Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Specifications (22)
+ A. ??- pct #1CZ RECEIVEn APR 24 2019 CITYI��- 1��lt�APi tructuroIBUILDING DI ISI { Engineering ov„,,,E, copy i..' esign ¢Ep PROF Project Name : TRANE co\A G I N Fe s% Project Number : LV-04031911 62618PE o OREGON s'Air Date : 04/09/19 o G1 Street Address: 7244 SW DURHAM RD A/GQIAO ti. City/State : TIGARD, OR 97223 EXPIRES:06-30-2020 04/10/2019 Scope of Work : STORAGE RACK Minggiao Zhu, PE/P.Eng TEL:909.596.1351 FAX:909.596.7186 1428 N Shevlin Court Sewickley,PA 15143 { Structural Engineering & Design Inc. 1815 Wright Ave La Verne, CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: Bob Project: Trane Project#: LV-040319-11 TABLE OF CONTENTS Title Page 1 Table of Contents 2 Design Data and Definition of Components 3 Critical Configuration 4 Seismic Loads 5 to 6 Column 7 Beam and Connector 8 to 9 Bracing 10 Anchors 11 Base Plate 12 Slab on Grade 13 Other Configurations 14 t�-- Type A Select-TRANE.x!s Page of 1c 4/5/201 9 Structural Engineering & Design Inc. 1815 Wright Ave La Verne, CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: Bob Project: Trane Project#: LV-040319-11 Design Data 1)The analyses herein conforms to the requirements of the: 201218C Section 2209 2016 CBC Section 2209A ANSI MH 16.1-2012 Specifications for the Design of Industrial Steel Storage Racks 2012 RN!Rack Design Manual" ASCE 7-10,section 1553 3 2)Transverse braced frame steel conforms to ASTM A570,Gr.55,with minimum strength,Fy=55 ksi Longitudinal frame beam and connector steel conforms to ASTM A570,Gr.55,with minimum yield,Fy=55 ksi All other steel conforms to ASTM A36,Gr.36 with minimum yield,Fy=36 ksi 3)Anchor bolts shall be provided by installer per ICC reference on plans and calculations herein. 4)All welds shall conform to AWS procedures,utilizing E70) (electrodes or similar.All such welds shall be performed in shop,with no field welding allowed other than those supervised by a licensed deputy inspector. 5)The existing slab on grade is 6"thick with minimum 3500 psi compressive strength.Allowable Soil bearing capacity is 750 psf. The design of the existing slab is by others. 6)Load combinations for rack components correspond to 2012 RMI Section 2.1 for ASD level load criteria Definition of Components A —, H Column 7— Beam _ J _ m 7:1 Horizontal Brace Beam to Column Connector Diagonal Brace \41 Frame • Height Beam Product Spacing Base Plate and l,. Anchors G Panel Beam Height Length j • rT T I.e.Frame 4.1 DePth Front View: Down Aisle Section A: Cross Aisle (Longitudinal) Frame (Transverse) Frame Type A Select-TRANE.xle Page 3 of 4/5/20 19 Structural Engineering & Design Inc. 1815 Wright Ave La Verne, CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: Bob Project: Trane Project#: LV-040319-11 Configuration&Summary:Type A Selective Rack \ T **RACK COLUMN REACTIONS I ASD LOADS 7 64 AXIAL DL= 113/b tA)CAL LL= 6,750 lb SEISMIC AXIAL Ps=#/- 6,838/b 192 BASE MOMENT= 8,000/n-lb 64" 192" 48" 0t 64I" 36" `l I \ I' 96" "r' 42" 4 Seismic Criteria #Bm Lvls Frame Depth Frame Height #Diagonals Beam Length Frame Type Ss=0.962,Fa=1.115 3 42 in 192.0 in 4 96 in Component Description STRESS Column Fy=55 ksi Hannibal IF3014-3x3x14ga P=6863 lb,M=17986 in-lb 0.97-OK Column&Backer None None None N/A Beam Fy=55 ksi HMH 41160/4.125"Face x 0.06"thk Lu=96 in Capacity:4945 lb/pr 0.91-OK Beam Connector Fy=55 ksi Lvl 1:3 pin OK 1 Mconn=11840 in-lb Mcap=12691 in-lb 0.93-0K Brace-Horizontal