Loading...
Specifications (3) i in m-IT Lc I O — ► Y l kt,, I. /96 Structural Calculations for Full Lateral & Gravity Analysis of Plan A 1460 RECIEVED SEP 2 3 2010 Summer Creek Townhomes CITY OFTIGARD Tigard, OR BUILDING DIVISION Prepared for Pulte Group July 13, 2010 JOB NUMBER: CEN -090 ** *Limitations * ** Engineer was retained in limited capacity for this project. Design is based upon information provided by the client, who is solely responsible for the accuracy of same. No responsibility and /or liability is assumed by, or is to be assigned to the engineer for items beyond that shown on these sheets. 117 sheets total including this cover sheet. This Packet of Calculations is Null and Void if Signature above is not Original Harper 40, Houf Peterson Righellis Inc. • +ERC LANC9 AP C ARC.ITECTS.OVR,C ORS 205 SE Spokane St. Suite 200 o Portland, OR 97202 • [P] 503.221.1131 • [9 503.221.1171 1104 Main St. Suite 100 o Vancouver, WA 98660 e [P] 360.450.1 141 e [F] 360.750.1 141 1133 NW Wall St. Suite 201 a Bend, OR 97701 • [P] 541.318.1 161 0 [F] 541.318.1 141 Design Criteria Project Scope: Full lateral & Gravity Analysis of Unit A Design Specifications: Wind Design: Basic Wind Speed (mph): 100 From Building Authority Exposure: B From Building Authority Importance, lW: 1 2006 IBC / 2007 OSSC Occupancy Category: II Residential Earthquake Design: Seismic Design Category: D From Building Authority Site Class: D Assumed, ASCE 7-05 Ch. 20 Importance, IE: 1 ASCE 7 -05 Table 11.5-1 Ss: 0.942 USGS Spectral Response Map Si: 0.339 USGS Spectral Response Map Dead Load: Floor: 13 psf Wall: 12 psf Wood Roof: 15 psf Live Load: Roof: 25 psf Snow Floor: 40 psf Residential Floor Materials and Design Data: Materials: Concrete Compressive Strength, Pc: 3000 psi Foundations & Slab on Grade Concrete Unit Weight, yc: 145 pcf Steel Reinforcement Yield Strength, f 60,000 psi Wood Studs (Wall Studs): Hem -Fir #2 2x & 4x Wood Beams & Posts: DF -L #2 6x & Greater Wood Beams & Posts: DF-L# 1 Glulam Beams: 24F -V4 PSL Beams: Fb =2,900 psi, FV= 328psi, E =2.0 Million TS /LSL Beams: Fb =2325 psi, FV= 460psi, E =1.55 Million Design Assumptions 1. Allowable soil bearing pressure (qa) : .1500 psf Assumed 2. All manufactured trusses, joists, and flush beams u.n.o. shall be designed by others. Structural Analysis Software Used: Mathcad 11 Microsoft Excel 2000 WoodWorks - Sizer version 2002 Bently RAM Advanse Harper Project: SUMMERCREEK TOWNHOMES UNIT A "HP:' Houf Peterson. Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS • PLARNERS Designer: AMC Date: Pg. # I. ANOSCAPE ARCNITEC ES• SURVEYOR2 DESIGN CRITERIA 2007 Oregon Structural Specialty Code & ASCE 7 -05 Roof Dead Load RFR := 2.5.psf Framing RPL := 1.5•psf Plywood RRF := 5•psf Roofing RME := 1.5•psf Mech & Elec RMS := 1 •psf Misc RCG := 2.5.psf Ceiling RIN := 1 •psf Insulation RDL = 15.psf Floor Dead Load FFR := 3.psf Framing FPL := 4.psf Sheathing FME := 1.5•psf Mech & Elec FMS := 1.5•psf Misc FIN := .5-psf Finish & Insulation FCLG := 2.5.psf Ceiling FDL = 13-psf Wall Dead Load WOOD EX Wall := 12•psf INT_Wall := 10•psf Roof Live Load RLL := 25•psf Floor Live Load FLL := 40•psf • !fT' LI Harper Project: SUMMERCREEK TOWNHOMES UNIT A HP Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. E NO • PLANNERS Designer: AMC Date: Pg. # LANDSCAPE A RCNITECTS•SURVEYOR6 Transverse Seismic Forces Site Class = D Design Catagory = D Building Occupancy Category: II Weight of Structure In Transverse Direction Roof Weight Roof. Area := 843112.1.12 RF� := RDL•Roof Area RFw-I- = 14162•lb Floor Weight Floor Area2nd := 64741 FLRWT2nd := FDL•Floor Area2nd FLRV r 2nd = 8411.lb Floor Area3rd 65241 FLRVVI.3 FDL.Floor_Area3 FLRWT3rd = 8476•lb Wall Weight EX Wall Area: (2203).ft INT _ Wall_Area := (906)• 1 WALLVVr := EX_Wa11 + Wall INTWallArea WALLw -r = 35496•lb WTTOTJL = 66545 lb Equivalent Lateral Force Procedure(12.8, ASCE 7 -05) h := 32 Mean Height Of Roof I := 1 Component Importance Factor (11.5, ASCE 7 -05) ,:= 6.5 Responce Modification Factor (Table 12.2 -1, ASCE 7 -05) C :_ .02 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) x := .75 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) Period T := C T = 0.27 < 0.5 (EQU 12.8 -7, ASCE 7 -05) S1 := 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. . (Chapter 22, ASCE 7- 05)...or S := 0.942 Max EQ, 5% damped, spectral responce acceleration at short period From Figures 1613.5 (1) &(2) F := 1.123 Acc -based site coefficient @ .3 s- period (Table 11.4 -1, ASCE 7 -05) F, := 1.722 VeI -based site coefficient @ 1 s- period (Table 11.4 -2, ASCE 7 -05) : Harper Project: SUMMERCREEK TOWNHOMES UNIT A . r 1 P Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: - Pg. # LANDSCAPE ARC YITEC TS •SLSRVEVORS S MS Fa SMS = 1.058 (EQU 11.4 -1, ASCE 7 -05) 2 -SMS Sd := 3 Sds = 0.705 (EQU 11.4 -3, ASCE 7 -05) SM1 := F S1 SM1 = 0.584 (EQU 11.4 -2, ASCE 7 -05) 2 •SM1 Sdl := 3 Sdl = 0.389 (EQU 11.4 -4, ASCE 7 -05) Cst := Sds Cst = 0.108 (EQU 12.8 -2, ASCE 7 -05) R ...need not exceed... Cs := Shc • Ie Cs = 0.223 (Q ) (EQU 12.8 -3 ASCE 7 -OS Ta R ...and shall not be less then... C1 := if(0.044- Sd -I <0.01,0.01,0.044•Sd ( 0.5-S1•Iel (EQU 12.8 -5 &6, ASCE 7 -05) C2:= if l S1 <0.6,0.01, J R Cs := if(Ci > C2,C1 ,C2) Cs = 0.031 Cs := if (Cst < Cs Cs if (Cst < Cs , Cst, Cs Cs = 0.108 V := Cs-WTTOTAL V = 72201b (EQU 12.8 -1, ASCE 7 -05) E := V•0.7 E = 5054 1b (Allowable Stress) / 1-- \3 . Harper Project: SUMMERCREEK TOWNHOMES UNIT A B P Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. _ -� ENGMEERS • PLANNERS Designer: AMC Date: Pg. # LANDSCAPE ARCNiTECTS• SVPVEYORS Transverse Wind Forces (Method 1 - Simplified Wind Procedure per ASCE 7 -05) Basic Wind Speed: 100 mph (3 Sec Gust) Exposure: B Building Occupancy Category: II I := 1.00 Importance Factor (Table 6 -1, ASCE 7 -05) h = 32 Mean Roof Height X := 1.00 Adjustment Factor (Figure 6 -3, ASCE 7 -05) Smaller of... a2 := 2•.1.20•ft Zone A & B Horizontal Length a2 — 4 ft (Fig 6 -2 note 10, ASCE 7 -05) or .4-11n-2-ft a2 =25.6ft but not less than... a := 3'2'ft a = 6 ft Wind Pressure (Figure 6 -2, ASCE 7 -05) Horizontal PnetzoneA 19.9•psf PnetzoneB 3.2•psf Pnetzonec == 14.4•psf PnetzoneD 3.3•psf Vertical PnetzoneE 8.8 psf PnetzoneF —12•W PnetzoneG —6.4 psf PnetzoneH 9.7•psf Basic Wind Force PA := PnetzoneA'Iw.X PA = 19.9•psf Wall HWC PB := PnetZOneB'IW.X Pg = 3.2 - psf Roof HWC PC := PnetzoneC'Iw'X PC = 14.4.psf Wall Typical PD := PnetzoneD'IN X PD = 3.3•psf Roof Typical PE := PnetzoneE'Iw'X PE = — 8.8 -psf PF := PnetzoneF'Iw'X PF = — 12•psf PG := PnetzoneG'Iw•X PG = — 6.4•psf PH := PnetzoneH' Iw' X PH = —9.7.psf LEI Harper Project: SUMMERCREEK TOWNHOMES UNIT A HP Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEER$ • .LANNER$�� Designer: AMC Date: Pg. # LANDSCAPE ARCNtTEC T$•SURVEV ORS Determine Wind Sail In Transverse Direction WSAiLZoneA (41 + '59 + 29)4ft WSA=ZoneB ( 1'9 +.0 + 23)•ft 2 WSJ Zonec (391 + 307 + 272)•ft WSAILZoneD := (0 + 0 + 5)4 1 WA := WSAILZoneA WA = 25671b WB WSJ- ZoneB'PB WB = 134 Ib WC := WSAII- ZoneC'PC WC = 139681b WD WSAI-ZoneD'PD WD = 16 Ib Wind_Force := WA + WB + WC + WD Wind_Force := 10•psf- (WSAILZ + WSAILZoneB + WSAILZoneC + WSAI-ZoneD) Wind_Force = 16686 Ib Wind_Force = 114601b WSAII-ZoneE 94•ft2 WSAILZoneF 108'ft WSAILZoneG 320•ft2 W SAILZoneH 320 • ft WE := WSAILZoneE'PE WE = —8271b WF := WSAILZoneF'PF WF = —1296 Ib WG := WSAII- ZoneG'PG WG = — 20481b WH := WSAILZoneH'PH WH = — 31041b Upliftnet WF + WH + (WE + WG) + RDL f WSAILZoneF + WSAILZoneH + (WSAILZoneE + WSAILZoneG) }. 6.1 . 12 Upliftnet = 12121b (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN CALCULATION Harper Project: SUMMERCREEK TOWNHOMES UNIT A P Houf Peterson C lient: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: Pg. # LANDSCAPE ARCNI IECTS•SURVEYORS Longitudinal Seismic Forces Site Class = D Design Catagory ='D Building Occupancy Category: II Weight of Structure In Longitudinal Direction Roof Weight Roof Area = 944 ft RDL•Roof Area RFw-r = 14162•1b Floor Weight Floor_Area2 = 647 ft Fes:= FDL•Floor Area2nd FLRwu = 8411.1b Floor_Area3 = 652 ft • oc c i= FDL.Floor_Area3 FLRw - r3rd = 8476.1b Wall Weight (2203): ft INT Wall Area = 906 ft aaj EX Wall Area + 1NT Wa1I INT_Wall_Area WALLwr = 35496.1b WTTOTAL = 66545 lb Equivalent Lateral Force Procedure(12.8, ASCE 7 -05) h = 32 Mean Height Of Roof le = 1 Component Importance Factor ' (11.5, ASCE 7 -05) A,:= 6.5 Responce Modification Factor (Table 12.2 -1, ASCE 7 -05) C = 0.02 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) x = 0.75 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) Period := C T = 0.27 < 0.5 (EQU 12.8 -7, ASCE 7 -05) S1 = 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. (Chapter 22, ASCE 7- 05)...or S = 0.942 Max EQ, 5% damped, spectral responce acceleration at short period From Figures 1613.5 (1) &(2) F = 1.123 Acc -based site coefficient @ .3 s- period (Table 11.4 -1, ASCE 7 -05) F„ = 1.722 Vel -based site coefficient @ 1 s- period (Table 11.4 -2, ASCE 7 -05) 4- U -• Harper Project: SUMMERCREEKTOWNHOMES UNIT A • HPI :• Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: Pg. # LANDSCAPE ARCRI TECT 9• SURVE ?ORS 5 g F S SMs = 1.058 (EQU 11.4 -1, ASCE 7 -05) 2 •SMS 5:= 3 Sd = 0.705 (EQU 11.4 -3, ASCE 7 -05) = F Si SM1 = 0.584 (EQU 11.4 -2, ASCE 7 -05) 2 - SM1 ACIJA Sd1 = 0.389 (EQU 11.4 -4, ASCE 7 -05) := S R Cst = 0.108 (EQU 12.8 -2, ASCE 7 -05) ...need not exceed... Shc Cs = 0.223 (EQU 12.8 -3, ASCE 7 -05) �= T a -R ...and shall not be less then... := if(0.044•Sd < 0.01, 0 . 01 , 0 . 044 •Sds - Ie) 0.5 -S1 -Ie J (EQU 12.8 -5 &6, ASCE 7 -05) ( ifS1 <0.6,0.01, '�"• ` R if(C1 > C2,C1,C2) Csmin = 0.031 Cs .= if(Cst < Csmin,Csmin,if(Cst < Csmax,Cst,Csmax)) Cs = 0.108 V := Cs- WTTOT:4L V = 72201b (EQU 12.8 -1, ASCE 7 -05) E := V -0.7 E = 50541b (Allowable Stress) L`)r Harper Project: SUMMERCREEK TOWNHOMES UNIT A e Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. EY.GINEERS • PLANNERS Designer: AMC Date: Pg. # LANDSCAPE APGN/TECfS• SL:RVEYORS Longitudinal Wind Forces (Method 1 - Simplified Wind Procedure per ASCE 7 -05) Basic Wind Speed: 110 mph (3 Sec Gust) Exposure: B Building Occupancy Category: II I = 1.0 Importance Factor (Table 6 -1, ASCE 7 -05) h = 32 Mean Roof Height X = 1.00 Adjustment Factor (Figure 6 -3, ASCE 7 -05) Smaller of... = 2- .1.20. ft Zone A & B Horizontal Length = 4 ft (Fig 6 -2 note 10, ASCE 7 -05) or „9?,,,;-= .4•h,;2•ft a2 =25.6ft but not less than... := 3.2 -ft 6 ft a = Wind Pressure (Figure 6 -2, ASCE 7 -05) Horizontal PnetzoneA = 19.91psf PnetzoneB = 3.2•psf PnetzoneC = 14.4•psf PnetzoneD = 3.3•psf Vertical PnetzoneE = —8.8 -psf PnetzoneF = —12 -psf PnetzoneG = —6.4 -psf PnetzoneH = —9.7•psf Basic Wind Force ,:= PnetzoneA'Iw -X PA = 19.9•psf Wall HWC ,AA '_ PnetzoneB•Iw'X PB = 3.2•psf Roof HWC = PnetzoneC•Iw -X PC = 14.4 -psf Wall Typical Pa:= PnetzoneD•Iw-X PD = 3.3•psf Roof Typical Pte= PnetzoneE•IW.X PE _ — 8.8 -psf ,:= PnetzoneF'Iw.X PF = — 12 -psf Pte:= PnetzoneG PG = — 6.4•psf Pte:= PnetzoneH•Iw-X PH = —9.7 -psf Harper Project: SUMMERCREEK TOWNHOMES UNIT A P t. Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: Pg. # LANDSCAPE A RC'!ITECTS•SURVETORS Determine Wind Sail In Longitudinal Direction W II, :_ (48 +159 + 40)•ft Nw'Rel;,:= (10 + 0 + 44)4ft W (91 + 137 + 67)41 Ma:= (43 + 0 + 113)•ft Yes= WSAILZoneA'PA WA = 29251b W = WSAI-ZoneB'PB WB = 173 Ib ,:= WSJ- ZoneC'PC WC = 4248 Ib Y41, := WSAILZoneD'PD WD = 515 Ib i d Fore := WA + WB + WC + WD Wi d o ce 10. psf•(WSAILZoneA + WSAILZoneB + WSAILZoneC + WSAILZoneD) Wind Force = 7861 Ib Wind_Force = 6520 Ib = 148.12 2 a§41 120-ft N WSAI := 323•ft , : 252. ft WSAILZoneE'PE WE = – 13021b WSAIZoneF'PF WF = – 14401b = W SAILZoneG' PG W`, = –2067 Ib = WSAILZoneH'PH WH = –2444 lb 1N := WF + WH + (WE + WG) + RDL•[WSAILZoneF + WSAILZoneH + (WSAILZoneE + WSAILZoneG)1'.6.1.12 Uplif net = 12431b (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN CALCULATION /9— 191. Harper Houf Peterson Righellis Pg #: Transverse Wind Line Shear Distribution ASCE 7 -05, section 6.4 (Method 1 - simplified) Design Criteria: Basic Wind Speed = 100 mph Wind Exposure = B (Section 6.5.6, ASCE 7 -05) Mean. Roof Height, H (ft) = 32 Roof Pitch = • 6 /12 . Building Category= II (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf X= 1.00 Iw= 1.00 Wind Sail Wind Net Design Wind Pressure (psf) (ft2) Pressure (Ibs) ,�...F . .. Zone A = 19.9 129 Wall High Wind Zone Horizontal Zone B = 3.2 42 134 Roof High Wind Zone Wind Forces Zone C = 14.4 970 13968 Wall Typ Zone Zone D = 3.3 5 17 Roof Typ Zone Zone E = -8.8 94 -827 Roof Windward High Wind Zone Vertical Zone F = -12.0 108 -1296 Roof Leeward High Wind Zone Wind Forces Zone G = -6.4 320 -2048 Roof Windward Typ Wind Zone Zone H = -9.7 320 -3104 Roof Leeward Typ Wind Zone Total Wind Force =l 16686 Ibs I Use to resist wind uplift: Roof Only Total Exterior Wall Area= 2203 ft Uplift due to Wind Forces= -7275 Ibs Resisting Dead Load = 8472 lbs E =I 1197 Lbs...No Net Uplift I Wind Distribution Tributary to Diaphragms Wind Sail Tributary To Diaphragm (ft Zone A Zone B Zone C Zone D Main Floor 41 19 391 0 ,Upper Floor 59 0 307 0 Main Floor Diaphragm Shear = 6507 lbs Upper Floor Diaphragm Shear = 5595 lbs Roof Diaphragm Shear = 4584 Ibs . Wind Distribution To Shearwall Lines MAIN FLOOR UPPER FLOOR ROOF Tributary Line Shear Tributary Line Shear Tributary Line Shear Wall Line Diaphragm Diaphragm Diaphragm (lbs) (Ibs) (lbs) _ (ft) Width Width (ft ) Width (ft ) A 13.08 1737 18 2797 19 2323 Al 24.50 3254 0 0 0 0 B 11.42 1516 18 2797 18.5 2261 1= 49 6507 36 5595 37.5 4584 /I- L 0 Harper Houf Peterson Righellis Pg #: Transverse Seismic Line Shear Distribution Seismic Design Category = D Occupancy Category = II Site Class = D S1 = 0.34 Ss = 0.94 Importance Factor = 1.00 Table 11.5 -1, ASCE 7 -05 Structural System, R = 6.5 Table 12.2 -1, ASCE 7 -05 Ct = 0.020 Other Fa = 1.12 Fv = 1.72 Mean Roof Height, H (ft) = 32 • Period (T = 0.27 Equ. 12.8 -7, ASCE 7 -05 k = 1.00 12.8.3, ASCE 7 -05 SMg • 1.06 Equ. 11.4 -1, ASCE 7 -05 SMI= 0.58 Equ. 11.4 -2, ASCE 7 -05 SD5= 0.71 Equ. 11.4 -3, ASCE 7 -05 S 0.39 Equ. 11.4-4, ASCE 7 -05 . Cs = 0.11 Equ. 12.8 -2, ASCE 7 -05 Csmin = s 0.01 Equ. 12.8 -5 & 6, ASCE 7 -05 ' Csmax = 0.22 Equ. 12.8 -3, ASCE 7 -05 Base Shear coefficient, v = 0.076 • Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height (ft) = 8 Floor 3 Diaphragm Height (ft) = 18 Roof Diaphragm Height (ft) = 32 Floor 2 Wt (Ib)= 8411 ' Floor 3 Wt (Ib)= 8476 Roof Wt (Ib) = 14162 Wall Wt (Ib) = 35496 Trib. Floor 2 Diaphragm Wt (Ib) = 22609 ' Trib. Floor 3 Diaphragm Wt (Ib) = 22674 Trib. Roof Diaphragm Wt (Ib) = 21261 Vertical Dist of Seismic Forces Cumulative % total of base shear Rho Check to Shearwalls (Ibs) I to shearwalls Req'd7 V floor 2 (Ib) = 720 100.0% Yes Vfl 3 (Ib) = 1625 85.8% Yes Vroot (lb) = 2709 53.6% Yes Shear Distribution To Wall Lines Wall Line Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line Roof Line • Floor 2 Floor 3 Roof Shear Shear Shear sq ft sq ft sq ft Ibs Ibs Ibs A 102 361 394 114 897 1266 Al 432 0 0 481 0 0 B 113 ,.293 449 126 728 1443 Sum 647 654 843 720 1625 2709 Total Base Shear* = ( 5054 LB I ' *Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. /4 -- Lk\ ,------ Harper Houf Peterson Righellis Pg #: Longitudinal Wind Line Shear Distribution ASCE 7 -05, section 6.4 (Method 1 - simplified) Design Criteria: Basic Wind Speed = 100 mph • Wind Exposure = B (Section 6.5.6, ASCE 7 -05) Mean Roof Height, H (ft) = 32 Roof Pitch = 6 /12 Building Category= II (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf = 1.00 Iw= 1.00 Wind Sail Wind Net Design Wind Pressure (psf) () Pressure (Ibs) Zone A = 19.9 147 • 2925 Wall High Wind Zone Horizontal Zone B = 3.2 54 173 Roof High Wind Zone Wind Forces Zone C = 14.4 295 4248 Wall Typ Zone Zone D = 3.3 156 515 Roof Typ Zone Zone E = -8.8 148 -1302 Roof Windward High Wind Zone Vertical Zone F = -12.0 120 -1440 Roof Leeward High Wind Zone Wind Forces Zone G = -6.4 323 -2067 Roof Windward Typ Wind Zone Zone H = -9.7 252 -2444 Roof Leeward Typ Wind Zone Total Wind Force =l 7861 lbs Use to resist wind uplift Roof Only Total Exterior Wall Area= 2203 ft Uplift due to Wind Forces= -7254 Ibs Resisting Dead Load = 8483 Ibs • E_1 1229 Lbs...No Net Uplift Wind Distribution Tributary to Diaphragms Wind Sail Tributary To Diaphragm (ft Zone A Zone B Zone C Zone D Main Floor 48 10 91 43 Upper Floor 59 0 137 0 Main Floor Diaphragm Shear = 2440 Ibs Upper Floor Diaphragm Shear = 3147 Ibs Roof Diaphragm Shear = 2275 Ibs Wind Distribution To Shearwall Lines MAIN FLOOR UPPER FLOOR ROOF Tributary Line Shear Tributary Line Shear Tributary Line Shear Wall Line Diaphragm Diaphragm Diaphragm Width (ft) (Ibs) Width ( ft ) (Ibs) Width (ft) (Ibs) 1 10 1220 10 1573 10 1137 2 10 1220 10 1573 10 1137 E= 20 2440 20 3147 " 20 2275 Harper Houf Peterson Righellis Pg #: Longitudinal Seismic Line Shear Distribution Seismic Design Category = D Occupancy Category = 11 Site Class = D S1 = 0.34 Ss = 0.94 Importance Factor = 1.00 Table 11.5 -1, ASCE 7 -05 Structural System, R = 6.5 Table 12.2 -1, ASCE 7 -05 Ct = 0.020 Other Fa = 1.12 Fv = 1.72 Mean Roof Height, H (ft) = 32 Period (T = 0.27 Equ. 12.8 -7, ASCE 7 -05 k = 1.00 12.8.3, ASCE 7 -05 SMg 1.06 Equ. 11.4 -1, ASCE 7 -05 S 0.58 Equ. 11.4 -2, ASCE 7 -05 SOS= 0.71 Equ. 11.4 -3, ASCE 7 -05 SDI= 0.39 Equ. 11.4 -4, ASCE 7 -05 Cs = 0.11 Equ. 12.8 -2, ASCE 7 -05 Csmin = 0.01 Equ. 12.8 -5 & 6, ASCE 7 -05 Csmax = 0.22 Equ. 12.8 -3, ASCE 7 -05 Base Shear coefficient, v = 0.076 Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height (ft) = 8 Floor 3 Diaphragm Height (ft) = 18 Roof Diaphragm Height (ft) = 32 Floor 2 Wt (Ib)= 8411 Floor 3 Wt (Ib)= 8476 Roof Wt (Ib) = 14162 Wall Wt (Ib) = 35496 Trib. Floor 2 Diaphragm Wt (Ib) = 22609 Trib. Floor 3 Diaphragm Wt (Ib) = 22674 - Trib. Roof Diaphragm Wt (Ib) = 21261 Vertical Dist of Seismic Forces I Cumulative % total of base shear I Rho Check to Shearwalls (Ibs) to shearwalls Req'd? Vfl 2 (Ib) = 720 100.0% Yes Vnoor 3 (lb) = 1625 85.8% Yes Vr (Ib) = 2709 53.6% Yes Shear Distribution To Wall Lines Wall Line Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line Roof Line Floor 2 Floor 3 Roof Shear Shear Shear sgft sgft sgft Ibs Ibs Ibs 1 286 291 415 318 725 1334 2 361 361 428 402 900 1375 Sum 647 652 -843 720 1625 2709 Total Base Shear* = I 5054 LB *Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. /4z--- L,..