Loading...
Specifications (vt i o,o Of' 017Z 017 0179 01$ Structural Calculations for FIVED Full Lateral & Gravity AnalysigP' Plan B 1332 SEP 2 3 2010 CITY OF TIGARD BUILDING DIVISION Summer Creek Townhomes Tigard, OR Prepared for Pulte Group July 13, 2010 - JOB NUMBER: CEN -090 ** *Limitations * ** Engineer was retained in limited capacity for this project. Design is based upon information provided by the client, who is solely responsible for the accuracy of same. No responsibility and /or liability is assumed by, or is to be assigned to the engineer for items beyond that shown on these sheets. 96 sheets total including this cover sheet. This Packet of Calculations is Null and Void if Signature above is not Original Harper HP Houf Peterson Righellis Inc. EUGINEEHII • PLANNERS LANOUCAHE AHGNITEGTS•UJH,C OHS 205 SE Spokane St. Suite 200 o Portland, OR 97202 0 [P] 503.221.1131 0 [F] 503.221.1171 1104 Main St. Suite 100 o Vancouver, WA 98660 0 [P] 360.450.1 141 0 [F] 360.750.1 141 1133 NW Wall St. Suite 201 a Bend, OR 97701 • [P] 541.318.1 161 0 [F] 541.318.1 141 Design Criteria Project Scope: Full lateral & Gravity Analysis of Unit B Design Specifications: Wind Design: Basic Wind Speed (mph): 100 From Building Authority Exposure: B From Building Authority Importance, Ir,,: 1 2006 IBC / 2007 OSSC Occupancy Category: II Residential Earthquake Design: Seismic Design Category: D From Building Authority Site Class: D Assumed, ASCE 7 -05 Ch. 20 Importance, le: .1 ASCE 7 -05 Table 11.5-1 Ss: 0.942 USGS Spectral Response Map Si: 0.339 USGS Spectral Response Map Dead Load: Floor: 13 psf Wall: 12 psf Wood Roof: 15 psf Live Load: Roof: 25 psf Snow Floor: 40 psf Residential Floor Materials and Design Data: Materials: Concrete Compressive Strength, Pc: 3000 psi Foundations & Slab on Grade Concrete Unit Weight, yc: 145 pcf Steel Reinforcement Yield Strength, f 60,000 psi Wood Studs (Wall Studs): Hem -Fir #2 2x & 4x Wood Beams & Posts: DF -L #2 6x & Greater Wood Beams & Posts: DF -L# 1 Glulam Beams: 24F -V4 PSL Beams: Fb =2,900 psi, FV= 328psi, E =2.0 Million TS /LSL Beams: Fb =2325 psi, FV= 460psi; E =1.55 Million Design Assumptions 1. Allowable soil bearing pressure (qa) : 1500 psf Assumed 2. All manufactured trusses, joists, and flush beams.u.n.o. shall be designed by others. j Structural Analysis Software Used: Mathcad 11 Microsoft Excel 2000 WoodWorks - Sizer version 2002 Bently RAM Advanse Harper Project: Summer Creek Townhomes UNIT B HP P. Houf Peterson. Client: Pulte Group Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: June 2010 Pg. # LANDSCAPE ARCHITECTS•SURVEYDRS DESIGN CRITERIA 2007 Oregon Structural Specialty Code & ASCE 7 -05 Roof Dead Load RFR := 2.5-psf Framing RPL := 1.5•psf Plywood RRF := 5•psf Roofing RIME := 1.5•psf Mech & Elec RMS := 1 •psf Misc RCG := 2.5•psf Ceiling RIN := 1 •psf Insulation RDL = 15•psf Floor Dead Load FFR := 3 •psf Framing FPL := 4•psf Sheathing FME := 1.5•psf Mech & Elec FMS := 1.5•psf Misc FIN := .5•psf Finish & Insulation FCLG := 2.5•psf Ceiling FDL = 13•psf Wall Dead Load WOOD EX_Wall := 12•psf INT_Wa1l := 10•psf Roof Live Load RLL := 25•psf Floor Live Load FLL := 40•psf .6 —U\ Harper Project: Summer Creek Townhomes UNIT B HP Houf Peterson Client: Pulte Group Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: June 2010 Pg. # LANOGGAPE ARCHITECTS•SURVEYORS Transverse Seismic Forces Site Class = D Design Catagory = D Building Occupancy Category: II Weight of Structure In Transverse Direction Roof Weight Roof Area := 748 . ft 2 .1.12 RFwT := RDL•Roof Area RFVVr = 12566.1b Floor Weight Floor Area2nd := 605•ft FLRWT2nd := FDL•Floor Area2nd FLR = 7865-lb Floor_Area3 600•ft FLRwr3 FDL -Floor Area3rd FLRwr3rd = 7800.16 Wall Weight EX Wall Area := (2203)41 INT Wall_Area := (906) -ft 2 WALLVVI• := EX_Wall + INT Wa1l Area WALLwr = 35496-lb WTTOTAL = 637271b Equivalent Lateral Force Procedure(12.8, ASCE 7 -05) h := 32 Mean Height Of Roof le := 1 Component Importance Factor (11.5, ASCE 7 -05) 6.5 Responce Modification Factor (Table 12.2 -1, ASCE 7 -05) C := .02 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) x := .75 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) Period T := C T = 0.27 < 0.5 (EQU 12.8 -7, ASCE 7 -05) S1 := 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. (Chapter 22, ASCE 7- 05)...or S := 0.942 Max EQ, 5% damped, spectral responce acceleration at short period From Figures 1613.5 (1) &(2) F := 1.123 Acc -based site coefficient @ .3 s- period (Table 11.4 -1, ASCE 7 -05) F, := 1.722 Vel -based site coefficient @ 1 s- period (Table 11.4 -2, ASCE 7 -05) . , Harper Project: Summer Creek Townhomes UNIT B . 8 ' ' ., Houf Peterson Client: Pulte Group Job # CEN -090 y `` Righellis Inc. ENGINEERS• PLANNERS Designer: AMC Date: June 2010 Pg. # LANDSCAPE ARCA! TEC YS•SURVEYOR8 S MS Fa•Ss SMS = 1.058 (EQU 11.4 -1, ASCE 7 -05) 2 • SMS Sds := 3 • Sd = 0.705 (EQU 11.4 -3, ASCE 7 -05) SM1 FvS1 SMl = 0.584 (EQU 11.4 -2, ASCE 7 -05) Sd1 := 2. Sdl = 0.389 (EQU 11.4 -4, ASCE 7 -05) Cst := Sds Cst = 0.108 (EQU 12.8 -2, ASCE 7 -05) R ...need not exceed... Shc•Ie Cs := Cs = 0.223 (EQU 12.8 -3, ASCE 7 -05) TaR , ...and shall not be less then... C 1 := if (0.044• Sd I, < 0.01, 0.01, 0.044• Sds.Ie) ( 0.5•Sl•Ie1 (EQU 12.8 -5 &6, ASCE 7 -05) C2 := if l Sl < 0.6,0.01, J l R Csmin := if(CI > C2, C 1, C2) Csmin = 0.031 Cs := if (Cst < Csmin,Csmin,if(Cst < Csmax,Cst,Csmax)) Cs = 0.108 : Cs;:.WTTOTAL V = 69141b (EQU 12.8 -1, ASCE 7 -05) E := V•0.7 E = 48401b (Allowable Stress) 6 .--- Li e "6 Harper Project: Summer Creek Townhomes UNIT B ' P Houf Peterson Client: Pulte Group Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: June 2010 Pg. # LANDSCAPE ARCNITEC(S•SURVEYORS Transverse Wind Forces (Method 1 - Simplified Wind Procedure per ASCE 7 -05) Basic Wind Speed: 100 mph (3 Sec Gust) Exposure: B Building Occupancy Category: II I := 1.00 Importance Factor (Table 6 -1, ASCE 7 -05) h = 32 Mean Roof Height X := 1.00 Adjustment Factor (Figure 6 -3, ASCE 7 -05) a2 := 2•.1.16.ft Zone A & B Horizontal Length Smaller of... (Fig 6 -2 note 10, ASCE 7 -05) a2 = 3.2ft 4•hn 2•ft or a2 = 25.6 ft a2 := 3 2 ft but not less than... a2 =6ft Wind Pressure (Figure 6 -2, ASCE 7 -05) Horizontal PnetzoneA 19.9•psf PnetzoneB 3.2•psf PnetzoneC 14.4•psf PnetzoneD 3.3•psf Vertical PnetzoneE 8.8•psf PnetzoneF —12•psf PnetzoneG 6.4•psf PnetzoneH —9.7•psf Basic Wind Force PA := PnetzoneA: Iw X PA = 19.9•psf Wall HWC PB := PnetzoneB'Iw•X P = 3.2-psf Roof HWC PC := PnetzoneC'Iw a Pc = 14.4•psf Wall Typical PD := PnetzoneD'IH,•X PD = 3.3•psf Roof Typical PE := PnetzoneE'Iw X PE = — 8.8•psf PF := PnetzoneF'INVX PF = — 12•psf PG := PnetzoneG'Iw; X PG = — 6.4•psf PH := PnetzoneH'IW X PH = — 9.7•psf 13'-‘-jA Harper Project: Summer Creek Townhomes UNIT B HP '• Houf Peterson Client: Pulte Group Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: June 2010 Pg. # LANDSCAPE ARCNITECTS•SURVEYORS Determine Wind Sail In Transverse Direction WSAILZoneA (55 + 59 + 29)41 WSAILZoneB ( + 0 + 23) 11 WSAILZoneC (429 + 355 + 339)•11 WSAH-ZoneD (0 + 0 + 4).ft WA WSAII2oneA'PA WA = 28461b WB WSAILZoneB'PB WB = 93 Ib WC WSAILZoneC•PC WC = 161711b WD = WSAILZoneD'PD WD = 131b Wind_Force := WA + WB + WC + WD Wind Force := 10•psf•(WSAILZ + WSAILZoneB + WSAU-Zonec + WSAILZoneD) Wind_Force = 19123 Ib Wind Force = 129901b WSAILZoneE 43.11 WSAILZoneF 43.11 WSAILZoneG 334112 WSAILZoneH 327.1112 WE := WSAILZoneE'PE WE = —378 Ib WF := WSAILZoneF'PF WF = —5161b WG := WSAILZoneG'PG WG = — 21381b WH := WSAILZoneH'PH WH = — 31721b Upliftnet WF + WH + (WE + W + RDL•[WSAILZoneF + WSAILZoneH + (WSAILZoneE + WSAILZoneG)]'. Upliftnet = 1326 Ib (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN CALCULATION 3 - L' Harper Project: Summer Creek Townhomes UNIT B • P: Houf Peterson Client: Pulte Group Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: June 2010 Pg. # LANDSCAPE ARCMITECTS•SURVEYORS Longitudinal Seismic Forces Site Class = D Design Catagory = D, Building Occupancy Category: II Weight of Structure In Longitudinal Direction Roof Weight Roof Area = 838 ft • F := RDL•Roof Area • RFVV1• = 12566.1b Floor Weight Floor_Area2 = 605 ft ,rl FDL•Floor Area2nd FLR = 7865•Ib . Floor_Area3 = 600 ft Macaw= FDL•Floor Area3rd FLRWT3rd = 7800-lb Wall Weight E2(..W.4i1:. Cog. := (2203)4ft INT Wall Area = 906 ft 20410361,:= EX_Wa11 + INT Walh, WALLwr = 35496•lb WTTOTAL = 63727 Ib Equivalent Lateral Force Procedure(12.8, ASCE 7 -05) h = 32 Mean Height Of Roof I = 1 Component Importance Factor (11.5, ASCE 7 -05) ,v: =.6.5 Responce Modification Factor (Table 12.2 -1, ASCE 7 -05) C = 0.02 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) x = 0.75 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) Period := C T = 0.27 < 0.5 (EQU 12.8 -7, ASCE 7 -05) S1 = 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. (Chapter 22, ASCE 7- 05)...or S = 0.942 Max EQ, 5% damped, spectral responce acceleration at short period From Figures 1613.5 (1) &(2) F = 1.123 Acc -based site coefficient @ .3 s- period (Table 11.4 -1, ASCE 7 -05) F� = 1.722 Vel -based site coefficient @ 1 s- period (Table 11.4 -2, ASCE 7 -05) 1 Harper Project: Summer Creek Townhomes UNIT B I Houf Peterson Client: Pulte Group Job # CEN -090 Righellis Inc. ENGINEERS♦ PLANNERS Designer: AMC Date: June 2010 Pg. # LANDSCAPE ARCHITECTS Ai Fa S . SMS = 1.058 (EQU 11.4-1, ASCE 7 -05) 2 ' SMS := 3 Sd = 0.705 (EQU 11.4 -3, ASCE 7 -05) 1 F Si SMl = 0.584 (EQU 11.4 -2, ASCE 7-05) 2 •SM1 = Shc = 0.389 (EQU 11.4 -4, ASCE 7 -05) 3 st := Sds' Ie Cst = 0.108 (EQU 12.8 -2, ASCE 7 -05) R ...need not exceed... Cs Shc Cs 0.223 (EQU 12.8 -3, ASCE 7 -05) Av0.44'�n Ta•R max ...and shall not be less then... ,:= if (0.044 Sd • I < 0.01, 0.01, 0.044. Sds' 1 e) r 0.5•S1 le) (EQU 12.8 -5 &6, ASCE 7 -05) := ifl S1 <0.6,0.01, J R . := if(C1 > C2 ,C2) Csmin = 0.031 CsM.= if (Cst < Cs i < Csmax, Cst, Csmax)) Cs = 0.108 := •. Cs. WTTOTAL V = 69141b ,(EQU 12.8 -1; ASCE 7 -05) E := V•0.7 E = 48401b (Allowable Stress) S Lf) I Harper Project: Summer Creek Townhomes UNIT B 1 Houf Peterson Righellis Inc. Client: Pulte Group Job # CEN -090 ENGINEERS • PLANNERS Designer: AMC Date: June 2010 Pg. # LANDSCAPE ARCNITECTS•SGRVEVOR5 Longitudinal Wind Forces (Method 1 - Simplified Wind Procedure per ASCE 7 -05) Basic Wind Speed: 110 mph (3 Sec Gust) Exposure: B Building Occupancy Category: II I = 1.0 Importance Factor (Table 6 -1, ASCE 7 -05) h = 32 Mean Roof Height X = 1.00 Adjustment Factor (Figure 6 -3, ASCE 7 -05) Smaller of... = 2•.1.16.ft Zone A & B Horizontal Length (Fig 6 -2 note 10, ASCE 7 -05) a2 =3.2ft = .4•ho 2•ft or a2 = 25.6 ft but not less than... S 3-2- ft a2 =6ft Wind Pressure (Figure 6 -2, ASCE 7 -05) Horizontal PnetzoneA = 19.91psf PnetzoneB = 3.2•psf PnetzoneC = 14.4•psf Pnet2OneD = 3.3•psf Vertical PnetzoneE = —8.8.psf PnetzoneF = —12•psf PnetzoneG = — 6.4•psf PnetzoneH = —9.7•psf Basic Wind Force ZA,:= PnetzoneA'Iw'X PA = 19.9•psf Wall HWC &,:= PnetzoneB'Iw•X PH = 3.2.psf Roof HWC Pz:= PnetzoneC'Iw'X Pc = 14.4•psf Wall Typical Pte:= PnetloneD'Iw'X PD = 3.3•psf Roof Typical ,W= PnetzoneE'Iw•X PE = — 8.8.psf ,,:= PnetzoneF'Iw•X PF = — 12•psf Pte:= PnetzoneG'Iw•X PC, = — 6.4.psf A P,JJ A := PnetzoneH'Iw'X PH = — 9.7•psf g t„b • 1 Harper Project: Summer Creek Townhomes UNIT B HP Houf Peterson Client: Pulte Group Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: June 2010 Pg. # LANDSCAPE ARCHITECTS•SURVEYOR9 Determine Wind Sail In Longitudinal Direction Ay,§614 (58 + 59 + 21). ft N (0 + 0 + 51)41 N := (98 + 99 + 34) -ft 5 t := (0 +0 +114)•ft 244„,:= WSAILZoneATA WA = 27461b = WSAILZoneB'PB WB = 1631b = WSAILZoneC'PC WC = 33261b ,= WSAILZoneD'PD WD = 376 Ib Wi or a := WA + WB + WC + WD i d o ce •= 10•psf•(WSAILZ + WSAILZoneB + WSA + WSALLZoneD) Wind Force = 66121b Wind Force = 53401b SAILz, = 15141 �iieb'v:= 138412 VSA 242 -ft mazw := 216•ft2 WSAILZoneE'PE WE = — 13291b V:= WSAILZoneF'PF WF = — 16561b Wes:= WSAILZoneG WG = — 15491b ,:= W SAILZoneH' PH WH = — 20951b 1N�:= WF + WH + (WE + WG) + RDL•[WSAILZoneF + WSAILZoneH + (WSAILZoneE + WSAILZoneG)]'.6.1.12 Upliftnet = 901 lb (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN CALCULATION L9\ Harper Houf Peterson Righellis Pg #: Transverse Wind Line Shear Distribution ASCE 7 -05, section 6.4 (Method 1 - simplified) Design Criteria: Basic Wind Speed = 100 mph Wind Exposure = B (Section 6.5.6, ASCE 7 -05) Mean Roof Height, H (ft) = 32 Roof Pitch = 6 /12 Building Category= 11 (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf • Exterior Wall Dead Load= 12 psf • A. = 1.00 Iw= 1.00 Wind Sail Wind Net Design Wind Pressure (psf) ( ) Pressure (Ibs) Zone A = 19.9 143 2846 Wall High Wind Zone Horizontal Zone B = 3.2 29 93 Roof High Wind Zone Wind Forces Zone C = 14.4 1123 16171 Wall Typ Zone Zone D = 3.3 4 13 Roof Typ Zone Zone E = -8.8 43 -378 Roof Windward High Wind Zone Vertical Zone F = -12.0 43 -516 Roof Leeward High Wind Zone Wind Forces Zone G = -6.4 334 -2138 Roof Windward Typ Wind Zone Zone H = -9.7 327 -3172 Roof Leeward Typ Wind Zone Total Wind Force =l 19123 Ibs I Use to resist wind .uplift: Roof Only Total Exterior Wall Area= 2203 ft Uplift due to Wind Forces= -6204 Ibs Resisting Dead Load= 7517 Ibs El 1313 Lbs...No Net Uplift I • • Wind Distribution Tributary to Diaphragms Wind Sail Tributary To Diaphragm (ft Zone A Zone B Zone C Zone D Main Floor 55 6 429 0 . Upper Floor 59 0 355. 0 Main Floor Diaphragm.Shear = 7291 Ibs Upper Floor Diaphragm Shear = 6286 Ibs Roof Diaphragm Shear = 5546 Ibs Wind Distribution To Shearwall Line s MAIN FLOOR UPPER FLOOR ROOF Tributary Line Shear Tributary Line Shear Tributary Line Shear Wall Line Diaphragm Diaphrag Diaphragm Width ft (Ibs) Width ft (Ibs) Width ft (Ibs) A 15.83 2275 20.50 3143 21.33 2773 B 19.50 2802 0.00 0 0.00 0 C 15.42 2215 20.50 3143 21.33 2773 ' . Z= 50.75 7291 41 6286 42.67 5546 -L \O Harper Houf Peterson Righellis Pg #: • Transverse Seismic Line Shear Distribution Seismic Design Category = D • Occupancy Category = II • . . Site Class = D S1= 0.34 Ss= 0.94 . Importance Factor = 1.00 Table 11.5 -1, ASCE 7 -05 . Structural System, R = 6.5 Table 12.2 -1, ASCE 7 -05 Ct = 0.020 Other Fa = 1.12 Fv = 1.72 Mean Roof Height, H (ft) = 32 Period (T = 0.27 Equ. 12.8 -7, ASCE 7 -05 k = 1.00 . 