Loading...
Specifications (19) • 00, RECEIVED -4 JUL 1 1 2019 CITY OF TIGARD BUILDING DIVISION Sl'rucfurol Engineering Design PROp Project Nome : ROGERS MACHINERY �\g\� i N� �Asi02 7 • Project Number : LV-050219-2 tt 62618PE � Date : 06/28/'19910 ��` A7EoF J Street Address: 7333 SW BONITA RD 07/01/2019 7IVGQIAO � City/State : TIGARD, OR 97224 EXPIRES:06-30-2020 Minggiao Zhu, PE/P.Eng Scope of Work : STORAGE RACK 1428 N Shevlin Court Sewickley, PA 15143 TEL:909.596.1351 FAX 909.596.7186 i Structural Engineering & Design Inc. 1815 Wright Ave La Verne. CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: FEIZI Project: BONITA ANNEX Project#: LV--050219-2 TABLE OF CONTENTS Title Page 1 Table of Contents 2 Design Data and Definition of Components 3 Critical Configuration 4 Seismic Loads 5 to 6 Column 7 Beam and Connector 8 to 9 Bracing 10 Anchors 11 Base Plate 12 Slab on Grade 13 Other Configurations 14 INTLK(PIN)-BONITA ANNEX-TYPE I Page 2_ of 1 1 5/22/20 19 Structural Engineering & Design Inc. 1815 Wright Ave La Verne. CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: FEIZI Project: BONITA ANNEX Project#: LV--050219-2 Design Data 1)The analyses herein conforms to the requirements of the: 2012 IBC Section 2209 2016 CBC Section 2209A ANSI MH 16.1-2012 Specifications for the Design of Industrial Steel Storage Racks "2012 RMI Rack Design Manual" ASCE 7-10,section 15.53 2)Transverse braced frame steel conforms to ASTM A570,Gr.55,with minimum strength, Fy=55 ksi Longitudinal frame beam and connector steel conforms to ASTM A570,Gr.55,with minimum yield, Fy=55 ksi All other steel conforms to ASTM A36,Gr.36 with minimum yield, Fy= 36 ksi 3)Anchor bolts shall be provided by installer per ICC reference on plans and calculations herein. 4)All welds shall conform to AWS procedures,utilizing E70xx electrodes or similar.All such welds shall be performed in shop,with no field welding allowed other than those supervised by a licensed deputy inspector. 5)The existing slab on grade is 8"thick with minimum 2500 psi compressive strength.Allowable Soil bearing capacity is 1000 psf. The design of the existing slab is by others. 6) Load combinations for rack components correspond to 2012 RMI Section 2.1 for ASD level load criteria Definition of Components A jr-- COL.= Beam aace A� Erace t ht _r Sp=- e Einc ,rs Length 111( [4,F7arT_'4 Depth T� Front t VT Down AE Section A 01635 Atte fionOitudirre4 Frame $�T€arr5VSr5u `g Frame INTLK(PIN)-BONITA ANNEX-TYPE I Page ,5 of t L1 5/22/20 19 Structural Engineering & Design Inc. 1815 Wright Ave La Verne, CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: FEIZI Project: BONITA ANNEX Project#: LV--050219-2 Configuration&Summary:TYPE 1 SELECTIVE RACK N / **RACK COLUMN REAL(IONS ASD LOADS 64" 74" AXIAL DL= 113/b / J AXIAL LL= 3,750 lb SEISMIC AXIAL Ps=+/- 3,900 lb BASE MOMENT= 0 in-lb 192" 192" 52" 64" 52" 4" 6I. / N 't -}' 108" ,I' .-4- 42" -' Seismic Criteria # Bm Lvis Frame Depth Frame Height #Diagonals Beam Length Frame Type Ss=0.971, Fa=1.112 3 42 in 192.0 in 3 108 in Single Row Component Description _ STRESS Column Fy=55 ksi INTLK LU70/3x3x14ga P=2575 lb, M=10333 in-lb 0.37-OK Column&Backer To Level 1 INTLK LU70-LU21/3x3x14ga/3x1-5/8xl4ga p= 3863 lb, M= 23250 in-lb 0.47-OK Beam Fy=55 ksi Intik 50E 5Hx2.75Wx0.063"Thk Lu=108 in Capacity: 6123 lb/pr 0.41-OK Beam Connector Fy=55 ksi Lvl 1: 4 pin OK Mconn=12427 in-lb Mcap=22664 in-lb 0.55-OK Brace-Horizontal Fy=55 ksi Intlk 1-1/2x1-1/4x3/8xl6ga 0.15-OK Brace-Diagonal Fy=55 ksi Intik 1-1/2x1-1/4x3/8xl6ga _ 0.65-OK Base Plate Fy=36 ksi 8x5x0.375 Fixity= 0 in-lb 0.63-OK Anchor 2 per Base 0.5"x 3.25"Embed HILTI KWIKBOLT TZ ESR 1917 Inspection Reqd(Net Seismic Uplift=1916 Ib) 0.483-OK Slab&Soil 8"thk x 2500 psi slab on grade. 