bar := 5 REINFORCEMENT SIZE (DIAMETER) nbar = 12 NUMBER OF BARS REQUIRED 1 As nbar Abar As = 3.72 in AREA OF REINFORCEMENT STEEL i As•fy Mu (I)Mn := 4f•As•fy d - 1.7•f°•b) 4Mn = 260.209ft•k IC .= (I)Mn IC = 0.36 USE 8' -0" X 8' -0" X 20" DEEP FOOTING WITH (12) #5 EACH WAY I ti I . 1 /0 RAM Steel v9.0 Steve Young Gravity Column Design RAM DataBase: A0522401R29 02/16/06 15:27:52 RN^MN^L Building Code: IBC Steel Code: ASD 9th Ed. Story level SECOND FLOOR, Column Line - 131.55ft - 65.57ft Fy (ksi) = 46.00 Column Size = HSS8X8X3 /8 Orientation (degrees) = 70.0 INPUT DESIGN PARAMETERS: X -Axis Y -Axis I Lu (ft) 15.00 15.00 K 1 1 I Braced Against Joint Translation Yes Yes Column Eccentricity (in) Top 7.00 7.00 Bottom 0.00 0.00 I CONTROLLING COLUMN LOADS - Load Case 1: Dead Live Roof Axial (kips) 77.54 47.40 7.24 Moments Top Mx (kip -ft) -3.73 -1.83 0.00 My (kip -ft) 12.87 6.31 0.00 Bot Mx (kip -ft) 0.00 0.00 0.00 My (kip -ft) 0.00 0.00 0.00 Single curvature about X -Axis Single curvature about Y -Axis CALCULATED PARAMETERS: (DL + LL + RF) I fa (ksi) = 12.71 Fa (ksi) = 21.55 fbx (ksi) = 2.68 Fbx (ksi) = 30.36 thy (ksi) = 9.24 Fby (ksi) = 30.36 ' KL /Rx = 58.16 KL /Ry = 58.16 F'ex = 44.14 Fey 44.14 i Cmx = 0.60 Cmy = 0.60 INTERACTION EQUATION fa/Fa = 0.59 Eq H1 -1: 0.590 + 0.074 + 0.257 = 0.921 Eq H1 -2: 0.460 + 0.088 + 0.305 = 0.853 I ;f Gravity Column Design RAM Steel v9.0 ii Steve Young Re RAM DataBase: A0522401R29 02/17/06 07:32:15 ' "TERN^M " AL Building Code: IBC Steel Code: ASD 9th Ed. 1 Story level SECOND FLOOR, Column Line -21.67ft - - O.00ft Fy (ksi) = 46.00 Column Size = HSS8X8X3 /8 I Orientation (degrees) = 0.0 G - l .r-Nb INPUT DESIGN PARAMETERS: X -Axis Y -Axis Lu (ft) 15.00 15.00 K 1 1 I Braced Against Joint Translation Yes Yes Column Eccentricity (in) Top 7.00 7.00 `\ Bottom 0.00 0.00 ill CONTROLLING COLUMN LOADS - Load Case 1: I Dead Live Roof Axial (kips) 64.00 33.62 8.17 I Moments Top Mx (kip -ft) 12.41 6.33 -2.01 0.00 My (kip -ft) -3.94 0.00 N Bot Mx (kip -ft) 0.00 0.00 0.00 My (kip -ft) 0.00 0.00 0.00 Single curvature about X -Axis I Single curvature about Y -Axis 1 CALCULATED PARAMETERS: (DL + LL + RF) fa (ksi) = 10.17 Fa (ksi) = 21.55 fbx (ksi) = 9.03 Fbx (ksi) = 30.36 J fby (ksi) = 2.87 Fby (ksi) = 30.36 KL/Rx = 5 8.16 KL/Ry = 58.16 F'ex = 44.14 F'ey = 44.14 Cmx = 0.60 Cmy = 0.60 INTERACTION EQUATION , fa/Fa = 0.47 Eq H1 -1: 0.472 + 0.232 + 0.074 = 0.778 Eq H1 -2: 0.369 + 0.298 + 0.094 = 0.761 1 I c 3k 1 rim Gravity Column Design RAM Steel v9.0 Steve Young RAIN DataBase: A0522401R29 02/17/06 07:33:58 INTrE "DD N At Building Code: IBC Steel Code: ASD 9th Ed. Story level SECOND FLOOR; Column Line 20.36ft - 7.41ft Fy (ksi) = 46.00 Column Size = HSS8X8X3 /8 I Orientation (degrees) = 20.0 S D �- Ork S INPUT DESIGN PARAMETERS: X -Axis Y -Axis Lu (ft) 15.00 15.00 K 1 1 Braced Against Joint Translation Yes Yes Column Eccentricity (in) Top 7.00 7.00 II Bottom 0.00 0.00 CONTROLLING COLUMN LOADS - Load Case 1: II Dead Live Roof Axial (kips) 53.02 28.71 8.29 It Moments Top Mx (kip -ft) -13.16 -7.13 0.00 My (kip -ft) 0.00 0.00 0.00 Bot Mx (kip -ft) 0.00 0.00 0.00 li° My (kip -ft) 0.00 0.00 0.00 Single curvature about X -Axis Il Single curvature about Y -Axis A CALCULATED PARAMETERS: (DL + LL + RF) = fa (ksi) 8.66 Fa (ksi) 21.55 fbx (ksi) = 9.78 Fbx (ksi) = 30.36 I thy (ksi) = 0.00 KL /Rx Fby (ksi) = 30.36 5 8.16 KL/Ry 58.16 F'ex = 44.14 F'ey = 44.14 i Cmx = 0.60 Cmy = 0.00 INTERACTION EQUATION fa/Fa = 0.40 Eq H1-1: 0.402 + 0.240 + 0.000 = 0.642 Eq H1-2: 0.314 +0.322 +0.000 =0.636 I ' c -271 I. l BUILDING ONE F COLUMN DESIGN COLUMN HSS 8 x 8 x 1 / 2 : COMBINED LOADING (MAX AXIAL): Kstrong 1 EFFECTIVE LENGTH FACTOR Kweak 1 Lstrong 15•ft UNSUPPORTED COLUMN LENGTH Lweak 15•ft KLstrong = 15 ft EFFECTIVE COLUMN LENGTH KLweak = 15 ft 1 LOADING: Ax:= 194•k Mz:= 15.85•k•ft My:= 0.70•k•ft I PROPERTIES: HSS 8x8x1 /2 it = 14.40•in bf:= Bin tf:= 0.500•in d := Bin Af:= bt tf Af= 4in I 131•in ly:= 131•in S = 32.75in Sy = 32.75in r = 3.02 in r = 3.02 in rmin= 3.02in SR maxi KL ng KLweak k 11 SRmin = 59.7 SLENDERNESS FACTOR IN PLANE OF BENDING 1 12•n Fe 2 F = 41.93ksi EULER STRESS DIVIDED BY FACTOR OF SAFETY 23 •SRmin (1 21 2 - 2 n 2 Es SRmin 1 - 2•R •ff 12•�c E Cc:- Cc = 112 R := Fa := i R < 0.500, ft ^^^ 2•C� 5 3•R 3 2 + — - R 23 •SRmin 3 4 - ,11 Ax fa := A fa = 13.47ksi AXIAL STRESS Fa = 21.3 ksi ALLOWABLE AXIAL STRESS ` M fbZ:= S Z fbZ= 5.81 ksi BENDING STRESS Fbz = 30.36ksi ALLOWABLE BENDING STRESS STRONG AXIS M fby := y fby = 0.26 ksi BENDING STRESS Fby = 30.36ksi ALLOWABLE BENDING STRESS Sy WEAK AXIS INTERACTION = 0.93 ill a BUILDING ONE ..- E I COLUMN DESIGN COLUMN HSS 8 x 8 x 1 / 2 : COMBINED LOADING (MAX COMBINED STRESS): I 1 EFFECTIVE LENGTH FACTOR = 1 I. L = 15•ft UNSUPPORTED COLUMN LENGTH n ; 15•ft KLstrong = 15 ft EFFECTIVE COLUMN LENGTH KLweak = 15 ft 1 LOADING: 0 4, 4 7. 159.5•k Mme= 17.95•k•ft A= 0.90•k•ft i PROPERTIES: HSS 8 x 8x 1/2 = 14.40•in = 8•in = 0.500•in � dM-- 8-in = bf•tf Af= 4in: O. = 131•in 131•in Sz = 32.75in Sy = 32.75in rz = 3.02 in ry = 3.02 in rmin = 3.02 in KL [[KLstrono weak )) R =max SRmin = 59.7 SLENDERNESS FACTOR IN PLANE OF BENDING r ry 12 •n 2 •Es I nn�v 23 SR 2 Fe = 41.93ksi EULER STRESS DIVIDED BY FACTOR OF SAFETY min 2 2 n Es SRmin (1 — 2•R 12•n ( I am•= I Co = 112 �R = F = if R < 0.500, ft 2 Co n 5 + 34R — R 23 •SRmin 2 Ax = A fa = 11.08ksi AXIAL STRESS F = 21.3ksi ALLOWABLE AXIAL STRESS I M = SZ fbZ= 6.58ksi BENDING STRESS Fb 30.36ksi ALLOWABLE BENDING STRESS STRONG AXIS My Y fby = 0.33 ksi BENDING STRESS Fby = 30.36ksi ALLOWABLE BENDING STRESS I Sy WEAK AXIS INTERACTION = 0.83 Cf- 31 a BUILDING ONE COLUMN DESIGN COLUMN HSS 8 x 8 x 1 / 2 : COMBINED LOADING (MAX AXIAL): AXIAL LOADING K := 1 EFFECTIVE LENGTH FACTOR L .= 15 ft COLUMN LENGTH KL:= K•L KL= 15 ft EFFECTIVE COLUMN LENGTH COLUMN LOAD: PC1 := f•(113 62 175 )•k PC1 USE HSS 8x8x1/2 p allow := 307•k IC := IC = (0.37 0.2 0.57 ); Pallow • bf:= 8•in dc := 8•in COLUMN DIMENSIONS BASEPLATE DESIGN: \ M N = 16-in B:= 16•in fp PC1 N' fp = 684 psi < Fp = 1785psi m min((N — 0.95•d� B — 0.8•bf)) m = 4.2in 3.fp•m 1 tregd 0.75•fs treqd = 0.98 in t -1 USE 1 1/8" X 16" X 1' -4" BASEPLATE WITH (4) 1" DIAMETER ANCHOR BOLTS I ' G 60° I ■ l BUILDING ONE COLUMN DESIGN 1 COLUMN HSS 8 x 8 x 1 / 2 : COMBINED LOADING (MAX AXIAL): I qa := 3 DESIGN SOIL PRESSURE (ksf) - SEE NOTES ON FOUNDATION PLAN I PC1 = (113 62 175 ) k COLUMN LOADS b := round5 PC10 2 'ft b = 8 ft WIDTH OF FOOTING b := 9.ft 2 Afootg b Afootg = 81 ft AREA OF FOOTING 1.2•PC10 0 + 1.6•PC10 1 1 qu := qu = 2.9ksf FACTORED PRESSURE Afootg OP h := 24•in DEPTH OF FOOTING d = 19.5 in DEPTH TO CENTROID OF REINFORCEMENT STEEL I bo := 2.[N + B + 2.(d — m)) b = 125in CRITICAL SHEAR PERIMETER (PUNCHING SHEAR) A (N +d— m)•(B +d —m) Ao= 980in I PUNCHING SHEAR: Vu qu — A V = 215.1k 1 Vu 4)Vc:= (1)s•4 bo•d•psi IVc = IC:= 4)Vc IC = 0.47 i ONE -WAY SHEAR: I b bf m xows 2 — 2 — 2 — d xows = 28.4 in I V = qu•(b•xows) V = 61.7k V AN Vc =227k IC:= IC =0.27 I I • BUILDING ONE 1 COLUMN DESIGN COLUMN HSS 8 x 8 x 1 / 2 : COMBINED LOADING (MAX AXIAL): I BENDING: ,r 2 2 2 2 b bf m d x: x =38.2 in 4u•b x Mu 2 Mu = 132 ftk FLEXURE M u II R:= R = 43psi FLEXURAL RESISTANCE FACTOR 4,f•b•d I p = 0.0018 STEEL RATIO As.REQD = 4.666in AREA OF STEEL REQUIRED bar := 6 REINFORCEMENT SIZE (DIAMETER) nbar = 11 NUMBER OF BARS REQUIRED As nbar Abar As = 4.84in AREA OF REINFORCEMENT STEEL A s' f Y Mu 1 4Mn tbf•As•fy' d — 1.7•fc•b) sMn = 413.227ft•k IIC:= (1)Mn IC = 0.32 Am^ II USE 9' -0" X 9' -0" X 24" DEEP FOOTING WITH (11) #6 EACH WAY I I I I Gravity Column Design • F RAM Steel v9.0 Steve Young RAM DataBase: A0522401R29 02/16/06 15:27:52 ' TIC NA Building Code: IBC Steel Code: ASD 9th Ed. ^ Story level SECOND FLOOR, Column Line 33.52ft - 49.00ft Fy (ksi) = 46.00 Column Size = HSS8X8X1 /2 I Orientation (degrees) = 0.0 g-V + loe 0 01.60 INPUT DESIGN PARAMETERS: X -Axis Y -Axis Lu (ft) 15.00 15.00 1 K 1 Ye 1 Braced Against Joint Translation Yes Yes Column Eccentricity (in) Top 7.00 7.00 Bottom 0.00 0.00 i CONTROLLING COLUMN LOADS - Load Case 1: . Dead Live Roof Axial (kips) 138.18 52.89 19.03 I . Moments Top Mx (kip -ft) -12.01 -5.12 0.23 0.00 My (kip -ft) 0.54 0.00 Bot Mx (kip -ft) 0.00 0.00 0.00 OP My (kip -ft) 0.00 0.00 0.00 -- Single curvature about X -Axis Single curvature about Y -Axis I CALCULATED PARAMETERS: (DL + LL + RF) fa (ksi) = 15.56 Fa (ksi) = 21.40 fbx (ksi) = 6.59 Fbx (ksi) = 30.36 1 fby (ksi) = 0.30 Fby (ksi) = 30.36 KL/Rx 5 9.15 KL/Ry 59.15 F'ex = 42.68 Fey = 42.68 I Cmx = 0.60 Cmy = 0.60 I INTERACTION EQUATION fa/Fa = 0.73 EgH1 -1: 0.727 + 0.205 + 0.009 = 0.941 EgH1 -2: 0.564 +0.217 +0.010 =0.791 I Ili I Gravity Column Design Y RAM Steel v9.0 Steve Young III) RAM DataBase: A0522401R29 02/16/06 15:27:52 �"� B u il d i ng Code: IBC Steel Code: ASD 9th Ed. I Story level SECOND FLOOR, Column Line 44.48ft - 68.33ft Fy (ksi) = 46.00 Column Size = HSS8X8X1 /2 Orientation (degrees) = 20.0 ,%,C' INPUT DESIGN PARAMETERS: I X -Axis Y -Axis Lu (ft) 15.00 15.00 K 1 1 111 Braced Against Joint Translation Yes Yes Column Eccentricity (in) Top 7.00 7.00 Bottom 0.00 0.00 ,1 CONTROLLING COLUMN LOADS - Load Case 1: I Dead Live Roof Axial (kips) 112.01 52.49 8.62 Moments Top Mx (kip -ft) -13.29 -6.21 0.00 I My (kip -ft) Bot 0.67 0.31 0.00 Mx (kip -ft) 0.00 0.00 0.00 10 My (kip -ft) 0.00 0.00 0.00 Single curvature about X -Axis Single curvature about Y -Axis CALCULATED PARAMETERS: (DL + LL + RF) I fa (ksi) = 12.82 Fa (ksi) = 21.40 fbx (ksi) 7.50 Fbx (ksi) = 30.36 thy (ksi) = 0.38 Fby (ksi) = 30.36 I KL/Rx = 59.15 KL /Ry = 59.15 F'ex = 42.68 F'ey = 42.68 Cmx = 0.60 Cmy = 0.60 INTERACTION EQUATION I fa/Fa = 0.60 Eq H1-1: 0.599 +0.212 +0.011 =0.822 Eq H1-2: 0.465 + 0.247 + 0.012 = 0.724 1 I I I II BUILDING ONE COLUMN DESIGN COLUMN HSS 8 x 8 x 5 / 8 : COMBINED LOADING (MAX AXIAL): Kstrong 1 EFFECTIVE LENGTH FACTOR Kweak 1 ,1 Lstrong 15•ft UNSUPPORTED COLUMN LENGTH Lweak 15•ft KLstrong = 15 ft EFFECTIVE COLUMN LENGTH KLweak = 15 ft II LOADING: I Ax := 194•k Mz:= 24.0•k•ft M y := 1.15•k•ft PROPERTIES: HSS 8 x8 x5/8 A = 17.40•in bf:= 8•in tf:= 0.625•in d := 8•in Af:= bf•tf Af= 5 in 2 OP I := 153•in l := 153•in Sz = 38.25in Sy = 38.25in '1 r = 2.97in ry= 2.97in rmin= 2.97in [(KLstrong KLweak JJ SRmin max r r SRmin = 60.7 SLENDERNESS FACTOR IN PLANE OF BENDING z y 12•n Fe 23•SRmin 2 Fe = 40.53ksi EULER STRESS DIVIDED BY FACTOR OF SAFETY 2 ( 2) 2 2•n •Es SRmin 1 - 2•R •ff 12•R •E Cc:- - Cc = 112 R := Fa := if R < 0.500, ft non 2 Co 3 4+ 3R - R 23•SRmin I - - A fa := A fa = 11.15ksi AXIAL STRESS F = 21.2ksi ALLOWABLE AXIAL STRESS I. Mz fbz:= 6 fbz= 7.53 ksi BENDING STRESS Fbz= 30.36ksi ALLOWABLE BENDING STRESS z STRONG AXIS 111 - M fby := Y fby = 0.36 ksi BENDING STRESS Fby = _ 30.36ksi ALLOWABLE BENDING STRESS Sy WEAK AXIS 11 1 -- , INTERACTION = 0.89 I G .V3 I I. . - - BUILDING ONE 1 COLUMN DESIGN COLUMN HSS 8 x 8 x 5 / 8 : COMBINED LOADING (MAX AXIAL): 1 AXIAL LOADING ,11 K := 1.00 EFFECTIVE LENGTH FACTOR L:= 15•ft COLUMN LENGTH I KL:= KW KL = 15 ft EFFECTIVE COLUMN LENGTH I COLUMN LOAD: PC1 := f•(139 73 212 )•k PC1 USE HSS 8x8x5/8 Fallow := 369•k IC := IC = (0.38 0.2 0.57 ) Fallow Nilib ) bf:= 8-in dc := 8-in COLUMN DIMENSIONS BASEPLATE DESIGN: I , N = 16•in B:= 16•in I pC1 fp :_ B N' 2 fp = 828 psi < Fp = 1785psi min((N - 0.95-dc B - 0.8-bf)) m 2 m = 4.2 in I 3•fp•m treqd := 0.75•fs treqd = 1.08 in i t = 1.125 USE 1 1/4" X 16" X 1' -4" BASEPLATE WITH (4) 1 -1/8" DIAMETER ANCHOR BOLTS I I G loo 1 I l I • ^�_ _ BUILDING ONE COLUMN DESIGN COLUMN xoGoxaxo/o: COMBINED LOADING (MAX ^amL): 01 qo.=x DESIGN SOIL PRESSURE (k& SEE NOTES ON FOUNDATION PLAN pc1~<�u* 73 e�u)x on�umw�o�oa I ( pc1 ` 0,2 u:=munoo / nu.x j n u~u�on vmoT*oFFnonwo b� 1�n I *mmo'~» u xmmn~1non u AREA OF FOOTING I clu := 1.2•Pci +1.o•po1 o.0 Amv� o.1 qu~z.w*mm FACTORED PRESSURE 011.0 ».~u+m DEPTH OF FOOTING ~ ospTHTOoEwTRn|oOrRs|wFORoeMsmTaTssL I d u0 =21w+o+2.(u-nV] u0 ~125io CRITICAL SHEAR PERIMETER (PUNCHING SHEAR) I Ao.~ (w+n-n)•(a+u-m) *°~n»om I PumcmwoaHsxn: «v= 4u . (Avvotg - «o) Vu = 264.3k I tI)vc=(4•4•A•uo•u•pui Ov ~455x |c.~ ,u |c~o.so I 4)`u ONE-WAY SHEAR: I b », m xv�u= - z - z - - c -u x�m~o*.4 m . i u~ ou . (oxowo ) v v ~ o1ox » u - gy���o� u����uom�pa| �vc~uurk |c= IC = 0.36 11. ~, . (I)vo ���� I I 1 BUILDING ONE COLUMN DESIGN COLUMN HSS 8 x 8 x 5 / 8 : COMBINED LOADING (MAX AXIAL): BENDING: b bf m d x : 2 2 2 2 x= 44.1in 2 qu b•x Mu 2 Mu = 192 ftk FLEXURE M ' R:= R= 56 psi FLEXURAL RESISTANCE FACTOR 4f•b•d p = 0.0018 STEEL RATIO As.REQD = 5.184in AREA OF STEEL REQUIRED barno := 6 REINFORCEMENT SIZE (DIAMETER) nbar = 12 NUMBER OF BARS REQUIRED A nbar Abar As = 5.28 in AREA OF REINFORCEMENT STEEL i As. fy Mu OMn +f As•fy d — 1.7•fc•b 4)Mn = 451.021 ft•k IC := OW = 0.43 "Am USE 10' -0" X 10' -0" X 24" DEEP FOOTING WITH (12) #6 EACH WAY r Gr. I Gravity Column Design RAM Steel v9.0 1 RAM Steve Young DataBase: A0522401R29 02/16/06 15:12:10 IMERNAl1CNAl Building Code: IBC . Steel Code: ASD 9th Ed. Story level SECOND FLOOR, Column Line - 75.02ft - 49.00ft Fy (ksi) = 46.00 Column Size = HSS8X8X5 /8 I Orientation (degrees) = 0.0 (fie-A7' , ( IA Wk7 INPUT DESIGN PARAMETERS: I X -Axis Y -Axis Lu (ft) 15.00 15.00 I K 1 1 Braced Against Joint Translation Yes Yes Column Eccentricity (in) Top 7.00 7.00 I Bottom 0.00 0.00 a CONTROLLING COLUMN LOADS - Load Case 1: Dead Live Roof Axial (kips) 138.48 61.38 10.64 I Moments Top Mx (kip -ft) 18.05 7.93 0.00 My (kip -ft) 0.87 0.38 0.00 Bot Mx (kip -ft) 0.00 0.00 0.00 OP My (kip -ft) 0.00 0.00 0.00 Single curvature about X -Axis I Single curvature about Y -Axis I CALCULATED PARAMETERS: (DL + LL + RF) fa (ksi) - 12.84 Fa (ksi) 21.23 fbx (ksi) = 8.54 Fbx (ksi) = 30.36 I thy (ksi) = 0.41 Fby (ksi) = 30.36 KL/Rx 60.33 KL/Ry = 60.33 F'ex = 41.03 Fey = 41.03 II Cmx = 0.60 Cmy = 0.60 I INTERACTION EQUATION fa/Fa = 0.60 Eq H1-1: 0.605 + 0.246 + 0.012 = 0.862 Eq H1-2: 0.465 + 0.281 + 0.014 = 0.760 I i I 1 c,- er 0 , \ ) • , ,,, f ) II!ip . . 6ez)vvviki oN(A--1 '. 1 7 4------- -- 01117 -- (2 - vavwfr ut- 0064-4. mit-ib, , L'co-c '\l‹: kw gcatot/Av-- I , 1 .1 I (b I ( bo .. 0, 1 'T Gv tll, ."-- ( ‘ . 4- NP, , _.5-- ,i1 Ut6. 14) — ivis , 1 - --- -- - __-- , - 1 I , iks) ■ c.,1c-4/4,.., ?e;) (f. ./. /ik v em • 1 , c /49c9troC4A , -,)14- a? tevo I Lr. vo 6 )( kcvil )) -v4AittAktIA'be .II Rx.,69--• , ■ li c I I I 4Alpt v e I - . ' — N/ : - V1(% -- I ---.4----. ' l' 4\tc7 ec- ok.ta9-7,0'w k, le'K Yl/NC: UV` . l HAN ASSOCIATES, INC. BY DATE I CONSULTING ENGINEERS . JOB NO 200 . 6Z 0 t r . . E (503) 620-3030, FAX 620-5539 SHEET C OF S t) IJs VV 4 + b 6. �b ft); a (u`j ') 2 2 11"0 I I i lira w 1111111111_ '-,C2) , '1)28 0 r� 4 °Ji (a0 ); - 4on _ S 1q,00 ° e Q C -1' 1 ct%,,` I 1G190 attAltAkl ' Let) rfrGHAN ASSOCIATES, INC. BY DATE I CONSULTING ENGINEERS JOB NO 6960 S.W RS ST., SUITE 200 TIGARD OREG 97223 (503) 620 -3030, FAX 620-5539 SHEET OF I SP . ------ ---- ---- -- M-A _-wtA ,. - - - - 1 goy /* mac, la05 (VV 134009 , j 1 sv64 Q.ov , .417,A 1 1. 4 ' , i I 0111) - -- ._..---t!VAroa - '„ .: clA 1 ‘ • / 1 r --j I i ° \\ \ 1 1 1 4 D1/ " . \ ' ' 9, , • . 4 / 1 . '?" ". tA - 1 y<< Va;\l '7 G 0 k-te I -2 A(4 ilAl l Iq - aCo 617,0 ntk k,0 kAtc 4,14 0 -`-\,7 it t (.0 V,0 tA: a . GRAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS 6960 S.W. YARNS ST, SUITE 200 I JOB NO TIGARD, OREGON 97223 (503) 620.3030, FAX 620 -5539 SHEET C f . OF I ' ' ; `-1 Vie ` t-'' — 0 7.) 1 1 !: Q-t V 'I 6.> 4v 1 Si z 40/40) k (,t r V2 4 1 4t; 1- ;• //AAA am. l el 1 ; ' I llt r o..� I ��d lti e � I ,�� & � O, ��t 7. 1 ' r a 2 > PO r, teq + _s“(a__d,___),Ce 4 0)1'0 L ti 1 a . `i y ■4(411 h^-'1 i,■, , 1 )( .. Q Q.4, e v A * c,„.0?;', I f3 t &l7,,6 tk } 2,cte .2-v . I -0- IN v rb , I �kv y ., 3) Tvf f-K►,, ti ►v% ID . I GHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS 6960 S.W. RNS ST., SUITE 200 JOB NO TIGARD, OREG 97223 (503) 620 -3030, FAX 620.5539 SHEET OF ■ I , . ____ _. ._ . I I I I 5rrt4 JLwA•u. O 1 I PO = O _t t1 I 6 • o t, �i /l 7 ZC 511 -7`'" f / / 30 � / r aeu' j' f=o ortA/6 64. (e)#1 bor. L0N6w ! 4-7012-0.c, 0-or I - gor vy+' % ; 4 o, -Tub P e12 o.c--. i cN w 1vP 1 0 Mk Foo-r (o■JG @ sf-teA -izM 1/L Mill 16 , 'GRAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS II 6960 S.W. VARNS ST, SUITE 200 JOB NO 2, -30 96203 � � (503) (503) 620.30300, , FAX 620 -5539 SHEET OF 4 I I I I . I 7 7 - 51 h-(UA Ll. • II p _l I /% ■ ��j� r t' /// /� - ; / ' a es / OTriG ��9)#1 boT. [ 4-7012-o .c- 0 -0 7-- I Svc o R 7UArr �.r P ° l - 0 a . c. I e A GK c"ti @ tur- � F 00--r c 0\1 � e s � aA-� � I .FGHAN ASSOCIATES, INC. BY DATE ONSULTING ENGINEERS JOE NO TI S.W. 2 200 �G {� T OREGON 97223 9203 3 SHEET ✓ 1 OF (503) 03) 62 620 -3030, FAX 6 620.5539 -C- I 1 . I I I - . 5ve-A ) Atu. Ill . . L... e I ° _ 1 1/ . . r r ) r r %ta I -- ' o `' p e--( /-ry a77416 cA769. ) #1 b or. -o t“thi #- 7 @l - 0.0 T" I 44e yam% . S o if-TG4 R b -#- 017- 00 .c. I E - A ckf fr#1 e I v r . I 34- (` M F o 'C c (Ni @ s aPt O GRAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS JOB NO 6960 S.W. YARNS ST., SUITE 200 TIGARD, OREGON 97223 (503) 620 -3030, FAX 620 -5539 SHEET ✓ OF I 4 I I I I - 5i1e74/2.41/A-LA., i CAL . ?S 111 o _____L______ _... 1 0 _ t I 6 f - o I/ z- 5 I ff 3o' / / --- r/;.%'' P• - 6 "I' fio ortAIG # I N 6 Gi/4 ;4-7 @ 12-o .c, 0 - 0 r 4 ( S el 0 A- Al"r - I EACH 6 4)14 1 @ - tor. I 35 j MAI Foo T s i-i a A-12- :,u ' I I LFGHAN ASSOCIATES, INC. BY DATE ONSULTING ENGINEERS JOB NO 16960 SAW VARNS ST., SUITE 200 TIGARD, OREGON 97223 (503) 620-3030, FAX 620-5539 SHEET 6 F: OF 1, 4 ,ov.,-0,4i0,5 7 r /Aikriba 7 I/ Wail f 1 u.t e-/ o I are./ d L = 47, 5� = • '' 5 a' - 2. 6L / ( (e t 0,V kil,t Poor DI- = /38. 5 - 3.8(7 k--/ Ce - 32,7') r I p°or L L - 66, o 4 , Z3 fr---ff (e = 3/, J i A ti 1 S r/ o t v Lo0 d _ 3,6, O A = 2 , 3/ l--/ fr (e = 3), 5'J 1 WQ - - l s , 09 G * - ma y c , 7=0 t/i•de A 0 7 4 , " 9 .9 (x /0) I / = 2 e Z k 4- 2¢, l'- - X 06, i (4- M _ /3e.,5 (3z'N,) /oz ( _ z¢7 s 14 Orb e = 41 4 = 2 . (l r = - �, �� P/ - 2 57 le4- /5, , 1 ,3 /2. ..f,&,-; it 15 - 6¢7 "zs,Z= 2,Z�1i-5F- 1 -fry a /T 55' /O'9 490 74`1 -1 2'aZ 4- 27, 7 G. 30?, 7 k 1 p 2gz _ �� 7 s$ - 2,2-7 /`'�F O limos ,', r. P- e// I M /s - • /60.