Loading...
Specifications (3) 1M4i Bolo / 7f', /77 /75- Structural Calculations for Full Lateral & Gravity Analysis of RECEIVED Plan A 1460 SEP 2 3 2010 CITY OF TIGARD Summer Creek Townhomes BUILDING DIVISION Tigard, OR Prepared for Pulte Group July 13, 2010 JOB NUMBER: CEN -090 ** *Limitations * ** Engineer was retained in limited capacity for this project. Design is based upon information provided by the client, who is solely responsible for the accuracy of same. No responsibility and /or liability is assumed by, or is to be assigned to the engineer for items beyond that shown on these sheets. 117 sheets total including this cover sheet. • This Packet of Calculations is Null and Void if Signature above is not Original O t Harper • Houf Peterson Righellis Inc. EN ' NErt• LANOSCAC[ARCNOt L CTS.SVRI 205 SE Spokane St. Suite 200 o Portland, OR 97202 0 [P] 503.221.1131 0 [F] 503.221.1171 1104 Main St. Suite 100 o Vancouver, WA 98660 0 [P] 360.450.1 141 0 [F] 360.750.1 141 1133 NW Wall St. Suite 201 o Bend, OR 97701 0 [P] 541.318.1161 • [F] 541.318.1 141 Design Criteria Project Scope: Full lateral & Gravity Analysis of Unit A Design Specifications: Wind Design: Basic Wind Speed (mph): 100 From Building Authority Exposure: B From Building Authority Importance, I,,,: 1 2006 IBC / 2007 OSSC Occupancy Category: II Residential Earthquake Design: Seismic Design Category: D From Building Authority Site Class: D Assumed, ASCE.7 -05 Ch. 20 Importance, 1E: 1 ASCE 7 -05 Table 11.5-1 Ss: 0.942 USGS Spectral Response Map 51: 0.339 USGS Spectral Response Map Dead Load: Floor: 13 psf Wall: 12 psf Wood Roof: 15 psf Live Load: Roof: 25 psf Snow Floor: 40 psf Residential Floor Materials and Design Data: Materials: Concrete Compressive Strength, Pc: 3000 psi Foundations & Slab on Grade Concrete Unit Weight, yc: 145 pcf Steel Reinforcement Yield Strength, f 60,000 psi Wood Studs (Wall Studs): Hem -Fir #2 2x & 4x Wood Beams & Posts: DF -L #2 6x & Greater Wood Beams & Posts: DF -L# 1 Glulam Beams: 24F -V4 PSL Beams: Fb =2,900 psi, FV= 328psi, E =2.0 Million TS /LSL Beams: Fb =2325 psi, FV= 460psi, E =1.55 Million Design Assumptions 1. Allowable soil bearing pressure (qa) : .1500 psf Assumed 2. All manufactured trusses, joists, and flush beams u.n.o. shall be designed by others. Structural Analysis Software Used: Mathcad 11 Microsoft Excel 2000 WoodWorks - Sizer version 2002 Bently RAM Advanse Harper Project: SUMMERCREEK TOWNHOMES UNIT A HP Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: Pg. # I. ANOSCAPE ARCRITEC rS• SURVEYORS DESIGN CRITERIA 2007 Oregon Structural Specialty Code & ASCE 7 -05 Roof Dead Load RFR := 2.5•psf Framing RPL := 1.5•psf Plywood RRF := 5 •psf Roofing RME := 1.5 -psf Mech & Elec RMS := 1 •psf Misc RCG := 2.5•psf Ceiling RIN := 1 •psf Insulation RDL = 15•psf Floor Dead Load FFR := 3 •psf Framing FPL := 4•psf Sheathing FME := 1.5•psf Mech & Elec FMS := 1.5•psf Misc FIN := .5•psf Finish & Insulation FCLG := 2.5•psf Ceiling FDL = 13:psf Wall Dead Load WOOD EX Wall := 12•psf INT_Wall, := 10••psf Roof Live Load RLL := 25•psf Floor Live Load FLL := 40•psf /1 LI Harper Project: SUMMERCREEK TOWNHOMES UNIT A HP Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. - ENGINEERS • PLANNERS Designer: AMC Date: Pg. # LANDSCAPE ARC HIT EC TS• SURVEYORS Transverse Seismic Forces Site Class = D Design Catagory = D Building Occupancy_Category: lI Weight of Structure In Transverse Direction Roof Weight Roof Area := 843.11 RF' r := RDL•Roof Area RFW-r = 14162-lb Floor Weight Floor_ Area2nd := 647•f FLRW := FDL -Floor Area2 FLRwT2nd = 8411-lb Floor Area3rd.:= 652•ft FLRWT3rd FDL•Floor Area3rd FLRWT3rd = 8476.16 Wall Weight EX Wall Area := (2203)•ft 7NT_Wall_Area:= (906)•ft WALLgrI- := EX_Wal1 EX_Wa11_Area + 1NT Wa11 t 1NT_Wall_Area WALLW-T- = 35496.lb • WTTOTAL = 66545 lb Equivalent Lateral Force Procedure(12.8, ASCE 7 -05) h := 32 Mean Height Of Roof 1e := 1 Component Importance Factor (11.5, ASCE 7 -05) := 6.5 Responce Modification Factor (Table 12.2 -1, ASCE 7 -05) C :_ .02 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) x := .75 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) Period T := C -(h T = 0.27 < 0.5 (EQU 12.8 -7, ASCE 7 -05) S1 := 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. . (Chapter 22, ASCE 7- 05)...or S := 0.942 Max EQ, 5% damped, spectral responce acceleration at short period From Figures 1613.5 (1) &(2) F := 1.123 Acc -based site coefficient @ .3 s- period (Table 11.4 -1, ASCE 7 -05) F, := 1.722 VeI -based site coefficient @ 1 s- period (Table 11.4 -2, ASCE 7 -05) Harper Project: SUMMERCREEK TOWNHOMES UNIT A • -:C HP :• Houf Peterson Client: PULTE GROUP Job # CEN -090 z .: 2 Righellis Inc. ENGINEERS PLANNEPS Designer: AMC Date: Pg. # LANDSCAPE ARCRITEEC TS•SURVCVORS S MS Fa - Ss SMS = 1.058 (EQU 11.4 -1, ASCE 7 -05) Sds 2 3MS Sd = 0.705 (EQU 11.4 -3, ASCE 7 -05) SM1 FvS1 SM1 = 0.584 (EQU 11.4 -2, ASCE 7 -05) Sdl := 2. 3M1 Shc = 0.389 (EQU 11.4 -4, ASCE 7 -05) Cst := Sds Cst = 0.108 (EQU 12.8 -2, ASCE 7 -05) R ...need not exceed... Cs := Shc le Cs = 0.223 (EQU 12.8 -3, ASCE 7 -05) T ...and shall not be less then... Cl := if(0.044- Sd < 0.01, 0.01,0.044•Sd 0.5•Sl•I (EQU 12.8 -5 &6, ASCE 7 -05) C2 := if S1 < 0.6, 0.01, R Cs := if (CI > C2,Cl,C2) Csmin = 0.031 Cs := if (Cst < Cs m,Cs < Cs Cs = 0.108 V := Cs•WTToTAI, V = 72201b (EQU 12.8 -1, ASCE 7 -05) E := V•0.7 E = 50541b (Allowable Stress) l� 3 Harper Project: SUMMERCREEK TOWNHOMES UNIT A • .:P Hoof Peterson Client: PULTE GROUP Job # CEN -090 Righellis PLANNERS Inc. Designer: AMC Date: Pg. # LANDSCAPE APCNITECT$•SUPVEVORS Transverse Wind Forces (Method 1 - Simplified Wind Procedure per ASCE 7 -05) Basic Wind Speed: 100 mph (3 Sec Gust) Exposure: B Building Occupancy Category: II I := 1.00 Importance Factor (Table 6 -1, ASCE 7 -05) h = 32 Mean Roof Height X := 1.00 Adjustment Factor (Figure 6 -3, ASCE 7 -05) Smaller of... a2 := 2..1.20•ft Zone A & B Horizontal Length = ft (Fig 6 -2 note 10, ASCE 7 -05) a2 or 2 = .4•hn•2•ft a2 = 25.6 ft but not less than... a = 3 2 ft a2 = 6 ft Wind Pressure (Figure 6 -2, ASCE 7 -05) Horizontal PnetzoneA 19.91psf PnetzoneB 3.2.psf Pnetzonec 14.4•psf PnetzoneD 3.3•psf • Vertical PnetzoneE —8.8.psf PnetzoneF — 12•psf PnetzoneG —6.4•psf PnetzoneH 9.7•psf Basic Wind Force PA := PnetzoneA'Iw'X PA = 19.9•psf Wall HWC PB:= PnetZOneB'Iw'X PB= 3.2• RoofHWC PC := PnetioneC'Iw; A Pc = 14.4.psf Wall Typical PD := PnetioneD'Iw•X PD= 3.3•psf Roof Typical PE := PnetzoneE'Iw'X PE = — 8.8•psf PF := PnetzoneF'Iw.X PF = — 12•psf PG := PnetzoneG' Iw A PG, = —6.4• psf PH := PnetzoneH' Iw' X PH = —9.7• psf 4 -LEI Harper Project: SUMMERCREEK TOWNHOMES UNIT A H ' Hoof Peterson Cl PULTE GROUP Job # CEN -090 Righellis Inc. - -__ EMOINCERS • PLANNERS _- Designer: AMC Date: Pg. # LANDSCAPE APCNIECTE•SURVEVORS Determine Wind Sail In Transverse Direction WS�ZoneA (41 ` ± 59 + 29).ft WSAILZoneB (19 + 0 +'23)43 WSAILZonec (39.1 + 307 + 272).ft WSAILZoneD := (0 + 0 + 5).ft WA := WSAILZoneA'PA WA = 25671b WB WSAI-ZoneB•PB WB = 1341b WC WSAILZoneC'PC WC = 13968 lb WD WSJ- ZoneD'PD WD = 161b Wind_Force := WA + WB + WC + WD Wind_Force := 10•psf•(WSAILZ + WSAILZoneB + WSAI-ZoneC + WSAILZoneD) Wind_Force = 166861b Wind_Force = 11460 Ib WSAILZoneE 94•ft2 WSAILZoneF := 108'ft WSAILZoneG 320•ft2 WSAILZoneH 320•ft2 WE := W SAILZoneE' PE WE = —8271b • WF WSAILZoneF'PF WF = — 12961b WG := WSAII- ZoneG'PG WG = — 20481b WH := WSAILZoneH'PH WH = — 31041b Upliftnet = WF + WH + (WE + WG) + RDL•[WSAILZoneF + WSAILZoneH + (WSAILZoneE + WSAILZoneG) }•6. Upliftnet = 12121b (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN CALCULATION \J . Harper Project: SUMMERCREEK TOWNHOMES UNIT A P::• Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS • DIANNERS Designer: AMC Date: Pg. # IANOSCADE ARCHITECTS•SURVEYORS Longitudinal Seismic Forces Site Class = D Design Catagory = D Building Occupancy. Category: II Weight of Structure In Longitudinal Direction Roof Weight Roof Area = 944 ft RDL•Roof Area RFw-r = 14162•1b Floor Weight Floor_Area2 = 647 ft A kt o tt= FDL•F1oor Area2nd FLRw -1.2 = 8411-lb Floor_Area3 = 652 ft • J i= FDL•Floor Area3rd FLRWI'3rd = 8476-lb Wall Weight (2203) -ft INT Wall Area = 906 ft = EX_Wall + INT Wall WALLS = 35496-lb WTTOTAL = 66545 lb Equivalent Lateral Force Procedure(12.8, ASCE 7 -05) h = 32 Mean Height Of Roof I = 1 Component Importance Factor ' (11.5, ASCE 7 -05) v := 6.5 Responce Modification Factor (Table 12.2 -1, ASCE 7 -05) C = 0.02 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) x = 0.75 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) Period := yin/ Ta = 0.27 < 0.5 (EQU 12.8 -7, ASCE 7 -05) S1 = 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. (Chapter 22, ASCE 7- 05)...or S = 0.942 Max EQ, 5% damped, spectral responce acceleration at short period From Figures 1613.5 (1) &(2) F = 1.123 Acc -based site coefficient @ .3 s- period (Table 11.4 -1, ASCE 7 -05) F" = 1.722 Vel -based site coefficient @ 1 s- period (Table 11.4 -2, ASCE 7 -05) /4' 130 Harper Project: SUMMERCREEK TOWNHOMES UNIT A HP Houf Peterson Client: PULTE GROUP Job # CEN -090 Righell is Inc. ENGINEERS • PLANNERS Designer: AMC Date: Pg. # LANDSCAPE ARCNITECTS•SURVEYORS 5 := F SMs = 1.058 (EQU 11.4 -1, ASCE 7 -05) 2•SMS 5:= Sd = 0.705 (EQU 11.4 -3, ASCE 7 -05) 3 = F S1 SM1 = 0.584 (EQU 11.4 -2, ASCE 7 -05) 2 •SM1 = 3 Sd l = 0.389 (EQU 11.4 -4, ASCE 7 - 05) S R Ie Cst = 0.108 (EQU 12.8 -2, ASCE 7 -05) ...need not exceed... /WV�N4WM S�,,,,,�, '_ Shc Ie Cs max = 0.223 (EQU 12.8 -3, ASCE 7 -05) T ...and shall not be less then... := if (0.044•Sd <0.01, 0.01,0.044• Sds. Ie) 0.5 S1•Ie (EQU 12.8 -5 &6, ASCE 7 -05) := if(S1 < 0.6,0.01, R N:= if (C 1 > C2 , CI, C2) Csmin = 0.031 Cs := if (Cst < Csmin, Csmin, if(Cst < Cs , Cst, Cs Cs = 0.108 , V := Cs•WTTOTAL V = 72201b (EQU 12.8 -1, ASCE 7 -05) E:= V•0.7 E = 5054 1b (Allowable Stress) Harper Project: SUMMERCREEK TOWNHOMES UNIT A N ; Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: Pg. # LANDSCAPE AFCHITEC TS• SUFVEYORS Longitudinal Wind Forces (Method 1 - Simplified Wind Procedure per ASCE 7 -05) Basic Wind Speed: 110 mph (3 Sec Gust) Exposure: B Building Occupancy Category: II I = 1.0 Importance Factor (Table 6 -1, ASCE 7 -05) h = 32 Mean Roof Height X = 1.00 Adjustment Factor (Figure 6 -3, ASCE 7 -05) Smaller of... = 2t.1.20•ft Zone A & B Horizontal Length a2 — 4 ft (Fig 6 -2 note 10, ASCE 7 -05) or ,= .4•hn 2•ft a2 = 25.6 ft but not less than... R 3. 2•ft 6 ft a Wind Pressure (Figure 6 -2, ASCE 7 -05) Horizontal PnetzoneA = 19.9•psf PnetzoneB = 3.2•psf PnetzoneC = 14.4 -psf PnetzoneD = 3.3•psf Vertical PnetzoneE = —8.8•psf PnetzoneF = — 12•psf PnetzoneG = —6.4.psf PnetzoneH = —9.7 -psf Basic Wind Force Pnet oneA•Iw.X PA = 19.9.psf Wall HWC Pte:= PnetZOneB•II4 PB = 3.2•psf Roof HWC p,, PnetzoneC'IW X PC = 14.4 -psf Wall Typical AY1vL' A .V.P A := PnetzoneD'Im,•X PD = 3.3•psf Roof Typical Pte:= PnetzoneE'Iw•X PE = — 8.8 -psf := PnetzoneF•l . PF = — 12•psf := PnetzoneG'IN,• PG = — 6.4•psf Pte:= PnetzoneH'IW PH = — 9.7 -psf Harper Project: SUMMERCREEK TOWNHOMES UNIT A fi Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: Pg. # LANOSCAPE ARCHITECT9•SUIIVEVORS Determine Wind Sail In Longitudinal Direction 4 (48 + 59. + 40) •ft Nwa:= (10 + 0 + 44)-11 a§41 := (91 + 137 + 67)•ft ,v�naJwwv4,Ara:= (43 + 0 + 113)•ft Wes= WSAILZoneA'PA WA = 29251b Wes WSAILZoneB'PB WB = 1731b ICA:= WSA ZoneC'PC WC = 42481b 4,:= WSJ- ZoneD'PD WD = 5151b Wi:= WA + WB + WC + WD /i d Forc= 1Epsf•(WSAILZoneA + WSJ -ZoneB + WSAILZoneC + WSAILZoneD) Wind Force = 78611b Wind_Force = 65201b �= 148•ft2 M�M v := 120 • ft WNW:= 323412 N,x:= 252: ft W WSAILZoneE'PE WE = - 13021b WSAILZoneF'PF WF = - 14401b Wes= WSAILZoneG'PG WG = - 20671b Wes= WSAILZoneH'PH WH = - 24441b Umdl, := WF + WH + (WE + WG) + RDL•[WSAILZoneF + WSAILZoneH + (WSAILZoneE + WSAILZoneG)1'• Uplift = 12431b (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN CALCULATION #9 — L9. Harper Houf Peterson Righellis Pg #: Transverse Wind Line Shear Distribution ASCE 7 -05, section 6.4 (Method 1 - simplified) Design Criteria: Basic Wind Speed = 100 mph Wind Exposure = B (Section 6.5.6, ASCE 7 -05) Mean Roof Height, H (ft) = 32 Roof Pitch = • 6 /12 Building Category II (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf X= 1.00 lw= 1.00 Wind Sail Wind Net Design Wind Pressure (psf) () Pressure (lbs) Zone A = 19.9 129 2567 Wall High Wind Zone Horizontal Zone B = 3.2 42 134 Roof High Wind Zone Wind Forces Zone C = 14.4 970 13968 Wall Typ Zone Zone D = 3.3 5 17 Roof Typ Zone Zone E = -8.8 94 -827 Roof Windward High Wind Zone Vertical Zone F = -12.0 108 -1296 Roof Leeward High Wind Zone Wind Forces Zone G = -6.4 320 -2048 Roof Windward Typ Wind Zone Zone H = -9.7 320 -3104 Roof Leeward Typ Wind Zone Total Wind Force =l 16686 lbs I Use to resist wind uplift: Roof Only Total Exterior Wall Area= 2203 ft Uplift due to Wind Forces= -7275 Ibs Resisting Dead Load = 8472 Ibs E =I 1197 Lbs...No Net Uplift I Wind Distribution Tributary to Diaphragms Wind Sail Tributary To Diaphragm (ft Zone A Zone B Zone C Zone D Main Floor 41 19 391 ' 0 Upper Floor 59 0 307 0 Main Floor Diaphragm Shear = 6507 lbs Upper Floor Diaphragm Shear = 5595 lbs Roof Diaphragm Shear = . 4584 Ibs • Wind Distribution To Shearwall Lines MAIN FLOOR UPPER FLOOR. ROOF • Tributary Line Shear Tributary Line Shear Tributary Line Shear Wall Line Diaphragm Diaphragm Diaphragm (lbs) (lbs) (Ibs) Width ft Width ft Width (ft) A 13.08 1737 18 2797 19 2323 Al 24.50 3254 0 0 0 0 B 11.42 1516 18 2797 18.5 2261 E= 49 6507 36 5595 37.5 4584 /4- Leo . Harper Houf Peterson Righellis Pg #: Transverse Seismic Line Shear Distribution Seismic Design Category = D Occupancy Category = 11 Site Class = D S1 = 0.34 Ss = 0.94 Importance Factor = 1.00 Table 11.5 -1, ASCE 7 -05 Structural System, R = 6.5 Table 12.2 -1, ASCE 7 -05 Ct= 0.020 Other Fa = 1.12 Fv = 1.72 Mean Roof Height, H (ft) = 32 Period (T = 0.27 Equ. 12.8 -7, ASCE 7 -05 k = 1.00 12.8.3, ASCE 7 -05 S 1.06 Equ. 11.4 -1, ASCE 7 -05 S 0.58 Equ. 11.4 -2, ASCE 7 -05 Sin 0.71 Equ. 11.4 -3, ASCE 7 -05 SDI= 0.39 Equ. 11.4 -4, ASCE 7 -05 Cs = 0.11 Equ. 12.8 -2, ASCE 7 -05 Csmin = 0.01 Equ. 12.8 -5 & 6, ASCE 7 -05 ' Csmax = 0.22 Equ. 12.8 -3, ASCE 7 -05 Base Shear coefficient, v = 0.076 Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height (ft) = 8 Floor 3 Diaphragm Height (ft) = 18 Roof Diaphragm Height (ft) = 32 • Floor 2 Wt (Ib)= 8411 Floor 3 Wt (Ib)= 8476 Roof Wt (Ib) = 14162 Wall Wt (Ib) = 35496 • Trib. Floor 2 Diaphragm Wt (Ib) = 22609 Trib. Floor 3 Diaphragm Wt (Ib) = 22674 Trib. Roof Diaphragm Wt (Ib) = 21261 Vertical Dist of Seismic Forces Cumulative % total of base shear Rho Check to Shearwalls (Ibs) I to shearwalls Req'd? Veoor2 (Ib) = 720 100.0% Yes Vnoor3 (Ib) = 1625 85.8% Yes Vroof (Ib) = 2709 53.6% Yes Shear Distribution To Wall Lines Wall Line Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line Roof Line Floor 2 Floor 3 Roof Shear Shear Shear sq ft sq ft sq ft Ibs Ibs Ibs , A 102 361 394 114 897• 1266 Al 432 0 0 481 0 0 B 113 293 449 126 728 1443 Sum 647 654 843 720 1625 2709 Total Base Shear' = 1 5054 LB • *Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. /4- Ll ,---- Harper Houf Peterson Righellis Pg #: • Longitudinal Wind Line Shear Distribution ASCE 7 -05, section 6.4 (Method 1 - simplified) Design Criteria: • Basic Wind Speed = 100 mph • Wind Exposure = B (Section 6.5.6, ASCE 7 -05) Mean Roof Height, H (ft) = 32 Roof Pitch = 6 /12 Building Category= II (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf = 1.00 Iw= 1.00 Wind Sail (ft2) Wind Net Design Wind Pressure (psf) Pressure (Ibs) Zone A = 19.9 147 • 2925 Wall High Wind Zone Horizontal Zone B = 3.2 54 173 Roof High Wind Zone Wind Forces Zone C = 14.4 295 4248 Wall Typ Zone Zone D = 3.3 156 515 Roof Typ Zone Zone E = -8.8 148 -1302 Roof Windward High Wind Zone Vertical Zone F = -12.0 120 -1440 Roof Leeward High Wind Zone Wind Forces Zone G = -6.4 323 -2067 Roof Windward Typ Wind Zone Zone H = -9.7 252 -2444 Roof Leeward Typ Wind Zone Total Wind Force =l 7861 Ibs Use to resist wind uplift: Roof Only Total Exterior Wall Area= 2203 ft Uplift due to Wind Forces= -7254 Ibs Resisting Dead Load = 8483 Ibs E =I 1229 Lbs...No Net Uplift Wind Distribution Tributary to Diaphragms Wind Sail Tributary To Dia hragm (ft Zone A Zone B Zone C Zone D Main Floor 48 10 91 43 Upper Floor 59 0 137 0 Main Floor Diaphragm Shear = 2440 lbs Upper Floor Diaphragm Shear = 3147 lbs Roof Diaphragm Shear = 2275 Ibs Wind Distribution To Shearwall Lines MAIN FLOOR UPPER FLOOR ROOF Tributary Line Shear Tributary Line Shear Tributary Line Shear Wall Line Diaphragm (lbs) Diaphragm (Ibs) Diaphragm (Ibs) Width (ft) , Width jft) Width (ft) 1 10 1220 10 1573 10 1137 2 10 1220 10 1573 10 1137 E= 20 2440 20 3147 20 2275 Harper Houf Peterson Righellis Pg #: • Longitudinal Seismic Line Shear Distribution Seismic Design Category = D Occupancy Category = 11 Site Class = D S1= 0.34 Ss = 0.94 Importance Factor = 1.00 Table 11.5 -1, ASCE 7 -05 Structural System, R = 6.5 Table 12.2 -1, ASCE 7 -05 Ct = 0.020 Other Fa = 1.12 Fv= 1.72 Mean Roof Height, H (ft) = 32 . Period (T = 0.27 Equ. 12.8 -7, ASCE 7 -05 k = 1.00 12.8.3, ASCE 7 -05 S 1.06 Equ. 11.4 -1, ASCE 7 -05 S 0.58 Equ. 11.4 -2, ASCE 7 -05 Sos= 0.71 Equ. 11.4 -3, ASCE 7 -05 Spy= 0.39 Equ. 11.4 -4, ASCE 7 -05 Cs = 0.11 Equ. 12.8 -2, ASCE 7 -05 Csmin = 0.01 Equ. 12.8 -5 & 6, ASCE 7-05 Csmax = 0.22 Equ. 12.8 -3, ASCE 7 -05 Base Shear coefficient, v = 0.076 Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height (ft) = 8 Floor 3 Diaphragm Height (ft) = 18 Roof Diaphragm Height (ft) = 32 Floor 2 Wt (Ib)= 8411 Floor 3 Wt (Ib)= 8476 Roof Wt (lb) = 14162 Wall Wt (Ib) = 35496 • Trib. Floor 2 Diaphragm Wt (Ib) = 22609 Trib. Floor 3 Diaphragm Wt (Ib) = 22674 - Trib. Roof Diaphragm Wt (Ib) = 21261 Vertical Dist of Seismic Forces Cumulative % total of base shear Rho Check to Shearwalls (Ibs) I to shearwalls I Req'd? Vnoor 2 (Ib) = 720 100.0% Yes Vn 3 (Ib) = 1625 85.8% Yes V (Ib) = 2709 53.6% Yes Shear Distribution To Wall Lines Wall Line Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line Roof Line Floor 2 Floor 3 Roof Shear Shear Shear sq ft sq ft sq ft Ibs Ibs Ibs 1 286 291 415 318 725 1334 2 361 361 428 402 900 1375 Sum 647 652 -843 720 1625 2709 Total Base Shear* = 1 5054 LB *Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. 