Loading...
Specifications (4) YA ST2-00 - CID 17`f I`7:3 11 01 I 1 Structural Calculations for Full Lateral & Gravity Analysis of Plan A 1460 RECE Summer Creek Townhomes SEP 2 3 2010 Tigard, OR CITY OF TIGARD BUILDING DIVISION Prepared for Pulte Group July 13, 2010 JOB NUMBER: CEN -090 ** *Limitations * ** Engineer was retained in limited capacity for this project. Design is based upon information provided by the client, who is solely responsible for the accuracy of same. No responsibility and /or liability is assumed by, or is to be assigned to the engineer for items beyond that shown on these sheets. 117 sheets total including this cover sheet. This Packet of Calculations is Null and Void if Signature above is not Original 4 h 0t ) Harper '• Houf Peterson Righellis Inc. E0161NC_R6 • ,ER8 ♦i HOSC+ve AHC“Itt CTS.6JH ,OHS 205 SE Spokane St. Suite 200 o Portland, OR 97202 0 [P] 503.221.1131 0 [F] 503.221.1171 1104 Main St. Suite 100 o Vancouver, WA 98660 0 [P] 360.450.1 141 0 [F] 360.750.1 141 1133 NW Wall St. Suite 201 o Bend, OR 97701 0 [P] 541.318.1 161 0 [F] 541.318.1 141 Design Criteria Project Scope: Full lateral & Gravity Analysis of Unit A Design Specifications: Wind Design: Basic Wind Speed (mph): 100 From Building Authority Exposure: B From Building Authority Importance, IW: 1 2006 IBC / 2007 OSSC Occupancy Category: II Residential Earthquake Design: Seismic Design Category: D From Building Authority Site Class: D Assumed, ASCE:7 -05 Ch. 20 Importance, IE: 1 ASCE 7 -05 Table 11.5-1 Ss: 0.942 USGS Spectral Response Map S1: 0.339 USGS Spectral Response Map Dead Load: Floor: 13 psf Wall: 12 psf Wood Roof: 15 psf Live Load: Roof: 25 psf Snow Floor: 40 psf Residential Floor Materials and Design Data: Materials: Concrete Compressive Strength, f'c: 3000 psi Foundations & Slab on Grade Concrete Unit Weight, yc: 145 pcf Steel Reinforcement Yield Strength, f 60,000 psi Wood Studs (Wall Studs): Hem -Fir #2 2x & 4x Wood Beams & Posts: DF -L #2 6x & Greater Wood Beams & Posts: DF -L# 1 Glulam Beams: 24F -V4 PSL Beams: Fb =2,900 psi, FV= 328psi, E =2.0 Million TS /LSL Beams: Fb =2325 psi, FV= 460psi, E =1.55 Million Design Assumptions 1. Allowable soil bearing pressure (qa) : 1500 psf Assumed 2. All manufactured trusses, joists, and flush beams u.n.o. shall be designed by others. Structural Analysis Software Used: Mathcad 11 Microsoft Excel 2000 WoodWorks — Sizer version 2002 Bently RAM Advanse Harper Project: SUMMERCREEK TOWNHOMES UNIT A H;P ° Houf Peterson. C lient: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: Pg. # _ I.ANOSCAPE ARCHIrEC r S• SURVEYORS DESIGN CRITERIA 2007 Oregon Structural Specialty Code & ASCE 7 -05 Roof Dead Load RFR := 2.5•psf Framing RPL := 1.5•psf Plywood RRF := 5•psf Roofing RME := 1.5•psf Mech & Elec RMS := 1 •psf Misc RCG := 2.5•psf Ceiling RIN := 1 psf Insulation RDL = 15 -psf Floor Dead Load FFR := 3 •psf Framing FPL := 4•psf Sheathing FME := 1.5•psf Mech & Elec FMS := 1.5•psf Misc FIN := .5•psf Finish & Insulation FCLG := 2.5•psf Ceiling .FDL = 13•psf Wall Dead Load WOOD EX Wall := 12•psf INT_Wall := 10•psf Roof Live Load RLL := 25•psf Floor Live Load FLL := 40•psf //' LI Harper Project: SUMMERCREEK TOWNHOMES UNIT A HP Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENOIREERS • PLANNERS Designer: AMC Date: Pg. # L ANOSC APE ARCHITECTS• SURVEYORS Transverse Seismic Forces Site Class = D Design Catagory =.D Building Occupancy Category: II Weight of Structure In Transverse Direction Roof Weight Roof- Area := 843 •ft RFVy-1• := RDL•Roof Area RFWT = 14162-lb Floor Weight Floor Area2nd = 647•ft FLRVVT2 := FDL•Floor Area2nd FLRwu = 8411-lb Floor_Area3 652•ft FLR,yT3rd FDL•Floor Area3rd FLRVyT3rd = 8476-lb Wall Weight EX Wall Area := (2203)•ft INT Wall Area:= (906)•ft WALLwr := EX_WaII + INT Wall INT_Wall_Area WALLW -i- = 35496-lb WTTOTAL = 665451b Equivalent Lateral Force Procedure(12.8, ASCE 7 -05) h 32 Mean Height Of Roof I := 1 Component Importance Factor (11.5, ASCE 7 -05) ,:= 6.5 Responce Modification Factor (Table 12.2 - ASCE 7 - 05) C := .02 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) x := .75 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) Period T := C T = 0.27 < 0.5 (EQU 12.8 -7, ASCE 7 -05) S1 := 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. . (Chapter 22, ASCE 7- 05)...or S := 0.942 Max EQ, 5% damped, spectral responce acceleration at short period From Figures 1613.5 (1) &(2) F := 1.123 Acc -based site coefficient @ .3 s- period (Table 11.4 -1, ASCE 7 -05) := 1.722 Vel -based site coefficient @ 1 s- period (Table 11.4 -2, ASCE 7 -05) Harper Project: SUMMERCREEK TOWNHOMES UNIT A j=1. Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS. LANREAS - -- Designer: AMC Date: Pg. # LANDSCAPE ARC YITEC PS• SURVEY ORS S MS Fa SMS = 1.058 (EQU 11.4 -1, ASCE 7 -05) S •= 2'SMS Sd = 0.705 (EQU 11.4 -3, ASCE 7 -05) 3 SM1 := F S1 SM1 = 0.584 (EQU 11.4 -2, ASCE 7 -05) Shc •= 2. 3 Sdl = 0.389 (EQU 11.4 -4, ASCE 7 -05) Cst := Sd le Cst = 0.108 (EQU 12.8 -2, ASCE 7 -05) R ...need not exceed... Cs Shc Cs 0.223 (EQU 12.8 -3, ASCE 7 -05) max -_ ,I, R max = a ...and shall not be less then... C1 := if(0.044•Sd < 0.01, 0.01, 0.044. Sds' le) ( 0.5•S1•Ie1 (EQU 12.8 -5 &6, ASCE 7 - 05) C2:= if l S 1 <0.6,0.01, J R Csmin := if (CI > C2, CI , C2) Cs = 0.031 Cs := if (Cst < Cs Cs if (Cst < Cs , Cst, Cs Cs = 0.108 V := Cs. WTTOTAL V = 72201b (EQU 12.8 -1, ASCE 7 -05) E := V•0.7 E = 50541b (Allowable Stress) \3 Harper Project: SUMIMERCREEK TOWNHOMES UNIT A 0 P :. Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: Pg. # LANDSCAPE ARCHITECTS• SDR•EYORS Transverse Wind Forces (Method 1 - Simplified Wind Procedure per ASCE 7 -05) Basic Wind Speed: 100 mph (3 Sec Gust) Exposure: B Building. Occupancy Category: II I := 1.00 Importance Factor (Table 6 -1, ASCE 7 -05) h = 32 Mean Roof Height X := 1.00 Adjustment Factor (Figure 6 -3, ASCE 7 -05) Smaller of... a2 := 2•.1.20•ft Zone A & B Horizontal Length a2 — 4 ft (Fig 6 -2 note 10, ASCE 7 -05) A V v := .4•hR 2•ft a2 = 25.6 ft but not less than... Amin = 3 2 ft a2 = 6 ft Wind Pressure (Figure 6 -2, ASCE 7 -05) Horizontal PnetzoneA 19.9•psf PnetzoneB 3.2.psf Pnetzonec = 14.4•psf PnetzoneD 3.31psf Vertical PnetzoneE 8.8•psf PnetzoneF := — 12•psf PnetzoneG = — 6.4•psf PnetzoneH 9.71psf Basic Wind Force PA := PnetzoneA'Iw•X PA = 19.9 -psf Wall HWC PB := PnetzoneB'Iw•X PB = 3.2•psf Roof HWC PC := PnetioneC'Iw•X PC = 14.4•psf Wall Typical PD := PnetzoneD'Iw•X PD = 3.3 -psf Roof Typical PE := PnetzoneE'Iw•X PE = — 8.8• PF := PnetzoneF'Iw-X PF = — 12• PG := PnetzoneG' Iw' X PG = — 6.4• psf PH := PnetzoneH' IWX PH = — 9.7•psf Harper Project: SUMMERCREEK TOWNHOMES UNIT A HP Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. �- ENGIN LCRS PLANNERS - Designer: AMC Date: Pg. # LANOSOAPE ARCNiTECTS• SURVEYORS Determine Wind Sail In Transverse Direction WSAILZoneA := (41 + 59 + 29).ft WSAII -ZoneB :_ (1 + 0 + 23)•ft WSAILZoneC': (391 + 307 + 272)•ft W'SAILZoneD (0 ± 0 + 5) ft WA WSAILZoneA'PA WA = 25671b WB := WSAILZoneB•PB WB = 134 lb WC := WSAILZoneC•PC WC = 139681b WD WSAILZoneD'PD WD = 161b Wind_Force := WA + WB + WC + WD Wind_Force := 10• psf•(WSAILZoneA + WSAILZoneB + WSAJLZoneC + WSAILZoneD) Wind_Force = 166861b Wind Force = 114601b WSAILZoneE 94412 WSAILZoneF := -108&ft WSAILZoneG 320•ft WSAILZoneH 320•ft WE := WSAILZoneE'PE WE = —8271b WF WSAILZoneF'PF WF = — 12961b WG := WSAILZoneGPG WG = — 20481b WH WSAILZoneH'PH WH = — 31041b UPlift WF + WH + (WE + WG) + RDL f WSAILZoneF + WSAILZoneH + (WSAILZoneE + WSAILZoneG) }. 6.1 . 12 Upliftnet = 12121b (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN CALCULATION Harper Project: SUMMERCREEK TOWNHOMES UNIT A k t• Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: Pg. # IANDSGAPE ARCNITECTS•SNRVEYDRS Longitudinal Seismic Forces Site Class = D Design Catagory = D Building Occupancy Category: II Weight of Structure In Longitudinal Direction Roof Weight Roof Area = 944 ft ATAcr RDL•Roof Area RFINT = 14162•lb Floor Weight Floor_Area2 = 647 ft , = FDL•Floor Area2nd FLRWT2nd = 8411.1b Floor_Area3 = 652 ft TaxJ= FDL•Floor Area3rd FLRWT3rd = 8476•1b Wall Weight (2203) -ft INT Wall Area = 906 ft fAMa = EX_Wall + 1NT Wall WALLwi- = 35496•lb WTTOTAL = 66545 lb Equivalent Lateral Force Procedure(12.8, ASCE 7 -05) h = 32 Mean Height Of Roof Ie = 1 Component Importance Factor (11.5, ASCE 7 -05) i &:= 6.5 Responce Modification Factor (Table 12.2 -1, ASCE 7 -05) C = 0.02 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) x = 0.75 Building Period Coefficient (Table 12.8 -2, ASCE 7 -05) Period C T = 0.27 < 0.5 (EQU 12.8 -7, ASCE 7 -05) S1 = 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. (Chapter 22, ASCE 7- 05)...or S = 0.942 Max EQ, 5% damped, spectral responce acceleration at short period From Figures 1613.5 (1) &(2) F = 1.123 Acc -based site coefficient @ .3 s- period (Table 11.4 -1, ASCE 7 -05) F, = 1.722 Vel -based site coefficient @ 1 s- period (Table 11.4 -2, ASCE 7 -05) 4- Llo Harper Project: SUMMERCREEK TOWNHOMES UNIT A .4 , HOUf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: Pg. # LANDSCAPE ARCRITECTS•SURVEYORS := F SMs = 1.058 (EQU 11.4 -1, ASCE 7 -05) 2 •SMs ACksv:— 3 Sd = 0.705 (EQU 11.4 -3, ASCE 7 -05) = F, Si SM1 = 0.584 (EQU 11.4 -2, ASCE 7 -05) 2 •SM1 5 := 3 Sd1 = 0.389 (EQU 11.4 -4, ASCE 7 -05) := S R Cst = 0.108 (EQU 12.8 -2, ASCE 7 -05) ...need not exceed... 941.4,1s,\:— Shc'le Csmax = 0.223 (EQU 12.8 -3, ASCE 7 -05) T a -R ...and shall not be less then... ,:= if 0.044•Sd 0.01, 0.01,0.044•Sd 0.5•S1•I ( (EQU 12.8 -5 &6, ASCE 7 -05) ,:= if Si < 0.6,0.01, J R := if (CI > C2,C1,C2) Cs = 0.031 Cs := if (Cst < Cs a, Cs if (Cst < Csmax , Cst, Csmax)) Cs = 0.108 M V := Cs•WTTOTAL V = 72201b (EQU 12.8 -1, ASCE 7 -05) V•0.7 E = 50541b (Allowable Stress) / 9 1.r Harper Project: SUMMERCREEK TOWNHOMES UNIT A e ' Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. ENGINEERS • PLANNERS Designer: AMC Date: Pg. # LANDSCAPE ARCNITEC SURVEYORS Longitudinal Wind Forces (Method 1 - Simplified Wind Procedure per ASCE 7 -05) Basic Wind Speed: 110 mph (3 Sec Gust) Exposure: B Building Occupancy Category: II I = 1.0 Importance Factor (Table 6 -1, ASCE7 -05) h = 32 Mean Roof Height X = 1.00 Adjustment Factor (Figure 6 -3, ASCE 7 -05) Smaller of... ,= 2•.1.20•ft Zone A & B Horizontal Length = 4 ft (Fig 6 -2 note 10, ASCE 7 -05) or 7 ,9 ; 2 . ,;= .4•h 2•ft a2 = 25.6 ft but not less than... 3.2 -ft 6 ft a = Wind Pressure (Figure 6 -2, ASCE 7 -05) Horizontal PnetzoneA = 19.9•psf PnetzoneB = 3.2•psf • PnetzoneC = 14.4•psf PnetzoneD = 3.3•psf Vertical PnetzoneE = —8.8•psf PnetzoneF = —12•psf PnetzoneG = —6.4•psf PnetzoneH = — 9.7•psf Basic Wind Force := PnetzoneA'Iw'X PA = 19.9•psf Wall HWC Pte:= PnetZOneB'IW'X PB = 3.2•psf Roof HWC = PnetzoneC Iw X PC = 14.4• psf Wall Typical ,:= PnetzoneD'Iw'X PD = 3.3•psf Roof Typical N PR:= PnetzoneE'Iw'X PE = — 8.8 -psf �FN:= PnetzoneF'Iw•X PF = — 12•psf , := PnetzoneG-Iw.X PG = — 6.4•psf &:= PnetzoneH' Iw' X PH = — 9.7 -psf /9-1:6 : Harper Project: SUMMERCREEK TOWNHOMES UNIT A P Houf Peterson Client: PULTE GROUP Job # CEN -090 Righellis Inc. AMC ENGINEERS • PLANNERS Designer: AM Date: Pg. # LANOSCAPE A RCHITECT$•SURVEVORS Determine Wind Sail In Longitudinal Direction (48 +'59 + 40)!ft Z x :_(10 +0 +.44)•ft ntJCNVhK+ cAr �iPJi4 (91 + 137 + 67)•ft 2 := (43 + 0 + 113).4 = WSAILZoneA'PA WA = 29251b ,W, , := WSAILZoneB'PB WB = 173 Ib , ,:= WSMI-Zonec PC We = 42481b �W := WSAILZoneD'PD WD = 515 Ib /ind of e,:= WA + WB + WC + WD Wi o ce w= 10•psf•(WSAILZ + WSAILZoneB + WSAILZoneC + WSAILZoneD) Wind Force = 7861 lb Wind_Force = 6520 Ib , = 148.12 AUSLu v:= 120•ft2 Wnntiwsch:= 323 • ft y := 252 -ft Wg,:= WSAILZoneE'PE WE = — 13021b U:= WSAILZoneF'PF WF = — 1440 Ib Wes:= WSAILZoneG'PG WG = — 2067 Ib au/ WSAILZoneH'PH WH = — 2444 Ib WF + WH + (WE + WG) + RDL f WSAILZoneF + WSAILZoneH + (WSAILZoneE + WSAILZoneG)]'. Upliftnet = 1243 Ib (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN CALCULATION �- L . Harper Houf Peterson Righellis Pg #: Transverse Wind Line Shear Distribution ASCE 7 -05, section 6.4 (Method 1 - simplified) Design Criteria: Basic Wind Speed = 100 mph Wind Exposure = B (Section 6.5.6, ASCE 7 -05) Mean Roof Height, H (ft) = 32 Roof Pitch = - 6 /12 . Building Category= II (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf X= 1.00 Iw= 1.00 Wind Sail Wind Net Design Wind Pressure (psf) (ft2) Pressure (Ibs) Zone A = 19.9 .... 129 VxM 2567 Wall High Wind Zone Horizontal Zone B = 3.2 42 134 Roof High Wind Zone Wind Forces Zone C = 14.4 970 13968 Wall Typ Zone Zone D = 3.3 5 17 Roof Typ Zone Zone E = -8.8 94 -827 Roof Windward High Wind Zone Vertical Zone F = -12.0 108 -1296 Roof Leeward High Wind Zone Wind Forces Zone G = -6.4 320 -2048 Roof Windward Typ Wind Zone Zone H = -9.7 320 -3104 Roof Leeward Typ Wind Zone Total Wind Force =I 16686 Ibs I Use to resist wind uplift: Roof Only Total Exterior Wall Area= 2203 ft2 Uplift due to Wind Forces= -7275 Ibs Resisting Dead Load = 8472 Ibs E =) 1197 Lbs...No Net Uplift Wind Distribution Tributary to Diaphragms Wind Sail Tributary To Diaphragm (ft Zone A Zone B Zone C Zone D Main Floor 41 19 391 0 Upper Floor 59 0 307 0 Main Floor Diaphragm Shear = 6507 Ibs Upper Floor Diaphragm Shear = 5595 Ibs Roof Diaphragm Shear = 4584 Ibs Wind Distribution To Shearwall Lines MAIN FLOOR UPPER FLOOR ROOF Tributary Line Shear Tributary Line Shear Tributary Line Shear Wall Line Diaphragm Diaphragm Diaphragm (Ibs) (Ibs) (Ibs) Width (ft) Width (ft) Width (ft) A 13.08 1737 18 2797 19 2323 Al 24.50 3254 0 0 0 0 B 11.42 1516 18 2797 18.5 2261 E= 49 6507 36 5595 37.5 4584 "9- Leo Harper Houf Peterson Righellis Pg #: Transverse Seismic Line Shear Distribution Seismic Design Category = D Occupancy Category = 11 Site Class = D S1 = 0.34 Ss = 0.94 Importance Factor = 1.00 Table 11.5 -1, ASCE 7 -05 Structural System, R = 6.5 Table 12.2 -1, ASCE 7 -05 Ct = 0.020 Other Fa = 1.12 Fv = 1.72 Mean Roof Height, 11 (ft) = 32 Period (T = 0.27 Equ. 12.8 -7, ASCE 7 -05 k = 1.00 12.8.3, ASCE 7 -05 SMg • 1.06 Equ. 11.4 -1, ASCE 7 -05 S 0.58 Equ. 11.4 -2, ASCE 7 -05 SIDS 0.71 Equ. 11.4 -3, ASCE 7 -05 Spy= 0.39 Equ. 11.4 -4, ASCE 7 -05 Cs = 0.11 Equ. 12.8 -2, ASCE 7 -05 Csmin = 0.01 Equ. 12.8 -5 & 6, ASCE 7 -05 ' Csmax = 0.22 Equ. 12.8 -3, ASCE 7 -05 Base Shear coefficient, v = 0.076 Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height (ft) = 8 . Floor 3 Diaphragm Height (ft) = 18 Roof Diaphragm Height (ft) = 32 Floor 2 Wt (Ib)= 8411 Floor 3 Wt (Ib)= 8476 Roof Wt (Ib) = 14162 Wall Wt (Ib) = 35496 Trib. Floor 2 Diaphragm Wt (Ib) = 22609 ' Trib. Floor 3 Diaphragm Wt (Ib) = 22674 Trib. Roof Diaphragm Wt (Ib) = 21261 Vertical Dist of Seismic Forces Cumulative total of base shear Rho Check to Shearwalls (Ibs) I % to shearwalls I Req'd? Vfl 2 (Ib) = 720 100.0% Yes V flrmr 3 (Ib) = 1625 85.8% Yes V rrof (Ib) = 2709 53.6% Yes Shear Distribution To Wall Lines Wall Line Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line Roof Line Floor 2 Floor 3 Roof Shear Shear Shear sq ft sq ft sq ft Ibs Ibs Ibs A 102 361 394 - 114 • 897 1266 Al 432 0 0 481 0 0 B 113 293 449 126 728 1443 Sum 647 654 843 720 1625 2709 Total Base Shear* = 1 5054 LB *Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. /4 — L. ,----- Harper Houf Peterson Righellis Pg #: Longitudinal Wind Line Shear Distribution ASCE 7 -05, section 6.4 (Method 1 - simplified) Design Criteria: Basic Wind Speed = 100 mph Wind Exposure = B (Section 6.5.6, ASCE 7 -05) • Mean Roof Height, H (ft) = 32 Roof Pitch = 6 /12 Building Category= 1I (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf A.= 1.00 Iw= 1.00 Wind Sail Wind Net Design Wind Pressure (psf) (ft ) Pressure (Ibs) Zone A = 19.9 147 2925 Wall High Wind Zone Horizontal Zone B = 3.2 54 173 Roof High Wind Zone Wind Forces Zone C = 14.4 295 4248 Wall Typ Zone Zone D = 3.3 156 515 Roof Typ Zone Zone E = -8.8 148 -1302 Roof Windward High Wind Zone Vertical Zone F = -12.0 120 -1440 Roof Leeward High Wind Zone Wind Forces Zone G = -6.4 323 -2067 Roof Windward Typ Wind Zone Zone H = -9.7 " 252 -2444 Roof Leeward Typ Wind Zone Total Wind Force 7861 Ibs I Use to resist wind uplift: Roof Only Total Exterior Wall Area= 2203 ft Uplift due to Wind Forces= -7254 Ibs Resisting Dead Load = 8483 lbs El 1229 Lbs...No Net Uplift I Wind Distribution Tributary to Diaphragms Wind Sail Tributary To Diaphragm (ft Zone A Zone B Zone C Zone D Main Floor 48 10 91 43 Upper Floor 59 • 0 137 0 Main Floor Diaphragm Shear = 2440 Ibs Upper Floor Diaphragm Shear = 3147 Ibs , Roof Diaphragm Shear = 2275 lbs Wind Distribution To Shearwall Lines . MAIN FLOOR UPPER FLOOR ROOF Tributary Line Shear Tributary Line Shear Tributary Line Shear Wall Line Diaphragm (Ibs) Diaphragm (Ibs) Diaphragm (Ibs) W idth ft Width ft Width ft 1 10 1220 10 1573 10 1137 2 10 1220 10 1573 10 1137 E= 20 2440 20 3147 " 20 2275 . A -- Lc2.,.., Harper Houf Peterson Righellis Pg #: Longitudinal Seismic Line Shear Distribution Seismic Design Category = D Occupancy Category = II Site Class = D S1 = 0.34 Ss = 0.94 Importance Factor = 1.00 Table 11.5 -1, ASCE 7 -05 Structural System, R = 6.5 Table 12.2 -1, ASCE 7 -05 Ct = 0.020 Other Fa = 1.12 Fv = 1.72 Mean Roof Height, H (ft) = 32 . Period (T,) = 0.27 Equ. 12.8 -7, ASCE 7 -05 k = 1.00 12.8.3, ASCE 7 -05 SMg 1.06 Equ. 11.4 -1, ASCE 7 -05 S 0.58 Equ. 11.4 -2, ASCE 7 -05 . Sp 0.71 Equ. 11.4 -3, ASCE 7 -05 SDI= 0.39 Equ. 11.4 -4, ASCE 7 -05 Cs = 0.11 Equ. 12.8 -2, ASCE 7 -05 Csmin = 0.01 Equ. 12.8 -5 & 6, ASCE 7 -05 Csmax = 0.22 Equ. 12.8 -3, ASCE 7 -05 Base Shear coefficient, v = 0.076 Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height (ft) = 8 Floor 3 Diaphragm Height (ft) = 18 Roof Diaphragm Height (ft) = 32 Floor 2 Wt (Ib)= 8411 Floor 3 Wt (Ib)= 8476 Roof Wt (Ib) = 14162 Wall Wt (Ib) = 35496 Trib. Floor 2 Diaphragm Wt (Ib) = 22609 Trib. Floor 3 Diaphragm Wt (Ib) = 22674 - Trib. Roof Diaphragm Wt (Ib) = 21261 Vertical Dist of Seismic Forces I Cumulative % total of base shear I Rho Check to Shearwalls (Ibs) to shearwalls Req'd? Vfloor2 (lb) = 720 100.0% Yes Vfl 3 (lb) = 1625 85.8% Yes V root (lb) = 2709 53.6% Yes Shear Distribution To Wall Lines Wall Line Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line Roof Line Floor 2 Floor 3 Roof Shear Shear Shear sq ft sq ft sq ft Ibs Ibs Ibs 1 286 291 415 318 725 1334 2 361 361 428 402 900 1375 Sum 647 652 -843 720 1625 2709 Total Base Shear* _ I 5054 LB *Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. 