& = l 60 j /a W4-, o c a r--e W,,,.. , 3/ t, 37 4-.35 = 4-,6//x/ I -- Gov // vre a dN I E GHAN ASSOCIATES, INC. T / 6 i 7 A G e- E / BY �/4 DATE • o 6 CONSULTING ENGINEERS 7'7 6 4/La 0 /y Z Z¢ I 60 .W. ARN ST S JOB NO TI 03) S 62 OREGON 97 223 Cr (503) 620 30 FAX S 62O5539 UITE 200 SHEET OF C I .A_ 6,0 d = 6 , 0 A - 7Z, 4- ._._ 2-5 , 0 !` 4- 4_d, A - /.'_ ? -p . . - ---- _ . I " h-e-e_al oz? 5 r k 5i ,4,041c I AiyA Cad = /45/e + /t3 .ow -,4- / /.o .tlb.o 5 ,5I' 094- n e,e-0 q ') r f 0 kry- i -->- -/-o 0 rr) v e% i i9-r tA9 v A- / re / 4.0-74c-7 c . Q. l O( C l , 111- li (/al/ e,7, , 5 .- 7 3 M = 6¢7 e = 2, 3v' I P . �'8" ¢1. 7 " 2 7.b " 6 9, v i� . 3h / u.,'de_ .i. 1 " r,N'� , 1 /s„ 96 1 ,T e" o` ova // _ 0.09' f4' - 2',(,,7 0 71 , , 25 Z`6, 7, _ -i,7 I . x ' - _ / O. a n e le w Pc a s o v,- v�cie.; �- 1 S h .e �. 0 7 . : U, . /,. ¢ (2/, S >R- *I.5 - 4- 13 8 , 5 �) = --043, Z, 5 1 U 1,z (ti0/, Obj 4 ir 6 C6,6, o 11 ) 4 0, 5C%.. - X65, I "/ is „, _ 17,7s Ls V' u 1— ,7'8 F 06.7' —4-¢,6 )—/ 6,9/` V,, _ 196,9 x(oo ,, q /+,5.,,,_ 5�s = 38.3 p.5i �tG. I V' = 2,74(75 ) ‘ )370n -- 3. ; .'. n .. !GHANASSOCIATES,INC. T / C A / L P T/2-- - / A-Ar L- / BY 7:1 DATE ' 19 CONSULTING ENGINEERS 1 - 7 G 4 , '�// 6960 S.W. V ST SUITE 200 i JOB NO � ��-T TIGARD OREGON ARNS 9 2 rr (503) 620 -3030, FAX 620 -5539 SHEET 2 46. /r OF •✓ 9 10 P F • 0140 19( (7 1 11/V1 ; 0 LT04). ( 5 R 24 , e 2." 0 . e , e 1,4) t-c) 60/4 E = 7 4- v / ate = 2-6 . ss v7Nc..e. , 3 1./,9 38.5' V s 70,0g-z: 0 /anti OC- 5-14i, e v edi pars-;ve 5 ero\ce__ 0. 44,2. ,? (Pl11, = 1 4-10 /k o A = 6 y 2-- 14 -= /07, 0 frt-• (b67,% s / Presti - e = 7,7 -J,F -/ry a. 2 = ,74 1.4-,c 4-- X = /69 , X ASSOCIATES, INC. 7 & 4 g- 4-1 BY 9 DATE • c 69 0 6o N s s w iL vA T R IN Ns G ST E I G T N E 200 ERS NO JOB II TIGARD, OREGON 97223 (503) 620-3030, FAX 620-5539 SHEET . OF ° (70 1 I le G r ; A_ /,d D,0 5 533,3 /-/ I we; 9 A../- @ ,Q = /a. o U/al/ ro/ / (,d d = 282. Oh -e J - 790 / g CA2G./ = 3/8. o e , ¢¢' AA' /¢1'14 P7� = /. 9 9 / MSS = 7 6 k / E — ;2•7-5 le-4 G 3 o o c /14 0r , = 7 114 M /-C /.51 g - 3, 70 lic d /4. = 1. ¢ (3, 70 6e- 4 1)' �, l 8 ks 1 P �/ . -i.� y i, ��� %/. 2s Vi I 3, 014 2.80 -sF C on e way) - C�i 29 (q)( X /. -) - / 76 - k cU - U 75))4- o (t)()") - l3z, r1 -ego/ a 7 n 142 4(.L 67V, _ (8 6.7 P ' /-1, )Cl C6 4 = ,7 1/ 7,9" o , 0 ° 3 s = 7. -4 z use ( B) q f s 1 II FGHAN ASSOCIATES, INC. Y 6 A lZ p BY DATE ' D 6' ' CONSULNGINE 5 Z 6960 S.W. VARNS TING ST E , SUIT 200 ERS JOB NO T OREGON 97223 � OF r i /��" y (503) 03) 62 620.3030, FAX 620-5539 SHEET v I • -,„ lip , I A- 7 - a'), v&r,_ s 5 I ,4- (-004 cfe_/2)7, I r'l - - 7 fil/e77 61/08 - roi , / ,J= //5, 9 e /li 0 I tGop , ei -:-- / e 2 .7 k I Wer : Ma /810 44",,-- ,?o 04--,o l ..-0 .7 k -.= /773 I 1 90.1 k il c" - , = I parcyve --- / 0 k--!/ ), 8 . o' = I . fc,i, px__4 7 . i lc, c_e_ • 7 P a -c4f, I r 7 r ICe-if' s 2? x e x_ -2...s- x , ( 5 z--._ 1 37, 0 /e— 1 pc_ 7-- /0,c I • Wc oft— a s 2- t ' eteef 6 X 4,0,-eir 7 4 5-(04 I AGHAN ASSOCIATES, INc. T/ G A- I2--P 21 .7Y-- t BY '.. P7AATE 3 0 CONSULTING ENGINEERS 7-4-- JOB NO . 6960 F r . 200 (503) 620-3030, FAX 620-5539 SHEET 5 OF IC Li., I Title : Job # Dsgnr: Date: 5:03PM, 27 MAR 06 Description Scope: Rev: 560100 0983:2 02ENE, CeL5: 6_ gi neo�«0o2 _._..---------- _- - - - -_- Combined F _Page _ Scope: sign _Page - -- jc)'1983 -2002 ENERCALC Engineering Software I Description I General Information Calculations are designed to ACI 318-95 and 1997 UBC Requirements Allow Soil Bearing 4,000.0 psf fc 4,000.0 psi "., Seismic Zone 4 Fy 60,000.0 psi I Concrete Wt 145.0 pcf Min As Pct 0.0014 Short Term Increase 1.00 Distance to CL of Rebar 3.50 in Overburden 0.00 psf Live & Short Term Loads Act Separately Dimensions I Footing Size... Column Support Pedestal Sizes Distance Left 6.00 ft #1 : Square Dimension 24.00 in Dist. Betwn Cols 11.58 ft ...Height 0.00 in I Distance Right 2.50 ft #2 : Square Dimension 24.00 in Footing Length 20.08 ft ...Height 0.00 in • Width 8.00 ft Thickness 18.00 in I Loads Vertical Loads... =.E � ads... na Left Column Column an Right Column Dead Load 123.000 k 57.000 k ill Live Load 73.000 k 29.000 k Short Term Load k k ;'3X Applied Moments... ": 100 Dead Load 385.000 k -ft 4 385.000 k -ft Live Load k -ft k -ft Short Term Load' k - ft k -ft . -r; Summary Footing7Design OK Length = 20.08ft, Width = 8.00ft, Thickness = 18.00in, Dist. Left = 6.00ft, Btwn. = 11.58ft, Dist. Right = 2.50ft __ ~.._ Maximum Soil Pressure 3,138.51 psf AllowablE 4,000.00 psf Steel Req'd @ Lef 0.308 in2 /ft I Max Shear Strese 123.72 psi Steel Req'd @ Cente 1.008 in2 /ft AllowablE 215.03 psi Steel Req'd @ Righ 0.244 in2 /ft Min. Overturning Stabilit 2.890 :1 ' Soil Pressures 1 Soil Pressure @ Left Actual Allowable ACI Factored Eccentricity Dead + Live 807.4 4,000.0 psf Eq. 9 -1 1,208.4 psf 1.977 ft I Dead +Live +Short Term 30.6 4,000.0 psf Eq. 9 -2 42.9 psf 3.270 ft Soil Pressure @ Right End Eq. 9-3 27.6 psf Dead + Live 3,138.5 4,000.0 psf Eq. 9 -1 4,696.9 psf 1.977 ft Dead +Live +Short Term 2,645.4 4,000.0 psf Eq. 9 -2 3,703.6 psf 3.270 ft Stability Ratio 2.9 : 1 Eq. 9 -3 2,380.9 psf 1 I G � � ar I Title : Job # Dsgnr: Date: 5:03PM, 27 MAR 06 Description : Scope Rev: 560100 user ;tcw- oso49o4,erss.,,25:oa -zooz - - Combined- Footing - Design - _ Page - - -2 .. . )1983 -2002 ENERCALC Engineering Software I Description [Moment & Shear Summary (values for moment are given per unit width of footing ) Moments... ACI 9 -1 ACI 9 -2 ACI 9 -3 Mu @ Col #1 14.92 k -ft/ft 0.53 k -ft/ft 0.34 k -ft/ft I Mu Btwn Cols 62.41 k -ft/ft -55.23 k -ft/ft 4.20 k -ft/ft -35.50 k-ft/ft Mu @Col #2 5.30 k -ft/ft 2.70 k -ft/ft One Way Shears... I Vn : Mow * 0.85 107.517 psi 107.517 psi 107.517 psi Vu @ Col #1 26.874 psi 1.831 psi 1.177 psi Vu Btwn Cols 0,000 psi 0.000 psi 0.000 psi Vu @ Col #2 7.320 psi 5.653 psi 3.634 psi I Two Way Shears... Vn : Allow * 0.85 215.035 psi 215.035 psi 215.035 psi Vu @Col #1 123.720 psi 73.280 psi 52.617 psi Vu @ Col #2 39.853 psi 22.467 psi 14.443 psi I Reinforcing ( values given per unit width of footing ) @ Left Edge of Col #1 Between Columns @ Right Edge of Col #2 Ru /Phi As Req'd Ru /Phi As Req'd Ru /Phi . As Req'd 11 ACI 9 -1 78.84 psi 0.308 in2 /ft 329.84 psi - 1.008 in2/ft 28.01 psi 0.244 in2 /ft ACI 9 -2 2.79 psi 0.244 in2/ft 291.86 psi -0.886 in2 /ft 22.20psi 0.244 in2 /ft ACI 9 -3 1.79 psi 0.244 in2/ft 187.62 psi -0.580 in2 /ft 14.27psi 0.244 in2 /ft ACI Factors (per ACI, applied internally to entered loads) ACI 9 -1 & 9 -2 DL 1.400 ACI 9 -2 Group Factor 0.750 UBC 1921.2.7 "1 .4 .4" Factor 1.400 ACI 9 -1 & 9 -2 LL 1.700 ACI 9 -3 Dead Load Factor 0.900 UBC 1921.2.7 "0.9" Factor 0.900 ACI 9 -1 & 9 -2 ST 1.700 ACI 9 -3 Short Term Factor 1.300 I ....seismic = ST * : 1.100 I I I I I I I o? b6 Old - tLowno CoN Nec,1 - 4oN5 e �� n r 3Z I 32 Off k Y- S.5= 1 � I c� Zs 1,e.k Skeoo V+r)- lokx = 9 x UpIi C [(3-.5 = 2-&3k I Shear(V4) = 3¢k x 2,S = 81( I 34- up (, 6e) = 17 0 k % 2.'S = ¢zs k , Se-a/ (VN ( k x 2. S 3 k Pc,e -I FZ / _ V35'1/1.7 = lb 8k Asp 1617,(, PGrie, I 7S) I= - � ZS�'�1� = (S k, /) O PI C 2 deVel opr>• b Ler1 = 2 5 or ¢Z V l e 3 1 </ Ca(uC 5 s =grr 4t r _, Zl'.' 4 = 6o(v5; s =-5 r_g le—r ,1 ? 4- (� db - x,30 • • use z-•5 • o` (SO f=1,O 1,o h =1,0 We [c( 4 b 12.41s -(,o ref = 168ts = 2 /� k l eveA Ce e a s ; d.e.: e (7-Y, 6) PO( 5� 1 ' -�+ " tNel d = • Cl ZSrr 1 ca - = (3 ")(.s25') C7 063) = 33, 1 k -u, o IL- .. b fr � rr - re q d e,F.Fe cs� -,'vre roo�-� - 3/ JGHAN ASSOCIATES, INC. T 1 6 A P-- © it- DATE 3. o BY('� CONSULTING ENGINEERS JOB NO 5 47 ' 7 '4 ... 6960 S.W. VARNS ST., SUITE 200 (503) 2, -30 0, FA X 620 -5539 SHEET ' OF 96203 640 (503) 620 -3030, FAX 1 4 Upl; fr ft tns:ck 4 „ 0, Ffi = ,2S <16 g 1 9 4z I W `e' cl +.4 ---: 7.5" . S + 6 � (3 .5-'1 -- ---------- � --- - -- ----- ��-- .___.. --- -- _ ,/ it 1 = 3. ( I l c , / ? . , -->' t ) 1 4 - C A S a 74-. u-el d @ e a.. 5:4..#2_, A rf,k4 ' 4-z (, -15 4 36; (, 1n Z" ,I i .6 � _ .s� 4 6 �'` = , (9 ---,- use 3/8 li I ' acm v; ., e. trr /r LJ •'- S keo C G-; - 1-7\co..f) = g k i I $ S q h,, _ , 65 x , 8 5 x 4- k `t y. 8 ,5 % 4- = 3 o (k' ? 8S k" .'. a fr 1 u„e.Id - 17, r u iii o 1r► S --r up I ; 0° Sh,e..., e 4; , -I- .o- --o : v , = s S' 3 = '7.. 3 k v = ( 4te(7, C Vvo - 7.$) Go^rr,y S/.-a&r (oo.0 @ 4aSe Lo o,8 4-.-a,1. s - ko s) d t's '' ( -) it s : U p ( : 4-7) e. a ch A-s - (.4-6 i/12. •. (V p iz I + Z Z d Q' Z y(3) [1_1 7 Wo @ os e -kv — co — (717 — ; " 76 = 3.7S it \'' I 4:2- t'''4 el /\ > p le', vwove. I H c oh) PO ;n+ v1, vJ e °. 16; Z. t t ��' � --� 1 12 ' A (U-4- ' `_ ,i ■ d IFGHAN ASSOCIATES, INC. T I v A A- I BY ATE 3 ' o 6 CONSULTING ENGINEERS .2"Z" "1 JOB NO S I 6960 S.W. VARNS ST, SU ITE (21 TI 60 S OREGON T., S (503 620.3030, FAX 620 -5539 200 SHEET OF i - ) ) l i p IoD , d "_ ✓ 1 4 F U -- - - - - _ - --- - - -._ -- _ - - - -- --__ 1 I; = t 6 8 -->- vre s o rn e. 19D/0 I S o.. = 89 --0. --k, Cs) %"4 - 6' Fln'b chrtls I V = I1 e /o bems,n' i A I c==‘' = ' A 2(`' /o {-t 4 mot" I (Pv) bm\w.cc. 4r c4vds = 4- D.$ k. $,2 -4.,j lJ t A, SA-v d C - ? - 3. S i k s - = 2,, ct o .'. 014— v exio Pcx,.e..1 Ij 4j - UY1;,e C_,-; .,( p „T = ' k Vy.-'?,----- 3k F 2-5 DP- U-›. 31' I (As) ` = 4z$ I - us e CID) bars ; r, )1„„ = .11 ?n I f = z.so = ZS.O c . - 6 I (.3 ")(2)6,00 ,0)(s)(70) ( ,3o) = 37,gk /6 u F-(0,4- e De\i-e I r co. = Z ;, el -e.Rci 7 46 it I j,dz ft =6Z.s ..6= (2..Sts; 'AP o1. as a � A I D , M') 23,7-S "' 4= 7, - 21 ; IHAN ASSOCIATES, INC. T 1 G A x,17 A '4- I BY / /_ 971:24' ATE 3 . O 6 2 ING 6960 SW CONSULT VARNS G ST SU 200 INEERS JOB NO TIGARD, OREGON 97223 /- r (503) 620 -3030, FAX 620 -5539 SHEET OF , C" la L cv _ 4, ( 7 Wrnt . l fI14 - /U Z3,I'S S,NC, I + 6 . Zs 4 - 7.6- I ke_ d UrPild. - • 'I ,. o G .39 r P bik `S e t ( /s) �t -- 4zs o box a i S.9 i . —... k-i se *4 14,i ,i+ . 8 I I 01. I . I I I ,1 '1 "GRAN ASSOCIATES, INC. T (6 A P--D is ' I BY � � DATE ' t _ CONSULTING ENGINEERS f �/ 6960 S.W. VARNS ST., SUITE 200 � 5 Z-7- TIGARD, OREGON 97223 JOB NO (/_ CA (503) 620 -3030, FAX 620 -5539 SHEET 4- OF �/ V- CJ 1 II i 1 to - [ e-r ■ me e- fw. el L.c T -"s re...r. , II —4-----3-1'''44--------6-(-44 m.o . ( ; - o -- , 51, - _( oad -- -- — - ___ -- - -- - -- 3'7 v 144 ma ( Ili► 110—'1 .f-e s 1 t , N (o ACI e e /c.J emd s I i De- .: ( 2/73.2- use a S a basis p e->-c,: ( (“s4-. ( : H DU - cbovuo ck_ -. ( e per,` melt P,.eu2_6 • I ( 4 5) r e d = 31 4,0 x co = , 6 Z nZ ------.- u;. (z) - . r I -r•- I7 /G 02 - A min, Owrri C C3) CA ON ok-1( P2,r; c 1) s j.zo.r c_o rry r e c,(-, OID 5. C 3) 5 I c..0 , r ,,, &4,4,,,. s A A aX ∎ Inv,.,,.. 1 (..c4-45 = 31, 5 Ho ( - W-to Loads • 3 upt,, i ?"2- 1 ` . ' S 1n.Q c%r,/ 1 Ike 14 IS 4n I KO t c. - CIOW N I0t o,;,\ '4 / 4., f — Slya, I IS F� '. S te - ��!y po (l -- f (1)51-4 ���: I ca each e. d SA K..6 ; d.e. o p, (t : (() S o-r •— O n V / Arlo' e m:d - 5� bo .. l + ( I d -d3Dw s Cl) e eath eAc G RAN ASSOCIATES, INC. T I G A P-P A - 1 S DATE ' D6 CONSULTING ENGINEERS Z 6960 SW . YARNS T., SU ITE 200 JOB NO TIGARD, OREGON S 97223 /� (503) 620 -3030, FAX 620 -5539 SHEET 1 OF ` 10 wel -� -- ca -� -G- - - = - - -- - - ---------- _----- -. - - -_ 1 _ « I 4 k • Id CA P 4 33, 4' = 4+,6 ■ F e d s 3�. ¢ X % = ef, 18 -�: e,,, cis = 4 ff"%,5" = °Z, 7$ 'L %6 0 (3) 9 l� ek ,M . .9 Ns = 6 S x 3 x , � I x 60 Ns= Ct" Nyl.4 - Z� X 4 ' ./3= 34', - * t� real = 32. f7 ' • • ( u o IL S' o k• ( av t rem e.w r o f o 1 V'= uI 7j2 i ° •/7 ;,f- vie pack, C I) Si•etr.! c-0/04-. @ x 3 z = Z7.8 k - z. e k- 6 rzs / w 14. H o ci - ctsov„r N : Z 7)- Ser ■rl v p ((t (e). S seA) Ne Gd- (0. 2.I ; 4 = (e.sC z� — (2, (Z .lam 1 (03 r�-.�v � + /.& _ , ct c (,33 z. o G— I 'GRAN ASSOCIATES, INC. T ( BY DATE 3 • o CONSULTING ENGINEERS E S.W. VARNS ST., SUITE 200 JOB NO '5 � I RD, OREGON 97223 620 -3030, FAX 620 -5539 SHEET Z OF r 1 k II , to , p o,,e) rn h-e-c : * co W h 1 9 4„d J a v -.. [ 7(6. 0 ' -s. K. . 1-3" ::-- 7 . ( 1 - ----- - -- — _____ ______ I S F = 3 , n (/ /v ;eAr o .1.1 : . use ZI , S k c0.T- Pert),, - It - 4-31s ., = et, S - t S -- . ure 34"4 k 4 Co, P. = Z3,1 w Z Z (, S .% o k 1 Ith in . Spac.se = 3 I Gvt.F-I L c : 348 x 'fir' S Q (A,/ � 4 ►i 1 f 'p 40 cl_f I 4� 0- c, trti- �Cc-0 , 4 6" o . c.., t,l• t.0.- �-�.. --- Ca) su ".. ,c 3 ' —o'' n F5 ,4 'S Q 3 "' o . c „ ,I . iii!) (A)a I l e rrl {,.1-. FE : 4 45 x Z ( d r ..... • 0 v I ' • .. J A I I r 1 GRAN ASSOCIATES, INC. Y l 6 / BYT) DATE ' © 6 CONSULTING ENGINEERS -.4-- 6960 S.W. VARNS ST, SUITE 200 JOB NO I TI 03) 62 OREGON 97223 �A ( 503 ) 620 -3030, FAX 620 -5539 SHEET G r OF 'v I -' 7W{ 16 Gait pi th vutA, 0.0" 9�° L 1770 - - - - r i I , 11)'"k' tse, a t:t1ti //tr, 11 i 41° . , . OP 4, _A; CO* , W p f I i t V2,90 ' tWO -t 4 / 1 7e a I '-- I I GHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS 6960 S.W. YARNS ST, SUITE 200 JOB NO I TIGARD, OREGON 97223 L' (503) 620.3030, FAX 620 -5539 SHEET ✓ I OF I . . \APTal-FA, X I . --46Atatt= - C'VTt , *.kc1 ; &Oat( ( i 6 1 c A,‘M (AA/2 C, _C1447 LA & ri/i4V- , 6- 4 2 -0 //ii 6 , tv-pttw \4,49a4 II ko&t 6,7 12- I :KLE44 Nci&t. . 1 61 -iiiP P- r 0- '('-c2t9 6 11) , 47 VC(9' 1 41-11.- Cv4( ip 10-.) ■ifrikV/ fr , t1o9 4,„..,. a . 0,c,,z, 9evivtiove7w c-K ; , k9e , 1 4 k., CnAh c ol I --V t7 Ckati. I 6 -70k. lilt, cetk 4 %1 r- 0,1. ---- C iiviAo (tA31 c- I S4 , VII )airf) _ a , t rk, 0 _ II ,--- 4t0 .,;, I (0-010)(40 To 1 ccm-) - 0- Atk-f - 0.02-)0 t ----=-T IP 7 ----- -------- — - -- AFGHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS JOB NO I . 8 . 9 : 6 1 C A F O V R A E FI G NIT 9 14.41TE 200 SHEET_____ OF . 10# I I . . ' t. U Va r Ul-A# 1r! twous C` 'tom I /LW V( U' S: aV (1,64 - 2;it. k/i/1 .g vfit n 0- Cacyjr k CEO t;31,G vr0( I -1\k , li t,- cil 1 • k VI, 1v I t-okrI n.47 /to, f; .k lit , r 471 I, / i . ; s _ ( :el • k2 'Kt 3 I 1,1 4, 0 J/ V , t 4 4-1/ 167A-(,t - z , 71(51. . ti 11 .Vt, 1 441) 6 I It II V vtvt. vIgC , v;, a 13 C, ) = I tY1 1-2v U 0k lfif fl o (1,/1 MicovJ I 1447 1,1; OW d'0 71 d ( lam✓ - a -L.049- I 401414401/‘ NcVlt-utt, EP 1 a CIVITAIA/ 1 4 1 /t COV11011qt IN ‘Vt C 1 ,\q716 e 1, Cola- i ft,1'I1 1 ,3'i c/l --------- _ 'lit' . . - -- 3 � 7 7 9 0 Lti .__ I I __111.______ _,Aa. __..--._ -._-_ __- AFGHAN ASSOCIATES, INC. - BY DATE CONSULTING ENGINEERS JOB NO I 6960 S.W. VARNS ST., SUI 200 TIGARD, OREGON 97223 (503) 620 -3030, FAX 620 -5539 TE SHEET____ OF • k ,,,, ....., yi Q 1 I I I g i ,-;t- i 1 i Q t 1 I �I I / • • -- o i / \ .,.0/7„, ........... \ i I I 1 I / L : \ \ - - I I 1 I \ -- -------. \. .`s. IN \ \ -- • . . ' . - _-_ . -.L - -----' --:-.- ""C 1 \ \ \•.'- /-\ \ K - '''\" \ - - 1 I.._ . i ei.(47 - b 7\- 13-- t --10 o \ \ \ 1 0 ` �. ,, at l '' ,,\/ i � \ I l I j / • ../ 4'14 ele.1 \\,, V 1 .. .- -":\ \ ____-,- \______I___—\ . 1 \ • \ 1 a 'Ll % \ \ , Mil , \ \ \ \ - ' / _ 2 \ _ ,4_@ ! .....,. i / ! ae \ • co— \� I i •--Il_ i m i i i ----_,..._i H • / �.-. . 1- i ,•-.-ci 1 \ till �. 0 I I I % ! / i i j / ; b b b d d d -o . k I I,. • a \s . \. \\ . r NAM `Mt r e M all MIS A — r .M r air — O MP MO trt ..3 R i i . '‘. El El AI iEl 1 p p 6 ., - - . R' T . A _ i I., • I - -....... IN i Y • \ ,--, • t' i ! 1 r i - '17 / . : • • tv`. - A _ \ - / i 0 i 1 i i - -._ _ ,, ,...,--. ---- .1 ,J! 0 \ : --.. i i 1 1 / 1 t-:( .\ \ \ \ .---- ./.. ::• • , \ \ --- • . ' " \ / \,, •■•-•-"' - ' \ - - . - \ _ \ .... .- \ \ • ' .1, / , )1.. - / \ I I ! I • 1 II I . \ -s e ! \ \ . \ \ \ \ \ •■=1, , 5 i. ' .., / I/ I 0 ,.' -- ' / .\•\\ . 91 \ / 2_, _ ' _ICI___ ,, / / . \ ....., ,.. l a\ .... ..-- g j i - - - - 1 • / l- .- Ni x• \.. v / .. 7 . lo \\ \.,. g . ,..- \z i \ , , , , , - ,- / ,./ , - -0 . _ , / \ f - . \ • • V E ,,..\.r \ . 6 6 6 6 u d 6 • , \\ b® . . • INE 110 MI MIR INS JIM EMI Milli OMB A fall 1•11$ MI Urn all MIR MI MS NIB .1 BUILDING ONE i North South Floor Distribution R05,xis LATERAL DESIGN 2/24/2008 5:23 PM L_ HORIZONTALDISTRIBUTION :•2ND•FLOOR -... -.. _.__..._ NORTH SOUTH DIRECTION I CENTER OF MASS L W x v we W3 PANEL 1 33.00 -151.0 11.0 -4983 363 PANEL 2 15.50 -140.0 22,0 -2170 341 PANEL 3 33.00 -128.0 33.0 -4224 1089 PANEL 4 15.50 -117.0 44.0 -1814 682 PANEL 5 33.00 -105.0 56.0 -3465 1848 PANEL 8 23.50 -90.0 65.0 -2115 1528 .i' PANEL 7 2550 -71.0 54.0 -1811 1377 PANEL 8 23.00 -53.0 48.0 -1219 1104 PANEL 8 23.00 -43.0 55.0 -989 1285 PANEL 10 33.00 -28.0 80.0 -957 1980 PANEL 11 33.00 29.0 80.0 957 1980 PANEL 12 23.00 43.0 55.0 988 1285 PANEL 13 23.00 53.0 48.0 1219 ' 1104 PANEL 14 29.00 72.0 57.0 ' 2088 1853 PANEL 15 25.50 88.0 55.0 2244 1403 PANEL 16 7.00 95.0 48.0 685 338 PANEL 17 29.50 103.0 38.0 3038 • 1121 ' PANEL 18 29.50 118.0 _ 18.0 3481 472 PANEL 19 7.00 122.0 4.0 854 28 PANEL 20 25.50 125.0 -6.0 3188 -153 PANEL 21 24.50 122.0 -20.0 2889 -480 PANEL 22 25.50 103.0 -31.0 2627 -791 PANEL 23 28.00 83,0 -38.0 2324 -1064 • PANEL 24 30.50 59.0 -43.0 1800 -1312 PANEL 25 32.00 35.0 -48.0 1120 -1538 PANEL 26 32.00 -35.0 -48.0 -1120 -1536 I PANEL 27 30.50 -59.0 -43.0 -1800 -1312 PANEL 28 20.00 -62.0 -40.0 -2296 -1120 PANEL 29 29.00 -105.0 -32.0 -3045 -928 PANEL 30 28.00 -128.0 -20.0 -3528 •560 PANEL 31 28.00 -148.0 -8.0 -4144 -224 PANEL 32 21.00 -91.0 23.0 -1911 483 PANEL 33 35.00 -16.0 23.0 -580 805 40111 .•. PANEL 34 22.00 25.0 7.0 550 154 % PANEL 35 21.00 82.0. 17.0 1722 357 GLAZING 13.00 0.0 -53.0 ❑ -889 FLOOR 378.00 -107.0 16.0 -40448 8048 FLOOR 804,00 -38,0 1.0 -22952 604 FLOOR 591.00 37,0 2.0 21887 1182 FLOOR 283.00 97.0 15.0 25511 3945 SW I 2754.00 I EWX -26316 LWy I 22803 I xcm I -9.56 I ycm I 8.28 CENTER OF RIGIDITY WALL Rx Ry x y yRx xRy PANEL 1 0.00 • 1.70 -151.0 11.0 0.00 - 258.70 PANEL2 1.25 0.00 -140.0 22.0 27.50 0.00 PANEL 3 0.00 2.17 -128.0 33,0 0.00 - 277.76 PANEL 4 1,25 0.00 -117.0 44.0 55.00 0.00 PANEL 5 0.00 2.17 -105.0 58.0 0,00 - 227.85 ' PANEL 7 1.66 0,00 -7.0 65.0 144.45 0,00 PANEL 7 2.88 0.00 -71.0 54.0 144.45 0.00 PANEL 8 2.11 0.00 -53.0 48.0 101.28 0.00 PANEL 9 0.00 1.86 -43.0 55.0 0,00 -71.17 PANEL 10 1.42 0.00 -29.0 60.0 85.20 0.00 PANEL 11 1.42 0.00 29,0 60,0 85,20 0,00 PANEL 12 0.00 1.86 43.0 55.0 0.00 71.17 PANEL 13 2.11 0.00 53.0 48.0 101.28 0.00 PANEL 14 2.08 0.00 72.0 57.0 117.42 0.00 PANEL 15 0.00 2.23 88.0 55.0 0.00 195.80 PANEL 16 0.15 0.00 95.0 48.0 7.20 0.00 PANEL 17 0.00 1.91 103.0 38.0 0.00 198,22 PANEL 18 0.00 _ 1.91 118.0 16.0 0.00 224.79 PANEL 19 0.15 0.00 122,0 4.0 0.80. 