4- LV3 Harper Houf Peterson Righellis Pg #: Shearwall Analysis Based on the ASCE 7 -05 Transvere Shearwalls Line Load Controlled By: Wind Shear H L Wall H/L Line Load Line Load Line Load Dead V Panel ' Shear Panel M MR Uplift Panel Lgth. From 2nd Flr. From 3rd Fir. From Roof Load Sides Factor Type T (ft) (ft) (ft) ht I k ht I k ht I k, (klf) (plf) (ft-k) (ft -k) (k) 101 Not Used • 102 7 1.75 3.50 4.00 OW 8.00 1.74 18.00 2.80 27.00 2.32 1959 Double 1.40 NG 103 7 1.75 3.50 4.00 zW, 8.00 1.74 8.00 2.80 8.00 2.32 1959 Double 1.40 NG 103a 7 4.00 4.00 1.75 ok 8.00 3.25 814. Single 1.40 IV 104 8 4.50 10.50 1.78 ox 8.00 1.52 8.00 2.80 8.00 2.26 626 Single 1.40 III 105 8 3.00. 10.50 2.67 OK 8.00 . 1.52 8.00 2.80 8.00 2.26 626 Single 1.40 III 106 8 3.00 10.50 2.67 OK 8.00 - 1.52 8.00 2.80 8.00 ' 2.26 626 Single 1.40 III 109 8 4.58 17.08 1.75 OK 8.00 1.74 18.00 2.80 27.00 2.32 401 Single 1.40 II 110 8 12.50 17.08 0.64 OK 8.00 1.74 8.00 2.80 8.00 2.32 401 Single 1.40 II 111 8 4.50 7.25 1.78 OK 8.00 1.52 8.00 2.80 8.00 2.26 907 Double 1.40 VI 112 4.75 1.38 7.25 3.45 OK 8.00 1.52 8.00 2.80 8.00 2.26 907 Double 1.40 VI 113 4.75 1.38 7.25 3.45 OK 8.00 1.52 8.00 _2.80 8.00 2.26 907 Double 1.40 VI 201 9 3.92 10.79 2.30 ox 9.00 2.80 18.00 2.32 474 Single 1.40 II 201a 9 4.17 10.79 2.16 OK 9.00 2.80 18.00 2.32 474 Single 1.40 II 201b 9 2.71 10.79 3.32 OK 9.00 2.80 18.00, 2.32 474 Single 1.40 II 202A 9 2.96 11.96 3.04 OK 9.00 2.80 18.00 2.26 423 Single 1.40 II 202B 9 3.00 11.96 3.00 ox 9.00. 2.80 18.00 2.26 423 Single 1.40 II 203 9 3.00 11.96 3.00 ox 9.00 2.80 18.00 2.26 423 . Single 1.40 II 204 9 3.00 11.96 3.00 ox 9.00 2.80 18.00. 2.26 423 Single 1.40 II 301 8 3.92 • 13.96 2.04 OK 8.00 2.32 166 Single 1.40 I 302 8 5.79 13.96 1.38 ox 8.00 2.32 166 Single 1.40 I 303 8 4.25 13.96 1.88 ox 8.00 2.32 166 Single 1.40 I 304 8 2.96 5.96 2.70 OK 8.00 2.26 , 379 Single 1.40 II 305 8 3.00 5.96 2.67 ox 8.00 2.26 379 Single 1.40 11 Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load / Total L Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear • Shear Application ht . Mr (Resisting Moment) = Dead Load • L * 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) /I -L \L4 Harper Houf Peterson Righellis Pg #: Shearwall Analysis Based on the ASCE 7 -05 fransvere Shearwalls Line Load Controlled By: Seismic Shear H L Wall H/L Line Load Line Load Line Load Dead V Rho•V % Story # Panel ' Shear Panel M MR Uplift Panel Lgth. From 2nd Flr. From 3rd Flr. From Roof Load Strength Bays Sides Factor Type T (1t) (ft) (ft) ht I k ht I k ht I k (klf) (pit) (pit) (ft -k) (ft-k) (k) 101 Not Used 102 7 1.75 3.50 4.00 _ `.' 8.00 0.11 18.00 0.90 27.00 1.27 651 846 0.10 0.50 Double 0.50 NG e ± , 103 7 1.75 3.50 4.00 ':' •:.;,# 8.00 0.11 8.00 0.90 8.00 1.27 651 846 0.10 ' 0.50 Double 0.50 NG 103a 7 4.00 4.00 1.75 OK 8.00 0.48 0.00 0.00 120 156 0.22 1.14 Single 1.00 1 104 8 '4.50 10.50 1.78 OK 8.00 0.13 8.00 0.73 8.00 1.44 219 284 0.25 1.13 Single 1.00 11 105 8 3.00 10.50 2.67 OK 8.00 0.13 8.00 0.73 8.00 1.44 219 284 0.17 0.75 Single 0.75 III 106 8 3.00 10.50 2.67 OK 8.00 0.13 8.00. 0.73 8.00 1.44 219 284 0.17 0.75 Single 0.75 III 109 8 4.58 17.08 1.75 OK 8.00 0.11 18.00 0.90 27.00 1.27 134 174 0.25 1.15 Single 1.00 . 1 110 8 12.50' 17.08 0.64 OK 8.00 0.11 8.00 0.90 8.00 1.27 134 174 NA 3.13 Single 1.00 I. 111 8 4.50 7.25 1.78 OK 8.00 0.13 8.00 0.73 8.00 1.44 316 411 , 0.25 1.13 Single 1.00 III 112 5 1.38 7.25 3.45 . OK 8.00 0.13 8.00 0.73 8.00 1.44 316 411 0.08 .0.58 Double 0.58 VB • . , 113 5 1.38 7.25 3.45 OK 8.00 0.13 ' 8.00 0.73 8.00 1.44 316. 411 0.08 0.58 Double 0.58 VII 201 9 _ 3.92 10.79 2.30 OK . 9.00 0.90 18.00 1.27 200 261 0.17 0.87 Single 0.87 II 201a 9 4.17 10.79 2.16 OK 9.00 0.90 18.00 1.27 200 261 0.18 0.93 Single 0.93 II 201b 9 2.71 10.79 3.32 oui 9.00 0.90 18.00 1.27 200 261 0.12 0.60 Single 0.60 II1 202A 9 2.96 11.96 3.04 OK 9.00 0.73 18.00 1.44 182 236 0.13 0.66 Single 0.66 III 202B 9 3.00 11.96 3.00 OK 9.00 0.73 18.00 1.44 182 236 0.13 0.67 Single 0.67 11I 203 9 3.00 11.96 3.00 OK 9.00 0.73 18.00 1.44 181 236 0.13 0.67 Single 0.67 III 204 ' 9 3.00 11.96 3.00 'car 9.00 0.73 18.00 1.44 181 _ 236 0.13 0.67 Single 0.67 III 301 _ 8 3.92 13.96 2.04 OK 8.00 1.27 91 118 0.20 0.98 Single 0.98 I • 302 8 5.79 13.96 1.38 oK 8.00 1.27 91 118 0.29 1.45 Single 1.00 I 303 8 4.25 13.96 1.88 OK 8.00 1.27 91 118 0.21 1.06 Single 1.00 1 304 8 2.96 5.96 2.70 OK _ . 8.00 1.44 242 315 0.15 0.74 Single 0.74 III 305 8 '3.00 5.96 2.67 OK 8.00 1.44 242 315 0.15. 0.75 Single 0.75 _ 111 Rho Calculation Does the 1st floor shearwalls resist more than 35% of the total transverse base shear? Yes Does the 2nd floor shearwalls resist more than 35% of the total transverse base shear? Yes Does the 3rd floor shearwalls resist more than 35% of the total transverse base shear? Yes Total 1st Floor Wall Length = 1800 Total # 1st Floor Bays = 4.77 Are 2 bays minimum present along each wall line? No 1st Floor Rho = u Total 2nd Floor Wall Length = 22.75 Total # 2nd Floor Bays = 5 Are 2 bays minimum present along each wall line? No 2nd Floor Rho = 1.3 Total 3rd Floor Wall Length = 19.92 Total # 3rd Floor Bays = s Are 2 bays minimum present along each wall line? No 3rd Floor Rho = 1.3 • Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load•Rho / Total L % Story Strength = L / Total Story L (Required for walls with H/L > 1.0, for use in Rho check) # Bays = 2•L/H Shear Factor = Adjustment For H/L > 2:1 Mo (Overtuming Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load • L • 0.5 • (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) /.44- ---- t \S. Harper Houf Peterson Righellis Pg #: Shearwall Analysis Based on the ASCE 7 -05 Longitudinal Shearwalls Line Load Controlled By: Wind Shear H L Wall H/L Line Load Line Load Line Load Dead V Panel Shear Panel M MR Uplift Panel Lgth. From 2nd Flr. From 3rd Flr. From Roof Load Sides Factor Type T (ft) (ft) (ft) ht k ht k ht k (klf) (pll) (ft-k) (ft -k) (k) 107 8 15.50 15.50 0.52 OK 10.00 ' 1.22 18.00 1.57 27.00 1.14. 1.03 254 Single 1.40 I 71.21 123.49 -0.19 108 8 15.50 : 15.50 0.52 ox 10.00 1.22 18.00 1.57 27.00 1.14 1.03 254 _ Single 1.40 I 71.21 123.49_ -0.19 205 9 13.00 1 13.00 0.69- OK 9.00 1.57 18.00 1.14 0.70 208 Single 1.40 I 34.62 59.15 -0.07 206 9 13.00 1 13.00 0.69 OK 9.00 , 1.57 1 18. _ 1.14 0.70 _ 208 Single 1 1.40 I 34.62 59.15 -0.07 I 306 8 10.00 1 10.00 0.80 ox I 8.00 1 1.14 0.29 114 Single 1.40 1 9.10 1 14.40 0.05 I 307 8 10.00 10.00 0.80 OK 8.001 1.14 0.29 114 Single 1.40 I 9.10 14.40 0.05 Spreadsheet Column Definitions & Formulas • L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load / Total L Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear • Shear Application ht Mr (Resisting Moment) = Dead Load * L * 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo-Mr) / (L - 6 in) / ' U\O Harper Houf Peterson Righellis Pg #: Shearwall Analysis Based on the ASCE 7 -05 ' Longitudinal Shearwalls Line Load Controlled By: Seismic • Shear H L Wall H/L Line Load ' Line Load Line Load Dead V Rho' V % Story if - Panel Shear Panel Mo MR Uplift Panel Lgth. From 2nd FIr. From 3rd Flr: From Roof Load Strength Bays Sides Factor Type T (ft) (ft) (ft) ht " k ht k ht k (klf) (plf) (p10 (ft-k) (ft-k) (k) 107 8 15.50 15.50 0.521 OK 10.00 0.32 18.00 0.73 27.00 1.33 1.09 153 153 NA 3.88 Single 1.00 I 52.25 130.70 • -1.74 108 8 15.50 15.50 0.52 1 OK 10.00 0.40 18.00 0.90 27.00 138 1.09 173 173 NA 3.88 Single 1.00 , I 57.35 130.70 -I.40 I 205 206 1 . 9 { 13 00 1 13.00 1 0.69 1 OK 1 1 1 9.00 1 0.90 1' 18.00 1.38 0.76 175 1 175 NA 1 2.89 _ Single 1 00 . I 32.85 1 64.22 -0.45 I 306 8 10.001 10.00 0.801 OK L 1 1 8.00 1.33 0.35 133 133 1 NA 1 2.50 1 Single 1. I , 10.67 17.40 0.02 I 307 8 10.00 10.00 0.80 OK 8.00 1.38 0.35 138 138 NA 2.50 Single 1.00 1 11.00 17.40 1 0.06 Rho Calculation • Does the 1st floor shearwalls resist more than 35% of the total longitudinal base shear? Yes Does the 2nd floor shearwalls resist more than 35% of the total longitudinal base shear? Yes Does the 3rd floor shearwalls resist more than 35% of the total longitudinal base shear? Yes Total 1st Floor Wall Length = 31.00 Total # 1st Floor Bays = 7.75 Are 2 bays minimum present along each wall line? Yes • 1st Floor Rho = r.o • Total 2nd Floor Wall Length = 26.00 Total # 2nd Floor Bays = 6 Are 2 bays minimum present along each wall line? Yes 2nd Floor Rho = 1.0 • Total 3rd Floor Wall Length = 20.00 Total # 3rd Floor Bays = s Are 2 bays minimum present along each wall line? Yes 3rd Floor Rho = 1.0 Spreadsheet Column Definitions & Formulas • L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load•Rho / Total L % Story Strength = L / Total Story L (Required for walls with H/L > 1.0, for use in Rho check) • # Bays = 2'L/H Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load' L 0.5 • (.6 wind or .9 seismic) Uplift T = (Mo-Mr) / (L - 6 in) • Harper Houf Peterson Righellis Pg #: SHEAR WALL SUMMARY' Transvere Shearwalls Panel Wall Shear Wall Type Good Fo Uplift Simpson Holdown Good For V (PR) (Plt) (lb) (Ib) 101 Not Used 102 Simpson Strongwall 103 Simpson Strongwall 103a 814 1/2" APA Rated Plyw'd w/ 8d Nails @ 2/12 833 104 626 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 638 105 626 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 638 106 626 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 638 109 401 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 110 401 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 111 907 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 990 112 907 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 990 113 907 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 990 201 474 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 201a 474 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 201b 474 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 202A 423 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 202B 423 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 203 423 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 204 423 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 301 166 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 302 166 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 303 166 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 , 304 379 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 305 379 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design Toads. 4 \ �• Harper Houf Peterson Righellis Pg #: SHEAR WALL SUMMARY' Longitudinal Shearwalls Panel Wall Shear Wall Type Good For Uplift Simpson Holdown Good For V (plf) (pi) (lb) (lb) 107 254 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 -192 Simpson None 0 108 254 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 -192 Simpson None 0 205 208 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 -69 Simpson None 0 206 208 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 , -69 Simpson None 0 306 133 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 242 48 Simpson None 0 307 138 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 242 59 Simpson None 0 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design loads. /4 L \9 Transverse Wind Uplift Design . • Unit A Shear H Joist L Wall Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total Total Panel Height Lgth. From 2nd From 3rd From Wall Load (not Point Point ning Moment Moment Floor Shear @ Floor Shear @ Stacking @ Stacking From From Uplift Uplift Flr. Fir. Roof Shear including Load Load Momen @ Left @ Right Left Right Left Side of @ Right Wall Wall @ Left @ floors @ Left @ t House Side of Above Above Right above if Right House @ Left @ ' walls Right stack) (ft) (ft) (ft) (ft) k k k k plf klf k k kft kft kft k k k k k k 102 8 1.1667 1.75 3.50 1.737 2.8 2.32 6.857 1959 0.152 0.192 0.832 27.43 0.57 1.69 21.31 20.79 21.31 20.79 103 8 1.1667 1.75 3.50 1.737 2.8 2.32 6.857 1959 0.152 0.832 0.192 27.43 1.69 0.57 20.79 21.31 20.79 21.31 103A 8 1.1667 4.00 4.00 3.254 3.254 814 0.04 2.016 1.664 26.03 8.38 6.98 6.00 6.24 6.00 6.24 104 8 1.1667 4.50 10.50 1.516 2.8 2.26 6.576 626 0.1 0.8 0.078 25.08 4.61 1.36 5.58 6.06 5.58 6.06 105 8 1.1667 3.00 10.50 1.516 2.8 2.26 6.576 626 0.048 0.252 0.156 16.72 0.97 0.68 6.45 6.52 6.45 6.52 106 8 1.1667 3.00 10.50 1.516 2.8 2.26 6.576 626 0.048 0.156 0.252 16.72 0.68 0.97 6.52 6.45 6.52 6.45 109 8 1.1667 4.58 17.08 1.737 2.8 2.32 6.857 401 0.152 0.192 0.156 16.31 2.47 2.31 3.63 3.66 201L 201R 4.82 5.09 8.45 8.75 110 8 1.1667 12.50 17.08 1.737 2.8 2.32 6.857 401 0.096 0.156 0.192 44.52 9.45 9.90 3.24 3.21 201aL 201bR 4.95 4.88 8.18 8.09 111 8 1.1667 4.50 7.50 1.516 2.8 2.26 6.576 877 0.144 0.8 0.078 35.11 5.06 1.81 8.02 8.51 8.02 8.51 112 8 1.1667 1.50 7.50 1.516 2.8 2.26 6.576 877 0.048 0.252 0.234 11.70 0.43 0.41 11.44 11:46 11.44 11.46 113 8 1.1667 1.50 7.50 1.516_ 2.8 2.26 6.576_ 877 0.048 0.234 0.252_ 11.70 0.41 0.43 11.46 11.44 11.46 11.44 201 9 1.1667 3.92 10.8 2.8 2.32 5.12 474 0.225 0.432 0.156 17.71 3.42 2.34 3.99 4.16 301L 301R 0.83 0.93 4.82 5.09 201a 9 1.1667 4.17 10.8 2.8 2.32 5.12 474 0.225 0.156 0.156 18.84 2.61 2.61 4.14 4.14 302L 302R 0.80 0.80 4.95 4.95 201b 9 1.1667 2.71 10.8 2.8 2.32 5.12 474 0.225 0.156 . 0.432 12.24 1.25 2.00 4.24 4.08 303L 303R 0.91 0.80 5.15 4.88 202A 9 1.1667 2.96 11.958333 2.8 2.26 5.06 423 0.173 0.432 0.052 11.92 2.04 0.91 3.62 3.84 304L 304R 2.60 2.75 6.21 6.59 202B 9 1.1667 3 11.958333 2.8 2.26 5.06 423 0.173 0.052 0.216 12.09 0.93 1.43 3.84 3.74 305L 305R 2.74 2.16 6.58 5.91 203 9 1.1667 3 11.958333 2.8 2.26 5.06 423 0.309 0.216 0.312 12.09 2.04 2.33 3.62 3.56 3.62 3.56 204 9 1.1667 3 11.958333_ 2.8 2.26 5.06 423 0.225 0.312_ 0.432 12.09 1.95 2.31 3.64 3.57 3.64 3.57 301 8 3.92 13.96 2.32 2.32 166 0.232 0.384 0.204 5.21 3.29 2.58 0.83 0.93 ' 0.83 0.93 302 8 5.79 13.96 2.32 2.32 166 • 0.232 0.204 0.204 7.70 5.07 5.07 0.80 0.80 0.80 0.80 303 8 4.25 13.96 2.32 2.32 166 0.232 0.204 0.384 5.65 2.96 3.73 0.91 0.80 0.91 0.80 304 8 2.96 5.96 2.26 2.26 379 0.232 0.384 0.136 8.98 2.15 1.42 2.60 2.75 2.60 2.7 305 8 3 5.96 2.26 2.26 379 0.232 0.136 1.104 9.10 .1.45 4.36 2.74 2.16 2.74 2.16 Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height • Wall Length = Sum of Shear Panels Lengths in Shear Line V (Panel Shear) = Sum of Line Load / Total L Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load * L 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo-Mr) / (L - 6 in) • Transverse Seismic Uplift Design Unit A • Shear H Joist L Wall Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total Total Panel Height Lgth. From 2nd From 3rd From Wall Load (not Point Point ning Moment Moment Floor Shear @ Floor Shear @ Stacking @ Stacking From From Uplift Uplift Flr. Fir. Roof Shear including Load Load Momen @ Left @ Right Left Right Left Side of @ Right Wall Wall @ Left @., floors @ Left @ t House Side of Above Above Right above if Right House @ Left @ walls Right stack) (ft) (ft) (ft) (ft) k k k k plf klf k k kft kft kft k k k k k k 102 8 1.1667 1.75 3.50 0.114 0.9 1.27 2.284 653 0.152 0.192 0.832 10.40 0.57 1.69 7.91 7.11 0 0 7.91 7.11 103 8 1.1667 1.75 3.50, 0.114 0.9 1.27 2.284 653 0.152 0.832 0.192 10.40 1.69 0.57 7.11 7.91 0 0 7.11 7.91 103A 8 1.1667 4.00 4100 0.481 0.481 120 . 0.04 2.016 1.664 3.85 8.38 6.98 _ -1.06 -0.69 ._ 0 0 -1.06 -0.69 104 8 1.1667 4.50 10:50 0.126 0.73 ..1.44 2.296 219 0.1 0.8 0.078 . 8.96 4.61 1.36 1.20 1.93 0 0 1.20 1.93 105 8 1.1667 3.00 10.50 0.126 0.73 .1.44 2.296 219 . 0.048 0.252 0.156 5.97 0.97 0.68 2.04 2.14 0 0 2.04 2.14 106 8 1.1667 3.00 10.50 0.126 0.73 1.44 2.296 219 0.048 0.156 0.252 5.97 0.68. 0.97 2.14 2.04 0 0 2.14 2.04 109 8 . 1.1667 4.58 17.08 0.114 0.9 1.27 2.284 134 - 0.152 0.192 0.156 5.58 2.47 .2.31 0.82 0.86 201L 201R 1.13 1.54 1.95 2.40 110 8 1.1667 12.50 17.08 0.114 0.9 1:27 2.284 '134 0.096 0.156 0.192 15.23 9.45 9:90 ' 0.56 0:53 201aL 201bR 1T32 1.32 1.88 1.85 111 8 1.1667 4.50 7.50 0.126 0.73 1.44 2.296 306 0.144 0.8 ' 0.078 12.54 5.06 1.81 2.00 2.73 0 0 2.00 2.73 112 8 1.1667 1.50 7.50 0.126 • 0.73 1.44 2.296 306 0.048 0.252 0.234 4.18 0.43 0.41 3.79 3.82 0 0 3.79 3.82 113 8 1.1667 1.50 7.50 0.126 0.73 1.44 2.296 306 0.048 0.234 0.252 4.18 0.41 0.43 3.82 3.79 0 0 3.82 3.79 201 9 1.1667 3.92 10.80 - 0.9 1.27 2.17 201 0.225 0.432 0.156 7.63 3.42 2.34 1.16 1.41 301L 301R -0.03 0.13 1.13 1.54 201a 9 1.1667 4.17 10.80 0.9 1.27 2.17 201 0.225 0.156 0.156 8.11 2.61 2.61 • 1.38 1.38 302L . 302R -0.06 -0.06 1.32 1.32 201b 9 1.1667 2.71 10.80 0.9 ' 1.27 2.17 201 0.225 .0.156 0.432 5.27 1.25 • 2.00 1.53 1.28 303L 303R 0.10 -0.06 1.63 1.22 202A 9 '1.1667 2.96 11.96 0.73 144 2.17 181 0.173 0.432 0.052 5.25 2.04 0.91 • 1.15 1.50 304L • 304R 1.28 1.50 2.43 3.00 202B 9 1.1667 3.00 11.96 0.73 1.44 2.17 181 0.173 0.052 0.216 , 5.32 0:93 • 1.43 . 1.49 1.35 305L 305R • 1.50 0.63 2.99 1.97 203 9 1.1667 3.00 11.96 0.73 1.44 2.17 181 0.309 0.216 0.312 - 5.32 2.04 2.33 1.16 1.08 0 0 1.16 I.08 204 9 1.1667 3.00 11.96 "0.73 1.44 2.17 181 0.225 0.312 0.432 5.32 1.95 2.31 1.19 1.08 0 0 1.19 1.08 301 8 0 3.92 13.96 ' 1.27. 1.27 91 0.232 0.384 0.204 .2.85. 3.29 2.58 -0.03 0.13 0 0 -0.03 0.13 302 8 0 5.79 13.96 1.27 1.27 91 0.232 0.204 0.204 4.21 5.07 5.07 -0.06 -0.06 • 0 0 -0.06 -0.06 303 8 0 4.25 13.96 1.27 1.27 91 0.232 0.204 0.384 3.09 2.96 3.73 0.10 -0.06 0 . 0 0.10 - 0.06 304 8 0 2.96 5.96 . 1.44 1.44 242 0.232 0.384 0.136 5.72 2.15 1.42 1.28 1.50 0 0 1.28 1.50 305 8 0 3.00 5.96 . 1.44 1.44 242 0.232 0.136 1.104 5.80 . 1.45 4.36 - 1.50 0.63 0 0 1.50 0.63 Spreadsheet Column Definitions & Formulas _,---- L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line V (Panel Shear) = Sum of Line Load / Total L 1 Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load * L * 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) TRANSVERSE UPLIFT CALCULATIONS - SUMMARY UNIT A Shear Controlling Total Holdown Holdown Good Control Total Holdown Good For Panel Case Uplift @ or Strap Type@ Left For ling Uplift Type@ Left Left Case @ Right k Simpson k k Simpson k . 