Loading...
Specifications 01.1P2o2O. 00127 /'/ic/o sai 724)414 , /3a RECEIVED MAY 2 0 2020 CITY OF TIGARD BUILDING DIVISION Structural Engineering Design ,eve) PROp�S Luc,CI � �' INFF sO 72 Project Name : HOBBY KING ft. 62618PE Project Number : SED-051320-56 . OR ON OF REGN°s's Date : 05/13/20 05/15/2020 �ZNGQIAO Z\J EXPIRES:06-30-2022 Street Address: 14140 W 72ND AVE, SUITE 130 City/State : TIGARD, OR 97224 Mingqiao Zhu, PE/P.Eng 1428 N Shevlin Court Scope of Work : STORAGE RACK Sewickley, PA 15143 • I 1815 Wright Ave La Verne, CA 91750 Tel:909.596.1351 Fax:909.596.7186 By: NIHAL/MOZ Project: HOBBY KING Proect#: 051320-56 TABLE OF CONTENTS Title Page 1 Table of Contents 2 Design Data and Definition of Components 3 Critical Configuration 4 Seismic Loads 5 to 6 Column 7 Beam and Connector 8 to 9 Bracing 10 Anchors 11 Base Plate 12 Slab on Grade 13 Other Configurations 14 40 t TYPE b-SR.xls Page 2-of 1 f 5/13/2020 Structural Engineering & Design Inc. 1815 Wriaht Ave La Verne.CA 91750 Tel:909.596.1351 Fax:909.596.7186 By: NIHAL /MQZ Project: HOBBY KING Project#: 051320-56 Design Data 1)The analyses herein conforms to the requirements of the: 201,9 IBC Section 2209 2019 CSC Section 2209 ANSI VI 16.1-2012 Specifications for the Design of Industrial Steel Storage Racks"2012 RMI Rack Design Manual" ASCE7-16,section 15.53 2)Transverse braced frame steel conforms to ASTM A570,Gr.55,with minimum strength, Fy=55 ksi Longitudinal frame beam and connector steel conforms to ASTM A570,Gr,55,with minimum yield, Fy=55 ksi All other steel conforms to ASTM A36,Gr,36 with minimum yield,Fy=36 ksi 3)Anchor bolts shall be provided by Installer per ICC reference on plans and calculations herein. 4)All welds shall conform to AWS procedures,utilizing E70xx electrodes or similar.All such welds shall be performed in shop,with no field welding allowed other than those supervised by a licensed deputy inspector. 5)The existing slab on grade is 5"thick with minimum 4000 psi compressive strength.Allowable Soil bearing capacity Is 750 psf. The design of the existing slab is by others. 6)Load combinations for rack components correspond to 2012 RMI Section 2.1 for ASD level load criteria Definition of Components Came Beam Ir i_ 1:� w. wl I Brace Beam m rm tor Crracional Brace Fang Pa: 1111111 Base ilate and Anchors _________ r iAinel s MEI / 14.Fame 4 Depth Front View:Down Aek ltarrgldrdinail Fame Sed:on A:boss Aide (Transverse)Frame TYPE 1,SR.xds Page 3 of , 5/13/2020 Structural Engineering & Design Inc. ' 1815 Wright Ave La Verne. CA 91750 Tel: 90_9.596.1351 Fax: 909.596.7186 By: NIHAL /MOZ Projecl: HOBBY KING Project#: 051320-56 Configuration&Summary:TYPE B SINGLE ROW — _ ,`-- *"RACK COLUMN REAL 770N5 38" ASD LOADS 66" AXIAL DL= 1131b AXIAL L1= 7,800/b 54j SEISMICAXIALBASEMOMENT Ps=+/-= 8,9,B4400 0 f/b itIb f b 240" 66" 240" 54 36" 66 It 6 I' I r 96" - I -I` 44" „- ' Seismic Criteria #Bm Lvis Frame Depth Frame Height #Diagonals Beam Length _ Frame Type Ss=0.86,Fa=1.156 3 44 in 240.0 in 5 96 in Single Row Component Description STRESS Column Fy=55 ksi SPCRK FH-30/3x3x12ga P=7913 lb,M=24364 In-lb 0.9-OK Column&Backer None None None N/A Beam Fy=55 ksi SpaceRak SB506M 5 in x 0.06 in Lu=96 in Capadty:6481 lb/pr l 0.8-OK Beam Connector Fy=55 ksi Lvl 1:4 pin OK Mconn=15867 in-lb Mcap=31729 In-lb 0.5-OK • Brace-Horizontal Fy=55 ksl Sperack 1-1/2x1-1/4x14ga 0.29-OK Brace-Diagonal Fy=55 ksi Sperack 1-1/2x1-1/4x14ga 