\e-- Harper Houf Peterson Righellis Pg #: . Shearwall Analysis • Based on the ASCE 7 -05 Transvere Shearwalls Line Load Controlled By: Wind Shear H L Wall H/L Line Load Line Load Line Load Dead V Panel Shear Panel M MR Uplift. Panel Lgth: From 2nd Flr. From 3rd Flr. From Roof Load Sides Factor Type T (ft) (ft) (ft) ht [ k ht I k ht I k (kit) (plf) (ft -k) (ft -k) (k) 101 Not Used 102 7 1.75 3.50 4.00 ; ., ' 8.00 1.74 18.00 2.80 27.00 2.32 1959 Double 1.40 NG 103 7 1.75 3.50 4.00 8.00 1.74 8.00 2.80 8.00 2.32 1959 Double 1.40 NG 103a 7 4.00 4.00 1.75 OK 8.00 3.25 814 Single 1.40 IV 104 8 4.50 10.50 1.78 OK 8.00 1.52 8.00 2.80 8.00 2.26 626 Single 1.40 III 105 8 3.00 10.50 2.67 OK 8.00 , 1.52 8.00 2.80 8.00 2.26 626 Single " 1.40 III 106 8 3.00 10.50 2.67 ox 8.00 1.52 8.00 2.80 8.00 2.26 626 Single 1.40 III 109 8 4.58 17.08 1.75 ox 8.00 1.74 18.00 2.80 27.00 2.32 401 Single 1.40 II 110 8 12.50 17.08 0.64 ox 8.00 1.74 8.00 2.80 8.00 2.32 401 Single 1.40 II . ' 111 8 4.50 7.25 1.78 ox 8.00 1.52 8.00 2.80 8.00 , 2.26 907 Double 1.40 VI 112 4.75 1.38 7.25 3.45 ox 8.00 1.52 8.00 2.80 8.00 2.26 907 Double 1.40 VI 113 4.75 1.38 7.25 3.45 OK 8.00 1.52 8.00 2.80 8.00 2.26 907 Double 1.40 VI 201 9 3.92 10.79 2.30 ox 9.00 2.80 18.00 2.32 474 Single 1.40 II 201a 9 4.17. 10.79 2.16 ox' 9.00 2.80 18.00 2.32 474 Single 1.40 II 201b 9 2.71 10.79 3.32 OK 9.00 2.80 18.00. 2.32 474 Single 1.40 II 202A 9 2.96 11.96 3.04 OK 9.00 2.80 18.00 2.26 423 Single 1.40 II 202B 9 3.00 11.96 3.00 OK 9.00 2.80 18.00 2.26 423 Single 1.40 Il 203 9 3.00 11.96 3.00 ox 9.00 2.80 18.00 2.26 423 Single 1.40 II 204 9 3.00 11.96 3.00 ox 9.00 2.80 18.00 2.26 423 Single 1.40 II 301 8 3.92 - 13.96 2.04 OK 8.00 2.32 166 Single 1.40 I 302 8 5.79 13.96 1.38 ox 8.00 2.32 166 Single 1.40 I 303 8 4.25 13.96 1.88 ox 8.00 2.32 . 166 Single 1.40 I 304 8 2.96 5.96 2.70 OK 8.00 2.26 . 379 Single 1.40 11 305 8 3.00 5.96 2.67 OK 8.00 2.26 379 Single 1.40 11 Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load / Total L Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear • Shear Application ht . Mr (Resisting Moment) = Dead Load • L * 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) -- L \ Harper Houf Peterson Righellis Pg #: 1 . Shearwall Analysis Based on the ASCE 7 -05 fransvere Shearwalls Line Load Controlled By: Seismic Shear H L Wall H/L Line Load Line Load Line Load Dead V Rho'V % Story # Panel Shear Panel M MR Uplift Panel Lgth. From 2nd Flr. From 3rd Flr. From Roof Load Strength Bays Sides Factor Type T (ft) (ft) (ft) ht I k ht I k ht I k (klf) (pif) (pll) (ft -k) (ft -k) (k) 101 - Not Used 102 7 1.75 3.50 4.00 8.00 0.11 18.00 0.90 27.00 1.27 651 846 0.10 0.50 Double 0.50 NG 103 7 • 1.75 3:50 4.00 8.00 0.11 8.00 0.90 8.00 1.27 651 846 0.10 0.50 Double 0.50 NG 103a 7 4.00 4.00 1.75 OK 8.00 0.48 0.00 0.00 120 156 0.22 1.14 Single 1.00 I 104 8 4.50 10.50 1.78 oK 8.00 0.13 8.00 0.73 8.00 1.44 219' 284 0.25 1.13 Single 1.00 II 105 8 3.00 10.50 2.67 oK 8.00 0.13 8.00 0.73 8.00 1.44 219 284 0.17 0.75 Single 0.75 III 106 ' 8 3.00 1050 2.67 OK 8.00 ' 0.13 8.00 0.73 8.00. 1.44 _ 219 _ 284 _ 0.17 0.75 Single 0.75 111 109 8 4.58 17.08 1.75 OK 8.00 0.11 18.00 0.90 27.00 1.27 134 174 0.25 1.15 Single 1.00 I 110 8 12.50 17.08 0.64 OK 8.00 0.11 8.00 0.90 8.00 1.27 134 174 NA 3.13 Single 1.00 . I. _ 111 8 4.50 7.25 1.78 OK 8.00 0.13 8.00 0.73 8.00 1.44 316'. 411 0.25 1.13 Single 1.00 III 112 5 1.38 7.25 345 OK 8.00. 0.13 8.00 0.73 8.00 1.44 316. 411 0.08 0.58 Double 0.58 VII 113 5 1.38 7.25 3.45 OK 8.00 0.13 8.00 0.73 8.00 1.44 316 411 0.08 0.58 Double 0.58 VII _ 201 9 3.92 10.79 2.30 OK . 9.00 0.90 18.00 1.27. _ 200 261 0.17 0.87 Single 0.87. II 201a 9 4.17 10.79 2.16 OK 9.00 0.90 18.00 1.27 200 261 0.18 ' 0.93 Single 0.93 II 20lb 9 2.71 10.79 3.32 OK 9.00 0.90 18.00 1.27 200 261 0.12 0.60 Single 0.60 III 202A 9 2.96 11.96 3.04 OK 9.00 0.73 18.00 1.44 182 236 0.13 0.66 Single 0.66 111 202B 9 3.00 11.96 3.00 oK 9.00 0.73 18.00 1.44 _ 182 236 0:13 0.67 Single 0.67 III 203 9 3.00 11.96 3.00 OK 9.00 0.73 18.00 1.44 181 236 0.13 0.67 Single 0.67 III 204 9 3.00 11.96 3.00 'OK ' , _ 9.00 0.73 18.00 1.44 181 236 _ 0.13 0.67 Single _ 0.67 III 301 8 3.92 _ 13.96 2.04 OK 8.00 1.27 91 118 0.20 0.98 Single 0.98 I 302 8 5.79 13.96 1.38 oK 8.00 1.27 _ 91 118 0.29 1.45 Single 1.00 I 303 8 4.25 13.96 1.88 OK 8.00 1.27 91 118 0.21 1.06 Single 1.00 I 304 8 2.96 5.96 2.70 OK 8.00 1.44 242 315 0.15 0.74 Single 0.74 III • 305 8 3.00 . 5.96 2.67 OK 8.00 1.44 242 315 0.15 0.75 Single 0.75 III . Rho Calculation Does the 1st floor shearwalls resist more than 35% of the total transverse base shear? Yes Does the 2nd floor shearwalls resist more than 35% of the total transverse base shear? Yes Does the 3rd floor shearwalls resist more than 35% of the total transverse base shear? Yes Total 1st Floor Wall Length = 18.00 Total # 1st Floor Bays = 4.97 Are 2 bays minimum present along each wall line? No 1st Floor Rho = 1.3 Total 2nd Floor Wall Length = 22.75 Total # 2nd Floor Bays = s Are 2 bays minimum present along each wall line? No 2nd Floor Rho = 1.3 • Total 3rd Floor Wall Length = 19.92 Total # 3rd Floor Bays = 5 Are 2 bays minimum present along each wall line? No 3rd Floor Rho = 1.3 • Spreadsheet Column Definitions & Formulas L = Shear Panel Length - H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load•Rho / Total L % Story Strength = L / Total Story L (Required for walls with H/L > 1.0, for use in Rho check) # Bays = 2•L/H Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear • Shear Application ht Mr (Resisting Moment) = Dead Load * L • 0.5 • (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) Harper Houf Peterson Righellis Pg #: • Shearwall Analysis Based on the ASCE 7 -05 Longitudinal Shearwalls - Line Load Controlled By: Wind " Shear H L Wall H/L Line Load Line Load Line Load Dead V Panel Shear Panel M MR Uplift Panel Lgth. From 2nd Flr. From 3rd Flr. From Roof Load Sides Factor Type T (ft) (ft) (ft) ht k ht k ht k (klf) (plf) (ft-k) (ft -k) (k) 107 8 15.50 15.50 0.52 OK 10.00 1.22 18.00 1.57 27.00 1.14 1.03 254 Single 1.40 I 71.21 123.49 - -0.19 108 8 15.50 15.50 0.52 OK . 10.00 1.22 18.00 1.57 27.00 1.14 1.03 254 Single 1.40 I 71.21 123.49 -0.19 1 205 9 13.00 13.00 0.69 ox I 9.00 1.57 1 18.001 1.14 0.70 208 Single 1.40 I 34.621 59.15 -0.07 I 206 9 13.00 13.00 0.69 ox 9.00 1.57 18.00 1.14 0.70 208 Single 1.40 I 34.62 59.15 -0.07 1 306 8 10.00 10.00 0.80 ox I I 8.00 I 1.14 0.29 114 - Single 1.40 I 9.10 14.40 0.05 I 307 8 10.00 10.00 0.80 ox 8.00 1.14 0.29 114 Single 1.40 I 9.10 14.40 0.05 Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load / Total L Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear • Shear Application ht Mr (Resisting Moment) = Dead Load * L2 • 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo-Mr) / (L - 6 in) /9 ---- U,:, Harper Houf Peterson Righellis Pg #: Shearwall Analysis Based on the ASCE 7 -05 • Longitudinal Shearwalls Line Load Controlled By: Seismic Shear H L Wall H/L Line Load Line Load Line Load Dead V Rho• V % Story # Panel Shear Panel Mo MR Uplift Panel Lgth. From 2nd Flr. From 3rd Flr. From Roof Load Strength Bays Sides Factor Type T (ft) (ft) (ft) ht k ht k ht k (kit) (plf) (plf) (ft -k) (ft -k) (k) 107 8 15.50 15.50 0.52 OK 10.00 0.32 18.00 0.73 27.00 1.33 1.09 153 153 NA 3.88 Single 1.00 1 52.25 130.70 -1.74 108 8 15.50 15.50 0.52 OK 10.00_ 0.40 18.00 0.90 27.00 1.38 1.09 173 ' 173 NA 3.88 Single 1.00 1 57.35 130.70 -1.40 I 205 I 9 13.00 13.00 0.691 oK I I 9.001 0.73 1 18.00 133 0.76 158 158 NA 2.89 I Single 1.00 .I 30.541 64.221 -0.64 I 2 9 13.00 13.00 0.69 OK 9.00 0.90 18.00 1.38 0.76 175 175 NA 2.89 Single 1.00 I 32.85 64.22 -0.45 306 307 8 8 10.00 10.00 1 10.00 10.00 0.80 0.80 I oK oK I 1 8.00 8.00 1.33 1.38 0.35 0.35 . 133 138 I 133 138 I NA NA 2.50 2.50 I Single I ' 1.00 1.00 I I 10.67 11.00 1 17:40 17.40 0.02 0.06 I Rho Calculation Does the 1st floor shearwalls resist more than 35% of the total longitudinal base shear? Yes Does the 2nd floor shearwalls resist more than 35% of the total longitudinal base shear? Yes Does the 3rd floor shearwalls resist more than 35% of the total longitudinal base shear? Yes • Total 1st Floor Wall Length = 3100 Total # 1st Floor Bays = 7.75 Are 2 bays minimum present along each wall line? Yes 1st Floor Rho = 1.0 • Total 2nd Floor Wall Length = 26.00 Total # 2nd Floor Bays = 6 Are 2 bays minimum present along each wall line? Yes 2nd Floor Rho = 1.0 Total 3rd Floor Wall Length = 20.00 Total # 3rd Floor Bays = s Are 2 bays minimum present along each wall line? Yes 3rd Floor Rho = 1.0 Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load'Rho / Total L % Story Strength = L / Total Story L (Required for walls with H/L > 1.0, for use in Rho check) # Bays = 2•L/H Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear • Shear Application ht Mr (Resisting Moment) = Dead Load • L 0.5 • (.6 wind or .9 seismic) Uplift T = (Mo-Mr) / (L - 6 in) • 6 .--- ‘.,....\ '..)-- Harper Houf Peterson Righellis Pg #: SHEAR WALL SUMMARY' Transvere Shearwalls Panel Wall Shear Wall Type Good For Uplift Simpson Holdown Good For V (plf) (Plfl (lb) (lb) 101 Not Used 102 Simpson Strongwall 103 Simpson Strongwall 103a 814 1/2" APA Rated Plyw'd w/ 8d Nails @ 2/12 833 104 626 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 638 105 626 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 638 106 626 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 638 109 401 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 110 401 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 111 907 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 990 112 907 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 990 113 907 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 990 201 474 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 201a 474 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 201b 474 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 202A 423 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 202B 423 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 203 423 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 204 423 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 301 166 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 302 166 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 303 166 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 , 304 379 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 305 379 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design Toads. 4 - ���� Harper Houf Peterson Righellis Pg #: SHEAR WALL SUMMARY' Longitudinal Shearwalls Panel Wall Shear Wall Type Good For Uplift Simpson Holdown Good For V (Plfl (PIO OW (lb) k 107 254 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 -192 Simpson None 0 108 254 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 -192 Simpson None 0 205 208 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 -69 Simpson None 0 206 208 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 -69 _ Simpson None 0 306 133 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 242 48 Simpson None 0 307 138 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 242 59 Simpson None 0 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design loads. /4--- L \C\ Transverse Wind Uplift Design . • Unit A Shear H Joist L Wall Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total Total Panel Height Lgth. From 2nd From 3rd From Wall Load (not Point Point ning Moment Moment Floor Shear @ Floor Shear @ Stacking @ Stacking From From Uplift Uplift FIr. Fir. Roof Shear including Load Load Momen @ Left ® Right Left Right Left Side of @ Right Wall Wall @ Left @ floors @ Left @ t House Side of Above Above Right • above if Right House @ Left @ walls Right stack) (ft) (ft) (ft) (ft) k k k k plf klf k k kft kft kft k k k k k k 102 8 1.1667 1.75 3.50 1.737 2.8 2.32 6.857 1959 0.152 0.192 0.832 27.43 0.57 1.69 21.31 20.79 21.31 20.79 103 8 1.1667 1.75 3.50 1.737 2.8 2.32 6.857 1959 0.152 0.832 0.192 27.43 1.69 0.57 20.79 21.31 20.79 21.31 103A 8 1.1667 4.00 4.00 3.254 3.254 814 0.04 2.016 1.664 26.03 8.38 6.98 6.00 6.24 6.00 6.24 104 8 1.1667 4.50 10.50 1.516 2.8 2.26 6.576 626 0.1 0.8 0.078 25.08 4.61 1.36 5.58 6.06 5.58 6.06 105 8 1.1667 3.00 10.50 1.516 2.8 2.26 6.576 626 0.048 0.252 0.156 16.72 0.97 0.68 6.45 6.52 6.45 6.52 106 8 1.1667 3.00 10.50 1.516 2.8 2.26 6.576 626 . 0.048 0.156 0.252 16.72 0.68 0.97 6.52 6.45 6.52 6.45 109 8 1.1667 4.58 17.08 1.737 2.8 2.32 6.857 401 0.152 0.192 0.156 16.31 2.47 2.31 3.63 3.66 201L 201R 4.82 5.09 8.45 8.75 110 .8 1.1667 12.50 17.08 1.737 2.8 2.32 6.857 401 0.096 0.156 0.192 44.52 9.45 9.90 3.24 3.21 201 aL 201 bR 4.95 4.88 8.18 8.09 111 8 1.1667 4.50 7.50 1.516 2.8 2.26 6.576 877 0.144 0.8 0.078 35.11 5.06 1.81 8.02 8.51 _ 8.02 8.51 112 8 1.1667 1.50 7.50 1.516 2.8 2.26 6.576 877 0.048 0.252 0.234 11.70 0.43 0.41 11.44 11.46 11.44 11.46 113 8 1.1667 1.50 7.50 1.516 2.8 2.26 6.576 877 0.048 0.234 0.252 11.70 0.41 0.43 11.46 11.44 11.46 11.44 201 9 1.1667 3.92 10.8 2.8 2.32 5.12 474 0.225 0.432 0.156 17.71 3.42 2.34 3.99 4.16 301L 301R 0.83 0.93 4.82 5.09 201a 9 1.1667 4.17 10.8 2.8 2.32 5.12 474 0.225 0.156 0.156 18.84 2.61 2.61 4.14 4.14 302L 302R 0.80 0.80 4.95 4.95 201b 9 1.1667 2.71 10.8 2.8 2.32 5.12 . 474 0.225 0.156 .0.432 12.24 1.25 2.00 4.24 4.08 303L 303R 0.91 0.80 5.15 4.88 202A 9 1.1667 2.96 11.958333 2.8 2.26 5.06 423 0.173 0.432 0.052 11.92 2.04 0.91 3.62 3.84 304L 304R 2.60 2.75 6.21 6.59 202B 9 1.1667 3 11.958333 2.8 2.26 5.06 423 0.173 0.052 0.216 12.09 0.93 1.43 3.84 3.74 305L 305R 2.74 2.16 6.58 5.91 203 9 1.1667 3 11.958333 2.8 2.26 5.06 423 0.309 0.216 0.312 12.09 2.04 2.33 3.62 3.56 3.62 3.56 204_ 9 1.1667 3 11.958333 2.8_ 2.26 5.06_ 423 0.225 0.312 0.432 12.09 1.95 2.31 3.64 - 3.57 3.64 3.57 301 8 3.92 13.96 2.32 2.32 166 0.232 0.384 0.204 5.21 3.29 2.58 0.83 0.93 0.83 0.93 302 8 5.79 13.96 2.32 2.32 166 • 0.232 0.204 0.204 7.70 5.07 5.07 0.80 0.80 0.80 0.80 303 8 4.25 13.96 2.32 2.32 166 0.232 0.204 0.384 5.65 2.96 3.73 0.91 0.80 0.91 0.80 304 8 2.96 5.96 2.26 2.26 379 0.232 0.384 0.136 8.98 2.15 1.42 2.60 2.75 2.60 2.75 305_ 8 _ 3 5.96_ 2.26 2.26 379 0.232 0.136 1.104_ 9.10 1.45 4.36 2.74 2.16 2.74 2.16 Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line V (Panel Shear) = Sum of Line Load / Total L 1 Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load * L 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo-Mr) / (L - 6 in) • Transverse Seismic Uplift Design Unit A Shear H Joist L Wall Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total Total Panel Height Lgth. From 2nd From 3rd From Wall Load (not Point Point ning Moment Moment Floor Shear @ Floor Shear @ Stacking @ Stacking From From Uplift Uplift Flr. Flr. Roof Shear including Load Load Momen @ Left @ Right Left Right Left Side of @ Right Wall Wall ® Left @. floors @ Left @ t House Side of Above Above Right above if Right House @ Left @ walls Right stack) (ft) (ft) (ft) (ft) k k k k plf klf k k kft kft kft k k k k k k 102 8 1.1667 1.75 3.50 0.114 0.9 1.27 2284 653 0.152 0.192 0.832 10.40 0.57 1.69 7.91 7.11 0 0 7.91 7.11 103 8 1.1667 1.75 3.50 0.114 0.9 1.27 2.284 653 0.152 0.832 0.192 10.40 1.69 . 0.57 7.11 7.91 0 0 7.11 7.91 103A 8 1.1667 4.00 4.00 0.481 0.481 120 . 0.04 2.016 1.664 3.85 8.38 6.98 -1.06 -0.69 0 0 -1.06 -0.69 104 8 1.1667 4.50 10.50 0.126 0.73 1.44 2.296 219 0.1 0.8 0.078 8.96 4.61 1.36 1.20 1.93 0 0 1.20 1.93 105 8 1.1667 3.00 10.50 0.126 0.73 1.44 2.296 219 . 0.048 0.252 0.156 5.97 0.97 0.68 2.04 2.14 0 0 2.04 2.14 106 8 1.1667 3.00 10.50 0.126 0.73 1.44 2.296 219 0.048 0.156 0.252 5.97 0.68 0.97 2.14 2.04 0 0 . 2.14 2.04 109 8 1.1667 4.58 17.08 0.114 0.9 1.27 2.284 134. 0.152 0.192 0.156 5.58 2.47 2.31 0.82 0.86 201L 201R 1.13 1.54 1.95 2.40 110 8 1.1667 12.50 17.08 0.114 0.9 1.27 2.284 134 0.096 0.156. 0.192: 15.23 9.45 9.90 0.56 0:53 201 aL 201 bR 1.32 1.32 1.88 1.85 111 8 1.1667 4.50 7.50 0.126 0.73 1.44 2.296 306 0.144 0:8 0.078 12.54 5.06 1.81 2.00 2.73 0 0 2.00 2.73 112 8 '1.1667 1.50 7.50 0.126 0.73 1.44 2.296 306 0.048 0.252 0.234 4.18 0.43 0.41 3.79 3.82 0 0 3.79 3.82 113 8 1.1667 1.50 7.50 0.126 0:73 1.44 2.296 306 0.048 0.234 0.252 4.18 0.41 0.43 3.82 • 3.79 0 0 3.82 3.79 • 201 9 1.1667 3.92 10.80 - 0.9 1.27 2.17 201 0.225 0.432 0.156 , 7.63 3.42 2.34 1.16 1.41 301L 301R -0.03 0.13 1.13 1:54 201a 9 1.1667 4.17 10.80 0.9 1.27 2.17 201 0.225 - 0.156 0.156 8.11 2.61 2.61 • 1.38 1.38 302L 302R -0.06 -0.06 1.32 1.32 201b 9 1.1667 2.71 10.80 0.9 ' 1.27 2.17 201- 0.225 :0.156 0.432 5.27 1.25 2.00 . 1.53 1.28 303L 303R 0.10 -0.06 1.63 1.22 202A 9 '1.1667 2.96 11.96 0.73 1.44 2.17 181 0.173 0.432 0.052 5.25 2.04 0.91 1.15 1.50 304L 304R 1.28 1.50 2.43 3.00 202B 9 1.1667 3.00 11.96 0.73 1.44 2.17 181 0.173 0.052 0.216 ' 5.32 0:93 1.43 1.49 1.35 305L 305R • 1.50 0.63 2.99 1.97 203 9 1.1667 3.00 11.96 0.73 1.44 2.17 181 0.309 0.216 0.312 5.32 2.04 2.33 1.16 1.08 0 0 1.16 1.08 204 9 1.1667 3.00 11.96 '0.73 1.44 2.17 181 0.225: 0.312 0.432 • 5.32 1.95 2.31 1.19 1 0 0 1.19 1.08 • 301 8 0 3.92 .13.96 1.27 1.27 91 0.232 0.384 0.204 2.85 3.29 2.58 -0.03 0.13 0 0 -0.03 0.13 302 8 0 5.79 13.96 1.27 1.27 91 0.232 0.204 0.204 4.21 5.07 5.07 -0.06 -0.06 0 0 -0.06 -0.06 303 8 0 4.25 13.96 1.27 1.27. 91 0.232 0.204 0.384 3.09 2.96 3.73 0.10 . -0.06 0 . 0 0.10 - 0.06 304 8 0 2.96 5.96 1.44 1.44 242 0.232 0.384 0.136 5.72 2.15 1.42 1.28 1.50 0 0 1.28 1.50 305. 8 0 3.00 5.96 . .1.44 1.44 242 0.232 0.136 1.104 5.80 1.45 4.36 1.50 0.63. 