Fy=55 ksi Hannibal 1-1/2x1-1/2x16ga 0.22-OK Brace-Diagonal Fy=55 ksi Hannibal 1-1/2x1-1/2xl6ga 0.34-0K Base Plate Fy=36 ksi 8x5x3/8 Fixity=8000 in-lb 0.82-0K Anchor 2 per Base 0.5"x 3.25"Embed Hilti Tz ESR 1917 Inspection Reqd(Net Seismic Uplift=3330 Ib) 0.842-OK Slab&Soil 6"thk x 3500 psi slab on grade.750 psf Soil Bearing Pressure 0.58-OK Level Load** Story Force Story Force Column Column Conn. Beam Per Level Beam Spcg Brace Transv Longit. Axial Moment Moment Connector_ 1 4,500 lb 64.0 in 36.0 in 276 lb 142 lb 6,863 lb 17,986 "# 11,840 "# 3 pin OK 2 4,500 lb 64.0 in 48.0 in 552 lb 284 lb 4,575 lb 11,360 "# 7,930 "# 3 pin OK 3 4,500 lb 64.0 in 48.0 in 829 lb 426 lb 2,288 lb 6,816 "# 3,954 "# 3 pin OK 48.0 in **Load defined as product weightperpair of beams 9 Total: 1,65716 85216 Notes Type A Select-TRANE.xle Page Li of f, 415/2019 Structural Engineering & Design Inc. 1815 Wright Ave La Verne, CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: Bob Project: Trane Project#: LV-040319-11 Seismic Forces Configuration:Type A Selective Rack Lateral analysis is performed with regard to the requirements of the 2012 RMI ANSI MH 16.1-2012 Sec 2.6&ASCE 7-10 sec 15.5.3 Ss= 0.962 Transverse(Cross Aisle)Seismic LoadS1= 0.418 V= Cs*I *Ws=Cs*I * * * -- p p (0.67 P Prf+D) ---- vt Fa= 1.115 Cs1= Sds/R 1711 ;�= Fv= 1.582 = 0.1788 Cs-max*Ip= 0.1788 Sds=2/3*Ss*Fa= 0.715 Cs2= 0.044*Sds Vmin= 0.015 ME Sd1=2/3*S1*W= 0A41 = 0.0315 Eff Base Shear=Cs= 0.1788 Transverse Elevation Ca=0.4*2/3*Ss*Fa= 0.2860 Cs3= 0.5*S1/R Ws= (0.67*PLRFS*PL)+DL(RMI 2.6.2) (Transverse,Braced Frame Dir.)R= 4.0 = 0.0523 = 9,270 lb Ip= 1.0 Cs-max= 0.1788 Vtransv=Vt= 0.1788*(225 lb+ 9045 Ib) PRFs=AP,''''';, Base Shear Coeff=Cs= 0.1788 Etransverse= 1,657 lb Pallet Height=hp= 48.0 in Limit States Level Transverse seismic shear per upright DL per Beam Lvl= 75 lb Level PRODUCT LOAD P P*0.67*PRF1 DL hi wi*hi Fl Fl*(hi+hp/2) 1 4,500 lb 3,015 lb 75 lb 64 in 197,760 276.2 lb 24,306-# I 2 4,500 lb 3,015 lb 75 lb 128 in 395,520 552.3 lb 83,950-# 3 4,500 lb 3,015 lb 75 lb 192 in 593,280 828.5 lb 178,956-# sum: P=13500 lb 9,045 lb 225 lb W=9270 lb 1,186,560 1,657 lb 2=287,211 Longitudinal(Downaisle)Seismic Load Similarly for longitudinal seism c loads,using R=6.0 Ws= (0.67*PLRF2*P)+DL PRF2= 1.0 Cs1=Sd1/(T*R)= 0.0919 = 9,270 lb (Longitudinal,Unbraced Dir.)R=6.0 l wv{ y Cs2= 0.0315 Cs=Cs-max*Ip= 0.0919 T=0.80 sec 0 h 1 Cs3= 0.0348 Vlong= 0.0919*(225 lb+9045 Ib) 1=1 k.. ;`,,i. :'.I ::::;;1 Cs-max= 0.0919 Elongitudinal= 852 lb Limit States Level Long&seismic shear perupright Level PRODUC LOAD P P*0.67*PRF2 DL hi wi*hi FI Front View 1 4,500 lb 3,015 lb 75 lb 64 in 197,760 142.0 lb I 2 4,500 lb 3,015 lb 75 lb 128 in 395,520 284.0 lb 3 4,500 lb 3,015 lb 75 Ib 192 in 593,280 426.0 lb sum: 9,045 lb 225 lb W=9270 lb 1,186,560 852 lb Type A Select-TRANE.xis Page 5 of If 4/5/20 19 Structural Engineering & Design Inc. 1815 Wright Ave La Verne, CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: Bob Project: Trane Project#: LV-040319-11 Downaisle Seismic Loads Configuration:Type A Selective Rack Determine the story moments by applying portal analysis.The base plate is assumed to provide partial fixity. Seismic Story Forces Typical frame made Vlong= 852 lb Tributary area of two columns Vco1=Vlong/2= 426 lb ofrack frame F1= 1421b kr, ' F2= 284 Ib i fes""1 I :44 j ., ` I ,=a + Typical Frame made ..