Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Specifications (2)
, &P,2 /, ®02cc W r IGI, CC' Sfructural Engineering Design vo PRoF$ Project Nome : PACSTAR <<, NFF %a � cr 62618PE r Project Number : LV-122019-13 R i Date : 12/24/19 9'oa7OFRE �,1 40, �NGQIAO 1- r- Street Address: 7245 SW DURHAM RD, ELDG K, #108 Clty/State : PORTLAND, OR 97224 EXPIRES: 06-30-20r0 12/27/2019 Scope of Work : STORAGE RACK Minggiao Zhu, PE/ '.Eng TEL:909.590.1351 FAX: 909.596.718e 1428 N Shevlin Cc urt Sewickley, PA 15:43 Structural r Engineering & Design Inc. • 1815 Wriciht Ave La Verne, CA 91750 Tel:909.596.1351 Fax: 909.596.7186 By: N.V Eng:Mqz. Project PACSTAR Project#: LV- 22019-13 TABLE OF CONTENTS Title Page 1 Table of Contents 2 Design Data and Definition of Components 3 Critical Configuration 4 Seismic Loads 5 to 6 Column 7 Beam and Connector 8 to 9 Bracing 10 Anchors 11 Base Plate 12 ' Slab on Grade 13 Other Configurations 14 — TYPE I Page Z of ) I2/B/20I9 , Structural - Engineering & Design I nc. 1815 Wriaht Ave La Verne.CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: N.V Eng:Mqz. Project: PACSTAR Project#: LV-122019-13 Design Data 1)The analyses herein conforms to the requirements of the: 2018 IBC Section 2209 2016 CSC Section 2209A ANSI MH 16.1-2012 Specifications for the Design of Industrial Steel Storage Racks"2012 RMI Rack Design Manual" ASCE7-16,section 15.5.3 2)Transverse braced frame steel conforms to ASTM A570,Gr.55,with minimum strength, Fy=55 ksi Longitudinal frame beam and connector steel conforms to ASTM A570,Gr.55,with minimum yield, Fy=55 ksi All other steel conforms to ASTM A36,Gr.36 with minimum yield,Fy=36 ksi 3)Anchor bolts shall be provided by installer per ICC reference on plans and calculations herein. 4)All welds shall conform to AWS procedures,utilizing E70xx electrodes or similar.All such welds shall be performed in shop,with no field welding allowed other than those supervised by a licensed deputy inspector. 5)The existing slab on grade is 6"thick with minimum 2500 psi compressive strength.Allowable Soil bearing capacity is 1000 psf. The design of the existing slab is by others. 6)Load combinations for rack components correspond to 2012 RMI Section 2.1 for ASD level load criteria Definition of Components A C6LET, _ � �_ �_ itx¢onral I .w. �� Gael = I 1- l ci Fay e Pate and : ,- -— — , I t 1=1 I Ar Heigh Depth Rant View:O wn As w_c`3n:i..4 Cr=Aise lion- 11dxxal)Frame fTrnslerv_ 1 Frans yPF I Page 3 of 1¢ I2/23/20I9 Structural - Engineering & Design Inc. 1815 Wriaht Ave La Verne.CA 91750 Tel:909,596.1351 Fax: 909.596.7186 By: N.V Eng:Mgz. Project: PACSTAR Project#: LV-122019-13 Configuration&Summary:TYPE 1 SELECTIVE RACK I -1— **RACK COLUMN REAC77ON5 42„ ASD LOADS 46" I AXIAL DL= 11316 AXIALLL= 3,000/b 54' SEISMIC AXIAL Ps=+/- 2,021/b 192 192„ -I BASE MOMENT= f,000 in-lb 64" II 64" 36" 96" + 42" —4- Seismic Criteria # Bm Lvls Frame Depth Frame Height #Diagonals Beam Length _ Frame;Type Ss=0.962, Fa=1.115 3 42 in 192.0 in _ 4 - 96 in Single Row Component Description STRESS Column Fy=55 ksi SPCRK FH-20/3x3x14ga P=3113 Ib,M=6344 in-lb ! 0.34-OK Column&Backer None None None i N/A Beam Fy=55 ksi SpaceRak SB506M 5 in x 0.06 in Lu=96 in Capacity: 6481 lb/pr 0.31-OK Beam Connector Fy=55 ksi Lvl 1: 3 pin OK Mconn=5033 in-lb Mcap=12691 in-lb 0.4-OK Brace-Horizontal Fy=55 ksi Rect Tube lxl-1/2x18ga 0.17-OK Brace-Diagonal Fy=55 ksi Rect Tube lx1-1/2x18ga 0.36-OK Base Plate Fy=36 ksi 8x5x0.375 I Fixity=6344 in-lb 1 0.61-OK Anchor 2 per Base 0.5"x 3.25"Embed HILTI KWIKBOLT TZ ESR 1917 Inspection Reqd(Net Seismic Uplift=926 Ib) 0.225-OK Slab&Soil 6"thk x 2500 psi slab on grade. 