0 0 1.50 0.63 Spreadsheet Column Definitions &Formulas ---- L = Shear Panel Length C H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line V (Panel Shear) = Sum of Line Load / Total L 1 Mo (Overturning Moment) = Wall Shear * Shear Application ht - Mr (Resisting Moment) = Dead Load * L * 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) • • TRANSVERSE UPLIFT CALCULATIONS - SUMMARY UNIT A Shear Controlling Total Holdown Holdown Good Control Total Holdown Good For Panel Case Uplift @ or Strap Type@ Left For ling Uplift Type@ Left Left Case @ Right • k Simpson k k Simpson k 102 Wind 21.31 Holdown None 0.00 Wind 20.79 None 0.00 103 Wind 20.79 Holdown None 0.00 Wind 21.31 None 0.00 103A Wind 6.00 Holdown HDQ8 w 3HF 6.65 Wind 6.24 HDQ8 w 3HF 6.65 104 Wind 5.58 Holdown HDQ8 w 3HF 6.65 Wind 6.06 HDQ8 w 3HF 6.65 105 Wind 6.45 Holdown HDQ8 w 3HF 6.65 Wind 6.52 HDQ8 w 3HF 6.65 I 106 Wind 6.52 Holdown HDQ8 w 3HF 6.65 Wind 6.45 HDQ8 w 3HF 6.65 109 Wind 8.45 Holdown HDQ8 w DF 9.23 Wind 8.75 HDQ8 w DF 9.23 110 Wind 8.18 Holdown HDQ8 w DF 9.23 Wind 8.09 HDQ8 w DF 9.23 111 Wind 8.02 Holdown HDQ8 w DF 9.23 Wind 8.51 HDQ8 w DF '9.23 112 Wind 11.44 Holdown HDU14 14.93 Wind 11.46 HDU14 14.93 113 Wind 11.46 Holdown HDU14 14.93 Wind 11.44 HDU14 14.93 201 Wind 4.82 Strap MST48x2 5.75 Wind 5.09 MST48x2 5.75 201a Wind 4.95 Strap MST48x2 5.75 Wind 4.95 MST48x2 5.75 201b Wind 5.15 Strap MST48x2 5.75 Wind 4.88 MST48x2 5.75 202A Wind 6.21 Strap MST60x2 8.11 Wind 6.59 MST60x2 8.11 nibb 202B Wind 6.58 Strap MST60x2 8.11 Wind 5.91 MST60x2 8.11 _--) 203 Wind 3.62 Strap MST60 4.06 Wind 3.56 MST60 4.06 204 Wind 3.64 Strap MST60 4.06 Wind 3.57 MST60 4.06 301 Wind 0.83 Strap MST37 1.79 Wind 0.93 MST37 1.79 302 Wind 0.80 Strap MST37 1.79 Wind 0.80 MST37 1.79 303 Wind 0.91 Strap MST37 1.79 Wind 0.80 MST37 1.79 304 Wind 2.60 Strap MST48 2.88 Wind 2.75 MST48 2.88 305 Wind 2.74 Strap MST48 2.88 Wind 2.16 MST48 2.88 BY: As 1\4\c, DATE: 6 ..... ao to JOB No C ejs„ j ..,,o 0 OF PROJECT: RE: SSW ,V;)c — "Rear Lockck- ._____. 0 0 w - NkkOA Loa d.5: uk\ki-y., wynct J 0 - Z LI- 30S a (a.t._ W \ (. LUCA, V \ :. c\xick 1., \cyxri - 0 w I- w O 2 i 0 C CA pat 1 Ali) 0 P $\ s4. ,,_-_ %ALA oo \\,.)s v ey- ti■-al.‘ Li 0 J CC a O w 661 - LOC(CV- - . . 0 . . • = 3 4,a4-t-huati z actua l < apaci-i :. al 2 D 2 C°A)CkC- 0 SSLAjal XES = 3ctLo 1ft- 0 o . ?: aLk-vrt 4,Coipacih6 : (YA", re • 0 U- Z O I I- 0_ Q C. .) i - 4 .. = ■,-; 5 4.) --:: ::f... Co . ti Z i 7 • / 4 n•-:3 0 r 5W n '5 L& i&rfi ,wNc.,° +►s L JC fl - _ --- 1.! r,! , h �. UP (15)n / I I O �' E. Jrt:: �- ❑ : 4 "' �1 ❑ 6� d a, f G ____________________________________________ 1 0 � SW lfi1S LGNC -�TF# - T AN�w►+�.`�.�E ALUNC� TW-I5 LINE"' (g • L .._.9 „, 4 . 1 i 3ry i t s i. 1— ki 3 A N +u-t -') N= 11 S1-Hi. ran LP 5301 S p , 1 w�._...z - --- . �.C7.5; _,_.w...%• - - , ,1 7- - ;, '1 f :. _ -.: a7. mW_. Mme, ��. o o `r. 1 41 1 --i) 0 1.... V — G o T v ef J 3 43 4 o d. ❑ L e " ` i ❑ ` 0 . I rg VA— c ..., _ o f X01 0 _3^0 s74al L�NQ -m.$ X11 +rni,N +LL )Na1 ° • ,1 A1- MS co . 1 c- • c . • IS 0 1 • Sw - n-hs LENC -+TH ALONE 1)ris c.Inrt • ao5 .. T v` 4 ,_,-)>*,,_ . . : r- g : ) 3 1 tl ii ci) H a r O g 9) gl • . I ,,, 1,, C am . 3 t' as am* . R . , ., ., . _2.) '-�.._ ' S.. , .:; i5vr:%4.� � .: 1i �.. ,.... +.__.. ,.." i.. __... �• .�^�.:..��`"...-._rsll ra,?'1 �_ aoe SW \ `., Le ►u•T1 -4- A i,CUN G-n YH 1 S UNkF 7 -1/N4fl S /I'LL 1-**-)NM 4 S\ 'kJ ( AS - 4_10. , ;".!7::..,:. , .:25 , ',..„. , -- , :.:,...,:,,,A.,:,:,,:s.z::...:,-..,-.. , . , ....;.,,-,-A , . , ..<_.,....,:f-t.,:7_=:-...1- , 1---u _...........,1;k. N ( 4\ r4 d . ...0 0 7 i d ? t--- 04 .. !,„1'. I • 0 il 0 C --...-- ,,..--vi i vo ir ....-- <s- '• L. P __. — _ -- Iv / ------,, ..-- V-- , ..- ' 0 ,---<"-- c•O! / Sj \ ---, V ---. ---------- 90E ) )Nr) g fkl. I- r4m •4-L0 Nal i-k.l. Ns CE. .s-.- 2 'D BY A (\ \L DATE: 6 ?,O\ O JOB NO.: 1 A , .„,...l G 0 OF P ROJECT: • RE: � OcOjm tY o.ns e ( (AN Fs n\- oP hovsc_ • J Z V L� B wind tir = (0 .5 ' 3-4 ccar�frols) 4.5 0 W 9U c phrag m tai d'1Y'1 = aU Pt O 2 ❑ CU= laot pt.F 1 Li O - Cu c1 of ur�lotoc ecl dia ph c to (0. .S W = Ci oX IA) -asap 0 \ bcY . drcc mvn . U \/ Z Gj12. Iva; i ;n3 eqp/ i+r = (ass piAl )= 351 ov-- 7 2 2 U El f . ¢ o U. Z W ❑ . Z O O = I- a O U o N cn j . c E z x a : a x 4- a b - -(2/ ii. 0 '\ - lam ( o ) - \} ?Sd0S1 =c , ,, 1V f, _ t e .)r -. .1 -: Z1 ;s - (\SvtX5•1) =''d058)= { `)a] `\sz 5 - ks' c.) ' - _ r - .. „ 1 " ... --.... 1 ---- ( s...-2-e crcs PA Pirc 1\xli`74S W sat' -L 4 bbh1 n • 41. -{LS _ gyp = o 4l.T. � ' z (Se . SI)t ` � I i/ r - Z = X''''' m o 13 D 0 # bb hl =z4 4 \0\0111 = k* n 3 3 r -K�.A.Ao1 jc P001 i cfl z ,g(I -,9 S1LJbaol. `' :�,F i:,f,\ V'xxc d Sdk"° \C5 VC)�,5-aQ -Di hcilt.E - ,6 -A-14 o 3s g0 Ire - Z d Q ' JnsS?)d CQ N 1 n1 f'4 S? a o m ill i lq. -,S1 m Z n t- XvIrTIo0 - 11 d IS x' w - P 0 0 ,,S'1(11 SS-1..y1d. c �,� MZ /a - IrvtOS ❑ m 3 ,k io j _� r40 R 9r�L m g �.1I S J1 aks & V'‘- ')o1Q, / \1.1`.J. i° VC°? S :3a • 173road Q1 N a ) :.ON 9or 0 JJJ \Vet ,A. ",AL _ \ �� Eti o p 0 BY: � DATE 6 JOB NO.. C P ROJECT: RE: COPT 10 0 2 ❑ ❑ 13u;1 up f; m e. 2ND • C A-009-- ll o W 1 a'AoOr cta_ry 3 Twos 1- W o f L ❑ - Tr;b `Ajlai h on Z$'JtNT = 13' -9" a Mox Iov1/4„,e ro,c G ?.._kr = 12 • a O w U Z �^ i 7J.e UJ!riGt. pfeS`�'t _ - �:0•Q_ p5 i` Z L00 d_ arN bV1 \ Up ■0\(J CAL. - alf19 DI..- 0 If 1- G 1- L l o z T T O M o ❑ v - 77--- Ts" o IS cr z° V rnox = 1lo Sfi W ❑ Z I. ` o . 0 a — (ILli 5) ( t).D5Ins ° Ic.-%,c,t, = (i,c .. i \ /' L L ,. _ (0.'") ;..6b N4 1.5„ 1Z I.S" i-- .5 '"----- \ } = ®�cy.�lN A 3,a, : 5.1c tWI o d A= Q. (,- Z , .1,., 1 - L a - d,,�, = 0.b i is) al cd o , 6, 3, � _ O , =mad' 0 1 L i. 135 l N .Y\, _ t- _ Ti; # C )(►a Ci.4s) =. 1 p6 � . ..i 1 :1 `Fb = (5 50 p s ,-, - )0,LXt.a,0 )( 1,0)(1. 1.o - ) C t,o)Ct:ts) 1+-c- a3 . psi. -1 = ( a3a,7„LYt, 6,o)�.i3O10.� )(1.0)(1.0) LSL 4O\ d 4 - L3o • WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load Woodworks® Sizer 7.1 June 24, 2010 12:49:04 COMPANY 1 PROJECT RESULTS by GROUP - NDS 2005 . SUGGESTED SECTIONS by GROUP for LEVEL 4 - ROOF -__- - - ______�= = =ww ..... ww _ww �_ Mnf Trusses Not designed by request (2) 208 Lumber n -ply D.Fir-L No.2 1- 2x0 • By Others Not designed by request (2) 2x6 Lumber n -ply Hem -Fir No.2 2- 2x6 (3) 2x6 Lumber n -ply Hem -Fit No.2 3- 2x6 Typ Wall Lumber Stud Hem -Fir Stud 2x6 @16.0 SUGGESTED SECTIONS by GROUP for LEVEL 3 - FLOOR ww 0nf Jet =ww =- -_ww = =V � _ _ =y=ww = = Not designed by request Sloped Joist Lumber -soft D.Fir-L No.2 2x6 816.0 (2) 2x8 (1) Lumber n -ply D.Fir -L No.2 1- 2x8 (2) 208 Lumber n -ply D.Fir-L No.2 2- 208 By Others Not designed by request By Others 2 Not designed by request (2) 2x12 Lumber n -ply D.Fir -L No.2 2- 2x12 5.125x10.5 Glulam-Unbalan. West Species 24F -V4 DF 5.125x10.5 4X6 Lumber -soft D.Fir -L No.2 4x6 (2) 2x6 Lumber n -ply Hem -Fir No.2 2- 2x6 4x6 Lumber Post Hem -Fir No.2 4x6 (3) 2x6 Lumber n -ply Hem -Fir No.2 3- 2x6 (2) 2x4 Lumber n -ply Hem -Fir No.2 2- 2x4 Typ Wall Lumber Stud Hem -Fir Stud 2x6 @16.0 SUGGESTED SECTIONS by GROUP for LEVEL 2 - FLOOR wwwwwwwwwww Mnf Trusses =_____- Not designed by request Mnf Jst Not designed by request Deck Jst Lumber -soft D.Fir -L No.2 2x0 816.0 (2) 2x8 Lumber n -ply D.Fir -L No.2 2- 2x8 3.125x9 Glulam-Unbalan. West Species 24F -V4 DF 3.125x9 4x8 Lumber -soft D.Fir -L No.2 4x8 By Others Not designed by request • By Others 2 Not designed by request (2) 2x10 Lumber n -ply D.Fir -L No.2 1- 2X10 5.125X12 GL Glulam-Unbalan. West Species 24F -V4 DF 5.125x12 By Others 3 Not designed by request 3.125x14 LSL LSL 1.55E . 2325Fb 3.5x14 (2) 2x6 Lumber n -ply Hem -Fir No.2 2- 2x6 4x4 Lumber Post Hem -Fir No.2 4x4 • 4x6 Lumber Post Hem -Fir No.2 4x6 (3) 2x6 Lumber n -ply Hem -Fir No.2 3- 2x6 6x6 Timber -soft Hem -Fir N0.2 6x6 (2) 2x4 Lumber n -ply Hem -Fir No.2 2- 2x4 6x6 nol Timber -soft D.Fir -L 00.1 6x6 (3) 2x4 Lumber n -ply Hem -Fir No.2 3- 2x4 Typ Wall Lumber Stud Hem -Fir Stud 2x6 816.0 SUGGESTED SECTIONS by GROUP for LEVEL 1 - FLOOR == Fnd�� �_ - ._� ww __ww _¢ � _ � __ ww ww =_-_ Not designed by request CRITICAL MEMBERS and DESIGN CRITERIA Group Member Criterion Analysis /Design Values = Mnf Jst Mnf Jot Not designed = =_ by request = � =- =v = = = = = =_ • Deck Jot j65 Bending 0.41 Sloped Joist j30 Bending 0.10 Floor Jst4 unknown Unknown 0.00 (2) 27:8 (1) b35 Bending 0.47 (2) 2x8 b8 Bending 0.89 3.125x9 b3 Bending 0.06 • 4x8 b30 Bending 0.12 By Others By Others Not designed by request By Others 2 By Others Not designed by request (2) 2x12 b6 Bending 0.93 (2) 2x10 bl Shear 0.78 5.125%12 GL 610 Bending 0.76 • By Others 3 By Others Not designed by request 5.125x10.5 b9 Deflection 0.95 4 %6 620 Bending 0.08 3.125x14 LSL b14 Deflection 0.73 (2) 2x6 c2 Axial 0.91 4x4 c55 Axial 0.07 4x6 c23 Axial 0.80 (3) 2x6 c29 Axial 0.75 6x6 c26 Axial 0.70 . (2) 2x4 *39 Axial 0.62 6x6 nol • c12 Axial 0.86 (3) 2x4 c31 Axial 0.89 Typ Wall w14 Axial 0.4B Fnd Fnd Not designed by request DESIGN NOTES:�="=______________ ____'__°° = = =r = = =� :_�_______ °___ = = �_� 1. Please verify that the default deflection limits are appropriate for your application. 2. DESIGN GROUP OCCURS ON MULTIPLE LEVELS: the lower level result is considered the final design and appears in the Materials List. 3. ROOF LIVE LOAD: treated as now load with corresponding duration factor. Add an empty roof level to bypass this interpretation. 4. BEARING: the designer 13 responsible for ensuring that adequate bearing is provided. 5. GLULAM: bxd = actual breadth x actual depth. 6. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 7. Sawn lumber bending members shall be laterally supported according to the provisions of N05 Clause 4.4.1. 8. BUILT -UP BEAMS: it is a s umed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that ' each ply is equally top - loaded. Where beams are side- loaded, special fastening details may be required. ' 9. SCL-BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 10. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:41:17 Concept Mode: Beam View Floor 2: 8' ta�T��� b31 105 _ - - - -- - -_ -- _ - - 9 -6' 104 .. 40 b WS .. 4 / -b 1 ULO - .. 40 "-O 1U1! : - - - - - - -" -.. 4b.-0 • - • . ru ' 44 b t3 61 4 -0 y! -. ; .. iiiiiiiiiiimmodigiusims_ 4G" 0 yq 40-0 yb : : Sy b 4 ' - . - Sb -0 yL :. if - q • 1 - SO b -- -- .. 34-0 25 : ; : . ; b2 SS' - SL v 0/ < - 00 : - • - _ ... . SI b SU-0 00 �-' - .. - - Lys 04 40 -0 0.5 . : .. - 41 -0 t5 "i LO 'b • 40 -q >sU b10 1/ _b33 : : L I -0 LU b f3 - - 11-0 b32 - - -- _.. ; .. • - 10 b fU .:s . . �t--- '- -, --- -- - 00 -- b10 114:0° 4 0 IS 0 bb ... I 1 q q5 - b4} f�1 0 u uz? b4 b14 • q -0 �• , ■ s�0 eu) b30 b2 b3 I� ■ ■ b L . q .. BBIB.B BCCCCCCCCICCCCC CCCCCCCCCC\ CCCDDDDDDDDtCDDCDDDDDDDDDCDiDDDE .EEE EE 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'67'8'91111 :1 :1 1!!1(11 1112(22;2;22!2( 221253(33:33 434:44.'414'4t4S5(5 5:5:5 , 6.'6(6'6(617(7'7,7,7 , 77(77-6" /4Z— CI Woodworks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:41:19 Concept Mode: Column View Floor 2: 8' - FLO 10 1 LOAD 1050 ❑ c58 ❑c14 49' 6' I 04 4tS' b.. . • _ .- - ...- -- --- -- -- - - - -- -- 41 -b 1UU . - - 44.-17.. y9. : 43 -b y ts 069 c2 - 'C7O c71: - 41 -b 91 ' 03 ❑ ❑. El . 41-1 y3 _ -- - -- .. - - - - -- - - -- - - - - -.. _. 31. -0.. y '1 0 . 30 -b JU 34.x.. dy 33 b _. ., c4 -- ...- - -`: - - - - - - - -- "- - sty-b t50 :: .. : : - . . " Ly - b" t5.5 . - L1 -b 01 . " 10 25U C25 C12 C26 1 Z4 -0 to ' ❑ 0 ❑C72 - . - LL b : 11 c2 z -b r4 ..- _- --- -- .0 .. - -- - 10-0 /1 _ C3 t b.� / 1 : -c78 _- 10 - 0 " OC$ : c77 .. --.: ` - - - - .. - -- - --- -- - - - - -- 1L -b bb- ___� ; ._:. .. - 1U . O .. . C31 _. b a 033 c 76 c r b .. 0L.. C3O : ©C32 b C55 c i V t b U b BB\B.6 BC CC C C CC CtCCC CC CCCC C C CC CC1CC CD DD D DOD DFDDD CD DD°DD D D DD CDID D DEE EE E:EE•EtEEEiEEE EEEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'67'8'91t1 1 ;1:141'.1t1 11t1 2E22030 3: 3; 34 13( 3 . 32'.4444A :44'4f4 :5: 545'5(5 15!6(68:6 :646'.6t6fiE6!7t7'77 ?47.7(77' -6' • 4 - G'3 WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Rear Load WoodWorks® Sizer 7.1 June 24, 2010 13:14:33 Concept Mode: Beam View Floor 2: 8' ‘(Z�XZ � 11_ 631 l� 1 1 0 4 0 0 .. _ 49 -6 i US. ... 41'-b 1UL1 40 -0 IVUt7 -_ - -- -- - - - - - -- -- - - 4. t V0 . - 4L -0 1 b34 - 4,.3-b . [ s - -- - -- :- ::- , . --- -- -- - -- - -- -- - - - -- - - - - - -- - - .. - . 4 - 4U6 VS _ : i r -u it, 6 V1 -- •.. <-- — - -- - Sb b 04 -0 9a b2 0.5-10 00 : - 0/ I _ 01 -b 9b .. JU -J 00 : : -._ : • - • - - 1V 4 0 - 10 b L! b 9U _ . _..: • 610 .L4 -10 La b LL b 11 1b - - -- 633 �- -_._ - -- .. L -0 16 I - -b 19 b i! -0 12 - -- - -- __ - - - - b32 -- .._.._: .- - --- _..: -_ - - - - - -- - -- - - - -- - .. (U -_ - - • i _ - . ' ._ _ .. - - -- - 14_0 b9. : -b1015 - I L _ bb _�� : 00 ._: 3 -r) bz b4 b14 : • .: b.. bu' b30". - :. . .. . - b35 4 -b - -a , b b b L' 6 tb BB\B.B BC CCCC CC C CC CCCC C CCC CC\CC CDDDD D DD DiODD CD DD DDDD DD CDIDD DE.E E E EEE'EtEEEIEE!E E+EEEEEEIEEEE2 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'91(1 1:1 :1.1'1 (1 2;2:2 203i33:3:33:3E3 .313A14 4:4:4 "41415(5 5:5:5 6:6:6 7.7.7 4 - Cn 9 WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Rear Load WoodWorks® Sizer 7.1 June 24, 2010 13:14:35 Concept Mode: Column View Floor 2: 8' ¢ k 1 W r•� 1050. c58 c14 ❑ ❑ - : .. . 49' -6" 104 46 -b lUS .. . . . - _ - 4 /-b • IUL - - 40 -0 Rif,. 4� b lUy .. _ ....- - -- - 4J b `V6 i - c82 c81" : ' : - -: - 4z -c) Ub - - ' - - - .. .. - 4U - yo. • V4 30 - `J6 . / 3 b JU - J4 -b ti' : . : . : 1 ' : . ii -b 3G -0 t5( ! : . S1 -b {Sb.. - - -- Cif- - -- 3U -b ❑ '; tSl G7 b bu : c25. 'c12 :: c26: + .23 -n /6 - .❑ - o.. © _ _ _ .... - - LL -b 11 c2 . : c72 z -b lb - - . _. -. - • : -- ❑' . . ...: - -- . - - -- ... - -- GU -b to c73 r ty - ----, (! -O /G c3 10 -b (l c78 1 o _b Al • ©. . . 14 b bLS -.- :: -C c -b t'l bb fbo . ^^ , - V-b b4} -C31 c76 L - - -- -- - c71 i - ' , - - - - - - - -- - - 75 - (De? C30 ©C3Z _ b bU) ❑ : ®'Cb( c7U : MO : - . -- -- - - - -- - - -- _ - -- 4 -b : 4 - b 56� nom„ o . , . c55 c b I U b 881B,BBCC \ C CCCCCCtCCC CCCCCCCCCCCCCCDDDDDDD610DDCDDD :DDDDDDCD}DDDE.EEE. E EE EFEEEIEE•:EE+EEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'91(1 1:1 :1 1:1 (111(112(22:2 :2 - 212f303 :3 :3 4A:4.414E4 5:5:5 5i5E6( 66:6 :6 , 6?61616247(777.7 , 7.7E77 6" 4 ......_ cic WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:58:44 Concept Mode: Beam View Floor 3: 17' 1050... 49' -6" IUS 4/ -b IUIb 44 0 y b • ' b35 -. - - b6,.. _.. -: _ _ - _ _ - - _ 4L -0 ! 1 4U -0 3/-0 VL ; .... .: - :: .. - . - .. 30 -0 y . I JV 34'-0 25y b7 J3 "b 3U' b bD L'J -0 L25 -0 25L r .. -- "-- - .. -- "- L0 -0 i. b 9 L4 O L..1 -b 1 / b2 / n .... L n . 1t5' b /L._. . -b21- in 0 / I -b20 . - : _ . ' I D -0 . " -- - 74 b 025 b11b17 _ Ic-b IU 00 bo _, . .b34 -O y b-0 035 .. / -0 .. 0L. b8 0 01 0Ua _ 4 - 0 BB\B.B BCCCCCCCCICCCCC CCCCCCCCCC}CCCDDDDDDDDtODDCDDD DDDDDDCDDDDE.EE E E'EEEIEEE'EEEEEEEEEE[EEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62'64' 66' 68' 70' 72' 74' 76 0'1'2'3'4'5'6'7'8'91(1'1;1:1 i (1.111'.22' 22:2 4:4.4 5:5:5 7:7:7 • 4- (Ito WoodWorks®Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:58:42 Concept Mode: Column View Floor 3: 17' 1050 .. 49' -6" 104 40 b iU3 __,__- .. .... .. 4/ -0 tUL 40-0 � _ _ _ 4b -n 10i I- 00 ' : ' : - "" .. - -- - -- -- 44 -0 V25 c62 c61 .c15 - c16 4 L - 0 / liplog > 41 -b Sy -b yL c17. i .. .. 30 -0 VI :. -.. 30 -O zsy 3.5 -0 00. _. _._. ... ._. -_. . ___ _ __ _.._ "- -_ .__ __ ._ -__ __ ".__ SL -b Of 00 c18- :: .... 3u -b OD - . 0 - .. Ly -0 . - - - - - - --- -- -: - .- - - .. .. -- ... -- L21 - ' 153 _ L / - Lb-0 6U- y .." , c39c24 .. - c23 -- - - - - -. -- - - - Z4 -O LS 0 L 0 /b - - '..- -_ _• .- 1 . 1 c60 - • -- - - - - - ----- -- LU-0 • 'b • • •.- - _ - I0-0- /L _ 10-0 1 1 C37 - - - - --- - - 10_0 14-0 00 : c35. - -- .. - - - __ - .. -. .. ' 12-0 0 / 1 I -b 0 10 -0 0 -0 0.5 73 c66 C63 u n 02 '• IC n c756520 cl c6c74 .... U-0 BB C} 1B.B BCCCCCCCCCCCCCCCCCCCCCC ICCCDDDDDDDD}DDD0D DD DDDDODCDIDDDEE E E E EE E}EEEIEEiEE'EEEEEELEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70:72' 74' 76' 0'1'2'3'4'5'6'7'8'91E1 1:1:1 E 12(2 2;2:2 212E32 3 :3:3 313(4(4 4:4:4 5: 5: 5 , 5E5E5 . 515!6E66;6 :6rot6E6'6E6E7U 777 .7E7T -6" / 41 1 --. "--- (f„,.;-)1.- WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:58:38 Concept Mode: Beam View Roof: 25' 1050 49' -6" I U4 40 -b 103. - .. - - 4! -b IUL 40 -0 IU'1 .._- - ;._ " _ -' - - -- - _ - - - 4b -t) b b IF yn b23 b24 . 4' e . L - . -...' -- yb : i oy -b y 3 [ .. : :- 3 -b VL : .:. : : .. 30 -0 au = = sv t3y 33. . 3U '-b tab L `J -0 • 0.5 Ll -b t3L' . .. "' Lb - b tS i Lb -b L4 b 123 --_ ..._ -- -..... , - - --- - - - -- - LL -b f ! b25. L I b 10 -I0 I:1-0 la b fU I;) y - - - I5-0 btf 00 04 ' b _,. :. _. o -b 0.5 bc ami l00 bI b-b 01J' 4 -b , - 3 b I -b U b .EBIB.B BCCCCCCCC} CCCCCCCCCCCCCCC 'CCCDDDDDDDDtDDDDDDD DDDDDDCD'DDDEEEE E EE EIEEEIEEiEE!EEEEEELEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0' 1 '2'3'4'5'678'91(1'1:1:1/11 (1 :1112(22,2:222(221243( 333:3 "323:4(4"4.4:4 414! 5( 55; 5: 5 55( 5'. 5( 5E 6(66:6:66:6(66E647(77;7.7 7 -6" /r 6 • WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:58:40 Concept Mode: Column View Roof: 25' 1050 49' -6' 1 U4 40 -0 IUJ' } :........... ;-- _ 4 / -b 1U .. 40-0 y c c42 c43 : c44 c45 ' - . - - 4L -0 • y r y0--_-' ® -- - -,. - 40-0 y0 . 0 &4 ._:. [- -. - - - - _ .. -: :- - 30-0 yJ . -_ . - - ----- -.._ -- -- - - -.. .' _ -- -- - - - -- it -10 30 -0 34 -0 rsy SS - 0 210: --- - - : - -` --: `-',--: - - - -- -- -- - - - --. - -- - - .. - _. 3U-0 t50 - - Ly -0 ::: - -- _ - -- .. .. -- --:- _. -- - - - ---- -- ---- -- .. -- - L25 -0 /y L3-0 l23 ._._ c 4 6 . ._ LL -0 r • c47 17-0 /3 7f 0 10 0 /U 14'-0 0t5 1Z -0 O1 I I -0 00 : U -- b t 00 y 0 0/41 c51c50 c52 c53:. 2s b 0Z, limiC"DilliVall410€1.0mmamma8 / -0 10U5 4 -3 ... .5 ' - - - - - -- - - - - .. --- - - - - 'U I b 1 U - 0 &BIBB BCCCCCCCCtCCCCC CCCCCCCCCC\ CCCDDDODDDDtDDDCDDDDODDDDCD (DDDEEEE E:EE EFEEEIEEEEEEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14'16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38'40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66 68' 70' 72' 74' 76' 0'1'2'3'4 5 3 3'7'8'11 t 1 1,1:1.1:1(1 :1112(2 2:22'2212 2213(33 :3:3 "373(4(4 414:441414"4415(5 5'L'.5215(5 6;62 7 7 :7 -6" 4. — 619 COMPANY PROJECT II i 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:42 b1 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w61 Dead Partial UD 613.2 613.2 2.50 3.00 plf 2 Snow Partial UD 795.0 795.0 2.50 3.00 plf 3 c61 Dead Point 622 2.50 lbs 4 c61 Snow Point 1192 2.50 lbs 5_j28 Dead Full UDL 47.7 plf 6j28 Live Full UDL 160.0 plf 7j33 Dead Full UDL 120.2 plf 8 133 Live Full UDL 370.0 plf MAXIMUM RE. Dead 391 1061 Live 795 1615 Total 1186 2676 Bearing: Load Comb #2 #3 Length 0.63 1.43 Lumber n -ply, D.Fir -L, No.2, 2x10 ", 2 -Plys Self- weight of 6.59 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv* = 67 Fv' = 207 fv * /Fv' = 0.32 Bending( +) fb = 331 Fb' = 1138 fb /Fb' = 0.29 Live Defl'n 0.00 = <L/999 0.10 = L/360 0.04 Total Defl'n 0.01 = <L/999 0.15 = L/240 0.05 *The effect of point loads within a distance d of the support has been included as per NDS 3.4.3.1 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.100 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3 Shear : LC #3 = D +.75(L +S), V = 2676, V design* = 1237 lbs Bending( +): LC #3 = D +.75(L +S), M = 1178 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 158e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I =impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NOS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. 