Loading...
Specifications (2) /0 77 w 5 4&-s= i /0 9? 5k/ RECEIVE' ?(1t1 Structural CalculationscrvoFTDG r, BUILDING for Full Lateral & Gravity Analysis of Plan B 1332 Lot 53, Summer Creek Townhomes Loy- Tigard, OR 1.15 r). /I- 0005' 9 Prepared for MMsr2-0/1 - o€7 / 0 / Pulte Group April 7, 2011 JOB NUMBER: CEN-090 ***Limitations*** Engineer was retained in limited capacity for this project. Design is based upon information provided by the client, who is solely responsible for the accuracy of same. No responsibility and/or liability is assumed by, or is to be assigned to the engineer for items beyond that shown on these sheets. _98 sheets total including this cover sheet. (1,1,GI NEE-R Qy 12.320 &i OFFICE COPY N'(),::42),154'OREGON ,\# . N J. EN-CC' EXPIRES'12-31-2011 This Packet of Calculations is Null and Void if Signature above is not Original Harper • Houf Peterson Righelhs Inc. HwaiNE EPa♦ wgxsA� t PCSCAPE,PCHIlECE,.SUf VE,ORS 205 SE Spokane St. Suite 200 s Portland, OR 97202 a [P] 503.221.1131 • [F] 503.221.1171 1 104 Main St. Suite 100 o Vancouver, WA 98660 0 [P] 360.450.1 141 0 [F] 360.750.1 141 1 133 NW Wall St. Suite 201 o Bend, OR 97701 0 [P] 541.318.1 161 0 [F] 541.318.1 141 Structural Calculations for Full Lateral & Gravity Analysis of Plan B 1332 Lot 55, Summer Creek Townhomes Tigard, OR Prepared for Pulte Group April 7, 2011 JOB NUMBER: CEN-090 ***Limitations*** Engineer was retained in limited capacity for this project. Design is based upon information provided by the client, who is solely responsible for the accuracy of same. No responsibility and/or liability is assumed by, or is to be assigned to the engineer for items beyond that shown on these sheets. _98 sheets total including this cover sheet. PROFFs foaGI NE4-4. 12.320 9 tP ✓ OREGON A, y 15,\g� Q' J. EN0CN- EXPIRES.12-31-2011 This Packet of Calculations is Null and Void if Signature above is not Original Harper HF Houf Peterson Righellis Inc. eNOwie as: Ne Rs it ND9CVE•A CNtEC Y9.Bl1RV Ei6R5 205 SE Spokane St. Suite 200 6 Portland, OR 97202 ♦ [P] 503.221.1131 • [F] 503.221.1171 1 104 Main St. Suite 100 o Vancouver, WA 98660 • [P] 360.450.1141 • [F] 360.750.1 141 1 133 NW Wall St. Suite 201 • Bend, OR 97701 0 [P] 541.318.1 161 0 [F] 541.318.1141 Structural Calculations for Full Lateral & Gravity Analysis of Plan B 1332 Summer Creek Townhomes Tigard, OR Prepared for Pulte Group July 13, 2010 JOB NUMBER: CEN-090 ***Limitations*** Engineer was retained in limited capacity for this project. Design is based upon information provided by the client,who is solely responsible for the accuracy of same. No responsibility and/or liability is assumed by, or is to be assigned to the engineer for items beyond that shown on these sheets. 96 sheets total including this cover sheet. • • This Packet of Calculations is Null and Void if Signature above is not Original Harper Flou:f Peterson Ritzhellis Inc. PiiY 4ai i,♦"c••'•) t'l N+l v.)N.5 205 SE Spokane St. Suite 200 ® Portland, OR 97202 0 [P] 503.221.1131 • [F] 503.221.1171 1 104 Main St. Suite 100 o Vancouver, WA 98660 0 [P] 360.450.1 141 • [F] 360.750.1 141 1 133 NW Wall St. Suite 201 o Bend, OR 97701 0 [P] 541.318.1 161 0 [F] 541.318.1 141 Design Criteria Project Scope: Full lateral & Gravity Analysis of Unit B Design Specifications: Wind Design: Basic Wind Speed (mph): 100. From Building Authority Exposure: B From Building Authority Importance, lW: 1 2006 IBC/2007 OSSC Occupancy Category: II Residential Earthquake Design: Seismic Design Category: D From Building Authority Site Class: D Assumed, ASCE 7-05 Ch.20 Importance, IE: 1 ASCE 7-05 Table 11.5-1 Ss: 0.942 USGS Spectral Response Map S 1: 0.339 USGS Spectral Response Map Dead Load: Floor: 13 psf Wall: 12 psf Wood Roof: 15 psf Live Load: Roof: 25 psf Snow Floor: 40 psf Residential Floor Materials and Design Data: Materials: Concrete Compressive Strength, f'c: 3000 psi Foundations &Slab on Grade Concrete Unit Weight,yc: 145 pcf Steel Reinforcement Yield Strength,fy: 60,000 psi Wood Studs (Wall Studs): Hem-Fir#2 2x &4x Wood Beams & Posts: DF-L#2 6x &Greater Wood Beams & Posts: DF-L#1 Glulam Beams: 24F-V4 PSL Beams: Fb=2,900 psi, FV=328psi, E=2.0 Million TS/LSL Beams: Fb=2325 psi, FV=460psi; E=1.55 Million Design Assumptions 1. Allowable soil bearing pressure (qa) : 1500 psf Assumed 2. All manufactured trusses,joists, and flush beams-u.n.o.shall be designed by others. Structural Analysis Software Used: Mathcad 11 Microsoft Excel 2000 Wood Works-Sizer version 2002 Bently RAM Advanse Harper Project: Summer Creek Townhomes UNIT B °` ''°* Houf Peterson Client: Pulte Group Job# CEN-090 Righellis Inc. ENGINFLERS•,LANNE z> Designer: AMC Date: June 2010 Pg.# I AtlEISCAPE ARC4lEGl S•SURVEYORS DESIGN CRITERIA 2007 Oregon Structural Specialty Code&ASCE 7-05 Roof Dead Load RFR:= 2.5•psf Framing RPL:= 1.5•psf Plywood RRF:= 5•psf Roofing RME:= 1.5•psf Mech&Elec RMS:= 1 psf Misc RCG:= 2.5•psf Ceiling RIN:= 1•psf Insulation 15 psf Floor Dead Load FFR:= 3•psf Framing FPL:= 4•psf Sheathing FME:= 1.5•psf Mech&Flee FMS:= 1.5-psf Misc FIN:= .5•psf Finish&Insulation FCLG:= 2.5•psf Ceiling • tEDL 13•psf Wall Dead Load WOOD EX.Waller,: •12-psf INTWall ':=,.10,0sf Roof Live Load RLL =25 psf Floor Live Load -FLL _40-psf .6—L\ Harper Project: Summer Creek Townhomes UNIT B D- Hoof Peterson . Client: Pulte Group Job# CEN-090 Righellis Inc. ENGINEERS*PLANNERS Designer: AMC Date: June 2010 Pg.# LANDSCAPE ARCNITECTS•SURVEYORS Transverse Seismic Forces Site Class D DeSigti:Catagory,; -0, co.:too:1-y:II Weight of Structure In Transverse Direction Roof Weight • Roof Area:= /46-It 2 A:12 RFINT:= RDL-Roof Area RFWT= 12566-1b Floor Weight Floor Airo42-rid FLRwund:= PDL-Floor Area2nd FLRWT2nd = 78651b -Floor 6004t. FLRWT3rd:= FDL•FloorArea3rd FLRWT3rd= 7800.1b Wall Weight EX Wall Area = (2203) ft2 WALL w-E:= EX_Wallwt.EX_WallArea + 1NT WallINT Wall Area WALLWT= 35496.lb WTTOTAL= 63727 lb Equivalent Lateral Force Procedure(12.8,ASCE 7-05) hn Mean Height Of Roof Component Importance Factor (11.5,ASCE 7-05) .R Responce Modification Factor (Table 12.2-1,ASCE 7-05) .02 Building Period Coefficient (Table 12.8-2,ASCE 7-05) x':-= :75 Building Period Coefficient (Table 12.8-2,ASCE 7-05) Period Ta:= Ct-(10x Ta= 0.27 < 0.5 (EQU 12.8-7,ASCE 7-05) Q.339 Max EQ, 5%damped,spectral responce acceleration of 1 sec. (Chapter 22,ASCE 7-05)...or 0.942 Max EQ, 5%damped,spectral responce acceleration at short period From Figures 1613.5 (1)&(2) Fa:= 1.123 Acc-based site coefficient @ .3 s-period (Table 11.4-1,ASCE 7-05) 1.722 Vel-based site coefficient @ 1 s-period (Table 11.4-2,ASCE 7-05) :gt , Harper Project: Summer Creek Townhomes UNIT B •i'l TIR D• HoufPeterson Client: Pulte Group Job# CEN-090 Righellis inc. „G,t,EER,•PLANNERS Designer: AMC Date: June 2010 Pg.# LANDSCAPE APC,111 ECT S•SURVEYORS SMS := Fa.Ss SMS = 1.058 (EQU 11.4-1,ASCE 7-05) 2'SN4S Sds:— Sds =0.705 (EQU 11.4-3,ASCE 7-05) 3 SM1 := F.,.S 1 SM1 = 0.584 (EQU 11.4-2,ASCE 7-05) 2•SNI1 Sdi :— Sdi = 0.389 (EQU 11.4-4,ASCE 7-05) 3 • Sds'le Cst:= R Cst= 0.108 (EQU 12.8-2,ASCE 7-05) ...need not exceed... Sdrle Csmax = 0.223 (EQU 12.8-3,ASCE 7-05) Csm„ :— Taa ...and shall not be less then... C1 := if(0.044-Sds•Ie <0.01,0.01,0.044.Sds'Ie) ( (EQU 12.8-5&6,ASCE 7-05) 0.5-S1.11 C2 := if S1 <0.6,0.01, R Csmm := if(Ci > C2,Ci,C2) Csmin =0.031 Cs := if(Cst< Csmm,Csmi,„if(Cst<Csmax,Cst,Csmax)) Cs= 0.108 ' V:= Cs•VProTAL V= 6914lb (EQU 12.8-1,ASCE 7-05) • E:= V•0.7 E =4840 lb (Allowable Stress) • harper Project: Summer Creek Townhomes UNIT B tuff Petencm Client: Pulte Group Job# CEN-090 RighaiS inc. SNGINCEPE•PTANNtiiii- Designer: AMC Date: June 2010 Pg.# LANCSCAPE AR CHI TECrS•SURVEYORS Transverse Wind Forces (Method 1 -Simplified Wind PrOcedure,per ASCE 7-05) Basic Wind Speed: 6ph(3 Sec St) Ei4iosure:'B Building Occupancy Category H t:00 Importance Factor (Table 6-1,ASCE 7-05) hn= 32 Mean Roof Height 1:00 Adjustment Factor (Figure 6-3,ASCE 7-05) 42 T.:1 Smaller of...8:ft Zone A&B Horizontal Length (Fig 6-2 note 10,ASCE 7-05) a2= 3.2 ft or a2 = .4-hn-2 ft a2= 25.6 ft but not less than... a2min:= 3-2-ft a2 • = 6 ft mm Wind Pressure • :(Figure 6-2,ASCE 7-05) Horizontal POLiteA = 1 :9:::Osf -3.2Pst •Pntnec , • „ Vertical ;PtIP4One6: 7-4'4'00 9,'7*Of Basic Wind Force • PA:= PnetzoneXIW X PA = 19.9•psf Wall HWC PB:= PnetzoneB'Iw'X PH =3.2.psf Roof HWC PC:= PnetzoneC'Iw'X Pc= 14.4-psf Wall Typical PD:= PnetzoneD'IW X PD =3.3-psf Roof Typical • PE:= PnetzoneETW X PE =—8.8-psf PF PnetzoneFIWX PF = —12.psf PG:= PrietzoneEIWX PG =—6.4-psf PH:= Pnetz„eH-Iw-X PH =—9.7-psf e;; Harper Project: Summer Creek Townhomes UNIT B Houf Peterson Client: Pulse Group Job# CEN-090 Righellis Inc. ENGINEERS PLANNERS Designer: AMC Date: June 2010 Pg.# LAI2OSC49E ARCM f PC;S RSORVEYORS Determine Wind Sail In Transverse Direction • WSAILZoneA (55 ± 59+ 29)'ft2 W SAILZ-oneB (6.±.0 + -WSAILZo3ieC`:= (429.+ 355 +339):ft2 WSAILZoneD:= (0,± 0 +r 4) ft. WA:= WSAILZoneA'PA WA=2846 lb WB:= WSAILZoneB'PB WB= 93 lb WC:= WSAILZoneC'PC WC= 16171 lb WD:= WSAILZoneD-PD WD= 13 lb Wind_Force:= WA + WB+ W+ WD Wind Forcen,ti,:= 10•psf•(WSALLZoneA+ WSAILZoneB + WSAILZoneC + WSA1LZoneD) Wind_Force= 19123 lb Wind_Forcenin = 12990 lb WSAILZoneE;'= 43ft2 2 WSAILZoneF: WSAIL,ZoneG 334 ft2 WSATLZoneH 32'7',ft2 r WE:= WSAILZoneE•PE WE =—378 lb WF:= WSAILZoneF'PF WF=—516 lb WG := WSAILZoneG'PG WG =—2138 lb WH:= WSAILZoneH'PH WH=—3172 lb Upliftnet:= WF + WH+ (WE + W6) + RDL•[WSAILZoneF+ WSAILZoneH+ (WSAILZoneE + WSAILZoneG)]'•6.1.12 Upliftnet= 1326 lb (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHFARWALL HOLDDOWN CALCULATION 8— Ls , Harper Project: Summer Creek Townhonies. UNIT B '; ;►' HoufPeterson Client: Pulte Group Job# CEN-090 Righellis Inc. FNSiNE RS•PLANNERS — Designer: AMC . Date: June 2010 Pg.# LANDSCAPE ARCHITEC-<S.SUR`SYDRS Longitudinal Seismic Forces iteclass=.D D4igri'.Gata06'=D1 Buildirig.Occuparicy',Cafegory:=II Weight of Structure In Longitudinal Direction Roof Weight Roof Area = 838 ft2 Myxv:= RDL•Roof Area RFwr = 12566-lb Floor Weight Floor_Area2nd = 605 ft2 F, := FDL•Floor Area2nd FLRWT2nd='7865-lb FloorArea3rd= 600 ft2 n+FnLiv T d= FDL•Floor Area3rd FLRWT3rd=7800.1b Wall Weight E ‘ Area:: .x(2203)Y ft? • INT Wall Area= 906 ft2 WAND:= EX_Wallwt•EX_Wall_Area+ ]NT Wallt]NT_Wall_Area WALLWT=35496-lb WTTOTAL= 63727 lb • • Equivalent Lateral Force Procedure(12.8,ASCE 7-05) hn= 32 Mean Height Of Roof Ie = 1 Component Importance Factor (11.5,ASCE 7-05) • -' 6'.5 Responce Modification Factor (Table 12.2-1,ASCE 7-05) Ct= 0.02 Building Period Coefficient (Table 12.8-2,ASCE 7-05) x= 0.75 Building Period Coefficient (Table 12.8-2,ASCE 7-05) Period ,,:= Ct.(hn�x ,T Ta =0.27 < 0.5 (EQU 12.8-7,ASCE 7-05) Si = 0.339 Max EQ, 5%damped,spectral responce acceleration of 1 sec. (Chapter 22,ASCE 7-05)...or Ss = 0.942 Max EQ,5%damped,spectral responce acceleration at short period From Figures 1613.5 (1)&(2) Fa= 1.123 Acc-based site coefficient @ .3 s-period (Table 11.4-1,ASCE 7-05) F,= 1.722 Vel-based site coefficient @ 1. s-period (Table 11.4-2,ASCE 7-05) • • Harper Project: Summer Creek Townhomes UNIT B ' iv• Houf Peterson Client: Pulte Group Job# CEN-090 Righellis Inc. Ettt,It18128...PLANN..,32,F, Designer: AMC Date: June 2010 Pg.# ,ANt,SCAPE AR:,H,Y£CrS•SL:RVE fORS Fa•Ss SMS = 1.058 (EQU 11.4-1,ASCE 7-05) 2-Sms Sds = 0.705 (EQU 11.4-3,ASCE 7-05) 3 A h u A:= F S i Sm1 =0.584 (EQU 11.4-2,ASCE 7-05) 2-Smi Sth = 0.389 (EQU 11.4-4,ASCE 7-05) 3 Sds'le Cst Cst= 0.108 (EQU 12.8-2,ASCE 7-05)R ...need not exceed... Sdl'ie Ta•R Csm„ =0.223 (EQU 12.8-3,ASCE 7-05) ...and shall not be less then... 4:= if(0.044-Sds-I, <0.01,0.01,0.044.Sds'1e) (EQU 12.8-5&6,ASCE 7-05) if S1 < 0.6,0.01, R if(Ci > C2,CI,C2) Csmin =0.031 Cs := if(Cst< Csmm,Csmm,if(Cst.< Csma,,Cst,Csmax)) Cs = 0.108 T: CS'WTTOTAL V= 69141b .(EQU 12.8-1,ASCE 7-05) E := V•0.7 E =4840 lb (Allowable Stress) !‘„2 Harper Project: Summer Creek Townhomes UNIT B Houf Peterson Client: Pulte Group Job# CEN-090 Righellis ENGINEER S..PLANNERS Designer: AMC • Date: June 2010 Pg.# LANDSCAPE ARCM TECTS•SURVEY ORS Longitudinal Wind Forces (Method 1 -Simplified Wind Procedure per ASCE 7-05) Basic':Wind::Speed:,110 mph(3 Sec Gust). Exposure:1B Building'Occupancy`.Category:I = 1.0 Importance Factor (Table 6-1,ASCE 7-05) hn= 32 Mean Roof Height X = 1.00 Adjustment Factor (Figure 6-3,ASCE 7-05) Smaller of... a21:16•ft Zone A&B Horizontal Length (Fig 6-2 note 10,ASCE 7-05) a2 =3.2 ft or • .4•hn 2•ft a2 =25.6 ft but not less than... hankv:= 3-2-ft a2min= 6 ft Wind Pressure (Figure 6-2,ASCE 7-05) Horizontal PnetzoneA= 19.9•psf PnetzoneB =3.2•psf PnetzoneC = 14.4•psf • PnetzoneD=3.31psf Vertical PnetzoneE=—8.8•psf PnetzoneF=—12•psf PnetzoneG=—6.4-psf PnetzoneH=—9.7•psf Basic Wind Force te:= PnetzoneA'Iw-X PA= 19.9-psf Wall HWC Pte:= PnetzoneB'Iw-X PB= 3.2•psf Roof HWC Pte:= Pnetzonec'Iw.X PC= 14.4•psf Wall Typical Pte:= PnetzoneD'Iw'X PD= 3.3•psf Roof Typical INZFAA:= PnetzoneE'Iw.X PE =—8.8•psf • ,,:= PnetzoneF'Iw.X PF =—12•psf PnetzoneGIw'X PC, =—6.4•psf • Pte:= PnetzoneH'Iw'X PH=—9.7•psf .�z Harper Project: Summer Creek Townhomes UNIT B Houf Peterson Client: Pulte Group Job# CEN-090 Righellis Inc. ENGINEERS•PLANNER& Designer: AMC Date: June 2010 Pg.# ANOSCAPE ARCHITECTS•SURVEYORS Determine Wind Sail In Longitudinal Direction Wt :-'(58.+59+ 21).uft2 WdI _ (0 + 0:+.51 . ft. W ;.='(98 +"99±34):f•2 WS := •,(0,+ 0;± 1 );ft• „W := WSAII-ZoneA'PA WA= 2746 lb Wes:= WSAILZoneB'PB WB= 163 lb ,) := WSAILZoneC'PC WC=3326 lb Wes= WSAILZoneD'PD WD= 376 lb Wind WA+ WB+ WC+ WD Wind Forc = 10•psf•(WSAILZoneA+ WSAILZoneB + WSAILZoneC + WSAILZoneD) Wind Force= 6612 lb Wind Forcemin = 5340 lb WWSNP ,.= 151:ft? WSA := 138,ft2 •WSAN,nN� ILN := 242,ft2 WM SAI�L�e :=:2164t2 , := WSAILZoneE'PE WE =—1329 lb W� = WSA-11-ZoneF'PF WF =—1656 lb Wes:= WSAILZoneGPG WG =—1549 lb Wes:= WSAILZoneH'PH WH= —2095 lb UU lam° WF+ WH + (WE + WG) + RDL•[WSAILZoneF+ WSAILZoneH+ (WSAILZoneE + WSAILZoneG)1.6.1.12 Upliftnet= 901 lb (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN CALCULATION LCA Harper Houf Peterson Righellis Pg#: Transverse Wind Line Shear Distribution ASCE 7-05,section 6.4(Method 1 -simplified) Design Criteria: Basic Wind Speed= 100 mph Wind Exposure= B (Section 6.5.6,ASCE 7-05) Mean Roof Height,H(ft)= 32 Roof Pitch= 6/12 . Building Category= II (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf ' ' .. X= 1.00 Iw= 1.00 Wind Sail (ft2) Wind Net Design Wind Pressure(psf) Pressure(Ibs) Zone A= 19.9 143 2846 Wall High Wind Zone Horizontal Zone B= 3.2 29 93 Roof High Wind Zone Wind Forces Zone C= 14.4 1123 16171 Wall Typ Zone Zone D= 3.3 4 13 Roof Typ Zone Zone E= -8.8 43 . -378 . Roof Windward High Wind Zone . Vertical Zone F= -12.0 43 -516 Roof Leeward High Wind Zone Wind Forces Zone G= -6.4 334 -2138 Roof Windward Typ Wind Zone Zone H= -9.7 327 -3172 Roof Leeward Typ Wind Zone Total Wind Force= 19123 lbs . Use to resist wind uplift: Roof Only Total Exterior Wall Area= 2203 ft2 Uplift due to Wind Forces= -6204 lbs Resisting Dead Load= 7517 lbs E_) 1313 Lbs...No Net Uplift I •.. ' Wind Distribution Tributary to Diaphragms Wind Sail Tributary To Diaphragm(ft2): • Zone A Zone B Zone C Zone D Main Floor 55 . 6 429 '- • V 0 . Upper Floor 59 0 355 . 0 . r Main Floor Diaphragm.Shear= 7291 lbs Upper Floor Diaphragm Shear= 6286 lbs Roof Diaphragm Shear=, .• 5546 lbs , . . Wind Distribution To Shearwall Lines MAIN FLOOR UPPER FLOOR. .ROOF • Tributary' • Line Shear Tributary. Line Shear Tributary Line Shear Wall Line Diaphragm ( )Ibs • - Diaphragm Diaphragm Width(ft) Width(ft) (lbs) Width ft) (lbs) A 15.83 2275 20.50 3143 21.33 . 2773 . B 19.50 2802 0.00 0 0.00 • 0 C - 15.42 2215 20.50 3143 21.33 2773 ' E= 50.75 7291 41' 6286 ' 42.67 - 5546 i ,L • Harper Houf Peterson Righellis Pg#: Transverse Seismic Line Shear Distribution Seismic Design Category= D Occupancy Category= II . Site Class= D S1 = 0.34 Ss= 0.94 Importance Factor= 1.00 Table 11.5-1,ASCE 7-05 • Structural System,R= 6.5 Table 12.2-1,ASCE 7-05 Ct= 0.020 Other Fa= • 1.12 Fv= 1.72 Mean Roof Height,H(ft)= 32 • Period(Ta)= 0.27 Equ. 12.8-7,ASCE 7-05 k= 1.00 12.8.3,ASCE 7-05 SMS= 1.06 Equ.11.4-1,ASCE 7-05 SMm= 0.58 Equ. 11.4-2,ASCE 7-05 . Sos= 0:71 ' Equ. 11.4-3,ASCE 7:05 Spy= ' 0.39 Equ. 11.4-4,ASCE 7-05 Cs= , 0.11 Equ. 12.8-2,ASCE 7-05 • Csmin= 0.01 Equ. 12.8-5&6,ASCE 7-05 Csmax= 0.22 Equ. 12.8-3,.ASCE 7-05 Base Shear coefficient,v= 0.076 Weight Distribution Determination to Diaphragm ' Floor 2 Diaphragm Height(ft)= 8 Floor 3 Diaphragm Height(ft)= 18 Roof Diaphragm Height(ft)= 32 Floor 2 Wt(lb)= 7865 Floor 3 Wt(lb)= 7800 • Roof Wt(Ib)= 12566 , Wall Wt(Ib)= 35496 Trib. Floor 2 Diaphragm Wt(lb)= 22063 • Trib. Floor 3 Diaphragm Wt(Ib)= 21998 • Trib. Roof Diaphragm Wt(Ib)= 19665 . Vertical Dist of Seismic Forces 1Cumulative%total of base shear I Rho Check • to Shearwalls(Ibs) to shearwalls Req'd? _ Vnoor2(Ib)= 711 100.0% Yes Vfloors(Ib)= 1595 85.3% Yes Vroor(lb)= 2534 52.4% Yes Shear Distribution To Wall Lines Wall Line Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line Roof Line Floor 2 Floor 3 Roof Shear Shear Shear sq ft sq ft sq ft lbs lbs lbs A 126 299 371 148 ' 795 1257 B 282 0 0 331 0 0. C 197 301 377 231 , , 800 ' 1277 _ Sum 605 600 ' 748 711 . 