Loading...
Specifications (24) _ � � Sa<N<S,V.A..t Cjk• RECEIVED OF�'iCE COPYcIMYY AY 1 5 2019 BUILDING DIVIOF SION S-Pru ctu d Engineering Design Project Name : PAPE TIGARD ti���PRpFs ��\� �‹o‘-G. N F� 0,O 'P Project Number : LV-050219-6 62618PE Date : 05/07/19 r Street Address: 6955 SW SANSURG ST 05/08/2019 ' 'GQ AO 2I`) City/Mate : TIGARD, OR 97223 EXPIRES:06-30-2020 Scope of Work : STORAGE RACK Mingqiao Zhu, PE/P.Eng 1428 N Shevlin Court TEL:909596.1351 FAX:909596,7186 Sewickley, PA 15143 Structural Engineering & Design Inc. 1815 Wright Ave La Verne. CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: Sp Eng:Mqz Project: PAPE MATERIAL HANDLING Project#: LV-050219-6 TABLE OF CONTENTS Title Page 1 Table of Contents 2 Design Data and Definition of Components 3 Critical Configuration 4 Seismic Loads 5 to 6 Column 7 Beam and Connector 8 to 9 Bracing 10 Anchors 11 Base Plate 12 Slab on Grade 13 Other Configurations 14 !S PAPE MATEKIAL DANDLING-TYPE I .xis Page 'L-of I r 5/6/201 9 Structural Engineering & Design Inc. 1815 Wriaht Ave La Verne, CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: Sp Eng:Mqz Project: PAPE MATERIAL HANDLING Project#: LV-050219-6 Design Data 1)The analyses herein conforms to the requirements of the: 2012 IBC Section 2209 ANSI MH 16.1-2012 Specifications for the Design of Industrial Steel Storage Racks '2012 RMI Rack Design Manual" ASCE 7-10,section 155.3 2)Transverse braced frame steel conforms to ASTM A570,Gr.55,with minimum strength, Fy=55 ksi Longitudinal frame beam and connector steel conforms to ASTM A570, Gr.55, with minimum yield, Fy=55 ksi All other steel conforms to ASTM A36,Gr. 36 with minimum yield, Fy= 36 ksi 3)Anchor bolts shall be provided by installer per ICC reference on plans and calculations herein. 4)All welds shall conform to AWS procedures,utilizing E70xx electrodes or similar.All such welds shall be performed in shop,with no field welding allowed other than those supervised by a licensed deputy inspector. 5)The existing slab on grade is 6"thick with minimum 3000 psi compressive strength.Allowable Soil bearing capacity is 1000 psf. The design of the existing slab is by others. 6) Load combinations for rack components correspond to 2012 RMI Section 2.1 for ASD level load criteria Definition of Components A Column Beam • - / I II _ Horizontal Brace Beam to Column Ill Connector Diagonal Brace = I II I 1 Frame Heights.:- :. .::' • I Beam Product Spacing Base Plate and Anchors Il- i Panel Beam Height Length 1.0_Frame id Front View: Down Aisle Depth (Longitudinal) Frame Section A: Cross Aisle (Transverse) Frame PAPE MATERIAL HANDLING-TYPE 1.xis Page 3 of ( S� 5/6/20 19 Structural Engineering & Design I nc. 1815 Wright Ave La Verne, CA 91750 Tel:909.596.1351 Fax: 909.596.7186 By: Sp Eng:Mqz Project: PAPE MATERIAL HANDLING Project#: LV-050219-6 Configuration&Summary:TYPE A SELECTIVE RACK HMH r 1- **RACK COLUMN REACTIONS — ASD LOADS 56" 48" AXIAL DL= 13011, J t AXIAL LL= 10,00016 SEISMIC AXIAL Ps=+/- 9,076 lb 48" 56" BASE MOMENT= 5,000 in-lb 180" 180" 56" 3`16" -i• 1 12" 36" — y 106" 4 42" 4 --- 42" -- Seismic Criteria #Bm Lvls Frame Depth Frame Height #Diagonals Beam Length Frame Type Ss=0.974, Fa=1.11 4 42 in 180.0 in 4 106 in Single Row Component Description STRESS Column Fy=55 ksi Hannibal IF3012-3x3x12ga P=7598 Ib, M=27423 in-lb 0.86-OK Column&Backer None None None N/A Beam Fy=55 ksi HMH 44160/4.5" Face x 0.06"thk Lu=106 in Capacity: 5203 lb/pr 0.96-OK Beam Connector Fy=55 ksi Lvl 1: 3 pin OK Mconn=14460 in-lb Mcap=17768 in-lb 0.81-OK Brace-Horizontal Fy=55 ksi Hannibal 1-1/2x1-1/2x16ga 0.33-OK Brace-Diagonal Fy=55 ksi Hannibal 1-1/2x1-1/2x16ga 0.51-OK Base Plate Fy=36 ksi 8x5x0.375 Fixity= 4550 in-lb 0.76-OK Anchor 2 per Base 0.5"x 3.25"Embed POWERS SD2 ESR 2502 Inspection Reqd(Net Seismic Uplift=3914 Ib) 0.992-OK Slab&Soil 6"thk x 3000 psi slab on grade. 