4- - 6 0 COMPANY PROJECT WoodWorks SOFTWARE FOR W000 DESIGN June 24, 2010 12:43 b3 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j45 Dead Full UDL 17.0 plf 2 j45 Live Full UDL 25.0 plf MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : A A 1 0' 9 Dead 106 106 Live 112 112 Total 218 218 Bearing: Load Comb #2 #2 Length 0.50* • 0.50* *Min. bearing length for beams is 1/2" for exterior supports Glulam- Unbal., West Species, 24F -V4 DF, 3- 1/8x9" Self- weight of 6.48 plf included in Toads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : • Criterion Analysis Value Design Value Analysis /Design Shear fv = 10 Fv' = 265 fv /Fv' = 0.04 Bending( +) fb = 140 Fb' = 2400 fb /Fb' = 0.06 Live Defl'n 0.01 = <L/999 0.30 = L/360 0.04 Total Defl'n 0.03 = <L/999 0.45 = L/240 0.06 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 218, V design = 182 lbs Bending( +): LC #2 = D +L, M = 491 lbs -ft Deflection: LC #2 = D +L EI= 342e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:40 b6 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1 c44 Dead Point 444 2.00 lbs 2 c44 Snow Point 647 2.00 lbs 3_w44 Dead Partial UD 389.2 389.2 0.00 2.00 plf 4 Snow Partial UD 431.2 431.2 0.00 2.00 plf 5 c45 Dead Point 444 5.00 lbs 6_c45 Snow Point 647 5.00 lbs 7_w45 Dead Partial UD 389.2 389.2 5.00 6.00 plf 8 w45 Snow Partial UD 431.2 431.2 5.00 6.00 plf 9_j25 Dead Full UDL 120.2 plf 10 j25 _Live Full UDL 370.0 plf MAXIMUM REACTIONS (Ibsl and BEARING LENGTHS (inl I 0 6� Dead 1436 1389 Live 1803 1803 Total 3239 3192 Bearing: Load Comb #3 #3 Length 1.73 1.70 Lumber n -ply, D.Fir -L, No.2, 2x12 ", 2 -Plys Self- weight of 8.02 plf included in loads; Lateral support top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 97 Fv' = 207 fv /Fv' = 0.47 Bending( +) fb = 805 Fb' = 1035 fb /Fb' = 0.78 Live Defl'n 0.03 = <L/999 0.20 = L/360 0.14 Total Defl'n 0.06 = <L/999 0.30 = L/240 0.20 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3 Shear : LC #3 = D +.75(L +S), V = 3239, V design = 2190 lbs Bending( +): LC #3 = D +.75(L +S), M = 4247 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 285e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. COMPANY PROJECT i WoodWorks® SOFFWAAF FOR W000 DESIGN June 24, 2010 12:50 b8 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j14 Dead Full UDL 113.7 plf 2 j14 Live Full UDL 350.0 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : • 0' 6 Dead 357 357 Live 1050 1050 Total 1407 1407 Bearing: Load Comb #2 #2 Length 0.75 0.75 Lumber n -ply, D.Fir -L, No.2, 2x8 ", 2 -Plys Self- weight of 5.17 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 77 Fv' = 180 fv /Fv' = 0.43 Bending( +) fb = 963 Fb' = 1080 fb /Fb' = 0.89 Live Defl'n 0.07 = <L/999 0.20 = L/360 0.33 Total Defl'n 0.10 = L/712 0.30 = L/240 0.34 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 1407, V design = 1123 lbs Bending( +): LC #2 = D +L, M = 2110 lbs -ft Deflection: LC #2 = D +L EI= 76e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. 4- G COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:40 b9 Design Check Calculation Sheet Sizer 7.1 • LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 j50 Dead Partial UD 113.7 113.7 0.00 1.50 plf 2_j50 Live Partial UD 350.0 350.0 0.00 1.50 plf 3_j14 Dead Partial UD 113.7 113.7 3.00 9.00 plf 4j14 Live Partial UD 350.0 350.0 3.00 9.00 plf 5 j51 Dead Partial UD 113.7 113.7 1.50 3.00 plf 6_j51 Live Partial UD 350.0 350.0 1.50 3.00 plf 7_j24 Dead Partial UD 120.2 120.2 0.00 3.00 plf 8_j24 Live Partial UD 370.0 370.0 0.00 3.00 plf 9_j25 Dead Partial UD 120.2 120.2 3.00 9.00 plf 10_j25 Live Partial UD 370.0 370.0 3.00 9.00 plf 11_j26 Dead Partial UD 120.2 120.2 9.00 12.00 plf 12_j26 Live Partial UD 370.0 370.0 9.00 12.00 plf 13_j52 Dead Partial UD 113.7 113.7 9.00 10.50 plf 14_j52 Live Partial UD 350.0 350.0 9.00 10.50 plf 15_j53 Dead Partial UD 113.7 113.7 10.50 12.00 plf 16 153 Live Partial UD 350.0 350.0 10.50 12.00 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : L. I p' 121 Dead 1478 1478 Live 4320 4320 Total 5798 5798 Bearing: Load Comb #2 #2 Length 1.74 _ 1.74 • Glulam- Unbal., West Species, 24F -V4 DF, 5- 1/8x10 -1/2" Self- weight of 12.39 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 138 Fv' = 265 fv /Fv' = 0.52 Bending( +) fb = 2217 Fb' = 2400 fb /Fb' = 0.92 Live Defl'n 0.38 = L/381 0.40 = L/360 0.94 Total Defl'n 0.57 = L/252 0.60 = L/240 0.95 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 5798, V design = 4953 lbs Bending( +): LC #2 = D +L, M = 17395 lbs -ft Deflection: LC #2 = D *L EI= 890e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). COMPANY PROJECT II 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 201012:43 b10 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location (ft] Pat - Start End Start End tern 1 w39 Dead Partial UD 311.0 311.0 0.00 4.50 No 2 w39 Live Partial UD 680.0 680.0 0.00 4.50 No 3 c39 Dead Point 267 2.00 No 4 Live Point 822 2.00 No 5_j32 Dead Partial UD 120.2 120.2 0.00 0.50 No 6_j32 Live Partial UD 370.0 370.0 0.00 0.50 No 7 j33 Dead Partial UD 120.2 120.2 1.00 4.00 No 8_j33 Live Partial UD 370.0 370.0 1.00 4.00 No 9 j34 Dead Partial UD 120.2 120.2 4.00 4.50 No 10_j34 Live Partial UD 370.0 370.0 4.00 4.50 No 11_j35 Dead Partial UD 120.2 120.2 4.50 7.50 No 12_j35 Live Partial UD 370.0 370.0 4.50 7.50 No 13_j36 Dead Partial UD 113.7 113.7 4.50 16.50 No 14 Live Partial UD 350.0 350.0 4.50 16.50 No 15 Dead Partial UD 100.7 100.7 3.00 4.50 No 16 j37 Live Partial UD 310.0 310.0 3.00 4.50 No 17j47 Dead Partial UD 120.2 120.2 7.50 13.50 No 18_j47 Live Partial UD 370.0 370.0 7.50 13.50 No 19_j48 Dead Partial UD 120.2 120.2 13.50 16.50 No 20_j48 Live Partial UD 370.0 370.0 13.50 16.50 No 21j49 Dead Partial UD 120.2 120.2 0.50 1.00 No 22 j49 Live Partial UD 370.0 370.0 0.50 1.00 No 23 b32 Dead Point 300 3.00 No 24 b32 Live Point 922 3.00 No MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : ,J, lo' 4%6" 16.61 Dead 452 4067 1180 Live 847 11291 3436 Uplift 12 Total 1300 15358 4616 Bearing: Load Comb #2 #2 • #2 Length 0.50• 4.24 1.27 Cb 1.00 _ 1.09_ 1.00 'Min. bearing length for beams is 1/2" for exterior supports Glulam- Unbal., West Species, 24F -V4 DF, 5- 1/8x12" Self- weight of 14.16 pli included in loads; Lateral support: lop= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis /Design Shear fv = 158 Fv' = 265 fv /Fv' = 0.60 Bending( +) fb = 1074 Fb' = 2400 fb /Fb' = 0.45 Bending( -) fb = 1396 Fb' = 1844 fb /Fb' = 0.76 Live Defl'n 0.13 = <L/999 0.40 = L/360 0.32 Total Defl'n 0.19 = L/740 0.60 = L/240 0.32 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fb'- 1850 1.00 1.00 1.00 0.997 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Ervin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 8357, V design = 6496 lbs Bending) +): LC #2 = D +L, M = 11006 lbs -ft Bending) - ): LC #2 = D +L, M = 14310 lbs -ft Deflection: LC #2 = D +L EI= 1328e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. Grades with equal bending capacity in the top and bottom edges of the beam cross- section are recommended for continuous beams. 4. GLULAM: bxd = actual breadth x actual depth. 5. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 6. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). 4 __ C,,,,fiC COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:44 b13 Design Check Calculation Sheet . Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location (ft] Units Start End Start End 1 w58 Dead Partial UD 519.0 519.0 0.00 3.00 plf 2 w58 Snow Partial UD 505.0 505.0 0.00 3.00 plf 3 Dead Point 217 5.50 lbs 4 c40 Live Point 668 5.50 lbs 5 Dead Point 518 5.00 lbs 6_c67 Snow Point 778 5.00 lbs 7_c68 Dead Point 573 3.00 lbs 8 Snow Point 942 3.00 lbs 9 Dead Partial UD 593.7 593.7 5.00 8.00 plf 10 w59 Snow Partial UD 735.0 735.0 5.00 8.00 plf 11_j37 Dead Partial UD 100.7 100.7 6.50 8.00 plf 12j37 Live Partial UD 310.0 310.0 6.50 8.00 plf 13_j38 Dead Partial UD 81.2 81.2 3.50 6.50 plf 14_j38 Live Partial UD 250.0 250.0 3.50 6.50 plf 15j39 Dead Partial UD 22.7 22.7 0.00 3.50 plf 16_j39 Live Partial UD 70.0 70.0 0.00 3.50 plf 17 b15 Dead Point 126 3.50 lbs 18 Live Point 389 3.50 lbs . 19 Dead Point 225 6.50 lbs 20 Live Point 693 6.50 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : .,. ° `- ...„ - "•'yS,d . mss --= ., '�" .. -'. ""2* i^.,.:= - ;. -.„,. , - . ,... r _ ..._. _ - � .' " �. �� . -- •d.. - •- • r"...: - ...... -,. . ;-- ;,. - • U . 81 Dead 2561 3033 Live 2699 3789 Total 5261 6822 Bearing: Load Comb #3 #3 2.44 #3 Length _ 1.88 LSL, 1.55E, 2325Fb, 3- 1/2x14" Self- weight of 15.31 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 157 Fv' = 356 fv /Fv' = 0.44 Bending( +) fb = 1295 Fb' = 2674 fb /Fb' = 0.48 Live Defl'n 0.06 = <L/999 0.27 = L/360 0.24 Total Defl'n 0.14 = L/680 0.40 = L/240 0.35 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 3 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 3 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 3 Emin' 0.80 million - 1.00 - - - - 1.00 - - 3 Shear : LC #3 = D +.75(L +S), V = 6822, V design = 5122 lbs Bending( +): LC #3 = D +.75(L +S), M = 12340 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. f/ II / /4 - q _, COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:43 b14 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location (ft) Units Start End Start End 1 w33 Dead Partial UD 317.7 317.7 9.00 12.00 plf 2 Live Partial UD 350.0 350.0 9.00 12.00 plf 31c19 Dead Point 357 9.00 lbs 4 c19 Live Point 1050 9.00 lbs 51c20 Dead Point 357 3.00 lbs 6 c20 Live Point 1050 3.00 lbs 7 w34 Dead Partial UD 317.7 317.7 0.00 3.00 plf 8_w34 Live Partial UD 350.0 350.0 0.00 3.00 plf 9 c64 Dead Point 165 10.50 lbs 10 c64 Snow Point 225 10.50 lbs 11 Dead Point 165 1.50 lbs 12 Snow Point 225 1.50 lbs 13 Dead Full UDL 113.7 plf 14 j36 Live Full UDL 350.0 plf 15_j43 Dead Partial UD 17.0 17.0 0.00 0.50 plf 16_j43 Live Partial UD 25.0 25.0 0.00 0.50 plf 17 j44 Dead Partial UD 17.0 17.0 0.50 1.50 plf 18 j44 Live Partial UD 25.0 25.0 0.50 1.50 plf 19_j45 Dead Partial UD 17.0 17.0 1.50 10.50 plf 20 j45 Live Partial UD 25.0 25.0 1.50 10.50 plf 21 Dead Partial UD 17.0 17.0 10.50 12.00 plf 22 Live Partial UD 25.0 25.0 10.50 12.00 plf MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : ...;. - r=- ' - .� _ . .,z-� =„ mss. � -3.. _ 's-.. • `__-,....2....: 7t _Air'. lb fi .- 'r_ --- - ► � .� : '±�°.. -_' _-. • _ _ - --..._ � �.i� � _ - = rte 10' 124 Dead 2351 2351 Live 4350 4350 Total 6701 6701 Bearing: Load Comb #2 #2 Length _ 2.39 2.39 LSL, 1.55E, 2325Fb, 3- 1/2x14" Self- weight of 15.31 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 163 Fv' = 310 fv /Fv' = 0.52 Bending( +) fb = 1769 Pb' = 2325 fb /Fb' = 0.76 Live Defl'n 0.25 = L/573 0.40 = L/360 0.63 Total Defl'n 0.43 = L/333 0.60 = L/240 0.72 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 6701, V design = 5314 lbs Bending( +): LC #2 = D +L, M = 16851 lbs -ft Deflection: LC #2 = D +L EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. COMPANY PROJECT .61 WoodWorks® SOFTWARE FOR WOOD DFSSGN June 24, 2010 12:41 b20 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 j30 Dead Full UDL 21.7 plf 2 Live Full UDL 60.0 plf MAXIMUM REA(_TIANS Ilhc1 and RFORIN/± 1 FIJ(THR lint • 10' 3' -6'1 Dead 46 46 Live 105 105 Total 151 151 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min. bearing length for beams is 1/2" for exterior supports Lumber -soft, D.Fir -L, No.2, 4x6" Self- weight of 4.57 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 9 Fv' = 180 fv /Fv' = 0.05 Bending( +) fb = 90 Fb' = 1170 fb /Fb' = 0.08 Live Defl'n 0.00 = <L/999 0.12 = L/360 0.02 Total Defl'n 0.00 = <L/999 0.18 = L/240 0.02 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.00 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 151, V design = 111 lbs Bending( +): LC #2 = D +L, M = 132 lbs -ft Deflection: LC #2 = D +L EI= 78e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. lw 14- 1 COMPANY PROJECT di WoodWorks® SOFTWARE FOR W000 DESIGN June 24, 2010 12:50 b30 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j41 Dead Partial UD 68.0 68.0 2.00 4.00 plf 2_j41 Live Partial UD 100.0 100.0 2.00 4.00 plf 3_j42 Dead Partial UD 72.2 72.2 0.00 2.00 plf 4 j42 Live Partial UD 106.2 106.2 0.00 2.00 plf MAXIMUM REACTIONS filial and RFARIN( 1 EN(;THS lint A 0 ' 44 Dead 154 150 Live 209 203 Total 364 353 Bearing: Load Comb #2 #2 - Length 0.50* 0.50* *Min. bearing length for beams is 1/2" for exterior supports Lumber -soft, D.Fir -L, No.2, 4x8" Self- weight of 6.03 pif included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 15 Fv' = 180 fv /Fv' = 0.08 Bending( +) fb = 140 Fb' = 1170 fb /Fb' = 0.12 Live Defl'n 0.00 = <L/999 0.13 = L/360 0.03 Total Defl'n 0.01 = <L/999 0.20 = L/240 0.04 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 364, V design = 253 lbs Bending( +): LC #2 = D +L, M = 359 lbs -ft Deflection: LC #2 = D +L EI= 178e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. • . COMPANY PROJECT 11 I WoodWo SOFTWARE FOR WOOD DESIGN June 24, 2010 12:42 b31 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or pif ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j65 Dead Partial UD 47.7 47.7 0.00 4.00 plf 2_j65 Live Partial UD 160.0 160.0 0.00 4.00 plf 3_j28 Dead Partial UD 47.7 47.7 4.50 7.50 plf 4_j28 Live Partial UD 160.0 160.0 4.50 7.50 plf 5_j62 Dead Partial UD 47.7 47.7 7.50 11.00 plf 6_j62 Live Partial UD 160.0 160.0 7.50 11.00 plf 7_j63 Dead Partial UD 47.7 47.7 11.00 17.00 plf 8_j63 Live Partial UD 160.0 160.0 11.00 17.00 pif 9_j64 Dead Partial UD 47.7 47.7 17.00 20.00 plf 10_j64 Live Partial UD 160.0 160.0 17.00 20.00 plf 11_j66 Dead Partial UD 47.7 47.7 4.00 4.50 plf 12 166 Live Partial UD 160.0 160.0 4.00 4.50 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : I0' 20+ Dead 619 619 Live 1600 1600 Total 2219 2219 Bearing: Load Comb #2 #2 Length 0.67 0.67 Glulam- Unbal., West Species, 24F -V4 DF, 5- 1/8x12" Self- weight of 14.16 pif included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 49 Fv' = 265 fv /Fv' = 0.18 Bending( +) fb = 1082 Fb' = 2400 fb /Fb' = 0.45 Live Defl'n 0.43 = L/553 0.67 = L/360 0.65 Total Defl'n 0.69 = L/350 1.00 = L/240 0.69 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 2219, V design = 1997 lbs Bending( +): LC #2 = D +L, M = 11095 lbs -ft Deflection: LC #2 = D +L EI= 1328e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). 4- c 20 COMPANY PROJECT il 111 1 1 Wood Jar 24. 201013:15 b34 SOFTWARE FOR WOOD DESIGN Design Check Calculation Sheet Shv7.1 LOADS i sr. vrt w PN)' Load Type Dletrlbuticn magnitude Location [ft] Unit. Start End Saar End . 1 162 Dead Partial UD 613.2 613.2 0.00 2.00 Of 0 Snow Partial UD 795.0 795.0 0.00 2.00 plf 329 Dead Partial UD 617.5 611.5 1.50 11.00 plf 029 Partial UD 801.2 001.2 1.50 11.00 plf 5 115 Dead Point 1436 11.00 Iba 1115 Snow point 2404 11.00 Iba 116 Dead Point 1389 11.00 1ba 9 116 Snow Point 2404 11.00 ibs 9 Dead Partial UD 617.5 611.5 17.00 19.00 plf 115_w64 Snow Partial UD 801.2 901.2 13.00 10.00 plf • 11_4.61 Dead Point 622 1.00 lb. 12 161 Snow Point 1192 7.00 Iba 13_162 Dead Po Inc 1192 1.00 Iba 14_061 Snow Point 1192 1.00 Iba 15 v63 Dead Partial UD 613.2 613.2 2.00 4.00 Of 16_w63 Snow Partial UD 7 95.0 795.0 2.00 4.00 plf 11 1.'65 Dead Partial UD 611.5 611.5 19.00 20.00 plf 11 Snow Partial UD 901.2 901.2 19.00 10.00 pif 19 Dead Partial UD 613.2 613.2 1 .00 7.50 plf 20_071 Sncw pa :tiai UD 795.0 795.0 7.00 7.50 plf 21_364 Dead Partial UD 47.7 47.7 17.00 19.00 Of 22 364 4 Partial UD 160.0 160.0 1 16.00 plf 23 1. 329 Dead Partial UD 47.7 47.7 4.50 7.50 PIP 24 329 Live Partial UD 160.0 160.0 4.50 7.50 plf . 25_162 Dead Partial UO 41.1 47.7 7.50 11.00 plf 26_162 Live Partial UD 160.0 160.0 7.50 11.00 plf 27_140 Dead Partial UD 120.2 120.2 0.00 2.00 plf 2 °_149 Live Partial UD 370.0 370.0 0.00 2.00 plf 29_332 Dead Partial UD 120.2 120.2 3.50 4.00 plf • 30_532 Live Part1.1 UD 370.0 370.0 3.50 4.00 plf 31 333 Dead Partial UD 120.2 1 :0.2 4.50 7.50 plf 32_333 Live Partial 10 370.0 370.0 4.50 7.50 plf 33_334 Daad Partial UD 3 :0.2 120.2 7.50 2.00 pit , • :_134 Liva Partial U0 370.0 370.0 7.50 9.00 plf 35_135 Dead Partial 00 120.2 120.2 9.00 11.00 plf 36_335 Live Partial UD 370.0 370.0 6.00 11.00 plf 37_347 Dead Partial U0 120.2 120.2 11.00 17.00 plf 39_147 Live Partial UD 370.0 370.0 11.00 17.00 plf 39_167 Dead Partial ID 120.2 120.2 2.00 3.50 plf 40_367 Live Partial UD 370.0 370.0 2.00 3.50 Of 41 349 Dead Partial UD 120.2 120.2 4.00 4.50 plf 42 349 Live Partial UD 370.0 370.0 1.00 1.50 pif 43163 Dead Partial UD 47.7 47.7 11.00 17.00 plf 44_163 Live Partial UD 160.0 160.0 11.00 17.00 plf 45_165 Dead Partial 40.7 47.7 19.00 20.00 plf 46_165 Live Partial ID UD 160.0 160.0 19.00 20.00 plf 47_156 Dead Partial UD 47.7 47.7 4.00 4.50 plf 49_166 Live Partial UD 160.0 160.0 4.00 4.50 plf 49_1368 Dead Partial UD 120.2 3 :0.2 17.00 19.00 plf 50 369 Llva Partial UD 370.0 370.0 17.00 10.00 plf 51_369 Dead Partial U0 120.2 120.2 16.00 20.00 plf 52_16? Live Partial UD 370.0 370.0 19.00 20.00 plf 53172 Dead Partial UD 47.7 47.7 2.00 4.00 plf 54 172 Live Partial UD 160.0 160.0 2.00 4.00 plf 55 173 Dead Partial UD 47.7 47.7 0.00 2.00 plf 56 173 Live Partial UD 160.0 160.0 0.00 2.00 elf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : 1 3 - Deal 9105 27 9956 9319 Total 17361 17305 Bearing: Uatl Comb 13 13 Lenoth 5.21 5.19 Glulam -Bala, West Species, 24F -V8 DF, 5- 118x22 -1/2" Self-weiQi a126.55 pll Included in bads: Lateral support lop - AN Macaw et supports: Analysis vs. Allowable Stress (psi) and Deflection (in) using NOS 2025: Criter100 Analysis Value Dealon Value Ana1•n1a /Deaan sneer 00 - 132 Fv' ■ 305 fv /P,' - 0.60 Bending(*) fb - 2392 Flo - 2604 10 /Fla' - 0.92 Live Dail'n 0.40 - L/595 0.61 - L/360 0.60 Total Oefl'n 0.94 • 2/295 1.00 - L/240 0.94 ADDITIONAL DATA: FACTORS: F/E CD 03 Ct CL C/ Cfu Cr Cfrt Not0e Cn 2.C1 90' 265 1.15 1.00 1.00 1.00 1.00 1.00 3 Fb'4 2400 1.35 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - 3 Fop' 650 1.00 1.00 - - - - 1.00 - E' 1.5 01111on 1.00 1.00 - E01n' 0.55 .1001an 1.00 1.00 - - - - 1.00 - - 3 Shear : LC 13 - 2•. -5), V ■ 17361, V ..sign - 13592 Iba 2and0ng1 LC 13 ■ 04.15(2.6), 7 ■ 76179 Sbe -ft 0.11,0010;: LC 13 ■ 0.75(2 EI- 9756.06 11 -202 Total Deflection • 1.5010041 Load Deflection, 0 Live Load Deflection. )0■10.4 L•live 5 ■an -wind 1.1epact C-cone0:uction CLd- 1lncentratod) IAl1 LC'e are lifted in the Anal /sia output) Load combination.: IC0 -14C DESIGN NOTES: 1. Please vain that Um defaua deflection Omits are appropriate for your application. 