----of two columns F3= 426 lb - "4 Cys 'L' i 1 I Top View 14— 96' ""—I • ' front View Side View Seismic Story Moments Conceptual System COi Mbase-max= 8,000 in-lb <===Default capacity hl-eff= hi-beam clip height/2 Mbase-v= (Vcol*hleff)/2 = 61 in = 12,993 in-lb <===Moment going to base Vcol �� I' ' �- Mbase-eff= Minimum of Mbase-max and Mbase-v h2 i 8,000 in-lb M 1-1= [Vcol*hleff]-Mbase-eff M 2-2= [Vcol-(F1)/2]*h2 IF = (426 lb*61 in)-8000 in-lb = [426 lb-142 Ib]*64 in/2 i—., ,' _ dF = 17,986 in-lb = 11,360 in-lb h1 hleff Mseis= (Mupper+Mlower)/2 I 1 Beam to Column Elevation Mseis(1-1)= (17986 in-lb+ 11360 in-lb)/2 Mseis(2-2)= (11360 in-lb+6816 in-Ib)/2 = 14,673 in-lb = 9,088 in-lb rho= 1.0000 Summary of Forces LEVEL hi Axial Load Column Moment** Mseismic** Mend-fixity Mconn** Beam Connector 1 64 in 6,863 lb 17,986 in-lb 14,673 in-lb 2,241 in-lb 11,840 in-lb 3 pin OK 2 64 in 4,575 lb 11,360 in-lb 9,088 in-lb 2,241 in-lb 7,930 in-lb 3 pin OK 3 64 in 2,288 lb 6,816 in-lb 3,408 in-lb 2,241 in-lb 3,954 in-lb 3 pin OK I Mconn= (Mseismic+Mend-fixity)*0.70*rho Mconn-allow(3 Pin)= 12,691 in-lb **all moments based on limit states level loading Type A Select-TRANE.xls (o of Page i, 'x/5/2019 Structural Engineering & Design Inc. 1815 Wright Ave La Verne, CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: Bob Project: Trane Project#: LV-040319-11 Column(Longitudinal Loads) Configuration:Type A Selective Rack Section Properties Section: Hannibal IF30143x3x14ga 1 3.000 in �j Aeff= 0.643 in^2 Iy= 0.749 in^4 1<x= 1.7 x _ Ix= 1.130 in^4 Sy= 0.493 inA3 Lx= 61.9 in •-----. 1 Sx= 0.753 inA3 ry= 1.080 in Ky= 1.0 • • i � rx= 1.326 in Fy= 55ksi Ly= 36.0 in i0•7••. 1 3.000 in 52f= 1.67 Cmx= 0.85 Cb= 1.0 k _ 10.075 i E= 29,500 ksi -c I4--0.75 in Loads Considers loads at level 1 COLUMN DL= 112 lb Critical load cases are;RMI Sec 2.1 COLUMN PL= 6,750 lb Load Case 5;;(1#0,105*Sds)D#0,75*(1.4#0,14Sds)*B*P#0,75*(0,7*rho*E)<=1,0,ASD Method Mcol= 17,986 in-lb axial loadcoeff. 0,78755985*P seismic momentcoeff. 0,5625*Mco! Sds= 0.7151 Load Case 6;;(1#0,14*Sds)D+(0.85#0.14Sds)*8*P#(0,7*rho*E)<=1.0,ASD Method 1+0.105*Sds= 1.0751 axial load coeff.• 0.66508 seismic momentcoeff; 0.7*Mcol 1.4+0.14Sds= 1.5001 By analysis,Load case 6 governs utilizing loads as such 1+0.14Sds= 1.1001 0.85+0.14*Sds= 0.9501 Axial Load=Pax= 1.100114*112 lb+0.950114*0.7*6750 lb Moment=Mx= 0.7*rho*Mcol B= 0.7000 = 4,613 lb = 0.7*17986 in-lb rho= 1.0000 Axial Analysis = 12,590 in-lb KxLx/rx= 1.7*61.937571.326" KyLy/ry= 1*3671.08" Fe > Fy/2 = 79.4 = 33.3 Fn= Fy(1-Fy/4Fe) = 55 ksi*[1-55 ksi/(4*46.2 ksi)] Fe= n^2E/(KL/r)max^2 Fy/2= 27.5 ksi = 38.6 ksi = 46.2ksi Pn= Aeff*Fn Pa= Pn/S2c S2c= 1.92 = 24834 lb/1.92 = 24,834 lb = 12,934 lb P/Pa= 0.36 > 0.15 Bending Analysis Check: Pax/Pa+(Cmx*Mx)/(Max*px)<_ 1.0 P/Pao+Mx/Max 5 1.0 Pno= Ae*Fy Pao= Pno/Dc Myield=My= Sx*Fy = 0.643 inA2*55000 psi = 35365lb/1.92 = 0.753 inA3*55000 psi = 35,365 lb = 18,419 lb = 41,415 in-lb Max My/Si Pcr= n^2EI/(KL)max^2 41415 in lb/1.67 = nA2*29500 ksi/(1.7*61.9375 in)^2 = 24,799 in-lb = 29,675 lb Nx= {1/[1-(S2c*P/Pcr)]}^-1 = {1/[1-(1.92*4613 lb/29675 Ib)]}^-1 = 0.70 Combined Stresses (4613 lb/12934 lb)+(0.85*12590 in-lb)/(24799 in-Ib*0.7)= 0.97 < 1.0,OK (EQ C5-1) (4613 lb/18419 Ib) +(12590 in-lb/24799 in-lb)= 0.76 < 1.0,OK (EQ C5-2) **For comparison,total column stress computed for load case 5 is; 920% 7 loads 5436,4385635 lb Axial and M= 9441 in-/b Type A Select-TRANE.xls Page 7 of lJ 4/5/20 19 • Structural Engineering & Design Inc. 1815 Wright Ave La Verne,CA 91750 Tel:909.596.1351 Fax:909.596.7186 By: Bob Project:Trane Project#: W-040319-11 BEAM Configuration:Type A Selective Rack DETERMINE ALLOWABLE MOMENT CAPACITY 2.75 in A)Check compression flange for local buckling(B2.1) .1.63 in i. w= c-2*t-2*r = 1.625 in-2*0.06 in-2*0.06 in r----I f = 1.385 in ______________ w/t= 23.081.625 in 1=lambda= [1.052/(k0.5] *(w/t)*(Fy/E)^0.5 Eq.B2.1-4 _. 