1000 psf Soil Bearing Pressure 0.93-OK Level Load** Story Force Story Force Column Column Conn. Beam Per Level Beam Spcg Brace Transv Longit. Axial Moment Moment Connector 1 5,000 lb 12.0 in 36.0 in 77 lb 63 lb 10,130 lb 4,549 "# 14,460 "# 3 pin OK 2 5,000 lb 56.0 in 36.0 in 436 lb 358 lb 7,598 lb 27,423 "# 20,711 "# 3 pin NG 3 5,000 lb 56.0 in 48.0 in 795 lb 653 lb 5,065 lb 22,410 "# 15,757 "# 3 pin OK 4 5,000 lb 56.0 in 48.0 in 1,154 lb 948 lb 2,533 lb 13,269 "# 7,914 "# 3 pin OK **Load defined as product weight per pair of beams Total: 2,462 lb 2,022 lb Notes PAPE MATERIAL HANDLING-TYPE I.xls Page Ai of i S 5/6/2019 Structural Engineering & Design Inc. 1815 Wright Ave La Verne. CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: Sp Eng:Mqz Project: PAPE MATERIAL HANDLING Project#: LV-050219-6 Seismic Forces Configuration:TYPE A SELECTIVE RACK HMH Lateral analysis is performed with regard to the requirements of the 2012 RMI ANSI MN 16.1-2012 Sec 2.6&ASCE 7-10 sec 15.5.3 Ss= 0.974 Transverse(Cross Aisle)Seismic Load S1= 0.422 V= Cs*Ip*Ws=Cs*Ip*(0.67*P*Prf+D) to.vt Fa= 1.110 Csl= Sds/R Fv= 1.578 = 0.1802 Cs-max*Ip= 0.1802 Sds=2/3*Ss*Fa= 0.721 Cs2= 0.044*Sds Vmin= 0.015 Sd1=2/3*S1*Fv= 0.444 = 0.0317 Eff Base Shear=Cs= 0.1802 Transverse Elevation Ca=0.4*2/3*Ss*Fa= 0.2883 Cs3= 0.5*S1/R Ws= (0.67*PLRF1 *PL)+DL(RMI 2.6.2) (Transverse,Braced Frame Dir.)R= 4.0 = 0.0528 = 13,660 lb Ip= 1.0 Cs-max= 0.1802 Vtransv=Vt= 0.1802* (260 lb + 13400 Ib) PRF1= 1.0 . Base Shear Coeff=Cs= 0.1802 Etransverse= 2,462 lb Pallet Height=hp= 36.0 in Limit States Level Transverse seismic shear per upright DL per Beam Lvl= 65 lb Level PRODUCT LOAD P P*0.67*PRF1 DL hi wi*hi Fi Fi*(hi+hp/2) 1 5,000 lb 3,350 lb 65 lb 12 in 40,980 76.9 lb 2,307-# 2 5,000 lb 3,350 lb 65 lb 68 in 232,220 436.0 lb 37,496-# 3 5,000 lb 3,350 lb 65 lb 124 in 423,460 795.0 lb 112,890-# 4 5,000 lb 3,350 lb 65 lb 180 in 614,700 1,154.1 lb 228,512-# sum: P=20000 lb 13,400 lb 260 lb W=13660 lb 1,311,360 2,462 lb 2=381,205 I Longitudinal(Downaisle)Seismic Load Similarly for longitudinal seismic loads,using R=6.0 WS= (0.67 *PLRF2* P) + DL PRF2= 1.0 Cs1=Sd1 T*R = 0.1480j + . ,,1 i 0 /( ) = 13,660 lb (Longitudinal,Unbraced Dir.)R= 6.0 ����� ►y�ry Cs2= 0.0317 Cs=Cs-max*Ip= 0.1480 T= 0.50 sec I.--:.-1 - "'I f'"'`� Cs3= 0.0352 Vlong= 0.148* (260 lb + 13400 lb) FT1 1 .:;::.:4 i El Cs-max= 0.1480 Elongitudinal= 2,022 lb Limit States Level Lnngitseismic shear per upright Level PRODUC LOAD P P*0.67*PRF2 DL hi wi*hi Fi Front View 1 5,000 lb 3,350 lb 65 lb 12 in 40,980 63.2 lb I 2 5,000 lb 3,350 lb 65 lb 68 in 232,220 358.1 lb 3 5,000 lb 3,350 lb 65 lb 124 in 423,460 652.9 lb 4 5,000 lb 3,350 lb 65 lb 180 in 614,700 947.8 lb sum: 13,400 lb 260 lb W=13660 lb 1,311,360 2,022 lb I PAPE MATERIAL HANDLING-TYPE I.xls Page 6- of l 5/61201 9 Structural Engineering & Design Inc. 1815 Wright Ave La Verne. CA 91750 Tel:909.596.1351 Fax: 909.596.7186 By: Sp Eng:Mqz Project: PAPE MATERIAL HANDLING Project#: LV-050219-6 Downaisle Seismic Loads Configuration:TYPE A SELECTIVE RACK HMH Determine the story moments by applying portal analysis.The base plate is assumed to provide partial fixity. Seismic Story Forces Typical frame made Vlong= 2,022 lb Tributary area of two columns of rack frame Vco1=Vlong/2= 1,011 lb �, - F1= 63 lb -►, Typical Frame made F2= 358 lb ..