12.8.3, ASCE 7 -05 S 1.06 Equ. 11.4 -1, ASCE 7 -05 • . . S 0:58 Equ. 11.4 -2, ASCE 7 -05 . Sips= 0:71 ' Equ. 11.4 -3, ASCE SDI= ' 0.39 Equ. 11.4 -4, ASCE 7 -05 ' Cs = 0.11 Equ. 12.8 -2, ASCE 7 -05 Csmin = • 0.01 Equ. 12.8 -5 & 6,.ASCE 7 -05 Csmax = 0.22 Equ..12.8 -3, ASCE 7 -05 Base Shear coefficient, v = 0.076 ' Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height (ft) = 8 Floor 3 Diaphragm Height (ft) = 18 • Roof Diaphragm Height (ft) = 32 • Floor 2 Wt (lb)= 7865 Floor 3 Wt (lb)= • 7800 . Roof Wt (Ib) = 12566 • Wall Wt (Ib) = 35496 • Trib. Floor 2 Diaphragm Wt (Ib) = 22063 • Trib. Floor 3 Diaphragm Wt (Ib) = 21998 Trib. Roof Diaphragm Wt (Ib) = 19665 - Vertical Dist of Seismic Forces Cumulative % total of base shear Rho Check • to Shearwalls (lbs) I to shearwalls I Req'd? V0 r 2 (lb) = 711 100.0% Yes Vfl 3 (Ib) = 1595 85.3% Yes V root (lb) = 2534 52.4% Yes Shear Distribution To Wall Lines Wall Line Tributary Area Tributary Area Tributary Area . Floor 2 Line' Floor 3 Line Roof Line . Floor 2 Floor 3 Roof Shear Shear Shear sq ft sq ft sq ft lbs Ibs lbs . A • 126 299 371 '148' 795 1257 B 282 0 0 331 0 0 . • C 197 301 377 231 , , 800 1277 . Sum 605 • 600 748 711 1595 2534. Total Base Shear* = I . 4840 LB 1 *Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. g '.- Lk Harper Houf Peterson Righellis Pg #: Longitudinal Wind Line Shear Distribution ASCE 7-05, section 6.4 (Method 1 - simplified) Design Criteria: Basic Wind Speed = 100 mph Wind Exposure = B (Section 6.5.6, ASCE 7 -05) Mean Roof Height, H (ft) = 32 Roof Pitch = 6 /12 Building Category= II (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf X _ 1.00 Iw= 1.00 • Wind Sail Wind Net Design Wind Pressure (psf) (ft2) Pressure (Ibs) Zone A = 19.9 138 • 2746 Wall High Wind Zone Horizontal Zone B = 3.2 51 163 Roof High Wind Zone Wind Forces Zone C = 14.4 231 3326 Wall Typ Zone Zone D = 3.3 114 376 Roof Typ Zone Zone E _ -8.8 151 -1329 Roof Windward High Wind Zone Vertical Zone F = -12.0 138 -1656 Roof Leeward High Wind Zone Wind Forces Zone G = -6.4 242 -1549 Roof Windward Typ Wind Zone Zone H = -9.7 216 -2095 Roof Leeward Typ Wind Zone Total Wind Force =l 6612 Ibs I Use to resist wind uplift: Roof & Half of Upper Floor Walls Total Exterior Wall Area= 2203 ft Uplift due to Wind Forces = -6629 Ibs Resisting Dead Load= 10160 lbs • E =I 3531 Lbs...No Net Uplift I Wind Distribution Tributary to Diaphragms Wind Sail Tributary To Diaphragm (ft Zone A Zone B Zone C Zone D Main Floor 58 0 98 0 Upper Floor - 59 0 99 0 Main Floor Diaphragm Shear = 2565 Ibs Upper Floor Diaphragm Shear = 2600 Ibs Roof Diaphragm Shear = 1447 Ibs Wind Distribution To Shearwall Lines MAIN FLOOR UPPER FLOOR ROOF Tributary Line Shear Tributary Line Shear Tributary Line Shear Wall Line Diaphragm (Ibs) Diaphragm (Ibs) Diaphragm (Ibs) Width (ft ) Width ft ( Width ( ft ) 1 8 1283 8 1300 8 723 • 2 8 1283 8 1300 • 8 723 E= 16 2565 16 2600 16 1447 • g "... LA2, . Harper Houf Peterson Righellis Pg #: Longitudinal Seismic Line Shear Distribution Seismic Design Category = D Occupancy Category = 11 Site Class = D S1 = 0.34 Ss = 0.94 Importance Factor = 1.00 Table 11.5 -1, ASCE 7 -05 Structural System, R = 6.5 Table 12.2 -1, ASCE 7 -05 Ct = 0.020 Other Fa = 1.12 Fv = 1.72 Mean Roof Height, H (ft) = 32 • Period (T = 0.27 Equ. 12.8 -7, ASCE 7 -05 k = 1.00 12.8.3, ASCE 7 -05 SMg 1.06 Equ. 11.4 -1, ASCE 7 -05 S 0.58 Equ. 11.4 -2, ASCE 7 -05 S 0.71 Equ. 11.4 -3, ASCE 7 -05 SDI= 0.39 Equ. 11.4 -4, ASCE 7 -05 Cs = 0.11 Equ. 12.8 -2, ASCE 7 -05 Csmin = 0.01 Equ. 12.8:5 & 6, ASCE 7 -05 Csmax = 0.22 Equ. 12.8 -3, ASCE 7 -05 Base Shear coefficient, v = 0.076 Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height (ft) = 8 • Floor 3 Diaphragm Height (ft) = 18 Roof Diaphragm Height (ft) = 32 Floor 2 Wt (Ib)= 7865 Floor 3 Wt (lb)= 7800 Roof Wt (Ib) = 12566 Wall Wt (Ib) = 35496 Trib. Floor 2 Diaphragm Wt (Ib) = 22063 Trib. Floor 3 Diaphragm Wt (Ib) = 21998 Trib. Roof Diaphragm Wt (Ib) = 19665 Vertical Dist of Seismic Forces Cumulative % total of base shear Rho Check to Shearwalls (lbs) I to shearwalls I Req:dd? • Vfloor2 (Ib) = 711 100.0% Yes Vfl 3 (Ib) = 1595 85.3% Yes Vroor (lb) = 2534 52.4% Yes Shear Distribution To Wall Lines • • Wall Line Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line Roof Line Floor 2 Floor 3 Roof Shear Shear Shear sq ft sq ft sq ft Ibs Ibs Ibs 1 275 270 360 • 323 718 1220 2 330 330 388 388 877 1315 Sum 605 600 748 711 1595 2534 Total Base Shear* = 4840 LB *Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. -L\ Harper Houf Peterson Righellis Pg #: Shearwall Analysis Based on the ASCE 7 -05 • Transvere Shearwalls Line Load Controlled By: Wind Shear H L Wall H/L Line Load Line Load Line Load Dead V Panel Shear Panel M MR Uplift Panel Lgth. From 2nd Flr: From 3rd Fir. From. Roof Load Sides Factor Type T (ft) (ft) (ft) ht k ht k ht k (klf) (plf) (ft -k) (ft -k) (k) 101 8 5.25 5.25 1.52 OK 8.00 2.28 18.00 •3.14 27.00 2.77 1560 Double 1.40 VIII • 102 8 3.88 3.88 2.06 OK 8.00 2.80 8.00 0.00 . . 723 Single 1.40 . IV 103 8 4.58 8.58 1.75 OK 8.00 122 8.00' 3.14 8.00 2.77 947 Double • 1.40 VI . 104 8 4.00 8.58 2.00 oK 8.00 2.22 8.00 3.14 8.00 2.77 947. Double 1.40 VI . 107 8 4.58 13.08 1.75 oK 8.00 ' 2.28 18.00 3.14 27.00 2.77 626 Single. 1.40 III • 108 8 8.50 13:08 0.94 OK '8.00 2.28 18.00 3.14 27.00 2.77 626 Single 1.40 III . _109 . 8 3.88 " 3.88 2.06 oK 8.00 2.80 723 " Single 1.40 IV 110" 8 1.25 4.50 6.40 " 8.00 2.22 8.00 3.14 8.00 2.7.7 1807 ' Double 1.40 • NG 111 8 2.00 4.50 4:00" 8.00 2.22 8.00 3.14 8.00 177 - 1807 Double 1.40 NG 112 8 1.25 4.50 6.40 ;Y ' '^ 8.00 2.22 • 8.00 3.14 8.00. 2.77. 1807 Double 1.40 . NG • 201 • 9 • 6.79 9:79" " 1.33 oK 9.00 3.14 18.00 2.77 604": Single 1.40 III 202 9 3.00 9.79 3.00 ox 9.00 3.14 18.00 2.77 604 Single 1.40 III 203 9 5.00 • 5.00 _ 1.80 OK. 9.00. _ '3.14 18.00 -2.77 1183 -. Double- 1.40 •VII 204 Not Used 205 Not Used 206 Not Used - 301 8 6.88 10.08 1.16 oK 8.00 2.77 275 Single 1.40 I' • 302 8 3.21 10.08 2.49 oK 8.00 2.77 275 Single 1.40 I 303 8 5.00 10.00 1.60 OK 8.00 2.77 277 ... Single 1.40 I 304 8 2.50 10.00 3.20 OK 8.00 2.77 277 Single 1.40 I 305 8 2.50 10.00 3.20 oK 8.00 2.77 277 Single 1.40 I Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load / Total L Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load * L * 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) • • • • • • g _L\ Harper Houf Peterson Righellis Pg #: Shearwall Analysis Based on the ASCE 7 -05 Transvere Shearwalls Line Load Controlled By: Seismic Shear H L Wall H/L Line Load Line Load ;Line Load Dead V Rho' V ' % Story # Panel Shear Panel M MR • Uplift Panel - Lgth. ' From 2nd Flr. From 3rd FIr. " From Roof - Load Strength Bays Sides Factor Type T (ft) (ft) (ft) ht k ht k ht k (klf) (plf) (plf) (ft -k) (ft -k) (k) 101 ' 8 . , 5.25 5.25 1.52 OK 8.00 0.15 18.00 0.80 - 27.00 1.26 419 545 0.30 1.31 Single 1.00 IV 102 8 3.88 .3:88 2.06 OK 8.00 033 8.00 0.00 0.00 85 111 0.22 0.97 Single 0.97 I 103 8 4.58 838 •1.75 OK 8.00 0.23 8.00 0.80 8.00 1.28 269 350 0.26 1.15 Single 1.00 II 104 8 4.00 8.58 2.00 oK 8.00 .023 8.00 0.80 8.00 1.28 269 350 0.23 1.00 Single 1.00 II 107- 8 4.58 13.08 135 OK' ,8.00 - 0.15 18.00 0.80 27.00 126 168 219 026 1.15 Single 1.00 I 108 8 8.50 13.08 0.94 OK '8.00 0.15 18.00 0.80 27.00 1.26 • 168 219 NA , 2.13 Single . '.1.00 I ,• 109 8 3.88 3:88 2.06 OK 8.00 033 0.00 • 85. 111 0.22 0.97 Single 0.97.. 1 . 110 8 1.25 4.50 6.405 t 8.00' 0.23 8.00 0.80 8.00 1.28 513 667 0.07 0.31 Double 0.31 NG M1 ;' 111 8 4.50 4.00 s :• 8.00. 0.23 8.00 0.80 8.00 1.28 513 667 0.11 0.50 • Double 0.50 NG . 0, • 112 8 1.25 4:50 .6.40 1 n % ; 8.00 0.23 8.00 0.80 8.00 1.28 513 • 667 0.07 0.31 Double 0.31. _ NG • 201 9 6.79 - - 9.79. .1.33 OK 9.00 . 0.28 18.00 • 1.26 .157 205., 0.46 1.51 Single 1.00. I . 202. 9 . 3.00 9.79 3.00 ' OK ' 9.00 0.28 18.00 1.26 157 '205 0.20 0.67 ' Single 0.67 1I 203 9 5.00 5.00 1.80 OK 9.00 0.55 18.00_ 1.28 • ' 366 476. 0.34 . . 1.11 •' Single 1.00 IV 204 - .. . Not Used . .. 205 . . ... ' Not Used . . . 206 ' Not Used , 301 8 •6.88 10.08 1.16. OK . 8.00 ' 1.26 '125 ' 162 0.34 1.72 Single ' 1.00 . I .. ' 302 8 3.21 10.08 2.49 OK . . 8.00 1:26. 125• 162 . 0.16 0.80 . Single 0.80 I 303 8 . 5.00 . 10.00 .1.60 on .. .. 8.00 1.28 128 166 0.25 1.25 Single 1.00 I 304 8 2.50 10.00 3.20 OK 8.00 1.28 128 166 0.12 0.63 Single 0.63 11 3 • 05 8 2.50 90.00 3:20_ OK 8.00 1.28 128 _ 166 0.12 0.63 Single 0.63 , 11 _ ' Rho Calculation ' . Does the 1st floor shearwalls resist more than 35% of the total transverse base shear? _ Yes • Does the 2nd floor shearwalls resist more than 35% of the total transverse base shear? Yes • Does the 3rd floor shearwalls resist more than 35% of the total transverse base shear? Yes Total 1st Floor Wall Length = 17.71 • Total # 1st Floor Bays = 4.43 • . Are 2 bays minimum present along each wall line? No 1st Floor Rho = u Total 2nd Floor Wall Length = 14.79 Total # 2nd Floor Bays = 3 Are 2 bays minimum present along each wall line? No 2nd Floor Rho = u • Total 3rd Floor Wall Length = 20.03 . Total # 3rd Floor Bays = s Are 2 bays minimum present along each wall line? Yes 3rd Floor Rho = t. • Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load•Rho / Total L % Story Strength = L / Total Story L (Required for walls with H/L > 1.0, for use in Rho check) # Bays = 2•1./H Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear • Shear Application ht Mr (Resisting Moment) = Dead Load • L * 0.5 • (.6 wind or .9 seismic) . Uplift T = (Mo-Mr) / (L - 6 in) s s __k....‘1/45 Harper Houf Peterson Righellis Pg #: • Shearwall Analysis Based on the ASCE 7 -05 Longitudinal Shearwalls Line Load Controlled By: Wind Shear H L Wall H/L Line Load Line Load , Line Load Dead V Panel Shear Panel M MR Uplift Panel Lgth. From 2nd Fir. From 3rd Flr. From Roof " Load Sides Factor Type T (ft) (ft) • (ft) ht k ht k , ht k (klf) (pit) (ft -k) (ft-k) (k) 105 8 12.75 12.75 0.63 OK 10.00 • • 1.28 18.00 1.30 27.00 0.72 1.13 259 Single 1.40 1 • 55.75 92.01 0.04 106 8 12.75 12.75 0.63 oK 10.00 1.28 • 18.00 1.30 27.00 0.72 1.13 .259 Single 1.40 . I 55.75 92.01 0.04 • ' I 207 9 11.50.._11.50 0.78 ox . _ • . 9.00 1.30 18.00 0:72 0.75 176 Single 1.40' 1 24.71 49.73 -0.47 I 208 _ 9 1 11.50 11.50 0.78 OK I. 9.00 1.30 '18.00 .0.72 0.75. 176 . . Single 1.40 '1 24.71 49.73. -0.47 306 8 10.00 10.00 0.80 ox 8.00 0.72 0.29 72 Single . 1.40 I 5.78 14.40 . -0.30 I 307 8 10.00 10.00 0.80 cm 8.00 0.72 0.29 72 I Single 1.40' I 5:78 14.40 -0.30 Spreadsheet Column Definitions & Formulas • L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line • H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load / Total L Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear • Shear Application ht Mr (Resisting Moment) = Dead Load * L • 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) • • • • U,1,0 Harper Houf Peterson Righellis Pg #: Shearwall Analysis Based on the ASCE 7 -05 Longitudinal Shearwalls Line Load Controlled By: Seismic Shear H L Wall H/L Line Load Line Load Line Load Dead V Rhos)/ % Story # Panel Shear Panel M MR Uplift Panel Lgth. From 2nd Fir. From 3rd Flr. From Roof Load Strength Bays Sides Factor Type T (ft) (ft) (ft) ht k ht k ht k (kif) (pH) (plf) (ft -k) (ft -k) (k) 105 8 12.75 12.75 0.63 OK 10.00 032 18.00 0.72 27.00 1.22 1.19 177 177 NA 3.19 Single 1.00 I 49.09 96.89 -0.74 106 8 12.75 12.75 0.63 OK 10.00 0.39 18.00 0.88 27.00 1.32 1.19 202 202 NA 3.19 Single 1.00 I 55.17 96.89 -0.24 I 207 208 I 9 1 11.501 11.501 0.78 OK 1 9.00 0.88 1 18.001 1.32 0.81 191 I 191 I NA I 2.56 Single I 1.00 I 31.56 1 53.69 I -0.06 I 307 8 110.00110.00 0.80 oK I I I 8.001 1.22 0.35 122 I 122 NA I 2.50 I Single 1 1.00 I 9.76 1 17.40 0.07 I Rho Calculation Does the 1st floor shearwalls resist more than 35% of the total longitudinal base shear? Yes Does the 2nd floor shearwalls resist more than 35% of the total longitudinal base shear? Yes Does the 3rd floor shearwalls resist more than 35% of the total longitudinal base shear? Yes Total 1st Floor Wall Length = 25.50 Total # 1st Floor Bays = 6.38 Are 2 bays minimum present along each wall line? Yes 1st Floor Rho = 1.0 Total 2nd Floor Wall Length = 1100 Total # 2nd Floor Bays = 5 Are 2 bays minimum present along each wall line? Yes 2nd Floor Rho = 1.0 Total 3rd Floor Wall Length = 20.00 Total # 3rd Floor Bays = s Are 2 bays minimum present along each wall line? Yes, 3rd Floor Rho = 1.0 Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load•Rho / Total L Y. Story Strength = L / Total Story L (Required for walls with H/L > 1.0, for use in Rho check) #Bays =2'IJH Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear • Shear Application ht Mr (Resisting, Moment) = Dead Load * L • (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) Z .---- t 1 1 ) c . Harper Houf Peterson Righellis Pg #: SHEAR WALL SUMMARY' Transvere Shearwalls Panel Wall Shear Wall Type Good For V (pH) (PIO 101 1560 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 2/12 1667 102 723 1/2" APA Rated Plyw'd w/ 8d Nails @ 2/12 833 103 947 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 990 104 947 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 990 I07 626 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 638 108 626 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 638 109 723 1/2" APA Rated Plyw'd w/ 8d Nails @ 2/12 833 110 Simpson Strongwall 111 Simpson Strongwall 112 Simpson Strongwall 201 604 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 638 202 604 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 638 203 1183 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 1276 204 Not Used 205 Not Used 206 Not Used 301 275 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 302 275 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 303 277 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 304 277 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 339 305 277, 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 339 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design Toads. Harper Houf Peterson Righellis Pg #: SHEAR WALL SUMMARY' Longitudinal Shearwalls Panel Wall Shear Wall Type Good For Uplift Simpson Holdown Good For V (per (PIO (lb) (lb) 105 259 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 44 Simpson None 0 106 259 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 , 44 Simpson None 0 207 176 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 -345 Simpson None 0 208 191 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 242 =59 . Simpson None 0 306 122 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 242 -72 Simpson None 0 307 122 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 242 -72 Simpson None 0 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design loads. .8 � UM Transverse Wind Uplift Design Unit B • Shear H Joist L Wall Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total Total Panel Height Lgth. From 2nd From 3rd From Wall Load (not Point Point ning Moment Moment Floor Shear @ Floor Shear @ Stacking ® Stacking From From Uplift Uplift Flr. Flr. Roof Shear including Load Load Momen @ Left @ Right Left , Right Left Side of @ Right Wall Wall @ Left @ floors @ Left @ t House Side of Above Above Right above if Right House @ Left @ walls Right stack) (ft) (ft) (ft) (ft) k k k k plf kif k k kft kft kft k k k k k k 101 8 1.1667 5.25 5.25 2.28 3.14 2.77 8.19 1560 0.1 0.8 0.208 72.42 5.58 2.47 14.54 14.93 14.54 14.93. 