1 = [1.052/(4)^0.5]*23.08*(55/29500)^0.5 4.125 in = 0.524 <0.673,Flange is fully effective Eq.B2.1-1 I 0.060 in I B)check web for local buckling per section b2.3 fl(comp)= Fy*(y3/y2)= 50.29 ksi f2(tension)= Fy*(y1/y2)= 102.06 ksi -t- Y= f2/f1 Eq.B2.3-5 Beam= HMH 41160/4.125"Face x 0.06"thk -2.029 Ix= 1.713 in^4 k= 4+2*(1-Y)^3+2*(1-Y) Eq.B2.3-4 Sx= 0.777 inA3 = 65.64 Ycg= 2.723 in flat depth=w= yl+y3 t= 0.060 in = 3.885 in w/t= 64.75 OK Bend Radius=r= 0.060 in 1=lambda= [1.052/(k)^0.5]*(w/t)*(fl/E)^0.5 Fy=Fyv= 55.00 ksi = [1.052/(65.64)^0.5]*3.885*(50.29/29500)^0.5 Fu=Fuv= 65.00 ksi = 0.347 <0.673 E= 29500 ksi ' be=w= 3.885 in b2= be/2 Eq B2.3-2 top flange=b= 1.625 in b1= be(3-Y) = 1.94 in bottom flange= 2.750 in = 0.773 Web depth= a 11C in bl+b2= 2.713 in > 1.2825 in,Web is fully effective L- FY _____I Determine effect of cold working on steel yield point(Fya)per section A7.2 "(comp) Fya= C*Fyc+(1-C)*Fy (EQ A7.2-1) j Lcorner=Lc= (p/2)*(r+t/2) 0.141 in C= 2*Lc/(Lf+2*Lc) yz Lflange-top=Lf= 1.385 in = 0.169 in y3 m= 0.192*(Fu/Fy)-0.068 (EQ A7.2-4) depth = 0.1590 Bc= 3.69*(Fu/Fy)-0.819*(Fu/Fy)^2- 1.79 (EQ A7.2-3) = 1.427 since fu/Fv= 1.18 < 1.2 Ycg y' and r/t= 1 < 7 OK 1 Fyc=�c*Fad.( jt j(B sJ! ^� Q) 1.2) S- = 78.485 ksi Thus, Fya-top= 58.97 ksi (tension stress at top) Fya-bottom= Fya*Ycg/(depth-Ycg) yl= Ycg-t-r= 2.603 in = 114.48 ksi (tension stress at bottom) y2= depth-Ycg= 1.403 in Check allowable tension stress for bottom flange y3= y2-t-r= 1.283 in Lflange-bot=Lfb= Lbottom-2*r*-2*t = 2.510 in Cbottom=Cb= 2*Lc/(Lfb+2*Lc) = 0.101 Fy-bottom=Fyb= Cb*Fyc+(1-Cb)*Fyf = 57.37 ksi Fya= (Fya-top)*(Fyb/Fya-bottom) = 29.56 ksi if F= 0.95 Then F*Mn=F*Fya*Sx=I 21.80 in-k F - 7 Structural Engineering & Design Inc. 1815 Wright Ave La Verne,CA 91750 Tel:909.596.1351 Fax:909.596.7186 By: Bob Project:Trane Project#: LV-040319-11 BEAM Configuration:Type A Selective Rack RMI Section 5.2,PT II Section Beam= HMH 41160/4.125"Face x 0.06"thk Ix=Ib= 1.713 in^4 2.75 in Sx= 0.777 in^3 t= 0.060 in E= 29500 ksi 1_1.63 in 4. Fy=Fyv= 55 ksi F= 150.0 Fu=Fuv= 65 ksi L= 96 in r —1—I �( Fya= 59.0 ksi Beam Level= 1 1.6251in P=Product Load= 4,500 lb/pair D=Dead Load= 75 lb/pair _______________ 1.Check Bending Stress Allowable Loads 0.06o in Mcenter=F*Mn= W*L*W*Rm/8 I W=LRFD Load Factor= 1.2*D+ 1.4*P+1.4*(0.125)*P RMIZ4 Item 8 FOR DL=2%of PL, W= 1.599 Rm= 1 [(2*F*L)/(6*E*Ib+3*F*L)] 11111111111111111111111111111111111111111111111111111111 1-(2*150*96 in)/[(6*29500 ksi*1.713 in^3)+(3*150*96 in)] it -= 0.917 !.: if F= 0.95 Prndacb Then F*Mn=F*Fya*Sx= 43.50 in-k Thus,allowable load _ Beam per beam pair=W= F*Mn*8*(#of beams)/(L*Rm*W) = 43.5 in-k*8*2/(96in*0.917*1.599) Length = 4,945 lb/pair allowable load based on bending stress • — Mend= W*L*(1-Rm)/8 = (4945 lb/2)*96 in*(1-0.917)/8 = 2,463 in-lb @ 4945 lb max allowable load = 2,241 in-lb @ 4500 lb imposed product load 2.Check Deflection Stress Allowable Loads Dmax= Dss*Rd L 4*F* , *F**L 4.10*E*I12) - Allowable ffefitecMon= 1./180 = 1-(4*150*96 in)/[(5*150*96 in)+(10*29500 ksi*1.713 in^4)] 0.533 in = 0.900 in Deflection at imposed Load= 0.485 in if Dmax= L/180 Based on L/180 Deflection Catena and Dss= 