1000 psf Soil Bearing Pressure 0.25-OK Level Load** Story Force Story Force Column Column Conn. Beam Per Level_ Beam Spcg Brace Transv Longit. _ Axial Moment Moment Connector 1 2,000 lb 64.0 in 36.0 in 133 lb 73 lb 3,113 lb 6,344 "# 5,033 "# 3 pin OK 2 2,000 lb 64.0 in 36.0 in 265 lb 146 lb 2,075 lb 5,493 "# 3,609 "# 3 pin OK 3 2,000 lb 46.0 in 54.0 in 361 lb 198 lb 1,038 lb 2,275 "# 1,687 "# 3 pin OK 42.0 in **Load defined as product weight per pair of beams Total: 759 lb 416 lb Notes I TYPE 1 Page U of I ° 12/23/2019 • Structural Engineering & Design Inc. 1815 Wright Ave La Verne, CA 91750 Tel:909.596.1351 Fax: 909.596.7186 By: N.VEng:Mqz. Project: PACSTAR Project#: LV-122019-13 Seismic Forces Configuration:TYPE 1 SELECTIVE RACK Lateral analysis Is performed with regard to the requirements of the 2012 RMI ANSI MH 16.1-2012 Sec 2.6&ASCE 7-10 sec 15.5.3 Ss= 0.962 Transverse(Cross Aisle)Seismic Load j. S1= 0.418 V= Cs*Ip*Ws=Cs*Ip*(0.67*P*Prf+D) vt Fa= 1.115 Cs1= Sds/R UV ... Fv= 1.582 = 0.1788 Cs-max* Ip= 0.1788 IIM Sds=2/3*Ss*Fa= 0.715 Cs2= 0.044*Sds Vmin= 0.015 MI Sd1=2/3*S1*Fv= 0.441 = 0.0315 Eff Base Shear=Cs= 0.1788 Transverse Elevation Ca=0.4*2/3*Ss*Fa= 0.2860 Cs3= 0.5*S1/R W5= (0.67*PLRF1*PL)+DL(RMI 2.6.2) (Transverse,Braced Frame oir.)R= 4.0 = 0.0523 = 4,245 lb Ip= 1.0 Cs-max= 0.1788 Vtransv=Vt= 0.1788* (225 lb+4020 Ib) PP1- 1.0' Base Shear Coeff=Cs= 0.1788 Etransverse= 759 lb Pallet Height=hp= 48.0 in Limit States Leve/Transverse seismic shear per upright DL per Beam Lvl= 75 I¢ Level PRODUCT LOAD P P*0.67*Pan. DL hi wi*hi Fi Fi'(hi+hp/2) 1 2,000 lb 1,340 lb 75 lb 64 in 90,560 132.7 lb 1,678-# 2 2,000 lb 1,340 lb 75 lb 128 in 181,120 265.4 lb 40,341-# 3 2,000 lb 1,340 lb 75 lb 174 in 246,210 360.8 lb 71,438-# I sum: P=6000 lb 4,020 lb 225 lb W=4245 lb 517,890 759 lb 1=123,457 Longitudinal(Downaisle)Seismic Load Similarly for longitudinal seismic loads,using R=6.0 Ws= (0.67* PLRF2*P) +DL PRF2= 1.0 F '‘'1,1 I�'"1 Cs1=5d1/(T*R)= 0.0980 = 4,245 lb (Longitudinal,Unbraced Dir.)R= 6.0 Cs2= 0.0315 Cs=Cs-max*Ip= 0.0980 T= 0.75 sec Cs3= 0.0348 Vlong= 0.098* (225 lb+4020 Ib) I k;.:;i(-_.1 11 Cs-max= 0.0980 Elongitudinal= 416 lb Limit States Leve1Lagif.seismic shwrperupright Level PRODUC LOAD P P*0.67*PRF2 DL hi wi*hi R Front Viefy 1 2,000 lb 1,340 lb 75 lb 64 in 90,560 72.7 lb 2 2,000 lb 1,340 lb 75 lb 128 in 181,120 145.5 lb 3 2,000 lb 1,340 lb 75 lb 174 in 246,210 197.8 lb I . sum: 4,020 lb 225 lb W=4245 lb 517,890 416 lb TYPE I Page S of 12/23/20I9 Structural engineering & Design Inc. 1815 Wright Ave La Verne. CA 91750 Tel:909.596.1351 Fax: 909.596.7186 By: N.V Eng:Mgz. Project: PACSTAR Project#: LV-122019-13 Downaisle Seismic Loads Configuration:TYPE 1 SELECTIVE RACK Determine the story moments by applying portal analysis.The base plate is assumed to provide partial fixity. Seismic Story Forces Typical frame made Vlong= 416 lb Tributary area of two columns Vcol=Vlong/2= 208 lb ofrack frame Ay, _` F1= 73 c lb pi »Z; : pp' " Typical Frame made I . (�•,.c^RF 1 ��Will �oftwo columns F2= 1461b F3= 198 lb E ©;[- E yO [2:...J ©:E: 1E:J le r t "'- ri , fidal. iopVlew 96' , Front View Side View Seismic Story Moments Conceptual System COL Mbase-max= 8,000 in-lb <===Default capacity h1-eff= hl-beam clip height/2 Mbase-v= (Vcol*hieff)/2 = 61 in Vcol I�� = 6,344 in-lb <===Moment going to base - Mbase-eff= Minimum of Mbase-max and Mbase-v h2 = 6,344 in-lb M 1-1= [Vcol *hleff]-Mbase-eff M 2-2= [Vcol-(F1)/2] * h2 = (208 lb*61 in)-6344 in-lb = [208 lb-72.8 Ib]*64 in/2 = 6,344 in-lb = 5,493 in-lb h1 - Mseis= (Mupper+Mlower)/2 Beam to Column Mseis(1-1)= (6344 in-lb+ 5493 in-lb)/2 Mseis(2-2)= (5493 in-lb+2275 in-lb)/2 Elevation = 5,918 in-lb = 3,884 in-lb rho= 1.0000 Summary of Forces LEVEL hi Axial Load Column Moment** Mseismic** Mend-fixity Mconn** Beam Connector 1 64 in 3,113 lb 6,344 in-lb 5,918 in-lb 1,272 in-lb 5,033 in-lb 3 pin OK 2 64 in 2,075 lb 5,493 in-lb 3,884 in-lb 1,272 in-lb 3,609 in-lb 3 pin OK 3 46 in 1,038 lb 2,275 in-lb 1,137 in-lb 1,272 in-lb 1,687 in-lb 3 pin OK Mconn= (Mseismic+ Mend-fixity)*0.70*rho Mconn-allow(3 Pin)= 12,691 in-lb **all moments based on limit states level loading TYPE I Page [ of 1 0 12/23/2019 Structural Engineering & Design Inc. 1815 Wright Ave La Verne. CA 91750 Tel:909.596.1351 Fax: 909.596.7186 By: N.V Eng:Mqz. Project: PACSTAR Project#: LV-1 2201 9-1 3 Column(Longitudinal Loads) Configuration:TYPE 1 SELECTIVE RACK Section Properties Section: SPCRK FH-20/3x3x14ga 3.000 in _ Aeff= 0.643 in^2 ly= 0.749 in^4 Kx= 1.7 x Ix= 1.130 in^4 Sy= 0.493 in^3 Lx = 61.5 in I Sx= 0.753 in^3 ry= 1.080 in Ky= 1.0 y_,_.r._.