Loading...
Specifications .,_ ,6 N ilk 1-ariammion-irwi 1h III u1 uai i li11•1 l IMILIPIIEVIIIMIMPPI .. 511\Irui ILIA a usrull\1I1ll - iiiIIIIIiiiiiiiIiiiiiiiiiiibliiii111111 and Construction Services Inc. 9025 S.W. Center Street P.O. Box 23784 Tigard, Oregon 97223 Phone: (503) 620 -2086 STRUCTURAL CALCULATIONS FOR: JOHN DUNCAN BUILDING 1599S S.W. 74th TIGARD, OREGON �k ,; � �'.w 1a,13'�p r` 3 6 4' r OREGON . c%1 'j(j( Y17. 1 9?'�.� I FS R. W I EXPIRES: 12 -31 -96 I CLIENT : JOHN DUNCAN PREPARED BY : J.R.N. CHECKED BY : J.R.N. DATE : 2 -29 -96 PAGE 1 OF 20 - Fs 1 b 1 C(z tTr A t,_.1 I titer P S 1 I NIT> SPE D; ` �° M PN / I M ier- i,�fJ 17"-A G I. o / TAUI VDIhics • c} ( 4/ op) • 1 • I I i � t r f ' , • • I I f I f � r PROJECT J O H N CON GA H SU 1 Lbi N U PREPARED BY J 1 DATE 2.. 21, al 0, I JOB NO. of 00 11 D PAGE NO. 2- OF • v >F O/ c7/4/2 fr -1 .0E/6)N U-// = 9 oAD 2 3 /l am P - s � 23 �.L� Lr TOTAL ■- vrA./0 - 132 9 X3.3 Sire = /4, F, S & itnc-- L. 0 AC I (c/ = 1 /5 C22 2(/32 /2 ". 3 t •Z32. (") 2.75 .(3s7,C..) 99. 2 - /e X3.3 sii)E 729. tx/ = )3Z (23.3) /5 fl ( �3.3) • _ /2'x. t ///,,A K 030 ( /,o) 2.73 V = /^ • (2320.1) Cfi 2e,. • S� I SMI� GdTj S • • • PROJECT JOH bU P3UI1.AbIN PREPARED BY 0 h 1 1 DATE 2 , 2 X1 /0 JOB NO. 150110 PAGE NO. OF 2 4,Lo k K 24 .(0 v v 1oZK C /3z / 001 . Fr. 26' o4 63.33 3(6 9� /3o2 r 4 x S USE : ( 0 2 774Ic 1<�2) ; P L U -- ?...) d lv 1v 1.. 2 V _ 1 3 o f i O A02 Y En� I3 L o c/ J )-2..." /.-y E LO .ALL_ o� '�vf3L C �� -i' &�\2 =- 5 30 / f"--, 0 12 Z" f 'I EL 0 NA 14_. 5 PAc:iA1. G AL:L6 ■.i/J(3L E s I-1 EA.2 = 3 o' /y- . /36,;E , 7 f3Loci«0 • . /_6/e z ., 0, G, - Eioo - = -1--/0 131.6 c./‹./A.i - PROJECT JOHN 1 I6 - 1 #31.111 -b)N ( PREPARED BY L I -.) p.{ DATE s , Z , 9( JOB NO. g501I D PAGE NO. 4 OF Q /APN1 L /,ki � • 389 l / PATTI/ 3Coo - T 1/ 2-40 -.44111114 111114 3c 9 ,360 24 G �l 4 / D s /Gjti/ Suf7 - .0 /AP1- It 1C' Ac 7 i k/ALL. ANO goo Pr GoLLE , k 7l,&/ - 2-00 L, F. • S�15 MlG - ►2 E�cTlo1J _ ( .Loo (30) .75 I.(//xdo - . 76 2) 0.0)(24) 2/7 2 0 1 cl4020 / • (z • . • • PROJECT JON ,...l oW' AN $UI VbI N lit PREPARED BY J t ,� DATE 2. , 2� , p JOB NO. 6 160110 PAGE •NO. F J OF = ° &c. oF: ILyi.uoor0 iv" IL /.�rc AT 5 u 6:- Di APN 2A4 ,'j cF\St 3 - � �1��j NAIL - / 9d iv /lL 36,0 YrT - ALLowr z 21"7( = 344 2 /v vA /-�cT L . U SA GS 1 5 /MP`50N s 7-,2,\P 45 0. TE,t/5 1 bl�l C \F'AG) T 270 ' US 7 -1081 NAILS /NTd 4 x ME_/413E(Z AT / sr - — 7 - N /3 )2_," OAL t N T ZO' c /-1 E c /C '574 E A.02 13 E T 1. & .L,u 4 X L L I�G Er2 NJ 0 1 )` N 1V1 w ALL , U 5-e 3 D YN 1\13o c.r — ALL . 514CA2 255o lac_-7-0AL s�r� �2 3 9 �¢ = /� (/ C-13 0 13 E#NM5 • • PROJECT Jopt H t U 4 -AH Su PREPARED BY 0 1.4 DATE 2 y2 JOB NO. 6 10110 PAGE NO. eV OF • 0E5,'/Q/ Qo F D/AP//r' ►mot_ =rZ o�� �� AT SD LiT // 5) 05 OF 13LOL3, - v 2.t f ` 5; /a5 1( 2.02, x 69' 4.056 q. 55 w «, 0 uo ind.) - f 3 /(p = 68 pL F TOTAL w Na 2-o s)0E - / 7 Lv C;11 SE I SMrG LONO 69 sine W 9 <20) /5 -t () 2.0,9 �o _ (0oZ4 �_ a3 o(r.a� 2.75 (do,Z¢ J Lo&►D = 1p 9 ( 2 U / f (,22--/..) 2 ( v to 0 f ' (2-) Zo (4' (z 20.7 -t• 1302+ "7oZ 4I. <,3 (l. v) 2.75 1 <4 /,i) 50� PROJECT j 0111 1 X71- 1 1.11'LA:A 4 (al PREPARED BY j � , . 1A DATE 2 .2-q 6 9 (o JOB NO. dl So I I D PAGE NO. - 1 OF (}51::=_- 6 d NA / - - Go" -) 2 : r / 1 - 1 9 ,c/o gLOG /c l!-!Cj ALL, GA('Ac ,7 = Zito (fT Ac rvAL cPe ,T 455° = 23 9 c )-10 2 0 r Z u 3 "72 DE=S /c ,u S.°0 - 0) A P N4 f> Gl''1 ,.0.y 2 v 19 wA L L ,ysE 2ov /L. r • LOAD o i Gomel✓ . USE cl 1Z c)-I 020 I%oj2c = 2L� a (2. v Z st J • • PROJECT }, :1 PREPARED BY r? DATE Z , �� c G JOB NO. el r5011 PAGE NO. e OF 2 N� F 01 Apra eACi M AY SovrrN s/ 0 OF /31_19-7 si-tEA Z 13E(--0-/ ' ot2O s rA"2 Si- I - o2c.� 1 14 1 �4� r 3 / j °I D site yr-4- 01 API- 1'2-A�1`\ L. 0 NO l ti t Cs) o N Di A I° N f�,►"t W.v I r� - 22 (/ (v) SE SMIC� - w J (iz *(z 9 ))/5 + ( o ) ( c\ - i - 1Z2-- U)20) J 9Z (ZO 0 Sinn Q.4 ' k sE")smic--- _ Co i.� T/Z O I- ✓ V �/ 4 <. /57.0 / 2 , i 77 /8I /Fr V - • 2e-.9.¢( /375) = 3. �3 K �-7 - oraL 2e) -- /3/ /T PROJECT JO 1 -111 1•2111 .. C -AN 1 1.11Ub1 Nt (m PREPARED BY .`. DATE 2 , ?,c1 , 96, JOB NO. 95011 D PAGE NO. 631' OF SPREAD PRELIMINARY INDUSTRY CONSULTING ENGINEERS Page A FOOTING F 2- . 19.4 req'd < 40.2 k beam shear 4314 S.W. Washouga Ave 1 Christy . 53.5 req'd < 70.6 k punching Portland, OR 97201 02/26/96 DL 10.12 k Dead load (503) 246 -9222 14:56 LL 24.46 k Live load. Mu Width 20.2/ 50.2 @ 40.2% E 0 k Seismic . 0.0033 < {p} 0.0043 < 0.0160 Symmetrical About Each Centerline W 0 k Wind . . Mu Length 22.4/ 55.5 @ 40.5% 0.96 ksf soil Ft'g_W 6 ft Width . 0.0033 < {p} 0.0039 < 0.0160 .. Col L 0.83 ft 6 45 Ft'g_L 6 ft 0.96q Length . I I @ 11.33" Col_W 10 in Column_W q_soil 0.96 ksf / 0.5 ton /ft "2 I I Col_W 0.50 ft I Col L 6 in Column L I I 6.00 ft OA th_OA 10 in Overall depth of footing, d_max 0.000" 30 ft "3 / 1.1 CY width qty 6 unit Number of width bars 7 total /band wdth_bar4 5 number Bar size for short (width) bars 0.31 in "2 -0 bars 0 bars - d 6.6 in /6.00 Effective depth of lengthwise reinforcing - - -- 7 45 @ 12.00 "in 6.00 ft band lgth_gty 6 unit Number of length bars 6 total . Ft'g_L 6.00 ft OA lgth_bar4 5 number Bar size for long (length) bars 0.31 in "2 FOOTING & COLUMN PLAN SETTINGS I fy 60 ksi ultimate strength of rebar, usually 40 or 60 I 5.7 ft Full 5.1 ft Staggered f'c 3 ksi Concrete compressive strength I I SPREAD PRELIMINARY 10USTRY.CONSULTING.ENGINEERS Page 4 FOOTING F / . 9.8 req'd < 34.2 k beam shear 4314 S.W. Washouga Ave 1 Christy . 29.2 req'd < 72.6 k punching Portland, OR 97201 02/26/96 DL 5.59 k Dead load (503) 246 -9222 15:03 LL 13.65 k Live load. Mu Width 7.7/ 34.2 8 22.5% E 0 k Seismic . 0.0033 < {p} 0.0034 < 0.0160 Symmetrical About Each Centerline W 0 k Wind . . Mu_Length 8.8/ 37.7 @ 23.5% 0.77 ksf soil Ft'g_W 5 ft Width !! {p_min} 0.0033 > {p} 0.0031 Col L 0.83 ft 4 45 Ft'g_L 5 ft 0.77q Length . I I @ 14.00" Col_W 10 in Column_W q_soil 0.77 ksf / 0.4 ton /ft "2 I I Col_W 0.50 ft I Col _L 6 in Column L I 1 5.00 ft OA depth_OA 10 in Overall depth of footing, d_max 0.000" 21 ft "3 / 0.8 CY width qty 4 unit Number of width bars 5 total /band wdth_bar4 5 number Bar size for short (width) bars 0.31 in "2 -0 bars 0 bars - d 6.8 in /6.13 Effective depth of lengthwise reinforcing - - -- 5 #5 @ 15.00 "in 5.00 ft band lgth_gty 4 unit Number of length bars 4 total . Ft'g_L 5.00 ft OA lgth_bar4 5 number Bar size for long (length) bars 0.31 in "2 FOOTING & COLUMN PLAN SETTINGS fy 60 ksi ultimate strength of rebar, usually 40 or 60 I I f'c 3 ksi Concrete compressive strength 14.1 ft full width bar I I0 02 -19 -1996 'r J- S C '`' "" Page 1 of 1 16:52:26 v4.41 145012907 1001 TJSPECB NICOLI ENGINEERING, INC. P.O. BOX 23784 TIGARD, OR 97281 USA Phone: 503- 620 -2086 503 - 684 -3636 Name: JIM NICOLI Project Name: JOHN DUNCAN WAREHOUSE Page Title: WEST OFFICE ROOF FRAMING File Name: JD -1 Based on Allowable Stress Design (ASD) UBC building code for custom TJM products Application Roof - Snow Deflection Criteria (MR) Member Use JOIST Load Classification Snow LL Defl TL Defl Member Top Slope(in /ft)... 0.000 Load Duration Factor 1.15 Span 1 L/240 L /180 Roof Slope(in /ft) 0.500 Live Load(psf) 25.0 Floor Decking N/A Dead Load(psf) 15.0 Repetitive Member Use Y 0 Reinforced Overhangs N/A LOAD: Class LDF Begin End Live Load Dead Load Comment 1 Snow(psf) Snow 1.15 0'- 0.00' 5'- 10.00' 43/ 0 Add 2 Snow(psf) Snow 1.15 16'- 8.40' 24'- 0.00' 0/ 43 Add 14" TJI /35C JOIST @ 24.0" o/c " 24'- 0 . 0 0 - S I Z E A N A L Y S I S - A S D IMPORTANT! The analysis presented below is output from software developed by True Joist MacMillan(TJM). TJM warrants the sizing of its products by this software will be accomplished in accordance with TJM product design criteria and code accepted design values. The specific product application, input design loads, and stated dimensions have been provided by the software user. This output has not been reviewed by a TJM Associate. The maximum unbraced length(e) shown are based on the controlling compressive forces on either the top or bottom edges of the member. Lateral bracing needs to be properly attached and positioned to achieve stability. Maximum Design Allowable Control Shear(lb) 1263 1263 < 2444 1949 RT. end Span 1 under Snow Roof loading Reaction(lb) 1263 1263 < 1443 1148 Bearing 2 under Snow Roof loading Moment(ft -ib) 6388 6380 < 8432 1328 MID Span 1 under Snow Roof loading Live Defl.(in) 0.777 < 1.200 L/371 MID Span 1 under Snow Roof loading Total. Defl.(in) 1.165 < 1.600 L/247 MID Span 1 under Snow Roof loading Span 1 Max. Reaction Total(lb) 1223 1263 Live(lb) 862 902 Required Brg. Length(in) 1.75(w) 1.75(W) Max. Unbraced Length(in) 42 Copyright ' °' 1994 by Trus Joist MacMillan, a limited partnership, Boise, Idaho. TJI''' is a registered trademark of Trus Joist MacMillan. TJ- Spec"'" is a trademark of Trus Joist MacMillan. I 02 -26 -1996 7 a — S EJ 4 C - Page 1 of 1 10:09:40 v4.41 145012907 1001 TJSPECB NICOLI ENGINEERING, INC. P.O. BOX 23784 TIGARD, OR 97281 USA Phone: 503- 620 -2086 503 -684 -3636 Name: JIM NICOLI Project Name: JOHN DUNCAN WAREHOUSE Page Title: WEST OFFICE FLOOR FRAMING File Name: JD -3 Based on Allowable Stress Design (ASD) UBC building code for Custom TJH products Application Floor - Com. Deflection Criteria (MR) Member Use JOIST Load Classi fication Floor LL Defl TL Defl Member Top Slope(in /ft)... 