5*W*L^3/(384*E*Ib) L/180= 5*W*L^3*Rd/(384*E*Ib*#of beams) solving for W yields, W= 384*E*I*2/(180*5*L^2*Rd) = 384*1.713 inA4*2/[180*5*(96 in)^2*0.9) = 5,199 lb/pair allowable load based on deflection limits Thus,based on the least capacity of item 1 and 2 above: Allowable load= 4,945 lb/pair Imposed Product Load= 4,500 lb/pair ream Stress= 0.91 Beam at Leve/1 8• Z Structural Engineering & Design Inc. 1815 Wright Ave La Verne, CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: Bob Project:Trane Project#: LV-040319- 3 Pin Beam to Column Connection Type A Selective Rack the beam end moments shown herein show the result of the maximum induced fixed end monents Corm seismic+static loads and the code mandated minimum value of 1.5%(DL+PL) Mconn max= 4 mic+Mend-fixity)*0.70*Rho O P1 = 11 11,,8840 in-Ib Load at level 1 rho= 1 0000, O P2 2" P3 1/2" Connector Type= 3 Pin Shear Capacity of Pin Pin Diam= 0.44 in Fy= 55,000 psi Ashear= (0.438 in)^2*Pi/4 0.1507 inA2 Pshear= 0.4*Fy*Ashear = 0.4*55000 psi*0.1507inA2 = 3,315 lb Bearing Capacity of Pin tcol= 0.075 in Fu= 65,000 psi Omega= 2.22 a= 2.22 Pbearing= alpha*Fu*diam*tcol/Omega = 2.22*65000 psi*0.438 in*0.075 in/2.22 = 2,135 lb <3315 lb Moment Capacity of Bracket Edge Distance=E= 1.00 in Pin Spacing= 2.0 in Fy= 55,000 psi C= P1+P2+P3 tclip= 0.18 in Sclip= 0.127 inA3 = P1+P1*(2.574.5")+P1*(0.574.5") = 1.667*P1 Mcap= Sclip*Fbending C*d= Mcap= 1.667 d= E/2 = 0.127 inA3*0.66*Fy = 0.50 in = 4,610 in-lb Pclip= Mcap/(1.667*d) = 4610.1 in-lb/(1.667*0.5 in) Thus,P1= 2,135 lb = 5,531 lb Mconn-allow= [P1*4.5"+P1*(2.5"/4.5")*2.5"+P1*(0.5"/4.5")*0.51 = 2135 LB*[4.5"+(2.574.5")*2.5"+(0.574.5")*0.51 12,691 in-lb > Mconn max, OK Type A Select-TRANE.xl5 Pace �' of fj J 4/5/2019 Structural Engineering & Design Inc. 1815 Wright Ave La Verne, CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: Bob Project: Trane Project#: LV-040319-11 Transverse Brace Configuration:Type A Selective Rack Section Properties Diagonal Member= Hannibal 1-1/2x1-1/2x16ga Horizontal Member= Hannibal 1-1/2x1-1/2x16ga Area= 0.273 in^2 1.500 in --° Area= 0.273 inA2 � r min= 0.496 in I r min= 0.496 in 1.500 I Fy= 55,000 psi r--------17 Fy= 55,000 psi K= 1.0 I 11.500 in K= 1.0 j ' S2c= 1.92 i _ _� j 1.500 l- 1y 0.250 in - 14—0.250 Frame Dimensions Bottom Panel Height=H= 48.0 in Clear Depth=D-B*2= 36.0 in Frame Depth=D= 42.0 in X Brace= NO Column Width=B= 3.0 in rho= 1.00 Diagonal Member -► 0 (0I Load Case 6::(1+ .85+0,14Sds)*B*P+ ,7*rho*EJ<=.1.0,ASD Method I* i -Pi Vtransverse= 1,657 lb vb '� Vb=Vtransv*0.7*rho= 1657 lb*0.7* 1 (kl/r)= (k*Ldiag)/r min = 1,160 1b = (1 x 55,3 in/0.496 in) Ldiag= [(D-B*2)^2+(H-6")^2]^1/2 = 111.5 in I Ldiag = 55,3 in Fe= pi^2*E/(kl/r)^2 H I Pmax= V*(Ldiag/D)*0.75 = 23,419 psi = 1,145!b Iaxial load on diagonal brace member Since Fe<Fy/2, 3"typ --t-- Pn= AREA*Fn Fn= Fe B 44 = 0.273 inA2*23419 psi = 23,419 psi Typical Panel = 6,393 lb Configuration Pallow= Pn/S2 Check End Weld = 6393 lb/1.92 Lweld= 3.0 in = 3,330 lb Fu= 65 ksi tmin= 0.060 in Pn/Pallow= 0.34 <= 1.0 OK Weld Capacity= 0.75*tmin*L*Fu/2.5 = 3,510 Ib OK Vb=Vtransv*0.7*rho= 1,160 lb (kl/r)= (k*Lhoriz)/r min Fe= pi^2*E/(kl/r)^2 Fy/2= 27,500 psi (1 x 42 in)/0.496 in = 40,584 psi = 84.7 in Since Fe>Fy/2,Fn=Fy*(1-fy/4fe) Pn= AREA*Fn Pallow= Pn/S2c = 36,366 psi = 0.273inA2*36366 psi = 9928 lb/1.92 = 9,928 lb = 5,171 lb Pn/Pallow= 0.22 <= 1.0 OK Type A Select-TRANE.xls Page l0 of (f 4/5/201 9 Structural Engineering & Design Inc. 1815 Wright Ave