102 8 1.1667 3.88 3.88 2.8 2.8 722 0.092 2.432 22.40 10.13 0.69 4.83 6.50 4.83 6.50 103 8 1.1667 4.58 8.58 2.22 3.14 2.77 8.13 948 0.1 0.078 0.078 38.40 1.41 1.41 9.20 9.20 203 R -12.12 -2.91 9.20 104 8 1.1667 4 8.58 2.22 3.14 2.77 8.13 948 0.234 0.117 1.632 33.54 2.34 8.40 9.18 8.14 9.18 8.14 107 8 1.1667 4.58 13.08 2.28 3.14 2.77 8.19 626 0.1 0.192 0.078 25.36 1.93 1.41 5.93 6.01 201L 201R 6.71 6.71 12.65 12.72 108 8 1.1667 8.5 13.08 2.28 3.14 2.77 8.19 626 0.1 0.078 0.384 47.06 4.28 6.88 5.56 5.37 202L 202R 6.77 7.24 12.33 12.60 110 8 1.1667 1.25 4.5 2.22 3.14 2.77 8.13 1807 0.1 0.384 0.078 18.07 0.56 0:18 23.00 23.30 203L 12.13 35.13 23.30 111 8 1.1667 2 4.5 • 2.22 3.14 2.77 8.13 1807 0.1 0.078 0.208 28.91 0.36 0.62 18.87 18.76 203R -12.12 6.75 18.76 112_ 8 1.1667 1.25 ' 4.5_ 2.22 3.14 2.77 8.13 1807 0.1 0.208 1.424 18.07 0.34 1.86 23.17 21.99 23.17 21.99 201 9 1.1667 6.79 9.79 3.14 2.77 5.91 604 0.172 0.848 0.156 39:13 9.72 5.02 4.90 . 5.32 301L 301R 1.45 1.40 6.35 6.71 202 9 1.1667 3 9.79 3.14 2.77 5.91 604 0.172 0.848 -0.156 17.29 3.32 1.24 5.10 5.51 3021 302r 1.67 1.72 6.77 7.24 203_ 9 1.1667 5 5 3.14 2.77 5.91 1182 0.172_ 0.848 0.385 56.42 6.39 4.08 10.52 10.80 303L 303R 1.61 1.32 12.13 12.12 301 8 6.88 10.09 2.77 2.77 275 0.252 0.384 .0.468 15.11 8.61 9.18 1.45 1.40 1.45 1.40 302 8 3.21 10.09 2.77 2.77 275 0.252 0.468 0.384 7.05 2.80 2.53 1.67 1.72 1.67 1.72 303 8 5 .10 .. 2.77 2.77 277 0.252, 0.384 0.858 11.08 5.07 7.44 • 1.61 1.32 1.61 1.32 304 . 8 2.5 10 2.77 2.77 277 0.112 0.192 5.54 • 0.83 0.35 2.02 2.13 2.02 2.13 305_ 8 2.5 ,10 2.77 2.77_ 277 '0.112 0.384 5.54 0.35 1.31 • 2.13 1.90 2.13 1.90 Spreadsheet Column Definitions & Formulas L = Shear Panel Length - H ( A = Shear Panel Height 1 Wall Length = Sum of Shear Panels Lengths in Shear Line t -+ V (Panel Shear) = Sum of Line Load / Total L Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load • L * 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) • • • Transverse Seismic Uplift Design Unit B Shear 1-1 Joist L Wall Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total Total Panel Height Lgth. From 2nd From 3rd From Wall Load (not Point Point ning Moment Moment Floor Shear @ Floor Shear @ Stacking @ Stacking From From Uplift Uplift Flr. Flr. Roof Shear including Load Load Momen @ Left @ Right Left Right Left Side of @ Right Wall Wall @ Left @ floors @ Left @ t House Side of Above Above Right above if Right House @ Left @ walls Right stack) (ft) (ft) (ft) (ft) k k k k plf klf k k kft kft kft k k k k k k 101 8 1.1667 5.25 5.25 0.148 0.795 1.257 2.2 419 0.1 0.8 0.208 19.99 5.58 2.47 3.15 3.74 3.15 3.74 102 8 1.1667 3.88 3.88 0.331 0.331 85 0.092 2.432 0 2.65 10.13 0.69 -1.91 0.60 -1.91 0.60 103 8 1.1667 4.58 . 8.58 0.231 0.8 1.277 2.308 269 0.1 0.078 0.078 11.15 1.41 1.41 2.42 2.42 203 R -2.99 -0.56 2.42 104 8 1.1667 4.00 8.58 0.231 0.8 1.277 2.308 269 0.234 0.117 1.632 9.74 2.34 8.40 2.18 0.62 2.18 0.62 107 8 1.1667 4.58 13.08 0.148 0.795 1.257 2.2 168 0.1 0.192 0.078 7.00 1.93 1.41 1.29 1.41 201L 201 (part) 1.17 0.34 2.46 1.75 108 8 1.1667. 8.50 13.08 0.148 0.795 1.257 2.2 168 0.1 0.078 0.384 12.99 4.28 6.88 1.14 0.85 202L 202R 0.33 1.35 1.47 2.20 110 8 1.1667 1.25 4.50 0.231 0.8 1.277 2.308 513 0.1 0.384 0.078 5.80 0.56 0.18 6.88 7.32 203L 3.00 • 9.87 7.32 111 8 1.1667 2.00 4:50 0.231 0.8 1.277 2.308 513 • 0.1 0.078 0.208 • 9.28 0.36 0.62 5.89 5.74 203R, 304L -2.99 2.91 5.74 112 8 1.1667 1.25 4.50 0.231 0.8 1.277 2.308 513 0.1 0.208 1.424 5.80 0.34 1.86 • • - 7.13 5.36 7.13 5.36 201 9 1.1667 6.79 9.79 0.795 1.257 2.052 - 210. 0.172 ' ' 0.848 0.156 • 13.83 9.72 5.02 0.75 - -- - 1.37 301L 301R -0.13 -0.20 0.62 1.17 202 9 1.1667 3.00 9.79 0.795 1.257 2.052 210 0.172 0.848 0.156 6.11 3.32 1.24 1.04 1.66 3021 • 302r 0.11 -0.32 1.15 1.35 203 . 9 1.1667 5.00 .5.00 . 0.8 1.247 •2.077 415. 0.172 0.848 0.385 20.18 6.39. 4.08 _ 2:89 3.30 303L 303R 0.11 -0.32 3.00 2.99 301 8 6.88 10.09 1.257 1.257 125 0.252 0.384 0.468 6.86 8.61 9.18 -0.13 -0.20 -0.13 -0.20 302 - 8 3.21 10.09 1.257 1.257 125 0.252 0.468 0.384 3.20 2.80 2.53 0.21 0.29 0.21 0.29 303 8 5.00 10.00 1.277 1.277 128 0.252 0.384 0.858 5.11 5.07 7.44 0.11 • -0.32 0.11 -0.32 304 ' 8 2.50 10.00 1.277 1.277 128 0.112 0.192 0 2.55 0:83 0.35 0.72' 0.90 0.72 0.90 305 8 2.50 10.00 • 1.277 1.277_ 128 0.112 0 0.384 2.55 0.35 1.31 0.90 0.55 0.90 0.55 Spreadsheet Column Definitions & Formulas L = Shear Panel Length C� H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line t V (Panel Shear) = Sum of Line Load / Total L \ Mo (Overturning Moment) = Wall Shear * Shear Application ht Mr (Resisting Moment) = Dead Load * L * 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) TRANSVERSE UPLIFT CALCULATIONS - SUMMARY UNIT b Shear Controlling Total Holdown Holdown Good Control Total Holdown Good For Panel Case Uplift @ or Strap Type@ Left For ling Uplift Type@ Left Left Case @ Right k Simpson k k Simpson k 101 Wind 14.54 Holdown HD12.w DF 15.51 Wind 14.93 HD12 w DF 15.51 102 Wind 4.83 Holdown HDQ8 w 3HF 6.65 Wind 6.50. HDQ8 w 3HF 6.65 103 Seismic -0.56 Holdown HDQ8 w DF 9.23 Wind 9.20 HDQ8 w DF 9.23 • 104 Wind 9.18 Holdown HDQ8 w DF 9.23 Wind 8.14 HDQ8 w DF 9.23 107 Wind 12.65 Holdown HD12 w DF 15.51 Wind 12.72 HD12 w DF 15.51 • 108 Wind 12.33 Holdown HDU14 14.93 Wind 12.60 11DUI4 14.93 110 Wind 35.13 Holdown None 0.00 Wind 23:30 None 0.00 111 Wind 6.75 Holdown None 0.00 Wind 18.76 None 0.00 112 Wind 23.17 Holdown None 0.00 Wind 21.99 None 0.00 201 Wind 6.35 Strap MST60x2 8.11 Wind 6.71 MST60x2 8.11 202 Wind 6.77 Strap MST60x2 8.11 Wind 7.24 MST60x2 8.11 203 Wind 12.13 Strap CMST12x2 18.43 Wind 12.12 CMSTI2x2 18.43 301 Wind 1.45 Strap MST48 2.88 Wind 1.40 MST48 2.88 302 Wind 1.67 Strap . MST48 2.88 Wind 1.72 MST48 2.88 303 Wind 1.61 Strap MST48 2.88 Wind 1.32 MST48 2.88 304 Wind 2.02 Strap MST48 2.88 Wind , MST48 2.88 305 Wind 2.13 Strap MST48 2.88 Wind 1.90 MST48 _ 2.88 M% By \ I ^ n / DATE: —\ 5� /� o , O JOB NO C 1 ' CID OF \ \ VV 1 \ ` ( v , V� \/ � /\- .`/ \ice ` \ \J 1 V PROJECT: RE: D\SIV.1SUTlotO of SHER{Z `3PIS ok1 5T1TTNIEs ❑ - )ES1C -,k) SNEA'2= �j.a5e) 1�•.pS W 0 J Z E F O W I- • 2 Axta\ 1poa. \tw u_ tto ; C] ( i .L5I( 1 R.SN.0 , 015) +(23)(041a+ (C1q.s >(o +(Z� )Go,o4(1z.> = 1 . d k,l�s DI- J (I.2 -5 (1g,s'(o,'ZS) > 4- ((1q,s')(o.ozs-� = 1.34 k 5L o Tofia1 c 3.O�F \NA1_L 11\ : (19.0(0,01SY + 6n)(0 +. ( ( aX CC Cf_ Z } ( 1 s40. 01 A Z I2) '- (' a.a1a v.;ns oL. 0 Ctq,5)1o.ozs j- (1q.s )Xo,o2.s'1 1z.) = a.ee,■ lops SL o Z ("12,10.0 s 0.4 4 iti r s LL 2 TO )r12 1 .7. 5 ,333 14,_ f 0 0 U.K01 112 . o (iq.(o.otslC -� 1- (2- r�(o.otZ)(2F0 + " )(0 )( /z.() = a,. a1S 'Li c" DL. & o (� ° 1 : a. \C-, es SL 0 0 ( "12Y0.Oyp�2> *.r. U.44 \ LL 54i ccyN s (Le.l S ki c 1-e s s W A Lt^ TWC. Prllowah\e.s\atar OC; F-} 1._ shear' R.fk = k I lc,. 1\n 5s\Nosx'1 15V.lo o.',s X31.% jo.. 3 ■11 Ssw Z 4 x - 4- 5 4# 0.31 \ b k-W34 14- ___ 0..654 ►12 Ssw IS x 1$49 # , o 35" 53 i LC- # Q4t aca tt_ 1,n -_-.1. 'RJR- \N A L\_ Disk . 5he r° o = : ‘10 • 1S �- 'c- < \'r3o # 1\ t S y ria -! L .5 : a '= _ \ t 2 tS1 < \ S" -0 1s g. x lF 111 = SSW a1)( rzo = wo. 1\ t' Si 41. 1 5 1) i si - V x allow Sheaf � � � 1t 0 1 fi60 t* 0'' 6 .57t Q a -aa 115r5- wAin1 \ s% In 44 it 0 . ;4 1 t? •.�. 0, SS . $ f . # & 1a. '1 cot oN(6, 1 c 01 - as 1 ta. �.. ; Z?D3° • 8L ' ' 3 1 • O 0 ion- Boa g. i rr: in : •,j O •z BMWS ANA 110 1 tk 0 L �,��� \ • - �� "F LOOP. Sw LA`I 0 ' i noiN)ko -4S t - N Sti 0 101 . - . • - i - 1 1 1 i 1 ____, • , . t if 1,1 V.: :• II. , ; _ i • • • 0., U a .. .,. .,_•: ... 1-:1 • t... . :, • ., Iv . ., !.,.._ e.:We.l.aPr.-,.:1,4 • !, . . • 1::i . r‘il 1 mi r..., . i>3 —0-- . •-z.. 1 ---- •• .____Qi:7--_..... . • i i ' I -- • , . ___,... I . . . / 1......... ill ___ _ 1 I • 1 1 1 • - 1 . .. I ___ • ' ____•141,b._ I I . . -1 • • © ao3 . .. mm abs aoloi NON uSE 0 0... . • g ' L: U Ni I "C 15- afooi._:: FtwoR:2 •iviyou . • O s c1•: jh- k! —' - 1 9 64 • I•1 p >. ? 0 i s 0 (V) r j. : C , . k � f G r„, : !, ' S , f ml Sri f4i F' K! :ti ` i t+ r . I'LL! —. L! 1.1 . L iii ol 1.1 CA r, I -, .0 - i ,, , , :, . 1 •R 0 7r..7 !X, 1: • '.: ;r C) 3 2 B -t,, . UN lb -- 3 (LE ) LEVELSv) LA ® /OLi ° BY jf\ � . G \ / �'� /{/��/� '�/ DATE. vi. , JOB NO.: c V. S �� -- V PROJECT: Roo a-4-1- S }I0`. RE: Ides i nF n rn I bl0c \ort @ Sfia, 5 ❑ ❑ OpTio a_ Z 1`• I - • 2 TR DT (Afi 01v .:* F.F. 1'1'- l' 14` • ❑ 'Sot/1/4.1T - 9± 9V z" To? vt_pf -mss IV- 5 ° . a , N`[∎x 51) vt_OPLNckx -. = o Z 3 ∎S'-" MI U W O DE 5 l C-xty W Iivo Pressuc� x a Z = - Oro Psi 0 a j J ' ti t l t e� y � I De Ply , es c q , �u r. �� } �, . 4 T oe vuaz�s s - lie o 2 luiAh UOVAd. !O.,,) oc ' l9 pLi: f T T ❑ 1= itt°tAi* 'z= f 4 VI 0 p o" f CC • 0 W Max = Z _ -t °! SC[5.3.5 - x'}21$r ct ❑ D g 0 a U rra� - t * ft 1 *1 S (3.5- ks.25� L ,->< — 6x'.2 ivHJz 1-3 S --' sY = V = ly v $tat /1 NZ ' A (3.5�.-s -ZS) e F ( i) - (B50p$C.)(1.00 5)(t.ts):: a3y < 6 12 "Cl o \I, (rF ISO F51. (t = aUp p; +- 7 . ok. xxi = _0- —T (1 0 c�ici 2 N C > • 8—L2t) X BY: j, tl A L DATE: 6 \'2- , ! \ JOB NO.: (1 C PROJECT: RE: OP? 10 Jo 2 W - aUi \t up fi•�fr c. 2 .D FLoot - P jOCA" Q0n Pcc rr e 3g-D Twog. {- w W x L ❑ Tr 4 .u� i ANT = 13 -q 0 J Mo x 1 u v )-e rc:.-0,,c o v e_rwi\\y = l2`- O' \ O w 0 •e.kgr\ W t c. pf esQx e ao .Q`O p F Z Loud c by \ \ v1) \o\O C'- = akt2 pLF- 0 a I. 1- L 1- U I. o z T. T 2 'R= .1,(0 Ito R 2 1 :rte - 45 • o • - I Y`no x = I1L '1 x o . LL. z H a • I L t 2. - (i - i �-� $ J �o. c�l� I NA �' \`," 12 o r . 3 j 1 Z c. , = C0. 3 _ a , b8 1N4 1.5 1 ... i '. A s,2 = a 9S IN'. i-- 3.S • A 3,s,„ = 5.1.S ► ca° co 6 o 'ern Ck 3,1,5, 6. = 0 ,iss1 0 ;1 T. = 6.9,5t- a4.s(0,515) (2.2 + a%;,s - Co, b )-r5,3c+0t ,(.,b 4 ' 5.16 +0 x,36 0 r = . 1N .b = -- L- = #c.)(120. -45) 19- pSL'.., L X4.13 , y 1 " Sv = V — : b , = u CI, C N. CA.CLCq CS Si. Cf b'} .315 a � 'Fe ® (5 So ps (t,L(I,o )0.0 1,0 )(i.s1(i.o)( (1:1 1 fi b ' =(a lac F )sz II,L )6.00,6 o.ckii.Zi1.6)6,o) LL 4o1,9-..) 8—L21 WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit 8- Front Load WoodWorks8) Slater 7.1 June 28, 2010 10:52:50 COMPANY 1 PROJECT RESULTS by GROUP - NDS 2005 SUGGESTED SECTIONS by GROUP for LEVEL 4 - ROOF Mnf Trusses : ��� ai u Not designed by request (2) 2x8 Lumber n -ply D.Fir-L No.2 1- 2x8 By Others Not designed by request • ' (2) 2x10 Lumber n -ply D.Fir -L No.2 2- 2x10 (2) 2x6 Lumber n -ply Hem -Fir No.2 2- 2x6 (3) 2x6 Lumber n -ply Hem -Fir No.2 3- 2x6 . (2) 2x4 Lumber n -ply Hem -Fir No.2 2- 2x4 (3) 2x4 Lumber n -ply Hem -Fir No.2 3- 2x4 Typ Wall Lumber Stud Hem -Fir Stud 2x6 816.0 Typ Wall 2x4 Lumber Stud Hem -Fir Stud 2x4 816.0 SUGGESTED SECTIONS by GROUP for LEVEL 3 - FLOOR ====== Mnf Jet --:=====-==============w=============== Not designed by reques-- -,__.._� landing Lumber -soft D.Fir -L - 00.2 2x6 816.0 4x6 Lumber -soft D.Fir-L No.2 4x6 • ' (2) 2x8 Lumber n -ply D.Fir -L No.2 1- 2x8 1.75x14 LSL LSL 1.55E 2325Fb 1.75x14 • By Others Not designed by request By Others 2 Not designed by request 12) 2x10 Lumber n -ply D.Fir-L No.2 2- 2x10 (2) 2x6 Lumber n -ply Hem -Fir No.2 2- 2x6 (3) 2x6 Lumber n -ply Hem-Fir 00.2 3- 2x6 (2) 2x4 Lumber n -ply Hem -Fir No.2 3- 2x4 (3) 2x4 Lumber n -ply Hem -Fir No.2 3- 2x4 Typ Wall Lumber Stud Hem -Fir Stud 2x6 816.0 Typ Wall 2x4 Lumber Stud Hem -Fir Stud 2x4 816.0 SUGGESTED SECTIONS by GROUP for LEVEL 2 - FLOOR • ..Mnf Trusses Not designed by request m.m..vm�. • deck joists Lumber -soft D.Fir-L No.2 2x8 816.0 Mnf Jst Not designed by request 3.125x14 LSL LSL 1.55E 2325Fb 3.5x14 4x0 Lumber -soft D.Fir -L No.2 4x8 3.125x10.5 Glulam- Unbalan. West Species 24F -V4 DF 3.125x10.5 5.125x16.5 GL Glulam- Balanced West Species 20F -V7 DF 5.125x16.5 (2) 2x10 Lumber n -ply D.Fir-L No.2 2- 2x10 4012 Lumber -soft D.Fir -L No.2 4012 3.125x141) LSL 1.55E 2325Fb 3.5014 (2) 2x6 Lumber n -ply Hem -Fir No.2 3- 2x6 • (3) 2x6 Lumber n -ply Hem -Fir No.2 3- 2x6 6x6 Timber-soft Hem -Fir No.2 6x6 (2) 2x4 Lumber n -ply Hem -Fir No.2 3- 2x4 (3) 2x4 Lumber n -ply Hem -Fir No.2 3- 2x4 Typ Wall Lumber Stud Hem -Fir Stud 2x6 816.0 . SUGGESTED SECTIONS by GROUP for LEVEL 1 - FLOOR Fnd Not designed by request CRITICAL MEMBERS and DESIGN CRITERIA . Group Member Criterion Analysis /Design Values • ===m.,a= ,.- _- .a>nas.a.. ®yea. _.. ......... ... �a>anan deck joists j42 Bending 0.41 Mnf Jst Mnf Jst Not designed by request landing j46 Bending 0.17 By Others 3 By Others Not designed by request 4x6 b25 Bending 0.87 (2) 208 b7 Bending 0.21 1.75x14 LSL b14 Bending 0.57 3.125x14 LSL b21 Shear 0.41 4x8 b20 Bending 0.04 • By Others By Others Not designed by request • By Others 2 By Others Not designed by request . 3.125x10.5 b24 Deflection 0.03 5.125x16.5 GL b26 Bending 0.21 12) 2x10 615 Bending 0.93 4x12 622 Shear 0.16 3.125x1411 623 Deflection 0.09 Ftg Ftg Not designed by request ' (2) 2x6 02 Axial 0.34 13) 2x6 c64 Axial 0.59 6x6 036 Axial 0.77 (2) 2x4 025 Axial 0.35 (3) 2x4 c44 Axial 0.84 Typ Wall w15 Axial 0.28 . Fnd Fnd Not designed by request Typ Wall 2x4 w40 Axial 0.33 .a . == .r n= __=== = :n==as.a.== � .� == === om =n DESIGN NOTES: • 1. Please v aa. verify that the default deflection limits are appropriate for your application. 2. DESIGN GROUP OCCURS ON MULTIPLE LEVELS: the lower level result is considered the final design and appears in the Materials List. 3. ROOF LIVE LOAD: treated as snow load with corresponding duration factor. Add an empty roof level to bypass this interpretation. 