0.000 Load Duration Factor 1.00 Span 1 L/480 L/240 Roof Slope(in/ft) 0.000 Live Load(psf) 50.0 _ Floor Decking Dead Load(psf) 15.0 Repetitive Member Use Y Partition Load(psf) 20.0 Reinforced Overhangs N/A 11.875" TJI JOIST @ 24.0" o/c 16'- 0.00' " S I Z E A N A L Y S T S - A S D IMPORTANT! The analysis presented below is output from software developed by True Joist NacMillan(TJM). TJM warrants the sizing of its products by this software will be accomplished in accordance with TJM product design criteria and code accepted design values. The specific product application, input design loads, and stated dimensions have been provided by the software user. This output has not been reviewed by a TJM Associate. The maximum unbraced length(s) shown are based on the controlling compressive forces on either the top or bottom edges of the member. Lateral bracing needs to be properly attached and positioned to achieve stability. Concentrated load requirements for standard non - residential floors have been considered. Maximum Design Allowable Control Shear(lb) 1360 1360 < 1925 142% LT. end Span 1 under Floor loading Reaction(lb) 1360 1360 = 1360 100% Bearing 1 under Floor loading Moment(ft -lb) 5440 5440 < 5996 1109 MID Span 1 under Floor loading Live Defl.(in) 0.342 < 0.400 L/562 MID Span 1 under Floor loading Total Defl.(in) 0.581 < 0.800 L/331 MID Span 1 under Floor loading Span 1 " Max: Reaction Total(lb) 1360 1360 Live(lb) 800 800 Required Brg. Length(in) 2.18(W) 2.18(W) Max. unbraced Length(in) 41 Copyright ` °' 1994 by Trus Joist MacMillan, a limited partnership, Boise, Idaho. is a registered trademark of Trus Joist MacMillan. TJ- Spece' is a trademark of True Joist MacMillan. 12 02 -26 -1996 `r P� 4", TM Page 1 of 1 10:10:08 v4.41 145012907 1001 TJSPECB NICOLI ENGINEERING, INC. P.O. BOX 23784 TIGARD, OR 97281 USA Phone: 503- 620 -2086 503- 684 -3636 Name: JIM NICOLI Project Name: JOHN DUNCAN WAREHOUSE Page Title: SOUTH OFFICE ROOF FRAMING File Name: JD -2 Based on Allowable Stress Design (ASD) UBC building code for Custom TJM products Application Roof - Snow Deflection Criteria (MR) Member Use JOIST Load Classification Snow LL Defl TL Defl Member Top Slope(in /ft)... 0.000 Load Duration Factor 1.15 Span 1 L/360 L/240 Roof Slope(in/ft) 0.000 Live Load(psf) 25.0 - Floor Decking N/A Dead Load(psf) 15.0 Repetitive Member Use Y Reinforced Overhangs N/A LOAD: Class LDF Begin End Live Load Dead Load Comment 1 Snow(psf) Snow 1.15 0'- 0.00" 2'- 8.40" 37/ 0 Add 2 Snow(psf) Snow 1.15 9'- 3.60" 19'- 4.00" 0/ 71 Add 11.875" TJI "RI /35C JOIST @ 24.0" o/c " 19'- 4.00" " S I Z E A N A L Y S I S - A S D IMPORTANT! The analysis presented below is output from software developed by Trues Joist MaoMillan(TJM). TJM warrants the sizing of its products by this software will be accomplished in accordance with TJM product design criteria and code accepted design values. The specific product application, input design loads, and stated dimensions have been provided by the software user. This output has not been reviewed by a TJM Associate. The maximum unbraced length(s) shown are based on the controlling compressive forces on either the top or bottom edges of the member. Lateral bracing needs to be properly attached and positioned to achieve stability. Maximum Design Allowable Control Shear(lb) 1367 1367 < 2214 162% RT. end Span 1 under Snow Roof loading Reaction(lb) 1367 1367 < 1443 106% Bearing 2 under Snow Roof loading Moment(ft -lb) 5050 5050 < 6895 137% MID Span 1 under Snow Roof loading Live Defl.(in) 0.645 > 0.644 L/360 HID Span 1 undet Snow Roof loading Total Defl.(in) 0.891 < 0.967 L/260 MID Span 1 under Snow Roof loading Span 1 Max. Reaction Total(lb) 992 1367 Live(lb) 702 1077 Brg. Length(in) 1.75(W) 1.75(W) Max. Unbraced Length(in) 43 Copyright "' 1994 by Trus Joist MacMillan, a limited partnership, Boise, Idaho. -' is a registered trademark of Trus Joist MacMillan. TJ- Spee is a trademark of Trus Joist MacMillan. 15 • 02 -26 -1996 — S p e c 'T" " Page 1 of 1 10:09:13 v4.41 145012907 1001 TJSPECB NICOLI ENGINEERING, INC. P.O. BOX 23784 TIGARD, OR 97281 USA Phone: 503 -620 -2086 503- 684 -3636 Name: JIM NICOL.I Project Name: JOHN DUNCAN WAREHOUSE Page Title: SOUTH OFFICE FLOOR FRAMING File Name: JD -4 Based on Allowable Stress Design (Asp) Dec building code for Custom TJM products Application Floor - Com. Deflection Criteria (MR) Member Use JOIST Load Classification Floor LL Defl TL Defl Member Top Slope(in/ft)... 0.000 Load Duration Factor 1.00 Span 1 L /480 L/240 Roof Slope(in /ft) 0.000 Live Load(psf) 50.0 Floor Decking G Dead Load(psf) 15.0 Repetitive Member Use Y Partition Load(psf) 20.0 Reinforced Overhangs N/A 11.875" TJI JOIST @ 24.0" o/c 14'- 0.00• S I Z E A N A L Y S I S - A S D IMPORTANT! The analysis presented below is output from software developed by Trus Joist HacMillan(TJM). TJM warrants the sizing of its products by this software will be accomplished in accordance with TJM product design criteria and code accepted design values. The specific product application, input design loads, and stated dimensions have been provided by the software user. This output has not been reviewed by a TJM Associate. The maximum unbraced length(s) shown are based on the controlling compressive forces on either the top or bottom edges of the member. Lateral bracing needs to be properly attached and positioned to achieve stability. Concentrated load requirements for standard non - residential floors have been considered. Maximum Design Allowable Control Shear(lb) 1190 1190 < 1925 162% LT. end Span 1 under Floor loading Reaction(lb) 1190 1190 .< 1255 105% Bearing 1 under Floor loading Moment(ft -lb) 4165 4165 < 5996 144% MID Span 1 under Floor loading Live Defl.(in) 0.209 < 0.350 L/803 MID Span 1 under Floor loading Total Defl.(in) 0.356 < 0.700 L/472 MID Span 1 under Floor loading Span 1 Max. Reaction Total(lb) 1190 1190 Live(lb) 700 700 Required Brg. Length(in) 1.75(W) 1.75(W) Max. Onbraced Length(in) 48 Copyright ' °' 1994 by Trus Joist MacMillan, a limited partnerehip,'Boise, Idaho. TJI' is a registered trademark of True Joist MacMillan. TJ- Spec'' is a trademark of Trus Joist MacMillan. 1. 6 L 0 - LAM 4 4T3 - K - 60 0 TF-f Cif -1Ge.- . 1_SPAN CLIENT: Copyright by Craig T. Christy 1985 . -- .. LOAD FACTORS L = 0 ft INDUSTRY CONSULTING ENGINEERS F_1 1 U DL = 0 lb /ft Press [Alt] m for. menu F_2 - 1 U LL = 0 lb /ft 100 scale factor for deflection F_3_DL 1.4 F. = 1800 ksi Last Revised 10/27/86 F 4 LL 1.7 I = 640.7 in "4 Press [F9] to RECALCULATE L= 0.00 FT ' L= 12.00 FT L= 0.00 FT +4125.00 lb +825.00 lb ' Left Cant Max d UP at A UP at B UP 0.000 L/0 L /1101 L/0 DOWN 0.000 LEFT CANTILEVER P DL F_1 & F_3 P Li, F_2 & F_4 Input X 0 0 0 0 0 0 R 0 0 0 0 0 0 -4125 M 0 0 0 0 0 0 d 0.000 0.000 0.000 0.000 0.000 0.000 SPAN 1 Press [Alt) m for menu L = 12 ft U DL = 0 lb/ft U LL = 0 lb /ft E = 1800 ksi Fixity = 1 I = 640.7 in "4 (1= pinned, 0= fixed) Fixity = 1 (1= pinned, 0= fixed) wl /w2 0 0 F_1 & F_3_DL xl /x2 0 12 Span 1 Max d UP 0.000 w1 /w2 0 0 F_2 & F_4_LL DOWN -0.131 x1 /x2 0 12 Input P DL F_1 6 F_3 Input P LL 4950 F_2 & F_4 Input X 0 1.2 2 3.6 4.8 6 7.2 8.4 9.6 10.8 12 -- Output Range R 4125 4125 -825 -825 -825 -825 -825 -825 -825 -825 -825 -825 M - 4.5E -13 4950 8250 6930 5940 4950 3960 2970 1980 990 0 d 0.000 -0.053 -0.082 -0.120 - 0.131_ -0.129 -0.116 -0.094 -0.066 -0.034 0.000 II USE '3'1 K IS.S (�...0 -LAM 2_41p - 15 LV --L AM -- ScUTN OFF1C WOOD DESIGN TEMPLATE Client Beam ii 17 -Nov 86 ICE does not warrant that the functions contained INPfT for Uniformly Loaded Joists and Beams in this template will meet L -Span 11 ft revised 12/4/86 -" the user's requirements or Trib_w 1 ft (Alt) m Main Menu that the operation of the program DL _ 400 lb /ft "2 )Alt] g Go To will be uninterrupted or LL 500 lb /ft "2 error free. • logic No Spans + / - Mx 1 w 900 lb /ft Sp Logic ( +Mx) 13.61 k -ft + / - My 0 L (max) 11 ft ( -Mx) 0.00 k -ft + / -P 0 Le_ = 1.0 ft My 0.00 k -ft Le_y = 0.0 ft P_comp 0.00 kips L length x = 1 ft unsuported I. Le_x factor I See Table 1 Le = 0 when compression face is fully supported for ex Cv UBC 2504 (c) 8 for ey P_tens 0.00 kips L length y = 1 ft default value Visually graded sawn lumber 0.25 for Le_x Machine stress -rated sawn 0.11 for Ke_x V_max_xx 4.95 kips • lumber for Le_y V_max_yy 0 kips Cv adjustment 0 UBC 2504 (c) 8 * (1 -Cv) Glued - laminated timber 0.10 6 or more lamfor Ke_y Br'g max -4.95 k Load Duration 1 See Table 3 GLU -LAM TIMBER GL BENDING ABOUT X -X AXIS > BENDING ABOUT Y -Y AXIS >- AXIALLY LOADED - -- Bending Fbxx - -> Comp. Perp. > > COMBO SPECIES Tension Comp. Tension Comp. Shear Modulus Bending Comp Perp Shear Shear Modulus Tension Compress outer lam in Tens. in Tens. Face Fare Fvxx Exx Fbyy Fcp yy Fvyy Fvyy Eyy Parallel Parallel 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 