4 L \' Harper Houf Peterson Righellis Pg #: . Shearwall Analysis Based on the ASCE 7 -05 'Transvere Shearwalls Line Load Controlled By: Wind Shear H L Wall H/L Line Load Line Load Line Load Dead V Panel Shear Panel Mo MR Uplift Panel Lgth. From 2nd Flr. From 3rd Flr. From Roof Load Sides Factor Type T (ft) (ft) (ft) ht 1 k ht I k ht I k (klf) (plf) (ft -k) (ft -k) (k) • 101 Not Used 102 7 1.75 3.50 4.00 8.00 1.74 18.00 2.80 27.00 2.32 1959 Double 1.40 NG 103 7 1.75 3.50 4.00 iz'; 8.00 1.74 8.00 2.80 8.00 2.32 1959 Double 1.40 NG 103a 7 4.00 4.00 1.75 ox 8.00 3.25 814 Single 1.40 IV 104 8 4.50 10.50 1.78 ox 8.00 1.52 8.00 2.80 8.00 2.26 626 Single 1.40 III 105 8 3.00 10.50 2.67 OK 8.00 1.52 8.00 2.80 8.00 2.26 626 Single 1.40 III 106 8 3.00 10.50 2.67 OK 8.00 1.52 8.00 2.80 8.00 2.26 ' 626 Single 1.40 III 109 8 4.58 17.08 1.75 ox 8.00 1.74 18.00 2.80 27.00 2.32 401 Single 1.40 II 110 8 12.50 17.08 0.64 OK 8.00 1.74 8.00 2.80 8.00 2.32 401 Single 1.40 11 111 8 4.50 7.25 1.78 OK 8.00 1.52 8.00 2.80 8.00 • 2.26 907 Double 1.40 VI 112 4.75 1.38 7.25 3.45 ox . 8.00 1.52 8.00 2.80 8.00 2.26 907 Double 1.40 VI 113 4.75 1.38 7.25 3.45 OK 8.00 1.52 8.00 2.80 8.00 2.26 907 Double 1.40 VI 201 9 3.92 10.79 2.30 OK 9.00 2.80 18.00 2.32 474 Single 1.40 II . 201a 9 4.17 10.79 2.16 ox 9.00 2.80 18.00 2.32 ' 474 Single 1.40 II 201b 9 2.71 10.79 3.32 ox 9.00 2.80 18.00. 2.32 474 Single 1.40 II 202A 9 2.96 11.96 3.04 OK 9.00 2.80 18.00 2.26 423 Single 1.40 II 202B 9 3.00 11.96 3.00 OK 9.00 2.80 18.00 2.26 423 Single 1.40 II 203 9 3.00 11.96 3.00 ox 9.00 2.80 18.00 2.26 423 Single 1.40 II 204 9 3.00 11.96 3.00 ox 9.00 2.80 18.00 2.26 423 Single 1.40 II 301 8 3.92 .13.96 2.04 OK 8.00 2.32 166 Single 1.40 I 302 8 5.79 13.96 1.38 ox 8.00 2.32 166 Single 1.40 I 303 8 4.25 13.96 1.88 OK 8.00 2.32 166 Single 1.40 I 304 8 2.96 5.96 2.70 OK 8.00 2.26 379 Single 1.40 II 305 8 3.00 5.96 2.67 ox 8.00 2.26 379 Single 1.40 II Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load / Total L Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear * Shear Application ht . Mr (Resisting Moment) = Dead Load * L * 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) • / - L \Li: Harper Houf Peterson Righellis Pg #: 1 . Shearwall Analysis Based on the ASCE 7 -05 fransvere Shearwalls Line Load Controlled By: Seismic Shear H L Wall H/L Line Load Line Load ' Line Load Dead V Rho •V % Story # Panel Shear Panel M M Uplift Panel Lgth. From 2nd Flr. From 3rd Flr. From Roof Load Strength Bays Sides Factor Type T (ft) (ft) (ft) ht I k ht I k ht I k (kif) (plf) (plf) (ft -k) (ft-k) (k) 101 Not Used 102 7 1.75 3.50 4.00 r 8.00 0.11 18.00 0.90 27.00 1.27 651 846 0.10 0.50 Double 0.50 NG 103 7 - 1.75 330 4.00 ''i 8.00 0.11 8.00 0.90 8.00 1.27 651 846 0.10 ' 0.50 Double 0.50 NG 103a 7 4.00 4.00 1.75 OK 8.00 0.48 0.00 0.00 120 156 0.22 1.14 Single • 1.00 I 104 8 4.50 10.50 1.78 OK 8.00 0.13 8.00 0.73 8.00 1.44 219 284 0.25 1.13 Single 1.00 II 105 8 3.00 10.50 2.67 OK 8.00 0.13 8.00 0.73 8.00 1.44 219 284 0.17 0.75 Single 0.75 III 106 8 3.00 _ 10.50 2.67 ox 8.00 0.13 8.00 0.73 8.00. 1.44 219 284 0.17 0.75 Single 0.75 111 109 8 4.58 17.08 1.75 OK 8.00 0.11 18.00 0.90 27.00 1.27 134 174 0.25 1.15 Single 1.00 • I 110 8 12.50 17.08 0.64 OK 8.00 0.11 8.00 0.90 8.00 1.27 134 174 NA 3.13 Single 1.00 I 111 8 4.50 7.25 1.78 OK 8.00 0.13 8.00 0.73 8.00 1.44 316 411 0.25 1.13 Single 1.00 III 112 5 138 7.25 3.45 ox 8.00 0.13 8.00 0.73 8.00 1.44 316 411 0.08 0.58 Double 0.58 VII 113 5 1.38 725 _ 3.45 OK 8.00 0.13 8.00 0.73 8.00 1.44 316 411 _ 0.08 0.58 Double 0.58 VII 201 9 3.92 10.79 2.30 OK 9.00 0.90 18.00 1.27. 200 261 0.17 0.87 Single 0.87, II 201a 9 4.17 10.79 2.16 OK 9.00 0.90 18.00 1.27 200 261 0.18 ' 0.93 Single 0.93 11 201b 9 2.71 10.79 3.32 OK 9.00 0.90 18.00 1.27 200 261 0.12 0.60 Single 0.60 II1 202A 9 2.96 11.96 3.04 OK 9.00 0.73 18.00 1.44 182 236 0.13 0.66 Single 0.66 III 202B 9 3.00 11.96 3.00 OK 9.00 0.73 18.00 1.44 182 236 0.13 0.67 Single 0.67 III 203 9 3.00 11.96 3.00 OK 9.00 0.73 18.00 1.44 181 236 0.13 0.67 Single 0.67 III 204 ' 9 3.00 _ 11.96 3.00 ox - 9.00 0.73 18.00 1.44 181 236 0.13 0.67 Single 0.67 III 301 8 3.92 13.96 2.04 OK 8.00 1.27 91 118 0.20 0.98 Single 0.98 1 302 8 5.79 13.96 1.38 ox 8.00 1.27 91 118 ' 0.29 1.45 Single 1.00 . I 303 8 4.25 13.96 1.88 OK 8.00 1.27. 91 118 0.21 1.06 Single 1.00 I 304 8 2.96 5.96 2.70 OK 8.00 1.44 - 242 315 0.15 0.74 Single 0.74 III 305 8 3.00 5.96 2.67 OK 8.00 1.44 242 315 0.15 0.75 Single .0.75 III Rho Calculation Does the 1st floor shearwalls resist more than 35% of the total transverse base shear? Yes Does the 2nd floor shearwalls resist more than 35% of the total transverse base shear? Yes Does the 3rd floor shearwalls resist more than 35% of the total transverse base shear? Yes Total 1st Floor Wall Length = 18.00 Total # 1st Floor Bays = 4.77 Are 2 bays minimum present along each wall line? No 1st Floor Rho = 18. Total 2nd Floor Wall Length = 22.75 Total # 2nd Floor Bays = s Are 2 bays minimum present along each wall line? No 2nd Floor Rho = 13 • Total 3rd Floor Wall Length = 19s2 Total # 3rd Floor Bays = s Are 2 bays minimum present along each wall line? No 3rd Floor Rho = u Spreadsheet Column Definitions & Formulas • L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Flight to Width Ratio Check V (Panel Shear) = Sum of Line Load'Rho / Total L % Story Strength = L / Total Story L (Required for walls with H/L > 1.0, for use in Rho check) # Bays = 2•L/H Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear • Shear Application ht Mr (Resisting Moment) = Dead Load' L * 0.5 • (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) i OS" Harper Houf Peterson Righellis Pg #: S hearwall Analysis B ased on the ASCE 7 -05 Longitudinal Shearwalls Line Load Controlled By: Wind Shear H L Wall H/L Line Load Line Load Line Load Dead V Panel Shear Panel Mo MR Uplift Panel Lgth. From 2nd Flr. From 3rd Flr. From Roof Load Sides Factor Type T (ft) (ft) (ft) ht k ht k ht k (klf) (plf) (ft -k) (ft -k) (k) 107 8 15.50 15.50 0.52 OK 10.00 1.22 18.00 1.57 27.00 1.14 1.03 254 Single 1.40 1 71.21 123.49 -0.19 108 8 15.50 15.50 0.52 OK 10.00 1.22 18.00 1.57 27.00 1.14 1.03 254 - Single 1.40 1 71.21 123.49 -0.19 1 205 9 13.00 13.00 0.69 ox 9.00 1.57 18.00 1.14 0.70 208 Single 1.40 1 34.62 - 59.15 -0.07 206 9 13.00 13.00 0.69 OK I 9.00 1.57 18.00 1.14 1 0.70 208 Single 1.40 I 34.62 59.15, -0.07 306 307 8 8 10.00 10.00 1 10.00 10.00 ` 0.80 0.80 ox ox I 8.00 1.14 1 0.29 114 - Single 1.40 1 9.10 14.40 0.05 8.00 1.14 0.29 114 Single 1.40 1 9.10 14.40 0.05 Spreadsheet Column Definitions & Formulas • L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load / Total L Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear • Shear Application ht Mr (Resisting Moment) = Dead Load * L * 0.5 • (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) • /9 "-- \....16 • Harper Houf Peterson Righellis P9 #: Shearwall Analysis Based on the ASCE 7 -05 Longitudinal Shea rwalls Line Load Controlled By: Seismic Shear H L Wall H/L Line Load Line Load Line Load Dead V Rho' V % Story # Panel Shear Panel M MR Uplift Panel Lgth. From 2nd Flr. From 3rd Fin From Roof Load Strength Bays Sides Factor Type T (ft) (ft) (ft) ht k ht k ht k (klf) (pll) (plf) (ft -k) (ft-k) (k) 107 8 15.50 15.50 0.521 OK 10.00 0.32 18.00 0.73 27.00 1.33 1.09 153 153 A NA 3.88 Single 1.00 I 52.25 130.70 -1.74 108 8 15.50 15.50 0.52 1 OK 10.00 0.40 18.00 0.90 27.00 1.38 1.09 173 173 NA 3.88 Single 1.00 1 57.35 130.70 -1.40 I 205 206 1 9 1 13.00 1 13.00 1 0.69 OK 1 1 1 9.00 1 0.90 18.00 1.38 0:76 175 1 175 NA 1 2.89 Single 1 1 00 I 32.85 1 64.22 1 -0.45 I 307 1 8 1 1100..0000 1 10.00 1 00..8800 1 oK 1 1 1 1 88..0000 1.38 0.35 1138 1 138 1 NAA 2.50 S ogle 1 11..0000 I 1101..0607 1 1177..4400 _ 0.06 Rho Calculation Does the 1st floor shearwalls resist more than 35% of the total longitudinal base shear? Yes Does the 2nd floor shearwalls resist more than 35% of the total longitudinal base shear? Yes Does the 3rd floor shearwalls resist more than 35% of the total longitudinal base shear? Yes Total 1st Floor Wall Length = 31.00 Total # 1st Floor Bays = 7.75 Are 2 bays minimum present along each wall line? Yes 1st Floor Rho = 1.o Total 2nd Floor Wall Length = 26.00 Total # 2nd Floor Bays = 6 Are 2 bays minimum present along each wall line? Yes 2nd Floor Rho = 1.0 Total 3rd Floor Wall Length = 20.00 Total # 3rd Floor Bays = s Are .2 bays minimum present along each wall line? Yes 3rd Floor Rho = 1.0 Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line H/L Ratio = Hight to Width Ratio Check V (Panel Shear) = Sum of Line Load•Rho / Total L % Story Strength = L / Total Story L (Required for walls with H/L > 1.0, for use in Rho check) # Bays = 2 Shear Factor = Adjustment For H/L > 2:1 Mo (Overturning Moment) = Wall Shear ' Shear Application ht Mr (Resisting Moment) = Dead Load' L • 0.5 • (.6 wind or .9 seismic) Uplift T = (Mo-Mr) / (L - 6 in) Harper Houf Peterson Righellis Pg #: SHEAR WALL SUMMARY' Transvere Shearwalls Panel Wall Shear Wall Type Good Fo Uplift Simpson Holdown Good For V (pH) (PR) (lb) (lb) 101 Not Used 102 Simpson Strongwall 103 Simpson Strongwall 103a 814 1/2" APA Rated Plyw'd w/ 8d Nails @ 2/12 833 104 626 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 638 105 626 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 638 106 626 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 638 109 401 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 110 401 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 111 907 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 990 112 907 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 990 113 907 2 Layers 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 990 201 474 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 201a 474 1/2" APA Rated Plyw'd w/ 8d Nails @ 4/12 495 201b 474 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 202A 423 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 202B 423 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 203 423 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 204 423 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 301 166 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 302 166 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 303 166 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 , 304 379 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 305 379 1/2" APA Rated Plyw'd w/ 8d Nails @ 3/12 495 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design loads. Harper Houf Peterson Righellis Pg #: SHEAR WALL SUMMARY' Longitudinal Shearwalls Panel Wall Shear Wall Type Good For Uplift Simpson Holdowu Good For V (pH) (Plf) nb) (lb) 107 254 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 -192 Simpson None 0 108 254 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 -192 Simpson None 0 205 208 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 -69 Simpson None 0 206 208 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 339 _ -69 Simpson None 0 306 133 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 242 48 Simpson None 0 307 138 1/2" APA Rated Plyw'd w/ 8d Nails @ 6/12 _ 242 59 Simpson None 0 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design loads. /4-' L \C\ Transverse Wind Uplift Design . Unit A Shear H Joist L Wall Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total Total Panel Height Lgth. From 2nd From 3rd From Wall Load (not Point Point ning Moment Moment Floor Shear @ Floor Shear @ Stacking @ Stacking From From Uplift Uplift Flr. Flr. Roof Shear - including Load Load Momen @ Left @ Right Left Right Left Side of @ Right Wall Wall @ Left @ floors @ Left @ t House Side of Above Above Right above if Right House @ Left @ walls Right stack) (ft) (ft) (ft) (ft) k k k k plf klf k k kft kft kft k k k k k k 102 8 1.1667 1.75 3.50 1.737 2.8 2.32 6.857 1959 0.152 0.192 0.832 27.43 0.57 1.69 21.31 20.79 21.31 20.79 103 8 1.1667 1.75 3.50 1.737 2.8 2.32 6.857 1959 0.152 0.832 0.192 27.43 1.69 0.57 20.79 21.31 20.79 21.31 103A 8 1.1667 4.00 4.00 3.254 3.254 814 0.04 2.016 1.664 26.03 8.38 6.98 6.00 6.24 6.00 6.24 104 8 1.1667 4.50 10.50 1.516 2.8 2.26 6.576 626 0.1 0.8 0.078 25.08 4.61 1.36 5.58 6.06 5.58 6.06 105 8 1.1667 3.00 10.50 1.516 2.8 2.26 6.576 626 0.048 0.252 0.156 16.72 0.97 0.68 6.45 6.52 6.45 6.52 106 8 1.1667 3.00 10.50 1.516 2.8 2.26 6.576 626 - 0.048 0.156 0.252 16.72 0.68 0.97 6.52 6.45 6.52 6.45 109 8 1.1667 4.58 17.08 1.737 2.8 2.32 6.857 401 0.152 0.192 0.156 16.31 2.47 2.31 3.63 3.66 201L 201R 4.82 5.09 8.45 8.75 110 8 1.1667 12.50 17.08 1.737 2.8 2.32 6.857 401 0.096 0.156 0.192 44.52 9.45 9.90 3.24 3.21 201 aL 201 bR 4.95 4.88 8.18 8.09 111 8 1.1667 4.50 7.50 1.516 2.8 2.26 6.576 877 0.144 0.8 0.078 35.11 5.06 1.81 8.02 8.51 8.02 8.51 112 8 1.1667 1.50 7.50 1.516 2.8 2.26 6.576 877 0.048 0.252 0.234 11.70 0.43 0.41 11.44 11.46 11.44 11.46 113 8 1.1667 1.50 7.50 1.516 2.8 2.26 6.576 877 0.048 0.234 0.252 11.70 0.41 0.43 11.46 11.44 11.46 11.44 201 9 1.1667 3.92 10.8 2.8 2.32 5.12 474 0.225 0.432 0.156 17.71 3.42 2.34 3.99 4.16 301L 301R 0.83 0.93 4.82 5.09 201a 9 1.1667 4.17 10.8 2.8 2.32 5.12 474 0.225 0.156 0.156 18.84 2.61 2.61 4.14 4.14 302L 302R 0.80 0.80 4.95 4.95 201b 9 1.1667 2.71 10.8 2.8 2.32 5.12 , 474 0.225 0.156 .0.432 12.24 1.25 2.00 4.24 4.0R 303L 303R 0.91 0.80 5.15 4.88 202A 9 1.1667 2.96 11.958333 2.8 2.26 5.06 423 0.173 0.432 0.052 11.92 2.04 0.91 3.62 3.84 304L 304R 2.60 2.75 6.21 6.59 202B 9 1.1667 3 11.958333 2.8 2.26 5.06 423 0.173 0.052 0.216 12.09 0.93 1.43 3.84 3.74 305L 305R 2.74 2.16 6.58 5.91 203 9 1.1667 3 11.958333 2.8 2.26 5.06 423 0.309 0.216 0.312 12.09 2.04 2.33 3.62 3.56 3.62 3.56 204 9 1.1667 3 2.8 2.26 5.06_ 423 0.225 0.312 0.432 12.09_ 1.95 2.31 3.64 3.57 3.64 3.57 301 8 3.92 13.96 2.32 2.32 166 0.232 0.384 0.204 5.21 3.29 2.58 0.83 0.93 0.83 0.93 302 •8 5.79 13.96 2.32 2.32 166 • 0.232 0.204 0.204 7.70 5.07 5.07 0.80 0.80 0.80 0.80 303 8 4.25 13.96 2.32 2.32 166 0.232 0.204 0.384 5.65 2.96 3.73 0.91 0.80 0.91 0.80 304 8 2.96 5.96 2.26 2.26 379 0.232 0.384 0.136 8.98 2.15 1.42 2.60 2.75 2.60 2.75 305_ 8 _ 3 5.96 2.26 2.26 379_ 0.232_ 0.136 1.104_ 9.10 1.45 4.36 2.74 2.16 2.74 2.16 Spreadsheet Column Definitions & Formulas L = Shear Panel Length H = Shear Panel Height Wall Length = Sum of Shear Panels Lengths in Shear Line V (Panel Shear) = Sum of Line Load / Total L Mo (Overturning Moment) = Wall Shear * Shear Application ht • Mr (Resisting Moment) = Dead Load * L * 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) • • • Transverse Seismic Uplift Design Unit A Shear H Joist L Wall Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total Total Panel Height Lgth. From 2nd From 3rd From Wall Load (not Point Point ning Moment Moment Floor Shear @ Floor Shear @ Stacking @ Stacking From From Uplift Uplift Flr. Flr. Roof Shear including Load Load Momen @ Left @ Right Left Right Left Side of ® Right Wall Wall @ Left @, floors @ Left @ t House Side of Above Above Right above if Right House @ Left @ walls Right stack) (ft) (ft) (ft) (ft) k k k k plf klf k k kft kft kft k k k k k k 102 8 1.1667 1.75 3.50 0.114 0.9 1.27 2.284 653 0.152 0.192 0.832 10.40 0.57 1.69 7.91 7.11 0 0 7.91 7.11 103 8 1.1667 1.75 3.50 0.114 0.9 1.27 2.284 653 0.152 0.832 0.192 10.40 1.69 0.57 7.11 7.91 0 0 7.11 7.91 103A 8 1.1667 4.00 4.00 0.481 0.481. 120 . 0.04 2.016 1.664 3.85 8.38. 6.98 -1.06 -0.69 0 0 -1.06 -0.69 104 8 1.1667 4.50 10.50 0.126 0.73 1.44 2.296 219 0.1 0.8 0.078 8.96 4.61 1.36 • 1.20 1.93 0 0 1.20 1.93 105 8 1.1667 3.00 10.50 0.126 0.73 1.44 2.296 219 . 0.048 0.252 0.156 5.97 0.97 0.68 2.04 2.14 0 0 2.04 2.14 106 8 1.1667 3.00 10.50 0.126 0.73 1.44 2.296 219 0.048 0.156 0.252 5.97 0.68 0.97 2.14 2.04 0 0 2.14 2.04 109 8 1.1667 4.58 17.08 0.114 0.9 1.27 2.284 134. 0.152 0.192 0.156 5.58 2.47 2.31 0.82 0.86 201L 201R 1.13 1.54 1.95 2.40 110 8 1.1667 12.50 17.08 0.114 0.9 1.27 2.284 134 0.096 0.156 0.192 15.23 9.45 9.90 0.56 0:53 201aL 201bR 1.32 1.32 1.88 1.85 111 8 1.1667 4.50 7.50 0.126 0.73 1.44 2.296 306 0.144 0.8 0.078 12.54 5.06 1.81 2.00 • 2.73 0 0 2.00 2.73 112 8 1.1667 1.50 7.50 0.126 0.73 1.44 2.296 306 0.048 0.252 0.234 4.18 0.43 0.41 3.79 3.82 0 0 3.79 3.82 113 8 1.1667 1.50 7.50 0.126 0.73 1.44 2.296 306 0.048 0.234 0.252 4.18 0.41 0.43 3.82 ' 3.79 0 • 0 3.82 3.79 201 9 1.1667 3.92 10.80 0.9 1.27 2.17 201 0.225 0.432 0.156 7.63 3.42 2.34 1.16 1.41 301L 301R -0.03 0.13 1.13 1.54 201a 9 1.1667 4.17 10.80 0.9 1.27 2.17 201 0.225 0.156 0.156 8.11 2.61 2.61 - 1.38 1.38 302L 302R -0.06 - 0.06 1.32 1.32 201b 9 1.1667 2.71 10.80 0.9 ' 1.27 2.17 201 0.225 0.156 0.432 5.27 1.25 2.00 1:53 1.28 303L 303R 0.10 -0.06 1.63 1.22 202A 9 1.1667 2.96 11.96 0.73 1.44 2.17 181 0.173 0.432 0.052 5.25 2.04 0.91 1.15 1.50 304L 304R 1.28 1.50 , 2.43 3.00 202B 9 1.1667 3.00 11.96 0.73 1.44 2.17 181 0.173 0.052 0.216 5.32 0.93 1.43 1.49 1.35 305L 305R • 1.50 0.63 2.99 1.97 203 9 1.1667 3.00 11.96 0.73 1.44 2.17 181 0.309 0.216 0.312 ' 5.32 2.04 2.33 1.16 1.08 0 0 1.16 1.08 204 ' 9 1.1667 3.00 • 11.96 '0.73 1.44 2.17 . 181 - 0.225 0.312 0.432 5.32 1.95 2.31 1.19 1.08 0 0 1.19 1.08 301 • 8 0 3.92 13.96 1.27 1.27 91 0.232 0.384 0:204 2.85 3.29 2.58 -0.03 0.13 0 0 -0.03 0.13 302 8 0 5.79 13.96 1.27 1.27 91 0.232 0.204 0.204 4.21 5.07 5.07 -0.06 -0.06 0 0 . -0.06 -0.06 303 8 0 4.25 13.96 1.27 1.27. 91 0.232 0.204 0.384 3.09 2.96 3.73 0.10 -0.06 0 0 0.10 - 0.06 304 8 0 2.96 5.96 1.44 1.44 242 0.232 0.384 0.136 5.72 2.15 1.42 1.28 1.50 0 0 1.28 1.50 305 8 0 3.00 5.96 1.44 1.44 242 0.232 0.136 1.104 5.80 . 1.45 4.36 1.50 0.63 0 0 1.50 0.63 • Spreadsheet Column Definitions & Formulas ...------ • L = Shear Panel Length ma y{ H = Shear Panel Height ‘ Wall Length = Sum of Shear Panels Lengths in Shear Line V (Panel Shear) = Sum of Line Load / Total L 1 Mo (Overturning Moment) = Wall Shear * Shear Application ht - ` Mr (Resisting Moment) = Dead Load * L * 0.5 * (.6 wind or .9 seismic) Uplift T = (Mo -Mr) / (L - 6 in) TRANSVERSE UPLIFT CALCULATIONS - SUMMARY UNIT A Shear Controlling Total Holdown Holdown Good Control Total Holdown Good For Panel Case Uplift @ or Strap Type@ Left For ling Uplift Type@ Left Left Case @ Right • k Simpson k k Simpson k . 