0.59-OK Base Plate Fy=36 ksi 8x8x0.375 1 Fixity=8000 in-lb 0.68-OK . Anchor 2 per Base 0,5"x 3.25"Embed HILTI KWIKBOLT TZ ESR 1917 Inspection Reqd(Net Seismic Uplift=2350 lb) 0.567-OK Slab&Soil 5"thk x 4000 psi slab on grade.750 psf Soil Bearing Pressure 0.95-0K Level Load** Story Force Story Force Column Column Conn. Beam Per Level Beam Spcg Brace Transv Longlt. _ Axial Moment Moment Connector 1 5,200 lb 66.0 In 36.0 In 295 lb 174 lb 7,913 lb 24,364 "# 15,867 "# 4 pin OK 2 5,200 lb 66.0 in 36.0 In 590 lb 348 lb 5,275 lb 14,355 "# 10,354 "# 4 pin OK 3 5,200 lb 66.0 in 54.0 in 885 lb 522 lb 2,638 lb 8,613 "# 5,329 "# 4 pin OK 54.0 in 36.0 in **Load defined as product weight per pair of beams Total: 1,769 lb 1,044 lb I Notes 1 7YPE b SR,xis Pace 9- of t.� 5/13/2020 Structural Engineering & Design Inc. 1815 Wright Ave La Verne.CA 91750 Tel:909.596.1351 Fax: 909.596.7186 By: NIHAL /MQZ Project: HOBBY KING Project#: 051320-56 Seismic Forces Configuration:TYPE B SINGLE ROW Lateral analysis Is performed with regard to the requirements of the 2012 NMI ANSI MH 16.1.2012 Sec 2.6 6,ASCE 7-16 sec 15.6.3 Ss= 0.860 • Transverse(Cross Aisle)Seismic Load ...1 S1= 0.392 V= Cs*Ip*Ws=Cs*Ip*(0.67*P*Prf+0) vt Fa= 1.156 Cs1= Sds/R Fv= 1.908 • = 0.1657 Cs-max*Ip= 0.1657 Sds=2/3*Ss*Fa= 0.663 Cs2= 0.044*Sds Vmin= 0.015 Sd1=2/3*S1*Fv= 0.499 = 0.0292 Eff Base Shear=Cs= 0.1657 TnnsvetfsFlsvatha Ca=0.4*2/3*Ss*Fa= 0.2651 Cs3= 0.5*51/R Ws= (0.67*PLRr1*PL)+DL(RMI 2.6.2) (Transverse,Braced Frame olr.)R=4.0 = 0.0490 = 10,677 lb 1p= 1.0 Cs-max= 0.1657 Vtransv=Vt= 0.1657* (225 lb+ 10452 lb) PRF1=IttHa.WW Base Shear Caeff=Cs= 0.1657 Etransverse= 1,769 lb Pallet Height=hp= 48.0 in Limb Slates Level Transverse seismic shear per upright DL per Beam Lvl= 75 lb Level PRODUCT LOAD P P*0.67*Pwl DL hl wi*hi Fi Fi*(hi+hp/2) 1 5,200 lb 3,484 lb 75 lb 66 In 234,894 294.8 lb 26,532-# 2 5,200 lb 3,484 lb 75 lb 132 in 469,788 589.7 lb 91,9934 3 5,200 lb 3,484 lb 75 lb 198 in 704,682 884.5 lb 196,359-# . sum: P=15600lb 10,452 lb 225 lb W=10677 lb 1,409,364 1,769 lb E=314,884 Longitudinal(Downaisle)Seismic Load __ Similarly for longitudinal seis,Nr loads,using R=6.0 Ws= (0.67* PL,2*P)+DL PRF2= 1.0 x.ti. Ii= ...+.. NAIR Cs1=Sd1/(T*R)= 0.0978 = 10,677 lb (l.onghudlnd,Unbraced Dir.)R= 6.0 Cs2= 0.0292 Cs=Cs-max*Ip= 0.0978 T=0.85 sec Cs3= 0.0327 Vlong= 0.0978*(225 lb+ 104521 ,,... Cs-max= 0.0978 Elongitudlnal= 1,044 lb Lxaasr*mr Sow/,**,*.****b*rre*rp*.apyhr Level PRODUC LOAD P P*0.67*PRF2 DL hi wi*hi Fi PtentYJenr 1 5,200 lb 3,484 lb 75 lb 66 In 234,894 174.0 lb I 2 5,200 lb 3,484 lb 75 lb 132 in 469,788 348.0 lb 3 5,200 lb 3,484 lb 75 lb 198 In 704,682 522.0 lb sum: 10,452 lb 225 lb W=10677 lb 1,409,364 1,044 lb I i TYPE 6-SR.x15 page 5-of t ' 5/13/2020 i Structural q Engineering & Design Inc. i 1815 Wright Ave La Verne.CA 917507el;909,598,1351 Fax:909,596.7186 By: NIHAL /MDZ Project: HOBBY KING Project* 051320-56 Downaisle Seismic Loads Configuration:TYPE B SINGLE ROW Determine the story moments by applying portal analysis.The base plate is assumed to provide partial fixity. Seismic Story Forces Typical fNnx made Vlong= 1,044 lb T„tarary4,VI offwo[ni"'"' VcoI=VIong/2= 522 lb of rack fame F1= 174 lb ~, .,. � „� -.- -: t , q py 1 .: Imo""I ...