24F -V4 DF /DF 2400 1200 450 450 165 1800 1500 385 145 75 1600 1150 1650 GL BENDING ABOUT Y -Y AXIS > AXIALLY LOADED > GL Width No. Lams d /table AREA Sxx Ixx Bending Comp Perp Shear Shear Modulus Tension Compress Modulus 5 1/8 7 10.5 53.8125 94.17187 494.4023 Fbyy Fcp yy Fvyy Fvyy' Eyy Parallel Parallel Syy Iyy 9 10 11 12 13 14 15 16 45.96484 117.7849 1500 385 145 75 1600 1150 1650 1600 Multiple piece lam 1 0 = lam pieces not edge glued GLU_LAM TIMBER CONTINUED Rr'g >3 "+ from end 0 1 indicates yes 24r - DF /DF Bearing width = 5.125 length = 5.5 along the grain GL Width d /table No. Lams Br'g Load max - 4.95 k 5 1/8 10.5 7 Br'g dimensions for Tens., Comp., and Side Face Loadings OK Br'g = 0.176 < 0.450 ksi on tens. (bottom) face at < 3" from end OK Br'g = 0.176 < 0.450 ksi on comp. (top) face at < 3" from end 0 Cv OK Br'g = 0.000 < 0.385 ksi on side at < 3" from end for 5.13" x 5.50" OK fbx = 1.735 < 2.400 L/891 for. d DL = 0.148" from Input Window 0.148 d DL from input 891.4837 L /891 OK -fbx = 0.000 < 1.200 L/713 for d LL = 0.185" from Input Window 0.185 d LL from input 713.1870 L/713 LOAD_FACTOR = 1.000 Le_x = 1.0 Le_y = 0.0 8 Lams >= 6, 0.10 5 *(DL +LL) /1000 *Tri OK fvx = 0.116 < 0.165 V reduced by DL +LL = 0.900 k /ft * d from INPUT (384 *GL_Exx *(1 -C +Mxx /fbx GOVERNS T AND D F $ S AM us" 6 X75 A /// OK for +Mx 0.000 + 0.723 + 0.000 = 0.723 < 1.000 To H 6AJ2 T . c V (( M Ps p''J) No -Mx • No -P 1 (# ( J -U L Ati1 - (iJEST OFF/ WOOD DESIGN TEMPLATE Client Beam 8 20 -Nov 86 ICE does not warrant • that the functions contained INPUT for Uniformly Loaded Joists and Beams in this template will meet L -Span 14 ft revised 12/4/86 the user's requirements or Trib w 1 ft (Alt) m Main Menu that the operation of the program DL 460 lb /ft "2 (Alt] g Go To __ will uninterrupted or LL 575 lb/ft'2 error free. • logic No Spans + / -Mx 1 w 1035 lb /ft Sp Logic ( +Mx) 25.36 k -ft + / - My 0 L (max) 14 ft ( -Mx] 0.00 k -ft .. + / - P 0 Le_x = 1.0 ft My 0.00 k -ft Le_y = 0.0 ft P_comp 0.00 kips L length x = i ft unsuported L Le_x factor 1 See Table 1 Le = 0 when compression face is fully supported for ex Cv UBC 2504 (c) 8 for ey P_tens 0.00 kips L length y = 1 ft default value Visually graded sawn lumber 0.25 for Le_x Machine stress -rated sawn 0.11 for Ke_x V_max_xx 7.25 kips lumber for Ley V_max_yy 0 kips Cv adjustment 0 UBC 2504 (c) E * (1 -Cv) Glued - laminated timber 0.10 6 or more iamfor Ke_y Br'g max -7.245 k Load Duration 1 See Table 3 GLU -LAN TIMBER GL BENDING ABOUT X -X AXIS -. > BENDING ABOUT Y -Y AXIS > AXIALLY LOADED - -- Bending Fhxx - -> Comp. Perp. > > COMBO SPECIES Tension Comp. Tension Comp. Shear Modulus Bending Comp Perp Shear Shear Modulus Tension Compress outer lam in Tens. in Tens. Face Face Fvxx Exx Fbyy Fcp yy Fvyy Fvyy Eyy Parallel Parallel 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 24F -V4 DF /DF 2400 1200 450 450 165 1800 1500 385 145 75 1600 1150 1650 GL BENDING ABOUT Y - Y AXIS > AXIALLY LOADED > GL Width No. Lams d /table AREA Sxx Ixx Bending Comp Perp Shear Shear Modulus Tension Compress Modulus 5 1/8 9 13.5 69.1875 155.6718 1050.785 Fbyy Fcp yy Fvyy Fvyy' Eyy Parallel Parallel Syy I 9 10 11 12 13 14 15 16 59.09765 151.4377 1500 385 145 75 1600 1150 1650 1600 Multiple piece lam 1 0 = lam pieces not edge glued GLU_LAM TIMBER CONTINUED Br'g >3"+ from end 0 1 indicates yes 24F -V4 DF /DF Bearing width = 5.125 length - = 5.5 along the grain GL width d /table No. Lams Br'g Load max -7.245 k 5 1/8 13.5 9 Br'g dimensions for Tens., Comp., and Side Face Loadings OK Br'g = 0.257 < 0.450 ksi on tens. (bottom) face at < 3' from end OK Br'q = 0.257 < 0.450 ksi on comp. (top) face at < 3" from end 0 Cv OK Br'g E 0.000 < 0.385 ksi on side at t 3" from eiid for 5.1.3" x 5.50" OK fbx = 1.955 < 2.361 L/799 for d DL = 0.210" from Input Window 0.210 d DL from input 799.1770 L/799 OK -fbx. = 0.000 < 1.184 L/639 for d LL = 0.263" from Input Window 0 ;263 d LL from input 639.3417 L/639 LOAD_FACTOR = 1,000 Le_x = 1.0 Le_y = 0,0 8 Lams 6, 0,10 5 *(DL +LL) /1000 *Tri OK fvx = 0.132 < 0.165 V reduced by DL +LL = 1.035 k /ft • d from INPUT (384 *GL_Exx *(1 - +Mxx /fbx GOVERNS OK for +Mx 0.000 + 0.825 + 0.000 = 0.825 < 1.000 No -Mx No -P 11 'cxiF LE VvI"- 1 4tiA A-T ScJm4 c t"ice ( u5 e 54HE 4T /3 SPAN) WOOD DESIGN TEMPLATE Client Beam ll 15 -Nov 86 ICE does not warrant that the functions contained INPUT for. Uniformly Loaded .joists and Beams in this template will meet L -Span 21 ft revised 12/4/86 the user's requirements or Trib_w 1 ft (Alt) m Main Menu that the operation of the program DL 285 1b /ft"2 (Alt) 9 Go To will be uninterrupted or LL 475 1b /ft "2 error free. logic No Spans + / -Mx 1 w 760 lb /ft Sp Logic ( +Mx) 41.90 k - + / - My 0 L (max) 21 ft [ - Mx] 0.00 k -ft + / -P 0 Le_x = 1.0 ft My 0.00 k -ft Le_y = 0.0 ft P_comp 0.00 kips L length x = 1 It unsuported L Le_x factor. 1 See Table 1 Le = 0 when compression face is fully supported for ex Cv UBC 2504 (c) 8 for ey P_tens 0.00 kips L length y = 1 ft default value Visually graded sawn lumber 0.25 for Le_x Machine stress -rated sawn 0.11 for Ke_x v_max_xx 7.98 kips lumber for Le_y V max - yy 0 kips Cv adjustment 0 UBC'2504 (c) 8 • (1 -Cv) Glued - laminated timber 0.10 6 or more lamfor Ke_y Br'g max -7.98 k Load Duration 1.15 See Table 3 GLU - LAM TIMBER GL BENDING ABOUT X - X AXIS > BENDING ABOUT Y - Y AXIS > AXIALLY LOADED --- Bending Fbxx - -> Comp. Perp. > > COMBO SPECIES Tension Comp. Tension Comp. Shear Modulus Bending Comp Perp Shear Shear Modulus Tension Compress outer lam in Tens. in Tens. Face Face Fvxx Exx Fbyy Fcp yy Fvyy Fvyy Eyy Parallel Parallel 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 24F -V4 DF /DF 2400 1200 450 450 165 1800 1500 385 145 75 1600 1150 1650 GL BENDING ABOUT Y - Y AXIS > AXIALLY LOADED > GL Width No. Lams d /table AREA Sxx Ixx Bending Comp Perp Shear Shear Modulus Tension Compress Modulus 5 1/8 11 16.5 84.5625 232.5468 1918.511 Fbyy Fcp yy Fvyy Fvyy' Eyy Parallel Parallel Syy Iyy 9 10 11 12 13 14 15 16 • 72.23046 185.0905 1500 385 145 75 1600 1150 1650 1600 Multiple piece lam 1 0 = lam pieces not edge glued GLU ^ LAM TIMBER CONTINUED Br'g >3 "+ from end 0 1 indicates yes 24F -V4 DF /DF Bearing width = 5.125 length = 5.5 along the grain GL Width d /table No. Lams Br'g Load max - 7.98 k 5 1/8 16.5 11 Br'g dimensions for Tens., Comp., and Side Face Loadings OK Br'g = 0.283 < 0.450 ksi on tens. (bottom) face at < 3" from end OK Br'g = 0.283 < 0.450 ksi on comp. (top) face at < 3" from end 0 Cv OK Br'g = 0.000 < 0.385 ksi on side at < 3' from end for 5.13" x 5.50' OK fbx = 2.162 < 2.664 L/698 for d DL = 0.361" from Input Window 0.361 d DL from input 697.8029 L/698 OK -fbx = 0.000 < 1.332 L/419 for d LL = 0.602" from Input Window 0.602 d LL from input 418.6818 L/419 LOAD_FACTOR = 1.150 Le_x = 1.0 Ley = 0.0 il Lams >= 6, 0.10 5 *(DL +LL) /1000 OK fvx = 0.123 < 0.190 V reduced by DL +LL = 0.760 k /ft * d from INPUT (384 *GL_Exx *(1 -C +Mxx /fbx GOVERNS OK for +Mx 0.000 + 0.812 + 0.000 = 0.812 < 1.000 No -Mx No -P I' 2 / T 9 L-a 1z "ig.FA M Kt Safi 4-1 OFF i G c WOOD DESIGN TEMPLATE Client Beam $ 15 -Nov 86 ICE does not warrant • that the functions contained INPUT for Uniformly Loaded Joists and Beams in this template will meet L -Span 18 ft revised 12/4/86 the user's requirements or Trib w 1 ft (Alt] m Main Menu that the operation of the program DL 218 1b /ft "2 (Alt) q Go To will be uninterrupted or. LL 725 Ib /ft "2 error free. • logic No Spans + / -Mx 1 w 943 lb /ft Sp Logic [ +Mx] 38.19 k -ft + / -My 0 L (max) 18 ft [ -Mx] 0.00 k -ft + / -P 0 Le_x = 1.0 .ft My 0.00 k -ft Le_y = 0.0 ft P_comp 0.00 kips I, length x = 1 ft unsuported L Le_x factor 1 See Table 1 Le = 0 when compression face is fully supported for ex Cv UBC 2504 (c) 8 for ey P_tens 0.00 kips L length y = 1 ft default value Visually graded sawn lumber 0.25 for Le_x Machine stress -rated sawn 0.11 for Re_x V_max_xx 8.49 kips lumber for Le_y V_max_yy 0 kips Cv adjustment 0 UBC 2504 (c) E * (1 -Cv) Glued- laminated timber 0.10 6 or more lamfor Ke_y Br'g max -8.487 k Load Duration 1 See Table .3 GLU -LAM TIMBER GL BENDING ABOUT X -X AXIS > BENDING ABOUT Y -Y AXIS > AXIALLY LOADED --- Bending Fbxx - -> Comp. Perp. > > COMBO SPECIES Tension Comp. Tension Comp. Shear Modulus Bending Comp Perp Shear Shear Modulus Tension Compress outer lam in Tens. in Tens. Face Face Fvxx Exx Fbyy Fcp yy Fvyy Fvyy Eyy Parallel Parallel 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 24F -V4 DF /DF 2400 1200 450 450 165 1800 1500 385 145 75 1600 1150 1650 GL BENDING ABOUT Y -Y AXIS > AXIALLY LOADED > GL Width No. Lams d /table AREA Sxx Ixx Bending Comp Perp Shear Shear Modulus Tension Compress Modulus 6 3/4 10 15 101.25 253.125 1898.437 Fbyy Fcp yy Fvyy Fvyy' Eyy Parallel Parallel SYY IYY 9 10 11 12 13 14 15 16 113.9062 384.4335 1500 385 145 75 1600 1150 1650 1600 Multiple piece lam 1 0 = lam pieces not edge glued GLU_LAM TIMBER CONTINUED Br'q >3 "+ from end 0 1 indicates yes 24F -v4 DF /DF Bearing width = 6.75 length = 5.5 along the grain GL Width d /table No. Lams