-y 3.000 in rx= 1.326 in Fy= 55 ksi Ly= 36.0 in 0.075 in ill= 1.67 Cmx= 0.85 Cb= 1.0 L_ x E= 29,500 ksi 0.75 in Loads Considers loads at level 1 COLUMN DL= 112 lb Critical load cases are:RMI Sec 2.1 COLUMN PL= 3,000 lb Load Case 5::(1+0.105*Sds)D+0.75*(1.4+0.145ds)*B*P+0.75*(0.7*rho*E)<=1.0,ASO Method Mcol= 6,344 in-lb axial load coeff: 0.78755985*P seismic moment coeff: 0.5625*Mcol Sds= 0.7151 Load Case 6::(1+0.14*Sds)D+(0.85+0.14Sds)*B*P+(0.7*rho*E)<=1.0,ASO Method 1+0.105*Sds= 1.0751 axial load coeff: 0.66508 seismic moment coeff 0.7*Mcol 1.4+0.14Sds= 1.5001 By analysis, Load case 6 governs utilizing loads as such 1+0.14Sds= 1.1001 0.85+0.14*Sds= 0.9501 Axial Load=Pax= 1.100114*112ib+0.950114*0.7*3000lb Moment=Mx= 0.7*rho*Mcol 8= 0.7000 = 2,118 lb = 0.7* 6344 in-lb rho= 1.0000 = 4,441 in-lb Axial Analysis KxLx/rx= 1.7*61.5"/1.326" KyLy/ry= 1*36"/1.08" Fe > Fy/2 = 78.8 = 33.3 Fn= Fy(1-Fy/4Fe) = 55 ksi*[1-55 ksi/(4*46.8 ksi)] Fe= n^2E/(KL/r)max^2 Fy/2= 27.5 ksi = 38.9 ksi = 46.8ksi Pa= Pn/Qc Pn= Aeff*Fn 4c= 1.92 = 24982 lb/1.92 = 24,982 lb = 13,012 lb P/Pa= 0.16 > 0.15 Bending Analysis Check: Pax/Pa +(Cmx*Mx)/(Max*px) <_ 1.0 P/Pao+Mx/Max_< 1.0 Pno= Ae*Fy Pao= Pno/i c Myield=My= Sx*Fy = 0.643 in^2*55000 psi = 353651b/1.92 = 0.753 in^3*55000 psi = 35,365 lb = 18,419 lb = 41,415 in-lb Max= My/52f Pcr= n^2E1/(KL)max^2 = 41415 in-lb/1.67 = n^2*29500 ksi/(1.7*61.5 in)^2 = 24,799 in-lb = 30,099 lb px= {1/[1-(Qc*P/Pcr)]}^-1 _ {1/[1-(1.92*2118lb/30099lb)]}^-1 = 0.86 Combined Stresses (2118 lb/13012 lb) + (0.85*4441 in-Ib)/(24799 in-Ib*0.86) = 0.34 < 1.0,OK (EQ C5-1) (2118 lb/18419 lb)+ (4441 in-lb/24799 in-lb) = 0.29 < 1.0,OK (EQ C5-2) **For comparison, total column stress computed for load case 5 is: 33.0% q loads 2483.089126 lb Axial and M= 3330 in-lb TYPE 1 Page of 1g I2/23/2019 Structural Engineering & Design Inc. 1815 Wright Ave La Verne. CA 91750 Tel: 909.596.1351 Fax 909.596.7186 By: N.VEng:Mqz. Project: PACSTAR Project#: LV-122019-13 BEAM Configuration:TYPE 1 SELECTIVE RACK DETERMINE ALLOWABLE MOMENT CAPACITY 2.50 in A)Check compression flange for local buckling (62.1) 1.63 in T w= C-2*t-2*r = 1.625 in-2*0.06 in-2*0.06 in = 1.385 in 1.625 in w/t= 23.08 1=lambda= [1.052/(k)^0.5] *(w/t)*(Fy/E)^0.5 Eq.B2.1-4 1, = [1.052/(4)^0.5] *23.08*(55/29500)^0.5 5.000 in = 0.524 < 0.673, Flange is fully effective Eq. B2.1-1 0.060 in 8) check web for local buckling per section 62.3 f1(comp)= Fy*(y3/y2)= 51.12 ksi j f2(tension)= Fy*(y1/y2)= 102.88 ksi Y= f2/f1 Eq. B2.3-5 Beam= SpaceRak SB506M 5 in x 0.06 in = -2.013 Ix= 2.586 in^4 k= 4+2*(1-Y)^3+ 2*(1-Y) Eq. B2.3-4 Sx= 0.992 inA3 = 64.73 Ycg= 3.300 in flat depth=w= yl+y3 t= 0.060 in = 4.760 in w/t= 79.33333333 OK Bend Radius=r= 0.060 in 1=lambda= [1.052/(k)^0.5] * (w/t)*(fl/E)^0.5 Fy=Fyv= 55.00 ksi = [1.052/(64.73)^0.5]*4.76*(51.12/29500)^0.5 Fu=Fuv= 65.00 ksi = 0.432 <0.673 E= 29500 ksi • be=w= 4.760 in b2= be/2 Eq B2.3-2 top flange=b= 1.625 in bl= be(3-Y) = 2.38 in bottom flange= 2.500 in = 0.95 Web depth= 5.0"4.- bl+b2= 3.330 in > 1.58 in,Web is fully effective fl Determine effect of cold working on steel yieldpoint(Fva)per section A7.2 + (comp) Fya= C*Fyc+(1-C)*Fy (EQ A7.2-1) -.- Lcorner=Lc= (p/2)* (r+t/2) y2 0.141 in C= 2*Lc/(Lf+2*Lc) Lflange-top=Lf= 1.385 in = 0.169 in Y' m= 0.192*(Fu/Fy)-0.068 (EQ A7.2-4) dep" = 0.1590 Bc= 3.69*(Fu/Fy)-0.819*(Fu/Fy)^2-1.79 (EQ A7.2-3) = 1.427 since fu/Fv= 1.18 < 1.2 Yw yl and r/t= 1 <7 OK then Fyc= Bc* Fy/(R/t)^m (EQ A7.2-2) - znee�o) = 78.485 ksi Thus, Fya-top= 58.97 ksi (tension stress at top) Fya-bottom= Fya*Ycg/(depth-Ycg) y1= Ycg-t-r= 3.180 in • = 114.48 ksi (tension stress at.bottom) y2= depth-Ycg= 1.700 in Check allowable tension stress for bottom flange y3= y2-t-r= 1.580 in Lflange-bot=Lfb= Lbottom-2*r*-2*t = 2.260 in Cbottom=Cb= 