----- F3= /of-two columns F3= 653 lb - . �'Er 0 F. u ' " r I Top View 14— 96 Front View Side View Seismic Story Moments Conceptual System COL Mbase-max= 5,000 in-lb <===Default capacity hl-eff= h1 -beam clip height/2 .41111.1 Mbase-v= (Vcol*h1eff)/2 = 9 In Vcol 1011 = 4,550 in-lb <===Moment going to base e Mbase-eff= Minimum of Mbase-max and Mbase-v h2 = 4,550 in-lb M 1-1= [Vcol *hleff]-Mbase-eff M 2-2= [Vcol-(F1)/2] *h2 ���-t = (1011 lb* 9 in)-4550 in-lb = [1011 lb- 179.1 Ib]*56 in/2r = 4,549 in-lb = 27,423 in-lb h1 I Mseis= (Mupper+Mlower)/2 Beam to Column Mseis(1-1)= (4549 in-lb+27423 in-lb)/2 Mseis(2-2)= (27423 in-lb+22410 in-lb)/2 Elevation = 15,986 in-lb = 24,917 in-lb rho= 1.0000 Summary of Forces LEVEL hi Axial Load Column Moment** Mseismic** Mend-fixity Mconn** Beam Connector 1 12 in 10,130 lb 4,549 in-lb 15,986 in-lb 4,671 in-lb 14,460 in-lb 3 pin OK I 2 56 in 7,598 lb 27,423 in-lb 24,917 in-lb 4,671 in-lb 20,711 in-lb 3 pin NG 3 56 in 5,065 lb 22,410 in-lb 17,840 in-lb 4,671 in-lb 15,757 in-lb 3 pin OK 4 56 in 2,533 lb 13,269 in-lb 6,635 in-lb 4,671 in-lb 7,914 in-lb 3 pin OK I Mconn= (Mseismic+ Mend-fixity)*0.70*rho Mconn-allow(3 Pin)= 17,768 in-lb **all moments based on limit states level loading PAPE MATERIAL HANDLING-TYPE I.xls Page (o of a—.. 5/6/20 19 Structural Engineering & Design Inc. 1815 Wright Ave La Verne, CA 91750 Tel: 909.596.1351 Fax:909.596.7186 By: Sp Eng:Mqz Project: PAPE MATERIAL HANDLING Project#: LV-050219-6 Column(Longitudinal Loads) Configuration:TYPE A SELECTIVE RACK HMH Section Properties Section: Hannibal IF3012-3x3x12ga 3.000 in Aeff= 0.880 in^2 Iy= 1.000 in^4 Kx= 1.7 X Ix= 1.520 in^4 Sy= 0.659 in^3 Lx= 53.8 in Sx= 1.010 inA3 ry= 1.064 in Ky= 1.0 + 3.000 in rx= 1.312 in Fy= 55 ksi Ly= 36.0 in y r I 10.105 in Qf= 1.67 Cmx= 0.85 Cb= 1.0 E= 29,500 ksi 0.75 in Loads Considers loads at level 2 COLUMN DL= 97 lb Critical load cases are:RMI Sec 2.1 COLUMN PL= 7,500 lb Load Case 5::(1+0.105*Sds)D+0.75*(1.4+0.14Sds)*B*P+0.75*(0.7*rho*E)<=1.0,ASD Method Mcol= 27,423 in-lb axial load coeff: 0.7879788*P seismic moment coeff: 0.5625*Mcol Sds= 0.7208 Load Case 6::(1+0.14*Sds)D+(0.85+0.14Sds)*B*P+(0.7*rho*E)<=1.0,ASD Method 1+0.105*Sds= 1.0757 axial load coeff.• 0.66564 seismic moment coeff: 0.7*Mcol 1.4+0.14Sds= 1.5009 By analysis, Load case 6 governs utilizing loads as such 1+0.14Sds= 1.1009 0.85+0.14*Sds= 0.9509 Axial Load=Pax= 1.100912*97 ib+0.950912*0.7*7500 1b Moment=Mx= 0.7*rho*Mcol B= 0.7000 = 5,099 lb = 0.7* 27423 in-lb rho= 1.0000 = 19,196 in-lb Axial Analysis KxLx/rx= 1.7*53.75"/1.312" KyLy/ry= 1*36"/1.064" Fe > Fy/2 = 69.6 = 33.8 Fn= Fy(1-Fy/4Fe) = 55 ksi*[1-55 ksi/(4*60 ksi)] Fe= n^2E/(KL/r)max^2 Fy/2= 27.5 ksi = 42.4 ksi = 60.0ksi Pa= Pn/Qc Pn= Aeff*Fn Qc= 1.92 = 37313 lb/1.92 = 37,313 lb = 19,434 lb P/Pa= 0.26 > 0.15 Bending Analysis Check: Pax/Pa+(Cmx*Mx)/(Max*px) 5 1.0 P/Pao+ Mx/Max<_ 1.0 Pno= Ae*Fy Pao= Pno/4c Myield=My= Sx*Fy = 0.88 in^2*55000 psi = 48400lb/1.92 = 1.01 in^3* 55000 psi = 48,400 lb = 25,208 lb = 55,550 in-lb Max= My/Of Pcr= n^2EI/(KL)max^2 = 55550 in-ib/1.67 = nA2*29500 ksi/(1.7*53.75 in)^2 = 33,263 in-lb = 53,004 lb px= {1/[1-(4c*P/Pcr)]}^-1 = {1/[1-(1.92*5099 lb/53004 Ib)]}^-1 = 0.82 Combined Stresses (5099 lb/19434 Ib) + (0.85*19196 in-lb)/(33263 in-Ib*0.82) = 0.86 < 1.0,OK (EQ C5-1) (5099 lb/25208 Ib)+(19196 in-lb/33263 in-Ib) = 0.78 < 1.0,OK (EQ C5-2) **For comparison, total column stress computed for load case 5 is: 78.0% g loads 6014.182348 lb Axial and M= 14397 in-lb PAPE MATERIAL HANDLING-TYPE I.xls Page 1 of l, 5/G/2019 Structural Engineering & Design Inc. 1815 Wright Ave La Verne. CA 91750 Tel: 909.596.1351 Fax: 90_9_596.7186 By: Sp Eng:Mqz Project: PAPE MATERIAL HANDLING Project#: LV-050219-6 BEAM Configuration:TYPE A SELECTIVE RACK HMH DETERMINE ALLOWABLE MOMENT CAPACITY 2.75 in \ ti Al Check compression flange for local buckling (B2.1) 1.75 in ,I w= c-2*t-2*r = 1.75 in-2*0.06 in-2*0.06 in = 1.510 in f w/t= 25.17 I 1.625 in 1=lambda= [1.052/(k)A0.5] * (w/t)* (Fy/E)A0.5 Eq. B2.1-4 ti__ 1 = [1.052/(4)1'0.5] *25.17 * (55/29500)^0.5 4.500 in = 0.572 < 0.673,Flange is