1000 psf Soil Bearing Pressure 0.2-OK Level Load** Story Force Story Force Column Column Conn. Beam Per Level Beam Spcg Brace Transv Longit. Axial Moment Moment Connector 1 2,500 lb 64.0 in 52.0 in 158 lb 129 lb 3,863 lb 23,250 "# 12,427 "# 4 pin OK 2 2,500 lb 64.0 in 52.0 in 315 lb 258 lb 2,575 lb 10,333 "# 6,460 "# 4 pin OK 3 2,500 lb 64.0 in 74.0 in 473 lb 388 lb 1,288 lb 6,200 "# 2,843 "# 4 pin OK **Load defined as product weight per pair of beams Total: 945 lb 775 lb Notes DR or SR ok INTLK(PIN)-BONITA ANNEX-TYPE I Page 7 of t il 5/22/201 9 Structural Engineering & Design Inc. 1815 Wright Ave La Verne, CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 ' By: FEIZI Project: BONITA ANNEX Project#: LV--050219-2 Seismic Forces Configuration:TYPE 1 SELECTIVE RACK Lateral analysis is performed with regard to the requirements of the 2012 RMI ANSI MH 16.1-2012 Sec 2.6&ASCE 7-10 sec 15.5.3 Ss= 0.971 Transverse(Cross Aisle)Seismic Load 51= 0.421 V= Cs*Ip*Ws=Cs*Ip*(0.67*P*Prf+D) ,>OwVt Fa= 1.112 Csl= Sds/R Fv= L579 = 0.1800 Cs-max* Ip= 0.1800 Sds=2/3*Ss*Fa= 0.720 Cs2= 0.044*Sds Vmin= 0.015 Sd1=2/3*S1*Fv= 0.443 = 0.0317 Eff Base Shear=Cs= 0.1800 Transveoe Elevatiori Ca=0.4*2/3*Ss*Fa= 0.2879 Cs3= 0.5*S1/R Ws= (0.67*PLRFI * PL)+DL(RMI 2.6.2) (Transverse,Braced Frame Dir.)R= 4,0 = 0.0526 = 5,250 lb Ip= 1.0 Cs-max= 0.1800 vtransv=Vt= 0.18* (225 lb+ 5025 Ib) PRFI- 1.0 Base Shear Coeff=Cs= 0.1800 Etransverse= 945 lb Pallet Height=hp= 48.0 in Limit States Level Transverse seismic shear per upright DL per Beam Lvl= 75 lb Level PRODUCT LOAD P P*0.67*PRFI DL hi wi*hi Fi Fi*(hi+hp/2) 1 2,500 lb 1,675 lb 75 lb 64 in 112,000 157.5 lb 13,860-# 2 2,500 lb 1,675 lb 75 lb 128 in 224,000 315.0 lb 47,880-# 3 2,500 lb 1,675 lb 75 lb 192 in 336,000 472.5 lb 102,060-# sum: P=7500 lb 5,025 lb 225 lb W=5250 lb 672,000 945 lb 1=163,800 Longitudinal(Downaisle)Seismic Load Similarly for longitudinal seismic loads,using R=6.0 Ws= (0.67* PLRF2* P) + DL PRP2= 1.0 1. -',.1 l j 1 ..1 Cs1=Sd1/(T*R)= 0.1477 = 5,250 lb (Longitudinal,Unbraced Dir.)R= 6.0 ► Cs2= 0.0317 Cs=Cs-max*Ip= 0.1477 T= 0.50 sec I f 'I ykil Cs3= 0.0351 Vlong= 0.1477* (225 lb+ 5025 lb) I I t ri,f I 1-1 Cs-max= 0.1477 Elongitudinal= 775 lb Limit States Level Longit.seismic shear per upright Level PRODUC LOAD P P*0.67*PRFI DL hi wi*hi Fl Front View 1 2,500 lb 1,675 lb 75 lb 64 in 112,000 129.2 lb I 2 2,500 lb 1,675 lb 75 lb 128 in 224,000 258.3 lb 3 2,500 lb 1,675 lb 75 lb 192 in 336,000 387.5 lb sum: 5,025 lb 225 lb W=5250 lb 672,000 775 lb INTLK(PIN)-BONITA ANNEX-TYPE I Page j of 1 y 5/22/201 9 Structural Engineering & Design Inc. 1815 Wright Ave La Verne, CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: FEIZI Project: BONITA ANNEX Project#: LV--050219-2 Downaisle Seismic Loads Configuration:TYPE 1 SELECTIVE RACK Determine the story moments by applying portal analysis.The base plate is assumed to provide no fixity. Seismic Story Forces Typical frame made Vlong= 775 lb Tributary area °Itwocolums Vcol=Vlong/2= 388 lb of rack frame F1= 129 lb 1 i .4 H'.. : Typical Frame made F2= 258 lb /of two columns F3= 388 lb ► r-- I ]:EL Ell 0I — rt --rt 1 —rt Top Vic,/ Front View 5idc View Seismic Story Moments Conceptual System COL Mbase-max= 0 in-lb <===Default capacity