1595 2534 Total Base Shear*= ( 4840 LB *Base shear assumes rho equal to 1.0. See sheanvall analysis spreadsheet for confirmation of rho. g, L,,kit . • Harper Houf Peterson Righellis Pg#: Longitudinal Wind Line Shear Distribution ASCE 7-05,section 6.4(Method 1 =simplified) Design Criteria: Basic Wind Speed= 100 mph Wind Exposure= B (Section 6.5.6,ASCE 7-05) _ Mean Roof Height,H(ft)= 32 Roof Pitch= 6 /12 Building Category= II (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf A._ 1.00 Iw= 1.00 • Wind Sail (ft2) Wind Net Design Wind Pressure(psf) Pressure(Ibs) Zone A= 19.9 138 2746 Wall High Wind Zone Horizontal Zone B= 3.2 51 163 Roof High Wind Zone Wind Forces Zone C= 14.4 231 3326 Wall Typ Zone Zone D= 3.3 114 376 R6of Typ Zone Zone E_ -8.8 151 -1329 Roof Windward High Wind Zone Vertical Zone F= -12.0 138 -1656 Roof Leeward High Wind Zone Wind Forces Zone G= -6.4 242 -1549 Roof Windward Typ Wind Zone Zone H= -9.7 216 -2095 Roof Leeward Typ Wind Zone Total Wind Force= 6612 lbs • Use to resist wind uplift: Roof&Half of Upper Floor Walls Total Exterior Wall Area= 2203 ft2 Uplift due to Wind Forces= -6629 lbs Resisting Dead Load= 10160 lbs • E= 3531 Lbs...No Net Uplift Wind Distribution Tributary to Diaphragms Wind Sail Tributary To Diaphragm(ft2): Zone A Zone B Zone C Zone D Main Floor 58 0 98 0 Upper Floor 59 0 99 • 0 Main Floor Diaphragm Shear= 2565 lbs • Upper Floor Diaphragm Shear= 2600 lbs Roof Diaphragm Shear,= 1447 lbs, ' Wind Distribution To Shearwall Lines MAIN FLOOR UPPER FLOOR ROOF Tributary' Line Shear Tributary Line Shear Tributary Line Shear • Wall Line Diaphragm (lbs) Diaphragm (lbs) Diaphragm (lbs) Width ft Width ft) Width(ft 1 8 1283 8 1300 8 723 . 2 8 1283 8 1300 8 723 E= 16 2565 16 2600 16 1447 • g L,V1, •• • Harper Houf Peterson Righellis Pg#: Longitudinal Seismic Line Shear Distribution Seismic Design Category= D Occupancy Category= II Site Class= D S1 = 0.34 Ss= 0.94 Importance Factor= 1.00 Table 11.5-1,ASCE 7-05 Structural System,R= 6.5 Table 12.2-1,ASCE 7-05 Ct= 0.020 Other Fa= 1.12 Fv= 1.72 Mean Roof Height,H(ft)= 32 • Period(Ta)= 0.27 Equ. 12.8-7,ASCE 7-05 k= 1.00 12.8.3,ASCE 7-05 SM5 1.06 Equ. 11.4-1,ASCE 7-05 SM,= 0.58 Equ. 11.4-2,ASCE 7-05 Sps= 0:71 • Equ. 11.4-3,ASCE 7-05 Soi= 0.39 Equ. 11.4-4,ASCE 7-05 Cs= 0.11 Equ. 12.8-2,ASCE 7-05 Csmin= 0.01 Equ. 12.8-5&6,ASCE 7-05 Csmax= 0.22 Equ. 12.8-3,ASCE 7-05 Base Shear coefficient,v= 0.076 Weight Distribution Determination to Diaphragm • • Floor 2 Diaphragm Height(ft)= 8 Floor 3 Diaphragm Height(ft)= 18 Roof Diaphragm Height(ft)= 32 Floor 2 Wt(lb)= 7865 Floor 3 Wt(lb)= 7800 Roof Wt(lb)= 12566 Wall Wt(lb)= 35496 • • Trib. Floor 2 Diaphragm Wt(Ib)= 22063 ' • Trib. Floor 3 Diaphragm Wt(Ib)= 21998 Trib. Roof Diaphragm Wt(Ib)= 19665 Vertical Dist of Seismic Forces Cumulative%total of base.shear Rho Check to Shearwalls(Ibs) I to shearwalls I Req'd? . VFloor 2(lb)= 711 100.0% Yes Vfloor3(Ib)= 1595 85.3% Yes Vroof(lb)= 2534 52.4% Yes Shear Distribution To Wall Lines Wall Line Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line Roof Line Floor 2 Floor 3 Roof Shear Shear Shear sq ft sq ft sq ft lbs lbs lbs 1 275 270 .360 323 718 1220 2 330 330 388 388 877 1315 Sum 605 600 748 711 1595 2534 • Total Base Shear*= 4840 LB • *Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. • Harper Houf Peterson Righellis Pg#: • • • Shearwall Analysis Based on the ASCE 7-05 • Transvere Shearwalls, Line Load Controlled By: Wind Shear H L Wall H/L Line Load Line Load Line Load , Dead V Panel Shear Panel Mo MR Uplift Panel Lgth. - From 2nd Flr. From 3rd Flr. From.Roof Load Sides Factor Type T (ft) (ft) (ft) ht k ht k ht k (klf) (plf) (ft-k) (ft-k) (k) 101 ' 8 5.25 5.25 1.52 ox 8.00 2.28' 18.00 3.14 27.00 2.77 1560 _ Double 1.40 VIII • • 102 8 3.88 3.88 2.06 OK 8.00 2.80 8.00 0.00 723 Single . 1.40 IV 103 8 4.58 8.58 1.75 oi. 8.00 2.22. 8.00 •3.14 8.00 2177 947 . Double' 1.40 • VI . 104 8 4.00 8.58 2.00 ox 8.00 2.22 8.00 3.14 8.00 2.77 947, Double V 1.40 VI 107 8 4.58 1108 .1.75 oK 8.00 2.28 18.00 3.14 27.00 2.77 626. Single , .1.40 . III 108 8 8.50 13.08 0.94 OK '8.00 2.28 18.00 3.14 27.00 . 2.77 626 Single, 1:40. III . 1.09. . 8 3.88 3.88_ 2.06', ox 8.00 2.80 _ 723 . Single 1.40 • IV . 110' • 8 1.25 4.50 6.40 '8.00 2.22 8.00, 3.14 8.00 2.77. 1807 Double 1.40 -.NG • 111 8 2.00 4.50 4.00 8.00 2.22 8.00 3.14 8.00 2177 . .1807 ' Double 1:40 .•NG 112 . 8 1.25 _ 4.50• 6.40 hr 8.00 2.22- 8.00 3.14 8.00 2.77 , 1807 Double 1.40 NG 201 9 6.79' 9.79" 1.33 ox 9.00 3.14 18.00 2.77 604 Single L40 •, III 202 9 3.00 9.79 3.00 oK 9.00 3.14 18.00 2.77 •604 Single V 1.40 ' III ' 203 9 '5.00 5.00- 1.80 ox 9.00 3.14 18.00 2.77 1183 .Double 1140 VII ' V - 204 . Not Used 205 Not Used • • 206 • Not Used, •301' 8 6.88 10.08 1.16 ox 8.00 2.77 275 Single°• L40 I • 302 8 3.21 10.08 2.49 ox 8.00 .2.77 275 Single 1.40 I 303 8 5.00 10.00 1.60 ox 8.00 2.77 277 Single 1.40 I . 304 8 2.50 10.00 3.20 ox 8.00 2.77 , 277 Single . 1.40 I 305 8 2.50 10.00 3.20 ox 8.00 2.77 277 • Single 1.40 I Spreadsheet Column Definitions&Formulas L=Shear Panel Length H=Shear Panel Height Wall Length=Sum of Shear Panels Lengths in Shear Line H/L Ratio=Hight to Width Ratio Check V (Panel Shear)=Sum of Line Load/Total L Shear Factor=Adjustment For H/L>2:1 Mo(Overturning Moment)=Wall Shear*Shear Application ht • Mr(Resisting Moment)=Dead Load*L2*0.5*(.6 wind or.9 seismic) Uplift T=(Mo-Mr)/(L-6 in) • • • • • 8ULk Harper Houf Peterson Righellis Pg#:_ Shearwall Analysis Based on the ASCE 7-05 Transvere Sheanvalls Line Load Controlled By: Seismic Shear •H L Wall H/L Line Load Line Load Line Load Dead V Rho*V %Story # • Panel Shear Panel Mo Ma Uplift Panel Lgth. From 2nd Flr. From 3rd Flr. • From Roof Load Strength Bays Sides Factor Type T (ft) (ft) (ft) ht k ht k• ht k (kIt) (plf) (plf) (ft-k) (ft-k) (k) 101 8 . 5.25 5.25 1.52 OK 8.00 0.15 18.00 0.80 27.00 1.26 419 545 0.30 1.31 Single 1.00 IV 102 8 3.88 .3:88 2.06 OK 8.00 - 0.33 8.00 0.00 0.00 85 111 0.22 0.97 Single 0.97_ I 103 8 4.58 8.58 1.75 OK _8.00 0.23 8.00 0.80 8.00 1.28 269 350 0.26 1.15 Single , 1.00 II 104 8 4.00 8.58 2.00 OK. 8.00. 0.23 8.00 0.80 8.00 1.28 269 350 " 0.23 1.00 Single 1.00 II 107 8 4.58 13.08 1.75 OK 8.00 • 0.15 18.00 0.80 27.00 1.26 168 219; 0.26 1.15 Single 1.00 1 108 8 8.50 13.08 0.94 on 8.00. 0:15 18.00 0.80 27.00 1.26 ' 168 219 NA ' 2.13 Single , •1.00 I•109 8 -3.88 3.88 2.06 OK • 8.00 0.33 0.00 . 85 111 0.22 -_ 0.97 , Single. 0.97. I 110 -8 . 1.25 4.50 6.40 ;;i 8.00' 0.23 8.00 0.80 .8.00 1.28, '513 667 0.07 • 0.31 . Double 0.31 NG• 111 8 2.00 4.50 4.00 7 8.00 .•0.23 8.00 0.80 8.00 1.28 513 667 0.11 .0.50 Double 0.50 NG 112 8 .1.25 4.50 6.40 °; 8.00- 0.23 8.00 0.80 8.00 1.28 513 667 0.07 0.31 Double, 0.31 NG 201 • 9 6.79 ,9.79. 1:33 OK 9.00'. 0.28 18.00' •1.26• - 157 '• 205 -0.46' 1.51 ''-Single 1.00 I _ 202. 9. 3.00 9.79 3.00 OK . _ 9.00 0.28 18.00 1.26 157 205 • 0.20 0.67 • .'Single 0.67 II 203 9 '5.00 5.00 -1.80 OK - ' 9.00 0.55 18.00 1.28' 366 '476 .0.34' ., 1.11 Single .1.00 IV. . 204 Not Used - .. . 205 - .. Not Used. . . 206 Not Used . • 301 8 6.88 10.08 1.16 . OK 8:00 .1 .26 125 • 162 0.34 1.72 Single. 1.00 I 302 _ 8- 3.21 10.08 2.49. OK . • 8.00. 1.26 125 162 . 0.16 0.80 Single 0.80 I 303 8 ..5.00 10.00 1.60 on. . 8.00 1.28 128 166 0.25 1.25 Single 1.00 I 304 8 2.50 10.00 3.20 OK 8.00 • 1.28 128 166 0.12 0.63 Single 0.63 . II • • 305 8 2.50 10.00 3.20 OK • 8.00,• 1.28 128 166 0.12 . 0.63 Single 0.63' II • Rho Calculation Does the 1st floor shearwalls resist more than 35%of the total transverse•base shear? Yes . Does the 2nd floor shearwalls resist more than 35%of the total transverse base shear? • Yes Does the 3rd floor shearwalls resist more than 35%of the total transverse base shear? Yes Total 1st Floor Wall Length= 17.71 . Total#1st Floor Bays= 4.43 .. Are 2 bays minimum present along each wall line? No 1st Floor Rho= 1.3 Total 2nd Floor Wall Length= 14.79 - Total#2nd Floor Bays= 3 Are 2 bays minimum present along each wall line? No 2nd Floor Rho= i-3 Total 3rd Floor Wall Length= 20.08 Total#3rd Floor Bays= s Are 2 bays minimum present along each wall line? Yes 3rd Floor Rho= 1.3 Spreadsheet Column Definitions&Formulas L=Shear Panel Length H=Shear Panel Height Wall Length=Sum of Shear Panels Lengths in Shear Line H/L Ratio=Hight to Width Ratio Check V (Panel Shear)=Sum of Line Load*Rho/Total L %Story Strength=L/Total Story L (Required for walls with I-I/L>1.0,for use in Rho check) #Bays=2*L/FI . Shear Factor=Adjustment For H/L>2:1 Mo(Overturning Moment)=Wall Shear*Shear Application'ht Mr(Resisting Moment)=Dead Load*L2*0.5*(.6 wind or.9 seismic) Uplift T=(Mo-Mr)/(L-6 in) Harper Houf Peterson Righellis Pg#: Shearwall Analysis Based on the ASCE 7-05 Longitudinal Shearwalls Line Load Controlled By: Wind ' Shear H . L `Wall H/L Line Load Line Load' ,Line Load Dead V Panel • Shear Panel Mo. MR Uplift . Panel Lgth:- From 2nd Flr. Frorridrd Flr. From Roof. Load Sides - Factor- Type T (ft) • (ft)• • -(ft) • ht k ht k hr k,.,, (klf). 4p1.f) ,(ft-k) (ft-k) (k) 105. .8 ; "12.75 12.75- ,0.63 lox •-10.00 1.28' 18:00 " 1.30 .27:00 0.72- ' 1:1.3 -259 Single , ,.E40 " .I r 55:75 92.01 0.04: 106 ' 8" `1175' 12.75 0:63 oK' -10.00 1.28 .18.00'-:. 1.30 27.00 -0.72" 1113' .259'" Single 1.40 : ''I 55:75;' 92:01 _'0.04• 207. 9 11.50 _11.50, 0:78_ .ox 9.00 ..1'.30 .18.00. 0:72 0.75 176, . Single.. 1.40,"' , I 24':71" 49:73 70.47 • 208 9 " .11.50 11.50 :0•78 OK . 9.00 '' 1.30 '18,00. ,0:72. .0.75 - 176 . Single :1.40 ' :1' 2431 49:73. ,0.47, 306 8 10.00 10.00 0.80 OK 8.00 0.72 0.29 72 Single , .,1.40 . -I. ,5.78 14.40. -0.30' 307 8 10.00 10.00 0.80 ox 8.00 0.72 0.29 72 ' Single ' '1:40: I .. 5.78' 14.40 -0.30: Spreadsheet Column Definitions&Formulas " L=Shear Panel Length H=Shear Panel Height Wall Length=Sum of Shear Panels Lengths in Shear Line H/L Ratio=Hight to Width Ratio Check V (Panel Shear)=Sum of Line Load/Total L Shear Factor=Adjustment For H/L>2:1 Mo(Overturning Moment)=Wall Shear*Shear Application ht Mr(Resisting Moment)=Dead Load*L2*0.5*(.6 wind or.9 seismic) Uplift T=(Mo-Mr)/(L-6 in) • • • 84, Harper Houf Peterson Righellis Pg#: _ ShearWall Analysis Based on the ASCE 7-05 Longitudinal Shearwalls Line Load Controlled By: Seismic - Shear FI L Wall H/L Line Load Line Load Line Load Dead V Rho*.V %Story # Panel Shear Panel Mo MR ' Uplift Panel Lgth. From 2nd Flr. From'3rd FIr. From Roof Load • Strength Bays Sides Factor Type T (ti) (ft) (H) ht.' k ht '•k ht k (klf) (pH) (plf) (ft-k) (ft- ) (k) 105 8 12.75 12.75 0.63 OK,_10.00 0.32 18.00 0.72 27.00- 1.22' 1.19- 177 177 NA 3.19 Single 1.00 I 49.09 96.89 -0.74 106 8 12.75 12.75_ 0.63 OK_ _.10.00 0.39 `18:00 0.88 27.00 1.32 1.19 202 • 202 NA 3.19 Single 1.00. I 55.17 96.89, -0.24 I 207 9 11.50 11.50 0.78 ' OK 9.00 :0.72 (_ 18.00 1.22.. 0.81 169 169 NA' '. 2.56''..Single, ' L00' I .28.42 53.69' -0.34 208 9 :11.50 11.50 0.78 OK 9.00 0.88 18.00 1.32- 0.81 191 191 NA •2.56- Single 1.00- I 31.56 53.69 -406 1 306 8.' 10.00 10.00 0:80. OK 8.00 1.22 0.35 • 122 _ 122 NA • 2.50- Single 1.00 I 9.76 17.40 :0:07 307 8 • 10.00 10:00' 0:80 OK 8.00:, 122 035 122 122 NA 2.50 Single 1.00 I 9.76 17.40 0.07 . Rho Calculation Does the 1st floor shearwalls resist'more than 35%of the total longitudinal base shear? Yes • 'Does the 2nd floor shearwalls resist more than 35%of the total longitudinal base shear? Yes Does the 3rd floor shearwalls resist more than 35%of the total longitudinal base shear? Yes Total 1st Floor Wall Length= 25.50 Total#1st Floor Bays= 6.38 • Are 2 bays minimum present along each wall line? Yes 1s • t Floor Rho= to Total 2nd Floor Wall Length= moo Total#2nd Floor Bays= s Are 2 bays minimum present along each wall line? Yes 2nd Floor Rho= 1.0 • Total 3rd Floor Wall Length= 20.00 Total#3rd Floor Bays= s Are 2 bays minimum present along each wall line? Yes, - 3rd Floor Rho= 1.0 Spreadsheet Column Definitions&Formulas L=Shear Panel Length H=Shear Panel Height Wall Length=Sum of Shear Panels Lengths in Shear Line • H/L Ratio=Hight to Width Ratio Check V (Panel Shear)=Sum of Line Load*Rho/Total L . Yo Story Strength=L/Total Story L (Required for walls with H/L>1.0,for use in Rho check) #Bays=2*L/H Shear Factor=Adjustment For H/L>2:1 Mo(Overturning Moment)=Wall Shear*Shear Application ht Mr(Resisting,Moment)=Dead Load*L2*0.5*(.6 wind or.9 seismic) Uplift T=(Mo-Mr)/(L-6 in) • Harper Houf Peterson Righellis Pg#: SHEAR WALL SUMMARY' Transvere Shearwalls �a�'II5ILi� ''-i:< �{s;ti �ii�:z�:3 anel� WaI1 She ar {Y 4C4odF.,or, '�.'�� ��((T��x��f N�.�.M �< �if'��� �"� .y�� Ce'��q�/[4��■y{��� �lPID 'GAL' =.'Rb'�a.i!._'tn.l'Y..,.. : �,04; 6- +"a $:env:A.nS'1 101 1560 2 Layers 1/2"APA Rated Plyw'd w/8d Nails @2/12 1667 102 723 1/2"APA Rated Plyw'd w/8d,Nails @ 2/12 . 833 103 947 2 Layers.:1/2"APA Rated Plyw'd w/8d Nails @ 4/12 990 104 947 2 Layers 1/2"APA Rated Plyw'd w/8d Nails.@ 4/12 990 107 626 1/2"APA Rated Plyw'd w/8d Nails @ 3/12 638 . 108 626 1/2"APA Rated Plyw'd w/8d Nails @ 3/12 638 109 723 1/2"APA Rated Plyw'd w/8d Nails @ 2/12 833 110 Simpson Strongwall 111 Simpson Strongwall 112. Simpson Strongwall 201 604 1/2"APA Rated Plyw'd w/8d Nails'@ 3/12 638 202 604 1/2"APA Rated Plyw'd w/8d Nails @ 3/12 638 203 1183 2 Layers 1/2"APA Rated Plyw'd w/8d Nails @ 3/12 1276 204 Not Used 205 Not Used 206 Not Used 301 275 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 339 302 275 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 339 303 277 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 339 304 277 1/2"APA Rated Plyw'd w/8d Nails @ 4/12 339 305 277. 1/2"APA Rated Plyw'd w/8d Nails @ 4/12 339 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design loads. Harper Houf Peterson Righellis Pg#: SHEAR WALL SUMMARY1 Longitudinal Shearwalls Pa ell;WE[1 e z P,� ' .-=.,� :a `4 s .- ; °? (P �lb)! .1' ,-- " 1s .6"il (1)L f_S`, F,*1�.. 5 ..i'a.�_-+..x.R/b!`cr S.�.!:S �-t$i.:�Y . i�=�'�.i�:�h' ;.xf'�ax�:'-'..x.d".vY!L:P �- =y ,-. -.x'e.:�.'.5.,:'R' :w -n...:.si}Rtlx, 'm.:'N'w';+`IF�M;S` -,-",,,m,,,,,,,,, ,,,-4,,, ,:%C..^.1., vivS, .C. ":; 105 259 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 339 44 Simpson None 0 106 259 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 : 339 44 , .Simpson None 0 207 176 1/2"APA Rated Plyw'd w/8d Nails,@ 6/12 ' 339 3455 ' Simpson None 0 208 191 1/2"APA Rated Plyw'd,w/8d Nails @ 6/12 . 242 :n 595 Simpson None 0 306 122 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 242 57R4 Simpson None 0 307 122 - 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 242 W- 72 Simpson None 0 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design loads. B „ • • Transverse Wind Uplift Design • Unit B Shear H Joist L Wall Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total Total Panel Height Lgth. From 2nd From 3rd From Wall Load(not Point Point ping Moment Moment Floor.Shear @ Floor Shear @ Stacking @ Stacking From From . Uplift Uplift FIr. Flr. Roof Shear including Load Load Momen @ Left @ Right Left -Right Left Side of @ Right Wall Wall @ Left @ floors @ Left @ t House Side of Above Above Right above if Right' House @ Left @' walls Right stack) • (ft) (ft) (ft) (ft) k k k k plf klf k k 'kft kft kft k k k k k k 101 8 1.1667 .-5.25 , 5.25; 2.28 3.14 2.77 8.19 1560 0.1 0.8 0:208 72.42 5.58 2.47 14.54 14.93 _ 14.54 14.93 102 8 1.1667 3;88 3.88 2.8 2.8 722 0.092 "2.432 22.40 10.13 0.69 .4.83 6.50 4:83 6.50 103 8 1.1667 4.58 8.58 2.22 3.14 2.77 8.13 948 0.1. 0:078 0.078 38.40 1.41 1.41 9.20 9.20 203 R -12,12 -2.91 9.20 104 8 1.1667 4 8.58 2.22 3.14 2.77 8.13 948 0.234 ' 0.117 1.632 33.54 2.34 . 8.40 9.18 8.14 9.18 8.14 107 . .8 1.1667. 4.58 _ 13.08. 2.28 3.14 2.77 8.19 626 0.1 0.192 0.078 25.36 1.93 1.41. 5.93 6.01 _ 201L 201R 6.71 6.71 12.65 12.72 108 8 1.1667 8.5 13.08 2.28 - 3.14 2.77 8.19 626 0.1 0.078 0.384 47.06 4.28 6.88 5.56 5.37 202L . 202R 6.77 7.24 12.33 12.60 • 110 8 1.1667 1.25 4.5 2.22 3.14 2.77 8.13 1807 • 0:1 0.384 0.078 18.07 0.56 0:18 23.00 23.30 203L 12.13 35.13 23.30 111 8 1:1667 2 '4:5 " 2.22 " " 3:14 -2'77. 8:13 1807 0.1 0.078 0208 28:91: 0'36 0.62 18:87 '_ 18.76 203R -12.12 6.75 ' 18.;76 112 .8 ,1.1667 1.25 '4.5 ' '2.22 ' -3.14 "2.77`' 813 " 1807 0.1' .0.208 -1:424 '1807 0.34 ' -1:86 2317' '21.99 ' 23.17 21.99 '201 9 .L1667 6:79 9:79' •. 3.14 -.2.77 591 , '6,04_ 0.172- .0:848 '0:I'56 ' 39t'13' . 9.72 5:02 4:90 ' 5.32• : 3011, 30.18 1.45 1.40 6:35 - 6:71 ..202 9 1.1667 . 3 9.79 -. 3.14 .2:77- 5.91 604 • :0.172 -0.848 0,156 1729 3.32 . 1-24 5.10 5:'51 , . 3021 • 302r 167 1.72 6.77' 724 203 . - 9 .11667 5 .5 . .. 3.14--:. 2.77 '5.91 .1182 0.172 0.848 0385 .56:42 6:39 -4.08 10:52 -10.80 . 303L - 303R • 1:61 1.32 12.13 12.12 301 . 8 6.88 10.09 2.77 2.77. 275 0252 0:384-.0:468 - 15111 - •8161 - 918. ' .'1.45 1:40 - -1.45 1.40 '302 8 _ 3.21 10.09 • . 2.77 2.17 . 275 .01252 0.468 0384 ,7.05 2,80 '- 2:53 - -1=.67 • '- 1.72 1.67 1.,72 303 . .8. '5 10 • 2.77_ 2:77 277 v. ' 0.252 :0':384 .0-:858 t---.11.08 ' 5.07 7.44 1-61 . 