� , sash ,�. ccRlM Typical Fyrno made F2= 3481bWA */of w cotumne F3= 522 lb ;E,'� r::. I- ::r,Il . T LR".3 I'--- 96' Seismic Star v Moments S4 D uQ,i sveren COL Mbase-max= 8,000 In-lb <===Default capacity hl-eff= hi-beam clip height/2 Mbase-v= (Vcol*hieff)/2 = 62 in = 16,182in-lb <===Moment goingtobase Vcol 1:!V Mbase-eff= Minimum of Mbase-max and Mbase-v h2 I Mil = 8,000 in-lb M 1-1= [Vcol *hieft}Mbase-eff M 2-2= [Vcol-(F1)/2]*h2 = (522 lb*62 in)-8000 in-lb = [522 lb-174 Ib]*66In/2 1 ,.........„, = 24,364 In-lb = 14,355 in-lb h1 Mseis= (Mupper+Mlower)/2 I Beam to Column . Mseis(1-1)= (24364 In-lb+ 14355 in-lb)/2 Mseis(2-2)= (14355 in-lb+8613 in-lb)/2 Elevation = 19,360 in-lb = 11,484 In-lb rho= 1.0000 I Summary of Forces LEVEL hi Axial Load Column Moment** Mseismic** Mend-fixity Mconn** Beam Connector 1 66 in 7,913 lb 24,364 In-lb 19,360 in-lb 3,307 in-lb 15,867 in-lb 4 pin OK I 2 66 in 5,275 lb 14,355 in-lb 11,484 In-lb 3,307 in-lb 10,354 In-lb 4 pin OK 3 66 in 2,638 lb 8,613 in-lb 4,307 in-lb 3,307 in-lb 5,329 In-lb 4 pin OK I Mconn= (Mseismlc+Mend-fixity)*0.70*rho Mconn-allow(4 Fin)- 31,729 in-lb **all moments based on limit states level loading TYPE b-SR.xls Page (p of 1 5/13/2020 Structural Engineering & Design Inc. 1815 Wright Ave La Verne.CA 91750 Tel:909.596.1361 Fax: 909.596.7186 By: NIHAL/IAQZ Project: HOBBY KING Project#: 051320-56 Column(Longitudinal Loads) Configuration:TYPE B SINGLE ROW • Section Properties Section: SPCRK FH-30/3x3x12ga 3.000 in _6 Aeff= 0.880 In^2 ly= 1.000 ln^4 Icx= 1.7 x Ix= 1.520 in^4 Sy= 0.659 In^3 Lx= 63.5 In Sx= 1.010 in^3 ry= 1.064 In Ky= 1.0 3.000 in nc= 1.312 in Fy= 55 ksl Ly= 36.01n y_._.�._. y Of- 1.67 Cmx= 0.85 Cy= 1.0 10.105 In E= 29,500 ksi x -t� I_0.75 In Loads Considers loads at level 1 COLUMN DL= 112 lb Critical load cases are:RMI Sec 2.1 COLUMN PL= 7,800 lb Load azse 5.•:(1+0.105*Sds)D+0.75*(1.4+0.14Sds)*B*P+0.75*(0.7*dw*E)c=1.0,ASD Method Mcol= 24,364 In-lb axialloadcoef. 0.7837158*P seismic moment coehe: 0.5625*MqN Sds= 0.6628 Load Case 6. :(1+0.14*5ds)D+(O85+0.14S11s)*8*P+(0.7*N1o*E)<=1.0,ASD Method 1+0.105*Sds= 1.0696 axle!load wolf 0.65995 seismic moment aoeA: 0.7*Moo! 1.4+0.14Sds= 1.4928 By analysis,Load case 6 governs utilizing loads as such 1+0.14Sds= 1.0928 0.85+0.14*Sds= 0,9428 Axial Load=Pax= 1A92792"112lb+0.942792*0.7*7600lb Moment=Mx= 0.7*rho*Mcol B= 0.7000 = 5,270 lb = 0.7* 24364 in-lh rho= 1.0000 = 17,055 in-lb Axle'Analysis KxLx/rx= 1.7*63.5"/1.312" KyLy/ry= 1*36"/1.064" Fe >Fy/2 = 82.3 = 33.8 Fn= Fy(1-Fy/4Fe) = 55 ks1*[1-55 ks1/(4*43 ksl)] Fe= n^2E/(KL/r)max^2 Fy/2= 27.5 ksi = 37.4 ksi = 43.0ksi Pa= Pn/Oc Pn= Aeff*Fn 4c= 1.92 = 32926 lb/1.92 = 32,926 lb = 17,149 lb P/Pa= 0.31 > 0.15 Bending Anal is Check: Pax/Pa+(Cmx*Mx)/(Max*px)<_ 1.0 P/Pao+Mx/Max 5 1.0 Pno= Ae*Fy Pao= Pno/Qc Myield=My= Sx*Fy = 0.88 in^2*55000 psi = 484001b/1.92 = 1.01 in^3*55000 psi = 48,400 lb = 25,208 lb = 55,550 In-lb Max= My/ffi Pcr= n^2E1/(KL)max42 = 55550 in-lb/1.67 = nA2*29500 icsi/(1.7*63.5 in)^2 33,263 in-lb = 37,977 lb px= {1/[1-(Slc*P/Pcr)]}^-i = {1/[1-(1.92*5270 lb/379771i)]}^-1 = 0.73 Combined s (5270 Ib/17149 Ib)+(0.85*17055 In-Ib)/(33263 In-Ib*0.73)= 0.90 <1.0,OK (EQ CS-1) (5270 lb/25208 Ib)+(17055 in-lb/33263 In-Ib)= 0.72 < 1.0,OK (EQ C5-2) **For comparison,total column stress computed for load case 51s: 84.0% p loads 6232.77776E!b Axial and M= 12791 in-lb• TYPE b-SR.xls Page -7 of 5/13/2020 Structural Engineering & Design Inc. 1815 Wright Ave La Verne CA 91750 TeL 909.696.1361 Fax:909.596,7186 By: NIHAL/MQZ Project: HOBBY KING Project*: 051320-56 BEAM Configuration:TYPE B SINGLE ROW DETERMINE ALLOWABLE MOMENT CAPACITY 2.50In A)Check compression flange for local buckling(B2.1) . 