hl-eff= hi -beam clip height/2 Mbase-v= (Vcol*hleff)/2 = 60 in Vcol '��� = 11,625 in Ib <===Moment going to baseIII -_ Mbase-eff= Minimum of Mbase-max and Mbase-v h2 = 0 in-lb PINNED BASE ASSUMED M 1-1= [Vcol* hleff]-Mbase-eff M 2-2= [Vcol-(F1)/2] *h2 _= = (388 lb* 60 in)-0 in-lb = [388 lb- 129.2 Ib]*64 in/2 iF = 23,250 in-lb = 10,333 in-lb h1 hleff Mseis= (Mupper+Mlower)/2 Beam to Column Mseis(1-1)= (23250 in-lb+ 10333 in-lb)/2 Mseis(2-2)= (10333 in-lb+6200 in-Ib)/2 Elevation = 16,791 in-lb = 8,266 in-lb rho= 1.0000 Summary of Forces LEVEL hi Axial Load Column Moment** Mseismic** Mend-fixity Mconn** Beam Connector 1 64 in 3,863 lb 23,250 in-lb 16,791 in-lb 962 in-lb 12,427 in-lb 4 pin OK 2 64 in 2,575 lb 10,333 in-lb 8,266 in-lb 962 in-lb 6,460 in-lb 4 pin OK 3 64 in 1,288 lb 6,200 in-lb 3,100 in-lb 962 in-lb 2,843 in-lb 4 pin OK I Mconn= (Mseismic+ Mend-fixity)*0.70*rho Mconn-allow(4 Pin)= 22,664 in-lb **all moments based on limit states level loading INILK(PIN)-BONITA ANNEX-TYPE I Page (p of 1 Y 5/22/201 0 Structural Engineering & Design Inc. _ 1815 Wright Ave La Verne. CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: FEIZI Project: BONITA ANNEX Project#: LV--050219-2 Column(Longitudinal Loads) Configuration:TYPE 1 SELECTIVE RACK Section Properties Section: INTLK LU70-LU21/3x3x14ga/3x1-5/8x14ga K,-3.000 in Aeff= 1.185 in^2 Iy= 2.350 in^4 Kx= 1.7 Ix = 1.883 in^4 Sy= 1.093 in^3 Lx= 61.5 in 0.075 in 3.000 in Sx= 1.255 in^3 ry= 1.484 in Ky= 1.0 rx = 1.261 in Fy= 55 ksi Ly= 52.0 in 0.075 in 0.000 in 52f= 1.67 Cmx= 0.85 Cb= 1.0 E= 29,500 ksi 4 0.750 in Loads Considers loads at level 1 COLUMN DL=D= 113 lb Criticalload cases are:RMI Sec 2.1 COLUMN LIVE LOAD=P= 3,750 lb Load Case 5::(1+0.105*Sds)D+0.75*(1.4+0.14Sds)*B*P+0.75*(0.7*rho*E)<=1.0,ASD Method Mcol= 23,250 in-lb axial load coeff. 0.7879053*P seismic moment coeff: 0.5625*Mcol Sds= 0.7198 Load Case 6::(1+0.14*Sds)D+(0.85+0.14Sds)*B*P+(0.7*rho*E)<=1.0,ASD Method 1+0.105*Sds= 1.0756 axial load coeff• 0.66554 seismic moment coefb 0.7*Mcol 1.4+0.14Sds= 1.5008 By analysis, Load case 6 governs utilizing loads as such 1+0.14Sds= 1.1008 0.85+0.14*Sds= 0.9508 Axial=Pax= 1.100772*112.5 lb+0.950772*0.7*3750 lb Moment=Mx= 0.7*rho*Mcol B= 0.7000 = 2,620 lb = 0.525*23250 in-lb rho= 11.0000 = 16,275 in-lb Axial Analysis KxLx/rx= 1.7*61.5"/1.261" KyLy/ry= 1*52"/1.484" Fe > Fy/2 = 82.9 = 35.0 Fn= Fy(1-Fy/4Fe) Fe= n^2E/(KL/r)max^2 Fy/2= 27.5 ksi = 55 ksi*[1-55 ksi/(4*42.4 ksi)] = 42.4ksi = 37.1 ksi Pa= Pn/Qc Pn= Aeff*Fn 52c= 1.92 = 44017 lb/1.92 = 44,017 lb = 22,925 lb P/Pa= 0.11 < 0.15 Bending Analysis CHECK: P/Pa + Mx/Max <_ 1.0 Pno= Ae*Fy Pao= Pno/Qc Myield=My= Sx*Fy = 1.185 in^2*55000 psi = 651751b/1.92 = 1.255 in^3 * 55000 psi = 65,175 lb = 33,945 lb = 69,025 in-lb Max= My/S2f Pcr= n^2EI/(KL)max^2 = 69025 in-lb/1.67 = n^2*29500 ksi/(1.7*61.5 in)^2 = 41,332 in-lb = 50,156 lb px= {1/[1-(52c*P/Pcr)]}^-1 = {1/[1-(1.92*2620 Ib/50156 lb)]}^-1 = 0.90 Combined Stresses (2620 lb/22925 Ib)+ (16275 in-lb/41332 in-lb) = 0.47 < 1.0,OK (EQ C5-3) **For comparison, total column stress computed for load case 5/s 39.0% ads 3075.6475125 lb Axial and M= 12206 in-lb INTLK(PIN)-BONITA ANNEX-TYPE 1 Page 77 of t Y 5/22/201 9 Structural Engineering & Design Inc. 1815 Wright Ave La Verne, CA 91750 Tel: 909.596.1 351 Fax: 909.596.7186 By: FEIZI Project: BONITA ANNEX Project#: LV--050219-2 Column(Longitudinal Loads) Configuration:TYPE 1 SELECTIVE RACK Section Properties Section: INTLK LU70/3x3x14ga 3.000 in Aeff= 0.643 in^2 Iy= 