1.32 14.61' 1.32 • -304 8 -2:5 10 2177 2.77 277 0.1'12 0.192 - ,5:54 0:83 " _0.35 • 2.02 2.13 2.02 .2.13 305 8 2:5 • 10 - 2.77 2.77 277 -0.1112' .0.384" 5.54 0,35 1.31 ' " 2.13' '1.90 2.13 1.90 Spreadsheet-Column'Definitions-&Formulas - L=Shear Panel Length H•=Shear Panel-Height Wall Length=Sum of Shear Panels Lengths in Shear Line l V (Panel Shear)=Sum of Line Load/Total L - " Mo'(Overturning,Moment)=Wall Shear*Shear Application ht ' • ' " ' ' Mr(Resisting Moment)=Dead Load'*L2*0.5-*(:6 wind or.9 seismic) . • • Uplift T'=(Mo Mr)/(L-6 in) . • Transverse Seismic Uplift Design Unit B Shear H Joist L Wall Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total Total Panel Height Lgth. From 2nd From 3rd From Wall Load(not Point Point ning Moment Moment Floor Shear @ Floor Shear @ Stacking @ Stacking From From Uplift Uplift Flr. Flr. Roof Shear including Load Load Momen @ Left @ Right Left Right Left Side of @ Right Wall Wall @ Left @ floors @ Left @ t House Side of Above Above Right above if Right House @ Left @ walls Right stack) (ft) (ft) (ft) (ft) k k k k pH-- klf k k kft kft kft k k k k k k 101 8 1.1667 5.25 5.25 0.148 0.795 1.257 2.2 419 0.1 0.8 0.208 19.99 5.58 2.47 3.15 3.74 3.15 3.74 102 8 1.1667 3.88 3.88 0.331 0.331 85 0.092 2.432 0 2.65 10.13_ .0.69 -1.91 0.60 -1.91 0.60 103 8 1.1667 4.58 8.58 0,231 0.8 1.277 2.308 269 0.1 0.078 0.078 11.15 1.41 1.41 2.42 2.42 203 R -2.99 -0.56 2.42 104 8 1.1667 4.00 8.58 ' 0.231 0.8 1.277 2.308 269 0.234 0.117 1.632 9.74 2.34 8.40 2.18 0.62 2.18 0.62 107 8 1.1667 4.58 13.08 0.148 0.795 1.257 2.2 168 0.1 0.192 0.078 7.00 1.93 1.41 1.29 1.41 201L 201 (part) 1.17 0.34 2.46 1.75 108 8 1.1667 8.50 13.08 0:148 0.795 1.257 2.2 168 0.1 0.078 0.384 12.99 4.28 ' 6.88 1.14 0.85 202L 202R 0.33 1.35 1.47 2.20 110 8 1.1667 1.25 4.50 0.231 0.8 1.277 2.308 513 0.1 0.384 0.078 5.80 0.56 0.18 6.88 7.32 203L 3.00 '9.87 7.32 111 8 1.1667 ' 2.00 4.50 .0:231 - ' 0.8 1:277 '2.308 513 ' 0:1'' 0.078 01208,.:' 9.28 0.36 0.62 '5.89' ' 5.74 203R;304L' -2.99 - 2.91 5.74 112 8 1.1667 125 4.50' 0,231 0.8 1.277 - 2.308 513 0.1 .0.208 1.424 5.80, ' 0.34' 1.86' 7:13' 5.36 7:13 5.36 201 9 1.1667 6.79 9.79 . 0.795 1.257_ 2.052 ' 210 . 0.172' 0.848 0.156 13.83 9.72 5.02 -0.75- - 1.37 301L 301R -0.13 -0.20 0.62' 1.17 202 9. 1.1667 3.00 9.79 0.795 1.257 2.052-' 210 0.172 . 0.848 0.156 6.11 3.32 1.24 1.04 . 1.66 3021 302r 0.11 -0.32 115 1.35 203 9 1.1667 5.00 5.00 . . 0.8 1.277 2:077 415 0.172 0.848 0.385 '20.18 6.39. .4.08, 2.89' ,. 3:30 303L 303R ; 0.11 -0.32 3.00 2.99 301, 8 6.88 10.09 1.257 .1..257 125 . 0.252 0.384 0.468 6.86 8 61 . 9.18 -0.13 -0.20"" -0.13 -0.20 302 8 3.21 10.09 1.257 1.257 125 0:252 0:4'68 0.384 3.20 2:80 2.53 0.21 0.29' . 0.21 0.29 303 8 5.00 10.00 1.277 1.27.7 128 0.252 0:384 0.858 ..:5.1.1 5.07 7:44' : 0:11 -0:32 -• _ 0.11 -0.32 • 304• 8 2.50 10.00 1.277 ' 1.277' '128 - 0.1'12 '0.192 0 2.55 0183 0.35 '` 0.72' 0.90 0.72 0.90 305 8 2.50 10.00 1.277 1.277 128 0.112 0 0.384 '2.55 0:35 1.31 0.90 0.55. 0.90 0.55 • • Spreadsheet Column Definitions&Formulas L=Shear Panel Length H=Shear Panel Height Will Length=Sum of Shear Panels Lengths in Shear Line ' 1 V (Panel Shear)=Sum of Line Load/Total L Mo(Overturning Moment)=Wall Shear*Shear Application ht - Mr(Resisting Moment)=Dead Load*L2*0.5*(.6 wind or.9 seismic) Uplift T=(Mo-Mr)/(L-6 in) • TRANSVERSE UPLIFT CALCULATIONS-SUMMARY UNIT b • Shear Controlling Total Holdown Holdown Good Control Total Holdown Good For Panel Case Uplift @ or Strap Type@ Left For ling Uplift Type@ Left Left Case @ Right k •Simpson k k Simpson k 101 Wind . '14.54 Holdown .HD12,wDF ..15.51 Wind '':14.93 HD12'wDF 15.51 102 Wind . 4.83 Holdown HDQ8 w.3HF '6.65 ' Wind ,6.50 11DQ8 w 3HF 6.65 . 103 Seismic -0.56 Holdown HDQ8 w DF 9.23 ' Wind 9.20 HDQ8 w•DF 9.23 104 Wind 9:18 Holdown •HDQ8 w DF 9.23 Wind • 8.14 HDQ8 w DF 9.23 107 Wind_ • 12.65 Holdown HD12 w DF 15.51 Wind • _ 12.72 HDI2 w.DF 15.51 108 Wind, 1233 Holdown HDU14 14.93 Wind ' 12:60 HDU14 • 14.93 ' 110 Wind 35:13 Holdown None 0.00 Wind 23:30 None 0.00 1.11,Wind 6:75 Holdown None 0.00 Wind 18:76 -None 0.00 112 Wind 23.17 Holdown None -0.00 ' Wind 21.99 •None 0.00 201. Wind v , 6.35 Strap MST60x2 8.11 Wind : 6.71 MST60x2 8.11 202 Wind 6:77 Strap MST60x2 8.11 Wind 7.24 MST60x2 8.11 ' 203 Wind '12.13 Strap CMST12x2 18:43 Wind 12.12 CMST12x2 18.43 301 Wind 1.45 Strap MST48 2.88 Wind '1,40 'MST48 2.88 302 Wind 1.67 Strap .MST48 2.88 Wind 1.72 MST48 2.88' 303 Wind 1.61 Strap MST48 • 2.88 Wind 1.32 MST48 2.88 304 Wind 2.02 Strap MST48 2.88 Wind 2.13 MST48 2.88 305 Wind 2.13 Strap MST48 2.88 Wind 1.90 MST48 2.88 • M1 • BY :.\\W(........../ • DATE ‘TALa ao vo JOB NO- Cts...) ...,,09.0 OF _____.)... . , ,, . ' . • •-• ••-• , - - PROJECT: f • ., :RE: -, .. ,i, - • - : - : ! ! . ...„ . ., . _ . . 0 0 L!,1 6 _..._ • .DESIGK? 16„, t)'_V•r;',_pc _ - z . LL p 0 w ---. • , ! , • ._ . . __ .. , . t1.6.:.: . . . . (us_Y(ms. 00:,01 (6 (0,01 ,37(2,1,')(0,012 (31.2.), .„.... 1::Fg a ..:1 • 2-v>((lq1 (0,4,7-s- ) 1((0, -•)(6,.0C%..) _s- cr 6 --7-- ---,---- 1-'0i-0,1----:=;',--- 0.141:, T - . •-,--- 1 --- 7 , . . . . . . , o L' : ' ' ViA-14\--- - - ,„: : , ,. 6..915-.)."(.41.s---)ch.'5J -i-..o..-..17)(op..1.1.)(0,tc‘137._:6c_v,$)(c),0\5)(Itlz A-_(_ --1411\°:91 Q112.',1 - _ •,_ x z . . • )-(!b.l.o.. A..T7.1i) . - (0-o (_.?..-)2,)(2::)._-. ..D1a, v,'-,p5 .01: • . . . . . , •,• 0 .. _ < . f•.■c\ 10,b (Dis'').:t... .k9s7X,Q,02$7..1i.''.(z) --; -.a,...6?) 1,, Y,„. ps_$1._. z- ._ -. 6\1-2.10...b901:7).=_O;;j4.i.t4 ...Y....i+s ..1.L.:, .. i. _. • ' ; D 2 O - ' • • -,-)0‘\\ :W.72,. :! : • - . ., . _ . . . - ._.... .. . . ("1;1)(0,_())3 K77.12)(2_,) ,;-- 'a„:aNc-S o - S w , • (1 )0,■046-)6.-) 0.4 4: Nt-,3 i)s LL' ' , .- - - . • - -'.. - •• - - - - . , , . . -- - , -.----- r -- , -.S...,.,":i- t.:_9:i.j• ., . . . _i?:r,.■.o.w01.\e.„,5\ ea ... Dc.i.cl- _ ..,_ ... .. _ ..._ _ 0 ...,k:11._ LA.,)--$5 .C.. ' . . . AVO-a# _!(9.3:57 . _5-'..tf_d-_-1.5,_ c; r. . --- - - -.. 1:-1 6, . .-:51.-r-?;• < ,. ,, ,, , -\--". - - • ' 1-4:ir __,S',74A. c,. ,4i 0 T.) ---- . . • , ,--, _ ,_ - • , i -- , ! c) b.() •;•,! -, - - - 4- - -.• • - -1--- ,, - - •-: - - ; .! •'--- r • • ' , , . , ... .. .. _. . .. , ;-•.; ! I c; 1X1 7--.- slKli( li'xl-:' , •-• '' • : '• ' ' ' 4'1 ":'•• ' ' '• : ' ' ' i ] • 1 r),,-ci-"Gkiccirv.$5 : • ;gsl Si....)Ltle.C.? 'c ' D'i'sV, _ ,1,0(k),5h ,0,:r , 4.„ 4 4- ' ; , : - ',--; ----- - --,-__,.,,..-..---i---..-1 -., • -•- ■.- - T 1 ..1;b12,01_*,.. - -, -0!--•-;1;:--', .-' ---1-$41404-- '-- :- -.:P- f'D)-J!--.-a:1-1...- -•.-4Pt-.9i--11.11L''--Al'---'.! -!--:\),ii-iivli,--r\S70 S . ...:_ -.,:"VI-i-D.A44!..... ... ..._0..,;4_.: 0,3K-q7- 15111t‘.1. ' .. .±.()43,7411 .i A-W5--,4,-;*. .s7.::_i . . . . ... . . . , . . . .. . . • . .. . • _._ _ ... ._ _. • _ , • , . . . _ . . . . ._ _ _ . • - - . . . , „ . . _ . ., . . „ . . . . • . , . - - :- • - --. , - • , . 8. 6 ' .,...__. . 1 • htl 9, 0 0 . • g...-itil i,::::.?•• --____@ so, • -- -- - - .1/ . . t — - --1•0001 ' . Ili pi si, ft . i. 01 11 ' tti- !it: fil' E --'.) t - ;ji. • t..t.F •I rlV, gi ,rj ,4 tLil . Al°1 ACI■Ok ''''' (9) . 0 0 ) - I . 1 n 0 i,,Ni-1 1 --ztoo-U, __ t - y J N (A L.Skicrl ---6-U3-6 0 a I 1-10 k WI 1 0 - -- ri r. 11 , - 4 4 ;:i A —-— fl 0,- P --- e r 1 . 0 r 1 r ,, ,••: • p \0\ 0 0 i-1 • , . ..,..... . C) _______,. .4,0=-,,,,,,3„..,...,,,,,,...,:i4 n'Terl•M' i • k p, , I 4 ,-•! i'l ii; eo t a ii (2 (9 Pi i L. -- ;II• "1' - ''',V 12 A , ff.:.I it LI ,,,• to . ,_,,,,_„zi -:3z, ,./.7 0-1 I ----- .1 • I N -7-2--__ ._ I • ;,.i., , 1 • 0 • 0 ()1 aOS Ziot msv ,., (,..-•,-.) 0,... UN) II- 15 - spoci-,1.--J,,, pl..3,m.0,:a::- sw LA-you-1— .., • • [,. • • -.J.• 0 gOE "LQi. i *-'4,K7-;,,,Fw.zwz.ziz,.., ,waro,...-:al.,sm,„ :• -•1 . . tommir7z,• ;•: ..:.,.-..,;,..,m...,.,,4.1,- ,4N.--- _I •ti3 Al • . •,. c kn , . . • OT j . .....3 > r _1 111 -r- it .4 o a J t;1 --- k.' :1•4•1t ,rIIIIIIIIWij ii,, •P=1,. CO o ts I _ , ........?__FL= ==, . 1 I tiht. = L. , 1). ,•41 ; ; 01 ( 1 ; :; ; i ., • ali , -, ;,-, ; ef--' Gsreii N.:I,) ..: R:::s;,z2.,EkfaoafEitqzagzze:; :lzgtys-if,wzacgffyimo.,tt::4Tm-zif --------7— ,' ,.....e.......we re \ 05oe 0 . C.) • 1 . . BY \ciA (........" DATE: ....... -1, __Ab JOB No ,k 0 ( Nil OCt _ - PROJ ECT: _ . - i RE: De '. , v.pr, cc f.-',c\t-N i VtOCY-vrt @ 54t 0 1 r 5 . OPTION cir. Z F- -...dor....... o w prAillastta. _ . iitrAti 0 i...411/0- L2I 0 04-1 ;7- 97 cille "ealir._ ¶O? LW Ibi-5" Li 0 _l , 51:A tv...._047-LikAA-}-k-7- fr MCA:'< 0 Z LU 0 kJ.) i'D Peessot C., : rt a_ - ;at, psiC . 0 ., „1 ., -t, U ..., ..: _ D 2 2 (...) 14 ., 2 0 ce d IV\,frAx El 6 \ I , . b _ . = S1 .• f...n; , t:)1- '1,Illr ) i 7'7.)0 'PS L (,:-i„(0 7:: :a LI 0 7)''' :. '> c5,?1, ,. 01Q ,■ 0 ° e lc-037-n 2__ • .. . • DATE 11 -0 NI JoBO. C , .._ 0C(0 C 5 - - k PROJECT: RE: opT io 0 2 O 0 ri, . r; cr-,, e, 2.„.3o -c\,00c-z... s r■ .--▪ Z \DCA\\Oar) il CO TY\E; ' ''?-_-ID VW0?,.., . 0 w F- w at h 0 Li O J i\AGNA \tj.)1)--).e. r c..., -ek lc 0 -ev--\11-,:(3 x < o . o , _ w o ,;-\ z LcDoid_ r• \J \ CA-, :-- 0 < , z- T D 2 U O i--:-.7-a----- 2 , iff;Mieiggia I 0:45' cc o \irc.0.-x i G A h `' . ji rt 0 '-. s 10,7. = (NI5)3._ 6.as U,J4 I- 0- .4‘ L 1 vv, 17_ A is i / \ \ 11, _ -"■IIIIIMIP'- 1.7,-- = (_91,AL. ) = Q.t.?) 10 . ...r.jka**.--. _.1.--. I 1.5" A 1,IS = 57:1S ■0. T, ceJ c;) • •- 7..! = .. , . ; -,- __ . . ) .... 3.1 1=- 7., V -.. r f, — .4_1:;-,5-G-t.t ' ' • -C-1,0: --: TbC,Cp.f.,C,‘_C.LQcCs, --k.., .z.,-, at,, „. (\550 . .6.clrf.:L pL -,, -St- 'T b' 2.--.( 3ac v. i. I LL ki,6 )( J.) .0>c\i1,74- t 0)6:0) 1 , - -- tlioltO 8- L21 • oodWorks® Sizer SOFTWARE VY FOR WOOD DESIGN Unit B-Front Load WoodWorks®Sizer 7.1 June 28,2010 10:52:50 COMPANY PROJECT RESULTS by GROUP - NDS 2005 SUGGESTED SECTIONS by GROUP for LEVEL 4 - ROOF • Mnf Trusses • Not designed by request (2) 2x8 Lumber n-ply D.Fir-L No.2 1- 2x8 ' By Others Not designed by request (2) 2x10 Lumber n-ply D.Fir-L No.2 2- 2x10 (2) 2x6' Lumber n-ply Hem-Fir No.2 2- 2x6 . (3) 2x6 Lumber n-ply Hem-Fir No.2 3- 2x6 • (2) 204 Lumber n-ply Hem-Fir No.2 2- 2x4 (3) 2x4 Lumber n-ply Hem-Fir No.2 3- 2x4 Typ Wall Lumber Stud Hem-Fir Stud 2x6 @16.0 Typ Wall 2x4 Lumber Stud Hem-Fir Stud 2x4 @16.0 SUGGESTED SECTIONS by GROUP for LEVEL 3 - FLOOR . Mnf Jst Not designed by request landing Lumber-soft D.Fir-L -No.2 2x6 @16.0 406 Lumber-soft D.Fir-L No.2 406 • (2) 2x8 Lumber n-ply D.Fir-L No.2 1- 200 1.75014 LSL LSL 1.55E 2325Fb 1.75014 By Others Not designed by request By Others 2 Not designed by request (2) 2x10 Lumber n-ply D.Fir-L No.2 2- 2x10 - (2) 2x6 Lumber n-ply Hem-Fir No.2 2- 206 (3) 2x6 Lumber n-ply Hem-Fir No.2 3- 2x6 (2) 2x4 Lumber n-ply Hem-Fir No.2 3- 2x4 (3) 2.4 Lumber n-ply Hem-Fir No.2 3- 2x4 Typ Well Lumber Stud Hem-Fir Stud 2x6 @16.0 Typ Wall 2x4 Lumber Stud Hem-Fir Stud 2x4 @16.0 SUGGESTED SECTIONS by GROUP for LEVEL 2 - FLOOR L Mnf Trusses Not designed by request deck joists Lumber-soft D.Fir-L No.2 208 @16.0 mnf Jst Not designed by request 3.125x14 LSL LSL 1.55E 2325Fb 3.5014 4x8 Lumber-soft D.Fir-L No.2 4x8 3.125010.5 Glulam-Unbalan. West Species 24F-V4 DF 3.125x10.5 5.125x16.5 GL Glulam-Balanced West Species 20F-V7 DF 5.125x16.5 (2) 2x10 Lumber n-ply D.Fir-L No.2 2- 2x10 4012 Lumber-soft D.Fir-L No.2 4012 • 3.1250141) LSL 1.55E 2325Fb 3.5014 ' (2) 2x6 Lumber n-ply Hem-Fir No.2 3- 2x6 (3) 2x6 Lumber n-ply Hem-Fir No.2 3- 206' 6x6 Timber-soft Hem-Fir No.2 6x6 (2) 2X4 Lumber n-ply Hem-Fir No.2 3- 2x4 (3) 2x4 Lumber n-ply Hem-Fir No.2 3- 2144 Typ Wall Lumber Stud Hem-Fir Stud 2x6 @16.0 SUGGESTED SECTIONS by GROUP for LEVEL 1 - FLOOR . Fnd Not designed by request CRITICAL MEMBERS and DESIGN CRITERIA Group Member Criterion Analysis/Design Values deck joists j42 Bending 0.41 Mnf Jst Mnf Jst Not designed by request landing 446 Bending 0.17 By Others 3 By Others Not designed by request 4x6 625 Bending 0.87 (2) 208 b7 Bending 0.21 • 1.75x14 LSL 614 Bending 0.57 . 3.125014 LSL 621 Shear 0.41 408 620 Bending 0.04 By Others By Others Not designed by request • By Others 2 By Others Not designed by request 3.12.5r.10.5 524 Deflection 0.83 5.125x16.5 GL 626 Bending 0.21 (2) 2x10 b15 Bending 0.93 , 4x12 b22 Shear 0.16 . 3.1250141) b23 Deflection 0.09 Ftg Ftg Not designed by request (2) 2x6 c2 Axial 0.34 (3) 2x6 c64 Axial 0.59 . 6x6 c36 Axial 0.77 (2) 2x4 c25 Axial 0.35 (3) 2x4 c44 Axial 0.84 Typ Wall w15 Axial 0.28 . Fnd Fnd Not designed by request Typ Wall 2x4 w40 Axial 0.33 DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate . for yourapplication. 2. DESIGN GROUP OCCURS ON MULTIPLE LEVELS: the lower level result is considered the final design and appears in the Materials List. 3. ROOF LIVE LOAD: treated as w load with corresponding duration factor. Add a empty roof level to bypass this rinterpretation. 4. BEARING: the designer-is responsible for ensuring that adequate bearing is provided. 5. GLULAM: bxd = actual breadth x actual depth. 6. Glulam beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 7. Sawn lumber bending members shall be laterally supported according to the provisions of HIS Clause 4.4.1. 8. BUILT-UP BEAMS: it is assumed umed that each ply i a single continuous member (that is, no butt joints are present) fastened together . securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded. Where beams are side-loaded, special fastening details may be required. - • 9. SCL-BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. . 10. BUILT-UP COLUMNS:'nailed or bolted built-up columns shall conform to the provisions of NUS Clause 15.3. • . g--Gt • • WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B-Rear Load WoodWorks®Sizer 7.1 June 28,2010 10:56:39 Concept b243de : Beam View Floor 2 : 8 ' El f 1050= E u4 f#ts i vob. uu b25 -- . . 44-� r b 39--b Ui_ _ - - - - - J!-t 0J ,-a- - ' ': - - - - - — - - t 3i D 80 -. ...- _ 6 , >=- - -----'- ---- - - -- -- - -- -- - -- - --- - - -- ---- - --- ----- - - --- - -- - L,Y+-C,�.•_ 0L -- - Lb-o f b- ..-• _ - .: -;(1--..--.--.'. : - _ _- --- i4_ - - -, - - - - _ 18-4- - ---- - - - - - 14'- 08 :. - - : - €G-b.. �-YJ ns5 ;;::: bvy 2 € v it2' 68\BBBCCCCCCCCICCCCCCCCCCCCCCC'CCCDDDDDDDDtCDDCDDDDDDDDDCD' DDE,EEE-E'EEEFEEEIEBEEEEEEEEfEEEEZ 0' 2' 4' 6' 0 10'12'14'16'18'20`22'24'26'28'30'32'34`36'38'40'42'44'46'48'50'5:2'54'56'58'60'62'64'66'68'70'72'74'76' 4 -•3.3:3 -3 r : 4 . ( 555,515(5516'5F r '7.717 0`.'2`3'4'5'6°7'g'c1€1 1:1'1<1?1#;-i:11.2422:2:2<2'.2#22f2#3i.�"3:-3. ,,i3. <38i44;-s:4.4.4'i -4<4a : . , 5: .6E�6:6�8,�(3E6'6i6.?f7'7;I 7E77'-6' • • /8— (df\i/...- WoodWOrksCY Sizei SOFTWARE.FOR WOOD DESIGN Unit B-Front Load WoodWorks®Sizer 7.1 June 28,2010 10:04:32 Concept b24Dcle : Beam View Floor 2 : 8 ' 1050 , . 0" _______ _ _ _ _ _ _ _ _ • "-t)" ; • -131 = .• __ •• •: :• : • • : : ; := _ 7: • _____• 44.-'0- •-- .....1; : „r"'"' _ _ - - - i4Z . — :--- 7 4U-Q•• t-r,o " ' • . - ' ;••" - • •" • " ;: ; • !. ' • • -; • '1: --- - _ ------- : : •. :- . - ; , • _ •" .• •• . . • • • - :" ' • 'r - 2i5"40' " • o bu j- • • ' : ' ' -- -- - • : _ _ a . . - • - - : -=- L: 21.-r-0. • ; ; , - :- : : : • • • • ' . . • A - • . . . • ; ;• : . ' ---- . -------- JO 00_ - ' ]:- - " " • • • , - - _ 'z'( -----.- - --- : • : : • • b21 00 .:'• f ':• ;7'.•T : " ' ".: II - b26 II taU• .' b20-: : .• .; .; :.; •: - 4-r," ---- DZ . . . • • . . --- - ':" := - •": :" .BBcB BOCCCCCCCtCCCCCCCCCCCCCcC IC C CD DD D DD DI.DODDO.i DODD D CD',D D DEE PE E'E EEfEEE EE EEEEEEEEIEEEEZ 0' 2' 4' 6` 8' 0'12'14'16'18'20'22'24'26'28'37 32'34'36'38'40'42'44'4-6'48'50'52'54'.56'58 60'62'6A'66'68'7(7 72'74'7f3 0 1'2'3'4'5'67'6'21f.l 1 11 11.12'..2 22:2,22k22r23i3 3:3;3zZ 626:646:605-6;5717777,7f7C7T "' • • • WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN , Unit B-Front Load WoodWorks®Sizer 7.1 June 28,2010 10:04:34 Co.c60ept Mode : Ccc591mn View Floor 2 : 8 ' . C1` u 1050. 49'--6" 4 U - - - - - --- - - - - 4/'-b.. €y<� 40'-... v€ • €t,U" ,. c57. •c1= c2 c46 :c58 = 4. �. y9 C 0 45-0 !_ - 4•€-0.•3. - - _ - - - - 3 -0 7.5. v q 84- =c55. a = 0Z -- -k--= -_ - _ - :-_ - - _ _ tU�.-b. c49 1E1'c50 L...n.. c53 n :' €,._�. It i c52 c51 (U • -®-._ . ,. --_;. - _. - - - - •' -E4-o" _€ c7 c56 = s a. 0b_ ,Z�.. - - S -_- ;ice.. c;- -c40 c64 g c36 �.. tn.? Oda. - .. _ _ : ' u-0 BB18.BBC.CCCCCCCI- CCCCCCCCCCCCCC\CCCDDDDD DDDFDDDCDDD°DDDDENDGD!DDDE.EEEEEE:EFEEEEEEEEEEEEEIEEEEZ 0' 2' 4' 6' 3` 10'12'14';6'18'20`22'24'26'28'30'32'34'36 38'40'42'44'40'48`50'52'54'56'58'60'62'64'66'68'70'72'74'76' 0'1'2`3,'4'5'6'7'8'51 1 1:1:14:1(1'1;12{2212:222E2203(3 ;3;3.3313-3(3f4t4"4;4:444A14'd<4'S(5 5:5:5,5!5(55 3f6t6F is 616:6?6'.5.6{517(37:77,77E>7'_6.' B.- 6\i,-.04\ WoodINOrkse Sizer SOFTWARE FOR WOOD DESIGN • Unit B-Front Load WoodWorks0 Slier 7.1 June 28,2010 10:04':29 Concept Mode : Beam View Floor 3 : 1 7 ' 1050 4g-6" Uu : :: : : : : :: 4/-0 1U I 4,3 4,3 4.4 -0 -I) - 6e, .5z;43 1-0 03 . . 