102 Wind 21.31 Holdown None 0.00 Wind 20.79 None 0.00 103 Wind 20.79 Holdown None 0.00 Wind 21.31 None 0.00 103A Wind 6.00 Holdown HDQ8 w 3HF 6.65 Wind 6.24 HDQ8 w 3HF 6.65 104 Wind 5.58 Holdown HDQ8 w 3HF 6.65 Wind 6.06 HDQ8 w 3HF 6.65 105 Wind 6.45 Holdown HDQ8 w 3HF 6.65 Wind 6.52 HDQ8 w 3HF 6.65 1 106 Wind 6.52 Holdown HDQ8 w 3HF 6.65 Wind 6.45 HDQ8 w 3HF 6.65 109 Wind 8.45 Holdown HDQ8 w DF 9.23 Wind 8.75 HDQ8 w DF 9.23 110 Wind 8.18 Holdown HDQ8 w DF 9.23 Wind 8.09 HDQ8 w DF 9.23 111 Wind 8.02 Holdown HDQ8 w DF 9.23 Wind 8.51 HDQ8 w DF '9.23 112 Wind 11.44 Holdown HDU14 14.93 Wind 11.46 HDU14 14.93 113 Wind 11.46 Holdown HDU14 14.93 Wind 11.44 HDU14 14.93 201 Wind 4.82 Strap MST48x2 5.75 Wind 5.09 MST48x2 5.75 201a Wind 4.95 Strap MST48x2 5.75 Wind 4.95 MST48x2 5.75 201b Wind 5.15 Strap MST48x2 5.75 Wind 4.88 MST48x2 5.75 202A Wind 6.21 Strap MST60x2 8.11 Wind 6.59 MST60x2 8.11 202B Wind 6.58 Strap MST60x2 8.11 Wind 5.91 MST60x2 8.11 _J 203 Wind 3.62 Strap MST60 4.06 Wind 3.56 MST60 4.06 204 Wind 3.64 Strap MST60 4.06 Wind 3.57 MST60 4.06 1 301 Wind 0:83 Strap MST37 1.79 Wind 0.93 MST37 1.79 A 302 Wind 0.80 Strap MST37 1.79 Wind 0.80 MST37 1.79 • 303 Wind 0.91 Strap MST37 1.79 Wind 0.80 MST37 1.79 304 Wind 2.60 Strap MST48 2.88 Wind 2.75 MST48 2.88 305 Wind 2.74 Strap MST48 2.88 Wind 2.16 MST48 2.88 C Cel . . 5 Z *0 0 E : • -,::: ..r.-- iv .= '7, k-A• cp „ . - . = -13 -I 1 0 9 0 m Z m 1 o m .. 0 z . 0 0 ; n - 44 - CD1b, = ( 2NreCOSS CI IP DaY) ) 3 3 C Z F) -1 ; 10 ' : P IrdY 0 .> 1 °MP° 6 z -0 m Illorrilt-Vei) 2 = O m z 0 Cl " "1-2 /CcAl Scr) ''' 2e2 -4- - Uck=e 4 : tqt1 = YP - Valk-P9 m 0 0 , 0 do Cfli n'Odi) E ri K K 0 m --I m 0 OA rT‘e...) •: e . S \k\OrY) fr k of) z - , 0 ." \II, SU \ .-\t 4 Slocnn outm -- K-TA-n - ,y00 - 1 vo)-V • m a CI `9001 ..SOQ8 — k,,, --------- X - rit ( :3 :103road bC Nr: D :',:IN ear :31W:I AO 0 0 . C. ' , , . . 1:, @ . .. ,W TN IS LeiNkatt rku.wc, ►s Lk N E .... . �t UP(15)1RI?3ER$ O — U L Yla) 10- rtz>lk ps 7 � 1 1 W v 0 '� s '' �, i i v I 1 �; 9 i .01 -IfI_. — — hl 'd ® 1 . . . 0 (--- . 0 -L. -- r ---, . .--, 0 r g d 0 C ( 1 • ❑ o e, t . SW 1 LC NC -�TI� -,r� AN�wt PUN") C TI4-t S Lim::: (2 . O Z � g , V 1 D Q. cs 5 I 3N 0 s L 44J L.9rvol 3-41,2.0m A NN, kilt-1 N =11 S 1-41 N 8 01 S ❑ � 1 with.., -, -" . �_..,...,__. _.:,s?:. .:<`x.: s w x z i �.s i:.sF 'a a?°` L....�,:, -.a-2 sw , zw. ,, rt!rvt 0 I- 2 T et J 3 v) vp ❑ L 4 ❑ - S O *LI-- 1 r =j • q d i � L . _. • __ ______- ______. _ ,. , e_. +,o1 3n01 S)H1. "101 d = at+m1.Nti +111 -9ra1 S1111 MS 2 cp f— r. • .L r'411 511-LL v9 rNrAV --1-t...0- . °, \`-'\..1- (NS c7 )0, I .. ...,,,..._. ±... 0 g :! iti 0 co II. —31 A • . . . , . . , . • • • , i • ot • t k . , kl Co cs 8 , . , ...... v . ' a eli i P . 101111111111 p, , I I ct ,, • m N x /"' KV ! ; . • (' i'■ t i I ...,... . t ; c:, ......_ismum— ---. I . ''' ' i I -,,,s, ,-- I . . / 4 ---- P] ec A) • II : , 1 • ri, .-- / \ v i - A 411 1 1 1 1 1 1 1 1 1 1 11 , 4 L',' . - -,-- •• . • .:-.z`•'-;1'x,.". 2.1 nr,m..-- . ..4.""lida..7=0 S Cre. . 4Nr) SI-14- Wvc)1 Hi- Sl NG i 1-- 2 . . D . • • G 3> T 1 s W -c Lki..1 c y1i W N C7 - sliAs utvc 30 R i o 0 r: 1 ..... --1 5,...............i W r y-- ri> 0,0 N lij r 5 0 ; f: ,., 1 s . �N� �:. 1 ,.._.-._i, .... ,_._.,_._._.y - ._3�.Y� _ .,,r. ,:04.21,_ ,1 30 SW X 15 L. t NC-i T14 Pc uiNi c--, Ti-ii 5 LINE-7 BY: A A \c......„ DATE: 6 ' ?\O\ JO8 NO.: Ce A t .....0 Cot O OF PROJECT: RE: 1iCO im t'o ■r\ \er a \ - - •F o \- cc house. ❑ ❑ �(' Z v Lvne is = ( .5'344 wind. (corko 6.51'4 F W 9U q phrag m tai d �tY a.0 ct 0 m ❑ w, laol pLA 1 . o J 0 t4 Ca pact 1 of usn lot o(Aced dick phvugvr W = Cte•o X t,4> = asackf a ,. woct_ dickphrekcjiv a Z GItz_ Asa; 1 an3 C'q u, _ (as5p- F.(t,4 = 351 :- o►, 2 f 0 0 El E Cr O IL Z w ❑ 0 Z . O = O U o i i N )" F5. N sni bA;•� a x 4- Lb Br: p ! DATE: 1 ..,. JOB NO.: ( . k j oat V C PROJECT: Roo F &'- RE: Des ic o f rirn 1 b l o c . u n n @ S Q If $ • CI ° OPTION L Li z i o w / • W TRt(3 (AWE: oN I .e F . F . la VW i 0 So l IQ T = q' -- 9'lz" To? PLT P 181- 54 a • - < . Kcix sf ►i_oP%.ig��, _ ' O W %S NMI U 0 W D is s c-I�J lajI,v0 PCessuce Et a O f.F. R 1 - 3 a "De s\op 91o, {es 'co 3N , co c \j t tQt,-yk'r: TOP 4LAI B - Il 2 LUi* - V\ UJI . !o'd DC ' 191pLrr 2 T . T ❑ Rt =t mc\i* izz4 .= tclotA 0_0" f & o N1inax = 1017: _ 1 g1Cts.41 51 #Ct S,„ - M _ .5 Ek)02- I 5 •' s +,", (3.55.25 ) 1 ► " ._ _ 6q 1% fi /i1z I-3 SY = 1 _ c _ VZ #ItNi J\ r Igct (3.- c s = FI;(‘*') = (8so?sc�(t.G/1.$)Cl.1s)= 3,3gc, <, (Al2 ►_ic.., a ,_ us'�4.F - (so Fst (i.(;) = auO 75i. 7 q%'Z Qtr xm 4* 9 —L9 78 (4 1 -I1 (o'`)x.('17\_Z',xb.0XQ'0(0'WI X ' scl - ‘€'.`E. €_ , ttN` Sa .'bt. Sd i 1 = <st �-t(Tj l a - �74 _ `'`f 0 4 @ ' 5 =4 r) 4- Te:s , di- !..:-. 44 .: ..,. 0 4, q''')` ! 4 0 + t.' S .4 ' i W1 e + °�.. � -Jr t, G 0 ) S' h e 4 ' S'e'1 = I = i ' _ rr1 Z0• e `t "c ='V s " a '. 5t' ; ‘'l;Si4 V \ -1 i. rNi_s.hr z...„ et v S .� -� it s•t J � oi c3c:s - is. c,sk li .' .: - rn ■Sk- .rt.. -,. ' I \ .. 3 O 1 ._- 1 r ,'1 'I 'I �l �f 0 " r = O\o, ck, \ \C\ CA tsi� -poo1 Z 3 sci Q;,VC - 3iscs- Jd p\ijce 2\saQ m z n m O ∎,O -,Zl - J' adO Y - ar,n 'POW o IT 00 - t \ = .1-1•110..C. ‘.3.0 %.1 WI rr l CYO a_1_ ❑ 3 m 3 O M 1 ?30(711 crd, 3 U0°\\Y't-A d -- 6Oe j. Q•Z g \1J. do -\1r-,z O m . ❑ ❑ • Z C'0(.LdQ :38 :103 r08d O' b 4 N )) ..ON 9Or C, - . ` - g .31VO \(\ /// V WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN ( Un t A - Front Load WoodWorkst0 Sizer 7.1 June 24, 2010 12:49:04 COMPANY 1 PROJECT RESULTS by GROUP - ND5 2005 . SUGGESTED SECTIONS by GROUP for LEVEL 4 - ROOF = = =- Mnf Trusses i9IILQ - ..= - Not designed by request � a6SII3CCa - = =-= (2) 208 Lumber n -ply D.Fir -L No.2 1- 2x8 By Others Not designed by request (2) 2x6 Lumber n - ply Hem -Fir No.2 2- 206 (3) 2x6 Lumber n -ply Hem -Fir No.2 3- 2x6 Typ Wall Lumber Stud Hem -Fir Stud 2.6 916.0 SUGGESTED SECTIONS by GROUP for LEVEL 3 - FLOOR Mnf Jst Not designed by request Sloped Joist Lumber -soft D.Fir-L No.2 2x6 916.0 (2) 2x8 (1) Lumber n -ply D.Fir-L No.2 1- 208 (2) 208 Lumber n -ply D.Fir -L No.2 2- 208 By Others Not designed by request By Others 2 Not designed by request (2) 2x12 Lumber n - ply D.Fir -L No.2 2- 2x12 5.125x10.5 Glulam- Unbalan. West Species 24F -V4 DF 5.125x10.5 4X6 Lumber -soft D.Fir-L No.2 • 4.6 (2) 2x6 Lumber n -ply Hem -Fir No.2 2- 2x6 4x6 Lumber Post Hem -Fir No.2 4x6 (3) 2x6 Lumber n-ply Hem -Fir No.2 3- 2x6 (2) 2x4 Lumber n - ply Hem -Fir No.2 2- 2x4 Typ Wall Lumber Stud Hem -Fir Stud 2x6 916.0 . SUGGESTED SECTIONS by GROUP for LEVEL 2 - FLOOR Mnf Trusses es Not designed by request Mnf Jac Not designed by request Deck Jot Lumber -soft D.Fir-L No.2 208 016.0 (2) 208 Lumber n -ply D.Fir-L No.2 2- 208 3.125x9 Glulam- Unbalan. West Species 24F -V4 DF 3.125x9 4.8 Lumber -soft D.Fir -L No.2 408 By Others Not designed by request • By Others 2 Not designed by request (21 2x10 Lumber n -ply D.Fir -L No.2 1- 2.10 ' 5.125X12 GL Glulnm-Unbalan. West Species 24F -V4 DF 5.125x12 By Others 3 Not designed by request 3.125x14 L5L LSL 1.55E . 2325Fb 3.5x14 (2) 2x6 Lumber n -ply Hem -Fir No.2 2- 2x6 4x4 Lumber Post Hem -Fir No.2 4x4 . 4x6 Lumber Post Hem -Fir No.2 406 (3) 2x6 Lumber n -ply Hem -Fir No.2 3- 2x6 6x6 Timber-soft Hem -Fir No.2 6x6 ' (21 2x4 Lumber n -ply Hem -Fir No.2 2- 204 6x6 nol Timber -soft D.Fir-L No:1 6x6 (3) 2x4 Lumber n -ply Hem -Fir •No.2 3- 2.4 Typ Well Lumber Stud Hem -Fir Stud 2x6 916.0 SUGGESTED SECTIONS by GROUP for LEVEL I - FLOOR ,==•-•= =-= _ =_= Not designed by request = = = = == CRITICAL MEMBERS and DESIGN CRITERIA Group Member Criterion Analysis /Design Values . ` Mnf 200 �_� Mnf Jst = Not designed by request Deck Jst j65 Bending 0.41 Sloped Joist j30 Bending 0.10 Floor Jat4 unknown Unknown 0.00 (2) 2x8 (1) b35 Bending 0.47 (2) 208 b8 Bending 0.89 3.125x9 b3 Bending 0.06 4x8 b30 Bending 0.12 By Others By Others Not designed by request By Others 2 By Others Not designed by request (2) 2.12 b6 Bending 0.93 (2) 2x10 bl Shear 0.78 5.125012 GL 610 Bending 0.76 By Others 3 By Others Not designed by request 5.125x10.5 b9 Deflection 0.95 406 b20 Bending 0.08 3.125x14 LSL b14 Deflection 0.73 (2) 2.6 c2 Axial 0.91 4x4 c55 Axial 0.07 4x6 c23 Axial 0.80 (3) 2x6 c29 Axial 0.75 6x6 c26 Axial 0.70 . (21 2x4 c39 Axial 0.62 6x6 nol c12 Axial 0.86 (3) 2x4 c31 Axial 0.89 Typ Wall w14 Axial 0.48 Fnd Fnd Not designed by request ' DESIGN NOTES: 1 . Please verify that the default deflection limits are appropriate for your application. 2. DESIGN GROUP OCCURS ON MULTIPLE LEVELS: the lower level result is considered the final design and appears in the Materials List. 3. ROOF LIVE LOAD: treated as a snow load with corresponding duration factor. Add an empty roof level to bypass this interpretation. 4. BEARING: the designer is responsible for ensuring that adequate bearing is provided. 5. GLULAM: bxd = actual breadth x actual depth. 6. Glulam Beams shall be laterally supported according to the provisions of NUS Clause 3.3.3. 7. Sawn lumber bending members shall be laterally supported according to the provisions of ND5 Clause 4.4.1. 8. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side- loaded, . special fastening details may be required. . 9. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 10. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NOS Clause 15.3. -- C�\ WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:41:17 Concept Mode: Beam View Floor 2: 8 ' `' . r ^ ---... b --- - ._ ... - . • __•_._ .... -- _ 1 � ' i V4 - - : - 425 - b' 40 -0 I n I Uv • . : . ... -n 43 -ID y tl 61 - -- .. - — 4L--0 4'1 n • an -.., u -n yn .. 4 • _ .. .:. ! - -[- [ [ -. • - -- 325 -b 35 b UU - '4 -n b� b2 3S-b 25/ • .. . -b 04 : — L25' n :. . : . . - Lb 4 b Lilt - -. ' _ ' - ' - : _ L4 -b ry b10 .3 -b rzs �4 _ : • rr b33 4i 0 It7 - - �- i -- • - - - - - - -- -- - - - -- - - LU-n rb (4 .. : . -- • ' - - -- . . - :.- :._.. - ---- - - -- ... . _ W n it o 13 - - - _. 'I r -b • /1 b32" In - n ru 00 -- - - b191.1 L b nb -- — . 00 r V0 b4} 111 n r -b bc • b4 b14 ■ b -n • • by b30� - ti3 .. - :■ s b r .a b2 . •.. -_ . - V BBIB.B BC CCCCCC C ICCC CC CCCC C C CC CCICC CD DD D D DD DFCDD CD DDDD D D DD CD!DD DE.E E E E-E EEtEEEIEEiE EEEEEfEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22'24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'9111'1A :1 i1 !2(2 222 '44:44!414 W515 5 :5 :5.51515515!616 6:6 :6 7.7;77 7E7T -6" l'-- (-1N Woodworks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:41:19 Concept Mode: Column View Floor 2: 8' V‘100 1 LopD c58 c14 1050 •. ❑ . 49'-6" 1 U4 42S -b lU3V - _ 4! -b' I - - - > - - - -- -- --- 44. -b. 9 .. 43 b.. VO C69 . C2': •c70 c71 44 -0 yl , ED .:. ❑ : . ❑, ®: ' 41 -a 4U b y5 VS -._.. • - - -.__ 3f. -a. ,.. ._ - SG -a Of 31 -a' 250 -. , - : - . - C4 .- .-- -. .- -- - - -- --- - 3U -b 255 .. ❑ :. : .. .. 4V -0 - - :. __.. - -- - - ._ -- --- GO-0 , 2}3 L/ -b 254 -- -.- - ` -- - -.' . -- - --- - - -- - -- -- - ---. .. ....- - - Lb-0 25U - c25 C12 :. c26 L4 -b Its D ❑ ❑c72 LL h :c2 : J! - - Lf-b !b _- 1:1-c73 :. U -b I r 1 . c78 _ ! a b . btS_..__:__c77 -- - - -. _ -. -- - - - - -- IL-b of ii a bb �' 04 00 ) C31 b - n b43 w c76 c79. r b.. bt5 I , 1 w . c 3 0 : Dc32 b b.. b l) 11 ' , ■ . a_i1 -. - - - - - 0 -b b .. U a BB?B.B BC CC C CCC CICCC CC CCCC C C CC CC\CC CD DDD D DD DiDDD CD DD DD D D DD CDIDD DE.E EE E.EEEEEEIEEE EEEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'9111 1;1:1 2;22 i23(3'3:3:343'.3f3"313g(4 4:4;4 5:5:5 515 616 8 :6:6 6" 4- C WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Rear Load WoodWorks® Sizer 7.1 June 24, 2010 13:14:33 Concept Mode: Beam View Floor 2: 8' `CZ 1 ��� `'� b31 ��►J 105 a .. • .. . . . _ >• -.. . . .. - 49' -6" 1)4 : 40 -0 • 103 : : -..., . . --0 4 lUG -" 40 - 1U 40 -0 1UU , : : : f . -.. �- - - -_-" 4 .-0 y9 4S -0 Yo b34:- : - - - - • 4L-b' `Jf 4'1'0 4U b" y5 3y b y4 -. =t - . :- - ' 300 .. . .... . .......... ... . ..... . .. . .... .. . ... . ... . - " - - - - 04-0 t3y • • _ " ' b2 66-0 • • 0i3... .- - 1 -- ------ 32 -0 0 ( • _ - - - 30 0 _ - .. .. .: - - . . ' 133 .t .. : . :: : . - . L / .- 0 .. L0-0 01 I LO.43 00 ' : • ., -1:010 2s 0 . . b33 / cu fb. 1 y b /3 : •.- : :.. - - IL3 b I b (U by. 14 b bb -. 1 -b19t15 . _. - - - - -- - - IZ - b b - - bf 1 I _0 b0 - i U - - . . b y b4 _ .11 - _ t5 -b 02, b4 b14 ■ .1 . • bU� b30�'� . _ - : - b38 . - � _ _ 4� . -b29;� i•; : ,5 b .. • -- 1 b { Ub .BB'B.B BC CCCC CCC FCCC CC C CCC C CCC CCICCCD DDD D DD DODDD CD D D'DD D D DD CDIDDDEE E E EEEE-EEEIEEiE EEEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0' 1'2'3'4'5'6'7'8'9111 171:1 ?111 :1112(2 2:2:24'.2(2 21 23(33 :3 :3 31414'4:4 :4.4! 414 4 14(5(5 - 5 :5 :5.5.'5(5 - 55 616 :6 ?6(6'5(6!717 '7:7.7 • . 4- C--)L WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Rear Load WoodWorks® Sizer 7.1 June 24, 2010 13:14:35 Concept Mode: Column View Floor 2: 8' Q ►iw c58 c14 r l�J '� _._0 ." 423 0 103 . _ 4/ -b / - - 40 -0 1U 1 .i .. - _ - _.. - --- -- 40-0 tUU -- - .. - 44 -0 U0 - c82 c81: .: 43 b 41 b yb aL C3 3( b V1 0 30 b i -- - -- - -- - -- - '_ SL b 00 - - - - C4- ._. - - - - _ 255 . O 154'- --. -' , -- -- --- - - -- - -- ... � b - - Lb b 20 -0 (a c25 c12 =` c26 2a'0 :. LL -b (23 0 . ©C72 - .. - - - - - L 1 -0 11 /b -. - - -. ©. -. Lu -0 / 3 c73 1 y -0 r4 Cl._:...:. itS 43 I / - 0 in -3 IJ 0 (U - -- - '-- - - -- 14-0 0 .. � ._ _ .. ... 13-0 b23 :: _ c77 .._;_ - -:_ -- .:. - ... - Ub_._. :. ...__ . 10 b 0 }- � ° �,� ��= c76 - - -- -071 - - is - b p3 oL? '°`C 1r3C30 : ' 01c32 b n .. 0U�- - -�. ®. 33/ C7U .: .. - - .. - -- - - ... 40 • _..� 355 C56�C _b O V -b BB1B.B BCCCCCCCCICCC CCCCCCCCCCCC'CCCDDDDDDDMOOD DDDDDDDDDDCD?DDDEEEE EiEE EIEEEIEEIEEIEEEEEREEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'910 1 :I :1 111 :1 I1 z2(2'2 :2 :22'2E2 212 :3 :311313' 3130 {4' 4:4:4 5:5 :5 6: 6 :6 6" 4 - GC WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:58:44 Concept Mode: Beam View Floor 3: 17' 1050 49' - 6" 40 -15 10.5 .- -- -- .. -- . ._ ;.._; -. _ - - - -- 41'-13 l UL� - 40 -0 1U1 40 -0 i VU .. - - - y . • b35 -b6 - .: 41.0 , Vi: ; I : ... 4U _ y0 _0 3y b V4 - - : • - ; : : : .-- - - 30'-0 - 3/ b' • y< -. t :... i -.: :. - - 30'-13 y 30'-0' JU-- - -- - - 34'-13 r5b : b7 ' 33' -b 00 -.. -- -- - - - .. .. ---- - .. - .-- - - ---- -: :: - - - : -. tip - - � Ly. 0.. .. -: --- " -- ... Lt5 -0 01 L0-0 00 .....; - _.J.- .- ---- -- _ - - 139: - --. - - - - - -. -. .. . -- - - - -- - - --- : -- -- - L4 -0 f y L3 -b fb ' ice- LL-0 r 1 ;_ 1322' 113- . -- _ -,. -_ . . - LlI b 10 iy n r4 10 -0 rt -b20 -1321 -._.., ._:.. : i� n /I 1 4 b • 00 .b1 11)17. iz -0 cat II -n 1U-b V 04) _ . : -1334 25-0 � 133 - - - - ; r-0.. 02 ' 138; 0I : 13 bU .) 4 -0 L . 0 .. BB ?B.B BCCCCCCCCICCCCCCCCCCCCCCC ICCCDDDDDDDDtDDDCD DDDDDDDDCD ?DDDE.EEE EEEEFEEEEEEEEEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 166' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'51(1 1:1:1 22:2 4A :4.4.4(4 "414:5(5 5:5:5 666'6(6'6(617(7'77:7.7.7E77 -6" . /4 — ( f-. # '1 L WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:58:42 Concept Mode: Column View Floor 3: 17' 105 49' -6" !VW' : - 40 -0 . - IUL 40-0 IUIl.--- - - _...__ ._ - 40-25 I VU0 ? : _ - - - - 44 -0 y9. 43 -0 b : c62 c ". c15 - ".c16 -. : :. - 4Z -0 `325 ' •. .. :.... . ,. ..-- -_ - - - - � 4U -b 4 _ - , ... _ 325 -0 yL .. c17 - -- -- - - - -- - - - -. - -. _ . 3q. `91 . - Ca_ . 30 -O yU 34 -b by 33-25 0YS. _ -. _ ... - _ ::.. --' - - _ _ .. 3L -0 251 i SI -0 .. 00 c18 3u' b bp , .: Ly' -b ■ . -. - 03 L / -b LSI 10 -0 bu c39 c24 c23 :. , ... _ L4 -b 'o -,- ■ _I I c59 LL -0 /b' - - I IC60 - - - - -- - "- - - -- -- GU-0 125 . - : - 1U-0 / 3 U - - -- -- ---° - . - -- -" - 10 -0 1 I c37. - - --'- '- -- - _. __ .. _. 10-0 -- _._. 14-25 ..:. -. .� ..:. .. .. . ..... .:. .. ... .... --- -- - >_.... -_ ._ O'.! .. - - --- - -- -- - . -- '1.5 -0 . 00, __- - c35..:- .. - - -- . -- .. .. -. IL -b or 1 1 -0 - - -- -- "- 1u. 0 ' 254} «• • n c66 c63 u -b nt ■' ■ - . n c756520 c1c6c74 b b - ..,_......_ 3 45 G -0 BB"B.B BCCC C C CC CFCCC CC CCCCC CCC CC1CC CDDDD D DD DFDDD CD DD DD 0 DDD CD'DD DE.E E E'EE E EFE EEIEEIE EIEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'21(1 1:111.1!1(1; 11102' 2; 2; 2 2? 2E2 :3 4;4:4 5:5:5 0:6:6 Gt7 (7 7;7 777(77 - / 2.-- ----- (..:#:\ WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:58:38 Concept Mode: Beam View Roof: 25' 1050 49 - I U4 4t3' -b I(i : 4/ -b.. IUI --- --- - —'-- "- _ .. _ 4n - :: iv .. : b23 : - b24 - - - ....._. 4L -0 s_ ° �--- - - - - - -- - 41 - Vb : : .: .; ... _ .. - - -- - .. ... .3 & 3 . ' - - ' - -. --- -' 3 l - b .. Vi 33 -0 1:5 33' -b tab . _- - --:._ - - - - — 3U -0 03 LV -... ... . f`J Li -0 // b25. Li -b /0 .; ._ - ` - - - - - - -. - ._ _ _ _ -. LU -b szi -la l4 0 - (U :_.. .: .__ .. :. 4 -b 013 U v b b4 3 . _.- .:. - -- .b27 : - - - - - b28 -: .' .- - - - - =- -- 0 -b OL, L110 -0U� - - -. _- -' -- -- 4-b :. 3-b L_b ._. - - • --- ' -- - - - -- -- --- - -- -. _ -- — '-- - - 1 -b U-b EBIB.B BCCCCCCCC} CCCCCCCCCCCCCCC '•.CCCDDDDDDDDtDDDDDDD DDDDDDCD'DDDE:E EE E °EE EFEEEIEEEEiEEEEEE[EEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'9111 '1:1:1 "1112(2 22:2 - 3:3:3 , 3!3f3 - 3814(4 4:4:44:414 '4E41515 5 :5 :5 6:6:66!6(6616470'7 :77 4 . . . . _ 6 ) WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:58:40 Concept Mode: Column View Roof: 25' 1050 .. . 49' -6" IU3 - -- ---.. :. - - --- . -- -- 9 - 41 - LS - ... ..- _. 1U "l iuub _ - - - - - -- - -- - -' - - - - . &9 :..: :. 4 u c42 c43': c44-c45 42 -0 41-b 4U b 1 ._. 3b b' yV ISy 33 - b 06 ;._: _._ ... ..`- - ... -- -'-" 32 -b Of 0b. - 3U-0 03 L`J -0 6.3 L / -a 15 L3 -a c4 6 ! / _ b . fb !o Gy-a c47 1 a . /3 ... . - .. .. 1 /-a /L -- .: : - - - - - - - - - -- - - - - - - - - - - .. - - - - - /1 : .. - - .. - 10-0 (U Ob 12 -13 bb 10 -0 04) : . - . .. c51 c50- c52. c53 : . - o 4 BB1B.B BC CC C C CC CFCCC CC CCCCC C CC CC \CC CD DD D D DD DMDDD CD DD DD D D DD CD'DD DEE E E E:EE EtE EE'EE E BEEEEEE1EEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38'40' 42' 44' 46' 48' 50' 52' 54' 56' 58'60'62' 64' 66' 68' 70' 72'74'76' 0'1'Z3'4'5678`..9111 1;1:1 :1111 /12(22:2: 222(2 212,3(33;3 :3 4A:44!4t4 :5 515 6(68.; 61 6 , 6!6(6.6t617(7'7'.77 , 717E7T -6" 4 — (-'1,9 COMPANY PROJECT i WoodWorks® SOFIWARE FOR WOOD DESIGN June 24, 2010 12:42 b1 Design Check Calculation Sheet Sizer 7.1 LOADS (Ibs, psf, or plf ) ' Load Type Distribution Magnitude Location (ft] Units Start End Start End 1 w61 Dead Partial UD 613.2 613.2 2.50 3.00 plf 2 w 61 Snow Partial UD 795.0 795.0 2.50 3.00 plf . 