0.749 in^4 Kx= 1.7 X _ Ix= 1.130 in^4 Sy= 0.493 inA3 Lx= 61.5 in 1 1 Sx = 0.753 inA3 ry= 1.080 in Ky= 1.0 I 3.000 in rx= 1.326 in Fy= 55 ksi Ly= 52.0 in _ 0.075 in 52f= 1.67 Cmx= 0.85 Cb= 1.0 x Y E= 29,500 ksi X0.75 in Loads Considers loads at level 2 COLUMN DL= 75 lb Critical load cases are:RMI sec 2.1 COLUMN PL= 2,500 lb Load Case 5::(1+0.105*Sds)D+0.75*(1.4+0.14Sds)*B*P+0.75*(0.7*rho*E)<=1.0,ASD Method Mcol= 10,332 in-lb axial load coeff: 0.7879053*P seismic moment coeff: 0.5625*Mcol Sds= 0.7198 Load Case 6::(1+0.14*Sds)D+(0.85+0.14Sds)*B*P+(0.7*rho*E)<=1.0,ASD Method 1+0.105*Sds= 1.0756 axial load coeff: 0.66554 seismic moment coeff: 0.7*Mcol 1.4+0.14Sds= 1.5008 By analysis, Load case 5 governs utilizing loads as such 1+0.14Sds= 1.1008 0.85+0.14*Sds= 0.9508 Axial Load=Pax= 1.075579*75 lb+0.75*1.500772*0.7*2500 lb Moment=Mx= 0.75*0.7*rho*Mcol B= 0.7000 = 2,050 lb = 0.525*10332 in-lb rho= 1.0000 = 5,424 in-lb Axial Analysis KxLx/rx= 1.7*61.5"/1.326" KyLy/ry = 1*52"/1.08" Fe > Fy/2 = 78.8 = 48.1 Fn= Fy(1-Fy/4Fe) = 55 ksi*[1-55 ksi/(4*46.8 ksi)] Fe= n^2E/(KL/r)max^2 Fy/2= 27.5 ksi = 38.9 ksi = 46.8ksi Pa= Pn/Qc Pn= Aeff*Fn Qc= 1.92 = 24982 lb/1.92 = 24,982 lb = 13,012 lb P/Pa= 0.16 > 0.15 Bending Analysis Check: Pax/Pa +(Cmx*Mx)/(Max*px) 5 1.0 P/Pao+ Mx/Max <_ 1.0 Pno= Ae*Fy Pao= Pno/Qc Myield=My= Sx*Fy = 0.643 in^2 *55000 psi = 35365lb/1.92 = 0.753 inA3* 55000 psi = 35,365 lb = 18,419 lb = 41,415 in-lb Max= My/Qf - Pcr= n^2EI/(KL)max^2 = 41415 in-lb/1.67 = n^2*29500 ksi/(1.7*61.5 in)^2 = 24,799 in-lb = 30,099 lb px= {1/[1-(4c*P/Pcr)]}^-1 = {1/[1-(1.92*2050 Ib/30099 Ib)]}^-1 = 0.87 Combined Stresses (2050 lb/13012 Ib) + (0.85*5424 in-lb)/(24799 in-Ib*0.87) = 0.37 < 1.0,OK (EQ C5-1) (2050 lb/18419 Ib)+ (5424 in-lb/24799 in-Ib) = 0.33 < 1.0,OK (EQ C5-2) **For comparison, total column stress computed for load case 6 is: 23.0% ?ing loads 1746.4089 lb Axial and M= 7232 in-lb INTLK(PIN)-DONITAANNEX-TYPE I Page ?i-of t cf 5/22/2019 Structural Engineering & Design Inc. 1815 Wright Ave La Verne. CA 91750 Tel:909.596.1351 Fax: 909.596.7186 By: FEIZI Project: BONITA ANNEX Project#: LV--050219-2 "BEAM Configuration: TYPE 1 SELECTIVE RACK DETERMINE ALLOWABLE MOMENT CAPACITY 2.75 in 4 , A) Check compression flange for local buckling(B2.1) 1.75 in J. w= c-2*t-2*r TT = 1.75 in-2*0.063 in- 2*0.063 in r � 1' = 1.498 in 1.625 in w/t= 23.78 1=lambda= [1.052/(k)^0.5] * (w/t)*(Fy/E)A0.5 Eq. B2.1-4 = [1.052/(4)^0.5] * 23.78*(55/29500)^0.5 5.000 in = 0.54 < 0.673, Flange is fully effective Eq. B2.1-1 1 i 0.063 in B) check web for local buckling per section b2.3 f1(comp)= Fy*(y3/y2)= 50.92 ksi NIMM, f2(tension)= Fy*(y1/y2)= 102.69 ksi Y= f2/f1 Eq. B2.3-5 Beam= Intik 50E 5Hx2.75Wx0.063"Thk = -2.017 Ix= 2.916 in^4 k= 4+ 2*(1-Y)^3 + 2*(1-Y) Eq. B2.3-4 Sx= 1.114 in^3 = 64.96 Ycg= 3.300 in flat depth=w= y1+y3 t= 0.063 in = 4.748 in w/t= 75.36507937 OK Bend Radius=r= 0.063 in 1=lambda= [1.052/(k)^0.5]*(w/t)*(fl/E)^0.5 Fy=Fyv= 55.00 ksi = [1.052/(64.96)^0.5]*4.748*(50.92/29500)^0.5 Fu=Fuv= 65.00 ksi = 0.409 < 0.673 E= 29500 ksi be=w= 4.748 in b2= be/2 Eq B2.3-2 top flange=b= 1.750 in bl= be(3-Y) = 2.37 in bottom flange= 2.750 in = 0.946 Web depth= 5.P ;' b1+b2= 3.316 in > 1.574 in,Web is fully effective ft(comp) Determine effect of cold working on steel yield point(Fya)per section A7.2 A -- Fya= C*Fyc+ (1-C)*Fy (EQ A7.2-1) Lcorner=Lc= (p/2)*(r+t/2) 2 0.148 in C= 2*Lc/(Lf+2*Lc) Lflange-top=Lf= 1.498 in = 0.165 in y3 m= 0.192*(Fu/Fy)-0.068 (EQ A7.2-4) depth = 0.1590 Bc= 