64 _b12 • 061 : bg zA.t b25 II--- - -- - -- - -- -- - -- II . • : - - -;-- - - - --- -- - _ - - - ---- .70 /4 4 00 b13 u - - , ' ,, :: -- ---- - 14-b : • :: : . : : ' : -:-:-;- : Lb -b 032 " " " - • b1 ' " ' ' -- ' 6661-0 b10: •-b9 _ -- • :,92- 0„ffirgti • •: •; : : : : ::: : ;: • _ _ u-t.) BBIBB BC CC C CC C 1-CCC CC Ceo C C CC CCACC CD ODD D DODD CD DD.'DEID DOD COTO DEE E E EEkt EPEEEE SEEEEBEEEEZ 0 2' 4' 6' 6' 1 CY 12'14'13'18'20'22'24'26'28'30'32'34'36'38'40'42'44'46'46;50'52'54:56'58'60'62'64'66'68'70'72'74'76' C1'2345-67391-(1 1;1:1,1!I '10 2(2 222-‘22:2-22t3t3`3:3:3,3:3•3732!4(4"4:4:4,4!4 • WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B-Front Load • WoodWorks®Sizer 7.1 June 28,2010 10:04:27 Concept Mode : Column View Floor 3 : 17 ' EU4 40-0' E VU ' c14::- '- -_c15' .... - - -.-. - -. - - - - - - __ ---- -'7• _ __ - - _ __ _ _ _. 40_0 :J4.. -- - -- - .. - - - 3?5-p ■33 _ : .. : jr-0- a:i 33-b rs ,c38 = sc 00: _ U b L/.-0 `0I c61 - .[ , .. 4'..-'.-b.•dU ._. 4'_• _: 24"-0' u c17 Lb 0 r0 tc-n i r _ - - • c43.: - - ,b i c23 s • .c67 .o • 4 - , c22 i . 10.-0 i.: - -- 1/-'5•' c24 r _ c26 E b-1'.. .,::., .. eau- �.:.::•- t - _. ._ .:: - - • - - _ - _ _.. _ _ _ - _ __ a-b yL " _ - 0-0•-'). 13 E - '_- 4 b et‘R.6 BCCCCC CC C!CCC CC CCCC C C CC CCtCCCDDDD D DD DiDOD 0D DD-DD D D OD CDDD DE,E E E EEEEEE EIE=E:E BEEEEEE;EEEEZ 2 4` 8` 10'12 14'16'18'20'22'24'26'28'30'32 34'36'33'40`42'44`46'48'51'52'54'5 58'60'62 64'66 68'70'72'74'76' 0'1'2'3'4'5"678'.91(1 V 1:1;1<111'9 1 {6 222-2?27223(3 3.31.343:3i.3-,..i!3:4;.4-4:4A-44f4744;5(5 5.-',5,5'.~{3-:.151 6€6 6 r6<c.,.a"8;6t7�77 ,-.n{7-- 6` • • • g....(pice. WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B-Front Load Wood Works®Sizer 7.1 June 28,2010 10:04:23 Concept Mode : Beam View Roof: 25 ' . ',0,,l'-- :' : :: : -' -z-. -, ---,]- ':' ' : '' H' ' ,:•": H z ;:';'; ; Z' : ' , '....'-'2". .... -;" " : ' ' . -: - ,. - 4/ t) b15 - , - z- ,,jg ' • • • ' • :-- : z : . ' • z:: :' : : : • ; . .. .. . : • ' - • ' „. , . •ct.,-0' 1:.fl _'..'. ... . • •.; -t ,', : - - : - ' •: - :. • :, •:; :z :":: . . : ':. : : :: :: OP'‘.. . 7::•-. . .:-'1::-:,r'S-..., - ' -- - - -: . „ ,•. ; - ; : :- i ii b16 , Lt3-0 : - ' t , ,, . Li-0 10-0 . . . .. 0 i : : : :- . ; , • ,-,:•,•-,'-', . . za.to" b27 - - _ ,_,.... : . 1;-0 . : . : . -. . • . I i-0" _ . __ -- ____ _„. _ „... . , _ ____ . _ . , 10-0 ... _ __- .__ __ .... L: _::. .__._ . :.z.: .:. .z... .- : : 2; -:: 14-t3 a 00- ;' '" -. -: -• '-,./': '-: z : ' ' z :....-_ ..... '',. __,_.:_ : .., f -•-'.::-._ :'.' _:,_'. _: ::•:: _-.1 ;".;1:'..".,, ::: .•_• ...___ ..',____:_•..::_:_ ___ I 2--0' 03 '•---"-,.--'!-,---"-. 7 .p -: . i;. •; . : : . - : : : (-0 )L';' n s' :; ' - i ".- :- ' . — .' ::: • ,' •: . '. 'i .-- i. ' :. : : : . .• : • :- : - . :., - 0 0-0 • LI: 1,17:` , , , . . . . • • _ , . • - ‘b• --; ,•: i : - : : ;: ::-., . 7 - -- :, r: .77 , 7-7, 7 if,- 7 , - " - - 33'=F3,E3 attct c cc c itec cc ccce c c cc ccIcc C D bb D 0 DD D!-ODD CD DO DpDD ij.0 DDE)-6DE.EEE EE E-E FE EEIEE EE.IEEEEEFEE-EEZ . 0` 2 4' 6 8' 1 C'12'14' '2 3W5 3'7'S'S1 i.1 1,":1'1,1.',1'".1:I 1 0.2 222,2 2€2-.2320(3''S'3:3,3.W.3:3;4(4'4'A'.4.,4,z1-'4'14415t5-5:5:5,5;5f5-51526i6 5'1..3:6,6Kif6-51e:71777.7,7!-.7qT-E'..“ • WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B-Front Load WoodWorks®Sizer 7.1 June 28,2010 10:04:25 Concept Mode : Column View Roof: 25 ' • r{b*_ 4 5' 0-' __ ..— - — - - - r- -- - -- - -- -- '-- • - -• ... . .... .... ....— ..• • - _• - - --• 30 v" "i- -•-::.-- .- - - - • - - -- -- :.•- c29 i e" t5 OZ.-- .__-... •.- ,c30 - 20 0' - a-n 0_i _ 2-" (`€ - _ _ - L.S-"..3.• r - .. 22'-b' /1 - :- c66 - - 2' o" .._.....::'[F..31: c65 1'4-0 - . €Li-Y I je.. ...,:.;,;.;_;; .H .,;. ...„ .. . ;;;;;.;:;:; __;.-s.,. ...... .: : ;7:. r :_. :-.-7-.._.... ..;..7...":7:.:------------------------------------::::_.:7_:-.:7,----'.:----i.----------------------------7::::-,.:::::::_:_____,........::_..i._._,7_.._______.. I(..,.., -. ._. - t{y, � 't b 13-0 04-)___„;_:,. _ _ - - - ---- - 0 x, 0 f?- .._ c34' .;. c35 - . - - - -- - _- - - - -- - - -- - - - - - - o' vb BB'BB BCCCCCCCC}CCCCCCCCCCCCCCC+CCCD.DDDDC2DDPDDD'CDDDDDDDDDCD!DDDE:EE-EEEEE EEE':EEEEEEEEEEItEEEZ CY 2' 4' 6' 8' 10'12'14'16'18'20'22'24'26'28'30'32'34'36'38'40'42'44'46'48'50'52'54'56'58'60'62'64'66'68'70'72'74'76' 0'1'2'3'4'5'6'7-8'9111-1'':1,3:1(1-.1ti'222;2-.2,2.�Lf22s2i3f3-3;3;3,3'3;3: 4 -4: , 5'::(5-55:��€�1.:6'6.6;5to.436 7. ., 3_ i4"�t:•�i+u-.4';�3. 4i'::�-5.5.5.,. . v 7 t3. 7,f'7:.'7^"r;7.6' • • • . COMPANY ' PROJECT „.,.. _. • . . . . . , . . -`�' SOFTWARE FOR WOOD DESIGN . ' June 28,2010 10:34 b1 •Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf).: Load Type Distribution Magnitude Location tft] Units Start End Start . End . 1 w27 Dead Partial UD 539.7 539.7 0.00 2.50 - p'if • 2_w27 Rf.Live Partial UD- 493.7 493.7 0:00 •2.50 plf 3 c14 Dead Point 1074 2.50 • . lbs 4_c14 Rf.Live Point 1601 2.50 lbs 5 j43 Dead Full UDL 47.7 plf 6 j43 • Live Full UDL 160.0 plf MAXIMUM RE.: . ° x a L fasto � � 7 ,.:: zq z wg " . y.= n a r • mo .' r•'F ti �' +F.:e �� ,3" w> 4 't 'r ,1 1a .$3 O �„, ,1" t 7.:',',"; . � v n � ��S 4g=-40,4411;;,;,,4# � 0145 1, ' S 4A . } Tt h � 64 * 40i i S % ` °'. 1,.":41-4040' 1..C1''..--hl-;-V'',V"i'''-e---;'"-Vf"_:r:.'*'4',1-,v-V-;$.: 254 w '�a Z:> 's � 'iy 5 S� n t'd c �, , f 3Y�" d « c te r "r" � � t . ,A � 9� b p i ` � � e � -�- � a �f� `��5 ���: -.NV- -^ � &gc �`�` s.�v z :� � s �, rw � a4-rx. ._ ' 4 ✓� £x ea A 46' 4 � 7,.45 e , p^ 2 kRZ F� l R`` wi r T� z " s a ' x 3t � . ,{ . , iw �, -t.r ` '`' 4�2# A41-- .l' i ' "'' g: _S s v i4, c a ". " nue. 8 r, „s °=1 9 F - 4-ro : . A I .0'.. .. - 3i- Dead 1048 • 1539 • Live 1227 2089 Total 2275 - 3627 Bearing: .-". Load Comb #2 • #2 Length 1.21 1.93 • Lumber n-ply,D.Fir-L, No.2,2x10",2-Plys Self-weight of 6.59 plf included in loads; • , Lateral support:top=full,bottom=at supports; • Analysis vs. Allowable Stress(psi)-and•Deflection (in) using NDS 2005.: • Criterion Analysis Value Design Value Analysis/Design . . Shear fv* = 127 Fv' = 207 fv*/Fv' = 0.62 Bending(+) fb = 581 - Fb' = 1138 fb/Fb' = 0.51 Live Defl'n 0.01 = <L/999 0.10 = L/360 0.06 Total Defl'n 0.01 - <L/999 0.15 = L/240 - 0-.09 *The effect of point loads within a distance d of the support has been included .as per NDS 3.4.3.1 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.15 1.00 1.00 1.000 1.100 1.00 1.00 1.00 1.00 - 2' . Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D+L, V = 3627, V design* = 2356 lbs Bending(+) : LC #2 = D+L, M = 2073 lbs-ft Deflection: LC #2 = D+L EI= 158e06 lb-in2/ply - - Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) . (All LC's are listed in the Analysis output) , Load combinations ICC-IBC . DESIGN NOTES: . 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3.BUILT-UP BEAMS:it is assumed that each ply is a single continuous member(that is,no butt joints are present)fastened together securely at intervals not ' 'exceeding 4 times the depth and that 1 each ply is equally top-loaded.Where beams are side-loaded,special fastening details may be required. 8..,661 COMPANY PROJECT dT WoodWorks® 1t SOFTWARE FOR WOOD DESIGN June 28,2010 10:45 b7 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End Loadl Dead Full UDL 13.0 plf Load2 Live Full UDL 40.0 plf MAXIMUM REACTIONS.(Ibs) and BEARING.LENGTHS(in) : t=om" §a y, f gtt'v'b',P * V,44A ¢ �� a " + '? y A 10 6( Dead 54 54 Live 120 120 Total • 174 174 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min: bearing length for beams is 1/2"for exterior supports • Lumber n-ply, D.Fir-L, No.2,2x8", 2-Plys Self-weight of 5.17 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 10 Fv" 180 fv/Fv' = 0:05 Bending(+) fb = 120 Fb' = 1080 fb/Fb' = 0.11 Live Defl'n 0.01 = <L/999 0.20 = L/360 0.04 Total Defl'n 0.01 = <L/999 0.30 = L/240 0.04 • ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - -I - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1-.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D+L, V =ti 174, V design = 139 lbs Bending(+) : LC #2 = D+L, M = 262 lbs-ft Deflection: LC #2 = D+L EI= 76e06 lb-in2/ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT-UP BEAMS: it is assumed that each ply is a single continuous member(that is,no butt joints are present)fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded.Where beams are side-loaded,special fastening details may be required. • g- 6110 COMPANY PROJECT. _ . •A_ ,, Wood Works° '444'''.... SOFTWARE FOR WOOL;DESIGN ' June 28,2010 10:33 b8 . Design Check Calculation Sheet Sizer 7.1' LOADS (lbs,psf,or plf) : Load Type Distribution Magnitude Location [ft] Units Start End Start End . 1 c30 Dead Point • 59 3.50 lbs 2 c30 Snow Point 75 3.50- lbs 3_.w47 Dead Partial UD 96.0 96.0 0.00 3.50 plf 4 jl3 Dead Partial UD 78.0 78.0 0.00 5.50 plf 5_j13 Live Partial UD 240.0 240.0 0.00 5.50 plf 6 j14 Dead Partial UD 104.0 104.0 5.50 6.00 plf 7 j14 Live Partial UD 320.0 320.0 5.50 6.00 plf 8 b12 Dead Point 171 5.50 lbs 9 b12 Live Point 469 5.50 lbs MAXIMUM REACTIONS (Ibs)and BEARING-LENGTHS(in) . "` ' „r ".C. ,^F x',<r-w °_ sa p w` - " '�"Izt*" `Y k r ---z e '^.` ''x.. s 4: ,' -.,,, -r ...' y .uy �_ 'ter"S.• � i�^ r 4 ' � � ? a ,„ - y,''.#� � '3 r " - r '? 4 ' � � .r'. `v ,4 � vari - -t ` , rns. + _ ,! : ti;�. * `5 . ..clt e3 , ? Nrr, � N. ?i-? .mo' io . . sl •Dead 531 556 Live 761 1189 Total 1292 - . 1744 Bearing: . Load Comb #2 #2 Length 0.69 0.93 Lumber n-ply, D.Fir-L, No.2, 2x10", 2-Plys Self-weight of 6.59 plf included in loads; , Lateral support:top=full,bottom=at supports; Analysis vs. Allowable Stress (psi)and Deflection (in),using NDS 2005 Criterion Analysis Value Design Value Analysis/Design Shear fv" - 67 Fv' - 180' .fv*'/.Fv' _ 0.37 Bending(+) fb = 556 Fb' = 990 kb/Fb''. 0.56 Live Defl'n 0.03 = <L/999 0.20 = L/360 0.13 Total Defl'n 0.05 = <L/999 0.30 = L/240 , , 0.16,. . 'The effect of point loads within a distance d"'of the'support ' has been included as per NDS 3.4.3.1 . ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF ' Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 • Fb'+ 900 1.00 1.00 1.00 1.000 1.100 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - . - - 1.00 1.00 - 2 Shear : LC #2 = D+L, V = 1744, V design* = 1232 lbs Bending(+) : LC #2 = D+L, M = 1984 lbs-ft Deflection: LC #2 = D+L EI= 158e06 lb-in2/ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D-dead L=live S=snow W=wind I-impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: ° 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. • 3.BUILT-UP BEAMS:it is assumed that each ply is a single continuous member(that is,no butt joints are present)fastened together securely at intervals not exceeding 4 times the depth arid that . • each ply is equally top-loaded.Where beams are side-loaded,special fastening details may be required. • • • • 6-61/[ . , COMPANY PROJECT Aft: Wood Works® ' ''> SOFTWARE FOR WOOD DESIGN June 28,2010 10:33 b9 Design Check Calculation Sheet Sizer 7.1 LOADS (Ibs, psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End . 1 w51 Dead Partial UD 96.0 96.0 2.00 3.00 plf 2 c32 !Dead Point 59 2.00 lbs 3 c32 Rf.Live Point 75 2.00 lbs Load4 Dead Full UDL 13.0 plf Loads Live Full UDL 40.0 plf MAXIMUM REPrTlnkie /14..+\ •••••1 QCAQIP.Ir 1 CgIGTLJC /G••\ • • 3.f.? tV�; 4a t,`b,-r c ?yri;.5- .' «'� • S .- te ` +` ^ z 4,14t0 r; .t�, ,_{X,. *s,�.c.�"e i p'` .:y, $,1411,j � "- `fir a '0`4. c. " • F' - '- a4- '/psi ` a .gv u �Z, � ,,' ' z.,.g-x..y liteb"s�'y`„ s C w „ =7-?•& : m:I Dead 63 146 Live 85 110 Total 148 256 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min. bearing length for beams is 1/2"for exterior supports Lumber n-ply, D.Fir-L, No:2, 2x8", 2=PIys Self-weight of 5.17 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value. Design Value Analysis/Design Shear fv-= 12 Fv' = 207 fv/Fv' = 0.06 Bending(+) fb = 82 Fb' = 1242 fb/Fb' = 0.07 , Live Defl'n 0.00.= <L/999 0.10 = L/360 0.01 Total Defl'n 0.00 = <L/999 0.15 = L/240 0.01 ADDITIONAL DATA: FACTORS: F/E CD CM CL CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.15 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear LC #2 = D+L, V = 256, V design = 169 lbs Bending(+) : LC #2 = D+L, M = 179 lbs-ft Deflection: LC #2 = D+L EI= 76e06 lb-in2/ply Total Deflection - 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3.BUILT-UP BEAMS:it is assumed that each ply is a single continuous member(that is, no butt joints are present)fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded.Where beams are side-loaded,special fastening details may be required. • • COMPANY PROJECT WoodWorks ® SOFnNSRE fOR WOOD DESIGN June 28,2010 10:33 b10 Design Check Calculation Sheet • Sizes 7:1 LOADS (Ibs, psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start .-End 1 c33 Dead Point 59 1.00 lbs 2_c33 Snow Point 75 1.00 lbs 3_w52 Dead Partial UD 96.0 96.0 0.00 1.00 plf Load4 Dead Full UDL 13.0 plf Load5 Live Full UDL 40.0 plf MAXIMUM RE'r-rrnkIQ D AOrkIr I CkIf TLIC - '.ex:.-kr;`- -`,,a x. _:£" 'e, -u`' ;t`*r .1e`r":s" ";�t�' `'"{'__;� ,�'»c--� r, .4, ,let :744;3 ` ": �"�+ ` a a r• .�' �• fit'# > ' a •�� tYd k ;. hham.5'tiz 3Y �f ��'X r�� �� � r tK Y$' ' $'�..`' .. "afii � .F , r� .., c: .,�- +y - i� .� ;.hT t ` S' Se ;AV; S` da' emu°.' ' i• ,••. .#�. +"''F t �`° „"3.a �a"�§+ A 10' 3� Dead 146 63 Live • 82 64 Total 229 127 Bearing: Load Comb #3 #3 Length 0.50* 0.50* *Min. bearing length for beams is 1/2"for exterior supports Lumber n-ply, D.Fir-L,.No.2, 2x8",2-Plys Self-weight of 5.17 plf included in loads; Lateral Support:top=full, bottom=at supports; • Analysis vs.Allowable Stress (psi) and Deflection (in).using NDS 2005.: .. Criterion Analysis Value Design Value Analysis/Design Shear fv = 10 Fv' = 207 fv/Fv' = 0.05 Bending(+) fb = 72 Fb' = 1242 fb/Fb' = 0.06 Live Defl'n 0.00 = <L/999 0.10 = L/360 0.01 . Total Defl'n 0.00 = <L/999 0.15 = L/240 0.01 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Emin' 0.58 million 1.00 1.00 - - - 1.00 1.00 - 3 Shear : LC #3 = D+.75(L+S), V = 229, V design = 148 lbs Bending(+) : LC #3 = D+.75(L+S) , M = 157 lbs-ft Deflection: LC #3 = D+.75(L+S) EI= 76e06 lb-in2/ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (A11 LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT-UP BEAMS:.it is assumed that each ply is a single continuous member(that is, no butt joints are present)fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded.Where beams are side-loaded,special fastening details may be required. • gelt2) COMPANY PROJECT F �r°' ''s ) WoodWorks® SOFTWARE FOR WOOD DESIGN June 28,2010 10:36 b14 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs, psf,or pif) : Load Type Distribution Magnitude Location [ft] Units Start End ,Start -End 1_j33 Dead Partial UD 78.0 78.0 0.00 1.50 plf 2...i33 Live Partial UD 240.0 240.0 0.00 1.52 plf 3 j13 Dead Partial UD 78.0 78!0 3.00 8.50 plf 4 j13 Live Partial UD 240.0 240.0 3.00 8.50 plf 5_j34 Dead Partial UD 78.0 78.0 1.50 3.00 plf 6 j34 Live Partial UD 240.0 240.0 1.50 3.00 plf 7_j46 Dead Partial UD 28.9 28.9 5.00 8.50 plf 8_j46 Live Partial UD 80.0 80.0 5.00 8.50 plf 9 b25 Dead Point 409 5.00 lbs 10.,b25 Live Point - 1080 5.00 lbs MAXIMUM REACTIONS (lbs)and BEARING LENGTHS(in) r 4 o mes �„m ' '- "=-". `. -r � � � rzw C A 0' 8'-6'{ Dead 553 685 Live 1522 1878 Total 2076 2563 , ' Bearing: Load Comb #2 #2 Length 1.48 1:83 LSL, 1.55E, 2325Fb, 1-3/4x14" Self-weight of 7.66 plf included in loads; Lateral support:top=full, bottom='at supports; Analysis vs.Allowable Stress (psi) and Deflection (in) using NOS 2005. s - Criterion - Analysis Value Design Value Analysis/Design Shear fv = 126 Fv' = 310 ' fv/Fv' = 0.41 Bending(+) fb = 1324 -Fb' = 2325 ' fb/Fb' = 0.57 - Live Defl'n 0.09 = <L/999 0.28 = L/360 0.31 Total Defl'n 0.14 = L/750 0.42 L/240 0.32 ADDITIONAL DATA: FACTORS: F/E •CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - • E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D+L, V = 2563, V design = 2064 lbs Bending(+) : LC #2 = D+L, M = 6308 lbs-ft Deflection: LC #2 = D+L EI= 620e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2;SCL-BEAMS (Structural Composite Lumber):the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3.Size factors vary from one manufacturer to another for SCL materials.They can be changed in the database editor. 8--(� ‘. �_ • COMPANY PROJECT 11„,,4 �o Works° • SOETWAREEOR WOOD DESIGN June 28,2010 10:48 b15 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or pif) : Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j5 Dead Full UDL 335.7 plf 2 j5 Rf.Live Full UDL* 493.7 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in): .. g 'i .� A #� t''. «„ &•, �X : 4'' # "10- q ''.'4;'4?-hi' e x ' a ` � p l, ssa• i �Xl'r � - t � 'dim•. "-q;: "' _. a �` •.�a "t ��-�t �, ;y yam- a. �e 4 n e �. k `` r x; a '" e, 4 747� `y �,�F ue �: �.i h'4'. R'.°W`YSA.eE ,t :•.An z"y iF 4': �.'-?>c - �'st� .d ;'''.y I.0' 6t Dead 1027 1027 Live 1481 1481 Total 2508 2508 Bearing: , Load Comb #2 #2 Length 1.34 1.34 Lumber n-ply, D.Fir-L, No.2,2x10", 2-Plys ' Self-weight of 6.59 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs. Allowable Stress (psi) andx.Deflectipn (in) using.NDS 2005 : Criterion Analysis Value Design Value Analysis/Design Shear ' fv = 101 Fv' = 207 fv/Fv' 0.49 Bending(+) fb = 1055 Fb' = 1138 fb/Fb' = 0.93 _ , • Live Defl'n 0.05 = <L/999 0.20. _ 'L/36'0 0.23 Total Defl'n 0.09 = L/776 0.30 a L/240 0.31 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - -. 