0.00 PANEL 20 0.00 2.23 125.0 -8.0 0.00 278.13 PANEL 21 1.62 0.00 122.0 -20.0 -36.40 0.00 I PANEL 22 2.50 0.00 103.0 -31,0 -77.35 0.00 PANEL 23 2.24 0.00 83.0 -38,0 -84.93 0.00 PANEL 24 2.24 0.00 59.0 -43.0 -96.11 0,00 PANEL 25 2.24 0.00 35.0 -48.0 - 107.28 0.00 PANEL 26 2.24 0.00 -35.0 -48.0 - 107.28 0.00 PANEL 27 2.24 0.00 -59.0 -43.0 -98.11 0.00 PANEL 28 2.24 0.00 •82.0 -40.0 -89.40 0.00 PANEL 20 2.15 0.00 -105.0 -32.0 -68,80 0.00 PANEL 30 1.98 0.00 -126.0 -20.0 -39.50 0.00 PANEL 31 1.81 0.00 -148.0 -8,0 -12.88 0.00 PANEL 32 0,00 2.53 •91.0 23.0 0.00 - 230.23 PANEL 33 0.00 9.91 -16,0 23.0 0.00 - 158.56 PANEL 34 0.00 4.23 25.0 7.0 0.00 105.75 PANEL 35 0.00 2.53 82.0 17.0 0.00 207.48 Mx I 39,72 EYRx 17 ERy 36.81 £xRy 57 1 xcr 1.55 ocr I 0.43 Ilii, 6 • I BUILDING ONE North South Floor Distribution R05.xls 1 LATERAL DESIGN 2/24/2006 HORIZONTAL DISTRIBUTION: 2ND FLOOR I NORTH SOUTH DIRECTION I DISTRIBUTION OF ULTIMATE LATERAL FORCES SHEAR = 512.00 k accidental x -ecc = 12.75 accidental y -ecc = 5.00 ex = 23.85 ey = 12.85 TORSION = 12214 ft-k Direct Torsion North South WALL Rx Ry dx dy Rd Rd2 FV FT FV + FT FV + FT it P II ANEL 1 0.00 1.70 152.5 10.6 259 67254 23.65 4.52 28.16 23.65 PANEL 2 1.25 0.00 141.5 21.6 27 727 0.00 0.47 0.47 0.03 PANEL 3 0.00 2.17 129.5 32.6 281 79030 30.18 4.90 35.08 30.18 PANEL 4 1.25 0.00 118.5 43.6 54 2966 0.00 0.95 0.95 0.07 PANEL 5 0.00 2.17 106.5 55.6 231 53459 30.18 4.03 34.21 30.18 PANEL 6 1.66 0.00 91.5 64.6 107 11490 0.00 1.87 1.87 0.13 PANEL 7 2.68 0.00 72.5 53.6 143 20536 0.00 2.50 2.50 0.17 PANEL 8 2.11 0.00 54.5 47.6 100 10075 . 0.00 1.75 1.75 0.12 PANEL 9 0.00 1.66 44.5 54.6 74 5436 23.02 1.28 24.30 23.02 PANEL 10 1.42 0.00 30.5 59.6 85 7156 0.00 1.47 1.47 0.10 PANEL 11 1.42 0.00 -27.5 59.6 85 7156 0.00 1.47 1.47 0.10 PANEL 12 0.00 1.66 -41.5 54.6 -69 4706 23.02 -1.20 23.02. 23.11 PANEL 13 I 2.11 0.00 -51.5 47.6 100 10075 0.00 1.75 1.75 0.12 PANEL 14 2.06 0.00 -70.5 56.6 117 13581 0.00 2.03 2.03 0.14 PANEL 15 0.00 2.23 -86.5 54.6 -192 36999 30.95 -3.35 30.95 31.19 PANEL 16 0.15 0.00 -93.5 47.6 7 51 0.00 0.12 0.12 0.01 41 PANEL 17 0.00 1.91 -101.5 37.6 -193 37351 26.50 -3.37 26.50 26.74 PANEL 18 0.00 1.91 -116.5 15.6 -222 49212 26.50 -3.86 26.50 26.77 PANEL 19 0.15 0.00 -120.5 3.6 1 0 0.00 0.01 0.01 0.02 PANEL 20 0.00 2.23 -123.5 -6.4 -275 75448 30.95 -4.79 30.95 31.29 _ PANEL 21 1.82 0.00 -120.5 -20.4 -37 1382 0.00 -0.65 0.00 0.00 PANEL 22 2.50 0.00 -101.5 -31.4 -78 6149 0.00 -1.37 0.00 0.00 PANEL 23 2.24 0.00 -81.5 -38,4 -86 7377 0.00 -1.50 0.00 0.00 PANEL 24 2.24 0.00 -57.5 -43.4 -97 9421 0.00 -1.69 0.00 0.00 PANEL 25 2.24 0.00 -33.5 -48.4 -108 11715 0.00 -1.89 0.00 0.00 PANEL 26 2.24 0.00 36.5 -48.4 -108 11715 0.00 -1.89 0.00 0.00 PANEL 27 2.24 0.00 60.5 -43.4 -97 9421 0.00 -1.69 0.00 0.00 PANEL 28 2.24 0.00 83.5 -40.4 -90 8164 0.00 -1.57 0.00 0.00 PANEL 29 2.15 0.00 106.5 -32.4 -70 4861 0.00 -1.21 0.00 0.00 PANEL 30 1.98 0.00 127.5 -20.4 -40 1628 0.00 -0.70 0.00 0.00 PANEL 31 1.61 0.00 149.5 -8.4 -14 184 0.00 -0.24 0.00 0.00 PANEL 32 0.00 2.53 92.5 22.6 234 54826 35.19 4.08 39.27 - 35.19 PANEL 33 _ 0.00 9.91 17.5 22.6 174 30247 137.84 3.03 140.87 137.84 PANEL - 34 - 0.00 4.23 -23.5 6.6 -99 9840 58.84 -1.73 58.84 58.97 PANEL 35 0.00 2.53 -80.5 - 16.6 -204 41428 35.19 -3.55 35.19 35.45 I ERx 39.72 ERd2 I 701068 512.00 0.00 ERy 36.81 I I I IN I I BUILDING ONE East West Floor Distribution R04.xls I 'i LATERAL DESIGN 2/27/2006 HORIZONTAL DISTRIBUTION: 2ND FLOOR I EAST WEST DIRECTION I DISTRIBUTION OF ULTIMATE LATERAL FORCES SHEAR = 512.00 k accidental x -ecc = 12.75 accidental y -ecc = 5.00 ex = 23.85 ey = 12.85 TORSION = 6580 ft-k Direct Torsion East West WALL Rx Ry dx dy Rd Rd2 FV FT FV + FT FV + FT PANEL 1 0.00 1.70 152.5 10.6 259 67254 0.00 2.43 2.43 0.54 PANEL 2 1.25 0.00 141.5 21.6 27 727 16.11 0.25 16.37 16.23 PANEL 3 0.00 2.17 129.5 32.6 281 79030 0.00 2.64 2.64 1.17 PANEL 4 1.25 0.00 118.5 43.6 54 _ 2966 16.11 0.51 16.63 16.23 PANEL 5 0.00 2.17 106.5 55.6 231 53459 0.00 2.17 2.17 0.48 PANEL 6 1.66 0.00 91.5 64.6 107 11490 21.40 1.01 22.41 21.62 PANEL 7 2.68 0.00 72.5 53.6 143 20536 34.49 1.35 35.83 34.78 PANEL 8 2.11 0.00 54.5 47.6 100 10075 27.20 0.94 28.14 27.41 PANEL 9 0.00 1.66 44.5 54.6 74 5436 0.00 0.69 0.69 0.15 PANEL 10 1.42 0.00 30.5 59.6 85 7156 18.31 0.79 19.10 18.48 PANEL 11 1.42 0.00 -27.5 59.6 85 7156 18.31 0.79 19.10 18.48 PANEL 12 0.00 1.66 -41.5 54.6 -69 4706 0.00 -0.64 0.00 , 0.00 PANEL 13 2.11 0.00 -51.5 47.6 100 10075 27.20 • 0.94 28.14 27.41 PANEL 14 2.06 0.00 -70.5 56.6 117 13581 26.56 1.09 27.65 26.80 PANEL 15 0.00 2.23 -86.5 54.6 -192 36999 0.00 -1.81 0.00 0.00 PANEL 16 0.15 0.00 -93.5 47.6 7 51 1.93 0.07 2.00 1.95 PANEL 17 0.00 1.91 -101.5 37.6 -193 37351 0.00 -1.81 0.00 0.00 PANEL 18 0.00 1.9.1 -116.5 15.6 -222 49212 0.00 _ -2.08 0.00 0.00 PANEL 19 0.15 0.00 -120.5 3.6 1 0 1.93 0.01 1.94 1.93 PANEL 20 0.00 2,23 -123.5 -6.4 -275 75448 0.00 -2.58 0.00 0.00 PANEL 21 1.82 0.00 -120.5 -20.4 -37 1382 23.46 -0.35 23.46 23.46 PANEL 22 2.50 0.00 -101.5 -31.4 -78 6149 32.17 -0.74 32.17 32.17 PANEL 23 2.24 0.00 -81.5 -38.4 -86 7377 28.81 -0.81 28.81 28.81 PANEL 24 2.24 0.00 -57.5 -43.4 -97 9421 28.81 -0.91 28.81 28.81 PANEL 25 2.24 0.00 -33.5 -48.4 -108 , 11715 28.81 -1.02 28.81 28.81 PANEL 26 2.24 0.00 36.5 -48.4 -108 11715 28.81 -1.02 28.81 28.81 PANEL 27 2.24 0.00 60.5 -43.4 -97 9421 28.81 -0.91 28.81 28.81 I, PANEL 28 2.24 0.00 83.5 -40.4 -90 8164 28.81 -0.85 28.81 28.81 PANEL 29 2.15 0.00 106.5 -32.4 -70 4861 27.72 -0.65 27.72 27.72 PANEL 30 1.98 0.00 127.5 -20.4 -40 1628 25.46 -0.38 25.46 25.46 PANEL 31 1.61 0.00 149.5 -8.4 -14 184 20.76 -0.13 20.76 20.76 III PANEL 32 0.00 2.53 92.5 22.6 234 54826 0.00 2.20 2.20 0.49 PANEL 33 0.00 9.91 17.5 22.6 174 30247 0.00 1.63 1.63 0.36 PANEL 34 0.00 4.23 -23.5 6.6 -99 9840 0.00 -0.93 0.00 0.00 PANEL 35 0.00 2.53 -80.5 16,6 -204 41428 0.00 -1.91 0.00 0.00 ERx 39.72 ERd2 701068 512.00 0.00 '. ERy 36.81 1 1 I L SR 7 .._ . . . . • ' : - . .. . I ' . . • 2 . . . C (' \\ \ /-/ - . . % t orr., p p P 9 ? - ? .R . \ • \ , -) if 2 i 7-- i i s .....• -3-1 , o ; \ \ \''' 0 ----'.\.\ . , 1 \ •4, oN\ R 0 I ‘• 1 cr V - 7" \ .\ . _., \ , ., / 1? ", \ \ \ . 0--._ ! • i ( '\ / ' \ V \ \ \ , j, • - \\ v-i 7 ' i I \ 3.. .________ \'''':\ \- A : .;,■ \. ,\ 1 7. . .. ,- z ,,- ' /\- 0- i t : 9 ..,- 0 ----.,_% : 0 7 1 , , - . ' '-.. t;f -1-_____ ___ I . ' • \.. &,, ., " \ 1 \ g . ./■...j / 4t tr - T .-''. =.- ,-7 -- .i'T. ---- . . f / ---- _ .. . . . \ . - \. x -"‘• \- Illi I - • _. ---- .__ ..._. ......... I I ! -.-- --i-- i __ii. -a,. . itiliov i • \ \ ..\ .„ \'‘,.Th\c, ----../.„, ./ • . i i • \ \ \ • i 1 \ \ . i i ' \ \ ,....• ...--: 4--- i I j b ' i • , ---.1.----i---.___,_,.._. .. __ ig 6 i • i 1 ... \ , . . 6 6 • 6 . , 6 r ...D : avi NIP 1 mi all NO ON Wm Ws ell all gill Mei 11111 Ns ea us A III MIR N i — ! e V I i N V M M NM » I ME all Erin N P 5 Q Q Q Q j i i i j f [D i 0 - q .� 9 \ \ �?r �,� I I I I � l j \ \ -- j j i I �l y • \ \ \ \ I I 1 I i "- I I f.-i_., , 1 I A 1 : » 1 : t 7 C ,x. ; . , ..„, , , _ . j l i t .1 ‘ \ \ ' °b • I 1 'w b 1 j i i • ci i i ,./,-m 0 \ A� 'IN I of / j . 1 � ' � i I 1 i / i --0 -- 0 � \ \. 0 \ I i j / - - - ,, war �Y \ \ j j j / / Ai s b 6 • I Rigidity R01.xmcd III 1/27/2006 11:20 AM LATERAL DESIGN I PANEL RIGIDITY: P := 1000.k E = 4030509 psi PANEL 1: FLOOR h := 9.25.in hi P ( hi 3 hi 1. hi := 15 di := 30 i := 3.- A i = 0.054in di = 0.5 A Ec-h 4 d1 + _ \.. h2 111 h2 := 9 d2 := 30 d2 = 0.3 A2 := Al _ p f(h2) 3 + 3. h2] A2 = 0.029in Ech d2 d2 h3 p h3 h3 := 9 d3 := 2.8333 - = 3.18 A3 := •(h3) + 3.- A3 = 1.115in I d3 Ec.h \ d3 d3 ... _ h4 3 P (h4 , ii4] h4 := 9 d4 := 3.1667 - = 2.84 A4 := [ + 3.- A4 = 0.844in d4 Ec•h d4, d4 1 A2ND:= A2 + 1 1 + A2ND = 0.509in - A3 A4 R2ND = 1.96 411 PANEL 1: ROOF h := 9.25-in Ec.h d1 hi p 1 4, 3 3 . hi 1 15 c= 30 - = 0.5 Ai •-= Al = 0.054in d 1 MAN. di i h2 P [(h2 h2 9 ,= 30 - = 0.3 A = Ai - Ec.h - • + 3.- A2 = 0.029in d2 d2 d2_ ( k ) 3 + k A3 = 1.115in h3 p “3 h 3 I = 3.18 41) = 3.- U= 9 d= 2.8333 d 3 Eel ..x d3 d3 r\ I h4 P h4 h4 I. 2.84 4 - • - + 3.- A4 = 0.844in A h A i s ;= 9 c 3.1667 d4 Eh _ \ d4 d4_ 1 1 AROOF := A2 + 1 .1_ 1 AROOF = 0.509in _ _ A3 A4 RROOF = 1.96 I ATOTAL:= A2ND + AROOF ATOTAL = 1.02 in I . , ) RTOTAL = 0.98 I II t II I , . Rigidity R01.xmcd 1/27/2006 11:20 AM I LATERAL DESIGN I PANEL RIGIDITY: P:= 1000•k E = 4030509 psi PANEL 2 AND 4: FLOOR h := 9.25-in h1 P h1 3 h1 I hi := 15= 8.667 d1 = 1.73 Al := E h 4 / + 3• d1 Al = 0.695in A2ND Al A2ND = 0.695in R2ND = 1.44 1 PANEL 2 AND 4: ROOF h := 9.25•in h2 P (h2) h I h2 := 15 = 8.667 tl2 = 1.73 42 := E h 4 d + 3• d A2 = 0.695in c 2 2., AROOF A2. AROOF = 0.695in RROOF = 1.44 AA,-1,v‘:= 4 2ND + AROOF ATOTAL = 1.4in I RTOTAL = 0.72 1 I I I r Rigidity R01.xmcd 1/27/2006 11:20 AM • . LATERAL DESIGN PANEL RIGIDITY: AM P := 1000•k Ec = 4030509psi I PANEL 3 AND 5: 2ND FLOOR h := 9.25•in M 3 I h = 15 d = 30.8333 h1 = 0.49 P h11 h1 ^`�"� ^^a^r d1 nn 1 N Ec,h' 4 d1 I +3 'd 1 A1 = 0.051in 3 I n2 h2 = c 30.8333 d 2 = 0.29 Al -E . \d2/ + 3• d2 A2 = 0.027in 1 nhv3vw =9 U= 3.5 d3 = 2.57 , = E 3 +3.d3 A3= 0.663in Ac= 9 d = 3.1667 h = 2.84 A P (h4\3 +3• h4 nnJ d4 ^"^ = Ec h �d4� d 4 A4 = 0.844in ' _A2+ 1 1 + A2ND = 0.399in A3 A4 R2ND = 2.51 PANEL 3 AND 5: ROOF h := 9.25-in I nnn h = 15 c11 30.8333 hi = 0.49 A p (h hi nvZv nn d1 ^�`^ E •h 4 d J + 3 di Al = 0.051 in c 1 h2 P h 2 \ 3 h = 9= 30.8333 = 0.29 Al - + 3•- A2 = 0.027in d2 Ec "h . d2, d2 h3 p rc13 h3 3 h3 I = 9 3.5 d3 = 2.57 "= E h l + 3 ' d A3 = 0.663in h4 P h4 = 9= 3.1667 d4 = 2.84:= Ec h • ( 114 ) 3 d4 + 3• d4 1 A4 = 0.844in , 9gni =A2+ 1 + 1 AROOF = 0.399in A3 A4 R I ROOF = 2.51 AT A2ND + AROOF A = 0.797in I nv�n TOTAL RTOTAL = 1.25 Rigidity R01.xmcd I 1/27/2006 11:20 AM I LATERAL DESIGN I PANEL RIGIDITY: = 1000.k Ec= 4030509 psi PANEL 6: 2ND FLOOR h := 9.25•in h =15 d =17 h =0.88 1 P h1 vin d1 Nvw ECh 4 (hi .3 d1 + 3•d1 41 = 0.145in 3 �= 9 �= 17 �2 = 0.53 �:_ 41 - E p h • d2� + 3.- d2 42 = 0.098in h3 I = 9= 3.1667 d3 p h = 2.84 = E • [(h3)3 d + 3- d 3_ 43 = 0.844in h4 p h h4 := 9= 3.1667 d4 = 2.84 E •_(h4) d + d4 44 = 0.844in p.n 2 + 1 1 I 1 ` 4 2ND =0.52 in 4 3 4 4 R2ND = 1.92 PANEL 6: ROOF h := 9.25•in ,3 h1 I = 15 = 17 hi = 0.88 41 •- p • 4 h1 + 3• Ai = 0.145in d1 Ec•h \di, d1 h2 p h2 3 h2 i I 9= 17 d2 = 0.53 4 1 - E h d + 3 d 42 = 0.098in c 2 2 h3 p /h3 3 h3 I = 9 dam= 3.1667 - = 2.84 ;_ • + 3 43 = 0.844in d3 Ec.h \ d3) d3_ h4 p rh4 \ 3 h4_ , = 9= 3.1667 d4 = 2.84 ,4= Ec h d4 + 3• d4 44 = 0.844in ni= 42 + 1 1 1 + - AROOF = 0.52in 43 44 III RROOF = 1.92 I nwv� 4 T 1, 4 2ND + 4 ROOF 4 TOTAL = 1.041 in RTOTAL = 0.96 i Rigidity R01.xmcd I 1/27/2006 11:20 AM li ..___ LATERAL DESIGN PANEL RIGIDITY: P := 1000.k E = 4030509psi PANEL 7: 2ND FLOOR h := 9.25.in hi p . [ 4 (hi) 3 + 3. 1 111 15 I fal U=. 20.5 =- 0.73 A1 '= Ai = 0.101in di ANW E:h 3 h2 di di h2 n2 9 cp 20.5 - d2 = 0.44 4=i\1 + 3.- E:h A2 = 0.063in d2) d2 h3 = p h3 h3 9 I: j 3.1667 - d3 = 2.84 Ec.h [( ) + 3.- - A3 = 0.844in I d3 , . h4 p [ h4 ) + 3. n4] Ac= 9 U.= 4.5 - = 2 E A A4)=- _ ch • d4 A4 = 0.376in d4 \ d4 1 ' -E. 1 1 A2ND = 0.323in I A3 A4 R2ND = 3.09 41111 . . _ . PANEL 7: ROOF h := 9.25.in AM hi p .[(hi) 3 + h1] I 15 c 20.5 =- 0.73 Eh L L-) = 0.101in di he:N := di 11 : 1 1 , I h2 P (n d2 2 h2 f 9 i d A g,;= 20.5 - = 0.44 4= A1 Ech +3- A2 = 0.063in .d2 h3 p [(h3 ,, 3 ,_ n3 I U= 9 Eh (U= 3.1667 - = 2.84 / / w A c 3)= + 3. c - i -1 - 3 A3 = 0.844in d3 d3, i h4 p (h4 3 h4 9 k Eel W= 4.5 - = 2 = . + 3.- A4 = 0.376in d4 d4 1 d4 111 i Mapf A2 + 1 -_ + 1 AROOF = 0.323in - A3 A4 II RROOF = 3.09 . I A A2ND + AROOF ATIDTAL = 0.646in RTOTAL = 1.55 I ll I Rigidity R01.xmcd I 1/27/2006 • 11:20 AM I LATERAL DESIGN I PANEL RIGIDITY: P := 1000.k E = 4030509psi PANEL 8 AND 13: 2ND FLOOR h := 9.25•in A • h =15 d= 16.8333 hi P (hi 1 3h1 nvZv r =0.89 A wtiJ 41 1 := Ec h 44 + 3.41 Al = 0.148in � 3 I =9 = 16.8333 d2 E h =0.53 _Al- P .[( h2 +3, h2 p2 =0.1in / h3 / 3 U= 9v= 3 d = 3:= EPh • ,d3) + 3.- A3 = 0.966in h4 P J 3 h4 = 9 d4 3.6667 d4 = 2.45 = Eh • d4/ + 3• d4 A4 = 0.59 n�. - A 2 + 1 1 1 1 - + - A2 2ND = 0.468in A3 A4 R2ND =2.14 . 411101 PANEL 8 AND 13: ROOF h := 9.25•in nM h := 15 hi P (01) h1 I - 16.8333 d1 = 0.89 Al l'AW E h • 4 d 3 dl Al = 0.148in c ■ 1_ h := 9 h2 p (h2 3 h2 - - 16.8333 d2 = 0.53 AAnk= Al - E h d 3.- A2 = 0.1 in c 2 2 �� h3 p /h 3 h I nn�Mi 9 N�J4V 3 d3 = 3= Ec h d I + 3.- A3 = 0.966in h4 P h4 3 h4 = 9 = 3.6667 - = 2.45 + 3• n4 A4 = 0.594in d4 E d4) d4 1 i hog ni= A2 + • 1 1 + - AROOF = 0.468in A3 A4 RROOF = 2.14 AT := A + A = I 2ND ROOF ATOTAL 0.937in ell RTOTAL = 1.07 k Rigidity R01.xmcd 1/27/2006 11:20 AM 1 ... LATERAL DESIGN . I PANEL RIGIDITY: P:= 1000.k Ec = 4030509psi I AM PANEL 9 AND 12: 2ND FLOOR h := 9.25-in AM hi P [ ( hi \ 3 hi] 15 d= 16 - = 0.94 Ai := • Eah 4 \ j + 3.- Ai = 0.164in di ^Am di di h2 p ( h2) 3 h _2 I t 9 / 0 9 ,7 16 - = 0.56 A A1 Ech Ad2 . + 3.- A2 = 0.114in d2 d2_ , 3 h3 p (H3) h3 f 9 / E.h = 3.1667 - = 2.84 A U= • + 3.- A3 = 0.844in • d3 d3 d3 h4 p [ \ 3 h4 h4 := 9 q 2.8333 - = 3.18 4.4:= -• - + 3.- A.4 = 1.115in Atm/ d4 ^A Ec.h d4 d4 \. i 1 A U A NR,= A2 + 1 1 A2ND = 0.594in - + - A3 A4 R2ND = 1.68 III .. . PANEL 9 AND 12: ROOF h := 9.25-in hi P ( hi hi 15 = d 16 0.94 Ai .= -- . 4 --) 3 + 3. Ai = 0.164in di mmi Ec.h dl di 3 I h2 h2 h2 9 cI= 16 - d2 = 0.56 A = Ai Ec.h p[(d2) + 3. - ( -- i2 A2 = 0.114in I ( ) h h3 p "3 h3 9 cA3 3.1667 - = 2.84 Ec.h + 3.- A3 = 0.844in AU d3 d3 _ h4 p ( h4 j 3 h -4 / 1 6 1 / 4 A ;= 9 ca;= 2.8333 - Ec.h d d4 = 3.18 M • + 3.- 4 = 1.115in 4 d4 1 1 A 4Acw, 0 7- A2 + 1 1 AROOF = 0.594in A3 A4 I RROOF = 1.68 I A A2ND + AROOF ATOTAL = 1.189in - ...! RTOTAL = 0.84 11 L l 1 I Rigidity R01.xmcd 1 1/27/2006 11:20 AM .! 41/ LATERAL DESIGN . I PANEL RIGIDITY: P := 1000•k E = 4030509psi I PANEL 10 AND 11: 2ND FLOOR h .= 9.25-in n.---A hi 15 i= 24.8333 -- = 0.6 Ai .= • Eh [ 4111 (di) 3 + 3.dhli] Ai = 0.072in I d 1 h2 n2 9 cig 24.8333 - = 0.36 47 Ai Ec-h P + 3 I , - A2 = 0.042in * d2 d2 d2 h3 _ p [(h3j h3 9 A da = 2.6667 - d3 = 3.37 401/- Eh + 3. • A3 = 1.303in I d3 d3 , 3 h4 p (n4) h4 1 9 AA4 Ec•h W= 2.6667 - = 3.37 = • + 3.- A4 = 1.303in I d4 d4 d4 _ - 1 A2 + 1 1 A2ND = 0.693in I _ + _ A3 A4 R2ND = 1.44 1111 .,.. PANEL 10 AND 11: ROOF h := 9.25-in hi P [4 i hil I i t A ilj= 15 Ec-h U= 24.8333 - = 0.6 Ai *=. + 3.- Ai = 0.072in dl di h2 P ( h2 3 h2 9 d 24.8333 - d2 = 0.36 4 Ai . Ec-h + 3- c-1- A2 = 0.042 in _,[12 _ , 3 ,_ h3 p (n3) n3 „tiai= 9 A d v 3 A - i = 2.6667 - d3 = 3.37 Eh 4 • + 3.- A3 = 1.303in d3 d3 I \ 3 h4 p [ h4 t 9 d4:7 2.6667 - = 3.37 4 . 4 ) . ' E . \ d4 ) + 3.-d4 A4 = 1.303in d4 I 1 aaczi A2 + 1 1 AROOF = 0.693in A3 A4 I RROOF = 1.44 I ,w:= A2ND + AROOF TOTAL= 1.386in RTOTAL = 0.72 L Oa I Rigidity R01.xmcd I 1/27/2006 11:20 AM LATERAL DESIGN I PANEL RIGIDITY: P:= 1000•k Ec= 4030509 psi PANEL 14: 2ND FLOOR h := 9.25.in I nrn hi /h1 3 hi =15 =25.5 tl 1 E h d = = .4 +3.d Al= 0.069in c 1 1 ( 2N I = 9 = 25.5 �� = 0.35 ,A,,,2;= Al EPh • _x d2 ) + 3. A2 = 0.04in h3 ■3 U= 9= 3.8333 - = 2.35 = p h + 3•h 43 = 0.536in d3i Ec .h ` d3i d3 h4 P h4` h4 I A 9= 2.6667 d4 = 3.37 ;= E h d + 3• d 44 = 1.303in c 4 4 1 1 I - + - 4 2ND = 0.419in 43 44 R2ND = 2.38 PANEL 14: ROOF h := 9.25.in MA hi P h1 3 hi I - =15 Au= 25.5 d1 =0.59 = h .4 d 1 +3• A1= 0.069in c ( ) 1 h := 9 h2 = _ P / h2 I -2 5.5 d2 = 0.35 =A1 - Ech• d21 +3• A2= 0.04in I JJ 3 = 9= 3.8333 h3 = p h3 = 2.35 h 43 = 0.536in d3 E d3) + 3• d3 h4 p 3 h4 , = 9 = 2.6667 d4 = 3.37 hviv:= E hh • (h4 \ - + 3.- 44 = 1.303in d4) d4 1 I 4 vw =A2+ 1 + AROOF = 0.419in 43 44 RROOF = 2.38 I 4nmv:= A2ND + AROOF ATOTAL = 0.839in RTOTAL = 1.19 L 1 9 I Rigidity R01.xmcd I 1/27/2006 11:20 AM I ., LATERAL DESIGN I PANEL RIGIDITY: A PP.= 1000•k E 4030509psi I PANEL 15 AND 20: 2ND FLOOR h := 9.25•in Am l 3 , hi 15 Au= 20.8333 d1 = 0.72 EPh 4I a1 I + 3• a 1 = Al = 0.098in h2 P (h2 11 3 2 I laj= 9 u= 20.8333 d = 0.43 Al -E ch . _d2J + 1- A2 = 0.061 in 3 = 9 = 3.8333 d3 = 2.35 -- EPh (d3) + 3,- d3 A3 = 0.536in I h4 P h 3 h4 h4 :-= 9 d = 3.16667 - = 2.84 A = + 3�- A 0.844in rn�n d nnn4v' Ech '- 1 ' d4 d4 A4 = • *n A 2 + 1 1 + - A2ND = 0.389in A3 A4 , _.) R2ND = 2.57 01 PANEL 15 AND 20: ROOF h := 9.25•in nnn h1 p h1 3 hi I gui= 15 Au= 20.8333 d1 = 0.72 Aer= Ech 4 d + 3• d Al = 0.098in 1 1_ h2 P [ j3 h2 t =9 = 20.8333 d2 = 0.43 =Al E h d +3 d A2= 0.061in c \ 2 2 h3 p (h3\3 h3 I = 9= 3.8333 d = 2.35 U= Ech • d3 + 3• d3 A3 = 0.536in h4 p r h41 3 h4 = 9 U= 3.16667 d4 = 2.84 a = Ech • d 1 + 3.d4 A4 = 0.844in J Il n■X 0-A2+ 1 1 + AROOF = 0.389in A3 A4 I RROOF = 2.57 I Ate•= .62ND + AROOF ATOTAL = 0.778 in III II RTOTAL = 1.29 Rigidity R01.xmcd 1/27/2006 11:20 AM LATERAL DESIGN ' PANEL RIGIDITY: P := 1000•k E = 4030509 psi PANEL 16 AND 19: 2ND FLOOR h := 9.25•in hi P h1 3 h1 h1: =15 =4 d1 = 01:= EC h • 4I d1 J +3 d1J £1 = 5.96in ' A2ND:= Al A2ND = 5.96 in R2ND =0.17 ' PANEL 16 AND 19: ROOF - h := 9.25•in h2 p h2 3 h h2 := 15 = 4 d2 = 3.75 6,2 := E C h 4I d 2 I + 3• h A2 = 5.96 in J PROOF A2 OPP A ROOF = 5.96 in RROOF = 0.17 ,' A2ND + AROOF ATOTAL = 11.9 in RTOTAL = 0.08 • I I I I Rigidity R01.xmcd 1/27/2006 11:20 AM I LATERAL DESIGN I PANEL RIGIDITY: ::= 1000.k Ec = 4030509psi PANEL 17 AND 18: 2ND FLOOR h := 9.25•in AM r I h1 P I (h11 h1 = 15= 2 5.8333 = 0.58 e1 :_ 4 J + 3 e1 = 0.068in di nwv Eel d1 di I h2 P �h2 3 h2 • = 9= 25.8333 d2 = 0 = '1 - E d2 + 3 d2 e2 = 0.039in 1 h3 p h3 = 9 2.8333 d = 3.18:= E c h • d + 3.- A3 = 1.115in 3 _ 3 3 h3 3 II ' h4 3 h4 , h ^ q ---- 9 4= 3.5 h4 P = 2.57 Ec.h _ ) + 3•- A4 = 0.663in • dq dq d4 ' -e2+ 1 1 1 '2ND = 0.454 in Pill '3 e4 R2ND = 2.2 PANEL 17 AND 18 ROOF h := 9.25•in I AM - 3 U =15 = 25.8333 a 1 = 0.58 = E P h • 4 d1 + 01 = 0.068in _ 1 1 h2 P rh2,3 h= 9= 25.8333 d2 = 0.35 $ ='1 -Ech d2+ 3.- e2 = 0.039in h3 p " h3 - nhn3Mr= 9 c 2.8333 d3 = 3.18 = Ech • d3/ + 3.