2. Glalam design values are to 006.6721, conforming to AITC 117 -2001 and 0lanutM60.4 In accordance with ANSUAITC A190. 1 -1992 3. GLULAM: tad a .dual breadth 8 actual depth. . 4. G4dam Beams Mao be laten09 supported according b the proNsbns of ND5 Clause 3.3.3. 5. GLULAM: bearing length based on tunales of Foppenslon), Fop(rnmpn). 4-, ,icy ; COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:49 b35 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j21 Dead Partial UD 120.2 120.2 0.50 1.50 plf 2 j21 Live Partial UD 370.0 370.0 0.50 1.50 plf 3 j59 Dead Partial UD 120.2 120.2 0.00 0.50 plf 4_j59 Live Partial UD 370.0 370.0 0.00 0.50 plf 5_j60 Dead Partial UD 120.2 120.2 1.50 3.00 plf 6 j60 Live Partial UD 370.0 370.0 1.50 3.00 _ pif MAXIMUMRE? n .�..... ,.� . . �� . "' "'" . .....�.... • 0 31 Dead 188 188 Live 555 555 Total 743 743 Bearing: Load Comb #2 # Length 0.50* 0.50* *Min. bearing length for beams is 1/2" for exterior supports Lumber n -ply, D.Fir -L, No.2, 2x8 ", 2 -Plys Self- weight of 5.17 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis /Design Shear fv = 31 Fv' = 180 fv /Fv' = 0.17 Bending( +) fb = 254 Fb' = 1080 fb /Fb' = 0.24 Live Defl'n 0.00 = <L/999 0.10 = L/360 0.04 Total Defl'n 0.01 = <L/999 0.15 = L/240 0.04 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 743, V design = 444 lbs Bending( +): LC #2 = D +L, M = 557 lbs -ft Deflection:,LC #2 = D +L EI= 76e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. 4 - 61'N. COMPANY PROJECT di WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:51 c2 Design Check Calculation Sheet Sizer 7.1 LOADS l Ibs, psf, or pif ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_bl Dead Axial 1056 (Eccentricity = 0.00 in) 2 Rf.Live Axial 2153 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): • 0' 8' Lumber n -ply, Hem -Fir, No.2, 2x6 ", 2 -Plys Self- weight of 3.41 plf included in Toads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 0.00= 0.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 196 Fc' = 980 fc /Fc' = 0.20 Axial Bearing fc = 196 Fc* = 1644 fc /Fc* = 0.12 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.596 1.100 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 3236 lbs Kf = 1.00 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. COMPANY PROJECT i/ I s- Wood Works® " SOFTWARE FOR WOOD DESIGN June 24, 2010 12:54 c12 Design Check Calculation Sheet Sizer 7.1 LOADS (Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 c24 Dead Axial 1478 (Eccentricity = 0.00 in) 2 c24 Live Axial 4320 (Eccentricity = 0.00 in) 3 b10 Dead Axial 4067 (Eccentricity = 0.00 in) 4 Live Axial 11291 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): ► ._ - -`.Y•. . x . y,- +��sc.���.�" .G, = i,.vz� -::� ' -�- -4^ "--.. -; t2-d:sczz_ _.. r_ ..:?'' ..., r •°i�_. Kv, s • 0 8 . Timber-soft D.Fir -L, No.1, 6x6" Self- weight of 7.19 pif included in Toads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NHS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 701 Fc' = 820 fc /Fc' = 0.86 Axial Bearing fc = 701 Fc* = 1000 fc /Fc* = 0.70 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC #. Fc' 1000 1.00 1.00 1.00 0.820 1.000 - - 1.00 1.00 2 Fc* 1000 1.00 1.00 1.00 - 1.000 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 21214 lbs (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 4- GaH COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:53 c23 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or pif ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_b9 Dead Axial 1478 (Eccentricity = 0.00 in) 2 b9 Live Axial 4320 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): D 0' 9 ' Lumber Post, Hem -Fir, No.2, 4x6" Self- weight of 3.98 plf included in loads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 9.00= 9.00 [ft]; Ke x Ld: 1.00 x 9.00= 9.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 303 Fc' = 379 fc /Fc' = 0.80 Axial Bearing fc = 303 Fc* = 1430 fc /Fc* = 0.21 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.265 1.100 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 5834 lbs (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. • / V' - (1 sc COMPANY PROJECT I %VoodV\iorks SOFTWARE FOR WOOD DESIGN June 24, 2010 12:54 c26 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1_c23 Dead Axial 1478 (Eccentricity = 0.00 in) 2 Live Axial 4320 (Eccentricity = 0.00 in) 3 Dead Axial 1180 (Eccentricity = 0.00 in) 4 Live Axial 3436 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): • 0' 8' Timber -soft, Hem -Fir, No.2, 6x6" Self- weight of 6.25 plf included in loads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 346 Fc' = 492 fc /Fc' = 0.70 Axial Bearing fc = 346 Fc* = 575 fc /Fc* = 0.60 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 575 1.00 1.00 1.00 0.856 1.000 - - 1.00 1.00 2 Fc* 575 1.00 1.00 1.00 - 1.000 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 10465 lbs (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. C 2AL COMPANY PROJECT i WoodWorks° SOFTWARE FOR WOOD DESIGN June 24, 2010 12:52 c29 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or pif ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b13 Dead Axial 3033 (Eccentricity = 0.00 in) 2 Rf.Live Axial 5052 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 0' 8' Lumber n -ply, Hem -Fir, No.2, 2x6 ", 3 -Plys Self- weight of 5.11 pif included in loads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Repetitive factor: applied where permitted (refer to online help); Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 328 Fc' = 439 fc /Fc' = 0.75 Axial Bearing fc = 328 Fc* = 1644 fc /Fc* = 0.20 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.267 1.100 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 8126 lbs Kf = 0.60 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. 4 - Gz • COMPANY PROJECT • i WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:55 c31 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or pif ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_b13 Dead Axial 2561 (Eccentricity = 0.00 in) 2 Rf.Live Axial 3599 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 1 0' 8' Lumber n -ply, Hem -Fir, No.2, 2x4 ", 3 -Plys Self- weight of 3.25 plf included in Toads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Repetitive factor: applied where permitted (refer to online help); Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 393 Fc' = 443 fc /Fc' = 0.89 Axial Bearing fc = 393 Fc* = 1719 fc /Fc* = 0.23 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.258 1.150 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 6186 lbs Kf = 0.60 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) • (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. /4 g --- COMPANY PROJECT WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:54 c39 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b21 Dead Axial 267 (Eccentricity = 0.00 in) 2 Live Axial 822 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): d 0' 9 , Lumber n -ply, Hem -Fir, No.2, 2x4 ", 2 -Plys Self- weight of 2.17 pif included in loads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 9.00= 9.00 [ft]; Ke x Ld: 1.00 x 9.00= 9.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 106 Fc' = 171 fc /Fc' = 0.62 Axial Bearing fc = 106 _ Fc* = 1495 fc /Fc* = 0.07 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.114 1.150 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 1108 lbs Kf = 0.60 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. 4-4(421 COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:52 c55 • Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or pif ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b30 Dead Axial 154 (Eccentricity = 0.00 in) 2 Live Axial 209 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 1 0' 8' Lumber Post, Hem -Fir, No.2, 4x4" Self- weight of 2.53 plf included in loads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 31 Fc' = 470 fc /Fc' = 0.07 Axial Bearing fc = 31 Fc* = 1495 fc /Fc* = 0.02 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.315 1.150 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 384 lbs (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. frq BY A I\ k_ / DATE: r _ ` ao k0 JOB NO.: C E • ' ....Q RO OF PROJECT: RE: hearts ui l Lokr4 t React-kw ❑ ❑ J Z LL W beams b -> Watk 5 , °3 ~i, 3oz O 2 ❑ \Decay v3 --, Walls ao ar ava b O a t �� � cc • W eon 5 Wakiks ,n-$ ' awl U Z W 0 d Z b ear 3 W -5 Wat1,5 a0 , aQtA ': ao•g 0 U 5 knce wM feu.(,4i '(\ » se Lsmi c_ �' c , c r s Z 2 0111.. wirdk_ +t1 he._ Catc utcAvec,. 2 0 U f m o LL. Z W ❑ Z 0 o = 1- a O • U Q N ;a= H W C W --- ( e) ) \ COMPANY PROJECT eft WoodWorks® SOFTWARE FOR WOOD DFS(CN June 24, 2010 13:07 b6 LC1 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1 c44 Dead Point 444 2.00 lbs 2 c44 Snow Point 647 2.00 lbs 3_w44 Dead Partial UD 389.2 389.2 0.00 2.00 plf 4 w44 Snow Partial UD 431.2 431.2 0.00 2.00 plf 5 c45 Dead Point 444 5.00 lbs 6c45 Snow Point 647 5.00 lbs 7 _ w45 Dead Partial UD 389.2 389.2 5.00 6.00 plf 8 w45 Snow Partial UD 431.2 431.2 5.00 6.00 plf 9 j25 Dead Full UDL 120.2 plf 10 j25 Live Full UDL 370.0 plf WIND1 Wind Point 800 2.00 lbs WIND2 Wind Point -910 5.00 lbs MAXIMUM REA • .s1 and BEARING LENGTHS (in) : 10' 61 Dead 1436 1389 Live 2089 1803 Total 3525 3192 Bearing: Load Comb #4 #3 Length 1.88 1.70 Lumber n -ply, D.Fir -L, No.2, 2x12 ", 2 -Plys Self- weight of 8.02 plf included in loads; Lateral support top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 97 Fv' = 207 fv /Fv' = 0.47 Bending( +) fb 805 Fb' = 1035 fb /Fb' = 0.78 Live Defl'n 0.03 = <L/999 0.20 = L/360 0.15 Total Defl'n 0.06 = <L/999 0.30 = L/240 0.21 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 4 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 4 Shear : LC #3 = D +.75(L +S), V = 3239, V design = 2190 lbs Bending( +): LC #3 = D +.75(L +S), M = 4247 lbs -ft Deflection: LC #4 = D +.75(L +S +W) El= 285e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. 632_ COMPANY PROJECT i WoodWorks® SOFFWARF FOR WOOD DESIGN June 24, 2010 13:07 b6 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or pif ) • Load Type Distribution Magnitude Location (ft] Units Start End Start End 1 c44 Dead Point 444 2.00 lbs 2 c44 Snow Point 647 2.00 lbs 3 w44 Dead Partial UD 389.2 389.2 0.00 2.00 pif 4 w44 Snow Partial UD 431.2 431.2 0.00 2.00 pif 51c45 Dead Point 444 5.00 lbs 6_c45 Snow Point 647 5.00 lbs 7_,w45 Dead Partial UD 389.2 389.2 5.00 6.00 pif 8_w45 Snow Partial UD 431.2 431.2 5.00 6.00 pif 9 j25 Dead Full UDL 120.2 pif 10 j25 Live Full UDL 370.0 pif WIND1 Wind Point -800 2.00 lbs WIND2 Wind Point 910 5.00 lbs MAXIMUM REACTIONS fibs) and BEARING LENGTHS linl t 0' 64 Dead 1436 1389 Live 1803 2172 Total 3239 3561 Bearing: Load Comb #3 #4 Length 1.73 1.90 Lumber n -ply, D.Fir -L, No.2, 2x12 ", 2 -Plys Self- weight of 8.02 pif included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 97 Fv' = 207 fv /Fv' = 0.47 Bending( +) fb = 805 Fb' = 1035 fb /Fb' = 0.78 Live Defl'n 0.03 = <L/999 0.20 = L/360 0.14 Total Defl'n 0.06 = <L/999 0.30 = L/240 0.20 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3 Shear : LC #3 = D +.75(L +S), V = 3239, V design = 2190 lbs Bending( +): LC #3 = D +.75(L +S), M = 4247 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 285e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. ..._ (.7,33 • COMPANY PROJECT 1 WoodWorks SOFIWAREFORWOODOESIGN June 24, 2010 13:09 b14 LC1 • Design Check Calculation Sheet Sizer 7.1 LOADS (Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1 w68 Dead Partial UD 221.7 221.7 9.00 10.50 plf 2 w 68 Live Partial UD 350.0 350.0 9.00 10.50 plf 3_c 19 Dead Point 357 9.00 lbs 4_c19 Live Point 1050 9.00 lbs 5_c20 Dead Point 357 3.00 lbs 6 c20 Live Point 1050 3.00 lbs 7 Dead Partial UD 317.7 317.7 0.00 1.50 plf 8 w 66 Live Partial UD 350.0 350.0 0.00 1.50 plf 9 Dead Point 165 10.50 lbs 10_c64 Snow Point 225 10.50 lbs 11 c65 Dead Point 165 1.50 lbs 12_c65 Snow Point 225 1.50 lbs 13 w67 Dead Partial UD 221.7 221.7 1.50 3.00 plf 14 w67 Live Partial UD 350.0 350.0 1.50 3.00 plf 15_w69 Dead Partial UD 317.7 317.7 10.50 12.00 plf 16_w69 Live Partial UD 350.0 350.0 10.50 12.00 plf 17_j36 Dead Full UDL 113.7 plf 18_j36 Live Full UDL 350.0 plf 19 j43 Dead Partial UD 17.0 17.0 0.00 0.50 plf 20 143 Live Partial UD 25.0 25.0 0.00 0.50 plf 21_j44 Dead Partial UD 17.0 17.0 0.50 1.50 plf 22_j44 Live Partial UD 25.0 25.0 0.50 1.50 plf 23_j45 Dead Partial UD 17.0 17.0 1.50 3.00 plf 24_j45 Live Partial UD 25.0 25.0 1.50 3.00 plf 25_j46 Dead Partial UD 17.0 17.0 10.50 12.00 plf 26j46 Live Partial UD 25.0 25.0 10.50 12.00 plf • 27_j70 Dead Partial UD 17.0 17.0 3.00 9.00 plf 28 - j70 Live Partial UD 25.0 25.0 3.00 9.00 plf 29_j71 Dead Partial UD 17.0 17.0 9.00 10.50 plf 30_j71 Live Partial UD 25.0 25.0 9.00 10.50 plf WIND1 Wind Point 3560 3.00 lbs WIND2 Wind Point -3640 9.00 lbs wind3 Wind Point -3620 0.00 lbs winds Wind Point 3570 12.00 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : „_--10...., � .- ...mss........!...*• .--_r�...- r _ w+ -' � ._ `+s.< � .. ... ��y�.. y ": ` "" -�- - .`.,�: as r.s� : - tar -_�a ---,.. " y `v- ' -y.. , .r .+c,. -: • ►_ •. '- ,-- - or .r p:a �.'s _. _ r.,.t - .,,w& °,T . --...."-:=1----- � c - - ' ... aa., +e - ..:.u- 10' 121 Dead 2207 2207 Live 4350 4350 Uplift 499 479 Total 6557 6557 Bearing: Load Comb 92 92 Length _ 2.34 2.34 LSL, 1.55E, 2325Fb, 3- 1/2x14" Self- weight of 15.31 Of included in loads; • Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 158 Fv' = 310 fv /Fv' = 0.51 Bending( +) fb = 1735 Flo' = 2325 fb /Fb' = 0.75 Live Defl'n 0.25 = L/573 0.40 = L/360 0.63 Total Defl'n 0.42 = L/343 0.60 = L/240 0.70 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC)I FV' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC 92 = D +L, V = 6557, V design = 5170 lbs . Bending( +): LC 92 = D +L, M = 16527 lbs -ft • Deflection: LC 92 = D +L EI= 1241e06 lb -in2 . Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. /.-6-131-f COMPANY PROJECT f fl WoodWorks® SOF1WAIIEFOR woos DESIGN June 24, 2010 13:09 b14 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS (Ibs, psf, or plf ) Load Type Distribution Magnitude Location (ft) Units Start End Start End 1 w68 Dead Partial UD 221.7 221.7 9.00 10.50 plf 2 w68 Live Partial UD 350.0 350.0 9.00 10.50 plf 3 Dead Point 357 9.00 lbs 4 c19 Live Point 1050 9.00 lbs 5 c20 Dead Point 357 3.00 lbs 6 Live Point 1050 3.00 lbs 7_w66 Dead Partial UD 317.7 317.7 0.00 1.50 plf 8 Live Partial UD 350.0 350.0 0.00 1.50 plf • 9 Dead Point 165 10.50 lbs 10_c64 Snow Point 225 10.50 lbs 11_c65 Dead Point 165 1.50 lbs 12 c65 Snow Point 225 1.50 lbs 13 Dead Partial UD 221.7 221.7 1.50 3.00 plf 14 Live Partial UD 350.0 350.0 1.50 3.00 plf 15 Dead Partial UD 317.7 317.7 10.50 12.00 plf 16 Live Partial UD 350.0 350.0 10.50 12.00 plf 17_j36 Dead Full UDL 113.7 plf 18_j36 Live Fu11 UDL 350.0 plf 19 j43 Dead Partial UD 17.0 17.0 0.00 0.50 plf 20 j43 Live Partial UD 25.0 25.0 0.00 0.50 plf 21_344 Dead Partial UD 17.0 17.0 0.50 1.50 plf 22_344 Live Partial UD 25.0 25.0 0.50 1.50 plf 23_j45 Dead Partial UD 17.0 17.0 1.50 3.00 plf 24j45 Live Partial UD 25.0 25.0 1.50 3.00 plf 25_j46 Dead Partial UD 17.0 17.0 10.50 12.00 plf 26_j46 Live Partial UD 25.0 25.0 10.50 12.00 plf 27j70 Dead Partial UD 17.0 17.0 3.00 9.00 plf 28 j70 Live Partial UD 25.0 25.0 3.00 9.00 plf 29j71 Dead Partial UD 17.0 17.0 9.00 10.50 plf 30_j71 Live Partial UD 25.0 25.0 9.00 10.50 plf WIND1 Wind Point -3560 3.00 lbs WIND2 Wind Point 3640 9.00 lbs wind3 Wind Point 3620 0.00 lbs winds Wind Point -3570 12.00 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : � - mss- -- :.a.■ - •� -el. -. . � : •a.:.= 0 ,,,,-i,�., K ,i. , ��"- �.* , ,�_.,_. . - -�. -a.r e ms - �" '� "�s�„Z-�s esC • l 121 Dead 2207 2207 Live 4826 4811 Total 7033 7018 Bearing: Load Comb #4 #4 Length 2.51 2.51 LSL, 1.55E, 2325Fb, 3- 1/2x14" Self- weight of 15.31 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 158 Fv' = 310 fv /Fv' = 0.51 Bending( +) fb = 1735 Fb' = 2325 fb /Fb' = 0.75 Live Defl'n 0.25 = L/573 0.40 = L/360 0.63 Total Defl'n 0.42 = L/343 0.60 = L/240 0.70 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 6557, V design = 5170 lbs Bending( +): LC #2 = D +L, M = 16527 lbs -ft Deflection: LC #2 = D +L EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer: 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. 4 - C 3C- COMPANY PROJECT 1 WoodWorks° I SOFTWARE FOR WOOD DESIGN June 24, 2010 13:11 b13 LC1 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location fft] Units Start End Start End 1 w58 Dead Partial UD 519.0 519.0 0.00 3.00 plf 2 w58 Snow Partial UD 505.0 505.0 0.00 3.00 plf 3_c40 Dead Point 217 5.50 lbs 4 c40 Live Point 668 5.50 lbs 5 c67 Dead Point 518 5.00 lbs 6 c67 • Snow Point 778 5.00 lbs 7 Dead Point 573 3.00 lbs 8_c68 Snow Point 942 3.00 lbs 9 w59 Dead Partial UD 593.7 593.7 5.00 8.00 plf 10w59 Snow Partial UD 735.0 735.0 5.00 8.00 plf 11 j37 Dead Partial UD 100.7 100.7 6.50 8.00 plf 12 137 Live Partial UD 310.0 310.0 6.50 8.00 plf 13_j38 Dead Partial UD 81.2 81.2 3.50 6.50 plf 14 j38 Live Partial UD 250.0 250.0 3.50 6.50 plf 15 j39 Dead Partial UD 22.7 22.7 0.00 3.50 plf 16 Live Partial UD 70.0 70.0 0.00 3.50 plf 17 Dead Point 126 3.50 lbs 18 Live Point 389 3.50 lbs 19 Dead Point 225 6.50 lbs 20 Live Point 693 6.50 lbs W1 Wind Point 6590 0.00 lbs W2 Wind Point -6590 3.00 lbs W3 Wind Point 6590 5.00 lbs W4 Wind Point -6590 8.00 lbs MAXIMUM , (Ihs1 and BEARING LENGTHS lint _:... _ .r..