1.63In 4 w= c-25t-2*r I = 1.625 In-2*0.061n-2*0.061n = 1.385 in 1.625 i„ w/t= 23.08 1=lambda= [1.052/(k)^0.5]*(w/t)*(Fy/E)^0.5 Eq.B2.1-4 _ [1.052/(4)^0,5]*23.08*(55/29500)^0.5 s.0a0I� [ = 0.524 <0.673,Mange is fully effective Eq.62.1-1 I 0.060 In B)check web for local budding Der section b2.3 l! [ f1(comp)= Fy*(y3/y2)= 51.12 ksl f2(tension)= Fy*(y1/y2)= 102.88 ksi Y= f2/fl Eq.82.3-5 Beam= SpaceRak SB506M 5 in x 0.06 In = -2.013 Ix= 2.586 in^4 k= 4+2*(1-Y)^3+2*(1-Y) Eq.62.3-4 Sx= 0.992 in^3 = 64.73 Ycg= 3.300 in flat depth=w= yl+y3 t= 0.060 in = 4.760 In w/t= 79.33333333 OK Bend Radlus=r= 0.060 in 1=lambda= [1.052/(k)^0.5]*(w/t)*(f1/E)^0.5 Fy=Fyv= 55.00 ksi _ [1.052/(64.73)^0.5]*4.76*(51.12/29500)^0.5 Fu=Fuv= 65.00 ksi = 0.432 <0.673 E= 29500 ksi be=w= 4.760 In b2= be/2 Eq B2.3-2 top flange=b= 1.625 in b1= be(3-Y) = 2.38 In bottom flange= 2.500 in = 0.95 Web depth= 5.0" Fy b1+b2= 3.330 in > 1.58 In,Web is fully effective Waal* Determine effect of cold working on steel yield point(Fva)Per section A7.2 Fya= C*Fyc+(1-C)*Fy (EQ A7.2-1) + .- Lcomer=Lc= (p/2)*(r+t/2) z 0.141 in C= 2*Lcq(Lf+2*Lc) Lflage-top=Lf= 1.385 in = 0.169 in m= 0.192*(Fu/Fy)-0.068 (EQ A7.2-4) ter'" = 0.1590 Bc= 3.69*(Fu/Fy)-0.819*(Fu/Fy)^2-1.79 (EQ A7.2-3) = 1.427 since fu/Fv= 1.18 < 1.2 veg " and r/t= 1 <7 OK then Fyc= Bc*Fy/(R/t)^m (EQ A7.2-2) - - A1"a9 • = 78.485 ksi Thus, Fya-top=58.97 ksl (tension stress at top) Fya-bottom= Fya*Ycg/(depth-Ycg) yl= Yog-t-r= 3.180 In = 114.48 ksi (tension stress at bottom) y2= depth-Ycg= 1.700 In Check allowable tension stress for bottom flange y3= y2-t-r= 1.580 In Lflange-bot=Lfb= Lbottom-2*r*-2*t = 2.260 In Cbottom=Cb= 2*Lc/(Lfb+2*Lc) = 0.111 Fy-bottom=Fyb= Cb*Fyc+(1-Cb)*Fyf = 57.61 ksi Fya= (Pya-top)*(Fyb/Fya-bottom) = 29.68 ksi if F= 0.95 Then F*Mn=F*Fya*Sx= 27.97 In-k Structural Engineering & Design Inc. 1815 Wright Ave La Verne.CA 91750 TeL 909 596.1351 Fax:909,596.7186 By: NIHAL /►AOZ Project: HOBBY KING Project#: 051320-56 BEAM Configuration:TYPE B SINGLE RUW RMI Section 5.2,PT II Section Beam= SpaceRak SB506M 5 in x 0.06 in Ix=lb= 2.586 in^4 2,50 In Sx= 0.992 In^3 t= 0.060 in E= 29500 ksi 1.63 In ,I Fy=Fyv= 55 ksi F= 300.0 ___ T Fu=Fuv= 65 ksi L= 96 In r �� f Fya= 59.0 ksi Beam Level= 1 I 1.625 In P=Product Load= 5,200 lb/pair D=Dead Load= 75 lb/pair 6.— 5.000 In 'y D0601n 1.Check Bending Stress Allowable Loads Mcenter--F*Mr.= W*I*W*Rm/8 ..� W=LRFD Load Factor= 1.2*D+1.4*P+1.4*(0.125)*P RMI2.2 item 8 FOR DL=2%of PL, W= 1.599 111111111111111111111111111111111111111111111 Rm= 1-[(2*F*L)/(6*E*Ib+3*F*L)] - I. u 1 -(2*300*96 in)/[(6*29500 ks1*2.586 In^3)+(3*300*961n)] = 0.894 If F= 0.95 Then F*Mn=F*Fya*Sx= 55.58 In-k Thus,allowable load per beam palr=W= F*Mn*B*(# of beams)/(L*Rm*W) I = 55.58 in-k*8*2/(96in*0.894* 1.599) = 6,481 lb/pair allowable load based on bending stress Mend= W*L*(1-Rm)/8 = (6481 lb/2)*96 in*(1.0.894)/8 = 4,122 in-lb @ 6481 lb max allowable load = 3,307 in-lb 0 5200 lb imposed product load 2.Check Deflection Stress Allowable Loads Dmax= Dss*Rd Rd= 1-(4*F*L)/(5*F*L+ 10*E*Ib) Allowable Deflection= L/180 = 1-(4*300*96 in)/[(5*300*96 In)+(10*29500 ksi*2.586 in^4)] = 0.533 in = 0.873 in Deflection at Imposed Load= 0.428 in if Dmax= L/180 Based on I/180 Deflection Crlteda and Dss= 5*W*L^3/(384*E*Ib) L/180= 5*W*L^3*Rd/(384*E*Ib*#of beams) solving for W yields, W= 