1:00 1.00 1.00 2 Fb'+ 900 1.15 1.00 1.00 1.000 1.100 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 ' - - • E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D+L, V = 2508, V design = 1864 lbs . Bending(+) : LC #2 = D+L, M = 3762 lbs-ft Deflection: LC #2 = D+L EI= 158e06 lb-in2/ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC • DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. • 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT-UP BEAMS: it is assumed that each ply is a single continuous member(that is,no butt joints are present)fastened together securely . at intervals not exceeding 4 times the depth and that each ply is equally top-loaded.Where beams are side-loaded,special fastening details may be required. • S.-(1;6'6°' .,, COMPANY PROJECT tit WoodWorks® SOFTWARE FOR WOOD DE5tGN June 28,2010 10:46 b20 Design.Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j47 Dead Partial UD 42.5 42.5 0.00 2.50 plf 2 j47 Live Partial UD 62.5 62.5 0.00 2.50 , plf MAXIMUM REPr'r-irtmc I1 .....a ocnoIIii cwinruc I . .'25.676 .( - tz l • ,,,y.G. `F:...s "' F k. 7,.+i tt< -4,1 st Aa k x ^s t j"+ � n fit 1 670: 64,7" �y b� b ry aK 4 F i 4.t 7A-y�s e ; .:^vsr,3:,�r^a nAr 1V - �" -'`x' t, a t €'s-L;' "."mss} ,' '�'..'-- " 10' 34 Dead 71 53 Live 91 65 Total 162 118 Bearing: Load Comb #2 #2 Length 0.50* 0.50* • *Min. bearing length for beams is 1/2"for exterior supports " Lumber-soft, D.Fir-L, No.2,4x8" Self-weight of'6.03.plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = '6 Fv' = 180 fv/Fv' = 0.03 Bending(+) fb = 46 Fb' = 1170 fb/Fb' = 0.04 Live Defl'n 0.00 = <L/999 0.10 = L/360 0.01 Total Defl'n 0.00 = <L/999 0.15 = L/240 0.01 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fop' 625 - 1.00 1.00 - - - - 1.00 1.00 - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D+L, V = 162, V design = 99 lbs Bending(+) : LC #2 = D+L, M = 118 lbs-ft Deflection: LC #2 = D+L EI= 178e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC • DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. • • COMPANY� PROJECT. .r $��11; WoodWorks® . • . • . .. ej .SOFTW ARE FOB WOOD DESIGN June 28,2010 10:34 621 • • Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude- Location [ft) Pat- Start :End Start End tern • 1 w63 Dead Partial UD 308.0 308.0 6.00 10.00 No 2 w63 Live Partial UD 320.0 320.0 6.00 10.00 No 3 w62 Dead Partial UD 308.0 308.0 2.00 6.00 No 4 w62 Live Partial UP 320.0 320.0 2.00 6.00 No 5w32 Dead Partial UD 369.0 369.0 .0.00 2.00 No 6 w32 Snow Partial UD 357.5 357.5 0.00 2.00 No 7 c44 Dead Point 1940 1.50 No • 8 c44 Snow Point 2853 1.50 No 9 j20 Dead Partial UD 104.0 104.0 6.50 10.00 No 10_j20 Live Partial UD 320.0 320.0 6.50 10.00 No 11 j21 Dead Partial UD 104.0 104.0 6.00 6.50 No 12 j21 Live Partial UD 320.0 320.0 6.00 6.50 No 13 j22 Dead Partial UD 104.0 104.0 2.00 2.50 No 14 j22 Live Partial UD 320.0 320.0 2.00 2.50 No " 15-j23 Dead Partial UD 104.0 104.0 2.50 6.00 No 16_j23 Live Partial UD 320.0 320.0 . 2.50 6.00 No _ 17_j48' - Dead Partial UD 71:5- 71:5 ' "0.00 1.50. .• No , 18_j48 ' Live Partial UD 220.0, 220.0,', 000 1'.50 No" . 19 b23 Dead ,.Point" 658 0:00 No - 267b'23' Snow. :Point ' ' 195 . 0.00 No MAXIMUM-REACTIONS'.(Ibs)and BEARING`LENGTHS.(in);:.••• ,• „ ..- -�" " -" -,a^-v ',: '.w, scz r ' ^s r te . .a- .='u -^ • 0 .. Q -. - '. 101• g.Dead 5581 . , - _ 1311 Live 5266 2508 Total 10847 - 3819 Bearing: Load Comb #0 #3 #2 Length 0.00 3.50 1.23 Cb • 0.00 1.11 1.00 LSL, 1.55E,2325Fb,3-112x14" Self-weight of 15.31 plf included in loads; . . Lateral support:top=full,bottom=at supports; - Analysis vs.Allowable Stress(psi)and Deflection(in)using.NDS 2005 Criterion Analysis-Value Design Value Analysis/Design . Shear fv* = 139 Fv' = 356 fv*/Fv' = ' 0.39 Bending(+) fb = 717 Fb' = 2325 fb/Fb' = '0.31 Bendirig(-) fb = 600 Fb' = 2632 fb/Fb' = 0.23 Deflection: . Interior Live 0.05 = <L/999 0.27 = L/360 0.17 • Total 0.07 = <L/999 0.40 = L/240 0.17 Cantil. Live -0.03 = L/698 ' 0.13 = L/180 - 0.26 • Total -0.03 = L/788 0.20 = L/120 0.15 *The effect of point loads within a distance d of the support has been included as per NOS 3.4.3.1 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# - Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 4 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fb'- 2325 1.15 - 1.00 0.984 1.00 - 1.00 1.00 - - 4 Fcp' 800 - - 1.00 - - - - 1.00 - - - ' E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #4 = D+S, V = 7237, V design* = 4536 lbs Bending(+): LC #2 = D+L, M = 6833 lbs-ft Bending(-): LC #4 = D+S, M - 5720 lbs-ft , • Deflection: LC #2 = D+L EI= 1241e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. . • (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) ' All LC's are listed in the Analysis output) Load combinations: ICC-IBC • ' DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.SCL-BEAMS(Structural Composite Lumber):the attached SCL selection is for preliminary design only.For final member design contact your local SCL manufacturer, . 3.Size factors vary from one manufacturer to another for SCL materials.They can be changed in the database editor: 4.The critical deflection value has been determined using maximum•back-span deflection.Cantilever deflections do not govern design. • • 6)..--,Cell ICA-- . COMPANY PROJECT del: . WoodWorks SO51WARE FOR WOOD DESIGN June 28,2010 10:35 b22 Design Check Calculation Sheet Sizer 7.1 • LOADS (Ibs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units • Start End Start End 1 w69 Dead Partial UD 369.0 369.0 1.00 2.50 plf 2 w69 Snow Partial UD 357.5 357.5 1.00 2.50 plf 3_,j48 Dead Partial UD 71.5 71.5 1.00 2.50 plf 4_j48 Live Partial UD 220.0 220.0 1.00 2.50 plf 5j47 Dead Full UDL 42.5 plf 6_j47 Live Full UDL 62.5 . plf 7 b23 Dead Point 700 1.00 lbs 8 b23 Snow Point 195 1.00 lbs • _ „Yi;x-= .M �'m,*a' V {.5- k R<as=p T a a 0,];yxr y 7 � ��'3�a, `"-� a7rp�"r' ri '' r {�. +-;.{, r .„ a&„..r sy",:,,�'r'G ..t ;�+.'€. `�. "M • � = ,y( T € 's 3 a t 'sfi',.• .L a4"'IY' E L--2 i. S - g - e a c -*Ii 4-ver # am -40044 l .` N° A a '� s�,V ,e y, i _.r^ri`"�, � -•_� a�t'� _� ��-. ��`.3_'E"""�^3 ���y; .-�- Y�=��M�`et.{•,. � •�* �..w^ 'r ' PY � ‘ „ Y41'0 .,fr; #1 . T`MMV,, . 44 tf:,& Alfa I 26'i Dead 683 807 Live 341 572 Total 1024 1379 Bearing: Load Comb #3 #3 Length 0.50* 0.63 *Min.bearing length for beams is 1/2"for exterior supports Lumber-soft, D.Fir-L, No.2,4x12" • Self-weight of 9.35 plf included in loads; Lateral support:top=full,bottom=at supports; • Analysis vs.Allowable Stress (psi)and Deflection (in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 30 Fv' = 207 fv/Fv' = 0.14 Bending(+) fb = 159 Fb' = 1138 fb/Fb' = 0.14 Live Defl'n 0.00 = <L/999 0.08 = L/360 0.01 Total Defl'n 0.00 = <L/999 0.13 = L/240 0.02 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# • Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb''+ 900 1,15 1.00 1.00 1.000 1.100 . 1.00 1.00 1.00 1.00 - 3•Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3 Shear : LC #3 = D+.75(L+S), V = 1024, V design = 778 lbs Bending(+) : LC #3 = D+.75(L+S), M = 978 lbs-ft Deflection: -LC #3 = D+.75(L+S) EI= 664e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: • 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. • • COMPANY PROJECT k 4..,XU. ® : works sorr»rxeFOR woaoxscK June 28,2010 10:35 b23 Design Check Calculation She_et Sizer 7.1 LOADS (lbs, psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_w33 Dead Partial UD 204.0 204.,0 0.00 .1.50 plf 2_c18 Dead Point 143 1.50 . lbs 3_c18 Rf.Live Point 110 1.50 lbs . 4 c19 Dead Point 59 4.50 lbs 5 c19 Rf.Live Point 85 4.50 lbs 6 w34 Dead Partial UD 108.0 108.0 4.50 6.50 plf 7 c20 Dead Point 59 6.50 lbs 8 c20 Rf.Live Point 85 6.50 lbs 9 c21 Dead Point 143 9.50 lbs lb- c21 Rf.Live Point 110 9.50 lbs 11 w35 Dead Partial UD 204.0 204.0 9.50 11.00 . pif- , , MAXIMUM REACTIONS (Ibs)and•BEARING.LENGTHS (in) : ,. x •tea w s+ a.-.z � 10. 11i Dead 700 700 Live 195 195 Total 895 895 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min. bearing length for beams is 1/2"for exterior supports - LSL, 1.55E, 2325Fb, 3-112x14" Self-weight of 15.31 plf included in loads; ' Lateral support:top=full, bottom=at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 20 Fv' = 356 fv/Fv' = 0.05 Bending(+) fb = 213 Fb' = 2674 fb/Fb' = 0.08 Live Defl'n 0.01 = <L/999 0.37 = L/360 0.03 Total Defl'n 0.05 = <L/999 0.55 = L/240 0.09 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D+L, V = 895, V design = 639 lbs Bending(+) : LC #2 = D+L, M = 2028 lbs-ft Deflection: LC #2 = D+L EI= 1241e06 lb-in2 Total. Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2.SCL-BEAMS(Structural Composite Lumber):the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3.Size factors vary from one manufacturer to another for SCL materials.They can be changed in the database editor. g' --61 tfA COMPANY PROJECT °1 WoodWorks® . ,,,_ SOFTWARE fOR WOOD 0E5108 June 28,2010 10:47 b24 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j42 Dead Partial UD 47.7 47.7 0.00 4.50 plf 2_j42 Live Partial UD 160.0 '160.0 0.00 4.50 plf 3_j43 Dead Partial UD 47.7 47.7 4.50 7.50 plf ' 4_j43 Live Partial UD 160.0 160.0 4.50 7.50 plf 5_j44 Dead Partial UD 47.7 47.7 7.50 13.00 plf 6_j44 Live Partial UD 160.0 160.0 7.50 13.00 plf 7_j45 Dead Partial UD 47.7 47.7 13.00 16.00 plf 8 j45 Live Partial UD 160.0 '160.0 13..00 16.00 plf MAXIMUM REACTIONS (lbs) and BEARING LENGTHS(in) : Dead 442 442 Live 1280 1280 Total 1722 1722 Bearing: Load Comb #2 #2 Length 0.85 0.85 Glulam-Unbal.,West Species, 24F-V4 DF, 3-118x10-1/2" Self-weight of 7.55 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 70 Fv' = 265 fv/Fv' = 0'..26 Bending(+) fb = 1440 Fb' = 2400 fb/Fb' = 0.60 Live Defl'n 0.43 = L/441 0.53 = L/360 0.82 Total Defl'n 0.66 = L/290 0.80 = L/240 0.83 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D+L, V = 1722, V design = 1534 lbs • Bending(+) : LC #2 = D+L, M = 6890 lbs-ft Deflection: LC #2 = D+L EI= 543e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3. GLULAM: bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). . 8.-(q I COMPANY PROJECT k 1 Wood Works saFrwnrse Kok wnav DESIGN June 28,2010.10:33 b25 Design Check Calculation Sheet Sizer 7.1 LOADS (Ibs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start , End Start End Loadl Dead Full UDL 200.0 plf Load2 Live Full UDL 540.0 plf MAXIMUM REACTIONS flbsl and BFARING I FNGTHS tin) : #..Ay,s-+',, i ';,';`k a{' y.r 2w.0... ,"4..r-2F,, 4A:a.,; $ P . X ' e x * rian . ws e _: a Tu "`" ry g� Nc# ga' ir --'.G a'% ik attT e ", »�u wgmaiky xw ^i 1 0' 4d Dead 409 409 Live 1080 1080 Total 1489 1489 Bearing: Load Comb #2 #2 Length 0.68 . 0.68 Lumber-soft, D.Fir-L, No.2,4x6" Self-weight of 4.57 plf included in loads; Lateral support:top=full, bottom=at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 89 Fv' = 180 fv/Fv' = 0.50 Bending(+) fb = 1013 Fb' = 1170 fb/Fb' = 0.87 Live Defl'n 0.04 = <L/999 0.13 = L/360 0.30 Total Defl'n 0.06 = L/764 0.20 = L/240 0.31 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - .- - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.00 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D+L, V = 1489, V design = 1148 lbs Bending(+) : LC #2 = D+L, M = 1489 lbs-ft Deflection: LC #2 = D+L EI= 78e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. - COMPANY PROJECT 0r N WoodWôrks® soFrnANEFOe woon DESIGN June 28,2010 10:57 b25 Design Check Calculation Sheet Sizer 7.1 LOADS (m5,psf,or plf) : Load Type Distribution Magnitude Location [ft] Units Start End Start End _ 1 w72 Dead Partial UD 539.7 539.7 13.00 14.50 plf 2 w72 Rf.Live Partial UD 493.7 493.7 13.00 14.50 plf 3 w28 Dead , Partial UD 535.5 535.5 0.00 4.50 pif 4 w28 Rf.Live Partial UD 487.5 487.5 0.00 4.50 pif 5 c14 Dead Point 1074 7.00 lbs 6 c14 Rf.Live Point 1601 7.00 lbs 7 c15 Dead Point 1074 13.00 lbs 8 c15 Rf.Live Point 1601 13.00 lbs 9 w73 Dead Partial UD 539.7 539.7 14.50 16.00 pif 10 w73 Rf.Live Partial UD 493.7 493.7 14.50 16.00 plf 11 w74 Dead Partial UD 443.7 443.7 5.50 7.00 plf . 12 w74 Rf.Live Partial UD 493.7 493.7 5.50 7.00 pif . 13 w75 Dead Partial UD 539.7 539.7- 4.50 5.50 pif 14-W75 ' Rf.Live . Partial UD 493.7 493.7 4.50 5.50 plf. 15 j42 Dead Partial UD 47.7 47.7 0.00 4.50 lilt 16 j42 Live Partial UD 160.0 160.0 0.00 4.50 plf, 17 j43 Dead Partial UD 47.7 47.7 4.50 5:50 plf 18 j43 Live Partial UD 160.0 160.0 4.50 5.50 plf 19 j44 Dead Partial UD .47.7 47.7 7.50 13.00 'plf 20 j44 Live Partial UD 160.0 160.0 7.50 13.00 plf 21_345 Dead Partial UD 47.7 47.7 5.50 7.50 plf 22 j45 Live Partial UD 160.0 160.0 5.50 7.50 plf 23_j46 Dead Partial UD 47.7 47.7 13.00 14.50 plf 24_j46 Live Partial UD 160.0 160.0 13.00 14.50 plf 25_j47 Dead Partial UD 47.7 47.7 14.50 16.00 plf 26 j47 Live Partial UD 160.0 160.0 14.50 16.00 plf MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in): %.s_..,.�.n,- _,- ._-.3.<___:.� . � ,,.,., - , ;u : ". -„ '..� ,,,... '","''m,_."---., ."" ->,:. ,.az;.a;...,�w;, k�°... ,e,.--. , ,� I 0. , 161 Dead 4328 4101 Live 5296 5376 Total 9624 9477 Bearing: - - - - , Load Comb #2 #2 Length 2.89 2.84 • Glulam-Bal.,West Species,24F-V8 DF,5-118x15" Self-weight of 17.7 plf included in loads; , Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 157 Fv' = 305 fv/Fv' = 0.52 Bending(+) fb = 2301 Fb' = 2760 fb/Fb' = 0.83 Live Defl'n 0.36 = L/528 0.53 = L/360 0.68' Total Defl'n 0.77 = L/249 0.80 = L/240 0.96 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# . Fv' 265 1.15 1.00 1.00 - - - - 1.00 1.00 1.00. 2 Fb'+ 2400 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 . Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D+L, V = 9624, V design = 8063 lbs Bending(+): LC #2 = D+L, M = 36854 lbs-ft . Deflection: LC #2 = D+L EI= 2594e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. . (D=dead L=live S.--snow W=wind I=impact C=construction CLd-concentrated) (All LC's are listed in the Analysis output) - Load combinations: ICC-IBC DESIGN NOTES: - 1.Please verify that the default deflection limits are appropriate for your application. • 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. • 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n) • 8__6;ate. . • COMPANY PROJECT: .®it' WoodWorks _, SOFTWARE FOB W000 OFSicN June 28,2010 10:36 b26 • Design Check Calculation.Sheet Sizes 7.1 • LOADS (lbs, psf,or plf) : Load Type Distribution .Magnitude Location [ft] Units Start End Start End 1_w37 Dead Partial UD 535.5 535.5 10.50 11.00 plf 2_w37 Snow Partial UD 487.5 487.5 10.50-11.00 .plf 3_w38 Dead Partial UD 535.5 535.5 11.00 14.00 plf 4_w38 Snow Partial UD 487.5 487.5 , 11.00 14.00 plf 5 w39 Dead Partial UD 535.5 535.5 14.00 15.50 plf -. 6 w39 Snow Partial UD 487.5 487.,5 . 14.00. 15.50 . plf _ MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS(in) : I0 15'-6'I Dead 583 ., 239.7 Live 393 2044 Total 976 . :4441 Bearing: Load Comb #2 #2 Length 0.50* 1.33 *Min. bearing length for beams is 1/2"for exterior supports Glulam-Bal.,West Species, 20F-V7 DF, 5-118x16-1/2" Self-weight of 19.47 plf included in loads; • Lateral support:top=full, bottom=at supports; Analysis vs.Allow able Stress (psi) and Deflection (in) using NDS 2005: • Criterion Analysis Value Design Value -Analysis/Design Shear - fv = 54 Fv' = 305 fv/Fv' = 0.18 . Bending(+) fb = 488 Fb' = 2297 fb/Fb,' 0.21 Live Defl'n 0.05 = <L/999., : 0.25,2.= L/360 - 0.09 Total Defl'n - 0.14 <L/999... 0.77 L/240 . 0.18 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2000 1.15 1.00 1.00 1.000 0.999 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D+S, V = 4441, V design = 3070 lbs Bending(+) : LC #2 = D+S, M = 9454 lbs-ft Deflection: LC #2 = D+S EI= 3070e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3. GLULAM:bxd=actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM:bearing length based on smaller of Fcp(tension), Fcp(comp'n). S.-(dl:rs:73 • COMPANY PROJECT fiT WoodWorks® SOFTWARE FOR WOOD DEMN June 28,2010 10:50 c2 Design Check Calculation Sheet Sizer 7.1 LOADS (Ibs, psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End l bl Dead Axial 1539 (Eccentricity = 0.00 in) 2 bl Rf.Live Axial 2089 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): ", w � r 4 53` � X • „ 'a °.._.z x,00,^5- :+.tie,i 44 a 0' 8' Lumber n-ply, Hem-Fir, No.2,2x6”, 2-Plys Self-weight of 3.41 plf included in loads; Pinned base; Loadface=depth(d); Built-up fastener: nails; Ke x Lb: 1.00 x 0.00=0.00[ft]; Ke x Ld: 1.00 x 8.00=8.00[ft]; Analysis vs.Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Axial fc = 221 Fc' = 980 fc/Fc' = 0.23 Axial Bearing fc = 221 Fc* = 1644 fc/Fc* = 0.13 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# ' Fc' 1300 1.15 1.00 1.00 0.596 '1.100 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1:100 - 1.00 1.,00 2 Axial : LC #2 = D+L, P = 3655 abs Kt =, 1.00 (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2. BUILT-UP COLUMNS: nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. • • 6.), Lik • COMPANY PROJECT fit WoodWorks® SOFPWAREFOR W000 DESIGN • June 28,2010 10:52 c25 Design Check Calculation Sheet Sizei 7:1 LOADS (Ibs,psf,or pif) : • Load Type Distribution Magnitude Location [ft] Units Start End Start ' End l b12 Dead Axial 514 (Eccentricity = 0.00 in) 2 b12 Live Axial 1408 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): , an, ?