3 - c61 Dead Point 622 2.50 lbs 4 Snow Point 1192 2.50 lbs 5_j28 Dead Full UDL 47.7 plf 6_j28 Live Full UDL 160.0 plf 7_j33 Dead Full UDL 120.2 plf 8 j33 Live Full UDL _ 370.0 _ plf MAXIMUM RE D Dead 391 1061 Live 795 1615 Total 1186 2676 Bearing: Load Comb #2 #3 Length 0.63_ 1.43 • Lumber n -ply, D.Fir -L, No.2, 2x10 ", 2 -Plys Self- weight of 6.59 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv* = 67 Fv' = 207 fv * /Fv' = 0.32 Bending( +) fb = 331 Fb' = 1138 fb /Fb' = 0.29 Live Defl'n 0.00 = <L/999 0.10 = L/360 0.04 Total Defl'n 0.01 = <L/999 0.15 = L/240 0.05 *The effect of point loads within a distance d of the support has been included as per NDS 3.4.3.1 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 -1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.100 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3 Shear : LC #3 = D +.75(L +S), V = 2676, V design* = 1237 lbs Bending( +): LC #3 = D +.75(L +S), M = 1178 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 158e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. 1 - (..q 0 COMPANY PROJECT 1 WoodWorks SOFTWARE FOR W000 DESIGN June 24, 2010 12:43 b3 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j45 Dead Full UDL 17.0 plf 2 j45 Live Full UDL 25.0 plf MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : l0• 91 Dead 106 106 Live 112 112 Total 218 218 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min. bearing length for beams is 1/2" for exterior supports Glulam- Unbal., West Species, 24F V4 DF, 3- 1/8x9" Self- weight of 6.48 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : • Criterion Analysis Value Design Value Analysis /Design Shear fv = 10 Fv' = 265 fv /Fv' = 0.04 Bending( +) fb = 140 Fb' = 2400 fb /Fb' = 0.06 Live Defl'n 0.01 = <L/999 0.30 = L/360 0.04 Total Defl'n 0.03 = <L/999 0.45 = L/240 0.06 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 218, V design = 182 lbs Bending( +): LC #2 = D +L, M = 491 lbs -ft Deflection: LC #2 = D +L EI= 342e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:40 b6 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1 c44 Dead Point 444 2.00 lbs 2_c44 Snow Point 647 2.00 lbs 3 w44 Dead Partial UD 389.2 389.2 0.00 2.00 plf 4_w44 Snow . Partial UD 431.2 431.2 0.00 2.00 plf 5_c45 Dead Point 444 5.00 lbs 6_c45 Snow Point 647 5.00 lbs 7 w45 Dead Partial UD 389.2 389.2 5.00 6.00 plf 8 Snow Partial UD 431.2 431.2 5.00 6.00 plf 9_j25 Dead Full UDL 120.2 plf 10 j25 Live _ Full UDL 370.0 _ plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (inl : �o' 6 Dead 1436 1389 Live 1803 1803 Total 3239 3192 Bearing: Load Comb #3 • #3 Length 1.73 1.70 Lumber n -ply, D.Fir -L, No.2, 2x12 ", 2 -Plys • Self- weight of 8.02 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 97 Fv' = 207 fv /Fv' = 0.47 Bending( +) fb = 805 Fb' = 1035 fb /Fb' = 0.78 Live Defl'n 0.03 = <L/999 0.20 = L/360 0.14 Total Defl'n 0.06 = <L/999 0.30 = L/240 0.20 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3 Shear : LC #3 = D +.75(L +S), V = 3239, V design = 2190 lbs Bending( +): LC #3 = D +.75(L +S), M = 4247 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 285e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. COMPANY PROJECT 1 WoodWorks SOFTWARE FOR WOOD DESIGN June 24, 2010 12:50 b8 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ftJ Units Start End Start End 1_j14 Dead Full UDL 113.7 plf 2 j14 Live Full UDL 350.0 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : 1 s+ Dead 357 357 Live 1050 1050 Total 1407 1407 Bearing: Load Comb #2 #2 Length 0.75 0.75 Lumber n -ply, D.Fir -L, No.2, 2x8 ", 2 -Plys Self- weight of 5.17 plf included in Toads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 77 Fv' = 180 fv /Fv' = 0.43 Bending( +) fb = 963 Fb' = 1080 fb /Fb' = 0.89 Live Defl'n 0.07 = <L/999 0.20 = L/360 0.33 Total Defl'n 0.10 = L/712 0.30 = L/240 0.34 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 1407, V design = 1123 lbs Bending( +): LC #2 = D +L, M = 2110 lbs -ft Deflection: LC #2 = D +L EI= 76e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. 4- G3 COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:40 b9 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location (ft] Units Start End Start End 1_j50 Dead Partial UD 113.7 113.7 0.00 1.50 plf 2_j50 Live Partial UD 350.0 350.0 0.00 1.50 plf 3_j14 Dead Partial UD 113.7 113.7 3.00 9.00 plf 4_j14 Live Partial UD 350.0 350.0 3.00 9.00 plf 5_j51 Dead Partial UD 113.7 113.7 1.50 3.00 plf 6_j51 Live Partial UD 350.0 350.0 1.50 3.00 plf 7 j24 Dead Partial UD 120.2 120.2 0.00 3.00 plf 8 Live Partial UD 370.0 370.0 0.00 3.00 plf 9_j25 Dead Partial UD 120.2 120.2 3.00 9.00 plf 10_j25 Live Partial UD 370.0 370.0 3.00 9.00 plf 11 Dead Partial UD 120.2 120.2 9.00 12.00 plf 12_j26 Live Partial UD 370.0 370.0 9.00 12.00 plf 13_j52 Dead Partial UD 113.7 113.7 9.00 10.50 plf 14_j52 Live Partial UD 350.0 350.0 9.00 10.50 plf 15_j53 Dead Partial UD 113.7 113.7 10.50 12.00 plf 16 j53 Live Partial UD 350.0 350.0 10.50 12.00 plf • MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : Io 12 Dead 1478 1478 Live 4320 4320 Total 5798 5798 Bearing: Load Comb #2 #2 Length 1.74 1.74 Glulam- Unbal., West Species, 24F -V4 DF, 5- 1/8x10 -1/2" Self- weight of 12.39 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 138 Fv' = 265 fv /Fv' = 0.52 Bending( +) fb = 2217 Fb' = 2400 fb /Fb' = 0.92 Live Defl'n 0.38 = L/381 0.40 = L/360 0.94 Total Defl'n 0.57 = L/252 0.60 = L/240 0.95 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 5798, V design = 4953 lbs Bending( +): LC #2 = D +L, M = 17395 lbs -ft Deflection: LC #2 = D +L EI= 890e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Ecp(tension), Fcp(comp'n). 4_ C--1 COMPANY PROJECT f fl WoodWorks SOFTWARE FOR WOOD DESIGN June 24, 2010 12:43 b10 Design Check Calculation Sheet Sizer 7.1 LOADS (Ibs, psf, or pif ) Load Type Distribution Magnitude Location [ft] Pat - Start End Start End tern 1 w39 Dead Partial UD 311.0 311.0 0.00 4.50 No 2 w39 Live Partial UD 680.0 680.0 0.00 4.50 No 3 Dead Point 267 2.00 No 4 Live Point 822 2.00 No 5_j32 Dead Partial UD 120.2 120.2 0.00 0.50 No 6 j32 Live Partial UD 370.0 370.0 0.00 0.50 No 7 Dead Partial UD 120.2 120.2 1.00 4.00 No 8 j33 Live Partial UD 370.0 370.0 1.00 4.00 No 9 j34 Dead Partial UD 120.2 120.2 4.00 4.50 No 10 j34 Live Partial UD 370.0 370.0 4.00 4.50 No 11 Dead Partial UD 120.2 120.2 4.50 7.50 No 12 j35 Live Partial UD 370.0 370.0 4.50 7.50 No 13_j36 Dead Partial UD 113.7 113.7 4.50 16.50 No 14_j36 Live Partial UD 350.0 350.0 4.50 16.50 No 15_j37 Dead Partial UD 100.7 100.7 3.00 4.50 No 16_j37 Live Partial UD 310.0 310.0 3.00 4.50 No 17_j47 Dead Partial UD 120.2 120.2 7.50 13.50 No 18_j47 Live Partial UD 370.0 370.0 7.50 13.50 No 19_j48 Dead Partial UD 120.2 120.2 13.50 16.50 No 20_348 Live Partial UD 370.0 370.0 13.50 16.50 No 21_j49 Dead Partial UD 120.2 120.2 0.50 1.00 No 22_349 Live Partial UD 370.0 370.0 0.50 1.00 No 23 b32 Dead Point 300 3.00 No 24 b32 Live Point 922 3.00 No MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : • 10' 4' -6" 16-6'I Dead 452 4067 1180 Live 847 11291 3436 Uplift 12 Total 1300 15358 4616 Bearing: Load Comb 92 02 92 Length 0.50+ 4.24 1.27 Cb 1.00 1.09 1.00 'Min. bearing length for beams is 1/2" for exterior supports Glulam- Unbal., West Species, 24F -V4 DF, 5- 1/8x12" • Self- weight of 14.16 pif included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 158 Fv' = 265 fv /Fv' = 0.60 Bending( +) fb = 1074 Fb' = 2400 fb /Fb' = 0.45 Bending( -) fb = 1396 Fb' = 1844 fb /Fb' = 0.76 Live Defl'n 0.13 = <L/999 0.40 = L/360 0.32 Total Defl'n 0.19 = L/740 0.60 = L/240 0.32 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC9 Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fb'- 1850 1.00 1.00 1.00 0.997 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Ervin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC 62 = D +L, V = 8357, V design = 6496 lbs Bending( +): LC 92 = D +L, M = 11006 lbs -ft Bending( -): LC 92 = D +L, M = 14310 lbs -ft Deflection: LC 02 = D +L EI= 1328e06 1b -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. Grades with equal bending capacity in the top and bottom edges of the beam cross - section are recommended for continuous beams. 4. GLULAM: bxd = actual breadth x actual depth. 5. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 6. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). iq ,..... (; 1 ;;;:' . COMPANY PROJECT 1 WoodWo SOFTWARE FOR WOOD DESIGN June 24, 2010 12:44 b13 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or Of ) Load Type Distribution Magnitude Location (ft) Units Start End Start End 1 w58 Dead Partial UD 519.0 519.0 0.00 3.00 plf 2 w 58 Snow Partial UD 505.0 505.0 0.00 3.00 plf 3 - c40 Dead Point 217 5.50 lbs 4 c40 Live Point 668 5.50 lbs 5 c67 Dead Point 518 5.00 lbs 6 c67 Snow Point 778 5.00 lbs 7_c68 Dead Point 573 3.00 lbs 8 c68 Snow Point 942 3.00 lbs 9 w59 Dead Partial UD 593.7 593.7 5.00 8.00 plf 10 w59 Snow Partial UD 735.0 735.0 5.00 8.00 plf 11_j37 Dead Partial UD 100.7 100.7 6.50 8.00 plf 12_j37 Live Partial UD 310.0 310.0 6.50 8.00 plf 13_j38 Dead Partial UD 81.2 81.2 3.50 6.50 plf 14_j38 Live Partial UD 250.0 250.0 3.50 6.50 plf 15_j39 Dead Partial UD 22.7 22.7 0.00 3.50 plf 16_j39 Live Partial UD 70.0 70.0 0.00 3.50 plf 17 b15 Dead Point 126 3.50 lbs 18 - b15 Live Point 389 3.50 lbs 19 - b32 Dead Point 225 6.50 lbs 20 Live Point 693 6.50 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : � .r ... .n r Lw: �_ , „-,,, - «....: - " i :- . -.P.P...: ...- -. �- ..,, _' . ;.-.p' -64. - - . -- . "' ',,_' - rwo' ""-' �- „z+- '"papa+ ma L74.." " 4y ° . I o' 81 Dead 2561 3033 Live 2699 3789 Total 5261 6822 Bearing: Load Comb #3 #3 Length 1.88 2.44 LSL, 1.55E, 2325Fb, 3- 1/2x14" Self- weight of 15.31 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 157 Fv' = 356 fv /Fv' = 0.44 Bending( +) fb = 1295 Fb' = 2674 fb /Fb' = 0.48 Live Defl'n 0.06 = <L/999 0.27 = L/360 0.24 Total Defl'n 0.14 = L/680 0.40 = L/240 0.35 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 3 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 3 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 3 Emin' 0.80 million - 1.00 - - - - 1.00 - - 3 Shear : LC #3 = D +.75(L +S), V = 6822, V design = 5122 lbs Bending( +): LC #3 = D +.75(L +S), M = 12340 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. /4 - G lc? COMPANY PROJECT iit WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:43 b14 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ills, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w33 Dead Partial UD 317.7 317.7 9.00 12.00 plf 2 Live Partial UD 350.0 350.0 9.00 12.00 plf 3 Dead Point 357 9.00 lbs 4 c19 Live Point 1050 9.00 lbs 5 c20 Dead Point 357 3.00 lbs 6 c20 Live Point 1050 3.00 lbs 7 Dead Partial UD 317.7 317.7 0.00 3.00 plf 8 w34 Live Partial UD 350.0 350.0 0.00 3.00 plf 9 c64 Dead Point 165 10.50 lbs . 10 c64 Snow Point 225 10.50 lbs 11 Dead Point 165 1.50 lbs 12 Snow Point 225 1.50 lbs 13_j36 Dead Full UDL 113.7 plf 14_j36 Live Full UDL 350.0 plf 15_j43 Dead Partial UD 17.0 17.0 0.00 0.50 plf 16_j43 Live Partial UD 25.0 25.0 0.00 0.50 plf 17_j44 Dead Partial UD 17.0 17.0 0.50 1.50 plf 18_j44 Live Partial UD 25.0 25.0 0.50 1.50 plf 19_j45 Dead Partial UD 17.0 17.0 1.50 10.50 plf 20 j45 Live Partial UD 25.0 25.0 1.50 10.50 plf 21 j46 Dead Partial UD 17.0 17.0 10.50 12.00 plf 22 j46 _Live Partial UD 25.0 25.0 _ 10.50 12.00 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : :.�� ..vs- =7 " may" = = =J�'! --","•,-;.,-,-..,.,.. --,.r• te r' __-::7-... ..- .. F �±.- -4.-........4,--.. .......... ........ rt� 4 . -t► te e'- . �" + _ - s.. - .u..,, ,..A. . s ?r ^ ` - • - , - t.... ... - "°"" ` .-- , - . vr- _ T t_ ......--- ,.;! Z- RI - -- 1�Qj 10' 121 Dead 2351 2351 Live 4350 4350 Total 6701 6701 Bearing: Load Comb #2 #2 Length 2.39 2.39 • LSL, 1.55E, 2325Fb, 3- 1/2x14" Self- weight of 15.31 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 163 Fv' = 310 fv /Fv' = 0.52 Bending( +) -fb = 1769 Fb' = 2325 fb /Fb' = 0.76 Live Defl'n 0.25 = L/573 0.40 = L/360 0.63 Total Defl'n 0.43 = L/333 0.60 = L/240 0.72 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 6701, V design = 5314 lbs Bending( +): LC #2 = D +L, M = 16851 lbs -ft Deflection: LC #2 = D +L El= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. /09. ,..- L F40.• COMPANY PROJECT 1 i WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:41 b20 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location (ft) Units Start End Start End 1_j30 Dead Full UDL 21.7 plf 2 j30 Live Full UDL 60.0 plf MAXIMUM REAr=TIANS 1Ih anti RFORIN(1 FNIzTNS /in1 • 10' 3' -6'1 Dead 46 46 Live 105 105 Total 151 151 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min. bearing length for beams is 1/2" for exterior supports Lumber -soft, D.Fir -L, No.2, 4x6" Self- weight of 4.57 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 9 Fv' = 180 fv /Fv' = 0.05 Bending( +) fb = 90 Fb' = 1170 fb /Fb' = 0.08 Live Defl'n 0.00 = <L/999 0.12 = L/360 0.02 Total Defl'n 0.00 = <L/999 0.18 = L/240 0.02 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.00 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 151, V design = 111 lbs Bending( +): LC #2 = D +L, M = 132 lbs -ft • Deflection: LC #2 = D +L EI= 78e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. "4- Li r COMPANY PROJECT g 1 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:50 b30 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j41 Dead Partial UD 68.0 68.0 2.00 4.00 plf 2_j41 Live Partial UD 100.0 100.0 2.00 4.00 plf 3_j42 Dead Partial UD 72.2 72.2 0.00 2.00 plf 4 j42 Live Partial UD 106.2 106.2 0.00 2.00 plf MAXIMUM REACTIONS Ilhsl and BFARIN( 1 FN(THS linl 4 Dead 154 150 Live 209 203 Total 364 353 Bearing: Load Comb #2 #2 . Length 0.50* 0.50* *Min. bearing length for beams is 1/2" for exterior supports Lumber -soft, D.Fir -L, No.2, 4x8" Self- weight of 6.03 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 15 Fv' = 180 fv /Fv' = 0.08 Bending( +) fb = 140 Fb' = 1170 fb /Fb' = 0.12 Live Defl'n 0.00 = <L/999 0.13 = L/360 0.03 Total Defl'n 0.01 = <L/999 0.20 = L/240 0.04 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 364, V design = 253 lbs Bending( +): LC #2 = D +L, M = 359 lbs -ft Deflection: LC #2 = D +L EI= 178e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. . COMPANY PROJECT 1 WoodWorks® SOFIWARE FOR WOOD DESIGN June 24, 2010 12:42 b31 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location (ft] Units Start End Start End 1_j65 Dead Partial UD 47.7 47.7 0.00 4.00 plf 2_j65 Live Partial UD 160.0 160.0 0.00 4.00 plf 3_j28 Dead Partial UD 47.7 47.7 4.50 7.50 plf 4_j28 Live Partial UD 160.0 160.0 4.50 7.50 plf 5_j62 Dead Partial UD 47.7 47.7 7.50 11.00 plf 6_j62 Live Partial UD 160.0 160.0 7.50 11.00 plf 7_j63 Dead Partial UD 47.7 47.7 11.00 17.00 plf 8_j63 Live Partial UD 160.0 160.0 11.00 17.00 plf 9_j64 Dead Partial UD 47.7 47.7 17.00 20.00 plf 10_j64 Live Partial UD 160.0 160.0 17.00 20.00 plf 11_j66 Dead Partial UD 47.7 47.7 4.00 4.50 plf 12 j66 Live Partial UD 160.0 160.0 4.00 4.50 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : 10' 20+ Dead 619 619 Live 1600 1600 Total 2219 2219 Bearing: Load Comb #2 #2 Length 0.67 0.67 Glulam- Unbal., West Species, 24F -V4 DF, 5- 1/8x12" Self- weight of 14.16 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 49 Fv' = 265 fv /Fv' = 0.18 Bending( +) fb = 1082 Fb' = 2400 fb /Fb' = 0.45 Live Defl'n 0.43 = L /553 0.67 = L/360 0.65 Total Defl'n 0.69 = L /350 1.00 = L/240 0.69 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 2219, V design = 1997 lbs Bending( +): LC #2 = D +L, M = 11095 lbs -ft Deflection: LC #2 = D +L EI= 1328e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). 4 - Go COMPANY PROTECT i %Vood\iVor June 24.20, °1,15 b.3. SOFTWARE FOR WOOD DESIGN Design Check Calculation Sheet Om 7.1 LOADS imt,p4 arplf) Load Type Distribution Magnitude Location Ift1 Units Start End Start End • 1 062 Dead Partial UD 613.2 613.2 0.00 2.00 plf _ 062 Snow Partial UD 795.0 795.0 0.00 2.00 plf 3_029 Dead UD 617.5 611.5 7.50 11.00 plf 2.20481 029 Snow Partial UD 901.2 901.2 7.50 11.00 plf 5 Dead Point 1436 11.00 1ba 1_015 Snow Point 2404 11.00 lba 016 Dead Mint 1389 17.00 lb. 9_c1.6 Snow Point 2404 17.00 lbs 3 064 Dead Partial U° 617.5 611.5 17.00 18.00 plf 15 064 Srcw Partial UD 801.2 901.2 17.00 18.00 plf 11_051 Dead Point 622 7.00 lba 12 061 Snow Point 1192 7.00 lba 13_062 Dead Mint 622 4.00 lba 14 062 Snow Point 1192 4.00 lba 15 Dead Partial U° 613.2 613.2 2.00 4.00 plf 16 Snow Partial UD 795.0 795.0 2.00 4.00 plf 17 Dead Partial UD 611.5 617.5 19.00 20.00 plf 19 065 Snow Partial 00 901.2 903.2 10.00 20.00 plf 19 071 Dead Partial U0 613.2 613.2 7.00 7.50 plf 20 Snow Partial U0 795.0 195.0 7.00 7.50 plf 21 164 Dead Partial UD 47.7 47.7 1 19.00 plf 22_164 Li4 Partial U° 160.0 160.0 17.00 16.00 plf 23_129 Dead Partial UD 47.7 47.7 4.50 7.50 Of 4 329 Live Partial U0 160.0 160.0 4.50 7.50 plf . 23162 Dead Partial U° 47.7 47.7 7.50 11.00 plf 26_162 Live Partial UD 160.0 160.0 7.50 11.00 plf 27_149 Dead Partial UD 120.2 120.2 0.00 2.00 plf 29_149 Live Partial U° 370.0 3 0.00 2.00 plf 29_232 Dead Partial. UD 120.2 120.2 3.50 4.00 plf 0 332 Live Partial UD 370.0 370.0 3.50 4.00 plf 31_133 Dead Partial UO 120.2 120.2 4.50 7.50 p1f 32 - 133 Live 2arc11 UD 370.0 370.0 4.50 7.50 plf 33 Dead Partial UD 1:0.2 120.2 7.50 9.00 plf . • 34_134 Live Partial UD 370.0 370.0 7.50 3.00 plf 35_135 Dead Partial U0 120.2 120.2 9.00 11.00 plf 36_335 Live Partial UD 370.0 370.0 8.09 11.00 plf 37_347 Dead Partial UD 120.2 120.2 11.00 17.00 plf 39_347 Live Partial UD 370.0 370.0 11.00 17.00 plf 39_167 Dead Partial UD 120.2 120.2 2.00 3.50 plf 40 167 Live Partial UD 370.0 370.0 2.00 3.50 plf 42 149 Dead Partial UD 120.2 120.2 4.00 4.50 plf 42 Live Partial 00 370.0 370.0 4.0) 4.50 plf 43_363 Dead Partial UD 47.7 47.7 11.0) 17.00 plf 44_363 Live Partial UD 260.0 160.0 11.00 17.00 pif 45_165 Dead Partial 02 47.7 47.7 18.0) 20.00 plf 46 165 Lire Partial UD 160.0 160.0 19.0) 20.00 p1f 47 Dead Partial UD 47.7 47.7 4.09 4.50 plf 47:166 Live Partial UD 160.0 160.0 4.02 4.50 plf 49_169 Dead Partial UD 120.2 120.2 17.0) 18.00 plf 50 168 Live Partial UD 370.0 310.0 17.00 18.00 plf , 52:169 Dead Part1.1 U° 120.2 120.2 19.0) 20.00 plf 52_169 Live Partial UD 370.0 370.0 19.0) 20.00 plf 53_172 Dead Partial UD 47.7 47.7 2.0) 4.00 plf 54_372 Live Partial 0 160.0 160.0 2.00 4.00 plf 55_1/3 Dead Partial UO 0.0) 2.00 plf 5 173 Live Partial UD 160.0 160.0 0.00 2.00 elf MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (In) : Dead tIOS 12, Live 9956 9979 Total 17361 17305 Bearing: Load Co-b 47 13 wreath 5.21 1. Glulam -Bat., West Species, 24F -V8 DF, 5- 1/8x22 -1/2" • S46... 