Br'q Load max -8.487 k 6 3/4 15 10 Br'g dimensions for Tens., Comp., and Side Face Loadings OK Br'g = 0.229 < 0.450 - ksi on tens. (bottom) face at < 3" from end OK Br'q = 0.229 < 0.450 ksi on comp. (top) face at < 3" from end 0 Cv OK Br'g = 0.000 < 0.385 ksi on side at < 3" from end for 6.75" x 5.50" OK fbx = 1.811 < 2.341 L/1433 for d DL = 0.151" from Input Window 0.151 d DL from input 1433.485 L/1433 OK -fbx = 0.000 < 1.171 L/431 for d LL = 0.501" from Input Window 0.501 d LL from input 431.0343 L/431 LOAD_FACTOR = 1.000 Le_x = 1.0 Le_y = 0.0 8 Lams >= 6, 0.10 5 *(DL +LL) /1000 *Tri OK fvx = 0.108 < 0.165 V reduced by DL +LL = 0.943 k /ft * d from INPUT (384 *GL_Exx *(1 -C +Mxx /fbx GOVERNS OK for +Mx 0.000 + 0.773 + 0.000 = 0.773 < 1.000 No -Mx . No -P /2 O Ft,00g `R EAM µT Sou r A oFif t Fii WOOD DESIGN TEMPLATE Client Beam $ 15 -Nov 86 ICE does not warrant that the functions contained INPUT for Uniformly Loaded Joists and Beams in this template will. meet L -Span 21 ft revised 12/4/86 the user's requirements or Trib_w 1 ft (A1ti m Main Menu that the operation of the program DL 248 lb /ft'2 (Alt) g Go To will be uninterrupted or LL 825 lb /ft "2 error free. • logic No Spans + / -Mx 1 w 1073 lb /ft Sp Logic ( +Mx1 59.15 k -ft + / - My 0 L (max) 21 ft [-Mx] 0.00 k -ft + / -P 0 Le_x = 1.0 ft My 0.00 k -ft Le_y = 0.0 ft P_comp 0.00 kips L length x = 1 ft unsuported L Le_x factor 1 See Table 1 Le = 0 when compression face is fully supported for ex Cv UBC 2504 (c) 8 for ey P_tens 0.00 kips L length y = 1 ft default value Visually graded sawn lumber 0.25 for Le x Machine stress -rated sawn 0.11 for Ke_x V_max_xx 11.27 kips lumber for Le_y V_max_yy 0 kips Cv adjustment 0 URC 2504 (c) 8 * (1 -Cv) Glued - laminated timber 0.10 6 or more lamfor Ke_y Br'g max - 11.2665 k Load Duration 1 See Table 3 GLU -LAM TIMBER GL BENDING ABOUT X -X AXIS -- > BENDING ABOUT Y -Y AXIS > AXIALLY LOADED - -- Bending Fbxx - -> Comp. Perp. > > COMBO SPECIES Tension Comp. Tension Comp. Shear Modulus Bending Comp Perp Shear Shear Modulus Tension Compress outer lam in Tens. in Tens. Face Face Fvxx Exx Fbyy Fcp yy Fvyy Fvyy Eyy Parallel Parallel 1 2 3 4 5 6 7 8 9 10 11 12 13 14 .15 24F -V4 DF /DF 2400 12.00 450 450 165 1800 1500 385 145 75 1600 1150 1650 GL BENDING ABOUT Y -Y AXIS > AXIALLY LOADED > GL Width No. Lams d /table AREA Sxx Txx Bending Comp Perp Shear Shear Modulus Tension Compress Modulus 6 3/4 12 18 121.5 364.5 3280.5 Fbyy Fcp yy Fvyy Fvyy' Eyy Parallel Parallel Syy Tyy 9 10 11 12 13 14 15 16 136.6875 461.3203 1500 385 145 75 1600 1150 1650 1600 Multiple piece lam 1 0 = lam pieces not edge glued GLU_LAM TIMBER CONTINUED Br'g >3"+ from end 0 1 indicates yes 24F -v4 DF /DF Rearing width = 6.75 length = 5.5 along the grain GL Width d /table No. Lams Rr'g Load max - 11.2665 k 6 3/4 18 12 Br'g dimensions for Tens., Comp., and Side Face Loadings OK Br'g = 0.303 < 0.450 ksi on tens. (bottom) face at < 3" from end OK Br'g = 0.303 < 0.450 ksi on comp. (top) face at < 3" from end 0 Cv OK Br'g = 0.000 < 0.385 ksi on side at < 3" from end for 6.75" x 5.50" OK fhx = 1.947 < 2.294 L/1371 for d DL = 0.184" from input Window 0.184 d DL from input 1371.202 L/1371 OK -fbx = 0.000 < 1.147 L/412 for d LL = 0.611" from Input Window 0.611 d LL from input 412.1918 L/412 LOAD_FACTOR = 1.000 Le_x = 1.0 Le_y = 0.0 k Lams >= 6, 0.10 5*(DL +LL) /1000•Tri OK fvx = 0.119 < 0.165 V reduced by DL +LL = 1.073 k /ft • d from INPUT (384•GL Exx *(1 -C +Mxx /fbx GOVERNS OK for +Mx 0.000 + 0.849 + 0.000 = 0.849 < 1.000 No -Mx No -P G- MAR -26 -1997 09:05 ELECT. DIMENSIONS 95032801619 P.01 - --- -- -- 0000 -- - -- 0000 —, ••--• ....... ..,,., ..,,,,a,,,� Electrical Contractors Portland, Oregon 97227 Commercial & industrial P.O. Box 12146 Lighting Maintenance Portland, Oregon 97212 (503) 282 -7255 FAX 280.1819 1-8($0 ($031 999 -7216 6)e j o(S = &WG ,2 MAR. 26. 1997 JADCO / N. W. AUCTION GALLERY STATE OF OREGON ENERGY CAI.C. ATTENTION; JIM ANDREWS 1-IERE IS THE LIGHTING CALC THAT WAS REQUESTED FOR THE JADCO BUILDING IF YOU HAVE ANY QUESTIONS PLEASE CALL THANKS, LONNY IVERSON MAR -26 -199? 09 :05 ELECT. DIMENSIONS 95032801619 P.02 • : . ' INTERIOR LIG TING . `ti ' Interior . _. .... (a) (b) (a) (d) ( (f) (g) x Lighting Max Lighting '4;::. Power Occu- Floor Power Power Budget pancy Area Allow. Budget a Group • Space Type' Listall _ (ft {W/ft ((c -d) x e) + f ''a'='' floor areas. If area under 1,000 ft2, 0 2.0 0 - ;, Exclude exempt enter area in (c) this row `- areas and areas •, ofatalrways; ' If area between 1,000 and s , t ` : shafts telephone Offic 1,440 1,6 2.000 /--,, ►f r c � ' 6,000 ft enter area in (c) this row ) .. rooms, etc. '" If area over 6 000 ft 6,000 1.2 10,000 •_ enter area in (c) this row r; If area under 2,000 ft f -;: t 0 4.0 a T. "`!• . ' ' ' enter area in (c) this row - ; b ,--z... Pe If area between 2,000 and �� / 2,000 3.0 8,Ooo f • 6,044 ft enter area in (c) this row (�i � , i '," ,, It area over 6,000 ft " 6,0006- 20,000 ... • enter area in (c) this row i E - 2 NA 11 '). I c oat • .. _ /,-- -. •4. -�- 0, :44:- ", 6 C. 9 ti F — 5 : : . :.y Tt A - + F ' ' 1, Total Interior Lighting Power Budget W . Add amounts it column ,ti. ) - 4.;:,1 9 Total( s) -` 2+ Adjusted Sum the Page Tota! s from Form 5c 1 2ki Interior ----- _ - - ` "fit , Li 3, Total lineal feet of track lighting . A, : ;'. 7. • V P ow er ;, • 4. Multiply line 3 by 50.. �` ' !f you have daylightrng or 5. Total Interior Lighting Power. Add line 2 and line 4 - i lumen malnte- s Hance controls, 6 ' Total Control Credit from Worksheet 5a - use Worksheet sa to catcvlate 7. Total Adjusted Lighting Power (W). Subtract line 6 from line 5 . `' * ' the control 6. Does design meet the budget? Enter "Y" if less line otherwise redesign. . line 7 is l than li 1thidesi . ,, credits. - 4 : - te Interior 9. Do all ran- exempt spaces have local lighting controls? Enter "Y" if true, otherwise redesign. i 1 , • Lighting • • Controls 10. Do all local lighting controls control less than 2,000 ft of area? Enter "Y" if true, otherwise 1 .' redesign. : r, ti•: 11. Do all interior display and accent lighting, including plug -In, tract and display case lighting, have separate lighting controls. Enter «Y" if true, otherwise redesign. .;. "` 12. In buildings over 4,000 ft do th luminaires in office spaces have separate automatic controls to shut ' • off the lighting during unoccupied periods? If yes, check the type of control(s) used. Otherwise redesign, 0 Automatic Time Switches .:_. `: ?,.. D Occupancy Sensors • • • . W =':' _ 0 Other ... . • ... _._ .......... .• . 1: r £j 7-i. , .. .. .• .. - .. - _ - • ;,�` Forms 5 -1 ; �:' itiiea, t it , - • MAR -26 -199? 09:06 ELECT. DIMENSIONS 95032801619 P.03 Form 5b t, Page of LIGHTING SCHEDULE = 'Enter the number and type (a) (b) (c) (d) (s) (f) ^ ; p of lamps In the luminaire. See Lamp' Balla &t ' : . Lum. Fixture Tab . Table 5b for iU Description Luminaire 5b •:N2 typical lamp. Description Nn. Description Power °x' codes.- /� /�// the !C r � © © 7� ' t bEnter number and e t +0 . # of ballasts In the / ` f luminaire. For .4 t o a 4 g Ti 2_ 1 WI AG fluorescent and high intensity • discharge lamps, typical ballast abbreviations are: • MAG STD kw magnetic standard Mel III IIIIMIIIIIIIIIMIIIII other ballast — ■ - abbreviations. !IIIIIII MIMI , ■ • III 111 . ■ . . MI . ■ ■ IIIIIIIIIIIIEII III III • ■ 11E1111 I • 6 - Chapter 5 - Artificial Light .... . . ow) MAR-26-1997 09 : 06 ELECT. DIMENSIONS 95032E01619 P . 04 • • :;. - .;, • INTERIOR LIGHTING POWER i ;1, .Enter the quantity (a) (b) (c) (d) (e) (f) for every . s - Lighting non luminaire. Do not Room or Room or Plans Luminaire Quantity of Luminaire Power consider track Sheet No. Designation ID Luminaire? Power (d) x (e) ti lighting on this form. This is , .... 1 _ a :. 1 11. k A accounted for on 'Am MI P 0 - ... Ti - Re aiTi?..6c) m 1 Pl 4 - T i - 6 c& g 1).0a41 e" Pc a 1 68 6 8 Y T 1 -5 N I I" Pi A 4 1O 436 , - ri -.:. - 1 1t#- & ° I ,t3 3 i 4 yi- 0 • lokAc L'i P"Pt C._ 3 8 ?ci- Ti - 6 . ORt e-:_e A ,7,-,:ci [cP '752 7 . 1 . :.. . . • • . .._ _ 1. Page Total. Sum the amounts in column (f) _____ :„. _., Ar • Forms 5-3 0 ...... .5t)PJ %OcS� 1 — I I■IlIli■■III•IUMBI I •EIL /\111AHIN III \I[Ii u' ► \Iui llaeurlu ► \ioe and Construction Services Inc. 9025 S.W. Center Street P.O. Box 23784 Tigard, Oregon 97223 Phone: (503) 620 -2086 ENERGY CALCULATIONS FOR: JOHN DUNCAN BUILDING 1599) 16055 S.W. 74th TIGARD, OREGON 4, CLIENT : JOHN DUNCAN PREPARED BY : J.D.A. CHECKED BY : DATE : 2 -29 -96 PAGE l OF 19' Form 2a SUMMARY Project 1. Project Name of N GA‘H I N,0 u � ,`. L jeAl \ L I t4&1 2. Project Address i k7 Cj 6 5 t , I 14-t S 3. City/Town '# I A P-P 4. Building Area (ft ` 0 5 46,F. Attached Chapter Type I.D. Description Attached Forms and Worksheets Building Envelope Form 3a Prescriptive Path ❑ 3b Component Performance Path Check boxes to indicate the Worksheet 3a Wall U values �. attached forms and worksheets. 3b Roof U-values ,. 