4. BEARING: the designer is responsible for ensuring that adequate bearing is provided. 5. GLULAM: bxd - actual breadth x actual depth. • 6. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 7. Sawn lumber bending members shall be laterally supported according to • the provisions of N05 Clause 4.4.1. 8. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply 1s equally top - loaded. Where beam. are side- loaded, special fastening details may be required. • 9. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 10. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. g- 6, 1 • • • WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B - Rear Load WoodWorks® Sizer 7.1 June 28, 2010 10:56:39 Concept b24Dde: Beam View Floor 2: 8' • i 1050 - , .... ,... 49 -6 114 . 45'0 • '403 ... : -- - : -:: -- - - - 1._0.. 1 . :: : y9 ■k ■ 4.5 1 .. • . . .. .. 4.1. -. 4U b' yb is Sy. b.. V4 .: ..10.-0- y3 :: .: • : "I - • o _b 3 27 y 3.5 27! 3G b 00 ' .. . : ... .. - LV ; -0 3. : ■ . : 0 .. Ll b.. 02 . .: . ... . . . .. .. ... _. ..::. ... . . .. .. -.. _ Lb Ott ,, .: : :. . . 24 4 f y ■ ' L3' -0.. ( 27 LC - b ; 1 1 :11. .. _ 21.-0' /b 20 • • 10 ... - - -. .. _ - -- 10 • 13 - *. ` . - :. . .. - ._ . .: -. . .. ._. - - - - .. _ _ ... _. . .. 11'-0' _;. . -- - -- (U . .L -"-- - ! - - - --- --- - . -- 11...-b- : 4)0 - E : bb 10 bb .:E -' -.. - - - yn b4y . b21 25 -b n3 - _: - - - - - - .- -- - • 0 O _ b20iii b22 .. .. _ : - : - 4 -b b23 n 0-0 .BB\6.E3 BCCCC C CCCFCCC CC CCCCC C CC CCICCCDDDD D DD D1DDD'CD DD DD D DDD CD1DD DEE. E E.E EE'EFEEEIEE!E EEEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1' 2'3'4'5'6'7'8'9111'1 :1 :1 T11 112(2222 .2(2203(33 :33 :4 "41455(5 5:5 :5 :6 :7.7 , 7.7(77-6" • • • • • 1 8 .— (,r\l,_ WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B - Front Load WoodWorks® Sizer 7.1 June 28, 2010 10:04:32 Conceptb24Dde: Beam View Floor 2: 8' 1 1 105 49'-6" 0" !US , ; . ! ; : : : . : - . , . ; ; . ' . 4 / -0' IUL� _ ". 40 -0 . • I00 : . b1 : : " -: ' :: _ - - - -- _ -- - - -. .- - 44' V0 i ! : - . ■ . .. - 43' -b y0 Sy'-b yU 34 -0 ua 33 -0 025- : ?j - --- - ` - - -[ •-': "— ''- '- 00 -: _ ; .:_... : ._ : -. ... _ S0 -0 40 253 . : .: - [ .. :i .. -- - .. .: L /" -b - OZ ; . . . . . : _ . . . : : : : .. _ . . - - . . _ . . - - - - 40 -0 60 - -, _- 24 - ! y L - b 23 I : : - ... - - - - - --- - LL - 0 . !! L1 - 0 /0 . -- _;-_' --- -! — - -- -- - - -- --- - :- - -- -- - - — - -- .. - LU'-0 10 .. 1V-0 !3 ., • .. .. .. - - -- - - - I1 -b : _ - - - _ _ -b -- - l J -0 bb -. ' 00 _ : - 0/ : 1 1-0 0b . :. -``- :._ -_: - - - bw :_ : ; b21 -: • ._ _ 0-b : : -- !. b .. 0L, b . b .. • 01 b26, .. : 0 -0 bU; b22 _ b20 4 -0 -b23 . „ 3 -b L . b .. I b 1 0-0 - BB\B BCCCCCCCCtCCCGCCCCCCCCC CC'CCCDDDDD DD DFDDDCD DD-DDDDDDCD\DDDE E E E EIEEEtEEEIEElEEEEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 1518' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46'48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68'70'72' 74' 76' 0'1'2'3'4'5'6'7'59111 '1 :1 :1 1: 141: 1112E22; 222'. 2E 2212f3t33; 33 3 13E3 :3t3!4(4 :4'4?4t4 "4415(5 5 :5 :5 (68:6 :56:6(6 F{647(7777 • i l3.--. C • • WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B - Front Load Woodworks® Sizer 7.1 June 28, 2010 10:04:34 Colc60ept Mode: Ccc591mn View Floor 2: 8' 1050. : ... :. _ .. _ _ . .. ... . .. ... - . .. .. - - - ... - - - 49' -6° ;110 I U4 4tS-b U3 IUL/ _ _ - . _ _ 40 . x . . • .1 vi , 40-0 1uu c57 c1 c2 • c46 c58 V/ --- - .. � -- -_ _ Vb . :: ' 3y.-b. V4 :t -- i i 30-0 y3 "... 3 f . 43 .. VG ._ -- .. _ .:. - - -- - - - _ -- -- - - - - - Sb' -b' by i : . :: : . 33-0. • 3L -b :: Or ia. 3 . 1 . b .. : • 150 i 1 .: - . : : .. • L2V.--13- iS4 . c55 - - - -- C48 - - -- - -_ -- . -- - - -- z0 -13 03 II i EJ - - L I ._ 0 .. tSL - - -. .:. .: - - - - -- -- -- -- -- Lb-0' 01 :. - - - - G . - .. OU -- - - : : _ _ L4 -U' ry 11. ■ - . : c49 LS b' 121 - - - LG -0 1 1 :11c50 • . L'1 - i r 5 c54 ; (1 c68 - - .. i -0 • 14 c53 ... 1.1- _ 1 t3-b' !L • ; : c52 - - -- ; :c51 . . .. Ib.-b r I Ib' l7 ru 1 1 14 -b OV - c7 - - :C56 - - - '13' -0 00 12-0' Of I bb - ..._ . . I U . -b . • 03 - V-O 04 [ 23 -b 03 - .:! - - i - -- - : -• b -b • b t c11 64- c , c36 -- - • bU) : ■_. ..- . . - 1:1 : 4 _ . � - - - --- - - - : - -- -- 3 .c39 ; . I : s u-b BB \B.8 BC. CCCCCCCFCCCCCCCCCCCC.CCC \CCCDDDDDDDDUDDDDD DDDDDDDDCD'DDDEEEE EiEE EIEEEIEEIEEEEEEEEE(EEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24'26' 28'30'32'34' 36' 38'40'42'44'46'48'50' 52'54'56'58' 60' 62'64' 66'68' 70'72'74'76' 0'1'2'3'4'5'6'7'8'9111 - 1:1:1 , 1!1 t11 11'2(222:2 :33 3'.3(33135.4(44:4444(4'44(5(5 5:5 :5.5:5(5 - 515!6(68:6 :6.65(6516 7(77.7.7 -6" B -- 6eN,d1 WoodWorks ®Sizer SOFTWARE FOR WOOD DESIGN Unit B - Front Load WoodWorks® Sizer 7.1 June 28, 2010 10:04:29 Concept Mode: Beam View Floor 3: 17' 1050 49'x:: 104 .: i' ; -- - - .- _ 40 -b IUSb i 4/ -0 IUI 4b "-b ILA ..< b7 - - ' - : 44 b • 9 . • 43-0 --_--.: . . _ 41-0 a5 . `J -b' , .. .; . . i _. : _ . . � 3 : '- - - -- - .. • - .. - - - 323 -b y 1 . . 30 -b yu 34. o.. 23y SS '-b' : 25( . . 61.-0 00 _ .: : . 3U -b • 00 : .: :: :; . LV -0 04 ._ __ ., ._ .: b12 -- -• - -- :..__'. _ .. : 20 t33 4 /' -b is 1 b25 b8 L5 b' 0t- 14 ; 24 -b (3 �: -• - .- ; - _ , .. _ -- _ - - - - Ir -o / L :b11 10-b 00 '-_I , : is : : . : .: , 1L . • 11-0 bb - 1U -b b4 -- w._. -: _ _ ' ' 0-b bay (. b .. -b b. ' r" #- :b10.: „' b9. Al 3-0 L b.. 1 b BB\ B. BBCCCCCCCCICCCCCCCCCCCCCCCICCCD .DDDDDDDFDDDCDDD'DDD E EEEEE'EFEEEIEE!EBEEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'9111 '1 :1 :1.1 :1( 1'111'2(22:2;2 :3 :323!4(4 "4(415(5 :5 5(5!6(6 6:6:6 • /5.-- 65-- WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B - Front Load WoodWorks® Sizer 7.1 June 28, 2010 10:04:27 Concept Mode: Column View Floor 3: 17' 1050 . ... ... 49 -6 IUS _ :. : - .: 41-b I UG C - - - - 40-0 luu c14: : c15 " .• 44 -0 _... 4 1 -b .' - - ' 40 -b .. . 3V -b VU ... - : .: _: -- - - - - - - - -_ - -- - - - 34 tS y .: .; 33-0 00 ... c38 : - - 3L -0 01 : • i ': • : :11 :: : : :: - 3 1' - 0.. rsa c16:._ Ly - 04 • =c25 Lts -0 01 :c_ .: [ L0-0 t5U 61 L4 -b !y Ii C17 - LS -b f23 -- ----- - - LL -b f r : • c43 2 -0 .. i o c ; - c67 iy •e r4 c22 _ ;II 16 -b r I ! . c24 . .:. C26 . I 0 --0" (U. . IJ i l 14 0 by 'I ' }j- : .t -: -: : ... : : .: - -- - - - '13-0 00_ ---- ' - --- --- -= -- ' -' - "- - -- IL . -b 00 - - :. .. .. - - -- - • - y _ : .: ' . 0 -0 03 - - - - -- f . -b .. ou' c45 _1:c44 4. -0 -) .. :. c21. =c20c19:' J8 c . ' 3 -0 1 BBIB.B BCCCC C CC C FCCCCC C C C CC CCICCCD.DDD 0 00 D1006 CD DD +DDD DDD CD\DD DEwE E E EEEEFEEEIEEiEE!EEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'567'8'91(1 1:1:1 ?1(1' 1111 212 22:2 '4:4'..(1.4(4(474 (415(5 55:5 515166 f:6 :6 s-c WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B - Front Load WoodWorks® Sizer 7.1 June 28, 2010 10:04:23 Concept Mode: Beam View Roof: 25' 105 .- .. .. _ . . .. - - • -- -_... 49' -6" 704 : . :. : 400 10.5 . ' .. . - - ' . : : : 4b a vu 45 t' y r • • - --'-- ---- - -- --- --•- - -•.- -- � 4 1 -a _-- ..:. -• -- •- - - � - -- _:- � ya •...... -... __..._.... 4L -a Jy b.. yJ_.__.[ 3 #-a yU --- tsy J4 . a . 00 . - - J.3 -b 231 - - - " _ .. - ..IL -b • 0b 4 = - - -- - -- - --- : -- - • .. -.. - #5 b16 04 - :::: - - J'I b 3U -b" Ly i7 #J 20 -0 #L :. .. - - - .. .. .. .. . LT-0 01 La - b ' aU: . .: • . L 5'-a' (y L4 -b.. (2Y -- . : . ' =�`' ---'- --: -- - -- -- - -- -- - - - - -- -- - - - - - LS b LL b 1a: ; -- - - --: -- - :-� :b27 , ;-- ' ---= . - = - - =- -- -- - - - - - -- -- -. -- • - - -- - -- �u • n (3 (4 iy - b ' • • : .. ... i 72S b 1 G -- ^ 1 0 --0 (1 :: . .. . .. - ..... .. - -- ... _ - (U._. . 15 b' by - _ - - . -- - • 14 b' IS b 00 - i �. --- .--:: - - .__. IL -0 1 I -a ao - - IU ^b - ) . a b4 • -- --- -= - ---- -- b bv5 ■ b18 : �. -• - - 4. -b.. L' a .,_, U -a BBtB. BBCCCCCCCCI' CCCCDCCCCCCCCCC\ CCCDDD C.ID D EEE'EIEEEFEEEIEEiE E +EEEEEIEEEEZ V 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22'24' 26' 28' 30' 32' 34' 36' 38'40' 42'44' 46'48' 50'52' 54' 56' 58' 60' 62'64' 66'68' 70' 72'74' 76' 0'1'2'3'4'5'67'8'9111 '1 :1 :1 :111'111'.2(2 2.'2:2 :3 31313 . 31314(4 . 4:4:44!4#4 . 414(515 5 :5 :5.51515'515 6(68:6 :6.6:616 616!7O7:77 o' • WoodWorks®Sizer SOFTWARE FOR WOOD DESIGN • Unit B - Front Load WoodWorks® Sizer 7.1 June 28, 2010 10:04:25 Concept Mode :•Column View Roof: 25' • -b` _ _ 49' -6" 1 U4 4 IU 25 • ` . � _ • • • 10.5 1' b • 1 UL° .: .: i - . - - - ? - 40 -b I U . 1 ! 40.-0 44 -b' 9- • : iseiins, ii*Giuminifc}io . : : • 25 4.5-b 44 -b 4U b V3 :: : • :: .: • .: - :: : i y -b . 3 'J•4 -r: _•`: • '- - - :. _,.. .:.. ..- - :" -'- � `;- -! -. - '- :. - -. - - - - - - -. ..., _ _ 30 y3 : ''. : ' . • : . 1 ' : . .; if-0• VL - :' -- -:- : ` - :i - ': • .. .. • - ... ... _ - . 1 t Sb'-b :: : ' -: - : -.: _ - - -- - ---" -- - 34-0 - t5y , "[ 33-13 t725 - - --- _ C29 _ _ J4 -0 201 .. :: .:n [ : ! : : . .51._0. 250 - :.._ . -.:. _ _ .. __ 3U - 255 : : : :i :i :. .. LV-0 254 46 • 254 : c30 .... : ._ - - -- -- - -- Lb -b 01 : • . .. - - L5 250 : -- . .__; � ._._._._.._`-- - - -- .. - • - -- . : 44 -0 !V L3 b � ---- - LL - 0 • 10 - • - - - - -- • 13 ! 3 - 1,_ c65 - 1-0 / :45 _ - '11'-13 .- :. .. .. /L .. .- -- -•• :: - 113-13 • 11 _ -- -- `--'- 14 b 0y i `. ., _ .. :. • .. - - - "13.-13. 1325 14 01 - bb 1U - b • 00 13 -b • 134} - i _ _.. _ 25 -13 03 . • _ - - - - - ( ._ b .. bL. 1 , • nu5 c34 c35 4 ..a ■ .5-0 L' b' :: . : : .BB\B.B BC CCC CCC CICCC CC CCCC C CCC CCICCCD DDD D DD DIDDD CD DD DD D DDD C.D1DD DEE E EE EE'EtEEEEEiE EEEEEEEiEEEEZ 0' 2' 4' 6 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44'46' 48' 50' 52' 54' 56' 58'60'62' 64' 66' 68' 70' 72'74' 76' U1'2'3'4'5'678'9111 - 1:1:1 , 1 ?111'1112122:2:2 E2'21 213(33:3:3 :3(3131314(4 :4 5:5 :5 6 -6" • • • • L g.-- Cr\e'b COMPANY PROJECT 1 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 10:34 b1 Design Check Calculation Sheet Sizer 7.1 LOADS ( tbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w27 Dead Partial UD 539.7 539.7 0.00 2.50 plf 2 w27 Rf.Live Partial UD 493.7 493.7 0.00 2.50 plf 3_c14 Dead Point 1074 2.50 lbs 4_c14 Rf.Live Point 1601 2.50 lbs 5_j43 Dead Full UDL 47.7 plf 6 143 Live Full UDL _ 160.0 _ plf MAXIMUM RE • a 0 1 0' 31 Dead 1048 • 1539 Live 1227 • 2089 Total 2275 3627 Bearing: Load Comb #2 #2 Length 1.21 1.93 Lumber n -ply, D.Fir -L, No.2, 2x10 ", 2 -Plys • Self- weight of 6.59 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv* = 127 Fv' = 207 fv * /Fv' = 0.62 Bending( +) fb = 581 Fb' = 1138 fb /Fb' = 0.51 Live Defl'n 0.01 = <L/999 0.10 = L/360 0.06 Total Defl'n 0.01 = <L/999 0.15 = L/240 0.09 *The effect of point loads within a distance d of the support has been included as per NDS 3.4.3.1 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.15 1.00 1.00 1.000 1.100 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 3627, V design* = 2356 lbs Bending( +): LC #2 = D +L, M = 2073 lbs -ft Deflection: LC #2 = D +L EI= 158e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. • 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. 8 -9 COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 10:45 b7 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End Loadl Dead Full UDL 13.0 plf Load2 Live Full UDL 40.0 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : • • Dead 54 54 Live 120 120 Total 174 174 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min. bearing length for beams is 1/2" for exterior supports Lumber n -ply, D.Fir -L, No.2, 2x8 ", 2 -Plys Self- weight of 5.17 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 10 Fv' = 180 fv /Fv' = 0.05 Bending( +) fb = 120 Fb' = 1080 fb /Fb' = 0.11 Live Defl'n 0.01 = <L/999 0.20 = L/360 0.04 Total Defl'n 0.01 = <L/999 0.30 = L/240 0.04 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 174, V design = 139 lbs Bending( +): LC #2 = D +L, M = 262 lbs-ft Deflection: LC #2 = D +L EI= 76e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. tg COMPANY PROJECT i WoodWorks SOFTWARE FOR WOOD DESIGN June 28, 2010 10:33 b8 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location (ft) Units Start End Start End 1_c30 Dead Point- 59 3.50 lbs 2 c30 Snow Point 75 3.50 lbs 3 w47 Dead Partial UD 96.0 96.0 0.00 3.50 plf 4_j13 Dead Partial UD 78.0 78.0 0.00 5.50 plf 5_j13 Live Partial UD 240.0 240.0 0.00 5.50 plf 6_j14 Dead Partial UD 104.0 104.0 5.50 6.00 plf 7_j14 Live Partial UD 320.0 320.0 5.50 6.00 plf 8 b12 Dead Point 171 5.50 lbs 9 Live Point 469 5.50 lbs • MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : • A 61 Dead 531 556 Live 761 1189 Total 1292 1744 Bearing: Load Comb #2 #2 Length 0.69 0.93 Lumber n -ply, D.Fir -L, No.2, 2x10 ", 2 -Plys Self- weight of 6.59 plf included in (dads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv* = 67 Fv' = 180 fv * /Fv' = 0.37 Bending( +) fb = 556 Fb' = 990 fb /Fb' = 0.56 Live Defl'n 0.03 = <L/999 0.20 L/360 0.13 Total Defl'n 0.05 = <L/999 0.30 = L/240 0.16 *The effect of point loads within a distance d of the support has been included as per NDS 3.4.3.1 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.100 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 1744, V design* = 1232 lbs Bending( +): LC #2 = D +L, M = 1984 lbs -ft Deflection: LC #2 = D +L EI= 158e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I =impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: • 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that • each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. 