384*E*1*2/(180*S*L^2*Rd) = 384*2.586ln^4*2/[180*5*(96in)^2*0.873) = 8,091 lb/pair allowable load based on deflection limits Thus,based on the least capacity of Item 1 and 2 above: Allowable load= 6,481 lb/pair Imposed Product Load= 5,200 lb/pair !Beam Stress= 0.8 Beam at Level 1 _ � L Structural Engineering & Design Inc. 1815 Wright Ave I a Verne,CA 91750 TPI'949 596 1351 Far 909 596 7186 By: NIHAL/MQZ Project: HOBBY KING Project#: 051320-56 4 Pin Beam to Column Connection TYPE B SINGLE ROW I he beam end moments shown herein ShOW the result of the maximum Induced Fixed end monents Corm seismic+static loads and the code mandated minimum value of 1.5%(DL+PL) Mconn max= (Mseismic+ Mend-fixity)*0.70*Rho ' e1 - rho= i$i(u"e y; = 15,867 in-lb Load at level 1 IW P 6" C O �r rl,. 11=1111.11.0 �2 Connector Type= 4 Pin Shear Capacity of Pin Pin Dram= 0.94 in Fy= 55,000 psi Ashear= (0.438 in)A2*Pi/4 = 0.1507 in^2 Pshear= 0.4*Fy*Ashear = 0.4*55000 psi*0.1507inA2 3,315 lb Bearing Capacity of Pin tcol= 0.105 in Fu= 65,000 psi Omega= 2.22 a= 2,22 Pbearing= alpha*Fu*diem*tcol/Omega = 2.22*65000 psi *0,438 in*0.105 in/Z.22 2,989 lb <3315 lb Moment Capacity of Bracket Edge Distance=E= 1.00 in Pin Spacing= 2,0 In Fy= 55,000 psi C= Pl+P2+P3+P4 tclip= 0.18 In Sclip= 0.127 in^3 = P1+P1*(4.5"/6.5")+P1*(2.576.5")+P1*(0.5"/6.5") = 2.154*P1 Mcap= Sdip*Fbending C*d= Mcap=2.154 d= E/2 = 0.127 in^3*0.66* Fy = 0.50 In = 4,610 In-lb Pclip= Mcap/(2.154*d) = 4610.1 in-lb/(2.154*0.5 In) Thus, P1= 2,989 lb = 4,281 lb Mconn-allow= [P1*6.5"+P1*(4.5"/6.5")*4.5"+P1*(2.576.5")2.5"+P1*(0.5"/6.5")*0.5") = 2989 LB*[6,5"+(4.5"/6.574.5"+(2.5"/6.5")*2.5"+(0.576.5")*0.5"] = 31,729 in-lb > Mconn max, OK • TYPE b--5R,x15 Page 1 of r r 5/13/2020 Structural Engineering & Design Inc. 1815 Wriaht Ave La Verne,CA 91750 Tel:909.596.1351 Fax:909,596.7186 By: NIHAL/MQ2 Project: HOBBY KING Project*: 051320-56 Transverse Brace Configuration:TYPE B SINGLE ROW Section Properties Diagonal Member= Sperack 1-1/2x1-1/4x14ga Horizontal Member= Sperack 1-1/2x1-1/4x14ga Area= 0.292 InA2 i.s� c= Area= 0.292 in^2 r min= 0.430 in r min= 0.430 in I,„ :.500,, - Fy= 55,000 psi r T Fy= 55,000 psi K= 1.0 f K= 1.0 ��t aso�., Qc" 1.92 0.075 " 0.075 m I I.2bo,r, ' II ' iI Frame Dimensions Bottom Panel Height=H= 54.0 in Clear Depth=D-B*2= 38.0 In Frame Depth=D= 44.0 In X Brace= NO Column Wldth=8= 3.0 in rho= 1.00 Diagonal Member 0 Load Case 6::(12104 d) BS+O.I45dsJ*8 P+[0.7*rho*EJ<=1.0,ASD Method l r o —1 Vtransverse= 1,769 lb vb '� Vb=Vtransv*D.7*rho= 1769 lb* 0.7*1 (kl/r)= (k* Ldlag)/r min = 1,238 lb = (1 x 61.2 In/0.43 In) Ldiag= [(D-B*2)^2 +(H-6")^2]^1/2 = 142.3 In JA . = 61.2 In Fe= pl^2*E/(ki/r)^2 H Pmax= V*(Ldlag/D)*0.75 = 14,378 psi = 1,292 lb axial load on diagonal brace member Since Fe.Fy/2, 3�t Pn= AREA*Fn Fn= Fe = 0.292 in^2* 14378 psi = 14,378 psi e Iyiyanei = 4,198 lb conftourathm Pallow= Pn/4 Check End Weld = 4198 lb/1.92 Lweld= 3.0 In = 2,187 lb Fu= 65 ksi tmin= 0.075 In Pn/Pallow= 0.59 <= 1.0 OK Weld Capacity= 0.75*tmin*L*Fu/2.5 = 4,388 lb OK Horizontal brace Vb=Vtransv*0.7*rhom 1,238 lb '.. (kl/r)= (k*Lhoriz)/r min Fe= pi^2*E/(kl/r)^2 Fy/2= 27,500 psi _ (1 x 44 in)/0.43 in = 27,821 psi i = 102.3 In Since Fe>Fy/2,Fri=Fy*(1-fy/4(e) Pn= AREA*Fn Pallow= Pn/f2c = 27,817 psi = 0.2921n^2*27817 psi = 8123 lb/1.92 = 8,123 lb = 4,231 lb Pn/Pallow= 0.29 <= 1.0 OK . rrrc b-5K.xls D Page of /S 5/I3/2020 • Structural Engineering & Design Inc. 1815 Wright Ave