- e3 = 1.115in 3 M h44 := 9 n d � 4 ::= 3.5 - h4 = 2.57 = E P . • 4 + 3• 4 e4 = 0.663in I _� d 4 d4 1 ew e2 + I 1 1 'ROOF = 0.454in '3 '4 RROOF = 2.2 I eN= e2ND + 'ROOF 'TOTAL = 0.909in I RTOTAL = 1.1 k. Z2 I Rigidity R01.xmcd 1/27/2006 3:18 PM ,i LATERAL DESIGN I PANEL RIGIDITY: N := 1000.k Ec = 4030509psi PANEL 22: 2ND FLOOR h := 9.25•in nnn I h1 P h1 3 hi = 15 U= 20.6667 d = 0.73 E h d 4 + 3• d 1 o1 = 0.099in 1 c 1 I h= 9 d= 20.6667 h = 0.44 0 p P ( h2 13 h2 ] n�oi nn�i d2 , � = 1 - Ec h d2 I + 3. A2 = 0.062in J I h3 p h3 3 h3. = 9 4.16667 = 2.16_ • + 3•- A3 = 0.444in d3 Ec•h �d3 d3 3 =9 =3.25 h4 =2.77 d = EPh• d4 h4 A4= 0.792in 4 c ( 4 4 _ A2+ 1 1 + 1 A2ND = 0.347in OP 43 0 4 R2ND = 2.88 PANEL 22: ROOF h := 9.25•in I nM - 3 h = 15 d = 20.6667 hi = 0.73 0 P h1 hi nntiv nn�) d 1 •= E h • 4 d + 3• d Al = 0.099in 1 C _ 1 1_ h2 P h2 h2 =9 = 20.6667 a = 0.44 4 =A1 - Ech - / +3 tl A 2= 0.062in I =9 dam = 4.16667 h3 =2.16 hk = P +3•h A3 =0.444in 1 d3 Ec h d3 d3 h4 p / h4 - 1 3 h4 • =9 =3.25 d4 =2.77 = Ech d 4 + A4 = 0.792in ill 1 1 + 1 AROOF = 0.347in I A3 A4 RROOF = 2.88 I A,T %9 \:= A2ND + AROOF ATOTAL = 0.6941n V RTOTAL = 1.44 1 . 2 4' 1 I Rigidity R01.xmcd 1/27/2006 11:20 AM 1 6 I LATERAL DESIGN PANEL RIGIDITY: P:= 1000•1( E 4030509psi I PANEL 23, 24, 25, 26, 27 AND 28: 2ND FLOOR h := 9.25.in I 15 24 = 0.63 iAtiA= h1 di Ai •-• \ P [ (hi 3 4 hil A NW Eh d1 + 3.—d1 A1 = 0.076 in I 4 cp= 24 h2 9 d2 = 0.38 p rh2) h2 U= A 1 • Euh + 3. c --- 2 c12 A2 = 0.045in _ I == 9 5,=•- 3.25 h3 — = 2.77 hx= Ech [(h3) h3 + 1— d3 A3 = 0.792in d3 d3 111 tvic= h4 9 F14,7 3.25 = 2.77 AA4,\;= p (h4 N3 hal Ec•h + 3.— A4 = 0.792in d4 dit d4 I 1 A A, ` 24 a = A2 + 1 1 A 2ND = 0.441in A3 A4 . R2ND = 2.27 11111P PANEL 23, 24, 25, 26, 27 AND 28: 2ND FLOOR h := 9.25-in I hi Afv■ P ( hi \ 3 111 =--= 15 A d v i A = 24 = 0.63 AA A Ec.h i :- • 4 + 3.— Ai = 0.076in di AN _ 0: di • ,_ 3 _ h2 P n2 h2 I U= b i = 24 = 0.38 A2 = 0.045in d2 A1 Eh 3.— d2 [( ) + d2 h3 p [ \ h3 U= 9 c47 3.25 Eh . = 2.77 + 3— = 0.792in d3 A A' 4 ■ )= ,-. d3 I ... . ,., ■ j _ h4 p [ h4 -4 1)4 9 d4 Ec•h c 3.25 = 2.77 4_ • ± 3.— A4 = 0.792in I thl 4-- 1 Ax? A2 + 1 1 AROOF = 0.441 in I A3 A4 RROOF = 2.27 I A 44;),T4J, 9 = A2ND + AROOF ''TOTAL 0.882in I RT0TAL = 1.13 I I Rigidity R01.xmcd 1/27/2006 12:42 PM 1 . _ I LATERAL DESIGN I PANEL RIGIDITY: P:= 1000.k E = 4030509 psi PANEL 29: 2ND FLOOR h := 9.25.in MA • hi P ["hl" h i 15 A= 24.8333 - = 0.6 Ech 4= 4 + 3. Al = 0.072in ,r il i di I 9 24.8333 h2 h2 h2 1„),?,= A - = 0.36 A V o i= A i E:h [() 3 + 3. d2 A2 = 0.042in d2 d2 _ 1 h3 A AA . h33 h31 • P 9 c 3.25 - = 2.77 .- Eh [(d3 ) + 3. A3 = 0.792in d3 d3 A _ f(h4) h4.] 1 h4 P F 9 ,j= 3.5 - = 2.57 - Ec-h + 3.- A4 = 0.663in d4 d4 d4 __i_ 1 1 A2ND = 0.403in + - .__.. IMP A3 A4 R2ND = 2.48 PANEL 29: ROOF h := 9.25.in AAA I hi p [ ( 1 3 hl i t A IL- 15 A 24.8333 - = 0.6 Al *= • 4 Al = 0.072in di MM/ Eel cii + 3. di . \ 3 _ h2 p (h2 h2 i l)k= 9 Ag 24.8333 - = 0.36 h2,,j= Al + 3- = 0.042in d2 Ech d2 d2 h3 p 1 h3 ta •= 9 d:= 3.25 - = 2.77 hx= + 3. d3 A3 = 0.792in d3 Eh d3 , 3 h4 p [ h4) h4 t 9 I: k= 3.5 - = 2.57 44) = E ch ' + 3. A4 = 0.663in c:14 d4_ 1 A,Wacg A2 + 1 1 AROOF = 0.403in A3 A4 RROOF = 2.48 I 4 A2ND + AROOF ATOTAL = 0 . 806 in I . RTOTAL = 1.24 I Rigidity R01.xmcd 1/27/2006 11:20 AM I LATERAL DESIGN PANEL RIGIDITY: P := 1000•k Ec = 4030509psi PANEL 30: 2ND FLOOR A h: ---- 9.25.in AA 3 = 15 24.6667 hi = 0.61 Al p 4 h1 + 3' h1 Al = 0.073in - • \ d1 E� h d1 d1 h2 \ 3 == 9 = 24 - = 0.36 A Al - P h2 + 3• h2 A2 = 0.042in d nv�+ Ec•h d2 d2 h3 p I (h3 hg =9 =3.25 d3 = 2.77 := Ech d J + A3= 0.792in h4 (h4 3 = 9 = 3.25 d4 = 2.77 EPh . -1 J l + 3• a� A4 = 0.792in 1 AAR= A2 + 1 1 - + - A2ND = 0.439in A3 A4 R2ND = 2.28 PANEL 30: ROOF h := 9.25•in AM I h1 p h1 h1 = 15 d = 24.6667 - = 0.61 Al nn nvZi d11•= Ech 4 d1 / + Al = 0.073in I h [fh2)3 = 9= 24.6667 d2 P = 0.36'= Al - Eel \d + 3 d2 A2 = 0.042in I 3 h3 =9U =3.25 d3 =2.77 = E c h • [ ,h3 \J +3•d2 A3 = 0.792in U - h4 P h4� 3 h4 h4,= 9 A d d4 4 �. -- 3.25 - = 2.77 A = • + 3 - A4 = 0.792in i i d4 E d4 d4 1 NN =A2+ r. 1 1 - + - AROOF = 0.439in II A3 A4 RROOF = 2 .28 III AT A2ND + A ROOF ATOTAL = 0.877 in �; i RTOTAL = 1.14 I Rigidity R01.xmcd 1/27/2006 11:20 AM 1 LATERAL DESIGN PANEL RIGIDITY: ^ P = 1000.k E = 4030509psi 11 PANEL 31: 2ND FLOOR h := 9.25-in AAA N3 U= kl 24 hi (hi N3 0.63 Al = P 4 ANW Ec.h d1/ + 3 d1 h1 d1 Al = 0.076in h2 P 3 h2 ,tvoi= d2 = 0.38 = A1- Ech [(d2 h2 l + 3• d4 A2= 0.045in I h3 p h3 h3 =9= 2.6667 d3 =3.37 = Ech (d3 +3• A3 = 1.303in l II h4 p rh4 h h4 E h • Il 9 3.25 d4 = 2.77= d + 3 d A4 = 0.792in c 4 � 4 :-, t A2+ 1 = 1 1 _ + A2Np = 0.538in Pi A3 A4 R2ND = 1.86 PANEL 31: ROOF h := 9.25-in NA II r 3 = 15= 24 a 1 = 0.63 Ai E c h • 4 d1 + 3• Al = 0.076in 1 1 I h2 p h2 h =9 =24 d2 = 0.38 $ =A1- Ech [(d2) +3. A2 = 0.045in I h (h 13 U= 9 ^ d A = 2.6667 d3 = 3 = E c h • d3/ + 3• d3 A3 = 1.303 J t h4 p (h403 h4 ti h4= 9 bw= 3.25 d4 = 2.77 Ate,.•= E h d4 + 3 d4 A4 = 0.792in 1 A as - A2 + 1 1 — + _ AROOF = 0.538in A3 A4 RROOF = 1.86 ,I AnvTv = A2ND +AROOF ATOTAL = 1.075in 1 -- RTOTAL = 0.93 , I _ v I Rigidity R01.xmcd 1/27/2006 11:34 AM II l I LATERAL DESIGN PANEL RIGIDITY: P := 1000.k E = 4030509psi I SHEAR WALL 32 2ND FLOOR h .= 9.25.in AAA hi hi 3 hi I 15 c= 11.5 — di = 1.3 4.= E:h 4( di + 3. dl_ Ai = 0.343in 1 A uu:= 41 A2ND = 0.343in i R2ND = 2.92 SHEAR WALL 32: ROOF h := 9.25-in AN\ )4 g= h2 — Az; P [ (h2j3 h2j 15 11.5 = 1.3 = Ech . 4 d2 + 3. d2 42 = 0.343in _.”. 11 acacaF A2 A ROOF = 0.343in RROOF = 2.92 p I A - I mA - 4:= A 2ND + AROOF 'TOTAL = 0.686in RTOTAL = 1.46 I I 1 111 I , , 1 , 1, ,....--L.9 Rigidity R01.xmcd 1/27/2006 16 11:34 AM . . III LATERAL DESIGN . PANEL RIGIDITY: P:= 1000.k E = 4030509 psi AM I SHEAR WALL 33: 2ND FLOOR h := 9.25•in 3 II I 15 A= 20.5 hi — di = 0.73 P Ec-h (hi hi] Ai := . [ 4 —) + 3. d1 Ai = 0.101in I A U,Nw.= Ai A2ND = 0.101 in R2ND = 9.91 I SHEAR WALL 33: ROOF h := 9.25-in Nvc 15 cA A p 20.5 h2 — = 0.73 P h2 i ., H2 4k= _ Ech cl2 • 4 ) + 3. -F-1 A2 = 0.101 in d2 I asxw o ;= A.2 6 ROOF = 0.101 in OP RROOF = 9.91 I Ai mA, - 44 , TA:= .A2ND + AROOF ATOTAL = 0.202in RTOTAL = 4.95 I , I I 1 I II , , 1 L 3 0 Rigidity R01.xmcd 1/27/2006 11:34 AM li 1 LATERAL DESIGN PANEL RIGIDITY: P := 1000.k E = 4030509 psi SHEAR WALL 34: 2ND FLOOR h := 9.25.in h1 p (hi 3 h11 1 Ech ZI A ;= 15 :1 13.5 — 1 = 1.11 &,1) 4 d 1 1 + 3. — Ai = 0.237in . d 1 1 Agt, A i A 2ND = 0.237in R2ND = 4.23 1 SHEAR WALL 34: ROOF h := 9.25.in Nvs p (h2 0 I h2 H2 1 15 a. 13.5 — d2 = 1.11 A?v:= Ec. h + 3— = 0.237in d2 o zig== I 2 A ROOF = 0.237 in RROOF = 4.23 I 6 6 1 6 .2ND + A ROOF A TOTAL = 0.473 in 1 RTOTAL = 2.11 1 I I 1 I I : -. II 1;3 1 Rigidity R01.xmcd 1/27/2006 11:34 AM ;111 LATERAL DESIGN PANEL RIGIDITY: P:= 1000* E = 4030509psi NV\ SHEAR WALL 35: 2ND FLOOR h := 9.25.in U= 15 cl 11.5 hi — di = 1.3 P ( h1 )3 hi A 4,; A u 3= _ • 4 — + Ech = 0.343in 1 4,4,Q= A2ND = 0.343in R2ND = 2.92 SHEAR WALL 35: ROOF h .= 9.25.in h2 p 'h2' h21 = 0.343in / t A lg s ;= 15 i 11.5 — = 1.3 = • 4 + d2 Ec.h d2 a2 1 AixasaF A2 AROOF = 0.343in RROOF = 2.92 A A1,, A ;QJ4= A2ND + AROOF 'TOTAL = 0.686in RTOTAL = 1.46 1 I I k..."3 I. \ WA _ 1 T 1. Gk.,* IN ' 1 k 0690 Vy II i ee .., a ofir2- 0.66 6mAcet4/403 \ v, ......i 1 ii (IAA N ,. O,E'VW' k, 64 , t ,0 :. Ccra,t wt'Z ,2C) i Dvll ✓ ......, tic. I't W s—a°, R. I vooe r-vvikA el,,c-pa:), 44.69 ,1 4 4,- (9' 21 z 0 ; i ?^ Av k,( 'S (4 Rio 019 ,,)1 kfr - , (Jei-J_epA,) e- ksokir (x Q . k-o ■- j1(04 - eh. , V 0 P I0,00 2 4 Uv, - 4 ( -(' N s 0,(0( 0 SAL - 0,m ( 473) b0y I NO ,, A (}-) q u, 5 0 OD I 4, „ b,5/ ti9i -? >)-( GSA/ ClC ). .� Q � 0 , 00a . I t.c ., b t (s`r � i) _ 4Ak.i � ) �,�r/�/ M y � � / ��/ / y� {/yam /� � 1ny izyr 1 1K// '{�/�ib v t (� � I ' <Ni 3 e' e-CI' � V,, .), 0 oc61 `CIS S utC . cotiul 1, KHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS JOB NO 960 S.W. VARNS ST, SU 200 IGARD, OREGON 97223 503) 620 -303D, FAX 620 -5539 ITE SHEET r OF I ) . 1 410 ' wovegik, m _ ...--- - •---- • ----------r*tv- ---.-ki 0 -------- - - . /431 4 5?-1-0(g)ttiut 3 tr - I 64.-w- 4 't 1- 4. 1 4427: ‘1 iy143 /A t, 6 - l-til.Y tiftMoV..{ (-0,- PlAki I Of ic wrvo^ A■ I P-46 -rti;c20a .(fr v. (cocoa u ,,k 4,t) 1 (4-.gaP • vv op , 9 - 4-15' Y 64\rixtIP . ,- Oi-elia i2, \*7 ft de o& i,t tAN , ___ Lit efo .:;. .„ I tr7 •• 4k \--5 Vv v/L„ V.----& 4 oggkttei;JTJV I 4Y tA oxi; 11) (AA- 1 '6,-- 4 1, 11 at' otv ItAA, . ,f.A\ea,.k---tle I .4 i , A t V r 4 0 1 7 klU> ( a t O 5' ° I v 1 V I 1 I HAN ASSOCIATES, INC. BY DATE • .0 4 9 JGARD, OREGON 97223 1.1" 03) 620-3030, FAX 620-5539 JOB NO SHEESHEET_________ SHEET_________ OF • 7 tAr c Korc,l,J c s ova", w a,& kVA, , b -& ( M -9P1 Y ( c)Y.SP V1) ?� S ool 6/. %." , A*.K2 rfro► -hrt6bk, r 0 '., U 6rt C - > 0, 0- 1 vAilov viet.morwirsvx-0-1 \l6 sr 1,4 b "PG 51-42 J CO1Qr 160 tv U l.1 kka% 1,0 14/L WV( 7 4a1 , r .1 Pte, - WSJ t Vv �J 1 1,� �5 w , t om►- G Ntifi S &S • GRAN ASSOCIATES, INC. � BY DATE CONSULTING ENGINEERS 6n 0A S.W. S ST, S 200 I JOB NO TIGARD OREGVARNON 9722 (503) 620.3030, FAX 620.5539 SHEET OF 3 1 iho .LPA, ' i ---twa-7-vott_ _ _ I n94.1)-A,E I tfri-ta, cov 1 /v.4.)- omfo. 4?..0)v- 0,7.7k4 0.04, aiSt. 2 ; it ___ . NI c) L , e' T I 0 I ' ,, fi t Q i94t,C .1' �4 • n _._ _ d 4 o .r 1 IP 6. 4 2# 6, t, t R,c. 4 U to LA1r1,177) . -F--$ G a II �b.a I , I it ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS I 6960 S.W. YARNS ST., SUITE 200 JOB NO TIGARD, OREGON 97223 (503) 620 -3030, FAX 620 -5539 SHEET_ OF f ) ,0 , .i,frwok, z/-40-\ .. i twos es i 4A I V) z-C2 (' (1,o,' :E__ 6 U - -(---m- t per./, 0 4 \h)g 11 om .. �n�1. t tA,V «l I I I I I A HAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS 6 JOB NO 200 (503) 620-3030, FAX 620 -5539 SHEET j r OF 5 I LATERAL DESIGN: SHEAR WALL DESIGN: PANEL f 51 PIER 1: SHEAR WALL INFORMATION h := 9.25•in SHEAR WALL THICKNESS H := 9-ft HEIGHT OF SHEAR WALL L 38•in LENGTH OF SHEAR WALL = 5000 CONCRETE COMPRESSIVE STRENGTH FOR SLABS AND FOOTINGS (psi) Ec = 4496061 psi MODULUS OF ELASTICITY FOR CONCRETE = 60000 YIELD STRENGTH OF STEEL REINFORCEMENT (psi) fypsi Ey E sy = 0.00207 MAX STEEL STRAIN AT OUTERMOST TENSION REINFORCING Es = 0.003 MAXIMUM ALLOWABLE CONCRETE STRAIN r r p 1 := II fc < 4000,0.85, iil fd > 8000,0.65,0.85 — 0.05 f — 4000 1000 ) P 1 = 0.8 LOAD COMBINATIONS: 1 ) 0.9DL +E Put := 10•k Madd 0•ft•k ADDITIONAL MOMENT DUE TO UNBALANCED VERTICAL LOADS Vu1 := 13.5•k ULTIMATE DESIGN SHEAR M := 78.5•ft•k+ Madd Mu1 = 78.5 ftk ULTIMATE DESIGN MOMENT 2) 1.2• DL + E + (fi .L + f2 • S) Pu2:= 67.k = 0•ft•k ADDITIONAL MOMENT DUE TO UNBALANCED VERTICAL LOADS Vu2 := 17•k ULTIMATE DESIGN SHEAR Mu2 := 107.5•ft•k + M • Madd Mu2 = 107.5 ftk ULTIMATE DESIGN MOMENT 1 �� I I. II LATERAL DESIGN: I SHEAR WALL DESIGN: PANEL f 51 PIER 1: I LOAD COMBINATION 1: 0.9. DL + E Pu1 = 10k Oft = 0.89 Mul = 79 ft k OVERTURNING MOMENT I NA := 6.55.in NEUTRAL AXIS DEPTH COMPRESSION REINFORCEMENT: CONCRETE: =_ 0.85•fc•psi•0.5• NA. h C = 129k III NUMBER SIZE SPACING STEEL AREA BAR STRAIN INDIVIDUAL BAR STRESS BAR FORCE n := 2 b 5 sa := 3•in Asa = 0.62 in esa = 0.00163 fsa = 47.15ksi C = 29.23k NV % 0 b 5 sb := 8•in 2 1 Asp = 0 in E sb = 0 fsb = 0 ksl Cb = 0 k n :-- 0 bar 5 Sc: = 8•in 2 Asc = 0 in Esc = 0 fsc = 0 ksi C = 0 k ni 0d= 5 sd := 8•in 2 Asd = 0 i Esd = 0 fsd = 0ksi Cd = 0k I Ctotal = 29.23k TENSION REINFORCEMENT: / n := NUMBER SIZE SPACING STEEL AREA BAR STRAIN BAR STRESS BAR FORCE 2 bar 5 s1 := 3•in A = 0.62in 6s1 = 0.01303 fs1 = 60ksi Ti = 37.2k n^•- 2 M ba ti w= 5 s2 := 8•in 2 AWN As2 = 0.62 in E = 0.00937 fs2 = 60ksi T2 = 37.2 k A= 2 bar 5 s3 := 8•in 2 Asa = 0.62 in esa = 0.0057 fsa = 60ksi T3 = 37.2 k N n ^ 2 bar : := 5 54 := 8•in 2 Aso = 0.62 in s54 = 0.00204 fs4 = 59.11 ksi T4 = 36.65k n := 0 bar := 5 s5 := 8•in 2 As5 =0in cs5 = fs5 =0ksi T5 = 1 n:= 0 bar 5 s6:= 8•in 2 As6 =0in Es6 =0 fsb =0ksi T6 =0k te n := 0 bar 5 s7:= 8•in 2 I As7 = 0in 6s7 = 0 fs7 = 0ksi T7 = 0 k n := 0 bar := 5 s8 := 8•in 2 Asg = 0 i es8 = 0 fsb = 0ksi T8 = 0k ll EFb :_ (C + Ctotal) - Ttotal Fb = 10k Ttotal = 148.25 k • Mn1 = 269 ftk Mnl .design (I) f1•Mn1 I Mn1.design = 239.4 ftk > Mai = 78.5 ftk 1 1 I ;II I LATERAL DESIGN: I SHEAR WALL DESIGN: PANEL f 5 PIER 1: I LOAD COMBINATION 2: 1.2•DL + E + (f1 • L + f2•S) Pu2 =67k Of2 =0.82 I Mu2 = 108 ftk OVERTURNING MOMENT NA == 8.25•in NEUTRAL AXIS DEPTH I NAM COMPRESSION REINFORCEMENT: CONCRETE: = 0.85•fo•psi•0.5•NA•h C= 162k NUMBER SIZE SPACING STEEL AREA BAR STRAIN INDIVIDUAL BAR FORCE BAR STRESS nn :== 2 I 5 u= 3.In Asa = 0.62 in esa = 0.00191 fsa = 55.36 ksl Ca = 34.33k 111 n :-- 0 b 5 sue= 8•in 2 Asb = 0 in esb = 0 f = 0 ksi Cb = 0 k n := 0 bar := 5 �s� ,•= 8•in 2 Aso =0in eso =0 fse = Co =0k n::= 0 bar := 5 u= 8•in 2 Asd = 0 in esd = 0 fsd = 0 ksi Cd = 0 k := 0 bar := 5 s := 8•in 2 Asa =0in sse = 0 fSe =Oksi Ce =Ok TENSION REINFORCEMENT: Ctotal = 34.33k I NUMBER SIZE SPACING STEEL AREA BAR STRAIN BAR STRESS BAR FORCE � n::=2 bar := 5 =3•in A51 = 0.62in2 5 s1 = 0.00973 f = 60ksi Ti = 37.2k i n � := 2 bar ^ ^� 5 s 8•in 2 ^ A = 0.62 in 6 = 0.00682 fs2 = 60ksi T2 = 37.2 k nn:= 2 bar 5 = 8•in A = 0.62 in 6s3 = 0.00391 fs3 = 60ksi T3 = 37.2 k 2 bar 5 me 8•in As4 = 0.62 in 6s4 = 0.001 f = 29ksi T4 = 17.98k n:== 0 b 5 A s v v= 8•in 2 A = 0 in es5 = 0 fs5 = 0 ksi T5 = 0 k ^ n:=0 bar:= 5 si•. =8•in 2 A = 0 in 6s6 = 0 fs6 = 0 ksi T6 = 0 k i nn:= 0 bar := 5 S= Sin 2 As7 = 0 in 6s7 = 0 fs7 = 0 ksi T7 = 0 k r n:= 0 bar 5 sn:= 8•in 2 As8 = 0 in es8 =0 fs8 =0ksi T8 =0k I E M F .= (C + Ctotal) - Ttotal EFb = 67 k Ttotal = 129.58 k M = 328 ftk Mn2.design Of2•Mn2 Mn2.design = 270 ftk > M = 108 ftk l e t I LATERAL DESIGN: SHEAR WALL DESIGN: I PANEL f 51 PIER 1: BOUNDARY AND CONFINEMENT REQUIREMENTS: . I NOMINAL AXIAL LOAD CAPACITY: Acv = Lw h Ac 351.5in EFFECTIVE SECTION AREA OF CONCRETE I Ast = 3.1 in TOTAL AREA OF VERTICAL REINFORCING STEEL P := 0.80•[0.85•fc-psi•(Acv — Ast) + fypsi•Asj P = 1333k I Pu Pu2 Pu.design 'a•Po Pu.design = 933k > P = 67k 1) Pu2 = 67k < 0.10•Acvf = 176k P = 1333k NOMINAL AXIAL LOAD CAPACITY Pu2 = 6 7k < 0.35•P = 467k WALL CAN BE USED AS SHEAR WALL 1 Mu1 �1 = 1.84 < 1.00 OR 3•A f si = 75k > Mu1 Vu1•Lw cv� P V = 13.5k AND = 1.84 < 3.00 Vu1•Lw I WALL EXEMPT FROM BOUNDARY ZONE DETAIL REQUIREMENTS 2 h • Lw P = 67k Mu2 = 108 ftk A = 351.5in 2 S = 2226.167in MX I 6 _ P u 2 M u 2 MAXIMUM EXTREME COMPRESSION FIBER STRESS fcc Acv + S fcc = 770 psi ASSUME LINEAR ELASTIC CONDITIONS AND UNCRACKED THEN SPECIAL TRANSVERSE REINFORCEMENT PER IF fc 770 psi < 0.2•fc•psi = 1000psi IS NOT REQUIRED AS BOUNDARY ELEMENT I I I I . 1 r or I Il e I I LATERAL DESIGN: SHEAR WALL DESIGN: I PANEL f 51 PIER 1: HORIZONTAL REINFORCING: 11 I s2. max min (3w 3•h 18.InJ I s2.max = 12.667in MAXIMUM SPACING I barn° := 3 REINFORCEMENT SIZE (DIAMETER) Av = 0.11 in AREA OF SHEAR REINFORCING I s2 = 8 in SPACING OF HORIZONTAL REINFORCEMENT = 8.i Han : 2A Ph h s2 Ph = 0.00297 > 0.0025 1 USE #3 TIES AT 8" O.C. REINFORCEMENT FULL HEIGHT OF PIER A h•Lw Acv= 352 in 2 WEB THICKNESS x LENGTH IN DIRECTION OF SHEAR FORCE THEN HORIZONTAL REINFORCING TERMINATING SHEAR WALL IF Vu1 > Acv�c EDGES SHALL STANDARD HOOK AROUND EDGE REINFORCING OR U- SHAPED REINFORCING MATCHING THE HORIZONTAL BARS (UBC 97 - 1921.6.2.2) I Ac• \ [c•Psi = 25k SIZE AND SPACING SHALL LAP- SPLICE WITH HORIZONTAL BARS VERTICAL REINFORCING: I (Lw l s1.max mint 3 3•h 18•inJ) sl.max = 12.667in MAXIMUM SPACING I b MaAW = 5 REINFORCEMENT SIZE (DIAMETER) A = 0.31 in AREA OF SHEAR REINFORCING 1 Hwl Pn := 0.0025 + 0.5. 12.5 - T.; I �Ph - 0.0025 P = 0.00242 1 pv:= if(pn < 0.0025, 0.0025,if(pn < Php Pr) ,Ph)) pv= 0.0025 s1 = 18in SPACING OF VERTICAL REINFORCEMENT s := 8•in USE (5) #5 EACH FACE VERTICAL REINFORCING FULL HEIGHT OF PIER i NOMINAL SHEAR STRENGTH: Ph = 0.00297 Ac 352in WEB THICKNESS X LENGTH IN DIRECTION OF SHEAR FORCE I I Vu1 Vn:= Acv(ac• •Psi +Ph•fyPsi) Vn IC:= IC = 0.2 l Os•Vn I tVo I - -- --- ---------- - - - - -- - - - - -- I LATERAL DESIGN: 1 SHEAR WALL DESIGN: I PANEL 151 PIER 2: SHEAR WALL INFORMATION I h := 9.25•in SHEAR WALL THICKNESS Hw:= 9•ft HEIGHT OF SHEAR WALL L := 50•in LENGTH OF SHEAR WALL I A 5000 CONCRETE COMPRESSIVE STRENGTH FOR SLABS AND FOOTINGS (psi) E = 4496061 psi MODULUS OF ELASTICITY FOR CONCRETE I = 60000 YIELD STRENGTH OF STEEL REINFORCEMENT (psi) f Ey := E ey = 0.00207 MAX STEEL STRAIN AT OUTERMOST TENSION REINFORCING E Ac 0.003 MAXIMUM ALLOWABLE CONCRETE STRAIN r (f — 4000 a 1 := iI f < 4000, 0.85 , Il fc > 8000,0.65,0.85 — 0.05 I 1000 ) 01 — 0.8 I LOAD COMBINATIONS: 1) 0.9•DL +E I Put 13•k I Madd 0•ft•k ADDITIONAL MOMENT DUE TO UNBALANCED VERTICAL LOADS V := 17•k ULTIMATE DESIGN SHEAR I Mu1 := 111.5•ft•k + Madd Mu1 = 111.5 ftk ULTIMATE DESIGN MOMENT 2) 1.2•DL + E + (f1 •L + f2•S) I Pu2:= 71.k i ;= 0•ft•k ADDITIONAL MOMENT DUE TO UNBALANCED VERTICAL LOADS Vu2 := 20•k ULTIMATE DESIGN SHEAR M := 150•ft.k + Madd Mu2 = 150 ft k ULTIMATE DESIGN MOMENT to I Il e --------------------------- I LATERAL DESIGN: I SHEAR WALL DESIGN: PANEL 151 PIER 2: LOAD COMBINATION 1: 0.9•DL + E I Pu1 = 13k Of1 = 0.89 M = 112 ftk OVERTURNING MOMENT I NA := 6.7•in NEUTRAL AXIS DEPTH COMPRESSION REINFORCEMENT: CONCRETE: := 0.85•fc•psi•0.5•NA•h C= 132k I NUMBER SIZE SPACING STEEL AREA BAR STRAIN INDIVIDUAL BAR STRESS BAR FORCE n := 2 br�= 5 sa := 3•in Asa = 0.62 in esa = 0.00166 fsa = 48.04ksi C = 29.79k I � n ::= 0 N= 5 sb := 11.in Asb = O in2 esb = 0 fsb = O ksi Cb = O k n:: --- 0 v - := 5 Sr c: 11•in 2 Asc =0in esc =0 fsc =0ksi Cc =Ok ,=0 bar 5 sd 11•in 2 00 Asd =Oin esd =0 fsd =0ksi Cd =0k I CtotaI = 29.79k TENSION REINFORCEMENT: NUMBER SIZE SPACING STEEL AREA BAR STRAIN BAR STRESS BAR FORCE I �== 2 b 5 s1 3•in in As1 = 0.62 in es1 = 0.01804 fs1 = 60ksi T1 = 37.2 k ^ n • � . ---- 2 AAM 5 s2 := 11•in 2 As2= 0.62in es2= 0.01312 fs2 =60ksi T2 =37.2k � n:= 2 bar 5 s3 := 11•in in Asa = 0.62 in es3 = 0.00819 fs3 = 60ksi T3 = 37.2k MA-- 2 AAA 5 s4 := 11•in 2 I Aso = 0.62 in es4 = 0.00327 fsq = 60ksi T4 = 37.2k m n— 0 b 5 s5:= 11.in 2 I Ass = 0 in es5 = 0 fs5 = 0 ksi T5 = 0 k � n := 0 b 5 s6:= 11•in Asb = 0 in2 e sb = 0 fsb = 0 ksi T6 = 0 k 0 bar := 5 s7:= 11•in 2 As7 = 0 in e s7 =0 fs7 =0ksi T7 =0k 1 rte:= 0 b= 5 sg := 11•in Asg =0in es8 =0 fsg =0ksi Tg =0k Ttotal = 148.8k I Fb :_ (C+ Ctotal) — Ttotal EFb = 13k Mn1 = 373 ftk Mnl.design 1f1•Mn1 ' Mnl.design = 331 ftk > Mu1 = 112 ftk I ND _ I LATERAL DESIGN: I SHEAR WALL DESIGN: I PANEL 15 l PIER 2: LOAD COMBINATION 2: 1.2. DL + E + (f1 •L + f2•S) Pu2 = 0f2 =0.84 I Mu2 = 150 ftk OVERTURNING MOMENT NA := 9•in NEUTRAL AXIS DEPTH