3c Floor U- values ❑ 3d Average Thermal Values �. Systems Form 4a Systems ❑ Worksheet 4a Unitary Air Conditioner —Air Cooled ❑ 4b Unitary Air Conditioner —Water Cooled ❑ o� 4c Unitary Heat Pump —Air Cooled ❑ 4d Unitary Heat Pump —Water Cooled ❑ 4e Unitary AC & Heat Pump — Evaporatively Cooled ❑ 4f Packaged Terminal AC— Air-cooled : a 4g Packaged Terminal Heat Pump —Air Cooled ❑ 4h Water Chilling Packages —Water & Air Cooled -- ❑ 4i Boilers— Gas -Fired and Oil -Fired 4j Furnaces & Unit Heaters — Gas -Fired and Oil -Fired ❑ Artificial Light Form 5a Interior Lighting ❑ 5b Lighting Schedule ❑ 5c Interior Lighting Power 5d Exterior Lighting ❑ Worksheet 5a Interior Control Credits ❑ Applicant 5. Name , ( Nrbla t/4 8. Telephone to20'20 (A 6. Company Ni OW ‘-14/91114"6..-40.1R6-7 9. Date , 2. , 7. Signature Other No. of Pages Description of Document Documents Enter all supporting • calculations, test reports and catalog cuts. (193) Forms 2 -1 1 WEST EST O F F I C E Form 3b COMPONENT PERFORMANCE PATH Heated 1. Above -Grade Walls -Code Maximum Uo from Table 3g. Enter here and in cell 3(c) and 4(c) Building 2. Roof /Ceiling -Code Maximum Uo from Table 3g. Enter here and in cell 5(c) a Enter the average U- values from (a) (b) (c) (d) (e) (f) Worksheet 3d into Building Area or Code Max. Actual Target UA Actual UA cells 3(d), 4(d) and Component Length U or F U or Fb.c (b) x (c) (b) x (d) 5(d). 3. Windows and Glazed Doors G 2 ai ft2 b, SO 0.4-6 `'Cj &,-1 2. Se the slab with mi n. insulation 4. Above -Grade Opaque Walls & Doors 2411 ft2 ® .30 D, DA 141.5 199.0 the level (Table 3g), 5. Roofs and Skylights 152. ft2 5 1' enter 0.58 into cell e 0 7(d). Otherwise, 6. Floors over Unheated Spaces f / • ft2 0.08 ....../.'' ,, . enter 1.34. 7. . Unheated Slab on Grade Floor 4.12,S ft 0.58 9,..12) ° For an heated slab with the min. 8. Heated Slab on Grade Floor ®ft 0.90 i ®•"'jaP' insulation level. enter 0.90 into cell 9. Target and Actual UA. Total columns (e) and (f) 1 & e't 3115. 5 8(d). Otherwise, enter 2.73. 10. Enter "Y" if the Actual UA of cell 9(f) is less than Target UA of cell 9(e). Otherwise, redesign Cooled 11. Summer Design Temperature from Table 3g, °F SS Building 12. AT. Subtract 75 °F from line 11. Enter here and in cell 15(d) I 0 `Enter the average U-value 13. Solar Factor from Table 3g. Enter here and in cell 18(d) ' ` 1., of the windows, 14. Above -Grade Walls -Code Maximum OTTV from Table 3g walls. and doors `��. from Worksheet (a) (b) (c) (d) (e) (f) 3d. Building Area Actual (b) x (c) x 'Enter the Component (sf) U- value AT TDeq [(d) or (e)] average TDEo 15. Windows and Glazed Doors hh �1 a� from Worksheet G� V � �j r °✓ 5 0 • S 3d. 16. Above -Grade Opaque Walls & Doors 1.411 0.04+ , 31;31 4 016:1 'Enter the average 17. Total column (b) 3 d 20 "` -- - .... ... SC - value of the windows from (a) (b) (c) (d) (f) Worksheet 3d. . - Building Area Actual Solar . Component (sf) SC- value Factor (b) x (c) x (d) 18. Windows and Glazed Doors 51. 0. G to I $S. S _ • 3cit41-643 19. Grand Total. Add cells 15(f), 16(f) and 18(f) 6 93S.2 20. Actual OTTV. Divide line 19 by cell 17(b) 4 S . 2.1 21. Enter "Y" if the Actual OTTV (line 20) is less than required OTTV (line 14). Otherwise, redesign Envelope 22. The perimeter insulation for the slab -on -grade floor shall extend downward from . Enter the the top of the slab for a minimum distance of 24 inches. See Section 5303(d). - NA reference to plans 23. Below -grade walls shall be insulated with a minimurn of R -5 insulation extending and specifications the full height of the wall to the top of the lowest floor or 10 feet below grade, K/rS that shows compliance with whichever is less. the requirements. $51"i SOT a, I°, 24. Manufactured doors and windows are certified according to ASTM E 283 for 0.37 cfm per foot of window sash crack and 11 cfm per foot of door crack. ON[ N & 25. On the warm side (winter) of the insulation for the walls, roof and floor, install a S a."-°1 P. vapor barrier with a perm rating of one or less. See Section 5303(f). b 4 V 46 1 0 N 'I (1/93) Forms 3 -3 Worksheet 3d -. .. AVERAGE THERMAL VALUES rr � Windows (a) (b) (c) (d) (e) (1) and Window and Glazed Door Area UA Shading SC A Glazed Description (sf) U -value (b) x (c) Coefficient (b) x (e) Doors VINYL, .WIh064ia 52°) . 2sf• s 5I 21(0,2x4- E M I , 1. Total Columns 1 5 2.61 • i t S ZU%' ® S10 '2 2. Average U- value. Divide cell 1(d) by cell 1(b). Enter here and on Form 3b, cells 3(d) and 15(c). 3. Average SC- value. Divide cell 1(f) by cell 1(b). Enter here and on Form 3b, cell 18(c). O (P Opaque (a) (b) (c) (d) (f) (g) Walls and Wall and Door Area UA UA TDeq Doors Description (sf) U -value (b) x (c) TDeq* (d) x (f) See able �i M u t.1/ 27% 2 j 3S 2 D. 04-+ I OS, t 31 S6 VA cbl , �K W 1-40 139 © , o44 l�. )I Li i� 2 I b / / .. /./ / I i d . 4. Total Columns 2.4-1 I 101.40 4 0 ( 5. Average U- value. Divide cell 4(d) by cell 4(b). Enter here and on Form 3b, cells 4(d) and 16(c). 0 . 0 4,4, 6. Average TDeq. Divide cell 4(g) by cell 4(d). Enter here and on Form 3b, line 16(d). 31, Sc• TDEQ Wall Construction —Mass Per Unit Area TDeq (Ibs /sf) ( °F) 0 to 25 44 26 to 40 37 41 to 70 30 71 and above 23 (1/93) Worksheets 3 -17 Worksheet 3d (cont'd) AVERAGE THERMAL VALUES Roofs and (a) (b) (c) (d) Skylights Roof and Skylight Area UA Description (sf) U -value (b) x (c) - S UP aAV t N f'�,Y wt, 3 2 _ 6.613 27, q,v 7. Total Columns q $12 ��0 1:7,4111 Average U- value. Divide 7(d) by 7(b). Enter here and on Form 3b, 8. cell 5(d). 0 1 a 3 Floor over (a) (b) (c) (d) Unheated Floor over Unheated Space Area UA Space Description (sf) U -value (b) x (c) 9. Total Columns 10. Average U- value. Divide 9(d) by 9(b). Enter here and on Form 3b, cell 6(d). 3 - 18 Chapter 3 - Building Envelope (1/93) Worksheet 3a (conk!) WALL U-VALUES Aluminum _ (a) (b) (c) • (d) Siding on '.; ..:< Layer Description Detail R-value Stud Wall . . .I■. Exterior Moving 0.17 Soo Table 3c for :',,.."., ",!.. i • Surface Air n Values of air "*. .;:.:, Aluminum spaces . • A ',.. ...... Siding See Table 3b for : ;.:. Air n - Values of \ • ..; tt • 8 nit 1171i1111111 Sidi! 9. .•:: ..:::. gi. Space plywood sheathing Z`, ‘• t • C Sheathing and gypsum 7 wallboard ; 2; i , Itt Framing/ . D \'.. :::.:' • - i igi See Insulation Table 3a for : ::„•, :::: , _ R - Values of .;:s / ,•;- 2: • E Gypsum finning/ :\ -.. *,, t . ' vr Wallboard • insulation Interior Still .,• 0.68 '..: 4 • Surface Air •..,. ' ...‘ /..... 1. Total column (d) 's: 4 2. U-value. Invert the amount in line 1 • Generic Wall , . . • (a) (b) (c) (d) Tviv • See Table 3c for R - 4*,..ltre '.• ' ' . ,t,Aw , .: •,,, •:. Layer Description Detail R value Values of exterior Exterior M OVI hi 1-1 .g" . and interior fro- 0. 11 surfaces ‘Ii4.. .' Surface Al 1 - • ei...4i'm ' "`.'.. e..SPekt . • 4-i,r/4,12,,.; , .,. A See Table 3b for o . 0 .11- 4 iN&IL. R-Valuns of FtE,T building materials • l r ; .., . , . • B See . :13 •:)."? .'',..• ' . ' rAl 0.04 Table 3a for fl-Values of C /4. ' ,. ;, .0 . — fratning / insul n atio. - • D 2 K 6 IA/ ' ::••,'?...`,. , 1 - 'ZI-- 11, (4/ • E 'foe" CAYE i :,,,, , ? ;'•-,:, '.:. : :;,:- 'it',*.11ig, "•- • -..•* 44; .%* ,•:',';'. „ • : Interior e,r 1 L1., PAN '•:'''.. : ' ..- ' • Surface i C) (r2 1 fri.,I12... •,-..,-. 1. Total column (d) •• '44 '''; . . - • • - 2. U-value. Invert the amount in line 1 0 a o 4 i'. . ( 1 /93) Worksheets 3-13 ` llorks}K%t 3J()nf\]) ' NU� 0�m� WALL m� ��u���~�u��v�' . �,�;-+�„'.^ ��/�' ' : ' -~-^ ` ~ ~ ' - ^` � , . • , , , , , , .`[ ^ . ' .. '^ ' ^ . ., ' . .\� ', AGmmilmumm � (o) (b) (c) (d) Siding Layer Description Detail R-value Stud Wall _-- _ N. ...; Exterior Moving '- 0.17 See /aWpmc�r --'- -------------� Surface Air n-vnomvn,air � --- X Aluminum �aoeo - - ---- '------ ---------_° A Siding See Table nbvv - nwm�a • - - xi, - --------- � n^m,m'xn,m»g, plywood sheathing Space _° C Shoathing and gypsum wallboard • _ __________ ___�p D Framing/ See c`o�r"ar Insulation R xvo/eno/ Gypsum • E oo/o��/ ----- -- -- ----'-- Wallboard insulation. Interior Still ` _� Surface Air ^ oO8 -- \ � � 1. 7o�|uo�mn�0 � ; - � 2. U-value. Invert the amount in line 1 � . . ` - ' Generic Wall (a) - (b ' (b) (c) (d) .. See Table yc for R_ Layer Description Detail R+m|uo xp�onmov��v Exterior VI ----' nodm�m, ' '` ` ' ` ' /� \ � ~ ` • Surface ��\�~ ~^ ^ / surfaces. ' -_ Sovnbmoxux • ------' p A �^ '�4 ' / C��� n-wmmsw =- ' — " - building __ • B 2. Le |� �/� • '. . /. ~� • See rnomoouv P. - - eV n-vwv,,o/ ^'� _ __- � � �� ��' � ' . ' � --_'-- a 5(0 . /�v*x*v �Dc»^ ' � ' -- -- — -- D ' �� _. • •• ^' ` -----' ---- -• E ` Interior t - - .� __ • --'- `�~- A, (Pb � ' . ' �� �|�a.. �� ' 1. Th�|oohmnko ��2� ^ ;',.,,,,,,41 ` . ^ _ �_ - 2. U-value. Invert the amount in tine 1 /� 0 ���- ~., ^ ^ ' • � • A vav Worksheets 3 • \Vrtrrkshcct 3b (cont'd) ROOF' U— VALUES ,,. Mrs .. .. . , .. . .T generic (a) (b) (c) (d) Roof -_` ` 1 Layer Description Detail R -value See Table 3c for ` Exterior M ovi N ti r� II-Values of `• t- Q "a R Surface exterior and • u ` Typ at., interior surfaces ; . . � (( e Vii. } { °.'PA' " #,y a f� 5 `F °��NITT ,ISI rt+. /�. ' '•� " ' �� ' ( -61—) fC Ir k h ' 4 q` f yAF 4 `,- 54`'3ge:ii-r i gt.A T 1 0: to • A {��.