-�«.,.- �. _r ms,.,�..r... --,� ---- - , �.:,t.. -1r- ..... -a I ��,__` ff- �m�+' =- _w m:^�. - �' ter- .....,ram 1 0' Si Dead 2561 3033 Live 6406 3789 Uplift 3098 Total 8968 6822 Bearing: Load Comb 09 83 Length 3.20 2.44 LSL, 1.55E, 2325Fb, 3- 1/2x14" Self- weight 0115.31 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 157 Fv' = 356 fv /Fv' = 0.44 Bending( +) fb = 1295 Fb' = 2674 fb /Fb' = 0.48 Live Defl'n 0.06 = <L/999 0.27 = L/360 0.24 Total Defl'n 0.19 = L /680 0.90 = L/240 0.35 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LCI) Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 3 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 3 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 3 Emin' 0.80 million - 1.00 - - - - 1.00 - - 3 Shear : LC 93 = D +.75(L +S), V = 6822, V design = 5122 lbs Bending( +): LC 93 = D +.75(L +S), M = 12340 lbs -ft Deflection: LC 113 = D +.75(L +S) EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. COMPANY PROJECT i. WoodWorks® SOFIWAREFOR WOOD DESIGN June 24, 2010 13:11 b13 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs. psf, or Of ) Load Type Distribution Magnitude Location (ft) Units Start End Start End 1 w58 Dead Partial UD 519.0 519.0 0.00 3.00 plf 2 w58 Snow Partial UD 505.0 505.0 0.00 3.00 plf 3 Dead Point 217 5.50 lbs 4 c40 Live Point 668 5.50 lbs 5 Dead Point 518 5.00 lbs 6 c67 Snow Point 778 5.00 lbs 7 Dead Point 573 3.00 lbs 8 c68 Snow Point 942 3.00 lbs 9 w59 Dead Partial UD 593.7 593.7 5.00 8.00 plf 10_w59 Snow Partial UD 735.0 735.0 5.00 8.00 plf 11 j37 Dead Partial UD 100.7 100.7 6.50 8.00 plf 12 j37 Live Partial UD 310.0 310.0 6.50 8.00 plf 13_j38 Dead Partial UD 81.2 81.2 3.50 6.50 plf 14 j38 Live Partial UD 250.0 250.0 3.50 6.50 plf 15_j39 Dead Partial UD 22.7 22.7 0.00 3.50 plf 16 j39 Live Partial UD 70.0 70.0 0.00 3.50 plf 17 Dead Point 126 3.50 lbs 18 Live Point 389 3.50 lbs 19 b 32 Dead Point 225 6.50 lbs 20 b 32 Live Point 693 6.50 lbs W1 Wind Point -6590 0.00 lbs W2 Wind Point 6590 3.00 lbs W3 Wind Point -6590 5.00 lbs W4 Wind Point 6590 8.00 lbs MAXIMUM RFACTIANS llbsl and BFARING LENGTHS lin] : _, ,r -, - '-. - -�:.rr-'`" °s' . r"" _ . , -+ s�fr� � - fir..- - 1 F .� ., -- - - ' . `+S.fe �,;. s w - c. ..- ..'rt�'*` -± �- _ yam,--,, .- . � s _ -�- a � , _ ^-'r = ' --.._,...--.-0,-- ,..-- 1 0' 8111 Dead 2561 3033 Live 2699 7496 Uplift 3381 Total 5261 10529 Bearing: Load Comb #3 #4 Length 1.88 3.76 LSL, 1.55E, 2325Fb, 3- 112x14" Self- weight of 15.31 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 157 Fv' = 356 fv /Fv' = 0.44 Bending( +) fb = 1295 Fb' = 2674 fb /Fb' = 0.48 Live Defl'n 0.06 = <L/999 0.27 = L/360 0.24 Total Defl'n 0.14 = L /680 0.40 = L/240 0.35 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fir' 310 1.15 - 1.00 - - - - 1.00 - 1.00 3 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 3 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 3 Emin' 0.80 million - 1.00 - - - - 1.00 - - 3 Shear : LC 93 = D+.75(L+S), V = 6822, V design = 5122 lbs Bending( +): LC #3 = D +.75(L +S), M = 12340 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L =live S =snow W=wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. 4 -6-i';'-ir- COMPANY PROJECT I %Vo VVo r k s ® June 24, 201013,19 D34 LC> SOFTWARE FOR WOOD DESIGN Design Check Calculation Sheet spec 7.1 LOADS (ms,vu. o9re) Load Type Distribution Magnitude Location (ft) Units Start End Start End 1_ Dead Partial U0 613.2 613.2 0.00 2.00 plf 2 1462 Snow Partial UD >95.0 795.0 0.00 2.00 plf 3 Dead Partial UD 617.5 617.5 7.50 11.00 plf 4 Snow Partial UD e01.2 901.2 7.50 11.00 plf 5 Dead Point 1436 11.00 lbs E_o15 - Point 2404 11.00 lba 619 Dead Po105 1399 17.00 lb. 9016 Sncy Point 2404 17.00 lb. 9 Dead Partial UD 617.5 617.5 17.00 18.00 pit 15 064 Sr.. 26:5161 UD 901.2 901.2 17.00 19.00 plf 11 761 Dead Point 622 7.00 lba 12 661 Snow Point 1192 7.00 lbe 15462 Dead Point 622 4.00 lbs 14662 Snow Point 1192 4.00 lb. 15 Dead Partial UD 613.2 613.2 2.00 4.00 pit 16 3707 Partial UD 795.0 795.0 2.00 4.00 plf 17465 Dead Partial U0 617.5 617.5 19.00 20.00 plf 18465 Snow Partial UD 901.2 601.2 100.00 20.00 p16 19471 Dead Partial U0 613.2 613.2 7.00 7.50 plf 20:071 Snow Partial UD 795.0 795.0 7.00 7.50 plf 21_164 Goad Partial UO 47.7 47.7 17.00 16.00 plf 22_361 L1va Partial UD 160.0 160.0 17.00 19.00 plf 23,29 Dead Partial UD 47.1 47.7 4.50 7.50 plf 24,:9 L1va Partial UD 160.0 160.0 4.50 7.50 plf 25)92 Dead Partial UD 17.7 47.7 7.5D 11.00 plf 26)62 LSV. Partial U0 160.0 • 160.0 7.50 11.00 plf 27_340 Dead Partial U0 120.2 120.2 0.00 2.00 plf 29_548 Live Partial UD 370.0 370.0 0.00 2.00 plf 29_332 Dead Partial 00 120.2 120.2 3.50 4.00 plf 30_132 Live Partial UD 370.0 370.0 3.50 4.00 plf 31_333 Dead Partial UD 1220.2 120.2 4.50 7.50 plf 32_533 Live Partial UD 270.0 370.0 1.50 7.50 elf 33_134 Dead Partial 70 1:0.2 120.2 7.50 3.00 plf 34_134 Live Partial UD 370.0 370.0 7.50 9.00 plf 35_335 Dead Partial UD 120.2 120.2 9.00 11.00 plf 36_135 Live Partial UD 370.0 370.0 9.00 11.00 plf 37347 Dyad Partial U0 120.2 120.2 11.00 17.00 plf 28_147 Live Partial UD 370.0 370.0 11.00 1 plf 39_367 Dead Partial U0 120.2 120.2 2.00 3.50 plf 40_167 Live Partial UD 370.0 370.0 2.00 3.50 plf 41_349 Dead Partial U0 120.2 120.2 4.00 4.50 plf 42)49 Live Partial UD 370.0 370.0 4.00 4.50 plf 43_363 Dead Partial UD 47.7 47.7 11.00 17.00 plf 44_163 Live Partial UD 160.0 160.0 11.01 17.00 plf 45_165 Dead Partial UD 47.7 17.7 19.00 20.00 plf 46_165 Live Partial U0 160.0 160.0 19.00 20.00 plf 47_366 Dead Partial U0 47.7 17.7 4.00 4.50 plf 48_166 Live Partial UD 160.0 160.0 4.00 4.50 plf 49_367 Dead Partial UD 1:0.: 120.2 17.00 13.00 plf 50_169 Liva Partial U0 370.0 370.0 17.00 19.00 plf 51_169 Dead Partial UD 120.2 120.2 13.00 20.00 plf 52_169 Live Partial UD 370.0 370.0 19.07 20.00 plf 53_272 Dead Partial UD 47.7 47.7 2.01 4.00 plf 54_172 Live Partial UD 160.0 160.0 2.00 1.00 plf 55 373 Dead Partial U0 47.7 47.1 0.00 2.00 plf 56_3 Live Partial UO 160.0 160.0 0.00 2.00 plf W1 Wind Point 5350 0.00 lbe N2 wind Point -5350 4.00 lb. 03 Wind Point 5950 11.00 lb. 04 Wind Point -5650 17.00 lba W5 Wind _ Paint 5950 20.00 lbs MAXIMUM REACTIONS Os) and BEARING LENGTHS (in) : 1 � Tj Dead 1 1405 7 Live 12150 12172 Total 19555 19499 Bearing: Wad Comb 44 61 Length 5.87 5.65 Glulam -Bain, West Species, 24F -V8 DF, 5- 118x22 -1/2" Serf -wdm6 of 29.55 p9 Included In MAN; 001.304 euppwt rope 5A, Babas at supports; Analysis vs. Allowable Stress (psi) and Deflection (In) .4.m9 Nos m65 2 Criterion Anal041. Va1ua D enton Value Analysis /Deal7n Shear fv . 162 iv' a 205 1v 107' ■ 0.60 9.70170141 fro . 2392 Flo' ■ 2604 fb /Fb' . 0.92 Live Def1'n 0.40 ■ L /595 0.67 ■ L/360 0.60 Total Defl'n 0.94 - L/245 1.00 . L/240 0.94 ADDITIONAL DATA: • FACTORS: F/E CD CN Ct CL CJ C.'u Cr Cf :t notes Cn LC8 07' 265 1.15 1.00 1.00 1.00 1.00 1.00 3 107• :400 1.15 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - 3 - E' 1.9 million 1.00 1.00 - - - - 1.00 - - 3 Erin' 0.05 .1111:7 1.00 1.00 - - - - 1.00 - - 3 Shea: : LC 43 . 01.75(7.051, V ■ 17361, V dovign ■ 13962 lb. Bendingl•): LC 43 . 24.7514 n ■ 96199 1ba -1t Deflection: LC 43 a 04.751=411 EIe 6756.06 1b -in: Total Deflection a 1.70(Dead Load Deflect/en) • Live Load Deflection. IDWead L ■live 0 -47o9 0-v1nd I- Ispact ■one- ruction C1.d- oan :ont :ate0( 1 2. 0 ' . . : , a e listed in the ,Analysis output) Load combination.: 177 - 130 DESIGN NOTES: 1. Please v.dfy Mal Om dermal delbcibn emits me appropriate fm your app8tMon. 2. Ghdmn design values are fm materials conforming to ARC 117.2001 end nvm/facNed In accordance MID ANSUAITC 0190.1.1992 3. GLUTAM: bad = motto! bread a actual depth. e. Warn Beams shall be tatera0y supported eacard1910 the prwlakns of NDS Clause 3.3.3. S GLULAM: beadlg length band on =Mar of Fcp(lerulen). Fop(cpnp'n). 4- `(%:P y COMPANY PROJECT 1 101.11. Ill di %%'ood \/Vo r k June 24.201013:19 b34 LC2 SOFTWARE FOR WOOD DESIGN Design Check Calculation Sheet SANTA LOADS IR.. Paf. w PSI Load Type Distribution Magnitude Location 1ft1 Units Start End Start End 1_062 Dead Partial UD 613.2 613.2 0.00 2.00 plf 062 Snow Partial UD 195.0 795.0 0.00 2.00 plf 1_029 Dead Partial UD 617.5 617.5 7.50 11.00 plf 029 Snow Partial UD 801.2 801.2 7.50 11.00 plf 5 Dead Point 1436 11.00 lb* 6_415 Snow Point 2404 11.00 ibs 716 Dead Point 1399 17.00 ibs C.26 Snow 901n0 2404 17.00 ibs 9 064 Dead Partial UD 617.5 617.5 1 15.00 p11 10 264 Snow Partial UD 901.2 801.2 17.00 19.00 plf 11_461 Dead Point 632 7.00 ibs 12 461 Snot Point 1192 7.00 Dos 13 462 Dead Point 622 4.00 lb. 14 062 Snow Point 1192 4.00 lba 15 Daad Partial UD 613.2 613.2 2.00 4.00 plf 16763 Snow Partial UD 795.0 795.0 2.00 4.00 plf 17_w65 Dead Partial UD 617.5 611.5 19.00 20.00 plf 18 065 Snow Partial UD 901.2 801.2 18.00 20.00 plf 19 Dead Partial UD 613.2 613.2 7.00 7.50 plf 20 071 Snow Partial UD 795.0 795.0 7.00 7.50 plf 21_164 Dead Partial UD 41.7 47.7 17.00 19.00 plf 22_364 Live Partial UD 160.0 160.0 17.00 18.00 011 23_328 Dead Partial 80 47.7 47.7 4.50 1.50 pit 24_129 Live Partial UD 160.0 160.0 4.50 7.50 plf 25_162 Dead Partial UD 47.7 47.7 7.50 11.00 p1f . 26_562 Live Partial VD 160.0 160.0 7.50 11.00 plf 27_149 Dead Partial UD 120.2 120.2 0.00 2.00 plf 29_140 Live Partial UD 370.0 370.0 0.00 2.00 plf 29_132 Dead Partial UD 120.2 120.2 3.50 4.00 plf 30_132 Live Partial U0 370.0 370.0 3.50 4.00 plf 31_333 Dead Partial UD 120.2 120.2 4.50 7.50 plf 32 333 LSv7 Partial UD 370.0 370.0 4.50 7.50 plf 33:134 Dead Partial U0 120.2 120.2 7.50 9.00 plf 34_134 Live Partial UD 370.0 370.0 7.50 9.00 plf 35_035 Zead Partial U0 120.2 120.2 9.00 11.00 plf 36_135 Live Partial U0 370.0 370.0 9.00 11.00 plf 37_747 Dead Partial U0 120.2 120.2 11.00 17.00 plf 39_747 Live Partial DO 370.0 370.0 11.00 17.00 p21 39_167 Dead Partial VD 120.2 120. 2.00 3.50 pit 40 )67 2103 Partial VD 3 370.0 2.00 3.50 plf 41_)49 Dead Partial UD 120.2 1:0.2 4.00 4.50 plf 42_149 Live Partial U0 370.0 370.0 4.00 4.50 p11 43 )63 Dead Partial U0 47.7 47.7 11.00 27.00 011 44_363 Live Partial U0 160.0 160.0 11.00 17.00 plf 45_165 Dead P•rtial U0 47.7 47.7 19.00 20.00 p11 46 )65 21,6 Partial U0 160.0 160.0 19.00 20.00 p11 47_166 Dead Partial 00 47.1 47.7 4.00 4.50 011 40_1E6 Live Partlel UD 160.0 160.0 4.00 4.50 plf 49_167 Dead Partial UD 120.2 120.2 17.00 19.0C plf 5 368 Live Partial UD 370.0 370.0 17.00 19.00 211 51_369 Dead Partial U0 120.2 120.2 15.80 20.00 plf 52_169 Live Partial U0 370.0 370.0 19.00 20.00 011 53_572 Dead Partial up 47.7 47.7 2.00 4.00 plf 54_1 Live Partial UD 160.0 160.0 2.00 4.00 plf 5 )73 Dead Partial UD 47.7 47.7 0.00 2.00 p11 56 373 Live Partial U0 160.0 160.0 0.00 2.00 p14 61 Hind Point -5950 0.60 1bs M2 Mind Point 5950 4.00 lb, 33 Mind Point -5950 11.00 ibs 64 Mind Paint 5950 17.00 lba 95 Mind P41nt -5950 - 20.00 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : Dead 1144 _. i 05 13- 27 Live 9956 9978 Total 17361 17305 Searing: Lead Cor. 43 13 Laneh 5.21 5.19, • Glulam -Bal., West Species, 24F -V8 DF, 5- 118x22 -1/2" San -waled et 25.55 p41 Included In bads: 071.191 auPP&r lape m0, botlem al suppvb: Analysis vs. Allowable Stress (psi) and Deflection (In) ..m Nos zoos; Criterlcn 20.1 - :.14 Value Design Value Ana1V.0. /06.170 Shear 182 Fs - 305 1v /FV' - 0.60 63nding1.) Do - 2392 Fb' ■ 2604 1,/20' - 0.92 Live De(1'n 0.41 ■ L /591 0.67. L/360 0.61 Total Den, 0.94 - L/284 1.00 - L /240 0.94 ADDITIONAL DATA: FACTORS: F/E CO C4 71 C! C1u 7 0170 Cn LC4 47' 265 1.15 1.00 1.00 1.00 1.00 1.00 3 41'. 2400 1.15 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - Fcp' 650 1.00 1.00 - - E' 1.7 m1111on 1.00 1.00 - - - - 1.00 - - 4 Cain' 0.95 7(1111,7 1.00 1.0D - - - - 1.00 - - 3 Shear : 1.0 93 - D..75[1•51. V - 17361, V design - 13982 109 Eendingl3 : LC 93 - D M - 76109 ibs -ft Deflection: LC 44 - 07.7512.5401 EI. 9756.06 lb -1n2 Total Deflection . 1.00(04.1 Load 031135010n) 4 Live Load De113001,7. 1o■dead dive 5-snow W.wInd I.1ryact C.c :natruct1Vr. CL1■ccncentrat.dl 'All LC'a are listed in the Analysis output) Load combinations: ICC -I21 DESIGN NOTES: 1. Please verity that the default deMctbn ANN are 9pprtpbfe fat your epp4cel63. 2. Glum design va are for maledab cmfambg to ARC 147.2001 and manufactured in accordance weh ANSIAITC A190.1 -1992 3. GLUTAM: mod =actual breadth a actual depdtl. 4. Gpdan Reams dal be Iatela0y supported according to he prpds4ons of NDS Clam 3.3.3 5. GLULAM: bearing length based m ambler of Fcp9ens'vQ. Fcp(canp n). fri C779 • COMPANY PROJECT • i Wood Works® June 21. 2010 13.20 034 LC2 SOFTWARE FOR WOOD DESIGN Design Check Calculation Sheet Son 7.1 LOADS am au, or plf Load Type Distribution Magnitude Location 1101 Units Start End Start End 1 w62 Daad Partial UD 613.2 613.2 0.00 2.00 pif 2062 Snow Partial UD 795.0 795.0 0.00 2.00 plf 3_929 Dead Partial UD 611.5 617.5 7.50 11.00 p11 0 4 v29 Snow Partial UD 601.2 P01.2 7.50 11.00 plf 5 c15 Dead Point 1436 11.40 lb. 6 015 Snow Point 2404 11.20 lbs 7 Dead Point 1399 17.00 lbs 8 Snow Point 2404 17.00 lb. 9 Dead Partial UD 617.5 617.5 17.00 16.00 pit 10 961 Snow Partial UD 801.2 801.2 17.00 19.00 pif 11_061 Dead Point 622 7.00 lbs 12 =61 Snow Point 1192 7.00 lbs 13_762 Dead Point 622 4.00 lbs 14 c63 Snow Point 1192 4.00 lbs 15 Dead Partial U0 613.2 613.2 2.00 4.00 plf 10w63 Snow Partial U0 795.0 795.0 2.00 4.00 pif 17 Dead Partial U0 617.5 617.5 19.00 20.00 pif 10065 Snow Partial U0 701.2 901.2 19.00 20.00 pif 19 Dead Partial UD 613.2 613.2 7.00 7.50 pif 20 071 Snow Partial UD 795.0 195.0 7.00 7.50 pif 21_164 Dead Partial UD 47.7 47.7 17.00 19.00 plf 22_764 Live Partial UD 160.0 160.0 17.00 19.00 pif 23_729 Dead Partial UD 4.50 7.50 plf 2 Live Partial l U0 160.0 160.0 4.50 7.50 pif 25 Dead Partial U0 47.7 47.7 7.50 11.00 pif 26_762 Live Partial UD 160.0 160.0 7.50 11.00 pif 27_748 Dead Partial UD 120.2 120.2 0.00 2.00 p11 28_149 Live Partial UD 370.0 370.0 0.00 2.00 pif 29_132 Dead Partial UD 120.2 120.2 3.50 4.00 pif 30_332 Live Partial U0 370.0 370.0 3.50 4.00 pif 31_133 Dead Partial U0 120.2 120.2 4.50 7.50 plf 32_133 Live Partial UD 370.0 370.0 4.50 .50 pif 33_134 Dead Partial U0 120.2 120.2 7.50 6.00 plf 36_134 Live Partla3 U0 370.0 370.0 7.50 8.00 plf 35_135 Dead Partial UD 120.2 120.2 9.00 11.00 plf 36_135 LSva Partial UD 370.0 370.0 9.00 11.00 plf 27J47 Dead Partial UD 120.2 120.2 11.0D 27.00 pif 39 0 11) Live Partial UD 370.0 3)0.0 11.00 17.00 pif 39 _167 Dead Partial U0 120.2 120.2 2.00 3.50 plf 40_767 Live Partial UD 370.0 370.0 2.00 3.50 plf 41_349 Dead Partial UD 120.2 120.2 4.00 4.50 p11 42_149 Live Partial UD 370.0 370.0 4.00 4.50 pif 43_263 Dead Partial UD 7.7 11.00 17.00 plf 41 763 Live Partial U0 160.0 160.0 11.00 17.00 plf 45_765 Dead Partial 00 47.7 47.7 16.00 20.00 plf 46_365 Live Partial UD 160.0 160.0 19.00 20.00 pif 47_166 Dead Partial U0 47.7 47.7 4.00 4.50 plf 46_166 Live Partial 0D 160.0 160.0 4.00 4.50 plf 49_169 Dead Partial 110 120.2 120.2 17.00 19.00 plf 50_168 Live Partial UD 370.0 3 17.00 19.00 pif 51_169 Dead Partial UD 120.2 120.2 19.00 20.00 p1 52_169 Live Partial UD 370.0 370.0 19.00 20.00 p11 0 53_372 Dead Partial UD 47.7 47.7 2.00 4.00 plf 54_772 LSvo Partial U0 160.0 160.0 2.00 4.00 plf 55_173 Dead Partial UO 47.7 47.7 0.00 2.00 plf 56 173 Live Partial UO 160.0 160.0 0.00 2.00 wl wind Point -5850 0.00 10. lb. Wind Point 5850 4.00 lbs 03 Mind Point -5650 11.00 lbs MI wind Point 5850 17.00 lbs w5 Mind Point -5 20.00 lie • MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (In) : • • Dodd 95S 77 Live 7366 7305 Total 17361 17305 Bearing: Load h 43 43 Length 5.21 5.19 Glulam -BaI., West Species, 24F -V8 DF, 5- 118x22 -1/2" Sd -weight of 26.55 pf Nadel In Seedy Wend support tops fug, bottom. N supports: Analysis vs. Allowable Stress (psi) and Deflection (in) .,big 54032090 Criterion 00610.06 Value Design Value Analvala /Daman Shear fv 182 Fv' - 305 f7 /FV' . 0.60 4endln9l 9b - 2392 Fb' - 2604 I0 /Fb' . 0.82 Live Dell'n 0.41 - L/591 0.67. L /360 0.61 Total Defl'n 0.84 - L/284 1.00. L /240 0.94 ADDITIONAL DATA: FACTORS: F/E CO CH Ct CL CV 002 Cr Cfr[ notes ' LC9 90' 265 1.15 1.00 1.00 1.00 1.00 100 3 F 2400 1.15 1.00 1.00 1.000 0.944 1.00 1 00 1.00 1.00 3 b'4 Fop' 650 1.00 1.00 - - E' 1.5 0111100 1.00 1.00 - En1n' 0.95 million 1.00 1.00 - - - - 1.00 - 4 Shear : LC 83 - 01..751L,51. V . 17361, V design . 13982 lb. Bending“): LC 43 - D4.7511,S). H . 86199 lb9 -1t 0601,001.9: LC 44 . 0..751L.S'0) E2. 9756.06 1b -in2 Total 0.11.93103 - 1.00(DSad Load Deflection) • Live Lead Deflection. (0.dead L-11ve S.anty w.wind I.Smpact C■cenatruetion CIA.3on.,ntra:03) 1011 LC'. a e listed In the Analysis output) Load combinations, ICC -l9C DESIGN NOTES: 1. Please 5erif9 that the detail dell9ctbn limits arc eppreptlate far yam epp4edkrt 2. Warn design values are ter materiels cadorndng to AITC 137.2001 and merafxhMad In accordance wen ANSVAITC A190.1 -1992 3. GLULAM: brats actual breadth, mead depth. 4. Oaken Beams Nall be Iater4Oy supported warding to the prmbicna 05 NOS Chine 33.3. 