fully effective Eq. B2.1-1 I 0.060 in B)check web for local buckling per section b2.3 fl(comp)= Fy*(y3/y2)= 50.69 ksi f2(tension)=- Fy*(y1/y2)= 102.45 ksi Y= f2/f1 Eq. B2.3-5 Beam= HMH 44160/4.5"Face x 0.06"thk = -2.021 Ix= 2.009 in^4 k= 4+ 2*(1-Y)^3+2*(1-Y) Eq. B2.3-4 Sx= 0.849 in"3 = 65.18 Ycg= 2.970 in flat depth=w= yl+y3 t= 0.060 in = 4.260 in w/t= 71 OK Bend Radius=r= 0.060 in 1=lambda= [1.052/(k)^0.5] * (w/t)*(fl/E)^0.5 Fy=Fyv= 55.00 ksi = [1.052/(65.18)^0.5] *4.26* (50.69/29500)1'0.5 Fu=Fuv= 65.00 ksi = 0.384 < 0.673 E= 29500 ksi be=w= 4.260 in b2= be/2 Eq B2.3-2 top flange=b= 1.750 in b1= be(3-Y) = 2.13 in bottom flange= 2.750 in = 0.848 Web depth= 4.F^"'^ b1+b2= 2.978 in > 1.41 in,Web is fully effective Fy Determine effect of cold working on steel yield point(Fya)per section A7.2 fl omp) Fya= C*Fyc + (1-C)*Fy (EQ A7.2-1) Lcorner=Lc= (p/2)* (r+t/2) I t 0.141 in C= 2*Lc/(Lf+2*Lc) p2 Lflange-top=Lf= 1.510 in = 0.157 in y3 m= 0.192*(Fu/Fy)-0.068 (EQ A7.2-4) depth = 0.1590 11 Bc= 3.69*(Fu/Fy)-0.819*(Fu/Fy)^2-1.79 (EQ A7.2-3) = 1.427 since fu/Fv= 1.18 < 1.2 vy y' and r/t= 1 < 7 OK 1 then Fyc= Bc* Fy/(R/t)^m (EQ A7.2-2) 2(tension) = 78.485 ksi + Thus, Fya-top= 58.70 ksi (tension stress at top) Fya-bottom= Fya*Ycg/(depth-Ycg) yl= Ycg-t-r= 2.850 in = 113.94 ksi (tension stress at bottom) y2= depth-Ycg= 1.530 in Check allowable tension stress for bottom flange y3= y2-t-r= 1.410 in Lflange-bot=Lfb= Lbottom-2*r*-2*t = 2.510 in Cbottom=Cb= 2*Lc/(Lfb+2*Lc) = 0.101 Fy-bottom=Fyb= Cb*Fyc+ (1-Cb)*Fyf = 57.37 ksi Fya= (Fya-top)*(Fyb/Fya-bottom) = 29.56 ksi if F= 0.95 Then F*Mn=F*Fya*Sx= 23.84 in-k g. Structural Engineering & Design Inc. 1815 Wright Ave La Verne. CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: Sp Eng:Mqz Project: PAPE MATERIAL HANDLING Project#: LV-050219-6 BEAM Contiguration:TYPE A SELECTIVE RACK HMH RMI Section 5.2, PT II Section Beam= HMH 44160/4.5"Face x 0.06"thk Ix=Ib= 2.009 in^4 2.75 in Sx= 0.849 in^3 s t= 0.060 in E= 29500 ksi 1.75 in Fy=Fyv= 55 ksi F= 300.0 +T Fu=Fuv= 65 ksi L= 106 in 1 Fya= 58.7 ksi Beam Level= 1 1.625 in P=Product Load= 5,000 lb/pair D=Dead Load= 65 lb/pair — 4.500 in I 0.060 in 1.Check Bending Stress Allowable Loads Mcenter=F*Mn= W*L*W*Rm/8 I Ille.m.:amm W=LRFD Load Factor= 1.2*D+ 1.4*P+1.4*(0.125)*P RMI 2.2,item 8 FOR DL=2%of PL, W= 1.599 Rm= 1 [(2*F*L)/(6*E*Ib+3*F*L 'lllllllllllllllllllllllltlllllll IIIIIIIIIIIIII 1-(2*300*106 in)/[(6*29500 ksi*2.009 in^3)+(3*300*106 in)] = 0.859 if F= 0.95 Then F*Mn=F*Fya*Sx= 47.34 in-k Thus, allowable load - ----- -----II per beam pair=W= F*Mn*8*(#of beams)/(L*Rm*W) Beam = 47.34 in-k* 8* 2/(106in* 0.859* 1.599) Length = 5,203 lb/pair allowable load based on bending stress Mend= W*L*(1-Rm)/8 = (5203 lb/2)* 106 in *(1-0.859)/8 = 4,860 in-lb @ 5203 lb max allowable load = 4,671 in-lb ©5000 lb imposed product load 2.Check Deflection Stress Allowable Loads Dmax= Dss*Rd Rd= 1 -(4*F*L)/(5*F*L+ 10*E*Ib) Allowable Deflection= L/180 = 1-(4*300*106 in)/[(5*300*106 in)+(10*29500 ksi*2.009 in^4)] = 0.589 in = 0.831 in Deflection at imposed Load= 0.566 in if Dmax= L/180 Based on 1/180 Deflection Criteria and Dss= 5*W*L^3/(384*E*Ib) L/180= 5*W*LA3*Rd/(384*E*Ib*# of beams) solving for W yields, W= 384*E*I*2/(180*5*L^2*Rd) = 384*2.009 in^4*2/[180*5*(106 in)^2*0.831) = 5,416 lb/pair allowable load based on deflection limits Thus,based on the least capacity of item 1 and 2 above: Allowable load= 5,203 lb/pair Imposed Product Load= 5,000 lb/pair Beam Stress= 0.96 Beam at Level 1 g, 2 Structural Engineering & Design Inc. 1815 WrightAve La Verne CA 91750 Tel' 949 596 1351 Fax_909 596 7186 By: Sp Eng:Mqz Project: PAPE MATERIAL HANDLING Project#: LV-050219-6 3 Pin Beam to Column Connection TYPE A SELECTIVE RACK HMH I he beam end moments shown herein