� '�.:"s �G� ":'_-�3,��ti i�.��'^ „�-��.��v ;tir. 0 9, Lumber n-ply, Hem-Fir, No.2, 2x4", 2-Plys Self-weight of 2:17 plf inciuded-in=loads; Pinned base; Loadface=depth(d); Built-up fastener: nails; Ke x Lb:1.00 x 0:oo=0.00[ft]; Ke x Ld: 1.00 x 9.00=9.00[ft]; Analysis vs. Allowable Stress-(psi)`and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Axial fc = 185 'Fc' = 38Q fc/Fc' '= 0.49' • Axial Bearing fc = 185 Fc* = 1495 fc/Fc* = 0.12 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.254 1.150 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 1.150 - - 1.00 1.00 2 Axial : LC #2 = D+L, P = 1942 lbs Kf = 1.00 (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis'output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. • 2. BUILT-UP COLUMNS:nailed or bolted built-up columns shall conform to'the provisions of NDS Clause 15.3. - :61e-d\773 COMPANY PROJECT WoodWorks SOFIWARE FOR WOOD DESIGN June 28,2010 10:51 c36 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or pif) Load Type Distribution Magnitude Location [ft] Units Start End Start End l b21 Dead Axial 5634 (Eccentricity = 0.00 in) ,2—b21 Rf.Live Axial 7021 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): • • • 0' 8' Timber-soft, Hem-Fir, No.2, 6x6" Self-weight of 6.25 plf.included in loads;. Pinned base; Loadface=depth(d);•Ke x Lb: 1.00 x 8.00=8.00[ft]; Ke x Ld: 1.00 x 8.00=8.00[ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS,2005: Criterion Analysis Value Design Value Analysis/Design Axial fc = 420 Fc' = 548 fc/Fc' = 0.77 Axial Bearing fc = 420 Fc* = 661 fc/Fc* = 0.64 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' .575 .1.15 1.00 1.00 0.829 1.000 - - 1.00 1.00 2 Fc* 575 1.15 1.00 1.00 - 1.000 - - 1.00 1.00 2 Axial : LC #2 = D+L, P = 12705 lbs (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are,listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection.limits are appropriate for your application. 6\ac,-1 COMPANY PROJECT �r ir�` WoodWorks® ''- SOFTWARE fOR WOO6 OES1GN. June 28,2010 10:52 c44 Design Check CalculationSheet Sizer 7.1 LOADS (Ibs, psf,or pif) : Load Type Distribution Magnitude Location [f€] Units Start End Start End 1_c35 Dead Axial 1940 (Eccentricity = 0.00 in) 2 c35 Rf.Live Axial 2853 (Eccebtricity = 0.00 in) • MAXIMUM REACTIONS (Ibs): ` `ix x a- :r:" ". �.« 'nom �.., "�� '���''_•� n '-`� � � 0 9' Lumber n-ply,Hem-Fir, No.2, 2x4", 3-Plys Self-weight of 3.25 plf included in loads; Pinned base; Loadface=depth(d); Built-up fastener:nails; Ke x Lb: 1.00 x 9.00=9.00[ft];Kex Ld: 1.00 x 9.00=9.00[ft];Repetitive factor: applied where.permitted(refer to online help); Analysis vs.Allowable Stress (psi) and Deflection (in) using NDS 2006: Criterion Analysis Value Design Value _Analysis/Design Axial fc = 306 Fc' = 363 fc/Fc.' = 0.84 Axial Bearing fc = 306 Fc* = 1719 fc/Fc* _ "0.18 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.2,11 1.150 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D+L, P = 4823 lbs Kf = 0.60 (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT-UP COLUMNS: nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. COMPANY PROJECT F Wood Works® SOFTWARE FOR WOOD DESIGN June 28,2010 10:51 c64 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs, psf,or pif) Load Type Distribution Magnitude Location [ft] Units Start End , End 1_c45 Dead Axial 1940 (Eccetricity = 0.00 in) 2_c45 Rf.Live Axial 2853 (Eccentricity = 0.00 in) 3_b22 Dead Axial 807 (Eccentricity = 0.00 in) 4 b22 Rf.Live Axial 763 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): it.�ay,'.°ux-'s rAW a%IWOV,-- .s"'�A W. �;,.y f,A,We ..X,e sii `b3�-4: 'i �z x. �r� '."w �.b 34... € z t F..�Yc'y7', b �5� ,�1%sc� Ns=^ r».•b'.4:'w�' ��^�*szr�r� a„�� E, 0' 8' Lumber n-ply, Hem;Fir,,No.2, 2x6",.3-Plys Self-weight of 5.11 plf_included in loads; Pinned base; Loadface=depth(d); Built-up fastener:nails;Ke x Lb: 1.00 x 8.00=8.00[ft];Ke x Ld: 1.00 x 8.00=8.00[ft]; Repetitive factor: applied where permitted(refer to online help); Analysis vs.Allowable Stress (psi) and Deflection (in)using NOS 2005: Criterion Analysis Value Design Value Analysis/Design Axial fc = 259 Fc' = 439 fc/Fc' = 0.59 Axial Bearing fc = 259 Fc* = 1644 fc/Fc* = 0.16 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.267 1.100 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D+L, P = 6404 lbs Kf = 0.60 (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT-UP COLUMNS: nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. 2?:.) .. _ ilalper . . HP Houf Peterson COMMUNICATION RECORD . Righellis Inc. To ID FROM El . MEMO To FILE D . ENGINEER::•PLANNE1.1, LAND,,,,PE. ill,C1lITECI-Z;MS'JF,'i.,(1kS PHONE NO• PHONE CALL:El MEETING:0 ... . . , ; 1 • ' , :: ; ' ' t , ' . . . . I : : i ; , ; : ' " : ! ; 71 , -13 • CO • I • • FI • X : s• : ,. • ,- -- ' * 'T . 1 '1;'-. . - • - • • . . , • , : , ■ c E1 .....-^ t ■ • I ' : , • , --- , , . . ; ;--. i• : - • . ' . ., .. • . • . . . . ‘,..... ' , • i ,..-- -- ' - -..„.. • . , . , ' ... .. ■ 1 ' • , ; ', ,, : ' ■ 1 ' ' ' •: - -"'•- - , ' ', ■ ' ''.,'- : ., .■ ' ! - 1' t' !-- , H'--; ''-'''''1•••'-i- i:- ,''' , : :- ., A ' ; ;01 ■ / , . , '0,101' ' 01' • 1 ', . • ,,,i 9); '9.) I i • • , ■ . , ; ' ' i 1 ' ' ...... (II ;19,1". E , . . . • ,_ . . . . , : . , . . . , . • , . , • • , • , . I ,-- ...',- ;'- 9----',---Al'-i-- -; ' :',, J--4---4---+- , . I • . . . . . . . , . _ . . . . . • i . .1 i 1 . . , . . tcl. 0, ' ■ 1 I. - , . . . - . , , i ',...0, /I ---2 ,,...- ! • ! , , . . . , . . . • !../.!`" • ! - . : _ : : • , . . . C,', !.(.1 ' - , I ' . ' ' i' ■ I 7 , • . , ...-.? , , ■ ' ' ' :., '4..."" , i I ; . ' ; \ :- • -— . , : , . , , , —i,• ': • . , • t . • ,- : til i . 4 ; '.• , ,.p 1 : . • , it : . 4 I • • , . , : , , . , : . , • .. ; • ' • , , i. ', ,..., . . . . . ; , , . ; , , • , , : , , , , ,r, . . , : , • , ,., , . . . ; ! . , • , • • ., ,5.- 1 1 .......,•, . . • 4 : : . , . , ■ , ! 1 I • . , ■ . . . . . . : . . . ' r ' ; ' • ' ' , . . . . t : " ' ' i ' 1 : I ; I ' - I , 1 ; 1 i , 1 1 . ,' r,,p.,,, I ! 1 • . - : - !.. . . 11. . 1.. .. .. ., : - : , i •,--- ; .1 14.4":1 ! , I _ _..,, , : I . i : I . , . • 1 1 1 , • , i 1 01 Z . f ' 1 , 1 ; ; • I 4 . I A } , 0 • ! 4 I - . • • - --4 - • ; , - 4., , ..-1 - .- ., - . . - . . _ . :. _..,. ._ , .. L ._.;.. _; .. ;. i .. ., ,. ;. ; 4 C.i.),-. 1. : . • ' .1 .., : .-„.... ,- / ! , , • i ■ 1 . , ' ' . i ; t . 1 . . . ! ' - - '•- - -', - 1 ›-i-• ' —- -4- --H "'. ''"' "-,---"F-7 ' • , . ; : , , • ,,,o t . , . ■ , ; , • . : . , , i i, 1 i . ■ , --j,-- .- ' '-,- - '-- L- •--. . , - , • ' : i- ' ■ '"1'''-'-- ' -; -r ' ' ' - - • , , • I ' i ' : i I ' : 1 '' ■ ! ■ • • ; , ■ ' , '' • 1 • '- . • " ' ' ' I ',. i i : I ', ' 4 , i •• ' , " ' 4 • ; 1 I. „ , . • . : • 4 I A , 4 1 . ; ' 1 4 I 4 . ! , • 1! , . , • 1 I • , ; . A ; CA) • ' , ! A , . A • I . , , • ,. . • , I A-- • •4 • '- -' - • •I- ' ; 1- t••—;— -- -•-4'---; ; 1. • ' '1' •-•J• ;- • . , 1 : • ' !- I : ''. ; 4 • ; • 4 1 , ' • I , . . 1 , • . ' ; . . t . , . . . . ' . 0 .: • TI COMPANY PROJECT Alt WoodWorks® .4f, SQFTwAREFORWOOD OESIGN June 28,2010 10:19 b25 LC1 Design Check Calculation Sheet Sizer 7.1 LOADS (Ws,psf,or pif) : Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w72 . Dead Partial UD 539.7 539.7 13.00 14.50 plf 2 w72 Snow Partial UD 493.7 493.7 13.00 14.50 plf 3_w28 Dead Partial UD 535.5 535.5 0.00 4.50 plf 9 w28 Snow Partial UD 487.5 487.5 0.00 4.50 plf 5 c14 Dead Point 1074 7.00 lbs 6 c14 Snow Point 1601 7.00 lbs 7 c15 Dead Point 1074 13.00 lbs 8 c15 Snow Point 1601 13.00 lbs 9 w73 Dead Partial UD 539.7 539.7 14.50 16.00 plf 10 w73 Snow Partial UD 493.7 493.7 14.50 16.00 plf • 11 w74 Dead Partial UD 443.7 443.7 5.50 7.00 plf 12 w74 Snow Partial UD 493.7 493.7 5.50 7.00 plf 13 w75 Dead Partial UD 539.7 539.7 4.50 5.50 'plf 14 w75 Snow Partial UD 493.7 493.7 4.50 5.50 plf • 15_j42 Dead Partial UD 47.7 47.7 0.00 4.50 plf 16j42 Live ' Partial UD 160.0 160.0 0.00 4.50 plf 17 j43 Dead Partial UD 47.7 47.7 4.50 5.50 plf 18- 43 Live Partial UD 160.0 160.0 4.50 5.50 plf 19 j44 Dead Partial UD 47.7 47.7 7.50 13.00 plf 20-'44 Live Partial UD 160.0 160.0 7.50 13.00 plf 21_545 Dead Partial UD 47.7 47.7 5.50 7.50 plf 22_j45 Live Partial UD 160.0 160.0 5.50 7.50 plf 23 j46 Dead Partial UD 47.7 47.7 13.00 14.50 plf 24 346 Live Partial UD 160.0 160.0 13.00 14.50 plf 25_j47 Dead Partial UD 47.7 47.7 14.50 16.00 plf 26 547 Live Partial UD 160.0 160.0 14.50 16.00 plf • 203A Wind Point 7960 0.00 lbs 203A.1 Wind Point -7960 7.00 lbs 203B.1 Wind Point 7960 13.00 lbs . 203B.2 Wind Point -7960 16.00 lbs MAXIMUM REACTIONS(Ibs)and BEARING LENGTHS(in): : .�. _-�,:<� ..:�, ...,•.:.:,e .._,:. its.. Msa -:>.-;.,., <wl._.,.. - .:_ - :,.'e.:_, _.,..el z,,,,:.c.a- :,,,,, , -. _,:ra wer ;.-.-.. :2r a .., _- -..,>_R:,ir.... 10' 161 Dead 4328 4101 Live 7703 4096 Uplift 2458 Total 12031 8197 Bearing: Load Comb #4 #6 Length 3.61 2.46 • Glulam-Bal.,West Species,24F-V8 DF,5-1/8x15" Self-weight of 17.7 plf included in loads; . Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 136 Fv' = 305 fv/Fv' = 0.45 Bending(+) fb = 1986 Fb' = 2760 fb/Fb' 0.72 Live Defl'n 0.27 = L/704 0.53 = L/360 0.51 Total Defl'n 0.68 = L/283 , 0.80 = L/240 0.85 . ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes .Cn LC# Fv' 265 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 6 Fb'+ 2400 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 6 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 3 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 3 Shear : LC #6 = D+S, V = 8344, V design = 6983 lbs Bending(+): LC #6 = D+S, M = 31814 lbs-ft Deflection: LC #3 = D+.75(L+S) EI= 2594e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I-impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. . 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). .. • ^_ COMPANY PROJECT • . At Wood vvo.rks e SOP rWA PFOR WOOD DESIGN ! _ June 28,2010 10:24 b25 LC1 NO LL Design Check Calculation Sheet • Sizer 7.1 LOADS (tbs,psf,or plf) : . Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w72 Dead Partial UD 539.7 539.7 13.00 14.50 plf • 3 w28 Dead Partial UD 535.5 535.5 0.00 4.50 plf • 5_c14 Dead Point 1074 7.00 lbs 7 c15 Dead Point 1074 13.00 lbs 9 w73 Dead Partial UD 539.7 539.7 14.50 16.00 plf 11 w74 Dead Partial UD 443.7 443.7 5.50 7.00 plf ' 13 w75 Dead Partial UD 539.7 539.7 4.50 5.50 plf 15 j42 Dead Partial UD 47.7 47.7 0.00 4.50 plf ' 17 j43 Dead Partial UD 47.7 47.7 4.50 5.50 plf 19 j44 Dead Partial UD 47.7 47.7 7.50 13.00 plf 21_j45 Dead Partial UD 47.7 47.7 5.50 7.50 plf 23_j46 ' Dead Partial UD 47.7 47.7 ' 13.00 14.50 plf 25 j47 Dead Partial UD 47.7 47.7 14.50 16.00 plf 203A Wind Point 7960 0.00 lbs 203A.1 Wind Point -7960 7.00 lbs 203B.1 Wind Point 7960 13.00 lbs 203B.2 Wind Point -7960 16.00 lbs MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) : Dead ` 4328 " - 4101 Live 3300 Uplift . . .. - • • 2458 Total 7572 - • 4101 Bearing: • Load Comb #2 #1 Length 2.27 1.23 Glulam-Bal.,West Species,-24F-V8 DF,5-1/8x15" Self-weight of 17.7 plf included in loads; - Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS zoos: Criterion Analysis Value Design Value ,Analysis/ Design ' Shear fv = 70. Fv' = 238 fv/Fv' - 0.29 Bending(+) fb = 978 Fb' = 2160 fb/Fb' = 0.45 Live Defl'n -0.30 = L/632 0.53 = L/360 0.57 • ' Total Defl'n -0.03 = <L/999 0.80 = L/240 0.04 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# . Fv' 265 0.90 1.00 1.00 . - - - - 1.00 1.00 1.00 1 Fb'+ 2400 0.90 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 1 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #1 = D only, V = 4328, V design = 3577 lbs Bending(+) : LC #1 = D only, M = 15667 lbs-ft - ' Deflection: LC #2 = .6D+W EI= 2594e06 lb-in2 Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. • 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. - ' 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). . 1.8'.- (')),A',)1 w • COMPANY PROJECT "" SOFTWARE FOR WOOD 065108 June 28,2010 10 20 b25 LC2 • Design Check Calculation Sheet Sze 7.1 LOADS (lbs,psf,or plf) : t. Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w72 Dead Partial UD 539.7 539.7 13.00 14.50 plf 2 w72 Snow Partial UD 493.7 493.7 13.00 14.50 plf 3 w28 Dead Partial UD 535.5 535.5 0.00 4.50 plf' 4 w28 Snow Partial UD 487.5 487.5 0.00 4.50 plf . 5 c14 Dead Point 1074 7.00 lbs 6 c14 Snow Point 1601 7.00 lbs 7 c15 Dead Point 1074 13.00 lbs B c15 Snow Point 1601 13.00 lbs 9 w73 Dead Partial UD 539.7 539.7 14.50 16.00 plf 10w73 Snow Partial UD 493.7 493.7 14.50 16.00 plf i1_w74 Dead. Partial UD 443.7 443.7 5.50 7.00 plf • 12 w74 Snow Partial UD 493.7 493.7 5.50 7.00 plf 13 w75 Dead Partial UD 539.7 539.7 4.50 5.50 plf 14 w75 Snow Partial UD 493.7 493.7 4.50 5.50 plf 15-j42 Dead Partial UD 47.7 47.7 0.00 4.50 plf 16_j42 Live Partial UD 160.0 160.0 0.00 4.50 pit 17 j43 Dead Partial UD 47.7 47.7 4.50 5.50 plf 18 j43 Live Partial UD 160.0 160.0 4.50 5.50 plf 19_j44 Dead Partial UD 47.7 47.7 7.50 13.00 pit . 20 j44 Live Partial UD 160.0 160.0 7-50 13.00 plf 21,j45 Dead Partial UD 47.7 47.7 5.50 7.50 plf 22 j45 Live Partial UD 160.0 160.0 5.50 7.50 plf 23-j46 Dead Partial UD 47.7 47.7 13.00 14.50 plf • 242j46 Live Partial UD 160.0 160.0 13.00 14.50 plf 25 j47 Dead Partial UD 47.7 47.7 14.50 16.00 plf 26_j 97 Live Partial UD 160.0 160.0 14.50 16.00 plf 2035 .Wind - Point -7960 0.00 lbs 203A.1 Wind' , Point 7960' '- 7.00 lbs . 2038.1 Wind Point ' -7960 13.00 .lbs• • 2038.2 Wind Point 7960 16.00 lbs - • MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in): . . _ .., ,.•.,..ti ,'.2,.,,,,,5,,,,,,,,,,,,.,,.,,:,,, . ,. - `�z"ssa.= - 1 S: .: *`-"5Fm.'1sn?.Mr3%:Y-. -.t.5, as t S ',a,,,,,,g,,",- ,,,,,...,fla.,a-_,gym,,Sip.`a.^',=-a ,s,,'g,o,,ar.•°-. s'"F. . s.,i8%'rZ.,. J_ax.:.zc.-_r.d-,,,:2V,,,t:ar,:wmrSvnr,_...- 10' Dead 4328 4101 Live 4016 7763 Uplift 2321 . Total 8344 11864 • Searing: - . - Load Comb #6 #4 Length 2.50 3.56 Glulam-Bal.,West Species,24F-V8 DF,5-1/8x15" • Self-weight of 17.7 plf included in loads; Lateral support:top=full,bottom=at supports; - • Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear - fv = 136 Fv' = 305 fv/Fv' = 0.45 Bending(+) fb = 2949 Fb' = 3840 tb/Fb' = 0.77 Live Defl'n 0.42 = L/454 0.53 = L/360 0.79 Total Defl'n 0.69 = L/277 0.80 = L/240 0.87 ADDITIONAL DATA: FACTORS: F/E CD - CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# - Fv' 265 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 6 Fb'+ 2400 1.60 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 4 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 4 . Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 4 Shear : LC #6 = 0+5, V = 8344, V design = 6983 lbs Bending(+): LC #4 = D+.75(L+S+W), M = 47228 lbs-ft Deflection: LC #4 ='D+.75(L+S+W) EI= 2594e06 lb-in2 • Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. • (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC - DESIGN NOTES: . 1.Please verify that the default deflection limits are appropriate for your application. 2.Glufam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A490.1-1992 3.GLULAM:bxd=actual breadth x actual depth . 4.'Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). g--. 6"),3? COMPANY PROJECT i000,1411k:, WoodVVo.rks -, SOFTWARE FOR WOOD DESIGN June 28,2010 10:23 b25 LC2 NO LL Design Check Calculation Sheet . - Siier 7.1 LOADS (Ibs,psf,or plf) : Load Type Distribution Magnitude Location [ft] Units Start End Start :End . 1 w72 Dead Partial UD 539.7 539.7 :13.00 14.50 ;plf 31w28 Dead Partial UD 535.5 535.5 0:00 4.50 plf • 5 c14 Dead Point 1074 7.00 lbs • 7 c15 Dead Point 1074 13.00 lbs 9 w73 Dead Partial UD 539.7 539.7 14.50 16.00 plf . 11 w74 Dead Partial UD 443.7 443.7 5.50 7.00 plf 13_w75 Dead Partial UD 539.7 539.7 4.50 5.50 plf 15 j42 Dead Partial UD 47.7 47.7 0.00 4.50 plf 17 j43 Dead Partial UD 47.7 47.7 4.50 5.50 plf 19 j44 Dead Partial UD 47.7 47.7 7.50 13.00 plf 21_j45 Dead Partial UD 47.7 47.7 5.50 7.50 plf 23 j46 Dead Partial UD 47.7 47.7 13.00 14.50 plf 25 j47 Dead Partial UD 47.7 47.7 14.50 16.00 plf 203A Wind Point -7960 0.00 lbs. ' 203A.1 Wind Point 7960 7.00 lbs ' ' 203B,c1" Wind Point -7,960 13.:00 lbs. 203B:2 ' -Wind Point" 7960 16.,00 lbs. . MAXIMUM REACTIONS.(Ibs)and`BEARING'LENGTHS"(i'n).: Id' 161 Dead 4328 4101 . Live 3391, Uplift 2321 Total 4328 • 7435 Bearing: .. Load Comb #1 #2 Length 1.30 2.23 Glulam-Bal.,West Species, 24F-V8 DF, 5-1/8x15" Self-weight of 17.7 plf included in loads; • Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection (in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 70 Fv' = 238 - fv/Fv'"- 0.29 Bending(+) fb = 1905 Fb' = 3840 fb/Fb' = 0.50 ' Live Defl'n 0.10 = <L/999 0.53 = L/360 0.18 . Total Defl'n 0.37 = L/525 0.80 = L/240 0.46 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 0.90 1.00 1.00 - - - - 1.00 1.00 1.00 1 • Fb'+ 2400 1.60 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - ' E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - 2 Shear : LC #1 = D only, V = 4328, V design = 3577 lbs . Bending(+) : LC #2 = .6D+W, M = 30517 lbs-ft Deflection: LC #2 = .6D+W EI= 2594e06 lb-in2 Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (b-dead L=live S=snow W=wind I=impact C-construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. • 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1 71992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam,Beams shall be laterally supported according to the provisions of NDS Clause-3.3.3. • 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). • • S.