5. GLULAM: bearing 5955 based on vndkr off epgension), Fep(comp'n). COMPANY PROJECT 1 WoodWorks SOFTWARE FOR WOOD DESIGN June 24, 2010 13:23 b34 LC1 NO LL Design Check Calculation Sheet Sizer 7.1 LOADS (Ibs, psf, or plf ) Load Type Distribution Magnitude Location MI Units Start End Start End 1 w62 Dead Partial UD 613.2 613.2 0.00 2.00 plf 3 w29 Dead Partial UD 617.5 617.5 7.50 11.00 plf 5 c15 Dead Point 1436 11.00 lbs 7 c16 Dead Point 1389 17.00 lbs 9 Dead Partial UD 617.5 617.5 17.00 18.00 plf 11 c61 Dead Point 622 7.00 lbs 13 c62 Dead Point 622 4.00 lbs 15 w63 Dead Partial UD 613.2 613.2 2.00 4.00 plf 17 Dead Partial UD 617.5 617.5 18.00 20.00 plf 19 Dead Partial UD 613.2 613.2 7.00 7.50 plf 21 Dead Partial UD 47.7 47.7 17.00 18.00 plf 23 Dead Partial UD 47.7 47.7 4.50 7.50 plf 25 j62 Dead Partial UD 47.7 47.7 7.50 11.00 plf 27 Dead Partial UD 120.2 120.2 0.00 2.00 plf 29 j32 Dead Partial UD 120.2 120.2 3.50 4.00 plf 31 Dead Partial UD 120.2 120.2 4.50 7.50 plf 33 j34 Dead Partial UD 120.2 120.2 7.50 8.00 plf 35 Dead Partial UD 120.2 120.2 8.00 11.00 plf 39_j67 Dead Partial UD 120.2 120.2 2.00 3.50 plf 41 Dead Partial UD 120.2 120.2 4.00 4.50 plf 43 Dead Partial UD 47.7 47.7 11.00 17.00 plf 45_j65 Dead Partial UD 47.7 47.7 18.00 20.00 plf 47_j66 Dead Partial UD 47.7 47.7 4.00 4.50 plf 49 j68 Dead Partial UD 120.2 120.2 17.00 18.00 plf 51 Dead Partial UD 120.2 120.2 18.00 20.00 plf 53 j72 Dead Partial UD 47.7 47.7 2.00 4.00 plf 55 j73 Dead Partial UD 47.7 47.7 0.00 2.00 plf 81 Wind Point 5850 0.00 lbs W2 Wind Point -5850 4.00 lbs W3 Wind Point 5850 11.00 lbs W4 Wind Point -5850 17.00 lbs W5 Wind Point 5850 20.00 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : A l 201 Dead 7189 6822 Live 156 302 Total 7238 7018 Bearing: Load Comb 02 82 Length 2.17_ 2.11 Glulam -Bat., West Species, 24F -V8 DF, 5- 1/8x22 -1/2" Self- weight of 26.55 plf included in Toads; Lateral support top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 74 FV' = 238 fv /Fv' = 0.31 Bending( +) fb = 950 Fb' = 2038 fb /Fb' = 0.47 Live Defl'n negligible . Total Defl'n 0.41 = L/585 1.00 = L/240 0.41 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC0 Fv' 265 0.90 1.00 1.00 - - - - 1.00 1.00 1.00 1 Fb'+ 2400 0.90 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - 1 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 1 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 1 Shear : LC 01 = D only, V = 7189, V design = 5674 lbs . Bending( +): LC 01 = D only, M = 34217 lbs -ft Deflection: LC 01 = D only EI= 8756e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). /4 -Cif COMPANY PROJECT 000% WoodWorks° SOE/WARE FOR WOOD DESIGN June 24, 201013:22 b34 LC2 NO LL Design Check Calculation Sheet Sizer 7.1 LOADS l lbs, psi, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w62 Dead Partial UD 613.2 613.2 0.00 2.00 plf 3 w29 Dead Partial UD 617.5 617.5 7.50 11.00 plf 5_c15 Dead Point 1436 11.00 lbs 7 c16 Dead Point 1389 17.00 lbs 9 w64 Dead Partial UD 617.5 617.5 17.00 18.00 plf • 11 c61 Dead Point 622 7.00 lbs 13 Dead Point 622 4.00 lbs 15_w63 Dead Partial UD 613.2 613.2 2.00 4.00 plf 17_w65 Dead Partial UD 617.5 617.5 18.00 20.00 plf 19w71 . Dead Partial UD 613.2 613.2 7.00 7.50 plf 21 j64 Dead Partial UD 47.7 47.7 17.00 18.00 plf 23_j28 Dead Partial UD 47.7 47.7 4.50 7.50 plf 25_j62 Dead Partial UD 47.7 47.7 7.50 11.00 plf 27_j48 Dead Partial UD 120.2 120.2 0.00 2.00 plf 29_j32 Dead Partial UD 120.2 120.2 3.50 4.00 plf 31j33 Dead Partial UD 120.2 120.2 4.50 7.50 plf 33_j34 Dead Partial UD 120.2 120.2 7.50 8.00 plf 35 j35 Dead Partial UD 120.2 120.2 8.00 11.00 plf 39 j67 Dead Partial UD 120.2 120.2 2.00 3.50 plf 41 j49 Dead Partial UD 120.2 120.2 4.00 4.50 plf 43_j63 Dead Partial UD 47.7 47.7 11.00 17.00 pif 45_j65 Dead Partial UD 47.7 47.7 18.00 20.00 plf 47_j66 Dead Partial UD 47.7 47.7 4.00 4.50 plf 49_j68 Dead Partial UD 120.2 120.2 17.00 18.00 plf 51_j69 Dead Partial UD 120.2 120.2 18.00 20.00 plf 53j72 j72 Dead Partial UD 47.7 47.7 2.00 4.00 plf 55_j73 Dead Partial UD 47.7 47.7 0.00 2.00 plf . W1 Wind Point -5850 0.00 lbs W2 Wind Point 5850 4.00 lbs W3 Wind Point -5850 11.00 lbs W4 Wind Point 5850 17.00 lbs W5 Wind Point -5850 20.00 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : • la 201 Dead 7189 6822 Live Total 7189 6822 Bearing: Load Comb #1 #1 Length 2.16 2.05 Glulam -Bal., West Species, 24F -V8 DF, 5- 118x22 -1/2" Self- weight of 26.55 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis/Design Shear fv = 74 Fv' = 238 fv /Fv' = 0.31 Bending( +) fb = 950 Fb' = 2038 fb /Fb' = 0.47 Live Defl'n negligible Total Defl'n 0.41 = L /585 1.00 = L/240 0.41 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 0.90 1.00 1.00 - - - - 1.00 1.00 1.00 1 Fb'+ 2400 0.90 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - 1 Fcp' 650 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 1 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 1 Shear : LC #1 = D only, V = 7189, V design = 5674 lbs Bending( +): LC #1 = D only, M = 34217 lbs -ft Deflection: LC #1 = D only EI= 8756e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). 4 -Ci2- Harper Project: Houf Peterson R Client: Job # Righellis In c. ENGINEERS • >LANNERS Designer: Date: Pg. # LANDSCAPE ARCNI(ECTS•SURVEYORS Wdl:= 10. 1b •8•ft•20•ft Wdl = 1600-lb Deck_ �s�g' r ft Seismic Forces Site Class =D Design Catagory =D Wp W d1 1 :_ 1.0 Component Importance Factor (Sect 13.1.3, ASCE 7 -05) S := 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. S • = 0.942 Max EQ, 5% damped, spectral responce acceleration at short period z := 9 Height of Component h := 32 Mean Height Of Roof F : = 1.123 Acc -based site coefficient @ .3 s- period (Table 1613.5.3(1), 2006 IBC) F = 1.722 Vel -based site coefficient @ 1 s- period (Table 1613.5.3(2), 2006 IBC) S := F S S : =F 2-S S := Max EQ, 5% damped, spectral responce acceleration at short period 3 Exterior Elements & Body Of Connections a := 1.0 RP := 2.5 (Table 13.5 -1, ASCE 7 -05) 4a •Sds•i_ 1-W FpRp p P l + 2• p EQU. 13.3 -1 Fpmax 1.6•S EQU. 13.3 -2 Fpmin := . EQU. 13.3 -3 if(F > F pmax , Fpmax, if(F < F pmin , Fpmm, F F = 338.5171-lb Miniumum Vertical Force 0.2' S ds' W dl = 225.6781-lb ; . • Harper Project: AP D. Houf Peterson Client: Job # Righellis Inc. ENGINEERS .• PLANNERS Designer: Date: Pg. # LANDSCAPE ARCNITECtS•SURVEYGRS W dl DI lb -8--20-ft ft Wdl = 1600-lb ft Seismic Forces Site Class =D Design Catagory =D W := Wd - P r�� := 1.0 Component Importance Factor (Sect 13.1.3, ASCE 7 -05) S1 := 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. S := 0.942 Max EQ, 5% damped, spectral responce acceleration at short period z := 9 Height of Component h := 32 Mean Height Of Roof Fa := 1.123 Acc -based site coefficient @ .3 s- period (Table 1613.5.3(1), 2006 IBC) F • = 1.722 Vel -based site coefficient @ 1 s- period (Table 1613.5.3(2), 2006 IBC) S : = F -S Smi := F v -S 1 2 • S ms S ds • = Max EQ, 5% damped, spectral responce acceleration at short period 3 Exterior Elements & Body Of Connections a := 1.0 R := 2.5 (Table 13.5 -1, ASCE 7 -05) 4a Sds• z F p : p ' R (1 + 2 h) Wp EQU. 13.3 -1 Fpmax 1.6•S EQU. 13.3 -2 F pmin • -W p EQU. 13.3 -3 = if(F > Fpmax,Fpmax, if(F < F pmin Fpmin Fp)) F = 338.5171 -lb Miniumum Vertical Force 0.2• S ds ' W dl = 225.6781.16 C LI LI tiarper ' '• HoufPeterson COMMUNICATION RECORD Righellis Inc. To ❑ FROM ❑ MEMO TO FILE ❑ [AI :Ps o ,1., nLNS i•:uosrnre nl :carer rs.;ol. ,va >s PHONE NO.: PHONE CALL: ❑ MEETING: ❑ m V o m A 2 t_ - n 0o n 1I 3 G a 11 -4 Il 1 c1► 5 - ti ) di p 11 c— V 1I- 1,1 NI V 1:' t ^ n Cl . Nt...- --4.„1 r I 1 1 N I Z. •ro g ` N o Z r V� •\ O II r rr N. BY 't rio( CO(SeAr\ DATE: prc\ JOB NO.: 'PROJECT: f • .. R E : I) e• C Yn )",); ()T..-- -“'_Po\N Crk 2L 11 1 0 0 w .. Dect_u46.1 _ . O E 1- id O 2 Nt erk 1 - ry (1 (,:. C6rntrioN. x 0 O .4' , O it'd z . . • , . .. . LAPIA(.14 L1,1" (2 boara) 0 z '30\s'I-5 2 = C I' \ x v 0 iC spac. Ift5 \rje. n Act.: \s - 3" (cox. g . 2 Cacxxck irk) zz ( k .cd..„-F- . o 6 • . 12 I kik.) i't rua\ ...:= tG.015" lix,•F 1 ! i . _ii _ 0 \) -•= '! 02_ . , 4.4 41 T 0..) • .-1 t2 1 I =,-- ( 7 _ 2 -0 . IA') , el l e - a , . ----- 3o ( = g3I 4 411- \\i\f\psc.i-r\ 30.3'14- x4122 e_ 12," O. -::-. 440 4# ---- ok. • ig—GL/G DATE• BY: po c zyj n , . JOB NO., - - -- PROJECT: RE: 0 0 w .. , Lc.)Pk. "0 E O 2 / , 4.--. ZOO* X 0 . , . < 0 . • ,- sLucf3 iti 0 z . 0 z T=C = Stlooiht,i 30 R-100 1 ‹ 0 - z U.._ 5wy\?coorN NDu 4 D 2 TO , ("et'5'.. kfrva..›■or1 2 ria,5" 0 r;- , O • .. w 0 6 0 = 1-0Pti F- 0- Mo. aooit Czoi' -zoo tt > i 1 , T-=C =-. BbOo ttik.) dr. aa8(04t- 3.5" 15(4, < ,9:400 ., +D04 3C O r o 6 ; 15 OV-V • i:1 01 i: ,,,,- ,., > pi ‘u'l . 74,, Haver COMMUNICATION RECORD _ ':: "' Houf Peterson Righellis Inc. To 0 FROM 0 MEMO TO FILE E ENGINCEPS • PIERS LAVG,09aE ARCHITECT,•SURVCVC,R3 PHONE NO.: PHONE CALL: Ej MEETING: 0 . . . M - 0 co m 75 7 — I rn it6 0 ." II 0 7: ( ' I --- .., II CA (71 11 37 f ( . 1 . _ 0 3 . ..C. -C --- 0 0 - CI. 62 let # ...- es d . 1‘ - A-. id Cn t. C 9- I C- (A r' It i 1 _ccsi. r n T c s i 6- , -- I , 1 .2' 0 .. • • < \ . . . . ... • _ . , Harper ' 1 6 . Houf Peterson COMMUNICATION RECORD ' ' Righellis Inc. To D FROM 0 • MEMO TO FILE [J E0OINEEtig.PLA,NERi LANDSCII ARCHITECTS•SU: - PHONE NO.: PHONE CALL: 0 MEETING: fl . 33 11 . T PI I d m n . k ) ivi ^ § "........ "CI Th oiry cn — 1 (.7 \ ;---. 1 c.... 0 .. -s. F s• k....i ... . --r ------- f` E ID 7 c CO r-- V r c-N v, - c . ...C. 37 "-`4,,,,,,. • ......k C/ C. ; 1 t I • . r t . i . NI. ,....::. . -0 z 9 0 C.t.: — 1 P. r :1 ' - COMPANY PROJECT - . i ll , WoodWorks® SOFMWMFORNICWODUMN June 8, 2009 16:27 Hand Rail Design Check Calculation Sheet Sizer 8.0 LOADS: Load Type Distribution Pat- Location Eft] Magnitude Obit tern Start End Start End LIVE _Live Point 2.50 200 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : :,.....!;.;,..: ,.-...4 -_:-.. _:',1.;- ....I. - .1,-",...,.;.::: -::.:,:,,, :;.. ;;;;.,•,:., :....,:. .. ,,,,. _. ., •_'.... „ , " ' " F .. ' S': :: : - ' 1-; : : ' .;:- -, .i.')..:..' ':', i 3" ''. :. : ::: : ! " ... : ' ' '-i. '' ..:1 2: : :. . ' : -,;::; r . - ..v i. r: ;'. :'' v ..: :''''''' ' .;,;‘. :....., -''.' :t '''..,..... ..: 1. : - ' li IV 54 Dead Live 100 100 Total 104 104 Bearing: Load Comb #2 #2 Length 0.50* 0.50* Cb 1.00 1.00 *Min. bearing length for beams is 1/2° for exterior supports Lumber-soft, Hem-Fir, No.2, 2x6" Self-weight of 1.7 Of induded in loads; Lateral support: top= at supports, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis/Design Shear fv = 19 Fv' = 150 fv/Pv' = 0.13 Bending(+) fb = 405 Fb' = 1048 fb/Fb' = 0.39 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.20 Total Defl'n 0.03 = <L/999 0.25 = L/240 0.14 ADDITIONAL DATA: . FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 150 1.00 1.00 1.00 ' - - - 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 0.949 1.300 '1.00 1.00 1.00 1.00 - 2 Pep' 405 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.3 million 1.00 1.00 - - - 1.00 1.00 - 2 Emin' 0.47 million 1.00 1.00 - - - 1.00 1.00 - 2 Shear : LC #2 = L, V = 104, V design = 103 lbs Bending(+): LC #2 = L, M = 255 lbs-ft Deflection: LC #2 = L El = 27e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction Lc=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. • ( COMPANY PROJECT Op liA _al Wood Works® SOFTWARE FON WOOD DEMON June 8, 2009 16:27 Hand RaiI2 Design Check Calculation Sheet Sizer 8.0 LOADS: Load Type Distribution Pat- Location [ft] Magnitude Unit tern Start End Start End LIVE Live Full UDL 50.0 Alf MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : ''riri, 4 i :; .."7 ...X '' 'Y''.: -- ""`i•-•.!•'''A',"' --:" -,' "'"--*. '1: -- :: : :.'t" - t - . " • "' , .. 3 - - --- -. 4-:----i-•.-: - -- , ...:- . .4 , - ,,, --. , !-- 4 .. 4, t"; -- -..-:.F.:-' , '''--t,..-i , '-'. , . 1 . -- -, - _ , :::-.'^=F , b`- "4?; . - -z-7 - .,'-'74. - -- -::-7 --. :','. -- --. , :'.--- ..--.:-.-': .,-: : -,.;-- :-::: !:r:..:':::..=-_, :::.,'1,..1% ' - ;.1 - „E: -. ...: . .:,,:., - ;,: : : .::-:.,":-..----., ,:,-- .;':'' : - ', '''' , Y: :."'-':`,,..- ,'-' ; '-' 1 _:: , .- r: -'. 7 e.'-' : ,:`,.-- '-:.'• - -v, , , ,.... - .f . , 10' 54 Dead Live 125 125 Total 129 129 Bearing: Load Comb #2 #2 Length 0.50* 0.50* Cb 1.00 1.00 "Min. bearing length for beams is 112" for exterior supports Lumber-soft; Hem-Fir, No.2, 2x6" Self-weight of 1.7 pif included in loads; Lateral support: top= at supports, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis/Design Shear fv = 19 Fv' = 150 fv/Fv' = 0.13 Bending(+) fb = 256 Fb' . 1048 fb/Fb' = 0.24 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.16 Total Defl'n 0.03 = <L/999 0.25 = L/240 0.11 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 150 1.00 1.00 1.00 - - - 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 0.949 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 405 - 1.00 1.00 - - - - 1.00 1.00 - El 1.3 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.47 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = L, V = 129, V design = 106 lbs Bending(+): LC #2 = L, M = 162 lbs-ft Deflection: LC #2 = L El = 27e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction Lc=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. g.......6si WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks ®Sizer 7.1 June 22, 2010 13:57:56 Concept Mode: Reactions Base of Structure View Floor 2: 8' 1050 . _ . . _ 49 -6 u3 1600 L..:. - - -: - -- - -- • 600 L . . : 4 /. -a. • iui? 619 D 619 D -: ' , 4o-bb • - - - -- - - - - .. - 44 : 43 b • y25 : : -- . - : 42 -0 • yf _. . .. . , . 47 -b y • 1193 L153 2404 L:• _ 2404 L • ' _ ... .. - . , . - ' ' •_ ' .3 -b. 4 625 01059 11439 D: 1394 D 325' °.. s. ' , : - it -0 291 _ -_. -.i . -' _ 3b. -b. n 315 L: . . �4i-n 2HS ... -= - - -- .:. : - -- 358 D: - -- - -- - - - _ -- - - -- - - -- - - .. - --- .SL-b tab -- : - -„ . ...... ...... -- - .: - --- --- 7::::::. " : .. 31T-b bb L`9 -b - - .. :--- 225.-0 233 : 3151_ :- Lr -b " u i 100 L : 358 D 4�. • �� 5U- - l ._ _- . L4 b IV 96 D.. Ls -b 125 -.[ .m11:-'' • - • : • . - f f - • • . 74(847 -.. 5611 L - 756 L -_ .. --- -=- - : ----` -- - 4'i -b.. f n : LU b" to - 4•(452 la- 5546 D - - L� D - ; w _n.. f4 -- :625 - - :- - _ : ... : : 25 -- -- - . - - -- - lts -b fL 203 D _ ._ lb -b � 1 L 1.5: -. 307 D [L► • o 460 : - . ii n 11.) -b -245 L .. -t3 033 -'. 3 D i 50 L 1 ^ n.. 3 nL � , el) 599 87 L 87 L :: - µ . - .3 _.. _. 2 09 LD D • 1963 D . - 1963 D -: t - r - - - - - - S -b 154 D . :: ^/ u ilk. . . L. n.. • - :. � �.: 7-L: -: - ----11“ 2363 D .. - . 1 -b ---( :78 Di D ' 106 D. u -n .EB1B.B BCCCC CCC CICCC CC CCCC C C CC CC \CC CD.DDD D DD D }DDDCD D.DDDD D DD CD!DD DE E E E EIEE'EFEEEEEIE EEEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'Z3'4'5'6'7'8'91(1 1:1 :1 2(2 22:2 4A :44'.4(4 - 41415(5 "5:5:5 5(5'-6(6 8:6 :6 "7.7.7 -6" V(301 1•I En . L p 0 (..) - FW NIT W - • . 4,F( WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Rear Load WoodWorks® Sizer 7.1 June 22, 2010 13:57:37 Concept Mode: Reactions at Base of Structure View Floor 2: 8' 1050 0 ..: " : . . . .. . _ . : - - - 49. - b. 'I U..5 600 L -= :..,_. __ _. -600 L...: b 4/ - • ui 619D . . =-1 :619D 40 -b 1UU 44 0 V/ .. . .. , 41 _ V0 13274 L_ 3 304 L • - ' 4sa -o `J4 7153D' • -- - ' ' - - . 7072D ; - - • -- . - - 3b -b a3 .. 3r b . : �y 315E s3 c bf " 358 D: .. .51 -b • 00 : „ -- .._: .. -.;: :. - -- -- -: -- -- _. -- - - - - - - - 30 -0 bb 1V -0 n3 315E z - 0 OZ . . : .. 3 .. ui TOOL - C ` gib:. • Hsu 96 D : z4'- b i b 74(84 611 L.. r 56 L - u � • r b , 0452 D `5546 0 5 w•-b -- '625 %r 203 D 5 D lb-°0 -- • r ( : - 5D. 10 b fU- - - � 14 -0 by 908 L 13 . 00 .: .105 L307 D . - -- .__ (L 0 • bb. 46 D • b 245 L v -0 3D 50L n • ' 74 D . b .. 0L, b•-b b i 59 9 i - - b, L `� 2587 L : - - 58 L "" � " • bU? 209 LD D:11963 D - 1963 D- r . . 3-0 154 D - -iu Lin. .• �. 2219 D c b • L 725L_ _ .1 : (- -( 78 D7 DJ • 617D'D D. U BB \B.B BC. C .DDDDDDIDDDDD DDDDDD EiEE.EFEEEIEEIEE EEEEEEIEEEE. 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1 '2'3'4'5'6'7'8'91 (1 - 1;1:1 X1'.111 :1(112(2 22:22'.2(2 212f3(33:3;3 :44!4(4'4245(5 5:5 :5 E:6 :6 6 6/7(7 77.7 • • \. OOTI Lpiiiv0Ts /4,_ F : weentiey :2 Harper Houf Peterson Righellis Inc. Vk CP.•rent Date: 6/24/2010 1:41 PM I system: English Fne name: O: \HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations \F1.ftd\ Design Results Reinforced Concrete Footings GENERAL INFORMATION: Global status Warnings Design Code ACI 318 -05 Footing type Spread Column type Steel Geometry • F z 12 in 1 ft �I fit 'yy ft .K +, 1 4 r 4.25 ft 4.25ft Pagel Length 4.25 [ft] Width 4.25 [ft] Thickness 1.00 [ft] Base depth 1.50 [ft] Base area 18.06 [ft2] Footing volume 18.06 [ft3] Base plate length 5.50 [in] Base plate width 5.50 [in] Column length 5.50 [in] Column width 5.50 [in] Column location relative to footing g.c. Centered Materials Concrete, Pc 3.00 [Kip /in2] Steel, fy 60.00 [Kip /in2] Concrete type Normal Epoxy coated No Concrete elasticity modulus . 3122.02 [Kip /in2] Steel elasticity modulus : 29000.00 [Kip /in2] Unit weight 0.15 [Kip /ft3] Soil Modulus of subgrade reaction 200.00 [Kip /ft3] Unit weight (wet) 0.11 [Kip /ft3] Footing reinforcement Free cover : 3.00 [in] Maximum Rho /Rho balanced ratio : 0.75 Bottom reinforcement // to L ()o) : 6-#4 @ 9.00" Bottom reinforcement // to B (zz) . 6-#4 @ 9.00" (Zone 1) Load conditions to be included in design Service loads: • SC1 DL S1 DL S2 DL +LL S3 DL +0.75LL Design strength loads: DC1 1.4DL D1 1.4DL D2 1.2DL +1.6LL Loads Condition Axial Mxx Mzz Vx Vz [Kip] [Kip`ft] [Kip "ft] [Kip] [Kip] DL 5.55 0.00 0.00 0.00 0.00 LL 15.61 0.00 0.00 0.00 0.00 RESULTS: Status Warnings - Insufficient development length, Section 21.5.4.1 . , Soil.Foundation interaction Allowable stress 1.5E03 [Lb /ft2] Min. safety factor for sliding 1.25 Min. safety factor for overturning 1.25 Paget 11- 4 Controlling condition S2 Condition qmean qmax Amax Area in compression Overtuminq FS [Lb /ft2] [Lb /ft2] [in] [ft2] ( %) FSx FSz slip S2 1.38E03 1.38E03 0.0826 '18.06 100 1000.00 1000.00 1000.00 Bending Factor 4 0.90 Min rebar ratio 0.00180 Development length Axis Pos. Id Ihd Dist1 Dist2 [in] [in] [in] [in] zz Bot. 20.11 7.04 19.75 19.75 xx Bbt. 20.11 7.04 19.75 19.75 Axis Pos. Condition Mu 4 *Mn Asreq Asprov Asreq/Asprov Mu/(4)*Mn) [Kip *ft] [Kip *ft] [in2] [in2] • zz Top DC1 0.00 0.00 0.00 0.00 0.000 0.000 I 1 zz Bot. D2 13.38 45.76 1.10 1.20 0.918 0.292 I i 1 xx Top DC1 0.00 0.00 0.00 0.00 0.000 0.000 I I xx Bot. D2 13.38 43.06 1.10 1.20 0.918 0.311 l'- Shear Factor 4 0.75 Shear area (plane zz) 3.10 [ft2] Shear area (plane )x) 2.92 [ft2] Plane Condition Vu Vc Vu/(4*Vn) [Kip] [Kip] xy D2 8.99 46.09 0.260 VI I yz D2 8.68 48.88 0.237 151 Punching shear Perimeter of critical section (b... : 4.67 [ft] Punching shear area 3.31 [ft2] Column Condition Vu Vc Vu /( + *Vn) [Kip] [Kip] column 1 D2 29.25 104.29 0.374 I - =1 I Notes Page c * Soil under the footing is considered elastic and homogeneous. A linear soil pressure variation is assumed. * The required flexural reinforcement considers at least the minimum reinforcement * " design bending moment is calculated at the critical sections located at the support faces * Only rectangular footings with uniform sections and rectangular columns are considered. * The nominal shear strength is calculated in critical sections located at a distance d from the support face * The punching shear strength is calculated in a perimetral section located at a distance d/2 from the support faces * Transverse reinforcement is not considered in footings * Values shown in red are not in compliance with a provision of the code "gprom = Mean compression pressure on soil. *gmax = Maximum compression pressure on soil. *Amax = maximum total settlement (considering an elastic soil modeled by the subgrade reaction modulus). * Mn = Nominal moment strength. " Mu /(4 *Mn) = Strength ratio. " Vn = Nominal shear or punchure force (for footings Vn =Vc). * Vu /(4)*Vn) = Shear or punching shear strength ratio. • Page4 r^ Beam Shear b 5.5•in (4x4 post) d := tf — 2•in := 0.85 b := Width b = 36•in V„ := 40•- 4 f V = 16.32•kips 3 V qu (13 2 col b V = 7.83.kips < V = 16.32•kips GOOD Two -Wav Shear b : 5.5•in Short side column width bL := 5.5-in Long side column width b := 2.