show the result of the maximum induced fixed end monents torm seismic+static loads and the code mandated minimum value of 1.5%(DL+PL) Mconn max= (Mseismic+ Mend-fixity)*0.70*Rho O pl rho= 1.0000 = 14,460 in-lb Load at level 1 O P2 O " \ i/z" r lrz„ Connector Type= 3 Pin Shear Capacity of Pin Pin Diam= 0.44 in Fy= 55,000 psi Ashear= (0.438 in)A2* Pi/4 = 0.1507 in^2 Pshear= 0.4* Fy* Ashear = 0.4* 55000 psi *0.1507in^2 = 3,315 lb Bearing Capacity of Pin tcol= 0.105 in Fu= 65,000 psi Omega= 2.22 a= 2.22 Pbearing= alpha*Fu * diam*tcol/Omega = 2.22* 65000 psi * 0.438 in*0.105 in/2.22 = 2,989 lb < 3315 lb Moment Capacity of Bracket Edge Distance=E= 1.00 in Pin Spacing= 2.0 in Fy= 55,000 psi C= P1+P2+P3 tclip= 0.18 in Sclip= 0.127 in^3 = P1+P1*(2.5"/4.5")+P1*(0.5"/4.5") = 1.667* P1 Mcap= Sclip* Fbending C*d= Mcap= 1.667 d= E/2 = 0.127 in^3* 0.66* Fy = 0.50 in = 4,610 in-lb Pclip= Mcap/(1.667*d) = 4610.1 in-Ib/(1.667 * 0.5 in) Thus, P1= 2,989 lb = 5,531 lb Mconn-allow= [P1*4.5"+P1*(2.5"/4.5")*2.5"+P1*(0.5"/4.5")*0.51 = 2989 LB*[4.5"+(2.574.5")*2.5"+ (0.5"/4.5")*0.5"] = 17,768 in-lb > Mconn max, OK PAPE MATERIAL hANDLING-TYPE I.xis Page t,i of 1 1 5/6/20 19 - Structural Engineering & Design Inc. 1815 Wright Ave I R Verne CA 91750 Tel' 909 596 1351 Fax. 909596 7186 By: Sp Eng:Mqz Project: PAPE MATERIAL HANDLING Project#: LV-050219-6 4 Pin Beam to Column Connection TYPE A SELECTIVE RACK HMH I he beam end moments shown herein show the result ot the maximum induced fixed end monents torm seismic+static loads and the code mandated minimum value ot 1.5%(DL+PL) Mconn max= (Mseismic+ Mend-fixity)*0.70*Rho P1Ell rho= 1.0000 = 20,711 in-lb Load at level 2 i� 2"TYP 6.. C �r ri till in,. Connector Type= 4 Pin Shear Capacity of Pin Pin Diam= 0.44 in Fy= 55,000 psi Ashear= (0.438 in)^2 *Pi/4 = 0.1507 in^2 Pshear= 0.4*Fy*Ashear = 0.4*55000 psi*0.1507inA2 = 3,315 lb Bearing Capacity of Pin tcol= 0.105 in Fu= 65,000 psi Omega= 2.22 a= 2.22 Pbearing= alpha* Fu*diam *tcol/Omega = 2.22* 65000 psi *0.438 in *0.105 in/2.22 = 2,989 lb < 3315 lb Moment Capacity of Bracket Edge Distance=E= 1.00 in Pin Spacing= 2.0 in Fy= 55,000 psi C= P1+P2+P3+P4 tclip= 0.18 in Sclip= 0.127 in^3 = P1+P1*(4.5"/6.5")+P1*(2.5"/6.5")+P1*(0.5"/6.5") = 2.154* P1 Mcap= Sclip* Fbending C*d= Mcap = 2.154 d= E/2 = 0.127 in^3*0.66*Fy = 0.50 in = 4,610 in-lb Pclip= Mcap/(2.154*d) = 4610.1 in-lb/(2.154*0.5 in) Thus, P1= 2,989 lb = 4,281 lb Mconn-allow= [P1*6.5"+P1*(4.5"/6.5")*4.5"+P1*(2.5"/6.5")2.5"+P1*(0.5"/6.5")*0.51 = 2989 LB*[6.5"+(4.576.5")*4.5"+(2.5"/6.5")*2.5"+(0.5"/6.5")*0.51 = 31,729 in-lb > Mconn max, OK PAPE MATERIAL hANDLING-TYPE I.xis Page 1 i_of 11 5/6/201 9 Structural Engineering & Design Inc. 1815 Wright Ave La Verne. CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: Sp Eng:Mqz Project: PAPE MATERIAL HANDLING Project#: LV-050219-6 Transverse Brace Configuration:TYPE A SELECTIVE RACK HMH Section Properties Diagonal Member= Hannibal 1-1/2x1-1/2x16ga Horizontal Member= Hannibal 1-1/2x1-1/2x16ga Area= 0.273 in^2 d I 500 In 1Area= 0.273 in^2 .500 In 1r min= 0.496 in r min= 0.496 in _�_ Fy= 55,000 psi �---,! Fy= 55,000 psio K= 1.0 ( i.500 in K= 1.0 1 i.500 in 52c= 1.92 L-- -J v - -J v -p 0.25 In --d 0.25 in Frame Dimensions Bottom Panel Height=H= 48.0 in Clear Depth=D-B*2= 36.0 in Frame Depth=D= 42.0 in X Brace= NO Column Width=B= 3.0 in rho= 1.00 Diagonal Member 0 Load Case 6::(1+1 1' : : 0.65+0.14Sds)*B*P+X0.7*rho*EJ<=1.0,ASD Method Hl o -=I Vb I ,1(\ Vtransverse= 2,462 lb 4---. Vb=Vtransv*0.7*rho= -- Vb=Vtransv*0.7*rho= 2462 lb*0.7* 1 (kl/r)= (k* Ldiag)/r min = 1,723 lb = (1 x 55.3 in/0.496 in) Ldiag= [(D-B*2)^2+ (H-6")^2]^1/2 = 111.5 in Ldiag = 55.3 in Fe= pi^2*E/(kl/r)^2 " I Pmax= V*(Ldiag/D) * 0.75 = 23,419 psi „co/ Pmax = 1,7021b axial load on