--67it; 2) £ COMPANY PROJECT a WoodWorks® '•,, SOFI WAR(FOR W000 BFSIGN June 28,2010 10:25 b26 LC1 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or pif) : Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_w37 Dead Partial UD 535.5 535.5 10.50 11.00 plf 2_w37 Snow Partial UD 487.5 487.5 10.50 11.00 plf 3_w38 Dead Partial UD 535.5 535.5 11.00 14.00 plf 4_w38 Snow Partial UD 487.5 487.5 11.00 14.00 plf 5_w39 Dead Partial UD 535.5 535.5 14.00 15.50 plf 6 w39 Snow Partial UD 487.5 487.5 14.00 15.50 plf W1.1 Wind Point 13500 10.50 lbs W1.2 Wind Point -13499 , 15.50 lbs . MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS(in) : Y .�=-.v,.o' xw":>~u'.-.»_to sax.x r<, a'w+P.xrr^s'n rr.F'a.'.'o%«wwvtY-....�s 7 .�r,+i.. ,e ,.,.. ,:^xra..'cu _ -__x•' ^xr rs.rr_-.s''.'z_'xry i•"�+'m'rnaa....F:'..�.rsua�/>en �".L1 10•. 1661 Dead 583 2397 Live 4182 ' 8392 Total 4704 10789 Bearing: • Load Comb #4 #3 Length 1.41 3.24 , Glulam-Bal.,West Species, 20F-V7 DF, 5-1/8x16-1/2" Self-weight of 19.47 plf included in loads; Lateral support:top=full, bottom=at supports; Analysis vs.Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 181 Fv' = 424 fv/Fv' = 0.43 Bending(+) fb = 2526 Fb' = 3195 fb/Fb' = 0.79 . Live Defl'n 0.47 = L/395 0.52 = L/360 0.91 Total Defl'n 0.56 = L/331 0.77 = L/240 , 0.72 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes. Cn LC# Fv' 265 1.60 1.00 1.00 - - - - 1.00 1'.00 1.00 4 Fb'+ 2000 1.60 1.00 1.00 1.000 0.999 1.00 1.00 1.00 1.00 - 4 . Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.6 million 1.00 1.00 - - - - 1.00 - - 4 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 4 Shear : LC #4 = .6D+W, V = 10643, V design = 10194 lbs Bending(+) : LC #4 = .6D+W, M = 48956 lbs-ft Deflection: LC #4 = .6D+W EI= 3070e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: . 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3. GLULAM: bxd=actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). 8....__(...i,;(01 . COMPANY � t"• PROJECT ' l oodWorks . _ . . . . : ._ " socrwn-RE Foli WOOD DESIGN June 28,2010 10:27 b26 LC1 no II Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) : • Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_w37 Dead Partial UD 535.5 535.5 10.50 11.00 plf ' 3_w38 , Dead Partial UD 535.5 535.5 11.00 14.00 plf 5 w39 Dead Partial UD 535.5 535.5 14.00 15.50 plf W1.1 Wind Point 13500 10.50 lbs W1.2 Wind Point -13499 15.50 lbs MAXIMUM REACTIONS (lbs)and.BEARING,LENGTHS (in) : - - .a _ sEr. - 10' 15':6'1 Dead 5831 2397 Live 4182 - 8247 Total 4704 10583 Bearing: Load Comb #2 #2 -Length 1.41 3.18 Glulam-BaL,West Species, 20E-V7-DF;"5-1'/8x16-1/2" Self-weight of 19.47 plf included'in.loads; Lateral support:top=full,bottom=at sdpports; • Analysis vs.Allowable Stress (psi)and Deflection (in) using•NDS 2005: • Criterion Analysis Value Design Value Analysis/Design Shear fv = 181 Fv' = 424 fv/Fv' = 0.43 Bending(+) fb = 2526 Fb' = 3195 fb/Fb' = 0.79 Live Defl'n 0.47 = L/395 0.52 = L/360 0.91 Total Defl'n 0.56 = L/331 0.77 = L/240 0.7,2 .., ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.60 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2000 1.60 1.00 1.00 1.000 0.999 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.6 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - 1.00 - - 2 ' Shear : LC #2 = .6D+W, V = 10643, V design = 10194 lbs Bending(+) : LC'#2 = .6D+W, M = 48956 lbs-ft Deflection: LC #2 = .6D+W EI= 3070e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) - Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. , 2. Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC.A190.1-1992 3. GLULAM:bxd=actual breadth x actual depth. • . 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.1 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). COMPANY PROJECT fii WoodWorks® } f .,- SOFTWARE FOR WOOD DESIGN I June 28,2010 10:26 b26 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) : Load Type Distribution Magnitude Location [ft] Units Start End Start End l w37 Dead Partial UD 535.5 535.5 10.50 11.00 plf, 2w37 Snow Partial UD 487.5 487.5 10.50 11.00 plf 31w38 Dead Partial UD 535.5 535.5 11.00 14.00 plf 4 w38 Snow Partial UD 487.5 487.5 11.00 14.00 plf' + 5 w39 Dead Partial UD • 535.5 535.5 14.00 15.50 plf 6 w39 Snow Partial UD 487.5 487.5 14.00 15.50 'plf W1.1 Wind Point -13499 10.50 lbs W1.2 Wind Point 13500 e 15.50 lbs MAXIMUM REACTIONS(Ibs)and BEARING LENGTHS(in) :: ' .,fl,.�.r_ *, r.-. :� . s 4.40,_gym �.>:`°3F n;,,- ,,,,....1.-..2,-,,",,,,,,,,.71....,,e f,,::,,, .t.. ,,V, e_, ,>, .-._, . IO' 15'-6'1 Dead 583 2397 Live 393 2044 Uplift 3945 7647 Total 976 4441 Bearing: . • Load Comb #2 . #2 Length 0.50* 1.33 *Min.bearing length for beams is 1/2"for exterior supports Glulam-Bal.,West Species, 20F-W DF, 5-118x16-1/2" Self-,weight of 19.47 plf included in loads; . Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS,2005: . Criterion Analysis Value Design' Value Analysis/Design Shear fv = 136 Fv' = 424- fv/Fv' = 0.32 ' Bending(+) fb = 488 Fb' = 2297 fb/Fb' = 0.21 Bending(-) fb = 2193 Fb' = 2940 fb/Fb' = 0.75 Live Defl'n. -0.51 = L/362 0.52 = L/360 0.99 Total Defl'n -0.42 = L/441 : 0.77, = L/240 0.54 ADDITIONAL DATA: . FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes ' Cn LC# Fv' 265 1.60 1.00 1.00 - - - - 1.00 1.00 1.00 4 Fb'+ 2000 1.15 1.00 1.00 1.000 0.999 1.00 1.00 1.00 1.00 - 2 Fb'- 2000 1.60 1.00 1.00 0.919 1.000 1.00 '1.00 1.00 1.00 - 4 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.6 million 1.00 1.00 - - - - 1.00 - - 4 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 4 Shear : LC #4 = .6D+W, V = 7647, V design = 7647 lbs Bending(+) : LC #2 = D+S, M = 9454 lbs-ft Bending(-) : LC #4 = .6D+W, M = 42496 lbs-ft Deflection: LC #4 = .6D+W EI= 3070e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind , I=impact C=construction CLd=concentrated) All LC's are listed in the Analysis output) . Load combinations: ICC-IBC - DESIGN NOTES: 1.Please verify that the'default deflection limits are appropriate for your application. ' 2.Glulam design values are for materials conforming to AITC 117-2001 and'manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:..bxd=actual breadth x actual depth'. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). . . COMPANY PROJECT• r 9 Wood or . s SOFf1YRRFFOR WOOD DESIGN June 28,2010 10:30 b26 LC2 no II Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf;or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_w37 Dead Partial UD 535.5 535.5 10.50 11.00 plf 3 w38 Dead Partial UD 535.5 535.5 11.00 14.00 plf 5 w39 Dead Partial UD 535.5 535.5 14.00 15.50 plf W1.1 Wind Point -13499 10.50 lbs W1.2 iWind Point 13500 15'".50 • lbs . MAXIMUM REACTIONS (Ibs)and BEARING LENGTHS(in) : .-,, > .-.. k�..x., u;z- 1 . . , ... . ..:,...-._.. .,".,,,,:.nffl Mr7 FA&°°.f W4V$ ,,,,z0= ..,. : 1 10' . 15._61 Dead 583 2397 Live Uplift 3945 ' 7647 Total 583 2397 Bearing: , . Load Comb #1 #1 Length 0.50* 0.72 *Min. bearing length for beams is 1/2"for exterior supports Glulam-Bal.,West Species, 20F-V7 DF, 5-118x16-1/2" Self-weight of 19.47 plf included in loads; Lateral support:top=full,bottom=,at•supports; Analysis vs. Allowable Stress (psi) and Deflection.(in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fu = 136 Fv' = 424 fv/Fv' = 0:32 Bending(+) fb = 267 Fb' = 1797 . fb/Fb' = 0.15 Bending(-) fb = 2193 Fb' = 2940 fb/Fb' = 0.75 Live Defl'n -0.51 = L/362 0.52 = L/360 0.99 Total Defl'n -0.42 = L/441 0.77 = L/240 . 0.54 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV " Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.60 1.00 1.00 - - - - 1:00 1.00 1.00 2 Fb'+ 2000 0.90 1.00 1.00 1.000 0.999 1.00 1.00 1.00 1.00 - 1 Fb'- 2000 1.60 1.00 1.00 0.919 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.6 million 1.00 1.00 - - - - 1.00 - - 2 • Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 • Shear : LC #2 = .6D+W, V. = 7647, V design = 7647 lbs • Bending(+) : LC #1 = D only, M = 5167 lbs-ft Bending(-) : LC #2 = .6D+W, M = 42496 lbs-ft Deflection: LC #2 - .6D+W EI= 3070e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) • Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190:1-1992' 3. GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension), Fcp(comp'n). g-6712-#11-4--- Harper Project: Howl Peterson , Client: Job# Righellis Inc. Designer: Date: Pg.# I AilOaC:APE:ARC,1,1-1“.:Zti•SURVE/CIRS De CAC liDeal CO1 Y.\ Wdl:= 10.—lb •8.ft-20-11 Wdl = 1600.1b ft 2 Seismic Forces Site Class D Design catogory • Wp: Wdl :=1.0 Component Importance Factor ('Sect 13.1.3, ASCE 7-05) S1 := O-339 Max EQ, 5% damped, spectral fespbnCe aeceieration of 1 sec. Ss:= 0j42 Max EQ, 5% damped, spectral retool-Ice acceleration at short period f= 9 Height of Component h:= 32 Mean Height Of Roof Fa:= 1.123 Acc-based site coefficient @ .3 s-period (Table 1613.5.3(1);2006 IBC) F 1.722 Vel-based site coefficient @ 1 s-period (Table 1613.5.3(2), 2006 IBC) v• Sins:= Fa•Ss Smi := F -Si 2.Sms Max EQ, 5% damped;spectral responce acceleration at short period Sds := 3 Exterior Elements & Body Of Connections ap 1.0 itp := 2.5 (Table 13.5-1, ASCE 7-05) .4an-Sds•In F .(1 + 2-1-W P RP h P EQU. 13.3-1 Fpmax:= 1.6.Sds-Ip.Wp EQU. 13.3-2 Fpmin:= .3.Sds.Ip.Wp EQU. 13.3:3 Fm:43A:= if(Fp > Fpmax,Fpmax,if(Fp < Fpmin,Fpmin,Fp)) F = 338.5171.lb Miniumum Vertical Force 0.2.Sds'Wdl =225.6781 lb Ye— (129 Harper Project: ' 1-louf Peterson Client: • Job# '°9 R.ighellis Inc. Designer: Date: • Pg.# ENGINEERS•PLANNERS ANCISCAPE ARGFII fEC(S�SII K`.E"lQit9 • Wdl •= 10• lb -8•ft-20•ft Wdl= 1600.1b ft 2 Seismic Forces Site Class=D Design Catagory=D W W p .. . dl IP '— 1;0 Component Importance Factor (Sect 13.1.3, ASCE 7-05) S1 `_:0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. S 0:942 Max EQ, 5% damped, spectral responce acceleration at short period z:= 9 Height of Component li :_:32 Mean Height Of Roof Fa 1.123 Acc-based site coefficient @ .3 s-period (Table 1613.5.3(1), 2006 IBC) Fv:_ -1:722 Vel-based site coefficient @ 1 s-period (Table 1613.5.3(2), 2006 IBC)• Sms:= Fa-Ss Sml := Fv-S1 2•Sms Sds := Max EQ, 5% damped,.spectral responce acceleration at short period. 3 Exterior Elements & Body Of Connections ap:= 1.0 Rp:= 2.5 (Table 13.5-1, ASCE 7-05) .4aP•Sds•In r zl F P := R •I 1 + 2•hJ•Wp EQU. 13.3-1 ` J Fpmax 1.6•Sds-Ip•Wp EQU. 13.3-2 FPmin -3•Sds•Ip'Wp EQU. 13.3-3 4,:= if(Fp > Fpmax,FPmax,if(Fp <Fpmin,Fpmin,Fp)) F =338.5171•lb Miniumum Vertical Force 0.2.Sds-Wdl = 225.6781•lb 3-(7-:AZ9 JLECLIFL,1 :HP '. HoufPeterson . COMMUNICATION RECORD Righellis Inc.. To 0 FROM 0 MEMO TO FILE 0 PHONE NO.: PHONE CALL:0 MEETING:0 • . . X "13 03 m u. 75 f:2 rn . . ,., 3.• . • . . 1. (14 C 03 . - • . ..-, • 1..z k, 0 , (.A II - 3 . ri- rr • . . - . --1 01... . . 4eSM . . . . . . . . . :9 .S....c f'r 0 • ..:•"" . ' . N:L'''‘1;mi • ..:-.0 9) 0 . ---> .C, 1 F . CY 0 • ''''''• . ir o• C • • ': . , • z • • 4, . • e ; . • . . . c.-■ri . . , cm • . . . • N...'- ' • . -.... . . ..,. •.. . . .. . : . .• . . • . . . . • . • • 0 • BY: A\' w„%0 f,, .b,.....y_wli .., Art . -ATE. *16\9 a,010. . -• Jos No.: . . .- 'PRCiJCT: . • ' . . , . RE: 1)e-C. *N Y) ifi'f':2-. NA,. C r-)- PC-V" \T''.9 , • . 172((,, 0 0 DEOur4C-1 .-- z `L• P . . F- 111 . Pc-PC. C.‘I-7 (I ..C.=. a'fr'Parr-5D2) . 2 • ITI J (t.?0. 3)((ag,•*611) i(t) .1t)Ca' Itingi I . . . 0 •u --- rt a . u = 31...". 0 W 7 e a IA x CAPRC.it Nif . z — 0 • ' =-__(1 6."a. 1.tb-)..*InatitY1-2._■N) * (2 boata ) • — 1= 0 a\sr-5 • :;.° 1-4-\ L • p c • .______ ..._ ,'i 2 1/ 0 • i c 2 ,, Co,c)ocl.•:K.x — c, I -\2.L.: • . .. b., P. Lf.. u0 /N 1 0 0,1 .= 1 i • 1 , ; . . ..P . , . \) ...—_.- lk,(-, ci-s-- ?Li7:- . • . . . (1) (F., - CU •,-.1 .,‘; C__ T ,„...- q. 4=1 (417_, ''Ir". z '''''\f. 20' ,d 0 .to . = c4 ;•c•,-, 4, 'L,.;''' = J • • ,„,• ----: 30°\ 4 (\II\(4) = g31 #1r- - . • 30---,t14_ x0 -2_i° e._ [z" 0,c , . -7---- Ct\Yi • - ' '''''N -...,,...•40 -#:- :- ov.,.. . • 6- 61qe ( . . By: Rif=iyxf r1 In,A,V • DAT E'.'")..' 0 5 NI 0 EN 0° - D JOB No . , • . . PROJECT: • i ,,--- RE: El 0 Ld - • C :0 .., • F . . i 0 . . . , . - 0 . • _.., BLim .*IrN , O z W 0 . z T-7--C ,_ 81-too ihtsj 0 • • ,•=• -3. ,-1/..) . . < 0 — z u .._ 5c r\ N )u4 ., To i-f:' 051c,_ tfri<4030; > -C- . C) 0 . • . .• - • E b . . It Z w 0 6 0 = LC.,)Pti M awit. (4(y--) 7: 000 * V -1---7: C =,_- 8.600. .itif,i' i 41)04 .., .I . . a) 1—• ,, ai c- -, _.,.1 ,.,..,• .: • 1 • . 'I Po LT • RV 1 --,--> r . • . • . . • • ,. . g- 0 C-:2- . Harper COMMUNICATION RECORD HP Houf Peterson Righellis Inc. Top FROM 0 MEMO TO FILE 0 ENGINEERS+PLANNERS LANC,,,,APE ARCHITSCT,OSURVEVC,P.: PHONE No• PHONE CALL:0 MEETING:0 in A 75 —41 V,, ",,C .70,„ H M 1 I '1■• ' 7.9 0 .... 1 i . 11,1 al VI 37 IT -; . _ ...c. 0 0 0 0 0 Q ___ 0 0 O 1 . r•*--N, (.,.). ---- a d . 01 i‘ -....-4 . P..) 01 ri 1 . ,--„, ...) . —i c......-c. I-) . 03 , c---F-1 i . 20) --r.„ 1 ........ . 0. . a . . —1 , 0 c o • Z 9 0. - -.0 0 . . narper COMMUNICATION RECORD HP Houf Peterson . . Rikhellis Inc. To El FROM MEMO To FILE 0 Ei,0,10Fliti.PLAPINER3 LAND::CAPE +.1fi■TECTS.SUC,I/ YORC PHONE NO.: PHONE CALL:El MEETING:El . XI -0 ID • ITI M < 2- 7,9"1 ....... ) 77..." ‘..R . ,...,. ....... cf. CA _.4Fliti 0 . , c.........{ C - ; -P- F -1 0 • 5\ P 52-) -c- • C - • C. 'N . ' . 0 . r . . . I) z CP C.ss e co . . . . I 0 .....z) '0 • • ,:5- r COMPANY PROJECT t t Wow . , ,. ` SOF'IWARE FOR WOOD DESIGN . June 8,2009 16:27 Hand Rail2 Design Check Calculation Sheet Sizer'8.0 LOADS: Load Type Distributi6n Past- Location [ftj . Magnitude Unit ' tern ._,Start End Start. End LIVE Live Full UDL • '50.,0 plf :; „; • MAXIMUM REACTIONS (lbs)and BEARING LENGTHS'(in).: ' . - ` ; • .. }=b�'{^:`' ...5. - x iY.ce. :Ij>.a"a Gt�s�,;i.':,'t. ,.1i :,��y,:.,: u..s�.. ...:''�>_ .••tv ,y'.:. : - c* ..,2^:',t� ',::�s ','i:4Y'.c y F _ 3.e., 10' 51 Dead Live 125 125 Total 129 129 Bearing: . Load Comb ' ' #2 #2 Length 0.50* - 0.50* Cb 1.00 . ' 1.00 *Min. bearing length for beams is 1/2"forexterior supports Lumber-soft;Hem-Fir,No.2,2x6" Self-weight;of 1.7 plf Included'in loads; Lateral support:'top=at supports,bottom=at supports; Analysis vs.Allowable Stress (psi)and-Deflection (in)using NO 2005: ' Criterion Analysis Value. Design. , ''Value Analysis/Design:- .Shear fv = 19 ' Fir' = ' 150' ' fv/Fv' ',-0:13 Bending(+) fb = 256 Fb' = 1048 , fb/Fb'..= 0.-24 Dead Defl'n 0.00 = <L/999 r , Live Defl'n 0.03 = <L/999 0..17 = L/360 0.16 . Total Defl'n 0.03 = <L/999 0.25. = L/240 0.11 ADDITIONAL DATA: . FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 150 1.00 1.00 1.00 - - - - 1.00 1.00 1.00. . 2 Fb'+ 850 1.00 1.00 1.00 0.949 1:300 1.00 1.00 1.00 1.00 - 2 Fcp' 405 - 1.00 1.00 - - - - 1.00 1.00 - - ' • E' 1.3 million 1.00 1.00 - - - - 1.00 1.00 - 2_ Emin' 0.47 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = L, V = 129, V design = 106 lbs - Bending(+) : LC #2 = L, M = 162 lbs-ft Deflection: LC #2 = L EI = 27e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection,. • (D=dead L=live S=snow W=wind I=impact C=construction Lc=concentrated) -- (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: . 1.Please verify that the default deflection limits are appropriate for your application. ' 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1.' . • . 61,\‘``A (49 G COMPANY PROJECT �ix1 WoodWorks® SOFTWARE FOX WOOD DESIGN June 8,2009 16:27 Hand Rail Design Check Calculation Sheet Sizer 8.0 LOADS: Load Type Distribution Pat- Location Eft] Magnitude Unit tern Start End- . Start End LIVE Live Point . 2.50 - 200' lbs MAXIMUM REACTIONS (lbs) and BEARING.LENGTHS(in) : • ,r 1 54 Dead Live 100 100 Total 104 104 Bearing: - Load Comb #2 #2 Length 0.50* 0.50* Cb 1.00 1.00 *Min.bearing length for beams is 1/2"for exterior supports Lumber-soft, Hem-Fir, No.2,2x6" :Self-weight of 1.7 plf included in loads; Lateral supporti'top=at supports,bottom=it supports; Analysis vs.Allowable Stress (psi)and Deflection•(in) using NO 2005: Criterion Analysis Value : '. Design: Value Analysis/Design, Shear fv = 19 Fv' '= 150 fv/Fv' = 0.13 Bending(+) fb = 405 Fb' = 1048 fb/Fb' = 0.3.9 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.20 Total Defl'n 0.03 = <L/999 0.25 = L/240 0.14 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 150 1.00 1:00 1.00 - - - 1.00 1.00 1.00 2 Fb'.