2*Lc/(Ltb+2*Lc) = 0.111 Fy-bottom=Fyb= Cb*Fyc+(1-Cb)*Fyf = 57.61 ksi Fya= (Fya-top)*(Fyb/Fya-bottom) = 29.68 ksi if F= 0.95 Then F*Mn=F*Fya*Sx= 27.97 in-k Structural Engineering & Design Inc. _ 1815 Wright Ave I a Verne. CA 91750 Tel: 909.596 1351 Fax: 909.596 7186 By: N.V Eng:Mqz. Project: PACSTAR Project#: LV-122019-13 BEAM Configuration:TYPE 1 SELECTIVE RACK RMI Section 5.2, PT II Section Beam= SpaceRak 58506M 5 in x 0.06 in Ix=Ib= 2.586 in^4 2.50 in Sx= 0.992 in^3 t= 0.060 in E= 29500 ksi `1.63 in 3 Fy=Fyv= 55 ksi F= 300.0 Fu=Fuv= 65 ksi L= 96 in r I Fya= 59.0 ksi Beam Level= 1 1.625 in P=Product Load= 2,000 lb/pair D=Dead Load= 75 lb/pair 5.000 in --► 0.060 in 1.Check Bending Stress Allowable Loads Mcenter=F*Mn= W*L*W*Rm/8 W=LRFD Load Factor= 1.2*D+ 1.4*P+1.4*(0.125)*P RMI2.2,item FOR DL=2%of PL, W= 1.599 Illllllllllll[IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII Rm= 1 -[(2*F*L)/(6*E*Ib +3*F*L)] 1 - (2*300*96 in)/[(6*29500 ksi*2.586 in^3)+(3*300*96 in)] = 0.894 if F= 0.95 Then F*Mn=F*Fya*Sx= 55.58 in-k Thus,allowable load per beam pair=W= F*Mn*8*(#of beams)/(L*Rm*W) 1=5E1 = 55.58 in-k*8* 2/(96in * 0.894* 1.599) = 6,481 lb/pair allowable load based on bending stress —, Mend= W*L*(1-Rm)/8 = (6481 Ib/2) * 96 in* (1-0.894)/8 = 4,122 in-lb @ 6481 lb max allowable load = 1,272 in-lb @ 2000 lb imposed product load 2.Check Deflection Stress Allowable Loads Dmax= Dss*Rd Rd= 1-(4*F*L)/(5*F*L+ 10*E*Ib) Allowable Deflection= L/180 = 1 -(4*300*96 in)/[(5*300*96 in)+(10*29500 ksi*2.586 in^4)] = 0.533 in = 0.873 in Deflection at imposed Load= 0.165 in if Dmax= L/180 Based on L/180 Deflection Criteria and Dss= 5*W*L^3/(384*E*Ib) L/180= 5*W*L^3*Rd/(384*E*Ib*#of beams) solving for W yields, W= 384*E*I*2/(180*5*L^2*Rd) = 384*2.586 in^4*2/[180*5*(96 in)^2*0.873) = 8,091 lb/pair allowable load based on deflection limits Thus, based on the least capacity of item 1 and 2 above: Allowable load= 6,481 lb/pair Imposed Product Load= 2,000 lb/pair Beam Stress= 0.31 Beam at Level 1 G -? - Structural Engineering & Design Inc. 1815 Wright Ave I a Verne CA 91750 Tel 909 596.1351 Fax 909 596 7186 By: N.V Eng:Mgz. Project: PACSTAR Project#: LV-122019-13 3 Pin Beam to Column Connection TYPE 1 SELECTIVE RACK I he beam end moments shown herein show the result of the maximum induced taxed end monents Corm seismic+static loads and the code mandated minimum value of 1.5%(DL+PL) Mconn max= (Mseismic+ Mend-fixity)*0.70*Rho O P1 —} rho= 1.00 " = 5,033 in-lb Load at level 1 2" O P2 • 2" O P3 \ 1/2" "41-11--C 12" Connector Type= 3 Pin Shear Capacity of Pin Pin Diam= 0.44 in Fy= 55,000 psi Ashear= (0.438 in)^2*Pi/4 = 0.1507 in^2 Pshear= 0.4* Fy*Ashear = 0.4* 55000 psi*0.1507in^2 = 3,315 lb Bearing Capacity of Pin tcol= 0.075 in Fu= 65,000 psi Omega= 2.22 a= 2.22 . Pbearing= alpha* Fu*diam*tcol/Omega = 2.22*65000 psi*0.438 in*0.075 in/2.22 = 2,135 lb < 3315 lb Moment Capacity of Bracket Edge Distance=E= 1.00 in Pin Spacing= 2.0 in Fy= 55,000 psi C= Pl+P2+P3 tclip= 0.18 in Sclip= 0.127 in^3 = P1+P1*(2.574.5")+P1*(0.5"/4.5") = 1.667* P1 Mcap= Sap*Fbending C*d= Mcap= 1.667 d= E/2 = 0.127 in^3*0.66* Fy = 0.50 in = 4,610 in-lb Pclip= Mcap/(1.667* d) = 4610.1 in-lb/(1.667* 0.5 in) Thus, P1= 2,135 lb = 5,531 lb Mconn-allow= [P1*4.5"+P1*(2.574.5")*2.5"+P1*(0.574.5")*0.51 = 2135 LB*[4.5"+(2.574.5")*2.5"+ (0.5"/4.5")*0.5") = 12,691 in-lb > Mconn max, OK TYPE ! Page of ig 12/23/2019 Structural engineering & Design inc. 1815 Wright Ave La Verne. CA 91750 Tel;909.596.1351 Fax: 909.596.7186 By: N.V Eng:Mqz. Project: PACSTAR Project#: LV-122019-13 Transverse Brace Configuration:TYPE 1 SELECTIVE RACK Section Properties Diagonal Member= Rect Tube lx1-1/2x18ga Horizontal Member= Red Tube lx1-1/2x18ga Area= 0.226 in^2 i.000 in I Area= 0.226 in^2 H. I.00o,n r min= 0.405 in r min= 0.405 in Fy= 55,000 psi Fy= 55,000 psi K= 1.0 0.049 n sco K= 1.0 Qc= 1.92 d 0.049,, , .500 m Frame Dimensions Bottom Panel Height=H= 54.0 in Clear Depth=D-B*2= 36.0 in Frame Depth=D= 42.0 in X Brace= NO Column Width=B= 3.0 in