diagonal brace member Since Fe<Fy/2, 3"typ Pn= AREA*Fn Fn= Fe B ,[,j. = 0.273 in^2* 23419 psi = 23,419 psi Typical Panel = 6,393 lb Consawration Pallow= Pn/Q Check End Weld = 6393 lb/1.92 Lweld= 3.0 in = 3,330 lb Fu= 65 ksi tmin= 0.060 in Pn/Pallow= 0.51 <= 1.0 OK Weld Capacity= 0.75*tmin *L* Fu/2.5 = 3,510 lb OK Horizontal brace Vb=Vtransv*0.7*rho= 1,723 lb (kl/r)= (k*Lhoriz)/r min Fe= pi^2*E/(kl/r)^2 Fy/2= 27,500 psi = (1 x 42 in)/0.496 in = 40,584 psi = 84.7 in Since Fe>Fy/2, Fn=Fy*(1-fy/4fe) Pn= AREA*Fn Pallow= Pn/Qc = 36,366 psi = 0.273in^2*36366 psi = 9928 lb/1.92 = 9,928 lb = 5,171 lb Pn/Pallow= 0.33 <= 1.0 OK PAPE MATERIAL DANDLING-TYPE I.xls Page wtp of ( S 5/6/20 19 . Structural Engineering & Design Inc. 1815 Wright Ave La Verne, CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: Sp Eng:Mqz Project: PAPE MATERIAL HANDLING Project#: LV-050219-6 Single Row Frame Overturning Configuration:TYPE A SELECTIVE RACK HMH Loads Critical Load case(s): 1)RMI Sec 2.2, item 7: (0.9-0.2Sds)D+(0.9-0.20Sds)*B*Papp-E*rho hp • I ® I • Sds= 0.7208 V Vtrans=V=E=Qe= 2,462 lb (0.9-0.2Sds)= 0.7558 DEAD LOAD PER UPRIGHT=D= 260 lb (0.9-0.2Sds)= 0.7558 PRODUCT LOAD PER UPRIGHT=P= 20,000 lb B= 1.0000 H h Papp=P*0.67= 13,400 lb rho= 1.0000 Wst LC1=Wst1=(0.75584*D+0.75584*Papp*1)= 10,324 lb Frame Depth=Df= 42.0 in T 1 Product Load Top Level,Ptop= 5,000 lb Htop-Iv1=H= 180.0 in DL/Lvl= 65 lb # Levels= 4 I-0-of -01 Seismic Ovt based on E, E(Fi*hi)= 381,205 in-lb #Anchors/Base= 2 height/depth ratio= 4.3 in hp= 36.0 in SIDE ELEVATION A)Fully Loaded Rack h=H+hp/2= 198.0 in Load case 1: Movt= E(Fi*hi)*E*rho Mst= Wstl * Df/2 T= (Movt-Mst)/Df = 381,205 in-lb = 10324 lb*42 in/2 = (381205 in-lb-216804 in-lb)/42 in = 216,804 in-lb = 3,914 lb Net Uplift p per Column Net Seismic Uplift= 3,914 lb B)Top Level Loaded Only Load case 1: 0 V1=Vtop= Cs*Ip* Ptop>= 350 lb for H/D >6.0 Movt= [V1*h +V2*H/2]*0.7*rho = 0.1802 *5000 lb = 127,830 in Ib = 901 lb T= (Movt-Mst)/Df Vleff= 901 lb Critical Level= 4 = (127830 in-lb-83490 in-lb)/42 in V2=VDL= Cs*Ip*D Cs*Ip= 0.1802 = 1,056 lb Net Uplift = 47 lb P per Column Mst= (0.75584*D +0.75584*Ptop*1)*42 in/2 = 83,490 in-lb Net Seismic Uplift= 1,056 lb Anchor Check(2)0.5"x 3.25"Embed POWERS SD2 anchor(s)per base plate. Special inspection is required per ESR 2502. Pullout Capacity=Tcap= 2,250 lb L.A. City Jurisdiction? NO Tcap*Phi= 2,250 lb Shear Capacity=Vcap= 1,950 lb Phi= 1 Vcap*Phi= 1,950 lb Fully Loaded: (1957 Ib/2250 Ib)^1 + (615 lb/1950 Ib)^1 = 1.19 <= 1.2 OK Top Level Loaded: (528 lb/2250 Ib)^1 + (225 lb/19501b)^1 = 0.35 <= 1.2 OK PAPE MATERIAL HANDLING-TYPE I.xls Page fl of 1 5/6/20 19 'Immmmmimmitructural Engineering & Design Inc. 1815 Wright Ave La Verne. CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: Sp Eng:Mgz Project: PAPE MATERIAL HANDLING Project#: LV-050219-6 Base Plate Configuration:TYPE A SELECTIVE RACK HMH -► P Section f- a1-4Baseplate= 8x5x0.375 Eff Width=W = 6.00 in a = 2.00 in 11/1Mb Eff Depth=D = 5.00 in Anchor c.c. =2*a=d= 4.00 in ■� �■ Column Width=b= 3.00 in N=#Anchor/Base= 2 s I b L- L Column Depth=dc= 3.00 in Fy= 36,000 psi tN L= 1.50 in Downaisle Elevation Plate Thickness=t= 0.375 in Down Aisle Loads Load Case 5::(1+0.105*Sds)D+0.751(1.4+0.14Sds)*B*P+0.75*(0.7*rho*E]<=L0,ASD Method COLUMN DL= 130 lb Axial=P= 1.075684* 130 lb+ 0.75* (1.500912* 0.7* 10000 Ib) COLUMN PL= 10,000 lb = 8,020 lb Base Moment= 5,000 in-lb Mb= Base Moment*0.75*0.7*rho 1+0.105*Sds= 1.0757 = 5000 in-lb* 0.75*0.7*rho 1.4+0.14Sds 1.5009 = 2,625 in-lb Eff` g 0:7000 : Axial Load P= 8,020 lb Mbase=Mb = 2,625 in-lb Effe Axial stress=fa = P/A= P/(D*W) M1= wL^2/2=fa*L^2/2 = 267 psi = 301 in-lb Moment Stress=fb= M/S= 6*Mb/[(D*B^2] Moment Stress=fb2= 2*fb* L/W = 87.5 psi = 43.8 psi Moment Stress=fbl = fb-fb2 