102 Wind 21.31 Holdown None 0.00 Wind 20.79 None 0.00 103 Wind 20.79 Holdown None 0.00 Wind 21.31 None 0.00 103A Wind 6.00 Holdown HDQ8 w 3HF 6.65 Wind 6.24 HDQ8 w 3HF 6.65 104 Wind 5.58 Holdown HDQ8 w 3HF 6.65 Wind 6.06 HDQ8 w 3HF 6.65 105 Wind 6.45 Holdown HDQ8 w 3HF 6.65 Wind 6.52 HDQ8 w 3HF 6.65 I 106 Wind 6.52 Holdown HDQ8 w 3HF 6.65 Wind 6.45 HDQ8 w 3HF 6.65 109 Wind 8.45 Holdown HDQ8 w DF 9.23 Wind 8.75 HDQ8 w DF 9.23 110 Wind 8.18 Holdown HDQ8 w DF 9.23 Wind 8.09 HDQ8 w DF 9.23 111 Wind 8.02 Holdown HDQ8 w DF 9.23 Wind 8.51 HDQ8 w DF '9.23 112 Wind 11.44 Holdown HDU14 14.93 Wind 11.46 HDU14 14.93 113 Wind 11.46 Holdown HDUI4 14.93 Wind 11.44 HDU14 14.93 201 Wind 4.82 Strap MST48x2 5.75 Wind 5.09 MST48x2 5.75 201a Wind 4.95 Strap MST48x2 5.75 Wind 4.95 MST48x2 5.75 201b Wind 5.15 Strap MST48x2 5.75 Wind 4.88 MST48x2 5.75 202A Wind 6.21 Strap MST60x2 8.11 Wind 6.59 MST60x2 8.11 202B Wind 6.58 Strap MST60x2 8.11 Wind 5.91 MST60x2 8.11 _; 203 Wind 3.62 Strap MST60 4.06 Wind 3.56 MST60 4.06 204 Wind 3.64 Strap MST60 4.06 Wind 3.57 MST60 _ 4.06 ` 301 Wind 0.83 Strap MST37 1.79 Wind 0.93 MST37 • 1.79 302 Wind 0.80 Strap MST37 1.79 Wind 0.80 MST37 1.79 303 Wind 0.91 Strap MST37 1.79 Wind 0.80 MST37 1.79 304 Wind 2.60 Strap MST48 2.88 Wind 2.75 MST48 2.88 305 Wind 2.74 Strap MST48 2.88 Wind 2.16 MST48 2.88 • BY ,\ ( DATE: 6 - a(3 to JOB NO.: c �_ N c 0 OF PROJECT: RE: SSW �(` x"} — Teo,r Load o ❑ AI. ia1 Loads_ u-1-\\i-y, koa t ,l1s ;\) \- vnsitke o 0 E Z �0.1 W a ( "J v-icx.l \ s a - c\A e a 1 ‘ )_ �, a 0 W $ z ❑ Cu ?r`c ► kv 0 F S a \ C - -='-\`10° \bs r er wcxk 1 O CC a o Z kkak LU = n-31-- a' -°s -r a3 a.3 = ( thS / Z,�.,�i1s W ' = 3 y- aq,v-lwai! E adva t < a�.pac : • vk a Z 0 2 Ca 20, (.7 v c. SSwa1x5 = 3a1o0 - U ❑ i a t oval 4, CO ()CA ! • O ol(.? . f cc 0 Z W ❑ Z 0 o = 1- a O • U 0 - N H. ti r a Q 3 0 .00:. `. :xa x 14 D.,,e7 0 . , . ..7-1 . 1), . 0 . @, SW TN IS LeN&flt NwNC -,T►s Lt P4C ...-ri 0 Ifs-i- 4� f Cf. "" # `. \\ UP (I5)1FIsEfiQi.` 1 / I I O 1 141 ' l l L i('14) 1 0 1 ' THE t75 . W j �' I -Ti L _J ` 0 . 1 2 (--- ° - l'i - 1 0 f Z a o G -t ► a Sw "fl-F►S LI: NC- TH Pq\Nu4ti" • O ALOYC 114-IS ',LNG'° Z • I . • J T C SW - r c LENGTH+ 0.N` uJi+S�1R -�.' P Low c-I 11415 LINE O 101_ _ ;:r ! 't ", G+ a -4 vii I i << CP 0r ° —f 1 1,J d` 1 c o ff' 1. ' '' �� / \�\ .r _:c.. �'' s:.t . ^...�E"_ _,.: - s�..�'+P:ta�t^....1:' . ' .�_..•..... -?' "� Hv .;�i�.:_..l-.,...__+.�.... _- .i_._'� ; 1 .;ii 10E5 SW TH1 s Lt_ N crrnt POW/ W ttnt - - AW , This LINE' c T o C . . ---) IN . 155 "5" 1) .. Sw Trhs Le N c A LCA)c-, 'WS L. 'Alt D.05 7 ...._____ ,. • ,.„.....,m,,,..rxr„..„..,.....„4„.„...4„-,....„„..-,., .Th g i --;..„ „„... ,_;,... r 1 i g ri4 r-1 c, ....-- 1 i . v ... , 7 1 11 1\ n - c----- f 0 V, --- . , , . 11 , . i 1 i ■ '.1 sa ill L / N - 1: Su r , - G.— 1 0 R, LA f 1 --- , i . r . . . , I a 41 ; oRtim.■; v : , ___... .._...._........... ..... ._. 5 \ 1 0 1 - 1 r ■ k c . a L e . ka(INT Awn.) c r ‘ TH1% 1...1 N1/45 `"1Nn S U-Lk ' 1--7r ") S\ ft M -LO (1) .. u U l: M 0 k Y `•!l - T r. Q 1i n L C L 0 P C -,------"Tri i i 5, - - -, gii- q „, //-----__ __--- ,: -,-- ,_„.... ____ 1 / \ ,----- ----,, 1 ' c.c) V --- --:_;!. ................... .....-- -.::::::::::,:...,—.1L.: -----m -- '7' — '''" 9 J 3.iNin 4viA1. 1- •rm '1-11 )Nl1 .a1 NI MS CC co 2 BY: A DATE: O\ J OB NO.: Ce A ' .../ l L/� 0 OF PROJECT: RE: 1 YY1 `11'ckr\ er ak Rcin\- of hovsc_, / k. w Ltfle$ bey T t Wind. t LQ71(0iC.) 4.514 E o(,c c‘ phat_cyn (A; cl tY1 = a() ct o f ❑ CO = 1a°1 pL.P- O w Cat pc•1 of unlokocked Ciu ph'c& ern W ce a. a Z G h2. Nai f an3 eq pu = Eris p .p)(1,4) = 35 = - ox.. f 2 0 U F • ¢ O ti. Z w ❑ . Z O 1_ • d O • U t• cn C N h"q a � o .. . 'xx a 4- Lb DATE: ...... kl ....._ JOB NO.: C e. iv octo PROJECT: 9. ooF a. _,.. 5 w RE: Des ic 4 f■ci. Poloc\‘_vrn @ sto %f s w - • TI OPON) 1...' , _I D F 0 w 0 2 Mt 13 WIDTH: ON) Z - L 2 j n - 50.if , -rr ::: GI 9 l iz" -A.61 1- 0? 91-PrTeS Ib 5 Li O ' R . WAX 5I 41-OVLN4 --: cr u O w ‘S - V I IIII U z W 0 x D C 5 I C- U..) INYO - Pressure cr 0_ z = - atL. fro psC O f. F -: 0€ 01\ Q \ov\-es - o ',pal c- ktr'r„ .-1-0,1 ulo e's S - Ile o -- 1.k.M (mr tc=oci oc: 1 'AI pLP 2 o 0 ?.\=140‘0,so t4 co ii o'-- 0" 2 0 - X 0 U- Z LA I rc \ OVA ■ .W.1 — 0 6 b 0 i 5 I- 0- \I (Y \ c■C = t \ VA 6 \ 14 • A (5 .. -25) = , 1-4 _ Ci 0 — ..,.. 150 psi. (1-(0').= aq 0 ip 5 L > c.2.--- : i l .') - 62 = ..... Ne-_--, -- ccA 0 pk-j 2_ BV: ] j A ► ' -, 1 \ DATE' / - ' . 1 / \ JOB NO.. C (�_ k ! — 0 q 0 N' V (((VII ///))) � N PROJECT: RE: OPT 10 " 2 El La - 1 Ui1t up. f! rn . 2•Jo -oot -. • W baMoorN P'co, 3w Two?... W O 2 ❑ - TV . OD tA_ on zut rr - t3 0 Mox 10liQe r ; 0��.rz,CIN5 = \ CO 2 - 0 w 0 Z . Q wend pces .n E = -ao.Q. pz F z Lou d_ or\ bv11 kiv No\0 CY, _ anp pi..- . 0 k 1- 1, 1- I l v z T 1` f 0 Mit = we a-3 .Ct: Aac.. v t • o , V YY.b x s ��5 ��sr ' -#-0. ' L.._ z f i w 1 ❑ 0 3 ( O a I,, = (IyXI35) _ 6•a5 tr.,a t 1 i �,� Ie. -1, s-,i., = ( 1 ,S S:5 :„. t7 ...6i, , si4 / '' t 1Z . . 1111 . 4 1.s" L � o on . •= 9 .'s:' 1 — 6.as t a4.S (0,815) 4- f9. -2..� + a (9,O ) 5,3to 4°0 t. �,( 0 .'b= -M` _ `q #r )(1- LVi. -3s) _ tt- c p5C, \\/ j T 4 '1\ 1'1/4 t- 1.a '1\ 1'1/4 °F (8 so (1,00.o'►,6)(\.o 1,o )(l:c) IA - c- "' -b' = (a3a, � >( t, ( � \ k o. °til,i)(t )(,U) 1.-SL 4oi C ° y____ L3o 4 - WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load Woodworks® Sizer 7.1 June 24, 2010 12:49:04 COMPANY 1 PROJECT RESULTS by GROUP - NDS 2005 . SUGGESTED SECTIONS by GROUP for LEVEL 4 - ROOF = == = = ='a= _� =� a Mnf Trusses Not designed by request (2) 2x0 Lumber n -ply D.Fir -L No.2 1- 2x8 By Others Not designed by request (2) 2x6 Lumber n -ply Hem -Fir No.2 2- 2x6 (3) 2x6 Lumber n -ply Hem -Fir No.2 3- 2x6 Typ Wall Lumber Stud Hem -Fir Stud 2x6 016.0 SUGGESTED SECTIONS by GROUP for LEVEL 3 - FLOOR = =9 =ii9II Mnf Jst _ � = .. .. s Not designed by request =__ equest � _ � __ � Sloped Joist Lumber -soft D.Fir -L No.2 2x6 016.0 (2) 208 (1) Lumber n-ply D.Fir-L No.2 1- 2x8 (2) 2x8 Lumber n -ply D.Fir -L No.2 2- 208 By Others Not designed by request By Others 2 Not designed by request (2) 2x12 Lumber n -ply D.Fir -L No.2 2- 2x12 5.125x10.5 Glulam - Unbalan. West Species 24F -V4 DF 5.125x10.5 4 %6 Lumber -soft D.Fir -L No.2 • 4x6 (2) 2x6 Lumber n -ply Hem -Fir No.2 2- 2x6 4x6 Lumber Post Hem -Fir No.2 4x6 (3) 2x6 Lumber n -ply Hem -Fir No.2 3- 2x6 (21 2x4 Lumber n - ply Hem -Fir No.2 2- 2x4 Typ Wall Lumber Stud Hem -Fir Stud 2x6 016.0 SUGGESTED SECTIONS by GROUP for LEVEL 2 - FLOOR = =y = = = Mnf Trusses T = �_ = = = = =g ... Not designed by request � _ _ = �� = = yam =y Mnf Jst Not designed by request Deck Jst Lumber-soft D.Fir -L No.2 208 016.0 (2) 2x8 Lumber n -ply D.Fir-L No.2 2- 208 3.125x9 Glulam - Unbalan. West Species 24F -V4 DF 3.125x9 408 Lumber -soft D.Fir -L No.2 408 By Others Not designed by request By Others 2 Not designed by request (2) 2x10 Lumber n -ply D.Fir-L No.2 1- 2x10 ' 5.125X12 GL Glulam- Unbalan. West Species 24F -V4 DF 5.125x12 By Others 3 Not designed by request 3.125x14 LSL LSL 1.55E 2325Fb 3.5014 (2) 2x6 Lumber n -ply Hem -Fir No.2 2- 2x6 4x4 Lumber Post Hem -Fir No.2 4x4 . 4x6 Lumber Post Hem -Fir No.2 406 (3) 2x6 Lumber n -ply Hem -Fir No.2 3- 2x6 6x6 Timber -soft Hem -Fir No.2 6x6 (2) 2x4 Lumber n -ply Hem -Fir No.2 2- 2x4 6x6 nol Timber-soft D.Fir -L No.1 6x6 (3) 2x4 Lumber n -ply Hem -Fir No.2 3- 2x4 Typ Wall Lumber Stud Hem -Fir Stud 2x6 016.0 SUGGESTED SECTIONS by GROUP for LEVEL 1 - FLOOR FT d Not designed by request • CRITICAL MEMBERS and DESIGN CRITERIA Group Member Criterion Analysis /Design Values . ...... m �_= = = = =_ =__- _______ -�- Mnf Jot Not designed by request Mnf Jst Deck Jat j65 Bending 0.41 Sloped Joist j30 Bending 0.10 • Floor Jst4 unknown Unknown 0.00 (2) 28 (1) b35 Bending 0.47 (2) 208 b8 Bending 0.89 3.125x9 b3 Bending 0.06 408 b30 Bending 0.12 By Others By Others Not designed by request By Others 2 By Others Not designed by request (2) 2x12 b6 Bending 0.93 (2) 2x10 bl Shear 0.78 5.125X12 GL b10 Bending 0.76 By Others 3 By Others Not designed by request 5.125010.5 b9 Deflection 0.95 4X6 b20 Bending 0.08 3.125x14 LSL b14 Deflection 0.73 (2) 2x6 c2 Axial 0.91 4x4 c55 Axial 0.07 4x6 c23 Axial 0.80 (3) 2x6 c29 Axial 0.75 606 c26 Axial 0.70 (2) 2x4 c39 Axial 0.62 6x6 nol c12 Axial 0.86 (3) 2x4 c31 Axial 0.89 Typ Wall w14 Axial 0.48 Fnd Fnd Not designed by request DESIGN NOTES: = = =� = =� a 1. Please verify that the default deflection limits are appropriate for your application. 2. DESIGN GROUP OCCURS ON MULTIPLE LEVELS: the lower level result is considered the final design and appears in the Materials List. 3. ROOF LIVE LOAD: treated as w load with corresponding duration factor. Add an empty roof level to bypass this interpretation. 4. BEARING: the designer is responsible for ensuring that adequate bearing is provided. 5. GLULAM: bxd = actual breadth x actual depth. 6. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 7. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 8. BUILT -UP BEAMS: it is assumed umed that each ply i single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that ' each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. ' 9. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 10. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:41:17 Concept Mode: Beam View Floor 2: 8 ' t r+� `' y � �� b31 VV lv 1 105 �. n- . b l US - " _ _ - 41 - b 4b .: y b1 y1 4_b , . 4'I -U - yb 4U -0 yo : : 3y b 3G - b' b& - : ; b2 ' . . SS -0 bzs .5C-0 01 ; .. . 6 I - b " 00- :: - JU'-b 155 • .. - - - -- - ..__ ... ._.. . Ly'-b 0i L 1 -b 151 - L0 4 0 uu = :b10 L4 b /V ;.. L,5 11 : - L b i (o :l' b 0 b 12 .__.: _ :. -- b32 -._ . - -- -- - b -b b (U - .. 4 -b bu . b19r15_ u o b( bb_� bb y _b . _. -. • t.), ® b4 . b14 • b' b 01- b30 -i D3 3 -0 b2 - . : _ -- - - u_t, b . Il : : ' . - L b.. ! b" BB \B.B BCCC C CCC CICCC CC CCCC C C CC CCtCC CDDDD D DD DIDDD CD DD°DD DD DD COiDO DE.E E E EEEEtEEEIEEBE EEEEEEE8EEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22'24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44'46'48' 50' 52' 54' 56' 58' 60' 62'64'66' 68' 70'72'74' 76' 0'1'2'3'4'5'678'9111 1:1 :1 22:2 5:5:5 14Z— G1RN WoodWorks®Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:41:19 Concept Mode: Column View Floor 2: 8' ` 1 J»J 1 LOAD 1050 ❑ c58 c14 0 - - .._...... 49' -6„ ( U4 4 -b 4 1 1VU : .. . _. . .. _ - --- 44 ' _ 17 .. `J•9 .. C69 C2': -c70 : -- c71 . i , . . 41 -0 41 -13 yb -. - ' : 4U -0 o. _ _... : _.. ... :s 3`J b 25y 33 -b 2)15_____, _ -_ _ _ - - JL -b - : - c4 i -' _ - - ' - - -. _ ... 3U•-t) 255 . -b . -- - - - -- • - "' -- - -- L{5 -b - -...- Lb -0 ill . .. 15 t5" c25 c12 . _ c26 c3 n /0 ❑ . D c72 LL -b ro ... - ---- - - - -- Dc73 - Lu -b f5 . ; : : - 1 -b • /L. _ . .C3 - s _: 1 1 : :c78 - . ' -- - 13 -b 10 ® : .. : ---. _--- -- -14-b b25_.._.: .c77 .. '• --- - -- - .. .. IL -b bb- - 04) _c31 . c 7 9 : - - - - - - -- - - - - - r5 - b b . qc30 : : 9c32. b._b.. c55 c n.. 1 u b BB\B.B BCCCCCCCCtCCCCCCCCCCCCCCC \CCCDDDDDDD DD-DDDDDDCD \DDDEEEE E:EE EI-EEEiEEEE1EEEEEEtEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 6 6' 68' 70' 72' 74' 76' 0'1'2'3'4'56 '7'8'91(1"1:1:1.1! 111: 1i1l2( 22: 2: 222E22< 2f3t33: 3; 3 33E 3'313f4144:4 :44.'414'4E415155:5 :5 .6 :6 :7 :7.717E77 6" 4- C.,i'3 WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Rear Load WoodWorks® Sizer 77.1 June 24, 2010 13:14:33 Concept Mode: Beam View Floor 2: 8' 1[' t1 �1 1 ..►J 0 Prb b31 `� � 1050 ... ■ 49 104 . 421 -b 10,5 _ _ 4/ -0 1 UL� 40 -0 .. IUi�:. .;. - - - Ivy : b34'•' • -: .- : - . - 4L-o Jl.._: ■. 4I -b' 3J b' - b b N l 30 -b yu 34 - t59 : . ' b2 4s ' 00 - -',. - -- -- -= --'_- - - - _.- : - - -- - - - - -- - - - -- - -- - - - - -- -- - - -- -- 00 .: : : .: . . :: ..S1 3V b L9 -0 06 : : .: : ' : : . ' - __ : , , :: L }3 L a G1 1 b 01 Lb -b 0 40 00 " ' rN b10 . L4 -a LS b LL b t! [ ,b -- b33 • 11 LU 0 r5 _ - - - _ - !J" b : : 7 t5'b I/O ID a rU 14-0 b0- - .::�.15 1Z -0 b r .. .. 1 1 - 0 .. bb. - 00 ' - - - 04 , : 3 - - - -- - - -- - - .. - 1U -0 J -b } 25 b / b ad El b4 . b14 II .. b 0.. • our b30�� . - : . - b35 4 -0 i ll 881813 BC CCC CCCCICCC CC CCCC C C CC CC1CC CD DDD D DD D ODD .CD DDDD D D DD CD!DD DEE E E E EEEPEEE!EEIE EEEEEEE1EEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'9'1(1 1:1:1 12(2 2:2:2 2: 243(31:3:3 3'313 "31314(4'4:441414. 41415(5 5:515 7.77,177(77 -6" WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Rear Load WoodWorks® Sizer 7.1 June 24, 2010 13:14:35 Concept Mode: Column View Floor 2: 8' Q OQ I �wl) c58 c14 lv ` + „ �� 10 �. 4 . - 40 -0 _ )UV b 4 0 tr -- 44 y9 0 - c82 ' ...,- c81' • -: - - - -. ' El :: 41 -b an 4U b yb. -- . . _ 3 0 93 - -• -- - -- - - - - ._... 3 b _ r ... ' ( 1 JV .: .. _ _ .. - - - -- - J 4 -0 by 33 -0 00 - - -:' - j: c4 - - - - 3y-0 0/ 00 - n. ; 04 - - - `_ - . - -- ' - - - - - - - - : .. L - b .. LI - - Lb b rsu c25 c12 c26: L -0 it c 2 L it, ' ©. /0 c73 v ti -t-.) 0 I c78 -C3 43 (0 0- ---- - - - - J-0 b23_ .. .c77 _ L b 0I .... 00 ----� - :.: --- - --- -- - -- I' U 0 bb ^^ - y -o b4 _c31 - ..._. -- - -- - - - 23 -0 O } - c76 - c71 - -- _ - - _- r _ b .. O 3 c30 • (� c32 0 . 0 .. • 0U5 ". . EII c5/ cru : cb�. • .. • . 4 -0 • c55 C L. -0.. • - �5 o : - - _ : - -' -- _- I -0 .. V -0 V BBI B. BBCCCCCCCC} CCCCCCCCCCCCCCCICCCDDDDDDDDIDDDDDDD DDDDDDCDODDEEEEEEEEFEEEEEEEiEEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'61(1 1 ;1:1 11112(22:2:22'. 212 21213133 :3:3 "3 /314144A:441 414' 41415155:5:55151551 516165 :6:6 6 4 G$ WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:58:44 Concept Mode: Beam View Floor 3: 17' 1050 : 49 -6" i U4 40'-b IULO .. - 40-0 1U1 40 -13 1UU :. .. - :: - -- - 9 43-0 a ss b35 . b6; _. 4L - 0 y4 :. - . -' i - -_ -- - - 30-0 3(-0 30-0 I:J• . - b7 33 - 3L -0 31 - 0b 3U -0 00 Ly_0 L 253 L / - b .. 01 - Z0 - 0 t5U b9 ' L4 - (y L.3 -0 // b2 L I - /b LU b (4. - --. .. .. ..... . .. .. .:... -' ::..: - -- - -- - ... _ .. 725 -b / • .. I 1 -0 /I (U -- •— ...- `-- - -' - -- ... --- - by 13 b25_. . : _blib17_ 1 1 -0 00 _ .: _.__ _ 04) .., __ _ � 4 - __ --- _- - 25-0 03 0L. b8 : .. 0i 4-b 00 -0 BB1B.B BC CCC C CC C(CCC CC CCCCC C CC CCICCCD DDD D DD D(CDD CD DD DD D D DD CD1DD DEE E E E EEE(EEE'EEE EEEEEEE(EEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'91(1'1.1:1 11(1'1 1S 21222:22 1 2(2 . 2(243(332:3 , 3'3(3 - 313f4t4 5:5:5 5515 (66;6:6 :77 -6" 4 ( ---<1 L# WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:58:42 Concept Mode: Column View Floor 3: 17' 1050 . ..... ... . _ - 49' -6 1U4 {: - _ - 4'i b 3 1U - --- .. 4/ -b I UL - 40 -0 101 _ _ ._ 4b-a WU :. - : - - _ .. -- -- -- 44 - 0 43 -b y... c62 c61 c15 - c16 :: = ... 44-0 ar 41 - a 40 -0 0 . . .. .5 -0 y4 - _ _ _ - - - _ . — - - 30 -0 - U - .-- 34-0 00 3L -a 23! 01 a 00 c18 30 -b 00 Ly -0 233 .. : - L/ -0 .. 0I L0 - b -- .: - _ .. .- - - - - L4 -0 • 1y c39 c24 c23 L3 a 123 : mill C. 21 ' _ _f1c59.. - = . -.- -- - - --- .. .. - --- LL -b /4 - - --' - 111 : --- - - - - - - - -- - - - - LU -a !4 11 : 1 - - - -- -- - - -- - - - 16 -b -- • __ .__ - _. __ - ... _ _. 14 -0 as - - 13 -0 bu c35. 1 L ao a -a ac3 'E ��-_ n c756520 c1 c6c74 BBIB.B B C CC C C CC CICCC CC CCCC C CCC CCICCCDDDD ODD MOOD CD DD DD D D OD CD!DD DEE E E E EE EtEEEIEEiE EEEEEEEfEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44'46'48' 50' 52' 54'56'53'60'62' 64' 66' 68' 70172'74' 76' 0'1'2'3'4'5'678'91(1 1:1 :1 22:2 '21213(33 :3 :3 4A :4 444 "4t 41515 5:5:5 7(7•7:77 4 *--- (17,:.-1.- WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:58:38 Concept Mode: Beam View Roof: 25' 1050 _ . . . 49 -6 1U4 • . ; .. : i . : .. 40. -0 • IUL - - - - -- - 40-0 i . I U I 40-0' • 1 V Ub - - - 44 _b y � b23 : b24 41 -0 . . . . .5.-b 35 b • 3L b • 00 .: : ,. ; - : -- - - - - 3U -b • 00 - LU• -b I:14 ': : =..:.- - -'- - -- -- -- - - -- - ----- - -_- - -- -- -- -- -- - : --_- - -. '- Ltf 14 b' /y LS b io b25_ [u b f4 _ - - -- - - 1t5-b - . . . • (U.. 14 b • bu- - - -- . - .. _.. .--- _. _ ... • IL -b' • b4) - b 2 7 : - - b28: • u n • n L00 _ • 01 . bt1) 4 -b • �..)._ . . 1.-0. .BBIB.B BCCCC C CC C1CCC CC CCCC C C CC CC'•.CC CDDDD D DD DICDD CD DD DDD D DD CD'DD DEE E E E:EEEEEEEEE EIEEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22'24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44'46'48' 50' 52' 54' 56 58' 60' 62' 64' 66' 68' 70' 72' 74' 76' 0'12'3'4'5' 6'7'8'91(11 :1 :1 2(2 2:2:22 -'2(2 21213131:13 4A :44'.4(4"4?415(5 5:5:5 • 4 .._ 6 . WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 24, 2010 12:58:40 Concept Mode: Column View Roof: 25' 1050 : :: 49 . -6" ' -6 1U4U - -- - - _ 4/ - b IUI a wu 9 ._ -- - -- - -- 43-0 a c c43 c44 c45 .. , .. 4L o yn .._ 1�a� s- !fl . 4U O J4 -- - .. - .. ... 315 -a -b 3l a" I . . 30 a 0& SS b 01 3625:0° L -b - 3U b Ifs .. _ - .. Ly - L25 b 03 i _ Z a 25L -[ "- ' -- .. -. -[-:-:'..- - -- - --- - - ---- -'- -"- : ---- -- _ _ _--- - -- -- '- - LO -0 9.i LD - b ' L4 b CV L.5 -0 /13 Q _ L'i b c47 Lu a / a /4 10 -- - - - I / - O 13 -O /U... -- -- _ ...._ .. .. _- -- .. - 13 -b' 00 . IL b 04) ..- -- c51c50 .c52 _ - -- - -- -c53 - :. - ._ - -- - -- ' - - - -- - - - 0-o oz: .mi D g °71e 011 8 1 1 1 111 11 • 01 ■618 OU 4 -0 B B1B.B BC CC C C CC CFCCC CC CCCC C C CC CCICC CDDOD D DD DIDDD CD D D DD D D DD CD'DD DEE E E E:EEEEFEEEEEIE EIEEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38'40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 66' 68' 70 72' 74' 76' 0'1'2'3'4'5'6'7'8'51(1 '1:1 :1'1:'i (1''111 2( 2' 2 2222f2212',3(33:3:3 313( 4( 4' 4A: 44( 4(4 4t4f515'5:5:5 6:616-6(66:6161717 7:7:7 4 - (-19 COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:42 b1 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or pif ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w61 Dead Partial UD 613.2 613.2 2.50 3.00 plf 2 Snow Partial UD 795.0 795.0 2.50 3.00 plf . 3 c61 Dead Point 622 2.50 lbs 4 c61 Snow Point 1192 2.50 lbs 5_j28 Dead Full UDL 47.7 plf 6_j28 Live Full UDL 160.0 plf 7j33 Dead Full UDL 120.2 plf 8 j33 _Live Full UDL 370.0 plf MAXIMUM RE. o 1 0' . 