3.69*(Fu/Fy)-0.819*(Fu/Fy)^2- 1.79 (EQ A7.2-3) A = 1.427 yl since fu/Fv= 1.18 < 1.2 Ycg and r/t= 1 < 7 OK f2(tension) then Fyc= Bc* Fy/(R/t)^m (EQ A7.2-2) . - = 78.485 ksi Thus, Fya-top= 58.88 ksi (tension stress at top) Fya-bottom= Fya*Ycg/(depth-Ycg) yl= Ycg-t-r= 3.174 in = 114.29 ksi (tension stress at bottom) y2= depth-Ycg= 1.700 in Check allowable tension stress for bottom flange y3= y2-t-r= 1.574 in Lflange-bot=Lfb= Lbottom-2*r*-2*t = 2.498 in Cbottom=Cb= 2*Lc/(Lfb+2*Lc) = 0.106 Fy-bottom=Fyb= Cb*Fyc+(1-Cb)*Fyf = 57.49 ksi Fya= (Fya-top)*(Fyb/Fya-bottom) = 29.62 ksi if F= 0.95 Then F*Mn=F*Fya*Sx= 31.34 in-k Structural Engineering & Design Inc. • 1815 Wright Ave La Verne. CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: FEIZI Project: BONITA ANNEX Project#: LV--050219-2 BEAM Configuration:TYPE 1 SELECTIVE RACK -RMI Section 5.2, PT II Section Beam= Intik 50E 5Hx2.75Wx0.063"Thk Ix=Ib= 2.916 in^4 2.75 in Sx= 1.114 in^3 N t= 0.063 in E= 29500 ksi L 1.75 in 4, Fy=Fyv= 55 ksi F= 150.0I Fu=Fuv= 65 ksi L= 108 in r f Fya= 58.9 ksi Beam Level= 1 ! 1.625 in P=Product Load= 2,500 lb/pair D=Dead Load= 75 lb/pair 5.000 in 0.063 in 1.Check Bending Stress Allowable Loads Mcenter=F*Mn= W*L*W*Rm/8 W=LRFD Load Factor= 1.2*D+ 1.4*P+1.4*(0.125)*P RMI 2.2,item 8 FOR DL=2%of PL, W= 1.599 Rm= 1 -[(2*F*L)/(6*E*Ib+3*F*L)] t_ iiIIIIIIIIIIIIIUIIIIIIIIIIIIIiIIiI]jIIlUlll0 IT aamnmewmiemmmimmmimmmm 1 -(2*150*108 in)/[(6*29500 ksi*2.9155 in^3)+(3*150*108 in)] = 0.943 - if F= 0.95 Then F*Mn=F*Fya*Sx= 62.31 in-k _ .. . . - Thus,allowable load per beam pair=W= F*Mn*8*(#of beams)/(L*Rm*W) Oen = 62.31 in-k*8* 2/(108in* 0.943 * 1.599) Length = 6,123 lb/pair allowable load based on bending stress Mend= W*L*(1-Rm)/8 = (6123 lb/2) * 108 in* (1-0.943)/8 = 2,356 in-lb @ 6123 lb max allowable load = 0,962 in-lb @ 2500 lb imposed product load 2.Check Deflection Stress Allowable Loads Dmax= Dss*Rd Rd= 1 -(4*F*L)/(5*F*L+ 10*E*Ib) Allowable Deflection= L/180 = 1 -(4*150*108 in)/[(5*150*108 in)+(10*29500 ksi*2.9155 in^4)] = 0.600 in = 0.931 in Deflection at imposed Load= 0.245 in if Dmax= L/180 Based on L/180 Deflection Criteria and Dss= 5*W*L^3/(384*E*Ib) L/180= 5*W*L^3*Rd/(384*E*Ib*#of beams) solving for W yields, W= 384*E*I*2/(180*5*L^2*Rd) = 384*2.9155 in^4*2/[180*5*(108 in)^2*0.931) = 6,759 lb/pair allowable load based on deflection limits Thus,based on the least capacity of item 1 and 2 above: Allowable load= 6,123 lb/pair Imposed Product Load= 2,500 lb/pair Beam Stress= 0.41 Beam at Level 1 8 2— Structural Engineering & Design Inc. 1815 Wright Ave 1 a Verne CA 91750 Tel. 909 596 1351 Fax• 909 596 7186 By: FEIZI Project: BONITA ANNEX Project#: LV--050219-2 4 Pin Beam to Column Connection TYPE 1 SELECTIVE RACK I he beam end moments shown herein show the result of the maximum induced fixed end monents torm seismic+static loads and the code - mandated minimum value of 1.5%(DL+PL) WI Mconn max= (Mseismic+ Mend-fixity)*0.70*Rho P1 rho 1_0000 = 12,427 in-lb Load at level 1 C pr Connector Type= 4 Pin Shear Capacity of Pin Pin Diam= 0.44 in Fy= 55,000 psi Ashear= (0.438 in)^2*Pi/4 = 0.1507 in^2 Pshear= 0.4* Fy*Ashear = 0.4*55000 psi*0.1507in^2 = 3,315 lb Bearing Capacity of Pin tcol= 0.075 in Fu= 65,000 psi Omega= 2.22 a= 2.22 Pbearing= alpha * Fu*diam*tcol/Omega = 2.22*65000 psi * 0.438 in * 0.075 in/2.22 = 2,135 lb <3315 lb Moment Capacity of Bracket Edge Distance=E= 1.00 in Pin Spacing= 2.0 in Fy= 55,000 psi C= P1+P2+P3+P4 tclip= 0.18 in Sclip= 0.127 in^3 = P1+P1*(4.5"/6.5")+P1*(2.5"/6.5")+P1*(0.5"/6.5") = 