6-61. • COMPANY PROJECT (11 WoodWorks® SOFfWARFFOR WOOD DESIGN June 28, 2010 10:33 b9 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w51 Dead Partial UD 96.0 96.0 2.00 3.00 plf 2_c32 Dead Point 59 2.00 lbs 3_c32 Rf.Live Point 75 2.00 lbs Load4 Dead Full UDL 13.0 plf Loads Live Full UDL 40.0 plf MAXIMUM REP""' CACUM" 1 Csle•TUO i:••1 • • 10' 34 Dead 63 146 Live 85 110 Total 148 256 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min. bearing length for beams is 1/2" for exterior supports Lumber n -ply, D.Fir -L, No.2, 2x8 ", 2 -Plys Self- weight of 5.17 plf included in Toads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NOS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 12 Fv' = 207 fv /Fv' = 0.06 Bending( +) fb = 82 Fb' = 1242 fb /Fb' = 0.07 Live Defl'n 0.00 = <L/999 0.10 = L/360 0.01 Total Defl'n 0.00 = <L/999 0.15 = L/240 0.01 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.15 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 256, V design = 169 lbs Bending( +): LC #2 = D +L, M = 179 lbs -ft Deflection: LC #2 = D +L EI= 76e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. • COMPANY PROJECT 1 WoodWorks® SOFIWAREFOR W000067GN June 28, 2010 10:33 b10 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_c33 Dead Point 59 1.00 lbs 2_c33 Snow Point 75 1.00 lbs 3_w52 Dead Partial UD 96.0 96.0 0.00 1.00 plf Load4 Dead Full UDL 13.0 plf Loads Live Full UDL 40.0 plf MAXIMUM REP -- 1-1".ie GIG AmIkI" I IGwMf'ruo . 10' 34 Dead 146 63 Live 82 64 Total 229 127 Bearing: Load Comb #3 #3 Length 0.50* 0.50* *Min. bearing length for beams is 1/2" for exterior supports Lumber n -ply, D.Fir -L, No.2, 2x8 ", 2 -Plys Self- weight of 5.17 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 10 Fv' = 207 fv /Fv' = 0.05 Bending( +) fb = 72 Fb' = 1242 fb /Fb' = 0.06 Live Defl'n 0.00 = <L/999 0.10 = L/360 0.01 Total Defl'n 0.00 = <L/999 0.15 = L/240 0.01 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3 Shear : LC #3 = D+.75(L +S), V = 229, V design = 148 lbs Bending( +): LC #3 = D +.75(L +S), M = 157 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 76e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. g- Vi) COMPANY PROJECT WoodWorks® SOF1WAREFOR WORD DESjG'N June 28, 2010 10:36 b14 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start -End 1_j33 Dead Partial UD 78.0 78.0 0.00 1.50 plf 2_j33 Live Partial UD 240.0 240.0 0.00 1.50 plf 3_j13 Dead Partial UD 78.0 78.0 3.00 8.50 plf 4_j13 Live Partial UD 240.0 240.0 3.00 8.50 plf 5_j34 Dead Partial UD 78.0 78.0 1.50 3.00 plf 6_j34 Live Partial UD 240.0 240.0 1.50 3.00 plf 7_j46 Dead Partial UD 28.9 28.9 5.00 8.50 plf 8_j46 Live Partial UD 80.0 80.0 5.00 8.50 plf 9 b25 Dead Point 409 5.00 lbs 10 b25 Live Point 1080 5.00 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : • ni" j '_ 10' 8'-61 Dead 553 685 Live 1522 1878 Total 2076 2563 Bearing: Load Comb #2 #2 Length 1.48 1.83 LSL, 1.55E, 2325Fb, 1- 314x14" Self- weight of 7.66 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 126 Fv' = 310 fv /Fv' = 0.41 Bending( +) fb = 1324 Fb' = 2325 fb /Fb' = 0.57 Live Defl'n 0.09 = <L/999 0.28 = L/360 0.31 Total Defl'n 0.14 = L/750 0.42 = L/240 0.32 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 2563, V design = 2064 lbs Bending( +): LC #2 = D +L, M = 6308 lbs -ft Deflection: LC #2 = D +L EI= 620e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. (A1,4 COMPANY PROJECT . 1 WoodWorks® SOFTWARE FOR WOODDESIGN June 28, 2010 10:48 b15 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j5 Dead Full UDL 335.7 plf 2 j5 Rf.Live Full UDL 493.7 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : • 1 0r 6 Dead 1027 1027 Live 1481 1481 Total 2508 2508 Bearing: Load Comb #2 #2 Length _ 1.34 1.34 . Lumber n -ply, D.Fir -L, No.2, 2x10 ", 2 -Plys Self- weight of 6.59 plf included in Toads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 101 Fv' = 207 fv /Fv' = 0.49 Bending( +) • fb = 1055 Fb' = 1138 fb /Fb' = 0.93 Live Defl'n 0.05 = <L/999 0.20 = L/360 0.23 Total Defl'n 0.09 = L/776 0.30 = L/240 0.31 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.15 1.00 1.00 1.000 1.100 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00' - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 2508, V design = 1864 lbs Bending( +): LC #2 = D +L, M = 3762 lbs -ft Deflection: LC #2 = D +L EI= 158e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. 8_616- COMPANY PROJECT I WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 10:46 b20 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j47 Dead Partial UD 42.5 42.5 0.00 2.50 plf 2 j47 Live Partial UD 62.5 62.5 0.00 2.50 plf MAXIMUM RE, [ n1•••% •■•••I oCAO/11dr* 1 CIArf •TUO 1 • • 10' 31 Dead 71 53 Live 91 65 Total 162 118 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min. bearing length for beams is 1/2" for exterior supports • Lumber -soft, D.Fir -L, No.2, 4x8" Self- weight of 6.03 pif included in Toads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 6 Fv' = 180 fv /Fv' = 0.03 Bending( +) fb = 46 Fb' = 1170 fb /Fb' = 0.04 Live Defl'n 0.00 = <L/999 0.10 = L/360 0.01 Total Defl'n 0.00 = <L/999 0.15 = L/240 0.01 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 162, V design = 99 lbs Bending( +): LC #2 = D +L, M = 118 lbs -ft Deflection: LC #2 = D +L EI= 178e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. COMPANY PROJECT 0010% WoodWorks® SOFIWAREFOR WOOD DESIGN June 28, 2010 10:34 b21 Design Check Calculation Sheet Sizer 7.1 LOADS ( ibs, psi, or pro Load Type Distribution Magnitude Location (ft1 Pat- Start End Start End tern 1 w63 Dead Partial UD 308.0 308.0 6.00 10.00 No 2 w 63 Live Partial UD 320.0 320.0 6.00 10.00 No 3 w 62 Dead Partial UD 308.0 308.0 2.00 6.00 No 4 Live Partial UD 320.0 320.0 2.00 6.00 No 5 Dead Partial UD 369.0 369.0 0.00 2.00 No 6 w32 Snow Partial UD 357.5 357.5 0.00 2.00 No 7 Dead Point 1940 1.50 No 8 c44 Snow Point 2853 1.50 No 9_j20 Dead Partial UD 104.0 104.0 6.50 10.00 No 10_j20 Live Partial UD 320.0 320.0 6.50 10.00 No 11 j21 Dead Partial UD 104.0 104.0 6.00 6.50 No 12 Live Partial UD 320.0 320.0 6.00 6.50 No 13_j22 Dead Partial UD 104.0 104.0 2.00 2.50 No 14_j22 Live Partial UD 320.0 320.0 2.00 2.50 No 15_j23 Dead Partial UD 104.0 104.0 2.50 6.00 No 16 j23 Live Partial UD 320.0 320.0 2.50 6.00 No 17348 Dead Partial UD 71.5 71.5 0.00 1.50 No 18_j48 Live Partial UD 220.0 220.0 0.00 1.50 No 19_b23 Dead Point 658 0.00 No 20 b23 Snow Point 195 0.00 No MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : •-+ :e!a'z 4.11r � - ir' � •t --�» .r - mow.. _ ' *"'���„`.'lir w 'n.. � ,�"� 7,7 +■C ' '. ' '`....T �r�/ • ._tea - �+.+ - �. it L� 2' 101 Dead 5581 1311 Live 5266 2508 Total 10847 3819 Bearing: Load Comb 00 83 82 Length 0.00 3.50 1.23 Cb 0.00 1.11 1.00 LSL, 1.55E, 2325Fb, 3- 112x14" Self- weight of 15.31 plf included in toads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv+ = 139 Fv' = 356 fv` /Fv' = 0.39 Bending( +) fb = 717 Fb' = 2325 fb /Fb' = 0.31 Bending( -) fb = 600 Fb' = 2632 fb /Fb' = 0.23 Deflection: Interior Live 0.05 = <L/999 0.27 = L /360 0.17 Total 0.07 = <L/999 0.40 = L/240 0.17 Cantil. Live -0.03 = L /698 0.13 = L /180 0.26 Total -0.03 = L /788 0.20 = L /120 0.15 The effect of point loads within a distance d of the support has been included as per NDS 3.4.3.1 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.09 - - - - 1.00 - 1.00 4 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fb' 2325 1.15 - 1.00 0.984 1.00 - 1.00 1.00 - - 4 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC 84 = D+S, V = 7237, V design` = 4536 lbs Bending( +): LC 82 = D +L, M = 6833 lbs -ft Bending( -): LC 84 = D +S, M = 5720 lbs-ft Deflection: LC 02 = D +L EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC • DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. , 4. The critical deflection value has been determined using maximum back -span deflection. Cantilever deflections do not govern design. • COMPANY PROJECT /lit WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 10:35 b22 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or pif ) Load Type Distribution Magnitude Location (ft] Units Start End Start End 1 w69 Dead Partial UD 369.0 369.0 1.00 2.50 pif 2 Snow Partial UD 357.5 357.5 1.00 2.50 pif 3 Dead Partial UD 71.5 71.5 1.00 2.50 pif 4 j48 Live Partial UD 220.0 220.0 1.00 2.50 plf 5_j47 Dead Full UDL 42.5 pif 6_j47 Live Full UDL 62.5 plf 7_b23 Dead Point 700 1.00 lbs 8 Snow Point 195 1.00 lbs • • MAXIMUM RE' __._.._ ... . __. _.. -_ - _.- .-_.._ •- - 1 0 2.-61 Dead 683 807 Live 341 572 Total 1024 1379 Bearing: Load Comb #3 #3 Length 0.50* 0.63 `Min. bearing length for beams is 1/2" for exterior supports Lumber -soft, D.Fir -L, No.2, 4x12" Self- weight of 9.35 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 30 Fv' = 207 fv /Fv' = 0.14 Bending( +) fb = 159 Fb' = 1138 fb /Fb' = 0.14 Live Defl'n 0.00 = <L/999 0.08 = L/360 0.01 Total Defl'n 0.00 = <L/999 0.13 = L/240 0.02 ADDITIONAL DATA: • FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.100 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3 Shear : LC #3 = D +.75(L +S), V = 1024, V design = 778 lbs Bending(+): LC #3 = D +.75(L +S), M = 978 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 664e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd =concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. \feb COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 10:35 b23 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_w33 Dead Partial UD 204.0 204.0 0.00 1.50 plf 2_c18 Dead Point 143 1.50 lbs 3 c18 Rf.Live Point 110 1.50 lbs 4 c19 Dead Point 59 4.50 lbs 5_c19 Rf.Live Point 85 4.50 lbs 6 w34 Dead Partial UD 108.0 108.0 4.50 6.50 plf 7 c20 Dead Point 59 6.50 lbs 8 c20 Rf.Live Point 85 6.50 lbs 9 Dead Point 143 9.50 lbs 10 c21 Rf.Live Point 110 9.50 lbs 11 Dead Partial UD 204.0 204.0 9.50 11.00 plf MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : • ..._.:�.-__'ra" _ . mo w D ES..- " ��� -'�- a„�=- �,... tea.. • l0' 114 Dead. 700 700 Live 195 195 Total 895 895 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min. bearing length for beams is 1/2" for exterior supports . LSL, 1.55E, 2325Fb, 3- 1/2x14" Self- weight of 15.31 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 20 Fv' = 356 fv /Fv' = 0.05 Bending( +) fb = 213 Fb' = 2674 fb /Fb' = 0.08 Live Defl'n 0.01 = <L/999 0.37 = L/360 0.03 Total Defl'n 0.05 = <L/999 0.55 = L/240 0.09 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Ervin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 895, V design = 639 lbs Bending( +): LC #2 = D +L, M = 2028 lbs -ft • Deflection: LC #2 = D +L EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. g -OVA COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD OESJGN June 28, 2010 10:47 b24 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j42 Dead Partial UD 47.7 47.7 0.00 4.50 plf 2_j42 Live Partial UD 160.0 160.0 0.00 4.50 plf 3_j43 Dead Partial UD 47.7 47.7 4.50 7.50 plf 4_j43 Live Partial UD 160.0 160.0 4.50 7.50 plf 5_j44 Dead Partial UD 47.7 47.7 7.50 13.00 plf 6_j44 Live Partial UD 160.0 160.0 7.50 13.00 plf 7_j45 Dead Partial UD 47.7 47.7 13.00 16.00 plf 8 j45 Live Partial UD 160.0 160.0 13.00 16.00 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : 1 0' 16 Dead 442 442 Live 1280 1280 Total 1722 1722 Bearing: Load Comb #2 #2 Length 0.85 0.85 Glulam- Unbal., West Species, 24F -V4 DF, 3- 1/8x10 -1/2" Self- weight of 7.55 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 70 Fv' = 265 fv /Fv' = 0.26 Bending( +) fb = 1440 Fb' = 2400 fb /Fb' = 0.60 Live Defl'n 0.43 = L/441 0.53 = L/360 0.82 Total Defl'n 0.66 = L/290 0.80 = L/240 0.83 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 1722, V design = 1534 lbs Bending( +): LC #2 = D +L, M = 6890 lbs -ft Deflection: LC #2 = D +L EI= 543e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). COMPANY PROJECT s I WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 10:33 b25 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End Loadl Dead Full UDL 200.0 plf Load2 Live Full UDL 540.0 plf MAXIMUM REACTIONS Ilhsl and RFARIN( LFN(THS fin► I O' 44 Dead 409 409 Live 1080 1080 Total 1489 1489 Bearing: - Load Comb #2 #2 Length 0.68 0.68 Lumber -soft, D.Fir -L, No.2, 4x6" Self- weight of 4.57 plf included in Toads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 89 Fv' = 180 fv /Fv' = 0.50 Bending( +) fb = 1013 Fb' = 1170 fb /Fb' = 0.87 Live Defl'n 0.04 = <L/999 0.13 = L/360 0.30 Total Defl'n 0.06 = L/764 0.20 = L/240 0.31 ADDITIONAL DATA: FACTORS: F/E CD CM. Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.00 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 1489, V design = 1148 lbs Bending( +): LC #2 = D +L, M = 1489 lbs -ft Deflection: LC #2 = D +L EI= 78e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. • 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. - COMPANY PROJECT II III 1 i I. WoodWorks® SOFIWAREfOR WOOD DESIGN June 28, 2010 10:57 b25 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w72 Dead Partial UD 539.7 539.7 13.00 14.50 plf 2 Rf.Live Partial UD 493.7 493.7 13.00 14.50 plf 3 w28 Dead . Partial UD 535.5 535.5 0.00 4.50 plf 4 w28 Rf.Live Partial UD 487.5 487.5 0.00 4.50 plf 5 Dead Point 1074 7.00 lbs 6 c14 Rf.Live Point 1601 7.00 lbs 7 c15 Dead Point 1074 13.00 lbs 8 c15 Rf.Live Point 1601 13.00 lbs 9 Dead Partial UD 539.7 539.7 14.50 16.00 plf 10 w73 Rf.Live Partial UD 493.7 493.7 14.50 16.00 plf 11 Dead Partial UD 443.7 443.7 5.50 7.00 plf 12 Rf.Live Partial UD 493.7 493.7 5.50 7.00 plf 13 w75 Dead Partial UD 539.7 539.7 4.50 5.50 plf 14 Rf.Live . Partial UD 493.7 493.7 4.50 5.50 plf 15 j42 Dead Partial UD 47.7 47.7 0.00 4.50 plf 16_j42 Live Partial UD 160.0 160.0 0.00 4.50 plf 17 j43 Dead Partial UD 47.7 47.7 4.50 5.50 plf 18 j43 Live Partial UD 160.0 160.0 4.50 5.50 plf 19344 Dead Partial UD 47.7 47.7 7.50 13.00 plf 20 j44 Live Partial UD 160.0 160.0 7.50 13.00 plf 21 Dead Partial UD 47.7 47.7 5.50 7.50 plf 22 Live Partial UD 160.0 160.0 5.50 7.50 plf 23_j46 Dead Partial UD 47.7 47.7 13.00 14.50 plf 24 j46 Live Partial UD 160.0 160.0 13.00 14.50 plf 25 j47 Dead Partial UD 47.7 47.7 14.50 16.00 plf 26 j47 Live Partial UD 160.0 160.0 14.50 16.00 plf - . MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : L _ I a 161 Dead 4328 4101 Live 5296 5376 Total 9624 9477 Bearing: Load Comb 12 02 Length 2.89 _ 2.84 Glulam-Bal., West Species, 24F -V8 DF, 5- 1/8x15" Self- weight of 17.7 plf included in toads; - Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 157 Fv' = 305 fv /Fv' = 0.52 Bending( +) fb = 2301 Fb' = 2760 fb /Fb' = 0.83 Live Defl'n 0.36 = L/528 0.53 = L/360 0.68 Total Defl'n 0.77 = L/249 0.80 = L/240 0.96 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC0 Fv' 265 1.15 1.00 1.00 - - - - 1.00 1.00 1.00• 2 Fb'+ 2400 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC 112 = D +L, V = 9624, V design = 8063 lbs Bending( +): LC 92 = D +L, M = 36854 lbs -ft Deflection: LC 02 = D +L EI= 2594e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). • 8 •-- 6......PQN, COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 10:36 b26 Design Check Calculation Sheet Sizer 7.1 • LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location (ft] Units Start End Start End 1 w37 Dead Partial UD 535.5 535.5 10.50 11.00 plf 2 Snow Partial UD 487.5 487.5 10.50 11.00 plf 3 w38 Dead Partial UD 535.5 535.5 11.00 14.00 plf 4_w38 Snow Partial UD 487.5 487.5 . 