�� i r . .,✓ ( ..,P - 4, - .-.v.tS` ` isY + * �. ' — f�"q.'" See lees 3c for , ' f, •�' ;Pl , 't°` ' \o B 3/�} • 1? Vahres of air " j t .t Q 1 spaces. A 'r, y 1 - f� P1:1"-Wb See Table 3b for %%-, R- , AA r �` • C 12. - 30 '5 d R- Values of 39 r4„:. . building materials �� -• D cal*' V V See Table 3a for \\ , \� AO 0 . lQ ( R- Values of metal - -. o E and wood stud/ insulation and Interior metal truss/ Surface insulation. .-- 1. Total column (d) 3 I ,e1 4- 2. U- value. Invert the amount in line 1 0 0.6 (ue,) Worksheets 3 - 15 • SOUTH OFFICE • Form 3b COMPONENT PERFORMANCE PATIO Heated 1. Above -Grade Walls -Code Maximum Uo from Table 3g. Enter here and in cell 3(c) and 4(c) 0 , 3 0 Building 2. Roof /Ceiling -Code Maximum Uo from Table 3g. Enter here and in cell 5(c) 0 a 1 'Enter the average U- values from (a) (b) . (c) (d) (e) (f) Worksheet 3d into Building Area or Code Max. Actual Target UA Actual UA • cells 3(d). 4(d) and Component Length U or F U or F (b) x (c) (b) x (d) 5(d). 3 Windows and Glazed Doors 4'74 ft2 1 0 .4 )44.2. Z t 9 3 bFor CJ }D a slab with the min. insulation (/ 4 . Above -Grade Opaque & Doors ft2 /11 6, 1 04 71 t 0, 3 the level (Table 3g), 5. Roofs and Skylights 1 5-7 5 ft2 0 r D CI r7 0 '3 t t 61 56 , ( 1 enter 0.58 into cell 7(d). Otherwise, 6. Floors over Unheated Spaces 'vi ft 0.08 ,w�"` . enter 1.34. 7. Unheated Slab on Grade Floor ai 0 ft 0.58 '1 ,1 3 1 60, to 137. c Foran heated slab with the min. 8. Heated Slab on Grade Floor ............"'" ft 0.90 insulation level, enter 0.90 into cell 9. Target and Actual UA. Total columns (e) and (f) ) 611.61 I t ('t , 't 8(d). Otherwise, enter 2.73. 10. Enter "Y" if the Actual UA of cell 9(f) is less than Target UA of cell 9(e). Otherwise, redesign Cooled 11. Summer Design Temperature from Table 3g, °F SS Building 12. AT. Subtract 75 °F from line 11. Enter here and in cell 15(d) t 0 d Enter the average U -value 13. Solar Factor from Table 3g. Enter here and in cell 18(d) I S of the windows, 14. Above -Grade Walls -Code Maximum OTTV from Table 3g 3560 walls, and doors from Worksheet (a) (b) (c) (d) (e) (f) 3d. Building Area Actual (b) x (c) x 'Enter the Component (sf) U- value AT TDeg [(d) or (e)] average TDEo he 15. Windows and Glazed Doors 4 C1 4' O. +5 10 , ` ; , 1. I va from Worksheet 3d. 16. Above -Grade Opaque Walls & Doors s-7 0 1 ®, 0 k+ 3 .G1 6 `Z f Enier the average 17. Total column (b) 4 1 5 ' "' SC -value of the b windows from (a) (b) (c) (d) (f) Worksheet 3d. - - Building Area Actual Solar Component (sf) SC- value Factor . . (b) x (c) x (d) 18. Windows and Glazed Doors .. kit O. 567 t o) .2 3 t 3540 19. Grand Total. Add cells 15(f), 16(f) and 18(f) 38 0 1 20. Actual OTTV. Divide line 19 by cell 17(b) q •1 0 21. Enter "Y" if the Actual OTTV (line 20) is less than required OTTV (line 14). Otherwise, redesign Envelope 22. The perimeter insulation for the slab -on -grade floor shall extend downward from the top of the slab for a minimum distance of 24 inches. See Section 5303(d). VA Enter the reference to plans 23. Below -grade walls shall be insulated with a minimum of R -5 insulation extending .. and specifications the full height of the wall to the top of the lowest floor or 10 feet below grade, that shows N / pk compliance with whichever is less. the requirements. 24. Manufactured doors and windows are certified according to ASTM E 283 for 61-tee 0.5 . 0.37 cfm per foot of window sash crack and 11 cfm per foot of door crack. 0tV1I OPT a ' 25. On the warm side (winter) of the insulation for the walls, roof and floor, install a SHE eT O. S vapor barrier with a perm rating of one or less. See Section 5303(f). or' lc iro t 1 (1/93) Forms 3 -3 Worksheet 3d AVERAGE THERMAL VALUES Windows (a) (b) (c) (d) (e) (f) and . Window and Glazed Door Area .UA . Shading SC A Glazed Description (sf) U -value (b) x (c) Coefficient (b) x (e) Doors V I NYV AT 614/l-S4 WALLS 2 b2 e 4 12 Vg .°1 0 S to 1 61,12 . 1. Total Columns i t . 1 Q I 2b6,44' • 2. Average U- value. Divide cell 1(d) by cell 1(b). Enter here and on Form 3b, cells 3(d) and 15(c). d, 9- S 3. Average SC- value. Divide cell 1(f) by cell 1(b). Enter here and on Form 3b, cell 18(c). ®e 6 Opaque (a) (b) (c) (d) (() (g) Walls and Wall and Door Area UA UA TDeq Doors Description (sf) U -value (b) x (c) TDeq* (d) x (f) 'See table G M U w�/ 2x(i 3 245 0.04+- I +2.1a s 1 5262.6 1p below. — .- — ._ Gde 0/ et4 I N bll try ZA Go 14 5 (v b. OH 2 ®, O 0 16 501 . to 4. Total Columns 3 . 10 I 1(4.8+ 516 +1 � 5. Average U- value. Divide cell 4_(d) by cell 4(b). Enter here and on Form 3b, cells 4(d) and 16(c). bl D44, 6. Average TDeq. Divide cell 4(g) by cell 4(d). Enter here and on Form 3b, line 16(d). 3 5 . S 2 milmmlimagim TDEg Wall Construction —Mass Per Unit Area TDeq (Ibs /sf) ( °F) 0 to 25 44 26 to 40 37 41 to 70 30 71 and above 23 I, /93 Worksheets 3 -17 . Worksheet 3d (cont'd) AVERAGE THERMAL VALUES Roofs and (a) (b) (c) (d) Skylights Roof and Skylight Area UA Description (sf) U -value (b) x (c) DtA ►tu p� o. P1 l 8i 3 v,0 3 560. t q 7. Total Columns 4 0/ ' 3 ? b 6c0,)/ Average U- value. Divide 7(d) by 7(b). Enter here and on Form 3b, $ cell 5(d). 6.03 Floor over (a) (b) (c) (d) Unheated Floor over Unheated Space Area UA Space Description (sf) U -value (b) x (c) 9. Total Columns 10. Average U- value. Divide 9(d) by 9(b). Enter here and on Form 3b, cell 6(d). 3 - Chapter 3 - Building Envelope ( /93) • Worksheet 3a (cont'd) WALL U- VALUES Aluminum (a) (b) (c) (d) • Siding on Layer Description Detail R -value Stud Wall , Exterior Moving .;' ----; See Table 3c for :` - ° Surface Air 0.17 R- Values of air . -. Aluminum spaces. '• — • A Siding See Table 3b for §, : Air R- Values of \ e • B Space aluminum siding, k. plywood sheathing • C Sheathing and gypsum wallboard. • - • D Framing/ See Table 3a for Insulation R- Values of Gypsum ti . f` framing / • E Wallboard insulation. '' ; ° W • Interior Still x= "'r,'. -`,`�' , 0.68 S urf ace Air : ;j�'.: : - 1. Total column (d) f: 2. U- value. Invert the amount in line 1 Generic Wall (a) (b) (c) (d) .; Layer Description Detail R -value a er Descri See Table 3c for R �� ` � � ��r�� � Y P s s ..; Values of exterior pr. • ' Exterior M DV) Pt L9 - ' and interior 1�- , surfaces. a :144;71 ?; ' 4.11in Surface / � 1 � See Table 3b for _ 11461 ®. R- Values of , ` '` �� F avr building.rnaterials r } B "a A 049 �', T ra N � r,4 See Table 3a for ��° '' P R Values of I/2 — • ° C m )!a P 0 . 0 P) framing /insulation. �c �s �4f 204 to IA/ ,tna4� ` ate Y ° D �, rz-Ss 1 N . " GYP . E , �� � � � � Interior €,T ! 1,01„, `: Surface Al la. - k A I kk 1. Total column (d) ��, az 2. U- value. Invert the amount in line 1 0,64+ (1 /93) Worksheets 3 -13 Worksheet 3a (cont'd) • ' WALL U-VALUES Aluminum (a) (b) (c) (d) Siding on ..., ,:).: Stud Wall ::: :. :,,, ....:: Layer Description Detail , .. . . R-value :,..,. . -• Exterior Moving . , ' ..- ,‘ ,, See Table 3c for :::::- —;::: — Surface Air 0 17 .., ..... R-Values of air .:.* :::.:: I AlUminum spaces. :... .... a .A :,..:- ..;:, — , .. Siding ..Z.1. ./: See Table 3b for \ ..•:: Air R-Values of \ • • • B ,...\ -.:.-:. Space aluminum siding, plywood sheathing ::'.... :/". • C Sheathing and gypsum wallboard. ,••• :•./ ./., i Framing/ :.N. /.. • • D See Table 3a for ,S ......:* ,' ••••• 1 • E Insulation R-Values of Gypsum framing/ \ / Wallboard \ ••••• insulation. \ •••• ••• Interior Still '-':-- -•'.;,.-''' ' --" ' -' Lez....' , . % 0.68 • Surface column e (d A ) ir - 1. •p.' ';''' "-- . ',- -., \ -- 2. U-value. Invert the amount in line 1 Generic Wall - (a) " - (b) . (c) (d) See Table 3c for R- F '45.:x - ," .1,... K,,H ., :,: - Layer Description Detail R-value , Values of exterior -.. IN, '.-, ?., :', . - Exterior ti 0 VI Pi A 4' ' #411, and interior •- -.••• 1 e Surface Air— :H:,:'—' ,. 6. 11 surfaces . A.VS4.-1 :; • ••• • — ' j • n • See Table 3b for A ''. iT :: . . LI , l ,G0 R-Values of :,$ l ,•• ' W ..,;,4 , g IP try building materials kAcz .,., . ; tAro.:: • ,.,' • B , -, , , ! ,•:, , P.. =0 Vi4 1 • '3 & ., ,,O,414, ■ , • . . See Table 3a for 4b1411 • .• 14/60 l R-Values of • ` Pp =•' '..: C T84 IP , 0 .e49 framing / insulation. f )•!q0:41 . :,• ‘, - '4''', P•;iCA' . • :, - r, • D • E e4,•i ,.,-.' Interior eritst,/ ,.: : -:`• , • V4g,..- - - 0 19b Surface / LP-. .,.— , . — - . t.:-..-ii$0 ...:.,- L'44: , 1. Total column (d) ‘2.0 ey. 1 21 '';',44,M;;•,1,V . t, .. 2. U-value. Invert the amount in line 1 . 0. 0 +4 • (1193) . Worksheets 3-13 /A Worksheet 3b (cont'd) ROOF U- VALUES • seneric (a) (b) (c) (d) Roof Layer Description Detail R -value See Table 3c for r> Exterior M DYI N Csl R- Values of 4 ; «+ • exterior and Surface At I interior surfaces. ° �a�s \. A ' =O(s� 45:4'401i See Table 3c for grf,,^ I3 h ti /� /� R-Values of air N ai At t . y n h Ta �n �� { ti � a � e : A ° B J��f (a e9 spaces. � , � eMil See Table 3b for , R- Values of � f building materials D 41' (li(/ re- See Table 3a for /6%1 O 1 R- Values of metal ° E and wood stud / _ insulation and Interior _ metal truss/ ° Surface insulation. 1. Total column (d) ?