I COMPRESSION REINFORCEMENT: CONCRETE: = 0.85•fc•psi•0.5•NA • h Cr 177k INDIVIDUAL NUMBER SIZE SPACING STEEL AREA BAR STRAIN BAR FORCE I BAR STRESS = 2 b = 5 s 3•in Asa = 0.62 in esa = 0.002 fsa = 58ksi C = 35.96k 1 n:= 0 bar 5 sue= 11-in 2 Asb =0in e sb = fsb = Cb =0k nn := 0 bar 5 = 11 in Asc = 0 in 2 Esc = 0 f = 0 ksi C = 0 k n := 0 bar 5 u= 11•in 2 OP Asd =0in esd = fsd = ksi Cd =Ok n := 0 bar := 5 se := 11•in 2 I A = 0 in Ese = 0 f = 0 ksi C = 0 k TENSION REINFORCEMENT: Ctotal = 35.96k I NUMBER SIZE SPACING STEEL AREA BAR STRAIN BAR STRESS BAR FORCE = 2 bnbary 5 = 3•in A51 = 0.62in es1 = 0.01267 fs1 = 60ksi T1 = 37.2k I n:=2 b 5 s 11.in As2 = 0.62 in es2 = 0.009 f = 60ksi T2 = 37.2k �n::=== 2 bar := 5 u= 11•in Asa = 0.62 in esa = 0.00533 fsa = 60ksi T3 = 37.2k In =2 bar 5 =11•in A = 0.62 in e = 0.00167 f = 48.33 ksi T4 = 29.97k nom:= 0 bar := 5 = 11•in 2 A =0in Es5 =0 fs5 =0ksi T5 =0k �n:= 0 bar 5 = 11•in 2 Ash = 0 in E s6 = 0 f = 0 ksi T6 = 0 k �n:=0 bar =5 nnZn' =11in 2 As7 = 0 in Es7 = 0 f57 = 0 ksi T7 = 0 k nn:=0 bar:: --5 =11•in 2 A5g = 0 in e s8 = 0 fsg = 0 ksi Tg = 0 k I EL F V_ (C + Ctotal) - Ttotal EFb = 71k Ttotal = 141.57 k Mn2 = 465 ftk Mn2.design 4f2•Mn2 Mn2.design = 390 ftk > Mu2 = 150 ftk f k3 i I _______ _ ___ _____ ____________________ ____ __ 1 LATERAL DESIGN: I SHEAR WALL DESIGN: I PANEL J 51 PIER 2: BOUNDARY AND CONFINEMENT REQUIREMENTS: I NOMINAL AXIAL LOAD CAPACITY: Acv := Lw•h Acv = 462.5in EFFECTIVE SECTION AREA OF CONCRETE I Ast = 3.1 in TOTAL AREA OF VERTICAL REINFORCING STEEL Po := 0.80[0.854c•psi•(A - Ast) + fypsi•A P = 1711k I Pu Pu2 Pu.design 4a•Po Pu.design = 1198k > P = 71k 1 ) Pu2 = 71k < 0.10•Acv.fc•psi = 231 k P = 1711k NOMINAL AXIAL LOAD CAPACITY Pu2 = 71k < 0.35•P = 599k WALL CAN BE USED AS SHEAR WALL I Mu1 2) Vu1•Lw = 1.57 < 1.00 OR 3-A fcpsi = 98k > V = 17k AND Mu1 = 1.57 < 3.00 Vu1•Lw I WALL EXEMPT FROM BOUNDARY ZONE DETAIL REQUIREMENTS h• L Pu2 = 71k M = 150 ft k A = 462.5 in S = 3854.167In 6 I Pu2 Mu2 MAXIMUM EXTREME COMPRESSION FIBER STRESS fcc + f = 621 psi Acv S ASSUME LINEAR ELASTIC CONDITIONS AND UNCRACKED I THEN SPECIAL TRANSVERSE REINFORCEMENT PER IF fcc = 621 psi < 0.24c•psi = 1000psi IS NOT REQUIRED AS BOUNDARY ELEMENT I I I I rte LATERAL DESIGN SHEAR WALL DESIGN: PANEL f 51 PIER 2: HORIZONTAL REINFORCING: LN 11 s2.max := min 3 3•h 18•inJ) s2.max = 16.667in MAXIMUM SPACING barn° := 3 REINFORCEMENT SIZE (DIAMETER) Av = 0.11 in AREA OF SHEAR REINFORCING I s2 = Bin SPACING OF HORIZONTAL REINFORCEMENT A U t , = 8.in 2A Ph h s2 Ph = 0.00297 > 0.0025 USE #3 TIES AT 8" O.C. REINFORCEMENT FULL HEIGHT OF PIER Ate= h•LW Acv= 463 in WEB THICKNESS x LENGTH IN DIRECTION OF SHEAR FORCE � THEN HORIZONTAL REINFORCING TERMINATING SHEAR WALL IF Vu1 > Acv. 'c EDGES SHALL STANDARD HOOK AROUND EDGE REINFORCING (UBC 97 - 1921.6.2.2) OR U- SHAPED REINFORCING MATCHING THE HORIZONTAL BARS Acv�c•psi = 33k SIZE AND SPACING SHALL LAP- SPLICE WITH HORIZONTAL BARS VERTICAL REINFORCING: Lw ll1 s 1 . max min 3 3•h 18•in sl.max = 16.667in MAXIMUM SPACING ba r 5 REINFORCEMENT SIZE (DIAMETER) AREA OF SHEAR REINFORCING Av = 0.31 in Hw r� P := 0.0025 + 0.5•I 2.5 L • �ph — 0.0025 p = 0.00258 w, Pv:= if(pn < 0.0025,0.0025,if(pn < Ph,Pn,Ph)) Pv= 0.00258 s1 = 18in SPACING OF VERTICAL REINFORCEMENT a.i USE (5) #5 EACH FACE VERTICAL REINFORCING FULL HEIGHT OF PIER NOMINAL SHEAR STRENGTH: Ph = 0.00297 WEB THICKNESS X LENGTH IN DIRECTION OF SHEAR FORCE Acv= 463in Vu1 Vn := Acv + ph-fypsi) V = 148k IC := IC = 0.19 Os•Vn 1� I . l I LATERAL DESIGN I PANEL DESIGN: TYPICAL PANEL TO FOOTING CONNECTION: • I CONNECTION OF ANGLE TO FOOTING EMBED: AXIAL := 0.k LOAD CASE 0.6•D+ OMEGA•E 1 SHEAR := 37•k I MOMENT := 4.375•ft•k WELD TO EMBED PLATE: I b := 1.5•in d := 12•in A= 2•b + d A = 15in N b2 nin 2•b + d N= 0.15 in I CY d 2 Cy =bin Cx: =b — N Ili . Cx = 1.35in d 2 3 2 2 S := b•d + 3 Sx = 66in2 (2•b + d) _ b •(b + d) = 253.91 in 12 2•b + d _ MOMENT k f1 ' S f1 = 0.795— x in I _ SHEAR SHEAR•eb•Cx k f2 ' A + f2 = 3.224 - in t 0.1875•in I AXIAL SHEAR•eb• k f3 : A + J f3 = 3.366— Fu 70• ksi E := 0.707 f := 1.7 2 2 2 fw = tilfl + f2 + f3 f w = 4.728 n Fw:= f•E• Fw = 4.732 k f w = 1 in F I I I ma ma — 1 , . ' 111•11 OM • MI MI UM MI all . ii ir_ , ___ i I • I I I 4'. I C. c: . I 1 11 t, itii , F 1 IV a1/0■ ) C-craXi0(7)1' , 1 i • 1 • I WOWCl2K 21714 PV-V,I VXV . I-MU WV 1 P(.2k 1 AV 1 / IA --1, . 1 1 . g I , 1 1 . . . ;• ; 1 , 1 . . ; ; 1 , ; . ; • ; ; 1 ; . , . , 1 . . . . ; . . 1 ; • 1 . 1 ; ! i ; 1 __ -- _______ 4 4 I ■ 4 • I I I ,I . i 41.1 I • I , ' 1 , I . i i s 1 . 1 . 1 `I • I •■ \ I ' ■ I • I \( I I I I \ i • I I I I . I I \ . I 1 I 0.1 . 108.6 32.8 73•3 I I 1 I 1 ' ' 1 • a, i ; • . i I voitesioc I I Clkl*" 1 e- 70 . 14) like I I I I I ! i Results for LC 6, 1.2 D + 1.0 E + 0.5 L + 0.2 S 1 1 • Member Axial Forces (k) 1 1 Afghan Associates, Inc. June 15, 2005 I June 15, 2005 . 1 June 15,i 2005 I HAMID AFGHAN 1:24 PM 1 1:24 PM 1:23 PM! ; . ! ! PANEL [22] 5FPO Panel 22 R05 5FPO.r3d ! Panel 22 R05 5FPO.r3d - Panel 22 R05 5FPO.r3d I I - 111111 - 111111 - 11111 - --111111 7 - - -IIIIII--- .___ MI MINI dig ---- .111 --- 111111 - {, we am so ow No is. i ow - , -- --, 1 . i I i i F . ! . . • . f• A_. t\k .„ - uce-.Ct.0). . , ...-- , - - 7, toeolt: reA I ' c.. . . . ; . • . : 1 ..... sz 1 I , 61 'i i , . . I i , . : , . . , . . , . , • . 1 , 1 i I , . ., : . . . I 1 • ._ ... 1 4 i . . . 1 1 . 1 ' ! I : -203.3 1 1 1 . 1 i 1 ! i . , •--:. \ 1 1 . i 1 1 I • \ ! I , ' \ I i ! . . ! i .. i 13.7 • ' 1 8 -31.1 94.6 • I . . 1 __ • _ , _ __. 1 I .....- . 1 1 . 1 . • e - — CP Results for LC 6, 1.2 D + 1.0 E + 0.5 L + 0.? S ! . 1 Member Axial Forces (k) I , . Afghan Associates, Inc. _______ June 15, 2005 June 15, 2005 June 15,12005 ! HAMID AFGHAN . i 2:01.PM 2:02 PM • 2:02 PM ------- • _____ • PANEL [2]*5FP0 Panel 2 RO1 5FPO.r3d . Panel 2 RO1 5FPO.r3d Panel 2 RO) 5FPO.r3d I • OM 1111111-111111-1111111-111111-111111-11111-1111111_11111V MIMI - • 1•11 NM I r_1_ 1 11111111 1 . ',... ,.. - _ 1 . • . . . . I . ' . . i • ' I l . . I . ' ,• 1 • , . _ . 1 1 . ' • 1 . . . I . • . I . i I , . . ' ' I• , • l N ! . 1 1 l , i . I . 1 , I I , , I 3 __ ....._ " _ 4 ! — 4 , I i • ■ . I -193.5i ■ I \ i \ I , \ i .., i ■ \ . I 1 \ . . I \ I 1 , I l ■ i ' .• 2.6 -30.2 . 95.5 I 1 I — --- A, 1 1 1 ' 1 ! Results for LC 7, 0.9 0 + 1.0 E 1 C....... Member Axial Forces (k) , •-4 Afghan Associates, Inc. . June 15, 2005 - June 15, 2005 i . , 1 June 15i, 2005 HAMID'AFGHAN . 2:04 PM — 2:04 PM i 2:04 Prvi • PANEL [ 2 ] 5FPO Panel 2 RO1 5FPO.r3d Panel 2 RO1 5FPO.r3d Panel 2 Rql 5FPO.r3d . 1 1 e l -,- i • I ) ) 10 \-0g7:-- IA, CVO/ M--1 I C 1 I 1 m(9'/10 . 16 0 N 1 �1 1'( �I I vo t tin• IV . 1 Q 1 ��1�� 1(,ittel�p i�'llQ�tii° ' 1tkr4 1 w �lil. 6 .. !i t 1 , ] 11 i I GHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS I 6960 S.W. VARNS ST., S UITE 200 JOB NO TIGARD REGON 972 (503) 620 -3030, FAX 620 -5539 SHEET Ir OF I E. X VtAXA:AlkXr le . , lar4 , • leN1Q, (ci, fte.5 feti- 1 . _ ,• -1.14 A LW ) qt* A 1 ....,., ..,.. I 1-c2 I I - . I ,I1 it I*1 I V ; VCIT-IV .. _. _ I 20k-ft II . . . II 1 I ■ v . ' ' tro-h , ,s# I „, . 0 . 490 6.7; I • , . • oeasdusrt:sBfoLrCL16 T1OTIBRIOSNION ber z Bending Moments (k-ft) ' Lion units are k and k-ft "(Afghan Associates, Inc. June 8, 2005 I. Hamid afghan 12:46 PM PANEL [22] - TORSION ON BEAM SECTION OOP TORSION ON BEAM SPRIN... I _ X _ Gaya' k 5' f>t\IF L Rera klAttA -18k -41.6k WO-% ‘ -41.6k -20.8 -120.1 .864k/ft • Irli11111111111 111111111111111/111111111111MARROMMEMOMMO 4 10 181.8 *tpartA 6ovioifio,tvv o tiv-Act---) 1 47 (V 91 k) 1 \iNct c (I, G ct, 41 (94q2 0 ..ao,90 24- azta t\ (27 wo t. Cfv • :49 r. DLS as s 'ember y Bending Moments (k-ft) ▪ Htf ghan Associates, Inc. June 13, 2005 ▪ HAMID AFGHAN 1:50 PM Vu PANEL [22] FLOOR BEAM Panel 22 ROB 48.r3d • I Y X I I 1 -11.4k -26.2k -26.2k -13.1k PIRI Itillill= 10.05k A loilliMISLAMWA AIM. /\ AN\/\ ;,0: / V 4 I ' u.4 2 v w v i 258.5 i Ari, a ogil, s I LNG - -4 ,. 1,, c'.c ' I E , I I Loads: LC 6, 1.2 D + 1.0 E + 0.5 L + 0.2 S Results for LC6,1.2D +1.0E +0.5L +0.2S ember y Bending Moments (k -ft) • I Afghan Associates, Inc. June 13, 2005 HAMID AFGHAN 1:53 PM V /0 PANEL [22] FLOOR BEAM Panel 22 R06 48.r3d U k tziowat..x).-1?, ___ ____. I ' fo ,n,c4,14 t/fstR2 @vovi. . I 69or ciA-, i, 4A4i,v \b67. eviA- 47 l/. .t.- o ; 6 i P li(•1 ( 6 7°1(5 r (1/ " Af °11 0 ' Z 10 e/f I • 10-ov 1 ok--1 or' 6 41A - 10- 1 _ I ,. /.., / 4,lgisi \ /lib. \ ., 1.)tWt2 • ek g,ovriorA or wr .. ... , — __ III mmilmem ''''''. '' 7 armisc - \-- /- — -- -. /----, '-'-' — \ td CilbOtutr4A,C0°). 47o 0 I 7-------7-- L■ f ItC0 C 1 ° .1 4 ___ _____ i : . lic., 407,,k, toe° 4° ---------- , I • 1/.:00. l' . rir,o'VA ,cte cial)ol-tri I.-) ( I 1 tur-11-6/*c ,ovo c.orviciet c_61.,+-5t--(kot- t‘,1) a8)-- /iLvitk' : vg-Tr-tyt LA742 1 - kAW VI q-wifto v ., 0.00a6 .(.,,c,i , I 1\xu =, (47, 0 3.0. e„ ,,- V Mu 5, .1-ia ti I t.Jk -- 0.00Veav I 1 . J.00153 11( s' c2, 61p47 41,4 1,40W1 t, 6014-0v-, > .(,, z 0.0o il, 1>i --:..-- 10(1- "HAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS JOB NO 11179R 200 SHEET OF I C . 7) Ck". L t) At -;---V-- --41 _ I ri 7 1/ tV lOr' I 0 (a1 )124 WW1 91 f'OR °- k4"17C 0, ti 0a9.-/L4 / I , k I , 6pir-ti, 0 ev ft4i-v f-144-' fortoottztv, I NIP I II I I I I II , a 41 GHAN ASSOCIATES, INC. BY DATE CONSUMING ENGINEERS JOB NO I 6960 A FS6WOVRAERGNcSNS . 1 I T E 200 (503) 620-3030, FAX 620-5539 SHEET t OF .12ic I Y i , --rio-A.--mt):90 _ _ _ __________________ ____ w _.._, k _._ 1!.1. I V 4 ■ r I I i �v I 1 i I I -11.4k -26.2k 13.11CI .864k/ 111.11 It � i 4 IP° i I a i (DV V D .0 4 ,clo C. 6 51.1 j llAj z Lc.C9X'T,e,.[1)( (9/019' _ ,_' i I l 3 I ; ei& tk WeliC' v. ) s- C, 0 . - ' ‘, i i i I 1 1 Loads:, 0L + Results for LC6 LC 1.2 5 D , 1.2 + D 1.O + E1 1.6 + L + .5 0.5 S 0.2S • ember z Shear Forces (k) I /Afghan Associates, Inc. June 13, 2005 HAMID AFGHAN 1:55 PM PANEL [22] FLOOR BEAM Panel 22 R06 48.r3d r ih Y _ ...__ X ... r izlam _ - -. 51 a '° (� (�)i✓�7 .27 ms's � ,� 1 ViPV `i ktr LIJ2 a w I I, .-. 1 \ 2-7------ . \11 — 8 2 ' -2.8 I . D- a_ q 5- f . ' e2s . \:k i 1! ' I alz 7 / � .a o.�d '� - k - P ✓ I I 1.91 I Loads: LC 1, TORSION Results for LC 1, TORSION 'ember z Bending Moments (k -ft) action units are k and k -ft l Afghan Associates, Inc. June 9, 2005 Hamid afghan 9 3:27 PM I PANEL [22] TORSION ON ROOF BEAM OOP TORSION ON BEAM SPRIN... V 24,11 1�! x 1 "IP 3.05k -7.8( 7 8 { -3.9k [ 67.3 o ck-creacz gy �� rP -61 liv 1 r • ki\ Magi po• j 3 7 S } i ! I I i # I 3 j _.. .. .. I L, 0 Results oads: for LC 5 LC 1.2 5 D , 1.2 + D 1.6 + L 1.6 + L + S0.5 S )mber y Bending Moments (k -ft) I ' Afghan Associates, Inc. June 13, 2005 HAMID AFGHAN 3:08 PM �, PANEL [22] ROOF BEAM Panel 22 R06 48.r3d t L Y �IJV IAa! , . 10E' X r (- .47,,,,,„4:„.„e„..w.„_________ _______ _________________________ ___________. I -2.3k-.864k/ft 6 -6( -3k ■,'��* 6.325k ' ' ALOW�n1AI�► �r"�1� ��EMOM i.�.�.� .:• /`/�AAA� . • r 6 1 w KA V -t7%'t 117.4 1 I U `4(1 A' j ( t ., 0 .06 1 k12 (�, .s a,eto.� f v 1 I 1 K.- - 'aill I j 1 Pill t 1 1 1 i i, I I j 1 i 1 I 1 1 I I 1 I 1 1 I 1 1 II Loads: LC 6, 1.2 D + 1.0E + 0.5 L + 0.2 S Results for LC 6, 1.2 D + 1.0E + 0.5 L + 01 S Imber y Bending Moments (k -ft) I Afghan Associates, Inc. June 13, 2005 HAMID AFGHAN 3:09 PM PANEL [22] ROOF BEAM Panel 22 R06 48.r3d C tct I W141 141, , 1Y //- 'IL X °' *`r tai ) Rio' rr143 - .. - .864k /ft –~ . �— I -2.3k 'IIIIIII '6 < . g � -3k --- _._._.._._- -----_. I --71.1.11111111111111.11111111111111111111111111111111111111 6 i 21.2 I I 1 1 I sOnl C P - k&t 1 2 \ic?2 - V--0 M ` t'°� -,) ° •(-'` i 1 3 1 I 1 A 6 .1.6 4 ,; ! 1 I 1 f I v .0 1j) � it �� _ 6-_ y ^"w✓ 1 PO . 1 y� . A N I - = id >. L'b , 4 I t I I 7 1 1 ' i G - C I 1 1 I i j I I Loads: LC 6, 1.2 D + 1.0 E + 0.5 L + 0,2 S Results forLC6, 1.2 D +1.0 E +0.5 L +0.2 S 'ember z Shear Forces (k) I ,,ghan Associates, Inc. June 13, 2005 HAMID AFGHAN 3:1.0 PM PANEL [22] ROOF BEAM P anel 22 R06 48.r3d 1' ? l I s_ _ • _ I 1 ,,,,iwo Lau - 0-) kti tlY-t-4(v 1 c. _4169 I r <VI ) 2 l ''kjl() M , 1 2 _ , 94-e r- I °e -1 OtO I VA: Mil I ' ‘1._______ _--- --- • • ,- "r) 9',Or ‘-'' ( 00 e t k l u pp „ „.... l. v" ty■611 • AA00 o. kii 4 I I-2,v Net-L-v. / 111 cf100 90 .(c 104V • - ' I t-270 t14/i/ I IGHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS an 6960 S.W. YARNS ST., SUITE 200 JOB NO I r(g3r6D2'0?3OrAIX976T5539 SHEET________ OF 3 1 16 _ ___ :_______. _141 I 1, I ) k ; LA 1-1 ''' II , • I -41.e 1 . el„--- ti" oo' I ItA - /1, • c PPP 'o'a'r ivere ..- 2Af7" v mod" Viefvlek. , I 1 . I b ' ' e. I AeCo �15 o �° • I ) la I \ t\ I GHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS I 6960 S.W. VARNS ST., SUITE 200 JOB NO TIGARD, OREGON 97223 (503) 620 -3030, FAX 620 -5539 SHEET OF Y X S 8 -10.85 4 I 234k -ft 1 -14.4 6 I 1' -60.2 i •.732k -ft -15.. 4 3 2 1 I ads: LC 5, 1.2D + 1.6L + 0.5S Highan Associates, Inc. June 14, 2005 Hamid afghan 9:48 AM PANEL [22] LOADING OOP r02.r3d ' "�), 1 Ex 1140 ____ 1 8 I F-7.2 I I I! 111 I 5 AIM Ni 21.6 ti . -18.2 Ir -14.4 / 2.8 •• 1 Results for LC 5, 1.2D + 1.6L + 0.5S iber z Bending Moments (k -ft) 'A fghan Associates, Inc. June 13, 2005 amid afghan 4:01 PM i PANEL [22] OUT -OF -PLANE OOP r02.r3d If 776— LATERAL DESIGN WALL DESIGN: OUT -OF -PLANE PANEL 1 22 1 : PIER 1 k1 := 1.0 SLENDERNESS COEFFICIENT Lo := 15•ft UNBRACED LENGTH b := 48•in WIDTH OF WALL CONSIDERED h := 9.25•in WALL THICKNESS heff := h - REVEAL EFFECTIVE THICKNESS heff = 8.5in ' r:= hell RADIUS OF GYRATION r = 2:45 in �2 I SR := k1 Lu SR = 73.4 > SRi = 30 LONG COLUMN WITH SLENDERNESS EFFECTS r Ec = 3834254 psi MODULUS OF ELASTICITY FOR CONCRETE Es = 29000000 psi MODULUS OF ELASTICITY FOR STEEL REINFORCING: INSIDE FACE "bar 8 barno := 5 REINFORCEMENT SIZE Asi := "bar•Abar Asi = 2.48in AREA OF STEEL di = 2 in DISTANCE TO REINFORCING OUTSIDE FACE I r r := 8 b = 5 REINFORCEMENT SIZE Aso "bar•Abar Aso = 2.48 in 2 AREA OF STEEL 1 do = 6.5in DISTANCE TO REINFORCING I 1 I LATERAL DESIGN I WALL DESIGN: OUT -OF -PLANE PANEL f 2 2 1: PIER 1 I LOADS AT CRITICAL SECTION LOAD CASE: 1.2•D+ 1.61 + 0.5•S I P u := 25.25•k FACTORED AXIAL LOAD Mu:= 21.6•ft•k f 1= 7.2•ft•k 1M:= 21.6•ft•k FACTORED MOMENTS 1 MOMENT MAGNIFICATION PER ACI 318R -02 SECTION 10.12.3 I b •heff I : 12 I = 2456in GROSS MOMENT OF INERTIA do -di 2 do-di) 2 I 4 Ise := Asi• 2 + Aso I 2 J Ise = 25.11 in 59.5•k \ Rd := 59.5•k +49.5•k 13d = 0.55 (0.2.Ec.Ig + Es•Ise 0.4•Ec•Ig 2 I El := mint 1 +pd 1 + (3d )) El = 1689635in 2 .k l n I P := 2 P 515k Oct Lu) I rr M1 / M1 Cm: =i 0.6 +cu•I0.4•M +cu• 0.4• Cm = 0.73 I M2,min := Pu•(0.6•in + 0.03•h) M2.min = 1.8ft•k I M2ns max((M2.min M2)) M2ns = 21.6ft•k M1 =I M2.min >M2,1,0.6 +cu• 0.4• Cm =0.733 I 2 i Cm Cm • Sns: =if <1,1, Sns = Pu P 1- 1- 0.75•Pc 0.75•Pc I Mc := 6ns•M2ns Mc= 21.6ft•k t I l ip LATERAL DESIGN: 1 WALL DESIGN: OUT -OF -PLANE PANEL f 2 2 1 : PIER 1: LOAD CASE: 1.2•D + 1.6•L + 0.5.S ' Pu =25.3k Of = 0.87 Mc = 21.6 ftk OVERTURNING MOMENT I NA := 2.133.in NEUTRAL AXIS DEPTH COMPRESSION REINFORCEMENT: CONCRETE: C 0.85•fo•psI.0.5•NA•b C = 174k N ' NUMBER SIZE SPACING STEEL AREA BAR STRAIN INDIVIDUAL BAR FORCE AR STRESS n := 0 bar := 5 s := 2•in 2 Asa = 0 in 6sa = 0.00019 fsa = 5.42 ksi Ca = 0 k Ann := 0 burr.= 5 IA := := 0•in 2 Asb = 0 in Esb = 0.00019 f = 5.42 ksi Cb = 0 k I \ n:==0 bar: =5 so: =0•in 2 Asp = Oin Esc= 0.00019 fs = 5.42ksi Co= Ok n::==0 burr. =5 sd: =0•in 2 MA Asd = 0 in esd = 0.00019 f = 5.42 ksi Cd = 0 k n � 0 bar := 5 s := 0.in 2 ASe = 0 in ese = 0.00019 f = 5.42 ksi Ce = 0 k I TENSION REINFORCEMENT: Ctotal = Ok NUMBER SIZE SPACING STEEL AREA BAR STRAIN BAR STRESS BAR FORCE A n := 8 bar := 5 s1 := 2•in 2 A = 2.48 in es1 = 0.00614 fs1 = 60ksi Ti = 148.8k n := 2 bar := 5 s2 := 9•in 2 As2 = 0.62 in 6 s2 = fs2 =0ksi T2 =0k I n := 2 bar := 5 s3 := 9in 2 As3 = 0.62 in 6s3 = 0 f = 0 ksi T3 = 0 k n := 2 bar := 5 s4 := 9in 2 I As4 = 0.62in s54 =0 fso = 0ksi T4 =0k n := 2 bar := 5 s5 := 9•in 2 A = 0.62 in 6s5 = 0 fs5 = 0 ksi T5 = 0 k I n := 2 bar := 5 s6 := 9•in 2 Asb = 0.62 in 6s6 = 0 fsb = 0 ksi T6 = 0 k n := 2 bar := 5 s7 := 9•in 2 As7 = 0.62 in 6s7 = 0 fs7 = 0 ksi T7 = 0 k n := 2 bar := 5 sg := 9•in 2 As8 =0.62 in 6sg =0 fsg =0ksi 1 =0k Ttotal = 148.8k I ZFb :_ ( C + Ctotal) - Ttotal ZFb = 25.25k M = 79 ftk Mn2.design 4f I Mn2.design = 69 ftk > M = 22 ftk I ;1 ,[21. X M 8 1 .09k/ ..234k -ft b r - 1.c,; „` • 6 CIO -. _ - MCI INC t i .113 .j MEV .066k -ft III .09k/ Impa CI • MCA 3 t t NMI NMI NMI t 1B• m_ • ` 2 09k/ ,t 41 1 I ,ads: LC 6, 1.2D + 1.6W +0.5 L + 0.5S I Afghan Associates, Inc. June 14, 2005 Hamid afghan 9:48 AM fgfb PANEL [22] LOADING OOP r02.r3d ,.x Y 1- 8 _ iil ; I 6 -7.4 Ai 12.5 5 0 22.3 i 8.8 i .1 i 1 F-5.8 :r 1 I esults for LC 6, 1.2D + 1.6W +0.5 L + 0.5S mber z Bending Moments (k -ft) iii /Afghan Associates, Inc. June 13, 2005 ll Hamid afghan 4:02 PM PANEL [22] OUT -OF -PLANE OOP r02.r3d I 1110 . LATERAL DESIGN • I WALL DESIGN: OUT -OF -PLANE PANEL f 2 21 : PIER 1 LOAD CASE: 1.2•D + 1.6.W + 0.5.L + 0.5•S I k1 := 1.0 SLENDERNESS COEFFICIENT I Lu := 15•ft UNBRACED LENGTH b := 36•in WIDTH OF WALL CONSIDERED I h := 9.25.in WALL THICKNESS hell:= h - REVEAL EFFECTIVE THICKNESS heff = 8.5in I heff r:= RADIUS OF GYRATION r= 2.45 in I SR := k1 r Lu SR = 73.4 > SRI = 30 LONG COLUMN WITH SLENDERNESS EFFECTS Pi Ec = 3834254 psi MODULUS OF ELASTICITY FOR CONCRETE E = 29000000 psi MODULUS OF ELASTICITY FOR STEEL I REINFORCING: I INSIDE FACE nber 8 barno := 5 REINFORCEMENT SIZE I Asi:= nicer Asi = 2.48in AREA OF STEEL di = 2 in DISTANCE TO REINFORCING I OUTSIDE FACE I i M= 8 law 5 REINFORCEMENT SIZE Aso nbar Aso = 2.48in AREA OF STEEL I do = 6.5in DISTANCE TO REINFORCING 1 6 I tetio I li, . . . I LATERAL DESIGN I WALL DESIGN: OUT -OF -PLANE PANEL f 2 2 1 : PIER 1 LOAD CASE: 1.2.D + 1.6.W + 0.5.L + 0.5•S I LOADS AT CRITICAL SECTION P := 25.25•k FACTORED AXIAL LOAD I M u := 22.3•ft•k nv�n M := 7.4-ft•k itiv� MM� := 22.3•ft•k FACTORED MOMENTS I MOMENT MAGNIFICATION PER ACI 318R -02 SECTION 10.12.3 b•heff 3 1 Ig 12 Ig = 1842in GROSS MOMENT OF INERTIA l 2 2 Ise di j +Asa•( (do 2 d �J I = 25.11in 59.5•k P d 59.5•k +49.5•k P d =0.55 r0.2•Ec•I + Es•I 0.4•Ec•Ig 2 El := min El = 1384990in .k I \ 1 + 1 +Pd 2 n •EI Pc := Pc = 422 k I ( k1 ' L u) 2 M1l ( M111 Cm: =i 0.6 +cu•!0.4•— I<0.4,0.4,0.6 +cu• 0.4• —/J Cm =0.47 I M2 M2 I M2.min Pu•(0.6•in + 0.03•h) M2.min = 1.8ft•k M2ns max((M2.min M2)) M2ns = 22.3ft•k I / M = I� M2.min >M2,1,0.6 +cu. 0.4.1-1)1 Cm =0.47 I Cm Cm Sns: =if <1,1, Sns =1.09 1 - Pu 1 Pu 0.75•Pc 0.75.Pc Mc := 6 ns . M2ns Mc= 24.2ft•k f4-► I I LATERAL DESIGN: I WALL DESIGN: OUT -OF -PLANE PANEL f 2 2 1 : PIER 1 LOAD CASE: 1.2.D + 1.6•W + 0.5•L + 0.5•S I Pu =25.3k tiff = 0.86 Mc = 24 ft k OVERTURNING MOMENT I NA := 2.845.in NEUTRAL AXIS DEPTH COMPRESSION REINFORCEMENT: CONCRETE: C.