31 Dead 391 1061 Live 795 1615 Total 1186 2676 Bearing: Load Comb #2 #3 Length 0.63 _ 1.43 Lumber n -ply, D.Fir -L, No.2, 2x10 ", 2 -Plys Self- weight of 6.59 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv* = 67 Fv' = 207 fv * /Fv' = 0.32 Bending( +) fb = 331 Fb' = 113E fb /Fb' = 0.29 Live Defl'n 0.00 = <L/999 0.10 = L/360 0.04 Total Defl'n 0.01 = <L/999 0.15 = L/240 0.05 *The effect of point loads within a distance d of the support has been included as per NDS 3.4.3.1 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.100 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3 Shear : LC #3 = D +.75(L +S), V = 2676, V design* = 1237 lbs Bending( +): LC #3 = D +.75(L +S), M = 1178 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 158e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I =impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. i - ( COMPANY PROJECT di WoodWorks® SOFfWARF FOR WOOD DESIGN June 24, 2010 12:43 b3 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j45 Dead Full UDL 17.0 plf 2 j45 Live _ Full UDL 25.0 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : 10' gl Dead 106 106 Live 112 112 Total 218 218 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min. bearing length for beams is 1/2" for exterior supports Glulam- Unbal., West Species, 24F -V4 DF, 3- 1/8x9" Self- weight of 6.48 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 10 Fv' = 265 fv /Fv' = 0.04 Bending( +) fb = 140 Fb' = 2400 fb /Fb' = 0.06 Live Defl'n 0.01 = <L/999 0.30 = L/360 0.04 Total Defl'n 0.03 = <L/999 0.45 = L/240 0.06 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 218, V design = 182 lbs Bending( +): LC #2 = D +L, M = 491 lbs -ft Deflection: LC #2 = D +L EI= 342e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). • COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:40 b6 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 c44 Dead Point 444 2.00 lbs 2 c44 Snow Point 647 2.00 lbs 3_w44 Dead Partial UD 389.2 389.2 0.00 2.00 plf 4 w44 Snow . Partial UD 431.2 431.2 0.00 2.00 plf 5 c45 Dead Point 444 5.00 lbs 6 c45 Snow Point 647 5.00 lbs 7 Dead Partial UD 389.2 389.2 5.00 6.00 pif 8 w45 Snow Partial UD 431.2 431.2 5.00 6.00 plf 9_j25 Dead Full UDL 120.2 plf 10 j25 Live Full UDL 370.0 pif MAXIMUM REACTIONS fibs) and BEARING LENGTHS (in) : 1:g30 81 Dead 1436 1389 Live 1803 1803 Total 3239 3192 Bearing: Load Comb #3 • #3 Length 1.73_ 1.70 Lumber n -ply, D.Fir -L, No.2, 2x12 ", 2 -Plys Self- weight of 8.02 pif included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 97 Fv' = 207 fv /Fv' = 0.47 Bending( +) fb = 805 Fb' = 1035 fb /Fb' = 0.78 Live Defl'n 0.03 = <L/999 0.20 = L/360 0.14 Total Defl'n 0.06 = <L/999 0.30 = L/240 0.20 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3 Shear : LC #3 = D +.75(L +S), V = 3239, V design = 2190 lbs Bending( +): LC #3 = D +.75(L +S), M = 4247 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 285e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. COMPANY PROJECT I i W oodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:50 b8 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or pi?) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j14 Dead Full UDL 113.7 plf 2 j14 Live Full UDL 350.0 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : A 1 gl Dead 357 357 Live 1050 1050 Total 1407 1407 Bearing: Load Comb #2 #2 Length 0.75 0.75 Lumber n -ply, D.Fir -L, No.2, 2x8 ", 2 -Plys Self- weight of 5.17 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 77 Fv' = 180 fv /Fv' = 0.43 Bending( +) fb = 963 Fb' = 1080 fb /Fb' = 0.89 Live Defl'n 0.07 = <L/999 0.20 = L/360 0.33 Total Defl'n 0.10 = L/712 0.30 = L/240 0.34 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 1407, V design = 1123 lbs Bending( +): LC #2 = D +L, M = 2110 lbs -ft Deflection: LC #2 = D +L EI= 76e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. 4_ (13 COMPANY PROJECT di WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:40 b9 Design Check Calculation Sheet Sizer 7.1 • LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End l_j50 Dead Partial UD 113.7 113.7 0.00 1.50 plf 2_j50 Live Partial UD 350.0 350.0 0.00 1.50 plf 3_j14 Dead Partial UD 113.7 113.7 3.00 9.00 plf 4_j14 Live Partial UD 350.0 350.0 3.00 9.00 plf 5_j51 Dead Partial UD 113.7 113.7 1.50 3.00 plf 6_j51 Live Partial UD 350.0 350.0 1.50 3.00 plf 7_j24 Dead Partial UD 120.2 120.2 0.00 3.00 plf 8j24 Live Partial UD 370.0 370.0 0.00 3.00 plf 9 j25 Dead Partial UD 120.2 120.2 3.00 9.00 plf 1 Live Partial UD 370.0 370.0 3.00 9.00 plf 11_j26 Dead Partial UD 120.2 120.2 9.00 12.00 plf 12_j26 Live Partial UD 370.0 370.0 9.00 12.00 plf 13_j52 Dead Partial UD 113.7 113.7 9.00 10.50 plf 14j52 Live Partial UD 350.0 350.0 9.00 10.50 plf 15_j53 Dead Partial UD 113.7 113.7 10.50 12.00 plf 16 153 Live Partial UD 350.0 350.0 10.50 12.00 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : 10' 12i Dead 1478 1478 Live 4320 4320 Total 5798 5798 Bearing: Load Comb #2 #2 Length 1.74 1.74 Glulam- Unbal., West Species, 24F -V4 DF, 5- 1/8x10 -1/2" Self- weight of 12.39 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 138 Fv' = 265 fv /Fv' = 0.52 Bending( +) fb = 2217 Fb' = 2400 fb /Fb' = 0.92 Live Defl'n 0.38 = L/381 0.40 = L/360 0.94 Total Defl'n 0.57 = L/252 0.60 = L/240 0.95 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 5798, V design = 4953 lbs Bending( +): LC 02 = D +L, M = 17395 lbs -ft Deflection: LC #2 = D +L EI= 890e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Ecp(tension), Fcp(comp'n). 4_ COMPANY PROJECT i WoodWorks SOFTWARE FOR WOOD DESIGN June 24, 2010 12:43 b10 Design Check Calculation Sheet Sizer 7.1 LOADS I lbs, psf, or p1f ) Load Type Distribution Magnitude Location (ft) Pat - Start End Start End tern 1 w39 Dead Partial UD 311.0 311.0 0.00 4.50 No 2_w39 Live Partial UD 680.0 680.0 0.00 4.50 No 3 c39 Dead Point 267 2.00 No 4 Live Point 822 2.00 No 5 j32 Dead Partial UD 120.2 120.2 0.00 0.50 No 6_j32 Live Partial UD 370.0 370.0 0.00 0.50 No 7 j33 Dead Partial UD 120.2 120.2 1.00 4.00 No 8 Live Partial UD 370.0 370.0 1.00 4.00 No 9 Dead Partial UD 120.2 120.2 4.00 4.50 No 10 134 Live Partial UD 370.0 370.0 4.00 4.50 No 11 j35 Dead Partial UD 120.2 120.2 4.50 7.50 No 12 j35 Live Partial UD 370.0 370.0 4.50 7.50 No 13 Dead Partial UD 113.7 113.7 4.50 16.50 No 14 j36 Live Partial UD 350.0 350.0 4.50 16.50 No 15 j37 Dead Partial UD 100.7 100.7 3.00 4.50 No 16 Live Partial UD 310.0 310.0 3.00 4.50 No 17 Dead Partial UD 120.2 120.2 7.50 13.50 No 18 j47 Live Partial UD 370.0 370.0 7.50 13.50 No 19_j48 Dead Partial UD 120.2 120.2 13.50 16.50 No 20_j48 Live Partial UD 370.0 370.0 13.50 16.50 No 21_j49 Dead Partial UD 120.2 120.2 0.50 1.00 No 22 j49 Live Partial UD 370.0 370.0 0.50 1.00 No 23 Dead Point 300 3.00 No 24 Live Point 922 3.00 No MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : 1 E g ), lo' W-6" 16-61 Dead 452 4067 1180 Live 847 11291 3436 Uplift 12 Total 1300 15358 4616 Bearing: Load Comb #2 #2 #2 Length 0.50• 4.24 1.27 Cb 1.00 1.09 1.00 'Min. bearing length for beams is 1/2" for exterior supports Glulam- Unbal., West Species, 24F -V4 DF, 5- 1/8x12" • Self- weight of 14.16 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis/Design Shear fv = 158 Fv' = 265 fv /Fv' = 0.60 Bending( +) fb = 1074 Fb' = 2400 fb /Fb' = 0.45 Bending( -) fb = 1396 Fb' = 1844 fb /Fb' = 0.76 Live Defl'n 0.13 = <L/999 0.40 = L/360 0.32 Total Defl'n 0.19 = L/740 0.60 = L/240 0.32 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fb'- 1850 1.00 1.00 1.00 0.997 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emir' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 8357, V design = 6496 lbs Bending( +): LC #2 = D +L, M = 11006 lbs -ft Bending( -): LC #2 = D +L, M = 14310 lbs -ft Deflection: LC #2 = D +L EI= 1328e06 Lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. Grades with equal bending capacity in the top and bottom edges of the beam cross- section are recommended for continuous beams. 4. GLULAM: bxd = actual breadth x actual depth. 5. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 6. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). iq "-- G fic COMPANY PROJECT lit WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:44 b13 Design Check Calculation Sheet . Sizer 7.1 • LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location (ft) Units Start End Start End 1 w58 Dead Partial UD 519.0 519.0 0.00 3.00 plf 2 w 58 Snow Partial UD 505.0 505.0 0.00 3.00 plf 3 - c40 Dead Point 217 5.50 lbs 4 c40 Live Point 668 5.50 lbs 5_c67 Dead Point 518 5.00 lbs 6_c67 Snow Point 778 5.00 lbs 7 c68 Dead Point 573 3.00 lbs 8 c68 Snow Point 942 3.00 lbs 9 w59 Dead Partial UD 593.7 593.7 5.00 8.00 plf 10 w59 Snow Partial UD 735.0 735.0 5.00 8.00 plf 11 j37 Dead Partial UD 100.7 100.7 6.50 8.00 plf 12_j37 Live Partial UD 310.0 310.0 6.50 8.00 plf 13_j38 Dead Partial UD 81.2 81.2 3.50 6.50 plf 14_j38 Live Partial UD 250.0 250.0 3.50 6.50 plf 15_j39 Dead Partial UD 22.7 22.7 0.00 3.50 plf 16_j39 Live Partial UD 70.0 70.0 0.00 3.50 plf 17 b15 Dead Point 126 3.50 lbs 18 Live Point 389 3.50 lbs 19 Dead Point 225 6.50 lbs 20 Live Point 693 6.50 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : - m 'ate ,,` = - _ y _ + tx.- fc.. � �� � -- '.z i. ..44,..- _.��- _ �4 -.. �a..Jl� - - !z.. - . - �� - ,.:.�""�e...t -. - . SM[�� :.rs...r. ... •• •• �r - .i: ----" `e. Iii R: 1 0' 81 Dead 2561 3033 Live 2699 3789 Total 5261 6822 Bearing: Load Comb #3 #3 Length _ 1.88 _ 2.44 LSL, 1.55E, 2325Fb, 3- 1/2x14" Self- weight of 15.31 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value ,Design Value Analysis /Design Shear fv = 157 Fv' = 356 fv /Fv' = 0.44 Bending( +) fb = 1295 Fb' = 2674 fb /Fb' = 0.48 Live Defl'n 0.06 = <L/999 0.27 = L/360 0.24 Total Defl'n 0.14 = L /680 0.40 = L/240 0.35 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 3 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 3 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 3 Emin' 0.80 million - 1.00 - - - - 1.00 - - 3 Shear : LC #3 = D +.75(L +S), V = 6822, V design = 5122 lbs Bending( +): LC #3 = D +.75(L +S), M = 12340 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W -wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. • 4 - & 1 (0 COMPANY PROJECT di WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:43 b14 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or pif ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w33 Dead Partial UD 317.7 317.7 9.00 12.00 plf 2 Live Partial UD 350.0 350.0 9.00 12.00 plf 3 Dead Point 357 9.00 lbs 4 Live Point 1050 9.00 lbs 5 Dead Point 357 3.00 lbs 6 Live Point 1050 3.00 lbs 7 Dead Partial UD 317.7 317.7 0.00 3.00 pif 8 Live Partial UD 350.0 350.0 0.00 3.00 plf 9 Dead Point 165 10.50 lbs 10_c64 Snow Point 225 10.50 lbs 11_c65 Dead Point 165 1.50 lbs 12_c65 Snow Point 225 1.50 lbs 13_j36 Dead Full UDL 113.7 plf 14_j36 Live Full UDL 350.0 plf 15_j43 Dead Partial UD 17.0 17.0 0.00 0.50 plf 16_j43 Live Partial UD 25.0 25.0 0.00 0.50 plf 17 j44 Dead Partial UD 17.0 17.0 0.50 1.50 pif 18 j44 Live Partial UD 25.0 25.0 0.50 1.50 plf 19_j45 Dead Partial UD 17.0 17.0 1.50 10.50 plf 20_j45 Live Partial UD 25.0 25.0 1.50 10.50 plf 21 Dead Partial UD 17.0 17.0 10.50 12.00 pif 22 Live Partial UD 25.0 25.0 10.50 12.00 plf MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : ,y.. = ......,.t: � -w .•- .r�.� � ► _�.- . .:_ .�,;_ - -� " �` 1 0' 121 Dead 2351 2351 Live 4350 4350 Total 6701 6701 Bearing: Load Comb #2 #2 Length 2.39_ 2.39 LSL, 1.55E, 2325Fb, 3- 1/2x14" Self- weight of 15.31 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 163 Fv' = 310 fv /Fv' = 0.52 Bending( +) fb = 1769 Fb' = 2325 fb /Fb' = 0.76 Live Defl'n 0.25 = L/573 0.40 = L/360 0.63 Total Defl'n 0.43 = L/333 0.60 = L/240 0.72 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 6701, V design = 5314 lbs Bending( +): LC #2 = D +L, M = 16851 lbs -ft Deflection: LC #2 = D +L EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. Lip 11 COMPANY PROJECT f fl WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:41 b20 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location (ft] Units Start End Start End 1_j30 Dead Full UDL 21.7 plf 2 j30 Live Full UDL 60.0 plf MAXIMUM R • • ' . . ' • 1 3 -6n Dead 46 46 Live 105 105 Total 151 151 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min. bearing length for beams is 1/2" for exterior supports Lumber -soft, D.Fir -L, No.2, 4x6" Self- weight of 4.57 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 9 Fv' = 180 fv /Fv' = 0.05 Bending( +) fb = 90 Fb' = 1170 fb /Fb' = 0.08 Live Defl'n 0.00 = <L/999 0.12 = L/360 0.02 Total Defl'n 0.00 = <L/999 0.18 = L/240 0.02 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.00 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 151, V design = 111 lbs Bending( +): LC #2 = D +L, M = 132 lbs -ft • Deflection: LC #2 = D +L EI= 78e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:50 b30 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j41 Dead Partial UD 68.0 68.0 2.00 4.00 plf 2_j41 Live Partial UD 100.0 100.0 2.00 4.00 plf 3_j42 Dead Partial UD 72.2 72.2 0.00 2.00 plf 4 j42 Live Partial UD 106.2 106.2 _ 0.00 2.00 plf MAXIMUM REACTIONS (Ibcl and RFARING LFN(;THS lint 0. 4 A Dead 154 150 Live 209 203 Total 364 353 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min. bearing length for beams is 1/2" for exterior supports Lumber -soft, D.Fir -L, No.2, 4x8" Self- weight of 6.03 pif included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 15 Fv' = 180 fv /Fv' = 0.08 Bending( +) fb = 140 Fb' = 1170 fb /Fb' = 0.12 Live Defl'n 0.00 = <L/999 0.13 = L/360 0.03 Total Defl'n 0.01 = <L/999 0.20 = L/240 0.04 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 364, V design = 253 lbs Bending( +): LC #2 = D +L, M = 359 lbs -ft Deflection: LC #2 = D +L EI= 178e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. . COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:42 b31 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j65 Dead Partial UD 47.7 47.7 0.00 4.00 plf 2_j65 Live Partial UD 160.0 160.0 0.00 4.00 plf 3_j28 Dead Partial UD 47.7 47.7 4.50 7.50 plf 4_j28 Live Partial UD 160.0 160.0 4.50 7.50 plf 5_j62 Dead Partial UD 47.7 47.7 7.50 11.00 plf 6_j62 Live Partial UD 160.0 160.0 7.50 11.00 plf 7_j63 Dead Partial UD 47.7 47.7 11.00 17.00 plf 8_j63 Live Partial UD 160.0 160.0 11.00 17.00 plf 9_j64 Dead Partial UD 47.7 47.7 17.00 20.00 plf 10_j64 Live Partial UD 160.0 160.0 17.00 20.00 plf 11_j66 Dead Partial UD 47.7 47.7 4.00 4.50 plf 12 j66 Live Partial UD 160.0 160.0 4.00 4.50 plf MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : IO' 20+ Dead 619 619 Live 1600 1600 Total 2219 2219 Bearing: Load Comb #2 #2 Length 0.67 • 0.67 Glulam- Unbal., West Species, 24F -V4 DF, 5- 1/8x12" Self- weight of 14.16 pif included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 49 Fv' = 265 fv /Fv' = 0.18 Bending( +) fb = 1082 Fb' = 2400 fb /Fb' = 0.45 Live Defl'n 0.43 = L /553 0.67 = L/360 0.65 Total Defl'n 0.69 = L /350 1.00 = L/240 0.69 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 • Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D +L, V = 2219, V design = 1997 lbs Bending( +): LC #2 = D +L, M = 11095 lbs -ft Deflection: LC #2 = D +L EI= 1328e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). 4- G1'20 COMPANY PROJECT • Wo od \Nor k s ® June 24, 201013:15 1134 SOFTWARE FOR WOOD DESIGN Design Check Calculation Sheet 56.07.1 LOADS ( 1MM. pal... pR) : Load Type Distribution Ma372tud' Location Iftl Unit. Start End Start End • 1_ Dead Partial UD 613.2 613.2 0.00 2.00 pif 0.62 Snow Partial UD 795.0 795.0 0.00 2.00 pif 3_0.29 Dead Partial UD 617.5 617.5 7 .50 11.00 plf 0.29 Snow Partial UD 001.2 501.2 7.50 11.00 plf 5:715 0.ad Point 1436 11.00 lbs 6_715 Snow Point 2404 11.00 lbs 716 Dead Point 1389 17.00 1b, 9 Snow Point 2401 17.00 lira 6 Dead Partial UD 617.5 617.5 17.00 10.00 plf 10 964 Snow Partial UD 801.2 801.2 17.00 18.00 plf 11 561 Dead Paint 622 7.00 lbs 12 Snow Paint 1192 7.00 108 12062 Dead Point 622 4.00 lira 14 Snow P01n5 1192 4.00 160 15 Dead Partial U0 613.2 613.2 2.00 4.00 plf 16_w63 Snow Partial UD 795.0 795.0 2.00 4.00 pif 17 065 Dead Partial U0 617.5 617.5 18.00 20.00 pif 15065 Snow partial U0 901.2 801.2 18.00 20.00 plf 19 071 Dead Partial UD 613.2 613.2 7.00 7.50 pif 20:971 Sn:w Partial UD 795.0 795.0 7.00 7.50 pif 21 164 Dead Partial UD 47.7 47.7 17.00 19.00 pif 2 _164 L1' :e Partial VD 160.0 160.0 17.00 10.00 plf 23_120 Dead Partial UD 47.7 47.7 1.50 7.50 plf 24_126 Pa:0101 00 160.0 160.0 4.50 7.50 pif . 25_162 Dead Par 0101 UD 17.7 47.7 7.50 11.00 pif 26_162 Live Partial UD 160.0 160.0 7.50 11.00 pif 27_14e Dead Partial U0 120.2 120.2 0.00 2.00 plf 26_149 Live Part101 UD 370.0 3 0.00 2.00 plf 29_332 Dead Partial UD 120.2 120.2 3.50 4.00 pif 30_132 =iv. Partial UD 370.0 370.0 3.50 4.00 pif 31_333 Dead Partial 00 120.2 120.2 1.50 7.50 pif 32_133 Live Partial U0 370.0 370.0 4.50 7.50 plf 33_134 Dead Partial V0 120.2 120.2 7.50 6.00 pif . • 34_334 Li,' Partial UD 370.0 370.0 7 .50 5.00 pif 35_335 Dead Partial UD 120.2 120.2 9.00 11.00 pif 3 135 L1' :' Partial UD 370.0 370.0 B.00 11.00 pif 37_147 Dead Partial UD 120.2 120.2 11.00 17.00 pif 39_147 Live Partial UD 370.0 370.0 11.00 17.00 pif 3 167 Dead Partial 02 120.2 120.2 2.00 3.50 plf 40167 Live Partial UD 370.0 370.0 2.00 3.50 plf 41_149 Dead Partial UD 120.2 120.2 4.00 4.50 pif 42_149 L1vt Partial UD 370.0 370.0 4.00 4.50 pif 43_163 Dead Partial UD 47.7 47.7 11.00 17.00 pif 44_163 Live Partial U0 160.0 160.0 11.00 17.00 pif 45_165 Dead 7205101 UD 47.7 17.7 10.00 20.00 pif 46 _365 LS• :e Partial 110 160.0 160.0 19.00 20.00 pif 47_166 Dead Partial UD 4.00 4.50 plf 46366 Live Partial UD 160.0 160.0 4.00 4.50 pif 49_168 Dead Partial UO 120.2 120.2 17.00 16.00 pif 50 - 168 Live Partial U0 370.0 370.0 17.00 10.00 pif , 51_169 Dead Partial UD 120.2 120.2 18.00 20.00 pif 52_169 Live Partial UD 370.0 370.0 19.00 20.00 pif • 53_172 Dead Partial UD 47.7 47.7 2.00 4.00 plf 54_172 Live Partial UD 160.0 160.0 2.00 4.00 pif 55_173 Dead Partial U0 47.7 0.00 2.00 pif 6 5 773 Live Partial UD 160.0 160.0 - 0.00 2.00 oil MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (In) : 1 � Q „� 7 Dead 4405 Live 9956 9979 Total 17361 17305 Bearing: Load Coca O Lena, 5.21 5.19 Glulam -BaI., West Species, 24F -V8 DF, 5- 1/8x22 -1/2" SelFwelyd of 28.55 pif Inducted in load.: Lateral support lap' tub, b0tsme m supports: Analysis vs. Allowable Stress (psi) and Deflection (in) adnylms Criterion Analval, Value cosian Value Analsis /D.1,n Shear f6 ■ 182 - 305 f0 /y' - 0.60 Bendln !b - 2392 Flo - 2604 fir /Fir' ■ 0.92 0601 Live Defl'n 0.40 - L/595 0.67 - L/360 0.60 Total Detl'n 0.34 ■ L/285 1.00 - L/240 0.94 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL C/ Cfu Cr Cf :t !locos ^ LC4 94' 265 1.15 1.00 1.00 1.00 1.00 1 00 3 90'O 2400 1.15 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 3 Fcp' 650 1.00 1.00 - - - - 1.00 - E' 1.9 million 1.00 1.00 - - - - 1.00 - 3 Enln' 0.55 million 1.00 1.00 - - - - 1.40 - - shear : LC 13 - 0o.75(1.