2.154* P1 Mcap= Sclip*Fbending C*d= Mcap= 2.154 d= E/2 = 0.127 inA3*0.66*Fy = 0.50 in = 4,610 in-lb Pclip= Mcap/(2.154*d) = 4610.1 in-lb/(2.154* 0.5 in) Thus, P1= 2,135 lb = 4,281 lb Mconn-allow= [P1*6.5"+P1*(4.5"/6.5")*4.5" +P1*(2.5"/6.5")2.5"+P1*(0.5"/6.5")*0.5"] = 2135 LB*[6.5"+(4.5"/6.5")*4.5"+(2.5"/6.5")*2.5"+(0.5"/6.5")*0.51 = 22,664 in-lb > Mconn max, OK INTLK(PIN)-BONITA ANNEX-TYPE I Page ? of 1 y 5/22/201 9 Structural Engineering & Design Inc. 1815 Wright Ave La Verne. CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: FEIZI Project: BONITA ANNEX Project#: LV--050219-2 Transverse Brace Configuration: TYPE 1 SELECTIVE RACK Section Properties Diagonal Member= Intlk 1-1/2x1-1/4x3/8x16ga Horizontal Member= Intik 1-1/2x1-1/4x3/8x16ga Area= 0.258 in^2Area= 0.258 inA2 1.500 in r min= 0.460 in r min= 0.460 in1.500 —o- Fy= 55,000 psi '—'—'1 1 Fy= 55,000 psi r- ----1 K= 1.0 ( 11.250 in K= 1.0 1 1.250 52c= 1.92 4_ _J I Q 1y_ _ 1 4--0.375 in 4--0.375 Frame Dimensions Bottom Panel Height=H= 74.0 in Clear Depth=D-B*2= 36.0 in Frame Depth=D= 42.0 in X Brace= NO Column Width=B= 3.0 in rho= 1.00 Diagonal Member 0 Load Case 6::(1+1 0- : : 0.85+0.14Sds)*B*P+[0.7*rho*EJ<=1.0,ASD Method . „ ----- 1Vtransverse= 945 lb vb IMAM Vb=Vtransv*0.7*rho= 945 lb* 0.7* 1 (kl/r)= (k* Ldiag)/r min = 6621b = (1x 76.9in/0.46in) Ldiag= [(D-B*2)^2 + (H-6")^2]^1/2 = 167.2 in Ldiag = 76.9 in Fe= pi^2*E/(kl/r)^2 " Pmax= V*(Ldiag/D)* 0.75 = 10,415 psi max = 908 lb axial load on diagonal brace member Since Fe<Fy/2, 3"P Pn= AREA*Fn Fn= Fe a , = 0.258 in^2*10415 psi = 10,415 psi Typical Panel = 2,686 lb configuration Pallow= Pn/S2 Check End Weld = 2686 lb/1.92 Lweld= 3.0 in = 1,399 lb Fu= 65 ksi tmin= 0.060 in Pn/Pallow= 0.65 <= 1.0 OK Weld Capacity= 0.75*tmin*L* Fu/2.5 = 3,510 lb OK Horizontal brace Vb=Vtransv*0.7*rho= 662 lb (kl/r)= (k* Lhoriz)/r min Fe= pi^2*E/(kl/r)^2 Fy/2= 27,500 psi = (1 x 42 in)/0.46 in = 34,928 psi = 91.3 in Since Fe>Fy/2, Fn=Fy*(1-fy/4fe) Pn= AREA*Fn Pallow= Pn/4c = 33,348 psi = 0.258in^2*33348 psi = 8601 lb/1.92 = 8,601 lb = 4,479 lb Pn/Pallow= 0.15 <= 1.0 OK INTLK(PIN)-BONITA ANNEX-TYPE I Page /Oof ,y, 5/22/2019 Structural Engineering & Design Inc. 1815 Wright Ave La Verne. CA 91750 Tel:909.596.1351 Fax: 909.596.7186 By: FEIZI Project: BONITA ANNEX Project#: LV--050219-2 Single Row Frame Overturning Configuration:TYPE 1 SELECTIVE RACK Loads Critical Load case(s): . , 1)RMI Sec 2.2,item 7: (0.9-0.2Sds)D+ (0.9-0.20Sds)*B*Papp-E*rho hp A 1 Sds= 0.7198 v Vtrans=V=E=Qe= 945 lb (0.9-0.2Sds)= 0.7560 .s DEAD LOAD PER UPRIGHT=D= 225 lb (0.9-0.2Sds)= 0.7560 PRODUCT LOAD PER UPRIGHT=P= 7,500 lb B- 1.0000 H h Papp=P*0.67= 5,025 lb rho= 1.0000 Wst LC1=Wst1=(0.75604*D+0.75604*Papp*1)= 3,969 lb Frame Depth=Df= 42.0 in T Product Load Top Level, Ptop= 2,500 lb Htop-Iv1=H= 192.0 in I DL/Lvl= 75 lb # Levels= 3 � Df-01 Seismic Ovt based on E,E(Fi*hi)= 163,800 in-lb #Anchors/Base= 2 height/depth ratio= 4.6 in hp= 48.0 in SIDE ELEVATION A)Fully Loaded Rack h=H+hp/2= 216.0 in Load case 1: Movt= s(Fi*hi)*E*rho Mst= Wstl * Df/2 T= (Movt-Mst)/Df = 163,800 in-lb = 3969 lb*42 in/2 = (163800 in-lb-83349 in-lb)/42 in = 83,349 in-lb = 1,916 lb Net Uplift per Column Net Seismic Uplift= 1,916 lb B)Top Level Loaded Only Load case 1: 0 V1=Vtop= Cs* Ip* Ptop >= 350 lb for H/D >6.0 Movt= [V1*h+V2* H/2]*0.7*rho = 0.18 * 2500 lb = 70,762 in-lb = 450 lb T= (Movt-Mst)/Df Vleff= 450 lb Critical Level= 3 = (70762 in-lb-43264 in-Ib)/42 in V2=VDL= Cs*Ip*D Cs*Ip= 0.1800 = 655 lb