= 0.85•f NA. b C= 174k AAX I NUMBER SIZE SPACING STEEL AREA BAR STRAIN INDIVIDUAL BAR FORCE BAR STRESS n := 0 b 5 sa := 2.in 2 A = 0 in Esa = 0.00089 fsa = 25.84 ksi Ca = 0 k MA := 0 bar : 5 sb := 0•in A = 0 in 2 esb = 0.00089 f = 25.84 ksi Cb = 0 k I n = 0 bar := 5 so := 0•in 2 A = 0in eso= 0.00089 fso= 25.84ksi C 0k AM n := 0 bar 5 sd := 0•in 2 A = 0 in Esd = 0.00089 f = 25.84ksi Cd = 0 k O ASe = 041 ese = 0.00089 f = 25.84 ksi C = 0 k I TENSION REINFORCEMENT: Ctotal = Ok NUMBER SIZE SPACING STEEL AREA BAR STRAIN BAR STRESS BAR FORCE I ^ 8 (bar := 5) s1 := 2•in �^ As1 = 2.48 in 2 es1 = 0.00385 f = 60ksi T1 = 148.8k (n := 2) bar := 5 s2 := 9•in 2 As2= 0.62in es2 =0 fs2 =0ksi T2 =Ok I (n := 2) (bar := 5) (s3 := 9in) A = 0.62 in 6 s = 0 fsa = 0 ksi T3 = 0 k (n := 2) (bar := 5) (s4 := 9in) 2 As4 =0.62 in es4 =0 fs4 =0ksi T4 =0k (n := 2) (bar := 5) (s5 := 9•in) 2 A = 0.62 in es5 = 0 fs5 = 0 ksi T5 = 0 k I (n := 2) (bar := 5) (s6 := 9•in) Asb = 0.62 in esb = 0 f = 0 ksi T6 = 0 k (n := 2) (bar := 5) (57 := 9•in) 2 As7 =0.62 in es7 = 0 fs7 =0ksi T7 =0k I (n := 2) (bar := 5) (sg := 9•in) 2 Asg = 0.62 in esb = 0 fsg = 0ksi Tg = 0k Ttotal = 148.8k (EFb := (C + Ctotal) — Ttotal) EFb = 25.3 k Mn2 = 76 ftk Mn2.design Ilof•Mn2 I . Mn2.design = 65 ftk > Mc = 24 ft k V III Y Il 1 z o .x IMO -10.85 +a I I k -ft ! .09k /ft MI I -14.4 +' 7 � ' �08ic NMI MIN NM NMI MIIII NM MIMI 7 -38.2 + I rA i�N � Alm" PP aim nal .09k/ft EMI I MI iMI �Oftk IMM immo MIMI mum I MIMI MEM mum INIIIM MEI MEM I I -1 -42 ft MI NM M 41 P1 - .09k /ft I I ads: LC 6, 1.2D + 1.6W +0.5 L + 0.5S -; - afghan Associates, Inc. June 14, 2005 Hamid afghan 9:49 AM PANEL [22] LOADING OOP r02.r3d iii; ELX I 8 I 1 — r; -7.6 I / _ 6 I I 1 5 OD III w -18.9 3 -8.4 I I I I 0 .. 2 Al • 1 I Illi esults for LC 6, 1.2D + 1.6W +0.5 L + 0.5S ember z Bending Moments (k -ft) II !Afghan Associates, Inc. June 13, 2005 Hamid afghan 4:04 PM PANEL [22] OUT -OF -PLANE (INWARD) ooP r02.r3d 1 4`4 I 1 6 . I LATERAL DESIGN I WALL DESIGN: OUT -OF -PLANE PANEL f 2 2 1: PIER 1 LOAD CASE: 1.2•D + 1.6.W + 0.5L + 0.5•S I k1 := 1.0 SLENDERNESS COEFFICIENT Lu := 15•ft UNBRACED LENGTH I b := 36•in WIDTH OF WALL CONSIDERED I h := 9.25•in WALL THICKNESS heff:= h — REVEAL EFFECTIVE THICKNESS hell= 8.5in I r:= heff J12 RADIUS OF GYRATION r= 2.45 in I SR := k1 r Lu SR = 73.4 > SRi = 34 LONG COLUMN WITH SLENDERNESS EFFECTS PI° Ec = 3834254 psi MODULUS OF ELASTICITY FOR CONCRETE Es = 29000000 psi MODULUS OF ELASTICITY FOR STEEL ' REINFORCING: INSIDE FACE I nbar 8 bar := 5 REINFORCEMENT SIZE I Asi nbar•Abar Asi = 2.48 in 2 AREA OF STEEL di = 2in DISTANCE TO REINFORCING I OUTSIDE FACE = 8 b = 5 REINFORCEMENT SIZE I Aso nbarAbar Aso = 2.48 in AREA OF STEEL do = 6.5in DISTANCE TO REINFORCING I . I I 1 16 I Ill 1 LATERAL DESIGN I WALL DESIGN: OUT -OF -PLANE PANEL r 2 2 1 : PIER 1 LOAD CASE: 1.2•D + 1.6•W + 0.5•L + 0.5•S I LOADS AT CRITICAL SECTION I Pu := 63.5•k FACTORED AXIAL LOAD Mu := 18.941.k F 0.ft.k III=:= 18.9•ft•k FACTORED MOMENTS I MOMENT MAGNIFICATION PER ACI 318R -02 SECTION 10.12.3 3 I Ig := b 12ff Ig = 184211 GROSS MOMENT OF INERTIA (d di ) do - di I Ise Asi 2 + Aso' I 2 J 2 Ise = 25.11 in 59.5k \ \\ PP 13d _ 59.5.k+49.5•k Rd =0.55 r( + Es•ise 0.4•Ec•Ig 2 I El := mint I 1 + Rd 1 + Rd J J El = 1384990in .k 11 71 . El I Pc := 2 Pc= 422k (k1 L0 I C i1[0.6 +c I<0.4,0.4,0.6 +c Cm =0.6 J I M2,min := Pu•(0.6•in + 0.03•h) M2•min = 4.6ft•k I M2ns := max((M2.min M2 )) M2ns = 18.9ft.k M1 I ={M2 M2,1 0.6+ cU{0.4.M Cm= 0.6 2 C C Sn =if <1,1, 8 n =1.25 P P 1- 1 l e. 0.75•Pc 0.75•Pc ■ Mc i= 8 ns•M2ns Mc = 23.6ft•k I e 6C, I l ip LATERAL DESIGN: I WALL DESIGN: OUT -OF -PLANE PANEL 1 2 2 1 : PIER 1 LOAD CASE: 1.2•D + 1.6•W + 0.5•L + 0.5•S 111 Pu = 63.5k 44 = 0.8 Mc = 24 ftk OVERTURNING MOMENT 1 NA := 3.47•in NEUTRAL AXIS DEPTH COMPRESSION REINFORCEMENT: CONCRETE: �= 0.85•fo•psi•0.5•NA•b C= 212k NUMBER SIZE SPACING STEEL AREA BAR STRAIN INDIVIDUAL BAR FORCE BAR STRESS I n := 0 M 5 sa: =2•in 2 Asa = 0 in esa = 0.00127 f = 36.86ksi C = 0 k n := 0 bar := 5 sb := 0•in 2 Asb = Oin esb = 0.00127 f = 36.86 ksi Cb = 0 k ^n`-- 0 bar 5 so:= 0•in 2 Asc = esc= 0.00127 fso= 36.86ksi Cc =Ok O Am n := 0 bar 5 sd := 0•in AAMN A 9 ,„ = 2 Asd = 0 in e sd = 0.00127 fsd = 36.86 ksi Cd = 0 k — 0 bnary 5 se := 0•in 2 Ase = Oin 6se = 0.00127 f = 36.86 ksi C = 0 k I TENSION REINFORCEMENT: Ctotal = 0 k NUMBER SIZE SPACING STEEL AREA BAR STRAIN BAR STRESS BAR FORCE I n := 8 (bar := 5) Si := 2•in 2 A = 2.48 in e51 = 0.00262 fs1 = 60ksi T1 = 148.8k (n := 2) bar := 5 52 := 9•in Asp = 0.62 in es2 = 0 f = 0 ksi T2 = 0 k I (n := 2) (bar := 5) (s3 := 9in) 2 Asa = 0.62 in esa = 0 fsa = 0 ksi T3 = 0 k (n := 2) (bar := 5) (s4 := 9in) 2 I As4 = 0.62 in e = 0 f = 0 ksi T4 = 0 k (n := 2) (bar := 5) (s5 := 9•in) As5 =0.62 in 2 855 =0 f55 =0ksi T5 =0k I (n := 2) (bar := 5) (s6 := 9•in) 2 Asb = 0.62 in Es6 = 0 fsb = 0 ksi T6 = 0 k (n := 2) (bar := 5) (s7 := 9. in) 2 As7 = 0.62 in s57 =0 fs7 = 0ksi T7 =0k I (n := 2) (bar := 5) (sg := 9.in) 2 A58 = 0.62in 8 =0 fsg =0ksi Tg =Ok Ttotal = 148.8k (EFb :_ (C + Ctotal) — Ttotal) Fb = 63.6 k Mn2 = 83 ftk Mn2.design (1 Mn2 Mn2.design = 66 ftk > Mc= 24 ftk r 41 I ., ) ) . L - 'i u -1A-A2p-F tli. 1114,0". . A , . I ,t,i0 . . 1 :t i*.. • , , , ,---.^- I --,........„ , ,...- , I ' - , - - , ,...---. - ' i . ay • - - -_, - --- - . • - • - '----- 1 . • I ' 121, W27, (-14-• . 1 ---------„_ • P. . • . • I --:- . . .V;1\31 '' a- cf. V A to& I fii p Jr I ' on . ti/V -I- k o' rif.A.1- I I . I 1 6, 1,.. GHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS I JOB NO 6960 S.W. VARNS ST., SUITE 200 TIGARD, OREGON 97223 (503) 620-3030, FAX 620-5539 SHEET OF ke e , - ,... .... - -, ® Iv . - - - - , iii. ...k - .. . i ,, ,,_, • _ • 3 4 4 \ , N \ K 5 ' 6.7 17.1 -20.6 , 36 e- )1 LC 6, 1.2 D + 1.0 E + 0.5 L + 0 2 S ■xial Forces (k) \ssociates, Inc. June 13, 2005 . June 13, 2005 June 13, 2005 \ FGHAN 11:30 AM 11:31 AM 11:31 AM PANEL [22] Panel 22 R06 48.r3d Panel 22 R06 48.r3d Panel 22 Ros 48.r3d l NM IMP NO MI 1 MD IIMI OM NIA lir OM Mill MID MIMI MI NM 11 -- - i ; I , I ; ! , t 1 1.' 1 , ; ; 1 1 1 1 , 1 ; 1 i i 1 ; 1 . , 1 ■ 3 3 , 3 4 56 133.41 \ ' g g g • \ 9.6 -10.7 - - 46.8 1 1 . ! . , (1 3 for LC 7, 0.9 D + 1.0 E Results for LC 7, 0.9 D + 1.0 E Results for LC 7, 0.9 D + 10 E . .../ r Axial Forces (k) Member z Shear Forces (k) Member y Bending Moments (k-ft) Associates, Inc. 1 :) 'es nc. , Inc. _ _ __. _ _ • Afghan Associates Inc Afghan Associates, Inc. June 13, 2005 I AFGHAN HAMID AFGHAN HAMID AFGHAN 12:47 FM _ __ _ _ ______ ___ PANEL [22] Panel 22 RO6 48.r3d I ___ _____ 1 I LATERAL DESIGN: SHEAR WALL DESIGN: PANEL 22: SHEAR WALL INFORMATION I h := 9.25•in SHEAR WALL THICKNESS I H w := 15•ft HEIGHT OF SHEAR WALL Lw:= 48•in LENGTH OF SHEAR WALL I = 4000 CONCRETE COMPRESSIVE STRENGTH FOR SLABS AND FOOTINGS (psi) 11 Ec = 3834254psi MODULUS OF ELASTICITY FOR CONCRETE = 60000 YIELD STRENGTH OF STEEL REINFORCEMENT (psi) f psi Ey := E Ey = 0.00207 MAX STEEL STRAIN AT OUTERMOST TENSION REINFORCING Es = 0.003 MAXIMUM ALLOWABLE CONCRETE STRAIN II fc — 4000 P1: =i fc < 4000, 0.85 , i fc >8000,0.65,0.85 -0.05• P1 = 0.85 1000 )� LOAD COMBINATIONS: 1) 0.9•DL +E Put := 29.6•k Madd 0•ft•k ADDITIONAL MOMENT DUE TO UNBALANCED VERTICAL LOADS 1 Vu1 := 10.7•k ULTIMATE DESIGN SHEAR I M u 1 := 56•ft•k + Madd Mu1 = 56 ftk ULTIMATE DESIGN MOMENT I 2) 1.2•DL +E +(f1•L +f2•S) Pu2 := 97.1.k .16 I k= 0•ft•k ADDITIONAL MOMENT DUE TO UNBALANCED VERTICAL LOADS Vu2:= 19.8•k ULTIMATE DESIGN SHEAR Mu2 := 161.4•ft•k + Madd Mu2 = 161.4 ftk ULTIMATE DESIGN MOMENT I MIT I 1 Il i I LATERAL DESIGN: SHEAR WALL DESIGN: PANEL 22: ,II LOAD COMBINATION 1: 0.9•DL + E Put = 29.6 k ( f1 = 0.9 (UBC 97 - 1909.3.2.2) I Mu1 = 56 ft OVERTURNING MOMENT NA:= 11.59•in NEUTRAL AXIS DEPTH COMPRESSION REINFORCEMENT: CONCRETE: := 0.85•f si•0.5•NA•h C= 182k INDIVIDUAL NUMBER SIZE SPACING STEEL AREA BAR STRAIN BAR FORCE BAR STRESS n := 2 b�rN= 5 sa := 3•in 2 Asa = 0.62 in esa = 0.00222 f = 60ksi Ca = 37.2 k I n:= 2 5 Sb := 6•in A5b = 0.624n esb = 0.00067 fsb = 19.44 ksi Cb = 12.05k Oil n:=2 N =5 sc: =6•in 2 Asc= 0.62 in esc= 0 fsc= Oksi Cc= Ok n: 2 b rN =5 sd: =6•in 2 Asd = 0.62 in esd = 0 fsd = 0 ksi Cd = 0 k Dotal = 49.25k TENSION REINFORCEMENT: NUMBER SIZE SPACING STEEL AREA BAR STRAIN BAR STRESS BAR FORCE � , n ::-= 2 MA 5 s1 := 3.in 1 2 As1 = 0.62 in es1 = 0.00865 f = 60 ksi TI = 37.2k � n -- 2 a 5 s2 := 6•in 2 /\ Asg = 0.62 in 2 = 0.00709 fs2 = 60 ksi T2 = 37.2 k n :--2 bar := 5 s3: =6•in 2 A = 0.62 in e = 0.00554 f = 60ksi T3 = 37.2 k � nN- -- 2 bar := 5 s4 := 6•in 2 As4 = 0.62 in es4 = 0.00399 fs4 = 60ksi T4 = 37.2 k n ::==== 2 �bwr •= 5 s5 := 6•in 2 A = 0.62 in es5 = 0.00244 f = 60 ksi T5 = 37.2 k 1 nM. ---- 2 bar := := 5 s6 := 6•in 2 Ash = 0.62 in 2 = 0.00088 fsb = 25.6 ksi T6 = 15.87k AM n := 0 bbarr := 5 s7 := Bin 2 A =0in 6 = 0 f57 =0ksi T7 =0k � n:= 0 bar 5 s8 := Bin 2 Asg = 0 in esb = 0 f58 = 0 ksi T8 = 0 k Ttotal = 201.87 k EFb := (C + Ctotal) - Ttotal EFb = 29.6 k Mni = 514 ftk Mn1.design 4f1•Mn1 ,1 Mn1.design = 462.2 ft > Mid = 56 ft r c-L 1 I LATERAL DESIGN: SHEAR WALL DESIGN: PANEL 22: 1 LOAD COMBINATION 2: 1.2•DL +E+ f1•L +f2•S) 1 Put = 97.1 k 42 = 0.79 (UBC 97 - 1909.3.2.2) M = 161 ft k OVERTURNING MOMENT N N N A:= 14.00.in NEUTRAL AXIS DEPTH SA COMPRESSION REINFORCEMENT: CONCRETE: C := 0.854c.psi•0.5•NA•h C= 220k INDIVIDUAL I NUMBER SIZE SPACING STEEL AREA BAR STRAIN BAR FORCE BAR STRESS n := 2 bar 5 = 3•in Asa = 0.62 in2 esa = 0.00236 fs = 60ksi C = 37.2k � n N ^:= 2 bar = 5 sue:= 6•in 2 1 Asb = 0.62 in e = 0.00107 f = 31.07ksi Cb = 19.26k O. n := 2 = 5 u= 6-in 2 Asc= 0.62 in esc 0 fsc 0ksi Cc= 0k =2 b =5 , =6•in 2 Asd = 0.62 in esd = 0 fsd = 0 ksi Cd = 0 k n MA 0 bbarW 5 se := 6•in 2 Asa =Oin ese = fSe =Oksi Ce =Ok I TENSION REINFORCEMENT: Ctotal= 56.46k NUMBER SIZE SPACING STEEL AREA BAR STRAIN BAR STRESS BAR FORCE 1 A V= 2 b= 5 Iv= 3•in 2 A = 0.62 in Est = 0.00664 f 6Oksi T1 = 37.2k I n :=2 bar 5 s ` =6•in 2 As2 = 0.62 in es2 = 0.00536 f = = 6Oksi T2 = 37.2 k nnnn:= 2 bar := 5 / s o le 6. in Asa = 0.62 in2 es3 = 0.00407 f = 60ksi T3 = 37.2k I NN := 2 bar NN := 5 N d = 6 in 2 m As4 = 0.62in es4 = 0.00279 f = 60ksi T4 = 37.2k n := 2 bar : 5 = 6•in I Ass = 0.62in es5 = 0.0015 f55 = 43.5 ksi T5 = 26.97k n ` : 2 bar := 5 sue= 6•in ri 2 As6 = 0.62 es6 = 0.00021 f = 6.21 ksi T6 = 3.85 k N n:==2 bar 5 =6•in A = 0.62 in es7 = 0 f = 0 ksi T7 = 0 k nnh 0 bar := 5 sue:= 6•in 2 As8 = Oin esb = 0 f = Oksi Tg = Ok E Fes= (C + Ctotal) - Ttotal EFb = 97k 16 . Ttotal = 179.62k 1 M = 583 ftk Mn2.design 02 Mn2 Mn2.design = 461 ftk > M = 161 ftk t S3 I i _. _ — — I LATERAL DESIGN: I SHEAR WALL DESIGN: PANEL 22: 1 BOUNDARY AND CONFINEMENT REQUIREMENTS: I NOMINAL AXIAL LOAD CAPACITY: A L A = 444in EFFECTIVE SECTION AREA OF CONCRETE I A s t = 6.821n TOTAL AREA OF VERTICAL REINFORCING STEEL 1 P := 0.80•[0.85•fo•psi•(Acv— Ast) + fypsi•Ast] Po = 1516k Pu Put I Pu.design I a• Po Pu.design = 1062k > P = 97.1 k I 1) Pu2 = 97.1 k < 0.10-Ac = 178k P = 1516k NOMINAL AXIAL LOAD CAPACITY Pu2 = 97 k < 0.35•P = 531 k WALL CAN BE USED AS SHEAR WALL 1 Mu1 = 1.31 < 1.00 OR 3 •Acvjc•psi = 84k > Vu1 = 10.7k AND Mu1 = 1.31 < 3.00 Vu1•Lw Vu1•Lw WALL EXEMPT FROM BOUNDARY ZONE DETAIL REQUIREMENTS 2 h • Lw 2 Pu2 = 97.1k M = 161 ftk Ac = 444 in := 6 S = 3552in I Pu2 Mu2 MAXIMUM EXTREME COMPRESSION FIBER STRESS fcc Acv + S fcc = 764psi ASSUME LINEAR ELASTIC CONDITIONS AND UNCRACKED 111 THEN SPECIAL TRANSVERSE REINFORCEMENT PER IF fcc= 764 psi < 0.2-fc.psi = 800 psi IS NOT REQUIRED AS BOUNDARY ELEMENT I I I I I I . I LATERAL DESIGN: 1 SHEAR WALL DESIGN: I , PANEL 22: HORIZONTAL REINFORCING: 1 Lw ll s2.max min�� 3 3•h 18•inJ) s2.max = 16in MAXIMUM SPACING 1. barno := 3 REINFORCEMENT SIZE (DIAMETER) A = 0.11 in AREA OF SHEAR REINFORCING v CI G I s2 = 8 i SPACING OF HORIZONTAL REINFORCEMENT -- 6.in 2A Ph := h .s2 Ph = 0.00396 < 0.0025 I USE #3 TIES AT 6" O.C. REINFORCEMENT FULL HEIGHT OF PIER Oil Ate= h•L Ac = 444in WEB THICKNESS x LENGTH IN DIRECTION OF SHEAR FORCE THEN HORIZONTAL REINFORCING TERMINATING SHEAR WALL IF Vu1 > Acv�c EDGES SHALL STANDARD HOOK AROUND EDGE REINFORCING (UBC 97 - 1921.6.2.2) OR U- SHAPED REINFORCING MATCHING THE HORIZONTAL BARS Acv = 28k SIZE AND SPACING SHALL LAP- SPLICE WITH HORIZONTAL BARS VERTICAL REINFORCING: I L s1.max min ( 3.h 18•in)J s1.max = 16in MAXIMUM SPACING I b= 5 REINFORCEMENT SIZE (DIAMETER) A = 0.31 in AREA OF SHEAR REINFORCING I Hwl pn := 0.0025 + 0.5•I 2.5 — Lw I•�ph — 0.0025 pn = 0.00159 I Pv:= If(pn < 0.0025, 0.0025,if(pn < Ph,Pn,Ph)) Pv= 0.0025 s1 = 12in SPACING OF VERTICAL REINFORCEMENT USE #5 AT 6" O.C. VERTICAL REINFORCEMENT FULL LENGTH OF WALL 16 NOMINAL SHEAR STRENGTH: Ph = 0.00396 Acv = 444 in WEB THICKNESS X LENGTH IN DIRECTION OF SHEAR FORCE I Vn Acv(ac Psi + ph•f Vn = 162k IC:— Vu1 IC= 0.11 4)s•Vn i r53.--- , I ' ) ) . t4P4:W Pa-Aroi lib . ,11 ' I )c- lliV . kt I Pi'. 1 .71 , 1 9 - ' ° NI I 0 : (1,f 1/1 I' ___k_ I , 11 i ----- : . • Aqt0 1 276,6o 0 v) I 4700v-' . 4 )CltPlt‘ftt1 . 0 Cu tklimM) `11 kt- 4 10 •1 1 . ■ I I • 1 V-45 i. , : 4 1 .7(,•9.0 ' 4f4i93.. 14 , ilili `V q iii 171i fLo LlAi" II , MGHAN ASSOCIATES, INC. BY DATE IC 69 0 60 N ST L vA T R IN Ns G ST. E S N U G ITE INE 200 ERS JOB NO TIGARD, OREGON 97223 (503) 620-3030, FAX 620-5539 SHEET OF 5-g=, ,) l 11 1 I 11, , I ' i t " vt\PeA, . 1=/ - _ 1 °° I :ti 1� 1 ti o f , a1716, (14t - i 4/1. t • . 0 �l �� 160 A 111 , c,a,,,m,i06,-,m,,,,,, _ �.lV✓ . v AI' & 15,, 0,,o' Gj -c__-..... ill , 1 , :', ' Ni9V-1 1 i v , 4,e,o - 1_0_./ur‘ov 16 3,0 -9,v 'GRAN ASSOCIATES, INC. BY _DATE CONSULTING ENGINEERS 6960 S.W. VARNS ST., SUITE 200 JOB NO TIGARD, OREGON 97223 (503) 620.3030, FAX 620 -5539 SHEET r _OF D' 1 I ---., ' ) • 16 Ttki4ky Avv.401-J. _ I NAR, Ea 1 ektv-Tolao\-TwAr- actv kl, ov I Nvi-, 10,(7 ), 4,([6), u n* ' ,, . . • ' v)(2 p 0, ct avotoo .,... ti6 12,17i'" I ,(,. -- I/ I 4 GI c i .so I 0 ' qi-iie mva,0041614v 4- wodle 6. f0 - ......) 17v 0, 2 t'4 (A-) I I I I I I N t HAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS I JOB NO 6 200 (503) 620-3030, FAX 620-5539 SHEET________ OF '5-45 I LATERAL DESIGN: SHEAR WALL DESIGN: PANEL f 32 1 AND PANEL f 35 1: SHEAR WALL INFORMATION h := 9.25•in SHEAR WALL THICKNESS H 31•ft HEIGHT OF SHEAR WALL Lw := 140•in LENGTH OF SHEAR WALL = 5000 CONCRETE COMPRESSIVE STRENGTH FOR SLABS AND FOOTINGS (psi) Ec = 4286826psi MODULUS OF ELASTICITY FOR CONCRETE = 60000 YIELD STRENGTH OF STEEL REINFORCEMENT (psi) 10 f psi Ey := E Ey = 0.00207 MAX STEEL STRAIN AT OUTERMOST TENSION REINFORCING Es = 0.003 MAXIMUM ALLOWABLE CONCRETE STRAIN [ [ (f — 4000 131 := ifj f < 4000, 0.85 , if fc > 8000, 0.65 , 0.85 — 0.05 1 1000 ) R 1 = 0.8 LOAD COMBINATIONS: 1) 0.9•DL +E Put := 162•k Madd 344•ft•k ADDITIONAL MOMENT DUE TO UNBALANCED VERTICAL LOADS V := 37•k ULTIMATE DESIGN SHEAR Mu1 := 111711 k + Madd Mu1 = 1461 ftk ULTIMATE DESIGN MOMENT 2) 1.2•DL+ E +(f1•L +f2•S) Pu2 := 256.k ' u= 553•ft•k ADDITIONAL MOMENT DUE TO UNBALANCED VERTICAL LOADS Vu2:= 37•k ULTIMATE DESIGN SHEAR Mu2 := 1117•ft•k + Madd Mug = 1670 ft k ULTIMATE DESIGN MOMENT I . LATERAL DESIGN: SHEAR WALL DESIGN: I PANEL 1 32 1 AND PANEL 135 1: LOAD COMBINATION 1: 0.9•DL + E I Pu1 = 162k Oft = 0.85 Mu1 = 1461 ftk OVERTURNING MOMENT III NA := 16.60•in NEUTRAL AXIS DEPTH COMPRESSION REINFORCEMENT: CONCRETE: £:= 0.85•fc•psi•0.5•NA•h C= 326k NUMBER SIZE SPACING STEEL AREA BAR STRAIN INDIVIDUAL BAR FORCE BAR STRESS n := 2 = 5 sa := 2.in 2 Asa = 0.62 In Esa = 0.00264 fsa = 60ksi C = 37.2k n:= 2 b = 5 sb := 8•in Asb = 0.62 in2 E sb = 0.00119 fsb = 34.59ksi Cb = 21.45k , = 2 barN.= 5 sc:= 8•in 2 Asc =0.62 in Esc = O fsc =0ksi Cc =0k fl: =0 N =5 sd: =8•in Asd = 0 in2 Esd = 0 fsd = 0 ksi Cd = 0 k • TENSION REINFORCEMENT: Ctotal = 58.65k NUMBER SIZE SPACING STEEL AREA BAR STRAIN BAR STRESS BAR FORCE 1 = 2 bar ::= 5 s1 := 2•in in As1 = 0.62 in Es1 = 0.02194 fs1 = 60ksi T1 = 37.2 k � nM:= 2 bar N = 5 s2 := Bin I As2 = 0.62 in Est = 0.02049 fsg = 60ksi T2 = 37.2k = 2 b 5 s3 := 8•in Asa = 0.62 in so = 0.01905 fsa = 60ksi T3 = 37.2 k ry 2 bar := 5 s4 := 8•in p Aso = 0.62 in E s4 = 0.0176 fs4 = 60ksi T4 = 37.2 k n := 1 bar := 5 s5 := 16.in Ass= 0.31in 2 Es5 = 0.01471 fsg = T5 =18.6k i AM n ::= 1 bar := : 5 s6 := 16.in Asb = 0.31 in Es6 = 0.01182 fsg = 60ksi T6 = 18.6 k = 1 bar 5 s7 := 16.in in I As7 = 0.31 in Es7 = 0.00893 fs7 = 60ksi T7 = 18.6 k A n: 1 bar 5 sg:= 16•in 2 Asg = 0.31 in Esg = 0.00604 fsg = 60ksi Tg = 18.6 k EFb := C + C Ttotal = 223.2 k 1 ! ) . total - Ttotal EFb = 162 k I Mn1 = 2790 ftk Mn1.design Of1:Mn1 Mn1.design = 2372 ftk > Mu1 = 1461 ftk I r6,D I lb .' I LATERAL DESIGN: SHEAR WALL DESIGN: PANEL f 321 AND PANEL f 35 1: LOAD COMBINATION 2: 1,2• DL + E + (f1 •L + f2.S) Pu2 = 256 k 4f2 = 0.82 I Mu2 = 1670 ftk OVERTURNING MOMENT �N�A -- 20.7.in NEUTRAL AXIS DEPTH COMPRESSION REINFORCEMENT: CONCRETE: C&:= 0,85•fc.psi•0.5•NA•h C = 407k NUMBER SIZE SPACING STEEL AREA BAR STRAIN INDIVIDUAL BAR STRESS BAR FORCE n := 2 bar 5 s= 2•in 2 Asa = 0.62 in e = 0.00271 f 60ksi C = 37.2 k nv 2 n aw- 5 , , 8.1n II Asb = 0.62 in esb = 0.00155 fsb = = 44.97ksi Cb = 27.88k n:=2 tj =5 u =8•in 2 A = 0.62 in ESC = 0.00039 fs = 11.35 ksi C = 7.04 k l := 0 bar := 5 = 8•in r�^= 0 bar 5 se := 16.in 2 Asd = 0 in Esd = 0 fsd = 0 ksi Cd = 0 k A5e = O in 2 E se = 0 fse = 0 ksi C = 0 k TENSION REINFORCEMENT: Dotal = 72.12k I NUMBER SIZE SPACING STEEL AREA BAR STRAIN BAR STRESS BAR FORCE n -= 2 bad 5 = 2•in A = 0.62 in 41 = 0.017 fs1 = 60 ksi T1 = 37.2 k As2 = 0.62 in e = 0.01584 fs2 = 60ksi T2 = 37.2k n 2 bar 5 ,S3�= 8•in A = 0.62 in e = 0.01468 fsa = 60 ksi T3 = 37.2 k n := 2 bar 5 , Bin 2 A = 0.62 in es4 = 0.01352 f = 60 ksi T4 = 37.2 k I n := 1 b = 5 = 16.in As5 = 0.31 in2 es5 = 0.0112 fs5 = 60ksi T5 = 18.6k n om •-- 1 b 5 sue 16.in 2 A = 0.31 in Es6 = 0.00888 fsb = 60ksi T6 = 18.6k I n := 1 bar :=-- 5 = 16.in 2 As7 = 0.31 in e = 0.00657 fs7 = 60ksi T7 = 18.6k . n:=1 bar := 5 sue: =16.in 2 Asb = 0.31 in e sb = 0.00425 f = 60ksi T8 = 18.6k = (C + Ctotal) - Ttotal EFb = 256 k Ttotai = 223.2k ill, E I Mn2 = 3239 ftk Mn2.design := 02 n2 Mn2.design = 2659 ftk > Mu2 = 1670 ftk I FCl I lb I I LATERAL DESIGN: SHEAR WALL DESIGN: I PANEL ( 321 AND PANEL ( 35 l: BOUNDARY AND CONFINEMENT REQUIREMENTS: I NOMINAL AXIAL LOAD CAPACITY: Acv Lw h Ac = 1295in EFFECTIVE SECTION AREA OF CONCRETE I Ast = 5.58 in TOTAL AREA OF VERTICAL REINFORCING STEEL P := 0.80•[0.85•fc•psi•(Acv— Ast) + fypsi•A P = 4652k Pu := Pu2 i Pu.design := 4a•Po Pu.design = 3256k > P = 256k 1 ) P = 256k < 0.10•Acvf = 648k P = 4652k NOMINAL AXIAL LOAD CAPACITY Pu2 = 256 k < 0.35•P = 1628k WALL CAN BE USED AS SHEAR WALL 1 Mu1 2 ) = 3.38 < 1.00 OR 3•Acvrfc•psi = 275 k > Vu1 = 37k AND Mu1 = 3.38 < 3.00 L Vu1•w Vu1•Lw I WALL EXEMPT FROM BOUNDARY ZONE DETAIL REQUIREMENTS h 2 I P u 2 = 256 k M = 1670 ft k Acv = 1295in 2 = 6 S = 30217in 3 Pu2 Mu2 MAXIMUM EXTREME COMPRESSION FIBER STRESS — fcc: cv + S fcc = 861 psi ASSUME LINEAR ELASTIC CONDITIONS AND UNCRACKED IA THEN SPECIAL TRANSVERSE REINFORCEMENT PER IF f = 861 psi < 0.2•f = 1000 psi IS NOT REQUIRED AS BOUNDARY ELEMENT 1 I I I t6`L. I 16 1 LATERAL DESIGN: I SHEAR WALL DESIGN: I PANEL f 32 1 AND PANEL f 35 l: HORIZONTAL REINFORCING: 1l1l s2.max := min[ . 