M2= fb1*L^2)/2 F = 43.8 psi = 49 in-lb M3 = (1/2)*fb2*L*(2/3)*L= (1/3)*fb2*L^2 Mtotal= M1+M2+M3 = 33 in-lb = 383 in-lb/in S-plate= (1)(t^2)/6 Fb= 0.75*Fy = 0.023 in^3/in = 27,000 psi fb/Fb= Mtotal/[(S-plate)(Fb)] Fp= 0.7*F'c = 0.60 OK = 2,100 psi OK Tanchor= (Mb-(PLapp*0.75*0.46)(a))/[(d)*N/2] Tallow= 2,250 lb OK = -4,506 lb No Tension Cross Aisle Loads Critics/load case RMI Sec 21,item 4:(7+0.115ds)OL+(1+0.145D5)PL'0.75+EL'0.75<=1.0,,ASO Method Check uplift load on Baseplate Check uplift forces on baseplate with 2 or more anchors per RMI 7.2.2. Pstatic= 8,020 lb When the base plate configuration consists of two anchor bolts located on either side .f the column and a net uplift force exists,the minimum base plate thickness Movt*0.75*0.7*rho= 200,133 in-lb Pseismic= Movt/Frame Depth -hall be determined based on a design bending moment in the plate equal Frame Depth= 42.0 in = 4,765 lb o the uplift force on one anchor times 1/2 the distance from P=Pstatic+Pseismic= 12,785 lb he centerline of the anchor to the nearest edge of the rack column" b =Column Depth= 3.00 in T ci Ta Mukg a L=Base Plate Depth-Col Depth= 1.50 in .n001 fa = P/A = P/(D*W) M= wLA2/2=fa*LA2/2 1--.•!. b I .I = 426 psi = 479 in-lb/in Elevation Uplift per Column= 3,914 lb Sbase/in = (1)(t^2)/6 Fbase= 0.75*Fy Qty Anchor per BP= 2 = 0.023 in^3/in = 27,000 psi Net Tension per anchor=Ta= 1,957 lb c= 1.50 in fb/Fb = M/[(S-plate)(Fb)] Mu=Moment on Baseplate due to uplift= Ta*c/2 0.76 OK = 1,468 in-lb Splate= 0.117 in^3 fb Fb *0.75= 0.348 OK PAPE MATERIAL HANDLING-TYPE I.xis Page 11_, of I S� 5/6/20 19 . Structural Engineering & Design Inc. 1815 Wright Ave La Verne. CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: Sp Eng:Mqz Project: PAPE MATERIAL HANDLING Project#: LV-050219-6 Slab on Grade Configuration:TYPE A SELECTIVE RACK HMH 1P slab a Concrete a ' - -�� I b e . . . . fc= 3,000 psi slab _12 I tslab=t= 6.0 in IIIIUIIIIIIihIIIIIIIIihIIIIIIIHIi1IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 1 Cross • teff= 6.0 in x -►14____I.- c -.i of .•.-.----. . .1. _ c Aisle phi=fll=0.6 144- y Soil L r. : : : : ::: .B . '�.: :: : fsoil= 1,000 psf Down Aisle Movt= 266,844 in Ib SLAB ELEVATION Baseplate Plan View Frame depth= 42.0 in Base Plate Sds= 0.721 0 Effec.Baseplate width=B= 6.00 in .2*Sds= 0.144 width=a= 3.00 in 0.� -, Effec.Baseplate Depth=D= 5.00 in depth=b= 3.00 in - midway dist face of column to edge of plate=c= R^B/D= 5 .80 9 4.50 in F'c 0.5= 54.80 psi Column Loads midway dist face of column to edge of plate=e= 4.00 in DEAD LOAD=D= 130 lb per column Load Case 1) (1.2+0.2Sds)D + (1.2+0.2Sds)*B*P+rho*E RMI SEC 2.2 EQTN 5 unfactoredASD load = 1.34416* 130 lb+ 1.34416* 0.7* 10000 lb+ 1 *6353 lb PRODUCT LOAD=P= 10,000 lb per column = 15,937 lb unfactoredASD load Load Case 2) (0.9-0.2Sds)D+ (0.9-0.2Sds)*B*Papp+ rho*E RMI SEC 2.2 EQTN 7 Papp= 6,700 lb per column = 0.75584* 130 lb+ 0.75584*0.7*6700 lb+ 1 *6353 lb P-seismic=E= (Movt/Frame depth) = 9,996 lb = 6,353 lb per column Load Case 3) 1.2*D + 1.4*P RMI SEC 2.2 EQTN 1,2 unfactoredLimitState load = 1.2*130 lb+ 1.4*10000 lb B= 0.700° = 14,156 Ib rho= 1.0000 i _ Load Case 4) 1.2*D+ 1.0*P+ 1.0E Sds= 0.7208 ACI 3ie-i i Sec s.z.i.Eat9-5 = 16,509 lb 1.2+0.2*Sds= 1.3442 Effective Column Load=Pu= 16,509 lb per column 0. 