-s), V - 1 V design ■ 13992 lb. BOndin0( LC 03 - 0+.75(1 0 - 86109 168 -ft Deflection: LC 13 - 0 F.I. 6756006 lb -272 Total Deflection ■ 1.50(0.ad Load Deflection) 0 Live Load Deflection. 20-d'ad L-1108 S ■an0w 11.0173 1-1rpa0t C.con,5:700170 cLd- 07000000ated2 (All LC'e are Ifat'd in the Analysis output, . Load combinations: ICC -IBC DESIGN NOTES: I. Memo verily that the default 4.0.0tbn Otntle aro 6ppr1pla• to 3.40100015 n. 2 GMarn design vahsea are to ,4660.9l.9765 to AITC 117 -2001 and 16651 10.11 In accordance with ANSUAITC 6190.1 -1992 3. GLULAM• bad - actual breadth tt actual depth. . 4. Warn Beams shall be Morally unmated accadI g to Dm po5LSbm of 605 Clouse 3.3.3. 5. 4101560: tearing length based on mula of FcpTension), Fcp(conpn). /4.4. t r' COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN • June 24, 2010 12:49 b35 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 j21 Dead Partial UD 120.2 120.2 0.50 1.50 plf 2 j21 Live Partial UD 370.0 370.0 0.50 1.50 plf 3_j59 Dead Partial UD 120.2 120.2 0.00 0.50 plf 4_j59 Live Partial UD 370.0 370.0 0.00 0.50 plf 5_j60 Dead Partial UD 120.2 120.2 1.50 3.00 plf 6 j60 Live _ Partial UD 370.0 370.0 _ 1.50 3.00 plf MAXIMUM RE!--"' "' . , • • 1 Cr 31 Dead 188 188 Live 555 555 Total 743 743 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min. bearing length for beams is 1/2" for exterior supports Lumber n -ply, D.Fir -L, No.2, 2x8 ", 2 -Plys Self- weight of 5.17 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 31 Fv' = 180 fv /Fv' = 0.17 Bending( +) fb = 254 Fb' = 1080 fb /Fb' = 0.24 Live Defl'n 0.00 = <L/999 0.10 = L/360 0.04 Total Defl'n 0.01 = <L/999 0.15 = L/240 0.04 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emirs' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D +L, V = 743, V design = 444 lbs Bending( +): LC #2 = D +L, M = 557 lbs -ft Deflection:,LC #2 = D +L EI= 76e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd =concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. 4 - 613Q, COMPANY PROJECT 1 W oodW or k s ® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:51 c2 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End l bl Dead Axial 1056 (Eccentricity = 0.00 in) 2 Rf.Live Axial 2153 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): 1 • 0' 8' Lumber n -ply, Hem -Fir, No.2, 2x6 ", 2 -Plys Self- weight of 3.41 plf included in Toads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 0.00= 0.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 196 Fc' = 980 fc /Fc' = 0.20 Axial Bearing fc = 196 Fc* = 1644 fc /Fc* = 0.12 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.596 1.100 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 3236 lbs Kf = 1.00 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. ciD)\3 COMPANY PROJECT fl WoodWorks® SOFTWARE FO➢ WOOD DESIGN June 24, 2010 12:54 c12 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 c24 Dead Axial 1478 (Eccentricity = 0.00 in) 2 Live Axial 4320 (Eccentricity = 0.00 in) 3 Dead Axial 4067 (Eccentricity = 0.00 in) 4 Live Axial 11291 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 0' 8' Timber-soft D.Fir -L, No.1, 6x6" Self- weight of 7.19 plf included in Toads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2006 Criterion Analysis Value Design Value Analysis /Design Axial fc = 701 Fc' = 820 fc /Fc' = 0.86 Axial Bearing fc = 701 Fc* = 1000 _ fc /Fc* = 0.70 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC #. Fc' 1000 1.00 1.00 1.00 0.820 1.000 - - 1.00 1.00 2 Fc* 1000 1.00 1.00 1.00 - 1.000 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 21214 lbs (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (A11 LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. (PH COMPANY PROJECT di WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 12:53 c23 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or pif) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b9 Dead Axial 1478 (Eccentricity = 0.00 in) 2 Live Axial 4320 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): D 0' 9' Lumber Post, Hem -Fir, No.2, 4x6" Self- weight of 3.98 pif included in Toads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 9.00= 9.00 [ft]; Ke x Ld: 1.00 x 9.00= 9.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 303 Fc' = 379 fc /Fc' = 0.80 Axial Bearing _ fc = 303 Fc* = 1430 fc /Fc* = 0.21 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.265 1.100 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 5834 lbs (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES- 1. Please verify that the default deflection limits are appropriate for your application. 4 - COMPANY PROJECT i:1 woodWorks® SOFIWARFFOR WOOD DESIGN June 24, 2010 12:54 c26 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or pif ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 c23 Dead Axial 1478 (Eccentricity = 0.00 in) 2_c23 Live Axial 4320 (Eccentricity = 0.00 in) 3 Dead Axial 1180 (Eccentricity = 0.00 in) 4 Live Axial 3436 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): ' ra 4 , _ • 0' 8' Timber -soft, Hem -Fir, No.2, 6x6" Self- weight of 6.25 plf included in Toads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 346 Fc' = 492 fc /Fc' = 0.70 Axial Bearing fc = 346 Fc* = 575 fc /Fc* = 0.60 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 575 1.00 1.00 1.00 0.856 1.000 - - 1.00 1.00 2 Fc* 575 1.00 1.00 1.00 - 1.000 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 10465 lbs (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 4-- c COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD OES4GN June 24, 2010 12:52 c29 Design Check Calculation Sheet Sizer 7.1 LOADS (Ibs, psf, or pif ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b13 Dead Axial 3033 (Eccentricity = 0.00 in) 2 Rf.Live Axial 5052 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): D 0' 8' Lumber n -ply, Hem -Fir, No.2, 2x6 ", 3 -Pays Self- weight of 5.11 pif included in Toads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Repetitive factor: applied where permitted (refer to online help); Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 328 Fc' = 439 fc /Fc' = 0.75 Axial Bearing fc = 328 Fc* = 1644 fc /Fc* = 0.20 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.267 1.100 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 8126 lbs Kf = 0.60 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. • 4 - COMPANY PROJECT di WoodWorks® SOFTWARE FOR W000 DESIGN June 24, 2010 12:55 c31 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b13 Dead Axial 2561 (Eccentricity = 0.00 in) 2 Rf.Live Axial 3599 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 0' 8' Lumber n -ply, Hem -Fir, No.2, 2x4 ", 3 -Plys Self- weight of 3.25 plf included in Toads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Repetitive factor: applied where permitted (refer to online help); Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 393 Fc' = 443 fc /Fc' = 0.89 Axial Bearing fc = 393 Fc* = 1719 fc /Fc* = 0.23 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.258 1.150 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 6186 lbs Kf = 0.60 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) • (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR W000 DESIGN June 24, 2010 12:54 c39 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or pif ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b21 Dead Axial 267 (Eccentricity = 0.00 in) 2 Live Axial 822 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): • 0' 9 Lumber n -ply, Hem -Fir, No.2, 2x4 ", 2 -Plys Self- weight of 2.17 plf included in Toads; Pinned base; Loadface = depth(d); Built -up fastener: nails; Ke x Lb: 1.00 x 9.00= 9.00 [ft]; Ke x Ld: 1.00 x 9.00= 9.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 106 Fc' = 171 fc /Fc' = 0.62 Axial Bearing fc = 106 Fc* = 1495 fc /Fc* = 0.07 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.114 1.150 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 1108 lbs Kf = 0.60 (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT -UP COLUMNS: nailed or bolted built -up columns shall conform to the provisions of NDS Clause 15.3. 4._ Clic) COMPANY PROJECT i WoodWorks® SOF! WAR£ FOR WOOD DESIGN June 24, 2010 12:52 c55 • Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b30 Dead Axial 154 (Eccentricity = 0.00 in) 2 Live Axial 209 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (Ibs): 1 0' 8' Lumber Post, Hem -Fir, No.2, 4x4" Self- weight of 2.53 plf included in Toads; Pinned base; Loadface = depth(d); Ke x Lb: 1.00 x 8.00= 8.00 [ft]; Ke x Ld: 1.00 x 8.00= 8.00 [ft]; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Axial fc = 31 Fc' = 470 fc /Fc' = 0.07 Axial Bearing fc = 31 Fc* = 1495 fc /Fc* = 0.02 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL /CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.315 1.150 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D +L, P = 384 lbs (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 0 142 BY Pvl\k_ DATE: f _ - aO \ O JOB NO.: / ' E • ' _ OF PROJECT: RE: 'Bll ea s Lu1 LcAkrat Reactions El AAJJ J Z F W \e,ain b - t .X tt S i�3 i, 303 o f ❑ beavr 13 -- : aalls aoaPt aoa 3 p J 0 Q w O w i !^ _ (- rn t 4 - 5 Wokas �ob ' ao `'I U Z w O 2 z a z \ eavm '3W wo‘t.15 aa1 , ao 1 A ao 1PS 0 a 5 1r1ce ulna. cea ai eym » se csmz L rc, z 01rN u)Irc- t.u+tt he eat cLtcAve;.j. f 0 U 2 ° t o lL z w ❑ Z O O = F- 4. O • U N . ' q 0 QI r. 0 . N = hil P x i q — ('''(-)) \ COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 13:07 b6 LC1 Design Check Calculation Sheet Sizer 7.1 LOADS ( Ibs, psf, or plf ) Load Type Distribution Magnitude Location Eft) Units Start End Start End 1 c44 Dead Point 444 2.00 lbs 21c44 Snow Point 647 2.00 lbs 3_w44 Dead Partial UD 389.2 389.2 0.00 2.00 plf 4 w44 Snow Partial UD 431.2 431.2 0.00 2.00 plf 5 c45 Dead Point 444 5.00 lbs 6 c45 Snow Point 647 5.00 lbs 7_w45 Dead Partial UD 389.2 389.2 5.00 6.00 plf • 8 Snow Partial UD 431.2 431.2 5.00 6.00 plf 9 j25 Dead Full UDL 120.2 plf 10_j25 Live Full UDL 370.0 plf WIND1 Wind Point 800 2.00 lbs WIND2 Wind Point -910 5.00 lbs MAXIMUM REACTIONS (Ibs1 and BEARING LENGTHS (in► : • 10' 61 Dead 1436 1389 Live 2089 1803 Total 3525 3192 Bearing: Load Comb #4 #3 Length 1.88 1.70 Lumber n -ply, D.Fir -L, No.2, 2x12 ", 2 -Plys Self- weight of 8.02 plf included in loads; Lateral support top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 97 Fv' = 207 fv /Fv' = 0.47 Bending( +) fb = 805 Fb' = 1035 fb /Fb' = 0.78 Live Defl'n 0.03 = <L/999 0.20 = L/360 0.15 Total Defl'n 0.06 = <L/999 0.30 = L/240 0.21 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 4 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 4 Shear : LC #3 = D +.75(L +S), V = 3239, V design = 2190 lbs Bending( +): LC #3 = D +.75(L +S), M = 4247 lbs -ft Deflection: LC #4 = D +.75(L +S +W) EI= 285e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd =concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. 141 - C632_ COMPANY PROJECT WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 2010 13:07 b6 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_c44 Dead Point 444 2.00 lbs 2 c44 Snow Point 647 2.00 lbs 3_w44 Dead Partial UD 389.2 389.2 0.00 2.00 plf 4 w44 Snow Partial UD 431.2 431.2 0.00 2.00 plf 5 c45 Dead Point 444 5.00 lbs 6c45 Snow Point 647 5.00 lbs 7__w45 Dead Partial UD 389.2 389.2 5.00 6.00 plf 8 w45 Snow Partial UD 431.2 431.2 5.00 6.00 plf 9 Dead Full UDL 120.2 plf 10 j25 Live Full UDL 370.0 plf WIND1 Wind Point -800 2.00 lbs WIND2 Wind Point 910 5.00 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (inl : tr g 1 0' 61 Dead 1436 1389 Live 1803 2172 Total 3239 • 3561 Bearing: Load Comb #3 #4 Length _ 1.73 1.90 Lumber n -ply, D.Fir -L, No.2, 2x12 ", 2 -Plys Self- weight of 8.02 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 97 Fv' = 207 fv /Fv' = 0.47 Bending( +) fb = 805 Fb' = 1035 fb /Fb' = 0.78 Live Defl'n 0.03 = <L/999 0.20 = L/360 0.14 Total Defl'n 0.06 = <L/999 0.30 = L/240 0.20 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3 Shear : LC #3 = D +.75(L +S), V = 3239, V design = 2190 lbs Bending( +): LC #3 = D +,75(L +S), M = 4247 lbs -ft Deflection: LC #3 = D +.75(L +S) EI= 285e06 lb -in2 /ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT -UP BEAMS: it is assumed that each ply is a single continuous member (that is, no butt joints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top - loaded. Where beams are side - loaded, special fastening details may be required. COMPANY PROJECT f fl . WoodWorks® SOFTWARE FOR WOOD DESIGN June 24, 201013:09 b14 LC1 Design Check Calculation Sheet Sizer 7.1 LOADS ( 1bs, psf, or Of ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w68 Dead Partial UD 221.7 221.7 9.00 10.50 plf 2 w 68 Live Partial UD 350.0 350.0 9.00 10.50 plf 3 - c19 Dead Point 357 9.00 lbs 4 Live Point 1050 9.00 lbs 5 c20 Dead Point 357 3.00 lbs 6 c20 Live Point 1050 3.00 lbs 7 Dead Partial UD 317.7 317.7 0.00 1.50 plf 8 w 66 Live Partial UD 350.0 350.0 0.00 1.50 plf 9 Dead Point 165 10.50 lbs 10 c64 Snow Point 225 10.50 lbs 11 c65 Dead Point 165 1.50 lbs 12 c65 Snow Point 225 1.50 lbs 13 Dead Partial UD 221.7 221.7 1.50 3.00 plf 14 Live Partial UD 350.0 350.0 1.50 3.00 plf 15 Dead Partial UD 317.7 317.7 10.50 12.00 plf 16 Live Partial UD 350.0 350.0 10.50 12.00 plf 17_j36 Dead Full UDL 113.7 plf 18_j36 Live Full UDL 350.0 plf 19 j43 Dead Partial UD 17.0 17.0 0.00 0.50 plf 20_143 • Live Partial UD 25.0 25.0 0.00 0.50 plf 21 Dead Partial UD 17.0 17.0 0.50 1.50 plf 22_j44 Live Partial UD 25.0 25.0 0.50 1.50 plf 23 j45 Dead Partial UD 17.0 17.0 1.50 3.00 plf 24 Live Partial UD 25.0 25.0 1.50 3.00 plf 25_j46 Dead Partial UD 17.0 17.0 10.50 12.00 plf 26_j46 Live Partial UD 25.0 25.0 10.50 12.00 plf 27_j70 Dead Partial UD 17.0' 17.0 3.00 9.00 plf 28 j70 Live Partial UD 25.0 25.0 3.00 9.00 plf 29 j71 Dead Partial UD 17.0 17.0 9.00 10.50 plf 30 j71 Live Partial UD 25.0 25.0 9.00 10.50 plf WIND1 Wind Point 3560 3.00 lbs WIND2 Wind Point -3640 9.00 lbs wind3 Wind Point -3620 0.00 lbs winds Wind Point 3570 12.00 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : -, ""*" .. ."'" ..' -7. '-"v'�. yam . ,ca ' - rn.._ - �siJ^i..s ..._ ° �, - ""y'- _ ' -�^ er. -: '` r '- "�.F -' -�. - s._� d - r e;Q,s - - !....- e- - .a. - ' 1 . "'''''m..tr .,A' -'-- 121 Dead 2207 2207 Live 4350 4350 Uplift 499 479 Total 6557 6557 Bearing: Load Comb 02 02 Length 2.34 2.34 LSL, 1.55E, 2325Fb, 3- 1/2x14" Self- weight of 15.31 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 158 Fv' = 310 fv /Fv' = 0.51 Bending( +) fb = 1735 Fb' = 2325 fb /Fb' = 0.75 Live Defl'n 0.25 = L/573 0.40 = L/360 0.63 Total Defl'n 0.42 = L/343 0.60 = L/240 0.70 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' B00 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC 112 = D +L, V = 6557, V design = 5170 lbs . Bending( +): LC 02 = D +L, M = 16527 lbs -ft Deflection: LC 02 = D +L EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC ' DESIGN NOTES: 1. Please verify that the default deflection Omits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. it.-6-,13t-t COMPANY PROJECT di WoodWorks® SOF7WARfFOR WOOD DESIGN June 24, 2010 13:09 b14 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS ( lbs, psf, or plf ) Load Type Distribution Magnitude Location (ft] Units Start End Start End 1 w68 Dead Partial UD 221.7 221.7 9.00 10.50 plf 2 Live Partial UD 350.0 350.0 9.00 10.50 plf 3 Dead Point 357 9.00 lbs 4 c19 Live Point 1050 9.00 lbs 5 Dead Point 357 3.00 lbs 6 Live Point 1050 3.00 lbs 7 Dead Partial UD 317.7 317.7 0.00 1.50 plf 8 Live Partial UD 350.0 350.0 0.00 1.50 plf . 9 c64 Dead Point 165 10.50 lbs 10 c64 Snow Point 225 10.50 lbs 11 c65 Dead Point 165 1.50 lbs 12_c65 Snow Point 225 1.50 lbs 13 w67 Dead Partial UD 221.7 221.7 1.50 3.00 plf 14 w67 Live Partial UD 350.0 350.0 1.50 3.00 plf 15 w69 Dead Partial UD 317.7 317.7 10.50 12.00 plf 16 Live Partial UD 350.0 350.0 10.50 12.00 plf 17 j36 Dead Full UDL 113.7 plf 18_j36 Live Full UDL 350.0 plf 19 j43 Dead Partial UD 17.0 17.0 0.00 0.50 plf 20_j43 Live Partial UD 25.0 25.0 0.00 0.50 plf 21_j44 Dead Partial UD 17.0 17.0 0.50 1.50 plf 22_j44 Live Partial UD 25.0 25.0 0.50 1.50 plf 23_j45 Dead Partial UD 17.0 17.0 1.50 3.00 plf 24_j45 Live Partial UD 25.0 25.0 1.50 3.00 plf 25j46 Dead Partial UD 17.0 17.0 10.50 12.00 plf 26_j46 Live Partial UD 25.0 25.0 10.50 12.00 plf 27_j70 Dead Partial UD 17.0 17.0 3.00 9.00 plf 28_j70 Live Partial UD 25.0 25.0 3.00 9.00 plf 29_j71 Dead Partial UD 17.0 17.0 9.00 10.50 plf 30 j71 Live Partial UD 25.0 25.0 9.00 10.50 plf WIND1 Wind Point -3560 3.00 lbs WIND2 Wind Point 3640 9.00 lbs wind3 Wind Point 3620 0.00 lbs winds Wind Point -3570 12.00 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : = _ �.. - -�,, = - = - tea.. -= .ter=.. °z °' =� - _ - �° ' - : .ers: • I a 121 Dead 2207 2207 Live 4826 4811 Total 7033 7018 Bearing: Load Comb #4 #4 Length 2.51 2.51 LSL, 1.55E, 2325Fb, 3- 112x14" Self- weight of 15.31 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 158 Fv' = 310 fv /Fv' = 0.51 Bending( +) fb = 1735 Fb' = 2325 fb /Fb' = 0.75 Live Defl'n 0.25 = L/573 0.40 = L/360 0.63 Total Defl'n 0.42 = L/343 0.60 = L/240 0.70 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC 02 = D +L, V = 6557, V design = 5170 lbs • Bending( +): LC #2 = D +L, M = 16527 lbs -ft Deflection: LC #2 = D +L EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer: 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. 4 ......c.i.c COMPANY PROJECT 1 WoodWorks SOFTWARE FOR WOOD DESIGN June 24, 2010 13:11 b13 LC1 Design Check Calculation Sheet Sizer 7.1 LOADS (Ibs, pst, or p11) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w58 Dead Partial UD 519.0 519.0 0.00 3.00 plf 2_w58 Snow Partial UD 505.0 505.0 0.00 3.00 plf 3 c40 Dead Point 217 5.50 lbs 4 c40 Live Point 668 5.50 lbs 5_c67 Dead Point 518 5.00 lbs 6_c67 • Snow Point 778 5.00 lbs 7_c68 Dead Point 573 3.00 lbs 8_c68 Snow Point 942 3.00 lbs 9 w59 Dead Partial UD 593.7 593.7 5.00 8.00 plf 10_w59 Snow Partial UD 735.0 735.0 5.00 8.00 plf 11 j37 Dead Partial UD 100.7 100.7 6.50 8.00 plf 12 Live Partial UD 310.0 310.0 6.50 8.00 plf 13_j38 Dead Partial UD 81.2 81.2 3.50 6.50 plf 14 j38 Live Partial UD 250.0 250.0 3.50 6.50 plf 15 j39 Dead Partial UD 22.7 22.7 0.00 3.50 plf 16_j39 Live Partial UD 70.0 70.0 0.00 3.50 plf 17_b15 Dead Point 126 3.50 lbs 18 b15. Live Point 389 3.50 lbs 19 Dead Point 225 6.50 lbs 20 Live Point 693 6.50 lbs W1 Wind Point 6590 0.00 lbs W2 Wind Point -6590 3.00 lbs W3 Wind Point 6590 5.00 lbs W4 Wind Point -6590 8.00 lbs MAXIMUM - • CTIONS llhc) and BFARING I FNGTHS (in) .: y -.4.