3.h 18.in)) s2.max = 18in MAXIMUM SPACING barn 5 REINFORCEMENT SIZE (DIAMETER) Av = 0.31 in AREA OF SHEAR REINFORCING s2 = 18in SPACING OF HORIZONTAL REINFORCEMENT = 16.in lAv Ph •= h s2 Ph = 0.00209 > 0.0020 USE #5 AT 16" O.C. HORIZONTAL AT CENTERLINE FULL HEIGHT OF WALL loo A h•LW Acv= 1295in WEB THICKNESS x LENGTH IN DIRECTION OF SHEAR FORCE THEN HORIZONTAL REINFORCING TERMINATING SHEAR WALL IF Vu1 > Acv fc EDGES SHALL STANDARD HOOK AROUND EDGE REINFORCING OR U- SHAPED REINFORCING MATCHING THE HORIZONTAL BARS I Acv f .psi = 92k SIZE AND SPACING SHALL LAP- SPLICE WITH HORIZONTAL BARS VERTICAL REINFORCING: rLw 1 ) s1.max min�j 3 3•h 18•in) sl.max = 18in MAXIMUM SPACING I b,51= 5 REINFORCEMENT SIZE (DIAMETER) A = 0.31 in AREA OF SHEAR REINFORCING r pn := 0.0025 + 0.5•I 2.5 — � •�ph — 0.0025) p = 0.00253 l / I pv:= if(pn < 0.0025,0.0025,if(p < Ph,Pn,Ph)) Pv= 0.00209 Si = 16in SPACING OF VERTICAL REINFORCEMENT s 16.in iw1n USE #5 AT 16" O.C. VERTICAL AT CENTERLINE FULL HEIGHT OF WALL NOMINAL SHEAR STRENGTH: Ph = 0.00209 Acv = 1295in WEB THICKNESS X LENGTH IN DIRECTION OF SHEAR FORCE I Vn := Acv «cq7c•Psi + ph•fypsi) V =•346 k IC := Vu1 IC = 0.18 Os•Vn I sr 63 ) - - -. __ - AG",- tom, ------------ - - - - -- _ --------- _ - - - - -- -__ -_ I notlot. f ;- 1 I o 1 r.:' : Ao , k ' ' kc , OPP 1 a `o4, s f I I tk ,o,(vo or 4 lG y ta 1 , - \ rf - it t6,o k UA/ VI ti T HAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS 6960 S.W. S ST., S JOB NO TIGARD OREGO 97223 UIT 200 (503) 620 -3030, FAX 620 -5539 SHEET I C OF L v l b , L fr1 Wrk - ve oN I & - u J -. ai b - L,o i . _ °"( - ( 4 b -- V ) .. " 1 ". ::01 , V 5 , 1 / 6 10 I . �. . I 1 vt). m ___,,/ 0 ., 4 " cr' -ve,/itv9A-- 'c-- mof wa -- -,, ,r2, of . [40- (,_4-1.0‘ L vf - II ui C,- laG rii al K0247x-,1 II I I I I 1 6, I . A HAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS I 6960 S.W. OREGOA VARNS ST.96, 203 SUITE 200 (503> 2 JOB NO , 1b (503) 620 -3030, FAX 620 -5539 SHEET b OF 1 LATERAL DESIGN: SHEAR WALL DESIGN: ' PANEL 331: SHEAR WALL INFORMATION 1 h := 9.25•in SHEAR WALL THICKNESS Hw:= 3111 HEIGHT OF SHEAR WALL Lw:= 245•in LENGTH OF SHEAR WALL = 5000 CONCRETE COMPRESSIVE STRENGTH FOR SLABS AND FOOTINGS (psi) Ec = 4286826psi MODULUS OF ELASTICITY FOR CONCRETE = 60000 YIELD STRENGTH OF STEEL REINFORCEMENT (psi) fy psi Ey := E sy = 0.00207 MAX STEEL STRAIN AT OUTERMOST TENSION REINFORCING E = 0.003 MAXIMUM ALLOWABLE CONCRETE STRAIN ( f� - 4000 R1:= it [ fc< 4000,0.85,it [ fc >8000,0.65, 0.85- 0.05. 1000 ) P1 =0.8 I LOAD COMBINATIONS: 1) 0.9•DL +E Put := 70•k Madd 0•ft•k ADDITIONAL MOMENT DUE TO UNBALANCED VERTICAL LOADS Vu1 := 134.5•k ULTIMATE DESIGN SHEAR Mu1 := 2670•ft•k+ Madd Mul = 2670 ftk ULTIMATE DESIGN MOMENT 2) 1.2.0E +E +f1•L +f2•S) Pu2:= 136.5•k na= 0•ft.k ADDITIONAL MOMENT DUE TO UNBALANCED VERTICAL LOADS Vu2:= 134.5•k ULTIMATE DESIGN SHEAR M := 267011.k + Madd Mu2 = 2670 ft ULTIMATE DESIGN MOMENT p L (L I I LATERAL DESIGN: I SHEAR WALL DESIGN: I PANEL f 33 1: LOAD COMBINATION 1: 0.9•DL + E Put = 70k eft = 0.89 I Mu1 = 2670 ftk OVERTURNING MOMENT I NA := 12.576.in NEUTRAL AXIS DEPTH COMPRESSION REINFORCEMENT: CONCRETE: £:= 0.85•fc•psi•0.5• NA. h C= 247k I NUMBER SIZE SPACING STEEL AREA BAR STRAIN INDIVIDUAL BAR FORCE BAR STRESS n := 2 bar := 5 sa := 2.5•in Asa = 0.62in esa = 0.0024 fsa = 60ksi Ca = 37.2k In 2 ;- 5 sb := 8•in 2 Asb = 0.62 in Esb = 0.0005 fsb = 14.36ksi Cb = 8.9k 0 b r,.= 5 sc:= 8•in 2 Asc =0in Esc =0 fsc =0ksi C =Ok IIIP n :- -0 r =5 sd: =8•in 2 Asd =0in Esd =0 fsd =0ksi Cd =0k Ctetal = 46.1 k TENSION REINFORCEMENT: NUMBER SIZE SPACING STEEL AREA BAR STRAIN BAR STRESS BAR FORCE I �n -= 2 b -- 5 s1 := 2.5.in 2 As1 = 0.62 in es1 = 0.05485 fs1 = 60ksi Ti = 37.2k n := 2 bar := : 5 s2 := 8•in I Asg = 0.62in es2 = 0.05294 fs2 = 60ksi T2 = 37.2k %-- 2 == 5 s3 := 8•in Asa = 0.62 in esa = 0.05104 fsa = 60ksi T3 = 37.2 k I fl 2 bar := 5 s4 := 8•in 2 Aso = 0.62 in e54 = 0.04913 fs4 = 60ksi T4 = 37.2 k n := 1 bar 5 s5 := 12.in 2 As5 =0.31 in es5= 0.04626 fs5 =60ksi T5 =18.6k I ^ nn := 1 bba := 5 sg := 12.in 2 AN Ash = 0.31 in es6 = 0.0434 fs6 = 60ksi T6 = 18.6k n := 1 bar := 5 s7 := 12.in 2 A57 = 0.31 in es7 = 0.04054 fs7 = 60ksi T7 = 18.6k 1 bar := 5 s8:= 12.in 2 As6 =0.31 in es8= 0.03768 fs8 = 60ksI T8 = 18.6k (C + C Ttotal = 223.2 k EFb := total) - Ttotal EF = 70k Mn1 = 4640 ft k Mn1.design := 4> f1•Mn1 I Mn1.design = 4119 ftk > Mu1 = 2670 ft k I e0 I I LATERAL DESIGN: I SHEAR WALL DESIGN: PANEL 1331: I LOAD COMBINATION 2: 1.2•DL + E + (f1 •L + f2•S) Pu2 = 136.5k Of2 = 0.88 I M u 2 = 2670 ftk OVERTURNING MOMENT A NA := 15.55.in NEUTRAL AXIS DEPTH I COMPRESSION REINFORCEMENT: CONCRETE: N C B .= 0.85•fc•psi•0.5•NA•h C= 306k NUMBER SIZE SPACING STEEL AREA BAR STRAIN INDIVIDUAL I BAR STRESS BAR FORCE . 2 bN = 5 A 2.5•in Asa = 0.62 in esa = 0.00252 f = 60ksi C = 37.2 k &= 2 av 5 nvin'= 8•in 2 Asb = 0.62 in E sb = 0.00097 f = 28.25ksi Cb = 17.52k i nn 2 b 5 = 8•in Asc = 0.62 in2 Esc = 0 f = 0 ksi Cc = 0 k = 2 -,,,. 5 sue:= 8•in 1111P - Asd = 0.62 in2 esd = 0 f = 0 ksi Cd = 0 k n -- 1 bar 5 se := 12.in 2 MOAN Ase = 0.31 in 6 se = fSe =Oksi Ce =Ok TENSION REINFORCEMENT: Ctotal = 54.72k I NUMBER SIZE SPACING STEEL AREA BAR STRAIN BAR STRESS BAR FORCE n :-- 2 b 5= 2•in As1 = 0.62 in2 Es1 = 0.04388 fs1 = 60ksi T1 = 37.2k I n::= 2 b 5 A W= Bin As2 = 0.62 in e = 0.04234 f = 60ksi T2 = 37.2 k n := 2 b 5 sue= 8•in 2 Asa = 0.62 in e = 0.04079 fsa = 60ksi T3 = 37.2k i � nM. ---- 2 bN 5 sue:= 8 • In Aso = 0.62 in 6s4 = 0.03925 f = 60ksi T4 = 37.2k ^ n:= 1 ba 5 12.in I `"�'�'�'' j ^s ^ A = 0.31 in 6s5 = 0.03694 fs5 = 60ksi T5 = 18.6k r�^.= 1 biV -- 5 Ape 12•in Asg = 0.31 in 2 Bsg = 0.03462 fsg = 60ksi Tg = 18.6k I r�`.= 1 bnv 5= 12.in 2 A = 0.31 in es7= 0.03231 fs7 =60ksi T7 = 18.6k =1 barN 5 Bte 12•in in A = 0.31 in 6sg = 0.02999 f = 60ksi Tg = 18.6 k EN FA= �C + Ctotal) - Ttotal EFb = 137 k Ttotal = 223.2k .1 6 M = 5281 ft Mn2.design 4if2 Mn2.design 4626 > - n2.design 6 ftk Mu2 - 2670 ftk I C v LATERAL DESIGN: SHEAR WALL DESIGN: PANEL f 33): BOUNDARY AND CONFINEMENT REQUIREMENTS: ' NOMINAL AXIAL LOAD CAPACITY: Acv Lw•h Ac = 2266.25in 2 EFFECTIVE SECTION AREA OF CONCRETE ' Ast = 6.51 in TOTAL AREA OF VERTICAL REINFORCING STEEL P := 0.80•[0.85•fo•psi•(A — Ast) + fypsI•Asf] P = 7996k Pu Pu2 I Pu.design 0a•Po Pu.design = 5597k > P = 136.5k 1) P 136.5k < 0.10•Ac = 1133k P = 7996k NOMINAL AXIAL LOAD CAPACITY P = 136.5k < 0.35.Po = 2798k , WALL CAN BE USED AS SHEAR WALL Mu1 Vu1•Lu� Mu1 2 ) = 0.97 < 1.00 OR 3•Acv j•psi = 481 k > V = 134.5k AND = 0.97 < 3.00 Vu1 • L WALL EXEMPT FROM BOUNDARY ZONE DETAIL REQUIREMENTS P = 136.5k Mu2 = 2670 ftk Acv 2 h•Lw 3 cv = 2266.25in 5= 6 S = 92539in Pu2 Mu2 MAXIMUM EXTREME COMPRESSION FIBER STRESS fcc • Acv + S fcc = 406 psi ASSUME LINEAR ELASTIC CONDITIONS AND UNCRACKED THEN SPECIAL TRANSVERSE REINFORCEMENT PER IF f 406 psi < 0.2•fc•psi = 1000psi IS NOT REQUIRED AS BOUNDARY ELEMENT I I rag I I LATERAL DESIGN: I SHEAR WALL DESIGN: PANEL f331: I HORIZONTAL REINFORCING: Lw 11 s2.max := min 3 3•h 18•inJ) s2.max = 18in MAXIMUM SPACING barn := 5 REINFORCEMENT SIZE (DIAMETER) 1 A = 0.31 in AREA OF SHEAR REINFORCING I s2 = 12in SPACING OF HORIZONTAL REINFORCEMENT = 12.in 1A Ph h s2 Ph = 0.00279 > 0.0020 I USE #5 AT 12" O.C. HORIZONTAL AT CENTERLINE FULL HEIGHT OF WALL O. Ate;= h•Lw Acv= 2266in WEB THICKNESS x LENGTH IN DIRECTION OF SHEAR FORCE THEN HORIZONTAL REINFORCING TERMINATING SHEAR WALL IF Vu1 > Acv fc EDGES SHALL STANDARD HOOK AROUND EDGE REINFORCING OR U- SHAPED REINFORCING MATCHING THE HORIZONTAL BARS I Acv f •psi = 160k SIZE AND SPACING SHALL LAP- SPLICE WITH HORIZONTAL BARS VERTICAL REINFORCING: 1l1 I L sl.max min�� 3w 3•h 18•in)) s1.max = 18in MAXIMUM SPACING I ba 5 REINFORCEMENT SIZE (DIAMETER) 2 A = 0.31 in AREA OF SHEAR REINFORCING I pn := 0.0025 + 0.5.I 2.5 — Lw I.(ph — 0.0025) pn = 0.00264 l w J I Pv:= if(p < 0.0025 , 0.0025 , if(pn <Ph,Pn,Ph)) 2v= 0.00264 Si = 12in SPACING OF VERTICAL REINFORCEMENT i lv= 12•in I USE #5 AT 12" O.C. VERTICAL AT CENTERLINE FULL HEIGHT OF WALL i NOMINAL SHEAR STRENGTH: Ph = 0.00279 Acv = 2266in WEB THICKNESS X LENGTH IN DIRECTION OF SHEAR FORCE I Vn = Acv(ac•A•psi + ph•fypsi) V = 855k IC := Vu1 IC = 0.26 ms•Vn V Iv I I % 1 . . ___________,„,,,,,,,w,___________ _ 1 ,,�� I , , 71,,,e)tc. ,9,0t, , 1 T lt V1,, oV ( 0 1 - - – , _ 1 0 j:ka-t7 I _ I27' r 1 0440- 10 / 4 1 tU £'t fr ) — .o.t7 0.1 1 � �� - /1 44,0 -- L l ,o. a oaa ip,I • bo,Vv - - c ._ _ 1 ' tikbu . 1 11111 : 1 ,. , 1 2 , 0 1.71--19V-) 1 - /1/k0 '-- - 0 A/ 7 t 7 4 4 i7 &HAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS 960 S.W. YARNS ST., SUITE 200 JOB NO TIGARD, OREGO 97223 + I 503) 620 -3030 F AX 620 -5539 SHEET_ OF - 1 I ) -- __ .-- I - KN .. vt--? - -- - - - - - - - - - - 1 69 , �;bkH•d � I 2 4-(,L) A (:).-t a0) (1 (,ti ', I w 4 1(l1Q -) = ,t . ( 41.! .0 I Z,,o v1V \1749 (4 - i )- V - Z7 My,- .2 • VU - IAA,- L27o C/v� '9 - 4y v I c\i 0 °)- 'Vti`` vv;; fit` PO , `t1 b .c)019 V)(a . (41),J o - I cal b$7 < Q U i V/ CO-N1 f at -, -rc' • I [�'/. , ,i, 12te , . I I 16 , t HAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS I 6960 S.W. VARNS ST., SUITE 200 JOB NO T 03) 62 OREGON 96223 �- (503) 620 - 303D, F AX 620 -5539 SHEET __ OF ' LATERAL DESIGN: SHEAR WALL DESIGN: PANEL ( 341: SHEAR WALL INFORMATION ' h := 9.25-in SHEAR WALL THICKNESS Hw := 31•ft HEIGHT OF SHEAR WALL ' Lw := 160•in LENGTH OF SHEAR WALL ;= 5000 CONCRETE COMPRESSIVE STRENGTH FOR SLABS AND FOOTINGS (psi) Ec = 4286826psi MODULUS OF ELASTICITY FOR CONCRETE ' b 60000 YIELD STRENGTH OF STEEL REINFORCEMENT (psi) fy psi Ey := Es ey = 0.00207 MAX STEEL STRAIN AT OUTERMOST TENSION REINFORCING Ac 0.003 MAXIMUM ALLOWABLE CONCRETE STRAIN r — P 1 :_. Itf� < 4000, 0.85 , ifl r f > 8000, 0.65 , 0.85 — 0.05 I (fc 4000 1000 ) P 1 - 0.8 LOAD COMBINATIONS: 1) 0.9•DL + E Put := 130•k ' Madd 433•ft•k ADDITIONAL MOMENT DUE TO UNBALANCED VERTICAL LOADS Vu1 := 84.5•k ULTIMATE DESIGN SHEAR Mu1 := 1712•ft•k + Madd Mu1 = 2145 ftk ULTIMATE DESIGN MOMENT 2) 1.2• DL + E + (fi .L + f2 • S) Pu2 := 275•k k= 932.5•ft•k ADDITIONAL MOMENT DUE TO UNBALANCED VERTICAL LOADS Vu2:= 84.5•k ULTIMATE DESIGN SHEAR ' m.2 := 1712•ft•k + Madd Mu2 = 2644.5 ftk ULTIMATE DESIGN MOMENT 'V 13 I I LATERAL DESIGN: 1 SHEAR WALL DESIGN: PANEL f 34 1 LOAD COMBINATION 1: 0.9•DL + E Pu1 =130k 4f1 = 0.86 I Mu1 = 2145 ft k OVERTURNING MOMENT I NA := 16. in NEUTRAL AXIS DEPTH COMPRESSION REINFORCEMENT: CONCRETE: (= 0.85•fc•psi•0.5.NA.h C= 314k I INDIVIDUAL NUMBER SIZE SPACING STEEL AREA BAR STRAIN BAR STRESS BAR FORCE n: =2 ba =5 sa: =2•in Asa = 0.62 in esa = 0.00263 fs = 60ksi Ca = 37.2k I �n ::== 2 bgN= 5 sb := 8 • in Asb = 0.62 in2 Cab = 0.00113 fsb = 32.63ksi Cb = 20.23k NO n :---- 0 bar = 5 sc:= 8 -in 2 Asc =Din esc= 0 fsc= 0ksi Cc= 0k ^ n n : =0 br = 5 sd: =8•In 2 Asd =0in esd = fsd =0ksi Cd =0k ' Ctotal = 57.43k TENSION REINFORCEMENT: NUMBER SIZE SPACING STEEL AREA BAR STRAIN BAR STRESS BAR FORCE � n�. ---= 2 bar 5 s1 := 2•in Am mi A = 0.62 in 41 = 0.02663 f = 60ksi T1 = 37.2k � n:=2 bar 5 s2: =6•in As2 = 0.62 in 2 6s2 = 0.0255 fs2 = 60ksi T2 = 37.2k AM bar b 5 s3:= 6•in A = 0.62 in e = 0.02438 f = 60 ksi T3 = 37.2 k i nn := 2 bar := 5 s4 := 6•in 2 Annv■i As4 = 0.62 in es4 = 0.02325 f = 60ksi T4 = 37.2 k n := 2 bar = 5 s5 := 6•in AM AAMA) A = 0.62 in 2 es5 = 0.02213 f55 = 60ksi T5 = 37.2k ^ n := 1 barW -- 5 sg := 12• i 2 Asb = 0.31 in es6 = 0.01988 fs6 = 60ksi T6 = 18.6 k n := 1 bar 5 s7 := 12• In 2 I A = 0.31 in es7= 0.01763 fs7 =60ksi T7 =18.6k �n:= 1 bar N= 5 s8:= 12•In Asb = 0.31 in 48 = 0.01538 fsb = 60ksi T8 = 18.6k 16 Ttotal = 241.8 k EFb := (C + Ctotal) - Ttotal EFb = 130 k Mn1 = 3479 ftk Mnl.design Oft Mn1 i ...,- Mnl.design = 3009 ftk > Mu1 = 2145 ftk ef 14- I 16 . LATERAL DESIGN: I SHEAR WALL DESIGN: PANEL f341: I LOAD COMBINATION 2: 1.2.DL + E + (ft •L + f2.S) Pu2 = 275k ¢f2 = 0.83 I Mu2 = 2645 ftk OVERTURNING MOMENT NA := 22.35•in NEUTRAL AXIS DEPTH I COMPRESSION REINFORCEMENT: CONCRETE: &= 0.85•fo•psi•0.5• NA. h C =439k NUMBER SIZE SPACING STEEL AREA BAR STRAIN INDIVIDUAL BAR STRESS BAR FORCE I n::== 2 b 5 su:= 2•in Asa = 0.62 in2 esa = 0.00273 f = 60ksi C = 37.2 k ' �v 2 bar nnvw 5 8-in 2 Asb = 0.62 in esb = 0.00166 fsb = 48.07ksi, Cb = 29.81k 2 L 5 A 8•in 2 Asc = 0.62 in Esc = 0.00058 fso = 16.93ksi Co = 1 0.5 k 2 mu.--.- 5 u= Bin 2 OP Asd = 0.62 in Esd = 0 fsd =0ksi Cd =Ok n ::-- -= 1 barN= 5 se := 12•in 2 I ASe =0.31 in ese = fSe =0ksi Ce =0k TENSION REINFORCEMENT: Ctotal = 77.5k I NUMBER SIZE SPACING STEEL AREA BAR STRAIN BAR STRESS BAR FORCE i n n := 2 bar 5 Av= 2•in 2 As1 = 0.62 in es1 = 0.01821 fs1 = 60ksi Ti = 37.2k I � n�.- 2 b a 5 t w= 6.in in As2 = 0.62 in esg = 0.0174 fs2 = 60ksi T2 = 37.2 k n:-= 2 A i== 5 u= 6.in 2 Asa = 0.62 in esa = 0.0166 f = 60ksi T3 = 37.2 k I ^ n ::== 2 bar 5 = 6.in Aso = 0.62 in es4 = 0.01579 fso = 60ksi T4 = 37.2 k n: --2 bAitL =5 =6•in ' As5 = 0.62 in es5 = 0.01499 f = 60ksi T5 = 37.2k �nN ---- 1 b� --- 5 sue= 12.in ASB = 0.31 in esg = 0.01338 fsb = 60ksi T6 = 18.6k I A 1 A,1 5 A s A 7 v = 12.in As7 = 0.31 in es7 = 0.01177 fs7 = 60ksi T7 = 18.6k i n n :. 1 tw 5 A w= 12•in As8 = 0.31 in esg = 0.01015 fsb = 60ksi T8 = 18.6k ill £N = (C + Ctotal) - Ttotal £Fb = 275 k Ttotal = 241.8k Mn2 = 4288 ftk Mn2.design 0f2•Mn2 Mn2.design = 3541 ftk > M = 2645 ftk I f1 I I LATERAL DESIGN: I SHEAR WALL DESIGN: PANEL f 34 l: I BOUNDARY AND CONFINEMENT REQUIREMENTS: I NOMINAL AXIAL LOAD CAPACITY: Ac Lw•h Acv = 1480in EFFECTIVE SECTION AREA OF CONCRETE I Ast= 6.82 in TOTAL AREA OF VERTICAL REINFORCING STEEL ' P := 0.80•[0.85•fc•psi•(Acv - Ast) + fy psi•AsJ P = 5336k Pu := Pu2 1111 Pu.desi n:= �a•Po P > 9 u.design = 3735k P = 275k 1) P = 275k < 0.10•Acvf = 740k P = 5336k NOMINAL AXIAL LOAD CAPACITY 1110 P = 275k < 0.35•P = 1868k WALL CAN BE USED AS SHEAR WALL 2) Mu1 = 1.9 < 1.00 OR 3•A f psi = 314k > Mu1 V cv P Vu = 84.5k AND = 1,9 < 3.00 Vu1•Lw I WALL EXEMPT FROM BOUNDARY ZONE DETAIL REQUIREMENTS 2 h• Lw P u 2 = 275 Mug = 2645 ftk A = 1480in= 6 S = 39467in No; Pu2 Mu2 MAXIMUM EXTREME COMPRESSION FIBER STRESS fcc• __ _ Acv + S fcc= 990 psi ASSUME LINEAR ELASTIC CONDITIONS AND UNCRACKED I IF t THEN SPECIAL TRANSVERSE REINFORCEMENT PER cC = 990 psi < 0.2•fc•psi = 1000psi IS NOT REQUIRED AS BOUNDARY ELEMENT I 1 .... 1 tr 1 I g . . .___. __ ___.____.. I LATERAL DESIGN: SHEAR WALL DESIGN: PANEL I 3 ); I HORIZONTAL REINFORCING: wL I s2.max min( . 3•h 18.in s2.max = 18in MAXIMUM SPACING bar 5 REINFORCEMENT SIZE (DIAMETER) I Av = 0.31 in AREA OF SHEAR REINFORCING I s2 = 12in SPACING OF HORIZONTAL REINFORCEMENT 12•1n IA Ph := h .s2 Ph = 0.00279 > 0.0020 I USE #5 AT 12" O.C. HORIZONTAL AT CENTERLINE FULL HEIGHT OF WALL Ate= h•LW Acv = 1480in WEB THICKNESS x LENGTH IN DIRECTION OF SHEAR FORCE THEN HORIZONTAL REINFORCING TERMINATING SHEAR WALL tl IF Vui > Acv fc EDGES SHALL STANDARD HOOK AROUND EDGE REINFORCING OR U- SHAPED REINFORCING MATCHING THE HORIZONTAL BARS I AcvVc•Psi = 105k SIZE AND SPACING SHALL LAP- SPLICE WITH HORIZONTAL BARS VERTICAL REINFORCING: 11 I sl.max •= min�j N 3 w 3•h 18.inJJ s1.max = 18in MAXIMUM SPACING I b= 5 REINFORCEMENT SIZE (DIAMETER) Av = 0.31 in AREA OF SHEAR REINFORCING Pn := 0.0025 + 0.5. 2.5 - L J .(Ph - 0.0025) pn = 0.00253 . Pv:= if(Pn < 0.0025,0.0025,if(pn < Ph,Pn,Ph)) Pv= 0.00253 si = 12in SPACING OF VERTICAL REINFORCEMENT = 12•in ' USE #5 AT 12" O.C. VERTICAL AT CENTERLINE FULL HEIGHT OF WALL NOMINAL SHEAR STRENGTH: Ph = 0.00279 l ip . Acv= 1480in WEB THICKNESS X LENGTH IN DIRECTION OF SHEAR FORCE I V Am" �c Psi + p h •fy psi) Vn = 457k IC:= u1 Vn IC = 0.31 Os•Vn !I r-1-1 2�b ( C tA"( W' T(n, Tognw l GA)0 6 to2.cbc OUw -- t>-(A, ��� �� fi t,. � coo o22 I a 0. v-(9 W—RTJA10. I t_ ositG ( I NI kN.v '. 6 ((21 1 2i J' 1 204,) \,17 7109 1 1 1 GHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS 1 696 S.W. S T, SU ITE JOB NO 0 T 03)62 -3 030 VARNS FA 972 (503) 620 -3030, FAX 620 -5539 200 SHEET OF I ,, H 16 -evieW 4 VT r-(oor e7eem COovNec.,4orJS -------- - - - - -- - - -_ ___ —_- -- -- -_ —__- -- - - - - -- --------- - - - - -- _---------------------- -._ -_- T I k 5erv,'c_e- toad rec,c.¢,bo,rs. (v'er- Pc.e. 1) 4,, ofd oof (Zorn S4-tee.I br? el + - ou-6 I G r+'d D- N G S f7 r c° r; vl ( � q iv a c/ 1 C4 =ID.6 am_ ,noQ.r = 29(ID.69= z , g , 5 k Uu3o F d '43 k p„,_ 51k p = 54- I (ik ) ? -4- f 9 14 PL. =I3k fT 2- /4 I -* C wit) e c.-4 o N s ore Cu rre.trtl y 4.45 ; 9 nre_d -c.c. r tra vi-ly , ft- erecote, revl'eLA) w /spec' &I sefsrn;c- (pacI cam6;na-4,to I 11030: Nor: --or, vr1 : Z6. _ (5, 6 k ----). see -400 (6(7. (. (.7. V'u4,'c.o.1 = l ' 5 (al I,7 = 25.4. k j 10 * Ure (1 a.iI coNN e c..