04 of28.55 plf Included et beds: 1,98040 support 76 M, acetone et supports: Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Anal2414 Value Catalan 7810a 4041V.la /09.1,7 Shear 07 ■ 172 305 fv /00' • 0.60 Bending('( f0 - 2392 Pb' - 2604 fl. /FD' • 0.92 Live Defl'n 0.40 . L /575 0.67 - L /360 0.60 Total Defl'n 0.94 ■ 1/295 1.00 - L/240 0.94 ADDITIONAL DATA: FACTORS: I/O ' CD C 0 CL CT C!u Cr Cfrc CO 1. 4V• 265 1.15 1.00 1.00 1.00 1.00 1.00 3 Fb'7 2400 1.15 1.00 1.00 1.000 0.914 1.00 1.00 1.00 1.00 Fop' 650 1.00 1.00 - E' 1.9 million 1.00 1.00 - - - - 1.00 - - 3 Emirs• 0.95 million 1.00 1.00 - Shear : LC 43 . °7.7511 -51, `/ 17361, v design ■ 13682 lbs ear41.04(4 /: LC 13 ■ 00.7521761, 0 - :6199 120 -ft Deflection: LC 13 ■ 0•.7521.751 00_ 9796006 lb -in2 Total Deflection - 1.50(Dead 1.:ad Deflection, 7 Live Load Gflection. . IDedea0 Lmlive S■ancv 0■lnd I.1rpaci Cecona02000000 CLd■concentrated) 1011 LC's are listed 10 the Analysis output) . LOad 00ab1nationa: ICC -IOC DESIGN NOTES: I. Pleats verity that the default deflection Ames are eppep6#e for your application. 2 Outrun design values ere In material. conforming 90 AITC 117 -2001 end manufactured in accordance web ANSVAITC A150.1 -1992 3. GLULAM tad a aged( breadth it actutd depth. . 4. CU= Beams stroll be ltera*y supported moon: Ong to tie provisions of NOS Clause 3.3.3. 5. MOLAR, bearing length based an sma4er of Fcp(teneJan), Fep(mmpn). //.-. &I ;\ COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:49 b35 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location (ft) Units Start End Start End 1 j21 Dead Partial UD 120.2 120.2 0.50 1.50 plf 2 Live Partial UD 370.0 370.0 0.50 1.50 plf 3 j59 Dead Partial UD 120.2 120.2 0.00 0.50 plf 4 Live Partial UD 370.0 370.0 0.00 0.50 plf 5 Dead Partial UD 120.2 120.2 1.50 3.00 plf • 6 Live Partial UD 370.0 370.0 , 1.50 3.00 plf MAXIMUM RE? . . . . . . . . . . .a . ... ,•....T..,. . • • 0 31 Dead 188 188 Live 555 555 Total 743 743 Bearing: - Load Comb #2 # Length 0.50* 0.50* `Min. bearing length for beams is 1/2" for exterior supports Lumber n -ply, D.Fir -L, No.2, 2x8 ", 2 -Plys Self- weight of 5.17 plf included in Toads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis /Design Shear fv = 31 Fv' = 180 fv /Fv' = 0.17 Bending( +) fb = 254 Fb' = 1080 fb /Fb' = 0.24 Live Defl'n 0.00 = <L/999 0.10 = L/360 0.04 Total Defl'n 0.01 = <L/999 0.15 = L/240 0.04 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 743, V design = 444 lbs Bending( +): LC #2 = D +L, M = 557 lbs -ft Deflection:,LC #2 = D +L EI= 76e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. COMPANY PROJECT I WoodWorks® SOFTWARE FOR WOOD QESIGN June 24, 2010 12:51 c2 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or pif ) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1_bl Dead Axial 1056 (Eccentricity = 0.00 in) 2 Rf.Live Axial 2153 (Eccentricity = 0.0Q in) MAXIMUM REACTIONS (Ibs): 0' 8' Lumber n -ply, Hem -Fir, No.2, 2x6 ", 2 -Plys Self- weight of 3.41 pif included in loads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 0.00= 0.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 196 Fc' = 980 fc /Fc' = 0.20 Axial Bearing fc = 196 Fc* = 1644 fc /Fc* = 0.12 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.596 1.100 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 3236 lbs Kf = 1.00 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. D„, \ 3 COMPANY PROJECT ill. 1�l or s SOFTWARE FOR WOOD DESIGN June 24, 2010 12:54 c12 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 c24 Dead Axial 1478 (Eccentricity = 0.00 in) 2 c24 Live Axial 4320 (Eccentricity = 0.00 in) 3 b10 Dead Axial 4067 (Eccentricity = 0.00 in) 4 Live Axial 11291 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): P r,. • • 0' 8' Timber -soft, D.Fir -L, No.1, 6x6" Self- weight of 7.19 plf included in loads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 701 Fc' = 820 fc /Fc' = 0.86 Axial Bearing fc = 701 Fc* = 1000 fc /Fc* = 0.70 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC #. Fc' 1000 1.00 1.00 1.00 0.820 1.000 - - 1.00 1.00 2 Fc* 1000 1.00 1.00 1.00 - 1.000 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 21214 lbs (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. (2cj COMPANY PROJECT WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:53 c23 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b9 Dead Axial 1478 (Eccentricity = 0.00 in) 2 Live Axial 4320 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 1 0' y . Lumber Post, Hem -Fir, No.2, 4x6" Self- weight of 3.98 plf included in loads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 9.00= 9.00 [ft]; Ke x Ld: 1.00 x 9.00= 9.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using Nos 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 303 Fc' = 379 fc /Fc' = 0.80 Axial Bearing fc = 303 Fc* = 1430 fc /Fc* = 0.21 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.265 1.100 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 5834 lbs (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES! 1. Please verify that the default deflection limits are appropriate for your application. 4 - 9. COMPANY PROJECT / x;11 WoodWorks SOnwARF FOR WOOD OFSlGN June 24, 2010 12:54 c26 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_c23 Dead Axial 1478 (Eccentricity = 0.00 in) 2 c23 Live Axial 4320 (Eccentricity = 0.00 in) 3_b10 Dead Axial 1180 (Eccentricity = 0.00 in) 4 Live Axial 3436 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): • ♦�i'fi�� ±��='�L'�..�- :R .'aAa: sir 's.,:�`���s.£'1'.�i�r"�r �- . �r `''sr�'a'a".-0 0' 8 , Timber -soft, Hem -Fir, No.2, 6x6" Self- weight of 6.25 pif included in loads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) usingNDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 346 Fc' = 492 fc /Fc' = 0.70 Axial Bearing fc = 346 Fc* = 575 _ fc/Fc* = 0.60 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 575 1.00 1.00 1.00 0.856 1.000 - - 1.00 1.00 2 Fc* 575 1.00 1.00 1.00 - 1.000 - - 1.00 1.00 2 • Axial : LC #2 = D +L, P = 10465 lbs (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2(4) COMPANY PROJECT i i WoodWorks® WFIWAREFOR W00D DESIGN June 24, 2010 12:52 c29 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or pif ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b13 Dead Axial 3033 (Eccentricity = 0.00 in) 2 Rf.Live Axial 5052 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): D 0' 8' Lumber n -ply, Hem -Fir, No.2, 2x6 ", 3 -Plys Self- weight of 5.11 pif included in loads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Repetitive factor: applied where permitted (refer to online help); Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 328 Fc' = 439 fc /Fc' = 0.75 Axial Bearing fc = 328 Fc* = 1644 fc /Fc* = 0.20 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.267 1.100 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 8126 lbs Kf = 0.60 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. / icsodc7'3,- COMPANY PROJECT i I WoodWorks® SOF7WARE FOR W000 DESIGN June 24, 2010 12:55 c31 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b13 Dead Axial 2561 (Eccentricity = 0.00 in) 2 Rf.Live Axial 3599 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): D 0' 8' Lumber n -ply, Hem -Fir, No.2, 2x4 ", 3 -Plys Self- weight of 3.25 pif included in loads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Repetitive factor: applied where permitted (refer to online help); Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 393 Fc' = 443 fc /Fc' = 0.89 Axial Bearing fc = 393 Fc* = 1719 fc /Fc* = 0.23 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.258 1.150 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 6186 lbs Kf = 0.60 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) • (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. C /fe'9 COMPANY PROJECT i WoodWorks SOFTWARE FOR WOOD DESIGN June 24, 2010 12:54 c39 Design Check Calculation Sheet Sizer 7.1 LOADS (Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_b21 Dead Axial 267 (Eccentricity = 0.00 in) 2 Live Axial 822 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): 0' 9' • Lumber n -ply, Hem -Fir, No.2, 2x4 ", 2 -Plys Self- weight of 2.17 plf included in loads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 9.00= 9.00 [ft]; Ke x Ld: 1.00 x 9.00= 9.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 106 Fc' = 171 fc /Fc' = 0.62 Axial Bearing fc = 106 Fc* = 1495 fc /Fc* = 0.07 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.114 1.150 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 1108 lbs Kf = 0.60 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. 62,7,29 COMPANY PROJECT i WoodWorks® SOFI WARE FOP woos DESIGN June 24, 2010 12:52 c55 • Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_b30 Dead Axial 154 (Eccentricity = 0.00 in) 2 Live Axial 209 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 1 0' 8' Lumber Post, Hem -Fir, No.2, 4x4" Self- weight of 2.53 plf included in Toads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : _ Criterion Analysis Value Design Value Analysis /Design Axial fc = 31 Fc' = 470 fc /Fc' = 0.07 Axial Bearing fc = 31 Fc* = 1495 fc /Fc* = 0.02 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.315 1.150 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 384 lbs (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. frq BY \ DATE: / _ - aO t O JOB NO.: / ' E t -Q ctO Of PROJECT: RE: 13eam6 wI Lckkr4t Readiars ❑ ❑ J Z IL W 1�aren to -> watts , (33 303 O f L ❑ \Dew %3 -, Was aoare aoa J O J Q `^ _ _� o w 1. eo n t --5 Ui& s 'an U '� an -1 U Z W 0 d Z \O ear R Li -5 kjuait5 a01,adtA aolg 0 U 5 t�nce wind c ,.c ki 6 > se Esmz c, reach s Z 2 Or\ w't (A)(1, t h2 C•ot' c uk c.L , 2 O U f x O Lt. Z w ❑ Z O I— n. O U N a a 0 ov x /q (<()) \ COMPANY PROJECT II I WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 13:07 b6 LC1 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location (ft] Units Start End Start End 1 c44 Dead Point 444 2.00 lbs 2_c44 Snow Point 647 2.00 lbs 3_w44 Dead Partial UD 389.2 389.2 0.00 2.00 plf 4w44 Snow Partial UD 431.2 431.2 0.00 2.00 plf 5 _ c45 Dead Point 444 5.00 lbs 6_c45 Snow Point 647 5.00 lbs 7_w45 Dead Partial UD 389.2 389.2 5.00 6.00 plf 8w45 Snow Partial UD 431.2 431.2 5.00 6.00 plf 9__j25 Dead Full UDL 120.2 plf 10_j25 Live Full UDL 370.0 plf WIND1 Wind Point 800 2.00 lbs WIND2 Wind Point -910 5.00 lbs MAXIMUM REACTIONS (Ibsl and BEARING LENGTHS (inl : 10' 61 Dead 1436 1389 Live 2089 1803 Total 3525 3192 Bearing: Load Comb #4 #3 Length 1.88 1.70 Lumber n -ply, D.Fir -L, No.2, 2x12 ", 2 -Plys Self- weight of 8.02 plf included in loads; Lateral support top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 97 Fv' = 207 fv /Fv' = 0.47 Bending( +) fb = 805 Fb' = 1035 fb /Fb' = 0.78 Live Defl'n 0.03 = <L/999 0.20 = L/360 0.15 Total Defl'n 0.06 = <L/999 0.30 = L/240 0.21 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 4 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 4 Shear : LC #3 = D +.75(L +S), V = 3239, V design = 2190 lbs Bending( +): LC #3 = D +.75(L +S), M = 4247 lbs -ft Deflection: LC #4 = D +.75(L +S +W) EI= 285e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. �z- COMPANY PROJECT i M WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 13:07 b6 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1 c44 Dead Point 444 2.00 lbs 2_c44 Snow Point 647 2.00 lbs 3_w44 Dead Partial UD 389.2 389.2 0.00 2.00 plf 4_w44 Snow Partial UD 431.2 431.2 0.00 2.00 plf 5_c45 Dead Point 444 5.00 lbs 6_c45 Snow Point 647 5.00 lbs 7_w45 Dead Partial UD 389.2 389.2 5.00 6.00 plf 8_w45 Snow Partial UD 431.2 431.2 5.00 6.00 plf 9 j25 Dead Full UDL 120.2 plf 10_j25 Live Full UDL 370.0 plf WIND1 Wind Point -800 2.00 lbs WIND2 Wind Point 910 5.00 lbs MAXIMUM REACTIONS llbsl and BEARING LENGTHS lint l 0' 61 Dead 1436 1389 Live 1803 2172 Total 3239 • 3561 Bearing: Load Comb #3 #4 Length _ 1.73 1.90 Lumber n -ply, D.Fir -L, No.2, 2x12 ", 2 -Plys Self- weight of 8.02 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 97 Fv' = 207 fv /Fv' = 0.47 Bending( +) fb = 805 Fb' = 1035 fb /Fb' = 0.78 Live Defl'n 0.03 = <L/999 0.20 = L/360 0.14 Total Defl'n 0.06 = <L/999 0.30 = L/240 0.20 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3 Shear : LC #3 = D+.75(L+S), V = 3239, V design = 2190 lbs Bending( +): LC #3 = D+.75(L+S), M = 4247 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 285e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. • COMPANY PROJECT 1 WoodWorks 6OFnyAa£FOa WOOD DESIGN June 24, 2010 13:09 b14 LC1 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w68 Dead Partial UD 221.7 221.7 9.00 10.50 plf 2 Live Partial UD 350.0 350.0 9.00 10.50 plf 3 c 19 Dead Point 357 9.00 lbs 4 c 19 Live Point 1050 9.00 lbs 5 c20 Dead Point 357 3.00 lbs 6_c20 Live Point 1050 3.00 lbs 7_w66 Dead Partial UD 317.7 317.7 0.00 1.50 plf 8 w66 Live Partial UD 350.0 350.0 0.00 1.50 plf 9 Dead Point 165 10.50 lbs 10 c64 Snow Point 225 10.50 lbs 11 c65 Dead Point 165 1.50 lbs 12_c65 Snow Point 225 1.50 lbs 13 w67 Dead Partial UD 221.7 221.7 1.50 3.00 plf 14 Live Partial UD 350.0 350.0 1.50 3.00 plf 15 w69 Dead Partial UD 317.7 317.7 10.50 12.00 plf 16_w69 Live Partial UD 350.0 350.0 10.50 12.00 plf 17_j36 Dead Full UDL 113.7 plf 18 j36 Live Full UDL 350.0 plf 19 Dead Partial UD 17.0 17.0 0.00 0.50 plf 20_j43 Live Partial UD 25.0 25.0 0.00 0.50 plf 21 j44 Dead Partial UD 17.0 17.0 0.50 1.50 plf 22 Live Partial UD 25.0 25.0 0.50 1.50 plf 23 j45 Dead Partial UD 17.0 17.0 1.50 3.00 plf 24_j45 Live Partial UD 25.0 25.0 1.50 3.00 plf 25_j46 Dead Partial UD 17.0 17.0 10.50 12.00 plf 26j46 Live Partial UD 25.0 25.0 10.50 12.00 plf 27_j70 Dead Partial UD 17.0 17.0 3.00 9.00 plf 28_j70 Live Partial UD 25.0 25.0 3.00 9.00 plf 29 j71 Dead Partial UD 17.0 17.0 9.00 20.50 plf 30 Live Partial UD 25.0 25.0 9.00 10.50 plf WIND1 Wind Point 3560 3.00 lbs WIND2 Wind Point -3640 9.00 lbs wind3 Wind Point -3620 0.00 lbs winds Wind Point 3570 12.00 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : _ _Sma ' - _ " r te* -: - -- - ....- `�'v' = '""` -- s� __� = te �- " la �_'r . . ---•, _ .- '.� ---, a°�' --.1 -- • .. - . - '„"i"' .�' : - �„' a=te"' _ - . - ^�,. � ----rar +yr ._� ,- " yp_ � - ' �. ,R. -,,. ..�-.- ' • = - s . w".s '-'. n 10' 121 Dead 2207 2207 Live 4350 4350 Uplift 499 479 Total 6557 . 6557 Bearing: Load Comb #2 # Length 2.34_ 2 LSL, 1.55E, 2325Fb, 3- 112x14" Self- weight of 15.31 plf included in Toads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 158 Fv' = 310 fv /Fv' = 0.51 Bending( +) fb = 1735 Fb' = 2325 fb/Fb' = 0.75 Live Defl'n 0.25 = L/573 0.40 = L/360 0.63 Total Defl'n 0.42 = L/343 0.60 = L/240 0.70 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC 02 = D +L, V = 6557, V design = 5170 lbs . Bending( +): LC #2 = D +L, M = 16527 lbs -ft • Deflection: LC #2 = D +L EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC • DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. /42-631,f COMPANY PROJECT ell WoodWorks® SOFIWARfFOR WOOD DESIGN June 24, 2010 13:09 b14 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or pif) : Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w68 Dead Partial UD 221.7 221.7 9.00 10.50 plf 2_w68 Live Partial UD 350.0 350.0 9.00 10.50 plf 3 c19 Dead Point 357 9.00 lbs 4 Live Point 1050 9.00 lbs 5 Dead Point 357 3.00 lbs 6 Live Point 1050 3.00 lbs 7 Dead Partial UD 317.7 317.7 0.00 1.50 plf 8 Live Partial UD 350.0 350.0 0.00 1.50 plf . 9 c64 Dead Point 165 10.50 lbs 10_c64 Snow Point 225 10.50 lbs 11 c65 Dead Point 165 1.50 lbs 12 c65 Snow Point 225 1.50 lbs 13 Dead Partial UD 221.7 221.7 1.50 3.00 plf 14 Live Partial UD 350.0 350.0 1.50 3.00 plf 15 Dead Partial UD 317.7 317.7 10.50 12.00 plf 16 w69 Live Partial UD 350.0 350.0 10.50 12.00 plf 17j36 Dead Full UDL 113.7 plf 18 j36 Live Full UDL 350.0 plf 19_j43 Dead Partial UD 17.0 17.0 0.00 0.50 plf 20 j43 Live Partial UD 25.0 25.0 0.00 0.50 plf 21_j44 Dead Partial UD 17.0 17.0 0.50 1.50 plf 22j44 Live Partial UD 25.0 25.0 0.50 1.50 plf 23_j45 Dead Partial UD 17.0 17.0 1.50 3.00 plf 24_j45 Live Partial UD 25.0 25.0 1.50 3.00 plf 25_j46 Dead Partial UD 17.0 17.0 10.50 12.00 plf 26 j46 Live Partial UD 25.0 25.0 10.50 12.00 plf 27 Dead Partial UD 17.0 17.0 3.00 9.00 plf 28_j70 Live Partial UD 25.0 25.0 3.00 9.00 plf 29_j71 Dead Partial UD 17.0 17.0 9.00 10.50 plf 30 j71 Live Partial UD 25.0 25.0 9.00 10.50 plf WIND1 Wind Point -3560 3.00 lbs WIND2 Wind Point 3640 9.00 lbs wind3 Wind Point 3620 0.00 lbs winds Wind Point -3570 12.00 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : m+ `Iaa+ir 'iRizs ._ . ^ *-�`_. �s�. - "mole _ +.;. -- - ♦ . �¢ -nom- . ...�r -�.. ._ _:._..+ -r ,. - :.�: ��'"`...."-.�- a 1 l Dead 2207 2207 Live 4826 4811 Total 7033 7018 Bearing: Load Comb #4 #4 Length 2.51 2.51 LSL, 1.55E, 2325Fb, 3- 1/2x14" Self- weight of 15.31 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 158 Fv' = 310 fv /Fv' = 0.51 Bending( +) fb = 1735 Fb' = 2325 fb /Fb' = 0.75 Live Defl'n 0.25 = L/573 0.40 = L/360 0.63 Total Defl'n 0.42 = L/343 0.60 = L/240 0.70 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 6557, V design = 5170 lbs • Bending( +): LC 02 = D +L, M = 16527 lbs -ft Deflection: LC #2 = D +L EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer: 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. 4---G3C COMPANY PROJECT I i . WoodWorks® 1 SOFTWARE FORWOODDESIGN June 24, 201013:11 b13 LC1 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psi, or pit) : Load Type Distribution Magnitude Location (ft] Units Start End Start End 1 w58 Dead Partial UD 519.0 519.0 0.00 3.00 plf 2_w58 Snow Partial UD 505.0 505.0 0.00 3.00 plf 3 c40 Dead Point 217 5.50 lbs 4 c40 Live Point 668 5.50 lbs 5_c67 Dead Point 518 5.00 lbs 6 c67 - Snow Point 778 5.00 lbs 7 c68 Dead Point 573 3.00 lbs 8_c68 Snow Point 942 3.00 lbs 9 w59 Dead Partial UD 593.7 593.7 5.00 8.00 plf 10_w59 Snow Partial UD 735.0 735.0 5.00 8.00 plf 11 j37 Dead Partial UD 100.7 100.7 6.50 8.00 plf 12_j37 Live Partial UD 310.0 310.0 6.50 8.00 plf 13 j38 Dead Partial UD 81.2 81.2 3.50 6.50 plf 14_j38 Live Partial UD 250.0 250.0 3.50 6.50 plf 15_j39 Dead Partial UD 22.7 22.7 0.00 3.50 plf 16 j39 Live Partial UD 70.0 70.0 0.00 3.50 plf 17 b15 Dead Point 126 3.50 lbs 18 b15 Live Point 389 3.50 lbs 19 b32 Dead Point 225 6.50 lbs 20 b32 Live Point 693 6.50 lbs W1 Wind Point 6590 0.00 lbs W2 Wind Point -6590 3.00 lbs W3 Wind Point 6590 5.00 lbs W4 Wind Point -6590 8.00 lbs MAXIMUM RFACTIONS IIhs1 and RFARIN(; 1 ENGTHS (inl `ev...a-4--.w,ts• .7-.'