11.00 14.00 plf 5_w39 Dead Partial UD 535.5 535.5 14.00 15.50 plf 6 w39 _Snow Partial UD 487.5 487.5 14.00 15.50 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : A 10' 15' -64 Dead 583 2397 Live 393 2044 Total 976 4441 Bearing: Load Comb #2 #2 Length 0.50* 1.33 *Min. bearing length for beams is 1/2" for exterior supports Glulam -Bal., West Species, 20F -V7 DF, 5- 1/8x16 -1/2" Self- weight of 19.47 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : • Criterion Analysis Value Design Value Analysis /Design Shear fv = 54 Fv' = 305 fv /Fv' = 0.18 Bending( +) fb = 488 Fb' = 2297 fb /Fb' = 0.21 Live Defl'n 0.05 = <L/999 0.52 = L/360 0.09 Total Defl'n 0.14 = <L/999 0.77 = L/240 0.18 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2000 1.15 1.00 1.00 1.000 0.999 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.6 million 1.00 1.00 - - - - 1.00 - - 2 Ervin' 0.85 million 1.00 1.00 - - - - 1.00 - -. 2 Shear : LC #2 = D +S, V = 4441, V design = 3070 lbs Bending( +): LC #2 = D +S, M = 9454 lbs -ft Deflection: LC #2 = D +S EI= 3070e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). 6,- 611y3 COMPANY PROJECT 1 WoodWorks SOFTWARE FOP W000 DESIGN June 28, 2010 10:50 c2 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_bl Dead Axial 1539 (Eccentricity = 0.00 in) 2 Rf.Live Axial 2089 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): D I 0' 8' Lumber n -ply, Hem -Fir, No.2, 2x6 ", 2 -Plys Self- weight of 3.41 plf included in loads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 0.00= 0.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 221 Fc' = 980 fc /Fc' = 0.23 Axial Bearing fc = 221 Fc* = 1644 fc /Fc* = 0.13 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.596 1.100 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 3655 lbs Kf = 1.00 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. /3" 6ta COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DEIGN June 28, 2010 10:52 c25 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_b12 Dead Axial 514 (Eccentricity = 0.00 in) 2 Live Axial 1408 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 0' 9' Lumber n -ply, Hem -Fir, No.2, 2x4 ", 2 -Plys Self- weight of 2.17 pif included in Toads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 0.00= 0.00 [ft]; Ke x Ld: 1.00 x 9.00= 9.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 185 Fc' = 380 fc /Fc' = 0.49 Axial Bearing fc = 185 Fc* = 1495 fc /Fc* = 0.12 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.254 1.150 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 1942 lbs Kf = 1.00 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. • • • COMPANY PROJECT A I0°% 111 Wood Works® SOFTWARE FOR WOOD DESIGN June 28, 2010 10:51 c36 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or pif ) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1 b21 Dead Axial 5634 (Eccentricity = 0.00 in) 2 Rf.Live Axial 7021 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): .A' ,a r -« :fx:a a.sriw�c` . t«�...y��- .. . :._^=�:."°. Mo t,wez:le_44,f' v. sue a4,1,_. .. .x% fttl n 0' 8' Timber -soft, Hem -Fir, No.2, 6x6" Self- weight of 6.25 pif included in loads; Pinned base; Loadface = depth(d); •Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 420 Fc' = 548 fc /Fc' = 0.77 Axial Bearing fc = 420 Fc* = 661 fc /Fc* = 0.64 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 575 1.15 1.00 1.00 0.829 1.000 - - 1.00 1.00 2 Fc* 575 1.15 1.00 1.00 - 1.000 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 12705 lbs (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. COMPANY PROJECT i WoodWorks® SOFRYA91IOR WOOD DESIGN June 28, 2010 10:52 c44 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_c35 Dead Axial 1940 (Eccentricity = 0.00 in) 2 c35 Rf.Live Axial 2853 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 1 0' 9' Lumber n -ply, Hem -Fir, No.2, 2x4 ", 3 -Plys Self- weight of 3.25 plf•included in loads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 9.00= 9.00 [ft]; Ke x Ld: 1.00 x 9.00= 9.00 [ft]; Repetitive factor: applied where permitted (refer to online help); Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 306 Fc' = 363 fc /Fc' = 0.84 Axial Bearing fc = 306 Fc* = 1719 fc /Fc* = 0.18 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.211 1.150 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 4823 lbs Kf = 0.60 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. COMPANY PROJECT i WoodWorks® SOFf WARE FOR W000 DESIGN June 28, 2010 10:51 c64 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or pif ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_c45 Dead Axial 1940 (Eccentricity = 0.00 in) 2_c45 Rf.Live Axial 2853 (Eccentricity = 0.00 in) 3b22 Dead Axial 807 (Eccentricity = 0.00 in) 4 _ b22 Rf.Live Axial 763 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 0' g Lumber n -ply, Hem -Fir, No.2, 2x6 ", 3 -Plys Self- weight of 5.11 pif included in loads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Repetitive factor: applied where permitted (refer to online help); Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 259 Fc' = 439 fc /Fc' = 0.59 Axial Bearing fc = 259 Fc* = 1644 fc /Fc* = 0.16 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.267 1.100 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 6404 lbs Kf = 0.60 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. 6 :Th .11141pci ..,), P Houf Peterson Righellis Inc. T0 0 FROM fl COMMUNICATION RECORD • MEMO TO PILE 0 CNG;NtLriS FL ANNERS LANDSCAPE ARCIIITPCTS•SURVCYONS ----- ------ - - PHONE NO.: PHONE CALL: II] MEETING: 0 X - 0 0 Fl x :5 0 (._ rn . 0 ar..... „,..., 4c. .....F r, ( ..."1 (t) 3 oi e 9) 93 g F ...... J 4 ....„ • . 2 V E 4"--- J. •••• .... ...s..... > ..r.. m c ... 30 .,..., ,.. . 9-0). r s • so T' 0 (-- g cti . 0 . , z P c . 4 Z 7 6 AI 0 . . COMPANY PROJECT • . i WoodWorks® • SOFPWAREfOR WOOD DESIGN June 28, 2010 10:19 b25 LC1 Design Check Calculation Sheet Sizer7.1 LOADS ( Ibs, psf, or p11) Load Type Distribution Magnitude Location (ft] Units Start End Start End 1 w72 . Dead Partial UD 539.7 539.7 13.00 14.50 plf 2 Snow Partial UD 493.7 493.7 13.00 14.50 plf 3 w28 Dead Partial UD 535.5 535.5 0.00 4.50 plf 4 Snow Partial UD 487.5 487.5 0.00 4.50 plf 5 c14 Dead Point 1074 7.00 lbs 6 Snow Point 1601 7.00 lbs 7 c15 Dead Point 1074 13.00 lbs 8 c15 Snow Point 1601 13.00 lbs 9 Dead Partial UD 539.7 539.7 14.50 16.00 plf 10_w73 Snow Partial UD 493.7 493.7 14.50 16.00 plf 11 Dead Partial UD 443.7 443.7 5.50 7.00 plf 12 Snow Partial UD 493.7 493.7 5.50 7.00 plf 13 w75 Dead Partial UD 539.7 539.7 4.50 5.50 plf 14 w75 Snow Partial UD 493.7 493.7 4.50 5.50 plf • 15 j42 Dead Partial UD 47.7 47.7 0.00 4.50 plf 16_j42 Live ' Partial UD 160.0 160.0 0.00 4.50 plf 17 j43 Dead Partial UD 47.7 47.7 4.50 5.50 plf 18 Live Partial UD 160.0 160.0 4.50 5.50 plf 19 j44 Dead Partial UD 47.7 47.7 7.50 13.00 plf 20_j44 Live Partial UD 160.0 160.0 7.50 13.00 plf 21 j45 Dead Partial UD 47.7 47.7 5.50 7.50 plf 22 Live Partial UD 160.0 160.0 5.50 7.50 plf 23 Dead Partial UD 47.7 47.7 13.00 14.50 plf 24 Live Partial UD 160.0 160.0 13.00 14.50 plf 25 Dead Partial UD 47.7 47.7 14.50 16.00 plf 26 Live Partial UD 160.0 160.0 14.50 16.00 plf • 203A Wind Point 7960 0.00 lbs 203A.1 Wind Point -7960 7.00 lbs 2038.1 Wind Point 7960 13.00 lbs 203B.2 Wind Point -7960 16.00 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : / 16 ; Dead 4328 4101 Live 7703 4096 Uplift 2458 Total 12031 8197 Bearing: Load Comb 04 06 Length 3.61 2.46 Glulam -Bat., West Species, 24F -V8 DF, 5- 118x15" Self- weight of 17.7 plf included in loads; . Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 136 Fv' = 305 fv /Fv' = 0.45 Bending( +) fb = 1986 Fb' = 2760 fb /Fb' = 0.72 Live Defl'n 0.27 = L/704 0.53 = L/360 0.51 Total Defl'n 0.68 = L/283 0.80 = L/240 0.85 ' ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fo' 265 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 6 Fb'+ 2400 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 6 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 3 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 3 Shear : LC 16 = D +S, V = 8344, V design = 6983 lbs Bending( +): LC 116 = D +S, M = 31814 lbs -ft Deflection: LC 03 = D +.75(L +S) EI= 2594e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output( i Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. ' 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). S ...._ (130 COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 10:24 b25 LC1 NO LL Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w72 Dead Partial UD 539.7 539.7 13.00 14.50 plf 3 w28. Dead Partial UD 535.5 535.5 0.00 4.50 pif 5 c14 Dead Point 1074 7.00 lbs 7 c15 Dead Point 1074 13.00 lbs 9 w73 Dead Partial UD 539.7 539.7 14.50 16.00 plf 11 w74 Dead Partial UD 443.7 443.7 5.50 7.00 plf 13 w75 Dead Partial UD 539.7 539.7 4.50 5.50 plf 15 j42 Dead Partial UD 47.7 47.7 0.00 4.50 plf 17_j43 Dead Partial UD 47.7 47.7 4.50 5.50 plf 19_j44 Dead Partial UD 47.7 47.7 7.50 13.00 plf 21_j45 Dead Partial UD 47.7 47.7 5.50 7.50 plf 23_j46 Dead Partial UD 47.7 47.7 13.00 14.50 plf 25_j47 Dead Partial UD 47.7 47.7 14.50 16.00 plf .203A Wind Point 7960 0.00 lbs 203A.1 Wind Point -7960 7.00 lbs 2036.1 Wind Point 7960 13.00 lbs 203B.2 Wind Point -7960 16.00 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : A 10' 161 Dead 4328 .4101 Live 3300 Uplift 2458 Total 7572 4101 Bearing: Load Comb #2 #1 Length 2.27_ 1.23 • Glulam -Bal., West Species, 24F -V8 DF, 5- 118x15" Self- weight of 17.7 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 70 Fv' = 238 fv /Fv' = 0.29 Bending( +) fb = 978 Fb' = 2160 fb /Fb' = 0.45 Live Defl'n -0.30 = L/632 0.53 = L/360 0.57 Total Defl'n -0.03 = <L/999 0.80 = L/240 0.04 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 0.90 1.00 1.00 - - - - 1.00 1.00 1.00 1 Fb'+ 2400 0.90 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 1 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #1 = D only, V = 4328, V design = 3577 lbs Bending( +): LC #1 = D only, M = 15667 lbs -ft Deflection: LC #2 = .6D +W ET= 2594e06 lb -in2 Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I =impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). • COMPANY PROJECT 1 ' WoodWork SOFTWARE FOR wood OEStCN June 28, 2010 10:20 b25 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS ( ]bs, psf, or ptf) : Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w72 Dead Partial UD 539.7 539.7 13.00 14.50 plf 2 Snow Partial UD 493.7 493.7 13.00 14.50 plf , 3_w28 Dead Partial UD 535.5 535.5 0.00 4.50 plf 4_w28 Snow Partial UD 487.5 487.5 0.00 4.50 plf 5 c14 Dead Point 1074 7.00 lbs 6 Snow Point 1601 7.00 lbs 7 c15 Dead Point 1074 13.00 lbs 8 Snow Point 1601 13.00 lbs 9 Dead Partial UD 539.7 539.7 14.50 16.00 plf 10_w73 Snow Partial UD 493.7 493.7 14.50 16.00 plf 11 w74 Dead Partial UD 443.7 443.7 5.50 7.00 plf 12_w 74 Snow Partial UD 493.7 493.7 5.50 7.00 plf 13 w75 Dead Partial UD 539.7 539.7 4.50 5.50 plf 14 Snow Partial UD 493.7 493.7 4.50 5.50 plf 15_j 42 Dead Partial UD 47.7 47.7 0.00 4.50 plf 16j42 Live Partial UD 160.0 160.0 0.00 4.50 plf • 17_j43 Dead Partial UD 47.7 47.7 4.50 5.50 plf 18 j43 Live Partial UD 160.0 160.0 4.50 5.50 plf 19 Dead Partial UD 47.7 47.7 7.50 13.00 plf 20 Live Partial UD 160.0 160.0 7.50 13.00 plf 21_j45 Dead Partial UD 47.7 47.7 5.50 7.50 plf 22_j45 Live Partial UD 160.0 160.0 5.50 7.50 plf 23j46 Dead Partial UD 47.7 47.7 13.00 14.50 plf 24_j46 Live Partial UD 160.0 160.0 13.00 14.50 plf 25_j47 Dead Partial UD 47.7 47.7 14.50 16.00 plf 26 j47 Live Partial UD 160.0 160.0 14.50 16.00 plf 203A Wind Point -7960 0.00 lbs • 203A.1 Wind Point 7960 7.00 lbs 2036.1 Wind Point -7960 13.00 lbs 2038.2 Wind Point 7960 16.00 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : L _ . . _ 10' 161 Dead 4328 4101 Live 4016 7763 Uplift 2321 Total 8344 11864 Bearing: Load Comb #6 # Length 2.50 3.56 Glulam-Bal., West Species, 24F -V8 DF, 5- 118x15" Self- weight of 17.7 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 136 Fv' = 305 fv /Fv' = 0.45 Bending( +) fb = 2949 Fb' = 3840 fb /Fb' = 0.77 Live Defl'n 0.42 = L/454 0.53 = L/360 0.79 Total Defl'n 0.69'= L/277 0.80 = L/240 0.87 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv. 265 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 6 Fb'+ 2400 1.60 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 4 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 4 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 4 Shear : LC #6 = D +S, V = 8344, V design = 6983 lbs Bending( +): LC #4 = D +.75(L +S +W), M = 47228 lbs -ft Deflection: LC 84 = D +.75(L +S +W) EI= 2594e06 lb -in2 Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. • (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC . DESIGN NOTES: 1. Please verify that the default defection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). • • 8.