--- � -�" .wT' ,„.-... �- ° - - - �+ar ; '" '"J7 , ,• ` "•° 4r "!`ao : aa.��. 1 0' 81 Dead 2561 3033 Live 6406 3789 Uplift 3098 Total 8968 • 6822 Bearing: Load Comb #4 03 Length 3.20 2.44 LSL, 1.55E, 2325Fb, 3- 1/2x14" Self- weight of 15.31 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 157 Fv' = 356 fv /Fv' = 0.44 Bending( +) fb = 1295 Fla' = 2674 fb /Fb' = 0.48 Live Defl'n 0.06 = <L/999 0.27 = L/360 0.24 Total Defl'n - 0.14 = L /680 0.40 = L/240 0.35 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LCO Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 3 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 3 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 3 Emin' 0.80 million - 1.00 - - - - 1.00 - - 3 Shear : LC 83 = D +.75(L +S), V = 6822, V design = 5122 lbs Bending( +): LC 03 = D +.75(L +S), M = 12340 lbs -ft Deflection: LC 03 = D +.75(L +S) EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. • . - (-1 3(61 COMPANY PROJECT i WoodWorks® SOFTWAREFOR WOOD DESIGN June 24, 2010 13:11 b13 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS (Ibs, psf, or pif) : Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w58 Dead Partial UD 519.0 519.0 0.00 3.00 plf 2_w58 Snow Partial UD 505.0 505.0 0.00 3.00 plf 3 c40 Dead Point 217 5.50 lbs 4 c40 Live Point 668 5.50 lbs 5 c67 Dead Point 518 5.00 lbs 6 c67 Snow Point 778 5.00 lbs 7 c68 Dead Point 573 3.00 lbs 8 c68 Snow Point 942 3.00 lbs 9 w59 Dead Partial UD 593.7 593.7 5.00 8.00 plf 10 w59 Snow Partial UD 735.0 735.0 5.00 8.00 plf 11 j37 Dead Partial UD 100.7 100.7 6.50 8.00 plf 12 j37 Live Partial UD 310.0 310.0 6.50 8.00 plf 13_j38 Dead Partial UD 81.2 81.2 3.50 6.50 plf 14 j38 Live Partial UD 250.0 250.0 3.50 6.50 plf 15 Dead Partial UD 22.7 22.7 0.00 3.50 plf 16_j39 Live Partial UD 70.0 70.0 0.00 3.50 plf 17 b15 Dead Point 126 3.50 lbs 18 b15 Live Point 389 3.50 lbs 19 Dead Point 225 6.50 lbs 20 b32 Live Point 693 6.50 lbs W1 Wind Point -6590 0.00 lbs W2 Wind Point 6590 3.00 lbs W3 Wind Point -6590 5.00 lbs W4 Wind Point 6590 8.00 lbs MAXIMUM RFACTIfNS(1hSLand_RFARINGJ FNGTHS (inl : - -,. -.,..,- -:,o,r N,...: -. �i4+'.' m .`. ...w.�„p�; :+�....,... . ..��c -- -"' y - ,..- : '°'d - t ° c„ +may 'i"� _w_ -.c- fi r.- • .ma c." a _ - er ...,,_ +�....+_ -=•' ,,,..± _ - t . . ' .'1._ .ia...- -�s.r _�- - .*c .4.-'n-` _i'�r -'*+ as � r_ ms "w-^"- ` _ - -r:..- I a Dead 2561 3033 Live 2699 7496 Uplift 3381 Total 5261 10529 Bearing: Load Comb #3 #4 Length 1.88_ 3.76 LSL, 1.55E, 2325Fb, 3- 1/2x14" Self- weight of 15.31 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 157 Fv' = 356 fv /Fv' = 0.44 Bending( +) fb = 1295 Fb' = 2674 fb /Fb' = 0.48 Live Defl'n 0.06 = <L/999 0.27 = L/360 0.24 Total Defl'n 0.14 = L/680 0.40 = L/240 0.35 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 3 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 3 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 3 Emin' 0.80 million - 1.00 - - - - 1.00 - - 3 Shear : LC #3 = D +.75(L +S), V = 6822, V design = 5122 lbs Bending( +): LC #3 = D +.75(L +S), M = 12340 lbs -ft Deflection: LC 03 = D +.75(L +S) EI= 1241e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL -BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3. Size factors vary from one manufacturer to another for SCL materials. They can be changed in the database editor. 4 - 6,13:'3.-- COMPANY PROJECT I %Vo \ /o r k s ® Juno 24, 201013:19 034 LCI SOFTWARE FOR WOOD DESIGN • Design Check Calculation Sheet 50907.1 LOADS Itw, p56w 4 Load Typ. Distribution na9n1tude Location )ft) Unite Start End Start End 1 462 Gad Partial UD 613.2 613.2 0.00 2.00 plf 2 362 Snow Partial U0 795.0 795.0 0.00 2.00 plf 3 Dead Partial U0 617.5 617.5 7.50 11.00 plf 4 429 Snow Partial UD 901.2 601.2 7.50 11.00 plf 5 Dead Point 1436 11.00 lbs 6_015 Snow Point 2404 11.00 lbs 916 Dead Point 1389 17.00 lbs 8 Snow Point 2404 17.00 lbs 9 Dead Partial UD 617.5 617.5 17.00 19.00 plf 15 464 Snow Partial UD 901.2 801.2 17.00 10.00 plf 11 Dead Point 622 7.00 lba 12 Snow Point 1192 7.00 lb. 19062 Dead Point 622 4.00 Dos 16c62 Snow Point 1192 4.00 lbs 15363 Dead Partial UD 613.2 613.2 2.00 4.00 plf 16363 Snow Partial UD 7 35.0 795.0 2.00 4.00 plf 17 Dead Partial U0 617.5 617.5 19.00 20.00 plf 18365 Snow Partial UD 901.2 901.2 19.00 20.00 plf 193 Dead Partial UD 613.2 613.2 7.00 7.50 plf 203 Snow partial U0 795.0 795.0 7.00 7.50 plf 21_)64 Dead Partial UD 47.7 47.7 17.00 15.00 plf 22_164 Live Partial U0 160.0 160.0 17.00 19.00 plf 23 _129 Doad Partial UD 47.7 47.7 4.50 7.50 plf 24 _129 Live Partial UD 160.0 160.0 4.50 7.50 plf 25_162 Dead Partial UD 47.7 47.7 7.50 11.00 plf 26,62 Liv" Partial UD 160.0 160.0 7.50 11.00 plf 2l JIB Dead Partial UD 120.2 120.2 0.00 2.00 plf 20_140 Live Partial UD 370.0 370.0 0.10 2.00 plf 29_132 Dyad Partial U0 120.2 120.2 3.30 4.00 plf 30_132 Live Partial 00 370.0 370.0 3.50 4.00 plf 31_133 Dead Partial U0 120.2 120.2 4.10 7.50 plf 32_733 Live Partial UD 370.0 370.0 4.00 7.50 plf 33_1 Dead Partial UO 120.2 120.2 7.70 9.00 plf 34_134 Live Partial UD 3 370.0 7.90 9.00 plf 35 _135 Dead Partial UD 120.2 120.2 9.00 11.00 pif 36_135 =1,3 Partial U0 370.0 370.0 8.00 11.00 plf 37_547 Dead Partial VD 120.2 120.2 11.00 17.00 plf 30_147 Live Partial UD 310.0 370.0 11.00 17.00 plf 39_16 Dead Partial U0 120.2 120.2 2.00 3.50 plf 00_167 =133 Partial U0 370.0 370.0 2.00 3.90 plf 41_247 Dyad Partial U0 120.2 120.2 4.00 4.50 plf 42_149 Live Partial UD 370.0 370.0 4.00 4.50 plf 43_163 Dead Partial UD 47.7 47.7 11.00 17.00 plf 44_J LSV0 Partial UD 160.0 160.0 11.00 17.00 pi( 45_165 0,4d Partlsl UD 47.7 4 16.00 20.00 plf 40_165 Live Partial U0 160.0 160.0 19.00 20.00 plf 47_166 Dead Partial 02 41.1 47.7 4.00 4.50 plf 48_166 Live Partial UD 160.0 160.0 4.00 4.50 plf 49_169 Dead Partial UD 120.2 120.2 11.00 19.00 plf 50_J96 Liv3 Partial UD 370.0 370.0 17.00 18.00 plf 51 169 Dead Partial 00 120.2 120.2 19.00 20.00 pif 52_169 Live Partial UD 370.0 370.0 19.01 20.00 plf 53_172 Dyad Partial UO 47.7 47.7 2.00 4.00 plf 54_171 Live Partial UD 160.0 160.0 2.00 4.00 plf 55_173 Dead Partial U0 47.7 47.7 0.0D 2.00 plf 56_173 Live Partial VD 160.0 160.0 0.00 2.00 plf 01 Mind Point 5950 0.03 164 42 Flinn Point -5950 4.01 lbs 63 Mind Point 5050 11.03 lbs 04 0104 Point -5850 17.00 703 05 I11nd Point 5950 _ 20.00 1b4 MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : ' Dead ' 17405' - 1327 Live 12150 12172 Total 19555 19499 6earing: Load Comb 44 94 1.eneth 5.97 5.95 Glulam -Bal., West Species, 24F -V8 DF, 5- 118x22 -1/2" Se0+valg64 of 2555 pa hc04ded In bads; Lateral npyolt top. foll, Lotion,. et segpods; Analysis vs. Allowable Stress (psi) and Deflection (In) using N0520050 Criterion Analysis V43us 004100 Value Ancl018 /Coyle, 51104r Iv a 192 FY' - 305 fv /FY' • 0.60 Bend1ng1 ft. ■ 2392 0»' • 2604 R /FD' . 0.92 Live Dell'n 0.40 ■ L/595 0.67 ■ L /360 0.60 petal Defl'n 0.84 - L/285 1.00 ■ L/240 0.94 ADDITIONAL DATA: • FAC2000: F/E CD C4 CL 0/ C1+ Cr Cfrt LC4 Pr' 265 1.15 1.00 1.00 1.00 1.00 1.00 3 26'e 2400 1.15 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - 3 . E 1.5 million 1.00 1.00 - 0010' 0.95 82111000 1.00 1.00 - Shear : LC 43 . 06.7510.491, 'r ■ 17361, V de4lgn - 13992 lbs Ban40n91.): Lc 83 ■ 06.751).401. N ■ 90199 lbs -ft Deflection: LC 43 ■ 16 EI. 9756006 lb-in2 Total Deflection ■ 1.50(Dead Load Defl0c :Eon) • Live Load 00110061,n. ID-doa4 L.00ve 0 -4004 N.41nd I■ir.pa0t onstruction CLC■aoncentrat00) (A11 :,C'a a o listed In the Analysis output) :Mad combinations: ICC -15C DESIGN NOTES: 1. Flow verily Mat Om dsfau3 deflscton Ws are appropriate for your app4692. 2. GAdorn des1p0 values ere for =MOM mdamSq to AITC 197.2001 9010 360014adurod 81 accordance v6Vl ANSVAITC A190.1.1197 3. GLULA61• hdd = 601+61 breadth 8 Wool depth. • 4. GM90n Beams shall be lter*Dy supported a¢a6ep to the proAsbns o! NDS Clams 3 3.3. 5. GLULAM: bearing 4901910 Dined on snorer of F0p(latabn). Fcp(m0pn). 4 - /-?2,?) COMPANY PROJECT I Wood Wo r k s® Ante 24, 2810 13:19 D34 LC2 SOFTWARE FOR WOOD DESIGN Design Check Calculation Sheet SDm7.1 LOADS 1 m,. pa. 0, On Load Type Distribution Magnitude Location Iftl Units Start End Start End 1 1+62 Dead Partial U0 613.2 613.2 0.00 2.00 plf f',62 Snow Partial U0 795.0 795.0 0.00 2.00 plf 3 929 Dead Partial UD 617.5 611.5 1.50 11.00 plf 4_929 Snow Partial UD 801.2 801.2 7.50 11.00 plf 5 715 Dead Point 1436 11.00 iba 6_715 Snow Point 2404 11.00 lb. 716 Dead Point 1399 1.0D lb, 8 716 Snow Point 2404 170.00 Ibs 9 964 Dead Partial UD 617.5 617.5 17.00 19.00 plf 10_1+61 Sncw Partial UO 901.2 801.2 11.00 19.00 plf 11_761 Dead Point 622 7.00 Ibs 12_461 Snow Point 3192 1.00 Ibs 5 13 Dead Point 622 4.00 Ibs 1S 262 Snow Point 1392 4.00 Ibs 15 176] Dead Partial UD 613.2 613.2 2.00 4.00 plf 1696] Snow Partial UD 195.0 795.0 2.00 4.00 p 17_,65 Dead Partial UD 617.5 617.5 18.00 20.00 elf 18 965 Snow Partial UD 801.2 801.2 19.00 20.00 plf 19_971 Dead Partial UD 613.2 613.2 7.00 7.50 plf 20 911 Snow Partial UD 1 95.0 795.0 7.00 7.50 plf :_264 Dead Partial UD 11.1 47.1 17.00 19.00 plf 22_164 Live Partial UD 160.0 160.0 17.00 18.00 plf 23_229 Dead Partial UD 11.1 47.7 4.50 7.50 plf 21_229 Partial Live 04:51.1 'JD 160.0 160.0 4.50 7.50 plf 25_362 Dead UD 47.1 47.1 7.50 11.00 plf . 25_362 Live Partial UD 160.0 160.0 7.50 11.00 plf 1 _Jie Dead Partial UD 120.2 120.2 0.00 2.00 plf 28_118 Live Partial UD 310.0 370.0 0.00 2.00 plf 29_132 read Partial UD 120.2 120.2 3.50 4.00 plf 30_532 Live Partial UD 370.0 310.0 3.50 4.00 plf 31_133 Dead Partial UD 120.2 320.2 4.50 1.50 plf 32_113 Live Partial U0 370.0 370.0 4.50 1.50 plf 3 234 Dead Partial UD 1'00.2 120.2 7.50 9.00 plf 34_134 Live Partial UD 310.0 170.0 7.50 9.00 plf 35_135 2ead Partial UD 1:0.2 120.2 9.00 11.00 plf 36_135 01(0 Partial UD 370.0 370.0 9.0D 11.00 plf • 35_147 Dead Partial UD 120.2 120.2 11.00 11.00 plf 39_147 Live Partial UD 370.0 370.0 11.00 10.00 plf 39_167 Dead Partial 00 120.2 120.2 2.00 3.50 plf 40_161 Live Partial U0 310.0 310.0 2.00 3.50 plf 41_149 Doad Partial U0 120.2 120.2 4.00 4.50 plf 42_149 Live Partial U0 310.0 310.0 4.00 4.50 plf 43_163 Dead Partial UD 41.7 47.7 11.00 17.00 711 44_163 Live Partial U0 167.0 160.0 11.00 11.00 plf 45_165 Dead 4r0141 UD 47.7 11.7 19.00 20.00 pl. 40_165 Live Partial U0 16050.0 160.0 17.00 20.00 plf 41 p 266 Dead Partial UD 47.7 11.7 4.00 4.50 pl.' 48_186 Live Partial U0 160.0 160.0 4.00 4.50 plf 49 165 Dead Partial U0 3 :0.2 120.2 11.00 19.00 plf 50 168 Live Partial VD 310.0 310.0 11.00 19.00 p11 51_169 Dead Partial u0 120.2 120.2 19.00 20.00 plf 52 _169 Live Partial U0 370.0 370.0 19.00 20.00 plf 53_072 Dead Partial UD 47.7 2.00 4.00 plf 54_272 Live Partial UD 160.0 160.0 2.00 4.00 p1 55_113 Deed Partial UD 47.7 11.7 0.00 :.00 plf 561/3 Live Partial UD 160.0 160.0 0.00 2.00 chi W2 Wind Point -5850 0.00 Its 1 N2 Wind Point 5850 4.00 iba 143 Wind Point -5850 11.00 iba 04 Mind Po1nt 5950 17.00 Its WS Wind Pelnt -5950 20.00 Ibs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : 11 e Dead - 5405 1 32 7 Live 9956 9978 Tctal 17361 17305 Searing: Lead Comb I] 13 Length 5.:1 5.19 • Glulam -BaI., West Species, 24F -V8 DF, 5- 118x22 -1/2" Self of 2845 p0 Included In bads: lateen suppvt by full, 600an at ramparts: Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 9005: Criterion Analysis Value Daeign Value Analysis /Deafen Shear 162 Fv' ■ 305 17 /FV' ■ 0.60 5endin514I Ib - 2390 Flo' ■ 2604 lb /FD' - 0.92 Live Den 0.41 ■ L /591 0.61. - L /360 0.61 Total Defl'n 0.94 . 0 /294 1.00 ■ L/240 0.54 ADDITIONAL DATA: FACTORS: 7/E CO 04 Ct CL CV Cfu Cr C1rc a . LC/ 0v' 265 1.15 1.00 1.00 1.00 1.03 1.00 00'' 2400 1.15 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - 3 F7p' 650 1.00 1.00 - - - - 1.00 - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 4 Evin' 0.55 million 1.00 1.00 - - - - 1.00 - - 4 Shear : LC 63 - 0..151E+51. V - 17361, V dealgn ■ 13982 Dos 14o31og144: LC 53 - 04.1510 M ■ 86189 Its -ft Deflection: LC i4 - 04.151E+54W1 EI- 5756,06 lb -1n2 Total Deflection - 1.50(Dead Load Deflection) 4 Live Load Oeflection. (0■d0ad L■21ve S ■ancw W.wind 1- 1ryact C■conatructicn 003- c2n7entratedl (All EC's are listed in the Analysis output) Load 7orblnaticno, ICC -188C DESIGN NOTES: I. Please verify 1Dat the default deflection IiMS are approprlate for Nur application. 2. G6dam design value me fa materials conlonrang to ARC 117-2001 and manufactured in accordance MR ANSUAITC A190.1 -1992 3. GLULAM: tad • actual beadle 5 adult depth. 4. G6dam Beans shall be Wendy suppoded 46.600e to the mansions of ND5 Clause 3.3.3. 5. GLULAM bearing length Deed on make of Wellston). Fcp(canpn). /41 6 ; 2 7 9 COMPANY PROJECT Wood June 24, 2010 1120 D]6 LC2 SOFTWARE FOR WOOD DESIGN Design Check Calculation Sheet SANTA LOADS (lba.pa, >pI) : Load Type Distribution Magnitude Location (ft] Unita Start End Start End 1_4462 Dead Partial u0 613.2 613.2 0.00 2.00 plf 2 162 Snow Partial UD 195.0 795.0 0.00 2.00 plf 3_4429 Dead Partial UD 611.5 611.5 7.50 11.00 pit 4429 Snow Partial UD 901.2 001.2 7.50 11.00 plf 5 Dead Point 1435 11.00 lba 6_c15 Snow Point 2404 11.00 lbe 7 c16 pad Point 1369 11.00 11. 8 Snow Point 2404 11.00 Iba 9 Dead Partial UD 611.5 611.5 11.00 19.00 plf 10 464 Snow Partial UD 901.2 001.2 11.00 19.00 plf 11 Dead Point 622 7.00 lbs 12 Snow Point 1192 7.00 lbs 1] 162 Dead Point 622 4.00 Its 14 c62 Snow Point 1192 4.00 lba 15 Dead Partial U0 613.2 613.2 2.00 1.00 plf 16 Snow Partial U0 795.0 795.0 2.00 4.00 plf 17 Dead Partial 0D 617.5 617.5 10.00 20.00 plf 10 Stow Partial 0D 801.2 901.2 10.00 20.00 plf 19 411 Dead Partial UD 613.2 613.2 7.00 1.50 plf 20 411 Snow Partial UO 795.0 795.0 7.00 7.50 plf 21_164 0443 Partial UD 47.7 47.7 17.00 10.00 plf 22_164 Lfve Partial UD 160.0 160.0 17.00 10.00 plf 23_129 Dead Partial UD 47.7 41.7 4.50 1.50 pit 24 _129 Live Partial V0 160.0 160.0 4.50 7.50 p1f 25_162 Dead Partial UD 47.7 47.7 7.50 11.00 plf 26 _162 Live Partial UD 160.0 160.0 7.50 11.00 p10 fl _/40 Deed Partial 00 120.2 120.2 0.70 2.00 plf 29_149 Live Partial UD 370.0 370.0 0.00 2.00 plf 29_732 Dead Partial UD 120.2 120.2 3.50 4.00 plf 30_732 11' /e Partial UD 370.0 370.0 3.50 1.00 plf 31 333 Dead Partial UD 120.2 120.2 4.50 7.50 plf 32_733 Live Partial UO 370.0 370.0 4.50 7.50 pit 33_734 Dead Partial UD 120.2 120.2 7.50 6.00 plf 34_734 Live Partial UD 370.0 370.0 7.50 0.00 plf 35 _135 Dead Partial UD 120.2 120.2 9.00 11.00 plf 36_135 Live Partial UD 370.0 370.0 9.00 11.00 plf 37 747 Dead Partial UD 120.2 120.2 11.00 17.00 plf 39_747 Live Partial UD 370.0 370.0 11.00 17.00 plf 39_167 Dead Partial V0 120.2 1:0.2 2.00 3.50 plf 40_167 Live Partial UD 370.0 310.0 2.00 3.50 plf 41_719 Dead Partial UD 120.2 120.2 4.00 4.50 plf 42 _149 Live Partial UD 370.0 370.0 4.00 4.50 plf 43_163 Dead Partial UD 47.1 47.7 11.00 1 plf 41763 Live Partial VD 160.0 160.0 11.00 17.00 plf 45_165 Doad Partial ID 47.7 41.7 15.00 20.00 pit 46_165 =170 Partial 00 160.0 160.0 19.00 20.00 plf 47_166 Dead Partial UD 47.7 47.7 4.00 4.50 pit 40_766 Live Partial UD 160.0 160.0 4.00 4.50 plf 49_169 Dead Partial UD 120.2 120.2 17.00 19.00 plf 50_160 Live Partial UD 370.0 3 17.00 10.00 plf 51 169 Dead Partial UD 120.2 120.2 19.00 20.00 plf 52_769 Live Partial UD 370.0 370.0 19.00 20.00 plf 53_172 Doad Partial UD 47.7 17.7 2.00 4.00 pit 51172 =109 Partial 00 160.0 160.0 2.00 4.00 plf 55_173 Dead Partial UD 47.7 47.7 0.00 2.00 plf 56 713 Live Partial UD 160.0 160.0 0.00 2.00 plf M1 Mind Point -5050 0.00 106 M2 Wind Point 5950 4.00 lba M3 Wind Point -5050 11.00 lba 64 61nd Point 5950 17.00 lba 145 Wind Point -5850 20.00 104 • MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (In) : • • DeadS 1327 Live 9956 9919 S 1 11305 Bearing: nC: Lend Comb 23 f3 Length 5.21 5.19 Glulam -Bal., West Species, 24F -V8 DF, 5- 118x22 -112' Se6.welg54 of 2655 941 Included In bads; Lateral support top ND, bottom. at suppub; Analysis vs. Allowable Stress (psi) and Deflection (in) o,D,g /839 mon, - CriterlOn Mal' /sic Value Design Value AnalVals /Design sheer fv . 102 Fv' 4 305 fv /Fv' . 0.60 9ending1 ib ■ 2392 6b' . 2604 fb /Fb' . 0.92 Live Defl'n 0.41 . L/591 0.67 . 0/360 0.61 Total Defl'n 0.04 ■ L/294 _ 1.00 . L/240 0.91 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL 02 Cfu Cr Cfrt notes cn LC4 07' 265 1.15 1.00 1.00 1.00 1.00 1.00 3 10'• 2400 1.15 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - 3 Fop' 650 1.00 1.00 - - - - 1.00 - - E' 1.8 n1111on 1.00 1.00 - - - - 1.00 - - Coln' 0.05 01111on 1.00 1.00 - - - - 1.00 - - 4 Shear : LC 43 . 0l.15ILIS1, V . 17361, V 4eelgn . 15902 lba 9.nding143: LC 13 ■ D M ■ 66199 lba -ft Deflection: LC 74 . 01.751L EI. 5756006 lb -1n2 Total Deflection . 1.50(Dead Wad Deflection) 7 Live Load Deflection. I0■deed L■live S.anow M.41r.d I.1mpac5 C.00145ruction CLd.c0npeltrated) (111 LC'4 are listed In the AnalyaOa output) Wad combination,: ICC -100 DESIGN NOTES: 1. Plena verity Mat Me defaun dellac0on Omits are appropriate/ Mr your app4ea0on 2. 044899 design Values an fa materials =doming to AITC 117 -2001 and mtnufac0atl In macadam* w0h ANSBAITC 4190 1-1992 3. GLULAM: 8114. actual beats 8 Waal depth. 4. GM= Beare shall be 6erany suppwte4 according b Um pra9sbu o/ N05 Clan 3.3.3. 