Net Uplift per Column = 41 lb Mst= (0.75604*D+0.75604*Ptop*1)*42 in/2 = 43,264 in-lb Net Seismic Uplift= 655 lb Anchor Check(2)0.5"x 3.25"Embed HILTI KWIKBOLT TZ anchor(s)per base plate. Special inspection is required per ESR 1917. Pullout Capacity=Tcap= 1,961 lb L.A. City Jurisdiction? NO Tcap*Phi= 1,961 lb Shear Capacity=Vcap= 2,517 lb Phi= 1 Vcap*Phi= 2,517 lb Fully Loaded: (958 lb/1961 Ib)^1 + (236 lb/2517 Ib)^1 = 0.58 <= 1.2 OK Top Level Loaded: (327 lb/1961 lb)^1 + (112 lb/2517 lb)^1 = 0.21 <= 1.2 OK INTLK(PIN)-BONITA ANNEX-TYPE I Page i( of /y 5/22/2019 Structural Engineering & Design Inc. 1815 Wright Ave La Verne, CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 • By: FEIZI Project: BONITA ANNEX Project#: LV--050219-2 Base Plate Configuration:TYPE 1 SELECTIVE RACK Section ~ a -+ Baseplate= 8x5x0.375 A, Eff Width=W = 8.00 in a = 3.00 in 111/1 Mb Eff Depth=D = 5.00 in Anchor c.c. =2*a=d= 6.00 in Column Width=b = 3.00 in N=#Anchor/Base= 2 I b HL Column Depth=dc = 3.00 in Fy= 36,000 psi w L = 2.50 in Plate Thickness=t = 0.375 in Downaisle Elevation Down Aisle Loads Load Case 5::(1+0.105*Sds)D+0.751(1.4+0.145ds)*B*P+0.75*[0.7*rho*Ej<=1.0 ASD Method COLUMN DL= 113 lb Axial=P= 1.075579* 112.5 lb+ 0.75* (1.500772* 0.7* 3750 Ib) COLUMN PL= 3,750 lb = 3,076 lb Base Moment= 0 in-lb Mb= Base Moment*0.75*0.7*rho 1+0.105*Sds= 1.0756 = 0 in-lb*0.75*0.7*rho 1.4+0.14Sds= 1.5008 = 0 in-lb Ur( B= 0.7000 Axial Load P= 3,076 lb Mbase=Mb= 0 in-lb Effe Axial stress=fa = P/A= P/(D*W) M1= wL^2/2= fa*L^2/2 = 77 psi = 240 in-lb Moment Stress=fb = M/S= 6*Mb/[(D*BA2] Moment Stress=fb2= 2*fb* L/W = 0.0 psi = 0.0 psi Moment Stress=fbl = fb-fb2 M2= fb1*L^2)/2 = 0.0 psi = 0 in-lb M3 = (1/2)*fb2*L*(2/3)*L= (1/3)*fb2*L^2 Mtotal = M1+M2+M3 = 0 in-lb = 240 in-lb/in S-plate = (1)(t^2)/6 Fb= 0.75*Fy = 0.023 inA3/in = 27,000 psi fb/Fb = Mtotal/[(S-plate)(Fb)] Fp= 0.7*Fc = 0.38 OK = 1,750 psi OK Tanchor= (Mb-(PLapp*0.75*0.46)(a))/[(d)*N/2] Tallow= 1,961 lb OK = -1,985 lb No Tension Cross Aisle Loads o-lticaltoad caseRMlsec2.1,;tem4(1,0.11yes)oL+(1,0.145o5)pL.075taxo.75<-1.0,ASO Method Check uplift load on Baseplate Check uplift forces on baseplate with 2 or more anchors per RMI 7.2,2. Pstatic= 3,076 lb "When the base plate configuration consists of two anchor bolts located on either side .f the column and a net uplift force exists,the minimum base plate thickness Movt*0.75*0.7*rho= 85,995 in-lb Pseismic= Movt/Frame Depth -hall be determined based on a design bending moment in the plate equal Frame Depth= 42.0 in = 2,048 lb to the uplift force on one anchor times 1/2 the distance from P=Pstatic+Pseismic= 5,123 lb he centerline of the anchor to the nearest edge of the rack column" b=Column Depth= 3.00 in T 14- c i MuTa L=Base Plate Depth Col Depth= 2.50 in Ta ra fa= P/A= P/(D*W) M= wLA2/2=fa*LA2/2 I� b ►I = 128 psi = 400 in-lb/in Elevation Uplift per Column= 1,916 lb Sbase/in = (1)(t^2)/6 Fbase = 0.75*Fy Qty Anchor per BP= 2 = 0.023 in''3/in = 27,000 psi Net Tension per anchor=Ta= 958 lb c= 2.50 in fb/Fb= M/[(S-plate)(Fb)] Mu=Moment on Baseplate due to uplift= Ta*c/2 0.63 OK = 1,198 in-lb Splate= 0.117 inA3 fb Fb *0.75= 0.284 OK INTLK(PIN)-BONITA ANNEX-TYPE I Page /2--of r y 5/22/2019 Structural Engineering & Design I nc. 1815 Wright Ave La Verne. CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: FEIZI Project: BONITA ANNEX Project#: LV--050219-2 Slab on Grade Configuration:TYPE 1 SELECTIVE RACK 1 P slab . Concrete a a 1 fc= 2,500 psi ... ....... D rb e slab _t_t_, tslab=t= 