> ,1 4 2. U- value. Invert the amount in line 1 0, b S megismimstimtatisiosmim (1/93) Worksheets 3 - 15 • ccif.9S =0,v'7 k 1 I ►\I urga1(l•II11 ■1!I isioa....zimm !!!ERIEE IPEEMN J1\ILUiI■ \101■`11i��l1 SIILr! and Construction Services Inc. 9025 S.W. Center Street P.O. Box 23784 Tigard, Oregon 97223 Phone: (503) 620 -2086 ENERGY CALCULATIONS FOR: TENANT IMPROVEMENTS JOHN DUNCAN BUILDING TENANT: N.W. AUCTION GALLERY 15996 44055 S.W. 74TH TIGARD , OREGON k. 0 PRQ>c p s �G INFe . 1113 4 / ' 7 OREGON • - v,.; t7,* ill FS R. O ExP@REs: i CLIENT : JOHN DUNCAN PREPARED BY : JDA CHECKED BY : PP DATE : 1 -22 -97 PAGE 1 OF J Form 2a Project Name: t µ T Page: SUMMARY Project 1. Project "ift4 r Iµ Ppol0 — JO1414"buNcAK - 1x.bv, , 2. Project Address 1 5c) 9 5 S . u 14t.1` 3. City/Town .r p 5. County ASH 4. Building, Gross Area (ft2) 10 S 6. No. of floors 2, a. eFF►c.+G Chapter Type ID Description Attached Attached Building Envelope Form 3a Building Envelope - General .0 Forms and 3b Prescriptive Path - Zone 1 Worksheets 3c Prescriptive Path - Zone 2 ❑ Check boxes to 3d Simplified Trade -off ❑ indicate attached forms and Worksheet 3a Wall U- factors ,0' worksheets. 3b Roof U- factors 3c Floor U- factors ❑ Systems Form 4a Systems - General ❑ 4b Complex Systems ❑ Worksheet 4a Unitary Air Conditioners - Air Cooled ❑ 4b Unitary Air Conditioners - Water Cooled ❑ 4c Unitary Heat Pump - Air Cooled ❑ 4d Unitary Heat Pump - Water Cooled ❑ 4e Unitary AC & Heat Pump - Evaporatively Cooled tik ❑ 4f Packaged Terminal Air Conditioner - Air Cooled ❑ 4g Packaged Terminal Heat Pump - Air Cooled ❑ 4h Water Chilling Packages - Water & Air Cooled ❑ 41 Boiler - Gas -fired & Oil -fired ❑ 4j Furnaces and Unit Heaters - Gas -fired & Oil -fired ❑ Lighting Form 5a Lighting - General ❑ 5b Interior Lighting Power - Occupancy Method ❑ 5c Interior Lighting Power - Space -by -Space Method ❑ Worksheet 5a Interior Lighting Power ❑ 5b Lighting Schedule ❑ 5c Interior Control Credits ❑ 7. Name JIM fNbf2-Mw 10. Telephone 6920- 208t', 8. Company 0,11,49LA t.LrtNf X9_mLT 11. Date • 22. 9. Signature No. of Pages Description of Document . . (1 /96) Forms 2 -1 Form 3a Project Name: t t C. T. Page: BUILDING ENVELOPE - GENERAL Check all boxes 1. Exceptions (Section 1312) that apply. ❑ No Envelope Components. The building plans do not call for new or altered building envelope components, e.g., walls, floors or roof /ceilings. ❑ A Non - conditioned Building. The proposed structure has no spaces heated or cooled by an HVAC system. Exceptions ❑ Exception. All new or altered building envelope components do not comply with the require- ments of Sec. 1312, but qualify for an exception. Note applicable code exception. Section 1312, See a discussion of Exception Portions of the building which qualify: excep- p 9 q Y tions on p. 3 -9. 2. Air Leakage (Section 1312.1.1) ❑ Complies. Plans require that penetrations in the building envelope are sealed and that windows and doors are caulked, gasketed or weatherstripped. The plans /specs show compliance with this requirement on: 'H �"t" TX 1 3. Suspended Ceiling (Section 1312.1.2.1) ❑ Complies. The building plans do not call for a suspended ceiling separating conditioned spaces from unconditioned spaces. Exceptions - Exception. The building plans show a suspended ceiling separating conditioned spaces from unconditioned spaces, but qualify for an exception. Note applicable code exception. See a discussion of qualifying excep- Section 1312.1.2.1, Exception 2 . Portions of the building which qualify: ST"Calt1 C� tions on p. 3 -10. 4 AUCTION A - -,A c. 4. Recessed Light Fixtures (Section 1312.1.2.2) ❑ Complies. The building plans do not show recessed light fixtures installed in ceilings separating .,/ conditioned spaces from unconditioned spaces. Exceptions "' Exception. The building plans require that fixtures installed in direct contact with insulation be insulation coverage (IC) rated. The plans /specs show compliance with this exception on: See a discussion of s�{E� �' - 1 L GT12 -J 6-4 L I•-1.01''.GC qualifying excep- 1 tions on p. 3 -11. 5„ Moisture Control (Section 1312.1.4) t✓1 Complies. A one -perm vapor retarder is installed on the warm side (in winter) of all exterior floors, walls and ceilings, and a ground cover is installed in the crawl space for both new and existing buildings where insulation is installed. The plans /specs show compliance with this requirement on: Si-►,C'[ • NOTV Exceptions ❑ Exception. All new or altered building envelope components do not comply with the vapor retarder requirements of the code, but qualify for an exception. Note applicable code exception. See a discussion of qualifying excep- Section 1312.1.4, Exception . Portions of the building which qualify: tions on p. 3 -11. • • (1 /96) Forms & Worksheets 3 - Form 3b Project Name: btipAcAti T. Page: PRESCRIPTIVE PATH - ZONE 1 Walls Proposed Code See pp. 3 12 (a) (b) (c) (d) (e) (f) (g) (h) (1) Wall Glazing Glazing Wall Insul'n Max Max Insul'n through 3 - 14 fora (%) U- R- % U- R- Wall /Insulation Type Area Area ( /o) discussion of part of ( ft) (ft) (c) =(b) Factor value Glaz'g factor value this form. x100 1 Masonryl, integral d O `a 1::;11 15% 0.30 � : na loose fill 5 Stew, s, rely , �Efi 2 Masonryl, integral `? 30% 0.21 -`` : na rigid fill3 i NiM4 ..... ....... . 3 Masonry or concrete 1 30% 0.13 or 11 w /interior insulation 4 Masonry or concrete 1 15% 0.30 or 1.4 w/contin0ous exterior insulation 5 Masonry or concrete 1 30% 0.21 or 2.8 w /continuous exterior insulation 6 Frame4 2 i 1 (p D N/A Kip 0,062 15.3(p 30% 0.13 or 13 7 Other 30% 0.13 or 13 8 Below-grade na 0.11 or 7.5 Skylights (a) (b) (c) See p. 3 fora Proposed Code Requirements discussion of Proposed Proposed Skylight Proposed Skylight Assembly skylights and Component roof area skylight fraction ( %) U- factor percent U- factor glazed smoke (gross ft 2 ) area (ft (c)= (b)x100 (Max.) (Max.) vents. 9 Skylights 6% 5 1.23 Other (a) (b) (d) Compo- Proposed Code nents Max. U- factor "y<0 Min R -value of See pp. 3 - 15 Component U factor R value of assembly Rom insulation only through 3 - 16 for a ' <: , -- -, 10 Windows :»: <' 0.54 ; :: 4 discussion of this ::::::::::::::::0::::::::=.0::: ' 0, :t. w in coefficient: 7 7 '` Max. shading coef icien 0 5 „ >?`:' section of the form. ;,;;;, :.v,,,• 11 Doors 8 IBINNE 0.20 ,.>t;:: 1:> 12 Floors over unconditioned spaces 0.07 or 11 heated slab ed e 9 7 13 Reefa i 0 e eA u,t � � 0 ,0 4- 2 2 ebL4 ":..:::. < 0 ....................... 05 or .5 :<:: >::. ;::_::: r 19 14 Glazed smoke vents 1.23 or double- glazed Notes 1 Minimum weight of masonry and concrete walls = 50 lb/ft of wall face area. 2 All cores to be filled. At least 50 percent of cores must be filled with vermiculite or equivalent fill insulation. 3 All cores except bond beams must contain rigid insulation inserts approved for use in reinforced masonry walls. 4 Batt insulation installed in metal or wood frame walls shall be insulated to the full depth of the cavity, up to 6 inches in depth. 5 This value was set to allow a double- glazed skylight with a 0.5 inch air space with one pane tinted. 6 This value was set to allow a double - glazed window with a 0.5 inch air space, low -e coating (e <_ 0.40). That window or any window with the same or better energy characteristics will meet the standard. 7 A tinted outdoor pane satisfies this requirement. Glazing for merchandise display is exempt from shading coefficient requirements. 8 The U- factor is a center of panel U- factor for an overhead door. The following doors are exempt: 1) entry /exit doors with a leaf width of 4 feet or less, and 2) overhead coil doors. 9 See p. 3 -15 for a discussion of approved methods for installing slab -edge insulation for heated slabs -on- grade. t0 Opaque smoke vents are exempt from U- factor requirements. 3 -2 Building Envelope (1/96) Worksheet 3a (cont.) fxrw,or. 3 . -1d . kiAProject Name: bttt,ku -r' Page: WALL U- FACTORS Aluminum (a) (b) (c) (d) Siding on \ Layer Description Detail R -value Stud Wall k — ,.- - / Exterior Moving i 0 See Table 3a for R- % Surface Air" values of framing/ � Aluminum insulation. f • A Siding See Table 3b for R :` Air Ji values of aluminum :IN 4 • B Space siding, plywood sheathing and r • C Sheathing gypsum wallboard. t See Table 3d for R- % • • D Framing/ values of air Insulation spaces. Gypsum • E Wallboard tll if, • Interior Still I`" 0. 68 Surface Air k. L„) r. 1. Total column (d) ... ,,„ ,,,„ 2. U- factor. Invert the amount in line 1 Generic (a) (b) (c) (d) Wall r� ; ' Layer Description Detail R -value See Table 3a for R- 7 '" " ;"` � , � : Exterior I`�4VINL� values of framing /� > �� • Surfac AI C' 2� insulation. �� , ,, 4 $�� 6.t4.0. >^� - x • A 4.6,0 See Table 3b for R- "� , - , 1'IZUTa values of building ' ` , p ‘7T IL' materials. -. B /61112-, 0 . t08) See Table 3d for R- t ; , - values of exterior ' "� , s • C and interior ;k F G . - . '::::"",',',4 . — _ — -- surfaces. -.1. ' '- ` ti Y S 2 '4 ,. — • 54 s.»" `i L M ; � ' % '3 0 • Interior .e Surface � ` 9 31440 ��.�„�, xw C 1. Total column (d) C . 