.. - "- - 9. --.- - „"' ....r-S -a► _-..- ",note -.:s -- ri,.r __ --- - -, ,4 �;, + .4 .-21 c - • _ �- .fir -= .� ' - - w lan+Jr+' ear = „ � , � a ,...�:.. ' �� . 3u " e ..oA.r'L"R'∎`'�,� a,..'' .. 7 71'7°7. 71'7°7. - y++�� . '. RM.d ,.- _ - �. . ....."'�'m�o - .n,� l'....7.".02 - 71....- - 71....- pi : .te ___..� . ,- .T � �; .;e- ._,_'"w. _ e- • - _ . � '*'. .. -� w ''""'- . = • • • a 81 Dead 2561 3033 Live 6406 3789 Uplift 3098 Total 8968 • 6822 Bearing: Load Comb 94 93 Length 3.20 2.44 LSL, 1.55E, 2325Fb, 3- 1/2x14" Self- weight of 15.31 plf included in loads; Lateral support: top = full, bottom = at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 157 Fv' = 356 fv /Fv' = 0.44 Bending( +) fb = 1295 Fb' = 2674 fb /Fb' = 0.48 Live Defl'n 0.06 = <L/999 0.27 = L/360 0.24 Total Defl'n 0.14 = L /680 0.40 = L/240 0.35 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 3 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 3 Fop' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 3 Ervin' 0.80 million - 1.00 - - - - 1.00 - - 3 Shear : LC 93 = D +.75(L +S), V = 6822, V design = 5122 lbs Bending( +): LC 63 = D+.75(L+S), M = 12340 lbs -ft Deflection: LC 93 = D +.75(L +S) EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. • • 4 -C33C COMPANY PROJECT 1 Wood SOFIWARE FOR WOOD DESIGN June 24, 2010 13:11 b13 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS (Ibs, pst, or plf ) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1 w58 Dead Partial UD 519.0 519.0 0.00 3.00 plf 2 w58 Snow Partial UD 505.0 505.0 0.00 3.00 plf 3 c40 Dead Point 217 5.50 lbs 4 c40 Live Point 668 5.50 lbs 5 c67 Dead Point 518 5.00 lbs 6 Snow Point 778 5.00 lbs 7- c68 Dead Point 573 3.00 lbs 8 Snow Point 942 3.00 lbs 9 Dead Partial UD 593.7 593.7 5.00 8.00 plf 10 w59 Snow Partial UD 735.0 735.0 5.00 8.00 plf 11 Dead Partial UD 100.7 100.7 6.50 8.00 plf 12 Live Partial UD 310.0 310.0 6.50 8.00 plf 13 Dead Partial UD 81.2 81.2 3.50 6.50 plf 14 Live Partial UD 250.0 250.0 3.50 6.50 plf 15 Dead Partial UD 22.7 22.7 0.00 3.50 plf 16 j39 Live Partial UD 70.0 70.0 0.00 3.50 plf 17 Dead Point 126 3.50 lbs 18 Live Point 389 3.50 lbs 19 b32 Dead Point 225 6.50 lbs 20 b32 Live Point 693 6.50 lbs W1 Wind Point -6590 0.00 lbs W2 Wind Point 6590 3.00 lbs W3 Wind Point -6590 5.00 lbs W4 Wind Point 6590 8.00 lbs MAXIMUM RFACTIONS libel and BEARING LENGTHS (in) : - +3-__- _ � fir- r- r_ - -�°• -- ; ,. *.e+: a.._4 : ~"'= T -»'ice - �� = `ss a'.'1'- !�- .. �.._ -� �^ :w .. .,... _ "tom '''`a. -- ...- "4erde" " - !rte..= -Te �r.... - .. s r±...- x, ,45, y- .ma '+:- 7 '•'Y"''. ^ _. - ? :' ^'+" ■ _ ? .� _...,_,. ,. "►..±r. -i - e+� I a 81 Dead 2561 3033 Live 2699 7496 Uplift 3381 Total 5261 10529 Bearing: Load Comb #3 #4 Length 1.88 3.76 LSL, 1.55E, 2325Fb, 3- 1/2x14" Self- weight of 15.31 pit included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 157 Fv' = 356 fv /Fv' = 0.44 Bending( +) fb = 1295 Fb' = 2674 fb /Fb' = 0.48 Live Defl'n 0.06 = <L/999 0.27 = L/360 0.24 Total Defl'n 0.14 = L /680 0.40 = L/240 0.35 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 3 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 3 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 3 Ervin' 0.80 million - 1.00 - - - - 1.00 - - 3 Shear : LC #3 = D +.75(L +S), V = 6822, V design = 5122 lbs Bending( +): LC #3 = D +.75(L +S), M = 12340 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. 4 - 6.,7`;`3- COMPANY PROJECT 1 1 Wood 'A/o r ks An 24.201013:19 934 LCI SOFTWARE FOR WOOD DESIGN Design Check Calculation Sheet Sao 7.1 LOADS 1b.. Paf.rpu Load Typo Di4lributlon Magnitude Location 1It) Units Start End Start End 1 062 Dead Partial U0 613.2 613.2 0.00 2.00 plf 2 Snow Partial 00 295.0 795.0 0.00 2.00 ply 3_029 Dead Partial UD 612.5 617.5 7.50 11.00 pif 4 Snow Partial U0 901.2 901.2 7.50 11.00 pif 5 Dead Point 1436 11.00 lba 0 615 Snow Point 2404 11.00 lba 016 had Point 1389 17.00 lb. 8 Snow Point 2404 17.00 1b. 9 064 Deed Partial UD 612.5 617.5 17.00 19.00 pif 102,61 Snow Partial UD 901.2 801.2 17.00 10.00 pif 11 Dead Point 622 7.00 lb. 12 061 Snow Point 1192 7.00 704 13 062 Dead Point 622 4.00 lba 14 062 Snow Point 1192 4.00 10s 15 Dead Partial UD 613.2 613.2 2.00 4.00 plf 16 Snow Partial UD 735.0 795.0 2.00 4.00 pif 17 Egad Partial U0 617.5 617.5 15.00 20.00 plf 19 v65 Snow Partial U0 901.2 601.2 18.00 20.00 pif 19201 Dead Pertla1 110 613.2 613.2 7.00 7.50 pif 20 071 Snow Partial UD 795.0 795.0 7.00 7.50 pif 21 364 Deed Partial UD 47.7 47.7 17.00 18.00 plf 22_164 Live Partial UD 160.0 160.0 17.00 19.00 plf 23329 Dead Partial UD 47.7 47.7 4.50 2.50 pif 24_327 Live Partial UO 160.0 160.0 4.50 2.50 plf 25362 Dead Partial UD 47.7 47.7 7.50 11.00 ply 26362 Live Partial UD 160.0 .160.0 7.50 11.00 pif T7 ]19 Dead Partial UD 120.2 120.2 0.00 2.00 pif 29_340 Live Partial UD 370.0 370.0 0.00 2.00 pif 29_132 Dead Partial UD 120.2 120.2 3.50 4.00 pif 30_132 Live Partial UD 370.0 370.0 3.50 4.00 pif 31_333 Dead Partial UD 120.2 120.2 4.50 7.50 plf 32_133 Live Partial UD 370.0 370.0 4.50 2.50 pif 33_134 Dead Partial UD 120.2 120.2 7.50 9.00 plf 34_134 Live Partial UD 370.0 370.0 7.50 9.00 pit 35_135 Dead Partial UD 120.2 120.2 3.00 11.00 pif 36_135 0.10e 94:10.1 00 370.0 370.0 8.00 11.00 p11 37_347 Dead 90:0140 UD 120.2 120.2 11.00 17.00 ply 38_147 Llve Partial UD 320.0 370.0 11.00 17.00 pif 39_167 Dead Partial U0 120.2 120.2 2.00 3.50 pif 40_167 Live Partial 110 320.0 370.0 2.00 3.50 plf 41_349 Dead Partial U0 120.2 120.2 4.00 4.50 plf 42349 Live Partial UD 370.0 370.0 4.00 4.50 pif 43_363 Dead Partial UD 47.7 47.7 11.00 17.00 plf 44363 Live Partial UD 160.0 160.0 11.00 17.00 plf 45_105 Dead Partial UD 47.7 47.7 10.00 20.00 pif 46_165 Live Partial U0 160.0 160.0 19.00 20.00 pif 47_166 Dead Partial UD 47.7 47.7 4.00 1.50 pif 48_166 Live Partial UD 160.0 160.0 4.00 4.50 plf 49_169 Dead Partial UD 120.2 120.2 17.00 18.00 pif 50368 L1v5 Partial UD 370.0 370.0 17.00 10.00 pif 51_369 Dead Partial UD 120.2 120.2 19.00 20.00 plf 52_169 Live Partial U0 370.0 370.0 18.00 20.00 pif 53_372 Dead Partial UD 47.7 47.7 2.00 4.00 011 54372 Live Partial UO 160.0 160.0 2.00 4.00 pif 55_173 Dead Partial UD 47.2 47.7 0.00 2.00 pif 56 173 Live Partial U0 160.0 160.0 0.00 2.00 pif N1 Wind Point 5950 0.00 lba Hind Point -5950 4.00 lb. N3 Wind Point 5950 11.00 1114 N4 Wind Point -5950 17.00 100 N5 Hind Point 5950 20.00 lba MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : • a Dead 155 132 Live 12150 19499 Total 19555 19499 Bearing: 2.200 0 Load 04 04 Lv74 Oath _ 5.87_ 5.95 Glulam -BaI., West Species, 24F -V8 DF, 5- 118x22 -1/2" Sell-w 4 et 25.55p41 b Aded In barb; Were! support top• f*A. bottrm et euppvb: Analysis vs. Allowable Stress (psi) and Deflection (in) Nau, Nos 21109: Criterion AnalVela Value Design Value A nal',414 /De01en Shear 1v . 182 90' . 305 fv /90' . 0.60 89,0104)0) Ib . 2392 7a' . 2604 fb /Fla' . 0.92 Live Dall'n 0.40. L /595 0.67. L/360 0.60 Total Defl'n 0.84 . L/295 _ 1.00. L/240 0.94 ADDITIONAL DATA: FACTORS: 9/E CD CY Ct CL Cfu Cr Cfrt notes Cn LC4 Po' 265 1.15 1.00 1.00 1.00 1.00 1.00 3 90, 2400 1.15 1.00 1.00 2.000 0.911 1.00 1.00 1.00 1.00 - 3 - E' 1.9 million 1.00 1.00 - Crain' 0.65 0111170 1.00 1.00 - Shear : LC 43 . 0'.751L.51, V 17361, V design - 13902 11:4 3endingl *): LC 13 . 04.7511. n 96199 100 -ft Deflection: LC 13 . 0'.7512..01 EI. 9756406 lb -In: ro:a1 DC610011:0 . 1.50)0aad Load Deflection) 0 Live Load Deflection. (O.dead 1.117e 3.3070 H.wlnd I■l*pact C■:0nstru :tio0 CL4■.bnceniratedl (A11 LC's are listed in the Analysis tutput) ..012 0:0007.0007.4 100 -100 DESIGN NOTES: I. Pease verily that the ANNA defledlon roles ere appropWe for your 409600tbn. 2. GAN=design values are kw metrlab 106005 blp ba A1TC 117 -2001 end norrufactuad b occordance 0401 ANSYAITC A 190.1 -1992 3. GLULAM; 1.1 o ecdal breadth s actual depth. • 4. G6dern Moms shall be laterally supported ecconO 9 to the provltb,s of NOS Clause 3.33. 5. GUAM: bearing length based on smaller of Fcp(tembn). Fep(eonp n). 4-6) 3 COMPANY PROJECT e i ll I Wood r ks June 24.20101319 634 LC2 SOFIWAREFOR WOOD DESIGN Design Check Calculation Sheet St7m 7.1 LOADS ( 4..au. «pf) Load Type Distribution Magnitude Location [ft( Units Start End Start End 1_,62 Dead Partial UD 613.2 613.2 0.00 2.00 plf 2 062 Snow Partial UD 795.0 795.0 0.00 2.00 plf _029 Dead Partial UD 617.5 617.5 7.50 11.00 plf 029 Snow Partial UD 901.2 601.2 7.50 11.00 plf 215 Dead Paint 1436 11.00 16. c15 Snow Point 2104 11.00 lbs :c16 Dead Point 1399 17.00 lbs <16 Snow Paint 2104 17.00 lbs w64 Dead Partial 00 617.5 617.5 17.00 19.00 plf . 6_064 Snow Partial UD 901.2 401.2 17.00 19.00 plf 1 c61 Dead Point 62 7.00 164 2 001 Snow Point 1192 7.00 lbs 3 c62 Dead Paint 622 4.00 lbs 4 062 Snow Paint 1192 4.00 lbs 15 o63 Dead Partial 00 613.2 613.2 2.00 4.00 plf 16_w63 Snow Partial UD 795.0 795.0 2.00 4.00 plf 17_w65 Dead Partial UD 61 617.5 19.00 20.00 plf 19 v65 Snow Partial UD 1.01.2 901.2 19.00 20.00 plf 19 Dead Partial UD 613.2 613.2 7.00 7.50 plf 20 Snow Partial UD 795.0 795.0 7.00 7.50 plf 21_764 Dead Partial ID 47.7 47.7 17.00 19.00 plf 22_764 Live Partial VD 160.0 160.0 17.00 19.00 plf 23 )29 Dead Partial '0D 17.7 47.7 1.50 7.50 plf 24_121 Live Partial UD 160.0 160.0 4.50 7.50 plf 2 762 Dead Partial UD 47.7 47.7 7.50 11.00 plf 26_762 Live Partial UD 160.0 160.0 7.50 11.00 pif. 27 749 Dead Partial UD 120.2 120.2 0.00 2.00 plf 29 749 Live Partial UD 370.0 370.0 0.00 2.00 plf 29_132 Lead Partial UD 120.2 120.2 3.50 4.00 plf 3 732 Live Partial UD 370.0 370.0 3.50 4.00 plf 31 733 Dead Partial UD 120.2 120.2 1.50 7.50 plf 32_133 Live Partial UD 370.0 370.0 4.50 7.50 plf 33_734 Dead Partial UD 120.2 120.2 7.90 9.00 p1f 34_734 Live Partial UD 370.0 370.0 7.50 9.00 plf 35_235 Dead Partial U0 110.2 120.2 7.00 11.00 plf 3 735 Live Partial U0 370.0 370.0 9.00 11.00 plf 37_7 47 Dead Partial UD 120.2 120.2 11.00 17.00 plf 39_147 Live Partial U0 370.0 370.0 11.00 17.00 plf 39_767 Dead Partial UD 120.2 120.2 2.00 3.50 elf 40_167 Live Partial UD 370.0 370.0 2.00 3.50 plf 41_749 09.3 Partial UD 120.2 120.2 4.00 4.50 plf 42 _149 Live Partial UD 370.0 370.0 4.00 1.50 plf 43_163 Dead Partial UD 47.7 47.7 11.00 17.00 Of 41_763 Live Partial UD 160.0 160.0 11.00 17.00 plf 45_565 Dead Partial UD 47.7 47.7 13.10 20.00 of 46_165 Live Partial UD 160.0 160.0 1:.00 20.00 plf 47_166 Dead Partial UD 17.7 47.7 4.00 4.50 plf 46_766 Live Partial UD 160.0 160.0 4.00 4.50 plf 49 769 Dead Partial UD 1:0.2 120.2 17.00 10.00 plf 50 Live Partial UD 370.0 370.0 17.00 19.00 plf 51 769 Dead Partial UD 120.2 120.2 19.00 20.00 plf 52 766 Live Partial U0 370.0 370.0 19.00 20.00 plf 53 - 772 Dead 'Partial UD 47.7 47.7 2.00 4.00 plf 54_272 Live Partial UD 160.0 160.0 2.00 4.00 pif 55_773 Dead Partial UD 47.7 47.7 0.00 2.00 plf 56_773 Live Partial UD 160.0 160.0 0.00 2.00 plf W1 Wind Point -5950 0.00 ibs w2 Wind Paint 5950 4.00 lba N3 Wind Point -5950 11.00 lbs M4 Wind Point 5950 17.00 lbs N5 Wind Paint -5950 • 20.00 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : Dead k;;1- '11327 Live 9956 9976 Total 17361 17305 Eearing: • Load Corb 43 43 Length 5.:1 5.19 • Glulam -BaI., West Species, 24F -V8 DF, 5- 1/8x22 -1/2" 569 welyd of 28.55 pif included In loads: Lateral support top. 260. bottom. a mippeds: Analysis vs. Allowable Stress (psi) and Deflection (In) usmg Nos 2609: Criterion Analysis Value Deakcn Value Analysis /Deakin Shear 192 Fv' ■ 305 Ci /FV• . 0.60 9end1ng1.1 fb - 2302 Fb' . 2604 45 /F0' • 0.92 Live Den', 0.41 . L /591 0.67. - L /360 0.61 Total Defl'n 0.94 - 1/294 1.00 . L /210 0.94 ADDITIONAL DATA: FACTORS: F/E CD 01 Ct CL CV C04 Cr Clrt s Cn LC4 E ' 265 1.15 1.00 1.00 1.00 1.00 1.70 760'* 2400 1.15 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - 3 - E' 1.9 million 1.00 1.00 - - - - 1.00 - - 4 0917' 0.95 01111:0 1.00 1.00 - - - - 1.00 - - 4 Shear : LC a3 • 0..75(L.S), V ■ 17361, V design . 13992 ibs Pending( L^- 03 . 0..75(L.51, M ■ 56199 lbs -ft Deflection: LC 4 4 ■ . 0 EI. 9756906 1b -102 Total 0.01.05lon. 1.50(Dead Load Deflection) 9 Live Load Deflection. (D■deed r .■llve S■enaw N.Wirl d 0.impact C.c :n.5 :0:51cn 0Ld■<ancent:.:.31 (A11 LC'e are listed in the Analysis output) Load cdab1nat1cns: I0C -100 DESIGN NOTES: 1. Please verily QW the default deflection bras are appiop0bte for your app4catlal. 2. CAA= design values ma far rule rlab calarming to ARC 117 -2001 and manufactured in cao,d.nce NM ANSUAITC 6190.1.1992 3. GLULAM; bad • actual breadth a actual dep0i. 4. GFdan Beams shat be blengy supported accmdbg to the pro4sbns of 605 Clause 3.3.3. 5. GLULAM: be9N0 MVP based on snider of Fop(twion). Fcp(oanpn). 14:9.- C 9 COMPANY PROJECT I %V o od VVor k s® June 24, 201013:20 034 LC2 SOFTWARE FOR WOOD DESIGN Design Check Calculation Sheet Spar 7.1 LOADS (1b.. PO..09 ' Load Type Distribution Magnitude Location Ift1 Units Start End Start End 1+62 Dead Partial UD 613.2 613.2 0.00 2.00 plf 2562 Snow Partial U0 795.0 795.0 0.00 Z.00 pif 3_529 Dead Partial UD 617.5 617.5 7.50 11.00 pit w29 Snow Partial UD 901.2 801.2 7.50 11.00 pif 5 Dead Point 1436 11.00 lbs 6_015 Snow Point 2404 11.00 lbs 7 Dead Point 1369 17.00 lba 6.16 Snow Point 2404 17.00 lba 9 Dead Partial UD 617.5 617.5 17.00 16.00 pif 1)5_664 Snow Partial UD 801.2 501.2 1 15.00 plf 11 061 Dead Point 622 7.00 lbs 12 Snow Point 1192 7 .00 lbs 13_.62 Dead Point 622 4.00 lba 14 062 Snow Point 1192 4.00 lbs 15563 Dead Partial UD 613.2 613.2 2.00 4.00 p14 16563 Snow Partial UD 795.0 795.0 2.00 4.00 pif 17 Dead Partial UD 617.5 617.5 19.00 20.00 pif 18 Snow Partial UD 901.2 901.2 19.00 20.00 pif 19 Dyad Partial UD 613.2 613.2 7.00 7.50 pif 20 Snow Partial UD 795.0 795.0 7.00 7.50 pif 21)64 Dead Partial UD 47.7 47.7 17.00 18.00 pif 22_164 L104 Partial UD 160.0 160.0 17.00 16.00 pif 23_328. Daad Partial UD 47.7 47.7 4.50 7.50 plf 24_328 Live Partial U0 160.0 160.0 4.50 7.50 p1f 25162 Dead Partial UD 47.7 47.7 7.50 11.00 plf 26 Live Partial UD 160.0 160.0 7.50 11.00 pIf 27 - 148 Goad Partial UD 120.2 120.2 0.00 2.00 pif 29_145 Live Partial UD 370.0 370.0 0.00 2.00 pif 2 132 Dead Partial UD 120.2 120.2 3.90 4.00 p11 30_132 Live Partial UD 370.0 370.0 3.50 4.00 p11 31_133 Dead Partial U0 120.2 120.2 4.50 9.50 plf 32_133 Live Parcisl UD 370.0 370.0 4.50 7.50 pif 33_134 1704d Partial UD 120.2 120.2 7.50 8.00 pif 34_114 Live Partial UD 310.0 170.0 7.50 1.00 pif 35)15 Dead Partial UD 120.2 120.2 9.00 11.00 pif 36)35 L1ve Partial UD 370.0 370.0 5.00 11.00 plf J7 147 Dead Partial UD 120.2 120.2 11.00 17.00 pif 38_147 Live Partial UD 370.0 370.0 11.00 17.00 pif 39 367 Dead Partial UD 120.2 120.2 2.00 3.50 pif 40 Live Partial UD 370.0 310.0 2.00 3.50 pif 41 Dead Partial UD 120.2 120.2 4.00 4.50 p11 442:12 Live Partial 00 370.0 370.0 4.00 4.50 plf ] Dead Partlel U0 7.) 49.7 11.00 1 pIf 44 163 L1va Partial UD 160.0 160.0 11.00 17.00 pif 45165 Dead Partial UD 47.1 41.1 18.00 20.00 pif 46165 Live Partial UD 160.0 160.0 19.00 20.00 p11 47 Dead Partial UD 47.7 47.7 4.00 4.50 pit 48166 Live Partial UD 160.0 160.0 4.00 4.50 pif 49 169 Dead Partial UD 120.2 120.2 17.00 19.00 plf 50_169 Live Partial U0 370.0 370.0 17.10 16.00 plf 51_169 Dead Partial UD 120.2 120.2 19.10 20.00 plf 52169 Live Partial UD 310.0 370.0 18.10 20.00 plf 53_172 Dead Partial UD 47.7 47.7 2.00 4.00 plf 54)72 Live Partial UD 160.0 160.0 2.00 4.00 p21 55 )7] Dead Partial UD 47.7 47.7 0.00 2.00 4, 56 173 Live Partl.l UD 160.0 160.0 0.00 2.00 plf W1 Hind Point -5850 0.00 lb. xlnd Point 5650 4.00 lb. W3 xlyd Point -5850 11.00 lba 64 61.7d Point 5850 17.00 lb. W5 Kind Point -5850 20.00 lba MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (In) : • 1 � ++f Dead 9405 7327 Live 9956 9905 Total 17361 17]05 !Loring: Load 03 83 4 Length 5.214 5.19 Glulam -Bal., West Species, 24F -V8 DF, 5- 118x22 -1/2" se.dpl/ a 26.55 pd named (n 00d Laced aW16t lop 6A, beams a8 empiric Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2006: . Criterion Anal0.1. Value Dav1Cn Value Analvela /Oeeion 65e•r 17 ■ 162 Fv' ■ 305 fv /FV' - 0.60 Bend174( Ib - 2392 Ea' ■ 2604 fb /Fb' . 0.92 Live Detl'n 0.41 ■ L/591 0.6 - L/160 0.61 Total 0411', - 0.64 ■ L/294 1.00 - L/240 0.94 ADDITIONAL DATA: FACTORS: F/E CO CH Ct CL CV Cfu Cr 01.5 LC4 ' EY' 265 1.15 1.00 1.00 1.00 1.00 f 1 00 El'. 2400 1.15 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 3 Fop' 650 1.00 1.00 - - - - 1.00 - E' 1.9 million 1.00 1.00 - - - - 1.00 - Dein' 0.85 million 1.00 1.00 - - - - 1.00 - 4 Starr : LC 53 - 0+.75(145). V - 11361, V design ■ 13992 lbs 6a:Min91 +1: LC 03 - D..75(1..$). M . 86199 lbs -1t Deflection: LC 14 4 00.751105 +MI EI- 3756906 17 -1n2 Total Dutlectlon - 1.50 (Dead Load Deflection) 4 Live Load De21.75125. (D-dead 1.mlive S-ancw D.wind I -1.pac C■c0natructlon CLA.conoentraoed) IAll LC'o are listed In the Analysis output) Load cocbinaticns: ICC -IBC DESIGN NOTES: 1. Pease verify tot Om defmA deflection 9mb we appropriate far ym 4p70nibn. 2. GUN, design votes ere for mdepla cOMarni g to AJTC 117 -2001 and msnulacbr.d In accordance with ANSUAITC A190.1 -1992 3. G1.UlAht bed • actual breadth 4 annul depth. 4. Ca93am Beanie slob be Ideny imputed aaard2g to the provisions of NDS Clause 3.3.3. 