La Verne.CA 91750 Tel:900.696.1351 Fax:900.586.7186 By: NIHAL /MIZ Project: HOBBY KING Project#: 051320-56 Single Row Frame Overturning Configuration:TYPE B SINGLE ROW Loads Critical Load case(s): a 1)RMI Sec 2.2,Item 7: (0.9-0.2Sds)D+(0.9-0.20Sds)*B*Papp-E*rho hpES Sds= 0.6628 . my Vtrans=V=E=Qe= 1,769 lb (0.9-0.2Sds)= 0.7674 DEAD LOAD PER UPRIGHT=D= 225 lb (0.9-0.25ds) 0.7674 PRODUCT LOAD PER UPRIGHT=P= 15,60D lb B= 4:;,,h <<g'^, ri H h Papp*Pap*1) 1,1932 lb rho 1.0000 , WstLCl=Wst1=(0.76744*D+0.76744*Papp*i)= 6,1931b , Frame Depth=Df= 44.0 In T Product Load Top Level,Ptop= 5,200 lb Htop-M=H= 198.0 In !• DL/Lvl= 75 lb # Levels= 3 Ir p;-.I Seismic Ovt based on E,E(Fi*hi)= 213,173 In-lb #Anchors/Base= 2 height/depth ratio= 4.5 In hp= 48.0 in slop EI FVATION A)Fully Loaded Rack h=H+hp/2= 222.0 in Load case 1: Movt= E(Fi*hi)*E*rho Mst= Wst1*Df/2 T= (Movt-Mst)/Df = 213,173 In-lb = 8193 lb*44 in/2 = (213173 In-lb- 180246 in-lb)/44 in = 180,246 in-lb = 74B lb Net Uplift per Column I Net Seismic Uplift= 748 lb B)Top Level Loaded Only Load case 1: 0 V1=Vtop= Cs*Ip*Ptop>=350 lb for H/D>6.0 Movt= [V1*h +V2*H/2)*rho 0.1657*5200 lb = 194,975 In-lb = 862 lb T= (Mont-Mst)/Df Vleff= 862 lb Critical Level= 3 = (194975 In-lb-91594 in-Ib)/44 in V2=VpL= Cs*Ip*D Cs*Ip= 0.1657 = 2,350 lb Netupllft per Column = 37 lb Mst= (0.76744*D+ 0.76744*Ptop*1)*44 in/2 = 91,594 in-lb I Net Seismic Uplift= 2,350 lb Anchor Check(2)0.5"x 3.25" Embed HILT!KWIKBOLT TZ anchor(s)per base plate. Special inspection Is required per ESR 1917. Pullout Capadty=Tcap= 1,961 lb L.A.City Jurisdiction?NO Tcap*Phi= 1,961 lb Shear Capacity=Vcap= 2,517 lb Phl= 1 Vcap*Phi= 2,517 lb Fully Loaded: (374 Ib/1961 1b)^1+(442 lb/2517 ib)^1= 0.37 <= 1.2 OK Top Level Loaded: (1175 Ib/1961 Ib)^1 +(215 lb/2517 Ib)^1= 0.68 <= 1.2 OK • I 1YFE 1,-5R.xls Page // of /,r 5/13/2020 Structural Engineering & Design Inc. 1815 Wriaht Ave La Verne CA 91750 TeP 909 5596 1451 Fax 909 596.7186 NIHAL By: MQZ Project: HOBBY KING / Project#: 051320.56 Base Plate Configuration:TYPE B SINGLE ROW Section .- a --a- p Baseplate= 8x8x0.375 Eff Width=W= 8.00 In a= 3,00 in �' Mb Eff Depth=D= 8.00 In Anchor cc. =2*a=d= 6.00 in Column Width=b= 3.00 in N=#Anchor/Base= 2 I I b f g Column Depth=dc= 3.00 In Fy= 36,000 psi L= 2.50 In w Plate Thickness=t= 0.375 in lhhwrlalsle Elevation Down Aisle Loads Load Case 5: (1+0.105*5ds)0+0.75*f(1.4+0.145ds)*B*P+0.75*f0.7*rho*E]c=1.0,ASO Method COLUMN DL= 113 lb Axial=P= 1.069594* 112.5 lb+0.75* (1.492792*0.7* 7B00 lb) COLUMN PL= 7,800 lb = 6,233 lb Base Moment= 8,000 in-lb Mb= Base Moment*0.75*0.7*rho 1+0.105*Sds= 1.0696 = 8000 in-lb*0.75*0.7*rho 1.4+0.14Sds= 1.4928 = 4,200 in-lb Efff 8 (tj t1(t f `.i�� v fi� Axial Load P= 6,233 lb Mbase=Mb= 4,200 in-lb I Effe Axial stress=fa= P/A=P/(D*W) M1= wL^2/2=fa*L^2/2 = 97 psi = 304 in-lb Moment Stress=fb= M/S=6*Mb/[(D*B^2J Moment Stress=fb2= 2*fb*L/W = 49.2 psi = 30,8 psi Moment Stress=fbl = fb-fb2 M2= fbl*L^2)/2 = 18.5 psi = 58 in-lb M3= (1/2)*fb2*L*(2/3)*L= (1/3)*fb2*L^2 Mtotal= M1+M2+M3 = 64 In-lb = 426 In-lb/in S-plate= (1)(t"2)/6 Fb= 0.75*Fy = 0.023 In^3/In = 27,000 psi fb/Fb= Mtotal/[(S-plate)(Fb)) F'p= 0.7*F'c 0.67 OK = 2,800 psi OK Tanchor= (Mb-(PLapp*0.75*0.46)(a))/((d)*N/2] Tallow= 1,961 lb OK _ -3,397 lb No Tension Cross Aisle Loads akcaf adm+eOffsec24*m mry.ati,moor.ry,arc yaw75+ez'o.75."1.4As°mafwd Check uplift load on Baseplate Check uplift forces on baseplate with 2 or