rho= 1.00 Diagonal Member 0 Load Case 6::(1+�L11141S .85+0.145ds)*B*P+[0.7*rho*E]<=1.0,ASO Method I. D —►I Vtransverse= 759 lb 1b II� Vb=vtransv*0.7*rho= 759 lb* 0.7* 1 (kl/r)= (k* Ldiag)/r min = 531 1b = (1 x 60 in/0.405 in) Ldiag= [(D-B*2)^2+(H-6")^2]^1/2 = 148.1 in Ldlag = 60.0 in Fe= pi^2*E/(kl/r)^2 /�r " Pmax= V*(Ldiag/D)*0.75 = 13,274 psi i amax H = 5691b axial load on diagonal brace member Since Fe<Fy/2, 3"typ 1111,14.11 Pn= AREA*Fn Fn= Fe f = 0.226 in^2* 13274 psi = 13,274 psi Tvoical Panel = 3,000 lb confinuo9on Pallow= Pn/Q Check End Weld = 3000 lb/1.92 Lweld= 3.0 in = 1,562 lb Fu= 65 ksi tmin= 0.049 in Pn/Pallow= 0.36 <= 1.0 OK Weld Capacity= 0.75*tmin*L* Fu/2.5 = 2,867 lb OK Horizontal brace Vb=Vtransv*0.7*rho= 531 lb (kl/r)= (k* Lhoriz)/r min Fe= pi^2*E/(kl/r)^2 Fy/2= 27,500 psi = (1 x 42 in)/0.405 in = 27,075 psi = 103.7 in Since Fe<Fy/2, Fn=Fe Pn= AREA*Fn Pallow= Pn/Qc = 27,075 psi = 0.226in^2*27075 psi = 6119 lb/1.92 = 6,119 lb = 3,187 lb Pn/Pallow= 0.17 <= 1.0 OK TYPE 1 Page 1.4) of 1'' 12/23/201 9 Structural Engineering & Design Inc. 1815 Wright Ave La Verne. CA 91750 Tel:909.596.1351 Fax: 909.596.7186 By: N.VEng:Mgz. Project: PACSTAR Project#: LV-122019-13 Single Row Frame Overturning Configuration: TYPE 1 SELEt_11VE RACK Loads Critical Load case(s): 1)RMI Sec 2.2,item 7: (0.9-0.2Sds)D+ (0.9-0.2OSds)*B*Papp-E*rho hp • Sds= 0.7151 v Vtrans=V=E=Qe= 759 lb (0.9-0.2Sds)= 0.7570 2J DEAD LOAD PER UPRIGHT=D= 225 lb (0.9-0.2Sds)= 0.7570 PRODUCT LOAD PER UPRIGHT=P= 6,000 lb B= 1.0000 H h Papp=P*0.67= 4,020 lb rho= 1.0000 Wst LC1=Wst1=(0.75698*D+0.75698*Papp*1)= 3,213 lb Frame Depth=Df= 42.0 in -r I Product Load Top Level,Ptop= 2,000 lb Htop-Iv1=H= 174.0 in DL/Lv1= 75 lb # Levels= 3 1-4-Dr r-1 Seismic Ovt based on E,E(Fi*hi)= 84,889 in-lb #Anchors/Base= 2 height/depth ratio= 4.1 in hp= 48.0 in SIDE ELEVATION A)Fully Loaded Rack h=H+hp/2= 198.0 in Load case 1: Movt= E(Fi*hi)*E*rho Mst= Wstl*Df/2 T= (Movt-Mst)/Df = 84,889 in-lb = 3213 lb*42 in/2 = (84889 in-lb-67473 in-lb)/42 in = 67,473 in-lb = 415 lb Net Uplift per Column Net Seismic Uplift= 415 lb B)Top Level Loaded Only Load case 1: 0 V1=Vtop= Cs*Ip*Ptop>= 350 lb for H/D >6.0 Movt= [V1*h +V2*H/21*rho = 0.1788*2000 lb = 74,305 in-lb = 358 lb T= (Movt-Mst)/Df VI.eff= 358 lb Critical Level= 3 = (74305 in-lb-35370 in-lb)/42 in V2=VDT= Cs*Ip*D Cs*Ip= 0.1788 = 927 lb Net Uplift per Column = 401b Mst= (0.75698*D+0.75698*Ptop*1)*42 in/2 = 35,370 in-lb Net Seismic Uplift= 927 lb Anchor Check(2)0.5"x 3.25" Embed HILTI KWIKBOLT TZ anchor(s)per base plate. Special inspection is required per ESR 1917. Pullout Capacity=Tcap= 1,961 lb L.A.City Jurisdiction? NO Tcap*Phi= 1,961 lb Shear Capacity=Vcap= 2,517 lb Phi= 1 Vcap*Phi= 2,517 lb Fully Loaded: (207 Ib/1961 Ib)^1 + (189 Ib/2517 Ib)^1 = 0.18 <= 1.2 OK Top Level Loaded: (463 lb/1961 Ib)^1 + (89 lb/2517 Ib)^1 = 0.27 <= 1.2 OK TYPE I Page ' of g I2/23/20I9 Structural Engineering & Design Inc. 1815 Wright Ave La Verne. CA 91750 TeL 909.596.1351 Fax: 909.596.7186 By: N.V Eng:Mqz. Project: PACSTAR Project#: LV-122019-13 Base Plate Configuration:TYPE 1 SELECTIVE RACK Section `— a -' Baseplate= 8x5x0.375 1 Eff Width=W= 8.00 in a = 3.00 in 11111 Mb Eff Depth=D= 5.00 in Anchor c.c. =2*a=d= 6.00 in m;—ple Column Width=b = 3.00 in N=#Anchor/Base= 2 ; b I — L Column Depth=dc= 3.00 in Fy= 36,000 psi w L= 2.50 in Plate Thickness=t= 0.375 in Downaisle Elevation Down Aisle Loads Load Case 5::(1+0.105*Sds)D+0.751(1.4+0.14Sds)*B*P+0.75*[0.7*rho*E7<=1.0,ASD Method COLUMN DL= 113 lb Axial=P= 1.0750855* 112.5 lb+0.75*(1.500114*0.7*3000 lb) COLUMN PL= 3,000 lb = 2,484 lb Base Moment= 8,000 in-lb Mb= Base Moment*0.75*0.7*rho 1+0.105*Sds= 1.0751 = 8000 in-lb*0.75*0.7*rho 1.4+0.14Sds= 1.5001 = 4,200 in-lb Eff( B 0i703i} Axial Load P= 2,484 lb Mbase=Mb= 4,200 in-lb Effe Axial stress=fa = P/A = P/(D*W) M1= wL^2/2= fa*L^2/2 = 62 psi = 194 in-lb Moment Stress=fb= M/S= 6*Mb/[(D*B^2] Moment Stress=fb2= 2*fb*L/W = 78.8 psi = 49.2 psi Moment Stress=fbl = fb-fb2 M2= fb1*L^2)/2 F = 