(bs + d) + 2.(bL + d) b = 54 -in 13 := 1.0 ( NV= 4 + 8 JJfcPSibd V = 48.96-kips 3 3 p V„ := 2.66 f psi b d V� = 32.56-kips ,:= qu — (bcol + d) V = 15.88-kips < Vnmax = 32.56.kips GOOD Flexure 2 Mu 9u' [( — 2 bcol) (1 ) b M = 4.98-ft-kips ,:= 0.65 2 ,:= b•d S = 0.222. 1 6 F := F = 162.5-psi M f := — f = 155.47 -psi< F = 162.5.psi GOOD !Use a 3' -0" x 3' -0" x 10" plain concrete footing Plain Concrete Isolated Square Footing Design: F2 f� '2500-psi Concrete strength fy : 60000-psi Reinforcing steel strength E ;= 29000•ksi Steel modulus of elasticity `Yconi -150•pcf Concrete density ; ysoi1 := .1•00,pcf Soil density gait: =.1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldl:= 2659.lb Pd1 := Totaldl Totalll := 7756-lb P ll := Total!' P := Pdl + Pll P ti = 10415-lb Footing Dimensions tf := 10; in Footing thickness Width := 36-in Footing width A := Width Footing Area quiet gall — tf' Yconc gnet = 1375•psf Ptl Areqd gnet Areqd = 7.575•ft 2 < A = 9•ft GOOD Widthreqd Aregd Widthreqd = 2.75•ft < Width = 3.00 ft GOOD Ultimate Loads , � = Pd1 + tf'A•"Yconc P„ := 1.4 Pdl + 1.7•Pll P = 18.48-kips P qu:= A q = 2.05•ksf Plain Concrete Isolated Square Footing Design: F3 fa := 2500 psi Concrete strength f : 60000-psi Reinforcing steel strength • E := 29000;ksi Steel modulus of elasticity Yconc 1504)cf Concrete density 'Noll 1OO pcf Soil density gall•: 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction 'rota laj : 23634b Pd1:= Totaldi Totahj t =.4575•lb P11 := Totalll Pu := Pdl + Pll P = 6938-lb Footing Dimensions t 10 :in Footing thickness Width := 30!in Footing width := Width . Footing Area net all — tf•lconc q net = 1375•psf Ptl Areqd 5.04641 < A = 6.25 ft GOOD gnet Areqd = Widthreqd Aregd Widthre = 2.25-ft < Width = 2.50 ft GOOD Ultimate Loads = Pd1 + tf•A•' conc P := 1.4 Pdl + 1.7•P11 P = 12.18 - kips P qu := A qu = 1.95•ksf • Beam Shear bcoi "5.5• in (4x4 post) d := tf — 2•in := 0.85 b := Width b = 30.in V„ :_ (0 4 • f psi•b•d V„ = 13.6•kips 3 Vu qu r b 2 toll b Vu = 4.97-kips < V = 13.6•kips GOOD Two -Way Shear b8 $.5 in Short side column width bL := 5.5•in Long side column width b := 2.(bg + d) + 2•(bL + d) b = 54.in (3 := 1.0 Vim= r + 8 /- f V = 40.8•kips 3 3•(3 V , := 2.66 f psi b d V„,,,, = 27.13-kips = qu•[b — (bc01 + (1) V = 9.71 -kips < Vi = 27.13 -kips GOOD Flexure 2 Mu := qu [(I) — 2 bcol) 11 b M = 2.54 -ft -kips J A:= 0.65 2 S := b6 S = 0.185 -ft F := 5.0)• f psi F = 162.5 -psi M u f := f = 95.19 -psi < F = 162.5.psi GOOD lUse a 2' -6" x 2' -6" x 10" plain concrete footing 1 Plain Concrete Isolated Square Footing Design: F4 fc 2500-psi Concrete strength f 60000tpsi Reinforcing steel strength E 29000•ksi Steel modulus of elasticity • 1lconc := 150•pcf Concrete density "Ysoil : 100!pcf Soil density gall := 1500;psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldi := 5001•1b Pd1:= Totaldl Tota111 := 7639.1b Pll := Total!' Pg := Pdl + Pll Pt1 = 12640•lb Footing Dimensions . t := 12-in Footing thickness Width := 42-in Footing width • A Width Footing Area clnet := gall – tf'"Yconc qnet = 1350•psf Ptl Areqd gnet A q 9.36341 < A = 12.25 ft GOOD Widthreqd := Aregd Widthreqd = 3.06-ft < Width = 3.50ft GOOD Ultimate Loads ,:= Pd1 + t f • A • "Yconc P := 1.4 Pd1 + 1.7•P11 P = 22.56.kips P qu :_ — q = 1.84•ksf A "R Beam Shear boot 5.5•in (4x4 post) d:= tf -2•in := 0.85 b := Width b = 42•in := 4 • f psi•b•d V = 23.8-kips 3 Vu 9u•I b 2 colt b V = 9.8•kips < V = 23.8-kips ,GOOD Two -Way Shear bs 5.5-41 Short side column width bL := in Long side column width b := 2-(bs + d) + 2•(bL + d) b = 62•in (3 1.0 M V, .= 4 + 8 )• f si•b•d V„ = 71.4-kips 3 3•0u V nmax :_ (1:1.2.66• f V nmax = 47.48-kips 9u•[b — O + d) V = 19.49-kips < V, = 47.48-kips GOOD Flexure 2 Mu := qu [(b — 2 l bJ coll r 1 b M = 7.45 • f3•kips A t:= 0.65 2 •— b d S = 0.405. 1 6 F 5•(1)• f psi F = 162.5•psi M u ft := f = 127.79•psi< F = 162.5•psi GOOD }Jse a 3' -6" x 3' -6" x 12" plain concrete footing /4:711 Plain Concrete Isolated Round Footing Design: f5 f 3000-psi Concrete strength f := 60000.p Reinforcing steel strength Es := 29000•ksi Steel modulus of elasticity '(cone 1501pcf Concrete density '(soil 120.pcf Soil density g := 1500 Allowable soil bearing pressure TYPICAL FOOTING Reaction Totaldl:= 619-lb Pdl := Totaldl Tota111: 1600•Ib Pll := Totalll Pd := Pd) + Pp Ptl = 2219• lb Footing Dimensions tf := 12• in Footing thickness Dia := 18 in Footing diameter 7r Dia Footing Area iwL' 4 gnet gall — tf''Yconc qnet = 1350•psf Pd Areqd gnet Areqd = 1.644•ft < A = 1.77•ft GOOD 4 Diareqd Areqd Diareqd = 1.45•ft < Dia = 1.50 ft GOOD Ultimate Loads A P,:= Pdl + tf'A' P := 1.4•Pd1 + 1.7•Pll P = 3.96-kips P qu A q = 2.24•ksf /(1-- \e3 Beam Shear bcol 3.5•in (4x4 post) d := tf — 2 -in dt : 0.85 b := cos(45•deg)•Dia b = 12.73•in V :_ 9.- 4 • f V = 7.901•kips 3 Vu •= qu ( — 2 toll b V = 0.91 -kips < V = 7.901 .kips GOOD Two -Way Shear bg := 3.5•in Short side column width b := 3.5• in Long side column width b := 2.(bs + d) + 2•(bL + d) b = 54.in R := 1.0 µ VS.= 9 4 + . 8 f V = 23.703•kips 3 3 -(3 V nmm := 4.2.66• f psi•b.d Vnmax = 15.76•kips µ VS = qu [b — k13, d) V = —0.31 .kips < V nmi a = 15.76 -kips GOOD Flexure 2 j(2)b := qu [(b — 2 J bcoll 1 M = 0.18 -ft -kips := 0.65 2 .— b d S = 0.123•ft 6 F := 5.4• f psi F 178.01 -psi M a f := s f = 9.9 -psi < F = 178.01 -psi GOOD Use a 18" Dia. x 12" plain concrete footing • fc2-1'4 Plain Concrete Isolated Square Footing Design: F& fu 2500 -psi Concrete strength f .= 60000-psi Reinforcing steel strength E := 29000•ksi Steel modulus of elasticity l ean 150 -pcf Concrete density 'Ysoil 100•pcf Soil density gall := 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldi := 7072•lb Pdl := Totaldi Totalll := 13304-lb P11 := Totalll Pg := Pdl + P11 Pd = 20376-lb Footing Dimensions t := 15-in Footing thickness Width := 48. in Footing width A := Width Footing Area clnet gall — tf''Yconc gnet = 1313•psf P Areqd = gnet Areqd = q 15.525 ft 2 < A = 16 ft GOOD Widthreqd Aregd Widthreqd = 3.94-ft < Width = 4.00 ft GOOD Ultimate Loads 1; Pdl + tf'A•'Yconc P := 1.4 Pdl + 1.7 PI1 P = 36.72•kips P qu A q = 2.29•ksf F \S- Beam Shear b col := 5.5•in (4x4 post) d := tf — 2•in (I) := 0.85 b := Width b = 48-in V := (0• 4 • f V = 35.36-kips 3 V qu Cb — 2 colt b V = 16.26-kips < V = 35.36•kips GOOD Two -Way Shear / bg := 5.5 -in Short side column width bL := 5.5• in Long side column width b := 2.(bg + d) + 2.(bL + d) b = 74 -in • (3 := 1.0 M VO.= + 8 /- f psi -b -d V = 106.084kips 3 3 4 3 c Vnmax := x•2.66• f psi•b•d Vnmax = 70.54 -kips = qu [b2 — (b + (1) V = 31.26 -kips < Vnn= = 70.54 -kips GOOD Flexure 2 Mu = qu rb — 2 J bcoll 1 2). M = 14.39•ft•kips I 0.65 b d 2 1 := S = 0.782. 1 6 F 5.1• f psi F = 162.5 -psi M u f := f = 127.75•psi< F = 162.5 -psi GOOD lJse a 4' -0" x 4' -0" x 15" plain concrete footing Plain Concrete Isolated Square Footing Design: F7 f := 2500 -psi Concrete strength fy :_. 60000 -psi Reinforcing steel strength E := 29000 -ksi Steel modulus of elasticity 'Yconc 150•pcf Concrete density '(soil 100pcf Soil density gall := 1500-psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldi : 1200 -lb Pdl := Totaldl Totally := 3200 -lb P11 := Totalll Pti Pdl + Pll P = 4400-lb Footing Dimensions tf := 10 -in Footing thickness Width := 24 -in Footing width A := Width Footing Area clnet gall — tf''Yconc net = 1375•psf Pti Areqd gnet A q 3.2-11 < A = 4-11 GOOD Widthreqd A reg d Widthreqd = 1.79-ft < Width = 2.00 ft GOOD Ultimate Loads Pd1 + tf•A•"Yconc P := 1.4•Pd1 + 1.7•P8 P = 7.82-kips P qu — gu = 1.96•ksf A frq F Beam Shear bcol := 5.5•in (4x4 post) d := tf — 2-in := 0.85 b := Width b = 24-in V :_ 4 • f psi•b•d V„ = 10.88•kips 3 Vu qu• r b 2 coil b V = 3.01•kips < V = 10.88•kips GOOD Two -Way Shear bs := 5 :5.in Short side column width bL, := 5.5•in Long side column width b := 2.(bs + d) + 2•(bL + d) b = 54•in ti 1.0 V 4 + 8 f V = 32.64-kips 3 3•R Vnmax := 2.66 f psi b d Vnmax = 21.71-kips ,:= q,; [b — (b + d) V = 5.35-kips < V = 21.71-kips GOOD Flexure i( b bcol 2 ](2) 1 M q, 2 •b M = 1.16.11-kips • A := 0.65 2 , := b•d 6 S= 0.148.ft F := 5.4 f F = 162.5•psi M f := n f = 54.45•psi < F = 162.5.psi GOOD .Jse a 2' -0" x 2' -0" x 10" plain concrete footing I BY Awc DATE: 6 - a 0 JOB NO.: ce �Q 1 OF PROJECT: CON6 r € T o .h nc A + aa'x3 �"X 1.as' R E: n + - from Load 35.11“ e, • Z 0 D - w � , f ❑ r J • Z W O x re n. a a' . Oven' r 5 o \I \ OT = 35 H \. 'r1 \ ,�O 58. kc't C z = acoa M2 = C I56)(1,5 (.3,$)C227C11> .3G3 >�- a,3��C ❑ Z • CL aa3 k-F� xf= M1c = aba - s� . s� = _ a 3Ft e — C ieno•x = Q } 6 M _ aa eos i �(aaAS 1.�"�� = . � ask sF (3,5 X 2- -) (3.5 )(vi. ( limn = Q _ 61V1 = 0. 1 9� Lai s3L , -L • , _ aa3 O Li S13 ,s1 =� on x -- • Bentley- Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:43 AM Units system: English File name: O:\HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations \Front Load 2.etz\ • M33 =51.9 [Kirft] M33=-12.19 [Kip ft] Y A MOrnextS to C.. f no. Bentley' Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:35 AM Units system: English File name: O: HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations\Front Load.etz\ UNIT A — ��-- 'M33 =25.66 [KiP*ft] M33= -30.27 [Kip *ft] Y t Mmen zt - f' iv m „, h 1 0 iSdo s1 J $-A 1 ce ' 1 X \ow _? o hb: ((Is•s)e -te)L ). (z -c.1)1 °Q►°' 0e) 01 — x.-o e o> 3 tvu 0 0 Ste: c3S S)C ( 1010 = •-A YvkAt S, S s b1 "1 ( , 4 i Ob'Ot = AVW-to 1013' we h5$ - 5Zfih'S (ail'al ‘1 - 4 ")lo'Wet = X = o Z ❑ m f S ' :1 X10 S'1< sip'1 ' owilio Z 71 0 J 1 b' b'e`e a cle)q,sirt-t- `9ssyL-+ QEr)(.jI)L1)Lex°s1.o) = 'IlW 0 Pi gl '°► 11 = <�� .. +-142 1 ih' Oc = - 3 Z 61Atwn4 -)afO A ND 0 = m 0 i n r O r 1.__1 '( -1 1 . Tii ❑ m 3 14,51't ' : "A4.S1'� „ -1 m o Ailt WOE 33A WaS I ❑ ❑ T ""A cek: Z -- Z VcA8. - 1 \ ran :3a ' 1S \la q 000 1' 173road AO 01,0—Na:;) : oN eor o i ®e 9 31va )\N 'AEI ri a• Bentley Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:38 AM • Units system: English File name: O:\HHPR Projects\CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations\Rear Load.etz\ M33 =43.24 [Kip "ft] • M33= -45.06 [Kip"ft] M3ree'*s ) L \ Beniley- Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:43 AM • Units system: English File name: O: \HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations\Rear Load 2.etz\ M33 =41.88 [Kip *ft] • • M33-46.37 (Kip ftl Y X M6m�s - LC2. SZ,3 • ,; ,z ,R ro °' 5 x 4 -_ - y • (IQ C� z �" t Rj}oq _ �{ a mod'. '" hb� S- c�4,')�(+�)■ � S"C1ti " H . = ( -- " L 'AniZ a y� r rir bed '0 cfi2xOOOS)cl (900b,) {, I� '0 = -01 h 1 ) a O z-- s� ')'o n Z` '' S 4 � uy c.41 ' 0 -09( ooa'09)(1- 0 ;0)0b)2 y IN (t XOOOot I a/ (000 4 6 - 97 - vo relo s O X371 cierorer. m ❑ (111 0 - :59(c,K)0'09)(...bg-'0)0b mo w e) o .N110Ot, °0 . D (+z)(. q` =10 • n ;tX Z ' E " b2 ' O =S V 'To 1 ,11 a, #cs) P)-L 3 3 ?A" oe C‘ — C 0 (--1 —run 2 rr . Z n m O O .. 3 -):(CA. T ❑ m 3 6 ' VV 2 11 t )1.d ,R1 x 1 X „0 -i ❑ ❑ ciQ t, 003 VOCn _YO ,, :103fO21d 10 Q1 3 _ I N ''�. , 'ON 801 0 10 ) I :31VQ L U :AB • • i Irk n'i*e. = (14%'o - si ) (po ' 01 x • o -= vv4 0 . = ill t.a)-c — (7-hy.palsyro/ (9co*seak,sci ) ..,f, —Lts•J II . .s.A.k . :0 - • ")' o „7.1 D b _kt. \ l_i_ • 2F,' 20. i : r • 64 F. e*.kawnw, -- a,m.k.tcpal •; c i; c72- - (1), F:' '- ; Sea ti = Clic,: -- .1),..CXX) 1? 0 0 =7 v ‘ \NI 0 . 0 r\o \ cal-k2 0 = c,..z. coo° , crockacz.. k ) 7 : y) - t ro \ 1 1 '7_ 5 / )0 „01 0 S # k 1 'lc, .' V3< .E: f) 19 = (SA. ' ) 7i31Lotic,1. - sii)(900b-ocg.+: ":-• 'Awe 'S4 r' iin ;- Lcod 9 r = v r ------ • ' - IP" #ck;:971 = sV 4- 7o 1 ;t1 a .s 4 q") VIII: ---- - 4' '( - :30 1 1:: .2 1_c 41'1 - -S9C -00 0 1 0110t Tb 013'0 =-- ut \INI 2) I 0 o ti v cv \ -...:CtIti)(. ,,Ti 047 44. -- A3S°2>( ; ° lin . ° -= 5 1 d ,n - D - 4- - Q) - 't.-\ 1•I• 3 0 0 (F 0 \ 0 . 0 7 1 \V IrA bo*Ot - <- --) k■A\ (-7) _1 -i 4- qi --Oun 6 1 -.1.•€..' - 13 ,3 o • m • _ _ z 0 i " NI' .4?, ce- - a A n , 0 t . 3 g 0 m -1 ,e2.1 r----1 . 0 , z a 9 r 1 - - 1 %Al 1 X is ,•` tE 0 ii :.t.o road .rD ON eor .31Va :A8 BY j\N‘c DATE: - DD 1 0 j° " ° ' C_ ` _ -0°10 OF PROJECT: y� , - Q ` 9', b 1 x I,ZS/ RE: U1 \ 1 1 1 (�VJ ❑ ❑ ii .z aL.o3t.Ft I T, s.a V IC t,b. f f i J • U 1 - l a' o W o Z W = • a Z ieck. Ovedurnon j 0 K = aC;..03lamb- o • M9,,= CtIo 1,LL(()-= ct.l ,GL 2 MIk ik. Cb ( - i ,2,( b) + 1- LI.(2) s a2 o ❑ Mr.. _ y -t,°tb = 1.1�t > I,$ .'. off. ct • Z Mor a40.o3 o a X _ "'la _ 4tAL -a� -o3 _ 1 - aq�Fc e_= al et S 1-5,2 4 -1,66 9 - i 4L1a _9,0 _ a,4 _, c -- ot, 3 LCP, 2e.' — 3C U 5 - Q(a,')ot>) Fai S+nc,.,(, 1152 So b to (evs -t Ogle f4-tim ln3 I • 5 o Me. L= (5.a i-3.z-Xz.)+- C1,LL+32'YO� u s s. S, f UL = @ ems. erg of 10,1, a M�.� = Cs.Zi- 3.zX (2)a -CLU 3 .2 ) CZ)k -LoDL s 6 o 4 b 0 R 12 4- 4-01_ a : I : < M a 1,s(a6,o3) G 4S,�( + DL x bL._ - 1, 3 :. 5+6 fool-Inc) i 3 OIL i F So 01n n.i _ ..(2.(' \og . MIL=. (5,2+ 4-- C1,(L+- 3.2)(5) +3Dt - . 3).'4- } 31)1_ Mtz,,.. ( -w0 *3DL 1,SM ,,5 Ca.0) G ';21)- a- 3 PL 1 a .115 K-■7S LC lung x af x Is" ') a -asor_ a o a ,� .5`v , F (a, i5,(!_ — e . = 122 3CAL-2( 1,22)) 4 —V---a- - BY: il \S\\\ L DAT c — 3 t Q .JOB NO.: ce o 'r\ OF U V s V PROJECT: RE: C) ;_ s iv\o.x = 4(01.. t v3.a,t ❑ ❑ 3(t)(L -2(e J 0 0 Z �r xasf E, x \S„ vu-- a . Y t- •,p W �F � 1� .o� ° o P`no� x : > • a .35 \-,-.5- NJ -11 W 3(1- 5 - 2(1,12 a T L` 3' 15" p\---= 3..3 'cL; 9 2 U 2 1 - C.' o f rY�t .=. k-1- l (..,(„s � _ Y-- qtr bhcrr 4e Y rv load I V1 F CE o Z W ❑ Z 0 o = O c . N rn x r 1-4J Bentley Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:42 AM Units system: English File name: O:\HHPR Projects \CEN - Centex Homes (309)\CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations \Interior 2.etz\ • M33 =23.55 IKip • M33= -17.88 [Kip'ftj MoThex4-5 LCI • n aw .BentL y' Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:42 AM Units system: English File name: O:\HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations\Interior.etz\ M33 =32.26 [Kip'ft] M33= -9.27 [Kip'ft] • 88 -► Me ACI 318 -05 Appendix D 1.0" Diameter Bar Capacity at Portal Frame Concrete Breakout Strength Stem Wall Capacity when govern by 3 edges Foundation Capacity Givens Givens f c = 3000 psi f c = 3000 psi h = 3.50 inches hef = 12.00 inches (into the Fc Stem = 8.00 inches Note: hef above is the the embedment into or c = 5.25 inches the foundation and does not consider stem wz Fnd Width = 36.00 inches Cmin = 2.25 inches c m;n = 18.00 inches Wc,N= 1.00 cast -in -place anchor WC,N= 1.00 cast -in -place anchor k = 24 cast -in -place anchor k = 24 cast -in -place anchor = 0.75 strength reduction factor 4) = 0.75 strength reduction fact Calculations Calculations AN = 68 in` AN = 1296 in' AN° = 110.25 in` AN0 = 1296 in` Nb = 8,607 pounds Nb = 55,121 pounds Wed,N = 0.8286 Wed,N = 1.00 N = 4,399 pounds Nob = 55,121 pounds 4)N = 3,299 pounds 4)N = 41,341 pounds Combined Capacity of Stem Wall and Foundation (Kb = 44,640 0.754)N = 33,480 y ! 123 5o "Ao L '" W < Clb'ne 1� .�,o -21, C 1 0 , 55 p)nb 0 = v ,r1 o 0 ( I 19J (0 = 0 0 5)' ti5) 14 (') n Q X10 <3.S°1 � = (C- ')7S/ 1 3 CJ boh'O Z 1 )(,C}(1p 1 0 /XIAS 0)0b10 • ti`W e t� 0 (c)E.X000 'o/ (000'o17 6c S Q = b zN� b -S =Sd %,21 (') l - • i m c — �� `S'' `" W0 r 0 51 >4 x o 3 0 -45-kgICY WAN 2 11 2 ❑ ❑ ?1 L �'' 1 Y►J1'J�V� 1�� as :l03road dO 0 0 Na) ON ROC 01 06° \ c A Concrete Side Face Blow Out Givens Abrg = 2.15 in` fc = 3000 psi c = 18.00 inches = 0.75 strength reduction factor Calculations Nsb = 231,191 pounds 4)Nsb = 173,393 pounds Concrete Pullout Strength Givens Abr = 2.15 in` fc = 3000 psi = 0.75 strength reduction factor Calculations N 51,552 pounds 4)N = 38,664 pounds Steel Yield Strength Givens f = 58,000 psi A = 0.606 in = 0.80 strength reduction factor Calculations N = 35,148 pounds 4)Ns = 28,118 pounds < 33,480 Ductility Met Holdown Check Holdown: HDU14 Holdown Capacity= 14,930 pounds 1.6* Capacity= 23,888 pounds 23,888 < 28,118 Holdown Checks 7f.rD BY: DATE: JOB NO.. yr PROJECT: RE: *e rt Wall cooklf‘y ❑ ❑ __tt Z 5 e. i cues dP 6oilarno E L 1.- 2 t l.° asct(12 �1 ?SC); 300 Ptc �u 2 111 $ ctkz 1evelsYv2. $0 = a Ob pLp .door 0 Pis: .--. DI 401N 650pcfx'Iz i )0,T.2.) _7 333 P LF 51 cr O w C 1 O?c��I / w) _ 100 to r • U Z w ° x rw- z Z LL a (6c0(2. (6c0(2. levels ")C401)5 = (. P.F door - 0 Z TT{al load. = t9-b( 4- 1oOW aL! . 2 Moo( Sbp = 1500 psC -- ISOOpt • w 0 11 1 I + ( U:3 Vsoow ...t,_ , - co = 100(4 C ., x lS." CI m o o . 0 o e rear . i � cc- kx.) i kdsf\op I- a- 01...; as C►Ll =. --co 94...p- wook - 09 ,2.1evel$)(t 9s X34 pi.r= koc - 4O J (isopcd C'11Z (-'t, _ 3S3 she 0I12)(t50 W) " 1OOu. ClBX 1' ?sc = Sob p-t* •eoO P L L : 0)(2_140 = 1 p L..c C‘ _ 4 -- S -0 PLF O U t E S TLe a3431 o a3u i- IoUw IS x a z w ,. t, L-+ =' - a‘ ,N e uni t/ A x e. u v„ t-s 6 -); C. Same. cis h m tr1u5 S tour loc&4 TL \' k- \OO W W = 1.00 . Q5--e_ l S` Pa.('vicA11 D4 o asC12 >(2.:) = (00 pc-7- wu II ( 5)(2 Xt3X(.Z*) = (-1 tic pL r F s10C 404,)(1 0pMC')►L)( 9 11 .. = 333pLc 51-t rr (CI It2)(A50 w) .10o w LL o (6I2.)(44o)C2.) = 1?y'i0 Pt-V- « r rL : 0,6a9 100 uJ