more anchors per MI 7.2,2. Pstatic= 6,233 lb When the base prate configuration consists of tyro anchor bolts located on ether We .f the column and a net uplift force exists,the minimum base plate thickness Movt*0.75*0.7*rho= 111,916 In-lb Pseismic= Movt/Frame Depth . u be determined based on a design bending moment in the plate equal Frame Depth= 44.0 In = 2,544 lb o the uplift force on one anchor times 1/2 the distance from P=Pstatic+Pseismle= 8,777 lb e centerline of the anchor to the nearest edge of the rack column" b=Column Depth= 3.00 In T 1.— c L=Base Plate Depth-Col Depth= 2.50 In Ta Mu1111 a ulll fa= P/A= P/(D*W) M= wL^2/2=fa*L^2/2 I b I r = 137 psi = 429 in-lb/In Elevation Uplift per Column= 2,350 lb Sbase/in= (1)(t^2)/6 Fbase= 0.75*Fy Qty Anchor per BP= 2 = 0.023 in^3/in = 27,000 psi Net Tension per anchor=Ta= 1,175 lb c= 2.50 In fb/Fb= M/[(5-plate)(Fb)] Mu=Moment on Baseplate due to uplift= Ta*c/2 = 0.68 OK = 1,469 in-lb Splate= 0.188 in^3 fb Fb*0.75= 0.21B OK TYPE b p-SR.xls Page l —of /f 5/13/2020 i j ' k Structural 1 Engineering & Design I nc. 1 1815 Wright Ave La Verne.CA 91760 Tel 909.596.1351 Fax 909.596.7186 By: NIHAL /MQZ Project: HOBBY KING Project#: D51320-56 Slab on Grade Configuration:TYPE B SINGLE ROW Ip sr # i g ?4al 1 °r.`y x slab v a 7. .°r Concrete a -1 tr 'r, Pr= 4,000 psi slabi. , t t D , I b e },;,. 7-0 15Iab=t= 5.0 In . ,, ' f; s teff= 5.0 in c ' .Aisle % -►� � � i .4a �r �a.�a� fl< •4 it a�lsill .i:'?� �} Yc ' ""ta'',t v 60, fA` a r4._ M Y s. , , « ` � fsoll 750 psf L -_� ^0 t C .K ay r iw ra, Down Aisle P. Movt= 213,173 In-lb SLAB FIEVATION ••'„<":� •'` Frame depth= 44.0 In BaseDlate Plan View Sds= 0.663 Base Plate 0.2*Sds= 0.133 Effec.saseplate wxlth=e= 8.00 In width=a= 3.00 in - ERec eesep ate Depth=D. 8.00 In depth=b= 3.00 In li=B/D= 1.000 midway dist face of column to edge of plate=c= 5.50 In Pc^0.5= 63.20 psi Column Loads midway dist face of column to edge of plate=e= 5.50 I DEAD LOAD=D= 113 lb per column Load Case 1) (1.2+0.2 •s)D+(1.2+0.25ds)*B*P+rho*E RMI SEC2.2 EQTN s unfactor&ASP load = 1.33256*113 lb+1.33256*0.7*7800 lb+1*4844 lb PRODUCT LOAD=P= 7,800 lb per column = 12,270 lb unfec oredASP bad Load Case 2) (0.9-0.25ds)D+(0.9-0.2Sds)*B*Papp+rho*E RM1 SEC 2,2 EQTN 7 Papp= 5,226 lb per column = 0.76744* 113 lb+0,76744*0.7*5226 lb+ 1*4844 lb P-seismic=E= (Movt/Frame depth) = 7,738 lb = 4,844 lb per column Load Cact'.3) 1.2*D+ 1.4*P MI SEC 2.2 EQIN 1,2 unfactored Limit State load = 1.2*113 lb+ 1.4*7800 lb B= Y t = 11,055 lb rho= p Load Case 4) 1.2*D+1.0*P+ 1.0E AO MO11sc9x.,Cyw93 Sds= 0.6628 = 12,780 lb 1.2+ 0.2*Sds= 1.3326 Effective Column Load=Pu= 12,780 lb per column 0.9-0.20Sds= 0.7674 Puncture Apunct= [(c+t)+(e+t)1 1 t = 210,0In^2 Fpunctl= [(4/3+8/(3*j;))*1*(Pc^0.5) fv/Fv= Pu/(Apunct*Fpunct) = 151.7 psi = 0.603 < 1 OK Fpunct2= 2.66*A,*(Fc^0.5) = 100.9 psi Fpunct eff= 100.9 psI Slab Bendin. Pse=DL+PL+E= 12,780 lb Asoll= (Pse*144)/(fsoll) L= (Asoll)^0.5 y= (c*e)^0.5+2*t = 2,454In^2 = 49.54 In = 15.5 In x= (L-y)/2 M= w*x^2/2 S-slab= 1*teff^2/6 = 17.0In = (fsoll*x^2)/(144*2) = 4.17ln^3 1 Fb= 5*(phl)*(fc)^0.5 = 754.3 In-lb fb/Fb= M/(S-slab*Fb) i = 189.74 psi = 0.954 t 1,OK 1 t . TYPE b-SR.xls Page It of /6' 5/13/2020 i Structural Engineering & Design Inc. 1815 Wriaht Ave La Verne.CA 91750 Tel:909.596.1351 Fax:909.596.7186 By: NIHAL/MOZ Project: HOBBY KING Project#: 051320-56 . Configuration&Summary:TYPE B DOUBLE ROW \ „Tr� "*RACK COLUMN REACTIONS — ASD LOADS 36" 66" AXIAL DL= 113/b AXIAL LL= 7,800/b 5„ SEISMIC AXIAL Ps=+/- 4,844/b - BASE MOMENT-- 8,000 in-lb 240' 66„ 240" 54„ t t--- 36„ 66" 36" — I.