29.5 psi = 92 in-lb M3= (1/2)*fb2*L*(2/3)*L= (1/3)*fb2*L^2 Mtotal = M1+M2+M3 = 103 in-lb = 389 in-lb/in S-plate= (1)(t^2)/6 Fb= 0.75*Fy = 0.023 in^3/in = 27,000 psi fb/Fb= Mtotal/[(S-plate)(Fb)] F'p= 0.7*F'c 0.61 OK = 1,750 psi OK Tanchor= (Mb-(PLapp*0.75*0.46)(a))/[(d)*N/2] Tallow= 1,961 lb OK = -907 lb No Tension Cross Aisle Loads anical keel case RMlsecz,,,:ema r1.0.115ds +(,+o.l4sos)vcro7s.E1•o.7s =1.o,ASD MP« Check uplift load on Baseplate Check uplift forces on baseplate with 2 or more anchors per RMI 7.2.2. Pstatic= 2,484 lb "When the base plate configuration consists of two anchor bolts located on either side of the column and a net uplift force exists,the minimum base plate thickness Movt*0.75*0.7*rho= 44,567 in-lb Pseismic= Movt/Frame Depth shall be determined based on a design bending moment in the plate equal Frame Depth= 42.0 in = 1,061 lb to the uplift force on one anchor times 1/2 the distance from P=Pstatic+Pseismic= 3,545 lb the centerline of the anchor to the nearest edge of the rack column" b=Column Depth= 3.00 in T c + L=Base Plate Depth-Col Depth= 2.50 in Ta Mn a ..dll11 fa= P/A= P/(D*W) M= wL^2/2=fa*L^2/2 I I b I s = 89 psi = 277 in-lb/in Elevation Uplift per Column= 926 lb Sbase/in= (1)(t^2)/6 Fbase= 0.75*Fy Qty Anchor per BP= 2 = 0.023 in^3/in = 27,000 psi Net Tension per anchor=Ta= 463 lb c= 2.50 in fb/Fb= M/[(S-plate)(Fb)] Mu=Moment on Baseplate due to uplift= Ta*c/2 = 0.44 OK = 579 in-lb Splate= 0.117 inA3 [fb/Fb1*0.75= 0.137 OK j TYPE I Page 2-of 1 s- 12/23/2019 Structural Engineering & Design Inc. 1815 Wright Ave La Verne. CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: N.V Eng:Mgz. Project: PACSTAR Project#: LV-122019-13 Slab on Grade Configuration:TYPE 1 SELECTIVE RACK P .11 .slab. a , Concrete •'• a 1 fc= 2,500 psi D b e ••• •• tslab=t= 6.0 in �t J Cross Cross tell 6.0 in IIIIUI11IOIIIIIIEMMI1II1II1IIIl11II11I11lO1II11IO1I1 c -- Aisle y � . . . . . . . a fi 1---� fsoil= 1,000 psf '•Down Aisle Movt= 84,889 in-lb SLAB ELEVATION ' ' ' ' Frame depth= 42.0 in Baseolate Plan View Sds= 0.715 Base Plate 0.2*Sds= 0.143 Effec.Basepiate width=B= 8.00 in width=a= 3.00 in 1. 0.600 Effec.easepiate Depth=D= 5.00 in depth=b= 3.00 in p=B/D= 1.600 midway dist face of column to edge of plate=c= 5.50 in F'c^0.5= 50.00 psi Column Loads midway dist face of column to edge of plate=e= 4.00 in DEAD LOAD=D= 113 lb per column Load Case 1) (1.2+0.2Sds)D+ (1.2+0.2Sds)*B*P+rho*E RMI SEC 2.2 EQTN unfactored ASD load = 1.34302* 113 lb+ 1.34302*0.7*3000 lb+1 * 2021 lb PRODUCT LOAD=P= 3,000 lb per column = 4,993 lb unfettered ASO/oad Load Case 2) (0.9-0.2Sds)D+ (0.9-0.2Sds)*B*Papp+rho*E RMI SEC 2.2 EQTN 7 Papp= 2,010 lb per column = 0.75698* 113 lb+0.75698*0.7*2010 lb+1 *2021 lb P-seismic=E= (Movt/Frame depth) = 3,172 lb = 2,021 lb per column Load Case 3) 1.2*D+ 1.4*P RMI SEC 2.2 EQTN 1,2 unfactored Cant State load = 1.2*113 lb+ 1.4*3000 lb B= 0.7000 = 4,335 lb rho= 1.0000 Load Case 4) 1.2*D+ 1.0*P+ 1.0E aa3�is«s.z.i,enmgs Sds= 0.7151 = 5,157 lb 1.2+0.2*Sds= 1.3430 Effective Column Load=Pu= 5,157 lb per column 0.9-0.20Sds= 0.7570 Puncture Apunct= [(c+t)+(e+t)]*2*t = 258.0 in^2 Fpunctl= [(4/3 +8/(3*p)] *><*(F'c^0.5) fv/Fv= Pu/(Apunct*Fpunct) = 90. psi = 0.250 < 1 OK Fpunct2= 2.66*A* (Fc^0.5) = 79.8 psi Fpunct eff= 79.8 psi Slab Bending Pse=DL+PL+E= 5,157 lb Asoil= (Pse*144)/(fsoil) L= (Asoil)^0.5 y= (c*e)^0.5+ 2*t = 743 in^2 = 27.26 in = 16.7 in x= (L-y)/2 M= w*x^2/2 S-slab= 1*teff^2/6 = 5.3 in = (fsoil*x^2)/(144*2) = 6.0 in^3 Fb= 5*(phi)*(fc)^0.5 = 96.9 in-lb fb/Fb= M/(S-slab*Fb) = 150. psi = 0.108 < 1,OK TYPE IPage J� of I 12/23/2019 Structural - Engineering & Design Inc. . 