9-0.20Sds= 0.7558 Puncture Apunct= [(c+t)+(e+t)]*2*t = 246.0 in^2 Fpunctl= [(4/3+8/(3*j3)] *A*(F'c^0.5) fv/Fv= Pu/(Apunct*Fpunct) = 116.9 psi = 0.767 < 1 OK Fpunct2= 2.66* 7,*(F'c^0.5) = 87.5 psi Fpunct eff= 87.5 psi Slab Bending Pse=DL+PL+E= 16,509 lb Asoil= (Pse*144)/(fsoil) L= (Asoil)^0.5 y= (c*e)^0.5 +2*t = 2,377 in^2 = 48.75 in = 16.2 in x= (L-y)/2 M= w*x^2/2 S-slab= 1*teff^2/6 = 16.3 in = (fsoil*x^2)/(144*2) = 6.0 inA3 Fb= 5*(phi)*(fc)^0.5 = 917.6 in-lb fb/Fb= M/(S-slab*Fb) = 164.32 psi = 0.931 < 1,OK PAPE MATERIAL HANDLING-TYPE I.xls Page(3 of ( 5/6/20 19 Structural • Engineering & Design Inc. 1815 Wright Ave La Verne, CA 91750 Tel:909.596.1351 Fax: 909.596.7186 By: Sp Eng:Mqz Project: PAPE MATERIAL HANDLING Project#: LV-050219-6 Configuration&Summary:TYPE B SELECTIVE RACK HMH **RACK COLUMN REACTIONS ASD LOADS 48" AXIAL DL= 98/b AXIAL LL= 7,500/b SEISMIC AXIAL Ps=+/- 6,534 lb 56 4BASE MOMENT= 8,000 in-lb 180" 180" I8- 56" 36" 56" 36" 1' 106" f -I` 42" 42" Seismic Criteria #Bm Lvls Frame Depth Frame Height #Diagonals Beam Length Frame Type Ss=0.974, Fa=1.11 3 42 in 180.0 in 4 106 in Single Row Component Description STRESS Column Fy=55 ksi Hannibal IF3012-3x3x12ga P=7598 Ib, M=32174 in-lb 0.97-OK Column&Backer None None None N/A Beam Fy=55 ksi HMH 44160/4.5" Face x 0.06"thk Lu=106 in Capacity: 5203 lb/pr 0.96-OK Beam Connector Fy=55 ksi Lvl 1: 3 pin OK Mconn=13174 in-lb Mcap=17768 in-lb 0.74-OK Brace-Horizontal Fy=55 ksi Hannibal 1-1/2x1-1/2x16ga 0.25-OK Brace-Diagonal Fy=55 ksi Hannibal 1-1/2x1-1/2x16ga 0.38-OK Base Plate Fy=36 ksi 8x5x0.375 Fixity= 8000 in-lb 0.56-OK Anchor 2 per Base 0.5"x 3.25"Embed POWERS SD2 ESR 2502 Inspection Reqd(Net Seismic Uplift=2662 Ib) 0.717-OK Slab&Soil 6"thk x 3000 psi slab on grade. 1000 psf Soil Bearing Pressure 0.58-OK Level Load** Story Force Story Force Column Column Conn. Beam Per Level Beam Spcg Brace Transv _ Longit. _ Axial Moment Moment Connector 1 5,000 lb 56.0 in 36.0 in 308 lb 253 lb 7,598 lb 32,174 "# 20,721 "# 3 pin NG 2 5,000 lb 56.0 in 36.0 in 615 lb 505 lb 5,065 lb 17,686 "# 13,174 "# 3 pin OK 3 5,000 lb 56.0 in 48.0 in 923 lb 758 lb 2,533 lb 10,612 "# 6,984 "# 3 pin OK 48.0 in **Load defined as product weight per pair of beams Total: 1,846 lb 1,516 lb Notes PAPE MATERIAL HANDLING-TYPE 2.xis Page (7 of/ 5/G1201 9 . Structural Engineering & Design Inc. 1815 Wright Ave La Verne. CA 91750 Tel:909.596.1351 Fax: 909.596.7186 By: Sp Eng:Mqz Project: PAPE MATERIAL HANDLING Project#: LV-050219-6 Configuration&Summary:TYPE C SELECTIVE RACK HMH '1" _ 1' **RACK COLUMN REACTIONS 66" 48" — ASD LOADS t AXIAL DL= 163/b AXIAL LL= 6,800 lb 28" 48„ A SEISMIC AXIAL Ps=+/- 5,933 lb l BASE MOMENT= 5,000 in-lb 180" 28" 180" irelb i36 28" NIS 36" 2FA Ill 1 y y 4' 106" -r -I`54" 4 42" 4 Seismic Criteria #Bm Lvls Frame Depth Frame Height # Diagonals Beam Length Frame Type Ss=0.974, Fa=1.11 5 42 in 180.0 in 4 106 in Single Row Component Description STRESS Column Fy=55 ksi Hannibal IF3012-3x3x12ga P=6330 lb, M=9675 in-lb 0.37-OK Column&Backer None None None N/A Beam Fy=55 ksi HMH 44160/4.5"Face x 0.06"thk Lu=106 in Capacity: 5203 lb/pr 0.96-OK Beam Connector Fy=55 ksi Lvl 4:4 pin OK Mconn=10859 in-lb Mcap=31729 in-lb 0.34-OK Brace-Horizontal Fy=55 ksi Hannibal 1-1/2x1-1/2x16ga 0.23-OK Brace-Diagonal Fy=55 ksi Hannibal 1-1/2x1-1/2x16ga 0.35-OK Base Plate Fy=36 ksi 8x5x0.375 Fixity= 2794 in-lb 0.51-OK Anchor 2 per Base 0.5"x 3.25"Embed POWERS SD2 ESR 2502 Inspection Reqd(Net Seismic Uplift=2366 Ib) 0.617-OK Slab&Soil 6"thk x 3000 psi slab on grade. 1000 psf Soil Bearing Pressure 0.52-OK Level Load** Story Force Story Force Column Column Conn. Beam Per Level Beam Spcg Brace Transv Longit. Axial Moment Moment Connector 1 1,200 lb 12.0 in 36.0 in 18 lb 15 lb 6,963 lb 2,794 "# 5,149 "# 4 pin OK 2 1,200 lb 28.0 in 36.0 in 60 lb 49 lb 6,330 lb 9,675 "# 7,437 "# 4 pin OK 3 1,200 lb 28.0 in 48.0 in 102 lb 84 lb 5,698 lb 9,330 "# 7,111 "# 4 pin OK 4 5,000 lb 28.0 in 48.0 in 566 lb 465 lb 5,065 lb 8,744 "# 10,859 "# 4 pin OK 5 5,000 lb 66.0 in 955 lb 784 lb 2,533 lb 12,941 "# 7,799 "# 4 pin OK **Load defined as product weight per pair of beamsTotal: 1,7011b 1,3971b Notes 44160 beams @ Iv! 1-3. C4x4.5#@ Iv!4-5. PAPE MATERIAL HANDLING-TYPE 3.xls Page //of , 5/6/201 9