5. GLULAM: 0ea2np length ba5.61 co smeller of FcpQmsbn), Fcp(ocmph). /41 C 4 ° COMPANY PROJECT i WoodWorks® SOFIWAREFOR WOOD DESIGN June 24, 2010 13:23 b34 LC1 NO LL Design Check Calculation Sheet Sizer 7.1 LOADS 1 Ibs, psf, or pif ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w62 Dead - Partial UD 613.2 613.2 0.00 2.00 plf 3_w29 Dead Partial UD 617.5 617.5 7.50 11.00 plf 5 c15 Dead Point 1436 11.00 lbs 7 Dead Point 1389 17.00 lbs 9 w64 Dead Partial UD 617.5 617.5 17.00 18.00 pif 11 c61 Dead Point 622 7.00 lbs 13 Dead Point 622 4.00 lbs 15 w63 Dead Partial UD 613.2 613.2 2.00 4.00 plf 17 w65 Dead Partial UD 617.5 617.5 18.00 20.00 plf 19 w71 Dead Partial UD 613.2 613.2 7.00 7.50 pif 21_j64 Dead Partial UD 47.7 47.7 17.00 18.00 pif 23_j28 Dead Partial UD 47.7 47.7 4.50 7.50 plf 25_j62 Dead Partial UD 47.7 47.7 7.50 11.00 plf 2 j48 Dead Partial UD 120.2 120.2 0.00 2.00 plf 29 j32 Dead Partial UD 120.2 120.2 3.50 4.00 plf 31 j33 Dead Partial UD 120.2 120.2 4.50 7.50 plf 33 - j34 Dead Partial UD 120.2 120.2 7.50 8.00 pif 35 Dead Partial UD 120.2 120.2 8.00 11.00 plf 39_j67 Dead Partial UD 120.2 120.2 2.00 3.50 plf 41_j49 Dead Partial UD 120.2 120.2 4.00 4.50 plf 43_j63 Dead Partial UD 47.7 47.7 11.00 17.00 plf 45_j65 Dead Partial UD 47.7 47.7 18.00 20.00 pif 47_j Dead Partial UD 47.7 47.7 4.00 4.50 plf 49_j68 Dead Partial UD 120.2 120.2 17.00 18.00 plf 51_j Dead Partial UD 120.2 120.2 18.00 20.00 plf 53_j72 Dead Partial UD 47.7 47.7 2.00 4.00 plf 55 j73 Dead Partial UD 47.7 47.7 0.00 2.00 plf W1 Wind Point 5850 0.00 lbs W2 Wind Point -5850 4.00 lbs W3 Wind Point 5850 11.00 lbs W4 Wind Point -5850 17.00 lbs W5 Wind Point 5850 20.00 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : 1 la 201 Dead 7189 6822 Live 156 302 Total 7238 7018 Bearing: Load Comb 92 82 Length 2.17 2.11 Gluiam -BaI., West Species, 24F -V8 DF, 5- 118x22 -1/2" Self- weight of 26.55 p6 included in loads; Lateral support: top = full, bottom = at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 74 Fv' = 238 fv /Fv' = 0.31 Bending( +) fb = 950 Fb' = 2038 fb /Fb' = 0.47 Live Defl'n negligible . Total Defl'n 0.41 = L /585 1.00 = L/240 0.41 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC8 Fv' 265 0.90 1.00 1.00 - - - - 1.00 1.00 1.00 1 Fb'+ 2400 0.90 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - 1 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 1 •Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 1 Shear : LC 81 = D only, V = 7189, V design = 5674 lbs . Bending( +): LC 81 = D only, M = 34217 lbs -ft Deflection: LC 81 = D only EI= 8756e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Gluiam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Gluiam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). • . 4 -CiLf 1 COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 201013:22 b34 LC2 NO LL Design Check Calculation Sheet Sizer 7.1 LOADS (Ibs, pst, or pif ) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1 w62 Dead Partial UD 613.2 613.2 0.00 2.00 plf 3 w29 Dead Partial UD 617.5 617.5 7.50 11.00 plf 5_c15 Dead Point 1436 11.00 lbs 7 c16 Dead Point 1389 17.00 lbs 9 w64 Dead Partial UD 617.5 617.5 17.00 18.00 plf • 11 c61 Dead Point 622 7.00 lbs 13 Dead Point 622 4.00 lbs 15 w63 Dead Partial UD 613.2 613.2 2.00 4.00 plf 17 Dead Partial UD 617.5 617.5 18.00 20.00 plf 19 Dead Partial UD 613.2 613.2 7.00 7.50 plf 2064 Dead Partial UD 47.7 47.7 17.00 18.00 plf 23j28 Dead Partial UD 47.7 47.7 4.50 7.50 plf 25 j62 Dead Partial UD 47.7 47.7 7.50 11.00 plf 27 Dead Partial UD 120.2 120.2 0.00 2.00 plf 29 j32 Dead Partial UD 120.2 120.2 3.50 4.00 plf 31 j33 Dead Partial 1313 120.2 120.2 4.50 7.50 plf 33_j34 Dead Partial UD 120.2 120.2 7.50 8.00 plf 35_j35 Dead Partial UD 120.2 120.2 8.00 11.00 plf 39_j67 Dead Partial UD 120.2 120.2 2.00 3.50 plf 41 j49 Dead Partial UD 120.2 120.2 4.00 4.50 plf 43 j63 Dead Partial UD 47.7 47.7 11.00 17.00 plf 45 165 Dead Partial UD 47.7 47.7 18.00 20.00 plf 47_j66 Dead Partial UD 47.7 47.7 4.00 4.50 plf 49_j68 Dead Partial UD 120.2 120.2 17.00 18.00 plf 51 j69 Dead Partial UD 120.2 120.2 18.00 20.00 plf 53 j72 Dead Partial UD 47.7 47.7 2.00 4.00 plf 55_j73 Dead Partial UD 47.7 47.7 0.00 2.00 plf . W1 Wind Point -5850 0.00 lbs W2 Wind Point 5850 4.00 lbs W3 Wind Point -5850 11.00 lbs W4 Wind Point 5850 17.00 lbs W5 Wind Point -5850 20.00 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : • 1 201 Dead 7189 6822 Live Total 7189 6822 Bearing: Load Comb #1 #1 Length 2.16 2.05 Glulam -Bal., West Species, 24F -V8 DF, 5- 118x22 -1/2" Self- weight of 26.55 pif included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 74 Fv' = 238 fv /Fv' = 0.31 Bending( +) fb = 950 Fb' = 2038 fb /Fb' = 0.47 Live Defl'n negligible Total Defl'n 0.41 = L/585 1.00 = L/240 0.41 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 0.90 1.00 1.00 - - - - 1.00 1.00 1.00 1 Fb'+ 2400 0.90 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - 1 Fcp' 650 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 1 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 1 Shear : LC #1 = D only, V = 7189, V design = 5674 lbs Bending( +): LC #1 = D only, M = 34217 lbs -ft Deflection: LC #1 = D only EI= 8756e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) . Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI/AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). 4 - Gic 2- k Harper Project: Houf Peterson Client: Job # Righellis Inc. ENGINEERS • PLANNERS - - -- Designer: Date: Pg. # LANDSCAP E ARCH, rECTS•SURVEYORS W := 10 lb -8-ft-20-ft Wdl = 1600- lb c� �Si9Y\ ft Seismic Forces Site Class =D Design Catagory =D W p : W dl i 1.0 Component Importance Factor (Sect 13.1.3, ASCE 7 -05) S := 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. S := 0.942 Max EQ, 5% damped, spectral responce acceleration at short period z := 9 Height of Component h := 32 Mean Height Of Roof F : = 1.123 Acc -based site coefficient @ .3 s- period (Table 1613.5.3(1), 2006 IBC) F = 1.722 Vel -based site coefficient @ 1 s- period (Table 1613.5.3(2), 2006 IBC) S • = F Sml := Fv'S1 2•S S := Max EQ, 5% damped, spectral responce acceleration at short period 3 Exterior Elements & Body Of Connections a := 1.0 R := 2.5 (Table 13.5 -1, ASCE 7 -05) 4a • r z F P •= p r •I 1 +2 EQU. 13.3 - R P Fpmax 1.6•S EQU. 13.3 - F pmin .3 ' S ds' I p' W p EQU. 13.3 - 4= if(F > Fp if (F < Fpmin,Fpmin,Fp)) F = 338.5171•lb Miniumum Vertical Force 0.2.S ds• W dl = 225.6781- lb (+I f� ; Harper Project: Houf Peterson Client: Job # Righellis Inc. ENGINEERS. PLANNERS - Designer: Date: Pg. # LANDSCAPE ARCNIrECIS•SNRVEYORS W := 10• lb 8•ft•20•ft W = 1600-lb ft Seismic Forces Site Class =D Design Catagory =D Wp := Wd 1 := 1.0 Component Importance Factor (Sect 13.1.3, ASCE 7 -05) S 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. S = 0.942 Max EQ, 5% damped, spectral responce acceleration at short period z := 9 Height of Component h := 32 Mean Height Of Roof F = 1.123 Acc -based site coefficient @ .3 s- period (Table 1613.5.3(1), 2006 IBC) F� := 1.722 Vel -based site coefficient @ 1 s- period (Table 1613.5.3(2), 2006 IBC) Sms := F Smi := F S1 2 • S ms S : = Max EQ, 5% damped, spectral responce acceleration at short period 3 Exterior Elements & Body Of Connections a := 1.0 R 2.5 (Table 13.5 -1, ASCE 7 -05) 4a p • ( z ) .w := R I 1 + 2 hJ Wp EQU. 13.3 -1 Fpmax := 1�. W EQU. 13.3 -2 F pmin • EQU. 13.3 -3 A:= if(F > F pmax , Fpmax, if(F < F pmin , Fpmin, F F = 338.5171.1b Miniumum Vertical Force 0.2• sds • Wdl = 225.6781 • lb C H LI 0 Harper HP Houf Peterson COMMUNICATION RECORD Righellis Inc. To ❑ FROM ❑ MEMO TO FILE ❑ 1,N • FLnNALI1J L•I'7USOArt. AHCHITUCTat.SUI,u \ — - - - -- - -- - - -- PHONE No - PHONE CALL: Q MEETING: ❑ m 11 m 2 L_ m c o E c 1 t a ti --t II C/t 5 ...0 ti . d . ( . „ „ . r .....ir 4 11 .. l cil d VI S. ul N . Cie —4,1 .0 1 ti Ns 0 3 ' 'I L_ 0 m N n z 1 h m r rr n N. 0 B y ..,..: JOB No.: . . .. . . . - P RCiJ ECT: RE: Dc 1) 1 ()PI-AC-P0A. CAPI N 7 \CVT. - ' , / 2c a a _, ▪ (9 L I z O E NPikt_ CPO:4)c ki (II.a Nrrytnal\ 2 ( L$S3)((agi#6 1 «) ;:: 1 t qnai ! . 1111 0 . ..I cc a u = O w _D i 1 4 , w o x a n Z • • LApAc.19 11— • 4 O ' ......„(16,1,0 mj * ( Fr- 0 i ,`"S-0\sr5 0 = r- + \ pL g . _fi 0 - U Mae, i c . Winn \beil.) fl ACV \` =--. 3's V w 0 6 . 12 cf. ut) /At. Too+ 1 __-:-. tl,. pi.LF.- 1 i 7 ti r Th 6 ------.--> • o - 0 c ,- ----- TDE-V,C-nNj 1 t ;al ,• il Vs.e. (2,_ Sir0r) GO'3'4- x4s'12_ I tr) e ! 2 '" ' ---- c\ 4 ...., •rn .:Fi C.. T L ' t P) a '...Eil v.._ ( 1 E ! = 3 0°1 4 ( = \\r\i 5r x41-2.2 e. 12," cc, =O I# :, 014- . • Aq-61(-Ka BY: . DATE: Pe Off . JOB NO., ,-■ - - - . . . PROJECT: RE: ecv, Pcz„)I:d2L.,r\ - 0 0 . ‘.1 0 t z ' 0 .or.. . CA. o 2 • / . 4-- ZOO A# m I I I 0 . a , < .0 . • ,-. sifao i,IN,- . . z . 0 z T=c - sticoow - . al-too* 0 o i - 0.__ 51rnor\ 1-11DU 4 To fek‘5 if Or) 2 claS" 0 U • ,I . - r4_c-. 0 , 0 E 6 Li Z w 0 6 0 . LC)Pri M., aooit (zion ) .-zootr , >1 Soon 4t-ir/ T-=C rz: 2.606 stiNi 0-4t- . 1 3.5" ,.' 1+Du4 0 ci • ;1 CD ,' .,.. . i,• .1 g- C Lit Harper COMMUNICATION RECORD ' I". Houf Peterson Righellis Inc. To El FROM CI . MEMO TO FILED ENGINEERS • PLAWIERS LANCAPI: ARCtilTECT3•SURVC,.;ki -.-.- PHONE NO.: PHONE CALL: 0 MEETING: El 13 - u 5' m 0 " , 1 1 ...... if cil al t I , 37 ri- - co 3 9.) d ,-----0 0 0 o ,-..., o) FT: ....,a u) . 01 ..._/ :-., . t 6 0 --A, .,., , - T • (i) H • . It ...:1, . n I ....C. , M I C.9 1 P L 0 m Z Niiiiii.ini..■ • -- , Harper • HP HOUfPeterson COMMUNICATION RECORD Righellis Inc. To ❑ FROM 0 MEMO TO FILE ❑ EOGINEEiI • PLANt:ERS L A;:D:f.a PE cNITECT .SU'V Y R: PHONE NO.: PHONE CALL: II MEETING: El . XI - m m Q.. 47.g g . 1 V _, . N .0 1 m_. 1 • c"..' o C r 1 • 0 • -o L_ . o e s COMPANY PROJECT %. t 1- WoodWorks® SMMAWEFORWOODOUMN June 8, 2009 16:27 Hand Rail Design Check Calculation Sheet Sizer 8.0 LOADS: Load Type Distribution Pat- Location [ft] Magnitude Unit tern Start End Start End LIVE Live Point 2.50 200 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : 1 .-.,-- ,-,..: .- t : -, , ..,w-to. :!!,- -'i!, ,*.: - 1 . , .i.. , . ,.,:,,,,,,-, 2 ' ' ',.- ' 4. :" r, .-, - ''.! -.. „:.:' ''''': .-.: . - -' : :-!:''':: ,: ..- ':".: ' 7 '' ' . - ' ., :: ' : -' ;''' :,_ ..' ' : :. '. ...' ' ;:' .:.: : . '' I V 5 Dead Live 100 100 Total 104 104 Bearing: Load Comb #2 #2 Length 0.50* 0.50* Cb 1.00 1.00 *Min. bearing length for beams is 1/2" for exterior supports Lumber-soft, Hem-Fir, No.2, 2x6" Self-weight of 1.7 Of included in loads; Lateral support: top= at supports, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis/Design Shear fv = 19 Fv' = 150 fv/Fv' = 0.13 Bending(+) fb = 405 Pb' = 1048 fb/Pb' = 0.39 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.20 Total Defl'n 0.03 = <L/999 0.25 = L/240 0.14 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 150 1.00 1.00 1.00 4 - - - 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 0.949 1.300 '1.00 1.00 1.00 1.00 - 2 Fcp 405 1.00 1.00 - - - - 1.00 1.00 - - E' 1.3 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.47 million 1.00 1.00 - - - 1.00 1.00 - 2 Shear : LC #2 . L, V = 104, V design = 103 lbs Bending(+): LC #2 = L, M = 255 lbs-ft Deflection: LC #2 . L El = 27e06 lb-1n2 Total Deflection . 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction Lc=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 1 COMPANY PROJECT I1 00.1%' WoodWorks 0 SOFIWARE FOR WOOD DESIGN June 8, 2009 16:27 Hand Ra112 Design Check Calculation Sheet Sizer 8.0 LOADS: Load Type Distribution Pat- Location Eft] Magnitude Unit tern Start End Start End LIVE Live Full UDL 50.0 plf MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : - r':- ,4, , ,. . - .----r' -' 1 ^ : --54'-' n,y - 4,....- , .. .;...,. ..,.... -... --,_:. .f.:" :- ,.2.:,: ': 2 ..:: ;,:: .:-;;;.' ,:5..'• .... , ..:! - 'i::::' . _ It: •,;:":', ?..''.f , :,,.:, 5 , ..:,:::‘,.; .5: • , - , '' 15'Z:_ '-:',':., ..,..:: ''':' '5 :.: . . 10' 54 Dead Live 125 125 Total 129 129 Bearing: Load Comb #2 #2 Length 0.50* 0.50* Cb 1.00 1.00 *Min. bearing length for beams is 1/2" for exterior supports Lumber-soft; Hem-Fir, No.2, 2x6" Self-weight of 1.7 plf included in loads; Lateral support: top= at supports, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis/Design Shear fv = 19 Fv' = 150 fv/Fv' = 0.13 Bending(+) fb = 256 Pb' . 1048 fb/Fb' = 0.24 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 . <L/999 0.17 = L/360 0.16 Total Defl'n 0.03 = <L/999 0.25 = L/240 0.11 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 150 1.00 1.00 1.00 - - 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 0.949 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 405 1.00 1.00 - - 1.00 1.00 - - E' 1.3 million 1.00 1.00 - - 1.00 1.00 - 2 Emin' 0.47 million 1.00 1.00 - - 1.00 1.00 - 2 Shear : LC #2 = L, V = 129, V design = 106 lbs Bending(+): LC #2 = L, M = 162 lbs-ft Deflection: LC #2 = L El = 27e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction Lc=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 4 ...._ ( 1 WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 22, 2010 13:57:56 Concept Mode: Reactions Base of Structure View Floor 2: 8' te •1050 -- - 49 -6 wy 1600 L, _, .. - . " 600 L. - 4 r o • iU ` 619 D 619 D 4o' -b' n y9 ' , . : _ .: .. 43'-b : .: 'i " i 4'1 -b a : 1193 L'153 2404 L:: 2404 L -• .. sy b :: 4 ` 6 25 D1059 11439 D : 1394 D ` - - - - - ats. -b ys ;: . . - : : : _ : - J b a 315 L: : Ss-b tsr 358 D 1 ' -b ob . tsn Gy -b Lo tss 315L' bL • r .__ - _ .. 0'1 100E L ' 358 D; ry 9 6 D Lam: Ls -b its r, .1_74(847 . . 5 L , 7 L L 1 -n ro : ' Li./-0' 10 ' 4!(452 D - 5546 D -' 25 L' D - 1 y -b '625 1/1 1 203D 50. •in o r i :. - D: - . - :- - 13 ' n a -: . :. 908 L - '1°5 /7 307. � C 1 1.3-0 r _ . 46 D ' b i ti e 245 L" y -b t4).... 3 D' '50 L is - b • s 174 87 L- J bu 599 . �• 87 ; • - 871:- --- . µ ... • ...� 2 09 LD 8 D • 1963 D. 19 D _ s-n 154D • ^ruu 2363D. cn.. 106D u-b .BBIB.BB CCC C CC CI'CCC CC CCCC C C CC CCICC CD.DDD! DD D }CDDCD DD DDDD DD CD!DD DEE Et E EEEEEEEEE E(EEEEEBEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22'24' 26' 28' 30' 32' 34' 36' 38'40'42'44' 46'48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'91t1 :1 111 212f3t33 :3:3 4i-t:44.4(4 414( 5( 5 - 5;5:5 , 5:5( 5515! 6( 6fi: 6: 6 , 6!6t6;6t6 1 ..7(7 . 77.7 , 7.7(77' -6" VOOT‘ 1 (n N1oUT' 4__Ff - WoodWorks® Sizer • SOFTWARE FOR WOOD DESIGN Unit A - Rear Load WoodWorks® Sizer 7.1 June 22, 2010 13:57:37 Concept Mode: Reactions at Base of Structure View Floor 2: 8' 1040 - .. : ' . 49' -6" IUa 1600 L :! ' : ; : 1600 L 4! -n '` / 619 D 619 D .. ' 40 -b r • n .. -- - - - - 44 -n i Vag - .. "/c' - - -- -- - 43 -b t! ..... \ : - 42 -n y! .. - - - -- :. . - --- - -- - -- - - -- -- -- 4 - n an 4U -n ab 13274 L_ 3304 L. • Jy - b 4 • . 7153 D:1 -. - : 7072 D - -- - - - - - -- - - - - Jb -n .. •- so 0 • t5 315 L . . s -o 15/15 : _• 358 D 62 -0 tin -- - = - `- - ---- -- -- - - - - -- -- -- _....-- -_ -..._. : . - - - -- -_ --- -. - .: - .. - - -- -- - - -- -_- - - - Ju -n 250 ... ! _ . 2V - n" t54 _- - - -- - -' -_ -- -- - -- - - - - - - - - -- -- -- t3J 315L z/ -0 i'. 100E ; 358 Di - - 1�� :. i o : 74(84 61 1 E - ' r 56 L _ �u � • !0 4(452 D 5546D �r 5L) D . . I`J -n l4....- 625 : ' -•-- -- . . .. 16 -0 .. : it 203 D 5 D` 1 II- - 5D .- - . . - Io-n • (U_ 1 4 - 0 5� 105 •-908 L 1,5-0 -a. n! 307 _ : I a - n nu 24 sI yU0b 3D-:-.1-:t.- 50 L . u -n .. s . � � 74D n.. tll 599 --- I- --- -„ - -- - -- - - - 0 4 2587 L : 587 E - buy 209 LD 8 D_ 1963 D 1963 D : s -0 • 154 D .. -ns v N: - n .. - DLL 725L219 I b i �. __ 78D7DD 617D'D. u BB1B.B BC. CC CCCC C CCC CCCC CD.DDD D DD D(DDD CD DD DD D D DD C.D \DD DE.E E E EiEE'EFEEEIEE!E E!EEEEEE(EEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66 68' 70' 72' 74' 76' 0'1'2'3'4'5'67'8'91(1 1:1:1'1;1(1 1 E12E22 22 313!4 {4 5:5:5 5:6:6 77.7 -6" \ e*" OOT U J ' LP 10UT • *Epviz., LL D 4..._ F2_,.. : tni ItL Y Harper Houf Peterson Righellis Inc. •V ....rent Date: 6/24/2010 1:41 PM I system: English File name: O:\HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations\F1.ftd\ Design Results Reinforced Concrete Footings GENERAL INFORMATION: Global status Warnings Design Code ACI 318 -05 Footing type Spread Column type Steel Geometry i i } i Y I 4.2,5 ft id ■ ■ 4 "' : rt4k4 v 3 4.25 ft ■ Pagel iq -- 3 Length 4.25 [ft] Width 4.25 [ft] Thickness 1.00 [ft] Base depth 1.50 [ft] Base area 18.06 [ft2] Footing volume 18.06 [ft3] • Base plate length 5.50 [in] Base plate width 5.50 [in] Column length 5.50 [in] Column width 5.50 [in] Column location relative to footing g.c. Centered Materials Concrete, Pc 3.00 [Kip /in2] Steel, fy 60.00 [Kip /in2] Concrete type Normal Epoxy coated No Concrete elasticity modulus : 3122.02 [Kip /in2] Steel elasticity modulus : 29000.00 [Kip /in2] . Unit weight 0.15 [Kip /ft3] Soil Modulus of subgrade reaction 200.00 [Kip /ft3] Unit weight (wet) 0.11 [Kip /ft3] Footing reinforcement Free cover : 3.00 [in] Maximum Rho /Rho balanced ratio : 0.75 Bottom reinforcement // to L (xx) . 6-#4 @ 9.00" Bottom reinforcement // to B (zz) : 6-#4 @ 9.00" (Zone 1) Load conditions to be included in design Service loads: SC1 DL S1 DL S2 DL +LL S3 DL +0.75LL Design strength loads: DC1 1.4DL D1 1.4DL D2 1.2DL +1.6LL Loads • Condition Axial Mxx Mzz Vx Vz [Kip] [Kip *ft] [Kip *ft] [Kip] [Kip] DL 5.55 0.00 0.00 0.00 0.00 LL 15.61 0.00 0.00 0.00 0.00 RESULTS: Status Warnings - Insufficient development length, Section 21.5.4.1 • Soil.Foundation interaction Allowable stress 1.5E03 [Lb /ft2] Min. safety factor for sliding 1.25 Min. safety factor for overturning 1.25 Paget il -- Li' Controlling condition S2 Condition qmean qmax Amax Area in compression Overturning FS [Lb /ft2] [Lb /ft2] [in] [ft2] ( %) FSx FSz slip S2 1.38E03 1.38E03 0.0826 18.06 100 1000.00 1000.00 1000.00' Bending Factor 0.90 Min rebar ratio 0.00180 Development length Axis Pos. Id Ihd Dist1 Dist2 [in] [in] [in] [in] • zz Bot. 20.11 7.04 19.75 19.75 xx Bot. 20.11 7.04 19.75 19.75 Axis Pos. Condition Mu 4) * Mn Asreq Asprov Asreq/Asprov Mu /(4)*Mn) [Kip • ft] [Kip * ft] [in2] [in2] zz Top DC1 0.00 0.00 0.00 0.00 0.000 0.000 I I zz Bot. D2 13.38 45.76 1.10 1.20 0.918 0.292 1 ,-1 I xx Top DC1 0.00 0.00 0.00 0.00 0.000 0.000 I 1 xx Bot. D2 13.38 43.06 1.10 1.20 0.918 0.311 I' =. i I Shear • . Factor 4 . 0.75 Shear area (plane zz) 3.10 [ft2) Shear area (plane xx) 2.92 [ft2] Plane Condition Vu Vc Vu /(4*Vn) [Kip] [Kip] xy D2 8.99 46.09 0.260 I'm yz D2 8.68 48.88 0.237 Iii Punching shear Perimeter of critical section (b... : 4.67 [ft] Punching shear area 3.31 Ift2] Column Condition Vu Vc Vu /(4)*Vn) [Kip] [Kip] column 1 D2 29.25 104.29 0.374 I I Notes Page c * Soil under the footing is considered elastic and homogeneous. A linear soil pressure variation is assumed. *The required flexural reinforcement considers at least the minimum reinforcement * design bending moment is calculated at the critical sections located at the support faces * Only rectangular footings with uniform sections and rectangular columns are considered. * The nominal shear strength is calculated in critical sections located at a distance d from the support face *The punching shear strength is calculated in a perimetral section located at a distance d/2 from the support faces * Transverse reinforcement is not considered in footings * Values shown in red are not in compliance with a provision of the code *qprom = Mean compression pressure on soil. 