La Verne, CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: Bob Project: Trane Project#: LV-040319-11 Single Row Frame Overturning Configuration:Type A Selective Rack Loads Critical Load case(s): 1)RMI Sec 2.2,item 7: (0.9-0.25ds)D+(0.9-0.20Sds)*B*Papp-E*rho hp Sds= 0.7151 {{ Vtrans=V=E=Qe= 1,657 lb (0.9-0.2Sds)= 0.7570 DEAD LOAD PER UPRIGHT=D= 225 lb (0.9-0.2Sds)= 0.7570 PRODUCT LOAD PER UPRIGHT=P= 13,500 lb g_S, 4 H h Papp=P*0.67= 9,045 lb rho= 1.0000 Wst LC1=Wst1=(0.75698*D+0.75698*Papp*1)= 7,017 lb Frame Depth=Df= 42.0 in Product Load Top Level,Ptop= 4,500 lb Htop-Iv1=H= 192.0 in DL/Lvl= 75 lb #Levels= 3 Seismic Ovt based on E,E(Fi*hi)= 287,211 in-lb #Anchors/Base= 2 height/depth ratio= 4.6 in hp= 48.0 in SIDE ELEVATION A)Fully Loaded Rack h=H+hp/2= 216.0 in Load case 1: Movt= E(Fi*hi)*E*rho Mst= Wstl *Df/2 T= (Movt-Mst)/Df = 287,211 in-lb = 7017 lb*42 in/2 = (287211 in-lb-147357 in-lb)/42 in = 147,357 in-lb = 3,330 lb Net Uplift per Column Net Seismic Uplift= 3,330 lb B)Top Level Loaded Only Load case 1: 0 V1=Vtop= Cs*Ip*Ptop>=350 lb for H/D>6.0 Movt= [V1*h+V2*H/2]*0.7*rho = 0.1788*4500 lb = 124,359 in-lb = 805 lb T= (Movt-Mst)/Df Vieff= 805 lb Critical Level= 3 = (124359 in-lb-75111 in-lb)/42 in V2=VDD= Cs*Ip*D Cs*Ip= 0.1788 = 1,173 lb Net Uplift per column = 40 lb Mst= (0.75698*D+0.75698*Ptop*1)*42 in/2 75,111 in-lb Net Seismic Uplift= 1,173 lb Anchor Check(2)0.5"x 3.25"Embed Hilti Tz anchor(s)per base plate. Special inspection is required per ESR 1917. Pullout Capacity=Tcap= 1,961 lb L.A.City Jurisdiction? NO Tcap*Phi= 1,9611b Shear Capacity=Vcap= 2,517 lb Phi= 1 Vcap*Phi= 2,517 lb Fully Loaded: (1665 lb/1961 Ib)^1 +(414 lb/2517 Ib)^1 = 1.01 <= 1.2 OK Top Level Loaded: (586 lb/1961 Ib)^1 +(201 lb/25171b)^1 = 0.38 <= 1.2 OK Type A Select-TRANE.xIs Page f( of - 4/5/201 9 Structural Engineering & Design Inc. 1815 Wright Ave La Verne. CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: Bob Project: Trane Project#: LV-040319-11 Base Plate Configuration:Type A Selective Rack Section 4---a 1 p Baseplate= 8x5x3/8 14 Eff Width=W= 7.00 in a= 2.50 in LI Eff Depth=D= 5.00 in Anchor c.c. =2*a=d= 5.00 in Mb Column Width=b= 3.00 in N=#Anchor/Base= 2 s' immimmimow Column Depth=dc= 3.00 in I b I4- L Fy= 36,000 psi L= 2.00 in 1......_ w -� Plate Thickness=t= 0.375 in Downaisle Elevation Down Aisle Loads Load Case 5;•;(1#0.105*Sds)D#0.75*[(L 4#0.14Sds)*B*P+0.75*/0.7*rho*EJ<=1.0,ASD Method COLUMN DL= 113 lb Axial=P= 1.0750855*112.5 lb+0.75*(1.500114*0.7*6750 Ib) COLUMN PL= 6,750 lb = 5,437 lb Base Moment= 8,000 in-lb Mb= Base Moment*0.75*0.7*rho 1+0.105*Sds= 1.0751 = 8000 in-lb*0.75*0.7*rho 1.4+0.14SdB 1.5001 = 4,200 in-lb Eff( 0, n, Axial Load P= 5,437 lb Mbase=Mb= 4,200 in-lb Effe Axial stress=fa= P/A=P/(D*W) Ml= wLA2/2=fa*L^2/2 = 155 psi = 311 in-lb Moment Stress=fb= M/S=6*Mb/[(D*B^21 Moment Stress=fb2= 2*fb*L/W = 102.9 psi = 58.8 psi Moment Stress=fbl = fb-fb2 M2= fb1*L^2)/2 = 44.1 psi = 88 in-lb M3= (1/2)*fb2*L*(2/3)*L=(1/3)*fb2*LA2 Mtotal = M1+M2+M3 = 78 in-lb = 477 in-lb/in S-plate= (1)(t^2)/6 Fb= 0.75*Fy = 0.023 inA3/in = 27,000 psi fb/Fb= Mtotai/[(5-plate)(Fb)] Fp= 0.7*Fc = 0.75 OK = 2,450 psi OK Tanchor= (Mb-(PLapp*0.75*0.46)(a))/[(d)*N/2] Tallow= 1,961 lb OK = -2,669 lb No Tension Cross Aisle Loads C^ I imd, R fr 54w21.Am 4"(1M.115de)DL#(1+0.145DS)P'O.75f6L'"-'.'14 AS v Check uplift load on Baseplate Check uplift forces on baseplate with 2 or more anchors per RMI 7.2.2. Pstatic= 5,437 lb 'When the base plate configuration