5. GLUTAM: Waring Ieng0 baud an er„s0a of Fcp(tmslen). Fcp(u499/9) 141I Coq° COMPANY PROJECT i WoodWorks® SOFIWAREFOR WOOD DESIGN June 24, 2010 13:23 b34 LC1 NO LL Design Check Calculation Sheet Sizer7.1 LOADS (Ibs, psf, or pif ) Load Type Distribution Magnitude Location (ft) Units Start End Start End 1 w62 Dead Partial UD 613.2 613.2 0.00 2.00 plf 3 w29 Dead Partial UD 617.5 617.5 7.50 11.00 plf 5 c15 Dead Point 1436 11.00 lbs 7 c16 Dead Point 1389 17.00 lbs 9 Dead Partial UD 617.5 617.5 17.00 18.00 plf 11 c61 Dead Point 622 7.00 lbs 13 Dead Point 622 4.00 lbs 15 w63 Dead Partial UD 613.2 613.2 2.00 4.00 plf 17 w65 Dead Partial UD 617.5 617.5 18.00 20.00 plf 19 Dead Partial UD 613.2 613.2 7.00 7.50 plf 2064 Dead Partial UD 47.7 47.7 17.00 18.00 plf 23 j28 Dead Partial UD 47.7 47.7 4.50 7.50 plf 25 Dead Partial UD 47.7 47.7 7.50 11.00 plf 27 Dead Partial UD 120.2 120.2 0.00 2.00 plf 29 Dead Partial UD 120.2 120.2 3.50 4.00 plf 31 Dead Partial UD 120.2 120.2 4.50 7.50 plf 33 Dead Partial UD 120.2 120.2 7.50 8.00 plf 35 j35 Dead Partial UD 120.2 120.2 8.00 11.00 plf 39 Dead Partial UD 120.2 120.2 2.00 3.50 plf 41 j49 Dead Partial UD 120.2 120.2 4.00 4.50 plf 43_j63 Dead Partial UD 47.7 47.7 11.00 17.00 plf 45 j65 Dead Partial UD 47.7 47.7 18.00 20.00 plf 47 Dead Partial UD 47.7 47.7 4.00 4.50 plf 49'368 Dead Partial UD 120.2 120.2 17.00 18.00 plf 51_169 Dead Partial UD 120.2 120.2 18.00 20.00 plf 53_j72 Dead Partial UD 47.7 47.7 2.00 4.00 plf 55 j73 Dead Partial UD 47.7 47.7 0.00 2.00 plf W1 Wind Point 5850 0.00 • lbs W2 Wind Point -5850 4.00 lbs W3 Wind Point 5850 11.00 lbs W4 Wind Point -5850 17.00 lbs W5 Wind Point 5850 20.00 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : I . 2 Dead 7189 6822 Live 156 302 Total 7238 7018 Bearing: Load Comb 82 02 Length 2.17 2.11 Glulam -Bal., West Species, 24F -V8 DF, 5- 1/8x22 -1/2" Self- weight of 26.55 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 74 Fv' = 238 fv /Fv' = 0.31 Bending( +) fb = 950 Fb' = 2038 fb /Fb' = 0.47 Live Defl'n negligible Total Defl'n 0.41 = L /585 1.00 = 1,1240 0.41 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LCO Fv' 265 0.90 1.00 1.00 - - - - 1.00 1.00 1.00 1 Fb'+ 2400 0.90 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - 1 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 1 • Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 1 Shear : LC 01 = D only, V = 7189, V design = 5674 lbs . Bending( +): LC 01 = D only, M = 34217 lbs -ft Deflection: LC 01 = D only EI= 8756e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). 4 -GIL( I COMPANY PROJECT I WoodWorks° SOFTWARE FOR WOOD DESIGN June 24, 201013:22 b34 LC2 NO LL Design Check Calculation Sheet Sizer 7.1 LOADS (lbs, psf, or plf ) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w62 Dead Partial UD 613.2 613.2 0.00 2.00 plf 3_w29 Dead Partial UD 617.5 617.5 7.50 11.00 plf 5 c15 Dead Point 1436 11.00 lbs 7 c16 Dead Point 1389 17.00 lbs 9 w64 Dead Partial UD 617.5 617.5 17.00 18.00 plf 11 c61 Dead Point 622 7.00 lbs 13_c62 Dead Point 622 4.00 lbs 15 w63 Dead Partial UD 613.2 613.2 2.00 4.00 plf 17 Dead Partial UD 617.5 617.5 18.00 20.00 plf 19 Dead Partial UD 613.2 613.2 7.00 7.50 plf 21 j64 Dead Partial UD 47.7 47.7 17.00 18.00 plf 23 j28 Dead Partial UD 47.7 47.7 4.50 7.50 plf 25 j62 Dead Partial UD 47.7 47.7 7.50 11.00 plf 27 Dead Partial UD 120.2 120.2 0.00 2.00 plf 29 j32 Dead Partial UD 120.2 120.2 3.50 4.00 plf 31_j33 Dead Partial UD 120.2 120.2 4.50 7.50 plf 33_j34 Dead Partial UD 120.2 120.2 7.50 8.00 plf 35 j35 Dead Partial UD 120.2 120.2 8.00 11.00 plf 39 j67 Dead Partial UD 120.2 120.2 2.00 3.50 plf 41 j49 Dead Partial UD 120.2 120.2 4.00 4.50 plf 43_363 Dead Partial UD 47.7 47.7 11.00 17.00 plf 45_365 Dead Partial UD 47.7 47.7 18.00 20.00 plf 47_366 Dead Partial UD 47.7 47.7 4.00 4.50 plf 49_368 Dead Partial UD 120.2 120.2 17.00 18.00 plf 51 Dead Partial UD 120.2 120.2 18.00 20.00 plf 53_j72 Dead Partial UD 47.7 47.7 2.00 4.00 plf 55_373 Dead Partial UD 47.7 47.7 0.00 2.00 plf . W1 Wind Point -5850 0.00 lbs W2 Wind Point 5850 4.00 lbs W3 Wind Point -5850 11.00 lbs W4 Wind Point 5850 17.00 lbs W5 Wind Point -5850 20.00 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : • I 20 A, Dead 7189 6822 Live Total 7189 6822 Bearing: Load Comb 01 • 81 Length 2.16 2.05 Glulam-Bal., West Species, 24F -V8 DF, 5- 118x22 -1/2" Self- weight of 26.55 plf included in loads; Lateral support: top = full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis /Design Shear fv = 74 Fv' = 238 fv /Fv' = 0.31 Bending( +) fb = 950 Fb' = 2038 fb /Fb' = 0.47 Live Defl'n negligible Total Defl'n 0.41 = L /585 1.00 = L/240 0.41 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 0.90 1.00 1.00 - - - - 1.00 1.00 1.00 1 Fb'+ 2400 0.90 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - 1 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 1 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 1 Shear : LC 01 = D only, V = 7189, V design = 5674 lbs Bending( +): LC 01 = D only, M = 34217 lbs -ft Deflection: LC 01 = D only EI= 8756e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D =dead L =live S =snow W =wind I= impact C= construction CLd= concentrated) (All LC's are listed in the Analysis output) . Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117 -2001 and manufactured in accordance with ANSI /AITC A190.1 -1992 3. GLULAM: bxd = actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). 4 - (1 2- Harper Project: Houf Peterson Client: Job # Righellis Inc. ENGINEERS • PLnNNERS Designer: Date: Pg. # LAN°SCAPE ARCM (EC'rS•SURVEYORS W dl := 10• lb •8•ft•20•ft W = 1600-lb c� �Sigr\ ft 2 Seismic Forces Site Class =D Design Catagory =D Wp := Wdl I .— 1.0 Component Importance Factor (Sect 13.1.3, ASCE 7 -05) S 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. S -= 0.942 Max EQ, 5% damped, spectral responce acceleration at short period • z := 9 Height of Component h := 32 Mean Height Of Roof F : = 1.123 Acc -based site coefficient @ .3 s- period (Table 1613.5.3(1), 2006 IBC) F := 1.722 Vel -based site coefficient @ 1 s- period (Table 1613.5.3(2), 2006 IBC) S := F S =F 2•S Sds 3 Max EQ, 5% damped, spectral responce acceleration at short period Exterior Elements & Body Of Connections a := 1.0 RP := 2.5 (Table 13.5 -1, ASCE 7 -05) • p 4a •Sds' F P •1 + 2 h Wp EQU. 13.3 -1 R P Fpmax 1.6•S EQU. 13.3 -2 F pmin .3 • S ds .l p• W p EQU. 13.3 -3 N F L := if(F > Fpmax,Fpmax,if(Fp < Fpmin,FpmimFp)) F = 338.5171•lb Miniumum Vertical Force 0.2 • S ds• W dl = 225.6781 -lb . Harper Project: • Houf Peterson Client: Job # Righellis Inc. Designer: Date: PLANNERS Date: Pg. # LANDSCAPE ARCNITECLS•SURVEVORS Wdl 10 lb 8 ft 20 ft Wdl = 1600-lb ft 2 Seismic Forces Site Class =D Design Catagory =D Wp • W dl - 1.0 Component Importance Factor (Sect 13.1.3, ASCE 7 -05) S1 • = 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. S • = 0.942. Max EQ, 5% damped, spectral responce acceleration at short period z := 9 Height of Component h 32 Mean Height Of Roof F •= Acc -based site coefficient @ .3 s- period (Table 1613.5.3(1), 2006 IBC) • F := 1.722 Vel -based site coefficient @ 1 s- period (Table 1613.5.3(2), 2006 IBC) S := F S := F S1 2-S ms S Max EQ, 5% damped, spectral responce acceleration at short period 3 Exterior Elements & Body Of Connections a := 1.0 R := 2.5 (Table 13.5 -1, ASCE 7 - 05) 4a -S ds' r z F P := p ' Rp •I 1 + 2 h Wp EQU. 13.3 -1 Fp := 1.6•S EQU. 13.3 -2 F pmin := • S ds .I p' Wp EQU. 13.3 -3 F if(F > F pmax , Fpmax, if(F < F pmin , Fpmin, Fp)) F = 338.5171.1b Miniumum Vertical Force 0.2•S = 225.6781•Ib C H H 0 tiarper HP Houf Peterson COMMUNICATION RECORD Righellis Inc. To 0 FROM 0 MEMO To FILE 0 lzi,IINEE,TI, 4 4.1..,1t,:liS 1,1USCAr ArlCtliTFCrS.oUl – -- ----- -- • — - --• - -• •• ----- - • PHONE NO.: PHONE CALL: E MEETING: fl M 11 m M . Co - 5 2 9..... i E, . 3' . C Q 11 vs -41 c 1 lb 0 -..- -o 04) . .0 -5- 6 ,....0 4 3 — SI ? q di g ,7 1 . 1 1., er- ...,/ . 0 - -- -1 eA -0 0 •••.- ..D ....1 . (11 1$' 4 1 . •1"1 6 C N % .9 0 --.C. '''./"•* 4*A -.. 1 .....0 ''.. -4.....A - . 0 'N N. i . 0 CD 5* NS 1 Z e IS r rr N. c--- (-) ...... , 0 BY: k (�( DATE: JOB NO.: PROJECT: , . RE: I ) '' '(..- PO C Pi?‘C \ ..09 [ 2, 0 El . J , • .., 0 L , z 0 E 0 NRkt... e R-PAc. t 1 (IL,,a C(NrywasiN , I' o i ( 0A3)(gaitirViti i) 1 l tt irai I , . , I 0 , w 0 = • . 0 . o z • _ a 1 4 W 0 re a. ri Z 9 9 , LAPRC. it • 1 b %;s1 Pc o M = '4'1 pLg • . .______A \--a\ST5 iC . spacitA) \oc-4),Jee Ico,c. D LI g Cappciskjz..° (01 n 6 '12 i f . Lk.) Pit - roa‘ .= tG pLiF- __ _ : ____ T , • —Ter 1 1 n . . 1 • \) ---- Vo,cts ctrz. Sl so5 x i f O • ci eu 1-1 - • e t 2 11 40 1'7; , , , .. la 1 r C t '. -1.3 ., 3o 4 ( Sof\pscrr\ 3r x412! e_ 12" 0,c . 4-61(4G 4..,h - 67f E3 At b • „,„ oohs °►wee rV i poog < I _ ooi ,�ov 4t cxo1� � ) W Z p .. O 1 � n „511 3 - 15,saa 0 b. rich voSdw►►S - asp Z r 1 . , 2 . 6 4400he N14t 00) D=1 Z 0 IN o�},� = m O )4 o °C - W r A* 3 r i l m ❑ ❑ :173 road • - - " BOr 31 Vp i P d 'A9 F.���VVVAAA"' Harper COMMUNICATION RECORD '& I". Houf Peterson Righellis Inc. To 0 FROM 0 MEMO TO FILE D EliGiNCER 1 • - L ANCs,APE ARC,OTECT•SURVC,Dt, PHONE NO • PHONE CALL: 0 MEETING: 0 _______ .......... ___ ....... ......_ ......... ............_..... xi -13 ED m tt x I I m (Th 0 I: .._, it ul 01 I 1 37 [ 9-) d r_ ....c ....._-0 8 gill' 0 0 .---\ — n 0• d . 01 2 6 W. ...As cn . ui l it. I .,q!\ • 1 cs . . 1 . — , l io ,. .... • • narper COMMUNICATION RECORD Houf Peterson Righellis Inc. To 0 FROM 0 . MEMO TO FILE 0 .PLAN,ER, LA .0," PE 4RCHITECTS• Sll , V=YOR.. .--- PHONE NO.: PHONE CALL: 0 MEETING: 0 i. :1 1 -0 T P 'A 3 - Th -ci 0 ...„ "\ aill ....1" P.' ‘.... - ......* ''. (C. - s. 7t.'\ V ci o c. 6 ir. 1,... k./ C i c;\ ) EN r r -c-, v. ..... .. C . ili 1......; i .....D v C. r‘ I • ; 1 I 1 • r • i L 0 co 10 Z 0 0 CP, , e :..)- • • COMPANY PROJECT 1:11 00 WOr S SOFTWARE FOR WOOD DESIGN June 8, 2009 16:27 Hand Rail Design Check Calculation Sheet • Sizer 8.0 LOADS: Load Type Distribution Pat- Location [ft] Magnitude Unit tern Start End Start End I LIVE Live Point 2.50 200 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : 1:1-,z;-,,,:-.L::::::.: ,,- ;: i-Ai :: - :: ° m:s7a 1,7 ' . ::%"t*zr: - '''"'•='-', - :' . :' - '5!:'''',:-'!'-',.1:''''Y''; :"'=', '''-'_':.,,:,:.:":•': : '::: 7. : .1' -.::':-...* -.7 la 5 Dead Live 100 100 Total 104 104 Bearing: Load Comb #2 #2 Length 0.50* 0.50* Cb 1.00 1.00 *Min. bearing length for beams is 1/2" for exterior supports Lumber-soft, Hem-Fir, No.2, 2x6" Self-weight of 1.7 plf Included in loads; Lateral support: top= at supports, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (In) using NDS 2005 : Criterion Analysis Value Design Value Analysis/Design Shear fv . 19 Fv' = 150 fv/Fv' = 0.13 Bending(+) ft = 405 Fb' = 1048 fb/Fb' = 0.39 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.20 Total Defl'n 0.03 = <L/999 _ 0.25 = L/240 0.14 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 150 1.00 1.00 1.00 z - - 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 0.949 1.300 '1.00 1.00 1.00 1.00 - 2 Fcp' 405 - 1.00 1.00 - - - 1.00 1.00 - - E' 1.3 million 1.00 1.00 - - - 1.00 1.00 - 2 Emin' 0.47 million 1.00 1.00 - - - 1.00 1.00 - 2 Shear : LC #2 = L, V = 104, V design .., 103 lbs Bending(+): LC #2 = L, M = 255 lbs-ft Deflection: LC #2 = L El = 27e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction Lc=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. ( COMPANY PROJECT I. 000 ' Woodwork I ,. NMWAMETCW1MODOESIGN June 8, 2009 16:27 Hand Ral12 Design Check Calculation Sheet Sizer 8.0 LOADS: Load Type Distribution Pat- Location [ft] Magnitude Unit tern Start End Start End ,LIVE Live Full UDL 50.0 Alf MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : ---r.y:,:, -1<-:3"-.: ...: !..,1.ilt ,- .4, - : ,. 7 - - , :.- - .7 , ":• - 4 - ' ' - :' - :•" 4 , , - 1t:' , - -: .- i' • r: =" 4- 't.--:-. - - ,,, e- , •-•: , :i- , -. 4 .--: - 4 ; , T " •:'"'••"' ''; 's•• ''•- = ';','`'-':, - • ••'••••.=• '::-. • • •-'' -- r.....:,:■ •! ",";:: ' ::,:.'•'; ,:'• ' ' ',.;= ' 7.;g::', :7.77.1' , .; : • ..:r,,- .:: :'-' .;;;" • .•.' ' ' ;i1-:' ':'-'' .":• - .•F'... - ;-: :• . .•••' , : , ..,‘'. ' ,::,.-:.,:-....:.; • . :: •'. 1 " ' - '''' ' . • '.' -::,•.''' ' :"::" .:::!.....0:::.: '':: ••• : .. -..':: ,F ,§.• ::: . ''''.7,..:::: . ' : .. "•::.:' r ,.: ' :..-- 1 1:''' :`: -..!' ' '.`" . -:_,' ' ' ": , • : .1 - '.'. • : ' • ;:' ' ' • I ' 10' 54 Dead Live 125 125 Total 129 129 Bearing: Load Comb #2 #2 Length 0.50* 0.50* Cb 1.00 1.00 "Min. bearing length for beams is 1/2" for exterior supports Lumber-soft; Hem-Fir, No.2, 2x6" Self-weight of 1.7 plf included in loads; Lateral support: top= at supports, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005 : Criterion Analysis Value Design Value Analysis/Design Shear fv = 19 Fv' = 150 fv/Fv' = 0.13 Bending(+) fb = 256 Pb' = 1048 fb/Fb' = 0.24 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.16 Total Defl'n 0.03 = <L/999 0.25 = L/240 0.11 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 150 1.00 1.00 1.00 - - 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 0.949 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 405 1.00 1.00 - - 1.00 1.00 - - E' 1.3 million 1.00 1.00 - - 1.00 1.00 - 2 Emin' 0.47 million 1.00 1.00 - - 1.00 1.00 - 2 Shear : LC #2 = L, V = 129, V design = 106 lbs Bending(+): LC #2 = L, M = 162 lbs-ft Deflection: LC #2 = L EI = 27e06 lb -in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction Lc=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 4 ..... (....' 1 WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A - Front Load WoodWorks® Sizer 7.1 June 22, 2010 13:57:56 Concept Mode: Reactions Base of Structure View Floor 2: 8' 1050 49 -6 u 1600 L " 600 L 4� -a .. uib 619 D 619 D 4a' b IUU . - - i : '- 44'-b `J'9 _ _. .. _ ._.. _ 4S-b y es :..' 42 -b 41 -13 yo • . - 119312153 24041::__2404 L : : :._ :.... .. .:.. .: . ' ,S& -0 4 . ' . 6 25 D1059 11439 D' 1394 D - 30 3. g - - if b WI ' 3b : as 315 L: . . sJ-0 +sr 3580 s1 -b 00 .. .. . Ly -b 03 : : : 315 L' Lb -0 ur : 358 D _ Lb -b u 1 100E ' \ zy . - . 74 - - 9 6 D 24 n / y 2,S-0 /0 ! / 74(8 5611 L 756 L. L1 -a i - 4111(452 D `5546 D 25 L� D .: i n . /4 _ ' 625 - - - - .. . . _ 16 -0 it 203D . 5pL lb b n y -. 908 - b .: .1051307 ._ V . ; . - - - .. 14' b 13 O / 46 D " II_e -245 L j., a b t ' i s 1:74P 0( 599 �• 87 L - -_ 87 L - : . 4 -0 2 09 LDS D 1963 D ... 1963 D . _' ? = - 3 -b 154 D . : : . ^r: uDL 11 2363 D. - ____:__: •- --- c_0 E" - --1 -: � :781:6 D 106 D: .. u -0 8B1B.B B C CC C}CCC CC CCCCC C CC CCiCC CDDDD D DD D}CDD:CD DD•DDD D DD CDDD DEE E E E EEE}EEEEEIE EIEEEEE €}EEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58'60' 62' 64' 66' 68' 70' 72' 74' 76' 0'1'2'3'4'5'6'7'8'91(1 '1:1 :1 2(2 22:2 313;4(4 4A :4.4',4(4' 414!5(5 :5 :5 :6 7.7:7 -6" VOOTN \ is O UT' —7W NIT W . 4...._FI - Wood Works® Sizer • SOFTWARE FOR WOOD DESIGN Unit A - Rear Load WoodWorks® Sizer 7.1 June 22, 2010 13:57:37 Concept Mode: Reactions at Base of Structure View Floor 2: 8' 49'-T US 1600 L . : 1600 L . : _:... : 4/ u b tuii, 619D : 619D 4o - - UU - - - .. - - - - - - 44 -b J9 . . ` ' ,i _ 46-0 ' : _ _ - - - - - - ' - 44 - 0 a 13274 L : , - • . 3304 L• _ . : : ' 4 sa b 4 . D "' ..- • _ : , - . 7072 D : i : - - - - - - - - 3ts-b 2:5 315E 3 3 -b sb.. : • 358 D: ; . L b 03 . . ... : Ly. - 6,5 3151...: - . : u - . b 2 u i 100E 358D : Lb 61/- 96 D'-• z,.1.-1.3 iv : id- 74(84 611 L _.. ' r56 L Lu - - b. /0 = 41452 D 5546 _ _ - DS L) D I J -b J4 . :;- :625 . - IU -b il_ 203D : 5DL ib - - bb r. i 5D - I3 -0 _ _ . _ 14 -0 o 105 L 908 L i z - a I1 - .. 307 D b 46 D - .. b r n : -245 L . . -u -b . , � 50L .. is -b bG., I 3 D 74 D f b.. b I� -- , - 587 . ... : .. a -b b L 4�2587 L 4 . � 587 L v -b .0 ' 599 D8 D ..�_._ ._2 L 1963 D . .: __. E. 1963 D _ , 3 -b •-- . : -_ 725 1-2219 D - : : : ' r - I -b • - :78 D7 DD 6170'D. u -b BB1B.BBC.CCCCCCC tCCC CC CCCC C C CC CC \CC CDDD D D DD DIDDD DD DD DD D D DD CD'DD DE E E E EiEEEtEEEIEE.IE EEEEEEEIEEEEZ 0' 2' 4' 6' 8' 10' 12' 14' 16' 18' 20' 22' 24' 26' 28' 30' 32' 34' 36' 38' 40' 42' 44' 46' 48' 50' 52' 54' 56' 58' 60' 62' 64' 666' 68' 70' 72' 74' 76' 0'1'2'3'4'5'67'8'91(1 '1 :1 :1 222 213 (3332 :3 :3(3W44 :4(4(5(5 5:5 :5 B:6:6 777 • V O( \) (OUT' /41_ Te2_ : ��. rrilieentiev H arper Houf Peterson Righellis Inc. C Date: 6/24/2010 1:41 PM I system: English Film name: O:UiHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations \F1.ftd\ Design Results Reinforced Concrete Footings GENERAL INFORMATION: Global status Warnings Design Code ACI 318 -05 Footing type Spread Column type Steel Geometry 4 z47 °^', j12 in • I + 4.25 ft ~ I x(7"� ' 0 74 411 - 1 4.25 ft 4.25 ft L, . s. Pagel Length 4.25 [ft] Width 4.25 [ft] Thickness 1.00 [ft] Base depth 1.50 [ft] Base area 18.06 [ft2] Footing volume 18.06 [ft3] • Base plate length 5.50 [in] Base plate width 5.50 [in] Column length 5.50 [in] Column width 5.50 [in] Column location relative to footing g.c. Centered Materials Concrete, Pc 3.00 [Kip /in2] Steel, fy 60.00 [Kip /in2] Concrete type Normal Epoxy coated No Concrete elasticity modulus : 3122.02 [Kip /in2] Steel elasticity modulus : 29000.00 [Kip /in2] Unit weight 0.15 [Kip /ft3] Soil Modulus of subgrade reaction 200.00 [Kip /ft3] Unit weight (wet) 0.11 [Kip /ft3] Footing reinforcement Free cover : 3.00 [in] Maximum Rho /Rho balanced ratio 0.75 Bottom reinforcement // to L (xx) : 644 @ 9.00" Bottom reinforcement // to B (zz) . 644 @ 9.00" (Zone 1) Load conditions to be included in design Service loads: SC1 DL S1 DL S2 DL +LL • S3 DL +0.75LL Design strength loads: DC1 1.4DL D1 1.4DL D2 1.2DL +1.6LL Loads Condition Axial Mxx Mzz Vx Vz [Kip] [Kip *ft] [Kip *ft] [Kip] [Kip] DL 5.55 0.00 0.00 0.00 0.00 LL 15.61 0.00 0.00 0.00 0.00 RESULTS: Status Warnings • - Insufficient development length, Section 21.5.4.1 Soil.Foundation interaction Allowable stress 1.5E03 [Lb /ft2] Min. safety factor for sliding : 1.25 • Min. safety factor for overturning 1.25 Page2 Controlling condition S2 Condition qmean qmax Amax Area in compression Overturning FS [Lb /ft2] [Lb /ft2] [in] [ft2] ( %) FSx FSz slip S2 1.38E03 1.38E03 0.0826 18.06 100 1000.00 1000.00 1000.00 Bending Factor 4) 0.90 Min rebar ratio 0.00180 Development length Axis Pos. Id Ihd Dist1 Dist2 . [in] [in] [in] [in] • zz Bot. 20.11 7.04 19.75 19.75 xx Bot. 20.11 7.04 19.75 19.75 Axis Pos. Condition Mu 4)*Mn Asreq Asprov Asreq/Asprov Mu/(4)*Mn) [Kip *ft] [Kip *ft] [in2] [in2] zz Top DC1 0.00 0.00 0.00 0.00 0.000 0.000 1 1 zz Bot. D2 13.38 45.76 1.10 1.20 0.918 0.292 V ,7,1 I xx Top DC1 0.00 0.00 0.00 0.00 0.000 0.000 I ' 1 xx Bot. D2 13.38 43.06 1.10 1.20 0.918 0.311 I -1 Shear . Factor 4) 0.75 Shear area (plane zz) 3.10 [ft2] Shear area (plane )ox) 2.92 [ft2] Plane Condition Vu Vc Vu/(4)*Vn) [Kip] [Kip] xy D2 8.99 46.09 0.260 I`1 i yz D2 8.68 48.88 0.237 fr 4 Punching shear Perimeter of critical section (b... : 4.67 [ft] Punching shear area 3.31 [ft2] Column Condition Vu Vc Vu /(4)*Vn) [Kip] [Kip] column 1 D2 29.25 104.29 0.374 I-aW'i I Notes Page c * Soil under the footing is considered elastic and homogeneous. A linear soil pressure variation is assumed. * The required flexural reinforcement considers at least the minimum reinforcement * —' I design bending moment is calculated at the critical sections located at the support faces * Only rectangular footings with uniform sections and rectangular columns are considered. * The nominal shear strength is calculated in critical sections located at a distance d from the support face * The punching shear strength is calculated in a perimetral section located at a distance d/2 from the support faces * Transverse reinforcement is not considered in footings * Values shown in red are not in compliance with a provision of the code *gprom = Mean compression pressure on soil. *gmax = Maximum compression pressure on soil. *Amax = maximum total settlement (considering an elastic soil modeled by the subgrade reaction modulus). * Mn = Nominal moment strength. * Mu /(4 *Mn) = Strength ratio. * Vn = Nominal shear or punchure force (for footings Vn =Vc). * Vu /(4)*Vn) = Shear or punching shear strength ratio. • Page4 Beam Shear bcol 5.5•in (4x4 post) d := tf — 2-in • := 0.85 b := Width b = 36•in V„ :_ 4 4 • f V = 16.32.kips 3 (b — bco1 V„ := q,; I 2 •b V„ = 7.83.kips < V = 16.32-kips GOOD Two -Way Shear bg := 5.5-in Short side column width bL := 5.5-in Long side column width b := 2 -(bg + d) + 2.