'gmax = Maximum compression pressure on soil. *Amax = maximum total settlement (considering an elastic soil modeled by the subgrade reaction modulus). * Mn = Nominal moment strength. * Mu 1(4 *Mn) = Strength ratio. * Vn = Nominal shear or punchure force (for footings Vn =Vc). * Vu /(4)*Vn) = Shear or punching shear strength ratio. Page4 Seam Shear b 0i := 5.5•in (4x4 post) d := tf — 2.in := 0.85 b := Width b = 36•in V „:= 4)• - • f V „= 16.32•kips 3 V„ = qu rb toll b V = 7.83-kips < V„ = 16.32-kips GOOD 2 Two -Way Shear / bs := 5.5•in Short side column width bL:= 5.5-in Long side column width b := 2 -(bs + d) + 2•(bL + d) b = 54 -in (3 =1.0 V 4 + f 8 psi•b•d V = 48.96•kips C 3 3•0 V„„, := 4).2.66• f V„„, = 32.56 -kips V q — (b + (1) V„ = 15.88.kips < V = 32.56 -kips GOOD Flexure 2 rb - bcot (1l Mu qu - I . 2 ) b M=4.98-ft-kips \ 2 2 ,:. 0.65 2 1:= b-d S = 0.222•ft 6 F := 5 -4)- f F = 162.5 -psi M f := S ° f = 155.47 -psi< F = 162.5 -psi GOOD lJse a 3' -0” x 3' -0” x 10" plain concrete footing Plain Concrete Isolated Square Footing Design: F2 f := 2500;psi Concrete strength f, := 60000-psi Reinforcing steel strength • E := 29000•ksi Steel modulus of elasticity "(cono -150•pcf Concrete density ,1p0,pcf Soil density gall .1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldi := 2659-lb Pdl := Totaldi Totalll := 7756-lb Pll := Totalll P := Pdl + P11 Pti = 10415-lb Footing Dimensions t f := 10-in Footing thickness Width := 36-in Footing width := Width Footing Area clnet gall — tf•'Yconc net = 1375•psf Ptl Areqd gnet Areqd = 7.575•ft < A = 9•ft GOOD Widthreqd Aregd Widthreqd = 2.75•ft < Width = 3.00 ft GOOD Ultimate Loads = Pdl + tf•A• P := 1.4•Pdl + 1.7•Pil P = 18.48-kips P qu A q = 2.05 -ksf Plain Concrete Isolated Square Footing Design: F3 f := 2500 -psi Concrete strength f := 60000-psi Reinforcing steel strength E := 29000 ;ksi Steel modulus of elasticity 'Ycbnc ;= 150-pcf Concrete density '(soil = 100 -pcf Soil density • 'gal* 1500-psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldl := 2363=1b Pd1:= Totaldi Total11 := 4575 Ib P11 := Totalll Pt1 Pd1 + P11 Pg = 6938 -lb Footing Dimensions t := 10 -in Footing thickness Width := 30 -in Footing width A := Width . Footing Area gnet gall — tf'1'conc qnet = 1375-psf Pg Areqd 5.04641 < A = 6.25 ft GOOD 9net Amid Widthreqd Areqd Widthreqd = 2.25 -ft < Width = 2.50 ft GOOD Ultimate Loads := Pd1 + tf'A''Yconc P := 1.4•Pd1 ± 1.7 -P11 P = 12.18 -kips P qu — qu = 1.95•ksf A Beam Shear bcoi : 5.5• in (4x4 post) d := tf — 2-in := 0.85 b := Width b = 30•in V :_ 4 t psi•b•d V = 13.6.kips 33 Vu := q I b 2 toll b V = 4.97•kips < V = 13.6-kips GOOD Two -Way Shear • bs:= 5.5.in Short side column width bL := 5.5-in Long side column width b := 2.(bs + d) + 2.(bL + d) b = 54-in ti := 1.0 _ 4 + s f psi b d V, = 40.8•kips C 3 'ac l := 2.66 f psi b d V„„,, = 27.13.kips ,V44,:= qu — O + d) V = 9.71 -kips < Ver = 27.13-kips GOOD Flexure 2 Mu := qu (b - bcol� (1). b M = 2.54•ft•kips I A:= 0.65 2 S:= b6 S= 0.185. 1 F := 5•(1:1• f F 162.5•psi M n f := f = 95.19•psi < F = 162.5-psi GOOD 'Use a 2' -6" x 2' -6" x 10" plain concrete footing Plain Concrete Isolated Square Footing Design: F4 f := 2500•psi Concrete strength f := 60000-psi Reinforcing steel strength E := 29000•ksi Steel modulus of elasticity `Yconc 150.pcf Concrete density Yso := 100•pcf Soil density gall := 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldl := 5001-lb Pd1:= Totaldi Total11 := 7639.lb 1 Totalll P P& + Pll P = 12640•1b Footing Dimensions t 12-in Footing thickness • Width := 42•in Footing width A := Width Footing Area gnet gall — tf Yconc gnet = 1350•psf Ptl Areqd gnet A red= g 9.363•ft < A = 12.25•ft GOOD Width := .Aregd Widthreqd = 3.06•ft < Width = 3.50 ft GOOD Ultimate Loads ,:= PdI d• tf A''Yconc P 1•4•Pd1 1.7•P11 P = 22.56.kips P q :_ — q„ = 1.84•ksf A • Beam Shear b„ := 5.5 -in (4x4 post) d:= tf -2•in := 0.85 b := Width b = 42-in V„ := 4)-- f psi b d V = 23.8-kips 3 Vu = qu (b 2 bcol) b V„ = 9.8:kips < V„ = 23.8 -kips GOOD J Two -Way Shear bs : 5.5-in Short side column width bL := 5.5: in Long side column width b := 2 -(bs + d) + 2 -(bL + d) b = 62 -in pc := 1.0 Vim= 4 + 8 • f si•b•d V„ = 71.4-kips C 3 3 - P c V„,„ :_ 4.2.66• f V„„, = 47.48 -kips ,Wyy; qu — (b + 0 V = 19.49-kips < V = 47.48-kips GOOD Flexure 2 Mu qu [(b - broil -(1 b M = 7.45 •ft•kips 2 J l2 := 0.65 2 •— b 6 S = 0.405•ft 6 F 5.41• f F 162.5-psi M u f := S f = 127.79•psi< F = 162.5-psi GOOD 11se a 3' -6" x 3' -6" x 12" plain concrete footing :Tr2--- Plain Concrete Isolated Round Footing Design: f5 f := 3000-psi Concrete strength f 60000-psi Reinforcing steel strength E := 29000•ksi Steel modulus of elasticity 1'conc 150•pcf Concrete density ^!soil 120 -pcf Soil density gall := 1500 -psf Allowable soil bearing pressure TYPICAL FOOTING Reaction Totaldt 619•Ib Pd1:= Totaldi Totalil:= 1600 -lb Pll := Totalll P Pdl + P11 P = 2219-lb Footing Dimensions t 12-in Footing thickness Dia : ='18•in Footing diameter Tr • Dia := Footing Area 4 qnet := gall – tf'Yconc qnet = 1350.psf Ptl Areqd 9net A = g 1.644 - < A = 1.77•ft GOOD Diareqd J A 4 Diareqd = 1.45.ft < Dia = 1.50 ft GOOD TT Ultimate Loads n := Pdl + tf'A'"Yconc P„ := 1.4• Pd1 + l .7•P11 P = 3.96•kips P qu :_ — q = 2.24•ksf A • Beam Shear bcoi 3.5-in (4x4 post) d := tf — 2-in := 0.85 b := cos(45•deg)•Dia b = 12.73•in V :_ (4).- 4 . f psi b d V„ = 7.901 .kips 3 (b — bcol V := q I 2 •b V = 0.91 -kips < V = 7.901 -kips GOOD Two -Way Shear bs := 3.5 in Short side column width bL:= 3.5•in Long side column width b := 2•(bs + d) + 2.(bL + d) b = 54.in Rc := 1.0 V 4 + . 8 f•psi•b•d V = 23.703•kips 3 3-Pc c V := 2.66 f psi b d V„mtax = 15.76•kips qu[b — ( bcol + d) V = — 0.31 -kips < Vumax = 15.76-kips GOOD Flexure r 2 Mu qu' I b — bcoll 1(2) 1 -b M = 0.18•ft• kips 2 J A,:= 0.65 2 := b d S = 0.123 -ft 6 F 5.4) f F 178.01•psi M ft := s n f = 9.9-psi < F = 178.01 -psi GOOD Use a 18" Dia. x 12" plain concrete footing r�l� Plain Concrete Isolated Square Footing Design: F( f := 2500-psi Concrete strength f := 60000-psi Reinforcing steel strength Es := 29000•ksi Steel modulus of elasticity lconc 150 -pcf Concrete density 'Ysoil := 100 -pcf Soil density gall := l500-psf Allowable soil bearing pressure COLUMN FOOTING - Reaction Totaldl:= 7072-lb Pd1:= Totaldl Totalll := 13304-lb Pll := Totalll P := Pdl + P11 P = 20376-lb Footing Dimensions t := 15-in Footing thickness Width := 48-in Footing width • A := Width 2 Footing Area gnet gall – tf''Yconc net = 1313•psf P • Areqd goer Areqd = q 15.52541 < A = 16 ft GOOD Widthreqd Aregd Widthreqd = 3.94•ft < Width = 4.00 ft GOOD Ultimate Loads 2 u. Pdl + tf'A'"Yconc P„ := 1.4 Pd1 + 1.7•Pll P = 36.72-kips P qu — qu = 2.29•ksf A F MS Beam Shear b 5.5 in (4x4 post) d := tg — 2 -in (1) := 0.85 b := Width b = 48 -in • V := 4 f psi•b•d V = 35.36 -kips 3 Vu .— qu (b 2 colt b V = 16.26-kips < V = 35.36 -kips GOOD Two -Way Shear bs := 5.5 Short side column width bL:= 5.5 -in Long side column width b := 2 -(bs + d) + 2•(bL + d) b = 74•in fl := 1.0 MVO= 4 + 8 f psi•b•d V = 106.08 -kips 3 3'13c V := x•2.66• f psi•b -d V = 70.54 -kips Vim= qu [b — (b + d) V = 31.26 -kips < V .= 70.54-kips GOOD Flexure 2 b —bcol (1 M := qu 2 12) -b M = 14.39-ft-kips A 0.65 b d 2 1:= S = 0.782 -ft 6 F := 5 -j• f F = 162.5 -psi M f :_ f = 127.75•psi< F = 162.5 -psi GOOD 11.Jse a 4' -O" x 4' -0" x 15" plain concrete footing I 1(0 Plain Concrete Isolated Square Footing Design: F7 f := 2500-psi Concrete strength f := 60000-psi Reinforcing steel strength Es := 29000•ksi Steel modulus of elasticity 'Yconc := .150.1icf Concrete density 7, := 100•pcf Soil density q := 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Total& := 1200-lb Pd1:= Total • Totalll 3200.1b Pll := Totalrl P Pat. + Pit Pd = 4400-lb Footing Dimensions tf := 10-in Footing thickness Width :_ 24•in Footing width A Width Footing Area net gall — tf' net = 1375•psf Pt! Areqd 9net A 3.2 ft < A = 441 GOOD Wtdthregd Areqd Widthregd = 1.79•ft < Width = 2.00 ft GOOD Ultimate Loads ,,:= Pdl + tf A'" (conc P := 1.4•Pdl + 1.7•Pil P = 7.82-kips P q u := A q 1.96-ksf )'q - -F Beam Shear bcoi 5.5•in (4x4 post) d:= tf -2•in := 0.85 b := Width b = 24 -in V :_ 4 - f V„ = 10.88•kips 3 Vu qu'(b c be l l) V = 3.01 -kips < V = 10.88•kips GOOD Two -Way Shear b := 5.5 Short side column width bL := 5.5•in Long side column width b := 2 -(bs + d) + 2.(bL + d) b = 54 -in 0 := 1.0 V 4 + 8 • -b•d V = 32.64 -kips (3 3•0cl fc•psi Vnmax := x•2.66• f psi•b•d Vnmax = 21.71 -kips ,:= q [b — ( b c oi + (1) V = 5.35 -kips < V = 21.71 -kips GOOD Flexure 2 b _ be 1 Mu qu ' 2 J].(_}b M = 1.16 ft kips A:= 0.65 bd 2 x:= 6 S= 0.148•ft F := 5••:13- f F = 162.5 -psi M f := S u f = 54.45 -psi < F = 162.5 -psi GOOD 'Use a 2' -0" x 2' -0" x 10" plain concrete footing A - ?2 10\3 ro .-= � fix] O P ::::, ,,, 5, s:, •:: ,..„ .9,, . .:„--. . 5),. , W CB — o ° ; ' SiA - g - c -= � W 0 0 1�� 1 ci j" qt = W9 - = u%u,1b -"QZZ) ( S' te) C )( 2.) - Ti! ! - -- "-5 • o — c:ki � Scfl )c) + " I so °'e.'e w 9 - ' b = '(''' ''.j (z e + SZ Li 4-i t-E_7 1 =a RA%v.. - is'@s -VI e. - blW = x C IL'e - el)c - t.4 I1 )( tZ S'�ks' pstio) = - 3v m • ❑ lJ� en 1. - v P • o < `� °lc..' e 4 ( V ')1Q " t -+ QQ I XZZ) C � s' 5 , I KO s t o) =z , W o J = 0 ok: ‘ ti, x'114 11'Scc 101/ 0 V` 3 3 D .1' l kt t 6 x = • m Pi o 1`1 t 1 152.0I--- 5° 1 57 —±; I D o xi r 7 , , 1 , , r__ i 3 O -wive -n1C'C r+�l al ri ar11l's� ❑ o A -k fa k :11 mN gk:A1 pool kuoJ.3. - d -�!un :3a sT I x x �� e0U 4001 fau Iq`AKY ► .1D3road .O Q bO- N n : BOr Q 1 V 9 31VQ )'\iVci A8 4J Bentley Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:43 AM Units system: English File name: O: \HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations\Front Load 2.etz\ • M33 =51.9 [Kip *ft] M33-12.19 (KiP'ft] • • • MMmexl,S l. L, 4,20 An. ,i Bentley' Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:35 AM Units system: English File name: O: HHPR Projects \CEN - Centex Homes (309)10EN - Plans\CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations\Front Load.etz\ UM IT a - % �-- M33 =25.66 [Kip'ft] M33= -30.27 [Kip *ft] • Mmen L 4:30 BY C ....., DATE: f a () k' l JOB NO.: ek j { 9 0 OF I I\ PROJECT: 5 c1 Too 1l v3 sty- • RE: UN 1 T A- R i Lo( irivibv... ❑ ❑ 1 3 30.4‘k.c4 J_ Z ^ W IC \ J • 0.153 *-' ' 1,153IL 0 J : Lt u O • z W 0 2 Et a Z aa` -t 0 U Chet- 0 vet�FufCaing Z 2 - =- Kir 30 1 k 30.41 i (a/g2)(ab) = 1 k L.1 S VS E 0 MK = (0,150Ca(1 )(10(00) 4- - 3,1536) +- 1,153(al) ❑ = aagAL t..F t z M2 /Mc : t,clb )1,5 :. o1c_. l',/ W ❑ Z ao .9.ob ` Inv, — ao ,ao 6. ¥ C, (ao 1 goc s,sb� = (.1 al S" 1'sF Ca")Caa') t 2,Y ,-2..j 9-YY r_ = ao,°1Otd, _ �wG,ct04� ,s0 c , .a �-.5— 6.3 C,zz � t'e)( 2:) o °� rni n < o o �-mo.x 4 Q 4 (zU ,quo 3t_(t3 -Ze,� 3('alaa- a(s4 1. C"' q IM�.x t , a� 1 1'� F < 15 psi; - , O V., 1x0 == x 4 , F2:2_ n d.. Bentley' Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:38 AM • Units system: English File name: O: \HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations Rear Load.etz\ M33 =43.24 [Kirft] • M33= -45.06 [Kip'ft] • 1 MrMs t- Ben fley Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:43 AM Units system: English File name: O:\HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations \Rear Load 2.etz\ M33 =41.88 [Kip M33= -46.37 Iwp'hl 1 X MGmex\A-% - LC 2_, 4 ,=SZ-3V . w 21. IV Fz a ( 1 0 ''''S 9(. °°°10 )L 1) 1 ' b '0 ' - ukl 0 c v /Ccoob )t)i9 =b --0) hl °) "o =St/ 'D'o ni a S 44 G U y tle'1q, - cz./ °bk.° -$9(000'o )(t1'O)ob'0 = vyy 0 (.fiZX00 'vjc000 (E.fi'O Flo ( 9-' 9(900'09( ,.bc_ °® = ‘ANT4 Iv 0 o (+ f t) ( 000 s) (3 ' o j (oo0' 2109 :0 = b • ipx : =S V ' To - 1 , 1 a t.:$(1 clal - 3 3 C i 1 C li CN T S V ---‘12 - Z ( _p)\1ob o - tv F i t wi n Z M p n lj D CI f t- 7 ( -kvu n = -- • ❑ m • VV o z T I L ')-14 uZ% .X 1 X „O -, ❑ ❑ ciwo043 0 1 J19 1 :31 :10310dd 40 Q l a ` N �' / oN eor 0 10 C J :.iva y ` V A9 BY: DATE: JOB NO.: OF PROJECT: ' RE: VrcycA load, B ❑ ❑ 3' -C x L x IV Z 744_11?)b ti o f 0 - Alvoc_ ---: 0 (\"\ kt:_k -.__5\ S. 'at o a ct vrv�kC.. 0.3.y4AL% U O w U Z w O • a k . Unft 1-- — 543.5 k a vni k C ---> - 40.0 4 t-Ct U Z oMr = 0,q0. i\ 5 .3,(c)-�!2> - O \ .�� � ` `f/ 0 /C. l\ S.1 o . �tL 04 X Y•5 \� t41- 1 1 " c z (3'5 L ❑ o a (o.� 0000 1 o,s o )0a�� i , N o e 0 ° F- a �r - 0.c10 10x49b4 • . 1rt. (. tt s e qi oic,., A% = 1 4 tofu �-�� o .a z (1, p-�} -�X tc,c,oL7o") / (O, Pj 2> 4 OwL (-2 u - �. -o# S@ 12' .. SM = 0.°lo(a o th(bo,000( - . bk12ii) — k_, ats . 1.33" - of 4,1. ? b 1 , . 0tc- I_rv, trS'2 to "o,C. As= t , gtt. a _ (\ .7 )CIO 000) /(o (3©96)(.4n = 0 < - L t N 0 6 • ON O,g0 X 9 : .-7: 8. 4,)5 t,- k >b3;g4 -'.0t- 4 ;.tom a x = . -1-r A € t°2" o,C • As. 0."irTas tnC� = a (0, sIt: ,' . /0,5ca )C 2.• -0. 0. ' %'-' 5 .ttv (1..3 Cq,S2 . Ott_ 4'FZLD BY p DATE: aO 1 0 JOB - c ^ c t () OF PROJECT: 9,, bix3 1,25 RE: U y� Q ik 1 1 -In* sVJ ❑ ❑ z aL.o3tFt F- 0 W S.a \' 1n, �,1ob E 2 J a --- a► U Z W D x a Z ChecL OverfvrnlyN9 0 F nnnn Wko r = a rci • 03 ILC - Mg_ (& o,1so)Ci,$)(3 ,4)+°',2,(a) 1,LL(4)= +(,QL 2 MV. _ (6)(0 , 5Y5)(4)4 - 5 , s(() + I s(. t2 U M M(2.. 4 L°1(0 = idol > 1,5 0� cc • Z Mor d(o , 03 E • a X c t _ 4 4 AL -a6,o3 : Irac.i°\FE e.= a.--01 Ft S -4 t-S,2 4 -1,bl, \\ 9-v�nW : c i Gll _ ALl -0 = a,c5- k-sC :- ot._ 3 LCD 2 -e-' — 3C ` '5 - a(a,-)-ol)) Fo ho.(4 t er,,,, !.A,k,, Use S fo re s+ -F Ovte (v Y iny - n , Mor - a ,fly - - MizL= (5.a 3.21.2.z4-(I,LL +3.2LL fi4DL useStksel.. 0 z 45 ,c1( o f-� DL. @ eo. e"0\ ,� ,% Mt,� _. (S_. Z i• 3. Z X.) a-- (I, L 3- 3 ,2 -(Z� LI D L o F 510,l o a' = 60,12 -4 g x 44 = I,5 Mo < M R 1,S(at.,037 LS,ctC. + - 4 DL x DLL - 1, 3 54 fco.kr, S.13e 01L i F Jo o \- r- LC 1 1‘ (5,2 +3,2 4-(I,1L4- 3.2XS) +3D- . �.')- 30L Mz._ (-I -(,.V6 i 1,SMo(M \.5(2 ';2, } 4-31)L t) _. Q.1 Y (fl long x afl x 15" �- a -aso'� x MIa = 4 (, . .X31)1_ - a�.JrO-3. = a .S� „: 1, - )-- - )- F E. (a.asts - 2 , s,Zi- ±,b(+ - 3. /) is ,( e _ = l,27_. qr 4(1s,5 1) _ a m q0 NM--) 3CAL- Z(1.22�� 4 - .r BY: p L DATE: ( -3010 JOB NO.: /". A , oot OF PROJECT: RE: 0\.. o.�c = Co 4_ r \3.at. ❑ ❑ 3(0(L -2(& J Z 0 w ¥r u) F Xasc k \S" v‘._:: �.� ;� I El = = -- - 1 e..—l\ 5 V. .o�- o o �` o. x > = a .35 \,<5- N l W 3C-L "5 ( 2(I ,t9.5) O , MI = _ . (46,vc,i- 3(3 —aG,d3 — !,i5(., e— 4 I,1 f 1 .(35 o - MO\ ._ 4 (1(0 / 63S 3 �' = \.at) �F vk c',34 Shar f + Y tV, 100Ldfn El (3)(L- aC I ,i4 )) f rro Li_ Z W ❑ Z 0 o = �� ;a ~ 3 O a x • a Bent ley Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:42 AM Units system: English File name: O: \HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations \Interior 2.etz\ M33= 23.55[Kip`K1 M33=- 17.88[Kip`h] Y i X • MOThent LC 14 Z°► n o• .Bentley, Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:42 AM Units system: English File name: O:\HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations \Interior.etz\ • M33 =32.26 [Kip ft] M33= -9.27 [Kip *ft] a Me LCZ /4-.F30 A C/ 318 -05 Appendix D 1.0" Diameter Bar Capacity at Portal Frame Concrete Breakout Strength Stem Walt Capacity when govern by 3 edges Foundation Capacity Givens Givens fc = 3000 psi fc = 3000 psi h' = 3.50 inches h = :12:00 I inches (into the Fc Stem = :...8:00 inches Note: hef above is the the embedment into or cmax = 5.25 inches the foundation and does not consider stem WE Fnd Width = 36.00 inches = 2.25 inches c = 18.00 inches Wc,N= 1.00 cast -in -place anchor Wc,N 1.00 cast -in -place anchor k = 24 cast -in -place anchor k = 24 cast -in -place anchor = 0.75 strength reduction factor = 0.75 strength reduction fact Calculations Calculations AN = 68 in` AN = 1296 AN = 110.25 in` AN = 1296 in` Nb = 8,607 pounds Nb = 55,121 pounds Wed,N = 0.8286 Wed,N = 1.00 Ncb = 4,399 pounds N = 55,121 pounds ON = 3,299 pounds 4Ntb = 41,341 pounds Combined Capacity of Stem Wall and Foundation ON = 44,640 0.75(1)N = 33,480 • BY. &C DATE: 6 „ 010 "B".: CE.--m--octo OF PROJECT: RE: Ir\ \ t'N'eckl - kkao_ . .i2 . _:,,a9S - 00k . ' , • . °VI f- W O M Z I El b' )4 3 7C. 1S J , 0 z . Tr (I) 1: 4 .e 12" o 14,01o00) /0/6(3006)( . Z 0 MAZ 01 q0(0 2. -° mocqz.) 2 - ".; 31 •Js ( 03 ( i/ 33 ) --'-- 4 leSf> k_P6- -", ok 2 0 TO.) CO ttet- e., 1 'V or ( it 61 haf 2 O - ix 0 a= 0.3q-6(0,006) /0.5(30,06 LL z 0 6 I- • CL ':".'.. 0.• > MVVItn ;' O • 6 c cll l''' CL) . 41 o .P • ;'-' A--c---31 Concrete Side Face Blow Out Givens Abrg = 2.15 in` fc = 3000 psi c rno = 18.00 inches = 0.75 strength reduction factor Calculations Nsb = 231,191 pounds 4)Nsb = 173,393 pounds Concrete Pullout Strength Givens Ab►s = 2.15 in` fc = 3000 psi = 0.75 strength reduction factor Calculations N = 51,552 pounds 4N = 38,664 pounds Steel Yield Strength Givens f, = 58,000 psi A = 0.606 in = 0.80 strength reduction factor Calculations N = 35,148 pounds DN = 28,118 pounds < 33,480 Ductility Met Holdown Check Holdown: HDU14 Holdown Capacity= 14,930 pounds 1.6* Capacity= 23,888 pounds 23,888 < 28,118 Holdown Checks BY DATE: JOB NO.. ‘...r PROJECT: RE: S -e m Wa►\ At Voo1ny ❑ o e. S i des oP Bth ►a. r js J Z LL F 0 la D�. o aSC t ( a inC); 300 PLC • ux�,\ 1 2 ❑ $ cLU 1evelsY13 s0 _ 2..0f) ■et,F aloof O 4o► Cts opcs �C'Il �liz`)= 333 pLP 5�- n z 1, >l ESQ ( ��( W - 1 � 100 u.) P l. � j _ '.. W = rw 4 Z LL o 63c k)(2. Ieve1S�(4O V Lt-lo p.F Eoor Z 0 z TTAal lo0.c).. = ‘Iii 5l +- LOO) o.1,' . 2 Mo.% sbp = ksoo plc _ isc)opt • w 2 O V 1 I+ ICn w s' Oow . o - t o.= 1 ..0 (4 C - t5. 0 2 E 0 . IL Z El z e rear` i 4'crok oc- bu ► ld‘r O = I- a DLo a . pt..F watt (c112.1evevs)(1 1i a s� r 34 P F .P knot-- 401 N (tso F = 333 S P 4-en (it12)(tso u) = tOOLo LL: C9I2a4-6> = 1-2_o pt.; (tt>CZS) = 4-- SO PLF TLb a343+ 100vJ a - ' o e ; a3u3 i 4 15-00(43 x L = (..0 I(LI r' a1 ‘N @ uni F* x Wn e uintl-ra 6',C. = Saryke as 04 mtn , Slocr toc&4. T L Yo 1'A ck \r 1 Oc.) W LA) 1.00 `, o -e_ c e Paciv, wull nt... a as(.1Z.)(Z) = boo pa- wall ( X(3 = ( -FUG , P1.F Siota' 4o11ZSoKOk _ 333pLC 51 (. 1►2)C1sc, u.) _ ton u> LL o (612:Y40)Ct> = 12910 PL\ dEcwr TL : a6a9 loow LA.) = 1,(2) 231rJ use c pt 1N