1815 Wright Ave La Verne. CA 91750 Tel:909.596.1351 Fax:909.596.7186 By: N.V Eng:Mqz. Project: PACSTAR Project#: LV-122019-13 Configuration&Summary:TYPE 2 SELECTIVE RACK T T ` **RACK COLUMN REACTIONS ASD LOADS 46" 4 AXIAL DL= 113 lb AXIAL LL= 3,000/b 54 SEISMIC AXIAL Ps=+/- 2,031 Ib f BASE MOMENT= 8,000 in-lb 192" 192" 40" 3611 I. t 88" 36" -I 96" -r 42" 4 Seismic Criteria #Bm Lvls Frame Depth Frame Height # Diagonals _ Beam Length Frame Type Ss=0.962, Fa=1.115 3 42 in 192.0 in 4 96 in Single Row Component Description STRESS Column Fy=55 ksi SPCRK FH-20/3x3x14ga P=3113 Ib,M=9680 in-lb 0.58-OK Column&Backer None None None N/A Beam Fy=55 ksi SpaceRak SB506M 5 in x 0.06 in Lu=96 in _ Capacity: 6481 lb/pr 0.31-OK Beam Connector Fy=55 ksi Lvl 1: 3 pin OK Mconn=5406 in-lb Mcap=12691 in-lb 0.43-OK Brace-Horizontal Fy=55 ksi Rect Tube lx1-1/2x18ga 0.17-OK _ Brace-Diagonal Fy=55 ksi Rect Tube lxl-1/2x18ga 0.36-OK Base Plate Fy=36 ksi 8x5x0.375 Fixity=8000 in-lb 0.61-OK Anchor 2 per Base 0.5"x 3.25"Embed HILTI KWIKBOLTTZ ESR 1912 Inspection Reqd(Net Seismic Uplift=926 Ib) 0.225-OK Slab&Soil 6"thk x 2500 psi slab on grade. 1000 psf Soil Bearing Pressure 0.25-OK Level Load"' Story Force Story Force Column Column Conn. Beam Per Level Beam Spcg Brace Transv Longit. Axial Moment Moment Connector 1 2,000 lb 88.0 in 36.0 in 171 lb 94 lb 3,113 lb 9,680 "# 5,406 "# 3 pin OK 2 2,000 lb 40.0 in 36.0 in 249 lb 137 lb 2,075 lb 3,221 "# 2,765 "# 3 pin OK 3 2,000 lb 46.0 in 54.0 in 339 lb 186 lb 1,038 lb 2,134 "# 1,637 "# 3 pin OK 42.0 in **Load defined as product weight per pair of beams Total: 759 lb 416 lb Notes TYPE 2 Page f r/ of 1 y- I2/23/2015 Structural Engineering & Design Inc. 1815 Wright Ave La Verne. CA 91750 Tel:909.596.1351 Fax:909.596.7186 By: N.V Eng:Mqz. Project: PACSTAR Project#: LV-1 2201 9-1 3 Configuration &Summary:TYPE 3 SELECTIVE RACK \ **RACK COLUMN REAC77ONS I ASD LOADS 46" 4 AXIAL DL= 113/b AXIAL LL= 3,000/b 54„ SEISMIC AXIAL Ps=4-/- 2,021 lb 192" 192" BASEMOMENT= 8,000in-lb 64" II t 64" 36' 120" . 42" —I- Seismic Criteria # Bm Lvls Frame Depth Frame Height # Diagonals Beam Length Frame Type Ss=0.962, Fa=1.115 3 42 in 192.0 in 4 120 in Single Row Component Description STRESS Column Fy=55 ksi SPCRK FH-20/3x3x14ga P=3113 Ib,M=6344 in-lb 0.34-OK Column&Backer None None _ None N/A Beam Fy=55 ksi SpaceRak SB506M 5 in x 0.06 in Lu=120 in Capacity: 5309 lb/pr 0.38-OK Beam Connector Fy=55 ksi Lvl 1: 3 pin OK Mconn=5476 in-lb Mcap=12691 in-lb 0.43-OK Brace-Horizontal Fy=55 ksi Rect Tube lx1-1/2x18ga 0.17-OK Brace-Diagonal Fy=55 ksi Red Tube lx1-1/2x18ga 0.36-OK Base Plate Fy=36 ksi 8x5x0.375 Fixity= 6344 in-lb 0.61-OK Anchor 2 per Base 0.5"x 3.25"Embed HILTI KWIKBOLTTZ ESR 1917 Inspection Reqd(Net Seismic Uplift=926 lb) 0.225-OK Slab&Soil 6"thk x 2500 psi slab on grade. 1000 psf Soil Bearing Pressure 0.25-0K Level Load** Story Force Story Force Column Column Conn. Beam Per Level Beam Spcg Brace _ Transv Longit. Axial Moment Moment Connector 1 2,000 lb 64.0 in 36.0 in 133 lb 73 lb 3,113 lb 6,344 "# 5,476 "# 3 pin OK 2 2,000 lb 64.0 in 36.0 in 265 lb 146 lb 2,075 lb 5,493 "# 4,052 "# 3 pin OK 3 2,000 lb 46.0 in 54.0 in 361 lb 198 lb 1,038 lb 2,275 "# 2,130 "# 3 pin OK 42.0 in I **Load defined as product weight per pair of beams Total: 759 lb 416 lb Notes TYPE 3 rage 16 of 7---- 12/23/2019 Structural Engineering & Design Inc. 1815 Wright Ave La Verne. CA 91750 Tel:909.596.1351 Fax:909.596.7186 By: N.V Eng:Mqz. Project: PACSTAR Project#: LV-1 22 0 1 9-1 3 Configuration&Summary:TYPE 4 SELECTIVE RACK T 1 **RACK COLUMN REACTIONS ASD LOADS 46" 4 AXIAL DL= 113/b AXIAL LL= 3,000/b 54" SEISMIC AXIAL Ps=7-/- 2,031 lb 192" BASE MOMENT= 8,000/n-/b 40" 192" 36„ 88" 36" -- 120" -1' -1— 42„ Seismic Criteria # Bm Lvls Frame Depth_Frame Height # Diagonals Beam Length Frame Type Ss=0.962,Fa=1.115 3 42 in 192.0 in 4 120 in Single Row Component Description STRESS Column Fy=55 ksi SPCRK FH-20/3x3x14ga P=3113 Ib, M-9680 in-lb 0.58-OK Column&Backer None None None N/A Beam Fy=55 ksi SpaceRak 58506M 5 in x 0.06 in Lu=120 in Capacity: 5309 lb/pr 0.38-OK Beam Connector Fy=55 ksi Lvl 1: 3 pin OK Mconn=5849 in-lb Mcap=12691 in-lb 0.46-OK Brace-Horizontal Fy=55 ksi Rect Tube lx1-1/2x18ga 0.17-OK Brace-Diagonal Fy=55 ksi Rect Tube 1x1-1/2x18ga 0.36-OK Base Plate Fy=36 ksi 8x5x0.375 Fixity=8000 in-lb 0.61-OK Anchor 2 per Base 0.5"x 3.25"Embed HILTI KWIKBOLT TZ ESR 1917 Inspection Reqd(Net Seismic Uplift=926 Ib) 0.225-OK Slab&Soil 6"thk x 2500 psi slab on grade. 