+ 850 1.00 1.00 1.00 0.949 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 405 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.3 million 1.00 1.00 - - - 1.00 1.00 - 2 Emin' 0.47 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = L, V = 104, V design = 103 lbs Bending(+) : LC #2 = L, M = 255 lbs-ft Deflection: LC #2 = L EI = 27e06 lb-in2, - Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction Lc=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members•shall be laterally supported according to the provisions of NDS Clause 8.- -(1 (it • •WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B-Front Load Woodworks®Sizer 7.1 June 22,2010 14:13:51 Concept Mode : Reactions at Base of Structure View Roof: 25 ' 1111 ill 1050 ,. 1280 L_=- :_ : :_;: ::1280 L.. - . . __. . _..---....-- '49'-6'•J ._.' .442 D ;442 D 41 .•s UL.f .. _ - I. - 40-V - - _- - -- 12272089 L_-1601 L _ --- _ • ..: _ .- 4 -b' Z 10481539 D';:1074 D �u.__ .. _....--__. .. _ _. . ..._ .. . __ ._ .> -O s.F0 eV;a . . tt '14081-. -1- ' ' :: 1232 L :. �..• ou 514 D ": 556 D ' -z . a..• 1080 L - 6401_-:::::: - r 409 D ..: -' . - ..1_ _ 2u4D.. _: _ 792 L aRn i -: 99 DD.: . = ._ fps-P ,i ._ . 1522 L. :. . - _ E -a 1L.. -- 99 D _ _ _ - - E�3�. 553D .: _ - - . _ ,.°. : 98D , .. . .4-.0 . �� �..• 225 - _ - 75 L 73 D. 7a n- _ u=p :: 2192 L° ° :- 1311 D. 6-t ui3 : 20L.• :._.._ - .:_ . :. t-b 109 58 D, 021 L _ v.. BB BBB..CCC CCCICCCCCCCCccCCCCCC?cc... ... .. D -..:.°. .: 1 `' GCDGDE3I�DD�iEiDD�e�IDC k[?DI 7DL�C3CD5L3D'CEEFEFEc°EtEEEiEEEE=£EcEEEfEE ? V` 2' 4' 6' 8` 1 u`12'14'16'18'20`22`24'26:28'30'32 34'36'38'47 42'44'46'48'50'52'54'56'58'60"62'&4.66'68'70'72'.74'76' "2'3'425678' 1(1 1;1:1'1.'1(1'1Q''t2(22:?_:2%2F2(22=243(332:3'33:3'3{3=4{4'4:4:4t4?er4'434{5'5:5:5:5i'5!5(5'5516(6.:6'.616:6(6".6:£it7(77:7:?-7:?f77-6, 3LLL • '11D • • FC)0 T \hJ I\ L,pcNi ou T''''' —V3 e.0,NJT LCDerr:::) . • WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B-Rear Load WoodWorks®Sizer 7.1 June 22,2010 14:14:21 . Concept Mode : Reactions at Base of Structure View Floor 3 : 17 ' 1050 :'1280 L ::: :: 1280 L .- -442 D X442 D 4 ._v v5. u" 3/ -5296 L 376 L ` `°1 4328 D 4101 D;_rst- 765 '-. 1036 E;._ Z .. 277 D' _ :. 483 D.-, _ zn._o.. a9 Di 640 L =_ Ib: 208 774 L �. . fa ;min 99 DD • 1020 L; .. 99D r : }r •. 368 D', . 1 ru= 225 98 D f 75 L i _ . a = 73 D 74 n - = _. :_ �w 2186 L �u 1298 D " 71 o --' cy� � ' -- _ �-' -_ _ _ OJ 94 L_ 084L . - ` �s ::94 Lti. /3306 L 4 D_ 4 i . 062 L : : .___ .. : : • . :. i u.. 73 D17E2515 D.5 D 5647 D-_ _-• u- BB1B.B BC.CCC CCC CtCCC CC CGCCC C CC CC'CC'CD Do D D DD DiODD CD DDDD D D DD CD1DD DE.E E E'E EE EIEEElEE E.E EEEEEE#EEEEZ Cr 2' 4' 6' 8" 10'12'14'16'18'20'22'24'26'28'30'32'34'36'38'40'42'44'46'48'50'4.2'54'56'58'60'6'2'64'66'68'70'72'74'76, E t 1:1:1,1 1(1.1 i 142(22:2:2,22i2212i3(3.3:3:3z3?3:3.3L3.-f{44;:4,4-',4(4"4<"4f5(5 5:5:f,5;5{5=5.£5 6(6 h;6 6,•6?6i6'6£6717•7:7:7,7.'7E77'-5' • • • • • • IN .410uT . ►_ Lo • • Plain Concrete Isolated Square Footing Design: Fl f� 2500 psi Concrete strength .y.„ .60,Q 0 psi Reinforcing steel strength E5 =t 29000',ksi Steel modulus of elasticity 'Yconc: 150 pcf Concrete density ryso ;` 100-pcf. Soil density (fail:#.1.0'9:p4: Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldi = 5647 lb Pd1:= Totaldi Totalll,,1'.,=`7062 lb P11 := Totalll Ptl Pdl+P11 Pt1= 12709•lb Footing Dimensions Footing thickness 42•,in Footing width ^A:= Width2 Footing Area gnet gall —tf'1'conc gnet= 1350•psf Ptl Areqd gnet A red = q 9.414.ft 2 < A= 12.25 ft2 GOOD Widthreqd:= JAregd Widthregd= 3.07•ft < Width =3.50 ft GOOD Ultimate Loads Pdl+ tf'A'lconc Pu:= 1.4•Pd1+ 1.7•P11 P„=22.48-kips Pu chi — qu= 1.84•ksf A Beam Shear beOf.:= 5.5•in (4x4 post) d := tf-—2•in •13. := 0.85 b := Width b =42•in Vn:= (1)-—4-4fe-psi-b-d Vn= 23.8•kips 3 (b bcol •b Vu qu Vu= 9.77•kips < Vn=23.8-kips GOOD. 2 Two-Way Shear Short side column width bL Long side column width bo:= 2-(bs + d) + 2-(13L+ d) bo=62.in (1)-(-4 + —8 -.jfc-psi•b•d Vn=71.4-kips 3 3.Pc " := 2.66-KFsi-b•d V „ =47.48-kips I := qufb 2—kbeoi+ d)2] Vu= 19.42-kips < V ax =47.48•kips GOOD Flexure [(b 1:1,11(1 2 M u .b)u:— q Mu=7.43-ft-kips ,vt:= 0.65 b•d 2 1:— 6 3 S=0.405-ft Ft:= 5jJ Ft= 162.5-psi M ft:= ft= 127:36-psi< Ft= 162.5-psi GOOD Use a 3'-6"x 3'-6"x 12" plain concrete footing E u1/4. • Plain Concrete Isolated Square Footing Design: F2 f�,=`•2500'psi Concrete strength 60000.'�,psi Reinforcing steel strength • 7._ ., Es:-;`29000"ksi Steel modulus of elasticity 1 conic, 150 pcf Concrete density Ysoi1-= 100?pcf Soil density ga11:==1500 psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldp:=:410140 Pd1:= Totaldi Totalll:=_;53;76 lb P11:= Totalll Ptl Pd1+ P11 Ptl= 9477•lb Footing Dimensions tf. = 10 in Footing thickness Width 36 in Footing width A:= Width2 Footing Area net gall —tf*Iconc net= 1375•psf Ptl Areqd (net Areqd = 6.892 ft2 < A= 9 ft 2 GOOD Widthreqd Areqd Widthreqd =2.63•ft < Width = 3.00 ft GOOD Ultimate Loads '= Pdl+ tfA'"Yconc Pu:= 1.4•Pd1+ 1.7 P11 p„= 16.46-kips Pu qu:= qu= 1.83•ksf Beam Shear bcoi (4x4 post) d := tf— 2.in (I) := 0.85 b := Width b = 36•in V,:= (O.-4•4T-c•Tsi•b•d V = 16.32.kips 3 V := qu.(b 2 bcolj.b V = 6.97.kips < V,= 16.32 kips GOOD Two-Way Shear Short side column width 5.5•in Long side column width b,:= 2-(bs + + 2.(bL+ b„= 54.in := 1.0 4).(1 + —8 flosi.b.d V,=48.96•kips 3 343c Vnina, := 4:1)•2.66.F.ciTsi•b•d V = 32.56-kips nmax 2 Ny41,:= qufb —0,01+ (021 yu= 14.14•kips < V a„ = 32.56.kips GOOD Flexure mu qu b — bc01)2] 2 2 (1) =4.43-ft.kips 2 = 0.65 b•d2 3 S 6 S=0.222.ft Ft:= 5.(1). F1= 162.5-psi M ft:= ft= 138.42-psi< Ft= 162.5.psi GOOD Use a 3'-0"x 3'-0"x 10" plain concrete footing I Plain Concrete Isolated Square`Footing Design: F2 f�;='ZSOO-psi Concrete strength f 60000 psi Reinforcing steel strength Es;:= 29.000•::ksi Steel modulus of elasticity 'Yconc.;;-::1 0.pcf Concrete density Ysoil_.-':100 pcf Soil density 9a11 .° .150020g= Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldi = 2515-lb Pd1:= Totaldi Totahi:_=.':3606 Ib Pll := Total11 Pt1= Pdl+ P11 Pt1=6121.1b Footing Dimensions tf`:=,1`Osin Footing thickness W dth -;'30 in Footing width A:= Width2 Footing Area clnet:= gall —tf"^Yconc gnet= 1375•psf Ptl Areqd gnet A red= q 4.452 ft2 < A= 6.25 ft2 GOOD Widthregd Areqd Widthregd = 2.11-ft < Width = 2.50ft GOOD Ultimate Loads = Pdl+ tf"A"`Yconc P11:= 1.4 Pdl+ 1.7•P11 Pu= 10.74.kips Pu qu:= A q11= 1.72•ksf Ce'74'7- Beam Shear t,&•:il:= (4x4 post) d := tf— 2.in (I) := 0.85 b := Width b = 30-in V,:= (1:1-—4 qf,•psi-b•d V,= 13.6•kips 3 (13 — b,01) := -b V,=4.39•kips < V,= 13,6•kips GOOD 2 Two-Way Shear Short side column width OiP Long side column width b,:= 2.(bs + d) + 2.(bL+ d) b,= 54•in := 1.0 4 8 + p •b•d V,= 40.8•kips 2.66-FFsi-b d Vnmax=27.13•kips y.4.0 qufb 2 — (b,01+ d)2] V,= 8.57•kips < V a„ =27.13•kips GOOD Flexure (13 — b 1\ (1 M M:=u clu- Mu.=2.24-ft-kips _A 2 j 2 A:= 0.65 13-d 2 3 6 S =0.185-ft • • Ft:= 5-0-1/fc•psi Ft= 162.5•psi Mu ft s ft= 83.98-psi < Ft= 162.5•psi GOOD 'Use a 2-6"x 2-6" x 10" plain concrete footing C7?) BY DATE N\\..1,C...". DATE Joe No., OF C K.) 0C( „,..- C, , . , : i i 1 ! I ei=adsr4.” ,•• ; . , , , - . ., ; , : ; ; •, , , ; ; • , . i • i i , , ; • , , , : i ; i f ' i , : I : PROJECT: . , . _• RE: t..." •.• .. ... ; , • , . i 0 0 _ ..e-7-.... ___. i •, [, w i . I it q . ' . _I 4,— '1 1- —7— ri---T'T ---7; :— 1.... i 1,- i 7■.14 1 1, F: , . i V ' i. 1 . : . . ' 11 • ' . ' , ir, . ; , : ■ . -: i 1 0 2 • i i ; . , , 1. • I ,_ _! , i .4 I I— 0 \____ 71-S— 1-,/$ I,--- "VS • - -1 . : . . , . 0 _I CC < ; . , : • . f ; • 4 .• . . (..) Z 'i- . . . ,- ' ■ • ' ; : - . -t , 1, • - .,_ . ' W 0 2 • --- e*wcy.._ Ovefini-oin3 : , . . . . . z . . . .. .. , . ., P4...41 _''. ..o.s 0.0 --=; 1-13c■i a, \ -. • , • _ . . i /V\(Z,. .,`"'(0..,4_\So i$,..S.,1 v,(5)C1..53...9.)ir. a,,.4s(t.) ,,i- i-nt(4.c).-,>4+-_. s .5bN )i- --.) _ . 0-7* . • . , • 7,‘ , '\ (I) (21.15 CifS)(3) 1.--?‘,',45-LII}.1_4-- -....#.1-3)C.4k., J,Az . -T3._ .,.. . ,.. - 2 i • , . . o , U , , : • . ._ ,...„. .Ps.,,- ,..., , — 1 Lici • -,..,, s ,,, 0\4-, , .. . , . ,, ... , I ..?,°'"" •'" : : .f- i _....'..., 1ia, i i • . , : , • ; , , . • . ..... i Oct ci ' I : • - , ? i u_ z • 1.. ,.... 4-- . 1 ■ . . . , . 1 . :.......... ' 4 li 111,,.t• e; -,-.,,-.-._.- f•,-,-,-I I;-?)- --•' ', ''r- ' :'- _:. • , . . . . , , , . • ., . . .,,.. . cl_, -- ;, -,,:___: ;1 -;_--,-.71, • f --! / -:ri i:I . .,,. ;,..'N . ' . ' . I 14 •..-.,0\c„,,_ - ,-- , , , 0,1 , • , ,i. 3 1-(15-2c-) ' '31. --.5- -",,D.ti . ' '. ,...3' )C. . , . • , : . , ; , ; , ,, , , • , . . , . . . . , . , . . • .: . ..„ .. . _ , • , I ! ■, . ■ ' . . - • 1 . 1 . . . . . . . , • , . , ! ' - c 1 4 1 ** ..> . . . • i . . . . . . . • , , , ..... ... _. __.. . . _ . (1.) •,-, ..-, ., . . . . . ,.• _.. .. , . . =•.i'''S ,- -,.' . . : . , . . . ■ , .:,.• ' - , . • : - - i : . . ■ . P1.1 ,•,, ..... z _, . ■ . _ . . i •. .. . • . .- ' . . . . • . . . ... . .. _. . • ■ , ' • ... , . . . • . .• E . . . . L ._:- : , , • , . . ... ......_ . • . . . . • ' . i ' . • . , . , • : . . . • • • .. . , ... . . . . . . • ■ : , , . • , . . . , . . . . . .. . . . . • t : , , . • : . f I / . : . ... _ I i . . - • - • •• . •-- • - - - . . , . I . . -- - • , . = = I I , 7 ■ $ . . $ : -... 6 r • • . %.!Bentteg Harper Houf Peterson Righellis Inc. Current Date:6/22/2010 10:48 AM Units system: English File name: O:\HHPR Projects\CEN-Centex Homes(309)\CEN-Plans\CEN-090 Summer Creek Townhomes\calcs\Unit B\FDN\Front Load.etz\ M33=81.13[Kip*ft] .- '$..; ,. R M33=-23.24[Kip*ft] A X • • • • • gir" tit Harper Houf Peterson Righellis Inc. Current Date:6/22/2010 10:49 AM Units system: English File name: O:\HHPR Projects\CEN-Centex Homes(309)\CEN-Plans\CEN-090 Summer Creek Townhomes\calcs\Unit B\FDN\Front Load 2.etz\ • .:M33=48.59[Kip*ft] 5.k , S ,- �r' ;.' � '��''-.r-;%"may y y•��'-,',.i- t ° f24 p CCY g 4„ P- f . 0i„m ,f`'J ? [ -. JiAge M33=-54.65[Kip-ft] • (6- A \11,. BY: )s,lic DATE; """"30 tc, " o 0 JOB NO: (et,06,0cto PROJECT: RE: V•fbrAk- koa-a, lic-eth-1-.4 ' . , . . , x L).f. IV ; o w 1 - --4,4-- - - - 0 2 ._kc.)‘ ---rt Li 4.-3 al.!...V17.a. , 6 - 0 z , . 0 • z IVArtvr, : = Urxi4 11N. --) ---_ ,D::-_ ;:?e:Hf,-c. , 1-= , 0 JS. u . • 2 01.1\kr 1-.- ,0,•;C\0 c,.. r..}. (. S\,.:01 i ) ; - •- •• - ' - • . •••••" ; ,....,..1.,•5 3....0-. 1-2e a ... _... ..17.f..* Cs : e., (4;1. ..Q...c,,,_,.. ,N5...-_,.- o.i.ito 041- .? _`3 5 O• -- •ji • --,' : ;-,: (36 : u_• z , a, .0,,1,4 ‘to voi# ) 0,_57k$.006'iC4Q1TH\,..fa= 3PI 1 : '7:- 1 57'• .}-:- *4;!'S ..,c'.,t 2f.l_ 34 44.. L 4:30 ------::- -4--41-- -te-,- -;F---- .-114S-=.74--X,,&1-b-10 - - 1--:-------C4.'-' A--4e41, 4)*) 0-rda5.7) 1(L)461Y„i4: ',4N2,---lb,r,A4;,_47_2;.,,A41■-):. , , \Lit_ 7<a_.4i.- 0 Mr, :::.,- _:C),,yo(_440,f5)@;=-0;.0dP-)7(iil;-- -,D.p, --___Iti:_)_ •-:-.---.:-_ -,,,:1- 0,1131•4+ (t OkL, Try\ -1;v ST e toti -- - •4-4'j-.=--- i.\....;-a-N%_4.12.4- ! : _ ', • ' _ - •--(A-L--: (\ -.2„,9_0_00Lodcf..).tto09,0Y,12 -:::- t.. i.$ 12. 1/2C _— , E 0A QAQ \1rp . 4711 ) .-. SA )5, 3- .4 9: 0 ,.; . :t 0 .t'41 .:f-: • --, , e ._t., a., ',:'.,:t._,' - - - -a;-4.-- (--01-11.:.017-1)67---3-10---,5_C3.4-fit_ICNi":)_• _r-t:__.:()..,(4,(4,.".".4-,.IN . 440,-!--CICKGrA'757X-‘0-iOr.x.))(t_SI-r..:.9 li,(4(? _14:1 ri. 5 ..k1-.-N4-1-• j ,.: . ;57),‘„L:11:13--'73:''':)1-=_C''qrC 7.4-' - --''' Qt‘t.-- ' '•" , „ -, , : - • : ...„ ..i . ,- . , • - 4 , , 4 ' - ; • , ___. , 4 4 ' - • ' - 1 .: BY: • Jos No.. . < , . . . , _ .. -- . , ..,._. .... . ,.. _ _. . , . - ... .- .. •. : PROJECT: ,. ' . - . ' . .. : • _ • ' , __• .. . -,. . , . . . .- . . - . RE: - . 1.. 4% -:,C: "L'R6!i Load •El 0 _ . . . ,.. . ..„.... .... ,.,... .... . .: ...,. . H 1.. ... .. __.' 0.• - . ; : .. - - . 6----4-:•,-5.1.40•Yr. - z fl . • ' • - 0 ' F- . . -- • -2.060 •' - a . • .. . . . 1. . . '' 0 - . . . ‘ , . J • — : : - ,le . „ •,.., . • • a _, o L., Lu 0 1 Lt u_ z - - - . Mor. T--- .S4...SZ .Y4ck, . - :r. )• • ' ,, _--;01-0%.-. ),-... E1:104- ab;‘.1.-)--r-- 3(..-LL t-q9 • . - 2 2 , u - • ikcco\:= --tb1 -x a1---s 1-'i- --:..:-:-, - - mi --: --.(4.-..._5;:t4i--(1 ) ._. 9. -HI' -1_= e = . - fa- r— -- --- EV ! . 4,,,,,j,,(, = . a ,, .(Q,m _, ..v.3„L .. ..4.... ..c...(q.. i .6,.r.o. : , 0. 7---( ) .• -,g-; ( -)-2,- < : & .,..„,, ;(a'VI -...• 1.:11. -'--.--- :(t2' 4 )(6::t-.. ) -cA(trc.,) ' • 211.?_;°)-7-- - ' . . , ._ . . . •., • • _ - • . A ! •e. • • . . . 0 ,...i • s :—, gl.■ = ,:::. ci) • Q) ----1! .,— --:. , . . . . . . . ' . .• • • – • _, - - -- . . . . . . . . • - . ,.. . .. . . . . . . . . . . : ...... —, . ' (6.7.-c\r3' - • " . _ . .. n,!Benttey, Harper Houf Peterson Righellis Inc. Current Date:6/22/2010 10:57 AM Units system: English File name:O:\HHPR Projects\CEN-Centex Homes(309)\CEN-Plans\CEN-090 Summer Creek Townhomes\calcs\Unit C\FDN\Rear Load 2.etz\ • • ,..1,M33=36,82[Kip*ft] M33=-5022[Kiplt) d X • g_ v\d„, ACl 318-05 Appendix D 1.125" Diameter Bar Capacity at Standard Stem Wall Concrete Breakout Strength Stem Wall Capacity when govern by 3 edges Foundation Capacity Givens • Givens fc= 3000 psi fc= 3000 psi h'ef= 17.00 inches hef= `„ 12 00:: inches (into the Foundation)' "},..;,0., inches Note: hef above is the the embedment into only the Stem = ?�� �8�0.Oa'�� ` the foundation and does not consider stem wall embedment Fnd Width = •.36.00 inches cm;n = 2.25 inches cmin = 18.00 inches Wc,N= 1.00 cast-in-place anchor Wc,N= 1.00 cast-in-place anchor k= 24 cast-in-place anchor k= 24 cast-in-place anchor = 0.75 strength reduction factor _ 0.75 strength reduction factor Calculations Calculations AND= 408 in AN = 1296 in AND= 2601 in AND= 1296 in` Nb= 92,139 pounds Nb= 55,121 pounds Wed,N= 0.7265 Wed,N= 1.00 Ncb= 10,500 pounds NDb= 55,121 pounds (ONeb= 7,875 pounds Nth= 41,341 pounds Combined Capacity of Stem Wall and Foundation oeb= 49,216 0.750Db= 36,912 • • • Concrete Side Face Blow Out Givens Abrg = 2.75 in` fc= 3000 psi cm;;. = 18.00 inches = 0.75 strength reduction factor Calculations Nsb= 261,589 pounds 4Nsb= 196,192 pounds Concrete Pullout Strength Givens Abr9 = 2.75 in fc= 3000 psi = 0.75 strength reduction factor • Calculations Np= 66,000 pounds 4N = 49,500 pounds Steel Yield Strength Givens ft= 58,000 psi A= 0.763 in2 = 0.80 strength reduction factor Calculations NS= 44,254 pounds (I)Ns= 35,403 pounds < 36,912 'Ductiiity Met-: 5gFi Holdown Check Holdown: HD19 Holdown Capacity= 16,380 pounds 1.6* Capacity= 26,208 pounds 26,208 < 35,403 34o06464heeks' ACI 318-05 Appendix D • 1.0" Diameter Bar Capacity at Portal Frame • Concrete Breakout Strength Stem Wall Capacity when govern by 3 edges Foundation Capacity Givens Givens fc= 3000 psi fc = 3000 psi h'ef= 3.50 inches hef=`' :'1200` ` ; inches (into the Fe Stem = 8 0O ` inches Note: hef above is the the embedment into or cmax = 5.25 inches the foundation and does not consider stem m • Fnd Width = 36.00 inches cmin = 2.25 inches emir, = 18.00 inches Wc,N= 1.00 cast-in-place anchor Wc,N= 1.00 cast-in-place anchor k= 24 cast-in-place anchor k= 24 cast-in-place anchor = 0.75 strength reduction factor = 0.75 strength reduction fact Calculations Calculations ANc= 68 in` AN = 1296 in` ANa = 110.25 in AN„ = 1296 in` • Nb = 8,607 pounds Nb = 55,121 pounds Ned,N= 0.8286 Wed,N= 1.00 Ncb = 4,399 pounds Nth = 55,121 pounds 4Ncb = 3,299 pounds (1)Ncb = 41,341 pounds Combined Capacity of Stem Wall and Foundation olcb= 44,640 0.754Ncb= 33,480 • • V")-- Concrete Side Face Blow Out Givens Abrg = 2.15 in` fc= 3000 psi cmin = 18.00 inches ( = 0.75 strength reduction factor Calculations Nsb = 231,191 pounds • 4)Nsb = 173,393 pounds Concrete Pullout Strength Givens Abrg = 2.15 in` fc = 3000 psi 4) = 0.75 strength reduction,factor Calculations • Np = 51,552 pounds SNP = 38,664 pounds Steel Yield Strength Givens ft= 58,000 psi A= 0.606 in2 (I) = 0.80 strength reduction factor Calculations Ns = 35,148 pounds N = 28,118 pounds < 33,480 Ductilit _lef, ; .:u, ,•`-t V Holdown Check Holdown: HD1114.y„ Holdown Capacity=p ty= pounds 1.6* Capacity= 23,888 pounds 23,888 < 28,118 aHoldovun @hecks40`,µ 13.°) BY' ikkkL, DATE Th013 ,Q,010 CtA\J—(;)cf0 OF PROJECT: . , , .R E' 1. -e..'“\ WWI ;..: TOCA103 _,ffi o E Sc'6.e.,s vP. Boilciiy-.45s ' O• 2 1.. ? aSct U1.4tC ); '300 'PLA: UJCA\) , 0 Bvt.(zIve,t )(.\- s01.-.:.- .,- de) ADL. Sb6r " .. O 4- Q1N 65o 1)C-001005.1AZ)_:'•7 3 -6.p.t_, s _rn _. ). = 100 w PL - 0 w 6 , z : LL : c'6 2 teVe\S X..4-0 tt' c) ..:. lo(k) .‘;• .F fitedr .. (5 )( 0 a ' ' -- • 0 z 1-OA& tb04 :---- ‘9-zi( i- toou.) 0.L.A--, , . , 2 ■no.) Vop v5-00 T.)s = 1S-00PL.P 2 . 0 I'u-r. , i -4- ico co 's- 1-s-plow c. . --,--,i .ls) 1 . . . .. ._ .• : „ 0 a. z Lu e rea r -,i, • u-M, cfi- b..)i Ick‘veNop E 6 O 2 . I- a. DL; a5 C.021:::. -. 00 pi_pr u, LI= koor- zifoki.(150?cf Vii-2_ C6I kz.) = 33 pLp- Sk-rn ' - ( 11-t)((50 W., $) ((X./Lt) LL: (- (2-)C4-0)--7-. a) ,- -- -,, .s3q. r 1,Q*()',A) ,C._. IS4)0,4..? . , • •P' :,J - LA3 .-: LL • :› '-'- _;Lt •u Ai C_ =. are ,s p. mn1/4Lr.- ,-.CIoor icxa.s • TL-O° \ 9C i- t00 tA..) w. „ 1,Qo !, Qs..e_ t 7-' , , : . ti_ : as 02.)C2_) .7.- looc.) pt_r-i' v.v..il • • . 40■Ki( opf.,(-)C',,v2:)Cira,):: 3"-,610,- 51-ren-1 ' • ( 6)(050 (A)) r, 100 ud 1-1.- g' Q612:)(1-0CLY4 12.'5D ?t,:c•- -sb.ir • • : ' -n_ : d.,(, ,c.1 -1--Jo°W , • t)) =-. 1, -)rl--. ";--,' 2.7:,1 r.-) .-', us.e 4ati- i IQ . . g-- c:"‘°I