consists of two anchor bolts located on either side of the column and a net uplift force exists,the minimum base plate thickness Movt*0.75*0.7*rho= 150,786 in-lb Pseismic= Movt/Frame Depth shall be determined based on a design bending moment in the plate equal Frame Depth= 42.0 in = 3,590 lb to the uplift force on one anchor times 1/2 the distance from P=Pstatic+Pseismic= 9,027 lb I the centerline of the anchor to the nearest edge of the rack column" b=Column Depth= 3.00 in T L=Base Plate Depth-Col Depth= 2.00 in Ta Mu a .m111111611 fa= P/A= P/(D*W) M= wLA2/2=fa*LA2/2 I I b J I = 258si p = 516 in-lb/in Elevation Sbase/in= (1)(t^2)/6 Fbase= 0.75*Fy Uplift per Column= 3,330 lb Qty Anchor per BP= 2 = 0.023 in^3/in = 27,000 psi Net Tension per anchor=Ta= 1,665 lb c= 2.00 in fb/Fb= M/[(S plate Fb )( )] Mu=Moment on Baseplate due to uplift= Ta*c/2 0.82 OK = 1,665 in-lb Splate= 0.117 inA3 [fb/Fb]*0.75= 0.395 OK - TypeA Select-TRANE.xis Page /2 of /I4/5/2019 • Structural Engineering & Design Inc. 1815 Wright Ave La Verne, CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: Bob Project: Trane Project#: LV-040319-11 Slab on Grade Configuration:Type A Selective Rack P slab a a 1 Concrete �� D b e fc= 3,500 psi It- I tslab=t= 6.0 in IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII iIIIIIllllllllllllllllllllllllllllllllll :;Cross teff 6 0 in 1 . - 1 k- c -.1 j .,.,_ Soil Y 1. - S '-<-:-.v.'.... Y Y B fsoil= 750 psf L -� Down Aisle Movt= 201,048 in-lb SLAB ELEVATION Frame depth= 42.0 in Baseolate Plan View Sds= 0.715 Base Plate 0.2*Sds= 0.143 Effec.Baseplate width=B= 7.00 in width=a= 3.00 in Effec.Baseplate Depth=D= 5.00 in depth=b= 3.00 in [i B/D= 1.400 midway dist face of column to edge of plate=c= 5.00 in F'c^0.5= 59.2 Column Loads midway dist face of column to edge of plate=e=4.00 in DEAD LOAD=D= 113 lb per column Load Case 1) (1.2+0.2Sds)D+(1.2+0.2Sds)*B*P+rho*E RMI SEC 2.2 EQTN 5 unfactoredASD load = 1.34302*113 lb+ 1.34302*0.7*6750 lb+ 1*4786 lb PRODUCT LOAD=P= 6,750 lb per column = 11,284 lb unfactoredASD load Load Case 2) (0 9-0.2Sds)D+(0.9-0.2Sds)*B*Papp+rho*E RMI SEC 2.2 EQTN 7 Papp= 4,523 lb per column = 0.75698* 113 lb+0.75698*0.7*4522.5 lb+1*4786 lb P-seismic=E= (Movt/Frame depth) = 7,268 lb = 4,786 lb per column Load Case 3) 1.2*D+ 1.4*P RMI SEC 2.2 EQTN 1,2 unfactored Limit State load = 1,2*113 lb+ 1.4*6750 lh B= 0.00 = 9,585 lb rho 1.00001<. � � `ate. Load Case 4) 1.2*D+ 1.0*P+1.0E ACI 31.8-11 Sec 9.21,Egth 9-5 Sds= 0.7151 = 11,672 lb 1.2+0.2*Sds= 1.3430 Effective Column Load=Pu= 11,672 lb per column 0.9-0.20Sds= 0.7570 Puncture Apunct= [(c+t)+(e+t)]*2*t = 252.0 inA2 Fpunctl= [(4/3+8/(3*3)]*X*(Fc^0.5) fv/Fv= Pu/(Apunct*Fpunct) = 115.psi = 0.490 < 1 OK Fpunct2= 2.66*2,*(Fc^0.5) = 94.5 psi Slab Bending Pse=DL+PL+E= 11,672 lb Asoil= (Pse*144)/(fsoil) L= (Asoil)^0.5 y= (c*e)^0.5+2*t = 2,241 in^2 = 47.34 in = 16.5 in x= (L-y)/2 M= w*x^2/2 S-slab= 1*teff^2/6 = 15.4 in = (fsoil*x^2)/(144*2) = 6.0 inA3 Fb= 5*(phi)*(fc)^0.5 = 620.3 in-lb fb/Fb= M/(S-slab*Fb) = 177.48 psi = 0.582 < 1,OK Type A Select-TRANE.xIs Page / 3 of /J 4/5/201 9 • Structural Engineering & Design Inc. 1815 Wright Ave La Verne, CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: Bob Project: Trane Project#: LV-040319-11 Configuration&Summary:Type B Selective Rack **RACK COLUMN REACTIONS ASD LOADS 64" AXIAL DL= 113/b N AXIAL LL= 6,750/b 48„ SEISMIC AXIAL Ps=t/- 6,838 lb 197 64 192" BASE MOMENT= 8,000 in/b i 64" 144" + + 42" 4 Seismic Criteria #Bm Lvls Frame Depth Frame Height #Diagonals Beam Length Frame Type Ss=0.962,Fa=1.115 3 42 in 192.0 in 4 144 in Component Description STRESS Column Fy=55 ksi Hannibal IF3014-3x3x14ga P=6863 lb,M=17986 in-lb 0.96-0K Column&Backer None None None N/A Beam Fy=55 ksi HMH 60140/6"Face x 0.075"thk Lu=144 in Capacity: 7172 lb/pr 0.63-0K Beam Connector Fy=55 ksi Lvl 1: 3 pin OK Mconn=11434 in-lb Mcap=12691 in-lb 0.9-0K Brace-Horizontal Fy=55 ksi Hannibal 1-1/2x1-1/2x16ga 0.22-0K Brace-Diagonal Fy=55 ksi Hannibal 1-1/2x1-1/2x16ga 0.34-OK Base Plate Fy=36 ksi 8x5x3/8 Fixity=8000 in-lb 0.82-0K Anchor 2 per Base 0.5"x 3.25"Embed Hilti Tz ESR 1917 Inspection Reqd(Net Seismic Uplift=3330 Ib) 0.842-OK Slab&Soil 6"thk x 3500 psi slab on grade. 750 psf Soil Bearing Pressure 0.58-0K Level Load** Story Force Story Force Column Column Conn. Beam Per Level Beam Spcg Brace Transv Longit. Axial _ Moment Moment Connector 1 4,500 lb 64.0 in 36.0 in 276 lb 142 lb 6,863 lb 17,986 "# 11,434 "# 3 pin OK 2 4,500 lb 64.0 in 48.0 in 552 lb 284 lb 4,575 lb 11,360 "# 7,524 "# 3 pin OK 3 4,500 lb 64.0 in 48.0 in 829 lb 426 lb 2,288 lb 6,816 "# 3,548 "# 3 pin OK 48.0 in I**Load defined as product weight per pair of beamsI Total: 1,65716 85216 Notes Type B Select-TRANE.xls Pace / 'of /1 4/4/2019 Structural Engineering & Design Inc. 1815 Wright Ave La Verne, CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: Bob Project: Trane Project#: LV-040319-11 Configuration&Summary:Type C Selective Rack 18" -Ij`- **RACK COLUMN 18" 48 ASD LOADS - AXIAL DL= 375/b 18" 1.. AXIAL LL= 6,250/b 1 - 4 ., SEISMIC AXIAL Ps=t/- 6,800/b 18 BASE MOMENT= 8,000 in-/b 192" 192" N 0 18" 18" '�" 18" 18" 36" _N,_ N. 18, I -f 96" -I-' \ ,1`. 36" 4 I Seismic Criteria Ss=0.962,Fa=1.115 I #Bm Lvls !Frame Depth'Frame192.0 I I Type Height) #Diagonals Beam Length Frame T e 96 in 10 36 in in 4 Component Description STRESS Column Fy=55 ksi Hannibal IF3014-3x3x14ga P=6625 lb,M=3147 in-lb 0.37-OK Column&Backer None None None N/A Beam Fy=55 ksi HMH 30160/3"Face x 0.06"thk Lu=96 in Capacity:2642 lb/pr 0.47-OK Beam Connector Fy=55 ksi Lvl 1:3 pin OKMcMconn=3228 in-lb � Mcap=12691 in-lb 0.25-OK Brace-Horizontal Fy=55 ksi Hannibal 1-1/2x1-1/2x16ga 0.19-OK Brace-Diagonal Fy=55 ksi Hannibal 1-1/2x1-1/2x16ga 0.32-OK Base Plate ksi Fy=368x5x3/8 Fixity=3146 in-lb 0.8-OK Anchor 2 per Base 0.5"x 3.25"Embed Hilti Tz ESR 1917 Inspection Reqd(Net Seismic Uplift=3346 Ib) 0.85-OK Slab&Soil 6"thk x 3500 psi slab on grade.750 psf Soil Bearing Pressure Level I Load** 0.57-0KStory ForceSto Force Column Column Conn. Beam Per Level Beam Spcg Brace Transv I Longit. I Axial I Moment Moment Connector 1 1,250 lb 18.0 in 36.0 in 30 lb 15 lb 6,625 lb 3,147 "# 3,228 "# 3 pin OK 2 1,250 lb 18.0 in 48.0 in 59 lb 31 lb 5,963 lb 3,707 "# 3,376 "# 3 pin OK 3 1,250 lb 18.0 in 48.0 in 89 lb 46 lb 5,300 lb 3,569 "# 3,256 "# 3 pin OK 4 1,250 lb 18.0 in 48.0 in 119 lb 61 lb 4,638 lb 3,363 "# 3,088 "# 3 pin OK 5 1,250 lb 18.0 in 148 lb 76 lb 3,975 lb 3,089 "# 2,871 "# 3 pin OK 6 1,250 lb 18.0 in 178 lb 92 lb 3,313 lb 2,745 "# 2,607 "# 3 pin OK 7 1,250 lb 18.0 in 208 lb 107 lb 2,650 lb 2,334 "# 2,295 "# 3 pin OK 8 1,250 Ib 250 Ib 18.18.0 in X37-1� 1224b- f I,@;3 '#= 19 "# ' Spin�K - -- - _ 1, 0 in 267 lb 137 lb 1,325 lb 1,304 "# 1,526 "# 3 pin OK 10 1,250 lb 18.0 in 297 lb 153 lb 663 lb 686 "# 1,070 "# 3 pin OK **Load defined as product weight per pair of beams Total: 1,632 lb 839 lb Notes 1 i Type`C Select-TRANE.xle Pace aJ of 7 - 4/5/20 19