-- 61.3 -- COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 10:23 b25 LC2 NO LL Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w72 Dead Partial UD 539.7 539.7 13.00 14.50 plf 3 w28 Dead Partial UD 535.5 535.5 0.00 4.50 plf 5 c14 Dead Point 1074 7.00 lbs 7 Dead Point 1074 13.00 lbs 9 w73 Dead Partial UD 539.7 539.7 14.50 16.00 plf 11 w74 Dead Partial UD 443.7 443.7 5.50 7.00 plf 13 Dead Partial UD 539.7 539.7 4.50 5.50 plf 15_j42 Dead Partial UD 47.7 47.7 0.00 4.50 plf 17 j43 Dead Partial UD 47.7 47.7 4.50 5.50 plf 191j44 Dead Partial UD 47.7 47.7 7.50 13.00 plf 21_j45 Dead Partial UD 47.7 47.7 5.50 7.50 plf 23_j46 Dead Partial UD 47.7 47.7 13.00 14.50 plf 25 j47 Dead Partial UD 47.7 47.7 14.50 16.00 plf 203A Wind Point -7960 0.00 lbs • 203A.1 Wind Point 7960 7.00 lbs 2036.1 Wind Point -7960 13.00 lbs 203B.2 Wind Point 7960 16.00 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : lo' 161 Dead 4328 • 4101 Live 3391 Uplift 2321 Total 4328 7435 Bearing: Load Comb #1 #2 Length 1.30 2.23 Glulam -Bal., West Species, 24F -V8 DF, 5- 118x15" Self- weight of 17.7 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design • Shear fv = 70 Fv' = 238 fv /Fv' = 0.29 Bending( +) fb = 1905 Fb' = 3840 fb /Fb' = 0.50 Live Defl'n 0.10 = <L/999 0.53 = L/360 0.18 Total Defl'n 0.37 = L/525 • 0.80 = L/240 0.46 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 0.90 1.00 1.00 - - - - 1.00 1.00 1.00 1 Fb'+ 2400 1.60 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #1 = D only, V = 4328, V design = 3577 lbs Bending( +): LC #2 = .6D +W, M = 30517 lbs -ft Deflection: LC #2 = .6D +W EI= 2594e06 lb -in2 Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC • DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). S (4.4 COMPANY PROJECT i WoodWorks® SOFIWARE FOR WOOD DESIGN June 28, 2010 10:25 b26 LC1 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w37 Dead Partial UD 535.5 535.5 10.50 11.00 plf 2 Snow Partial UD 487.5 487.5 10.50 11.00 plf 3_w38 Dead Partial UD 535.5 535.5 11.00 14.00 plf 4_w38 Snow Partial UD 487.5 487.5 11.00 14.00 plf • 5 w39 Dead Partial UD 535.5 535.5 14.00 15.50 plf 6 Snow Partial UD 487.5 487.5 14.00 15.50 plf W1.1 Wind Point 13500 10.50 lbs W1.2 Wind Point - 13499 15.50 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : 10' 15'x'1 Dead 583 2397 Live 4182 8392 Total 4704 10789 Bearing: Load Comb #4 #3 Length 1.41 3.24 Glulam -Bal., West Species, 20F -V7 DF, 5- 118x16 -112" Self- weight of 19.47 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : • Criterion Analysis Value Design Value Analysis /Design Shear fv = 181 Fv' = 424 fv /Fv' = 0.43 Bending( +) fb = 2526 Fb' = 3195 fb /Fb' = 0.79 Live Defl'n 0.47 = L/395 0.52 = L/360 0.91 Total Defl'n 0.56 = L/331 0.77 = L/240 0.72 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.60 1.00 1.00 - - - - 1.00 1.00 1.00 4 Fb'+ 2000 1.60 1.00 1.00 1.000 0.999 1.00 1.00 1.00 1.00 - 4 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.6 million 1.00 1.00 - - - - 1.00 - - 4 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 4 Shear : LC #4 = .6D +W, V = 10643, V design = 10194 lbs Bending( +): LC #4 = .6D +W, M = 48956 lbs -ft Deflection: LC #4 = .6D +W EI= 3070e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). COMPANY PROJECT I WoodWorks® SOFIWAREFOR WOOD DESIGN June 28, 2010 10:27 b26 LC1 no II Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w37 Dead Partial UD 535.5 535.5 10.50 11.00 plf 3 w38 Dead Partial UD 535.5 535.5 11.00 14.00 plf 5 w39 Dead Partial UD 535.5 535.5 14.00 15.50 plf W1.1 Wind Point 13500 10.50 lbs W1.2 Wind Point -13499 15.50 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : I0' 15 ' - Dead 583 2397 Live 4182 8247 Total 4704 10583 Bearing: Load Comb #2 #2 Length 1.41 3.18 Glulam-Bal., West Species, 20F -V7 DF, 5- 1/8x16 -1/2" Self - weight of 19.47 plf included in loads; • Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 181 Fv' = 424 fv /Fv' = 0.43 Bending( +) fb = 2526 Fb' = 3195 fb /Fb' = 0.79 Live Defl'n 0.47 = L/395 0.52 = L/360 0.91 Total Defl'n 0.56 = L/331 0.77 = L/240 0.72 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.60 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2000 1.60 1.00 1.00 1.000 0.999 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.6 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = .6D +W, V = 10643, V design = 10194 lbs Bending( +): LC = .6D +W, M = 48956 lbs -ft Deflection: LC #2 = .6D +W EI= 3070e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). g_ 614;5- COMPANY PROJECT WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 10:26 b26 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w37 Dead Partial UD 535.5 535.5 10.50 11.00 plf 2_w37 Snow Partial UD 487.5 487.5 10.50 11.00 pif 3_w38 Dead Partial UD 535.5 535.5 11.00 14.00 plf 4 w38 Snow Partial UD 487.5 487.5 11.00 14.00 plf 5 w39 Dead Partial UD 535.5 535.5 14.00 15.50 plf 6 w39 Snow Partial UD 487.5 487.5 14.00 15.50 plf W1.1 Wind Point -13499 10.50 lbs W1.2 Wind Point 13500 15.50 _ lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : • . 15'x Dead 583 2397 Live 393 2044 Uplift 3945 7647 Total 976 4441 Bearing: Load Comb #2 # Length 0.50* 1.33 *Min. bearing length for beams is 1/2" for exterior supports Glulam -Bal., West Species, 20F -V7 DF, 5- 1/8x16 -1/2" Self- weight of 19.47 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 136 Fv' = 424 fv /Fv' = 0.32 Bending( +) fb = 488 Fb' = 2297 fb /Fb' = 0.21 Bending( -) fb = 2193 Fb' = 2940 fb /Fb' = 0.75 Live Defl'n. -0.51 = L/362 0.52 = L/360 0.99 Total Defl'n -0.42 = L/441 0.77 = L/240 0.54 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.60 1.00 1.00 - - - - 1.00 1.00 1.00 4 Fb'+ 2000 1.15 1.00 1.00 1.000 0.999 1.00 1.00 1.00 1.00 - 2 Fb'- 2000 1.60 1.00 1.00 0.919 1.000 1.00 1.00 1.00 1.00 - 4 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.6 million 1.00 1.00 - - - - 1.00 - - 4 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 4 Shear : LC #4 = .6D +W, V = 7647, V design = 7647 lbs Bending( +): LC #2 = D +S, M = 9454 lbs -ft Bending( -): LC #4 = .6D +W, M = 42496 lbs -ft Deflection: LC #4 = .6D +W EI= 3070e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). 25.---6/13 COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 28, 2010 10:30 b26 LC2 no II • Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w37 Dead Partial UD 535.5 535.5 10.50 11.00 plf 31w38 Dead Partial UD 535.5 535.5 11.00 14.00 plf 5_w39 Dead Partial UD 535.5 535.5 14.00 15.50 plf W1.1 Wind Point -13499 10.50 lbs W1.2 Wind Point 13500 15.50 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : A A 1 0' 15' -6 Dead 583 2397 Live Uplift 3945 7647 Total 583 2397 Bearing: Load Comb #1 #1 Length 0.50* 0. *Min. bearing length for beams is 1/2" for exterior supports Glulam -Bal., West Species, 20F -V7 DF, 5- 118x16 -1/2" Self- weight of 19.47 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 136 Fv' = 424 fv /Fv' = 0.32 Bending( +) fb = 267 Fb' = 1797 fb /Fb' = 0.15 Bending( -) fb = 2193 Fb' = 2940 fb /Fb' = 0.75 Live Defl'n -0.51 = L/362 0.52 = L/360 0.99 Total Defl'n -0.42 = L/441 0.77 = L/240 0.54 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.60 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2000 0.90 1.00 1.00 1.000 0.999 1.00 1.00 1.00 1.00 - 1 Fb'- 2000 1.60 1.00 1.00 0.919 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.6 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = .6D +W, V = 7647, V design = 7647 lbs Bending( +): LC #1 = D only, M = 5167 lbs -ft Bending( -): LC #2 = .6D+W, M = 42496 lbs -ft Deflection: LC #2 = .6D +W EI= 3070e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). Harper Project: • ,' Houf Peterson Client: Job # Righeli Inc. ENGINEERS • PLANNERS Designer: Date: Pg. # LANDSCAPE AHCHIrEC.rS•SURVEYORS Deo- �n W dl := 10 lb 8 ft 20 ft Wdl = 1600-lb ft Seismic Forces Site Class =D Design Catagory =D W := W 1.0 Component Importance Factor (Sect 13.1.3, ASCE 7 -05) Si :7 0.M Max EQ, 5% damped, spectral response acceleration of 1 sec: S '0:942' Max EQ, 5% damped, spectral responce acceleration at short period Height of Component h 32 Mean Height Of Roof F :_ 4.123 Acc -based site coefficient @ .3 s- period (Table 1613.5.3(1), 2006 IBC) F := 1.722 VeI -based site coefficient @ 1 s- period (Table 1613.5.3(2), 2006 IBC) • S := F S := F .S 2•S Sd : = Max EQ, 5% damped; spectral responce acceleration at short period 3 • Exterior Elements &Body Of Connections a := 1.0 R : 2.5 (Table 13.5 -1, ASCE 7 05) .4ap•Sds•1p r z F P := R I 1 + 2 hl Wp EQU. 13.3 - F pmax := 1.66•Sds•lp•Wp EQU. 13.3 - F pmin := • EQU. 13.3 -3 := if(F > Fpmax,Fpmax,if(Fp < FpmimFpmin,Fp)) F = 338.5171.lb Miniumum Vertical Force 0.2• S ds• W dl = 225.6781.1b ‘e (;;IZe? �. Harper Project: 'ti, Houf Peterson Cl Job # y Righellis Inc. ENGINEERS .• PLANNERS Designer: Date: Pg. # LANDSCAPE ARCNITECIS•SURVEYORS W dl := 10• b •8•ft•20•ft Wd = 1600-lb ft Seismic Forces Site Class =D Design Catagory =D Wp : Wed' I '. 1:0 Component Importance Factor (Sect 13.1.3, ASCE 7 -05) S1 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. S := 0.942 Max EQ, 5% damped, spectral responce acceleration at short period z := .9 Height of Component h 32 Mean Height Of Roof Fa := 1.123 Acc -based site coefficient @ .3 s- period (Table 1613.5.3(1), 2006 IBC) F v -= 1.722 Vel -based site coefficient @ 1 s- period (Table 1613.5.3(2), 2006 IBC) S : F Smi := F S 2-S ms Sds := Max EQ, 5 % damped,. spectral responce acceleration at short period 3 Exterior Elements & Body Of Connections a := 1.0 Rp.:= 2.5 (Table 13.5 -1, ASCE 7 -05) 4a S p I / FP := R I 1 + 2• h -W p EQU. 13.3 -1 ` J F pmax := 1.6• S I EQU. 13.3 - F pmin := .3.S -I EQU. 13.3 - F.:= if (F > F pmax , Fpmax, if (Fp < Fpmin, Fpmin, F F = 338.5171-lb Miniumum Vertical Force 0.2•5 = 225.6781- lb 3-69 ...Jai pc.' HP Houf Peterson , COMMUNICATION RECORD • Righellis Inc. To FROM El MEMO TO FILE 0 V.,i1 • PL,,,,, LAND8CAPE ,■r<c:1■Ft:c1,.:,oro.,,,.z.i . ....... ..........._ .._.. ...... ...... . PHONE NO.: PHONE CALL: 0 MEETING: 0 71 -0 CO RI PJ . 2 • m % .. 71 i, 3. 11 I —4 1 c • -I ("4 03 r 0 ,..., 0 0., ..., ......_ ,..„ v s , 0 * --0 ,35 0 r N cil 11 •0 . 0 . . . . - ....i r * 4 • Iv -- ,,,,- - -- vs) . ...c) 670, m N _9 # ..... cii 4* .. . . • CII ... 7" 3 "s .0 Cit , • 0 1 0 N. • . I . of, 'a 1 -0 5 N 4' z ,.. v ,i. o,-- C... 4— 0 C9 -..... ....0 0 • 0 BY: � y+ &SW\ DATE: —5019 a V i O JOB NO.: # vV f ! V 9 V PROJECT: RE: D AA AA ^ P o NR1L ePPPIC Il'Y (l.ba C':i tn :) . l ❑ • (1.3 */ , I) :. 1(0a.“07+ �*I is o W . U . e e ir d • e 3v • Z C.APIAC. it (" • - r =(16 , 6 / ,1'(3 I2 , (z board �� R. JaAsrS 2 = 1- 41 7LG 4 • iF WaC,R \oc ee n n.O. iS = 3`' 1 ° o,c —� ❑ 9 0 W ❑ o . 1 a J At, ua1 = 11. ( 15 pL-F' l ii - - p I � e LE�c -, :9,..0 1.( -,(�) 1 { 6S J \ --- 1 'P • t .� ;=. C • T h r a ' (4 I `�(z )(ago. )-- �6 (F.t < 4n/ w , C�re),U 10cA k . • 30°1# (2i\L = g3•1 itit S ps 3rs'l4- x 4172 e- 12" o,C , . (2(2210 t*) T 440. =, 0k- . 6- 614- c . - - BY: RIODi Al‘ 0A 01 0 Joe No. , C EN ,oct 0 PROJECT: I r . RE: 1:) IDOE.-k Cr.:r'.11 . . o o . . -I (5 LI Z .-i: O 2 ,i . ‹.■.- ZOO A4 M l i j 0 k k i "Z. 20 0 Ak( 4a ) a X U 0 0 Lil 0 x z T-=- C _.„. 6 it.ti.i - aq 00 t# 0 F- - 3. SIN.) 1 0 2 0_., 51mcoor\ NDu 4 I 0 2 To f tencaion 2 c leiC " z__ 0 (.) _ 1 __ e c . 0 . Z . O .: re 0 1.1_ Z La El g 0 = 1.CDi Cn Pr -, ea .° . • 1..• 0_ M,_ aooit (.400 2.0o # BOCO 4t.i)</ T- C Bfboo 400 ,*, 41,04 3C 0 i 7 0 txo •:.-' u a , Z ! w . J- , . . Harper :s. "' HOUfPeterSOn COMMUNICATION' RECORD Righellis Inc. To 0 FROM 0 MEMO To FILE ENGINEERS • PL AIIHERS ' LAI:r.SC.t P7. ARCHITEUT,s•SURVGVGN[ "" "' - -" PHONE NO.: PHONE CALL: 0 MEETING: 0 Al "0 m F7 Q . --� C 7d m kJ (r it 11 P 0 _ , o 0 0 CA, g_ `r ' 1 SI 6 V. 0 r i —C= --t CS c I • • 6 a1 • 0 m z 0 • 1 0 • • nacper - 6 1 P "• HOtifPeterson COMMUNICATION RECORD Righellis Inc. TO ❑ FROM ❑ MEMO TO FILE ❑ En CINEEkS • PLANNERS LA ARCHITECTS•SU: 'V_YUH PHONE NO.: PHONE CALL: ❑ MEETING: ❑ . M 13 m • ......... i H g N Erjmam 'N. --- . 6„ . 0 a m !` E� c G -cs r ; r , J . - 1 — . t C i 0 '1 f 0 r . L_ co - - Z rn S . `O' • 1 COMPANY PROJECT dt Wood Works® • SOFTWARE FOR WOOD DESIGN June 8, 2009 16:27 Hand Ra112 Design Check Calculation Sheet Sizer 8.0 LOADS: Load Type Distribution Pat- Location [ft] Magnitude Unit tern Start End Start End LIVE Live Full UDL 50.0 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : * - • - **.•se--.. ,- .* , * . :v.s.*2: - .:. --. .".- - -- - - - *-.. , v*.-L: - .;.t , fer.:: - , *7 i' ..,...,...,,,,-....i..-....:,...,,..2„:„, ..,.. - --N; '`,..",-;'"'" ''' ri:' ' - i - '-'"". . --- ''''',-"'"" ':'. ''. '.;-; '''' - [ .. "-:;:if-- ' ''' ': .1!1: f::11 ': '. :j 1 : . : ' ' ' '' '.: ::;. -- 0 ''''' ':;,,f;„f ' . ;:',*1:;; ; :'... 7 :i' ' ..,.; . :" 1 1;fP - ,4:: '.,_ . ' . . 1 0' 5 Dead Live 125 125 Total 129 129 Bearing: Load Comb #2 #2 Length 0.50* 0.50* Cb 1.00 1.00 *Min. bearing length for beams is 1/2" for exterior supports Lumber-soft, Hem-Fir, No.2, 2x6" Self-weight of 1.7 Of induded in loads; Lateral support top= at supports, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis/Design Shear fv = 19 Fv' = 150 fv/Fv' = 0.13 Bending(+) fb = 256 Fb' = 1048 fb/Fb' = 0.24 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.16 Total Defl'n 0.03 = <L/999 0.25 = L/240 0.11 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 150 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 0.949 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 405 - 1.00 1.00 - - - - 1.00 1.00 - E' 1.3 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.4'7 million 1.00 1.00 - - - 1.00 1.00 - 2 Shear : LC #2 = L, V = 129, V design = 106 lbs Bending(+): LC #2 = L, M = 162 lbs-ft Deflection: LC #2 = L EX = 27e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction Lc=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. C COMPANY PROJECT el t WOO WOr S SOFTWARE FOR WOOD DESIGN June 8, 2009 16:27 Hand Rail Design Check Calculation Sheet Sizer 8.0 LOADS: Load Type Distribution Pat- Location [ft] Magnitude Unit tern Start End Start End LIVE Live Point 2.50 200 lbs - MAXIMUM REACTIONS ((bs) and BEARING LENGTHS (in) : ,„,..,., .:F.„,,,,..,,,,„..,-,..-„yaiter*:,,,,,:jy.cliSipy.f.,!,:-4m4l tti;rd t -i. 1.! : i.‘z,,--1.3.=?S2i •= ...'"::: `: !: . 7 `f :-. ;4 - f '. • P4:ii .t lq:;: 'i=1 :".P-' - --- : .e t`'''', :;: `i: t' ' '-' "..:"'":- - '''-' ' ;'' ;::! .:::• ' s '::.!,L,E, .::. c ;.,':;.',5,', ier:" :-.:.:',:!.:- .. .'..,..',,y.:, :, ' :7'.'J,=;::,:"::-.:';;.-:; ;.:,,,..: •:?,,,, j,l';'.: . : : .: .j.: :: : j...:::::,'-;:::,,.. : -. :f . 4::: -4-.: ::::: :., ..-„,_ 2,f -..;:,,,.:,--:: , -_-.-:. -- . .•.z.: , .-.. „:-.. ;:: A i . Icr 51 Dead Live 100 100 Total 104 104 Bearing: Load Comb #2 #2 Length 0.50* 0.50* Cb 1.00 1.00 *Min. bearing length for beams is 1/2" for exterior supports Lumber-soft, Hem-Fir, No.2, 2x6" Self-weight of 1.7 ptf included in toads; Lateral support: top= at supports, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis/Design Shear fv = 19 Fv' = 150 fv/Fv' = 0.13 Bending(+) fb = 405 Fb' = 1048 fb/Fb' = 0.39 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 . <L/999 0.17 = L/360 0.20 Total Defl'n 0.03 = <L/999 0.25 = L/240 0.14 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 150 1.00 1.00 1.00 - - 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 0.949 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 405 - 1.00 1.00 - - - 1.00 1.00 - - E' 1.3 million 1.00 1.00 - - - 1.00 1.00 - 2 Emin' 0.47 million 1.00 1.00 - - - 1.00 1.00 - 2 Shear : LC #2 = L, V = 104, V design = 103 lbs Bending(+): LC #2 = L, M = 255 lbs-ft Deflection: LC #2 = L El = 27e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction Lc=concentrated) (Al]. LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B - Front Load WoodWorks® Sizer 7.1 June 22,.2010 14:13:51 Concept Mode: Reactions at Base of Structure View Roof: 25' • • 1050 ----- . -:1280 L - -: .. . . . . _1280 L .. _ - -- 49' -6" ._442D u .." - ; 4 42 D - : 4� IUL 11.11 b _ i 4b.