--14oN S ' 9 /(6 4,' (Yet (IS uri-.2.n 1 res w, drag (o ds. See cLe ->..:I 1(S5.1 . I U ( - { o r ∎ =0,• 1 = (S . 6 —> I.Z(c) +.5 cc3) ve�� �o,i = �, (0, 1, I X30: FE V x gel' * cLue 4- o use 325 N bo(4s I L""`' d; CD -,- ry I 0 070 e 1. CD a- J ?el CAN 10 - F ec400 r1 (f ` Pv al - o��1 C°' 1,04 c I fi' f L2.t • -iv (ve r-- (int) ( 21 = , ei ( '7 1 1`n �. 15.6 k a ;14 ( ver 4- 1 q ) 2.1 ., . 6 S , --�. AA: is 5"(10.7. IS .3"k II V•e kor. ld Cis . ... ts = .b .4- ill) , cH (I'tor (I0) = , 64 S „ = 7,4 k,, _ - GHAN ASSOCIATES, INC. Tierroi 06 1) - I ev DATE 3 / O4 CONSULTING ENGINEERS JOB NO � 6960 S.W. VARNS ST., SUITE 200 TIGARD, OREGON 97223 �/ /� /1 (503) 620.3030, FAX 620 -5539 SHEET 'ti✓ OF - � 1 LJo (41 cace resvl �rdn� �na� C. 43) L + C bs) ,1 g 14 4n sketAr COT. oi 5 1/6" 6 4- ( ` - '71`4 o 1/4 @ be es m D r c-ol wry.) .P v (v e 4 (,o 0,J) — (4 ,Z /48 _ . z (4 ' 7(`n j r M = 2.S "((o,z 25,5 "k (7-4-/L. = (9 2 4-1 r ,f (= -xv(e-) aZ = <( k4.1 ---� g _ , 46 k / , Ne, Vas 1 [()2� Zi ) ' r_ ok- c t r c 4 e- ce- 'ZS 2, aC ; l Y c ar r i�e. ci 67 , F,,e, co0 tG�� O N i F ■ '� Y WE' ` ct - o/1 1 y r1R.2� C1 4 Loo ur rs f Gee•S e. C tryo-X d rrrrn d rct , (b o.4 ajoNci G r; ef -f, 4- - E(W d r e l (,,o e1 @ Gr; d F2.5 .ew, _ 13l,ok Hot-. - (31,b4 _ 7 .0k 1.1 ? U r ? „ 4 . : ( 7 D - ( ( k PL = (S k PT = 24 k U e r. , F !7_,1, W18: Pp . 4 1 9 Pr _ 114 Ve- . = 4, 3 k C:o nr -�r4 (: n °I Go�.l c�� �� N ©GCJ✓'►�s @ ea) -4 Lit _ _ ` V 17"Cli � AA l. 5 n cizz 1`') = 193.3 k F- = (s '� (S "x Z = , 4-1 Vi i p - (2,7J- Fv _ 1z.z c” B '11 �,r x ) = 3,35 4-31 - I I GHAN ASSOCIATES, INC. T' d (d.) t 61 DATE • 06 CONSULTING ENGINEERS JOB NO S 7 I 6960 S.W. VARNS ST, SUITE 200 TIGARD, OREGO 97223 (503 620.3030, FA 620 -5539 SHEET OF Pt /6 Y` _ 11. °''3i( s = (3.6`( (.z (-� o l 4- (4-5 •: 0 k ( eId @- ve,4 ,'co ( : F J, - l Z, Zk = , 4 I ((',) �- —� _ 17.0k- = Z , s 7 (c- 6 F . 2,9 0 > . 6+ 4- 11i, ° IA— "! f , 4- I ( VII., I tae_vC e w oe 1-e-1--A t e o m s M n- t,ef a i( Q" ci-S at( VeamS 4L so» .e ( ( ( .\ „40 wra II e, d-S opo UI)I2• Ve(4 -,cod boat_ U k Prcl (icc = 6 Z. 6 k (N14: V'er'J`GoJ lAad = 8 Vre � 0 1 = S.3 k l� S re c4•1:4 Ca S-e p (JUG 6 : V (' a d = t4k t2rci Coa-ct = S , o k Vt17 -4 : e Load = 36 'k Pro3 = 3 f . Z 5P e , S a W 3 O Vex--14.44 c-d = i D.. bra Cot,ci 51,7k e I 4- -(Y.Y ct 3/ ' sl- e, - tt w / 5 (t6” c (d ---� w(2. `'/(1 K4 + ( It- Hof --�- . . Si/ = 7.0 ((-s; , _ ss 400 = 4-,&( if, Lst _-. o k tA..e o(c, t. , � � , re_v, ew 17 max, cLt- (oad 6 V -f o r;Sm = c r. V e.< I GHAN ASSOCIATES , INC. T INC cl -6 1 % 1 ( ( DATE 3. 0.6 `� B 1 CONSULTING ENGINEERS IVVJ JOB NO 2 - 6960 S.W REGO 97 SU 200 V TIGARD, OREGON 972 (503) 620 - 3030 , FA 62 - 5539 ITE SHEET OF 1 , } ,, ) . 5 )vc. -a.r k: _ ii. = 32-, (s-4; NI. , y _ U s 0:-1-Arts— s — u i s , 1_ ____ ----------- ..4 Skew ft: 4 : T? %.3?J X - (g .5o (c� ; o I, i -b s, s r2.v; - . 45 i„ I w e l d & -1v W I i3 : 9144 - 6..9 2-M —p- use rw-4-verts I r rv = We( = 9 .(l am - —« use a t i-z: ft, @(A)(S` v f� I . -- V $ -e 3 /8 �,�� ( �l 9 (4� s 63 11 -1.1 , 1 1r: OP --3 12 e.5 i 9.N a.. ti (rt114 (" and a " kft y, 104k. � U Go,IVN e.- 4.®+J I1 Le 1M Loo d Y � k rho )1; nwi t2ro , 1,oac 7. X7.3 I W 14 v‘ey4ox (,nc.d - a k cs - 0 - vse 3 4 c f,x 9" Hp ids ,r; . 4 - - pact S4 ds @ t o.c-, e, ) , . - i,- a WID WIL Wi4- ( - TeAs, 3 i 1,00 G Ir Ali c o►ld, 4A nJf 16 ---- 4.6 @L(6WI8 ci ( Do, S = 20 e iUZ '7,W3 I GHAN ASSOCIATES, INC. Ti 0.4— G 4 ( • 44-- I BY DATE r o . CONSULTING ENGINEERS S 4 JOB NO 6960 S.W. YARNS ST., SUITE 200 I TIGARD, OREGON 97223 I (503) 620 -3030, FAX 620 -5539 SHEET OF 1� 1 (f emr brA COWlre CJ4 00 ! e ve ; t.e- d O 1 v I 018 %Hori — (12,.0k W zq . ice) eL. 9 ■it-∎ 9.o V)30 Hor -Q. = 76.0 • — 35.o k 4te A-Ld ad d'.e s /g''cf) x - o'd� 'j �� did w/4 = i , O - ea c, , , d- es,' 74D= ,ci• o Co.? au - _ ( .1 of L ea t. 9 (o -a-cl OP --� 4-v-1/4 Gc y . = 2-5, 1 (/ rued (4) - 7 6.0 C 3) Al lloti -b- S -ss bes 1 r ( ) r e ' " — , 83 ("IS) = " 8 ^,s`z -! ° . t:›r s'i,-A,p I ■ c2-I , a a, d C e0 5 4,o cdt pj c 1 tU 16 : (4) H►/19 (4-) H ;4 - d n11 n f MV'tt (Al 30 (6) Nno C-- d5 I GHAN ASSOCIATES, INC. 1 ; 0 IA 6 BY DATE O CONSULTING ENGINEERS J 2 / 6 S.W. VARNT SUITE 200 JOB NO 5 1 I T OREGON S 9 / ( 620 -3030, F A X 6 20.5539 SHEET J OF 70 14 P • r') ) ( ���L.b -C (V cam, tn( r 5 leeA ° c&Mfai 4f-T fr 4 tfv t,,o vo u! < V- p6,, �� (70c � � °roc 44 o 6:x. t A /nr i CvlC ' ) V T.& - 131! 416 Vkie .. .. -._ .. lie WO kv4,0 a,1,, ( AQ 0 1)QcAvo.VJ wLCk) , 1Cv I GHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS 6960 S.W. VARNS ., SUI 200 1 JOB NO I TIGARD, OREGON 9 (503) 620 -3030, FAX 620 -5539 TE SHEET OF Lii' 1,t9 t L ; ,. I m w ,iko 40.64.-irovc, v,..„/A(,2,0 vm..,. 42-1.c47 lrb' \I v, � cIA °)0:11.> . IA, tatt II — -- mole, :1 . `1 1 ■ I c vo t,& 4? cold J 17 \‘‘i,D : Q)Co'- ,1 01 . Acz; , A*0 , v. 1 4-tii7 445' SLA ol , J c 1 14,4 VA.0 , (0* I I t6 2, . II I I li I GHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS JOB NO I 6960 S.W. YARNS ST., SUITE 200 TIGARD, OREGON 97223 (503) 620 -3030, FAX 620 -5539 SHEET OF I i i - _,-_._ _ _. _. -T_ I qA . I 61 4M2- w IAA. I 0L --- - <<�` I I tN x at`/ vw kl' z '1. X ��vt ,_ Opo _ - K c` . tco r 1, ;(0(,101 s. 0„ti I cipto P 7 T ---------- C)17q , CO 17 14 471A9.7 t u I .15,1m , ( .67 ( k 0 ; . (77 7 irt (p.2:Xlv)Cio,r)01)c roo) --)- 4. i!: ,I. li N I GHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS 6960 S.W. RNS S, SUITE 200 I JOB NO T OREGON J;(;. . 23 ( 6 20 -303 FA 620 -5539 SHEET OF I ) left Mi5t1-.1 . NO . Vt VritaA V 6-1, 171,\ i t, 4 - I (91i2-0 (..A( c-k\ftpf, ■tiv V tic lk-tc • V.9.AeLes• W C-- ' CP Dt 4kA5kA:43 ' il .-1 - .._ Vo. l, 1 t ,,i 5 1 1 . I II OP 1 111 • II I I 1• /HAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS JOB NO 6960 S.W. VARNS ST., SUITE 200 111 SHEET OF 0 ,:o I ) ) I. l,frW A. WA -(91- 1 U , 1 a /' b s ,. ,01.6 u a f, =, 4/1 V (?)q4 = 1 , t 17 1 2:; V " As 7 4 l - tit . I VA0 4 -1Co 1,L4) I OP 1 I I 1 II t HAN ASSOCIATES, INC. � BY DATE CONSULTING ENGINEERS ii 6960 S.W. VARNS ST., SUITE 200 JOB NO TIGARD, OREGON 97223 (503) 620-3030, FAX 620 -5539 SHEET OF I 16 I BUILDING ONE 1 LATERAL DESIGN: ROOF W 24 DRAG BEAM TO SHEAR WALL F D 1 = 1 EFFECTIVE LENGTH FACTOR AAX ,, = 38.5•ft UNSUPPORTED BEAM LENGTH KL:= K•L KL= 38.5 ft EFFECTIVE BEAM LENGTH I LOADING: 1.2•D+ OMEGA•E + 0.54_ UBC 97 SECTION 1633.2.6 Ax:= 150•k M 111•ft•k My:= 0.00•ft•k PROPERTIES: W 24 X 55 = 16.2 -in bf:= 7.005 -in tf:= 0.505 -in Af:= bf•tf Af= 3.538in d := 16.01•in 11. 4 4 Oil IZ:= 1350•in Iy:= 29.1•m SZ= 168.61n Sy= 8.3in Z 1344n Zy:= 13.3•in r 9.13in ry= 1.34in rmin= 1.34 in rr:= 1.68 -in SRmin := max — KL KL 11 SRmin = 86 SLENDERNESS FACTOR IN PLANE OF BENDING C rz 4.ry 1 65 bf = 9.192 — = 6.936 f 2•tf 12•n ksi 1 Fe 2 F = 20.11 ksi EULER STRESS DIVIDED BY FACTOR OF SAFETY 23 SRmin 2•n2•Es SRmin (1 - 2•R 12•n -E I Cc fs Cc = 107 nR� := 2 Cc Fa := If R < 0.500, 5 3•R 3 ' 2 3 + 4 - R 23 •SRmin A to Ax fa = 5.45 ksi AXIAL STRESS Fa = 17.7 ksi ALLOWABLE AXIAL STRESS 1.7A II M z tbz = Z fb 9.94 ksi BENDING STRESS Fbz= 25.6 ksi ALLOWABLE BENDING STRESS Z STRONG AXIS le M fby Y Zy fb = Oksi BENDING STRESS WEAK AXIS Fb y 37.5 ksi ALLOWABLE BENDING STRESS I INTERACTION = 0.67 I 40 v I le BUILDING ONE LATERAL DESIGN: ROOF W 24 DRAG BEAM TO SHEAR WALL f DI ;1 CONNECTION AT W24 BEAM: AXIAL:= 150•k LOAD CASE 1.2•D + OMEGA•E + 0.5•L UBC 97 SECTION 1633.2.6 I SHEAR := 9.k I MOMENT:= 0•ft•k WELD A: SHEAR TAB WELD I b2 b := 2.5•in d�. ---- 18•in = 2 b + d A = 23in= b N = 0.272in 2•b + d I C y := Cy =gin Cx: =b — N Cx= 2.23in d2 2 (2•b + d) b 2 -(b + d) 3 ONO . Sx := b•d + 3 Sx = 153in /J„.= 12 Z•b + d J = 899.72in k k f1 := 0•- f1 = 0 - 1 in in SHEAR SHEAR.eb.Cx k f2 := I A + J f2 = 0.525— in tw:= 0.375•in , AXIAL SHEAR•eb• k f3 := A + J f3 = 7.062 i � Fu := 70•ksi E := 0.707 f := 1.7 1 f fl fw =7.081 k F k fH w�= J 1 in w:= f•E•0.3•Fu•tw F 9.465— in F = 0.75 w WELD B: WELD AT EMBED PLATE d 18 in I AXIAL SHEAR•eb•3 k '= 2 d + 2 f1 = 4.667 i n N th= 0.25•in= 0.707 M= 1.7 I d SHEAR k = 2d 0.25— in = 70•ksi f =Jf1 + f2 2 fw= 4.673 = f•E•0.3•F Fw =6.31 k fW = 0.74 in in FM • 1 9 0 I 1111111 . _ _____ - - -. 1 BUILDING ONE I LATERAL DESIGN: ROOF W18 DRAG BEAM TO SHEAR WALL f -2.21 I A .= 1 EFFECTIVE LENGTH FACTOR I ,6= 42.667•ft UNSUPPORTED BEAM LENGTH KL:= K•L KL = 42.67 ft EFFECTIVE BEAM LENGTH I LOADING: 1.2•D + OMEGA.E + 0.5•L UBC 97 SECTION 1633.2.6 Ax := 74•k Mz:= 48•ft•k My:= 0.00•ft•k I PROPERTIES: W 18 X 50 qq 14.7•in bf:= 7.495•in tf:= 0.570•in Af:= bf•tf Af= 4.272in d := 18.11•in 1. NT ii. 4 Iz:= 800•in 4 1y:= 40.1•in • Sz= 88.3in Sy= 10.7in Zz:= 101•in Z 16.6•in r = 7.38in ry = 1.65in rmin= 1.65in rT:= 1.94•in SRmin := max(r KL KL \ r z 4 ry I SRmin = 77 SLENDERNESS FACTOR IN PLANE OF BENDING l 1 65 = 9.192 b = 6.575 f 2•tf 12•1c J ksi Fe := 2 Fe = 24.86ksi EULER STRESS DIVIDED BY FACTOR OF SAFETY 23 •SRmin 2 21 2 /1 2•n •Es SRmin 1 - 2•R •fs 12.11 •ES Cc := fs Cc = 107 ' R = 2 Cc Fa := if R < 0.500, 5 3 • R 3 ' 2 3 + 4 - R 23 •SRmin I A x - fa := 1.7A fa = 2.96ksi AXIAL STRESS Fa = 19.5ksi ALLOWABLE AXIAL STRESS I M z fbz:= Z fbz= 5.7ksi BENDING STRESS Fb 26.2ksi ALLOWABLE BENDING STRESS z STRONG AXIS ill M fby := y fby = 0 ksi BENDING STRESS Fb = 37.5 ksi ALLOWABLE BENDING STRESS Z Y WEAK AXIS II INTERACTION = 0.36 V 14 I Ill 1 BUILDING ONE 1 LATERAL DESIGN: ROOF W18 DRAG BEAM TO SHEAR WALL ( -2.21 I CONNECTION AT W18 BEAM: I AXIAL := 74•k LOAD CASE 1.2•D+ OMEGA•E + 0.5•L UBC 97 SECTION 1633.2.6 SHEAR := 6.5.k I MOMENT:= 0•ft•k WELD A: SHEAR TAB WELD 1 b2 b:= 2.5•in MA dd: 12•in � A =2•b +d A= 17in N:= N= 0.368in ^^ 2•b + d I Cy := 2 Cy = 6in Cx: =b – N Cx= 2.13in d • k 2 (2•b + d) b 2 .(b + d) 3 Sx := b•d + 3 Sx = 781n Ai,/ 12 2•b + d J = 332.12in 1 1 – O. f1 = 0- m in SHEAR SHEAR•eb•Cx k f2 := + J f2 = 0.549— tw:= 0.25in I A AXIAL SHEAR•eb• k f3 A + J f3 = 4.823— in F := 70• ksi E := 0.707 f := 1.7 I fw:= f1 +f2 +f3 fw= 4.854 F := f•E•0.3•F •t F =6. 1 k fW = in ^ u w w 3 in F 0.77 w I WELD B: WELD AT EMBED PLATE d := 12.in N.n 1 f – AXIAL + 0•k•eb•3 k 4 ^' 2•d 2 f1 = 3.083— t 0.25•in B EN= 1 M– d in 3 I 0•k k = 2•d f2 0— 70•ksi n =Vf1 +f2 fw= 3 . 083 k = fE• Fw = f W =0.44 in in F I I 9 t.5 I . . ) UriTT44, 67,164-- .111, ------------lw-44044 i;P.-ti- 5.1(h) ttookr &V—tr) 'Q 1 —IA, s I Cc I , r .,..._ ‘,, 1 0. _,- tx,,, V- iv.v = ., 0.1,(1,(A, c 1 .,.. 7 .____.. -v aIS • 6119 ISIC '5 -C. . I ..............4....r.,,,,,,V1.,•.:,M7.74=1.-.......V■ . • I 4L--,- Pill 1 I ' 1 I I J---- ---• __ . I ...... .. ___ - ,.. _..........._...... _ I t 4 , 1111 - ' $ . ...._.._ ssi 6 :: • ---,—, _..r a ..,s.. . c.. ---,., .k.....„ ..,, ., ......\, _ .1 '--- 4 ,s--• 1 1) I GHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS 6960 S.W. VARNS ST., SUITE 200 I TIGARD, OREGON 97223 (503) 620-3030, FAX 620-5539 . JOB NO SHEET 9 OF I (:, I . , ) ge W>)11F--P- 7\.). i 1 G6„, /ON 0 tet 419.w 1 I - W L`'42 I 1° V I kixtr 97i- Qr& 0 V-,›Ler. '6‘`-'-‘" • u- �4- v3\, . i 4,1 OA ____________7-ii.; 1: -.------------:--\ "--- r: c> o,t' I I ill I GHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS I 6960 S.W. S S T., SU ITE 200 JOB NO TIGARD, OREG 97223 SHEET OF (503) 620 -3030, FAX 620.5539 4T 17 -c9tr Pty '4117-e'r 4-10 1 -"/A74-€Cipi-vilc 4 qd- vit- it vo i NZ I ClelY ti/ " le >0 Ve4vo Vcef-Vb4 k•Wt I C:r4/2,471) t\k, C'27 1,444% o I 660-Mi XAA- I . cv1 k 0.) - ;4) I 317 , tt a , IFGHAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS JOB NO .( j: - 9 1" . . ij 1 5 1 5 T 3 E 9 200 SH EET 9 OF 1•22 I ND BUILDING ONE I LATERAL DESIGN: ROOF W24 DRAG BEAM TO SHEAR WALL I. I K := 1 EFFECTIVE LENGTH FACTOR L := 42.667•ft UNSUPPORTED BEAM LENGTH KL:= K•L KL = 42.67 ft EFFECTIVE BEAM LENGTH I LOADING: 1.2•D + OMEGA•E + 0.5.L UBC 97 SECTION 1633.2.6 A 24.k M 138•ft•k My:= 0.00•ft•k I PROPERTIES: W 24 X 84 = 24.7•in bf:= 9.020•in tf:= 0.770•in Af:= bf•tf. Af = 6.945in . d := 24.10•in AM I 2370•in I := 94.4 -in z= y Oil Sz= 196.7in3 Sy = 20.9 in Zz:= 224•in Z 32.6in r =9.8in ry= 1.95in rmin= 1 . 95 in 7:= 2.31•in I " KL KL SRmin:= max ■ z 3 r )) SRmin = 87 SLENDERNESS FACTOR IN PLANE OF BENDING 65 = 9.192 b = 5.857 f 2 tf 12•7t ksi I F := 23•SRmin 2 Fe = 19.59ksi EULER STRESS DIVIDED BY FACTOR OF SAFETY 2 "x 2 Es SRmin (1 - 2•R 12•n Cc := C = 107 R:= F := i R < 0.500, fs ^^^ 2•C� 5 3•R 3 ' 2 3 + 4 - R 23 •SRmin - Ax fa 1.7A fa = 0.57 ksi AXIAL STRESS F = 17.5 ksi ALLOWABLE AXIAL STRESS I M fbz:= Z fbz= 7.39 ksi BENDING STRESS Fb 24.4 ksi ALLOWABLE BENDING STRESS STRONG AXIS M fby := y fby = 0 ksi BENDING STRESS Fb = 37.5 ksi ALLOWABLE BENDING STRESS Z y WEAK AXIS II INTERACTION = 0.34 I 0 tcl I I. ,___ I BUILDING ONE ___ ..------- ^_ -- -- _ 1 LATERAL DESIGN: ROOOF W24 DRAG BEAM TO SHEAR WALLJ.E -1 I . CONNECTION AT COLUMN AXIAL := 24•k LOAD CASE 1.2•D+ OMEGA.E + 0.5•L UBC 97 SECTION 1633.2.6 I SHEAR := 12•k MOMENT := 0•ft•k WELD A: SHEAR TAB WELD I b 2 b:= 2.5•in ^ d:=18•in =2.b +d A =23in = 2•b + d N= 0.272in I Cy:= 2 Cy = 9 in C =b - N Cx= 2.23in 0 11 d 2 (2•b + d) b + d) 3 S b-d + 3 S = 153 in N,i= 12 2•b + d J = 899.72in k k f1 0 in f1 = 0 in SHEAR SHEAR•eb•Cx k f2 := A + J f2 = 0.7— in tw := 0.25•in 1 AXIAL SHEAR•eb-Cy k f3 := A + J f3 = 1.764 i n F := 70•ksi E := 0.707 f := 1.7 I 2 2 2 k k fw fw: = + f2 + f3 fw =1.898 in Fw:= f•E0.3•F Fw =6.31 in F = 0.3 w i . WELD B: WELD AT COLUMN d := 18•in MA AXIAL SHEAR•eb•3 k f = 2d + 2 1.556— in tom= 0.25•in E: =1 f.= 1.7 d i f - SHEAR f2 = 0.333— ,F 70•ksi in I II ,,f,)4,(= ! f1 + f2 f = 1.591 k .= f•E.0.3• Fu•tw Fw = 8.925 k in Fw fw = 0.18 i n I I 20 IlL ',' . : -12 -t1c7[0-- ---- ____- 6 = s- _ — -- - - _ — -__— _ -- I VA)- WO f G 1247 Q Wv-N Q1k,Lc I viktV4e4r °., I 1 1,0 (9 , 1-4 vt «% Q.c,. , 4?‘4./c 9rvail - �fi : k � r .. ' v I - 0 11 ik w 7 r.. I v V' $ VI," e4 L O -U- (A,-o )C 51 1 I Al., 1 , ( I , 1,0 6i,2006) k it 14, c, A- �c� t t = V6 (7 fi (47f -0/X 00'.2003) -1'49 ' (1 ) 1 = Gx V G HAN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS 6960 S.W. V S T., SUITE 200 JOB NO TIGARD OREGON ARNS 97223 (503) 620 -3030, FAX 620 -5539 SHEET 0 OF I ,) ', ) IL _ ,v ,( I i,V c 0(Z (2ica( 7/T 0 1 \tift-f W 0 CP to _ : 0 ke.PC.2 4,c 44ts I 4g L ar , ttc; ∎. c e*re7 A- C2. 1 16 t` ta ; .'6 Firr t�� � c tb 6v'� 6' --- f 6�H l ■///k I W N 0 n/A, — C - G - Ai ¶r \40 1.140 itc l.� / 7 - le v f 217 ti1( I I ■ c -- t,u Ar , P I I GHAN ASSOCIATES, INC. BY f DATE CONSULTING ENGINEERS JOB NO I 6TIGARD960 S.W. VARNS OREGON ST. 22 V SUITE 200 �^ , (503) 620 -3030, FAX 620 -5539 SHEET OF ND -____ ...________12_ ..._.1111,4_41._____v_ : . __, : S____ _ __________ ______ __.________ I �lAe 14-- � x/',°1,1, _ st -ti M' n -o��oV 4 - q7 . - 2 H • ( .; (. 4 I -7 w QqAA, f, d u( 1 4\6 1 ,�� v tl 1 - fao I r .1) k. otAs 1/571 7 . 1 N ° (,0 QO vJ �� I rell, ki tA 771 01 1 4119-4t4A Wilk \A)/ti l lI b„ 1 I \ 115 VI ( = /1-&' (: ct %tic{ Vo U,t7 \\ 07,0 I I \i '1A ( 100., -9) I I INC. Ai GHAN ASSOCIATES, N BY DATE CONSULTING ENGINEERS I FF 6 V: 63 V R A E FLI N S T ., SUITE 200 JOB NO 97223 N 030, FAX 620 -5539 SHEET C? OF I . , /1 k ! I I I i r ; 1 6g , I a . . t) .._-= \ C I c / 1) 2 ,4)6,, 0 I I ti, .CC.)- >r r r -- 1 f KO -- LOtaf'740-i -t A,K0f,CM,66) I OP- P 1 1 20k, -, Orlio0CV)6 ° , 5 ) \oft' .1?•1\r4 ,0,W■)(444 tr ' • t'Po 6,7 0 blylv- 0 ,If(4 &-• ,O 1 ., v , (1- I . . , • Irt\i -- 0 t-VIt-i °)) ,- v vc I 1 4._ /: t 1 k • - - • • • - I I /611AN ASSOCIATES, INC. BY DATE CONSULTING ENGINEERS I s \A j s x - 9 1SUITE 200 JOB NO SHEET_Q___ OF 7I/dC 1 le �j 9"Y V�-WrQ C. onr' h - S/- ,v 1 T y p , ' C ' A 5 / 7 1, 6 ✓ Ai / Z 9 a. i r e a c i s 4 rI'S e rS (ZiO P s fi ti T l /and/15 : 2 N,W. oN 2-0 7a. WI- dee-A (4-0 1 ,95) Lr've Lnaol = 100 vs e a des,' N /PAS /¢d p A r mi i'v - .co r 5 r. v e ►'S 35 1951 ) (or co /vm,vs' , 74)0 741-,1 I Boi,rn 5 , 4 -, 'N, e.' V,) : I = 1 *, 0 w- 3 1 ft,- ear.h'o, -. 2, 1 : _ — Ce n �-G ►, 5 �{, --:.v e r g v,cJ ' � l 8 . �✓ (/V� "_ 364- P y' 1.6' 5- 6,7? ;4 1 7 5,� -,',v- er �v,v ., — 2 3, S' = 376 q k /Z-ea P � c.74. N - � / � - 2 , P o S,? .1 ' /e B 0 `f' 1 Tr e a of 1 1 rt , f S f y1, S : , Db64 3 5 = ('%) (,/1 5) , OzZ /; ,) ok a /274. I _ _ r, 5.�; fL-.� er : Max - 6, S (N'� � !/ 572//- 71 _ = 7. Z.-c7 "k 5" - , 74 ,n 3 4 bx `1, . 6 /'-s = /7,6. ,(✓ .s/' •'• o/4 itHAN ASSOCIATES, INC. T/ G A . A BYeRADATE ° g CONSULTING ENGINEERS C o NA/ E c T 0,2 5 TA / g5 JOB NO 960 SW. VARNS S T., SUITE 200 IGA O REGON 97223 M ,503) 620 -3030, FAX 620-5539 5HEET' ' / OF (.n zee to s4 v pa = 2.7 @ be i' = /4-,?'k ? 6. 4-7,‘4 3 ' y a y 5S 6 X , k 4 4' FA / v �/ r 5 ` e,,- s)( ti Z•5Y = / 3(2,9 Do) (14-.40 , l/ I � < L /22) dk P os - (AA DG (/r o vS e a /455 6 x x (/- �r i -� v;' € ho %ofgGef 01° 1 Up Beam ( 6o ►n) gk = 7,13 r< ,Q ,r) @ 6 ean4 L ' /fI E = Z 3 ' 4 < S ? 8, I¢ i'i e Z -S1., 3 I H 6 x x 3 / 8 / In Y J o J (r co -t>' .o Nc ( Q , : (0 6" _ % ? ¢-o OA. I /AT Le b eq m ,a -74f (G,i d ' . - 2 = /2.0 6 7-Of 44 1 (,1 6 S ' 4, s,` ,) . /'Is x 5 $ %L. ' -eac4` o nr j ,7 k Trtrn6 Lj eGM a 4o, (aMc (3, ?P/l7) i I IIAN ASSOCIATES, INC. T I G A g--P BY DATE 9 ` 0 CONSULTING ENGINEERS Gp /i/ e 5T 4- /mss JOB NO S 7-74 6960 S.W. S , U TIGARD, OREG ST 97223 SITE 200 7 (503) 620 -3030, FAX 620 -5539 SHEE G.- OF 1 e niPc.. /14-Its 07 Ft. -1,66 SM = /, /¢ 5,, 1 5 os -.76 S -,¢1 , 4-n /A a x,', v n+ «PA rulm 6a d = �¢ x , 7.6 x / , 0 x tpX = , W = Z -oop / A/7S Sech'o N ' Wr = � o 0,/ e cl ?o Ara / sec-4 I 0 1 '61 2 4,74 7 m S�Par - ¢¢� 4 /� @ , SeG7i'oA) l — 66 1 0/1 @ c6'a Ton a/ S 4") NorZ/Sovi'2, se,'sm•c- Goad F = 3 44-p» //. 916.6 ) = , zk ' 4- add /, / k e% H“‘/ 5 7 1 1-)'. v� e+' = ( ' `4/7. z- = , /9 /c_ ; ok i k oba o& / sec4o& Can Corth'Le4rer @ joie,/ c(v f4 4 6-om f en r e/d 1 M o mei, e 0/co., _ (C .6P l�) at S') z^ 6'k of - / 0.171 f 47.--41. T/c I Gas /-/14'e - Se %So 6vo c/ Mor- @ ■Ir4 r vet) = /B ( = 6,0' I d - �,3' / - /, /3k ok .. / —L erS' 1 f h1d l = 23'(66p. ) t lE. r / /- = Z. . (, ( @ Go N e --' c 7/ HAN ASSOCIATES, INC. r 1 GA F - D 6r SATE v ONSULTING ENGINEERS co N,V EG S "�� 07_5 JOB NO 5- Z 9 60 SW. VARNS s SUITE 200 GARD OREGON 97223 5 03) 620 -3030, FAX 620.5539 SHEE 3 OF