(bL + d) b = 54 -in (3 =1.0 V + 8 f psi•b•d V = 48.96-kips (3 3•R V := 2.66 f psi b d V„ = 32.56 -kips ,:= q [b — (bc0, + d) V„ = 15.88•kips < V„, = 32.56.kips GOOD Flexure 2 Mu qu ' rb - bc (1) = 4.98•ft•kips I 2 2 A t:= 0.65 2 1:= b6 S = 0.222. 1 6 F := 5 f psi F = 162.5 -psi M ft := s f = 155.47 -psi< F = 162.5•psi GOOD lJse a 3' -0" x 3' -0" x 10" plain concrete footing V-F2 Plain Concrete Isolated Square Footing Design: F2 fc 2500 -psi Concrete strength fy;= 60000-psi Reinforcing steel strength E := 29000iksi Steel modulus of elasticity Yconc := •_150.pcf Concrete density "Ysoi1: .1907pcf Soil density qall .1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldi := 2659•1b Pd1:= Totaldi Total11 := 7756 -lb P11 := Totalll P := Pdl + Pp P t l = 10415 -lb Footing Dimensions 10 -in Footing thickness Width 36 -in Footing width A Width 2 Footing Area clnet gall — tf' net = 1375-psf Pd Areqd gnet Aregd = 7.57541 < A = 9.81 GOOD Widthregd A reg d Widthregd = 2.75 -ft < Width = 3.00 ft GOOD Ultimate Loads Pd1 + tf'A'"Yconc P := 1.4 -Pdl + 1.7•P11 P = 18.48 -kips P q := A q = 2.05 -ksf Plain Concrete Isolated Square Footing Design: F3 f := 2500•psi Concrete strength f := 60000-psi Reinforcing steel strength E := 29000•ksi Steel modulus of elasticity 'Yconc 150-pcf Concrete density 'sisal 100,pcf Soil density cl := 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldl := 2363-lb Pd1:= Totaldi Totallj := 4575•lb P11 := Tota111 Ptl Pdl + P11 P = 6938.1b Footing Dimensions t := 10-in Footing thickness Width := 30-in Footing width A := Width . Footing Area gnet gall — tf ^ Icons qnet = 1375•psf Pt Areqd gnet A red- q 5.046 ft 2 < A = 6.25 ft GOOD Widthreqd Aregd Widthreqd = 2.25-ft < Width = 2.50 ft GOOD Ultimate Loads ,:= Pdl + tf'A' P„ := 1.4•Pdl ± 1.7•P11 P„ = 12.18-kips P q := A q„ = 1.95•ksf 1 Beam Shear b col := 5.5•in (4x4 post) d:= tf -2.in 41:= 0.85 b := Width b = 30.in V, :_ 4) 4 • f V„ = 13.6-kips 3 Vu — qu b 2 col) b V„ = 4.97-kips < V = 13.6-kips GOOD Two -Way Shear bs := 5.5•in Short side column width bL:= 5.5•in Long side column width b := 2-(bs + d) + 2•(bL + d) b = 54-in (3 := 1.0 _ 4 + 8 f psi b•d V = 40.8•kips 3 3 • R V,,, := x•2.66• f V„,„ = 27.13-kips ,� qu•[b — ( bcol + d) V = 9.71 -kips < V„i„„, = 27.13-kips GOOD Flexure 2 Mu 9u [( — bcoll (1 b M = 2.54 .(_ 2 J l A:= 0.65 := 2 b d S = 0.185•ft 6 F := 5•� f psi F = 162.5•psi M u f := f = 95.19-psi < F = 162.5•psi GOOD 'Use a 2' -6" x 2' -6" x 10" plain concrete footing Plain Concrete Isolated Square Footing Design: F4 f := 2500-psi Concrete strength f := 60000• -psi Reinforcing steel strength E := 29000•ksi Steel modulus of elasticity • 'Yconc 150•pcf Concrete density Ysoil := 100•pcf Soil density gall := 1500-psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldi := 5001-lb Pdt:= Totaldi Total11:= 7639-lb Pll := Total11 Pt1:= Pdt + Pp Pu = 12640• lb Footing Dimensions t := 12-in Footing thickness Width := 42-in Footing width A := Width Footing Area clnet := gall – tf•'Yconc gnet = 1350•psf Pt' Areqd gnet Amid = 9363 ft < A = 12.25 ft GOOD Widthregd := A req d Widthregd = 3.06-ft < Width = 3.50 ft GOOD Ultimate Loads ,:= PdI + tf•A•'Yconc P := 1.4 Pd1 + 1.7-P11 P u = 22.56-kips Pu qu :_ — q = 1.84•ksf A "R Beam Shear b := 5.5•in (4x4 post) d := tf – 2•in := 0.85 b := Width b = 42-in V := 41-- 4 f psi b d V, = 23.8 -kips 3 Vu := qu (b 2 colt b Vu = 9.8•kips < V = 23.8-kips GOOD Two -Way Shear bs 5.5 in Short side column width bL := 5.5• in Long side column width b := 2-(bs + d) + 2•(bL + d) b = 62•in (3c:= 1.0 A VM= 4 •� + — ). f psi•b•d V = 71.4-kips 3 3.0 Vnmax :_ -2.66• f psi•b•d V nmax = 47.48-kips V4= q,; [b2 – O + 0 V = 19.49-kips < V nm ax , = 47.48-kips GOOD Flexure 2 Mu qu (b – 2 J bcol r 11 b M = 7.45•ft•kips I l / I 0.65 2 , := b•d 6 S = 0.405•ft 3 F := 54- f psi F = 162.5 -psi M u f := s f = 127.79 -psi< Ft = 162.5-psi GOOD lJse a 3' -6" x 3' -6" x 12" plain concrete footing ;4.711 Plain Concrete Isolated Round Footing Design: f5 f 3000-psi Concrete strength f := 60000lpsi Reinforcing steel strength Es':= 29000•ksi Steel modulus of elasticity '(colic := 1507pcf Concrete density '(soil `•= 120•pcf Soil density g := 1500.psf Allowable soil bearing pressure TYPICAL FOOTING Reaction Totaldl := 619-1b Pd1:= Totaldl Total11 := 1600-lb P11:= Total11 P := Pdl + Pp P = 2219-lb Footing Dimensions t := 12• in Footing thickness Dia := 18,in Footing diameter it-Dia 2 Footing Area 4 gnet gall — tf'"(conc %et = 1350•psf P Areqd gnet A red= g 1.64441 < A = 1.7741 GOOD J Areqd' 4 Dia reqd = = Diareqd = 1.45•ft < Dia = 1.50 ft GOOD It Ultimate Loads , := Pd1 + tf'A''(conc P := 1.4•Pd1 + 1.7 -P11 P = 3.96 -kips P qu — q = 2.24•ksf A - \'.3 Beam Shear bco1:= 3.5•in (4x4 post) d := tf — 2-in := 0.85 b := cos(45•deg)•Dia b = 12.73•in V := 4 f b•d V = 7.901-kips 3 Vu -- qu r b 2 toll b V = 0.91 -kips < V = 7.901 .kips GOOD Two -Way Shear bs := 3.5-in Short side column width bL := 3.5.in Long side column width b := 2 -(bs + d) + 2.(bL + d) b = 54•in ac := 1.0 V):= ( 4 + 8 ) f psi b d V = 23.703-kips 3 3•(3 V := 2.66 f psi b d V„ = 15.76-kips A VM.= q [b — kbc01 + d) V = —0.31 .kips < V ax = 15.76•kips GOOD Flexure r 2 Mu a I b — 2 bcoll r 2 1 1 b M = 0.18•ft•kips J l A := := 0.65 1:= 13-d 2 S = 0.12341 6 F 5 -(1:1- f F 178.01-psi M f := s f = 9.9.psi < F = 178.01-psi GOOD Use a 18" Dia. x 12" plain concrete footing I fi Plain Concrete Isolated Square Footing Design: F f 2500-psi Concrete strength fy 690 Reinforcing steel strength E := 29000•ksi Steel modulus of elasticity Y cum 150•pcf Concrete density 'Ysoi1 100-pcf Soil density g := 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Total 7072-lb Pd1:= Total Tota111 := 133041b P11 := Totalll Pd Pdl + P11 Ptl = 20376•lb Footing Dimensions t := 15-in Footing thickness Width := 48-in Footing width „A := Width Footing Area gnet gall — tf•1'conc gnet = 1313•psf PU Areqd gnet Amid = 15.525 •ft < A = 16 ft 2 GOOD Widthreqd A reg d Widthregd = 3.94• ft < Width = 4.00 ft GOOD Ultimate Loads ,•= Pdl + tf•A'"Yconc P := 1.4•Pdl + 1.7•P11 P = 36.72-kips P 9u A qu = 2.29•ksf Beam Shear bcot 5.5•in (4x4 post) d := tf — 2 -in := 0.85 b := Width b = 48-in V, := 4 f psi•b•d V„ = 35.36 -kips 3 V qu (b col b V = 16.26 -kips < V = 35.36 -kips GOOD 2 Two -Way Shear bs 5.5•in Short side column width bL := 5.5• in Long side column width b := 2•(bs + d) + 2.(bL + d) b = 74 -in fi := 1.0 N VA.= 4 + 8 f psi•b•d V = 106.08 -kips 3 3. p c ) V uu , ax := 2.66 f psi b d V = 70.54 -kips M V� yy := q,; [b — �b + d) V„ = 31.26 -kips < V,uuax = 70.54 -kips GOOD Flexure 2 M qu (b — bcol� r 11 b M = 14.39•ft•kips I 2 l2J A,:= 0.65 2 b d S = 0.782•ft 6 F := 5.4). f psi F = 162.5 -psi M u f := f = 127.75 -psi< F = 162.5 -psi GOOD lJse a 4' -0" x 4' -0" x 15" plain concrete footing 1(0 Plain Concrete Isolated Square Footing Design: F7 f := 2500 -psi Concrete strength f := 60000-psi Reinforcing steel strength E 29000•ksi Steel modulus of elasticity 'Yconc 150 Concrete density 'Ysoil 100-pcf Soil density g := 1500-psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldi := 1200 -lb Pdl := Totaldi Total11:= 3200 -lb P11 := Totalll Pt] := Pdl + Ptl Pd = 4400 -lb Footing Dimensions t := 10 in Footing thickness Width := 24 -in Footing width ,:= Width Footing Area gnet := gall — tf• net = 1375 - psf Ptl Areqd (hie A re d — q = 3.2-ft 2 < A = 441 GOOD Widthreqd Areqd Width = 1.79 -ft < Width = 2.00 ft GOOD Ultimate Loads ,3:= Pdl + tf'A''Yconc P„ := 1.4 -Pdt + 1.7 -Pd P, = 7.82•kips P q := A q = 1.96•ksf Beam Shear bco1:= 5.5• in (4x4 post) d:= tf -2.in := 0.85 b := Width b = 24-in V„ :_ 4 - f psi•b•d V„ = 10.88•kips 3 Vu := qu r b 2 colt V = 3.01 -kips < V = 10.88•kips . GOOD Two -Way Shear bs := 5.5•in Short side column width bL := 5.5•in Long side column width b := 2 -(bs + d) + 2•(bL + d) b =54-in pc := 1.0 Vim= 4 + 8 f c psi b d V„ = 32.64-kips 3 3. 0c := x•2.66• f V„,„„ = 21.71 -kips = q, [b — kbc01 + d) V„ = 5.35-kips < = 21.71-kips GOOD Flexure 2 b — ' 1 l Mu qu . \ 2l -b M„ = 1.16-ft-kips A:= 0.65 .— 13-d S = 0.148•ft 6 F := 5•1:13.• f psi F = 162.5-psi M ft := s -- f = 54.45. psi < F = 162.5•psi GOOD 'Use a 2' -0" x 2' -0" x 10" plain concrete footing I " t ?)4 61,3 b trq o ci;* b Ca.0 '71 p o js gfi\ °o- W9 - -vtlw-o ',QC% 4) cam)(s' -1- - ' c a - sL- • 0 - (-E..0 1 So' t•)c) * " I so° t'e - W 9 4 _ " O Uj3 tA:1 =a 4ive - 10 — 'is'4S-tle = b/w = 1 gox o C't °is: C 4 ($ V b)C- Q . -+ � � }Czz) (s' ce. s' t )o s v a) =,Z W o a J�1 s•gs 11' scc. = lov 0 v�, x, = m z C1 a r p ' 3 ❑ 3 t t 3 O �tSa°Kz' e ��. � �� ►�1E' e r� Z o ' {, ❑ ❑ A * s� t ' �� P }1�Al - -} IU() :38 1 I q. fau l cototo �i� dO Q b ry . d :' ON 8Of Q' O 9 31Va AS n i• Bentley Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:43 AM Units system: English File name: O: HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \talcs \Unit A \foundations \Front Load 2.etz\ • M33 =51.9 [Kip'ft] M33= -12.19 IKip'ft] • r-- • MOMentS lay L fi Bentley, Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:35 AM Units system: English File name: O: HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations\Front Load.etz\ UM IT A -S-- M33 =25.66 [Kip ft] M33= -30.27 [Kip`ft] Mmen L 3 BY A KL DATE: +- aO { ' ` JOB NO.: C +_' m _0 Ct 0 OF PROJECT: $ .Ct Cook,or. (�, RE: UN 17 A- R �2 l,o(r �► a1 Gib k- 21eib k W ❑ ❑ 1 3�0.41 30.41 k.c 1- J_ Z ` � ^ o W q.153%..' 4.x53k O rf Q V 0 w 04 1 : tot i ‘ o z W O Z 0 0 Check- 0verfurr Z m Mor — 30,4 k fi 30,4-1 i (a1 = 1 IL. 1$ VS E 2 0 N1 k = (0 1 1)(aa) 4- - 3,150) 4-1 # 1 C3(al) Z M21nno J.- ‘,cit )1,s : , ot-- F, S, w ❑ a ao•`.06 (3 1 - 1Ye,)e ao .go to ¥ L (ao,goc s,$) ; 1.1 qs 1=sF 9-m; r. = ao,°ia, _ .‘ ,S6 -: — (2.")(,z2') z-- o � c A-miN <o : O -me.x — 4 Ca _ 4Cao,oi(o) 3 L(r3 -2e) 3(aYaa - acs • c.)) ' ' = q INn4.x t : ab 1 1=� F < ISO° psi; , C� 1C 1xa- 0 , 22. Bentley Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:38 AM Units system: English File name: O:\ HPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes\calcs \Unit A \foundations\Rear Load.etz\ M33 =43.24 [Kip'ftJ • • M33= -45.06 [Kip'ft] I IL° \ 1 Benttev Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:43 AM • Units system: English File name: O: \HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A \foundations \Rear Load 2.etz\ M33 =41.88 IwP`nl M33= -46.37 (Kipltj b M LCL BY: A ft_L DATE: -a010 JOB NO.: Ce A, p n OF PROJECT: RE: 'Bear Loa6, cooVvn) 0 .. a� -0`� x L X 12" FTC, 0 2 . Mmo.x = - ON+ R 4 ._2�4i.K �� - O d O w 2 . 1 Mrn n= On* Pti - 4- tick z - Unrt glb O o oMn= o. °oA yy(d -Q I ) X . - Tr. Ci .i4 e IZ. ". 0,C, A =0, _3°3,' xa' a = a wis t6_Q;00o) to , 5 C30oo ( ❑ = O 4oc% t'J 0 .. CD IA" .1 1 2.) W =_ab6 KFt ❑ o \ A ot..: 0,1)1 - (.0,000) /0 , ouc0C2 ) OM^ : o,ao(o, 0 1)(40 / ' ) = 3l.an T r v , 4 S e au o,C,, A S = 0 , ( , , , 1 1 . 4 1 . 0 - . - a = 0.614 (C9.61006) to, boomi -) 7. 0. -`39 « 0�� �9 0 A = ,QCo,Glg->Ct.U,90o.(t_ — 4.) ht,,,„,,,,,,. y 6 o _:-_. 4U „5 (� Ic tX l ,33> = S 3 ..q y > : O t_ e tr1 boron-, 4 ., .4 ,,,,, :., g i ° . '.r_ - . a • 1 c lZ.3 - 6 1 -- A0 '; - = ( J4.91-1 , 0 - sl) (poci' cmXzsqt'o)ob' 0 ---2 uw 0 • . 1--11 ....°)t go = (.7-14)C,PoDs)ca'of (900'0.)'eak,'CI ) .-= v ,. ...e./ 1 AO - • 70 g • cr14 € - 10 '. 'i-Ti sea* h2 ------ czbi . \? 010.0 :•-•`"\NI0 9 0 . 0 tv 1 C a t IA-. 0 7: Xorioe)(53 L000 0-0Q62.. \) - - 1 =SI • D'O „al 0 5 44 CI I -, 10,' SS < f.-'t b = (s..ce... 3-2 c ..-- - - ,59( . 000.01)cotcyit:) ow Q „ % &-S 4 1 e il- 0 : Q7 ' 0) / QX)O'-°. \) I F V 1 el = %‘V . • 1 *V a ...s ail- *.r) 'rill: - - hi - -S9(. 0 00 ,1 0910\19 010'0 x 0 o 14 o rv\st 'N -=-.Qt (SCO'Ockivi '0) = V g a m . C. .. 'D'O ); "D s 4 - Q)• C o 0 ot7 Ct's V 17 ' c - 0 ( ()VC) =.' ) %\i10 . 3 C Z 1p h Cr Ot - -i 511-1S- — C- kcj A Ivn = ‘Avtkvi Z 13 xi O • " - . . z A 0 i.t 1111 c- - D ANn m 0 „CA [-----------1 . • . , 4 -- - 1 tiQA 1 u'kko03- vool vuo,13 :„ - • :103rOild 40 :alva AS - k — fi 1 _ 0 ZZ'l =""." IS,' S t _ (z'E }0 47_,'2 , L s4 see'e) �,oS - r - Ci „SI x 3 X Suol kj&) 0- Sc) - A Sll'f .: Dui_ 4 -L'Ice, (c)'/ s'1 - 'W ° Ws'l — 1Q.-} (7 ) ( 2``)1 ) =) w 7(12,4 t'e2 _ ' 1 4i`T = FJvLkoOf -.i - 761-1+ fib' St 7 C _�0'�L°)S'■ i N > O� S'l pn , v . v Ib 1:0 g • c ro,s o - 1Cll , �(Z��Z E `) 1) - f( c )X Z . 2. --- t - 2.:.5) - -2/`AW > - � � 's }j.2, n ac, - la 11 4 mz: s+ »' I)-t (z ,cZ' S 4 t •g) r l \f " 0 i ' ' �j e - low 1!! 'g 1 0 � 661 ,(, anO _iks di 04 ci)915 a.9n )0119171 kV 4-4 FTnu5 A) CCI eY - g X ] ' _ C c1)1 Q — 'MW1 ► = 'Sbb,e'k 9°►'i vs-1 s b1 W = = o So' �. -'1b' 1 b z ❑ rn 2.01e ., ' o 0 \O ' °I' 1 _ S 1 < 1 1 b i h — eiW o Z1 • a) s ---7 C�) ! ' t 4 ` S \ 4 ip )L \ 1• 'C = V �w 3 3 n17 H 1 ("Pi 4 c 4 0 OS1'pke) = . a � fi��o t z 6kA (ip A --)p , A o • m z o i Si 0 o 1 I 1 ❑ 3 m e iC ` i ' _' 5\ VS m • O • 7 1119.0 e z Z. - (Y1 g . . V { 1 — b k k.0 n S3a 1 521 K :173 road -- ) dO 0 1 00 . :'ON eor 0 1 Ot '3iva :A9 .\N\cf BV: p (.. DATE: ' 3/ O JOB NO.: c ` \ ('• A { ! O0 T\ V OF V V 1 PROJECT: RE: -fy\aX = 4 c ol_ 37' `...a,t.:,-) ❑ ❑ 3 (L)(L -2(e) J 0 0 W �r v F xaSC )0S" Dom- a -.�t ;p ❑ x i /c.). _ — I ,.)Z e— 1. \5 , U 1L.0-1- r� x = = a .3 5 ?4- r-1 o cr a_ • 3C2.'5 ( 2(t,1� > � T� L x 3 ts'' D\--= 3? -5 P a o Z k _ MIa _ 41, ,t,( 3(3.3"3-5- -aL. ,d3 - l ,S(,) e = 1,14 2 1 L.4) 1. qt p d k Co-r Shcs f e v rv, ba c t s I D a b. Z W ❑ Z 0 O = F II O U w = N ;x is _ Oi 41: x 4 Bentley Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:42 AM Units system: English File name: O: \HHPR Projects \CEN - Centex Homes (309) \CEN - Plans \CEN -090 Summer Creek Townhomes\calcs \Unit A \foundations \Interior 2.etz\ • M33= 23.55[Kip'ft] • • • M33= -17.88 [Kip*ft] Y 1 • MoTheAt- LC( • '!'.i Bentley- Harper Houf Peterson Righellis Inc. Current Date: 6/22/2010 10:42 AM Units system: English File name: O: HHPR Projects \CEN - Centex Homes (309)\CEN - Plans \CEN -090 Summer Creek Townhomes \calcs \Unit A\foundationsUnterior.etz\ . M33 =32.26 [Kip'ft] M33= -9.27 [Kip•ft] Y X 4 MamenA- LCZ /q,F30 ACI 318- 05.Appendix D 1.0" Diameter Bar Capacity at Portal Frame Concrete Breakout Strength Stem Wall Capacity when govern by 3 edges Foundation Capacity Givens Givens fc = 3000 psi fc = 3000 psi h' = 3.50 inches h =. 12.00 !inches (into the Fe Stem = 8:00. inches Note: hef above is the the embedment into or c,,, = 5.25 inches the foundation and does not consider stem wi Fnd Width = 36.00 inches c = 2.25 inches Cmin = 18.00 inches Wc,N= 1.00 cast -in -place anchor Wc,N= 1.00 cast -in -place anchor k = 24 cast -in -place anchor k = 24 cast -in -place anchor • = 0.75 strength reduction factor = 0.75 strength reduction fact Calculations Calculations ANc = 68 in` AN = 1296 in` ANa = 110.25 in` AN = 1296 in` Nb = 8,607 pounds Nb = 55,121 pounds Wed,N = 0.8286 Wed,N = 1.00 Nth = 4,399 pounds Ncb = 55,121 pounds O = 3,299 pounds O = 41,341 pounds Combined Capacity of Stem Wall and Foundation splcb = 44,640 0.750 = 33,480 2 - H Tom zxc UQ 0 0 0 " A o ' ' ` , " 4 " \ N < (2;10 cat A?: -2, (000 ,'0)0b'0 = UW Witt a o 0 � '0J (ono'0.)S.b€.' 0 = b 0 o 3 s "C A 4tT. L ) it s 1 -b4. (I) ‘11_ 0 Obon'0 Z 1 X( 0 Q0 ' o °Xb9S =kA W ;PJ Fi /t0000/l6Gs = b o - bgs'0 =s 1,21 4 1l- c‘) �.al Z M �`tlb-i� SICi°b' =`"WQ Z 0 F v 3 O -1 431073' -4_1- "-",-AA w 2 I W ❑ ❑ ci L lc �. , 1 �lovak.kg -iui :38 =193road QOO— NJ� Q1©e 9 a — �-\� AC) ' • �'oN eof � :31V B Concrete Side Face Blow Out Givens Abrs = 2.15 in' fc = 3000 psi c = 18.00 inches = 0.75 strength reduction factor Calculations Nsb = 231,191 pounds 4)N = 173,393 pounds Concrete Pullout Strength Givens Abrs = 2.15 in' fc = 3000 psi = 0.75 strength reduction factor Calculations N = 51,552 pounds 4)N = 38,664 pounds Steel Yield Strength Givens v f, = 58,000 psi A = 0.606 in = 0.80 strength reduction factor Calculations N = 35,148 pounds. 4)N = 28,118 pounds 33,480 Ductility Met Holdown Check Holdown:. HDU14 Holdown Capacity= 1.4,930 . pounds 1.6* Capacity= 23,888 pounds 23,888 < 28,118 Holdown Checks lq -7°37D BY: DATE: JOB NO yr P ROJ ECT: RE: S \ Wail Coo ❑ ❑ e. Sides oP Bulk/urns J FW H W 0 f t aSFt(i2 ?sF ) : 300 Pty . woo) L ❑ S ct,C21evels)t s0 = a Of) ins floor J 0 4 0114 650Pc� I/1 n12 3 e.m 3 pt-F 51 z ( 1 So rx ��C - ►00 w P�� 4._ _ . w = g� � . 1 Y 1 r I F- �;: _ z a LL o (e F z teV'e1s' (A.o , ° L P� _rlcor Z O F Q z TTAa1 loath = Nib( wow at,F, . 2 mo x Sbp = vs psF = tsvopt,p • w 0 1 l 4 (CO W 1SOOW "'- - w= 10©(a. c x LS" f & o 0 o e 'lea C i F vC bk.) i 1d ti'r O = F- Di_: asCttl= - 300 pt.P watt 6112. tevets)( sF a34 Pt.F .P loor - 401,0 (15O pcF Y h/ )(b, ) = 3a3 s (212)Cts0w� =tMO P 1 (le 1'. Inc 306 fix•F ' COO F LL: (q)(2.16 )= '.-21J CJ , C,c6>(2.) - a-sa PLF o ti : - a ,. TLd a343t ;a a3u3 fi- loo ISoo(AJ a -= w t,L1 •= a\ \N @ Vin► A' a '=a x e un;1 61;C. Same cCs h mtrw. 10(x'` toc&4 TL \3VA k- ■00vJ W 1,00 .', U-e tSt Pa(-tvv,Jva l DI.,. ° asCtz >(2) = (0a) pa° via 11 (5)C2 Xis - x.2>= 41.0 pc..F Si001 40tN(lSOPcF`ktlt2)( _ 333pLc 51-ern (CilaYt50W)_100 W LL. o (6 -0)(2.) = 1 pug dkwr TL 216a9 r ioow w l ,?:7 >.22J us-e_ a4 I N