5 3 2. U- factor. Invert the amount in line 1 D. 8 (1/96) Forms & Worksheets 3 -5 4 e Worksheet 3a (cont.) S (tATEW0. PA--TIT Lyroject Name: iM.c,m4 - Page: WALL U- FACTORS Aluminum (a) (b) (c) (d) Siding on s Layer Description Detail R -value Stud Wall +\ a Exterior Moving . See Table 3a for R— % \ s Surface Air 0.17 values of framing/ r A Aluminum insulation. Y 4 Siding See Table 3b for R— Air values of aluminum % B / t Space siding, plywood / x sheathing and / - C Sheathing gypsum wallboard. i rii See Table 3d for R— / D Framing/ values of air Insulation spaces. Gypsum E Wallboard Interior Still 0.68 Surface Air Agly "" 0 1. Total column (d) 2. U- factor. Invert the amount in line 1 Generic (a) (b) (c) (d) fi Wall „ ,,,, -, 11:1 , :f4:0::05.-37',---~, p a Layer Description Detail R -value �, a See Table 3a for R— • , � E xterior 5T41,1' �, 2 values of framing/ t o }� Surface /t insulation. 1 ”' 5/�" (�,Yp See Table 3b for R— • t` i. ` - : ` A • �✓ values of building - . 1 - , ' { u materials. t� 1 '- B Hn' v l 3 • See Table 3d for R— values of exterior g C 5 /g " 64 t � surfaces. o . Sa and interior - . = xM �"` ., sPS 3 r ,. D " G �£ � . , M , , ,,: . 4 E '2 �- r r c r al A z t i Interior STILA/ � " .1 0 ' �'-i v , . ` h � a; Surface ! £�� a�&& �a.I,ts, ✓ , g � � 3n`�r�r • x , „ , ^ y 1. Total column (d) IS. 3 (e 2. U- factor. Invert the amount in line 1 0.0 e0 • 3 -5 (1/96) Forms & Worksheets • ., w Worksheet 3b (Cont'd) gu p ,4.1 u N ( Project Name: n T; � Page: ROOF U- FACTORS _ beneric (a) (b) (c) (d) Roof Layer Description Detail R -value • See Table 3a for R— �, . � � TM E xterior Gj tL'1' e values of metal and - � z 0 • , wood stud/ n £t S u rf ace _ � 1!Z � insulation and metal r " %' : - :e Y , :r f - t tl � E K, '`'7 A 1 L 19.0 D truss/insulation. k � ; r S� G * h t y. a� c •a I . • i- O See Table 3b for R— .GOLieff 6L values of building ,-` k Tf U materials. C ST t L t� See Table 3d for R— a 1� b' (0 .5 values of exterior and interior D surfaces., and air spaces. E Interior 40 . Surface r , 1. Total column (d) 22 • p 2. U- factor. Invert the amount in line 1 (1/96) Forms & Worksheets 3 -7 . 0 -)r - 6 - - o 03?)7 1 Yl k k 1 vilmr.romn:c i!liii!IMIMPI 1SI \I[U1I ■ \\Ii;iii ■`11 m ■ \MI!1 — 11111rliiiliiiiiiriiiii and Construction Services Inc. 9025 S.W. Center Street P.O. Box 23784 Tigard, Oregon 97223 Phone: (503) 620 -2086 STRUCTURAL CALCULATIONS FOR: TENANT IMPROVEMENTS .JOHN DUNCAN BUILDING TENANT: N.W. AUCTION GALLERY 15 14G5FS.W. 74TH TIGARD , OREGON # , , G IN 4 . 4 , 3 , •„.,► r J . / . OREGON 4 9 � C -17, A ,..n\> S R. N I EXPIRES: 12-31 -98 I CLIENT : JOHN DUNCAN PREPARED BY : SET CHECKED BY : JRN DATE : 1 -22 -97 PAGE 1 OF 5 TOP TRACK 1_SPAN CLIENT: Copyright by Craig T. Christy 1985 LOAD FACTORS L = 0 ft INDUSTRY CONSULTING ENGINEERS F_1 1 U DL = 0 lb /ft Press [Alt] m for menu F_2 1 0 LL = 0 lb /ft 100 scale factor for deflection F 3-DL 1.4 E = 29500 ksi Last Revised 10/27/86 F 4 LL 1.7 I = 1.196 in "4 Press [F9] to RECALCULATE L= 0.00 FT " L= 10.00 FT A L= 0.00 FT +187.50 lb +187.50 lb Left Cant Max d UP at A UP at B UP 0.000 L/0 L /502 L/0 DOWN 0.000 LEFT CANTILEVER P DL F_1 & F_3 P LL F_2 S F_4 Input X 0 0 0 0 0 0 R 0 0 0 0 0 0 -187.5 M 0 0 0 0 0 0 d 0.000 0.000 0.000 0.000 0.000 0.000 • SPAN 1 Press [Alt] m for menu L = 10 ft U DL= 0lb /ft U LL = 37.5 lb /ft E = 29500 ksi Fixity = 1 I = 1.196 in "4 (1= pinned, 0= fixed) Fixity = 1 (1= pinned, 0= fixed) wl /w2 0 0 F_1 & F_3_DL xl /x2 0 10 Span 1 Max d UP 0.000 wl /w2 0 0 F_2 & F_4_LL DOWN -0.239 xl /x2 0 10 Input P DL F_1 & F_3 Input P LL F_2 & F_4 Input X 0 1 2 3 4 5 6 7 8 9 10 -- Output Range R 187.5 150 112.5 75 37.5 0 -37.5 -75 -112.5 -150 -187.5 -187.5 M 0 168.75 300 393.75 450 di= 450 393.75 300 168.75 0 d 0.000 -0.075 -0.142 -0.194 -0.228 -1. 9 -0.228 -0.194 -0.142 -0.075 0.000 k MA‘ .. /./,°° C'EA-1' 5 r DOUBLE FULL HEIGHT STUDS CLIENT: Copyright by Craig T. Christy 1985 LOAD FACTORS L = 0 ft INDUSTRY CONSULTING ENGINEERS F_1 1 U DL = 0 lb /ft Press [Alt] m for menu F_2 1 U LL = 0 lb /ft 100 scale factor for deflection F_3_DL 1.4 8 = 29500 ksi Last Revised 10/27/86 F 4 LL 1.7 I = 5.02 in Press [F9] to RECALCULATE L= 0.00 FT L= 26.00 FT A L= 0.00 FT - +263.65 lb +258.35 lb Left Cant Max d � UP at A UP at B UP 0.000 �2iZetX)5 L/0 L /157 L/0 DOWN 0.000 V 4 N 0 - C LEFT CANTILEVER L P DL F_1 & F_3 P LL F_2 & F_4 Input X 0 0 0 0 0 0 nTSL• • Cv ('- I Cv G A 1 o R 0 0 0 0 0 0 - 263.653 d 0.000 0.000 0.000 0.000 0.000 0.000 (4)/ /3/54 FLA►�f��='S SPAN 1 Press [Alt] m for menu L = 26 It U DL = 0 lb /ft U LL = 0 lb /ft E = 29500 ksi Fixity = 1 I = 5.02 in (1= pinned, 0= fixed) Fixity = 1 (1= pinned, 0= fixed) wl /w2 0 0 F_1 & F_3_DL xl /x2 0 26 Span 1 Max d UP 0.000 wl /w2 10 10 F__2 & F 4 LL DOWN -1.989 xl /x2 0 15 _ _ _ l/- / O D Fg o M Input P DL j e T 04CK F_1 & F_3 Input P LL (7-5,.< F_2 & F_4 Input X 0 2.6 5.2 7.8 10.4 13 18.2 20.8 23.4 26 -- Output Range R 263.6538 224.6538 198.6538 172.6538 146.6538 123.6538 - 64.346 - 264.346 - 264.346 - 264.346 - 258.346 - 258.346 M - 7.1E -14 659.5 1251.4 1775.7 2232.4 2621.5 874.807 2038.5 1359 679.5 0 d 0.000 -0.588 -1.125 -1.564 -1.864 -1.989 -1.946 -1.619 -1.168 -0.611 0.000 Iv1Mak zrr S IL 5 NAL,L : (22CP c f)(2) 7, 4S'3e 4_ ( 6 s TYPICAL WALL STUDS 1986 AISI Specification w/1989 Addenda DATE: 1/16/97 NICOLI ENGINEERING John Duncan - Tenant Improvements SECTION DESIGNATION: 600CC20 INPUT PROPERTIES: Web Height = 6.000 in Steel Thickness = 0.0346 in Top Flange = 1.375 in Inside Comer Radius = 0.0625 in Bottom Flange = 1.375 in Yield Stress, Fy = 33.0 ksi Stiffening Lip = 0.250 in Fy With Cold -Work, Fya = 33.0 ksi Punchout Width = 1.500 in Punchout Length = 4.000 in ALLOWABLE WALL HEIGHTS - LATERAL LOAD ONLY INPUT PARAMETERS Applied Lateral Load = 5.0 psf 0.75 Factor for Wind or Earthquake NOT Applied Allowable Shear and Web Crippling Based on Unpunched Web End Bearing Length for Web Crippling = 1 in ALLOWABLE SPANS - SIMPLE SPAN STUD DEFLECTION LIMIT SPACING L/120 L/240 L/360 12 in 33' 11" 27' 0" 23' 7" 16 in 29' 4" 24' 6" 21' 5" 01 24 in 24' 0" 21' 5" 18' 9" NOTE: Wall Heights Assume Full Support of the Compression Flange, (Sheathing or Mechanical Bracing). THIS PROGRAM IS LICENSED TO NICOLI ENGINEERING FOR THEIR EXCLUSIVE USE. USE BY INDIVIDUALS OR ENTITIES OTHER THAN THE LICENSEE IS PROHIBITED. FLOOR JOIST 2_Span Client: Copyright by Craig T. Christy 1985 LOAD FACTORS L = 0 ft F_1_DL 1 U DL= 0 lb /ft Press (Alt] m for menu F_2_LL 1 U LL= 0 lb /ft 100 scale factor for deflection F3_DL 1.4 E = 29500 ksi Last Revision 10/27/86 F 4 LL 1.7 I = 5.14 in "4 Press (F9] to RECALCULATE Left Cant. Max d 0.'' / /) 6A- L= 0.00 F " L= 10.00 FT " L= 8.00 FT " L= 0.00 FT UP 0 ISVK +632.00 +1818.00 k +430.00 k DOWN : 0 UP at A UP at 8 UP at C 4 L/0 L /1009 L /4001 L/0 Peb S LEFT CANTILEVER Input P DL F_1 & 9_3 DL Input P LL F_2 & F_4 LL input K 0 0 0 0 0 0 R 0 0 0 0 0 0 -632 M 0 0 0 0 0 0 d 0.000 0.000 0.000 0.000 0.000 0.000 SPAN 1 Press [Alt] m for menu L = 10 ft +M max 1248.0 k -ft U DL= 60 lb /ft -M max - 1680.0 k -ft U LL= 100 lb /ft E = 29500 ksi Fixity = 1 1 = pinned /cantilever, I = 5.14 in 0 = fixed wl /w2 0 0 F_1 & 9_3 DL xl /x2 0 10 Span_l Max d Trapazoidal Load Input UP 0 wl /w2 0 0 9_2 & 9_4 LL DOWN : - 0.11888 xl /x2 0 10 Input P DL 9_1 & 9_3 DL • Input P LL F_2 & 9_4 LL Input X 0 1 2 3 4 5 6 7 8 9 10 -- Output Range R 632 472 312 152 -8 -168 -328 -488 -648 -808 -968 -1818 M - 5.7E -14 552 944 1176 1248 1160 912 504 -64 -792 -1680 d 0.000 -0.043 -0.080 -0.106 -0.119 -0.118 -0.104 -0.079 -0.049 -0.020 0.000 SPAN 2 Press [Alt] m for menu L = 8 ft +M max 571.2 k -ft U DL= 60 lb /ft -M max 0.0 k -ft U LL= 100 lb /ft E = 29500 ksi I = 5.14 in "4 Fixity = 1 1 = pinned /cantile 0 = fixed wl /w2 0 0 K /Ft F_1 & 9_3 DL xl /x2 0 8 Ft Span_2 Max d Trapazoidal Load Input UP : 0.004393 wl /w2 0 0 K /Ft F_2 & 9_4 LL DOWN : - 0.02399 xl /x2 0 8 Ft Input P DL 9_1 & 9_3 DL Input P LL F_2 & F_4 LL Input X 0 0.8 1.6 2.4 3.2 4 4.8 5.6 6.4 7.2 8 -- Output Range R 850 722 594 466 338 210 82 -46 -174 -302 -430 -430 M -1680 - 1051.2 -524.8 -100.8 220.8 440 556.8 571.2 483.2 292.8 0 d 0.000 0.004 0.001 -0.006 -0.014 -0.021 -0.024 -0.023 -0.019 -0.010 0.000 • • 1 8 /8 " -25 GA TRACK STRUCTURE x3 " LONG W /(1)*S r 4:4 SCREW EA. LEG - 1 I HOLD TIGHT TO STRUCTURE • WIRES ATTACHED TO WOOD JOISTS / BEAMS W/ 1/4 "4' x 3" LAG EYE TYP. HANGER WIRE- --------' ' SCREWS 1 8/8 " -25 GA STUD - MAX. 12 GA DIAGONAL WIRES HEIGHT = 8' -O" OR AT 45° MAX. TO PLANE 1 5 /8 " -20 GA STUD - MAX. OF CEILING 4 PARALLEL HEIGHT = 12 - TO COMPONENTS ---____y (4 TOTAL AT 90° TO EACH OTHER IN PLAN) ° MAX.1`l\ / f � f . Z I U ) ! I lab L J ( 2 ) q3 SCREWS MAIN RUNNER NOTE: CROSS TEE THIS DETAIL IS TO OCCUR AT 12' x 12' O_C. EA. WAY AND &' FROM WALLS s0 PRO/4 1 SEISMIC BRACE DETAIL _ ,.\4 1113 1 FOR SUSPENDED CEILING ! OREGON i lir iilal PROJECT: N.W. AUCTION GALLERY (41 MFS R. N\G i&•iIL.IIUAII i EdlailigEOLMaMI11►ni_ DATE: 3/19/91 JOB NO PREPARED BY: SET i11lrlfiiiiiirlii■ j EXPIRCC: o- - �6 ` and Construction Services Inc. Phone: (503) 620 -2086 CLIENT: JOHN DUNCAN PAGE NO. 1 OF