8.0 in Cross teff= 8.0 in IIIIIIIIIIIIlIIIIIIIIIIIIIIIIIIM111IIIHHIIIIIIIII1III1IIIIIII1tI) c ----' Aisle phi--O= 0,6 X ► IA- c Soil • '- y " B ' i : : : fsoil= 1,000 psf L ► Down Aisle Movt= 114,660 in-lb SLAB ELEVATION Frame depth= 42.0 in Baseplate Plan View Sds= 0.720 Base Plate 0.2*Sds= 0.144 Effec.Baseplate width=B= 8,00 in width=a= 3.00 in X=0,600 Effec.Baseplate Depth=D= 5.00 in depth=b= 3.00 in p=B/D= 1.600 midway dist face of column to edge of plate=c= 5.50 in F'c^0.5= 50.00 psi Column Loads midway dist face of column to edge of plate=e= 4.00 in DEAD LOAD=D= 113 lb per column Load Case 1) (1.2+0.2Sds)D+ (1.2+0.2Sds)*B*P+rho*E RMI SEC 2.2 EQTN 5 unfactored ASD load = 1.34396* 113 lb+ 1.34396* 0.7 *3750 lb+ 1 * 2730 lb PRODUCT LOAD=P= 3,750 lb per column = 6,410 lb unfactoredASD load Load Case 2) (0.9-0.2Sds)D+ (0.9-0.2Sds)*B*Papp+rho*E RMI sec 2.2 EQTN 7 Papp= 2,513 lb per column = 0.75604* 113 lb+0.75604*0.7*2512.5 lb+ 1 * 2730 lb P-seismic=E= (Movt/Frame depth) = 4,145 lb = 2,730 lb per column Load Case 3) 1.2*D+ 1.4*P RMI SEC 2.2 EQTN to unfactored Limit State load = 1.2*113 lb+ 1.4*3750 lb - B= 0,7000 = 5,385 Ib rho= 1.0000 Load Case 4) 1.2*D+ 1.0*P+ 1.0E AQ319-I15ec 9.2.I,Egfi 95 Sds= 0.7198 = 6,616 lb 1.2 +0.2*Sds= 1.3440 Effective Column Load=Pu= 6,616 lb per column 0.9-0.20Sds= 0.7560 Puncture Apunct= [(c+t)+(e+t)]*2*t = 408.0 in^2 Fpunctl= [(4/3 +8/(3*p)] *L *(F'c^0.5) fv/Fv= Pu/(Apunct*Fpunct) = 90. psi = 0.203 < 1 OK Fpunct2= 2.66*T,*(F'c^0.5) = 79.8 psi Fpunct eff= 79.8 psi Slab Bending Pse=DL+PL+E= 6,616 lb Asoil= (Pse*144)/(fsoil) L= (Asoil)A0.5 y= (c*e)^0.5 + 2*t = 953 in^2 = 30.87 in = 20.7 in x= (L-y)/2 M= w*x^2/2 S-slab= 1*teffA2/6 - = 5.1 in = (fsoil*x^2)/(144*2) = 10.67 in^3 Fb= 5*(phi)*(fc)^0.5 = 90.0 in-lb fb/Fb= M/(S-slab*Fb) = 150. psi = 0.056 < 1,OK INTLK(PIN)-bONITA ANNEX-TYPE I rage Oaf 1 V 5/22/201 9 Structural • Engineering & Design Inc. 1815 Wright Ave La Verne. CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: FEIZI Project: BONITA ANNEX Project#: LV--050219-2 Configuration&Summary:TYPE TUNNEL SELECTIVE RACK **RACK COLUMN REAL/IONS ASD LOADS 64" 74" AXIAL DL= 113/b AXIAL LL= 3,000 lb N - \ SEISMIC AXIAL Ps=+/- 3504 lb BASE MOMENT= O in-lb 192" 192" 52•. 64" 52" 64' I — 108" .1` 42" Seismic Criteria #Bm Lvls Frame Depth Frame Height #Diagonals Beam Length Frame Type Ss=0.971, Fa=1.112 3 42 in 192.0 in 3 108 in Single Row Component Description STRESS Column Fy=55 ksi INTLK LU70/3x3x14ga P=2450 Ib,M=9117 in-lb 0.34-0K Column&Backer To Level 1 I INTLK LU70-LU21/3x3x14ga/3x1-5/8x14ga p= 3113 Ib, M= 18810 in-lb 0.38-OK Beam Fy=55 ksi Intik 50E 5Hx2.75Wx0.063'Thk Lu=108 in Capacity: 6123 lb/pr 0.57-OK Beam Connector Fy=55 ksi Lvl 3: 4 pin OK Mconn=3493 in-lb Mcap=22664 in-lb 0.15-OK Brace-Horizontal Fy=55 ksi Intik 1-1/2x1-1/4x3/8x16ga 0.12-OK Brace-Diagonal Fy=55 ksi Intik 1-1/2x1-1/4x3/8x16ga 0.52-OK ' Base Plate Fy=36 ksi 8x5x0.375 Fixity=0 in-lb 0.53-OK - Anchor 2 per Base 0.5"x 3.25"Embed HILTI KWIKBOLTTZ ESR 1917 Inspection Reqd(Net Seismic Uplift=1900 Ib) 0.467-OK Slab&Soil 8"thk x 2500 psi slab on grade. 1000 psf Soil Bearing Pressure 0.2-OK Level Load** Story Force Story Force Column Column Conn. Beam Per Level Beam Spcg Brace Transv Longit. Axial Moment Moment Connector 3 3,500 lb 64.0 in 74.0 in 555 lb 455 lb 1,788 lb 7,285 "# 3,493 "# 4 pin OK **Load defined as product weight per pair of beams Total: 764 lb 627 lb Notes DR or SR ok INTLK(PIN)-BONITA ANNEX-LIFE TUNNEL Page i T of (( C/27/20I 9