----- 96" - 44" --,I" 44" -4- Seismic Criteria #Bm Leis Frame Depth Frame Height #Diagonals Beam Length Frame Type 5s=0.86, Fa=1.156 3 44 in 240.0 In 5 96 in Component Description STRESS Column Fy=55 ksi SPCRK FH-30/3x3x12ga P=7913 Ib,M=24364 in-lb 0.9-OK Column&Backer None None None N/A Beam Fy=55 ksl SpaceRak SB506M 5 in x 0.06 in Lu=96 In Capacity:6481 lb/pr 0.8-OK Beam Connector Fy=55 ksl Lvl 1:4 pin OK I Mconn=15867 in-lb Mcap=31729 In-lb 0.5-OK • Brace-Horizontal Fy=55 ksi Sperack 1-1./2x1-1/4x14ga 0.29-OK Brace-Diagonal Fy=55 ksi Sperack 1-1/2x1-1/4x14ga 0.59-OK Base Plate Fy=36 ksi 8x8x0.375 I Fixity=8000 in-lb 0.68-OK Anchor 2 per Base 0.5"x 3.25"Embed HILTI KWIKBOLT TZ ESR 1917 Inspection Reqd(Net Seismic UpllR=2350 Ib) 0.567-OK Slab&Soil 5"thk x 4000 psi slab on grade.750 psf Soil Bearing Pressure 0.95-OK _ Level Load** Story Force Story Force Column Column Conn. Beam Per Level Beam Spcg Brace Transv Longit. Axial Moment Moment Connector 1 5,200 lb 66.0 in 36.0 in 295 lb 174 lb 7,913 lb 24,364 "4/ 15,867 "# 4 pin OK 2 5,200 lb 66.0 in 36.0 in 590 lb 348 lb 5,275 lb 14,355 "-ft 10,354 "# 4 pin OK 3 5,200 lb 66.0 In 54.0 in 885 lb 522 lb 2,638 lb 8,613 "# 5,329 "# I pin OK 54.0 In 36.0 in (**Load defined as product weight per pair of beams Total: 1,769 lb 1,044 lb Notes 2 STD ROW SPACERS • TYPE B.xis Page / y of lr- 5/13/2020 Otructural Engineering & Design Inc. 1815 Wright Ave La Verne. CA 91750 Tel:909.596.1351 Fax:909.596.7186 By: NIHAL/MOZ Project: HOBBY KING Project#: 051320-56 Configuration&Summary:TYPE A SINGLE ROW -'T' -------' **RACK COLUMN REACTIONS 78I ASDLOADS --- — 24" AXIAL DL= 22516 18" AXIAL LL= 3,000/b -1-- '` SEISMIC'AXIAL Ps=+/- 2,214/b 120" 18 120" BASE MOMENT= 0 In-lb ,'� _ 36" 18" - - 36" 18" l-I` _4 -I-- 96" 4 --I-- 24" Seismic Criteria #Bm Lvls Frame Depth Frame Height #Diagonals Beam Length Frame Type Ss=0.86, Fa=1.156 6 24 in 120.0 in 3 96 in Single Row Component Description STRESS Column Fy=55 ksi 3x1-5/8x14ga P=3225 Ib,M=5573 In-lb 0.46-OK Column&Backer None None None N/A Beam Fy=55 ksi Intik 260/2.625"deepx2.75"x0.07" Lu=96 In Capacity:2862 lb/pr 0.35-OK Beam Connector Fy=55 ksi Lvl 1:2 pin OK I Mconn=4211 In-lb Mcap=9726 in-lb 0.43-OK Brace-Horizontal Fy=55 ksi Sperack 1-1/2x1-1/4x14ga 0.07-OK Brace-Diagonal Fy=55 ksi Sperack 1-1/2x1-1/4x14ga 0.28-OK Base Plate Fy=36 ksi 3x4.5x0.1875 I Fixity=0 in-lb 0.99-OK Anchor 1 per Base 0.5"x 3.25"Embed HILTI KWIKBOLT TZ ESP.1917 Inspection Regd(Net Seismic Uplift=523 lb) 0.333-OK Slab&Soil 5"thk x 4000 psi slab on grade. 750 psf Soll Bearing Pressure 0.35-OK Level Load** Story Force Story Force Column Column Conn. Beam Per Level Beam Spcg I Brace Transv Longit Axial Moment Moment Connector 1 1,000 lb 18.0 in 36.0 in 35 lb 35 lb 3,225 lb 5,573 "# 4,211 "# 2 pin OK 2 1,000 lb 18.0 in 36.0 in 71 lb 71 lb 2,688 lb 3,184 "# 3,264 "# 2 pin OK 3 1,000 lb 18.0 in 24.0 in 106 lb 106 lb 2,150 lb 2,866 "# 2,985 "# 2 pin OK 4 1,000 lb 18.0 In 141 lb 142 lb 1,613 lb 2,388 "# 2,595 "# 2 pin OK 5 1,000 lb 18.0 in 176 lb 177 lb 1,075 lb 1,751 "# 2,094 "# 2 pin OK 6 1,000 lb 18.0 in 212 lb 212 lb 538 lb 955 "# 1,481 "# 2 pin OK i I I **Load defined as product weight per pair of beams Total: 741 lb 743 lb Notes I • • Page /rj of I1. 5/14/2020