-0 45 -0 1 UU :•.:. , - . ; • • , - - - - - 44 " -0 " y9 4S-b V/. .. . 1227 2 089 L - : 1601 L : _ _ -- -- -- -- , .. -- 41. -0 .. y5 _ 10481539 D•. 1074 D 41./"-0 .Sy -b SO "-b' yz - ! -- : 1 _- : .•, . .. -- ... - - 30 -0 yU 34'-b" to 33 -b 06 . : : - .:: __ - __ - -- JL -b 00 75 L 1_y - • di ; : : . .; 59 D. r . b .. u1_- - :: 1232 1_ -_ ...... :. . . _, Lb b 6 � 1408 L 1b. -0.. r y 5 D ' :556D . :: : - .. ... -- .C4 -0 r r 1080 L: 640 L 11 b • 10- : .. -: 2 LU b' • l4 ' . 4Rfl l ._ -- .. ,; ' 99 DD_:. - .. .. -- - -- -- 16 -0 1 1522L; : :.. 99D 1r-0 : r 1 - . D " - - - -- -- - 1�' b rU : 98 D . . . .i .. 14-b b y 225 75 L : 13' -b.. br 73 . : -• .24 n - �.... . . . . . . 1 L.-0 on 2192L: 1 U t b0 . .1311 D y -b 03 }- :: :. � n.. s ' • nG :.. - . - 2 20 . 0- bU ? -- L 55 L 3 b 109 58n 021 L -0 Di L'b 450 :2 1 D _:,. _. 55581 D- IA) 1 •BBIBBBCCCC CCCICCCCCCCCCCC CCCD. DDDDDDDIDDDCDDDDDDDDDCDt DDDEEEE EIEEEIEEEIEEEE'EEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'678' 1(1'1 :1 :1 111i 2( 22; 2: 22 2f22121 3( 33: 3: 3 3! 3E3 :3t3f414•4A :4 :4t4E5f55 :5 :5 515! 6166:6: 6 3L1L L . " D • FOO '7 ‘ 1.) CI L ioQr -F 42.0m1.- LOAD g....... Ap \ WoodWorks® Sizer SOFTWARE FOR WOOD DESIG Unit B - Rear Load WoodWorks® Sizer 7.1 June 22, 2010 14:14:21 . Concept Mode: Reactions at Base of Structure View Floor 3: 17' • • 1050 - _ - 1280 L : : .._. .1280 L -- -- -:. -. --.: -- - :.: -. ' .' - - - - . -: - -. - : ---- ... - -• •-. - -- -- -- - .. 49'-6" IVS u4y 442D : 442 D ; . . 40. -b.. . 40 b 40 9. 44 b 4 • 2 W. : : :5296L • . - : ; - 3 7 6 4 "I -b • ° • 4328D; - - .. ,. 4101 D , 3y._� • • ; tsy 22 -u.. zsb _ 2U -b 00 75 L Ly.�.. b4 ud 5 9D. ' LO u L/ -b" 6.1 ' 765 1036 1_ = : -- '- -- - - - - -- - 2 . - u n - tsu 483 D L4 b ry 277 D . -. L2 -0.. f is 9 D 640 L : : : . : . : : : : : ; - - . . . : . : . ,Z2 -b in _208 ; 774E _ �u n ( 4 4R!) 99 D7 - . - • • • _. is -b 1020 L 1 /12: _ , 99D_ 0-b r a : • ..,_. 368D ,..-- - • - - .- - fU • 14 -b uy . - :98 D • 225 75 L �.. 0 • 73 ; v ..- 24 n ; . '� u . 00 !� 2186 L . 1 l/-0• u5 � 1298 D y -b ^'� . . ; L 0 84E 4 b 6 306 D_ "4 62 L D71E2515 Di5 D- : -: 5647 D - : ;- :... :- - - - - - - - - -- • . • V b . BBIB, BBCCCCCCCCiCCCCCCCCCCCCCCC\ CCCD. DDDD'DDD }DDDCDDDDDDDDDCDIDDDE.EEE EEEEFEEEIEEIEEEEEEEfEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'91(1 1:1 :1 :1(142(22:224'.2(2 :3 f,3 "13f4(4'4i1 :4 5:5 :5 5 8:6 :6 56470 7,7:7 -6" 001 INC-, L IN (;4VT . gepda.. LoPID • B_c2 ____ Plain Concrete Isolated Square Footing Design: F1 f := 2500•psi Concrete strength f • 60000•psi Reinforcing steel strength E := 29000•ksi Steel modulus of elasticity "Icon 150.pcf Concrete density ' Yooil 100•pcf Soil density all 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Total& := 5647.1b Pd1:= Totaldl Totalll := 7062-lb Pll := Totalll Pt1 Pdl + Pll Pg = 12709-lb Footing Dimensions t := 12•in Footing thickness Width := 42.in Footing width A:= Width Footing Area net gall — tf''Yconc net = 1350.psf Pt1 Areqd — 9.41441 < A = 12.25 ft GOOD gnet Areqd Widthreqd Areqd Widthreqd = 3.07•ft < Width = 3.50ft GOOD Ultimate Loads = Pdl + tf P := 1.4 Pdl + 1.7•P11 P = 22.48•kips P q := A q = 1.84•ksf ea Beam Shear b 5 in (4x4 post) d:= tf -2•in := 0.85 b := Width b = 42•in V„ 4 • f V„ = 23.8.kips 3 Vu := u r b 2 colt b V = 9.77•kips < V = 23.8.kips GOOD Two -Way Shear bs :_. 5.54n Short side column width b , := 5.5.in Long side column width b := 2.(bs + d) + 2.(bL + d) b = 62•in (3 1.0 V 4 + . 8 f V = 71.4-kips ^ ac Vnmax := 2.66 f psi b d Vnmax = 47.48•kips = qu — (bc01 + d)2] V = 19.42-kips < Vnmax = 47.48•kips GOOD Flexure 0 ' ( b — bcol 2 l Mu clu I l ( l b M = 7.43•ft•kips \ 2 J l A:= 0.65 2 := b d S = 0.405 ft 6 F := F = 162.5-psi M f := u f = 127.36•psi< F = 162.5.psi GOOD 'Ilse a 3' -6" x 3' -6" x 12" plain concrete footing Plain Concrete Isolated Square Footing Design: F2 f 200-psi Concrete strength f := 60000-psi Reinforcing steel strength Es := 29000•ksi Steel modulus of elasticity "( : 150•pcf Concrete density "(soil 100•pcf Soil density gall 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totald 4101•Ib Pdl:= Totaldi Total1 : =. 5376-lb Pll := Totalll P := Pdl + Pll Pd = 9477•Ib Footing Dimensions t := 10• in Footing thickness Width := 36-in Footing width := Width Footing Area net gall — tf''Yconc gnet = 1375•psf P Areqd := gnet A red = A ft < A = 9 ft GOOD Widthreqd Aregd Width = 2.63-ft < Width = 3.00 ft GOOD Ultimate Loads ,:= Pd1 + tf•A P„ := 1.4 Pdl + 1.7•P11 P„ = 16.46-kips P q„ := — A q„ = 1.83-ksf Beam Shear bcol 5.5•in (4x4 post) d := tf — 2.in := 0.85 b := Width b = 36-in V :_ 4 • f psi•b•d V = 16.32•kips 3 • V qu rb colt b V = 6.97-kips < V = 16.32•kips GOOD 2 Two -Way Shear b§:= 5.5.in Short side column width bL := 5.5•in Long side column width b := 2.(bg + d) + 2.(bL + d) b = 54-in c3 1.0 V,:= 4 4 + 8 1 f V = 48.96•kips (3 3*Rc/ V := 2.66 f psi b d V = 32.56•kips ,N,µ,,:= 9u•[b — (bcol + d) V = 14.14 -kips < V, m = 32.56•kips GOOD Flexure 2 Mu qu. rb — bco ll 11 b M = 4.43-ft-kips • I \ 2 / 2 J A,:= 0.65 := 13.4:1 S = 0.222. ft 6 F := 5 f psi F = 162.5• psi M f := s u f = 138.42.psi< F = 162.5•psi GOOD lJse a 3' -0" x 3' -0" x 10" plain concrete footing 6- •V)(0. Plain Concrete Isolated Square Footing Design: F2 f := 2500•psi Concrete strength f := 60000•psi Reinforcing steel strength E := 29000•ksi Steel modulus of elasticity 1'conc 150•pcf Concrete density 'Ysoil 100•pcf Soil density gall 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldl:= 2515•lb Pdl:= Totaldl Total!! := 3606-lb Pll := Totalll Ptl Pd1 + P11 P = 6121-lb Footing Dimensions t := 10. in Footing thickness Width := 30•in Footing width := Width Footing Area net gall — tf•Icone lnet = 1375•psf Ptl Areqd gnet A red= g 4.45241 < A = 6.25 ft GOOD Widthreqd := Aregd Widthreqd = 2.11 -ft < Width = 2.50 ft GOOD Ultimate Loads Pte:= Pd1 + tf•A••Yconc P := 1.4 Pd1 + 1.7•P11 P = 10.74-kips P ch =_ — ch = 1.72•ksf A g' Beam Shear b c 5;5 in (4x4 post) d:= tf -2•in := 0.85 b := Width b = 30•in 4 V :_ — f psi b d V„ = 13.6•kips 3 Vu •= qu C / b — 2 colt b V = 4.39.kips < V„ = 13.6•kips GOOD Two -Way Shear bg: =: 5 5 iii Short side column width Long side column width b := 2•(bg + d) + 2.(bL + d) b = 54-in := 1.0 _ 4 + — ). f psi b d V = 40.8 -kips 3 343 V,., := 43.2.66• f psi•b•d V, = 27.13.kips ,V,Y1,; qu'C ( bc01 + d)2] V = 8.57-kips < V = 27.13 -kips GOOD Flexure Mu = qu [(b — b colj 1 b M 2.24- ft•kips 2 J 2 ,t, := 0.65 2 AS "":= b6 S = 0.185 -ft • F 5•(1)• f psi F 162.5-psi M ft := s ° f = 83.98 -psi < F = 162.5 -psi GOOD lJse a 2' -6" x 2' -6" x 10" plain concrete footing 63F S ,i3 b =xx: gy m. 64 O P l ir n m in ° n O • p ( s42.'b) e- ez 9 e _ (z- 'a 1 --- S1>isi St1-1 - `- E.SVhL° _ "'°u" S W h - Qt 'tt 1'e,' btt - _5i' l° b e - W ' s o . o Z'.a..t- 3 ❑' -yA° '.- S'1 7, bh'I • p 9 7 ©L° = S n 1C) 3 ck ) \ %S k ( ) ti c-1,1).Shi t -4 (6)(Sixqijcs'E)LOS1 .0) = NI 'd W K (A..\)\gs•sk ,'e ( + x5`1)0.115.)(0S1 °0)^ '6W n L Vt.l : 09 Soto 4 g 6 -b° [Q 4 410 b1 r- I°W 0 Z M z 0 M p y r O ` I LO 4 o +.11 _i____-,St. ti _.-.\-•S O I t ❑ 3 t o m -I i t i i z - I 1 ! �_ 1 ! �� i - r � ! Q� Q ' !! �t � II I'' �� � � D l b.bt 111 k. Q iiA gb b ❑ ❑ � 1� 3a I A :103 road .. A50r2 ' b `1 SU'b o 0)30" 0 : oN eor OtTe C")( aiva )1\1 A6 nuro !:Benttey Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:48 AM Units system: English File name: O:\HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit B\FDN \Front Load.etz\ M33 =81.13 [Kip'ft] 1 • • M33 = -23.24 (Kip•ft) Bentley Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:49 AM Units system: English File name: O:\HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit B\FDN\Front Load 2.etz\ M33 =48.59 [IGp*ft] • Y M33= -54.65 [Kip'ft] .\‘ By \ 4c, DATE - ^i).5 001() Jos No : C t ,.... 0 c PROJECT: ' RE: trocAV bail -,PclAto _ _ _ , _ _ . _ ___,. P - 3 :Ly._Isb'' _ _ . ‘' ---- -1 ff... • .. F • w O 2 ---4.-' I\ _A --- q V-t. . yr,r . _ .___ _ : • je k,_ , L it . ---- , - - - , _ r I CC o 0 w . Ur\•ik- C -b. b_3_._(4. LI_ Itu .. _ . , . . . z 0 w i z iv xrivi\ .::: < Qiv k- C 7-> - 40.0 4 t.ct • 0 z akc. 4-- O. C AO C (c,`12.). . iotx::72)0- , a 1'T n_ t s- e L-2,1 01c., .kt ...O.Lit2.4-4- )<35Ck, 2 1 ‘ " O - i LL ,, o1/4_,,61C2140,10_0 0 LIVZ \ N 0 g O i 0 LAYN- - OA° (.4410.‘t; ( 4 _ ) .., _ _ __ _ ,7-•__! . . is_S .LOG___ix_fi_3_,;_q_4.__ _ . , _ .- - - - .111)-- • .- a z ( \ ,t4 /Co . . 0 mr‘ :-.. 0 tow Clfsalti)(c,o,QQ0(15 - D_ i > s I ,. : o t‹._ to" o,c. _ t.,- . _ 0 iCtL5 ', 0 = f r. ;-■ Po :=-: -•• . C\eYjakkle, TruciNeen, 0 ='; Tr ‘A - 4 -. . 4 .4 @.. ri: 0,C. • _ Rs. ....-- O. (-4((r4 0-1 p. = - -y\ ._- ,q0(orltot 9 ' = 5 . ‘ ( , , F. \-ct _. . _ • :. ov__ . . . . _. _ . . BV: DATE: JOB NO ": PROJECT: RE: 1T .. 13 C -Rea( Load ❑ ❑ ` C Lr t J Z 54 L O W g 2 2000 "400 • O d I O w CL O Mor Iv1�� . (q) 4- a. ( , 34) +°a CiL 433) _ (-s.34 t DL • M� �f1� t- }�it,LE)+ a((,21-) O 1,5(sq.53) . au, toioL OL . Pula. x i � El z �vi 1 — 4' . t a (B. 0> _ a. e = oo-�� Ft CL `3rn\a.x = _ Os 1a ,1 • . �Ct2 , o. 49, a v..sf < is lvh tri Q M 1 2, o.� o , a5o tsc- (7 C1 ,) ZCl')z 0 V Y N s N tea =. • • B 7 ' 0 U: Bentley' Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:57 AM Units system: English File name: O:\HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes\calcs \Unit C \FDN \Rear Load 2.etz\ M33 =36.82 [Kip'ft] • M33= -50.22 [Kip`ft] Y e • — 1* ACI 318 -05 Appendix D 1.125" Diameter Bar Capacity at Standard Stem Wall Concrete Breakout Strength Stem Wall Capacity when govern by 3 edges Foundation Capacity Givens Givens fc = 3000 psi fc = _3000 psi h' = 17.00 inches het = 12:09..: 'inches (into the Foundation) Stem = x:8:00_ inches Note: hef above is the the embedment into only : the the foundation and does not consider stem wall embedment Fnd Width = • 36.00 inches cmin = 2.25 inches cmin = 18.00 inches W 1.00 cast -in -place anchor W 1.00 cast -in -place anchor k = 24 cast -in -place anchor k = 24 cast -in -place anchor = 0.75 strength reduction factor 4) = 0.75 strength reduction factor Calculations Calculations AN = 408 in` AN = 1296 in` A = 2601 in A = 1296 in Nb = 92,139 pounds Nb = 55,121 pounds Wed.N = 0.7265 Wed.N = 1.00 Nth = 10,500 pounds Nth = 55,121 pounds 4)N = 7,875 pounds 4N = 41,341 pounds Combined Capacity of Stem Wall and Foundation 4 = 49,216 • 0.754)N = 36,912 • • 8, ?ks Concrete Side Face Blow Out Givens Abrg = 2.75 in` fc = 3000 psi c min = 18.00 inches = 0.75 strength reduction factor Calculations N = 261,589 pounds 4)Nsb = 196,192 pounds Concrete Pullout Strength Givens Abrg = 2.75 in` fc = 3000 psi = 0.75 strength reduction factor Calculations Np = 66,000 pounds 4N = 49,500 pounds Steel Yield Strength • Givens f, = 58,000 psi A = 0.763 in = 0.80 strength reduction factor Calculations N = 44,254 pounds 4Ns = 35,403 pounds < 36,912 Ductility Met Holdown Check Holdown: HD19 Holdown Capacity= 16,380 pounds 1.6* Capacity= 26,208 pounds 26,208 < 35,403 Holdown Checks S :10° ACI 318 -05 Appendix D 1.0" Diameter Bar Capacity at Portal Frame • Concrete Breakout Strength Stem Wall Capacity when govern by 3 edges Foundation Capacity Givens Givens fc = 3000 psi fc = 3000 psi h' = 3.50 inches hef = . :12:00 , .F inches (into the Fc Stem = -_ 8:00 ` l inches Note: hef above is the the embedment into or Cmax = 5.25 inches the foundation and does not consider stem wz Fnd Width = 36.00 inches C = 2.25 inches c mjn = 18.00 inches Wc.N= 1.00 cast -in -place anchor Wc,N= 1.00 cast -in -place anchor k = 24 cast -in -place anchor k = 24 cast -in -place anchor = 0.75 strength reduction factor 4 = 0.75 strength reduction fact' Calculations Calculations AND = 68 in` A N = 1296 in A = 110.25 in` AND = 1296 in` Nb = 8,607 pounds Nb = 55,121 pounds W ed.N = 0.8286 Wed.N = 1.00 Ncb = 4,399 pounds Nth = 55,121 pounds 4)N = 3,299 pounds 4)Ncb = 41,341 pounds Combined Capacity of Stem Wall and Foundation (pNcb = 44,640 0.754N = 33,480 '"V-. Concrete Side Face Blow Out Givens Abr9 = 2.15 in` fc = 3000 psi cmin = 18.00 inches = 0.75 strength reduction factor Calculations N = 231,191 pounds 4Nsb = 173,393 pounds Concrete Pullout Strength Givens Ab.s = 2.15 in fc = 3000 psi = 0.75 strength reduction factor Calculations N = 51,552 pounds 4 N = 38,664 pounds Steel Yield Strength Givens f = 58,000 psi A = 0.606 in = 0.80 strength reduction factor Calculations N = 35,148 pounds 4 N = 28,118 pounds < 33,480 Ductility Met Holdown Check Holdown: HDU14 Holdown Capacity= 14,930 pounds 1.6* Capacity= 23,888 pounds 23,888 < 28,118 Holdown Checks By ik 0 \ DATE: U, , w 'Q.01° JOB NO.: C c N - 0 4 0 V OF PROJECT: RE: S Vem WW1 Cook 0 0 t Sides es oP Bv.i Ida,n Li 0 f ' DI.° aSct( t2 ?6F)= 300 9 L woo) . L 0 • n $ ciLC21eveAs 'y13 s0 .- pt_c S loor 0 -1 4oIN 650 pc_CI'I.z 2 .0 } 4Z�_- 3 3 3 pt,F .5•1 -ern U 0 z (1iz C tso pc-�)( uo = 100 w P�.� 1 ( , w 1 r w � w a Z LL o (5c612. levels C40 \ s,>r') = (Mo •`-F _31o0r 0 F= - Z TOW l ncxd. = ly-b I +- tUOuJ 01.f.! . 2 ' ' N% Vbp = 1500 pt,F = tsoopc.F • W 0 t 8 1. + ICAO w S '�SOCw ..'_.. - w _ 1.;00 C1r ( a r t i 0 g 0 0 Z 0 o e teat' it cl vS bw y kd >r\cp O = F- a DLo asctzl: 3cx, p‘_F wall - 6 = 4 PI= S ooc 401 N (150}xF X. Vtz_( a3 bI tt ) = . 333 51-e 0112)( 450 - 100U) 6 61 1 psc ) _ 306 P coo p LL: C° = 1-2-o p t..c Cvib>C2.s _ }- - so PLC o 6 E - TLo a343t10000 a v o , . a3u3 too 1,s00“.) � a W W f., e vn„( 6' C. = soome. cts ik mtr, , Stocx - 10044, Tires 1 0 A ¥ 100 t..A.) ( 1. ‘.)-e. cc Po, ov vJu t Di- o t (2,) . (0C) ciao. I (5)(2 X(3)CZ, = 4t c.F S 1001 - 4Utra(15C)vcE�C )( _ 33$ 5krm Cc ItzXt 1.1)) =100 w LL ° . (6/.2.(4 = 1299 Pia- d taur rL: a,a9fiicxow w= t ,D -`i- 231►., -'• v s€ a4 t N