1000 psf Soil Bearing Pressure 0.25-OK Level Load** Story Force Story Force Column Column Conn. Beam Per Level Beam Spcg Brace Transv Longit. Axial Moment Moment Connector 1 2,000 lb 88.0 in 36.0 in 171 lb 94 lb 3,113 lb 9,680 "# 5,849 "# 3 pin OK 2 2,000 lb 40.0 in 36.0 in 249 lb 137 lb 2,075 lb 3,221 "# 3,208 "# 3 pin OK 3 2,000 lb 46.0 in 54.0 in 339 lb 186 lb 1,038 lb 2,134 "# 2,081 "# 3 pin OK 42.0 in **Load defined as product weight per pair of beams Total: 759 lb 416 lb Notes 'yyg A Page I of f g I2/23/2019 Structural Engineering & Design Inc. 1815 Wright Ave La Verne. CA 91750 Tel: 909 596.1351 Fax: 909.596.7186 By: N.V Eng:Mgz. Project: PACSTAR Project#: LV-122019-13 Configuration&Summary:TYPE 5 SELECTIVE RACK I - - - - **RACK COLUMN REACTIONS ASO LOADS 46" 42{ AXIAL DL= 113/b T AXIALLL= 3,000/b 54" SEISMIC AXIAL Ps=+/- 2,021 lb 192" f BASEMOMENT= 8,000rn-lb 64„ 192' IT 36' 64" 36" -,' 144" ,I- - 42" Seismic Criteria #Bm Lvls Frame Depth Frame Height #Diagonals Beam Length Frame Type Ss=0.962, Fa=1.115 3 42 in 192.0 in 4 144 in Single Row Component Description STRESS - Column Fy=55 ksi SPCRK FH-20/3x3x14ga P=3113 lb,M=6344 in-lb 0.34-OK Column&Backer None None None N/A Beam Fy=55 ksi SpaceRak SB556M 5.5 in x 0.06 in Lu=144 in Capacity:4687 lb/pr 0.43-OK Beam Connector Fy=55 ksi Lvl 1: 3 pin OK Mconn=5667 in-lb Mcap=12691 in-lb 0.45-OK Brace-Horizontal Fy=55 ksi Rect Tube lx1-1/2x18ga 0.17-OK Brace-Diagonal Fy=55 ksi Rect Tube lx1-1/2x18ga 0.36-OK Base Plate Fy=36 ksi 8x5x0.375 Fixity= 6344 in-lb 0.61-OK Anchor 2 per Base 0.5"x 3.25"Embed HILT'KWIKBOLT TZ ESR 1917 Inspection Reqd(Net Seismic Uplift=926 lb) 0.225-OK Slab&Soil 6"thk x 2500 psi slab on grade. 1000 psf Soil Bearing Pressure 0.25-OK Level Load** Story Force Story Force Column Column Conn. Beam Per Level Beam Spcg Brace Transv Longit. Axial Moment Moment Connector 1 2,000 lb 64.0 in 36.0 in 133 lb 73 lb 3,113 lb 6,344 "# 5,667 "# 3 pin OK 2 2,000 lb 64.0 in 36.0 in 265 lb 146 lb 2,075 lb 5,493 "# 4,243 "# 3 pin OK 3 2,000 lb 46.0 in 54.0 in 361 lb 198 lb 1,038 lb 2,275 "# 2,321 "# 3 pin OK 42.0 in **Load defined as product weight per pair of beams Total: 759 lb 416 lb Notes 5 Page I 'f -of )g 12/23/20I 9 Structural • Engineering & Design I nc. . 1815 Wright Ave La Verne.CA 91750 Tel: 909.596.1351 Fax 909.596.7186 By: N.V Eng:Mgz. Project: PACSTAR Project#: LV-122019-13 Configuration&Summary:TYPE 6 SELECTIVE RACK - T **RACK COLUMN REACTIONS ASO LOADS 44" 42" AXIAL DL= 113/b AXIALLL= 3,000/b t. 54" SEISMIC AXIAL Ps=+/- 2,023/b BASE MOMENT= 8,000 in-lb 192" 192" 36" 36" 92" 36" v .-1' 144" .I' -I` 42" —I- Seismic Criteria #Bm Lvls Frame Depth Frame Height #Diagonals Beam Length Frame Type Ss=0.962,Fa=1.115 3 42 in 192.0 in 4 144 in Single Row Component Description STRESS - Column Fy=55 ksi SPCRK FH-20/3x3x14ga P=3113 Ib,M=10512 in-lb 0.64-OK Column&Backer None None None N/A Beam Fy=55 ksi SpaceRak SB556M 5.5 in x 0.06 in Lu=144 in Capacity:4687 lb/pr 0.43-OK • Beam Connector Fy=55 ksi Lvl 1: 3 pin OK Mconn=6207 in-lb Mcap=12691 in-lb 0.49-OK Brace-Horizontal Fy=55 ksi Rect Tube ix1-1/2x18ga 0.17-OK Brace-Diagonal Fy=55 ksi Rect Tube lx1-1/2x18ga 0.36-0K Base Plate Fy=36 ksi 8x5x0.375 Fixity=8000 in-lb 0.61-OK Anchor 2 per Base 0.5"x 3.25"Embed HILTI KWIKBOLTTZ ESR 1917 Inspection Reqd(Net Seismic Uplift=908 Ib) 0.225-OK Slab&Soil 6"thk x 2500 psi slab on grade. 1000 psf Soil Bearing Pressure 0.25-OK Level Load** Story Force Story Force Column Column Conn. Beam Per Level Beam Spcg Brace Transv Longit. Axial Moment Moment Connector 1 2,000 lb 92.0 in 36.0 in 178 lb 98 lb 3,113 lb 10,512 "# 6,207 "# 3 pin OK 2 2,000 lb 36.0 in 36.0 in 248 lb 136 lb 2,075 lb 2,866 "# 3,231 "# 3 pin OK 3 2,000 lb 44.0 in 54.0 in 333 lb 183 lb 1,038 lb 2,009 "# 2,228 "# 3 pin OK 42.0 in **Load defined as product weight per pair of beams Total: 759 lb 416 lb Notes TYPE G Page /of l 12/23/20I 9